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Introduction

Contexte de la these

La mécanique des fluides numérique (MFN) joue un role de plus en plus important dans le pro-
cessus de conception aérodynamique. Comparé aux outils expérimentaux, le cotit des simulations
numériques est relativement moins élevé et il peut donner une prédiction sur les configurations des
écoulements qui sont difficiles a étudier expérimentalement. Bien que la plupart des logiciels de MFN
modernes peuvent traiter les écoulements visqueux turbulents autour de géométries complexes, leur
efficacité de calcul est encore basse puisque les schémas numériques utilisés sont souvent seulement
d’ordre deux en maillage nonstructuré, de sorte qu’un maillage trés fin est nécessaire pour obtenir
un résultat suffisamment convergé en maillage, c’est a dire indépendant du maillage.

Beaucoup de codes de calcul MEFN ont été développés qui utilisent les schémas d’ordre élevé en
maillage structuré, par exemple : les méthodes différences finies, méthodes spectrales ou les schémas
compacts basés sur le résidu (RBC). Cependant, la génération d’un maillage structuré devient délicate
et demande beaucoup de temps quand la géomeétrie est complexe. Les techniques spéciales comme
overlapping sont donc introduites afin d’améliorer la flexibilité de la génération du maillage struc-
turé. D’un autre coté, la génération d’un maillage non-structuré autour d’une géométrie complexe
est plus facile. De plus, les maillages non-structurés s’adaptent facilement pour un raffinement local,
qui réduit donc largement le nombre total des éléments du maillage, comparé au raffinement global
utilisé souvent en maillage structuré. Ayant constaté les avantages des maillages non-structurés, des
chercheurs ont commencé a développer des méthodes numériques compatibles avec ce type de mail-
lage, avec l'accent récent sur la précision d’ordre élevé (supérieur a l'ordre deux). Les méthodes dites
Galerkin discontinue, des volumes spectraux, des différences spectrales et les schémas a distribution
de résidu sont en cours de développement a ’ordre élevé en maillages non-structurés. Ces méthodes
d’ordre élevé ont besoin d’un nombre réduit de degré de liberté par rapport au schéma d’ordre deux
pour avoir un niveau de précision comparable, ce qui donne finalement un cott de calcul global moins
éleve.

Le projet européen ADIGMA a été proposé avec 1’objectif de développer des méthodes numeériques
d’ordre élevé innovantes pour les équations d’Euler et de Navier-Stokes en aérodynamique compress-
ible. Ce projet a débuté en septembre 2006 et s’est terminé en décembre 2009. Dans ce projet,
22 partenaires de I'industrie, des organismes de recherche et des universités ont travaillé sur les cas
tests sélectionnés afin de donner une évaluation la plus concréte possible de ’avantage d’utiliser des
méthodes numériques d’ordre élevé en maillage non-structuré. Arts et Métiers ParisTech(ENSAM)
a participé a ce projet a travers son Laboratoire de Simulation Numérique en Mécanique des Flu-
ides(SINUMEF) et la présente thése.

Parmi les équipes de recherche impliqués dans le projet ADIGMA, il y a deux catégories: ceux qui
développent les méthodes de Galerkin discontinue et ceux qui travaillent en les approches basées sur
le résidu(les schémas a distribution de résidu et les schémas compacts basés sur le résidu). Le présent
travail appartient a la deuxiéme catégorie puisqu’il se consacre a développer un schéma d’ordre
élevé basé sur le résidu pour la simulation numérique d’écoulements compressibles en maillage non-
structuré.
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Le schéma compact basé sur le résidu (RBC) a été proposé par Lerat et Corre au début de 2000. Un
schéma RBC d’ordre 3 a été d’abord congu pour résoudre les équations d’Euler et de Navier-Stokes
compressibles et appliqué notamment au calcul des écoulements transsoniques autour des profils d’aile
en maillages curvilignes [30] [31]. Ce schéma est compact car il utilise 3 x 3 x 3 points seulement pour
les équations d’Euler en 3D. Le principe de ce schéma n’est pas de traiter chaque dérivée spatiale
séparément comme dans un schéma directionnel, mais d’approcher d’une maniére globale le résidu,
la somme des termes dans les équations du systéme. Un schéma basé sur le résidu peut étre exprimé
uniquement en termes du résidu, et sa dissipation numérique est exprimée en termes des dérivés du
résidu. Ce point de vue conduit & des schémas compacts qui ne nécessitent pas de résoudre des
systéemes algébriques et possédent de bonnes propriétés de capture de choc, sans limiteurs et sans
termes de correction. Grace a sa compacité, le schéma RBC peut étre facilement implicité et in-
conditionnellement stable. En un maillage structuré, il est exprimé dans une formulation volumes
finis “cell-centered”, avec un traitement spécial pour l'irrégularité du maillage |21][33]. Les premiéres
applications du schéma RBC d’ordre 3 pour résoudre les équations de Navier-Stokes instationnaires
ont été proposées dans [21||12]. Le résidu contient la dérivé en temps et le schéma est résolu en
utilisant une approche a pas de temps dual. Dans le cadre de travail du Réseau francais "Recherche
Aéronautique sur le Supersonique", les schémas RBC d’ordre 2 et 3 ont été appliqués aux équations
RANS et URANS avec une modélisation de turbulence RMS pour calculer les écoulements avec des
chocs oscillants dans les prises d’air supersoniques [38|. Puis dans le programme DGAC AITEC, ces
schémas ont été mis en ceuvre dans le code de calcul de TONERA elsA et appliqués a des config-
urations réalistes, stationnaires et instationnaires, de turbomachine. Plus récemment, les schémas
RBC ont été étendu a des précisions d’ordre supérieur a 3 (voir [32]|[11] [14]) par une construction
des expressions compactes du résidu déduite de fractions de Padé particuliéres. Cette approche a
conduit aux schémas d’ordre 5 et 7 a 'aide de 5 X 5 X 5 points seulement pour les équations d’Euler
en 3D. Parmi les schémas RBC les plus compacts pour les équations de Navier-Stokes compressibles,
on peut distinguer RBCE5 VS (un schéma d’ordre 5 pour les termes d’Euler et les termes visqueux)
et RBCE7V2 (un schéma d’ordre 7 pour les termes d’Euler et d’ordre 2 pour les termes visqueux)
qui donne une préférence a I’approximation des termes d’Euler et rend la méthode bien adaptée a des
calculs aéroacoustiques. Les schémas RBC d’ordre élevé ont été appliqués aux problémes acoustiques
du projet européen TurboNoise-CFD, aux simulations RANS de chocs oscillants dans des tuyéres et
aux simulations Euler des ondes acoustiques tournantes dans les prises d’air des moteurs d’avion. Il
a été confirmé que les schémas RBC d’ordre élevé ont besoin de beaucoup moins de points que le
schéma RBC d’ordre 3 pour atteindre le méme niveau de précision.

Vue le succes des schémas RBC en maillages structurés, 1'idée de les étendre en maillages non-
structurés s’est fait jour récemment. Un prototype du schéma d’ordre deux basé sur le résidu,
développé a l'aide de la méthode volumes finis en maillages non-structurés généraux, a été pro-
posé dans [42]. Comme cette formulation n’est pas nécessairement compacte pour les écoulements
visqueux, elle est dite simplement le schéma basé sur le résidu (RB).

Objectif de la thése

En accord avec l'objectif du projet ADIGMA, le but de cette thése est de développer une version
du schéma RB d’ordre élevé pour approcher les équations régissant les écoulements compressibles,
d’intégrer ce schéma dans un code de calcul MEN et d’évaluer ensuite sa performance. Plus pré-
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cisémment, ce travail a mis 'accent sur le développement d’'un schéma RB d’ordre trois en explorant
deux stratégies :

e La premieére stratégie, celle la plus directe, s’appuie sur une extension directe du schéma RB
proposé dans le cadre de la méthode volumes finis. On atteint une précision d’ordre élevé
en étendant le stencil du schéma, ce qui donne une représentation précise des variables de
’écoulement. Comme il sera illustré avec une série des cas tests (les problémes modéles et les
cas proposé par le projet ADIGMA), cette stratégie atteint sa limite pour les calculs 3D, ot les
besoins de mémoire de stockage dus a I’extension du stencil de schéma deviennent extrémement
grands. Cette stratégie mérite d’étre explorée en raison de l'intérét du schéma d’ordre trois par
rapport au schéma d’ordre deux, qui sera montré plus tard. Mais il est difficile de continuer
sur ce chemin quand ces schémas RB de volumes finis(noté FV-RB) atteignent une précision
d’ordre tres élevé.

e Aprés une étude sur les méthodes d’ordre élevé effectuée récemment en maillages non-structurés,
la méthode des volumes spectraux est retenue comme la base alternative du développement du
schéma RB d’ordre élevé. Dans le présent travail, a cause de nécéssité de calculer beaucoup
de cas tests pour le projet ADIGMA avec les schémas FV-RB, notre attention est limitée au
développement des schémas RB basés sur des volumes spectraux (noté SV-RB) d’ordre deux et
trois. Il est intéressant de souligner que les schémas SV-RB proposés dans ce travail constituent
une bonne base pour leur extension future en plus haute précision.

En résumé, on peut dire que I'objectif & court terme de ce travail est de démontrer I'intérét de la
version d’ordre trois du schéma FV-RB, tandis que ’objectif en long terme est d’explorer la faisabilité
et le potentiel du schéma SV-RB, avec une validation limitée a l'ordre trois dans cette thése.

Organisation du mémoire

Conformément aux idées qui viennent d’étre exposées, ce mémoire est divisée en deux parties princi-
pales : la premiére partie est consacrée au développement du schéma FV-RB d’ordre deux et trois,
tandis que la seconde partie décrit le développement du schéma SV-RB d’ordre deux et trois.

La premiére partie de ce mémoire est divisée en trois chapitres :

e Le chapitre 1 décrit brievement les méthodes numériques disponibles au début de cette thése.
L’accent est mis sur les principes de conception du schéma RBC initialement développé en
maillages structurés et la méthode des volumes finis classique pour atteindre la précision d’ordre
deux et trois en maillages non-structurés avec des schémas décentré-amont.

e Le chapitre 2 explique comment les ingrédients précédents peuvent étre combinés pour donner
un schéma RB d’ordre deux et trois basé sur les volumes finis (noté par FV-RB O2 et O3)
pour les équations d’Euler et de Navier-Stokes stationnaires. Des détails sont fournis sur les
techniques d’accélération de convergence vers I’état stationnaire et sur les conditions aux limites
utilisées dans les cas test montrés dans le chapitre 3. Enfin, ces schémas sont étendus aux
problémes instationnaires.

e Cette partie se termine avec le chapitre 3 qui présente les résultats numériques de certains
problémes modéles et des cas test proposés par le projet ADIGMA. La présentation suit un ordre
qui va de problémes simples a des problémes complexes : d’abord des écoulements compressibles
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stationnaires sans choc d’un fluide parfait en 2D et 3D sont calculés par le schéma FV-RB O2
et O3, puis des écoulements stationnaires avec choc d’un fluide parfait sont traités par ces
schémas, ensuite ces schémas sont utilisés pour calculer des écoulements visqueux stationnaires
sans choc, enfin des résultats sur les écoulements instationnaires non-visqueux sont obtenus.
Pour I'ensemble de ces résultats, les avantages du schéma d’ordre trois par rapport a l'ordre
deux sont discutés.

La deuxiéme partie de ce mémoire se décompose en deux chapitres :

e Le chapitre 4 expose les principes de base de la méthode des volumes spectraux et les détails

sur la facon de construire un schéma RB d’ordre deux et trois dans ce cadre. La convergence
en maillage du schéma SV-RB est évaluée par un probléme d’advection circulaire en 2D et une
comparaison est faite entre les schémas RB développés a partir de deux approches différentes:
FV-RB et SV-RB.

Dans le cinquiéme et dernier chapitre, les schémas SV-RB sont étendus aux équations d’Euler
2D. Comme il s’agit d’applications aérodynamiques, on a besoin de soins particuliers pour le
traitement des parois solides. En particulier, I’approche SV s’appuyant sur une augmentation
des degrés de liberté a l'intérieur d’une cellule du maillage, une représentation d’ordre élevé
de la géométrie curviligne est nécessaire pour assurer la précision d’ordre élevé du schéma SV-
RB en paroi. Une méthode pour représenter la paroi courbée a l'ordre élevé est donc mise
en ceuvre et évaluée. En outre, pour les applications complexes d’écoulement compressible,
certaines techniques d’accélération de convergence ont été également utilisées pour 'intégration
en temps associée a la discrétisation en espace. Une phase implicite dite sans matrice utilisée
par le schéma FV-RB est ainsi adaptée pour les schémas SV-RB. On a effectué les comparaisons
entre ’approche SV couplée avec le flux numérique d’un schéma décentré-amont standard et
le schéma SV-RB, ainsi qu’entre le schéma FV-RB et SV-RB lors du calcul d’écoulements
non-visqueux subsoniques autour d’un cylindre et d’un profil NACA0012.

Enfin ce mémoire s’achéve par quelques conclusions et des perspectives a court et a long terme pour
utiliser les apports originaux de ce travail.
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Introduction

Background of the thesis

Computational Fluid Dynamics(CFD) plays an increasingly important role in the aerodynamic de-
sign process. Compared to experimental tools, it is relatively less expensive and in some occasions
it can yield a prediction on flow configurations which would be hard to study through experiments.
Although most of up-to-date CFD softwares can deal fairly well with turbulent viscous flows around
complex geometries, their computational efficiency is still low because the underlying numerical
schemes are often second-order accurate only on unstructured grids, where the use of a very fine
mesh is necessary to achieve grid-converged hence grid-independent results.

A number of CFD tools have been developed, which rely on high order schemes but remain limited to
the use of structured grids, for instance : finite difference methods, spectral methods [28] or Residual
based compact (RBC) schemes [30]. However, the structured mesh generation becomes particularly
tricky and time-consuming when a complex geometry is immersed in the flow domain. Specific tech-
niques such as overlapping grids for example were therefore introduced to improve the flexibility of
structured grid generation. On the other hand, the mesh generation of unstructured grids around a
complex body remains easier to handle. Moreover, such an unstructured grid can be easily adapted
for the purpose of local refinement, which results in a large reduction of the total number of mesh
elements, compared to the global mesh refinement which often takes place in the structured grid
generation process. Having perceived the advantages of unstructured grids, researchers have started
to develop numerical methods well fitted for such grids, with a recent emphasis on high order (higher
than second-order) accuracy. Discontinuous Galerkin method [7], spectral volume method [47], spec-
tral difference method [34] and residual distribution method[15] are all designed to yield high order
numerical solutions on unstructured grids. These high order methods require a reduced number of
degrees of freedom with respect to second-order schemes for achieving a comparable level of accuracy,
which results in a reduction of the global computational cost.

The ADIGMA European project has been proposed with the main objective to develop innovative
high order methods for compressible flow equations used in the context of aerodynamic applications
and aircraft design. This projet started on Septembre 2006 and is completed on December 2009.
In this project, 22 collaborators from industry, research organisms and universities have worked on
selected test problems in order to produce an as much as possible objective assessment of the ben-
efit expected from using high order numerical methods on unstructured grids. The Arts et Métiers
ParisTech(ENSAM) was scientifically involved in the project through its Laboratory of Numerical
Flow Simulation (SINUMEF) and the present thesis.

Among the research teams involved in the ADIGMA project, two main categories have emerged :
those developing discontinuous Galerkin methods and those working on residual-based approaches
(residual distribution methods, residual based compact schemes). Clearly, the present works belongs
to this second family since it is devoted to the development of a high order residual-based scheme for
the simulation of compressible flows on unstructured grids.

The Residual Based Compact (RBC) scheme was proposed by Lerat and Corre at the beginning of
2000. A 3" order RBC scheme was firstly designed for solving the compressible Euler and Navier-
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Stokes equations and applied notably to the computation of transonic flows around airfoils on the
curvilinear meshes [30][31]. This scheme is compact since it involves 3 x 3 x 3 points only for the
3D Euler equations. The design principle is not to treat each spatial derivative separately as in a
directional scheme, but to approach the residual, i.e. the sum of the terms in the balance equations,
in a global way. A residual based scheme can be expressed only in terms of the residual, and for the
numerical dissipation, in terms of derivatives of the residual. This point of view leads to compact
schemes which do not require the solution of algebraic systems and possess good shock capturing
properties without limiter or correction terms. Owing to their compactness, RBC scheme can be eas-
ily made implicit and unconditionally stable. On a structured mesh, it is expressed in a cell-centered
finite volume formulation, with a special treatment for mesh irregularity |21||33]. First applications
of 3" order RBC scheme to the solution of the unsteady Navier-Stokes equations were proposed
in [21][12]. The residual contains the time derivative and the scheme is solved using a dual-time
approach. In the frame work of the French Net "Recherche Aéronautique sur le Supersonique", 2"
and 3" order RBC scheme have been applied to the RANS and URANS equations with a RSM
turbulence modeling for computing flows with oscillating shocks in supersonic air intakes [38|. And
then in the DGAC AITEC program, these schemes have been implemented in the ONERA elsA
code and applied to a variety of realistic steady and unsteady turbomachinery configurations. More
recently, the RBC schemes have been extended to accuracy orders higher than 3 (see [32][11] [14])
by constructing compact residual expressions deduced from particular Pade fractions. This approach
has led to 5" and 7" order accurate schemes by using 5 x 5 x 5 points only for the 3D Euler equa-
tions. Among the most compact RBC schemes for the compressible Navier-Stokes equations, one
can distinguish RBCE5V5 (a 5™ order scheme for the Euler terms and also for the viscous terms)
and RBCE7V2 (a 7" order scheme for the Euler terms and 2"¢ order for the viscous terms), which
gives a preference to the approximation of the Euler terms and makes the method well adapted to
aeroacoustics computations. High order RBC schemes have been applied to acoustic problems of the
TurboNoise-CFD European Program, RANS simulations of oscillating shocks in nozzles and Euler
simulations of spinning acoustic waves in aircraft engine intakes. It has been confirmed that high
order RBC schemes need much less points than 3"¢ order RBC scheme in order to reach the same
accuracy level.

Having seen the successful development of RBC schemes on structured grids, the extension of this
scheme to unstructured grids has been launched recently. A prototype of the second-order residual-
based scheme developped in finite volume method for general unstructured grids has been proposed
in [42]. Note that this formulation is not necessarily compact anymore for viscous flows, it will be
denoted by RB (Residual Based) scheme.

Objective of the thesis

To be in line with the general purpose pursued by the ADIGMA project, the objective of this thesis is
to propose a high order version of the RB scheme for approximating the compressible flow equations
on unstructured grids, to implement this scheme in a CFD code and to assess its performances.
In reality, this work has been focusing on the development of third-order RB schemes, where two
strategies have been followed :

e The first strategy, the most straightforward one, relies on a direct extension of the RB scheme
designed in the general framework of a finite-volume approach. Basically, high order accuracy
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is achieved by extending the scheme stencil, thus allowing a more accurate representation
of the flow variables. As will be clearly demonstrated on a variety of test-problems (model
ones and flow problems retained as benchmark test-problems in the ADIGMA project), this
strategy reaches its limits for 3D computations, where the memory requirements induced by
the extension of the scheme’s stencil tend to become unacceptably large. This strategy deserves
to be explored regarding the interest of third-order scheme over second-order, which will be
illustrated. But this path remains a dead-end when this finite volume based RB scheme (denoted
by FV-RB schemes) goes to a very high order accuracy.

e After some studies on currently developed high order methods for unstructured grids, the
spectral volume method has been retained as the alternative basis for the development of
high order RB scheme. In the present work, because of the time-constraints induced by the
computations of many test cases for the ADIGMA project by using the FV-RB schemes, our
attention has been restricted to the development of second and third-order spectral volume
based RB schemes (denoted by SV-RB schemes). It is necessary to emphasize however the
spectral volume based schemes proposed in this work lays a good foundation for future higher-
order extensions.

In summary, it could be said that the short-term objective of this work has been to demonstrate the
interest of a third-order version of the F'V-RB scheme while the long-term objective has been focused
on exploring the feasibility and the potential of the SV-RB scheme, with an assessment limited to
third-order in this work.

Organization of the thesis

Following the ideas which have just been exposed, the thesis is divided into two main parts : the first
part is devoted to the development of second and third-order FV-RB schemes, while the second part
deals with the development of second and third-order SV-RB schemes.

The first part of this thesis is divided into three chapters :

e Chapter 1 briefly reviews the numerical techniques available at the start of this thesis. The
emphasis is put on the design principles of the RBC scheme initially developed on structured
grids and the classical finite-volume method for achieving second or third-order accuracy on
unstructured grids with general upwind schemes.

e Chapter 2 explains how the previous ingredients can be combined to yield a second and third-
order finite volume based RB scheme (denoted by FV-RB O2 and O3) for steady Euler and
Navier-Stokes equations. Details are provided on the convergence acceleration techniques to
steady state and on boundary conditions used in test cases showed in chapter 3. And then
these schemes are extended for unsteady problems.

e This part closes with chapter 3, which presents numerical results of some model problems and
test cases proposed by the ADIGMA project. The presentation follows an order from simple
problems to complex problems : at first 2D and 3D steady inviscid smooth compressible flow
problems are computed by the FV-RB O2 and O3 schemes; then steady inviscid flow problems
with shocks are treated by these schemes; next these schemes are used to deal with steady
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viscous smooth flows; finally results on unsteady inviscid flows are obtained with these schemes.
For all of these results, the advantages of the third-order scheme over the second-order one are
discussed.

The second part of the thesis is ogranized in two chapters :

e Chapter 4 describes the basic principles of the spectral volume method and details on how a

second and third-order RB scheme can be designed within this framework. The grid conver-
gence of the developed SV-RB schemes is assessed on a 2D circular advection problem and
a comparison is made between the RB schemes from two different approaches: FV-RB and
SV-RB schemes.

In the final chapter, Chapter 5, the SV-RB schemes are extended for the 2D Euler equations.
Since the aeronautical applications of the proposed methods involve flows over solid bodies, spe-
cial care must be given to the wall boundary treatment. In particular, because the SV approach
relies on an increase of the degrees of freedom inside a grid cell, a high order representation
of the curved geometry is necessary to ensure the high order accuracy of the SV-RB scheme
on solid walls. A method to represent the curved boundary at high order is therefore imple-
mented and tested. Moreover, for complex compressible flow applications, some convergence
acceleration techniques also have to be given to the time integration associated with the space
discretization. A matrix-free implicit scheme used for FV-RB scheme is thus adapted for the
SV-RB schemes. Comparisons are performed between the SV approach coupled with a stan-
dard upwind numerical flux and the SV-RB scheme as well as between the FV-RB and SV-RB
approaches when computing the 2D subsonic inviscid flow over a cylinder and a NACA0012
airfoil.

At last the thesis closes with some conclusions and perspectives on the short-term and long-term use
of the findings in this work.
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Some existing numerical methods for compressible
flow simulation

French Ce chapitre préliminaire donne une présentation concise des méthodes existantes pour la
simulation numérique des écoulements compressibles. L’accent est mis sur les ingrédients qui seront
utilisées pour avoir le schéma FV-RB d’ordre deux et trois en maillages non-structurés généraux.
Précisément, il s’agit de la description du schéma compact basé sur le résidu en maillages structurés
et de la méthode des volumes finis classique d’ordre trois en maillages non-structurés. La fagon de
combiner ces ingrédients est 1’objet du chapitre suivant.

English This introductive chapter gives a brief review of some methods already in use for com-
pressible flow simulations. Our focus is concentrating on those ingredients which will be used in
the next chapter to derive a second and third-order FV-RB scheme on general unstructured grids.
Precisely it is on the description of the well-established residual-based compact scheme on structured
grids and on the description of classical finite volume method for achieving third-order accuracy
on unstructured grids. The way on how to combine these ingredients will be the topic of the next
chapter.

1.1 Physical models for compressible flows

A general model for describing the movement of a compressible flow is the system of the Navier-Stokes
equations, expressing the conservation of mass, momentum and total energy for a variable-density
flow. If 3D Cartesian coordinates are used, this system of conservation laws can be put in the local

form oU af dg oOh
g
i T A T Ak 1.1
o " ox oy oz (L1
p
puU
where U is the vector of conservative variables : U = pv with p the density, (u,v,w) the
pw
pE

1
velocity components and E the specific total energy, £ = e + §(u2 +v* + w?), e being the specific

internal energy. The physical flux vectors in the x, y and z directions can be decomposed into a
convective part depending solely on U and a diffusive part depending on U and its gradient VU:

F(U,VU) = f2(U) = fY(U,VU), g(U,VU) = g*(U) = g" (U, VU), h(U,VU) = h*(U) = h" (U, VU),
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where the inviscid (Euler) fluxes are given by :

pu pU pw
pu? +p puU pWU
fEWU) = PUV L gB )= | p®+p |, REU) = PWV ,
pUW pLw pw? +p
puH pvH pwH

0 0
Tex Tym
f1wvu) = oy FHCAE Ty ,
Tyz Tyz
UTpg + Uy + WTyy + /@g—g UTye + VUTyy + WTy, + K%—Z
0
TZSC
RV(U,VU) = Toy ,
TZZ
T

UTog + UToy + WT,, + Koy

with p the pressure, T' the temperature and H the total enthalpy, H = E'+p/p. The system is closed
with some thermodynamic equations of state relating p, T, p and e plus some constitutive laws for
the thermal conductivity coefficient £ and the stress tensor components T,;, 7oy = Tya, Tyy. FOr a
Newtonian fluid, the viscous stress tensor is such that :

= i L 1.4
Tid = H <0xj * oz; 351’] Oz)sk) (14]

where 1 = x, 2 = y, T3 = 2, Uy = u, Uy = v, ug = w, 0;; is the Kronecker function; the fluid
dynamic viscosity p is determined by the Sutherland law. The thermal conductivity x and p are
related through the (constant) Prandtl number : Pr = uC,/k with C, the (constant) specific heat
coefficient at constant pressure.

In this thesis the perfect gas is chosen as fluid, the thermal and caloric equations of state used to
describe its thermodynamic behavior are : p = prT and e = C, T with r the gas constant such that
r=C,—C,and v = C,/C, (C, is the specific heat coefficient at constant volume). Gathering these
relationships also yields p = (v — 1)pe.

When the viscous effects can be neglected, the Navier-Stokes equations simplify into the Euler hy-
perbolic system of conservation laws :

oU  OfF(U)  dgP(U)  ORE(U)
o e ey o

In order to perform the analysis of the error order for the numerical schemes developed in this work,
it will be also convenient to deal with some simplified model problems such as :
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e pure scalar advection :

Wi+ ai W, + asW, + asW, =0,

with W the conservative variable and ay, as, ag the advection coefficients in the z, y and z
directions

e scalar advection-diffusion :

Wy + ai W + aaW, + asW, = vy Wiy + 1o Wy + 5 W, + 19 Way + 113 W + a3 W..
with v, and v;; viscosity or diffusion coefficients.

In the present work, we will systematically use the non-dimensional form of the Euler and Navier-
Stokes equations. Since our interest will be focused on external flows over airfoils or wings, the typical
situation will be that of uniform upstream far-field flow conditions, p., Us and p... The quantity
V. denotes the norm of the upstream far-field velocity; in 2D the upstream far-field flow direction is
entirely defined by the angle of attack o. By using these conditions as a reference state to normalize

u
the density, velocity and pressure, we introduce the non-dimensional quantities : p = i, u= v
pOO o
v
v = v D= L By taking typically the airfoil chord c as a reference length (in 2D) and a reference
o0 Poo

time interval t* = ¢/U,, it is immediate to show that the non-dimensional Euler equations on the
non-dimensional quantities p, 4, 0, p are formally identical to (1.5). The sole difference lies in the
far-field inflow condition which can be expressed using only the Mach number M, based on far-field
conditions and the angle of attack :

1
YMZ

Poo =1 | o =cos(a) |, Uy = sin(a) , po =
Note the system has been closed with the non-dimensional relation-ship between (non-dimensional)
_ 1
pressure, density and specific internal energy : p = (v — 1)pé; since £ =é + §(ﬂ2 + ©?), this rela-
_ 1
tionship can also be expressed as : p(U) = (v — 1)p (E — 5(112 + ?)).

When dealing with the (2D) Navier-Stokes equations, the non-dimensional form of the system of
conservation laws involves the Reynolds number based on the far-field fluid properties (poo, Uso,
loo) and the reference length (typically an airfoil chord for external aerodynamic flow problems)

Reéoo. = Re = PoolooC :
fhoo
ou  o(fP(U) — fY(U,VU))  Ag"(U) —g¢"(U,VU))
el = 1.
ot o * dy 0
with
p gu pU
_ | pru E _ | puttp E _ puU
U - pU ) f (U) - UV » g (U) - p,U2 _'_p )
pE puH pvH
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and
0 0
1, 1.
€T

YU, vU) = Re Tz . 9" (U, VU) = iy
Re "oy 5 RTv
e e
UTpe + VTay + 42 Pr oo UTys + VTyy + fo Br o0

where the bar on top of the non-dimensional variables has been omitted to simplify the expression
of this non-dimensional form of the Navier-Stokes equations.

1.2 Original RBC scheme on structured grids

The original residual based compact (RBC) scheme has been designed in a finite difference framework.
This baseline formulation of the RBC scheme is recalled in this section, since it will be the starting
point of our development on unstructured grids. Let us consider the following general two-dimensional
system of conservation laws (which could be for instance the Euler equations) :

ou of(U)  9g9(U)
o T ey 0

Using a general finite difference approach on a uniform Cartesian grid, this system is discretized at
each grid point as :
(]
ot ox oy

where subscript 1 and 2 will systematically refer to the space directions x and y respectively; 01, do
are difference operators over one grid cell, that is such that :

8U27] 51H1 52H22’]
+ + =

0, 1.10

517'{@'1,3' = Hil+1/2,j_Hil—1/2,j>
527'{@2,3' = H?,j+1/2_Hi2,j—1/2> 111

with dz (resp. dy) the mesh size in the x (resp. y) space-direction. A conservative discretization
scheme for (1.9) is uniquely defined by the expression of the numerical fluxes H' and H? on the

respective interfaces [ jand I 5y 1. Let us focus on the first grid direction and the interface T

(see Figure 1.1); the RBC numerical flux on this face can be expressed as :

C 1 -~
Hz'1+1/2,j = <H1>z’+1/2,j - dzl+1/27j = 1 fiv1/2,5 — §5I O T}H/g,j, 1.12

where g is the arithmetic average operator over one grid cell in the = direction :

1
pfivi/2,) = §(fi,j + fir1)s 113

1

®, is a O(1) dissipation coefficient which ensures the term d; J2,; to be dissipative to the numerical

J
flux; 7! is a centered approximation of the residual r = f,+g, associated with system (1.9), computed

on the face I'; 1 which plays a key role for the accuracy and robustness of the RBC scheme.
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1+l i+ j+1

TR aa YA oS I

ij-1 i+ -1

Figure 1.1: The RBC numerical flux at face center i + %,j is computed using the compact
stencil made of the 6 grids points (i,j — 1), (¢,7), (3,5 + 1), (i +1,j+ 1), (i +1,5) and
(t+1,7—1).

In the context of a structured grid discretization process, this residual approximation on the face
I'i41/2,; is computed using the simply centered difference formula :

. orf | Oapapag
1 . 1 201 2
Tivls = (g - 5y )it

Similarly, the numerical flux on the interface I'; j11/2 is given by the formula :

c 1 ~
sz,j+1/2 = (H2)i,j+1/2 - d?,j+1/2 = M2Gij+1/2 — 2 0y @y Ti2,j+1/2’ 115
where the centered approximation of residual on the face T'; ;. 1 is given by:
) f o
-9 161 2 29
Ti,j+1/2 = (T + @)i,j—l—l/? 1.16

and ®, is also a O(1) dissipation coefficient, playing the same role as ®;. The way to properly
design these dissipation coefficients has been initially proposed in [24], when building the so-called
characteristic time-step scheme from the two-dimensional Roe and Lax-Wendroff schemes. Details of
the derivation are not reproduced here and only the final formula for these coefficients is provided.

9] 0
If f and g are scalar fluxes with associated wavespeeds A(U) = %, B(U) = %, the dissipation
coefficients are then computed as :
O, = sign(A)p,
b, = sign(B)y,
where ¢ and ¢ are given by:
1
e = min(l,—),
Q
v = min(l,«a), 1.18
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with a parameter o defined as the local advection direction with respect to the mesh :

ox|B|

_ , 1190
dy|A|

Note that when the advection direction is aligned with the z direction, |B| = 0 and o = 0 so that
®; = 1 and 5 = 0, which means that the numerical dissipation is added only in the x direction
(similarly when |A| =0, ®; = 0 and ®5 = 1 yield a numerical dissipation in the y-direction only). In
fact, for 1D problems, the RBC scheme becomes the Roe scheme, provided the Roe average is used
to compute the quantities sign(A), sign(B), ¢, ¥ on each face in formula (1.17), (1.18). This choice
of evaluation for the dissipation coefficients will be systematically used through this work.

To conclude this short description of the existing second-order RBC scheme, we briefly review the
key points regarding the accuracy properties of this scheme. Straightforward Taylor developments
allow to write (with h = dx = dy if the Cartesian grid is supposed uniform) :

1) Hl h

— L (f)ig + O(B2) = =(Byr), + O(RP), 1.20
Cor 2

1) H2 h

50 = ()i O0) = (@), + O), 1.21

which leads to a total truncation error at point (7, j) (this index is omitted for the sake of simplicity)
given by:

h h 3

5((1’17% - 5((1’27“)11 +O(h7).
When computing a steady solution, U, = 0 and r = 0 so that ¢?*5¢ 9 = O(h?) making the RBC
scheme a second-order approximation to the system of conservation laws on a globally 3 x 3-point
stencil.

BCOD — U, 4 r + O(h?) —

Note that in the same Cartesian grid, a conventional upwind scheme based on a MUSCL-type vari-
able reconstruction would need a 5-point support in each space direction to achieve the second-order
accuracy. The more compact support of the RBC scheme makes the treatment of boundary condi-
tions simpler and also yields a better convergence rate to reach steady state when this explicit RBC
scheme is coupled with a simple first-order upwind implicit scheme (see [13]).

On this same 3 x 3-point stencil, a third-order RBC scheme can be derived [31] by using the resid-
ual vanishing at steady-state to get rid of the second-order error in (1.22). The basic idea for that
extension is to consider as a starting point the second-order RBC scheme written as :

- 1 . -
Ut—f—T‘?’j = 5 [51(®1T1)+52((I)2T2)L,j’ 1.23
Since the right-hand side of the above scheme has been shown to be (’)(h?’) at steady-state, third-
order accuracy is achieved if an at least third-order approximation for 7’ - is derived. On structured
grids, the basic idea is to use the compact Pade formula in a first step and to take advantage of the
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residual vanishing at steady-state in a second step. Since r = f, + g,, 2. can be approximated at

.3
fourth-order by using usual Pade fractions :

I O1pt1 fij I 0o p2gi.j -
3 g O h4 _ )] ’]’ 1.24
(fe +9y)is + O(R7) [+%5% h +[—|—%5§ h

These formulas needs to solve a linear algebraic system in each space direction, which leads to a
computation cost higher than an incompact scheme. Therefore an idea in 30| says that the focus
should be on finding a small global error rather than discretizing each spatial derivative at high order.
More precisely, f, and g, are approximated separately to second-order but the total error term can be
expressed with a spatial derivative of the residual r = f, + g,, which will vanish at the steady-state.
This idea can be expressed as :

51M1fz‘,j
h

1,6 i
(1 + o) 2

o=+ éag)
where the computation of the residual 772]- at the cell center makes use of the 3 x 3-point stencil
previously introduced for computing the residual-based dissipation. It is to note that this compact
formula is derived from the linear algebra usually associated with the use of Pade fractions. The
numerical fluxes associated with this choice of fgj (and the unchanged formulation of the residual-
based dissipation) read :

. 1 1 _
Hz'1+1/2,j = (Hl)i+1/2,j - dz'1+1/2,j =+ éég)ﬂlfi—i-lﬂ,j - 5555 Dy Tz'1+1/2,j7
. 1 1 .
Hi2,j+1/2 = (Hz)z’,j+1/2 - dz?,j+l/2 = (I + 65%)N29i+1/2,j - 559 D, 7°i2,j+1/2> 1.26
The resulting truncation error is given by :
h? h? h h
ERBC 0@) — Ut +7r—+ grmc + gryy + O(h4> - 5((1)17’)90 - 5((1)27’)?; + O(h’3>

so that at steady-state e8¢ 9G) = O(h3). A usual upwind scheme based on purely directional ap-
proximation of f, and g, using MUSCL-type variable reconstruction would need a 5-point stencil in
each grid direction to achieve the same third-order accuracy.

These design principles have been generalized in [32][11] to derive very high order (fifth, seventh)
residual-based compact schemes on a 5 x 5-point stencil. Extension to the compressible Navier-Stokes
equations has also been performed in [32][14]; note that in that case care must be taken to derive
specific Pade-type formula for first and second-derivatives that allow simplifications of the Pade frac-
tions and avoid any linear algebra. Clearly, such a strategy to achieve high order accuracy crucially
depends on the use of structured grids. Since the objective of the present work is to extend the RBC
scheme on unstructured grids, we shall not venture further along this way. Instead, we will focus
on the use of a finite-volume framework on general unstructured grids and try to insert the main
features of our residual-based scheme inside this framework. To this effect, before performing this
combination of residual-based approach and finite-volume technique in the next chapter, we briefly
review in the next section some key ingredients of standard numerical methods on unstructured grids.
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1.3 Classical numerical methods on unstructured grids

We restrict our discussion to the finite-volume method, which is based on the integral formulation
of conservation laws on general unstructured grids. The finite-volume method can be either vertex-
centered or cell-centered. In the vertex-centered approach, the control volume on which the system of
equations is discretized is built around the vertices (nodes) of the grid while in the cell-centered ap-
proach, the grid cell itself plays the role of control volume (see for instance [4]). Only the cell-centered
finite-volume formulation will be used in this work; this choice has some important consequences on
the formulation of the wall boundary conditions in the case of aerodynamic flows around obstacles
(airfoils, wings . ..), which will be discussed later in this work.

Let us start our presentation of the finite-volume approximation of the Navier-Stokes equations
from the compact two-dimensional formulation :

%—[tj +V - F(U,VU) =0, 1.28

where F is the flux vector with components f, g in the z, y directions respectively. On a general
unstructured mesh, the cell-centered finite-volume discretization of (1.28) takes the form :

ou; 1
L FdQ = 1.2
o +\Qi|/9iv FdQ =0, 9

where U; is the cell average solution defined at the centroid of the mesh cell €2;, |€;| denotes the
surface of this grid cell. By using Green-Gauss theorem, this equation can be rewritten as :

ou; 1
+ > / F-ndll =0, 1.30
ot |l kez(e) Y Tik

with I'; ;. the k-th face of cell €;, |I';x| the length of this face and n the face normal unit vector
pointing outside the control cell. The set of faces forming the cell €2; is denoted by Z(£2;).

The integral of physical flux projection onto the face normal direction can be computed approxi-
mately by using a Gauss quadrature formula along each face of the control cell :

Ng
/ Fndl Y " wy(Hir)g| ikl 1.31
ik g=1

with g the index of the Gauss quadrature point on the face I'; ;, w, its associated quadrature weight;
N, = Integer((p+ 1)/2) is the number of quadrature points along the face which is necessary to
achieve an accuracy of order p - in particular, for a second order scheme (p = 2) N, = 1 that is a single
Gauss point on each face (midpoint of each face, see Figure 1.2) is sufficient to ensure second-order
accuracy, as long as a polynomial of sufficient order (see below) is used to represent the solution
in the cell; (H; ), denotes the numerical flux at the Gauss point g, approximating the normal flux
F -n. In the general viscous case we choose to consider, this numerical flux includes two parts :
(Hik)g = (HE)g — (HY})y where the inviscid numerical flux (H[,), approximating the Euler flux
FE(U)-n = (FF)L is typically computed using an approximate Riemann solver, such as Roe, HLLC
or AUSM-+ schemes, while the viscous numerical flux (HZV .)g approximating the diffusive physical
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1.3 Classical numerical methods on unstructured grids

Figure 1.2: Gauss quadrature point on a face of triangle cell 1 quadrature point, the face
center g is used by the second-order scheme (left), 2 quadrature points (g1 and g2) are used by the
third-order scheme (right).

flux FV(U,VU) -n = (FV)1 is computed by a simply centered approximation.
The inviscid numerical flux of a conventional upwind scheme typically reads:
(ka)g =H" ((Ufk)ga (Uﬁc>g; ni,k) . 1.32

where the function H¥ depends on the specific scheme retained for approximating (]—"E)fk (Roe,

AUSM+ ...), and (UZ-]?,C/R)g denote the reconstructed solutions at the Gauss-point g obtained by using
the solution polynomial in the cell located on the left/right side of the face I'; ; through which the
numerical flux is computed; n, j is of course the unit normal vector to this face, pointing outward of
cell Q.

For a second-order scheme, solutions Ufk/R are computed at the single Gauss-point (the face cen-
ter) with the following linear reconstruction polynomial:

L/R
(U-,k/ g = Uijotie)y + (Tg = Tiso(ik)) - VUijoGik) 1.33

7

where r, is the position vector of the Gauss point, [z, y,]|7; T'i/o(ik) 1S the position of the left or right
cell centroid (o(7, k) denoting the cell that shares the face I'; ;, with cell i); VU; ok is the gradient
computed at the left or right cell centroid. These gradients can be computed using two distinct
methods: a least-square approach or Green-Gauss formula. Since the least-square method is retained
in this work, we shall focus on its description and we will not provide any details on the Green-
Gauss approach (we refer the interested reader to [16] for instance). Let us mention the least-square
approximation for the gradient (and, later on, the Hessian) computation is selected because of its
greater ease of use.

In order to apply the (linear) least-square method, a reconstruction stencil must be defined firstly.
We recall the basic principle of the least-square approximation of the gradient at a given cell-center
1 is to write Taylor expansions around ¢ on a set of cell centroids in the neighborhood of cell ¢; this
leads to an over-determined problem and the gradient components estimates are found as the values
minimizing the global truncation error of these developments. In order to ensure the non-singularity
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CHAPTER 1 : Some existing numerical methods for compressible flow simulation

Figure 1.3: Stencil cells for least-square reconstruction in 2D

of the linear least-square reconstruction the minimum stencil number in 2D should include 3 cen-
troids around . A simple way ensuring this condition is to pick into the stencil all face-neighbors of
i, that is all cells which share at least one face with cell i (see the cell centroids marked by a square
in figure 1.3) for instance). For a cell interior to the grid, the minimum stencil number is guaranteed
regardless of the grid cell type: triangle (3 neighbors in the least-square stencil) or quadrilateral (4
neighbors in the least-square stencil). Note however it is not necessarily the case for a boundary cell :
for instance, a triangular cell on a boundary could have a single face-neighbor; in such situation,
the node-neighbors (cells who share at least one node with the cell in which the gradient is to be
computed) will be added into the least-square stencil.

For a given cell 7, the system obtained by the linear least-square method takes the form :

Az, Ay g_U AU,

. . z), | _ .

S aki =1 + |
Ax, Ay, 0—y ' AU,

where Ax; = x; — x;, Ay; = y; — y; are the distance differences between the cell 7 and a cell j in
the stencil; AU; = U; — U; denotes the solution difference between a cell j and the cell 4; n is the
total number of neighboring cells which belong to the stencil of cell 7. It is clear that this system can
be solved analytically to yield the following expressions for the first-order estimates of the gradient
components at the centroid of cell 7 :

Ay > (AUAz) — Y (AzAyy) > (AU Ay;)

(0_U ) _ €S0 jES(i) jES(i) jES(i)
oz /; > (A Y (Ay)? = () AmAy,)?
JES(3) J€ES(3) JES(3)
) =) (AzAy) Y (AUAZ) + ) (Ax)* ) (AU;Ay;)
U) FES(i) F€S(d) F€S(0) F€S(0) -
- — . 1.35
(8y i Az > (Ayy)* = () AzAy,)?
JES(7) JES(7) JES(7)

where S(i) denotes the set of cells j forming the stencil of the least-square formula applied in cell
i. In summary, formula (1.35) yields first-order estimates of the cell-gradient which can be inserted
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1.3 Classical numerical methods on unstructured grids

in the linear solution reconstruction formula (1.33); this formula is then applied in each cell to yield
states (UZ.Lk/R) at the single Gauss point corresponding to the face center; these states are finally used
in the numerical flux formula (1.32) along with a single-point Gauss quadrature formula (mid-point
formula in the present case) to obtain the approximation of the physical (normal) flux along face I'; ;
of the control cell €2;. This process is very commonly used today for applying second-order schemes

on general unstructured grids.

Let us now briefly review the steps that must be taken in order to upgrade this finite-volume strategy
to third-order accuracy. First, two Gauss quadrature points are required along each face and the
solution states (Ufk/ R)g on the left and right of each of these points are computed using a quadratic
polynomial :
(Uid)g = Upotiy + (8 = Tifoiy) - VUifoiiny

- % (rg = Tisotim)" + Hijoti) - (¥g = Tijoi))- 1.36
where H;/,(; 1) is the Hessian of the solution at the left or right cell centroid. In a way similar to the
second-order scheme, both the solution gradient and its Hessian are computed using a least-square
method. This means the Taylor expansions written at cell centers j around the cell-center ¢ are
performed up to third-order (the cell-gradient is approximated at second-order while the Hessian is
approximated at first-order only); this results again in an over-determined problem, the truncation
error of which is computed and minimized with respect to the components of the gradient (U.,);,
(Uy): and the components of the symmetric Hessian matrix (U, )i, (Usy)i, (Uyy)i. Naturally, since 5
unknown quantities have to be determined now, an extended stencil is required for these quadratic
least-square formula with respect to the one used by the linear least-square formula. For example,
this stencil should include a minimum number of 6 centers around ¢ in 2D. Obviously, picking only
face-neighbors is not enough to form an acceptable stencil for an interior cell whatever the cell type is;
therefore node-neighbors (cells sharing at least one node with the cell ¢ under consideration, marked
by circles in figure 1.3) are added into the stencil list. The set of face-neighbors and node-neighbors
is called first-level neighbors. In 2D, it is easy to check that there are 8 first-level neighbors for an
interior quadrilateral cell and 12 first-level neighbors for an interior equilateral triangle cell, which is
in both cases enough for the quadratic least-square reconstruction to be applied. Note again that for
a boundary cell the first-level neighbors are often not enough to provide an acceptable stencil so that
all face-neighbors of the first-level neighbors of the cell 2 in which the gradient must be computed
at second-order will then be added into the stencil list to ensure the applicability of the quadratic
least-square formula.

When applied in a given cell 7, the quadratic least-square method yields the following system:

Us)i
wiAzy wiAyr wh(Ary)? wh An Ay, w), (Ayr)? EUy;i
: : (U )i
WAL, WAy, wl,(Ar,)? wl, Az,Ay, w),(Ay,)? (Usy )i
(Uyy )i

AU,y

= |
AU,
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CHAPTER 1 : Some existing numerical methods for compressible flow simulation

where, following [16], geometry-based weights have been introduced to rescale the system in order to
ensure a proper conditioning for the linear system to solve. These weights are defined as : w? = 1/h?,
wy, = 1/hi, wl, = 1/(h)?, wi, = 1/(hih}), wi, = 1/(hi)* where R} and h; are characteristic
distances associated with cell 4 in the z and y directions, computed by A’ = maz(|zg1 — zx|) and
hl, = max(|ye+1 — yx|) with indices k and k + 1 looping over all nodes of cell i. Such a normalization
can of course be also performed for the linear reconstruction - but this latter is less sensitive to the
grid scales than the quadratic reconstruction. In viscous computation, highly distorted meshes could
be involved and this normalization will become very useful for both reconstruction |4]. Written in

matrix form, the above quadratic least-square approach reads :

where it must be emphasized the matrix A; is constant for a fixed-grid calculation (which will be
systematically considered in the present work) while the right-hand-side B; depends on the solutions
in cell ¢ and its neighbors, which varies during the computation.

After left-multiplication of the system by the transpose matrix of A; :
M;-U;, = C;, 1.39

with M; = AT - A; a constant square matrix, C; = AT - B; a varying solution vector. The solution of
the system is obtained as :
U= M"-C;. 1.40

where the inverse matrix of M; is computed once for all of cells at the initialization stage (it depends
on purely geometrical data) and stored for later use at each iteration. Note this 5 x N; matrix (with
N; the number of cells in the stencil of cell i) M, in 2D (9 x N; in 3D) has to be stored for each
grid cell, which may result in very large memory requirements for a fine 3D mesh.

This first chapter has been devoted to a brief review of the key ingredients for designing a residual-
based scheme in a finite-difference framework on regular Cartesian grids on one hand and a second
and third-order reconstruction-based upwind scheme in a finite-volume framework on unstructured
grids on another hand. In the next chapter, we will explain how these ideas can be combined to
derive a second and third-order FV-RB scheme on general unstructured grids.
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Design principles of 2nd and 3rd-order F'V-RB
schemes on unstructured grids

French La description du schéma RB en maillages structurés dans le chapitre 1 est bref puisque

les développements de ce schéma sont détaillés dans une série des papiers publiés précédemment et
des théses de doctorat [30], [31], [12], [L1], [14], [21], [38].

Au contraire, le développement de la formulation FV du schéma RB en maillages non-structurés
généraux était beaucoup moins avancé avant cette thése. Le travail initial sur ce sujet était un pro-
jet de fin d’étude d’étudiants|[42]. Le code développé dans ce projet a été étendu rapidement pour
prendre en compte des équations d’état générales et a donné lieu a une série de travaux sur ’analyse
d’écoulements de gaz denses|8| avec Iaccent sur la physique d’écoulement plutot que sur le code
lui méme. En 2006, un schéma FV-RB d’ordre deux a été présenté a la conférence ICCFD4, ou
I’accent était mis sur une phase implicite économique dite sans matrice pré-conditionnée et couplée
avec ce schémal9]. Méme si la version pré-conditionnée de ce schéma RB ne sera pas présentée dans
ce mémoire, cette version du schéma FV-RB 2006 est le point de départ des développements du RB
en FV présenté dans ce chapitre. Le schéma FV-RB d’ordre deux décrit au-dela est publié dans [10].

Dans ce travail le schéma FV-RB a été développé pour calculer les écoulements stationnaires/instationnaires,
en 2D /3D, du fluide parfait/visqueux. Au lieu de donner la formulation compléte du schéma FV-
RB pour les écoulements instationnaires tridimensionnels d’un fluide visqueux, on préfére présenter
dans ce chapitre la conception du schéma, étape par étape, des problémes simples aux problémes
complexes. De cette facon, on espére que les spécificités du schéma apparaitrent clairement. Le
schéma FV-RB d’ordre deux et trois pour les équations d’Euler 2D stationnaire est donc présenté
d’abord. On donne ensuite des détails sur les conditions aux limites utilisées dans les applications.
L’extension de ce schéma au cas visqueux est également détaillé et un élément important du schéma
RB, la dissipation numérique basé sur le résidu, est modifié par les termes diffusifs introduits dans le
systéme des lois de conservation. La description du solveur pour les problémes visqueux stationnaires
2D est complétée avec quelques détails sur les conditions aux limites. La présentation du solveur
stationnaire en 2D se termine par la description de la discrétisation temporelle et de la technique de
limitation, qui est nécessaire pour calculer des écoulements avec des discontinuités. La formulation
3D du schéma FV-RB pour des problémes stationnaires est donnée afin de compléter nos descrip-
tions. Finalement, on décrit ’extension du schéma FV-RB aux problémes instationnaires.

Il est important de souligner que notre objectif de développement du schéma RB en maillages non-
structurés n’était pas limité a une précision d’ordre trois. Toutefois la méthode volumes finis montre
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CHAPTER 2 : Design principles of 2nd and 3rd-order FV-RB schemes on unstructured grids

un besoin énorme en mémoire de stockage quand un schéma d’ordre élevé est utilisé, particuliérement
pour les problémes 3D. C’est pour cette raison qu’on décide de se limiter a 1’ordre trois pour le schéma
basé sur la F'V. On envisage plutot une autre voie de recherche qui couple le lux numérique du schéma
RB avec une nouvelle méthode de discrétisation en espace, dite la méthode Volumes Spectraux. Cette
partie du travail sera présenté dans les chapitres 4 et 5, une fois que les schémas FV-RB d’ordre deux
et trois aurait été évalués dans le chapitre 3 pour une grande gamme des problémes.

English The description of the RB scheme for structured grid computations provided in chapter
1 has been brief on purpose, since these developments have been detailed in a series of previously
published papers and PhD thesis [30], [31], [12], [L1], [14], [21], [38].

On the contrary, the development of a F'V formulation of the RB scheme on general unstructured
grids has been much less documented before this thesis. The initial work on this topic was performed
in 2004 in the framework of a students’ project|42]; the solver developed in this work was soon ex-
tended to deal with general equations of state and gave rise to a line of work devoted to the analysis
of dense gas flows [8| with a focus on the flow physics rather than on the numerical solver. In 2006,
a second-order FV-RB scheme was presented at the ICCFD4 Conference with an emphasis on the
low-cost preconditioned matrix-free implicit stage with which it was coupled [9]. Even though the
preconditioned version of the RB scheme will not be presented in this memoir, this 2006 FV-RB
solver was the starting point of the FV developments performed during this thesis and presented in
this chapter. The second-order version of the FV-RB scheme described hereafter was published in [10].

The FV-RB scheme has been developed in this work to deal with steady / unsteady, inviscid / vis-
cous flows for 2D and 3D configurations. Rather than directly providing the full formulation of the
scheme for 3D unsteady viscous flows, we prefer to present the RB scheme design step by step from
simple problems to more complex problems in this chapter. In this way, hopefully the specificities of
the RB formulation could be clarified. Thus the FV-RB scheme for the 2D steady Euler equations
will be first presented in its second-order and third-order formulation. And some details will be
provided on the boundary conditions used in the application cases presented in the next chapter.
Then the extension of the scheme to the viscous case will be then detailed, where one important
element of the RB scheme, the residual-based numerical dissipation is modified by the diffusive terms
introduced in the system of conservation laws to be solved. The description of the 2D steady viscous
solver will be completed with some details on the boundary treatment. The presentation of the 2D
steady F'V-RB solvers will be closed with the description of the time discretization strategy, and the
description of some limiting techniques, which are necessary to perform flow computations involving
discontinuities. The 3D formulation of the FV-RB scheme for steady flows will be provided for the
sake of completeness. Finally, the extension of the F'V RB strategy to unsteady flows will be described.

It is important to point out that our original objective of the RB scheme development on unstructured
grids was not limited to third-order accuracy. However the FV strategy displays memory require-
ments that tend to become exceedingly huge when high order scheme is used, in particular for 3D
computations. This is the reason why it was decided to push no further than third-order accuracy
along the FV path. Instead, another line of research was explored, consisting of coupling the RB
numerical flux with a new spatial discretization method, called Spectral Volume method. This part
of our work will be displayed in chapter 4 and 5, after the second and third-order FV-RB schemes
are assessed in chapter 3 for a wide range of problems.
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2.1 Formulation for 2D steady flows

2.1 Formulation for 2D steady flows

2.1.1 Inviscid case

2.1.1.1 Design of the baseline FV-RB numerical flux

As previously explained in chapter 1, the FV-discretization of the conservation law (1.30), with the
physical flux integral approximated by the Gauss quadrature rule (1.31), takes the form :

Ng

DD we(Mig)glTisl =0,
1

keZ(9;) g=

o, 1
ot ||

where, in the inviscid case, the numerical flux (H;x), = (HZE +)g approximates the inviscid normal
flux FE(U) -n = (FF)L. When this inviscid numerical flux is computed by the residual-based (RB)
scheme, it takes the following form:

(ka)g = (kaB)g = ( f,k)g - (di,k)ga

where

° ( ; k)g is a purely centered (non-dissipative) approximation of the physical normal flux vector

(FE)L computed at the Gauss-point (), of face I';x. This non-dissipative flux is computed
from some evaluation of the physical fluxes f, g at the control cell face.

e (diy), is a dissipation flux, which is based on the residual and thus depends on the gradients
of the physical fluxes f, g.

A first strategy considered in the course of this work was to rely on a least-square estimate of the
physical fluxes f, g, and their first- and second-derivatives on the face to build the RB numerical flux.
The interest of this strategy lies in the fact that it allows to retain the compactness of the original
numerical flux. Unfortunately, this strategy did not provide a stable scheme, for reasons that remain
unclear.

The alternative method that was then followed is now described. First, the non-dissipative part of
the numerical flux is computed using reconstructed values at the face :

1
HA(Ui)gr (Ui)g) = 5(Filheg)z + (Fig)r),

If the general upwind numerical flux (1.32) can be also decomposed as the sum of a non-dissipative
and a dissipative flux (this is easily done for the Roe numerical flux for instance), it is clear the sole
difference between the RB scheme and this classical upwind solver lies on the evaluation of the dis-
sipation term (d;),. For the RB scheme that we have seen in chapter 1, this dissipation flux vector
is based on the approximation of the residual associated with system (1.29) computed on the interface.

The proper computation of the residual-based dissipation (d; ), is crucial for ensuring the accuracy
and robustness of the RB scheme. It is important at this stage to point out the difference between
the RB scheme and a conventional upwind scheme on this term :
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CHAPTER 2 : Design principles of 2nd and 3rd-order FV-RB schemes on unstructured grids

e the built-in high-order dissipation of a conventional upwind scheme is obtained from the use
of a high-order reconstruction of the flow variables (going for instance from linear to quadratic
least square formula as described in the previous chapter) which are inserted in the upwind
numerical flux formula (be it a Flux Vector Splitting such as Van Leer, Flux Difference Splitting
such as Roe or Hybrid scheme such as AUSM+).

e the high-order dissipation of the RB scheme is explicitly added to a purely centered high-order
formula. Depending on the way to compute the residual on the considered face (at first or
second order as will be explained below), the dissipative flux will be O(h?) or O(h?). In order
to reduce the cost of the RB scheme, this second or third-order dissipation will be uniquely
computed once on a face and shared by all of RB fluxes at the Gauss-points located on the

same I'; , face :

1
(dig)g=dij = §qu>i,k7—\)fi,ka

where L' is the projection onto the face normal direction of the distance between two cell
centroids (C; and C, in Figure (2.1)) on the left and right side of this face :

L* = Arg, ¢, -1y,

Obviously this distance has the order of the mesh size O(h); besides, @, is a matrix coeflicient
of order O(1) designed so as to ensure the dissipation of the scheme; basically, with respect to
the description provided for a Cartesian grid in the previous chapter, the dissipation coefficient
on a face will be built from the wavespeeds or eigenvalues associated with the "normal" and
"tangential" Jacobian, that is the Jacobian of the flux F¥.n, F¥-t where n (resp. t) denotes the
unit normal (resp. tangent) vector to the face through which the numerical flux is computed.
The quantity R, is an approximation of the system residual R, defined as :

1
Ri) = / 7 dS).
Q] Ja,,

The integral form R;j, of the residual r associated with system (1.28) is computed in a shift
cell €; ., enclosing the face I'; , and formed by the nodes of face I'; , and the two cell centroids
C;, C, on each side of this face (see figure 2.1). Note that, in this way, the quantity R, in the
dissipation flux (2.4) adapts itself to the problem under study through the definition of r. For
the Euler case considered in this first part of the chapter, the residual r is given by r = V- F¥,
Obviously, a second-order dissipation is obtained with a simple first-order estimate of R, -
since this estimate is then multiplied by the first-order term L to yield the dissipative flux. In
what follows, we will rather build a third-order dissipation which will be systematically added
to the non-dissipative contribution to the flux, yielding a second or third-order RB scheme,
depending on the linear or quadratic reconstruction used for the flow variables in the centered
formula (2.3).

In the following let us detail the computation of the dissipative flux. For inviscid flows, the flux
integral appearing in (2.6) can be expressed as :

Ri,kzl > FE.ndr,

il 7y I
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2.1 Formulation for 2D steady flows

Using a single quadrature point on each face (face center) of the shift cell, a second-order approxi-
mation of this integral reads :

1
Rzkzm > (HE), T,
R et )
N

Figure 2.1: Shift cell used for the dissipation calculation in 2D

where the numerical flux (HZ); is an approximation of the normal physical flux (FZ);i" at the center
of face I'; of the shifted cell €; ;. Since a second-order approximation of the face integral is seeked
for, this numerical flux can be computed by the trapezoidal rule. In the 2D case, on a face I'; with
vertices (N}, C,) for example (see Figure 2.1), the flux (H7); is computed as :

2

1

(ME) = 5 (FE(Un,) + FE(UG,)) - mu.

where n; denotes the unit normal vector to the face I'; pointing outwards the shift cell €2; ;.

In order to provide this second-order accurate estimation of the flux integral along a face of the
shift cell, the order of precision of the node value is of course a key element. A simple choice for
computing the node value Uy at a node N of the computational grid is an inverse-distance weighted
average of the cell-centered values in the cells sharing the node; this strategy was used by Frink
[19] in the context of viscous flux evaluation, where node values may also be needed, depending on
the quadrature formula used for the viscous flux estimate (this point will be detailed later on, when
dealing with the viscous extension of the RB scheme). However, this method of evaluation for the
grid node values turns out to be less than second order accurate, which is not sufficient to derive a
second-order RB scheme. Therefore, another averaging method proposed by Holmes and Connell [23]
has been used : it is a bit more complex hence expensive but yields second-order accurate estimates
for the node values.

The general form of a node estimate from neighboring cell-center values can be formulated as :

> wl;

Uy =S
wj
JEI(N)
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Figure 2.2: Cells sharing a node stencil used for computing the solution and solution gradient on
node 7.

where Z(N) denotes the set of cells €; sharing the node N, which is the stencil associated with
the node estimate formula (see Figure 2.2); and the expression of the weight factor w; depends on
the specific method retained for node value evaluation. For the inverse-distance weighted average,
w; = 1/L;, where L; is the distance between the node N and the centroid of the j-th stencil cell ;.

In the method proposed by Holmes and Connell, for 2D case, the weight factor w; is given by:

wj =14 A (7 — an) + Ay (Y5 — yn),

where )\, and ), are Lagrange multipliers constructed from purely geometrical data:

A _ [:cy ’ (LAy) B [yy ) (I,AZL')
xr D )
I, - (1,Az) — I, - (1,A
)\y — Y ( ’ x)D T ( ) y)7 212

with the quantity (A¢g, Avy) defined by :

(Ag, AY) = > (¢, — o) (b — ) -

JEI(N)

Quantities I, Iy, I, and D are defined by : I, = (Az, Ax), I, = (Ay, Ay) and I, = (Az, Ay);
the denominator D is given by D = I, I, — Igy. On some severely distorted grids, the weight w;

can differ significantly from unity; it is therefore bounded in the range [0, 2].

Yet another strategy for node value computation has been considered. Since the solution gradient
and Hessian are available in each cell, they can be used as following to estimate the node value :

Z (U] + AI']}N : VU])

L ,

where Z(N) still represents the set of cells sharing the node N, N; is the number of cells in this
stencil, i.e. the cardinal of Z(N); Ar; y = ry —r; is the position difference vector. Note the node
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2.1 Formulation for 2D steady flows

estimate (2.14) makes use of (1.33) assuming a linear reconstruction is used in the non-dissipative flux
evaluation; if a quadratic reconstruction is used in this same non-dissipative flux, the node estimate
would rely on the average of values reconstructed in each cell from formula (1.36) :

1
Z (Uj + AI‘j’N . VUj + §(AI']‘7N)T . Hj . AI‘j’N)

Uy = &) = . 215

This method for computing the node values will be referred to as gradient-based extrapolation
method. In our computations (see next chapter) it has been found that the RB scheme with this
gradient-based extrapolation method for node value computation yields more accurate results with
respect to the inverse-distance or Holmes and Connell averaging. It should be noted however that
this extrapolation method is likely to produce a more oscillatory solution for cases with shocks and
may also cause some positivity problems in the viscous case. In these situations, the Holmes and
Connell method will be preferred.

The remaining key ingredient in the dissipation term (2.4) of the RB numerical flux is the dissipation
matrix coefficient @; . If A” BF denote respectively the Jacobian matrix of the inviscid fluxes f¥
and g¥ for a 2D problem, let us define as following the normal and tangential Jacobian matrix with
respect to the face I'; 4

(JL)in = Al(ng)ip + BE(ny)ik,
(Jll)i,k = Afk(tm)i,k—i-Bfk(ty)i,ka 2.16
where n; ;(n,, n,) (resp. t;x(ts,t,)) is the unit vector normal (resp. tangent) to the face I'; ;. Since

the Euler equations form a hyperbolic system of conservation laws, these normal and tangential
Jacobian matrices can also be expressed as :

(J)ir = (T0)ix - Diag(AD)ir) - (T7 )i,
iw = (Tix - Diag(A i) - (T i 2.17

where Diag(+) represents a diagonal matrix; the quantity )x(i) (resp. )\ﬁl)) denotes the ['" eigenvalue
of the matrix J, (resp. J)j), and (7' );x (resp. (T)ir ) is the matrix the columns of which are the
eigenvectors associated with the eigenvalues )x(i) (resp. >\|(|l)). The dissipation matrix @, is built by
assuming its eigenvectors to be those of (J);, which yields :

Dig = (T)in - Dz'ag(cbﬁ-f,l) (T )i 2.18

with the eigenvalues gbgl,l computed from the eigenvalues of J, and Jj :

O]
O — gian(OOY. Y rmin [ 1. Fikl AL )ikl 51
Dk sign((Ay")ik) mzn( VILE ()i ) .19

where m(J)) = mz’nl(|>\|(|l)|) is the minimum eigenvalue related to the face tangent direction. The
eigenvalues and eigenvectors on the face I'; ;, are computed using the Roe-average of the solutions at
the centroids of the cells sharing this face. As will be seen in the following paragraphs, the definition of
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the dissipation matrix by (2.18)- (2.19) will be left unchanged when computing viscous or unsteady
problems. Only the residual r, hence R;j in the expression of the dissipation flux (2.4), will be
adapted to the system of conservation laws to be solved; leaving the dissipation matrix unchanged
has of course no impact on the scheme’s accuracy, since the dissipation matrix remains O(1), but it
could affect nonetheless the stability or efficiency properties of the method : since no such flaw has
been previously detected in the context of structured grid calculations, the same simple choice was
adopted for the present unstructured grid computations.

2.1.1.2 Boundary conditions

We briefly review the specificities of boundary conditions when the RB scheme is used for Euler
equations.

e Far-field boundary condition Note first that when computing external flows around a body,

the far-field boundary of the flow domain will be systematically set far enough from the object
in order to reduce the effect of the far-field boundary condition on the flow field near the body.
The physical state on the far-field boundary face is computed with a characteristic-based non-
reflecting boundary condition, which makes use of the interior solution and the prescribed far-
field state. The flux on the boundary face is then computed by using the physical flux formula
applied with the computed physical state. Clearly, this boundary treatment is not dependent
on the numerical flux used for the interior cell faces. Note however that the RB numerical
flux on faces having one node located on the far-field boundary requires the estimation of this
boundary node value : this estimation is actually provided using the averaging in use for all the
interior cells with the sole difference that the stencil Z(N) on which the averaging is applied
displays some directionality (see Figure 2.3).

////

—K

Figure 2.3: Cells sharing a boundary node stencil used for computation of the solution and
solution gradient on the boundary node 2.

e Slip wall condition For inviscid flows, the slip wall condition implies that the velocity in the

direction normal to the wall is zero on the wall face. This condition can be introduced into the
physical flux in the wall normal direction and it therefore reduces to :

Fo=1[0 pwns pun, 0] 2.20

where n, and n, are the components of the unit normal vector to the wall face, p, is the
pressure on the wall face. This pressure is estimated using the solution polynomial in the
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2.1 Formulation for 2D steady flows

interior cell adjacent to the wall face under consideration. Here again, the boundary treatment
does not depend on the numerical flux. However, an estimation of the solution at the wall node
is necessary for computing the RB numerical flux through an interior face with a node on the
wall. Therefore, the slip boundary condition has to be imposed at the node; this condition is
enforced as follows :

— a first estimate V% of the velocity vector at a wall node (with components u%, vy) is
computed by equation (2.10) or (2.14) applied to the velocity vector components, u and
v.

— next, the normal velocity at the wall node is computed from Vi = ui(n.)n + vi(ny)n
where (n,)n, (n,)ny are the components of the unit wall normal vector at node N. This
vector is computed as the average of the unit normal vectors associated with the wall
faces sharing node N. Since the wall faces in our computations vary smoothly, such an
approximation is sufficient to provide accurate results.

— finally, a wall velocity with zero-component in the normal direction is computed as Vy =
Vi — Vi

2.1.2 Viscous case

2.1.2.1 Extension of the RB numerical flux

The baseline RB numerical flux derived in the inviscid case is made of two contributions : a purely
centered flux and a residual-based dissipation term. In the viscous case (typically when solving the
Navier-Stokes equations or, in a simplified version, advection-diffusion problems), the viscous contri-
bution to the physical flux must be included both into the purely centered flux and in the residual
on which the dissipation flux is based.

Purely centered flux Firstly, the centered numerical flux becomes :

HE = H((Uik)g, (VUik)g),

which means that not only the solution but also the solution gradient needs to be computed at each
Gauss quadrature point on each interface. The solution computation at each quadrature point has
been previously described and remains unchanged; thus, the gradient computation is now the main
focus.

For the second-order RB scheme, a first-order accurate solution gradient is computed at the only
quadrature point on the face, i.e. the face center M (Figure (2.4)). There are several ways to
compute this gradient [23||16]. In our computation, it is computed by a simple average of gradients
on all of nodes belonging to this face :

1
(VUir)g=VUy = 5(VUNZ;ch + VUyz,). 2.22
This approximation gives only first-order precision because the gradient at each mesh node is com-

puted to first-order accuracy. As the same node gradient is also necessary in the RB numerical
dissipation computation, its evaluation will be explained later on, when describing the estimate of
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N?

Figure 2.4: Gauss quadrature points for RB numerical flux computation face center M is
the only quadrature point used for second-order RB scheme; two quadrature points ¢g; and g, are
used for third-order RB scheme.

this RB dissipation.

For the third-order RB scheme, the computation of the solution gradient with second-order accuracy
at each quadrature point on the face is required : a reconstruction method using the cell gradient
and cell Hessian is adopted - for an interior face, the solution gradient and Hessian are available in
both neighbor cells. The gradient estimate at the quadrature point g is computed as the arithmetic
average of the reconstructed gradient in each neighboring (left/right) cell :

(V) = 5 (VU + (VU)"),

where the reconstructed left (resp. right) gradient is computed from the gradient and Hessian esti-
mated at centroid of cell ¢ (resp. o) :

(VU,)* = VU, + H; - Ar;,
(VU)® =VU,+H, - Ar,,.

where the position difference vectors are defined as Ar; , =r, —r¢,, Ar,, =1, —r¢,.

Dissipation flux According to equation (2.6) and extending formula (2.7) to the viscous case
in a straightforward manner, the approximation of the residual associated with the viscous system

becomes :
Z (HCE_HX)”Fl‘u

1€T(Q4,1)

1
Rik = o

’ .
ik

where the way to compute the numerical viscous flux H! at each face center of the shift cell needs
to be specified. Using the trapezoidal rule along the face [ of the shift cell (see (2.1), the viscous flux

is calculated by :
1

(M) =5 (FV(UNik’ VUw:,) + F (Ue,, VUCO)) ‘.

Hence, both gradients at cell centroids and cell nodes are needed. Since the gradient at cell centroids
is already available - as well as the solution at cell nodes -, the extra-computation introduced by the
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2.1 Formulation for 2D steady flows

viscous formulation is the gradient on mesh nodes.

It is seen that the actual order of scheme degraded by one order because of the involvement of the
physical viscous flux, i.e. the solution gradients, in the pure centered flux. This is also the case for
the RB dissipation flux.

For the second-order RB scheme, the node gradient is computed to first-order by a linear least square
reconstruction applied around the node; the stencil used for this least-square estimate includes all of
cells sharing the node (also referred to as the first-level neighbors). For a mesh with pure triangle
cells, the first-level neighbors of a node can ensure the good least-square reconstruction. But these
neighbors could be not enough when quadrilateral cells are involved in the mesh, for example, node
i has only 2 first-level neighbors (see Figure 2.5), while 3 is the minimum stencil number to ensure a
successful least-square reconstruction. In this case, face neighbors of first-level neighbors are added
into the stencil list.

>/

AARnue

Figure 2.5: Special stencil for the solution gradient computation with linear least-square
reconstruction on the boundary node in a mesh with quadrilateral cells. cells marked with
square are the first-level neighbors, marked with dot are face neighbors of the first-level neighbors.

For the third-order RB scheme, a second-order accurate dissipation flux is enough because the whole
scheme is degraded to second-order by the pure centered flux. The same first-order residual approx-
imation used by the second-order RB scheme is still adopted. The node gradient is therefore still
computed by the linear least-square reconstruction.

2.1.2.2 Boundary conditions

A brief description of the boundary conditions used by the RB scheme for computing viscous flows
is presented here.

e Far-field boundary condition The far-field boundary treatment described in the inviscid
case is also applied in the viscous case. The sole difference lies in the fact that the inviscid flux
obtained with the solution computed on the boundary cell by using the theory of characteristics
must be completed with the estimate of the viscous physical flux. For the second-order scheme,
equation (2.22) is used for the first-order gradient computation as on internal faces. Solution
and its gradient are therefore necessary on the boundary node. Node solution computation is
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the same as the inviscid case. Node gradient is computed to first order as stated in the RB
numerical dissipation flux computation. For the third-order scheme, equation (2.23) and (2.24)
used for the second-order gradient computation are not successfully used on the boundary
faces, the reason is possibly that there are no cells either on the left or on the right side of
the boundary faces, which makes this kind of upwind gradient approximation instable. A
linear weighted approximation using node gradients is used instead specially for the gradient
approximation on boundary faces:

(Vwi7k)g = (]_ — aNzl,k’g)vazl,k + aNil,MngNiz,k‘ 2.27
. . . [Arpg gl . . : :
with the weighting coefficient ay1 , = ————. It is easy to see that this equation will
e ‘ArNi{k,NgJ

become the equation (2.22) when the second-order RB scheme is used, where the Gauss quadra-
ture point is the face center. Here the node gradient is always first-order accurate as mentioned
in the RB numerical dissipation computation.

e No-Slip wall condition The no-slip boundary condition on a wall face is introduced in the
physical flux estimate through this face (the velocities are set to zero in the physical flux
formula on the solid wall). Like on the far-field boundary, equation (2.27) is used in the face
gradient approximation for both the second and third-order RB scheme. In a way similar to
the inviscid case, the no-slip boundary condition is also imposed in the wall-boundary node
solution computation.

2.1.3 Time integration

We briefly recall the well-known limitations of a simple Euler-explicit time-integration, regardless of
the numerical flux under consideration, and proceed to describe a simple matrix-free implicit stage
which has been used throughout this work to speed up the convergence of the computations to a
steady-state (including the convergence to a pseudo-steady state in the case of dual-time computations
applied to unsteady flows).

2.1.3.1 Explicit strategy

Let us consider the 2D Navier-Stokes equations (1.8) :

oU  AEW) ~ MWL) | 0lePW) ~ " (U, V)
ot ox oy

=0,

afv

and introduce the viscous Jacobian matrices : A} = ——, A

ouU’
891/ v 891/ v 891/

v 1%
of y = % and similarly

~ou, T,

BY = 20 Bro= v B = G—Uy Let us recall the Jacobian matrices of the inviscid fluxes
L dfE . dgP . . . .
are AY = VTik B" = Vil The Navier-Stokes equations can also be expressed in the following
quasi-linear form :
U, + APU, + B*U, = AJU, + AV Uy + AY Uyy + By U, + BY Uy, + By Uy, 2.28
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2.1 Formulation for 2D steady flows

The simplest time-integration strategy associated with the space-discretization described up to now
would be to use an Euler-explicit scheme, which takes the general form :

U~n+1 Un
e
At
where U™ denotes the solution at time nAt and the explicit stage £ depends only on discrete values
of the solution vector at time-level n. When the Navier-Stokes equations in their conservative or
quasi-linear formulation are solved by the finite volume method on a general unstructured grid, the
explicit stage takes the following form :

+E(U™) =0, 2.29

eU") =

> ng Wollisl.

| d kET ()

where the numerical flux H" is computed from known solutions at time-level n. The time-step At
appearing in the explicit scheme (2.29) must be chosen so as to satisfy some numerical stability
requirements. If (2.28) reduces to the 1D Euler equation (B¥ = A}y = AY = AY = BY = B} =
By =0) a well-known solution for choosing At is the so-called C'F L-condition :

Ax
Aty =CFL——— SCAE), with CFL <1,
where p(AF) is the spectral radius of the Jacobian matrix A® (that is the maximum absolute values
of the eigenvalues of A). For the 1D Euler equations, this spectral radius computed in the cell i is
given by p(AF); = |u;| + a; where a; denotes the speed of sound computed in the cell .

In the case of the 2D Euler equations solved on a general unstructured grid, this criterion of choice
for At is extended as follows :

At; = CFLh—é with CFL <1, 2.32

1
where h; is a characteristic length of the cell i and p{ is the characteristic convective wave speed in
the cell. In order to ensure the stability of the explicit time-integration, the quantity h; is defined
so as to be minimal while the quantity p{ is defined so as to be maximal. More precisely, in our
computations, the characteristic length is computed by taking the smallest distance between the cell
centroid and the center of the faces belonging to this cell. For a triangle for example (see Figure 2.6),

—
one will have : h; = min(|C;Cy|), k = 1,3. As for the characteristic wave speed, it is computed as :

In the viscous case, a time-step At} related to the diffusive effects has also to be taken into account,

along with the convective characteristic time-step given by At{ = A straightforward extension

_C.
of a 1D stability analysis for advection-diffusion problems leads to the final choice of time-step :

At; = CFLmin(AtS, AtY), 2.33

where the CFL number is taken smaller than unity to ensure the stability of the Euler-explicit

time-integration and :
h2
A = 5

i
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Figure 2.6: Characteristic size of a 2D triangle cell

with p! the maximum eigenvalue of the viscous Jacobian matrices. This viscous spectral radius is
precisely given by :

1 4
1% . i Ki). 2.35
P, = P max(gu /{)

with p; the fluid viscosity computed in cell ¢ and «; the fluid thermal conductivity.

2.1.3.2 Implicit strategy

A way to get rid of the previous restrictive time-step limitations is to make use of an Euler-implicit
time-integration, that is to discretize the system of conservation laws under consideration with the
following scheme :
Un-l—l Un
S T EWUT) =0,
(2

In the linear case, it can be easily proved such fully implicit strategy yields unconditional stability :
this means the time-step At; can be chosen as large as possible; moreover the convergence speed
to steady-state is increased when the time-step is increased. In practice, for non-linear problems,
limitations can be encountered in the choice of At; but the maximum allowable time-step remains
much larger than the time-step associated with the Euler-explicit strategy. However, the price to
pay for such an improved stability and efficiency is the need to solve the non-linear problem (in the
unknown U"*') (2.36) at each time-step. When dealing with the Euler or Navier-Stokes equations
on unstructured grids, U"*! is the solution of :

U‘nH_U'n 1 1
AT | > ng M Dol = —EU™), 2.37
! i rez(o)

Rather than solving this non-linear problem, which might be very expensive, one may take advantage
of the fact that only the steady-state solution of this problem is of interest in this work (this steady-
state solution satisfies £(U) = 0). Following this idea, the implicit solution update is built in the
following form :
AU
At;

> (AR Dokl = —E(U™), 2.38

d ke (%)
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where AU = U™ —UP is the unknown time-increment of the solution and (AH™P)" = (HmP)r+! —
(H™™P)" is a time-increment on the numerical flux H™ retained in the so-called implicit stage (left-
hand-side of formula (2.38)); a key point is that this implicit numerical flux formula is not necessarily
the same as the one used in the explicit stage £(U™). The only requirement on the choice of H™? is
that, when coupled with the explicit numerical flux H appearing in &, it drives the explicit stage to
zero - corresponding to the target steady-state in a stable and efficient way. Formula (2.38) can also
be expressed as :

AAZ? +I(AU™) = —E(U™).

where the couple implicit stage Z / explicit stage £ determines the convergence rate of the scheme to
a steady-state AU = 0, the accuracy of which is solely defined by the explicit stage £. The compu-
tations to be presented in the next chapter of this report make use of various numerical flux formula
H to define the explicit flux balance (second or third-order Roe scheme, second or third-order RB
scheme in particular). However, a single numerical flux formula will be used for H*"; this formula
is only first-order accurate in space but this is of no consequence on the result, because the implicit
flux balance vanishes at steady-state. More importantly this formula is designed so as to ensure a
stable formulation for large values of At; when coupled with various explicit formulas; its simplicity
allows to minimize the cost of solving the linear algebraic system associated with the implicit stage,
thus provides a globally efficient time-integration. The implicit numerical flux is decomposed as
HmP = HE@mP) _ HVEmp) where HE(™P) is the inviscid or Euler implicit numerical flux and HY )
denotes the viscous implicit numerical flux.

The inviscid numerical flux increment on a cell face used in the implicit stage throughout this work
reads :

(AHE™)" = SUAFEY  mip 4+ (AFL )" nise = (0D AU gy — AU, 2.40

where p’ is the spectral radius of the Jacobian matrix J, (see also (2.16)). Formula (2.40) derives
from ideas originally proposed in the work of Jameson and Turkel [26], evolving through [27] and
[44] to yield the present matrix-free implicit stage, used in particular by Lohner and his co-workers
for solving the unsteady Navier-Stokes equations on unstructured grids [35] [36]. This flux increment
corresponds in fact to the choice of the first-order Rusanov scheme to build the implicit numerical
flux formula.

For a 2D system, the time-increment of the physical viscous flux projected onto the face normal
n takes the form :

(AF))" = (Af)"n, + (Ag")"ny,
making use of the viscous Jacobian matrices previously introduced, the physical flux increment
(AfV)™ can be expanded as :

ofv ofv
Vin __ n
(M) = G AU" +

afv
U,

(AU)" + (AU,)" = Ay AU™ + AT (AU,)" + AY (AU,)",  (2.42

and similarly for (Ag")". Introducing the partial derivatives U, and Uy with respect to the normal
and tangent directions to the cell face (such that U, = U, n, —Uyny and U, = ULny+U||nx), inserting
these quantities into the expansion of (AfY)" and (Ag")" and combining both developments yields :

(AFV)YH = ()" AU™ + (JY)"AUT + (J) )" AU}, 2.43
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where (J§')" = Agn, + Byny, (JY)" = AYnZ + Byns + (A5 + BY )nany, (J)')" = Ayni — BY'nj +
(BY — AY)n,n,. If the time-increment of the implicit numerical viscous flux AHY ™) is built as the
centered discretization of (2.43), the resulting scheme will be expensive to solve, with in particular
blocks containing J), (J}), (Jﬁ/) to invert. If only contributions involving a positive-definite matrix
coefficient are retained, the calculation cost will be dramatically reduced because this full matrix
will be simply replaced by its spectral radius, without compromising the scheme stability. This is
why the numerical viscous flux eventually retained in the implicit stage corresponds to the following
simplified version of (2.43) :

(AR = (V) AU,

with (JV)" = AY'n2 + By'n? a positive-definite matrix (A} and B} are positive definite matrices),
with spectral radius (p)™. The normal derivative of U in (2.44) is computed with a simple centered
approximation by using the values at the centroid of the cells sharing the face I';  :

AUZ, o — AU

-

AU )ip =

|Ari,o : ni,k|

where Ar; , is the position difference vector from the centroid of cell i to the centroid of cell o (short
for o(i, k) when there is no ambiguity). The numerical viscous flux in the implicit stage is finally
given by :

Vyn
(apmoye = WL A,

|Ari,o : ni,k|

Inserting (2.40) and (2.46) into (2.38) and taking into account Z n;; = 0 yields :
keZ()

AU”

’l

Dik| = =EUM),

a2 L

after introducing the scalar coefficients C7' and D;' defined by:

k) )" — l(pf)"k - (pK)?k (AU k) - AUY)
o(z ) 9 i, |Ari,o . ni,k| o(i,k) i

the simplified implicit stage used in this work can be expressed as :

1

DIAU?

o(zk |P7«k| (Un) ‘ ‘ Z (Af.fl‘c)nnhk |Fl7k|7 2.48
kEI(Q T heT()

The implicit treatment (2.48) is said to be matrix-free so as to emphasize C7}, and D} are scalar
coefficients which are inexpensive to compute. In this work, (2.48) will be simply solved using a
Point-Jacobi relaxation technique, which is retained for its very low cost per iteration and very
modest memory requirements, which makes up for its rather low intrinsic efficiency; in practice, the
number of iterations to reach a steady-state is of course larger than the number of iterations offered

42



2.1 Formulation for 2D steady flows

by a more sophisticated solution method but each iteration is extremely cheap. The time-integration
from level n to n + 1 takes the form :

AU =0
l=1,L
1
N TG ny EN() o m O] , 2.49

AUM = AU,

where (Afﬁ)(l) = (fﬂ)(l) — (FF)™ The typical value for the number of sub-iterations is L = 10.
Note that the convergence rate of (2.49) to a steady-state depends on the use of a second or third-
order conventional upwind or RB numerical flux in the explicit stage £(U™) (specific comments on
this point will be provided in the next chapter, when analyzing the numerical test-cases); however,
this implicit treatment has been systematically used with these various explicit stages and shows
good stability properties at large C'F'L numbers (typically, (2.49) has been used with CFL = 10° in
the time-step formula (2.33)).

2.1.4 Limiting process

Since the interest of this work is on the accurate computation of compressible flows, we are bound
to encounter flow configurations displaying discontinuous solution fields. In the next chapter, we will
address in particular the computation of 2D and 3D steady transonic flows as well as the compu-
tation of a 2D unsteady supersonic flow. When dealing with such flows, it is well known that the
solution reconstruction used for the UX/% states appearing in the numerical flux of a conventional
upwind scheme but also in the non-dissipative part of the RB numerical flux must be completed by
a limitation process in order to avoid the occurrence of oscillations in the computed solution that
could lead to the failure of the computation.

Linear reconstruction with limiting For the second-order F'V scheme, the Barth limiter mod-
ified according to Venkatakrishnan’s proposal [46] (denoted VK limiter from now on) is introduced
into the linear solution reconstruction (1.33). The reconstructed state U] at a point g in cell 7 (g can
be of course located on a boundary of cell ¢ and coincide with a Gauss point) is given by :

where Ar; 4 is the position difference vector between the point g under consideration and the centroid
of cell ¢ where the solution gradient is made available, Ar; ; = r, —r;. The VK limiter is denoted by
¢; and is computed by the following formula for each cell 7 :

(AL)2 +2A A +¢
(B + A5+ 2B ) +e

0 =

where
if AI‘LQ . VUZ >0: A+ = U]ma:c — UZ . A_ = Ari,g . VUZ,
if AI‘LQ . VUZ <0: A+ = U]mm — UZ s A_ = Ar@g . VUZ,
if Ari,g . VUZ =0: ¢Z =1.

43



CHAPTER 2 : Design principles of 2nd and 3rd-order FV-RB schemes on unstructured grids

with U"** and U}”i" the maximum and minimum values of the solution computed for all the face-
neighbors of cell €2;. And the parameter ¢ is chosen to be (Khi)?’, with the characteristic length h;
of cell 4, and the user-defiend limiting parameter K, which is case-dependent and its value will be
provided in the test cases presented in the next chapter.

Quadratic reconstruction with limiting and troubled cell detection When the quadratic
solution reconstruction (1.36) is used for the third-order F'V scheme, we follow the strategy initially
proposed by Delanaye [16] : the VK limiter is still applied onto the linear part of the reconstruction
while another switch, o;, is used for the quadratic part as follows :

1
U, = Ui+ ((1 = 09)¢i + 0:)Ar; - VU; + §Ui(Ari7g)T -H, - Ar; g, 2.52

The quantity o; allows the reconstruction to switch from "quadratic without limiting" to "linear
with limiting" when the local flow goes from "smooth" to "discontinuous" or at least "with strong
local variations". The function o; will be called a sensor and is designed so as to allow a smooth
transition between the linear reconstruction with limiter to the quadratic reconstruction when going
from high-gradient to low-gradient regions. It must be emphasized the sensor o; used in this work is
the one proposed in [39]. It is computed as follows :

o — 1 tanh(j(eZ ﬁ))
where ¢; is the troubled cell indicator; the parameter 3 is a threshold to be determined for each
problem. For a given 3, ¢, > ( in a cell ¢ means that this cell is located in a high-gradient region,
which leads to a o; close to 0 : the quadratic part is then removed from the solution reconstruction
and the linear part is limited by the VK limiter. Reversely, if ¢; < 3, the solution in cell 7 is considered
to be smooth enough, which yields a value of o; close to 1 : the full quadratic solution reconstruction
is recovered. The parameter S in (2.53) is a user-defined constant controlling the stiffness of the
hyperbolic tangent function : a small value for S will make the hyperbolic tangent switch smoother.
In our computations it is found that the value of € is normally between 0 and 0.2. Therefore the
variation of the sensor o for a € in this value range is showed in Figure 2.7. The possible choices for
the parameters § and S will be detailed in the numerical test cases presented in the next chapter.

Based on the truncation error indicator initially designed by Lohner|37], the troubled cell indicator
is derived in [16] and used in our computation, which takes the form :

> A, - (Vg — Va)|

= — IO

Z |Ar; ;- Vg;| + |Ar; ;- Vgi|) + aug

JEZ(3)

where Z () is the set of cells belonging to the stencil used for the gradient computation in cell i, Ar;
is still a position difference vector connecting the centroid of cell 7 and the centroid of the cell j in
the set Z(i), Vq is the gradient of an indicator variable ¢, that will be specified below. The average

state ¢ is computed by :
7=y (gl +la),

JEZL(3)
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Figure 2.7: The variation of the sensor o; the effect of S with § = 0.1 (left), effect of § with
S = 80 (right).

Basically, formula (2.54) is a multidimensional estimation of the ratio between second-order and first-
order variations of the solution vector in cell i. The term ;g prevents formula from (2.54) becoming
undefined in smooth-flow regions where all the terms involving gradients will become close to zero.
In high-gradient regions, this same term is not needed. To account for this behavior, the parameter
a is designed as the following :

_ q
> |Ar; - (Ve = Va) | + Y (|Ari; - V| +|Ary; - Vg |) +7
JEL(i) JEI(7)

In regions characterized by high density gradients, « is close to 0, while in quasi-uniform flow regions
« tends to 7, which is chosen as v = 0.5.

The indicator variable ¢ could be density, pressure, velocity or other flow variables. In our com-
putation, density has been systematically used and judged to yield satisfactory results. Further
refinement of the sensor could be gained by using a combination of variables but this path has not
been investigated. In Figure 2.8, the distribution of the troubled cell indicator ¢; and its parameter
«; for a transonic flow with inlet condition Mach = 0.8, attack angle 1.25° over a NACA0012 airfoil
is showed for an exemple. It is found that « is close to v = 0.5 in the smooth flow region, and smaller
than this value in regions where the gradient is large, the minimal value is in the shock region where
the gradient is the maximum in the whole flow field. But the value is not close to 0, possibly because
the gradient is not big enough to make it be. The variation of ¢; shows well the strong shock on the
suction side, while the weak shock on the pressure side is not detected because the density gradient
variation is small.
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alpha

0.500
0.490
0.481
0.471
0.462
0.453
0.443
0.433
0.424
0.414
0.405
0.396
0.386
0.377
0.367

epsilon

0.240
0.223
0.206
0.189
0.171
0.154
0.137
0.120
0.103
0.086
0.069
0.051
0.034
0.017
0.000

Figure 2.8: Distribution of the troubled cell indicator ¢; and its parameter «; for a tran-
sonic flow over the NACAO0012 airfoil «; distribution (left), and ¢; distribution (right), Mach
number iso-contour (black lines in both figures).

2.2 Formulation for 3D steady flows

The design principles of the finite volume method applied in 3D are similar to what has been described
up to now in 2D. Therefore we will simply review in this section the salient features of the FV
conventional upwind or RB schemes and point out the main quantitative differences that appear
when going from 2D to 3D, in particular in terms of stencil used for gradient computation in each
cell, and the shape of shift cell used in RB dissipation flux computation.

2.2.1 Cell gradient computation

For a conventional upwind scheme but also for the non-dissipative part of the RB numerical flux in
3D, the solution at any point in a cell is still reconstructed by equation (1.33) to second-order, and
by equation (1.36) to third-order, where the solution gradient and Hessian (for third-order scheme)
at a cell centroid are also computed by the Least-square method. The difference with the 2D scheme
is the number of cells in the stencil used for the least-square reconstruction (see Table 2.1). For
the second-order scheme, there are 4 degrees of freedom necessary to be determined in the solution
polynomial in 3D, therefore at least 4 cells in the stencil are necessary for the linear least-square
reconstruction. For an internal hexahedron element, its 6 face-neighbors are enough for this demand;
and a tetrahedron element has exactly 4 face-neighbors, which sometimes can result in a singular
reconstruction when the grid cell is really distorted, therefore edge neighbors of the cell are added
into the stencil. For cells located on the boundary, it is also the case because of insufficient numbers
of their face-neighbors. For the third-order scheme, the solution polynomial needs 10 degrees of
freedom in 3D, so a stencil with at least 10 cells is necessary. For an internal hexahedron cell, the
sum of its face-neighbor and edge-neighbor is 14, which can satisfy this requirement; this sum of an
internal regular tetrahedron is 16, which is also enough. But in actual compution, it is found that
the minimum stencil number 18 is necessary to ensure the robustness of the reconstruction.
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2.2 Formulation for 3D steady flows

Reconstruction | 2D minimum/maximum | 3D minimum /maximum
Linear 3/10 6/16
Quadratic 8/20 18/36

Table 2.1: Minimal number of cells in the stencil used by least-square reconstruction.

In Table 2.1, it is found that the minimal and possible maximal number of cells in the stencil needed
for the least-square reconstruction. The 3D reconstruction needs about 1.6 to 2.2 times more cells in
the stencil than the reconstruction in 2D, which leads to store a very large matrix M; ' (see equation
(1.40)), therfore a huge memory requirement for 3D computation.

2.2.2 Quadrature points for flux integration on cell faces

In 2D the number of quadrature points used for physical flux integration on faces of a certain cell
is related to the precision order of the scheme, while this number depends not only on the scheme
order but also the shape of the considered face. For the second-order scheme, only 1 quadrature
point is necessary which is the center of the face regardless of its shape; but for the third-order
scheme, 3 quadrature points are needed on a triangle face and 4 quadrature points are necessary on
a quadrilateral face (see Figure 2.9).

®
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Figure 2.9: Gauss quadrature points used for third-order FV scheme 3 points used by a
triangle face (left), 4 points used by a quadrilateral face (right).

2.2.3 Node solution and node gradient computation stencil

For the 2D case, the stencil needed for computation of the solution and solution gradient is the
same for a mesh node inside the computation domain (internal node), while the stencil used for node
value computation could be not enough for the node gradient computation for a node located on
the computational domain boundary (boundary node), and in this case, face-neighbors of cells in
the node-value-stencil have to be added into the node-gradient-stencil. It is also the situation in
3D. Although 4 is the minimal number of cells in the node-gradient-stencil for the linear least-square
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reconstruction in 3D, 6 cells are guaranteed in the stencil to avoid the instability of the reconstruction.
Table 2.2 shows that the minimum and possible maximum stencil used for node solution and gradient
computation (for viscous case only). It is found that the stencil size for the node solution and gradient
computation in 3D can be 4.9 times more than the one in 2D, the much higher computation cost of
the 3D case is obvious.

Computation | 2D minimum/maximum | 3D minimum /maximum
Node solution 2/9 4/44
Node gradient 3/9 6/44

Table 2.2: Number of cells in the stencil used for solution and its gradient computation
on a mesh node.

2.2.4 Shift cell for RB scheme

As we have seen in 2D, the shift cell €2;; constructed for the residual computation in RB scheme
numerical dissipation is always a quadrilateral regardless of the shape of the cell which it crossed.
But in 3D case, this shift cell changes its shape with the type of elements on which it is based. There
are two possible types of shape showed in Figure (2.10) (red dotted line). In order to compute the
residual in the shift cell with equation (2.8), the numerical flux at the center of a face I'; with vertices
(N}, N2, Co) is computed by:
1

(M) = 5 (FP(Uns,) + FE(Unz,) + F*(Uc,) ) - . 2.57

for viscous case, the numerical viscous flux at each face center is computed in the same way.
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Figure 2.10: Possible shift cell for RB dissipation calculation in 3D

2.3 Formulation for 2D unsteady flows

We conclude our description of the FV RB scheme for computations on unstructured grids with the
adaptation of the steady solver to unsteady flows. This adaptation is performed in the framework of
a dual-time formulation [25] with a time-accuracy which remains limited to second-order.
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2.3 Formulation for 2D unsteady flows

2.3.1 Dual-time discretization method

The basic idea of a dual-time strategy can be formulated as follows : the solution of the unsteady
equations U; + V - F = 0 is found as the steady solution with respect to the so-called dual or fic-
titious time 7 of the evolution problem U, + U; + V - F = 0, which can also be recast in the form
U.+V - F = —=U,. Since the steady solution of U, + V - F = 0 is such that V - F = 0, it can also be
seen as the steady solution with respect to a dual-time 7 of the evolution problem U, +V - F = 0.
Thus, starting from a steady solver, the development of an unsteady solver simply requires to insert
the existing (dual) time loop within a physical time loop and to account for a source term S = —U,
in the discretization. In the case of the RB scheme, the extension to unsteady flows follows the same
general lines but specific developments are needed when building the RB dissipation since it relies
on a residual r that includes now the physical time derivative.

A dual-time discretization applied to the FV formulation of the 2D Euler equations reads :

oU; N ou; N 1
or ot |

/ F¥.ndl =0, 2.58
kEZ(Q Pik

The dual-time finite-volume approach considered in the present study drives (2.58) to a steady-state
with respect to 7 by using :

e a first-order (Euler implicit) approximation for the dual time-derivative, which will vanish at
steady-state anyway,

e a second-order (three-level) implicit approximation for the physical time-derivative,
e a Gauss-quadrature formula for approximating the flux integral on the face I'; .
The resulting discretization of equation (2.58) reads:

AUM™
s nm+7€ =0,

RI™ = T(UM™, UP, U

)

);Wn ‘Fi7k|7

keZ(Q) 9

where m is the pseudo-time (or dual-time) iteration counter, n is the physical time iteration counter,

AUP™ = U™ — U™ with U™ = UP. The time-discretization operator 7 is chosen as :

S(Up™ — Up) — LAUP!

7 7 7

At; ’

TP Ur Ur ) =

with AU = U — U™ it is such that 7 (U, U UMY = (U)F + O(At?). Besides, the
numerical flux balance approximates the physical flux balance at order p = 2 or p = 3. Therefore,
when the pseudo-time marching reaches a steady solution U"*! = Ummtl = ymm scheme (2.59)

yields :
1

||

(U)i+ + O(A?) + / (FE)™1 . ndl + O(h?) = 0. 2.61

keZ()
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CHAPTER 2 : Design principles of 2nd and 3rd-order FV-RB schemes on unstructured grids

which is an approximation of the unsteady flow solution at order 2 in time and p in space.

In practice, scheme (2.59) is made implicit to speed up the convergence to the pseudo steady-state.
The slight modification brought by the dual-time approach to the matrix-free implicit stage previ-
ously presented for steady flow computations will be detailed below. At first, we wish to emphasize
the difference between a conventional scheme and the RB scheme when extended to the calculation of
unsteady flows using the dual-time strategy. A conventional scheme is based on decoupled approxi-
mations for the various terms appearing in the system of conservation laws to which it is applied. Let
us assume that a conventional scheme is applied to the discretization of the unsteady Navier-Stokes
equations (for more generality) with a dual-time framework :

ot |m / d - / d I
kEZ(D Lik keZ Lik SN——

physical time derivative

when the conventional scheme is used, the approximate solution of the above system is computed by
this equation :

physwal 1nv1sc1d flux balance B, physmal viscous ﬂux balance B,

oU;
or

= By — 8. 2.63

where
e the numerical inviscid flux balance By = depends only on the physical inviscid fluxes,
e the numerical viscous flux balance Byv depends only on the physical viscous fluxes,

e the numerical approximation for the source term S depends only on the physical time-step and
the solution vector U.

Now, when the RB scheme is applied to this same system (2.62), it can be put under the same generic
form (2.63) but the key difference now is that the RB numerical inviscid flux depends on the residual
of the full system (2.62) for building its dissipative flux, hence the numerical inviscid flux balance
By= depends not only on the physical inviscid fluxes but also on the physical viscous fluxes as well
the physical time-step and the solution vector U. In the next section the design details of the RB
numerical flux for unsteady inviscid flows will be given.

2.3.2 RB numerical flux

The RB numerical flux remains formally given by (2.2), which is decomposed as a purely centered
flux contribution on one hand and a dissipative contribution on the other hand. For unsteady
problems, the purely centered flux is computed in the same way as for the steady case while the
residual approximation (2.2) in the dissipation flux (2.4) must take into account the physical time-
derivative approximation. Let us recall the residual integral in a shift cell (see Figure 2.1) related to
the considered face I'; j, :

ik = r 2.64
19kl Jo,,
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2.3 Formulation for 2D unsteady flows

where the residual r at steady-state is now associated with the unsteady system (2.58), that is
r=U;+ V- FF. The integral in (2.64) can then be expressed as:

1 1
Ri) = —/ U, dQ + FE.ndr, 2.65
il Jo,, Q] Jog, ,

and is discretized as R;j = Rfk + R} where Rfk approximates the inviscid flux balance over the
shift cell €; , and Rﬁk approximates the physical time-derivative over the shift cell. The evaluation of
RZEk remains unchanged with respect to the steady case - note only the solution used when computing
the numerical flux balance over the shift cell is U™™ instead of U™ in the steady case - :

! > (HY) N 2.66

RE, = ——
7, ]
| Z’k‘ 1ET(Qi 1)

where the numerical flux (H”)"™ is computed by using (2.9).

In order to build R}, the physical time-derivative is approximated at face center M; . and the time

discretization operator (2.60) is used to yield :

1

/R’lz?,k = 5 (T(Uzmmv Uzn7 Uin_l) + T(U(:L(Z?c)v on(i,k)7 U:(;Ii))) .

2.3.3 New sensor for the RB scheme

If the RB scheme is applied to unsteady problems involving discontinuities, limited values of the
reconstructed states U/ are used in the numerical flux. Although this strategy seems sufficient to
ensure the robustness of the computations for a large panel of applications, it was observed in the
course of the ADIGMA project that the RB scheme failed to compute problems such as the interaction
of blast waves in 1D or the double Mach reflection problem in 2D, both involving very strong shocks
around which the RB scheme developed fatal oscillations. Some numerical experiments allowed to
identify that this lack of robustness in the vicinity of discontinuities is related to the estimation of
the physical time-derivative in the residual used to compute the RB numerical dissipation. When
the term Rj, was taken out from (2.65), an excellent robustness was observed for the RB scheme,
but at the expense of accuracy since the scheme’s accuracy drops down to first order when the
discrete residual is no longer consistent with the exact residual (which includes the physical time-
derivative). It was thus proposed to compute the residual approximation on the interface as follows,
in the unsteady case :

1 n,m
o] Y (R,

1 n,m n n— n,m n n—
R = 0l o (T(UP™ U UP™) + T (UL Ui US b)) + 1
€2k leT (9,
1,k)

i,k 5

The switch o}, is analogous to the switch o; used for the quadratic solution reconstruction. In regions
dominated by flow discontinuities, the robustness of the scheme is locally improved by canceling the
physical time-derivative estimate (o}, — 0), thus increasing the RB dissipation (from a third-order
term to a first-order term); third-order accuracy is recovered away from these discontinuities with
af,k — 1. For the sake of simplicity, or let us say because we were more interested by a demonstration
of feasibility than by fine-tuning the proposed switch, a binary definition of o;; was retained :

ok =1 if Bix < Bra,

O ) = 0 if 6i,k >= 61{3,
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CHAPTER 2 : Design principles of 2nd and 3rd-order FV-RB schemes on unstructured grids

where the parameter Sgp is a threshold value which is not necessary equal to the threshold 3 used
for the quadratic solution reconstruction. The parameter (; ; is directly linked with the troubled-cell
indicator computed in each grid cell :

1
6@ k= (62 + 6o(z k)) 2.70

Note this strategy was not necessary for computing unsteady compressible flows with the RBC
scheme (on structured grids) in previous works [12], [11]; let us emphasize once again it was the
occurrence of very strong shocks for some ADIGMA test-cases (Interacting Blast Waves and Double
Mach Reflection) which specifically motivated the development of this switch in the unsteady version
of the RB dissipative flux.

2.3.4 Adaptation of the implicit strategy

Since the robustness of the solver applied to the computation of flows involving shocks depends not
only on the space-discretization procedure but also on the time-integration (both in dual and physical
time), we deem to be important to provide some information on the implicit stage which is used to
efficiently drive the second- or third-order FV-RB scheme to a pseudo steady-state. For unsteady
flows computed with a dual-time approach, the steady solution with respect to the pseudo-time 7 is
obtained after a reduced number of pseudo-iterations by solving:

AUM™ 3 AU m
S AR I, Ry 2.71
A T3 TAY |Q|HZ(Q ( His ) Teil = ’

where A(HEmp)rm — (pEGmp)ynm+l _ (HEGmp)ynm anq HEEmP) denotes the numerical flux formula
retained in the implicit stage. The choice of a numerical flux HZ(™) is the same as the one previously
used in the steady case. The implicit stage is therefore formally unchanged with respect to (2.48)
and given by :

1
21|

n,m n,m mn,m n,m n,m 1 n,m
DMMAUM™ — > AU Tikl = =R T > (AFE) n [Tkl

kET(O) €] KET(C)
but the scalar diagonal coefficient also includes a contribution coming from the physical time deriva-
tive implicitation :

i = (D"
1 i
i — ATin,m + Z | i,k|‘
kEI

The dual-time integration from sub-level (or inner-level) n,m to n,m + 1 takes the form :

AU =0
l=0,L—1
n,m l n,m 1 1)
Dz’ AUZ( +1) _ _Ri _ 2|QZ| Z ((AfE)(l n; — C AU(( N ) |Fi,k‘7 2.74
EET(Q)

AUTL,m—I—l _ AU(L)
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2.3 Formulation for 2D unsteady flows

Note that when At; is chosen small enough so that the physical-time discretization in R;""™ is dom-
inant with respect to the other contributions, and since this physical-time discretization is made
fully implicit (contribution of the coefficient 2215 in the diagonal coefficient D;"™), the above implicit

treatment converges to a steady-state after a few iterations only.
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Applications of FV-RB scheme

French Les schémas RB d’ordre deux et d’ordre trois basés sur la méthode des volumes finis (notés
FV-RB O2 et FV-RB O3 respectivement) décrits dans le dernier chapitre sont appliqués maintenant a
une série de cas tests afin d’évaluer leur précision, efficacité et robustesse. Nos analyses se concentrent
sur la comparaison entre les schémas FV-RB O2 et O3, ainsi que sur la comparaison entre les schémas
FV-RB et un schéma classique décentré-amont d’ordre deux ou trois (typiquement le schéma de Roe
avec une reconstruction de solution linéaire ou quadratique). La comparaison est menée dans 'ordre
suivant :

e Premiérement on considére des écoulements stationnaires sans choc de fluide parfait en 2D et
en 3D afin de ne pas avoir d’influences du limiteur de la solution. Pour chaque cas (en 2D ou
en 3D), une série des calculs sur un probléme modele dont la solution exacte est connue sont
effectués pour évaluer 'ordre de précision effectif des schémas mis en oeuvre dans notre code
de calcul de volumes finis en maillages non-structurés. Ensuite la version de ces schémas pour
les équations d’Euler est utilisée pour calculer un cas classique bidimensionnel, I’écoulement
subsonique de fluide parfait autour d’un profil NACAQ0012 et aussi un écoulement subsonique de
fluide parfait autour d’un profil tridimensionnel proposé dans le projet ADIGMA. Les solutions
exactes ne sont pas disponibles pour ces problémes, mais des résultats de référence existent
pour le probléme 2D. Cependant on emploie une stratégie d’évaluation de la solution proposée
par le projet ADIGMA, au lieu de comparer le résultat avec ceux qui ont été publiés, car cette
comparaison dépend souvent du schéma numérique utilisé, du choix de maillage et aussi du
traitement des conditions aux limites. La stratégie utilisée ici est une étude de convergence en
maillage avec un critére approprié. Cette étude est menée pour les schémas FV-RB développés
ici et elle donne des éléments pour une comparaison claire entre le schéma FV-RB O2 et O3.

e Ensuite, 'analyse des schémas appliqué aux équations d’Euler est réalisée pour des écoulements
avec chocs en 2D et en 3D afin d’évaluer la performance des limiteurs décrits dans le chapitre
précédent.

e Pour le cas d’'un écoulement visqueux, on reprend la méthode d’analyse utilisée en fluide parfait :
un probléme d’advection-diffusion, dont la solution exacte est connue, est calculé afin d’estimer
lordre de précision effectif des schémas FV développés. Les versions de ces schémas pour les
équations de Navier-Stokes sont ensuite appliquées au calcul d’écoulement laminaire autour
d’un profil NACAO0012, ou I’étude de convergence en maillage est encore une fois menée.

e Enfin la derniére partie de ce chapitre traite de I’évaluation des schémas FV-RB pour les calculs
d’écoulement instationnaire, dans le cas sans choc de la propagation d’une tourbillon et aussi
dans un cas avec choc beaucoup plus difficile, la double réflexion de Mach.
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English The second and third-order finite-volume residual-based scheme (denoted by FV-RB O2
and FV-RB O3 respectively) described in the previous chapter are now applied to a series of test cases
in order to assess its accuracy, efficiency and robustness properties. Our analysis will be especially
focused on the comparison between the FV-RB O2 and O3 schemes as well as the comparison between
the FV-RB schemes and a classical second- or third-order upwind scheme (typically the Roe scheme
with linear or quadratic solution reconstruction). The comparison is performed in the following
progressive way :

e Firstly we deal with 2D and 3D steady smooth inviscid flows in order to analyze the schemes

without interference effects of the solution limiting strategy. In each case (2D or 3D), a pre-
liminary series of computations on a model problem with known exact solution are performed
so as to assess the order of accuracy achieved in practice by the schemes implemented within
our unstructured finite-volume solver. Next, these schemes (extended for Euler equations) are
applied to the computation of a well-known 2D inviscid subsonic flow over a NACA0012 airfoil
and a subsonic inviscid flow over a 3D body proposed in the ADIGMA project. No exact
solutions are available for these cases but numbers of references in the literature are available
for the 2D test-problem. However we adopt the solution evaluation strategy proposed by the
ADIGMA project, rather than performing comparisons with results in the literature, which
are often not only dependent on the numerical scheme but also on the choice of grid and the
treatment of boundary conditions. The strategy used here is the grid convergence study with
an appropriate criteria on the solution accuracy. This study is performed for the developped
FV-RB schemes, and it provides elements for a clear comparison between FV-RB O2 and O3
schemes.

Next, the analysis of schemes applied to the Euler equations is performed for 2D and 3D flows
involving shocks in order to assess the performance of the solution limiting strategies for cases
with discontinuities described in the previous chapter.

In the case of 2D viscous flows, we return to the line of analysis followed in the inviscid case : a
model advection-diffusion problem of known exact solution is first computed in order to assess
the actual order of accuracy provided by the developed FV schemes. These schemes (extended
to the Navier-Stokes equations) are then applied to the computation of a laminar flow over the
NACAO0012 airfoil, where the grid-convergence study is also conducted.

At last this chapter closes with the assessment of the FV-RB schemes for unsteady flow compu-
tations, both in the smooth case, a vortex propagation problem and a much more challenging
case, the double Mach reflection problem.

3.1 Steady inviscid smooth flows

3.1.1 2D circular advection problem

The model scalar advection problem solved in this section takes the following form :

ow oW ow
Wij%—l-(l—x)a—y—O,
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3.1 Steady inviscid smooth flows

where the flow domain corresponds to the square x € [0,1], y € [0,1]. The initial condition in this
domain is:

W(zx,y,0) =0,

The edges y = 0 and x = 0 of the computational domain are inlet flow conditions on which the
solution is imposed as :
W(I, Y, t) = 6_50(71_0.5)27

with r = /(x — 1)2 4 y? the distance to the lower right corner of the flow domain (point (1,0)). The
edges x = 1 and y = 1 are outlet flow boundaries along which the solution is extrapolated from the
interior domain.

Equation (3.1) is discretized using its conservative form W+ F'(W),+G(W), = 0 with F(W, z,y) =
yW and G(W,z,y) = (1 — ) W. The wavespeed associated with each physical flux is respectively
a(W,z,y) =y for F(W) and b(W,z,y) = (1 — z) for G(W).

The exact solution of (3.1) with associated initial and boundary conditions is readily obtained in the
space of characteristics : the characteristic lines of the problem are circular trajectories centered on
point (1,0), entering the domain through x = 0 and y = 0 and leaving it through z = 1 and y = 1;
along each of this line the inlet value is conserved. A typical numerical solution illustrating these
features is displayed in Figure 3.1.

Figure 3.1: Contours of the computed solution W (30 levels from 0 to 1) obtained by the O3 RB
scheme on mesh Tri_irregb (irregular triangular grid with 6400 boundary faces).

In order to provide a more complete analysis of the scheme properties, the computations are carried
out on two different series of meshes : one made of increasingly refined regular triangle meshes
and the other made of increasingly refined irregular triangle meshes. The regular triangular grids
are derived from regular quadrilateral grids in which each cell is cut along the top-left / bottom-
right diagonal (see the left-side of Figure 3.2). The irregular triangular grids are obtained from an
automatic Delaunay triangulation performed by a commercial grid generator when asked to mesh the
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CHAPTER 3 : Applications of F'V-RB scheme

computational domain by using triangular cells with a prescribed number of regularly-spaced nodes
on the domain boundaries (see the right-side of Figure 3.2). It is important to point out that at this
stage the F'V schemes developed in this work can be used indifferently on grids made of triangles
or rectangles (or even hybrid grids). The analysis presented here is focused on triangular grids but
some comments will be provided on the case of grids based on quadrilaterals.
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Figure 3.2: Mesh examples used for 2D circular advection problem: regular triangle mesh(left),
irregular triangle mesh(right).

The main features of the computational meshes are summarized in Table 3.1 and 3.2 : the regular
triangular grids are obtained from successive Cartesian grids with 10 x 10, 20 x 20, 40 x 40, 80 x 80
and 160 x 160 nodes regularly spaced along each side of the unit square computational domain; the
irregular triangular grids rely on the same boundary nodes but are obtained from a triangulation
based on these boundary distributions. Note dof denotes the total number of degrees of freedom
used for the computation; in the case of the finite-volume method used in this work, the number of
degrees of freedom is equal to the number of mesh cells regardless of the accuracy order, while this is
not the case when a Spectral Volume approach is developed for the RB schemes in the next chapter :
each cell contains a certain number of degrees of freedom which increases with the desired accuracy
order.

Mesh Dof | Number of boundary faces
Tri_regl | 200 40
Tri reg2 | 800 80
Tri reg3 | 3200 160
Tri reg4 | 12800 320
Tri regd | 51200 640

Table 3.1: Basic information on the regular triangle-based meshes used for the 2D circular advection
problem.
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Mesh Dof | Number of boundary faces
Tri irregl | 226 40
Tri irreg2 | 894 80
Tri irreg3 | 3588 160
Tri irregd | 14412 320
Tri_irregd | 57518 640

Table 3.2: Basic information on the irregular triangle-based meshes used for the 2D circular advection
problem.

Accuracy analysis on regular triangular meshes The first series of computations is performed
on the increasingly refined regular triangle-based meshes. For each steady solution achieved on a given
grid, the logarithm of the Lo-norm of the difference between the exact solution in the grid and the
numerical solution provided by the scheme, also called Ly error of the scheme, is computed and
plotted as a function of the characteristic mesh size h, which is taken as the minimum of the cell
mesh sizes computed by h; = /Q; (in 2D), and h; = Qil/g (in 3D). This Ly error is computed both
for the FV-RB scheme in its second- and third-order version and for the Roe scheme, which is taken
as the representative of conventional upwind schemes, also in its second and third-order version. The
numerical errors are plotted in Figure 3.3 and also summarized in Table 3.3 for the F'V-RB scheme.
The orders (of accuracy) appearing in this table correspond to the estimation computed for the slope
of the curve error vs mesh size using the error and mesh size for the current grid and the previous
one. The practical accuracy order should correspond to the asymptotic value reached by this slope
when the finest grids are used for this estimation.

It can be observed on Figure 3.3 the expected theoretical accuracy orders are roughly achieved with
the Roe numerical flux and linear then quadratic solution reconstruction, yielding respectively an
asymptotic slope of 2.32 and 2.98 (the regularity of the grids is likely to introduce some error compen-
sations which would explain the practical accuracy order exceeds 2 with the linear reconstruction).
When the RB numerical flux is used, the error slopes obtained between two finest grids are respec-
tively 1.98 for FV-RB O2 and 3.29 for FV-RB 03, which corresponds to the expected orders. More
importantly maybe, it is interesting to note the error level achieved on the finest grid with the third-
order RB numerical flux is much lower than the error level obtained with the third-order Roe scheme.
In fact the error level associated with this third-order conventional upwind scheme on the finest grid
(51200 dof) corresponds to the error level obtained with the third-order RB scheme on a grid with
a number of dof between 3200 and 12800. This point will be detailed in the efficiency analysis in
the last paragraph of this section.

Mesh Ly error of RBO2 | order | Ly error of RBO3 | order
Tri regl -1.32978 - -1.37869 -
Tri reg2 -2.05291 2.40 -2.30685 3.08
Tri_ reg3 -2.71613 2.20 -3.63751 4.42
Tri_ regd -3.31275 1.98 -4.92621 4.28
Tri_regh -3.90832 1.98 -5.91761 3.29

Table 3.3: Ly norm of numerical errors and mesh convergence order obtained with FV-RB schemes
on regular triangle meshes.
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Figure 3.3: Ly norm of numerical errors obtained by the FV-RB scheme and FV-Roe scheme on
regular triangle meshes.

Accuracy analysis on irregular triangular meshes The (theoretically) second and third-order
Roe and RB schemes are now applied on the series of irregular triangular meshes. The numerical
errors associated with these schemes are summarized in Table 3.4 and plotted in Fig.3.4. With
respect to the previous regular case, the changes for the Roe scheme remain modest : the practical
error orders are again very close to their respective theoretical value, namely 2.11 instead of 2 for
FV-Roe O2 and 3.04 instead of 3 for FV-Roe O3. These results indicate the linear and most of all
the quadratic solution reconstruction are correctly implemented in our numerical solver. As for the
FV-RB 02 scheme, it still provides a practical accuracy order (1.98) very close to the expected value
of 2. However, the behaviour of the FV-RB O3 scheme is disappointing since the practical accuracy
order of the scheme on irregular triangular grids drops down to 2.52. A possible explanation for
this discrepancy between theoretical and practical accuracy order could be an insufficiently careful
treatment of outflow boundary conditions. If the numerical flux is the cause of this behavior, it is
necessarily the dissipative flux which is involved (since the non-dissipative centered flux is also used
in the Roe scheme); the simplifications retained for computing this dissipative flux (with a single
residual evaluation per face) could be incriminated but we did not manage to understand precisely
why these simplifications would work perfectly well on the regular triangular grids and not on the
finest irregular triangular grids. It must be emphasized though that the error level provided by the
FV-RB O3 scheme remains very low and, in particular, lower than the error level associated with
the third-order Roe scheme in a given grid.

Efficiency analysis We shall now compare the second-order RB scheme with its third-order ex-
tension as well as compare the RB schemes with the second and third-order Roe schemes not purely
in terms of accuracy but rather in terms of the cost required (CPU, memory) to achieve a simi-
lar level of accuracy. It should be mentioned here that almost all of computations (unless pointed
out specially) in this work are carried out on a PC with 2 processors of 1.86Ghz, 4M B memory,
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3.1 Steady inviscid smooth flows

Mesh Ly error of RBO2 | order | Ly error of RBO3 | order
Tri irregl -1.69010 - -1.90880 -
Tri_irreg2 -2.40014 2.41 -3.02975 3.81
Tri_irreg3 -3.05994 2.46 -4.03660 3.76
Tri_irregd -3.67028 1.92 -4.87415 2.63
Tri_irregh -4.26599 1.98 -5.63012 2.52

Table 3.4: Ly norm of numerical errors and mesh convergence order obtained with FV-RB schemes
on irregular triangle meshes.
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Figure 3.4: Ly norm of numerical errors obtained by the FV-RB scheme and FV-Roe scheme on
irregular triangle meshes.
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windows xp system and Digital/Compaq Visual Fortran compiler. But each computation uses
only one processor because the code is not parallelized. To make such a comparison possible, we use
FV-RB and FV-Roe second and third-order computations on the finest irregular mesh Tri_irregb
and obtain from these computations the CPU cost and memory storage for each scheme. For each
computation on this grid with 57518 dof, we report the total CPU time and number of iterations
needed to reach machine-zero steady-state from which we derive a CPIPD (CPU time Per Iteration
Per Dof). The values reported in Table 3.5 are also normalized by the smallest values (obtained
with the second-order Roe scheme) and displayed in Table 3.6. Although this comparison may be
to some extent machine-dependent and no special effort was made regarding the cost and memory
optimization in our solvers, these values provide a basis to draw a few conclusions regarding the
estimation of the relative costs of the RB schemes developped in this work :

e the F'V-RB schemes are systematically more expensive and time-consuming than the corre-
sponding FV-Roe scheme. When comparing RB O3 with Roe O2 the extra CPIPD and extra
memory reaches roughly a factor of 1.5 and 2 correspondingly.

e The third-order RB scheme requires about the same amount of memory than the third-order
Roe scheme with a CPIPD only slightly larger (about 10%).

Keeping these numbers in mind, we first analyze the efficiency of the schemes when applied to
compute the 2D advection problem. On the finest irregular grid, retained as the sample of the
observed behavior, we note that the convergence to a zero-machine steady-state is achieved for all
schemes, with a number of iterations ranging from about 400 for Roe O2 and O3, up to 440 for RB
02 and 470 for RB O3 (see Figure 3.5). Taking into account the cost per iteration, this leads to a
factor of about 1.7 on CPU time between the fastest method Roe O2 and the slowest one RB O3.
However, such a comparison is not fair since the error level achieved by RB O3 at convergence is much
lower than Roe O2. A more interesting and meaningful comparison is to analyze the convergence
behavior of the schemes for a similar accuracy level. It can be inferred from the error curves displayed
in Figure 3.4 that the minimum error level on the series of irregular triangle-based grids is achieved
with the second-order schemes on the finest grid Tri_irreg5h, while is achieved on the grid T'ri__irreg4
with Roe O3 and on the grid Tr:_irreg3 with RB O3. The associated convergence curves both in
iterations and in CPU time are display in Figure 3.6. The hierarchy is now widely different: for this
fixed level of accuracy, the RB O3 scheme provides the solution about 30 times faster than the Roe O2
scheme. This gain is achieved because of the reduction in the number of dof (from 57518 for the grid
level 5 down to 3588 for the grid level 3) and also because of a faster convergence (in iterations) on
coarser grids. At the same time, the RB O2 scheme remains more expensive than the Roe O2 scheme
because it achieves the same level of accuracy on a given grid for a cost per iteration 15% higher
and a slightly slower convergence. This can be further interpreted as the fact that the dominant
error term for the second-order schemes comes from the centered non-dissipative contribution to the
flux balance; when going to third-order, the dominant error contribution comes from the dissipative
contribution to the flux balance and the gain offered by the RB scheme demonstrates the good
properties of the residual-based dissipation, although third-order is not reached between two finest
grids.
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Scheme | Memory (MB) | CPU time (s) | Iterations | CPIPD

RB 02 52 60.7 440 2.4 x 107
RB O3 92 83.6 470 3.1x10°¢
Roe O2 45 48 390 2.1 x107¢
Roe O3 86 64.7 400 2.8 x 107°

Table 3.5: Computation cost of the F'V schemes obtained on mesh Tri irreg5, CF'L = 5.

Scheme | Normalized Memory Requirement | Normalized CPIPD
RB O2 1.16 1.14

RB O3 2.04 1.48

Roe O2 1 1

Roe O3 1.91 1.33

Table 3.6: Normalized memory requirement and Cost Per Iteration Per Dof for the second and
third-order RB and Roe schemes.
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Figure 3.5: Convergence history for the second and third-order Roe and RB schemes with CFL =5

on the finest regular grid Tri_reg5. Left : L, norm of the residual vs iterations; right : Ly norm of
the residual vs CPU.
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Figure 3.6: Convergence history for the second and third-order Roe and RB schemes with CFL =5

on grids where a similar error level is achieved at steady state. Left : L, norm of the residual vs
iterations; right : Lo norm of the residual vs CPU.

3.1.2 Subsonic inviscid flow over a NACAQ0012 airfoil

We proceed now to the application of the second- and third-order RB schemes to the solution of
the Euler equations. Our focus here will not be on a comparison between the RB scheme and a
conventional upwind scheme such as the Roe scheme, but rather on a detailed analysis of the possible
benefit of using a third-order scheme instead of a second-order scheme. This is precisely the main
motivation of the ADIGMA project in which this thesis has taken place. The idea is to quantify for a
given method the cost reduction offered by the third-order scheme with respect to the second-order
one, taking into account most of the aerodynamic solvers in use for industrial applications are still
limited to second-order accuracy. This quantification has been performed for a panel of test-cases
representing the typical problems encountered in the aeronautical industriy. For each test-case, in-
dustrial partners have specified grid convergence criteria for some aerodynamic quantities of interest
(for instance, lift coefficient, drag coefficient and moment coefficient) and a series of increasingly
refined grids has been generated. The second and third-order schemes have then been run on these
various grids. The grid size required for both schemes to achieve the grid-independent results within
the prescribed tolerance intervals have been analyzed and compared. A systematic faster grid con-

vergence of the third-order scheme should be expected but the third-order scheme will be proved

valuable if the gain in the number of dof required to achieve a prescribed accuracy level is not com-

promised by an excessive over-cost of the third-order scheme with respect to the second-order one. In

this section our focus is on such a demonstration of interest for the RB schemes developed in this work.

Methodology The first case of demonstration retained in the ADIGMA project and analyzed now
is the subsonic inviscid flow (upstream Mach number M, = 0.5, angle of attack av = 2°) over the
NACAO0012 airfoil. Meshes used for computation are a series of 9 unstructured meshes composed
of mainly quadrilateral elements and provided within the ADIGMA project; their main features are
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summarized in Table 3.7.

Mesh Dof | No. of faces on airfoil
meshl 206 16
mesh2 | 365 32
mesh3 | 664 46
mesh4 | 1197 70
meshb | 2249 112
mesh6 | 4417 182
mesh7 | 9046 306
mesh8 | 19316 528
mesh9 | 41685 926

Table 3.7: Basic information on the unstructured meshes used for the inviscid flow over airfoil
computations.

The performance provided by the RB O2 and RB O3 is analyzed as follows :

computations with both schemes are run for the whole series of grids.

for each grid the lift, drag and moment coefficients are computed (respectively Cl, Cd and Cm
with a moment center located at the quarter-chord of the airfoil).

the evolution of these coefficients with grid refinement is plotted on Fig.3.7

the convergence zone corresponds to the approximation level considered as acceptable in in-
dustrial simulations. This convergence zone is defined by the value obtained on the finest grid
and a tolerance interval which has been provided in the ADIGMA projet based on industrial
experience. In the present case, the extent of the tolerance intervals for the lift, drag and
moment coefficient were respectively Eo; = 1 x 1073, Ecg = 1 x 107* and E¢,, = 2 x 1074,
The corresponding convergence zone for the lift coefficient is then given by Cl,,csn9 + Fcy, and
similarly for the drag and moment coefficients.

grid convergence is considered as achieved when the curve "result vs dof" enters for the first
time the convergence zone (without leaving it for further refinement).

once the grid level necessary to achieve grid convergence for each scheme has been defined, the
final efficiency analysis must take into account the dof of the first grid ensuring convergence
and the CPIPD of the scheme.

Overview of the flow Figure 3.8 provides a view of the finest quadrilateral grid (mesh9) and
displays some results illustrative of the flow physics - obtained with the RB O3 scheme on this finest

grid.

As explained above, the comparison between schemes will be performed following the very

matter-of-fact approach adopted in the ADIGMA project, based on global indicators (aerodynamic
coefficients) and not on contours or wall-distributions analysis. The Mach contours, wall-pressure
distribution and wall-entropy deviation (Cys = (S — Sx)/S«) displayed in Figure 3.8 illustrate the
smoothness of this subsonic inviscid flow. The entropy variation obtained with the RB O3 scheme
on this fine grid does not exceed 1%. The computed aerodynamic coefficients on this finest grid are
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Figure 3.7: Aerodynamic coefficients convergence with dof based on meshes from mesh1 to mesh9
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obtained by the second and third-order FV-RB scheme.
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also displayed in Table 3.8 both for RB O2 and RB O3 scheme. The difference in the lift coefficient
predicted by the two schemes amounts to 0.7%. For this subsonic inviscid case, the drag should be
zero of course and any deviation from this value is a symptom of numerical dissipation; the computed
drag with RB O3 is 3.6 times lower than the one with RB O2.

Scheme C Cq Ch,
02 0.282181 | 1.67 x 10~* | -0.002545
03 0.284150 | 4.62 x 10~ | -0.002936

Table 3.8: Aerodynamic coefficients obtained with the FV-RB scheme on mesh9.

Results analysis from the point view of accuracy/efficiency It can be deduced from the
curves displayed in Figure 3.7 that :

e the lift coefficient is converged on mesh8 for RB O2 and on mesh6 for RB O3.
e the drag coefficient is converged on mesh?7 for RB O2 and on mesh6 for RB O3.
e the moment coefficient is converged on mesh8 for RB O2 and on mesh?7 for RB O3.

Summing things up it can be stated that the RB O3 schemes provides a grid converged solution of all
of aerodynamic coefficients by using mesh7, a grid with 19316 dof while RB O2 needs to be applied
with mesh8, a grid with 41685 dof to achieve this same grid convergence. The ratio of dof in favor
of the third-order scheme is therefore about 2.2. To make this comparison complete, it is of course
crucial to know the relative CPIPD of both schemes. Reliable values for these unit costs are obtained
from the series of computations performed on grids mesh6 to mesh9 (see Table 3.9 and 3.10, where
the CPU time corresponds to the time needed to achieve a fully converged state defined by a residual
drop of 8 orders of magnitude). The average CPIPD for RB O2 is 1.25 x 1075 s and 1.575 x 107 s
for RB O3; the extra-cost introduced by the third-order scheme is about 26% (in agreement with the
29% observed in the scalar advection case). On a given grid, the second- and third-order schemes
need roughly the same number of iterations to achieve steady-state (typically RB O3 needs between
3% and 10% more iterations). Of course, using a coarser grid ensures a faster convergence to steady-
state : thus, RB O3 needs 8140 iterations to reach steady-state and yield a grid-converged solution
on mesh7 while RB O2 needs 11760 iterations to achieve steady-state and yield a grid-converged
solution on mesh8. The reduction factor on the iterations in favor of RB O3 amounts to 0.69 going
up to 0.87 when the extra-cost (26%) per iteration for RB O3 is taken into account. Eventually the
net efficiency gain offered by the third-order RB scheme is 2.2 (ratio of the dof) divided by 0.87
(CPU gain on convergence to steady-state) which is 2.5. This factor corresponds also of course to
the direct CPU time ratio, 10016 s for RB O2 over 3821 s for RB O3, but we wanted to give some
more details on how this gain is built (intrinsic convergence, cost per iteration, grid size). If the grid
convergence for a specific aerodynamic coefficient is under consideration, the following is observed :

e the lift coefficient convergence is obtained with a CPU time gain of 87% for RB O3 with respect
to RB O2 (and a corresponding memory gain of 56%).

e the drag coefficient convergence is obtained with a CPU time gain of 60% for RB O3 with
respect to RB O2 (and a corresponding memory gain of 8%).
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e the moment coefficient convergence is obtained with a CPU time gain of 59% for RB O3 with

respect to RB O2 (and a corresponding memory gain of 16%).

Dof | Memory (MB) | CPU time (s) | Iterations | CPIPD
4417 7 277 5100 1.23 x 107°
9046 12 888 7900 1.24 x 107°
19316 25 2862 11760 1.26 x 107°
41685 52 10016 18860 1.27 x 107°

Table 3.9: Computation cost of the FV-RB O2 scheme obtained from mesh6 to mesh9.

Dof | Memory (MB) | CPU time (s) | Iterations | CPIPD
4417 11 359 5220 1.56 x 107°
9046 21 1161 8140 1.57 x 107
19316 43 3821 12300 1.61 x 107
41685 91 13421 20640 1.56 x 107°

Table 3.10: Computation cost of the FV-RB O3 scheme obtained from mesh6 to mesh9.

3.1.3 A 3D helicoidal advection problem

Following a methodology similar to the one adopted in 2D, another model scalar advection problem

is used to check the actual order of accuracy brought by the FV-RB scheme in 3D. This helicoidal

advection of a Gaussian profile problem is defined as follows :
ow ow 18W B ow

o Tiar T T =0

on the flow domain z € [-1,0], y € [0, 1], z € [0,1]. The initial condition is simply W (z,y, z,0) =0
in the whole domain with the inlet boundary condition:

W(Iv Y, O, t) = 6_50((~’U+%)2+(y_%)2).

on lower boundary z = 0.

For this 3D problem, two types of meshes will be used : so-called "structured" meshes because they
appear as Cartesian grids since based on regular hexahedral elements, and unstructured meshes based
on tetrahedral elements. The main features of these meshes are listed in Table 3.11 and 3.12.

A view of the steady solution obtained with the RB O3 scheme on the fine mesh Tetra 5 is plotted
in Figure 3.9. It is provided to give an overview of the solution of the model flow problem as well as to
illustrate the good accuracy of the numerical solution (on what is a fine grid) : the computed solution
distribution on the outlet boundary is hardly distinguishable from the imposed distribution on the
inlet boundary. The analysis of the accuracy will now be performed using a grid convergence study
on the series of structured and unstructured grids, completed by considerations on the respective
cost of each scheme (namely the second- and third-order Roe schemes on one hand and the second-
and third-order RB schemes on the other hand).
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Figure 3.8: Mesh9 (top left) and the corresponding results obtained with the O3 RB scheme. Top
right is the Iso-Mach contour with 30 levels from 0 to 0.7, bottom left is the pressure coefficient

distribution on the airfoil, bottom right is the entropy coefficient distribution on the airfoil.

Mesh cells | boundary faces
Hex 1| 1000 600
Hex 2| 8000 2400
Hex 3 | 27000 5400
Hex 4 | 64000 9600
Hex 5 | 125000 15000

Table 3.11: structured hexahedral meshes for the 3D helicoidal advection problem.
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Mesh cells | boundary faces
Tetra 1| 7506 1364
Tetra 2 | 56076 0402
Tetra_ 3 | 191110 12140
Tetra 4 | 433439 21602
Tetra 5 | 870128 33676

Table 3.12: Unstructured tetrahedral meshes for the 3D helicoidal advection problem.

08 08

06

Figure 3.9: W iso-contours (20 levels from 0 to 1) obtained by the FV-RB O3 scheme with mesh
Tetra 5 on the face "z = 0" (left) and "z = 0" (right). The dashed black line is exact solution,
solid red line is the numerical solution.
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Accuracy analysis on regular hexahedral meshes Figure 3.10 displays the error convergence
curve for the second- and third-order Roe and RB schemes when the series of regular hexahedral
meshes is used. Although some error cancelations seem sometimes to take place, which is artificially
increasing the practical order of accuracy, each scheme is found to yield the expected behavior; in
particular, the second-order RB scheme yields a slope exactly equal to 2 for the log(error) vs log(mesh
size) curve and the third-order RB scheme displays a curve with a slope equal to 3.3 (see also Table
3.13). Even more interestingly, the error level produced by the third-order RB scheme is particularly
low : when the second-order Roe and RB schemes as well as the third-order Roe scheme produce
about the same error level (about 1073) with the finest grid Hex 5, the third-order RB scheme
already yields this same error level on grid Hex 3, with 27000 dof compared to the 125000 dof on
the finest grid.

Mesh | Ly error of RBO2 | order | Ly error of RBO3 | order
Hex 1 -1.82430 - -1.68127 -
Hex 2 -2.39261 1.89 -2.59874 3.05
Hex 3 -2.73202 1.93 -3.21879 3.52
Hex 4 -2.98182 2.00 -3.64636 3.42
Hex 5 -3.17614 2.00 -3.96648 3.30

Table 3.13: Ly norm of numerical errors obtained by the FV-RB scheme on structured hexhedral
meshes.
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Figure 3.10: Ly norm of numerical errors obtained by the FV-RB scheme and FV-Roe scheme on
structured meshes from Hex 1 to Hex 5.

Accuracy analysis on tetrahedral meshes When the previous mesh convergence analysis is
carried out on the series of irregular tetrahedral meshes, the results of the third-order RB scheme
are unfortunately disappointing. As can be observed from Table 3.14 and Figure 3.11, the RB O3
scheme gives only second-order on these irregular tetrahedral meshes, while it does give third-order
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convergence on the previous regular hexahedral meshes. Moreover, the error level provided by RB O3
on the finest grid is about the same as the one given by RB O2, itself almost identical to the error level
provided by Roe O2. In the meantime, the Roe O3 scheme does yield a third-order practical accuracy,
this means the quadratic solution reconstruction is correctly implemented in 3D. This disappointing
behavior of the RB O3 scheme on irregular meshes most likely results from the evaluation of the
RB dissipation, which is quite geometry dependent. In spite of our careful investigations, we did not
manage to understand the reason for this loss of accuracy on irregular meshes untill now.

Mesh | Lo error of RBO2 | order | Ly error of RBO3 | order
Tetra 1 -2.01724 - -1.96477 -
Tetra 2 -2.67112 2.30 -2.62094 2.30
Tetra 3 -2.99440 1.84 -3.02481 2.30
Tetra 4 -3.22007 2.05 -3.26260 2.16
Tetra 5 -3.41852 2.02 -3.45300 1.94

Table 3.14: Ly norm of numerical errors obtained by the FV-RB scheme on unstructured tetrahedral
meshes.
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Figure 3.11: L; norm of numerical errors obtained by the FV-RB scheme and FV-Roe scheme on
unstructured meshes from Tetra 1 to Tetra 5.

Efficiency analysis Since the computations on the tetrahedral unstructured meshes seem to be
flawed, we shall restrict our analysis of efficiency onto the much more encouraging (and consistent
with the theory) results obtained on the hexahedral meshes. The analysis method adopted here is
similar to the one used for 2D circular-advection case. First of all, residual convergence histories of
second and third-order RB and Roe scheme obtained on the finest mesh Hex 5 are showed in Figure
3.12. It is found that the third-order scheme takes few more iterations to reach the convergence than
the second-order scheme for the Roe numerical flux, which is also the case for 2D problems; while
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3.1 Steady inviscid smooth flows

the second-order RB scheme takes many more iterations than its third-order scheme for this case,
which is not the situation in 2D. This must be related to the implicit phase. The residual evolution
with CPU time obtained with 4 schemes is quite reasonable, the third-order scheme is more complex
than the second-order scheme and therefore takes more CPU time to reach the convergence. As
the CPIPD(Cost Per Iteration Per Dof) of the RB scheme is globally higher than the Roe scheme,
the CPU time of computation with RB schemes is longer than the Roe schemes. Although RB O2
scheme takes about 70 more iterations than the RB O3 scheme to reach the convergence, the CPU
time necessary for RB O3 to reach the convergence is still longer than the one needed for the RB O2
scheme because the CPIPD of RB O3 is higher than RB O2.

Table 3.15 shows detailed information on the computation cost of FV based 4 schemes. As RB
schemes need more iterations than the Roe schemes to reach the residual convergence and the CPIPD
of RB schemes is higher than the Roe scheme, the total CPU time needed by the RB schemes for the
residual convergence is therefore longer than the one for Roe schemes. And the RB scheme needs
more memory for a computation than the Roe schemes. On the same mesh the third-order scheme
is always more expensive on memory and CPU time than the second-order scheme. If values in
Table 3.15 are normalized by the smallest values (results obtained with Roe O2 scheme), Table 3.16
is obtained, which makes the computation cost of each scheme more clear. For Roe schemes, O3
scheme consumes 3.68 times more memory and 1.63 times more CPIPD than the O2 scheme. And
RB O3 scheme is 2.68 and 2.40 times more expensive on memory and CPIPD respectively than the
RB O2 scheme. Comparison between RB scheme and Roe scheme shows that RB O2 scheme spends
1.6 times more memory and 1.53 times more CPIPD than the Roe O2 scheme, and the memory
and CPIPD of RB O3 scheme are correspondingly 1.16 and 2.26 times more than those of Roe O3
scheme. On the same mesh, the moste expensive scheme on memory and CPIPD is RB O3 scheme.

Scheme | Memory (MB) | CPU time (s) | Iterations | CPIPD

RB 02 203 145 200 5.8 x 107°
RB O3 943 248 140 1.4 x107°
Roe 02 127 42.9 90 3.8 x 1076
Roe O3 467 78.0 100 6.2 x 1076

Table 3.15: Computation cost of the 'V schemes obtained on mesh Hex 5, CFL = 106,

Scheme | Normalized Memory Requirement | Normalized CPIPD
RB 02 1.6 1.53

RB O3 4.28 3.68

Roe O2 1 1

Roe O3 3.68 1.63

Table 3.16: Normalized memory requirement and Cost Per Iteration Per dof for the second and
third-order RB and Roe schemes.

As mentioned before in 2D advection case, it is not fair to compare the efficiency of second and
third-order schemes on the same mesh. This compairison should be made for the same accuracy
level. From Figure 3.10 it can be seen that Roe O2, O3 and RB O2 scheme achieve about the same
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CHAPTER 3 : Applications of F'V-RB scheme

error level on mesh Hex 5, while this error level is already obtained by the RB O3 scheme on mesh
Hex 3. So it is interesting to compare the efficiency of these schemes based on this error level.
In Figure 3.13 it is found that to reach the same level of accuracy, Roe O2 scheme takes the least
iterations and RB O2 scheme takes the most iterations, but it is RB O3 scheme who takes the least
CPU time to reach the convergence, which shows the real advantages of using the high-order scheme.
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Figure 3.12: 3D helicoidal advection. Convergence history for the second and third-order Roe and
RB schemes with CFL = 10° on grid Hexa 5. Left : L, norm of the residual vs iterations; right :
Lo norm of the residual vs CPU.

3.1.4 Subsonic inviscid flow over a 3D airfoil body

The 3D schemes are extended to the system of the Euler equations and applied to the computation
of the subsonic flow over a 3D geometry. A conventional or typical geometry would have been a
wing but it was decided in the ADIGMA project to compute the flow at M., = 0.5, angle of attack
a = 1°, over a streamlined body. The body surface is made from surface of revolution produced by

a 10% thick airfoil which are joinded by a central part corresponding to a simple extrusion of this
thick airfoil (see Figure 3.14).

A grid convergence study similar to the one carried out in 2D is also performed but on a limited
number of grid levels, in order to reduce the computational cost of the study. The meshes used
for the computations are unstructured meshes based on pure tetrahedral elements, which have been
provided within the ADIGMA project; the dof associated with each grid are summarized in Table
3.17.

Overview of the flow Figure 3.15 displays Mach contours in selected cut-planes, as computed by
the FV-RB O3 scheme on Mesh3 (finest grid available). As the flow is in the z positive direction
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RB schemes
steady-state.

3D helicoidal advection. Convergence history for the second and third-order Roe and
with CFL = 10° on grids in which about the same level of accuracy is achieved at
Left : L, norm of the residual vs iterations; right : Lo norm of the residual vs CPU.

b

Figure 3.14: Surface mesh for the airfoil body corresponding to the ADIGMA Baseline Test Case
n° 0 (BT'CO0). The level of refinement of the mesh shown in the picture is Mesh3 (finest grid).

Mesh Dof
Meshl | 191753
Mesh2 | 254960
Mesh3 | 440494

Table 3.17: Unstructured tetrahedral meshes for the 3D airfoil body.
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CHAPTER 3 : Applications of F'V-RB scheme

and its attack angle 1° in z positive direction, the asymmetric Mach contours on the plane "y=0"(top
left figures) are found. The zoom of leading edge (top right figure) shows that contours obtained by
the RB O3 scheme on this fine mesh are smooth. Because the airfoil body is symmetric to the plane
"z=0" and the flow has no angle with the direction y, symmetric contours around the airfoil body
are found on the plane "z=0" (bottom figures), and it is interesting to see two symmetric vortex
structures around the trailing edge (bottom right figure).

Figure 3.15: Mach contours (30 levels from 0.01 to 0.5) obtained with the RB O3 scheme on Mesh3.
Top : global view of flow around the airfoil body on the cut plane "y=0" (left) and a zoom of the
leading edge (right). Bottom : global view of flow around the airfoil body on the cut plane"z=0"
(left) and a zoom of the trailing edge (right).

Accuracy and efficiency analysis Figure 3.16 shows aerodynamic coefficients evolution with the
increase of dof used by the computation. Cm is the aerodynamic force moment coefficient with the
moment center located at the point (0.25,0,0). The convergence zone is obtained with the permitted
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3.1 Steady inviscid smooth flows

error given by the ADIGMA project: Egy = 1 x 1073, Egg = 3 x 107* and Eg,, = 5 x 107%. It is
found that globally the result difference between the FV-RB second and third-order scheme is very
small, as showed in results of the 3D helicoidal advection case. For the lift coefficient, FV-RB O2 and
O3 scheme stays in the convergence zone from the coarse mesh Meshl, while the steady converged
value seems achieved on Mesh2 because the difference between the value obtained on Mesh2 and
on Mesh3 is small. The drag coefficient convergence is achieved by the RB O2 and O3 scheme until
Mesh3. Like the lift coefficient convergence, the moment coefficients obtained by both RB O2 and
O3 scheme always stay in the convergence zone, and the converged value is almost achieved on the
Mesh2.
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Figure 3.16: Aerodynamic coefficients convergence with dof based on meshes from Meshl to Mesh3
obtained by the second and third-order FV-RB scheme.

In Table 3.18, Iterations showed are those necessary to achieve the full converged steady state,
which is defined as a density residual drop of 5 orders for this case. By comparing with Table 3.19, it
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Dof | Memory (MB) | CPU time (s) | Iterations | CPIPD
191753 322 33790 2950 3.0 x 107
254960 429 56200 6790 3.2 x107°
440494 47 130800 8800 3.4 x107°

Table 3.18: Computation cost of the FV-RB O2 scheme obtained from Meshl to Mesh3.

Dof | Memory (MB) | CPU time (s) | Iterations | CPIPD
191753 865 61050 7600 4.2 x107°
254960 1100 99100 8830 4.4 x107°
440494 2000 260000 11680 51 x107°

Table 3.19: Computation cost of the FV-RB O3 scheme obtained from Mesh1l to Mesh3.

Scheme C, Cy Ch,
02 3.9564 x 10~% | 8.8020 x 10~* | 1.6096 x 10~3
03 5.0117 x 10~* | 8.7147 x 10~* | 1.5598 x 1073

Table 3.20: Aerodynamic coefficients obtained with the FV-RB scheme on Mesh3.

is found that the FV-RB O3 scheme has a averagely 41% higer CPIPD and 2.7 times more memory
requirement, than the FV-RB O2 scheme for a computation. Unfortunately the precision gain of the
third-order scheme is very small. In Table 3.20 exact aerodynamic coefficient values obtained on
the finest mesh are showed. For this subsonic case, ideally the drag is zero, so it is easy to see the
precision gain on the drag coefficient. The RB O3 scheme gives only a 1% smaller drag than the O2
scheme. For other coefficients, the quality of RB scheme results can be seen from the comparison
with a reference result of a project partner NLR(National Aerospace Laboratoy) showed in ADIGMA
project report [1]. Tt gives C; = 2.1163 x 107*, Cy = 5.3076 x 10™*, C,,, = 1.7085 x 1073, which are
obtained on a structured grid with 1572864 dof by a second-order discontinuous Galerkin method. It
is found that on the lift coefficient, RB O2 scheme has 87% difference from the reference result, and
RB O3 scheme has 137% difference; for the moment coefficient, the difference between the reference
value and the RB O2 result is 6%, and RB O3 result has 9% difference.

3.2 Steady inviscid flows with shocks

3.2.1 Transonic inviscid flow over a NACAO0012 airfoil

After having analyzed the performance of the FV-RB scheme for smooth flows in 2D and 3D,
flow problems with discontinuities are taken into consideration in this section. First of all, a well-
documented test case is considered, namely the steady transonic inviscid flow around the NACA(0012
airfoil with an inlet Mach number equal to 0.8 and an angle of attack a equal to 1.25°. The main
characteristics of this flow are a strong shock on the suction side and a weak shock on the pressure
side of the airfoil. A rather fine unstructured mesh with 26384 pure triangle elements is used in our
computation (see Figure 3.17). In fact, in the course of the ADIGMA project, a grid convergence
study similar to the previous subsonic case has been performed and similar conclusions on the faster
grid convergence of the FV-RB O3 scheme have been drawn. Rather than repeating this study here,
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3.2 Steady inviscid flows with shocks

we wish to illustrate in this section the shock-capturing properties of the second- and third-order RB
schemes on a sufficiently fine grid.

Scheme | K | S 3 Cr Ch Cu
RB O2 | 2 - - 0.35825417 | 0.02300606 | -0.04090117
RB O3 | 2 | 160 | 0.03 | 0.36009461 | 0.02293367 | -0.04137368

Table 3.21: Limiter parameters used by the FV-RB scheme and the corresponding aerodynamic
coefficients obtained on a triangular mesh with 26384 dof.
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Figure 3.17: Computation mesh (top left) and the corresponding results obtained with FV-RB
scheme. Top right is the Iso-Mach contour (30 levels from 0 to 1.4) obtained by the O3 RB scheme,
bottom figures the pressure coefficient distribution (left) and the entropy coefficient distribution
(right) on the airfoil obtained by both O2 and O3 RB scheme.
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The limiting strategy described in 2.1.4 is used to remove oscillations. The sole parameter for
the second-order scheme is the coefficient K used in the Venkatakrishnan limiter; for the third-
order scheme, the parameter S and ( coefficient appearing in the switch (2.53) from quadratic
reconstruction to limited linear reconstruction must also be tuned. The values eventually retained
are typically used for transonic flows and yield oscillation-free results. They are summarized in Table
3.21, where the computed aerodynamic coefficient are also displayed. A reference result is provided
by a project partner DLR (German Aerospace Center) in the ADIGMA project report [2], which is
obtained on a structured C-mesh with 115584 dof by a second-order scheme, and yields the following
reference values for the lift, drag and moment coefficients : Cp = 0.357895, Cp = 0.022736 and
Cy = —0.038646. It is found that the result of FV-RB O2 scheme has a 0.1% difference on Cp,, 1.2%
difference on Cp and 5.8% difference on C);, while the FV-RB O3 gives a result with 0.6% difference
on Cr, 0.9% difference on Cp and 7% difference on Cj;. More importantly, it must be underlined
the second- and third-order RB schemes yield very close results (which do not differ by more than
1%) which tends to validate the strategy followed for the third-order scheme in presence of flow
discontinuities. Some representative results are displayed in Figure 3.17 : Mach contours computed
using RB O3, pressure coefficient and entropy deviation distributions at the wall computed with RB
02 and RB O3. It is clear from these pictures that both the strong and weak shocks are well captured
by the FV-RB O2 and O3 schemes. The difference between these two schemes on the Cp is very
small; meanwhile, on the CS figure, the better accuracy of the third-order solution can be observed
with, in particular, a lower entropy deviation level upstream of the shocks.

3.2.2 Transonic inviscid flow over the ONERA M6 wing

The performance of the FV-RB scheme is also assessed for a 3D transonic case, namely the flow over
the ONERA M6 wing with an inlet Mach number M., = 0.84 and an angle of attack o = 3.06°. At
first, computations with both the second and third-order RB schemes have been performed on a very
coarse "structured" mesh containing 48000 hexahedrons. The limiting parameters used for this case
are listed in the Table 3.22. The mesh and the Mach number contours computed with the FV-RB
O3 scheme are displayed in Figure 3.18.

Scheme | K | S |
RBO2 | 6 | - -
RBO3 | 6 | 160 | 0.1

Table 3.22: Limiter parameters used by the FV-RB scheme for the transonic inviscid flow over the
ONERA M6 wing.

Although the mesh is coarse, the A-shock structure on the upper wing surface is already correctly
captured by both FV-RB O2 and O3 scheme. A more detailed comparison between the RB O2
and O3 schemes can be found in the wall pressure coefficient distributions on the wing along some
selected spanwise sections where experimental data (for an evidently turbulent flow) are available
(see Figure 3.19). Globally the differences between the FV-RB O2 and O3 schemes on the computed
C, distributions are small. For the position around 20% of the span-wise length, counted from the
wing root, the two branches of the A-shaped shock are captured in a very similar way by both FV-RB
02 and O3 schemes. At 65% of the span-wise length away from the wing root, the result provided
by the O3 scheme appears more dissipative, probably because the choice of the parameter 3 is not
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Figure 3.18: Coarse structured mesh and the corresponding result. Structured mesh(left)
with 48000 cells, and the Mach iso-contour (right) with 40 levels from 0.2 to 1.5 obtained with O3

RB scheme.

optimal (the tuning of such a parameter becomes difficult to perform for costly 3D computations).
When the position moves to 95% spanwise length away from the wing root, only one shock branch
is left and it seems that the O3 scheme gives a slightly sharper shock. It must be underlined that
both sets of results are quite close to the experimental data, which are obtained with the same Mach
number and attack angle but for a turbulent flow with Reynolds number 1.172 x 107[43].

Next, the FV-RB O2 and O3 schemes are applied to the computation of the same case but using an
unstructured mesh with 818411 tetrahedrons provided by the ADIGMA project. This unstructured
mesh has about 17 times more elements than the previous structured mesh and will of course yield
more accurate results. This computation gives us in particular the opportunity to demonstrate the
RB solver is fully operational on whatever type of 3D unstructured grids. Moreover, it is also a
chance to assess the behavior of the second-order and third-order RB schemes for the typical values
of the parameters K, § and S that we have decided to use for transonic flows in 3D. The Mach
contours computed by the RB O3 scheme are displayed in Figure 3.20 and clearly illustrate the A-
shaped shock structure is much better captured on this refined grid. Figure 3.21 allows to appreciate
in some detail the differences between the FV-RB O2 and O3 schemes. As could be expected from
the already close agreement on the previous coarse grid, the second and third-order results remain
very close to each other (and in good agreement with experimental values). Note also the choice of
limiting coefficients previously adopted seem to work well again in this case, which is encouraging
since we do not wish to fine-tune these coefficients for each new computation. The overshoots in
the RB O3 C,-prediction near the wing leading-edge are not oscillations (the flow is smooth in this
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Figure 3.19: Coarse structured mesh results. C), distribution on the wing body for spanwise
wing sections located respectively 20% (top left), 65% (top right), and 95% (bottom) span-wise length
away from the wing root, obtained with the second and third-order FV-RB schemes.
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Figure 3.20: Fine Unstructured mesh and the corresponding result. Unstructured mesh (left)
with 818411 cells. Mach contours (right) with 40 levels from 0.2 to 1.8 obtained with the O3 RB
scheme.

3.3 Steady viscous flows

3.3.1 2D advection-diffusion problem

Before solving the Navier-Stokes equations, the viscous formulation of the second and third-order
FV-RB schemes are tested on a 2D advection-diffusion model problem. The governing equation of
this problem reads:

oW N a(‘?W - V(‘?ZW
ot or  Oy?’
and the flow domain is 2 € [0, L], y € [0, L] (L = 1). The problem can be seen as a Poiseuille-type

flow :

e the solution in the flow domain is initialized with W = 1;
e the inlet condition W = sin(w¥) is imposed on the boundary x = 0;
e "wall-like" conditions are imposed on the lower (y = 0) and upper (y = L) boundary : W = 0;
e the boundary x = L is an outflow where the solution is extrapolated from the interior domain.
The exact solution of the problem at steady-state is given by :
2v,

We:cact(x, y) = S?:’II(T(‘y)e_7T a

Physically, the inlet signal is convected and diffused along the way (see also the plot of this exact
solution in Figure 3.22). The computations performed in this section use the following values of
the problem parameters : a = 1, v = 0.005 and L = 1, so that the Reynolds number is equal to
Re = aL/v = 200. Two series of unstructured meshes are used to perform the grid convergence
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Figure 3.21: Fine Unstructured mesh results. C), distribution on the wing body for span-wise
wing sections located respectively 20% (top left), 65% (top right) and 95% (bottom) of the span-wise
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length away from the wing root, obtained by second and third-order FV-RB schemes.
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study with the Roe O2, Roe O3, RB O2 and RB O3 schemes : a series of regular triangle meshes
and a series of irregular triangle meshes which are precisely the ones used for the circular advection
problem (see Table 3.1 and Table 3.2 for a summary of their main features).

0.8

0.4

0.2

Figure 3.22: Left : contours of the solution W (with 30 levels from 0 to 1) obtained by the RB O3
scheme on mesh Tri_regb. Right : 3D view of the exact solution.

Accuracy analysis on regular grids The numerical errors produced by the FV-RB schemes
on regular triangle meshes are summarized in Table 3.23. Plots of the error versus the character-
istic mesh size are also provided in Figure 3.23 along with the results given by the conventional
Roe scheme. Let us recall that with the choice made in Chapter 2 for the design of the viscous
extension of a conventional scheme and of the RB scheme, we expect in fact to recover in practice
first-order accuracy only for the so-called Roe O2 and RB O2 schemes and second-order accuracy
for the so-called Roe O3 and RB O3 schemes. Indeed, let us remind the reader the solution gradient
is computed to first-order with the linear least-square reconstruction for the O2 scheme while the
quadratic least-square reconstruction used by the O3 scheme gives a second-order approximation of
the solution gradient.

In practice, the FV-RB O2 scheme gives indeed an order of precision close to 1 when the finer meshes
are used while the RB O3 scheme is almost second-order accurate. Note the Roe and RB schemes
of the same order yield close error levels which can be explained by the fact the dominant error for
this low-Reynolds number flow comes from the centered discretization of the viscous flux, which is
the same for Roe or RB scheme. It is important to note that the third-order schemes yield on the
mesh Tri__reg3 an error level comparable with the error level achieved by the second-order schemes
on the finest mesh Tri_reg5.
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Mesh Ly error of RBO2 | order | Ly error of RBO3 | order
Tri regl -2.59113 - -3.52000 -
Tri_ reg2 -3.19317 2.00 -4.32713 2.68
Tri reg3 -3.78722 1.97 -4.98202 2.18
Tri reg4 -4.32675 1.79 -5.58930 2.02
Tri_regh -4.70709 1.26 -6.16806 1.92

Table 3.23: Ly norm of numerical errors obtained by the F'V-RB scheme on regular triangle meshes.
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Figure 3.23: Ly norm of numerical errors obtained by the FV-RB scheme and FV-Roe scheme on
regular triangle meshes.
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Accuracy analysis on irregular grids Table 3.24 and Figure 3.24 show the results obtained when
performing the grid convergence analysis on the series of irregular triangle meshes. A bit strangely,
it is found that the FV-RB O2 scheme gives a globally better convergence order on these irregular
meshes than on the previous regular meshes, with an accuracy order equal to 1.62 when reaching the
finest grids. A slightly better accuracy order is also found on irregular meshes for the RB O3 scheme,
with an order equal to 2.17 on the finest grids. What is more interesting is the fact that, again, the
O3 scheme needs a much coarser grid (Tri_irreg3) to produce the error level achieved with the O2
scheme on the finest grid Tri_irreg5.

Mesh Ly error of RBO2 | order | Ly error of RBO3 | order
Tri irregl -2.59034 - -3.36309 -
Tri_irreg2 -3.22951 2.17 -4.12650 2.59
Tri_irreg3 -3.88792 2.46 -4.84348 2.68
Tri_irregd -4.48798 1.88 -5.56022 2.25
Tri_irregh -4.97336 1.62 -6.21312 2.17

Table 3.24: L, norm of numerical errors obtained by the FV-RB scheme on irregular triangle meshes.

| - O - RoeO2 25F | - O - RoeO3
25F | —A— RBO2 | —A— RBO3

log_errL2

Figure 3.24: L, norm of numerical errors obtained by the FV-RB scheme and FV-Roe scheme on
irregular triangle meshes.

Efficiency analysis The same analysis method used for 2D and 3D advection case is adopted
for this case, which is to compare at first the efficiency of the second and third-order RB and Roe
schemes on the same mesh, and then the cost of 4 schemes to achieve the same accuracy level. In
Figure 3.25 it is interesting to see that on the same irregular triangle mesh, RB schemes take less
iterations to reach the steady state than the Roe schemes, and iterations used by the second and
third-order schemes to reach the convergence are comparable, with few iterations less necessary for
the third-order schemes; and the most CPU-expensive scheme is Roe O3 scheme, RB O2 spends the
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least CPU time to reach the steady state. The reason of these CPU time differences can be found in
Table 3.25. It shows that although RB O2 scheme takes 30 more iterations to reach the convergence
than the RB O3 scheme, its CPIPD is lower than the one of RB O3, which finally leads to a smaller
CPU time of RB O2 scheme. At the same time Roe O3 scheme needs 10 iterations less than Roe O2
scheme for the convergence, but a larger CPU time is obtained with the Roe O3 scheme because of
its higher CPIPD than the O2 scheme. If values in this table are normalized by the Roe O2 result,
Table 3.26 can be obtained. It is found that Roe O3 scheme is 1.29 and 1.98 times more expensive on
CPIPD and memory respectively than the Roe O2 scheme, RB O3 scheme spends 1.27 times more
CPIPD and 1.87 times more memory than the RB O2 scheme. For the third-order schemes, RB O3
scheme needs 1.1 times more CPIPD and 1.08 times more memory than the Roe O3 scheme for the
computation.

Scheme | Memory (MB) | CPU time (s) | Iterations | CPIPD

RB 02 47 80.1 520 2.7x 1076
RB O3 88 96.4 490 3.4x 1076
Roe O2 41 89.9 650 2.4 x10°°
Roe O3 81 115 640 3.1x 107

Table 3.25: Computation cost of the F'V schemes obtained on mesh Tri_irreg5.

Scheme | Normalized Memory Requirement | Normalized CPIPD
RB 02 1.15 1.12

RB O3 2.15 1.42

Roe O2 1 1

Roe O3 1.98 1.29

Table 3.26: Normalized memory requirement and Cost Per Iteration Per dof for the RB and Roe
second and third-order schemes.

As mentioned in Accuracy analysis on irregular grids, with mesh Tri_irreg3 the third-order
schemes achieved the same error level as the one obtained with second-order schemes on mesh
Tri_irregb, it is therefore useful to compare the efficiency of these schemes in this situation (Figure
3.26). It is seen that no matter in term of iterations or CPU time, the third-order schemes are far
less expensive than the second-order schemes, and the difference between RB O3 scheme and Roe
03 scheme is very small. In summary, with less computation cost the third-order scheme can achieve
the same accuracy level as the second-order scheme.

3.3.2 Subsonic laminar flow over a NACAQ0012 airfoil

In order to assess the performances of the FV-RB scheme for solving the Navier-Stokes equations, a
steady laminar flow over the NACAO0012 airfoil is computed, with the far-field conditions : M., = 0.5,
zero angle of attack and Reynolds number (based on the airfoil chord and the far-field incoming flow
boundary conditions Re.,. = 500. A series of 5 increasingly refined triangular meshes is used for
the computations; the main features of these meshes are summarized in Table 3.27. An overview of
the fine meshb is also provided in Fig. 3.27. The grid convergence analysis is performed following
the very same methodology used in the case of the subsonic inviscid case over the NACA0012 airfoil.
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Figure 3.25: 2D advection-diffusion problem. Convergence history for the second and third-order
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The prescribed tolerances on the values of the aerodynamic coefficients computed in the finest grid
are respectively Eg, = £1 x 1073 for the lift coefficient, E¢, = 5 x 10™* for the drag coefficient and
Ec, = £2 x 107 for the moment coefficient.

Mesh Dof | No. of faces on airfoil
meshl | 2262 16
mesh2 | 4518 o0
mesh3 | 8526 150
mesh4 | 17210 400
meshb | 26384 700

Table 3.27: Unstructured triangle meshes used for subsonic laminar flow over the NACA0012 airfoil.

SRR
SR

%0
Nt
SN
vaVAVAVAN'
v,
AT AV

VAN
X0
Tavay

2vaYA
V4
%)

%
ay
AVAVAVAV

-
EK
255
XXX
V)
v,

KA
ALY
P00

vAVaV4

vy

2

vay
ay

oY

Vﬁiﬂmmg

XX
a%‘
s KKK
KN ORI
N Vv, KASRKRN

ORI CANANNKN

PO RERRA) VaVaYay NN
VAVAVAVAVAVAVAY

ArTaAVATAVTATA O

s
SEXX
Yavivio,
AVAAVAVAY}
LYAVaY

SRR
SRR

AVAVavav,
50

vV

VLTS

AVAV ! A INNSRKRPOORIORK
vV NSRRI ORISR
YAV QK Y
SRR ORI RIS
AR IAIEASERIOOOCKSS
OERPOOORRD

XX
K

)

5
PRATAY
LR

a
XX
VATS

Ay
%
3
R
VAVLY,
s
Sk
v,
X

o
KRR

AN AT,
Ya
V.

Y

<Y
>
S
N\
AVa
i
v

e

K7
A
SR
SCEE
X
N/

KA
SRS
LA
AVAVA
DOKRK
XA
LY
YAV
L
AR
S

TAVa S

KK
JAYAY

K \Vi

[
gAY
55
A5

VAVAYA = <y
A
SR
VA
LR
KK
Vv
¥ \ A
~

\V
A VVAVA'AA%

XSO
AR AR
ZOOAISNRPS

N/
OS]

7
O

’V#VA .
R
A
N/
5

Figure 3.27: Global view of mesh5.

Overview of the flow The Mach contours obtained by using the RB O3 scheme on the finest
mesh mesh5 are displayed on top of Fig. 3.29. The computed flow is perfectly (at least visually)
smooth and symmetric with respect to the y axis. The flow seems to remain fully attached. These
observations are confirmed by the plots of the wall-pressure coefficient distribution and skin-friction
distribution along the airfoil. Table 3.28 displays the aerodynamic coefficients obtained on the finest
mesh mesh5 by the FV-RB O2 and O3 schemes. The ideal lift coefficient for this case should of
course be zero because the flow is symmetric along the airfoil chord. The total drag coefficients Cy
computed by both schemes are very close to each other, since their relative difference does not exceed
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3.3 Steady viscous flows

0.2%. Note however there is a compensation effect between the pressure drag Cy, and the viscous
drag Cy,. Precisely the value of Cg, obtained by the RB O3 scheme is 1.7% higher than the one
obtained by the O2 scheme, while the value of Cy, obtained with the O3 scheme is 0.4% smaller than
the one given by the O2 scheme. Let us now proceed to analyze how the schemes evolve towards
these values when the grid is refined.

Scheme Cl Cd Cdp Cdv Cm
02 —1.56 x 107* | 0.181513 | 0.048751 | 0.132762 | —2.31 x 107
03 —1.04 x 107" | 0.181808 | 0.049580 | 0.132228 | —2.59 x 10~°

Table 3.28: Subsonic laminar flow over the NACAO0012 airfoil. Aerodynamic coefficients obtained
with the FV-RB scheme on mesh5.

Results analysis from the viewpoint of accuracy/efficiency In Figure 3.28 it is found that
using F'V-RB O2 scheme, the lift coefficient remains within the convergence zone from mesh3. How-
ever, this coefficient is still decreasing slowly with further grid refinement. A fully converged value
does not seem to be reached until the finest mesh meshb is used. The drag coefficient enters the con-
vergence zone from mesh3 but is always increasing until mesh5 where the convergence is achieved.
The moment coefficient goes within the convergence zone from mesh2 but its variation does not stop
until mesh5, where its grid convergence can be assumed.

Using RB O3 scheme, the lift coefficient enters the convergence zone from mesh3 and remains almost
constant until meshb, which is to say the converged value is reached on mesh3, a very satisfying
behavior with respect to RB O2 scheme. The drag coefficient enters the convergence zone from
mesh3 and a fully steady state is obtained on mesh4. The computed moment coefficient enters the
convergence zone from mesh3 and reaches its steady state on mesh4. In summary, RB O3 provides
grid-converged values for the lift coefficient from mesh3 and for the drag and moment coefficient
from mesh4, while RB O2 scheme needs mesh5 for the grid convergence of all of coefficients. Note
this analysis leads to think the convergence criteria provided within the ADIGMA project should
have been more restrictive; in any case, the previous analysis assumes more stringent criteria of grid
convergence than the ones initially provided.

Dof | Memory (MB) | CPU time (s) | Iterations | CPIPD

8526 11 2109 10170 2.43 x 107
17210 21 6143 14620 | 2.44 x 1075
26384 32 10427 16380 241 x 107°

Table 3.29: Computation cost of the FV-RB O2 scheme from mesh3 to mesh5.

The performance of both RB O2 and RB O3 schemes is now compared in terms of CPU and memory
cost. From Table 3.29 and Table 3.30, it can be first noticed that averagely FV-RB O3 scheme has
a 31% higher CPIPD (cost per iteration per dof) and 1.6 times more memory requirement than the
one associated with the RB O2 scheme. For a fully grid-converged lift coefficient, the RB O2 scheme
needs mesh5(26384 dof) with 10427s CPU time, while RB O3 scheme only needs mesh3 (8526 dof)
with 2680s CPU time. The CPU time gain offered by RB O3 with respect to RB O2 is therefore
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Figure 3.28: Aerodynamic coefficients convergence with dof based on meshes from mesh1 to meshb
obtained by the FV-RB scheme.

Dof | Memory (MB) | CPU time (s) | Iterations | CPIPD
8526 17 2680 10020 3.14 x 107°
17210 34 7952 14420 3.20 x 107
26384 50 13729 16390 3.17 x 107

Table 3.30: Computation cost of the FV-RB O3 scheme from mesh3 to mesh5.
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3.4 Unsteady flows

a factor of almost 4; the corresponding memory gain is 47%. The cost reduction achieved by RB
O3 scheme with respect to the RB O2 scheme for the grid convergence of the drag and moment
coefficients is less since mesh4 has now to be used with RB O3. Precisely this reduction is about
24% in CPU time and the memory requirement is almost the same.
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Figure 3.29: A local zoom of mesh5(top left) and the corresponding results obtained by the FV-RB
O3 scheme. Mach number contour (top right); Pressure coefficient distribution on the airfoil (bottom
left); Friction coefficient distribution on the airfoil (bottom right).

3.4 Unsteady flows

We close this chapter with the application of the unsteady version of the RB schemes to the compu-
tation of unsteady flow problems :
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e the propagation of an isotropic vortex along the diagonal of a flow domain will allow us to check
whether the proposed unsteady extension of the RB scheme within a dual time framework is
indeed second-order accurate.

e the computation of the (difficult) Double Mach Reflection problem will provide some insight
on the robustness of the RB scheme when applied to the computation of flows involving strong
moving shocks (in particular we will assess the interest of the variant proposed in 2.3.3).

3.4.1 Smooth flow: vortex propagation problem

Overview of the flow problem The unsteady Euler equations are solved on a computational
domain = € [0,10] and y € [0,10]. Initially, a mean flow defined by the following values for the
primitive variables is set everywhere in the domain : {p,u,v,p} = {1,1,1,1}. An isotropic vortex is
the added to this mean flow with the following perturbations on the velocity components, temperature
and entropy :

27
Ay = %60.5(1—#)(3—;)’
AT — (1 —7)e? L0-12)
8ym? ’

AS =0.

In these expressions, € denotes the vortex strength, ¢ = 5; the initial position of the vortex center
is 2. =5 y.=5and 72 = 7> + 3% with Z = 2 — 2., § = y — y. (see Figure 3.30). The vortex
is convected through the domain with the velocity (u,v) = (1,1). Characteristic-based inflow and
outflow boundary condition are used on all the boundaries. The solution is computed until ¢ = 2
which ensures the vortex remains in the computational domain. It must be pointed out that our
intent with this test-case is simply to check the correctness of the design principles of the unsteady
RB schemes: we do not seek to assess for instance the behavior of the schemes when the vortex is
propagated several times through the whole domain, where periodic boundary conditions should be
used.

A series of regular triangular grid is used to perform the computations, from Tri regl with 200
dof to Tri_reg4 with 12800 dof (see 3.31). Another important parameter to set up is the physical
time-step : it must be large enough to limit the computational cost of the flow simulation but also
small enough to make the time-discretization error small with respect to the space-discretization
error. Besides, it must also be kept in mind that the physical time-step has a direct influence on the
convergence speed to the pseudo-steady state at each physical time iteration. The physical time-step
finally retained for the computations on the whole series of meshes has been At = 0.002, coupled with
a criterion on the pseudo-time convergence consisting to let the computation run at each physical
iteration until the residual on the dual-time derivative has been reduced by 4 orders of magnitude.
An example of the evolution of this residual is showed in Figure 3.31, in each physical time step
interval 0.002, the residual drops at least 4 orders.
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Figure 3.30: Left : mesh Tri reg3. Right : initial vortex density contours (30 levels from 0.49 to
1.0).
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Figure 3.31: A zoom of residual convergence history vs physical time, obtained with RB O3 scheme
on mesh Tri reg4, time step At = 0.002.
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Error analysis In Figure 3.32, the density of the exact solution and the numerical solution com-
puted with RB O3 on the mesh Tri reg4 are displayed. On this fine grid, these two solutions are
almost undistinguishable. Tables 3.31 and 3.32 summarize the computed error at ¢ = 2 with RB O2
and RB O3 on this series of regular triangle grids. A comparison between these two sets of results
allow to conclude that, with the same second-order time-discretization, the FV-RB O3 scheme yields
more accurate results than the F'V-RB O2 scheme. For instance, on the mesh Tri reg4 for example,
the error reduction is about 5.5%.

10

Figure 3.32: Solution at ¢t = 2. Vortex density contours (30 levels from 0.49 to 1.003) obtained
by the FV-RB O3 scheme with At = 0.002 on mesh Tri_reg4 (red solid line), and exact solution
(black dashed line).

Mesh Dof | L, error | order
Tri_regl | 200 | -2.66056 -
Tri_reg2 | 800 |-3.40782 | 2.48
Tri_reg3 | 3200 | -4.00367 | 1.98
Tri_regd | 12800 | -4.51921 | 1.71

Table 3.31: L, norm of numerical errors of density obtained by the FV-RB O2 scheme.

Mesh Dof | L, error | order
Tri regl | 200 |-2.56071 -
Tri_reg2 | 800 |-3.29511 | 2.44
Tri_reg3 | 3200 | -4.12090 | 2.74
Tri_regd | 12800 | -4.76814 | 2.15

Table 3.32: L, norm of numerical errors of density obtained by the FV-RB O3 scheme.
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3.4.2 Flow with shocks: double Mach reflection problem

Set up of the test-case The Double Mach Reflection (DMR) problem involves moving and re-
flecting strong shocks. The configuration computed here has been initially proposed by Woodward
and Collela[51]. The flow domain is set as z € [0,4], y € [0,1]. At initialization, a shock wave is
sent diagonally into a reflecting wall (equivalently, the problem can also be seen as a shock moving
horizontally and encountering a wedge). The initial flow is defined as the two constant states on each
side of an inclined shock with shock Mach number M, = 10, its foot attached at (z = 1/6,y = 0)
and forming an angle of 30° with respect to the y-axis (see Figure 3.33). The fluid located in the
flow region in which the shock is advancing is initially at rest and such that :

p1 = ]-47 p =1L

The upper boundary condition is set to describe the exact shock movement from the left to the right
of the domain. With this condition and the Mach number of the shock, the flow variables can be
computed in the following way. At the beginning, let us consider a moving vertical shock at velocity
us with the same after-shock condition (Figure 3.34), it can be also considered as a static shock with
fluid on both sides of it moves with different velocities (Figure 3.35). The Mach number of shock
M is actually determined by the fluid on upstream of the shock: My = M; = ) /a;y, with the sound
velocity defined by: a; = \/p1/p1. As the fluid considered here is the perfect gas: v = 1.4, the
computed updtream fluid velocity is therefore u,/ = 10, the shock velocity u, = 10. And then the
downstream fluid status can be obtained by the relationship across a vertical shock. The pressure is

given by:
2y L -1
S A /¢ —
b2 (7+1 L 7+1)p1

the computed value is p, = 116.5.

y inlet 2 inlet3
1

P P,

P

u 30° P

2

inlet 1 2 outlet
\ u,

“y

0 1/6 4
inlet 2 wall

Figure 3.33: Initial shock position, and the corresponding boundary conditions.

The relationship for the fluid density and velocity is given by:

pr_wa_ (Y + DMy
pr Uy 24 (y—1)M7’

97



CHAPTER 3 : Applications of F'V-RB scheme
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Figure 3.34: A moving vertical shock.
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Figure 3.35: A static shock.
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the computed downstream fluid density is: py = 8, and velocity is uy/ = 1.75.

Now if we go back to the case with the moving vertical shock (Figure 3.34), status upstream the
shock is:

pa = 116.5, ps = 8, uy = u, — ufh = 8.25.

For the moving shock with the presence of a inclined angle, the velocity component in z direction:
(ug2)s = ugcos(30°), in y direction (ug), = —ugsin(30°) = —4.125. Until now both of status upstream
and downsteam the inclined moving shock are obtained.

Figure 3.33 and Figure 3.36 show the boundary conditions changement with time ¢. The shock foot
is always located at = = 1/6, and the shock head position is changing with time:

1
ll = 6 + tan(30°) +

Ugl
cos(30°)
represents that the physical flux computed from upstream shock conditions is used here. For the part
of the top and bottom boundary upstream shock, the boundary condition inlet2 represents that a
numerical flux using upstream shock condition and extrapolated solution from internal domain is
computed on this boundary. It is to note that the numerical flux of a classical approximate Riemann
sovler is used for the computation with FV-RB scheme, because the numerical flux of the FV-RB
scheme cannot be used on the boundary. On the top boundary located at right hand side of the
shock, condition inlet3 means that the physical flux computed from the status downstream the
shock is imposed. For the part of the bottom boundary downstream shock, the boundary condition
wall represents that a physical flux is imposed, where the slip-boundary condition is used and the
pressure is extrapolated from the internal domain. On the right boundary, the outlet condition
impose zero solution gradient. The solution to be computed is the solution at ¢ = 0.2.

. On the left boundary, boundary condition inletl is imposed, which

inlet 2 30° inlet3

-~
Y

inlet 1 outlet

'y

0 1/6 4
inlet 2 wall

Figure 3.36: Shock movement on the upper boundary, and the corresponding boundary conditions.
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15 2 2.5 3 3.5

Figure 3.37: A local refined triangle mesh used for DMR case, zoom of the part x € [1.5,3.5].
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3.5 Conclusion

Analysis of the computed solutions The DMR test-case is computed using the FV-RB O2 and
O3 schemes on a triangle-based mesh, which is locally refined in the region where the main flow
structures will be located at the final time ¢t = 2 of the computation. This mesh contains 98172 dof
and a detailed view of the refined region is displayed in Figure 3.37. It is important to point out the
baseline unsteady version of the RB schemes applied to this problem (that is the same version used
for the previous vortex convection problem) fails to converge from the very start of the computation.
The only way to obtain a developed solution at t = 2 with RB O2 or RB O3 is to make use of the RB
time residual limiting described in 2.3.3). Unfortunately, this means that the coefficient Sgp which
appears in equation 2.69 has to be tuned, on top of the coefficients K and ( associated with the
space discretization. When frp is taken large, it means the applied limiting is loose, so that many
detailed structures such as the discontinuity vortex roll-up can be captured but many oscillation may
appear and sometimes the computation can even explode before actually reaching ¢t = 2. With a
small value for Sgp (a strict limiting), the computation runs without difficulties and the result has
few oscillations, but some fine structures are smeared out. The parameters used by both RB schemes
are summarized in Table 3.33 and the corresponding results on this mesh are displayed in Figure
(3.38). The global shock structure is correctly captured by both the RB O2 and O3 schemes with
the applied limiting strategy but numerous oscillations remain present in the solution. A comparison
with the reference result (Figure 3.39) taken from the computation results of a project partner UNST
(University of Stuttgart) in the ADIGMA project report |3] clearly show some small flow structures
(in particular the roll-up vortex structure) are not really well captured by RB schemes. Although the
lack of grid refinement may be incriminated for this very demanding test-problem, it is clear however
the RB scheme, in its present stage of development, is not well adapted to the accurate and efficient
computations of such flows involving strong moving discontinuities.

Scheme | K | Brg | O
RB O2 | 2.0 | 0.05 -
RB O3 | 2.0 | 0.05 | 0.05

Table 3.33: Limiter parameters used by the FV-RB scheme for DMR case.

3.5 Conclusion

In this chapter the grid convergence order of FV-RB second and third-order scheme is verified on
simple model problems like a circular advection problem and advection-diffusion problem. Results
show that the second-order RB scheme is robust to the mesh quality, while the result of the third-
order RB scheme is quite mesh dependant. On a regular mesh it can give a very good result: small
error and super convergence order, but a poor convergence order and big error could be obtained on
a irregular mesh. This problem seems quite severe in 3D. And then some more complex problems
are computed. For a smooth inviscid flow in 2D, the gain of third-order FV-RB scheme compared to
the second-order scheme for computing a grid-converged aerodynamic coefficient is very clear. The
precision advantage of the third-order scheme is also evident on a transonic case and viscous case
in 2D. But for several 3D cases, the gain of third-order FV-RB scheme is not found. The possible
reason is that a very large stencil is necessary for the third-order F'V scheme, which compromised
the performance of the third-order scheme to some extent.

101



CHAPTER 3 : Applications of F'V-RB scheme

08 |
0.6 F

04 F

08 |

0.6 |

04 F

02 |

35 4

Figure 3.38: Density contours (30 levels from 1.5 to 21.5) obtained by the FV-RB O2 scheme (top)
and the O3 scheme (bottom) with At =2 x 107,

0.6

Figure 3.39: Reference result. Density contours obtained by a WENO-FV O5 scheme on a structured
mesh with 921600 dof.

102



Design principles for the SV-RB scheme

French La premiére partie de ce travail a été consacrée au développement et la validation d’un
schéma d’ordre deux et d’un schéma d’ordre trois basés sur le résidu sous la formulation des volumes
finis en maillages non-structurés. Ces schémas FV-RB O2 et O3 ont été appliqués a une série des
problémes d’écoulement et une comparaison systématique a démontré dans quelques cas le gain en
efficacité due a la montée en ordre du schéma. Toutefois, lorsque ’on augmente 1’ordre du schéma,
les difficultés liées a la méthode des volumes finis sont apparus clairement : de ’ordre deux a ’ordre
trois pour les problémes 3D en particulier une augmentation trés significative de la mémoire de
stockage est introduite. En effet, il est difficile d’imaginer de concevoir, par exemple, une reconstruc-
tion cubique de moindres carrés en 3D en raison d’un stencil trop large qui lui serait associé. Une
autre stratégie consiste a augmenter le nombre de degrés de liberté dans chaque cellule du maillage
plutot que d’étendre le support autour de chaque cellule. A cette fin, des essais ont été menés sur
la méthode des différences spectrales [34][49] dans la phase initiale de cette thése. Etant donné que
certains problémes de stabilité apparaissent lorsque le schéma RB est couplé avec la méthode des
différences spectrales, on a finalement décidé d’utiliser la méthode des volumes spectraux (SV)[47]
comme une base alternative de développement du schéma RB d’ordre trés élevé en maillages non-
structurés généraux. Dans cette thése, on s’est concentré sur le développement d’un schéma d’ordre
deux et surtout d’ordre trois, qui couple I'idée de SV et du flux numérique de RB (les schémas cor-
respondants seront désignés par SV-RB O2 et SV-RB O3 a partir de maintenant).

Ce chapitre décrit le principe de I’approche SV et la fagon dont on couple la SV avec le flux numérique
du RB. Afin de présenter clairement les descriptions techniques, le cas d’application traité ici est
un probléme d’advection scalaire simple. Ensuite on va montrer comment la phase implicite sans
matrice utilisée par le schéma FV-RB est implémentée avec succés pour les schémas SV. Finalement,
les comparaisons seront faites non seulement entre les schéma SV-RB et les schémas décentrés-amont
classiques couplés avec la SV, mais aussi entre les schémas SV-RB et les schémas FV-RB développés
auparavant.

English The first part of this work has been devoted to the development and assessment of a sec-
ond and third-order finite-volume formulation for the residual-based scheme on unstructured grids.
These FV-RB 02 and O3 schemes have been applied to a large panel of flow problems; a systematic
comparison has demonstrated in some cases the benefit for efficiency of increasing the accuracy or-
der. However the difficulties associated with the finite-volume strategy when increasing this accuracy
order were also made clear : going from second-order to third-order for 3D problems in particular
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induces a very significant increase in memory storage In fact, it is hardly conceivable to design for
instance a cubic least-square reconstruction in 3D because of a huge stencil associated with it. An
alternative strategy consists in increasing the number of degrees of freedom within each mesh cell
rather than extending the support stencil for each cell. To this end, experiments were carried out in
the initial stage of this thesis with the spectral difference method [34][49]. Since some stability prob-
lems emerged when the RB scheme is coupled with the spectral difference method, it was eventually
decided to assess the Spectral Volume (SV) strategy proposed in [47] as an alternative framework
for deriving potentially very high-order RB schemes on general unstructured grids. In the present
work, we have focused on the design of a second and more importantly third-order accurate scheme
combining the SV ideas with the RB numerical flux (the corresponding schemes will be denoted by
SV-RB O2 and SV-RB O3 from now on).

This chapter describes the basic principles of the SV method and the way to combine SV with
the RB numerical flux. In order to clarify as much as possible this technical description, the case
of application treated here is a simple scalar advection problem. And then we will show how the
matrix-free implicit method used by the FV-RB scheme is successfully implemented for SV schemes.
Finally comparisons will be made not only between the SV-RB schemes and classical upwind schemes
coupled with the SV method but also between these SV-RB schemes and the previously developed
FV-RB schemes.

4.1 Introduction to the Spectral Volume method

Consider a computational domain €2 which can be divided into non-overlapping triangular cells, each
cell is named a spectral volume (SV) and the i SV is denoted by S;. In the present work we will
restrict our study to triangular spectral volumes but the approach is general and applies to any type
of cell (triangular or quadrilateral). Each SV is itself divided into a set of non-overlapping sub-cells
in a structured way so that a polynomial of a certain degree can be reconstructed by using subcell-
average values. The sub-cell is called control volume (CV); the j%* CV in the i* SV is denoted by
C; ;. The triangular SV can be transformed into a simplex: a right triangle or a equilateral triangle;
the first type is chosen in the present work. There are many choices for subdividing a SV into CVs
in order to achieve a given accuracy order; the subdivisions or partitions initially used by Wang
[48] have been found to be not the best ones [18]. A series of optimal partitions giving a smaller
Lebesgue constant proposed by Chen [6] are used in the present work and displayed in Figure 4.1.
For example, to construct a linear polynomial, at least 2 pieces of information are necessary in each
direction, which results in 3 CVs (3 CV centroids i.e. 3 pieces information) totally in a SV. The
details on the solution reconstruction will be described later.

Let us consider the following system of conservation laws :

%—[tj+V~f:0.

with the time ¢, the conservative variable U and the physical flux F. The integral formulation of this

Note the choice was made to store the geometry-based data to be used in least-square linear or quadratic recon-
struction. Not storing these data would make comparable memory requirements of the second and third-order schemes
but, in the meantime, would severely increase the cost per iteration of the latter over the former.
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Figure 4.1: Partitions of a right triangle simplex SV Partitions for linear, quadratic, and cubic
reconstruction (left to right).

equation leads to the following evolution equation in each CV:

0

Uij 1 /
=+ V- FdQ = 0. .4.2
ot sl Ja,,

where U, ; is the average solution in the CV C;; with its surface given by | ;| (for the reason of
simplicity, the bar on top of solution will be dropped from now on). By using Green-Gauss theorem,
the integral term in the above equation becomes:

Ny
/ V-FdQy=Y_ [ F-ndl,
Q;,5 k=1 Y1k

with T, the k™ face of C; j, n its normal outward-pointing unit vector, and Ny the total number of
faces of C; ;. The flux integral on each face can be approximated to the desired order by a Gauss
quadrature rule :

Ny Ny Ngp
Z A f-ndF:ZZmehmka
k=1 k k=1 m=1

where Hj, ., is the numerical flux normal to the face I'; at the quadrature point m on this face, the
corresponding quadrature weight is wy,; |T'x| is the face area which is the length of face I'y in 2D;
total number of quadrature points on the face k is IVg,.

A solution polynomial in the SV 7 is derived from the CV-averaged values U, ; and takes the form :

Ndof

Ui(x,y) = Z Lij(z,y)Ui;.
j=1

where Ny, ¢ is the number of degrees of freedom, which is the number of CVs in each SV. To construct
a polynomial of degree n in 2D on a SV, a number Ny,r = (n+ 1)(n + 2)/2 of independent pieces of
information is necessary (by piece of information we mean here a CV-averaged value). For example,
Ngoy = 6 for the third-order scheme, hence there are 6 CVs for the quadratic reconstruction (Figure
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1 a
. 30.1)
=
y
=
> 2 100 210)

Figure 4.2: SV mapping from physical domain to computational domain

4.1), which will be used later when deriving third-order schemes. Moreover, the solution reconstruc-
tion coefficient L; ;(x,y) depends on the location of the centroid of C; ; in the SV i. It seems that this
coefficient varies in each SV for every point k(xy, yx). In fact it becomes constant for every point & if
each SV is transformed into a standard cell (a simplex) which is then divided into straight edged CVs
in a structured way, as those partitions showed in Figure 4.1. The mapping process from a normal
mesh cell to the simplex is showed in Figure 4.2, where the original domain (with coordinates = and
y) is called physical domain, the new domain (with coordinates £ and 1) being called computational
domain. This mapping process can be also expressed by the following equation:

r=r;1 +&(rig —ri1) +n(ris —ri1).
where r = [z y]7 is the vector of coordinates, r; ; with j = 1,3 are the coordinates of the three nodes
of the triangular SV ¢, in which the polynomial reconstruction is going to be built.
The reconstruction coefficients are computed by expressing the fact that the average value of the

reconstructed solution U; over the CV C; ; is equal to the solution Uj ; :

1
|Q | /Q Lm(gan)dQ - 5j,ma (m = 1, Ndof)a
i, i

with 9, ,, the Kronecker delta function. For example, in the case of a linear reconstruction the
reconstruction coefficient can be developed as :

L(&,n) = ao + 1§ + agn.

where ag, a; and as are polynomial coefficients to be determined. Since there are three CVs C; ; in
the SV S; for the linear reconstruction case (Ngs = 3), equation (4.7) yields three equations for each
L;; (j =1, Ngos). The three polynomial coefficients for a given reconstruction coefficient L can be
computed from these equations. In this way, all three reconstruction coefficients in function of the
computational coordinates L1 (&, n), L2(€,n) and L3(&,n) can be obtained.

After the mapping process equation (4.5) can be written in this form :

Ndof

Ui(€,m) =Y Li(&, Uiy
j=1
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Given the computational coordinates of any point in the SV, the solution at this point could be
estimated from (4.9). In practice only the solution at some points is necessary, typically at Gauss
quadrature points. In a simplex, the coordinates (&,,1,) of these Gauss points are known once for
all, therefore any reconstruction coefficient L;(&,,n,) is a constant for the Gauss point g. Coefficients
for each Gauss point are computed and saved at the beginning of the computation.

Since an independent solution polynomial is reconstructed in each SV, the solution is continuous
through the CV faces located inside the SV. Consequently, the flux at a Gauss point located on a
so-called internal CV face is simply computed as the physical flux using the solution estimate at this
Gauss point. The picture is of course different on the boundaries of a SV, or so-called external CV
faces, coincident with CV faces from a neighboring SV. In that case, the solution reconstruction is
a priort discontinuous since expressed by two distinct polynomials; a common numerical flux is then
necessary for approximating the physical flux in equation (4.4) at Gauss points located on external
CV faces which belong to the SV boundary. The numerical flux can be obtained by using an exact or
approximate Riemann solver (Rusanov scheme, HLLC scheme or Roe scheme typically) or by using
a RB numerical flux. The formulation of the RB scheme based on the SV method will be detailed
in the next section. In the present section, we complete our description of the SV approach by using
a classical approximate Riemann solver as the numerical flux, namely the Rusanov numerical flux
given by :

1 1
HRusanov - i(flj,_ + f}J{_) - iAmax (UR - UL)

where Fi- and Fj are the projection of the physical flux onto the outward face normal direction,
respectively computed in the left and right CV of the corresponding interface, A™** is the maximum
wave-speed associated with the hyperbolic system to be solved, which is the maximum absolute value
of the normal Jacobian matrix eigenvalues.

The partition of the SV into CVs and the Gauss points along the faces of each CV in the case of a
second-order SV method are provided in Figure 4.3. At the so-called interior Gauss-points, located
along faces of CVs which are not shared with another SV, the numerical flux appearing in (4.4) is
directly computed as :

Hy = F(Uy)

where U, is computed with (4.9). For boundary Gauss-points, located along faces of CVs which are
shared with another SV, the physical flux is approximated by a numerical flux, written as follows in
the case where the Rusanov flux is retained :

1 1
Hg = §(fl(Ug,L) + ]:L(Ug,R)) - §A;nax(Ug,R o Ug,L)-

where U, , = U, ; is the solution obtained by the reconstruction polynomial in SV ¢ and U, p = Uy,
is the solution obtained by the reconstruction polynomial in SV 0. The maximum signal speed,
A" (U, 1, Uy r) is computed at the Gauss point ¢ using typically a Roe-averaged state computed
from U, 1, and Uy g.

107



CHAPTER 4 : Design principles for the SV-RB scheme

Figure 4.3: CVs and Gauss points for O2 SV

4.2 Strategy for time-integration

4.2.1 Explicit time-advancement

Following several authors who have initially contributed to the development of the SV approach, a
third-order Runge-Kutta scheme [20| can be used for computing both steady and unsteady problems
[47], [18]. Time-accuracy will be ensured for unsteady flows while robustness in the choice of a CFL
number will be obtained for steady flow computations. The method reads :

U, =U,,+R(T;)),
2 3—

U, 4U +4[U + R(U,,),
U, = 3U 4+ 3[U )
U?,fl - Uij-
where the residual of equation (4.2) is given by :
Ny Ngp
R(U};) = \Q”| ;mzlmekak\ 4.14

with At; ; the time step in the CV C; ;. Based on the definition of the C'F'L number, the time step

is computed by:

CFL - h;,
)\ZT;O/CC

AtiJ’ - 415
where h; ; is the characteristic size of the CV C;; and is computed as for the FV-RB scheme (refer
to section 2.1.3); A7 1s the maximum eigenvalue of the physical flux Jacobian matrix in equation
(4.2). This approach has been implemented within our SV numerical solver; however since it was
important for us to be in position to perform a fair comparison between the FV-based and SV-based
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strategies for deriving third-order versions of the RB scheme, it was also decided to devote some
effort to the building of an implicit version of the SV scheme for computing steady problems.

4.2.2 Matrix-free implicit method for SV

As previously mentioned, in the course of this work, implicit formulations for SV schemes have been
derived by some authors (motivated in particular by the need to speed up the convergence to steady-
state in the case of viscous flow problems). For instance, an implicit LU-SGS algorithm coupled with
a p-multigrid strategy has been successfully used for the SV method in [40]. In this work, we have
naturally decided to extend to the SV formulation the simple matrix-free implicit scheme presented
in the first part of the work (see section 2.1.3, devoted to the FV formulation of the RB scheme).

For SV method, the implicit scheme is used for each CV instead of SV because the discretization
equation is based on a CV. The basic idea of this matrix-free scheme is to use a Rusanov scheme
for the numerical flux in the implicit phase, while the numerical flux used in explicit phase is in-
dependent on the implicit scheme. There are two choices: either using the implicit numerical flux
only on the boundary CV faces (faces located on the SV boundary), or using the implicit scheme on
all of CV faces. By considering that later choice could bring more dissipation to the whole scheme,
this choice is therefore adopted in our computation. In order to implement the implicit scheme in
this way, a technical issue in the programming comes, which is that all of CVs and the nodes and
faces of each CV needs to be numbered globally in the whole physical domain, while it is not neces-
sary when the explicit scheme is used, where CVs are numbered locally in a SV, i.e. C;; is the 5t
CV of SV 7. As long as the global numbering is done, the connection between a local CV in a SV
and a global CV is necessary, some detailed issues related to programming are discussed in Appendix.

Let us recall the discretized system of conservation law for a CV Cj ;:

AU = R(UT),
where AU™ = U™ — U™, and the residual R(UY;) is given by (4.14). Now if we drop the notation
for the local CV and use a new notation for any global CV p, the above discretization becomes:

Nf Ngp

AUP = 20y SN wmHiml Tkl 4.17

|Qp| k=1 m=1

Then the implicit scheme is used in the same way as described in section 2.1.3. The total implicit
system is also solved with the Point-Jacobi relaxation technique, which gives:

(AU =0
=1L
1
& ) _ n - (1-1) (1-1) . 4.18
AU = (R a3 DM + ARG D — (1) AU, ) 4.18)
k
| AU = AUSY
: : : : , At,
where L is the number of sub-iteration; the coefficient C), = 1+ao Z Tk (PL)p.otpk), With a = 2,
k P

and a relaxation coefficient o. Normally ¢ = 1 for a high efficiency of the implicit phase. But this
high efficiency could result in a stability problem in a certain case. Therefore only a small CFL is
permitted. By increasing the o a big CFL can still be used.
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4.3 Coupling the SV method and the RB numerical scheme

In the following a 2D second and third-order RB scheme is developed within the framework of the SV
method. The proposed formulation can be "easily" generalized to higher orders of precision and to 3D
problems. By "easily", we mean there is no such obstacle as the exceedingly large stencil associated
with a high-order 3D FV extension. Let us start from the SV-RB O2 scheme, the partition of the SV
and choice of Gauss quadrature points on each CV face are showed in Figure 4.4. A shift cell formed
by two CV centroids 7, j and o, k, and two nodes nl and n2 of the face on which the numerical flux is
computed. Let us now proceed to a detailed description of the RB flux computation at a Gauss-point
g on frace k.

Figure 4.4: Shift cell used by the SV-RB O2 scheme. For the RB numerical flux computed at Gauss
point ¢ on a boundary CV face nl — n2, the shift cell formed by i, j(centroid of j™ CV in SV i),
0,p (centroid of p* CV in SV 0), and two nodes (nl and n2) of this face is used. Points 1 — 4 are
quadrature points used for residual computation in this shift cell.

As in the FV method, the RB numerical flux still includes two parts, namely a purely centered flux
and a numerical dissipation :

1
H;%Bzi(ng:L_'_f;,_R)_dgv

where fgfL and fng are the normal fluxes at the Gauss point g calculated correspondingly in the SV
¢ and SV o. The definition of the numerical dissipation d, is similar to the one defined for FV-RB
scheme:

1

= jLA R,

where L+ = Ar(; j) (op) - Mk is the projection of distance between the centroids of two CVs sharing
the interface k on the face normal direction; the O(1) dissipation coefficient matrix @ is calculated
in the same way as for FV-RB (refer to equation (2.18) and (2.19)); and Ry is an approximation of

the residual integral:
1

Ry=——[ rdv,

%] Ja,
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where 7 the residual of the considered system, here Euler equations are considered:r = V- F(U); and
|| is the surface of the shift cell (see Figure 4.4). Taking into account the residual r in equation
(4.21) and using Gauss’s theorem yields :

Ry = — f~ndsziz F-ndl,

where Z(§2) includes all the faces of the shift cell. For a second-order scheme, this residual should
be approximated at least to first-order in order to obtain a second-order dissipation term. A second-
order - at least - residual approximation is necessary for a third-order dissipation. Obviously the
integral in equation (4.22) can be computed by a Gauss quadrature formula :

Ny
Fondl =3 woFig[li| + O(WNH),
Fl q:1

where N, is the number of quadrature points, w, is the quadrature weight corresponding to point
q, the length of the face [ is |I';| and h is the typical mesh size. Clearly the exact flux fllq is not
available because the exact solution at this point remains of course unknown. Therefore a numerical
flux H;, is used as replacement, which is obtained by substituting the reconstructed solution into
the physical flux, i.e. Hy g = FH(U[), so that :

Hiq = Fiy + O(R5). 4.24

Taking into account (4.24), equation (4.23) is rearranged in the form :

Ng
Fondl =Y wH 0y + O + O(n*Neth), 4.25

Iy g=1

An extra order of accuracy will be gained if the face integral is summed up for all faces of the shift
cell:

N,
1 q

Ri= o D0 D wHln + O2) + 01+,
1eZ() q=1

In 2D |Q| is considered to be O(h?), so that this equation becomes:
R, =Ry + O(hk) + O(h2Nq), 4.27

with the residual approximation:

Ry, = k| >, ququ|Fl

1ET(y,)

Equation (4.27) shows that for a second-order scheme (k = 2) as well as for a third-order scheme
(k = 3) , only one Gauss quadrature point along each face of the shift cell is needed for the first-order
residual approximation or second-order approximation. Equation (4.28) finally becomes:

o > wrl

leI(Q
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When computing the non-dissipative flux for the third-order SV-RB scheme, two Gauss quadrature
points are needed on each CV face, which means that two distinct RB numerical fluxes should be
computed on each boundary face. On a given CV face, the purely centered flux is computed at each
quadrature point (g; or go in Figure 4.5) but the same numerical dissipation is adopted to reduce the
computational cost :

1
Hle = 5(}—;{,L + }—gJLR) — dy,

1
M = ML Fhw -,

where it is emphasized d, is computed once on each CV face, using the flux balance on a shift-cell
previously described. This shift cell is constructed in the same way as for the second-order scheme.
An example is displayed in Figure 4.5. It is important to make clear that no RB flux is computed
on internal CV faces, and only one dissipation flux d, is computed for each external face of a CV.
For instance, in the case of the second-order SV-RB scheme (see Figure 4.4) there are 6 external CV
faces, hence 6 distinct evaluations for the dissipation flux on a given SV and 6 distinct evaluations of
the non-dissipative centered flux because there are 1 Gauss quadrature point on each CV face. In the
case of the third-order SV-RB scheme, because there are 9 external CV faces, 9 distinct evaluations
of the dissipation flux and 18 evaluations of the non-dissipative centered flux (since 2 Gauss points
on each CV face) are made.

Figure 4.5: Shift cell used by the SV-RB O3 scheme. For the RB numerical flux computed at Gauss
point g1 and ¢g2 on a boundary CV face nl —n2, only one numerical dissipation is computed by using
the shift cell formed by 4, j(centroid of % CV in SV i), o, p (centroid of pt* CV in SV o), and two
nodes (nl and n2) of this face. Points 1 — 4 are quadrature points used for residual computation in
this shift cell.

The reconstruction coefficients corresponding to the face centers of the shift cell, which are specific to
the use of the RB numerical flux, are computed from their known coordinates in the simplex. They
are computed only once at the very beginning of the calculation and stored for later usage, so as to
save on computational time.
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4.4 Numerical results

The 2D circular advection problem presented in section 3.2.1 is now considered and computed using
the second and third-order SV schemes. For each order of precision, the RB scheme and a representa-
tive of conventional upwind schemes, Roe scheme, are used and compared. The series of unstructured
triangular meshes already used for the FV computations in Chapter 3 (see Table 3.2 for details) are
used for the computation with each scheme. Let us recall that these meshes are made of triangles,
with the coarsest mesh, Tri_irregl, containing 226 cells and the finest mesh, Tri_irreg5, con-
taining 57518 cells. For each mesh the error between the exact solution and the numerical solution
obtained using the SV approach is computed in each CV and the resulting norm is plotted against
the characteristic grid size in order to estimate the actual order of accuracy that can be attained with
the numerical schemes under study. It is important to point out at this stage the difference between
the SV results and the previously obtained F'V results. On the finest mesh Tri _irregb for instance,
the number of dof associated with the FV O2 and O3 methods are the same, namely the number
of grid cells, 57518. If the SV O2 schemes are applied on this same grid, since each cell, i.e. SV,
contains 3 CVs, the number of dof amounts to 57518 x 3 = 172554. Similarly for O3 SV scheme,
with 6 CVs in each SV, 14412 x 6 = 86472 dof is used on this mesh.

log_errL2
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Figure 4.6: The convergence of Ly norm of numerical error with the mesh typical size h obtained
with SV O2 schemes (left) and SV O3 schemes (right).

Analysis of the SV schemes accuracy The evolution of the error between exact and numerical
solutions for the second-order SV schemes (SV-Roe O2 and SV-RB O2 denoting respectively the
SV approach with the Roe and RB numerical flux as numerical flux) and the third-order schemes:
SV-Roe O3 and SV-RB O3 are plotted in Figure 4.6. The analysis of these plots shows that SV-RB
02 scheme produces a slightly larger error than the SV-Roe O2 scheme for this case, with an order of
convergence (1.81) a little lower than the theoretical order 2, while the SV-Roe O2 scheme yields the
exact theoretical mesh convergence order. For the third-order SV schemes, the difference between
SV-RB O3 scheme and SV-Roe O3 scheme is very small on the numerical error level as well as on
the mesh convergence order (close to 3, as expected, in both cases). It is interesting to observe that
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the difference between the results obtained with two distinct numerical fluxes is decreasing with the
scheme order increasing. In other words, the numerical flux seems to play a role less and less impor-
tant in the solution accuracy. The reason for this behavior is probably that with the increasing order
of accuracy, the number of CV boundary faces - i.e. CV faces located on a SV boundary, hence on
which the numerical flux is computed - tend to decrease with respect to the total number of CV faces
in a SV, thus making less significant the influence of the numerical flux formula on the numerical
solution. For instance, each CV has two boundary faces for the second-order SV scheme; there are
CVs that have only 1 boundary face for third-order SV schemes and for fourth-order SV schemes, a
CV without boundary faces exists (see Figure 4.1).

Analysis of the SV schemes efficiency In the following the computation cost of the SV-
RB scheme is compared to the SV-Roe scheme. At first, the results obtained on the finest mesh
Tri_irregb are considered. In Table 4.1 CPIPD is the CPU time Per Iteration Per Dof. Iterations
and CPU time in this table are those needed by the computation to reach the steady state, which is
defined as the residual drop of order 10 here. This table shows that the computation with SV-RB O2
scheme is about 12% more expensive on CPIPD than the SV-Roe O2 scheme for this case, which is
understandable because the RB numerical flux is more complex to compute than the Roe numerical
flux. A higher CPIPD is the source which leads to a global higer CPU time used by the RB O2
scheme to reach the convergence with about the same iterations used by the Roe O2 scheme. The
memory use of both schemes is almost the same. Table 4.2 shows that between different numerical
fluxes for the third-order scheme, the RB scheme has a 10% higher CPIPD than the Roe scheme.
As more iterations are necessary to reach the computation convergence with the RB O3 scheme,
the total CPU time needed by this scheme is higher than the one of Roe O3 scheme. Again both
schemes use almost the same quantity of memory. By comparing the third-order results with those of
second-order scheme, there is no suprise to see that the CPIPD of third-order SV scheme is globally
higher than the one of second-order scheme, because there are more numerical fluxes to compute for
each CV in the third-order scheme. Precisely, the CPIPD of Roe O3 scheme is 19% higher than the
one of Roe O2 scheme, and compared to RB O2 scheme, RB O3 scheme has a 17% higher CPIPD.
As there are more CVs and quadrature points to be stored in the computation, the memory usage
of the third-order scheme is 2.2 times higher than the second-order scheme on the same mesh. But
it should be noted that the numerical error level achieved by the second-order schemes on the finest
mesh Tri_irregb can already be obtained by third-order schemes on a coarse mesh Tri_irreg3,
and the corresponding computation cost is very low (see Table 4.3). This is to say that to achieve
the same precision level, with third-order schemes the computation cost is far less than the one of
second-order schemes.

Scheme | Dof | Memory(M) | CPU time(s) | Iterations | CPIPD
Roe 02 | 172554 167 281 550 2.96 x 10°°
RB 02 | 172554 168 332 580 3.32 x 107°

Table 4.1: Computation cost comparison for SV O2 schemes on mesh Tri irregh, CFL = 106.

Comparison between FV and SV schemes Since our objective in this last part of the work
is to investigate the interest of turning to the SV approach as a general framework for deriving
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Scheme | Dof | Memory(M) | CPU time(s) | Iterations | CPIPD
Roe O3 | 345108 373 1031 850 3.52 x 107°
RB O3 | 345108 375 1246 930 3.88 x 1076

Scheme | Dof | Memory(M) | CPU time(s)
Roe O3 | 21528 24 21.7
RB O3 | 21528 24 32.4

Table 4.2: Computation cost comparison for SV O3 schemes on mesh Tri_irreg5, CFL = 10°.

Table 4.3: Computation cost comparison for SV O3 schemes on mesh Tri_irreg3, CFL = 10°.

high-order formulations of the RB scheme, we wish to compare SV-RB O3 with FV-RB O3 both in
terms of accuracy, efficiency and memory requirements. The comparison will be made for a regular
triangular mesh, but observations remain valid for the computations performed on other meshes.
The mesh used by the FV-RB scheme has 19208 elements and the one used by the SV-RB scheme
has 6 times less elements, which is the mesh Tri reg3 in Table 3.1 (3200 triangles, see Figure 4.7),
so that both schemes will have almost the same dof (19208 for FV-RB O3, number of cells, and
6 x 3200 = 19200 for SV-RB O3, number of CVs). The evolution of the numerical error (Ls norm)
against the CPU time obtained by both schemes with the same (large) CFL is showed in Figure
4.8. On this picture, we also plot for reference the evolution of the numerical error obtained on the
coarse grid made of 3200 triangles with FV-RB O3 (in that case the number of dof is the number
of cells or SVs). Naturally for such a reduced number of dof the convergence is fast, the memory
requirement is low but the numerical error is large. With this case, we want to emphasize the fact
that, in practice, the SV method will be applied on this same coarse grid; the automatic process of SV
subdivision will then take place to yield the aforementioned 19200 dof. In the case of F'V computa-
tions, a grid refinement would have to take place in order to increase the number of cells in the grid :
this process can also be made automatic but the simplicity of generating CVs within each SV is better.

It is clear that the computation using FV-RB O3 and SV-RB O3 with the same number of dof yield
a converged numerical error in about the same computational time as showed in Table 4.4. Note both
schemes are coupled with the same previously described first-order implicit stage (applied at the cell
level for the FV approach and at the CV level for the SV approach). In Figure 4.8, the calculation is
run for each scheme until the same level of residual is attained (typically 1078); it can be observed the
asymptotic convergence rate for the SV-RB O3 scheme is poorer than the one achieved with the FV-
RB O3 scheme, thus leading to a larger number of iterations (though we emphasize the steady-state
on the numerical error has been prior achieved with both schemes). More interestingly, the level of
numerical error provided by the FV-RB O3 scheme for the same number of dof is smaller than the
one achieved with SV-RB O3. It can be deduced from Table 4.4 the intrinsic cost (CPIPD) of SV-RB
03 is about 31% higher than the intrinsic cost of FV-RB O3 but with memory requirements 25%
lower. This last positive point is worthy of interest since the memory requirements clearly become a
crucial concern when extending the F'V approach to higher-order.
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Figure 4.7: Mesh with regular triangles used by the SV-RB scheme (left) and the FV-RB scheme
(right).

FV-RB O3 Tri_reg3
— — — FV-RB O3 dof=19208
—_——— SV-RB O3 Tri_reg3

Log_errL2

N e ————————

£ \_ l_ \_ \_ I _l I |
0 2 4 6 8 10 12
cpu_time

Figure 4.8: Evolution of numerical error with CPU time obtained by the FV-RB O3 scheme on mesh

Tri reg3(3200 dof) and on a regualr triangle mesh (19208 dof), by the SV-RB O3 scheme with the
mesh Tri_reg3(19200 dof), CFL = 10°.

Scheme

Dof | Memory(M) | CPU time(s) | Iterations | CPIPD
SV-RB O(3) | 19200 21 11 150 | 3.82x10°9
FV-RB O(3) | 19208 28 8.4 150 2.92 x 107°

Table 4.4: Computation efficiency comparison for third-order RB scheme, CFL = 10°
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4.5 Conclusion

4.5 Conclusion

The second and third-order SV method based RB scheme are obtained for solving a pure advection
problem on unstructured triangular grids. The grid convergence study shows that the RB scheme
is no more accurate than the SV method coupled with the numerical flux of a classical approximate
Riemann solver. And the computation cost of the SV-RB scheme is higher than the one of the
classical numerical flux. When the SV-RB scheme is compared to the FV-RB scheme at third-order
with the same dof and same implicit scheme, it is seen that the FV-RB converges a little faster and
gives a much smaller numerical error.
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Extension of the SV-schemes to compressible flows

French Le chapitre précédent a été consacre a la description du principe de 'approche SV. Les
contributions du présent travail ont aussi été détaillées: développement d’un schéma SV-RB a 'ordre
2 et 3; adjonction d’une phase implicite associée a la phase explicite du systéme basé sur la discréti-
sation du SV d’ordre élevé. Le schéma SV-RB a d’abord été développé pour calculer des problémes
d’advection scalaire et une premiére analyse a été menée sur la précision et efficacité des schémas
SV pour un probléme d’advection circulaire. Dans ce dernier chapitre, on va étendre ces versions du
schéma au calcul des écoulements compressibles autour d’une obstacle (par résolution des équations
d’Euler). Comme on s’intéresse seulement ici aux problémes stationnaires, I’extension des schémas
scalaires au systéme non-linéaire des équations d’Euler n’introduit pas de grande difficulté. Cepen-
dant on a besoin d'un traitement spécial a la paroi afin que la solution d’ordre élevé ne soit pas
dégradée par une représentation imprécise d'une paroi courbe dans un maillage grossier, qui est
souvent utilisé avec des schémas SV d’ordre élevé. A la fin de ce dernier chapitre, on fera des com-
paraisons non seulement entre les schéma SV-RB et les schémas décentré-amont classiques couplés
avec la SV, mais aussi entre les schémas SV-RB et les schémas FV-RB développés auparavant. Cette
derniére comparaison faite dans ce chapitre et le précédent montrera 'intérét potentiel de la SV
comme base du développement du schéma RB d’ordre élevé.

English The previous chapter has been devoted to the description of the design principles of the
SV approach. The specific contributions introduced in this work have also been detailed : derivation
of a SV-RB scheme at second and third-order accuracy; development of an implicit stage associated
with the high-order SV-based explicit stage. SV-RB scheme has been developed for scalar advection
problems. A first analysis of the accuracy and efficiency properties of SV schemes has been performed
for the computation of a circular advection problem. In this final chapter, we intend to extend these
schemes to the computation of compressible flows over obstacles. Since we will limit ourselves to
steady inviscid flows in this chapter, the extension from the scalar linear advection to the non-linear
Euler system does not introduce any specific difficulties. The presence of a wall boundary however
requires a careful treatment if one wishes to avoid that the whole high-order solution be spoiled by
an insufficiently accurate representation of a curved boundary in the a-priori coarse grids which are
often used with the high-order SV schemes. At the end of this last chapter we will perform detailed
comparisons not only between the SV-RB schemes and other classical upwind schemes coupled with
the SV method but also between the SV-RB schemes and the previously developed FV-RB schemes.
This last comparison made in last chapter and this chapter will reveal the potential interest of the
SV framework for the higher-order RB scheme development.
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5.1 Extension of some classical upwind schemes

When reconstructing the solution of the Euler equations, formula (4.9) remains valid but can be
applied either to the vector of conservative variables U or to the vector Q = [p p u v]T of so-called
primitive variables. The later choice is sometimes favored when compressible flows with shocks is
computed by using the F'V approach because it allows a better control of the pressure oscillations
(the limiting strategy associated with the FV approach is then directly applied upon the pressure).
In the case of the SV approach, the first choice is adopted mainly because it is slightly more efficient
since it avoids a conversion from conservative to primitive variables and vice-versa.

5.1.1 Rusanov scheme

We have already pointed out in the previous chapter the very simple Rusanov scheme [41] could be
retained as the numerical flux for the SV approach, precisely because of its great simplicity hence
low intrisic cost. The expression of the Rusanov numerical flux is given by (4.10). For the 2D Euler
equations, the Jacobian matrix in the face normal direction has 4 eigenvalues:

N =V, V, V,—aV, + a]T, with V,, = u - n, + v - n, the velocity in the face normal direction and
a the speed of sound. Hence the maximum absolute value of the wave speeds is A\oe = |Vi| + @;
its value on the face is computed using typically a Roe-averaged value of the velocity components,
density and total enthalpy between the left and right states given at the considered Gauss point by
the respective reconstruction polynomials in the SVs on each side of the interface. For smooth flows,
a simple arithmetic average can also be used to further reduce the cost of the scheme.

5.1.2 HLLC scheme

In order to check the SV framework can accommodate a large spectrum of numerical fluxes and also
to perform a fair comparison between the SV-RB scheme and the coupling of SV with a conventional
upwind scheme, we have decided to perform computations with the HLLC scheme, reputed less
dissipative than the previous Rusanov scheme while offering a low intrinsic cost. The HLLC scheme
used here is precisely the one developed by Toro et al.[45]; its numerical flux is given by:

fi‘ it Sp >0
. fl(Uz) it Sp <0< Sy
Ruree = FLU) if Sy <0< S
Fi if Sp <0
where
: 'O*L)/R pr/RAVL/R
. _ p)e | AV r(pu)r/r + ApL/rNe
Ur = =C , 5.2
L/R (P0)7/r L/R AV r(pv)r/r + Apr/rny 5.2)
(PE)E/R AVL/R(PE)L/R - pL/R(Vn)L +p*Su

with AVz g = SL/R—VL"/R, Apr/r = p* —pr/r, (Va)r/r the velocity in the interface normal direction.

Moreover : .
Coijp= —=————
F T SLR — Su’

p" = pL(V[' = SL)(V]' — Sm) + oL = pr(VE — Sr)(VR — Sum) + pr,
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p*L/RSM
Sy +ptn
Fho— ) — | e D 5.5
L/R ( L/R) (PU)L/RSM+Z? n, .
((pE)L /g +P7)Su

The signal velocities or wave speeds Sy, S and Sg are given by :

G, — PRVE(SR=VIVE—pLVI(SL=Vi)Vi+pL—pr
M pr(SR=VE)—pL(SL—=V]) ’

SL = m’ﬂl()\mm(UL), )\min(URoe))v
Sk = mal’()\max(URoe)a )‘ma:c(UR))'
with Apin(Ugoe) and Ajar(Ugoe) the smallest and largest eigenvalue of the normal Jacobian matrix
computed with the Roe averaged state between the Left and Right solution vectors. This numerical

flux formula is then directly inserted into the SV formulation detailed in the previous chapter, which
is computed at each Gauss point of external faces of the CVs.

5.2 Extension of the RB scheme

The numerical flux of the RB scheme for the Euler equations remains computed by equation (4.19)
with a formally unchanged expression for the dissipation term, except that the dissipation flux is
now the product of a matrix dissipation coefficient by the vector residual. The dissipation matrix
is computed as described in Chapter 2 and the residual vector is obtained with equation (4.29). It
is therefore especially important to adopt the simplification consisting of computing the dissipation
flux only once on each CV face in order to limit the cost of the RB numerical flux with respect to
that of the Rusanov or HLLC numerical flux previously described.

5.3 Boundary conditions

5.3.1 General strategy

We will consider only two types of boundaries in the forthcoming external flow applications : far-field
boundary and solid wall boundary (slip-wall condition for the inviscid flow under study).

The treatment of the far-field boundary does not differ from what has been briefly described in the F'V
case : a boundary state is computed on the CV faces located on the boundary, by using characteristic-
based formula which depends on the neighboring internal state (computed at the Gauss point on this
boundary CV with the solution polynomial in the SV which includes this CV) and the far-field state.
The physical normal flux computed with this boundary state is then taken as the numerical flux.

On a solid wall, the physical normal flux formula is applied with an extrapolated state, which is
computed using the internal solution polynomial. More precisely, consider a cell ¢ close to wall
boundary; the extrapolated solution at the Gauss point on this wall boundary is computed with
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CHAPTER 5 : Extension of the SV-schemes to compressible flows

Uy = >_; LjoUi;. Taking into account the slip-wall condition, the flux in the normal direction to the
boundary face at this Gauss point is given by :

fi = [0 pgna pgny O]T-

where n = [n, n,]” is the unit normal vector to the wall mesh face. The pressure p, is deduced
from the reconstructed value of the vector of conserved variables U,. The face normal is usually
computed by supposing the face of the CV is a straight line. As to be demonstrated this choice may
be insufficient to ensure an accurate representation of the solution and some extra-care is needed in
the treatment of a solid wall-boundary for general curved geometries.

5.3.2 Improved treatment for a curved wall-boundary

It is well know that a precise description of the boundary is very important for high-order methods.
Given a curved boundary, unstructured mesh with straight edge cells cannot represent the boundary
exactly. This approximation can be improved with the refinement of the mesh. For some high-order
methods, like Discontinuous Galerkin (DG) method and spectral volume method, the number of de-
grees of freedom in each mesh cell increases with the scheme order but the boundary representation
remains unchanged since still represented by a series of straight edges. A high-order scheme with a
low order boundary representation cannot achieve a truly high-order accurate solution. Unlike the
finite volume method which is moderately sensitive to the boundary representation, the DG method
[5] and SV method [50] are on the contrary quite sensitive to this representation.

To represent the boundary in a more precise way, one could use iso-parametric elements on the
boundary for SV method. But this would lead to different reconstruction coefficients and residual
computations for boundary cells with respect to inner cells, which would make the corresponding
CFEFD code rather complicated. Therefore a simpler method has been proposed by Harris [22| for
Spectral Volume schemes and used in our computation. Note this idea, referred as high order im-
plementation of wall boundary conditions, has been originally proposed in [29]| for Discontinuous
Galerkin method. Its general principles are described in the following; it is next coupled with the SV
version of the HLLC and RB schemes previously described and applied to the computation of the
flow over a cylinder and an airfoil in this work.

The general principles of the improved wall boundary treatment to be implemented and assessed in
our computation can be summarized as follows :

e First, a set of interpolation points to be used to represent the boundary face at a prescribed
(high) order is determined for each boundary SV.

e Next, the normal vector associated with each curved face constructed from the above interpo-
lation points is computed.

e Finally, a ghost solution vector at each Gauss point on the wall mesh face is computed, by
using this normal vector to the curved face and the solution vector in the internal domain. The
internal and ghost solution on each side of the Gauss point(s) located on the boundary face
are then used to compute a numerical flux through this face. Alternatively, the physical flux
(5.7) computed with the physically correct/accurate normal vector could be used; this choice
was not retained for the sake of robustness.

We now proceed to give a detailed description of the above steps in the following paragraphs.
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5.3 Boundary conditions

5.3.2.1 Interpolation points determination

Let us suppose a curved wall boundary exists in the 2D flow domain. A first-order mesh discretizes
it only with some straight lines (see Figure 5.1) leading to some possibly large numerical errors. As
the analytic form of the wall boundary is often unknown, we have to find a way to recover the curved
boundary from the mesh data. If a quadratic representation of the curved boundary is desired, three
interpolation points on the boundary are necessary. For example, in order to represent the real curved
face between points 1 and 2 quadratically in Figure 5.1, the coordinates of the middle point 4 has to
be known. The idea is to suppose the curved face to be part of a circle. By using nodes of this face
(1 and 2) and two neighbor mesh nodes (5 and 6), two circles can be obtained from two combinations
of three neighbor points (point 5, 1 and 2 can determine a circle for instance). A new circle is then
computed by averaging parameters of these two circles. With the parameters of this new circle and
the face nodes coordinates, point 4 can be determined. If the face is located on a boundary corner
(point 6 for example), only one neighbor node (point 1) can be found, which gives only one circle
that will be directly used to determine the location of point 4.

Figure 5.1: Real curved boundary and straight mesh boundary

Let us consider a face 1 — 2 in Figure 5.1, with two neighboring mesh nodes: point 5 and 6. Taking
the equation of the circle with its center located at (a,b), and a radius r :

(z—a)*+ (y—b)* =1

Substituting the coordinates of the three points 5, 1 and 2 into this equation, the parameters of
the first circle defined by these three points can be computed. The circle centroid coordinates are
denoted by (aq, by), its radius is r;. In the same way, the parameters of the second circle defined by
points 1, 2 and 6 are obtained: centroid at (as, by), with its radius 5. We suppose that the point 4
is located on the averaged circle obtained by:

(a1 + CLQ)

a, = . (bl + b2) . (7“1 + 7“2).

9 mT Ty

7bm:

In order to compute the coordinates of point 4, which is located at the middle of the arc connecting
point 1 and 2, the equation of the averaged circle is written in the parametric form :

{ T = Qp, + rpcost

Yy = by, + rsind
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Substitution of the coordinates of point 1 (z1,y;) in this equation gives the corresponding angle 6,
in the same way 6, is obtained with the coordinates of point 2. Obviously the angle of point 4 is
0, — (61 + 6)
=%

5 By using again the equation (5.10) the coordinates of point 4 can be finally obtained.
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Figure 5.2: Extra interpolation points for a quadratic representation of the NACAQ0012 airfoil leading
edge. Black line is the airfoil obtained on a fine mesh, red line is a baseline coarse mesh on which
the interpolation points are obtained.

In Figure 5.2 an example of the quadratic representation of the leading edge of the NACA0012
airfoil is displayed. This figure illustrates the good agreement of the real curved geometry with these
interpolation points computed by above described method based on a coarse mesh.

5.3.2.2 Physical normal vector computation

In this next step the objective is to compute the normal vector of the curved face at Gauss points
on the wall mesh face. For a general mapping process from a curved element to an isoparametric
simplex, the coordinates transformation is expressed by:

r= ZMi(f,n)ri. 5.11
i=1

where n is the number of nodes necessary for a certain isoparametric simplex, the shape function
corresponding to each node is M;(§,n).

In our computations the cell element has often only one curved edge as showed in Figure 5.3. The
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(Y]

Figure 5.3: Mapping from a curved element to a quadratic simplex

shape function for the simplified quadratic isoparametric simplex is given by:

My =1-3§+25(5+n) —n,
My = —§ 4 26(§ +n),

Only Gauss points on face 1 — 2 in the simplex are considered; this face is such that :

n(§) = 0.

o1
—
N

5.13

With the expression for shape functions and the mapping equation (5.11), the equation of face 1 — 2

is finally given by:
r = (1—3¢+28)r; + (=€ +28%)ry + (46 — 48%)r,.

It is known that the unit outward normal vector N of a physical face is computed by:

_dy _dx
N, = A N, = A
where:
ozr ox
dr = a—€d§+a—ndn,
y dy
dy = ==d —d
Yy 9 £+ an n,

dA = \/dz?+ dy?.

bt
=
SN

o1
—
o1

5.17

dy _dz
N, =% N, =%
dA” Y dA
) dx dy .. ) ) ) .
with dA = (d_§)2 + (d_§>2 The derivatives of the coordinates are easily obtained from equation
(5.14):
dz
d_f = (—3 + 45)113’1 + (4€ — 1)1’2 + (4 - 8€)I4,
dy
i (=3 +48y1 + (46 — D)yz + (4 — 8w
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where the coordinates of point 1, 2 and 4 are now known. The coordinates of each Gauss point (,,7,)
on the face 1 — 2 are known in the quadratic simplex, so that the normal vector of the curved face
at this point (N7,NJ) can be obtained with equation (5.17). Compared to the normal vector of the
mesh face, the computed normal vector is referred to as the physical normal vector, because it is an
approximated normal vector to the true curved physical face.

5.3.2.3 Numerical flux computation on the curved wall

Since the physical normal vector is computed at each Gauss point, a ghost state can be obtained by
using the algorithm proposed by Krivodonova et al [29]. At a Gauss point on the boundary mesh face,
a solution vector can be obtained by the internal solution polynomial, and the corresponding primitive
variable vector is denoted by : Q; = [p; p; u; v;]T. The corresponding ghost state is constructed by :

Pg = Piy

g = (N9 — (N2)?] — 2N2Ngu,

g = v [(NEP — (Ng) — 2NENFu,
Pg = Di-

and is such that the average value between the internal and ghost states satisfies the slip-wall bound-
ary condition written with the physical normal vector on this face (V- N = 0 with the velocity vector
V = [uv]T). A classical approximate Riemann solver is finally used to approximate the numerical
flux on the boundary: H, = (U;, U,, n,) with n, the unit normal vector of the mesh face at the Gauss
point g.

It should be pointed out that the RB numerical flux was not used as numerical flux approximating
the physical flux on the boundary face because of the extra-complexity will be introduced with the
computation of the RB dissipation on a boundary face. Consequently, for a computation with the
RB scheme and this high order boundary representation method, the RB numerical flux is used
everywhere in the flow domain except on the wall, where the numerical flux of a classical Riemann
solver is used instead.

5.4 Numerical assessment

5.4.1 Influence of the numerical flux for SV method

In order to study the convergence order of the SV-RB scheme for solving the Euler equations, a
classical test case is considered, namely the subsonic inviscid flow over a cylinder with Mach number
0.38 and zero attack angle [5]. The cylinder radius is 1 and the far-field boundary is located 20 chords
away from the cylinder. A fine 128 x 32 quadrilateral structured mesh is built at first and then each
cell is divided diagonally into 2 triangles. Three other triangular meshes are obtained by successively
coarsening the fine structured mesh with a factor of 2 and performing the division of the quadrilateral
cells. These meshes are displayed in Figure 5.4, and their main features are summarized in Table 5.1.

Assessment of accuracy In the first approach, aimed at demonstrating the need for higher-order
boundary representation, a second-order SV method taking the HLLC scheme as numerical flux is
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Mesh | No. of cells | No. of points on the cylinder
Mesh1 128 16
Mesh2 012 32
Mesh3 2048 64
Mesh4 8192 128

Table 5.1: Main features of the regular triangle meshes used for computation

1l 1
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> L >
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1 1 ~ 1 I I 1
22 1 0 1 2 22 1 0 1 2
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22 1 0 1 2 23 1 0 1 2
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Figure 5.4: Meshes for cylinder case. Meshl(top left) to Mesh4(bottom right).
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used for the computation, with a first-order boundary representation. This numerical strategy will
be denoted by SV-HLLC O2B1 to emphasize the scheme order is 2 but the boundary representation
order is 1. Although a relatively fine mesh Mesh3 is used, it can be observed on the computed
Mach contours in Figure 5.5 that the solution is spurious : instead of the expected symmetrical flow
(upper/lower and upflow/downflow), two vortex structures appear behind the cylinder, a clear sign
of a spurious entropy generation. The reason for this behavior is that the SV scheme is very sensitive
to the boundary representation : its solution in that case is strongly influenced by the sharp corners
introduced by the first-order grid in the wall boundary representation - turning the smooth cylinder
into a polygon. In order to compute a correct solution, the same second-order SV scheme is used with
the afore-explained second-order boundary condition - an approach denoted by SV-HLLC O2B2. The
improvement brought by this improved boundary treatment is dramatic, as can be clearly seen on
Figure 5.6 : the Mach contours are now visually almost perfectly symmetric.

Figure 5.5: SV-HLLC O2B1 result. Computed Mach contours from 0.05 to 0.9 with 30 levels on
Mesh3.

Since the entropy is theoretically constant for this subsonic inviscid flow, an entropy-based error is
5= 5%

defined as:
S

where S, denotes the entropy level in the incoming flow; the entropy is computed as S = p/p?. This
numerical error on entropy, or entropy deviation, is used to perform a grid convergence analysis on
the series of triangular grids previously introduced. Table 5.2 shows that both the second-order SV-
HLLC scheme and the second-order SV-RB scheme achieve a super-convergence with a second-order
boundary condition since their respective asymptotic order of accuracy exceeds 2. Note also that the
levels of entropy errors computed by the SV-HLLC scheme are globally smaller than those obtained
with the SV-RB scheme on all the meshes.

€s
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Figure 5.6: SV-HLLC O2B2 result. Computed Mach contours from 0.05 to 0.9 with 30 levels on
Mesh3.

Next, the third-order SV schemes are used to compute this case with the same second-order boundary
condition. Results are summarized in Table 5.3. It is found that both third-order schemes yield a
convergence order a bit less than 3 (about 2.8), only very slightly better than the one obtained with
the second-order SV schemes. It must be emphasized however the entropy error levels achieved by
the third-order SV schemes are systematically lower than the ones obtained with the second-order
SV schemes. In particular, the error level obtained with SV-RB O3 or SV-HLLC O3 on grid level 3
is a bit lower than the minimum error level achieved by SV-RB O2 and SV-HLLC O2 on the finest
grid level 4.

The numerical error computed by SV-RB scheme is systematically a bit larger than the one obtained
by the SV-HLLC scheme. This differs from the result obtained on the circular advection problem
where the third-order SV-RB scheme provided the same accuracy as the classical upwind scheme. The
reason for this worse performance of the third-order RB scheme on the cylinder case could be related
to the details of the wall boundary treatment, known to be particularly crucial in the generation of
entropy. Let us recall indeed we have not yet developed a specific high-order SV boundary treatment
for the RB scheme and have retained instead the HLLC numerical flux for approximating the physical
flux on a wall-boundary face. An improper combination of this flux and the RB fluxes on the other
external CV faces in the wall SV might explain this error increase with respect to a purely HLLC
calculation.

Assessment of efficiency Figure 5.7 and 5.8 display the convergence behavior of the second-
and third-order SV schemes (with second-order wall-boundary representation). The convergence is
analyzed both on the residual history and on the evolution of the numerical error on entropy. It can
be observed that both second-order HLLC and RB schemes achieve a steady state on the numerical
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Scheme | Mesh | Dof | Lonorm €, (logl0) | Order
HLLC | Meshl | 384 -1.39627 -
HLLC | Mesh2 | 1536 -2.04525 2.27
HLLC | Mesh3 | 6144 -2.76722 2.46
HLLC | Mesh4 | 24576 -3.52960 2.56
RB Meshl | 384 -1.38527 -
RB Mesh2 | 1536 -2.00906 2.18
RB Mesh3 | 6144 -2.72502 2.22
RB Mesh4 | 24576 -3.47125 2.72

Table 5.2: SV 0O2B2 results. L, norm of numerical entropy errors and the corresponding grid
convergence order.

Scheme | Mesh | Dof | Lonorm €, (logl0) | Order
HLLC | Meshl | 768 -2.40296 -
HLLC | Mesh2 | 3072 -3.09008 2.40
HLLC | Mesh3 | 12288 -3.79667 2.42
HLLC | Mesh4 | 49152 -4.62274 2.78
RB Meshl | 768 -2.40948 -
RB Mesh2 | 3072 -2.95673 1.91
RB Mesh3 | 12288 -3.60784 2.22
RB Mesh4 | 49152 -4.42985 2.76

Table 5.3: SV O3B2 results. L, norm of numerical entropy errors and the corresponding grid
convergence order.
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error in about 1500 iterations, which corresponds to a residual drop by about 4 orders of magnitude.

Analyzing the third-order results, it is found that the SV-RB O3 scheme achieves a steady state on
the numerical error in less than 4000 iterations, corresponding to 7 orders of magnitude in the residual
drop, while the SV-HLLC O3 scheme achieves a steady state in about 5500 iterations, corresponding
to a residual drop by almost 8 orders of magnitude. Note this observation indicates the computational
cost of these methods should be compared when the steady state of the numerical error is achieved
but not when the same level of residual decrease is achieved.
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Figure 5.7: SV O2B2 results. Evolution of density residual (left) and Ly norm of the numerical
error (right) with iterations on Mesh3.

Next the computational costs of these SV schemes are compared. We emphasize the computational
cost of the second-order schemes is analyzed on Mesh4 while the cost of the third-order schemes
is analyzed on Mesh3 because, doing so, the numerical errors obtained by second- and third-order
methods are about the same and it is then fair to compare the cost of second and third-order schemes.
It must also be noted that Iterations and CPU time in Table 5.4 and Table 5.5 are those necessary
to reach a steady state on the numerical entropy error. Table 5.4 shows that the second-order SV-RB
scheme needs 80 less iterations to reach the computation convergence than the second-order SV-
HLLC scheme but it spends finally more CPU time because the CPIPD of SV-RB scheme is about
22% higher. In Table 5.5 it is interesting to see that the third-order SV-RB converged 1960 iterations
earlier than the third-order SV-HLLC scheme, which makes the SV-RB O3 scheme spend eventually
less CPU time regardless of its roughly 10% larger CPIPD than the SV-HLLC O3 scheme. Comparing
the CPIPD of second and third-order schemes, HLLC O3 scheme has a 22% higher CPIPD than the
HLLC O2 scheme, and the CPIPD of RB O3 scheme is 10% higher than the RB O2 scheme. It
should be noted however that the third-order schemes yield almost the same precision (in fact an
even smaller numerical error) than the second-order schemes by using Mesh3 instead of Mesh4,
that is with twice less dof than the second-order schemes, leading to a globally lower computational
cost (both in terms of memory requirements and CPU time). Note the ratio of cell number between
Mesh4 and Mesh3 is 4, which is that the finest grid contains 4 times more SVs than the previous
grid level. Now since the number of CVs in each SV is doubled when going from second to third-order,
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Figure 5.8: SV 03B2 results. Evolution of density residual (left) and Ly norm of the numerical
error (right) with iterations on Mesh3.

the ratio of dof between SV O2 on Mesh4 and SV O3 on Mesh3 is eventually 2.

Scheme | Dof | Memory(M) | CPU time(s) | Iterations | CPIPD
HLLC | 24576 o4 1095 4400 1.01 x 107°
RB 24576 o6 1285 4320 1.21 x 107°

Table 5.4: Computational cost comparison for SV O2 schemes on Mesh4, CFL = 10°.

Scheme | Dof | Memory(M) | CPU time(s) | Iterations | CPIPD
HLLC | 12288 31 1007 6640 1.23 x 107°
RB 12288 31 764 4680 1.33 x 107°

Table 5.5: Computational cost comparison for SV O3 schemes on Mesh3, CFL = 10°.

5.4.2 Comparison between SV-RB & FV-RB schemes

Until now, in this chapter, comparisons have been performed between SV based schemes only. It is
also interesting to compare RB schemes based on two different methods, namely FV-RB and SV-RB
schemes, in order to assess the expectations one may have for one strategy or the other. In order to
perform a fair comparison, the same CFL number, same number of dof and same mesh structure
should be used for the computation. With this idea in mind, a cylinder mesh based on the CVs used
by the second-order SV method with the baseline Mesh3 grid (baseline in the sense it produces the
SVs for the SV method, which are subdivided into CVs) can be created (see Figure 5.9). This mesh is
then used for the second-order FV-RB scheme computation, with no specific treatment for the wall
boundary representation. The combination of SV-RB O2 with second-order boundary representation
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5.4 Numerical assessment

is still denoted by SV-RB O2B2 while the combination of FV-RB O2 with a first-order or linear
boundary representation is referred to as FV-RB O2B1. Table 5.6 summarizes the computation
results obtained both approaches. It can be seen that both of schemes use the same quantity of
memory and has roughly the same intrinsic cost (CPIPD). And it must be noted that the standard
FV-RB O2B1 approach yields a faster convergence speed than the more sophisticated SV-RB O2B2
scheme, while the numerical error obtained with the later is smaller, which must result from the fact
that a quadratic boundary condition is adopted by the SV-RB scheme.
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Figure 5.9: Cylinder case. The mesh created with CVs of the SV O2 scheme used on Mesh3.

Scheme Ly norm of €5 (logl0) | Memory(M) | CPU time(s) | Iterations | CPIPD
SV-RB 0252 -2.72502 14 83 1100 1.23 x 107°
FV-RB 02B1 -2.09753 14 69 900 1.25 x 107°

Table 5.6: Computational cost comparison of FV-RB O2B1 and SV-RB O2B2. Grid of 6144 dof,
first-order implicit scheme with CFL = 106.

In order to perform a comparison between third-order SV and FV approaches which is not over-
dominated by the effect of wall-boundary representation, we choose to retain a test-case with less
pronounced curvature effects than in the cylinder case. Both FV-RB O3 with linear boundary repre-
sentation (thus FV-RB O3B1) and SV-RB O3 with quadratic boundary representation (thus SV-RB
03B2) are applied to the computation of the subsonic inviscid flow over the NACA0012 airfoil with
inlet Mach number 0.5 and angle of attack 2°. The mesh used for the third-order FV-RB scheme has
6 times more cells than the one used for the SV-RB scheme since the SV-RB scheme makes use of
6 dof inside each cell or SV while the FV-RB scheme uses a single dof per cell. For each mesh, a
structured "O" type mesh is created and then every quadrilateral cell is divided into 2 triangles in
the diagonal direction (see Figure 5.10). The mesh for the SV-RB O3B2 has 90 points on the airfoil
and 1800 cells; there are 180 points on the airfoil and 10800 cells in the mesh for the FV-RB O3B1.
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The far-field boundary is located 50 chords away from the airfoil in both cases.
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Figure 5.10: Mesh used for FV-RB O3B1(left) and SV-RB O3B2(right) scheme.

Accuracy assessment The evolution of the lift and drag coefficients computed by the two methods
are plotted in Figure 5.11, along with the wall pressure coefficient and wall entropy deviation. Both
schemes converge to almost the same value for the lift coefficient - a value which is not yet grid-
converged, when compared with the results obtained in Chapter 3 for this same test problem. It
can also be observed the FV-RB O3B1 scheme displays a smoother and a bit faster convergence
to a steady value (a more detailed efficiency comparison will be performed below). Regarding the
drag coefficient, it must be pointed out that despite a simple (standard) first-order airfoil surface
representation the FV-RB O3B1 manages to yield a lower, hence more accurate, value for the drag
coefficient than the SV-RB O3B2 scheme. Moreover, a faster convergence to a steady value of C'p is
also observed for FV-RB O3B1 with respect to SV-RB O3B2. The distributions of the wall-pressure
coefficient computed by both schemes are very close. The plot of wall entropy deviation, in line with
the result observed on the drag coefficient, indicates a level of entropy error for SV-RB O3B2 which
is roughly twice the error level produced by FV-RB O3B1. Finally, the Mach contours obtained by
both schemes are displayed in Figure 5.12. It can be observed on this plot the FV-RB O3B1 scheme
yields apparently smoother contours than the SV-RB O3B2 scheme. In fact, this is only an artificial
effect of visualization : in the case of the SV-RB O3B2 method, the visualization makes use of values
at SV nodes while the computed third-order solutions are available at CV centroids. Clearly, our
procedure for computing these node values is not yet optimal, as testified by what may appear as a
degraded representation of the real high-order solution. Note this is an open problem not only for
the SV method but also for other high order methods, like the Discontinuous Galerkin method.

Efficiency assessment We conclude this comparison with a focus on the computational cost of the
two schemes. The elements gathered in Table 5.7 indicate that FV-RB O3B1 is 10% more efficient
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Figure 5.11: Results obtained by FV-RB O3B1 and SV-RB O3B2 scheme.
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Figure 5.12: Mach contours obtained by FV-RB O3B1 (left) and SV-RB O3B2 (right) scheme.

on CPIPD and requires 28% less memory than the SV-RB O3B2 scheme for this case. We insist
on the fact that both schemes are used with the simple first-order implicit stage and a large CFL
number (CFL = 109).

scheme Memory(M) | CPU time(s) | Iterations | CPIPD
SV-RB 0352 28 1099 7740 1.31 x 107°
FV-RB 03B1 20 826 6460 1.18 x 107°

Table 5.7: Computation cost comparison for RB O3 schemes, dof = 10800, CFL = 10°.

5.5 Conclusion

The second and third-order SV-RB schemes have been successfully extended to solve the Euler
equations on unstructured triangular grids. Moreover, in order to deal properly with curved wall
boundaries in the flow domain, a simple method for achieving improved (quadratic) representation
of these boundaries has also been implemented. The matrix-free implicit method used by the FV
based schemes has been extended without difficulty to the SV based schemes, where the sole difficulty
is technical, which is managing the connectivity between neighboring CVs involved in the implicit
stage. The numerical results obtained for a subsonic inviscid flow over a cylinder and a subsonic
inviscid flow over a NACA0012 airfoil have been globally disappointing when the performances of the
SV-RB schemes (SV-RB O2 or SV-RB 03) are concerned. Indeed, it was found that the coupling
of the SV method with the RB numerical flux does not improve the results obtained by coupling
the SV method with a classical approximate Riemann solver such as the HLLC scheme : the SV-RB
approach yields a slightly larger numerical error for a slightly higher computational cost, which is in
agreement with what was previously observed for the preliminary model circular advection problem.
When comparing the SV-RB schemes with F'V-RB schemes at the same accuracy order, similar nega-
tive conclusions could be drawn : both a smaller numerical error and faster convergence are observed
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for the FV-RB approach.

In this paragraph of conclusion, we wish to emphasize how crucial it is to be able to perform such
a comparison by using our own developed numerical tools. Indeed, during the ADIGMA project,
high-order methods have sometimes (often) been analyzed in a way that we did not judge truly fair.
For instance, the last results obtained for the NACA0012 airfoil could be presented in a much more
favorable light (for the SV strategy) if we insist on the fact the SV scheme makes use of a mesh that
is 6 times coarser than the FV mesh, with twice less points on the airfoil surface. Naturally, such a
picture would be biased since what makes sense is a comparison for the same number of dof - the
type of comparison we have retained. It is true, though, the SV method allows to rely on the fast
generation of coarse grids, which are then automatically enriched through the partition of the SVs /
cells into CVs. For complex configurations, such a strategy may prove an interesting alternative to
the generation of refined grids for FV computations of comparable quality.

We have not yet investigated the extension of the SV approach to orders higher than 3; it may be
found that this strategy would demonstrate its advantages for forth or fifth-order computations which
are hardly tractable with the FV approach. The general framework provided by the SV approach
makes this extension relatively easy to perform; we provide in the appendix of this work some details
on the structure of the F'V and SV solvers developed in this work, which might prove useful for future
developers of such very high-order versions. Note that before proceeding to these developments on
the spatial discretization, we would advise to investigate the implicit time integration associated with
the explicit stage. Indeed, the choice of a simple first-order matrix-free implicit stage has proved quite
advantageous for the second and even third-order schemes but it is probably not an optimal choice
for higher-order schemes since its efficiency tends to decrease when the order difference between the
explicit and implicit stage tends to increase. A more strongly implicit strategy could be advantageous
in that case, of course more complex for the development.
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Conclusion

The objective of this thesis was to derive, develop and analyze a high-order unstructured grid version
of the RB scheme, initially developed in the context of Cartesian and curvilinear grid computations.
The specific emphasis was on the assessment of the potential interest of a third-order version of
the RB scheme for computing compressible flows on general unstructured grids over a more stan-
dard second-order version. This type of assessment was actually the general topic of the European
project ADIGMA which funded the work. The choice is made to write a thesis report which is
totally distinct from the deliverables produced within the ADIGMA project. Although test-cases
and grids provided by the project were often used for flow computations, the systematic normalized
grid-convergence studies required by the project are avoided in this report. However, this work is
focused on a self-designed comparison. Namely, the third-order RB scheme is systematically com-
pared with its second-order version as well as second and third-order schemes based on conventional
upwind numerical fluxes (Roe, Rusanov, HLLC), which have been implemented inside the same code.

A natural way to develop a RB scheme on unstructured grids is to rely on the finite volume method.
Therefore this path was first explored : second and third-order FV-based RB schemes (FV-RB O2
and O3) have been developed for solving the steady and unsteady Euler and Navier-Stokes equations
on general unstructured grids. The choice has been made to derive these schemes as purely cen-
tered schemes with an added residual-based dissipation and to approximate the purely centered part
with usual linear or quadratic least-square reconstruction, where the specificity of the RB scheme
is condensed in the evaluation of the dissipation flux. The RB schemes as well as the conventional
upwind schemes have been systematically coupled with a simple matrix-free implicit stage, allowing
to perform computations with large CFL numbers and ensuring in this way fast convergence to a
steady-state (be it in physical or dual-time, depending on the steady or unsteady nature of the flow
problem). The accuracy, stability and efficiency properties of the RB schemes have then be assessed
on a series of test-cases ranging from model test-problems of scalar steady advection in 2D and 3D
to inviscid and viscous flows over 2D and 3D obstacles.

The model test problems with known analytical solutions allow to check the practical order of ac-
curacy offered by the schemes. The main conclusions that can be drawn from these problems have
two sides. On the negative side, a more pronounced level of grid-dependency has been observed for
FV-RB O3 with respect to the other second and third-order schemes (FV-RB O2 as well as FV-Roe
02 and O3). The source of this behavior can be traced back to the calculation of the dissipation flux
but could not be more clearly determined. On the bright side, it must be pointed out the gain of using
the third-order scheme compared to the second-order scheme in 2D is very encouraging (not only for
model problems but also for steady inviscid flows). For instance, to achieve the grid convergence of
the drag coefficient for a subsonic flow over an airfoil, the third-order scheme saves 60% cpu time
and 23% memory compared to the second-order scheme.

Unfortunately the advantage of using the third-order FV-RB rather than the second-order FV-RB
scheme does not hold in 3D, at least for 3D flows in the implementation developed in this work. The
interest of the third-order FV-RB scheme over the second-order FV-RB scheme is still established
for the model advection problem but for the inviscid flow calculations performed over 3D bodies
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the quality of the third-order scheme results remains very close to that of the second-order scheme
results. Since the cost of FV-RB O3 is naturally higher than the cost of FV-RB O2, this makes
FV-RB O3 unattractive for 3D cases. A possible reason for this behavior could be the very large
stencil needed by the third-order FV scheme which may compromise the scheme accuracy on general
grids. A bit similarly, the viscous extension of FV-RB O2 and FV-RB O3 did yield close results thus
making the third-order scheme not really competitive with respect to the second-order version. Note
however this behavior could also be explained by the fact that the viscous test-cases correspond to
low-Reynolds laminar flows with dominating viscous effects.

When this stage of the work was reached, several options for the next step to take were evaluated :
initially a further investigation of the weak points which have been pointed out for FV-RB O3 was
considered. However, it was judged more useful to put in perspective the general FV results obtained :
it was clear that going very high-order (more than third-order) with a traditional FV approach, us-
ing for instance a cubic reconstruction instead of a quadratic one, was a strategy doomed to fail
because of the explosion of the memory requirements which would be encountered, especially in 3D
computations. Therefore it was decided to explore another way to derive high-order schemes that we
would assess for third-order computations. Note that it should be possible to extend the approach
to higher-order.

After some preliminary attempts with the spectral difference method, We opted for the newly de-
veloped spectral volume method [47|. Basically, this approach relies on an increase of the number
of available degrees of freedom inside a grid cell rather than an increase of the grid cell support for
computing higher-order solution reconstruction within each cell. This more compact design princi-
ple keeps the higher-order 3D formulation of the SV schemes manageable. The coupling of the RB
numerical flux with the spectral volume approach has been performed, giving birth to the SV-RB
02 and SV-RB O3 schemes. Moreover, a SV version of the existing F'V matrix-free implicit stage
was also developed in order to speed up the convergence of these schemes to a steady-state. The
performances of these new schemes have then been assessed with respect to the previously developed
FV-RB O2 and O3 schemes on one hand and with respect to conventional SV schemes (relying on
conventional upwind numerical fluxes such as Rusanov or HLLC) at second and third-order on the
other hand.

The possibility to insert the RB numerical flux into the general SV framework was successfully
demonstrated for 2D model problems first. However, a rather disappointing observation was that
the numerical flux used for approximating the physical flux at the external faces of a SV seemed less
and less influential when increasing the order of the reconstruction polynomial in each SV. In fact,
this is not surprising because increasing the order of the SV scheme leads to a decreasing proportion
of external faces on which the numerical flux is used, it is recalled that the physical flux through
the increasing number of inner faces is directly computed with the reconstructed solution on these
faces). When solving the 2D Euler equations for smooth flows, no benefit was observed from using
the SV-RB schemes rather than the SV-HLLC schemes for instance, which agrees with the result of
model problem. In summary, the SV-RB schemes not only provide a less accurate solution but also
needs a larger computation cost. Moreover, the SV-RB schemes did not prove its competitiveness
compared to FV-RB schemes. In spite of these disappointing conclusions, it is believe that the devel-
opment of the SV version of the RB schemes is truly useful when put in a broader perspective : they
may be regarded as a first step for higher-order formulation of the RB scheme, where they might be
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competitive since the FV-RB schemes could be hardly developed to very high order because of large
memory constraints.

It should be pointed out that apart from the theoretical work on the RB schemes, another important
part of this work has been devoted to the development of a CFD code, named N.S3, in which all the
numerical schemes developed in this work have been successfully implemented. The starting point
was only a simple unstructured solver for 2D inviscid steady flows. This highly technical part was
both essential and time-consuming since the unstructured history in the laboratory has started with
the present work. The developped NS® code can now deal with steady inviscid and laminar flow in
2D and 3D, unsteady inviscid flow in 2D, subsonic, transonic and hypersonic cases on any type of
unstructured grids. This code is also optimized to some extent in order to carry out computations
with a reasonable memory and CPU time. For the purpose of evaluating the SV-RB schemes, the
code N S? was adapted to the SV method and turned into a new version, NS* SV (the finite volume
version is renamed similarly as NS3 FV). The NS* SV code includes all the features presented
in this work, in particular an efficient matrix free treatment for computing steady inviscid flows as
well as the method for imposing high order boundary conditions.

Perspectives

This first contribution to the development of high-order RB schemes on unstructured grids has raised
a number of issues which remain to be solved. The advantage of using a third-order F'V RB scheme
for steady inviscid flows has been clearly demonstrated in 2D, but this conclusion does not seem
holding for 3D. However, the 3D FV computations have been only performed for a subsonic case
on a rather unconventional geometry and for a transonic case. To draw more definitive conclusions,
it would be interesting to perform complementary tests for 3D subsonic flow, for more well-defined
problems such as the flow over a sphere for instance. Turbulent test-cases needs also to be sys-
tematically performed to complete the 2D analysis. A RANS version of the solver, based on the
Spalart-Allmaras model, has been developed by another research group working with NS but the
result is not ready to perform a proper assessment of the RB schemes for high-Reynolds flows.

It should also be recalled that the F'V formulation of the RB schemes is based on an option in which
the reconstructed solution is used to compute the non-dissipative part of the RB numerical flux.
It would be interesting to investigate more deeply the possibility to use a least-square approach to
estimate not only the flux gradient used in the dissipative flux but also the flux on the face, without
resorting to a variable reconstruction. Such an approach agrees better with the strategy used by
original RBC schemes since it preserves better the compactness of this scheme, while it is lost in the
FV-RB schemes presented in this work.

Regarding the SV approach, it would probably be interesting to check whether the impact of the
numerical flux is more meaningful when computing flows with shocks, because no real interest was
found in using the RB flux over the HLLC flux for instance when computing smooth inviscid flows.
More importantly however, performing a 3D extension of the SV approach, coupled with the proposed
implicit treatment and RB numerical fluxes as well as conventional upwind fluxes should be a priority.
Indeed, the developed codes including high-order approximations should provide a good support to
perform some studies on large-eddy-simulations on unstructured grids as long as a 3D version is
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made available. Note that recent results obtained in [17] when coupling the third-order SV method
with a classical upwind scheme in 3D have revealed that the approach is weakly unstable; further
3D investigations are therefore crucial to determinate whether the SV approach is indeed a good
candidate for performing flexible LES computations on general geometries.
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Structure of code NS° FV

The development of the CFD code NS?® is a part of work of this thesis. Hence a brief introduction
of the code structure is given here. Necessary directories for the code are listed in Figure A.1.

NS® |

(=2 GAMBIT_to_NS3 () pata

(Program to transform the files defined
Gambit mesh file to NS® mesh file) (files for use-defined parameters)

Y

() Support_file_NS3 [y Res

——* (result files for TECPLOT,
(Programs to creat the cell stencil computation information file)
file and node stencil file)

Y

([} Grid

(main grid file and other
support files)

D Src

(code source files)

Figure A.1: Directories necessary for code NS®

Files in each directory and their function are showed in Table A.1, Table A.2 and Table A.3. Files in
Data are provided and to be modified by the user, files in Res will be created after the startup of com-
putation, and files in Grid have to be created by using programs in directory GAMBIT to NS3
and Support file INS3. The structure of directory GAMBIT to NS3 is showed in Figure
A.2. For the moment the code NS® uses GAMBIT as mesh generator, but the mesh format is differ-
ent. Firstly the mesh is made inside the GAMBIT, before defining boundary conditions, ’Generic’ in
solver option is chosen. Then boundaries are defined with type "Elementside’. Recognized boundary
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names are: WALL for wall, RIEMANN for far-field boundary, SUPIN for inlet and SUPOUT
for outlet. Finally a mesh file *.neu can be exported from GAMBIT. This file should be put into
directory GAMBIT. In file file name.inp the source mesh file name "*.neu’ and the target file
name "*.inp’ are to be given. According to the mesh dimension (2D or 3D) an executive file can be
created from source files in the corresponding Src_ * directory. At last the target mesh file (*.inp)
will be created in directory Grid by using the created executive file.

After having the main mesh file, programs in directory Support file  NS3 will be used for support
files creation. The structure of this directory is showed in Figure A.3. Copy the main mesh file *.inp
into directory Support file NS3/Grid and give the name of main mesh file and its support files in
file Support file NS3/Data/file.inp. According to mesh dimension use source files in directory
Src__* to creat executive program, which can be used to obtain 3 support files for 2D mesh and 2
for 3D mesh. All of created files can be found in directory Support file NS3/Grid.

Files Function

file.inp provide names of main grid file and support files:
main grid file: *.inp;

support grid files: * support_order2.inp,
* support_order3.inp,

* support_node.inp.

userchoice.inp | user-defined parameters:

problem type, CFL, scheme order...
freestream.inp | free stream boundary condition:

M,a,Re

ede.inp give fluid type:

'pfg’ for the perfect gas

dataDENSIL.inp | fluid status constant:

v for the perfect gas

Table A.1: Files in directory Data

Files Function
*inp main grid file
*

_support_order2.inp | file providing cell stencils for second-order scheme
* support_order3.inp | file providing cell stencils for third-order scheme
* support node.inp | file providing node stencils

Table A.2: Files in directory Grid

The code source files in the directory Src are listed in Table A.4. It is ineresting to see the definition
of some important variables in this code.
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Files

Function

usr.info

computation information:
grid file names, physical model, numerical parameters, CPU time...

residue.dat

evolution of density residual with iterations and CPU time

aero_stress.dat

evolution of aerodynamic coefficients with iterations and CPU time

tecplot _aero fieldNNN.inp | solution field: p, p, T, M...obtained at iteration NNN

wall coef NNN.dat

solution distribution on the immersed body obtained at iteration NNN

restart  NNN.dat

conservative variables obtained at iteration NNN,
for another computation restarting from the current solution.

Table A.3: Files in directory Res

/1) sre_2D

() GAMBIT_to_NS3 |< ) caveIT

Figure A.2: Structure of directory GAMBIT _to INS3

Files

Function

delaration.f90

declaration of all of variables in the code

allocate.f90

assemble of subroutines allocating variables

functions.f90

all of functions used in the code

ns3_2d.f90

main program

read _input.f90

grid file and support files reading, pre-processing

cell _update.f90

flux integration, solution reconstruction
time step and residual computation

gradient calculation.f90

computation of node values, cell gradients, limiter and error indicator

boundary.f90

boundary condition on the wall, far-field, inlet and outlet

num_flux.f90

numerical flux computation: RB scheme and AUSM-+ scheme available

write output.fo0

write computation information file and result files,
result files output management

file operation.f90

open and close some files opened at the computation start
and closed in the end of computation

impli.f90

implicit scheme: only matrix-free method available

Table A.4: Files in directory Src
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e D Sre_2D order2

[:. Src_2D order3

[y Src 2D _node_stenc

(g Support_file_NS3

D Src_3D order?

[__:i Src_3D_order3

D Data
D Grid

Figure A.3: Structure of directory Support file NS3

Variables

Meaning

np,nc,nf

number of mesh nodes, cells and faces

uold(i)%rho,%rhou,%rhov,%rhoE

conservative solution vector at centroid of cell ¢

qold(i)%p,%u,%v,%T

primitive solution vector at centroid of cell ¢

q_node(i)%p,%rho,%T,%u, %v

solution vector of node %

xc(i),ye(i)

cell centroid coordinates

surface(i)

cell volume

connection(4,i)

cell connectivity information: nodes belonging to the cell ¢

x(1),y (1)

mesh node coordinates

node bc(i)

node type, same definition as face type

incell(i),outcell(i)

cell on the left and right side of the face

sx(1) sy (1)

mesh face area normal vector
(poiting from left cell to the right cell)

be(i) face type: O for internal face, 1 for wall face
2 for inlet face, 3 for oulet face, 4 for far-field face
face(2,1) face connectivity information: 2 nodes belonging to the face

Table A.5: Definition of some important variables in code NS3 FV
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Some important issues of code NS> SV

The code NS® SV is developed based on the code structure of TNS® FV and some adaptation
are made in order to implement SV method in this version of code. The directory structure of code
NS3 SV is the same as code NS® FV. And this code needs only the main mesh file *.inp and the
node stencil support file * support node.inp, which can be created in the same way as for the
code NS3 FV. Necessary source files for the code are the same as those showed in Table A.4. In
this code the way of defining some important variables are quite different with the code NS® FV

(see Table B.1).

Variables Meaning
np,nc,nf number of mesh nodes, cells and faces
nev,ngp number of CVs and quadrature points in a SV

L(i)%dofF )

1th shape function of quadrature point j

cell(i)%dof _u(j)%uold%rho, %rhou...

conservative solution vector at centroid of CV j in SV 1

cell(i)%dof_f(j)%U%rho,%rhou...

conservative solution vector at quadrature point j in SV ¢

centroid coordinates of SV ¢

SV volume

(

(i
cell(i)%sv_xc,%sv_yc

(

(i

SV connectivity information: nodes belonging to the SV

cell(i)%connection (4)
node(i)%x_n,%y n

coordinates of mesh node 2

)

)
cell(i)%sv_volume

)

(

(i

node(i)%bc_n

node type, same definition as face type

cell on the left and right side of the face ¢

e
e(i
face(l)%incell, Yooutcell
face(i)%sx_f, Y%sy f

mesh face area normal vector
(poiting from left cell to the right cell)

face(i)%bc

face type: 0 for internal face, 1 for wall face
2 for inlet face, 3 for oulet face, 4 for far-field face

face(i)%nd(2)

face connectivity information: 2 nodes belonging to the face

face (i) %spl(2), Y%spr(2)

CV centroid on the left and right side of the face

quadrature points on the left and right side of the face

face (i) %svpl(3), %svpr(3)

SV partition points on the left and right side of the face

(i)

(i) )
face (i) %tpl(2), %fpr(2)

=

face(i)%rbpl(4), %rbpr(4)

quadrature points necessary for the RB scheme
on the left and right side of the face

Table B.1: Definition of some important variables in code NS* SV

In this SV version code, an important issue is the numbering of CV centroid and quadrature points.
As the solution polynomial is reconstructed in a SV, it is convinient to number CVs and quadrature
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points locally in a SV. The numbering in a standard SV is showed in Figure B.1, where square
points are partition points dividing one SV into 3 CVs (for second-order scheme), round points are
CV centroids, and triangle points are all of quadrature points in a SV. For the RB scheme, its
numerical dissipation term needs solutions at particular quadrature points on faces of shift cells
formed between CVs, these points are therefore numbered and saved for later use (see triangle points
showed in Figure B.2). Although all of these points in each SV are numbered in a same way in
the physical domain, the orientation of each SV is random. Given a mesh face (SV face), the nu-
meration of these points on both sides is therefore unknown, while this information is necessary
for numerical flux computation. The numeration finding and saving is done in the pre-processing.
An example of numeration for a face ¢ is showed in Figure B.3, the variable saving numeration
of CV centroids on the left side: face(i)%spl(1) = 3, face(i)%spl(2) = 2, on the right side:
face(i)%spr(1) = 1, face(i)%spr(2) = 2; the variable saving numeration of quadrature points
on the left side:face(i)%fpl(1) = 4, face(i)%fpl(2) = 3, on the right side: face(i)%fpr(1) = 1,
face(i)%fpr(2) = 2. Numeration of SV partition points and RB quadrature points are saved in the
same way.

w
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L 4
06
| 6
0.4
i 3
- 4
0.2 e
L 1
OF = £
| 1 1 4 2 2
L L I L L I 1 1 I 1 L 1 I 1 L L I L 1 L I 1 L I
0 0.2 0.4 0.6 0.8 1 1.2

Figure B.1: CV centroids and quadrature points numbering in the standard SV for the second-order
scheme.

As mentioned in Chapter 5 the matrix-free implicit method is used for the SV method, where the
connectivity of each CV is necessary, which needs a global numbering of centroid, nodes and faces of
each CV. This gives a new mesh with CVs as mesh cells. Varaibles related to the new mesh are listed
in Table B.2. With the help of these variables, the solution can be passed easily from a local CV to
the corresponding global cell. For example, solutions at the centroid of global cells can be obtained
by the loop:

do i=1,nc
do j=1,3
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Figure B.2: RB quadrature points numbering in the standard SV for the second-order scheme.

Figure B.3: Numeration saved for a face for the second-order scheme.
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ncl=cell(i)’%dof_u(j)’%nwn
nwuold(ncl)=cell(i)%dof_u(j)%uold
end do
end do

where nwuold(ncl) is the solution at the centroid of global cell nel. With information for the new
global cells (CVs of the SV scheme), the implicit solution increment can be computed as the one for
the F'V scheme.

Variables Meaning
nnp,nnc,nnf number of new mesh nodes, cells and faces
nw_ cell(i)%xc,%yc centroid coordinates of new cell i
nw__cell(i)%connection(4) connectivity information of new cell
nw_node(i)%x_n,%y n coordinates of new mesh node 4
nw_face(i)%incell, %outcell | cell on the left and right side of new face i
nw_ face(i)%sx, %sy mesh face area normal vector

(poiting from left cell to the right cell)
nw_ face(i)%nd(2) new face connectivity information
cell(i)%dof _u(j)%nwn the global number of CV j in SV ¢

Table B.2: Definition of variables related to CV global numbering in code N.S3 SV
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SCHEMA D’ORDRE ELEVE BASE SUR LE RESIDU
POUR LA SIMULATION NUMERIQUE D’ECOULEMENTS COMPRESSIBLES
EN MAILLAGES NON-STRUCTURES

RESUME : Un schéma compact de haute précision basé sur le résidu (RBC) a été développé au
laboratoire SINUMEF pour la simulation numérique d'écoulements compressibles en maillages
structurés. Certaines proriétés intéressantes font de ce schéma un bon choix pour les calculs
d'écoulements compressibles. L'objectif de cette thése est donc de développer un schéma basé sur le
résidu (RB) en maillages non-structurés avec une précision d'ordre élevé. A cette fin, deux approches
ont été explorées. La premiéere est basé sur la méthode des volumes finies en non-structuré et conduit
a un schéma basé sur le résidu appelé FV-RB. Le seconde approche s'appuie sur une nouvelle
formulation spatiale dite volumes spectraux (SV) et méne au schéma SV-RB. Le schéma FV-RB a été
développé a l'ordre 2 et 3. Avec cette version du schéma, de nombreux cas tests sont calculés:
écoulement d'un fluide parfait et visqueux, subsonique, transonique et hypersonique, stationnaire et
instationnaire, en 2D et en 3D. Une analyse de la précision et du coit de calcul est effectuée pour le
schéma FV-RB. Dans la seconde approche, un schéma SV-RB est développé a l'ordre 2 et 3 pour
résoudre le probléme d'advection pure et les équations d'Euler. A travers quelques cas tests, une
comparaison de la précision et I'efficacité est effectuée entre le schéma RB et un solveur de Riemman
classique, et entre deux formulations du schéma RB développés ici.

Mots clés : schéma basé sur le résidu, ordre élevé, maillages non-structurés, écoulements
compressibles

HIGH ORDER RESIDUAL BASED SCHEME FOR NUMERICAL SIMULATION OF
COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS

ABSTRACT . A very accurate compact residual based scheme (RBC) has been developed in
SINUMEF laboratory for numerical simulation of compressible flows on structured grids. Some
interesting properties of this scheme makes it a good choice for compressible flow computations.
Objective of this thesis is therefore to develop a high-order residual based scheme (RB) on
unstructured grids. For this purpose, two approaches have been explored. First one is based on the
finite volume method for unstructured grids which gives a residual based scheme named FV-RB.
Second approach uses a new spatial discretization method called Spectral Volume method (SV) giving
a scheme named SV-RB. The FV-RB scheme is developped to 2" and 3 order. With this version of
scheme, many test cases are computed: steady and unsteady, subsonic, transonic and hypersonic,
inviscid and laminar flow in 2D and 3D. Analysis on the precision and cost of computation is made for
this FV-RB scheme. For the second approach, the 2" and 3" order SV-RB schemes are obtained for
solving pure advection problem and Euler equations. Through several test cases, the comparison of
accuracy and computation efficiency is made between the RB scheme and a classical Riemann
solver, and between two different versions of RB scheme developped in this work.

Keywords : residual based scheme, high order, unstructured grids, compressible flows
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