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Résumé 

Etude des micro-contraintes dans les matériaux texturés hétérogènes par 

diffraction et modèles de comportement 

 

L’objectif de ce travail est le développement d’une méthodologie d’analyse des 

contraintes utilisant des modèles théoriques pour décrire le comportement élasto-plastique 

des matériaux polycristallins. L’étude vise d’abord l’interprétation de résultats expérimentaux 

par des modèles de déformation qui décrivent la création des champs de contrainte dans les 

matériaux polycristallins déformés. Une attention particulière est portée à l’explication des 

phénomènes physiques à l’origine des contraintes résiduelles et à la prédiction de leur 

évolution et de leur influence sur les propriétés du matériau. 

Dans le premier chapitre, la méthode classique, dite des sin2ψ, d’analyse des 

contraintes est présentée. Ensuite, la nouvelle méthode d’analyse, méthode de multi-

réflexions, basée sur les mesures de déformation en utilisant plusieurs réflexions hkl est 

introduite. Dans cette méthode, tous les pics de diffraction sont analysés simultanément et la 

distance interréticulaire dhkl est remplacée par une distance équivalente a. Aussi, sont 

présentées les méthodes de calcul des constantes élastiques radiocristallographiques qui 

jouent un rôle crucial dans la détermination des contraintes. La détermination de ces 

constantes est indispensable pour l’interprétation des différents résultats expérimentaux. De 

nouvelles méthodes de calculs des constantes élastiques radiocristallographiques utilisant le 

modèle autocohérent ont été développées et testées. Une attention particulière a été portée au 

calcul par ce nouveau modèle autocohérent dans le cas des couches superficielles (surface 

libre). Dans ce modèle, le calcul des forces et contraintes normales à la surface est effectué 

selon le modèle de Reuss et pour les deux autres directions, c’est le modèle auto-cohérent qui 

est utilisé. Cette méthode de calcul est particulièrement adaptée au cas de la diffraction des 

rayons X où seulement une couche superficielle du matériau est examinée (généralement de 

quelques µm d’épaisseur). 

Dans le chapitre suivant, deux modèles de déformation ont été développés et utilisés 

pour déterminer l’évolution des contraintes et analyser les propriétés du matériau. Le premier 

modèle (LF) est basé sur les formulations de Leffers (Lefers 1968) qui ont été reprises et 

développées par Wierzbanowski (Wierzbanowski 1978, 1982). Le second est le modèle auto-

cohérent (SC) (Hutchinson 1964, Berveiller et Zaoui 1979). Dans ce travail, le calcul est 

réalisé à partir de l’algotithme développé par Lipinski et Berveiller (Lipinski et Berveiller 

1989). Dans cette approche, le tenseur de Green est utilisé pour décrire les interactions entre 



les grains. Les grains du polycristal sont considérés comme des inclusions ellipsoïdales (en 

3D) dans une matrice homogène. Ces deux modèles de déformation elasto-plastique (LW et 

SC) sont des outils très utiles pour l’étude des propriétés mécaniques des matériaux 

polycristallins. Ils permettent la prédiction des propriétés macroscopiques du matériau 

(texture, courbes contrainte-déformation, surfaces d’écoulement plastique, densité des 

dislocations, état final des contraintes résiduelles, etc.) à partir de ses caractéristiques 

microsructurales (systèmes de glissement, loi d’écrouissage, texture initiale, état initial des 

contraintes résiduelles, etc.) (Wierzbanowski 1978). Des résultats typiques: de texture, 

écrouissage et énergie stockée, obtenus par ces modèles, ont été comparés aux résultats 

expérimentaux. 

Le chapitre 3 est consacré principalement à l’explication des origines physiques des 

contraintes et de la prédiction de leur évolution, ainsi qu’à leur influence sur les propriétés du 

matériau. Les contraintes internes sont classées en trois types selon l’échelle : contraintes 

d’ordre I, II ou III. Une attention particulière est portée aux contraintes d’ordre I et II car ce 

sont les seules qui sont déterminées à partir de la position des pics de diffraction. Les 

modèles de déformation ont été utilisés pour l’analyse des contraintes à l’échelle des grains 

(contraintes du second ordre). L’évaluation quantitative de ce type de contraintes ne peut pas 

être effectuée directement par des mesures mais elle est possible grâce aux modèles. Les 

matériaux multi-phasés ont été également étudiés. Pour ces matériaux, l’interprétation des 

données expérimentales est plus complexe que celle du cas des matériaux monophasés en 

raison de la nécessité de prendre en compte l’interaction entre les phases. C’est pourquoi, une 

nouvelle méthode adaptée aux matériaux multi-phasés a été développée et appliquée au cas 

des aciers inoxydables  austéno-ferritiques (aciers Duplex). Les paramètres de déformation 

plastique ( ph
cτ - scission critique résolu et  ph

Η  - paramètre d’écrouissage) de chacune des 

phases ont pu être déterminés. Lors de la déformation plastique, l’évolution des contraintes 

dans les phases et la création de contraintes d’incompatibilité de second ordre, sont observées 

et l’influence de la texture cristallographique et de l’anisotropie élastique est étudiée. La 

méthodologie développée et utilisée dans ce travail a, donc, permis de déterminer 

quantitativement les contraintes du  premier et du second ordre, pour chaque phase. Il a été 

montré qu’une bonne corrélation entre les déformations déterminées expérimentalement et 

les résultats théoriques, n’est obtenue que si l’influence des contraintes du second ordre est 

prise en compte. Aussi, le meilleur lissage des courbes expérimentales est obtenu quand les 

calculs intègrent les constantes d’élasticité anisotropiques et la texture réelle initiale de 

l’échantillon. 



Les méthodes de détermination des contraintes du premier et du second ordre, présentées au 

troisième chapitre, sont employées pour l’étude des contraintes résiduelles dans des alliages 

écrouis par laminage croisé (Chapitre 4). Le laminage croisé a été retenu pour ajouter une 

symétrie de la texture cristallographique et, donc, de réduire l’anisotropie de la pièce 

(comparé au laminage uniaxial). Les résultats sont présentés pour des séries d’éprouvettes en 

acier et en alliage de cuivre. Dans le cas de l’alliage de cuivre, les résultats montrent de très 

faibles niveaux de contraintes d’incompatibilité de second ordre qui peuvent être négligées. 

Par contre, dans le cas de la ferrite, il faut en tenir compte car leur niveau s’avère important. 

Les oscillations observées sur les courbes des sin2ψ peuvent être expliquées, dans ce cas, 

principalement par la présence de contraintes du second ordre. 

Enfin, au chapitre 5, une nouvelle méthode d’analyse des contraintes utilisant un 

faisceau de rayons X avec un angle d’incidence faible et constant (méthode de diffraction en 

incidence rasante GID-sin2ψ). Cette méthode présente l’avantage d’une profondeur de 

pénétration des rayons X constante, contrairement à la méthode des sin2ψ classique qui 

présente l’inconvénient d’une forte variation de la pénétration avec l’angle ψ. C’est pour 

cette raison que la méthode classique des sin2ψ est mal adaptée pour l’étude des matériaux à 

forts gradients de contraintes. Moyennant un choix optimisé des angles d’incidence et du type 

de rayonnement, la nouvelle méthode s’avère efficace pour l’étude des matériaux à forts 

gradients de contraintes, en permettant des mesures dans différentes couches proches de la 

surface. L’incertitude des mesures a été évaluée et le rôle de l’absorption, de l’indice de 

réfraction et des facteurs de Lorentz-polarisation et de diffusion atomique ont été étudiés. 

A partir de mesures sur des poudres de référence, l’influence de chacun de ces paramètres a 

été évaluée et prise en compte dans la détermination de la position des pics de diffraction. 

Les analyses effectuées ont confirmé la faible influence de l’absorption et des facteurs de 

Lorentz-polarisation et de diffusion atomique sur la contrainte déterminée. Par contre, ils ont 

révélé un effet important de l’indice de réfraction, en particulier aux petits angles 

d’incidence. Pour des angles d’incidence α≤100, les corrections sont importantes et modifient 

les résultats des contraintes d’une manière significative (la correction peut atteindre 70 MPa 

dans le cas de la poudre). Cet effet et, donc, la correction nécessaire décroît quand l’angle 

d’incidence augmente. 
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Summary 
 
 
 

The aim of this work is to develop the methodology of stress measurement using 
theoretical models describing elasto-plastic behaviour of polycrystalline materials. The main 
purpose is to interpret experimental results on the basis of the self-consistent model which 
describes the mechanisms of stress field generation in deformed polycrystalline materials. 
Special attention has been paid to the explanation of the physical origins of stresses and to the 
prediction of their evolution and influence on material properties. 

In Chapter 1 the classical method of stress measurement called sin2ψ was described.  The 
new stress analysis – multi-reflection method - based on strain measurements using a few 
reflections hkl is introduced (in this method all peaks are analysed simultaneously). Also the 
methods of calculation of the diffraction elastic constants, which play a crucial role in the stress 
analysis, were presented. The determination of these constants is essential in explanation of 
many experimental results. New methods for the calculation of diffraction elastic constants using 
the self-consistent model have been elaborated and tested. These methods were used for textured 
samples. 

In Chapter 2 two models (self-consistent and Leffers-Wierzbanowski models) were 
presented. They enable the prediction of macroscopic material properties (e.g., texture, stress-
strain curves, plastic flow surfaces, dislocation density, final state of residual stress, etc.) basing 
on the micro-structural characteristics (crystallography of slip systems, hardening law, initial 
texture, initial residual stress state, etc.).  

In Chapter 3 a special attention has been paid to the explanation of physical origins of the 
stresses and to the prediction of the stress evolution and their influence on material properties. 
The internal stresses were divided into three types in function of the scale. The deformation 
models were used to analyse the stresses present in grains (the second order stresses). Quantitave 
estimation of this kind of stresses is possible only by means of models; they cannot be measured 
directly. Interpretation of experimental data for multiphase material is more complex than for a 
single phase one, because it is necessary to consider interaction between phases. For this reason, 
the new method of investigation of multiphase materials was developed and applied for duplex 
stainless steel.  
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The methods of estimation of the first and the second order stresses which were presented 

in the third chapter are used to study the residual stresses in materials after cross rolling (Chapter 
4). The cross-rolling is applied in order to symmetrize the crystallographic texture and 
consequently, to decrease the sample anisotropy. The results for series of copper and steel 
samples are presented.  

Finally, in Chapter 5 a new method of stress estimation using a constant and low incident 
beam angle (grazing angle incidence X-ray diffraction technique) was presented. In this method, 
the penetration depth is almost constant on the contrary to classical method. For this reason, the 
grazing incidence diffraction technique can be used to investigate materials with a significant 
stress gradient. Measurement uncertainties in this method were considered; especially the 
influence of absorption, Lorentz-polarization, atomic scattering factor and refractive index were 
studied.  
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Chapter 1 
 
 
 

Determining of stresses in polycrystalline 

materials 
 
 
 
1.1. Introduction 
 

The internal stresses are generated by applying external loads to the sample. They appear 
after deformation of the material as a result of a change of the shape and volume. In most cases 
the stress field is homogeneous and anisotropic. During plastic deformation the sample is 
deformed irreversibly and stresses remain in the sample even if external forces are unloaded.  
The stresses which can be found in unloaded samples are called the residual stresses. Residual 
stresses affect the mechanical properties of materials and they are responsible for such processes 
like fracture, cracks growth, fatigue, creep, recrystallisation and many others. However in some 
cases the residual stresses improve selected properties of materials. For example the presence of 
the compression stress field can improve endurance for cracking.  

There are several techniques for determination of residual stresses, such as the destructive 
mechanical methods (layers removal), the methods based on the measurements of material 
properties affected by stresses (ultrasonic methods, measurement of Barkhausen magnetic noise, 
Raman spectroscopy) and the diffraction method based on the measurement of strain of the 
crystallographic lattice. The advantage of the diffraction method is its non-destructive character 
and the possibility of macro and microstress analysis in multiphase and anisotropic materials. 
This method is frequently used in industry, material science, electronics and biomaterial 
technology. Because of high absorption of X-ray radiation this method can be applied to study 
residual stresses to the depth of few µm below the surface of sample. In order to get deeper 
penetration, synchrotron or neutron radiation has to be applied. The use of synchrotron or 
neutron radiation enables to study stresses up to a few cm below the surface and sometimes in 
the entire sample volume.  

In the case of synchrotron or neutron radiation the sampling volume can be well defined 
by special slits forming the incidence and the diffracted beams. In this way the measurement 
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from small selected parts of the sample can be done. The stress measurement is possible with 
high spatial resolution (less than 20µm). In this work, the classical X-ray and the neutron 
diffraction methods are used to study the stress fields in polycrystalline materials. The influence 
of various types of stress on the results of a diffraction experiment is discussed. 
 
 
1.2. Measurements of macrostresses using diffraction 
method. 
 

When internal stresses are present in a material a systematic change of the lattice 
parameter in each grain is observed. The interplanar spacing is described by Bragg’s law: 
 

λθ nd hkl =sin2 }{  (1.1) 

 
The increase of interplanar spacing d{hkl} causes a decrease of θ angle. In typical cases the shift of 
a peak is: 0,0010 - 0,10. It seems to be a small value, however a good fitting procedure of the 
diffraction peak (using Gauss or Lorentz function) enables to observe and measure this effect. 
The presence of internal stresses causes not only a shift of a diffraction peak ( ∆(2θ)= 2θ - 2θ0 ) 
but also a change of its intensity and width (this latter is expressed as FWHM, i.e., full width at 
half maximum). 
 

 
a. b. 
 

Fig. 1.1. Diffraction on a stress free lattice (a) and on a deformed lattice (b). A range of 
interplanar spacings in different diffracting crystallites is shown by dashed lines, while the 
continuous line is used to mark the average distance between reflecting planes. 
 
 
The lattice parameter can be determined using diffraction method. The measured value is the 
average over the group of diffracting grains. This kind of average will be marked as <...>. Hence, 
the Bragg law can be written as: 
 

λθ nd hklhkl >=<>< }{}{ sin2  (1.2) 
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An important condition concerning the sensitivity of the method can be derived from Bragg law. 
A small change of interplanar spacing ( )}{ hkld ><∆  is related with a shift of the peak position 

( )}{ hkl2 >< θ∆  by equation: 

 

}{}{}{
}{

}{
}{ 222 hklhklhkl

hkl

hkl
hkl tgtg

d

d
><><−=><













><
><∆

−=><∆ θεθθ  
 

(1.3) 

 

where:  
}{

}{
}{

hkl

hkl
hkl d

d

><
><∆

=>< ε  

It is visible that for the same value of 
}{

}{

hkl

hkl

d

d ><∆
, bigger shift of }{ hkl2 >< θ∆  is observed for 

higher 2θ scattering angle. For this reason usually the peaks with 2θ angle higher than 900 are 
used for the stress measurement. In the case of diffraction peaks with 2θ smaller than 900 the 
precision of measurement is generally not good enough (let us remark that the detector position 
is usually set with the precision of 0,010). This is why the measurements for angles smaller than 
900 are not reliable (Bojarski, 1995) 
 

2θ{hkl} [ 
o ]

40 60 80 100 120 140 160 180

∆ 2
θ {h

kl
}  

[ o 
]

0.00

0.02

0.04

0.06

0.08

∆d{hkl}/d{hkl} = 0.001

 
 

Fig. 1.2. ∆2θ{hkl} vs. 2θ{hkl}  for 001.0
}{

}{ =∆
hkl

hkl

d
d

. It should be noticed that shift of the peak 

211 for steel under pressure 200MPa equals 0,10 .  
 
 

Let us describe now the measurement geometry. The experiment consists of the sample 
rotation around the scattering vector Q for a fixed 2θ angle. Two types of the coordinate system 
should be considered: sample system (X) and the measurement coordinate system (L). The 
definition of these coordinate systems is presented in Fig. 1.3. L3 axis is parallel to the scattering 
vector Q. During the measurement a sample is rotated and the position of the vector L3Q is 
described by φ and ψ angles (Wolfstieg, 1976) (with respect to X coordinate system). 
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Fig. 1.3. Orientation of the scattering vector with respect to the sample system X. The ψ and 
φ angles define the orientation of the L system ( L2 axis lies in the plane of the sample surface). 
The laboratory system, L, defines the measurement of the interplanar spacings <d(ψ,φ)> {hkl} 

along the L3 axis. 
 

 
Fig. 1.4. Eulerian cradle used to change the relative sample orientation. 
 
 
Bragg’s law enables to measure interplanar spacing d=d{hkl} . So for each orientation of vector 
L3Q it is possible to measure interplanar spacing d(ψ,φ){hkl}  for crystallographic planes {hkl} 
perpendicular to the scattering vector Q. In all relations expressed in L coordinate system the 
index (‘) will be used (e.g., the measured deformation along L3 axis is marked as '33ε ). The 

diffraction method enables to measure the mean interplanar spacing <d(ψ, φ)>{hkl} , averaged 
over reflecting crystallites. The mean lattice strain <ε(ψ, φ)>{hkl} in  L3 direction (Fig. 1.3) is 
defined as: 
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}{

0

}{

0
}{

}{33

),(
),('

hkl

hklhkl

hkl
d

dd −><
=><

φψ
φψε  

 

(1.4) 

 
The lattice strain '33ε (ψ,φ){hkl}  for a given grain can be calculated from Hook’s law: 

 
'),('),(' 33}{33 ijijhkl s σφψφψε =  (1.5) 

 
where ij'ε , mn'σ  and ijmn's  are the elastic strain, stress and elastic compliance tensor of a grain. In 

the above equation the convention of repeated index summation is applied (Einstein convention). 
This convention will be used in the whole present work and it will concern always lower indices. 
 
For a given orientation of the scattering vector (Q) and for a given Bragg’s angle (2θ) only those 
crystallites diffract which have one of the {hkl} planes perpendicular to QL3 . This group of 
crystallites is called diffracting group. Average measured deformation is: 
 

>=<>< '),('),(' 33}{33 ijijhkl s σφψφψε  (1.6) 

 
It is next assumed that an effective tensor Sijkl ’ exists for the diffracting group which simplifies 
the above relation to: 

 
'),('),(' 33}{33

M
ijijhkl S σφψφψε =><  (1.7) 

 
where M

ijσ  is the average macroscopic stress, constant in a big part of a sample (i.e., in the 

measurement volume).  
 
Let us note that even if a sample has the quasi-isotropic symmetry (random texture), the 
diffracting group has a lower symmetry. Orientation of the crystallites belonging to this group 
can differ one from another by rotation γ around QL3Nhkl vector – Fig. 1.5. Consequently, 
the average elastic matrix Smn for diffracting group has the same structure as a body with axial 
symmetry. It is defined by five independent parameters and has a form (see e.g., Reid, 1974): 
 

























=

66

44

44

331313

131112

131211

mn

'S

'S

'S

0

0

'S'S'S

'S'S'S

'S'S'S

'S  

 

 

 

(1.8) 
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In the above equation the matrix notation (Smn) was used for tensor components (Sijkl). The rules 
for the reduction of indices are following: 
 

              Tensor indices       Reduced matrix indices 
      11 → 1 
      22 → 2 
      33 → 3 
23, 32 → 4 
13, 31 → 5 
12, 21 → 6 

 
 
 
(1.9) 

 
e.g., the tensor component S1123 becomes the matrix component S14. In the present work the 
elastic constant tensors will be used both in matrix and tensor convention, depending on the case 
in order to simplify equations.  
It is evident, that the symmetry axis for the assembly of diffracting grains is QL3. 
Using the elastic constants matrix, equation 1.7 can be written as: 
 

''''''),(' 33332232113133
MMM

hkl SSS σσσφψε ++=><  (1.10) 

 
On the right hand there are only three components, because S’34=S’35=S’36= 0 (see. Eq. 1.8). 
  

        
Fig. 1.5. Definition of lattice rotation around the scattering vector L3=N{hkl} Q 
 
Taking into account the structure of the S’mn matrix  (Eq. 1.8), the above equation can be 
rewritten as: 
 

''''''),(' 333322131113}{33
MMM

hkl SSS σσσφψε ++=><  (1.11) 

 
Let us note that all quantities in the above equation are expressed in L coordinate system. Our 
goal is to relate the measured deformation ε33’ (expressed in L coordinate system) in function of 
stress components σij (expressed in X coordinate system). To transform stress tensor ijσ  to L 

coordinate system, the transformation matrix has to be defined. This matrix is (see Fig.1.3): 
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















−
−

=
ψψφψφ

φφ
ψψφψφ

cossinsinsincos

0cossin

sincossincoscos

ija  

 

(1.12) 

 
The transformation law for four stress rank tensors is: 
 

kljlikij aa σσ ='  (1.13) 

 
According to the above, three needed components σii ’ are:  
 

MM

MMMMM

MMMM

MM

MMMMM

2313

12
2

33
222

22
22

1133

12
2

22
2

1122

2313

12
2

33
222

22
22

1111

2sinsin2sincos

sin2sincossinsinsincos'

sincos2cossin'

2sinsin2sincos

cos2sinsincossincoscos'

ψσφψσφ

ψσφψσψφσψφσσ
ψσφφσφσσ

ψσφψσφ

ψσφψσψφσψφσσ

++

+++=

−+=

−−

+++=

 

 

 

(1.14) 

 
After substituting the stress components from Eq. 1.14 to Eq. 1.11 we obtain: 
 

ψφσφσ

σσσψσ

ψφσφσφσφψε

2sin)sincos(
2
1

)(cos
2
1

sin)sin2sincos(
2
1

),('

23132

3322111
2

332

22
2212

2
112}{33

++

+++++

+++=><

M

M

MMM
hkl

s

ss

s

 

 

 

(1.15) 

where:  

31131332 'Ss),'S'S(s
2

1 =−=  
 

(1.16) 

 
The quantities s1 and ½ s2 are so called diffraction elastic constants for a quasi-isotropic material. 
Eq. 1.15 can be also expressed by interplanar spacings d{hkl}  (see Eq. 1.4): 
 

}{

0

}{

0
231323322111

2
332

22
2212

2
112}{

2sin)sincos(
2

1
)(

cos
2

1
sin)sin2sincos(

2

1
),(

hklhkl

MMMMM

MMMM
hkl

ddss

ssd

+



+++++

++++

=><

ψφσφσσσσ

ψσψφσφσφσφψ

 

 

 

(1.17) 
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Using obvious trigonometric identities the above equation can be converted to:  
 

( ) ( )[ ]

[ ] ( )[ ]
    

dd sin2sin+ coss
2

1
+s

2

1
+σ+σ+σs  

ψsin sin2σ+sinσσ+cosσσs
2

1
=>)d(<

hklhkl
M
23

M
132

M
332

M
33

M
22

M
111

2M
12

2MM2MM
112hkl

0
}{

0
}{

332233}{,

+


+



 −−

ψφσφσσ

φφφφψ
 

 

 

(1.18) 

       
An important simplification is obtained if one assumes a particular plane state of stress, which 
occurs usually on the surface of rolled samples. In such the case:  
 

0,0,0 231312332211 ====≠≠ MMMMMM σσσσσσ  (1.19) 

 
The rolled samples have orthorhombic symmetry and for this reason only the main stress 
components - σii

M - occur (symmetry axes are determined by the edges of the sample). Moreover, 
the static equilibrium condition on the surface involves: σ33

M=0. During X-ray diffraction 
measurement only a thin layer of a material near the surface is examined. (see for example: 
Noyan and Cohen, 1987; Dolle, 1979; Hauk, 1986; Brakman, 1987, Major et al., 1999; 
Bochnowski et al., 2003) Consequently, the approximation of the plane state of stress is correct 
in such the case. However, the assumption of σ33

M=0 can not valid in the case of the neutron 
diffraction technique, because due to very low absorption the neutron beam penetrates up to 
several centimetres inside the sample. (Allen et al. 1981; Daymond and Priesmeyer, 2002; 
Fitzpatrick and Lodini, 2003) 
Assuming the approach of plane state of stress, Eq. 1.18 takes the form: 
 

}{

0

}{

0
22111

22
22

2
112}{ )(sin)sincos(

2
1

),(
hklhkl

MMMM
hkl ddssd +




 +++=>< σσψφσφσφψ

 

 

 

(1.20) 

We can conclude that in the case of a quasi-isotropic sample and plane stress state the linear 
relation of <d(ψ,φ)>{hkl}  versus sin2ψ occurs (for a fixed φ value) - Fig. 1.6. 
 
 



 13

sin2Ψ
0.0 0.2 0.4 0.6 0.8

<
d>

{4
20

} 
  [

A
]

0.8078

0.8079

0.8080

0.8081

0.8082

0.8083

0.8084

 
Fig. 1.6. The lattice parameter <d>{420}  in function of sin2ψ for copper. The slope of the curve 
equals ½ s2 σ11

M  when ϕ=0.  
 
Information about stress components is contained in the slope of the curve (Eq. 1.20). For 

example, if φ=00 we can determine the value of σ11
M

 component from the slope of the diagram. 
Similarly, if φ=900, it is possible to determine the stress components σ22

M. Generally, to obtain a 
good precision of determined stress components σ11

M and σ22
M, the experiment is repeated for 

different ϕ angles and the least squares procedure is applied. 
In the case of neutron or synchrotron diffraction Eq. 1.18. cannot be simplified. The both 

techniques give the information from the whole sample volume and the assumption 033 =Mσ  is 

no more valid. In general the value of 0 }{ hkld  is unknown, hence for orthorhombic and quasi-

isotropic sample the values of )( 3311

MM σσ −  and )( 2211

MM σσ −  instead of 
M

11σ and 
M

22σ  are 

determined.  
 
 
1.3. Diffraction elastic constants 
 

The important step in residual stress measurement is the determination of so called 
diffraction elastic constants. A general definition of diffraction elastic constants is obtained from 
Eq. 1.7: 
 

'),('),(' }{33
M
ij

M
ijhkl R σφψφψε =><  (1.21) 

with : 

'' 33ij
M

ij SR =  (1.22) 

 
Rij

M’ are macroscopic diffraction elastic constants and σij
M’ is the macro-stress, i.e., the average 

stress in a big macroscopic part of a material. They depend not only on ψ and φ angles but also 
on diffracting plane {hkl}. These constants are essential for interpretation of the results of 
residual stress measurement. The diffraction elastic constants can be calculated (Baczmański et 
al., 1993) and also determined experimentally.  
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Combining Eq. 1.6: >=<>< '),('),(' 33}{33 ijijhkl s σφψφψε  and Eq. 1.21 we can write: 

 

>=< '),(''),(' 33 ijij
M
ij

M
ij sR σφψσφψ  

(1.23) 

 
In general R’ij(ψ,φ) cannot be calculated in a direct way, because elastic interactions between 
grains in polycrystalline sample are quite compliex. For these reason we use some simplifying 
assumptions or models. Eq. 1.18 can be rewritten in terms of R33

M’ and R11
M’ (using Eqs. 1.16 

and 1.22) as: 
 

( ) ( ) ( )[ ]{
[ ] ( ) ( ) ( )[ ]}     

dd sin2sinφ+ cosRR+RR+σ+σ+σR

ψsin sin2σ+sinσσ+cosσσRR=>)d(<

hklhkl
M
23

M
13

MMM
33

MMM
33

M
22

M

11

M

2M
12

2MM2MM
11

MM
hkl

0
}{

0
}{1133113311

3322331133}{

'''''

'',

+−−+

−−−

ψσφσσ

φφφφψ

 

 
 

(1.24) 

 
In general, the aim of experiment is to find residual stresses expressed in X coordinates system 
(σij). Hence, it is convenient to establish the relation  between (<ε33'(ψ,φ)>{hkl} ) and σij (while 
Eq. 1.21 contain stresses in L coordinate system). This aim is achieved by introducing modified 
elastic diffraction constants Fij and instead of Eq. 1.21 we have: 
 

M
ij

M
ij

M
ijhkl RF σφψφψε ),,(),(' }{33 =><  (1.25) 

  
where M

ijσ  are the macrostresses expressed in X coordinate system. The M
ijF  coefficients are not 

tensor components because they relate the stress tensor M
ijσ expressed in the sample coordinate 

system X to the elastic strain  <
)(' elg

33 ε > {hkl} defined along L3 axis of the L system. Using the 

appropriate transformation of stress tensor (Eq. 1.13), the M
ijF  diffraction elastic constants can be 

calculated from Rij ones: 
 

),},({),},({ φψφψ hklR aa  hklF M
klljki

M
ij =  (1.26) 

 
For example: 

ψφψφψφ
ψφφψφ

sinsinsincoscossin

sincossincoscos

231312

33221111

2R 2R + 2R      

R + R + R =F
M2MM

22M2M22MM

−−
 

 

 

(1.27) 

 
It should be emphasised that the M

ijR  constants, as noted in Eq. 1.21, depend on the 

orientation of L system with respect to X one if the sample is textured. However, in the case of a 
polycrystalline with random grain orientations (quasi-isotropic sample), the R'ij  constants do not 
vary with the φ  and ψ  angles because the sample is isotropic.  
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1.4. Calculation of diffraction elastic constants 
 
As it was already mentioned, diffraction elastic constants are the main parameters used in the 
analysis of residual stresses by diffraction method. In general it is not possible to find equation 
expressing R’ij(ψ,φ) due to a complex character of elastic interactions. For this reason some 
simplifying assumptions and models are used.  
 
 
1.4.1. Diffraction elastic constants for quasi-isotropic 

material 
 

The quasi-isotropic polycrystalline material is defined as a material having isotropic 
macroscopic properties in spite of the anisotropy of particular grains (Bunge, 1982). For a quasi-
isotopic material the following relation occurs: 

 
  0RRR M

23
M
13

M
12 ===    and  MM RR 2211 =                                          (1.28) 

 
Consequently, only two independent diffraction elastic constants, i.e.:  M

22
M
11 RR =  and M

33R  exist. 
These diffraction elastic constants are defined with respect to the L coordinates system and they 
do not depend on its orientation characterized by the angles φ and ψ  (Fig.1. 3).  
For quasi-isotropic materials the s1 and s2 diffraction elastic constants are commonly used instead 
of the more general M

ijR constants. In this case the following relations are fulfilled (compare Eq. 

1.16):  
M
22

M
111 RRs ==      and    )( M

11
M
332 RRs

2

1 −=  

 

(1.29) 

 
Hence, the exemplary equation for F11 constant (Eq. 1.27) for quasi-isotropic material can be 
simplified to: 

  s
2

1
 + s = F 22

21
M ψφ sincos11  

 

(1.30) 

 
The s1 and s2 constants can be also expressed by the Young's modulus (E') and Poisson's ratio 
( 'ν ) defined for a group of diffracting grains, interacting with the surrounding matrix (E' and 'ν  
are expressed in L system, i.e., for example the Young's modulus is taken along L3 axis). The s1 

and s2 constants are equal to: 
 

   
E

=s1 ′
ν′

−     and      
E

+1
2=s2 








′

′ν
                                            

  

(1.31) 

 

where:   
R

1
 = E M

33

′ and M
33

M
22

M
33

M
11

R

R
  =

R

R
  =  −−′ν . 
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We can conclude that for a quasi-isotropic polycrystalline material only two independent 
diffraction elastic constants are defined (i.e., s1 and s2 or M

22
M
11 RR =  and M

33R  ) with respect to L 
system. These elastic constants depend on the single crystal constants, grain-matrix interaction 
and hkl  reflection, but they do not depend on φ and ψ angles. A linear relation of M

11F  versus 
sin2ψ  (for a fixed φ value) can be easily seen from Eq. 1.30. 

 
In further considerations the effects of crystal anisotropy (existing also in a quasi-isotropic 
sample) will be characterized by the factor Γ{hkl}  (Dölle, 1979).: 
 

  
( )

( )2222

222222

}{
lkh

lklhkh
hkl

++
++=Γ  

  

(1.32) 

 
The Γ{hkl}  factor depends only on Miller indices of reflecting planes and it varies in the range 
(0,1/3). It has the minimum and the maximum for {100} and {111} crystal planes, respectively. 
We will calculate now the diffraction elastic constants for a quasi-isotropic material using two 
limiting models of elasticity. 
 
 
Voigt model 
 
In this approach (Voigt, 1928) the constant elastic deformation in each grain “g” is 
assumed: )()( '' elM

ij
elg

ij εε =  (Fig 1.9). It means that 

    ]c[ =  = >< M

ij
1

33ij
gelM

33hkl
elg

33 ''' )(
}{

)( σεε −′  (1.33) 

 

  ]c[ = R 33ij
gVM

ij
1)( −′  (1.34) 

 
where […] means the average over the volume sample.  
Diffraction elastic constants s1

V and ½ s2
V for quasti-isotropic material with regular lattice are 

(Noyan and Cohen, 1987): 
 

( ) ( ) ( )
( )121144

121144121112121111
}{,1 62

342
SSS

SSSSSSSSS
sV

hkl −+
−−−++=    

( )
( )121144

121144
}{,2 62

25
2
1

SSS

SSS
sV

hkl −+
+=  

  
 

(1.35) 

 
Diffraction elastic constants in this model do not depend on reflecting plane indices {hkl} and on 
the Γhkl factor. 
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Reuss model 
 
In this case a constant stress is assumed in all grains: M

ij
erg

ij    '' )( σσ =  (Fig. 1.8); the superscript 

“er” means: “elastic reaction” (of a grain). Elastic constants for the group of diffracting grains 
can be expressed by single crystal compliance constants (Noyan and Cohen, 1987): 
 

  ( )( ) 1
}{44121111}{ 22' −Γ−−−= hkl

R
hkl SSSSE  

( )
( ) }{44121111

}{44121112
}{ 5.02

5.0
'

hkl

hklR
hkl SSSS

SSSS

Γ−−−
Γ−−+

−=ν  

  

(1.36) 

 
After substitution of the above equation to Eq.1.31, anisotropic elastic constants are: 
 

  ( ) }{44121112}{,1 5.0 hkl
R

hkl SSSSs Γ−−+=  

( ) }{4412111211}{,2 5.03
2
1

hkl
R

hkl SSSSSs Γ−−−−=  

  

(1.37) 

 
In this case diffraction constants depend on the refelecting plane {hkl}. Diffraction elastic 
constants for Reuss and Voigt models for ferrite and austenic steel are presented in Fig 1.7. They 
were calculated using stiffness elastic tensor presented in Table 1.1. The compliance tensor 
presented in equations is an inverse of the stiffness tensor. 
 

Table 1.1. Single crystal elastic constants used for the calculation of diffraction elastic constants 
(Simoms and Wang, 1971; Ceretti, 1993).  

 
Material C11  

[GPa] 
C12  

[GPa] 
C44  

[GPa] 
Fe-austenite 197 122 124 

Fe-ferrite 231 134.4 116.4 
TiN 497 105 168 
Cu 170 124 64.5 
Al 106.8 60.4 28.3 
SiC 350 140.4 233 
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Fig. 1.7. The s1 and ½ s2 constants versus orientation factor 3Γ calculated from the single 
crystal data  using Reuss (solid line) and Voigt (dotted line) models.  
 
 

1.4.2. Diffraction elastic constants for anisotropic material 
(textured) 
 

In many cases we cannot assume isotropic interaction between grains, then we talk about 
anisotropic material. Anisotropic interaction is a result of texture, anisotropic properties of the 
grains and shapes of the grains. Because of sample anisotropy, the six independent elastic 
constants M

ijR  vary with orientation of the scattering vector. The values of M
ijF must be known 

for each orientation of the scattering vector for which the interplanar spacings are measured. The 
anisotropy of the sample can be observed as nonlinearities of the M

11F  versus sin2ψ plot. To 
calculate diffraction elastic constants we have to use appropriate model of interactions between 
grains. We will consider the following models: 
 
 
Reuss model  
 

In this approach the stress is assumed to be uniform across the sample (Barral et al., 
1987; Brakman, 1987; Reuss, 1929) for all polycrystalline grains, i.e., M

ij
erg

ij    '' )( σσ =  (Fig. 1.8). 

The grain elastic strain in the L3 direction (Fig.1.3) can be written as: 
 

M
ij

g
ij33

erg
ij

g
ij33

elg
33   s   s= ''''' )()( σσε =   and        > s< = >< M

ijhkl
g

ij33hkl
elg

33 ''' }{}{
)( σε                (1.38) 

 
where g

ij33s'  are the single crystal compliances of a grain and all quantities are expressed in L 

system.  
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Fig. 1.8. Scheme of interaction between grains for Reuss model - homogeneous stress. 
 
Consequently, using the Reuss model, the diffraction elastic constants can be calculated as the 
average value of single crystal compliances: 
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lkhlkh
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ij
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
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γ

γ

π

π

g

gg

 

  
 

(1.39) 

 
The integration is carried over all g orientations representing reflecting grains only (these 
orientations are inter-related by the rotation γ  around the scattering vector, see Fig. 1.5. 
Moreover, the averaging over all equivalent {hkl} planes is done. 
 
 
Voigt model 
 

The uniform grain elastic strain is assumed to be equal to the elastic macro-strain value 
)()( '' elM

ij
elg

ij εε =  in the Voigt model (Voigt 1928) - Fig. 1.9.  

 

 
Fig. 1.9. Scheme of interaction between grains for Voigt model - homogeneous strain. 

 
In this case the grain elastic strain in the L3 direction can be written as: 

 

 ' ]c[ = ' =' >'< M
ij

1
33ij

g)el(M
33}hkl{

)el(g
33}hkl{

)el(g
33 σ′εε=ε −

 (1.40) 

 
where g'c  is the single crystal stiffness tensor defined with respect to L frame. The average, 

marked by […] , is calculated over the whole considered volume. Finally, the Rij
M(V) constants are 

equal to: 
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]c[ = R 33ij
gVM

ij
1)( −′  (1.41) 

 
The texture function f(g) is again used in the calculation of Rij

M(V) constants; however in this 
model all grains from the studied volume contribute to the average:  

 

ggg )df(c
8

1
 =] [c g

ijkl

E
2

g
ijkl )('' ∫π  

 

 

(1.42) 

 
In the above equation the single crystal stiffnesses )(' gg

ijklc  (considered in L system) is integrated 

over the whole orientation Euler space (E). Because the integration is over the whole Euler space 
the elastic constants do not depend on {hkl} plane. 
 
 
Self-consistent model  
 

In the self-consistent model (Baczmański et al., 1997b and 2003c; Kröner 1961; Lipiński 
and Berveiller 1989) a polycrystalline grain is considered as an ellipsoidal inclusion inside a 
homogeneous continuous medium (Fig. 1.10).   

 

 
Fig. 1.10. Scheme of interaction between grains for self-consistent model. Ellipsoidal inclusion 
is embedded in a homogeneous medium. 
 
 

According to this formalism, the elastic strain  )(' elg
nmε  (or stress )(' erg

nmσ ), in the g-th grain, 

is related to the macrostrain ' )(ε elM
kl (or macrostress 'σ M

kl ) by the concentration tensor )(' scgA  (or 
)(' scgB ), i.e.:   

    A  elM
kl

scg
mnkl

elg
nm ''' )()()( εε =  and         B  M

kl
scg

mnkl
erg

nm ''' )()( σσ =                          (1.43) 

 
where )(' scgA  and effscggscg '''' )()( SAcB =  are the strain and stress concentration tensors 

calculated for a purely elastic interaction using the self-consistent method, eff'S  is the 

macroscopic compliance tensor (eff'S will be described in Chapter 2) and g'c  is the grain 

stiffness tensor expressed in L system.  

Substituting the Hook's law in macro and micro scales ( M
kl

eff
ijkl

elM

ij  S= ''' )( σε  and )()( ''' erg
klijkl

elg

ij  s = σε ) 

in the above equations, the grain elastic strain can be related to the macro-stress, i.e.:    
 



 21

    X M
kl

scg
kl33

elg
nm ''' )()( σε =  (1.44) 

 
where: eff

mnkl
)sc(g

mn33
)sc(g

kl33 'S 'A='X  or )sc(g
mnkl

g
mn33

)sc(g
kl33 'B's='X . 

Finally, the diffraction elastic constants Rij
(sc)

 for a textured sample are defined as:  
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(1.45) 

 
where the integration is carried over all g orientations representing reflecting grains. 
For the calculation of the )(' scgX  tensor, the macro-compliance tensor eff'S  for a polycrystalline 

aggregate must be known. To do this, the self-consistent algorithm is applied for the elastic 
range of deformation. For textured material the macroscopic stiffness tensor can be written as: 
 

ggg dfAc = C scg
mnkl

g
ijmn

E

eff
ijkl )()(''' )(

∫  

 

(1.46) 

 
The macroscopic stiffness tensor eff'C , as well as the strain concentration tensor )(' scgA  can be 
calculated using the self-consistent scheme described in Chapter 2 and assuming the ellipsoidal 
shape of inclusion, representing a polycrystalline grain.  
 
 
Self-consistent model for free surface conditions 
 

In this part the idea of directional dependence of grain interaction is proposed for any 
symmetry of the textured sample. To do this, the influence of a free surface (grains on the 
surface can freely deform in normal direction) and of the shape of grains is considered. (Van 
Leeuwen et al., 1999, Welzel et al., 2003) In general, the deformed grains are elongated and flat 
(for example, after cold rolling). Moreover, in X-ray diffraction the information volume of the 
sample is defined by absorption, causing unequal contribution of different crystallites to the 
intensity of the measured peak (the surface grains participate more effectively in diffraction than 
the grains which are deeper in the sample (see Fig 1.11). The following scheme for flat and 
elongated grains in the near surface volume (Fig. 1.12) is proposed: the forces and stresses 
normal to the surface propagate similarly as in the Reuss model, while a two dimensional elastic 
coupling between grains occurs in the plane parallel to the sample surface (it is calculated by the 
self-consistent model). 
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Fig. 1.11. Scheme of interaction between grains for self-consistent free-surface. Ellipsoidal 
inclusion is placed near the surface of the homogeneous medium. 
 
Similarly as in Eq. 1.43, the grain stresses )(erg

ijσ  are related to the macrostress by the 

concentration )( fsscg −B  tensor, (see chapter 2.6) i.e.,:   

    B  M
kl

fsscg
ijkl

erg
ij σσ )()( −=  (1.47) 

 
where eff)sc(gg)fssc(g SAcB =−  tensor must be calculated for inclusion in the surface volume of the 

sample and all quantities are expressed in X system (see Fig. 1.11).  
 

 
 
Fig.1.12. Scheme of interaction between elongated and flat grains in the near surface volume for 
cold rolled sample, i.e., Reuss model in x3 direction and self-consistent model in the plane (x2, 
x3). The sample axes are defined by: RD - rolling direction,  TD - transverse direction and ND - 
normal direction. The orientation and the main axis of ellipsoidal inclusion are defined.  
 
The main difficulty is to calculate the )( fsscg

ijklB − , which differs from that defined for inclusion 

completely embedded in the material. To realize the conditions of flat grains with a free surface, 
a special construction of stress concentration tensor is proposed, i.e.: 
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(1.48) 

 
where I is the identity tensor, and )(scgB  is the concentration tensor calculated for inclusion 

completely embedded in the material. 
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Using Eqs. 1.47 and 1.48, the planar components of grain stress 
( )(erg

ijσ 3j3i ≠≠ andfor  ) are calculated assuming the same interaction between grains as for 

inclusion completely embedded in the material. However, the grain stress components in which 
appear forces normal to the sample surface ()(erg

ijσ 3j3i == orfor  ), are taken as equal to the 

corresponding macrostresses (M
ijσ ). This means that elastic interaction between grains is 

neglected in the direction normal to the surface.  
 

To calculate diffraction elastic constants, the stress concentration tensor is transformed to 
L system, i.e., )()(' fsscg

mnoplpkojnim
fsscg

ijkl BaaaaB −− =  and )fssc(g
mnkl

g
mn33

)fssc(g
kl33 'B's='X −−  tensor components are 

computed. Finally, R fsscM
ij

)( −  diffraction elastic constants are equal to (cf., Eq. 1.45): 
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(1.49) 

 
 
Experimental verification  
 

Each of the models described above is based on different assumptions and consequently 
the calculated diffraction elastic constants are different. The calculated elastic constants Fij

M (see 
Eq. 1.26) which are expressed by the Rij

M, can be verified experimentally. In the first step, the 
measurement of }{

0 , hkl)(d < >=Σ φψ  in the non-loaded sample is done; the residual strain 

 )( < res
hkl}{, >φψε present in a material is:   

0
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0
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0
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(1.50) 

 
Next, the interplanar spacings }{, hkl)(d < >Σ φψ  for the same sample but under unaxial stress 11Σ  

(applied along the rolling direction) are measured. Due to the superposition of strains for purely 
elastic deformation, the total lattice strain tot

hkl)( }{, >< φψε  in the loaded sample is: 
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(1.51) 

 
where: ),(11 φψMF  are the diffraction elastic constants for {hkl} reflection. 

The value 0
}{ hkld used in Eq. 1.51 can be approximated by the mean value of lattice spacings 

measured at different directions of the scattering vector in the non-loaded sample. Finally, the 
values of ),(11 φψMF  can be experimentally determined for different orientations of the scattering 
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vector: 

11

}211{
11

,
),(

Σ
>

=
Σ )( <

F M φψε
φψ  

 

(1.52) 

where res
hkl

tot
hklhkl )( )( )( }{}{}{ ,,, ><−>=<>< Σ φψεφψεφψε  and 11Σ  stress component is calculated 

as the ratio of the applied force and the cross-section of the sample.  
 
The results of the elastic constants calculations made by Baczmański (Baczmański, 

Habilitation Thesis, 2005) are presented here. The cold rolled ferrite steel sample (reduction of 
95%) was studied. The {110}, {100} and {211} pole figures have been determined and the 
orientation distribution function was calculated. Next, the interplanar spacings {211} have been 
measured using Cr X-ray radiation (λ=2.291 Å). The measurements were repeated for three 
values of the applied stresses, i.e., 11Σ = 200, 400 and 500 MPa. As shown in Fig. 1.13, the 
determined diffraction elastic constants are almost the same for different values of applied stress 

11Σ . 
 
 

 
Fig.1.13. Experimental and theoretical M11F  versus sin2ψ  for cold rolled ferritic steel (reduction 
of 95%). Single crystal elastic constants given in Table 1.1 and orientation distribution function 
were used in calculations. (Baczmański, Habilitation Thesis, 2005)  

 
The best agreement between experimental and calculated diffraction elastic constants was 
obtained using the Reuss and self-consistent (free surface) models. Similar conclusions were 
reported by other authors (for example, Hauk, 1986, Pintschovius et al. 1987) for plastically 
deformed steels.  
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1.5. Multi-reflection method for stress determination 
 

The standard sin2ψ method of stress determining is based on the measurement of 
interplanar spacing for various directions of the scattering vector (Noyan and Cohen, 1987). 
These directions are defined by φ and ψ angles (Fig. 1.3). In diffraction method, the mean 
interplanar spacing <d(ψ,φ)> {hkl}, averaged for grains from the reflecting group (scattering 
vector normal to the reflecting {hkl} planes), is measured. Using the standard X-ray diffraction 
method, interplanar spacings are measured as a function of  sin2ψ  for constant hkl reflection and 
φ angle. The measured interplanar spacings are expressed as (cf. Eq. 1.25): 

 
0

}{
0

}{}{ ,}{, hklhkl
M
ij

M
ijhkl dd]   ),hkl( F [ = >)d( < +σφψφψ  (1.53) 

 
where:  ),hkl( F M

ij φψ ,}{ are anisotropic diffraction elastic constants. 

In classical sin2ψ method the residual stresses are determined using a selected diffraction peak. 
In the new method elaborated by Baczmański and Skrzypek (Skrzypek and Baczmański; 2001a 
2001b) a few diffraction peaks are analysed simultaneously (multi-reflection method).  In this 
procedure, the equivalent lattice parameters <a(ψ,φ)> {hkl}: 
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++><=>< φψφψ  

 

 

(1.54) 

 
are calculated from the measured interplanar spacings for different hkl reflections and for various 
orientations of the scattering vector characterized by the φ and ψ angles; (the above relation is 
valid in the case of the cubic crystal symmetry). Consequently, the M

ijσ residual macrostresses 

are determined from the following formula: 
 

00
}{ ,}{, aa]  ),hkl( F [ = >)a( < M

ij
M

ijhkl +σφψφψ  (1.55) 

 
where the 0a  is the reference length equal to the lattice parameter for a stress free sample.  
Due to transformation expressed by Eq. 1.54 only one 0a  value instead of many 0hkld }{  values is 

used when equivalent <a( φψ , )> {hkl} parameters are fitted to the experimental points. The 

reference length (0a ) and macrostresses Mijσ can be found using the fitting procedure and 

previously calculated ),hkl( F M
ij φψ ,}{  constants. The main advantage of the multi-reflection 

method is that experimental data obtained for various hkl reflections are treated simultaneously 
and only one stress-free lattice parameter is to be determined. 
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Chapter 2 
 
 
 

Deformation models for polycrystalline 
materials 
 

 
 

2.1. Introduction  
  

In order to perform correct interpretation of many experimental data it is necessary to 
apply deformation models. Roughly, there are two types of deformation models: these using the 
finite elements method and micro-macro crystallographic models. In the first case the material is 
treated as a continuous medium and the crystalline character of grains was not taken into account. 
The finite element method is suitable for the prediction of deformation of samples with complex 
shapes subjected to various loads. On the other hand, the crystallographic deformation models are 
better adapted to the study of the internal microstructure evolution of a polycrystalline material.  

In this work crystallographic deformation models will be used. These models can predict 
many parameters and characteristics which are essential for experimental data analysis, e.g.: 
crystallographic texture, hardening curves (stress-strain curves), residual stresses, plastic flow 
surfaces, dislocation density, stored energy and many others.  

In the present chapter two elastoplastic deformation models will be discussed. The first 
one - LW model - is based on original formulations due to Leffers (Lefers, 1968a 1968b) and on 
further developments done by Wierzbanowski (Wierzbanowski, 1978, 1982, 1987).  The second 
one is the self-consistent (SC) model. The first applications of SC scheme were performed by 
Hutchinson (Hutchinson, 1964a, 1964b) and Berveiller and Zaoui (Berveiller and Zaoui, 1979) in 
the range of the small elasto-plastic strain. A more systematic and general approach, based on the 
kinematic integral equation, was developed by Lipinski and Berveiller (Lipinski and Berveiller, 
1989) and successfully applied for the three-dimensional representative volume element under 
large deformation (Lipiński, 1993). In this chapter the SC model developed by A. Baczmański 
(Baczmański et al. 1994a and 2004) will be presented. The results predicted by both models for 
typical fcc, bcc and hcp structure will be discussed. 
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2.2. Mechanisms of plastic deformation 
 

Contrary to the elastic deformation, which involves reversible atom displacements, the 
plastic deformation undergoes by non-reversible mechanisms such as crystallographic slip or 
(and) mechanical twinning. The both mechanisms are non-reversible, which means that after the 
release of external forces some permanent deformation stays in the material. Both during the slip 
and twinning, two parts of crystal (or grain) are sheared one with respect to another. The 
crystallographic slip is schematically presented in Fig.2.1. Neighboring blocs of crystal are 
relatively displaced. This movement (i.e. slip) occurs on a slip plane (hkl) and along a slip 
direction [uvw]. Consequently, one defines a slip system [uvw](hkl) and also a family of 
crystallographically equivalent slip systems <uvw>{hkl}. The slip phenomenon occurs due to a 
movement of a huge number of dislocations on a slip plane. The dislocation movement, and 
hence the slip itself, appears in relatively narrow volume of material, called the slip band (with an 
average width h); on the other hand, displaced blocs of crystal (with an average width H) are 
“inactive” in their volume (Fig. 2.1). The slip usually appears on planes for which the density of 
atoms is the highest (due to the lowest energy necessary to shift atoms from one stable position to 
another). The slip occurs if the shear stress acting in a slip system exceeds some critical value. 

 

 
 
Fig. 2.1. Slip in a single crystal: blocs of a crystal of an average width H are relatively 
displaced along the slip plane and slip direction. Regions of an average width h, where slip 
intensively occurs – are called slip bands. Dislocation density is of a few orders of magnitude 
higher inside slip bands than in other parts of a crystal. Typical ratio of H/h is between 103 
and 104. 
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Mechanical twinning consists of the shearing movements of atomic planes, which leads to the 
formation of a crystal region with a crystal lattice being a mirror image (with respect to the 
boundary plane) of the original crystal – Fig. 2.2. This newly created crystal region is called twin. 
Let us notice that during a twin formation, all subsequent atom layers of the twin are displaced 
(by shear movement) with respect to neighboring ones. “Non-active blocs” do not exit in this case 
and consequently the shear deformation is high. By activation of many slip (or twinning) systems 
one can obtain any imposed deformation of a crystal. It can be shown that at least five 
independent shear systems (slip or twinning) are necessary to produce an imposed deformation. 
We will see later that besides deformation also crystal lattice rotation is induced by slip or 
twinning. 

 
Fig. 2.2. A twin is created from an original crystal by shearing movements of consecutive 
atomic layers. In analogy to slip, one defines the twinning direction and plane (the latter being 
parallel to the boundary plane and is called  habitus plane). 

 
Among two described mechanisms of plastic deformation, generally the slip is dominating. 
Twinning can appear in materials in which a number of independent slip systems in not sufficient 
to produce an imposed deformation (e.g., in h.c.p. metals or in f.c.c. metals deformed in low 
temperatures). However, if one considers f.c.c. or b.c.c. metals deformed in room temperature, it 
is generally sufficient to take into account only slip phenomenon.  
 
 

2.3. Macroscopic description  
 

The aim of elastoplastic models is to describe processes occurring in polycrystalline 
materials during deformation. In such models, the behaviour of a crystal grain inside the 
polycrystalline material under applied stresses Σij   is studied. The calculations are performed on 
two different scales: the macro-scale, where the average elastic )(el

ijE  and plastic )( pl
ijE  

macrostrains are defined, and the grain scale, in which the behaviour of each crystallite under 
stresses g

ijσ  is analyzed (Fig 2.3). 
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Fig. 2.3. Elastoplastic deformation of a polycrystalline material under applied stress 
ij

Σ . 

 
The scheme of elastoplastic behaviour of a polycrystalline material during unaxial tensile test is 
presented in Fig. 2.4, where two characteristic regions of deformation are indicated. The linear 

part of 
11

Σ  vs. 
11

E  curve represents the elasticity described by average elastic constants tensors, 

which relate the applied stresses (ijΣ ) with the elastic strains of the sample (
kl

E ). In this range 

Hook law is used. In the elasto-plastic deformation range we use similar relations, but concerning 
the stress and strain increments. Increments ij∆Σ  and klE∆ are related by tangent moduli. They 

can be calculated if active slip systems and corresponding glide shears are known in all grains. In 
the elasto-plastic range tangent moduli change with deformation and their values have to be 
calculated continuously.  
 

 

Fig. 2.4. 
11

Σ  vs. 
11

E  curve for unaxial tensile test. 

 
 



 31

2.4. Behaviour of a grain  
 
 
2.4.1. Slip system  
 

To predict the plastic deformation on a grain scale it is necessary to study the modification 
of grain parameters occurring during the slip and twinning phenomena. In the models used in this 
work only the first one, i.e. the slip, is taken into account. 

Slip is the elementary mechanism of plastic deformation. It occurs on a crystal plane (hkl) 
and along a [uvw] direction (situated in this plane). The slip plane is defined by the unit vector n 
(perpendicular to the plane), and slip direction – by the unit vector m. A slip system {m, n} is 
usually denoted its crystal indices as: [uvw](hkl). It is very useful to introduce the reference frame 
connected with the slip system: x1

g=m, x3
g=n (Fig. 2.5 and Fig 2.7). The resolved shear stress, 

decisive for a slip system activation, is easily expressed in this coordinates system: g
13στ = . In a 

similar way, the glide shear γ∆  produced by a single slip is characterized by only one non-zero 

component γ∆∆ =)g(pl
13e  of the plastic displacement gradient tensor ( )g(pl

ije∆ )  (compare Figs. 2.5 

and 2.6). 

 
Fig. 2.5. Displacement of the material during a single slip. The first axis of the g system is 
defined by m vector and the third axis – by n vector. 

 

 
Fig. 2.6. Definition of the glide shear γ caused by a single slip ( )g(pl

13e∆γ∆ = ). 

 
The condition for the slip occurrence is:  
 

crττ =  (2.1) 
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i.e., the resolved shear stress ( g
13στ = ) has to exceed a critical valuecrτ  (Schmid law). The 

resolved shear stress g
13στ =  on the slip system {m, n} is calculated as: 

 

ijjiijj3i1
g
13 nmaa σσστ ===  (2.2) 

 
where ijσ  is the local stress tensor expressed in the sample reference frame - S (defined by main 

symmetry axes of the sample - e.g., rolling, transverse and normal directions in the case of 
rolling). In the above equation - and in the whole text of this thesis - the convention of summation 
on repeated lower indices is applied (for upper indices we apply a classical summation symbol). 
The coefficients ija  define the transition from the system S to g. It is practical to define the 

following quantity:  

jiij nmR =  (2.3) 

 
characterizing the orientation of  g system with respect to S (Fig. 2.7.). Finally, shear stress τ  on 
the slip system can be expressed as: 
 

ijijR στ =  (2.4) 

 
Both coordinate systems S and g are schematically shown in Fig. 2.7. 
 

 
Fig. 2.7. The coordinates systems of:  sample (S)  and slip (g) 

 
 
2.4.2. Hardening of slip systems 
 
 

The slip systems are hardened during deformation, which is reflected in the shape of the 
stress-strain curve (Fig. 2.8a). In many cases the hardening can be described by linear approach. 
Consequently a linear range is observed on the stress-strain curve. On the other hand, if one 
considers a given slip system (“i”), its critical resolved shear stress for slip is linearly dependent 
on a shear glide of any other active slip system (“j”) in a relatively wide range of deformation - 
Fig. 2.8b. The physical reason of the hardening is an intensive multiplication of dislocations 
during plastic deformation. The dislocations are necessary for crystal glide, but if they are in an 
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excessive number – they block each other and this leads to the increasing of critical stress for slip 
(Franciosi, 1980). 
  

 
                      a                                                                        b 
Fig. 2.8. Hardening curves: a) linear range of stress-strain curve, b) τcr versus γ according to 
linear hardening. 

 
Generally, a multiple slip is observed and in such the case the hardening of the system („i”) 
depends on shear glides on all other active slip systems („j”):  
 

∑=
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jiji
cr H γ∆τ∆  

 

(2.5) 

or also: 
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jij
0

i
cr H γττ  

 

(2.6) 

Hij is called the hardening matrix; obviously it is symmetrical. Both theoretical and experimental 
study show that in the first approximation this matrix contains two types of terms: strong (h2) and 
weak (h1) ones. Their ratio A=h2/h1 is called the hardening anisotropy coefficient. The terms 
located on the matrix diagonal (weak terms) describe the self-hardening of slip systems. An 
example of a strong term corresponds to a pair of slip systems with perpendicular system 
directions. For the f.c.c. metals (twelve slip systems <110>{111}) the following hardening matrix 
was found (Franciosi et al., 1980) : 
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2.4.3. Grain deformation and lattice rotation 
 

Every elementary act of the slip causes the deformation pl
ijε∆ and the rotation pl

ijω∆ of a 

grain. The lattice rotation is not only a result of the slip. After elementary act of slip the grain is 
rotated (as a rigid body) - Fig. 2.9, but the lattice itself does not change the orientation. The 
rotation of lattice is introduced by the orientation preservation of selected sample axes or planes. 
In the case of tensile test (Fig. 2.9) it is the preservation of the tensile axis orientation. 

Let us calculate the deformation and rotation (pl
ijε∆  and pl

ijω∆ ), resulting from a glide on 

one slip system with the shear glide γ∆ . In the slip system reference frame (g) the displacement 

gradient tensor has only one non-zero component: γ∆=∆ )(
13

gple . This tensor after transformation 

to the sample reference frame (S) has the form: )(
13

'
3

'
1

gpl
ji

pl
ij eaae ∆=∆ . Taking into account the 

definition of S and g systems (Fig. 2.7) we see that: i
'
1i ma =  and j

'
3j na = ( '

ija define the 

transformation from g do S, while ija  – from S do g; obviously: '
jiij aa =  ). Finally: 

γ∆∆ ji
pl
ij nme = , or also: 

γ∆∆ ij
pl
ij Re =  (2.8) 

 

If a multiple slip is occurring, then:  
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(2.9) 

 

where s numbers all active slip systems. 

Having pl
ije∆ , one finds easily grain deformation and rotation: pl

ijε∆  and pl
ijω∆  (they are 

symmetric and anti-symmetric parts ofpl
ije∆ , respectively): 
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where: )RR(
2

1
R s

ji
s
ij

s
)ij( +=  and )RR(

2

1
R s

ji
s
ij

s
(ij) −= . Let us underline that pl

ijω∆  is a rigid 

body grain rotation produced by slip. If there was not interaction between a grain and the matrix – 
crystal lattice orientation would not change (see Fig. 2.9 a,b). However, in general a grain does 
not rotate as a rigid body, because of the constraints imposed by the neighboring material and the 
deformation device. As a consequence, some compensating rotation occurs ( latt

ijω∆ ) and it 

changes the grain lattice orientation: 
 

pl
ij

latt
ij ω∆ω∆ −=  (2.12) 
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As it was stated above, in the tensile test of a single crystal (Fig. 2.9), the direction defined by a 
tensile force has to be preserved. This condition imposes a compensating rotation of a crystal, 

latt
ijω∆ ,  which causes the rotation of a lattice. 

 

 

z z z

x x x

a) b) c)  
 

Fig. 2.9. Tensile test of a crystal along z direction:  a) before slip, b) after slip, c) after 
fulfilment of the condition of z axis orientation preservation (parallel to applied force).  
 
 

2.4.4. Mascroscopic  deformation  
 
The deformation of the sample is the average of grain deformations:  
 

∑>==<
I

I)I(pl
ij

0

pl
ij

pl
ij V

V

1
E εε  

 

(2.13) 

 
where VI is the volume of the I-th grain and V0 is the sample volume. 
 
 
2.5. Leffers-Wierzbanowski plastic deformation model 
(LW) 

The basic question, which has to be answered in any model, is: what is the relation 
between macroscopic variables of the sample (Σij, Eij) and analogical microscopic ones (σij, εij) on 
the level of a polycrystalline grain – Fig. 2.10. Unfortunately, generally it is not possible to find 
the unknown quantities in an analytical way. This is the reason why we use models. 
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Fig. 2.10. Macroscopic load Σij is applied to a material and as a result a local stress σij is 
induced on a grain level. The sample deformation is Eij, but a local grain deformation is εij. 

 
It was shown by Hill (Hill, 1965) that a general relation between local and global variables could 
be written in the form:  

)(
*

klklijklijij EL
••••

−+Σ= εσ  
 

(2.14) 

 
where Lijkl

* is an interaction tensor and dot means the time derivative. Let us repeat that in the 
present work we use the convention of the summation on the repeated lower indices. 
A strict calculation of Lijkl

*  tensor is not possible in general; hence some simplifying assumptions 
have to be done. A considerable progress was done by so-called self-consistent models (a model 
of this type will be described in the next chapter). Nevertheless, it was found that in many 
interesting cases the assumption of the isotropic grain-matrix interaction leads to surprisingly 
good predictions of material properties. In such the case the Lijkl

* tensor is replaced by a scalar L: 
 

)( pl
ij

pl
ijijij EL

••••
−+Σ= εσ  

 

(2.15) 

 
where “pl” denotes the plastic part of total deformation.   
The above equation can be rewritten in the incremental form, useful in model calculations:  
 

)( pl
ij

pl
ijijij EL εσ ∆−∆+∆Σ=∆  

 

(2.16) 

 
Some of classical models can be reduced to Eq. 2.15 or 2.16 if L has a suitable value. For 
example: 
 
Sachs model   
L=0 leads to the Sachs model (Sachs, 1928). It is assumed in this model that no interactions 
between grains appear and consequently a homogeneous stress state results: ijij Σ=σ . This 

model neglects sizes of grains and surface phenomena.  
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Taylor model 
L→ ∞ leads to the Taylor model (Taylor, 1938). The basic assumption of the model is a 

homogeneous plastic deformation of the sample: pl
ij

pl
ij E=ε .  

Kröner model 

µ
ν
ν

)1(15

)57(2
L

−
−=  is obtained under the assumption of a purely elastic interaction between a grain 

and the matrix (Kröner, 1961); in the above formula ν is the Poisson coefficient and µ is the shear 
modulus. One finds L≅µ for typical value of ν≅0.3. In this model each grain is treated as a 
spherical inclusion inside a homogenous, infinite continuous medium. This sphere is deformed 
during interaction with neighboring material. 
Lin model 
L=2µ is obtained for Lin model (Lin, 1957), which is a generalized Taylor model. In this model 

the basic assumption is that the total deformation is homogeneous: pl
ij

e
ij

pl
ij

e
ij EE ε+ε=+  (e 

denotes elastic deformation and  pl – plastic one) and that elasticity is isotropic.  
LW model (with compromise interaction)  
L=αµ leads to a compromise description, very close to a real interaction (µ is the shear modulus 
and α is called the elasto-plastic accommodation factor). This is isotropic model with elasto-
plastic interaction (Berveiller and Zaoui 1979, Wierzbanowski 1982, 1987). The estimated values 
of α factor are in the range (0.1 – 0.001). This parameter takes into account a partial plastic 
relaxation (by local slips near grain boundary region) of the interaction stresses between grains.  
Consequently, realistic interaction stresses are taken into account; they are much lower than 
purely elastic ones. For metals with low stacking energy (e.g., brass, silver) the estimated value of 
α is close to 0.001, while for metals with high stacking energy (aluminium, copper) α is in the 
range 0.01-0.1. The advantage of LW model is its flexibility in modelling the inter-granular 
interactions. LW model describes in general very well the plastic deformation, while the elastic 
part of the stress-strain curve can be only approximately taken into account.      
 
Calculation mode using LW model 
 

The initial orientation distribution of grains taken to model calculations is often random, 
but a distribution according to a given initial texture can also be used. The model calculations are 
continued till a preset final sample deformation. The calculations are done in incremental way 
(each increment corresponds to an increase of external load) and in each increment all crystallites 
are considered consecutively. At the beginning the external (applied) stress tensor amplitude has a 
value close to that necessary for activation of the best oriented slip systems. Next, the applied 
stress tensor is increased with an established step. The applied stress is transformed to slip system 
coordinate frames (e.g., there are 12 slip systems for f.c.c. structure and 12, 24 or 48  for b.c.c. 
one). If the resolved shear stress in a considered slip system exceeds the critical value – the slip 
system becomes active (Schmid law). Hence, a series of consecutive slips on different systems 
occurs, as long as the Schmid law is fulfilled. However, with progressing slip, the critical stress 
values are increasing due to the hardening law. And finally, we find the situation when no more 
slip systems can be activated. In such the moment the external stress tensor amplitude is increased 
of a preset ∆Σ value. The calculations are continued in such a way until the final sample 
deformation is obtained.  
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If we take an example of the tensile test (in z direction), the applied stress tensor can be presented 
as: 
 

















=
100

000

000

ij ΣΣ  

 

(2.17) 

 
where Σ is the stress tensor amplitude. In the k-th increment the applied stress tensor is: 

∆Σ−+Σ=Σ )1(0 k .  
 
The sequence of calculations in the first increment (k=1) is presented below: 
 
Step 1: 

- The initial local stress is: 0
ijij Σ=σ , where 0

ijΣ  is very close to fulfill the Schmid condition.: 

crττ = . We find “the most active” slip system: max=− Ig
cr

Ig ττ  (where I numbers grains and  

g – slip systems),  
- We attribute to this active slip system the elementary glide shear amplitude ∆γIg and we 

calculate the resulting deformation and lattice rotation: I
ijε∆  and I

ijω∆   (one of possibilities is 

to take a constant value of glide shear for all active slip system, e.g., γ∆ =0.05), 

- The local stresses are modified according to equation: )(
plI

ij
pl

ijij
I
ij EL εσ ∆−∆+∆Σ=∆ , 

 
Step 2: 
- Another most active slip system is searched, taking into consideration local stress modified in 

previous step, 
- next the same calculations as in step1 are performed, 
 
Following steps ... (we examine all slip systems in all grains)). 
. 
. 
If no more slip systems can become active, the external load is increased, i.e., we start the second 
increment  (k=2) and we repeat the same operations as above, 
 
 And so on with next increments... 
 
We stop the calculations if the calculated sample deformation has attained a preset final value. 
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2.6. Self-consistent model (SC) 
 

The basic assumption of the used self-consistent model is the representation of an 
individual grain as a three dimensional ellipsoidal inclusion embedded in an equivalent 
homogeneous material.   
 

 
 

Fig 2.11.  Polycrystalline grain as an ellipsoidal inclusion 

 
The basic problem in deformation models is to find a relation between local (σij, εij) and global 
characteristics (Σij and Eij). This relation is less direct in SC model than in LW model. In the 
following text we present the calculation mode used in the elasto-plastic SC model, based on the 
scheme developed by Lipiński and Berveiller (Lipiński and Berveiller, 1989). In the elastic range 
a general form of the Hook’s law is used:  
 

klijklij EC=Σ  and I
kl

I
ijkl

I
ij c εσ =   (2.18) 

 

where ijklC  and I
ijklc  are stiffness tensors of the sample and the I-th grain, respectively, and klE  

and I
klε  are corresponding deformation tensors. In the elasto-plastic deformation range we use 

analogical relations, but concerning the stress and strain increments:  
 

klijklij EL ∆∆Σ =   and I
kl

I
ijkl

I
ij l ε∆σ∆ =   (2.19) 

 

where ijklL  and I
ijkll  are so called tangent moduli of the sample and the I-th grain. The tangent 

modulus tensor of a grain, Iijkll , can be calculated if its active slip systems and corresponding glide 

shears are known. The sample tangent modulus,ijklL , is obtained by appropriate averaging of 

grain tangent moduli. If the elastic deformation range is considered then: ijklijkl CL =  and 
I
ijkl

I
ijkl cl = . The single crystal elastic properties are known in general and the sample elastic 

properties can be calculated using some hypothesis concerning grain-grain interactions (e.g., 
Kröner 1961; Reuss, 1929; Voigt, 1928). In the elasto-plastic range tangent moduli change with 

deformation and their values have to be continuously calculated. Some components of theijklL  

tensor have a direct experimental interpretation. For example the (L-1)1111 component can be 
determined from the stress-strain curve - Fig. 2.12. 
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Fig. 2.12.  Determination of 1111
1 )L( −  from the stress-strain curve.  

 
 
Interaction between a grain and its environment 
 
Interaction between a grain and the matrix can be directly calculated using the Eshelby theory 
(Eshelby, 1957). However, in the present work the calculation scheme developed by Lipinski and 
Berveiller (Lipiński and Berveiler, 1989) is used.  According to Eq. 2.19, the local stress in the 
elasto-plastic range is: 

)(l)( klijklij rr
••

= εσ  
(2.20) 

where )(l ijkl r  is the local tangent modulus tensor(„I” grain index is omitted here). This tensor 

can be also written as: 
)(lL)(l ijklijklijkl rr δ+=    (2.21) 

where )(l ijkl rδ  is its variable part depending on the position in a material  (let us note that it is 

simply the difference between the local and global tangent moduli: ijklijklijkl L)(l)(l −= rrδ ). 

Introducing the modified Green tensor, Γijkl (r -r’ ), the local deformation can be expressed as 
(Lipiński and Berveiller, 1989; Baczmański, 2005):  
 

 'dV)()(l)(E)(
mnklmnijkl

V
ijij

r'r'r'rr
•••

−∫+= εδΓε  

  
 

(2.22) 

 
The physical sense of the above equation is explained in Fig.2.13a: The local deformation in the 

point r  depends on deformation )(mn r'ε  and )(l klmn r'δ  tensors in any other point r’; these 

quantities are linked by the Γijkl (r -r’ ) tensor.   
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a b 

 
Fig. 2.13.  a) Deformation in the point r depends on deformation in any other point r’  and is 
described by the Green’s tensor, b) interaction between inclusions “I” and ”J “  is described by 
TIJ tensor. 
 
Deformation in the inclusion (grain) „I” can be expressed as (Lipiński and Berveiler, 1989): 
 

mn

JJ
klmn

N

1J ijkl

JI

ijij

I lTE
•

=

••

∑+= εδε  

   

(2.23) 

 

where 
JI

ijklT  tensor describes the interaction between inclusions „I”  and „J”  and N is the total 

number of them. Let us note that the above relation is a correct discretized form of Eq. 2.22, if: 
 

 'dVdV)(
V

1
T

I JV V

ijkl
I

JI
ijkl ∫ ∫ −= r'rΓ  

 
 
 

(2.24) 

 
We assume that J

klmnlδ  and J
mnε  are homogeneous inside each inclusion (grain). The interaction 

between inclusions ”I”   and “J”  is schematically shown in Fig. 2.13b. We will see later that the 

tensor II
ijklT  is a very important quantity, because it describes the interaction of the I-th inclusion 

with its environment. This tensor is also used in one-site approach, which is applied in the present 
work.  
 
Concentration tensors  
 

In the self-consistent models the idea of scale transition theory is based on the hypothesis 

of the existence of a concentration tensor I
ijklA  relating the macro-strain rate klE

•
  with the grain 

strain rate 
•
I
ijε and another concentration tensor IijklB  relating the macro-stress rate kl

•
Σ with the 

grain stress rate 
•

I
ijσ   (dot denotes the time derivative 

t∂
∂

 ). Consequently, we can write: 

 

kl
I
ijkl

I

ij EA
••

=ε  

 

(2.25) 

••
= kl

I
ijkl

I

ij B Σσ  

 

(2.26) 
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We will describe now separately the elastic and elasto-plastic ranges of deformation.  
 
Elastic deformation range: 
  

It can be shown (Baczmański, 2005) that using the II

ijklT tensor (one-site approach) and the 

Hooke’s law (Eq. 2.18) one obtains from Eq. 2.23 the concentration relation : 
 

)Cc(TI])A[( mnkl
I
mnkl

II
ijmnijklijkl

1I −−=−  (2.27) 

where ijklI  is the unit tensor. The macroscopic (sample) stiffness tensor, ijklC , appearing in the 

above equation is expressed as:  
 

I
mnkl

I
ijmn

N

1I

I

ijkl
AcfC ∑=

=
 

 
 

(2.28) 

where f I is the volume share of the grain „I”.   
If the I

ijklA  tensor is known for each grain, the stiffness tensor, ijklC , can be calculated using above 

equation. However, the solution of Eq. 2.27 is not direct, because to calculate the I
ijklA  tensor the 

ijklC  tensor has to be known, while the ijklC  tensor is obtained from the IijklA  (Eq. 2.28). This is 

the reason, why I
ijklA  and ijklC  tensors have to be calculated simultaneously, using an iterative 

procedure. Once the IijklA  tensor is calculated, the second concentration tensor can be found using 

the Hooke’s law: 
 

opkl
1I

mnop
I
ijmn

I
ijkl )C(AcB −=  (2.29) 

 
Elasto-plastic deformation range: 
 
We obtain analogous results as above if ijklC  tensor is replaced by ijklL  and I

ijmnc  - by I
ijmnl  one.  

Moreover, Eqs. 2.19 or their equivalent forms: 
 

klijklij EL
••

=Σ   and  
I

kl
I
ijkl

I

ij l
••

= εσ  

 

(2.30) 

have to be used instead of the Hooke’s law. 
 
As a result, the concentration tensor is: 
 

)Ll(TI])A[( mnkl
I
mnkl

II
ijmnijklijkl

1I −−=−  (2.31) 

 
with the sample tangent modulus tensor defined as: 
 

I
mnkl

I
ijmn

N

1I

I

ijkl
AlfL ∑=

=
 

 

(2.32) 
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The concentration tensor for stress is: 

opkl
1I

mnop
I
ijmn

I
ijkl )L(AlB −=  (2.33) 

 
The ijklL  tensor can be calculated if the values of the tensor I

ijklA are known for every grain I. In 

turn, the concentration tensors are determined for the known ijklL  tensor. To solve this problem 

the iteration procedure is used, i.e., starting from the initial value of the ijklL  tensor, the I
ijklA  

tensors are calculated and the new ijklL  tensor is determined from Eq. 2.32. The latter tensor is the 

initial one for the next iteration. The procedure is completed when the calculated ijklL  tensor does 

not change significantly after consecutive iterations.  
 
 

2.7. Calculations for hexagonal structure  
 

Many metals crystallize in hexagonal structure, hence our calculations were adapted for 
this case. The elementary cell of a hexagonal system is defined by two vectors of equal length a1 
and a2, forming 1200 one with another, and the third vector c perpendicular to them (Fig. 2.14). In 
our calculations, however, an artificial orthogonal coordinate system for crystallographic cell was 
used. Two versors of the new coordinate system (X2 and X3) are defined by the vectors of the 
elementary cell (i.e., a2 and c ) - Fig. 2.14 - and X1 is perpendicular to them. The indices of a 
plane and a direction in the hexagonal system are often referred to four axes (the fourth axis a3 
lays in the basal plane and is inclined 1200 with respect to a1 and a2) and they are written as (hkil) 
and  [prst]. It can be shown that: 
 

ikh −=+  (2.34a) 
and  

srp −=+  (2.34b) 
 

 
 

Fig. 2.14. Hexagonal elementary cell defined by {a1, a2, c} and orthogonal coordinates system 
represented by { X1, X2, X3}. 

 
Typical crystallographic planes in hexagonal structure are presented on Fig. 2.15. 
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        c      }1000{  
 
Fig 2.15. The main planes in hcp structure: (a) pyramidal planes (b) prismatic planes (c) basal 
plane 
 
As it was mentioned, the artificial orthogonal coordinates system was used in our calculations.  
Hence, it is necessary to transform plane and direction indices to this new reference frame (four 
indices have to be reduced to three). This transformation can be found by simple geometrical 
relations (Wierzbanowski, 1978):  
 

for plane:       ( ) ( ) 






 +=→
c

a
lk

kh
lkhhkil ,,,

3

2
'''  

for direction:     [ ] [ ] ( ) ( ) 







+−−=→

a

c
tspspwvuprst ,

2
3

,
2
3

'''  

 
 
(2.35) 

 
where: h’k’l’  are plane indices in new (orthogonal) coordinates system and u’v’w’  are new 
direction indices; c and a – are lattice parameters of hexagonal cell. After this transformation - the 
model calculations are done in an analogical way as for the cubic crystal structure. 
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2.8. Results obtained with the models 
 
The models can be used for prediction of important material characteristics, e.g.: 

- crystallographic texture 
- hardening curves (e.g., stress-strain curves), 
- residual stresses, 
- plastic flow surfaces, 
- dislocation density and stored energy,  
- etc. 

 
In this chapter the results obtained using LW and SC models for fcc, bcc and hcp 

structures will be presented. Essentially, there are two types of rolling texture of fcc metals: the 
copper type texture (e.g., in: Cu, Al, Ni) and brass texture (e.g., in: Cu-Zn, Ag). In general, the 
copper type texture is observed in materials with high stacking fault energy, whereas brass type 
texture - in materials with low stacking fault energy. The above classification can be still 
modified, because the type of texture depends also on deformation rate and on temperature. 

The rolling textures presented in this chapter were predicted by LW model (this model 
gives very good results in the plastic deformation range; moreover, calculations are much faster 
with LW model than with SC model). In each case a model sample was represented by 5000 
grains having equal volumes and initial random crystal orientation distribution. Typical values of 
model parameters (τo, τcr, H, L) were used (Table 2.1). Values of these parameters are close to the 
experimental ones. It was found that for a weak grain-matrix interaction (situation close to Sachs 
model) - the brass type texture is predicted, while for a strong interaction (close to Taylor model) 
- the copper type one. Consequently, in the case of brass texture the interaction parameter L=100 
MPa was assumed, while for copper one - L=800 MPa was used (value of L=µα depends on the 
shear modulus µ but also on the grain-matrix interaction, which is described by the elasto-plastic 
accommodation factor α). According to Leffers’ argumentation (Leffers, 1975), the cross slip is 
observed near the boundary regions in metals with medium and high stacking fault energy (like in 
copper). This leads to relatively homogeneous deformation of grains (Taylor model) and as a 
result the copper type texture is formed.  

To describe the deformation of ferritic steel, the typical slip systems for bcc structure: 
<111>{110} an <111> {112} were used (sometimes also <111> {123} is reported). In bcc 
metals, where many slip systems can operate, also rather homogeneous deformation occurs and 
this situation was described by a strong interaction in the model (L=1000 MPa).   
 
 The results of texture prediction for fcc and bcc metals are shown in Fig. 2.15 - 2.17. 
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Table 2.1. The input parameters used for calculations 
 
Structure 

 
 

Slip systems 
<direction>{plane} 

(total number ) 

0
cτ   - initial 

critical shear 
stress [MPa] 

Hardening 
parameters 

[MPa] 

Grain elastic constants 
E -Young modulus 

[MPa] 
ν - Poisson ratio 

L 
Interaction 
parameter 

[MPa] 
 

bcc 
 

<111> {110} 
<111> {112} 
<111> {123} 

(48 slip systems) 

 
150 

 

 
H = 80 
A = 1 

 
E = 208 
ν = 0.29 

 
1000 

E = 122.5, ν = 0.34 
(copper) 

800 fcc 
 

<110> {111} 
(12 slip systems) 

80 
 

H=60 
A = 1 

E = 110, ν = 0.3 
 (brass) 

100 

 
 

  
Fig. 2.15. Measured (on the left) and predicted (on the right) ODFs of cold rolled brass  (2φ  
sections are shown). Rolling reduction is 70%. 
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Fig. 2.16. . Measured (on the leftt) and predicted (on the right) ODFs of cold rolled copper (2φ  
sections are shown). Rolling reduction is 70%. 
 

  
Fig. 2.17. Measured (on the left) and predicted (on the right) ODFs of cold rolled ferritic steel  
( 2φ  sections are shown). Rolling reduction is 80%. 
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The metals of hexagonal structure were also studied using LW model. In these metals besides of 
the slip also the twinning is often observed. Nevertheless, taking into account only deformation 
produced by slip we were able to predict the main texture features (Philippe, 1995) (however, in 
future the introduction of twinning to the model is also foreseen). In hexagonal materials some 
number of slip system families can be activated (their critical values crτ  have different values in 

general). The data on crτ , which can be found in literature, is not always consistent. Moreover, 

these values strongly depend on purity of materials and conditions of deformation (Philippe, 
1995). In Table 2.2 the ac  ratio as well as the most important slip systems for typical hcp 
materials (Be, Hf, Ti, Zr, Co, Mg, Zn and Cd) are listed. The textures of hexagonal metals and 
alloys can be classified into three groups, according to their c/a ratios, namely: materials with c/a 
ratio greater than, approximately equal to, and smaller than the theoretical value of 1.633. The 
rolling textures for these three groups of hcp metals were measured using X-ray diffraction. The 
examined materials were: magnesium (ac =1.624), titanium ( ac =1.588) and zinc ( ac =1.856). 
The measured textures were compared next with those predicted by LW model - Figs. 2.18 - 2.20. 
The slip systems from Table 2.2 were used in calculations.  
 
Table 2.2. Typical slip systems observed in selected hcp metals (Wang et al., 2003; Philippe, 
1983). 
 

Element 
a

c  Deviation (%) 
from the ideal 

633.1=a
c  

Principal slip  
system 

Secondary slip  
System 

Other slip  
System 

Cd 1.866 +15.5 
}0001{0211 ><

−
 }2211{3211

−−
><  }0110{0211

−−
><  

}1110{0211
−−

><  
Zn 1.856 +13.6 

}0001{0211 ><
−

 }2211{3211
−−

><  }0110{0211
−−

><  
Mg 1.624 -0.6 

}0001{0211 ><
−

 }0110{0211
−−

><  }1110{0211
−−

><  

}2211{3211
−−

><  
Co 1.623 -0.6 

}0001{0211 ><
−

 
None None 

Zr 1.593 -2.4 
}0110{0211

−−
><  }0001{0211 ><

−
 }1110{0211

−−
><  

}2211{3211
−−

><  
Ti 1.588 -2.8 

}0110{0211
−−

><  }0001{0211 ><
−

 }1110{0211
−−

><  

}2211{3211
−−

><  
Hf 1.581 -3.2 

}0110{0211
−−

><  }0001{0211 ><
−

 
 

Be 1.568 -4.0 
}0001{0211 ><

−
 }0110{0211

−−
><  }1110{0211

−−
><  

}2211{3211
−−

><  
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Hcp metals and alloys with c/a ratio approximately equal to the theoretical value of 1.633, such as 
Mg, tend to form basal fiber textures during rolling (Fig. 2.18). The origin of such textures may 
be understood in terms of the slip systems operating in basal planes. Metals and alloys with c/a 
ratios above the ideal one, such as Zn (1.856) and Cd (1.885), tend to exhibit textures with basal 
poles tilted ±15–250  away from the normal direction towards the rolling direction. (Fig. 2.19.)  
Finally, the metals and alloys, having c/a ratio smaller than 1.633 such as Zr (1.589) and Ti 
(1.587), tend to form textures with basal poles tilted ±20–400 away from the normal direction 

towards the transverse direction (Fig. 2.20). The basal }0001{0211 ><
−

slip produces the basal 
texture characteristic for Mg (c/a ≈ 1.633) – Fig.2.18. The combination of basal 

}0001{0211 ><
−

slip, pyramidal }2211{3211
−−

>< slip and prismatic }0110{0211
−−

><  slip 
produces the characteristic textures with basal poles tilted away from the normal direction toward 
the rolling direction for Zn (c/a > 1.633) – Fig. 2.19. Finally, the combination of prismatic 

}0110{0211
−−

><  slip and pyramidal }1110{0211
−−

>< slip produces the characteristic textures with 
basal poles tilted away from the normal direction toward the transverse direction for Ti  (c/a < 
1.633) – Fig. 2.20 (Gloaugen, 2001). All the predicted textures agree well with corresponding 
experimental ones. 
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a  

b  

 
c. 

 
d. 

Fig. 2.18. (001), (102) PFs and ODFs for polycrystalline magnesium rolled to 80% reduction:  

a) experimental PFs, b) predicted PFs, c) experimental ODF, d) predicted OD. }0001{0211 ><
−

 
slip system was used for calculation. 
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a  

b  

 
c. 

 
d. 

Fig. 2.19. (001), (100), (102) PFs  and ODFs for polycrystalline zinc rolled to 35% reduction: 
 a) experimental  PFs, b) predicted PFs,, c) experimental ODF, d) predicted ODF. 

}0001{0211 ><
−

 }2211{3211
−−

><  }0110{0211
−−

><  slip systems were used for calculation.  
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a  

b  

 
c. 

 
d. 

Fig. 2.20. (001), (100), (102) PFs and ODFs for polycrystalline titanium rolled to 70% 
reduction:  a) experimental PFs, b) predicted PFs, c) experimental ODF, d) predicted ODF. 

}0110{0211
−−

><  }1110{0211
−−

><  slip systems were used for calculation. 
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The texture is not the only characteristics, which can be predicted by elasto-plastic 
deformation models. Another one is, e.g., the stored energy, which plays a crucial role in 
recrystallization process (Baczmański et al., 2007).  One can distinguish two contributions to this 
energy. The first one is the elastic energy (Eel), connected with residual stresses, i.e., with grain-
grain interactions. Another part of the stored energy (Edisl) is due to a huge increase of dislocation 
density inside grains, which occurs during plastic deformation. Edisl is about one order of 
magnitude higher than Eel, and, hence, is considered as the main driving force of recrystallization 
(Piękoś, 2006).  Its value can be approximated as: 
 

ρ2GbEdisl ≅  (2.36) 

 
where G is the shear modulus, b – Burgers vector of dislocations and ρ is the dislocation density 
(Piękoś, 2006). This stored energy is decisive for kinetics of the recrystallization process. The 
dislocation density ρ is proportional to <τcr

2> and can be predicted by deformation models (τcr is 
the critical shear stress for slip and the average <..> is done over all active slip systems in a given 
grain). The exemplary prediction of Edisl by LW model is shown in Fig. 2.21 c. This distribution 
is compared with ODFs of rolled and recrystallized steel samples (Fig. 2.21 a, b). 
 

 
       a. 

 
       b. 

 
       c. 

 

 
                         d.                             e.                                                        f. 
Fig. 2.21. Texture of low carbon steel and its relation to the stored energy. a, d) rolling texture, b, 
e) recrystallization  texture, c, f) stored energy predicted by model. For figs d, e and f only ϕ2=450 
were presented. 
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It is visible (see section ϕ2=450) that during recrystallization the series of orientations called γ 
fiber (horizontal one) is reinforced and, oppositely, the α fiber (vertical one) is reduced. On the 
other hand, high values of the stored energy also appear in γ fiber. The observed texture change 
can be explained by the fact that recrystallization nuclei appear preferentially in grains with high 
stored energy, i.e. in γ fiber in this case. Consequently, we can conclude that the obtained stored 
energy distribution explains qualitatively the main tendency of texture transformation during 
recrystallization. 

The deformation model can predict also other properties of materials, for example 
hardening curves. The predicted stress-strain curve for polycrystalline copper is compared with 
the experimental one in Fig. 2.22.  
  

 
a. 

 
b. 
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                                               c. 
Fig. 2.22. a) Initial texture of rolled copper (measured), b) texture of copper after tensile test in 
transverse direction (predicted starting from initial one),  c) predicted and experimental stress-
strain curves for tensile test.  SC model was used for predictions. 
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The SC model was used in this case. Its main advantage is that it gives precise results also in 
elastic range of deformation (LW model works very well only in plastic range). The agreement 
between experimental and predicted stress-strain curve is perfect. The change of texture of the 
studied copper sample during tensile test is also shown. The initial sample had a typical rolling 
texture (Fig. 2.22 a) and after the tensile test the texture changed very strongly (Fig. 2.22b). 
 
 
 

2.9. Conclusions 
 

The presented models of elasto-plastic deformation (LW and SC) are useful tools for the 
study of mechanical properties of polycrystalline materials. They enable prediction of 
macroscopic material properties (e.g., texture, stress-strain curves, plastic flow surfaces, 
dislocation density, final state of residual stress, etc.) basing on the micro-structural 
characteristics (crystallography of slip systems, hardening law, initial texture, initial residual 
stress state, etc.). Such the models are precious tools for technologists searching for optimal 
material properties. 

In the following chapters these models (SC and LW) will be applied for the prediction of 
textures and analysis of residual stresses in polycrystalline one-phase and two-phase materials 
(e.g., in austeno-ferritic steel). The LW model will be used for the study of material properties 
after cross-rolling treatment.   
 
 
 



 56

 



 57

 
 
 
 
 
Chapter 3 
 
 
 

Residual stresses and elastoplastic behaviour 
of stainless duplex steel  
 
 
 

3.1. Introduction  
 

In the first chapter the methods of determining stresses by means of diffraction method 
were presented. The crucial problem in the stress analysis is the determination of diffraction 
elastic constants. These constants are essential for interpretation of residual stress measurement. 
They can be calculated by means of models (Reuss, Voigt, Kröner) and also determined 
experimentally.  

In this chapter the sources of stresses will be explained. In the present work the total 
stress field is divided into three types in function of scale: first order stresses, second order 
stresses and third order stresses. The first order stresses are defined as the average stresses over a 
large volume of the sample. The second order stress is the difference between the grain stresses 
and the first order stresses. The last type is the third order stress; this stress field is a result of the 
heterogeneity within a single grain. As it is described in the first chapter, macroscopic stresses 
are determined from the slope of sin2ψ graph. When the second ordered stresses are present in 
the sample, the relation <d>{hkl}  vs. sin2ψ becomes non-linear. The variation of the second order 
stresses can be predicted by means of elasto-plastic deformation models and this is done in the 
present chapter. The results of residual stress examination will be presented for single and multi-
phase materials. 



 58

VA

3.2. Classification of stresses 
 

Internal stresses can be generated by plastic deformation. The part of total stress field 
which remains in material when external load is released is called the residual stress. It can arise 
in a two-phase material (e.g., in a composite) due to different plastic flow of grains or due to 
different thermal expansion coefficients of both phases. A polycrystalline material consists of 
grains having different lattice orientations. Macroscopic material properties depend on single 
grain properties, their lattice orientations and interactions between neighboring grains. 
As it was mentioned, we divide the stresses into three types in function of scale (Fig. 3.1) 
(Baczmanski et al., 1994b; Fitzpatrick, 1995; Meander et al., 1981; Bojarski 1970): 
 
 
 
 
 
 
 
 
 
                                 a) 
 
 
 
 
 
 
 
                b)                                                                               c) 
 
Fig. 3.1. Definition of different types of stresses at various spatial scales of a polycrystalline 
material.  a) First order stresses,  b) second order stresses, c) third order stresses.  
 
The first order stresses σI

ij are defined as the average stresses over a large volume of the sample. 
For a single phase material they are equal to the macrostress ( I

ijσ = M
ijσ ), 

 

dV
V

AV

ij
A

M
ij ∫= )(

1
rσσ  

 

 

(3.1) 

where:  M
ijσ  is the macrostress and VA is volume of the sample 

 
In multiphase material different physical properties of individual phases lead to different stresses 
in each phase. In order to separate those stresses it is convenient to introduce the phase 
stresses ph

ijσ . They are defined as the average over the volume of grains from a given phase: 
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(3.2) 

 
where ph

ijσ  is the phase stress, Vph – volume of the phase. 

There is an obvious relation between the phase stresses and the macro-stresses:  
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phN
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ph
ij

phM
ij f σσ  

 

(3.3) 

 

where 
A

phph

V

V
f =  is the volume fraction of the ph phase and Nph is the number of phases 

In polycrystalline materials also the grain stresses ( g
ijσ ) are interesting. The grain stresses 

represent average stress values inside individual grains ( dVr
gV

ij
g
ij )(∫

→
= σσ ). They are a result of 

different plastic behaviour of crystallites having various lattice orientations with respect to the 
sample. They can also arise due to the anisotropy of thermal expansion and elastic constants.  
The second order stress is defined as a difference between the grain stress and the first order 
stress. For a single phase material it is: 
 

I
ij

g
ij

IIg
ij σσσ −=  (3.4) 

 
where M

ij
I
ij σσ =  for single phase and ph

ij
I
ij σσ =  for multiphase materials. The grain and the 

second order stresses have constant values inside a given grain. The average of the second order 
stress over the sample volume is zero. 
 

The last type of stress is the third order stress: σ III (r). It results from the heterogeneity 
within single grains. This heterogeneity is caused by vacancies, insertions, substitutions, 
dislocations, sub-grain boundaries, etc. The third order stresses σ III (r) are defined as:  
  

g
ijij

III
ij σσσ −= )()( rr  (3.5) 

 
Their average of over the volume of an individual grain is zero. 
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3.3. Origin of stresses 
 

A polycrystalline material consists of a big amount of grains having different orientations. 
Elastic deformation of each grain is determined by its elastic constants, which are generally 
anisotropic. Consequently, we define grain stresses, )(erg

ijσ , resulting from elastic responses. 

They are a result of elastic responses of grains at the external load (macroscopic stresses). Using 
linear elasticity, the elastic response grain stress, )(erg

ijσ , can be related to the macrostress, i.e.: 

 
M
mn

g
ijmn

erg
ij B σσ =)(  (3.6) 

 
where g

ijmnB  is the stress concentration tensor and the summing over repeated indices is applied. 

The stress concentration tensor, g
ijmnB , is calculated for each grain using different models (Mura 

1993; Lipiński and Berveiller, 1989; Clyne and Withers, 1993) (see chapter 2). In general, 
the g

ijmnB  tensor depends on the internal structure of the sample such as the elastic anisotropy of 

grain and of the sample, elastic coupling between grains and the presence of different phases. 
In a real material after mechanical and thermal treatment, the situation is slightly more 
complicated, because there are other reasons for existence of residual stresses.  One of them is 
the anisotropy of thermal expansion coefficient. This effect is responsible for generation of 
thermal origin stresses. Another important reason of residual stress appearance is the anisotropy 
of plastic deformation. It is known that basic mechanism of plasticity is the slip on 
crystallographic system. Moreover, in different grains (having different orientation), different 
slip systems are activated. This leads to different plastic deformations in different grains. The 
misfit (incompatibility) of plastic deformations between neighboring grains is the source of 
additional stresses in material. They are incompatibility stresses, )(icg

ijσ , remaining in a material 

even if the external forces are removed, i.e., when 0M
mn →σ . Finally the total grain stress is: 

 
)()( icg

ij
erg

ij
g
ij σσσ +=  (3.7) 

 
Using Eq.3.6 the above relation can be written as: 
 

)(icg
ij

M
mn

g
ijmn

g
ij B σσσ +=  (3.8) 

 
In a single phase polycrystalline material the second order incompatibility stresses are equal to 
the grain stresses (see Fig. 3.2): 
 

)()( icg
ij

icIIg
ij σσ =  (3.9) 

if the external forces are absent, i.e., 0M
ij =σ  (compare Eq. 3.4). 
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Introducing the same condition for multiphase material ( 0M
mn =σ ), the phase stresses and the 

second order stresses are defined as (see Fig. 3.2): 
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phgicph
ij f
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)(/)( σσ  

)()()( icph
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ij

icIIg
ij σσσ −=  

 

(3.10) 

where Ng,ph is the total number of orientations in a given phase (“ph”). 
 

The mean value of incompatibility stresses calculated over the whole considered volume VA 
(containing a large number of grains) equals zero. These stresses sum up to zero in the mixture 
law defined by Eq.3.3, which takes the following form for incompatibility stresses: 
 

0f
phN

ph

icph
ij

ph =∑ )(σ  

 

 

(3.11) 

 

 
 
Fig. 3.2. The first and the second order stresses induced by external loads or long-scale forces 
for single phase (a) and two phase (b). Also, the third order stresses, IIIσ , characterizing local 

stress fields around lattice imperfections are indicated. 
 
The second order stresses are a result of  (Baczmański, 2005) 

• Plastic incompatibility stresses 
• Thermal incompatibility stresses 

 
Plastic incompatibility stresses are a result of anisotropic character of plastic 

deformation.  Origin of these stresses in material is explained in Fig. 3.3. Initial grains are 
represented as spherical inclusions in a homogeneous matrix. After deformation and unloading of 
the applied forces - different grains have different deformations, depending on their orientations. 
Due to such misfit between grains, the second order stress ( )()( icg

ij
icIIg

ij σσ = , see Eq. 3.9) and the 

corresponding lattice strain arise, especially for strongly textured materials in which only a few 
preferred grain orientations are present. 
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Fig. 3.3. Scheme of plastic behavior of two exemplary grains having various orientations of slip 
systems with respect to the local stress σ. 
 

Thermal incompatibility stresses arise due to different thermal expansion coefficients of 
grains (Fig. 3.4). After thermal treatment the grain volume can significantly differ from those of 
the average matrix, due to difference between thermal expansion coefficients of the phases in 
multiphase material. If the expansion of grains belonging to particular phase is isotropic (for 
example in cubic structure), the misfit of their volumes leads to hydrostatic phase stress (first 
order stress). However, in some materials (e.g. in h.c.p. metals) the thermal expansion coefficient 
of crystal is anisotropic. This causes an additional incompatibility of the grain shape with the 
surrounding matrix after thermal treatment. Such the misfit generates the second order 
incompatibility stresses ( )()( icg

ij
icIIg

ij σσ = ), even in single phase materials.  

 

 
Fig. 3.4. Scheme of thermal behaviour of two exemplary grains: a) having various 

orientations and anisotropic coefficients of thermal expansion, b) belonging to different phases 
with different coefficients of thermal expansion. The cooling process is presented (T1 > T2).   
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3.4. Measurements of macrostresses using diffraction 
 

The standard methods of stress determination (Culitty, 1978; Noyan and Cohen, 1987) 
are based on the measurement of interplanar spacing for various directions of the scattering 
vector. This method was described in Chapter 1. The mean lattice strain <ε(��ψ,φ)> {hkl} in  L3 
direction (Fig. 1.3) is defined as: 
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(3.12) 

where: 0
hkld }{  - the interplanar spacings for the {hkl} planes in a stress-free material,  

          <d(ψ,φ)> {hkl} - the measured average interplanar spacings for the {hkl} planes, 
          <ε(ψ,φ)> {hkl}  - lattice strain averaged over the volume of diffracting grains.   
          <…>{hkl}  means the average for reflecting crystallites. 
To relate the mean strain defined by the above equation to different types of stress, first the strain 
and stress for a diffracting grain have to be considered. In the case of linear elasticity the 
following relation can be written with respect to the L coordinate: 
 

g
mn

g
ijmn

elg
ij s ''' )( σε =  (3.13) 

where )(' elg
ijε , g

mn'σ  and g
ijmns'  are the elastic strain, stress and compliance for the grain g. 

According to Eq. 3.8 the grain stress gijσ  is the superposition of the term depending on 

the macrostress M
kl

g
ijklB σ  and of the independent incompatibility stress )(icg

ijσ , i.e.: 
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For a multiphase material the incompatibility stresses can be split into the phase ( )(icph

ijσ ) and the 

second order ( )(icIIg
ijσ ) stresses (see Eq. 3.10), i.e.: 
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After transformation from X to L coordinate system the above equation takes the form: 
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where ijnjmimn  aa   σσ ='  for all types of stresses, ijklploknjmi

g
mnop Baa aa  B ='  and the transformation 

matrix ija  is expressed by φ  and ψ  angles, i.e.: 
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(3.17) 

 
Substituting the grain stress given by Eq. 3.16 into Eq. 3.13, the elastic strain of a grain can be 
expressed through: 
 

)''''('' )()()( icIIg
op

icph
op

M
mn

g
opmn

g
ijop

elg
ij Bs σσσε ++=  (3.18) 

 
After calculation, the mean strain >)(< hkl}{,φψε  in L3 direction can be expressed by: 
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(3.19) 

 
where the mean values <…>{hkl} are calculated over the group of diffracting grains and the first 
order stresses M

mn'σ  and )(' icph
mnσ  are excluded from the averaging operation (these values are 

independent of  grain orientations).  
Introducing the so-called diffraction elastic constants (Dolle, 1979; Barral, 1987; Brakman, 1987, 
Senczyk, 1995; Baczmański et al., 1993, 1997, 1997b), i.e.,  
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Eq. 3.19 can be rewritten as: 
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Finally, the above equation can be expressed in a more practical form if all the stresses are 
expressed in X coordinate system:   
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where ),},({),},({ φψφψ hklR aa  hklF M
mnnjmi

M
ij = and ),},({),},({ )()( φψφψ hklR aa  hklF icph

mnnjmi
icph

ij =  

are called the modified elastic constants. They join >)(< hkl}{,φψε  with the stresses σij expressed 

in X coordinate system. 
 
In a practical use of the multi-reflection method (see Chapter 1) the above equation is expressed 
as: 
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(3.23) 

 
where >)a(< hkl}{,φψ   is the equivalent lattice parameter.  

Eq. 3.23 constitutes the general relation between the stress field (the third order stresses IIIg
ijσ are 

neglected) and strains which are determined using the diffraction method. As shown in Eq. 3.22, 
different types of stresses are differently conjugated with the >)(< hkl}{,φψε  strain. Simple linear 

relations occur for the mean stresses M
mnσ  and )(icph

mnσ , which are multiplied by the diffraction 

elastic constants ),},({ φψhklF M
mn  and ),},({)( φψhklF icph

mn , respectively. The difference between 

the diffraction elastic constants applied for the first order stresses and for the phase mean stresses 
becomes significant if the phases exhibit various elastic properties. The stresses M

mnσ  are imposed 

at the boundary of the volume penetrated by the used radiation, thus they must be localized at the 
diffracting grains using the concentration tensor g

ijklB'  (see ),},({ φψhklRM
mn  in Eq. 3.20). The 

)(icph
ijσ  average incompatibility stresses do not depend on the values of the first order stresses and 

they represent the mean values over the grains of the considered phase. The third term of Eq. 
3.23 is important if the second order stresses are present. The latter case is the most complicated 
one because the variation of the stresses between grains belonging to the same phase cannot be 
found directly from the experiment. The analysis of the second order stresses is possible only if 
the character of stress variation is known from a theoretical model. In the following chapter the 
prediction of the second order stresses by means of deformation models will be presented.  
 
 
 

3.5. Multiphase materials  
 

 As mentioned in the beginning of this chapter, the residual plastic incompatibility 
stresses can be created by anisotropy of the plastic flow of different grains having slip systems 
oriented differently with respect to the local stress. After unloading of the external forces, the 
grains do not fit to the surrounding matrix. This gives rise to the second order stresses ( )(icIIg

ijσ ) 

and corresponding lattice strains, especially for strongly textured materials in which only a few 
preferred orientations of grains are present. In the case of a two-phase material, the deformation 
process is more complicated than in a single phase polycrystalline material, due to different 
properties of the phases. Additional incompatibility of grains occurs, leading to different values 
of mean phase stresses ( )(icph

ijσ ). 

Using the standard X-ray diffraction method, the lattice parameters are determined in 
function of sin2ψ  for each phase independently. Interpretation of experimental data for 
multiphase materials is more complex than for a single phase material, because it is necessary to 
consider interaction between phases. The multireflection analysis is based on Eq. 3.23, written in 
a modified form for the ph1 and ph2 phases (Baczmański, 2005):  
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(3.24b) 

 
The incompatibility stresses sum up to zero in the mixture law defined by Eq. 3.11. 
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where 1phf  and 2phf are the volume fractions of the phases ph1 and ph2. 
The unique solution of Eq. 3.24 can be found only when mixture law (Eq. 3.25) is taken into 
account. The solution of these equations can be found by the least square method in which all 
equations are used simultaneously in order to fit the theoretical ph

hkl)a(< }{, >φψ  vs. sin2ψ  curves 

to experimental data for both phases. In turn, knowing the value of the macrostresses (M
ijσ ) and 

the mean incompatibility stresses ( )(ic1ph
mnσ  and )(ic2ph

mnσ ), the phase stresses ( 1ph
mnσ  and 2ph

mnσ ) for 

each phase can be found: 
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where the mean stress concentration tensors 1ph

ijmnB  and 2ph
ijmnB  are calculated for  ph1 and ph2  

phases, respectively.  According to Eq. 3.3, the first order macrostresses must fulfill the mixture 
law, i.e.:  
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Due to the weak penetration of X-ray radiation only the near-surface volume of the sample is 
studied. Because no force perpendicular to the sample surface is present in the analyzed volume, 
the M

33σ  macrostress is equal to zero. However, in spite of zero value of M
33σ  macrostress, a non-

zero )(icph
33σ  phase incompatibility stress can be present in each phase of a multiphase material, 

even in the near-surface volume penetrated by X-ray radiation. In such a case, the values of 
( )(icph

11σ - )(icph
33σ ) and ( )(icph

22σ - )(icph
33σ ) can be found instead of )(icph

11σ  and )(icph
22σ  (Baczmański et 

al. 1997a).  In the case of measurements performed inside a sample volume (e.g., neutron or 
synchrotron radiation) the non-zero value of M

33σ  stress can be also expected. 
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3.6. Calculation of the second order incompatibility 
stresses 
 

The plastic incompatibility stresses arise during plastic deformation as a result of 
anisotropy of plastic flow of different grains. Plastic incompatibility stresses remain in material 
even if external stress is unloaded (Σij→ 0). These stresses can be predicted by elastoplastic 
deformation models. In the calculations, the sample is represented by a number of grains, having 
an orientation distribution which reproduces the initial experimental texture. The model sample 
is subjected to elasto-plastic deformation and next the external forces are unloaded. Finally, the 

theoretical values of the second order plastic incompatibility stresses )(icIIg
ijσ  are calculated (the 

bar denotes the model-predicted quantities). These stresses characterize the anisotropy of elasto-
plastic deformation and they are correlated with nonlinearity of the experimental >)( < hkl}{,φψε  

versus sin2ψ  plot. In a plastically deformed material, the lattice strains >)( < hkl}{,φψε  can be 

expressed as a superposition of strains induced by macrostresses and the second order 
incompatibility stresses. For a single phase material, Eq. 3.22 can be simplified to: 
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In comparison with Eq.3.22, the term )(icph

ijσ is absent, because according to equation 3.11 in a 

single face material the average )(icph
ijσ  equals zero. 

The )(icIIg
ijσ  stress remains after unloading of the macrostresses and it can be calculated by the 

self-consistent model ( )(icIIg
ijσ  correspond to Σij→ 0 ). The anisotropy of the incompatibility 

stresses can be correctly predicted by the model if the experimental texture is used as the input 
data. However, the absolute values of the stresses depend on the hardening process occurring 
during plastic deformation, which has generally a complicated character. Hence, to relate the 
magnitude of theoretical incompatibility stresses to the real one, an unknown scaling factor q is 
introduced. This factor does not depend on the grain orientation g  and it rescales the amplitude 

of the stress tensor, i.e. the second order incompatibility stress )()( gicIIg
ijσ  in the real sample is: 
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(3.29) 

 

where q is the scaling parameter and )()( gicIIg
ijσ  is the model predicted second order stress for a 

grain with g  orientation. Finally, the experimental lattice parameters >)a( < hkl}{,φψ  obtained 

from the diffraction method can be expressed as (Wroński, 2006b):  
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where >  saa hkl
icIIg

ijmnijnm }{
)(

33 )(gσ<  is the model predicted strain caused by the plastic 

incompatibility second order stress. This term, characterizing the nonlinearities of the sin2ψ  plot 
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is adjusted to the experimental data. Only the amplitude of the theoretical function 

> saa hkl
icIIg

ijmnijnm }{
)(

33 )(gσ<  is rescaled by the q factor, while its dependence on the orientation of 

the scattering vector (i.e., on φ and ψ angles) is given by the model. When the value of q 
parameter is determined, the real values of the plastic incompatibility second order stresses 

)()( gicIIg
ijσ  can be calculated for all grain orientations g  using Eq.3.29. It should be noted that if 

the determined value of q is near 1, the model predicts correctly the amplitude of the stress 
tensor, but if 1q < , the magnitude of theoretical stresses is overestimated. The latter case can be 
explained due to stress relaxation or decreasing of the hardening process, which is not taken into 
account in our calculations. 
To show the level of the second order stresses for a statistical grain, the average equivalent 
residual stress ][ icg

eq
)(σ is calculated: 
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is the equivalent stress of a grain (with orientation g ) calculated according to von Mises formula 
and the integral is calculated over the whole orientation space E using )(gf texture function as 
the weighting parameter.  
 
 
 
3.7. Analysis of incompatibility stresses in single phase 
materials 
 

In this paragraph the results for single phase materials will be presented. The multi-
reflection method was applied in order to estimate the second order stresses in cold rolled ferrite 
steel (bcc structure; 95% reduction). The surface layer of about 200 µm was removed by 
electropolishing and the crystallographic texture was determined from pole figures measured 
using the Kα wavelength of Cr radiation. The orientation distribution function was calculated 
from the pole figures {110}, {100} and {211} (Bunge, 1982). Experimental texture was compared 
with the theoretical one predicted by the model (Fig. 3.5). The cold rolling process was simulated 
using the self-consistent model. The polycrystalline sample was represented by 10000 random 
grains and typical values of τc, H, A and elastic constant were used for calculations Table 3.1. (τc 
and H parameters can be determined from the hardening curve).  
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Table 3.1. Parameters used for calculations for ferrite steel . 
 

Parameters for self-
consistent model 

Calculation with anisotropic  
elastic constant 

Calculation with isotropic  
elastic constant 

τc 

[MPa] 
H 

[MPa] 
A C11  

[GPa] 
C12  

 [GPa] 
C44  

 [GPa] 
Young modulus  

[GPa] 
Poisson 

ratio 
240 90 1 231 134 116 196  0.3 

 
 

 
a. 

 
b. 

Fig. 3.5. Orientation distribution functions of cold rolled steel (80 % reduction):  
 (a) experimental texture,   (b) texture predicted by SC model; φ2  sections are shown. 

 
 

Good agreement between experimental and theoretical texture was obtained. This proves that 
model works well. Before a proper experiment, the equipment alignment was checked with a 
stress free powder sample. A small pseudo stress (10 MPa) was found, which confirms that the 
equipment was correctly aligned. This value should be treated as a possible systematic error for 
all measurements. Interplanar spacings for {211}, {200}, {110} planes were measured and 
the }{),( hkla >< φψ vs. sin2ψ  plots were determined for many directions (i.e., φ=00, 1800, 300, 

2100, 900, 2700). This enabled the estimation of shear stress components. In order to calculate the 
diffraction elastic constants, the Reuss, Voigt and SC (for interior and for surface) models were 
used. The obtained results are presented in table 3.2.  
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Table 3.2. Results of the fitting procedure for ferrite sample. Calculations were performed 

taking into account plastic incompatibility stresses. The values of 2χ  parameter obtained 
neglecting plastic incompatibility stresses are given in brackets.   

 
Macrostresses       [Mpa] 

 
Type of 
model 

Type  of 
diffraction 

elastic 
constants 

M
11σ  M

22σ  M
21σ  M

13σ  M
23σ  

Scaling 
factor     

q    

Average 
equival. 
plast. 

incomp. 
stress 

)(icIIg
eqσ  

[MPa] 

Stress free 
lattice 
param. 

0a  [Å] 

χ2 

q≠0 
 

(χ2) 
q=0 

Reuss -52.6 

±3.2 
-58.2  
±3.2 

-2.6 
±2.3 

2.6 

±1.2 
-1.9 

±0.9 
0.202 
±.01 

48.6 
±2.2 

2.86636 
±0.00001 

5.1 
(13.2) 

self-cons. 
(free surf.) 

-53.6 

±3.1 
-60.3  
±3.4 

-2.8 
±2.2 

2.5 

±1.5 
-2.4 

±0.9 
0.19 
±.01 

47.7 
±2.2 

2.86636 
±0.00001 

5.03 
(13.1) 

self-cons. 
(interior) 

-56.8 

±3.2 
-67.0  
±3.4 

-2.7 
±2.3 

2.7 

±1.3 
-2.6 

±1.1 
0.23 
±.01 

56.1 
±2.0 

2.86637 
±0.00001 

4.6 
(15.9) 

 
 
 

Self-cons. 
Aniso 

Voigt -57.8  
±3.3 

-70.3  
±3.8 

-2.8 
± 2.7 

2.8 

±1.3 
-3.2 

±1.3 
0.23 
±.01 

55.2 
±2.0 

2.86638 
±0.00001 

4.96 
(19.3) 

Self-consistent 
isotropic 

-79.4 

±3.1 
-77.8  
±3.5 

-3.1 
±2.7 

2.5 

±1.1 
-3.5 

±1.1 
0.22 
±.01 

74.7 
±2.2 

2.86639 
±0.00001 

4.9 
(19.3) 

Lefers-Wierzbanowski -69.4 

±3.7 
-66.8 
±3.9 

0.7 
±2.8 

1.3 

±1.1 
-4.6 

±1.1 
0.18 
±.05 

68.1 
±2.2 

2.86639 
±0.00001 

4.67 
(11.2) 

 
 
The lattice parameters for different hkl are presented in Fig. 3.6. The strong oscillation of the 

}{),( hkla >< φψ  in function of sin2ψ was observed due to the second order stresses. First, the 

multi-reflection method was used with the assumption that the second order stresses )(icIIg
ijσ  are 

absent (q=0 in Eq. 3.30); the results are presented by dashed lines in Fig. 3.6. In general, a poor 
convergence between the theoretical plots and experimental points was found for such an 
approach. Next, the procedure based on Eq. 3.30 was used and the value of q factor was 
determined. In this case, a very good agreement between the fitted curves and measured lattice 
parameters (continuous lines in Fig. 3.6) was obtained, because the nonlinearities caused by the 
plastic incompatibility stresses ( )(icIIg

ijσ ) were taken into account (2χ  parameter decreased about 

3-4 times, see Table 3.2). 
A slightly asymmetrical behaviour of the <a(ψ,φ)> {hkl} vs. sin2ψ  curves was observed for the 
orientations φ and φ + 1800, which was not explained by the shear macrostresses M

13σ  , M
23σ  nor 

by texture asymmetry. This effect, probably caused by a non-symmetrical sample preparation, 
was not taken into account in the analysis of experimental data.  
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Fig. 3.6. Measured lattice parameters (points) and theoretical results of fitting (continuous 

lines for q ≠ 0 and dashed lines for q = 0) for cold rolled ferrite steel. The SC model for free 
surface was used to calculate the diffraction elastic constants. 
 
The <a( φψ , )> {hkl} vs. sin2ψ  curves calculated for different models are shown in Fig. 3.7.  The 
comparison of Reuss and Voigt models is presented in the left column, SC (interior) and SC (free 
surface) - in the right column. It should be noticed that the results for different models are quite 
similar and, consequently, the2χ  is almost the same for all considered cases. 
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Fig. 3.7. Measured lattice parameters (points) and theoretical results of fitting for cold rolled 
ferrite steel. The comparison of different models used for the calculation of diffraction elastic 
constants is done: the results corresponding to Reuss and Voigt models are shown in the left 
column, while those corresponding to SC (interior) and SC (free surface) models - in the right 
column. 
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Fig. 3.8. Measured lattice parameters (points) and theoretical results of fitting (continuous lines 
for anisotropic elastic constant and dashed lines for isotropic elastic constants) for cold rolled 
ferrite steel. The SC approach for free surface was used to calculate the diffraction elastic 
constants.  
 
The influence of elastic constants on the second order stresses was studied using the SC (self 
consistent) model. Both anisotropic and isotropic elastic constants were used. The data used for 
calculations are shown in Table 3.2. The results of SC model calculations with anisotropic or 
isotropic elastic constants are presented in Fig 3.8. In the case of ferrite a good agreement of 
experimental and predicted data is obtained both for isotropic and anisotropic elastic constants 



 74

(Wroński, 2004). However, different values of the second order stress level were predicted in the 
two cases: 74 MPa for isotropic elastic constants and 48 MPa for anisotropic ones.  

The LW (Lefers-Wierzbanowski) model is also often used for the interpretation of 
experimental data. This model is based on isotropic interaction between grains. Hence, the 
comparison between the SC (isotropic case) and LW models was done. The results are shown in 
Table 3.2 and in Fig 3.9. Both models predict similar values of the second order stress level: 68 
MPa (LW model) and 74 MPa (SC model -isotropic case) (Wroński, 2004; Wierzbanowski, 
Wroński et al. 2005). It should be noted, however, that the SC isotropic model predicts higher 
level of the second order stresses than the anisotropic one (Table 3.2). 
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Fig. 3.9. Measured lattice parameters (points) for cold rolled ferrite steel and predicted results: 
SC model (continuous lines) and LW model (dashed lines). Isotropic elastic constant were used. 

 



 75

The next examined sample was the 316L austenite steel (fcc structure). This sample was cold 
rolled to the reduction of 50% and then stretched along the transverse direction (up to 20%). The 
classical sin2ψ method was used. The ODF of the cold rolled sample was determined from 
{111}, {100} and {220} poles figures (determined using Cr radiation) (Bunge 1982). The 
determined ODF was compared with that predicted by SC model - Fig 3.10; the agreement is 
very good. The tensile test was studied using this model. The polycrystalline sample was 
represented by 10 000 grains and the cold rolling texture was the input data for calculations. 
Typical values of τc, H, A and elastic constants were used for calculations (see Table 3.3).   
 
 
Table 3.3. Parameters used in calculations for austenite steel. 
 

Parameters for self-
consistent model 

Calculation with anisotropic  
Elastic constant 

Calculation with isotropic  
elastic constant 

τc  
[MPa] 

H 
[MPa] 

A C11  

[GPa] 
C12  

 [GPa] 
C44  

 [GPa] 
Young modulus  

[GPa] 
Poisson 

ratio 
120 200 1 198 125 122 196  0.3 

 
 

 
a. 

 
b. 

Fig. 3.10. ODF of cold rolled austenite steel 316L: (a) experimental texture, (b) texture 
predicted by SC model. The φ2 sections are shown. 

 
 
Before the proper experiment, the equipment alignment was checked with a stress free powder 
sample. The small pseudo stress (12 MPa) was found, which confirmed a correct preparation of 
the equipment. The interplanar spacings for planes {200}, {220}, {311} were measured. In order 
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to estimate shear stress components the experiment was repeated for many values of ϕ angle (i.e., 
φ = 00, 450, 900, 1800, 2250, 2700). The multi-reflection method based on Eq. 3.23 was used. The 
diffraction elastic constants were calculated with Reuss, Voigt, SC (interior) and SC (free 
surface) models. In the case of SC model the anisotropic and isotropic elastic constants were 
used, while only isotropic case was considered in LW model. The results of calculation are listed 
in Table 3.4. 
 
 
Table 3.4. Results for 316L steel sample (errors correspond to uncertainties of the measured 
peak positions). Calculations were performed with (q≠0) and without (q=0) taking into account 
plastic incompatibility stresses. The values of 2χ  parameter in this second case are given in 
brackets.   

 
Macrostresses       [MPa] 

 
Type of 
model 

Type of 
diffraction 

elastic 
constants 

M
11σ  M

22σ  M
21σ  M

13σ  M
23σ  

Scaling 
factor     

q    

Average 
equival. 
plast. 

incomp. 
stress 

][ icIIg
eq

)(σ  

[MPa] 

Stress free 
lattice 
param.  

0a  [Å]  

χ2 

q≠0 
 

(χ2) 
q=0 

Reuss -84.8 

±4.4 
-14.2  
±5.2 

0.2 
±4.4 

0.3 

±1.6 
-1.2 

±1.6 
0.46 
±.02 

53.1 
±2.2 

3.59349 
±0.00002 

7.71 
(10.3) 

self-cons. 
(free surf.) 

-90.5 

±4.9 
-9.9  
±6.1 

1.8 
±5.2 

0.2 

±2 
-1.2 

±1.7 
0.49 
±.02 

57.4 
±2.2 

3.59353 
±0.00002 

8.74 
(11.6) 

self-cons. 
(interior) 

-108.1 

±6.1 
-19.2  
±6.9 

2.3 
±6.1 

0.5 

±2.3 
-1.7 

±2.3 
0.45 
±.02 

52.8 
±2.0 

3.59356 
±0.00002 

8.51 
(11.2) 

Self-
cons. 
Aniso 

Voigt -127.2  
±7.7 

-23.6  
±9 

4.6 
± 8.4 

0.8 

±3.1 
-2.2 

±2.8 
0.46 
±.02 

53.2 
±2.0 

3.59363 
±0.00001 

9.72 
(12.6) 

Self-cons. 
ISO 

-111.5  
±7.3 

-28.6  
±7.9 

-3.1 
± 7.6 

1.0 

±2.6 
-2.0 

±2.6 
0.31 
±.03 

57.1 
±2.0 

3.59355 
±0.00001 

11.4 
(12.6) 

LW -111.1  
±7.2 

-36.5  
±7.2 

-8.8 
± 7.2 

1. 

±2.6 
-2.1 

±2.6 
0.36 
±.02 

37.7 
±2.0 

3.59357 
±0.00001 

10.78 
(12.6) 
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Fig. 3.11. Measured lattice parameters (points) and theoretical results of fitting (continuous lines 
for q ≠ 0 and dashed lines for q = 0) for 316L steel stretched in the tensile test. The multi-
reflection method was used. The SC model (free surface) was used to calculate the diffraction 
elastic constants. 
 
The theoretical plots are presented for two assumptions, i.e., when the plastic incompatibility 

stresses are not assumed (dashed lines for q=0), and when the influence of )()( gicg
ijσ  stresses is 

taken into account and the q parameter is determined from Eq. 3.23 (continuous lines). As 
presented in Fig. 3.11, the quality of fitting is definitely better when the plastic incompatibility 
stresses are assumed (e.g., for SC free surface model: 2χ =8.74 for q≠0, while 2χ =11.6 for q=0). 
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The diffraction elastic constants were predicted by Reuss, Voigt, SC (interior) and SC (free 
surface) models. The results of calculations with these elastic constants are presented in Fig.3.12 
and in Table 3.4. As it is seen, the considered models predict correctly the oscillations of 
<a(ψ,φ)> {hkl} vs. sin2ψ graph. The second order stresses determined with all models have the 
values about 53 MPa. 
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Fig. 3.12. Measured lattice parameters (points) and predicted results for cold rolled austenite 
steel 316L. Different models were used for the calculation of diffraction elastic constants. Reuss 
and Voigt models are compared in the left column, SC (interior) and SC (free surface) - in the 
right column 
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The influence of isotropic and anisotropic elastic constants on the obtained results was also 
checked for the 316L fcc steel - Fig 3.13. It should be noticed that, a worse convergence between 
the theoretical plots and experimental points was found when isotropic elastic constants were 
used in the case of austenitic phase. This effect can be easily observed for {220} planes. The χ2 

parameter increases when isotropic elastic constants are used (Table 3.4). 
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Fig. 3.13. Measured lattice parameters (points) and theoretical results of fitting for the stretched 
316L steel. Continuous lines are used for anisotropic elastic constant and dashed lines - for 
isotropic elastic constants. SC model was applied.  
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Finally, the isotropic LW model was used for the calculations. The results are shown in Fig. 3.14 
and in Table 3.4. It is visible that both LW model and SC model (with isotropic elastic constants) 
give similar results. However, the agreement between calculated and experimental data is not 
very good. We can conclude that models with isotropic interaction are not good enough to 
predict precisely the second ordered stresses in fcc materials. This stays in contrast with bcc 
ferrite phase, where the difference between use of isotropic and anisotropic elastic constant is not 
significant. 
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Fig. 3.14. Measured lattice parameters (points) and theoretical results of fitting (lines) for 
austenitic 316L steel. Isotropic elastic constants were used in the frame of SC and LW model. 
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3.8. Analysis of incompatibility stresses in multiphase 
materials  
 
 

3.8.1. Material and experimental method 
 

In this paragraph the results for duplex steel will be presented. This work is the second 
stage of the study started by Dakhlaoui (Dakhlaoui, Wroński, et al., 2006c) and it concerns the 
stresses remaining in the duplex steel after elasto-plastic deformation, when the sample is 
unloaded. 
The studied material is the austeno-ferritic stainless steel, containing approximately 50% of each 
phase (the ferrite phase is called α and austenite - γ). It was obtained by continuous casting and 
then hot rolling down to 15 mm sheet thickness. A solution annealing heat treatment at 1050 0C 
was given, followed by quenching in water in order to avoid the precipitation of secondary 
phases. The chemical composition of the alloy are presented in Table 3.5. The characteristic 
microstructure of the steel consists of austenitic islands elongated along the rolling direction 
(RD) and embedded in a ferritic matrix (Fig. 3.15). 
 
Table 3.5. Chemical composition (wt. %) of duplex steel 
 

Material C Mn Cr Ni Mo Cu S N 
X2 Cr Ni Mo 

22.5.3 (UR45N) 
0.015 1.6 22.4 5.4 2.9 0.12 0.001 0.17 

 

 
Fig. 3.15. Microstructure of the studied duplex stainless steel for two different sections. The 
main directions of rolling are indicated: RD, rolling direction; TD, transverse direction; ND, 
normal direction. 
 
Two cylindrical samples (8 mm diameter and 10 mm height, having axis aligned along transverse 
direction - TD) were machined from those measured previously using neutron diffraction during 
“in situ” tensile (14% of deformation) and compression (7% of deformation) tests. The third 
cylindrical sample having similar dimensions was cut from as-received non-loaded material. 
The ENGIN-X diffractometer at the ISIS spallation neutron source, CCLRC Rutherford 
Appleton Laboratory (UK) (Dann, et al., 2003) was used to measure interplanar spacings 

}{ hkld ><  applying the sin2ψ diffraction geometry (similar as usually for X-rays). The 

orientations of the scattering vector with respect to the applied load and to the directions of 
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rolling are shown in Fig. 3.16. As it is described in paragraph 3.5, the neutron radiation enables 
estimation of the values of ( )(icph

11σ - )(icph
33σ ), ( )(icph

22σ - )(icph
33σ ),( M

11σ - M
33σ ) and ( M

22σ - M
33σ ). The 

configuration shown in Fig. 3.16a enabled the cylindrical sample to be rotated about an axis 
perpendicular to the positioning table, in order to change the ψ angle in the range from 00 to 900 
for negative and positive ψ angles. The measurements were performed for two positions of the 
sample with respect to the table and the sin2ψ curves were determined for two different φ angles:  
φ = 00 and φ = 900 (Figs. 1.3 and 3.16b).  
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Fig. 3.16. Schematic of the ENGIN-X instrument with the sample subjected to the tensile (or 
compressive) loading along TD, overhead view (a). Orientation of the scattering vector with 
respect to the principal sample axes during tensile and compression tests (b). The main 
directions of rolling are indicated: RD - rolling direction, TD - transverse and ND – normal 
direction (the loads were applied along TD). 

 
The detectors measure time-resolved spectra, each Bragg peak being produced by reflection from 
a different family of {hkl} planes. The load axis was aligned horizontally at +450 to the incident 
beam, allowing simultaneous measurement of lattice strains in directions both parallel and 
perpendicular to the applied load. A boron carbide slit of dimensions 4 mm high, 4 mm wide was 
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used to define the incident beam. Radial collimators in front of each detector bank defined an 
exit aperture of approximately 4 mm. The experiments were performed using the time-of-flight 
diffraction method and the peak positions for many hkl reflections were determined 
independently for both phases using the GSAS software package (Larson and Von Dreele, 1994). 
 
 

3.8.2. Modelling and experimental data 
 

The stresses in the studied samples were determined from the <a>{hkl} parameters 
measured by TOF neutron diffraction for different hkl reflections (Oleś, 1998). Since a stress free 
sample was unavailable as a reference (ph0a , lattice parameters are unknown), hence only the 

differences between main stresses components: ()(icph
11σ - )(icph

33σ ), ( )(icph
22σ - )(icph

33σ ), ( M
11σ - M

33σ ) and 

( M
22σ - M

33σ ) were found using the least square fitting based on Eqs. 3.24, 3.25.   

The orientation distribution functions (Fig. 3.17), characterizing crystallographic textures, were 
calculated from the experimental pole figures, which were measured using the neutron 
diffraction method on the 6T1 diffractometer at the LLB, Saclay, France (Bunge, 1982). The 
anisotropic single crystal elastic constants were used in the calculations (Table 3.6) 
 

Austenite (γ) 

 

Ferrite (α) 

 
Fig. 3.17. Orientation distribution functions (ODF) for both phases of duplex steel determined 
by neutron diffraction. The 2φ  sections through Euler space are presented for austenitic and 
ferritic phases. The sample axes are defined in Fig. 3.16b.  

 
The SC model was used for interpretation of the experimental data. The calculations were carried 
out for 20 000 spherical inclusions representing austenite (50%) and ferrite (50%) grains 
embedded in a homogeneous matrix having properties averaged over all crystallites belonging to 
both phases. Anisotropic single crystal elastic constants (Table 3.6) and experimental initial 
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stresses (see Table 3.7), equal for all grains within one phase, were assigned to the spherical 
inclusions. Crystal lattice orientations of individual grains were defined according to the 
orientation distribution functions of both phases (see Fig. 3.17). Two families of slip systems 
(i.e., <111>{110} and <111>{211}) were assumed for the ferritic phase, whereas only one was 
used for the austenitic phase (i.e., <110>{111}). The main goal is to find the effective model 
parameters (ph

cτ - critical resolved stress and ph
Η  - work hardening parameter) characterizing 

both phases for which theoretical results agree with experimental data.  
These parameters can be estimated from hardening curve and from lattice strains ph

lkh11> }{
Σε<  vs. 

applied external stress (Σ11). Figs 3.18, 3.19 and 3.20 show the influence of initial critical shear 
stress and hardening parameter on the elastic strains and hardening curve.  
The exemplary relation of ph

lkh11> }{
Σε<  vs. applied external stress (Σ11) for duplex steel is shown in 

Figs. 3.18 and 3.19. At the beginning (up to Σ11 ≈ 250 MPa) both phases are below the yield 
point and only linear elastic deformation occurs. Because of similar elastic constants (Table 3.6) 
the elastic response of ferrite is similar to austenite. After the yield point for the γ-phase 
(Γ  points at Σ11 ≈250 MPa – Fig. 3.18), austenite is deformed plastically, while ferrite remains 
in the elastic range. Consequently, the created incompatibility stress leads to differences in lattice 
strains measured for both phases. The distance between two functions increases till the second 
characteristic point (Ω at Σ11 ≈ 450 MPa), where the lines start to approach each other. This point 
(Ω  in Fig. 3.18b) can be identified as the yield stress for α-phase and the opposite tendency of 
the evolution of mismatch strain (and stress) means that the work hardening is higher in gamma 
than in alpha phase. When the position of Γ and Ω  is known it is possible to find the value of 

ph
cτ for each phase. 

 

        a                                                                             b     
Fig. 3.18. Influence of initial critical shear stress on the elastic strains measured "in situ" by 
neutron diffraction. The theoretical results are presented for: a) 0

eff
,γτ =50 MPa (1), 0

eff
,γτ =80 

MPa (2) and 0
eff

,γτ =110 MPa (3); b) 0
eff

,ατ =230 MPa (1), 0
eff

,ατ =260 MPa (2) and 0
eff

,ατ =290 MPa 

(3).   
 
Another parameter, phH , can be found from ph

lkh11> }{
Σε<  vs. applied external stress Σ11 and from 

hardening curves. The last part of sample deformation (i.e., over Σ11 ≈450 MPa in Figs. 3.19 and 
3.20) shows the plastic behaviour of ferrite and austenite. In this range, the plots depend on the 
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relative hardening of both phases. From this range it is possible to estimate γα
effeff ΗΗ /  ratio. Also 

the slope of the hardening curve (Fig. 3.20) depends on the value of hardening parameter, but it 
depends on γα

effeff ΗΗ +  and does not depend on the ratio γα
effeff ΗΗ / . By means of these two 

graphs it is possible to estimate the values of hardening parameters of both phases. The influence 
of work hardening on the elastic strains and on the hardening curve is presented in Figs. 3.19 and 
3.20. 
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Fig. 3.19. Influence of work hardening on the elastic strains measured "in situ" by neutron 
diffraction. The theoretical results are presented for: a) γα

effeff HΗ / =1 (1), γα
effeff HΗ / =0.35 (2) 

and γα
effeff HΗ / =0.1 (3), while γα

effeff HΗ + =270 MPa; 

 
 

Fig. 3.20. Results of the mechanical tensile test (solid line) compared with model prediction 
(dashed line). The deformation rate was stopped at the points corresponding to those for which 
neutron diffraction experiment was performed. The theoretical results are presented for 

γα
effeff ΗΗ + =120 MPa (1), γα

effeff ΗΗ + =270 MPa (2) and γα
effeff ΗΗ + =420 MPa (3), while 

γα
effeff ΗΗ /  = 0.35. 

 
The final model parameters for which the theoretical curves are the closest to the experimental 
data were found by Rim Dakhlaoui and the present author (Dakhlaoui, Wroński et al., 2006c and 
Dakhlaoui,Wroński et al., 2007b) using SC model. The values of these parameters are given in 
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Table 3.6. They will be used in further calculations, performed in order to find the second order 
stresses and to investigate the anisotropy of internal stresses. The obtained results are presented 
in Fig. 3.21, 3.22 and 3.23. 
 
 
      Table 3.6. Elastoplastic parameters of both phases 
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Fig. 3.21. Macro-mechanical curves Σ11 vs. E11 are compared to model predictions for (a) tensile 
and (b) compressive tests. Initial crystallographic texture and initial residual stresses were used 
in the model calculations. The load was applied along TD. The deformation rate was stopped at 
the points corresponding to those for which neutron diffraction experiment was performed. 
 

single crystal elastic constants 
(matrix notation)   [GPa] 

 

 
phase 

C11 C12 C44 

critical 
resolved shear 

stress 
0
cτ   [MPa] 

hardening 
parameter 
H  [MPa] 

austenite 198 125 122 135 200 
ferrite 231 134 116 215 120 
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Fig. 3.22. Elastic lattice strains }{11 hkl>< ε and }{33 hkl>< ε  , versus to the applied stress Σ11, 

measured by neutron diffraction (TOF). Strains measured “in situ” for several hkl reflections in 
both phases (points) are compared with SC model predictions (lines). Initial crystallographic 
texture measured by X-ray diffraction (Fig. 3.17) was used in the model calculations. The initial 
stresses (see Table 3.7) found in the sample were taken into account. 
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Fig. 3.23. Similar comparison of experimental data with model results as presented in the 
preceding figure but for compression test.   
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We focus on the estimation of the second order stresses and on investigation of internal stress 
anisotropy. In the case of the initial non-deformed sample a good fitting was obtained assuming q 
parameter equal to zero (in Eqs. 3.24a, 3.24b and 3.25). Thus the influence of the second order 
incompatibility stresses was not significant and the average stresses were determined (see Table 
3.7 and Fig. 3.24). Contrary to the initial sample, the assumption of q=0 is not valid for the 
deformed samples and, as the consequence, the fitted curves are far from the experimental values 
(see dashed lines in Figs. 3.25 and 3.26  and χ2 in Table 3.7). Thus the influence of the second 
order stresses has to be taken into account in the case of deformed samples. To do this, the 

theoretical stresses )()( gicIIg
ijσ  must be calculated by the elasto-plastic model.  Using the 

theoretically calculated )()( gicIIg
ijσ  stresses, the least square fitting (based on Eqs. 3.24a 3.24b) 

was applied for the samples after tensile and compressive tests. In both cases an excellent fitting 
was obtained (χ2 was about 3-4 times smaller than in the case when q=0 was assumed (see Table 
3.6 and continuous lines in Figs. 3.25 and 3.26) and the values of average stresses as well as of 

the second order stresses were found. The fitting procedure was repeated using )()( gicIIg
ijσ  

stresses predicted for different degrees of deformation and the values of q parameter were 
compared. In Table 3.7 the results obtained for q parameter close to 1 are presented (when q=1 
the model second order stresses have the same magnitude as the experimental ones, see Eq. 
3.29). It was found that theoretical stresses are almost equal to the experimental ones when the 
model calculations are performed to about twice lower deformation than that applied for a real 
sample. Using Eq. 3.29 and knowing the value of q parameter, the second order stresses 

)()( gicIIg
ijσ  were determined for each grain orientation g (Fig. 3.27) (Wroński et al., 2006a 

2006b). The average equivalent values ][ icg
eq

)(σ (see Eq. 3.31) are given in Table 3.7 for each 

phase. Moreover, the total equivalent grain stress )(gg
eqσ (Eq. 3.15), calculated according to von 

Mises formula from g
ijσ , was found for each orientation g  and presented in Euler space in Fig 

3.27.   
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Table 3.7.  Residual stresses determined using fitting procedure based on Eqs. 3.24 and 3.25.  
Relative values of χ2 are shown, i.e.:  χ2/χ2

initial (χ2
initial concerns the initial sample); the values 

obtained with assumption q = 0 are given in brackets.  
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Austenite Ferrite 

 

 

Fig. 3.24.  Measured lattice parameters (points) and theoretical results of fitting (continuous lines) 
for initial as-received sample (<a>{hkl} vs. sin2ψ curves for positive ψ are shown). The experimental 
data for various hkl reflections and both phases were simultaneously used in the fitting procedure 
assuming q = 0 (results are shown in Table 3.7).  
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Fig. 3.25. Measured lattice parameters and theoretical results of fitting for ferrite phase 
deformed in tensile and compression tests. The fitting procedure was applied for various hkl 
reflections and both phases for each sample, assuming: q ≠ 0 (continuous lines) and q = 0 
(dashed lines). 
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Fig. 3.26. Measured lattice parameters and theoretical results of fitting for austenite phase 
deformed in tensile and compression tests. The fitting procedure was applied for various hkl 
reflections and both phases for each sample, assuming: q ≠ 0 (continuous lines) and q = 0 
(dashed lines). 
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Tension 

Austenite Ferrite 

 
       a   

 
        b 

Compression 
Austenite Ferrite 

 
        c 

 
       d 

Fig. 3.27. Total equivalent stress )(gg
eqσ  for grains having various orientations g , determined 

after tensile (a,b) and compressive (c,d) tests. The 2φ  sections are presented for both phases.  
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Finally, the influence of elastic anisotropy and crystallographic texture on the creation of the 
second order incompatibility stresses was studied. (Wroński et al., 2006a) In this aim, the 
analysis of experimental data was performed with two different artificial assumptions. Firstly, 
isotropic single crystal elastic constants were used in modeling and in the calculation of the 
diffraction elastic constants. Secondly, the modeling was performed assuming random initial 
texture. In both cases the results of fitting procedure were definitively worse in comparison with 
those when anisotropic single crystal elastic constants and textured initial samples were 
considered in data analysis (see Figs. 3.28 – 3.31) (Wroński 2006b et al.). It should be noticed 
that agreement between experimental and calculated data is worse for austenite than ferrite were 
isotopic elastic constants were taken into account. This effect was observed as well for single as 
for multiphase materials.  
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Fig. 3.28.  Measured and fitted }{ hkla< >  vs. sin2ψ  curves for ferrite phase after tensile test  

(q ≠ 0). The analysis was performed assuming: anisotropic (continuous lines) and isotropic 
single crystal elastic constants (dashed lines). 
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Fig. 3.29.  Measured and fitted }{ hkla< >  vs. sin2ψ  curves for austenite phase after tensile test 

 (q ≠ 0). The analysis was performed assuming: anisotropic (continuous lines) and isotropic 
single crystal elastic constants (dashed lines). 
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Fig. 3.30. Measured and fitted }{ hkla< >  vs. sin2ψ  curves for ferrite phase after tensile test  

(q ≠ 0). The analysis was performed assuming: textured sample (continuous lines) and randomly 
oriented grains in the initial sample (dashed lines). 
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Fig. 3.31. Measured and fitted }{ hkla< >  vs. sin2ψ  curves for austenite phase after tensile test 

 (q ≠ 0). The analysis was performed assuming: textured sample (continuous lines) and randomly 
oriented grains in the initial sample (dashed lines). 
 
 

3.9. Conclusions 
 
 
The residual stresses are generated by plastic deformation. They remain in a material even 

when external forces are unloaded. In this work we focus on the first order stresses (macroscopic 
stresses) and the second order stresses (stresses in grains). As it is described in the previous 
chapter, macroscopic stresses are determined from the slope of the sin2ψ graph. When the second 
order stresses are present in the sample, the relation <d>{hkl}  vs. sin2ψ is non-linear. The second 
order stresses are a result of plastic incompatibility and thermal anisotropy, but in this work only 
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this first is taken into account. These stresses arise due to anisotropic plastic flow of grains. 
Different behaviour of grains is caused by various orientations of slip systems with respect to the 
local stress tensor. Thus the activation of slip systems depends strongly on the localization of the 
applied stress at a considered grain, intergranular stresses and grain lattice orientation. Finally, 
after plastic deformation some of the grains are more (or less) elongated in a given direction than 
the other and consequently they do not fit into the surrounding matrix. Due to such misfit, the 
second order stress and a corresponding lattice strain arise. 

In the first part of this chapter the single phase materials (ferrite and austenite) were 
investigated. In both cases the first and the second order stresses were estimated. The second 
order stresses can be predicted by elasto-plastic models, and consequently the self–consistent and 
Lefers-Wierzbanowski model were applied. The calculations were done using anisotropic and 
isotropic elastic constants. A good agreement between experimental and theoretical data was 
observed when anisotropic elastic constants were taken into account.   

The next investigated material was the duplex stainless steel (composed of ferrite and 
austenite phase). Similarly like in single phase materials, the first and the second order stresses 
were estimated. The stresses were determined for duplex steel after tensile and compressive tests 
using TOF neutron diffraction. It was found that in the as received non-deformed sample the 
second order stresses were small and consequently the sin2ψ plots were almost linear. After 
elasto-plastic deformation the second order incompatibility stresses were generated causing 
strong nonlinearities of the sin2ψ plots. The nonlinearities have opposite character after tension 
and compression (Figs. 3.25 and 3.26), i.e., the second order stresses of opposite sign are created 
during those modes of deformations. Also, the opposite average incompatibility stresses ( )(icph

11σ -
)(icph

33σ , )(icph
22σ - )(icph

33σ ) were found after these tests. As expected, small values of macrostresses 

( M
11σ - M

33σ , M
22σ - M

33σ ) were determined in the volumes studied by neutrons, while relatively high 

values of ][ icg
eq

)(σ indicate that the second order incompatibility stresses are very significant in 

deformed duplex steel  (see Table 3.7).   
Similarly like in single phase materials, the influence of elastic anisotropy and texture on 

the second order incompatibility stress was studied in duplex steel. As seen in Figs. 3.28 and 
3.29, the sin2ψ  plots fit significantly worse when the isotropic elastic constants are used in data 
analysis. This effect is especially pronounced in the case of austenitic phase. In single phase 
materials this effect was also observed. Thus the anisotropy of elastic constants plays an 
important role in the creation of the second order incompatibility stresses. On the other hand, the 
initial texture is also important for proper determination of the second order stresses in ferritic 
phase (some of the sin2ψ  plots fit worse when random texture is assumed in model prediction, 
Figs. 3.30 and 3.31).  It can be concluded that creation of the second order stresses is a complex 
process and it depends on different parameters characterizing elasto-plastic deformation of 
polycrystalline material. The evolution of grain stresses can be qualitatively and even 
quantitatively predicted by the elasto-plastic models when elastic anisotropy, texture evolution 
and interaction between grains are taken into account. However, the magnitude of the theoretical 
stresses is often overestimated in comparison with experimental one. The correct theoretical 

magnitudes are obtained when the model )()( gicIIg
ijσ  stresses are calculated for smaller 

deformation than the real one.  
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Chapter 4 
 
 
 
Variation of residual stresses during cross-

rolling 
 
 
 

4.1. Introduction 
 

The cross-rolling is generally applied in order to symmetrize the crystallographic texture 
and consequently, to decrease the sample anisotropy. Such the operation involves also the 
modification of residual stresses.  

The goal of the study was to follow the character of residual stresses in function of 
applied deformation in each of two rolling directions. The studied material was polycrystalline 
copper (fcc structure) and ferritic steel (bcc structure). The observed experimental results were 
studied using the model of elasto-plastic deformation. The variation of the first order stresses 
and non-linearity of the ε versus sin2ψ plot were studied and explained. The diffraction elastic 
constants and the second order stress distributions were also determined using the self-consistent 
model. 
 
 

4.2. Residual stresses and texture in cross-rolled 
polycrystalline metals  
 

4.2.1 Copper 
 

A plate of polycrystalline copper was rolled to the reduction Red1=62 % and next four 
samples were cut out, which were cross-rolled to the reduction Red2 of 10 %, 40 %, 62 % and 
80 %, respectively (Red1 is rolling reduction in principal direction and Red2 is rolling reduction 
in perpendicular cross direction). The surface layer of 200 µm was removed by electropolishing 
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in each sample. Classical X-ray diffraction (Cu radiation) was used (Baczmański et al., 1994a; 
Baczmański et al., 1995) (see chapter 1). The texture and internal stress (ε33 vs. sin2ψ method) 
were measured on Brücker Advance D8 diffractometer at the Open University,Walton Hall, 
Milton Keynes, England. In the present study a general multi-reflection method (Baczmański et 
al., 2003c) of stress determination was applied (see chapter 1). The average equivalent inter-

planar lattice distances, 
}hkl{

),(a >φψ< were determined for 331 and 420 reflections. Before 

performing accurate measurements, the calibration of the apparatus was done by measuring the 
stress in powder sample. The measurement shows that the stress in the sample is on –10.5 MPa 
level, what proves a proper calibration of the apparatus. 

The crystallographic textures (orientation distribution functions – ODFs and pole 
figures) of the considered samples were determined experimentally and also predicted by the 
LW model (Fig.4.1) (Wierzbanowski et al.,1979; Wierzbanowski et al.,1992). The cross-rolling 
texture (Fig. 4.1b) is strongly symmetrized compared with the simple rolling one (Fig. 4.1a). 
Two new symmetry axes of pole figures, inclined ± 450 with respect to x axis, appear. The 
model predicted cross-rolling texture (Fig. 4.1c) is in perfect agreement with the experimental 
one. These results confirm the correct construction of the model.  
 
 
 

 {111}                              {100}                              {110} 

a  

b  
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c  

 
a 

 
b 

 
c 

Fig. 4.1. ODF and (111), (100), (110) pole figures for polycrystalline copper: a) after simple 
rolling (Red1=60%), b) cross- rolling (Red1=60% and Red2=40 %), c) as above but 
predicted by the elasto-plastic deformation model. 
 
 
To determine residual stresses, the calculation of diffraction elastic constants has to be done. 
The values were calculated using Reuss, self-consistent (free surface), self-consistent (interior) 
and Voigt model (see chapter 1). The results for all models are listed in Table 4.1.   
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Fig. 4.2. Plots of <a(ψ,φ)> {21l} vs. sin2ψ  for polycrystalline copper rolled to 62 %. Results 
for Reuss, self-consistent (interior), self-consistent (free surface) and Voigt model. 
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Table 4.1. Components of macroscopic residual stress σ11

M and σ22
M (in MPa) for Reuss, self-

consistent (free surface), self-consistent (interior) and Voigt model. χ2 parameter is also listed. 
 

Macrostresses       
[MPa] 

 

Sample 
 

Type of 
diffraction 

elastic 
constants M

11σ  M
22σ  

Stress free 
interpl. 
spacing 

od  [Å] 

2χ  

 
 
 

Reuss -57.4 

±2.9 
-68.4 

±3.2 
3.61339 

±0.00002 
5.97 

self-cons. 
(free surf.) 

-62.1 
±3.8 

-72.5 
±3.8 

3.61342 
±0.00002 

7.43 

self-cons. 
(interior) 

-68 

±4.7 
-79.4 

±4.7 
3.61346 

±0.00002 
9.93 

Red1=62% 

Voigt -73.2 
±6.7 

-84.8 
±6.7 

3.61353 
±0.00002 

15.31 

Reuss -42.4 

±3.5 
-67.4 

±3.2 
3.6134 

±0.00002 
7.15 

self-cons. 
(free surf.) 

-44.4 
±3.9 

-73.6 
±3.9 

3.61342 
±0.00002 

7.75 

self-cons. 
(interior) 

-50.6 

±4.1 
-79.9 

±4.1 
3.61344 

±0.00002 
7.42 

Red1=62% 
Red2=10% 

Voigt -55.6 
±5.4 

-86.4 
±5.1 

3.613489 
±0.00002 

9.95 

Reuss 22.8 

±2.5 
-23.9 

±2.5 
3.61334 

±0.00002 
4.09 

self-cons. 
(free surf.) 

27.2 
±2.9 

-26.1 
±3.1 

3.61335 
± 0.00002 

4.2 

self-cons. 
(interior) 

28.2 

±3.1 
-28.1 

±3.1 
3.61334 

± 0.00002 
4.23 

Red1=62% 
Red2=40% 

Voigt 31.9 
±3.8 

-29.3 
±3.9 

3.61334 
±0.000016 

5.04 

Reuss -2.2 

±2.3 
-27.2 

±2.3 
3.61337 

±0.00002 
3.56 

self-cons. 
(free surf.) 

-1.7 
±2.8 

-28.9 
±2.7 

3.61337 
±0.00002 

4.1 

self-cons. 
(interior) 

-3.2 

±3 
-31.6 

±3 
3.61338 

±0.00002 
4.1 

Red1=62% 
Red2=62% 

Voigt -3.8 
±3.7 

-34.1 
±3.5 

3.6134 
±0.00002 

4.75 

Reuss -14.8 

±7 
-41.9 

±7 
3.61344 

±0.00003 
5.85 

self-cons. 
(free surf.) 

-14.5 
±3.5 

-45 
±3.3 

3.61346 
±0.00002 

6.35 

self-cons. 
(interior) 

-17.6 

±3.8 
-49.5 

±3.8 
3.61347 

±0.00002 
6.24 

Red1=62% 
Red2=80% 

Voigt -19.5 
±4.5 

-54 
±4.3 

3.6135 
±0.00002 

7.16 
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The values of stress obtained from all models are very similar, however Reuss model 

leads to a better agreement of experimental data with theoretical one. Factor χ2 (characterising 
quality of fitting) for Reuss model is smaller then for other models. That is why elastic constants 
were determined using Reuss model (in Reuss’s model the local stress is assumed to be uniform 
across the sample for all polycrystalline grains, so: M

ij
g
ij    σσ = ). The exemplary plots of 

<a(ψ,φ)>{hkl}  vs. sin2ψ are shown in Figs. 4.2 and 4.3. It is visible that some oscillations appear, 
which are caused by elastic (texture) or plastic (second order incompatibility stresses) 
anisotropies. To explain the oscillations appearing on graphs <a(ψ,φ)>{420} vs sin2ψ the 
anisotropic elastic properties of crystalites have to be considered. The second order 
incompatibility stresses in copper (appearing due to anisotropic nature of plastic deformation) 
are not significant. They do not influence the final results (Wierzbanowski, Wroński et al. 
2006d; Wierzbanowski, Wroński et al. 2007a).  

The estimated values of the main components of the first order residual stresses (σ11
M 

and σ22
M) and their variation with the applied deformation in the cross-rolling (perpendicular) 

direction are shew in Fig. 4.4a. We see that both components are negative after simple rolling. 
Then, with increasing value of the deformation in cross-rolling direction, σI

11 becomes positive 
for (Red2=40% and 62%) and next (Red2=80%) it becomes again negative; at Red2=40% this 
component has a maximum value. The second component σ22

M  follows roughly the similar 
behavior, but it  stays all the time negative; it reaches the smallest absolute value for 
Red2=40%. On the other hand, the precision of our measurement is confirmed by a constant 
value of a0 in the stress free state, estimated by our procedure – Fig. 4.4b. 
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Fig 4.3. Plots of <a(ψ,φ)> {hkl} vs. sin2ψ for polycrystalline copper rolled to  
a) 62% reduction in main direction 
b) 62 % reduction in main direction and 10 % in cross direction 
c) 62 % reduction in main direction and 40 % in cross direction 
d) 62 % reduction in main direction and 62 % in cross direction 
e) 62 % reduction in main direction and 80 % in cross direction 
(all reflections were fitted simultaneously – multireflection method) 
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Fig. 4.4.  a). σ11

M and σ22
M versus deformation in cross-rolling direction (Red2), b). a0 

versus deformation in cross-rolling direction (Red2) for cold rolled polycrystalline copper 
 
 

4.2.2. Low carbon steel 
 

Similar experimental procedure as above was used for low carbon steel. The starting 
sample was rolled to Red1=74%. Next, four samples were cut out and subjected to additional 
cross-rolling (Red2 of 36%, 49%, 73% and 79%, respectively).  
Classical X-ray diffraction (Cr radiation) was used for this measurement. The texture and 
residual stress (ε33 vs. sin2ψ method) were measured on SET-X diffractometer at the ENSAM 

Paris, France. The average equivalent inter-planar lattice distances, 
}hkl{

),(a >φψ< were 

determined for 211 reflection. The exemplary plots of <a(ψ,φ)>{211} vs. sin2ψ are shown in Fig. 
4.5. We observe strong oscillations in this plot, caused by elastic and plastic anisotropies. To 
explain such strong oscillations we should take into account a strong anisotropy of the second 
order stresses. A very good fit is obtained with experimental data, using our approach given by  
 

o
hkl

o
hklhkl

icIIg
ijmnijnm

M
ij

M
ijhkl aa saa+ ),hkl(F = >)a( < }{}{}{

)(
33}{ ],}{[, +>< σσφψφψ  (4.1) 

 

where 
M

ijF are diffraction elastic constants,
M

ijσ is the first order (macroscopic) stress, tensor,  
)ic(IIg

ijσ  is the second order incompatibility stress tensor, smnij are single crystal elastic constants 

and aij are direction cosines transforming stress tensor from X to L coordinate system, o }hkl{d are 

stress free interplanar spacings and <…> denotes averaging over diffracting crystallites.  
Assuming that the distribution of the second order incompatibility stresses on crystal orientation 
(g) is correctly predicted by a deformation model (e.g. the self-consistent elasto-plastic one), one 
can put: 

)g( q)g( )ic(IIg
ij

)ic(IIg
ij σ=σ  (4.2) 
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where )g()ic(IIg
ijσ  is the model predicted second order stress distribution and q is a constant 

phenomenological factor, of the order of one (it corrects the amplitude of the second order 
residual stresses, which is not always exactly predicted by the model). Non-linear diffraction 
elastic constants Fij({hkl}, ψ, φ) were calculated using the self-consistent model, taking into 
account texture and single crystal elastic constants. The effect of elastic anisotropy is not 
sufficient to explain the obtained results. For this reason the second order stresses have to be 
considered to explain the oscillations appearing on graph of <a(ψ,φ)>{211} vs. sin2ψ. It is visible 
that χ2 (Table 4.2) is higher in the case when the second order stresses are neglected. 
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Fig. 4.5. Cross-rolled steel sample for the Reuss model. (Red1=74% Red2=73%). Measured 
lattice parameters (points) and theoretical results of fitting (continuous lines for q ≠ 0 and 
dashed lines for q = 0)   
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Table. 4.2. Results of fitting procedure for samples after cross-rolling. Calculations were 
performed taking into account plastic incompatibility stresses. The values of χ2 parameter 
obtained neglecting plastic incompatibility stresses are given in brackets. 
 

Macrostresses       
[MPa] 

 

Sample 
 

Type of 
diffraction 

elastic 
constants M

11σ  M
22σ  

Scaling 
factor q 

Average 
equivalent plast. 
incomp. stress 

][ icIIg
eq

)(σ  MPa 

Stress free 
interpl. 
spacing 

od  [Å]  

2χ  

q≠0 
( 2χ ) 

q=0 
Reuss 25 

±7.2 
96.7 

±7.3 
0.75 

±0.16 
25.6 
±4.1 

2.86475 
±0.00002 

1.66 
(2.72) 

Self-cons. 
(free surf.) 

25.2 
±8.4 

100.1 
±8.7 

0.81 
±0.16 

24.9 
±3.9 

2.8648 
±0.00002 

2.18 
(2.69) 

Self-cons. 
(interior.) 

25.6 
± 9.1 

98 

±9.1 
0.79 

±0.16 
24.5 
±3.9 

2.8646 
±0.00002 

2.36 
(2.85) 

Red1=74% 

Voigt 26.1 
±9.2 

98.6 
±9.5 

0.77 
±0.16 

23.8 
±3.8 

2.86474 
±0.00002 

2.53 
(2.98) 

Reuss -5.2 

± 6.3 
54.2 

±6.2 
0.69 

±0.12 
24.1 
±2.8 

2.86487 
±0.00002 

1.32 
(2.01) 

Self-cons. 
(free surf.) 

-5.3 
±6.3 

56.6 
±6.4 

0.69 
±0.12 

24.2 
±2.9 

2.8649 
±0.00002 

1.3 
(1.99) 

Self-cons. 
(interior.) 

-4.5 

±6.3 
57.4 

±6.4 
0.59 

±0.12 
20.7 
±2.4 

2.86486 
±0.00002 

1.26 
(1.75) 

Red1=74% 
Red2=36% 

Voigt -3.4 
±6.4 

59.9 
±6.5 

0.51 
±0.1 

18.1 
±2.1 

2.86486 
±0.00002 

1.22 
(1.58) 

Reuss -4.5 

± 5.6 
-30.3 

±5.6 
0.84 
±0.1 

28.9 
±2.9 

2.86478 
±0.00002 

1.07 
(2.52) 

Self-cons. 
(free surf.) 

-4.6 
±5.6 

31.8 
±5.6 

0.84 
±0.1 

28.9 
±2.9 

2.8648 
±0.00002 

1.05 
(2.51) 

Self-cons. 
(interior.) 

-4.2 

±5.7 
-43.7 

±5.7 
0.79 
±0.1 

27 
±2.7 

2.86478 
±0.00002 

1.06 
(2.32) 

Red1=74% 
Red2=49% 

Voigt -3.6 
±5.9 

33.3 
±5.9 

0.74 
±0.1 

25.4 
±2.5 

2.86478 
±0.00002 

1.06 
(2.14) 

Reuss -68.6 

±6.4 
-87.3 

±6.4 
0.91 
±0.1 

30 
±3 

2.86492 
±0.00002 

1.42 
(3.16) 

Self-cons. 
(free surf.) 

-69.6 
±6.8 

-88.5 
±6.7 

0.93 
±0.1 

30.9 
±3.1 

2.8649 
±0.00002 

1.47 
(3.35) 

Self-cons. 
(interior.) 

-69.1 

±7.3 
-89.2 

±7.1 
1.13 
±0.1 

37.5 
±3.7 

2.86494 
±0.00002 

1.66 
(4.41) 

Red1=74% 
Red2=73% 

Voigt -68.7 
±8 

-90.2 
±7.9 

1.31 
±0.1 

43.2 
±4.3 

2.86496 
±0.00002 

1.92 
(5.53) 

Reuss -31.2 

±10.8 
-116 

±10.6 
1.02 
±0.1 

32 
±3.2 

2.86486 
±0.00002 

4.2 
(6.18) 

Self-cons. 
(free surf.) 

-29.9 
±11.4 

-118 
±11.1 

1.05 
±0.1 

32.9 
±3.2 

2.8649 
±0.00002 

4.46 
(6.36) 

Self-cons. 
(interior.) 

-28.2 

±11.2 
-118 

±11 
1.2 

±0.1 
40 
±4 

2.86487 
±0.00003 

4.34 
(7.56) 

Red1=74% 
Red2=79% 

Voigt -26.1 
±11.7 

-110.1 
±11.5 

1.48 
±0.1 

46.5 
±4.6 

2.86488 
±0.00003 

4.53 
(8.85) 
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The values of stress obtained from all models are very similar, however Reuss model gives a 
better agreement of experimental data with theoretical ones. Factor χ2 (characterising quality of 
fitting) for Reuss model is smaller then for other models. For this reason elastic constants were 
determined using Reuss model. (e.g. Fig. 4.7, 4.8)  
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Fig. 4.6. Plots of <a(ψ,φ)> {21l} vs. sin2ψ  for polycrystalline steel rolled to 74 % reduction in 
main direction and 49 %  in cross direction. Results for Reuss, self-consistent (interior), 
self-consistent (free surface) and Voigt models are shown. 
 

The plots of  <a(ψ,φ)> {21l} vs. sin2ψ  ({211} reflection) for the steel samples rolled to 
different deformations in cross rolling are show in Figs. 4.6 and 4.7. Very good fits of model 
predictions to experimental data is obtained.  

The values of main components of the first order residual stresses are listed in Table 4.2. 
Also q parameter, adjusting the amplitude of the predicted second order incompatibility stresses 
to the real ones (c.f. Eq.4.1), is listed. It varies between 0.7 and 1, hence the real amplitude of 
the second order stresses is lower than that predicted by the model. This means that the grain-
grain interactions are softer than purely elastic ones (some local slip often occurs near grain 
boundary region and it relaxes partly the incompatibility stresses). 

The variation of estimated values of main components of the first order residual stress 
(σ11

M and σ22
M) in function of the cross-rolling reduction (Red2) is presented in Fig. 4.8. Both 

components are positive in the simply rolled sample, but with increasing value of Red2 they 
become negative. Near the value of Red2=73% the two curves intersect. 
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Fig . 4.7. Plots of <a(ψ,φ)> {21l} vs. sin2ψ for polycrystalline steel (Reuss model) rolled to  
a) 74% reduction in main direction 
b) 74 % reduction in main direction and 36 %  in cross direction 
c) 74 % reduction in main direction and 49 %  in cross direction 
d) 74 % reduction in main direction and 73 %  in cross direction 
e) 74 % reduction in main direction and 79 %  in cross direction 
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Fig. 4.8. σ11

M and σ22
M versus deformation in cross rolling direction for cold rolled ferritic 

steel. Results for Reuss model. 
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a 

 
b 

 
c 

 
Fig. 4.9. (110), (100), (211) pole figures and ODFs for cold rolled steel: a) after simple rolling 
(Red1=74%), b) cross-rolling (Red1=74% and Red2=49%), c) as above but predicted by the 
elasto-plastic LW deformation model. 
 

The crystallographic textures were measured and also predicted by the deformation 
model (Fig. 4.9). The cross-rolling texture (Fig. 4.9b) is strongly symmetrical compared with the 
simple rolling one - Fig. 4.9a (two additional symmetry axes inclined ± 450 to x axis appear) 
(Wierzbanowski, Wroński et al. 2007a). The model prediction of cross-rolling texture (Fig. 
4.9c) gives a perfect agreement with the experimental one. 
 
To show the level of the second order stresses for a statistical grain, the average equivalent 
residual stress ][ icg

eq
)(σ is calculated (see chapter 1) : 

 

 d f 
8π

1
=][ icIIg

ij

E
2

icIIg
eq ggg )()()()( σσ ∫  

 
 

(4.3) 

 

where       { }

 +−+−+−= 2icIIg
33

icIIg
22

2icIIg
33

icIIg
11

2icIIg
22

icIIg
11

icIIg
eq 2

1
)()()( )()()()()()()( σσσσσσσ  

{ } ]2

1
2icIIg

23
2icIIg

13
2icIIg

123 )()()( )()()( σσσ ++  is the equivalent stress calculated according to von 

Mises formula. 
We find that the second order stress level is nearly constant in function of Red2 – Fig. 

4.10a. In order to verify the precision of our procedure the stress free inter-planar spacing (a0) 
was also plotted in function of Red2. It stays constant, which confirms the precision of our 
procedure. (within error of  ∆a0= ± 0.00002Å) (Wierzbanowski, Wroński et al. 2006d) 
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Fig. 4.10. Equivalent level (Von Misses measure) of the second order stress (a) and ao versus 
deformation in cross direction (b)  for cold rolled ferritic steel 
 
 

4.3. Conclusions 
 

The obtained results show some characteristic tendencies. In the case of rolled 
polycrystalline copper, the components of residual stresses have a maximum for a defined 
combination of deformations in both rolling directions. Also in the case of ferritic steel we 
observe a strong variation of both stress components with the deformation along the second 
rolling direction. It is worth to point out that oscillations appearing in steel samples cannot be 
explained only by anisotropy of elastic constants of crystallites, but we should consider also the 
second order stresses. It is also interesting to note that level of the second order stresses is 
constant in function of deformation in cross direction for cold rolled ferritic steel. 
On the other hand, the operation of cross-rolling involves a strong symmetrization of 
crystallographic textures, which is easily visible in pole figures. In conclusion, cross-rolling 
increases the degree of isotropy of physical properties of a material and modifies the level of 
residual stresses. 
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Chapter 5 
 
 
 

Grazing angle incidence X-ray diffraction 

geometry used for stress determination 
 
 
 

5.1. Introduction 
 

Classical sin2ψ method is one of basic methods for measuring the residual stresses and 
elastic properties of polycrystalline materials. Main disadvantage of this method is a variable 
penetration depth, which depends on ψ angle. For this reason the classical sin2ψ method cannot 
be used to study materials with a high stress gradient. A stress gradient can be estimated using 
this method only if the character of stress variation is assumed to be known (e.g., exponential or 
linear versus with depth). The analysis of stress gradient can also be performed if the standard 
sin2ψ method is repeated for several wavelengths as the X-rays penetrate to different depths or 
by polishing.  

In this chapter, the geometry based on the grazing angle incidence X-ray diffraction (so-
called grazing incident diffraction method, GID-sin2ψ) is discussed and applied for stress 
measurement. Using this method, it is possible to perform a non-destructive analysis of the 
heterogeneous stress for different (and well defined) volumes below the surface of the sample. 
Moreover, the stress can be measured at very small depths, of the order of a few micrometers. 
The incidence angle is small, consequently it is necessary to take into account additional factors 
which are not significant in classical geometry. The most important one is refraction. Other 
factors which are significant for the final result in grazing incidence diffraction method will be 
also considered.  
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5.2. Classical and grazing incidence diffraction geometry 
for stress determination 
 

In symmetric Bragg-Brentano geometry or classical sin2ψ geometry, ψ angle (between 
scattering vector and sample surface normal) is changing during experiment (Noyan and Cohen, 
1987). Detector and X-ray source movements are conjugated. This involves that the angle 
between surface and incident beam equals the angle between surface and diffracted beam. This 
type of geometry is used in ψ goniometers. The σ(ψ,φ) stress can be measured by determining 
elastic deformation of lattice parameter - ε33

L(ψ,φ) - in laboratory system (L). Using Hooke’s law 
and transformation law, the stress is finally expressed in sample coordinates system (S). The 
main disadvantage of this method is various penetration depth, which depends on mainly 2θ and 
ψ angles. The penetration depth is defined as the distance from the surface at which the radiation 
intensity falls to some fraction (e.g., 1/e) of the original value (Cullity, 1956). According to 
Beer-Lambert law, the intensity of the radiation wave inside a material at the depth z from the 
surface as: 
 

)ABexp(II o µ−=  (5.1) 

 
where AB=z/sinα is the path of the radiation till a thin layer (dz) situated at the depth z (Fig. 5.1) 
and µ is the linear coefficient of absorption. 
 

 
     a.                                                                        b.  
 
Fig. 5.1. Irradiated thin plate of a material of the thickness dz and length l situated at the 
depth z. Classical Bragg-Brentano geometry, with scattering vector perpendicular to  the 
sample surface, is shown:  
a). diffraction plane (defined by incident and diffracted beams is perpendicular to the 

sample surface 
b). diffraction plane is inclined of ψ  from N{hkl}. 
 
In this symmetrical geometry, the total beam path xz=AB+BC inside materials depends on 
incidence angle α (Fig. 5.1a): 
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(5.2) 
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If now, the scattering vector (and the diffraction plane, defined by the incident and diffracted 
beam) is rotated of ψ towards the sample surface, the beam path becomes: 
 


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ααψ sin
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1
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z
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(5.3) 

 
Let us calculate the fraction (Gt) of total X-ray intensity absorbed by the layer of thickness t: 

∫

∫
∞

−

−
=

0

z0

t

0

z0

t

dz)xexp(I

dz)xexp(I

G

µ

µ
 

 
 
(5.4) 

Substituting xz from Eq.5.3 and performing the integration, we obtain: 
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(5.5) 

 
One often defines the penetration depth as a depth t, which corresponds to a particular Gt value 
(usually for Gt= 1-1/e, i.e., Gt≅0.63). 
 
For symmetrical geometry (Fig. 5.1): α = θ, and we obtain for the penetration depth: 
 

( )
ψθ

µ
−−

= cossin
2

G1ln
t t  

 
 

(5.6) 

 
The penetration depth t vs. sin2ψ for classical geometry (for Gt=0.63) is presented on Fig 5.2. 
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Fig.5.2. The penetration depth vs. sin2ψ calculated from Eq. 5.6. a) for different reflections 
planes, b) for {211} reflection using different wavelengths for ferrite steel 
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Because penetration depth strongly depends on θ and ψ angles, this method cannot be used when 
large macro-stress gradients are present. The grazing incidence diffraction geometry, so-called 
GID-sin2ψ method, is characterized by a small and constant incidence angle α (Figs. 5.3 - 5.5) 
and by different orientations of the scattering vector (changing 2θ angle for a constant 
wavelength). The parallel beam geometry is used to minimise errors connected with sample 
misalignment (Skrzypek, 2002). Only detector moves in grazing incidence diffraction geometry 
and ψ{hkl} angle is expressed by equation: 
 

ψ{hkl}  = θ{hkl}  - α (5.7) 
 
 

 
 
Fig.5.3. Geometry of GID-sin2ψ method 
 

 
Fig.5.4. Geometry of GID-sin2ψ method. The incidence angle α is fixed during measurement 
and the orientation of the scattering vector is characterised by  ψ=ψ{hkl}  angle. 
 
The ψ{hkl}  angle depends on incidence angle (α) and type of reflection {hkl}. The possible values 
of ψ{hkl}  angles are limited to the number of hkl reflections used in the experiment. 
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Fig. 5.5. Irradiated thin plate of a material of the thickness dz and length l situated at the 
depth z in grazing incidence diffraction geometry. 
 
The radiation path inside materials depends on incidence angle α and diffracted beam angle β 
(Fig.5.5). 
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Similarly as it was done in Eq. 5.4, let us calculate the fraction (Gt) of X-ray intensity absorbed 
by the layer of thickness t: 
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(5.9) 

 
Substituting xz from Eq.5.8 and performing the integration, we obtain: 
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(5.10) 

where:  β = 2θ - α. 
The corresponding penetration depth is: 
 

( )










−
+

−−
=

)2sin(

1

sin

1

G1ln
t t

αθα
µ

 
 
(5.11) 

 
This relation versus sin2ψ where ψ{hkl} = θ{hkl} -α  (for Gt=0.63) is shown in Fig.5.6. 
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Fig. 5.6. Penetration depth in function of sin2ψ for 211 reflection for ferrite(ψ{hkl}=θ{hkl}-α): 
a) for two different incidence angles, b)  for two different wavelengths at α=150 . 
 

The main advantage of the g-sin2ψ method is constant or almost constant penetration 
depth for a fixed α value and for a radiation of given type. However, the penetration depth can 
be changed by selection of the incidence angle. This gives a possibility to investigate materials 
with a stress gradient. Choosing appropriate α values and type of radiation it is possible to 
measure stresses from different volumes below the surface.  
 

Exemplary values of penetration depths were calculated for steel sample (Table 5.1). 
Using GID-sin2ψ technique (incidence angles from 30 to 210) and two types of radiations (Cu 
and Fe radiation) it is possible to investigate variation of stresses on the depth ranging from 0.2 
to 4.4 µm below the surface. For comparison, the average penetration depth in the standard 
method for Mn radiation was also calculated (about 6.13 µm). In the latter case, however, it is 
not possible to analyse the stress gradient across a sample.  
 
 
Table. 5.1. Penetration depth of X-ray radiation in steel.  
 

Incidence angle α [ 0] and penetration depth t [µm] 
– grazing incidence diffraction method: 

Radiation 
/absorption coeff. 

[cm-1]/ 30 60 90 120 150 180 210 
Cu /µ l = 2395/ 0.21 0.39 0.55 0.69 0.82 0.93 1.02 
Fe /µ l = 554/ 0.89 1.67 2.36 2.97 3.53 4.01 4.42 

Average penetration depth for standard sin2ψ  method [µm]: 
Mn /µ l = 700/ 6.13 
Fe /µ l = 554/ 7.8 

Cu /µ l = 2395/ 1.75 
 

In GID-sin2ψ  method, the <d(ψ,φ)> {hkl} interplanar spacing is measured in directions 
defined by the φ and ψ angles for different hkl reflections. These experimental data can be easily 
analysed by the multi-reflection method and residual stresses can be determined for every 
incidence angle α  (Skrzypek and Baczmański 2001a and 2001b,  Baczmański 2003a, 2003b and 
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2004). The interplanar spacing measured in the L3 direction (Fig. 1.3) is given by the well known 
relation, which can be rewritten for equivalent lattice parameters ahkl : 
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            (5.12) 

where:  222
}{}{ / lkhda hklhkl ++= are equivalent lattice parameters, σ M

ij  is the average 

macrostress for the penetration depth t corresponding to a given incidence angle α (see Eq. 5.11), 
while s1 }{hkl and 21 s2 }{hkl are the diffraction elastic constants for the studied quasi-isotropic 

sample, calculated for different hkl reflections related to ψ{hkl} angles defined by Eq. 5.7. 
The <a(ψ,φ)> {hkl} parameters can be fitted applying the least square procedure and, 
consequently, the values of 0a  and the macrostress σ M

ij can be found. For presentation of the 

results of GID-sin2ψ method, the <a(ψ,φ)> {hkl} values instead of <d(ψ,φ)> {hkl} are shown versus  

sin2ψ{hkl}, where αθψ −=
}{}{ hklhkl

 angles correspond to various hkl reflections. The <a(ψ,φ)> {hkl} 

versus sin2ψ{hkl}  plot is linear in the case of quasi-isotropic sample.  
 
 
5.3. Corrections in grazing incidence diffraction geometry 
 

Similarly as in symmetrical Bragg-Brentano geometry, to estimate stresses it is necessary 
to consider all factors which influence the final result and to apply accurate corrections. The 
intensity of diffraction peak for a given diffraction pattern depends on several parameters 
(Cullity, 1956, Guinier, 1964): 
 

• multiplicity 
• temperature factor 
• absorption factor 
• Lorentz-polarization factor 
• structure factor  
• refraction factor 

 
Residual stress measurement is based on the peak position analysis. The first two factors 

(multiplicity and temperature factor) do not change the peak position but they modify intensity 
of the peak and FWHM (Full Width at Half Maximum). For these reasons they can be neglected 
in elastic stress analysis. Next factors from the list above are significant in stress analysis and 
they should be considered in diffraction data analysis. 
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5.3.1 Absorption Factor 
 
The intensity of diffracted beam is affected by absorption, which is directly related to the path 
length which is traversed by the beam in a specimen. Consider the case where a beam of 
intensity IO and of unit area in cross-section, is incident on a flat plate at the angle α (Fig. 5.7). 
The beam intensity reaching a layer of length L and thickness dz located at depth z below the 
surface is proportional to Ioe

-µAB (µ is the linear absorption coefficient of the sample). The beam 
intensity diffracted by the layer is:  
 

dzeabLI AB
O

µ−
 (5.13) 

 
where a is the volume fraction of crystallites that can diffract at this angle and b is the fraction of 
incident energy diffracted by unit volume.   
 

 
 
Fig. 5.7. Diffraction form a flat plate at the depth z. 
 
This diffracted intensity is also attenuated by the absorption along BC by a factor e-µBC until it 
exits the material, thus the total diffracted intensity outside the specimen is given by: 
 

dzeaLbIdI BCAB
OD

)( +−= µ
 (5.14) 

where: 

αsin

z
AB =     

βsin

z
BC =  

 
 

(5.15) 

 
The illuminated length l of the layer for a beam of unit cross-section (and of unit width), is: 

αsin
1=L  

 
 

(5.16) 

 
Finally, Eq. 5.14 becomes: 
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In the case of grazing incident diffraction geometry: 
αθβ −= 2  (5.18) 

 
Hence: 
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(5.19) 

 
The total diffracted intensity, for a fixed α angle, is obtained by integrating for an infinitely thick 
specimen: 
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(5.20) 

 
After performing the integration:   
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Fig. 5.8. Absorption factor versus 2θ for ferrite steel. 
 

The absorption factor (Eq. 5.21) for two different incidence angles is presented in Fig. 
5.8.  It is easy to observe that absorption factor depends on incidence angle; on the other hand, 
for the 2θ range between 400 and 1400 it is practically constant. For small and big 2θ angles the 
absorption factor changes quickly and this changes a peak position. This effect has to be taken 
into account in data correction.  
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5.3.2 Lorentz-Polarization Factor 
 

The Lorentz factor is a collection of trigonometric terms that describes the dependence of 
the diffracted intensity on the diffraction angle. There are three factors that contribute to Lorentz 
factor (Cullity, 1956, Senczyk, 1974): 
 

• The number of grains which are oriented such that they can diffract at a given angle 2θ. 
• The diffracted intensity per unit length of the diffraction cone. 
• The dependence of diffracted intensity from any one crystalline 2θ. 

 
The results for the above terms can be combined to form a single factor which describes the 
variation of intensity with angle θ. This factor is so-called the Lorentz factor, and is given by 
(see Appendix A): 

θ2sin
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. KFL =  

 
 

(5.22) 

 
where K is constant.  
Moreover, the polarization factor has to be taken into account. The Lorentz factor and the 
polarization factor are usually combined together to form the L-P (Lorentz-Polarization) factor: 
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(5.23) 

 
The Lorentz – polarization factor is shown in Fig. 5.9. Like for absorption this correction is 
significant for small and big angles 2θ. 
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Fig. 5.9.  Lorentz-Polarization factor versus 2θ for ferrite steel. 
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5.3.3. Structure factor  
 
 When an X-ray beam encounters an atom, each electron in it scatters a part of the 
radiation coherently in accordance with the Thomson equation. One might also expect the 
nucleus to take part in the coherent scattering, since it also bears a charge and should be capable 
of oscillating under the influence of the incident beam. But the nucleus has an extremely big 
mass relative to that of the electron and cannot oscillate. Finally the coherent scattering by an 
atom is due only to the electrons contained in that atom. The wave scattered by a single atom is 
not the sum of the waves scattered by its component electrons. It is sum only if the scattering is 
in the forward direction ( 02 =θ ), because the waves scattered by all the electrons of the atom 
are then in phase and the amplitudes of all the scattered waves can be added directly. This is not 
true for other directions of scattering. The fact that the electrons of an atom are situated at 
different points in space introduces differences in phase between the waves scatted by different 
electrons. 
 A quantity f, the atomic scattering factor, is used to describe the “efficiency” of scattering 
of a given atom in given direction. It is defined as a ratio of amplitudes: 
 

electrononebyscatteredwavetheofamplitude

atomanbyscatteredwavetheofamplitude
f =  

 
(5.24) 

 
From what has been said already, it is clear that f=Z for any atom scattering in forward direction. 
As θ increases, however, the waves scattered by individual electrons become more and more out 
of phase and f decreases. The atomic scattering factor also depends on the wavelength of the 
incident beam. The actual calculation of f involves sinθ rather than θ , because f decreases as the 
quantity (sinθ /λ) increases  (Fig. 5.12). 
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Fig. 5.12. The atomic scattering factor for iron. 
 
Direct calculation of atomic factor is quite complicated. Values of this factor are collected in 
crystallography tables. 
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5.3.4. Refraction factor 
 

The next factor, which has strong influences on peak position, is refraction index. 
Refraction index for X-ray radiation in metals is slightly less than unit (Hart, 1988, Parratt, 1954 
and Ely, 1997). For this reason velocity in material of EM (electro-magnetic) wave is different 
than velocity outside material.  
The quantum-mechanical theory for the complex refractive index, gives 
 

βδ in +−= 1  (5.25) 
 
where complex part of n factor depends on damping factor. The δ and β factors are described by 
Kramers-Kronig relations.  
If anomalous dispersion is ignored, the refraction index factor for X-ray range is given by  
 

δ−= 1n  (5.26) 
with: 
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(5.28) 

 
and: NA – Avogadro’s number; e – electron charge, me – electron mass, c – velocity of light, M – 
molecular weight, ρ – density, Z – atomic number and λ wavelength in cm-1. 
The index of refraction n of X-rays is slightly less than unity. For wavelengths below 2Å, δ is of 
the order of 10-4 to 10-5, depending on the density of the material. Refraction index depends on 
frequency of EM wave. For some frequency ranges it is higher than one and for other lower than 
one. Variation of refraction index is shown on Fig. 5.13. 
 

 
Fig. 5.13. Refraction index versus ω . 
 
Propagation direction of EM wave changes during passing by boundary of two media. This 
change depends on refraction index of a material and is described by Snell’s law. Refraction 
causes a change in 2θ angle and a shift of peak position. For this reason Bragg’s law should be 
modified. 
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 The total correction consist of two factors: 
• the first one takes into account a different wavelength in a material (change of so-called 

optical path),  
• the second one takes into account the refraction on a boundary between two media.  

 

 
 
Fig. 5.14. Effect of refraction in grazing incidence diffraction geometry. 
 
Bragg’s law in a basic form (without refraction) is described by equation (for the first order 
reflection): 

0sind2 θ=λ  (5.29) 

 
Let us consider the first effect. The refraction index has different value in a material (n=1-δ) than 
outside it (n=1). Hence, the optical path of the beam inside a material is changed and Bragg’s 
law has a form:  

δ−
λ=θ=λ

1
'sind2'  

 
 

(5.30) 

Combining the last two equations, we obtain:  
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1 0
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(5.31) 

The change of Bragg’s angle is: 
 

01 ' θ−θ=θ∆  (5.32) 

 
From Eq. 5.31 one obtains: 
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(5.33) 

 
Taking into account that ∆θ1 has a small value and using obvious trigonometric relations , one 
obtains from the above: 
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'tg1 θδ=θ∆  (5.34) 

 
Now, let us consider the second effect. The incident beam refracts on the boundary of two media 
according to Snell’s law (Fig. 5.14). We obtain: 
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α
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−
−

1
'90sin

90sin
 

 
 

(5.35) 

 
The relative refraction index has a value smaller than one and accordingly: 
 

'αα >   ⇒   ααα ∆+= '  
'ββ >  ⇒   β∆ββ += '  

(5.36 a) 
(5.36 b) 

 
After substituting Eq. 5.36a into Snell’s law, assuming that ∆α has small value and using 
obvious trigonometric relations, one obtains: 
 

'ctgαδ=α∆  (5.37) 
 
Similarly, one finds:  

'ctgβδ=β∆  (5.38) 
 
Let us define: 

( ) '222 θθθ −=∆  (5.39) 

 
It is seen from Fig. 5.15 that ( ) βαθ ∆+∆=∆ 2 , hence: 

  
( ) ( )''2 βαδθ ctgctg +=∆  (5.40) 

 
The total correction: 
 

0222 θθθ∆ −=  (5.41) 

 
where 2θ is measured Bragg angle and 2θ0 – its corrected value.  
Substituting Eq. 5.32 to Eq.5.39, one obtains: 
 

( ) 12 22 θθθ ∆+∆=∆  (5.42) 

 
and equals to: 

( )'tg2'ctg'ctg2 θ+β+αδ=θ∆  (5.43) 

 
In general the corrections are small, hence:  α≅α’, β≅β’, θ≅θ’, and: 
 

( )θβαδθ tgctgctg 22 ++=∆  (5.44) 
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Moreover, in the case of grazing incidence diffraction geometry: αθβ −= 2 , and we obtain 
finally: 
 

( )[ ]θαθαδθ∆ tg22ctgctg2 +−+=  (5.45) 

 
Total correction for X-ray radiation depends on the incident beam angle α, the Bragg angle 2θ 
and on the material constant (δ). The variation of the total correction versus incidence angle and 
Bragg angle is shown in Fig.5.15. 
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Fig. 5.15. a) Correction ∆2θ  versus α  for 211 peak in steel, 
                 b) Correction ∆2θ versus 2θ for the constant incidence angle α = 50. 
                 The graphs were calculated for Cu radiation. 
 
The correction for refraction strongly depends on the incidence angle α. For small α the shift can 
easily exceed 0.010, than with growing α angle the shift decreases.  
 
 

5.4. Experimental results 
 
Ferrite powder sample 
 

The next step was to find the influence of the corrections described above on results 
obtained with the grazing incidence diffraction method. The simple and standard sample is the 
powder one. The reference ferrite powder sample was prepared. The powder sample was 
obtained from mechanically deformed material. The grazing incidence diffraction measurements 
were performed on the Brücker D8 X-ray diffractometer using the Co radiation. The grazing 
incidence diffraction measurements were done for φ=00 and <a(ψ,φ)> {hkl} versus }hkl{

2sin ψ  

relation was determined. The experimental data was analysed applying the multi-reflection 
method. The experiment was repeated for various incidence angles α, corresponding to different 
penetration depths z given in Table 5.1.  
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Fig. 5.16. Position of 220 peak for steel powder sample with and without corrections. 
 
Figure 5.16 shows exemplary 220 peak for steel powder sample and the shift of its position due 
to the applied correction. The determined peak position without corrections is 2θ = 123.9788 
deg. Applying corrections for absorption, atomic structure factor and Lorentz-polarization factor 
we find the peak position at 2θ = 123.979 deg. If, moreover, the correction for refraction is 
added – the determined peak position is 2θ = 123.9674 deg. It is clear that the correction for 
refraction factor has the main influence on the peak position and the corresponding shift can be 
even of 0.05 deg. 

In order to calculate the diffraction elastic constants, the Reuss, Voigt and the self-
consistent (for interior and for surface) models were used. The correction effect on residual 
stresses, determined in the powder sample, is presented in Table 5.2. Taking into account the 
isotropic properties of this sample, the relation: M

11σ = M
22σ  and 033 =Mσ  was assumed. The stress 

components and stress-free lattice parameter for the powder sample versus penetration depth are 
presented in Figs. 5.17 and 5.18. 
 
Table 5.2 Comparison of macrostresses for powder sample using different models for 
calculation of the diffraction elastic constants. (LP – Lorentz-polarization, A – absorption, f- 
atomic structure factor). 

Determined σM
11=σM

22   [MPa] Penetration 
depth, 

incidence angle 

Type of 
correction Voigt self-cons. 

(interior) 
self-cons. 

(free surface) 
Reuss 

No corr. 88.9±17.1 73.2±14.2 61±12.1 57.9±11.4 
LP, A, f 86±17.1 70.7±14.2 58.8±12.1 55.8±11.4 

2 µm 
α=60 

(Co – rad.) Refraction -0.8±17.1 -0.7±14.2 -0.6±12.1 -0.5±11.4 
No corr. 59.9±15.9 49.8±13.5 40.3±11.3 39.7±11.1 
LP, A, f 57.1±15.2 47.6±13.5 38.8±11.3 37.9±11.1 

3.7 µm 
α=120 

(Co – rad.) Refraction 28±15.9 22.9±13.5 18.3±11.3 17.9±11.1 
No corr. 49.2±15.5 42±13.5 33.5±11.2 33.9±11.3 
LP, A, f 47.7±15.5 40.9±13.5 32.7±11.2 33.3±11.3 

5 µm 
α=180 

(Co – rad.) Refraction 21±15.5 17.5±13.5 13.7±11.2 13.8±11.3 
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Fig.5.17. Stress components σ M
11 = σ M

22  ( multi-reflection method, Co radiation)  versus 
penetration depth z for the ferrite powder sample:  
a) without corrections,  b) with absorption, Lorentz-polarization and atomic structure factor 
corrections,  c) taking into account above corrections and refraction.  



 136

 

Penetration depth [µm]

1 2 3 4 5 6

a 0
  [

A
]

2.862

2.864

2.866

2.868

2.870

2.872

 
              a. 

Penetration depth [µm]

1 2 3 4 5 6

a 0
  [

A
]

2.862

2.864

2.866

2.868

2.870

2.872

 
              b. 

Penetration depth [µm]

1 2 3 4 5 6

a 0
  [

A
]

2.862

2.864

2.866

2.868

2.870

2.872

 
              c. 

 

Fig. 5.18. Stress-free equivalent lattice parameter a0 (multi-reflection method, Co radiation)  
versus penetration depth z for the ferrite powder sample: 
a) without corrections,   
b)  with absorption, Lorentz-polarization and atomic structure factor corrections,   
c) taking into account above corrections and refraction.   
 

It is worth to notice that all corrections decrease the value of stresses (Table 5.2). 
Corrections for absorption, structure and Lorentz-polarization factor change only slightly the 
stress values (about 2 MPa). However, when refraction correction is introduced, a significant 
change of stress values is observed. In powder samples this stress reduction reached even the 
value of about 90 MPa.  In a typical case the refraction correction lowered the stress of about 20 
MPa. The resulting final stress value for the powder sample – between 20 and 30 MPa - can be 
treated as a possible systematic error for all measurements and, in fact, it determines the 
accuracy of the method. 

The applied corrections have also influence on stress-free lattice parameter a0. For data 
without corrections a slight change of a0 is observed - the value of lattice parameter increases 
with penetration depth (Fig. 5.18a). On the other hand, when corrections are considered, the 
lattice parameter a0 is practically constant in the whole range of penetration depth (Fig. 5.18c).  
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Fig. 5.19. The lattice parameter <a>{hkl} versus sin2ψ determined for powder sample (Co 
radiation). Results for a) α=60 b) α=120 and c) α=180 are shown. Diffraction elastic 
constants were calculated using the self-consistent model for the interior. On the left - results 
without corrections, on the right – results with all corrections are shown. 
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The dependence of the equivalent lattice parameter <a> {hkl}  versus sin2ψ is shown in Fig. 
5.19. The cases with and without corrections are presented. It is easy to observe that graphs after 
correction are more linear and have lower slope; this results in lower residual stresses, which is a 
correct tendency for a powder sample.  
In conclusion, the applied corrections improve the results; they reduce the value of stresses in 
powder sample (in theory their value should approach zero). They also give a constant value of 
a0 parameter (with a better precision), independently of the penetration depth. 
 
 
316L stainless steel after grinding treatment 
 

The discussed corrections were applied next to austenite steel samples after grinding. 
Chemical composition and mechanical properties of the material used for sample preparation are 
listed in Table 5.3 and Table 5.4. The surface of the sample, produced from the 316L stainless 
steel, was ground:  
in SAMPLE No 1:  at the workpiece speed of  vw =4 m/min, and the depth of cut equal to dc=4 
µm was applied, 
in SAMPLE No 2:  at the workpiece speed of  vw =1 m/min, and the depth of cut equal to dc=1 
µm was applied. 
 
Table 5.3.  Chemical composition of the studied steels (mass %) 

 C Si Mn P S Cu Ni Cr Mo 
316L 0.02 0.56 1.67 0.041 0.041 0.35 11.14 17.24 1.96 

 
Table 5.4.  Mechanical properties of the as received materials 

Specimen 0.2% proof stress  
[MPa] 

Ultimate tensile 
strength  [MPa] 

E  [GPa] 
Young modulus 

316L 200 535 196 
 

The grazing incidence diffraction measurements were performed with X-pert Philips and 
Seifert X-ray diffractometer using Cu and Fe radiations, respectively. The interplanar spacings 
were determined for different reflections hkl (see Eq. 5.11) and analysed using multi-reflection 
method. The experiment was repeated for various incidence angles α corresponding to different 
penetration depths t (Table 5.1). To verify the results of the grazing incidence diffraction 
measurements, also the standard sin2ψ method was applied using the 311 reflection (Mn 
radiation). Due to the varying penetration depth with ψ angle in the latter experiment, an 
approximate average value of penetration depth was estimated (see Table. 5.1).  

The alignment of experimental set-up for grazing incidence diffraction geometry was first 
checked (on the used diffractometer) on a powder sample of ferrite iron.  In this case, zero stress 
should be obtained for each incidence angle α, i.e., for different penetration depths t. Application 
of the corrections leads to a good agreement between two series of measurements (with Cu-
radiation and Fe-radiations) – Fig. 5.20. A relatively low value of the measured pseudo-stress in 
the powder sample ( σσ M

22
M
11 =  ≈ – 25 MPa) was found independently of the α angle. (Fig.5.20). 

This value should be treated as a possible systematic error for other measurements.  
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The variation of the lattice parameter a0 obtained by the multi-reflection analysis was studied as 
a function of the penetration depth t (or α), with and without corrections (Fig. 5.20). As 
expected, after correction the a0 value does not depend on the depth and it is equal to 2.8663 ± 
0.0002 Å. Like in the case of stress, corrections improve the agreement between results obtained 
with different radiations.  
 

Ferrite powder without correction Ferrite powder with correction 
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Fig. 5.20. σ M

11 =σ M
22  and a0

 versus penetration depth  for the ferrite powder sample. Cu and 
Fe radiations and multi-reflection method were used. On the left - results without 
corrections, on the right- results with corrections are shown. 

 

 
For the 316L stainless steel samples studied in the present work two independent 

diffraction elastic constants (s1{hkl} and 21 s2{hkl}) were calculated using Voigt, Reuss and the 
self-consistent models for sample surface and interior (see chapter 1). The calculations were 
performed using single crystal elastic constants. The surface of the 316L stainless steel was 
subjected to grinding treatment in one direction. Consequently, the asymmetry of planar stresses 
(i.e., M

22
M
11 σσ ≠  ) is expected. The grazing incidence diffraction method was applied using Cu 

and Fe radiations. Exemplary results of analysis for the ground steel are shown in Table 5.5 and 
in Figs. 5.21-5.25. The best quality of fitting (small value of χ2) was found for the self-consistent 
approach of free surface, and slightly worse results were obtained for the Reuss and self-
consistent (interior) models. The worst fitting quality appears for the Voigt model. 
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Table. 5.5. Components of macroscopic residual stress σM

11 and σM
22  ( MPa) for 316L samples. 

Reuss, Voigt and self-consistent models were used for calculation of diffraction elastic constants. 
χ2  is also listed. 
 

Results of fitting assuming σM
33=0 Penetration 

depth, 
incidence 

angle 

Analysis 
with 

correction 

Stress 
σM

ij 
[MPa], 

χ2 

Voigt self-cons. 
(interior) 

self-cons. 
(free surface) 

Reuss 

Yes σM
11 

σM
22 

χ2 

1341±154 
322±151 

96.07 

1159±63 
263±62 
23.36 

999±36 
167±35 
11.34 

912±45 
181±43 
19.79 

0.32 µm 
α=50 

(Cu - 
radiation) No σM

11 
σM

22 

χ2 

1368±149 
356±146 

90.51 

1180±59 
289±58 
20.51 

1014±36 
187±35 
11.04 

926±45 
200±44 
20.37 

Yes σM
11 

σM
22 

χ2 

1357±210 
480±206 
148.18 

1175±126 
402±123 

74.7 

1044±67 
316±66 
29.21 

932±80 
299±78 
48.78 

0.79 µm 
α=150 

(Cu – 
radiation) No σM

11 
σM

22 

χ2 

1359±208 
487±203 
144.32 

1177±124 
407±121 

71.95 

1045±65 
320±64 
27.93 

933±79 
303±77 

47.1 
Yes σM

11 
σM

22 

χ2 

1191±241 
378±240 
139.97 

1128±107 
300±107 

34.93 

980±67 
152±67 
20.41 

931±93 
159±91 
40.29 

0.88 µm 
α=30 

(Fe – 
radiation) No σM

11 
σM

22 

χ2 

1290±240 
480±239 
138.68 

1213±109 
387±109 

36 

1041±81 
217±80 
29.09 

990±104 
221±103 

50.91 
Yes σM

11 
σM

22 

χ2 

1219±235 
466±232 

133.9 

1147±109 
376±108 

37.21 

991±65 
216±65 
19.77 

941±83 
218±82 
34.22 

1.42 µm 
α=50 

(Fe - 
radiation) No σM

11 
σM

22 

χ2 

1287±234 
538±231 
132.73 

1206±109 
438±108 

36.97 

1034±73 
263±72 
24.62 

983±90 
263±89 

39.9 
Yes σM

11 
σM

22 

χ2 

1155±231 
582±230 

128.1 

1064±128 
465±127 

53.53 

915±73 
299±72 
26.25 

855±77 
278±76 
32.67 

2.59 µm 
α=100 

(Fe – 
radiation) No σM

11 
σM

22 

χ2 

1197±230 
627±229 
127.49 

1097±128 
502±127 

53.73 

939±76.8 
327±76.3 

29.31 

878±81 
304±81 

36.5 
Yes σM

11 
σM

22 

χ2 

1205±190 
813±190 

71.75 

1031±79 
616±78 
19.46 

849±52 
414±52 
13.21 

759±58 
349±58 
20.32 

4.32 µm 
α=200 

(Fe - 
radiation) No σM

11 
σM

22 

χ2 

1201±190 
814±189 

71.63 

1026±82 
616±82 
21.03 

845±54 
415±54 
14.36 

753±62 
348±62 
22.83 
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Fig. 5.21. Measured <a(ψ,φ)> {hkl} lattice parameters and fitted theoretical curves for the 
316L sample after grinding (Cu radiation and α=50). Corrections were applied to all 
experimental points. Different models were used for the calculation of diffraction elastic 
constants.  
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Fig. 5.22. Measured <a(ψ,φ)> {hkl} lattice parameters and theoretical curves  fitted to them 
for the 316L sample after grinding (Fe radiation and α=50). Corrections were applied to all 
experimental points. Different models were used for the calculation of diffraction elastic 
constants. 
 
Generally, we can conclude that reasonably good fits to experimental data are obtained with 
Reuss and self-consistent models (especially free surface version). In contrast to them, Voigt 
model predictions do not describe sufficiently well a character of the observed relations. 
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Results without correction Results with correction 
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Fig.5.23. Stress components (M11σ and M

22σ ) and stress-free equivalent lattice parameter a0 
versus penetration depth for the ground sample (SAMPLE 1). The self-consistent model for 
free surface was used to calculate the diffraction elastic constants. On the left - results 
without corrections, on the right – with corrections.   

 

 
 

The values of M
11σ and M

22σ  stress components in function of penetration depth are shown 
for SAMPLE 1 in Fig. 5.23. A very good quality of fitting and small uncertainty of the 
determined stresses suggest that the self-consistent approach for sample surface gives the best 
estimation of residual stresses (quite similar values were obtained with the Reuss model). It 
should be noted that good continuity of the measured stresses versus depth was obtained using 
the grazing incidence diffraction with Cu and Fe radiations. The experiment by means of 
standard diffraction method (using Mn radiation and 311 reflection) confirmed change of 
stresses in function depth. As for the previously studied samples, the stress- free parameter a0 is 
almost constant versus penetration depth (a0

 = 3.5951± 0.0009 Å, see Fig. 5.23). 
Figure 5.24 shows the results for the sample similar to the previous one, but with 

different technological parameters (SAMPLE 2). Just like previously, when corrections are 
applied - a better agreement between three experiments with different radiations is observed 
(Fig. 5.24) 
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Results without correction Results with correction 
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Fig.5.24. Stress components (M11σ and M

22σ ) and stress-free equivalent lattice parameter a0 
versus penetration depth for the ground sample (SAMPLE 2). The self-consistent model for 
free surface was used to calculate the diffraction elastic constants. On the left - results 
without corrections, on the right - with corrections.   

 

 
 

5.5. Conclusions 
 

Asymmetric geometry is applied in the grazing incidence diffraction method. Penetration 
depth of radiation is almost constant during experiment and it can be easily changed by an 
appropriate selection of incidence angle or by using different type of radiation. Variation of 
penetration depth enables investigation of materials with stress gradient. Classical sin2ψ method 
cannot be applied for this purpose, because penetration depth is not constant during experiment.  

Refraction of EM-wave (with refraction coefficient smaller than one) causes two effects: 
it changes the wavelength and the direction of the beam inside a sample. The two effects change 
the 2θ angle and shift the pick position. This shift has to be considered in data treatment. For 
small incidence angles (α≤100) the corrections are significant and can modify the resulting stress 
even of 70 MPa. The refraction correction decreases with growing incidence angle. Other 
corrections (absorption, atomic factor, Lorentz-polarization factor) are less important for final 
stress values. 
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General conclusions  
 
 

The stress field in polycrystalline materials was examined and described. The first and 
second residual stresses were studied in polycrystalline single and multi-phase materials. Strict 
formulae describing effects of the first and the second order stresses on interplanar spacings (or 
equivalent lattice parameter) were derived. The aim of this work is to propose a methodology of 
residual stress study using diffraction methods, theoretical approaches and modelling. This 
enables to analyse and better understand the mechanical behaviour of polycrystalline materials. 
Two methods of internal stresses determination were described and used (classical method and 
multi-reflection one).  

 
A new grazing angle incident diffraction X-ray diffraction technique was developed in 

order to analyse the residual stress gradient. Using this method, it is possible to perform a non-
destructive analysis of the heterogeneous stress for different (and well defined) volumes below 
the sample surface. Moreover, the stress can be measured at very small depths, of the order of a 
few micrometers. Uncertainty of measurement was considered; the influence of absorption, 
Lorentz-polarization, atomic scattering factor and refractive index was studied. By means of 
powder references sample the importance of all factors responsible for the peak position was 
examined and taken into account. The performed analysis confirmed a small influence of 
absorption, Lorentz-polarization and atomic scattering factor on the results of stress 
determination. Contrary to them, the refraction index was found very significant, especially for 
small incident angles. For the incidence angles α≤100 the corrections are important and they can 
modify the resulting stress significantly (even of 70 MPa in powder). The refraction correction 
decreases with growing incidence angle. 

 
The self-consistent and Lefers-Wierzbanowski models of elasto-plastic deformation were 

developed and used for the study of sample properties and the stress evolution. The presented 
models of elasto-plastic deformation (LW and SC) are useful tools for the study of mechanical 
properties of polycrystalline materials. They enable the prediction of macroscopic material 
properties (e.g., texture, stress-strain curves, plastic flow surfaces, dislocation density, final state 
of residual stress, etc.), basing on the micro-structural characteristics (crystallography of slip 
systems, hardening law, initial texture, initial residual stress state, etc.). The presented models 
predict mechanical properties of materials in particular, rolling textures were correctly predicted 
for materials with cubic and hexagonal crystal structure. Such models are convenient tools for 
technologists searching for optimal material properties. 
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The residual stresses were examined in corss-rolled polycrystalline copper and steel. The 

stress variation in function of deromation in corss rolling direction as well as resulting textures 
were explained using LW and SC models. 

 
The new multi-reflection method for stress determination was applied to analyse the 

experimental data for duplex stainless steel. The main advantage of this method is that 
experimental data obtained for various hkl reflections are treated simultaneously. The significant 
values of the phase stresses were found in both phases of duplex steel. During elasto-plastic 
deformation the evolution of phase stresses and generation of the second order incompatibility 
stresses were observed. The influence of elastic anisotropy and crystallographic texture on the 
creation of the second order incompatibility stresses was also studied. Using the methodology 
developed in this work, the first and the second order stresses were quantitatively determined for 
each phase. It has been shown that experimentally determined lattice strains could be 
successfully correlated with the theoretical results only when the influence of the second order 
stresses is taken into account. Moreover, our results confirm that the best quality of fit between 
experimentally determined lattice strains and theoretical predictions is obtained when anisotropic 
elastic constants and real initial sample texture are taken into account. 

 
The described experimental methods combined with deformation models present useful 

tools for evaluation of the stress fields in polycrystalline materials, hence for the investigation of 
new materials for technology.  
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APPENDIX A 
 
 

Lorentz-Polarization Factor 
 

The Lorentz factor is a collection of trigonometric terms that describes the dependence of 
the diffracted intensity on the diffraction angle. There are three factors that contribute to Lorentz 
factor: 
 

• The number of grains, which are, oriented such that they can diffract at a given angle 2θ. 
• The diffracted intensity per unit length of the diffraction cone. 
• The dependence of diffracted intensity from any one crystalline 2θ. 

 

 
 
Fig. A.1. Cone of reflected rays. 
 

The first factor is dependent on the volume fraction of grains oriented such that they can 
diffract at very near the particular Bragg angle. Even if a completely random distribution of grain 
orientations is assumed, this volume fraction is not the same for all orientations of the incident 
beam. Assume that a sphere of radius r is drawn around a powder sample (Fig. A.1). If the 
angular range around the Bragg angle into which appreciable intensity is diffracted is δθ, then 
the normals to the planes that can diffract will intersect the sphere within a band of width r⋅δθ, 
with an area of δθ⋅2π⋅r⋅[sin(90-θ].  
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The fraction of the crystallites is the ratio of this area to the total area of the sphere 4πr2 : 
 

2

cos

r4

)90sin(r2r

N

N
2

θδθ≅
π

θ−πδθ=∆
 

 
 

(A.1) 

 
Thus the fraction of diffracting particles is proportional to 
 

θ= cosc1  (A.2) 

 
and is small for large θ. 
 
The second factor, intensity per unit length of the diffraction cone, is important because, as 
discussed before, in normal X-ray work only small segment of the intersection of the diffraction 
cone with the detection plane is used in measuring intensities. However, since the radius of each 
cone is different, the diffracted intensity into each unit length of the cone circumference is 
different. If the radius of the diffractometer is R, the radius of the circumference of any 
diffraction cone is 2πRsin2θ. Thus, the diffracted intensity per unit length is proportional to:  
 

θ
=

2sin

1
c2  

 
 

(A.3) 

 
The third factor describes the variation of intensity with 2θ, when all other factor are constant. It 
was previously shown that, when deviations from ideality occur in the wavelength distribution of 
the X-ray beam, or in the degree of perfection of the crystal, appreciable X-ray intensity is 
observed at angles δθ away from the Bragg angle θB, resulting in the broadening of the X-ray 
peak. Maximum intensity on the other hand, occurs at θB. Thus, diffracted intensity is a function 
of  θ. 

  
 

 
Fig. A.2. Scattering in fixed direction during crystal rotation. 
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Consider a plane containing N atoms which is rotated an angle δθ for θ (Fig. A.2). In this case 
the angles that the incident and diffracted beams make with the plane are θ1 and θ2. The path 
difference between the rays scattered by the two atoms on the plane is: 
 

( ) ( )[ ]θθθθθθ ∆+−∆−=−=∆ BBaaa coscoscoscos 12  (A.4) 

 
which can be expressed as: 
 

Ba θδθ sin2=∆  (A.5) 

 
where, since δθ is small, sinδθ≅δθ. The path difference between the rays diffracted from the first 
and the N-th atom on the plane is  
 

BaNN θδθδθ sin2 ⋅⋅⋅=⋅  (A.6) 

 
 If this difference is equal to an integral multiple of the wavelength, the diffracted intensity is 
zero. Thus, the maximum rotation of any crystallite from the Bragg position is 
 

λθδθ =⋅⋅⋅ BaN sin2  

θ
λδθ
sinNa2

=  

 
(A.7) 

 
Finally the diffracted intensity varies as a function of  1/sinθ: 
 

θ
=

sin

1
c3  

 

 
(A.8) 

 
All the trigonometric terms discussed above (Eqs. A.2, A.3, A.8) can be combined to form a 
single factor, which describes the variation of intensity with angle θ. This factor is so-called the 
Lorentz factor, and is given by: 
 

θ2sin

1
. KFL =  

 
 

(A.9) 

 
where K is constant.  
 
Although x-rays are scattered in all directions by an electron, the intensity of scattered beam 
depends on the angle of scattering. According J. J. Thomson theory the intensity I of the beam 
scattered by single electron of charge e and mass m, at the distance r from the electron is given 
by 
 

α2
422

4

0 sin
cmr

e
II =  

 
 

(A.10) 
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where α is the angle between electric field of the incident wave and OP direction (Fig. A.3.) 
Suppose the incident beam is travelling in the direction Ox (Fig. A.3.) and encounters an election 
in O. We want know the scattered intensity at P in the xz plane where OP is inclined at scattering 
angle of 2θ to the incident beam. 
 

 
 

Fig. A.3. Scattering of X-rays by a single electron. 
 
 
An unpolarized incident beam has electric vector E in a random direction in yz plane: 
 

222

2
1

EEE zy ==  
 
 

(A.11) 

 
The ratio of incident intensity at O to the scattered intensity at P is equal to the ration of the 
squares of the amplitude of the electric field ( 2~ EI ).  
 

000 2
1

III zy ==  
 
 

(A.12) 

The y component of the incident beam accelerates the electron in the direction Oy. It therefore 
gives rise to a scattered beam whose intensity at P is found from equation A.10.: 
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It should by noted that angle α (yOP) equals 2
π  

Similarly, the intensity of the scattered z component is given by: 
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(A.14) 

 

since θπα 22 −= . 

The total scattered intensity at P is obtain by summing the intensities of two components: 
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PzPyP III +=  (A.15) 

 
Finally we obtain: 
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The Lorentz factor and the polarization factor are usually combined together to form the L-P 
(Lorentz-Polarization) factor: 
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Fig. A.4.  Lorentz-Polarization factor versus 2θ for ferrite steel. 
 
The Lorentz – polarization factor is shown in Fig. A.4. Like for absorption this correction is 
significant for small and high angles 2θ. 
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