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Résumé
Etude des micro-contraintes dans les matériaux tentés hétérogenes par

diffraction et modéles de comportement

L'objectif de ce travail est le développement d’'um&thodologie d’'analyse des
contraintes utilisant des modéles théoriques p@arict le comportement élasto-plastique
des matériaux polycristallins. L’étude vise d’abbimterprétation de résultats expérimentaux
par des modeles de déformation qui décrivent laticné des champs de contrainte dans les
matériaux polycristallins déformés. Une attenti@mtiguliére est portée a I'explication des
phénomeénes physiques a l'origine des contraintegluélles et a la prédiction de leur
évolution et de leur influence sur les propriétésrhteriau.

Dans le premier chapitre, la méthode classiques diés sifip, d’analyse des
contraintes est présentée. Ensuite, la nouvellehadét d'analyse, méthode de multi-
réflexions, basée sur les mesures de déformationtibsant plusieurs réflexions hkl est
introduite. Dans cette méthode, tous les pics ffeadiion sont analysés simultanément et la
distance interréticulaire nd est remplacée par une distance équivalente a.i,Asest
présentées les méthodes de calcul des constamssqées radiocristallographiques qui
jouent un réle crucial dans la détermination destraintes. La détermination de ces
constantes est indispensable pour l'interprétaties différents résultats expérimentaux. De
nouvelles méthodes de calculs des constantesgglestradiocristallographiques utilisant le
modele autocohérent ont été développées et tesigesattention particuliére a été portée au
calcul par ce nouveau modele autocohérent danaslales couches superficielles (surface
libre). Dans ce modele, le calcul des forces etragries normales a la surface est effectué
selon le modele de Reuss et pour les deux autestidns, c’est le modeéle auto-cohérent qui
est utilisé. Cette méthode de calcul est particerieent adaptée au cas de la diffraction des
rayons X ou seulement une couche superficielle dténau est examinée (généralement de
quelquesum d’épaisseur).

Dans le chapitre suivant, deux modeles de déefoomaint été développés et utilisés
pour déterminer I'évolution des contraintes et gs&l les propriétés du matériau. Le premier
modéle (LF) est basé sur les formulations de Leffeefers 1968) qui ont été reprises et
développées par Wierzbanowski (Wierzbanowski 19982). Le second est le modele auto-
cohérent (SC) (Hutchinson 1964, Berveiller et Zab@v9). Dans ce travail, le calcul est
réalisé a partir de l'algotithme développé par hghi et Berveiller (Lipinski et Berveiller
1989). Dans cette approche, le tenseur de Greartiest pour décrire les interactions entre



les grains. Les grains du polycristal sont congisl@lomme des inclusions ellipsoidales (en
3D) dans une matrice homogene. Ces deux modéldéfdemation elasto-plastique (LW et

SC) sont des outils trés utiles pour I'étude desppétés mécaniques des matériaux
polycristallins. lls permettent la prédiction desogriétés macroscopiques du matériau
(texture, courbes contrainte-déformation, surfaddscoulement plastique, densité des
dislocations, état final des contraintes résidselletc.) a partir de ses caractéristiques
microsructurales (systemes de glissement, loi diéssage, texture initiale, état initial des
contraintes résiduelles, etc.) (Wierzbanowski 1978gs résultats typiques: de texture,
écrouissage et énergie stockée, obtenus par ceslespant été comparés aux résultats
expérimentaux.

Le chapitre 3 est consacré principalement a I'espilbn des origines physiques des
contraintes et de la prédiction de leur évolutainsi qu’a leur influence sur les propriétés du
matériau. Les contraintes internes sont classéesoentypes selon I'échelle : contraintes
d’ordre |, Il ou Ill. Une attention particuliéretgsortée aux contraintes d’ordre | et Il car ce
sont les seules qui sont déterminées a partir deosition des pics de diffraction. Les
modeles de déformation ont été utilisés pour I'gseldes contraintes a I'échelle des grains
(contraintes du second ordre). L'évaluation quatitie de ce type de contraintes ne peut pas
étre effectuée directement par des mesures maisesil possible grace aux modeéles. Les
matériaux multi-phasés ont été également étudi@sr Pes matériaux, l'interprétation des
données expérimentales est plus complexe que delleas des matériaux monophasés en
raison de la nécessité de prendre en compte Kctien entre les phases. C’est pourquoi, une

nouvelle méthode adaptée aux matériaux multi-phasée développée et appliquée au cas

des aciers inoxydables austéno-ferritiques (adderglex). Les parametres de déformation

plastique ¢?"- scission critique résolu et ™ - parameétre d’écrouissage) de chacune des

phases ont pu étre déterminés. Lors de la défavmalastique, I'évolution des contraintes
dans les phases et la création de contraintesodtipatibilité de second ordre, sont observées
et I'influence de la texture cristallographique det I'anisotropie élastique est étudiée. La
méthodologie développée et utilisée dans ce traagaildonc, permis de déterminer
guantitativement les contraintes du premier eseltond ordre, pour chaque phase. Il a été
montré qu’une bonne corrélation entre les défornatidéterminées expérimentalement et
les résultats théoriques, n’est obtenue que didénce des contraintes du second ordre est
prise en compte. Aussi, le meilleur lissage deshmniexpérimentales est obtenu quand les
calculs intégrent les constantes d’élasticité dropiques et la texture réelle initiale de

I'’échantillon.



Les méthodes de détermination des contraintes elier et du second ordre, présentées au
troisieme chapitre, sont employées pour I'étude ategraintes résiduelles dans des alliages
écrouis par laminage croisé (Chapitre 4). Le laggnaroisé a été retenu pour ajouter une
symétrie de la texture cristallographique et, dode, réduire I'anisotropie de la piéce
(comparé au laminage uniaxial). Les résultats pofgentés pour des séries d’éprouvettes en
acier et en alliage de cuivre. Dans le cas ddd@dl de cuivre, les résultats montrent de trés
faibles niveaux de contraintes d’incompatibilité seeond ordre qui peuvent étre négligées.
Par contre, dans le cas de la ferrite, il fautegmirtcompte car leur niveau s’avere important.
Les oscillations observées sur les courbes dég giruvent étre expliquées, dans ce cas,
principalement par la présence de contraintes clnskordre.

Enfin, au chapitre 5, une nouvelle méthode d’amalges contraintes utilisant un
faisceau de rayons X avec un angle d’'incidencddabconstant (méthode de diffraction en
incidence rasante GID-Sijl). Cette méthode présente l'avantage d’une profandie
pénétration des rayons X constante, contrairemelat @éthode des sy classique qui
présente I'inconvénient d’'une forte variation depknétration avec I'anglgy. C’est pour
cette raison que la méthode classique degsist mal adaptée pour I'étude des matériaux a
forts gradients de contraintes. Moyennant un cbpixmisé des angles d’incidence et du type
de rayonnement, la nouvelle méthode s’avere effiqaour I'étude des matériaux a forts
gradients de contraintes, en permettant des medares différentes couches proches de la
surface. L'incertitude des mesures a été évalude gile de I'absorption, de I'indice de
réfraction et des facteurs de Lorentz-polarisatibde diffusion atomique ont été étudiés.

A partir de mesures sur des poudres de référeimfydnce de chacun de ces paramétres a
été évaluée et prise en compte dans la détermindgoa position des pics de diffraction.

Les analyses effectuées ont confirmé la faibleuerice de I'absorption et des facteurs de
Lorentz-polarisation et de diffusion atomique sucontrainte déterminée. Par contre, ils ont
révélé un effet important de lindice de réfractioan particulier aux petits angles

d’incidence. Pour des angles d'incidencel(’, les corrections sont importantes et modifient
les résultats des contraintes d’une maniere sgatifie (la correction peut atteindre 70 MPa
dans le cas de la poudre). Cet effet et, doncoteection nécessaire décroit quand I'angle

d’incidence augmente.
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Summary

The aim of this work is to develop the methodolagly stress measurement using
theoretical models describing elasto-plastic behaviof polycrystalline materials. The main
purpose is to interpret experimental results on libeis of the self-consistent model which
describes the mechanisms of stress field generatiodeformed polycrystalline materials.
Special attention has been paid to the explanatidhe physical origins of stresses and to the
prediction of their evolution and influence on nigtleproperties.

In Chapter 1 the classical method of stress meammecalled sifp was described. The
new stress analysis — multi-reflection method -edasn strain measurements using a few
reflectionshkl is introduced (in this method all peaks are amamlysimultaneously). Also the
methods of calculation of the diffraction elastanstants, which play a crucial role in the stress
analysis, were presented. The determination ofetleemstants is essential in explanation of
many experimental results. New methods for theutation of diffraction elastic constants using
the self-consistent model have been elaboratedemteldd. These methods were used for textured
samples.

In Chapter 2 two models (self-consistent and Leffélierzbanowski models) were
presented. They enable the prediction of macroscoiterial properties (e.g., texture, stress-
strain curves, plastic flow surfaces, dislocatiemslty, final state of residual stress, etc.) l@asin
on the micro-structural characteristics (crystalgdny of slip systems, hardening law, initial
texture, initial residual stress state, etc.).

In Chapter 3 a special attention has been paide@xplanation of physical origins of the
stresses and to the prediction of the stress ewnlaind their influence on material properties.
The internal stresses were divided into three typefinction of the scale. The deformation
models were used to analyse the stresses presgnatims (the second order stresses). Quantitave
estimation of this kind of stresses is possibley @yl means of models; they cannot be measured
directly. Interpretation of experimental data foultiphase material is more complex than for a
single phase one, because it is necessary to esnstdraction between phases. For this reason,
the new method of investigation of multiphase malkemwas developed and applied for duplex
stainless steel.



The methods of estimation of the first and the sdaarder stresses which were presented
in the third chapter are used to study the resigiakses in materials after cross rolling (Chapter
4). The cross-rolling is applied in order to symmzet the crystallographic texture and
consequently, to decrease the sample anisotropg. résults for series of copper and steel
samples are presented.

Finally, in Chapter 5 a new method of stress estonausing a constant and low incident
beam angle (grazing angle incidence X-ray diffiactiechnique) was presented. In this method,
the penetration depth is almost constant on th&r@onto classical method. For this reason, the
grazing incidence diffraction technique can be utsedhvestigate materials with a significant
stress gradient. Measurement uncertainties in iiithod were considered; especially the
influence of absorption, Lorentz-polarization, atorscattering factor and refractive index were

studied.



Chapter 1

Determining of stresses in polycrystalline
materials

1.1. Introduction

The internal stresses are generated by applyirggredtioads to the sample. They appear
after deformation of the material as a result change of the shape and volume. In most cases
the stress field is homogeneous and anisotropiginBuplastic deformation the sample is
deformed irreversibly and stresses remain in tmepsa even if external forces are unloaded.
The stresses which can be found in unloaded samapéesalled the residual stresses. Residual
stresses affect the mechanical properties of naddeasind they are responsible for such processes
like fracture, cracks growth, fatigue, creep, retaifisation and many others. However in some
cases the residual stresses improve selected pespef materials. For example the presence of
the compression stress field can improve endurmmggacking.

There are several techniques for determinatioegitiual stresses, such as the destructive
mechanical methods (layers removal), the methodedan the measurements of material
properties affected by stresses (ultrasonic methodasurement of Barkhausen magnetic noise,
Raman spectroscopy) and the diffraction method dbase the measurement of strain of the
crystallographic lattice. The advantage of therddfion method is its non-destructive character
and the possibility of macro and microstress amglys multiphase and anisotropic materials.
This method is frequently used in industry, matesaience, electronics and biomaterial
technology. Because of high absorption of X-rayiatohn this method can be applied to study
residual stresses to the depth of fem below the surface of sample. In order to get deep
penetration, synchrotron or neutron radiation hasé¢ applied. The use of synchrotron or
neutron radiation enables to study stresses upféavam below the surface and sometimes in
the entire sample volume.

In the case of synchrotron or neutron radiationséepling volume can be well defined
by special slits forming the incidence and therddfed beams. In this way the measurement



from small selected parts of the sample can be.dbhe stress measurement is possible with
high spatial resolution (less than20). In this work, the classical X-ray and the nentr
diffraction methods are used to study the stredddiin polycrystalline materials. The influence
of various types of stress on the results of aatiffon experiment is discussed.

1.2. Measurements of macrostresses using diffraction
method.

When internal stresses are present in a materigystematic change of the lattice
parameter in each grain is observed. The interpkspecing is described by Bragg’s law:

2d,,, Sin€ = nA (1.1)

The increase of interplanar spacig causes a decreasefofingle. In typical cases the shift of
a peak is: 0,001- 0,2. It seems to be a small value, however a gooitditprocedure of the
diffraction peak (using Gauss or Lorentz functiemables to observe and measure this effect.
The presence of internal stresses causes not afiiftaof a diffraction peak £(20)= 20 - 20, )

but also a change of its intensity and width (thiger is expressed as FWHM, i.e., full width at
half maximum).

QO < Q ?hkl)

1 <dot

a.

Fig. 1.1. Diffraction on a stress free lattice (a) and ondaformed lattice (b). A range of
interplanar spacings in different diffracting crgdittes is shown by dashed lines, while the
continuous line is used to mark the average digtd@tween reflecting planes.

The lattice parameter can be determined usingagdiiftn method. The measured value is the
average over the group of diffracting grains. Tkl of average will be marked as <...>. Hence,
the Bragg law can be written as:

2<dyyy >sin< Gy >=nA (1.2)



An important condition concerning the sensitivifytioe method can be derived from Bragg law.
A small change of interplanar spacing<€d >,,) is related with a shift of the peak position

(4<26>,,,) by equation:

A<d > (i}

A<20>,, . =-2
e l: <d >{th}

}tg <O >0 = "2 <€ >y 19 <0 > (1.3)

A<d > hidy

where: <&>; .=
{hki}
<d > hiiy

It is visible that for the same value M bigger shift o4<26>,,, is observed for

' hkl}
higher ® scattering angle. For this reason usually the pedth D angle higher than 8@re
used for the stress measurement. In the case fodddibn peaks with @ smaller than J0the
precision of measurement is generally not good gin@let us remark that the detector position
is usually set with the precision of 0)1This is why the measurements for angles sméiten
90 are not reliable (Bojarski, 1995)

0.08

Adyy /Ay = 0.001

0.06 -

0.04 ~

Aze{hkl} [°]

0.02 ~

0.00 A

40 60 80 100 120 140 160 180
o]
29{hk|} [']

Fig. 1.2. A28« VS. By for Ad{h% =0.001 It should be noticed that shift of the peak

L hkl}
211 for steel under pressure 200MPa equal§ 0,1

Let us describe now the measurement geometry. Xperienent consists of the sample
rotation around the scattering vec@rfor a fixed D angle. Two types of the coordinate system
should be considered: sample system (X) and thesumnement coordinate system (L). The
definition of these coordinate systems is presemtédg. 1.3. I3 axis is parallel to the scattering
vector Q. During the measurement a sample is rotated amgbdsition of the vectors | Q is
described by andy angles (Wolfstieg, 1976) (with respect to X conede system).



X, i~ L;llQ - scattering
’ vector

\4

Fig. 1.3. Orientation of the scattering vector with respezttihe sample system X. Theand
@angles define the orientation of the L system gitis lies in the plane of the sample surface).
The laboratory system, L, defines the measuremettieointerplanar spacings <¢{{@>
along the k axis.

incident
beam

scattering
vector

.

>

diffracted
beam

Fig. 1.4. Eulerian cradle used to change the relative sanoplentation.

Bragg's law enables to measure interplanar spad#tg . So for each orientation of vector
L4|Q it is possible to measure interplanar spacing, @t for crystallographic planes {hkl}
perpendicular to the scattering vec@r In all relations expressed in L coordinate systam

index () will be used (e.g., the measured deforomatilong Ls axis is marked ag,, ).' The
diffraction method enables to measure the meanpiatear spacing <d( ®>mn«;, averaged

over reflecting crystallites. The mean lattice istreig(y, @®>ny in Lz direction (Fig. 1.3) is
defined as:



<d,9 > _d{h(l)d}

<& W) > = 40 (1.4)
{hkl}
The lattice straire,, (J,@miy for a given grain can be calculated from Hookis:la
E3' W, Dy = S W, 90y (1.5)

wheree';, o' ands;, . are the elastic strain, stress and elastic conggigensor of a graitn
the above equation the convention of repeated isdexmation is applied (Einstein convention).
This convention will be used in the whole preseatkaand it will concern always lower indices.

For a given orientation of the scattering vecty &nd for a given Bragg’'s angle§)2only those
crystallites diffract which have one of the {hki}ames perpendicular tQ||L3. This group of
crystallites is callediffracting group Average measured deformation is:

<&'W.9 Z iy =< Ssaj '(‘//1@% > (1.6)

It is next assumed that an effective tenspi’ 8xists for the diffracting group which simplifies
the above relation to:

< &' WD) >y =S ' W 90} 1.7)

where 05" Is the average macroscopic stress, constant iig @ast of a sample (i.e., in the
measurement volume).

Let us note that even if a sample has the quasb{goc symmetry (random texture), the
diffracting group has a lower symmetry. Orientatmnthe crystallites belonging to this group
can differ one from another by rotatigraroundQl | L3l | Ni vector — Fig. 1.5. Consequently,
the average elastic matrix,Sfor diffracting group has the same structure &®ay with axial
symmetry. It is defined by five independent parareand has a form (see e.g., Reid, 1974):

S, S, Spu
S, S; S 0
s =S Su Sa . w9
0 S..
L 866




In the above equation the matrix notatiopSvas used for tensor componentg{SThe rules
for the reduction of indices are following:

Tensor indices Reduced matrdides
11-1
22— 2
33> 3 (1.9)
23,32—- 4
13,31—-5
12,21—- 6

e.g., the tensor component;§ becomes the matrix component.Sn the present work the
elastic constant tensors will be used both in matnd tensor convention, depending on the case
in order to simplify equations.

It is evident, that the symmetry axis for the adsigrof diffracting grains i€l L.

Using the elastic constants matrix, equation lo/bsawritten as:

<& WD) >= S1'01 " 48,0, #8504 (1.10)

On the right hand there are only three componéetause $,=S'35=S'36= 0 (see. Eq. 1.8).

[001]

L3=Q "N{hkl}

X

[010]

/

[100]
Fig. 1.5. Definition of lattice rotation around the scatteginectorl 3=N || Q

Taking into account the structure of the,Smatrix (Eq. 1.8), the above equation can be
rewritten as:

<& W9 thii) = S‘.lea-nM I+§3I022M '+%3'033M ' (1.11)

Let us note that all quantities in the above egmatire expressed in L coordinate system. Our
goal is to relate the measured deformatigh (expressed in L coordinate system) in function of
stress components; (expressed in X coordinate system). To transfamess tensoio; to L

coordinate system, the transformation matrix hdsetdefined. This matrix is (see Fig.1.3):

10



cospcosy singcosy —siny
& =| -—sing cosp 0 (1.12)
cosgsing  singsing  cosy

The transformation law for four stress rank tenssirs

0;'=8@,0y (1.13)

According to the above, three needed comporgnhtsre:

0,,"'=a,," co gcos Y +02." sin? pcos y +sin’ wo,," +sin2¢cos wo,,"
—cospsin2yo,," —singsin2yo,,"

0, '=a,," sin’ p+02." cog - 2cospsingo,,"” (1.14)
0., '=0," cog gsin’y +02." sin® gsin® Y + cos yo,," +sin2psin’yo,,"

+cospsin2yo,," +singsin2yo,,”
After substituting the stress components from Etg 1o Eq. 1.11 we obtain:
<& W9 Zhky = ;SZ(JllM cos’ g+ 012M sin2¢+ UzzM sin’ g)sin®y +
1 M
+552033 C0521/1+%(011+022+033)+ (1-15)

+ ; s,(0,," COSp+0,,sing)sin2y

where:

1
532 = S=Sa) S =Sy (1.16)

The quantities;sand Y2 sare so called diffraction elastic constants fquasi-isotropic material.
Eqg. 1.15 can be also expressed by interplanarmsgsadi (see Eq. 1.4):
<dw,9 Zthky = [;%(Uﬂw‘ cos’ g+ Ule sin2¢+ UzzM sin® g)sin*y +;%0-33M cosy +

(1.17)

M M My, L M M . 0 o
ts(0y, +t0, +0y )+§Sz(0-13 COSp+ 0, S'W)SIHZM} d{hkl}"'d{hkl}

11



Using obvious trigonometric identities the aboveattpn can be converted to:

1 .
< d(¢, @)>(nay = {2 Sz[(ag/ll_Jgﬂs)COSZW(O'yz_O'gﬂs)Sinzw 0'2/|25|n2(0] sinfy
(1.18)

M 1 l . H 0 0
+ 51[0'11+ O'g/lz"' O'g/l3 ]+2520'g/|3+ 252[ (0'2/'3009;0"' Ugﬂssmqo) Slnay]}d{hm} + d{hk|}

An important simplification is obtained if one asses a particular plane state of stress, which
occurs usually on the surface of rolled samplesuth the case:

o,"#20, 0, #20 0. =0, =0, =0," =0 (1.19)

The rolled samples have orthorhombic symmetry amdtliis reason only the main stress
components g;" - occur (symmetry axes are determined by the edgtreeafample). Moreover,
the static equilibrium condition on the surface dives: 033¥=0. During X-ray diffraction
measurement only a thin layer of a material near dhrface is examined. (see for example:
Noyan and Cohen, 1987; Dolle, 1979; Hauk, 1986;kBwn, 1987, Major et al., 1999;
Bochnowski et al., 2003) Consequently, the appration of the plane state of stress is correct
in such the case. However, the assumptionsgf=0 can not valid in the case of the neutron
diffraction technique, because due to very low ghtson the neutron beam penetrates up to
several centimetres inside the sample. (Allen et18B1; Daymond and Priesmeyer, 2002;
Fitzpatrick and Lodini, 2003)

Assuming the approach of plane state of stress] B§.takes the form:

1 . .
<dw.9 >{hkn:|:252(011M cos g+a,," sit@sity+s(ay," +0,," )} d{h?(ﬂ +d{h?<,} (1.20)

We can conclude that in the case of a quasi-ismtregmple and plane stress state the linear
relation of <d),@)>giy versus sifip occurs (for a fixedp value) - Fig. 1.6.

12
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sin2y
Fig. 1.6. The lattice parameter <dz.q in function of sifuy for copper. The slope of the curve
equals % 5011" wheng=0.

Information about stress components is containgdarslope of the curve (Eq. 1.20). For
example, ifg=0° we can determine the value of;" component from the slope of the diagram.
Similarly, if =9, it is possible to determine the stress components Generally, to obtain a
good precision of determined stress componerfs andoy,", the experiment is repeated for
different¢ angles and the least squares procedure is applied.

In the case of neutron or synchrotron diffractian E.18. cannot be simplified. The both

techniques give the information from the whole semwlume and the assumptiarll =0 is
no more valid. In general the value d{ﬁ]kl} is unknown, hence for orthorhombic and quasi-

. . M M M M . M M
isotropic sample the values ¢&,, -o,, ) and(0,, -0, )instead ofg,, and g,, are
determined.

1.3. Diffraction elastic constants

The important step in residual stress measurengeithd determination of so called
diffraction elastic constants. A general definit@indiffraction elastic constants is obtained from
Eq. 1.7:

<&'W.9) >y = R g '(l//,w)aij“" ' (1.22)
with :
RiM =Sy (1.22)

R;\" are macroscopic diffraction elastic constants aff is the macro-stress, i.e., the average
stress in a big macroscopic part of a materialyTdepend not only oy and@ angles but also
on diffracting plane {hkl}. These constants areesdml for interpretation of the results of
residual stress measurement. The diffraction elasthstants can be calculated (Bacashaet
al., 1993) and also determined experimentally.

13



Combining Eq. 1.6< &;'(¢/,¢) Zinky =< Sg3 '(l//,@aij '> and Eq. 1.21 we can write:
R™ .90, =<5 W.9)0,"> (1.23)

In general R/(y,) cannot be calculated in a direct way, becausgtielateractions between
grains in polycrystalline sample are quite compliegr these reason we use some simplifying
assumptions or models. Eq. 1.18 can be rewritterrins of R" and R,™ (using Egs. 1.16
and 1.22) as:

<A@ D)5 = R R M (4~ %) codeH (o= o) sirf o othsin2g] sirfy

+R," +(%3M R, .)01%43_'_ (&3'\/I -R," l (0%0030"' O%Sim) Sinzﬂl}d&@ + d{%k} (.24

M M M
011"'0'22"'033

In general, the aim of experiment is to find residstresses expressed in X coordinates system
(0jj). Hence, it is convenient to establish the refatibetween (&s3'(,®>mnk;) andaoj (while

Eg. 1.21 contain stresses in L coordinate syst&émy aim is achieved by introducing modified
elastic diffraction constants; &nd instead of Eq. 1.21 we have:

<&5'W,9) > = F ) (RJ . ,¢/,§0)0”M (1.25)

Whereoi“j” are the macrostresses expressed in X coordinsﬂtensx;yTheFij“’I coefficients are not
tensor components because they relate the stmessr teij“" expressed in the sample coordinate
systemX to the elastic strainc £'%* > defined along_; axis of the L system. Using the

appropriate transformation of stress tensor (Et8)1the F”-M diffraction elastic constants can be
calculated fronR; ones:

FijM ({hkl}, ¢, @) = A RK’YI ({hkl}, ¥, 9) (1.26)

For example:
FY =R cod@pcosy +Ry; sin’ @ + Ry cos gsin’y
- RY sin2¢pcosy +RY% codgsin2y — RA sin2gsiny (1.27)
It should be emphasised that tiﬁ{%" constants, as noted in Eq. 1.21, depend on the

orientation of L system with respect to X one & tample is textured. However, in the case of a
polycrystalline with random grain orientations (guiotropic sample), thR’; constants do not
vary with thep and¢ angles because the sample is isotropic.

14



1.4. Calculation of diffraction elastic constants

As it was already mentioned, diffraction elastiastants are the main parameters used in the
analysis of residual stresses by diffraction methodyeneral it is not possible to find equation
expressing Ry, due to a complex character of elastic interastidfor this reason some
simplifying assumptions and models are used.

1.4.1. Diffraction elastic constants for quasi-isotropic
material

The quasi-isotropic polycrystalline material is idefl as a material having isotropic
macroscopic properties in spite of the anisotrdpyasticular grains (Bunge, 1982). For a quasi-
isotopic material the following relation occurs:

RE =R =R; =0 and RY =R} (1.28)

Consequently, only two independent diffraction ttasonstants, i.e.:R" =R} and R} exist.

These diffraction elastic constants are definedh waspect to the L coordinates system and they

do not depend on its orientation characterizechbyanglespandy (Fig.1. 3).
For quasi-isotropic materials tBgands, diffraction elastic constants are commonly usetksrs

of the more generaiRiM constants. In this case the following relationsfatiéled (compare Eq.
1.16):

s=R{=RY and s =(RS-R) (1.29)

Hence, the exemplary equation fé1; constant (Eq. 1.27) for quasi-isotropic materiah te
simplified to:

1
Ry =s+ ESZCOSzgasmzl// (1.30)

The s; ands, constants can be also expressed by the Young'slusoE') and Poisson's ratio
(v') defined for a group of diffracting grains, intetiag with the surrounding matriE{and v’
are expressed in gystem, i.e., for example the Young's moduluskertaalongL; axis). Thes;
ands, constants are equal to:

A A1+
s=-g and 32—2( = j (1.31)
M M
Where:E'=iM and v':—ih},:—iwf.
Rss Rz R
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We can conclude that for a quasi-isotropic polyeljise material only two independent
diffraction elastic constants are defined (i.ands, or R =R}, and R}, ) with respect to L
system. These elastic constants depend on theesinggtal constants, grain-matrix interaction
andhkl reflection, but they do not depend @rand ¢ angles. A linear relation oF versus

sinfy (for a fixedg value) can be easily seen from Eq. 1.30.

In further considerations the effects of crystalsatropy (existing also in a quasi-isotropic
sample) will be characterized by the fadigi; (Ddlle, 1979).:

_ (e +n17 +11?)
r{hk|} - (hz + kz +|2)2 (132)

The gy factor depends only on Miller indices of reflegfiplanes and it varies in the range
(0,1/3). It has the minimum and the maximum for@L@nd {111} crystal planes, respectively.
We will calculate now the diffraction elastic coasts for a quasi-isotropic material using two
limiting models of elasticity.

Voigt model

In this approach (Voigt, 1928) the constant elaslieformation in each grain “g” is
assumeds"?® = &' 1) (Fig 1.9). It means that

1g(el) — ~'M(el) — rg 1-1 M
<& 33 >{hkl} =& 33 - [C ]33"- g i (133)

RI'™= [ ] (1.34)

where [...] means the average over the volume sample.
Diffraction elastic constants,'sand ¥ &' for quasti-isotropic material with regular lattieee
(Noyan and Cohen, 1987):

%Y - 3.1(2811 + S.Lz) + S.Z(S.Ll ~ 4&2) ~ S44(%1 ~ 3812)
o 25, + 6(34 - Sz)

1y 5344(231"' Sz) (1.35)
2 o = 25, + 6(811 - %2)

Diffraction elastic constants in this model do depend on reflecting plane indices {hkl} and on
thel hq factor.
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Reuss model

In this case a constant stress is assumed in ahlsgrag‘e” = 0' (Fig. 1.8); the superscript

“er” means: “elastic reaction” (of a grain). Elastionstants for the group of diffracting grains
can be expressed by single crystal compliance antss{Noyan and Cohen, 1987):

E(th}RI: (Sn - (2311 25, - ) [ hiy )_1
1.36
yR 1= _ Sz + (31 - %2 - 0'5844)r{hkl} ( )
hkl} —
(nw S.Ll - Z(S.Ll - S.LZ - 0'5844)r{hkl}
After substitution of the above equation to Eq.]1&1isotropic elastic constants are:
%:q{hkl} =35, + (S_l -S,- 0'5844)r{hkl}
(1.37)

1
> %ﬁ{hkl} =85:-S,- 3(S.L -S,- 05544) [ iy

In this case diffraction constants depend on tHeleeting plane {hkl}. Diffraction elastic
constants for Reuss and Voigt models for ferrité anstenic steel are presented in Fig 1.7. They
were calculated using stiffness elastic tensoreoiesl in Table 1.1. The compliance tensor
presented in equations is an inverse of the sgffriensor.

Table 1.1. Single crystal elastic constants used for the datoan of diffraction elastic constants
(Simoms and Wang, 1971; Ceretti, 1993).

Material G1 Ci Cus
[GPa] [GPa] [GPa]
Fe-austenite 197 122 124
Fe-ferrite 231 134.4 116.4
TiN 497 105 168
Cu 170 124 64.5
Al 106.8 60.4 28.3
SiC 350 140.4 233
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Fig. 1.7. The s and ¥2 s constants versus orientation factor ®alculated from the single
crystal data using Reuss (solid line) and Voigtt{ed line) models.

1.4.2. Diffraction elastic constants for anisotropic material
(textured)

In many cases we cannot assume isotropic interabebween grains, then we talk about
anisotropic material. Anisotropic interaction igesult of texture, anisotropic properties of the
grains and shapes of the grains. Because of saam$®tropy, the six independent elastic

constantsF\’.jM vary with orientation of the scattering vector.eTvalues ofFijM must be known
for each orientation of the scattering vector fdrich the interplanar spacings are measured. The
anisotropy of the sample can be observed as namifies of the F) versussir‘y plot. To

calculate diffraction elastic constants we haveige appropriate model of interactions between
grains. We will consider the following models:

Reuss model

In this approach the stress is assumed to be wmimross the sample (Barral et al.,
. . H H H ig(er) — M .
1987; Brakman, 1987; Reuss, 1929) for all polyatjise grains, i.e.o']" = o'/ (Fig. 1.8).
The grain elastic strain in theg direction (Fig.1.3) can be written as:

M

g(el) — Qg 1g(er) — 9 1g(el) - 'g M
€3 = Sy 0y =Sz 0y and < €357 >phg = <S3y > 0 (1.38)

wheresg;; are the single crystal compliances of a grain dinguantities are expressed in L
system.
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Fig. 1.8. Scheme of interaction between grains for Reusemdibmogeneous stress.

Consequently, using the Reuss model, the diffracilastic constants can be calculated as the
average value of single crystal compliances:

> {js'sgj(g) f(g )dy}
(hkl)

{hkiy {0
M(R) — ! —
R P = <89 >0 = (1.39)

> { [ f(g )dy}
(hkl)

{hki} Lo

The integration is carried over alj orientations representing reflecting grains ortlyege
orientations are inter-related by the rotatign around the scattering vector, see Fig. 1.5.
Moreover, the averaging over all equivalent {hklhpes is done.

Voigt model

The uniform grain elastic strain is assumed to dpgakto the elastic macro-strain value
9 = "' in the Voigt model (Voigt 1928) - Fig. 1.9.

€ g(el) — SM

b

Fig. 1.9. Scheme of interaction between grains for Voigt@hettomogeneous strain.

In this case the grain elastic strain in taalirection can be written as:

1g(el) — or9(el) — o' M) —rarg1l oM
<€ > = €33 (g —€a - [c |30 i (1.40)

where ¢ is the single crystal stiffness tensor definedhwitspect to Lframe. The average,

marked by[...], is calculated over the whole considered volunealfy, theR;,-MW) constants are
equal to:
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RI'"=[c?] ;;ij (1.41)

The texture functiori(g) is again used in the calculation Ia]‘M(V) constants; however in this
modelall grains from the studied volume contribute to the average:

[ca 1= 87];2'£C'i?kl (9) (g )dg (1.42)

In the above equation the single crystal stiffnessk (g) (considered in L system) is integrated

over the whole orientation Euler space (E). Becdlunsentegration is over the whole Euler space
the elastic constants do not depend on {hkl} plane.

Self-consistent model

In the self-consistent model (Baczis&i et al., 1997b and 2003c; Kréner 1961; hgki
and Berveiller 1989) a polycrystalline grain is samered as an ellipsoidal inclusion inside a
homogeneous continuous medium (Fig. 1.10).

8g(el) — Xg(sc) . GM
oM gM oM gM

> b

Fig. 1.10. Scheme of interaction between grains for self-stest model. Ellipsoidal inclusion
is embedded in a homogeneous medium.

According to this formalism, the elastic stragi?® (or stresso’%*"), in theg-th grain,

m nm
M (el)

is related to the macrostraigl,, * (or macrostres®r'} ) by the concentration tensaf®® (or
B'9¢9) j.e.:

g(el) — A19(sO) M (el ig(er) — p1g(so) M
Enm - Amnkl Eu (€ and Jnm =B akl (143)

mnkI

where A9 and B'9¢9 =¢'9 A'9C9 g gre the strain and stress concentration tensors

calculated for a purely elastic interaction usidte tself-consistent methodS'®" is the

macroscopic compliance tensoB'{"will be described in Chapter 2) and® is the grain
stiffness tensor expressed in L system.
M

Substituting the Hook's law in macro and micro esd#t'; 9(eh =

' 1g(er)
i — Sik I
in the above equations, the grain elastic strambearelated to the macro-stress, i.e.:

) =g%ol ande
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£9E = X 1959 ol (1.44)

33kl

.\ 1900 — A 19(s0) eff 19(S0) — g 1g(so)
where: X 33kl A 33mn Sm ki or X 33kl S33mn B

n mnkl *

Finally, the diffraction elastic constarfg°“for a textured samplare defined as:

> “x-g;@(g) f(g )dy}
(hkl)

_ iy (o

R)' 9= < X359 > 1 = 2
> { [ (g )dy}
{hki} | o (hk1)

where the integration is carried overg@lbrientations representing reflecting grains.
For the calculation of thex'*®® tensor, the macro-compliance tens$f" for a polycrystalline

aggregate must be known. To do this, the self-stersi algorithm is applied for the elastic
range of deformation. For textured material the nosopic stiffness tensor can be written as:

(1.45)

Cil = [t A (9) f(g)dg (1.46)
E

The macroscopic stiffness tens6t*" , as well as the strain concentration tendt*® can be
calculated using the self-consistent scheme destiio Chapter 2 and assuming the ellipsoidal
shape of inclusion, representing a polycrystaljran.

Sdlf-consistent modd for free surface conditions

In this part the idea of directional dependenceayrain interaction is proposed for any
symmetry of the textured sample. To do this, thtuémce of a free surface (grains on the
surface can freely deform in normal direction) aridhe shape of grains is considered. (Van
Leeuwen et a) 1999, Welzel et al., 2003) In general, the deformeins are elongated and flat
(for example, after cold rolling). Moreover, in 4y diffraction the information volume of the
sample is defined by absorption, causing unequatriboition of different crystallites to the
intensity of the measured peak (the surface giaanscipate more effectively in diffraction than
the grains which are deeper in the sample (se€lHit). The following scheme for flat and
elongated grains in the near surface volume (Fi$j2)lis proposed: the forces and stresses
normal to the surface propagate similarly as inRlbess model, while a two dimensional elastic
coupling between grains occurs in the plane parallthe sample surface (it is calculated by the
self-consistent model).
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Fig. 1.11. Scheme of interaction between grains for self-isterst free-surface. Ellipsoidal
inclusion is placed near the surface of the homegas medium.

Similarly as in Eq. 1.43, the grain stressg8® are related to the macrostress by the

concentratio89*"" tensor, (see chapter 2.6) i.e.,:
a.ijg(er) - Blg(sc—fs) 0_||;/|| (147)

jki

where B9°™ = c9A 995" tansor must be calculated for inclusion in thdase volume of the
sample and all quantities are expressed gy3tem(see Fig. 1.11).

X;(ND)
A
vV
Xz(TD) self-cons.
c| b 171' ==
X,(RD) SR y
a>b>>c Reuss

Fig.1.12. Scheme of interaction between elongated and ftahg in the near surface volume for
cold rolled sample, i.e., Reuss model jndixection and self-consistent model in the plaxe (
x3). The sample axes are defined by: RD - rollingedlion, TD - transverse direction and ND -
normal direction. The orientation and the main axillipsoidal inclusion are defined.

The main difficulty is to calculate th&3* ™, which differs from that defined for inclusion

completely embedded in the material. To realizectivaditions of flat grains with a free surface,
a special construction of stress concentratioroteisgroposed, i.e.:

(1.48)

l., fori=3o0rj=3 = asin Reussnodel
Bg(sc—fs) _ ) ik
ikl -

B fori #3andj # 3 = asinself —consistenbulk model

where| is the identity tensor, an@9° is the concentration tensor calculated for indnsi
completely embedded in the material.
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Using Egs. 147 and 1.48, the planar components g@hin stress
(ai?(e’) for i #3andj #3) are calculated assuming the same interactiondsgtvgrains as for
inclusion completely embedded in the material. Havethe grain stress components in which
appear forces normal to the sample surfam;ﬁe(’ for i=3o0r j =3), are taken as equal to the

corresponding macrostressesrij“"(). This means that elastic interaction between ngras
neglected in the direction normal to the surface.

To calculate diffraction elastic constants, thestrconcentration tensor is transformed to
L system, i.e. B9 ™ = a,8,,8,8,Bae © and X'$5 ™ =3, B'9%™ tensor components are

mnop mnkI

computed. FinallyR}'*=™ diffraction elastic constants are equal to (cfj, E45):

> {IX'?;';?“%) f(g )dy}
(hkl)

thily [ o
M (sc-fs) — 1g(sc-fs) —
Ri =<X3 >k = {2,,

> 1 f(g )dy}

{hki} Lo

(1.49)

(hkl)

Experimental verification

Each of the models described above is based oerdliff assumptions and consequently
the calculated diffraction elastic constants affedint. The calculated elastic constanfé Bee
Eq. 1.26) which are expressed by thé' Rean be verified experimentally. In the first stéipe

measurement of<d**(y,@)>,,, in the non-loaded sample is done; the residuadirstr
<&(¢,p) >, presentin a material is:

res <dz:o((/l7¢)> _do
<e(y, @) >, = o (1.50)
!

Next, the interplanar spacingsd”(y, @) > fOr the same sample but under unaxial stBgs

(applied along the rolling direction) are measui@de to the superposition of strains for purely
elastic deformation, the total lattice straim(y/, @) >E?fk|} in the loaded sample is:

z 0
tot < d (w’¢)>{hk|} ) d{hkl} res M
< 5([ﬂ,¢) >{th}: =< 5(‘//’(0) >{th} + Fll (w!¢) le (151)

0

d

{hki}

where: FY (¢,¢9) are the diffraction elastic constants fokl} reflection.

The value d{ohk,} used in Eqg. 1.51 can be approximated by the meare \a lattice spacings

measured at different directions of the scattexiagtor in the non-loaded sample. Finally, the
values of E (¢,¢) can be experimentally determined for differeneotations of the scattering
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vector:
<&(y,p) >(213
2

Rl @9 = (1.52)

where < &*(y, @) > =< EW, @) >§‘;fk|} —<&(y,9) >, and X, stress component is calculated

as the ratio of the applied force and the crosteseof the sample.

The results of the elastic constants calculatiorslenby Baczmaski (Baczmaski,
Habilitation Thesis, 2005) are presented here. ddié rolled ferrite steel sample (reduction of
95%) was studied. Th€L10}, {100} and {211} pole figures have been determined and the
orientation distribution function was calculatedcext] the interplanar spacing®11} have been
measured using Cr X-ray radiatiodi=@.291 A. The measurements were repeated for three
values of the applied stresses, i.&,,= 200, 400and 500 MPa. As shown in Fig. 1.13, the
determined diffraction elastic constants are alnttestsame for different values of applied stress

2.
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Fig.1.13. Experimental and theoreticd,} versus sifyy for cold rolled ferritic steel (reduction

of 95%). Single crystal elastic constants giveiable 1.1 and orientation distribution function
were used in calculations. (Baczmséi, Habilitation Thesis, 2005)

The best agreement between experimental and ctduldiffraction elastic constants was
obtained using the Reuss and self-consistent @uetace) models. Similar conclusions were
reported by other authors (for example, Hauk, 1986fschovius et al. 1987) for plastically
deformed steels.
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1.5. Multi-reflection method for stress determination

The standardsin’y method of stress determining is based on the memsmt of
interplanar spacing for various directions of tlwatgering vector (Noyan and Cohen, 1987).
These directions are defined lgyand ¢ angles (Fig. 1.3). In diffraction method, the mean
interplanar spacing<d(¢,@®>mky, averaged for grains from the reflecting groupatssing
vector normal to the reflectinfinkl} planes), is measured. Using the standard X-rdyadtfon
method, interplanar spacings are measured as tidurd sin’y for constanhkl reflection and
gangle. The measured interplanar spacings are ssquas (cf. Eq. 1.25):

<d(¢,9)>na= [ FijM ({hk ¢, @) ai' ] d{ohkl} + d{Ohkl} (1.53)

. M . . . . .
where: K" ({hki} ¢, @) are anisotropic diffraction elastic constants.

In classical sifip method the residual stresses are determined assmdected diffraction peak.
In the new method elaborated by Bacaska and Skrzypek (Skrzypek and Bac#isid; 2001a
2001b) a few diffraction peaks are analysed simelasly (multi-reflection method). In this
procedure, thequivalent lattice parameters <@(@)> iy

<a.@)> . =<dw.@> . [h*+k*+]? (1.54)

are calculated from the measured interplanar sgador differenthkl reflections and for various
orientations of the scattering vector characterizgdhe ¢ and ¢ angles; (the above relation is

valid in the case of the cubic crystal symmetrypn§equently, th&?i]M residual macrostresses
are determined from the following formula:

<a(¢,9)>ma= | FijM ({hk}y,@)ol' 18°+ &° (1.55)

where thea’ is the reference length equal to the lattice patanfor a stress free sample.
Due to transformation expressed by Eq. 1.54 only @hvalue instead of mand{ohk,} values is

used when equivalerka(y,¢)>wney parameters are fitted to the experimental pointse T
reference length &) and macrostressesrij“" can be found using the fitting procedure and
previously calculated FijM ({hkl} @, @) constants. The main advantage of the multi-reibec

method is that experimental data obtained for wesikl reflections are treated simultaneously
and only one stress-free lattice parameter is tebermined.
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Chapter 2

Deformation models for polycrystalline
materials

2.1. Introduction

In order to perform correct interpretation of mayperimental data it is necessary to
apply deformation models. Roughly, there are twmesyof deformation models: these using the
finite elements method and micro-macro crystallpgr@a models. In the first case the material is
treated as a continuous medium and the crystaihaeacter of grains was not taken into account.
The finite element method is suitable for the peedn of deformation of samples with complex
shapes subjected to various loads. On the othet, tlaa crystallographic deformation models are
better adapted to the study of the internal micuastire evolution of a polycrystalline material.

In this work crystallographic deformation modeldlwe used. These models can predict
many parameters and characteristics which are &siséor experimental data analysis, e.g.:
crystallographic texture, hardening curves (stetsmn curves), residual stresses, plastic flow
surfaces, dislocation density, stored energy anayrothers.

In the present chapter two elastoplastic deformatidels will be discussed. The first
one - LW model - is based on original formulatiche to Leffers (Lefers, 1968a 1968b) and on
further developments done by Wierzbanowski (Wienoveski, 1978, 1982, 1987). The second
one is the self-consistent (SC) model. The firgiliaptions of SC scheme were performed by
Hutchinson (Hutchinson, 1964a, 1964b) and Bervedled Zaoui (Berveiller and Zaoui, 1979) in
the range of the small elasto-plastic strain. Aergystematic and general approach, based on the
kinematic integral equation, was developed by Iskirand Berveiller (Lipinski and Berveiller,
1989) and successfully applied for the three-dinuerad representative volume element under
large deformation (Ligiski, 1993). In this chapter the SC model developgd. Baczmaski
(Baczmaski et al. 1994a and 2004) will be presented. Hsellts predicted by both models for
typical fcc, bce and hep structure will be discusse

27



2.2. Mechanisms of plastic deformation

Contrary to the elastic deformation, which involvesersible atom displacements, the
plastic deformation undergoes by non-reversible haeisms such as crystallographic slip or
(and) mechanical twinning. The both mechanismsarereversible, which means that after the
release of external forces some permanent defaymatays in the material. Both during the slip
and twinning, two parts of crystal (or grain) ateeared one with respect to another. The
crystallographic slip is schematically presentedFig.2.1. Neighboring blocs of crystal are
relatively displaced. This movement (i.e. slip) wcon a slip plane (hkl) and along a slip
direction [uvw]. Consequently, one defines a slystem [uvw](hkl) and also a family of
crystallographically equivalent slip systems <uviwkl}. The slip phenomenon occurs due to a
movement of a huge number of dislocations on a @igme. The dislocation movement, and
hence the slip itself, appears in relatively nars@lume of material, called the slip band (with an
average widthh); on the other hand, displaced blocs of crystath(van average widthd) are
“inactive” in their volume (Fig. 2.1). The slip wsly appears on planes for which the density of
atoms is the highest (due to the lowest energyssace to shift atoms from one stable position to
another). The slip occurs if the shear stress qati slip system exceeds some critical value.

E

Fig. 2.1. Slip in a single crystal: blocs of a crystal of awerage width H are relatively
displaced along the slip plane and slip directi®tegions of an average width h, where slip
intensively occurs — are called slip bands. Distama density is of a few orders of magnitude
highezjinside slip bands than in other parts ofrgistal. Typical ratio of H/h is between 3.0
and 10.
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Mechanical twinning consists of the shearing moveisi@f atomic planes, which leads to the
formation of a crystal region with a crystal la¢tibeing a mirror image (with respect to the
boundary plane) of the original crystal — Fig. ZLBis newly created crystal region is caltedn.

Let us notice that during a twin formation, all sauent atom layers of the twin are displaced
(by shear movement) with respect to neighboringofid¢on-active blocs” do not exit in this case
and consequently the shear deformation is highaddiyation of many slip (or twinning) systems
one can obtain any imposed deformation of a crydtacan be shown that at least five
independent shear systems (slip or twinning) aceseary to produce an imposed deformation.
We will see later that besides deformation alscstatylattice rotation is induced by slip or
twinning.

twin

habitus
plane

initial
crystal

Fig. 2.2. A twin is created from an original crystal by sheg movements of consecutive
atomic layers. In analogy to slip, one definestthimning direction and plane (the latter being
parallel to the boundary plane and is called habiplane).

Among two described mechanisms of plastic deformmatgenerally the slip is dominating.
Twinning can appear in materials in which a nundfendependent slip systems in not sufficient
to produce an imposed deformation (e.g., in h.mptals or in f.c.c. metals deformed in low
temperatures). However, if one considers f.c.d.orc. metals deformed in room temperature, it
is generally sufficient to take into account orllp henomenon.

2.3. Macroscopic description

The aim of elastoplastic models is to describe ggses occurring in polycrystalline
materials during deformation. In such models, tlndviour of a crystal grain inside the
polycrystalline material under applied stressgsis studied. The calculations are performed on
(pl)

two different scales: the macro-scale, where therame elastiE® and plastic E

macrostrains are defined, and the grain scale,hichwthe behaviour of each crystallite under
stressew is analyzed (Fig 2.3).
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Fig. 2.3. Elastoplastic deformation of a polycrystalline evél under applied stresg'ij .

The scheme of elastoplastic behaviour of a polyatyise material during unaxial tensile test is
presented in Fig. 2.4, where two characteristicoreg of deformation are indicated. The linear

part of 2 , Vs E_, curve represents the elasticity described by geeetastic constants tensors,

which relate the applied stresse5; | with the elastic strains of the sampEkp. In this range

Hook law is used. In the elasto-plastic deformatimmge we use similar relations, but concerning
the stress and strain increments. Incremé¥s and AE, are related byangent moduli They

can be calculated if active slip systems and cpmeding glide shears are known in all grains. In
the elasto-plastic range tangent moduli change wdéformation and their values have to be
calculated continuously.

Z:11 A
Ell
>
Elastic Elasto-plastic
range range

Fig. 2.4. 2 Vs.E curve for unaxial tensile test.
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2.4. Behaviour of a grain

2.4.1. Slip system

To predict the plastic deformation on a grain sdakenecessary to study the modification
of grain parameters occurring during the slip amieining phenomena. In the models used in this
work only the first one, i.e. the slip, is taketoimccount.

Slip is the elementary mechanism of plastic defdionalt occurs on a crystal plane (hkl)
and along a [uvw] direction (situated in this plarEhe slip plane is defined by the unit veator
(perpendicular to the plane), and slip directiobhy-the unit vectom. A slip system fn, n} is
usually denoted its crystal indices ps:w](hkl). It is very useful to introduce the reference frame
connected with the slip system;%=m, xs°=n (Fig. 2.5 and Fig 2.7). The resolved shear stress,
decisive for a slip system activation, is easilpressed in this coordinates system:cgy;. In a
similar way, the glide sheadly produced by a single slip is characterized by amlg non-zero
componentZe/y'®’ = Ay of the plastic displacement gradient tensdeX®’) (compare Figs. 2.5

and 2.6).

n (x;°)

m (x;%)

Fig. 2.5. Displacement of the material during a single slijne first axis of the system i
defined bym vector and the third axis — lyvector.

Ay

Ay=Ax/Ay Ax

Fig. 2.6.Definition of the glide shearcaused by a single slipdf = 4eP(?’).

The condition for the slip occurrence is:

r=r (21)

cr
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i.e., the resolved shear stress=o.,) has to exceed a critical valgg (Schmid law). The
resolved shear stregs= g7, on the slip systemn{, n} is calculated as:

[=0p%=a,8,;0; =mn;o; (2.2)

where g; is the local stress tensor expressed in the sarefdeence frame S (defined by main

symmetry axes of the sample - e.g., rolling, trans® and normal directions in the case of
rolling). In the above equation - and in the whebet of this thesis - the convention of summation
on repeated lower indices is applied (for uppeicesi we apply a classical summation symbol).
The coefficientsa; define the transition from the systedto g. It is practical to define the

following quantity:

Ri = mnj (2.3)

characterizing the orientation @ system with respect t6 (Fig. 2.7.). Finally, shear stregson
the slip system can be expressed as:

r=Ro; (2.4)

Both coordinate systen&andg are schematically shown in Fig. 2.7.

Sample Slip
system system m(x5%)
A%
X>
> X, m(x;%)

Fig. 2.7.The coordinates systems of: sam@e &nd slip §)

2.4.2. Hardening of slip systems

The slip systems are hardened during deformatidmchwis reflected in the shape of the
stress-strain curve (Fig. 2.8a). In many caseshé#ndening can be described by linear approach.
Consequently a linear range is observed on thassgteain curve. On the other hand, if one
considers a given slip system (“i"), its criticalsolved shear stress for slip is linearly dependent
on a shear glide of any other active slip systei) ifi a relatively wide range of deformation -
Fig. 2.8b. The physical reason of the hardeningnisintensive multiplication of dislocations
during plastic deformation. The dislocations areassary for crystal glide, but if they are in an
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excessive number — they block each other andehslto the increasing of critical stress for slip
(Franciosi, 1980).

linear /
hardening

range

> >
Ei Yj
a b

Fig. 2.8.Hardening curves: a) linear range of stress-straurve, b)z, versusyaccording to
linear hardening.

Generally, a multiple slip is observed and in stioh case the hardening of the systei) (,,
depends on shear glides on all other active sBpeays (}"):

Ar, =¥ H"4y' (2.5)
i

or also:
I, =T, +TH'Y (2.6)
]

HY is called the hardening matrix; obviously it isreyetrical. Both theoretical and experimental
study show that in the first approximation this rmxatontains two types of terms: strong)(and
weak (R) ones. Their ratio A=fth; is called the hardening anisotropy coefficient. Taens
located on the matrix diagonal (weak terms) desctlie self-hardening of slip systems. An
example of a strong term corresponds to a pairlipf s/stems with perpendicular system
directions. For the f.c.c. metals (twelve slip eys$ <110>{111}) the following hardening matrix
was found (Franciosi et al., 1980) :

1111AA1AA1AA
111A1AA1AATL1L1A
11 1AA1AA1AAI1
1 AA1111AA1AA
A1A111A1AATI1A
L JAA1 11 1AALAAL
H]_hllAAlAAllllAA (2.7)
A1AA1A111AT1A
AAl1lAA1111AAI1
1 AA1AALAATI1TI11
A1AA1AAILIATL1I171
AA1 AAL1AAL1T11 1
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2.4.3. Grain deformation and lattice rotation

Every elementary act of the slip causes the deftimmaﬂsijp' and the rotationélcqu' of a

grain. The lattice rotation is not only a resulttio¢ slip. After elementary act of slip the grasn i
rotated (as a rigid body) - Fig. 2.9, but the tattitself does not change the orientation. The
rotation of lattice is introduced by the orientatipreservation of selected sample axes or planes.
In the case of tensile test (Fig. 2.9) it is thegervation of the tensile axis orientation.

Let us calculate the deformation and rotatieﬂfif' and Aa)ljp'), resulting from a glide on
one slip system with the shear glidg . In the slip system reference frangg the displacement
gradient tensor has only one non-zero componggt!® = Ay. This tensor after transformation

to the sample reference fram®) has the form:Ael = a,a;,Aef}®. Taking into account the

definition of S and g systems (Fig. 2.7) we see tha;, =m and a, =n, (&, define the

transformation fromg do S, while @, — from S do g; obviously: g, :a'ji ). Finally:
Ze!' =mn, 4y, or also:
=R 4y (2.8)
If a multiple slip is occurring, then:
=LR4y (2.9)

wheres numbers all active slip systems.
Havingde, one finds easily grain deformation and rotatiofle” and Aw” (they are

symmetric and anti-symmetric partsdﬁup' , respectively):
2ef' = 2( R +R} )4y =LR;,4y° (2.10)
@ =Ly (re Ay°

where: R} —(RJ +R}) and R —;(Rf - R} ). Let us underline thaﬂa)”.’" is a rigid

ij) )Il(

body grain rotation produced by slip. If there was interaction between a grain and the matrix —
crystal latticeorientation would not change (see Fig. 2.9 a,lmweler, in general a grain does
not rotate as a rigid body, because of the comsgr&nposed by the neighboring material and the

deformation device. As a consequence, some com@msatation occurs Acdlj"m) and it
changes the grain lattice orientation:

A(U.'jan = -Aw”_p' (2.12)
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As it was stated above, in the tensile test ohglsicrystal (Fig. 2.9), the direction defined by a
tensile force has to be preserved. This conditioposes a compensating rotation of a crystal,

Aa)l'ja“ . which causes the rotation of a lattice.
X
! |
z |
|

I
I
)
I
/
]
z
i
)

a) b) c)

Fig. 2.9. Tensile test of a crystal alongdirection: a) before slip, b) after slip, c) after
fulfilment of the condition of axis orientation preservation (parallel to appliéatce).

2.4.4. Mascroscopic deformation

The deformation of the sample is the average ohgleformations:

EP =<gf >= \/1 S Py (2.13)

0 |

where V is the volume of the I-th grain andg 6 the sample volume.

2.5. Leffers-Wierzbanowski plastic deformation model
(LW)

The basic question, which has to be answered innaogel, is: what is the relation
between macroscopic variables of the samplel;) and analogical microscopic oneg,(g;j) on
the level of a polycrystalline grain — Fig. 2.10nfortunately, generally it is not possible to find
the unknown quantities in an analytical way. TBighie reason why we use models.
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Fig. 2.10.Macroscopic loads; is applied to a material and as a result a locakssg; is
induced on a grain level. The sample deformatidg;jsut a local grain deformation ig.

It was shown by Hill (Hill, 1965) that a generalatéon between local and global variables could
be written in the form:

&ij :.Eij+Lijk|*(|.Ek|—:‘.E‘k|) (2.14)

whereLq is an interaction tensor amibt means the time derivative. Let us repeat thahén t
present work we use the convention of the summatiotihe repeateldwer indices.

A strict calculation of_ijkf tensor is not possible in general; hence somplgyimg assumptions
have to be done. A considerable progress was dpse-balled self-consistent models (a model
of this type will be described in the next chaptédgvertheless, it was found that in many
interesting cases the assumption of the isotropngmatrix interaction leads to surprisingly
good predictions of material properties. In suahdhase theijk|* tensor is replaced by a scalar

é’ij :.Zij"'l_(-Eij pl—:;‘ij " (2.15)

where “pl” denotes the plastic part of total defation.
The above equation can be rewritten in the increéahéorm, useful in model calculations:

Ao, =A%, +L(AE,” - Ag, ™) (2.16)

Some of classical models can be reduced to Eq. @15.16 ifL has a suitable value. For
example:

Sachs model
L=0 leads to the Sachs model (Sachs, 1928). Isssiraed in this model that no interactions
between grains appear and consequently a homogerstmss state resultsr; =2, . This

model neglects sizes of grains and surface phermmen
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Taylor model
L- o leads to the Taylor model (Taylor, 1938). The tasssumption of the model is a

homogeneous plastic deformation of the samgfle= EY'.

Kroner model

L= 2(7-5v)
15(1-v)

and the matrix (Kroner, 1961); in the above formula the Poisson coefficient apds the shear

modulus. One finds [u for typical value ofv[D.3. In this model each grain is treated as a

spherical inclusion inside a homogenous, infinib@tmuous medium. This sphere is deformed

during interaction with neighboring material.

Lin model

L=2u is obtained for Lin model (Lin, 1957), which igganeralized Taylor model. In this model

the basic assumption is that the total deformatimtnomogeneousEij-e + Eijp' :sﬁ +si?' (e

M is obtained under the assumption of a purely ielaseraction between a grain

denotes elastic deformation apdl— plastic one) and that elasticity is isotropic.

LW model (with compromise interaction)

L=apu leads to a compromise description, very close raahinteraction|( is the shear modulus
anda is calledthe elasto-plastic accommodation fagtorhis is isotropic model with elasto-
plastic interaction (Berveiller and Zaoui 1979, V¥leanowski 1982, 1987). The estimated values
of a factor are in the range (0.1 — 0.001). This patamtakes into account a partial plastic
relaxation (by local slips near grain boundary eagiof the interaction stresses between grains.
Consequently, realistic interaction stresses akentanto account; they are much lower than
purely elastic ones. For metals with low stackingrgy (e.g., brass, silver) the estimated value of
a is close to 0.001, while for metals with high &iag energy (aluminium, copped) is in the
range 0.01-0.1. The advantage of LW model is eilfility in modelling the inter-granular
interactions. LW model describes in general veryl tiee plastic deformation, while the elastic
part of the stress-strain curve can be only apprately taken into account.

Calculation mode using LW model

The initial orientation distribution of grains takéo model calculations is often random,
but a distribution according to a given initial tese can also be used. The model calculations are
continued till a preset final sample deformatioheTcalculations are done in incremental way
(each increment corresponds to an increase ofrattkrad) and in each increment all crystallites
are considered consecutively. At the beginningettternal (applied) stress tensor amplitude has a
value close to that necessary for activation oflist oriented slip systems. Next, the applied
stress tensor is increased with an established Bbepapplied stress is transformed to slip system
coordinate frames (e.g., there are 12 slip system&c.c. structure and 12, 24 or 48 for b.c.c.
one). If the resolved shear stress in a considdipdsystem exceeds the critical value — the slip
system becomes active (Schmid law). Hence, a sefiesnsecutive slips on different systems
occurs, as long as the Schmid law is fulfilled. Heer, with progressing slip, the critical stress
values are increasing due to the hardening law. fhkradly, we find the situation when no more
slip systems can be activated. In such the morhengtternal stress tensor amplitude is increased
of a presetAZ value. The calculations are continued in such g watil the final sample
deformation is obtained.
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If we take an example of the tensile test (in 2dion), the applied stress tensor can be presented
as:

00
00 (2.17)
01

where 2 is the stress tensor amplitude. In tkth increment the applied stress tensor is:
=59 +(k-1As.

The sequence of calculations in the first increnflenl) is presented below:

Step 1:

- The initial local stress igy; = 59

j
r =71, . We find “the most active” slip systerip'.'g -1y

where Zi? is very close to fulfill the Schmid condition.:

=max (wherel numbers grains and

g — slip systems),
- We attribute to this active slip system the eletagy glide shear amplituday® and we

calculate the resulting deformation and lattication: Asi'j and Aoq'j (one of possibilities is
to take a constant value of glide shear for allvacilip system, e.gAy =0.05),

- The local stresses are modified according to éouao; =AY, + L(AE; P ~A¢g; p'),

Step 2:

- Another most active slip system is searchedntakito consideration local stress modified in
previous step,

- next the same calculations as in stepl are peedy

Following steps.. (we examine all slip systems in all grains)).

If no more slip systems can become active, thereakdoad is increased, i.e., we start the second

increment (k=2) and we repeat the same operafisabove,

And so on with next increments...

We stop the calculations if the calculated sampfernation has attained a preset final value.
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2.6. Self-consistent model (SC)

The basic assumption of the used self-consistendeins the representation of an
individual grain as a three dimensional ellipsoidatiusion embedded in an equivalent
homogeneous material.

3. €ij DI

ij ! J
Sl
E G E

ij ij ij

Fig 2.11. Polycrystalline grain as an ellipsoidal inclusion

The basic problem in deformation models is to fincelation between locaby, &;) and global
characteristics¥; and E). This relation is less direct in SC model thanL\W model. In the
following text we present the calculation mode usethe elasto-plastic SC model, based on the
scheme developed by Ligki and Berveiller (Lipiski and Berveiller, 1989)n the elastic range
a general form of the Hook’s law is used:

2, =C,E, ando; =c,,&, (2.18)

ijki jki

whereC,,, and ci}k, are stiffness tensors of the sample and the taimgrespectively, andt,,

and &, are corresponding deformation tensors. In the@falastic deformation range we use
analogical relations, but concerning the stressséirain increments:
A%, =L 4AE, anddo; =, Ag, (2.19)

ijkl ijkl

wherel,,, and lijlkl are so called tangent moduli of the sample and-thegrain. The tangent
modulus tensor of a grailhj'k, , can be calculated if its active slip systems @mdesponding glide
shears are known. The sample tangent modujys,is obtained by appropriate averaging of
=C.

grain tangent moduli. If the elastic deformatiomge is considered thent ja and

ijkl
Iijlkl :Ci;kl' The single crystal elastic properties are knowngeneral and the sample elastic

properties can be calculated using some hypott@siserning grain-grain interactions (e.g.,
Kréner 1961; Reuss, 1929; Voigt, 1928). In the telgdastic range tangent moduli change with

deformation and their values have to be continyooalculated. Some components of the

tensor have a direct experimental interpretatioor. &ample the (£)1111 component can be
determined from the stress-straurve - Fig. 2.12.
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Fig. 2.12. Determination of( L™ ),,,, from the stress-strain curve.

Interaction between a grain and its environment

Interaction between a grain and the matrix can ibectlly calculated using the Eshelby theory
(Eshelby, 1957). However, in the present work thleudation scheme developed by Lipinski and
Berveiller (Lipinski and Berveiler, 1989) is used. According to Ed.9, the local stress in the
elasto-plastic range is:

0i(1) =1y £u(r) (2.20)

wherel,, (1) is the local tangent modulus tensbr(grain index is omitted here). This tensor
can be also written as:

Iijkl(r): L +5Iijk|(r) (2.21)
whered I, (r) is its variable part depending on the positioa material (let us note that it is
simply the difference between the local and gldaagent moduli:o Iy, (r) =1, (r )= Ly,)-

Introducing the modified Green tensbyi (r-r'), the local deformation can be expressed as
(Lipinski and Berveiller, 1989; Baczski, 2005):

£ (r)=E, + IF(r=ra, (r Je (1 )V (2.22)

The physical sense of the above equation is eguaim Fig.2.13aThe local deformation in the

point r depends on deformatioa_ (r' ) and d1,,,(r' ) tensors in any other poimt these

kimn

quantities are linked by tHgyq (r-r') tensor.
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Fig. 2.13. a) Deformation in the point depends on deformation in any other painand is
described by th&reen'’s tensor, b) interaction between inclusiofisahd "J “ is described by
T tensor.

Deformation in the inclusion (grain) ,I” can be egpsed as (Lipski and Berveiler, 1989):

fI=E 3T 8 2:23)

5o ik KM mn

where TiJ.LIJ tensor describes the interaction between inclssjbn and,J” andN is the total

number of them. Let us note that the above relati@ancorrect discretized form of Eq. 2.22, if:

1
T =0 [ [ Far =1 )dvadv (2.24)

1V, V,

We assume thadl; = and ¢ are homogeneous inside each inclusion (grain).iftegaction

between inclusionsl” and“J” is schematically shown in Fig. 2.13b. We will dater that the
tensor‘l’ij'klI is a very important quantity, because it describesinteraction of théth inclusion

with its environment. This tensor is also usedrne-gite approach, which is applied in the present
work.

Concentration tensors

In the self-consistent models the idea of scalestt@n theory is based on the hypothesis

of the existence of a concentration ten@% relating the macro-strain rat€s with the grain
strain rate&; and another concentration tensBf, relating the macro-stress rak with the

. ) . ... 0 .
grain stress rateri} (dot denotes the time derlvatl\g% ). Consequently, we can write:

|
: - 2.25
Eij = A]!H Ew ( )

: 2.26
gij = Bi]!kl 2y ( )
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We will describe now separately the elastic andtelplastic ranges of deformation.

Elastic deformation range:

It can be shown (Baczmski, 2005) that using thé]le' tensor (one-site approach) and the
Hooke’s law (EqQ. 2.18) one obtains from Eq. 2.28¢hncentration relation :

[( A )_1]ijkl =l _Tijlrlm(crlnnkl = Cronia) (2.27)
wherel;,, is the unit tensor. The macroscopic (sample)r&#fé tensoC,, , appearing in the
above equation is expressed as:

= % f ! Ci}mn A:nnkl (228)

=1
wheref ' is the volume share of the grali
If the A}, tensor is known for each grain, the stiffnessaens,, , can be calculated using above

ki

equation. However, the solution of Eq. 2.27 is diotct, because to calculate tlﬁg, tensor the
C,, tensor has to be known, while tii&, tensor is obtained from thé, (Eq. 2.28). This is
the reason, whgy,, and C,, tensors have to be calculated simultaneously,guain iterative

procedure. Once théy, tensor is calculated, the second concentratiorotesa be found using
the Hooke’s law:

Bij!kl = Ci;mn Alnnop( C_l )opkl (229)

Elasto-plastic deformation range:

We obtain analogous results as abovgjf tensor is replaced b, and ci}mn - by Ii}mn one.
Moreover, Egs. 2.19 or their equivalent forms:
. . . .
Zij =Ly Ex and gj =1y, & (2.30)
have to be used instead of the Hooke’s law.
As a result, the concentration tensor is:
[( A )_1]ijkl = Iijkl _Tijlrlnn( Irlnnkl - Lmnkl) (2.31)
with the sample tangent modulus tensor defined as:
L= % f! Iil!mn All'nnkl (2.32)
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The concentration tensor for stress is:
Bi]!kl = i Ao L Jopid (2.33)

ijmn nop

The L, tensor can be calculated if the values of the terggare known for every graih In
turn, the concentration tensors are determinedhf@knownL,, tensor. To solve this problem
the iteration procedure is used, i.e., startingnfrihe initial value of thel,, tensor, theA,
tensors are calculated and the neyy tensor is determined from Eq. 2.32. The lattesters the

initial one for the next iteration. The procedwsecompleted when the calculateg, tensor does
not change significantly after consecutive itenasio

2.7. Calculations for hexagonal structure

Many metals crystallize in hexagonal structure,deeaur calculations were adapted for
this case. The elementary cell of a hexagonal sygtelefined by two vectors of equal length
anday, forming 120 one with another, and the third vectquerpendicular to them (Fig. 2.14). In
our calculations, however, an artificial orthogooabrdinate system for crystallographic cell was
used. Two versors of the new coordinate systemafXl X) are defined by the vectors of the
elementary cell (i.ea; andc ) - Fig. 2.14 - and Xis perpendicular to them. The indices of a
plane and a direction in the hexagonal system tiem oeferred to four axes (the fourth agis
lays in the basal plane and is inclined 4@@h respect t@; anday) and they are written abkil)
and [prst]. It can be shown that:

h+k=-i (2.34a)
and
p+tr=-s (2.34b)
ACHX3
0 a,|| X,

Fig. 2.14. Hexagonal elementary cell defined lay,{az, c} and orthogonal coordinates system
represented by X1, Xz, X3}.

Typical crystallographic planes in hexagonal suitesiare presented on Fig. 2.15.
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Fig 2.15.The main planes in hcp structure: (a) pyramidaras (b) prismatic planes (c) basal
plane

As it was mentioned, the artificial orthogonal atioates system was used in our calculations.
Hence, it is necessary to transform plane and titredndices to this new reference frame (four
indices have to be reduced to three). This transition can be found by simple geometrical
relations (Wierzbanowski, 1978):

for plane:  (nkil) = (hk'1")= (Zhjék,m ,aj
(2.35)
for direction:  [prst] - [u'v'w]= {f’(p - s),—‘:(p + s),t(j

where: 'K’ are plane indices in new (orthogonal) coordinaggstem andu’v'w’ are new
direction indicesg anda — are lattice parameters of hexagonal cell. Afiex transformation - the
model calculations are done in an analogical wegmathe cubic crystal structure.
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2.8. Results obtained with the models

The models can be used for prediction of impomaaterial characteristics, e.g.:
- crystallographic texture
- hardening curves (e.g., stress-strain curves),
- residual stresses,
- plastic flow surfaces,
- dislocation density and stored energy,
- etc.

In this chapter the results obtained using LW ar@ rBodels for fcc, bcc and hcp
structures will be presented. Essentially, theeetawo types of rolling texture of fcc metals: the
copper type texture (e.g., in: Cu, Al, Ni) and lsrésxture (e.g., in: Cu-Zn, Ag). In general, the
copper type texture is observed in materials wit/h tlstacking fault energy, whereas brass type
texture - in materials with low stacking fault egyer The above classification can be still
modified, because the type of texture dependsadsteformation rate and on temperature.

The rolling textures presented in this chapter waedlicted by LW model (this model
gives very good results in the plastic deformatiange; moreover, calculations are much faster
with LW model than with SC model). In each case @deh sample was represented by 5000
grains having equal volumes and initial random tatysrientation distribution. Typical values of
model parametergd, 1, H, L) were used (Table 2.1). Values of these patars are close to the
experimental ones. It was found that for a wealkngnaatrix interaction (situation close to Sachs
model) - the brass type texture is predicted, whfea strong interaction (close to Taylor model)
- the copper type one. Consequently, in the cadeasfs texture the interaction parameter L=100
MPa was assumed, while for copper one - L=800 MPawsad (value of Lgza depends on the
shear modulug but also on the grain-matrix interaction, whicldescribed by the elasto-plastic
accommodation factan). According to Leffers’ argumentation (Leffers,7B), the cross slip is
observed near the boundary regions in metals watiimm and high stacking fault energy (like in
copper). This leads to relatively homogeneous dedtion of grains (Taylor model) and as a
result the copper type texture is formed.

To describe the deformation of ferritic steel, tgpical slip systems for bcc structure:
<111>{110} an <111> {112} were used (sometimes aldd k> {123} is reported). In bcc
metals, where many slip systems can operate, ateerrhomogeneous deformation occurs and
this situation was described by a strong interadtiche model (L=1000 MPa).

The results of texture prediction for fcc and beetals are shown in Fig. 2.15 - 2.17.
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Table 2.1.The input parameters used for calculations

Structure Slip systems rf - initial | Hardening| Grain elastic constants L
<direction>{plane} | .itical sheat Parameters E -Young modulus | Interaction
(total number) | gress [MPa] [MPa] [MPa] parameter
v - Poisson ratio [MPa]
<111> {110}
bcc <111> {112} 150 H =80 E =208 1000
<111> {123} A=1 v =0.29
(48 slip systems)
fcc <110> {111} 80 H=60 E=1225y=0.34 800
(12 slip systems) A=1 (copper)
E=110v=0.3 100
(brass)
l—» by 01
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Fig. 2.15. Measured (on the left) and predicted (on the pgbDFs of cold rolled brass ¢
sections are shown). Rolling reduction is 70%.
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The metals of hexagonal structure were also stuasat LW model. In these metals besides of
the slip also the twinning is often observed. Néwaess, taking into account only deformation

produced by slip we were able to predict the maxture features (Philippe, 1995) (however, in

future the introduction of twinning to the modelakso foreseen). In hexagonal materials some
number of slip system families can be activatedi(tbritical valuesr,, have different values in

general). The data orn,, which can be found in literature, is not alwagsisistent. Moreover,

these values strongly depend on purity of materald conditions of deformation (Philippe,
1995). In Table 2.2 the/a ratio as well as the most important slip systeorstypical hcp
materials (Be, Hf, Ti, Zr, Co, Mg, Zn and Cd) aistdd. The textures of hexagonal metals and
alloys can be classified into three groups, acogrt theirc/a ratios, namely: materials wittia
ratio greater than, approximately equal to, andllem#han the theoretical value of 1.633. The
rolling textures for these three groups of hcp isetgere measured using X-ray diffraction. The
examined materials were: magnesiucra(=1.624), titanium ¢/a=1.588) and zincd/a =1.856).
The measured textures were compared next with heskcted by LW model - Figs. 2.18 - 2.20.
The slip systems from Table 2.2 were used in catmuis.

Table 2.2.Typical slip systems observed in selected hcp métehng et al., 2003; Philippe
1983.

Element % Eeviation_ (%)| Principal slip | Secondary slip Other slip
rom the ideal system System System
0/ =1633
Cd | 1.866 155 1 c11205{0003 | <1123>1122) | <1120> {1010}
<1120 > {1011}
Zn | 1.856 H36 1 112050003 | <1123>{1122) | <1120> {1010}
Mg | 1.624 -0.6 <1120>{000} | <1120> {1010} | <1120> {1011}
<1123> {1122}
Co 1.623 -0.6 <11§0>{000l None None
zr | 1593 24 | 112051010} | <1120>{000} | <1120> {1011}
<1123> {11é2}
Ti | 1.588 28 | 1120>0010} | <1120>{000% | <1120> {1011}
<1123> {1122}
Hf | 1.581 32 |1 <1120> 0010} | <1120>{000}
Be | 1.568 401 1120>{0003 | <1120> {1010} | <1120>{1QiL}
<1123> {1122}
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Hcp metals and alloys wittia ratio approximately equal to the theoretical vadtié.633, such as
Mg, tend to form basal fiber textures during radli(Fig. 2.18). The origin of such textures may
be understood in terms of the slip systems operatirbasal planes. Metals and alloys wath
ratios above the ideal one, such as Zn (1.856)Cxh(lL.885), tend to exhibit textures with basal
poles tilted +15-2%5 away from the normal direction towards the rolliigection. (Fig. 2.19.)
Finally, the metals and alloys, havima ratio smaller than 1.633 such as Zr (1.589) and Ti
(1.587), tend to form textures with basal polewdil+20-48 away from the normal direction

towards the transverse direction (Fig. 2.20). Theab< 1120 >{000% slip produces the basal
texture characteristic for Mgca = 1633) — Fig.2.18. The combination of basal

<1120 >{000% slip, pyramidal <11§3>{11§2} slip and prismatic <11§O>{10:_L0} slip
produces the characteristic textures with basagtilted away from the normal direction toward
the rolling direction for Zn da > 1.633) — Fig. 2.19. Finally, the combination of presim

<1120 > {10i0} slip and pyramidak 1120 > {10_ 13lip produces the characteristic textures with

basal poles tilted away from the normal directioward the transverse direction for Te/g <
1.633) — Fig. 2.20 (Gloaugen, 2001). All the predictextures agree well with corresponding
experimental ones.
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C. d.
Fig. 2.18.(001), (102) PFs and ODFs for polycrystalline magium rolled to 80%eduction:

a) experimental PFs, b) predicted PFs, c) experiale@DF, d) predicted OD< 1120 >{000}
slip system was used for calculation.
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Fig. 2.19.(001), (100), (102) PFs and ODFs for polycrystadlzinc rolled to 35%eduction:
a) experimental PFs, b) predicted PFs,, c) experital ODF, d) predicted ODF.

<1120 >{000} < 1123> {11é2} <1120 > {10i0} slip systems were used for calculation.
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Fig. 2.20. (001), (100), (102) PFs and ODFs for polycrystadli titanium rolled to 70%
reduction: a) experimental PFs, b) predicted PEg,experimental ODF, d) predicted ODF.

<1120 > {10i0} <1120> {10]__1} slip systems were used for calculation.
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The texture is not the only characteristics, whadn be predicted by elasto-plastic
deformation models. Another one is, e.g., the staeaergy, which plays a crucial role in
recrystallization process (Baczfski et al., 2007). One can distinguish two conttitns to this
energy. The first one is the elastic energy)(Eonnected with residual stresses, i.e., witlngra
grain interactions. Another part of the stored gnéE,s) is due to a huge increase of dislocation
density inside grains, which occurs during plasteformation. Eg is about one order of
magnitude higher than.Eand, hence, is considered as the main drivingefof recrystallization
(Pickos, 2006). Its value can be approximated as:

Eqq 0Gb%0 (2.36)

where G is the shear modulus, b — Burgers vectdistbcations ang is the dislocation density
(Pigkos, 2006). This stored energy is decisive for kiretd the recrystallization process. The
dislocation density is proportional to &>> and can be predicted by deformation modejsig
the critical shear stress for slip and the averageis done over all active slip systems in a given
grain). The exemplary prediction ofiisby LW model is shown in Fig. 2.21 c. This disttilon

is compared with ODFs of rolled and recrystalliasgekl samples (Fig. 2.21 a, b).

™ I
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a b. C

o i
d. e. f.
Fig. 2.21.Texture of low carbon steel and its relation te #tored energy. a, d) rolling texture, b,

e) recrystallization texture, c, f) stored enepygdicted by model. For figs d, e and f ogyz45°
were presented.
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It is visible (see sectio,=45") that during recrystallization the series of otiions calledy
fiber (horizontal one) is reinforced and, oppositehe o fiber (vertical one) is reduced. On the
other hand, high values of the stored energy ghipear iny fiber. The observed texture change
can be explained by the fact that recrystallizahanlei appear preferentially in grains with high
stored energy, i.e. mfiber in this case. Consequently, we can concthdéthe obtained stored
energy distribution explains qualitatively the mdendency of texture transformation during
recrystallization.

The deformation model can predict also other ptoggerof materials, for example
hardening curves. The predicted stress-strain ciawv@olycrystalline copper is compared with
the experimental one in Fig. 2.22.
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Fig. 2.22.a) Initial texture of rolled copper (measured),tbxture of copper after tensile test in
transverse direction (predicted starting from iaitione), c) predicted and experimental stress-
strain curves for tensile test. SC model was @isedredictions.
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The SC model was used in this case. Its main adgant that it gives precise results also in
elastic range of deformation (LW model works vemglivonly in plastic range). The agreement
between experimental and predicted stress-strawveds perfect. The change of texture of the
studied copper sample during tensile test is dwova. The initial sample had a typical rolling

texture (Fig. 2.22 a) and after the tensile testéxture changed very strongly (Fig. 2.22b).

2.9. Conclusions

The presented models of elasto-plastic deform&tiovi and SC) are useful tools for the
study of mechanical properties of polycrystallineatemials. They enable prediction of
macroscopic material properties (e.g., texturegsshstrain curves, plastic flow surfaces,
dislocation density, final state of residual strestc.) basing on the micro-structural
characteristics (crystallography of slip systemardening law, initial texture, initial residual
stress state, etc.). Such the models are precamis for technologists searching for optimal
material properties.

In the following chapters these models (SC and u)be applied for the prediction of
textures and analysis of residual stresses in pdtalline one-phase and two-phase materials
(e.g., in austeno-ferritic steel). The LW modellvioié used for the study of material properties
after cross-rolling treatment.
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Chapter 3

Residual stresses and elastoplastic behaviour
of stainless duplex steel

3.1. Introduction

In the first chapter the methods of determiningsges by means of diffraction method
were presented. The crucial problem in the stresdysis is the determination of diffraction
elastic constants. These constants are essentialtéopretation of residual stress measurement.
They can be calculated by means of models (ReusgtVKroner) and also determined
experimentally.

In this chapter the sources of stresses will bdagxgd. In the present work the total
stress field is divided into three types in funatiof scale: first order stresses, second order
stresses and third order stres3dwefirst order stresseare defined as the average stresses over a
large volume of the sampl&he second order stressthe difference between the grain stresses
and the first order stresses. The last tyghashird order stressthis stress field is a result of the
heterogeneity within a single grain. As it is désed in the first chapter, macroscopic stresses
are determined from the slope of“gingraph. When the second ordered stresses are piesen
the sample, the relation <gla, vs. sify becomes non-linear. The variation of the seconieror
stresses can be predicted by means of elastoeptieftormation models and this is done in the
present chapter. The results of residual stressi@ation will be presented for single and multi-
phase materials.
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3.2. Classification of stresses

Internal stresses can be generated by plastic rdafmn. The part of total stress field
which remains in material when external load igaskd is called the residual stress. It can arise
in a two-phase material (e.g., in a composite) wudifferent plastic flow of grains or due to
different thermal expansion coefficients of bothapds. A polycrystalline material consists of
grains having different lattice orientations. Mawopic material properties depend on single
grain properties, their lattice orientations anliactions between neighboring grains.

As it was mentioned, we divide the stresses inteetttypes in function of scale (Fig. 3.1)
(Baczmanski et al., 1994b; Fitzpatrick, 1995; Mesaret al., 1981; Bojarski 1970):

0-M<}:| : e Vl:',> O'M
B —
—> <——

e

Ao O 7
Setpeettae
VA g (1) v,

b)

Fig. 3.1. Definition of different types of stresses at vasispatial scales of a polycrystalline
material. a) First order stresses, b) second osteesses, c) third order stresses.

The first order stress&ﬂij are defined as the average stresses over a lahgae of the sample.
For a single phase material they are equal to theastressd; =o;" ),

w_ 1
o! :quj(r)dv (3.1)

AV,

where: g is the macrostresmdVa is volume of the sample

In multiphase material different physical propesta# individual phases lead to different stresses
in each phase. In order to separate those stréissesconvenient to introduce the phase

stressesrijp“. They are defined as the average over the voldrgeams from a given phase:
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a-ijph :Vl IO’U (I’)dV (32)

Ph vy,

whereaijph is the phase stresg;, — volume of the phase.
There is an obvious relation between the phasss&seand the macro-stresses:

Nph
o) =2 f"of" (3.3)

\Y
where f P" =~ is the volume fraction of theh phase antph is the number of phases
A

In polycrystalline materials also the grain stresigg’ ) are interesting. The grain stresses

represent average stress values inside individaahsg (o7 = Ia”. (F)dV). They are a result of
Vg

different plastic behaviour of crystallites haviagrious lattice orientations with respect to the
sample. They can also arise due to the anisotrbfihyeamal expansion and elastic constants.
The second order stress defined as a difference between the grain staesl the first order
stress. For a single phase material it is:

o? =0 -0 (3.4)

where g; =g;" for single phase and;; =o/" for multiphase materials. The grain and the

second order stresses have constant values ingideragrain. The average of the second order
stress over the sample volume is zero.

The last type of stress is thigird order stress:g " (r). It results from the heterogeneity

within single grains. This heterogeneity is caudmd vacancies, insertions, substitutions,
dislocations, sub-grain boundaries, ate third order stresses ' (r) are defined as:

Uu!” (r)y=o,(r)-oy (3.5)

Their average of over the volume of an individuaiig is zero.
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3.3. Origin of stresses

A polycrystalline material consists of a big amoahgrains having different orientations.
Elastic deformation of each grain is determineditbyelastic constants, which are generally

anisotropic. Consequently, we define grain stress§§r’, resulting fromelastic responses

They are a result of elastic responses of graitisea¢xternal load (macroscopic stresses). Using
linear elasticity, the elastic response grain stre;?,‘e”, can be related to the macrostress, i.e.:

o9 = B3 g (3.6)

ijmn™" mn

where B! is the stress concentration tensor and the sumaviegrepeated indices is applied.

jmn
The stress concentration tens@, , is calculated for each grain using different msq#ura

1993; Lipinski and Berveiller, 1989; Clyne and Withers, 1998¢e chapter 2). In general,
theB? tensor depends on the internal structure of theplmasuch as the elastic anisotropy of

jmn

grain and of the sample, elastic coupling betweaamg and the presence of different phases.

In a real material after mechanical and thermahtinent, the situation is slightly more
complicated, because there are other reasons isteege of residual stresses. One of them is
the anisotropy of thermal expansion coefficientisTaffect is responsible for generation of
thermal origin stresses. Another important readaregidual stress appearance is the anisotropy
of plastic deformation. It is known that basic mamgism of plasticity is the slip on
crystallographic system. Moreover, in differentigsa(having different orientation), different
slip systems are activated. This leads to diffemastic deformations in different grains. The
misfit (incompatibility) of plastic deformations tveeen neighboring grains is the source of

additional stresses imaterial. TheyareincompatibiIitystressescri?(iC’, remaining in a material
even if the external forces are removed, i.e., wi§in— 0. Finally the total grain stress is:

a'ijg = a'ijg(er) + o'ijg(ic) (37)

Using Eq.3.6 the above relation can be written as:

of =B .om + 02" (3.8)

ijmn™~" mn

In a single phase polycrystalline material the sdcorder incompatibility stresses are equal to
the grain stresses (see Fig. 3.2):

glo) = goto (3.9)

if the external forces are absent, i@i“r”, =0 (compare Eq. 3.4).
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Introducing the same condition for multiphase matéw =0), the phase stresses and the
second order stresses are defined as (see Fig. 3.2)

ph(lC) z f g/ phag(iC)
(3.10)

0-””9('0) - O-Q(IC) a-i_ph(ic)

where N phis the total number of orientations in a givengghéph”).
The mean value of incompatibility stresses caledlabver the whole considered volurdg

(containing a large number of grains) equals Z€hese stresses sum up to zero in the mixture
law defined by Eq.3.3, which takes the followingnfofor incompatibility stresses:

Z f PP = (3.11)
o] G A c'iete) 111
A A.M,Av ik G;H GPhGe) UAVﬂ’ /A\ T A/\\VI/\\VIA\VI to
Mg 5 W ARV
0 m X 0 AR X
TV X IANL.X
havr L
§'VAV V'VV GPh2dic) TVV VIV
Nad ALy _
VV\/U GIIg(lc)
I "

Fig. 3.2. The first and the second order stresses induceexi®srnal loads or long-scale forces
for single phase (a) and two phase (b). Also, Hieltorder stresses;" , characterizing local

stress fields around lattice imperfections are caded.

The second order stresses are a result of (Baskma005)
» Plastic incompatibility stresses
e Thermal incompatibility stresses

Plastic incompatibility stressesare a result of anisotropic character of plastic
deformation. Origin of these stresses in matasag¢xplained in Fig. 3.3. Initial grains are
represented as spherical inclusions in a homogenmatrix. After deformation and unloading of
the applied forces - different grains have différéeformations, depending on their orientations.

Due to such misfit between grains, the second asttess ¢;*" = g7, see Eq. 3.9) and the

corresponding lattice strain arise, especiallysivongly textured materials in which only a few
preferred grain orientations are present.
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Fig. 3.3. Scheme of plastic behavior of two exemplary grhengng various orientations of slip
systems with respect to the local stress

Thermal incompatibility stressesise due to different thermal expansion coeffitsesf
grains (Fig. 3.4). After thermal treatment the gralume can significantly differ from those of
the average matrix, due to difference between theerpansion coefficients of the phases in
multiphase material. If the expansion of grainsobging to particular phase is isotropic (for
example in cubic structure), the misfit of theilwmoes leads to hydrostatic phase stress (first
order stress). However, in some materials (e.g.drp. metals) the thermal expansion coefficient
of crystal is anisotropic. This causes an additioneompatibility of the grain shape with the
surrounding matrix after thermal treatment. Sucle thisfit generates the second order

incompatibility stresses*" = g{®), even in single phase materials.
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Fig. 3.4. Scheme of thermal behaviour of two exemplary grai@) having various
orientations and anisotropic coefficients of thefragpansion, b) belonging to different phases
with different coefficients of thermal expansioheTooling process is presented ¢IT,).

62



3.4. Measurements of macrostresses using diffraction

The standard methods of stress determination (Zuli®78; Noyan and Cohen, 1987)
are based on the measurement of interplanar spéaingarious directions of the scattering
vector. This method was described in Chapter 1. Mlean lattice straik ¢, @>mnay i Ls
direction (Fig. 1.3) is defined as:

<dw.p> _ -d°
(hk} = {hki}
<&(W,P)>pna = (3.12)

0
{hki}

where: d{"hkl} - the interplanar spacings for t{i&l} planes in a stress-free material,

<d(¢, 9> ny - the measured average interplanar spacings éghkt} planes,

<Y, 9> mnuy - lattice strain averaged over the volume of ddfireg grains.

<...hgy Means the average for reflecting crystallites.
To relate the mean strain defined by the abovetemgut different types of stress, first the strain
and stress for a diffracting grain have to be abergd. In the case of linear elasticity the
following relation can be written with respect keet. coordinate:

g9 =g9 g (3.13)

ij ijmn mn

wheree'?!™ | g9 "andsy  are the elastic strain, stress and compliancthéograing.
According to Eqg. 3.8 the grain stresg is the superposition of the term depending on
the macrostres8, o' and of the independent incompatibility streﬁ%c’, le.:
o =B} oy +ai§(ic) (3.14)
For a multiphase material the incompatibility stescan be split into the pha@"T‘C)) and the

second order;*" ) stresses (see Eq. 3.10), i.e.:

9 = RI M 4 gPhlic) 4 llg(ic)
oy =Byoy +oy + 0 (3.15)

After transformation fronX to L coordinate system the above equation takes the for

a-li? - Blg a.lM +0.|ph(ic) +0.li|j|g (ic) (3.16)

ijmn mn ij

where o' =a,a, o; for all types of stressesB'} ,,=a,a, a,a,B,, and the transformation

matrix a; is expressed by andy angles, i.e.:
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cosycogy singcoxy —sing
Vi =| —sing cosgp 0 (3.17)
cosgsing singsing  cosy

Substituting the grain stress given by Eq. 3.16 . 3.13, the elastic strain of a grain can be
expressed through:

£|g(el) — Sng (BI

-ph(lc) nIIg(lc)
ij ijop J +J +J ) (3 18)

opmn

After calculation, the mean strafne(¢/,¢ )>( In Lz direction can be expressed by:

— g (el) — g 1g M ug 1ph(ic) ullg(|c) —
< E(W, @)>(hiy =< €33 >ty =< S330p B'opmnT mnt S33mn (T'mn T ) >y = (3.19)

g [ M lph(IC) g uIIg(ic)
=< S330p B opmn>{hkl} J + < S33mn {hki} J +< SSan mn >{hkl}

where the mean valuers..>{hk|} are calculated over the group of diffracting gsaamd the first
order stresser™ and o' are excluded from the averaging operation (thedaeg are

independent of grain orientations).
Introducing the so-called diffraction elastic cargs (Dolle, 1979; Barral, 1987; Brakman, 1987,
Senczyk, 1995; Baczmski et al., 1993, 1997, 1997b), i.e.,

Rrxn({ hkl}’ l//,(ﬂ) =< S':%],3op B'gpmn {hki} and Rgh(m)({hkl} ‘// ¢)) =< SI:%],3mn {hki} (320)

Eq. 3.19 can be rewritten as:

< (Y, @)>tn = Rk, ¢, @) o' p+ RO EhKY, ¢, 9 o'+ <5y 089> (3.21)

Finally, the above equation can be expressed inoee rpractical form if all the stresses are
expressed iX coordinate system:

< 5([// ¢)>{hkf} an({hkl} t// (0) nt Fn?:(i(:) ({hkl}! 1//,(0)05:(@"' < 83,85, nij |:|g(IC) > {hki} (322)

where F" ({hkl}, ¢/, ¢) = a,,a; Ry ({hkl}, ¢, ¢) andFP"* ({hkl}, ¢, @) = a,@, R ({hkl}, ¢, ¢)
are called the modified elastic constants. Thay 0E(¢/,¢ )>;nq With the stresses;; expressed
in X coordinate system.

In a practical use of the multi-reflection methedd Chapter 1) the above equation is expressed
as:
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<a(y, @) > = {Frx] {hk, @, @) + PO hki, @, @) o +

ic 3.23
< aSmaSnSmnija-i]!lg( ) >{hk|}} aO + a.O ( )

where< a(y,¢)>n Is the equivalent lattice parameter.
Eq. 3.23 constitutes the general relation betwherstress field (the third order stresse¥ are

neglected) and strains which are determined usiagliffraction method. As shown in Eq. 3.22,
different types of stresses are differently confadawith the< £(¢,¢)>.; Strain. Simple linear

relations occur for the mean stresse$ and ¢, which are multiplied by the diffraction
elastic constant&" ({hkl}, ¢, and F P ({hkl}, ¢, @), respectively. The difference between

mn

the diffraction elastic constants applied for tinstforder stresses and for the phase mean stresses
becomes significant if the phases exhibit varidaste properties. The stresse§, are imposed

at the boundary of the volume penetrated by thd tediation, thus they must be localized at the
diffracting grains using the concentration tend}, (see R" ({hkB}, ¢,@ ) in Eq. 3.20). The

aijp““c’ average incompatibility stresses do not depentth@values of the first order stresses and

they represent the mean values over the graineeottonsidered phase. The third term of Eq.
3.23 is important if the second order stressepgent. The latter case is the most complicated
one because the variation of the stresses betwaérs delonging to the same phase cannot be
found directly from the experiment. The analysidhe second order stresses is possible only if
the character of stress variation is known frorheotetical model. In the following chapter the
prediction of the second order stresses by meadsfofmation models will be presented.

3.5. Multiphase materials

As mentioned in the beginning of this chapter, theidual plastic incompatibility
stresses can be created by anisotropy of the plfistv of different grains having slip systems
oriented differently with respect to the local sgeAfter unloading of the external forces, the

grains do not fit to the surrounding matrix. Thigeas rise to the second order stressxg#’((”)

and corresponding lattice strains, especially foongly textured materials in which only a few
preferred orientations of grains are present. énddise of a two-phase material, the deformation
process is more complicated than in a single plpadgcrystalline material, due to different
properties of the phases. Additional incompatwpitif grains occurs, leading to different values
of mean phase stressex’(").

Using the standard X-ray diffraction method, thttide parameters are determined in
function of sifyy for each phase independently. Interpretation xjeemental data for
multiphase materials is more complex than for glsiphase material, because it is necessary to
consider interaction between phases. The multogde analysis is based on Eq. 3.23, written in
a modified form for theghy andph, phases (Baczmaki, 2005):
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o) i } g0 Pht 4 g0pht (3.24a)

phl _ M M phl(ic) ,-phi(ic) phl
< a>{hk|}_ { FanOmn + F Jmn + q < aSmaSn nij—ij {hkI}

mn= mn mn

ph2 _ M M ph2(ic) ~-ph2(ic) ph2 lig (ic) < ph2 0, ph2 0, ph2
< aZhg= { FanOmn t Fon O +0Q7° < A3, %3n S T (hki} } a +ta (3_24b)

mn™~ mn j

The incompatibility stresses sum up to zero inntiegure law defined by Eqg. 3.11.
f phla.phl(ic) + f ph20.ph2(ic) :0 (325)

wheref P and f "™ are the volume fractions of the phapésandphy.

The unique solution of Eq. 3.24 can be found onhew mixture law (Eqg. 3.25) is taken into
account.The solution of these equations can be found byehast square method in which all

equations are used simultaneously in order td&ttheoreticak a(y, @) >{ph“k|} vs.sirfy curves
to experimental data for both phases. In turn, kngwhe value of the macrostressez{'() and
the mean incompatibility stresses ¥ and g?'**®), the phase stresseg{’" and ") for

each phase can be found:

a.ijphl - Bphlo.M +0.r221(ic) and O.ijphZ - BphZO.M + 0.52200) (326)

mnij " ij mnij 7 ij

where the mean stress concentration tenﬁfﬁ and B are calculated forph, and phy

jmn
phases, respectively. According to Eq. 3.3, thet brder macrostresses must fulfill the mixture
law, i.e.:

a.lj\/I = f phlo.ijphl +f ph20.ijph2 (327)

Due to the weak penetration of X-ray radiation ottlg near-surface volume of the sample is
studied. Because no force perpendicular to the kasysface is present in the analyzed volume,
the ol macrostresis equal to zero. However, in spite of zero valtieryf macrostress non-
zero o' phase incompatibility stress can be present il @hase of a multiphase material,
even in the near-surface volume penetrated by Xragjation. In such a case, the values of
(o9 -gPy and @ -g) can be found instead af}" and g} (Baczmaski et

al. 1997a). In the case of measurements perfoimede a sample volume (e.g., neutron or
synchrotron radiation) the non-zero valueadt stress can be also expected.
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3.6. Calculation of the second order incompatibility
stresses

The plastic incompatibility stresses arise duridgsfic deformation as a result of
anisotropy of plastic flow of different grains. Bli@ incompatibility stresses remain in material
even if external stress is unloader; { 0). These stresses can be predicted by elastoplastic
deformation models. In the calculations, the sangptepresented by a number of grains, having
an orientation distribution which reproduces thi#ahexperimental texture. The model sample
is subjected to elasto-plastic deformation and tiextexternal forces are unloaded. Finally, the

theoretical values of the second order plasticimuatibility stressesvi}'g(‘c’ are calculated (the

bar denotes the model-predicted quantities). Teessses characterize the anisotropy of elasto-
plastic deformation and they are correlated withlimearity of the experimentak £(¢, @)>nq

versussin‘y plot. In a plastically deformed material, the ketistrains< &Y, 9)>ng can be

expressed as a superposition of strains inducedmbgrostresses and the second order
incompatibility stresses. For a single phase maltdfq. 3.22 can be simplified to:

< &Y, @)>na = FijM ({hkl}, ¢, ) UijM * < 85,83, Sin O-ij!lg(iC) > hii} (3.28)

In comparison with Eq.3.22, the tera"* is absent, because according to equation 3.11 in a
single face material the averagg™® equals zero.
The Ji}'g(‘” stress remains after unloading of the macrostseasd it can be calculated by the

self-consistent modelo@}'g“” correspond ta%; - 0 ). The anisotropy of the incompatibility

stresses can be correctly predicted by the mod&kifexperimental texture is used as the input
data. However, the absolute values of the stredspsend on the hardening process occurring
during plastic deformation, which has generallyoanplicated character. Hence, to relate the
magnitude of theoretical incompatibility stressedhe real one, an unknown scaling facjas
introduced. This factor does not depend on thengyaentationg and it rescales the amplitude

of the stress tensor, i.e. the second order inctility stress ‘(g )in the real sample is:

g9 (g) =q 0" (g) (3.29)

whereq is the scaling parameter amg|®‘”(g) is the model predicted second order stress for a
grain with g orientation. Finally, the experimental lattice @eters<a(y,¢)>, Obtained
from the diffraction method can be expressed aofgki, 2006b):

<a(y,9)>ha = [FijM ({hk} @, @)al' +q < aemaensmnijai}lg(ic) (9) >y ] @° +a° (3.30)

where <ay a8, 0% (9)>mq IS the model predicted strain caused by the plasti

incompatibility second order stress. This term rabgrizing the nonlinearities of tise?y plot
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IS adjusted to the experimental data. Only the duogd of the theoretical function
< 8385, Si T3 (9) > iy IS rescaled by the factor, while its dependence on the orientation of
the scatterlng vector (i.e., opand ¢ angles) is given by the model. When the value of
parameter is determined, the real values of thetiplancompatibility second order stresses
“9"°) (g) can be calculated for all grain orientatiogsusing Eq.3.29. It should be noted that if
the determined value af is nearl, the model predicts correctly the amplitude of #teess
tensor, but ifqg <1, the magnitude of theoretical stresses is oveneséid. The latter case can be

explained due to stress relaxation or decreasinigeohardening process, which is not taken into
account in our calculations.
To show the level of the second order stresses fetatistical grain, the average equivalent

residual stres§ o5 ] is calculated:

[0 j 0.9 (g)f(9) dg (3.31)

where

NP

0 = | (ol =) + (015 -l + (o1 =) 3 { (@) 0 + (02|

Is the equivalent stress of a grain (with orientaty ) calculated according to von Mises formula

and the integral is calculated over the whole daon spacés usingf (g) texture function as
the weighting parameter.

3.7. Analysis of incompatibility stresses in single phase
materials

In this paragraph the results for single phase madgewill be presented. The multi-
reflection method was applied in order to estintagesecond order stresses in cold rolled ferrite
steel (bcc structure; 95% reduction). The surfaeerl of about200 gm was removed by
electropolishing and the crystallographic texturaswdetermined from pole figures measured
using the K wavelength of Cr radiation. The orientation digitibn function was calculated
from the pole figure$110}, {100} and{211} (Bunge, 1982). Experimental texture was compared
with the theoretical one predicted by the modej(Bi5). The cold rolling process was simulated
using the self-consistent model. The polycrystallgample was represented 1000 random
grains and typical values @f, H, A and elastic constant were used for calculationsela. 1. €.
andH parameters can be determined from the hardenivg)cu
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Table 3.1. Parameters used for calculations for ferrite steel

Parameters for self- | Calculation with anisotropic| Calculation with isotropic
consistent model elastic constant elastic constant
I H A Cua Ci2 Cas Young modulus| Poisson
[MPa] | [MPa] [GPa] [GPa] | [GPa] [GPa] ratio
240 90 1 231 134 116 196 0.3

by b1
=7 =
D
' N

= A aewi— S
N ;
= =
Levels Levels
1.90 1.25
398 2749
i) 5 535 (=32 | /= 6.3

Crossections: Phi2 Crassections: PHI2

a. b.
Fig. 3.5. Orientation distribution functions of cold rollesteel (80 % reduction):
(a) experimental texture, (b) texture predidiydSC modelg sections are shown.

Good agreement between experimental and theorééxtire was obtained. This proves that
model works well. Before a proper experiment, theigment alignment was checked with a

stress free powder sample. A small pseudo strés®dPa) was found, which confirms that the

equipment was correctly aligned. This value shdddreated as a possible systematic error for
all measurements. Interplanar spacings for {21204}, {110} planes were measured and

the< a(, ) >y, Vs. sify plots were determined for many directions (ig=0°, 180, 3¢,

21@, 9@, 270). This enabled the estimation of shear stress ooegs. In order to calculate the
diffraction elastic constants, the Reuss, Voigt &&l(for interior and for surface) models were
used. The obtained results are presented in table 3
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Table 3.2. Results of the fitting procedure for ferrite sampBalculations were performed
taking into account plastic incompatibility stresseThe values ofy? parameter obtained
neglecting plastic incompatibility stresses areegivn brackets.

Type of | Type of Macrostresses [Mpa] |Scaling| Average |Stress free y*
model | diffraction factor | equival. lattice g0
elastic ol | o) | ol | ol | o q _Plast. param.
constants incomp. | g° [A] %)
stress q=0
U:c?('c)
[MPa]

Reuss -52.6-58.2| -2.6 | 2.6 | -1.9 | 0.202 48.6 2.86636 | 5.1
+3.2| +3.2| +2.3| +1.2| +0.9| +.01 +2.2 +0.00001|(13.2)
self-cons.| -53.6| -60.3| -2.8 | 25 | -2.4 | 0.19 47.7 2.86636 | 5.03
Self-cons.| (free surf.) +3.1 | +3.4 | +2.2 | +1.5| +0.9| +.01 +2.2 +0.00001|(13.1)
Aniso self-cons.| -56.8| -67.0| -2.7 | 2.7 | -2.6 | 0.23 56.1 2.86637 | 4.6
(interior) | 3.2 | £3.4 | #2.3 | 1.3 | #1.1| +.01 +2.0 +0.00001| (15.9)
Voigt -57.8/-70.3| -2.8 | 2.8 | -3.2 | 0.23 55.2 2.86638 | 4.96
+3.3| +3.8|+2.7| +1.3| +1.3| +.01 +2.0 +0.00001|(19.3)
Self-consistent -79.4|-77.8| -3.1| 25 | -35 | 0.22 74.7 2.86639 | 4.9
isotropic #3.1 | #35 | ¥2.7 | #1.1 | #1.1| #.01 2.2 +0.00001|(19.3)
Lefers-Wierzbanowskij -69.4| -66.8| 0.7 | 1.3 | -4.6 | 0.18 68.1 2.86639 | 4.67
+3.7| 39| +2.8| +1.1| +1.1| +.05 +2.2 +0.00001|(11.2)

The lattice parameters for differehkl are presented in Fig. 3.6. The strong oscillatbithe
<a, ) >, in function of siAy was observed due to the second order stressas, thie

multi-reflection method was used with the assunmpttuat the second order stressgl§™® are

absent@=0 in Eg. 3.30); the results are presented by dabhesl in Fig. 3.6. In general, a poor
convergence between the theoretical plots and empstal points was found for such an
approach. Next, the procedure based on Eq. 3.30used and the value af factor was
determined. In this case, a very good agreememteleet the fitted curves and measured lattice
parameters (continuous lines in Fig. 3.6) was abtli because the nonlinearities caused by the

plastic incompatibility stressesr{*") were taken into accouny parameter decreased about
3-4 times, see Table 3.2).

A slightly asymmetrical behaviour of th&a (¢, @> iy Vs. sirfy curves was observed for the
orientationspand ¢+ 180, which was not explained by the shear macrostsasie, o,, nor

by texture asymmetry. This effect, probably causgd non-symmetrical sample preparation,
was not taken into account in the analysis of arpantal data.
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Fig. 3.6. Measured lattice parameters (points) and theorétresults of fitting (continuous
lines for g# 0 and dashed lines for g = 0) for cold rolled figersteel. The SC model for free
surface was used to calculate the diffraction étasbnstants.

The<a(y, ¢ )> iy vs.sirfy curves calculated for different models are shawhig. 3.7. The

comparison of Reuss and Voigt models is presentéuki left column, SC (interior) and SC (free
surface) - in the right column. It should be nadi¢kat the results for different models are quite

similar and, consequently, th8 is almost the same for all considered cases.

71



,s70 { 9= 1800 A =00 | | ¢=1800 @=00

A
74

223

2.8665 A

{211}

2.8660 A

<a>
n
L}

2.8655 A

2.8650

2.8670

(Al

N\

2.8665
2.8660

<a>o1y

2.8655

2.8650

2.86754{ @©= 1800

2.8670 A —_— ] ——

2.8665 !I_/ /“T “FI\{\
2.8660 A
2.8655 A {200}
2.8650 T

{
)
/

L ]

<@ 500 [A]

2.8675 A
2.8670 A
2.8665 A
2.8660 -
2.8655 A

2.8650
2.8680

<800 [A]

o4

{200}

MM

{110} | {110}

2.8670 A

2.8660 A

<a>{110} [A]

2.8650 A

2.8640

0.8 06 04 02 00 0.2 04 06 0.8 08 06 04 02 00 02 04 06 0.8
sin2y sin2y

Reuss model self-cons. (interior)
——— Voigt model ——— self-cons. (free surf.)

Fig. 3.7. Measured lattice parameters (points) and theogedtiesults of fitting for cold rolled
ferrite steel. The comparison of different modelsdufor the calculation of diffraction elastic
constants is done: the results corresponding tosRamd Voigt models are shown in the left
column, while those corresponding to SC (interaon)l SC (free surface) models - in the right
column.
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Fig. 3.8. Measured lattice parameters (points) and theorétieaults of fitting (continuous lines

for anisotropic elastic constant and dashed liresigotropic elastic constants) for cold rolled

ferrite steel. The SC approach for free surface used to calculate the diffraction elastic

constants.
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The influence of elastic constants on the secon@rostresses was studied using the SC (self
consistent) model. Both anisotropic and isotropéstic constants were used. The data used for
calculations are shown in Table 3.2. The result§SGfmodel calculations with anisotropic or
isotropic elastic constants are presented in R8g IB. the case of ferrite a good agreement of
experimental and predicted data is obtained bathsfatropic and anisotropic elastic constants
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(Wronski, 2004). However, different values of the secorder stress level were predicted in the
two cases: 74 MPa for isotropic elastic constants48 MPa for anisotropic ones.

The LW (Lefers-Wierzbanowski) model is also oftesed for the interpretation of
experimental data. This model is based on isotramieraction between grains. Hence, the
comparison between the SC (isotropic case) and Lolfets was done. The results are shown in
Table 3.2 and in Fig 3.9. Both models predict ssimialues of the second order stress level: 68
MPa (LW model) and 74 MPa (SC model -isotropic a¥@ronski, 2004; Wierzbanowski,
Wronski et al. 2005). It should be noted, however, that SC isotropic model predicts higher
level of the second order stresses than the aosotone (Table 3.2).
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Fig. 3.9. Measured lattice parameters (points) for cold rdlferrite steel and predicted results:
SC model (continuous lines) and LW model (dasimed)i Isotropic elastic constant were used.
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The next examined sample was the 316L austenigd @te structure). This sample was cold
rolled to the reduction of 50% and then stretcHedathe transverse direction (up to 20%). The
classical sifip method was used. The ODF of the cold rolled samae determined from
{111}, {100} and {220} poles figures (determined using Cr radiation) (@uril982). The
determined ODF was compared with that predicteds@8ymodel - Fig 3.10; the agreement is
very good. The tensile test was studied using thaxlel. The polycrystalline sample was
represented by0 000grains and the cold rolling texture was the ingata for calculations.
Typical values ofr;, H, A and elastic constants were used for calculatises Table 3.3).

Table 3.3. Parameters used in calculations for austenite steel

Parameters for self- | Calculation with anisotropic| Calculation with isotropic
consistent model Elastic constant elastic constant
Ic H A Cun Ci2 Cus Young modulus| Poisson
[MPa] | [MPa] [GPa] [GPa] [GPa] [GPa] ratio
120 200 1 198 125 122 196 0.3

by by
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Fig. 3.10. ODF of cold rolled austenite steel 316L: (a) expemtal texture, (b) texture
predicted by SC model. Tlgesections are shown.

Before the proper experiment, the equipment aligimes checked with a stress free powder
sample. The small pseudo stress (12 MPa) was faunidh confirmed a correct preparation of
the equipment. The interplanar spacings for pl§p@8}, {220}, {311} were measured. In order
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to estimate shear stress components the expenmasntepeated for many valuesgoéngle (i.e.,
p=0, 48, 90, 180, 2278, 27F). The multi-reflection method based on Eq. 3.23 wsed. The
diffraction elastic constants were calculated wRbuss, Voigt, SC (interior) and SC (free
surface) models. In the case of SC model the anict and isotropic elastic constants were
used, while only isotropic case was consideredvihrhodel. The results of calculation are listed
in Table 3.4.

Table 3.4. Results for 316L steel sample (errors correspondirioertainties of the measured
peak positions). Calculations were performed wiga0) and without (q=0) taking into account

plastic incompatibility stresses. The valuesyof parameter in this second case are given in
brackets.

Type of| Type of Macrostresses [MPa] Scaling| Average | Stress free ¥
model | diffraction factor | equival. lattice g0
elastic ol | o¥ | oM | ol | oh q _plast. param.
constants incomp. a’ [A] 6%
stress q=0
[02]
[MPa]
Self- Reuss -84.84-14.2| 0.2 | 0.3 | -1.2 | 0.46 53.1 3.59349 | 7.71
cons. #4.4 | #52 | #44 | ¥1.6| #1.6| +.02 2.2 +0.00002| (10.3)
Aniso | self-cons. | -90.5| 9.9 | 1.8 | 0.2 | -1.2 | 0.49 57.4 3.59353 | 8.74
(freesurf) | +4.9 | +6.1 | #5.2| +2 | +1.7| =+.02 +2.2 +0.00002| (11.6)
self-cons. |-108.1| -19.2| 2.3 | 0.5 | -1.7 | 0.45 52.8 3.59356 | 8.51
(interior) | +6.1 | #6.9 | #6.1 | +2.3 | +2.3| +.02 2.0 +0.00002| (11.2)
Voigt -127.2|-23.6| 46 | 0.8 | -2.2 | 0.46 53.2 3.59363 | 9.72
#7.7 | #9 |+8.4| +3.1| +2.8| .02 2.0 +0.00001| (12.6)
Self-cons. -111.5/-286| -3.1 | 1.0 | -20| 0.31 57.1 3.59355 | 11.4
ISO 7.3 | £7.9|+£7.6| +2.6| +2.6| +.03 2.0 +0.00001| (12.6)
Lw -111.1|-36.5| -88 | 1. | -2.1| 0.36 37.7 3.59357 | 10.78
$7.2 | #7272 ¥26| 26| .02 2.0 +0.00001| (12.6)
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Fig. 3.11. Measured lattice parameters (points) and theoretieaults of fitting (continuous lines
for g # 0 and dashed lines for g = 0) for 316L steel sinetd in the tensile test. The multi-
reflection method was used. The SC model (fre@sifwas used to calculate the diffraction
elastic constants.

The theoretical plots are presented for two assiamgti.e., when the plastic incompatibility

stresses are not assumed (dashed lineg=f@), and when the influence injg(ic) (g) stresses is

taken into account and thg parameter is determined from Eq. 3.23 (continuiness). As
presented in Fig. 3.11, the quality of fitting isfiditely better when the plastic incompatibility

stresses are assumed (e.g., for SC free surfacelnyéd8.74 for 0, while y*=11.6 for g=0).
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The diffraction elastic constants were predictedRsuss, Voigt, SC (interior) and SC (free
surface) models. The results of calculations wiise elastic constants are presented in Fig.3.12
and in Table 3.4. As it is seen, the considered efsog@redict correctly the oscillations of
<a(Y.@> iy VS. sirfy graph. The second order stresses determined withaalels have the
values about 53 MPa.
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Fig. 3.12. Measured lattice parameters (points) and predict=ults for cold rolled austenite
steel 316L Different models were used for the calculationlifffaction elastic constants. Reuss
and Voigt models are compared in the left colun@h(iSterior) and SC (free surface) - in the
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The influence of isotropic and anisotropic elastamstants on the obtained results was also
checked for the 316L fcc steel - Fig 3.13. It skddog noticed that, a worse convergence between
the theoretical plots and experimental points was\@l when isotropic elastic constants were
used in the case of austenitic phase. This effatthe easily observed for {220} planes. e
parameter increases when isotropic elastic corsstaatused (Table 3.4).
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Fig. 3.13. Measured lattice parameters (points) and theorétieaults of fitting for the stretched
316L steel. Continuous lines are used for anisotragastic constant and dashed lines - for
isotropic elastic constants. SC model was applied.
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Finally, the isotropic LW model was used for thécatations. The results are shown in Fig. 3.14
and in Table 3.4. It is visible that both LW modeld SC model (with isotropic elastic constants)
give similar results. However, the agreement betwegculated and experimental data is not
very good. We can conclude that models with isatropteraction are not good enough to
predict precisely the second ordered stressescimfaterials. This stays in contrast with bcc
ferrite phase, where the difference between ussotopic and anisotropic elastic constant is not
significant.
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Fig. 3.14. Measured lattice parameters (points) and theoretiesults of fitting (lines) for
austenitic 316L steel. Isotropic elastic constamége used in the frame of SC and LW model.
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3.8. Analysis of incompatibility stresses in multiphase
materials

3.8.1. Material and experimental method

In this paragraph the results for duplex steel Wl presented. This work is the second
stage of the study started by Dakhlaoui (Dakhla@diripnski, et al., 2006¢) and it concerns the
stresses remaining in the duplex steel after elalsistic deformation, when the sample is
unloaded.

The studied material is the austeno-ferritic sesalsteel, containing approximately 50% of each
phase (the ferrite phase is cale@nd austenite y). It was obtained by continuous casting and
then hot rolling down to 15 mm sheet thicknessoAution annealing heat treatment at 1660
was given, followed by quenching in water in orderavoid the precipitation of secondary
phases. The chemical composition of the alloy aesgnted in Table 3.5. The characteristic
microstructure of the steel consists of austensiands elongated along the rolling direction
(RD) and embedded in a ferritic matrix (Fig. 3.15).

Table 3.5. Chemical composition (wt. %) of duplex steel

Material C Mn Cr Ni Mo Cu S N
X2 Cr Ni Mo 0.015 1.6 22.4 5.4 2.9 0.12 0.001 0.17
22.5.3 (UR45N)

50pum

Fig. 3.15. Microstructure of the studied duplex stainlesekster two different sections. The
main directions of rolling are indicated: RD, roily direction; TD, transverse direction; ND,
normal direction.

Two cylindrical samples3(mmdiameter and0 mmheight, having axis aligned along transverse
direction - TD) were machined from those measuredipusly using neutron diffraction during
“in situ” tensile (14% of deformation) and compiiess(7% of deformation) tests. The third
cylindrical sample having similar dimensions wasfoom as-received non-loaded material.

The ENGIN-X diffractometer at the ISIS spallatioreutron source, CCLRC Rutherford
Appleton Laboratory (UK) (Dann, et al., 2003) wased to measure interplanar spacings
<d >, applying the sirfy diffraction geometry (similar as usually for X-gy The

orientations of the scattering vector with respecthe applied load and to the directions of
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rolling are shown in Fig. 3.16. As it is descridadoaragraph 3.5, the neutron radiation enables
estimation of the values ofa(‘ -g(?), (gl -gl) (gl -on) and (O -0a). The
configuration shown in Fig. 3.16a enabled the dyital sample to be rotated about an axis
perpendicular to the positioning table, in ordechange they angle in the range froff to 90°

for negative and positivgy angles. The measurements were performed for twdigas of the
sample with respect to the table and sy curves were determined for two differepangles:
@=0° andg= 90° (Figs. 1.3 and 3.16b).

Incident beam

. \ S
AR Slits &S
oof (bf' $ &
7 <
f(GO\Q — %(zc}o
Vs @
Y v PR

Detector bank
(1ybu) >ueq
103199318@

o
Radial
collimator

& ) Sample
& >

& &8 Positioning table :
\o'z’ Translation and rotation
(@ (X,Y.2)

X, a scattering
vector

/’{,

21

(ND)
X,

2

X '00 ".‘..
;A(d’/ :

2 ‘,/,’
Fig. 3.16. Schematic of the ENGIN-X instrument with the sanspbjected to the tensile (or
compressive) loading along TD, overhead view (a)ef@@ation of the scattering vector with
respect to the principal sample axes during tensitel compression tests (b). The main
directions of rolling are indicated: RD - rollingirgction, TD - transverse and ND — normal
direction (the loads were applied along TD).

b.

The detectors measure time-resolved spectra, eagyPeak being produced by reflection from
a different family of {hkl} planes. The load axisaw aligned horizontally at +2%o the incident

beam, allowing simultaneous measurement of latsicains in directions both parallel and
perpendicular to the applied load. A boron carlsiiteof dimensions 4 mm high, 4 mm wide was
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used to define the incident beam. Radial collimaiarfront of each detector bank defined an
exit aperture of approximatelymm. The experiments were performed using the tifrféght
diffraction method and the peak positions for mahnkl reflections were determined
independently for both phases using the GSAS sofétwackage (Larson and Von Dreele, 1994).

3.8.2. Modelling and experimental data

The stresses in the studied samples were deternfioed the <>y parameters
measured by TOF neutron diffraction for differékt reflections (Olg, 1998). Since a stress free

sample was unavailable as a referena®”{ lattice parameters are unknown), hence only the
differences between main stresses componeaf$‘(- g2@), (g2 - g, (g -0l ) and
(o - o4 ) were found using the least square fitting base&gs. 3.24, 3.25.

The orientation distribution functions (Fig. 3.1€paracterizing crystallographic textures, were
calculated from the experimental pole figures, Whiwere measured using the neutron
diffraction method on the 6T1 diffractometer at thHeB, Saclay, France (Bunge, 1982). The
anisotropic single crystal elastic constants weelun the calculations (Table 3.6)

Austenite Y) Ferrite @)
0y 0
J R =
! a l € ¥ A
D S @ S OE i;_} @
¢ q @ g
e, e
. Soae
=D C i%\hf 3h/
=3 QB
q
O e Levels
303 < g @%50a
L deis 96
Crossections: Phiz Crassections: Phi2

Fig. 3.17. Orientation distribution functions (ODF) for botfhases of duplex steel determined
by neutron diffraction. Theg, sections through Euler space are presented foteaitsc and

ferritic phases. The sample axes are defined in Fitpb.

The SC model was used for interpretation of theegrpental data. The calculations were carried
out for 20 00Ospherical inclusions representing austenite (50%g territe (50%) grains

embedded in a homogeneous matrix having propertiesaged over all crystallites belonging to
both phases. Anisotropic single crystal elasticstamts (Table 3.6) and experimental initial
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stresses (see Table 3.7), equal for all grainsinvibme phase, were assigned to the spherical
inclusions. Crystal lattice orientations of indival grains were defined according to the
orientation distribution functions of both phaseed Fig. 3.17). Two families of slip systems
(i.e., <111>{110} and <111>{211}) were assumed fbe ferritic phase, whereas only one was
used for the austenitic phase (i.e., <110>{11Ihe main goal is to find the effective model
parameters 1(*" - critical resolved stress anH ™ - work hardening parameter) characterizing

both phases for which theoretical results agrek @itperimental data.
These parameters can be estimated from hardenmg and from lattice strains £ﬂ>{ph“k|} VS.

applied external stres&4). Figs 3.18, 3.19 and 3.20 show the influenceniial critical shear
stress and hardening parameter on the elastiostaad hardening curve.

The exemplary relation of £fl>{”hhk|} vs. applied external stress;{) for duplex steel is shown in

Figs. 3.18 and 3.19. At the beginning (up2q = 250 MPg both phases are below the yield
point and only linear elastic deformation occurec&use of similar elastic constants (Table 3.6)
the elastic response of ferrite is similar to aoitée After the yield point for the-phase
(7 points at2;; =250 MPa — Fig. 3.18)austenite is deformed plastically, while ferriéenains

in the elastic range. Consequently, the createshipatibility stress leads to differences in lattice
strains measured for both phases. The distanceebettwo functions increases till the second
characteristic poinf@ at 2;; =450 MPg, where the lines start to approach each othas. gdint

(2 in Fig. 3.18b) can be identified as the yield stris a-phase and the opposite tendency of
the evolution of mismatch strain (and stress) mélaatsthe work hardening is higher in gamma
than in alpha phase. When the position@nd @ is known it is possible to find the value of
r " for each phase.
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_ _ 1
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y - exp Y- exp 3
0.0025 - o — model 1 3 0.0025 o — model 3
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0.0000 . . . . . . 0.0000
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
2, (MPg 2, (MPQ
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Fig. 3.18. Influence ofinitial critical shear stress on the elastic straimeasured "in situ" by
neutron diffraction. The theoretical results areepented for: a)r’’=50 MPa (1)r/’=80

MPa (2) andr’’=110 MPa (3); b)7%°=230 MPa (1)75°=260 MPa (2) andr5;’=290 MPa
3)

Another parameteH ™, can be found fromx &>/, vs. applied external streZs; and from

hardening curves. The last part of sample defoondtie., overs;; =450 MPain Figs. 3.19 and
3.20) shows the plastic behaviour of ferrite angteunite. In this range, the plots depend on the
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relative hardening of both phases. From this ranigepossible to estimat& %, / HY, ratio. Also

the slope of the hardening curve (Fig. 3.20) depemdthe value of hardening parameter, but it
depends onHj, +H}, and does not depend on the rafi/H/,. By means of these two

graphs it is possible to estimate the values aldr@ng parameters of both phases. The influence
of work hardening on the elastic strains and onhérelening curve is presented in Figs. 3.19 and
3.20.

0.0035
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y - exp.
0.0025 o —model 7/ 3
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(]
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0.0000

0 l(I)O Z(I)O 3(I)O 4(I)O 5(I)0 G(I)O 7(I)0

%, (MP3
Fig. 3.19. Influence of work hardening on the elastic stramsasured "in situ" by neutron
diffraction. The theoretical results are presenfed a) Hj, /HY =1 (1), Hg /HY, =0.35 (2)

and Hg, /HY =0.1 (3), while Hg + H), =270 MPa;

700

(MPa)

=11

Al

100 — —— model b)

0.00 0.01 0.02 0.03 0.04
(total)
EH

Fig. 3.20. Results of the mechanical tensile test (solid lic@npared with model prediction
(dashed line). The deformation rate was stoppethatpoints corresponding to those for which
neutron diffraction experiment was performed. Theotetical results are presented for
HZ +HY =120 MPa (1), H + HY, =270 MPa (2) and HS, + H), =420 MPa (3), while

HE IH!, =0.35,

The final model parameters for which the theoréticaves are the closest to the experimental
data were found by Rim Dakhlaoui and the presetitcaDakhlaoui, Wraski et al., 2006¢ and
Dakhlaoui,Wrdaski et al., 2007b) using SC model. The values es¢hparameters are given in
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Table 3.6. They will be used in further calculaipperformed in order to find the second order
stresses and to investigate the anisotropy ofriatestresses. The obtained results are presented
in Fig. 3.21, 3.22 and 3.23.

Table 3.6. Elastoplastic parameters of both phases

single crystal elastic constants critical hardening
(matrix notation) [GPa] resolved shear parameter
phase Cu Co Ca stress H [MPa]
2 [MPa]
austenite 198 125 122 135 200
ferrite 231 134 116 215 120
Tension Compression
800 0
700 -+ -100 1 ——— Model
600 - -200 1
T 500 - T 300 -
=, 400 1 =, -400 A
< 300 - = -500 1
™ 200 ——— Model W 600 -
100 A — Exp -700 A
0 T T T T -800 T T T T
0.00 0.01 0.02 0.03 0.04 0.05 -0.05 -0.04 -0.03 -0.02 -0.01 0.00
Eu E.
a b

Fig. 3.21. Macro-mechanical curve;; vs. k&, are compared to model predictions for (a) tensile
and (b) compressive tests. Initial crystallograptegture and initial residual stresses were used
in the model calculations. The load was appliechgld@D. The deformation rate was stopped at
the points corresponding to those for which neutiifinaction experiment was performed.
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Fig. 3.22. Elastic lattice strains<g,, >, and <&;;>,,, , versus to the applied stress,,

measured by neutron diffraction (TOF). Strains nueed “in situ” for several hkl reflections in
both phases (points) are compared with SC moddligiens (lines). Initial crystallographic
texture measured by X-ray diffraction (Fig. 3.17@swsed in the model calculations. The initial

stresses (see Table 3.7) found in the sample akea into account.
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We focus on the estimation of the second ordesst®e and on investigation of internal stress
anisotropy. In the case of the initial non-deformsathple a good fitting was obtained assungng
parameter equal to zero (in Eqs. 3.24a, 3.24b &).3Thus the influence of the second order
incompatibility stresses was not significant anel iverage stresses were determined (see Table
3.7 and Fig. 3.24). Contrary to the initial samplee assumption of)=0 is not valid for the
deformed samples and, as the consequence, tliediitees are far from the experimental values
(see dashed lines in Figs. 3.25 and 3.26 xrid Table 3.7). Thus the influence of the second
order stresses has to be taken into account ircdie of deformed samples. To do this, the

theoretical stressew;°"”(g) must be calculated by the elasto-plastic modelsing the

theoretically calculatedr;* (g) stresses, the least square fitting (based on Eada 3.24b)

was applied for the samples after tensile and cesspre tests. In both cases an excellent fitting
was obtained)? was about 3-4 times smaller than in the case wh8nwas assumed (see Table
3.6 and continuous lines in Figs. 3.25 and 3.2@)) the values of average stresses as well as of

the second order stresses were found. The fittimgeolure was repeated usimj'g“)(g)

stresses predicted for different degrees of defoomaand the values off parameter were
compared. In Table 3.7 the results obtainedgfparameter close to 1 are presented (wdweh

the model second order stresses have the same toteg@is the experimental ones, see Eq.
3.29). It was found that theoretical stresses bm®st equal to the experimental ones when the
model calculations are performed to about twiceelodeformation than that applied for a real
sample. Using Eq. 3.29 and knowing the valueqoparameter, the second order stresses

0;°*(g) were determined for each grain orientatign(Fig. 3.27) (Wraski et al., 2006a

2006b). The average equivalent valyesS ®] (see Eq. 3.31) are given in Table 3.7 for each

phase. Moreover, the total equivalent grain stee$6y) (Eq. 3.15), calculated according to von

Mises formula fronw?

i » was found for each orientatiogm and presented in Euler space in Fig
3.27.
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Table 3.7. Residual stresses determined using fitting proeedbased on Eqgs. 3.24 and 3.25.
Relative values of? are shown, i.e..xX*/ ¥iniia (Y’nita cONcerns the initial sample); the values

obtained with assumption g = 0 are given in brasket

mean
macro- mean phase incompatibility | equivalent q K Pniti
stresses stresses second order
[MPa] [MPa] stresses [MPa] (9=0)
[04°]
austenite ferrite austenferrite | austen.| ferrite
a.ll\i _ 0.3M3 — Ul;)lh(ic) _ 0.3p3h(ic) = Ul;)lh(ic) _ 0.3p3h(ic) =
18.645.9| -19.8+4.5 19.8+7.2
0.21\; _ 0.3M3 —_ Uzpzh(iC) _ 0.3p3h(ic) - Uzpzh(iC) _ 0.3p3h(ic) -
initial ﬁ4_'8i5 0 pﬁzz 4.5 6ph7(i'c)7_15'4 not not |not |not (1)
sample | %13~ T T T fited |fitted |fitted |fitted
195429 | -0.3+2.2 0.3+3.6
0.2M3 — a.zgh(IC) - a.zgh(m) -
2.7 +3.9 -4.7 +3.3 4.7 +4.5
0 daer. 47.7+13.8| 14.2+8.2 -14.2 £19.6
15% 0.21\/; _ 0.3M3 = 0.2p2h(ic) _Uspgh(iC) — Uzpzh(iC) _ 0.3p3h(ic) =
(model | 21-1+10.1 ;ﬁifﬂ'z pﬁg'? *13.0 1 1283|2505 0.85 | 1.1 | 1.14
calcul. ”f 7‘+6 , 0130 4‘+4 : ”130 4‘+7 . +1.3 | +1.3 | +0.01 |+0.01|(4.75)
to def. - [T0. -U.4 x4, AL
7%) | o%= o = o =
2.3 +8.6 -0.5+54 0.5+11.7
Co.mpre' 0-1’\1 - 0-3M3 = Ulqh(iC) - Uspsh(iC) = Ulqh(iC) - Uspsh(iC) =
Ss'é’nf 15.5+12.1| 17.0+6.9 -17.0 £17.2
tSOOA) er. 0.21\/; _ 0.3M3 - Uzpzh(IC) _ 0.3p3h(|c) - Uzpzh(IC) _ 0.3p3h(|c) -
(model | 88%9:2 | 959268 | -95.9+1L5 | 115511545 1.0 | 0.85 151
calcul. | %=~ = T +1.0 | +1.0(+0.01 |+0.01|(4.25)
to def. 12.8+7.5 1.4 +4.6 -1.4 8.4
206) | M= o = on =
0.8 +7.2 -25+4.6 2.6 £9.8
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Fig. 3.24. Measured lattice parameters (points) and theoggdtresults of fitting (continuous lines)
for initial as-received sample (<gmq Vs. sify curves for positivey are shown). The experimental
data for various hkl reflections and both phasesensgmultaneously used in the fitting procedure
assuming q = 0 (results are shown in Table 3.7).
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Tension Compression
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Fig. 3.25. Measured lattice parameters and theoretical reswf fitting for ferrite phase
deformed in tensile and compression tests. Thadfiftrocedure was applied for various hkl

reflections and both phases for each sample, asgung # 0 (continuous lines) and q = 0
(dashed lines).
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Fig. 3.26. Measured lattice parameters and theoretical reswf fitting for austenite phase
deformed in tensile and compression tests. Thadfifprocedure was applied for various hkl

reflections and both phases for each sample, asgung # 0 (continuous lines) and g = 0
(dashed lines).
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Fig. 3.27. Total equivalent stresgy,(g) for grains having various orientationg, determined
after tensile (a,b) and compressive (c,d) tests. @hsections are presented for both phases.
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Finally, the influence of elastic anisotropy angstallographic texture on the creation of the
second order incompatibility stresses was studfédronski et al., 2006a) In this aim, the
analysis of experimental data was performed with thfferent artificial assumptions. Firstly,
isotropic single crystal elastic constants weredusemodeling and in the calculation of the
diffraction elastic constants. Secondly, the maodglwas performed assuming random initial
texture. In both cases the results of fitting pohee were definitively worse in comparison with
those when anisotropic single crystal elastic amtst and textured initial samples were
considered in data analysis (see Figs. 3.28 — 3Wignski 2006b et al.). It should be noticed
that agreement between experimental and calcutitedis worse for austenite than ferrite were
isotopic elastic constants were taken into accolims effect was observed as well for single as
for multiphase materials.
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sinzlp sianJ sinzlp sinzw
Fig. 3.28. Measured and fittee a >, vs. sidy curves for ferrite phase after tensile test

(g #0). The analysis was performed assuming: anisatr@@ntinuous lines) and isotropic
single crystal elastic constants (dashed lines).
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Fig. 3.29. Measured and fittegt a >, Vs. sify curves for austenite phase after tensile test

(g #0). The analysis was performed assuming: anisatr@ontinuous lines) and isotropic
single crystal elastic constants (dashed lines).
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Fig. 3.30. Measured and fittegt a >, Vs. sify curves for ferrite phase after tensile test

(g #0). The analysis was performed assuming: textaegdple (continuous lines) and randomly

oriented grains in the initial sample (dashed lnhes
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Fig. 3.31. Measured and fittegt a>,,, vs. sidy curves for austenite phase after tensile test

(g #0). The analysis was performed assuming: textaagdple (continuous lines) and randomly
oriented grains in the initial sample (dashed lipes

3.9. Conclusions

The residual stresses are generated by plasticoafion. They remain in a material even
when external forces are unloaded. In this worlfaeeis on the first order stresses (macroscopic
stresses) and the second order stresses (stresgeairis). As it is described in the previous
chapter, macroscopic stresses are determined frersiape of the sfip graph. When the second
order stresses are present in the sample, théorekd>phq vs. sify is non-linear. The second
order stresses are a result of plastic incompayitaihd thermal anisotropy, but in this work only

98



this first is taken into account. These stressese atue to anisotropic plastic flow of grains.
Different behaviour of grains is caused by variotisntations of slip systems with respect to the
local stress tensor. Thus the activation of slgteays depends strongly on the localization of the
applied stress at a considered grain, intergrarsifasses and grain lattice orientation. Finally,
after plastic deformation some of the grains areentor less) elongated in a given direction than
the other and consequently they do not fit into gherounding matrix. Due to such misfit, the
second order stress and a corresponding lattiam strise.

In the first part of this chapter the single phasaterials (ferrite and austenite) were
investigated. In both cases the first and the sayder stresses were estimated. The second
order stresses can be predicted by elasto-plasiitels, and consequently the self—consistent and
Lefers-Wierzbanowski model were applied. The catohs were done using anisotropic and
isotropic elastic constants. A good agreement batwexperimental and theoretical data was
observed when anisotropic elastic constants w&entento account.

The next investigated material was the duplex Esisteel (composed of ferrite and
austenite phase). Similarly like in single phas¢emals, the first and the second order stresses
were estimated. The stresses were determined pbexigteel after tensile and compressive tests
using TOF neutron diffraction. It was found thattive as received non-deformed sample the
second order stresses were small and consequéetkirf( plots were almost linear. After
elasto-plastic deformation the second order incdibitity stresses were generated causing
strong nonlinearities of thgir’y plots. The nonlinearities have opposite charaafr tension
and compression (Figs. 3.25 and 3.26), i.e., thergkorder stresses of opposite sign are created
during those modes of deformations. Also, the opp@serage incompatibility stresses " -

o©  ghte gy were found after these tests. As expected, svahlles of macrostresses
(gl -0%, oy -oa) were determined in the volumes studied by nestrarile relatively high
values of[ 0%'®] indicate that the second order incompatibility seess are very significant in

deformed duplex steel (see Table 3.7).

Similarly like in single phase materials, the imfhce of elastic anisotropy and texture on
the second order incompatibility stress was stutheduplex steel. As seen in Figs. 3.28 and
3.29, thesir’y plots fit significantly worse when the isotrogitastic constants are used in data
analysis. This effect is especially pronouncedhia tase of austenitic phase. In single phase
materials this effect was also observed. Thus thisoaopy of elastic constants plays an
important role in the creation of the second ordeompatibility stresses. On the other hand, the
initial texture is also important for proper det@mation of the second order stresses in ferritic
phase (some of th&in*y plots fit worse when random texture is assumeghdulel prediction,
Figs. 3.30 and 3.31). It can be concluded thatme of the second order stresses is a complex
process and it depends on different parametersactesizing elasto-plastic deformation of
polycrystalline material. The evolution of grainrestses can be qualitatively and even
guantitatively predicted by the elasto-plastic medehen elastic anisotropy, texture evolution
and interaction between grains are taken into adcéiowever, the magnitude of the theoretical
stresses is often overestimated in comparison exgberimental one. The correct theoretical

magnitudes are obtained when the modw%lg“)(g) stresses are calculated for smaller
deformation than the real one.
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Chapter 4

Variation of residual stresses during cross-
rolling

4.1. Introduction

The cross-rolling is generally applied in ordessganmetrize the crystallographic texture
and consequently, to decrease the sample anisot®ph the operation involves also the
modification of residual stresses.

The goal of the study was to follow the characteresidual stresses in function of
applied deformation in each of two rolling directso The studied material was polycrystalline
copper (fcc structure) and ferritic steel (bcc ctmoe). The observed experimental results were
studied using the model of elasto-plastic deforamatiThe variation of the first order stresses
and non-linearity of the versus sifip plot were studied and explained. The diffractitestc
constants and the second order stress distributvens also determined using the self-consistent
model.

4.2. Residual stresses and texture in cross-rolled
polycrystalline metals

4.2.1 Copper

A plate of polycrystalline copper was rolled to tiegluction Red1=62 % and next four
samples were cut out, which were cross-rolled ¢éordduction Red2 of 10 %, 40 %, 62 % and
80 %, respectively (Redl is rolling reduction iimpipal direction and Red2 is rolling reduction
in perpendicular cross direction). The surfaceldaje200um was removed by electropolishing
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in each sample. Classical X-ray diffraction (Cuiafidn) was used (Baczmski et al., 1994a;
Baczmaski et al., 1995) (see chapter 1). The textureiatetnal stressés vs. sify method)
were measured on Bricker Advance D8 diffractomatethe Open University,Walton Hall,
Milton Keynes, England. In the present study a gamaulti-reflection methodBaczmaski et
al., 2003c) of stress determination was appliee @®pter 1). The average equivalent inter-

planar lattice distancessa(y,) >, —were determined for 331 and 420 reflections. Before

{hki}
performing accurate measurements, the calibratidheoapparatus was done by measuring the
stress in powder sample. The measurement showghthatress in the sample is on —10.5 MPa
level, what proves a proper calibration of the appes.

The crystallographic textures (orientation disttibn functions — ODFs and pole
figures) of the considered samples were determexguerimentally and also predicted by the
LW model (Fig.4.1) (Wierzbanowski et al.,1979; Wieanowski et al.,1992). The cross-rolling
texture (Fig. 4.1b) is strongly symmetrized compavégth the simple rolling one (Fig. 4.1a).
Two new symmetry axes of pole figures, inclinedt5’ with respect tax axis, appear. The
model predicted cross-rolling texture (Fig. 4.1)in perfect agreement with the experimental
one. These results confirm the correct construatidhe model.

Levels:
0.60/1.17/1.75/2.32/2.89 0.56/0.87/1.19/1.51/1.82 0.72/1.27/1.83/2.38/2.93
Ralling 60% Rolling 60% Rolling 60%

0.62/1.23/1.85/2.46/3.08 0.73/1.20/1.68/2.16/2.63 1.25/2.32/3.40/4.47/5.54
Red1=60% Red2=40% Red1=60% Red2=40% Red1=60% Red2=40%
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0.83/1.66/2.49/3.32/4.15 0.81/1.63/2.44/3.26/4.07 1.19/2.37/3.56/4.74/5.93

Cross rolling model
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Fig. 4.1. ODF and (111), (100), (110) pole figures for paoiystalline copper: a) after simple
rolling (Red1=60%), b) cross- rolling (Red1=60% ariRed2=40 %), c) as above but
predicted by the elasto-plastic deformation model.

To determine residual stresses, the calculatiodiféfaction elastic constants has to be done.
The values were calculated using Reuss, self-aemsi¢free surface), self-consistent (interior)
and Voigt model (see chapter 1). The results famablels are listed in Table 4.1.
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Fig. 4.2. Plots of <a@,@> 1 vs. sifig for polycrystalline copper rolled to 62 %. Result
for Reuss, self-consistent (interior), self-corsisi{free surface) and Voigt model.
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Sample

Type of

Macrostresses

Stress free

2

diffraction [MPa] interpl. X
elastic spacing
constants 0-1’\31. 0-2’\/; d° [A]
Red1=62% Reuss -57.4 -68.4 3.61339 5.97
2.9 +3.2 +0.00002
self-cons. -62.1 -72.5 3.61342 7.43
(free surf.) | +3.8 +3.8 +0.00002
self-cons. -68 -79.4 3.61346 9.93
(interior) +4.7 +4.7 +0.00002
Voigt -73.2 -84.8 3.61353 15.31
6.7 6.7 +0.00002
Red1=62% Reuss -42.4 -67.4 3.6134 7.15
Red2=10% +3.5 +3.2 +0.00002
self-cons. | -44.4 -73.6 3.61342 7.75
(free surf.) | +3.9 +3.9 +0.00002
self-cons. | -50.6 -79.9 3.61344 7.42
(interior) +4.1 +4.1 +0.00002
Voigt -55.6 -86.4 3.613489 9.95
5.4 5.1 +0.00002
Red1=62% Reuss 22.8 -23.9 3.61334 4.09
Red2=40% +2.5 +2.5 +0.00002
self-cons. 27.2 -26.1 3.61335 4.2
(free surf.) | +2.9 3.1 + 0.00002
self-cons. 28.2 -28.1 3.61334 4.23
(interior) +3.1 3.1 + 0.00002
Voigt 31.9 -29.3 3.61334 5.04
+3.8 +3.9 +0.000016
Red1=62% Reuss -2.2 -27.2 3.61337 3.56
Red2=62% +2.3 +2.3 +0.00002
self-cons. -1.7 -28.9 3.61337 4.1
(free surf.) | +2.8 2.7 +0.00002
self-cons. -3.2 -31.6 3.61338 4.1
(interior) +3 +3 +0.00002
Voigt -3.8 -34.1 3.6134 4.75
3.7 +3.5 +0.00002
Red1=62% Reuss -14.8 -41.9 3.61344 5.85
Red2=80% +7 +7 +0.00003
self-cons. | -14.5 -45 3.61346 6.35
(free surf.) | +3.5 +3.3 +0.00002
self-cons. | -17.6 -49.5 3.61347 6.24
(interior) +3.8 +3.8 +0.00002
Voigt -19.5 -54 3.6135 7.16
4.5 +4.3 +0.00002

Table 4.1. Components of macroscopic residual stres8' and g2;" (in MPa) for Reuss, self-
consistent (free surface), self-consistent (inf¥r@md Voigt modely” parameter is also listed.
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The values of stress obtained from all models a&my gimilar, however Reuss model
leads to a better agreement of experimental détativeoretical one. Factge (characterising
quality of fitting for Reuss model is smaller then for other modEmat is why elastic constants
were determined using Reuss model (in Reuss’s nibhddbcal stress is assumed to be uniform

across the sample for all polycrystalline graine; & = aij“"). The exemplary plots of

<aW,®>piy VS. sify are shown in Figs. 4.2 and 4.3. It is visible thame oscillations appear,
which are caused by elastic (texture) or plastiecgad order incompatibility stresses)
anisotropies. To explain the oscillations appearorg graphs <af,@)>20; VS sify the
anisotropic elastic properties of crystalites hatee be considered. The second order
incompatibility stresses in copper (appearing duartisotropic nature of plastic deformation)
are not significant. They do not influence the finasults (Wierzbanowski, Wiski et al.
2006d; Wierzbanowski, Wrski et al. 2007a).

The estimated values of the main components ofitseorder residual stresses;("
and 0,,"") and their variation with the applied deformationthe cross-rolling (perpendicular)
direction are shew in Fig. 4.4a. We see that bothponents are negative after simple rolling.
Then, with increasing value of the deformation iiass-rolling directiong'11 becomes positive
for (Red2=40% and 62%) and next (Red2=80%) it bexsoagain negative; at Red2=40% this
component has a maximum value. The second companght follows roughly the similar
behavior, but it stays all the time negative; éaches the smallestbsolute value for
Red2=40%. On the other hand, the precision of osasurement is confirmed by a constant
value of g in the stress free state, estimated by our proeedtrig. 4.4b.
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Fig 4.3. Plots of <a@/,@> (i} VS. sifiy for polycrystalline copper rolled to
a) 62% reduction in main direction

b) 62 % reduction in main direction and 10 % in salirection

) 62 % reduction in main direction and 40 % in ssalirection

d) 62 % reduction in main direction and 62 % in ssalirection

e) 62 % reduction in main direction and 80 % inssalirection

(all reflections were fitted simultaneously — nmeltiection method)
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Fig. 44. a). gi1" and " versus deformation in cross-rolling direction (Rgdb). a
versus deformation in cross-rolling direction (Rgé& cold rolled polycrystalline copper

4.2.2. Low carbon steel

Similar experimental procedure as above was usedof@ carbon steel. The starting
sample was rolled to Red1=74%. Next, four sampleseveut out and subjected to additional
cross-rolling (Red2 of 36%, 49%, 73% and 79%, retpely).

Classical X-ray diffraction (Cr radiation) was usém this measurement. The texture and
residual stresssfs vs. sin*y method) were measured on SET-X diffractometehatENSAM

Paris, France. The average equivalent inter-pldagice distances,<a(tp,<p)>{hkl} were

determined for 211 reflection. The exemplary ploftsa,@)>p11; VS. sify are shown in Fig.
4.5. We observe strong oscillations in this plaused by elastic and plastic anisotropies. To
explain such strong oscillations we should take extcount a strong anisotropy of the second
order stresses. A very good fit is obtained withesknental data, using our approach given by

<a(, 9)>mq = [F" (KB4, 0) 07" + < BgBenSny T > ] By + 80 )

M
where Fij'v' are diffraction elastic constantg; is the first order (macroscopic) stress, tensor,

oi'j'g“c) is the second order incompatibility stress tensqy; are single crystal elastic constants

and @ are direction cosines transforming stress tenson X to L coordinate systen,, are

stress free interplanar spacings and <...> denot®gmwg over diffracting crystallites.

Assuming that the distribution of the second oideompatibility stresses on crystal orientation
(9) is correctly predicted by a deformation moaeg( the self-consistent elasto-plastic one), one
can put:

0 (@ =9 ;" (g) (4.2)

ij
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where ¢;°* (g) is the model predicted second order stress ditinib andq is a constant

phenomenological factor, of the order of one (itrects the amplitude of the second order
residual stresses, which is not always exactly ipted by the model). Non-linear diffraction
elastic constantsjghkl}, Y, ¢ were calculated using the self-consistent motsking into
account texture and single crystal elastic constanhe effect of elastic anisotropy is not
sufficient to explain the obtained results. Fostieason the second order stresses have to be
considered to explain the oscillations appearing@ph of <a,@)>p113 Vs. sify. It is visible
thatx? (Table 4.2) is higher in the case when the secoder stresses are neglected.

a0 _ 0

28660 { @180 ¢=0

— §é

L 28655 | ==

;g 2.8650 1

S 28645 1 "
2.8640 - {211} {211} )
2.8635 : :

08 06 04 02 00 02 04 06 0808 06 04 02 00 02 04 06 08
sin2y sin2y

Fig. 4.5. Cross-rolled steel sample for the Reuss modeld1R74% Red2=73%). Measured

lattice parameters (points) and theoretical resufditting (continuous lines for g 0 and
dashed lines for g = 0)
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Table. 4.2. Results of fitting procedure for samples afterssroolling. Calculations were
performed taking into account plastic incompatifilistresses. The values gt parameter
obtained neglecting plastic incompatibility stressee given in brackets.

Sample Type of Macrostresses | Scaling Average Stress free X2
diffraction [MPa] factorq | equivalent plast] interpl. 0
elastic incomp. stress|  spacing q 5
constants oM oM [U,'EE('C)] MPa d° [A] (C;Yzo)
Red1=74%| Reuss 25 96.7 0.75 25.6 2.86475 1.66
+7.2 +7.3 +0.16 +4.1 +0.00002 | (2.72)
Self-cons.| 25.2 100.1 0.81 24.9 2.8648 2.18
(free surf.)] +8.4 +8.7 +0.16 +3.9 +0.00002 | (2.69)
Self-cons.| 25.6 98 0.79 24.5 2.8646 2.36
(interior.) | +9.1 9.1 +0.16 +3.9 +0.00002 | (2.85)
Voigt 26.1 98.6 0.77 23.8 2.86474 2.53
+9.2 +9.5 +0.16 +3.8 +0.00002 | (2.98)
Red1=74% Reuss -5.2 54.2 0.69 24.1 2.86487 1.32
Red2=369 +6.3 16.2 +0.12 2.8 +0.00002 | (2.01)
Self-cons.| -5.3 56.6 0.69 24.2 2.8649 1.3
(free surf.) +6.3 +6.4 +0.12 +2.9 +0.00002 | (1.99)
Self-cons.| -4.5 57.4 0.59 20.7 2.86486 1.26
(interior.) | +6.3 6.4 +0.12 2.4 +0.00002 | (1.75)
Voigt -3.4 59.9 0.51 18.1 2.86486 1.22
6.4 6.5 0.1 2.1 +0.00002 | (1.58)
Red1=74% Reuss -4.5 -30.3 0.84 28.9 2.86478 1.07
Red2=499 +5.6 5.6 0.1 2.9 +0.00002 | (2.52)
Self-cons.| -4.6 31.8 0.84 28.9 2.8648 1.05
(free surf)| +5.6 +5.6 +0.1 +2.9 +0.00002 | (2.51)
Self-cons.| -4.2 -43.7 0.79 27 2.86478 1.06
(interior.) | 5.7 +5.7 0.1 2.7 +0.00002 | (2.32)
Voigt -3.6 33.3 0.74 25.4 2.86478 1.06
+5.9 +5.9 +0.1 +2.5 +0.00002 | (2.14)
Red1=74% Reuss | -68.6 -87.3 0.91 30 2.86492 1.42
Red2=739 +6.4 +6.4 +0.1 +3 +0.00002 | (3.16)
Self-cons.| -69.6 -88.5 0.93 30.9 2.8649 1.47
(free surf.)| +6.8 +6.7 +0.1 +3.1 +0.00002 | (3.35)
Self-cons.| -69.1 -89.2 1.13 37.5 2.86494 1.66
(interior.) | 7.3 7.1 0.1 3.7 +0.00002 | (4.41)
Voigt -68.7 -90.2 1.31 43.2 2.86496 1.92
18 7.9 0.1 4.3 +0.00002 | (5.53)
Red1=74% Reuss | -31.2 -116 1.02 32 2.86486 4.2
Red2=799 +10.8 | %10.6 0.1 3.2 +0.00002 | (6.18)
Self-cons.| -29.9 -118 1.05 32.9 2.8649 4.46
(free surf)| +11.4 | #11.1 +0.1 +3.2 +0.00002 | (6.36)
Self-cons.| -28.2 -118 1.2 40 2.86487 4.34
(interior.) | +11.2 +11 +0.1 +4 +0.00003 | (7.56)
Voigt -26.1 | -110.1 1.48 46.5 2.86488 453
+11.7 | %115 0.1 4.6 +0.00003 | (8.85)
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The values of stress obtained from all models amy gimilar, however Reuss model gives a
better agreement of experimental data with themaktines. Factoy? (characterising quality of
fitting) for Reuss model is smaller then for other modeéts. this reason elastic constants were
determined using Reuss model. (e.g. Fig. 4.7, 4.8)

=180° =0 =270°
2.8660 { ©=180 ; e=0" 1 1 ¢

2.8655 — ] )

o

<a>{hki} [Al

2.8650 A
2.8645 A
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Fig. 4.6. Plots of <a@/,@> {15 Vs. sifiy for polycrystalline steel rolled to 74 % reductim
main direction and 49 % in cross direction. Resudlir Reuss, self-consistent (interior),
self-consistent (free surface) and Voigt modelssaivn.

The plots of <a(¢,@> {1 VS. sify ({211} reflection) for the steel samples rolled to
different deformations in cross rolling are showHigs. 4.6 and 4.7. Very good fits of model
predictions to experimental data is obtained.

The values of main components of the first ordsidual stresses are listed in Table 4.2.
Also g parameter, adjusting the amplitude of the predisecond order incompatibility stresses
to the real ones (c.f. Eq.4.1), is listed. It varieetween 0.7 and 1, hence the real amplitude of
the second order stresses is lower than that peedly the model. This means that the grain-
grain interactions are softer than purely elasheso(some local slip often occurs near grain
boundary region and it relaxes partly the inconiplitly stresses).

The variation of estimated values of main companerftthe first order residual stress
(011" ando22™) in function of the cross-rolling reduction (Red8)presented in Fig. 4.8. Both
components are positive in the simply rolled samplg with increasing value of Red2 they
become negative. Near the value of Red2=73% thetmees intersect.
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Fig.4.7. Plots of <a@®> 1 VS. sifiy for polycrystalline steel (Reuss model) rolled to
a) 74% reduction in main direction

b) 74 % reduction in main direction and 36 % iss direction

¢) 74 % reduction in main direction and 49 % iss direction

d) 74 % reduction in main direction and 73 % imss direction

e) 74 % reduction in main direction and 79 % i0ss direction
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Fig. 4.8. 011" and 0," versus deformation in cross rolling direction foold rolled ferritic
steel. Results for Reuss model.
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Fig. 4.9. (110), (100), (211) pole figures and ODFs for codtled steel: a) after simple rolling
(Red1=74%), b) cross-rolling (Red1=74% and Red2=39%) as above but predicted by the
elasto-plastic LW deformation model.

The crystallographic textures were measured and piedicted by the deformation
model (Fig. 4.9). The cross-rolling texture (FigPl) is strongly symmetrical compared with the
simple rolling one - Fig. 4.9a (two additional syemy axes inclined: 45’ to x axis appear)
(Wierzbanowski, Wraski et al. 2007a). The model prediction of crodinop texture (Fig.
4.9c¢) gives a perfect agreement with the experiai@mte.

To show the level of the second order stresses fetatistical grain, the average equivalent
residual stres§ o2”'] is calculated (see chapter 1) :

(029 = [01°“(0) (0) o 4.3)
E

lig (ic) — llg (ic) _ g (ic) llg(ic) _ II(')2 llg(ic) _ g (ic)
Where a-glc |: {(Jlglc gIC) +(0-g|c 39|C) +(0.229|c gIC)}

1
{(01"2‘"('”) + (0,902 + (g)3(9)? }]2 is the equivalent stress calculated according da v

Mises formula.

We find that the second order stress level is paanhstant in function of Red2 — Fig.
4.10a. In order to verify the precision of our prdare the stress free inter-planar spacipp (a
was also plotted in function of Red2. It stays ¢ans which confirms the precision of our
procedure. (within error of\ag= = 0.00002A) (Wierzbanowski, Whski et al. 2006d)
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Fig. 4.10. Equivalent level (Von Misses measure) of the stooder stress (a) and,aersus
deformation in cross direction (b) for cold rolléetritic steel

4.3. Conclusions

The obtained results show some characteristic temee In the case of rolled

polycrystalline copper, the components of residstaésses have a maximum for a defined
combination of deformations in both rolling direxts. Also in the case of ferritic steel we
observe a strong variation of both stress compeneith the deformation along the second
rolling direction. It is worth to point out that @Bations appearing in steel samples cannot be
explained only by anisotropy of elastic constaritsrgstallites, but we should consider also the
second order stresses. It is also interesting te timat level of the second order stresses is
constant in function of deformation in cross dii@ctfor cold rolled ferritic steel.
On the other hand, the operation of cross-rollimyolves a strong symmetrization of
crystallographic textures, which is easily visilite pole figures. In conclusion, cross-rolling
increases the degree of isotropy of physical pteseof a material and modifies the level of
residual stresses.
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Chapter 5

Grazing angle incidence X-ray diffraction
geometry used for stress determination

5.1. Introduction

Classical sifip method is one of basic methods for measuring ¢és&lual stresses and
elastic properties of polycrystalline materials. iMdisadvantage of this method is a variable
penetration depth, which dependsyrngle. For this reason the classicaf@imethod cannot
be used to study materials with a high stress griidiA stress gradient can be estimated using
this method only if the character of stress vasiais assumed to be known (e.g., exponential or
linear versus with depthThe analysis of stress gradient can also be peei if the standard
sianJ method is repeated for several wavelengths aXfays penetrate to different depths or
by polishing.

In this chapter, the geometry based on the graange incidence X-ray diffraction (so-
called grazing incident diffraction method, GID4sji is discussed and applied for stress
measurement. Using this method, it is possible adopm a non-destructive analysis of the
heterogeneous stress for different (and well ddjin®lumes below the surface of the sample.
Moreover, the stress can be measured at very stepths, of the order of a few micrometers.
The incidence angle is small, consequently it iseseary to take into account additional factors
which are not significant in classical geometry.eTimost important one is refraction. Other
factors which are significant for the final resinitgrazing incidence diffraction method will be
also considered.

119



5.2. Classical and grazing incidence diffraction geometry
for stress determination

In symmetric Bragg-Brentano geometry or classidafys geometry,i angle (between
scattering vector and sample surface normal) isgihg during experiment (Noyan and Cohen,
1987). Detector and X-ray source movements areugatgd. This involves that the angle
between surface and incident beam equals the aegieeen surface and diffracted beam. This
type of geometry is used ip goniometers. The(y,) stress can be measured by determining
elastic deformation of lattice parametexs (,¢) - in laboratory system (L). Using Hooke’s law
and transformation law, the stress is finally espesl in sample coordinates system (S). The
main disadvantage of this method is various petietraepth, which depends on main§ &nd
Y angles. The penetration depth is defined as startie from the surface at which the radiation
intensity falls to some fraction (e.g., 1/e) of tbeginal value (Cullity, 1956). According to
Beer-Lambert law, the intensity of the radiationvevanside a material at the depth z from the
surface as:

I =1, expHAB) (5.1)

where AB=z/si is the path of the radiation till a thin layer Jd#tuated at the depth z (Fig. 5.1)
andy is the linear coefficient of absorption.

scattering

e Ny of diftraction
plane
v
o g o
D= S /A
a. b.

Fig. 5.1. Irradiated thin plate of a material of the thiclgsedz and length | situated at the

depth z. Classical Bragg-Brentano geometry, withttecing vector perpendicular to the

sample surface, is shown:

a). diffraction plane (defined by incident and ditfted beams is perpendicular to the
sample surface

b). diffraction plane is inclined af/ from Npj.

In this symmetrical geometry, the total beam pathAB+BC inside materials depends on
incidence angle (Fig. 5.1a):

XZ:Z( 1,1 j (5.2)

sina  sina
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If now, the scattering vector (and the diffractiplane, defined by the incident and diffracted
beam) is rotated ap towards the sample surface, the beam path becomes:

X_z(1+1j (5.3)

* cogy\sina sina

Let us calculate the fraction {&f total X-ray intensity absorbed by the layetlatkness t:

jlo exp(-4x, Jiz

G, = (5.4)

I 0 exp(_luxz )jZ

O3 |O

Substituting ¥ from Eqg.5.3 and performing the integration, weadtnt

Gtzl—exp{_'m( .1 + .1 ﬂ (5.5)
cogy\sina sina

One often defines the penetration depth as a depthich corresponds to a particulay @alue
(usually for G= 1-1/e, i.e., @D.63).

For symmetrical geometry (Fig. 5.1):= 0, and we obtain for the penetration depth:

t:@sineco&p (5.6)

u

The penetration depth t vs. &jnfor classical geometry (for&0.63) is presented on Fig 5.2.

7 8
6 Ka Cr - radiation
~~ ~ -
6 1 ~-
— 51 . ~
S € ~
= = ~
c 4 c ~
2 8 ~
g g O~
5 31 S
g 5 ] g N
2 N
14 {200} Cr - radiation N\
——— {211} ———  Mn - radiation
0 T T T T 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
sin2y sin2y
a b

Fig.5.2. The penetration depth vs. Sifcalculated from Eq. 5.6. a) for different reflects
planes, b) for {211} reflection using different vedengths for ferrite steel
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Because penetration depth strongly depend$ amdy angles, this method cannot be used when
large macro-stress gradients are present. Thengraazcidence diffraction geometry, so-called
GID-sir’yy method, is characterized by a small and constandénce angler (Figs. 5.3 - 5.5)
and by different orientations of the scattering teec(changing 8 angle for a constant
wavelength). The parallel beam geometry is usedhittimise errors connected with sample
misalignment (Skrzypek, 2002). Only detector mowegrazing incidence diffraction geometry
andnky angle is expressed by equation:

Wik = Ogpiy - O (5.7)

normal

scatering vector

vector n

detector

Scattering

vector
Scattering b‘ !
vector *

Fig.5.4. Geometry of GID-sfiyy method. The incidence angiss fixed during measurement
and the orientation of the scattering vector isreltderised by ¢~ ¢y angle.

The Yy angle depends on incidence anglg&nd type of reflectioniHkl}. The possible values
of Yy angles are limited to the numbertd reflections used in the experiment.
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scattering
vector

Fig. 5.5. Irradiated thin plate of a material of the thiclssedz and length | situated at the
depth z in grazing incidence diffraction geometry.

The radiation path inside materials depends ordérge anglex and diffracted beam ang[e

(Fig.5.5).
xzzz( 1,1 j (5.8)
sinag sing

Similarly as it was done in Eg. 5.4, let us caltulie fraction (¢ of X-ray intensity absorbed
by the layer of thickness t:

|, exp(-1, Yz
(5.9)

0
I0 exp(_luxz )jZ

t
J
G =2
J
0

Substituting ¥ from Eqg.5.8 and performing the integration, weadtnt

A B 1 1
G =1 exr{ ﬂt(sina+sin,8j} (5.10)

where: 3 =20 - Q.
The corresponding penetration depth is:

-In(1-G,)
[ 1 . 1 } (5.11)

sing sin(260-a)

t=

This relation versus sﬁt]u whereigy = Oy -a (for G=0.63) is shown in Fig.5.6.
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Fig. 5.6. Penetration depth in function of Sififor 211 reflection for ferritefny= Ghiy-0):

a) for two different incidence angles, b) for tdifferent wavelengths at=15" .

The main advantage of the g-?slnmethod is constant or almost constant penetration
depth for a fixedx value and for a radiation of given type. Howewbe penetration depth can
be changed by selection of the incidence angles Givies a possibility to investigate materials

with a stress gradient. Choosing appropriat@alues and type of radiation it is possible to
measure stresses from different volumes belowulace.

Exemplary values of penetration depths were cdledldor steel sample (Table 5.1).
Using GID-sirffy technique (incidence angles fro 8 21°) and two types of radiations (Cu
and Fe radiation) it is possible to investigateéatan of stresses on the depth ranging from 0.2
to 4.4 um below the surface. For comparison, theeragepenetration depth in the standard
method for Mn radiation was also calculated (al®aBpum). In the latter case, however, it is
not possible to analyse the stress gradient aersample.

Table. 5.1. Penetration depth of X-ray radiation in steel.

Radiation Incidence angler[ %] and penetration deptHjim]
/absorption coeff. — grazing incidence diffraction method:
[cm™)/ 3 6° o° 172 [ 158 [ 1@ | 2f°
Cu/u, = 2395/ 0.21 0.39 0.55 0.69 0.82 0.93 1.02
Fe/u, = 554/ 0.89 1.67 2.36 2.97 3.53 401 442
Average penetration deptbr standardsin’/ method fim]:

Mn /i, =700/ 6.13

Felu, =554/ 7.8
Cu/u, = 2395/ 1.75

In GID-sifyy method, the<d(¢, ®>miy interplanar spacing is measured in directions
defined by thepand ¢ angles for differenkkl reflections. These experimental data can be easily
analysed by the multi-reflection method and rediditeesses can be determined for every
incidence angler (Skrzypek and Baczmaki 2001a and 2001b, Baczfs&i 2003a, 2003b and
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2004). The interplanar spacing measured irLthéirection (Fig. 1.3) is given by the well known
relation, which can be rewritten for equivalentita parameters,a:

1 .
<a(y, P)>ha = {Sl{hkl} (on+ ot o)+ Esz{hk|}(aﬂco§¢+ O%Sin @+ g15SIN20) sin Yy,

1 1 . . o o
+ Esz{hkl} 03308 W,y + Esz{hkl} (orscosp+ Ugﬂssmfﬂ)smz‘/j{hkl}} a +a

(5.12)
where: @, =d, /</h*+k?+1? are equivalent lattice parametergs' is the average
macrostress for the penetration dejptiorresponding to a given incidence anglésee Eq. 5.11),
while s;{hkl} and1/2s{hkl} are the diffraction elastic constants for the sddjuasi-isotropic

sample, calculated for differehkl reflections related t@n«; angles defined by Eq. 5.7.
The <a(¢,@>nky parameters can be fitted applying the least squamecedure and,
consequently, the values @ and the macrostress)' can be found. For presentation of the

results ofGID-sin’ ¢ method, the<a(,¢)> iy values instead ofd(%,@>miy are shown versus

Sin” iy, wherez//{hkl}— H{hkl}

versussinzz//{hm} plot is linear in the case of quasi-isotropic seEmp

- a angles correspond to variohkl reflections. Thea({, @> iy

5.3. Corrections in grazing incidence diffraction geometry

Similarly as in symmetrical Bragg-Brentano geometoyestimate stresses it is necessary
to consider all factors which influence the finakult and to apply accurate corrections. The
intensity of diffraction peak for a given diffracti pattern depends on several parameters
(Cullity, 1956, Guinier, 1964):

* multiplicity

* temperature factor

» absorption factor

* Lorentz-polarization factor
» structure factor

» refraction factor

Residual stress measurement is based on the ps#iopanalysis. The first two factors
(multiplicity and temperature factor) do not chanlge peak position but they modify intensity
of the peak and FWHM (Full Width at Half Maximuntjor these reasons they can be neglected
in elastic stress analysis. Next factors from ieedbove are significant in stress analysis and
they should be considered in diffraction data asialy
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5.3.1 Absorption Factor

The intensity of diffracted beam is affected byapsion, which is directly related to the path
length which is traversed by the beam in a specin@nsider the case where a beam of
intensity b and of unit area in cross-section, is incidentdiat plate at the angke (Fig. 5.7).
The beam intensity reaching a layer of length L #ndkness dz located at depth z below the
surface is proportional ted"*® (i is the linear absorption coefficient of the safpléhe beam
intensity diffracted by the layer is:

abLl e **dz (5.13)

wherea is the volume fraction of crystallites that caffrdict at this angle anld is the fraction of
incident energy diffracted by unit volume.

scattering
vector

Fig. 5.7. Diffraction form a flat plate at the depth z.

This diffracted intensity is also attenuated by #fsorption along BC by a facto!® until it
exits the material, thus the total diffracted irsiénoutside the specimen is given by:

dl, = aLbl e #"**®9dz (5.14)
where:
AB=—% BCc=-Z%_ (5.15)
sina sing

The illuminated length | of the layer for a beanuaft cross-section (and of unit width), is:

=L (5.16)

sina

Finally, Eq. 5.14 becomes:

di :Ioabex - Uz t 1 dz 5.17
® sina sinag  sing (5.17)
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In the case of grazing incident diffraction georyetr
B=20-a (5.18)

Hence:

dl —Ioabex -Uuz 1 + 1 dz
® sing H sing  sin26-a (5.19)

The total diffracted intensity, for a fixedangle, is obtained by integrating for an infinytéhick
specimen:

I, = J'dID (5.20)
z=0

After performing the integration:

I, =const

sina (5.21)
sin(260 - a)
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Fig. 5.8. Absorption factor versuséor ferrite steel.

The absorption factor (Eqg. 5.21) for two differentidence angles is presented in Fig.
5.8. It is easy to observe that absorption fadegends on incidence angle; on the other hand,
for the B range between 4@nd 148 it is practically constant. For small and big @ngles the
absorption factor changes quickly and this chargpeak position. This effect has to be taken
into account in data correction.
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5.3.2 Lorentz-Polarization Factor

The Lorentz factor is a collection of trigopnometigems that describes the dependence of
the diffracted intensity on the diffraction angléere are three factors that contribute to Lorentz
factor (Cullity, 1956, Senczyk, 1974):

* The number of grains which are oriented such tmag tan diffract at a given anglé.2
» The diffracted intensity per unit length of thefdittion cone.
* The dependence of diffracted intensity from any cnystalline ®.

The results for the above terms can be combinefdrto a single factor which describes the
variation of intensity with angl@. This factor is so-called the Lorentz factor, asdjiven by
(see Appendix A):
1
LF=K—— (5.22)
sin*@

where K is constant.
Moreover, the polarization factor has to be taketo iaccount. The Lorentz factor and the
polarization factor are usually combined togetbediotm the L-P (Lorentz-Polarization) factor:

(L.P.) =—1+.C252 g (5.23)
sin“ @

The Lorentz — polarization factor is shown in Fig9. Like for absorption this correction is
significant for small and big angle$.2

40

30 A

20 1

10 A1

Lorentz-polarization factor

0 T T T T T T T T
0 200 40 60 80 100 120 140 160 180
20

Fig. 5.9. Lorentz-Polarization factor versuggZor ferrite steel.
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5.3.3. Structure factor

When an X-ray beam encounters an atom, each @teatr it scatters a part of the
radiation coherently in accordance with the Thomsguoation. One might also expect the
nucleus to take part in the coherent scatterimgesit also bears a charge and should be capable
of oscillating under the influence of the inciddrgam. But the nucleus has an extremely big
mass relative to that of the electron and cannoitlate. Finally the coherent scattering by an
atom is due only to the electrons contained in #tain. The wave scattered by a single atom is
not the sum of the waves scattered by its composlentrons. It is sum only if the scattering is
in the forward direction 26 = 0), because the waves scattered by all the elecobtisee atom
are then in phase and the amplitudes of all theesed waves can be added directly. This is not
true for other directions of scattering. The fduattthe electrons of an atom are situated at
different points in space introduces differencephiase between the waves scatted by different
electrons.

A quantity f, the atomic scattering factor, is dise describe the “efficiency” of scattering
of a given atom in given direction. It is defineslaratio of amplitudes:

‘- amplitude of the wave scatteredby an atom (5.24)

amplitude of the wave scatteredby one electron

From what has been said already, it is clearfthatfor any atom scattering in forward direction.
As 0 increases, however, the waves scattered by indiVielectrons become more and more out
of phase and decreases. The atomic scattering factor also dispen the wavelength of the
incident beam. The actual calculationf afivolvessin@rather tharg, becausé decreases as the
guantity 6ind/1) increases (Fig. 5.12).

25 4

20 A

15 A

10 1

atomic scattering factor

0.0 0.2 0.4 0.6 0.8 1.0

sine/A [AL]

Fig. 5.12. The atomic scattering factor for iron.

Direct calculation of atomic factor is quite congalied. Values of this factor are collected in
crystallography tables.
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5.3.4. Refraction factor

The next factor, which has strong influences onkppasition, is refraction index.
Refraction index for X-ray radiation in metals IgBtly less than unit (Hart, 1988, Parratt, 1954
and Ely, 1997). For this reason velocity in mateoiaEM (electro-magnetic) wave is different
than velocity outside material.

The quantum-mechanical theory for the complex o#ifra index, gives

n=1-0+ipf (5.25)

where complex part of n factor depends on dampantpf. Thed and3 factors are described by
Kramers-Kronig relations.
If anomalous dispersion is ignored, the refractiatex factor for X-ray range is given by

n=1-5 (5.26)
with:
5= ARFP% (5.27)
M
where:
_ N,€ — 0 c
a=Na Aﬂnecz - 2701000°  [om/ | (5.28)

and: N\ — Avogadro’s number; e — electron charge+electron mass, ¢ — velocity of light, M —
molecular weightp — density, Z — atomic number akdvavelength in ci.

The index of refraction n of X-rays is slightly $ethan unity. For wavelengths below 2Ris of
the order of 10 to 10°, depending on the density of the material. Reifsacindex depends on
frequency of EM wave. For some frequency rangeshigher than one and for other lower than
one. Variation of refraction index is shown on Fdl3.

Refractive index

0 Infrared | Visible | Ultraviolet | -

X-ray

OiR Oyy O LM ®

Fig. 5.13. Refraction index versus.

Propagation direction of EM wave changes duringsipgsby boundary of two media. This
change depends on refraction index of a materidliardescribed by Snell’'s law. Refraction
causes a change i® 2ngle and a shift of peak position. For this reaBoagg’s law should be
modified.
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The total correction consist of two factors:
» the first one takes into account a different wawgtk in a material (change of so-called
optical path),
» the second one takes into account the refracticm lmpundary between two media.

\\
N /
\(%

N

Fig. 5.14. Effect of refraction in grazing incidence difframt geometry.

Bragg's law in a basic form (without refraction) described by equation (for the first order
reflection):
A = 2dsing, (5.29)

Let us consider the first effect. The refractioder has different value in a material (n&1than
outside it (n=1). Hence, the optical path of tharhenside a material is changed and Bragg’s
law has a form:

A'= 2dsing'= (5.30)

Combining the last two equations, we obtain:

1-5=5"% (5.31)
siné'
The change of Bragg's angle is:

NG, =0'-8, (5.32)
From Eq. 5.31 one obtains:
1_ 6 — S|neo — S|n(e'_Ael) (533)
sin@' sin@'

Taking into account thak8; has a small value and using obvious trigonomesiations , one
obtains from the above:
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7B, = 5tge' (5.34)

Now, let us consider the second effect. The indithelam refracts on the boundary of two media
according to Snell's law (Fig. 5.14). We obtain:

s.|n(90—a) i (5.35)
sin(90- o)
The relative refraction index has a value smahlantone and accordingly:

a>a = a=a+Aa (5.36 a)

B>F = B=p+43 (5.36 b)

After substituting Eq. 5.36a into Snell's law, assog thatAa has small value and using
obvious trigonometric relations, one obtains:

Aa = dctga’ (5.37)
Similarly, one finds:
AP = dctgf' (5.38)
Let us define:
(68), =26- 26 (5.39)

It is seen from Fig. 5.15 th&A @), = Aa + AS, hence:
(68), = 3(ctga+ctg B) (5.40)
The total correction:
420 = 26 - 26, (5.41)

where B is measured Bragg angle arfih 2 its corrected value.
Substituting Eq. 5.32 to Eq.5.39, one obtains:

A20 = (A6), + 276, (5.42)

and equals to:
A28 = 5(ctga'+ctgB+2tge') (5.43)

In general the corrections are small, henzgt’, BCP’, 6P, and:

A26 = 3(ctga + ctgp + 2tg6) (5.44)
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Moreover, in the case of grazing incidence diffattgeometrys =26 -a, and we obtain
finally:

426 = dlctga +ctg(26 - a) + 296 (5.45)

Total correction for X-ray radiation depends on thedent beam angle, the Bragg angle @
and on the material constad).(The variation of the total correction versusidenice angle and
Bragg angle is shown in Fig.5.15.

0.04 0.06

Cu radation Cu radation
-0
peak 211 a=5

0.03 1 0.05 1

0.01 4 0.083 -

0.00 T T T 0.02 T T T T T T T T
0 10 20 30 40 0 20 40 60 80 100 120 140 160 180

incident beam angle a [ ©] 209
a. b.
Fig. 5.15. a) Correction428 versusa for 211 peak in steel,
b) Correctiodl28versus Bfor the constant incidence angbe= 5°.
The graphs were calculated forr@diation.

The correction for refraction strongly depends lom incidence angle. For smalla the shift can
easily exceed 0.§1than with growingr angle the shift decreases.
5.4. Experimental results

Ferrite powder sample

The next step was to find the influence of the exdions described above on results
obtained with the grazing incidence diffraction hwet. The simple and standard sample is the
powder one. The reference ferrite powder sample pr@apared. The powder sample was
obtained from mechanically deformed material. Thezigpng incidence diffraction measurements
were performed on the Bricker D8 X-ray diffractoenetising the Co radiation. The grazing

incidence diffraction measurements were done g@eB® and <a((,¢)> . versus sin? (/7738

relation was determined. The experimental data amelysed applying the multi-reflection
method. The experiment was repeated for varioudence angles, corresponding to different
penetration depthsgiven in Table 5.1.
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Fig. 5.16. Position of 220 peak for steel powder sample watitti without corrections.

Figure 5.16 shows exemplary 220 peak for steel powdmple and the shift of its position due
to the applied correction. The determined peaktjposiwithout corrections is@= 123.9788
deg. Applying corrections for absorption, atomiasture factor and Lorentz-polarization factor
we find the peak position at92= 123.979 deg. If, moreover, the correction fdraetion is
added — the determined peak position 8s=2123.9674 deg. It is clear that the correction fo
refraction factor has the main influence on thekpaasition and the corresponding shift can be
even of 0.05 deg.

In order to calculate the diffraction elastic camds, the Reuss, Voigt and the self-
consistent (for interior and for surface) modelsravased. The correction effect on residual
stresses, determined in the powder sample, is mexsén Table 5.2. Taking into account the
isotropic properties of this sample, the relatiorf, =0}, and o) =0 was assumed. The stress

components and stress-free lattice parameter éoptlvder sample versus penetration depth are
presented in Figs. 5.17 and 5.18.

Table 5.2 Comparison of macrostresses for powder sample guslifferent models for
calculation of the diffraction elastic constanttP(— Lorentz-polarization, A — absorption, f-
atomic structure factor).

Penetration | Type of Determineds™;,=0",, [MPa]
depth, correction|  Voigt self-cons. | self-cons. Reuss
incidence angle (interior) | (free surface
2um No corr. | 88.9+17.1 | 73.214.2 6%12.1 57.911.4
a=6° LP, A, f | 86£17.1 70.#14.2 58.812.1 55.811.4
(Co-rad.) | Refraction| -0.8+17.1 | -0.%14.2 -0.612.1 -0.511.4
3.7um No corr. | 59.9+15.9| 49.813.5 40.311.3 39.#11.1
a=12 LP, A f | 57.1+15.2| 47.6135 38.811.3 37.911.1
(Co-rad.) | Refraction| 28+15.9 22.913.5 18.311.3 17.911.1
5um No corr. | 49.2+15.5 4213.5 33.511.2 33.911.3
a=18 LP, A f | 47 #155| 40.9135 32.#11.2 33.311.3
(Co-rad.) | Refraction| 21+15.5 17.513.5 13.#11.2 13.811.3
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Fig.5.17. Stress componentgi=g5 ( multi-reflection method, Co radiation) versus
penetration depth z for the ferrite powder sample:

a) without corrections, b) with absorption, Lorefolarization and atomic structure factor
corrections, c) taking into account above correst and refraction.
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Fig. 5.18. Stress-free equivalent lattice parametgr(aulti-reflection method, Co radiatipn
versus penetration depth z for the ferrite pow@angle:
a) without corrections,
b) with absorption, Lorentz-polarization and atarstructure factor corrections,
c) taking into account above corrections and refi@at.

It is worth to notice that all corrections decredbe value of stresses (Table 5.2).
Corrections for absorption, structure and Lorerdglapzation factor change only slightly the
stress values (about 2 MPa). However, when refmatorrection is introduced, a significant
change of stress values is observed. In powder Isantipis stress reduction reached even the
value of about 90 MPa. In a typical case the otifva correction lowered the stress of about 20
MPa. The resulting final stress value for the pawskemple — between 20 and 30 MPa - can be
treated as a possible systematic error for all oreasents and, in fact, it determines the
accuracy of the method.

The applied corrections have also influence orsstfeee lattice parameteg. &or data
without corrections a slight change qfig observed - the value of lattice parameter irsgsa
with penetration depth (Fig. 5.18a). On the othand) when corrections are considered, the
lattice parameteroas practically constant in the whole range of geaten depth (Fig. 5.18c).
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Fig. 5.19. The latticeparameter <a>my; versus sifyy determined for powder sample (Co
radiation). Results for a)a=6° b) a=12° and c) a=18° are shown.Diffraction elastic

constants were calculated using the self-consistetel for the interior. On the left - results
without corrections, on the right — results with @rrections are shown.
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The dependence of the equivalent lattice param@tefi; versus sifip is shown in Fig.
5.19. The cases with and without corrections aesquted. It is easy to observe that graphs after
correction are more linear and have lower slops;rdsults in lower residual stresses, which is a
correct tendency for a powder sample.
In conclusion, the applied corrections improve tesults; they reduce the value of stresses in
powder sample (in theory their value should apgragero). They also give a constant value of
ay parameter (with a better precision), independesftiyre penetration depth.

316L stainless stedl after grinding tr eatment

The discussed corrections were applied next toeaiist steel samples after grinding.
Chemical composition and mechanical propertiehiefmaterial used for sample preparation are
listed in Table 5.3 and Table 5.4. The surfacehefdample, produced from the 316L stainless
steel, was ground:
in SAMPLE No 1: at the workpiece speed wf =4 m/min and the depth of cut equal dg=4
umwas applied,
in SAMPLE No 2: at the workpiece speed wf =1 m/min and the depth of cut equal dg=1
Umwas applied.

Table 5.3. Chemical composition of the studied steels (19@ss
C Si Mn P S Cu Ni Cr Mo
316L | 0.02| 0.56| 1.67| 0.041 0.041| 0.35| 11.14 17.24 1.96

Table 5.4. Mechanical properties of the as received matsrial

Specimen 0.2% proof stress Ultimate tensile E [GPa]
[MPa] strength[MPa] Young modulus
316L 200 535 196

The grazing incidence diffraction measurements wperformed with X-pert Philips and
Seifert X-ray diffractometer using Cu and Fe radia, respectively. The interplanar spacings
were determined for different reflectiohg&l (see Eq. 5.11) and analysed using multi-reflection
method. The experiment was repeated for variousence anglegr corresponding to different
penetration depth$ (Table 5.1). To verify the results of the grazimgidence diffraction
measurements, also the standaitf( method was applied using tt&41 reflection (Mn
radiation). Due to the varying penetration deptlihwy angle in the latter experiment, an
approximate average value of penetration depthestshated (see Table. 5.1).

The alignment of experimental set-up for grazingdence diffraction geometry was first
checked (on the used diffractometer) on a powdmpsaof ferrite iron. In this case, zero stress
should be obtained for each incidence amglee., for different penetration depthApplication
of the corrections leads to a good agreement betwee series of measurements (with Cu-
radiation and Fe-radiations) — Fig. 5.20. A relalyMow value of the measured pseudo-stress in
the powder sampled}) = g% = — 25 MPa) was found independently of thangle. (Fig.5.20).
This value should be treated as a possible sysitesrabr for other measurements.
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The variation of the lattice parametgrobtained by the multi-reflection analysis was sdds
a function of the penetration depth(or a), with and without corrections (Fig. 5.20). As
expected, after correction tlag value does not depend on the depth and it is dquaB663+

0.0002 ALike in the case of stress, corrections improweagreement between results obtained
with different radiations.

Ferrite powder without correction Ferrite powdethwgorrection
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Fig. 5.20. g)i=0% andaversus penetration depth for the ferrite powdengke. Cu and

Fe radiations and multi-reflection method were usé&h the left - results without
corrections, on the right- results with correctioa® shown.

For the 316L stainless steel samples studied inpifesent work two independent
diffraction elastic constants{hkl} and 1/2s,{hkl}) were calculated using Voigt, Reuss and the
self-consistent models for sample surface and iortdsee chapter 1). The calculations were
performed using single crystal elastic constantsee Surface of the 316L stainless steel was
subjected to grinding treatment in one directioangequently, the asymmetry of planar stresses
(i.e., o) # 0y ) is expected. The grazing incidence diffractioatmod was applied using Cu
and Fe radiations. Exemplary results of analysigie ground steel are shown in Table 5.5 and

in Figs. 5.21-5.25. The best quality of fitting @lnvalue ofy?) was found for the self-consistent
approach of free surface, and slightly worse resulere obtained for the Reuss and self-
consistent (interior) models. The worst fitting ttysappears for the Voigt model.
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Table. 5.5. Components of macroscopic residual st@$g ando™,, ( MPa) for 316L samples.
Reuss, Voigt and self-consistent models were usedalculation of diffraction elastic constants.

X is also listed.

Penetration Analysis | Stress Results of fitting assuming"'3:=0
depth, with oV Voigt self-cons. | self-cons. Reuss
incidelnce correction [l\/||32a], (interior) | (free surface
angle X
0.32pm Yes o, | 1341154 | 115%63 999+36 912+45
a=5° ov,, | 322+151 26362 16735 181+43
(Cu- x> 96.07 23.36 11.34 19.79
radiation) No o, | 1368149 | 118059 101436 92645
ov,, | 356:146 289+58 18735 200+44
x> 90.51 20.51 11.04 20.37
0.79pm Yes o¥, | 1357210 | 1175126 | 104467 932+80
a=15 oV | 480t206 402+123 31666 299+78
(Cu - X2 148.18 74.7 29.21 48.78
radiation) No o¥i, | 1359208 | 1177124 | 104565 93379
o¥,, | 487203 407121 320t64 303+77
X 144.32 71.95 27.93 47.1
0.88pm Yes o¥i | 1191241 | 1128:107 980+67 931+93
a=3" ovy, | 378240 300107 152467 159+91
(Fe — X2 139.97 34.93 20.41 40.29
radiation) No o, | 1290:240 | 1213:109 | 104181 | 990+104
o¥,, | 480t239 387+109 217480 221+103
X2 138.68 36 29.09 50.91
1.42pm Yes o, | 1219235 | 1147109 991+65 941+83
a=5° o¥y, | 466£232 376£108 21665 218+82
(Fe - X2 133.9 37.21 19.77 34.22
radiation) No oV, | 1287234 | 1206:109 | 103473 983+90
o¥,, | 538231 438108 263t72 26389
X2 132.73 36.97 24.62 39.9
2.59um Yes oV, | 1155231 | 1064128 915+73 855+77
a=10 o¥,, | 582+230 465+127 290+72 278t76
(Fe — X2 128.1 53.53 26.25 32.67
radiation) No oV, | 1197230 | 1097128 | 93%+76.8 | 87881
0¥y | 627229 502+127 327+76.3 | 30481
X2 127.49 53.73 29.31 36.5
4.32pm Yes o, | 1205190 | 103179 849+52 75958
a=20 oMy, | 813t190 61678 414452 34958
(Fe - X2 71.75 19.46 13.21 20.32
radiation) No o, | 1201190 | 1026:82 845+54 753t62
o¥,, | 814t189 616+82 41554 348+62
X2 71.63 21.03 14.36 22.83
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Fig. 5.21. Measured <a{, >y lattice parameters and fitted theoretical curves tioe
316L sample after grinding (Cu radiation an#=5°%. Corrections were applied to all

experimental points. Different models were usedtlier calculation of diffraction elastic
constants.
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Fig. 5.22. Measured <al,@>; lattice parameters and theoretical curves fittedthem

for the 316L sample after grinding (Fe radiationdam=5°). Corrections were applied to all
experimental points. Different models were usedtiier calculation of diffraction elastic

constants.

Generally, we can conclude that reasonably goadtfitexperimental data are obtained with
Reuss and self-consistent models (especially foelace version). In contrast to them, Voigt
model predictions do not describe sufficiently weltharacter of the observed relations.
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Results without correction Results with correction
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Fig.5.23. Stress componentsa(; and o), ) and stress-free equivalent lattice parametgr a
versus penetration depth for the ground sample (Bl&11). The self-consistent model for
free surface was used to calculate the diffracteastic constants. On the left - results
without corrections, on the right — with correct®n

The values ofg;; and g}, stress components in function of penetration dapthshown

for SAMPLE 1 in Fig. 5.23. A very good quality oitting and small uncertainty of the
determined stresses suggest that the self-conseggnoach for sample surface gives the best
estimation of residual stresses (quite similar @alwere obtained with the Reuss model). It
should be noted that good continuity of the meabsteesses versus depth was obtained using
the grazing incidence diffraction with Cu and Feliations. The experiment by means of
standard diffraction method (using Mn radiation &l reflection) confirmed change of
stresses in function depth. As for the previousilygled samples, the stress- free paranesies
almost constant versus penetration deggk 3.5951# 0.0009 A see Fig. 5.23).

Figure 5.24 shows the results for the sample sintdathe previous one, but with
different technological parameters (SAMPLE 2). Jlis¢ previously, when corrections are
applied - a better agreement between three expetsmeith different radiations is observed
(Fig. 5.24)
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Fig.5.24. Stress componentwrf; and o}, ) and stress-free equivalent lattice parametgr a

versus penetration depth for the ground sample (Bl&812). The self-consistent model for
free surface was used to calculate the diffractedastic constants. On the left - results
without corrections, on the right - with correctgn

5.5. Conclusions

Asymmetric geometry is applied in the grazing iecide diffraction method. Penetration
depth of radiation is almost constant during experit and it can be easily changed by an
appropriate selection of incidence angle or by gisdifferent type of radiation. Variation of
penetration depth enables investigation of materath stress gradient. Classicalgirmethod
cannot be applied for this purpose, because péioetidepth is not constant during experiment.

Refraction of EM-wave (with refraction coefficiesmaller than one) causes two effects:
it changes the wavelength and the direction ot inside a sample. The two effects change
the D angle and shift the pick position. This shift Hasbe considered in data treatment. For
small incidence anglesi£10°) the corrections are significant and can modify tsulting stress
even of 70 MPa. The refraction correction decreasi#l growing incidence angle. Other
corrections (absorption, atomic factor, Lorentzgpiaiation factor) are less important for final
stress values.
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General conclusions

The stress field in polycrystalline materials wasrmained and described. The first and
second residual stresses were studied in polydigstaingle and multi-phase materials. Strict
formulae describing effects of the first and theos®l order stresses on interplanar spacings (or
equivalent lattice parameter) were derived. The @firthis work is to propose a methodology of
residual stress study using diffraction methodgotétical approaches and modelling. This
enables to analyse and better understand the mieahaehaviour of polycrystalline materials.
Two methods of internal stresses determination wleseribed and used (classical method and
multi-reflection one).

A new grazing angle incident diffraction X-ray déttion technique was developed in
order to analyse the residual stress gradient.dJiis method, it is possible to perform a non-
destructive analysis of the heterogeneous stresdifferent (and well defined) volumes below
the sample surface. Moreover, the stress can beureghat very small depths, of the order of a
few micrometers. Uncertainty of measurement wassidened; the influence of absorption,
Lorentz-polarization, atomic scattering factor aedractive index was studied. By means of
powder references sample the importance of albfactesponsible for the peak position was
examined and taken into account. The performedysisakconfirmed a small influence of
absorption, Lorentz-polarization and atomic scatterfactor on the results of stress
determination. Contrary to them, the refractionexavas found very significant, especially for
small incident angles. For the incidence angig$0® the corrections are important and they can
modify the resulting stress significantly (even7@ MPa in powder). The refraction correction
decreases with growing incidence angle.

The self-consistent and Lefers-Wierzbanowski modékslasto-plastic deformation were
developed and used for the study of sample pr@sednd the stress evolution. The presented
models of elasto-plastic deformation (LW and S@) aseful tools for the study of mechanical
properties of polycrystalline materials. They ewealthe prediction of macroscopic material
properties (e.g., texture, stress-strain curvesstigl flow surfaces, dislocation density, finaltsta
of residual stress, etc.), basing on the microettiral characteristics (crystallography of slip
systems, hardening law, initial texture, initiabidual stress state, etc.). The presented models
predict mechanical properties of materials in patér, rolling textures were correctly predicted
for materials with cubic and hexagonal crystal dee. Such models are convenient tools for
technologists searching for optimal material prapsr
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The residual stresses were examined in corss-rptgatrystalline copper and steel. The
stress variation in function of deromation in corgling direction as well as resulting textures
were explained using LW and SC models.

The new multi-reflection method for stress deteation was applied to analyse the
experimental data for duplex stainless steel. Thenmadvantage of this method is that
experimental data obtained for varidud reflections are treated simultaneoudliie significant
values of the phase stresses were found in bothephaf duplex steel. During elasto-plastic
deformation the evolution of phase stresses andrggan of the second order incompatibility
stresses were observed. The influence of elastso@mopy and crystallographic texture on the
creation of the second order incompatibility stesswas also studied. Using the methodology
developed in this work, the first and the secoradkepstresses were quantitatively determined for
each phase. It has been shown that experimentatgrrdined lattice strains could be
successfully correlated with the theoretical resolily when the influence of the second order
stresses is taken into account. Moreover, our tesohfirm that the best quality of fit between
experimentally determined lattice strains and teecal predictions is obtained when anisotropic
elastic constants and real initial sample textuegt@ken into account.

The described experimental methods combined witbramtion models present useful

tools for evaluation of the stress fields in poygtalline materials, hence for the investigation of
new materials for technology.

146



APPENDIX A

Lorentz-Polarization Factor

The Lorentz factor is a collection of trigpnometigems that describes the dependence of
the diffracted intensity on the diffraction angléere are three factors that contribute to Lorentz
factor:

* The number of grains, which are, oriented suchttiet can diffract at a given anglé.2
* The diffracted intensity per unit length of thefdittion cone.
* The dependence of diffracted intensity from any onystalline 3.

Y

Fig. A.1. Cone of reflected rays.

The first factor is dependent on the volume fratid grains oriented such that they can
diffract at very near the particular Bragg angleeiif a completely random distribution of grain
orientations is assumed, this volume fraction isthe same for all orientations of the incident
beam. Assume that a sphere of radius r is drawandr@a powder sample (Fig. A.1). If the
angular range around the Bragg angle into whiclreagi@ble intensity is diffracted 89, then
the normals to the planes that can diffract witeisect the sphere within a band of widi8y
with an area od02risin(904].
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The fraction of the crystallites is the ratio oisthrea to the total area of the spheme 4

AN _ ro02nrsin(Q0- 6) 0 00cosh

Al
N 4nr? 2 A1)

Thus the fraction of diffracting particles is profonal to
¢, = cosh (A.2)

and is small for largé.

The second factor, intensity per unit length of th#raction cone, is important because, as
discussed before, in normal X-ray work only smefyreent of the intersection of the diffraction
cone with the detection plane is used in measunitapsities. However, since the radius of each
cone is different, the diffracted intensity intockaunit length of the cone circumference is
different. If the radius of the diffractometer is, e radius of the circumference of any
diffraction cone is #Rsin®. Thus, the diffracted intensity per unit lengthpisportional to:

1

c A.3
2 sin20 (A-3)

The third factor describes the variation of intgnsiith 208, when all other factor are constant. It
was previously shown that, when deviations fronalite occur in the wavelength distribution of
the X-ray beam, or in the degree of perfectionh# trystal, appreciable X-ray intensity is
observed at angle¥ away from the Bragg angks, resulting in the broadening of the X-ray
peak. Maximum intensity on the other hand, occtuBsaThus, diffracted intensity is a function
of 6.

|<—a—)‘

« Na

\J

Fig. A.2. Scattering in fixed direction during crystal rota.
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Consider a plane containing N atoms which is raotate angle for 6 (Fig. A.2). In this case
the angles that the incident and diffracted bearakenwith the plane ar@; and6,. The path
difference between the rays scattered by the tasmsbn the plane is:

A = acos, - acosd, = alcodd, — A8) - codd, +A6)| (A.4)
which can be expressed as:
A =2adfsing, (A.5)

where, sincé is small, sidbDO. The path difference between the rays diffractechfthe first
and the N-th atom on the plane is

N [0 = N [2a[d63inb, (A.6)

If this difference is equal to an integral mulépdf the wavelength, the diffracted intensity is
zero. Thus, the maximum rotation of any crystafiiten the Bragg position is

N [2aldgsing, = A
A (A7)

" 2Nasing
Finally the diffracted intensity varies as a funatiof 1/sir®:

1
% = Sine (A.8)

All the trigonometric terms discussed above (Eq,A.3, A.8) can be combined to form a
single factor, which describes the variation oémngity with angled. This factor is so-called the
Lorentz factor, and is given by:

1
sin? @

LF =K (A.9)

where K is constant.

Although x-rays are scattered in all directionsawy electron, the intensity of scattered beam
depends on the angle of scattering. According Thdmson theory the intensity | of the beam
scattered by single electron of charge e and masd the distance r from the electron is given

by

4
| = |OWSin2a (Alo)
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wherea is the angle between electric field of the incideave and OP direction (Fig. A.3.)
Suppose the incident beam is travelling in theatioe Ox (Fig. A.3.) and encounters an election
in O. We want know the scattered intensity at Ehenxz plane where OP is inclined at scattering
angle of B to the incident beam.

X

Fig. A.3. Scattering of X-rays by a single electron.

An unpolarized incident beam has electric vectar & random direction igz plane:

ESS=E = ; E? (A.11)

The ratio of incident intensity at O to the scateintensity at P is equal to the ration of the
squares of the amplitude of the electric field<(E?).

IOy = IOz -

5'0 (A.12)
They component of the incident beam accelerates tretretein the direction Oy. It therefore
gives rise to a scattered beam whose intensitysfdeind from equation A.10.:

e4

Ipy = onm (A13)
It should by noted that angte(yOP) equals%
Similarly, the intensity of the scatteredomponent is given by:
e4
| Pz — | 0z WCOS2 20 (A14)

i =7/ —
sinceqa A 20.
The total scattered intensity at P is obtain byrsimg the intensities of two components:
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(A.15)

Pz

Finally we obtain:

(A.16)

I, =1

e* [1+ co 249]

0
r’mec’ 2

The Lorentz factor and the polarization factor aseially combined together to form the L-P
(Lorentz-Polarization) factor:

1+ COS2 6 (A17)

L.P.)=
(LP) sin?@

40

30 A

20 1

Lorentz-polarization factor

10 1

0

0 20 40 60 80 100 120 140 160 180
20
Fig. A.4. Lorentz-Polarization factor versu8 fr ferrite steel.

The Lorentz — polarization factor is shown in Fg4. Like for absorption this correction is
significant for small and high angle8.2
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