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Introdu
tion
Contexte de la thèseLa mé
anique des �uides numérique (MFN) joue un r�le de plus en plus important dans le pro-
essus de 
on
eption aérodynamique. Comparé aux outils expérimentaux, le 
oût des simulationsnumériques est relativement moins élevé et il peut donner une prédi
tion sur les 
on�gurations desé
oulements qui sont di�
iles à étudier expérimentalement. Bien que la plupart des logi
iels de MFNmodernes peuvent traiter les é
oulements visqueux turbulents autour de géométries 
omplexes, leure�
a
ité de 
al
ul est en
ore basse puisque les s
hémas numériques utilisés sont souvent seulementd'ordre deux en maillage nonstru
turé, de sorte qu'un maillage très �n est né
essaire pour obtenirun résultat su�samment 
onvergé en maillage, 
'est à dire indépendant du maillage.Beau
oup de 
odes de 
al
ul MFN ont été développés qui utilisent les s
hémas d'ordre élevé enmaillage stru
turé, par exemple : les méthodes di�éren
es �nies, méthodes spe
trales ou les s
hémas
ompa
ts basés sur le résidu (RBC). Cependant, la génération d'un maillage stru
turé devient déli
ateet demande beau
oup de temps quand la géométrie est 
omplexe. Les te
hniques spé
iales 
ommeoverlapping sont don
 introduites a�n d'améliorer la �exibilité de la génération du maillage stru
-turé. D'un autre 
oté, la génération d'un maillage non-stru
turé autour d'une géométrie 
omplexeest plus fa
ile. De plus, les maillages non-stru
turés s'adaptent fa
ilement pour un ra�nement lo
al,qui réduit don
 largement le nombre total des éléments du maillage, 
omparé au ra�nement globalutilisé souvent en maillage stru
turé. Ayant 
onstaté les avantages des maillages non-stru
turés, des
her
heurs ont 
ommen
é à développer des méthodes numériques 
ompatibles ave
 
e type de mail-lage, ave
 l'a

ent ré
ent sur la pré
ision d'ordre élevé (supérieur à l'ordre deux). Les méthodes ditesGalerkin dis
ontinue, des volumes spe
traux, des di�éren
es spe
trales et les s
hémas à distributionde résidu sont en 
ours de développement à l'ordre élevé en maillages non-stru
turés. Ces méthodesd'ordre élevé ont besoin d'un nombre réduit de degré de liberté par rapport au s
héma d'ordre deuxpour avoir un niveau de pré
ision 
omparable, 
e qui donne �nalement un 
oût de 
al
ul global moinsélevé.Le projet européen ADIGMA a été proposé ave
 l'obje
tif de développer des méthodes numériquesd'ordre élevé innovantes pour les équations d'Euler et de Navier-Stokes en aérodynamique 
ompress-ible. Ce projet a débuté en septembre 2006 et s'est terminé en dé
embre 2009. Dans 
e projet,
22 partenaires de l'industrie, des organismes de re
her
he et des universités ont travaillé sur les 
astests séle
tionnés a�n de donner une évaluation la plus 
on
rète possible de l'avantage d'utiliser desméthodes numériques d'ordre élevé en maillage non-stru
turé. Arts et Métiers ParisTe
h(ENSAM)a parti
ipé à 
e projet à travers son Laboratoire de Simulation Numérique en Mé
anique des Flu-ides(SINUMEF) et la présente thèse.Parmi les équipes de re
her
he impliqués dans le projet ADIGMA, il y a deux 
atégories: 
eux quidéveloppent les méthodes de Galerkin dis
ontinue et 
eux qui travaillent en les appro
hes basées surle résidu(les s
hémas à distribution de résidu et les s
hémas 
ompa
ts basés sur le résidu). Le présenttravail appartient à la deuxième 
atégorie puisqu'il se 
onsa
re à développer un s
héma d'ordreélevé basé sur le résidu pour la simulation numérique d'é
oulements 
ompressibles en maillage non-stru
turé. 7



CONTENTSLe s
héma 
ompa
t basé sur le résidu (RBC) a été proposé par Lerat et Corre au début de 2000. Uns
héma RBC d'ordre 3 a été d'abord 
onçu pour résoudre les équations d'Euler et de Navier-Stokes
ompressibles et appliqué notamment au 
al
ul des é
oulements transsoniques autour des pro�ls d'aileen maillages 
urvilignes [30℄ [31℄. Ce s
héma est 
ompa
t 
ar il utilise 3×3×3 points seulement pourles équations d'Euler en 3D. Le prin
ipe de 
e s
héma n'est pas de traiter 
haque dérivée spatialeséparément 
omme dans un s
héma dire
tionnel, mais d'appro
her d'une manière globale le résidu,la somme des termes dans les équations du système. Un s
héma basé sur le résidu peut être expriméuniquement en termes du résidu, et sa dissipation numérique est exprimée en termes des dérivés durésidu. Ce point de vue 
onduit à des s
hémas 
ompa
ts qui ne né
essitent pas de résoudre dessystèmes algébriques et possèdent de bonnes propriétés de 
apture de 
ho
, sans limiteurs et sanstermes de 
orre
tion. Grâ
e à sa 
ompa
ité, le s
héma RBC peut être fa
ilement impli
ité et in-
onditionnellement stable. En un maillage stru
turé, il est exprimé dans une formulation volumes�nis �
ell-
entered�, ave
 un traitement spé
ial pour l'irrégularité du maillage [21℄[33℄. Les premièresappli
ations du s
héma RBC d'ordre 3 pour résoudre les équations de Navier-Stokes instationnairesont été proposées dans [21℄[12℄. Le résidu 
ontient la dérivé en temps et le s
héma est résolu enutilisant une appro
he à pas de temps dual. Dans le 
adre de travail du Réseau français "Re
her
heAéronautique sur le Supersonique", les s
hémas RBC d'ordre 2 et 3 ont été appliqués aux équationsRANS et URANS ave
 une modélisation de turbulen
e RMS pour 
al
uler les é
oulements ave
 des
ho
s os
illants dans les prises d'air supersoniques [38℄. Puis dans le programme DGAC AITEC, 
ess
hémas ont été mis en ÷uvre dans le 
ode de 
al
ul de l'ONERA elsA et appliqués à des 
on�g-urations réalistes, stationnaires et instationnaires, de turboma
hine. Plus ré
emment, les s
hémasRBC ont été étendu à des pré
isions d'ordre supérieur à 3 (voir [32℄[11℄ [14℄) par une 
onstru
tiondes expressions 
ompa
tes du résidu déduite de fra
tions de Padé parti
ulières. Cette appro
he a
onduit aux s
hémas d'ordre 5 et 7 à l'aide de 5× 5× 5 points seulement pour les équations d'Euleren 3D. Parmi les s
hémas RBC les plus 
ompa
ts pour les équations de Navier-Stokes 
ompressibles,on peut distinguer RBCE5V5 (un s
héma d'ordre 5 pour les termes d'Euler et les termes visqueux)et RBCE7V2 (un s
héma d'ordre 7 pour les termes d'Euler et d'ordre 2 pour les termes visqueux)qui donne une préféren
e à l'approximation des termes d'Euler et rend la méthode bien adaptée à des
al
uls aéroa
oustiques. Les s
hémas RBC d'ordre élevé ont été appliqués aux problèmes a
oustiquesdu projet européen TurboNoise-CFD, aux simulations RANS de 
ho
s os
illants dans des tuyères etaux simulations Euler des ondes a
oustiques tournantes dans les prises d'air des moteurs d'avion. Ila été 
on�rmé que les s
hémas RBC d'ordre élevé ont besoin de beau
oup moins de points que les
héma RBC d'ordre 3 pour atteindre le même niveau de pré
ision.Vue le su

ès des s
hémas RBC en maillages stru
turés, l'idée de les étendre en maillages non-stru
turés s'est fait jour ré
emment. Un prototype du s
héma d'ordre deux basé sur le résidu,développé à l'aide de la méthode volumes �nis en maillages non-stru
turés généraux, a été pro-posé dans [42℄. Comme 
ette formulation n'est pas né
essairement 
ompa
te pour les é
oulementsvisqueux, elle est dite simplement le s
héma basé sur le résidu (RB).Obje
tif de la thèseEn a

ord ave
 l'obje
tif du projet ADIGMA, le but de 
ette thèse est de développer une versiondu s
héma RB d'ordre élevé pour appro
her les équations régissant les é
oulements 
ompressibles,d'intégrer 
e s
héma dans un 
ode de 
al
ul MFN et d'évaluer ensuite sa performan
e. Plus pré-8



CONTENTS
isémment, 
e travail a mis l'a

ent sur le développement d'un s
héma RB d'ordre trois en explorantdeux stratégies :
• La première stratégie, 
elle la plus dire
te, s'appuie sur une extension dire
te du s
héma RBproposé dans le 
adre de la méthode volumes �nis. On atteint une pré
ision d'ordre élevéen étendant le sten
il du s
héma, 
e qui donne une représentation pré
ise des variables del'é
oulement. Comme il sera illustré ave
 une série des 
as tests (les problèmes modèles et les
as proposé par le projet ADIGMA), 
ette stratégie atteint sa limite pour les 
al
uls 3D, où lesbesoins de mémoire de sto
kage dus à l'extension du sten
il de s
héma deviennent extrêmementgrands. Cette stratégie mérite d'être explorée en raison de l'intérêt du s
héma d'ordre trois parrapport au s
héma d'ordre deux, qui sera montré plus tard. Mais il est di�
ile de 
ontinuersur 
e 
hemin quand 
es s
hémas RB de volumes �nis(noté FV-RB) atteignent une pré
isiond'ordre très élevé.
• Après une étude sur les méthodes d'ordre élevé e�e
tuée ré
emment en maillages non-stru
turés,la méthode des volumes spe
traux est retenue 
omme la base alternative du développement dus
héma RB d'ordre élevé. Dans le présent travail, à 
ause de né
éssité de 
al
uler beau
oupde 
as tests pour le projet ADIGMA ave
 les s
hémas FV-RB, notre attention est limitée audéveloppement des s
hémas RB basés sur des volumes spe
traux (noté SV-RB) d'ordre deux ettrois. Il est intéressant de souligner que les s
hémas SV-RB proposés dans 
e travail 
onstituentune bonne base pour leur extension future en plus haute pré
ision.En résumé, on peut dire que l'obje
tif à 
ourt terme de 
e travail est de démontrer l'intérêt de laversion d'ordre trois du s
héma FV-RB, tandis que l'obje
tif en long terme est d'explorer la faisabilitéet le potentiel du s
héma SV-RB, ave
 une validation limitée à l'ordre trois dans 
ette thèse.Organisation du mémoireConformément aux idées qui viennent d'être exposées, 
e mémoire est divisée en deux parties prin
i-pales : la première partie est 
onsa
rée au développement du s
héma FV-RB d'ordre deux et trois,tandis que la se
onde partie dé
rit le développement du s
héma SV-RB d'ordre deux et trois.La première partie de 
e mémoire est divisée en trois 
hapitres :
• Le 
hapitre 1 dé
rit brièvement les méthodes numériques disponibles au début de 
ette thèse.L'a

ent est mis sur les prin
ipes de 
on
eption du s
héma RBC initialement développé enmaillages stru
turés et la méthode des volumes �nis 
lassique pour atteindre la pré
ision d'ordredeux et trois en maillages non-stru
turés ave
 des s
hémas dé
entré-amont.
• Le 
hapitre 2 explique 
omment les ingrédients pré
édents peuvent être 
ombinés pour donnerun s
héma RB d'ordre deux et trois basé sur les volumes �nis (noté par FV-RB O2 et O3)pour les équations d'Euler et de Navier-Stokes stationnaires. Des détails sont fournis sur leste
hniques d'a

élération de 
onvergen
e vers l'état stationnaire et sur les 
onditions aux limitesutilisées dans les 
as test montrés dans le 
hapitre 3. En�n, 
es s
hémas sont étendus auxproblèmes instationnaires.
• Cette partie se termine ave
 le 
hapitre 3 qui présente les résultats numériques de 
ertainsproblèmes modèles et des 
as test proposés par le projet ADIGMA. La présentation suit un ordrequi va de problèmes simples à des problèmes 
omplexes : d'abord des é
oulements 
ompressibles9



CONTENTSstationnaires sans 
ho
 d'un �uide parfait en 2D et 3D sont 
al
ulés par le s
héma FV-RB O2et O3, puis des é
oulements stationnaires ave
 
ho
 d'un �uide parfait sont traités par 
ess
hémas, ensuite 
es s
hémas sont utilisés pour 
al
uler des é
oulements visqueux stationnairessans 
ho
, en�n des résultats sur les é
oulements instationnaires non-visqueux sont obtenus.Pour l'ensemble de 
es résultats, les avantages du s
héma d'ordre trois par rapport à l'ordredeux sont dis
utés.La deuxième partie de 
e mémoire se dé
ompose en deux 
hapitres :
• Le 
hapitre 4 expose les prin
ipes de base de la méthode des volumes spe
traux et les détailssur la façon de 
onstruire un s
héma RB d'ordre deux et trois dans 
e 
adre. La 
onvergen
een maillage du s
héma SV-RB est évaluée par un problème d'adve
tion 
ir
ulaire en 2D et une
omparaison est faite entre les s
hémas RB développés à partir de deux appro
hes di�érentes:FV-RB et SV-RB.
• Dans le 
inquième et dernier 
hapitre, les s
hémas SV-RB sont étendus aux équations d'Euler

2D. Comme il s'agit d'appli
ations aérodynamiques, on a besoin de soins parti
uliers pour letraitement des parois solides. En parti
ulier, l'appro
he SV s'appuyant sur une augmentationdes degrés de liberté à l'intérieur d'une 
ellule du maillage, une représentation d'ordre élevéde la géométrie 
urviligne est né
essaire pour assurer la pré
ision d'ordre élevé du s
héma SV-RB en paroi. Une méthode pour représenter la paroi 
ourbée à l'ordre élevé est don
 miseen ÷uvre et évaluée. En outre, pour les appli
ations 
omplexes d'é
oulement 
ompressible,
ertaines te
hniques d'a

élération de 
onvergen
e ont été également utilisées pour l'intégrationen temps asso
iée à la dis
rétisation en espa
e. Une phase impli
ite dite sans matri
e utiliséepar le s
héma FV-RB est ainsi adaptée pour les s
hémas SV-RB. On a e�e
tué les 
omparaisonsentre l'appro
he SV 
ouplée ave
 le �ux numérique d'un s
héma dé
entré-amont standard etle s
héma SV-RB, ainsi qu'entre le s
héma FV-RB et SV-RB lors du 
al
ul d'é
oulementsnon-visqueux subsoniques autour d'un 
ylindre et d'un pro�l NACA0012.En�n 
e mémoire s'a
hève par quelques 
on
lusions et des perspe
tives à 
ourt et à long terme pourutiliser les apports originaux de 
e travail.

10



Introdu
tion
Ba
kground of the thesisComputational Fluid Dynami
s(CFD) plays an in
reasingly important role in the aerodynami
 de-sign pro
ess. Compared to experimental tools, it is relatively less expensive and in some o

asionsit 
an yield a predi
tion on �ow 
on�gurations whi
h would be hard to study through experiments.Although most of up-to-date CFD softwares 
an deal fairly well with turbulent vis
ous �ows around
omplex geometries, their 
omputational e�
ien
y is still low be
ause the underlying numeri
als
hemes are often se
ond-order a

urate only on unstru
tured grids, where the use of a very �nemesh is ne
essary to a
hieve grid-
onverged hen
e grid-independent results.A number of CFD tools have been developed, whi
h rely on high order s
hemes but remain limited tothe use of stru
tured grids, for instan
e : �nite di�eren
e methods, spe
tral methods [28℄ or Residualbased 
ompa
t (RBC) s
hemes [30℄. However, the stru
tured mesh generation be
omes parti
ularlytri
ky and time-
onsuming when a 
omplex geometry is immersed in the �ow domain. Spe
i�
 te
h-niques su
h as overlapping grids for example were therefore introdu
ed to improve the �exibility ofstru
tured grid generation. On the other hand, the mesh generation of unstru
tured grids around a
omplex body remains easier to handle. Moreover, su
h an unstru
tured grid 
an be easily adaptedfor the purpose of lo
al re�nement, whi
h results in a large redu
tion of the total number of meshelements, 
ompared to the global mesh re�nement whi
h often takes pla
e in the stru
tured gridgeneration pro
ess. Having per
eived the advantages of unstru
tured grids, resear
hers have startedto develop numeri
al methods well �tted for su
h grids, with a re
ent emphasis on high order (higherthan se
ond-order) a

ura
y. Dis
ontinuous Galerkin method [7℄, spe
tral volume method [47℄, spe
-tral di�eren
e method [34℄ and residual distribution method[15℄ are all designed to yield high ordernumeri
al solutions on unstru
tured grids. These high order methods require a redu
ed number ofdegrees of freedom with respe
t to se
ond-order s
hemes for a
hieving a 
omparable level of a

ura
y,whi
h results in a redu
tion of the global 
omputational 
ost.The ADIGMA European proje
t has been proposed with the main obje
tive to develop innovativehigh order methods for 
ompressible �ow equations used in the 
ontext of aerodynami
 appli
ationsand air
raft design. This projet started on Septembre 2006 and is 
ompleted on De
ember 2009.In this proje
t, 22 
ollaborators from industry, resear
h organisms and universities have worked onsele
ted test problems in order to produ
e an as mu
h as possible obje
tive assessment of the ben-e�t expe
ted from using high order numeri
al methods on unstru
tured grids. The Arts et MétiersParisTe
h(ENSAM) was s
ienti�
ally involved in the proje
t through its Laboratory of Numeri
alFlow Simulation (SINUMEF) and the present thesis.Among the resear
h teams involved in the ADIGMA proje
t, two main 
ategories have emerged :those developing dis
ontinuous Galerkin methods and those working on residual-based approa
hes(residual distribution methods, residual based 
ompa
t s
hemes). Clearly, the present works belongsto this se
ond family sin
e it is devoted to the development of a high order residual-based s
heme forthe simulation of 
ompressible �ows on unstru
tured grids.The Residual Based Compa
t (RBC) s
heme was proposed by Lerat and Corre at the beginning of2000. A 3rd order RBC s
heme was �rstly designed for solving the 
ompressible Euler and Navier-11



CONTENTSStokes equations and applied notably to the 
omputation of transoni
 �ows around airfoils on the
urvilinear meshes [30℄[31℄. This s
heme is 
ompa
t sin
e it involves 3 × 3 × 3 points only for the3D Euler equations. The design prin
iple is not to treat ea
h spatial derivative separately as in adire
tional s
heme, but to approa
h the residual, i.e. the sum of the terms in the balan
e equations,in a global way. A residual based s
heme 
an be expressed only in terms of the residual, and for thenumeri
al dissipation, in terms of derivatives of the residual. This point of view leads to 
ompa
ts
hemes whi
h do not require the solution of algebrai
 systems and possess good sho
k 
apturingproperties without limiter or 
orre
tion terms. Owing to their 
ompa
tness, RBC s
heme 
an be eas-ily made impli
it and un
onditionally stable. On a stru
tured mesh, it is expressed in a 
ell-
entered�nite volume formulation, with a spe
ial treatment for mesh irregularity [21℄[33℄. First appli
ationsof 3rd order RBC s
heme to the solution of the unsteady Navier-Stokes equations were proposedin [21℄[12℄. The residual 
ontains the time derivative and the s
heme is solved using a dual-timeapproa
h. In the frame work of the Fren
h Net "Re
her
he Aéronautique sur le Supersonique", 2ndand 3rd order RBC s
heme have been applied to the RANS and URANS equations with a RSMturbulen
e modeling for 
omputing �ows with os
illating sho
ks in supersoni
 air intakes [38℄. Andthen in the DGAC AITEC program, these s
hemes have been implemented in the ONERA elsA
ode and applied to a variety of realisti
 steady and unsteady turboma
hinery 
on�gurations. Morere
ently, the RBC s
hemes have been extended to a

ura
y orders higher than 3 (see [32℄[11℄ [14℄)by 
onstru
ting 
ompa
t residual expressions dedu
ed from parti
ular Pade fra
tions. This approa
hhas led to 5th and 7th order a

urate s
hemes by using 5 × 5 × 5 points only for the 3D Euler equa-tions. Among the most 
ompa
t RBC s
hemes for the 
ompressible Navier-Stokes equations, one
an distinguish RBCE5V5 (a 5th order s
heme for the Euler terms and also for the vis
ous terms)and RBCE7V2 (a 7th order s
heme for the Euler terms and 2nd order for the vis
ous terms), whi
hgives a preferen
e to the approximation of the Euler terms and makes the method well adapted toaeroa
ousti
s 
omputations. High order RBC s
hemes have been applied to a
ousti
 problems of theTurboNoise-CFD European Program, RANS simulations of os
illating sho
ks in nozzles and Eulersimulations of spinning a
ousti
 waves in air
raft engine intakes. It has been 
on�rmed that highorder RBC s
hemes need mu
h less points than 3rd order RBC s
heme in order to rea
h the samea

ura
y level.Having seen the su

essful development of RBC s
hemes on stru
tured grids, the extension of thiss
heme to unstru
tured grids has been laun
hed re
ently. A prototype of the se
ond-order residual-based s
heme developped in �nite volume method for general unstru
tured grids has been proposedin [42℄. Note that this formulation is not ne
essarily 
ompa
t anymore for vis
ous �ows, it will bedenoted by RB (Residual Based) s
heme.Obje
tive of the thesisTo be in line with the general purpose pursued by the ADIGMA proje
t, the obje
tive of this thesis isto propose a high order version of the RB s
heme for approximating the 
ompressible �ow equationson unstru
tured grids, to implement this s
heme in a CFD 
ode and to assess its performan
es.In reality, this work has been fo
using on the development of third-order RB s
hemes, where twostrategies have been followed :
• The �rst strategy, the most straightforward one, relies on a dire
t extension of the RB s
hemedesigned in the general framework of a �nite-volume approa
h. Basi
ally, high order a

ura
y12



CONTENTSis a
hieved by extending the s
heme sten
il, thus allowing a more a

urate representationof the �ow variables. As will be 
learly demonstrated on a variety of test-problems (modelones and �ow problems retained as ben
hmark test-problems in the ADIGMA proje
t), thisstrategy rea
hes its limits for 3D 
omputations, where the memory requirements indu
ed bythe extension of the s
heme's sten
il tend to be
ome una

eptably large. This strategy deservesto be explored regarding the interest of third-order s
heme over se
ond-order, whi
h will beillustrated. But this path remains a dead-end when this �nite volume based RB s
heme (denotedby FV-RB s
hemes) goes to a very high order a

ura
y.
• After some studies on 
urrently developed high order methods for unstru
tured grids, thespe
tral volume method has been retained as the alternative basis for the development ofhigh order RB s
heme. In the present work, be
ause of the time-
onstraints indu
ed by the
omputations of many test 
ases for the ADIGMA proje
t by using the FV-RB s
hemes, ourattention has been restri
ted to the development of se
ond and third-order spe
tral volumebased RB s
hemes (denoted by SV-RB s
hemes). It is ne
essary to emphasize however thespe
tral volume based s
hemes proposed in this work lays a good foundation for future higher-order extensions.In summary, it 
ould be said that the short-term obje
tive of this work has been to demonstrate theinterest of a third-order version of the FV-RB s
heme while the long-term obje
tive has been fo
usedon exploring the feasibility and the potential of the SV-RB s
heme, with an assessment limited tothird-order in this work.Organization of the thesisFollowing the ideas whi
h have just been exposed, the thesis is divided into two main parts : the �rstpart is devoted to the development of se
ond and third-order FV-RB s
hemes, while the se
ond partdeals with the development of se
ond and third-order SV-RB s
hemes.The �rst part of this thesis is divided into three 
hapters :
• Chapter 1 brie�y reviews the numeri
al te
hniques available at the start of this thesis. Theemphasis is put on the design prin
iples of the RBC s
heme initially developed on stru
turedgrids and the 
lassi
al �nite-volume method for a
hieving se
ond or third-order a

ura
y onunstru
tured grids with general upwind s
hemes.
• Chapter 2 explains how the previous ingredients 
an be 
ombined to yield a se
ond and third-order �nite volume based RB s
heme (denoted by FV-RB O2 and O3) for steady Euler andNavier-Stokes equations. Details are provided on the 
onvergen
e a

eleration te
hniques tosteady state and on boundary 
onditions used in test 
ases showed in 
hapter 3. And thenthese s
hemes are extended for unsteady problems.
• This part 
loses with 
hapter 3, whi
h presents numeri
al results of some model problems andtest 
ases proposed by the ADIGMA proje
t. The presentation follows an order from simpleproblems to 
omplex problems : at �rst 2D and 3D steady invis
id smooth 
ompressible �owproblems are 
omputed by the FV-RB O2 and O3 s
hemes; then steady invis
id �ow problemswith sho
ks are treated by these s
hemes; next these s
hemes are used to deal with steady13



CONTENTSvis
ous smooth �ows; �nally results on unsteady invis
id �ows are obtained with these s
hemes.For all of these results, the advantages of the third-order s
heme over the se
ond-order one aredis
ussed.The se
ond part of the thesis is ogranized in two 
hapters :
• Chapter 4 des
ribes the basi
 prin
iples of the spe
tral volume method and details on how ase
ond and third-order RB s
heme 
an be designed within this framework. The grid 
onver-gen
e of the developed SV-RB s
hemes is assessed on a 2D 
ir
ular adve
tion problem anda 
omparison is made between the RB s
hemes from two di�erent approa
hes: FV-RB andSV-RB s
hemes.
• In the �nal 
hapter, Chapter 5, the SV-RB s
hemes are extended for the 2D Euler equations.Sin
e the aeronauti
al appli
ations of the proposed methods involve �ows over solid bodies, spe-
ial 
are must be given to the wall boundary treatment. In parti
ular, be
ause the SV approa
hrelies on an in
rease of the degrees of freedom inside a grid 
ell, a high order representationof the 
urved geometry is ne
essary to ensure the high order a

ura
y of the SV-RB s
hemeon solid walls. A method to represent the 
urved boundary at high order is therefore imple-mented and tested. Moreover, for 
omplex 
ompressible �ow appli
ations, some 
onvergen
ea

eleration te
hniques also have to be given to the time integration asso
iated with the spa
edis
retization. A matrix-free impli
it s
heme used for FV-RB s
heme is thus adapted for theSV-RB s
hemes. Comparisons are performed between the SV approa
h 
oupled with a stan-dard upwind numeri
al �ux and the SV-RB s
heme as well as between the FV-RB and SV-RBapproa
hes when 
omputing the 2D subsoni
 invis
id �ow over a 
ylinder and a NACA0012airfoil.At last the thesis 
loses with some 
on
lusions and perspe
tives on the short-term and long-term useof the �ndings in this work.
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1Some existing numeri
al methods for 
ompressible�ow simulation
Fren
h Ce 
hapitre préliminaire donne une présentation 
on
ise des méthodes existantes pour lasimulation numérique des é
oulements 
ompressibles. L'a

ent est mis sur les ingrédients qui serontutilisées pour avoir le s
héma FV-RB d'ordre deux et trois en maillages non-stru
turés généraux.Pré
isément, il s'agit de la des
ription du s
héma 
ompa
t basé sur le résidu en maillages stru
turéset de la méthode des volumes �nis 
lassique d'ordre trois en maillages non-stru
turés. La façon de
ombiner 
es ingrédients est l'objet du 
hapitre suivant.English This introdu
tive 
hapter gives a brief review of some methods already in use for 
om-pressible �ow simulations. Our fo
us is 
on
entrating on those ingredients whi
h will be used inthe next 
hapter to derive a se
ond and third-order FV-RB s
heme on general unstru
tured grids.Pre
isely it is on the des
ription of the well-established residual-based 
ompa
t s
heme on stru
turedgrids and on the des
ription of 
lassi
al �nite volume method for a
hieving third-order a

ura
yon unstru
tured grids. The way on how to 
ombine these ingredients will be the topi
 of the next
hapter.1.1 Physi
al models for 
ompressible �owsA general model for des
ribing the movement of a 
ompressible �ow is the system of the Navier-Stokesequations, expressing the 
onservation of mass, momentum and total energy for a variable-density�ow. If 3D Cartesian 
oordinates are used, this system of 
onservation laws 
an be put in the lo
alform :

∂U

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0,

�

�

�

�1.1where U is the ve
tor of 
onservative variables : U =









ρ
ρu
ρv
ρw
ρE









with ρ the density, (u, v, w) thevelo
ity 
omponents and E the spe
i�
 total energy, E = e+
1

2
(u2 + v2 + w2), e being the spe
i�
internal energy. The physi
al �ux ve
tors in the x, y and z dire
tions 
an be de
omposed into a
onve
tive part depending solely on U and a di�usive part depending on U and its gradient ∇U :

f(U,∇U) = fE(U)− fV (U,∇U), g(U,∇U) = gE(U)− gV (U,∇U), h(U,∇U) = hE(U)− hV (U,∇U),15



Chapter 1 : Some existing numeri
al methods for 
ompressible �ow simulationwhere the invis
id (Euler) �uxes are given by :
fE(U) =









ρu
ρu2 + p
ρuv
ρuw
ρuH









, gE(U) =









ρv
ρvu

ρv2 + p
ρvw
ρvH









, hE(U) =









ρw
ρwu
ρwv

ρw2 + p
ρwH









,
�

�

�

�1.2and the vis
ous �uxes are expressed as:
fV (U,∇U) =









0
τxx

τxy

τxz

uτxx + vτxy + wτxz + κ∂T
∂x









, gV (U,∇U) =









0
τyx

τyy

τyz

uτyx + vτyy + wτyz + κ∂T
∂y









,

hV (U,∇U) =









0
τzx

τzy

τzz

uτzx + vτzy + wτzz + κ∂T
∂z









,
�

�

�

�1.3with p the pressure, T the temperature and H the total enthalpy, H = E+p/ρ. The system is 
losedwith some thermodynami
 equations of state relating p, T , ρ and e plus some 
onstitutive laws forthe thermal 
ondu
tivity 
oe�
ient κ and the stress tensor 
omponents τxx, τxy = τyx, τyy. For aNewtonian �uid, the vis
ous stress tensor is su
h that :
τi,j = µ

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
δi,j

∂uk

∂xk

)

.
�

�

�

�1.4where x1 = x, x2 = y, x3 = z, u1 = u, u2 = v, u3 = w, δi,j is the Krone
ker fun
tion; the �uiddynami
 vis
osity µ is determined by the Sutherland law. The thermal 
ondu
tivity κ and µ arerelated through the (
onstant) Prandtl number : Pr = µCp/κ with Cp the (
onstant) spe
i�
 heat
oe�
ient at 
onstant pressure.In this thesis the perfe
t gas is 
hosen as �uid, the thermal and 
alori
 equations of state used todes
ribe its thermodynami
 behavior are : p = ρrT and e = Cv T with r the gas 
onstant su
h that
r = Cp −Cv and γ = Cp/Cv (Cv is the spe
i�
 heat 
oe�
ient at 
onstant volume). Gathering theserelationships also yields p = (γ − 1)ρe.When the vis
ous e�e
ts 
an be negle
ted, the Navier-Stokes equations simplify into the Euler hy-perboli
 system of 
onservation laws :

∂U

∂t
+
∂fE(U)

∂x
+
∂gE(U)

∂y
+
∂hE(U)

∂z
= 0.

�

�

�

�1.5In order to perform the analysis of the error order for the numeri
al s
hemes developed in this work,it will be also 
onvenient to deal with some simpli�ed model problems su
h as :16



1.1 Physi
al models for 
ompressible �ows
• pure s
alar adve
tion :

Wt + a1Wx + a2Wy + a3Wz = 0,
�

�

�

�1.6with W the 
onservative variable and a1, a2, a3 the adve
tion 
oe�
ients in the x, y and zdire
tions
• s
alar adve
tion-di�usion :

Wt + a1Wx + a2Wy + a3Wz = ν1Wxx + ν2 Wyy + ν3 Wzz + ν12 Wxy + ν13 Wxz + ν23Wyz.
�

�

�

�1.7with νk and νij vis
osity or di�usion 
oe�
ients.In the present work, we will systemati
ally use the non-dimensional form of the Euler and Navier-Stokes equations. Sin
e our interest will be fo
used on external �ows over airfoils or wings, the typi
alsituation will be that of uniform upstream far-�eld �ow 
onditions, ρ∞, U∞ and p∞. The quantity
V∞ denotes the norm of the upstream far-�eld velo
ity; in 2D the upstream far-�eld �ow dire
tion isentirely de�ned by the angle of atta
k α. By using these 
onditions as a referen
e state to normalizethe density, velo
ity and pressure, we introdu
e the non-dimensional quantities : ρ̄ =

ρ

ρ∞
, ū =

u

V∞
,

v̄ =
v

V∞
, p̄ =

p

p∞
. By taking typi
ally the airfoil 
hord c as a referen
e length (in 2D) and a referen
etime interval t∗ = c/U∞, it is immediate to show that the non-dimensional Euler equations on thenon-dimensional quantities ρ̄, ū, v̄, p̄ are formally identi
al to (1.5). The sole di�eren
e lies in thefar-�eld in�ow 
ondition whi
h 
an be expressed using only the Ma
h number M∞ based on far-�eld
onditions and the angle of atta
k :

ρ̄∞ = 1 , ū∞ = cos(α) , v̄∞ = sin(α) , p∞ =
1

γM2
∞

.Note the system has been 
losed with the non-dimensional relation-ship between (non-dimensional)pressure, density and spe
i�
 internal energy : p̄ = (γ − 1)ρ̄ ē; sin
e Ē = ē+
1

2
(ū2 + v̄2), this rela-tionship 
an also be expressed as : p̄(U) = (γ − 1)ρ̄ (Ē − 1

2
(ū2 + v̄2)).When dealing with the (2D) Navier-Stokes equations, the non-dimensional form of the system of
onservation laws involves the Reynolds number based on the far-�eld �uid properties (ρ∞, U∞,

µ∞) and the referen
e length (typi
ally an airfoil 
hord for external aerodynami
 �ow problems)
Re∞,c = Re =

ρ∞U∞c

µ∞
:

∂U

∂t
+
∂(fE(U) − fV (U,∇U))

∂x
+
∂(gE(U) − gV (U,∇U))

∂y
= 0,

�

�

�

�1.8with
U =







ρ
ρu
ρv
ρE






, fE(U) =







ρu
ρu2 + p
ρuv
ρuH






, gE(U) =







ρv
ρvu

ρv2 + p
ρvH






, 17



Chapter 1 : Some existing numeri
al methods for 
ompressible �ow simulationand
fV (U,∇U) =







0
1

Re
τxx

1
Re
τxy

uτxx + vτxy + µ
Re

γ
Pr

∂e
∂x






, gV (U,∇U) =







0
1

Re
τyx

1
Re
τyy

uτyx + vτyy + µ
Re

γ
Pr

∂e
∂y






.where the bar on top of the non-dimensional variables has been omitted to simplify the expressionof this non-dimensional form of the Navier-Stokes equations.1.2 Original RBC s
heme on stru
tured gridsThe original residual based 
ompa
t (RBC) s
heme has been designed in a �nite di�eren
e framework.This baseline formulation of the RBC s
heme is re
alled in this se
tion, sin
e it will be the startingpoint of our development on unstru
tured grids. Let us 
onsider the following general two-dimensionalsystem of 
onservation laws (whi
h 
ould be for instan
e the Euler equations) :

∂U

∂t
+
∂f(U)

∂x
+
∂g(U)

∂y
= 0,

�

�

�

�1.9Using a general �nite di�eren
e approa
h on a uniform Cartesian grid, this system is dis
retized atea
h grid point as :
∂Ui,j

∂t
+
δ1H1

i,j

δx
+
δ2H2

i,j

δy
= 0,

�

�

�

�1.10where subs
ript 1 and 2 will systemati
ally refer to the spa
e dire
tions x and y respe
tively; δ1, δ2are di�eren
e operators over one grid 
ell, that is su
h that :
δ1H1

i,j = H1
i+1/2,j −H1

i−1/2,j ,

δ2H2
i,j = H2

i,j+1/2 −H2
i,j−1/2,

�

�

�

�1.11with δx (resp. δy) the mesh size in the x (resp. y) spa
e-dire
tion. A 
onservative dis
retizations
heme for (1.9) is uniquely de�ned by the expression of the numeri
al �uxes H1 and H2 on therespe
tive interfa
es Γi± 1

2
,j and Γi,j± 1

2

. Let us fo
us on the �rst grid dire
tion and the interfa
e Γi+ 1

2
,j(see Figure 1.1); the RBC numeri
al �ux on this fa
e 
an be expressed as :

H1
i+1/2,j = (H1)c

i+1/2,j − d1
i+1/2,j = µ1fi+1/2,j −

1

2
δxΦ1 r̃

1
i+1/2,j,

�

�

�

�1.12where µ1 is the arithmeti
 average operator over one grid 
ell in the x dire
tion :
µ1fi+1/2,j =

1

2
(fi,j + fi+1,j),

�

�

�

�1.13
Φ1 is a O(1) dissipation 
oe�
ient whi
h ensures the term d1

i+1/2,j to be dissipative to the numeri
al�ux; r̃1 is a 
entered approximation of the residual r = fx+gy asso
iated with system (1.9), 
omputedon the fa
e Γi+ 1

2
,j , whi
h plays a key role for the a

ura
y and robustness of the RBC s
heme.18



1.2 Original RBC s
heme on stru
tured grids

Figure 1.1: The RBC numeri
al �ux at fa
e 
enter i+ 1
2
, j is 
omputed using the 
ompa
tsten
il made of the 6 grids points (i, j − 1), (i, j), (i, j + 1), (i + 1, j + 1), (i + 1, j) and

(i+ 1, j − 1).In the 
ontext of a stru
tured grid dis
retization pro
ess, this residual approximation on the fa
e
Γi+1/2,j is 
omputed using the simply 
entered di�eren
e formula :

r̃1
i+ 1

2
,j

= (
δ1f

δx
+
δ2µ1µ2g

δy
)i+ 1

2
,j.

�

�

�

�1.14Similarly, the numeri
al �ux on the interfa
e Γi,j+1/2 is given by the formula :
H2

i,j+1/2 = (H2)c
i,j+1/2 − d2

i,j+1/2 = µ2gi,j+1/2 −
1

2
δyΦ2 r̃

2
i,j+1/2,

�

�

�

�1.15where the 
entered approximation of residual on the fa
e Γi,j+ 1

2

is given by:
r̃2
i,j+1/2 = (

δ1µ1µ2f

δx
+
δ2g

δy
)i,j+1/2.

�

�

�

�1.16and Φ2 is also a O(1) dissipation 
oe�
ient, playing the same role as Φ1. The way to properlydesign these dissipation 
oe�
ients has been initially proposed in [24℄, when building the so-
alled
hara
teristi
 time-step s
heme from the two-dimensional Roe and Lax-Wendro� s
hemes. Details ofthe derivation are not reprodu
ed here and only the �nal formula for these 
oe�
ients is provided.If f and g are s
alar �uxes with asso
iated wavespeeds A(U) =
∂f

∂U
, B(U) =

∂g

∂U
, the dissipation
oe�
ients are then 
omputed as :

Φ1 = sign(A)ϕ,

Φ2 = sign(B)ψ,
�

�

�

�1.17where ϕ and ψ are given by:
ϕ = min(1,

1

α
),

ψ = min(1, α),
�

�

�

�1.1819



Chapter 1 : Some existing numeri
al methods for 
ompressible �ow simulationwith a parameter α de�ned as the lo
al adve
tion dire
tion with respe
t to the mesh :
α =

δx|B|
δy|A| .

�

�

�

�1.19Note that when the adve
tion dire
tion is aligned with the x dire
tion, |B| = 0 and α = 0 so that
Φ1 = 1 and Φ2 = 0, whi
h means that the numeri
al dissipation is added only in the x dire
tion(similarly when |A| = 0, Φ1 = 0 and Φ2 = 1 yield a numeri
al dissipation in the y-dire
tion only). Infa
t, for 1D problems, the RBC s
heme be
omes the Roe s
heme, provided the Roe average is usedto 
ompute the quantities sign(A), sign(B), ϕ, ψ on ea
h fa
e in formula (1.17), (1.18). This 
hoi
eof evaluation for the dissipation 
oe�
ients will be systemati
ally used through this work.To 
on
lude this short des
ription of the existing se
ond-order RBC s
heme, we brie�y review thekey points regarding the a

ura
y properties of this s
heme. Straightforward Taylor developmentsallow to write (with h = δx = δy if the Cartesian grid is supposed uniform) :

δ1H1
i,j

δx
= (fx)i,j + O(h2) − h

2
(Φ1r)x + O(h3),

�

�

�

�1.20
δ2H2

i,j

δy
= (gy)i,j + O(h2) − h

2
(Φ2r)y + O(h3),

�

�

�

�1.21whi
h leads to a total trun
ation error at point (i, j) (this index is omitted for the sake of simpli
ity)given by:
ǫRBC O(2) = Ut + r + O(h2) − h

2
(Φ1r)x −

h

2
(Φ2r)y + O(h3).

�

�

�

�1.22When 
omputing a steady solution, Ut ≡ 0 and r ≡ 0 so that ǫRBC O(2) = O(h2) making the RBCs
heme a se
ond-order approximation to the system of 
onservation laws on a globally 3 × 3-pointsten
il.Note that in the same Cartesian grid, a 
onventional upwind s
heme based on a MUSCL-type vari-able re
onstru
tion would need a 5-point support in ea
h spa
e dire
tion to a
hieve the se
ond-ordera

ura
y. The more 
ompa
t support of the RBC s
heme makes the treatment of boundary 
ondi-tions simpler and also yields a better 
onvergen
e rate to rea
h steady state when this expli
it RBCs
heme is 
oupled with a simple �rst-order upwind impli
it s
heme (see [13℄).On this same 3 × 3-point sten
il, a third-order RBC s
heme 
an be derived [31℄ by using the resid-ual vanishing at steady-state to get rid of the se
ond-order error in (1.22). The basi
 idea for thatextension is to 
onsider as a starting point the se
ond-order RBC s
heme written as :
Ut + r̃0

i,j =
1

2

[
δ1(Φ1 r̃

1) + δ2(Φ2 r̃
2)
]

i,j
,

�

�

�

�1.23Sin
e the right-hand side of the above s
heme has been shown to be O(h3) at steady-state, third-order a

ura
y is a
hieved if an at least third-order approximation for r̃0
i,j is derived. On stru
turedgrids, the basi
 idea is to use the 
ompa
t Pade formula in a �rst step and to take advantage of the20



1.2 Original RBC s
heme on stru
tured gridsresidual vanishing at steady-state in a se
ond step. Sin
e r = fx + gy, r̃0
i,j 
an be approximated atfourth-order by using usual Pade fra
tions :

(fx + gy)i,j + O(h4) =
I

I + 1
6
δ2
1

δ1µ1fi,j

h
+

I

I + 1
6
δ2
2

δ2µ2gi,j

h
,

�

�

�

�1.24These formulas needs to solve a linear algebrai
 system in ea
h spa
e dire
tion, whi
h leads to a
omputation 
ost higher than an in
ompa
t s
heme. Therefore an idea in [30℄ says that the fo
usshould be on �nding a small global error rather than dis
retizing ea
h spatial derivative at high order.More pre
isely, fx and gy are approximated separately to se
ond-order but the total error term 
an beexpressed with a spatial derivative of the residual r = fx + gy, whi
h will vanish at the steady-state.This idea 
an be expressed as :
r̃0
i,j = (I +

1

6
δ2
2)
δ1µ1fi,j

h
+ (I +

1

6
δ2
1)
δ2µ2gi,j

h
,

�

�

�

�1.25where the 
omputation of the residual r̃0
i,j at the 
ell 
enter makes use of the 3 × 3-point sten
ilpreviously introdu
ed for 
omputing the residual-based dissipation. It is to note that this 
ompa
tformula is derived from the linear algebra usually asso
iated with the use of Pade fra
tions. Thenumeri
al �uxes asso
iated with this 
hoi
e of r̃0

i,j (and the un
hanged formulation of the residual-based dissipation) read :
H1

i+1/2,j = (H1)c
i+1/2,j − d1

i+1/2,j = (I +
1

6
δ2
2)µ1fi+1/2,j −

1

2
δxΦ1 r̃

1
i+1/2,j ,

H2
i,j+1/2 = (H2)c

i,j+1/2 − d2
i,j+1/2 = (I +

1

6
δ2
1)µ2gi+1/2,j −

1

2
δyΦ2 r̃

2
i,j+1/2,

�

�

�

�1.26The resulting trun
ation error is given by :
ǫRBC O(3) = Ut + r +

h2

6
rxx +

h2

6
ryy + O(h4) − h

2
(Φ1r)x −

h

2
(Φ2r)y + O(h3).

�

�

�

�1.27so that at steady-state ǫRBC O(3) = O(h3). A usual upwind s
heme based on purely dire
tional ap-proximation of fx and gy using MUSCL-type variable re
onstru
tion would need a 5-point sten
il inea
h grid dire
tion to a
hieve the same third-order a

ura
y.These design prin
iples have been generalized in [32℄[11℄ to derive very high order (�fth, seventh)residual-based 
ompa
t s
hemes on a 5×5-point sten
il. Extension to the 
ompressible Navier-Stokesequations has also been performed in [32℄[14℄; note that in that 
ase 
are must be taken to derivespe
i�
 Pade-type formula for �rst and se
ond-derivatives that allow simpli�
ations of the Pade fra
-tions and avoid any linear algebra. Clearly, su
h a strategy to a
hieve high order a

ura
y 
ru
iallydepends on the use of stru
tured grids. Sin
e the obje
tive of the present work is to extend the RBCs
heme on unstru
tured grids, we shall not venture further along this way. Instead, we will fo
uson the use of a �nite-volume framework on general unstru
tured grids and try to insert the mainfeatures of our residual-based s
heme inside this framework. To this e�e
t, before performing this
ombination of residual-based approa
h and �nite-volume te
hnique in the next 
hapter, we brie�yreview in the next se
tion some key ingredients of standard numeri
al methods on unstru
tured grids.21



Chapter 1 : Some existing numeri
al methods for 
ompressible �ow simulation1.3 Classi
al numeri
al methods on unstru
tured gridsWe restri
t our dis
ussion to the �nite-volume method, whi
h is based on the integral formulationof 
onservation laws on general unstru
tured grids. The �nite-volume method 
an be either vertex-
entered or 
ell-
entered. In the vertex-
entered approa
h, the 
ontrol volume on whi
h the system ofequations is dis
retized is built around the verti
es (nodes) of the grid while in the 
ell-
entered ap-proa
h, the grid 
ell itself plays the role of 
ontrol volume (see for instan
e [4℄). Only the 
ell-
entered�nite-volume formulation will be used in this work; this 
hoi
e has some important 
onsequen
es onthe formulation of the wall boundary 
onditions in the 
ase of aerodynami
 �ows around obsta
les(airfoils, wings . . .), whi
h will be dis
ussed later in this work.Let us start our presentation of the �nite-volume approximation of the Navier-Stokes equationsfrom the 
ompa
t two-dimensional formulation :
∂U

∂t
+ ∇ · F(U,∇U) = 0,

�

�

�

�1.28where F is the �ux ve
tor with 
omponents f , g in the x, y dire
tions respe
tively. On a generalunstru
tured mesh, the 
ell-
entered �nite-volume dis
retization of (1.28) takes the form :
∂Ui

∂t
+

1

|Ωi|

∫

Ωi

∇ · FdΩ = 0,
�

�

�

�1.29where Ui is the 
ell average solution de�ned at the 
entroid of the mesh 
ell Ωi, |Ωi| denotes thesurfa
e of this grid 
ell. By using Green-Gauss theorem, this equation 
an be rewritten as :
∂Ui

∂t
+

1

|Ωi|
∑

k∈I(Ωi)

∫

Γi,k

F · ndΓ = 0,
�

�

�

�1.30with Γi,k the k-th fa
e of 
ell Ωi, |Γi,k| the length of this fa
e and n the fa
e normal unit ve
torpointing outside the 
ontrol 
ell. The set of fa
es forming the 
ell Ωi is denoted by I(Ωi).The integral of physi
al �ux proje
tion onto the fa
e normal dire
tion 
an be 
omputed approxi-mately by using a Gauss quadrature formula along ea
h fa
e of the 
ontrol 
ell :
∫

Γi,k

F · ndΓ ≃
Ng∑

g=1

ωg(Hi,k)g|Γi,k|,
�

�

�

�1.31with g the index of the Gauss quadrature point on the fa
e Γi,k, ωg its asso
iated quadrature weight;
Ng = Integer((p + 1)/2) is the number of quadrature points along the fa
e whi
h is ne
essary toa
hieve an a

ura
y of order p - in parti
ular, for a se
ond order s
heme (p = 2) Ng = 1 that is a singleGauss point on ea
h fa
e (midpoint of ea
h fa
e, see Figure 1.2) is su�
ient to ensure se
ond-ordera

ura
y, as long as a polynomial of su�
ient order (see below) is used to represent the solutionin the 
ell; (Hi,k)g denotes the numeri
al �ux at the Gauss point g, approximating the normal �ux
F · n. In the general vis
ous 
ase we 
hoose to 
onsider, this numeri
al �ux in
ludes two parts :
(Hi,k)g = (HE

i,k)g − (HV
i,k)g where the invis
id numeri
al �ux (HE

i,k)g approximating the Euler �ux
FE(U) ·n = (FE)⊥ is typi
ally 
omputed using an approximate Riemann solver, su
h as Roe, HLLCor AUSM+ s
hemes, while the vis
ous numeri
al �ux (HV

i,k)g approximating the di�usive physi
al22



1.3 Classi
al numeri
al methods on unstru
tured grids

Figure 1.2: Gauss quadrature point on a fa
e of triangle 
ell 1 quadrature point, the fa
e
enter g is used by the se
ond-order s
heme (left), 2 quadrature points (g1 and g2) are used by thethird-order s
heme (right).�ux FV (U,∇U) · n = (FV )⊥ is 
omputed by a simply 
entered approximation.The invis
id numeri
al �ux of a 
onventional upwind s
heme typi
ally reads:
(HE

i,k)g = HE
(
(UL

i,k)g, (U
R
i,k)g;ni,k

)
.

�

�

�

�1.32where the fun
tion HE depends on the spe
i�
 s
heme retained for approximating (FE)⊥i,k (Roe,AUSM+ . . .), and (U
L/R
i,k )g denote the re
onstru
ted solutions at the Gauss-point g obtained by usingthe solution polynomial in the 
ell lo
ated on the left/right side of the fa
e Γi,k through whi
h thenumeri
al �ux is 
omputed; ni,k is of 
ourse the unit normal ve
tor to this fa
e, pointing outward of
ell Ωi.For a se
ond-order s
heme, solutions UL/R

i,k are 
omputed at the single Gauss-point (the fa
e 
en-ter) with the following linear re
onstru
tion polynomial:
(U

L/R
i,k )g = Ui/o(i,k) + (rg − ri/o(i,k)) · ∇Ui/o(i,k)

�

�

�

�1.33where rg is the position ve
tor of the Gauss point, [xg yg]
T ; ri/o(i,k) is the position of the left or right
ell 
entroid (o(i, k) denoting the 
ell that shares the fa
e Γi,k with 
ell i); ∇Ui/o(i,k) is the gradient
omputed at the left or right 
ell 
entroid. These gradients 
an be 
omputed using two distin
tmethods: a least-square approa
h or Green-Gauss formula. Sin
e the least-square method is retainedin this work, we shall fo
us on its des
ription and we will not provide any details on the Green-Gauss approa
h (we refer the interested reader to [16℄ for instan
e). Let us mention the least-squareapproximation for the gradient (and, later on, the Hessian) 
omputation is sele
ted be
ause of itsgreater ease of use.In order to apply the (linear) least-square method, a re
onstru
tion sten
il must be de�ned �rstly.We re
all the basi
 prin
iple of the least-square approximation of the gradient at a given 
ell-
enter

i is to write Taylor expansions around i on a set of 
ell 
entroids in the neighborhood of 
ell i; thisleads to an over-determined problem and the gradient 
omponents estimates are found as the valuesminimizing the global trun
ation error of these developments. In order to ensure the non-singularity23
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Figure 1.3: Sten
il 
ells for least-square re
onstru
tion in 2Dof the linear least-square re
onstru
tion the minimum sten
il number in 2D should in
lude 3 
en-troids around i. A simple way ensuring this 
ondition is to pi
k into the sten
il all fa
e-neighbors of
i, that is all 
ells whi
h share at least one fa
e with 
ell i (see the 
ell 
entroids marked by a squarein �gure 1.3) for instan
e). For a 
ell interior to the grid, the minimum sten
il number is guaranteedregardless of the grid 
ell type: triangle (3 neighbors in the least-square sten
il) or quadrilateral (4neighbors in the least-square sten
il). Note however it is not ne
essarily the 
ase for a boundary 
ell :for instan
e, a triangular 
ell on a boundary 
ould have a single fa
e-neighbor; in su
h situation,the node-neighbors (
ells who share at least one node with the 
ell in whi
h the gradient is to be
omputed) will be added into the least-square sten
il.For a given 
ell i, the system obtained by the linear least-square method takes the form :






∆x1 ∆y1... ...
∆xn ∆yn












(
∂U

∂x

)

i(
∂U

∂y

)

i







=






∆U1...
∆Un




 ,

�

�

�

�1.34where ∆xj = xj − xi, ∆yj = yj − yi are the distan
e di�eren
es between the 
ell i and a 
ell j inthe sten
il; ∆Uj = Uj − Ui denotes the solution di�eren
e between a 
ell j and the 
ell i; n is thetotal number of neighboring 
ells whi
h belong to the sten
il of 
ell i. It is 
lear that this system 
anbe solved analyti
ally to yield the following expressions for the �rst-order estimates of the gradient
omponents at the 
entroid of 
ell i :
(
∂U

∂x

)

i

=

∑

j∈S(i)

(∆yj)
2
∑

j∈S(i)

(∆Uj∆xj) −
∑

j∈S(i)

(∆xj∆yj)
∑

j∈S(i)

(∆Uj∆yj)

∑

j∈S(i)

(∆xj)
2
∑

j∈S(i)

(∆yj)
2 − (

∑

j∈S(i)

∆xj∆yj)
2

,

(
∂U

∂y

)

i

=

−
∑

j∈S(i)

(∆xj∆yj)
∑

j∈S(i)

(∆Uj∆xj) +
∑

j∈S(i)

(∆xj)
2
∑

j∈S(i)

(∆Uj∆yj)

∑

j∈S(i)

(∆xj)
2
∑

j∈S(i)

(∆yj)
2 − (

∑

j∈S(i)

∆xj∆yj)
2

.
�

�

�

�1.35where S(i) denotes the set of 
ells j forming the sten
il of the least-square formula applied in 
ell
i. In summary, formula (1.35) yields �rst-order estimates of the 
ell-gradient whi
h 
an be inserted24



1.3 Classi
al numeri
al methods on unstru
tured gridsin the linear solution re
onstru
tion formula (1.33); this formula is then applied in ea
h 
ell to yieldstates (U
L/R
i,k ) at the single Gauss point 
orresponding to the fa
e 
enter; these states are �nally usedin the numeri
al �ux formula (1.32) along with a single-point Gauss quadrature formula (mid-pointformula in the present 
ase) to obtain the approximation of the physi
al (normal) �ux along fa
e Γi,jof the 
ontrol 
ell Ωi. This pro
ess is very 
ommonly used today for applying se
ond-order s
hemeson general unstru
tured grids.Let us now brie�y review the steps that must be taken in order to upgrade this �nite-volume strategyto third-order a

ura
y. First, two Gauss quadrature points are required along ea
h fa
e and thesolution states (U

L/R
i,k )g on the left and right of ea
h of these points are 
omputed using a quadrati
polynomial :
(U

L/R
i,k )g = Ui/o(i,k) + (rg − ri/o(i,k)) · ∇Ui/o(i,k)

+
1

2
(rg − ri/o(i,k))

T · Hi/o(i,k) · (rg − ri/o(i,k)).
�

�

�

�1.36where Hi/o(i,k) is the Hessian of the solution at the left or right 
ell 
entroid. In a way similar to these
ond-order s
heme, both the solution gradient and its Hessian are 
omputed using a least-squaremethod. This means the Taylor expansions written at 
ell 
enters j around the 
ell-
enter i areperformed up to third-order (the 
ell-gradient is approximated at se
ond-order while the Hessian isapproximated at �rst-order only); this results again in an over-determined problem, the trun
ationerror of whi
h is 
omputed and minimized with respe
t to the 
omponents of the gradient (Ux)i,
(Uy)i and the 
omponents of the symmetri
 Hessian matrix (Uxx)i, (Uxy)i, (Uyy)i. Naturally, sin
e 5unknown quantities have to be determined now, an extended sten
il is required for these quadrati
least-square formula with respe
t to the one used by the linear least-square formula. For example,this sten
il should in
lude a minimum number of 6 
enters around i in 2D. Obviously, pi
king onlyfa
e-neighbors is not enough to form an a

eptable sten
il for an interior 
ell whatever the 
ell type is;therefore node-neighbors (
ells sharing at least one node with the 
ell i under 
onsideration, markedby 
ir
les in �gure 1.3) are added into the sten
il list. The set of fa
e-neighbors and node-neighborsis 
alled �rst-level neighbors. In 2D, it is easy to 
he
k that there are 8 �rst-level neighbors for aninterior quadrilateral 
ell and 12 �rst-level neighbors for an interior equilateral triangle 
ell, whi
h isin both 
ases enough for the quadrati
 least-square re
onstru
tion to be applied. Note again that fora boundary 
ell the �rst-level neighbors are often not enough to provide an a

eptable sten
il so thatall fa
e-neighbors of the �rst-level neighbors of the 
ell i in whi
h the gradient must be 
omputedat se
ond-order will then be added into the sten
il list to ensure the appli
ability of the quadrati
least-square formula.When applied in a given 
ell i, the quadrati
 least-square method yields the following system:






wi
x∆x1 wi

y∆y1 wi
xx(∆x1)

2 wi
xy∆x1∆y1 wi

yy(∆y1)
2... ...

wi
x∆xn wi

y∆yn wi
xx(∆xn)2 wi

xy∆xn∆yn wi
yy(∆yn)2














(Ux)i

(Uy)i

(Uxx)i

(Uxy)i

(Uyy)i









=






∆U1...
∆Un




 ,

�

�

�

�1.3725



Chapter 1 : Some existing numeri
al methods for 
ompressible �ow simulationwhere, following [16℄, geometry-based weights have been introdu
ed to res
ale the system in order toensure a proper 
onditioning for the linear system to solve. These weights are de�ned as : wi
x = 1/hi

x,
wi

y = 1/hi
y, wi

xx = 1/(hi
x)

2, wi
xy = 1/(hi

xh
i
y), wi

yy = 1/(hi
y)

2 where hi
x and hi

y are 
hara
teristi
distan
es asso
iated with 
ell i in the x and y dire
tions, 
omputed by hi
x = max(|xk+1 − xk|) and

hi
y = max(|yk+1 − yk|) with indi
es k and k+ 1 looping over all nodes of 
ell i. Su
h a normalization
an of 
ourse be also performed for the linear re
onstru
tion - but this latter is less sensitive to thegrid s
ales than the quadrati
 re
onstru
tion. In vis
ous 
omputation, highly distorted meshes 
ouldbe involved and this normalization will be
ome very useful for both re
onstru
tion [4℄. Written inmatrix form, the above quadrati
 least-square approa
h reads :

Ai · Ui = Bi,
�

�

�

�1.38where it must be emphasized the matrix Ai is 
onstant for a �xed-grid 
al
ulation (whi
h will besystemati
ally 
onsidered in the present work) while the right-hand-side Bi depends on the solutionsin 
ell i and its neighbors, whi
h varies during the 
omputation.After left-multipli
ation of the system by the transpose matrix of Ai :
Mi · Ui = Ci,

�

�

�

�1.39with Mi = AT
i ·Ai a 
onstant square matrix, Ci = AT

i ·Bi a varying solution ve
tor. The solution ofthe system is obtained as :
Ui = M−1

i · Ci.
�

�

�

�1.40where the inverse matrix of Mi is 
omputed on
e for all of 
ells at the initialization stage (it dependson purely geometri
al data) and stored for later use at ea
h iteration. Note this 5×Ni matrix (with
Ni the number of 
ells in the sten
il of 
ell i) M−1

i in 2D (9 × Ni in 3D) has to be stored for ea
hgrid 
ell, whi
h may result in very large memory requirements for a �ne 3D mesh.This �rst 
hapter has been devoted to a brief review of the key ingredients for designing a residual-based s
heme in a �nite-di�eren
e framework on regular Cartesian grids on one hand and a se
ondand third-order re
onstru
tion-based upwind s
heme in a �nite-volume framework on unstru
turedgrids on another hand. In the next 
hapter, we will explain how these ideas 
an be 
ombined toderive a se
ond and third-order FV-RB s
heme on general unstru
tured grids.

26



2Design prin
iples of 2nd and 3rd-order FV-RBs
hemes on unstru
tured grids
Fren
h La des
ription du s
héma RB en maillages stru
turés dans le 
hapitre 1 est bref puisqueles développements de 
e s
héma sont détaillés dans une série des papiers publiés pré
édemment etdes thèses de do
torat [30℄, [31℄, [12℄, [11℄, [14℄, [21℄, [38℄.Au 
ontraire, le développement de la formulation FV du s
héma RB en maillages non-stru
turésgénéraux était beau
oup moins avan
é avant 
ette thèse. Le travail initial sur 
e sujet était un pro-jet de �n d'étude d'étudiants[42℄. Le 
ode développé dans 
e projet a été étendu rapidement pourprendre en 
ompte des équations d'état générales et a donné lieu à une série de travaux sur l'analysed'é
oulements de gaz denses[8℄ ave
 l'a

ent sur la physique d'é
oulement plut�t que sur le 
odelui même. En 2006, un s
héma FV-RB d'ordre deux a été présenté à la 
onféren
e ICCFD4, oùl'a

ent était mis sur une phase impli
ite é
onomique dite sans matri
e pré-
onditionnée et 
oupléeave
 
e s
héma[9℄. Même si la version pré-
onditionnée de 
e s
héma RB ne sera pas présentée dans
e mémoire, 
ette version du s
héma FV-RB 2006 est le point de départ des développements du RBen FV présenté dans 
e 
hapitre. Le s
héma FV-RB d'ordre deux dé
rit au-delà est publié dans [10℄.Dans 
e travail le s
héma FV-RB a été développé pour 
al
uler les é
oulements stationnaires/instationnaires,en 2D/3D, du �uide parfait/visqueux. Au lieu de donner la formulation 
omplète du s
héma FV-RB pour les é
oulements instationnaires tridimensionnels d'un �uide visqueux, on préfère présenterdans 
e 
hapitre la 
on
eption du s
héma, étape par étape, des problèmes simples aux problèmes
omplexes. De 
ette façon, on espère que les spé
i�
ités du s
héma apparaîtrent 
lairement. Les
héma FV-RB d'ordre deux et trois pour les équations d'Euler 2D stationnaire est don
 présentéd'abord. On donne ensuite des détails sur les 
onditions aux limites utilisées dans les appli
ations.L'extension de 
e s
héma au 
as visqueux est également détaillé et un élément important du s
hémaRB, la dissipation numérique basé sur le résidu, est modi�é par les termes di�usifs introduits dans lesystème des lois de 
onservation. La des
ription du solveur pour les problèmes visqueux stationnaires
2D est 
omplétée ave
 quelques détails sur les 
onditions aux limites. La présentation du solveurstationnaire en 2D se termine par la des
ription de la dis
rétisation temporelle et de la te
hnique delimitation, qui est né
essaire pour 
al
uler des é
oulements ave
 des dis
ontinuités. La formulation
3D du s
héma FV-RB pour des problèmes stationnaires est donnée a�n de 
ompléter nos des
rip-tions. Finalement, on dé
rit l'extension du s
héma FV-RB aux problèmes instationnaires.Il est important de souligner que notre obje
tif de développement du s
héma RB en maillages non-stru
turés n'était pas limité à une pré
ision d'ordre trois. Toutefois la méthode volumes �nis montre27



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured gridsun besoin énorme en mémoire de sto
kage quand un s
héma d'ordre élevé est utilisé, parti
ulièrementpour les problèmes 3D. C'est pour 
ette raison qu'on dé
ide de se limiter à l'ordre trois pour le s
hémabasé sur la FV. On envisage plut�t une autre voie de re
her
he qui 
ouple le �ux numérique du s
hémaRB ave
 une nouvelle méthode de dis
rétisation en espa
e, dite la méthode Volumes Spe
traux. Cettepartie du travail sera présenté dans les 
hapitres 4 et 5, une fois que les s
hémas FV-RB d'ordre deuxet trois aurait été évalués dans le 
hapitre 3 pour une grande gamme des problèmes.English The des
ription of the RB s
heme for stru
tured grid 
omputations provided in 
hapter1 has been brief on purpose, sin
e these developments have been detailed in a series of previouslypublished papers and PhD thesis [30℄, [31℄, [12℄, [11℄, [14℄, [21℄, [38℄.On the 
ontrary, the development of a FV formulation of the RB s
heme on general unstru
turedgrids has been mu
h less do
umented before this thesis. The initial work on this topi
 was performedin 2004 in the framework of a students' proje
t[42℄; the solver developed in this work was soon ex-tended to deal with general equations of state and gave rise to a line of work devoted to the analysisof dense gas �ows [8℄ with a fo
us on the �ow physi
s rather than on the numeri
al solver. In 2006,a se
ond-order FV-RB s
heme was presented at the ICCFD4 Conferen
e with an emphasis on thelow-
ost pre
onditioned matrix-free impli
it stage with whi
h it was 
oupled [9℄. Even though thepre
onditioned version of the RB s
heme will not be presented in this memoir, this 2006 FV-RBsolver was the starting point of the FV developments performed during this thesis and presented inthis 
hapter. The se
ond-order version of the FV-RB s
heme des
ribed hereafter was published in [10℄.The FV-RB s
heme has been developed in this work to deal with steady / unsteady, invis
id / vis-
ous �ows for 2D and 3D 
on�gurations. Rather than dire
tly providing the full formulation of thes
heme for 3D unsteady vis
ous �ows, we prefer to present the RB s
heme design step by step fromsimple problems to more 
omplex problems in this 
hapter. In this way, hopefully the spe
i�
ities ofthe RB formulation 
ould be 
lari�ed. Thus the FV-RB s
heme for the 2D steady Euler equationswill be �rst presented in its se
ond-order and third-order formulation. And some details will beprovided on the boundary 
onditions used in the appli
ation 
ases presented in the next 
hapter.Then the extension of the s
heme to the vis
ous 
ase will be then detailed, where one importantelement of the RB s
heme, the residual-based numeri
al dissipation is modi�ed by the di�usive termsintrodu
ed in the system of 
onservation laws to be solved. The des
ription of the 2D steady vis
oussolver will be 
ompleted with some details on the boundary treatment. The presentation of the 2Dsteady FV-RB solvers will be 
losed with the des
ription of the time dis
retization strategy, and thedes
ription of some limiting te
hniques, whi
h are ne
essary to perform �ow 
omputations involvingdis
ontinuities. The 3D formulation of the FV-RB s
heme for steady �ows will be provided for thesake of 
ompleteness. Finally, the extension of the FV RB strategy to unsteady �ows will be des
ribed.It is important to point out that our original obje
tive of the RB s
heme development on unstru
turedgrids was not limited to third-order a

ura
y. However the FV strategy displays memory require-ments that tend to be
ome ex
eedingly huge when high order s
heme is used, in parti
ular for 3D
omputations. This is the reason why it was de
ided to push no further than third-order a

ura
yalong the FV path. Instead, another line of resear
h was explored, 
onsisting of 
oupling the RBnumeri
al �ux with a new spatial dis
retization method, 
alled Spe
tral Volume method. This partof our work will be displayed in 
hapter 4 and 5, after the se
ond and third-order FV-RB s
hemesare assessed in 
hapter 3 for a wide range of problems.28



2.1 Formulation for 2D steady �ows2.1 Formulation for 2D steady �ows2.1.1 Invis
id 
ase2.1.1.1 Design of the baseline FV-RB numeri
al �uxAs previously explained in 
hapter 1, the FV-dis
retization of the 
onservation law (1.30), with thephysi
al �ux integral approximated by the Gauss quadrature rule (1.31), takes the form :
∂Ui

∂t
+

1

|Ωi|
∑

k∈I(Ωi)

Ng∑

g=1

ωg(Hi,k)g|Γi,k| = 0,
�

�

�

�2.1where, in the invis
id 
ase, the numeri
al �ux (Hi,k)g = (HE
i,k)g approximates the invis
id normal�ux FE(U) · n = (FE)⊥. When this invis
id numeri
al �ux is 
omputed by the residual-based (RB)s
heme, it takes the following form:

(HE
i,k)g = (HRB

i,k )g =
(
Hc

i,k

)

g
− (di,k)g,

�

�

�

�2.2where
•
(
Hc

i,k

)

g
is a purely 
entered (non-dissipative) approximation of the physi
al normal �ux ve
tor

(FE)⊥ 
omputed at the Gauss-point (·)g of fa
e Γi,k. This non-dissipative �ux is 
omputedfrom some evaluation of the physi
al �uxes f , g at the 
ontrol 
ell fa
e.
• (di,k)g is a dissipation �ux, whi
h is based on the residual and thus depends on the gradientsof the physi
al �uxes f , g.A �rst strategy 
onsidered in the 
ourse of this work was to rely on a least-square estimate of thephysi
al �uxes f , g, and their �rst- and se
ond-derivatives on the fa
e to build the RB numeri
al �ux.The interest of this strategy lies in the fa
t that it allows to retain the 
ompa
tness of the originalnumeri
al �ux. Unfortunately, this strategy did not provide a stable s
heme, for reasons that remainun
lear.The alternative method that was then followed is now des
ribed. First, the non-dissipative part ofthe numeri
al �ux is 
omputed using re
onstru
ted values at the fa
e :

Hc((UL
i,k)g, (U

R
i,k)g) =

1

2
((FE

i,k,g)
⊥
L + (FE

i,k,g)
⊥
R),

�

�

�

�2.3If the general upwind numeri
al �ux (1.32) 
an be also de
omposed as the sum of a non-dissipativeand a dissipative �ux (this is easily done for the Roe numeri
al �ux for instan
e), it is 
lear the soledi�eren
e between the RB s
heme and this 
lassi
al upwind solver lies on the evaluation of the dis-sipation term (di,k)g. For the RB s
heme that we have seen in 
hapter 1, this dissipation �ux ve
toris based on the approximation of the residual asso
iated with system (1.29) 
omputed on the interfa
e.The proper 
omputation of the residual-based dissipation (di,k)g is 
ru
ial for ensuring the a

ura
yand robustness of the RB s
heme. It is important at this stage to point out the di�eren
e betweenthe RB s
heme and a 
onventional upwind s
heme on this term : 29



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured grids
• the built-in high-order dissipation of a 
onventional upwind s
heme is obtained from the useof a high-order re
onstru
tion of the �ow variables (going for instan
e from linear to quadrati
least square formula as des
ribed in the previous 
hapter) whi
h are inserted in the upwindnumeri
al �ux formula (be it a Flux Ve
tor Splitting su
h as Van Leer, Flux Di�eren
e Splittingsu
h as Roe or Hybrid s
heme su
h as AUSM+).
• the high-order dissipation of the RB s
heme is expli
itly added to a purely 
entered high-orderformula. Depending on the way to 
ompute the residual on the 
onsidered fa
e (at �rst orse
ond order as will be explained below), the dissipative �ux will be O(h2) or O(h3). In orderto redu
e the 
ost of the RB s
heme, this se
ond or third-order dissipation will be uniquely
omputed on
e on a fa
e and shared by all of RB �uxes at the Gauss-points lo
ated on thesame Γi,k fa
e :

(di,k)g = di,k =
1

2
L⊥Φi,kRi,k,

�

�

�

�2.4where L⊥ is the proje
tion onto the fa
e normal dire
tion of the distan
e between two 
ell
entroids (Ci and Co in Figure (2.1)) on the left and right side of this fa
e :
L⊥ = ∆rCi,Co

· ni,k,
�

�

�

�2.5Obviously this distan
e has the order of the mesh size O(h); besides, Φi,k is a matrix 
oe�
ientof order O(1) designed so as to ensure the dissipation of the s
heme; basi
ally, with respe
t tothe des
ription provided for a Cartesian grid in the previous 
hapter, the dissipation 
oe�
ienton a fa
e will be built from the wavespeeds or eigenvalues asso
iated with the "normal" and"tangential" Ja
obian, that is the Ja
obian of the �ux FE ·n, FE ·t where n (resp. t) denotes theunit normal (resp. tangent) ve
tor to the fa
e through whi
h the numeri
al �ux is 
omputed.The quantity Ri,k is an approximation of the system residual Ri,k de�ned as :
Ri,k =

1

|Ωi,k|

∫

Ωi,k

r dΩ.
�

�

�

�2.6The integral form Ri,k of the residual r asso
iated with system (1.28) is 
omputed in a shift
ell Ωi,k, en
losing the fa
e Γi,k and formed by the nodes of fa
e Γi,k and the two 
ell 
entroids
Ci, Co on ea
h side of this fa
e (see �gure 2.1). Note that, in this way, the quantity Ri,k in thedissipation �ux (2.4) adapts itself to the problem under study through the de�nition of r. Forthe Euler 
ase 
onsidered in this �rst part of the 
hapter, the residual r is given by r = ∇·FE .Obviously, a se
ond-order dissipation is obtained with a simple �rst-order estimate of Ri,k -sin
e this estimate is then multiplied by the �rst-order term L⊥ to yield the dissipative �ux. Inwhat follows, we will rather build a third-order dissipation whi
h will be systemati
ally addedto the non-dissipative 
ontribution to the �ux, yielding a se
ond or third-order RB s
heme,depending on the linear or quadrati
 re
onstru
tion used for the �ow variables in the 
enteredformula (2.3).In the following let us detail the 
omputation of the dissipative �ux. For invis
id �ows, the �uxintegral appearing in (2.6) 
an be expressed as :

Ri,k =
1

|Ωi,k|
∑

l∈I(Ωi,k)

∫

Γl

FE · n dΓ,
�

�

�

�2.730



2.1 Formulation for 2D steady �owsUsing a single quadrature point on ea
h fa
e (fa
e 
enter) of the shift 
ell, a se
ond-order approxi-mation of this integral reads :
Ri,k =

1

|Ωi,k|
∑

l∈I(Ωi,k)

(
HE

c

)

l
|Γl|,

�

�

�

�2.8

Figure 2.1: Shift 
ell used for the dissipation 
al
ulation in 2Dwhere the numeri
al �ux (HE
c )l is an approximation of the normal physi
al �ux (FE)⊥l at the 
enterof fa
e Γl of the shifted 
ell Ωi,k. Sin
e a se
ond-order approximation of the fa
e integral is seekedfor, this numeri
al �ux 
an be 
omputed by the trapezoidal rule. In the 2D 
ase, on a fa
e Γl withverti
es (N1

i,k, Co) for example (see Figure 2.1), the �ux (HE
c )l is 
omputed as :

(HE
c )l =

1

2

(

FE(UN1

i,k
) + FE(UCo

)
)

· nl.
�

�

�

�2.9where nl denotes the unit normal ve
tor to the fa
e Γl pointing outwards the shift 
ell Ωi,k.In order to provide this se
ond-order a

urate estimation of the �ux integral along a fa
e of theshift 
ell, the order of pre
ision of the node value is of 
ourse a key element. A simple 
hoi
e for
omputing the node value UN at a node N of the 
omputational grid is an inverse-distan
e weightedaverage of the 
ell-
entered values in the 
ells sharing the node; this strategy was used by Frink[19℄ in the 
ontext of vis
ous �ux evaluation, where node values may also be needed, depending onthe quadrature formula used for the vis
ous �ux estimate (this point will be detailed later on, whendealing with the vis
ous extension of the RB s
heme). However, this method of evaluation for thegrid node values turns out to be less than se
ond order a

urate, whi
h is not su�
ient to derive ase
ond-order RB s
heme. Therefore, another averaging method proposed by Holmes and Connell [23℄has been used : it is a bit more 
omplex hen
e expensive but yields se
ond-order a

urate estimatesfor the node values.The general form of a node estimate from neighboring 
ell-
enter values 
an be formulated as :
UN =

∑

j∈I(N)

ωj Uj

∑

j∈I(N)

ωj

,
�

�

�

�2.1031



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured grids

Figure 2.2: Cells sharing a node sten
il used for 
omputing the solution and solution gradient onnode i.where I(N) denotes the set of 
ells Ωj sharing the node N , whi
h is the sten
il asso
iated withthe node estimate formula (see Figure 2.2); and the expression of the weight fa
tor ωj depends onthe spe
i�
 method retained for node value evaluation. For the inverse-distan
e weighted average,
ωj = 1/Lj , where Lj is the distan
e between the node N and the 
entroid of the j-th sten
il 
ell Ωj .In the method proposed by Holmes and Connell, for 2D 
ase, the weight fa
tor ωj is given by:

ωj = 1 + λx (xj − xN) + λy (yj − yN),
�

�

�

�2.11where λx and λy are Lagrange multipliers 
onstru
ted from purely geometri
al data:
λx =

Ixy · (1,∆y) − Iyy · (1,∆x)
D

,

λy =
Ixy · (1,∆x) − Ixx · (1,∆y)

D
,

�

�

�

�2.12with the quantity (∆φ,∆ψ) de�ned by :
(∆φ,∆ψ) =

∑

j∈I(N)

(φj − φN) (ψj − ψN ) .
�

�

�

�2.13Quantities Ixx, Iyy, Ixy and D are de�ned by : Ixx = (∆x,∆x), Iyy = (∆y,∆y) and Ixy = (∆x,∆y);the denominator D is given by D = Ixx Iyy − I2
xy. On some severely distorted grids, the weight ωj
an di�er signi�
antly from unity; it is therefore bounded in the range [0, 2].Yet another strategy for node value 
omputation has been 
onsidered. Sin
e the solution gradientand Hessian are available in ea
h 
ell, they 
an be used as following to estimate the node value :

UN =

∑

j∈I(N)

(Uj + ∆rj,N · ∇Uj)

Ns
,

�

�

�

�2.14where I(N) still represents the set of 
ells sharing the node N , Ns is the number of 
ells in thissten
il, i.e. the 
ardinal of I(N); ∆rj,N = rN − rj is the position di�eren
e ve
tor. Note the node32



2.1 Formulation for 2D steady �owsestimate (2.14) makes use of (1.33) assuming a linear re
onstru
tion is used in the non-dissipative �uxevaluation; if a quadrati
 re
onstru
tion is used in this same non-dissipative �ux, the node estimatewould rely on the average of values re
onstru
ted in ea
h 
ell from formula (1.36) :
UN =

∑

j∈I(N)

(

Uj + ∆rj,N · ∇Uj +
1

2
(∆rj,N)T · Hj · ∆rj,N

)

Ns
.

�

�

�

�2.15This method for 
omputing the node values will be referred to as gradient-based extrapolationmethod. In our 
omputations (see next 
hapter) it has been found that the RB s
heme with thisgradient-based extrapolation method for node value 
omputation yields more a

urate results withrespe
t to the inverse-distan
e or Holmes and Connell averaging. It should be noted however thatthis extrapolation method is likely to produ
e a more os
illatory solution for 
ases with sho
ks andmay also 
ause some positivity problems in the vis
ous 
ase. In these situations, the Holmes andConnell method will be preferred.The remaining key ingredient in the dissipation term (2.4) of the RB numeri
al �ux is the dissipationmatrix 
oe�
ient Φi,k. If AE, BE denote respe
tively the Ja
obian matrix of the invis
id �uxes fEand gE for a 2D problem, let us de�ne as following the normal and tangential Ja
obian matrix withrespe
t to the fa
e Γi,k:
(J⊥)i,k = AE

i,k(nx)i,k +BE
i,k(ny)i,k,

(J‖)i,k = AE
i,k(tx)i,k +BE

i,k(ty)i,k,
�

�

�

�2.16where ni,k(nx, ny) (resp. ti,k(tx, ty)) is the unit ve
tor normal (resp. tangent) to the fa
e Γi,k. Sin
ethe Euler equations form a hyperboli
 system of 
onservation laws, these normal and tangentialJa
obian matri
es 
an also be expressed as :
(J⊥)i,k = (T⊥)i,k ·Diag((λ(l)

⊥ )i,k) · (T−1
⊥ )i,k,

(J‖)i,k = (T‖)i,k ·Diag((λ(l)
‖ )i,k) · (T−1

‖ )i,k,
�

�

�

�2.17where Diag(·) represents a diagonal matrix; the quantity λ(l)
⊥ (resp. λ(l)

‖ ) denotes the lth eigenvalueof the matrix J⊥ (resp. J‖), and (T⊥)i,k (resp. (T‖)i,k ) is the matrix the 
olumns of whi
h are theeigenve
tors asso
iated with the eigenvalues λ(l)
⊥ (resp. λ(l)

‖ ). The dissipation matrix Φi,k is built byassuming its eigenve
tors to be those of (J⊥)i,k, whi
h yields :
Φi,k = (T⊥)i,k ·Diag(φ(l)

i,k) · (T−1
⊥ )i,k,

�

�

�

�2.18with the eigenvalues φ(l)
i,k 
omputed from the eigenvalues of J⊥ and J‖ :

φ
(l)
i,k = sign((λ

(l)
⊥ )i,k)min

(

1,
|Γi,k|
|L⊥|

|(λ(l)
⊥ )i,k|

m(J‖)i,k

)

.
�

�

�

�2.19where m(J‖) = minl(|λ(l)
‖ |) is the minimum eigenvalue related to the fa
e tangent dire
tion. Theeigenvalues and eigenve
tors on the fa
e Γi,k are 
omputed using the Roe-average of the solutions atthe 
entroids of the 
ells sharing this fa
e. As will be seen in the following paragraphs, the de�nition of33



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured gridsthe dissipation matrix by (2.18)- (2.19) will be left un
hanged when 
omputing vis
ous or unsteadyproblems. Only the residual r, hen
e Ri,k in the expression of the dissipation �ux (2.4), will beadapted to the system of 
onservation laws to be solved; leaving the dissipation matrix un
hangedhas of 
ourse no impa
t on the s
heme's a

ura
y, sin
e the dissipation matrix remains O(1), but it
ould a�e
t nonetheless the stability or e�
ien
y properties of the method : sin
e no su
h �aw hasbeen previously dete
ted in the 
ontext of stru
tured grid 
al
ulations, the same simple 
hoi
e wasadopted for the present unstru
tured grid 
omputations.2.1.1.2 Boundary 
onditionsWe brie�y review the spe
i�
ities of boundary 
onditions when the RB s
heme is used for Eulerequations.
• Far-�eld boundary 
ondition Note �rst that when 
omputing external �ows around a body,the far-�eld boundary of the �ow domain will be systemati
ally set far enough from the obje
tin order to redu
e the e�e
t of the far-�eld boundary 
ondition on the �ow �eld near the body.The physi
al state on the far-�eld boundary fa
e is 
omputed with a 
hara
teristi
-based non-re�e
ting boundary 
ondition, whi
h makes use of the interior solution and the pres
ribed far-�eld state. The �ux on the boundary fa
e is then 
omputed by using the physi
al �ux formulaapplied with the 
omputed physi
al state. Clearly, this boundary treatment is not dependenton the numeri
al �ux used for the interior 
ell fa
es. Note however that the RB numeri
al�ux on fa
es having one node lo
ated on the far-�eld boundary requires the estimation of thisboundary node value : this estimation is a
tually provided using the averaging in use for all theinterior 
ells with the sole di�eren
e that the sten
il I(N) on whi
h the averaging is applieddisplays some dire
tionality (see Figure 2.3).

Figure 2.3: Cells sharing a boundary node sten
il used for 
omputation of the solution andsolution gradient on the boundary node i.
• Slip wall 
ondition For invis
id �ows, the slip wall 
ondition implies that the velo
ity in thedire
tion normal to the wall is zero on the wall fa
e. This 
ondition 
an be introdu
ed into thephysi
al �ux in the wall normal dire
tion and it therefore redu
es to :

Fw = [ 0 pwnx pwny 0 ]T .
�

�

�

�2.20where nx and ny are the 
omponents of the unit normal ve
tor to the wall fa
e, pw is thepressure on the wall fa
e. This pressure is estimated using the solution polynomial in the34



2.1 Formulation for 2D steady �owsinterior 
ell adja
ent to the wall fa
e under 
onsideration. Here again, the boundary treatmentdoes not depend on the numeri
al �ux. However, an estimation of the solution at the wall nodeis ne
essary for 
omputing the RB numeri
al �ux through an interior fa
e with a node on thewall. Therefore, the slip boundary 
ondition has to be imposed at the node; this 
ondition isenfor
ed as follows :� a �rst estimate V∗
N of the velo
ity ve
tor at a wall node (with 
omponents u∗N , v∗N) is
omputed by equation (2.10) or (2.14) applied to the velo
ity ve
tor 
omponents, u and

v.� next, the normal velo
ity at the wall node is 
omputed from V ⊥
N = u∗N(nx)N + v∗N(ny)Nwhere (nx)N , (ny)N are the 
omponents of the unit wall normal ve
tor at node N . Thisve
tor is 
omputed as the average of the unit normal ve
tors asso
iated with the wallfa
es sharing node N . Sin
e the wall fa
es in our 
omputations vary smoothly, su
h anapproximation is su�
ient to provide a

urate results.� �nally, a wall velo
ity with zero-
omponent in the normal dire
tion is 
omputed as VN =

V∗
N − V ⊥

N .2.1.2 Vis
ous 
ase2.1.2.1 Extension of the RB numeri
al �uxThe baseline RB numeri
al �ux derived in the invis
id 
ase is made of two 
ontributions : a purely
entered �ux and a residual-based dissipation term. In the vis
ous 
ase (typi
ally when solving theNavier-Stokes equations or, in a simpli�ed version, adve
tion-di�usion problems), the vis
ous 
ontri-bution to the physi
al �ux must be in
luded both into the purely 
entered �ux and in the residualon whi
h the dissipation �ux is based.Purely 
entered �ux Firstly, the 
entered numeri
al �ux be
omes :
Hc = Hc((Ui,k)g, (∇Ui,k)g),

�

�

�

�2.21whi
h means that not only the solution but also the solution gradient needs to be 
omputed at ea
hGauss quadrature point on ea
h interfa
e. The solution 
omputation at ea
h quadrature point hasbeen previously des
ribed and remains un
hanged; thus, the gradient 
omputation is now the mainfo
us.For the se
ond-order RB s
heme, a �rst-order a

urate solution gradient is 
omputed at the onlyquadrature point on the fa
e, i.e. the fa
e 
enter M (Figure (2.4)). There are several ways to
ompute this gradient [23℄[16℄. In our 
omputation, it is 
omputed by a simple average of gradientson all of nodes belonging to this fa
e :
(∇Ui,k)g = ∇UM =

1

2
(∇UN1

i,k
+ ∇UN2

i,k
).

�

�

�

�2.22This approximation gives only �rst-order pre
ision be
ause the gradient at ea
h mesh node is 
om-puted to �rst-order a

ura
y. As the same node gradient is also ne
essary in the RB numeri
aldissipation 
omputation, its evaluation will be explained later on, when des
ribing the estimate of35



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured grids

Figure 2.4: Gauss quadrature points for RB numeri
al �ux 
omputation fa
e 
enter M isthe only quadrature point used for se
ond-order RB s
heme; two quadrature points g1 and g2 areused for third-order RB s
heme.this RB dissipation.For the third-order RB s
heme, the 
omputation of the solution gradient with se
ond-order a

ura
yat ea
h quadrature point on the fa
e is required : a re
onstru
tion method using the 
ell gradientand 
ell Hessian is adopted - for an interior fa
e, the solution gradient and Hessian are available inboth neighbor 
ells. The gradient estimate at the quadrature point g is 
omputed as the arithmeti
average of the re
onstru
ted gradient in ea
h neighboring (left/right) 
ell :
(∇̌Ui,k)g =

1

2
((∇̌Ug)

L + (∇̌Ug)
R),

�

�

�

�2.23where the re
onstru
ted left (resp. right) gradient is 
omputed from the gradient and Hessian esti-mated at 
entroid of 
ell i (resp. o) :
(∇̌Ug)

L = ∇̌Ui + Hi · ∆ri,g,

(∇̌Ug)
R = ∇̌Uo + Ho · ∆ro,g.

�

�

�

�2.24where the position di�eren
e ve
tors are de�ned as ∆ri,g = rg − rCi
, ∆ro,g = rg − rCo

.Dissipation �ux A

ording to equation (2.6) and extending formula (2.7) to the vis
ous 
asein a straightforward manner, the approximation of the residual asso
iated with the vis
ous systembe
omes :
Ri,k =

1

|Ωi,k|
∑

l∈I(Ωi,k)

(
HE

c −HV
c

)

l
|Γl|,

�

�

�

�2.25where the way to 
ompute the numeri
al vis
ous �ux HV
c at ea
h fa
e 
enter of the shift 
ell needsto be spe
i�ed. Using the trapezoidal rule along the fa
e l of the shift 
ell (see (2.1), the vis
ous �uxis 
al
ulated by :

(HV
c )l =

1

2

(

F V (UN1

i,k
,∇UN1

i,k
) + F V (UCo

,∇UCo
)
)

· nl.
�

�

�

�2.26Hen
e, both gradients at 
ell 
entroids and 
ell nodes are needed. Sin
e the gradient at 
ell 
entroidsis already available - as well as the solution at 
ell nodes -, the extra-
omputation introdu
ed by the36



2.1 Formulation for 2D steady �owsvis
ous formulation is the gradient on mesh nodes.It is seen that the a
tual order of s
heme degraded by one order be
ause of the involvement of thephysi
al vis
ous �ux, i.e. the solution gradients, in the pure 
entered �ux. This is also the 
ase forthe RB dissipation �ux.For the se
ond-order RB s
heme, the node gradient is 
omputed to �rst-order by a linear least squarere
onstru
tion applied around the node; the sten
il used for this least-square estimate in
ludes all of
ells sharing the node (also referred to as the �rst-level neighbors). For a mesh with pure triangle
ells, the �rst-level neighbors of a node 
an ensure the good least-square re
onstru
tion. But theseneighbors 
ould be not enough when quadrilateral 
ells are involved in the mesh, for example, node
i has only 2 �rst-level neighbors (see Figure 2.5), while 3 is the minimum sten
il number to ensure asu

essful least-square re
onstru
tion. In this 
ase, fa
e neighbors of �rst-level neighbors are addedinto the sten
il list.

Figure 2.5: Spe
ial sten
il for the solution gradient 
omputation with linear least-squarere
onstru
tion on the boundary node in a mesh with quadrilateral 
ells. 
ells marked withsquare are the �rst-level neighbors, marked with dot are fa
e neighbors of the �rst-level neighbors.For the third-order RB s
heme, a se
ond-order a

urate dissipation �ux is enough be
ause the wholes
heme is degraded to se
ond-order by the pure 
entered �ux. The same �rst-order residual approx-imation used by the se
ond-order RB s
heme is still adopted. The node gradient is therefore still
omputed by the linear least-square re
onstru
tion.2.1.2.2 Boundary 
onditionsA brief des
ription of the boundary 
onditions used by the RB s
heme for 
omputing vis
ous �owsis presented here.
• Far-�eld boundary 
ondition The far-�eld boundary treatment des
ribed in the invis
id
ase is also applied in the vis
ous 
ase. The sole di�eren
e lies in the fa
t that the invis
id �uxobtained with the solution 
omputed on the boundary 
ell by using the theory of 
hara
teristi
smust be 
ompleted with the estimate of the vis
ous physi
al �ux. For the se
ond-order s
heme,equation (2.22) is used for the �rst-order gradient 
omputation as on internal fa
es. Solutionand its gradient are therefore ne
essary on the boundary node. Node solution 
omputation is37



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured gridsthe same as the invis
id 
ase. Node gradient is 
omputed to �rst order as stated in the RBnumeri
al dissipation �ux 
omputation. For the third-order s
heme, equation (2.23) and (2.24)used for the se
ond-order gradient 
omputation are not su

essfully used on the boundaryfa
es, the reason is possibly that there are no 
ells either on the left or on the right side ofthe boundary fa
es, whi
h makes this kind of upwind gradient approximation instable. Alinear weighted approximation using node gradients is used instead spe
ially for the gradientapproximation on boundary fa
es:
(∇wi,k)g = (1 − αN1

i,k
,g)∇wN1

i,k
+ αN1

i,k
,g∇wN2

i,k
.

�

�

�

�2.27with the weighting 
oe�
ient αN1

i,k
,g =

|∆rN1

i,k
,g|

|∆rN1

i,k
,N2

i,k
| . It is easy to see that this equation willbe
ome the equation (2.22) when the se
ond-order RB s
heme is used, where the Gauss quadra-ture point is the fa
e 
enter. Here the node gradient is always �rst-order a

urate as mentionedin the RB numeri
al dissipation 
omputation.

• No-Slip wall 
ondition The no-slip boundary 
ondition on a wall fa
e is introdu
ed in thephysi
al �ux estimate through this fa
e (the velo
ities are set to zero in the physi
al �uxformula on the solid wall). Like on the far-�eld boundary, equation (2.27) is used in the fa
egradient approximation for both the se
ond and third-order RB s
heme. In a way similar tothe invis
id 
ase, the no-slip boundary 
ondition is also imposed in the wall-boundary nodesolution 
omputation.2.1.3 Time integrationWe brie�y re
all the well-known limitations of a simple Euler-expli
it time-integration, regardless ofthe numeri
al �ux under 
onsideration, and pro
eed to des
ribe a simple matrix-free impli
it stagewhi
h has been used throughout this work to speed up the 
onvergen
e of the 
omputations to asteady-state (in
luding the 
onvergen
e to a pseudo-steady state in the 
ase of dual-time 
omputationsapplied to unsteady �ows).2.1.3.1 Expli
it strategyLet us 
onsider the 2D Navier-Stokes equations (1.8) :
∂U

∂t
+
∂(fE(U) − fV (U,∇U))

∂x
+
∂(gE(U) − gV (U,∇U))

∂y
= 0,and introdu
e the vis
ous Ja
obian matri
es : AV

0 =
∂fV

∂U
, AV

1 =
∂fV

∂Ux

, AV
2 =

∂fV

∂Uy

and similarly
BV

0 =
∂gV

∂U
, BV

1 =
∂gV

∂Ux
, BV

2 =
∂gV

∂Uy
. Let us re
all the Ja
obian matri
es of the invis
id �uxesare AE =

dfE

dU
, BE =

dgE

dU
. The Navier-Stokes equations 
an also be expressed in the followingquasi-linear form :

Ut + AEUx +BEUy = AV
0 Ux + AV

1 Uxx + AV
2 Uxy +BV

0 Uy +BV
1 Uxy +BV

2 Uyy.
�

�

�

�2.2838



2.1 Formulation for 2D steady �owsThe simplest time-integration strategy asso
iated with the spa
e-dis
retization des
ribed up to nowwould be to use an Euler-expli
it s
heme, whi
h takes the general form :
Un+1

i − Un
i

∆t
+ E(Un) = 0,

�

�

�

�2.29where Un denotes the solution at time n∆t and the expli
it stage E depends only on dis
rete valuesof the solution ve
tor at time-level n. When the Navier-Stokes equations in their 
onservative orquasi-linear formulation are solved by the �nite volume method on a general unstru
tured grid, theexpli
it stage takes the following form :
E(Un) =

1

|Ωi|
∑

k∈I(Ωi)

Ng∑

g=1

ωg(Hn
i,k)g|Γi,k|.

�

�

�

�2.30where the numeri
al �ux Hn is 
omputed from known solutions at time-level n. The time-step ∆tappearing in the expli
it s
heme (2.29) must be 
hosen so as to satisfy some numeri
al stabilityrequirements. If (2.28) redu
es to the 1D Euler equation (BE = AV
0 = AV

1 = AV
2 = BV

0 = BV
1 =

BV
2 = 0) a well-known solution for 
hoosing ∆t is the so-
alled CFL-
ondition :

∆ti = CFL
∆x

ρ(AE)i

with CFL ≤ 1,
�

�

�

�2.31where ρ(AE) is the spe
tral radius of the Ja
obian matrix AE (that is the maximum absolute valuesof the eigenvalues of AE). For the 1D Euler equations, this spe
tral radius 
omputed in the 
ell i isgiven by ρ(AE)i = |ui| + ai where ai denotes the speed of sound 
omputed in the 
ell i.In the 
ase of the 2D Euler equations solved on a general unstru
tured grid, this 
riterion of 
hoi
efor ∆t is extended as follows :
∆ti = CFL

hi

ρC
i

with CFL ≤ 1,
�

�

�

�2.32where hi is a 
hara
teristi
 length of the 
ell i and ρC
i is the 
hara
teristi
 
onve
tive wave speed inthe 
ell. In order to ensure the stability of the expli
it time-integration, the quantity hi is de�nedso as to be minimal while the quantity ρC

i is de�ned so as to be maximal. More pre
isely, in our
omputations, the 
hara
teristi
 length is 
omputed by taking the smallest distan
e between the 
ell
entroid and the 
enter of the fa
es belonging to this 
ell. For a triangle for example (see Figure 2.6),one will have : hi = min(|−−−→CiCk|), k = 1, 3. As for the 
hara
teristi
 wave speed, it is 
omputed as :
ρC

i = |Vi| + ai.In the vis
ous 
ase, a time-step ∆tVi related to the di�usive e�e
ts has also to be taken into a

ount,along with the 
onve
tive 
hara
teristi
 time-step given by ∆tCi =
hi

ρC
i

. A straightforward extensionof a 1D stability analysis for adve
tion-di�usion problems leads to the �nal 
hoi
e of time-step :
∆ti = CFLmin(∆tCi ,∆t

V
i ),

�

�

�

�2.33where the CFL number is taken smaller than unity to ensure the stability of the Euler-expli
ittime-integration and :
∆tVi =

h2
i

2ρV
i

,
�

�

�

�2.3439



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured grids

Figure 2.6: Chara
teristi
 size of a 2D triangle 
ellwith ρV
i the maximum eigenvalue of the vis
ous Ja
obian matri
es. This vis
ous spe
tral radius ispre
isely given by :

ρV
i =

1

ρi
·max(4

3
µi, κi).

�

�

�

�2.35with µi the �uid vis
osity 
omputed in 
ell i and κi the �uid thermal 
ondu
tivity.2.1.3.2 Impli
it strategyA way to get rid of the previous restri
tive time-step limitations is to make use of an Euler-impli
ittime-integration, that is to dis
retize the system of 
onservation laws under 
onsideration with thefollowing s
heme :
Un+1

i − Un
i

∆ti
+ E(Un+1) = 0,

�

�

�

�2.36In the linear 
ase, it 
an be easily proved su
h fully impli
it strategy yields un
onditional stability :this means the time-step ∆ti 
an be 
hosen as large as possible; moreover the 
onvergen
e speedto steady-state is in
reased when the time-step is in
reased. In pra
ti
e, for non-linear problems,limitations 
an be en
ountered in the 
hoi
e of ∆ti but the maximum allowable time-step remainsmu
h larger than the time-step asso
iated with the Euler-expli
it strategy. However, the pri
e topay for su
h an improved stability and e�
ien
y is the need to solve the non-linear problem (in theunknown Un+1) (2.36) at ea
h time-step. When dealing with the Euler or Navier-Stokes equationson unstru
tured grids, Un+1 is the solution of :
Un+1

i − Un
i

∆ti
= − 1

|Ωi|
∑

k∈I(Ωi)

Ng∑

g=1

ωg(Hn+1
i,k )g|Γi,k| = −E(Un+1),

�

�

�

�2.37Rather than solving this non-linear problem, whi
h might be very expensive, one may take advantageof the fa
t that only the steady-state solution of this problem is of interest in this work (this steady-state solution satis�es E(U) = 0). Following this idea, the impli
it solution update is built in thefollowing form :
∆Un

i

∆ti
+

1

|Ωi|
∑

k∈I(Ωi)

(
∆Himp

i,k

)n |Γi,k| = −E(Un),
�

�

�

�2.3840



2.1 Formulation for 2D steady �owswhere ∆Un
i = Un+1

i −Un
i is the unknown time-in
rement of the solution and (∆Himp)n = (Himp)n+1−

(Himp)n is a time-in
rement on the numeri
al �ux Himp retained in the so-
alled impli
it stage (left-hand-side of formula (2.38)); a key point is that this impli
it numeri
al �ux formula is not ne
essarilythe same as the one used in the expli
it stage E(Un). The only requirement on the 
hoi
e of Himp isthat, when 
oupled with the expli
it numeri
al �ux H appearing in E , it drives the expli
it stage tozero - 
orresponding to the target steady-state in a stable and e�
ient way. Formula (2.38) 
an alsobe expressed as :
∆Un

i

∆ti
+ I(∆Un) = −E(Un).

�

�

�

�2.39where the 
ouple impli
it stage I / expli
it stage E determines the 
onvergen
e rate of the s
heme toa steady-state ∆U = 0, the a

ura
y of whi
h is solely de�ned by the expli
it stage E . The 
ompu-tations to be presented in the next 
hapter of this report make use of various numeri
al �ux formula
H to de�ne the expli
it �ux balan
e (se
ond or third-order Roe s
heme, se
ond or third-order RBs
heme in parti
ular). However, a single numeri
al �ux formula will be used for Himp; this formulais only �rst-order a

urate in spa
e but this is of no 
onsequen
e on the result, be
ause the impli
it�ux balan
e vanishes at steady-state. More importantly this formula is designed so as to ensure astable formulation for large values of ∆ti when 
oupled with various expli
it formulas; its simpli
ityallows to minimize the 
ost of solving the linear algebrai
 system asso
iated with the impli
it stage,thus provides a globally e�
ient time-integration. The impli
it numeri
al �ux is de
omposed as
Himp = HE(imp) −HV (imp) where HE(imp) is the invis
id or Euler impli
it numeri
al �ux and HV (imp)denotes the vis
ous impli
it numeri
al �ux.The invis
id numeri
al �ux in
rement on a 
ell fa
e used in the impli
it stage throughout this workreads :

(

∆HE(imp)
i,k

)n

=
1

2
[(∆FE

i )n · ni,k + (∆FE
o(i,k))

n · ni,k − (ρE
⊥)n

i,k(∆U
n
o(i,k) − ∆Un

i )].
�

�

�

�2.40where ρE
⊥ is the spe
tral radius of the Ja
obian matrix J⊥ (see also (2.16)). Formula (2.40) derivesfrom ideas originally proposed in the work of Jameson and Turkel [26℄, evolving through [27℄ and[44℄ to yield the present matrix-free impli
it stage, used in parti
ular by Lohner and his 
o-workersfor solving the unsteady Navier-Stokes equations on unstru
tured grids [35℄ [36℄. This �ux in
rement
orresponds in fa
t to the 
hoi
e of the �rst-order Rusanov s
heme to build the impli
it numeri
al�ux formula.For a 2D system, the time-in
rement of the physi
al vis
ous �ux proje
ted onto the fa
e normal

n takes the form :
(∆(FV )⊥)n = (∆fV )nnx + (∆gV )nny,

�

�

�

�2.41making use of the vis
ous Ja
obian matri
es previously introdu
ed, the physi
al �ux in
rement
(∆fV )n 
an be expanded as :

(∆fV )n =
∂fV

∂U
∆Un +

∂fV

∂Ux
(∆Ux)

n +
∂fV

∂Uy
(∆Uy)

n = AV
0 ∆Un + AV

1 (∆Ux)
n + AV

2 (∆Uy)
n,

�

�

�

�2.42and similarly for (∆gV )n. Introdu
ing the partial derivatives U⊥ and U‖ with respe
t to the normaland tangent dire
tions to the 
ell fa
e (su
h that Ux = U⊥nx−U‖ny and Uy = U⊥ny +U‖nx), insertingthese quantities into the expansion of (∆fV )n and (∆gV )n and 
ombining both developments yields :
(∆(FV )⊥)n = (JV

0 )n∆Un + (JV
⊥ )n∆Un

⊥ + (JV
‖ )n∆Un

‖ ,
�

�

�

�2.4341



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured gridswhere (JV
0 )n = AV

0 nx + BV
0 ny, (JV

⊥ )n = AV
1 n

2
x + BV

2 n
2
y + (AV

2 + BV
1 )nxny, (JV

‖ )n = AV
2 n

2
x − BV

1 n
2
y +

(BV
2 −AV

1 )nxny. If the time-in
rement of the impli
it numeri
al vis
ous �ux ∆HV (imp) is built as the
entered dis
retization of (2.43), the resulting s
heme will be expensive to solve, with in parti
ularblo
ks 
ontaining JV
0 , (JV

⊥ ), (JV
‖ ) to invert. If only 
ontributions involving a positive-de�nite matrix
oe�
ient are retained, the 
al
ulation 
ost will be dramati
ally redu
ed be
ause this full matrixwill be simply repla
ed by its spe
tral radius, without 
ompromising the s
heme stability. This iswhy the numeri
al vis
ous �ux eventually retained in the impli
it stage 
orresponds to the followingsimpli�ed version of (2.43) :

(∆HV (imp))n = (JV )n∆Un
⊥,

�

�

�

�2.44with (JV )n = AV
1 n

2
x + BV

2 n
2
y a positive-de�nite matrix (AV

1 and BV
2 are positive de�nite matri
es),with spe
tral radius (ρV

⊥)n. The normal derivative of U in (2.44) is 
omputed with a simple 
enteredapproximation by using the values at the 
entroid of the 
ells sharing the fa
e Γi,k :
∆(Un

⊥)i,k =
∆Un

o(i,k) − ∆Un
i

|∆ri,o · ni,k|
,

�

�

�

�2.45where ∆ri,o is the position di�eren
e ve
tor from the 
entroid of 
ell i to the 
entroid of 
ell o (shortfor o(i, k) when there is no ambiguity). The numeri
al vis
ous �ux in the impli
it stage is �nallygiven by :
(∆HV (imp)

i,k )n =
(ρV

⊥)n
i,k

|∆ri,o · ni,k|
(∆Un

o(i,k) − ∆Un
i ).

�

�

�

�2.46Inserting (2.40) and (2.46) into (2.38) and taking into a

ount ∑

k∈I(Ωi)

ni,k = 0 yields :
∆Un

i

∆ti
+

1

|Ωi|
∑

k∈I(Ωi)

[

1

2
(∆FE

o(i,k))
n · ni,k −

(

1

2
(ρE

⊥)n
i,k −

(ρV
⊥)n

i,k

|∆ri,o(i,k) · ni,k|

)

(∆Un
o(i,k) − ∆Un

i )

]

|Γi,k| = −E(Un),after introdu
ing the s
alar 
oe�
ients Cn
i,k and Dn

i de�ned by:






Cn
i,k = (ρE

⊥)n
i,k +

2(ρV
⊥)n

i,k

|∆ri,o · ni,k|
,

Dn
i =

1

∆ti
+

1

2|Ωi|
∑

k∈I(Ωi)

Cn
i,k|Γi,k|,

�

�

�

�2.47the simpli�ed impli
it stage used in this work 
an be expressed as :
Dn

i ∆Un
i − 1

2|Ωi|
∑

k∈I(Ωi)

Cn
i,k∆U

n
o(i,k) |Γi,k| = −E(Un) − 1

2|Ωi|
∑

k∈I(Ωi)

(∆FE
i,k)

n · ni,k |Γi,k|, �

�

�

�2.48The impli
it treatment (2.48) is said to be matrix-free so as to emphasize Cn
i,k and Dn

i are s
alar
oe�
ients whi
h are inexpensive to 
ompute. In this work, (2.48) will be simply solved using aPoint-Ja
obi relaxation te
hnique, whi
h is retained for its very low 
ost per iteration and verymodest memory requirements, whi
h makes up for its rather low intrinsi
 e�
ien
y; in pra
ti
e, thenumber of iterations to rea
h a steady-state is of 
ourse larger than the number of iterations o�ered42



2.1 Formulation for 2D steady �owsby a more sophisti
ated solution method but ea
h iteration is extremely 
heap. The time-integrationfrom level n to n + 1 takes the form :
∆U

(0)
i = 0,







l = 1, L

Dn
i ∆U

(l+1)
i = −E(Un) − 1

2|Ωi|
∑

k∈I(Ωi)

(

(∆FE
i,k)

(l) · ni,k − Cn
i,k∆U

(l)
o(i,k)

)

|Γi,k|,

∆Un
i = ∆U

(L)
i .

�

�

�

�2.49
where (∆FE

i,k)
(l) = (FE

i,k)
(l) − (FE

i,k)
n. The typi
al value for the number of sub-iterations is L = 10.Note that the 
onvergen
e rate of (2.49) to a steady-state depends on the use of a se
ond or third-order 
onventional upwind or RB numeri
al �ux in the expli
it stage E(Un) (spe
i�
 
omments onthis point will be provided in the next 
hapter, when analyzing the numeri
al test-
ases); however,this impli
it treatment has been systemati
ally used with these various expli
it stages and showsgood stability properties at large CFL numbers (typi
ally, (2.49) has been used with CFL = 106 inthe time-step formula (2.33)).2.1.4 Limiting pro
essSin
e the interest of this work is on the a

urate 
omputation of 
ompressible �ows, we are boundto en
ounter �ow 
on�gurations displaying dis
ontinuous solution �elds. In the next 
hapter, we willaddress in parti
ular the 
omputation of 2D and 3D steady transoni
 �ows as well as the 
ompu-tation of a 2D unsteady supersoni
 �ow. When dealing with su
h �ows, it is well known that thesolution re
onstru
tion used for the UL/R states appearing in the numeri
al �ux of a 
onventionalupwind s
heme but also in the non-dissipative part of the RB numeri
al �ux must be 
ompleted bya limitation pro
ess in order to avoid the o

urren
e of os
illations in the 
omputed solution that
ould lead to the failure of the 
omputation.Linear re
onstru
tion with limiting For the se
ond-order FV s
heme, the Barth limiter mod-i�ed a

ording to Venkatakrishnan's proposal [46℄ (denoted VK limiter from now on) is introdu
edinto the linear solution re
onstru
tion (1.33). The re
onstru
ted state U r

g at a point g in 
ell i (g 
anbe of 
ourse lo
ated on a boundary of 
ell i and 
oin
ide with a Gauss point) is given by :
U r

g = Ui + φi∆ri,g · ∇Ui.
�

�

�

�2.50where ∆ri,g is the position di�eren
e ve
tor between the point g under 
onsideration and the 
entroidof 
ell i where the solution gradient is made available, ∆ri,g = rg − ri. The VK limiter is denoted by
φi and is 
omputed by the following formula for ea
h 
ell i :

φi =
(∆+)2 + 2∆+∆− + ε

(∆+)2 + ∆+∆− + 2(∆−)2 + ε
,

�

�

�

�2.51where 





if ∆ri,g · ∇Ui > 0 : ∆+ = Umax
j − Ui , ∆− = ∆ri,g · ∇Ui,if ∆ri,g · ∇Ui < 0 : ∆+ = Umin
j − Ui , ∆− = ∆ri,g · ∇Ui,if ∆ri,g · ∇Ui = 0 : φi = 1. 43



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured gridswith Umax
j and Umin

j the maximum and minimum values of the solution 
omputed for all the fa
e-neighbors of 
ell Ωi. And the parameter ε is 
hosen to be (Khi)
3, with the 
hara
teristi
 length hiof 
ell i, and the user-de�end limiting parameter K, whi
h is 
ase-dependent and its value will beprovided in the test 
ases presented in the next 
hapter.Quadrati
 re
onstru
tion with limiting and troubled 
ell dete
tion When the quadrati
solution re
onstru
tion (1.36) is used for the third-order FV s
heme, we follow the strategy initiallyproposed by Delanaye [16℄ : the VK limiter is still applied onto the linear part of the re
onstru
tionwhile another swit
h, σi, is used for the quadrati
 part as follows :

U r
g = Ui + ((1 − σi)φi + σi)∆ri,g · ∇Ui +

1

2
σi(∆ri,g)

T ·Hi · ∆ri,g,
�

�

�

�2.52The quantity σi allows the re
onstru
tion to swit
h from "quadrati
 without limiting" to "linearwith limiting" when the lo
al �ow goes from "smooth" to "dis
ontinuous" or at least "with stronglo
al variations". The fun
tion σi will be 
alled a sensor and is designed so as to allow a smoothtransition between the linear re
onstru
tion with limiter to the quadrati
 re
onstru
tion when goingfrom high-gradient to low-gradient regions. It must be emphasized the sensor σi used in this work isthe one proposed in [39℄. It is 
omputed as follows :
σi =

1 − tanh(S(ǫi − β))

2
.

�

�

�

�2.53where ǫi is the troubled 
ell indi
ator; the parameter β is a threshold to be determined for ea
hproblem. For a given β, ǫi > β in a 
ell i means that this 
ell is lo
ated in a high-gradient region,whi
h leads to a σi 
lose to 0 : the quadrati
 part is then removed from the solution re
onstru
tionand the linear part is limited by the VK limiter. Reversely, if ǫi < β, the solution in 
ell i is 
onsideredto be smooth enough, whi
h yields a value of σi 
lose to 1 : the full quadrati
 solution re
onstru
tionis re
overed. The parameter S in (2.53) is a user-de�ned 
onstant 
ontrolling the sti�ness of thehyperboli
 tangent fun
tion : a small value for S will make the hyperboli
 tangent swit
h smoother.In our 
omputations it is found that the value of ǫ is normally between 0 and 0.2. Therefore thevariation of the sensor σ for a ǫ in this value range is showed in Figure 2.7. The possible 
hoi
es forthe parameters β and S will be detailed in the numeri
al test 
ases presented in the next 
hapter.Based on the trun
ation error indi
ator initially designed by Löhner[37℄, the troubled 
ell indi
atoris derived in [16℄ and used in our 
omputation, whi
h takes the form :
ǫi =

∑

j∈I(i)

|∆ri,j · (∇qj −∇qi)|
∑

j∈I(i)

|∆ri,j · ∇qj | + |∆ri,j · ∇qi|) + αiq
,

�

�

�

�2.54where I(i) is the set of 
ells belonging to the sten
il used for the gradient 
omputation in 
ell i, ∆ri,jis still a position di�eren
e ve
tor 
onne
ting the 
entroid of 
ell i and the 
entroid of the 
ell j inthe set I(i), ∇q is the gradient of an indi
ator variable q, that will be spe
i�ed below. The averagestate q is 
omputed by :
q =

∑

j∈I(i)

(|qj | + |qi|),
�

�

�

�2.5544



2.1 Formulation for 2D steady �ows
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Figure 2.7: The variation of the sensor σi the e�e
t of S with β = 0.1 (left), e�e
t of β with
S = 80 (right).Basi
ally, formula (2.54) is a multidimensional estimation of the ratio between se
ond-order and �rst-order variations of the solution ve
tor in 
ell i. The term αiq prevents formula from (2.54) be
omingunde�ned in smooth-�ow regions where all the terms involving gradients will be
ome 
lose to zero.In high-gradient regions, this same term is not needed. To a

ount for this behavior, the parameter
α is designed as the following :

αi =
γq

∑

j∈I(i)

|∆ri,j · (∇qj −∇qi)| +
∑

j∈I(i)

(|∆ri,j · ∇qj | + |∆ri,j · ∇qi|) + q
.

�

�

�

�2.56
In regions 
hara
terized by high density gradients, α is 
lose to 0, while in quasi-uniform �ow regions
α tends to γ, whi
h is 
hosen as γ = 0.5.The indi
ator variable q 
ould be density, pressure, velo
ity or other �ow variables. In our 
om-putation, density has been systemati
ally used and judged to yield satisfa
tory results. Furtherre�nement of the sensor 
ould be gained by using a 
ombination of variables but this path has notbeen investigated. In Figure 2.8, the distribution of the troubled 
ell indi
ator ǫi and its parameter
αi for a transoni
 �ow with inlet 
ondition Mach = 0.8, atta
k angle 1.25◦ over a NACA0012 airfoilis showed for an exemple. It is found that α is 
lose to γ = 0.5 in the smooth �ow region, and smallerthan this value in regions where the gradient is large, the minimal value is in the sho
k region wherethe gradient is the maximum in the whole �ow �eld. But the value is not 
lose to 0, possibly be
ausethe gradient is not big enough to make it be. The variation of ǫi shows well the strong sho
k on thesu
tion side, while the weak sho
k on the pressure side is not dete
ted be
ause the density gradientvariation is small. 45



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured grids
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Figure 2.8: Distribution of the troubled 
ell indi
ator ǫi and its parameter αi for a tran-soni
 �ow over the NACA0012 airfoil αi distribution (left), and ǫi distribution (right), Ma
hnumber iso-
ontour (bla
k lines in both �gures).2.2 Formulation for 3D steady �owsThe design prin
iples of the �nite volume method applied in 3D are similar to what has been des
ribedup to now in 2D. Therefore we will simply review in this se
tion the salient features of the FV
onventional upwind or RB s
hemes and point out the main quantitative di�eren
es that appearwhen going from 2D to 3D, in parti
ular in terms of sten
il used for gradient 
omputation in ea
h
ell, and the shape of shift 
ell used in RB dissipation �ux 
omputation.2.2.1 Cell gradient 
omputationFor a 
onventional upwind s
heme but also for the non-dissipative part of the RB numeri
al �ux in3D, the solution at any point in a 
ell is still re
onstru
ted by equation (1.33) to se
ond-order, andby equation (1.36) to third-order, where the solution gradient and Hessian (for third-order s
heme)at a 
ell 
entroid are also 
omputed by the Least-square method. The di�eren
e with the 2D s
hemeis the number of 
ells in the sten
il used for the least-square re
onstru
tion (see Table 2.1). Forthe se
ond-order s
heme, there are 4 degrees of freedom ne
essary to be determined in the solutionpolynomial in 3D, therefore at least 4 
ells in the sten
il are ne
essary for the linear least-squarere
onstru
tion. For an internal hexahedron element, its 6 fa
e-neighbors are enough for this demand;and a tetrahedron element has exa
tly 4 fa
e-neighbors, whi
h sometimes 
an result in a singularre
onstru
tion when the grid 
ell is really distorted, therefore edge neighbors of the 
ell are addedinto the sten
il. For 
ells lo
ated on the boundary, it is also the 
ase be
ause of insu�
ient numbersof their fa
e-neighbors. For the third-order s
heme, the solution polynomial needs 10 degrees offreedom in 3D, so a sten
il with at least 10 
ells is ne
essary. For an internal hexahedron 
ell, thesum of its fa
e-neighbor and edge-neighbor is 14, whi
h 
an satisfy this requirement; this sum of aninternal regular tetrahedron is 16, whi
h is also enough. But in a
tual 
ompution, it is found thatthe minimum sten
il number 18 is ne
essary to ensure the robustness of the re
onstru
tion.46



2.2 Formulation for 3D steady �ows
Re
onstru
tion 2D minimum/maximum 3D minimum/maximumLinear 3/10 6/16Quadrati
 8/20 18/36Table 2.1: Minimal number of 
ells in the sten
il used by least-square re
onstru
tion.In Table 2.1, it is found that the minimal and possible maximal number of 
ells in the sten
il neededfor the least-square re
onstru
tion. The 3D re
onstru
tion needs about 1.6 to 2.2 times more 
ells inthe sten
il than the re
onstru
tion in 2D, whi
h leads to store a very large matrixM−1

i (see equation(1.40)), therfore a huge memory requirement for 3D 
omputation.2.2.2 Quadrature points for �ux integration on 
ell fa
esIn 2D the number of quadrature points used for physi
al �ux integration on fa
es of a 
ertain 
ellis related to the pre
ision order of the s
heme, while this number depends not only on the s
hemeorder but also the shape of the 
onsidered fa
e. For the se
ond-order s
heme, only 1 quadraturepoint is ne
essary whi
h is the 
enter of the fa
e regardless of its shape; but for the third-orders
heme, 3 quadrature points are needed on a triangle fa
e and 4 quadrature points are ne
essary ona quadrilateral fa
e (see Figure 2.9).

Figure 2.9: Gauss quadrature points used for third-order FV s
heme 3 points used by atriangle fa
e (left), 4 points used by a quadrilateral fa
e (right).2.2.3 Node solution and node gradient 
omputation sten
ilFor the 2D 
ase, the sten
il needed for 
omputation of the solution and solution gradient is thesame for a mesh node inside the 
omputation domain (internal node), while the sten
il used for nodevalue 
omputation 
ould be not enough for the node gradient 
omputation for a node lo
ated onthe 
omputational domain boundary (boundary node), and in this 
ase, fa
e-neighbors of 
ells inthe node-value-sten
il have to be added into the node-gradient-sten
il. It is also the situation in3D. Although 4 is the minimal number of 
ells in the node-gradient-sten
il for the linear least-square47



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured gridsre
onstru
tion in 3D, 6 
ells are guaranteed in the sten
il to avoid the instability of the re
onstru
tion.Table 2.2 shows that the minimum and possible maximum sten
il used for node solution and gradient
omputation (for vis
ous 
ase only). It is found that the sten
il size for the node solution and gradient
omputation in 3D 
an be 4.9 times more than the one in 2D, the mu
h higher 
omputation 
ost ofthe 3D 
ase is obvious.Computation 2D minimum/maximum 3D minimum/maximumNode solution 2/9 4/44Node gradient 3/9 6/44Table 2.2: Number of 
ells in the sten
il used for solution and its gradient 
omputationon a mesh node.2.2.4 Shift 
ell for RB s
hemeAs we have seen in 2D, the shift 
ell Ωi,k 
onstru
ted for the residual 
omputation in RB s
hemenumeri
al dissipation is always a quadrilateral regardless of the shape of the 
ell whi
h it 
rossed.But in 3D 
ase, this shift 
ell 
hanges its shape with the type of elements on whi
h it is based. Thereare two possible types of shape showed in Figure (2.10) (red dotted line). In order to 
ompute theresidual in the shift 
ell with equation (2.8), the numeri
al �ux at the 
enter of a fa
e Γl with verti
es
(N1

i,k, N
2
i,k, Co) is 
omputed by:

(HE
c )l =

1

3

(

FE(UN1

i,k
) + FE(UN2

i,k
) + FE(UCo

)
)

· nl.
�

�

�

�2.57for vis
ous 
ase, the numeri
al vis
ous �ux at ea
h fa
e 
enter is 
omputed in the same way.

Figure 2.10: Possible shift 
ell for RB dissipation 
al
ulation in 3D2.3 Formulation for 2D unsteady �owsWe 
on
lude our des
ription of the FV RB s
heme for 
omputations on unstru
tured grids with theadaptation of the steady solver to unsteady �ows. This adaptation is performed in the framework ofa dual-time formulation [25℄ with a time-a

ura
y whi
h remains limited to se
ond-order.48



2.3 Formulation for 2D unsteady �ows2.3.1 Dual-time dis
retization methodThe basi
 idea of a dual-time strategy 
an be formulated as follows : the solution of the unsteadyequations Ut + ∇ · F = 0 is found as the steady solution with respe
t to the so-
alled dual or �
-titious time τ of the evolution problem Uτ + Ut + ∇ · F = 0, whi
h 
an also be re
ast in the form
Uτ +∇ · F = −Ut. Sin
e the steady solution of Ut +∇ · F = 0 is su
h that ∇ · F = 0, it 
an also beseen as the steady solution with respe
t to a dual-time τ of the evolution problem Uτ + ∇ · F = 0.Thus, starting from a steady solver, the development of an unsteady solver simply requires to insertthe existing (dual) time loop within a physi
al time loop and to a

ount for a sour
e term S = −Utin the dis
retization. In the 
ase of the RB s
heme, the extension to unsteady �ows follows the samegeneral lines but spe
i�
 developments are needed when building the RB dissipation sin
e it relieson a residual r that in
ludes now the physi
al time derivative.A dual-time dis
retization applied to the FV formulation of the 2D Euler equations reads :

∂Ui

∂τ
+
∂Ui

∂t
+

1

|Ωi|
∑

k∈I(Ωi)

∫

Γi,k

FE · ndΓ = 0,
�

�

�

�2.58The dual-time �nite-volume approa
h 
onsidered in the present study drives (2.58) to a steady-statewith respe
t to τ by using :
• a �rst-order (Euler impli
it) approximation for the dual time-derivative, whi
h will vanish atsteady-state anyway,
• a se
ond-order (three-level) impli
it approximation for the physi
al time-derivative,
• a Gauss-quadrature formula for approximating the �ux integral on the fa
e Γi,k.The resulting dis
retization of equation (2.58) reads:







∆Un,m
i

∆τn,m
i

+ Rn,m
i = 0,

Rn,m
i = T (Un,m

i , Un
i , U

n−1
i ) +

1

|Ωi|
∑

k∈I(Ωi)

∑

g

ωg

(
HE

i,k

)n,m

g
|Γi,k|,

�

�

�

�2.59where m is the pseudo-time (or dual-time) iteration 
ounter, n is the physi
al time iteration 
ounter,
∆Un,m

i = Un,m+1
i − Un,m

i with Un,0
i = Un

i . The time-dis
retization operator T is 
hosen as :
T (Un,m

i , Un
i , U

n−1
i ) =

3
2
(Un,m

i − Un
i ) − 1

2
∆Un−1

i

∆ti
,

�

�

�

�2.60with ∆Un−1
i = Un

i − Un−1
i ; it is su
h that T (Un+1

i , Un
i , U

n−1
i ) = (Ut)

n+1
i + O(∆t2). Besides, thenumeri
al �ux balan
e approximates the physi
al �ux balan
e at order p = 2 or p = 3. Therefore,when the pseudo-time mar
hing rea
hes a steady solution Un+1 = Un,m+1 = Un,m, s
heme (2.59)yields :

(Ut)
n+1
i + O(∆t2) +

1

|Ωi|
∑

k∈I(Ωi)

∫

Γi,k

(FE)n+1 · ndΓ + O(hp) = 0.
�

�

�

�2.6149



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured gridswhi
h is an approximation of the unsteady �ow solution at order 2 in time and p in spa
e.In pra
ti
e, s
heme (2.59) is made impli
it to speed up the 
onvergen
e to the pseudo steady-state.The slight modi�
ation brought by the dual-time approa
h to the matrix-free impli
it stage previ-ously presented for steady �ow 
omputations will be detailed below. At �rst, we wish to emphasizethe di�eren
e between a 
onventional s
heme and the RB s
heme when extended to the 
al
ulation ofunsteady �ows using the dual-time strategy. A 
onventional s
heme is based on de
oupled approxi-mations for the various terms appearing in the system of 
onservation laws to whi
h it is applied. Letus assume that a 
onventional s
heme is applied to the dis
retization of the unsteady Navier-Stokesequations (for more generality) with a dual-time framework :
∂Ui

∂τ
+

1

|Ωi|
∑

k∈I(Ωi)

∫

Γi,k

FE · ndΓ
︸ ︷︷ ︸physi
al invis
id �ux balan
e B

FE

=
1

|Ωi|
∑

k∈I(Ωi)

∫

Γi,k

FV · ndΓ
︸ ︷︷ ︸physi
al vis
ous �ux balan
eB

FV

−∂Ui

∂t
︸ ︷︷ ︸physi
al time derivative,

�

�

�

�2.62when the 
onventional s
heme is used, the approximate solution of the above system is 
omputed bythis equation :
∂Ui

∂τ
+ BHE = BHV − S.

�

�

�

�2.63where
• the numeri
al invis
id �ux balan
e BHE depends only on the physi
al invis
id �uxes,
• the numeri
al vis
ous �ux balan
e BHV depends only on the physi
al vis
ous �uxes,
• the numeri
al approximation for the sour
e term S depends only on the physi
al time-step andthe solution ve
tor U .Now, when the RB s
heme is applied to this same system (2.62), it 
an be put under the same generi
form (2.63) but the key di�eren
e now is that the RB numeri
al invis
id �ux depends on the residualof the full system (2.62) for building its dissipative �ux, hen
e the numeri
al invis
id �ux balan
e

BHE depends not only on the physi
al invis
id �uxes but also on the physi
al vis
ous �uxes as wellthe physi
al time-step and the solution ve
tor U . In the next se
tion the design details of the RBnumeri
al �ux for unsteady invis
id �ows will be given.2.3.2 RB numeri
al �uxThe RB numeri
al �ux remains formally given by (2.2), whi
h is de
omposed as a purely 
entered�ux 
ontribution on one hand and a dissipative 
ontribution on the other hand. For unsteadyproblems, the purely 
entered �ux is 
omputed in the same way as for the steady 
ase while theresidual approximation (2.2) in the dissipation �ux (2.4) must take into a

ount the physi
al time-derivative approximation. Let us re
all the residual integral in a shift 
ell (see Figure 2.1) related tothe 
onsidered fa
e Γi,k :
Ri,k =

1

|Ωi,k|

∫

Ωi,k

r dΩ,
�

�

�

�2.6450



2.3 Formulation for 2D unsteady �owswhere the residual r at steady-state is now asso
iated with the unsteady system (2.58), that is
r = Ut + ∇ · FE. The integral in (2.64) 
an then be expressed as:

Ri,k =
1

|Ωi,k|

∫

Ωi,k

Ut dΩ +
1

|Ωi,k|

∫

∂Ωi,k

FE · n dΓ,
�

�

�

�2.65and is dis
retized as Ri,k = RE
i,k + Rt

i,k where RE
i,k approximates the invis
id �ux balan
e over theshift 
ell Ωi,k and Rt

i,k approximates the physi
al time-derivative over the shift 
ell. The evaluation of
RE

i,k remains un
hanged with respe
t to the steady 
ase - note only the solution used when 
omputingthe numeri
al �ux balan
e over the shift 
ell is Un,m instead of Un in the steady 
ase - :
RE

i,k =
1

|Ωi,k|
∑

l∈I(Ωi,k)

(
HE
)n,m

l
|Γl|.

�

�

�

�2.66where the numeri
al �ux (HE)n,m
l is 
omputed by using (2.9).In order to build Rt

i,k, the physi
al time-derivative is approximated at fa
e 
enter Mi,k and the timedis
retization operator (2.60) is used to yield :
Rt

i,k =
1

2

(

T (Un,m
i , Un

i , U
n−1
i ) + T (Un,m

o(i,k), U
n
o(i,k), U

n−1
o(i,k))

)

.
�

�

�

�2.672.3.3 New sensor for the RB s
hemeIf the RB s
heme is applied to unsteady problems involving dis
ontinuities, limited values of there
onstru
ted states UL/R are used in the numeri
al �ux. Although this strategy seems su�
ient toensure the robustness of the 
omputations for a large panel of appli
ations, it was observed in the
ourse of the ADIGMA proje
t that the RB s
heme failed to 
ompute problems su
h as the intera
tionof blast waves in 1D or the double Ma
h re�e
tion problem in 2D, both involving very strong sho
ksaround whi
h the RB s
heme developed fatal os
illations. Some numeri
al experiments allowed toidentify that this la
k of robustness in the vi
inity of dis
ontinuities is related to the estimation ofthe physi
al time-derivative in the residual used to 
ompute the RB numeri
al dissipation. Whenthe term Rt
i,k was taken out from (2.65), an ex
ellent robustness was observed for the RB s
heme,but at the expense of a

ura
y sin
e the s
heme's a

ura
y drops down to �rst order when thedis
rete residual is no longer 
onsistent with the exa
t residual (whi
h in
ludes the physi
al time-derivative). It was thus proposed to 
ompute the residual approximation on the interfa
e as follows,in the unsteady 
ase :

Ri,k = σt
i,k

1

2
(T (Un,m

i , Un
i , U

n−1
i ) + T (Un,m

o(i,k), U
n
o(i,k), U

n−1
o(i,k))) +

1

|Ωi,k|
∑

l∈I(Ωi,k)

(
HE
)n,m

l
|Γl|,

�

�

�

�2.68The swit
h σt
i,k is analogous to the swit
h σi used for the quadrati
 solution re
onstru
tion. In regionsdominated by �ow dis
ontinuities, the robustness of the s
heme is lo
ally improved by 
an
eling thephysi
al time-derivative estimate (σt

i,k → 0), thus in
reasing the RB dissipation (from a third-orderterm to a �rst-order term); third-order a

ura
y is re
overed away from these dis
ontinuities with
σt

i,k → 1. For the sake of simpli
ity, or let us say be
ause we were more interested by a demonstrationof feasibility than by �ne-tuning the proposed swit
h, a binary de�nition of σi,k was retained :
σi,k = 1 if βi,k < βRB ,
σi,k = 0 if βi,k >= βRB,

�

�

�

�2.6951



Chapter 2 : Design prin
iples of 2nd and 3rd-order FV-RB s
hemes on unstru
tured gridswhere the parameter βRB is a threshold value whi
h is not ne
essary equal to the threshold β usedfor the quadrati
 solution re
onstru
tion. The parameter βi,k is dire
tly linked with the troubled-
ellindi
ator 
omputed in ea
h grid 
ell :
βi,k =

1

2
(ǫi + ǫo(i,k)).

�

�

�

�2.70Note this strategy was not ne
essary for 
omputing unsteady 
ompressible �ows with the RBCs
heme (on stru
tured grids) in previous works [12℄, [11℄; let us emphasize on
e again it was theo

urren
e of very strong sho
ks for some ADIGMA test-
ases (Intera
ting Blast Waves and DoubleMa
h Re�e
tion) whi
h spe
i�
ally motivated the development of this swit
h in the unsteady versionof the RB dissipative �ux.2.3.4 Adaptation of the impli
it strategySin
e the robustness of the solver applied to the 
omputation of �ows involving sho
ks depends notonly on the spa
e-dis
retization pro
edure but also on the time-integration (both in dual and physi
altime), we deem to be important to provide some information on the impli
it stage whi
h is used toe�
iently drive the se
ond- or third-order FV-RB s
heme to a pseudo steady-state. For unsteady�ows 
omputed with a dual-time approa
h, the steady solution with respe
t to the pseudo-time τ isobtained after a redu
ed number of pseudo-iterations by solving:
∆Un,m

i

∆τn,m
i

+
3

2

∆Un,m
i

∆ti
+

1

|Ωi|
∑

k∈I(Ωi)

(

∆HE(imp)
i,k

)n,m

|Γi,k| = −Rn,m
i ,

�

�

�

�2.71where ∆(HE(imp))n,m = (HE(imp))n,m+1−(HE(imp))n,m and HE(imp) denotes the numeri
al �ux formularetained in the impli
it stage. The 
hoi
e of a numeri
al �ux HE(imp) is the same as the one previouslyused in the steady 
ase. The impli
it stage is therefore formally un
hanged with respe
t to (2.48)and given by :
Dn,m

i ∆Un,m
i − 1

2|Ωi|
∑

k∈I(Ωi)

Cn,m
i,k ∆Un,m

o(i,k) |Γi,k| = −Rn,m
i − 1

2|Ωi|
∑

k∈I(Ωi)

(∆FE
i,k)

n,m · ni,k |Γi,k|,
�

�

�

�2.72but the s
alar diagonal 
oe�
ient also in
ludes a 
ontribution 
oming from the physi
al time deriva-tive impli
itation : 





Cn,m
i,k = (ρE

⊥)n,m
i,k ,

Dn,m
i =

1

∆τn,m
i

+
3

2∆ti
+

1

2|Ωi|
∑

k∈I(Ωi)

Cn,m
i,k |Γi,k|.

�

�

�

�2.73The dual-time integration from sub-level (or inner-level) n,m to n,m+ 1 takes the form :
∆U

(0)
i = 0,







l = 0, L− 1

Dn,m
i ∆U

(l+1)
i = −Rn,m

i − 1

2|Ωi|
∑

k∈I(Ωi)

(

(∆FE
i,k)

(l) · ni,k − Cn,m
i,k ∆U

(l)
o(i,k)

)

|Γi,k|,

∆Un,m+1
i = ∆U

(L)
i .

�

�

�

�2.74
52



2.3 Formulation for 2D unsteady �owsNote that when ∆ti is 
hosen small enough so that the physi
al-time dis
retization in Rn,m
i is dom-inant with respe
t to the other 
ontributions, and sin
e this physi
al-time dis
retization is madefully impli
it (
ontribution of the 
oe�
ient 3

2∆t
in the diagonal 
oe�
ient Dn,m

i ), the above impli
ittreatment 
onverges to a steady-state after a few iterations only.

53





3Appli
ations of FV-RB s
heme
Fren
h Les s
hémas RB d'ordre deux et d'ordre trois basés sur la méthode des volumes �nis (notésFV-RB O2 et FV-RB O3 respe
tivement) dé
rits dans le dernier 
hapitre sont appliqués maintenant àune série de 
as tests a�n d'évaluer leur pré
ision, e�
a
ité et robustesse. Nos analyses se 
on
entrentsur la 
omparaison entre les s
hémas FV-RB O2 et O3, ainsi que sur la 
omparaison entre les s
hémasFV-RB et un s
héma 
lassique dé
entré-amont d'ordre deux ou trois (typiquement le s
héma de Roeave
 une re
onstru
tion de solution linéaire ou quadratique). La 
omparaison est menée dans l'ordresuivant :

• Premièrement on 
onsidère des é
oulements stationnaires sans 
ho
 de �uide parfait en 2D eten 3D a�n de ne pas avoir d'in�uen
es du limiteur de la solution. Pour 
haque 
as (en 2D ouen 3D), une série des 
al
uls sur un problème modèle dont la solution exa
te est 
onnue sonte�e
tués pour évaluer l'ordre de pré
ision e�e
tif des s
hémas mis en oeuvre dans notre 
odede 
al
ul de volumes �nis en maillages non-stru
turés. Ensuite la version de 
es s
hémas pourles équations d'Euler est utilisée pour 
al
uler un 
as 
lassique bidimensionnel, l'é
oulementsubsonique de �uide parfait autour d'un pro�l NACA0012 et aussi un é
oulement subsonique de�uide parfait autour d'un pro�l tridimensionnel proposé dans le projet ADIGMA. Les solutionsexa
tes ne sont pas disponibles pour 
es problèmes, mais des résultats de référen
e existentpour le problème 2D. Cependant on emploie une stratégie d'évaluation de la solution proposéepar le projet ADIGMA, au lieu de 
omparer le résultat ave
 
eux qui ont été publiés, 
ar 
ette
omparaison dépend souvent du s
héma numérique utilisé, du 
hoix de maillage et aussi dutraitement des 
onditions aux limites. La stratégie utilisée i
i est une étude de 
onvergen
e enmaillage ave
 un 
ritère approprié. Cette étude est menée pour les s
hémas FV-RB développési
i et elle donne des éléments pour une 
omparaison 
laire entre le s
héma FV-RB O2 et O3.
• Ensuite, l'analyse des s
hémas appliqué aux équations d'Euler est réalisée pour des é
oulementsave
 
ho
s en 2D et en 3D a�n d'évaluer la performan
e des limiteurs dé
rits dans le 
hapitrepré
édent.
• Pour le 
as d'un é
oulement visqueux, on reprend la méthode d'analyse utilisée en �uide parfait :un problème d'adve
tion-di�usion, dont la solution exa
te est 
onnue, est 
al
ulé a�n d'estimerl'ordre de pré
ision e�e
tif des s
hémas FV développés. Les versions de 
es s
hémas pour leséquations de Navier-Stokes sont ensuite appliquées au 
al
ul d'é
oulement laminaire autourd'un pro�l NACA0012, où l'étude de 
onvergen
e en maillage est en
ore une fois menée.
• En�n la dernière partie de 
e 
hapitre traite de l'évaluation des s
hémas FV-RB pour les 
al
ulsd'é
oulement instationnaire, dans le 
as sans 
ho
 de la propagation d'une tourbillon et aussidans un 
as ave
 
ho
 beau
oup plus di�
ile, la double ré�exion de Ma
h.55



Chapter 3 : Appli
ations of FV-RB s
hemeEnglish The se
ond and third-order �nite-volume residual-based s
heme (denoted by FV-RB O2and FV-RB O3 respe
tively) des
ribed in the previous 
hapter are now applied to a series of test 
asesin order to assess its a

ura
y, e�
ien
y and robustness properties. Our analysis will be espe
iallyfo
used on the 
omparison between the FV-RB O2 and O3 s
hemes as well as the 
omparison betweenthe FV-RB s
hemes and a 
lassi
al se
ond- or third-order upwind s
heme (typi
ally the Roe s
hemewith linear or quadrati
 solution re
onstru
tion). The 
omparison is performed in the followingprogressive way :
• Firstly we deal with 2D and 3D steady smooth invis
id �ows in order to analyze the s
hemeswithout interferen
e e�e
ts of the solution limiting strategy. In ea
h 
ase (2D or 3D), a pre-liminary series of 
omputations on a model problem with known exa
t solution are performedso as to assess the order of a

ura
y a
hieved in pra
ti
e by the s
hemes implemented withinour unstru
tured �nite-volume solver. Next, these s
hemes (extended for Euler equations) areapplied to the 
omputation of a well-known 2D invis
id subsoni
 �ow over a NACA0012 airfoiland a subsoni
 invis
id �ow over a 3D body proposed in the ADIGMA proje
t. No exa
tsolutions are available for these 
ases but numbers of referen
es in the literature are availablefor the 2D test-problem. However we adopt the solution evaluation strategy proposed by theADIGMA proje
t, rather than performing 
omparisons with results in the literature, whi
hare often not only dependent on the numeri
al s
heme but also on the 
hoi
e of grid and thetreatment of boundary 
onditions. The strategy used here is the grid 
onvergen
e study withan appropriate 
riteria on the solution a

ura
y. This study is performed for the developpedFV-RB s
hemes, and it provides elements for a 
lear 
omparison between FV-RB O2 and O3s
hemes.
• Next, the analysis of s
hemes applied to the Euler equations is performed for 2D and 3D �owsinvolving sho
ks in order to assess the performan
e of the solution limiting strategies for 
aseswith dis
ontinuities des
ribed in the previous 
hapter.
• In the 
ase of 2D vis
ous �ows, we return to the line of analysis followed in the invis
id 
ase : amodel adve
tion-di�usion problem of known exa
t solution is �rst 
omputed in order to assessthe a
tual order of a

ura
y provided by the developed FV s
hemes. These s
hemes (extendedto the Navier-Stokes equations) are then applied to the 
omputation of a laminar �ow over theNACA0012 airfoil, where the grid-
onvergen
e study is also 
ondu
ted.
• At last this 
hapter 
loses with the assessment of the FV-RB s
hemes for unsteady �ow 
ompu-tations, both in the smooth 
ase, a vortex propagation problem and a mu
h more 
hallenging
ase, the double Ma
h re�e
tion problem.3.1 Steady invis
id smooth �ows3.1.1 2D 
ir
ular adve
tion problemThe model s
alar adve
tion problem solved in this se
tion takes the following form :

∂W

∂t
+ y

∂W

∂x
+ (1 − x)

∂W

∂y
= 0,

�

�

�

�3.156



3.1 Steady invis
id smooth �owswhere the �ow domain 
orresponds to the square x ∈ [0, 1], y ∈ [0, 1]. The initial 
ondition in thisdomain is:
W (x, y, 0) = 0,The edges y = 0 and x = 0 of the 
omputational domain are inlet �ow 
onditions on whi
h thesolution is imposed as :

W (x, y, t) = e−50(r−0.5)2 ,with r =
√

(x− 1)2 + y2 the distan
e to the lower right 
orner of the �ow domain (point (1, 0)). Theedges x = 1 and y = 1 are outlet �ow boundaries along whi
h the solution is extrapolated from theinterior domain.Equation (3.1) is dis
retized using its 
onservative formWt +F (W )x +G(W )y = 0 with F (W,x, y) =
yW and G(W,x, y) = (1 − x)W . The wavespeed asso
iated with ea
h physi
al �ux is respe
tively
a(W,x, y) = y for F (W ) and b(W,x, y) = (1 − x) for G(W ).The exa
t solution of (3.1) with asso
iated initial and boundary 
onditions is readily obtained in thespa
e of 
hara
teristi
s : the 
hara
teristi
 lines of the problem are 
ir
ular traje
tories 
entered onpoint (1, 0), entering the domain through x = 0 and y = 0 and leaving it through x = 1 and y = 1;along ea
h of this line the inlet value is 
onserved. A typi
al numeri
al solution illustrating thesefeatures is displayed in Figure 3.1.
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Figure 3.1: Contours of the 
omputed solution W (30 levels from 0 to 1) obtained by the O3 RBs
heme on mesh Tri_irreg5 (irregular triangular grid with 6400 boundary fa
es).In order to provide a more 
omplete analysis of the s
heme properties, the 
omputations are 
arriedout on two di�erent series of meshes : one made of in
reasingly re�ned regular triangle meshesand the other made of in
reasingly re�ned irregular triangle meshes. The regular triangular gridsare derived from regular quadrilateral grids in whi
h ea
h 
ell is 
ut along the top-left / bottom-right diagonal (see the left-side of Figure 3.2). The irregular triangular grids are obtained from anautomati
 Delaunay triangulation performed by a 
ommer
ial grid generator when asked to mesh the57
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omputational domain by using triangular 
ells with a pres
ribed number of regularly-spa
ed nodeson the domain boundaries (see the right-side of Figure 3.2). It is important to point out that at thisstage the FV s
hemes developed in this work 
an be used indi�erently on grids made of trianglesor re
tangles (or even hybrid grids). The analysis presented here is fo
used on triangular grids butsome 
omments will be provided on the 
ase of grids based on quadrilaterals.
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Figure 3.2: Mesh examples used for 2D 
ir
ular adve
tion problem: regular triangle mesh(left),irregular triangle mesh(right).The main features of the 
omputational meshes are summarized in Table 3.1 and 3.2 : the regulartriangular grids are obtained from su

essive Cartesian grids with 10× 10, 20× 20, 40× 40, 80× 80and 160 × 160 nodes regularly spa
ed along ea
h side of the unit square 
omputational domain; theirregular triangular grids rely on the same boundary nodes but are obtained from a triangulationbased on these boundary distributions. Note dof denotes the total number of degrees of freedomused for the 
omputation; in the 
ase of the �nite-volume method used in this work, the number ofdegrees of freedom is equal to the number of mesh 
ells regardless of the a

ura
y order, while this isnot the 
ase when a Spe
tral Volume approa
h is developed for the RB s
hemes in the next 
hapter :ea
h 
ell 
ontains a 
ertain number of degrees of freedom whi
h in
reases with the desired a

ura
yorder. Mesh Dof Number of boundary fa
esTri_reg1 200 40Tri_reg2 800 80Tri_reg3 3200 160Tri_reg4 12800 320Tri_reg5 51200 640Table 3.1: Basi
 information on the regular triangle-based meshes used for the 2D 
ir
ular adve
tionproblem.58



3.1 Steady invis
id smooth �owsMesh Dof Number of boundary fa
esTri_irreg1 226 40Tri_irreg2 894 80Tri_irreg3 3588 160Tri_irreg4 14412 320Tri_irreg5 57518 640Table 3.2: Basi
 information on the irregular triangle-based meshes used for the 2D 
ir
ular adve
tionproblem.A

ura
y analysis on regular triangular meshes The �rst series of 
omputations is performedon the in
reasingly re�ned regular triangle-based meshes. For ea
h steady solution a
hieved on a givengrid, the logarithm of the L2-norm of the di�eren
e between the exa
t solution in the grid and thenumeri
al solution provided by the s
heme, also 
alled L2 error of the s
heme, is 
omputed andplotted as a fun
tion of the 
hara
teristi
 mesh size h, whi
h is taken as the minimum of the 
ellmesh sizes 
omputed by hi =
√

Ωi (in 2D), and hi = Ω
1/3
i (in 3D). This L2 error is 
omputed bothfor the FV-RB s
heme in its se
ond- and third-order version and for the Roe s
heme, whi
h is takenas the representative of 
onventional upwind s
hemes, also in its se
ond and third-order version. Thenumeri
al errors are plotted in Figure 3.3 and also summarized in Table 3.3 for the FV-RB s
heme.The orders (of a

ura
y) appearing in this table 
orrespond to the estimation 
omputed for the slopeof the 
urve error vs mesh size using the error and mesh size for the 
urrent grid and the previousone. The pra
ti
al a

ura
y order should 
orrespond to the asymptoti
 value rea
hed by this slopewhen the �nest grids are used for this estimation.It 
an be observed on Figure 3.3 the expe
ted theoreti
al a

ura
y orders are roughly a
hieved withthe Roe numeri
al �ux and linear then quadrati
 solution re
onstru
tion, yielding respe
tively anasymptoti
 slope of 2.32 and 2.98 (the regularity of the grids is likely to introdu
e some error 
ompen-sations whi
h would explain the pra
ti
al a

ura
y order ex
eeds 2 with the linear re
onstru
tion).When the RB numeri
al �ux is used, the error slopes obtained between two �nest grids are respe
-tively 1.98 for FV-RB O2 and 3.29 for FV-RB O3, whi
h 
orresponds to the expe
ted orders. Moreimportantly maybe, it is interesting to note the error level a
hieved on the �nest grid with the third-order RB numeri
al �ux is mu
h lower than the error level obtained with the third-order Roe s
heme.In fa
t the error level asso
iated with this third-order 
onventional upwind s
heme on the �nest grid(51200 dof) 
orresponds to the error level obtained with the third-order RB s
heme on a grid witha number of dof between 3200 and 12800. This point will be detailed in the e�
ien
y analysis inthe last paragraph of this se
tion.Mesh L2 error of RBO2 order L2 error of RBO3 orderTri_reg1 -1.32978 - -1.37869 -Tri_reg2 -2.05291 2.40 -2.30685 3.08Tri_reg3 -2.71613 2.20 -3.63751 4.42Tri_reg4 -3.31275 1.98 -4.92621 4.28Tri_reg5 -3.90832 1.98 -5.91761 3.29Table 3.3: L2 norm of numeri
al errors and mesh 
onvergen
e order obtained with FV-RB s
hemeson regular triangle meshes. 59
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Figure 3.3: L2 norm of numeri
al errors obtained by the FV-RB s
heme and FV-Roe s
heme onregular triangle meshes.A

ura
y analysis on irregular triangular meshes The (theoreti
ally) se
ond and third-orderRoe and RB s
hemes are now applied on the series of irregular triangular meshes. The numeri
alerrors asso
iated with these s
hemes are summarized in Table 3.4 and plotted in Fig.3.4. Withrespe
t to the previous regular 
ase, the 
hanges for the Roe s
heme remain modest : the pra
ti
alerror orders are again very 
lose to their respe
tive theoreti
al value, namely 2.11 instead of 2 forFV-Roe O2 and 3.04 instead of 3 for FV-Roe O3. These results indi
ate the linear and most of allthe quadrati
 solution re
onstru
tion are 
orre
tly implemented in our numeri
al solver. As for theFV-RB O2 s
heme, it still provides a pra
ti
al a

ura
y order (1.98) very 
lose to the expe
ted valueof 2. However, the behaviour of the FV-RB O3 s
heme is disappointing sin
e the pra
ti
al a

ura
yorder of the s
heme on irregular triangular grids drops down to 2.52. A possible explanation forthis dis
repan
y between theoreti
al and pra
ti
al a

ura
y order 
ould be an insu�
iently 
arefultreatment of out�ow boundary 
onditions. If the numeri
al �ux is the 
ause of this behavior, it isne
essarily the dissipative �ux whi
h is involved (sin
e the non-dissipative 
entered �ux is also usedin the Roe s
heme); the simpli�
ations retained for 
omputing this dissipative �ux (with a singleresidual evaluation per fa
e) 
ould be in
riminated but we did not manage to understand pre
iselywhy these simpli�
ations would work perfe
tly well on the regular triangular grids and not on the�nest irregular triangular grids. It must be emphasized though that the error level provided by theFV-RB O3 s
heme remains very low and, in parti
ular, lower than the error level asso
iated withthe third-order Roe s
heme in a given grid.E�
ien
y analysis We shall now 
ompare the se
ond-order RB s
heme with its third-order ex-tension as well as 
ompare the RB s
hemes with the se
ond and third-order Roe s
hemes not purelyin terms of a

ura
y but rather in terms of the 
ost required (CPU, memory) to a
hieve a simi-lar level of a

ura
y. It should be mentioned here that almost all of 
omputations (unless pointedout spe
ially) in this work are 
arried out on a PC with 2 pro
essors of 1.86Ghz, 4MB memory,60



3.1 Steady invis
id smooth �ows
Mesh L2 error of RBO2 order L2 error of RBO3 orderTri_irreg1 -1.69010 - -1.90880 -Tri_irreg2 -2.40014 2.41 -3.02975 3.81Tri_irreg3 -3.05994 2.46 -4.03660 3.76Tri_irreg4 -3.67028 1.92 -4.87415 2.63Tri_irreg5 -4.26599 1.98 -5.63012 2.52Table 3.4: L2 norm of numeri
al errors and mesh 
onvergen
e order obtained with FV-RB s
hemeson irregular triangle meshes.
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Figure 3.4: L2 norm of numeri
al errors obtained by the FV-RB s
heme and FV-Roe s
heme onirregular triangle meshes.
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Chapter 3 : Appli
ations of FV-RB s
hemewindows xp system and Digital/Compaq Visual Fortran 
ompiler. But ea
h 
omputation usesonly one pro
essor be
ause the 
ode is not parallelized. To make su
h a 
omparison possible, we useFV-RB and FV-Roe se
ond and third-order 
omputations on the �nest irregular mesh Tri_irreg5and obtain from these 
omputations the CPU 
ost and memory storage for ea
h s
heme. For ea
h
omputation on this grid with 57518 dof, we report the total CPU time and number of iterationsneeded to rea
h ma
hine-zero steady-state from whi
h we derive a CPIPD (CPU time Per IterationPer Dof). The values reported in Table 3.5 are also normalized by the smallest values (obtainedwith the se
ond-order Roe s
heme) and displayed in Table 3.6. Although this 
omparison may beto some extent ma
hine-dependent and no spe
ial e�ort was made regarding the 
ost and memoryoptimization in our solvers, these values provide a basis to draw a few 
on
lusions regarding theestimation of the relative 
osts of the RB s
hemes developped in this work :
• the FV-RB s
hemes are systemati
ally more expensive and time-
onsuming than the 
orre-sponding FV-Roe s
heme. When 
omparing RB O3 with Roe O2 the extra CPIPD and extramemory rea
hes roughly a fa
tor of 1.5 and 2 
orrespondingly.
• The third-order RB s
heme requires about the same amount of memory than the third-orderRoe s
heme with a CPIPD only slightly larger (about 10%).Keeping these numbers in mind, we �rst analyze the e�
ien
y of the s
hemes when applied to
ompute the 2D adve
tion problem. On the �nest irregular grid, retained as the sample of theobserved behavior, we note that the 
onvergen
e to a zero-ma
hine steady-state is a
hieved for alls
hemes, with a number of iterations ranging from about 400 for Roe O2 and O3, up to 440 for RB

O2 and 470 for RB O3 (see Figure 3.5). Taking into a

ount the 
ost per iteration, this leads to afa
tor of about 1.7 on CPU time between the fastest method Roe O2 and the slowest one RB O3.However, su
h a 
omparison is not fair sin
e the error level a
hieved by RB O3 at 
onvergen
e is mu
hlower than Roe O2. A more interesting and meaningful 
omparison is to analyze the 
onvergen
ebehavior of the s
hemes for a similar a

ura
y level. It 
an be inferred from the error 
urves displayedin Figure 3.4 that the minimum error level on the series of irregular triangle-based grids is a
hievedwith the se
ond-order s
hemes on the �nest grid Tri_irreg5, while is a
hieved on the grid Tri_irreg4with Roe O3 and on the grid Tri_irreg3 with RB O3. The asso
iated 
onvergen
e 
urves both initerations and in CPU time are display in Figure 3.6. The hierar
hy is now widely di�erent: for this�xed level of a

ura
y, the RB O3 s
heme provides the solution about 30 times faster than the Roe O2s
heme. This gain is a
hieved be
ause of the redu
tion in the number of dof (from 57518 for the gridlevel 5 down to 3588 for the grid level 3) and also be
ause of a faster 
onvergen
e (in iterations) on
oarser grids. At the same time, the RB O2 s
heme remains more expensive than the Roe O2 s
hemebe
ause it a
hieves the same level of a

ura
y on a given grid for a 
ost per iteration 15% higherand a slightly slower 
onvergen
e. This 
an be further interpreted as the fa
t that the dominanterror term for the se
ond-order s
hemes 
omes from the 
entered non-dissipative 
ontribution to the�ux balan
e; when going to third-order, the dominant error 
ontribution 
omes from the dissipative
ontribution to the �ux balan
e and the gain o�ered by the RB s
heme demonstrates the goodproperties of the residual-based dissipation, although third-order is not rea
hed between two �nestgrids.62



3.1 Steady invis
id smooth �ows
S
heme Memory (MB) CPU time (s) Iterations CPIPDRB O2 52 60.7 440 2.4 × 10−6RB O3 92 83.6 470 3.1 × 10−6Roe O2 45 48 390 2.1 × 10−6Roe O3 86 64.7 400 2.8 × 10−6Table 3.5: Computation 
ost of the FV s
hemes obtained on mesh Tri_irreg5, CFL = 5.
S
heme Normalized Memory Requirement Normalized CPIPDRB O2 1.16 1.14RB O3 2.04 1.48Roe O2 1 1Roe O3 1.91 1.33Table 3.6: Normalized memory requirement and Cost Per Iteration Per Dof for the se
ond andthird-order RB and Roe s
hemes.
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Figure 3.5: Convergen
e history for the se
ond and third-order Roe and RB s
hemes with CFL = 5on the �nest regular grid Tri_reg5. Left : L2 norm of the residual vs iterations; right : L2 norm ofthe residual vs CPU. 63
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Figure 3.6: Convergen
e history for the se
ond and third-order Roe and RB s
hemes with CFL = 5on grids where a similar error level is a
hieved at steady state. Left : L2 norm of the residual vsiterations; right : L2 norm of the residual vs CPU.3.1.2 Subsoni
 invis
id �ow over a NACA0012 airfoilWe pro
eed now to the appli
ation of the se
ond- and third-order RB s
hemes to the solution ofthe Euler equations. Our fo
us here will not be on a 
omparison between the RB s
heme and a
onventional upwind s
heme su
h as the Roe s
heme, but rather on a detailed analysis of the possiblebene�t of using a third-order s
heme instead of a se
ond-order s
heme. This is pre
isely the mainmotivation of the ADIGMA proje
t in whi
h this thesis has taken pla
e. The idea is to quantify for agiven method the 
ost redu
tion o�ered by the third-order s
heme with respe
t to the se
ond-orderone, taking into a

ount most of the aerodynami
 solvers in use for industrial appli
ations are stilllimited to se
ond-order a

ura
y. This quanti�
ation has been performed for a panel of test-
asesrepresenting the typi
al problems en
ountered in the aeronauti
al industriy. For ea
h test-
ase, in-dustrial partners have spe
i�ed grid 
onvergen
e 
riteria for some aerodynami
 quantities of interest(for instan
e, lift 
oe�
ient, drag 
oe�
ient and moment 
oe�
ient) and a series of in
reasinglyre�ned grids has been generated. The se
ond and third-order s
hemes have then been run on thesevarious grids. The grid size required for both s
hemes to a
hieve the grid-independent results withinthe pres
ribed toleran
e intervals have been analyzed and 
ompared. A systemati
 faster grid 
on-vergen
e of the third-order s
heme should be expe
ted but the third-order s
heme will be provedvaluable if the gain in the number of dof required to a
hieve a pres
ribed a

ura
y level is not 
om-promised by an ex
essive over-
ost of the third-order s
heme with respe
t to the se
ond-order one. Inthis se
tion our fo
us is on su
h a demonstration of interest for the RB s
hemes developed in this work.Methodology The �rst 
ase of demonstration retained in the ADIGMA proje
t and analyzed nowis the subsoni
 invis
id �ow (upstream Ma
h number M∞ = 0.5, angle of atta
k α = 2◦) over theNACA0012 airfoil. Meshes used for 
omputation are a series of 9 unstru
tured meshes 
omposedof mainly quadrilateral elements and provided within the ADIGMA proje
t; their main features are64



3.1 Steady invis
id smooth �owssummarized in Table 3.7. Mesh Dof No. of fa
es on airfoilmesh1 206 16mesh2 365 32mesh3 664 46mesh4 1197 70mesh5 2249 112mesh6 4417 182mesh7 9046 306mesh8 19316 528mesh9 41685 926Table 3.7: Basi
 information on the unstru
tured meshes used for the invis
id �ow over airfoil
omputations.The performan
e provided by the RB O2 and RB O3 is analyzed as follows :
• 
omputations with both s
hemes are run for the whole series of grids.
• for ea
h grid the lift, drag and moment 
oe�
ients are 
omputed (respe
tively Cl, Cd and Cmwith a moment 
enter lo
ated at the quarter-
hord of the airfoil).
• the evolution of these 
oe�
ients with grid re�nement is plotted on Fig.3.7
• the 
onvergen
e zone 
orresponds to the approximation level 
onsidered as a

eptable in in-dustrial simulations. This 
onvergen
e zone is de�ned by the value obtained on the �nest gridand a toleran
e interval whi
h has been provided in the ADIGMA projet based on industrialexperien
e. In the present 
ase, the extent of the toleran
e intervals for the lift, drag andmoment 
oe�
ient were respe
tively ECl = 1 × 10−3, ECd = 1 × 10−4 and ECm = 2 × 10−4.The 
orresponding 
onvergen
e zone for the lift 
oe�
ient is then given by Clmesh9 ±ECl, andsimilarly for the drag and moment 
oe�
ients.
• grid 
onvergen
e is 
onsidered as a
hieved when the 
urve "result vs dof" enters for the �rsttime the 
onvergen
e zone (without leaving it for further re�nement).
• on
e the grid level ne
essary to a
hieve grid 
onvergen
e for ea
h s
heme has been de�ned, the�nal e�
ien
y analysis must take into a

ount the dof of the �rst grid ensuring 
onvergen
eand the CPIPD of the s
heme.Overview of the �ow Figure 3.8 provides a view of the �nest quadrilateral grid (mesh9) anddisplays some results illustrative of the �ow physi
s - obtained with the RB O3 s
heme on this �nestgrid. As explained above, the 
omparison between s
hemes will be performed following the verymatter-of-fa
t approa
h adopted in the ADIGMA proje
t, based on global indi
ators (aerodynami

oe�
ients) and not on 
ontours or wall-distributions analysis. The Ma
h 
ontours, wall-pressuredistribution and wall-entropy deviation (Cs = (S − S∞)/S∞) displayed in Figure 3.8 illustrate thesmoothness of this subsoni
 invis
id �ow. The entropy variation obtained with the RB O3 s
hemeon this �ne grid does not ex
eed 1%. The 
omputed aerodynami
 
oe�
ients on this �nest grid are65
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Figure 3.7: Aerodynami
 
oe�
ients 
onvergen
e with dof based on meshes from mesh1 to mesh9obtained by the se
ond and third-order FV-RB s
heme.
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3.1 Steady invis
id smooth �owsalso displayed in Table 3.8 both for RB O2 and RB O3 s
heme. The di�eren
e in the lift 
oe�
ientpredi
ted by the two s
hemes amounts to 0.7%. For this subsoni
 invis
id 
ase, the drag should bezero of 
ourse and any deviation from this value is a symptom of numeri
al dissipation; the 
omputeddrag with RB O3 is 3.6 times lower than the one with RB O2.S
heme Cl Cd Cm

O2 0.282181 1.67 × 10−4 -0.002545
O3 0.284150 4.62 × 10−5 -0.002936Table 3.8: Aerodynami
 
oe�
ients obtained with the FV-RB s
heme on mesh9.Results analysis from the point view of a

ura
y/e�
ien
y It 
an be dedu
ed from the
urves displayed in Figure 3.7 that :

• the lift 
oe�
ient is 
onverged on mesh8 for RB O2 and on mesh6 for RB O3.
• the drag 
oe�
ient is 
onverged on mesh7 for RB O2 and on mesh6 for RB O3.
• the moment 
oe�
ient is 
onverged on mesh8 for RB O2 and on mesh7 for RB O3.Summing things up it 
an be stated that the RB O3 s
hemes provides a grid 
onverged solution of allof aerodynami
 
oe�
ients by using mesh7, a grid with 19316 dof while RB O2 needs to be appliedwith mesh8, a grid with 41685 dof to a
hieve this same grid 
onvergen
e. The ratio of dof in favorof the third-order s
heme is therefore about 2.2. To make this 
omparison 
omplete, it is of 
ourse
ru
ial to know the relative CPIPD of both s
hemes. Reliable values for these unit 
osts are obtainedfrom the series of 
omputations performed on grids mesh6 to mesh9 (see Table 3.9 and 3.10, wherethe CPU time 
orresponds to the time needed to a
hieve a fully 
onverged state de�ned by a residualdrop of 8 orders of magnitude). The average CPIPD for RB O2 is 1.25 × 10−5 s and 1.575 × 10−5 sfor RB O3; the extra-
ost introdu
ed by the third-order s
heme is about 26% (in agreement with the

29% observed in the s
alar adve
tion 
ase). On a given grid, the se
ond- and third-order s
hemesneed roughly the same number of iterations to a
hieve steady-state (typi
ally RB O3 needs between
3% and 10% more iterations). Of 
ourse, using a 
oarser grid ensures a faster 
onvergen
e to steady-state : thus, RB O3 needs 8140 iterations to rea
h steady-state and yield a grid-
onverged solutionon mesh7 while RB O2 needs 11760 iterations to a
hieve steady-state and yield a grid-
onvergedsolution on mesh8. The redu
tion fa
tor on the iterations in favor of RB O3 amounts to 0.69 goingup to 0.87 when the extra-
ost (26%) per iteration for RB O3 is taken into a

ount. Eventually thenet e�
ien
y gain o�ered by the third-order RB s
heme is 2.2 (ratio of the dof) divided by 0.87(CPU gain on 
onvergen
e to steady-state) whi
h is 2.5. This fa
tor 
orresponds also of 
ourse tothe dire
t CPU time ratio, 10016 s for RB O2 over 3821 s for RB O3, but we wanted to give somemore details on how this gain is built (intrinsi
 
onvergen
e, 
ost per iteration, grid size). If the grid
onvergen
e for a spe
i�
 aerodynami
 
oe�
ient is under 
onsideration, the following is observed :

• the lift 
oe�
ient 
onvergen
e is obtained with a CPU time gain of 87% for RB O3 with respe
tto RB O2 (and a 
orresponding memory gain of 56%).
• the drag 
oe�
ient 
onvergen
e is obtained with a CPU time gain of 60% for RB O3 withrespe
t to RB O2 (and a 
orresponding memory gain of 8%). 67
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• the moment 
oe�
ient 
onvergen
e is obtained with a CPU time gain of 59% for RB O3 withrespe
t to RB O2 (and a 
orresponding memory gain of 16%).Dof Memory (MB) CPU time (s) Iterations CPIPD4417 7 277 5100 1.23 × 10−59046 12 888 7900 1.24 × 10−519316 25 2862 11760 1.26 × 10−541685 52 10016 18860 1.27 × 10−5Table 3.9: Computation 
ost of the FV-RB O2 s
heme obtained from mesh6 to mesh9.Dof Memory (MB) CPU time (s) Iterations CPIPD4417 11 359 5220 1.56 × 10−59046 21 1161 8140 1.57 × 10−519316 43 3821 12300 1.61 × 10−541685 91 13421 20640 1.56 × 10−5Table 3.10: Computation 
ost of the FV-RB O3 s
heme obtained from mesh6 to mesh9.3.1.3 A 3D heli
oidal adve
tion problemFollowing a methodology similar to the one adopted in 2D, another model s
alar adve
tion problemis used to 
he
k the a
tual order of a

ura
y brought by the FV-RB s
heme in 3D. This heli
oidaladve
tion of a Gaussian pro�le problem is de�ned as follows :

∂W

∂t
+ z

∂W

∂x
+ 0.1

∂W

∂y
− x

∂W

∂z
= 0,

�

�

�

�3.2on the �ow domain x ∈ [−1, 0], y ∈ [0, 1], z ∈ [0, 1]. The initial 
ondition is simply W (x, y, z, 0) = 0in the whole domain with the inlet boundary 
ondition:
W (x, y, 0, t) = e−50((x+ 1

2
)2+(y− 1

2
)2).on lower boundary z = 0.For this 3D problem, two types of meshes will be used : so-
alled "stru
tured" meshes be
ause theyappear as Cartesian grids sin
e based on regular hexahedral elements, and unstru
tured meshes basedon tetrahedral elements. The main features of these meshes are listed in Table 3.11 and 3.12.A view of the steady solution obtained with the RB O3 s
heme on the �ne mesh Tetra_5 is plottedin Figure 3.9. It is provided to give an overview of the solution of the model �ow problem as well as toillustrate the good a

ura
y of the numeri
al solution (on what is a �ne grid) : the 
omputed solutiondistribution on the outlet boundary is hardly distinguishable from the imposed distribution on theinlet boundary. The analysis of the a

ura
y will now be performed using a grid 
onvergen
e studyon the series of stru
tured and unstru
tured grids, 
ompleted by 
onsiderations on the respe
tive
ost of ea
h s
heme (namely the se
ond- and third-order Roe s
hemes on one hand and the se
ond-and third-order RB s
hemes on the other hand).68
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orresponding results obtained with the O3 RB s
heme. Topright is the Iso-Ma
h 
ontour with 30 levels from 0 to 0.7, bottom left is the pressure 
oe�
ientdistribution on the airfoil, bottom right is the entropy 
oe�
ient distribution on the airfoil.Mesh 
ells boundary fa
esHex_1 1000 600Hex_2 8000 2400Hex_3 27000 5400Hex_4 64000 9600Hex_5 125000 15000Table 3.11: stru
tured hexahedral meshes for the 3D heli
oidal adve
tion problem. 69
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Mesh 
ells boundary fa
esTetra_1 7506 1364Tetra_2 56076 5402Tetra_3 191110 12140Tetra_4 433439 21602Tetra_5 870128 33676Table 3.12: Unstru
tured tetrahedral meshes for the 3D heli
oidal adve
tion problem.
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k line is exa
t solution,solid red line is the numeri
al solution.
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3.1 Steady invis
id smooth �owsA

ura
y analysis on regular hexahedral meshes Figure 3.10 displays the error 
onvergen
e
urve for the se
ond- and third-order Roe and RB s
hemes when the series of regular hexahedralmeshes is used. Although some error 
an
elations seem sometimes to take pla
e, whi
h is arti�
iallyin
reasing the pra
ti
al order of a

ura
y, ea
h s
heme is found to yield the expe
ted behavior; inparti
ular, the se
ond-order RB s
heme yields a slope exa
tly equal to 2 for the log(error) vs log(meshsize) 
urve and the third-order RB s
heme displays a 
urve with a slope equal to 3.3 (see also Table3.13). Even more interestingly, the error level produ
ed by the third-order RB s
heme is parti
ularlylow : when the se
ond-order Roe and RB s
hemes as well as the third-order Roe s
heme produ
eabout the same error level (about 10−3) with the �nest grid Hex_5, the third-order RB s
hemealready yields this same error level on grid Hex_3, with 27000 dof 
ompared to the 125000 dof onthe �nest grid. Mesh L2 error of RBO2 order L2 error of RBO3 orderHex_1 -1.82430 - -1.68127 -Hex_2 -2.39261 1.89 -2.59874 3.05Hex_3 -2.73202 1.93 -3.21879 3.52Hex_4 -2.98182 2.00 -3.64636 3.42Hex_5 -3.17614 2.00 -3.96648 3.30Table 3.13: L2 norm of numeri
al errors obtained by the FV-RB s
heme on stru
tured hexhedralmeshes.
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Figure 3.10: L2 norm of numeri
al errors obtained by the FV-RB s
heme and FV-Roe s
heme onstru
tured meshes from Hex_1 to Hex_5.A

ura
y analysis on tetrahedral meshes When the previous mesh 
onvergen
e analysis is
arried out on the series of irregular tetrahedral meshes, the results of the third-order RB s
hemeare unfortunately disappointing. As 
an be observed from Table 3.14 and Figure 3.11, the RB O3s
heme gives only se
ond-order on these irregular tetrahedral meshes, while it does give third-order71
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heme
onvergen
e on the previous regular hexahedral meshes. Moreover, the error level provided by RB O3on the �nest grid is about the same as the one given by RB O2, itself almost identi
al to the error levelprovided by Roe O2. In the meantime, the Roe O3 s
heme does yield a third-order pra
ti
al a

ura
y,this means the quadrati
 solution re
onstru
tion is 
orre
tly implemented in 3D. This disappointingbehavior of the RB O3 s
heme on irregular meshes most likely results from the evaluation of theRB dissipation, whi
h is quite geometry dependent. In spite of our 
areful investigations, we did notmanage to understand the reason for this loss of a

ura
y on irregular meshes untill now.Mesh L2 error of RBO2 order L2 error of RBO3 orderTetra_1 -2.01724 - -1.96477 -Tetra_2 -2.67112 2.30 -2.62094 2.30Tetra_3 -2.99440 1.84 -3.02481 2.30Tetra_4 -3.22007 2.05 -3.26260 2.16Tetra_5 -3.41852 2.02 -3.45300 1.94Table 3.14: L2 norm of numeri
al errors obtained by the FV-RB s
heme on unstru
tured tetrahedralmeshes.
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Figure 3.11: L2 norm of numeri
al errors obtained by the FV-RB s
heme and FV-Roe s
heme onunstru
tured meshes from Tetra_1 to Tetra_5.E�
ien
y analysis Sin
e the 
omputations on the tetrahedral unstru
tured meshes seem to be�awed, we shall restri
t our analysis of e�
ien
y onto the mu
h more en
ouraging (and 
onsistentwith the theory) results obtained on the hexahedral meshes. The analysis method adopted here issimilar to the one used for 2D 
ir
ular-adve
tion 
ase. First of all, residual 
onvergen
e histories ofse
ond and third-order RB and Roe s
heme obtained on the �nest meshHex_5 are showed in Figure3.12. It is found that the third-order s
heme takes few more iterations to rea
h the 
onvergen
e thanthe se
ond-order s
heme for the Roe numeri
al �ux, whi
h is also the 
ase for 2D problems; while72



3.1 Steady invis
id smooth �owsthe se
ond-order RB s
heme takes many more iterations than its third-order s
heme for this 
ase,whi
h is not the situation in 2D. This must be related to the impli
it phase. The residual evolutionwith CPU time obtained with 4 s
hemes is quite reasonable, the third-order s
heme is more 
omplexthan the se
ond-order s
heme and therefore takes more CPU time to rea
h the 
onvergen
e. Asthe CPIPD(Cost Per Iteration Per Dof) of the RB s
heme is globally higher than the Roe s
heme,the CPU time of 
omputation with RB s
hemes is longer than the Roe s
hemes. Although RB O2s
heme takes about 70 more iterations than the RB O3 s
heme to rea
h the 
onvergen
e, the CPUtime ne
essary for RB O3 to rea
h the 
onvergen
e is still longer than the one needed for the RB O2s
heme be
ause the CPIPD of RB O3 is higher than RB O2.Table 3.15 shows detailed information on the 
omputation 
ost of FV based 4 s
hemes. As RBs
hemes need more iterations than the Roe s
hemes to rea
h the residual 
onvergen
e and the CPIPDof RB s
hemes is higher than the Roe s
heme, the total CPU time needed by the RB s
hemes for theresidual 
onvergen
e is therefore longer than the one for Roe s
hemes. And the RB s
heme needsmore memory for a 
omputation than the Roe s
hemes. On the same mesh the third-order s
hemeis always more expensive on memory and CPU time than the se
ond-order s
heme. If values inTable 3.15 are normalized by the smallest values (results obtained with Roe O2 s
heme), Table 3.16is obtained, whi
h makes the 
omputation 
ost of ea
h s
heme more 
lear. For Roe s
hemes, O3s
heme 
onsumes 3.68 times more memory and 1.63 times more CPIPD than the O2 s
heme. AndRB O3 s
heme is 2.68 and 2.40 times more expensive on memory and CPIPD respe
tively than theRB O2 s
heme. Comparison between RB s
heme and Roe s
heme shows that RB O2 s
heme spends
1.6 times more memory and 1.53 times more CPIPD than the Roe O2 s
heme, and the memoryand CPIPD of RB O3 s
heme are 
orrespondingly 1.16 and 2.26 times more than those of Roe O3s
heme. On the same mesh, the moste expensive s
heme on memory and CPIPD is RB O3 s
heme.S
heme Memory (MB) CPU time (s) Iterations CPIPDRB O2 203 145 200 5.8 × 10−6RB O3 543 248 140 1.4 × 10−5Roe O2 127 42.9 90 3.8 × 10−6Roe O3 467 78.0 100 6.2 × 10−6Table 3.15: Computation 
ost of the FV s
hemes obtained on mesh Hex_5, CFL = 106.S
heme Normalized Memory Requirement Normalized CPIPDRB O2 1.6 1.53RB O3 4.28 3.68Roe O2 1 1Roe O3 3.68 1.63Table 3.16: Normalized memory requirement and Cost Per Iteration Per dof for the se
ond andthird-order RB and Roe s
hemes.As mentioned before in 2D adve
tion 
ase, it is not fair to 
ompare the e�
ien
y of se
ond andthird-order s
hemes on the same mesh. This 
ompairison should be made for the same a

ura
ylevel. From Figure 3.10 it 
an be seen that Roe O2, O3 and RB O2 s
heme a
hieve about the same73
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ations of FV-RB s
hemeerror level on mesh Hex_5, while this error level is already obtained by the RB O3 s
heme on meshHex_3. So it is interesting to 
ompare the e�
ien
y of these s
hemes based on this error level.In Figure 3.13 it is found that to rea
h the same level of a

ura
y, Roe O2 s
heme takes the leastiterations and RB O2 s
heme takes the most iterations, but it is RB O3 s
heme who takes the leastCPU time to rea
h the 
onvergen
e, whi
h shows the real advantages of using the high-order s
heme.
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Figure 3.12: 3D heli
oidal adve
tion. Convergen
e history for the se
ond and third-order Roe andRB s
hemes with CFL = 106 on grid Hexa_5. Left : L2 norm of the residual vs iterations; right :
L2 norm of the residual vs CPU.3.1.4 Subsoni
 invis
id �ow over a 3D airfoil bodyThe 3D s
hemes are extended to the system of the Euler equations and applied to the 
omputationof the subsoni
 �ow over a 3D geometry. A 
onventional or typi
al geometry would have been awing but it was de
ided in the ADIGMA proje
t to 
ompute the �ow at M∞ = 0.5, angle of atta
k
α = 1◦, over a streamlined body. The body surfa
e is made from surfa
e of revolution produ
ed bya 10% thi
k airfoil whi
h are joinded by a 
entral part 
orresponding to a simple extrusion of thisthi
k airfoil (see Figure 3.14).A grid 
onvergen
e study similar to the one 
arried out in 2D is also performed but on a limitednumber of grid levels, in order to redu
e the 
omputational 
ost of the study. The meshes usedfor the 
omputations are unstru
tured meshes based on pure tetrahedral elements, whi
h have beenprovided within the ADIGMA proje
t; the dof asso
iated with ea
h grid are summarized in Table3.17.Overview of the �ow Figure 3.15 displays Ma
h 
ontours in sele
ted 
ut-planes, as 
omputed bythe FV-RB O3 s
heme on Mesh3 (�nest grid available). As the �ow is in the x positive dire
tion74
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Figure 3.13: 3D heli
oidal adve
tion. Convergen
e history for the se
ond and third-order Roe andRB s
hemes with CFL = 106 on grids in whi
h about the same level of a

ura
y is a
hieved atsteady-state. Left : L2 norm of the residual vs iterations; right : L2 norm of the residual vs CPU.
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Figure 3.14: Surfa
e mesh for the airfoil body 
orresponding to the ADIGMA Baseline Test Casen◦ 0 (BTC0). The level of re�nement of the mesh shown in the pi
ture is Mesh3 (�nest grid).Mesh DofMesh1 191753Mesh2 254960Mesh3 440494Table 3.17: Unstru
tured tetrahedral meshes for the 3D airfoil body. 75



Chapter 3 : Appli
ations of FV-RB s
hemeand its atta
k angle 1◦ in z positive dire
tion, the asymmetri
 Ma
h 
ontours on the plane "y=0"(topleft �gures) are found. The zoom of leading edge (top right �gure) shows that 
ontours obtained bythe RB O3 s
heme on this �ne mesh are smooth. Be
ause the airfoil body is symmetri
 to the plane"z=0" and the �ow has no angle with the dire
tion y, symmetri
 
ontours around the airfoil bodyare found on the plane "z=0" (bottom �gures), and it is interesting to see two symmetri
 vortexstru
tures around the trailing edge (bottom right �gure).
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Figure 3.15: Ma
h 
ontours (30 levels from 0.01 to 0.5) obtained with the RB O3 s
heme onMesh3.Top : global view of �ow around the airfoil body on the 
ut plane "y=0" (left) and a zoom of theleading edge (right). Bottom : global view of �ow around the airfoil body on the 
ut plane"z=0"(left) and a zoom of the trailing edge (right).A

ura
y and e�
ien
y analysis Figure 3.16 shows aerodynami
 
oe�
ients evolution with thein
rease of dof used by the 
omputation. Cm is the aerodynami
 for
e moment 
oe�
ient with themoment 
enter lo
ated at the point (0.25, 0, 0). The 
onvergen
e zone is obtained with the permitted76



3.1 Steady invis
id smooth �owserror given by the ADIGMA proje
t: ECl = 1 × 10−3, ECd = 3 × 10−4 and ECm = 5 × 10−4. It isfound that globally the result di�eren
e between the FV-RB se
ond and third-order s
heme is verysmall, as showed in results of the 3D heli
oidal adve
tion 
ase. For the lift 
oe�
ient, FV-RB O2 and
O3 s
heme stays in the 
onvergen
e zone from the 
oarse mesh Mesh1, while the steady 
onvergedvalue seems a
hieved on Mesh2 be
ause the di�eren
e between the value obtained on Mesh2 andon Mesh3 is small. The drag 
oe�
ient 
onvergen
e is a
hieved by the RB O2 and O3 s
heme untilMesh3. Like the lift 
oe�
ient 
onvergen
e, the moment 
oe�
ients obtained by both RB O2 and
O3 s
heme always stay in the 
onvergen
e zone, and the 
onverged value is almost a
hieved on theMesh2.
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Figure 3.16: Aerodynami
 
oe�
ients 
onvergen
e with dof based on meshes fromMesh1 toMesh3obtained by the se
ond and third-order FV-RB s
heme.In Table 3.18, Iterations showed are those ne
essary to a
hieve the full 
onverged steady state,whi
h is de�ned as a density residual drop of 5 orders for this 
ase. By 
omparing with Table 3.19, it77



Chapter 3 : Appli
ations of FV-RB s
hemeDof Memory (MB) CPU time (s) Iterations CPIPD191753 322 33790 5950 3.0 × 10−5254960 429 56200 6790 3.2 × 10−5440494 747 130800 8800 3.4 × 10−5Table 3.18: Computation 
ost of the FV-RB O2 s
heme obtained from Mesh1 to Mesh3.Dof Memory (MB) CPU time (s) Iterations CPIPD191753 865 61050 7600 4.2 × 10−5254960 1100 99100 8830 4.4 × 10−5440494 2000 260000 11680 5.1 × 10−5Table 3.19: Computation 
ost of the FV-RB O3 s
heme obtained from Mesh1 to Mesh3.S
heme Cl Cd Cm

O2 3.9564 × 10−4 8.8020 × 10−4 1.6096 × 10−3

O3 5.0117 × 10−4 8.7147 × 10−4 1.5598 × 10−3Table 3.20: Aerodynami
 
oe�
ients obtained with the FV-RB s
heme on Mesh3.is found that the FV-RB O3 s
heme has a averagely 41% higer CPIPD and 2.7 times more memoryrequirement than the FV-RB O2 s
heme for a 
omputation. Unfortunately the pre
ision gain of thethird-order s
heme is very small. In Table 3.20 exa
t aerodynami
 
oe�
ient values obtained onthe �nest mesh are showed. For this subsoni
 
ase, ideally the drag is zero, so it is easy to see thepre
ision gain on the drag 
oe�
ient. The RB O3 s
heme gives only a 1% smaller drag than the O2s
heme. For other 
oe�
ients, the quality of RB s
heme results 
an be seen from the 
omparisonwith a referen
e result of a proje
t partner NLR(National Aerospa
e Laboratoy) showed in ADIGMAproje
t report [1℄. It gives Cl = 2.1163 × 10−4, Cd = 5.3076 × 10−4, Cm = 1.7085 × 10−3, whi
h areobtained on a stru
tured grid with 1572864 dof by a se
ond-order dis
ontinuous Galerkin method. Itis found that on the lift 
oe�
ient, RB O2 s
heme has 87% di�eren
e from the referen
e result, andRB O3 s
heme has 137% di�eren
e; for the moment 
oe�
ient, the di�eren
e between the referen
evalue and the RB O2 result is 6%, and RB O3 result has 9% di�eren
e.3.2 Steady invis
id �ows with sho
ks3.2.1 Transoni
 invis
id �ow over a NACA0012 airfoilAfter having analyzed the performan
e of the FV-RB s
heme for smooth �ows in 2D and 3D,�ow problems with dis
ontinuities are taken into 
onsideration in this se
tion. First of all, a well-do
umented test 
ase is 
onsidered, namely the steady transoni
 invis
id �ow around the NACA0012airfoil with an inlet Ma
h number equal to 0.8 and an angle of atta
k α equal to 1.25◦. The main
hara
teristi
s of this �ow are a strong sho
k on the su
tion side and a weak sho
k on the pressureside of the airfoil. A rather �ne unstru
tured mesh with 26384 pure triangle elements is used in our
omputation (see Figure 3.17). In fa
t, in the 
ourse of the ADIGMA proje
t, a grid 
onvergen
estudy similar to the previous subsoni
 
ase has been performed and similar 
on
lusions on the fastergrid 
onvergen
e of the FV-RB O3 s
heme have been drawn. Rather than repeating this study here,78



3.2 Steady invis
id �ows with sho
kswe wish to illustrate in this se
tion the sho
k-
apturing properties of the se
ond- and third-order RBs
hemes on a su�
iently �ne grid.S
heme K S β CL CD CMRB O2 2 - - 0.35825417 0.02300606 -0.04090117RB O3 2 160 0.03 0.36009461 0.02293367 -0.04137368Table 3.21: Limiter parameters used by the FV-RB s
heme and the 
orresponding aerodynami

oe�
ients obtained on a triangular mesh with 26384 dof.
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Figure 3.17: Computation mesh (top left) and the 
orresponding results obtained with FV-RBs
heme. Top right is the Iso-Ma
h 
ontour (30 levels from 0 to 1.4) obtained by the O3 RB s
heme,bottom �gures the pressure 
oe�
ient distribution (left) and the entropy 
oe�
ient distribution(right) on the airfoil obtained by both O2 and O3 RB s
heme. 79



Chapter 3 : Appli
ations of FV-RB s
hemeThe limiting strategy des
ribed in 2.1.4 is used to remove os
illations. The sole parameter forthe se
ond-order s
heme is the 
oe�
ient K used in the Venkatakrishnan limiter; for the third-order s
heme, the parameter S and β 
oe�
ient appearing in the swit
h (2.53) from quadrati
re
onstru
tion to limited linear re
onstru
tion must also be tuned. The values eventually retainedare typi
ally used for transoni
 �ows and yield os
illation-free results. They are summarized in Table3.21, where the 
omputed aerodynami
 
oe�
ient are also displayed. A referen
e result is providedby a proje
t partner DLR (German Aerospa
e Center) in the ADIGMA proje
t report [2℄, whi
h isobtained on a stru
tured C-mesh with 115584 dof by a se
ond-order s
heme, and yields the followingreferen
e values for the lift, drag and moment 
oe�
ients : CL = 0.357895, CD = 0.022736 and
CM = −0.038646. It is found that the result of FV-RB O2 s
heme has a 0.1% di�eren
e on CL, 1.2%di�eren
e on CD and 5.8% di�eren
e on CM , while the FV-RB O3 gives a result with 0.6% di�eren
eon CL, 0.9% di�eren
e on CD and 7% di�eren
e on CM . More importantly, it must be underlinedthe se
ond- and third-order RB s
hemes yield very 
lose results (whi
h do not di�er by more than
1%) whi
h tends to validate the strategy followed for the third-order s
heme in presen
e of �owdis
ontinuities. Some representative results are displayed in Figure 3.17 : Ma
h 
ontours 
omputedusing RB O3, pressure 
oe�
ient and entropy deviation distributions at the wall 
omputed with RB
O2 and RB O3. It is 
lear from these pi
tures that both the strong and weak sho
ks are well 
apturedby the FV-RB O2 and O3 s
hemes. The di�eren
e between these two s
hemes on the Cp is verysmall; meanwhile, on the CS �gure, the better a

ura
y of the third-order solution 
an be observedwith, in parti
ular, a lower entropy deviation level upstream of the sho
ks.3.2.2 Transoni
 invis
id �ow over the ONERA M6 wingThe performan
e of the FV-RB s
heme is also assessed for a 3D transoni
 
ase, namely the �ow overthe ONERA M6 wing with an inlet Ma
h number M∞ = 0.84 and an angle of atta
k α = 3.06◦. At�rst, 
omputations with both the se
ond and third-order RB s
hemes have been performed on a very
oarse "stru
tured" mesh 
ontaining 48000 hexahedrons. The limiting parameters used for this 
aseare listed in the Table 3.22. The mesh and the Ma
h number 
ontours 
omputed with the FV-RB
O3 s
heme are displayed in Figure 3.18.S
heme K S βRB O2 6 - -RB O3 6 160 0.1Table 3.22: Limiter parameters used by the FV-RB s
heme for the transoni
 invis
id �ow over theONERA M6 wing.Although the mesh is 
oarse, the λ-sho
k stru
ture on the upper wing surfa
e is already 
orre
tly
aptured by both FV-RB O2 and O3 s
heme. A more detailed 
omparison between the RB O2and O3 s
hemes 
an be found in the wall pressure 
oe�
ient distributions on the wing along somesele
ted spanwise se
tions where experimental data (for an evidently turbulent �ow) are available(see Figure 3.19). Globally the di�eren
es between the FV-RB O2 and O3 s
hemes on the 
omputed
Cp distributions are small. For the position around 20% of the span-wise length, 
ounted from thewing root, the two bran
hes of the λ-shaped sho
k are 
aptured in a very similar way by both FV-RB
O2 and O3 s
hemes. At 65% of the span-wise length away from the wing root, the result providedby the O3 s
heme appears more dissipative, probably be
ause the 
hoi
e of the parameter β is not80
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id �ows with sho
ks
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Figure 3.18: Coarse stru
tured mesh and the 
orresponding result. Stru
tured mesh(left)with 48000 
ells, and the Ma
h iso-
ontour (right) with 40 levels from 0.2 to 1.5 obtained with O3RB s
heme.
optimal (the tuning of su
h a parameter be
omes di�
ult to perform for 
ostly 3D 
omputations).When the position moves to 95% spanwise length away from the wing root, only one sho
k bran
his left and it seems that the O3 s
heme gives a slightly sharper sho
k. It must be underlined thatboth sets of results are quite 
lose to the experimental data, whi
h are obtained with the same Ma
hnumber and atta
k angle but for a turbulent �ow with Reynolds number 1.172 × 107[43℄.Next, the FV-RB O2 and O3 s
hemes are applied to the 
omputation of the same 
ase but using anunstru
tured mesh with 818411 tetrahedrons provided by the ADIGMA proje
t. This unstru
turedmesh has about 17 times more elements than the previous stru
tured mesh and will of 
ourse yieldmore a

urate results. This 
omputation gives us in parti
ular the opportunity to demonstrate theRB solver is fully operational on whatever type of 3D unstru
tured grids. Moreover, it is also a
han
e to assess the behavior of the se
ond-order and third-order RB s
hemes for the typi
al valuesof the parameters K, β and S that we have de
ided to use for transoni
 �ows in 3D. The Ma
h
ontours 
omputed by the RB O3 s
heme are displayed in Figure 3.20 and 
learly illustrate the λ-shaped sho
k stru
ture is mu
h better 
aptured on this re�ned grid. Figure 3.21 allows to appre
iatein some detail the di�eren
es between the FV-RB O2 and O3 s
hemes. As 
ould be expe
ted fromthe already 
lose agreement on the previous 
oarse grid, the se
ond and third-order results remainvery 
lose to ea
h other (and in good agreement with experimental values). Note also the 
hoi
e oflimiting 
oe�
ients previously adopted seem to work well again in this 
ase, whi
h is en
ouragingsin
e we do not wish to �ne-tune these 
oe�
ients for ea
h new 
omputation. The overshoots inthe RB O3 Cp-predi
tion near the wing leading-edge are not os
illations (the �ow is smooth in thisregion). 81
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Figure 3.19: Coarse stru
tured mesh results. Cp distribution on the wing body for spanwisewing se
tions lo
ated respe
tively 20% (top left), 65% (top right), and 95% (bottom) span-wise lengthaway from the wing root, obtained with the se
ond and third-order FV-RB s
hemes.
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ous �ows
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Figure 3.20: Fine Unstru
tured mesh and the 
orresponding result. Unstru
tured mesh (left)with 818411 
ells. Ma
h 
ontours (right) with 40 levels from 0.2 to 1.8 obtained with the O3 RBs
heme.3.3 Steady vis
ous �ows3.3.1 2D adve
tion-di�usion problemBefore solving the Navier-Stokes equations, the vis
ous formulation of the se
ond and third-orderFV-RB s
hemes are tested on a 2D adve
tion-di�usion model problem. The governing equation ofthis problem reads:
∂W

∂t
+ a

∂W

∂x
= ν

∂2W

∂y2
,and the �ow domain is x ∈ [0, L], y ∈ [0, L] (L = 1). The problem 
an be seen as a Poiseuille-type�ow :

• the solution in the �ow domain is initialized with W = 1;
• the inlet 
ondition W = sin(π y

L
) is imposed on the boundary x = 0;

• "wall-like" 
onditions are imposed on the lower (y = 0) and upper (y = L) boundary : W = 0;
• the boundary x = L is an out�ow where the solution is extrapolated from the interior domain.The exa
t solution of the problem at steady-state is given by :

Wexact(x, y) = sin(πy)e−π2 ν
a
x.Physi
ally, the inlet signal is 
onve
ted and di�used along the way (see also the plot of this exa
tsolution in Figure 3.22). The 
omputations performed in this se
tion use the following values ofthe problem parameters : a = 1, ν = 0.005 and L = 1, so that the Reynolds number is equal to

Re = aL/ν = 200. Two series of unstru
tured meshes are used to perform the grid 
onvergen
e83



Chapter 3 : Appli
ations of FV-RB s
heme

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

RB order2
RB order3
Experiment

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

RB order2
RB order3
Experiment

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

RB order2
RB order3
Experiment

Figure 3.21: Fine Unstru
tured mesh results. Cp distribution on the wing body for span-wisewing se
tions lo
ated respe
tively 20% (top left), 65% (top right) and 95% (bottom) of the span-wiselength away from the wing root, obtained by se
ond and third-order FV-RB s
hemes.
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3.3 Steady vis
ous �owsstudy with the Roe O2, Roe O3, RB O2 and RB O3 s
hemes : a series of regular triangle meshesand a series of irregular triangle meshes whi
h are pre
isely the ones used for the 
ir
ular adve
tionproblem (see Table 3.1 and Table 3.2 for a summary of their main features).
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Figure 3.22: Left : 
ontours of the solution W (with 30 levels from 0 to 1) obtained by the RB O3s
heme on mesh Tri_reg5. Right : 3D view of the exa
t solution.A

ura
y analysis on regular grids The numeri
al errors produ
ed by the FV-RB s
hemeson regular triangle meshes are summarized in Table 3.23. Plots of the error versus the 
hara
ter-isti
 mesh size are also provided in Figure 3.23 along with the results given by the 
onventionalRoe s
heme. Let us re
all that with the 
hoi
e made in Chapter 2 for the design of the vis
ousextension of a 
onventional s
heme and of the RB s
heme, we expe
t in fa
t to re
over in pra
ti
e�rst-order a

ura
y only for the so-
alled Roe O2 and RB O2 s
hemes and se
ond-order a

ura
yfor the so-
alled Roe O3 and RB O3 s
hemes. Indeed, let us remind the reader the solution gradientis 
omputed to �rst-order with the linear least-square re
onstru
tion for the O2 s
heme while thequadrati
 least-square re
onstru
tion used by the O3 s
heme gives a se
ond-order approximation ofthe solution gradient.In pra
ti
e, the FV-RB O2 s
heme gives indeed an order of pre
ision 
lose to 1 when the �ner meshesare used while the RB O3 s
heme is almost se
ond-order a

urate. Note the Roe and RB s
hemesof the same order yield 
lose error levels whi
h 
an be explained by the fa
t the dominant error forthis low-Reynolds number �ow 
omes from the 
entered dis
retization of the vis
ous �ux, whi
h isthe same for Roe or RB s
heme. It is important to note that the third-order s
hemes yield on themesh Tri_reg3 an error level 
omparable with the error level a
hieved by the se
ond-order s
hemeson the �nest mesh Tri_reg5.
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Chapter 3 : Appli
ations of FV-RB s
heme
Mesh L2 error of RBO2 order L2 error of RBO3 orderTri_reg1 -2.59113 - -3.52000 -Tri_reg2 -3.19317 2.00 -4.32713 2.68Tri_reg3 -3.78722 1.97 -4.98202 2.18Tri_reg4 -4.32675 1.79 -5.58930 2.02Tri_reg5 -4.70709 1.26 -6.16806 1.92Table 3.23: L2 norm of numeri
al errors obtained by the FV-RB s
heme on regular triangle meshes.
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Figure 3.23: L2 norm of numeri
al errors obtained by the FV-RB s
heme and FV-Roe s
heme onregular triangle meshes.
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3.3 Steady vis
ous �owsA

ura
y analysis on irregular grids Table 3.24 and Figure 3.24 show the results obtained whenperforming the grid 
onvergen
e analysis on the series of irregular triangle meshes. A bit strangely,it is found that the FV-RB O2 s
heme gives a globally better 
onvergen
e order on these irregularmeshes than on the previous regular meshes, with an a

ura
y order equal to 1.62 when rea
hing the�nest grids. A slightly better a

ura
y order is also found on irregular meshes for the RB O3 s
heme,with an order equal to 2.17 on the �nest grids. What is more interesting is the fa
t that, again, the
O3 s
heme needs a mu
h 
oarser grid (Tri_irreg3) to produ
e the error level a
hieved with the O2s
heme on the �nest grid Tri_irreg5.Mesh L2 error of RBO2 order L2 error of RBO3 orderTri_irreg1 -2.59034 - -3.36309 -Tri_irreg2 -3.22951 2.17 -4.12650 2.59Tri_irreg3 -3.88792 2.46 -4.84348 2.68Tri_irreg4 -4.48798 1.88 -5.56022 2.25Tri_irreg5 -4.97336 1.62 -6.21312 2.17Table 3.24: L2 norm of numeri
al errors obtained by the FV-RB s
heme on irregular triangle meshes.
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Figure 3.24: L2 norm of numeri
al errors obtained by the FV-RB s
heme and FV-Roe s
heme onirregular triangle meshes.E�
ien
y analysis The same analysis method used for 2D and 3D adve
tion 
ase is adoptedfor this 
ase, whi
h is to 
ompare at �rst the e�
ien
y of the se
ond and third-order RB and Roes
hemes on the same mesh, and then the 
ost of 4 s
hemes to a
hieve the same a

ura
y level. InFigure 3.25 it is interesting to see that on the same irregular triangle mesh, RB s
hemes take lessiterations to rea
h the steady state than the Roe s
hemes, and iterations used by the se
ond andthird-order s
hemes to rea
h the 
onvergen
e are 
omparable, with few iterations less ne
essary forthe third-order s
hemes; and the most CPU-expensive s
heme is Roe O3 s
heme, RB O2 spends the87



Chapter 3 : Appli
ations of FV-RB s
hemeleast CPU time to rea
h the steady state. The reason of these CPU time di�eren
es 
an be found inTable 3.25. It shows that although RB O2 s
heme takes 30 more iterations to rea
h the 
onvergen
ethan the RB O3 s
heme, its CPIPD is lower than the one of RB O3, whi
h �nally leads to a smallerCPU time of RB O2 s
heme. At the same time Roe O3 s
heme needs 10 iterations less than Roe O2s
heme for the 
onvergen
e, but a larger CPU time is obtained with the Roe O3 s
heme be
ause ofits higher CPIPD than the O2 s
heme. If values in this table are normalized by the Roe O2 result,Table 3.26 
an be obtained. It is found that Roe O3 s
heme is 1.29 and 1.98 times more expensive onCPIPD and memory respe
tively than the Roe O2 s
heme, RB O3 s
heme spends 1.27 times moreCPIPD and 1.87 times more memory than the RB O2 s
heme. For the third-order s
hemes, RB O3s
heme needs 1.1 times more CPIPD and 1.08 times more memory than the Roe O3 s
heme for the
omputation. S
heme Memory (MB) CPU time (s) Iterations CPIPDRB O2 47 80.1 520 2.7 × 10−6RB O3 88 96.4 490 3.4 × 10−6Roe O2 41 89.9 650 2.4 × 10−6Roe O3 81 115 640 3.1 × 10−6Table 3.25: Computation 
ost of the FV s
hemes obtained on mesh Tri_irreg5.S
heme Normalized Memory Requirement Normalized CPIPDRB O2 1.15 1.12RB O3 2.15 1.42Roe O2 1 1Roe O3 1.98 1.29Table 3.26: Normalized memory requirement and Cost Per Iteration Per dof for the RB and Roese
ond and third-order s
hemes.As mentioned in A

ura
y analysis on irregular grids, with mesh Tri_irreg3 the third-orders
hemes a
hieved the same error level as the one obtained with se
ond-order s
hemes on meshTri_irreg5, it is therefore useful to 
ompare the e�
ien
y of these s
hemes in this situation (Figure3.26). It is seen that no matter in term of iterations or CPU time, the third-order s
hemes are farless expensive than the se
ond-order s
hemes, and the di�eren
e between RB O3 s
heme and Roe
O3 s
heme is very small. In summary, with less 
omputation 
ost the third-order s
heme 
an a
hievethe same a

ura
y level as the se
ond-order s
heme.3.3.2 Subsoni
 laminar �ow over a NACA0012 airfoilIn order to assess the performan
es of the FV-RB s
heme for solving the Navier-Stokes equations, asteady laminar �ow over the NACA0012 airfoil is 
omputed, with the far-�eld 
onditions : M∞ = 0.5,zero angle of atta
k and Reynolds number (based on the airfoil 
hord and the far-�eld in
oming �owboundary 
onditions Re∞,c = 500. A series of 5 in
reasingly re�ned triangular meshes is used forthe 
omputations; the main features of these meshes are summarized in Table 3.27. An overview ofthe �ne mesh5 is also provided in Fig. 3.27. The grid 
onvergen
e analysis is performed followingthe very same methodology used in the 
ase of the subsoni
 invis
id 
ase over the NACA0012 airfoil.88
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Figure 3.25: 2D adve
tion-di�usion problem. Convergen
e history for the se
ond and third-orderRoe and RB s
hemes on the �nest irregular grid Tri_irreg5. Left : L2 norm of the residual vsiterations; right : L2 norm of the residual vs CPU.
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tion-di�usion problem. Convergen
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Chapter 3 : Appli
ations of FV-RB s
hemeThe pres
ribed toleran
es on the values of the aerodynami
 
oe�
ients 
omputed in the �nest gridare respe
tively ECl
= ±1× 10−3 for the lift 
oe�
ient, ECd

= ±5× 10−4 for the drag 
oe�
ient and
ECm

= ±2 × 10−4 for the moment 
oe�
ient.Mesh Dof No. of fa
es on airfoilmesh1 2262 16mesh2 4518 50mesh3 8526 150mesh4 17210 400mesh5 26384 700Table 3.27: Unstru
tured triangle meshes used for subsoni
 laminar �ow over the NACA0012 airfoil.
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Figure 3.27: Global view of mesh5.Overview of the �ow The Ma
h 
ontours obtained by using the RB O3 s
heme on the �nestmesh mesh5 are displayed on top of Fig. 3.29. The 
omputed �ow is perfe
tly (at least visually)smooth and symmetri
 with respe
t to the y axis. The �ow seems to remain fully atta
hed. Theseobservations are 
on�rmed by the plots of the wall-pressure 
oe�
ient distribution and skin-fri
tiondistribution along the airfoil. Table 3.28 displays the aerodynami
 
oe�
ients obtained on the �nestmesh mesh5 by the FV-RB O2 and O3 s
hemes. The ideal lift 
oe�
ient for this 
ase should of
ourse be zero be
ause the �ow is symmetri
 along the airfoil 
hord. The total drag 
oe�
ients Cd
omputed by both s
hemes are very 
lose to ea
h other, sin
e their relative di�eren
e does not ex
eed90



3.3 Steady vis
ous �ows
0.2%. Note however there is a 
ompensation e�e
t between the pressure drag Cdp and the vis
ousdrag Cdv. Pre
isely the value of Cdp obtained by the RB O3 s
heme is 1.7% higher than the oneobtained by the O2 s
heme, while the value of Cdv obtained with the O3 s
heme is 0.4% smaller thanthe one given by the O2 s
heme. Let us now pro
eed to analyze how the s
hemes evolve towardsthese values when the grid is re�ned.S
heme Cl Cd Cdp Cdv Cm

O2 −1.56 × 10−4 0.181513 0.048751 0.132762 −2.31 × 10−5

O3 −1.04 × 10−4 0.181808 0.049580 0.132228 −2.59 × 10−5Table 3.28: Subsoni
 laminar �ow over the NACA0012 airfoil. Aerodynami
 
oe�
ients obtainedwith the FV-RB s
heme on mesh5.Results analysis from the viewpoint of a

ura
y/e�
ien
y In Figure 3.28 it is found thatusing FV-RB O2 s
heme, the lift 
oe�
ient remains within the 
onvergen
e zone frommesh3. How-ever, this 
oe�
ient is still de
reasing slowly with further grid re�nement. A fully 
onverged valuedoes not seem to be rea
hed until the �nest meshmesh5 is used. The drag 
oe�
ient enters the 
on-vergen
e zone from mesh3 but is always in
reasing until mesh5 where the 
onvergen
e is a
hieved.The moment 
oe�
ient goes within the 
onvergen
e zone frommesh2 but its variation does not stopuntil mesh5, where its grid 
onvergen
e 
an be assumed.Using RB O3 s
heme, the lift 
oe�
ient enters the 
onvergen
e zone frommesh3 and remains almost
onstant until mesh5, whi
h is to say the 
onverged value is rea
hed on mesh3, a very satisfyingbehavior with respe
t to RB O2 s
heme. The drag 
oe�
ient enters the 
onvergen
e zone frommesh3 and a fully steady state is obtained on mesh4. The 
omputed moment 
oe�
ient enters the
onvergen
e zone frommesh3 and rea
hes its steady state on mesh4. In summary, RB O3 providesgrid-
onverged values for the lift 
oe�
ient from mesh3 and for the drag and moment 
oe�
ientfrom mesh4, while RB O2 s
heme needs mesh5 for the grid 
onvergen
e of all of 
oe�
ients. Notethis analysis leads to think the 
onvergen
e 
riteria provided within the ADIGMA proje
t shouldhave been more restri
tive; in any 
ase, the previous analysis assumes more stringent 
riteria of grid
onvergen
e than the ones initially provided.Dof Memory (MB) CPU time (s) Iterations CPIPD8526 11 2109 10170 2.43 × 10−517210 21 6143 14620 2.44 × 10−526384 32 10427 16380 2.41 × 10−5Table 3.29: Computation 
ost of the FV-RB O2 s
heme from mesh3 to mesh5.The performan
e of both RB O2 and RB O3 s
hemes is now 
ompared in terms of CPU and memory
ost. From Table 3.29 and Table 3.30, it 
an be �rst noti
ed that averagely FV-RB O3 s
heme hasa 31% higher CPIPD (
ost per iteration per dof) and 1.6 times more memory requirement than theone asso
iated with the RB O2 s
heme. For a fully grid-
onverged lift 
oe�
ient, the RB O2 s
hemeneedsmesh5(26384 dof) with 10427s CPU time, while RB O3 s
heme only needsmesh3 (8526 dof)with 2680s CPU time. The CPU time gain o�ered by RB O3 with respe
t to RB O2 is therefore91
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Figure 3.28: Aerodynami
 
oe�
ients 
onvergen
e with dof based on meshes frommesh1 to mesh5obtained by the FV-RB s
heme.
Dof Memory (MB) CPU time (s) Iterations CPIPD8526 17 2680 10020 3.14 × 10−517210 34 7952 14420 3.20 × 10−526384 50 13729 16390 3.17 × 10−5Table 3.30: Computation 
ost of the FV-RB O3 s
heme from mesh3 to mesh5.
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3.4 Unsteady �owsa fa
tor of almost 4; the 
orresponding memory gain is 47%. The 
ost redu
tion a
hieved by RB
O3 s
heme with respe
t to the RB O2 s
heme for the grid 
onvergen
e of the drag and moment
oe�
ients is less sin
e mesh4 has now to be used with RB O3. Pre
isely this redu
tion is about
24% in CPU time and the memory requirement is almost the same.
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Figure 3.29: A lo
al zoom of mesh5(top left) and the 
orresponding results obtained by the FV-RB
O3 s
heme. Ma
h number 
ontour (top right); Pressure 
oe�
ient distribution on the airfoil (bottomleft); Fri
tion 
oe�
ient distribution on the airfoil (bottom right).
3.4 Unsteady �owsWe 
lose this 
hapter with the appli
ation of the unsteady version of the RB s
hemes to the 
ompu-tation of unsteady �ow problems : 93
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heme
• the propagation of an isotropi
 vortex along the diagonal of a �ow domain will allow us to 
he
kwhether the proposed unsteady extension of the RB s
heme within a dual time framework isindeed se
ond-order a

urate.
• the 
omputation of the (di�
ult) Double Ma
h Re�e
tion problem will provide some insighton the robustness of the RB s
heme when applied to the 
omputation of �ows involving strongmoving sho
ks (in parti
ular we will assess the interest of the variant proposed in 2.3.3).3.4.1 Smooth �ow: vortex propagation problemOverview of the �ow problem The unsteady Euler equations are solved on a 
omputationaldomain x ∈ [0, 10] and y ∈ [0, 10]. Initially, a mean �ow de�ned by the following values for theprimitive variables is set everywhere in the domain : {ρ, u, v, p} = {1, 1, 1, 1}. An isotropi
 vortex isthe added to this mean �ow with the following perturbations on the velo
ity 
omponents, temperatureand entropy :

∆u =
ε

2π
e0.5(1−r2)(−ȳ),

∆v =
ε

2π
e0.5(1−r2)(x̄),

∆T =
(1 − γ)ε2

8γπ2
e(1−r2),

∆S = 0.
�

�

�

�3.3In these expressions, ε denotes the vortex strength, ε = 5; the initial position of the vortex 
enteris xc = 5, yc = 5 and r2 = x̄2 + ȳ2 with x̄ = x − xc, ȳ = y − yc (see Figure 3.30). The vortexis 
onve
ted through the domain with the velo
ity (u, v) = (1, 1). Chara
teristi
-based in�ow andout�ow boundary 
ondition are used on all the boundaries. The solution is 
omputed until t = 2whi
h ensures the vortex remains in the 
omputational domain. It must be pointed out that ourintent with this test-
ase is simply to 
he
k the 
orre
tness of the design prin
iples of the unsteadyRB s
hemes: we do not seek to assess for instan
e the behavior of the s
hemes when the vortex ispropagated several times through the whole domain, where periodi
 boundary 
onditions should beused.A series of regular triangular grid is used to perform the 
omputations, from Tri_reg1 with 200dof to Tri_reg4 with 12800 dof (see 3.31). Another important parameter to set up is the physi
altime-step : it must be large enough to limit the 
omputational 
ost of the �ow simulation but alsosmall enough to make the time-dis
retization error small with respe
t to the spa
e-dis
retizationerror. Besides, it must also be kept in mind that the physi
al time-step has a dire
t in�uen
e on the
onvergen
e speed to the pseudo-steady state at ea
h physi
al time iteration. The physi
al time-step�nally retained for the 
omputations on the whole series of meshes has been ∆t = 0.002, 
oupled witha 
riterion on the pseudo-time 
onvergen
e 
onsisting to let the 
omputation run at ea
h physi
aliteration until the residual on the dual-time derivative has been redu
ed by 4 orders of magnitude.An example of the evolution of this residual is showed in Figure 3.31, in ea
h physi
al time stepinterval 0.002, the residual drops at least 4 orders.94
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Figure 3.30: Left : mesh Tri_reg3. Right : initial vortex density 
ontours (30 levels from 0.49 to1.0).
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Chapter 3 : Appli
ations of FV-RB s
hemeError analysis In Figure 3.32, the density of the exa
t solution and the numeri
al solution 
om-puted with RB O3 on the mesh Tri_reg4 are displayed. On this �ne grid, these two solutions arealmost undistinguishable. Tables 3.31 and 3.32 summarize the 
omputed error at t = 2 with RB O2and RB O3 on this series of regular triangle grids. A 
omparison between these two sets of resultsallow to 
on
lude that, with the same se
ond-order time-dis
retization, the FV-RB O3 s
heme yieldsmore a

urate results than the FV-RB O2 s
heme. For instan
e, on the mesh Tri_reg4 for example,the error redu
tion is about 5.5%.
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Figure 3.32: Solution at t = 2. Vortex density 
ontours (30 levels from 0.49 to 1.003) obtainedby the FV-RB O3 s
heme with ∆t = 0.002 on mesh Tri_reg4 (red solid line), and exa
t solution(bla
k dashed line). Mesh Dof L2 error orderTri_reg1 200 -2.66056 -Tri_reg2 800 -3.40782 2.48Tri_reg3 3200 -4.00367 1.98Tri_reg4 12800 -4.51921 1.71Table 3.31: L2 norm of numeri
al errors of density obtained by the FV-RB O2 s
heme.Mesh Dof L2 error orderTri_reg1 200 -2.56071 -Tri_reg2 800 -3.29511 2.44Tri_reg3 3200 -4.12090 2.74Tri_reg4 12800 -4.76814 2.15Table 3.32: L2 norm of numeri
al errors of density obtained by the FV-RB O3 s
heme.96



3.4 Unsteady �ows3.4.2 Flow with sho
ks: double Ma
h re�e
tion problemSet up of the test-
ase The Double Ma
h Re�e
tion (DMR) problem involves moving and re-�e
ting strong sho
ks. The 
on�guration 
omputed here has been initially proposed by Woodwardand Collela[51℄. The �ow domain is set as x ∈ [0, 4], y ∈ [0, 1]. At initialization, a sho
k wave issent diagonally into a re�e
ting wall (equivalently, the problem 
an also be seen as a sho
k movinghorizontally and en
ountering a wedge). The initial �ow is de�ned as the two 
onstant states on ea
hside of an in
lined sho
k with sho
k Ma
h number Ms = 10, its foot atta
hed at (x = 1/6, y = 0)and forming an angle of 30◦ with respe
t to the y-axis (see Figure 3.33). The �uid lo
ated in the�ow region in whi
h the sho
k is advan
ing is initially at rest and su
h that :
ρ1 = 1.4, p1 = 1.The upper boundary 
ondition is set to des
ribe the exa
t sho
k movement from the left to the rightof the domain. With this 
ondition and the Ma
h number of the sho
k, the �ow variables 
an be
omputed in the following way. At the beginning, let us 
onsider a moving verti
al sho
k at velo
ity

us with the same after-sho
k 
ondition (Figure 3.34), it 
an be also 
onsidered as a stati
 sho
k with�uid on both sides of it moves with di�erent velo
ities (Figure 3.35). The Ma
h number of sho
k
Ms is a
tually determined by the �uid on upstream of the sho
k: Ms = M1 = u′1/a1, with the soundvelo
ity de�ned by: a1 =

√

γp1/ρ1. As the �uid 
onsidered here is the perfe
t gas: γ = 1.4, the
omputed updtream �uid velo
ity is therefore u1′ = 10, the sho
k velo
ity us = 10. And then thedownstream �uid status 
an be obtained by the relationship a
ross a verti
al sho
k. The pressure isgiven by:
p2 =

(
2γ

γ + 1
M2

1 − γ − 1

γ + 1

)

p1,the 
omputed value is p2 = 116.5.

Figure 3.33: Initial sho
k position, and the 
orresponding boundary 
onditions.The relationship for the �uid density and velo
ity is given by:
ρ2

ρ1
=
u′1
u′2

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

, 97
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Figure 3.34: A moving verti
al sho
k.

Figure 3.35: A stati
 sho
k.
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3.4 Unsteady �owsthe 
omputed downstream �uid density is: ρ2 = 8, and velo
ity is u2′ = 1.75.Now if we go ba
k to the 
ase with the moving verti
al sho
k (Figure 3.34), status upstream thesho
k is:
p2 = 116.5, ρ2 = 8, u2 = us − u′2 = 8.25.For the moving sho
k with the presen
e of a in
lined angle, the velo
ity 
omponent in x dire
tion:

(u2)x = u2cos(30◦), in y dire
tion (u2)y = −u2sin(30◦) = −4.125. Until now both of status upstreamand downsteam the in
lined moving sho
k are obtained.Figure 3.33 and Figure 3.36 show the boundary 
onditions 
hangement with time t. The sho
k footis always lo
ated at x = 1/6, and the sho
k head position is 
hanging with time:
l1 =

1

6
+ tan(30◦) +

ust

cos(30◦)
. On the left boundary, boundary 
ondition inlet1 is imposed, whi
hrepresents that the physi
al �ux 
omputed from upstream sho
k 
onditions is used here. For the partof the top and bottom boundary upstream sho
k, the boundary 
ondition inlet2 represents that anumeri
al �ux using upstream sho
k 
ondition and extrapolated solution from internal domain is
omputed on this boundary. It is to note that the numeri
al �ux of a 
lassi
al approximate Riemannsovler is used for the 
omputation with FV-RB s
heme, be
ause the numeri
al �ux of the FV-RBs
heme 
annot be used on the boundary. On the top boundary lo
ated at right hand side of thesho
k, 
ondition inlet3 means that the physi
al �ux 
omputed from the status downstream thesho
k is imposed. For the part of the bottom boundary downstream sho
k, the boundary 
onditionwall represents that a physi
al �ux is imposed, where the slip-boundary 
ondition is used and thepressure is extrapolated from the internal domain. On the right boundary, the outlet 
onditionimpose zero solution gradient. The solution to be 
omputed is the solution at t = 0.2.

Figure 3.36: Sho
k movement on the upper boundary, and the 
orresponding boundary 
onditions.99
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Figure 3.37: A lo
al re�ned triangle mesh used for DMR 
ase, zoom of the part x ∈ [1.5, 3.5].
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3.5 Con
lusionAnalysis of the 
omputed solutions The DMR test-
ase is 
omputed using the FV-RB O2 and
O3 s
hemes on a triangle-based mesh, whi
h is lo
ally re�ned in the region where the main �owstru
tures will be lo
ated at the �nal time t = 2 of the 
omputation. This mesh 
ontains 98172 dofand a detailed view of the re�ned region is displayed in Figure 3.37. It is important to point out thebaseline unsteady version of the RB s
hemes applied to this problem (that is the same version usedfor the previous vortex 
onve
tion problem) fails to 
onverge from the very start of the 
omputation.The only way to obtain a developed solution at t = 2 with RB O2 or RB O3 is to make use of the RBtime residual limiting des
ribed in 2.3.3). Unfortunately, this means that the 
oe�
ient βRB whi
happears in equation 2.69 has to be tuned, on top of the 
oe�
ients K and β asso
iated with thespa
e dis
retization. When βRB is taken large, it means the applied limiting is loose, so that manydetailed stru
tures su
h as the dis
ontinuity vortex roll-up 
an be 
aptured but many os
illation mayappear and sometimes the 
omputation 
an even explode before a
tually rea
hing t = 2. With asmall value for βRB (a stri
t limiting), the 
omputation runs without di�
ulties and the result hasfew os
illations, but some �ne stru
tures are smeared out. The parameters used by both RB s
hemesare summarized in Table 3.33 and the 
orresponding results on this mesh are displayed in Figure(3.38). The global sho
k stru
ture is 
orre
tly 
aptured by both the RB O2 and O3 s
hemes withthe applied limiting strategy but numerous os
illations remain present in the solution. A 
omparisonwith the referen
e result (Figure 3.39) taken from the 
omputation results of a proje
t partner UNST(University of Stuttgart) in the ADIGMA proje
t report [3℄ 
learly show some small �ow stru
tures(in parti
ular the roll-up vortex stru
ture) are not really well 
aptured by RB s
hemes. Although thela
k of grid re�nement may be in
riminated for this very demanding test-problem, it is 
lear howeverthe RB s
heme, in its present stage of development, is not well adapted to the a

urate and e�
ient
omputations of su
h �ows involving strong moving dis
ontinuities.S
heme K βRB βRB O2 2.0 0.05 -RB O3 2.0 0.05 0.05Table 3.33: Limiter parameters used by the FV-RB s
heme for DMR 
ase.3.5 Con
lusionIn this 
hapter the grid 
onvergen
e order of FV-RB se
ond and third-order s
heme is veri�ed onsimple model problems like a 
ir
ular adve
tion problem and adve
tion-di�usion problem. Resultsshow that the se
ond-order RB s
heme is robust to the mesh quality, while the result of the third-order RB s
heme is quite mesh dependant. On a regular mesh it 
an give a very good result: smallerror and super 
onvergen
e order, but a poor 
onvergen
e order and big error 
ould be obtained ona irregular mesh. This problem seems quite severe in 3D. And then some more 
omplex problemsare 
omputed. For a smooth invis
id �ow in 2D, the gain of third-order FV-RB s
heme 
ompared tothe se
ond-order s
heme for 
omputing a grid-
onverged aerodynami
 
oe�
ient is very 
lear. Thepre
ision advantage of the third-order s
heme is also evident on a transoni
 
ase and vis
ous 
asein 2D. But for several 3D 
ases, the gain of third-order FV-RB s
heme is not found. The possiblereason is that a very large sten
il is ne
essary for the third-order FV s
heme, whi
h 
ompromisedthe performan
e of the third-order s
heme to some extent. 101



Chapter 3 : Appli
ations of FV-RB s
heme

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Figure 3.38: Density 
ontours (30 levels from 1.5 to 21.5) obtained by the FV-RB O2 s
heme (top)and the O3 s
heme (bottom) with ∆t = 2 × 10−4.

Figure 3.39: Referen
e result. Density 
ontours obtained by a WENO-FV O5 s
heme on a stru
turedmesh with 921600 dof.102



4Design prin
iples for the SV-RB s
heme
Fren
h La première partie de 
e travail a été 
onsa
rée au développement et la validation d'uns
héma d'ordre deux et d'un s
héma d'ordre trois basés sur le résidu sous la formulation des volumes�nis en maillages non-stru
turés. Ces s
hémas FV-RB O2 et O3 ont été appliqués à une série desproblèmes d'é
oulement et une 
omparaison systématique a démontré dans quelques 
as le gain ene�
a
ité due à la montée en ordre du s
héma. Toutefois, lorsque l'on augmente l'ordre du s
héma,les di�
ultés liées à la méthode des volumes �nis sont apparus 
lairement : de l'ordre deux à l'ordretrois pour les problèmes 3D en parti
ulier une augmentation très signi�
ative de la mémoire desto
kage est introduite. En e�et, il est di�
ile d'imaginer de 
on
evoir, par exemple, une re
onstru
-tion 
ubique de moindres 
arrés en 3D en raison d'un sten
il trop large qui lui serait asso
ié. Uneautre stratégie 
onsiste à augmenter le nombre de degrés de liberté dans 
haque 
ellule du maillageplut�t que d'étendre le support autour de 
haque 
ellule. À 
ette �n, des essais ont été menés surla méthode des di�éren
es spe
trales [34℄[49℄ dans la phase initiale de 
ette thèse. Étant donné que
ertains problèmes de stabilité apparaissent lorsque le s
héma RB est 
ouplé ave
 la méthode desdi�éren
es spe
trales, on a �nalement dé
idé d'utiliser la méthode des volumes spe
traux (SV)[47℄
omme une base alternative de développement du s
héma RB d'ordre très élevé en maillages non-stru
turés généraux. Dans 
ette thèse, on s'est 
on
entré sur le développement d'un s
héma d'ordredeux et surtout d'ordre trois, qui 
ouple l'idée de SV et du �ux numérique de RB (les s
hémas 
or-respondants seront désignés par SV-RB O2 et SV-RB O3 à partir de maintenant).Ce 
hapitre dé
rit le prin
ipe de l'appro
he SV et la façon dont on 
ouple la SV ave
 le �ux numériquedu RB. A�n de présenter 
lairement les des
riptions te
hniques, le 
as d'appli
ation traité i
i estun problème d'adve
tion s
alaire simple. Ensuite on va montrer 
omment la phase impli
ite sansmatri
e utilisée par le s
héma FV-RB est implémentée ave
 su

ès pour les s
hémas SV. Finalement,les 
omparaisons seront faites non seulement entre les s
héma SV-RB et les s
hémas dé
entrés-amont
lassiques 
ouplés ave
 la SV, mais aussi entre les s
hémas SV-RB et les s
hémas FV-RB développésauparavant.English The �rst part of this work has been devoted to the development and assessment of a se
-ond and third-order �nite-volume formulation for the residual-based s
heme on unstru
tured grids.These FV-RB O2 and O3 s
hemes have been applied to a large panel of �ow problems; a systemati

omparison has demonstrated in some 
ases the bene�t for e�
ien
y of in
reasing the a

ura
y or-der. However the di�
ulties asso
iated with the �nite-volume strategy when in
reasing this a

ura
yorder were also made 
lear : going from se
ond-order to third-order for 3D problems in parti
ular103
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iples for the SV-RB s
hemeindu
es a very signi�
ant in
rease in memory storage In fa
t, it is hardly 
on
eivable to design forinstan
e a 
ubi
 least-square re
onstru
tion in 3D be
ause of a huge sten
il asso
iated with it. Analternative strategy 
onsists in in
reasing the number of degrees of freedom within ea
h mesh 
ellrather than extending the support sten
il for ea
h 
ell. To this end, experiments were 
arried out inthe initial stage of this thesis with the spe
tral di�eren
e method [34℄[49℄. Sin
e some stability prob-lems emerged when the RB s
heme is 
oupled with the spe
tral di�eren
e method, it was eventuallyde
ided to assess the Spe
tral Volume (SV) strategy proposed in [47℄ as an alternative frameworkfor deriving potentially very high-order RB s
hemes on general unstru
tured grids. In the presentwork, we have fo
used on the design of a se
ond and more importantly third-order a

urate s
heme
ombining the SV ideas with the RB numeri
al �ux (the 
orresponding s
hemes will be denoted bySV-RB O2 and SV-RB O3 from now on).This 
hapter des
ribes the basi
 prin
iples of the SV method and the way to 
ombine SV withthe RB numeri
al �ux. In order to 
larify as mu
h as possible this te
hni
al des
ription, the 
aseof appli
ation treated here is a simple s
alar adve
tion problem. And then we will show how thematrix-free impli
it method used by the FV-RB s
heme is su

essfully implemented for SV s
hemes.Finally 
omparisons will be made not only between the SV-RB s
hemes and 
lassi
al upwind s
hemes
oupled with the SV method but also between these SV-RB s
hemes and the previously developedFV-RB s
hemes.4.1 Introdu
tion to the Spe
tral Volume methodConsider a 
omputational domain Ω whi
h 
an be divided into non-overlapping triangular 
ells, ea
h
ell is named a spe
tral volume (SV) and the ith SV is denoted by Si. In the present work we willrestri
t our study to triangular spe
tral volumes but the approa
h is general and applies to any typeof 
ell (triangular or quadrilateral). Ea
h SV is itself divided into a set of non-overlapping sub-
ellsin a stru
tured way so that a polynomial of a 
ertain degree 
an be re
onstru
ted by using sub
ell-average values. The sub-
ell is 
alled 
ontrol volume (CV); the jth CV in the ith SV is denoted by
Ci,j. The triangular SV 
an be transformed into a simplex: a right triangle or a equilateral triangle;the �rst type is 
hosen in the present work. There are many 
hoi
es for subdividing a SV into CVsin order to a
hieve a given a

ura
y order; the subdivisions or partitions initially used by Wang[48℄ have been found to be not the best ones [18℄. A series of optimal partitions giving a smallerLebesgue 
onstant proposed by Chen [6℄ are used in the present work and displayed in Figure 4.1.For example, to 
onstru
t a linear polynomial, at least 2 pie
es of information are ne
essary in ea
hdire
tion, whi
h results in 3 CVs (3 CV 
entroids i.e. 3 pie
es information) totally in a SV. Thedetails on the solution re
onstru
tion will be des
ribed later.Let us 
onsider the following system of 
onservation laws :

∂U

∂t
+ ∇ · F = 0.

�

�

�

�4.1with the time t, the 
onservative variable U and the physi
al �ux F . The integral formulation of thisNote the 
hoi
e was made to store the geometry-based data to be used in least-square linear or quadrati
 re
on-stru
tion. Not storing these data would make 
omparable memory requirements of the se
ond and third-order s
hemesbut, in the meantime, would severely in
rease the 
ost per iteration of the latter over the former.104



4.1 Introdu
tion to the Spe
tral Volume method

Figure 4.1: Partitions of a right triangle simplex SV Partitions for linear, quadrati
, and 
ubi
re
onstru
tion (left to right).equation leads to the following evolution equation in ea
h CV:
∂Ūi,j

∂t
+

1

|Ωi,j|

∫

Ωi,j

∇ · FdΩ = 0.
�

�

�

�4.2where Ūi,j is the average solution in the CV Ci,j with its surfa
e given by |Ωi,j | (for the reason ofsimpli
ity, the bar on top of solution will be dropped from now on). By using Green-Gauss theorem,the integral term in the above equation be
omes:
∫

Ωi,j

∇ · FdΩ =

Nf∑

k=1

∫

Γk

F · ndΓ,
�

�

�

�4.3with Γk the kth fa
e of Ci,j, n its normal outward-pointing unit ve
tor, and Nf the total number offa
es of Ci,j. The �ux integral on ea
h fa
e 
an be approximated to the desired order by a Gaussquadrature rule :
Nf∑

k=1

∫

Γk

F · ndΓ ≃
Nf∑

k=1

Ngp∑

m=1

ωmHk,m|Γk|.
�

�

�

�4.4where Hk,m is the numeri
al �ux normal to the fa
e Γk at the quadrature point m on this fa
e, the
orresponding quadrature weight is ωm; |Γk| is the fa
e area whi
h is the length of fa
e Γk in 2D;total number of quadrature points on the fa
e k is Ngp.A solution polynomial in the SV i is derived from the CV-averaged values Ui,j and takes the form :
Ui(x, y) =

Ndof∑

j=1

Li,j(x, y)Ui,j.
�

�

�

�4.5where Ndof is the number of degrees of freedom, whi
h is the number of CVs in ea
h SV. To 
onstru
ta polynomial of degree n in 2D on a SV, a number Ndof = (n+ 1)(n+ 2)/2 of independent pie
es ofinformation is ne
essary (by pie
e of information we mean here a CV-averaged value). For example,
Ndof = 6 for the third-order s
heme, hen
e there are 6 CVs for the quadrati
 re
onstru
tion (Figure105
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iples for the SV-RB s
heme

Figure 4.2: SV mapping from physi
al domain to 
omputational domain4.1), whi
h will be used later when deriving third-order s
hemes. Moreover, the solution re
onstru
-tion 
oe�
ient Li,j(x, y) depends on the lo
ation of the 
entroid of Ci,j in the SV i. It seems that this
oe�
ient varies in ea
h SV for every point k(xk, yk). In fa
t it be
omes 
onstant for every point k ifea
h SV is transformed into a standard 
ell (a simplex) whi
h is then divided into straight edged CVsin a stru
tured way, as those partitions showed in Figure 4.1. The mapping pro
ess from a normalmesh 
ell to the simplex is showed in Figure 4.2, where the original domain (with 
oordinates x and
y) is 
alled physi
al domain, the new domain (with 
oordinates ξ and η) being 
alled 
omputationaldomain. This mapping pro
ess 
an be also expressed by the following equation:

r = ri,1 + ξ(ri,2 − ri,1) + η(ri,3 − ri,1).
�

�

�

�4.6where r = [x y]T is the ve
tor of 
oordinates, ri,j with j = 1, 3 are the 
oordinates of the three nodesof the triangular SV i, in whi
h the polynomial re
onstru
tion is going to be built.The re
onstru
tion 
oe�
ients are 
omputed by expressing the fa
t that the average value of there
onstru
ted solution Ui over the CV Ci,j is equal to the solution Ui,j :
1

|Ωi,j |

∫

Ωi,j

Lm(ξ, η)dΩ = δj,m, (m = 1, Ndof ),
�

�

�

�4.7with δj,m the Krone
ker delta fun
tion. For example, in the 
ase of a linear re
onstru
tion there
onstru
tion 
oe�
ient 
an be developed as :
L(ξ, η) = a0 + a1ξ + a2η.

�

�

�

�4.8where a0, a1 and a2 are polynomial 
oe�
ients to be determined. Sin
e there are three CVs Ci,j inthe SV Si for the linear re
onstru
tion 
ase (Ndof = 3), equation (4.7) yields three equations for ea
h
Li,j (j = 1, Ndof). The three polynomial 
oe�
ients for a given re
onstru
tion 
oe�
ient L 
an be
omputed from these equations. In this way, all three re
onstru
tion 
oe�
ients in fun
tion of the
omputational 
oordinates L1(ξ, η), L2(ξ, η) and L3(ξ, η) 
an be obtained.After the mapping pro
ess equation (4.5) 
an be written in this form :

Ui(ξ, η) =

Ndof∑

j=1

Lj(ξ, η)Ui,j.
�

�

�

�4.9106



4.1 Introdu
tion to the Spe
tral Volume methodGiven the 
omputational 
oordinates of any point in the SV, the solution at this point 
ould beestimated from (4.9). In pra
ti
e only the solution at some points is ne
essary, typi
ally at Gaussquadrature points. In a simplex, the 
oordinates (ξg, ηg) of these Gauss points are known on
e forall, therefore any re
onstru
tion 
oe�
ient Lj(ξg, ηg) is a 
onstant for the Gauss point g. Coe�
ientsfor ea
h Gauss point are 
omputed and saved at the beginning of the 
omputation.Sin
e an independent solution polynomial is re
onstru
ted in ea
h SV, the solution is 
ontinuousthrough the CV fa
es lo
ated inside the SV. Consequently, the �ux at a Gauss point lo
ated on aso-
alled internal CV fa
e is simply 
omputed as the physi
al �ux using the solution estimate at thisGauss point. The pi
ture is of 
ourse di�erent on the boundaries of a SV, or so-
alled external CVfa
es, 
oin
ident with CV fa
es from a neighboring SV. In that 
ase, the solution re
onstru
tion isa priori dis
ontinuous sin
e expressed by two distin
t polynomials; a 
ommon numeri
al �ux is thenne
essary for approximating the physi
al �ux in equation (4.4) at Gauss points lo
ated on externalCV fa
es whi
h belong to the SV boundary. The numeri
al �ux 
an be obtained by using an exa
t orapproximate Riemann solver (Rusanov s
heme, HLLC s
heme or Roe s
heme typi
ally) or by usinga RB numeri
al �ux. The formulation of the RB s
heme based on the SV method will be detailedin the next se
tion. In the present se
tion, we 
omplete our des
ription of the SV approa
h by usinga 
lassi
al approximate Riemann solver as the numeri
al �ux, namely the Rusanov numeri
al �uxgiven by :
HRusanov =

1

2
(F⊥

L + F⊥
R ) − 1

2
λmax (UR − UL).

�

�

�

�4.10where F⊥
L and F⊥

R are the proje
tion of the physi
al �ux onto the outward fa
e normal dire
tion,respe
tively 
omputed in the left and right CV of the 
orresponding interfa
e, λmax is the maximumwave-speed asso
iated with the hyperboli
 system to be solved, whi
h is the maximum absolute valueof the normal Ja
obian matrix eigenvalues.The partition of the SV into CVs and the Gauss points along the fa
es of ea
h CV in the 
ase of ase
ond-order SV method are provided in Figure 4.3. At the so-
alled interior Gauss-points, lo
atedalong fa
es of CVs whi
h are not shared with another SV, the numeri
al �ux appearing in (4.4) isdire
tly 
omputed as :
Hg = F⊥(Ug)

�

�

�

�4.11where Ug is 
omputed with (4.9). For boundary Gauss-points, lo
ated along fa
es of CVs whi
h areshared with another SV, the physi
al �ux is approximated by a numeri
al �ux, written as follows inthe 
ase where the Rusanov �ux is retained :
Hg =

1

2
(F⊥(Ug,L) + F⊥(Ug,R)) − 1

2
λmax

g (Ug,R − Ug,L).
�

�

�

�4.12where Ug,L = Ug,i is the solution obtained by the re
onstru
tion polynomial in SV i and Ug,R = Ug,ois the solution obtained by the re
onstru
tion polynomial in SV o. The maximum signal speed,
λmax(Ug,L, Ug,R) is 
omputed at the Gauss point g using typi
ally a Roe-averaged state 
omputedfrom Ug,L and Ug,R. 107
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Figure 4.3: CVs and Gauss points for O2 SV4.2 Strategy for time-integration4.2.1 Expli
it time-advan
ementFollowing several authors who have initially 
ontributed to the development of the SV approa
h, athird-order Runge-Kutta s
heme [20℄ 
an be used for 
omputing both steady and unsteady problems[47℄, [18℄. Time-a

ura
y will be ensured for unsteady �ows while robustness in the 
hoi
e of a CFLnumber will be obtained for steady �ow 
omputations. The method reads :
U

1

i,j = U
n

i,j +R(U
n

i,j),

U
2

i,j =
3

4
U

n

i,j +
1

4
[U

1

i,j +R(U
1

i,j)],

U
3

i,j =
1

3
U

n

i,j +
2

3
[U

2

i,j +R(U
2

i,j)],

U
n+1

i,j = U
3

i,j.
�

�

�

�4.13where the residual of equation (4.2) is given by :
R(Un

i,j) = −∆ti,j
|Ωi,j |

Nf∑

k=1

Ngp∑

m=1

ωmHk,m|Γk|.
�

�

�

�4.14with ∆ti,j the time step in the CV Ci,j. Based on the de�nition of the CFL number, the time stepis 
omputed by:
∆ti,j =

CFL · hi,j

λmax
i,j

.
�

�

�

�4.15where hi,j is the 
hara
teristi
 size of the CV Ci,j and is 
omputed as for the FV-RB s
heme (referto se
tion 2.1.3); λmax
i,j is the maximum eigenvalue of the physi
al �ux Ja
obian matrix in equation(4.2). This approa
h has been implemented within our SV numeri
al solver; however sin
e it wasimportant for us to be in position to perform a fair 
omparison between the FV-based and SV-based108



4.2 Strategy for time-integrationstrategies for deriving third-order versions of the RB s
heme, it was also de
ided to devote somee�ort to the building of an impli
it version of the SV s
heme for 
omputing steady problems.4.2.2 Matrix-free impli
it method for SVAs previously mentioned, in the 
ourse of this work, impli
it formulations for SV s
hemes have beenderived by some authors (motivated in parti
ular by the need to speed up the 
onvergen
e to steady-state in the 
ase of vis
ous �ow problems). For instan
e, an impli
it LU-SGS algorithm 
oupled witha p-multigrid strategy has been su

essfully used for the SV method in [40℄. In this work, we havenaturally de
ided to extend to the SV formulation the simple matrix-free impli
it s
heme presentedin the �rst part of the work (see se
tion 2.1.3, devoted to the FV formulation of the RB s
heme).For SV method, the impli
it s
heme is used for ea
h CV instead of SV be
ause the dis
retizationequation is based on a CV. The basi
 idea of this matrix-free s
heme is to use a Rusanov s
hemefor the numeri
al �ux in the impli
it phase, while the numeri
al �ux used in expli
it phase is in-dependent on the impli
it s
heme. There are two 
hoi
es: either using the impli
it numeri
al �uxonly on the boundary CV fa
es (fa
es lo
ated on the SV boundary), or using the impli
it s
heme onall of CV fa
es. By 
onsidering that later 
hoi
e 
ould bring more dissipation to the whole s
heme,this 
hoi
e is therefore adopted in our 
omputation. In order to implement the impli
it s
heme inthis way, a te
hni
al issue in the programming 
omes, whi
h is that all of CVs and the nodes andfa
es of ea
h CV needs to be numbered globally in the whole physi
al domain, while it is not ne
es-sary when the expli
it s
heme is used, where CVs are numbered lo
ally in a SV, i.e. Ci,j is the jthCV of SV i. As long as the global numbering is done, the 
onne
tion between a lo
al CV in a SVand a global CV is ne
essary, some detailed issues related to programming are dis
ussed in Appendix.Let us re
all the dis
retized system of 
onservation law for a CV Ci,j:
∆Un

i,j = R(Un
i,j),

�

�

�

�4.16where ∆Un = Un+1 − Un, and the residual R(Un
i,j) is given by (4.14). Now if we drop the notationfor the lo
al CV and use a new notation for any global CV p, the above dis
retization be
omes:

∆Un
p = −∆tp

|Ωp|

Nf∑

k=1

Ngp∑

m=1

ωmHk,m|Γk|.
�

�

�

�4.17Then the impli
it s
heme is used in the same way as des
ribed in se
tion 2.1.3. The total impli
itsystem is also solved with the Point-Ja
obi relaxation te
hnique, whi
h gives:
⇔







∆U
(0)
p = 0







l = 1, L

∆U (l)
p =

1

Cp

(Rn
p − a

∑

k

|Γk|(∆H(l−1)
p + ∆H(l−1)

o(p,k) − (ρ⊥)p,o(p,k)∆U
(l−1)
o(p,k)))

∆U
(n)
p = ∆U

(L)
p

.
�

�

�

�4.18where L is the number of sub-iteration; the 
oe�
ient Cp = 1+aσ
∑

k

|Γk|(ρ⊥)p,o(p,k), with a =
∆tp
2|Ωp|

,and a relaxation 
oe�
ient σ. Normally σ = 1 for a high e�
ien
y of the impli
it phase. But thishigh e�
ien
y 
ould result in a stability problem in a 
ertain 
ase. Therefore only a small CFL ispermitted. By in
reasing the σ a big CFL 
an still be used. 109



Chapter 4 : Design prin
iples for the SV-RB s
heme4.3 Coupling the SV method and the RB numeri
al s
hemeIn the following a 2D se
ond and third-order RB s
heme is developed within the framework of the SVmethod. The proposed formulation 
an be "easily" generalized to higher orders of pre
ision and to 3Dproblems. By "easily", we mean there is no su
h obsta
le as the ex
eedingly large sten
il asso
iatedwith a high-order 3D FV extension. Let us start from the SV-RB O2 s
heme, the partition of the SVand 
hoi
e of Gauss quadrature points on ea
h CV fa
e are showed in Figure 4.4. A shift 
ell formedby two CV 
entroids i, j and o, k, and two nodes n1 and n2 of the fa
e on whi
h the numeri
al �ux is
omputed. Let us now pro
eed to a detailed des
ription of the RB �ux 
omputation at a Gauss-point
g on fra
e k.

Figure 4.4: Shift 
ell used by the SV-RB O2 s
heme. For the RB numeri
al �ux 
omputed at Gausspoint g on a boundary CV fa
e n1 − n2, the shift 
ell formed by i, j(
entroid of jth CV in SV i),
o, p (
entroid of pth CV in SV o), and two nodes (n1 and n2) of this fa
e is used. Points 1 − 4 arequadrature points used for residual 
omputation in this shift 
ell.As in the FV method, the RB numeri
al �ux still in
ludes two parts, namely a purely 
entered �uxand a numeri
al dissipation :

HRB
g =

1

2
(F⊥

g,L + F⊥
g,R) − dg,

�

�

�

�4.19where F⊥
g,L and F⊥

g,R are the normal �uxes at the Gauss point g 
al
ulated 
orrespondingly in the SV
i and SV o. The de�nition of the numeri
al dissipation dg is similar to the one de�ned for FV-RBs
heme:

dg =
1

2
L⊥ΦkRk,

�

�

�

�4.20where L⊥ = ∆r(i,j),(o,p) · nk is the proje
tion of distan
e between the 
entroids of two CVs sharingthe interfa
e k on the fa
e normal dire
tion; the O(1) dissipation 
oe�
ient matrix Φk is 
al
ulatedin the same way as for FV-RB (refer to equation (2.18) and (2.19)); and Rk is an approximation ofthe residual integral:
Rk =

1

|Ωk|

∫

Ωk

r dV ,
�

�

�

�4.21110



4.3 Coupling the SV method and the RB numeri
al s
hemewhere r the residual of the 
onsidered system, here Euler equations are 
onsidered:r = ∇·F(U); and
|Ωk| is the surfa
e of the shift 
ell (see Figure 4.4). Taking into a

ount the residual r in equation(4.21) and using Gauss's theorem yields :

Rk =
1

|Ωk|

∫

∂Ωk

F · n dS =
1

|Ωk|
∑

l∈I(Ωk)

∫

Γl

F · n dΓ,
�

�

�

�4.22where I(Ωk) in
ludes all the fa
es of the shift 
ell. For a se
ond-order s
heme, this residual shouldbe approximated at least to �rst-order in order to obtain a se
ond-order dissipation term. A se
ond-order - at least - residual approximation is ne
essary for a third-order dissipation. Obviously theintegral in equation (4.22) 
an be 
omputed by a Gauss quadrature formula :
∫

Γl

F · n dΓ =

Nq∑

q=1

ωqF⊥
l,q|Γl| + O(h2Nq+1),

�

�

�

�4.23where Nq is the number of quadrature points, ωq is the quadrature weight 
orresponding to point
q, the length of the fa
e l is |Γl| and h is the typi
al mesh size. Clearly the exa
t �ux F⊥

l,q is notavailable be
ause the exa
t solution at this point remains of 
ourse unknown. Therefore a numeri
al�ux Hl,q is used as repla
ement, whi
h is obtained by substituting the re
onstru
ted solution intothe physi
al �ux, i.e. Hl,q = F⊥(UR
l,q), so that :

Hl,q = F⊥
l,q + O(hk).

�

�

�

�4.24Taking into a

ount (4.24), equation (4.23) is rearranged in the form :
∫

Γl

F · n dΓ =

Nq∑

q=1

ωqHl,q|Γl| + O(hk+1) + O(h2Nq+1),
�

�

�

�4.25An extra order of a

ura
y will be gained if the fa
e integral is summed up for all fa
es of the shift
ell:
Rk =

1

|Ωk|
(
∑

l∈I(Ωk)

Nq∑

q=1

ωqHl,q|Γl| + O(hk+2) + O(h2Nq+2)),
�

�

�

�4.26In 2D |Ωk| is 
onsidered to be O(h2), so that this equation be
omes:
Rk = Rk + O(hk) + O(h2Nq),

�

�

�

�4.27with the residual approximation:
Rk =

1

|Ωk|
∑

l∈I(Ωk)

Nq∑

q=1

ωqHl,q|Γl|.
�

�

�

�4.28Equation (4.27) shows that for a se
ond-order s
heme (k = 2) as well as for a third-order s
heme(k = 3) , only one Gauss quadrature point along ea
h fa
e of the shift 
ell is needed for the �rst-orderresidual approximation or se
ond-order approximation. Equation (4.28) �nally be
omes:
Rk =

1

|Ωk|
∑

l∈I(Ωk)

Hl|Γl|.
�

�

�

�4.29111



Chapter 4 : Design prin
iples for the SV-RB s
hemeWhen 
omputing the non-dissipative �ux for the third-order SV-RB s
heme, two Gauss quadraturepoints are needed on ea
h CV fa
e, whi
h means that two distin
t RB numeri
al �uxes should be
omputed on ea
h boundary fa
e. On a given CV fa
e, the purely 
entered �ux is 
omputed at ea
hquadrature point (g1 or g2 in Figure 4.5) but the same numeri
al dissipation is adopted to redu
e the
omputational 
ost :
HRB

g1
=

1

2
(F⊥

g1,L + F⊥
g1,R) − dg,

HRB
g2

=
1

2
(F⊥

g2,L + F⊥
g2,R) − dg.

�

�

�

�4.30where it is emphasized dg is 
omputed on
e on ea
h CV fa
e, using the �ux balan
e on a shift-
ellpreviously des
ribed. This shift 
ell is 
onstru
ted in the same way as for the se
ond-order s
heme.An example is displayed in Figure 4.5. It is important to make 
lear that no RB �ux is 
omputedon internal CV fa
es, and only one dissipation �ux dg is 
omputed for ea
h external fa
e of a CV.For instan
e, in the 
ase of the se
ond-order SV-RB s
heme (see Figure 4.4) there are 6 external CVfa
es, hen
e 6 distin
t evaluations for the dissipation �ux on a given SV and 6 distin
t evaluations ofthe non-dissipative 
entered �ux be
ause there are 1 Gauss quadrature point on ea
h CV fa
e. In the
ase of the third-order SV-RB s
heme, be
ause there are 9 external CV fa
es, 9 distin
t evaluationsof the dissipation �ux and 18 evaluations of the non-dissipative 
entered �ux (sin
e 2 Gauss pointson ea
h CV fa
e) are made.

Figure 4.5: Shift 
ell used by the SV-RB O3 s
heme. For the RB numeri
al �ux 
omputed at Gausspoint g1 and g2 on a boundary CV fa
e n1−n2, only one numeri
al dissipation is 
omputed by usingthe shift 
ell formed by i, j(
entroid of jth CV in SV i), o, p (
entroid of pth CV in SV o), and twonodes (n1 and n2) of this fa
e. Points 1 − 4 are quadrature points used for residual 
omputation inthis shift 
ell.The re
onstru
tion 
oe�
ients 
orresponding to the fa
e 
enters of the shift 
ell, whi
h are spe
i�
 tothe use of the RB numeri
al �ux, are 
omputed from their known 
oordinates in the simplex. Theyare 
omputed only on
e at the very beginning of the 
al
ulation and stored for later usage, so as tosave on 
omputational time.112



4.4 Numeri
al results4.4 Numeri
al resultsThe 2D 
ir
ular adve
tion problem presented in se
tion 3.2.1 is now 
onsidered and 
omputed usingthe se
ond and third-order SV s
hemes. For ea
h order of pre
ision, the RB s
heme and a representa-tive of 
onventional upwind s
hemes, Roe s
heme, are used and 
ompared. The series of unstru
turedtriangular meshes already used for the FV 
omputations in Chapter 3 (see Table 3.2 for details) areused for the 
omputation with ea
h s
heme. Let us re
all that these meshes are made of triangles,with the 
oarsest mesh, Tri_irreg1, 
ontaining 226 
ells and the �nest mesh, Tri_irreg5, 
on-taining 57518 
ells. For ea
h mesh the error between the exa
t solution and the numeri
al solutionobtained using the SV approa
h is 
omputed in ea
h CV and the resulting norm is plotted againstthe 
hara
teristi
 grid size in order to estimate the a
tual order of a

ura
y that 
an be attained withthe numeri
al s
hemes under study. It is important to point out at this stage the di�eren
e betweenthe SV results and the previously obtained FV results. On the �nest mesh Tri_irreg5 for instan
e,the number of dof asso
iated with the FV O2 and O3 methods are the same, namely the numberof grid 
ells, 57518. If the SV O2 s
hemes are applied on this same grid, sin
e ea
h 
ell, i.e. SV,
ontains 3 CVs, the number of dof amounts to 57518 × 3 = 172554. Similarly for O3 SV s
heme,with 6 CVs in ea
h SV, 14412 × 6 = 86472 dof is used on this mesh.
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Figure 4.6: The 
onvergen
e of L2 norm of numeri
al error with the mesh typi
al size h obtainedwith SV O2 s
hemes (left) and SV O3 s
hemes (right).Analysis of the SV s
hemes a

ura
y The evolution of the error between exa
t and numeri
alsolutions for the se
ond-order SV s
hemes (SV-Roe O2 and SV-RB O2 denoting respe
tively theSV approa
h with the Roe and RB numeri
al �ux as numeri
al �ux) and the third-order s
hemes:SV-Roe O3 and SV-RB O3 are plotted in Figure 4.6. The analysis of these plots shows that SV-RB
O2 s
heme produ
es a slightly larger error than the SV-Roe O2 s
heme for this 
ase, with an order of
onvergen
e (1.81) a little lower than the theoreti
al order 2, while the SV-Roe O2 s
heme yields theexa
t theoreti
al mesh 
onvergen
e order. For the third-order SV s
hemes, the di�eren
e betweenSV-RB O3 s
heme and SV-Roe O3 s
heme is very small on the numeri
al error level as well as onthe mesh 
onvergen
e order (
lose to 3, as expe
ted, in both 
ases). It is interesting to observe that113



Chapter 4 : Design prin
iples for the SV-RB s
hemethe di�eren
e between the results obtained with two distin
t numeri
al �uxes is de
reasing with thes
heme order in
reasing. In other words, the numeri
al �ux seems to play a role less and less impor-tant in the solution a

ura
y. The reason for this behavior is probably that with the in
reasing orderof a

ura
y, the number of CV boundary fa
es - i.e. CV fa
es lo
ated on a SV boundary, hen
e onwhi
h the numeri
al �ux is 
omputed - tend to de
rease with respe
t to the total number of CV fa
esin a SV, thus making less signi�
ant the in�uen
e of the numeri
al �ux formula on the numeri
alsolution. For instan
e, ea
h CV has two boundary fa
es for the se
ond-order SV s
heme; there areCVs that have only 1 boundary fa
e for third-order SV s
hemes and for fourth-order SV s
hemes, aCV without boundary fa
es exists (see Figure 4.1).Analysis of the SV s
hemes e�
ien
y In the following the 
omputation 
ost of the SV-RB s
heme is 
ompared to the SV-Roe s
heme. At �rst, the results obtained on the �nest meshTri_irreg5 are 
onsidered. In Table 4.1 CPIPD is the CPU time Per Iteration Per Dof. Iterationsand CPU time in this table are those needed by the 
omputation to rea
h the steady state, whi
h isde�ned as the residual drop of order 10 here. This table shows that the 
omputation with SV-RB O2s
heme is about 12% more expensive on CPIPD than the SV-Roe O2 s
heme for this 
ase, whi
h isunderstandable be
ause the RB numeri
al �ux is more 
omplex to 
ompute than the Roe numeri
al�ux. A higher CPIPD is the sour
e whi
h leads to a global higer CPU time used by the RB O2s
heme to rea
h the 
onvergen
e with about the same iterations used by the Roe O2 s
heme. Thememory use of both s
hemes is almost the same. Table 4.2 shows that between di�erent numeri
al�uxes for the third-order s
heme, the RB s
heme has a 10% higher CPIPD than the Roe s
heme.As more iterations are ne
essary to rea
h the 
omputation 
onvergen
e with the RB O3 s
heme,the total CPU time needed by this s
heme is higher than the one of Roe O3 s
heme. Again boths
hemes use almost the same quantity of memory. By 
omparing the third-order results with those ofse
ond-order s
heme, there is no suprise to see that the CPIPD of third-order SV s
heme is globallyhigher than the one of se
ond-order s
heme, be
ause there are more numeri
al �uxes to 
ompute forea
h CV in the third-order s
heme. Pre
isely, the CPIPD of Roe O3 s
heme is 19% higher than theone of Roe O2 s
heme, and 
ompared to RB O2 s
heme, RB O3 s
heme has a 17% higher CPIPD.As there are more CVs and quadrature points to be stored in the 
omputation, the memory usageof the third-order s
heme is 2.2 times higher than the se
ond-order s
heme on the same mesh. Butit should be noted that the numeri
al error level a
hieved by the se
ond-order s
hemes on the �nestmesh Tri_irreg5 
an already be obtained by third-order s
hemes on a 
oarse mesh Tri_irreg3,and the 
orresponding 
omputation 
ost is very low (see Table 4.3). This is to say that to a
hievethe same pre
ision level, with third-order s
hemes the 
omputation 
ost is far less than the one ofse
ond-order s
hemes.S
heme Dof Memory(M) CPU time(s) Iterations CPIPDRoe O2 172554 167 281 550 2.96 × 10−6RB O2 172554 168 332 580 3.32 × 10−6Table 4.1: Computation 
ost 
omparison for SV O2 s
hemes on mesh Tri_irreg5, CFL = 106.Comparison between FV and SV s
hemes Sin
e our obje
tive in this last part of the workis to investigate the interest of turning to the SV approa
h as a general framework for deriving114



4.4 Numeri
al resultsS
heme Dof Memory(M) CPU time(s) Iterations CPIPDRoe O3 345108 373 1031 850 3.52 × 10−6RB O3 345108 375 1246 930 3.88 × 10−6Table 4.2: Computation 
ost 
omparison for SV O3 s
hemes on mesh Tri_irreg5, CFL = 106.S
heme Dof Memory(M) CPU time(s)Roe O3 21528 24 21.7RB O3 21528 24 32.4Table 4.3: Computation 
ost 
omparison for SV O3 s
hemes on mesh Tri_irreg3, CFL = 106.
high-order formulations of the RB s
heme, we wish to 
ompare SV-RB O3 with FV-RB O3 both interms of a

ura
y, e�
ien
y and memory requirements. The 
omparison will be made for a regulartriangular mesh, but observations remain valid for the 
omputations performed on other meshes.The mesh used by the FV-RB s
heme has 19208 elements and the one used by the SV-RB s
hemehas 6 times less elements, whi
h is the mesh Tri_reg3 in Table 3.1 (3200 triangles, see Figure 4.7),so that both s
hemes will have almost the same dof (19208 for FV-RB O3, number of 
ells, and
6 × 3200 = 19200 for SV-RB O3, number of CVs). The evolution of the numeri
al error (L2 norm)against the CPU time obtained by both s
hemes with the same (large) CFL is showed in Figure4.8. On this pi
ture, we also plot for referen
e the evolution of the numeri
al error obtained on the
oarse grid made of 3200 triangles with FV-RB O3 (in that 
ase the number of dof is the numberof 
ells or SVs). Naturally for su
h a redu
ed number of dof the 
onvergen
e is fast, the memoryrequirement is low but the numeri
al error is large. With this 
ase, we want to emphasize the fa
tthat, in pra
ti
e, the SV method will be applied on this same 
oarse grid; the automati
 pro
ess of SVsubdivision will then take pla
e to yield the aforementioned 19200 dof. In the 
ase of FV 
omputa-tions, a grid re�nement would have to take pla
e in order to in
rease the number of 
ells in the grid :this pro
ess 
an also be made automati
 but the simpli
ity of generating CVs within ea
h SV is better.It is 
lear that the 
omputation using FV-RB O3 and SV-RB O3 with the same number of dof yielda 
onverged numeri
al error in about the same 
omputational time as showed in Table 4.4. Note boths
hemes are 
oupled with the same previously des
ribed �rst-order impli
it stage (applied at the 
elllevel for the FV approa
h and at the CV level for the SV approa
h). In Figure 4.8, the 
al
ulation isrun for ea
h s
heme until the same level of residual is attained (typi
ally 10−8); it 
an be observed theasymptoti
 
onvergen
e rate for the SV-RB O3 s
heme is poorer than the one a
hieved with the FV-RB O3 s
heme, thus leading to a larger number of iterations (though we emphasize the steady-stateon the numeri
al error has been prior a
hieved with both s
hemes). More interestingly, the level ofnumeri
al error provided by the FV-RB O3 s
heme for the same number of dof is smaller than theone a
hieved with SV-RB O3. It 
an be dedu
ed from Table 4.4 the intrinsi
 
ost (CPIPD) of SV-RB
O3 is about 31% higher than the intrinsi
 
ost of FV-RB O3 but with memory requirements 25%lower. This last positive point is worthy of interest sin
e the memory requirements 
learly be
ome a
ru
ial 
on
ern when extending the FV approa
h to higher-order. 115
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Figure 4.7: Mesh with regular triangles used by the SV-RB s
heme (left) and the FV-RB s
heme(right).
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al error with CPU time obtained by the FV-RB O3 s
heme on meshTri_reg3(3200 dof) and on a regualr triangle mesh (19208 dof), by the SV-RB O3 s
heme with themesh Tri_reg3(19200 dof), CFL = 106.S
heme Dof Memory(M) CPU time(s) Iterations CPIPDSV-RB O(3) 19200 21 11 150 3.82 × 10−6FV-RB O(3) 19208 28 8.4 150 2.92 × 10−6Table 4.4: Computation e�
ien
y 
omparison for third-order RB s
heme, CFL = 106116



4.5 Con
lusion4.5 Con
lusionThe se
ond and third-order SV method based RB s
heme are obtained for solving a pure adve
tionproblem on unstru
tured triangular grids. The grid 
onvergen
e study shows that the RB s
hemeis no more a

urate than the SV method 
oupled with the numeri
al �ux of a 
lassi
al approximateRiemann solver. And the 
omputation 
ost of the SV-RB s
heme is higher than the one of the
lassi
al numeri
al �ux. When the SV-RB s
heme is 
ompared to the FV-RB s
heme at third-orderwith the same dof and same impli
it s
heme, it is seen that the FV-RB 
onverges a little faster andgives a mu
h smaller numeri
al error.
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5Extension of the SV-s
hemes to 
ompressible �ows
Fren
h Le 
hapitre pré
édent a été 
onsa
re à la des
ription du prin
ipe de l'appro
he SV. Les
ontributions du présent travail ont aussi été détaillées: développement d'un s
héma SV-RB à l'ordre2 et 3; adjon
tion d'une phase impli
ite asso
iée à la phase expli
ite du système basé sur la dis
réti-sation du SV d'ordre élevé. Le s
héma SV-RB a d'abord été développé pour 
al
uler des problèmesd'adve
tion s
alaire et une première analyse a été menée sur la pré
ision et l'e�
a
ité des s
hémasSV pour un problème d'adve
tion 
ir
ulaire. Dans 
e dernier 
hapitre, on va étendre 
es versions dus
héma au 
al
ul des é
oulements 
ompressibles autour d'une obsta
le (par résolution des équationsd'Euler). Comme on s'intéresse seulement i
i aux problèmes stationnaires, l'extension des s
hémass
alaires au système non-linéaire des équations d'Euler n'introduit pas de grande di�
ulté. Cepen-dant on a besoin d'un traitement spé
ial à la paroi a�n que la solution d'ordre élevé ne soit pasdégradée par une représentation impré
ise d'une paroi 
ourbe dans un maillage grossier, qui estsouvent utilisé ave
 des s
hémas SV d'ordre élevé. A la �n de 
e dernier 
hapitre, on fera des 
om-paraisons non seulement entre les s
héma SV-RB et les s
hémas dé
entré-amont 
lassiques 
ouplésave
 la SV, mais aussi entre les s
hémas SV-RB et les s
hémas FV-RB développés auparavant. Cettedernière 
omparaison faite dans 
e 
hapitre et le pré
édent montrera l'intérêt potentiel de la SV
omme base du développement du s
héma RB d'ordre élevé.English The previous 
hapter has been devoted to the des
ription of the design prin
iples of theSV approa
h. The spe
i�
 
ontributions introdu
ed in this work have also been detailed : derivationof a SV-RB s
heme at se
ond and third-order a

ura
y; development of an impli
it stage asso
iatedwith the high-order SV-based expli
it stage. SV-RB s
heme has been developed for s
alar adve
tionproblems. A �rst analysis of the a

ura
y and e�
ien
y properties of SV s
hemes has been performedfor the 
omputation of a 
ir
ular adve
tion problem. In this �nal 
hapter, we intend to extend theses
hemes to the 
omputation of 
ompressible �ows over obsta
les. Sin
e we will limit ourselves tosteady invis
id �ows in this 
hapter, the extension from the s
alar linear adve
tion to the non-linearEuler system does not introdu
e any spe
i�
 di�
ulties. The presen
e of a wall boundary howeverrequires a 
areful treatment if one wishes to avoid that the whole high-order solution be spoiled byan insu�
iently a

urate representation of a 
urved boundary in the a-priori 
oarse grids whi
h areoften used with the high-order SV s
hemes. At the end of this last 
hapter we will perform detailed
omparisons not only between the SV-RB s
hemes and other 
lassi
al upwind s
hemes 
oupled withthe SV method but also between the SV-RB s
hemes and the previously developed FV-RB s
hemes.This last 
omparison made in last 
hapter and this 
hapter will reveal the potential interest of theSV framework for the higher-order RB s
heme development.119



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �ows5.1 Extension of some 
lassi
al upwind s
hemesWhen re
onstru
ting the solution of the Euler equations, formula (4.9) remains valid but 
an beapplied either to the ve
tor of 
onservative variables U or to the ve
tor Q = [ρ p u v]T of so-
alledprimitive variables. The later 
hoi
e is sometimes favored when 
ompressible �ows with sho
ks is
omputed by using the FV approa
h be
ause it allows a better 
ontrol of the pressure os
illations(the limiting strategy asso
iated with the FV approa
h is then dire
tly applied upon the pressure).In the 
ase of the SV approa
h, the �rst 
hoi
e is adopted mainly be
ause it is slightly more e�
ientsin
e it avoids a 
onversion from 
onservative to primitive variables and vi
e-versa.5.1.1 Rusanov s
hemeWe have already pointed out in the previous 
hapter the very simple Rusanov s
heme [41℄ 
ould beretained as the numeri
al �ux for the SV approa
h, pre
isely be
ause of its great simpli
ity hen
elow intrisi
 
ost. The expression of the Rusanov numeri
al �ux is given by (4.10). For the 2D Eulerequations, the Ja
obian matrix in the fa
e normal dire
tion has 4 eigenvalues:
λn = [Vn Vn Vn − a Vn + a]T , with Vn = u · nx + v · ny the velo
ity in the fa
e normal dire
tion and
a the speed of sound. Hen
e the maximum absolute value of the wave speeds is λmax = |Vn| + a;its value on the fa
e is 
omputed using typi
ally a Roe-averaged value of the velo
ity 
omponents,density and total enthalpy between the left and right states given at the 
onsidered Gauss point bythe respe
tive re
onstru
tion polynomials in the SVs on ea
h side of the interfa
e. For smooth �ows,a simple arithmeti
 average 
an also be used to further redu
e the 
ost of the s
heme.5.1.2 HLLC s
hemeIn order to 
he
k the SV framework 
an a

ommodate a large spe
trum of numeri
al �uxes and alsoto perform a fair 
omparison between the SV-RB s
heme and the 
oupling of SV with a 
onventionalupwind s
heme, we have de
ided to perform 
omputations with the HLLC s
heme, reputed lessdissipative than the previous Rusanov s
heme while o�ering a low intrinsi
 
ost. The HLLC s
hemeused here is pre
isely the one developed by Toro et al.[45℄; its numeri
al �ux is given by:

HHLLC =







F⊥
L if SL > 0

F⊥(U∗
L) if SL 6 0 < SM

F⊥(U∗
R) if SM 6 0 6 SR

F⊥
R if SR < 0

,
�

�

�

�5.1where
U∗

L/R =








ρ∗L/R

(ρu)∗L/R

(ρv)∗L/R

(ρE)∗L/R








= CL/R







ρL/R∆VL/R

∆VL/R(ρu)L/R + ∆pL/Rnx

∆VL/R(ρv)L/R + ∆pL/Rny

∆VL/R(ρE)L/R − pL/R(Vn)L + p∗SM






,

�

�

�

�5.2with ∆VL/R = SL/R−V n
L/R, ∆pL/R = p∗−pL/R, (Vn)L/R the velo
ity in the interfa
e normal dire
tion.Moreover :

CL/R =
1

SL/R − SM
,

�

�

�

�5.3
p∗ = ρL(V n

L − SL)(V n
L − SM) + pL = ρR(V n

R − SR)(V n
R − SM) + pR,

�

�

�

�5.4120



5.2 Extension of the RB s
heme
F⊥∗

L/R = F⊥(U∗
L/R) =








ρ∗L/RSM

(ρu)∗L/RSM + p∗nx

(ρv)∗L/RSM + p∗ny

((ρE)∗L/R + p∗)SM ,







,

�

�

�

�5.5The signal velo
ities or wave speeds SM , SL and SR are given by :
SM =

ρRV n
R (SR−V n

R )V n
L −ρLV n

L (SL−V n
L )V n

R +pL−pR

ρR(SR−V n
R

)−ρL(SL−V n
L

)
,

SL = min(λmin(UL), λmin(URoe)),

SR = max(λmax(URoe), λmax(UR)).

�

�

�

�5.6
with λmin(URoe) and λmax(URoe) the smallest and largest eigenvalue of the normal Ja
obian matrix
omputed with the Roe averaged state between the Left and Right solution ve
tors. This numeri
al�ux formula is then dire
tly inserted into the SV formulation detailed in the previous 
hapter, whi
his 
omputed at ea
h Gauss point of external fa
es of the CVs.5.2 Extension of the RB s
hemeThe numeri
al �ux of the RB s
heme for the Euler equations remains 
omputed by equation (4.19)with a formally un
hanged expression for the dissipation term, ex
ept that the dissipation �ux isnow the produ
t of a matrix dissipation 
oe�
ient by the ve
tor residual. The dissipation matrixis 
omputed as des
ribed in Chapter 2 and the residual ve
tor is obtained with equation (4.29). Itis therefore espe
ially important to adopt the simpli�
ation 
onsisting of 
omputing the dissipation�ux only on
e on ea
h CV fa
e in order to limit the 
ost of the RB numeri
al �ux with respe
t tothat of the Rusanov or HLLC numeri
al �ux previously des
ribed.5.3 Boundary 
onditions5.3.1 General strategyWe will 
onsider only two types of boundaries in the forth
oming external �ow appli
ations : far-�eldboundary and solid wall boundary (slip-wall 
ondition for the invis
id �ow under study).The treatment of the far-�eld boundary does not di�er from what has been brie�y des
ribed in the FV
ase : a boundary state is 
omputed on the CV fa
es lo
ated on the boundary, by using 
hara
teristi
-based formula whi
h depends on the neighboring internal state (
omputed at the Gauss point on thisboundary CV with the solution polynomial in the SV whi
h in
ludes this CV) and the far-�eld state.The physi
al normal �ux 
omputed with this boundary state is then taken as the numeri
al �ux.On a solid wall, the physi
al normal �ux formula is applied with an extrapolated state, whi
h is
omputed using the internal solution polynomial. More pre
isely, 
onsider a 
ell i 
lose to wallboundary; the extrapolated solution at the Gauss point on this wall boundary is 
omputed with121



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �ows
Ug =

∑

j Lj,gUi,j . Taking into a

ount the slip-wall 
ondition, the �ux in the normal dire
tion to theboundary fa
e at this Gauss point is given by :
F⊥

w = [0 pgnx pgny 0]T .
�

�

�

�5.7where n = [nx ny]
T is the unit normal ve
tor to the wall mesh fa
e. The pressure pg is dedu
edfrom the re
onstru
ted value of the ve
tor of 
onserved variables Ug. The fa
e normal is usually
omputed by supposing the fa
e of the CV is a straight line. As to be demonstrated this 
hoi
e maybe insu�
ient to ensure an a

urate representation of the solution and some extra-
are is needed inthe treatment of a solid wall-boundary for general 
urved geometries.5.3.2 Improved treatment for a 
urved wall-boundaryIt is well know that a pre
ise des
ription of the boundary is very important for high-order methods.Given a 
urved boundary, unstru
tured mesh with straight edge 
ells 
annot represent the boundaryexa
tly. This approximation 
an be improved with the re�nement of the mesh. For some high-ordermethods, like Dis
ontinuous Galerkin (DG) method and spe
tral volume method, the number of de-grees of freedom in ea
h mesh 
ell in
reases with the s
heme order but the boundary representationremains un
hanged sin
e still represented by a series of straight edges. A high-order s
heme with alow order boundary representation 
annot a
hieve a truly high-order a

urate solution. Unlike the�nite volume method whi
h is moderately sensitive to the boundary representation, the DG method[5℄ and SV method [50℄ are on the 
ontrary quite sensitive to this representation.To represent the boundary in a more pre
ise way, one 
ould use iso-parametri
 elements on theboundary for SV method. But this would lead to di�erent re
onstru
tion 
oe�
ients and residual
omputations for boundary 
ells with respe
t to inner 
ells, whi
h would make the 
orrespondingCFD 
ode rather 
ompli
ated. Therefore a simpler method has been proposed by Harris [22℄ forSpe
tral Volume s
hemes and used in our 
omputation. Note this idea, referred as high order im-plementation of wall boundary 
onditions, has been originally proposed in [29℄ for Dis
ontinuousGalerkin method. Its general prin
iples are des
ribed in the following; it is next 
oupled with the SVversion of the HLLC and RB s
hemes previously des
ribed and applied to the 
omputation of the�ow over a 
ylinder and an airfoil in this work.The general prin
iples of the improved wall boundary treatment to be implemented and assessed inour 
omputation 
an be summarized as follows :

• First, a set of interpolation points to be used to represent the boundary fa
e at a pres
ribed(high) order is determined for ea
h boundary SV.
• Next, the normal ve
tor asso
iated with ea
h 
urved fa
e 
onstru
ted from the above interpo-lation points is 
omputed.
• Finally, a ghost solution ve
tor at ea
h Gauss point on the wall mesh fa
e is 
omputed, byusing this normal ve
tor to the 
urved fa
e and the solution ve
tor in the internal domain. Theinternal and ghost solution on ea
h side of the Gauss point(s) lo
ated on the boundary fa
eare then used to 
ompute a numeri
al �ux through this fa
e. Alternatively, the physi
al �ux(5.7) 
omputed with the physi
ally 
orre
t/a

urate normal ve
tor 
ould be used; this 
hoi
ewas not retained for the sake of robustness.We now pro
eed to give a detailed des
ription of the above steps in the following paragraphs.122



5.3 Boundary 
onditions5.3.2.1 Interpolation points determinationLet us suppose a 
urved wall boundary exists in the 2D �ow domain. A �rst-order mesh dis
retizesit only with some straight lines (see Figure 5.1) leading to some possibly large numeri
al errors. Asthe analyti
 form of the wall boundary is often unknown, we have to �nd a way to re
over the 
urvedboundary from the mesh data. If a quadrati
 representation of the 
urved boundary is desired, threeinterpolation points on the boundary are ne
essary. For example, in order to represent the real 
urvedfa
e between points 1 and 2 quadrati
ally in Figure 5.1, the 
oordinates of the middle point 4 has tobe known. The idea is to suppose the 
urved fa
e to be part of a 
ir
le. By using nodes of this fa
e(1 and 2) and two neighbor mesh nodes (5 and 6), two 
ir
les 
an be obtained from two 
ombinationsof three neighbor points (point 5, 1 and 2 
an determine a 
ir
le for instan
e). A new 
ir
le is then
omputed by averaging parameters of these two 
ir
les. With the parameters of this new 
ir
le andthe fa
e nodes 
oordinates, point 4 
an be determined. If the fa
e is lo
ated on a boundary 
orner(point 6 for example), only one neighbor node (point 1) 
an be found, whi
h gives only one 
ir
lethat will be dire
tly used to determine the lo
ation of point 4.

Figure 5.1: Real 
urved boundary and straight mesh boundaryLet us 
onsider a fa
e 1 − 2 in Figure 5.1, with two neighboring mesh nodes: point 5 and 6. Takingthe equation of the 
ir
le with its 
enter lo
ated at (a, b), and a radius r :
(x− a)2 + (y − b)2 = r2.

�

�

�

�5.8Substituting the 
oordinates of the three points 5, 1 and 2 into this equation, the parameters ofthe �rst 
ir
le de�ned by these three points 
an be 
omputed. The 
ir
le 
entroid 
oordinates aredenoted by (a1, b1), its radius is r1. In the same way, the parameters of the se
ond 
ir
le de�ned bypoints 1, 2 and 6 are obtained: 
entroid at (a2, b2), with its radius r2. We suppose that the point 4is lo
ated on the averaged 
ir
le obtained by:
am =

(a1 + a2)

2
, bm =

(b1 + b2)

2
, rm =

(r1 + r2)

2
.

�

�

�

�5.9In order to 
ompute the 
oordinates of point 4, whi
h is lo
ated at the middle of the ar
 
onne
tingpoint 1 and 2, the equation of the averaged 
ir
le is written in the parametri
 form :
{
x = am + rmcosθ
y = bm + rmsinθ

.
�

�

�

�5.10123



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �owsSubstitution of the 
oordinates of point 1 (x1,y1) in this equation gives the 
orresponding angle θ1,in the same way θ2 is obtained with the 
oordinates of point 2. Obviously the angle of point 4 is
θ4 =

(θ1 + θ2)

2
. By using again the equation (5.10) the 
oordinates of point 4 
an be �nally obtained.
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Figure 5.2: Extra interpolation points for a quadrati
 representation of the NACA0012 airfoil leadingedge. Bla
k line is the airfoil obtained on a �ne mesh, red line is a baseline 
oarse mesh on whi
hthe interpolation points are obtained.In Figure 5.2 an example of the quadrati
 representation of the leading edge of the NACA0012airfoil is displayed. This �gure illustrates the good agreement of the real 
urved geometry with theseinterpolation points 
omputed by above des
ribed method based on a 
oarse mesh.5.3.2.2 Physi
al normal ve
tor 
omputationIn this next step the obje
tive is to 
ompute the normal ve
tor of the 
urved fa
e at Gauss pointson the wall mesh fa
e. For a general mapping pro
ess from a 
urved element to an isoparametri
simplex, the 
oordinates transformation is expressed by:
r =

n∑

i=1

Mi(ξ, η)ri.
�

�

�

�5.11where n is the number of nodes ne
essary for a 
ertain isoparametri
 simplex, the shape fun
tion
orresponding to ea
h node is Mi(ξ, η).In our 
omputations the 
ell element has often only one 
urved edge as showed in Figure 5.3. The124



5.3 Boundary 
onditions

Figure 5.3: Mapping from a 
urved element to a quadrati
 simplexshape fun
tion for the simpli�ed quadrati
 isoparametri
 simplex is given by:
M1 = 1 − 3ξ + 2ξ(ξ + η) − η,
M2 = −ξ + 2ξ(ξ + η),
M3 = η,
M4 = 4ξ(1 − ξ − η).

�

�

�

�5.12Only Gauss points on fa
e 1 − 2 in the simplex are 
onsidered; this fa
e is su
h that :
η(ξ) = 0.

�

�

�

�5.13With the expression for shape fun
tions and the mapping equation (5.11), the equation of fa
e 1− 2is �nally given by:
r = (1 − 3ξ + 2ξ2)r1 + (−ξ + 2ξ2)r2 + (4ξ − 4ξ2)r4.

�

�

�

�5.14It is known that the unit outward normal ve
tor N of a physi
al fa
e is 
omputed by:
Nx =

dy

dA
,Ny = − dx

dA
.

�

�

�

�5.15where:
dx =

∂x

∂ξ
dξ +

∂x

∂η
dη,

dy =
∂y

∂ξ
dξ +

∂y

∂η
dη,

dA =
√

dx2 + dy2.
�

�

�

�5.16From equation (5.13) we have: dη(ξ) = 0. Finally the normal ve
tor is 
omputed by:
Nx =

dy
dξ

dA
,Ny =

−dx
dξ

dA
.

�

�

�

�5.17with dA =

√

(
dx

dξ
)2 + (

dy

dξ
)2. The derivatives of the 
oordinates are easily obtained from equation(5.14):
dx

dξ
= (−3 + 4ξ)x1 + (4ξ − 1)x2 + (4 − 8ξ)x4,

dy

dξ
= (−3 + 4ξ)y1 + (4ξ − 1)y2 + (4 − 8ξ)y4.

�

�

�

�5.18125



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �owswhere the 
oordinates of point 1, 2 and 4 are now known. The 
oordinates of ea
h Gauss point (ξg,ηg)on the fa
e 1 − 2 are known in the quadrati
 simplex, so that the normal ve
tor of the 
urved fa
eat this point (Ng
x ,Ng

y ) 
an be obtained with equation (5.17). Compared to the normal ve
tor of themesh fa
e, the 
omputed normal ve
tor is referred to as the physi
al normal ve
tor, be
ause it is anapproximated normal ve
tor to the true 
urved physi
al fa
e.5.3.2.3 Numeri
al �ux 
omputation on the 
urved wallSin
e the physi
al normal ve
tor is 
omputed at ea
h Gauss point, a ghost state 
an be obtained byusing the algorithm proposed by Krivodonova et al [29℄. At a Gauss point on the boundary mesh fa
e,a solution ve
tor 
an be obtained by the internal solution polynomial, and the 
orresponding primitivevariable ve
tor is denoted by : Qi = [ρi pi ui vi]
T . The 
orresponding ghost state is 
onstru
ted by :

ρg = ρi,
ug = ui[(N

g
y )2 − (Ng

x)2] − 2Ng
xN

g
y vi,

vg = vi[(N
g
x)2 − (Ng

y )2] − 2Ng
xN

g
yui,

pg = pi.

�

�

�

�5.19and is su
h that the average value between the internal and ghost states satis�es the slip-wall bound-ary 
ondition written with the physi
al normal ve
tor on this fa
e (V ·N = 0 with the velo
ity ve
tor
V = [u v]T ). A 
lassi
al approximate Riemann solver is �nally used to approximate the numeri
al�ux on the boundary: Hg = (Ui, Ug,ng) with ng the unit normal ve
tor of the mesh fa
e at the Gausspoint g.It should be pointed out that the RB numeri
al �ux was not used as numeri
al �ux approximatingthe physi
al �ux on the boundary fa
e be
ause of the extra-
omplexity will be introdu
ed with the
omputation of the RB dissipation on a boundary fa
e. Consequently, for a 
omputation with theRB s
heme and this high order boundary representation method, the RB numeri
al �ux is usedeverywhere in the �ow domain ex
ept on the wall, where the numeri
al �ux of a 
lassi
al Riemannsolver is used instead.5.4 Numeri
al assessment5.4.1 In�uen
e of the numeri
al �ux for SV methodIn order to study the 
onvergen
e order of the SV-RB s
heme for solving the Euler equations, a
lassi
al test 
ase is 
onsidered, namely the subsoni
 invis
id �ow over a 
ylinder with Ma
h number
0.38 and zero atta
k angle [5℄. The 
ylinder radius is 1 and the far-�eld boundary is lo
ated 20 
hordsaway from the 
ylinder. A �ne 128× 32 quadrilateral stru
tured mesh is built at �rst and then ea
h
ell is divided diagonally into 2 triangles. Three other triangular meshes are obtained by su

essively
oarsening the �ne stru
tured mesh with a fa
tor of 2 and performing the division of the quadrilateral
ells. These meshes are displayed in Figure 5.4, and their main features are summarized in Table 5.1.Assessment of a

ura
y In the �rst approa
h, aimed at demonstrating the need for higher-orderboundary representation, a se
ond-order SV method taking the HLLC s
heme as numeri
al �ux is126



5.4 Numeri
al assessment
Mesh No. of 
ells No. of points on the 
ylinderMesh1 128 16Mesh2 512 32Mesh3 2048 64Mesh4 8192 128Table 5.1: Main features of the regular triangle meshes used for 
omputation
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Figure 5.4: Meshes for 
ylinder 
ase. Mesh1(top left) to Mesh4(bottom right).
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Chapter 5 : Extension of the SV-s
hemes to 
ompressible �owsused for the 
omputation, with a �rst-order boundary representation. This numeri
al strategy willbe denoted by SV-HLLC O2B1 to emphasize the s
heme order is 2 but the boundary representationorder is 1. Although a relatively �ne mesh Mesh3 is used, it 
an be observed on the 
omputedMa
h 
ontours in Figure 5.5 that the solution is spurious : instead of the expe
ted symmetri
al �ow(upper/lower and up�ow/down�ow), two vortex stru
tures appear behind the 
ylinder, a 
lear signof a spurious entropy generation. The reason for this behavior is that the SV s
heme is very sensitiveto the boundary representation : its solution in that 
ase is strongly in�uen
ed by the sharp 
ornersintrodu
ed by the �rst-order grid in the wall boundary representation - turning the smooth 
ylinderinto a polygon. In order to 
ompute a 
orre
t solution, the same se
ond-order SV s
heme is used withthe afore-explained se
ond-order boundary 
ondition - an approa
h denoted by SV-HLLC O2B2. Theimprovement brought by this improved boundary treatment is dramati
, as 
an be 
learly seen onFigure 5.6 : the Ma
h 
ontours are now visually almost perfe
tly symmetri
.
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Figure 5.5: SV-HLLC O2B1 result. Computed Ma
h 
ontours from 0.05 to 0.9 with 30 levels onMesh3.Sin
e the entropy is theoreti
ally 
onstant for this subsoni
 invis
id �ow, an entropy-based error isde�ned as:
ǫs =

S − S∞

S∞
.

�

�

�

�5.20where S∞ denotes the entropy level in the in
oming �ow; the entropy is 
omputed as S = p/ργ . Thisnumeri
al error on entropy, or entropy deviation, is used to perform a grid 
onvergen
e analysis onthe series of triangular grids previously introdu
ed. Table 5.2 shows that both the se
ond-order SV-HLLC s
heme and the se
ond-order SV-RB s
heme a
hieve a super-
onvergen
e with a se
ond-orderboundary 
ondition sin
e their respe
tive asymptoti
 order of a

ura
y ex
eeds 2. Note also that thelevels of entropy errors 
omputed by the SV-HLLC s
heme are globally smaller than those obtainedwith the SV-RB s
heme on all the meshes.128



5.4 Numeri
al assessment
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Figure 5.6: SV-HLLC O2B2 result. Computed Ma
h 
ontours from 0.05 to 0.9 with 30 levels onMesh3.Next, the third-order SV s
hemes are used to 
ompute this 
ase with the same se
ond-order boundary
ondition. Results are summarized in Table 5.3. It is found that both third-order s
hemes yield a
onvergen
e order a bit less than 3 (about 2.8), only very slightly better than the one obtained withthe se
ond-order SV s
hemes. It must be emphasized however the entropy error levels a
hieved bythe third-order SV s
hemes are systemati
ally lower than the ones obtained with the se
ond-orderSV s
hemes. In parti
ular, the error level obtained with SV-RB O3 or SV-HLLC O3 on grid level 3is a bit lower than the minimum error level a
hieved by SV-RB O2 and SV-HLLC O2 on the �nestgrid level 4.The numeri
al error 
omputed by SV-RB s
heme is systemati
ally a bit larger than the one obtainedby the SV-HLLC s
heme. This di�ers from the result obtained on the 
ir
ular adve
tion problemwhere the third-order SV-RB s
heme provided the same a

ura
y as the 
lassi
al upwind s
heme. Thereason for this worse performan
e of the third-order RB s
heme on the 
ylinder 
ase 
ould be relatedto the details of the wall boundary treatment, known to be parti
ularly 
ru
ial in the generation ofentropy. Let us re
all indeed we have not yet developed a spe
i�
 high-order SV boundary treatmentfor the RB s
heme and have retained instead the HLLC numeri
al �ux for approximating the physi
al�ux on a wall-boundary fa
e. An improper 
ombination of this �ux and the RB �uxes on the otherexternal CV fa
es in the wall SV might explain this error in
rease with respe
t to a purely HLLC
al
ulation.Assessment of e�
ien
y Figure 5.7 and 5.8 display the 
onvergen
e behavior of the se
ond-and third-order SV s
hemes (with se
ond-order wall-boundary representation). The 
onvergen
e isanalyzed both on the residual history and on the evolution of the numeri
al error on entropy. It 
anbe observed that both se
ond-order HLLC and RB s
hemes a
hieve a steady state on the numeri
al129



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �ows
S
heme Mesh Dof L2norm ǫs (log10) OrderHLLC Mesh1 384 -1.39627 -HLLC Mesh2 1536 -2.04525 2.27HLLC Mesh3 6144 -2.76722 2.46HLLC Mesh4 24576 -3.52960 2.56RB Mesh1 384 -1.38527 -RB Mesh2 1536 -2.00906 2.18RB Mesh3 6144 -2.72502 2.22RB Mesh4 24576 -3.47125 2.72Table 5.2: SV O2B2 results. L2 norm of numeri
al entropy errors and the 
orresponding grid
onvergen
e order.

S
heme Mesh Dof L2norm ǫs (log10) OrderHLLC Mesh1 768 -2.40296 -HLLC Mesh2 3072 -3.09008 2.40HLLC Mesh3 12288 -3.79667 2.42HLLC Mesh4 49152 -4.62274 2.78RB Mesh1 768 -2.40948 -RB Mesh2 3072 -2.95673 1.91RB Mesh3 12288 -3.60784 2.22RB Mesh4 49152 -4.42985 2.76Table 5.3: SV O3B2 results. L2 norm of numeri
al entropy errors and the 
orresponding grid
onvergen
e order.
130



5.4 Numeri
al assessmenterror in about 1500 iterations, whi
h 
orresponds to a residual drop by about 4 orders of magnitude.Analyzing the third-order results, it is found that the SV-RB O3 s
heme a
hieves a steady state onthe numeri
al error in less than 4000 iterations, 
orresponding to 7 orders of magnitude in the residualdrop, while the SV-HLLC O3 s
heme a
hieves a steady state in about 5500 iterations, 
orrespondingto a residual drop by almost 8 orders of magnitude. Note this observation indi
ates the 
omputational
ost of these methods should be 
ompared when the steady state of the numeri
al error is a
hievedbut not when the same level of residual de
rease is a
hieved.
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Figure 5.7: SV O2B2 results. Evolution of density residual (left) and L2 norm of the numeri
alerror (right) with iterations on Mesh3.Next the 
omputational 
osts of these SV s
hemes are 
ompared. We emphasize the 
omputational
ost of the se
ond-order s
hemes is analyzed on Mesh4 while the 
ost of the third-order s
hemesis analyzed on Mesh3 be
ause, doing so, the numeri
al errors obtained by se
ond- and third-ordermethods are about the same and it is then fair to 
ompare the 
ost of se
ond and third-order s
hemes.It must also be noted that Iterations and CPU time in Table 5.4 and Table 5.5 are those ne
essaryto rea
h a steady state on the numeri
al entropy error. Table 5.4 shows that the se
ond-order SV-RBs
heme needs 80 less iterations to rea
h the 
omputation 
onvergen
e than the se
ond-order SV-HLLC s
heme but it spends �nally more CPU time be
ause the CPIPD of SV-RB s
heme is about
22% higher. In Table 5.5 it is interesting to see that the third-order SV-RB 
onverged 1960 iterationsearlier than the third-order SV-HLLC s
heme, whi
h makes the SV-RB O3 s
heme spend eventuallyless CPU time regardless of its roughly 10% larger CPIPD than the SV-HLLC O3 s
heme. Comparingthe CPIPD of se
ond and third-order s
hemes, HLLC O3 s
heme has a 22% higher CPIPD than theHLLC O2 s
heme, and the CPIPD of RB O3 s
heme is 10% higher than the RB O2 s
heme. Itshould be noted however that the third-order s
hemes yield almost the same pre
ision (in fa
t aneven smaller numeri
al error) than the se
ond-order s
hemes by using Mesh3 instead of Mesh4,that is with twi
e less dof than the se
ond-order s
hemes, leading to a globally lower 
omputational
ost (both in terms of memory requirements and CPU time). Note the ratio of 
ell number betweenMesh4 and Mesh3 is 4, whi
h is that the �nest grid 
ontains 4 times more SVs than the previousgrid level. Now sin
e the number of CVs in ea
h SV is doubled when going from se
ond to third-order,131



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �ows
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Figure 5.8: SV O3B2 results. Evolution of density residual (left) and L2 norm of the numeri
alerror (right) with iterations on Mesh3.the ratio of dof between SV O2 on Mesh4 and SV O3 on Mesh3 is eventually 2.S
heme Dof Memory(M) CPU time(s) Iterations CPIPDHLLC 24576 54 1095 4400 1.01 × 10−5RB 24576 56 1285 4320 1.21 × 10−5Table 5.4: Computational 
ost 
omparison for SV O2 s
hemes on Mesh4, CFL = 106.S
heme Dof Memory(M) CPU time(s) Iterations CPIPDHLLC 12288 31 1007 6640 1.23 × 10−5RB 12288 31 764 4680 1.33 × 10−5Table 5.5: Computational 
ost 
omparison for SV O3 s
hemes on Mesh3, CFL = 106.5.4.2 Comparison between SV-RB & FV-RB s
hemesUntil now, in this 
hapter, 
omparisons have been performed between SV based s
hemes only. It isalso interesting to 
ompare RB s
hemes based on two di�erent methods, namely FV-RB and SV-RBs
hemes, in order to assess the expe
tations one may have for one strategy or the other. In order toperform a fair 
omparison, the same CFL number, same number of dof and same mesh stru
tureshould be used for the 
omputation. With this idea in mind, a 
ylinder mesh based on the CVs usedby the se
ond-order SV method with the baseline Mesh3 grid (baseline in the sense it produ
es theSVs for the SV method, whi
h are subdivided into CVs) 
an be 
reated (see Figure 5.9). This mesh isthen used for the se
ond-order FV-RB s
heme 
omputation, with no spe
i�
 treatment for the wallboundary representation. The 
ombination of SV-RB O2 with se
ond-order boundary representation132



5.4 Numeri
al assessmentis still denoted by SV-RB O2B2 while the 
ombination of FV-RB O2 with a �rst-order or linearboundary representation is referred to as FV-RB O2B1. Table 5.6 summarizes the 
omputationresults obtained both approa
hes. It 
an be seen that both of s
hemes use the same quantity ofmemory and has roughly the same intrinsi
 
ost (CPIPD). And it must be noted that the standardFV-RB O2B1 approa
h yields a faster 
onvergen
e speed than the more sophisti
ated SV-RB O2B2s
heme, while the numeri
al error obtained with the later is smaller, whi
h must result from the fa
tthat a quadrati
 boundary 
ondition is adopted by the SV-RB s
heme.
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Figure 5.9: Cylinder 
ase. The mesh 
reated with CVs of the SV O2 s
heme used on Mesh3.S
heme L2 norm of ǫs (log10) Memory(M) CPU time(s) Iterations CPIPDSV-RB O2B2 -2.72502 14 83 1100 1.23 × 10−5FV-RB O2B1 -2.09753 14 69 900 1.25 × 10−5Table 5.6: Computational 
ost 
omparison of FV-RB O2B1 and SV-RB O2B2. Grid of 6144 dof,�rst-order impli
it s
heme with CFL = 106.In order to perform a 
omparison between third-order SV and FV approa
hes whi
h is not over-dominated by the e�e
t of wall-boundary representation, we 
hoose to retain a test-
ase with lesspronoun
ed 
urvature e�e
ts than in the 
ylinder 
ase. Both FV-RB O3 with linear boundary repre-sentation (thus FV-RB O3B1) and SV-RB O3 with quadrati
 boundary representation (thus SV-RB
O3B2) are applied to the 
omputation of the subsoni
 invis
id �ow over the NACA0012 airfoil withinlet Ma
h number 0.5 and angle of atta
k 2◦. The mesh used for the third-order FV-RB s
heme has
6 times more 
ells than the one used for the SV-RB s
heme sin
e the SV-RB s
heme makes use of
6 dof inside ea
h 
ell or SV while the FV-RB s
heme uses a single dof per 
ell. For ea
h mesh, astru
tured "O" type mesh is 
reated and then every quadrilateral 
ell is divided into 2 triangles inthe diagonal dire
tion (see Figure 5.10). The mesh for the SV-RB O3B2 has 90 points on the airfoiland 1800 
ells; there are 180 points on the airfoil and 10800 
ells in the mesh for the FV-RB O3B1.133



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �owsThe far-�eld boundary is lo
ated 50 
hords away from the airfoil in both 
ases.
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Figure 5.10: Mesh used for FV-RB O3B1(left) and SV-RB O3B2(right) s
heme.A

ura
y assessment The evolution of the lift and drag 
oe�
ients 
omputed by the two methodsare plotted in Figure 5.11, along with the wall pressure 
oe�
ient and wall entropy deviation. Boths
hemes 
onverge to almost the same value for the lift 
oe�
ient - a value whi
h is not yet grid-
onverged, when 
ompared with the results obtained in Chapter 3 for this same test problem. It
an also be observed the FV-RB O3B1 s
heme displays a smoother and a bit faster 
onvergen
eto a steady value (a more detailed e�
ien
y 
omparison will be performed below). Regarding thedrag 
oe�
ient, it must be pointed out that despite a simple (standard) �rst-order airfoil surfa
erepresentation the FV-RB O3B1 manages to yield a lower, hen
e more a

urate, value for the drag
oe�
ient than the SV-RB O3B2 s
heme. Moreover, a faster 
onvergen
e to a steady value of CD isalso observed for FV-RB O3B1 with respe
t to SV-RB O3B2. The distributions of the wall-pressure
oe�
ient 
omputed by both s
hemes are very 
lose. The plot of wall entropy deviation, in line withthe result observed on the drag 
oe�
ient, indi
ates a level of entropy error for SV-RB O3B2 whi
his roughly twi
e the error level produ
ed by FV-RB O3B1. Finally, the Ma
h 
ontours obtained byboth s
hemes are displayed in Figure 5.12. It 
an be observed on this plot the FV-RB O3B1 s
hemeyields apparently smoother 
ontours than the SV-RB O3B2 s
heme. In fa
t, this is only an arti�
iale�e
t of visualization : in the 
ase of the SV-RB O3B2 method, the visualization makes use of valuesat SV nodes while the 
omputed third-order solutions are available at CV 
entroids. Clearly, ourpro
edure for 
omputing these node values is not yet optimal, as testi�ed by what may appear as adegraded representation of the real high-order solution. Note this is an open problem not only forthe SV method but also for other high order methods, like the Dis
ontinuous Galerkin method.E�
ien
y assessment We 
on
lude this 
omparison with a fo
us on the 
omputational 
ost of thetwo s
hemes. The elements gathered in Table 5.7 indi
ate that FV-RB O3B1 is 10% more e�
ient134



5.4 Numeri
al assessment
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heme.
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Figure 5.12: Ma
h 
ontours obtained by FV-RB O3B1 (left) and SV-RB O3B2 (right) s
heme.on CPIPD and requires 28% less memory than the SV-RB O3B2 s
heme for this 
ase. We insiston the fa
t that both s
hemes are used with the simple �rst-order impli
it stage and a large CFLnumber (CFL = 106).s
heme Memory(M) CPU time(s) Iterations CPIPDSV-RB O3B2 28 1099 7740 1.31 × 10−5FV-RB O3B1 20 826 6460 1.18 × 10−5Table 5.7: Computation 
ost 
omparison for RB O3 s
hemes, dof = 10800, CFL = 106.5.5 Con
lusionThe se
ond and third-order SV-RB s
hemes have been su

essfully extended to solve the Eulerequations on unstru
tured triangular grids. Moreover, in order to deal properly with 
urved wallboundaries in the �ow domain, a simple method for a
hieving improved (quadrati
) representationof these boundaries has also been implemented. The matrix-free impli
it method used by the FVbased s
hemes has been extended without di�
ulty to the SV based s
hemes, where the sole di�
ultyis te
hni
al, whi
h is managing the 
onne
tivity between neighboring CVs involved in the impli
itstage. The numeri
al results obtained for a subsoni
 invis
id �ow over a 
ylinder and a subsoni
invis
id �ow over a NACA0012 airfoil have been globally disappointing when the performan
es of theSV-RB s
hemes (SV-RB O2 or SV-RB O3) are 
on
erned. Indeed, it was found that the 
ouplingof the SV method with the RB numeri
al �ux does not improve the results obtained by 
ouplingthe SV method with a 
lassi
al approximate Riemann solver su
h as the HLLC s
heme : the SV-RBapproa
h yields a slightly larger numeri
al error for a slightly higher 
omputational 
ost, whi
h is inagreement with what was previously observed for the preliminary model 
ir
ular adve
tion problem.When 
omparing the SV-RB s
hemes with FV-RB s
hemes at the same a

ura
y order, similar nega-tive 
on
lusions 
ould be drawn : both a smaller numeri
al error and faster 
onvergen
e are observed136



5.5 Con
lusionfor the FV-RB approa
h.In this paragraph of 
on
lusion, we wish to emphasize how 
ru
ial it is to be able to perform su
ha 
omparison by using our own developed numeri
al tools. Indeed, during the ADIGMA proje
t,high-order methods have sometimes (often) been analyzed in a way that we did not judge truly fair.For instan
e, the last results obtained for the NACA0012 airfoil 
ould be presented in a mu
h morefavorable light (for the SV strategy) if we insist on the fa
t the SV s
heme makes use of a mesh thatis 6 times 
oarser than the FV mesh, with twi
e less points on the airfoil surfa
e. Naturally, su
h api
ture would be biased sin
e what makes sense is a 
omparison for the same number of dof - thetype of 
omparison we have retained. It is true, though, the SV method allows to rely on the fastgeneration of 
oarse grids, whi
h are then automati
ally enri
hed through the partition of the SVs /
ells into CVs. For 
omplex 
on�gurations, su
h a strategy may prove an interesting alternative tothe generation of re�ned grids for FV 
omputations of 
omparable quality.We have not yet investigated the extension of the SV approa
h to orders higher than 3; it may befound that this strategy would demonstrate its advantages for forth or �fth-order 
omputations whi
hare hardly tra
table with the FV approa
h. The general framework provided by the SV approa
hmakes this extension relatively easy to perform; we provide in the appendix of this work some detailson the stru
ture of the FV and SV solvers developed in this work, whi
h might prove useful for futuredevelopers of su
h very high-order versions. Note that before pro
eeding to these developments onthe spatial dis
retization, we would advise to investigate the impli
it time integration asso
iated withthe expli
it stage. Indeed, the 
hoi
e of a simple �rst-order matrix-free impli
it stage has proved quiteadvantageous for the se
ond and even third-order s
hemes but it is probably not an optimal 
hoi
efor higher-order s
hemes sin
e its e�
ien
y tends to de
rease when the order di�eren
e between theexpli
it and impli
it stage tends to in
rease. A more strongly impli
it strategy 
ould be advantageousin that 
ase, of 
ourse more 
omplex for the development.
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Con
lusion
Con
lusionThe obje
tive of this thesis was to derive, develop and analyze a high-order unstru
tured grid versionof the RB s
heme, initially developed in the 
ontext of Cartesian and 
urvilinear grid 
omputations.The spe
i�
 emphasis was on the assessment of the potential interest of a third-order version ofthe RB s
heme for 
omputing 
ompressible �ows on general unstru
tured grids over a more stan-dard se
ond-order version. This type of assessment was a
tually the general topi
 of the Europeanproje
t ADIGMA whi
h funded the work. The 
hoi
e is made to write a thesis report whi
h istotally distin
t from the deliverables produ
ed within the ADIGMA proje
t. Although test-
asesand grids provided by the proje
t were often used for �ow 
omputations, the systemati
 normalizedgrid-
onvergen
e studies required by the proje
t are avoided in this report. However, this work isfo
used on a self-designed 
omparison. Namely, the third-order RB s
heme is systemati
ally 
om-pared with its se
ond-order version as well as se
ond and third-order s
hemes based on 
onventionalupwind numeri
al �uxes (Roe, Rusanov, HLLC), whi
h have been implemented inside the same 
ode.A natural way to develop a RB s
heme on unstru
tured grids is to rely on the �nite volume method.Therefore this path was �rst explored : se
ond and third-order FV-based RB s
hemes (FV-RB O2and O3) have been developed for solving the steady and unsteady Euler and Navier-Stokes equationson general unstru
tured grids. The 
hoi
e has been made to derive these s
hemes as purely 
en-tered s
hemes with an added residual-based dissipation and to approximate the purely 
entered partwith usual linear or quadrati
 least-square re
onstru
tion, where the spe
i�
ity of the RB s
hemeis 
ondensed in the evaluation of the dissipation �ux. The RB s
hemes as well as the 
onventionalupwind s
hemes have been systemati
ally 
oupled with a simple matrix-free impli
it stage, allowingto perform 
omputations with large CFL numbers and ensuring in this way fast 
onvergen
e to asteady-state (be it in physi
al or dual-time, depending on the steady or unsteady nature of the �owproblem). The a

ura
y, stability and e�
ien
y properties of the RB s
hemes have then be assessedon a series of test-
ases ranging from model test-problems of s
alar steady adve
tion in 2D and 3Dto invis
id and vis
ous �ows over 2D and 3D obsta
les.The model test problems with known analyti
al solutions allow to 
he
k the pra
ti
al order of a
-
ura
y o�ered by the s
hemes. The main 
on
lusions that 
an be drawn from these problems havetwo sides. On the negative side, a more pronoun
ed level of grid-dependen
y has been observed forFV-RB O3 with respe
t to the other se
ond and third-order s
hemes (FV-RB O2 as well as FV-Roe
O2 and O3). The sour
e of this behavior 
an be tra
ed ba
k to the 
al
ulation of the dissipation �uxbut 
ould not be more 
learly determined. On the bright side, it must be pointed out the gain of usingthe third-order s
heme 
ompared to the se
ond-order s
heme in 2D is very en
ouraging (not only formodel problems but also for steady invis
id �ows). For instan
e, to a
hieve the grid 
onvergen
e ofthe drag 
oe�
ient for a subsoni
 �ow over an airfoil, the third-order s
heme saves 60% 
pu timeand 23% memory 
ompared to the se
ond-order s
heme.Unfortunately the advantage of using the third-order FV-RB rather than the se
ond-order FV-RBs
heme does not hold in 3D, at least for 3D �ows in the implementation developed in this work. Theinterest of the third-order FV-RB s
heme over the se
ond-order FV-RB s
heme is still establishedfor the model adve
tion problem but for the invis
id �ow 
al
ulations performed over 3D bodies139



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �owsthe quality of the third-order s
heme results remains very 
lose to that of the se
ond-order s
hemeresults. Sin
e the 
ost of FV-RB O3 is naturally higher than the 
ost of FV-RB O2, this makesFV-RB O3 unattra
tive for 3D 
ases. A possible reason for this behavior 
ould be the very largesten
il needed by the third-order FV s
heme whi
h may 
ompromise the s
heme a

ura
y on generalgrids. A bit similarly, the vis
ous extension of FV-RB O2 and FV-RB O3 did yield 
lose results thusmaking the third-order s
heme not really 
ompetitive with respe
t to the se
ond-order version. Notehowever this behavior 
ould also be explained by the fa
t that the vis
ous test-
ases 
orrespond tolow-Reynolds laminar �ows with dominating vis
ous e�e
ts.When this stage of the work was rea
hed, several options for the next step to take were evaluated :initially a further investigation of the weak points whi
h have been pointed out for FV-RB O3 was
onsidered. However, it was judged more useful to put in perspe
tive the general FV results obtained :it was 
lear that going very high-order (more than third-order) with a traditional FV approa
h, us-ing for instan
e a 
ubi
 re
onstru
tion instead of a quadrati
 one, was a strategy doomed to failbe
ause of the explosion of the memory requirements whi
h would be en
ountered, espe
ially in 3D
omputations. Therefore it was de
ided to explore another way to derive high-order s
hemes that wewould assess for third-order 
omputations. Note that it should be possible to extend the approa
hto higher-order.After some preliminary attempts with the spe
tral di�eren
e method, We opted for the newly de-veloped spe
tral volume method [47℄. Basi
ally, this approa
h relies on an in
rease of the numberof available degrees of freedom inside a grid 
ell rather than an in
rease of the grid 
ell support for
omputing higher-order solution re
onstru
tion within ea
h 
ell. This more 
ompa
t design prin
i-ple keeps the higher-order 3D formulation of the SV s
hemes manageable. The 
oupling of the RBnumeri
al �ux with the spe
tral volume approa
h has been performed, giving birth to the SV-RB
O2 and SV-RB O3 s
hemes. Moreover, a SV version of the existing FV matrix-free impli
it stagewas also developed in order to speed up the 
onvergen
e of these s
hemes to a steady-state. Theperforman
es of these new s
hemes have then been assessed with respe
t to the previously developedFV-RB O2 and O3 s
hemes on one hand and with respe
t to 
onventional SV s
hemes (relying on
onventional upwind numeri
al �uxes su
h as Rusanov or HLLC) at se
ond and third-order on theother hand.The possibility to insert the RB numeri
al �ux into the general SV framework was su

essfullydemonstrated for 2D model problems �rst. However, a rather disappointing observation was thatthe numeri
al �ux used for approximating the physi
al �ux at the external fa
es of a SV seemed lessand less in�uential when in
reasing the order of the re
onstru
tion polynomial in ea
h SV. In fa
t,this is not surprising be
ause in
reasing the order of the SV s
heme leads to a de
reasing proportionof external fa
es on whi
h the numeri
al �ux is used, it is re
alled that the physi
al �ux throughthe in
reasing number of inner fa
es is dire
tly 
omputed with the re
onstru
ted solution on thesefa
es). When solving the 2D Euler equations for smooth �ows, no bene�t was observed from usingthe SV-RB s
hemes rather than the SV-HLLC s
hemes for instan
e, whi
h agrees with the result ofmodel problem. In summary, the SV-RB s
hemes not only provide a less a

urate solution but alsoneeds a larger 
omputation 
ost. Moreover, the SV-RB s
hemes did not prove its 
ompetitiveness
ompared to FV-RB s
hemes. In spite of these disappointing 
on
lusions, it is believe that the devel-opment of the SV version of the RB s
hemes is truly useful when put in a broader perspe
tive : theymay be regarded as a �rst step for higher-order formulation of the RB s
heme, where they might be140



5.5 Con
lusion
ompetitive sin
e the FV-RB s
hemes 
ould be hardly developed to very high order be
ause of largememory 
onstraints.It should be pointed out that apart from the theoreti
al work on the RB s
hemes, another importantpart of this work has been devoted to the development of a CFD 
ode, named NS3, in whi
h all thenumeri
al s
hemes developed in this work have been su

essfully implemented. The starting pointwas only a simple unstru
tured solver for 2D invis
id steady �ows. This highly te
hni
al part wasboth essential and time-
onsuming sin
e the unstru
tured history in the laboratory has started withthe present work. The developped NS3 
ode 
an now deal with steady invis
id and laminar �ow in2D and 3D, unsteady invis
id �ow in 2D, subsoni
, transoni
 and hypersoni
 
ases on any type ofunstru
tured grids. This 
ode is also optimized to some extent in order to 
arry out 
omputationswith a reasonable memory and CPU time. For the purpose of evaluating the SV-RB s
hemes, the
ode NS3 was adapted to the SV method and turned into a new version, NS3_SV (the �nite volumeversion is renamed similarly as NS3_FV ). The NS3_SV 
ode in
ludes all the features presentedin this work, in parti
ular an e�
ient matrix free treatment for 
omputing steady invis
id �ows aswell as the method for imposing high order boundary 
onditions.Perspe
tivesThis �rst 
ontribution to the development of high-order RB s
hemes on unstru
tured grids has raiseda number of issues whi
h remain to be solved. The advantage of using a third-order FV RB s
hemefor steady invis
id �ows has been 
learly demonstrated in 2D, but this 
on
lusion does not seemholding for 3D. However, the 3D FV 
omputations have been only performed for a subsoni
 
aseon a rather un
onventional geometry and for a transoni
 
ase. To draw more de�nitive 
on
lusions,it would be interesting to perform 
omplementary tests for 3D subsoni
 �ow, for more well-de�nedproblems su
h as the �ow over a sphere for instan
e. Turbulent test-
ases needs also to be sys-temati
ally performed to 
omplete the 2D analysis. A RANS version of the solver, based on theSpalart-Allmaras model, has been developed by another resear
h group working with NS3 but theresult is not ready to perform a proper assessment of the RB s
hemes for high-Reynolds �ows.It should also be re
alled that the FV formulation of the RB s
hemes is based on an option in whi
hthe re
onstru
ted solution is used to 
ompute the non-dissipative part of the RB numeri
al �ux.It would be interesting to investigate more deeply the possibility to use a least-square approa
h toestimate not only the �ux gradient used in the dissipative �ux but also the �ux on the fa
e, withoutresorting to a variable re
onstru
tion. Su
h an approa
h agrees better with the strategy used byoriginal RBC s
hemes sin
e it preserves better the 
ompa
tness of this s
heme, while it is lost in theFV-RB s
hemes presented in this work.Regarding the SV approa
h, it would probably be interesting to 
he
k whether the impa
t of thenumeri
al �ux is more meaningful when 
omputing �ows with sho
ks, be
ause no real interest wasfound in using the RB �ux over the HLLC �ux for instan
e when 
omputing smooth invis
id �ows.More importantly however, performing a 3D extension of the SV approa
h, 
oupled with the proposedimpli
it treatment and RB numeri
al �uxes as well as 
onventional upwind �uxes should be a priority.Indeed, the developed 
odes in
luding high-order approximations should provide a good support toperform some studies on large-eddy-simulations on unstru
tured grids as long as a 3D version is141



Chapter 5 : Extension of the SV-s
hemes to 
ompressible �owsmade available. Note that re
ent results obtained in [17℄ when 
oupling the third-order SV methodwith a 
lassi
al upwind s
heme in 3D have revealed that the approa
h is weakly unstable; further
3D investigations are therefore 
ru
ial to determinate whether the SV approa
h is indeed a good
andidate for performing �exible LES 
omputations on general geometries.
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AStru
ture of 
ode NS3_FV
The development of the CFD 
ode NS3 is a part of work of this thesis. Hen
e a brief introdu
tionof the 
ode stru
ture is given here. Ne
essary dire
tories for the 
ode are listed in Figure A.1.

Figure A.1: Dire
tories ne
essary for 
ode NS3Files in ea
h dire
tory and their fun
tion are showed in Table A.1, Table A.2 and Table A.3. Files inData are provided and to be modi�ed by the user, �les inRes will be 
reated after the startup of 
om-putation, and �les in Grid have to be 
reated by using programs in dire
tory GAMBIT_to_NS3and Support_�le_NS3. The stru
ture of dire
tory GAMBIT_to_NS3 is showed in FigureA.2. For the moment the 
ode NS3 uses GAMBIT as mesh generator, but the mesh format is di�er-ent. Firstly the mesh is made inside the GAMBIT, before de�ning boundary 
onditions, 'Generi
' insolver option is 
hosen. Then boundaries are de�ned with type 'Elementside'. Re
ognized boundary145



Chapter A : Stru
ture of 
ode NS3_FVnames are: WALL for wall, RIEMANN for far-�eld boundary, SUPIN for inlet and SUPOUTfor outlet. Finally a mesh �le *.neu 
an be exported from GAMBIT. This �le should be put intodire
tory GAMBIT. In �le �le_name.inp the sour
e mesh �le name '*.neu' and the target �lename '*.inp' are to be given. A

ording to the mesh dimension (2D or 3D) an exe
utive �le 
an be
reated from sour
e �les in the 
orresponding Sr
_* dire
tory. At last the target mesh �le (*.inp)will be 
reated in dire
tory Grid by using the 
reated exe
utive �le.After having the main mesh �le, programs in dire
tory Support_�le_NS3 will be used for support�les 
reation. The stru
ture of this dire
tory is showed in Figure A.3. Copy the main mesh �le *.inpinto dire
tory Support_�le_NS3/Grid and give the name of main mesh �le and its support �les in�le Support_�le_NS3/Data/�le.inp. A

ording to mesh dimension use sour
e �les in dire
torySr
_* to 
reat exe
utive program, whi
h 
an be used to obtain 3 support �les for 2D mesh and 2for 3D mesh. All of 
reated �les 
an be found in dire
tory Support_�le_NS3/Grid.Files Fun
tion�le.inp provide names of main grid �le and support �les:main grid �le: *.inp;support grid �les: *_support_order2.inp,*_support_order3.inp,*_support_node.inp.user
hoi
e.inp user-de�ned parameters:problem type, CFL, s
heme order...freestream.inp free stream boundary 
ondition:M,α,Reede.inp give �uid type:'pfg' for the perfe
t gasdataDENSI.inp �uid status 
onstant:
γ for the perfe
t gasTable A.1: Files in dire
tory DataFiles Fun
tion*.inp main grid �le*_support_order2.inp �le providing 
ell sten
ils for se
ond-order s
heme*_support_order3.inp �le providing 
ell sten
ils for third-order s
heme*_support_node.inp �le providing node sten
ilsTable A.2: Files in dire
tory GridThe 
ode sour
e �les in the dire
tory Sr
 are listed in Table A.4. It is ineresting to see the de�nitionof some important variables in this 
ode.
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Files Fun
tionusr.info 
omputation information:grid �le names, physi
al model, numeri
al parameters, CPU time...residue.dat evolution of density residual with iterations and CPU timeaero_stress.dat evolution of aerodynami
 
oe�
ients with iterations and CPU timete
plot_aero_�eldNNN.inp solution �eld: ρ, p, T, M...obtained at iteration NNNwall_
oef_NNN.dat solution distribution on the immersed body obtained at iteration NNNrestart_NNN.dat 
onservative variables obtained at iteration NNN,for another 
omputation restarting from the 
urrent solution.Table A.3: Files in dire
tory Res

Figure A.2: Stru
ture of dire
tory GAMBIT_to_NS3Files Fun
tiondelaration.f90 de
laration of all of variables in the 
odeallo
ate.f90 assemble of subroutines allo
ating variablesfun
tions.f90 all of fun
tions used in the 
odens3_2d.f90 main programread_input.f90 grid �le and support �les reading, pre-pro
essing
ell_update.f90 �ux integration, solution re
onstru
tiontime step and residual 
omputationgradient_
al
ulation.f90 
omputation of node values, 
ell gradients, limiter and error indi
atorboundary.f90 boundary 
ondition on the wall, far-�eld, inlet and outletnum_�ux.f90 numeri
al �ux 
omputation: RB s
heme and AUSM+ s
heme availablewrite_output.f90 write 
omputation information �le and result �les,result �les output management�le_operation.f90 open and 
lose some �les opened at the 
omputation startand 
losed in the end of 
omputationimpli.f90 impli
it s
heme: only matrix-free method availableTable A.4: Files in dire
tory Sr
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ture of 
ode NS3_FV

Figure A.3: Stru
ture of dire
tory Support_�le_NS3
Variables Meaningnp,n
,nf number of mesh nodes, 
ells and fa
esuold(i)%rho,%rhou,%rhov,%rhoE 
onservative solution ve
tor at 
entroid of 
ell iqold(i)%p,%u,%v,%T primitive solution ve
tor at 
entroid of 
ell iq_node(i)%p,%rho,%T,%u, %v solution ve
tor of node ix
(i),y
(i) 
ell 
entroid 
oordinatessurfa
e(i) 
ell volume
onne
tion(4,i) 
ell 
onne
tivity information: nodes belonging to the 
ell ix(i),y(i) mesh node 
oordinatesnode_b
(i) node type, same de�nition as fa
e typein
ell(i),out
ell(i) 
ell on the left and right side of the fa
esx(i),sy(i) mesh fa
e area normal ve
tor(poiting from left 
ell to the right 
ell)b
(i) fa
e type: 0 for internal fa
e, 1 for wall fa
e

2 for inlet fa
e, 3 for oulet fa
e, 4 for far-�eld fa
efa
e(2,i) fa
e 
onne
tivity information: 2 nodes belonging to the fa
eTable A.5: De�nition of some important variables in 
ode NS3_FV
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BSome important issues of 
ode NS3_SV
The 
ode NS3_SV is developed based on the 
ode stru
ture of TNS3_FV and some adaptationare made in order to implement SV method in this version of 
ode. The dire
tory stru
ture of 
ode
NS3_SV is the same as 
ode NS3_FV . And this 
ode needs only the main mesh �le *.inp and thenode sten
il support �le *_support_node.inp, whi
h 
an be 
reated in the same way as for the
ode NS3_FV . Ne
essary sour
e �les for the 
ode are the same as those showed in Table A.4. Inthis 
ode the way of de�ning some important variables are quite di�erent with the 
ode NS3_FV(see Table B.1).Variables Meaningnp,n
,nf number of mesh nodes, 
ells and fa
esn
v,nqp number of CVs and quadrature points in a SVL(i)%dofF(j) ith shape fun
tion of quadrature point j
ell(i)%dof_u(j)%uold%rho, %rhou... 
onservative solution ve
tor at 
entroid of CV j in SV i
ell(i)%dof_f(j)%U%rho,%rhou... 
onservative solution ve
tor at quadrature point j in SV i
ell(i)%sv_x
,%sv_y
 
entroid 
oordinates of SV i
ell(i)%sv_volume SV volume
ell(i)%
onne
tion(4) SV 
onne
tivity information: nodes belonging to the SVnode(i)%x_n,%y_n 
oordinates of mesh node inode(i)%b
_n node type, same de�nition as fa
e typefa
e(i)%in
ell, %out
ell 
ell on the left and right side of the fa
e ifa
e(i)%sx_f, %sy_f mesh fa
e area normal ve
tor(poiting from left 
ell to the right 
ell)fa
e(i)%b
 fa
e type: 0 for internal fa
e, 1 for wall fa
e

2 for inlet fa
e, 3 for oulet fa
e, 4 for far-�eld fa
efa
e(i)%nd(2) fa
e 
onne
tivity information: 2 nodes belonging to the fa
efa
e(i)%spl(2), %spr(2) CV 
entroid on the left and right side of the fa
efa
e(i)%fpl(2), %fpr(2) quadrature points on the left and right side of the fa
efa
e(i)%svpl(3), %svpr(3) SV partition points on the left and right side of the fa
efa
e(i)%rbpl(4), %rbpr(4) quadrature points ne
essary for the RB s
hemeon the left and right side of the fa
eTable B.1: De�nition of some important variables in 
ode NS3_SVIn this SV version 
ode, an important issue is the numbering of CV 
entroid and quadrature points.As the solution polynomial is re
onstru
ted in a SV, it is 
onvinient to number CVs and quadrature149



Chapter B : Some important issues of 
ode NS3_SVpoints lo
ally in a SV. The numbering in a standard SV is showed in Figure B.1, where squarepoints are partition points dividing one SV into 3 CVs (for se
ond-order s
heme), round points areCV 
entroids, and triangle points are all of quadrature points in a SV. For the RB s
heme, itsnumeri
al dissipation term needs solutions at parti
ular quadrature points on fa
es of shift 
ellsformed between CVs, these points are therefore numbered and saved for later use (see triangle pointsshowed in Figure B.2). Although all of these points in ea
h SV are numbered in a same way inthe physi
al domain, the orientation of ea
h SV is random. Given a mesh fa
e (SV fa
e), the nu-meration of these points on both sides is therefore unknown, while this information is ne
essaryfor numeri
al �ux 
omputation. The numeration �nding and saving is done in the pre-pro
essing.An example of numeration for a fa
e i is showed in Figure B.3, the variable saving numerationof CV 
entroids on the left side: face(i)%spl(1) = 3, face(i)%spl(2) = 2, on the right side:
face(i)%spr(1) = 1, face(i)%spr(2) = 2; the variable saving numeration of quadrature pointson the left side:face(i)%fpl(1) = 4, face(i)%fpl(2) = 3, on the right side: face(i)%fpr(1) = 1,
face(i)%fpr(2) = 2. Numeration of SV partition points and RB quadrature points are saved in thesame way.

Figure B.1: CV 
entroids and quadrature points numbering in the standard SV for the se
ond-orders
heme.As mentioned in Chapter 5 the matrix-free impli
it method is used for the SV method, where the
onne
tivity of ea
h CV is ne
essary, whi
h needs a global numbering of 
entroid, nodes and fa
es ofea
h CV. This gives a new mesh with CVs as mesh 
ells. Varaibles related to the new mesh are listedin Table B.2. With the help of these variables, the solution 
an be passed easily from a lo
al CV tothe 
orresponding global 
ell. For example, solutions at the 
entroid of global 
ells 
an be obtainedby the loop:do i=1,n
do j=1,3150



Figure B.2: RB quadrature points numbering in the standard SV for the se
ond-order s
heme.

Figure B.3: Numeration saved for a fa
e for the se
ond-order s
heme.
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Chapter B : Some important issues of 
ode NS3_SVn
l=
ell(i)%dof_u(j)%nwnnwuold(n
l)=
ell(i)%dof_u(j)%uoldend doend dowhere nwuold(n
l) is the solution at the 
entroid of global 
ell ncl. With information for the newglobal 
ells (CVs of the SV s
heme), the impli
it solution in
rement 
an be 
omputed as the one forthe FV s
heme.Variables Meaningnnp,nn
,nnf number of new mesh nodes, 
ells and fa
esnw_
ell(i)%x
,%y
 
entroid 
oordinates of new 
ell inw_
ell(i)%
onne
tion(4) 
onne
tivity information of new 
ellnw_node(i)%x_n,%y_n 
oordinates of new mesh node inw_fa
e(i)%in
ell, %out
ell 
ell on the left and right side of new fa
e inw_fa
e(i)%sx, %sy mesh fa
e area normal ve
tor(poiting from left 
ell to the right 
ell)nw_fa
e(i)%nd(2) new fa
e 
onne
tivity information
ell(i)%dof_u(j)%nwn the global number of CV j in SV iTable B.2: De�nition of variables related to CV global numbering in 
ode NS3_SV
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SCHEMA D’ORDRE ELEVE BASE SUR LE RESIDU  
POUR LA SIMULATION NUMERIQUE D’ECOULEMENTS COMPRESSIBLES  

EN MAILLAGES NON-STRUCTURES 
 

RESUME : Un schéma compact de haute précision basé sur le résidu (RBC) a été développé au 

laboratoire SINUMEF pour la simulation numérique d'écoulements compressibles en maillages 

structurés. Certaines proriétés intéressantes font de ce schéma un bon choix pour les calculs 

d'écoulements compressibles. L'objectif de cette thèse est donc de développer un schéma basé sur le 

résidu (RB) en maillages non-structurés avec une précision d'ordre élevé. A cette fin, deux approches 

ont été explorées. La première est basé sur la méthode des volumes finies en non-structuré et conduit 

à un schéma basé sur le résidu appelé FV-RB. Le seconde approche s'appuie sur une nouvelle 

formulation spatiale dite volumes spectraux (SV) et mène au schéma SV-RB. Le schéma FV-RB a été 

développé à l'ordre 2 et 3. Avec cette version du schéma, de nombreux cas tests sont calculés: 

écoulement d'un fluide parfait et visqueux, subsonique, transonique et hypersonique, stationnaire et 

instationnaire, en 2D et en 3D. Une analyse de la précision et du coût de calcul est effectuée pour le 

schéma FV-RB. Dans la seconde approche, un schéma SV-RB est développé à l'ordre 2 et 3 pour 

résoudre le problème d'advection pure et les équations d'Euler. A travers quelques cas tests, une 

comparaison de la précision et l'efficacité est effectuée entre le schéma RB et un solveur de Riemman 

classique, et entre deux formulations du schéma RB développés ici. 

 

Mots clés : schéma basé sur le résidu, ordre élevé, maillages non-structurés, écoulements 

compressibles 

 

 

HIGH ORDER RESIDUAL BASED SCHEME FOR NUMERICAL SIMULATION OF 
COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 

 

ABSTRACT : A very accurate compact residual based scheme (RBC) has been developed in 

SINUMEF laboratory for numerical simulation of compressible flows on structured grids. Some 

interesting properties of this scheme makes it a good choice for compressible flow computations. 

Objective of this thesis is therefore to develop a high-order residual based scheme (RB) on 

unstructured grids. For this purpose, two approaches have been explored. First one is based on the 

finite volume method for unstructured grids which gives a residual based scheme named FV-RB. 

Second approach uses a new spatial discretization method called Spectral Volume method (SV) giving 

a scheme named SV-RB. The FV-RB scheme is developped to 2
nd

 and 3
 rd

 order. With this version of 

scheme, many test cases are computed: steady and unsteady, subsonic, transonic and hypersonic, 

inviscid and laminar flow in 2D and 3D. Analysis on the precision and cost of computation is made for 

this FV-RB scheme. For the second approach, the 2
nd

 and 3
 rd

 order SV-RB schemes are obtained for 

solving pure advection problem and Euler equations. Through several test cases, the comparison of 

accuracy and computation efficiency is made between the RB scheme and a classical Riemann 

solver, and between two different versions of RB scheme developped in this work. 

 

Keywords : residual based scheme, high order, unstructured grids, compressible flows 
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