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Abstract

Throughout its industrial activity, and particularly in the field of structural vibrations, French electricity

producer EDF faces dimensioning, monitoring and diagnosis problems. Experimental information is

often combined with numerical simulations to complete the a priori knowledge of structural behavior

needed to address industrial issues. Vibration expertise is thus required in a broad range of fields such as

health monitoring, structural modification assessment and boundary conditions identification.

This work aims to find a method to combine experimental and numerical information for model-

updating purposes and thus improve their predictive power. More specifically, the problem of structures

with evolutionary mechanical properties is addressed. To this end, this thesis proposes a combined use

of the Error in Constitutive Relation (ECR) and Kalman filtering (KF) techniques.

In structural dynamics, the ECR is an energy-based approach to solve inverse problems. ECR func-

tionals measure the model error by evaluating the difference between kinematically and dynamically

admissible fields using an energy norm. This technique presents interesting features such as good ability

to spatially localize erroneously modeled regions, strong robustness in presence of noisy data, and good

regularity properties of cost functions. On the other hand, the Kalman filtering techniques are prediction-

correction algorithms for recursive system estimation. The Kalman filtering is particularly suitable for

studying evolutionary systems embedding noisy data from both model and observation.

The main part of this work is devoted to establish and evaluate a general-purpose identification ap-

proach using ECR and KF. In order to achieve this goal, the ECR is initially used to improve the a priori

knowledge of model errors. Furthermore, ECR functionals are introduced in a state-space description of

the identification problem. Its resolution is performed by means of the Unscented Kalman Filter (UKF),

a second-order, reduced-cost, Kalman filter.

The adequacy of the ECR-UKF approach to address problems of industrial relevance is shown

through different numerical examples, such as structural time-varying damage assessment of a com-

plex structures, boundary conditions identification of in-operation structures and field reconstruction

problems. Moreover, these examples are used to improve the performance of the ECR-UKF algorithm,

particularly the introduction of algebraic constraints in the ECR-UKF algorithm and the influence of

error covariance matrix design.

Finally, this approach is evaluated in more complex problems such as the identification of boundary

impedances from an experimental campaign and the damage assessment in a complex civil structure

subjected to seismic loads.
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Notations

This section summarizes the conventions and notations used in the sequel. Possible alternate uses of the

ensuing definitions are explicitly stated where applicable.

N Euclidean space of natural numbers

R
d Euclidean d-space of real numbers

C
d Euclidean d-space of complex numbers

M(K)m,n Space of (m × n) matrices whose entries are in K

Ω Background elastic or viscoelastic solid

E Sub-structure of the elastic or viscoelastic solid

δij Kronecker symbol

In Identity matrix of size n × n
0n Square zeros matrix of size n × n
E[·] Expectation operator

E Young modulus

ν Poisson’s ratio

d Structural damage

̺ Mass density

σ Stress tensor

ε Deformation tensor

C Constitutive law

t Time variable

ω Angular frequency

ũ Vector of measured displacements

f̃ Vector of measured efforts

[M ] Finite Element mass matrix

[C] Finite Element damping matrix

[K] Finite Element stiffness matrix

{F} Finite Element external forces vector

{q} Finite Element nodal displacement vector

Π Projection operator from the semi-discretized FE space to the observation space
⊔

Global Finite Element matrix assembly operator

Xb A priori or background system state vector

vii
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Xa Analyzed system state vector

M(·) Generic state-transition operator

H(·) Generic observation operator

Q Covariance matrix of model errors

R Covariance matrix of observation errors

P b Background state error covariance matrix

P a Analyzed state error covariance matrix

K Kalman gain matrix

W Unscented sigma weighting factor

γ Unscented sigma point scaling factor

α Spread controlling parameter in sigma point construction for the Unscented transformation

κ Secondary parameter in sigma point construction for the Unscented transformation

[Xb] Unscented transformation sigma points around background state vector Xb

[yb] Observable transformed sigma points through the observation function H(·)

U Space of admissible displacements

S Space of admissible stresses

u Kinematically admissible field

v Dynamically admissible field associated to internal efforts

w Dynamically admissible field associated to inertial efforts

û Optimal kinematically admissible field

v̂ Optimal dynamically admissible field associated to internal efforts

ŵ Optimal dynamically admissible field associated to inertial efforts

ξ2
ω(·) Drucker inequality function at angular frequency ω

ξ2
ωr(·) Relative Drucker inequality function at angular frequency ω

[G]R Observation weighting positive-definite matrix of ECR functionals

e2
ω Drucker inequality function at angular frequency ω

ξ2
T r(·) Weighted relative Drucker inequality function for a frequency range of interest

η(ω) Weighting function defined over a frequency range of interest

Tω Triple of best admissible fields

r Weighting scalar of the ECR functional

ξ2
T r Modified ξ2

T r(·) function including algebraic constraints

E Set of potential incorrectly-modeled regions selected for model updating

θ Vector of model-updating parameters

θ̂ Optimal vector of model parameters

Q Stationarity error covariance matrix in the state-space description using ECR functionals

R Observation error covariance matrix in the state-space description using ECR functionals

ζ Target value of the state-space description using ECR functionals

ϑ Scaling factor of state estimation error covariance matrices

Σ Standard deviations diagonal matrix for the construction of P b in a decomposotion design

C Matrix of spatial correlations for the construction of P b in a decomposotion design

λspatial Characteristic spatial correlation length



Introduction and general overview

EDF group is the first European producer of electric energy with a power capacity of 96 GW installed in

France in 2010. Electricity production uses thermal combustion (14%), renewable energies (21%) and

nuclear fission (65%). Within the framework of its industrial activity, EDF takes a major place not only

in the energy generation field but also in all the main activities related to the electrical industry, namely

the transmission, distribution and commercial areas.

One of the priorities of the group is to guarantee the safety of the generation plants, without forgetting

the industrial need of maintaining high efficiency. In this context, the EDF research division (R&D)

plays a major role in the decision-making of the group, acting as a guarantor for the suitability of the

long-term strategies but also taking part in the resolution of in-operation issues during exploitation. As

a component of EDF R&D, the Mechanics and Acoustics Analysis department (AMA) provides the

expertise in the field of structural mechanics through a wide-scope of research activity (rupture, fluid-

structure interaction, vibrations, seismic, rotor-dynamic machines, etc.) from both the computational and

experimental viewpoints.

This work arises from AMA department’s need to improve solution methodologies for inverse prob-

lems in structural dynamics.

EDF’s industrial need

The AMA department frequently faces dimensioning, monitoring and diagnosis problems, particularly

in the field of structural vibrations. In many cases, experimental information is combined with numerical

simulations to complete the a priori knowledge of structural behavior in an effort to address industrial

issues. Expertise in vibrations is required for a broad range of needs such as health monitoring, structural

modification assessment or boundary conditions identification.

Consequently, numerical models must be of good quality in order to accurately predict the behavior

of analyzed structures. To this end, experimental data is generally used for model-updating or field

reconstruction purposes. Up to now, the AMA department has generally relied on least-square’s type

methods to solve identification problems. Moreover, due to the industrial context when studying in-

operation structures, linear Finite Element (FE) models are often employed for the sake of reactivity.

In the present work, we investigate alternative solution methods for the above-mentioned problems

ix
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in the particular industrial context of EDF. More specifically, we aim at studying the dynamic behavior

of a generic structure whose available linear FE model M has the well-known form:

[M ]{q̈}(t) + [C]{q̇}(t) + [K]{q}(t) = {F}(t) (1)

where [M ], [C] and [K] represent the mass, damping and stiffness matrices respectively, {q} is the vector

of nodal displacements and {F} the vector of external loads. Besides, the FE model is supposed not to

be inconsistent with a set of available experimental data ũ for the same structure, and consequently to

embed modeling inaccuracies which are a priori unknown.

Hence, the goal of this work is to provide a general method to improve the a priori knowledge of the

dynamic behavior of a structure from both an inaccurate FE model M and a set of available experimental

data ũ. This general goal is formulated in terms of the following three main objectives:

1. Identify model inaccuracies and improve the knowledge of the structure’s dynamical behav-

ior.

The a priori model M is supposed to inaccurately predict the real structure’s dynamics and there-

fore contains model bias. In the present work, we will postulate that such an uncharacterized bias

is of a parametrized form M(θ) where θ represents a vector of model parameters (e.g. material

parameters, boundary conditions, etc.). In other words, the model inaccuracy is assumed to be

attributable to incorrectly-known values of a set of model parameters. Thus, with the help of a set

of available experimental data ũ, we will seek to both identify the nature of the parameter bias (in

terms of spatial location and magnitude) and provide a response field estimation.

2. Take into account the case of evolutionary mechanical properties.

In some industrial cases, mechanical properties may evolve during in-operation conditions. In-

deed, in some cases EDF has to deal with situations when, for example, investigating whether

power plant structures suffer from structural damage during operation (seismic activity, extreme

loads, etc.), or evaluate time-varying parameters of rotor-dynamic machines which are usually a

function of the rotational speed. In other cases, structures may suffer from structural modifications

(boundaries, etc.) as a consequence of maintenance periods. In this work, we will aim at taking

into account the possibility of evolutionary structures in two different configurations:

Case A The structure evolves between two or more events well-separated in time and we aim to

identify and quantify the total change undergone between these two events. Thus, the evolu-

tion law is not necessary sought and parameters will be treated as invariant when modeling

each event (e.g. case of changing properties due to maintenance operations).

Case B Structural parameters evolve during the studied event. Consequently, we aim not only to

identify parameter overall changes but also to estimate its evolution, which is supposed a

priori unknown (e.g. case of damage evolution during in-operation conditions).
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3. Investigate and develop methods applicable to industrial analyses.

Aside from the industrial relevance of the studied problems, the investigations carried out in this

work aim at being capitalized for further use in engineering situations. Thus, all the techniques

must be applicable to complex structures within moderate computational cost. For this reason,

numerical simulations are carried out within the environment of the public FE software Code Aster

(www.code-aster.org) developed by EDF R&D.

Considered methods

The choice of the considered methods directly stands from the three main targets defined above. From a

general point of view, one can see that we seek to give the best state and parameter estimation in structural

dynamics problems from both a (FEM-based) mathematical model and a set of available experimental

data. Moreover, since model M(θ) is supposed to contain bias error, its a priori predictions are improved

and corrected by taking advantage of experimental (noisy) data.

Consequently, this work aims at solving a category of inverse problems where the existence of both

model and observation errors need to be taken into account. Inverse problems have been largely stud-

ied within the last decades in a wide range of applications. The reader may find a general overview

describing general theory and inversion techniques in [80]. More specifically in structural mechanics, a

general description of inversion methods can be found in [16, 13] or [91]. Depending on the nature of

the inversion problem, specific theories have come to light, for instance the Bayesian approach described

in [65] extending the inversion theory to a probabilistic framework.

In this work, Data Assimilation (DA) techniques have been investigated as a way to address inverse

problems related to the three above-described main objectives. DA aims at providing optimal state and

parameter estimation from the conjunction of uncertain experimental and numerical information. In that

sense, model and measurement errors are naturally taken into account, conveniently addressing the first

of our targets. Initially introduced in control theory as a method to track model changes in dynamical

systems, DA techniques have been widely and successfully used in the past two decades in problems

with strong time-varying systems, particularly in the area of geophysics (atmosphere, ocean). DA thus

opportunely suits our need of studying evolutionary mechanical properties.

Data Assimilation techniques, however, require good characterization of model and measurement

errors (a priori error knowledge) to provide proper system estimations. In the problems we want to

address, the a priori knowledge of modeling errors can be quite poor. We therefore enrich it by means of

the Error in the Constitutive Relation (ECR). The ECR belong to the category of inverse problems based

on energy functionals and represents an alternative to the classical least-square or reciprocity methods in

structural mechanics. In particular, the ECR presents interesting features that we propose to exploit such

as the ability to spatially localize model errors or the good (empirically observed) convexity properties

of cost functions near local minima.

www.code-aster.org
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Overview of the thesis

In light of the above topics and issues, this dissertation is divided into three parts. Part I gives an in-

troduction to Error in Constitutive Relation (ECR) and Data Assimilation (DA) techniques where the

formulation details and the interesting features of each approach are developed.

In the second, central, part of this dissertation, a general strategy combining DA and ECR methods is

proposed. While the first chapter of part II is devoted to building the proposed method, a second chapter

puts the strategy at work on problems of industrial relevance, such as structural damage assessment,

boundary conditions mis-modeling or field reconstruction. Finally, a third chapter proposes various

improvements of this approach, in particular studying the possibility of introducing constraints in the

Unscented Kalman filter framework and the influence of the covariance matrices design.

The third and last part of this thesis is devoted to assessing the capabilities and robustness of the

combined approach when applied to industrial complex problems. Two different applications are exam-

ined. The first one investigates the use of the ECR as a method to localize and characterize structural

damage. It is based in the so-called SMART international research benchmark started in 2007 by EDF

and CEA (the French Atomic Energy Commission) aimed at assessing the resistance of civil engineering

structures to seismic activity. The second application is devoted to an experimental campaign where a

reinforced concrete beam is placed in a testing bench that strongly modifies its dynamic behavior. The

combined approach is used to identify initially mis-modeled boundary conditions and improve the FE

model representativity.
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Chapter 1

Identification methods and Error in

Constitutive Relation

Contents

1.1 Reference Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Energy-based functionals. Introduction to the Error in Constitutive Relation . . . 6

1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Reference Problem

In the general framework of nature’s physics, and in particular in solid mechanics, it is often necessary to

evaluate or identify physical quantiti es governing a system of interest. In many cases, the sought-after

quantities (Young’s modulus, damping coefficients, etc.) may not be directly measurable and one has

to exploit other, measurable, quantities (accelerations, deformations, etc.) for the purposes of gaining

information. The principle of identification methods consists in establishing a mathematical relation

based on physical laws, also known as the model, linking both measurable and non-measurable quantities

in a way that the sought-after quantities (in some cases referred to as parameters) can be found from the

available measurements. Thus, from a mathematical point of view, the solution of such a problem may

encounter problems of existence, uniqueness and continuity of the solutions [13]. Hence, identification

methods may be considered in the category of inverse problems where, in contrast with the resolution of

a direct problem as illustrated in Figure 1.1, the problem of ill-posedness has to be overcome.

Figure 1.1: Illustration of a direct problem and its related inverse problem.
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Figure 1.2: Definition of the studied domain and its boundaries from available data.

From the mechanical point of view, the reference problem we aim to solve consists of studying the

evolution of a structure occupying a volume Ω represented in Figure 1.2 in a time interval t ∈ [0, T ].

The structural behavior is given by the solution of the reference problem defined by:

Find the displacements u(z, t) ∈ U(ū) and stresses σ(z, t) ∈ S(f̄) ∀t ∈ [0, T ], ∀z ∈ Ω
verifying the following relations:

- Equilibrium

− ρü(z, t) + div(σ(z, t)) = 0 (1.1)

- Constitutive relation

σ(z, t) = C(ε(u(z, t)), θ) (1.2)

where ε is the strain tensor and θ represents a given set of model parameters defining the structural prop-

erties (material, geometry, etc.). Moreover, the space of admissible displacements U(ū) and admissible

stresses S(f̄) are defined by:

{

U(ū) = {u(z, t) s.r. |u(z, t) = ū for z ∈ ∂uΩ and u(z, 0) = u0, u̇(z, 0) = u̇0}
S(f̄) = {σ(z, t) s.r. |σ(z, t) · n = f̄ for z ∈ ∂f Ω} (1.3)

where “s.r.” denote sufficiently regular functions defined on Ω of bounded strain and kinetic energy for

u(z, t) and square-integrable for σ(z, t), and n is the normal vector to the surface ∂Ωf .

The problem is said to be well-posed in the sense of Hadamard [16] if, and only if, the three following

conditions are verified:

1. A solution u(z, t) exists ∀z ∈ Ω, ∀t ∈ [0, T ] for given ū and f̄ .

2. The solution u(z, t) is unique.

3. The solution depends continuously on ū and f̄ .

Well-posedness requires in particular ∂Ω = ∂uΩ
⋃

∂f Ω and ∂uΩ
⋂

∂f Ω = ∅ (with reference to

Figure 1.2). In this description, the direct problem will be generally ill-posed for at least two reasons:

1. The presence of overdetermined data ū and f̄ in ∂fuΩ generally leads to the non-existence of the

solution, except for the case where ū and f̄ are compatible with the constitutive relation (1.2).
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2. The lack of data in a certain region of the boundary ∂0Ω can lead to non-uniqueness. This will

be particularly the case when ∂fuΩ = ∅. In this case, prescribing either force or displacement

boundary data on ∂0Ω restores well-posedness.

In our case, we will seek to find the set of model parameters θ and the solution field u satisfying

the above model equations (1.1) and (1.2) that better represents the available data. Since the available

data ū and f̄ might be noisy and overdetermined, and the model equations inaccurate with respect to real

physics (domain discretization, material,etc.), the solution of this inverse problem might be in many cases

ill-posed in the sense of Hadamard as it may not respect one or more of the above-listed conditions. In

the field of solid mechanics, many authors have investigated the identification of model properties from

observed data. To give an example, it has been shown in [20, 14] that, in the elastic case, the problem of

finding a field of distributed properties E(z) in the whole space Ω is an ill-posed problem in the sense of

Hadamard and the introduction of an a priori knowledge that approximates the solution is mandatory.

Several methods exist for solving problems of model properties identification, depending on the

nature of the problem (statics, dynamics, available data, etc.). The identification problem generally ends

up being formulated as an optimization problem, namely seeking the minimum of a cost function that

quantifies in a certain metrics the difference between a model prediction and the available data.

Among the different existing approaches for building suitable cost function, the following families

can be distinguished:

• The least-squares approaches [81] where the difference between data and the direct model solution

projected onto the observation space is measured with a L2 norm.

• An approach based on auxiliary fields. In linear mechanics, these approaches exploit the Maxwell-

Betti reciprocity theorem and generally cost functions are built upon the overdetermined data over

the boundary domain. An interesting example using this approach can be found in [3] for crack

detection inside an elastic body.

• An approach consisting on energy-based functionals, and particularly those based in the Error in

Constitutive Relation (ECR) for which a detailed description is given later.

On the other hand, the ill-posedness of the identification problem will generally lead to sensitivity

or instability of the solutions with respect to noisy data. To overcome this issue, we will distinguish

between two classical approaches:

• The widely used Tikhonov regularization techniques ([84], [13]) where an additional term is intro-

duced in the aforementioned cost functions. This term represents an a priori knowledge about the

sought-after solution and has the property to stabilize the results with respect to noise in data.

• The probabilistic approaches [80, 24, 6] where data and model uncertainties are quantified using

a stochastic framework, and a probability density function for the unknown parameters is usually

sought.

In the next section, a more in-depth description of ECR-based identification methods is provided.

For more information on inverse problems, the reader can find a general overview in [13, 81, 80] and in

particular for structural mechanics in [14, 16].
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1.2 Energy-based functionals. Introduction to the Error in Constitutive

Relation

In the case of the least-squares or the auxiliary fields approaches, the quality of a model is measured

by either the distance between the measured data to the solution of the direct problem or the reciprocity

gap. On the contrary, the energy-based functionals propose to measure the model error by evaluating

the difference between kinematically and statically admissible fields using an energy norm. Finding the

best admissible fields itself leads to the resolution of a secondary problem, leading to a two-step inverse

solution procedure for the general identification process.

This technique has first been introduced by P. Ladevèze in 1975 as a method to evaluate the quality of

the solution of a FE model [55], where the concept of Error in constitutive Relation (ECR) first appeared.

Since then, several versions and many applications have been proposed, see for example [57, 60, 70] for

model quality assessment or [19, 37, 42, 2, 67, 26] for model updating and identification problems.

The background idea of Error in Constitutive Relation can be introduced from two different points

of view:

• A first approach valid for Generalized Standard Materials (GSM) [43]. For such materials, the

constitutive equations are described from the expressions of the energy potential and the dissi-

pation potential. The difference between two admissible states associated with both force and

displacement boundary conditions are characterized by the residual:

e(ε, σ) = φ(σ) + φ∗(ε) − σ : ε (1.4)

where φ∗ is the potential defined by the Legendre-Fenchel transformation of φ. In the case of

elasticity, those potentials are defined by:

φ(σ) =
1

2
σT K−1σ, φ∗(ε) =

1

2
εT Kε (1.5)

where K is the Hooke tensor. This error is positive-definite and vanishes when the admissible

states are compatible with the constitutive relation. Thus, it can be used as a measure to build ECR

functionals.

• The second point of view comes from the principle of stability in the sense of Drucker which, for

a given structure, stipulates that for any couple of evolution states (considering the same initial

state) the following inequality stands:

∫ T

0

∫

Ω
(σ2 − σ1) : (ε2 − ε1)dzdt ≥ 0 ∀t ∈ [0, T ], ∀z ∈ Ω (1.6)

It can be shown that the Drucker error vanishes for the case where the two couples (σ1, ǫ1) and

(σ2, ǫ2) are compatible with both the history of boundary conditions and the constitutive relation,

the Drucker error being positive otherwise. Within the small perturbations principle, the response
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of a given structure is unique for all evolution coming from the same boundary condition history.

This uniqueness property is verified in most of the constitutive relations such as elasticity, plastic-

ity, viscoelasticity, etc. except from some singular cases (damage laws). Indeed, the integration of

the virtual work equations for a given structure gives:

∫ T

0

∫

Ω
(σ2 − σ1) : (ε2 − ε1)dzdt +

∫ T

0

∫

Ω

1

2
ρ(u̇1 − u̇2)2dzdt = 0 (1.7)

and considering the Drucker inequality (1.6) one can easily obtain:

∫

Ω

1

2
ρ(u̇1 − u̇2)2dzdt ≤ 0 ∀t ∈ [0, T ], ∀z ∈ Ω (1.8)

Hence, it is clear that for a given structure u̇1 and u̇2 are necessarily the same for all t ∈ [0, T ]

as the two evolutions have the same initial condition. Thus, deriving this expression, the history

of deformations must be identical and so has to be the history of constrains from the constitutive

relation law. This hypothesis has therefore been exploited to define a residual indicator based in

the Drucker inequality as a measure of the compatibility of the constitutive relation of a structure

with respect to the boundary conditions.

Since the introduction of such a concept, several studies have successfully applied this principle

to different applications such as model verification [58] and model updating problems [56, 59], under

linear or nonlinear conditions [10, 19], either in the frequency domain [27] or the time domain [36, 37].

Consequently, the constitutive relation appears to be an appropriate indicator of the quality of a model

with respect to measured data history and some particularly good properties deserve to be highlighted:

• Excellent ability to locate erroneously modeled regions in space. Indeed, in [10] it is demonstrated

that regions where the ECR density is high correspond to those which contain the most erroneous

constitutive relations.

• Strong robustness in presence of noisy data [37].

• Good convexity properties of cost functions [42].

In the following, classical formulations of the ECR are reviewed for the static and the dynamic

cases. Moreover, a frequency domain formulation is presented with a special interest for the case of a FE

framework.

Classic formulation. The static case.

In the field of static elasticity, the ECR can be formulated in one of its most classical forms. Consider

the case where ∂0Ω = ∅ and ∂uf Ω 6= ∅. Thus, the elasticity tensor C that better represents the available

data ū and f̄ is sought by solving the following minimization problem:
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Find the kinematic admissible field uKA ∈ U(ū), the static admissible field σSA ∈ S(f̄),

and the constitutive relation C that minimize:

J(uKA, σSA, C) =

∫

Ω
(σSA − C : ε(uKA)) : C−1 : (σSA − C : ε(uKA))dΩ (1.9)

where the admissible spaces are defined by:
{

U(ū) = {u(z) s.r. |u(z) = ū for z ∈ ∂uΩ}
S(f̄) = {σ(z) s.r. |σ(z) · n = f̄ for z ∈ ∂f Ω, div(σ(z)) = 0 for z ∈ Ω}

In this static case, it can be shown that the solution fields uKA and σSA are uncoupled. In practice,

this means that both fields can be computed separately as a Neumann and a Dirichlet problem respec-

tively.

Modified formulation. The dynamic case.

In the case of elastodynamics, nevertheless, it has been proved in [36, 2] that the resolution of an ECR

introduces an additional issue since the kinematic and dynamically admissible fields are coupled not only

by the constitutive relation (1.2) but also by the equilibrium equation (1.1). In addition, a regularization

technique is introduced to deal with the presence of noisy measurements. In this context, a modified

approach has been proposed by Feissel and Allix in [36]. In their investigations, they considered the case

with ∂0Ω = ∅ and ∂f Ω = ∂uΩ = ∂fuΩ. Their formulation of the ECR problem is summarized below:

Find the kinematic admissible field uKA ∈ U(ub), the dynamic admissible field σDA ∈ S(fb, u), and

the constitutive relation C that minimize:

J(uKA, σDA, C) =

∫ T

0

∫

Ω
(σDA − C : ε(uKA)) : C−1 : (σDA − C : ε(uKA))dΩdt

+

∫ T

0

(

∫

∂uΩ
du(ub, ū)dS +

∫

∂f Ω
df (fb, f̄)dS

)

dt

(1.10)

where the admissible spaces are defined by:
{

U(ub) = {u(z, t) s.r. |u(z, t) = ub for z ∈ ∂uΩ, u(z, 0) = u0, u̇(z, 0) = u̇0}
S(fb, u) = {σ(z, t) s.r. |σ(z, t) · n = fb for z ∈ ∂f Ω, −ρü(z, t) + div(σ(z, t)) = 0 for z ∈ Ω}

where the terms du and df represent a discrepancy measure to be defined (usually based on the L2 norm,

e.g. du(v, w) = ‖v − w‖2)).

In all the cases, the ECR approach relies upon distinguishing between two sets of relations: reliable

and unreliable. The latter will therefore be relaxed by simply introducing them in the ECR functional and

finding a solution that best fulfills them. In the case of elastodynamics defined in (1.10) the following

sets of relations can be introduced:
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• Reliable relations:










−ρü + div(σ) = 0
u(z, 0) = u0

u̇(z, 0) = u̇0

(1.11)

• Unreliable relations and quantities:










σ = Cε
ū

f̄

(1.12)

An interesting work by Feissel, Allix and Nguyen in [37, 67] has recently shown that in the identifi-

cation process by means of ECR functionals, the obtainment of admissible fields uKA and σDA and the

correction of the constitutive relation C are two well-separated steps and therefore one can use different

functionals to solve each problem. In particular in one of the examples the identification problem is

defined as follows:

Given a constitutive relation C, find the fields σDA ∈ S(fb, u), uKA ∈ U(ub) minimizing

J(uKA, σDA, C) =

∫ T

0

∫

Ω
(σDA − C : ε(uKA)) : C−1 : (σDA − C : ε(uKA))dΩdt

+

∫ T

0

(

∫

∂uΩ
du(ub, ū)dS +

∫

∂f Ω
df (fb, f̄)dS

)

dt

(1.13)

where S(fb, u) and U(ub) are defined in (1.10) and the functional used to measure the

discrepancy on the constitutive relation is

G(uKA, σDA, C) =

∫ T

0

∫

Ω
(σDA − C : ε(uKA)) : C−1 : (σDA − C : ε(uKA))dΩdt (1.14)

This approach has been tested with satisfying results in a 1-D case where the Young’s modulus is

sought and the measurement noise reached 60%. Experiments were realized for both homogeneous and

heterogeneous moduli. In all the cases, the ECR approach presented excellent properties of robustness

against noisy data as well as good convexity properties of cost functions. However, the research per-

formed in [36] and [67] clearly pinpointed one of the major limitations of this method: its computational

cost when solving the minimization problem. As a matter of fact, the resolution of the ECR problem in

elastodynamics leads to a large system of space-time equations where the admissible fields are coupled

to the solution of a time-backwards adjoint problem. Hence the application of such a formulation for

an industrial size problem is still an area of open research. In the following we will use the frequency

domain formulation which is presented below.

Frequency-domain formulation. Application to a FE formulation.

In the scope of the present work and with the aim to avoid prohibitive computational costs that would

prevent the use of the ECR in industrial cases, a frequency-domain formulation will be adopted from now
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on. This derivation of the ECR was studied by [19] in a FE framework and further adopted by [26, 27] to

a high DOF case. Thus, this version of the ECR is the most suitable when dealing with linear FE models

of industrial size.

To fix the ideas, consider the above equations (1.1) and (1.2) and assume that the sought-after solu-

tions are of the form:

ℜ(uω(z)eiωt), ℜ(σω(z)eiωt) (1.15)

where ℜ(·) represents the real part of a complex number and ω is the angular frequency. Then, equation

(1.1) can be rewritten as:

− ρω2uω(z) + div(σω(z)) = 0 (1.16)

When it comes to the constitutive relation, the following expressions are considered:
{

σω(z) = (K + iωC)ǫ(uω(z))
Γω(z) = −ρω2uω(z)

(1.17)

where Γω represents the inertial forces, and K and C are respectively the Hooke and damping tensors.

From the above equations (1.17), the following spaces are defined:










U(ū) = {uω(z) s.r. |uω(z) = ū for z ∈ ∂uΩ}
S(f̄) = {σω(z) s.r. |σω(z) = (K + iωC)ǫ(vω(z)), σ(z) · n = f̄ for z ∈ ∂f Ω}
D(σ) = {Γω(z) s.r. |Γω(z) = −ρω2wω(z), Γω(z) + div(σω(z)) = 0 for z ∈ Ω}

(1.18)

where uω(z), vω(z) and wω(z) are displacement fields and in the sequel will be denoted u, v and

w respectively for the sake of clarity. Thus, the Drucker inequality (1.6) can be rewritten, for a given

angular frequency ω, by considering a triple of displacement fields only, as:

ξ2
ω(u, v, w) =

∫

Ω
{γ

2
Trace[(K + Tω2C)(ǫ(v) − ǫ(u))∗(ǫ(v) − ǫ(u))]

+
1 − γ

2
ρω2(u − w)∗(u − w)}dΩ

(1.19)

where γ ∈ [0, 1] is a weighting scalar indicating the relative quality of the constitutive relations

(1.17) and the superscript “∗” represents the complex conjugate. Hence, from the above definition (1.18)

of admissible spaces we will refer to u as a kinematically admissible field, v as a dynamically admis-

sible field related to the K and C tensors and w as a dynamically admissible field related to inertial forces.

Since the expression of the Drucker error has been defined for the frequency domain, the following

expressions can be developed in order to be applied for the study of real structures.

A relative structural error can be defined as:

ξ2
ωr =

ξ2
ω

D2
ω

(1.20)

where D2
ω represents the reference structural energy defined by:

D2
ω =

∫

Ω
(
γ

2
Trace[(K + Tω2C)ǫ(u)∗ǫ(u)] +

1 − γ

2
ρω2u∗u)dΩ (1.21)



1.2. ERROR IN CONSTITUTIVE RELATION 11

Besides, if we are interested in studying the influence of different regions of Ω to the global error,

we might consider a subdivision of sub-domains E ∈ E of Ω in a way that Ω =
nE
⋃

i=1
Ei. Thus, the global

error can be interpreted as the contribution of all the local errors and we obtain:

ξ2
ωr =

∑

E∈Ω

ξ2
ωEr (1.22)

Moreover, when studying the behavior of a structure in the frequency domain, it is natural to be

interested in its behavior in a bandwidth of interest [ωmin, ωmax] of angular frequencies. Thus, we can

define the bandwidth relative error as:

ξ2
T r =

∫ ωmax

ωmin

η(ω)ξ2
ωrdω (1.23)

where η(ω) is a weighting function defined over [ωmin, ωmax] satisfying the following condition:

∫ ωmax

ωmin

η(ω)dω = 1 η(ω) ≥ 0 (1.24)

In most of the industrial and application cases, and in the particular scope of interest of this work,

the study of structural dynamic behavior is performed by means of Finite Element models. In order to

adopt the above error expressions in a FE framework, the discretization of equation (1.16) leads to the

following matrix equation:

[−ω2[M ] + jω[C] + [K]]{q} = {F} (1.25)

where [M ], [C] and [K] are the so-called mass, damping and stiffness matrices respectively. Moreover,

{F} and {q} are the vectors of nodal forces and displacements. Within this framework, the following

considerations will be made with regard to the inverse problem we aim to solve:

• ∂0Ω = ∅
• The prescribed loading f̄ over ∂f Ω is considered as a reliable information (e.g. external loadings,

free surfaces, etc.) and directly embedded in {F}.

• A set of unreliable displacement data ũ (e.g. sensor measurement on a free surface) is available

over ∂fuΩ.

• Displacement data ū are restricted to the boundary ∂u\f Ω = ∂uΩ − ∂fuΩ and considered as a

reliable information (e.g. clampings). This reliable kinematic information is generally enforced in

the construction of model matrices by either introducing Lagrange multipliers or by considering

matrices with active DOFs only, which is the solution adopted in the sequel.

Hence, the above FE matrix equation (1.25) and the Drucker inequality (1.19) leads to the following

expression of the modified Error in Constitutive Relation in a FE framework:
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Find the kinematic admissible field u ∈ U(Π, ū), and the dynamic admissible fields (v, w) ∈
D({F}, ū) minimizing:

e2
ω({u}, {v}, {w}) =

γ

2
{u − v}∗[K + Tω2C]{u − v} +

1 − γ

2
{u − w}∗ω2[M ]{u − w}

+
r

1 − r
{Πu − ũ}∗[GR]{Πu − ũ}

(1.26)

where the admissible spaces are defined by:














U(Π, ū) = { {u} s.r. |∑N
i=1 uiϕi(z) = ū for z ∈ ∂u\f Ω, u(z) = Π{u} for z ∈ ∂fuΩ}

D({F}, ū) = { {w}, {v} s.r. |
∑N

i=1
viϕi(z) =

∑N

i=1
wiϕi(z) = ū for z ∈ ∂u\f Ω,

[K + iωC]{v} − ω2[M ]{w} = {F} }

where (ϕ1, . . . , ϕN ) are the basis functions, r is a weighting scalar, Π a projection operator from

the space of structural nodal displacements to the observation space and [GR] represents a symmetric

positive-definite matrix. Notice that, in this formulation, unreliable displacements ũ are introduced as an

additional term in the ECR functional (1.26). As described for the dynamic formulation in time domain,

this consists of the modified formulation and corresponds to the regularization term stabilizing the solu-

tions in case of noisy data (e.g. experimental measurements). Moreover, although the choice of matrix

[GR] is not a priori defined it is usually chosen to be dimensionally consistent with the induced energy

norm as proposed in [26, 27]. In our case the following choice is made:

[GR] =
γ

2
[[KR] + Tω2[CR]] +

1 − γ

2
ω2[MR] (1.27)

where the index “R” represents the Guyan reduction on the observation space.

Hence, in order to evaluate the discrepancy of a FE model with respect to a set of measurements, a two

step method is adopted:

1. Given a set of model parameters θ that parametrize [M ] = [M(θ)], [C] = [C(θ)], [K] = [K(θ)],

obtain the triple of admissible fields Tω = (û, v̂, ŵ) that minimizes (1.26). This minimization

problem leads to the resolution of linear equations as developed in Appendix B.

2. Evaluate the model error by computing e2
ω(Tω, θ), or its relative form

e2
ω(Tω ,θ)

D2
ω(û,θ)

In the present work, we aim not only at studying model errors in a bandwidth of frequencies, but also

at monitoring their spatial distribution over Ω. For these reasons, from now on, the following expression

is adopted to evaluate the total model error:

ξ2
T r =

∫ ωmax

ωmin

η(ω)





∑

E∈Ω

e2
Eω(Tω, θ)

D2
ω(û, θ)



 dω (1.28)

Thus, since the triple of admissible fields solution of (1.26) depends on θ (Tω = Tω(θ)), the problem

of finding the best set of model parameters θ that better represents the noisy data ū can be written as:

θ̂ = arg min
θ∈Θ

ξ2
T r(θ) (1.29)



1.2. ERROR IN CONSTITUTIVE RELATION 13

where Θ is the space of admissible parameters.

The well-behaved nature of functional (1.28) with respect to θ is one of the main features that we aim

to take advantage of in this work. A visual example is presented in Figure 1.3, where a ξ2
T r functional is

evaluated in a 4-DOF dynamic system for different values of stiffness (k) and mass (m) as described in

Figure 1.3(a), where all displacements are supposed to be observed and the external load is supposed to

contain a single frequency. This surface is compared to the one obtained with a least square functional

of the form ‖ũ − Πqdirect‖2, where qdirect represents the solution of the associated direct problem. As it

can be seen in Figure 1.3(b) and Figure 1.3(c), the ECR functional exhibits a clear minimum while the

least square surface presents several local minima and peaks.

(a) 4-DOF system definition

1
2

3

1

2

3

10
0

m /m
0

k /k
0

(b) ERC functional (ξ2
T r)

1
2

3

1

2

3
m /m

0

k /k
0

(c) Least squares functional ‖ũ − Πqdirect‖

Figure 1.3: Comparison between ECR and least squares functionals convexity for a 4-DOF dynamic

system varying stiffness (k) and mass (m) parameters.

To conclude with the frequency-domain FE formulation of the ECR, it is important to point out some

of its main features that make them particularly interesting for our usage:

• Model data is introduced in this ECR version on the basis of [M ], [C] and [K] matrices. Those

objects are classically used in FE software, which facilitates the manipulation of ECR concepts.

• The adopted ECR formulation is based on displacement fields only. Again, this feature facilitates
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its integration in FE software. The computation of e2
Eω and D2

ω is a straightforward calculation of

elementary and/or global energies.

• Large-DOF models can be studied either by using convenient sparse matrix operators or by imple-

menting model reduction techniques as proposed in [27].

• Obtaining the triple of admissible fields Tω does not require the computation of the adjoint solution

(as required in the time-domain formulation) which in some cases can be a difficult task to perform

within the classical FE software functions.

1.3 Conclusions

In this chapter, the general concepts of the Error in Constitutive Relation have been introduced as a

suitable basis for identification problems in structural mechanics. The ECR approach is a measure of

the discrepancy of admissible fields which can be derived from either the Drucker error or the Legendre-

Fenchel error. Here, classical and modified formalisms are presented and, in particular, the adequacy of

the FE frequency-domain formulation to industrial contexts is highlighted.

As a matter of fact, ECR-based approaches present specific features that make them particularly

attractive when dealing with an identification problem in structural mechanics: good convexity of cost

functionals, ability to localize model errors in space, and robustness in the presence of of noisy data. For

these reasons, they are adopted in this work as a tool to both enhance the a priori model error knowledge

and alleviate the stability problems when performing parameter identification with Kalman filtering (KF),

which are presented in the next chapter. Combining Kalman filtering and ECR make up the core of this

work and is further developed and studied in part II.
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2.1 Introduction

The main purpose of data assimilation (DA) techniques consists of providing a system state estimation

from all the available information obtained from both numerical simulation and physical observations

of all kinds. Thus, the final aim of all DA techniques is to provide optimal past, present and, most

importantly, future state estimations. To do so , many different techniques exist to enrich the system’s

theoretical knowledge (also referred to as the a priori knowledge) with the help of available observations.

The origins of data assimilation go back to the 1940 decade when Norbert Wiener showed a growing

interest to build optimal predictors for stationary time series [89], proposing a first application in the

ballistics domain during the Second World War. The Wiener predictors were somehow reviewed during

the 1960’s by Rudolph E. Kálmán to extend the formalism to non-stationary time series, giving birth to

the celebrated Kalman Filter (KF) [53].

Since its origins, data assimilation techniques have seen a vast and still growing number of applica-

tions, providing a theoretical framework for addressing problems of very diverse nature, such as avionics

and spaceship control, medical imaging, neutron transport, optimal interpolation, system identification,

etc. Data assimilation can therefore be considered as an approach for solving inverse problems.

Nowadays, DA is widely employed in the domain of external geophysics (weather forecast, oceanog-

raphy, etc.) for the purpose of reconstructing the initial state of chaotic systems (Lorenz, atmosphere,

15
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etc.) for whom the quality of the initial state guess crucially affects the reliability of future predictions.

The reader can refer to [66, 68, 69] for some illustrative examples.

In addition to the aforementioned usage of data assimilation techniques, numerous research has been

done towards solving various parameter identification problems. In the field of structural mechanics, one

of the first works (Hoshiya et al. [47, 48]) employed a Kalman filter approach for structural identification

purposes in a FE framework. More recently, many other works have proposed a sequential approach

based on Kalman filtering to perform parameter identification, see for example a cohesive crack model

identification proposed by Bolzon et al. in [12], or a Kalman filter based strategy for linear structural

system identification in [85]. In parallel, despite the increasing success of Kalman filter methods in struc-

tural mechanics, many other studies began to highlight some of its limitations, as studied by Corigliano

et al. in [23, 22, 21] concerning problems of divergence of the method in a nonlinear identification

framework. Besides, other contributions like [64] and [61] point to some other difficulties related to the

stabilization of the estimates or the problem of dealing with high DOF models, with different strategies

adopted to improve their performances.

In this chapter, an introduction to data assimilation concepts is presented. We will first introduce the

basic ideas of the two main families of data assimilation techniques, i.e. the variational and the sequential

approaches. Furthermore, an application example will illustrate the adequacy of the sequential approach

to the problem of time variant structural identification. For more details, the reader may refer to [11]

for a general overview on data assimilation techniques, and [40, 44, 75, 41, 76] for deeper and specific

considerations on the use of Kalman filter.

2.2 Concepts and classic notation in data assimilation

In this section we introduce the essential concepts of DA techniques and the notations that are generally

used. For this, a causal system governed by a finite number of state variables is considered. The evolution

of such a system is studied within a time interval t ∈ [0, T ], where a finite number N of observations are

available at a discrete time instants tk = [t0, t1, ..., tN−1]. Thus, the purpose of data assimilation is to

provide a best estimator of system states over time.

Moreover, the system is represented by the following discrete stochastic equations:

{

Xk+1 = Mk(Xk, wk)
ũk = Hk(Xk, vk)

(2.1)

where at time t = tk, Xk ∈ R
n and ũk ∈ R

m represent the vector of states and the vector of

observations respectively. Also, Mk(· ) is the so-called transition operator while Hk(· ) represents an

observation function establishing the relationship between the internal state and observable variables.

Finally, wk and vk are stochastic process modeling the error noise in state and observation equations.
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Both noises are assumed to be unbiased and therefore satisfy the following conditions:

{

E[wk] = 0
E[wkwT

l ] = Qkδkl
(2.2)

{

E[vk] = 0
E[vkvT

l ] = Rkδkl
(2.3)

where Qk and Rk are the so-called model and observation error covariance matrices respectively. In

general, for the sake of simplicity, errors are assumed to be additive and, what is more, the hypothesis

of Gaussian stochastic process is made. Notice that although the unbiased character of wk and vk might

seem restrictive, an a priori unknown system bias can be introduced in Mk(· ) and Hk(· ) without any

loss of generality.

All data assimilation methods aim at finding the best estimation of the true state Xtrue
k at each time

instant tk = [t0, t1, ..., tN−1]. The result of such an estimation is a vector Xa
k of the same dimension

as Xtrue
k , generally referred to as the analyzed state. In some cases, the vector Xa

k is referred to as the

best estimate and can also be written as X̂k. In many cases, the estimated state Xa
k is used to predict the

system state at time t = tk+1 by means of Mk(· ). Thus, the obtained state is referred to as the a priori

state estimation and is generally denoted Xb
k+1, where the superscript b stands for “background”. Since

the vector of states is assumed to obey a stochastic process, each quantity is consequently associated with

an error covariance matrix:

Xb
k 7−→ P b

k , Xa
k 7−→ P a

k (2.4)

generally referred to as the background and analysis error covariance matrices.

2.3 Sequential and variational formalisms: Kalman filter and 4D-Var

In this section the two main families of data assimilation techniques are presented. All of them can be

interpreted as a natural extension of the well-known Best Linear Unbiased Estimator (BLUE) which is

described in detail in Appendix A. However, for the sake of clarity the background ideas are summarized

herein.

Consider a time-independent linear problem where both an a priori state estimation {Xb, P b} and a

vector of observations ũ with its associated measurement error covariance matrix R are available. Thus,

the best linear unbiased estimation is given by the expressions:

{

Xa = Xb + K(ũ − HXb)
P a = (I − KH)P b (2.5)

where H is the related linear observation operator and K, the so-called gain matrix, is given by the

expression:

K = P bHT (R + HP bHT )−1 (2.6)
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The above equations are obtained by seeking an unbiased estimator that minimizes the committed scalar

error measure (Trace(P a)).

Within the BLUE formalism, one can traditionally distinguish two main families in data assimilation

techniques: the sequential methods, based on the stochastic estimation theory where the most widely

used approach is the Kalman filter ([44], [40], [75]) and, on the other hand, the variational methods

based on control theory, whose most representative form is the 4D-Var ([11]).

For the sake of clarity, it is important to point out that the main difference between both the 4D-Var

and the Kalman filter with respect to the BLUE is that the former incorporate the possibility of a time-

variant system, evolving in a period of time t ∈ [0, T ] for which a state estimation is sought for a finite

sequence of instants tk = [t0, t1, ..., tN−1]. For this, a so-called Markov model Mk(· ) is required as

defined in equation (2.1).

2.3.1 Variational formalism: 4D-Var

In the interest of extending the stochastic interpolation principle to a general nonlinear time-dependent

case, the BLUE formalism has been adapted into a variational approach whose most accomplished form

is the 4D-Var. This formalism, broadly used in the field of Numerical Weather Prediction (NWP), pro-

poses to find the sequence of optimal states estimations as the solution of a global error optimization

problem, resulting in an incremental four-dimensional variational problem.

To introduce this formalism, let’s consider a state vector X = [X0, X1, X2, ..., XN−1] being the

assembly of N state vectors at instants tk = [t0, t1, t2, ..., tN−1]. Thus, the 4D-Var seeks to solve the

following optimization problem:

Find the optimal state X̂ = [X̂0, . . . , X̂N−1] that minimizes:

J(X) = (X0 − Xb
0)T (P b

0 )−1(X0 − Xb
0) +

N−1
∑

k=0

(ũk − HkXk)T (Rk)−1(ũk − HkXk) (2.7)

subjected to:

Xk+1 = Mk(Xk), ∀k ∈ [0, N − 1], k ∈ N

The first approach to solve the above constrained optimization problem simply consists of introduc-

ing Lagrange multipliers ΛT
k and formulating the optimality conditions verified by the Lagrangian:

L(X, Λ) = J(X) +
N−1
∑

k=0

ΛT
k (Xk+1 − Mk(Xk)) (2.8)

However, in the very frequent case of discrete models, a reasoning consisting in expressing the func-

tional J(X) of N variables in terms of the initial state X0 only, which transforms the original problem

(2.7) into the unconstrained optimization of J̃(X0) := J(X). This can be done by simply writing the

dependence of all state variables Xk on X0 as:

Xk = Mk−1(. . . (M1(M0(X0))) (2.9)



2.3. KALMAN FILTER AND 4D-VAR 19

or, for the linear case:

Xk =

(

k−1
∏

i=0

Mi

)

X0 (2.10)

Without getting into the details, the solution of such a problem is obtained by solving for X0 the

optimality condition:

∇J̃ = 0 (2.11)

Therefore, the solution can be obtained by:

Xa
0 = Xb

0 − H−1
0,N ∇J̃(Xb

0) (2.12)

where H−1
0,N represents the inverse Hessian of J(·) for a data assimilation window [t0, . . . , tN ]. Hence,

the data assimilation problem under the 4D-Var formalism consists in finding the initial state estimation

X0 that best fits a set of measurements within a time window.

Independent of the chosen method for solving the initial constrained optimization problem (i.e. using

the Lagrange multipliers ΛT
k or calculating H−1

0,N and ∇J̃), the solution of such a problem requires

the introduction of adjoint variables and, consequently, the construction of adjoint operators MT
k (·).

Although numerically well defined, the adjointization might lead to technical problems, in particular for

high DOF complex systems solved with public or commercial simulation software. However, although

alternative techniques such as “Nudging“ [8] exist to avoid the construction of adjoint operators, they are

still an area of open research.

In Figure 2.1, a representation of a 4D-Var data assimilation process is presented for a small sequence

of time intervals.

Figure 2.1: Principle of data assimilation by means of the 4D-Var approach.

One will remark that, when using a 4D-Var formalism, the sequence of state estimates [Xa
0 , Xa

1 , · · · ,-

Xa
N−1] is an admissible solution of Mk(·) in the sense of a Markov chain with respect to the initial state

since this condition is strongly introduced as a constraint in the optimization problem. That means,
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in other words, that the only adjustment variable is the initial state guess and, moreover, that model

equations are considered as reliably predicting the state estimation at all other instants. Consequently,

the 4D-Var is not well suited to the use of inaccurate models since the only assumed error concerns the

initial state guess Xb
0. In addition, in the case of large time windows with a high number of time instants,

the sensitivity of functional J̃(·) with respect to the initial condition X0 might be very poor, leading to

an ill-conditioned inverse problem with potential numerical issues.

Taking the extreme case of subdividing the time interval tk = [t0, t1, ..., tN−1] into N-1 segments

[tk, tk+1] and searching a best state estimation at each time step leads to the solution given by the Kalman

filter. The Kalman filter is a prediction-correction recursive algorithm which, at each time step, uses the

transition model Mk(·) to propagate optimal states and obtain a future state prediction Xb
k+1. This state is

then used as an a priori information to be corrected with observations and obtain a final state estimation

Xa
k+1. Thus, the sequence of state estimates [Xa

0 , Xa
1 , ..., Xa

N−1] is not necessarily admissible in the

sense of Markov with respect to Xa
0 . However, this particularity allows us to obtain state estimations

that might be ”unreachable“ with the sole use of an inaccurate mathematical model. Considered in the

present work as a major asset when using inaccurate FE models, the Kalman filter algorithm is presented

and described next.

2.3.2 Sequential formalism: The Kalman filter.

As mentioned in the beginning of this section, the sequential approach consists in performing a statisti-

cal interpolation (or maximum likelihood estimation) between the a priori system information and the

observed data at each time step tk as the process goes on. To do so, for each instant tk, only immediate

past data is used. This approach is also referred to as either recursive or an on-line algorithm. In the

linear case, the Kalman filter [53] gives the optimal recursive algorithm for sequential state estimation.

To introduce this algorithm without giving all of its details, suppose that the studied system can be

described in a similar way to (2.1) where now the transition and observation functions are linear with

additive noises. The state-space description becomes:

{

Xk+1 = MkXk + wk

ũk = HkXk + vk
(2.13)

where equations (2.2) and (2.3) are still valid. The Kalman filter equations then proceed, at each time

instant tk ∈ [t0, t1, ..., tN−1], in two different steps:

1. A correction step where a best state estimate Xa
k and P a

k is obtained by optimally combining

observed data and a priori state knowledge.

2. A prediction step where the estimates Xa
k and P a

k are used to obtain the next a priori state estimates

Xb
k+1 and P b

k+1 with the help of model equations.

The Kalman filter principle is schematically depicted in Figure 2.2 and the sequential equations of

Kalman filter are summarized in Figure 2.3.
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Figure 2.2: Principle of data assimilation by means of the Kalman filter approach.

Linear Kalman filter

1. Filter initialization

Xb
0 and P b

0

2. At each time step tk = [t1, ..., tN ]

A CORRECTION

Compute Kalman gain

Kk = P b
kHT

k (Rk + HkP b
kHT

k )−1 (2.14)

Correct state best estimate

Xa
k = Xb

k + Kk(ũk − HkXb
k) (2.15)

Correct state covariance estimate

P a
k = (I − KkHk)P b

k (2.16)

B PREDICTION

Predict next step a priori state

Xb
k+1 = Mk+1Xa

k (2.17)

Predict next step a priori state covariance

P b
k+1 = Mk+1P a

k MT
k+1 + Qk (2.18)

Figure 2.3: Sequential linear Kalman filter equations.
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Hence, the Kalman filter gives a sequential formalism for optimal state estimation in stochastic linear

systems. To summarize, it is interesting to highlight the following points:

• Kalman filter performs at each time step tk a BLUE optimal interpolation with the only need of

state information at tk−1.

• Model equations Mk are used to propagate means and covariances of the states based upon the

corrected states.

• The sequence of state estimates [Xa
0 , Xa

1 , ..., Xa
N−1] is not necessarily a Markov process of model

Mk.

• The Kalman filter does not provide a general framework applicable to nonlinear systems.

• Propagating covariance matrices in large-DOF systems can entail high computational cost.

The last two listed items represent the major issues of Kalman filtering and since its beginnings,

abundant research has been done to overcome them. In the present work, although a Kalman filter

approach will be adopted, the problem of reducing the vector state dimension won’t be directly addressed

from the filtering point of view. Instead, an alternative approach will be adopted based in the Error in

Constitutive Relation as described in chapter 1. However, it is interesting to point out that, when dealing

with large-DOF systems, evolved filtering methods exist aiming to reduce the computational cost related

to covariance matrix operations. In most of the cases, a particular technique to perform Karhunen-Loëve

decomposition is sought. The most significant reduced cost algorithms are recalled hereafter (see [11]

for more details):

• The RRSQRT filter (Reduced Rank SQuare RooT). This filter is a natural evolution of the KF

where only a reduced number of covariance eigenvectors are considered. Covariances are hence

written as Pk = Sk(Sk)T where Sk is of size n × m and m ≪ n. Thus, the computational cost is

considerably reduced by expressing covariance matrix operations depending in Sk only.

• The SEEK filter(Single Evolutive Extended Kalman). This formulation stands upon the existence

of a covariance steady state which solves a discrete matrix Riccati equation.

• The SEIK filter (Single Evolutive Interpolated Kalman). This filter takes the same principle as the

SEEK but uses an ensemble technique to deal with nonlinear systems.

Concerning the extension of Kalman filtering to nonlinear systems, the most representative ap-

proaches, namely the Extended Kalman filter and the Unscented Kalman filter, are now summarily de-

scribed.

Extending the Kalman filter to nonlinear systems

As a consequence of its usefulness and ease of implementation, Kalman filtering has widespread appli-

cations to engineering, e.g. robotics, aircraft tracking, chemical plant control [22, 47, 76, 72, 61, 64].

From its inception, researchers have investigate ways to extend Kalman filtering to nonlinear systems. In

the following, two of the most widely used nonlinear Kalman filters are presented: the Extended Kalman

filter and the Unscented Kalman filter.
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The Extended Kalman filter (EKF)

The Extended Kalman filter is the most ”natural” extension of the linear KF formalism to nonlinear

systems. As a matter of fact, the EKF proposes to adopt the original KF formulation where the tangent

model and observation operators are used as first order approximation of the corresponding nonlinear

relations. Here, we consider the nonlinear system with additive noise:

{

Xk+1 = Mk(Xk) + wk

ũk = Hk(Xk) + vk
(2.19)

where the wk and vk process are still characterized by (2.2) and (2.3). Furthermore, we define:

• M ′
k ≡ ∂Mk(X)

∂XT

∣

∣

∣

∣

X=Xk

as the linear tangent model operator.

• H ′
k ≡ ∂Hk(X)

∂XT

∣

∣

∣

∣

X=Xk

as the linear tangent observation operator.

The resulting Extended Kalman filter algorithm is given in Figure 2.4.

By virtue of its origins and its simplicity, the Extended Kalman filter has probably been, and still

is, the most used Kalman filter formalism, including in structural mechanics (see for example [61] and

[12]), as it presents a simple and often efficient approach for dealing with nonlinearities. Nevertheless,

this approach can suffer from high inaccuracies and stability problems as demonstrated in [22] where it

has been shown that the filter diverges for the cases where the filtering time step ∆t = tk − tk−1 is not

small enough to correctly capture nonlinearities.

For these reasons, alternative approaches have been developed to improve the accuracy and efficiency

of the Extended Kalman filter. These include the so-called ensemble methods, and in particular the

Unscented Kalman filter (UKF), which embeds many interesting features.

The Unscented Kalman filter (UKF)

As discussed above, the Extended Kalman filter is based on a first-order Taylor expansion of nonlinear

functions Mk(·) and Hk(·) as a strategy to approximate nonlinearities. However, depending on the nature

and strength of the nonlinearity, a first-order approximation can introduce sufficiently high inaccuracies

to make the filter diverge or become unstable [22].

To overcome this issue, the ensemble methods were developed during the 1990’s. Inspired by Monte-

Carlo sampling, the ensemble methods propose to avoid approximating nonlinear functions and, instead,

propagate a sufficiently high number of state samples through the true nonlinear equations to further

approach the transformed mean and covariance by computing a posteriori sample statistics. The reader

can find a general overview on particle filters in [7, 17].

The first filter that implemented the idea of propagating sample states was the Ensemble Kalman

Filter (EnsKF) proposed by Evensen in [33], a general overview of which being given in [34]. However,

a rigorous mathematical background developed during the early 90’s allowed Julier and Ulhmann to

introduce in 1996 the so-called Unscented Kalman filter in [50]. The particularity of this approach
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Extended Kalman filter

1. Filter initialization

Xb
0 and P b

0

2. At each time step tk = [t0, ..., tN−1]

A CORRECTION

Compute Kalman gain

Kk = P b
k(H ′

k)T (Rk + H ′
kP b

k(H ′
k)T )−1 (2.20)

Correct state best estimate

Xa
k = Xb

k + Kk(ũk − Hk(Xb
k)) (2.21)

Correct state covariance estimate

P a
k = (I − KkH ′

k)P b
k (2.22)

B PREDICTION

Predict next step a priori state

Xb
k+1 = Mk+1(Xa

k ) (2.23)

Predict next state a priori state covariance

P b
k+1 = M ′

k+1P a
k (M ′

k+1)T + Qk (2.24)

Figure 2.4: Sequential Extended Kalman filter equations.

resides in the choice of the propagated sample points, called the sigma points. Based on the mathematical

properties of the Unscented Transformation [51], sigma points are chosen in a way that guarantee second-

order accuracy of the transformed random variables with a minimal number of sample points. This results

into a second-order, reduced-cost, Kalman filter where means and covariances are computed accurately.

Hence, this approach differs from the EKF in that the approximation is made on posterior probability

functions rather than on the nonlinear system functions.

To illustrate this purpose, Figure 2.5 shows the principle of the Unscented transformation compared

to the linearization approach.

As most of variants of Kalman filters, the Unscented version is also divided into a sequence of

correction-prediction steps where the nonlinearity issues are overcome with the help of the mathematical

Unscented transformation. In addition to the equations of the UKF presented below, the details on the
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Figure 2.5: Illustrative comparison between the Unscented and linearization methods for nonlinear

stochastic transformations.

Unscented transformation are given in Appendix C. The reader may refer to [49, 50, 51, 52] for all

justifications on accuracy and construction of the Unscented transformation.

For the sake of clarity, before presenting the UKF equations, recall that the Unscented transformation

stands on the following three main steps:

1. Build a proper set of sigma points of the a priori stochastic process.

2. Propagate all the sigma points through the true nonlinear functions.

3. Evaluate a posteriori statistics on the transformed sigma points to approach mean and covariances.

The UKF algorithm is summarized in Figure 2.7, with the formulation details given in Appendix C.

The list below presents some of the advantages of the UKF compared to other filtering paradigms,

which constitute the reasons for its adoption in the present work:

• The Unscented transformation ensures a second-order accuracy algorithm, improving on precision

and stability with respect to the EKF first-order algorithm.

• The UKF does not require the explicit evaluation of Jacobian and Hessian operators. Those are

computed similarly to the finite differences technique making the UKF particularly well adapted

to a use within a FE software.

• The UKF computational cost is of same order as the EKF: O(n3) for state estimation version and

O(n2) for parameter identification where n is the size of the state or parameter vector respectively

(see [52, 45] for more details).
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2.4 Example of nonlinear identification by means of the Unscented KF

In nuclear power plants, a controlled fission reaction takes place in a core reactor resulting into the

production of heat. This energy is used to propel a multi-stage steam turbine assembled to an alternator

device allowing the production of electricity. One of the numerous safety barriers consists in isolating a

primary irradiated fluid circuit that passes across the core from a secondary turbine propeller circuit. Heat

transfer between both circuits is performed by a steam generator that actually acts as a safety component

and is composed of hundreds of U-shaped tubes vertically held by support plates as shown in Figure

2.6(a). During in-operation conditions, steam generator tubes vibrate as a consequence of the external

fluid excitation and usually hit the support plates at their basis. Sometimes, the presence of a sludge

deposit between tubes and support plates not only modifies the secondary fluid flow but also triggers

a fluid-elastic instability, potentially leading to rapid tube destruction. Hence, the survey of the gap

between the U-shaped tubes and the support plates becomes a major safety issue.

A highly simplified 3-DOF model shown in Figure 2.6(b) is used to study the ability of the UKF

algorithm to perform gap identification in this nonlinear structural dynamic framework. The considered

governing matrix equation is:

[M ]{q̈} + [C]{q̇} + [K]{q} = {Ffluid(t)} + {Fcontact(t, q1)} (2.25)

where [M ], [C] and [K] are the associated mass, damping and stiffness matrices while {q} = {q1 q2 q3}T

is the vector of nodal displacements. On the other hand {Ffluid(t)} represents the external fluid forces

and is modeled as the following centered Gaussian stochastic process:

{Ffluid(t)} ∼ {0 0 N (0, 30)}T (2.26)

Steam exit

Separators

Secondary 

inflow

Anti-vibration 

device

Anular space

U-shaped tubes

support plate

tubular plate

Primary inflowPrimary outflow

Transverse 

diphasic

flow 

excitation

Transverse 

monophasic

flow 

excitation

(a) Steam generator scheme and tube-support plate contact zone. (b) 3-DOF model with contact in

node N1

Figure 2.6: Tube to support plates gap identification problem in steam generators.
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Unscented Kalman filter

1. Filter initialization

Xb
0 et P b

0

2. At each time step tk = [t0, ..., tN−1]

A CORRECTION

Compute sigma points around the state estimate Xb
k

[Xb
k] = {Xb

k..Xb
k + γ

√

P b
k ..Xb

k − γ
√

P b
k} (2.27)

Propagate sigma points through the nonlinear observation function

[yb
k] = H([Xb

k]) (2.28)

Compute the expectation of yb
k through the weighting factors W m

j

ŷb
k =

2L
∑

j=0

W m
j [yb

k]j (2.29)

Compute Kalman gain Kk = P XY
k (P Y Y

k )−1 (2.30)

P Y Y
k =

2L
∑

j=0

W c
j (([yb

k]j − ŷb
k)([yb

k]j − ŷb
k)T ) + Rk (2.31)

P XY
k =

2L
∑

j=0

W c
j (([Xb

k]j − Xb
k)([yb

k]j − ŷb
k)T ) (2.32)

Correct state estimate

Xa
k = Xb

k + Kk(ũk − ŷb
k) (2.33)

Correct state covariance estimate

P a
k = P b

k − Kk(P XY
k )T (2.34)

B PREDICTION

compute sigma points around Xa
k

[Xa
k ] = {Xa

k ..Xa
k + γ

√

P a
k ..Xa

k − γ
√

P a
k } (2.35)

Propagate sigma points through the nonlinear model function

[Xb
k+1] = Mk+1([Xa

k ]) (2.36)

Predict best state estimate

X̂b
k+1 =

2L
∑

j=0

W m
j [Xb

k+1]j (2.37)

Predict best state covariance estimate

P b
k+1 =

2L
∑

j=0

W c
j (([Xb

k+1]j − X̂b
k+1)([Xb

k+1]j − X̂b
k+1)T ) + Qk (2.38)

Figure 2.7: Sequential Unscented Kalman filter equations for nonlinear system estimation.
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Moreover, {Fcontact(t, q1)} is a nonlinear contact force applied to node N1 and is modeled as:

{

{Fcontact(t, {q})} = {0 0 0}T if |q1| ≤ dgap

{Fcontact(t, {q})} = −Kcontact · {q1 0 0}T if |q1| > dgap
(2.39)

where Kcontact and dgap are scalars representing respectively the contact stiffness and the gap between the

tubes and the support plates.

In this example, a reference model is run in order to obtain synthetic measurements with the following

system properties:

• m1 = 1kg, m2 = 0.75kg, m3 = 2kg

• k1 = 10N/m, k2 = 10N/m, k3 = 10N/m

• ci = 0.05mi + 0.001ki

• Kcontact = 1000N/m

• time-varying gap with initial value dgap = 8mm

In order to solve the dynamic equation of motion (2.25), the following explicit Euler integration

scheme is used:

{

{q̇}k+1 = {q̇}k + [M ]−1({Ffluid}k + {Fcontact}k − [K]{q}k − [C]{q̇}k)
{q}k+1 = {q}k + ∆t{q̇}k+1

(2.40)

Figure 2.8 shows both the obtained external fluid effort and contact force for one realization in the time

interval t = [0, 45]s with ∆t = 0.001s.
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(b) Contact force Fcontact.

Figure 2.8: Evolution of Ffluid(t) and Fcontact(t, q1) in a simulation used to obtain synthetic measure-

ments.

To illustrate the identification process by means of the Unscented Kalman filter a state-space rep-

resentation as described in (2.19) has to be built. First of all, the following augmented state vector of

unknowns is adopted:

Xk = {q̇1 q̇2 q̇3 q1 q2 q3 dgap Ffluid}T
k (2.41)

Indeed, the state vector is referred to as “augmented“ since it includes not only the system states {q̇}k and

{q}k but also the unknown parameters dgap and Ffluid therefore resulting in a joint state and parameter
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estimation. Notice that the fluid forces Ffluid are considered as states variables since their deterministic

value is unknown. Thus, a transition operator Mk associated with Xk can be built upon the Euler scheme

(2.40) for the six first components of Xk. On the other hand, while no evolution equations are known for

parameters, a stationarity hypothesis is a priori assumed:











∂dgap

∂t
= 0

Ffluid

∂t
= 0

⇒
{

dgap k+1 = dgap k

Ffluid k+1 = Ffluid k
(2.42)

This results into the following expression for the transition operator:

Mk(Xk) =



















{q̇}k + [M ]−1({Ffluid}k + {Fcontact}k − [K]{q}k − [C]{q̇}k)
{q}k + ∆t{q̇}k+1

dgap k

Ffluid k



















(2.43)

Concerning the observation equation, in this example, displacement and accelerations are supposed

to be measured for the non-contact nodes (N2 and N3) leading to the measurement vector:

ũk = {q2 q3 q̈2 q̈3}T (2.44)

Thus the consequent linear observation operator Hk can be obtained from both the equilibrium equa-

tion (2.25) and the state vector (2.41). It is defined by:

Hk =











0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

c2/m2 −(c2 + c3)/m2 c3/m2 k2/m2 −(k2 + k3)/m2 k3/m2 0 0
0 c3/m3 −c3/m3 0 −k3/m3 k3/m3 0 1/m3











(2.45)

Hence, the following state-space formulation is considered:
{

Xk+1 = Mk(Xk) + wk

ũk = HkXk + vk
(2.46)

where the noise processes are characterized by:










































E[wk] = 0

E[wkwT
l ] = Qkδkl =

















Qq̇
k

. . . 0

Qq
k

. . .

. . . Qd
k

0
. . . QF

k

















δkl
;

{

E[vk] = 0
E[vkvT

l ] = Rkδkl
(2.47)

where, in this case, the following values have been considered:

Rk = 10−4I4 Qq̇
k = 10−5I3 Qq

k = 10−5I3 Qd
k = 10−3 QF

k = 10−3 (2.48)
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The application of the above described Unscented algorithm provides a state and parameter estima-

tion of the dynamic system. In Figure 2.9 we provide the results for the UKF gap estimate in front of

the actual time-varying value despite an a priori unknown evolution law. As it can be seen, during the

initial phase, the algorithm searches a wide range of values of dgap . However, the UKF prediction rapidly

stabilizes around the actual value and satisfactorily tracks its evolution over time (see a closer zoom in

Figure 2.9(b)). Notice that, although rapid changes are globally captured, the quality of the estimation is

not constant, and this is basically due to the fact that in some cases (at t = 10s for example), while the

gap value evolves the system oscillates in a region of low and changing contact, so the gap information

is hard to capture. In other cases (t = 20s) contacts are sufficiently strong to faster capture the system’s

contact gap information.
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(b) Zoom on time window from t = 5 − 45s

Figure 2.9: Contact gap parameter identification using the Unscented Kalman filter.

In Figure 2.10 we show the identified unobserved displacement q1 where after some initial misfitting

the estimated displacement satisfactorily reproduces the actual values.

In this example, the UKF has been successfully used to identify the contact gap parameter in a

nonlinear dynamic system excited by an unmeasured random external force. The implementation leads
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Figure 2.10: Unobserved N1 displacement identification using the Unscented Kalman filter.

to a joint state and parameter identification problem which has the ability to track the parameter evolution

over time. Moreover, the use of the UKF does not require the calculation of Hessian or Jacobian operators

making it particularly suitable to implement in FE codes with black-box functions.

2.5 Conclusions

In this chapter the principles of data assimilation techniques have been introduced and classified into two

main families: the variational formalism where the 4D-Var is its most accomplished approach, and the

sequential formalism where the Kalman filter is the most representative algorithm.

Although the 4D-Var presents the important advantage of being a general approach for all dynamic

systems, it presents two major disadvantages within the scope of this work: firstly, it requires the com-

putation of an adjoint operator, which is generally difficult to implement in FE codes, and secondly the

result of the optimization problem is necessarily an admissible solution of the mathematical model, which

impedes the identification of a priori unknown time-varying parameter laws. However, the latter goal

is achievable with the Kalman filter formalism since exact admissibility need not be enforced. Despite

the ease of implementation of the Kalman filter, this formalism presents two main issues: the extension

to nonlinear problems and the use of high DOFs systems. In this chapter, two approaches applicable

to nonlinear problems have been presented: a linearization approach (EKF) and the ensemble approach

(UKF). The UKF is retained in this work for both its higher accuracy and its ease implementation.

In the general case of studying complex structures with a large number of DOFs, model errors are

generally a priori poorly known. Thus, the problem of identifying distributed model parameters (varia-

tion of Young’s modulus for damage detection, structural modification detection, identifying mass den-

sity distributions, etc.) will become an ill-conditioned problem [20]. Hence, applying Kalman filtering

to such a problem may lead not only to divergence or unstable solutions but also to extremely expensive

identification algorithms since a high number of parameters is sought.
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To overcome this issue, we propose in part II to use the Error in Constitutive Relation technique as a

strategy to improve the a priori model error knowledge and, by this, both reduce the computational cost

and reduce the ill-poseness of the inverse problem.



Part II

Towards a combined use of Kalman

filtering and Error in Constitutive Relation

Introduction

This part is dedicated to studying the combined application of the Error in Constitutive Relation and

Kalman filtering techniques in an effort to improve FE model representativity. It aims at establishing a

general-purpose identification approach for industrial use. Accordingly, special attention is devoted to

both the relevance of the addressed problems and the viability of their numerical implementation.

In this context, this second part is structured into three main chapters. The first chapter describes

the main features of interest of each of the ECR and KF techniques, in preparation for building a gen-

eral strategy combining both. The second chapter is devoted to a study of the adequacy of the proposed

ECR-UKF approach for addressing issues of industrial interest. To this end, the problems of structural

damage identification, boundary condition mis-modeling identification and field reconstruction are inves-

tigated with the help of numerical examples. Finally, the third chapter aims at improving the numerical

ECR-UKF algorithm in two different axes: the introduction of algebraic constraints on the sought-after

parameters and the influence of the parameter error covariance design in the quality of the results. Both

of them are based on the above-studied case of boundary condition mis-modeling identification.

All of the numerical simulations presented herein have been performed within the environment of

the public FE software Code Aster (www.code-aster.org) developed by the research division (R&D)

of EDF. In most of the investigations carried out herein, specific routines associated with the particular

needs of the ECR and UKF algorithms were required. They are implemented combining both Python

language and Code Aster operators. The reader will find further details on such implementation as well

as user-oriented advices in Appendix D.

www.code-aster.org
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3.1 Purpose

In this chapter we propose a general strategy for system identification in structural dynamics based on

coupling Kalman filtering and Error in Constitutive Relation techniques. The reason for doing so is

to take advantage and combine their interesting individual features (as described in chapters 1 and 2)

resulting in a general strategy that contains all of them.

Recall that it is assumed to have at our disposal both a set of measurements ũ over the studied

structure and a FE mechanical model of the form:

[−ω2[M(θ)] + iω[C(θ)] + [K(θ)]]{q} = {F} (3.1)

where the existence of model and measurement errors is assumed. Moreover, the available a priori

information on model errors can be quite scarce and we thus seek within this approach to:

• Improve the a priori knowledge of model errors by a preliminary analysis exploiting the measure-

ments in order to build proper data assimilation operators.

• Perform system identification considering evolutionary mechanical properties.

35
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Figure 3.1: General scheme for the combined use of Error in Constitutive Relation (ECR) and Kalman

Filtering (KF).

In this context, the proposed strategy is based in three main background ideas. The first is to improve

the a priori model errors knowledge by using the ECR ability to localize model errors in space and

determine their nature. Once this information is available, the second step consists of building a new

state-space formulation for data assimilation purposes. This mainly consists of choosing a reduced subset

of parameters to be identified and take advantage of the well-conditioned character of the ECR cost

functionals by introducing them into the Kalman Filter framework. Finally, the third step incorporates

these elements and consists in solving the identification problem by applying a Kalman Filter algorithm

in order to obtain an a posteriori estimation of the structure evolution.

For the sake of clarity, Figure 3.1 gives a general overview of the main steps of the Error in Consti-

tutive Relation and Kalman Filter combined strategy.

In light of the above-mentioned topics and issues, this chapter presents the details for each of the

main steps presented in Figure 3.1, each of which is addressed in one of the following three sections.

The last section of the chapter presents an illustrative example giving the details of the main steps of this

approach.

3.2 Improving a priori knowledge with the ECR

In this section we present an approach whose goal is to improve the a priori knowledge of model errors

based on a preliminary frequency-domain ECR analysis. The choice of using the ECR method to do so

is motivated by some of its interesting properties described in chapter 1 that might be exploited further.

In particular, a useful property of the ECR that one wants to exploit is its ability to spatially local-

ize modelling errors. Indeed, as presented in chapter 1, given a set of model parameters θ the ECR

functionals are used to first obtain a triple of “best” admissible fields Tω = (û, v̂, ŵ) that minimize an

energy-based cost functional, which in our FE framework is chosen to be:

e2
ω({u}, {v}, {w}) =

γ

2
{u − v}∗[K + Tω2C]{u − v} +

1 − γ

2
{u − w}∗ω2[M ]{u − w}

+
r

1 − r
{Πu − ũ}∗[GR]{Πu − ũ}

(3.2)

whose minimization is discussed in Appendix B.

Qualitatively speaking, the triple Tω contains the information of the model quality with respect to a

set of measurements ũ for an angular frequency ω. As a matter of fact, notice that if the model is perfect,
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the field û coincides with ũ at sensor locations leading to û = v̂ = ŵ. On the other hand, if the assumed

model is unable to exactly reproduce the information contained in ũ, then differences between û, v̂ and

ŵ may appear and the model is thus deemed erroneous in the sense of the constitutive relation error.

In order to quantify the quality or the agreement of the model with respect to ũ, the evaluation of the

triple Tω through an ECR indicator is required. This can be done evaluating:

ξ2
ωr(û, v̂, ŵ, θ) =

e2
ω(û, v̂, ŵ, θ)

D2
ω(û, θ)

(3.3)

Moreover, notice that since the admissible fields (û, v̂, ŵ) are defined over the whole structure Ω, the

evaluation of (3.3) can be performed either over the whole structure Ω or any other sub-structure E ∈ Ω.

Since the global model error is additive with respect to Ω, it can be recast as a sum of local errors of

each sub-structure:

ξ2
ωr(û, v̂, ŵ, θ) =

∑

E∈Ω

e2
ωE(û, v̂, ŵ, θ)

D2
ω(û, θ)

+ du(û, ũ, θ) (3.4)

where

du(û, ũ, θ) =
r

1−r
{Πû − ũ}∗[GR]{Πû − ũ}

D2
ω(û, θ)

=
‖Πû − ũ‖GR

D2
ω(û, θ)

(3.5)

In the case of the FE formulation, taking each finite element as a sub-structure yields the distribution of

the model error indicator over the structure. It is known [10] that parts of the sub-structure affected by

modeling errors are highlighted by the distribution provided by e2
ωE(û, v̂, ŵ, θ). This is precisely one of

the main properties that we are exploiting in the present strategy in order to improve a priori knowledge

of model errors.

Hence, by performing this preliminary ECR analysis we can distinguish the parts of Ω that need

to be updated from those for which the model shows better agreement (in the sense of the constitutive

relation error) with respect the measurements. This is rich and useful information that can considerably

reduce the number of model parameters to be identified and importantly improve the conditioning of the

inversion.

In a second time, one can obtain a more accurate knowledge of the nature of the model error by

studying the different contributions of ξ2
ωr. Recall that in the right-hand side of (3.4) the error distribution

is given by:

e2
ωE(û, v̂, ŵ, θ)

D2
ω(û, θ)

= IndKE
+ IndME

(3.6)

where

IndKE
=

γ
2 {û − v̂}∗[K + Tω2C]E{û − v̂}

D2
ω(û, θ)

=
‖û − v̂‖KE ,CE

D2
ω(û, θ)

(3.7)

IndME
=

1 − γ

2
{û − ŵ}∗ω2[M ]E{û − ŵ}

D2
ω(û, θ)

=
‖û − ŵ‖ME

D2
ω(û, θ)

(3.8)
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Aside from the normalizing term D2
ω(û, θ), the expression (3.6) reveals that the error indicator is the sum

of two main contributions. While the first can be associated with the strain energy of the discrepancy

between ũ and ṽ, the second term corresponds to a kinetic energy of the discrepancy between ũ and w̃.

For low damping models, it can be shown (see [10]) that contribution IndKE
is mainly related to a

stiffness error while contribution IndME
are typically related to mass errors. In the following, we will

use IndKE
and IndME

to detect stiffness and mass errors of the mechanical model, respectively.

Consequently, from a preliminary ECR analysis, one can identify regions from the structure that

need to be updated and also distinguish the nature of the parameters involved in the error. Figure 3.2

summarizes the different steps needed to perform the preliminary ECR analysis.

I Preliminary ECR analysis.

(a) Define a frequency range of interest [ωmin, ωmax].

(b) For ω ∈ [ωmin, ωmax] and given θ obtain the triple of admissible fields Tω =
(û, v̂, ŵ) by solving optimality equations associated with the ECR cost functional

e2
ωE({u}, {v}, {w}) defined in (1.26) .

(c) Obtain the distribution over Ω of the ECR indicator by evaluating for each substrucure

E ∈ Ω:

ξ2
Er =

∫ ωmax

ωmin

η(ω)

(

e2
ωE(Tω, θ)

D2
ω({û}, θ)

)

dω

(d) Select potential incorrectly regions E ∈ Ω based on the previous error distribution

using the selection criterion:

ξ2
Er ≥ δ. max

E∈Ω
ξ2

Er ⇒ E ∈ E

with δ a user-defined value, for example δ = 0.8

(e) Distinguish from the nature of the error by evaluating the contributions IndKE
and

IndME
of ξ2

Er as defined in (3.7) and (3.8) for E ∈ E.

Figure 3.2: Overview of the preliminary ECR analysis to improve a priori model error knowledge.

Besides the interests of the above-mentioned ECR properties, namely localize incorrectly modeled

regions of the structure and distinguish their nature, the chosen formulation adopted in the present work

is also particularly adapted to represent error fields over Ω. As a matter of fact, since the adopted

formulation describes all the error fields in terms of nodal displacements, valuable information can be

extracted from the admissible fields (û, v̂, ŵ) and can be used to build structural response field estimators.

In an effort to propose a state estimation within the framework of the combined use of ECR and Kalman

filtering, the last section 4.3 of the next chapter is devoted to studying the performances of using Tω for
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field reconstruction purposes.

3.3 Introducing the ECR functionals into Kalman Filtering

As presented above, we discuss herein how the Kalman filter can be used as a technique to deal with a

general optimization problem without losing the generality of time-varying systems.

The essence of this method is to understand the Kalman Filter algorithm as a quasi-Newton descent

method that encodes second-order information about the identification problem by means of the covari-

ance matrices.

In the following, we present the analogies between the Kalman filter and the recursive optimization

problem in a linear framework and also its natural extension to the non-linear case. An explanatory

formulation of the Extended Kalman filter as a quasi-Newton descent method is proposed for a better

understanding of the reasons for the introduction of the proposed state-space formulation embedding

ECR cost functionals.

To illustrate this idea, assume that we deal with a linear system where we have at our disposal a

number N of measurements ũk ∈ R
m related to a linear matrix model Hk ∈ Mm,n(R) in a way that:

ũk = HkX + ηk for k ∈ [0, 1, . . . , N − 1] (3.9)

where X ∈ R
n represents a vector of states and ηk denotes a (measurement or model) error. Furthermore,

assume that we want to tackle with the problem of minimizing the least squares cost functional given by:

X̂ = Argmin
X

J(X) =
1

2

N−1
∑

k=0

(ũk − HkX)T R−1
k (ũk − HkX) +

λ

2
XT LX (3.10)

where Rk is a symmetric positive-definite weighting matrix and λ
2 XT LX represents a regularization

term since matrix L is chosen to be positive-definite too. The solution of such a problem can be found in

a recursive manner by the algorithm presented in Figure 3.3 (see [79] for more details on this algorithm).

Besides, in the context of parameter identification through Kalman filtering, a mathematical model

concerning parameter evolution laws is needed. Generally, in the absence of a priori knowledge about

evolution laws for the parameters, stationarity is assumed. In that particular case, this comes to consider

an identity matrix as the parameter evolution model and the Kalman filter equations can be rewritten as

presented in Figure 3.4.

Comparing Figure 3.3 and Figure 3.4 one can observe that performing parameter estimation by means

of the Kalman Filter only differs from the linear recursive algorithm by the introduction of matrix Qk

in the covariance update step (Hessian inverse update step for the case of the recursive algorithm). The

origin of this difference comes from the fact that, in Kalman Filter state-space formulation, one assumes

the presence of model errors. In fact, the stationarity equation is in this case written of the form:

Xk+1 = Xk + ǫk (3.11)
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Recursive algorithm for a linear optimization problem

I Initialization

X̂0 = (HT
0 R−1

0 H0 + λL)−1HT
0 R−1

0 ũ0

P0 = (HT
0 R−1

0 H0 + λL)−1

II For k ∈ [1 . . . N − 1]

1 Evaluate gain Kk for step k

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1

2 Optimum update at step k as a result of the introduction of the

new measurement ũk

X̂k = X̂k−1 + Kk(ũk − HkX̂k−1)

3 Hessian inverse update at step k

Pk = (I − KkHk)Pk−1

Figure 3.3: Recursive algorithm solving a least square optimization problem for linear systems.

where ǫk represents a term of error in the stationarity assumption.

From a variational point of view, assuming the existence of such a “stationarity“ error naturally mod-

ifies the cost function (3.10) that we are seeking to minimize by the introduction of an additional term.

This term takes into account the existence of εk and the goal to minimize its variance. Hence, one can say

that the Kalman filter is an algorithm that aims at finding the sequence of estimates {X̂0, X̂1, · · · , X̂N−1}
that minimizes J :

J(X0, X1, · · · , XN−1) =
1

2

N−1
∑

k=0

[(ũk − HkXk)T R−1
k (ũk − HkXk) + (Xk − Xk−1)T Q−1

k (Xk − Xk−1)]

(3.12)

where the symmetric positive-definite matrix Qk weights the condition of stationarity of X , which is

treated as a penalty term (and is thus allowed to be satisfied approximately, rather than exactly).

From this particular point of view, it is interesting to highlight the following remarks concerning the

role of Qk:

1. Similar to the λ
2 L term in (3.10), the covariance matrix Qk introduces a regularization term in the

cost function (3.12) at each iteration k, which is similar to Tikhonov regularization.

2. From a sequential point of view, the covariance matrix Qk plays a role of “memory” in the esti-
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Parameter identification using linear Kalman Filter

I Initialization

X̂0 = E[X0] and P0 = E[(X0 − X̂0)(X0 − X̂0)T ]

II For k ∈ [1 . . . N − 1]

1 Compute Kalman gain Kk at step k

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1

2 Parameter update at step k

X̂k = X̂k−1 + Kk(ũk − HkX̂k−1)

3 Covariance update at step k

Pk = (I − KkHk)Pk−1 + Qk

Figure 3.4: Linear Kalman Filter algorithm for parameter identication.

mation procedure. Indeed, the stationarity condition of X is weakened by the presence of process

noise εk (characterized by Qk). Thus, when looking at the expression (3.12), one can observe

that the larger the eigenvalues of Qk, the smaller the penalty of (Xk − Xk−1). In the same way,

one can make the analogous remark for (Xk − Xj) with k − j > 1. Consequently, the larger the

eigenvalues of Qk, the faster the algorithm “forgets” past values of Xk.

3. As a direct consequence of the above-mentioned properties, the introduction of Qk allows the

Kalman filter algorithm to handle time-variant systems since the parameter stationarity becomes a

weak condition. This is one of the main features sought in this work.

4. From the identification point of view, the estimation X̂k for sufficiently large k has a small sensi-

tivity to the initial conditions X0 and P0 since the covariance matrix Qk behaves as a “forgetting

factor”. This is particularly interesting for systems where the a priori knowledge of the initial

estimates is poor.

All the identification methods presented above are optimal estimators since the mathematical model

Hk is linear. When addressing the estimation problem for nonlinear systems, a large number of exten-

sions of the recursive linear algorithm exist and are known as sub-optimal procedures. Under the Kalman

filter formalism, one of the most widely used approach to tackle with nonlinear systems is the so-called

Extended Kalman filter (EKF) which is presented in more details in section 2.3.2. As previously men-

tioned, the EKF extends the standard Kalman filter algorithm by simply linearize the state-space nonlin-

ear models at each instant around the most recent state estimate. Hence, the EKF uses the information
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contained in the Jacobian operator to approach nonlinearities.

In the sequel, the EKF parameter identification formalism is compared to a quasi-Newton descent

method for the sake of clarity. However, the Unscented Kalman filter will be adopted, which can be

simply seen as a more accurate variant of the EKF that behaves similarly.

To fix the ideas, assume now that h(X) is our nonlinear mathematical model and h′
k represents the

linear tangent operator of h(·) at Xk. Thus, the EKF equations applied to h(X) are shown in Figure 3.5.

Parameter identification using the Extended Kalman Filter.

I Initialization

X̂0 = E[X0] and P0 = E[(X0 − X̂0)(X0 − X̂0)T ]

II For i ∈ [1 . . . k]

1 Compute Kalman gain Kk at step k

Kk = Pk−1h′T
k (h′

kPk−1h′T
k + Rk)−1

2 Parameter update at step k

X̂k = X̂k−1 + Kk(ũk − h(X̂k−1))

3 Covariance update at step k

Pk = (I − Kkh′
k)Pk−1 + Qk

Figure 3.5: Extended Kalman Filter algorithm for parameter identification.

Suppose now that the nonlinear function that we used as a model is a cost functional of the type

(3.10) that includes both a physical model and a set of measurements. In other words, our mathematical

model h(·) is now supposed to be a function J : R
n −→ R, J ′ being its Jacobian. In this particular

configuration of the Kalman filter, it is important to point out some important features that will help to

better understand the interest of this approach:

• The observation space in this particular configuration of the Kalman filter is no longer the space of

physical observations ũk. As a matter of fact, the new observation space measures, through J(X)

the discrepancy between our physical model and measurements ũ.

• Physical measurements ũk are implicitly embedded in the cost functional J(X) and don’t appear

directly in the new observation space. We therefore define a new observation variable zj that will

play the role of a “target value” for the discrepancy measure J(X).

• Since times steps k are implicitly included in J(X), the recursive framework in this particular

configuration is related to the iterative optimization process and is materialized using the subscript
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j in order to better distinguish it from discrete time steps k.

Taking into account the above considerations and rearranging terms of the EKF description given in

Figure 3.5, on can observe that the EKF performs a quasi-Newton descent method to evaluate the descent

steps and the Hessian update. In Figure 3.6 we describe the EKF algorithm in a Newton method fashion

and one can easily observe this similarity.

quasi-Newton method description of the Extended Kalman filter

I Initialization

X̂0 = E[X] and P0 = E[(X − X0)(X − X0)T ]

II For j ∈ [1 . . . N − 1]

1 Compute descent direction dj for step j

dj = PjJ ′(Xj)T

2 Compute descent coefficient ηj for step j

ηj =
zj − J(Xj)

J ′(Xj)T PjJ ′(Xj) + Rj

3 Parameter update at step j

Xj+1 = X̂j + ηjdj

4 Hessian inverse update at step j

Pj+1 = [I + ηjdj
J ′(Xj)

J(Xj)
]Pj + Qk

Figure 3.6: Description of the EKF for parameter identification as a quasi-Newton method.

In most of the cases, since the problem of minimizing the functional J(·) is addressed, it is natural

to fix the value of the target zj to the desired goal, which for minimization purposes is set to zj = 0 ∀j.

When doing this, the EKF seeks to minimize the cost function J(X) in a particular quasi-Newton method

where the Hessian inverse update and the descent coefficient are given in Figure 3.6.

It is convenient, though, to state some remarks about this particular algorithm:

• Rj influences the value of the descent coefficient ηj and controls convergence speed. In fact, one

can consider the Rj parameter as a damping factor of the algorithm: ηj is a decreasing function of

Rj , hence large values of Rj slow down the convergence avoiding fast variations of the estimates

(stability).

• Matrix Qj modifies the information contained in the Hessian inverse, changing the descent direc-
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tion dj throughout the iterative procedure. In addition to its regularization effect at each iteration

j, Qj also affects the convergence and stability of the algorithm.

• By making the analogy with the classic descent and quasi-Newton methods, it is important to point

out that parameter identification within a Kalman filter framework doesn’t guarantee reaching

globally optimal estimators if the cost functional presents local minima. Hence, it is important to

pay special attention to the convexity of J and the initial estimates X0.

Choice of ECR functionals as a measure of the observation space

In the previous section, we have discussed the analogy between the recursive least squares optimization

problem and Kalman filtering. We have seen how, in the linear case, the Kalman filter is an optimal

estimator of a modified least square problem where the functional has the ability to handle time-variant

systems. This is specifically done by postulating the presence of an error εk in the stationarity equation

(3.11). Furthermore, we have shown how the EKF, which is a natural extension of the Kalman filter to

deal with nonlinear problems, can be seen as a particular quasi-Newton method from a minimization

point of view.

Considering the case where a cost function is introduced as a mathematical model in the observation

space with a new observation variable z, we know that any of the Kalman filter derivations will aim to

minimize (up to a regularization term), the residual
∑

j(zj − ẑ)T
j (zj − ẑ)j where zj is a target value and

ẑj is the best estimate at iteration j. Therefore, Kalman filtering can be used as a general algorithm to

tackle a minimization problem.

Hence, since the Error in Constitutive Relation functionals are very well suited to parameter identi-

fication problems in structural mechanics, we propose to introduce them in the observation space as the

chosen measure of the discrepancy between a mechanical model and physical measurements. Thus, the

proposed state-space formulation for parameter identification takes the form:

{

θj+1 = θj + wθ
j

ζj = ξ2
T r(θj) + ej

(3.13)

where vector θj parametrizes the mechanical FE operators [M ], [C] and [K] at step j as defined in (3.1).

Besides, wθ
j and ej represent zero-mean Gaussian additive errors for the stationarity and the observation

equations through the ECR cost function respectively with:



















E[wθ
j ] = 0

E[wθ
j wθT

l ] = Qjδjl

E[ej ] = 0
E[ejeT

l ] = Rjδjl

(3.14)

Moreover, while ξ2
T r(θj) gives a measure of the quality of the mechanical model through the ECR

cost function (1.28), the term ζj represents a target value for ξ2
T r(θj).
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3.4 Solving the identification problem by using ECR - UKF coupled method

In the foregoing sections, we have seen how the Error in Constitutive Relation can be used to improve

the a priori lack of knowledge of FE model errors. Moreover, we have presented the Kalman filter as an

algorithm to solve a general optimization problem, allowing ECR cost functions to be introduced into a

suitable state-space formulation. Based on the previous developments, this section now gives the details

of the algorithm used to solve the parameter identification problem combining both Error in Constitutive

Relation and Unscented Kalman filter.

For this, assume that a preliminary ECR analysis as described in Figure 3.2 has been performed.

From this improved a priori model error information, it is possible to select a reduced size model vector

θ of parameters for model updating. Furthermore, since an unknown evolution of model parameters is

sought, a stationarity law weakened by a random error is assumed:

θ̇ = 0 + W(t) (3.15)

where W(t) is a random process. The presence of W(t) in the evolution law of θ relaxes the stationarity

condition and as a consequence can be exploited to approach the parameter evolution law. At this point,

time-discretizing (3.15) and introducing ECR functionals as a measure of the observation space leads to

a state-space description of the problem as described in (3.13) and (3.14).

Since Kalman filter algorithms attempt to minimize the residual
∑

j ‖ej‖Rj
where ej = ζj −ξ2

T r(θj),

the minimization of ξ2
T r(·) can be obtained by simply postulating:

ζj = 0 ∀j (3.16)

It is easy to observe that the aforementioned state-space description requires a nonlinear Kalman

filter approach, since the observation operator ξ2
T r(·) is a nonlinear function of θ. In the present work,

the use of the UKF is proposed and is motivated by the following reasons:

• The UKF achieves second order accuracy of model functions for any (sufficiently smooth) nonlin-

earity improving the performances of the Extended Kalman filter.

• The UKF is particularly well suited for implementation in a FEM environment, as it does not

require actual explicit evaluation of the Jacobian and Hessian of the nonlinear equations. This

information is instead obtained by a minimal set of carefully chosen sample points.

• The same order of complexity O(n2) as EKF can be achieved for parameter estimation [45].

The details of the Unscented Kalman filter applied to the ECR minimization problem are given in

Figure 3.7.

3.5 Numerical example of structural parameter identification

In this section, we describe the application of the combined ECR-UKF strategy with a numerical exam-

ple. It aims at highlighting the main steps involved when putting the strategy to use and demonstrating

its validity.
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ECR based Unscented Kalman filter for parameter estimation

I Filter initialization

θ0 = E[θ] and P θ
0 = E[(θ − θ0)(θ − θ0)T ]

II For j ∈ [1 . . . ∞]

1 Build matrix of sigma points around θj

[θj ] = {θj θj +
√

(m + λ)P θ
j θj −

√

(m + λ)P θ
j }

2 Propagate sigma points through the ECR cost function ξ2
T r(·)

[ζj ] = ξ2
T r([θj ])

3 Best estimate ζ̂j through Unscented weighting factors W m
k

ζ̂j =
∑2L

k=0 W m
k [ζj ]k

4 Compute Kalman gain

Kθ
j = P θζ

j (P ζζ
j )−1

P ζζ
j =

∑2L
k=0 W c

k (([ζj ]k − ζ̂j)([ζj ]k − ζ̂j)T ) + Rj

P θζ
j =

∑2L
k=0 W c

k (([θj ]k − θj)([ζj ]k − ζ̂j)T )

5 Parameter update

θj+1 = θj − Kθ
j ζ̂j

6 Covariance update

P θ
j+1 = P θ

j − Kθ
j (P θζ

j )T + Qj

Figure 3.7: Description of the Unscented Kalman filter with ECR cost functions in observation space

for minimization purpose.

For this, we propose to study the dynamical behavior of a simplified concrete beam subjected to

an external time-harmonic load. The structure is supposed to have free-clamped extremities and the

presence of a damaged region is assumed.

Figure 3.8(a) shows a Finite Element model used to generate synthetic data. The structure is supposed

to have elastic properties and the presence of damage d is modeled as:

d =
Eref − Etrue

Eref

(3.17)
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PERFECT BC

DAMAGED ELEMENT

F

(a) Free-clamped concrete beam with structural dam-

age.

PERFECT BC

F

Sensor

(b) Set of sensors over the concrete beam

Figure 3.8: FE model used to generate synthetic measurement data.

where Eref represents a reference structural Young modulus and Etrue the actual Young modulus of the

damaged region. Thus, the damage parameter d represents a relative loss of stiffness and has to verify

0 ≤ d ≤ 1.

The structure has a length of 3, 75m and a constant rectangular section (height=0, 22m, width=0, 15m),

and the Young modulus, mass density and Poisson’s ratio are respectively set to E = 2 × 1010N/m2,

̺ = 2400kg/m3 and ν = 0, 2.

In this first example, we consider the case where the external load amplitude of F = 100N containing

a single fundamental frequency of 20Hz. Moreover, since structural damage is assumed to be localized

in a unique element, vector d is set to be:

d = (d1 d2 d3 d4 d5 d6 d7 d8)T = (0 0 0 0.9 0 0 0 0)T (3.18)

where di is the structural damage corresponding to the ith finite element.

The above described FE model is thus used to generate a set of synthetic measurements ũω ∈ R
m

obtained by projecting the nodal displacement solution qω ∈ R
n using the observation operator Π built

from the sensor locations described in Figure 3.8(b). Moreover, the synthetic measurements are perturbed

with 5% of Gaussian error and therefore obtained in the following way:

ũω = [∆]Πqω (3.19)

where [∆] ∈ M(R)m,m and ∆ij ∼ N (1, 0.05) · δij .

Note a reference FE model used for model updating is assumed to be the same as the one described

in Figure 3.8(a) endowed with the previously-given (homogeneous) reference material properties.

In this context, the goal of the specific strategy we want to apply here is to improve the knowledge

on model errors where no prior assumptions are available. For doing so, we want to first evaluate the
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presence of model errors, then locate them in space and, if possible, identify its nature and intensity (i.e.

get as close as possible to (3.18)).

Preliminary ECR analysis

The first step of the procedure consists of performing an ECR analysis of the structure. Given a set of

measurements over the reference FE model, the triple of admissible fields Tω = (û, v̂, ŵ) is calculated

for ω = 40π rad/s by minimizing the ECR cost functional (1.28). For the sake of illustration, Figure 3.9

presents the computed {û − v̂} and {û − ŵ} fields.

Moreover, the beam is divided into 8 substructures, each corresponding to an element of the mesh,

so that Ω =
8
⋃

i=1
Ei in order to evaluate IndKE

, IndME
indicators (3.6) with the use of Tω.

In Figure 3.10, the IndKE
, IndME

indicators are presented over the beam giving an estimation of

the parametric error field. One can easily observe how the error related to IndKE
is more relevant than

IndME
. This emphasizes the fact that the nature of the error is probably associated to the stiffness matrix

[K]. Besides, one can also remark that the error seems to be concentrated in elements 4 and 5, and

specially in the former. Indeed, applying a selection criterion as proposed in Figure 3.2 results into the

potential incorrectly-modeled regions E = {E4, E5}.

As we can see, a first ECR analysis introduces valuable a priori information about model error: it

accurately estimates the location of the error over the beam and, moreover, indicates that the error is

mainly related to stiffness.

0.00070.00050.00030.00020.

 20

0.00070.00050.00030.00020.

 20

Figure 3.9: Admissible fields {u − v} (left) and {u − w} (right) minimizing the ECR cost function

for the reference FE model.

Model parameter estimation

As a result of the preliminary ECR analysis, the obtained information about the FEM error can be intro-

duced by selecting a new reduced parameter vector θ containing a set of model parameters to be identi-

fied. Hence, from the previous information, one can consider here that the vector of model parameters

selected for updating is:

θ = {d4 d5}T (3.20)
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0.350.260.170.0870.0

Ind K 20

Figure 3.10: Distribution of IndKE
(right) and IndME

(left) error indicators over the structure for the

reference FE model.

and a convenient parametrization of the FEM would be:

[M ] =
8
⊔

i=1

[M ]Ei

[K] = [K(θ)] =
8
⊔

i=1

[K]Ei
; Ek = (1 − dk) · E0 for k = 4, 5

(3.21)

Notice that the reduced size of model parameters to be updated is one of the key reasons for using

the ECR analysis as a method to improve the a priori knowledge of model errors. At this point, the

correction step will only be performed for d4 and d5 since the rest of parameters remain constant. To do

so, a state-space formulation as (3.13) is needed. In this first example, we tackle the case of time-invariant

parameters since measurements ũω represent a steady-state situation of the structure. Therefore, we can

write

ζj = 0 ∀j, ũωj = ũω ∀j (3.22)

In this particular case, Figure 3.11 shows the result of the identification process for the afore-

described system where the Unscented Kalman filter has been used as an algorithm to obtain parameter

estimates as described in Figure 3.7. It can be seen that the identification converges towards the actual

values of θ showing how both, ECR cost functions can be introduced as a measure in the observation

space and the UKF can be used for optimization purposes in this specific framework.

As a visual example, Figure 3.12 illustrates, for 2 different intial guesses of θ0, the sequence of

UKF estimates over ECR cost function isolines. From this example, it is easy to observe that the UKF

algorithm behaves as a descent method seeking the minimum of the ECR. In this example, we can also

remark that, for the cases where the UKF estimates live in a low gradient region of the ECR cost function,

the algorithm presents slow convergence towards the true values. In the next examples of this chapter,

we will see how the covariance matrix Qj plays a very important role in this issue.

This example is also used to solve the case where, from the analysis of Figure 3.10, the vector of

model parameters is increased with a certain lack of knowledge of the global stiffness. Within this
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Figure 3.11: Identification of damage parameters with the ECR-UKF algorithm.
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Figure 3.12: Identification paths over ECR cost function using UKF algorithm for two different initial

guesses of θ0 .

assumption the new vector of model parameters is defined by:

θ = {d4 d5 d4̄5̄}T (3.23)

where d4̄5̄ is the stiffness reduction of all the elements of the beam except E4 and E5. Thus, the

parametrization of the FEM becomes:

[M ] =
8
⊔

i=1

[M ]Ei

[K] = [K(θ)] =
8
⊔

i=1

[K]Ei
; Ek = (1 − dk) · E0 for k = 4, 5, 4̄5̄

(3.24)
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Figure 3.13 shows that, despite a less precise a priori information of model errors, the procedure leads

to a satisfying estimation of the stiffness bias for the whole structure. Nevertheless, the identification

requires more steps to achieve convergence and, once again, one can observe that the optimal estimation

of d5 slows down the convergence. In section 5.2, where the influence of the covariance matrix in the

estimation procedure is studied and we will show how the algorithm parameters can be tuned to obtain

faster convergence.
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Figure 3.13: Identification of model parametres θ defined in (3.23) by means of the ECR and UKF

coupled strategy.

Moreover, in order to evaluate the performances of the coupled ECR and UKF strategy, the parametriza-

tion defined in (3.23) and (3.24) has been used to both compare UKF and EKF algorithms and evaluate

the effectiveness of changing the observation space from measurement spaces to a measure given by the

ECR functional.

Figure 3.14 illustrates the evolution of ξ2
T r(θj) throughout the identification process when solving the

identification problem with either the EKF or the UKF. It can be seen that the UKF presents general better

performance than EKF and, in particular, a faster convergence and a better final parameter estimaton.

This can be explained by the fact that UKF achieves second-order accuracy when evaluating covariance

matrices while EKF carries out first order approximation of the estimates only by linearizing system

nonlinear functions, and in our particular case, the observation operator ξ2
T r(·).

For comparison purposes, an identification of vector (3.23) has been performed considering the use

of the Boolean projection operator Π in the observation space. In this case, the corresponding state-space

description for parameter identification is:
{

θj+1 = θj + wθ
j

ũj = Πqω(θj) + ej
(3.25)

The UKF is therefore used to identify θ. The results shown in Figure 3.15 and Figure 3.16 illustrate

the poor ability of this approach to achieve convergence towards actual values. This seems to be natural
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Figure 3.14: Comparison of ξ2

T r(θj) residual along the identification process for Extended Kalman

filter and Unscented Kalman filter.

since the convexity properties of the cost function built upon a Boolean operator is poor with respect to

the ECR cost function.
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Figure 3.15: Comparison of the parameter θ Mean Square Error (MSE) when applying UKF with ECR

or Boolean observation operators.
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Figure 3.16: Identification of model parameters θ defined in (3.23) with UKF with the Boolean obser-

vation operator Π.

3.6 Conclusions

In this chapter, the principles of the combined ECR-UKF approach have been developed. For this, the

first section 3.2 proposes to exploit the ECR to spatially localize model errors and identify their nature.

Furthermore, sections 3.3 and 3.4 show how the preliminary ECR information can be introduced into

a state-space description and solved with the UKF. The general approach is summarized in Figure 3.17

below and illustrated throughout a numerical example in the last section. In this example, the ECR

presents a good ability to localize errors in space and the ECR-UKF conveniently solves the parameter

identification problem.

The next two chapters are devoted to further investigate the adequacy of this approach to answer the

main objectives of this work as defined in the introduction and general overview of the thesis. In that

sense, chapter 4 puts in use the ECR-UKF in cases of industrial relevance. Thus, the problems of struc-

tural damage assessment and boundary condition mis-modeling identification are addressed. Moreover,

in an effort to propose a state estimation strategy within the framework of the ECR-UKF, section 4.3

studies a field reconstruction problem based on ECR information.

The last chapter of this part aims at improving the performances of the ECR-UKF in order to propose

a robust algorithm for a future use. For this, the introduction of algebraic constraints and a parametric

study of error covariance matrix are addressed.
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I Preliminary ECR analysis

(a) Define a frequency range of interest [ωmin, ωmax].

(b) For ω ∈ [ωmin, ωmax] and given θ obtain the triple of admissible fields Tω = (û, v̂, ŵ) by

solving the inverse problem associated to the ECR cost functional e2
ω({u}, {v}, {w}) defined

in (1.26).

(c) Obtain a topology over Ω of the ECR indicator by evaluating for each substrucure E ∈ Ω:

ξ2
Er =

∫ ωmax

ωmin

η(ω)

(

e2
ωE(Tω, θ)

D2
ω({û}, θ)

)

dω

(d) Localize potentially mis-modeled regions E ∈ Ω based on the previous error topology by

using a selection criterion:

ξ2
Er ≥ δ. max

E∈Ω
ξ2

Er ⇒ E ∈ E

with δ a user defined value, for example δ = 0.8

(e) Distinguish from the nature of the error by evaluating the different contributors IndKE
and

IndME
of ξ2

Er as defined in (3.7) and (3.8) for E ∈ E.

II Model parameter estimation

(a) Parametrize model matrix [M(θ)], [C(θ)] and [K(θ)] with θ = {θ1 . . . θn}T according to

IndKE
and IndME

indicators of the preliminary ECR analysis.

(b) Introduce discrete stationarity equation of θ and ECR cost function in a state-space descrip-

tion as defined in (3.13):
{

θj+1 = θj + wθ
j

ζj = ξ2
T r(θj) + ej

(c) Perform model parameter identification by applying Unscented Kalman filter equations to

the previous state-space description as detailed in Figure 3.7.

Figure 3.17: General overview for model state and parameter estimation combining ECR and Un-

scented Kalman filter.
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4.1 Damage identification through the ECR-UKF strategy for high DOF

models

Structural damage or health monitoring has received considerable attention during the last few decades,

and is still an area of active research. The reader can find an interesting overview on this topic in [35]

or a literature review in [30]. Broadly speaking, in structural dynamics, damage detection is generally

based in the basic idea that modal properties (eigenfrequencies, modes shapes or modal damping) are

functions of the physical properties of the structure and therefore changes in the physical properties will

cause changes in the modal properties. This assumption has been widely applied in the field of civil

structures (see for example the work of Teughels and De Roeck in [83, 73]) and applied within specific

techniques depending on the problem’s nature, as for instance in concrete structures [87, 63], for on-line

identification with the the help of neural networks [74] or Kalman filtering [61], and using fuzzy logic

for uncertainty quantification in [25].

This section is dedicated to evaluate the ability of the ECR-UKF approach to tackle the problem of

structural damage identification as an alternative to the above-mentioned research contributions. Hence,

it wishes to accomplish two of the main purposes of this discipline, namely localize damage in space and

provide an estimation of the severity of the damage.

55
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For this, we have chosen to study the dynamical behavior of a damaged power plant cooling tower

subjected to wind loads. In this case, an additional challenge is to tackle high degrees of freedom (DOF)

complex models, which is generally required in industrial contexts.

The geometry of the chosen FE model is presented in Figure 4.1 where its main characteristics are:

• Number of DOF: 6624

• Material: concrete with elastic properties E = 20· 109N/m2, ̺ = 2400kg/m3 and ν = 0, 2. Low

Rayleigh damping with αRay = 1.2425 and βRay = 6.3649 · 10−6

• External load: white noise of 1000N over the frequency range [0Hz, 5Hz] on x direction. Force is

uniformly applied to all nodes with coordinates verifying x < 0.

• Damaged region D presented in Figure 4.1(a) with stiffness reduction corresponding to dD = 0.6

where ED = (1 − dD)E0.

• Number of sensors: 30 measuring in x, y and z direction. Spatial distribution is shown in Figure

4.1(b).

• 5% of sensor noise

In this example, the above-described FEM is used to generate synthetic measurements whereas an

equivalent FE model with no structural damage is used as a reference model for identification purposes.

One of the main issues when dealing with large DOF problems is to manipulate model matrices. In

particular, for a N -DOF FE model, the corresponding ECR problem is of size 3N . Besides, it is widely

known that one of the main difficulties of Kalman filtering is to deal with large DOF problems. To over-

come those obstacles, we propose to reduce the model size by projecting matrices onto a reduced space

as proposed in [27]. Hence, in structural dynamics, the physical displacements {q} can be described by

Z

Y

X

F 

DAMAGED

REGION

(a) Cooling tower with structural damage sub-

jected to wind loads.

Z

Y

X

Sensor

(b) Set of sensors over the cooling tower

Figure 4.1: Power plant cooling tower FE model used to generate synthetic measurement data.
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the following substitution:

{q} = Φ{p} (4.1)

where {p} are the so-called generalized displacements since Φ = [ϕ1, ϕ2, ..., ϕN ] is a projection matrix

built from the normalized eigenvectors ϕi such that:

{

ΦT [M ]Φ = [Id]
ΦT [K]Φ = [Λ]

(4.2)

where [Λ] = diag(ω2
1, ω2

2, ..., ω2
N ). For low-damping structures, modal damping can be assumed and the

hypothesis that equations are fully decoupled holds:

[Γ] = ΦT [C]Φ = 2diag(ζ1ω1, ζ2ω2, ..., ζnωN ) (4.3)

In order to significantly decrease the size of the model matrices, a reduced basis of size r < N built

upon a Ritz reduction method is applied. In this case, the following approximation is used:

{u} ≃ Φred{pred} (4.4)

where Φred = [ϕ1, ϕ2, ..., ϕr] and {pred} = {p1, p2, ..., pr}T . Moreover, the reduced basis Φred will

be enriched with a Schur complement ϕS associated to a static correction. Thus, the proposed reduced

projection basis is set to be ΦR = [Φred, ϕS ] and the corresponding model matrices become:



















[M̄ ] = ΦT
R[M ]ΦR

[Λ̄] = ΦT
R[K]ΦR

[Γ̄] = ΦT
R[C]ΦR

F̄ = ΦT
RF

(4.5)

The projected reduced model (4.5) is therefore used to evaluate the model error through the ECR

indicator ξ2
T r(·), drastically reducing the computational cost of this calculation. Notice that, when evalu-

ating the ECR cost functional using a reduced model, the observation operator Π needs to consequently

be transformed by Π̄ = ΦT
RΠ. In the present example, a reduced basis of 70 eigenvectors completed with

a static response has been used to evaluate the ECR spectrum of the reference model. The results shown

in Figure 4.2 reveal the model error content over the bandwidth of interest. In our case, the reference

model response seems to be significantly erroneous around 0.9Hz, 1.1Hz, 1.35Hz and 2.47Hz, where the

ECR spectrum presents its higher values.

The information contained in the ECR spectrum can usefully be introduced in the construction of the

weighting function η(ω) needed in the evaluation of ξ2
T r(·). In this example the choice of the weighting

function is illustrated in Figure 4.2 where the above-mentioned frequencies are chosen as a reference

bandwidth for model error evaluation.

Based on the previous choice of η(ω) and considering every element of the FE mesh as a substructure,

the study of the ξ2
Er(·) over the whole structure leads to a model error distribution. Considering that

IndME
is negligible compared to IndKE

indicator, only the result of the IndKE
over the cooling tower is
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Figure 4.2: ECR spectrum for reference cooling tower FE model and consequent choice of weighting

function η(ω).

shown in Figure 4.3(a). As it can be observed, a satisfying agreement between the true damaged region

and the identified with the ECR analysis is obtained. Hence, it can be stated that the results qualitatively

improves the a priori knowledge of regions presenting a stiffness bias.

Considering the preliminary ECR analysis, a choice of reduced model parameters to be updated is

therefore possible. In our example, Figure 4.3(b) shows a possible division of the mis-modeled regions

of the cooling tower based in a ECR selection criterion. Notice that, since global dynamic behavior is

0.001350.001010.0006750.0003380.00
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(a) Distribution of IndKE
indicator for the refer-

ence model.

ZONE2

ZONE1

Z

Y

X

(b) Updating selected regions based in

ECR analysis

Figure 4.3: Results of the preliminary ECR analysis over the power plant cooling tower FE model.
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sought, the size of the regions to be updated are larger than the size of a mesh element. In the proposed

decomposition, “zone1” and “zone2” correspond to global continuous regions of “higher” and “lower”

IndKE
indicator respectively. Hence, a FE model parametrization can be done in a similar way to (3.21)

where the sub-structures k that parametrize the global stiffness matrix [K] can either be zone1 and

zone2. Three different parametrization cases are summarized in Figure 4.4 where the UKF algorithm

is applied to a state-space description of the form (3.13). Figure 4.4(a) shows the results for two cases

where the choice of a single region is introduced in the updating algorithm (the union of zone1 + zone2

and zone1 only). On the other hand, the case where zone1 and zone2 are considered as potentially

different damaged zones is treated in Figure 4.4(b).
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Figure 4.4: ECR-UKF approach for damage identification of a power plant cooling tower based in a

ECR preliminary analysis.

In all the cases, despite the fact that the damage location is not exact, the identified loss of stiffness

parameters is close to the actual damage value. One will remark a certain lack of stability of the solution,

in particular for the case in Figure 4.4(b). This can be explained by the fact that both the selected

regions to be updated are inaccurate and the introduction of a constant covariance of the parameters

error Qj makes the algorithm search in the neighboring regions of the optimum set of parameters. In

section 5.2 we will try to improve this point by analyzing the role of Qj throughout the identification

process. Nevertheless, it is clear that the a priori knowledge of the initial FE model is improved since

the location of a damaged zone and its intensity are identified satisfactorily. Indeed, Figure 4.5 shows

how the proposed strategy enhances the quality of the FE model from perspective of the modal response.

4.1.1 Case of evolving parameters

Based in the previous power plant cooling tower example, this investigation deals with the case of evolv-

ing parameters. In particular, we consider the case where the damage evolution law is a priori unknown

and the aim of this study is to demonstrate how the Kalman filter framework is particularly suited to treat

such a situation.

Firstly, since the ECR is formulated in the frequency-domain, a time-frequency equivalence is re-
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Figure 4.5: Comparison of the eigenfrequencies relative error of the a priori FE model, the identified

zone1 + zone2 and the separately identified zone1-zone2 models with respect to real
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quired. Suppose that we dispose of time-domain measurements ũ(t) defined in t ∈ [0 : T ]. It is

assumed, on the other hand, that the sought-after evolution is slow enough to be captured from a win-

dowing partition of ũ(t) in a sequence of m shorter samples ũj(t) for j = [1, . . . , m] given by:

{

ũj(t) = ũ(t) for t ∈ [tj : tj + T ]
tj = (j − 1)(1 − o)T

(4.6)

where T is the sample window duration such that T < T and o ∈ [0 : 1) represents the samples overlap.

As a matter of fact, samples are built with a certain overlap to prevent information loss and generally

different filters (Hanning, Hamming, rectangular, flat-top, etc.) are applied to each sample to avoid

the leakage effect. Thus, a Fourier transformation of each sample ũj(t) can be performed leading to a

sequence of frequency-domain measurements {ũ}j for j = [1, . . . , m].

In order to capture the dynamics of the lower eigenfrequency modes, in this work we have sys-

tematically chosen a sample window duration verifying T > 1/f1
eig, where f1

eig is the lowest structural

eigenfrequency in the studied frequency range. On the other hand, the choice of the overlap o determines

the time step sampling allowing to capture structural changes corresponding to (1 − o)T . This is a user-

dependent choice built upon the a priori knowledge of sought changes. In this work we have chosen o so

that the time step (1 − o)T is of the order of magnitude of the highest eigenperiods (1 − o)T ≈ 1/f1
eig.

Hence, the iterations steps j from (3.13) can now be considered as time-steps since they correspond

to each window sample. Consequently, measurements {ũ}j are recursively introduced in ξ2
T r(·) as the

identification process goes on. Thus, we can rewrite the state-space formulation in (3.13) for the evolu-

tion problem as:
{

θj+1 = θj + wθ
j

ζj = ξ2
T r(θj , {ũ}j) + ej

(4.7)
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where the condition ζj = 0 ∀j is maintained since the the minimum of ξ2
T r(·) is tracked.

In this example, we have used a sequence of m = 60 samples of a time duration T = 2.5s with an

overlap o = 0.6. Moreover, the final damage state has been chosen to be identical to that of the stationary

case of section 4.1 and, therefore, the preliminary ECR analysis is fully described in Figure 4.2 and Fig-

ure 4.3. Hence, we consider that the final state contains all the information about the presence of damage

and the spatial localization step is based in that assumption. In this case, the model parametrization is

chosen to be the Young’s modulus of the union of zone1 and zone2.

Figure 4.6 illustrates how the ECR-UKF coupled method has the ability to track damage evolution

over time. Qualitatively speaking, the damage evolution law identified by the ECR-UKF algorithm agrees

quite well with the actual damage evolution and, in consequence, the knowledge of structural changes is

improved. Note that the estimated evolution law presents a delay when sudden damage occurs. This is a

well known Kalman filter phenomenon that can be easily explained by the modeling of error covariance

matrix Qj , as illustrated in Figure 4.7. Indeed, introducing “high” values of Qj implicitly reflects a low

confidence on the parameter stationarity equation. Accordingly, Kalman filter allows bigger variations

in the sequence of parameter estimations and faster variations can be captured at the expense of solution

stability. On the contrary, “small” values of Qj guarantee a better stability of the solution while rapid

changes are difficult to detect. In that sense, modeling covariance matrices Qj becomes an important

issue, deserving of a separate study (see section 5.2).
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Figure 4.6: ECR-UKF approach for time-varying damage identification of a power plant cooling tower.

Damage region is based on the ECR preliminary analysis of Figure 4.3.

In this section we have studied the ability of the ECR-UKF for damage assessment in complex

structures. The preliminary ECR analysis, showed a good ability to spatially localize erroneously mod-

eled regions without any a priori knowledge of their location. As a matter of fact, after performing

model reduction aiming at reducing computational cost, an ECR spectrum revealed the most erroneously

frequencies which were further used to evaluate the space distribution of model errors. Furthermore,
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Figure 4.7: Influence of the covariance matrix Qj in time-varying damage identification using the

ECR-UKF approach for a power plant cooling tower.

model-updating was performed by means of a reduced-size model parametrization and solved by the

ECR-UKF. This approach was tested for both invariant and time-evolving damage with convergence to

the actual magnitude of damage. The study of identifying structural flaws in complex structures is further

completed in chapter 6 where the use of ECR methods are applied to a FE model of nuclear power plant

auxiliaries building subjected to seismic loads.

4.2 Identifying incorrect modelling of boundary conditions

In many industrial cases the accuracy of boundary condition modeling directly determines the quality of

model predictions. As a matter of fact, in-operation structures are often subjected to environment cou-

pling that significantly affects its global dynamic behavior. Moreover, since the information about the

boundary coupling is difficult to obtain, structures are often studied as isolated bodies and in many cases

perfect boundary condition modeling is considered (perfect clamping, free edges, etc.). In many cases,

the knowledge of erroneous boundary modeling is supposed to be a priori known, and in these circum-

stances, one can find specific approaches in the literature as [1] for Euler-Bernoulli beam formulation, or

a more general approach for frequency-domain formulation in the work of Frikha et al. in [38, 39].

In the numerical example treated herein, the problem of boundary conditions mis-modeling is ad-

dressed with the assumption that the location of boundary errors is a priori unknown. To do so, a

simplified FE model of a double-clamped concrete beam is considered where one of the clampings is

supposed to be imperfect. The geometry presented in Figure 4.8 corresponds to the FE model used to

generate synthetic measurements.

In order to represent an imperfect clamping that introduces dynamical coupling with the concrete

beam, a frequency domain boundary impedance has been modeled of the form:
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PERFECT BC

F

Sensor

IMPERFECT BC

Figure 4.8: FE model of a concrete beam containing imperfect clamping used to generate synthetic

data.

z(ω) = (−ω2m + k)−1 (4.8)

In the present example, an identical impedance of the form (4.8) is applied at each of the four nodes

highlighted in red in Figure 4.8.

Moreover, the main characteristics of the FE model are given in the following description:

• Number of DOF: 96

• Material: concrete with elastic properties E = 20· 109N/m2, ̺ = 2400kg/m3 and ν = 0, 2. Low

Rayleigh damping with αRay = 1.2425 and βRay = 6.3649 · 10−6

• Impedance z(ω) parameters: k = 107N/mm, m = 33.057kg

• External force: white noise with 445N mean over the bandwidth [0Hz, 600Hz]

• Number of sensors: 5 in z direction only.

• 5% of sensor noise

We consider the case where a reference model is assumed to have perfect clamped boundary con-

ditions. The goal of the proposed approach is to first locate (in frequency and space) the presence

of imperfectly-modeled boundary conditions. Secondly, the identification of impedance parameters is

sought in order to improve the knowledge of neighboring coupling and the predictive quality of the

structure model.

In this context, given a set of measurements ũ generated by the above-described FEM, a first ECR

analysis introduces valuable a priori information about the agreement of the reference model to ũ. In

our example, the ECR spectrum shown in Figure 4.9 indicates that the double-clamped beam gives

particularly bad predictions in the bandwidth [0Hz, 150Hz]. Nevertheless, we can observe that for a very

particular set of frequencies, the ECR spectrum presents important drops. This is can be easily explained

by the fact that, for those f requencies, model responses are mainly orthogonal to both sensor direction

and model error, which are basically in the z direction.

Going into the details of the model error in the bandwidth [0Hz, 150Hz], a distribution of model

error is evaluated with the help of IndK and IndM indicators. The results of this preliminary ECR
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Figure 4.9: ECR spectrum for perfect double-clamped FE model.

analysis are given in Figure 4.10. As it can be seen, model error seems to be fully concentrated in the

element containing mis-modeled DOF. It is important to remark that only IndK indicator reveals the

presence of error in this region. Indeed, when looking at Figure 4.10(b) we observe that the mass error

indicator does not suggest the potential presence of mass errors on the boundary.

0.120.0900.0600.0300.0

Ind K 80

(a) Distribution of IndKE

0.120.0900.0600.0300.0

Ind M 80

(b) Distribution of IndME

Figure 4.10: Preliminary ECR analysis for a perfect double-clamped concrete beam FE model. Distri-

bution of IndK and IndM estimators over the structure at 80Hz.

What happens if we liberate the potentially erroneous DOF initially representing a perfect clamping?

The answer can be seen in Figure 4.11 where now the IndM indicator is the main witness of the presence

of boundary error. Comparing both extreme cases, when perfect clamping is assumed the adjacent ele-

ment to the boundary condition seems to embed high stiffness error. Besides, when a free edge condition

is supposed instead, the stiffness error vanishes while a high mass error appears. This particular behavior

suggests the presence of model errors directly attributable to the boundary condition modeling.

The preliminary ECR analysis helps us to localize model error in space and, at this point, the sus-

picion of a boundary condition modeling error stands. To further investigate the error of the perfect
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Figure 4.11: Preliminary ECR analysis for a perfect simple-clamped concrete beam FE model. Distri-

bution of IndK and IndM estimators over the structure at 80Hz.

clamping condition, we propose to adopt the methodology developed in [38] and [39] that aims to char-

acterize the unknown boundary behavior based in a condensation and inversion technique. To fix the

ideas, suppose that our frequency-domain FE model is described by:

[K + iωC − ω2M ]{q} = {F} ⇒ [Zω]{q} = {F} (4.9)

where {q} and {F} are the vectors of nodal displacements and external forces respectively. Moreover,

[Zω] represents the dynamic stiffness of the studied structure. In a preliminary stage, equation (4.9) can

be rearranged by separating internal and boundary DOF, leading to the following expression:

[

Zii Zib

Zbi Zbb

]{

qi

qb

}

=

{

Fi

Fb

}

(4.10)

By simply using the first row of equations in (4.10), it is possible to condensate the internal displacements

qi as a function of the boundary qb DOF by:

qi = Z−1
ii (Fi − Zibqb) (4.11)

Besides, given a linear observation operator Π projecting the internal displacements qi into the measure-

ment space, the problem of finding the better boundary displacements qb that better represents a set of

measurements ũ can be written as:

q̂b = Arg min
qb

‖ũ − Πqi‖2 = ‖ũ − ΠZ−1
ii (Fi − Zibqb)‖2 (4.12)

The problem (4.12) can be solved by a least square method involving a pseudo-inverse operator to

obtain:
q̂b = Z+(ΠZ−1

ii Fi − ũ)

Z+ = ([ΠZ−1
ii Zib]

T W [ΠZ−1
ii Zib])

−1[ΠZ−1
ii Zib]

T W
(4.13)

where Z+ represents the Moore-Penrose pseudo-inverse [13] of model equations in (4.12). In the ex-

pression given by (4.13), a weighting matrix W is introduced in order to improve the conditioning of
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Z+. Once the estimation of boundary displacements is obtained by applying the expression in (4.13),

the second row of equations (4.10) can be exploited to evaluate the corresponding nodal forces:

F̂b = Zbi[Z
−1
ii (Fi − Zibq̂b)] + Zbbq̂b (4.14)

In the present example, equations (4.13) are used to obtain a preliminary estimation of boundary dis-

placements for the suspected DOF revealed by the preliminary ECR analysis, the results of which are

given in Figure 4.12. This estimate confirms that a significant displacement in boundary DOF exist and,

consequently, a perfect clamped modeling is erroneous.
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Figure 4.12: Identified boundary displacements in z direction for the erroneous clamping DOF.

Furthermore, the assumption that all the incriminated DOFs have a similar boundary impedance

stands since the four estimated displacements q̂b are very similar. Estimating boundary efforts by means

of equation (4.14) allows an estimation of the boundary impedance q̂b/F̂b.

In Figure 4.13, the estimated impedances for each boundary DOF are shown as functions of the

frequency. As it can be seen, the existence of a common boundary impedance is suggested with a main

resonance around 87.5Hz for the four DOFs. Indeed, the four estimated q̂b/F̂b not only present a very

close resonance in the frequency bandwidth, but a very similar static and high frequency response. Thus,

these informations are used to consider a parametrization of a boundary impedance leading to a vector

of model parameters θ to be identified that takes the form:

θ = {k m}T (4.15)

where k and m are the parameters of a boundary impedance of the form (4.8). In addition, the vector of

initial guesses θ0 is built from the available information of the q̂b/F̂b functions. Hence, in our case we



4.2. IDENTIFYING INCORRECT MODELLING OF BOUNDARY CONDITIONS 67

have chosen to set k0 as the mean value of q̂b/F̂b at 0Hz for all the DOF. Besides, since the impedance

presents a single resonance around f̂ = 87.5Hz, the initial guess for m0 is set to m0 = k0/(2πf̂)2. In

the present example, we obtain:

θ0 = {1.1 · 107N/mm 36.39kg}T (4.16)
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Figure 4.13: Identified impedance in z direction for the erroneous clamping degrees of freedom.

When optimal impedance is sought, a parametrization of FE model matrices is considered depending

on boundary impedance k and m parameters. Moreover, as in the previous examples, a state-space

formulation with ECR functionals in observation space is adopted and solved by applying Unscented

Kalman filter algorithm as described in Figure 3.7.

The results of such an identification are presented in Figure 4.14 where one can see that convergence

is achieved at actual values for both k and m parameters. As a complement, Figure 4.15 illustrates the

evolution of θj estimation throughout the identification process over the ECR cost function. As it can

be seen, the UKF tracks the optimum value of the ECR cost function and behaves as a gradient descent

method.

Notice that, in the example of figures 4.14 and 4.15, the values of θ0 are more noisy with respect to

the ones proposed in (4.16). This is deliberately done in order to evaluate the robustness of the proposed

experience to “further” initial guess of θ, since we consider that closer values of θ0 will also lead to

convergence. In this particular example we have taken θ0 = {108 N/mm 10 kg}T .

Next, boundary mis-modeling in presence of structural damage is addressed. This example intro-

duces a new complexity since the distinction of boundary error and damage error becomes blurred due
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Figure 4.14: Identification of boundary impedance parameters through the ECR-UKF method.
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Figure 4.15: Identification path of impedance parameters over the ECR cost function.

to their simultaneous presence.

The numerical FE model used to generate synthetic data is presented in Figure 4.16. This FE model

only differs from the above-described by the presence of structural damage represented with a highlighted

element in Figure 4.16. In this way, a boundary impedance of the form (4.8) and structural damage

following (3.17) are considered. While the main characteristics of the FE model as previously described,

the presence of damage in element 3 is considered and the global damage vector takes the form:

d = (d1 d2 d3 d4 d5 d6 d7 d8)T = (0 0 0.6 0 0 0 0 0)T (4.17)

Again, the first step consists in performing a preliminary ECR analysis. The spectrum shown in Figure

4.17 compares the previously obtained spectrum with the actual one.
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Figure 4.16: FE model of a concrete beam containing imperfect clamping and structural damage used

to generate synthetic data.
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Figure 4.17: ECR spectrum for perfect clamped FE model.

As can be seen, the presence of structural damage in this particular configuration contributes to

global error in the frequency range [200Hz, 500Hz] while low frequency error is still mainly dominated

by the boundary mis-modeling error. Analyzing the elementwise distribution of ECR error over the

beam highlights the presence of modelling error concentrated basically in the boundary and the damaged

element. Figure 4.18 illustrates the distribution of IndK and IndM for frequencies 80Hz and 400Hz

corresponding to the highest ECR values. Similarly to the previous example, IndK appears to be a good

indicator to locate boundary mis-modeling and damage since IndM is negligible compared to stiffness

errors.

Again, since a bad clamping is therefore suspected, removing the kinematic constraint globally sug-

gests a mass error in the erroneous boundary through the IndME
indicator. Nevertheless, differently to

the previous example, a stiffness error is also highlighted by IndKE
in the damaged element revealing

the presence of a stiffness bias in element number 3. The most relevant results of IndME
and IndKE
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Figure 4.18: Preliminary ECR analysis for a perfect double-clamped concrete beam FE model. Distri-

bution of IndK and IndM estimators over the structure for different frequencies.

distribution in free-clamped conditions are shown in Figure 4.19.
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Figure 4.19: ECR analysis for a perfect simple-clamped concrete beam FE model. Distribution of most

relevant ECR error indicators.

At this point, it seems clear that the reference model embeds a stiffness error on element number
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3, which is effectively the true element containing damage. In addition, the perfect clamping boundary

condition is also suspected, and a further analysis is needed in order to determine the nature of the

boundary error.

In a similar way to the previous example, condensation and inversion formulas in (4.13) and (4.14)

are used to investigate about suspected boundary DOF behavior. It is important to remark that the cor-

rectness of the boundary DOF identification is directly related to the quality of the model as explained

in [39]. In our case, we know that the structure potentially contains significant stiffness error in element

number 3 and we can therefore expect the results from this approach to be consequently polluted. In ad-

dition, in this example the stiffness error is located close to the incorrectly-modeled boundary constraint,

making the distinction between structural damage and boundary error more difficult.

Figures 4.20 and 4.21 illustrate the results of the boundary DOF identification approach. It can be

seen that, in particular in Figure 4.20, all the suspected boundary DOF present significant displacements

and a perfect clamping condition can be questioned.
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Figure 4.20: Identified boundary displacements in Z direction for the erroneous clamping DOF in pres-

ence of structural damage.

Besides, we remark that all DOFs show a similar behavior with resonances at the same frequencies.

Therefore, since the presence of structural error modeling is known and all the DOFs belong to the same

section of the beam, we can roughly assume the presence of a global impedance for the whole boundary

DOF.

This hypothesis contrasts with the analysis of the function q̂b/F̂b shown in Figure 4.21. When

looking at the identified functions, it can be observed that the sensitivity of the results to an inaccurate
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Figure 4.21: Identified q̂b/F̂b in Z direction for the erroneous clamping DOF in presence of structural

damage.

modeling of the structure is higher than that of the estimated q̂b. In particular, while the results seem

relatively stable for frequencies higher than 150Hz, the identification becomes of poor quality in the

range [0Hz, 150Hz] and the inversion becomes ill-conditioned. This can be probably explained by the

lack of sensors between the damaged region and the erroneous boundary, making it harder to distinguish

between both errors. Thus, the results of such an estimation must be carefully interpreted in this case.

The choice of model parameters introduced in the vector θ to be updated is based in the previous

analysis. From the preliminary ECR results, the presence of a potential stiffness bias in element number

3 leads to a natural choice a stiffness reduction parameter d3. When it comes to boundary conditions, the

ECR error distribution suggests a boundary mis-modeling confirmed by the presence of resonances in

the estimation of q̂b as shown in Figure 4.20. Nevertheless, the number of poles of a potential boundary

impedance is hard to define from Figure 4.21 since the identification becomes noisy for the frequency

range [0Hz, 150Hz]. The choice of a single pole impedance stands from both the ECR spectrum in Figure

4.17 where a significant boundary error clearly reaches a peak around 80Hz and from the analysis of the

model response based on the identified q̂b.

Hence, two different θ vectors are studied. The simplest is obtained by assuming a common parametriza-

tion of the boundary impedance for the whole boundary DOF. Consequently, the vector of model param-

eters θ is defined by

θA = {d3 k m}T (4.18)

where d3 is a damage parameter of element 3 and k and m the boundary impedance parameters as defined
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by (4.8). In the case where the interpretation of the results given by Figure 4.20 and Figure 4.21 lead

to suspicion of a different impedance for N1-N5 and N2-N6 DOF, the following parametrization can be

assumed

θB = {d3 k1 m1 k2 m2}T (4.19)

where in this case k1 and m1 represent the impedance parameters of N1-N5 DOFs and k2 and m2 the

corresponding parameters for the N2-N6 DOFs.

The initial guess for both θ0 are obtained in the same way as the precedent example and result into

θ0 = {0 1.656·106N/mm 9.93kg}T for the first case and θ0 = {0 1.656·106N/mm 9.93kg 1.656·
106N/mm 9.93kg}T for the latter.

Introducing such a parametrization into a state-space formulation of the form (3.13) and solving the

problem by applying the UKF algorithm leads to the results presented in Figure 4.22.

As can be seen, the estimates in both cases are converging towards the true values simultaneously for

all damage and impedance parameters. In particular, results appear to be stable for the parametrization

proposed in (4.19) which is supposed to be a priori a worst-posed problem since the boundary impedance

parameters are duplicated and the concerned DOF are relatively close in space. In these conditions, the

use of ECR measure ensures a good convexity of the cost function and helps the algorithm to reach

optimal parameter estimation.
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Figure 4.22: Identification of damage and boundary impedance parameters with the ERC-UKF ap-

proach for different parametrization of updating vector θ.

The example of boundary error in presence of structural damage is finally used to address the problem

of evolving parameters in a similar fashion to the case of the power plant cooling tower discussed in

section 4.1.1. To do so, the previous example gives the key ideas of the preliminary ECR analysis,

the study of the boundary error and the choice of a model parametrization in a vector θ to be updated.

Thus, the parametrization proposed in (4.19) is introduced in a state-space formulation of the form (4.7)

and solved by application of the UKF algorithm. Furthermore, whereas the impedance parameters are

considered to be time-invariant, structural damage evolves over time. In this example, the structure is

supposed to be initially undamaged when sudden and rapid damage appears followed by more stabilized

slow damage evolution. Thus, a windowing partition of time-domain measurements is performed as
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defined in equation (4.6). Here, a sequence of m = 60 samples of a time duration T = 0.05s with an

overlap o = 0.77 are used.

The results of the identification are shown in Figure 4.23. It can be observed that, despite the initial

guess for the impedance parameters is inaccurate, the algorithm reaches a consistent guess of θ rapidly

enough so that the damage evolution law is correctly tracked. In addition, both a good stability of the

impedance estimates while damage is evolving and a satisfying stability of the tracked damage when

changes occurs (step 15 and 25) can be observed.
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Figure 4.23: Identification of damage and boudanry impedance parameters with the ERC-UKF ap-

proach for the case of evolving damage and a model parametrization described in (4.19).

In this example, we have studied the ability of the ECR-UKF approach to identify mis-modeled

boundary conditions. To this aim, he have analyzed a structure where one of the initially-assumed

clamped boundaries is actually subjected to an interaction with a neighboring structure, modeled with a

simplified impedance. The preliminary ECR analysis showed, again, a good ability to highlight regions

with potentially mis-modeled boundary conditions. However, although the ECR spectrum indicates high

model errors for frequencies close to the actual impedance resonance, a deeper study is proposed to en-

rich this information and build a proper impedance parametrization. For this, an existing technique based

in a condensation and matrix inversion approach is used. This technique provides a good estimation of

boundary forces and displacements consequently leading to a satisfactory identification of impedance

parameters with the ECR-UKF. However, the quality of this boundary displacements and forces is di-

rectly related to quality of the FE model. Thus, a study with a structure embedding unknown damage

is also performed. Here, the initial information concerning the boundary impedance is less accurate,

although sufficient to satisfactorily identify both impedance parameters and structural damage. Alike the
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precedent example of the power plant cooling tower, the case of invariant and evolving parameters are

proposed.

To conclude, the study of mis-modeled boundary conditions is completed in chapter 7 which is

devoted to an experimental campaign. Moreover, a time-domain approach for boundary identification is

also studied and is proposed next.

4.2.1 A time-domain approach for the identification of mis-modeled boundaries

In the previous example, the problem of boundary conditions mis-modeling is addressed in the frequency

domain where the presence of a boundary coupling is introduced as a parametrized impedance (cf. (4.8)).

The advantage of the obtained information is that it condensates the global dynamic behavior of the

neighboring structures and can be used to predict the system response under different operating condi-

tions. However, the proposed modeling assumes a linear response of the boundary interaction between

the structure and the surrounding elements.

In many real cases, structures can be enclosed in a complex non-linear environment making this kind

of impedance modeling unsuitable. To deal with this issue, we propose in this section to address the

problem of boundary conditions mis-modeling in the time-domain where the poorly known boundary

conditions are introduced as unknown variables of the mechanical model. Specifically, unknown bound-

ary displacements and its derivatives are estimated without introducing any assumption on the nature of

the surrounding elements and thus estimated as a model parameter. In that sense, the approach can be

used with all kind of boundary mis-modeling since no assumptions are done with respect to the neigh-

boring phenomena. However, the estimation of the boundary response is valid only under the operating

conditions and cannot be used to predict model response under different operating conditions.

Consider the well-known structural dynamics equilibrium equation in its FE semi-discretization form

given by:

[M ]{q̈} + [C]{q̇} + [K]{q} = {F (t)} (4.20)

where commonly [M ], [C] and [K] are respectively the mass, damping and stiffness matrices while

{F (t)} and {q} represent external loadings and nodal displacement vectors.

In a very similar way to the transformation used in (4.10) initially proposed in [39], {q} can be

partitioned into internal DOF {qi} and boundary DOF {qb}, leading to a rearranged equilibrium equation

that can be expressed in the following form:

[

Mii Mib

Mbi Mbb

]{

q̈i

q̈b

}

+

[

Cii Cib

Cbi Cbb

]{

q̇i

q̇b

}

+

[

Kii Kib

Kbi Kbb

]{

qi

qb

}

=

{

Fi(t)
Fb(t)

}

(4.21)

When dealing with the problem of unknown boundary conditions, equation (4.21) offers the possibil-

ity to separate well-known model operators to those embedding the lack of knowledge of the surround-

ing phenomena. As a matter of fact, the a priori unknown coupling of the studied structure through the

boundary is condensed in the [Mbb], [Cbb], [Kbb] and Fb(t) operators. To avoid the use of such an infor-

mation when solving this equation, the proposed approach consists of using the first row of equations in



76 CHAPTER 4. FEM REPRESENTATIVITY ENHANCEMENT WITH ECR AND UKF

(4.21) only what leads to the following expression:

[Mii]{q̈i} + [Cii]{q̇i} + [Kii]{qi} = {Fi(t)} − [Mib]{q̈b} − [Cib]{q̇b} − [Kib]{qb} (4.22)

The influence of the surrounding phenomena can be therefore interpreted as an external loading that

modifies t he response of a perfectly clamped structure through the well-known operators [Mib], [Cib],

[Kib] and the boundary response {q̈b}, {q̇b} and {qb}, which in our approach are considered as model

unknowns to be identified.

In order to obtain a formulation of the problem suitable for a Kalman filter identification approach,

a central difference time discretization is adopted to build the evolution model of the governing equation

(4.22). Thus, considering a time interval [t0 : tN ] in a sequence of time steps, the following approxima-

tions are introduced for the velocity and acceleration vectors at time tj :

q̇j ∼= qj+1 − qj−1

2∆t
, q̈j ∼= qj+1 − 2qj + qj−1

∆t2
(4.23)

where ∆t corresponds to the time step in the time interval [tj : tj+1]. It is known that the central

difference scheme is conditionally stable with a critical time step given by ∆tcritical = 2
ωmax

, where ωmax is

the highest angular eigenfrequency of the FE model (4.22). In the following a time step ∆t = 0.9∆tcritical

is adopted to ensure stability. Applying these approximations to (4.22) leads to the following expression:

[

Mii

∆t2
− Cii

2∆t

]

{qj+1
i } +

[

Kii − 2Mii

∆t2

]

{qj
i } +

[

Mii

∆t2
+

Cii

2∆t

]

{qj−1
i } = F j (4.24)

where

F j = {F j
i } −

[

Mib

∆t2
− Cib

2∆t

]

{qj+1
b } −

[

Kib − 2Mib

∆t2

]

{qj
b} −

[

Mib

∆t2
+

Cib

2∆t

]

{qj−1
i } (4.25)

Finally , in order to obtain a step-forward algorithm of the mechanical model requested in a Kalman filter

state-space formulation, equation (4.24) can be rearranged as:

{qj+1
i } =

[

Mii

∆t2
− Cii

2∆t

]−1 (

F j −
[

Kii − 2Mii

∆t2

]

{qj
i } −

[

Mii

∆t2
+

Cii

2∆t

]

{qj−1
i }

)

(4.26)

To illustrate this time-domain approach, we propose to study the case of the structure with structural

damage in presence of boundary condition mis-modeling presented in Figure 4.16. For the sake of

simplicity, we assume that a preliminary ECR analysis is already performed and the a priori information

about boundary error as well as stiffness bias location is available. Hence, the aim of this study is to

show how a state and parameter estimation can be performed taking into account a boundary condition

lack of knowledge that substantially modifies the a priori structural response.

In this example, we propose to tackle the state and parameter estimation problem by means of two

different algorithms. The first approach consists in applying the widely known Extended Kalman filter

in its joint state and parameter formulation. Thus, an augmented state vector is considered containing
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both model states and unknown parameters. In our case, the augmented vector of states X ∈ R
2n+5 can

be written as:

Xj ≡ {qj
i qj−1

i dj
3 qj+1

b qj
b qj−1

b F j
i }T (4.27)

where the two first terms correspond to the structure nodal displacements and the latter 5 terms are

the unknown parameters, namely the structural damage, the future, present and past boundary displace-

ments and finally the external force. Notice that the external force is considered as stochastic model

unknown since the structure is excited with a zero-mean white noise and its deterministic value is un-

known. Moreover, while the introduction of the boundary DOF qj+1
b , qj

b and qj−1
b alleviate the perfect

clamping condition, the introduction of dj
3 in the state vector stands since structural damage is sought.

Hence, a discrete state-space formulation of the evolution problem can be written in the following form:

{

Xj+1 = f(Xj) + wX
j

ũj = H(Xj) + vj
(4.28)

where, as in the precedent cases, wX
j and vj are independent zero-mean white Gaussian noise processes

with covariance matrices Qj and Rj respectively. Besides, while ũj ∈ R
m represents a set of mea-

surements at time tj , the H(·) operator corresponds to a function allowing to extract the corresponding

displacements of vector Xj at sensor positions. In our case, the observation function H(·) is a linear

matrix operator H ∈ M(R)m,2n+5 given by:

H = [Π 0] (4.29)

Finally, function f(·) is the associated discrete non-linear state mapping defined by:

Xj+1 = f j(Xj) =


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[

Mii

∆t2 − Cii

2∆t

]−1 (
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Kii − 2Mii

∆t2

]

{qj
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Mii

∆t2 + Cii

2∆t
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i

dj
3

qj+1
b

qj+1
b

qj
b

F j
i























































(4.30)

whose Jacobian in the state variable space is given by:

f j(xj) ≡ ∂f j(x)

∂xT
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where I represents the identity matrix and

∂f
j
I

(x)

∂q
j
i

=
[

Mii

∆t2 − Cii

2∆t

]−1 [

Kii − 2Mii

∆t2

]

∂f
j
I

(x)

∂q
j−1

i

=
[

Mii

∆t2 − Cii

2∆t

]−1 [
Mii

∆t2 + Cii

2∆t

]

∂f
j
I

(x)

∂d
j
3

=
[

Mii

∆t2 − Cii

2∆t

]−1
∂Kii

∂d
j
3

{qj
i }

∂f
j
I

(x)

∂q
j+1

b

= −
[

Mii

∆t2 − Cii

2∆t

]−1 [
Mib

∆t2 − Cib

2∆t

]

∂f
j
I

(x)

∂q
j

b

= −
[

Mii

∆t2 − Cii

2∆t

]−1 [

Kib − 2Mib

∆t2

]

∂f
j
I

(x)

∂q
j−1

b

= −
[

Mii

∆t2 − Cii

2∆t

]−1 [
Mib

∆t2 + Cib

2∆t

]

∂f
j
I

(x)

∂F
j
i

=
[

Mii

∆t2 − Cii

2∆t

]−1
{1}n

(4.32)

where {1}n is a vector of size n whose entries are 1. Thus, the Extended Kalman filter equations

developed in Figure 2.4 are applied to obtain a joint state and parameter estimation.

On the other hand, we aim to apply the Unscented Kalman filter equations to the studied example

in order to compare the performances of these two different non-linear filtering approaches. However,

since the computational cost of the UKF in its joint state and parameter version is of O(N3) (compared

to a O(N2) for the EKF) and the size of vector (4.27) is relatively high (N = 2n + 5 = 197), a different

strategy is adopted to apply the Unscented transformation equations. For this, a dual KF-UKF approach

is proposed herein considerably reducing the computational cost of the joint state and parameter UKF

version and taking benefit of the Unscented accuracy notwithstanding.

For this, the dual approach consists in making two different filters run in parallel, a first one for state

estimation and a second one for parameter estimation. In our approach, a first linear Kalman filter is used

to perform state estimation while an Unscented Kalman filter is adopted to obtain optimal estimation of

the parameters. Obviously, both filters feed one another at each time step in order to maintain updated

the global state and parameter information of the studied system. To better illustrate our purpose, a block

diagram is proposed in Figure 4.24 showing the dual KF-UKF proposed algorithm.

Notice that the computational cost of this algorithm is considerably improved compared to the joint

UKF by simply applying the linear Kalman filter to the states q absorbing 192 of the estimated DOFs

and reducing to a 5 DOF the vector introduced in the UKF algorithm. Furthermore, a computational cost

of O(n2) can be achieved in UKF in its parameter estimation version (see [45]).

In this context, the two following vectors are considered for the dual KF-UKF approach:

qj ≡ {qj
i qj−1

i }T , θj ≡ {dj
3 qj+1

b qj
b qj−1

b F j
i }T (4.33)

and their consequent coupled state-space formulation is:
{

qj+1 = f(qj , θ̂j) + wq
j

ũj = Πqj
i + vj

{

θj+1 = θj + wθ
j

ũj = G(q̂j−1, θj) + vj
(4.34)
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Figure 4.24: Block diagram of dual Linear and Unscented Kalman filtering (KF-UKF) for respectively

state and parameter estimation.

where, in this description, wq
j and wθ

j are the consequent zero-mean white noise Gaussian processes

with covariance matrices Qqq
j and Qθθ

j respectively. Remark that these matrices are the related state and

parameter covariance matrices embedded in Qj in the EKF algorithm. Moreover, f correspond to the

two first row equations of (4.30) and G(·) is a nonlinear function that propagates the states and makes a

projection into the observation space.

The two proposed algorithms are applied to the problem of identifying structural damage in pres-

ence of boundary condition mis-modeling. Figure 4.25 shows the identified damage parameter for both

approaches.
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Figure 4.25: Comparison of identified d3 damage parameter using dual KF-UKF and joint EKF filter-

ing.

As it can be seen, in both cases the algorithms reach the sought damage value of 0.6. Nevertheless,
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the dual KF-UKF approach presents a better convergence ratio towards the actual damage value than the

one provided by the EKF.

When it comes to boundary condition displacements, a comparison of the identified qj
b for the KF-

UKF and EKF methods is shown in Figure 4.26. Similarly to the damage parameter case, the KF-UKF

dual estimation presents a better ability to identify the unknown boundary displacement. As a matter of
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Figure 4.26: Comparison of identified qj
b unknown boundary displacement using dual KF-UKF and

joint EKF filtering.

fact, the dual KF-UKF method has the ability to capture faster variations of qj
b than the one provided by

the joint EKF estimator. In that respect, the boundary displacements are better represented with the dual

estimator and peak amplitudes (faster changes) are better represented with this algorithm.

Finally, the estimaton of the external load F j
i is shown in Figure 4.27, where the KF-UKF algorithm

is used. The results of the EKF case are omitted since they are fully comparable with those provided in

Figure 4.27. It can be observed that, while the actual load is a zero-mean Gaussian process, the identified

effort truly corresponds to its mean value.

In this example the case of time-domain structural damage identification in the presence of boundary

mis-modeling is addressed. We have proposed a formulation to deal with the boundary mis-modeling

that can be used for cases with complex non-linear boundary behavior. In this example we show how the

Kalman filter can deal with such a problem by means of the EKF and satisfactorily identify structural

damage. Besides, a dual KF-UKF is proposed to enhance the performance of the EKF by using the Un-

scented transformation for parameter estimation and avoiding high computational cost of this algorithm

by simply applying a linear Kalman filter for the case of state estimation.
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Figure 4.27: Identified unknown external effort F j
i with the dual KF-UKF approach.

4.3 Comparison of ECR and BLUE methods for structural field recon-

struction

In this section the problem of state estimation or field reconstruction in structural dynamics is addressed

in an effort to propose a complete state and parameter estimation strategy based on ECR analysis and

Kalman filtering. Hence, two different approaches directly related to these techniques are studied and

compared.

Broadly speaking, the problem of field reconstruction itself arises from the category of an inverse

problem since the estimation of the full state (i.e. displacement, velocity and acceleration history of all

DOFs) is sought from a mathematical model and a set of partial and noisy measurements (e.g. sensor

displacements, external efforts, overabundant data, etc.). In the framework of structural dynamics, the

mathematical model giving the a priori harmonic displacements qω estimation is recalled below:

(−ω2[M(θ̂)] + iω[C(θ̂)] + [K(θ̂)])qω = F (ω) for ω ∈ [ωmin, ωmax] (4.35)

where θ̂ is a vector parameterizing the mass [M ], damping [C] and stiffness [K] matrices in a FE formu-

lation and F (ω) is the vector of external efforts. Thus, the problem we are tackling consists in finding an

optimal state estimation q̂ω from the available a priori information given by (4.35) and a set of available

measurements ũ over the structure.

To tackle this data expansion problem, many different approaches exist depending on the nature of

the problem and the available a priori information (see an interesting overview in [9]). Within the family

of the well known least squares approach, we will cite the so-called kriging technique [78, 5] which

is a method to interpolate the value of a random field at an unobserved location from observations of

its value at nearby locations. In a linear framework, kriging can be directly related to the Best Linear

Unbiased Estimator (BLUE), which is presented in detail in Appendix A. The BLUE technique has been
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widely used in the domain of geosciences as a satisfying method for spatial interpolation and is actually

the theoretical background of the variational formalisms 3D-Var and 4D-Var [11] in use for e.g. weather

forecasting. Moreover, the linear Kalman filter can be understood as extending the BLUE to a sequential

framework. Indeed, in the BLUE formalism the optimal state estimation q̂ω is given by the expression:

q̂ω = qω + K(ũ − Πqω) (4.36)

where Π is a linear observation operator and K is the so-called gain matrix, obtained by:

K = ΠT P b(ΠT P bΠ + R)−1 (4.37)

where P b and R are the covariance matrices of model and observation errors respectively. One can easily

observe that these expressions precisely correspond to the state update equations in the linear Kalman

filter at each iteration step and, once again, the quality of the estimation is directly affected by the a priori

knowledge of model and observation errors introduced under the form of covariance matrices. However,

while in the Kalman algorithm the P b matrices are recursively built and enriched by their propagation

through the model equations, in the BLUE algorithm they need to be built based on the only assumption

of a priori available error information. In our proposal to use BLUE estimation for state estimation in

structural dynamics, a description of an ECR-based design of P b matrices will be discussed further.

As an alternative way to perform data expansion, the BLUE approach will be compared to the in-

formation directly obtained from the solution of the ECR problem. As a matter of fact, when regarding

the ECR optimization problem, the first step consists in obtaining the best triple of admissible fields

Tω = (û, v̂, ŵ). Thus, the kinematic admissible field û can be seen as the optimal state estimation in the

sense of the ECR cost function (1.26), where û is the “best compromise” field between the measurements

ũ and the dynamically admissible fields v̂ and ŵ that actually play a role of regularization functions.

Whilst the method based on the ECR admissible field û doesn’t need any additional assumptions

to obtain the sought state estimation, the BLUE approach requires the construction of error covariance

matrices P b and R. Obviously, the quality of the results is directly related to the accuracy of the informa-

tion introduced in this operators. Since the sensor error information is usually available and well known,

the construction of matrix R is not a major issue and, in many cases, the assumption of uncorrelated

measurement noise stands. On the other hand, however, the construction of matrix P b becomes a major

problem since the nature of model errors is in general poorly known and the assumption of uncorrelated

errors is too restrictive.

Although the design of P b is problem-dependent and there’s no general approach to build such an op-

erator, four general approaches are discussed in [4, 5] for a general data assimilation problem consisting

in:

• Diagonal design

• Decomposition design

• Kriging design

• Kalman filtering design
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In the case of a BLUE estimation, and in the very common case of a Boolean observation matrix

Π and a diagonal covariance matrix R, the diagonal design approach is not appropriate since the state

estimation will differ from the a priori state at sensor locations only. On the other hand, whereas the

Kalman filtering approach is adapted to a recursive framework only, the kriging and the decomposition

techniques propose a design based on spatial considerations of model errors. In the case treated herein

the only available information on model errors is given by the (deterministic) ECR error fields. In that

sense, the decomposition method seems to be the more appropriate approach to design P b matrices and

will be described and analyzed in the following.

The decomposition design technique proposes to build the error covariance matrix as the following

product:

P b = ΣT CΣ (4.38)

where Σ is a diagonal positive-definite matrix containing the standard deviation of the errors σ taking

the form:

Σ = diag(σ1, σ2, · · · , σi, · · · , σN ) (4.39)

and C is a symmetric positive-definite matrix containing the correlations as:

C =







1 cij

. . .

cji 1






(4.40)

Hence, the problem of designing matrix P b is therefore translated into the definition of the more

meaningful matrices Σ and C. In this approach we propose to build matrix Σ from the available error

information given by the ECR analysis. Thus, it seems natural to build this matrix, at a given frequency

ω, upon the available error field being the difference between the a priori model response qω and the

ECR estimation response ûω solving equation (4.35) as follows:

eω = ûω − qω (4.41)

leading to the following design for Σ:

Σ = diag(|eω|) (4.42)

When it comes to the matrix of spatial correlations C we propose a design based on the following

two considerations:

1. Spatial correlations exponentially decrease as a function of the Euclidean distance between DOFs.

2. At a given frequency ω, spatial correlations are a function of the structure’s deformation shape ûω.

Considering the previous hypothesis, the following design is proposed:
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cij = sign(ûiûj) · exp

(

−2||ûi| − |ûj ||
|ûi| + |ûj |

)

· exp

(

− d̃(DOFi, DOFj)

λspatial

)

(4.43)

where d̃(DOFi, DOFj) represents the Euclidean distance between the ith and jth DOFs, and λspatial

represents a correlation length.

For the sake of clarity, a 1D example is given to illustrate the above-defined correlation function cij .

For this, consider a 1D structure of unit length whose corresponding deformation shape ûω is given in

Figure 4.28. Suppose that the structure is discretized in 70 DOF distributed uniformly along its length.

Thus, Figure 4.29 visualizes the matrix C “shape” built upon the proposed correlation function.
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Figure 4.28: Illustrative example of a 1D structure deflection ûω over the structure length.
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Figure 4.29: Illustration of the correlation matrix C shape for a 1D example.

As it can be seen, the example shows how C matrices respect both of the above-mentioned hypothesis
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for cij function: exponential decorrelation as a function of the distance between DOFs and a correlation

shape related to the deformation shape ûω.

Hence, with the help of functions (4.42) and (4.43) the main shape of error covariance matrix P b is

designed in a decomposition fashion as described in (4.38). Besides, in the next examples, λspatial is

chosen so that correlation decreases of 90% for a distance corresponding to the sensors separation:

λspatial =
d̃(sensori, sensorj)

ln(0.1)
(4.44)

Obviously, this is a user defined assumption and, in the case studied herein, it is motivated by the fact

that since sensors are regularly distributed in space, the subsequent correlation function C fully covers

the studied structure. In addition, the influence of a sensor information with regards to the adjoining ones

is supposed to be low (10% or less) for the sake of field reconstruction smoothness.

At this point, in order to adapt the design of P b to the actual problem, Desroziers et al. proposed in

[29, 28] to perform the following homothety:

P̂ b = ϑP b (4.45)

where ϑ is a scalar. By doing so, Desroziers et al. show how the data assimilation process will remain

consistent with posterior statistics in the observation space and therefore optimality can be achieved.

Among the different possibilities of posterior statistics to choose ϑ and achieve optimality proposed in

[28] the expression below is adopted here

E[do
a(do

b)T ] = R (4.46)

where the quantities do
a and do

b are defined by

{

do
b = Πqω − ũ

do
a = Πq̂ω − ũ

(4.47)

In practice, matrix R is chosen to be diagonal and for the sake of simplicity in the following examples

we will choose parameter ϑ in a way that Trace(do
a(do

b)T ) = Trace(R).

In the following examples, a comparison of field reconstruction between the proposed BLUE ap-

proach which is summarized in Figure 4.30 and the state estimation given by ECR minimization is

presented. The quality of a field reconstruction qestimate will be compared to the actual state qactual by

means of the indicator:

κ(qestimate, qactual) :=
〈qestimate, qactual〉

√

〈qestimate, qestimate〉〈qactual, qactual〉
(4.48)

which is basically a Modal Assurance Criterion (MAC) which can takes values in [−1 : 1] and measures

the collinearity of both qestimate and qactual vectors.
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The first example is based on the parameter identification problem of a concrete beam in presence

of structural damage and boundary mis-modelling of section 4.2. In order to both compare the perfor-

mances of each method for many different cases and integrate the field reconstruction in a full state-and-

parameter estimation approach, the BLUE and ECR techniques are examined at each UKF iteration of

the sequence obtained in the identification process of Figure 4.22(a).

The results of this exercise are shown in Figure 4.31 where after obtaining the estimated states at

each iteration the pseudo-MAC criterion κ is compared. Figures show the results for 10 frequencies

corresponding to the first most excited eigenfrequencies of the actual structure.

It can be seen that in most of the cases both ECR and BLUE estimations improve the quality of

model a priori estimation. However, this is not systematic and generally appears to be the case for the

first parameters iterations. This is probably due to the fact that, not only measurements are noisy, but

also model parametrization is inaccurate enough to build unsatisfactory a priori states. However, it has

to be said that the ECR approach globally presents better performances compared to the BLUE ones. As

ECR-based BLUE state estimation.

For ω ∈ [ωmin, ωmax]

1. Obtain the a priori model response qω and the ECR kinematically admissible field ûω.

2. Compute the a priori error field eω = ûω − qω.

3. Compute the error covariance matrix as P b = ΣT CΣ where

(a) Σ = diag(|eω|)

(b) Cij = sign(ûiûj) · exp

(

−2||ûi| − |ûj ||
|ûi| + |ûj |

)

· exp

(

− d̃(DOFi, DOFj)

λspatial

)

; where

d̃(DOFi, DOFj) represents the Euclidean distance between the ith and jth DOFs,

and λspatial represents a spatial correlation length.

4. Set P̂ b = ϑP b

5. Build the gain matrix K(ϑ) = ΠT P̂ b(ΠT P̂ bΠ + R)−1

6. Set the state estimation as q̂ω(ϑ) = qω + K(ϑ)(ũ − Πqω)

7. Evaluate posterior statistics
{

do
b = Πqω − ũ

do
a = Πq̂ω − ũ

8. Choose parameter ϑ so that Trace(do
a(do

b)T ) = Trace(R).

9. Obtain the final state estimation as q̂ω = qω + K(ũ − Πqω).

Figure 4.30: Overview of the ECR-based BLUE state estimation procedure.
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a matter of fact, this can be observed not only for the cases where the a priori guess is “close“ to the

actual values (see figures 4.31(a) and 4.31(c)) but also when initial guesses give a poor estimation of the

structure state as can be seen in Figure 4.31(g).

A second example is considered, involving a larger number of DOFs, namely that of the power

plant cooling tower previously studied in section 4.1. In this case, both BLUE and ECR approaches are

compared through the identification process shown in Figure 4.4(b). The state estimation is performed

at frequencies 0.9Hz, 1.1Hz, 1.35Hz and 2,47Hz for which the ECR spectrum (see ECR in Figure 4.2)

is highest. In this case the ECR approach clearly gives the best state estimation with excellent results

although, again, in both cases ECR and BLUE improve the a priori state knowledge.

Figure 4.33 shows the state error fields (difference between estimated field and actual field) for the

initial set of parameters at frequency 2.47Hz. It can be seen how the a priori error presents an axisym-

metric distribution around z axis and how the BLUE estimator maintains this structure slightly corrected

in the damaged region. Besides, in the ECR state estimation, error is not only reduced in terms of mag-

nitude (scale factor is reduced by one order of magnitude in Figure 4.33(c)) but also remains mainly

concentrated in the constitutive relation erroneous region (damaged region).

In real cases, the initial FE model may give an inaccurate a priori estimation of the structure state

where MAC values can fall to very low values. In an effort to evaluate the performances of both tech-

niques in a case where the initial guess is particularly inaccurate, an a priori FE model is built where the

Young’s modulus is set to E = 5E0 for the whole structure leading to a particularly erroneous initial state

guess. The results of the error fields are presented in Figure 4.34 for the frequency of 2.47Hz. As it can

be seen, the initial a priori state presents a very poor correlation (κ = 0.361) with respect to the actual

state. Nevertheless, after performing a BLUE state estimation the representativity of the estimated field

increases up to a κ = 0.541. However, despite a bad guess of the whole structure’s Young’s modulus, the

ECR represents the best state estimator considerably raising the state representativity up to a κ = 0.909,

which can be considered as an excellent result.
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Figure 4.31: Sequence of state estimation quality during the damage and boundary impedance pa-

rameter identification process of the concrete beam example. Comparison of κ criterion

between initial guess, ECR and BLUE estimators.
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Figure 4.32: Sequence of state estimation quality during the damage parameter identification process

of a cooling tower example. Comparison of κ criterion between initial guess, ECR and

BLUE estimators.
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(a) a priori state error. (b) BLUE estimation state error.

(c) ECR estimation state error.

Figure 4.33: Cooling tower state estimation error fields at 2.47Hz at first parameter iteration of the

ECR-UKF identification process
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(a) a priori state error. κ = 0.361 (b) BLUE estimation state error. κ = 0.541

(c) ECR estimation state error. κ = 0.909

Figure 4.34: Cooling tower state estimation error fields at 2.47Hz for FEM with a global Young’s

modulus of E = 5E0.

In this section, two different strategies based on ECR information (i.e. ECR optimal admissible fields

and ECR-based BLUE) have been applied to perform optimal state estimation. The above-described

methods have been evaluated in the afore studied cases of a concrete beam and a power plant cooling

tower. In most of the cases both techniques seem to improve the quality of the state estimation with

respect to its a priori knowledge. However, the ECR optimal admissible field û seems to give better

performances with respect to the BLUE approach in most of the cases. Taking into account these con-

sideration, it is proposed to adopt the ECR optimal admissible field û for field reconstruction purposes in

structural dynamics. This approach not only presents the advantage to improve the quality of the results

obtained by the BLUE approach but also demands no additional computational effort since û is naturally

obtained when solving the ECR problem for parameter identification.
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4.4 Conclusions

This chapter is devoted to the study of the adequacy of the ECR-UKF as an approach to improve FE

model representativity in cases of industrial relevance. For this, three main problems are addressed,

namely structural flaws assessment, identification of mis-specified boundary conditions and field recon-

struction.

An example of structural damage identification is firstly addressed in a high-DOF complex model.

In this context, while the ECR showed a good ability to spatially localize model errors, the ECR-UKF

conveniently converges to actual values of damage, either for the case of invariant or evolutionary dam-

age. In that sense, the ECR-UKF fulfills the three main targets defined in the introduction of this thesis

and it will be further investigated in cases of increasing difficulty in part III.

In section 4.2, the problem of mis-modeled boundary conditions is studied from both the frequency-

domain and the time-domain. In the first case, while the ECR shows again a good ability to localize

boundary mis-modeled regions, an additional technique based on a condensation and inversion approach

is required. Once the information about the boundary impedance is available, the ECR-UKF satisfac-

torily handles the identification of impedance parameters. An example combining boundary errors and

evolving structural damaged is also presented and satisfactorily solved.

Moreover, a time-domain formulation is proposed for boundary errors identification based in Kalman

filtering. For this, two approaches are investigated: a joint state and parameter estimation based in the

EKF and a dual approach using two filters running in parallel (KF for state and UKF for parameter esti-

mation). With the contributions of these numerical examples, a deeper study devoted to an experimental

campaign about mis-modeled boundary identification will be further addressed in chapter 7.

In an effort to propose optimal state estimation within the ECR-UKF approach, the last section of

this chapter is dedicated to the study of field reconstruction in structural dynamics. For this, two different

methods directly related to the ECR and the Kalman filtering techniques are studied and compared. The

first one is based in a BLUE formulation where covariance matrices are built upon the available ECR in-

formation. An alternative approach based in the information directly obtained from the triple T (û, v̂, ŵ)

is also proposed. Results show how the kinematically admissible field û represents a particularly good

field reconstruction and is proposed as a technique to solve future shape expansion problems.



Chapter 5

Improvements of the ECR-UKF algorithm
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5.1 Introducing algebraic constraints in the Unscented Kalman Filter

When dealing with physical phenomena, prior information on the states can often be introduced in the

form of equality or inequality constraints expressing physical restrictions (mass or density positiveness,

etc.). In the application of state estimators by means of Kalman filtering such constraints are not naturally

taken into account. However, many researchers have studied the problem of introducing constraints in

Kalman filtering as discussed shortly. In this section we discuss different approaches to address this issue

with a direct application to the ECR-UKF algorithm. In particular, the discussion will be limited to the

case of algebraic constraints of the form:

Dθ ≤ c (5.1)

where θ is the vector of model states (parameters in our case), D is a known matrix and c is known vector

defining the admissible space.

In the case of equality constraints, the most natural approach is to reduce the system model parametriza-

tion by enforcing the constraints into the model equations as proposed in [88]. By doing so, the initial

problem is therefore transformed into an equivalent unconstrained problem. A clear advantage of this

approach is to reduce the model size and in consequence its computational cost. Nevertheless, two main

disadvantages exist: (i) the physical meaning of the variables may be lost and (ii) the treatment can

not be extended to handling inequality constraints. Other authors (see [46] or [71]) treat state equality

constraints as perfect measurements by augmenting the measurement equation with an associated zero

variance noise. In this case, the new measurement noise covariance will be singular and, although a

93



94 CHAPTER 5. IMPROVEMENTS OF THE ECR-UKF ALGORITHM

singular covariance does not present any theoretical problems it increases the possibility of numerical is-

sues. In other cases the equality constraints are used to derive the Kalman filter equations in a maximum

likelihood approach [76].

The aim of this discussion is, however, to propose a technique applicable to the case of the ECR-UKF

approach implemented within the framework of a Finite Element software such as Code Aster. In the

following, we propose to study the case described in section 4.2 concerning the identification of model

parameters of a concrete beam in the presence of both structural damage and a mis-modeled boundary.

Recall the vector of sought parameters:

θ = {d3 k m}T (5.2)

In this case, all the physical parameters are subjected to a constraint of positiveness.

When using the Unscented Kalman filter for nonlinear estimation, the presence of state constraints

affects not only the estimates but also the sigma points used to evaluate process and observation covari-

ances. The original UKF equations do not guarantee that any of the sigma points satisfy the constraints

and whose satisfaction thus introduces an additional issue to the construction of the constrained UKF

equations. During the last 5 years the introduction of algebraic inequality constraints in the Unscented

formalism has received an increasing attention and remains an area of open research. An interesting

overview of different existing approaches is proposed by Teixeira et al. in [82] where the performances

are illustrated through an example of a chemical process. It is interesting though to point out some aspect

of the studied techniques:

• The URNDDR (Unscented Recursive Nonlinear Dynamic Data Reconciliation) approach devel-

oped by Vachhani and Narasimhanin in [86] proposes to select a set of sigma points and corre-

sponding weights satisfying the constraints in a projection approach. Then, the state estimation is

performed by solving a nonlinear constrained optimization problem at each time step (in that sense

the URNDDR does not require the computation of a Kalman gain to obtain the estimates). In this

approach, constraints are strictly respected in the estimation of both mean and covariance of the

states. However, an external algorithm is required to solve the nonlinear optimization problem for

the estimates and for this reason it has not been implemented in the example treated herein.

• In the work by Kandepu et al. [54], after propagation of the sigma points through the nonlinear

state equations, the (unconstrained) transformed sigma points which are outside the “feasible“

region are projected onto the boundary of the feasible region and continue the further steps while

subsequently adapt their weights. In the application of such a method in the ECR-UKF example,

this approach has led to a non-positiveness of the covariance matrices. In a variant proposed by

Chatzi in [18], the sigma points and its corresponding weights are corrected symmetrically around

the mean while also trying to maintain the reasoning of propagating a Gaussian random variable of

specific mean and variance. The method demands to solve a new optimization problem in order to

now minimize the deviation of the new state variance from the originally estimated. For the same

above-mentioned reasons this approach has not been implemented in our example.
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• In the probability density function truncation approach proposed by Simon in [77], the probability

density functions (assumed to be Gaussian) are truncated at the constraints edges. Thus, the con-

strained state estimate becomes equal to the mean and covariance of the truncated function in the

admissible space. This pdf truncation technique has been implemented in the ECR-UKF example

treated below. Notwithstanding, it led to numerical issues for the relatively common cases where

the initial guess of the Kalman filter is ”far“ from the actual state. In this situation, the uncon-

strained state estimate strongly violates the constraints and the remaining pdf function is, roughly

speaking, the ”tail“ of the Gaussian pdf function whose area is close to zero. At this point, the pdf

truncation approach gives numerical singularities when normalizing the truncated pdf function to

obtain the constrained distribution (refer to [77] for the pdf truncation equations).

In the following, we illustrate the results of two different experiments that particularly fit the needs

of the ECR-UKF example. Beginning with the most natural approach which consists in applying a

transformation to the initial variables in a way that the effective variables respect condition (5.1). To do

so, suppose a bijection T of class C1 defined by:

T : R −→ ]c1, c2[

xi 7−→ mi =
ǫ2

c1 + 2ǫ − xi
+ c1 if xi < c1 + ǫ

xi 7−→ mi = xi if c1 + ǫ ≤ xi ≤ c2 − ǫ

xi 7−→ mi =
ǫ2

c2 − 2ǫ − xi
+ c2 if xi > c2 − ǫ

(5.3)

where xi are the effective variables introduced in the UKF algorithm with values in R without restrictions.

The mi are, on the other hand, the structural parameters used to build the FE model with values in the

constrained space ]c1, c2[ and ǫ is a positive scalar which has been set to ǫ = 0.5 in the next experiments.

The considered function is illustrated in Figure 5.1.

In the example of structural parameters for which positiveness is required, we have considered c1 = 0

and c2 = ∞. The results of four different experiments are shown in Figure 5.2 for different initial guesses

of θ0. In fact, the initial guess of θ0 has a major influence since the ”further“ the initial guess from

the actual state, the stronger the UKF first sigma point estimates will tend to penetrate the constrained

space. In figures 5.2(a) and 5.2(b), penetrations are sufficiently smooth so that the algorithm achieves

convergence towards the sought parameters. In Figure 5.2(b) it can be seen, though, that this technique

presents a certain slowness of convergence when one or more parameters remain close to the boundary

of the admissible parameter space. However, when the initial guesses are even further from their actual

value, the sigma point estimates (unconstrained) tend to strongly violate boundaries and numerical issues

may start to appear leading to divergence or stability problems of the transformed estimates. Figures

5.2(c) and 5.2(d) show the two phenomena due to numerical inaccuracies of the estimated means and

covariances near the boundaries. Hence, it is clear that the variable transformation approach cannot be

applied with confidence.
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Figure 5.1: Variable transformation T used to introduce algebraic constraints in the framework of the

Unscented Kalman filter for the identification of structural parameters.
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Figure 5.2: Identification of structural damage and impedance parameters incorporating parameter

constraints with a variable transformation approach for different initial conditions.

In order to overcome the aforementioned problems, an adapted technique is proposed below. This

approach concerns the particular case we treat here where the observation function is of the form:

ξ2
T r(θ) : R

m −→ R
+

Thus, the main idea of this approach consists in completing the observation function in the inadmis-
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sible space in a way that penalizes constraint violation and, by doing so, guide the estimates to naturally

be repelled away from the constraint boundaries. To do so, the following steps are introduced in the UKF

formalism:

1. At each step, project each sigma point [θj ]i into the admissible space so that the observation func-

tion can be evaluated. To do so, if the constraints are violated, the following least squares problem

can be used to obtain the projected points:

[θj ]i = arg min
[θj ]i

‖[θj ]i − [θj ]i‖2
W such that D[θj ]i ≤ c (5.4)

where W is a weighting matrix. The solution of such a problem is given by:

[θj ]i = [θj ]i − W −1D̃T (D̃W −1D̃T )−1(D̃[θj ]i − c̃) (5.5)

where D̃ and c̃ correspond to the rows of the active constraints of D and c respectively.

Thus, a projection operator ∆ can be defined as:

∆ : R
m −→ R

m

[θj ]i 7−→ [θj ]i = [θj ]i if D[θj ]i ≤ c

[θj ]i 7−→ [θj ]i = [θj ]i − W −1D̃T (D̃W −1D̃T )−1(D̃[θj ]i − c̃) if D[θj ]i > c
(5.6)

2. Modify the value of the observation function ξ2
T r(θ) with a penalty strategy in order to smoothly

repel estimates from the admissible boundaries. The new proposed observation function ξ2
T r(·) is

defined as follows:

ξ2
T r : R

m −→ R

[θj ]i 7−→ ξ2
T r([θj ]i) = ξ2

T r([θj ]i) if D[θj ]i ≤ c

[θj ]i 7−→ ξ2
T r([θj ]i) = ξ2

T r([θj ]i) + Kpen‖[θj ]i − [θj ]i‖ if D[θj ]i > c

(5.7)

where Kpen is a positive scalar. In this new function, when the constraints are violated the function

is evaluated at the projected sigma point and its value is increased proportionally to the penetration

value. This function is illustrated in Figure 5.3 for the sake of clarity.

3. Modify the Kalman gain in order to ensure an admissible estimate as well as positive definiteness

of the updated covariances. To do so, a new scaled Kalman gain is sought in order to ensure that

all the constraints are respected. Then, the new Kalman gain is reduced by a factor βproj leading

to a parameter update equation of the form:

θj+1 =θj − β
proj
j Kθ

j ζ̂j such that Dθj+1 ≤ c (5.8)
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where βproj
j is a scalar value such that 0 ≤ β

proj
j ≤ 1. To obtain such a parameter a first estima-

tion of θj+1 is evaluated with βproj
j = 1. If constraints are respected the Kalman gain remains

unaltered and the algorithm continues on. In the contrary, if constraints are violated, parameter

βproj
j is chosen as the scale factor so that the update parameter θj+1 is the projection of θj into the

constraint boundary Dθ ≤ c through the direction given by Kθ
j ζ̂j . This leads to the following line

search:

βproj
j = arg min

l

‖c̃l − D̃lθj‖
‖Kθ

j ζ̂j‖ (5.9)

where l is the number of active constraints (number of rows in D̃ and c̃).

Figure 5.3: Modification of the ECR observation operator ξ2

T r(·) with a penalty function depending on

the parameter penetration into the inadmissible space.

The above-mentioned considerations are therefore used to modify the original ECR-UKF algorithm

described in Figure 3.7 in order to take into account algebraic inequality constraints. Thus, the proposed

constrained ECR-UKF algorithm is detailed in Figure 5.5 where the new and modified steps are colored

in red numbers.

This new algorithm has been applied to the case of parameter identification of a concrete beam in

presence of structural damage and boundary condition model error. The following assumptions have

been made:

D = −1 · I, c = {0 0 0}T , W = I, Kpen = 100 (5.10)

where I is the identity matrix. It has to be mentioned that the investigations carried out with this method

didn’t show a significant sensitivity to the choice of Kpen and therefore the assumption Kpen = 100 is

adopted. In Figure 5.4 we show the results of the application of this new algorithm to the identification

example. As it can be seen the algorithm converges towards the sought values for the different studied

cases and it is important to mention that no numerical issues have been encountered when using this

approach. Examples in figures 5.4(b) and 5.4(c) can be compared to those in figures 5.2(c) and 5.2(d)
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where the variable transformation (5.3) failed. It can be observed that the positiveness condition is

strictly respected by algorithm and the estimates ”rebound” in the constraint edge being repelled into

the admissible space, as expected. Figure 5.4(d) illustrates the identification results for a severe case

with a worse initial guess testing the robustness of the algorithm. Despite this difficulty, the modified

ECR-UKF algorithm converges towards the actual values satisfactorily presenting several rebounds in

the boundary edge with, notwithstanding, a stable identification process. However, it can be seen that the

more often the algorithm bounces off the boundary the more iterations it requires to achieve convergence.

This is due to the fact that when projecting estimates and sigma points onto the boundaries the associated

covariances are inaccurately estimated and the algorithm needs to recursively enrich this information,

spending iterations for doing so.
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Figure 5.4: Identification of structural damage and impedance parameters incorporating parameter

constraints with a sigma points projection approach for different initial conditions.

To conclude, in this section we have discussed the need and ways to introduce algebraic constraints

into Kalman filtering with a particular attention to the case of inequality constraints, which are of main

interest in the case of mechanical models. An example of parameter identification using the ECR-UKF

algorithm has been analyzed where different approaches have been implemented. While existing meth-

ods in the literature presented numerical issues in our case, a solution has been sought for the specific

case of the ECR-UKF algorithm. The approach consisting in modifying the ECR based observation

function brings the most robust approach in terms of stability even for severe cases. Hence, we propose

to use this modified ECR-UKF algorithm when the introduction of algebraic constraints is needed.
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ECR based Unscented Kalman filter for parameter estimation

I Initialization

θ0 = E[θ] and P θ
0 = E[(θ − θ0)(θ − θ0)T ]

II For j ∈ [1 . . . ∞]

1 Build matrix of sigma points around θj

[θj ] = {θj θj +
√

(m + λ)P θ
j θj −

√

(m + λ)P θ
j }

2 Project sigma points [θj ] onto state intervals

[θj ]i = ∆([θj ])

3 Propagate sigma points through the penalized ECR cost function ξ2
T r(·)

[ζj ] = ξ2
T r([θj ])

4 Best estimate ζ̂j through Unscented weighting factors W m
i

ζ̂j =
∑2L

i=0 W m
i [ζj ]i

5 Compute Kalman gain

Kθ
j = P θζ

j (P ζζ
j )−1

P ζζ
j =

∑2L
i=0 W c

i (([ζj ]i − ζ̂j)([ζj ]i − ζ̂j)T ) + Rj

P θζ
j =

∑2L
i=0 W c

i (([θj ]i − θj)([ζj ]i − ζ̂j)T )

6 Parameter update

θj+1 =θj − β
proj
j Kθ

j ζ̂j such that Dθj+1 ≤ c and 0 ≤ β
proj
j ≤ 1

7 Covariance update

P θ
j+1 = P θ

j − β
proj
j Kθ

j (P θζ
j )T + Qj

Figure 5.5: Modified ECR-UKF algorithm taking into account algebraic state interval constraints.

Algorithm steps including a modification of the original UKF are colored in red numbers.
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5.2 Parametric study of ECR-UKF parameter error covariance matrix

In the previous sections, several numerical examples coupling the ECR and UKF techniques are pre-

sented in the fashion proposed in chapter 3, showing how these two methods can be combined to obtain

both an enriched knowledge of the parametric state of the structure as well as its eventual evolution over

time when it occurs. Nevertheless, it is widely known that the quality of the estimation in a sequential

Kalman filter approach is directly related to the a priori knowledge of model and observation errors. As

a matter of fact, this essential a priori knowledge is introduced in the Kalman framework in the form of

covariance matrices, namely the model error covariance matrix Qk and the observation error covariance

matrix Rk as presented in the linear KF formalism of Figure 2.3. In particular, when referring to the

ECR-UKF approach described in Figure 3.7, the subsequent covariance matrices are respectively Qj

and Rj as defined in (3.14). In this context, the algorithm can be compared to a quasi-Newton descent

method and, as discussed in chapter 3.3, while the role of Rj only affects the speed, the choice of Qj

directly affects the convergence rate and the tracking performance.

Hence, in this section the problem of error covariance matrix modeling is addressed within the frame

of the proposed ECR-UKF approach. The goal of this parametric study is to investigate the influence of

the design of Qj in terms of the quality of the estimation. Despite the major importance of covariance

matrices in Kalman filtering, its modeling is still an area of open research, currently not often addressed

in the literature (cf. [32, 31] in the field of atmospheric research). We will cite, though, the study pro-

posed in [15] where the choice of covariance matrices is performed under the condition of a decreasing

Lyapunov function leading to a linear matrix inequality problem which points out the connection of a

good convergence between the EKF and the instrumental matrices Rk and Qk. Moreover, it is interest-

ing to cite the extension of this work to the UKF formalism proposed in [90]. However, in both works

the assumption of a linear observation function is made and is therefore not suitable in the ECR-UKF

approach.

When it comes to parameter estimation by means of the UKF algorithm, no work has been found

in the literature addressing the problem of error covariance design apart from some proposed options in

[45]. The present study is therefore based on proposals from [45], as next:

Type A. Set Qj = υI, where I is the identity matrix. This leads to a simple “fixed” diagonal design of

the error covariance matrix.

Type B. Set Qj = κP θ
j . This approximation assumes that covariance matrix Qj is consistent with

the posterior evaluation of parameter covariance P θ
j and provides an approximate exponentially

decaying weighting on past data.

Type C. Set Qj = (1 − αRM )P θ
j + αRM Kθ

j [ζj − ζ̂j ][ζj − ζ̂j ]T (Kθ
j )T which is a Robbins-Monro

stochastic approximation scheme [62] for estimating the innovations assuming that covariance Qj

is consistent with both the posterior evaluation of parameter covariance P θ
j and the covariance of

the correction vector Kθ
j [ζj − ζ̂j ]. Parameter αRM is a weighting factor of both contributors.
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In the following, the example of structural damage and impedance parameters presented in section

4.2 is used to compare the different approaches where the model parametrization defined in equation

(4.18) is adopted. Hence, only the design of Qj matrix is changed in th e next experiments. On the

other hand, identical initial conditions are used to initialize the ERC-UKF algorithm where its main

characteristics are presented here:

• θ0 = {d3 k m}T
0 = {0 1.656 · 106 N/mm 9.93 kg}T

• P θ
0 = 10−5I

• Rj = 0 ∀j

In Figure 5.6 a type-A error covariance matrix design is examined. The evolution of the ECR cost

function ξ2
T r(θj) residual throughout the identification process is evaluated and compared for different

amplitudes υ of Qj = υ10−5I. It can be seen that in all the cases the algorithm presents a very similar

convergence ratio and smoothness. Differences start to appear from step 30 where the algorithm starts

to reach the steady state solution of the discrete matrix Riccati equation [40]. At this point, we can

observe that the ECR residual remains bounded from below in a proportional manner with the amplitude

parameter υ. This property allows the most recent data to be emphasized and, in the case of time-varying

parameter identification, it maintains the Kalman gain sufficiently large to keep a good tracking. This

case will be examined further.
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Figure 5.6: Comparison of ξ2

T r(θj) residual along the ERC-UKF identification process for different

values of υj in a Qj = υj10−5I modeling (Type A).

Figure 5.7 shows the results of a type-B error covariance matrix design where, as in the previous

case, the ECR cost function residual is presented for different amplitudes of the κ parameter in Qj =
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κjP θ
j . In comparison with the type-A design, a loss of both smoothness in the identification process

and convergence speed can clearly be observed. Despite these disadvantages, the algorithm converges

towards the actual model parameters. This design has the advantage to introduce a proper order of

magnitude of Qj without prior assumptions. However, Qj anneals towards zero as the identification

goes on and might lead to significant inaccuracy for cases where tracking of time-varying parameters is

sought.
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Figure 5.7: Comparison of ξ2

T r(θj) residual along the ERC-UKF identification process for different

values of κj in a Qj = κjP θ
j modeling (Type B).

In that sense, the type-B design can be used to obtain prior order of error covariance matrix Qj .

Hence, we propose to investigate an approach combining type-A and type-B covariance formats, defined

as follows:

Type D. Set Qj = µ diag(P θ
j ). This approximation results into an approximately exponentially decay-

ing weighting on past data with an uncorrelated error through state mapping (diagonal matrix).

Results of the type-D design are presented in Figure 5.8. One can easily observe that this design

clearly improves the stability of the solution given by a type-B design due to the fact that matrix Qj is

forced to be diagonal. In addition, convergence speed is also enhanced and results are comparable to

those obtained in Figure 5.6. However, one can remark that for type-D design the quality of the result

and in particular speed-rate convergence has a higher sensitivity to the amplitude factor µ than type-A to

factor υ. Notice that, for very small values of µ, divergence of the results has been observed. Thereby,

the best order of magnitude of µ factor seems to be around µ = 1 ± 0.5.
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Figure 5.8: Comparison of ξ2

T r(θj) residual along the ERC-UKF identification process for different

values of µj in a Qj = µ diag(P θ
j ) design (Type D).

The results concerning the type-C design are presented in Figure 5.9. Contrarily to the experience

given in [45], the Robbins-Monro approach gives in our case an inappropriate design of the error model

covariance matrices Qj . As a matter of fact, the identification process gets stuck after some iterations

depending on the value of the Robbins-Monro parameter αRM . The closer αRM to 1, the sooner the

identification gets stuck. This can be seen in the curves presented in Figure 5.9 where one can observe

that for αRM = 0.9 the identifications fails at the very first iterations while for αRM = 0.1 it oscillates

(since is a closer design to type B) but finally ends stuck at the same point as the other ones. We can thus

conclude that the Robbins-Monro is not a convenient design for the ECR-UKF algorithm.

In order to compare the three “convergent” approaches for the design of Qj , the best candidates of

type-A (υ = 0.1), type-B (κ = 0.5) and type-D (µ = 1.0) are presented in Figure 5.10. While the

type-B design presents the worst convergence speed, type-A and type-D designs exhibit very similar

performances. Although slight differences exist in the initial steps of the algorithm for type-A and type-

D designs, parameter convergence is reached in a very similar way in both cases. This can be appreciated

in Figure 5.11 where the parameter estimate evolution throughout the process is shown.

Figure 5.11 shows how the performance differences shown in Figure 5.10 are translated into the

parameters space. In particular in figures 5.11(b) and 5.11(c) we see how the type-B design can present

both low speed-rate convergence as well as instability of the estimates.

Applying these designs to the time-varying parameters case leads to similar conclusions to the ones

obtained for the time-invariant case. To investigate the performances of each design we have used the

example of damage evolution in presence of boundary miss-modeling of section 4.2. For this example,
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Figure 5.9: Comparison of ξ2

T r(θj) residual along the ERC-UKF identification process for different

values of αRM in a Robbins-Monro modeling of Qj (Type C).

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

Steps

ξ
2 T
r(θ

j)

type Dtype Btype A

Figure 5.10: Comparison of ξ2

T r(θj) residual along the ERC-UKF identification process for different

designs of error noise covariance matrix Q: type A (υ = 0.1), type B (κ = 0.5) and type

D (µ = 1.0).

figure 5.12 compares the performances of the algorithm for the three different Qj designs.

In Figure 5.12 three different regions can be distinguished: a first region between steps 1 to 15 where

the algorithm aims at finding the initial steady state, a second region embedded in between steps 16 and

30 where rapid changes occur and finally, from step 31 till the end, a region where slow changes take

place. These three regions explain the “hump-shaped“ performance curves where the augmentation of

the ξ2
T r(θj) residual corresponds to the period where the algorithm aims at tracking rapid changes.
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Figure 5.11: Comparison of the identification results using the ERC-UKF strategy for different mod-

eling of error noise covariance matrix Q.
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Figure 5.12: Comparison of ξ2

T r(θj) residual along the ERC-UKF identification process for different

designs of error noise covariance matrix Q in the case of evolving structural damage: type

A (υ = 0.1), type B (κ = 0.5) and type D (µ = 1.0).
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Unlike the conclusions obtained for the time-invariant case, Figure 5.12 shows a better behavior of

the type-A design than the other approaches. Indeed, not only the initial state is reached with better

accuracy but also rapid changes are better tracked, allowing a more precise estimation during the slow

changes period.

Figure 5.13 illustrates the performances of the three approaches when comparing the damage pa-

rameter tracking for the evolving-damage case. It can be seen that the performance of type-A error

covariance matrix design gives very good results leading to a satisfying posterior knowledge of the struc-

tural damage evolution over time. On the other hand, while type-B design globally tracks damage in a

correct way, its lack of stability gives an inaccurate idea of the actual damage evolution. Besides, the

type-D approach improves the stability of the estimates, at the expense of a somewhat slower conver-

gence. This is due to the fact that, in type-A design, the eigenvalues of P θ
j+1 stay bounded from below,

leaving the Kalman gain Kθ
j sufficiently ”large“ to emphasize recent changes of the innovation vector

(ζj − ζ̂j) and by this better take into account rapid changes. On the contrary, since type-D provides an

approximate exponentially decaying factor, all the eigenvalues of P θ
j+1 vanish and changes are identified

with a certain delay and slowness.
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Figure 5.13: Comparison of the identified damage parameter d3 along the ERC-UKF identification

process for different modeling of error noise covariance matrix Q in the case of evolving

structural damage.

To conclude, in this section a parametric study of error covariance matrix Qj design is addressed with

particular attention to the ECR-UKF framework. In particular, four different approaches are investigated

using the example of structural damage and boundary impedance parameters identification described in

section 4.2. It has been shown that the design of a constant diagonal matrix gives very good results in

terms of speed-rate and stability of the solution. In particular, it has the ability to track rapid changes

seeming particularly appropriate to the case of time-variant parameters. On the other hand, while the case
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of a Robbins-Monro approach makes the algorithm fail in the identification process, two other designs

based in the information contained in the posterior parameter covariance P θ
j are studied. A first approach

consisting in Qj = κP θ
j reaches convergences but lacks of stability. Finally, a modified approach uses

Qj = µ diag(P θ
j ) considerably improving the stability issue and resulting in an approximately exponen-

tially decaying factor where no user defined tuning has to be done concerning the order of magnitude of

matrix Qj . This design seems therefore appropriate for the case of time-invariant parameters identifica-

tion achieving stability and acceptable speed-rate convergence.

5.3 Conclusions

When using the ECR-UKF algorithm in its original form as proposed in chapter 3, the user may have

to upfront some specific issues. This chapter addresses two of the main difficulties encountered when

putting in use the ECR-UKF, namely the introduction of algebraic constraints in the estimated vector θ

and the design of covariance matrices Qj .

Concerning the problem of introducing algebraic constraints, two different approaches are studied

as an alternative to the methods proposed in the literature. A variable transformation is firstly proposed

which, although giving satisfactory results in some cases, it can suffer from numerical issues leading the

algorithm to divergence. To overcome this problem a modified ECR-UKF is proposed. It is based on

the projection of the UKF sigma points into state intervals and a subsequent modification of the ECR

function. This approach proved to be a more robust method to deal with algebraic constraints and is

adopted in the further uses of the ECR-UKF.

On the other hand, the design of covariance matrices Qj may have a strong influence on the identi-

fication process. Since no general guidelines exists for this, the influence of four different designs are

studied for the cases invariant and evolving parameters. In both cases, a specific design is proposed and,

again, are adopted in the further uses of the ECR-UKF.



Part III

Applications

Introduction

This part is devoted to evaluating the ability and robustness of the ECR-UKF approach when applied

to relevant industrial situations. In that sense, it represents a step towards the investigation of two of

the main topics studied in chapter 4, namely damage assessment in complex structures and boundary

condition mis-modeling identification. Accordingly, this part is divided into two chapters.

Chapter 6 aims at investigate the use of the ECR as a method to localize and characterize structural

damage in complex structures subjected to seismic loads. It is based in the so-called SMART interna-

tional research benchmark started in 2007 by EDF and CEA (the French Atomic Energy Commission)

aimed at assessing the resistance of civil engineering structures to seismic activity. It is important to

mention that the chapter summarizes the work conducted in the framework of a 6-month undergraduate

internship by Maı̈lys Pache (a final year student of ENSTA-Paristech) and supervised by myself in the

course of this thesis. This chapter is completed by Appendix E where the most important chapters of the

final internship report written by M. Pache are reproduced.

Chapter 7 is devoted to an experimental campaign where a reinforced concrete beam is placed in a

testing bench that strongly modifies its dynamic behavior. Here, a FE model initially assumes perfect

clamping boundaries and the problem of mis-modeled boundary conditions is addressed, considering

that no a priori knowledge of model errors is available. Thus, the use of real, noisy, measurements and

the identification of complex boundary impedances represents the main issue of this investigation.





Chapter 6

ECR in civil structures assessment:

application to the SMART benchmark
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6.1 Introduction

In the course of this doctoral research, I supervised the work of a final-year undergraduate engineer-

ing student (Maı̈lys Pache, from ENSTA, Paris), who devoted a 6-month internship to both testing the

implemented ECR routines with complex FE models and evaluating its robustness on an example of

industrial relevance. In particular, we aimed at investigating the use of the ECR as a method to local-

ize and characterize structural damage in complex structures. To this aim, the frequency-domain ECR

methods were applied to a FE model of nuclear power plant auxiliaries building made of reinforced con-

crete and subjected to seismic loads, whose experimental and numerical models are shown in Figure 6.1.

Both numerical and experimental models were the object of the so-called SMART international research

benchmark started in 2007 by EDF and CEA in order to assess the ability of civil structures to resist seis-

mic activity. The internship was conducted at EDF’s research division. This short chapter summarizes

this internship work. Further details are given in Appendix E, where the main chapters of M. Pache’s

final report are reproduced.

6.2 Main results

The contributions of the internship to the goals of this Ph.D were twofold. Firstly, from the methodologi-

cal point of view, numerical experiments on the SMART model helped to better comprehend and interpret

111
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(a) Experimental specimen placed onto a

shaking table at CEA laboratories

(b) Finite Element model

Figure 6.1: Nuclear auxiliaries building models subjected to seismic loads used in the SMART bench-

mark.

the ECR results as well as its limitations in complex models. Secondly, from the numerical point of view,

it helped to adapt the relevant routines written in the course if this work to the Code Aster environment.

Cases of increasing difficulty were addressed, from sensitivity studies on linear frequency-domain mod-

els to time-domain problems under seismic loadings. The main contributions of this internship work are

itemized next.

Methodological contributions

• When evaluating the model error spatial distribution, the importance of the external loading fre-

quency range is shown. When using single-frequency loadings, modeling defects may be only

partially detected in complex structures. Usually the quality of ECR indicators is improved when

using a large frequency range. This is investigated through information obtained from the ECR

spectrum.

• Numerous parametric investigations were carried out concerning the quality of the ECR, with par-

ticular emphasis on application to the SMART model. The effect of (i) size, location and intensity

of the error, (ii) the chosen set of sensors and (iii) the choice of the regularization parameter r of

ECR functionals were considered. Some illustration results are presented in Figure 6.2

• A case where synthetic measurements were obtained from a time-domain nonlinear simulation.

Here, the ECR indicators were used to assess the presence of structural damage, inducing deviation

from an initially undamaged linear model. Simulations were performed with the DYNA NON LINE

Code Aster operator and the GLRC DM constitutive material (global reinforced concrete damage).
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(a) Actual error region 1 (b) Actual error region 2 (c) Actual error region 3

(d) ECR distribution 1 (e) ECR distribution 2 (f) ECR distribution 3

Figure 6.2: Results of parametric model error localization by means of ECR indicators. Application to

different size and location defects.

(a) Actual damage from the non-

linear simulation

(b) ECR distribution in an undamaged lin-

ear model

Figure 6.3: Results of an ECR analysis use to spatially localize nonlinear structural behavior (damage

law).

The ECR indicator showed a good ability to spatially localize the presence of nonlinearities, as can

be seen in Figure 6.3.

Numerical contributions

• Python routines associated with the resolution of the ECR problem in the Code Aster environment

were adapted to the use of large model matrices ([M ],[C], [K]) with the help of the sparse.scipy

Python library.
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• The evaluation of cumulative (in frequency) ECR indicators

∫ ωmax

ωmin

η(ω)e2
ωrdω (6.1)

can entail high computational cost when using the CREA CHAMP Code Aster operator with op-

tion ASSE. An optimized method was proposed to avoid the evaluation of error fields e2
ωr for every

quadrature value ωi ∈ [ωmin, ωmax].

6.3 Conclusions and further work on the SMART benchmark

In this work the ECR techniques were satisfactorily applied to a case of industrial relevance within

the Code Aster environment. In particular, the overall ability of the ECR indicators to spatially detect

modeling defects was verified while, notwithstanding, showing some limitations (i.e. defects located at

particular regions were hard to capture). One of the most interesting results is the application of the

ECR evaluated by exploiting measurements obtained from a nonlinear simulation. In this case, time-

frequency equivalences, liable to introduce additional measurement errors, were required. However, the

ECR gave qualitatively good results for the spatial localization of modeling errors in complex structures.

In the study of the ECR as a method to identify nonlinear structural damage, the damage evolution was,

however, difficult to track, due to the non-stationary nature of the external load (earthquake signal) .

The use of experimental measurements will in the near future complete this work. As a longer-term

research goal, applying an ECR time-domain formulation will certainly be an interesting approach for

structural assessment under seismic loadings.
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7.1 Experimental setup and problem description

This chapter is devoted to an experimental campaign conducted in order to evaluate the ability of the

ECR and UKF techniques to both enhance the model representativity and detect model boundary mis-

modelings without any a priori knowledge of their location or nature. In this experiments, a reinforced

concrete beam has been used as a reference structure in a similar way to the study of section 4.2. Here, al-

though supposedly initially double-clamped, the structure is placed in a testing bench introducing strong

boundary interaction with the surrounding structures (boundary coupling) which strongly affect the dy-

namic response. Thus, the use of real measurements as well as the identification of complex boundary

impedances represent a step forward in the evaluation of the method’s robustness.

The experimental campaign was carried out in cooperation with the LMT laboratory of Ecole Nor-

male Supérieure de Cachan, particularly with the help of Prof. Frédéric Ragueneau. In this project, the

design and construction of the test rig as well as the concrete specimens were realized by the LMT. On

the other hand, test setup, data acquisition and signal processing were performed by the author.

Two main investigations are presented herein. Firstly, the study of strong boundary mis-modeling

is addressed, i.e. locate and identify model errors, to further identify boundary impedances for a better

representativity of the coupled beam-environment response. Secondly, the specimen will be damaged at

its mid-span with the help of an external quasi-static loading device. The presence of damage will be

115
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sought as a structural modification that also affects the structure’s response. Thus, this study embeds

the resolution of a sequence of different problems of increasing difficulty since the success of each step

depends on the quality of the previous results.

The experimental test setup is presented in Figures 7.1 and 7.2. The concrete beam is placed in a

bench composed of steel beams (of type HEB 340 according to the European standard NEN-EN 10025-

1/2) and is excited in vertical direction (z) with the help of a test shaker. The input excitation corresponds

to a Gaussian noise (F ∼ N (0, 445)) having a time duration of 20s. Since the numerical experiments

are performed in the frequency domain, a time-frequency equivalence is required. In particular, all the

time-domain quantities are sampled in 20 windows and mean values are extracted. In addition, samples

are built using Hanning windows that overlap of 50%. In that way, the external loading power-spectrum

density is shown in Figure 7.3. It can be observed that the input signal is of good quality in the bandwidth

of interest [5Hz, 350Hz] and degenerates for low frequencies [0Hz, 5Hz] which are not studied in this

work since they are considered as irrelevant for the structure’s response.

On the other hand, a FE model, presented in Figure 7.4, has been created to study the structure’s

behavior. The main model properties are the following:

• Number of DOF: 276 (138 nodes and 44 hexahedral elements).

• Initial assumption on boundary conditions: double perfect clamping.

• Material: concrete with elastic properties E = 20· 109 N/m2, ̺ = 2400 kg/m3 and ϑ = 0, 2. Low

Rayleigh damping with αRay = 1.2425 and βRay = 6.3649 · 10−6

Figure 7.1: Sketching of the reinforced concrete beam test setup.
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Figure 7.2: Test setup of the reinforced concrete beam with boundary coupling.
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Figure 7.3: Vertical excitation power-spectrum

• External loading: F ∼ N (0, 445) in the bandwidth [5Hz, 350Hz].

• Number of sensors: 16 in z direction only.

Notice that the surrounding structure and the consequent coupling with the studied specimen is as-

sumed to be totally unavailable to the hypothetical user.

As represented in Figure 7.4 the density of sensors is relatively high considering that a symmetric

distribution of sensors is also set in the lower face of the beam. However, in this study, only 8 upper
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sensors and 8 lower sensors are used. The blind or unobserved sensors will be used to compare the model

response and the actual response at those locations. As a convention, sensor locations will be denoted as

S1, S2,...,S30. Here, S1 to S15 sensors are located on the upper beam face (highest z coordinate) while

the lower face sensors are numbered from S16 to S30. Moreover, the numbering increases with the y

coordinate. In this description, S14 and S29 correspond, respectively, to the upper and lower sensors

located at the same y coordinate as the external load.

sensor

boundaries

external loading

X

YZ

unobserved sensor

Figure 7.4: Concrete beam FE mesh description and sensor locations.

7.2 Boundary impedances identification

As expected, results from a preliminary run of the FEM strongly disagree with the measurements, as

illustrated by a comparison of the frequency response functions (FRF) at the mid-span of the beam

(S9 location) shown in Figure 7.5. The model gives erroneous information not only about structure’s

eigenfrequencies and response amplitudes, but also on the modal density, making it totally unexploitable

as is. Thus, in an effort to enhance the FE model representativity, an initial ECR analysis is performed.

An ECR spectrum of the global structure with its double-clamped boundary assumption is presented

in Figure 7.6. Relative errors are clearly extremely high (from 50% to 300% of relative error) confirming

what was already known from simply comparing the response spectrum (Figure 7.5).

In addition, although the model seems to be particularly erroneous at frequencies around 48Hz,

important error peaks also appear around 97Hz, 111Hz, 153Hz and 261Hz. To go further on the analysis

of the error’s nature, the ECR distribution ξ2
Er is studied at those frequencies. In particular, the evaluation

of IndKE
and IndME

are computed in order to investigate whether the error comes from a stiffness or

mass bias. Figure 7.7 shows the distributions of IndKE
at peak error frequencies while IndME

are

omitted since they are smaller by at least one order of magnitude.

As it can be seen in Figure 7.7, model errors seem to be totally concentrated in boundaries. This first

analysis indicates the presence of strong boundary coupling and confirming, on the other hand, that the
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Figure 7.5: Comparison between measured and initial perfect clamped FEM FRFs at sensor S9.
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Figure 7.6: Initial ECR spectrum for a perfect double-clamped FEM.

ECR preliminary analysis gives a valuable information to improve the model a priori knowledge.

In order to improve the accuracy of the FE model, the perfect-clamping boundary conditions are re-

leased and, as in the numerical examples treated in previous chapters, the presence of significant bound-

ary displacements is investigated. Hence, equations (4.10) to (4.14) are used to evaluate the boundary

DOFs behavior and eventually obtain boundary impedances that would model the influence of the neigh-

boring structures.

To do so, the initial FE model is modified with the introduction of new boundary DOFs supposed

to embed the interaction of the beam with the other adjacent structures. A first choice to model this

interaction consists in, for each clamping, condensate the DOFs of the 4 nodes into a single one in a
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0.40.30.20.090.

(a) Distribution of IndKE
at 48Hz

0.50.40.30.10.

(b) Distribution of IndKE
at 97Hz

0.30.20.10.070.

(c) Distribution of IndKE
at 111Hz

0.20.20.10.060.

(d) Distribution of IndKE
at 153Hz

0.140.110.0700.0350.0

(e) Distribution of IndKE
at 261Hz

Figure 7.7: Preliminary ECR analysis for a perfect double-clamped concrete beam FE model. Distri-

bution of IndK estimators over the structure at peak error frequencies.

master-slave rigid condition as shown in Figure 7.8. The new nodes (N139 and N140 in the subsequent

mesh) will adopt free vertical (z) and rotational (Rx) DOFs. Thus, the new FE model can be written:

[

Zii Zib

Zbi Zbb + Ẑ

]{

qi

qb

}

=

{

Fi

0

}

(7.1)
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where Ẑ represents the boundary impedance to be identified. In this study, it takes the form:

Ẑ =











zz
139(ω) 0 0 0

0 zRx
139(ω) 0 0

0 0 zz
140(ω) 0

0 0 0 zRx
140(ω)











(7.2)

where zz
i (ω) and zRx

i (ω) are respectively the vertical (z) and rotational (Rx) impedance functions of

boundary DOF i.

new boundary node

initial boundary node

rigid link
z (ω)

z
i

z  (ω)
Rx
i

Figure 7.8: Illustration of initially clamped DOFs condensation into a single DOF containing vertical

(z) and rotational (Rx) motion. This model is adopted at each of both clampings.

When applying the before-mentioned condensation and inversion equations (4.13) and (4.14) for

boundary DOFs, the impedances shown in Figure 7.9 are obtained. One of the first remarks is that the

order of magnitude is comparable to that of the structure’s stiffness, clearly indicating that the perfect-

clamping assumption was highly erroneous. Non negligible displacements at boundary DOFs must there-

fore be expected. Moreover, one can easily point out that impedances are non-symmetric for nodes N139

and N140 either for vertical DOFs (z) or rotational DOFs (Rx) what clearly confirms that the 4 boundary

DOF’S must be considered as independent. For this reason, and considering that a parametric representa-

tion with a subspace identification method would require a high parametric order to capture the essential

phenomena, the identified boundary impedances are introduced without further modification in the FE

model (7.1).

Hence, a new model response with boundary coupling is obtained. Figure 7.10 illustrates the new

FRF at the unobserved sensor location S8 and compares it to the real structure’s response. As it can

be seen, the simulation matches the measured data very well. Moreover, results are of similar quality

regardless of the sensor location. One could rapidly conclude that this FE model with identified boundary

impedances adequately represents the behavior of the real structure.

However, to confirm the good agreement between response and measurements, a new global ECR

spectrum is calculated in order to evaluate the quality of the new model. It is presented in Figure 7.11

and compared to the initial error spectrum.

The new model with boundary impedances drastically improves the quality of the initial double-

clamped one, in particular in the frequency range [100Hz − 350Hz] achieving relative model errors

lower than 5%. However the model quality, as measured by the ECR, deteriorates in the low-frequency

range. Indeed, the ξ2
rω indicator, although significantly lower than for the initial model, still remains at
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Figure 7.9: Identified boundary impedances of the concrete beam setup.
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Figure 7.10: FRF’s comparison between measured and FEM with identified boundary impedances at

sensor S8 location (unobserved).

unacceptable levels (achieving a relative error of over 100% for very low frequencies). An analysis of

the error spatial distribution for this frequency range reveals that model errors still remain concentrated

in boundary regions as shown in Figure 7.12.

At this point, two different efforts have been realized in order to improve the model quality at low fre-

quencies and are presented next. The first approach consists of adopting a new formulation for impedance

identification in a specific way to minimize the ECR functionals. The second, seeks to identify model
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Figure 7.11: Comparison of ECR spectrum between a perfect clamping FEM and an identified bound-

ary impedance FEM.

material parameters in an effort to minimize the ECR spectrum.
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(a) Distribution of IndKE
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(b) Distribution of IndKE
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(c) Distribution of IndKE
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Figure 7.12: ECR analysis for the reinforced concrete beam FE model with boundary impedances.

Distribution of IndK estimators over the structure at relevant peak error frequencies.
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7.2.1 A new approach to identify boundary conditions based in ECR functionals

To introduce the new approach used to identify unknown boundary impedances, equations (4.10) to

(4.14) have been reviewed in a ECR framework. The key idea consists of finding boundary displacements

and efforts that minimize the ECR cost function rather than the least square error between model response

and measurements.

To do so, the procedure of condensation and inversion is now built upon the linear equations used to

obtain the triple of admissible fields Tω = (û, v̂, ŵ). Recall that to obtain Tω the system (B.11) of linear

equations of the form Ax = b needs to be solved where x = {(û − v̂) (û − ŵ) û}T is the sought

vector of admissible fields (the reader may refer to Appendix B for further details). Here, system (B.11)

is used instead of the equilibrium equation (4.9) to perform the condensation and inversion approach.

For this, a partition of the vector x of unknown DOFs into internal DOFs xi ∈ C
3×ni and boundary

DOFs xb ∈ C
3×nb leads to:

[

Aii Aib

Abi Abb

]{

xi

xb

}

=

{

bi

bb

}

(7.3)

Notice that in this transformation the boundary vectors xb and bb become:

xb ={(û − v̂)T
b (û − ŵ)T

b ûT
b }T ;

bb ={0T
nb

0T
nb

− F T
b }T

(7.4)

where 0nb
represents a vector of zeros of length nb. Hence, from the first row of equations in (7.3)

one can write:

xi = A−1
ii (bi − Aibxb) (7.5)

and similarly to equation (4.12) the sought vector of boundary admissible fields solves the minimization

problem:

x̂b = Argmin
xb

‖z̃ − Υxi‖2
W = ‖z̃ − ΥA−1

ii (bi − Aibxb)‖2
W (7.6)

where z̃ and Υ and W represent a new vector of measurements and, respectively, the subsequent

projection operator and space norm. Those quantities are specifically defined in order to minimize the

ECR cost function (1.26). For this, we define:

z̃ = {0T
ni

0T
ni

ũT }T (7.7)

as a new target vector that represents the fact that we aim to approach physical measurements ũ for

the kinematically admissible field ũi and a discrepancy of dynamically admissible fields ((û − v̂)i and

(û − ŵ)i) as close to zero as possible. The associated projection operator becomes:

Υ =

[

I2×ni
0

0 Π

]

(7.8)
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where Π is the initial observation operator. Finally, the new metric corresponding to the ECR functional

is given by:

W =









γ
2 [K + Tω2C] 0 0

0
1 − γ

2
ω2[M ] 0

0 0 r
1−r

[GR]









(7.9)

The sought boundary admissible fields x̂b are obtained using a pseudo-inverse approach similarly to

equation (4.13) by applying:

x̂b = A+(ΥA−1
ii bi − z̃)

A+ = ([ΥA−1
ii Aib]

T W [ΥA−1
ii Aib])

−1[ΥA−1
ii Aib]

T W
(7.10)

and finally the unknown term bb is obtained by:

bb = Abi[A
−1
ii (Ai − Aibx̂b)] + Abbx̂b (7.11)

The impedance identification is therefore obtained from the last nb rows of x̂b and bb corresponding

to the kinematically admissible nodal displacements and the corresponding generalized nodal forces at

boundary DOFs respectively.

This approach has been applied to the problem of boundary impedance identification of the reinforced

concrete beam. The identified impedances are very close to the ones presented in Figure 7.9, although not

identical. The introduction of such impedances slightly modifies the global error spectrum presented in

Figure 7.13. The new ξ2
rω error spectrum presents, as expected, lower values than the ones obtained with

the least squares based boundary impedances. However, in this study, differences are slight, indicating

only marginal improvement of the model quality, in particular for lower frequencies, which was the first

aim of this investigation.

Model parameter identification

In an effort to improve this results, updating the global structural model parameters using the ECR-UKF

approach is now attempted. Let θ denote the vector of unknown parameters (Poisson’s ratio, Young’s

modulus and mass density):

θ = {ν E ρ}T (7.12)

Its introduction into a state-space formulation of the form (3.13) with an ECR cost function defined

in the whole frequency range ([5 − 350]Hz) is used to perform the the parameter identification process

with the ECR-UKF approach. Notice that, although not directly introduced in the parameter vector θ, the

boundary unknowns x̂b and bb are also updated at each iteration step as the identification goes on. The

results of the identification process are presented in Figure 7.14.

After the identification process, the following new model parameters are considered:

ν̂ = 0.99ν ; Ê = 0.81E ; ρ̂ = 1.201ρ (7.13)



126 CHAPTER 7. STUDY OF A CONCRETE BEAM WITH BOUNDARY COUPLING

50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

ξ
rω2

FEM+ECR impedance

FEM+impedance

Figure 7.13: Comparison of ECR spectrum between FEMs with Least Square based and ECR-based

boundary impedances.
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Figure 7.14: Material parameter updating with the ECR-UKF approach.

Introducing these new material parameters and identifying new ECR-based impedances leads to the

error spectrum presented in Figure 7.15. As observed, results are improved since the relative errors are

even lower but, once again, not enough to substantially decrease errors at low frequencies.

It is interesting to observe, however, how the ECR based boundary impedance identification differs

from the initial least-squares approach: the obtained response, although giving better results in terms ξ2
rω,

does not necessarily fit the measured data better, in particular with respect to the model eigenfrequencies.

Nevertheless, updating model parameters with the ECR-UKF approach introduces further improvement

from the point of view of both amplitudes and eigenfrequencies (cf. Figure 7.16).

Analyzing again the ECR distribution of model errors, it has been found that errors are still concen-
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Figure 7.15: Comparison of ECR spectrum between FEMs with L2-based and ECR-based boundary

impedances.

trated in the boundaries in the same fashion as obtained in Figure 7.12 (which are not explicitly shown

since they are totally comparable to those of Figure 7.12).

This suggests the existence of remaining boundary errors in the modeling. Hence, in an effort to

reduce them, the full DOFs associated to the boundary nodes are released and treated as independent

(instead of being condensated into 4 DOF as defined in Figure 7.8), leading to a 16 new impedances to

be identified.

Performing the ECR-based boundary impedance identification and ECR-UKF-based model parame-

ter updating on this enriched model leads to the result shown in Figure 7.17. As observed, model errors

are drastically reduced leading to an excellent model quality since relative error drops beneath 10−6.

A possible explanation for this error reduction lies in the fact that the beam presents significant

boundary displacements in y direction, which were omitted in the initial 4-DOF assumption illustrated

in Figure 7.8. This horizontal motion certainly results from the fact that, under experimental conditions,

the external load was not perfectly vertical.

This new model is considered as a reference with the new boundary impedances assumed to fully

represent the structure’s environment.

7.3 Study of the evolving structural damage

As already said, the reference beam was subjected to increasing levels of quasi-static loads (Fstat =

[10, 20, 30]kN) producing controlled structural damage at its mid-span as illustrated in Figure 7.18.

The goal here was to investigate the ability of the ECR-UKF approach to first localize structural

damage and identify its magnitude. Unfortunately, the studies carried out for this purpose do not allow

one to capture these model changes as initially desired. As a matter of fact, either because the FE model is
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Figure 7.16: FRF’s comparison between measured and FE models (initial and updated) with ECR

based boundary impedances at sensor S8 location (unobserved).

not adapted to the intensity of the damage or because the coupling with boundaries introduces nonlinear

effects that mask the damage effect, it has not been possible to spatially detect the presence of damage

in the beam’s mid-span through ξ2
Eω. However, the global ECR indicator ξ2

rω reveals an impoverishment

of the model quality as damage increases. In Figure 7.19 the ECR spectrum of the undamaged structure

and the most damaged stage (Fstat = 30kN) are compared.

One can observe a general offset of the relative ECR indicator suggesting a global model’s quality

deterioration. In addition, peak error frequencies ( [92Hz, 156Hz, 292Hz]) seem to correspond to those

where the beam’s mid-span stiffness is most excited (beam flexion modes). In Figure 7.20 we compare

the increment of ECR spectrum (denoted as ∆ξ2
rω = (ξ2

rω|damaged − ξ2
rω|ref)) with respect to the undam-

aged reference one. One can see how the increment is always positive (indicating a model’s degradation)

and generally higher as damage increases.

Hence, the global ECR indicator ξ2
rω seems to capture the presence of structural damage. However,

the passage from a global information (ξ2
rω) to the local analysis of the error (ξ2

Erω) when analyzing the
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Figure 7.18: Introduction of a quasi-static load producing structural damage (cracks) at the beam’s

mid-span.

error spatial distribution is not able to reveal any structural change in the beam’s mid-span. Again, errors

seem to be concentrated in the boundaries probably masking the sought damage.

7.4 Conclusions

In this application example the ECR-UKF approach has been tested with real measurements obtained

from an experimental campaign. A first study consisting of identifying strong boundary coupling with

the surrounding test bench has been satisfactorily carried out. As a matter of fact, a preliminary ECR
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age.

analysis has shown its robustness to localize the presence of model errors in the boundary definition. A

classical approach to identify boundary impedances clearly improved the model quality although results

still needed an improvement at low frequencies. In this context, two different techniques have been

applied to improve the results:

1. A new approach to identify boundary impedances based in the ECR equations improving the model

quality compared to the classical least squares approach.
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2. A model parameter identification based on the ECR-UKF approach to obtain the a best set of

Poisson’s ration, Young’s modulus and mass density.

Both techniques have effectively shown an enhancement of the model quality with regard to the ECR

criterion although, once again, not significant in the low frequency range. At the end, it has been crucial

to reconsider the boundary motion assumptions to definitely obtain an acceptable result. Hence, the

adequacy of the proposed techniques to tackle the widely known problem of boundary misspecification

has been fulfilled.

As an example of structural modification identification, a further study to apprehend the ability of

the ECR-UKF to localize and identify the presence of structural damage has been carried out. Unluckily,

and despite the efforts, the investigations do not allow the ECR to spatially detect model changes as

initially wished. Nevertheless, the global ECR analysis correctly indicates an impoverishment of the

model quality apparently related to the presence of structural damage. However, the passage from the

global analysis to the local search of model bias is not able to reveal the information sought. This might

probably be explained either by the fact that the sensitivity of the FE model with respect to the damage

intensity is too small or either because of the presence of nonlinear effects in boundaries that mask the

damage effect impede in clearly localizing them in space. Unfortunately, this unforeseen difficulty does

not allow one to go further in the application of the ECR-UKF technique in this case, and particularly

the use of the UKF to track the presence and evolution of structural flaws.
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Conclusions and future research

This work aimed at improving the solution of identification problems in structural dynamics within the

industrial context of EDF’s Research & Development (R&D) needs. In particular, three main objectives

were pursued: identify FE model inaccuracies, take into account the case of evolutionary mechanical

properties and guarantee the applicability of the proposed methods for industrial purposes.

To do so, a general strategy combining the Error in Constitutive Relation (ECR) and the Unscented

Kalman filter (UKF) has been developed. This ECR-UKF approach allows to take advantage of the in-

dividual interesting features of each technique. While the ECR’s ability to spatially localize erroneously

modeled regions was used to improve the a priori knowledge of model errors, the UKF solved an ECR-

based parameter identification problem for evolving parameters. Moreover, the choice of both the ECR

and the UKF approaches was motivated for their compatibility within the numerical environment of the

public FE software Code Aster developed at EDF R&D.

The central part of this work subsequently studied the adequacy of the ECR-UKF approach to address

problems of industrial relevance, with particular focus on structural damage assessment and mis-modeled

boundary conditions identification.

The former has been investigated through several configurations such as a high-DOF cooling tower

model subjected to wind excitation, a power plant auxiliaries building excited by seismic loadings or

a beam-shaped structure embedding boundary condition mis-modeling. In all the examples, the use of

the ECR information, from the global point of view to the local element-wise information, has been

comprehensively studied. In particular, the case of the SMART benchmark has been used to evaluate

its sensitivity with respect to the sensor distribution and the flaw location, size and intensity. Broadly

speaking, ECR-based indicators showed a good ability to locate structural flaws and represent a reliable

tool to study model errors. In particular cases, though, some difficulties appeared. Indeed, when studying

complex structures, loadings may not conveniently excite structural defects and incomplete localization

of model errors might be expected. Working with a larger frequency range, however, generally improved

the quality of the results. In other cases, as reported in chapter 7, the global ECR indicator showed an

increasing model error consistent with the damage progression, but the spatial localization of cracks re-

mained unfeasible, probably because cracks were a local phenomena compared to the spatial distribution

of experimental sensors and the chosen FE discretization.

Notwithstanding, the use of the ECR conveniently facilitated the construction of reduced-size param-

eter vectors for model-updating purposes, reducing the computational cost of the UKF.

In this work, the UKF presented the advantage of its ease of implementation and proved an ex-

cellent ability to track model changes. Importantly, in the current proposed ECR-UKF approach, the

ECR functionals introduced as observation functions are formulated in the frequency-domain, requiring

time-frequency equivalences. This represents a limitation of this approach since only sufficiently slow

changes can be captured whereas a time-domain formulation of the ECR would have been a more natural

formulation of the ECR-UKF approach. However, solving the ECR equations in the time-domain is still

a computationally challenging task, the existing methods being inappropriate for industrial purposes. As
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a future work, a coupled use of ECR and UKF in a time-domain formulation will be an interesting area

of research when seeking a joint state and parameter estimation for systems with fast structural changes

or when using nonlinear FE models.

Although the ECR-UKF in the frequency-domain addressed the problem of parameter identification

only, a study of field reconstruction was also conducted in an effort to propose a system state estimation

within the framework of this approach. The kinematically admissible field obtained from the ECR min-

imization problem was found to provide an appropriate solution to this problem. In a future work, this

technique can be used in the construction of dynamical models in a mixed formulation, i.e. where the

experimental data is completed with a projection basis built from an ECR field reconstruction approach.

On the other hand, the problem of boundary mis-modeling was investigated using not only purely

numerical examples based on synthetic data, but also with one application to an experimental campaign.

This kind of modeling error was generally correctly detected by the ECR but the question of how to

model boundary impedances stand. An existing condensation technique was used to obtain preliminary

impedance functions whose parameters can be obtained by means of the UKF. However, in the case of

complex impedance functions, a subspace parametrization technique may lead to identify a large number

of coefficients, and the use of non-parametric functions is recommended. Thus, the identification of

preliminary impedances has been improved with a modified formulation of the condensation technique

based on ECR functionals. In the application of a concrete beam with strong boundary interaction, the

initial FE model enriched with the identified impedances gave particularly accurate prediction of the

global dynamic behavior with respect to measurements, which encourages to use this approach in future

work, for example, when applying a sub-structure formulation in a system where one or more of its

sub-structures are poorly known.

Additionally, a specific time-domain approach based on a dual KF-UKF completed the work of

boundary mis-modeling. Although it did not directly combine the use of ECR, this approach is of par-

ticular interest when dealing with the presence of nonlinear boundary behavior. In a future work, it will

be interesting to apply this approach for large-DOF complex structures to (for example) problems of

soil-structure interaction.

Aside from the study of the above-mentioned phenomena, the ECR-UKF algorithm has been en-

riched with additional features, so as to widen its applicability to other problems. For instance, the

introduction of algebraic constraints in the identified parameter vector and the design of covariance ma-

trices was considered. Indeed, when using Kalman filtering and in particular the UKF, both issues may

strongly influence the stability and the quality of the solutions. In that sense, the study of these additional

features is considered as a relevant information for a future use of the proposed ECR-UKF method.

To conclude, the ECR-UKF algorithm has been implemented within the environment of the FE soft-

ware Code Aster aiming an integration into a future distribution of this open-source computational plat-

form. Routines were developed in Python language. In a future work, the implementation of ECR and

UKF in a lower-level language of Code Aster (Fortran) will increase their numerical performances.
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Appendix A

Stochastic interpolation: the BLUE

formalism

The main purpose of data assimilation techniques is to obtain an enriched system state estimation Xa ∈
C

n by means of an a priori background knowledge Xb ∈ C
n combined with a set of observations

y ∈ C
m. In most of the cases, while the a priori Xb information is provided by a mathematical model,

observations are the result of a measurement campaign. Both quantities are thus related to the true state

Xt ∈ C
n by the following representation:

{

Xt = Xb + eb

y = H(Xt) + eo (A.1)

where H(·) is the so-called observation operator embedding functions such as transformation, projection

and/or interpolation needed to express relationships between state and observation spaces. In addition,

eb and eo represent the a priori state error and the observation error, respectively. These stochastic

quantities are assumed to verify the following properties:

{

E[eb] = 0
E[eb(eb)T ] = P b ;

{

E[eo] = 0
E[eo(eo)T ] = R

(A.2)

where P b and R are the so-called background and observation error covariance matrices, and E denotes

the expectation operator.

Within the framework of a linear observation model H , the solution for optimal stochastic interpo-

lation is given by the BLUE (Best Linear Unbiased Estimator) formalism, whereby is sought as a linear

combination of both the background knowledge Xb and the measurements y:

Xa = LXb + Ky (A.3)

where the matrices L ∈ M(C)n,n and K ∈ M(C)n,m are to be defined. To do so, the moments of the

estimation error ea := Xa − Xt will be studied.
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Moreover, when considering a stochastic model, it seems natural to seek an unbiased state estimation,

which can be expressed by:

E[ea] = 0 (A.4)

Besides, one can write:

ea = Xa − Xt

= L(Xb − Xt + Xt) + K(HXt + eo) − Xt

= Leb + Keo + (L + KH − I)Xt

(A.5)

Taking expectations from this expression and imposing condition (A.4) leads to:

E[ea] = (L + KH − I)E[Xt] = 0 ⇒ L = I − KH (A.6)

Finally, one can obtain the sought state Xa by:

Xa = Xb + K(y − HXb) (A.7)

Equation (A.7) is the most used form of the BLUE, where K is generally referred to as the gain

matrix and (y − HXb) is called the innovation vector. On the other hand, when using (A.7) to perform

linear stochastic interpolation, the covariance of the estimation error takes the form:

P a := E[eaeaT ]

= LP bLT + KRKT

= (I − KH)P b(I − KH)T + KRKT

(A.8)

In order to obtain an optimal state estimation, the gain matrix K is defined so as to minimize the estima-

tion error, more specifically the value of Trace(P a).

A straightforward variation derivation yields the optimal gain matrix, given by:

K = P bHT (R + HP bHT )−1 (A.9)

and the optimal covariance matrix for the estimation error, given by:

P a = (I − KH)P b (A.10)

The BLUE technique has been widely used in the domain of geosciences as a satisfactory data assim-

ilation method for spatial interpolation. Moreover, the BLUE is actually the theoretical background of

the variational formalisms 3D-Var and 4D-Var [11] used e.g. in weather forecasting. One can consider

the BLUE as a particular case of kriging [78, 5] in a linear framework. Moreover, the BLUE is also

related to the Kalman filter algorithm since a BLUE estimation is performed at each data assimilation

step.



Appendix B

Minimization of the ECR functional and

first order derivatives in a FE framework.

The FE formulation of the frequency-domain equation of motion given by (1.16) leads to the classical

matrix equation:

[−ω2[M ] + jω[C] + [K]]{q} = {F} (B.1)

where {q} is the vector of nodal displacement, {F} the vector of nodal loadings and [M ], [C] and [K]

are the so-called mass, damping and stiffness matrices respectively and ω = 2πf (with f the prescribed

frequency). Recall from chapter 1 that in the adopted ECR formulation, the following assumptions are

made:

• ∂0Ω = ∅

• Prescribed loading f̄ over ∂f Ω is considered as a reliable information and directly embedded in

{F}.

• A set of unreliable displacement data ũ is available over ∂fuΩ.

• Displacement data ū are restricted to the boundary ∂u\f Ω = ∂uΩ − ∂fuΩ and considered as a

reliable information. This reliable kinematic information is generally enforced in the construction

of model matrices by either introducing Lagrange multipliers or by considering matrices with

active DOFs only, which is the solution adopted in this work. Thus, DOF corresponding to ∂u\f Ω

are eliminated from all FE matrices. Therefore, the action of non-zero prescribed displacements is

embedded in {F}.

In this framework, the Error in Constitutive Relation problem seeks at obtaining a triple of admissible

fields u ∈ U(Π, ū) and (v, w) ∈ D({F}, ū), defined in (1.26), that minimize the functional:

e2({u}, {v}, {w}) =
γ

2
{u − v}∗[K + Tω2C]{u − v} +

1 − γ

2
{u − w}∗ω2[M ]{u − w}

+
r

1 − r
{Πu − ũ}∗[GR]{Πu − ũ}

(B.2)
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where Π is the projection operator onto the measured DOFs, [GR] a positive-definite weighting matrix,

γ and r are positive scalar weights and ũ a set of unreliable measurements.

To fulfill the dynamic admissibility condition defined by D({F}, ū) the following constraint has to

be taken into account:

[K + iωC]{v} − ω2[M ]{w} = {F} (B.3)

In order to solve this constrained optimization problem, a Lagrangian functional is introduced:

E({u}, {v}, {w}, {λ}) = e2({u}, {v}, {w}) + {λ}T ([K + iωC]{v} − ω2[M ]{w} − {F}) (B.4)

where {λ} is a vector of Lagrange multipliers.

The optimal value of {u, v, w, λ} satisfies the stationarity condition:

δE = 0 ∀{δu, δv, δw, δλ} ∈ U × D × U (B.5)

which expressed in explicit form and using the symmetry property of [M ], [C] and [K], leads to the

following system of equations:







































































∂E

∂u
= γ

2 [K + Tω2C]{u − v} +
1 − γ

2
ω2[M ]{u − w} + r

1−r
ΠT [Gr]{Πu − ũ} = 0

∂E

∂v
= −γ

2 [K + Tω2C]{u − v} + {λ}T [K + iωC] = 0

∂E

∂w
= −1 − γ

2
ω2[M ]{u − w} − {λ}T ω2[M ] = 0

∂E

∂λT
= [K + iωC]{v} − ω2[M ]{w} − {F} = 0

(B.6)

The third equation of (B.6) allows us to write:

{λ} = −1 − γ

2
{u − w} (B.7)

consequently transforming the second equation in (B.6):

γ

2
[K + Tω2C]{u − v} +

1 − γ

2
[K + iωC]{u − w} = 0 (B.8)

Finally, the last equation can be rewritten depending on {u − v}, {u − w} and {u} as:

[K + iωC]{u − v} − ω2[M ]{u − w} + [−[K] − iω[C] + ω2[M ]]{u} = −{F} (B.9)

Hence, the error fields {u − v}, {u − w} et {u} that verify (B.5) can be obtained by solving the

system of linear equations:
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









γ
2 [K + Tω2C]

1 − γ

2
ω2[M ] r

1−r
ΠT [Gr]Π

γ

2
[K + Tω2C]

1 − γ

2
[K + iωC] 0

(K + iωC) −ω2[M ] [−[K] − iω[C] + ω2[M ]]





















{u − v}
{u − w}

{u}











=











r
1−r

ΠT [Gr]ũ

0
−{F}











(B.10)

which, for the sake of clarity, will be expressed in the reduced form:

[A]{x} = {b} (B.11)

First order derivatives of the ECR functional

In this work, model matrices [M(θ)], [C(θ)], [K(θ)] are parametrized with set of model parameters θ.

An optimal set of parameters θ̂ is sought from multi-frequency experimental data by minimizing the

following functional:

ξ2
T r({û}, {v̂}, {ŵ}, θ) =

∫ ωmax

ωmin

η(ω)





∑

E∈Ω

e2
Eω({û}, {v̂}, {ŵ}, θ)

D2
ω({û}, θ)



 dω (B.12)

where D2
ω({û}, θ) represents the reference structural energy which in our case is obtained by:

D2
ω({û}, θ) =

γ

2
{û}∗[K(θ) + Tω2C(θ)]{û} +

1 − γ

2
{û}∗ω2[M(θ)]{û} (B.13)

In most cases studied in this work the Unscented Kalman filter (UKF) is used to solve the mini-

mization problem. The UKF does not require the evaluation of the Jacobian of ξ2
T r. In contrast, the

Extended Kalman filter (EKF), which was also needed for some of the examples, requires Jacobian eval-

uation. Thus, the following first order derivatives have to be evaluated for the EKF-based minimization

of (B.12):

∂

∂θi

(

e2
ω({û}, {v̂}, {ŵ}, θ)

D2
ω({û}, θ)

)

=

∂e2
ω

∂θi
· D2

ω − e2
ω · ∂D2

ω

∂θi

(D2
ω)2

(B.14)

While the quantities e2
ω and D2

ω are directly available after solving equation (B.11), the parameter sensi-

tivities
∂e2

ω

∂θi
and

∂D2
ω

∂θi
require additional derivation, resulting in expressions:

∂e2
ω({u}, {v}, {w}, θ)

∂θi
=γ{u − v}T [K + Tω2C]

∂{u − v}
∂θi

+
γ

2
{u − v}T ∂[K + Tω2C]

∂θi
{u − v}

+ (1 − γ){u − w}T ω2[M ]
∂{u − w}

∂θi

+
1 − γ

2
{u − w}T ω2 ∂[M ]

∂θi
{u − w}

+
2r

1 − r
{Πu − ũ}T [GR]Π

∂{u}
∂θi

(B.15)
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and:
∂D2

ω({û}, θ)

∂θi
={u}T [γ(K + Tω2C) + (1 − γ)ω2M ]

∂{u}
∂θi

+ {u}T ∂[γ
2 (K + Tω2C) + 1−γ

2 ω2M ]

∂θi
{u}

(B.16)

In the above equations, the terms
∂[K + Tω2C]

∂θi
and

∂ω2[M ]

∂θi
are the well known sensitivity terms

of model matrices, generally provided by built-in operators in FE software. However, the partial deriva-

tives terms
∂{u − v}

∂θi
,

∂{u − w}
∂θi

and
∂{u}
∂θi

are computed by solving for these quantities the first-order

sensitivity equations obtained by differentiating equations (B.11) with respect to θi.
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The Unscented Kalman filter

To overcome the underlying assumptions and flaws inherent to the Extended Kalman filter (EKF), an al-

ternative algorithm, referred to as the Unscented Kalman filter (UKF), was first proposed by Julier et al.

[50, 51]. The basic difference between the EKF and the UKF lies in the manner in which Gaussian ran-

dom variables are represented for the purpose of propagating them through nonlinear system equations.

In the EKF, state distribution is approximated by a Gaussian random variable which is then propagated

analytically through the first-order linearization of the nonlinear system equations. The UKF addresses

this problem by using a deterministic sampling approach based on the mathematical Unscented transfor-

mation. The state distribution is then, as with the EKF, approximated by a Gaussian random variable,

but is now sampled at a minimal set of carefully chosen sample points. These sample points completely

capture the true mean and covariance of the Gaussian random variable, and when propagated though

the nonlinear functions, yield exact evaluations of the posterior mean and covariance (while the EKF

achieves first-order accuracy only). The reader may refer to [50, 52] for more information on UKF

performance in predicting mean and covariance of a random variable that undergoes a nonlinear trans-

formation. An illustration of the Unscented transformation is shown in Figure C.1.

To introduce the UKF, we begin by explaining the Unscented transformation. Consider propagating

a random variable x ∈ R
n with mean x̄ and covariance Px. The minimal sampling points set used by

the UKF, known as sigma points, is defined by:

X0 = x̄

Xi = x̄ + (
√

(n + λ)Px)i i = 1, · · · , n,

Xi = x̄ − (
√

(n + λ)Px)i i = n + 1, · · · , 2n

(C.1)

where (
√

A)i denotes the ith column of the matrix square root of A (e.g. lower-triangular Cholesky

factor). The dispersion of the sigma points is controlled by the scalar λ defined by:

λ = α2(n + κ) − n (C.2)

where n is the dimension of the state variable and α and κ are scaling factors. Parameter α is generally

used to control the dispersion of sigma points around x̄ and is usually set to a small positive value
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Figure C.1: Illustrative comparison between the Unscented and linearization methods for nonlinear

stochastic transformations.

1 ≤ α ≤ 10−4. On the other hand, the scalar κ is a secondary scaling factor which is generally set to

3 − n. The reader may refer to [49, 52] for further details on the choices of α and κ.

The Unscented transformation approaches the posterior statistics of a random variable y undergoing

a nonlinear transformation y = f(x) in the following fashion:

ȳ ≈
2n
∑

i=0

W m
i Yi

Py ≈
2n
∑

i=0

W c
i (Yi − ȳ)(Yi − ȳ)T

(C.3)

where W m
i and W c

i are the Unscented weighting factors defined by:

W m
0 =

λ

n + λ

W c
0 =

λ

n + λ
+ 1 − α2 + β

W m
i = W c

i =
1

2(n + λ)
, i = 1, · · · , 2n.

(C.4)

where β is a scalar used to introduce prior knowledge of the distribution of x (for Gaussian distributions

β = 2 is optimal). Hence, the UKF is a straightforward extension of the Unscented transformation

applied to the recursive equations of Kalman filtering, which is detailed in chapter 2 in Figure 2.7.



Appendix D

Implementation within Code Aster FE

software

The ECR and UKF algorithms, and their proposed combination, have been implemented within the

framework of the public FE software Code Aster. Code Aster is an open-source code developed by EDF

for a wide range of mechanical analyses and is available for download at http://www.code-aster.

org.

In the present work, the use of ECR and UKF algorithms required further developments which were

not available as built-in commands in Code Aster. Thus, additional commands have been implemented

in Python language aiming to use as many Code Aster operators as possible, in an effort to be integrated

in a future public release.

The reader will find in this appendix the sequence of main commands used to solve the ECR and

UKF with Code Aster in a work-flow fashion. The idea is not necessarily to give full details of the

numerical developments but rather to bring a general overview and guidelines for a future user.

For this, the Python “Numpy“ package is generally used as the fundamental tool to manipulate math-

ematical concepts such as matrices and arrays and perform complex operations like Cholesky decom-

position or matrix inversions. However, the ”Scipy” package is used in some cases to manipulate high

DOFs models since the use of sparse matrices is then mandatory.

Solving the ECR equations (B.11) is the main numerical issue of this approach since it demands

to start within the Code Aster environment (basically to build up FE model operators), convert model

information into Python concepts in order to solve the ECR problem, and go back to Code Aster to

evaluate the spatial distribution of error fields. The command flow is illustrated in Figure D.1 where only

main demonstrative commands are shown.

It is important to highlight that, in an effort to decrease the computational cost in the Python code

written in the course of this work, different routines have been implemented to use sparse or dense

matrices (EXTR MATR SPARSE), as well as adapted functions to solve the ECR problem for undamped

models (ECR SOLVE).

On the other hand, one of the main difficulties when solving the ECR problem (B.11) using Code Aster
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consists in computing the elementary indicators IndKE
and IndME

of equations (3.7) and (3.8) from er-

ror fields {û − v̂} and {û − v̂}. As a matter of fact, these error fields, obtained in a Python data structure,

must be introduced into a proper Code Aster data structure to further compute element contributions to

kinetic and potential energies. This operation can be done using a Code Aster data structure of type

dyna harmo or harmo gene, obtained from a DYNA LINE HARM calculation. To overcome this issue,

artificial external loads are computed of the form:

{F}uv = [−ω2[M ] + jω[C] + [K]]{û − v̂}
{F}uw = [−ω2[M ] + jω[C] + [K]]{û − ŵ}

(D.1)

Hence, the artificial loads {F}uv and {F}uw are introduced in an auxiliary DYNA LINE HARM cal-

culation that will produce the sought error fields with the needed data structure to perform elementary

calculations. This particular way to overcome this point is temporary and may change when implement-

ing the final public version, in a more efficient approach.

When it comes to boundary and kinematic model constraints, it is important to point out that when

extracting model matrices from a Code Aster data structure to a Python structure, the user can choose

between two approaches: matrices with eliminated DOFs and matrices containing double Lagrange mul-

tipliers. While both can be used in the routine that solves the ECR problem, it has to be said that models

containing kinematic constraints between DOFs (e.g. master-slave constraints, etc.) may fail in the ECR

solver since matrix A defined in equation (B.11) is singular. This case has not been addressed in the

present work and the user should have to pay special attention in this circumstances.

Finally, when dealing with high DOFs models, high cost computation has been encountered to per-

form the integral over frequencies defined in (1.28) when computing ξ2
T r. To this aim, the “CREA CHAMP”

operator with the key “ASSE” is used presenting numerical issues when using a high number of frequen-

cies (in practice, we have encountered problems when adding more than 23 frequencies for a model with

6240 DOF). Thus, a particular specific approach has been adopted to overcome with this issue. The

solution consists in evaluating ξ2
Er only at peak error frequencies. Thus, the spatial error distributions

at surrounding frequencies are supposed to have the same spatial distribution with only a difference of

magnitude. This is a temporary way to overcome this problem and in a future work, a more robust

development of the “CREA CHAMP” operator will be proposed.

When it comes to the implementation of the UKF algorithm, all the needed computations are per-

formed in Python language inside a Code Aster framework. One of the advantages of the UKF algorithm

is its ease of implementation. Indeed, since the nonlinear system functions are called as black-box op-

erators (in our case the ECR work-flow described in Figure D.1), the additional steps are simply matrix

manipulations. Thus, the specific UKF commands are shown in Figure D.2.
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Figure D.1: Numerical routines work-flow for solving the ECR problem within the Code Aster FE

software.
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Figure D.2: Implementation of the ECR-UKF algorithm for parameter identification.



Appendix E

Application of the ECR to the SMART

benchmark

This chapter is a verbatim reproduction of the two main chapters of Maı̈lys Pache undergraduate intern-

ship’s final report concerning the application of the ECR methods to the SMART benchmark model.

E.1 Localisation de défauts sur le modèle SMART

L’objectif à long terme du stage est de tester la robustesse de la localisation de défauts de modélisation d’une

structure existante, la maquette SMART, pour laquelle on dispose de mesures expérimentales. Afin de se donner

les moyens d’interpréter les résultats de cette étude, nous avons procédé par étapes de difficulté croissante qui nous

ont permis de mieux connaı̂tre la sensibilité de l’indicateur d’erreur aux différents types de défauts de modèle, et

de développer des scripts et une méthodologie de calcul adaptés à nos besoins.

Dans ce premier chapitre consacré à la maquette SMART, nous n’utilisons donc pas les mesures expérimentales

du benchmark qui sont exploitées dans la suite du stage. Comme dans le chapitre précédent, les mesures permet-

tant d’évaluer l’erreur commise par le modèle sont générées par un calcul harmonique sur un modèle endommagé

à l’aide de l’opérateur Code Aster DYNA LINE HARM.

Les défauts à localiser sont de nouveau constitués par un affaiblissement du module d’Young sur une par-

tie des éléments de la structure. Introduire une perte de raideur est en effet un bon moyen de modéliser de

l’endommagement au niveau macroscopique.

Le modèle est soumis au chargement sismique horizontal bi-axial appliqué à la maquette SMART dans le cadre

du benchmark. On utilise pour cela l’opérateur CALC CHAR SEISME de Code Aster qui impose à la structure la

sollicitation sismique associée aux accélérogrammes de l’expérience.

Le problème d’ERC est traité dans le domaine des fréquences. L’utilisation de cette sollicitation temporelle

nécessite donc une transformée de Fourier des signaux d’efforts. Les deux directions de sollicitation sont schématisées

en figure E.2.

E.1.1 Introduction : le modèle SMART

Le modèle éléments finis représentant la maquette SMART a été créé par le SEPTEN et est représenté en figure

E.1. Il est constitué de 6240 degrés de liberté et d’éléments de type poutre et coques (modélisations POU D EM,

POU D EM et DKTG de Code Aster).
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Figure E.1: Modèle SMART.

La maquette a été soumise à une série d’accélérogrammes horizontaux de niveaux croissant (0.05g à 1g)

par l’intermédiaire de la table AZALEE, table vibrante appartenant au CEA SACLAY. Plusieurs configurations

d’essais ont été exploitées par le département AMA pour estimer le comportement de la structure avant et après

endommagement : maquette boulonnée sur la table vibrante, maquette posée sur le massif de construction ou en-

core suspendue par un plafonnier de déplacement. Au cours du stage, les calculs ont principalement été réalisés en

considérant la maquette encastrée à sa base. La raison principale est que la première version de l’opérateur python

EXTR MATR développé en sparse ne fonctionnait pas pour les conditions limites correspondant à la configuration

de la table vibrante (éléments discrets pour les ressorts, reliés entre eux par des liaisons solides). Des rapports

d’essais réalisés dans le cadre du benchmark sont disponibles pour plus de précisions.

E.1.2 Localisation spatiale pour une fréquence unique

Comme expliqué précédemment, le calcul d’ERC mène à différentes qualités de localisation en fonction de la

fréquence d’étude sélectionnée. La première démarche adoptée au cours de ce stage consiste à effectuer un pre-

mier calcul d’erreur globale du modèle sur une certaine bande de fréquence en vue de déterminer la fréquence

maximisant le spectre d’erreur. On calcule ensuite le champ d’erreur par éléments à cette fréquence, pour laquelle

les défauts du modèle sont à priori plus faciles à identifier.

Tracé du spectre et mise en évidence de fréquences d’intérêt

Un premier spectre d’erreur est présenté en figure E.3, correspondant à un affaiblissement de 20% de module

d’Young sur un plancher du modèle SMART, comme illustré par la figure E.2.

Figure E.2: Défaut étudié. La sollicitation sismique s’exerce dans les direction X et Y.

Les pics et creux du spectre peuvent être interprétés en traÃ§ant les réponses harmoniques de la structure aux

fréquences correspondantes. On constate en observant la figure E.4 et le spectre que :

• A 38.1 Hz (E.4(a)), la déformée harmonique sollicite le défaut, pourtant l’erreur de modèle n’est pas décelée.

La configuration de capteurs utilisée est représentée dans le paragraphe suivant en figure E.5(b) et fournit

une explication à cette observation. La plupart des capteurs ne sont pas déplacés lors du mouvement de
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0 20 40 60 80 100
0

0.5

1

x 10
−3

fréquence (Hz)

E
R

C

52.8 Hz

38.1 Hz

70.4 Hz

Figure E.3: Spectre d’erreur globale pour un défaut de 20% de module d’Young sur le plancher 1 de

la structure et fréquences particulières.

la structure : en particulier les capteurs présents sur les coins des planchers. Le comportement global du

modèle, tel qu’il est observé par les capteurs, est donc plutôt conforme au cas sans défaut.

• A 52.8 Hz (E.4(b)), l’ERC est également presque nulle car la déformée harmonique associée ne sollicite pas

le défaut qui ne modifie donc pas le comportement de la structure.

• A 70.4 Hz (E.4(c)), cette fois, le défaut est bien sollicité par la déformée harmonique. Le comportement

de la structure est donc modifié par sa présence. De plus, l’ensemble des capteurs sont déplacés lors du

mouvement, ce qui leur permet de bien détecter cette modification.

(a) 38.1 Hz (b) 52.8 Hz (c) 70.4 Hz

Figure E.4: Déformées modales calculées pour les fréquences d’intérêt du spectre.

On retrouve donc les constats effectués dans le chapitre précédent : le positionnement du défaut et des capteurs

par rapport à la déformée harmonique est capital pour déceler le défaut.

Résultats de localisation

Emplacements des capteurs et premiers résultats

Afin de s’ajuster à la situation où les mesures proviennent de résultats d’essais, on utilise les capteurs implémentés

sur la maquette SMART. Deux configurations utilisées au cours du benchmark sont représentées en figure E.5.
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(a) Première configuration : 36

capteurs positionnés sur 12

noeuds.

(b) Seconde configuration : 63

capteurs positionnés sur 21

noeuds.

Figure E.5: Configurations de capteurs utilisées. Pour chaque noeud en vert, les déplacements dans

les directions X,Y,Z sont mesurés.

Une première localisation d’un défaut de 20% de module d’Young sur une partie de la structure (illustrée en

figure E.6) est réalisée pour ces deux configurations.

Les champs élémentaires représentés en figure E.7, tracés pour la fréquence du spectre maximisant l’erreur,

correspondent à une bonne localisation du défaut, bien qu’on remarque des erreurs parasites autour de la fenêtre

accolée à celui-ci.

L’ajout de capteurs sur les planchers de la maquette améliore dans une faible mesure le résultat : il n’est pas

forcément nécessaire pour des défauts localisés sur les voiles (murs) de la structure. Il s’avère en revanche plus

utile pour compléter le champ d’erreur lorsque l’on tente de déceler des défauts sur les planchers. Dans la suite,

on utilisera la configuration à 63 capteurs.

Les spectres d’erreur (figure E.8) sont également quasiment identiques. Dans le cas où 63 déplacements sont

observés, l’erreur est légèrement plus importante, on décèle en effet mieux le défaut.

La configuration où tous les déplacements des noeuds du maillage sont observés a également été testée et le

résultat est représenté en figure E.9. On vérifie que la localisation est dans ce cas excellente – quoique encore

incomplète – puisqu’on dispose de la quasi-totalité des informations sur le comportement réel de la structure

(seules les rotations ne sont pas observées).

Localisation de différentes tailles de défaut

On presente ici d’autres résultats de localisation pour des défauts de taille différente afin de donner un aperÃ§u de

la qualité de localisation obtenue par la méthode, pour la fréquence maximisant le spectre d’erreur.

La figure E.10 illustre la localisation d’un défaut d’assez grande taille. Le résultat est correct mais incomplet.

De manière générale, il peut être assez difficile de visualiser un grand défaut à une fréquence donnée. En effet,

lorsque la zone à localiser est importante, l’ensemble du défaut n’influe pas toujours sur le comportement de la

structure.

Par ailleurs, retrouver un défaut de petite taille n’est pas toujours aisé non plus comme l’illustre la figure E.11

: la localisation est cohérente mais diffuse : il faudrait probablement monter à des fréquences très élevées, ce qui

dans la pratique est difficilement réalisable, pour trouver un mode propre qui sollicite ce défaut de manière assez

précise.
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Figure E.6: Défaut étudié.

(a) Champ d’erreur par éléments pour 36 cap-

teurs.

(b) Champ d’erreur par éléments pour 63 cap-

teurs.

Figure E.7: Résultats de localisation du défaut pour les deux configurations de capteurs (calcul réalisé

à la fréquence maximisant l’erreur sur le spectre).
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Figure E.8: Spectres d’erreur correspondant aux deux configurations de capteurs.
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Figure E.9: Champ d’erreur par éléments lorsque tous les déplacements sont observés.

(a) Zone en défaut.
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(b) Spectre d’erreur. (c) Champ d’erreur.

Figure E.10: Localisation d’un défaut de 20% de module d’Young sur un voile entier. La fréquence de

localisation est mise en évidence en rouge.

(a) Zone en défaut.
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(b) Spectre d’erreur. (c) Champ d’erreur.

Figure E.11: Localisation d’un défaut de 20% de module d’Young sur 5 éléments du voile. La

fréquence de localisation est mise en évidence en rouge.

Influence de la répartition fréquentielle de l’erreur

La qualité de localisation à une fréquence donnée est également reliée à la répartition de l’erreur sur le spectre.

L’exemple précédent peut-être comparé à un défaut de taille égale mais placé différement sur la structure (voir

figure E.12(a)).

Malgré la similarité des défauts, la qualité de localisation est assez diffuse dans un cas, et excellente dans le

second, comme illustré sur les figures E.11(c) et E.12(c) respectivement. En observant les spectres associés à ces

cas, on constate que l’erreur est également répartie de manière diffuse sur le spectre de la figure E.11(b), alors
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(a) Zone en défaut.

0 50 100
0

0.01

0.02

fréquence (Hz)
E

R
C

(b) Spectre d’erreur. (c) Champ d’erreur.

Figure E.12: Localisation d’un défaut de 20% de module d’Young sur 5 éléments du voile. La

fréquence de localisation est mise en évidence en rouge.

qu’en figure E.12(b) le spectre présente des pics importants où se concentre l’erreur. La localisation en ces pics est

ainsi plus précise car les défauts y sont mieux décelés.

On déduit de ces observations que la répartition de l’erreur sur le spectre est corrélée à la répartition

spatiale du champ d’erreur.

E.1.3 Amélioration de la méthode : localisation de défauts sur une bande de fréquences

Au vu de ces observations, il paraı̂t cohérent de prendre en compte plusieurs fréquences pour localiser en défaut,

en sommant les champs élementaires d’erreur calculés à ces fréquences avec une pondération, comme explicité en

équation E.1.

e2

E =

∫ ωmax

ωmin

e2

ωE η(ω) dω ;

∫ ωmax

ωmin

η(ω) dω = 1 (E.1)

En pratique, cette somme est discrétisée : les deux sous-sections suivantes présentent deux méthodes de

sélection des fréquences et de sommation proposées et étudiées pendant le stage.

Sélection de fréquences avec un pas de temps régulier

L’option la plus simple est de calculer le champ d’erreur par éléments à toutes les fréquences d’une certaine bande,

et de pondérer la somme par le nombre de fréquences prises en compte. Cependant et malgré l’optimisation des

scripts, nos capacités de calcul (les parties conversion des champs admissibles python en concepts Aster et calcul

du champ élémentaire par Code Aster étant notamment assez lourdes) limitent le nombre de fréquence utilisées à

22.

Nous avons donc dans un premier temps sélectionné 22 fréquences du spectre tracé de 0 à 100 Hz, prises

avec un pas de temps régulier. Par exemple, la figure E.13(b) met en évidence les fréquences choisies pour la

localisation du défaut de grande taille étudié en sous-section E.1.2 : on utilise 22 fréquences comprises entre 2 et

68 Hz prises avec un pas de temps de 3 Hz. L’équation E.1 devient :

e2

E =
22
∑

i=1

e2

ωiE η(ωi) ; η(ωi) =
1

22
(E.2)

En observant la figure E.13(c) et en la comparant au précédent résultat en figure E.10(c), on s’aperÃ§oit que

la localisation est bien complétée et s’améliore de manière significative.
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(a) Zone en défaut.
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(c) Champ d’erreur sommé.

Figure E.13: Localisation d’un défaut de 20% de module d’Young sur un voile entier en utilisant 22

fréquences prises avec un pas de temps régulier de 3 Hz.

Extrapolation de la localisation sur des fréquences d’intérêt

Les temps de calculs et la mémoire utilisés pour obtenir le résultat précédent sont toutefois assez importants, ce

qui nous a poussé à étudier une seconde méthode de sommation utilisant le spectre de manière plus efficace.

Cette méthode repose sur une hypothèse, dont nous allons démontrer la validité sur un exemple dans le para-

graphe suivant : à un pic d’erreur sur le spectre correspond une topologie spatiale de l’erreur. Ainsi, on

considère que toutes les fréquences d’un même pic conduisent au même champ d’erreur par éléments, à un facteur

près. Pour déterminer ce facteur, on suppose que le rapport entre les erreurs globales de deux fréquences est égal

au rapport entre les champs d’erreurs élémentaires de ces deux fréquences (équation E.5).

Le champ d’erreur total peut alors être approché par une combinaison linéaire d’un nombre limité de champs

d’erreur. Ceux-ci sont calculés pour les fréquences constituant des maximaux locaux (pics) du spectre, fréquences

particulièrement efficaces à déceler les défauts.

On rappelle la formule permettant de calculer le champ d’erreur total pour une somme discrétisée de N

fréquences :

e2

E =
1

N

N
∑

j=1

e2

ωjE (E.3)

Pour un spectre d’erreur constitué de Npics pics d’erreur, on distribue les N fréquences au sein de ces Npics

qui correspondent chacun à une topologie de l’erreur, comme illustré en figure E.14 :

e2

E =
1

N

Npics
∑

i=1

Ni
∑

j=1

e2

ωjE (E.4)

Où Ni est le nombre de fréquences comprises dans le ième pic.

Selon l’hypothèse considérée, pour une pulsation ωj appartenant au pic i, le champ d’erreur élémentaire est

approché par :

e2

ωjE ≃ e2

ωiE

e2

ωj

e2
ωi

(E.5)

Où e2

ωj
et e2

ωi
désignent l’erreur globale calculée aux pulsations ωj et ωi.
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0 20 40 60 80 100
0

1

2

3

4
x 10

−3

Fréquence (Hz)

E
R

C

e
wi pic i : topologie e

wi E

e
wj

Figure E.14: Exemple de pic d’erreur auquel on associe une topologie caractéristique. Le ième pic est

atteint pour la pulsation ωi et mène au champ d’erreur élémentaire e2

ωiE . La pulsation ωj

sera associée au même champ élémentaire à un facteur près.

La somme se réécrit donc :

e2

E =
1

N

Npics
∑

i=1

Ni
∑

j=1

e2

ωiE

e2

ωj

e2
ωi

=
1

N

Npics
∑

i=1

e2

ωiE

Ni
∑

j=1

e2

ωj

e2
ωi

(E.6)

Ce qui permet de limiter le nombre de champs d’erreur élémentaiers calculés au nombre de pics Npics.

Validité de l’approximation

Le but ici est de vérifier qu’à un pic d’erreur dans le spectre est associé un champ d’erreur élémentaire car-

actéristique. Nous reprenons l’exemple précédent et calculons pour quelques fréquences sélectionnées sur quatre

pics et représentées en figure E.15 les champs d’erreur élémentaires.
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Figure E.15: Défaut étudié et spectre d’erreur. En rouge les fréquences qu’on envisage de prendre en

compte dans le calcul. En vert celles pour lesquelles on vérifie l’approximation.

Les figures E.16 à E.19 présentent les champs obtenus pour les quatre pics. La fréquence pour laquelle le

champ d’erreur sera pris en compte dans le calcul de la somme est mise en évidence en gras. On retrouve bien

une forme de localisation propre à chaque pic, dont l’intensité diminue avec l’erreur globale calculée sur le spectre

ci-dessus.
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(a) 4.9 Hz (b) 7.9 Hz (c) 10.8 Hz (d) 13.7 Hz

Figure E.16: Champs d’erreur pour les fréquences du premier pic.

(a) 25.4 Hz (b) 28.4 Hz (c) 31.3 Hz (d) 34.2 Hz

Figure E.17: Champs d’erreur pour les fréquences du deuxième pic.

(a) 43.0 Hz (b) 45.9 Hz (c) 48.9 Hz

Figure E.18: Champs d’erreur pour les fréquences du troisième pic.

(a) 54.7 Hz (b) 57.7 Hz (c) 60.6 Hz (d) 63.5 Hz

Figure E.19: Champs d’erreur pour les fréquences du quatrième pic.
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Comparaison des deux méthodes de sommation

Nous reprenons maintenant cet exemple en calculant le champ d’erreur sommé par les deux méthodes explicitées

au-dessus. Le calcul pour la seconde méthode s’est fait à l’aide d’un algorithme développé au cours du stage

permettant de fragmenter le spectre en différents pics. Sur cet exemple, quatre pics ont été pris en compte. Le

résultat de localisation est donc une somme pondérée de quatre champs d’erreur, au lieu de vingt-deux pour la

première méthode. On représente en figure E.20 le champ d’erreur pour la fréquence maximisant le spectre, puis

les champs d’erreur sommés avec les deux méthodes.

(a) Champ d’erreur pour la

fréquence maximisant le

spectre (27.4 Hz).

(b) Champ d’erreur sommé sur 22

fréquences prises avec un pas

de temps régulier.

(c) Champ d’erreur sommé en

utilisant 4 fréquences de pics

et des facteurs de pondération

calculés sur le spectre.

Figure E.20: Comparaison entre les différentes méthodes de localisation.

On constate en observant ces résultats d’une part que la sommation a permis d’améliorer un premier résultat

incomplet, et d’autre part que les deux méthodes de sommation conduisent à des résultats très similaires, la seconde

méthode ne diminuant pas la qualité de localisation, ce qui nous conforte dans l’idée qu’à un pic correspond un

type de localisation. La seconde méthode de sommation pourra donc être utilisée pour économiser des ressources

CPU.

Dans la suite du rapport, on tracera à chaque fois un champ d’erreur sommé sur le spectre.

E.1.4 Études de sensibilité

Cette section rassemble plusieurs études menées au cours du stage pour mieux connaı̂tre le comportement de

l’indicateur d’ERC et ses possibilités.

Influence de l’intensité du défaut

La plupart des cas présentés jusqu’à maintenant visaient à localiser un défaut de 20% de module d’Young introduit

sur une partie de la structure. En pratique, on peut être amené à recaler un modèle qui présente un défaut moins in-

tense, ou au contraire à localiser des fissures qui affaiblissent une partie de la structure bien plus considérablement.

Nous illustrons ici l’influence de l’intensité du défaut de module d’Young sur la localisation de ce défaut dans

le cas où une partie d’un voile représentée en figure E.21. Le champ d’erreur est tracé en figure E.22 pour des taux

d’affaiblissements de 10, 50 et 90 %.

On constate sur cet exemple que contrairement à une idée naturelle, ce défaut est décelé de manière plus

complète (l’erreur maximale reste bien sûr moindre, les tracés n’étant pas à la même échelle) par l’ERC lorsque

son intensité est très faible. D’autres cas ont été étudiés et conduisent à une localisation de qualité égale quelque

soit le niveau d’intensité du défaut. Ces résultats ne permettent donc pas de conclure quant à un comportement
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Figure E.21: Défaut étudié.

(a) Affaiblissement de 10 %. (b) Affaiblissement de 50 %. (c) Affaiblissement de 90 %.

Figure E.22: Comparaison des champs d’erreur pour plusieurs intensités d’affaiblissement du module

d’Young.

particulier de l’ERC vis à vis de l’intensité des défauts implémentés sur SMART. On peut en revanche retenir que

la méthode de localisation reste performante dans les cas d’intensités extrêmes.

Influence du paramètre r

Le paramètre r est un paramètre de pondération entre les deux parties de la fonctionnelle d’Erreur en Relation de

Comportement qu’on rappelle ci-dessous.

e2

ω({U}, {V }, {W}) =
γ

2
{U − V }T [K + Tω2C]{U − V }

+
1 − γ

2
{U − W}T [ω2M]{U − W}

+
r

1 − r
{ΠU − Ũ}T [Gr]{ΠU − Ũ} (E.7)

La première partie, composée des deux premiers termes de l’équation E.7, quantifie l’erreur en relation de com-

portement elle-même. Lorsque la valeur donnée à r est petite, ce terme est prépondérant dans la fonctionnelle à

minimiser, ce qui suppose qu’on accorde une bonne confiance au respect de cette relation par notre modèle. La

seconde partie de la fonctionnelle est constituée du troisième terme, évaluant l’écart du champ U aux mesures. Si

on donne une valeur importante au paramètre r, on accorde plutôt une grande confiance aux mesures. Ce paramètre

joue en fait le rôle de paramètre de régularisation de Tikhonov, concept expliqué en [14].

On évalue ici l’influence de ce paramètre en testant la localisation d’un défaut de 20% de module d’Young sur

une partie de la structure représentée en figure E.23 pour r prenant les valeurs 0.1, 0.5 et 0.9. Les résultats sont

présentés en figure E.24.

On constate que l’augmentation de r semble augmenter la concentration de l’erreur sur le défaut. Pour r=0.1,

l’erreur déborde largement de la zone en défaut, jusque sur les planchers, pourtant dépourvus de défaut. Il faut
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Figure E.23: Défaut étudié.

(a) r = 0.1 (b) r = 0.5 (c) r = 0.9

Figure E.24: Comparaison des champs d’erreur pour plusieurs valeurs du paramètre r.

noter que dans notre cas, les mesures sont numériques et donc parfaites. Toute l’erreur du modèle réside dans

la matrice de raideur, et donc dans la vérification des relations de comportement. Par conséquent il paraı̂t plus

approprié de choisir une grande valeur de r, ce qui semble expliquer nos résultats.

Influence de la géométrie du modèle : cas défavorables

Jusqu’à maintenant, les exemples étudiés concernaient des défauts introduits sur les voiles (murs) de la structure.

Cette sous-section illustre en particulier le cas de défauts implémentés sur les planchers en vue d’évaluer l’influence

de la géométrie des zones en défaut sur la qualité de localisation.

La première figure (E.25) présente des résultats de localisation de défauts de 20 % de module d’Young sur

des zones de différentes tailles du plancher. On remarque que dans les deux premiers cas la localisation est assez

incomplète ou diffuse, et que le plancher présente des zones où la localisation semble difficile, tandis qu’à d’autres

endroits elle paraı̂t facilitée, comme dans le dernier cas.

Pour illustrer l’existence de telles zones, on tente de localiser un défaut entièrement compris dans une zone

“d’ombre“ en figure E.26. La qualité de localisation est cette fois particulièrement faible : le champ d’erreur est à

la fois diffus et incomplet.

Nous avons également pu remarquer en sous-section E.1.2 que la proximité du défaut à une fenêtre peut amener

la localisation à se diffuser autour de celle-ci. C’est ce que l’on constate particulièrement sur l’exemple suivant

(figure E.27), où le défaut est d’une taille raisonnable mais le champ d’erreur associé est particulièrement diffus.

Ces deux exemples, qui sont les plus pénalisants trouvés sur la maquette SMART, indiquent que la qualité de

la méthode peut s’altérer en particulier lorsque la géométrie de la structure est complexe, de toute évidence par

l’intermédiaire du comportement harmonique des zones entâchées de défaut. L’interprétation des champs d’erreur

peut dans ces cas être trompeuse. Toutefois, on note que ces résultats ne sont pas dépourvus de cohérence et
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(a) Défaut 1. (b) Défaut 2. (c) Défaut 3.

(d) Champ d’erreur 1. (e) Champ d’erreur 2. (f) Champ d’erreur 3.

Figure E.25: Résultats de localisation pour des défauts situés sur les planchers du modèle.

(a) Défaut. (b) Champ d’erreur.

Figure E.26: Exemple d’un défaut dans une zone où la localisation est difficile.

constituent un repérage, même grossier, du défaut.

Localisation de plusieurs défauts à une fréquence donnée

Lorsque l’on s’intéresse à l’écart entre un modèle et la structure qu’il est supposé représenter, on peut s’attendre

à détecter plusieurs défauts, d’intensité et de taille différentes, inégalement répartis dans l’espace. Cette sous-

section vise à tester la localisation de différentes zones entâchées d’erreur et éloignées les unes des autres afin de

déterminer d’une part si une double localisation est possible, et d’autre part si des localisation parasites apparaı̂ssent

à des endroits “sains”.

Le cas où une partie d’un voile et une partie d’un plancher subissent un défaut de raideur de 20% est étudié.
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(a) Défaut. (b) Champ d’erreur.

Figure E.27: Exemple d’un défaut à proximité de fenêtres.

La figure E.28 présente le spectre d’erreur pour chacun des défauts puis celui pour les deux défauts.
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Figure E.28: Spectres correspondant aux calculs d’ERC sur chaque défaut puis sur les deux défauts à

la fois. En étoiles rouges la somme des spectres bleu et magenta.

On compare la localisation individuelle de chaque défaut (figures E.29 et E.30) à la localisation des deux

défauts (figure E.31).

On peut considérer en faisant une assez bonne approximation que les champs d’erreur s’additionnent, ce qui

nous permet de conclure sur cet exemple qu’il semble possible de localiser plusieurs défauts à la fois sur une

structure sans subir de défauts parasites.

E.1.5 Conclusion du chapitre

La première partie des études réalisée sur le modèle SMART avait pour objectifs d’une part d’évaluer les perfor-

mances de l’identification basée sur l’ERC dans le cas où les mesures sont générées par un calcul sur un modèle
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(a) Défaut. (b) Champ d’erreur.

Figure E.29: Localisation d’un défaut situé sur un voile.

(a) Défaut. (b) Champ d’erreur.

Figure E.30: Localisation d’un défaut situé sur le plancher du bas.

(a) Défaut. (b) Champ d’erreur.

Figure E.31: Localisation des deux défauts.
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présentant un défaut de raideur, et d’autre part de commencer à développer une méthodologie de calcul adaptée à

la résolution du problème sur SMART de manière efficace.

L’interprétation du spectre d’erreur a été le levier principal permettant d’atteindre ce deuxième objectif. Deux

conditions ont été identifiées pour caractériser une fréquence donnant lieu à une bonne localisation du défaut : la

déformée associée doit solliciter le défaut et une bonne partie des capteurs. Ce résultat pouvait être anticipé. Le

choix d’une fréquence d’étude s’est ainsi porté sur celles qui maximisent l’Erreur en Relation de Comportement,

indice témoignant du fait que le défaut est bien décelé.

Nous avons pu identifier une corrélation entre la répartition spatiale de l’erreur et sa répartition spectrale :

lorsque l’erreur est concentrée sur une fréquence donnée, le calcul d’ERC amène à un champ d’erreur également

concentré sur le défaut. A contrario, une erreur largement diffusée sur une bande de fréquence amènera à priori à

un champ d’erreur diffus.

Il a rapidement été envisagé de considérer le calcul d’ERC sur une bande de fréquences plutôt que sur une

fréquence unique, afin d’enrichir le résultat. Les résultats étant bons mais la méthode impliquant des temps de

calculs assez élevés, une méthode de calcul du champ total a été développée en se basant sur une hypothèse

vérifiée au cours du stage. On peut la formuler comme suit : à un pic d’erreur sur le spectre correspond une

topologie caractéristique de l’erreur. Cette constatation s’explique par l’intermédiaire du comportement modal

d’une structure, qui se déforme d’une manière caractéristique entre deux fréquences données, avec un pic de

déformation atteint pour la fréquence propre.

Ce chapitre présente un bon aperÃ§u de la qualité des résultats obtenus pour localiser un défaut de raideur

sur un modèle numérique. Dans l’ensemble, les résultats sont prometteurs, quoique des cas défavorables aient été

identifiés. La capacité de localiser plusieurs défauts sans subir d’erreurs parasites a notamment été démontrée. La

sensibilité de l’indicateur à différentes intensités de défauts ainsi qu’au paramètre r caractérisant la confiance aux

mesures ont également été évalués ici.

Ces études constituent un bon socle de connaissances permettant d’aborder le chapitre suivant, visant à lo-

caliser des défauts d’endommagement sur un modèle numérique.

E.2 Localisation de non-linéarités sur le modèle SMART

La seconde partie de l’étude sur la maquette SMART exploite, là encore, des mesures “numériques“ provenant d’un

calcul sur un modèle éléments finis de SMART. Le but est à présent de localiser de l’endommagement non-linéaire

et non plus des défauts de raideur.

Pour cela, on fait suivre au modèle éléments finis un calcul non-linéaire à l’aide de l’opérateur DYNA NON LINE

de Code Aster, en le soumettant aux sollicitations sismiques subies par la maquette SMART. Les non-linéarités

apparaissant lors du calcul jouent à présent le rôle du défaut à localiser et les déplacements de la maquette aux

points de capteurs sont prélevés pour constituer les mesures.

A la différence du chapitre précédent où un calcul harmonique générait des mesures dépendantes de la fréquence,

les mesures sont à présent temporelles. En vue de les utiliser dans le cadre du problème d’ERC, qu’on traite dans

le domaine des fréquences, une transformation de Fourier est nécessaire. Dans une première partie de l’étude,

celle-ci est réalisée sur l’ensemble du signal temporel (voir figure E.32). On fenêtre ensuite le signal en plusieurs

parties afin de suivre l’évolution temporelle de l’endommagement.

E.2.1 Étude de l’endommagement à localiser

La structure obéit à une loi de comportement en béton armé définie dans Code Aster pour les structures minces

(plaques et coques), nommée GLRC DM. Cette loi de comportement intègre les phénomènes non linéaires tels que

l’endommagement en s’appuyant sur des contraintes (sollicitations de flexion et membranaires) et déformations
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Figure E.32: Accélérogramme et transformée de Fourier du signal complet.

généralisées. Des variables internes d’endommagement mesurant l’affaiblissement relatif de raideur de la dalle

en béton armé en traction, en compression et en flexion sont disponibles en postraitement. Une valeur nulle des

variables représente un comportement linéaire et une valeur de 1 un endommagement maximum. On peut se référer

à ce sujet à la documentation de Code Aster correspondante.

Un calcul non-linéaire de 10 secondes est effectué sur le modèle. Celui-ci commence à s’endommager (son

comportement devient non-linéaire) au bout de 4 secondes et atteint à la fin du calcul un état d’endommagement

présenté en figure E.33. L’évolution temporelle des variables d’endommagement en traction et en flexion de

l’élément le plus touché du modèle est également représenté en figure E.34. La variable d’endommagement en

compression reste nulle au cours du calcul, ce qui s’explique par meilleure résistance en compression du béton

armé.

E.2.2 Difficultés rencontrées

Les premiers résultats de localisation d’endommagement obtenus ont montré que l’utilisation de mesures tem-

porelles était délicate. En effet, elle nécessite de calculer la transformée de Fourier discrète des mesures pour les

convertir en mesures fréquentielles, ce qui revient à effectuer un certain nombre d’approximations, qui génèrent

des erreurs.

Lors d’une première approche, les transformées de Fourier ont été réalisées sur le signal brut. Le calcul d’ERC

a alors été effectué en considérant l’ensemble des 10 secondes puis en ne s’intéressant qu’à des fenêtres glissantes

de 2.5 secondes, afin de suivre l’évolution temporelle de l’endommagement. Les résultats obtenus se sont avérés

erronés : pour certaines fenêtres — notamment en considérant l’ensemble du signal — l’endommagement semblait

correctement localisé (figures E.35(b) et E.35(g)), mais pour d’autres le résultat de localisation ne correspondait

pas à l’emplacement du défaut (figures E.35(f) et E.35(h)). De plus, les champs d’erreurs obtenus pour les pre-

miers instants du signal, lorsque la structure n’est pas encore endommagé, présentaient une intensité parfois plus

importante que ceux correspondant à un état de la structure très endommagée, comme illustré en figure E.35(d).

Ce dernier constat a conduit à remettre en cause les localisations obtenues qui semblaient correctes.
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(a) Variable d’endommagement en traction. (b) Variable d’endommagement en flexion.

Figure E.33: Champs d’endommagement à la fin du calcul.
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Figure E.34: Évolution des variables d’endommagement de traction et de flexion d’un élément au

cours du calcul non-linéaire, pour l’élément le plus endommagé.

Afin de limiter au maximum les erreurs dues à la transformation de Fourier, les méthodes de calculs ont été

corrigées afin de respecter un certain nombre de critères :

• Le résultat de la DFT effectuée par Code Aster n’est plus interpolé sur une liste de fréquences d’intérêt.

Celles-ci sont désormais prises dans les fréquences pour lesquelles la DFT est effectivement calculée.

• On vérifie qu’on ne prend en compte le résultat de la transformée de Fourier discrète (DFT) que pour des

fréquences inférieures à la moitié de la fréquence d’échantillonnage. Au delà, le spectre subit un repliement,

d’après le théorème de traitement du signal de Shannon-Nyquist.

• La discrétisation temporelle de l’accélérogramme doit être égale à celle des mesures obtenues par le calcul

transitoire. Dans le cas contraire, leurs DFT ne sont pas comparables en intensité car ne comprennent pas

le même nombre de points.

• Les accélérogrammes sont corrigés pour être de moyenne nulle. On utilise pour cela le mot-clef CORR ACCE

de l’opérateur CALC FONCTION de Code Aster qui supprime la dérive d’un signal.

• Un fenêtrage du signal a été envisagé, en utilisant par exemple des fenêtres de Hanning découpant le spectre

en plusieurs parties sur lesquelles la DFT est calculée puis moyennée (de manière analogue au calcul fait par

l’opérateur CALC SPEC). Cependant, les accélérogrammes utilisés sont des signaux aléatoires. La fenêtre

rectangulaire (soit aucun fenêtrage) est en fait la plus adaptée dans ce cas.
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(a) Endommagement à la fin du

calcul.

(b) Champ d’erreur pour l’ensemble du

signal.

(c) Endommagement avant 4 s.

(d) Champ d’erreur pour la fenêtre 3 (de 1

à 3.5 s).

(e) Endommagement après 5.5 s

(f) Champ d’erreur pour la fenêtre

8 (de 3.5 à 6 s).

(g) Champ d’erreur pour la

fenêtre 10 (de 4.5 à 7 s).

(h) Champ d’erreur pour la

fenêtre 14 (de 6.5 à 9 s).

Figure E.35: Premiers résultats de localisation d’endommagement.



E.2. LOCALISATION DE NON-LINÉARITÉS SUR LE MODÈLE SMART 171

Cependant, ces précautions ne suffisent pas à améliorer le résultat d’ERC. Le problème provient bien de

l’approximation faite en effectuant les DFT, mais les erreurs commises sont amplifiées par la normalisation de

l’erreur globale par une énergie de référence : on rappelle la définition de l’erreur relative retenue jusqu’à présent

en équation E.8 :

e2

ωr =
e2

ω

γ
2
{Û}T [K + Tω2C]{Û} + 1−γ

2
{Û}T [ω2M]{Û}

(E.8)

L’énergie de référence est calculée à chaque fréquence et dépend du champ Û . Cette méthode permet d’obtenir un

bon indicateur d’erreur la plupart du temps. Cependant, dans notre cas, le contenu des accélérogrammes est très

faible pour certaines fréquences, ce qui conduit à un champ Û infinitésimal. On obtient ainsi à ces fréquences une

erreur globale presque nulle et une erreur relative qui explose. La figure E.36 illustre ce phénomène.

On définit ainsi une nouvelle énergie de référence qui ne dépend pas de la fréquence, en sommant l’ensemble

des énergies de référence calculées sur le spectre, comme présenté en équation E.9.

e2

ωr =
e2

ω
∫

ω
( γ

2
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2
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(E.9)
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Figure E.36: Tracé du spectre d’erreur relative pour deux approches. En haut, l’énergie de référence

dépend de la fréquence et amplifie l’erreur pour les hautes et basses fréquences qui ne sont

pas sollicitées (voir la DFT de l’accélérogramme en figure E.32). En bas, on résout ce

problème en intégrant l’énergie de référence sur le spectre pour calculer l’erreur relative.

E.2.3 Localisation des non-linéarités sur l’ensemble du signal

En figure E.37 est illustré le champ d’erreur correspondant au calcul d’Erreur en Relation de Comportement.

On observe une bonne identification de la partie la plus endommagée de la structure. Des erreurs parasites sont

également décelées sur les planchers pourtant ”sains”, mais leur intensité est moindre. En revanche, d’autres

éléments ayant subi un fort endommagement (plus de 50% pour certains) n’apparaissent pas sur le champ d’erreur,

probablement car les zones endommagées sont trop petites.
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Figure E.37: Résultat de localisation de l’endommagement.

E.2.4 Localisation des non-linéarités par fenêtrage du signal

Les accélérogrammes et les mesures sont maintenant découpés avant d’être de nouveau utilisés dans le calcul

d’ERC. On espère ainsi pouvoir suivre l’évolution de l’endommagement dans le temps. On utilise 16 fenêtres de

2.5 secondes glissant avec un pas de temps de 0.5 secondes.

L’endommagement de la structure n’évolue qu’entre 4 et 5.5 secondes. On regroupe donc au sein d’une même

figure les fenêtres correspondant à la localisation d’un niveau d’endommagement donné. Les figures E.38 à E.40

permettent de visualiser pour chaque fenêtre :

• La partie de l’accélérogramme correspondant à la fenêtre utilisée (ou aux fenêtres utilisées, lorsque celles-ci

sont regroupées) ;

• L’endommagement de la structure à localiser, pris au dernier pas de temps de la fenêtre considérée ;

• Le résultat de champ d’erreur par éléments pour cette fenêtre.

Les calculs d’ERC permettent effectivement d’observer l’évolution temporelle de l’endommagement. L’erreur

relative est tracée pour différentes fenêtres caractéristiques en figure E.41. Cette figure montre à quel point l’erreur

augmente en intensité au cours du temps, ce qui témoigne de l’apparition des non-linéarités au cours du calcul.

Celles-ci ne sont détectées qu’à partir de la fenêtre 7 et augmente brièvement en intensité dans les fenêtres suiv-

antes, comme l’illustrent les figures E.38 à E.40. D’après la figure E.34, l’endommagement réel apparaı̂t au bout de

quatre secondes pour atteindre très rapidement sa valeur maximale et n’évoluer plus ensuite. On constate cependant

que le champ d’erreur ne reste pas constant : il est particulièrement intense en fenêtre 10. Cette fenêtre correspond

à des instants où l’accélération imposée est très importante. Dans les fenêtres suivantes, la sollicitation s’atténue

comme illustré en figure E.40(a). Ceci explique le fait qu’on détecte mieux l’endommagement à la fenêtre 10

qu’aux suivantes : la structure est beaucoup plus sollicitée.

Enfin, les éléments endommagés auparavant non détectés dans le champ d’erreur peuvent à présent être ob-

servées pour les fenêtres 10 et 13.

E.2.5 Conclusion du chapitre

Le but de cette seconde étape sur la maquette SMART était d’exploiter des mesures générées par un calcul tran-

sitoire non-linéaire pour traiter le problème d’ERC. Le défaut à localiser était constitué par des non-linéarités

apparaissant lors du calcul et éloignant le modèle générateur des mesures du modèle de référence.

Un premier résultat utilise les déplacements (numériquement) mesurés sur SMART lors d’un calcul de 10

secondes, le modèle étant soumis à un chargement sismique horizontal bi-axial. Le champ d’erreur calculé permet

une bonne estimation de l’endroit le plus endommagé de la structure.
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(a) Fenêtrages 1 à 3. (b) Endommagement avant 4 s
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fenêtre 1 (de 0 à 2.5 s).
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(e) Champ d’erreur pour la

fenêtre 3 (de 1 à 3.5 s).

Figure E.38: Résultats des fenêtres 1 à 3, correspondant à la localisation de l’endommagement illustré

en figure E.38(b).

Dans un second temps, les mesures et accélérogrammes ont été découpés en plusieurs fenêtres successives.

Cette nouvelle étude permet d’approcher l’évolution temporelle de l’endommagement grâce à l’ERC. On obtient

de plus une localisation plus complète de l’endommagement subi par la structure.

E.3 Conclusion et perspectives

La méthode d’identification basée sur l’Erreur en Relation de Comportement a été testée sur un cas particulier

supposé représentatif du type d’études menées à l’échelle industrielle à EDF, la maquette SMART.

Le rapprochement de l’objectif s’est fait de manière progressive, en commençant par introduire des défauts de

raideur dont on contrôle toutes les caractéristiques (taille, emplacement, intensité), puis en intégrant des défauts

d’endommagement, plus proches de ceux qu’on peut être amené à rencontrer dans un cadre industriel, avant

d’exploiter les mesures expérimentales, entâchées de bruit, en vue de localiser des défauts dont on ne connaı̂t

rien à l’avance. La dernière partie reste encore à faire à l’heure actuelle.

Les résultats de localisation de défauts obtenus jusqu’à présent sur ce modèle ont permis de tirer un certain

nombre de conclusions quant à l’efficacité d’une part, et d’autre part quant à l’utilisation de la méthode d’ERC.

On peut retenir pour le premier point les résultats de sensibilité à des paramètres tels que le nombre et la

position des capteurs créant les mesures, ou encore l’emplacement, la taille et l’intensité du (ou des) défaut(s),

résultats provenant principalement d’études complètement numériques, les mesures étant générées par un calcul.

Les conclusions tirées de ce type d’étude permettent d’aborder des calculs basés sur des mesures expérimentales en

toute connaissance de l’indicateur d’erreur et donc d’en interpréter les résultats plus facilement et plus justement.

Il est envisagé de compléter ces résultats dans la suite du stage en développant un indicateur quantitatif de la

sensibilité de l’ERC à une topologie de défaut, par l’intermédiaire du mot-clef SENSIBILITE de Code Aster.
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(a) Fenêtrage 4 : de 1.5 à 4s. (b) Endommagement à 4 s (c) Champ d’erreur.
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(d) Fenêtrage 5 : de 2 à 4.5s (e) Endommagement à 4.5 s (f) Champ d’erreur.
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(g) Fenêtrage 6 : de 2.5 à 5s (h) Endommagement à 5 s (i) Champ d’erreur.
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(j) Fenêtrage 7 : de 3 à 5.5s (k) Endommagement à 5.5 s (l) Champ d’erreur.

Figure E.39: Résultats des fenêtres 4 à 7, correspondant à différents niveaux d’endommagement il-

lustrés sur la colonne du milieu.
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(a) Fenêtrages 8 à 16. (b) Endommagement après 5.5 s (c) Champ d’erreur pour la

fenêtre 8 (de 3.5 à 6 s).

(d) Champ d’erreur pour la

fenêtre 9 (de 4 à 6.5 s).

(e) Champ d’erreur pour la

fenêtre 10 (de 4.5 à 7 s).

(f) Champ d’erreur pour la fenêtre

11 (de 5 à 7.5 s).

(g) Champ d’erreur pour la

fenêtre 12 (de 5.5 à 8 s).

(h) Champ d’erreur pour la

fenêtre 13 (de 6 à 8.5 s).

(i) Champ d’erreur pour la fenêtre

14 (de 6.5 à 9 s).

(j) Champ d’erreur pour la fenêtre

15 (de 7 à 9.5 s).

(k) Champ d’erreur pour la

fenêtre 16 (de 7.5 à 10 s).

Figure E.40: Résultats des fenêtres 8 à 16, correspondant à la localisation de l’endommagement illustré

en figure E.40(b).
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Figure E.41: Spectre d’erreur pour différentes fenêtres.

Le spectre d’erreur a été interprété comme un bon indicateur de la qualité de localisation à une fréquence

donnée. Il a également été identifié comme un élément sur lequel s’appuyer pour choisir une méthode de local-

isation, caractérisée par le nombre de fréquences prises en compte, le choix de ces fréquences, et la manière de

sommer les champs d’erreur associés. Des méthodologies de calcul se différenciant les unes des autres par ces

caractéristiques ainsi que par la gestion de la mémoire et le degré d’utilisation conjointe de Code Aster et du lan-

gage python ont ainsi été testées et appreciées pour choisir une méthodologie efficace et cohérente, dépendante du

besoin de l’utilisateur.

Le développement de cette méthodologie et des scripts pythons associés aura permis d’élaguer le travail

nécessaire à une éventuelle intégration des méthodes d’identification basées sur l’ERC dans Code Aster, par le

biais de macro-commandes ou d’opérateurs adaptés, intégration dont la pertinence pourra être évaluée à la lumière

de ce stage. Une première intégration de l’ERC pour traiter des problèmes de grande taille aura dans tous les cas

été réalisée ici, menant à des résultats encourageants.

Des mesures générées par un calcul transitoire non-linéaire ont dans un deuxième temps été exploitées pour

localiser de l’endommagement. Cette étude a mis en évidence le fait qu’une utilisation de mesures temporelles

dans l’ERC était délicate et nécessitait la prise d’un certain nombre de précautions. Les calculs ont finalement

aboutis à des résultats encourageants et laissent penser que l’ERC permet non seulement de localiser des zones

ayant subi un comportement non-linéaire au cours d’un calcul, mais également de suivre dans le temps l’apparition

de l’endommagement sur la structure.

La dernière étape, utilisant les mesures expérimentales sur la maquette SMART pour évaluer l’écart au modèle

éléments finis, n’aura malheureusement pas pu être abordée au cours de ce stage, qui fournit cependant une bonne

connaissance des techniques d’utilisation de l’ERC nécessaire à sa réalisation. Le pas à franchir est néanmoins

important car il implique de passer d’une situation où le modèle générant les mesures est parfaitement connu à un

cas où les mesures sont issues d’essais, donc qui non seulement peuvent être entâchées de bruit, mais qui de plus

représentent une structure réelle, ce qui l’écarte intrinsèquement du modèle éléments finis.
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ble kalman filter and the seik filter applied to a finite element model of the north atlantic, Journal of Marine

Systems, 65 (2007), pp. 288–298.

[67] H. NGUYEN, O.ALLIX, AND P.FEISSEL, A robust identification strategy for rate-dependent models in dy-

namics, Inverse Problems, 24 (2008), pp. 1–24.
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