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Abstract

0.1 Introduction

Dans cette thèse, notre objectif est d’optimiser les stratégies de transmission et de réception
dans un réseau où il y a peu ou pas de gestion centrale des ressources du tout, et où les
nœuds ont une connaissance limitée du canal avec seulement un lien restreint entre eux.
En particulier, les émetteurs ont la plupart du temps des informations locales seulement
sur le canal, et nous considérons qu’il n’y a pas de partage des données à transmettre aux
utilisateurs, ce qui empêche la transmission conjointe en système virtuel MIMO.

L’utilisation commune des ressources du système (par exemple en transmettant en
même temps et dans la même bande de fréquence) conduit à la génération d’interférence
au niveau des différents récepteurs, ce qui rend la gestion des interférences essentielle. En
considérant l’optimisation du précodeur dans le cadre de la théorie des jeux, des stratégies
extrêmes, égoiste ou altruiste, peuvent être définies. Un émetteur égoiste agit en prenant
compte de son propre intérêt et recherche la maximisation de son propre rapport signal
sur bruit plus interférence (SINR) sans considération des interférences générées aux autres
récepteurs. Un émetteur altruiste, par contre, utilise toutes ses ressources afin d’annuler
les interférences qu’il crée aux autres récepteurs. Il est intuitif qu’aucune de ces deux
stratégies extrêmes n’est optimale pour maximiser le débit total du réseau. Un travail
récent [31] sur le design du vecteur de précodage dans un canal d’interférence MISO
(MISO-IC) sans décodage des interférences au récepteur (SUD) a mis en évidence qu’il est
possible, en balançant les approches égoiste et altruiste, d’atteindre un point d’opération se
situant sur la frontière Pareto optimale de la région de débit, qui est la frontière limitant
la région des débits atteignables par l’utilisation de précodage linéaire. En gardant à
l’esprit ce résultat, nous étudions l’optimisation distribuée des vecteurs de précodage pour
le MISO-IC-SUD dans le chapitre 3. Nous développons un algorithme qui est initialisé
à l’équilibre de Nash (point d’opération égoiste) et se déplace à chaque itération vers la
solution du zéro-forcing (point d’opération altruiste) à pas fixe. L’algorithme s’arrête si
un des émetteurs observe une baisse de son débit, imitant ainsi le procédé de négociation.
L’algorithme proposé atteint un point d’opération proche de la frontière Pareto optimale,
et chaque utilisateur obtient un débit supérieur à celui qu’il aurait eu à l’équilibre de Nash.
Nous démontrons ainsi que les joueurs (les paires émetteur-récepteur) peuvent atteindre
des débits supérieurs dans le MISO-IC-SUD en coopérant et en balançant égoisme et
altruisme.

Le problème du design des vecteurs de précodage pour le MISO-IC-SUD est étendu
au cas du MIMO-IC-SUD au chapitre 4. En supposant une connaissance locale, nous
modélisons ce problème en un jeu bayésien prenant en compte le fait que le canal ne
soit pas complètement connu, et où les joueurs maximisent l’espérance de leur fonction
d’utilité à partir des statistiques du canal. Nous trouvons le point d’équilibre de ce jeu
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bayésien et étudions la maximisation de la somme des débits dans un MIMO-IC-SUD.
Nous observons que la maximisation du débit total peut aussi être interprétée dans ce
scénario comme un équilibre entre les approches égoistes et altruistes. Avec cette analyse,
un algorithme dans lequel les vecteurs de transmission et de réception sont obtenus par
une optimisation alternée aux émetteurs et aux récepteurs est développée. L’algorithme
converge vers une solution qui aligne les interférences lorsque le SNR devient large, ce qui
implique que le débit total augmente indéfiniment avec le SNR (avec une pente égale aux
nombre de degrés de liberté). Dans le régime à faible SNR, notre approche fonctionne
mieux que les algorithmes conventionnels visant à aligner les interférences, ce qui est une
conséquence de l’équilibre entre égoisme et altruisme. En particulier, l’algorithme proposé
atteint des performances presque optimales dans des réseaux asymétriques pour lesquels
certains récepteurs sont soumis à du bruit de fond incontrôlé.

Dans le chapitre 5, nous considérons enfin des récepteurs ayant la capacité de décoder
les interférences (IDC) dans un MISO-IC. Ce degré de liberté additionnel permet aux
récepteurs de décoder les interférences et de les soustraire au signal reçu, ce qui per-
met ainsi d’obtenir une communication sans interférence. En revanche, les choix des
récepteurs dépendent des vecteurs de précodage aux émetteurs. Pour chaque choix de
vecteur de précodage, nous obtenons un nouveau SISO-IC avec une nouvelle région de
capacité correspondante. Ainsi, nous devons choisir pour chaque réalisation d’un canal
MISO le vecteur de précodage et la puissance de transmission de manière à atteindre un
débit maximal après avoir considéré toutes les possibilités pour les actions des récepteurs
(décodage des interférences ou traitement des interférences comme du bruit). Il y a trois
paramètres influant le design: la structure du récepteur, le vecteur de précodage, et la
puissance de transmission. Ces trois paramètres sont interdépendants et l’obtention du
triplet optimal est un problème qui a été démontré comme étant NP-complet [39]. Quoi
qu’il en soit, nous avons simplifié cette analyse en reformulant la région des débits at-
teignables d’un MISO-IC-IDC comme l’union des régions pour les différentes structures.
Ensuite nous avons caractérisé les limites de ces régions de débit atteignable et obtenu
ainsi la frontière Pareto optimale du problème initial. Les vecteurs de précodage Pareto
optimaux sont obtenus par une combinaison linéaire de deux vecteurs du canal avec des
poids dépendant seulement de deux scalaires réels entre zéro et un. Nous utilisons ensuite
cette caractérisation de la frontière Pareto optimale pour obtenir une caractérisation du
point où le débit total maximum est atteint. Cet ensemble de solutions potentielles est un
sous-ensemble strict de la frontière Pareto optimale, ce qui réduit ainsi considérablement
l’espace de recherche du problème NP-complet initial.

0.2 MISO-IC sans Décodage de l’interf’erence

Dans un MISO-IC avec N paires d’émetteurs et récepteurs, nous proposons une heuristique
intuitivement motivée, que nous appelons solution de négociation distribuée (distributed
bargaining solution (DBS)) et la comparons à l’équilibre non-coopératif de Nash ainsi
qu’à la solution altruiste, tous deux introduits ci-dessus. La difficulté réside en ce que les
points de coopération optimaux (situés sur la frontière de Pareto) peuvent être exprimés
comme une combinaison linéaire des vecteurs de précodage ZF et MRT où les coefficients
de pondération nécéssite la connaissance centralisée et complète des canaux. Pour rendre
l’algorithme plus distribué, nous introduisons l’idée d’un lien de feedback limité de chaque
utilisateur vers la station de base qui le sert. Le deuxième aspect nouveau est l’idée
d’une négociation itérative où les émetteurs modifient légèrement et simultanément leurs
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vecteurs de précodage de manière à ce que les débits de toutes les parties concernées soient
améliorés. Les utilisateurs doivent observer leurs débits et indiquer à leur station de base
si la négociation a été réussie ou pas (en utilisant un seul bit de feedback). Dans le cadre
proposé, une baisse de débit chez l’un des utilisateurs résultera en cet utilisateur cessant
de coopérer.

0.2.1 L’algorithme DBS

Nous proposons un algorithme itératif qui s’approche de la frontière Pareto en modifiant
progressivement la direction des vecteurs de précodage à chaque itération afin que chaque
paire émetteur-récepteur obtienne un débit plus haut.

Soit wi(j) le vecteur de beamforming de l’émetteur i à l’itération j. Intuitivement,
il est raisonnable d’initialiser les vecteurs wi(0) à la solution MRT wMRT

i parce que les
joueurs commencent dans un cadre non-coopératif. Cependant ils peuvent également tous
initialiser leurs vecteurs de beamforming dans un cadre altruiste (voir ci-dessous).

Le vecteur de beamforming est mis à jour à l’itération j de la façon suivante:

wi(j) = wi(j − 1) + δw(j) (1)

wi(j) →
wi(j)

‖wi(j)‖
(2)

où δw(j) est un vecteur calculé à partir de l’information locale sur le canal. A l’itération
j, chaque récepteur calcule son débit utilisant son information locale,

r
(j)
i = log2

(

1 +
|hH

iiwi(j)|2
Ii(j)

)

(3)

où hkl représente le canal complexe Gaussian à évanouissement entre Tx l et Rx k, Ii(j)
est l’interférence mesurée ajoutée à la puissance du bruit au récepteur i à l’itération j,

Ii(j) =
N∑

k 6=i

|hH
ikwk(j)|2 + σ2. (4)

Donc, Rx i rend compte au Tx i d’un seul bit pour informer la station de base de son
degré de satisfaction: un 1 correspond à une demande d’augmenter le débit de données,
un 0 à une demande de le diminuer.

Nous proposons la stratégie d’initialisation suivante qui s’adapte au SNR du système
en supposant que les SINRs correspondant à l’utilisation de ZF and MRT soient connus:

wi(0) =

{
wZF

i if RZF > RMRT ;
wMRT

i otherwise.
(5)

où RZF =
∑N

i=1 log2
(
1 + γi

(
wZF

1 , . . . ,wZF
N

))
et

RMRT =
∑N

i=1 log2
(
1 + γi

(
wMRT

1 , . . . ,wMRT
N

))
. Il est intéressant de noter que les différents

mechanimes de mise à jour dans (3.16) résulteraient en des trajectoires de débits différentes
et que la somme des débits une fois l’algorithme converge sera différente. Ici nous mon-
trons deux exemples simples de δwi(j) qui obtiennent de meilleurs résultats que les solutions
non-cooperative et altruiste. Ces algorithmes fournissent tous deux une trajectoire liant
le point d’opération MRT à celui de ZF dans la région de débits. Si RZF > RMRT ,
δwi(j) = wMRT

i , dénoté ZFI, sinon δwi(j) = wZF
i , dénoté OBI.
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Une condition d’arrêt est implémentée pour que la trajectoire du vecteur de transmis-
sion s’arrête aussi prêt de la frontière Pareto que possible. La condition d’arrêt reflète la
stratégie de partage et plusieurs options sont possibles. Une condition d’arrêt raisonnable
et intuitive consiste en ce que chaque émetteur arrête de coopérer et met fin à l’algorithme
dès que son débit diminue. L’utilisateur i, 1 ≤ i ≤ N arrête donc de coopérer si

|hH
iiwi(j)|2
Ii(j)

>
|hH

ii wi(j + 1)|2
Ii(j + 1)

(6)

où Ii(j) est la puissance de l’interférence plus bruit mesurée dans (3.19).

0.2.2 Résultats et Discussion

Dans cette section, nous illustrons la dynamique (trajectoires dans la région de débit) et
la somme des débits obtenue par DBS.

Dans la figure 3.1, la région de débit réalisable pour une instance particulière des
canaux est tracée pour le canal MISO-IC-SUD à deux utilisateurs. La solution ZF et la
solution MRT sont marquées par un cercle et un triangle respectivement, à l’intérieur de
la région. Le SNR du système est égal à 15dB. Pour cette instance du canal, ni ZF ni
MRT n’atteignent la frontière Pareto. La trajectoire de DBS à chaque itération commence
à la solution MRT. La ligne continue correspond à la trajectoire avec condition d’arrêt
qui garantit que la négociation cesse dès que le débit de l’un des émetteurs baisse. La
ligne pointillée est la trajectoire sans condition d’arrêt. Comme le montre la figure, la
trajectoire finit par atteindre la solution ZF mais sans aucune garantie des débits des
émetteurs. A noter que le vecteur de beamforming est orienté vers le vecteur zéro-forceur
mais s’arrête avant de l’atteindre ce qui résulte en une somme des débits plus grande
et un point de fonctionnement plus proche de la frontière Pareto. La somme des débits
obtenue est supérieure à celles obtenues par les solutions ZF et MRT. Pour cette réalisation
des canaux, l’algorithme DBS atteint presque la frontière Pareto au bout de 3 itérations
seulement ce qui signifie que seulement 3 bits de feedback sont suffisants pour améliorer
la performance de façon significative.

Dans un canal à interférence où les émetteurs sont en concurrence pour l’utilisation de
la bande de fréquence en l’absence d’une structure du réseau qui s’occupe de la gestion de
l’interférence, un algorithme distribué est essentiel pour l’amélioration de la performance
du système. Nous avous proposé deux solutions de négociations distribuées simples qui
essaient de trouver un équilibre entre la solution égoiste (MRT) et la solution altruiste
(ZF). Dans la section qui suit, nous étudions l’équilibrage entre égoisme et altruisme dans
le contexte d’un canal MIMO-IC-SUD.

0.3 MIMO-IC sans décodage d’interférence

Dans cette section, nous proposons un algorithme distributé pour la maximisation de la
somme des débits sur un canal MIMO-IC asymétrique. L’équilibrage entre l’altruisme
et l’égoisme pour le joueur i peut être réalisé par un compromis entre le précodeur qui
adopte une direction proche de celles des vecteurs propres dominants de l’équilibre égoiste
Ei = Hiiwiw

H
i HH

ii et celle des matrices d’équilibre altruiste {−Aji} (j 6= i) où Aji =
Hjiwiw

H
i HH

ji . Ce qui est intéressant, comme il sera démontré dans les sections suivantes,
c’est que le précodage qui maximise la somme des débits pour le MIMO-IC fait exactement
ceci. Nous revenons donc brièvement sur les approches de maximisation des débits telles
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Figure 1: La trajectoire de DBS dans la région de débit pour un MISO-IC-SUD à 2
utilisateurs opérant à un SNR de 15dB. Les trajectoires de ZFI et OBI, qui commencent
au point MRT (marqué par un triangle), sont en lignes continues, en rouge et en vert
respectivement; en l’absence d’une condition d’arrêt, les trajectoires se terminent au point
ZF (marqué par un cercle) et sont representées par des lignes pointillées. Comme le montre
la figure, les algorithmes s’arrêtent prêt de la frontière Pareto.

que [61]. Soit R̄ =
∑Nc

i=1 Ri la somme des débits où Ri = log2

(

1 +
|vH

i Hiiwi|2P
∑Nc

j 6=i |vH
i Hijwj |2P+σ2

i

)

.

Lemma 1. Le vecteur de transmission qui maximise la somme des débits R̄ est le vecteur
propre d’une matrice donnée par une combinaison linéaire de Ei et Aji:



Ei +
Nc∑

j 6=i

λopt
ji Aji



wi = µmaxwi (7)

où

λopt
ji = −

|vH
j Hjjwj|2P

∑Nc
k=1 |vH

j Hjkwk|2P + σ2
j

∑Nc
k=1 |vH

i Hikwk|2P + σ2
i

∑Nc
k 6=j |vH

j Hjkwk|2P + σ2
j

(8)

et µmax est défini plus tard dans la thèse.

On peut montrer que les paramètres d’équilibrage {λopt
ji } sont en fait les ‘prix’ échangés

au cours de l’algorithme itératif proposé par [61]. Ces paramètres jouent un rôle clé,
cependant leur calcul est fonction de la connaissance globale du canal et nécessite des
échanges supplémentaires de messages (les prix). Pour éviter ceci, nous obtenons ci-
dessous une technique sous-optimale d’équilibrage d’egoisme-altruisme qui nécessite la
connaissance des statistiques des canaux uniquement, tout en démontrant la même pente
de la courbe de performance en fonction du SNR qui si le connaissance du canal était
parfaite.
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0.3.1 Un algorithme pratique distribué pour le design du beamforming:

DBA

Nous proposons l’agorithme distribué suivant (DBA) où les vecteurs en émission et en
réception sont calculés de façon itérative:

wi = V max



Ei +

Nc∑

j 6=i

λjiAji



 (9)

vi =
C−1

RiHiiwi
∥
∥C−1

RiHiiwi

∥
∥

(10)

où λji dépend des statistiques du canal seulement. A ce stade, il est intéressant de com-
parer avec des stratégies proposés précedemment basées sur l’alignement des interférences
telles que celles dans [49]. Dans ces stratégies, wi ne dépend pas de Hii. A noter cepen-
dant que wi est corrélé au gain du canal direct Hii à travers la matrice égoiste Ei dans
DBA. Cette corrélation est utile en termes de la somme des débits puisqu’elle permet de
pondérer entre les contributions des matrices egoiste et altruiste d’une manière qui dépend
des liens.

Les paramètres d’équilibrage entre égoisme et altruisme λji sont obtenus de manière
heuristique qui dépend des statistiques des canaux. (4.18) indique que

λopt
ji = − Sj

Sj + Ij + σ2
j

Si + Ii + σ2
i

Ij + σ2
j

(11)

où Sj = |vH
j Hjjwj|2P et Ij =

∑Nc
k 6=j |vH

j Hjkwk|2P .
L’étude des principes derrière la maximisation de la somme des débits, nous conjectur-

ons qu’à la convergence de l’algorithme, l’interférence résiduelle coordinée sera de l’ordre
du bruit et de la puissance de l’interférence provenant de l’extérieur du groupe de cellules
coopérant (out-of-cluster interference), c’est à dire Ij = O(σ2

j ). Nous proposons donc la
charactérisation suivante :

λji = −1 + γ−1
i

1 + γ−1
j

γj . (12)

Pour les détails de la dérivation, se référer à la thèse. Les résultats ci-dessus suggèrent
que Tx i doit être plus altruiste envers le lien j quand le SNR de ce lien est haut ou
quand le SNR du lien i est relativement bas. Ceci est conforme à l’intuition derrière la
maximisation des débits sur les canaux gaussiens parallèles.

0.3.2 Résultats de Simulations

Dans cette section, nous étudions la somme des débits de DBA et la comparons à celle
obtenue par des méthodes voisines, à nommer la méthode Max-SINR [20], la méthode de
minimisation alternée (Alt-Min) pour l’alignement des interférences [49] et la méthode de
maximisation de la somme des débits (SR-Max ) [61]. The SR-Max qui est par construction
optimale mais plus complexe et nécessite plus d’échange ou de feedback d’information de
prix entre les émetteurs. Pour garantir une comparaison équitable, tous les algorithmes
sont initialisés à la même solution et ont la même condition d’arrêt. Nous considérons que
l’algorithme a convergé si les sommes des débits obtenues pour deux itérations successives
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Figure 2: Somme des débits pour des canaux asymétriques. Le gain du lien direct de la
paire 1 d’émetteur-récepteur est 30dB plus faible que les autres liens.

diffèrent de moins de 0.001. Dénotons le rapport signal à interférence du lien i par SIRi =
αii

∑Nc
j 6=i αij

. Le SIR est supposé égal à 1 pour tous les liens, à moins que le contraire ne soit

indiqué. Dénotons la différence en SNR entre 2 liens pour les canaux asymétriques par
∆SNR.

Dans un système asymétrique, les différents liens sont soumis à des niveaux inégaux
de bruit et d’interférence. Une autre source d’asymétrie peut être la différence entre les
atténuations sur différents liens (affaiblissement de propagation et ombrage).

Dans la Fig. 4.6, 3 liens coopèrent dans le système. Chaque émetteur et récepteur
a 2 antennes et un seul flux de données est transmis par récepteur. Le bruit au niveau
de chaque récepteur est le même. Le système est asymétrique: le gain du canal direct
H11 du lien of link 1 est plus faible de 30dB que les autres liens dans le réseau. Ce
scenario représente un environnement réaliste où l’utilisateur souffre d’un ombrage fort.
DBA atteint une somme des débits proche de celle obtenue par SR-Max et bien meilleure
que les autres stratégies d’alignement de l’interférence, Max-SINR et Alt-Min.

A noter que l’algorithme proposé peut aussi être utilisé dans des réseaux avec un
nombre arbitraire de joueurs et de nombres d’antennes.

0.3.3 Conclusion

Nous modélisons le problème d’optimisation du beamforming distribué sur le canal MIMO
d’interférence en utilisant le cadre des jeux bayésiens qui permettent aux joueurs d’avoir
une connaissance incomplète de l’information sur le jeu, dans ce cas l’information sur
l’état du canal. Selon les motifs/objectifs des joueurs, nous proposons deux jeux: un
jeu bayésien egoiste (chaque joueur veut maximiser son propre débit) et un jeu bayésien
altruiste (chaque joueur veut minimiser l’interférence générée vers les autres joueurs). Nous
avons prouvé l’existence d’équilibres pour ces types de jeux et la stratégie de meilleure
réponse des joueurs est obtenue. Inspiré des équilibres, une technique de beamforming
qui essaient d’équilibrer le comportement egoiste et le comportement altruiste afin de
maximiser la somme des débits est proposée. Un tel algorithme de beamforming présente la
même pente que la performance optimale en fonction du SNR démontrée par des méthodes
récentes iteratives basées sur l’alignement des interférences. L’algorithme de beamforming
proposé a une performance quasi-optimale en termes de somme des débits [61] sans le coût
supplémentaire en feedback et a une performance supérieure aux méthodes d’alignement
d’interférence pour des réseaux asymétriques.

0.4 MISO-IC avec possibilité de Décodage de l’interférence

Dans cette section, nous considérons des récepteurs qui peuvent décoder l’interférence
(IDC), c’est à dire que le signal interférant peut être décodé et soustrait du signal reçu.
Nous supposons un système simple constitué de deux paires d’émetteur-récepteur où
chaque émetteur a N antennes de transmission alors que chaque récepteur a une seule
antenne de réception seulement. Nous étudions donc un canal à interférence à deux util-
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isateurs MISO (MISO-IC). Nous supposons que les émetteurs utilisent des codebooks dont
la connaissance est commune et donc que le récepteur peut, si la qualité du canal le per-
met, décoder l’interférence et la soustraire du signal reçu. Nous supposons également que
l’interférence est décodée avec succès si le débit du signal d’interférence est plus petit que
la capacité de Shannon du canal d’interférence.

Dans le cas du MISO-IC-SUD, il a été démontré que les précodeurs optimaux de
transmission sont de rang 1 et donc que le beamforming permet d’atteindre la frontière
de Pareto. Cependant, il n’a pas encore été démontré que cette conclusion tient toujours
pour un MISO-IC-IDC. Nous établissons ceci dans ce qui suit en commençant par une
matrice de covariance générale. Soit Si la matrice de covariance de transmission de Tx i
et soit hīi le canal entre l’émetteur i et le récepteur ī, où i ∈ {1, 2} , ī 6= i, hīi ∈ C

N×1.
Les gains des canaux sont supposés i.i.d complexes gaussiens de moyenne égale à zéro et
de variance égale à 1. Le signal reçu au niveau du récepteur i est donc

yi = hH
ii S

1/2
i xi + hH

īi S
1/2

ī
xī + ni. (13)

Le bruit ni est une variable aléatoire complexe gaussienne de moyenne égale à zéro et de
variance égale à 1. xi représente le symbole transmis par lémetteur i et a une puissance
égale à 1. Les matrices de covariance de transmission qui satisfont les contraintes de
puissance tr(Si) ≤ Pmax sont

S =
{
S ∈ C

N×N : S ≥ 0, tr(S) ≤ Pmax

}
, i = {1, 2}. (14)

0.4.1 Région de Débit Réalisable

Nous considérons les 4 structures de décodage suivantes: (N,N), (N,D), (D,N) and (D,D)
[10], où “N” veut dire que le récepteur traite l’interférence comme du bruit (noise) et “D”
veut dire que le récepteur décode l’interférence et la soustrait du signal reçu. Donc, (D,N)
veut dire que le récepteur 1 décode et soustrait l’interférence alors que le récepteur 2 traite
l’interférence comme du bruit. Dans [10], ces 4 structures de décodage sont proposées et
il est démontré que les points de débits correspondants sont réalisables pour un SISO-IC.
Nous étendons ce concept au MISO-IC et définissons les quantités suivantes:

Ci(Si) , log2(1 + hH
ii Sihii),

Di(Si,Sj) , log2

(

1 +
hH
ii Sihii

hH
ijSjhij + 1

)

,

Ti(Si,Sj) , log2

(

1 +
hH
jiSihji

hH
jjSjhjj + 1

)

.

(15)

Ci est le débit utilisateur unique (single user rate), le plus haut débit que l’utilisateur i
peut obtenir en l’absence d’interférence. Di est le débit que correspond au décodage du
signal désiré en traitant l’interférence comme du bruit et Ti est le débit que correspond à
décoder l’interférence d’abord en traitant le signal désiré comme du bruit.

Dénotons la région des débits réalisable avec décodage de l’interférence aux deux
récepteurs par la ’̊egion Decode-Decode (DD). Cette dernière est égale à:

Rdd =
⋃

S1,S2∈S

{

(R1, R2) ≤
(

min
{
C1(S1), T1(S1,S2)

}
,min

{
C2(S2), T2(S1,S2)

}
)}

.

(16)
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D’autre part, si les deux récepteurs décident de traiter l’interférence comme du bruit, nous
obtenons la région NN,

Rnn =
⋃

S1,S2∈S

{

(R1, R2) ≤
(
D1(S1,S2),D2(S1,S2)

)
}

. (17)

Si le récepteur 1 décode l’interférence mais le récepteur 2 traite l’interférence comme du
bruit, l’émetteur 2 doit transmettre à un débit qui garantit que l’interférence peut être
décodée au récepteur 1. La région correspondante, dénotée par la région DN est donnée
par

Rdn =
⋃

S1,S2∈S

{

(R1, R2) ≤
(

C1(S1),min
{
D2(S1,S2), T2(S1,S2)

}
)}

. (18)

De même, la région ND est égale à

Rnd =
⋃

S1,S2∈S

{

(R1, R2) ≤
(

min
{
D1(S1,S2), T1(S1,S2)

}
, C2(S1)

)}

. (19)

Finalement, une région réalisable pour le MISO-IC avec capacité de décodage de
l’interférence est donc l’union des régions ci-dessus:

R = Rnn ∪Rdd ∪Rdn ∪Rnd. (20)

Nous nous concentrons maintenant sur l’étude de la frontière Pareto de la région des
débits. Afin d’obtenir des solutions qui atteignent cette frontière, nous commençons par
identifier un ensemble de dimension plus petite que S ×S mais qui est garanti de contenir
les solutions Pareto optimales. Par conséquence, cet ensemble offre une réduction de
complexité significative comparée à une recherche exhaustive dans l’ensemble S × S en
entier.

Definition 1. L’ensemble de solutions potentielles de B(Rxy), x, y ∈ {n, d}, est l’ensemble
de matrices de covariance de transmission qui contient les matrices de covariance de trans-
mission qui atteignent la frontière Pareto de Rxy. Si (S1,S2) sont Pareto optimaux, alors
(S1,S2) ∈ Ωxy. De même, l’ensemble de solutions potentielles B(R) est Ω qui contient
toutes les paires de (S1,S2) qui sont Pareto optimales dans la région R.

Theorem 1. Les frontières Pareto des régions NN, DN et DD sont atteintes par des
matrices de rang 1. Il résulte que la frontière Pareto de MISO-IC-IDC est obtenue par
des matrices de covariances de transmission de rang 1, c’est à dire par un beamforming
en transmission.

Dans Le théorème 11, nous avons établi que la frontière Pareto peut être atteinte en
utlisant des vecteurs de beamforming en transmission. Afin de faciliter les discussions
suivantes, nous définissons les vecteurs de tranmission beamforming wi et la puissance de
transmission Pi, pour i = 1, 2,

Si = wiw
H
i Pi (21)

avec ‖wi‖2 = 1.
Avec la structure de décodage Rnd, le récepteur 1 traite l’interférence comme du bruit

et le récepteur 2 décode et soustrait le signal d’interférence du signal reçu avant de décoder
le signal désiré.
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Wi =

{

wi : wi =
√

λi
Πjihii

‖Πjihii‖
+
√

1− λi

Π⊥
jihii

‖Π⊥
jihii‖

; 0 ≤ λi ≤ 1

}

, i, j = 1, 2, i 6= j.

(23)

Theorem 2. La frontière Pareto B(Rnd) est réalisable avec l’ensemble de solutions po-
tentielles Ωnd

Ωnd = {W1,W2, P1 = Pmax, 0 ≤ P2 ≤ Pmax} (22)

où W1,W2 défini en (5.21), sont les ensembles des vecteurs beamforming composés de com-
binaisons linéaires des vecteurs correspondants à deux canaux; pour atteindre la frontière
Pareto, lémetteur 1 transmet à pleine puissance Pmax alors que lémetteur 2 transmet à
une puissance P2 ≤ Pmax.

Theorem 3. L’ensemble de solutions potentielles à la maximisation de la somme des
débits R̄nd dénoté par Ω̃nd, donc ω

∗ ⊂ Ω̃nd ⊂ Ωnd, est donné par

Ω̃nd =
{

W̃1, W̃2, Pmax, Pmax

}

(24)

où Ωnd est l’ensemble de solutions potentielles à la frontière Pareto B(Rnd) dans (5.20).
En particulier, W̃1 est l’ensemble suivant de cardinalit’e égale à trois :

W̃1 =

{
h11

||h11||
,

h21

||h21||
,w1(λ

(b)
1 )

}

(25)

with λ
(b)
1 =

c1||Π⊥
21
h11||2

c2||h21||2−2
√
c1c2|hH

21
h11|+c1||h11||2 . L’ensemble de solutions potentielles W̃2 est

l’ensemble des vecteurs beamforming charactérisés par un paramètre λ2 qui appartient à
une région plus restreinte que W2:

W̃2 =

{

w2 ∈ S : w2 =
√

λ2
Π12h22

‖Π12h22‖
+
√

1− λ2
Π⊥

12h22

‖Π⊥
12h22‖

; λ
(b)
2 ≤ λ2 ≤ λMRT

2

}

(26)

où λMRT

2 =
|hH

12
h22|

||h12||||h22|| est un paramètre qui spécifie la solution de beamforming vers le

canal h22 et w2(λ
(b)
2 ) = b̃√

ã+b̃
va +

ejφã√
ã+b̃

vb pour des vecteurs va,vb définis ci-après et des

scalaires positifs ã, b̃. Les vecteurs va,vb sont, respectivement, les vecteurs propres les plus
et moins dominants de la matrice S = h22h

H
22 − g21

g11
h12h

H
12.

0.4.2 La charactérisation du point qui maximise la somme des débits

dans la région DD

Dans cette section, nous calculons l’ensemble de solutions potentielles qui permettent
d’atteindre la somme des débits maximale dans la région DD.

Theorem 4. L’ensemble de solutions potentielles pour la maximisation de la somme des
débits dans Rdd est

Ω̃dd =
{

Vdd
1 ,Vdd

2 , Pmax, Pmax

}

(27)
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où pour l’utisateur i, i = 1, 2, les vecteurs de beamforming qui maximisent la somme des
débits sont soit une combinaison linéaire de deux vecteurs orthogonaux soit maximisent la
puissance du signal désiré soit un vecteur spécifique:

Vdd
i =

{

Ṽi,
hii

‖hii‖
,wi(λ

A
i )

}

(28)

Ṽi =

{

wi :
√

λi
Πiihji

‖Πiihji‖
+
√

1− λi
Π⊥

iihji

‖Π⊥
iihji‖

, λA
i ≤ λi ≤ λMRT

i

}

(29)

où λMRT

i =
|hH

iihji|2
‖hii‖2‖hji‖2 et λA

i =
‖Π⊥

iihji‖
‖hji‖2+(1+gjj)‖hii‖2−2|hH

iihji|
√

1+gjj
.

Pour résumer, nous obtenons l’ensemble de solutions potentielles pour le point de
somme des débits maximaux dans les régions ND et DD, dans les théorèmes 14 et 15
respectivement. Nous pouvous échanger les rôles des émetteurs 1 et 2 dans le théorème 14
afin d’obtenir tous les points dans la région DN, Ω̃dn. Pour la région NN, l’ensemble de
solutions potentielles est identique à celui de la frontière Pareto, Ωnn. Le point maximisant
la somme des débits pour le MISO-IC-IDC appartient à l’ensemble Ω̃, donné par:

Ω̃ = Ω̃nd
⋃

Ω̃dn
⋃

Ω̃dd
⋃

Ωnn. (30)

0.4.3 Une stratégie de transmission simple

Dans cette section, nous proposons une stratégie de transmission très simple avec un
nombre limité de choix de vecteurs de précodage. Bien que la performance sera sous-
optimale, des choix sont proposés ci-dessous qui devraient maximiser la somme des débits
dans certaines conditions du canal et résulte en une somme des débits presque maximale
dans d’autres cas.

Cette stratégie de transmission est inspirée par la paramétrisation de chaque structure
de décodage. Nous proposons de choisir seulement 2 vecteurs de beamforming dans chaque
ensemble de solutions potentielles. Étant donnée l’information sur l’état des canaux, nous
comparons la performance correspondant à ces 8 options de vecteurs de beamforming et
choisissons les vecteurs et la structure de décodage correspondante qui atteint la somme
des débits la plus grande.

• Région NN :
(

Π⊥
21
h11

‖Π⊥
21
h11‖ ,

Π⊥
12
h22

‖Π⊥
12
h22‖

)

et
(

h11

‖h11‖ ,
h22

‖h22‖

)

.

• Région ND :
(

h21

‖h21‖ ,
h22

‖h22‖

)

et
(

h11

‖h11‖ ,
h22

‖h22‖

)

.

• Région DN :
(

h11

‖h11‖ ,
h12

‖h12‖

)

et
(

h11

‖h11‖ ,
h22

‖h22‖

)

.

• Région DD :
(

h21

‖h21‖ ,
h12

‖h12‖

)

et
(

h11

‖h11‖ ,
h22

‖h22‖

)

.

• TDMA : une stratégie de partage en temps entre les points à un utilisateur, pour
lesquels wi =

hii
‖hii‖ .

Il a été démontré que pour un SISO-IC la stratégie DD est optimale en termes de somme
des débits maximale quand les deux canaux interférents sont puissants et les stratégies
DN ou ND sont optimales quand un canal d’interférence est puissant alors que l’autre
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est faible comparé au canal du signal désiré. La solution de beamforming qui maximise
l’interférence et celle qui maximise la puissance du signal désiré sont choisies dans les
régions DN, ND et DD dans l’algorithme proposé afin de vérifier l’analogie entre SISO-IC
et MISO-IC.

0.4.4 Résultats de Simulation

Dans cette section, nous fournissons des résultats de simulations liées à la parametrisation
proposée. En variant les vecteurs de beamforming et l’allocation de puissance de trans-
mission selon cette dernière, nous pouvons tracer la région des débits réalisable par chaque
structure de décodage pour une certaine réalisation des canaux dans la Section 5.9.1. Les
points correspondant à la somme de débits maximale et à la solution MRT pour chaque
méthode de décodage sont également marqués dans la région de débits réalisables corre-
spondante. Dans la Section 5.9.2, nous calculons la fréquence empirique des stratégies
MRT dans Rnd et Rdd moyennée sur 500 réalisations des canaux. Dans la section 5.9.3,
nous permettons aux canaux d’être corrélés et observons que la structure de décodage qui
maximise la somme des débits change avec la puissance du canal d’interférence, ce qui est
conforme aux résultats obtenus dans le cas du SISO-IC.

0.4.5 Région de débits réalisables et Point de somme maximale des

débits

Dans la Fig. 5.7, nous montrons les régions de débits réalisables avec les structures de
décodage Rnd, Rdn, Rdd et Rnn dans les Fig. 5.7a, 5.7b, 5.7c et 5.7d respectivement.
Nous fixons le nombre d’antennes de transmission à N = 3 et le SNR à 0dB. Nous laissons
λ1 et λ2 prendre 20 valeurs différentes entre 0 et 1, inclus. Pour chaque paire de (λ1, λ2),
les vecteurs de beamforming w1,w2 correspondant sont obtenus et les débits résultants
pour des puissances de transmission P1, P2 sont calculés. Selon l’ensemble de solutions
potentielles pour chaque structure de décodage, les puissances de transmission optimales
peuvent être strictement inférieures ou strictement égales à la puissance de transmission
maximale Pmax. Par exemple, dans Rnn, la puissance maximale est toujours utilisée:
P1 = P2 = Pmax, alors que pour Rnd, P1 = Pmax and 0 ≤ P2 ≤ Pmax et pour Rdd, 0 ≤
P1, P2 ≤ Pmax. Dans les simulations, nous laissons les puissances de transmission prendre
10 valeurs diffeérentes entre 0 et Pmax, inclus. Les points de débits marqués sont obtenus
grâce à la parametrisation de la frontière Pareto proposée et l’astérisque rouge correspond
au point de somme maximale des débits en utilisant la parametrisation correspondante

alors que les carrés rouges correspondent aux stratégies MRT:
(

w1 =
h21

‖h21‖ ,w2 =
h22

‖h22‖

)

dans Rnd;
(

w1 =
h11

‖h11‖ ,w2 =
h12

‖h12‖

)

dans Rdn et
(

w1 =
h11

‖h11‖ ,w2 =
h22

‖h22‖

)

dans Rdd et

Rnn.

0.4.5.1 Canaux Corrélés et Structures de décodage optimales de maximisa-
tion de la somme des débits

Dans cette section, nous supposons un canal symétrique [3] dans lequel les canaux directs,
hii, sont des canaux vectoriels i.i.d complexes gaussiens. Le canal interférent hji a un
angle de projection θi sur le canal direct hii:

|hH
jihii| = ‖hii‖‖hji‖ cos(θi). (31)
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(a) Région des débits réalisable par R
nd: la

paramétrisation proposée atteint la frontière
Pareto et le point de somme des débits max-
imale.

(b) Région des débits réalisable par Rdn: la
paramétrisation proposée atteint la frontière
Pareto et le point de somme des débits max-
imale.

(c) Région des débits réalisable par R
dd: la

paramétrisation proposée atteint la frontière
Pareto et le point de somme des débits max-
imale.

(d) Région des débits réalisable par Rnn: la
paramétrisation proposée atteint la frontière
Pareto et le point de somme des débits max-
imale.

Figure 3: Régions des débits réalisables par les différentes structures de décodage.
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Figure 4: La somme des débits moyenne pour les différentes structures de décodage com-
parées à une transmission TDMA dans un canal symétrique en fonction de la puissance
du canal d’interférence.

En plus, nous définissons le rapport signal à interférence SIR comme

SIR =
‖hii‖2
‖hji‖2

. (32)

Dans la Figure 5.11, nous comparons la somme des débits obtenue par Rnn, Rdd et
TDMA. Quand la puissance du canal interférent augmente, il y a une transition de Rnn

à TDMA à Rdd: traiter l’interférence comme du bruit est optimal en termes de somme
des débits quand le SIR est faible alors que le décodage de l’interférence devient optimal
dans le régime de haute interférence, en passant par le partage en temps. Quand l’angle
entre l’interférence et le canal direct augmente jusqu’à θ = 0.15π, c’est à dire à peu près
27 degrés, il y a une transition directe entre traiter l’interférence comme du bruit et le
décodage de l’interférence. Donc, quand le canal direct et le canal interférent sont plus
séparés, le partage dans le temps n’est pas optimal en termes de somme des débits et les
deux autres structures de décodage ont une performance supérieure.

Dans la Fig. 5.12, nous comparons la somme maximale des débits pour les différentes
structures de décodage avec celle correspondant à une transmission TDMA en fonction
du SNR. Quand le lien interférent est aussi puissant que le lien direct, SIR= 1, traiter
l’interférence comme du bruit est optimal en termes de somme des débits à n’importe quel
SNR. Quand la puissance du canal interférent augmente SIR−1 = 5, 10, 20, il est optimal
pour les deux récepteurs de décoder l’interférence d’abord à un SNR faible alors qu’un
récepteur traitant l’interférence comme du bruit alors que l’autre décode l’interférence est
optimal en termes de la somme des débits pour un SNR haut.

0.4.5.2 Performance de l’algorithme sous-optimal

Dans la Fig. 5.13, nous avons tracé la somme des débits maximale réalisée pour différentes
structures de décodage et nous la comparons avec le simple algorithme proposé pour un
SIR décroissant. On observe que quand l’interférence est faible, il est optimal en terme de
maximisation de la somme des débits de traiter l’interférence comme du bruit et quand
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Figure 5: Somme moyenne des débits pour différentes structures de décodage comparées
à TDMA dans un canal symétrique en fonction du SNR.

l’interférence devient plus forte, la somme des débits peut être augmentée en permettant
à l’un des récepteurs de décoder l’interférence. Dans le régime d’interférence forte, les
deux récepteurs doivent décoder l’interférence pour pouvoir atteindre la somme des débits
maximale. Selon les coéfficients de canaux, TDMA peut parfois avoir une performance
supérieure à Rnn et Rdd dans le régime d’interférence moyenne. Noter que le calcul du
point de maximisation de la somme des débits est NP-difficile. Cependant, on observe que
le simple algorithme proposé a une performance satisfaisante avec seulement 5 choix de
vecteurs de beamforming.

0.4.6 Conclusion

La capacité de décodage de l’interférence apporte plus de liberté aux niveaux des récepteurs:
ces derniers peuvent soit décoder l’interférence soit la traiter comme du bruit. Cependant,
il n’est pas trivial de décider au niveau des émetteurs quand il faut éviter de générer de
l’interférence et quand il faut au contraire l’amplifier. Pour répondre à cette question, nous
formulons la région de débit réalisable pour un canal MISO-IC-SUD à deux utilisateurs.
Nous fournissons une analyse approfondie de la région de débit réalisable, comme l’union
de différentes structures de décodage. La frontière Pareto est ensuite characterisée en fonc-
tion de l’allocation de puissance et des vecteurs de beamforming. En application directe
de la characterisation de la frontière de Pareto, nous caractérisons les points qui peuvent
maximiser la somme des débits. L’ensemble de solutions potentielles à la maximisation de
la somme des débits est un strict sous-ensemble de l’ensemble de solutions potentielles à la
frontière Pareto. Avec la caractérisation de la somme des débits maximale, nous trouvons
les conditions d’optimalité de MRT qui décrivent les conditions dans lesquelles les simples
stratégies MRT sont optimales en termes de somme des débitsl. 1 Nous concluons en
montrant des résultats de simulations qui permettent d’avoir une idée de la réponse à la
question “ Quand est-il optimal d’être egoiste?”. Dans les canaux symétriques, il y a une
transition dans la structure de décodage optimale allant de traiter l’interférence comme du
bruit, à une stratégie TDMA, au décodage de l’interférence au niveau des deux recépteurs

1Se réferer à la thèse pour plus de détails.
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à mesure que l’interférence augmente.

0.5 Conclusions et Travaux futurs

Au cours de cette thèse, nous avons abordé le problème de conception des vecteurs de
beamforming de manière distribuée dans les canaux gaussiens vectoriels sans et avec
décodage de l’interférence (SUD et IDC, respectivement). Nous résumons les contributions
ci-dessous.

• Dans la section 3, nous proposons un algorithme à complexité réduite pour la con-
ception de beamforming distribué sur le MISO-IC-SUD qui permet aux utilisateurs
de coopérer et d’opérer à un point de fonctionnement proche de la frontière Pareto.
Les vecteurs de beamforming proposés équilibrent entre les solutions MRT (egoiste)
et ZF (altruiste).

• Dans la section 4, nous avons dévelopé cette notion d’équilibrage entre égoisme
et altruisme pour le MIMO-IC-SUD. Nous avons proposé un algorithme de con-
ception émetteur-récepteur itératif qui choisit les poids alloués à chaque lien dans
les réseaux asymétriques et optimise la performance de la somme des débits. Ces
poids dépendent des statistiques des canaux, au lieu des réalisations instantanées des
canaux, ce qui diminue la quantité d’information sur le canal échangée par rapport
aux autres algorithmes dans la littérature. Dans le régime de haut SNR, l’algorithme
proposé aligne l’interférence s’il est possible de le faire, ce qui guarantit une somme
des débits qui crôıt linéairement avec le SNR. Dans les scénarios où il est impossible
d’aligner l’interférence, nous proposons un simple algorithme d’allocation binaire de
puissance qui a pour objectif de restaurer la faisabilité de l’alignement d’interférence.
Les résultats de nos simulations montrent qu’avec une controle binaire de la puissance
de transmission, le design proposé en émission et en réception pour balancer entre
ǵoisme et altruisme réussit à restaurer la faisabilité de l’alignement de l’interférence
et atteint des sommes de débits supérieures à celles des autres algorithmes.



0.5. CONCLUSIONS ET TRAVAUX FUTURS xvii

• Dans la section 5, nous donnons aux récepteurs la possibilité de décoder l’interférence.
Nous considérons le cas d’un canal MISO-IC à deux utilisateurs avec IDC et pro-
posons 4 structures de décodage, chaque récepteur choisit soit de décoder l’interférence
et de la soustraire du signal reçu avant de décoder son signal propre soit de traiter
l’interférence comme du bruit. Nous trouvons la région des débits réalisable par ces
différentes stratégies et la frontière Pareto correspondante. Les vecteurs de beam-
forming et l’allocation de puissance de transmission qui permettent d’atteindre la
frontière Pareto ont été caracterisées. Nous avons démontré que les vecteurs Pareto
optimaux sont des combinaisons positives linéaires de deux canaux, conformément
aux résultats obtenus pour le MISO-IC-SUD [31]. Nous utilisons la caractérisation
obtenue de la frontière Pareto pour caractériser le point de somme des débits maxi-
male et obtenons un ensemble réduit de vecteurs de beamforming qui contient la so-
lution optimale. Ceci réduit de façon significative l’espace de recherche du problème
initial qui est NP-difficile [39]. Afin de trouver une méthode de transmission aussi
simple que possible, nous avons étudié les conditions de canal dans lesquelles les
stratégies MRT sont optimales en termes de somme des débits. Inspirés par ces
résultats, nous proposons une méthode de transmission très simple avec un groupe
restreint de choix de vecteurs de beamforming. Les résultats de simulations confir-
ment que sous certaines conditions de canal, le schème proposé a une performance
en termes de somme des débits très encourageante.
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Abstract

In this thesis, we aim to optimize transmit and receive strategies in a network where there is
little or no centralized resource management unit and nodes have limited knowledge of the
channel states and limited backhaul communication among each other. In particular, the
transmitters have mostly locally available channel state information (CSI) and we assume
no data sharing or joint transmit strategies design among transmitters, thus prohibiting
joint MIMO transmission.

As transmitters must share the same system resources e.g. time and frequency, they
generate interference in the process of communicating with the receivers making interfer-
ence management essential. In a game theoretic perspective of the beamforming design
problem over the interference channel, extreme egoistic and altruistic strategies can be
defined. Egoistic transmitters act selfishly and maximize their own SINR despite the in-
terference generated to the remaining of the network whereas altruistic transmitters exploit
all resources to null out interference generated towards other receivers. It is intuitive to
see that none of the above two strategies is generally sum rate optimal. A recent work [31]
shows that in the transmit beamforming vector design problem in the MISO-IC with sin-
gle user decoding (SUD), balancing egoism and altruism brings the operating point on
the Pareto boundary, which is the boundary of the achievable rate region assuming linear
pre-processing. With this concept in mind, we investigate distributed transmit beamform-
ing designs in the MISO-IC-SUD in Chapter 3. We develop an iterative algorithm that
starts at the Nash equilibrium (egoistic extreme) and in each iteration moves towards the
zero-forcing solution (altruistic extreme) with a fixed step size. The algorithm ends if one
of the transmitters experiences a decrease of rates, thus mimicking the effects of bargain-
ing. The proposed algorithm achieves an operating point close to the Pareto boundary
and each user experiences a higher rate than the Nash equilibrium. We thus demonstrate
that on the MISO-IC-SUD, players (transmit-receive pairs) can achieve higher rates by
cooperating and maintaining a balance between egoism and altruism.

As an extension of the beamforming problem on the MISO-IC-SUD, we design the
transmit and receive strategies on the MIMO-IC-SUD in Chapter 4. Assuming mostly
local CSIT, we model the problem as a Bayesian game which takes the unknown channel
knowledge into consideration and where players maximize the expected utility function
based on the statistics of the unknown channel. We derive the equilibria of the Bayesian
games and revisit the sum rate maximization problem on the K users MIMO-IC-SUD.
We observe that the sum rate maximization solution can be interpreted as a balance be-
tween the egoistic and altruistic equilibria. With this analysis, we provide an algorithm
which allows the transmitters and receivers to optimize the transmit and receive beam-
formers iteratively. At convergence, the algorithm achieves interference alignment in high
SNR regime which allows the sum rate to scale indefinitely with SNR, with the number of
degrees of freedom (DOF) as slope. In low SNR regime, we outperform conventional inter-
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ference alignment schemes as our proposed algorithm balances the egoistic and altruistic
components of the metric. In particular, the proposed algorithm achieves close to opti-
mal performances in asymmetric networks, in which some receivers experience stronger
uncontrolled background noise.

Then we proceed to allow the receivers to have interference decoding capability (IDC)
in the MISO-IC in Chapter 5. This additional degree of freedom allows receivers to
decode interference and subtract it from the received signal and thus enjoy interference
free communication when the channel realizations allow it. However, the receivers’ choices
of action depend on the design of the transmit precoders. With each choice of the transmit
beamformers, we form a new SISO-IC which has a different capacity region. Thus, with
each MISO channel realization, we must choose the beamforming vector and transmit
power such that the achievable sum rate is the highest after taking into account all possible
receivers actions (decode interference or treat interference as noise). There are three design
parameters: the receivers decoding structure, the transmit beamforming vector and the
transmit power. However, the optimal choice of the three parameters is coupled with each
other and its computation is shown to be NP-hard [39]. Nevertheless, we simplify the
analysis by first formulating the achievable rate region of a two-user MISO-IC-IDC as a
union of regions with different decoding structures. Then, we characterize the boundaries
of achievable rate regions of each decoding structure and thus the overall Pareto boundary.
We parameterize the transmit power and beamforming vectors that attain the Pareto
boundary. The Pareto optimal beamforming vectors are positive linear combinations of
two channel vectors with weights depending only on two real-valued scalars that range
from zero to one. This refines the search space of potential Pareto boundary attaining
solutions. As a direct application of the Pareto boundary characterization, we characterize
the maximum sum rate point, whose solution set is a strict subset of that of the Pareto
boundary, thus significantly reducing the search space of the originally NP-hard problem.
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Here are the main acronyms used in this document. The meaning of an acronym is usually
indicated once, when it first occurs in the text. The English acronyms are also used for
the French summary.

app. Appendix.
AWGN Additive White Gaussian Noise.
BC Broadcast Channel.
BS Base Station.
cdf cumulative density function.
DL Downlink.
i.i.d. independent and identically distributed.
IC Interference Channel.
IDC Interference Decoding Capability.
l.f.s left hand side.
MIMO Multiple Input Multiple Output.
MISO Multiple Input Single Output.
MMSE Minimum Mean Square Error.
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pdf probability density function.
r.h.s. right hand side.
Rx Receiver(s).
SIMO Single Input Multiple Output.
SNR Signal-to-Noise Ratio.
SISO Single-Input Single-Output.
s.t. such that.
SVD Singular Value Decomposition.
SUD Single User Detection.
Tx Transmitter(s).
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Notation

Throughout this thesis, calligraphic upper-case letters denote sets. Upper case and lower
case boldface symbols will represent matrices and column vectors respectively.

tr{·} Trace of the matrix in brackets.
det{·} Determinant of the matrix in brackets.
|a| Absolute value of a.
‖a‖ Euclidean norm of vector a.
‖A‖ Frobenius norm of matrix A.
|S| The cardinality of set S.
A∗ The complex conjugate of matrix A.
AH The complex conjugate transpose (Hermitian) of matrix A.
At The transpose of matrix A.
A−1 The inverse of matrix A.
[A](k:l,m:n) A submatrix of A containing the common elements of rows

k-l and columns m-n.
A = diag (a) The diagonal matrix with the entries of vector A along its

main diagonal, if the latter is defined.
a = diag (A) The vector equal to the main diagonal of A, if the latter is

defined.
E{·} Expected value of the random variable in brackets.
CN (m,C) Circularly symmetric complex Gaussian random vector of

mean m and covariance matrix C.
max,min Maximum and minimum.
argmax{·} Argument that maximizes the function(al) in brackets.
⋃

set union operation.
⋂

set intersection operation.
ν(A) returns the dominant eigenvector of matrix A.
⇔ The if-and-only-if relationship of two statements.
Re(z) The real part of a complex number z.
Im(z) The imaginary part of a complex number z.
arg(z) The phase of the complex number z.
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Symbol Index

The definition of symbols that are repeated throughout this thesis are given in the tables
below. There will be a few exceptions, where these symbols will denote something different
than what is described below. For these exceptions, the definition will be given at the
place of their occurrence.

Sets

R,C The set of all real and complex numbers, respectively.
R
m×n The set of m× n real matrices.

C
m×n The set of m× n matrices with complex-valued entries.

Z Set of integer numbers

Scalar Parameters

j subscript used for transmitter or receiver in the system.
i subscript used for transmitter or receiver in the system.
k subscript used for transmitter or receiver in the system.
Nt Number of transmit antennas.
Nr Number of receive antennas.
K Number of transmitter-receiver pairs.

(Column) Vectors

hji channel vector from transmitter i to re-
ceiver j.

wi transmit beamforming vector of trans-
mitter i.

vj receive beamforming vector of receiver
j.

Matrices

I Identity matrix.
Hji Channel matrix from transmitter i to receiver j.
Πx The projection matrix on vector x.
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x The orthogonal projection matrix on vector x.
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Chapter 1

Introduction

In a network without centralized resource management, transmitter and receiver nodes
are isolated, in the sense that they do not exchange information, and are thus required
to design transmit and receive strategies based on locally available information. This in-
formation includes channel state information (CSI) which is either estimated using uplink
pilots in time-division-duplex systems (TDD) or obtained by feedback from receivers in
frequency-division-duplex systems (FDD). With only locally available CSI, transmitters
are not aware of other important information such as other transmitters’ data or chan-
nel realizations. To obtain such non-local information, some backhaul communication is
required. As backhaul communication among transmitters consumes system resources or
may not be possible in certain situations, such as spectrum sharing among different opera-
tors, in this manuscript, we do not consider user payload data sharing that would allow for
strong cooperation schemes such as joint transmit strategy designs, e.g. network MIMO.

We assume that the transmitters have a common objective, such as the system sum
rate. In a competitive game theoretic framework (which has been considered for this
type of channel in the literature) one may assume that the transmitters have an egoistic
incentive and maximize their own rate while ignoring the excess interference generated
towards other receivers in the network. However, if every transmitter in the network
is egoistic and transmit at its best response strategies, the system converges to the Nash
Equilibrium, assuming its existence. At the Nash Equilibrium, no transmitters (or players)
have incentive to deviate from this operating point and it can be shown that this point
generally results in a high amount of interference for all receivers. Hence, it is reasonable
for the transmitters to cooperate and have a common objective, as long as there is a reward
of cooperation compared to the Nash Equilibrium.

In this thesis, we consider point-to-point transmission in the network which is a general
model with applications such as the cellular network and focus on the spatial structure
of the interference channel. In the multiple-input-multiple-output interference channel
(MIMO-IC), the multiple antennas at each node can be exploited to improve the informa-
tion theoretic capacity by choosing the transmit and receive strategy carefully. Interference
alignment (IA) is one example where the transmit and receive beamformers are chosen
such that the interference signals at each receiver in the network align within a subspace
with smaller dimension than the number of receive antennas. In this case, the interference
can be nulled out by a simple zero-forcing receive beamforming vector. By sacrificing
some degrees of freedom (DOF) for interference nulling, the transmitters and receivers in
the network enjoy interference free communication, assuming the feasibility of interfer-
ence alignment. However, interference alignment does not maximize sum rate in all SNR
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regimes. In particular, in the low and medium SNR regimes, maximum-ratio-transmission
(MRT) is a more reasonable transmission strategy as the interference power is negligible
comparing to the noise power. Moreover, interference alignment tends to treat every link
in the system equally which is not sum rate optimal in asymmetric networks where some
links are weaker due to uncontrolled noise or shadowing. Hence, it is essential to have an
adaptive strategy which adapts to both SNR and link priorities in both symmetric and
asymmetric networks. This is the focus of Chapter 4 in this thesis.

Although the importance and relevance of the interference channel have been well
established, the capacity region or the sum rate capacity of the most basic form of the
interference channel, the single-input-single-output (SISO) IC, is still an open problem, ex-
cept for some special cases. As an extension of the SISO-IC, the capacity of the MISO and
MIMO IC remains unknown. Although the exact capacity is not known, there exist sev-
eral capacity outer bounds and researchers are motivated to provide the best inner bounds
or achievable rate region possible: schemes that achieve the highest weighted sum rates,
in different network settings. The achievable rate region we consider in this manuscript
is different from the achievable rate region in the information theoretic definition in the
sense that we assume Gaussian codebooks other than optimizing over possible codebooks.
In Chapter 3 and 4, we consider beamforming optimization problems in the MISO-IC and
MIMO-IC with single user decoding (SUD) where linear filters are applied to both Txs
and Rxs. In Chapter 5, we relax this constraint and allow interference decoding capabil-
ity at the receivers, although linear filters are applied to the received signal, the overall
interference decode and remove post-processing is not linear.

1.1 Problem Statement

In this thesis, we consider the scenario in which transmitters are not under centralized
resource management and the transmit strategies must be designed in a semi-distributed
fashion. This is relevant to the scenario of a large network where the backhaul networks
between transmitters cannot support full cooperation among all nodes or in a more prac-
tical scenario where transmitters (e.g. mobiles or base stations) are not under the same
service providers (e.g. operators in the cognitive radio networks).

In order to focus on the study of the spatial structure of the problem, we assume
linear pre-processing (and linear post-processing in Chapter 3 and 4 and non-linear post-
processing in Chapter 5) of the signals through multiple antenna combining; Gaussian
codebooks (complex Gaussian input alphabets) in order to simplify the rate expressions
and additive white Gaussian noise (AWGN). With only locally1 available CSI, we design
transmit and receive strategies, e.g. beamforming vectors, so as to maximize the system
sum rate or obtain an operating point that is close to the Pareto boundary. 2

1the notion of “local” information may have several possible definitions. Ours is defined later in this
document.

2In most scenarios, the sum rate is an attractive metric. However, in the SISO-IC, the maximum
sum rate point may be a “single-user” point in which one of the users have to be shut off. This will not
be interesting to the system as the transmitters only cooperate if the resulting operating point provides
benefits over the Nash Equilibrium point for each transmitter. As a consequence, we rather consider
the Pareto boundary, which is the set of operating points where one transmitter cannot increase its rate
without causing decrease to other transmitter rates.
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1.2 Related Work

In this section, we give a brief summary of a few different lines of work on the interference
channel. Since the literature on this topic is already so rich, we present here only the
areas that are closely related to this manuscript: distributed transceiver design on the
multi-antennas IC. In Section 1.2.1, we present some well known work on the achievable
rate region and capacity of specific cases of the interference channel. Note that, we assume
Gaussian codebooks and additive white Gaussian noise (AWGN) whereas the references in
Section 1.2.1 optimize over coding structures and input alphabet distributions which give
further insight into the fundamental limits of the performance of the IC. In Section 1.2.2,
we provide references that characterize the frontier of the achievable rate region of the
IC, the Pareto boundary, under the assumption of linear precoding. These works are the
inspiration of this manuscript; the study of the Pareto boundary and its characterization
are still an on-going and popular research topic. In Section 1.2.3, we briefly discuss some
game theoretic and bargaining problems for the case of more than two users on the IC
where Tx-Rx pairs must share the system resources including space, time and frequency
and generate interference towards each other. Game theory comes as a natural tool to
model this conflict between Tx-Rx pairs, or players. When the Tx-Rx pairs are willing to
and able to cooperate, bargaining theory offers an optimization framework for cooperative
strategies. Closely related to our work, we present some important works on interference
alignment in both the SISO and MIMO-IC in Section 1.2.4. In Section 1.2.5, we discuss
briefly the optimization problems on the IC when partial CSIT ( incomplete or outdated
CSIT) is considered. Then, in Section 1.2.6, we include some work on the deterministic
interference channel whereas in Section 1.2.7, we briefly discuss the large system analysis
which considers for the case when the number of antennas and/or the number of links on
the interference channel grows large.

1.2.1 Achievable rate region and capacity of IC

The notion of interference channel is introduced by Shannon [58]. In [11], Caleial discusses
in details different achievable rates regions on the 2-user SISO-IC with deterministic chan-
nel gains. The impact and performance of different decoding schemes, such as full or no
interference decoding, partial interference decoding and different capacity outer bounds
such as a multiple access channel outer bound, are discussed. Then, the capacity region in
the strong interference scenario was proposed by Sato [51] and Han and Kobayashi [21].
The capacity region in the strong interference case is a pentagon which contains the sub-
case of the very strong interference scenario which has a capacity region of a rectangle.
By allowing rate splitting and partial interference decoding, Han and Kobayashi proposed
an achievable scheme which achieves the best inner bound to date. These results are then
extended the results to the Gaussian Interference channel [16].

However, the capacity of the SISO interference channel is still an open problem, except
for several special cases, such as the noisy or low interference regime in which treating
interference as noise and employing Gaussian input alphabets achieve capacity [4, 55];
the strong and very strong interference regime in which decoding interference and then
subtract it from the received signal before decoding the desired signal is optimal [11,21,52];
the mixed interference regime, where one cross interference gain is stronger than direct
channel gain and the other link weaker, in which case the sum rate capacity is shown to
be attained by one user decoding interference and the other user treating interference as
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noise [4, 67].

The results for scalar Gaussian interference channel are extended to the vector Gaus-
sian channel [5] in which the authors showed that the sum rate optimal transmit covariance
matrix of the MISO-IC with strong interference has rank less than or equal to the number
of transmitters in the network; and to MIMO-IC [57] in which the authors provide the
capacity regions of the MIMO-IC with very strong interference or aligned strong interfer-
ence. Note that the study of sum rate is different from the study of achievable rate regions
or capacity regions. The former is only one point in the capacity region but has the highest
sum rate whereas the capacity region includes the maximum sum rate point and many
other rate points. Any operating point outside the capacity region is not achievable and
results in non-reducible decoding errors. The capacity region is the union of all possible
achievable rate regions.

1.2.2 The Pareto boundary characterization of the MISO-IC

Since the establishment of the IC capacity region in the most general information theoretic
sense is still an open and difficult problem, we address here a sub-region of the capacity
region (denoted as MISO-IC and MIMO-IC) assuming simple linear pre-processing and
zero or full interference decoding at the receiver. Note that since we do not consider
partial interference decoding at the receivers, we are considering an achievable rate region
within the Han-Kobayashi region. Although we sacrifice some achievable rate points, this
assumption allows us to simplify the formulations and focus on the spatial structure of
the problem.

We emphasize the importance of the boundary of such an achievable rate region, which
we denote as the Pareto boundary. It holds importance in both information theory and
bargaining theory as any point on the Pareto boundary satisfies the following definitions:
assuming transmit and receive beamforming vectors, it is impossible for any player to
increase its rate without decreasing other players rate. The Pareto boundary of MISO-
IC and its characterization have gained much attention in the communication theory
community since its introduction in [31,73].

The authors, in particular [31], characterize the Pareto boundary in the general K users
MISO-IC by providing a parameterization of the transmit beamforming vectors as a lin-
ear combination of interference channel coefficients with complex weights. In the two-user
case, the Pareto optimal beamforming vectors of each Tx only depend on one real-valued
parameter that takes values between zero and one. On the other hand, in [73], the authors
draw the connection between the MISO-IC Pareto boundary characterization and the sum
rate optimization problems on the cognitive radio. The Pareto boundary attaining beam-
forming vectors are the optimal solutions of the sum rate optimization problems with given
interference temperature constraints. The resulting characterization of the beamforming
vectors are different from [31]; the characterization in [31] uses K(K − 1) complex coeffi-
cients for the K-user MISO-IC but can be generated directly from the parameterization
of the beamforming vectors whereas the characterization in [73] uses K(K − 1) real co-
efficients but the beamforming vectors are the solutions of some optimization problems.
Both approaches provide insights into the problem structure and algorithms to operate
arbitrarily close to the Pareto boundary. On the other hand, the computation of the
maximum sum rate point and the corresponding beamforming vectors, is shown to be a
NP-hard problem [39].

Although the rate functions on the interference channel have been proved to be non-
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convex over transmit power or transmit beamforming vectors in general, researchers have
developed relaxations and approximations of such problems to offer valuable insights.
In [56], the authors consider the Pareto optimal transmit covariance matrices of the MISO-
IC-SUD where interference is treated as noise. The Pareto boundary attaining transmit
covariance matrices are the solutions of a rate optimization problem subject to interference
temperature constraints. By converting the non-convex rate optimization problem into
a family of convex optimization problems, the authors show that the optimal transmit
covariance matrices are rank one and therefore it is sufficient to consider the transmit
beamforming vector for Pareto optimality and sum rate maximization. Inspired by [31,
56], in Chapter 5, we convert the Pareto optimality problem in the MISO-IC-IDC to
a family of convex optimization problems and prove that the Pareto optimal transmit
covariance matrices are rank one in the MISO-IC-IDC where interference can be decoded
and removed.

1.2.3 Game theoretic and bargaining problems

Game theory is a powerful tool for resource allocation and optimization problems on the
interference channel where the transmitters (players) are individuals that have conflicts
over the system resources such as time and bandwidth. It can be shown that the Nash
Equilibrium is not avoidable in zero-sum games when each player acts selfishly with its
best-response strategy but can bring tremendous loss to all players in non-zero sum games
such as the rate optimization problems in the interference channels. In such problems,
cooperation among players can help improve the utilities of all players. It is through bar-
gaining theory that we model how players bargain and cooperate in order to improve the
utilities in a stable way. Through series of bargaining, at convergence, players reach an
outcome, called the Nash Bargaining solution, which is shown to outperform the Nash equi-
librium at which the transmitters all act selfishly. In [2], the authors show the existence of
the Nash Bargaining solution for a two-user SISO-IC where players are using time-division-
multiple-access (TDMA) or frequency-division-multiple-access (FDMA) strategies. In [72],
the authors provide alternative bargaining solutions to the same channel settings but with
asymmetric users requirements. On the other hand, pricing is a popular technique in
bargaining theory. In [61], the authors propose to use the pricing technique such that
transmitters can reach the maximum sum rate point on the MIMO-IC, through iterations
of bargaining process. At high SNR, this pricing algorithm comes to the interference
alignment solution such that all receivers enjoy interference-free communications.

Although bargaining theory provides an extensive optimization framework in which
convergence and performance of the algorithm can be analyzed, it relies heavily on the
design of a heuristic utility which may be different from the original objective. Each choice
of such heuristic utility functions gives a different convergence behavior and solution. Also,
the resulting bargaining solution may require full channel state information exchange. In
this thesis, inspired by the bargaining theory, we tackle the distributed beamforming design
problem on the vector interference channel in an iterative fashion among Txs and Rxs, with
the sum rate and the Pareto boundary as the objectives. The bargaining solution of the
maximum sum rate problem on the MIMO-IC-SUD [61] , requiring full CSI exchange, is
considered as a performance upper bound to our distributed beamforming design algorithm
in Chapter 4.
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1.2.4 Interference alignment

In [60, 66] , it is shown that interference alignment allows transmitters and receivers to
achieve K/2 degrees of freedom, also known as multiplexing gains, on the K-user time-
varying SISO-IC . Interference alignment is a promising technique that gives the highest
achievable degrees of freedom which is especially important in the high SNR regime as
the sum capacity scales linearly with SNR, with a slope equal to the number of degrees of
freedom. In the following, we outline several different forms of interference alignment.

1.2.4.1 Time domain interference alignment

The time, frequency-domain interference alignment is applied on the time-varying or
frequency-varying SISO-IC [60, 66]. The transmitters expand the transmit symbols in
the time / frequency domain to big super-symbols that consume some consecutive time
/ frequency slots in which each slot experiences a different channel fading. This time /
frequency diversity allows the super-symbols to be in different dimensions. Through inter-
ference alignment, the interference symbols align into a smaller subspace than the receiver
dimension. In this case, zero-forcing is implemented at the receiver to remove interference
completely [66]. The number of degrees of freedom in a K-user time-varying SISO-IC is
shown to be K/2. In [60] the authors modify the algorithm in [66] to further improve the
sum rate while maintaining the same degree of freedom.

1.2.4.2 Signal domain interference alignment

In signal domain interference alignment, signals are encoded using different codes such
as lattice codes [30,63] or random codes [8] such that the interference signals are aligned
in the codes level. In [8], the authors show that random codes achieve capacity on the
3-user many-to-one deterministic SISO-IC in the noisy-interference regime. In [30,63], on
the other hand, lattice codes are applied to a class of three-user Gaussian and K-user
symmetric interference channels, respectively. Although in this thesis, we do not consider
coding and maintain our focus on the spatial domain of the distributed transceiver design
problem, aligning interference on the signal level provides insight into the optimization
problems. The combinations of the signal level alignment and the spatial domain alignment
is yet to be seen.

1.2.4.3 Spatial domain interference alignment

In a MIMO-IC, the spatial domain Interference alignment may be employed: the transmit
and receive beamforming vectors are exploited such that interference signals align in a
reduced-dimension subspace and can therefore be nulled out by the receive beamforming
vectors, [20,24,25,49,53,59]. Interference alignment is achieved by iteratively minimizing
interference power at each receiver [20], minimizing leakage interference power [49], jointly
minimizing sum minimum mean squared error (MSE) [59] or with a least squares approach
[70]. In [35, 53], the authors proposed an improved interference alignment scheme in
terms of sum rate performance. In conventional spatial interference alignment scheme, the
received interference signals are aligned into a subspace as small as possible. The proposed
interference alignment scheme [35] provides an extra step of aligning the desired signal
space as orthogonal as possible to the received interference subspace. In [53], the authors
proposed to reduce the number of transmit data streams with interference alignment so
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that the sum rate performance in low and medium SNR is higher than the sum rate
achieved with full number of degrees of freedom.

Note that, although interference alignment maximizes the number of degrees of free-
dom, it does not maximize sum rate in all SNR regimes. In particular, in the low and
medium SNR regimes, maximum-ratio-transmission (MRT) is a more reasonable trans-
mission strategy as the interference has power smaller than the noise power. Moreover,
interference alignment tends to treat every link in the system equally which is not sum
rate optimal in an asymmetric network where some links are weaker due to uncontrolled
noise or shadowing. Hence, it is essential to have an adaptive strategy which adapts to
both SNR and link priorities in asymmetric networks. This is the focus of Chapter 4 in
this thesis.

1.2.5 Partial CSIT analysis on interference channel

In distributed networks, as perfect and complete CSIT may not always be available, it is
important to consider the robustness of the proposed algorithms with respect to incomplete
CSIT. The research topics discussed above, such as the Pareto boundary characterization
and interference alignment have been studied carefully for the partial CSIT case [27,
38]. In [27], the authors proposed an interference alignment scheme using lattice code on
the MIMO-IC with imperfect CSI whereas in [38], the authors characterize the Pareto
boundary on the MISO-IC when only statistical CSIT is available. In [64], the authors
consider the frequency selective SISO-IC-SUD with limited broadcast feedbacks from Rxs.
The number of feedback bits required to achieve interference alignment is shown to be
N(L − 1) log(P ) where L is the number of taps and P is the transmit power. In this
thesis, we assume perfect but not complete CSI of the network in the sense that each Tx
or Rx can only obtain channel information of the channels it connects to, termed as local
CSI. This assumption enforces practicality of the algorithm in the scenario where full and
complete CSI of the whole network is available at every node, which is highly unlikely.

1.2.6 The deterministic channel approach

The Host-Madsen-Nosratinia conjecture [26] states that the degree of freedom in fully
connected wireless interference networks with a single antenna per node and constant
channel coefficients is one. Aiming to settle this conjecture, the deterministic channel
approach offers a good approximation of the sum capacity of interference channel. In the
deterministic channel approach, the input-output relationship of the channel is modeled as
a bit-shifting operation [9, 17,29]. This abstraction allows detailed study of the degree of
freedom of the IC. In [17], the two-user SISO-IC sum capacity is approximated to within
one bit using the deterministic channel approach. This result is extended in [29] such that
the generalized degree of freedom (GDOF) of the symmetric Gaussian K-user SISO-IC is
computed. The capacity of many-to-one and one-to-many Gaussian interference channel
is approximated in [7].

The deterministic approach focus on the theoretical limit of the interference channel
in terms of capacity and the degrees of freedom. In this thesis, we aim to provide practical
algorithms which achieve performance as close as possible to such limits.
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1.2.7 Large System Analysis

In [53], the authors address the tradeoff between the degrees of freedom and the rate
offset in the MIMO-IC. The authors show that although it is possible to achieve 2N − 1
DOF in a symmetric K-user MIMO-IC with each node equipped with N antennas, a
scheme that achieves DOF N may outperform the scheme with DOF 2N − 1 in low and
medium SNR regime (the rate offset). The authors propose a large system approximation
of the scheme with DOF N when the number of users K and the number of antennas N
grow large. On the other hand, the authors in [48] employ interference alignment on the
secondary link with respect to the primary link in a MIMO cognitive radio setting. The
achievable transmission rate is approximated using large system analysis in the regime of
large number of antennas.

The large system analysis provides a good reference point in the extreme of large
networks or large number of antennas. Although the focus of this thesis is on the medium
size networks, the large system analysis can be a potential extension of our work.

1.3 Scope of this work and contributions

In this thesis, we study distributed transmit strategies (also receive strategies in some
cases) in the MISO and MIMO IC. In Chapter 2, we provide some brief background of the
interference channel and definitions. The key contributions are organized around three
main chapters (3, 4 and 5). The contributions are given in details below. In the remainder
of the thesis, we assume that there is no data sharing and joint encoding among the
transmitters.

In Chapter 3, we start by studying the two-user MISO-IC with single user decoding. As
a basic set-up, we assume that the receivers have single antenna and single user decoding
ability. In this setting, the Pareto boundary attaining beamforming vectors were shown to
be a linear combination of selfish maximum-ratio-transmission (MRT) and altruistic zero-
forcing (ZF) [31]. However, the closed form solution of the Pareto boundary attaining
beamforming vectors are not provided in [31] and this is the aim of Chapter 3. We
construct a simple algorithm which balances egoism and altruism and achieves operating
points close to the Pareto boundary. The work is presented in the following publications:

• Z.K.M. Ho and D. Gesbert, Spectrum sharing in multiple antenna channels: a dis-
tributed cooperative game theoretic approach, in Proceedings of PIMRC, 19th IEEE
international Symposium on Personal, Indoor and Mobile Radio Communications,
pp. 1-5, September 15-18, 2008.

• R. Zakhour, Z.K.M. Ho and D. Gesbert, Distributed beamforming coordination in
multicell MIMO channels, in Proceedings of VTC 2009, IEEE 69th Vehicular Tech-
nology Conference, pp. 1-5, April 26-29, 2009.

In Chapter 4, we extend the work in Chapter 3 by studying the MIMO-IC-SUD. Both
the transmitters and receivers have multiple antennas and therefore the ability to improve
the system efficiency. In particular, we aim to provide a game theoretic view of the sum rate
maximization problem. We show that in asymmetric networks, different links in the system
(each transmitter-receiver pair is considered as a link) should be weighted differently in
the sum rate optimization problem, which is a concept not taken into account by existing
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IA-based techniques which treat all links equally. By carefully balancing between egoism
and altruism on each link, we achieve close to optimal performance in both symmetric
and asymmetric MIMO-IC-SUD. As a special case, we look at the scenario in which the
network is “over-crowded” and the interference alignment is infeasible and we provide
a simple power control algorithm which restores the feasibility of interference alignment
and allows the system sum rate to scale indefinitely with the system SNR. This work is
presented in the following publications:

• Z.K.M. Ho, M. Kaynia and D. Gesbert, Distributed power control and beamforming
on MIMO Interference channels, in Proceedings of EW 2010, 16th European Wire-
less Conference, pp. 654-660, April 12-15, 2010.

• Z.K.M. Ho and D.Gesbert, Balancing Egoism and Altruism on Interference chan-
nel: the MIMO case, in Proceedings of ICC 2010, IEEE International Conference on
Communications, pp. 1-5, May 23-27, 2010.

• Z.K.M. Ho and D. Gesbert, Balancing Egoism and Altruism on the single beam
MIMO Interference Channel , submitted to IEEE Transaction on Wireless Commu-
nications, 2011.

In Chapter 5, we study the two-user MISO-IC with interference decoding capability
(IDC). With the IDC at the receivers, the performance of the system is an upper bound
of the one without IDC, such as the scenario considered in Chapter 4. Although SISO-IC
with SUD has been extensively studied, the MISO-IC-IDC has received little attention.
The particularly intriguing problem arising in the multi-antenna IC with IDC is that
transmitters may now have the incentive to amplify the interference generated at the non-
intended receivers, in the hope that Rxs have a high chance of decoding the interference and
removing it. This notion completely changes the previous paradigm of balancing between
maximizing one’s user’s desired power and reducing the generated interference by opening
up a new dimension for the beamforming design strategy. The fundamental question
becomes “when should a cooperating transmitter increase the generated interference?”

We proposed and formulated an achievable rate region as a union of four possible de-
coding structures: receivers 1 and 2 choose to decode interference (D) or treat interference
as noise (N). We then characterized the corresponding Pareto boundary and show that
the Pareto boundary attaining beamforming vectors are positive linear combinations of
specific vectors. As an application of the Pareto boundary characterization, we charac-
terize the maximum sum rate point and obtain a solution set that is a strict subset of
the previous. This shows a significant improvement, as the maximum sum rate operating
point of such system is proved to be NP-hard. This work is presented in the following
publications:

• Z.K.M. Ho, D. Gesbert, E. Jorswieck and R. Mochaourab, Beamforming on the
MISO Interference Channel with multi-user decoding capabability, in Proceedings of
Asilomar 2010.

• Z.K.M. Ho, D. Gesbert, E. Jorswieck and R. Mochaourab, On the MISO Interference
Channel with interference decoding, submitted to IEEE Transaction on Information
Theory, 2010.
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In Chapter 6, we summarize the contributions of the thesis and provide an overview
of possible future research directions.
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Chapter 2

The Interference Channel

In this chapter, we introduce the system model of a general interference channel inves-
tigated in the following chapters of this manuscript. This chapter introduces our key
simplifying assumptions and notations.

2.1 Channel model

In a network of 2N nodes where N nodes are transmitters and the remaining N nodes are
receivers, we assume that the transmitters are equipped with Nt antennas and receivers
are equipped with Nr antennas each. Each transmitter has a target receiver and each
transmitter-receiver pair forms a link in the network. For each Tx i, i = 1, . . . , N , the
Gaussian fading channel to Rx j, j = 1, . . . , N , is denoted as

Hji =
√
αjiGji (2.1)

where Gji is a Nr × Nt matrix with independent identically distributed (i.i.d.) elements
that are complex Gaussian random variables with zero mean and unit variance. The
variable αji is the long term fading coefficient that depends on the path loss and the
shadowing of the link between Tx i and Rx j.

We assume an individual power constraint Pi for each Tx i, which has an application
in cellular systems where each base station or mobile station has an individual battery.
In this manuscript, we focus on linear precoding strategies. Denote the precoders and
decoders at Tx i and Rx i by Wi ∈ C

Nt×Nsi and Vi ∈ C
Nr×Nsi respectively, where Nsi

is the number of data streams Tx i intend to transmit. Without loss of generality, the
precoders must satisfy the power constraint,

tr(WiW
H
i ) = 1. (2.2)

Let wij and vij denote the column vectors of Wi and Vi respectively, i.e. the vectors
corresponding to the transmission and decoding of the j-th symbol of link i, as follows

Wi = [wi1, . . . ,wiNsi ]

Vi = [vi1, . . . ,viNsi ] .
(2.3)

Clearly, Nsi ≤ min(Nt, Nr). Note that each column vector in Wi and Vi corresponds to
a symbol in the symbol vector xi from Tx i. The symbols are assumed to be unit power.
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One can choose Wi and Vi carefully so that the signal-to-interference-plus-noise-ratio
(SINR) of this link is improved.

The received signal at Rx j is

yj =

N∑

i=1

VH
j HjiWixi + nj (2.4)

where nj is the thermal noise at Rx j and is assumed to be statistically independent to
channel coefficients. The elements in nj are i.i.d complex Gaussian distributed with zero
mean and variance σ2. We can rewrite the received signal to distinguish the desired signal
from the interference and noise,

yj = VH
j HjjWjxj

︸ ︷︷ ︸

desired signal

+
N∑

i=1,i 6=j

VH
j HjiWixi

︸ ︷︷ ︸

interference signal

+nj . (2.5)

Assuming that the receivers are single-user-detection (SUD) receivers, the SINR of symbol
k, k = 1, . . . , Nsj , at receiver j is therefore

γjk(W,V, σ2) =
|vH

jkHjjwjk|2
∑Nsj

k′ 6=k |vH
jkHjjwjk′|2 +

∑N
i 6=j

∑Nsi
k′=1 |vH

jkHjiwik′|2 + ‖vjk‖2σ2
(2.6)

where W = [W1, . . . ,WN ] and V = [V1, . . . ,VN ]. The channel model of a system of
N = 3 Tx-Rx pairs with Nt = Nr = 2 and Nsi = 1, i = 1, 2, 3 is shown in Fig. 2.1. The
circles illustrated the locally available channel knowledge at Tx 1: {Hi1, i = 1, 2, 3} and
at Rx 3: {H3i, i = 1, 2, 3}.

2.1.1 Local channel knowledge

In this subsection, we give the formal definitions of local channel knowledge assumption
which is employed throughout the remaining of the thesis. Let the local channel informa-
tion available at Tx i to be Bi,

Bi = {Hji, j = 1, . . . , Nc} , i = 1, . . . , Nc. (2.7)

Similarly the unknown channel knowledge at Tx i is

B
⊥
i = {Hjk, j, k = 1, . . . , Nc} \ Bi. (2.8)

2.1.2 An achievable rate region and its Pareto boundary

The achievable rate region, assuming linear transceivers and single-user-detection at Rxs,
is the set of rates achieved by exhausting the transmit and receive matrices that satisfy
the power constraints. Letting

Ri(W,V, σ2) =

Nsi∑

k=1

log2(1 + γik(W,V, σ2)), i = 1, . . . , N, (2.9)



2.1. CHANNEL MODEL 13

Tx1 Tx2 Tx3

Rx1 Rx2 Rx3

H11

H33

H32

H31

H21

w1 w2 w3

v1 v2 v3

Figure 2.1: The channel model of a system of three Tx-Rx pairs with two antennas at
each node. The bold lines indicate the locally available channel state information at Tx
1.

be the rate achieved at user i for Tx and Rx matrices W and V, the rate region is:

RSUD =
{

(R1(W,V, σ2), . . . , RN (W,V, σ2)) : tr
(
WiW

H
i

)
= 1, i = 1, . . . , N ;V ∈ C

Nr×N̄s

}

(2.10)
where N̄s is the total number of streams in the system,

N̄s =
N∑

i=1

Nsi. (2.11)

The Pareto boundary, B(R) is the boundary of the achievable rate region R and can be
represented mathematically as follows.

B(R) =
{
(R1, . . . , RN ) ∈ R : there does not exist (r′1, . . . , r

′
N ) ∈ R

such that (r′1, . . . , r
′
N ) ≥ (R1, . . . , RN ) with one straight inequality,

} (2.12)

where we write Ri instead of Ri(W,V, σ2) for brief notations and ≥ is an component-wise
inequality.

2.1.3 The maximum sum rate of the interference channel with linear

processing

Note that the maximum sum rate with linear processing discussed here is smaller than the
information theoretic ergodic capacity of the interference channel, which is still an open
problem 1. We assume linear pre- and post processing, Gaussian codebooks and additive

1The ergodic capacity is the maximum achievable sum rate optimizing over the source alphabets and
possible processing techniques linear or non-linear.
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white Gaussian noise that is independent of the source alphabets, and limited transmit
power at each transmitter. Under these assumptions, the maximum sum rate is a function
depending on the system SNR 1

σ2 :

CSUD(σ2) = max
W,V

N∑

i=1

Nsi∑

k=1

log2
(
1 + γik(W,V, σ2)

)

subject to tr
(
WiW

H
i

)
= 1, i = 1, . . . , N.

(2.13)

The maximum sum rate defined in (2.13) assumes perfect channel state information at
the transmitter (CSIT) and at the receivers (CSIR). In general, the perfect channel state
information may not be available at the transmitters. One can formulate the maximum
sum rate of IC with statistical CSIT by maximizing the averaged sum rate over different
channel realizations.

CStat(σ2) = max
W,V

N∑

i=1

Nsi∑

k=1

E{Hmn,m,n=1,...,N} log2
(
1 + γik(W,V, σ2)

)

subject to tr
(
WiW

H
i

)
= 1, i = 1, . . . , N.

(2.14)

However, with only statistical CSIT, the optimized precoders and receivers can lead to
channel outage by transmitting at a rate higher than the instantaneous capacity of the
channel.

2.1.4 The degrees of freedom

The degrees of freedom (DOF) of the interference channel with SUD is the number of data
streams the system can support without causing error at the receivers in the high SNR
regime. It is widely used to approximate sum rate performance asymptotically,

DOF = lim
σ2→0

−CSUD(σ2)

log σ2
(2.15)

where CSUD(σ2) is defined in (2.13).

2.1.5 Spatial interference alignment

The spatial interference alignment scheme is a scheme that allows the system to operate
with maximum multiplexing gains or degree of freedom on the interference channel [20,
49, 61]. In the MIMO-IC, interference alignment schemes jointly optimize the transmit
and receive matrices such that the interference signals align or collapse into a subspace
with a smaller dimension than the number of antennas at each receiver. For a general K-
user MIMO-IC, there is no closed form solution of the transmit and receive matrices that
achieve interference alignment, except for K = 3 symmetric MIMO-IC. The interference
alignment solution can be described as the solution that satisfies the following criteria, for
a predefined tuple of degree of freedom (d1, . . . , dN ):

{

rank(VH
i HiiWi) = di

VH
i HijWj = 0, i, j = 1, . . . , N, i 6= j.

(2.16)

The feasibility of the constraints in (2.16) is termed the feasibility problem of IA and is
a very important and well studied problem in its own right. We do not elaborate on this
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topic so as to focus on beamforming optimization on the interference channel. For details,
please refer to [44,69] and the references therein.

Interference alignment is a necessary condition in high SNR regime as it allows the
sum rate to scale indefinitely with the SNR with slope equal to the number of degrees of
freedom in the system.

In the following, we give some simple receiver designs given the knowledge of the Tx
beamformers.

2.1.6 The matched filter receiver

For receivers that have simple design and may not be able to afford complicated compu-
tations, the matched filter design is preferred:

vik = Hiiwik. (2.17)

The corresponding SINR can be written as

γMF
ik =

‖Hiiwik‖4
∑Nsi

k′ 6=k |wH
ikH

H
iiHiiwik′|2 +

∑N
j 6=i

∑Nsj

k′=1 |wH
ikH

H
iiHijwjk′|2 + ‖Hiiwik‖2σ2

(2.18)

2.1.7 The minimum-mean-squared error receiver

In this subsection, we introduce the minimum-mean-squared error receiver (MMSE) which
is the solution of the mean-squared error minimization problem. We start with introducing
the mean-squared error metric

MSEjk = E{xjk ,njk}





∥
∥
∥
∥
∥
vH
jk

(
N∑

i=1

Nsi∑

k′=1

Hjiwik′xjk′ + njk

)

− xjk

∥
∥
∥
∥
∥

2


 (2.19)

and the minimization problem is

min
vjk,j=1,...,N

MSEjk

subject to tr(Vj) = 1.
(2.20)

We can expand the MSEjk to the following:

MSEjk = E{xjk,njk}
(
vH
jkMjkM

H
jkvjk − 2Re

(
vH
jkMjkxjk

)
+ ‖xjk‖2

)

= vH
jkE{xjk,njk}

(
MjkM

H
jk

)
vjk − 2Re

(
vH
jkHjjwjk

)
+ 1

= vH
jk

(
N∑

i=1

Nsi∑

k′=1

Hjiwik′w
H
ik′H

H
ji + σ2I

)

vjk − 2Re
(
vH
jkHjjwjk

)
+ 1

(2.21)

where Mjk =
∑N

i=1

∑Nsi
k′=1Hjiwik′xik′+njk. Hence, the optimal vjk that minimizes (2.21)

is

vjk =

(
N∑

i=1

Nsi∑

k′=1

Hjiwik′w
H
ik′H

H
ji + σ2I

)−1

Hjjwj. (2.22)

The resulting SINR for symbol k at receiver j is

γMMSE
jk = wH

j HH
jj

(
N∑

i=1

Nsi∑

k′=1

Hjiwik′w
H
ik′H

H
ji + σ2I

)−1

Hjjwj. (2.23)
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Tx1 Tx2 Tx3

Rx1 Rx2 Rx3

w1 w2 w3

h11 h12

h13

h33

h32

h31h23

h22

h21

Figure 2.2: The channel model of the MISO-IC with N = 3 and Nt = 2.

2.1.8 The maximum SINR receiver

The maximum SINR receiver is the receiver that maximizes (2.6):

vjk =
(
F−Hjjwjkw

H
jkH

H
jj

)−1
Hjjwj (2.24)

where F =
∑N

i=1

∑Nsi
k′=1 Hjiwik′w

H
ik′H

H
ji + σ2I. The resulting SINR is

γMaxSINR
jk = wH

i HH
jj

(
F−Hjjwjkw

H
jkH

H
jj

)−1
Hjjwjk. (2.25)

Note that the MMSE receiver in (2.22) is a scaled version of the maximum SINR receiver
(2.24). To see this, we start from the un-normalized MaxSINR receiver:

vMaxSINR
jk =

(
F−Hjjwjkw

H
jkH

H
jj

)−1
Hjjwjk

(a)
=

(

F−1 +
F−1Hjjwjkw

H
jkH

H
jjF

−1

1−wH
jkH

H
jjF

−1Hjjwjk

)

Hjjwjk

= F−1Hjjwjk + a′F−1Hjjwjk

= (1 + a′)F−1Hjjwjk

= (1 + a′)vMMSE
jk

(2.26)

where (a) is due to the matrix inversion lemma and the variable a′ =
wH

jkH
H
jjF

−1Hjjwjk

1−wH
jkH

H
jjF

−1Hjjwjk
.
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2.2 The MISO-IC

In the scenario where Rxs are equipped with only one antenna, we obtain a MISO-IC, as
shown in Fig. 2.2. The received signal at Rx i is

yi = hH
ii wixi +

N∑

j=1,j 6=i

hH
ijwjxj + ni (2.27)

where each Tx only transmits a single symbol and the channel from Tx j to Rx i is
a vector Gaussian channel denoted as hij . The beamforming vectors are subject to a
power constraint: ‖wi‖2 ≤ 1, i = 1, . . . , N and the noise ni is a complex Gaussian random
variable with zero mean and variance σ2. The transmit symbol xi is assumed to have
unit power. Assuming SUD and treating interference as noise, the SINR of the i-th link
is therefore:

γi(W, σ2) =
|hH

ii wi|2
∑N

j=1,j 6=i |hH
ijwj|2 + σ2

(2.28)

where W = [w1, . . .wN ]. Note that each Rx has only one antenna and therefore has no
ability to null out interference. This channel model is relevant in Chapter 3 in which we
discuss the transmit beamforming design on the 2-user MISO-IC with SUD. We define
here the Pareto boundary of the MISO-IC , B(R) to be the boundary of the achievable
rate region R:

R =
{
(R1 (W) , . . . , RN (W)) : Ri (W) = log2(1 + γi), ‖wi‖2 ≤ 1, i = 1, . . . , N

}
. (2.29)

2.2.1 The power gain region

The power gain region is a set of rate tuples achieved by any beamforming vectors that
satisfy the power constraints for any given channel realizations. For a N -user MISO-IC,
the power gain region Φi of Tx i is

Φi =
{(

|hH
1iwi|2, . . . , |hH

Niwi|2
)
: ‖wi‖2 ≤ 1

}
(2.30)

for arbitrary fixed channel gains h1i, . . . ,hNi. The power gain region Φi is shown to be a
convex compact region [42]. Also, for SUD, the authors [42] show that the beamforming
vectors that attain the Pareto boundary are on the boundary of Φi. This is relevant to the
discussion of MISO-IC-IDC in Chapter 5. In Chapter 5, we employ the power gain region
Φi to illustrate the Pareto boundary attaining beamforming vectors when interference
decoding is allowed.
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Chapter 3

MISO-IC with Single User

Decoding

In this chapter, the Txs face the choice of competition or cooperation in the way they
choose their transmission parameters (here beamforming vectors) to communicate with
their respective users. We build on interesting recently published work [31] analyzing
the gains of cooperation in this context and propose novel techniques for beamforming
on the MISO-IC with single user decoding (SUD). The proposed techniques outperform
classical non-cooperative game solutions and mimic known cooperative game solutions
while introducing a distributed aspect for the algorithm.

As the Txs have the selfish goal of maximizing their own performance, this results in
a conflict situation between the transmitter-receiver pairs. The classical way of analyzing
performance optimization in this scenario is through the so called non-cooperative games
[15,46] . The optimal operation point is known to be the Nash equilibrium solution (NE),
defined to be the set of transmission strategies such that any unilateral deviation from
it by anyone of the players cannot result in an increase of his/her utility (here, rate).
Although NE is an unavoidable outcome in zero-sum games, it is not the case in non-zero
sum games such as spectrum sharing problems in the interference channel. In this context,
the NE , as a result of players’ selfish behaviors, can often be seen as a worst case scenario,
over which improvements can be made by using concepts of bargaining and learning [37].

A cooperative game is a game where some form of trust is established between players
for the sake of maximizing their utilities jointly. Such games have been brought up recently
in the wireless networking literature [1, 40,50]. The trust is exploited to allow bargaining
between the players in an iterative manner. The optimal point at convergence is analyzed
in the game theory literature and referred to as the Nash bargaining (NB) point. The
application of cooperative games and NB theory to the spectrum sharing problem is un-
dertaken in [28,31,36,45]. The advantage of the NB point over the classical NE is that it
is possible to operate on the Pareto boundary of the rate region. However, the computa-
tion of the NB-achieving strategies requires a full exchange of channel state information
between the users, which is not ideal in situations where backhaul communication between
Txs is limited or not possible, especially in the context of cognitive radio where different
users belong to different operators. Hence, at one extreme where NE does not require
exchange of information and is easy to implement but may lead to bad performance. At
the other extreme, NB solution requires full exchange of channel information but allow
players (Txs) to cooperate and result in a much better operating point. This constitute to
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a trade-off between cooperation and distributedness of the bargaining algorithms. In this
chapter, we explore semi-distributed techniques that exploit cooperation in the spectrum
sharing context and are reminiscent of bargaining methods while not requiring the full
centralized CSIT of actual cooperative game theoretic equilibria.

More specifically, we consider multiple antenna transmitters and single antenna re-
ceivers. The choice of transmission parameter (from the base to the terminal) is limited to
the choice of a beamforming vector, subject to a transmit power constraint. We propose
an iterative beamforming algorithm where each transmitter updates its beamforming vec-
tor as a function of a single bit of feedback provided by the intended terminal. This bit of
feedback provides the transmitters information of the channel realizations which can be
used to improve it’s transmit strategy, while maintaining semi-distributedness. At all in-
stance of the algorithm, feedback is exploited in order to adjust the transmit beamforming
vector as a linear combination of the NE solution and the so-called zero forcing solution.

Although mainly heuristic in nature, this algorithm finds some theoretical justification
in the recently published literature [31,36]. The authors of [31,36] showed that all beam-
forming strategies attaining the boundary of the rate region of a 2-user MISO-IC-SUD
(so-called Pareto boundary) are composed of a positive linear combination of the zero-
forcing solution (ZF) and maximum-ratio-transmission solution (MRT). But in principle,
the construction of such beamformer with an algorithm other than exhaustive search or
some other centralized techniques, remains an open problem. Our solution thus serves
as an practical alternative solution to exploit cooperation and to explore the trade-off
between selfishness and altruism over the MISO-IC channels.

3.1 System model

As introduced in Section 2.2, we consider a set of N links, each featuring a downlink
communication between a base station, equipped with Nt antennas, and one receiver node
with only a single antenna, all sharing the same frequency band in a given geographical
area. We recall the main definitions here for the convenience of the readers. The MISO
channel between receiver node i and transmitter node j is a vector denoted as hij ∈ CNt×1

for i, j = 1, . . . , N ,

hij =
√
αijgij (3.1)

where αij denotes the path loss attenuation between transmitter j and receiver i. The
vector gij is a vector with each element an independently identically distributed (i.i.d)
complex Gaussian random variable with zero mean and unit variance. We assume that
the transmit symbol xi is from a Gaussian codebook and has unit power E{|xi|2} = 1.
The receive signal of user i is

yi = hH
iiwixi +

N∑

j=1,j 6=i

hH
ijwjxj + ni. (3.2)

where the variable ni denotes a complex Gaussian noise with zero mean and variance σ2.
In this chapter, we assume a symmetric channel model in a sense that the noise power
at each receiver is on average the same. In the next chapter, we discuss the egoism and
altruism balancing problems on the MIMO-IC in an asymmetric network in which some
links suffer stronger uncontrolled noise than other links in the network. See Chapter 4 for
details.
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As introduced in (2.28), the Signal-to-Interference-and-Noise-Ratio (SINR) at Rx i,
assuming treating interference as thermal noise, is

γi = γi(W) =
|hH

ii wi|2
∑N

j 6=i |hH
ijwj|2 + σ2

, (3.3)

where W = [w1, . . . ,wN ]. We drop the notation of the noise power σ2 from now on to
focus on the design of beamforming vectors. Assuming Gaussian inputs and single user
decoding, the theoretic data rate of the Tx-Rx pair i is

ri(W) = log2(1 + γi(W)) (3.4)

and system sum rate is therefore

R =
N∑

i=1

ri. (3.5)

3.1.1 Local Channel Information

Similar to the local channel information for the MIMO-IC defined in Section 2.1.1, we
give in the following the local channel information definition in the MISO-IC. The local
channel information of Tx i is denoted as the set of channel vectors Bi, which includes the
direct channel hii and the interference channel to other receiver nodes hki, k 6= i. Hence,
we have

Bi = {hki, k = 1, . . . N} , i = 1, . . . , N. (3.6)

Note that Tx i does not know the direct channel of other users hkk or the interference
channel from others to its receiver hki. We denote the unknown channel knowledge of Tx
i to be B

⊥
i :

B
⊥
i = {hki, i, k = 1, . . . , N} \ Bi. (3.7)

Furthermore, we assume that each receiver is able to measure its local signal to interference
and noise ratio (SINR). The goal of the transmitters is to choose a beamforming vector
based on limited information, Bi, so as to reach good points in the achievable rate region.
There may be numerous desirable points in the achievable rate region depending on the
objective of the system. In a spectrum sharing scenario with independent operators, it
is more reasonable to consider a trade-off between sum rate and fairness, rather than to
maximize sum rate alone. It is because, in the two-user MISO-IC-SUD, the maximum sum
rate operating point can be the single user point, in which one of the Tx is shut off. This
is not desirable in our context as Txs, or players, only cooperate if the cooperation brings
increase in their utilities. In the following, we assume that each Tx has its data rate as the
utility function, hence selfish in nature, but is willing to cooperate or bargain, as long as
the bargaining outcome is beneficial: the rate outcome is higher than the non-cooperating
rate, e.g. the NE.

3.2 Achievable rate region and Pareto boundary

We assume that no interference precancellation is allowed and the interference from other
transmitter nodes is treated as noise. We recall the definition of the achievable rate region
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of MISO-IC-SUD R in 2.29 which is characterized by a set of all possible rate tuples r
such that each rate element ri, as defined in (3.4), satisfies the power constraint,

R =
{
r (W) = (r1 (W) , . . . , rN (W)) : ‖wi‖2 ≤ 1, 1 ≤ i ≤ N

}
. (3.8)

The Pareto boundary B (R) is simply the boundary of the achievable rate region R, as
defined similarly in (2.12).

3.3 Particular solutions

In this section, we discuss some particular solutions with the application in the MISO-
IC-SUD. These solutions are not always good ones, but have the merit of being simple
to understand and they bear strong connections with game theory. These solutions are
generalized readily from classical single cell MIMO theory.

3.3.1 The zero-forcing solution

The philosophy behind the zero-forcing solution (ZF) is altruism in a game theory sense.
This means that each transmitter selects a beamforming vector so that no interference is
created to other receivers. The ZF beamformer is in the null space of the channel matrix
between transmitter i and the receivers, excluding its intended receiver i. Define the
following channel matrix H−i with its columns being channel vectors from Tx i to other
receivers.

H−i = [h1i, . . . ,h(i−1)i,h(i+1)i, . . . ,hNi]. (3.9)

Assume Nt ≥ N and thus the following projection matrices onto the column space of H−i

exist, we have

Π−i = H−i

(
HH

−iH−i

)−1
HH

−i (3.10)

and the orthogonal complement

Π⊥
−i = I−H−i

(
HH

−iH−i

)−1
HH

−i. (3.11)

The ZF solution is therefore

wZF
i =

Π⊥
−ihii

‖Π⊥
−ihii‖

(3.12)

which satisfy the power constraint ‖wZF
i ‖ = 1. Note that if the null space of H−i has

dimension larger than one, the ZF solution is the projection of hii onto the null space such
that |hH

iiw
ZF
i | is the largest. Note that the ZF solution only requires local information at

Tx i, Bi.

3.3.2 The Maximum-Ratio-Transmission

The maximum-ratio-transmission (MRT) beamformer is employed to maximize the desired
signal power at the user, by aligning the direction of the beamformer and the desired
channel, ignoring the interference generated to other receivers. In a game theory sense,
this forms an egoistic solution. Also, it coincides with the Nash Equilibrium (NE) in a
non-cooperative strategic game [31,36].
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The MRT beamformer wMRT
i for base station i is

wMRT
i =

hii

‖hii‖
. (3.13)

Similar to the ZF solution, the computation of the MRT solution only requires channel
knowledge which is locally observable at Tx i (at least in a TDD mode), Bi. The following
theorem gives an intriguing characterization of the Pareto optimal beamforming strategies.
It serves as a justification for the algorithm proposed later on.

Theorem 5. Any rate point on the Pareto Boundary of a two-user MISO-IC-SUD is
attained by beamforming vectors which are a linear combination of the ZF solutions and
the MRT solutions with weights between zero and one [31]. For any r ∈ B(R),

ri = log2(1 + γi(w1,w2)), i = 1, 2 (3.14)

with

wi =
λiw

ZF
i + (1− λi)w

MRT
i∥

∥λiw
ZF
i + (1− λi)w

MRT
i

∥
∥
, 0 ≤ λi ≤ 1, i = 1, 2. (3.15)

Proof. As the argument of the proof is highly related to this chapter and Chapter 5, we
adopt the proof from [31] at the end of this chapter for completeness.

Thm. 5 states that by combining the ZF and MRT solutions, one can construct
a beamforming vector that attains the Pareto boundary of a two-user MISO-IC-SUD.
Although this only applies to the two-user case, we propose the following algorithm which
bears a similar concept but on the N -user MISO-IC-SUD. When N = 2, the following
algorithm provides a practical alternative solution to perform close to Pareto boundary.

3.4 Distributed Algorithms

In this section, we present a heuristic (although intuitively motivated) distributed bar-
gaining solution (DBS) and we will compare it to the non-cooperative NE and altruistic
solutions above presented. The difficulty is that the optimum cooperative points (on the
Pareto boundary) are given by a linear combination between the ZF and the MRT beam-
formers where the weights are a function of the complete, centralized CSIT. To preserve
semi-distributedness, we introduce the idea of a limited feedback link from each user and
its serving base. The second novel aspect is the idea of iterative bargaining where the
transmitters simultaneously realize small increments of their beamformer in a direction
leading to improvements for all parties involved. Users are expected to monitor their rates
and indicate to their serving base whether the bargaining is successful or not (via a single
bit of feedback). In the proposed framework, a loss of rate by one of the users will cause
this user to cease the cooperation.

3.4.1 The DBS algorithm

We provide an iterative algorithm which approaches the Pareto boundary by incrementally
steering the beamforming vector in each iteration so that every transmitter and receiver
pair would have a higher transmission rate.

Denote the beamforming vector of transmitter i in iteration j by wi(j). Intuitively, it
is reasonable to initialize the beamforming vectors wi(0) to be the MRT solutions wMRT

i
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because players start with a non-cooperative setting. However they can also initialize in
an joint altruistic setting (see later).

The beamforming vector is updated at each iteration j by

wi(j) = wi(j − 1) + δw(j) (3.16)

wi(j) →
wi(j)

‖wi(j)‖
(3.17)

where δw(j) is a computed vector based on the available local channel state information.
At each iteration j, each receivers computes its rate using locally available information ,

r
(j)
i = log2

(

1 +
|hH

ii wi(j)|2
Ii(j)

)

(3.18)

where Ii(j) is the measured interference and noise power at receiver i at j-th iteration,

Ii(j) =

N∑

k 6=i

|hH
ikwk(j)|2 + σ2. (3.19)

Then, Rx i reports to Tx i a single bit to inform the base about its satisfaction: increment
of data rates (1) or decrement of data rates (0).

3.4.2 Iterative Bargaining

In low SNR regime, interference power is negligible comparing to the noise power and the
MRT solution achieves a higher rate performance than the ZF solution as it maximizes the
desired signal energy while ignoring the interference. On the other hand, in the high SNR
regime, the system becomes interference limited. The ZF solution mitigates interference
and achieves a higher rate performance than the MRT solution. With this concept in mind,
we propose the following initialization policy which adapts to system SNR assuming the
SINR of employing ZF and MRT are known:

wi(0) =

{
wZF

i if RZF > RMRT ;
wMRT

i otherwise.
(3.20)

where

RZF =

N∑

i=1

log2
(
1 + γi

(
wZF

1 , . . . ,wZF
N

))

RMRT =
N∑

i=1

log2
(
1 + γi

(
wMRT

1 , . . . ,wMRT
N

))
.

(3.21)

It is interesting to note that different update-mechanics in (3.16) would result in a differ-
ent data rates trajectory (data rate improvement curve) and would result in a different
converged system sum rate. Here we provide two simple examples of δwi(j) which will be
shown later to perform better than the non-cooperative and altruistic solutions. Both of
these algorithm provide with a trajectory linking the MRT and the ZF operating points
in the rate region.
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3.4.2.1 Zero-Forcing Increment (ZFI)

In ZFI, assuming we start with the MRT solution, the beamforming vector is steered
towards the ZF solution in each iteration. Intuitively, the transmitters are willing to
cooperate by decreasing the interference level generated to other receivers as long as they
get benefits, increment in transmission rates, in the process. The beamforming vector of
transmitter i in iteration j is updated as

wi(j + 1) = wi(j) + αiw
ZF
i (3.22)

where αi is a preset step size constant. The beamforming vector is then normalized as
in equation (3.17). On the other hand, if we start with ZF solution, the beamformer is
steered towards the MRT solution in each iteration.

3.4.2.2 Orthogonal Bases Increment (OBI)

In OBI, the beamforming vectors are a linear combination of the ZF solution and a vector
that is in the span of the interference signals, as designed in (3.28):

wZF
i =

Π⊥
−ihii

‖Π⊥
−ihii‖

w̄ZF
i =

Π−ihii

‖Π−ihii‖
.

(3.23)

The beamforming vector of transmitter i at iteration j be

wi(j) =
√

βi(j)w
ZF
i +

√

1− βi(j)w̄
ZF
i (3.24)

As illustrated in [31] [36], to achieve Pareto optimality, it is sufficient to vary βi(j) between
0 ≤ βi(j) ≤ β̃i, where l1 = |Π−ihii|2, l2 = |Π⊥

−ihii|2 and β̃i = l1
l1+l2

. To initialize, the
beamformer equals

βi(0) =

{
β̃i if RMRT > RZF

0 Otherwise.
(3.25)

At iteration j + 1,

βi(j + 1) =

{
βi(j) − δβ if RMRT > RZF

βi(j) + δβ Otherwise.
(3.26)

where δβ is a predefined constant. The beamformer is then normalized as in (3.17).

3.4.3 Stopping Condition

A stopping condition is implemented so that the beamformer trajectory is halted as near
as possible to the Pareto boundary. The stopping condition reflects the sharing policy and
many options are available. A reasonable and intuitive stopping condition is that each
transmitter would stop cooperating and terminates the algorithm when it encounters a
decrement of transmission rate. User i, 1 ≤ i ≤ N stops cooperating if

|hH
iiwi(j)|2
Ii(j)

>
|hH

ii wi(j + 1)|2
Ii(j + 1)

(3.27)

where Ii(j) is the measured interference and noise energy in (3.19).
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3.5 Results and Discussion

In this section, we illustrate the dynamics (trajectory in the rate region) and the sum rate
performance of DBS.

3.5.1 Dynamics of DBS

In figure 3.1, the achievable rate region for a particular channel realization is plotted for
the two-user MISO-IC-SUD. The ZF solution and the MRT solution are marked as a circle
and a triangle respectively, inside the achievable rate region. The system SNR is 15dB.
In this channel realization, neither the ZF nor the MRT is reaching the Pareto boundary.
The trajectory of rate bargaining at each iteration, starts at the MRT solution. The
solid line is the trajectory with stopping condition which ensures the bargaining stops
when one of the transmitters has rate decrement. The dotted line is the trajectory path
without stopping condition. As seen, the path eventually goes to the ZF point but there
is no guarantee of each transmitters’ rates. Note that the beamforming vector is steered
towards ZF beamformer. Yet, it stops before reaching the ZF solution because one of the
transmitter encounters rate decrement which results in a higher sum rate operating point
and close to the Pareto boundary. As shown in the figure, the resulting rate is higher than
both ZF solution and MRT solution. Note that DBS reaches close to the Pareto boundary
in 3 iterations in this realization which means that only 3 bits of feedback are required to
improve the performance.

3.5.2 Performance Comparison of DBS

The sum rate comparison between DBS, the ZF and the MRT solutions in the MISO-
IC-SUD against SNR is illustrated in Fig. 3.2. In the low SNR regime, SNR < 9dB,
the interference is weak, the MRT solution outperforms the ZF solution which confirms
our intuition. We see that both ZFI and OBI outperform the non-cooperative NE, the
MRT solution. In medium and high SNR regime, the ZF solution outperforms the MRT
because the interference power is stronger than noise power and mitigation of interference
improves performance.

In figure 3.3, the sum rate of DBS, the ZF and MRT schemes are plotted against
the distance between two transmitters. The distance is calculated as a multiple of the
coverage of the transmitter. As the distance increases, interference becomes weaker. The
MRT solution and DBS both improve in performance and DBS outperforms MRT. On the
other hand, the ZF solution does not take into account the strength of interference and
consumes all transmitter power to mitigate a weak interference, resulting in a constant
performance.

3.6 Conclusion

In an interference channel where Txs are competing for frequency resource selfishly, with
a lack of network structure, a distributive interference mitigation algorithm is essential to
improve the system performance. We provided two simple distributed bargaining solutions
which build on balancing between the egoism solution (MRT) and the altruistic solution
(ZF). In the following chapter, we investigate the concept of egoism and altruism balancing
on the MIMO-IC-SUD.
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Figure 3.1: The trajectory of DBS within the rate region in the 2-user MISO-IC-SUD at
SNR 15dB. The trajectories of both ZFI and OBI, starting at the MRT point (triangle),
are illustrated in solid lines, with colors red and green respectively, whereas if there are
no stopping conditions, the trajectories continue and end at the ZF point (circle) and are
shown in dotted lines. As shown in the figure, the algorithms stop close to the Pareto
boundary.
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Figure 3.2: The performance comparison of DBS against SNR (dB). The two version of
DBS, namely ZFI and OBI, outperform the Nash equilibrium (MRT) and the altruistic
(ZF) solution.
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Figure 3.3: The performance comparison of DBS against distance between transmitters
at SNR 10dB.
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3.7 Proof of Thm. 5

We first prove that the Pareto boundary attaining beamforming vectors take the following
form:

wi =
√
µi

Π⊥
−ihii

‖Π⊥
−ihii‖

+
√

1− µi
Π−ihii

‖Π−ihii‖
, 0 ≤ µi ≤ 1, i = 1, 2. (3.28)

Then, we show that the set of solutions parameterized in (3.15) is a subset of solutions
parameterized in (3.28) which attain the Pareto boundary

As N = 2, for j 6= i, Π−i =
hjih

H
ji

‖hji‖2 and Π⊥
−i = I −Π−i. We start by contradictions.

Assume the Pareto boundary attaining beamforming vectors are

wi = a1
Π−ihii

‖Π−ihii‖
+ a2

Π⊥
−ihii

‖Π⊥
−ihii‖

+ a3ν3 + . . .+ aNtνNt (3.29)

with at least one aj non-zero and νj are mutually orthogonal and orthogonal to Π−ihii

‖Π−ihii‖

and
Π⊥

−ihii

‖Π⊥
−ihii‖

, 3 ≤ j ≤ Nt. The coefficients a1, . . . , aN are complex and satisfy the power

constraint,
|a1|2 + . . . , |aN |2 = 1. (3.30)

Without loss of generality, assume a3 6= 0. We can construct w′
i = wi − ǫν3 with ǫ chosen

such that w′
i satisfies the power constraint. Note that, for i, k = 1, 2, k 6= i,

∣
∣hH

iiw
′
i

∣
∣ =

∣
∣hH

iiwi

∣
∣

∣
∣hH

kiw
′
i

∣
∣ =

∣
∣hH

kiwi

∣
∣ .

(3.31)

Then, we can choose w′′
i = w′

i + ǫejφ Π−ihii

‖Π−ihii‖ where ǫ is chosen such that w′′
i satisfies the

power constraint. We obtain

∣
∣hH

iiw
′′
i

∣
∣ =

∣
∣
∣
∣
hH
ii

(

w′
i + ǫejφ

Π−ihii

‖Π−ihii‖

)∣
∣
∣
∣

=
∣
∣
∣hH

iiw
′
i + ǫejφ‖Π−ihii‖

∣
∣
∣

(a)
=
∣
∣hH

iiw
′
i

∣
∣+ ǫ‖Π−ihii‖

≥
∣
∣hH

iiw
′
i

∣
∣ =

∣
∣hH

iiwi

∣
∣ ,

∣
∣hH

kiw
′′
i

∣
∣ =

∣
∣hH

kiw
′
i

∣
∣ =

∣
∣hH

kiwi

∣
∣

(3.32)

where (a) is due to the selection of φ = arg(hH
iiw

′
i). Note that w

′′
i achieves a higher power

gain
∣
∣hH

ii w
′′
i

∣
∣ than

∣
∣hH

ii wi

∣
∣ while keeping the interference gain constant. This violates the

assumption that wi attains the Pareto boundary. Hence, we have a3 = 0. By the similar
argument, we have aj = 0, j = 3, . . . , Nt and obtain

wi = a1
Π−ihii

‖Π−ihii‖
+ a2

Π⊥
−ihii

‖Π⊥
−ihii‖

(3.33)

with |a1|2 + |a2|2 = 1. Now we prove that a1, a2 are be chosen real, instead of complex
coefficients. With (3.33), we have

|hH
ii wi| =

∣
∣
∣a1‖Π−ihii‖+ a2‖Π⊥

−ihii‖
∣
∣
∣

(a)

≤ |a1|‖Π−ihii‖+ |a2|‖Π⊥
−ihii‖

|hH
kiwi| =

∣
∣
∣
∣
a1

Π−ihii

‖Π−ihii‖

∣
∣
∣
∣
= |a1|.

(3.34)
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Equality is set at (a) is the phase of a1, a2 are the same: arg(a1) = arg(a2). Note that
the phase of a1 does not affect the interference gain

∣
∣hH

kiwi

∥
∥ and hence we have a1, a2 real

coefficients and we denote a1 =
√
1− µi and a2 =

√
µi.

Now, we show that the set of solutions in (3.15) is a subset of the set of solutions
parameterized in (3.28). We start with (3.28),

wi =
√
µi

Π⊥
−ihii

‖Π⊥
−ihii‖

+
√

1− µi
Π−ihii

‖Π−ihii‖

=
√
µi

Π⊥
−ihii

‖Π⊥
−ihii‖

+
√

1− µi
hii

‖Π−ihii‖
−
√

1− µi
Π⊥

−ihii

‖Π−ihii‖

=

(

√
µi −

√

1− µi
‖Π⊥

−ihii‖
‖Π−ihii‖

)

Π⊥
−ihii

‖Π⊥
−ihii‖

+

√
1− µi‖hii‖
‖Π−ihii‖

hii

‖hii‖

= bi
Π⊥

−ihii

‖Π⊥
−ihii‖

+ di
hii

‖hii‖
= biw

ZF
i + diw

MRT

(3.35)

where 0 ≤ bi, di ≤ 1 if 0 ≤ µi ≤
|hH

jihii|2
‖hji‖2‖hii‖2 . Rewriting the coefficients in terms of λi and

we obtain (3.15).
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Chapter 4

MIMO-IC with Single User

Decoding

In previous chapter, we have discussed the egoism and altruism balancing in the MISO-IC,
in the goal of operating close to the Pareto boundary. In this chapter, we consider the
multiple-input-multiple-output interference channel (MIMO-IC) and shed more light on
these game-theoretic concepts in the more general context of MIMO channels and more
particularly when not all CSI is shared by coordinating parties by using the framework
of Bayesian games. In particular, this allows us to derive distributed beamforming tech-
niques. We draw parallels with existing work on the MIMO-IC, including rate-optimizing
and interference-alignment precoding techniques, showing how such techniques may be
improved or re-interpreted through a common prism based on balancing egoistic and al-
truistic beamforming. Our analysis and simulations currently limited to single stream
transmission per user attest the improvements over known interference alignment based
methods in terms of sum rate performance in the case of so-called asymmetric networks.

Recently, coordination on the MIMO-IC-SUD has emerged as a very popular topic in its
own right, with several important non-game related contributions shedding light on rate-
scaling optimal precoding strategies based on so-called interference alignment, subspace
optimization, alternated maximum SINR optimization, [20, 41, 49] and rate-maximizing
precoding strategies [61,68], to cite just a few examples.

Interference alignment based strategies exhibit the designed feature of rendering inter-
ference cancelable (when feasible, according to the available degrees of freedom) at both
the transmitter and receiver side. Such a behavior is optimal in the large signal to noise
ratio (SNR) region when Rxs have single user decoder and interference is the key bottle-
neck. At finite SNR, various strategies exist which aim at maximizing a link quality metric
individually over each link, while taking interference into account. This often takes the
form of maximizing the link’s SINR or minimizing minimum-mean-square-error (MMSE).
This approach provides good rates in symmetric networks where all links are subject to
impairments (noise, average interference) of similar level. In more general and practical
situations however, we argue that a better sum rate may be obtained from a proper and
different weighting of the egoistic and altruistic objective at each individual link. This
situation is particularly important when more links are subject to statistically stronger
interference than others, a case which has so far received little attention and which we shall
refer here as asymmetric networks. For this purpose, we suggest to re-visit the problem
of coordinated beamforming design by directly building on the game theoretic concept of
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egoistic and altruistic game equalibria. Because our focus is on scenarios where CSI is not
fully available, we consider a class of games suitable to the case of partial information-
based decision making, called Bayesian games. Note that this is different from the limited
CSI feedback scenario studied by previous authors [64] who consider channel quantization
requirement as function of SNR. Our approach is two-fold, first derive analytically the
game equalibria. Second, exploit the obtained equilibria solution into heuristic design of
a practical beamforming technique. The behavior of our solution is then studied both
theoretically (large SNR regime) and tested by simulations.

The road-map of this chapter is:

• We define the egoistic and altruistic objective functions and derive analytically the
equilibria of so-called egoistic and altruistic Bayesian games [22], in Section 4.2.

• Based on the equilibria, we propose a practical distributed beamforming scheme, in
Section 4.3, which provides a game-theoretic interpretation of the distributed sum
rate maximization problem the MIMO-IC, such as [61].

• The proposed techniques allows a tradeoff between the reduced complexity/feedback
and the rate maximization offered by [61].

• We show that our algorithm exhibits the same rate scaling (when SNR grows) as
shown by recent interesting interference alignment based methods [20,41,49] which
operates on the same feedback assumption as the proposed beamforming scheme.
At finite SNR, we show improvements in terms of sum rate, especially in the case
of asymmetric networks where interference-alignment methods are unable to prop-
erly weigh the contributions on the different interfering links to maximize the sum
rate. This situation is particularly relevant. In practical contexts where for com-
plexity limitation reasons only a subset of cells (links) is coordinated across, while
other uncoordinated links contribute to additional unequal amounts of unstructured
interference.

4.1 Bayesian Games Definition on interference channel

Let N = {1, . . . , N} be a set containing a finite set Nc, with cardinality Nc ≤ N , of
cooperating transmitters (Txs), also termed as players. From now on, we use players
and Txs interchangeably. We call the set Nc a coordination cluster and Txs outside
the cluster will contribute to uncontrolled interference. The provided model has general
applications in which the Txs can be base stations in cellular downlink where typically
coordination is restricted to a subset of neighboring cell sites while more distant sites
cannot be coordinated over [19] ; nodes in ad-hoc network and cognitive radio.

Each Tx is equipped with Nt antennas and the Rx with Nr antennas. Each Tx com-
municates with a unique Rx at a time. Txs are not allowed or able to exchange users’
packet (message) information, giving rise to an interference channel over which we seek
some form of beamforming-based coordination. Recall from the definition in (2.1), the
channel from Tx i to Rx j Hji ∈ CNr×Nt is given by:

Hji =
√
αjiGji, i, j = 1, . . . , Nc (4.1)

Each element in channel matrix Gji is an independent identically distributed complex
Gaussian random variable with zero mean and unit variance and αji denotes the slow-
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varying shadowing and pathloss attenuation. The probability density of Gji is

fGji(H) =
1

πNtNr
exp(−Tr

(
HHH

)
). (4.2)

4.1.1 Limited Channel knowledge

As introduced in Section 2.1.1, the local channel knowledge is defined in (2.7) which we
recall here. The set of CSI locally available (resp. not available) at Tx i denoted by Bi

(resp. B⊥
i ) is denoted by:

Bi = {Hji}j=1,...,Nc
; B⊥

i = {Hkl}k,l=1...Nc
\ Bi (4.3)

By construction here, locally available channel knowledge, Bi, is only known to Tx
i but not other Txs. We call this knowledge Bi the type of player (Tx) i, in the game
theoretic terminology [22].

In the view of Tx i, the decision to be made shall be based on its type Bi and its beliefs
on other Txs types. Since Tx i does not know other Txs types (channel realizations),
we assume that Tx i has the probability densities (beliefs) of its unknown channels, B⊥

i .
For simplicity, we assume that these beliefs are symmetric: these unknown channels are
all complex Gaussian distributed. The asymmetric path loss attenuation variables αji are
assumed to be long term statistics and known to the Txs. And we assume that the channel
coefficients in the network are statistically independent from each other. We define here
the joint beliefs (probability density) at Tx i:

µi = p(B⊥
i ) = fGji(H)Nc(Nc−1) = µ. (4.4)

The Tx index i is dropped because the beliefs are symmetric among Txs, given the asym-
metric path loss coefficients αji. p(.) is a probability measure and fGji(H) is density of a
complex Gaussian channel defined in (4.2). The second equality relies on the assumptions
that the channel coefficients from any Tx to any Rx are independent.

Without any further information, Tx i designs the transmit beamforming vector, wi ∈
CNt×1, so as to optimize the expected value of a certain utility over such belief. As
in several important contributions dealing with coordination on the interference channel
[14,18,20,31,34,62,71], we assume linear beamforming. We call the transmit beamforming
vector wi an action of Tx i and denote the set of all possible actions by A at any Tx.

A =
{
w ∈ CNt×1 : |w|2 ≤ 1

}
(4.5)

The received signal at Rx i is therefore

yi = vH
i Hiiwixi

√
P +

Nc∑

j 6=i

vH
i Hijwjxj

√
P + ni (4.6)

where xk, k = 1, . . . , Nc are the transmit symbols, ni is a complex Gaussian noise with
zero mean and variance σ2

i . Note that the noise levels σ2
i depend on the link index which

was not considered in previous work on transmitter coordination. We assume that the
Txs are transmitting with full power P . The Rxs are assumed to employ maximum SINR
(Max-SINR) beamforming throughout the paper so as to also maximize the link rates [47].
The receive beamformer vi is classically given by:

vi =
CRi

−1Hiiwi
∥
∥CRi

−1Hiiwi

∥
∥

(4.7)
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N = 7; Nc = 4

Tx 1

Tx 2

Tx 3

Tx 4

Figure 4.1: This figure illustrates a system of N = 7 cells where Nc = 4 cells form a co-
ordination cluster. Empty squares represent transmitters whereas filled squares represent
receivers. The noise power (which includes out-of-cluster interference) undergone in each
cell varies from link to link.

where CRi is the covariance matrix of received interference and noise

CRi =

Nc∑

j 6=i

Hijwjw
H
j HH

ijP + σ2
i I. (4.8)

P is the transmit power.

Importantly, the noise will in practice capture thermal noise effects but also any in-
terference originating from the rest of the network, i.e. coming from transmitters located
beyond the coordination cluster. Thus, depending on the path loss and shadowing effects,
the {σ2

i } may be quite different from each other [43]. Fig. 4.3 illustrates a system of
N = 7 cells where Nc = 4 cells form a coordination cluster. Note that for simplification of
analysis, we consider the sum of uncoordinated source of interference and thermal noise
to be spatially white.

Receiver feedback vs. Reciprocal Channel : In the case of reciprocal channels (TDD),
the feedback requirement to obtain Bi can be replaced by a channel estimation step based
on uplink pilot sequences. Additionally, it will be classically assumed that the receivers are
able to estimate the covariance matrix of the interference signals, based on, for instance,
transmit pilot sequences.

We can now define the Bayesian game on the interference channel as a 5-tuple.

Definition 2.

G =< Nc,A, {Bi} , µ, {ui} > . (4.9)

µ denotes the beliefs of the players and {ui} denotes the utility functions of the players,
which can be either egoistic or altruistic.
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Specific definitions of ui will be given in the following sections. The players are assumed
to be rational as they maximize their own utility based on their types and beliefs.

Definition 3. A pure-strategy of player i, si : Bi → Ai is a deterministic choice of action
given information Bi of player i.

Definition 4. A strategy profile s∗ = (s∗i , s
∗
−i) achieves a Bayesian Equilibrium if s∗i is the

best response of player i given strategy tuple s∗−i for all other players and is characterized
by

s∗i = argmax E
B⊥
i

{
ui(si, s

∗
−i)
}
, i = 1, . . . , Nc. (4.10)

Note that, intuitively, the player’s strategy is optimized by averaging over the beliefs
(the distribution of all missing state information) while in a standard game, such expec-
tation is not required.

In the following sections, we derive the equilibria for egoistic and altruistic Bayesian
games respectively. These equilibria constitute extreme strategies which in general do not
perform optimally in terms of the overall network performance, yet can be exploited as
components of a more general beamforming-based coordination technique which is then
proposed in Section 4.4.

4.2 Bayesian Games with Receiver Beamformer Feedback

We assume that Tx has the local channel state information Bi and the added knowledge
of receive beamformers through a feedback channel. Note that in the case of reciprocal
channels, the receive beamformer feedback is not required.

4.2.1 Egoistic Bayesian game

Definition 5. Denote the set of transmit beamforming vectors of players j, j 6= i, by w−i.
The egoistic utility function for Tx i is defined as its received SINR

ui(wi,w−i) =
|vH

i Hiiwi|2P
∑Nc

j 6=i |vH
i Hijwj|2P + σ2

i

. (4.11)

Based on Tx i’s belief, Tx i maximizes the utility function in (4.11) where vi is a known
quantity.

Lemma 2. There exists at least one Nash equilibrium in the egoistic Bayesian game G
(4.9) with utility function defined in (4.11).

Proof. Ai is convex, closed and bounded for all players i and the egoistic utility function
ui(wi,w−i) is continuous in both wi and w−i. The utility function is concave in wi for
any set w−i. Thus, at least one Nash equilibrium (NE) exists [23,46].

Theorem 6. The unique best-response strategy of player i in the egoistic Bayesian game
G (4.9) with utility function (4.11) is to maximize the utility function based on its belief:

wEgo
i = argmax

‖wi‖≤1
E
B⊥
i
{ui(wi,w−i)} . (4.12)

The best-response strategy of player i is

wEgo
i = V (max)(Ei) (4.13)
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where Ei denotes the egoistic equilibrium matrix for Tx i, given by

Ei = HH
ii viv

H
i Hii.

Proof. The knowledge of receive beamformers decorrelates the maximization problem
which can be written as

wEgo
i = argmax

‖wi‖≤1
E
B⊥
i

{

1
∑Nc

j 6=i |vH
i Hijwj|2P + σ2

i

}

wH
i HH

ii viv
H
i Hiiwi. (4.14)

The egoistic-optimal transmit beamformer is therefore the dominant eigenvector ofHH
ii viv

H
i Hii.

4.2.2 Altruistic Bayesian game

Definition 6. The utility of the altruistic game is defined here so as to minimize the sum
of interference powers caused to other receivers.

ui(wi,w−i) = −
Nc∑

j 6=i

∣
∣vH

j Hjiwi

∣
∣
2

(4.15)

Lemma 3. There exist at least one NE in the altruistic Bayesian game G (4.9) with utility
function defined in (4.15).

Proof. Ai is convex, closed and bounded for all players i and the altruistic utility function
ui(wi,w−i) is continuous in both wi and w−i. The utility function is concave in wi for
any set w−i. Thus, at least one NE exists [23,46].

Theorem 7. Based on belief µ, Tx i seeks to maximize the utility function defined in
(4.15). The best-response strategy is

wAlt
i = V (min)





Nc∑

j 6=i

Aji



 (4.16)

where Aji denotes the altruistic equilibrium matrix for Tx i towards Rx j, defined by
Aji = HH

jivjv
H
j Hji.

Proof. Recall the utility function to be −∑Nc
j 6=i |vH

j Hjiwi|2 = −∑Nc
j 6=iw

H
i Ajiwi. Since vj

are known from feedback or estimation in reciprocal channels, the optimal wi is the least
dominant eigenvector of the matrix

∑Nc
j 6=iAji.

4.3 Sum rate Maximization with Receive Beamformer Feed-

back

From the results above, it can be seen that balancing altruism and egoism for player i can
be done by trading-off between setting the beamformer close to the dominant eigenvectors
of the egoistic equilibrium Ei or that of the negative altruistic equilibrium {−Aji} (j 6=
i) matrices in (4.42). Interestingly, it can be shown that, in later sections, sum rate
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maximizing precoding for the MIMO-IC does exactly that. Thus we hereby briefly re-visit
rate-maximization approaches such as [61] with this perspective.

Denote the sum rate by R̄ =
∑Nc

i=1 Ri where Ri = log2

(

1 +
|vH

i Hiiwi|2P
∑Nc

j 6=i |vH
i Hijwj |2P+σ2

i

)

.

Lemma 4. The transmit beamforming vector which maximizes the sum rate R̄ is the
dominant eigenvector of a matrix, which is a linear combination of Ei and Aji:



Ei +

Nc∑

j 6=i

λopt
ji Aji



wi = µmaxwi (4.17)

where

λopt
ji = −

|vH
j Hjjwj|2P

∑Nc
k=1 |vH

j Hjkwk|2P + σ2
j

∑Nc
k=1 |vH

i Hikwk|2P + σ2
i

∑Nc
k 6=j |vH

j Hjkwk|2P + σ2
j

(4.18)

and µmax is defined in the proof.

Proof. see Section 4.8.1.

Note that the balancing between altruism and egoism in sum rate maximization is done
using the dominant eigenvector of a simple linear combination of the altruistic and egoistic
equilibrium matrices. The balancing parameters, {λopt

ji }, can be shown simply to coincide
with the pricing parameters invoked in the iterative algorithm proposed in [61]. Clearly,
these parameters plays a key role, however their computation is a function of the global
channel state information and requires additional message (price) exchange. Instead, we
seek below a suboptimal egoism-altruism balancing technique which only requires statisti-
cal channel information, while exhibiting the right performance scaling when SNR grows
large.

4.4 A practical distributed beamforming algorithm: DBA

We are proposing the following distributed beamforming algorithm (DBA) where one
computes the transmit and receive beamformers iteratively as:

wi = V max



Ei +

Nc∑

j 6=i

λjiAji



 (4.19)

vi =
C−1

RiHiiwi
∥
∥C−1

RiHiiwi

∥
∥

(4.20)

where λji shall be made to depend on channel statistics only. At this stage, it is interesting
to compare with previous schemes based on interference alignment such as the practical
algorithms proposed in [49]. In such schemes, the transmit beamformer wi is taken inde-
pendent of Hii. Note that here however, wi is correlated to the direct channel gain Hii

through the egoistic matrix Ei in DBA. The correlation is useful in terms of sum rate as it
allows proper weighting between the contributions of the egoistic and altruistic matrices
in a link specific manner.
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4.4.1 The egoism-altruism balancing parameters λji

The egoism-altruism balancing parameters λji are now found heuristically based on the
statistical channel information. Recall from (4.18) that

λopt
ji = − Sj

Sj + Ij + σ2
j

Si + Ii + σ2
i

Ij + σ2
j

(4.21)

where Sj = |vH
j Hjjwj|2P and Ij =

∑Nc
k 6=j |vH

j Hjkwk|2P .

Following the principle behind sum rate maximization, we conjecture that at con-
vergence, residual coordinated interference shall be proportionate to the noise and out-
of-cluster interference, i.e. Ij = O(σ2

j ). Note that this should not be interpreted as an
assumption in a proof but rather as a proposed design guideline. Based on this, we pro-
pose the following characterization:

λopt
ji = − Sj

Sj +O(σ2
j )

Si +O(σ2
i )

O(σ2
j )

. (4.22)

By Jensen’s inequality, a lower bound on the average λopt
ji is found by:

E
(

λopt
ji

)

≥ − 1

1 +
O(σ2

j )

ESj

1 +
O(σ2

i )
ESi

O(σ2

j )

ESi

. (4.23)

Although ESi is not known explicitly, it is strongly related to the strength of the direct
channel Pαii. Let γi =

Pαii

σ2

i
. In order to obtain an exploitable formulation for λji, we

replace ESi by Pαii and O(σ2
i ) by σ2

i , to derive:

λji = − 1

1 + γ−1
j

1 + γ−1
i

σ2

j

Pαii

. (4.24)

Interestingly, in the special case where direct channels have the same average strength, we
obtain a simple expression

λji = −1 + γ−1
i

1 + γ−1
j

γj . (4.25)

The above result suggests Tx i to behave more altruistically towards link j when the SNR
of link j is high or when the SNR of link i is comparatively lower. This is in accordance
with the intuition behind rate maximization over parallel Gaussian channels.

DBA iterates between optimizing the transmit and receive beamformers, as summa-
rized in Algorithm 1. Iterative optimization of the transmit and receive beamformers is
reminiscent of recent interference-alignment based methods [20, 49]. However here, inter-
ference alignment is not a design criterion. In [20], an improved interference alignment
technique based on alternately maximizing the SINR at both transmitter and receiver sides
is proposed. In contrast, here the Max-SINR criterion is only used at the receiver side.
Although the distinction is unimportant in the large SNR case (see below), it dramatically
changes performance in certain situations at finite SNR (see Section 4.6).
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Algorithm 1 DBA

1) Initialize beamforming vectors wi, i = 1, . . . , Nc, to be predefined vectors.

2) For each Rx i, compute vi =
C

−1

RiHiiwi

|C−1

RiHiiwi|
where CRi is computed with wi in previous

step.

3) For each Tx i, compute wi = V max
(

Ei +
∑Nc

j 6=i λjiAji

)

where λji are computed from

statistical parameters (4.24).
4) Repeat step 2 and 3 until convergence.

4.4.2 Asymptotic Interference Alignment

One important aspect of the algorithm above is whether it achieves the interference align-
ment in high SNR regime [20]. The following theorem answers this question positively.

Definition 7. Define the set of beamforming vectors solutions in downlink (respectively
uplink) interference alignment to be [20]

IADL =






(w1, . . . ,wNc) :

Nc∑

k 6=i

Hikwkw
H
k HH

ik is low rank, ∀i






(4.26)

IAUL =






(v1, . . . ,vNc) :

Nc∑

k 6=i

HH
kivkv

H
k Hki is low rank, ∀i






. (4.27)

Thus, for all (wi, . . . ,wNc) ∈ IADL, there exist receive beamformers vi, i = 1, . . . , Nc such
that the following is satisfied:

vH
i Hijwj = 0 ∀i, j 6= i. (4.28)

Note that the uplink alignment solutions are defined for a virtual uplink having the
same frequency and only appear here as a technical concept helping with the proof.

Theorem 8. Assume the downlink interference alignment set is non-empty (interference

alignment is feasible). Denote average SNR of link i by γi =
Pαii

σ2

i
. Let λji = −1+γ−1

i

1+γ−1

j

γj,

then in the large SNR regime, P → ∞ , any transmit beamforming vector in IADL is a
convergence (stable) point of DBA.

Proof. see Section 4.8.2.

Note that this does not prove global convergence, but local convergence, as is the
case for other IA or rate maximization techniques [20, 49, 61]. Another way to character-
ize local convergence is as follows: assuming interference alignment is feasible (IADL is
non-empty), the first algorithm in [20] was shown to converge to transmit beamformers
belonging to IADL and the receivers are based on the minimum eigenvector of the down-
link interference covariance matrix, which tends to be low-rank. However, DBA selects its
receive beamformer from the Max-SINR criterion which, in the large SNR situation, is also
identical to selecting receive beamformers in the null space of the interference covariance
matrix. Therefore when interference alignment is feasible, the algorithm in [20] and DBA
coincide at large SNR. This aspect is confirmed by our simulations (see section 4.6).
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4.5 Multi streams transmission

In this section, we extend the previous discussion to the multi-streams per Tx-Rx pair
scenario. Hence, we recall the received signal at Rx i from (2.4) to

yi = HiiWixi

√
P +

Nc∑

j 6=i

HijWjxj

√
P + ni. (4.29)

Here, we assume equal power allocation among the streams that belong to the same Tx.
The pre-coder Wi is a Nt×Nsi matrix with Nsi being the number of streams Tx i wishes
to transmit to Rx i. The Nsi transmit symbols are denoted as a vector xi. The pre-coders
are subject to the power constraint,

tr
(
WiW

H
i

)
= 1, i = 1, . . . , Nc. (4.30)

Each element in the noise vector at Rx i is a complex Gaussian random variable with
zero mean and variance σ2

i which captures both the thermal noise and the uncontrolled
interference from out-of-cluster interference sources. Similarly, we define the receive matrix
at Rx i to be Vi which is a Nr × Nsi matrix. We assume that interference is treated as
noise and the interference power for stream k at Rx i is defined as

Iik =
∑

(j,m)∈Iik

∣
∣vH

ikHijwjm

∣
∣
2

(4.31)

where Iik is the set of interfering links with respect to stream k of Rx i, defined as

Iik = {(j,m) : j = 1, . . . , Nc,m = 1, . . . , Nsj} \ {(i, k)} . (4.32)

Now, we define the SINR of stream k of Tx-Rx pair i to be

γik =

∣
∣vH

ikHiiwik

∣
∣2

Iik + σ2
i

(4.33)

and the corresponding received interference covariance matrix

CRik =
∑

(j,m)∈Iik

HijwjmHH
ijw

H
jm. (4.34)

To avoid repetitions, we give the extensions briefly. Recall the Bayesian games definition
in (4.9), each Tx-Rx pair is a player. However, in the multi-stream scenario, each stream
belonging to Tx-Rx pair i, in the total of Nsi streams, has conflict among each other as
there is interference among these streams. To avoid such confusion, we propose to model
each stream as a player.

A strategy of player l, here refers to beamforming design, wik (see table 4.1), is a
deterministic choice of action given information Bi. A strategy profile W∗ = (w∗

ik,w
∗
−ik)

achieves the Bayesian Equilibrium if w∗
ik is the best response of player l given strategies

w∗
−ik for all other players. The optimal transmit beamformer of player l, w∗

ik, is charac-
terized by the argument maximization of the expectation of the utility function u(.):

w∗
ik = argmax E

B⊥
i

{

u(wik,w
∗
−ik,Bi,B

⊥
i )
}

. (4.35)

We can formulate the bayesian game as

GB =
[

M,A,B⊥
i , {u}

]

. (4.36)
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player l data stream k of Tx i where

l =
∑i−1

j=1Nsi + k

l ∈ M = {1, . . . , N̄s}
action set A = {w ∈ C

Nt×1 : ‖w‖2 = 1}
strategy beamforming vector of stream k of Tx i,

wik ∈ A

utility function u : AN̄s → R

egoistic : received SINR of stream l (4.37)
altruistic : negative interference caused by stream l (4.15)

Belief unknown channel statistics B
⊥
i

as a Gaussian distribution

common knowledge utility function and channel statistics

Table 4.1: Summary of the multi-stream Bayesian game

4.5.1 Egoistic Bayesian Game

Given receive beamformers as a common knowledge, the best response strategy of stream
k of Tx i which maximizes the utility function, i.e. its own SINR,

u(wik,w−ik,Bi,B
⊥
i ) =

∣
∣vH

ikHiiwik

∣
∣2 Pik

Iik + σ2
i

, (4.37)

is the following:

Theorem 9. The best-response strategy of stream k of Tx i in the egoistic Bayesian game
is

wEgo
ik = V (max)(Eik) (4.38)

where Eik will denote the egoistic equilibrium matrix for stream k of Tx i, given by

Eik = HH
ii vikv

H
ikHii (4.39)

and the corresponding Rx is given by vik =
CRik

−1Hiiw
Ego
ik

‖CRik
−1Hiiw

Ego
ik ‖ .

Proof. The knowledge of receive beamformers decorrelates the maximization problem.
The maximization problem can be written as

wEgo
ik = argmax

‖wik‖≤1
EB⊥

i

{
Pik

Iik + σ2
i

}

wH
ikEikwik. (4.40)

The egoistic-optimal transmit beamformer is the dominant eigenvector wEgo
ik = V (max)(Eik).

4.5.2 Altruistic Bayesian Game

The altruistic utility of stream k at Tx i is defined here in the sense of minimizing the
expectation of the sum of interference power towards other streams.

u(wik,w−ik,Bi,B
⊥
i ) = −

∑

(j,m)∈Iik

∣
∣vH

jmHjiwik

∣
∣
2

(4.41)
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Theorem 10. The best-response strategy of stream k of Tx i in the altruistic Bayesian
game is given by:

wAlt
ik = V (min)




∑

(j,m)∈Iik

Ajmik



 (4.42)

where Ajmik will denote the altruistic equilibrium matrix for stream k of Tx i towards
stream m of Rx j, defined by

Ajmik = HH
jivjmvH

jmHji. (4.43)

The corresponding receiver is vik =
C−1

RikHiiwik

‖C−1

RikHiiwik‖ .

Proof. The altruistic utility can be rewritten as −wH
ik(
∑

(j,m)∈Iik Ajmik)wik. Since the
vjm are known from feedback, the optimal wik is the least dominant eigenvector of the
matrix

∑

(j,m)∈Iik Ajmik.

4.5.3 Multi-stream DBA

Similar to (4.44), we have the following beamforming vector that coincides to sum rate
maximization in the multi-stream scenario, as the eigenvector of a linear combination of
the egoistic matrix and altruistic matrix defined in the multi-stream scenario in (4.39) and
(4.43) respectively:

wik = V max



Eik +
∑

(j,m)∈Iik

λjiAjmik



 (4.44)

where λji is computed as in Thm. 8. The receiver beamforming vector is matched with
the corresponding transmit beamforming vector,

vik =
CRik

−1Hiiwik
∥
∥CRik

−1Hiiwik

∥
∥
. (4.45)

4.5.4 Feasibility of interference alignment

As described in (2.16), the feasibility problem of interference alignment for a given tuple
of degrees of freedom, here the number of data streams di = Nsi, is whether the following
constraints can be satisfied simultaneously:

{

rank(VH
i HiiWi) = Nsi

VH
i Hijwj = 0, i, j = 1, . . . , N, i 6= j.

(4.46)

The feasibility problem depends on all of the following parameters: Nc, Nt, Nr, Ns1, . . . NNc .
If the constraints in (4.46) cannot be satisfied, then we say that interference alignment is
infeasible in this channel setting.

4.5.5 Binary power control

In the channel settings that render infeasibility of interference alignment, the residual
interference saturates the sum rate performance in the high SNR regime. To scale the
sum rate indefinitely in the IA infeasible regime, we propose a binary power control to
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restore the feasibility of IA. Note that binary power control is shown to be sum rate
optimal in 2 cells scenario and near-optimal in multi cell scenario [32]. Here, we propose
to consider a subset of the transmit streams to be shut down in order to allow a perfect
interference removal at the receive side in the IA infeasible and high SNR regime.

In order to obtain equations which are amenable to a simple power control scheme, we
advocate a design guideline by which the residual interference at each Rx should be made
on the same order of magnitude as the thermal noise (as opposed to making it zero, as the
cost of degrees of freedom on the optimization of the beamforming coefficients). To check
whether at least one stream should be turned off, we can easily check by comparing the
received interference power to noise. Thus, according to our designing rule, the stream k
of user i will be shut down when

Pik = 0 if Iik > σ2
i and γik < γjm, (j,m) ∈ Iik. (4.47)

To fulfill the transmit power constraint, equal power is allocated to the remaining streams
at each Tx.

The proposed beamforming and power control algorithm can be summarized as follows:

1. Initialization: For each user i ∈ Nc, initialize transmit power for each stream k =
1 . . . Ns with equal power allocation Pik = P

Ns
. Initialize transmit beamformer wik

to a predefined vector and the receive beamformer vik is a max-SINR receiver in the
form of (4.45).

2. DBA: Start the iterative beamforming procedure using (4.44) and (4.7).

3. Power Control: When DBA converges, check power control criteria (4.47). If at least
one stream is shut down, repeat DBA until power control criteria is satisfied.

4.5.6 Low Complexity of Binary Power Control

We include here briefly the pricing algorithm in [61] in the following, for details, please
refer to section III B in [61].

Algorithm 2 Distributed Bargaining Algorithm through Pricing [61]

1) Initialization of precoding matrices, interference prices, power profiles and receive
filters.
2) Iteration: for each user,

1. optimize beamformers based on given interference prices and power profile.

2. optimize power profile by maximizing a non-convex surplus function .

3. recompute all interference prices and receive filters.

Repeat until convergence.

The Binary power optimization offers a complexity reduction advantage over a search
over the continuous power domain proposed in [61].
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4.5.7 Restoring IA feasibility in high SNR

Both [61] and DBA restore IA feasibility in the high SNR regime. In the high SNR or
high interference regime, the individual rates become more sensitive towards the received
interference. By definition, the prices are increased and force the transmit power of some
Tx to decrease. In Fig. 4.7, we illustrate the sum rate performance of [61] with binary
power allocation. As the sum rate scales indefinitely with SNR, the IA feasibility is
restored. However, this binary power control in [61] can be affected by fast fading gains
and thus in some channel realizations, some links remain transmitting even if the sum
rate could be higher if they are shut down. Comparing to DBA, the binary power control
criteria seems to be more effective and achieve a better sum rate in high SNR and IA
unfeasibility region. (see later for details)

4.6 Simulation Results

In this section, we investigate the sum rate performances of DBA in comparison with
several related methods, namely the Max-SINR method [20], the alternated-minimization
(Alt-Min) method for interference alignment [49] and the sum rate optimization method
(SR-Max ) [61]. The SR-Max method is by construction optimal but is more complex
and requires extra sharing or feedback of pricing information among the transmitters. To
ensure a fair comparison, all the algorithms in comparisons are initialized to the same
solution and have the same stopping condition. The algorithms are considered to reach
convergence if the sum rates achieved between successive iterations have difference less
than 0.001. We perform sum rate comparisons in both symmetric channels and asymmetric
channels where links undergo different levels of out-of-cluster noise. Define the Signal to
Interference ratio of link i to be SIRi =

αii
∑Nc

j 6=i αij
. The SIR is assumed to be 1 for all links,

unless otherwise stated. Denote the difference in SNR between two links in asymmetric
channels by ∆SNR. Note that the proposed algorithm is not limited to the following
settings, but can be applied to network with arbitrary players and number of antennas.

4.6.1 Symmetric Channels

Fig. 4.2 illustrates the sum rate comparison of DBA with Max-SINR, Alt-Min and SR-
Max in a system of 3 links and each Tx and Rx have 2 antennas. Since interference
alignment is feasible in this case, the sum rate performance of SR-Max and Max-SINR
increases linearly with SNR. DBA achieves sum rate performance with the same scaling
as Max-SINR and SR-Max (i.e. multiplexing gain of 3). Therefore these methods seem
to perform similarly in symmetric channels.

4.6.2 Asymmetric Channels

In the asymmetric system, some links undergo uneven levels of noise and uncontrolled
interference. Another aspect is that more links can experience greater path loss or shad-
owing than others. Here we consider a few typical scenarios for which could constitute
asymmetric networks, as shown in Fig. 4.3.
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Figure 4.2: Sum rate comparison in multi links systems is illustrated in Fig. 4.2 with
[Nc, Nt, Nr] = [3, 2, 2] with increasing SNR. DBA, SR-Max and Max-SINR achieve very
close performance.
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4.6.2.1 Asymmetric uncontrolled interference power, illustrated in Fig. 4.3a

In Fig. 4.4, there are 3 links in the system in which the noise and unstructured interference
in one of the links are 20dB stronger than the other two links. This set up captures the
scenario that one link is at the boundary of the coordination cluster and suffer from strong
out-of-cluster noise. The SIR of every link is assumed to be 10 dB. in this scenario, DBA
outperforms interference alignment based methods because they are unable to properly
weigh the importance of each link in the overall sum rate. SR-Max is by construction
sum rate optimal. However, in the asymmetric network, we observe by simulation that
the convergence may require more iterations than other algorithms and the increment in
sum rate per iteration can be small in some channel realizations.

4.6.2.2 Asymmetric uncontrolled interference power and interference within
cluster, illustrated in Fig. 4.3b

In Fig. 4.5, we compare the sum rate performance in the same set up as in Fig. 4.4, except
that the SIR’s of the links are [10, 10, 0.1] respectively. Thus, link 3 not only suffers from
strong out of cluster noise, but also suffers from strong interference within the cluster. The
asymmetry penalizes the Max-SINR and interference alignment methods because they are
unable to properly weigh the contributions of the weaker link in the sum rate. The Max-
SINR strategy turns out to make link 3 very egoistic in this example, while its proper
behavior should be altruistic. In contrast, DBA exploits useful statistical information,
allowing weaker link to allocate their spatial degrees of freedom wisely towards helping
stronger links and vice versa, yielding a better sum rate for the same feedback budget.
The performance is very close to SR-Max, with less information exchange.

4.6.2.3 Asymmetric desired channel power, illustrated in Fig. 4.3c

In Fig. 4.6, there are 3 links cooperating in the system. Each Tx and Rx has 2 antennas
and has 1 stream transmission. The noise at each Rx is the same. The system is asym-
metric in a sense that the direct channel gain H11 of link 1 is 30dB weaker than other
links in the network. This set up models a realistic environment where the user suffers
strong shadowing. DBA achieves sum rate closed to SR-Max and much better than other
interference alignment based schemes Max-SINR and Alt-Min.

4.6.3 Restoring IA feasibility by power control

In Fig 4.7, the sum rate performance of SR-Max is compared with DBA in a IA unfeasibil-
ity region, namely a 4 links system with each Tx and Rx equipped with 2 antennas and 1
stream transmission. The system SNR is allowed to increase to a high value which is plot-
ted as the x-axis. The link qualities in the network are assumed to be equal, ∆SNR = 0.
To illustrate the design difference, we compare the performance of SR-Max with both
continuous and binary power allocation. The continuous power allocation in [61] is a non-
convex optimization. For implementation, the continuous power allocation is implemented
as an exhaustive search over a quantized search space. We include here the performance
of SR-Max with power control with 1 bit (binary), 2 bits and 3 bits quantization. As the
system SNR increase, the sum rate becomes more sensitive towards the interference which
increase the price in SR-Max. This forces some of the users to decrease their transmit
power. However, the IA unfeasibility may not be fully restored in some channel realizations
and may offer a lower performance compare with DBA.
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In Fig. 4.8, the sum rate performance of DBA is plotted with and without power
control in a 5 links system with each Tx and Rx equipped with two antennas. As shown
in the figure, the proposed scheme with power control improve the sum rate by turning
off non-contributing links. As SNR grows, the scenario of IA feasibility has to be restored
in order to have the maximum sum rate scaling. Depending on the system SNR, the
proposed scheme adaptively turn off 1 or more non-contributing links and restore the sum
rate scaling.

4.7 Conclusion

We model the distributed beamforming optimization problem on MIMO interference chan-
nel using the framework of Bayesian Games which allow players to have incomplete infor-
mation of the game, in this case the channel state information. Based on the incentives
of the players, we proposed two games: the Egoistic Bayesian Game (players selfishly
maximize its rate) and the Altruistic Bayesian Game (players altruistically minimize in-
terference generated towards other players). We proved the existence of equilibria of such
games and the best response strategy of players are computed. Inspired from the equilibria,
a beamforming technique based on balancing the egoistic and the altruistic behavior with
the aim of maximizing the sum rate is proposed. Such beamforming algorithm exhibits
the same optimal rate scaling (when SNR grows) shown by recent iterative interference-
alignment based methods. The proposed beamforming algorithm achieves close to optimal
sum rate maximization method [61] without additional pricing feedbacks from users and
outperform interference alignment based methods in terms of sum rate in asymmetric
networks.

4.8 Proofs

4.8.1 Proof of Lemma 4

Define the Largrangian of the sum rate maximization problem for Tx i to be L(wi, µ) =
R̄ − µmax(w

H
i wi − 1). The necessary condition of Largrangian ∂

∂wH
i
L(wi, µ) = 0 gives:

∂
∂wH

i
Ri +

∑Nc
j 6=i

∂
∂wH

i
Rj = µmaxwi. With elementary matrix calculus,

∂

∂wH
i

Ri =
P

∑Nc
k=1 |vH

i Hikwk|2P + σ2
i

Eiwi (4.48)

∂

∂wH
i

Rj = −
|vH

j Hjjwj|2P
∑Nc

k=1 |vH
j Hjkwk|2P + σ2

j

P
∑Nc

k 6=j |vH
j Hjkwk|2P + σ2

j

Ajwi (4.49)

where λopt
ji is a function of all channel states information and beamformer feedback:

λopt
ji = −

|vH
j Hjjwj|2P

∑Nc
k=1 |vH

j Hjkwk|2P + σ2
j

∑Nc
k=1 |vH

i Hikwk|2P + σ2
i

∑Nc
k 6=j |vH

j Hjkwk|2P + σ2
j

. (4.50)

Thus, the gradient is zero for any wi eigenvector of the matrix shown on the L.H.S. of
(4.17). Among all stable points, the global maximum of the cost function is reached by
selecting the dominant eigenvector of Ei +

∑

j 6=i λjiAji .
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4.8.2 Proof of Theorem 8: convergence points of DBA

To prove that interference alignment forms a convergence set of DBA, we will prove that
if DBA achieves interference alignment, DBA will not deviate from the solution (stable
point).

Assumed interference alignment is reached and let (wIA
1 , . . . ,wIA

Nc
) ∈ IADL and (vIA

1 , . . . ,vIA
Nc

) ∈
IAUL. Let QDL

i =
∑Nc

k 6=iHikw
IA
k wIA,H

k HH
ik and QUL

i =
∑Nc

k 6=iH
H
kiv

IA
k vIA,H

k Hki.

Given receivers (vIA
1 , . . . ,vIA

Nc
), we compute new transport beamformers. In high SNR

regime, λji → −∞ and DBA gives wi = V min(QUL
i ) (4.44). By (4.26), QUL

i is low
rank and thus wi is in the null space of QUL

i . In direct consequence, the conditions of
interference alignment (4.28) are satisfied. Thus, (w1, . . . ,wNc) ∈ IADL.

Given transmitters (wIA
1 , . . . ,wIA

Nc
), we compute new receive beamformers. The receive

beamformer is defined as vi = argmax
vH
i Hiiw

IA
i w

IA,H
i HH

ii vi

vH
i QDL

i vi
. Since QDL

i is low rank, the

optimal vi is in the null space of QDL
i . Hence, vi ∈ IAUL.

Since both wi and vi stays within IADL and IAUL, interference alignment is a con-
vergence point of DBA-RF in high SNR.
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Figure 4.3: Scenarios where asymmetry of channels are illustrated. Fig. 4.3a illustrates
asymmetry of uncontrolled interference. Fig. 4.3b illustrates asymmetry of both uncon-
trolled interference and interference within cluster. Fig 4.3c illustrates the asymmetric
strength of desired channel power.
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Figure 4.4: Sum rate performance for asymmetric channel, with one link under strong
noise, is illustrated. The strong noise, from out of cluster interference, is 20dB stronger
than other links. DBA outperforms standard IA methods thanks to a proper balance
between egoistic and altruistic beamforming algorithm.
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Figure 4.5: Sum rate performance for asymmetric channel, with one link under strong
interference within the cooperating cluster, is illustrated.
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Figure 4.6: Sum rate performance for asymmetric channel is illustrated. The direct channel
gain of link 1 is 30dB weaker than other links.
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Figure 4.7: Sum rate performance for symmetric channel of 6 links system. DBA achieves
a higher sum rate than SR-Max with continuous power allocation in IA unfeasibility and
high SNR regime.
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Figure 4.8: Sum rate performance for asymmetric channel of 5 links system. DBA with
power control improves the DBA without power control.
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Chapter 5

MISO-IC with Interference

Decoding Capability

In this chapter, we consider receivers with interference decoding capability (IDC) so that
the interference signal can be decoded and subtracted from the received signal. Although
the capacity region of the SISO-IC-IDC has been extensively studied, the optimal power
allocation and beamforming strategies which achieve the Pareto boundary of the MISO-
IC-IDC have received little attention. On the MISO-IC with single user decoding, transmit
beamforming vectors are designed to reach a compromise between mitigating the generated
interference (zero forcing of the interference) or maximizing the energy at the desired user.
With IDC, receivers can potentially decode interference and yield a higher data rate. Yet,
when a user decides to decode the interference signal, it poses a rate constraint on the
interferer because the interference should be received sufficiently strongly (or with a rate
sufficiently low) which in turn dramatically affects the strategies for precoders design
at all transmitters. The particularly intriguing problem arising in the multi-antenna IC
with IDC is that transmitters may now have the incentive to amplify the interference
generated at the non-intended receivers, in the hope that Rxs have a high chance of
decoding the interference and removing it. This notion completely changes the previous
paradigm of balancing between maximizing ones users desired energy and reducing the
generated interference by opening up a new dimension for the beamforming design strategy.
The fundamental question becomes: when should the beamforming vectors be designed to
amplify interference to improve performance and when to mitigate interference?

The optimal rank of the transmit precoder in the MISO-IC with IDC is still an open
problem. We proceed by proving that the optimal rank of the transmit precoders, optimal
in the sense of Pareto optimality and therefore sum rate optimality, is rank one. Then,
we investigate suitable transmit beamforming strategies for different decoding structures
and characterize its Pareto boundary by parameterizing the set of beamforming vectors
that achieves this Pareto boundary of the MISO-IC-IDC, termed the candidate set of the
Pareto boundary. As an application of this characterization, we obtain the candidate set
of the maximum sum rate point which is a strict subset of the candidate set of the Pareto
boundary. We derived the MRT optimality conditions which are the constraints on channel
coefficients that guarantee the sum rate optimality of the MRT strategies. Inspired by the
MRT optimality conditions, we propose a simple algorithm that achieves maximum sum
rate in certain scenarios and suboptimal, but fairly good performance, in other scenarios
comparing to the maximum sum rate.
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We consider the two transmitter-receiver (Tx-Rx) pairs interference channel with in-
terference decoding capability (IDC). Each receiver can choose to decode interference (D)
or treat interference as noise (N). The main contributions of this chapter are:

• In Section 5.2, we describe an achievable rate region of the MISO-IC with IDC, with
the assumption of linear precoding, taking into account of receivers choice of actions,
D or N.

• We study and characterize its Pareto boundary in Section 5.5.1, in terms of beam-
forming vectors design and power allocation. We characterize the set Ω of tuples of
beamforming vectors and power allocation which attain the Pareto boundary.

• As a special case, in Section 5.6, we characterize the set of beamforming vectors
which attain the maximum sum rate point as the candidate set Ω̃ of maximum sum
rate point. As the maximum sum rate problem is non-convex, conventional solutions
rely on different searching techniques. Note that Ω̃ ⊂ Ω. The cardinality of Ω̃ is
much smaller than the cardinality of Ω which provides a significant reduction of
searching. Further, we prove that with IDC full power must be used at each Tx
to attain the maximum sum rate point. This result is interesting as non-full power
should be employed in some Txs to achieve the maximum sum rate point in the
SISO-IC-SUD [13,33].

• In Section 5.7, we investigate the conditions of channel parameters for which simple
strategies are sum rate optimal. In particular, we study the matched filter (MF)
with respect to the desired channel and the MF with respect to the interference
channel, which are termed as the maximum-ratio-transmission (MRT) schemes. We
define the MRT optimality conditions as the conditions, on channel coefficients, of
the MRT schemes attaining maximum sum rate.

• Inspired by the MRT optimality conditions, we propose a suboptimal but very low
complexity algorithm in Section 5.8. The suboptimal algorithm shows a promising
tradeoff between complexity and performance, as illustrated by simulation results.

• In Section 5.9, we provide simulations and discussions which illustrate cases where
interference decoding is beneficial to sum rate performances.

5.1 Channel model

We assume a simple system of two transmitter-receiver (Tx-Rx) pairs in which each Tx
has N transmit antennas and each Rx has only one receive antenna. This results in a two-
user Multiple-Input-Single-Output Interference Channel (MISO-IC), which is illustrated
in Fig. 5.1 as an example with N = 3. We assume that the Txs are using commonly
known codebooks and therefore the Rx, if the channel qualities allow, can decode the
interference and subtract it from the received signal. Also, we assume that the interference
is successfully decoded if the rate of the interference signal is smaller than the Shannon
capacity of the interference channel.

In the MISO-IC-SUD, it has been shown that the optimal transmit precoders are rank 1
and therefore beamforming attains the Pareto boundary. However, whether his conclusion
holds in the MISO-IC-IDC is not known yet. We answer this question in the following by
starting with a general transmit covariance matrix. Denote the transmit covariance matrix
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Figure 5.1: The 2 users MISO-IC where Txs are equipped with 3 antennas.

of Tx i by Si and the channel from Tx i to Rx ī, where i ∈ {1, 2} , ī 6= i, hīi ∈ C
N×1.

Note that the channel gains are i.i.d complex Gaussian coefficients with zero mean and
unit variance. The received signal at Rx i is therefore

yi = hH
ii S

1/2
i xi + hH

īi S
1/2

ī
xī + ni. (5.1)

The noise ni is a complex Gaussian random variable with zero mean and unit variance.
The symbol xi is the transmit symbol at Tx i with unit power. Denote the set of the
transmit covariance matrices that satisfy the power constraint tr(Si) ≤ Pmax to be

S =
{
S ∈ C

N×N : S ≥ 0, tr(S) ≤ Pmax

}
, i = {1, 2}. (5.2)

5.2 Achievable Rate Region

We propose the following four decoding structures corresponding to the Rxs. actions:
(N,N), (N,D), (D,N) and (D,D) [10], with “N” stands for treating interference as noise
and “D” stands for decoding and removing interference. Thus, (D,N) means Rx 1 decodes
and removes interference and Rx 2 treats interference as noise. In [10], these four decoding
structures are proposed and its corresponding rate points are shown to be achievable in
the SISO-IC. We extend the concept to the MISO-IC and define the following important
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quantities:
C1(S1) , log2(1 + hH

11S1h11),

C2(S2) , log2(1 + hH
22S2h22),

D1(S1,S2) , log2

(

1 +
hH
11S1h11

hH
12S2h12 + 1

)

,

D2(S1,S2) , log2

(

1 +
hH
22S2h22

hH
21S1h21 + 1

)

,

T2(S1,S2) , log2

(

1 +
hH
12S2h12

hH
11S1h11 + 1

)

,

T1(S1,S2) , log2

(

1 +
hH
21S1h21

hH
22S2h22 + 1

)

.

(5.3)

C1 and C2 are the single user rates, the largest rate user 1 and 2 can achieve without the
influence of interference. D1 and D2 are the rates corresponding to decoding the desired
signal while treating interference as thermal noise and T1 and T2 are the rate corresponding
to decoding the interference while treating the desired signals as noise.

Consequently, if both receivers decode interference, user i must transmit at a rate that
ensures interference decoding at Rx ī, thus we have the following:

R1 ≤ min
{
C1(S1), T1(S1,S2)

}

R2 ≤ min
{
C2(S2), T2(S1,S2)

}
.

(5.4)

Denote the rate region with interference decoding at both receivers by the Decode-
Decode (DD) region:

Rdd =
⋃

S1,S2∈S

{

(R1, R2) ≤
(

min
{
C1(S1), T1(S1,S2)

}
,min

{
C2(S2), T2(S1,S2)

}
)}

.

(5.5)

Remark 1. For each selected pair of transmit beamformers, a corresponding rate region
which satisfies the inequalities (5.4) is obtained. The achievable rate region Rdd is defined
as the union of all regions achieved by all possible transmit beamformers.

On the other hand, if both Rxs choose to treat interference as noise, we obtain the NN
region,

Rnn =
⋃

S1,S2∈S

{

(R1, R2) ≤
(
D1(S1,S2),D2(S1,S2)

)
}

. (5.6)

If Rx 1 decodes interference but Rx 2 treats interference as noise, Tx 2 must transmit
at a rate that ensures interference decoding at Rx 1. Thus, the DN region is obtained as,

Rdn =
⋃

S1,S2∈S

{

(R1, R2) ≤
(

C1(S1),min
{
D2(S1,S2), T2(S1,S2)

}
)}

. (5.7)

Remark 2. Rdn(S1,S2) is the rate region that the inequalities in (5.7) are satisfied for
specific transmit covariance matrices (S1,S2). It can be an empty region if the inequalities
cannot be satisfied at the same time. This corresponds to the situation where the data rate
of Tx 2 is too high for Rx 1 to decode.
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Similarly, we have for the ND region,

Rnd =
⋃

S1,S2∈S

{

(R1, R2) ≤
(

min
{
D1(S1,S2), T1(S1,S2)

}
, C2(S1)

)}

. (5.8)

Finally, one achievable rate region of the MISO-IC with interference decoding capabil-
ity is therefore the union of the above regions:

R = Rnn ∪Rdd ∪Rdn ∪Rnd. (5.9)

We now turn our attention to the Pareto boundary of the rate region. To find the boundary
achieving solutions, we proceed by identifying a set of smaller dimension than S × S but
is guaranteed to contain the Pareto optimal solutions. Consequently, the candidate set
offers a subtantial reduction of complexity compared with the exhaustive search over the
full set S × S.

Definition 8. Denote the set of points on the Pareto boundary by B(R). If the rate pair
(r1, r2) ∈ R is on the boundary, (r1, r2) ∈ B(R), then there does not exist a rate pair
(r′1, r

′
2) ∈ R such that (r′1, r

′
2) ≥ (r1, r2), with one strict inequality. Using R in (5.9),

B(R) ⊂ B(Rnn) ∪ B(Rdd) ∪ B(Rdn) ∪ B(Rnd) (5.10)

Definition 9. The transmit covariance matrices S1,S2 are Pareto optimal in the rate
region R if (

R1(S1,S2), R2(S1,S2)

)

∈ B(R). (5.11)

Definition 10. The candidate set of B(Rxy), x, y ∈ {n, d}, is a set of transmit covariance
matrices that contains the transmit covariance matrices that attain the Pareto boundary
of Rxy. If (S1,S2) are Pareto optimal, then (S1,S2) ∈ Ωxy. Similarly, the candidate of
B(R) is Ω which contains all pairs of (S1,S2) which are Pareto optimal in the region R.

5.3 The Pareto optimal transmit covariance matrices

In this section, we study the transmit covariance matrices that attain the Pareto boundary
and prove that they are rank one.

Theorem 11. The Pareto boundaries of the NN region, the DN region and the DD region
are attained by rank 1 matrices. Consequently, the Pareto boundary of MISO-IC-IDC,
defined in (5.10), is attained by rank one transmit covariance matrices, or transmit beam-
forming.

Proof. Here, we provide a sketch of the proof. For details, please refer to Appendix 5.11.1.
We first show that the boundaries of rate region Rnd and Rdd are attained by rank one
matrices. By exchanging the roles of the transmitters, we obtain that B(Rdn) is attained
by rank one matrices. From [42, 54], it is shown that the boundary in the NN region
is attained by rank one matrices. Hence, the boundaries of all decoding structures are
attained by rank one transmit covariance matrices. Since the Pareto boundary of the
proposed achievable rate region in the MISO-IC-IDC, defined in (5.10), is a subset of the
union of the above boundaries, we conclude that this Pareto boundary is attained by rank
one transmit covariance matrices, or transmit beamforming.
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From Theorem 11, we have established that the Pareto boundary is attained by trans-
mit beamforming vectors. To facilitate the following discussions, we define the transmit
beamforming vectors wi and transmit power Pi, for i = 1, 2,

Si = wiw
H
i Pi (5.12)

with ‖wi‖2 = 1. As an abuse of notation, we write S as the set of all possible beamforming
vectors,

wi ∈ S, S =
{
w ∈ C

N×1 : ‖w‖ = 1
}
. (5.13)

Consequently, we redefine the candidate sets in terms of transmit power allocations and
beamforming vectors. The candidate set of B(Rxy), x, y ∈ {n, d} contains the Pareto
optimal beamforming vectors and transmit power allocations.

Ωxy ⊃
{

(w1,w2, P1, P2) :
(
R1(w1,w2, P1, P2), R2(w1,w2, P1, P2)

)
∈ B(Rxy)

}

(5.14)

and the candidate set of B(R) is

Ω ⊃
{

(w1,w2, P1, P2) :
(
R1(w1,w2, P1, P2), R2(w1,w2, P1, P2)

)
∈ B(R)

}

. (5.15)

In the following sections, we study the Pareto boundary in terms of power allocation
and transmit beamforming vectors in different decoding structures namely Rnd and Rdd.
Rnn is the case of MISO-IC-SUD and is well studied in [31]. Rdn is symmetric to Rnd

and is therefore omitted here. Then as a special case, we discuss the characterization of
the maximum sum rate point in each decoding structures.

5.4 The power gain region

The power gain region was first proposed in [42] as a powerful tool to illustrate the depen-
dency between the power gains and the Pareto boundary on the K-user MISO-IC-SUD.
The power gain tuple at one receiver includes the received power from the desired sig-
nal and the received power from the interference signal(s). In a two-user MISO-IC, we
can illustrate the power gain region as a two-dimensional plot, as shown in Fig. 5.2.
Mathematically, the power gain region of user i for the two-user MISO-IC is defined as:

Φi =
{(

|hH
iiwi|2Pi, |hH

jiwi|2Pi

)
: wi ∈ S, 0 ≤ Pi ≤ Pmax

}
(5.16)

where the desired channel power of user i is |hH
iiwi|2Pi and the interference channel power

of user i is |hH
jiwi|2Pi.

The importance and relevance of the power gain region can be summarized in the
following.

The boundary of power gain region and the Pareto boundary : The received power region
is a convex and compact region with respect to the received power values. The
Pareto boundary of the MISO-IC-SUD with linear pre-coding, the NN region here,
is shown to be attained by the received power values on the boundary of the received
power region [31].
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Figure 5.2: The power gain region for Tx i.

Monotonicity of rates: The rate metrics defined in (5.3) are either monotonically in-
creasing or decreasing with the channel powers. The optimization of such rates
can be simplified by first computing the optimized channel powers and then the
corresponding beamforming vectors that achieve such channel powers.

Now we define the power gain region achieved by beamforming vectors inside the Pareto
boundary candidate set, Ω,

Φ(Ω) =

{(

|hH
11w1|2P1, |hH

21w1|2P1, |hH
22w2|2P2, |hH

12w2|2P2

)

: (w1,w2, P1, P2) ∈ Ω

}

.

(5.17)

Immediately, we have the following relations: the Pareto boundary candidate set
achieves a power gain region which is a subset of the Cartesian product of the power
gain regions for Rx 1 and 2, Φ1 and Φ2,

Φ(Ω) ⊂ Φ1 × Φ2. (5.18)

The beamforming vectors and power allocations in Φ1×Φ2 contribute to the whole achiev-
able rate region whereas the tuples in Φ(Ω) only attain the Pareto boundary. This means
that if we know Φ(Ω), we can achieve the Pareto boundary without searching over that
potential candidates in the remaining space in Φ1 × Φ2. This reduces the search space
from Φ1 × Φ2 significantly.

In the following sections, we compute Ωnn,Ωdn,Ωnd,Ωdd which are the candidate sets
of the Pareto boundary of the corresponding regions: NN, DN, ND and DD. The candidate
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Wi =

{

wi : wi =
√

λi
Πjihii

‖Πjihii‖
+
√

1− λi

Π⊥
jihii

‖Π⊥
jihii‖

; 0 ≤ λi ≤ 1

}

, i, j = 1, 2, i 6= j.

(5.21)

set of the overall Pareto boundary, Ω, is the union of the candidate sets mentioned above:

Ω =
⋃

x,y∈{n,d}
Ωxy. (5.19)

5.5 The Pareto boundary characterization

5.5.1 Pareto boundary characterization in the ND region

With decoding structure Rnd, Rx 1 treats interference as noise and Rx 2 decodes and
subtracts the interference signal from the received signal before decoding the desired signal.

Theorem 12. The Pareto boundary B(Rnd) is attained by candidate set Ωnd

Ωnd = {W1,W2, P1 = Pmax, 0 ≤ P2 ≤ Pmax} (5.20)

where W1,W2 defined in (5.21), are sets of beamforming vectors composed of linear com-
binations of two channel vectors; to attain the Pareto boundary, Tx 1 transmits with full
power Pmax whereas Tx 2 transmits with less than full power P2 ≤ Pmax.

Proof. See Appendix 5.11.2.

In the ND region, Rx 1 treats interference as noise and Rx 2 decodes interference.
As described by Thm. 12, the Pareto optimal transmit power for Tx 1 is to transmit
at full power Pmax and less than full power for Tx 2. The interpretation is that Tx 1’s
transmit power does not affect the rate performance of Rx 2 as the interference from Tx
1 is decoded and removed. On the other hand, Tx 2 is not advised to transmit at full
power because its increase of power will increase the interference power at Rx 1 and hence
reduce the achievable rate of Rx 1.

The Pareto optimal transmit beamforming vectors are parameterized in the setsW1,W2

as positive linear combinations of two orthogonal vectors. These two vectors are the de-
sired channel projection onto the span and the null space of the interference channel. As
shown in Fig. 5.3, the vectors in W1 and W2 are represented by blue regions. The blue
regions cover from the point of zero interference power (Point A in Fig. 5.3) to the point
of maximum desired channel power (Point B) and the point of maximum interference
power (Point C). Moving from point A to B and C on the Pareto boundary in Fig. 5.3,
the interference power increases monotonically. On the left figure of Figure 5.3, we show
the received power region of Tx 1, the channel powers between A and B correspond to
a strong desired channel power of Tx 1 and a relatively small interference channel power
from Tx 1 to Rx 2. These points may attain the Pareto boundary if the desired channel
power of Tx 2 is weak. On the other hand, if Tx 2’s desire channel power is large, the
interference power from Tx 1 to Rx 2 must be increased to increase to interference rate
T1 which limits rate rate of R1 as R1 = min(T1,D1). This is a novel concept comparing
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Figure 5.3: The graphical illustration of the candidate set Ωnd as the shaded area which
is a subset of the received power regions Φi.

to the conventional single user decoding interference channel, the increase in interference
power here is beneficial as it facilitates interference decoding and removal.

In the next section, we investigate the Pareto boundary attaining beamforming vectors
in the DD region.

5.5.2 The Pareto boundary characterization in the DD region

With decoding structure Rdd, both Rx’s decode interference. The Pareto boundary at-
taining solutions are:

Theorem 13. The Pareto boundary B(Rdd) is attained by candidate set

Ωdd = {w1 ∈ V1,w2 ∈ V2, 0 ≤ P1, P2 ≤ Pmax} , (5.22)

with Pareto boundary attaining beamforming vectors composed of two orthogonal channel
vectors, specifically for i = 1, 2,

Vi =

{

w ∈ S : w =
√

λi
Πiihji

‖Πiihji‖
+
√

1− λi
Π⊥

iihji

‖Π⊥
iihji‖

, 0 ≤ λi ≤ 1

}

, (5.23)

and both Txs transmit at less than full power.

Proof. See Appendix 5.11.3.

Remark 3. Note that Wi in Thm. 12 and Vi defined here are different candidate sets. In
particular, Wi is a set of vectors that are the positive linear combinations of Πjihii and
Π⊥

jihii whereas Vi is a set of vectors that are the positive linear combinations of Πiihji and

Π⊥
iihji. This difference is shown graphically in Fig. 5.3 and 5.4.

In the DD region, both Tx 1 and 2 decode interference and their choice of actions are
symmetric. As described by Thm. 13, the Pareto optimal transmit power for Tx 1 and 2
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Figure 5.4: The graphical illustration of candidate set Ωdd as the shaded area which is a
subset of the received power regions Φi.

are to transmit at less than full power. The Pareto optimal transmit beamforming vectors
are parameterized in the sets V1,V2 as positive linear combinations of two orthogonal
vectors. These two vectors are the interference channel projection onto the span and the
null space of the desired channel. As shown in Fig. 5.4, the vectors in V1 and V2 are
represented by blue regions. The blue regions cover from the point where the point of
maximum desired channel power (Point B) to the point of maximum interference power
(Point C) and the point of zero desired channel power (Point D).

Notice that the points where the interference channel powers are zero is not Pareto
optimal. It is because minimizing the interference power in the DD region makes decoding
interference more difficult. This choice of action is not Pareto optimal. From the received
power region representation in Fig. 5.4, we can see that the interference channel power
should be maximized despite the values of the direct channel gain. It means that for each
achievable desired channel power value, the interference channel power should be increased
for easy interference decoding and removal.

5.5.3 The Pareto boundary characterization

From Thm. 12 and 13, we have presented the Pareto boundary characterization in ND
and DD region. We can easily obtain the candidate set Ωdn by reversing the role of Tx 1
and 2 from Ωnd in Thm. 12. Also, the candidate set Ωnn is shown to be the following [31]:

Ωnn = {W1,W2, P1 = P2 = Pmax} (5.24)

where W1,W2 are defined in Thm. 12.

By definition in (10) , the candidate set of the Pareto boundary B(R) is the union
of the candidate sets in each decoding region. Hence, we have characterized the Pareto
boundary B(R). In the candidate sets of the Pareto boundary, the beamforming vectors
are parameterized with positive real scalars 0 ≤ λ1, λ2 ≤ 1. By varying λ1, λ2 from zero to
one and P2 from zero to Pmax, we obtain all beamforming vectors that may attain the the
boundary in each decoding region and in turn the overall Pareto boundary. Intuitively,
it means that the boundary attaining beamforming vectors in each decoding region exist
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only in a two-dimensional subspace, spanned by the direct channel and the interference
channel, in a N -dimensional signal space.

As a direct application of the Pareto boundary characterization, we characterize the
maximum sum rate point in the following section. Since the maximum sum rate point
is always on the Pareto boundary, the candidate set of the maximum sum rate point is
therefore a subset of the candidate set derived above. We reduce the size of the candidate
set by eliminating beamforming vectors in the candidate set that achieve a smaller sum
rate than other vectors in the set.

5.6 The maximum sum rate point characterization

In this section, we characterize the candidate sets of the maximum sum rate point by first
illustrating that Txs. should always transmit with full power, in Section 5.6.1. Then, we
study the candidates sets of the boundaries of ND and DD regions by eliminating vectors
that attain a smaller sum rate than other vectors in the candidate sets and obtain the
candidate sets of maximum sum rate point in B(Rnd) and B(Rdd) respectively, in Section
5.6.2 and 5.6.3.

5.6.1 Full power transmission

We observe that the maximum sum rate point is attained by maximum transmit power
at each transmitter. To see this, we combine the power constraints and beamformer norm
constraints:

‖wi‖2 ≤ Pi. (5.25)

Assume that the sum rate optimal beamformer is not transmitting at maximum power:
‖wi‖2 = p < Pi. We can choose a beamformer w′

i = wi + ǫejφΠ⊥
jihii where ǫ is cho-

sen such that ‖w′
i‖2 = Pi and φ = arg(hH

iiwi). Notice that |hH
iiw

′
i|2 ≥ |hH

iiwi|2 and
|hH

jiw
′
i|2 = |hH

jiwi|2. Or, we can choose w′′
i = wi + ǫ′ejφ

′
Π⊥

iihji with φ′ = arg(hH
jiwi)

to increase |hH
jiwi|2 and keep |hH

iiwi|2 constant. Thus, it contradicts that wi is on the
Pareto boundary. From now on, we set Pi = Pmax, i = 1, 2. Note that the argument above
is limited to non-parallel channels, for parallel channels (e.g. hH

jihii = 0), it reduces to
SISO-IC where the maximum sum rate point is attained by one Tx transmitting with full
power whereas the other Txs. transmit at less than full power [6].

In the following sections, we characterize the candidate sets that attain the maximum
sum rate point. Note that, the candidate sets attaining the maximum sum rate point
is a strict subset of those attaining the Pareto boundary. The sum rate metric does
not distinguish between Tx 1 and 2’s rate and therefore we can identify a much smaller
candidate set as illustrated in the following sections. This is particularly useful for system
optimization which does not put emphasis on user fairness.

Note that the computation of the global optimal solution

ω
∗ = argmax

w1,w2∈S
R̄nd(w1,w2) (5.26)

is in general NP-hard [39], even though there exist channels for which the solution is easily
obtained (e.g. orthogonal channels). Here, we would like to reduce the search space and
characterize the solutions set.
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5.6.2 The maximum sum rate point characterization in the ND region

Theorem 14. The candidate set of maximum sum rate R̄nd denoted as Ω̃nd, hence ω
∗ ⊂

Ω̃nd ⊂ Ωnd, is given by

Ω̃nd =
{

W̃1, W̃2, Pmax, Pmax

}

(5.27)

where Ωnd is the candidate set of Pareto boundary B(Rnd) in (5.20). In particular, W̃1 is
the following set with cardinality three:

W̃1 =

{
h11

||h11||
,

h21

||h21||
,w1(λ

(b)
1 )

}

(5.28)

with λ
(b)
1 =

c1||Π⊥
21
h11||2

c2||h21||2−2
√
c1c2|hH

21
h11|+c1||h11||2 . The candidate set W̃2 is a set of beamforming

vectors characterized by a parameter λ2 in a smaller range than the range in W2:

W̃2 =

{

w2 ∈ S : w2 =
√

λ2
Π12h22

‖Π12h22‖
+
√

1− λ2
Π⊥

12h22

‖Π⊥
12h22‖

; λ
(b)
2 ≤ λ2 ≤ λMRT

2

}

(5.29)

where λMRT

2 =
|hH

12
h22|

||h12||||h22|| is a parameter that gives the beamforming solution towards

channel h22 and w2(λ
(b)
2 ) = b̃√

ã+b̃
va + ejφã√

ã+b̃
vb for some eigenvectors va,vb and posi-

tive scalars ã, b̃. The vectors va,vb are the most and least dominant eigenvectors of the
matrix S = h22h

H
22 − g21

g11
h12h

H
12.

Proof. See Appendix 5.11.4.

Remark 4. Note that for some channel realizations and chosen w2, w1(λ
(b)
1 ) may be

equal to the maximum ratio transmission solutions h11

‖h11‖ or h21

‖h21‖ . But we distinguish
between them in the candidate sets to illustrate that for most channel realizations and w2,

w1(λ
(b)
1 ) /∈

{
h11

‖h11‖ ,
h21

‖h21‖

}

.

It is interesting to see that the sum rate optimal beamforming vector of Tx 1 is either
the beamforming vector towards the desired channel or the beamforming vector towards the
interference channel or a beamforming vector that balances the interference decoding rate
Ti and the treating interference as noise rate Di in a weighted manner with weights c1, c2
which depend on the choice of the beamforming vector at Tx 2.

Comparing the candidate set of the Pareto boundary to the candidate set of the max-
imum sum rate point of the ND region, namely Ω̃nd and Ωnd, we observe the following:

• For each Tx i, the candidate set Ω̃nd consists of only three closed-form beamforming
vectors whereas Ωnd consists of a set of beamforming vectors characterized by a
real-valued parameter spanned between zero and one, as shown in Fig. 5.5.

• An interesting question rises: what are the conditions of each of these potential sum
rate optimal solutions being sum rate optimal? We give the discussion in Section
5.7.
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Figure 5.5: The illustration of the candidate set of the maximum sum rate point of ND
region in red and the candidate set of the Pareto boundary B(Rnd) in blue. The cardinality
of the candidate set for w1 of the maximum sum rate point is only three, conditioned on
w2.

5.6.3 The maximum sum rate point characterization in the DD region

In this section, we compute the candidate set that attains the maximum sum rate point
of the DD region.

Theorem 15. The candidate set of the maximum sum rate in Rdd is

Ω̃dd =
{

Vdd
1 ,Vdd

2 , Pmax, Pmax

}

(5.30)

where for user i = 1, 2, the sum rate optimal beamforming vectors are either a linear com-
bination of two orthogonal vectors or maximizing the desired channel power or a specific
vector:

Vdd
i =

{

Ṽi,
hii

‖hii‖
,wi(λ

A
i )

}

(5.31)

Ṽi =

{

wi :
√

λi
Πiihji

‖Πiihji‖
+
√

1− λi
Π⊥

iihji

‖Π⊥
iihji‖

, λA
i ≤ λi ≤ λMRT

i

}

(5.32)

where λMRT

i =
|hH

iihji|2
‖hii‖2‖hji‖2 and λA

i =
‖Π⊥

iihji‖
‖hji‖2+(1+gjj)‖hii‖2−2|hH

iihji|
√

1+gjj
.

Proof. see Appendix 5.11.5.

Remark 5. Note that wi(λ
A
i ) may not be a element of Vi because λA

i may not be smaller
than λmrt

i and in this case Ṽi is empty. The vector wi(λ
A
i ) is a beamforming vector that

balance the interference decoding rate Ti and the treating interference as noise rate Di in
a weighted manner. See Appendix 5.11.5 for more details.
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Figure 5.6: The illustration of the candidate set of the maximum sum rate point of the
DD region, in red, and the candidate set of the Pareto boundary B(Rdd) in blue. If
λA
i ≤ λMRT

i , then the candidate set consists of the set Ṽi and wi =
hii

‖hii‖ as illstrated by

the red area in the figure. When λA
i > λMRT

i , the candidate set becomes 3 beamforming

vectors: hii
‖hii‖ ,w(λA

i ) and wi =
hji

‖hji‖ .

In Fig. 5.6, we illustrate the reduction of the candidate set of the maximum sum rate
point of the DD region, in red, comparing to the candidate set of the Pareto boundary of the
DD region, in blue. As shown in Fig. 5.6, the beamforming vectors in Ṽ achieve channel
powers that are in the direction of minimizing the direct channel power while maximizing
the interference channel power.

To summarize, we obtain the candidate set of the maximum sum rate point in the
ND and DD region, in Thm. 14 and Thm. 15 respectively. We can exchange the role of
Tx 1 and 2 in Thm. 14 to obtain the candidate set of maximum sum rate point in the
DN region, Ω̃dn. For the NN region, the candidate set of the maximum sum rate point is
identical to the candidate set of the Pareto boudary, Ωnn. Thus, we can have candidate
set of the maximum sum rate point of MISO-IC-IDC as Ω̃:

Ω̃ = Ω̃nd
⋃

Ω̃dn
⋃

Ω̃dd
⋃

Ωnn. (5.33)

In the next section, we apply the results obtained above: from the candidate set of the
maximum sum rate point in different decoding structures, we identify the conditions in
which the MRT strategies are sum rate optimal. Such strategies are attractive because of
their simplicity and the MRT optimality conditions answer the following two interesting
questions: When is selfishness sum rate optimal? When is interference amplification sum
rate optimal?
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5.7 MRT optimality conditions

In this section, we investigate the conditions in which the MRT strategies at both Tx 1
and 2 are sum rate optimal. For clarification, MRT strategies can mean two strategies,
one to beamform to the direct channel hii and the other to beamform to the interference
channel hji. We characterize the MRT optimality conditions in terms of the separation
between the desired channel and the interference channel, θi:

θi = cos−1

(

|hH
jihii|

‖hji‖‖hii‖

)

. (5.34)

Theorem 16. The MRT optimality conditions for decoding structure Rnd are:

•
(

h11

‖h11‖ ,
h22

‖h22‖

)

is optimal if and only if

c1‖Π⊥
21h11‖2

c2‖h21‖2 − 2
√
c1c2|hH

21h11|+ c1‖h11‖2
< cos2(θ1) ≤

(1 + ‖h22‖2Pmax)‖h11‖2
(1 + ‖h12‖2 cos2(θ2)Pmax)‖h21‖2

(5.35)

•
(

h21

‖h21‖ ,
h22

‖h22‖

)

is optimal if and only if

‖h21‖2 ≤ (1 + ‖h22‖2Pmax)
‖Π21h11‖2

1 + ‖h12‖2 cos2(θ2)Pmax
(5.36)

where c1 =
Pmax

‖h12‖2 cos2(θ2)Pmax+1
and c2 =

Pmax
‖h22‖2Pmax+1

.

Proof. See Appendix 5.11.6.

Now, we provide the MRT optimality conditions for Rdd.

Theorem 17. The MRT optimality conditions for Rdd are:

wi =
hji

‖hji‖
is optimal if

gij
gjj

− 1 ≤ ‖hii‖2 cos2(θi) ≤
‖hji‖2
1 + gjj

(5.37)

wi =
hii

‖hii‖
is optimal if (1 + gjj)‖hii‖2 ≤ ‖hji‖2 cos2(θi) (5.38)

for i, j = 1, 2 and gij = |hH
ijwj|2. To be more specific:

(
h11

‖h11‖
,

h22

‖h22‖

)

is optimal if and only if







cos2(θ1) ≥
(1 + ‖h22‖2)‖h11‖2

‖h21‖2

cos2(θ2) ≥
(1 + ‖h11‖2)‖h22‖2

‖h12‖2
.

(5.39)

(
h21

‖h21‖
,

h12

‖h12‖

)

is optimal if and only if







‖h12‖2 − ‖h22‖2 cos2(θ2) ≤ ‖h11‖2‖h22‖2 cos2(θ1) cos2(θ2) ≤ ‖h21‖2‖h22‖2 cos2(θ2)
1 + ‖h22‖2 cos2(θ2)

‖h21‖2 − ‖h11‖2 cos2(θ1) ≤ ‖h11‖2‖h22‖2 cos2(θ1) cos2(θ2) ≤ ‖h12‖2‖h11‖2 cos2(θ1)
1 + ‖h11‖2 cos2(θ1)

.

(5.40)

Proof. see Appendix 5.11.7.
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5.8 A simple transmit strategy

In this Section, we propose a very simple transmission strategy with only countable num-
ber of beamforming vector choices. Although the performance will be suboptimal, the
beamforming vector choices are proposed below in the hope that it achieves maximum
sum rate in certain channel conditions and achieve close to maximum sum rate in other
scenarios.

This transmission strategy is inspired by the parameterization of each decoding struc-
ture. We propose to select only two beamforming vectors in each candidate set. Given the
channel states information, we compare the sum rate performance of these eight beamform-
ing vectors and choose the beamforming vector and the corresponding decoding structure
which achieves the highest sum rate.

• NN region:
(

Π⊥
21
h11

‖Π⊥
21
h11‖ ,

Π⊥
12
h22

‖Π⊥
12
h22‖

)

and
(

h11

‖h11‖ ,
h22

‖h22‖

)

.

• ND region:
(

h21

‖h21‖ ,
h22

‖h22‖

)

and
(

h11

‖h11‖ ,
h22

‖h22‖

)

.

• DN region:
(

h11

‖h11‖ ,
h12

‖h12‖

)

and
(

h11

‖h11‖ ,
h22

‖h22‖

)

.

• DD region:
(

h21

‖h21‖ ,
h12

‖h12‖

)

and
(

h11

‖h11‖ ,
h22

‖h22‖

)

.

• TDMA: a time sharing scheme between single user points and therefore wi =
hii

‖hii‖ .

In the NN region, we propose to choose either the interference nulling solution or the
desired channel gain maximizing solution. It has been shown in previous literature that in
MISO-IC-SUD and low SNR regime, maximizing desired channel gain is sum rate optimal
whereas in high SNR regime, interference nulling is sum rate optimal.

It was shown in SISO-IC that the DD scheme is sum rate optimal among all four de-
coding structures when the strength of both interference channels are strong and the DN
or ND scheme is sum rate optimal when one interference channel is strong and the other
interference channel is weak comparing to the desired channel. The interference maximiz-
ing beamforming solution and the desired channel power gain beamforming solution are
chosen in DN, ND and DD regions in the proposed algorithm to verify the analogy from
SISO-IC to MISO-IC.

5.9 Simulation Results

In this section, we provide simulation results regarding to the proposed parameterization.
By varying the beamforming vectors and power allocation, according to the proposed
parameterization, we plot the achievable rate region for each decoding structure for a
particular channel realization in Section 5.9.1. The maximum sum rate point and the
MRT points in each decoding structure are plotted on the corresponding achievable rate
region. In Section 5.9.2, we compute the empirical frequency of MRT strategies in Rnd

and Rdd averaged over 500 channel realizations. In Section 5.9.3, we allow the channels
to be correlated and we see that the sum rate optimal decoding structure changes with
the strength of the interference channel, agreeing with the observations with SISO-IC.



5.9. SIMULATION RESULTS 73

5.9.1 Achievable rate region and maximum sum rate point

In Fig. 5.7, we plot the achievable rate region of the decoding structure Rnd, Rdn, Rdd

and Rnn in Fig. 5.7a, 5.7b, 5.7c and 5.7d respectively. We assume N = 3 transmit
antennas and SNR=0dB. We exhaust λ1 and λ2 to take 20 values between zero and
one, inclusively. For each pair of (λ1, λ2), beamforming vectors w1,w2 are generated
and the corresponding rates with transmit powers P1, P2 are plotted. Depending on the
candidate set in each decoding structure, the transmit powers can be less than maximum
power or equal to the maximum power Pmax. For example, in Rnn, maximum power
is used: P1 = P2 = Pmax, whereas in Rnd, P1 = Pmax and 0 ≤ P2 ≤ Pmax and in
Rdd, 0 ≤ P1, P2 ≤ Pmax. For simulation purposes, we allow the transmit powers to take
10 values between 0 and Pmax, inclusively. The rate points plotted are achieved by the
proposed Pareto boundary parameterization and the red asterisk is the maximum sum
rate point by employing the maximum sum rate point parameterization where as the red

square is the MRT strategies:
(

w1 =
h21

‖h21‖ ,w2 =
h22

‖h22‖

)

inRnd;
(

w1 =
h11

‖h11‖ ,w2 =
h12

‖h12‖

)

in Rdn and
(

w1 =
h11

‖h11‖ ,w2 =
h22

‖h22‖

)

in Rdd and Rnn.

5.9.2 Empirical Frequency of MRT strategies

In Fig. 5.8, we demonstrate the variation of the empirical frequency of MRT strategies
in Rnd when SNR increases. In Rnd, the empirical frequency of beamforming vectors

pair
(

h21

‖h21‖ ,
h22

‖h22‖

)

is 50% when SNR goes to infinity where as the empirical frequency

o f
(

h11

‖h11‖ ,
h22

‖h22‖

)

is 10%. It shows that with Rnd, in high SNR, Tx 1 should amplify

interference signal by beamforming at the interference channel and Tx 2 should amplify
desired signal by beamforming at the desired channel and by doing so, it achieves maximum
sum rate on average 50% of the channel realizations.

In Fig. 5.9, we compare the maximum sum rate and the rates achieved by MRT
strategies in Rdd: (w1 = h11

‖h11‖ ,w2 = h22

‖h22‖) and (w1 = h21

‖h21‖ ,w2 = h12

‖h12‖). In the
x-axis, we plot the percentage of the average maximum sum rate whereas the y-axis is
the percentage of channel realizations such that the MRT rates are less than a certain
percentage of the maximum sum rate. Simulations show that the sum rate achieved by
MRT strategies are less than 20% to 80% of the maximum sum rate. Since maximizing
direct channel gain or interference gain do not reach maximum sum rate, it seems to imply
that in Rdd, interference should not be maximized or minimized and should be balanced
instead.

In Fig. 5.10, we plotted the averaged difference between the maximum sum rate and
MRT strategies in Rnd and Rdd respectively. From Fig. 5.10a, the rate difference between
MRT strategies and the maximum sum rate decreases with SNR and reaches to about 2%
and 4% at 40dB SNR. Thus, even if the empirical frequency is about 50% and 10%, MRT
strategies only lose about 2% and 4% of the maximum sum rate of Rnd. On the other
hand, from Fig. 5.10b, it shows that the rate difference between MRT strategies and the
maximum sum rate in Rdd increases with SNR and we conclude that MRT strategies are
not sum rate optimal in Rdd.
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(a) Achievable rate region of Rnd: proposed pa-
rameterization achieves the Pareto Boundary and
maximum sum rate point.

(b) Achievable rate region of Rdn: proposed pa-
rameterization achieves the Pareto Boundary and
maximum sum rate point.

(c) Achievable rate region of Rdd: proposed pa-
rameterization achieves the Pareto Boundary and
maximum sum rate point.

(d) Achievable rate region of Rnn: proposed pa-
rameterization achieves the Pareto Boundary and
maximum sum rate point.

Figure 5.7: Achievable rate region of different decoding structures.
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Figure 5.8: MRT optimality inRnd when SNR increases: interference should be maximized
half of the time when SNR goes to infinity.
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Figure 5.9: Maximum sum rate plots in different channel realizations. MRT strategies are
not sum rate optimal in Rdd.
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Figure 5.10: The averaged sum rate difference between maximum sum rate point and
MRT strategies in Rnd and Rdd.

5.9.3 Correlated Channels and Sum Rate optimal decoding structures

In this section, we assume a symmetric channel [3] in which the direct channels, hii, are
i.i.d complex gaussian vector channels. The interference channel hji has a projection angle
θi with the direct channel hii:

|hH
jihii| = ‖hii‖‖hji‖ cos(θi). (5.41)

Moreover, we define the signal to interference ratio SIR as

SIR =
‖hii‖2
‖hji‖2

. (5.42)

In Fig. 5.11, we compare the sum rate achieved by Rnn, Rdd and TDMA. When the
strength of the interference channel increases, there is a transition from Rnn to TDMA
to Rdd: treating interference as noise is sum rate optimal in low interference regime and
then time sharing should be performed and then decoding interference is sum rate optimal
in high interference regime. When the angle between the interference channel increases
to θ = 0.15π, about 27 degrees, there is a direct transition between treating interference
as noise and decoding interference. Thus, when the direct channel and the interference
channel are more apart, time sharing is not sum rate optimal and outperformed by the
other decoding structures.

In Fig. 5.12, we compare the maximum sum rate achieved in different decoding struc-
tures with TDMA when the system SNR increases. When the interference channel is as
strong as the direct channel SIR= 1, treating interference as noise is sum rate optimal in all
SNR range. When the interference channel power increases SIR−1 = 5, 10, 20, both Rxs.
decoding interference is sum rate optimal in low SNR whereas one Rx treating interference
as noise and one Rx decoding interference is sum rate optimal in high SNR.
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Figure 5.13: Sum rate optimal decoding structures when the strength of interference
channel increases.

5.9.4 Performance of suboptimal algorithm

In Fig. 5.13, we plotted the maximum sum rate achieved by different decoding structure
and compare it with the proposed simple algorithm when SIR decreases. We see that when
the interference is weak, it is sum rate optimal to treat interference as noise and when the
interference strength increases, sum rate can be increased by allowing one of the Rx to
decode interference and in the strong interference regime, both Rxs. decoding interference
achieves the highest sum rate. Depending on the channel coefficients, TDMA may outper-
form Rnn and Rdd in the medium interference regime. Note that the computation of the
maximum sum rate point is NP-hard. However, we see the the proposed simple algorithm
achieves nice sum rate performance with only five choices of beamforming vectors.

5.10 Conclusion and future work

The interference decoding capability brings additional freedom to the Rxs. which either
decode interference or treat interference as noise. However, it is not trivial when Txs.
should avoid interference and when should amplify interference power. To answer this
question, we formulate the achievable rate region for a two-user MISO-IC-SUD. We pro-
vide an in-depth analysis of the achievable rate region, as a union of different decoding
structures. The Pareto boundary is then characterized in terms of both power allocation
and beamforming vectors. As a direct application of the Pareto boundary characteriza-
tion, we characterize the maximum sum rate points. The candidate set to the maximum
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sum rate point is a strict subset of the the candidate set of the Pareto boundary. With
the maximum sum rate characterization, we derive the MRT optimality conditions which
describe the conditions in which simple MRT strategies are sum rate optimal. We con-
clude the paper by providing simulation results which shed some insights into the question
“ When is selfishness sum rate optimal?”. Results show that MRT strategies have only
2% to 4% rate loss comparing to the maximum sum rate point in high SNR if one Rx
decodes interference and the other treats interference as noise. On the other hand, MRT is
not sum rate optimal if both Rxs. decode interference. In symmetric channels, there is a
transition in decoding structure from treating interference as noise to TDMA to decoding
interference at both Rxs. when the strength of interference increases.

The achievable rate problem for the K-user MISO-IC-IDC is not simple as the number
of possible interference decoding order increases exponentially with the number of users.
It is not easy to see which decoding order is better than the others and whether this
decoding order in this decoding structure is better than other decoding structures. This
extension to the K-user case is currently under preparation.

5.11 Appendix

5.11.1 Proof of Thm. 11

In this sequel, we are going to prove that the Pareto boundary in NN region, DN region
and DD region are attained by rank 1 matrices.

Lemma 5. In the NN region, where Rx 1 and Rx 2 treat interference as noise, the Pareto
boundary attaining transmit covariance matrices are rank one.

Proof. See reference [42,54].

To prove that the Pareto optimal transmit covariance matrices in DN and DD regions
are rank one, we follow and modify slightly the proof from [42]. To facilitate the discussion,
we define the following received channel power region for Tx i, assuming transmit power
being one,

Φs
i =

{
(hH

ii Sihii,h
H
jiSihji) : Si ∈ S

}
. (5.43)

For each received channel power gji = hH
jiSihji, i, j = 1, 2, there is a set K↑

ji such that

each utility uk, k ∈ K↑
ji, is monotonically increasing with received channel power gji,

uk(gii, gji, gij , gjj) ≤ uk(gii, g
′
ji, gij , gjj) (5.44)

if gji ≤ g′ji. Similarly, there is a set K↓
ji such that each utility uk, k ∈ K↓

ji, is monotonically
decreasing with received channel power gji.

Lemma 6. For an arbitrary fixed Tx i, if there exist a received channel power gji, j = 1, 2,
such that the number of utilities that are monotonically increasing and decreasing with gji
are both larger than zero and the number of such received channel power gji is not larger
than one, e.g.

Ni =
{

k :
∣
∣
∣K↑

ki

∣
∣
∣ > 0,

∣
∣
∣K↓

ki

∣
∣
∣ > 0

}

, ‖Ni‖ ≤ 1, i = 1, 2, (5.45)

then the Pareto optimal transmit covariance matrices with respect to these utilities are
rank one and attain the boundary of the corresponding received channel power regions Φs

i .
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Proof. We proceed by separating the cases where the some utilities are increasing or
decreasing with the received channel power gji, for i, j = 1, 2.

• If
∣
∣
∣K↑

ji

∣
∣
∣ 6= 0 and

∣
∣
∣K↓

ji

∣
∣
∣ = 0, then the Pareto optimal transmit covariance matrix

S∗ attains the boundary of the received channel power region Φs
i . It is because for

each utility uk(gii, gji, gij , gjj) such that k ∈ K↑
ji, if gji is not on the boundary of

Φs
i , we can choose a transmit covariance matrix S∗ such that g∗ji = hH

jiS
∗hji ≥ gji

which increases the value of the utility uk(gii, gji, gij , gjj) ≤ uk(gii, g
∗
ji, gij , gjj). Since∣

∣
∣K↓

ji

∣
∣
∣ = 0, no utilities are decreased by modifying the transmit covariance matrix

from S to S∗.

• If
∣
∣
∣K↓

ji

∣
∣
∣ 6= 0 and

∣
∣
∣K↑

ji

∣
∣
∣ = 0, then the Pareto optimal transmit covariance matrix

S∗ attains the boundary of the received channel power region Φs
i . It is because for

each utility uk(gii, gji, gij , gjj) such that k ∈ K↑
ji, if gji is not on the boundary of

Φs
i , we can choose a transmit covariance matrix S∗ such that g∗ji = hH

jiS
∗hji ≤ gji

which increases the value of the utility uk(gii, gji, gij , gjj) ≤ uk(gii, g
∗
ji, gij , gjj). Since∣

∣
∣K↑

ji

∣
∣
∣ = 0, no utilities are decreased by modifying the transmit covariance matrix

from S to S∗.

• According to the assumption (5.45), for each Tx i, there exist at most one j such

that
∣
∣
∣K↓

ji

∣
∣
∣ 6= 0 and

∣
∣
∣K↑

ji

∣
∣
∣ 6= 0. In this case, the received channel power with transmit

power, gjiPi has value between 0 and ‖hji‖2Pmax which can be achieved by setting
gji to be on the boundary of Φs

i and letting Pi vary from 0 to Pmax. Hence, we
can put the Pareto optimal transmit covariance matrix S∗ on the boundary of the
received channel power region Φs

i by allowing power control 0 ≤ Pi ≤ Pmax.

From [42, Lemma 3], the received channel powers on the boundary of the received channel
power region Ψs

i are attained by rank one transmit covariance matrices, which completes
the proof.

In the following, we are going to show that the Pareto optimality problem in DN region
and DD region respectively satisfy the assumption in Lemma 6 and therefore the Pareto
optimal transmit covariance matrices are rank one.

5.11.1.1 In the DN region

Rx 1 decodes interference and Rx 2 treats interference as noise and the Pareto boundary
attaining transmit covariance matrices are rank one. To see this, we recall the achievable
rates in Rdn:

u1(g11, g21, g12, g22) = log2(1 + g11P1)

u2(g11, g21, g12, g22) = min

(

log2

(

1 +
g12P2

g11P1 + 1

)

, log2

(

1 +
g22P2

1 + g21P1

))

.
(5.46)

and therefore we have

K↑
11 = {1}; K↓

11 = {2}; K↑
21 = {∅}; K↓

21 = {2};
K↑

12 = {2}; K↓
12 = {∅}; K↑

22 = {2}; K↓
22 = {∅}.

(5.47)

Since the assumption (5.45) is satisfied, by Lemma 6, we have the Pareto optimal transmit
covariance matrices in DN region as rank one.
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5.11.1.2 In DD region

Rx 1 and 2 decode interference and the Pareto boundary attaining transmit covariance
matrices are rank one. To see this, we recall the achivable rates in Rdd:

u1(g11, g21, g12, g22) = min

(

log2 (1 + g11) , log2

(

1 +
g21

1 + g22

))

u2(g11, g21, g12, g22) = min

(

log2 (1 + g22) , log2

(

1 +
g12

1 + g11

))

.

(5.48)

Hence we have

K↑
11 = {1}; K↓

11 = {2}; K↑
21 = {1}; K↓

21 = {∅};
K↑

12 = {2}; K↓
12 = {∅}; K↑

22 = {2}; K↓
22 = {1}.

(5.49)

Since the assumption (5.45) is satisfied, by Lemma 6, we have the Pareto optimal transmit
covariance matrices in DD region are rank one.

5.11.2 Proof of Thm. 12

The Pareto optimal beamforming vectors can be presented as the solutions of the following
optimization problems, for some feasible value ri, i, j = 1, 2, j 6= i,

max
w1,w2,P1,P2

Rj(w1,w2, P1, P2)

subject to Ri(w1,w2, P1, P2) ≥ ri,

‖w1‖ = 1, ‖w2‖ = 1,

0 ≤ P1 ≤ Pmax, 0 ≤ P2 ≤ Pmax.

(5.50)

With different decoding structure, the achievable rates R1, R2 are substituted with dif-
ferent rate expressions. However, both the ND and DD case resemble closely to the
maximization problem of channel power and the optimal solution can be characterized in
a linear combination of some specific vectors.

Lemma 7. Define a maximization problem of channel power in the following:

max
w

t

subject to |uHw|2 ≥ ut, |vHw|2 ≥ vt

‖w‖2 ≤ 1

(5.51)

for some arbitrary fixed scalars u ≥ 0 and v ≥ 0. The solutions w∗ must be in the following
set W,

W =

{

w ∈ C
N×1 : w =

√
µ

Πuv

‖Πuv‖
+
√

1− µ
Π⊥

u v

‖Π⊥
u v‖

, 0 ≤ µ ≤ 1

}

. (5.52)

Corollary 1. Reversing the signs of the inequality in (5.51) to |uHw|2 ≤ ut, |vHw|2 ≤ vt
does not change the characterization of the solutions in (5.52).

Proof. We proceed by writing the Lagrangians of the problem, with Lagrange multipliers
λ = [λ1, λ2, λ3],

L(w,λ) = t− λ1

(
ut− |uHw|2

)
− λ2

(
vt− |vHw|2

)
− λ3(‖w‖2 − 1). (5.53)
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Now, we compute the vanishing point of the Lagragian derivative which is a necessary
condition of the optimal solution, ∂L(w1,λ)

∂wH = λ1uu
Hw+λ2vv

Hw−λ3w = 0. We can write

λ1uu
Hw + λ2vv

Hw = λ3w and adjusting the constant scaling, we have λ1‖u‖2 uuH

‖u‖2w +

λ2‖v‖2 vvH

‖v‖2w = λ3w. Therefore, the eigenvector w is a composition of its projection on

u and v:
λ1‖u‖2Πuw + λ2‖v‖2Πvw = λ3w. (5.54)

Since λi ≥ 0, i = 1, 2, 3, we can write, for some complex-valued µ1, µ2,

w =
µ1

u
‖u‖ + µ2

v
‖v‖

∥
∥
∥µ1

u
‖u‖ + µ2

v
‖v‖

∥
∥
∥

. (5.55)

Now we define the set of beamforming vectors that satisfy (5.55), U =

{

w : w =
µ1

u

‖u‖
+µ2

v

‖v‖
∥

∥

∥
µ1

u

‖u‖
+µ2

v

‖v‖

∥

∥

∥

, µ1, µ2 ∈ C

}

.

Then, we show in the following that U is a subset of W in Lemma 7. We start with

w = µ1
u

‖u‖ + µ2
v

‖v‖
(a)
=

µ1

‖u‖
(

Πv +Π⊥
v

)

u+ µ2
‖v‖2
|vHu|e

−jφuvΠvu

=

(
µ1

‖u‖ + µ2
‖v‖2
|vHu|e

−jφuv

)

Πvu+Π⊥
v u

= z1
Πvu

‖Πvu‖
+ z2

Π⊥
v u

‖Π⊥
v u‖

(5.56)

where (a) is due to v = Πvu‖v‖2
vHu

and φuv = arg(vHu). The parameter z1 is complex and

z2 is real; the values of z1 and z2 are scaled such that ‖w‖ = 1. Notice that |uHw| =
∣
∣z1‖Πvu‖+ z2‖Π⊥

v u‖
∣
∣
(a)

≤ |z1|‖Πvu‖+ z2‖Π⊥
v u‖ and |vHw| =

∣
∣
∣z1

vHu
‖Πvu‖

∣
∣
∣ = |z1| |v

Hu|
‖Πvu‖ . Note

that equality at (a) when z1 is real and the phase of z1 does not affect |vHw|. Hence, z1
can be chosen real and since the two basis are orthogonal, the power constraint of w is
satisfied when z21 + c22 = 1 and thus, we can write z1 =

√
µ and c2 =

√
1− µ for 0 ≤ µ ≤ 1.

If the signs of inequalities are reversed and we have |uHw|2 ≤ ut, |vHw|2 ≤ vt in the
constraints in (5.51), then the corresponding signs changes to minus from positive in the
Lagrangian but does not affect the discussion above and the characterization of the Pareto
optimal solutions holds.

Substitute the rate definitions (5.3) into (5.50) and maximizing R1 subjecting to a
constraint on R2, we let z222 = |hH

22w2|2P2 and z212 = |hH
12w2|2P2 and we focus on the

subproblem that concerns w1,

max
w1

t

subject to |hH
21w1|2 ≥ (z222 + 1)t,

|hH
11w1|2 ≥ (z212 + 1)t,

‖w1‖2 ≤ 1.

(5.57)

This has the same formulation as in Lemma 7. By substituting u = h21 and v = h11,
we obtain the characterization of the Pareto optimal beamforming vectors as a linear
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combination of the vectors Π21h11 and Π⊥
21h11. Now we reverse the optimization order

: maximize R2 subject to a constraint on R1. After some manipulations, we obtain for
some z211, z

2
21,

max
w2,P2

|hH
22w2|2P2

subject to |hH
22w2|2P2 ≤

z221
2r1 − 1

− 1,

|hH
12w2|2P2 ≤

z211
2r1 − 1

− 1,

‖w2‖ ≤ 1, 0 ≤ P2 ≤ Pmax.

(5.58)

By Corollary 1, we have

w2 =
√
µ2

Π12h22

‖Π12h22‖
+
√

1− µ2
Π⊥

12h22

‖Π⊥
12h22‖

(5.59)

for 0 ≤ µ2 ≤ 1.

5.11.3 Proof of Theorem 13

The following proof is similar to the approach in Appendix 5.11.2, to avoid repetitions
we only highlight the main differences in the following. The Pareto optimality problem
in the DD region is written as a maximization of R1 subject to R2 ≥ r2 and after some
manipulation, we focus on the subproblem optimizing w1:

max
w1,P1

t

subject to |hH
11w1|2P1 ≥ t,

|hH
11w1|2P1 ≤

z212P2

2r2 − 1
− 1,

|hH
21w1|2P1 ≥ t(z222 + 1),

‖w1‖ ≤ 1, 0 ≤ P1 ≤ Pmax

(5.60)

for some z212, z
2
22. Similar to Lemma 7, we write the Lagrangian and set the derivative

with respect to wH
1 to zero, and obtian

(
P1(λ1 − λ2)h11h

H
11 + λ3P1h21h

H
21

)
w1 = λ4w1.

We add P1λ2‖h11‖2w1 to both sides and obtain
(

P1λ1‖h11‖2Π11 + P1λ2‖h11‖2Π⊥
11 + λ3P1‖h21‖2Π21

)

w1 = (λ4+P1λ2‖h11‖2)w1. (5.61)

Hence, we see that the optimal solution is composed of its projection on the subspace
spanned by h11,h21 and the orthogonal subspace of h11, which can be represented by the
following:

w1 = µ1
Π11h21

‖Π11h21‖
+ µ2

Π⊥
11h21

‖Π⊥
11h21‖

(5.62)

for some µ1, µ2 ∈ C and |µ1|2 + |µ2|2 = 1.
Similar to the arguments before in Appendix 5.11.2, we omit the details here to avoid

repetitions. The values µ1, µ2 can be chosen real-valued and the Pareto boundary of Rdd

attaining beamforming vectors are

w1 ∈ V1 =

{

w =
√
ν1

Π11h21

‖Π11h21‖
+

√
1− ν1

Π⊥
11h21

‖Π⊥
11h21‖

, 0 ≤ ν1 ≤ 1

}

. (5.63)
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5.11.4 Proof of Theorem 14

Before we go into details of computing the candidate set of the maximum sum rate in
the ND region, we present the following lemma which holds importance in the discussions
later.

Lemma 8. Consider two functions f1(x), f2(x) where f1(x) is concave and f2(x) is linearly
increasing with x ∈ X ⊂ R. Define

x∗1 = argmax
x∈X

f1(x), x∗2 = argmax
x∈X

f2(x) and X = {x ∈ X : f1(x) = f2(x)}.(5.64)

If x̂ = argmaxmin(f1(x), f2(x)), then

x̂ ⊂ {x∗1, x∗2,X} (5.65)

Proof. Notice that since f1(x) is concave, there are at most two intersection points. If
there are no intersection points, then x̂ ⊂ {x∗1, x∗2}. If there is one intersection point x̄,
then one of the following orderings is true:

• x̄ < x∗1 < x∗2 : since there is only one intersection point, f2(x
∗
2) < f1(x

∗
2) and thus

x̂ = x∗2.

• x∗1 < x̄ < x∗2 : let x− < x̄ < x+ and we have f1(x
−) > f1(x̄) > f1(x

+) and
f2(x

−) < f2(x̄) < f2(x
+). Thus, x̂ = x̄.

Note that f2(x) is linearly increasing with x and therefore x∗2 is the boundary of X and
thus x∗2 > x∗1 and x∗2 > x̄. If there are two intersection points, then we have x̂ ⊂ X.

Note that the global optimal solution ω
∗ must be in the solutions set of B(Rnd):

ω
∗ ⊂ Ωnd (5.66)

where Ωnd is defined in Thm. 12. Thus, we can refine the constraint set in the maximum
sum rate problem in the ND region to

R̄nd(w1,w2) = max
(w1,w2)∈Ωnd

C2(w2) + min{T1(w1,w2),D1(w1,w2)} (5.67)

which can be decomposed to the following:

max
w2∈W2

{

C2(w2) + max
w1∈W1

min{T1(w1,w2),D1(w1,w2)}
}

(5.68)

where the inner maximin problem is maximized over w1 for each w2 . With each given
w2, we define c1 = Pmax

|hH
12
w2|2Pmax+1

and c2 = Pmax

|hH
22
w2|2Pmax+1

and we rewrite T1 and D1 to

the following: D̃1 = 2D1 − 1 = c1|hH
11w1|2 and T̃1 = 2T1 − 1 = c2|hH

21w1|2. Thus, the
maximin problem in (5.68) is equivalent to

max
w1∈W1

min{c1|hH
11w1|2, c2|hH

21w1|2}, for arbitrary fixed w2 ∈ S. (5.69)
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Lemma 9. The candidate set of the maximin problem in (5.69) and therefore maximum
sum rate problem in (5.68) can be reduced from W1 ∈ Ωnd to W̃1 which is a candidate set
with cardinality three containing at least the maximum sum rate solution: |W̃1| = 3,

W̃1 =

{
h11

||h11||
,

h21

||h21||
,w1(λ

(b)
1 )

}

(5.70)

with

λ
(b)
1 =

c1||Π⊥
21h11||2

c2||h21||2 − 2
√
c1c2|hH

21h11|+ c1||h11||2
. (5.71)

Proof. Because of the formulation of w1 ∈ W1, we can write the beamforming vec-
tor as a function of a real-valued parameter λ1, w1(λ1). Using the result in Lemma
7, we define f1(λ1) = c1|hH

11w1(λ1)|2 and f2(λ1) = c2|hH
21w1(λ1)|2. It is easy to see

that f1(λ1) is concave in λ1 and f2(λ1) is linearly increasing with λ1. The function
f1(λ1) = c1|hH

11w1(λ1)|2 attains maximum when w1(λ1) =
h11

‖h11‖ . Similarly, f2(λ2) attains

maximum when w1(λ1) =
h21

‖h21‖ . Now we compute λ
(b)
1 which satisfies c1|hH

11w1(λ
(b)
1 )|2 =

c2|hH
21w1(λ

(b)
1 )|2.

To proceed, we compute the channel powers |hH
11w1|2 =

(√

λ
(b)
1 ‖Π21h11‖+

√

1− λ
(b)
1 ‖Π⊥

21h11‖
)2

and |hH
21w1|2 = λ

(b)
1 ‖h21‖2. Notice that ‖Π21h11‖ = ‖h21‖ cos(φ) and ‖Π⊥

21h11‖ =
‖h21‖ sin(φ) where |hH

21h11| = ‖h21‖‖h11‖ cos(φ) and by definition cos(φ) is positive.

Rewrite λ
(b)
1 = cos2(θ) where 0 ≤ θ ≤ π/2. Thus, we can rewrite the channel powers

to
|hH

11w1|2 = ‖h11‖2 cos2(θ − φ),

|hH
21w1|2 = cos2(θ)‖h21‖2.

(5.72)

Thus, c1|hH
11w1(λ

(b)
1 )|2 = c2|hH

21w1(λ
(b)
1 )|2 is equivalent to√c1‖h11‖ cos(θ−φ) =

√
c2 cos(θ)‖h21‖

which is due to the fact that cos(θ − φ) and cos(θ) are by definition positive. Putting

the sinusoids one side and we obtain cos(θ−φ)
cos(θ) =

√
c2‖h21‖√
c1‖h11‖ . If we expand cos(θ − φ) =

cos(θ) cos(φ) + sin(θ) sin(φ), we have

tan(θ) =

√
c2‖h21‖ −

√
c1‖h11‖ cos(φ)√

c1‖h11‖ sin(φ)
. (5.73)

Use the Pythagorus theorem, if tan(θ) = a
b then cos(θ) = b√

a2+b2
and therefore

λ
(b)
1 = cos2(θ) =

c1‖Π⊥
21h11‖2

c2‖h21‖2 − 2
√
c1c2|hH

21h11|+ c1‖h11‖2
. (5.74)

If we reverse the maximization order in (5.67), we obtain:

R̄nd(w1,w2) = max
w1∈W̃1

max
w2∈W2

min {C2(w2) + T1(w1,w2), C2(w2) +D1(w1,w2)} .(5.75)

Lemma 10. The optimal solutions to R̄nd in (5.75) can be reduced from W2 ∈ Ωnd to
W̃2, a set of beamforming vectors that includes the beamforming vector towards the desired
channel h22,

W̃2 =

{

w2 ∈ S : w2 =
√

λ2
Π12h22

‖Π12h22‖
+
√

1− λ2
Π⊥

12h22

‖Π⊥
12h22‖

; λ
(b)
2 ≤ λ2 ≤ λMRT

2

}

(5.76)
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where λMRT

2 =
|hH

12
h22|

||h12||||h22|| is parameter that gives the beamforming solution towards channel
h22 and

w2(λ
(b)
2 ) =

b̃
√

ã+ b̃
va +

ejφã
√

ã+ b̃
vb (5.77)

for some eigenvectors va,vb and positive scalars ã, b̃. The vectors va,vb are the most and
least dominant eigenvectors of the matrix S = h22h

H
22 − g21

g11
h12h

H
12.

Proof. R̄nd in (5.75) is equivalent to compute

max
w2|w1

min

{

1 + g21 + |hH
22w2|2P2, (1 + |hH

22w2|2Pmax)

(

1 +
g11

1 + |hH
12w2|2Pmax

)}

, (5.78)

where the notation maxw2|w1
denotes maximization over w2 for some given w1 and can

be decomposed into the following two subproblems:

{
maxw2|w1

1 + g21 + |hH
22w2|2Pmax if |hH

22w2|2Pmax ≥ g21
g11

− 1 + g21
g11

|hH
12w2|2Pmax

maxw2|w1
(1 + |hH

22w2|2P2)
(

1 + g11
1+|hH

12
w2|2Pmax

)

if |hH
22w2|2Pmax ≤ g21

g11
− 1 + g21

g11
|hH

12w2|2Pmax
.

(5.79)
The first subproblem has optimum solution h22

‖h22‖ . For the second subproblem, the optimal

λ2 must be in the region Λ = {λ2 : λ
(b)
2 ≤ λ2 ≤ λMRT

2 } where w2(λ
MRT

2 ) = h22

‖h22‖ and

|hH
22w2(λ

(b)
2 )|2Pmax = g21

g11
− 1 + g21

g11
|hH

12w2(λ
(b)
2 )|2Pmax. To see this, we write the metric in

the second subproblem as a function of λ2:

F (λ2) = (1 + |hH
22w2(λ2)|2Pmax)

(

1 +
g11

1 + |hH
12w2(λ2)|2Pmax

)

Assume λ+, λ− /∈ Λ, in particular, λ+ ≥ λMRT

2 and λ− ≤ λ
(b)
2 , we have

|hH
12w2(λ

+)|2 = λ+‖h12‖2 ≥ λMRT‖h12‖2 (5.80)

|hH
22w2(λ

+)|2 ≤ |hH
22w2(λ

MRT)|2 = ‖h22‖2. (5.81)

Thus, any λ+ achieves F (λ+) smaller than F (λMRT). Note that for any λ− ≤ λ
(b)
2 , w2(λ

−
2 )

is not in the constraint set of the second optimization problem. It is because |hH
22w2(λ)|2

is concave in λ and attains the maximum at λMRT

2 and |hH
12w2(λ)|2 is linearly increasing

with λ. Since λ
(b)
2 < λMRT

2 , for points λ− ≤ λ
(b)
2 , we have |hH

22w2(λ
−)|2 > g21

g11
− 1 +

g21
g11

|hH
12w2(λ

−)|2.
Unfortunately, the direct computation of λ

(b)
2 is tedious and does not give much insight.

Here, we provide a cleaner method of computing w2(λ
(b)) directly. Denote g = g21

g11
. We

compute the beamforming vector w2 such that

|hH
22w2|2P2 = g − 1 + g|hH

12w2|2P2. (5.82)

Define S = h22h
H
22 − gh12h12, S̃ = S− (g − 1)I.

wH
2 S̃w2 = 0 (5.83)

is a necessary condition for satisfying (5.82).
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From the definition of S, we know that S is rank two with one positive eigenvalue and
one negative eigenvalue [42]. Denote the non-zero eigenvalues of S by a and −b where
a, b > 0. Employ eigenvalue decomposition on S and we have

S = [vavb|V]





a 0 01×(N−2)

0 −b 01×(N−1)

0 0 0(N−2)×(N−2)



 [vavb|V]H (5.84)

where V is the N by N − 2 matrix with column vectors of eigenvectors of S that are
orthogonal to va, vb. With the same eigenvectors, we can write S̃ as the following:

S̃ = [vavb|V]





a− (g − 1) 0 01×(N−2)

0 −b− (g − 1) 01×(N−1)

0 0 −(g − 1)I(N−2)×(N−2)



 [vavb|V]H (5.85)

Let ã = a− (g − 1), b̃ = b− (g − 1). The beamforming vector w2 of the following form

w2 =
1√
ã
va +

ejφ
√

b̃
vb (5.86)

satisfies wH
2 S̃w2 = 0, where j =

√
−1 and φ is a phase angle between 0 to π. No-

tice that if w2 has any power on the remaining orthogonal subspace spanned by V, w2

also satisfies (5.82) but the value of |hH
22w2|2 is smaller and therefore cannot achieve

the maximum sum rate. It is easy to see the result by direct computation: wH
2 S̃w2 =

(

1√
ã
vH
a + e−jφ√

b̃
vH
b

)

[vavb]

[
ã 0

0 −b̃

]

[vavb]
H

(

1√
ã
va +

ejφ√
b̃
vb

)

= 0 for given angle φ. The

formulation in (5.86) gives a family of beamforming vectors, each with a different value
of φ. To fine the unique φ and therefore w2 that maximizes sum rate, we rewrite the
optimization problem in (5.69) to

max
φ

|hH
22w2(φ)|2 (5.87)

such that w2 =
1√
ã
va +

ejφ√
b̃
vb.

Define the following phase angles, φa = arg(hH
22va), φb = arg(hH

22vb) and therefore

φm = arctan

(
Im(hH

22vm)

Re(hH
22vm)

)

+

{
π Re(hH

22vm) < 0
0 otherwise.

, m = a, b.

The optimization problem in (5.87) is therefore equivalent to

max
φ

|hH
22w2|2 = max

φ

∣
∣
∣
∣
∣

1√
ã
|hH

22va|ejφa +
ejφ
√

b̃
|hH

22vb|ejφb

∣
∣
∣
∣
∣

2

= max
φ

∣
∣
∣
∣
∣

1√
ã
|hH

22va|+
ej(φ+φb−φa)

√

b̃
|hH

22vb|
∣
∣
∣
∣
∣

2

.

Thus, the optimal phase angle φ is

φ = φa − φb. (5.88)

To satisfy the norm constraint, we can scale the beamforming vector with a positive
scalar, which does not change the direction of the vector.

w2 =
b̃

√

ã+ b̃
va +

ejφã
√

ã+ b̃
vb. (5.89)
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Note that if λb
2 > λmrt

2 , then W̃2 has only one element, i.e. h22

‖h22‖ . Lemma 9 gives the
optimal candidate set for w1 for arbitrary fixed w2 whereas Lemma 10 gives the optimal
candidate set for w2 for arbitrary fixed w1. Combining both Lemmas, we obtain the
maximum sum rate candidate sets for both w1 and w2.

Remark 6. The authors in [65] provided a general solution of (5.69), in the context of a
multicast SNR balancing problem. The authors transformed the channel powers balancing
problem to a weighted sum channel powers maximization problem for some positive weights
w1, w2. The optimal beamforming vector is then characterized as a dominant eigenvector
of some matrices, depending on w1, w2. However, the computation of such weights w1, w2

is not provided or trivial. In this paper, due to the beamforming vectors parameterization
proposed in Thm. 12 and 13, we obtained the closed form solution of such channel powers
balancing beamforming vectors.

5.11.5 Proof of Thm. 15

In this section, we provide the proof of Thm. 15. We start by identifying four constraint
sets of beamforming vectors Ω00,Ω01,Ω10,Ω11 where the sum rate function is a different
function in each set. In other words, when the beamforming vectors vary, the sum rate
function being a sum of two minimum of rate functions, may change from one rate expres-
sion to another rate expression. The constraint sets are the set of beamforming vectors for
which the sum rate function remains at one rate function. In the following, we provide the
analysis for w2 but the sum rate function R̄dd is symmetric with Tx 1 and 2. Therefore,
we can exchange the role of Tx 1 and 2 and obtain the candidate sets for w1. The sum
rate in the DD region is:

R̄dd = min{C1, T1}+min{C2 + T2}
= min{C1 + C2

︸ ︷︷ ︸

Z1

, C1 + T2
︸ ︷︷ ︸

Z2

, T1 + C2
︸ ︷︷ ︸

Z3

, T1 + T2
︸ ︷︷ ︸

Z4

}. (5.90)

We analyze each term and define Z̃i = 2Zi , i = 1, . . . , 4

Z̃1 = (1 + |hH
11w1|2P )(1 + |hH

22w2|2P )

Z̃2 = 1 + |hH
11w1|2P + |hH

12w2|2P
Z̃3 = 1 + |hH

21w1|2P + |hH
22w2|2P

Z̃4 =

(

1 +
|hH

21w1|2P
1 + |hH

22w2|2P

)(

1 +
|hH

12w2|2P
1 + |hH

11w1|2P

)

=
Z̃2Z̃3

Z̃1

.

(5.91)

Notice that Z̃1 < Z̃2 is equivalent to Z̃3 < Z̃4 and Z̃1 < Z̃3 is equivalent to Z̃2 < Z̃4.
We summarize to the following lemma.

Lemma 11. Let g11 = |hH
11w1|2P1 and g21 = |hH

21w1|2P1.

Z̃1 ≤ Z̃2 ⇔ Z̃3 ≤ Z̃4

⇔ (1 + g11)|hH
22w2|2 ≤ |hH

12w2|2
Z̃1 ≤ Z̃3 ⇔ Z̃2 ≤ Z̃4

⇔ |hH
22w2|2P2 ≤

g21
g11

− 1
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Proof. It is by direct manipulation of the definitions.

To facilitate representation, we denote the following two indicators and the correspond-
ing candidate sets:

A =

{
1 if (1 + g11)|hH

22w2|2P2 ≤ |hH
12w2|2P2

0 otherwise.
(5.92)

B =

{
1 if |hH

22w2|2P2 ≤ g21
g11

− 1

0 otherwise.
(5.93)

Ωab = {w2 : ‖w2‖ = 1, A = a,B = b} (5.94)

Notice that Ωab, a, b = 0, 1, gives four constraint sets. By Lem. 11, we can decompose the
optimization problem in (5.90) to the following:

R̄dd = log2

(

max
w1∈S

max
w2∈S|w1

min{Z̃1, Z̃2, Z̃3, Z̃4}
)

=







log2

(

maxw1
maxw2∈Ω11 Z̃1

)

if A = 1, B = 1

log2

(

maxw1
maxw2∈Ω01 Z̃2

)

if A = 0, B = 1

log2

(

maxw1
maxw2∈Ω10 Z̃3

)

if A = 1, B = 0

log2

(

maxw1
maxw2∈Ω00 Z̃4

)

if A = 0, B = 0

.

Now, we proceed with the proof of Thm. 15 in two parts: first, in Section 5.11.5.1, we
identify the candidate sets for each of the subproblems Z̃i, i = 1, . . . , 4; second, in Section
5.11.5.2, we combine these candidate sets to one superset by eliminating beamforming
vectors, which are on the boundary of the constraint sets, if they achieve smaller sum rate
than other beamforming vectors.

5.11.5.1 The candidate sets of subproblems Z̃i

The candidate sets for each of the subproblem is as follows:

• If w = argmaxw2∈Ω11 Z̃1, then w ∈ ΩA
⋃

ΩB
⋃

h22

‖h22‖

• If w = argmaxw2∈Ω01 Z̃2 , then w ∈ w2(λ
A
2 )
⋃

wAB
2

⋃
h12

‖h12‖ .

• If w = argmaxw2∈Ω10 Z̃3, then w ∈ w2(λ
A
2 )
⋃

h22

‖h22‖ .

• If w = argmaxw2∈Ω00 Z̃4, then w ∈ ΩA
⋃ W̃dd

2

where the constraints ΩA and ΩB are the set of beamforming vectors that satisfy the con-

straints by equality ΩA =
{
w2 : (1 + g11)|hH

22w2|2 = |hH
12w2|2

}
and ΩB =

{

w2 : |hH
22w2|2P2 =

g21
g11

− 1
}

.

The beamforming vector w2(λ
A
2 ) is the beamforming vector in ΩA that maximizes the de-

sired channel power, w2(λ
A
2 ) = argmaxw2∈ΩA(1 + g11)|hH

22w2|2. The beamforming vector
wAB

2 is a unique vector that is a member of both ΩA and ΩB, wAB
2 = ΩA

⋂
ΩB. Lastly, we

have Ṽ2 which is a subset of V2, Ṽ2 =
{

w2 :
√
λ2

Π22h12

‖Π22h12‖ +
√
1− λ2

Π⊥
22
h12

‖Π⊥
22
h12‖

, λA
2 ≤ λ2 ≤ λMRT

2

}

where λMRT

2 =
|hH

22
h12|2

‖h22‖2‖h12‖2 .
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Notice that beamforming vectors in ΩA,ΩB satisfy the constraints in (5.92) with equal-
ity. To see this, we have the following observations:

1. Z̃1 is monotonically increasing with |hH
22w2|2. If the constraints are not active, the

optimal solution is h22

‖h22‖ . If the constraints are active, Z̃1 is maximized over constraint

set Ω11 and therefore the optimal solutions are in ΩA
⋃
ΩB .

2. Z̃2 is monotonically increasing with |hH
12w2|2in constraint set Ω01. If the constraints

are not active, the optimal solution is h12

‖h12‖ . There are an upper bound on |hH
12w2|2 and

an upper bound on |hH
22w2|2 which in turn upper bound |hH

12w2|2. If the constraint for
|hH

12w2|2 is active, the solution is w2(λ
A
2 ). If both are active, the solution is wAB

2 . Thus,

the candidate set is
{

w2(λ
A
2 ),w

AB
2 , h12

‖h12‖

}

.

3. Z̃3 is monotonically increasing with |hH
22w2|2 in constraint set Ω10. There is only

one constraint that upper bound the value of |hH
22w2|2, the optimal solution is in set ΩA

which at the same time maximizes |hH
22w2|2, denote as w2(λ

A
2 ). If the constraints are not

active, we have h22

‖h22‖ .

4. Z̃4 is monotonically increasing with |hH
12w2|2 and decreasing with |hH

22w2|2 in con-
straint set Ω00. If the constraints are active, the optimal solutions are in ΩA. If the
constraints are not active, the optimal solutions are in Ṽ2. Similar to the case of R̄nd,
any λ /∈ (λA

2 ≤ λ2 ≤ λMRT

2 ) cannot attain maximum value of Z̃4 in Ω00. Notice that for
any λ ≥ λmrt, |hH

12w2(λ)|2 ≤ |hH
12w2(λ

MRT

2 )|2 and |hH
22w2(λ)|2 = λ‖h12‖2 ≥ λMRT

2 ‖h12‖2 =
|hH

12w2(λ
mrt
2 )|2 . Thus, Z̃4(λ) ≤ Z̃4(λ

MRT

2 ), for any λ ≥ λMRT

2 . Also, for any λ < λA
2 ,

(1 + g11)|hH
22w2(λ)|2 ≤ |hH

12w2(λ)|2. It is because |hH
12w2(λ)|2 is concave in λ and attains

maximum at λMRT

2 whereas |hH
22w2(λ)|2 is linearly increasing with λ. Since the intersection

point λA
2 ≤ λmrt

2 , we have (1+g11)|hH
22w2(λ)|2 ≤ |hH

12w2(λ)|2 which violates the constraint
set requirement.

5.11.5.2 Eliminating non-sum-rate optimal solutions

Now, we combine the above results. For any solutions ω ∈ ΩA, we have ω ∈ Ω0b and
ω ∈ Ω1b for b = 0, 1. This is because ω is on the boundary separating Ω0b,Ω1b. Thus, if
ω is sum rate optimal in Ω0b but not sum rate optimal in Ω1b, then the sum rate optimal
solutions in Ω1b achieves a higher sum rate than ω which is in the same constraint set.
Then, ω can be removed from the candidate sets of the maximum sum rate point over
constraint sets Ω0b

⋃
Ω1b. Applying this argument, we combine the following:

For any ω ∈ ΩA which maximizes Z̃4 in Ω00 is also in Ω10 and achieves a smaller Z̃3

than other sum rate optimal solutions in Ω10, namely w2(λ
A
2 )
⋃

h22

‖h22‖ . Thus, we have:

If ω = arg max
w2∈Ω10

⋃

Ω00

min
{

Z̃3, Z̃4

}

, then ω ∈ w2(λ
A
2 )
⋃ h22

‖h22‖
⋃

Ṽdd
2 (5.95)

Similarly, for any ω ∈ ΩB which maximizes Z̃2 in the constraint set Ω01 is also in Ω00

and achieves a smaller Z̃4 than other solutions. Thus, we have:

If ω = arg max
w2∈Ω01

⋃

Ω10
⋃

Ω00

min
{

Z̃2, Z̃3, Z̃4

}

, then ω ∈ w2(λ
A
2 )
⋃ h22

‖h22‖
⋃

Ṽdd
2 . (5.96)

The candidate set remains unchanged because wAB
2 performs worse than other solutions

and h12

‖h12‖ ∈ Ṽdd
2 .
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Lastly, for any ωb ∈ ΩB which maximizes Z̃1 in constraint set Ω11 is also in Ω10 and
achieves a smaller Z̃3 than other solutions. And for ωa ∈ ΩA which maximizes Z̃1 in
constraint set Ω11 is also in Ω01 and achieves a less Z̃2 than other solutions. Thus, we
have:

If ω = arg max
w2∈Ω11

⋃

Ω01
⋃

Ω10
⋃

Ω00

min
{

Z̃1, Z̃2, Z̃3, Z̃4

}

, then ω ∈ w2(λ
A
2 )
⋃ h22

‖h22‖
⋃

Ṽdd
2 .

(5.97)

Therefore, the final candidate sets are

Vdd
i =

{
hii

‖hii‖
, Ṽdd

i ,wi(λ
A
i )

}

. (5.98)

This result holds for w1 because the optimization problem is symmetric.

To compute the closed form λA
2 where w2(λ

A
2 ) balances channel powers, we can use

the same approach as before to obtain λA
2 =

‖Π⊥
22
h12‖

‖h12‖2+(1+g11)‖h22‖2−2|hH
22
h12|

√
1+g11

.

5.11.6 Proof of MRT optimality conditions in the ND region

Define the following two functions in 0 ≤ λ2 ≤ 1:

• F1(λ2) is a concave function in λ2 and attains maximum at λMRT

2 .

• F2(λ2) is an arbitrary function in λ2 but satisfy the following properties:

– for any λ > λMRT

2 , F2(λ) < F2(λ
MRT

2 ).

– ∂F2(λ)
∂λ2

∣
∣
∣
λ2=λMRT

2

< 0.

Lemma 12. The condition F2(λ
MRT

2 ) ≥ F1(λ
MRT

2 ) is a necessary and sufficient condition
for

λMRT

2 = argmax
0≤λ2≤1

min{F1(λ2), F2(λ2)}. (5.99)

Proof. “⇒”: Let λ∗
2 = argmax0≤λ2≤1 min{F1(λ2), F2(λ2)}. Denote a set Λ

Λ = {λ2 : F1(λ2) ≤ F2(λ2)} (5.100)

Let λ′
2 ∈ Λ and therefore F1(λ

′
2) ≤ F1(λ

∗
2) ≤ F1(λ

MRT

2 ). The second inequality is due
to the fact that F1(λ2) attains maximum at λMRT

2 . Note that F1(λ
MRT

2 ) ≤ F2(λ
MRT

2 )
by assumption, thus λMRT

2 ∈ Λ and we can write

F1(λ
MRT

2 ) ≤ F1(λ
∗
2) ≤ F1(λ

MRT

2 ). (5.101)

Since F1(λ2) is a concave and has unique maximum at λMRT

2 , we have λ∗
2 = λMRT

2 .

“⇐”: We start with λMRT

2 = argmaxλ2
min{F1(λ2), F2(λ2)} and we proceed with contra-

diction. Assume F1(λ
MRT

2 ) > F2(λ
MRT

2 ). Since ∂F2(λ)
∂λ2

∣
∣
∣
λ2=λMRT

2

< 0, there exist λ−
2 =

λMRT

2 − ǫ with arbitrary small ǫ > 0, which satisfies F1(λ
−
2 ) ≥ F2(λ

−
2 ) ≥ F2(λ

MRT

2 )
and contradicts to the assumption that λMRT

2 = argmaxλ2
min{F1(λ2), F2(λ2)} .
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Note that the sum rate in the ND region is

R̄nd = max
0≤λ1,λ2≤1

min{C2(λ2) + T1(λ1, λ2), C2(λ2) +D1(λ1, λ2)}. (5.102)

From Thm. 12, we can write the Pareto optimal beamforming vectors wi in the ND region
as a function of the real valued parameter λi in (5.21). Hence, we can rewrite the rate
expressions in (5.3) as functions of λi, i = 1, 2:

2C2(λ2)+T1(λ1,λ2) = 1 + g2(λ2)Pmax + λ1‖h21‖2Pmax

2C2(λ2)+D1(λ1,λ2) = (1 + g2(λ2)Pmax)

(

1 +
g1(λ1)Pmax

1 + λ2‖h12‖2Pmax

)
(5.103)

where g1(λ1) =
(√

λ1‖Π21h11‖+
√
1− λ1‖Π⊥

21h11‖
)2

and g2(λ2) =
(√

λ2‖Π12h22‖+
√
1− λ2‖Π⊥

12h22‖
)2
.

Since logarithm function is monotonic, it does not change the maximization solution and
from now on, we consider maximizing the minimum of the following two functions,

F1(λ1, λ2) = 1 + g2(λ2)Pmax + λ1‖h21‖2Pmax (5.104)

F2(λ1, λ2) = (1 + g2(λ2)Pmax)

(

1 +
g1(λ1)Pmax

1 + λ2‖h12‖2Pmax

)

. (5.105)

Lemma 13. It can be shown that the function gi(λi) is concave in λi for i = 1, 2.

F1(λ1, λ2) is concave in λ2 and attains its maximum at λMRT

2 = ‖Π21h11‖2
‖h21‖2‖h11‖2 .

Proof. Note that the first and second derivatives of gi(λi) with respect to λi are
∂

∂λi
gi(λi) =

‖Πjihii‖2 − ‖Π⊥
jihii‖2 + ‖Πjihii‖‖Π⊥

jihii‖
(

1−2λi√
λi

√
1−λi

)

and ∂2

∂λ2

i
gi(λi) = −‖Πjihii‖‖Π⊥

jihii‖
2λ

3/2
i (1−λi)3/2

.

Since λi is between zero and one, the second derivative of gi(λi) is always negative, for all

λi. Set the first derivative to zero and we obtain the maximum λMRT

2 = ‖Π21h11‖2
‖h21‖2‖h11‖2 .

Lemma 14. F2(λ1, λ2) satisfies

∂F2(λ1, λ2)

∂λ2

∣
∣
∣
∣
λ2=λMRT

2

< 0.

Proof.

∂

∂λ2
F2(λ1, λ2)

∣
∣
∣
∣
λ2=λMRT

2

=

(
∂

∂λ2
(1 + g2(λ2)Pmax)

)(

1 +
g1(λ1)Pmax

1 + λ2‖h12‖2Pmax

)∣
∣
∣
∣
λ2=λMRT

2

+ (1 + g2(λ2)Pmax)

(
∂

∂λ2

(

1 +
g1(λ1)Pmax

1 + λ2‖h12‖2Pmax

))∣
∣
∣
∣
λ2=λMRT

2

(a)
= (1 + g2(λ2)Pmax)

(
∂

∂λ2

(

1 +
g1(λ1)Pmax

1 + λ2‖h12‖2Pmax

))∣
∣
∣
∣
λ2=λMRT

2

= −
(
1 + ‖h22‖2Pmax

) g1(λ1)‖h12‖2Pmax

(1 + λMRT

2 ‖h12‖2Pmax)2

< 0 for any 0 ≤ λ1 ≤ 1

where (a) is due to the fact that g(λ2) is concave and attains its maximum at λMRT

2 .

Lemma 15. For any λ > λMRT

2 , F2(λ) < F2(λ
MRT

2 ).
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Proof. For any λ, g2(λ) ≤ g2(λ
MRT

2 ) because g2(.) is a concave function and attains max-
imum at λMRT

2 . Also, for any λ > λMRT

2 , the denominator of F2(λ2) increases. Thus, for
any λ > λMRT

2 , F2(λ) < F2(λ
MRT

2 ).

By Lemma 12, R̄nd is maximized by λMRT

2 for arbitrary fixed λ1 if and only if F1(λ1, λ
MRT

2 ) ≤
F2(λ1, λ

MRT

2 ) which is equivalent to the following:

F1(λ1, λ
MRT

2 ) ≤ F2(λ1, λ
MRT

2 ) ⇔ λ1‖h21‖2 ≤ 1 + ‖h22‖2Pmax

1 + ‖h12‖2 cos2(θ2)Pmax
g1(λ1).(5.106)

Also, for arbitrary fixed λ2, F1(λ1, λ2) is linearly increasing with λ1 and F2(λ1, λ2) is
concave in λ1 and attains maximum at λMRT

1 . Similar to the argument before, there are
at most 2 intersection points between F1(λ1, λ2) and F2(λ1, λ2). We observe that

F1(0, λ2) = 1 + g2(λ2)Pmax

< (1 + g2(λ2)Pmax)

(

1 +
g1(0)Pmax

1 + λ2‖h12‖2Pmax

)

= F2(0, λ2).

(5.107)

Note that g1(0) > 0 except when h11 is orthogonal to h21 whose probability is zero almost
surely. Since F1(0, λ2) < F2(0, λ2) for any λ2, there is at most 1 intersection point. If there
is no intersection point, the curve F2(λ1, λ2) is above F1(λ1, λ2) for any λ1 and therefore
the optimal value of λ1 which maximizes F1(λ1, λ2) at λ1 = 1. If there is 1 intersection

point, denote the intersection solution as λ
(b)
1 . Graphically, it is clear to see that if and

only if λ
(b)
1 < λMRT

1 , the optimal solution is λ1 = λMRT

1 . Thus, we have for arbitrary fixed
λ2,

λ1 = 1 is optimal if and only if F1(1, λ2) < F2(1, λ2)

λ1 = λMRT

1 is optimal if and only if λ
(b)
1 ≤ λMRT

1

where λ
(b)
1 is given in (5.71). Now we combine the conditions for λ1 and λ2 and after some

manipulations, we obtain the following:

(λMRT

1 , λMRT

2 ) is optimal if and only if

c1‖Π⊥
21h11‖2

c2‖h21‖2 − 2
√
c1c2|hH

21h11|+ c1‖h11‖2
< cos2(θ1) ≤

(1 + ‖h22‖2Pmax)‖h11‖2
(1 + ‖h12‖2 cos2(θ2)Pmax)‖h21‖2

(5.108)

(λ1 = 1, λMRT

2 ) is optimal if and only if ‖h21‖2 ≤ (1 + ‖h22‖2Pmax)
‖Π21h11‖2

1 + ‖h12‖2 cos2(θ2)Pmax
(5.109)

where c1 =
Pmax

‖h12‖2 cos2(θ2)Pmax+1
and c2 =

Pmax
‖h22‖2Pmax+1

.

5.11.7 Proof of MRT optimality in the DD region

In this section, we provide the sum rate optimality conditions for two MRT strategies,
namely: interference amplifying beamforming wi =

hji

‖hji‖ , in Section 5.11.7.1 and direct

channel beamforming wi =
hii

‖hii‖ , in Section 5.11.7.2.
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5.11.7.1 Optimality conditions of amplifying interference in the DD region

We aim to prove that the beamforming vector wi =
hji

‖hji‖ is sum rate optimal in Rdd

if and only if (1 + gjj)‖hii‖2 cos2(θi) ≥ ‖hji‖2 and ‖hii‖2 cos2(θi)Pmax ≤ gij
gjj

− 1, where

gkm = ‖hH
kmwm‖2.

Due to symmetry of the problem, the proof forw1 andw2 is similar and we only give the
proof for w2 here. First, by the definition of Ω01 (5.94), we observe that w2(λ

MRT

2 ) = h12

‖h12‖
is in the constraint set Ω01 if and only if the following constraints are satisfied:







(1 + g11)
∣
∣hH

22w2(λ
MRT

2 )
∣
∣
2 ≥ |hH

12w2(λ
MRT

2 )|2
∣
∣hH

22w2(λ
MRT

2 )
∣
∣
2
Pmax ≤ g21

g11
− 1

which are equivalent to







(1 + g11)‖h22‖2 cos2(θ2) ≥ ‖h12‖2

‖h22‖2 cos2(θ2)Pmax ≤ g21
g11

− 1
. (5.110)

Thus, if and only if (5.110) is satisfied, the beamforming vector w2(λ
MRT

2 ) = h12

‖h12‖ is

in Ω01. Now we establish that this is the sum rate optimal solution.

Z̃1 is monotonically increasing with g22 in constraint set Ω11. Note that w2(1) =
h22

‖h22‖
1 is not in the constraint set Ω11. We see this by observing the constraint set of Ω11

requires:

• |hH
22w2(λ2)|2 = λ2‖h22‖2. Thus, we have |hH

22w2(λ
MRT

2 )|2 ≤ |hH
22w2(1)|2.

• |hH
12w2(λ2)|2 =

(√
λ2‖Π22h12‖+

√
1− λ2‖Π⊥

22h12‖
)2

is concave in λ2 and attains

maximum at λMRT

2 where w2(λ
MRT

2 ) = h12

‖h12‖ . Thus, |h
H
12w2(1)|2 ≤ |hH

12w2(λ
MRT

2 )|2.

If the conditions in (5.110) are satisfied, we have

(1 + g11)|hH
22w2(1)|2 ≥ (1 + g11)‖h22‖2 cos2(θ2) ≥ ‖h12‖2 ≥ |hH

12w2(1)|2.

To satisfy the constraints of both Ω01 and Ω11 the sum rate optimal solution lies on the
boundary between Ω01 and Ω11, namely ΩA.

The constraints set Ω10 is empty. Using the same argument as in the case of Z̃1, for
any λ2 that satisfies |hH

22w2(λ2)|2 ≥ g21
g11

− 1 must satisfy λ2 ≥ λMRT

2 . Also, any λ2 ≥ λMRT

2

satisfies

(1 + g11)|hH
22w2(λ2)|2 ≥ (1 + g11)‖h22‖2 cos2(θ2) ≥ ‖h12‖2 ≥ |hH

12w2(λ2)|2. (5.111)

Thus, for any λ2 that satisfies B = 0 must have A = 0, whih indicates that the constraint
is empty.

Similar to the argument before, |hH
22w2(λ2)|2 ≥ g21

g11
− 1 is a tighter constraint for

|hH
22w2(λ2)|2 than (1 + g11)|hH

22w2(λ2)|2 ≥ |hH
12w2(λ2)|2 in Ω00. As Z̃4 is monotonically

1From now on, we write w2(λ2 = 1) as w2(1). We must not confuse this with the first element of
vector w2.
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decreasing with |hH
22w2(λ2)|2 and increasing with |hH

12w2(λ2)|2 in Ω00 , the sum rate op-
timal solution in this case is the beamforming vector which satisfies:







|hH
22w2(λ2)|2 =

g21
g11

− 1

(1 + g11)|hH
22w2(λ2)|2 = |hH

12w2(λ2)|2

which is in ΩB.
Now we show thatw2(λ

MRT

2 ) = h12

‖h12‖ is the optimal solution in Ω01. Z̃2 is monotonically

increasing with g12. Since we assumed that h12

‖h12‖ is in Ω01, it is the optimal solution.

Finally, we notice that for any sum rate optimal solutions in ΩA which maximizes Z̃1

in Ω11, it is also in the constraint set Ω01 and therefore achieves a smaller sum rate than
h12

‖h12‖ . Similarly, any solution in ΩB that maximizes Z̃4 is also in constraint set Ω01 and

therefore achieves a smaller sum rate than h12

‖h12‖ .

5.11.7.2 Optimality conditions of direct channel beamforming in the DD re-
gion

Now we prove that the beamforming vector wi(λi) =
hii

‖hii‖ attains the maximum sum rate

in the DD region, for arbitrary fixed wj if (1 + gjj)|hH
ii wi(1)|2 ≤ |hH

jiwi(1)|2.
We provide the proof for w2 for simplicity as by reversing the role Tx 1 and Tx

2, the proof for w1 can be obtained. Notice that if the optimality condition is true:
(1 + g11)|hH

22w2(1)|2 ≤ |hH
12w2(1)|2, then the following arguments are true.

The constraint sets Ω01 and Ω00 are empty. This is because

(1 + g11)|hH
22w2(0)|2 = (1 + g11)

∣
∣
∣
∣
hH
22

Π⊥
22h12

‖Π⊥
22h12‖

∣
∣
∣
∣

2

= 0 ≤ |hH
12w2(0)|2.

Thus, together with the assumption above: (1 + g11)|hH
22w2(1)|2 ≤ |hH

12w2(1)|2, we have

{

|hH
12w2(1)|2 ≥ (1 + g11)|hH

22w2(1)|2

|hH
12w2(0)|2 ≥ (1 + g11)|hH

22w2(0)|2.

Since |hH
22w2(λ)|2 is linearly increasing with λ and |hH

12w2(λ)|2 is concave in λ, we draw
the conclusion that for all λ, |hH

12w2(λ)|2 ≥ (1 + g11)|hH
22w2(λ)|2. Thus, for all λ, A = 1.

The sum rate optimal solution in Ω11 is either ΩB or h22

‖h22‖ . If the optimal solution

is h22

‖h22‖ then we know that Ω10 is empty and h22

‖h22‖ is sum rate optimal. If the sum rate

optimal solution in Ω11 is in ΩB, then these solutions are also in constraint set Ω10 which
achieve a smaller sum rate of Z̃3 than h22

‖h22‖ .
Now, we obtained the MRT optimality conditions for each transmit beamformer wi

given wj. Apply the same approach and reverse the role of Tx 1 and 2, we obtain the
conditions forwj. Combine both inequalities to obtain the conditions as shown in Theorem
17.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, we tackle the beamforming vectors design problem in a distributed manner
in the vector Gaussian channels with single user decoding (SUD) and with interference
decoding capability (IDC). We summarize the contributions in the following.

• In Chapter 3, we proposed a distributed beamforming design algorithm in the MISO-
IC-SUD with little complexity that allows the users to cooperate and operate at a
rate point close to the Pareto boundary. The proposed beamforming vectors are a
balance of MRT (egoism) and ZF (altruism) solutions.

• In Chapter 4, we extended this notion of egoism and altruism balancing in the
MIMO-IC-SUD. We proposed an iterative transceiver design algorithm which as-
signed carefully chosen weights on different links in the asymmetric networks and
optimize the sum rate performance. These weights are functions of channel statis-
tics, instead of the channel realizations, which decrease the amount of information
exchange required as compared to the algorithms in the literature. In the high SNR
regime, the proposed algorithm is shown to achieve interference alignment which
guaranteed a linear scaling of sum rate performance with system SNR, if interfer-
ence alignment is feasible. In the channel settings where interference alignment is
infeasible, we proposed a simple binary power allocation algorithm which aimed to
restore the feasibility of interference alignment. Simulations results show that with
this binary power control, the proposed egoism and altruism balancing transceiver
design algorithm successfully restored interference alignment feasibility and achieved
better sum rate results comparing to other interference alignment based algorithms
and bargaining algorithms.

• In Chapter 5, we relax the constraint of single user decoding to interference decod-
ing capability at the receivers. We considered the 2-user MISO-IC with IDC and
proposed 4 decoding structures, each Rx chose to decode-and-remove interference
or treat interference as noise. We computed its overall achievable rate region and
its corresponding Pareto boundary. The beamforming vectors and power alloca-
tion that attained the Pareto boundary were characterized. The Pareto optimal
beamforming vectors were shown to be positive linear combinations of two channel
vectors, confirming with the results in the MISO-IC-SUD [31]. As an application
of the Pareto boundary characterization, we characterized the maximum sum rate
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point and obtained a further reduced set of beamforming vectors that were the sum
rate optimal candidates. This significantly reduced the search space of the original
NP-hard maximum sum rate problem [39]. Aiming to provide a very simple trans-
mission scheme, we investigated the conditions on channel coefficients in which the
simple maximum ratio transmission strategies were sum rate optimal. Inspired by
this result, we proposed a very simple transmission scheme with only a few possible
choices transmit beamforming vectors. Simulation results confirmed that under some
channel conditions, the proposed scheme achieve encouraging sum rate performance.

The future research directions are described briefly in the following.

• The discussion in Chapter 5 applied to a 2-user MISO-IC. The extension to K-
user MISO-IC is not trivial: when there are more than 2 users in the interference
channel, the number of possible decoding structure increases. For instance, in a
3-user MISO-IC, Rx 1 sees the interference signal from Tx 2 and 3. There are five
possible actions:

– N : Rx 1 treats interference as noise.

– D23: Rx 1 decodes interference by first decoding interference signal from Tx 2
while treating its own signal and interference signal from Tx 3 as noise. Remove
the interference from Tx 2 and decode the interference signal from Tx 3 while
treating its own signal as noise. Remove the interference from Tx 3 and finally
decode its own signal with no interference.

– Similarly, we can exchange the decoding order and obtain D32.

– D2, Rx 1 only decodes and removes interference from Tx 2 and decodes its own
signal while treating interference from Tx 3 as noise.

– Similarly, we have D3 if Rx 1 only decodes and removes interference from Tx
3.

To simplify the discussion, we assume no combined decoding of Tx 2 and 3 interfer-
ence signals. The increase of users in the interference channel increases the number
of rate constraints significantly. Apart from the optimal decoding structure design,
whether the optimal transmitter matrix is of rank one is still an open problem.

• As the general K-user MISO-IC-IDC is complicated, one can imagine the follow-
ing special case, a mixed strong and very strong interference network. In a resent
work [12], the authors consider a 3-user SISO-IC-IDC in which at each receiver, one
interference signal is strong and the other one is very strong. Under this assumption,
the capacity attaining decoding scheme is for Rx 1 to first decode the very strong
interferer while treating its own signal and the other interference as noise; then re-
move this interference and decode the remaining signals in a MAC fashion. This is
interesting to see whether the same conclusion can be drawn in the MISO case.

• Another interesting problem in the MISO-IC-IDC is to allow partial interference
decoding. This transforms the problem to finding the Pareto optimal rate splitting
and beamforming vectors. Here we assume successive interference removal instead
of joint decoding for simplicity. The achievable rate region enabling rate splitting
contains the achievable rate region we considered in Chapter 5. Let Tx 1 have two
transmit symbols x10 and x11 and Tx 2 have two transmit symbols x20 and x22.
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Denote the power allocated to symbol xi0 by β̄iPi and to symbol xii by βiPi and
βi + β̄i = 1, for i = 1, 2. Note that the achievable rate of user i is Ri = Ri0 + Rii

where Ri0 is the rate of message xi0 and Rii is the rate of the message xii. The
received symbol at Rx i, i = 1, 2, is therefore

yi = hH
iiwi0xi0 + hH

iiwiixii + hH
ijwj0xj0 + hH

ijwjjxjj + ni. (6.1)

Following the successive decoders proposed for the SISO-IC in [11], if Rx i first
decodes-and-removes the message xi0 and then xj0 and finally decodes message xii,
the following rates are achievable,

Ri0(w1,w2, β1, β2) = log2

(

1 +
|hH

ii wi0|2β̄iPi

|hH
ii wii|2βiPi + |hH

ijwj0|2β̄jPj + |hH
ijwjj|2βjPj + 1

)

Rj0(w1,w2, β1, β2) = log2

(

1 +
|hH

ijwj0|2β̄jPj

|hH
ii wii|2βiPi + |hH

ijwjj|2βjPj + 1

)

Rii(w1,w2, β1, β2) = log2

(

1 +
|hH

ii wii|2βiPi

|hH
ijwjj|2βjPj + 1

)

.

(6.2)
If Rx i reverses the decoding order of xi0 and xj0, the following rates are achievable:

Rj0(w1,w2, β1, β2) = log2

(

1 +
|hH

ijwj0|2β̄jPj

|hH
ii wi0|2β̄iPi + |hH

ii wii|2βiPi + |hH
ijwjj|2βjPj + 1

)

Ri0(w1,w2, β1, β2) = log2

(

1 +
|hH

ii wi0|2β̄iPi

|hH
ii wii|2βiPi + |hH

ijwjj|2βjPj + 1

)

.

(6.3)
We assume here that Rx i always decode its common message before the private
message, to keep the formulation simple. Hence, reversing the role of i, j in (6.2)
and (6.3), we obtain for i = 1, 2, the following achievable rates

Ri0(w1,w2, β1, β2) = min

{

log2

(

1 +
|hH

iiwi0|2β̄iPi

|hH
ii wii|2βiPi + |hH

ijwj0|2β̄jPj + |hH
ijwjj|2βjPj + 1

)

,

log2

(

1 +
|hH

iiwi0|2β̄iPi

|hH
ii wii|2βiPi + |hH

ijwjj|2βjPj + 1

)

,

log2

(

1 +
|hH

jiwi0|2β̄iPi

|hH
jjwjj|2βjPj + |hH

jiwii|2βiPi + 1

)

,

log2

(

1 +
|hH

jiwi0|2β̄iPi

|hH
jjwj0|2β̄jPj + |hH

jjwjj|2βjPj + |hH
jiwii|2βiPi + 1

)}

Rii(w1,w2, β1, β2) = log2

(

1 +
|hH

ii wii|2βiPi

|hH
ijwjj|2βjPj + 1

)

.

(6.4)
The Pareto optimal beamforming vectors and power allocations are therefore the
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solutions to the following optimization problem, for some arbitrary α1, α2, R̄:

(w∗
1,w

∗
2, β

∗
1 , β

∗
2) = argmax

w1,w2,β1,β2

R̄

subject to R10(w1,w2, β1, β2) +R11(w1,w2, β1, β2) ≥ α1R̄

R20(w1,w2, β1, β2) +R22(w1,w2, β1, β2) ≥ α2R̄

(6.5)

where Ri0(w1,w2, β1, β2), Rii(w1,w2, β1, β2) for i = 1, 2 are defined in (6.4).



101

Bibliography

[1] E. Z. A. Leshem, “Bargaining over the interference channel,” in IEEE International
Symposium on Information Theory, 2006.

[2] A.Leshem and E.Zehavi, “Bargaining over the interference channel,” in Proceedings
of ISIT, July 9-14 2006.

[3] V. S. Annapureddy and V. V. Veeravalli, “Sum Capacity of MIMO Interference Chan-
nels in the Low Interference Regime,” submitted to IEEE Transactions on Information
Theory, 2010.

[4] A.S.Motahari and A. Khandani, “Capacity bounds for the gaussian interference chan-
nel,” IEEE Trans. on Information Theory, vol. 55, no. 2, February 2009.

[5] A.Vishwanath and S. Jafar, “On the capacity of vector gaussian interference channel,”
in Proceedings of the Information Theory Workshop, October 2004.

[6] B. Bandemer, A. Sezgin, and A. Paulraj, “On the Noisy Interference Regime of the
MISO Gaussian Interference Channel,” in Proceedings of Asilomar CSSC 2008, 2008.

[7] G. Bresler, A. Parekh, and D. Tse, “The approximate capacity of the many-ti-one
and one-to-many gaussian interference channels,” IEEE Transactions on Information
Theory, vol. 56, no. 9, September 2010.

[8] V. Cadambe and S. Jafar, “Interference alignment via random codes and the capacity
of a class of deterministic interference channels,” in Proceedings of Allerton 2009,
47th Annual Allerton Conference Allerton House, UIUC Illinois, USA, September
30-October 2 2009.

[9] V. Cadambe, S. Jafar, and S. Shamai, “Interference alignment on the deterministic
channel and application to fully connected gaussian interference networks,” IEEE
Transactions on Information Theory, vol. 55, no. 1, pp. 269–274, 2009.

[10] A. B. Carleial, “Interference Channels,” IEEE Transaction on Information Theory,
vol. IT-24, no. 1, pp. 60–70, 1978.

[11] A. Carleial, “A case where interference does not reduce capacity,” IEEE Trans. on
Information Theory, vol. IT-21, no. 5, pp. 569–570, September 1975.

[12] A. Chaaban and A. Sezgin, “The capacity region of the 3-user gaussian interference
channel with mixed strong-very strong interference,” in preprint, can be obtained at
http://arxiv.org/pdf/1010.4911v1, 2010.



102 BIBLIOGRAPHY

[13] M. Charafeddine, A. Sezgin, and A. Paulraj, “Rate Region Frontiers for n-user Inter-
ference Channel with Interference as Noise,” in Proceedings of Allerton Conference,
2007.

[14] W. Choi and J. Andrews, “The capacity gain from intercell scheduling in multianetnna
systems,” in IEEE Transactions on Wireless Communications, Feb. 2008.

[15] N. Clemens and C. Rose, “Intelligent power allocation strategies in an unlicensed
spectrum,” in IEEE DySPAN, 2005.

[16] M. Costa, “On the gaussian interference channel,” IEEE Trans. on Information The-
ory, vol. IT-31, no. 5, September 1985.

[17] R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity to within
one bit,” IEEE Transactions on Information Theory, vol. 54, no. 12, pp. 5534–5562,
2008.

[18] F. R. Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beamforming and power
control for cellular wireless systems,” IEEE Journal on Selected Areas in Communi-
cations, vol. 16, no. 8, October 1998.

[19] D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and W. Yu, “Multi-cell
MIMO cooperative networks: A new look at interference,” IEEE Journal on Selected
Areas in Communications, 2010, submitted in Jan 2010.

[20] K. S. Gomadam, V. R. Cadambe, and S. A. Jafar, “Approaching the ca-
pacity of wireless networks through distributed interference alignment,” in
submitted to IEEE Transaction of Information Theory, 2008, available at
http://arxiv.org/pdf/0803.3816.

[21] T. Han and K. Kobayashi, “A new achievable rate region for the interference channel,”
IEEE Trans. on Information Theory, vol. 27, no. 1, pp. 49 – 60, January 1981.

[22] J. C. Harsanyi, “Games with incomplete information played by ”bayesian” players,
i-iii. part i. the basic model,” Management Science, Theory Series, vol. 14, no. 3,
November 1967.

[23] G. N. He, M. Debbah, and S. Lasaulce, “K-player bayesian waterfilling game for
fading multiple access channels,” in IEEE International Workshop on Comutational
Advances in Multi-Sensor Adaptive Processing, 2009.

[24] Z. Ho and D.Gesbert, “Balancing egoism and altruism on interference channel: the
MIMO case,” in Proceedings of ICC 2010, IEEE International Conference on Com-
munications, May 23-27 2010, pp. 1–5.

[25] Z. Ho and D. Gesbert, “Balancing egoism and altruism on the single beam MIMO
interference channel,” submitted to IEEE Transaction of Signal Processing, 2010.

[26] A. Host-Madsen and A. Nosratinia, “The multiplexing gain of wireless networks,”
in Proceedings of IEEE International Symposium of Information Theory, September
2005, pp. 2065–2069.



BIBLIOGRAPHY 103

[27] H. Huang, V. Lau, Y. Du, and S. Liu, “Robust approximate lattice alignment design
for k-pairs quasi-static MIMO interference channels with imperfect CSI,” in Proceed-
ings of ISIT 2010, June 13-18 2010.

[28] Z. H. J. E. Suris, L. A. DaSilva and A. B. MacKenzie, “Cooperative game theory for
distributed spectrum sharing,” in ICC, 2007.

[29] S. Jafar and S. Vishwanath, “Generalized degrees of freedom of the symmetric gaus-
sian K user interference channel,” IEEE Transactions on Information Theory, vol. 56,
no. 7, pp. 3297–3303, 2010.

[30] A. Jafarian, J. Jose, and S. Vishwanath, “Algebaric lattice alignment for k-user inter-
ference channels,” in Proceedings of Allerton 2009, 47th Annual Allerton Conference
Allerton House, UIUC Illinois, USA, September 30-October 2 2009.

[31] E. A. Jorswieck, E. G. Larsson, and D. Danev, “Complete Characterization of the
Pareto Boundary for the MISO Interference Channel,” October, vol. 56, no. 10, pp.
5292–5296, 2008.

[32] S. G. Kiani and D. Gesbert, “Optimal and distributed scheduling for multicell capac-
ity maximization,” IEEE Transactions on Wireless Communications, vol. 7, no. 1,
January 2008.

[33] ——, “Distributed Power Allocation for Interfering Wireless Links Based on Channel
Information Partitioning,” IEEE Transactions on Wireless Communications, vol. 8,
no. 6, pp. 3004–3015, 2009.

[34] M. Y. Ku and D. W. Kim, “Tx-Rx beamforming with Multiuser MIMO Channels in
MUltiple-cell systems,” in ICACT, 2008.

[35] K. R. Kumar and F. Xue, “An iterative algorithm for joint signal and interference
alignment,” in Proceedings of ISIT, June 13-18 2010.

[36] E. G. Larsson and E. A. Jorswieck, “The MISO interference channel: Competition
versus collaboration,” in Proc. Allerton Conference on Communication, Control and
Computing, September 2007.

[37] A. Laufer and A. Leshem, “Distributed coordination of spectrum and the prisoner’s
dilemma,” in IEEE DySPAN, 2005.

[38] J. Lindblom, E. G. Larsson, and E. A. Jorswieck, “Parametrization of the miso ifc
rate region: The case of partial channel state information,” IEEE Trans. Wireless
Communications, vol. 9, no. 2, pp. 500 – 504, Feb 2010.

[39] Y. Liu, Y. Dai, and Z. Luo, “Coordinated beamforming for MISO interference channel:
Complexity Analysis and efficient algorithms,” submitted to IEEE Transaction on
Signal Processing, 2010.

[40] Z. Y. Ma and Z. Cao, “Secondary user cooperation access scheme in opportunistic
cognitive radio networks,” in IEEE Military Communications Conference, 2007.

[41] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Communication over
MIMO X channels: Interference alignmnet, decomposition and performance analysis,”
IEEE Transactions on Information Theory, vol. 54, no. 8, August 2008.



104 BIBLIOGRAPHY

[42] R. Mochaourab and E. A. Jorswieck, “Optimal Beamforming in Interference Networks
with Perfect Local Channel Information,” will appear in IEEE Transaction on Signal
Processing, pp. 1–30, 2011.

[43] A. F. Molisch, Wireless Communications. IEEE, 2005.

[44] F. Negro, S. Shenoy, I. Ghauri, and D. Slock, “Interference alignment feasibility
in constant coefficients mimo interference channels,” in SPAWC 2010, 11th IEEE
International Workshop on Signal Processing Advances in Wireless Communications,
20-23 June 2010.

[45] N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum etiquette for cogni-
tive radio networks,” in IEEE International Symposium on New Frontiers in Dynamic
Spectrum Access Networks, 2005.

[46] M. J. Osborne and A. Rubinstein, A course in Game Theory. The MIT Press,
Cambridge, Massachusetts, 1994.

[47] A. Paulraj, R. Nabar, and D. Gore, Introduction to space-time wireless communica-
tions. Cambridge University Press, 2003.

[48] S. Perlaza, N. Fawaz, S. Lasaulce, and M. Debbah, “From spectrum pooling to space
pooling: Opportunistic interference alignment in MIMO cognitive networks,” IEEE
Transactions on Signal Processing, vol. 58, no. 7, July 2010.

[49] S. W. Peters and R. W. Heath, “Cooperative algorithms for mimo interference chan-
nels,” submitted to IEEE Transactions on Vehicular Technology, December 2009,
available at http://arxiv.org/pdf/1002.0424v1.

[50] L. S. S. Mathur and N. B. Mandayam, “Coalitional games in gaussian interference
channels,” in IEEE International Symposium on Information Theory, 2006.

[51] H. Sato, “On the capacity region of a discrete two-user channel for strong interfer-
ence,” IEEE Transactions on Information Theory, vol. IT-24, no. 3, May 1978.

[52] ——, “The capacity of the gaussian interference channel under strong interference,”
IEEE Transactions on Information Theory, vol. IT-27, no. 6, pp. 786–788, November
1981.

[53] D. A. Schmidt, W. Utschick, and M. L. Honig, “Large system performance of interfer-
ence alignment in single-beam MIMO networks,” in Proceedings of IEEE Globecom,
2010.

[54] X. Shang, B. Chen, and H. V. Poor, “Multi-User MISO Interference Channels
with Single-User Detection : Optimality of Beamforming and the Achievable Rate
Region,” submitted to IEEE Transaction on Information Theory, 2009. [Online].
Available: arXiv:0907.0505v1

[55] X. Shang, G. Kramer, and B. Chen, “A new outer bound on the noisy-interference
sum-rate capacity for gaussian interference chanels,” IEEE Trans. on Information
Theory, vol. 55, no. 2, February 2009.



BIBLIOGRAPHY 105

[56] X. Shang and B. Chen, “Achievable rate region for downlink beamforming in the
presence of interference,” in Proceedings of Asilomar Conference, November 2007.

[57] X. Shang, B. Chen, G. Kramer, and H. Poor, “Capacity regions and sum- rate capacity
of vector gaussian interference channel,” submitted to Trans. Information Theory,
2009, available at http://arxiv.org/pdf/0907.0472v1.

[58] A. Shannon, “Two-way communication channels,” in In Proceeding of 4th Berkeley
Symposium of Mathematics Statistics and Probability, vol. 1, 1961, pp. 611–644.

[59] H. Shen, B. Li, M. Tao, and X. Wang, “MSE-based transceiver designs for mimo in-
terference channel,” IEEE Transactions on Wireless Communications, accepted 2010.

[60] M. Shen, A.Host-Madsen, and J. Vidal, “An improved interference alignment scheme
for frequency selective channels,” in Proceedings of ISIT, July 6-11 2008.

[61] C. X. Shi, D. A. Schmidt, R. A. Berry, M. L. Honig, and W. Utschick, “Distributed
interference pricing for the MIMO interference channel,” in IEEE ICC, 2009.

[62] S. Y. Shi, M. Schubert, and H. Boche, “Rate optimization for multiuser MIMO sys-
tems with linear processing,” IEEE Transactions on Signal Processing, vol. 56, no. 8,
August 2008.

[63] S. Sridharan, A. Jafarian, S. Vishwanath, S. Jafar, and S. Shamai, “A layered lattice
coding scheme for a class of three user gaussian interference channels,” in Proceedings
of Allerton 2009, 47th Annual Allerton Conference Allerton House, UIUC Illinois,
USA, September 30-October 2 2009.

[64] J. Thukral and H. Boelcskei, “Interference alignment with limited feedback,” in IEEE
International Symposium on Information Theory (ISIT), Seoul, Korea, 2009, pp.
1759–1763.

[65] D. Tomecki and S. Stanczak, “On Feasible SNR region for multicast downlink channel:
Two user case,” in Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP’10), 2010, pp. 3474–3477.

[66] V.R.Cadambe and S.A.Jafar, “Interference alignment and degrees of freedom of the k-
user interference channel,” IEEE Transactions on Information Theory, vol. 54, no. 8,
August 2008.

[67] Y. Weng and D. Tuninetti, “On gaussian interference channels with mixed interfer-
ence,” in Proceedings of International Symposium of Information Theory, 2008.

[68] S. Ye and R. S. Blum, “Optimized signaling for MIMO interference systems with
feedback,” IEEE Transactions on Signal Processing, vol. 51, no. 11, Nov,2003.

[69] C. Yetis, T. Gou, S. Jafar, and A. Kayran, “On feasibility of interference alignment in
mimo interference networks,” IEEE Transactions on Signal Processing, vol. 58, no. 9,
pp. 4771– 4782, 2010.

[70] H. Yu and Y. Sung, “Least squares approach to joint beam design for interference
alignment in multiuser multi-input multi-output interference channels,” IEEE Trans-
actions on Signal Processing, vol. 58, no. 9, September 2010.



106 BIBLIOGRAPHY

[71] R. Zakhour and D. Gesbert, “Coordination on the MISO interference channel using
the virtual SINR framework,” in Proceedings of WSA’09, International ITG Work-
shop on Smart Antennas, Feburary 2009.

[72] E. Zehavi and A. Leshem, “Alternative bargaining solutions for the interference chan-
nel,” in Proceedings of International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), 2009, pp. 9–12.

[73] R. Zhang and S. Cui, “Cooperative interference management with MISO beamform-
ing,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5450 – 5458, 2010.


