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Abstract

The development of multimedia broadcasting and on-demand services for mobile
devices such as tablets or smartphones involves the transmission of contents over
heterogeneous networks, consisting of mixed wired and wireless channels. For such
best-effort networks, the quality of service (packet loss rate, delay and reconstructed
signal quality) is not always satisfactory due to time-varying characteristics of the
channels. Compressed data packets may be lost due to congestion in the network
or corrupted by channel impairments. Moreover, due to the limited bandwidth, the
multimedia content has to be highly compressed, which makes the transmitted bit
streams extremely sensitive to transmission impairments. Therefore, the demand
for efficient compression algorithms, as well as reliable coding techniques, is very
important in multimedia transmission systems.

This thesis aims at proposing and implementing efficient joint source-channel coding
and decoding schemes in order to enhance the robustness of multimedia contents
transmitted over unreliable networks.

In a first time, we propose to identify and exploit the residual redundancy left by
wavelet video coders in the compressed bit streams. An efficient joint-source channel
decoding scheme is proposed to detect and correct some of the transmission errors
occurring during a noisy transmission. This technique is further applied to multiple
description video streams transmitted over a mixed architecture consisting of a wired
lossy part and a wireless noisy part.

In a second time, we propose to use the structured redundancy deliberately intro-
duced by multirate coding systems, such as oversampled filter banks, in order to
perform a robust estimation of the input signals transmitted over noisy channels.
Two efficient estimation approaches are proposed and compared. The first one ex-
ploits the linear dependencies between the output variables, jointly to the bounded
quantization noise, in order to perform a consistent estimation of the source out-
come. The second approach uses the belief propagation algorithm to estimate the
input signal via a message passing procedure along the graph representing the linear
dependencies between the variables. These schemes are then applied to estimate the
input of an oversampled filter bank and their performance are compared.






Résumé de la These

Contexte et motivations

Le développement croissant d’applications multimédia, de services a la demande
et de terminaux mobiles (tablettes et smartphones) a conduit a un usage intensif
d’architectures mixtes, comprenant canaux radio-mobiles et réseaux a pertes de
paquets comme Internet. Pour de tels supports de communication, la qualité de
service n’est pas toujours garantie a cause des variations des caractéristiques de
la source et des conditions du canal. Les paquets de données peuvent étre perdus
au cours de leur acheminement, suite a des congestions survenant sur la partie
Internet du canal de transmission, ou/et corrompus par des erreurs causées par
des perturbations sur la partie radio-mobile. Garantir une transmission fiable des
contenus multimédia devient alors d’une grande necessité, d’autant plus que les
applications conversationnelles ou de type diffusion, largement utilisées de nos jours,
ne permettent pas la retransmisssion de I'information perdue ou erronée.

Pour augmenter la robustesse des contenus transmis, les recherches se sont pendant
longtemps axées sur 'optimisation séparée du codeur source et du codeur canal,
appliquant ainsi le théoreme de Shannon [I41] qui établit qu'une telle séparation
permet au systeme de communication d’atteindre les performances optimales et de
garantir ainsi une transmission fiable avec une probabilité d’erreur aussi petite que
I’on veut. Cependant, cette optimisation séparée, suppose que les caractéristiques de
la source et du canal sont parfaitement connues, ce qui n’est généralement pas le cas
en pratique. De plus, elle fait I'hypothese que les codeurs source et canal travaillent
sur des blocs de données de tailles infiniment longues, ce qui conduit a une complexité
élevée des deux codeurs, prohibitive pour les situations de communication pratiques,
telles que les applications en temps réel. Dans de telles situations, le codeur canal
a une complexité limitée, ce qui ne permet pas de corriger toutes les erreurs de
transmission. Par ailleurs, la théorie de Shannon ne fournit pas de méthode de
construction de codes source optimaux, capables de corriger les erreurs résiduelles
laissées apres décodage canal. Ces erreurs peuvent alors fortement dégrader le signal
reconstruit par le décodeur source.

Ainsi, les dernieres décennies ont connu le développement de solutions alternatives
reposant sur des techniques de codage/décodage source-canal conjoint [14, 19]. Ces
techniques ont pour objectif de répondre aux contraintes de délai et de complexité
imposées en pratique, et d’assurer une transmission robuste vis-a-vis des perturba-
tions inconnues et variables du canal de communnication.
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Cette these s’inscrit dans ce contexte et a pour but de proposer des schémas de
codage/décodage source-canal conjoint, augmentant la robustesse des contenus mul-
timédia transmis sur des canaux radio-mobiles ou mixtes Internet et radio-mobiles,
qui sont peu fiables.

Codage/décodage source-canal conjoint

Ces techniques se répartissent essentiellement en deux catégories

1. Codage source-canal conjoint : dans cette catégorie, les codeur source et canal
sont construits de maniere conjointe. Le codeur canal peut étre informé des de-
grés de sensibilité des données compressées qui lui sont délivrées par le codeur
source, et ainsi adapter son niveau de protection. On parle alors de schémas
de protection inégale vis-a-vis des erreurs [20, 24, 26, 12]. A I'inverse, le codeur
source peut étre construit pour un canal de transmission donné. Tel est le cas
des schémas de codage par descriptions multiples, congus pour les canaux a
pertes de paquets et pour les applications ayant des exigences de délais tres
réduits [165, 115, 43, 52, 157]. Dans ces schémas, le codeur source génere plu-
sieurs descriptions, qui peuvent étre décodées indépendemment les unes des
autres, ou ensemble, permettant ainsi une meilleure reconstruction. D’autres
schémas de codage source-canal conjoint sont basés sur des transformations
redondantes de la source a coder, ce qui revient en quelque sorte a réaliser un
codage canal avant le codage source [56, 116, 79]. Les erreurs résiduelles lais-
sées par un décodeur canal classique peuvent alors étre détectées et corrigées
grace a cette redondance structurée introduite au niveau de la source. On peut
citer 'exemple des bancs de filtres suréchantillonnés [151] qui fournissent une
représentation redondante du signal placé en entrée, pouvant étre exploitée au
décodeur pour détecter et corriger les erreurs de transmission et/ou compenser
les effacements [56, 131, 54, 79, 86, 130, 2].

2. Décodage source-canal conjoint : les techniques appartenant a cette catégorie se
basent sur le fait que tous les codeurs source pratiques produisent des trains bi-
naires contenant une certaine redondance [137]. Cette redondance peut prove-
nir de la syntaxe du codeur source [138, 168], de la corrélation résiduelles entre
les coefficients apres transformation, ou encore de la paquétisation des données
[11, 91, 1306]. Les techniques de décodage source-canal conjoint cherchent alors
a exploiter au mieux cette redondance pour améliorer le décodage [62, 22, 12].
Un exemple de telles méthodes, est le décodage souple des codes a longueurs
variables (CLVs) de type Huffman et arithmétiques [76, 122]. Le décodage
souple des CLVs se base sur l'estimation statistique de la séquence émise par
la source, a partir d'un ensemble d’observations bruitées. Généralement, un
critere de vraisemblance ou de probabilité a posteriori est considéré pour opti-
miser 'estimateur. La recherche de la solution s’effectue alors dans I’ensemble
des séquences vérifiant un certain nombre de contraintes, déduites a partir de



la redondance résiduelle présente dans les CLVs. Des algorithmes de décodage
tels que I'algorithme de Viterbi [114]; sont souvent utilisés pour effectuer cette
recherche et éliminer les séquences non valides.

Les schémas proposés dans cette theése appartiennent aux deux catégories citées
ci-dessus. Nous nous sommes intéressés dans un premier temps aux techniques de
décodage source-canal conjoint des trains binaires délivrés par des codeurs vidéo
par ondelettes. La redondance résiduelle laissée par de tels codeurs est identifiée,
puis exploitée pour détecter et corriger les erreurs de transmission survenant lors de
la transmission sur un canal radio-mobile. Ce schéma est ensuite appliqué dans le
cadre d'une diffusion des contenus vidéo a travers un canal hétérogene, ou les pertes
de paquets sont compensées a 1’aide du codage par descriptions multiples.

Nous nous sommes ensuite intéressés aux techniques de codage source-canal conjoint
basées sur une transformation redondante. Un schéma d’estimation cohérente de la
source, exploitant de maniere efficace la redondance introduite, est proposé. Des ou-
tils de programmation linéaire et de calculs par intervalles sont mis en oeuvre pour
détecter les erreurs de trasmission et estimer la source. Un autre schéma d’estima-
tion, basé sur I’algorithme de propagation de croyances est également introduit. Ces
deux schémas sont alors appliqués pour estimer I'entrée de bancs de filtres suréchan-
tillonnés, et leurs performances sont comparées.

Décodage source-canal conjoint des sources vidéo

Dans cette partie, nous présentons le schéma de décodage source-canal conjoint
proposé. Ce schéma est présenté dans la Figure 1. Considérons une séquence vidéo
formée de N; trames, regroupées en un vecteur x. Ce vecteur est encodé et un vecteur

z = F(x) (1)

est obtenu. La fonction F(-) dénote 'opération de codage vidéo, includant les trans-
formées temporelle et spatiale, ainsi que la quantification et le codage entropique.
Le contenu de z est alors transmis a traver un canal radio-mobile bruité.

Modéle du canal

Le canal désigne la partie de la chaine de communication située entre la sortie de
la fonction F(-) et 'entrée du décodeur vidéo. Ce canal inclut la modulation, la
paquétisation et le canal physique, ainsi que les opérations de démodulation et de
dé-paquétisation.

Suppons que le vecteur z est organisé en N, paquets de méme longueur

7 — ((zl)T L (sz)T)T. (2)
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Les mécanismes classiques de détection d’erreurs, mis en place au niveau des couches
protocolaires basses, ne permettent pas aux paquets corrompus d’atteindre la couche
applicative. L’implémentation de schémas de décodage source-canal conjoint au ni-
veau de la couche applicative, nécessite alors la présence de mécanismes dits trans-
couches (cross-layer) pour permettre aux différentes couches protocolaires de com-
munniquer entre elles et d’assurer ainsi la remontée d’informations, telles que celles
des paquets contenant des erreurs, et les informations souples du canal, des couches
basses vers les couches hautes de la pile protocolaire [117, 42].

Tout au long de ce travail, nous supposons qu'un tel schéma trans-couches est implé-
menté, ainsi que des mécanismes de décodage robuste des entétes des paquets recus,
pour permettre 'extraction des informations provenant des couches protocolaires
basses [100, 101].

A la sortie de ce canal, deux types d’information sont obtenus. D’une part les infor-
mations souples sur les paquets transmis z;, modélisées par le vecteur

r= ((rl)T,...,(er)T)T. (3)

Les information souples contenues dans le vecteur r; consistent par exemple, en des
probabilités a posteriori ou des vraisemblances sur les données transmises dans le
paquet z;. Ces informations sont fournies par le décodeur canal, au niveau de la
couche physique, du c6té du récepteur.

D’autre part, les informations sur I’état du canal sont également disponibles et sont
modélisées par le vecteur

pP= (plv"'apr)Tv (4)

dont les composantes indiquent si le paquet zy, a été perdu (pr = 0) ouregu (p, > 1).
Le fait que pr = 0 peut étre déduit par exemple du contenu des entétes de paquets.
Les valeurs de p, > 1 sont supposées étre connues au récepteur. Elle indiquent par
exemple, le niveau du bruit introduit dans le paquet z;.

X Codeur vidéo Z
—>
F() A 4
redondance Canal
\/
X _ . r
<«— Décodeur vidéo Estimateur |e
p

Figure 1.: Schéma de décodage source-canal conjoint.



Schémas d’estimation optimale

Cette section présente deux schémas d’estimation optimale, qui sont indépendants
du codeur vidéo considéré. Nous commencons par formuler I'estimée optimale de x,
qui est difficile a mettre en oeuvre en pratique. Ensuite, nous décrivons une estimée
contrainte de z qui est plus pratique et pour laquelle les informations souples en
sortie du canal ainsi que la redondance de la source, sont plus faciles a exploiter.

Estimation optimale de x

Le critere d’estimation que nous considérons est celui du maximum a posteriori
(MAP). L’estimée Xyap de x connaissant p et r est

XMAP = arg maxp (x[p,r). (5)
Cette estimée peut étre écrite de la maniere suivante
Xyap = argmax p (p,r|F (x)) p (x), (6)

en faisant la somme sur tous les z possibles, puis en utilisant la regle de Bayes. Seul
z = F (x) est alors gardé dans cette somme. L’évaluation de Xyap est difficile a
mettre en place en pratique. En effet, elle requiert la maximisation d’une fonction
discontinue, a cause de la quantification présente dans F(-), sur un nombre tres
grand de variables qui sont tous les pixels des Ny trames de x.

Estimation contrainte de z

De maniere alternative, nous proposons d’estimer d’abord le vecteur z, en utilisant le
fait que ce train binaire a été généré a partir d’une séquence vidéo x. Nous obtenons
alors une estimation contrainte de z connaissant p et r

Zniap = argmax p (z]p,r), (7)

S={z|3Ix, z=F(x)} (8)

est 'ensemble de tous les trains binaires pouvant étre générés a partir des vecteurs
X.

En effectuant 'estimation de z parmi les éléments de I'ensemble S, nous prenons
implicitement en compte la redondance laissée par le codeur vidéo. En effet, puisque
la séquence zyap aurait pu étre générée par le codeur vidéo, elle est nécessairement
cohérente avec les contraintes imposées par la redondance résiduelle.
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En utilisant la régle de Bayes et en supposant que les conditions du canal de trans-
mission sont indépendantes pour chaque paquet zj, nous obtenons

Np
Znap = argmax p (z) I » (cilpe, ze) p (pr|zi) - (9)
k=1

Dans cette these, nous avons considéré le codeur vidéo par ondelettes Vidwav [120].
Dans la section suivante, nous présentons brievement ce codeur et la structure du
train binaire qu’il génere. Cela nous aidera a identifier une partie de la redondance
résiduelle et nous permettra de construire I’ensemble S. Nous soulignons ici le fait,
que le schéma de décodage proposé peut étre étendu a d’autres codeurs vidéo par
ondelettes, des que la rédondance résiduelle de ces codeurs est identifiée.

Présentation de Vidwav

Vidwav est un codeur scalable par ondelettes 3D utilisant un filtrage temporel com-
pensé en mouvement (FTCM) [126]. Dans ce travail, le schéma ¢ + 2D, illustré par
la Figure 2 est considéré. Le FTCM est d’abord opéré sur les trames de la séquence
vidéo x, placée en entrée. Ensuite, la transformation spatiale par ondelettes est ef-
fectuée sur les sous-bandes temporelles générées. Les sous-bandes spatio-temporelles
obtenues sont alors divisées en N}, blocs 3D by, k= 1,..., Ny, qui sont ensuite codés,
indépendamment les uns des autres, a 'aide du codeur entropique 3D-ESCOT [71].

Séquence vidéo

()
P P22
Transformée | Codage 99

» 'TCM > ) > Paquets
spatiale entropique Paquétisation |

\i

Estimation de| Vecteurs de mouvement

\/

mouvement

Figure 2.: Schéma en blocs de Viwav.

Codage entropique

Pour chaque bloc 3D by, I'algorithme 3D-ESCOT opere un codage arithmétique
par plan de bits, avec adaptation de contexte. Un train binaire emboité py est alors
généré. Il est formé par différents segments, résultant chacun d’une passe de codage
par plan de bits [71]. De plus, des informations relatives a py sont obtenues, telles
que le nombre de passes de codage n; considérées dans by, la longueur en octects

10



de ps, etc. Ces informations sont enregistrées dans l'entéte hy, associée au train
binaire px. Cette entéte contient également d’autres informations, nécessaires pour
le décodage du bloc by, telles que 'indexe de la sous-bande spatio-temporelle ou
encore les vecteurs de mouvement associés a by,.

Le vecteur z;, obtenu a la sortie du codeur entropique est alors tel que

zk:<g:>. (10)

Le codeur Vidwav produit généralement un train binaire z emboité et scalable formé
par plusieurs couches (layers). Dans la section suivante, nous allons décrire le schéma
de décodage conjoint proposé dans le cas ot une seule couche est générée. Ce schéma
sera ensuite généralisé au cas de plusieurs couches.

Schéma de décodage source-canal conjoint

Dans cette partie, nous allons décrire le schéma de décodage conjoint pour un train
binaire formé par une seule couche. Dans un premier temps, nous allons supposer
que tous les paquets sont recus (pp = 1, k = 1,...,N,), et que certains de ces
paquets sont corrompus par des erreurs de transmission. Le but est alors de détecter
ces erreurs et de les corriger en évaluant zyap définie par (9).

Nous faisons de plus 'hypothese, que chaque paquet de z défini dans (2), contient
le code entropique généré pour un seul bloc 3D by donné. Ainsi N, = N, et

2= (@) (@) (2)T) (11)

Cette hypotheése a pour but d’alléger les notations et I'expression (11) est aussi
générale que (2).

De maniere similaire, nous pouvons écrire les informations souples du canal définies
)
par (3) et les informations sur 1'état du canal définies par (4) comme suit

r= ()", ... (em)") (12)

T

pP = <p17'-'7pr) . (13)
Supposons que tous les vecteurs z € S ont la méme probabilité a priori, I’équation
(9) devient alors

Ny
Zyiap = argIlax 1T » (celows zi) p (pr|2k) - (14)
k1

11
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Cette hypothese est valide tant qu’aucun a priori sur x n’est disponible au décodeur.

Considérons les ensembles

Sy = { Zj \ Jx, 3(517---avakflijrb---,sz),

T

tq ((zl)T [ (ikfl)T ) (Zk)T ) (ikJrl)T [ (sz>T) =F <X>}7 (15)

définis pour chaque £ = 1,..., Ny,. L’ensemble S, contient tous les trains binaires
z;, pouvant résulter du codage entropique d’un bloc by qui peut étre obtenu a partir
d’une certaine séquence vidéo x a N; trames. Nous avons alors

SCS8 x-- xS, (16)

En utilisant (14) et (16), nous dérivons une estimée sous-optimale pour chaque train
binaire zj,

Zr, = arg max p (vx|pk, 2k) 0 (pr|2k) - (17)
2, €Sy
., A \T ~ 7\T . . .
L’estimée ((zl) ey (Zy) ) est alors une solution sous-optimale de (14) puisque

(@) .....en)")"

n’est pas forcément dans S, d’apres (16).

Tests de syntaxe

Dans cette partie, nous allons décrire deux tests de syntaxe permettant de tenir
compte de la redondance résiduelle laissée par Vidwav.

Comme nous I’avons mentionné précédemment, chaque z; est formé d’une entéte hy,
et d’un train binaire pg. Apres la transmission de zg, le vecteur regu

v = ((ren)” (rk,p)T)T

contient les informations souples du canal sur h;, données par le vecteur ryy, et sur
pi données par le vecteur ry ,. En supposant que les entétes hy ont été protégées
par des codes canal puissants et donc qu’elle sont recues sans erreurs, le probléme
donné par (17) se limite & l'estimation de py sous la contrainte que (hg, p) € Sy

~

pr=arg max  p(replor,P)- (18)
p tq (hy,p)ESk

12



La valeur de p; contient des informations sur les caractéristiques du canal comme
par exemple son rapport signal a bruit (SNR), et permet d’évaluer la vraisemblance
p(Tiplpk, P). L'espace de recherche de pj, est I'ensemble de toutes les séquences p
pouvant étre générées a partir d’une séquence vidéo x, et qui sont en méme temps
cohérentes avec les informations contenues dans hy,.

Un simple test de syntaxe t qui peut étre alors implémenté au décodeur se base sur le
fait que tout train binaire p; obtenu a partir d’un bloc 3D donné, résulte d'un nombre
ny connu de passes de codage et a une longueur en bits ¢; connue. Les valeurs de ny, et
de /), peuvent étre déduites de I’entéte hy, supposée correctement regue. Le décodeur
entropique 3D-ESCOT doit alors consommer exactement ¢ bits en décodant ny
passes d'une séquence p donnée. Si plus ou moins de ¢, bits sont consommés, les
codeur et décodeur arithmétiques sont désynchronisés, ce qui implique que p contient
des erreurs de transmission.

Le test tP est alors défini de la maniére suivante

1 siA(p) = A(hy)

0 sinon

t*(hy, p) = { ) (19)

ou A(p) dénote le nombre de bits consommés lors du décodage de p et A(hy) indique
le nombre de bits a décoder, indiqué par 'entéte hy. Comme h; ne contient pas

d’erreurs, A(hy) = (.

Pour une séquence p donnée t”(hy, p) = 0 implique alors que A(p) # ¢, et donc que
p # pi. Cependant, t”(hy, p) = 1 n’'implique pas nécessairement que (hy, p) € Sy et
donc que p = py. En effet, les bits d’une certaine séquence p # p; peuvent entrainer
la consommation d’exactement ¢, bits par le décodeur 3D-ESCOT. En absence de
désynchronisation entre codeur et décodeur arithmétiques, le fait que p # py n’est
pas détectable par tP.

Dans le train binaire généré par Vidwav, A(hy) est connue en octects [126]. Le test
tB qui peut étre considéré est alors le suivant

1 si 8[A(p)/8] = A(hy)

0 sinon

t°(hy, p) = { : (20)

ou [-] désigne l'opérateur d’arrondi par valeurs supérieures. La détection d’erreurs
par tB est possible lorsque la désynchronisation est suffisante, c’est a dire lorsque
plus ou moins d’octects que prévu sont consommés par le décodeur arithmétique.
Le test t® est donc moins efficace en termes de détection d’erreurs que le test tP.
Nous pouvons écrire A(hy) = € + A, ou Ay, = 0,...,7 est le nombre de bits ajoutés
a la fin de py. Pour implémenter le test t”(hg, p) au niveau du décodeur Vidwav,
la valeur A\, peut étre rajoutée a 'entéte hy lors de I'encodage. Cette information
adjacante nécessite seulement trois bits additonnels par train binaire z.

13



Résumé de la These

Pour une entéte h; donnée, introduisons les ensembles

C(hi) = {p | (hi,p) € Sk}, (21)
C*(hy) = {p | (b, p) = 1§ (22)
et
CP(hy) = {p | (s, p) = 1}. (23)
Nous obtenons alors
C(hy) C C(hy) C CB(hy). (24)

En utilisant (19) ou (20), des solutions sous-optimales de (18) sont obtenues

~b
= arg max r ) 25
Dy gpecb(hk)p( kol ok P) (25)
et respectivement
~B
= arg max r ,P) - 26
Py gpecB(hk)p( kplPks P) (26)

Ces estimées nécessitent de considérer tous les éléments de C(hy) ou de CB(hy,)
lorsque P ou ¢® sont utilisés.

Nous utilisons un algorithme de décodage séquentiel, le M —algorithme [3] pour
effectuer la recherche dans CP(hy) ou de CB(hy). Cet algorithme explore de maniére
partielle 'arbre binaire représentant toutes les séquences de longueur A(hyg), en
commencant par la racine qui est de norme nulle. A chaque itération de ’algorithme,
les chemins considérés sont étendus aux noeuds suivants et seuls les M chemins
maximisant la métrique

M(p, i) = —log p(ri|p, pi) (27)

sont gardés a l'itération suivante. Les autres chemins sont éliminés. L’algorithme
prend fin lorsque la profondeur A(hy) de Parbre binaire est atteinte. Le test tB(hy, p)
ou t(hy, p) est alors utilisé pour éliminer les séquences n’appartenant pas a C2(hy,)
ou CP(hy,), en commencant par la séquence maximisant (27).

Cet algorithme est sous-optimal [3]. Si M n’est pas assez grand, la séquence py
transmise peut étre éliminée. A la fin de 'algorithme, si aucune des M séquences
ne statisfait les tests de cohérence, nous choisissons d’utiliser la premiere séquence
obtenue, correspondant a M = 1. En effet si des erreurs se sont produites dans les
derniers bits de pg, cette stratégie conduirait a des artifacts plus modérés.
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Résultats expérimentaux
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Figure 3.: Y-PSNR (dB) en fonction du SNR du canal (dB) pour le décodeur non-
robuste, le schéma de décodage conjoint sans information additionelle (JSC-NoSI)
et le schéma de décodage conjoint avec information additionelle (JSC-SI).

Dans nos simulations, nous avons considéré les deux séquences foreman.qcif et
mobile.cif, codées respectivement a 128 kbps et 768 kbps, avec un débit par trame
égal a 15 fps et 30 fps. Le canal de transmission considéré est modélisé par un canal
Gaussien AWGN avec un SNR variant entre 9 dB et 12 dB. Les trains binaires
générés sont transmis a travers ce canal et seules les séquences pi, £k = 1,..., Ny
sont supposées étre corrompues par du bruit. La Figure 3 montre le PSNR moyen
de la composante Y, des séquences vidéo reconstruites avec un décodeur classique
basé sur les décisions dures du canal et les schémas de décodage conjoint basés sur
les tests de cohérence tB (JSC-NoSI) et ¢* (JSC-SI), en fonction du SNR du canal.
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Résumé de la These

Plusieurs valeurs du parametre M de l'algorithme séquentiel ont été considérées.
L’information additionnelle introduite au niveau des entétes h;, permet d’augmenter
les performances du décodage conjoint. Le gain en PSNR par rapport a un schéma
de décodage non-robuste, passe de 4 dB a 6 dB, en considérant le schéma JSC-SI au
lieu du schéma JSC-NoSI, pour foreman.qcif et pour un SNR canal égal a 11 dB.
De méme, le gain en termes de SNR canal est plus élevé en considérant le schéma
JSC-SI. Par exemple, pour la séquence mobile.cif et pour un PSNR égal a 27 dB,
le gain en termes de SNR canal passe de 1.3 dB avec le schéma JSC-NoSI a plus de
1.5 dB. La Figure 4 illustre les performances qualitatives données par les schémas
de décodage conjoint JSC-NoSI et JSC-SI, par rapport au décodeur classique pour
mobile.cif.

(c¢) Trame 32, NR-D
PSNR= 14.63 dB

(a) Trame 1, NR-D
PSNR= 15.62 dB

g i 1-,,;“,m|z§
BimmH Jae -4 567890
145513910 B

1 1218456 16 17

(f) Trame 32, JSC-NoSI
PSNR=19.95 dB PSNR= 19.44 dB PSNR= 19.56 dB

. ]W;amnwz?
DY 567890 |68
I N 128466

18 12202 28

v

& g E l“' e - i S '1 =
(g) Trame 1, JSC-SI (h) Trame 16, JSC-SI (i) Trame 32, JSC-SI
PSNR=21.19 dB PSNR= 20.66 dB PSNR= 21.44 dB

Figure 4.: Trames reconstruites de la séquence mobile.cif, transmise a travers un
canal AWGN avec un SNR= 10 dB puis décodée avec un décodeur non-robuste

(NR-D), le schéma JSC-NoSI et le schéma JSC-SI avec M = 64.

Le schéma de décodage conjoint JSC-SI est ensuite appliqué a un train binaire formé
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par plusieurs couches. Dans ce cas, chaque séquence pg, k = 1,..., NV}, est formée
par plusieurs segments comme suit

pi = ((pg))T,..., (p,iNL))T)T, (28)

ou NV, est le nombre de couches et pém) est le segment de pj inclu dans la couche

m =1,..., Np. Une entéte hém) est alors associée a ce segment. Cette entéte contient
le nombre de passes de codage n,(gm) dont résulte p,im), ainsi que sa longueur E,(Cm)
en octects. Pour implémenter le test ¢, nous ajoutons 3 bits supplémentaires a
h,gm) pour connaitre E,gm) au bit pres. Le test t” est alors appliqué pour estimer

chaque segment p,(cm), en commencant par la premiere couche. Pour chaque couche

m = 1,..., Ny, nous vérifions si > ;" E,(ﬁl) bits ont été consommés par le décodeur
arithmétique. Si pour une couche donnée m = 2,..., Ny, le M—algorithme, ne

délivre aucune séquence candidate validant le test t", les séquences pg), T =m
courante et suivantes sont considérées comme perdues et la reconstruction du bloc
by s’effectue en décodant jusqu’a la couche m — 1.

La Figure 5 illustre le PSNR de la séquence foreman.qcif, codée en 3 couches, avec
les débits suivants : 32 kbps (1 couche), 64 kbps (2 couches) et 128 kbps (3 couches),
transmise sur un canal AWGN puis décodée en utilisant le décodeur non-robuste et
le schéma de décodage conjoint JSC-SI.
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Figure 5.: Y-PSNR (dB) de la séquence foreman.qcif en fonction du SNR ca-
nal (dB) lorsqu’une, deux et trois couches sont décodées.

Nous effectuons le décodage d'une, de deux puis de trois couches. Nous observons
que le gain en termes de PSNR devient moins élevé en décodant la troisieme couche
et ce a des SNRs faibles. Cela est dii au fait que certaines séquences des premiere
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et deuxiéme couches sont corrompues et ne sont pas détectées avec le test t?, ou ne
sont pas correctement estimées. Certaines séquences de la troisieme couche, recues
sans erreurs, peuvent alors étre détectées comme corrompues. Le schéma JSC-SI
est alors moins efficace pour les couches hautes, dont I'impact est néanmoins plus
faible sur le décodage que les chouches plus basses. Notons toutefois, qu’a un méme
débit de codage égal a 128 kbps, le schéma JSC-SI est plus efficace en considérant
un train binaire a 3 couches au lieu d'un train binaire a une couche. Par exemple,
pour M = 32 et pour un SNR canal égal a 10.5 dB, le gain en PSNR obtenu en
considérant un train binaire a 3 couches est d’envrion 10 dB et de 5 dB avec un
train binaire a une seule couche.

Application au codage par descriptions multiples

Nous appliquons a présent notre schéma de décodage conjoint, au codage par des-
criptions multiples. Nous considérons un schéma de transmission formé d’une partie
filaire a pertes de paquets, et d'un lien radio-mobile introduisant des erreurs sur les
paquets transmis. Ce schéma est illustré par la Figure 6.

Serveur Transmission filaire
71
X Codeur @) Coeur de
MD z réseau
A A
Station de
base
p(l) r
X , < <
-« Delcv?geur <p(z) r2) | Estimateur .
Client mobile Lien radio-mobile

Figure 6.: Transmission vidéo hétérogene des descriptions multiples.

Le schéma de codage par descriptions multiples que nous avons considéré est celui
proposé dans [118]. Ce schéma est basé sur une transformation temporelle redon-
dante. La redondance entre les deux descriptions est introduite au dernier niveau
temporel en utilisant un banc de filtres suréchantillonnés.

Les paquets perdus dans la sous-bande d’approximation spatio-temporelle de I'une
des descriptions sont compensés a 'aide de ceux recus dans la sous-bande d’approxi-
mation spatio-temporelle de I'autre description. Le décodage conjoint source-canal
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permet de corriger les erreurs de transmission et d’augmenter ainsi le nombre de
paquets corrects qui peuvent étre exploités par le décodeur a descriptions multiples.

Nous avons comparé ce schéma de décodage robuste, a un schéma robuste classique
dans lequel le train binaire généré est protégé a I’aide d’un code canal Reed-Solomon
[132], introduisant le méme niveau de redondance. Les résultats obtenus sont illustrés
par la Figure 7. Les pertes de paquets sont modélisées par une loi uniforme avec un
taux de pertes pp, variant entre 0 % et 20 %. En absence de pertes de paquets,
le schéma basé sur le code correcteur d’erreurs est plus robuste que le schéma par
descriptions multiples avec décodage conjoint. Cependant, pour p, > 5 % (pL >
3 %), le schéma par descriptions multiples devient plus efficace. Un gain en termes
de PSNR de 1 dB (2 dB) est observé pour un niveau de redondance égal a 1.06
(1.04).

Ces résultats sont en accord avec ceux obtenus par d’autres travaux [144, 13, 143, 4].
Le schéma de codage par descriptions multiples est généralement plus efficace qu'un
schéma de codage canal classique lorsque les niveaux de redondance sont assez faibles
et que le taux de pertes est élevé.

30f B
. Reference PSNR, no losses she ‘ ’ Reference PSNR, no losses
- --SD-FEC

- --SD-FEC
—o—JSC-SI, M=256
—+—M=1, Non—-Robust Decoder | |

—o—JSC-SI, M=256
——M=1, Non-robust Decoder

Y-PSNR (dB)

i ; i i ; ; ; | ; | ; i i i i i | i
2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Loss rate P (%) Loss rate P (%)

(a) niveau de redondance égal a 1.06 (b)niveau de redondance égal a 1.04

Figure 7.: Y-PSNR (dB) de la séquence foreman.qcif en fonction du taux de
pertes de paquets py, pour un SNR canal de 10 dB. Le schéma par descriptions
multiples avec décodage conjoint (JSC-SI) et le schéma robuste basé sur un code
correcteur d’erreurs (SD-FEC) sont comparés.

Codage source-canal conjoint par transformation
redondante

Dans cette partie, nous nous intéressons aux schémas de codage source-canal conjoint,
basés sur une transformation redondante, comme par exemple les bancs de filtres
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suréchantillonnés [151]. Le but est alors d’exploiter la redondance structurée intro-
duite, pour estimer de maniere robuste la source, a partir des sorties bruitées du
canal de transmission.

Schéma de transmission

X y z
——» H > @
Y
Canal
X y r
<« |Estimation | Q7' le

Figure 8.: Schéma de transmission considéré.

Le schéma de transmission considéré est illustré par la Figure 8. Le vecteur x € RV a
transmettre est supposé étre une réalisation du vecteur aléatoire X = (X1,..., Xy)".
Ce vecteur est transformé par une matrice H de taille M x N, M > N, supposée de
rang plein N. Le vecteur y = Hx obtenu a la sortie de H contient plus d’éléments que
x. De plus il est supposé étre la réalisation du vecteur aléatoire Y = (Y7, ..., YM)T.

Chaque composante y,,,, m = 1,..., M dey est quantifiée a I'aide d’un quantificateur
scalaire @) sur p bits. Les intervalles de quantification [s(0)], ..., [s (27 — 1)] forment
alors une partition de R. Apres quantification, le vecteur z formé par les indices
de quantification z,, est obtenu. Ce vecteur est une réalisation du vecteur aléatoire
Z = (Zy,....Zu)" avec

Zmn=Q Ynm) =2z <Y, €[s(2)] =[s(2),5(2)], z€{0,...,2° =1}, (29)

ou pour un indice z € {0,...,27 — 1} donné, s(z) et 5(z) dénotent respectivement
les bornes inférieure et supérieure de 'intervalle [s(z)]. Les indices z,, sont ensuite
transmis sur un canal bruité.

Le modele du canal est le méme que celui considéré dans la section précédente. Nous
supposons que des mécanismes trans-couches sont implémentés pour permettre la
remontée des informations souples du canal des couches basses vers les couches
hautes de la pile protocolaire. Le canal représente alors tout ce qui se trouve entre
la sortie de la quantification @ et 'entrée de la quantification inverse !, incluant
le codage entropique, la modulation, la paquétisation réseau, la transmission sur le
canal physique, ainsi que la dé-paquétisation robuste, la démodulation et le décodage
entropique [100, 42]. De plus, ce canal est supposé étre sans mémoire.
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T
A la sortie du canal, les informations souples r = ((rl)T ey (rM)T) sur les bits

transmis sont obtenues. Le vecteur r,, € R? (or C?) est la sortie du canal associée a
zm- L’effet du canal de transmission est alors décrit par la probabilité de transition

pryz (r[2).

Le probleme que nous considérons est celui d’estimer l'entrée x, a partir de r

XMAP = arg max pxr (X[riar) , (30)
xERN

T
oury.y = ((rl)T ) (rM)T) :
En utilisant la regle de Bayes, le fait que les intervalles de quantifications forment

une parition de R et le fait que le canal considéré est sans mémoire, nous pouvons
montrer que (30) peut étre écrite de la maniere suivante

M
Xpap = arg max px (x) W]L_:Il rriz (rnl@Q (h1x)) . (31)

Pour une observation ry.;; donnée, la fonction
M

f <X7 I'1:M) = Px (X) H Pr|z (Pm|Q (hﬁx)) (32)
m=1

est continue par morceaux, di a la quantification. La maximisation de f(x,ry.ps)
sur toutes les valeurs possibles de x € RY n’est pas facile, surtout pour des valeurs
élevées de V.

Nous proposons dans ce qui suit deux méthodes d’estimation sous-optimales de (31),
mais qui sont moins complexes.

Estimation cohérente

Le but de I'estimation cohérente présentée dans cette partie, est d’exploiter la re-
dondance introduite par H et le fait que le bruit de quantification est borné. Une
implémentation sous-optimale de 1'estimée MAP définie par (31) est obtenue en ef-
fectuant 'estimation dans le sous-espace des vecteurs de quantification cohérents,
c’est-a~dire ceux pouvant résulter de la quantification d’un vecteur y pouvant étre
généré a la sortie de la matrice H.

De maniere plus formelle, le principe est de considérer I'ensemble des vecteurs de
quantifications z pour lesquels il existe un vecteur x € RY, satisfaisant Q (Hx) = z.
Cet ensemble

Z2={zec{0,...,22 -1} | Ix R, z=Q(Hx)} (33)

est 'ensemble des vecteurs de quantification cohérents.

L’estimation cohérente que nous proposons est alors la suivante
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1. Evaluer
M
2.0 = argmax [ priz (tnlzm) - (34)
m=1
2. Résoudre
XMAP = arg max. px (x). (35)

Pour déterminer z' défini dans (34), toutes les valeurs possibles de
Z1.\ € {O,...,Qp'— 1}A4

peuvent étre ordonnées par ordre décroissant de prz (ri:a|2z1.a), dans une liste
L, = {zﬁu, N szAZ}, ott L = 2°M_ Un test de cohérence peut alors étre effectué
sur chaque vecteur candidat zglgw, en commencant par £ = 1 et en augmentant ¢

jusqu’a ce que zglg\/[ € Z.

Nous introduisons, dans ce qui suit, deux tests de cohérence différents. Le premier
est basé sur de la programmation linéaire alors que le second est basé sur du calcul
par intervalles.

Test de cohérence par programmation linéaire

Pour une valeur donnée de ¢ = 1, ..., L , considérons le probléme de maximisation
suivant

max alx,

XGX(Z%\/I)
ou
X (z1.m) = {x ERY |z =Q (HX)}

et a est un vecteur non nul de taille N. Ce programme est équivalent au programme
linéaire suivant

max a' x
x€RN
tq Hx <8 (zﬂw) (36)

22



Si une solution x est trouvée pour (36), alors X (z1.p;) # 0 et z(¥) est cohérent.

Ainsi, pour déterminer z', nous pouvons résoudre (36) pour différents z%}w, en com-

mencant par { = 1 et en augmentant ¢ jusqu’a ce qu'une solution existe pour un
certain /L. Le vecteur z' est alors égal a 7).

f

. , . ¢
Notons que nous aurions pu résoudre directement (35) avec zgzgw, en commencant par

¢ =1 et en augmentant ¢ jusqu’a ce qu'une solution existe. Il est cependant moins

complexe de résoudre (36) pour trouver z'. Le probleme (35) est ensuite résolu avec

z!.

Test de cohérence par calcul par intervalles

Une autre approche pour déterminer si un vecteur de quantification z appartient a
Z, utilise la matrice a détection de parité P, associée a H. En effet, comme H est
supposée de rang plein N, il existe un matrice P de taille (M — N) x M et de rang
plein (M — N) telle que

PHx =0, ¥x ¢ RY. (37)
Nous avons alors

Py =0<+= 3xecR" tqy = Hx. (38)

En utilisant la définition (33) de I'ensemble Z et I’équivalance (38)

Py#0<«=z=0Q(y) ¢ 2 (39)

Appliquons a présent 1'équivalence (29) a toutes les composantess z,,, m = 1,..., M
d’un vecteur z donné

z=CQ(y) <y € [s(z)], (40)

ou [s(z1.y)] = ([s (z@)} ey [s (zj(\?)DT est une boite, c’est-a-dire un vecteur d’in-

tervalles.

Le vecteur d’intervalles P [s (z1.)/)] pouvant étre évalué avec de simples opérations
d’additions et de multiplications sur des intervalles [73], est tel que

{Py, y € [s(z11m)]} C P s (211)] . (41)
En utilisant (39) et (41), nous pouvons alors écrire

0¢Pls(z)]=z¢ 2. (42)
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Le test (42) permet de prouver qu’'un vecteur de quantification z n’est pas cohérent,
mais il ne permet de prouver quun vecteur z est cohérent, puisque l'inclusion (41)
est stricte.

Ce test est donc moins efficace que le test basé sur la programmation linéaire intro-
duit par (36). Il a cependant une complexité entre O (M) et O (M (M — N)), ce qui
est généralement moins complexe que de résoudre directement (36). Ce test permet
d’éliminer rapidement les vecteurs de quantification z), ¢ = 1,..., L qui ne sont
pas cohérents. Les séquences jugées cohérentes par ce test peuvent alors étre testées
a l'aide du programme linéaire (36).

Nous introduisons dans ce qui suit un petit exemple pour mettre en oeuvre les tests
de cohérence introduits précédemment, et montrer I'intérét d’utiliser le test basé sur
la matrice de parité avant celui qui est basé sur la programmation linéaire.

Exemple

Dans cet exemple, N = 2 et M = 3. Considérons un vecteur x € R", tel que
px(x,) ~N(0,1),n =1,..., N et une matrice H de taille M x N définie ainsi

1 0
— VA
H=| -3 %
_1 3
2 2
Une matrice a détection de parité associée & H est la matrice P = (1,1,1). Le

vecteur placé en entrée de H est x = (—0.62, 1.42)T, et le vecteur obtenu a sa sortie
est y = (—0.62,1.54, —0.92)T. Une quantification () sur 2 bits est considérée ici et
les intervalles de quantification sont les suivants

[s(0)] =] — 00, —1.03]
[s(1)] = [~1.03,0.00]
[s(2)] = [0.00,1.03]
[s(3)] = [1.03,400].

Le vecteur de quantification obtenu est alors z = (1, 3, 1)T. Ce vecteur est modulé
avec une modulation BPSK par exemple, puis transmis sur un canal AWGN avec
un SNR égal a 2 dB. L’observation

—0.65 —0.97
r=| —101 —-1.44
0.07  —0.92

est obtenue a la sortie de ce canal. Les combinaisons possibles de z;.3 sont ordonnées
, , ¢
par ordre décroissant de p(ry.3|z1.3) et les séquences zg:%, ¢=1,...,L sont obtenues
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avec L. = 64. Dans ce qui suit, nous allons nous limiter aux quatres premieres
combinaisons de zgg, ¢=1,...,4. Le Tableau 1 montre les valeurs de pr|z (r1:3|z§g),

¢ =1,...,4. Comme nous pouvons le voir, le vecteur le plus vraisemblable zﬁ% =

(3,3,1)", qu'aurait donné un décodeur classique par décisions dures, n’est pas celui
qui a été transmis. Ce dernier correspond a la valeur ¢ = 3.

0 1 2 3 4
z\) 3,3, )7 1 (3,3,3)7 | (1,3, D)7 | (1,3,3)"
priz (rislzis) | 042 0.33 0.05 0.04

Table 1.: Valeur de pr)z (rlzg\zgg), (=1,....4.

Nous allons considérer dans un premier temps le test de cohérence basé sur la résolu-
tion du programme linéaire (36). Aucune solution n’est trouvée pour ce programme,
lorsque ¢ € {1,2,4}. Pour ¢ = 3, une solution est trouvée. Considérons maintenant
le test de cohérence (42), basé sur la matrice de parité P. Les résultats de ce test
sont reportés dans le Tableau 2. Avec ce test, seul le vecteur candidat z® est jugé
cohérent.

7z TP
z = (3,3,1)T | 0 ¢ P[s(zV)]
z?) = (3,3,3)T | 0 ¢ P[s(z?)]
z® = (1,3,1)T | 0 € P[s(z®)]
z® = (1,3,3)T | 0 ¢ P[s(z¥)]

Table 2.: Résultat du test de parité (TP) sur les 4 séquences z”) les plus
vraisemblables.

Le Tableau 3 montre les temps d’exécutions tqp et trp qui sont pris pour résoudre
le programme quadratique (35) et le programme linéaire (36) pour les différentes
combinaisons z&%, ¢ =1,...,4. Il montre également le temps d’exécution trp, pris
pour effectuer le test de parité (42). Comme nous pouvons le voir, le test de parité
prend moins de temps que le test basé sur la résolution de (36). Par exemple, pour
prouver que la séquence z(!) n’est pas cohérente, le test de parité prend 5 fois moins
de temps que le test basé sur le programme linéaire.
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l 1 2 3 4
z\) 3,3, D)7 (3,3,3)7 | (1,3, D)7 | (1,3,3)"
tqp(secondes) | 0.0058 0.0066 0.0072 0.0164
trp(secondes) | 0.0024 0.0030 0.0014 0.0022
trp(secondes) | 0.00048 | 0.00048 | 0.00047 | 0.00047

Table 3.: Temps d’exécution tgp, trp et trp pris respectivement par (35), (36) et
(42), pour z9, ¢ =1,... 4.

En sélectionnant z' = z® = (1,3, 1)" pour résoudre (35), lestimée Xyap = (—0.51,0.89)"
est obtenue.

Estimation par propagation de croyances

Dans cette partie, une approche différente est considérée pour estimer Xyap definie
par (30). Cette approche se base sur I'algorithme de propagation des croyances (belief
propagation) [30, 95, 38] pour calculer les distributions a posteriori px g (z,|r1:ar),
n=1,..., N de chaque composante z,, du signal d’entrée x = (21, ..., xn)T, connais-
sant 'observation ry.;.

Pmn ($n>
>
Y1
n Y2
o)
Y3
TN
Ym

-

Figure 9.: Graphe représentant les relations entre les différentes variables
considérées.

Nous utilisons le graphe Gy, associé a la matrice H et représenté dans la Figure 9.
Ce graphe visualise les dépendances linaires entre les variables d’entrée x, et les
variables de sortie ¥,,. Il est formé par deux types de noeuds : les noeuds dits
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variables n = 1,..., N et les noeuds dits facteurs m = 0,..., M. Ces différents
noeuds s’échangent des messages (ou beliefs) le long des arétes

Ea{(n,m)e{l,..., N} x{1,...,M} | H(m,n) # 0}
du graphe Gy.

Soit N'(n) l'ensemble des noeuds facteurs connectés & un noeud variable n. De
maniére similaire, soit N'(m) I'ensemble des noeuds variables connectés & un noeud
facteur m.

Nous allons présenter dans ce qui suit, une implémentation de I’algorithme de pro-
pagation de croyances, proposée par Rangan dans [128], qui est bien adaptée au pro-
bléeme d’estimation considéré dans (30). Les messages échangés sont des croyances
sur les distributions a posteriori de chaque entrée x,,. Ces messages sont mis a jour
de maniere itérative le long des arétes £g.

1. Initialisation :
a) itération i = 1
b) ¥(n,m) € &y, initialiser les messages envoyés par n a m
Prnen (il Tn) = D (i ) = px (2n). (43)
2. Mélange linéaire :

a) supposer que les variables aléatoires X,, sont indépendentes et que X,, ~
b) V(n,m) € &g, calculer la distribution p¥, ., (i, Ym—n) de la variable aléa-
toire

YVinsn = Y. H(m,n')X,. (44)
n’'eN(m)
n'#n
3. Mise a jour de la sortie :

a) Y(n,m) € Eq, calculer la vraisemblance

plrtnan (Za um) - / pR\Y<rm‘um + ymﬁn)p%nan@a ym%n>dymﬁn
Ym—n
(45)

4. Mise a jour de l’entrée :

a) Y(n,m) € g, mettre a jour le message envoyé par n a m

Pren(itL2n) = apx(za) [ phooa(@ H(' n)a,). (46)
m eN(n)

m/#m
ou « est une contante de normalisation, obtenue en imposant que les
messages pr. (1 +1,2,) sont de somme égale a 1.
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b) ¥n =1,...,.N, mettre a jour les distributions
poli+1,20) = Bpx(wa) T Pron (i H(m,n)a,). (47)
meN (n)

ol [ est une constante de normalisation, obtenue en imposant que les
messages pr (i + 1, x,) sont de somme égale a 1.

5. Incrémentation :
a) i=1i+1

b) retourner a l'étape 2, jusqu’a ce qu'un nombre suffisant d’itérations soit
effectué.

Le message pZ, . (i, x,) envoyé par le noeud variable n au noeud facteur m, a 'ité-
ration 7, exprime la distribution a posteriori de x,, comme percue par les noeuds
Ym: € N(n)\ {m} a litération i. Le message p¥, .. (i, Ym—n) envoyé par le noeud fac-
: e e o . .
teur m au noeud variable n a 'itération i, permet d’évaluer la fonction p¥ ., (i, uy,)
mesurant la vraisemblance que I'observation r,, soit obtenue lorsque X,, = x,,.

Apres NN, itérations de cet algorithme, I'estimée MAP de x peut étre évaluée de la
maniere suivante

Xpmap = (T1map, - - - @N,MAP)T ; (48)
oupourn=1,...,N

o X
ZTpmap = arg max pr (N, z,,).
Tn€R

Application aux bancs de filtres suréchantillonnés

Dans cette partie, nous appliquons les schémas d’estimation présentés précédemment
aux bancs de filtres suréchantillonnés (BFSs) [151].

Présentation succinte des BFSs

Un BFS est un banc de filtres dont le nombre M de sous-bandes, générées en sortie,
est supérieur au facteur d’échantillonnage N. La Figure 10 illustre la représentation
polyphase d'un BFS, a M sous-bandes, ayant un facteur d’échantillonnage N < M.
Soient h,,, m = 1,..., M les M filtres d’analyse de ce BFS. La matrice polyphase
H(z) de taille M x N qui lui associée est alors définie comme suit

H(z) = f H2 ", (49)

k=—o00
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ou Hy, £ =0,..., K — 1 est une suite de matrices de taille M x N pouvant étre

construites a partir des filtres h,,, m = 1,..., M [35, 80].
+(n) i B N "
z7 z(iN — 1) Y2 (7)
T Jo 0,
Pl / . H(z) .
1 — (N - N 41 Y (i)
A — ¢N ( )=  E——

Figure 10.: Représentation polyphase d’'un BFS d’analyse, N < M.

Il a été montré dans [87, 86], que lorsque H(z) est de rang plein N et que les filtres
h., sont de réponse impulsionnelle finie, la matrice d’expansion H associée au BFS,
dans le domaine temporel, est de la forme suivante

H, 0

Hi

ou K € N* et que la matrice de parité P associée a H est de la forme

ou K’ € N*,

Py
Py

Priy

0
Py 0

Py
0

P,
Prr_y

0
: (50)
0
H, 0
H, H,
0
: (51)
0
P, 0
P, P,

Nous pouvons alors appliquer les schémas d’estimation cohérente et d’estimation
par propagation de croyances au cas des BFSs.
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Résultats expérimentaux

Nous avons considéré un BFS basé sur les filtres de Haar avec N = 4 et M = 6. Soit
x € R'? le vecteur placé en entrée du BFS. Les composantes de x sont i.i.d selon la
loi normale avec une variance o2 = 1. La matrice H considérée est de taille 18 x 12
et elle est définie comme suit

H, 0 0
H-= Hl HO 0 ) (52)
0 H, H,
avec
1 100 0 0 00
0 00 0 000 11
1| -1100 1o o0 0o
Ho="721 1 000 | M=% 0 0 01 (53)
0 00 0 0 1 10
0 00 0 0 -1 10
La matrice de parité est
P, 0 0
P=|P P, 0 |,
0 P, P
avec
0000 —05 05 0 -1 11 05 05
P°:<oooo -1 1>etP1:<1 0 10 0 0)'
(54)

Chaque composante du vecteur y € R!®, obtenu en sortie de H, est quantifiée a
I'aide d’un quantificateur scalaire () sur p = 4 bits, puis modulée et transmise sur
un canal AWGN avec un SNR variant entre 0 dB et 14 dB.

Les différentes méthodes de reconstruction que nous comparons sont décrites dans
ce qui suit.

Estimation cohérente I’estimation cohérente est appliquée et le vecteur de quan-
tification z', qui est le plus vraisemblable parmi les vecteurs de quantification cohé-
rents, est obtenu. Deux méthodes de reconstruction du signal x sont alors considé-
rées. La premiere est obtenue en résolvant le programme quadratique (35) avec z'.
Cette estimée sera notée par Xqgp. La seconde estimée que nous considérons est celle

qui est obtenue en utilisant la méthode de reconstruction par les moindres carrés

%15 = (H'H) H'Q™ ().

30



Estimation par propagation de croyances [’estimation MAP basée sur ’algo-
rithme de propagation de croyances est appliquée et I'estimée définie par (48) est
obtenue. Cette estimée sera notée par Xgp.

Estimation a partir des décisions dures du canal Cette estimation utilise les déci-
sions dures prises par un décodeur canal classique sur ’'observation rq.;,. Un vecteur
yup de sous-bandes est alors obtenu. Le vecteur d’entrée peut étre reconstruit par
les moindres carrés

fup = (H'H)  H 5.

Reconstruction de référence 1l s’agit du schéma de reconstruction de x, en ab-
sence de bruit de transmission

XREF = (HTH) - H' yrer,

avec yrer = @' (z). Seul le bruit de quantification est présent dans Xrgg.

2 0 T T T T T T

10

Reconstruction SNR (dB)

Reference reconstruction

O % = +— MAP estimation by BP 4
- g - —0- Consistent MAP estimation by LS
[ —a&— Consistent MAP estimation by QP
LS reconstruction with hard decisions

_5 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Channel SNR (dB)

Figure 11.: SNR (dB) des signaux reconstruits en fonction du SNR du canal (dB),
pour le banc de filtres suréchantillonnés basé sur les filtres de Haar.

La Figure 11 montre le rapport signal a bruit (SNR) moyen des signaux recons-
truits avec les méthodes de reconstruction décrites ci-dessus, en fonction du SNR
du canal. Pour un SNR canal inférieur a 8.5 dB, les méthodes d’estimation pro-
posées (estimations cohérente et par propagation de croyances) sont plus efficaces
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que I'approche de reconstruction classique basée sur les décisions dures du canal.
Par exemple, pour un SNR canal de 4 dB, le gain obtenu en termes de SNR de
reconstruction est d’environ 2 dB pour Xqp ou Xrg. Pour le méme niveau de SNR,
le gain en SNR de reconstruction est plus important en considérant 1’estimation par
propagation de croyances et il est environ égal a 4 dB.

Pour un SNR canal inférieur a 4 dB, les reconstructions Xqp et Xpg, obtenues par
estimation cohérente donnent les mémes performances. Par contre, pour un niveau
de SNR canal plus élevé, Xr,g devient plus efficaces que Xqp et I'écart en SNR de
reconstruction entre ces deux estimées se creuse lorsque le SNR du canal devient plus
élevé, pour enfin se stabiliser a environ 6 dB. Ce comportenment est expliqué par le
fait que pour des bruits de transmission tres faibles, le vecteur de quantification le
plus vraisemblable z* est celui qui a été transmis. La reconstruction par les moindres
carrés minimise dans ce cas le bruit de quantification, ce qui est généralement plus
efficace que maximiser 1'a priori px(x) sur I'ensemble X (z*).

L’estimation par propagation de croyances est plus efficace que 'estimation cohé-
rente pour des niveaux faibles de SNR canal. Pour un SNR canal supérieur a 5.5 dB,
X1s devient plus efficace que Xgp et pour un SNR canal supérieur a 9.5 dB, Xup
est également plus efficace que Xgp. Cela pourrait étre expliqué par le fait que 1’ob-
tention de Xgp se base sur des distributions de probabilités marginales au lieu de
la distribution de probabilité jointe de x. De plus, 'algorithme de propagation de
croyances peut ne pas converger en présence de cycles dans le graphe Gy. Ces deux
effets n’appraissent pas lorsque 'effet du bruit est trés important.

Conclusions et perspectives

Dans cette theése, nous nous sommes intéressés aux schémas de codage et de déco-
dage conjoint source-canal des contenus multimédia. Nous avons montré comment
la redondance laissée par le codeur vidéo pouvait étre exploitée pour réaliser un
décodage robuste des séquences transmises sur un lien radio-mobile bruité. Grace
au schéma de décodage conjoint proposé, le nombre de paquets corrompus est si-
gnificativement réduit au prix d'une tres légere augmentation du débit. Nous avons
appliqué ce schéma de décodage robuste a la transmission par descriptions mul-
tiples sur une architecture mixte Internet et radio-mobile. Le décodage source-canal
conjoint des paquets recus permet de corriger les erreurs de transmission et d’aug-
menter ainsi le nombre de paquets utilisés par le décodeur a descriptions multiples
pour compenser les paquets perdus. L’efficacité de ce schéma a été démontrée par
rapport a un schéma classique basé sur les décisions dures du canal et sur un code
correcteur d’erreurs introduisant le méme niveau de redondance.

Une deuxieme partie de la these a été consacrée a I'étude de schémas de codage
source-canal conjoint basés sur une transformation redondante. Deux schémas d’es-
timation ont été proposés. Dans le premier schéma, nous avons exploité la redon-
dance structurée introduite et le caractére borné du bruit de quantification pour
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construire un estimateur cohérent corrigeant les erreurs de transmission. Dans le
deuxieme schéma d’estimation, nous avons appliqué ’algorithme de propagation de
croyances pour évaluer les distributions a posteriori des composantes du signal d’en-
trée, a partir des sorties bruitées du canal. Nous avons appliqué ces deux schémas
aux bancs de filtres suréchantillonnés et constaté leur supériorité par rapport a un
schéma de décodage classique basé sur les décisions dures du canal.

A Tissue de cette these, plusieurs pistes de recherche peuvent étre envisagées. Pour
conclure ce résumé, nous proposons d’en décrire quelques unes.

Le schéma de décodage robuste proposé pourrait étre amélioré. Comme nous l’avons
mentionné, certaines erreurs de transmission sont indétectables par les tests de syn-
taxe introduits. Afin d’augmenter les taux de détection et de correction d’erreurs,
il est possible d’insérer des informations supplémentaires sur les paquets transmis,
dans les enétes correspondantes, comme par exemple le nombre de coefficients non
nuls dans une sous-bande spatio-temporelle, le CRC d’un bloc ou d’un ensemble de
blocs, etc. Par ailleurs, ces informations supplémentaires pourraient étre choisies et
adaptées selon le degré d’importance des blocs a protéger. De maniere similaire, une
optimisation de la complexité du décodage en fonction de la sensitbilité des don-
nées décodées, pourrait étre envisagée. Le parametre M de ’algorithme séquentiel
peut étre adapté a la couche décodée et a la sous-bande spatio-temporelle du bloc
courant.

Le schéma de décodage robuste appliqué aux descriptions multiples a montré son
efficacité pour de faibles niveaux de redondance. En effet, les schémas classiques
de décodage basés sur des codes canal sont généralement plus robustes pour des
niveaux de redondance élevés, et lorsque les conditions de transmission sont bien
connues. En se placant a des niveaux de redondance plus importants, les schémas
classiques combinent généralement des codes correcteurs d’erreurs et des codes canal
a pertes de paquets, ce qui augmente nettement leurs performances. Il serait alors
intéressant de comparer de tels schémas a un schéma de codage par descriptions
multiples plus redondant que celui que nous avons considéré, et dans lequel la re-
dondance est introduite par exemple en duplicant la sous-bande d’approximation
spatio-temporelle.

Pour faire le lien entre les schémas étudiés pendant cette these, une perspective
a envisager est d’appliquer notre technique d’estimation cohérente au schéma de
décodage robuste par descriptions multiples. En effet, les deux descriptions sont
générées a l'aide d’un banc de filtres suréchantillonné. Il est alors possible d’exploiter
la redondance structurée introduite par ce banc de filtres et la redondance résiduelle
pour améliorer le décodage conjoint des deux descriptions. Certaines erreurs non
détectées par les tests de syntaxe utilisés, peuvent alors étre détectées et corrigées
grace aux tests de cohérence introduits.

De maniere plus générale, il reste un gros travail a faire pour optimiser les algo-
rithmes d’estimation proposés afin de les appliquer a des bancs de filtres a matrice
d’analyse plus dense et a un facteur de suréchantillonnage plus faible. En particu-
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lier, 'algorithme d’estimation par propagation de croyances pourrait étre amélioré
en incluant les contraintes de parité dans le graphe représentant les dépendances
linéaires entre les variables. De plus, afin de pouvoir appliquer ces deux schémas
d’estimation au codage d’images et de vidéo, il semble nécessaire d’étudier leurs
comportement et performances sur des bancs de filtres suréchantillonnés ayant un
fort gain de codage.
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1. Introduction

1.1. Motivation

The development of multimedia broadcasting and on-demand services for mobile
devices, such as tablets or smartphones, involves the transmission of contents over
heterogeneous networks, consisting of mixed wired and wireless channels. To trans-
mit multimedia contents over such best-effort networks, two main problems have to
be solved. First, due to bandwidth scarcity, data generated by multimedia sources
have to be efficiently compressed. Second, the compressed bit streams have to be
made robust to the unavoidable transmission impairments. Current image and video
coders achieve high compression ratio. They are however very sensitive to transmis-
sion errors and to packet lossses. Indeed, a single bit error or packet loss, affecting
the compressed bit stream, may have a detrimental effect on the reconstructed con-
tent.

Conventional communication systems based on Shannon’s separation principle han-
dle these issues by optimizing separately the source and the channel coders. Such
an optimization assumes that the source and the channel characteristics are per-
fectly known and that the processed blocks are of infinite lengths. However, these
hypotheses cannot be met in practical situations, due to delivery delay, complexity
constraints and to unknown and time-varying transmission conditions. As a con-
sequence, alternative coding schemes, namely the joint source-channel coding and
decoding techniques have been developed to address these issues. In these schemes,
the source and the channel coders are jointly designed to enable the optimization of
the communication system resources when there are stringent delay and complexity
constraints, and to increase the robustness of multimedia contents transmitted over
unreliable networks.

The work conducted during this thesis fits into this category and aims at providing
efficient joint-source channel coding and decoding techniques to ensure a robust
multimedia transmission. The targeted applications are the real-time and mobile
applications, in which the retransmission of damaged or lost data is not allowed.

We start by showing how the residual redundancy left by video coders, and wasted
by classical separate source-channel decoders, can be exploited to design a joint
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source-channel decoder able to detect and correct the transmission errors. Corrupted
packets, which would be dropped in conventional communication schemes, are then
corrected. This decoding approach is further applied to multiple description video
streams transmitted over a mixed architecture consisting of a wired lossy part and a
wireless noisy part. The errors introduced by the wireless transmission are corrected
by the joint-source channel decoder whereas the losses occurring during the wired
communication are compensated thanks to multiple description coding.

Another direction investigated in this thesis concerns the joint source-channel cod-
ing schemes based on a redundant transform, such as oversampled filter banks. Such
schemes introduce some structured redundancy in the transmitted bit stream. In
the presence of transmission errors, we show how this redundancy may be used to
improve the decoding performance by proposing two efficient estimation approaches.
The first one exploits the linear dependencies between the output variables, jointly
to the bounded quantization noise, to perform a consistent estimation of the source
outcome. The second approach uses the belief propagation algorithm to estimate
the input signal via a message passing procedure along the graph representing the
linear dependencies between the variables. These two schemes are further applied
to estimate the input of an oversampled filter bank and their performance are com-
pared.

1.2. Outline of the Thesis

This manuscript is organized as follows. In Chapter 2, we start by motivating the
resort to joint source-channel coding and decoding approaches. We overview some
relevant existing methods and particularly focus on the approaches close to the ones
we propose, such as joint source-channel decoding, multiple description coding and
source coding schemes based on redundant transforms.

Our joint-source channel decoding scheme is described in Chapter 3. We start by
formulating the estimation problem of a video bit stream transmitted over some
noisy channel. Then, we consider a particular wavelet video coder and identify a
part of the residual redundancy it leaves. This allows us to build an efficient test
detecting the damaged parts of the bit stream as the ones which are not compliant
with the redundancy. Combined with a sequential decoding algorithm, we show
how this test is able to correct most of the transmission errors, with a manageable
complexity.

An application of our joint source-channel decoder to multiple description coding
schemes is described in Chapter 4, where we consider a general transmission chain
consisting of a packet-loss network followed by a noisy wireless channel. The idea
behind the use of multiple description coding is to mitigate the effects of packet
losses, while avoiding retransmission and reducing delays. We show how joint source-
channel decoding significantly improves the performance of the multiple description
decoder, by increasing the number of received error-free packets.
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In Chapter 5, we focus on joint source-channel coding schemes based on a redun-
dant linear transform. We address the problem of estimating a signal placed at
the input of such a transform, when its output is corrupted by some transmission
noise. Then, we describe the consistent estimation scheme we propose and the es-
timation approach based on belief propagation. We show how these two schemes
find an application in oversampled filter banks and in particular, how the consistent
estimation technique may be iteratively implemented in this case.

Finally, conclusions and perspectives are drawn in Chapter 6.

The remainder of the manuscript provides a succinct presentation of the sum-
product algorithm, from which the belief propagation algorithm we used is derived,
in Appendix A. The oversampled filter banks are then briefly introduced in Ap-
pendix B. An image denoising technique, based on adaptive lifting schemes and
proposed during this thesis, is presented in Appendix C, as it is not directly related
to the main topic of this work.

1.3. Summary of the Contributions

This thesis contains several original contributions, which are summarized in the
sequel

o An efficient joint source-channel decoding scheme increasing the robustness of
video contents transmitted over noisy channels and presenting a manageable
complexity.

e An improvement of an existent multiple description coding scheme, thanks to
joint source-channel decoding.

o A consistent estimation technique for joint source-channel coding schemes,
based on a redundant linear transform and its iterative implementation adapted
to oversampled filter banks.

o An application of the belief propagation algorithm for estimating the input of
an oversampled filter bank from its noisy subbands.

37






2. Joint Source-Channel Coding and
Decoding

2.1. Introduction

In video communication systems, the usage of heterogeneous and best effort networks
has become widespread. In such networks, the quality of service (bandwidth, losses
and errors rates, delay, efc.) required by video communication applications such as
on-demand video streaming, is not always guaranteed. Data packets may be lost
due to traffic congestion or corrupted by impairments in physical channels.

The issues associated to video transmission are then twofold:

o Data delivered by the video encoders has to be efficiently compressed due to
bandwidth scarcity.

o Compressed video bit streams have to be made robust to the unavoidable
transmission impairments.

Increasing the robustness of video content is a challenging problem and it raises
several issues.

The high compression efficiency reached by many encoders such as H.264/AVC [70]
and Vidwav [1206], makes the compressed video streams extremely sensitive to errors
occurring during transmission. For example, due to spatial and temporal predic-
tions, errors can rapidly propagate in time and space leading to the so called drift
effect. In a similar way, when using an entropy coder such as CAVLC [70] and
CABAC [103], a single bit error is likely to cause a desynchronization between the
encoder and the decoder making the following bits useless, even if they were correctly
received. This leads to an uncontrolled degradation of the whole video quality.

On the other hand, the characteristics of the transmission channel are generally
unknown and time-varying. This makes it difficult to tune efficiently a robust trans-
mission scheme for a given video signal. Furthermore, a reliable transmission scheme
over heterogeneous channels has to take into account the hierarchical nature of the
delivered video bit streams: scalability and robustness should be jointly considered
in order to design an efficient source and channel coding system that allows the
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video content to be transmitted and used at different resolutions and/or quality
levels with respect to specific terminals and users preferences.

Finally, stringent delay and complexity constraints are often imposed by real-time
video applications and have to be taken into account in the design of a communica-
tion system.

A number of approaches have been proposed to ensure a robust video transmission:

1. A first group includes the approaches wherein the source and the channel
coders work separately, or in tandem, in order to make the delivered bit streams
more robust to transmission losses and errors. These methods are referred to
as the tandem-coding techniques.

2. A second group gathers the methods in which the source and the channel
coders are jointly designed to overcome transmission impairments. These are
known as the joint source channel coding and decoding techniques.

3. A last group contains the methods which act at the decoder side to conceal
the impacts of unrecoverable and/or corrupted data, on the reconstructed
signals. These methods are known as error concealment techniques and they
can be jointly employed with the approaches in the first two groups in order
to increase the decoding quality.

Section 2.2 presents the first group of approaches, namely the tandem coding schemes
and points out to its limitations. Then, Section 2.3 describes the principle of joint
source channel coding techniques. Two main approaches of this group are reviewed
in Sections 2.4 and 2.5 since the contributions of this thesis fit into this category.
Finally, some error concealment schemes are presented in Section 2.6.

2.2. Tandem Coding Techniques

The tandem coding techniques rely on Shannon’s separation theorem [141] stating
that source coder and channel coder can be optimized separately without introduc-
ing any performance sacrifice for the overall communication system. In Shannon’s
theory, the source and channel are assumed to be stationary with known character-
istics. Moreover, the blocks are assumed to be of infinite lengths, which makes the
delay and the complexity grow to infinity. Under these hypothesis, the source coder
can approach the optimal rate-distortion behavior and the channel can transmit the
bit stream with a probability of error arbitrary small provided that its coding rate
is below its capacity.

Usually in tandem coding techniques, the channel coder is first optimized with re-
spect to the channel capacity to ensure a reliable transmission, then the source coder
is optimally designed with the available source coding rate.

In the next section, a brief overview of the channel coding techniques is presented.

40



2.2 Tandem Coding Techniques

2.2.1. Channel Coding

Classical approaches for combating channel /network impairments consist in adding
structured redundancy to the compressed bit stream at the transmitter side. This
redundancy may be introduced at the physical layer of the protocol stack used
to transmit the packetized content, by using bit-level Forward Error Correction
codes (FEC) [93, 133], to combat transmission errors. Packet erasure codes, such
as Reed-Solomon codes [132], Fountain codes [19], or Raptor codes [142] may be
introduced at intermediate layers of the protocol stack to recover lost packets, as
is the case, e.g., in Multimedia Broadcast/Multicast Services [74, 107]. In both
cases, the redundancy introduced results into an increased final bit rate. At the
receiver side, error detection mechanisms, such as Cyclic Redundancy Check (CRC)
or checksums are employed to verify the efficiency of the channel decoding at physical
layer. If enough error-free packets are received, packet erasure codes may recover
the missing packets, otherwise retransmission is requested using Automatic Repeat
Request (ARQ) [94] mechanisms, when the application is delay-tolerant.

2.2.2. Limitations of Tandem Systems

As previously mentioned, the separation principle inspired the development of tan-
dem systems. It is assumed that an optimal source encoder removing all the source
redundancy is followed by an optimal channel coder that corrects all the errors pro-
vided that the coding rate is below the channel capacity. These assumptions can
only be met for idealized conditions, e.g., codes of infinite length, infinite delay and
complexity, and do not hold in practical situations. For example, channel codes
process blocks of finite lengths, for which the probability of error is not equal to
zero. The separation principle does not provide any optimal algorithm to design
such channel codes, and it does not address either the problem of designing optimal
source coders and decoders when the error probability is non-zero.

In practical communication situations, the characteristics of the transmission chan-
nels are time-varying and the transmitted packets have different protection needs.
Therefore, classical error correcting codes and packet erasure codes may be either
oversized, leading to a waste of the available bandwidth, or not strong enough,
resulting in residual transmission errors. Adaptation of these codes to the source
and the channel conditions may be considered [67], which implies a communication
system in which the source and the channel coders are jointly designed. Moreover,
the bit streams delivered by the source coder may still contain a certain amount of
redundancy and it appears as common sense to use this redundancy as a form of
channel coding, at the receiver side. One may even consider to intentionally intro-
duce some redundancy during source coding, to enhance the bit stream robustness
to transmission impairments, which may lead to removing or reducing the protection
introduced by channel coder.
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Based on these observations, several schemes in which source and channel coders are
optimized jointly have been proposed. In the next section, a review of such schemes
is presented.

2.3. Joint Source-Channel Coding and Decoding

Techniques
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Figure 2.1.: Generic joint source-channel coding/decoding system.

A joint source-channel (JSC) communication system is a system in which the differ-
ent blocks of the communication chain are jointly designed. For example, in some
JSC schemes, the source and channel coders are designed and optimized together
to yield a minimal distortion for given channel conditions [20, 24, 21, 169, 96]. In
other schemes, the channel coder is designed for a given source coding scheme, or
inversely [52].

A generic JSC coding scheme is presented in Figure 2.1. The blocks of this scheme
communicate together by sending different types of information [117, 84]. At the
encoder side, the source significance information (SSI), sent by the source coder pro-
vides the channel coder with the protection degrees required by the different parts
of the compressed bit stream. The SSI ensures then a source-controlled channel
coding by adapting the channel protection to the sensitivity level of the considered
packet of data. The channel state information (CSI), containing information about
the channel transmission conditions, is fed back from the channel encoder to the
source encoder. A coordinating module, namely the JSC coding controller uses the
SSI and CSI to drive an efficient and robust transmission scheme. For example, a
scalable source coding may be coupled with an adaptive channel coder invloving
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selective protection and a modulation suitable to the channel conditions [117, 84].
At the receiver side, the decoder reliability information (DRI) sent by the channel
decoder to the source decoder allows to evaluate the channel decoder soft decisions.
The source a priori information (SAI) transmitted from the source decoder to the
channel decoder may be taken into account in combination with the DRI to ensure
a JSC-controlled decoding. It should be noted that the previously-mentioned infor-
mation are not necessarily (or always) available in all the JSC schemes. In certain
JSC schemes, part of this information is optional or absent.

Although the design of JSC communication systems has gained increased popularity
during the last years, leading to a large variety of contributions, a commonly rec-
ognized classification of these techniques is still lacking. Overviews on JSC systems
are found in [44]. A more recent work, [19], presents a comprehensive survey of the
existing JSC schemes.

Based on the above description, we categorize the existing JSC schemes into two
main classes, according to whether the JSC design takes place at the encoder or at
the decoder side:

1. Joint source-channel coding (JSCC) schemes: In these schemes, the source
encoder and the channel encoder are jointly considered, which is opposite to
the separate source and channel coding. The channel coder can be controlled
by the source information provided by the source coder, which helps to improve
the overall coding efficiency. Similarly, the channel state information may be
fed back to the source coder in order to perform a source coding adapted to
the channel conditions. The most important JSCC techniques are: JSCC for
optimal rate allocation, unequal error protection, multiple description coding,
JSCC using optimized quantization, etc.

2. Joint source-channel decoding (JSCD) schemes: In these schemes, the JSC
design takes effect at the decoder side. The decoder reliability information
provided by the channel decoder can be used jointly to the source a priori
information to improve the decoding of the received packets. Most of the
JSCD techniques exploit the redundancy introduced in the packets during the
transmission over the layers of the protocol stack. These techniques also use
the redundancy left by the source coder in the compressed stream to perform
robust decoding.

In this thesis, two different JSC approaches have been considered for increasing
the video transmission reliability. In a first time, we considered a JSC decoding
technique, based on the use of the redundancy left by the video source coder. This
technique allows to detect and correct some of the transmission errors. In a second
time, a multiple description coding scheme has been considered to mitigate the effect
of packet losses occurring during a lossy transmission.

In Sections 2.3.1 and 2.3.2, we briefly present two JSCC approaches, namely the
JSCC for rate allocation and JSCC by unequal error protection, which are different
from the methods we considered in this thesis, but which allow us to illustrate how
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the source and the channel coders may cooperate to yield a robust transmission
scheme. The two next sections, Sections 2.4 and 2.5 will be devoted to review the
multiple description coding and JSCD techniques.

2.3.1. JSCC for Rate Allocation

The principal motivation of JSCC is to derive practical communication schemes
suitable for realistic transmission situations which are usually subject to some con-
straints, such as complexity and/or coding rate. The aim of this section is to present
the JSCC schemes responding to the second type of constraints, namely the coding
rate constraint, which we will refer to as the JSCC for rate allocation between the
source and the channel coders.

Unlike the tandem communication systems, in which the redundancy is removed by
the source coder and then re-introduced at the channel coder side, the JSCC-RA
considers the source and the channel coders as a single coding block consuming a
certain bit rate Ry + R., where Ry and R. are the rates consumed by the source
and the channel coders respectively. A high source coding rate R results in a low
source distortion Dy, whereas a high channel coding rate R. implies a strong error
protection and correction capabilities and thus a weak channel distortion D..

The aim of JSCC for rate allocation is to determine, for a fixed transmission rate bud-
get Ry, the optimal rate distribution (R, R}) between the source and the channel,
which minimizes the overall average end-to-end transmission distortion D = D+ D,.
The basic idea behind this optimization problem is illustrated in Figure 2.2.
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Figure 2.2.: Illustration of a joint source-channel rate allocation problem.

Three different channel states Sy, S; and Sy are considered. Each channel state
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Sj, j = 0,1,2 is described by a channel state information, e.g. bit error rate and
characterized by a global distortion D;(Rs, R.), depending on the rate allocation
between the source and the channel coders. Imposing R. = Ry, — Rs makes D;
depends only on Ry, as shown in Figure 2.2. The channel state Sy represents the
case where the channel is error-free (D. = 0) and is illustrated by the lowest curve in
Figure 2.2. In this case, increasing the source rate Ry leads to a decreased distortion
Dy, as in standard rate-distortion theory, and the lowest distortion is thus obtained
by utilizing the largest available bit rate R}, represented here by the point (R§ =
Ry,,D§ = 0). When the channel is in states S; or Sy, this trend does not hold
anymore, as the global distortion is given by both source and channel distortions.
The more bits are allocated to source coding, the less bits will be left for channel
coding, and the higher will be the resulting channel distortion. As illustrated in
Figure 2.2, the different channel states S; and S5 result in two different optimal
rate allocation strategies indicated by the points (R},D7) and (R3,D3) respectively.
The determination of the optimal rate allocation strategy depends strongly on both
source and channel models and parameters.

Rate-distortion (R-D) models for video transmission over noisy channels and lossy
networks is a topic of numerous studies [20, 24, 170, 21, 169, 96]. Most of the
investigation conducted in this context include the reduction of the effects caused
by packet losses and by channel errors. Some of the rate allocation approaches
have been proposed for coding mode selection in unreliable environments [127, 34,
170]. Other works investigate the tradeoff between source and channel coding for
vector quantization [69, 16, 45]. Recently, in [96], Sabir et al. proposed a model
that estimates the distortion introduced by quantization and by channel errors in
MPEG-4 video streams. This model takes into account the motion estimation and
compensation, as well as the transform and entropy coding to evaluate the distortion
in the intra- and inter- predicted frames.

A way to perform JSC for rate allocation is by unequal error protection (UEP) of
the encoded stream. Several UEP techniques have been proposed for multimedia
transmission using R-D optimization frameworks [65, 24, 20].

2.3.2. Unequal Error Protection

The main image and video compression standards, e.g., JPEG-2000 [28], MPEG-2,
MPEG-4, H.264/AVC [70] and Vidwav [126] deliver compressed bit streams with
unequal bit sensitivities. Some output bits of these source coders have a more
important impact on the quality of the reconstructed source, and are thus more
sensitive to transmission errors than the other output bits. The principle of UEP
is to apply a stronger channel protection to the bits that have a greater impact
on the reconstructed signal quality, and weaker channel codes to the less sensitive
parts of the compressed bit stream. In theory, a channel encoder mapped to the
source encoder may be designed provided that the different bit error sensitivities are
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known for each bit position. However the channel coding adaptation to such a fine
granularity is complex in practice.

Usually the implementation of practical UEP schemes involves the hierarchical bit
stream representation which is achieved through scalability and data partitioning:

» Scalability is the capacity of a compressed bit stream to adapt itself to the
transmission conditions as well as to the terminals characteristics. An appro-
priate partial decoding of the scalable bit stream allows to generate a ver-
sion of the original signal, with a lower quality and/or a reduced resolution
(spatial/temporal) level. For example, recent hybrid video codecs such as
H.264/SVC [139] support scalability and generate hierarchical bit streams or-
ganized into one base layer, which has the highest protection demand, and sev-
eral refinement layers with different temporal /spatial resolutions and quality
levels, which results in various error sensitivities. Wavelet-based video coders,
such as Vidwav [120], offer an inherent spatio-temporal scalability thanks to
the multiresolution paradigm.

« Data partitioning consists in a hierarchical representation which separates the
more critical parts of the bit stream (such as headers, motion vectors, low
frequency DCT and wavelet coefficients, etc.) from the less important parts
(such as higher frequency DCT and wavelet coefficients, etc.).

The channel encoder uses the knowledge of the source bit error sensitivities to per-
form UEP. Particular error correction codes supporting rate compatibility have been
proposed to provide different protections according to the sensitivity level of the
content to be transmitted. For example, rate compatible convolutional codes [(7]
and rate compatible Turbo codes [33] can easily obtain different channel code rates
through puncturing the same low-rate mother code. In [I71], authors proposed an
UEP technique for the 3D-SPIHT video coder. The 3D-SPIHT bit stream is first
divided into blocks of the same length. Each block is supplemented with a CRC
and then encoded using the a rate compatible convolutional code prior to its trans-
mission through the channel. At the decoder side, a treillis decoder chooses the
path with the best metric satisfying the checksum equations. An automatic repeat
request (ARQ) strategy is used when the decoder fails to find a satisfying solution
in a reasonable time. Another UEP approach has been proposed in [26] for the
MPEG-4 video bit streams transmitted over error-prone wireless networks, where
rate compatible convolutional coding is performed with rates chosen according to
the perceived importance of bits. In [12], authors introduced a semi-analytical model
that estimates the distortion introduced in H.264/AVC bit streams. They studied
the effects of error propagation in the next frames of the video sequence, caused by
inter prediction as well as the distortion in intra-predicted frames. The proposed
model is then used to evaluate the different protection levels in order to implement
UEP to the coded video bit stream.

As mentioned in Section 2.3.1, JSCC for rate allocation and unequal error protec-
tion may be considered together to jointly derive optimal source and channel coding
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rates. In [20], Bystrom and Modestino considered a video transmission scheme in
which the bit stream data is first classified according to its priority, then protected
by rate compatible convolutional codes before being transmitted over an additive
white Gaussian noise (AWGN) channel. They proposed a method which optimally
allocates source and channel coding bits under a fixed constraint on the transmis-
sion bandwidth. For a given video sequence, rate-distortion curves are constructed
and used to determine the optimal rate and distortion values. Despite of its high
accuracy, this approach requires a significant amount of computations to construct
the rate-distortion curves for each video sequence which makes it infeasible for real-
time video applications. Few years later, Bystrom and Stockhammer introduced
in [21] a generic method for optimal source and channel rate allocation. To limit
the complexity of this problem, they used polynomial models to approximate the
rate-distortion surfaces for different video frames. These surfaces are then used with
models of the channel bit error rates in order to allocate the source and the chan-
nel coding rates between the different frames of a video sequence, with the goal of
minimizing the overall distortion under a constraint of the total rate. This scheme
was successfully applied to a video sequence compressed with H.263 and channel
coded using rate-compatible systematic recursive convolutional codes. In [24], the
authors proposed an efficient method for allocating source and channel bits between
the subbands of the scalable video coder proposed in [140], such that the overall
distortion is minimized given the channel conditions and a total bit rate budget.
The spatio-temporal subbands obtained by 3D subband coding are successively re-
fined via layered quantization techniques and coded using a context-based arithmetic
coder. An UEP is then applied on the source bits using the rate compatible codes.

As discussed in this section, UEP techniques exploit the hierarchical manner in
which the bit streams are usually organized in order to perform channel coding. In
particular, when scalable or layered bit streams are considered, the highest level of
protection is accorded to the more important base layer. Although this technique is
relatively simple and has proven to be efficient, it has the main drawback of being
advantageous only if the base layer is received, otherwise the enhancement layers
are undecodable even if correctly received. Usually, in such situations, the base
layer is retransmitted. However in applications which do not tolerate delay, such a
retransmission is not possible.

An important family of JSCC techniques, namely the multiple description coding
techniques, has been proposed to overcome such situations, by creating several ver-
sions of the signal, each of which being independently decodable. This is the topic
of the next section.

2.4. Multiple Description Coding

Multiple description (MD) coding is a JSCC technique which enhances the robust-
ness of a video delivery system. The principle of MD coding consists in represent-
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ing the original input signal by M correlated, but independently decodable signals
called descriptions. These descriptions are assumed to be independently transmit-
ted through different channels. Each transmission channel has a probability of not
delivering its description. The receiver is then formed by 2 — 1 decoders corre-
sponding to all the decoding situations resulting from the reception of a subset of
the transmitted descriptions. When the transmission of some of the descriptions
fails, the corresponding side decoder should be able to reconstruct the original sig-
nal from the available descriptions with an acceptable quality. The reception of all
descriptions should allow signal reconstruction with the highest quality by using the
central decoder. When descriptions are packetized, the robustness of MD coding
schemes comes then from the fact that it is unlikely that the same packet of the
encoded signal is affected in all descriptions.

The amount of redundancy introduced between the descriptions with respect to a
single description (SD) coding scheme is an important issue in MD coding, since
there is a trade-off between this redundancy and the resulting distortion; the more
the descriptions are correlated the better will be the side decoding of a subset of
received descriptions but the worse will be the R-D performance of the central
decoding when all the descriptions are available. Therefore, a great effort has been
spent on analyzing the performance achievable with MD coding schemes the early
1980’s [165, 115, 43] and till more recently [157].

2.4.1. Theoretical Performance of MD Coding Schemes

The idea of MD coding was first investigated by the information theory commu-
nity [165, 115, 43] as a source coding technique. Later, in the second half of the
1990’s, with the emergence of best-effort packet-switched networks, e.g., Internet,
MD coding has gained more popularity as an effective (source) coding strategy which
overcomes channel impairments and has been classified as a JSCC technique. Since
then, a large variety of MD coders have been designed for speech, image and video
contents. A comprehensive review on MD coding theory is provided by Goyal et al.
in [52].

Figure 2.3 illustrates an MD coding system with M = 2 descriptions and 3 decoders.
The source, represented by a random vector X = (Xi,..., X N)T is first encoded
using an MD encoder which generates two descriptions X = F()(X) and X®? =
F®(X). These descriptions are further transmitted through two distinct channels.
Let R;, i = 1,2 be the channel rate used to transmit X®. The MD decoder handles
2 different situations:

1. One of the channels fails to deliver its description. The side decoder associated
to the other channel is then used to decode the received description. Let

X0 = (Xl(l), e ,X](\fv) , © = 1,2 denote the reconstruction at the i-th side
decoder and D; the obtained distortion.
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Figure 2.3.: Multiple description scheme with M = 2 descriptions.

2. Each channel delivers its own description. The central decoder is then used to
decode the two received descriptions and the reconstructed sequence X =

3 (0) SONT . . . . : .
(X1 . ¢ ) is obtained, with an associated distortion Dj.

3. Both channels fail to deliver the descriptions. In this case the video signal is
usually reconstructed by its mean or by using error concealment techniques.

For a given distortion measure ¢, the distortion at the MD decoder output is given
by

1 Y S0
Di= > B@X. X)), i =0,1,2 (2.1)
n=1

The set of achievable values (Ry, Ry, Do, D1, Ds) for a Gaussian random vector X
and a mean squared error (MSE) distortion 0 has been obtained by Ozarow in [115].

Theorem 1. [53] Let Xi,..., Xy be a sequence of i.i.d. unit variance Gaussian
random variables. The achievable set of rates and MSE distortions is the union of
the points satisfying
Dy >27% i =1,2 (2.2)
Do =272+ EB2)0(D) Dy Ry, Ry), (2.3)
where
1

1- (\/(1 — D1)(1— D) — /DiDs — 2—2<Rl+RQ>)2

7(D1>D27R1>R2) =

if Dy + Dy < 1+ 272(B1+52) and 4(Dy, Dy, Ry, Ry) = 1 otherwise.

The inequalities in (2.2) represent simply the classical distortion bound for a Gaus-
sian source encoded at a rate R;, whereas the inequality (2.3) indicates that the
central distortion Dy must exceed the classical distortion bound 272(Fit+E2) by g
factor of ~.
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When the two descriptions are individually good, i.e., D; = 272f% i = 1,2 then
Dy + Dy < 14272014 72) and (2.3) becomes

1

Dy > DD .
07T (1= Dy)(1 - Dy)

(2.4)

Since

D\ D, 1 _ 11 >m1n(D1,D2)’
1-(1-D)(I-Ds) g+ -1 2

the central distortion is only slightly lower than the lowest of the two side distortions,
which means that relatively to the side decoding, the performance of the central
decoding is poor. Inversely, assume that the central distortion is as low as possible,
i.e., Dp = 2721482 Then v = 1 and Dy + Dy < 14 27200+82) which implies that
unless the rates R;, 1 = 1,2 are very low, the reconstruction of at least one of the
side decoders is very poor. Therefore, one can not have at the same time optimal
central and side distortions.

Usually the transmission channels are assumed to have the same rates and losses
probabilities. Therefore, practical MD schemes generally consider the balanced case,
where Dy ~ Dy and R; &~ Ry, to design the two descriptions.

2.4.2. Practical MD Coding Schemes

In practical MD coding systems, the main issue is how to create descriptions such
that the resulting rates, distortions and complexity satisfy some conditions pre-
scribed by the transmission constraints.

Two main directions have been investigated by the researchers to design MD systems.
In the first direction pioneered by Vaishampayan [152], the redundancy is introduced
after the signal has been decorrelated, by diversifying the quantization to generate
the descriptions, e.g., MD by scalar quantization. The second direction that has
been studied is to introduce the redundancy during the signal transformation. A
redundant transform is used to generate two correlated descriptions. In this category,
two main strategies are found in the literature depending on whether the introduced
redundancy is statistical, e.g., MD by correlating transforms or deterministic, e.g.,
MD by frame expansion. Each of these approaches is reviewed in the sequel.

2.4.2.1. MD by Scalar Quantization

Vaishampayan was the first to provide a practical MD coding framework in which the
descriptions are generated by scalar quantization followed by an index assignment
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2.4 Multiple Description Coding

[152]. This technique, known as multiple description scalar quantization (MDSQ),
consists in encoding a memoryless stationary zero-mean source X = {Xn}nEZ using
different scalar quantizers Q;, i = 1,2 to generate the quantized descriptions X@.

A Ny K
Each scalar quantizer is defined by a dictionary A® = {a,(;)}k_l and a partition
(@) — {p@’
PO ={PP} " of R
Qi: R—){l,,KZ}
z—=Qi(x)=kifze P, (2.5)

At the decoder side, three inverse quantizers Q7" QQ_ and Qa are considered, de-
pending on whether only XD or X@ or both XM and X® are received. The
inverse quantizer Q;' : {1,...,K;} — AW i = 1,2 associates to each quan-
tization index k € {1,..., K;} the corresponding element of the dictionary A®:
Q;'(k) = a!”. Let T be the subset of {1,..., K } x {1,..., K5} containing all the
pairs of quantization indexes that may be generated at the output of )1 and @)s.
Then, the inverse quantizer Q" I(O) — D) associates to each pair of received
quantization indexes (ki,ks) € Z© the Correspondmg element of the dictionary
A0 = {akle, (kp, k) € Z( )} associated to ;' and constructed from the central

partition
PO ={PIL,, (ki ks) € IO (2.6)

where Pk(lk2 P(l) P ), (k1,ky) € IO, If a received pair (ky, ky) ¢ T, one
knows that a transmlsswn error has occurred. In [152], the MDSQ is designed
by minimizing the central distortion Dy subject to maximal admissible distortions
D;. Further developments of MDSQ include design of entropy-constrained MDSQ
[154, 153] and extensions to vector quantization [1410, 47, 155].

2.4.2.2. MD by Correlating Transforms

In classical source coding techniques, the transform step aims at decorrelating the
input signal. Usually, an orthogonal transform is used, e.g. the discrete cosinus
transform (DCT) or the wavelet transform, to generate a sparse representation of
the original signal. The problems associated to these representations are their high
sensitivity to errors and erasures; since the symbols are decorrelated, the knowledge
of the correctly received symbols does not bring any information allowing to estimate
the lost or corrupted ones.

In Section 2.4.2.1, we have presented an MD approach which uses a scalar quantiza-
tion producing two quantized symbols instead of one. The MD approach presented
in this section is totally different; the descriptions are obtained by the mean of a
correlating transform, which introduces some statistical redundancy between the
independent random variables. This MD approach is referred to as MD with corre-
lating transform (MDCT).
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Chapter 2 Joint Source-Channel Coding and Decoding

The statistical dependencies between the descriptions are used, at the decoder side,
to improve the estimation of the missing coefficients within a description, from the
ones received in the other description. MDCT was firstly introduced by Wang,
Orchard and Reibman for two variables [162, 164], then generalized by Goyal et al.
to the multiple variable case [53]. This technique consists in transforming a block
of N centered, independent Gaussian random variables into a block of N correlated
variables.

Consider the case where N = 2 and let X; and X5 be two independent zero-mean
Gaussian random variables with variances o? and o3 respectively. These two vari-
ables are linearly transformed to get two correlated variables X" and X®

1)

(;2) >:T<§;> (2.7)
where 7" is a linear continuous-valued transform. It was shown in [53] that perform-
ing the quantization after T" leads to a higher distortion than when quantization
and transform are performed in the reverse order. This is due to the fact that T,
which intentionally introduces some redundancy between X and X, is usually
a non-orthogonal transform, and thus the quantization cells obtained after apply-
ing T" are not square, which is suboptimal. The idea is then to perform first the
quantization then apply a discrete-valued transform T to the obtained quantization
indexes. The discrete-valued transform T is constructed from the linear transform
T which is assumed to be invertible of determinant 1. First, T is factorized into
a product of triangular matrices then T is computed by intermediate rounding of
these triangular matrix factors. It is then shown that T is invertible. When both

~ —_ _ T
X® and X® are received, the decoder uses the inverse of T to obtain (X, X5
The distortion Dy is then equal to the quantization error. When only one of the
descriptions is received, for example X ()| the original vector (X7, XQ)T is estimated

—~ T
using the least square estimator: (Xl, XQ) =F [(Xl, XQ)T|X(1):| . Neglecting the

quantization, a linear estimator of (X, XQ)T is obtained as
X XD
<X;>:T 1<)A((2) | (2.8)

For an equal probability of failure on the two channels and assuming that o; > o9,
Goyal has shown in [53] that the optimal continuous-valued transform 7' has the

form
(%G ), &

/522 and +o0o. The transforms defined in (2.9) lead to equal

201
rates and distortions R; = Ry and Dy = D,. The parameter « allows to control the

where X® = E [X(2)|X(1)}.

where « varies between
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2.4 Multiple Description Coding

amount of redundancy

b % log oa? + o2 /(4a?)

2.10
pp (2.10)

introduced between X and X® which in turn controls the side distortions D;,
1=1,2.

2.4.2.3. MD through Frame Expansion

The MDCT exposed in Section 2.4.2.2 introduces a statistical correlation between
the descriptions which allows to estimate the missing transform coefficients from the
received ones. A similar approach which introduces a deterministic correlation into
the transmitted signal was also proposed by Goyal et al. [55, 56, 79]. In this case,
the input signal X is expanded via a frame decomposition

Y = FX, (2.11)

where F is called a frame operator. The theory of frames was first introduced by
Duffin and Schaeffer [11] in 1952 in the context of non-harmonic Fourier series. In
the sequel a brief recall on frames is given since the multiple description framework
considered in this thesis is built on this type of redundant decompositions. A careful
mathematical review of frames is found in [95].

Frames Consider a Hilbert space H endowed with the inner product (-,-) and the

norm HJ‘ Given a countable index set I', a family of vectors f, € H, k € ' is a
frame of H if there are two constants 0 < A < B such that for all f € H

Al < S s P < Bl (2.12)
kel

The constants A and B are called the frame bounds. If A = B, the frame is called
tight. Given a frame fi, k € ' of H, the frame operator F mapping the Hilbert
space H into the space (*(Z)

(FHp = 1) (2.13)

admits a pseudo inverse defined as
Ft = (FF) ' Fr, (2.14)

where F* is the adjoint operator of F. The vector f can then be recovered in a
stable manner from the projections (f, fx), k € I as follows

F=>"4F ) 1, (2.15)

kel
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where the family of vectors f;* defined as

= (F*F) "k (2.16)

represents the dual frame verifying

1 2 2 1 9
s < I < .7

MD via Frame Expansion Multiple descriptions by frame expansion consists in
projecting the source on a redundant frame. Each of the resulting coefficient sets
forms a description, which is further quantized [56]. The frame approach is similar
to error-correcting codes in the sense that both techniques transform a group of
N symbols into a group of N’ > N symbols by introducing a certain amount of
structured redundancy, which increases the robustness to channel impairments [54].
The difference between these two schemes is that the redundancy is introduced
prior to quantization for the frame approach, whereas in the case of channel coding
the redundancy introduction occurs after quantization. The main advantage of the
frame approach is the potential quantization noise reduction [57]. In [56] a numerical
comparison between the frame approach and traditional channel coding is provided
for a Gaussian source. When there are no packet losses, the redundancy introduced
by the channel code is useless, whereas the one introduced by the frame approach
allows to reduce the quantization noise.

MD by Filter Banks An example of frames of /5(Z) are filter banks. Already
popular for audio and image coding applications, filter banks have received a lot of
interest since their link to wavelet transforms has been highlighted.

Filter banks frame expansions have been studied to achieve resilience to erasures in
[166, 56, 116, 79]. The first application of filter banks to MD was proposed by Yang
and Ramchandran in [166], where the descriptions are generated using orthonormal
analysis filters. The filtered signals obtained at the analysis stage are decimated by a
factor of two, quantized and entropy coded, then transmitted over separate channels.
At the reconstruction, the associated synthesis filters are used. The lost symbols
within a description are estimated from the received ones by using a linear prediction.
The problem of designing optimal filter banks for MD has also been addressed by
Dragotti et al. in [10]. The difference between the two approaches is given by the
place of the quantizer in the transmission chain. The advantage of the approach
in [10] is that the quantization cells do not change shape and the quantization
error is not increased by the use of non-orthogonal transforms. In [56, 79], the
correspondence between oversampled filter banks and frames is shown. For example,
oversampled block transforms, like the Discrete Fourier Transforms (DFT) [104]
codes, are actually a special class of frames, as shown in [130]. These codes are
regarded as JSC block codes which enhance robustness to erasures [79, 130, 102]
and may be used for MD coding.
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2.4 Multiple Description Coding

2.4.3. MD for Video Coding and Transmission

The main motivation behind the use of MD video coding in packet-loss networks
comes from its ability to provide a minimal quality for video reconstruction without
requiring the retransmission of lost packets. Indeed, unlike layered video coding,
the descriptions are of an equivalent importance and each received description pro-
vides a primary reconstruction quality, even if all the other descriptions are lost.
This property makes MD coding particularly interesting for real-time and broad-
cast applications, where the retransmission of lost data is usually not possible. One
may distinguish the MD video coding schemes designed for hybrid video coders,
as MPEG and H.264/AVC, from the ones proposed for t + 2D wavelet coders. A
thorough survey on MD coding for hybrid video coders can be found in [163] and
a more recent overview on the MD techniques for wavelet based video coders is in
[48].

In [148] a two-description coding scheme is proposed for scalable video coders. The
correlation between the descriptions is introduced in the temporal domain by the
mean of an oversampled motion-compensated temporal filter. Each description is
packetized prior to transmission over a packet-loss channel. Separate packets are
created for the motion vectors and for the spatio-temporal subbands. If packets con-
taining motion vectors are lost, or if the packets containing the spatial approximation
subband of the temporal approximation subband are lost in one of the descriptions,
the entire video sequence is considered as lost and the side decoder associated to the
other description is used to reconstruct the input frames. Simulations have shown
that, in presence of packet losses, this scheme outperforms both the non-redundant
single description (SD) one and the MD-based on temporal splitting of the video
sequence into odd and even frames.

Recent works have focused on comparing MD coding schemes to single description
coding schemes followed by channel codes, for video transmission over packet-loss
networks [144, 13, 143 4]. In [144], a comparative analysis based on theoretical
R-D performance of both techniques is presented. This analysis explicitly takes into
account the loss probability introduced by the network as well as the redundancy
introduced by the MD coder. In matched channel conditions, the use of an opti-
mized single description scheme combined with a channel code always outperforms
MD coding, as predicted by Shannon’s separation principle [141]. In [13], a com-
parison between MD and single descriptions video coding schemes is performed for
H.264/AVC coded bit streams. Descriptions are generated via temporal splitting
of odd and even frames within the video sequence. The lossy network is described
by a two-state Markov model. For similar amount of redundancy and equivalent
reconstruction PSNR in the loss-free case, MD coding, which is robust to long burst
of erasures, performs better than single description protected with a channel code.
In [143], an MDSQ coding scheme is compared to a single description scheme for
a scalable wavelet video coder. Unlike channel codes, the redundancy level intro-
duced by the MD coding scheme does not impact a lot the decoding performance. In
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[13, 143], it is shown that MD coding performs better at high losses rates. Moreover,
hypothetical schemes able to adapt the redundancy level to the receiver channel con-
ditions have been considered. Adaptive channel coding of single description turned
out to outperform the adaptive MD, as recently shown in [144].

In this thesis, the considered MD coding scheme is based on the redundant temporal
wavelet decomposition proposed in [148]. The obtained temporal descriptions are
transmitted over an heterogeneous network formed by a packet-loss wired part,
followed by a noisy wireless channel. Most of the above-mentioned works assume
that packets are either dropped or arrive error-free at the MD decoder. In this work,
joint protocol-channel decoding mechanisms [100] are assumed to be implemented
to allow erroneous packets to reach the application layer. At the MD decoder side,
JSC decoding is used to recover, if possible, the corrupted packets. This approach
has already been considered for theoretical MD coding schemes in [64, 89] and in
[1] for a t + 2D video coder, where MD is performed by duplicating the wavelet
coefficients to form the two descriptions, which are then quantized with different
quantizers designed to ensure balanced descriptions [121]. The number of errors
due to transmission impairments is significantly reduced thanks to JSC decoding,
which is based on the use of the redundancy left by the source encoder. Such JSCD
techniques are presented in the next section.

2.5. JSCD Techniques

The JSCD techniques usually rely on the observation that all practical source coders
produce a (packetized) bit stream containing some redundancy [137]. The source
residual redundancy is interpreted as the rate excess left by practical source encoders
inside the compressed data. This redundancy can result e.g., from the residual corre-
lation left between the samples after temporal and spatial decorrelation transforms,
from the non-uniform distributions of the entropy-coded source symbols or from the
structural properties of the bit stream imposed by the coding standard. In addi-
tion to this natural residual redundancy, one may deliberately insert some artificial
redundancy into the compressed bit stream, via error resilient source coding tools
such as reversible variable length codes, which enhances robustness while keeping ef-
ficient compression rates. The JSC decoding techniques based on source redundancy
(either natural or artificial) exploit this rate excess using robust channel decoding
techniques [156].

The large majority of image and video coding standards adopt variable-length codes
(VLCs) as entropy codes due to their high compression ratio and reduced complexity.
As a consequence, JSCD techniques based on source residual redundancy have been
proposed for VL.C codes. A comprehensive survey of these techniques is proposed
in [62, 22]. One may distinguish the JSCD techniques exploiting the natural resid-
ual redundancy present in VLCs [76, 122] from the ones exploiting some artificial
redundancy inserted into the coded bit stream.
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2.5.1. Soft Decoding of Variable Length Codes

The soft decoding of VLCs is based on estimating the transmitted sequence at the
source coder from its noisy measurements. The residual redundancy present in the
bit stream is used to reduce the search space. The estimation is then achieved by
limiting the search to the sequences satisfying some constraints deduced from this
redundancy. In [22, 42] are identified three main categories for residual redundancy
to be exploited while decoding VLCs:

1. Redundancy due to the VLC syntaz: This type of redundancy may be used
when the considered VLC is incomplete, i.e., the Kraft inequality is strict
[138, 168]. In this case, some sequences can not be generated from the entropy
coder and are not examined during the estimation process. In [138], authors
used a first-order Markov model for the source and incorporated the residual
redundancy into the decoding process by considering a symbol-constrained
directed graph with the list Viterbi algorithm [5] to decode the VLCs.

2. Redundancy due to the source coder semantics: This redundancy comes from
the constraints on the bit stream imposed by the source coder when coding the
texture information [149, 136, 111, 109, 113]. In [109], Nguyen and Duhamel
demonstrated that a significant residual source redundancy is available in the
VLC data and may be exploited if appropriate information on the structure
and the properties of the compressed image and video streams are taken into
account. They proposed a tool to quantify this redundancy as an equivalent of
the redundancy introduced by channel coding. Later, in [111], they presented
a method to decode the DCT coefficients by taking into account the source
constraints, e.g. the maximum number of DCT coefficients in a block - the
run constraint - and the fact that only the last VLC codeword within a block
should be labeled as last - the last constraint.

3. Redundancy due to the packetization of VLC data: Prior to transmission over
a packet-switched network, the compressed data is packetized. Several in-
formation may be deduced and exploited in each received packet to detect
and correct transmission errors [11, 91, 136]. For the H.264 video coder, the
packetization process is indicated by the standard and each bit stream is ef-
ficiently organized into a set of independently decodable network abstraction
layer units (NALUs). Robust decoding of each NALU may be performed by
using the information extracted from its header, see [136]. In [91], a robust
decoding algorithm is considered to process the packets delivered by a H.263+
coder. Firstly the texture blocks, which correspond to variable length-coded
DCT coefficients, are localized within each packet. Then, each localized block
is decoded by exploiting the constraints imposed by the H.263 coder, e.g. the
number of DCT coefficients within a block.

These various redundancies may be combined altogether to significantly improve
the decoding performance [112, 91, 109, 111, 136]. Recently, in [112], the authors
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proposed a new VLC decoder exploiting jointly the VLC syntax and the source
semantic constraints, and delivering both maximum likelihood (ML) optimum hard-
output and soft-output solutions. Furthermore, the residual redundancy of VLCs
may be used jointly to the redundancy introduced by channel codes at physical layers
to perform iterative decoding as in [147, 7, 110, 99, 112] which improves the decoding
performance. In [99], the authors presented a sequential decoding algorithm which
makes a simultaneous usage of the redundancy provided by the CRC at the media
acess control (MAC) layer and the inherent source redundancy (syntax and semantic
constraints) to achieve robust video decoding in downlink situations.

In this thesis, the redundancy which we exploit comes from the information provided
during the packetization of the video bit stream. This information, is necessary to
decode the received packets. We will show how this information can also be exploited
to detect and correct some of the transmission errors.

2.5.2. Use of Artificial Redundancy

The JSCD techniques presented in Section 2.5.1 rely on the use of the inherent
source redundancy. They present the advantage of increasing the robustness of
the transmitted data without any modification of the standard and without any
increase in the total bit rate. In addition to this inherent source redundancy, some
artificial redundancy may be introduced at the source coder to further enhance
the error resiliency and increase the decoding performance. For example, many
works have proposed to design arithmetic coders with error detection and correction
capabilities [60, 27, 59, 123, 63]. These approaches are based on the insertion of a
forbidden symbol [27] or synchronization markers [63] to enable error detection at the
receiver. The correction of the detected errors is then based on sequential decoding
[3, 58, 61] using maximum a posteriori (MAP) or ML estimation or ARQ techniques
(27,59, 123]. In [27], a robust JSCD scheme using jointly forbidden symbol and ARQ
is proposed. This scheme allows continuous error detection and correction unlike
classical ARQ-based techniques which require the reception of the whole packet to
enable error detection and the retransmission of its whole content. In [123], Pettijohn
et al. used both depth-first and breadth-first sequential decoding algorithms, to
detect transmission errors. Binary signaling with null-zone soft decoding is employed
by testing the presence of an FS in the decoded bit stream.

All the error-resilient coding techniques presented so far require a total or partial
modification of the source or/and channel coders and/or decoders. The techniques
that will be presented in the next section do not modify the blocks of the com-
munication systems, but conceal the effects of the transmission impairments by
appropriately exploiting the received data.
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2.6. Error Concealment

Error concealment (EC) is used as a last resort after an error or packet loss has been
detected at the decoder side. The effects of lost or corrupted data are concealed to
limit the signal quality degradation. Good surveys on EC techniques is proposed in
[164, 174].

Video error concealment techniques can be devided into two main categories: tem-
poral error concealment and spatial error concealment.

Temporal error concealment (TEC) exploits the inter-frame correlation in video se-
quences in order to replace the damaged macroblock of the current frame by the
spatially corresponding macroblock in the previously decoded frame. Motion com-
pensation is usually integrated into the TEC process to fit the dynamic character
of the video sequence and to limit the visual artifacts, especially in the presence
of high motion. When the motion vectors are corrupted or lost, they are usually
estimated from the motion vectors of adjacent macroblocks [173, 88]. Spatial error
concealment (SEC) is performed in the spatial domain by interpolating the pixels
of the damaged part of the video frame from the neighboring pixels [172, 78, 51].
Adaptive SEC approaches are further considered to choose for each damaged mac-
roblock the suitable SEC method to be used, which allows to exploit the advantages
of the different SEC techniques [160, 161, 135, 9]. Further, hybrid error concealment
schemes combining TEC and SEC techniques have been considered [32, 60].

2.7. Conclusion

In this chapter we presented several approaches proposed in the literature for in-
creasing the robustness of video bit streams transmitted over unreliable networks.
In particular, we have focused on the class of joint source-channel coding and decod-
ing techniques since the contributions of this thesis fit into this category. We briefly
presented the existing approaches in this area and distinguished the ones acting at
the coder side, namely the joint source-channel coding techniques, from those im-
plemented at the decoder side, the joint source-channel decoding techniques. This
presentation is not exhaustive, our first goal being to give a general panorama of
the communication systems designed in a joint-source channel perspective and to
highlight the motivation behind the use of such systems in practical situations.

In the next chapters, we will present some of our contributions in this domain,
namely a joint source-channel decoding scheme developed to enhance the robustness
of bit streams obtained by subband video coders.
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3. JSC Decoding of ¢ + 2D Video
Streams

In practical situations with stringent delay and complexity constraints, communica-
tion systems based on JSC coding and decoding are an efficient alternative to the
classical communication schemes, which are only optimal under idealized conditions.
In particular, the JSC decoding (JSCD) techniques are attractive since they rely on
the use of the redundancy left by the source encoder and do not introduce any in-
crease in the total bit rate (in the case when no artificial redundancy is inserted).
Moreover, these schemes are implemented at the decoder side and usually introduce
a manageable complexity.

Current video compression coders and, more particularly, the wavelet-based ones
are very efficient, leaving a very small amount of redundancy and making thus
the compressed bit streams extremely sensitive to transmission errors, fact that
motivates even more the use of the residual redundancy in order to detect and
correct the transmission errors.

This chapter presents an efficient JSCD scheme suited for subband video coders
and is organized as follows: first, the conceptual JSC decoding scheme is presented
in Section 3.1. Then, the considered wavelet video coder is briefly presented in
Section 3.2. The aim is to describe the bit streams delivered by this coder and
to identify the redundancy that may be exploited at the decoder side in order to
perform JSCD. The proposed JSC decoding scheme is described in the case of a bit
stream formed by one layer in Section 3.3, then it is extended to the multi-layer case
in Section 3.4.

3.1. Conceptual JSC Video Decoder

The considered JSC video decoding scheme is presented in Figure 3.1. Assume that
the input video sequence is formed by N; frames. These frames are gathered into
one vector x, which is assumed to be the realization of some random vector X. The
input vector x is encoded and a vector

z =F(x) (3.1)
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is generated, where F(-) denotes the video coding function including the temporal
and spatial decorrelation steps, as well as the quantization and entropy coding. The
content of z is transmitted through some noisy channel. Here, the term channel
refers to the part of the transmission scheme that is situated between the output
of the coding function F(-) and the input of the source decoder. This channel
includes the modulation, the packetization and the physical channel parts, as well
as the corresponding demodulation and depacketization operations. At the output of
this channel, the channel state information and the decoder reliability information,
described in Chapter 2, are obtained.

The aim of the JSC decoder is to evaluate an estimate X of the original input vector x
by using the information obtained at the channel’s output, as well as the information
on the redundancy left by the video coder, which is fed back to the estimator, as
illustrated in Figure 3.1.

The channel model is introduced in Section 3.1.1, then the maximum a posteriori
(MAP) estimation problem is formulated in Section 3.1.2.

ble Video encoder Z
—>
F(.) i
redundancy Channel
\4
X r
<«— Video decoder e Estimator |e
P

Figure 3.1.: Joint source-channel decoding transmission scheme.

3.1.1. Channel Model

Usually, the transmission of multimedia contents requires the use of some packetiza-
tion process, e.g., RTP (Real Time Protocol [$3]), to ensure the jitter compensation
and a correct playback of the data packets at the receiver. Assume that z is packe-
tized into N, packets of similar length

7= ((zl)T,...,(sz)T)T, (3.2)

where z;, k = 1,..., N, denotes the content of the k—th packet. Classical error
detection mechanisms (CRCs or checksums) at lower protocol layers do not allow
corrupted packets to reach the upper application layer. Implementing JSCD tech-
niques at the APL layer needs the use of permeable protocol layers at the receiver
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side [75, 42, 101]. Such mechanisms require robust header decoding techniques [101]
and transmission of the bit soft information or reliability measures (coming from
the channel decoders at physical layer) to the upper protocol layers, as detailed in
[117]. Reliable recovery of the various headers involved in the protocol stack may
be ensured by employing joint protocol-channel decoding techniques at the receiver
side [101, 42]. Provided that such mechanisms are implemented, the whole network
packetization process, the physical channel, the robust depacketization, as well as
the channel decoding operation, are modeled by a channel representing everything
between the source coder and the source decoder. The channel state information
and the decoder reliability information may then be obtained at the output of this
channel.

Let the reliability information be modeled by the vector

r= <(r1)T,...,<er)T)T, (3.3)

where the vector ry, & = 1,..., N, contains soft information on the transmitted
packet z,. This soft information consists, e.g., in likelihood ratios, or a posteriori
probabilities on the transmitted data. They are provided by the channel decoders
at the physical layer on receiver side. Moreover, let the channel state information
be modeled by the vector

pP= (/)1 e ,PNP)T7 (3.4)

whose components indicate whether a packet z;, £ = 1,..., N, has been received
(pr = 1) or not (pr = 0). The value p, = 0 may be deduced, e.g., from the content
of successive RTP packet headers. The values of p;, > 1 indicate the noise/fade level
and are assumed to be known by the receiver.

Along this chapter, all the packets are assumed to be received (p, > 1, k =
1,...,Np), but some of them may be corrupted by the transmission noise.

3.1.2. Optimal Estimation Schemes

This section presents two optimal estimation schemes, which are more or less in-
dependent of the considered video coder. First, the estimation of x is formulated
in Section 3.1.2.1. Then, a constrained estimation of z, which is more practical to
handle, and for which it is easier to exploit the channel information and the source
residual redundancy, is described in Section 3.1.2.2.

3.1.2.1. MAP Estimation of x

The MAP estimate Xyap of x knowing p and r is

Xnap = argmaxp (X|p,r). (3.5)

63



Chapter 3 JSC Decoding of t + 2D Video Streams

Marginalizing (3.5) with respect to z, one gets
Ruap = argmax 3" p (x,2]p, 1)

= argmax »_p(p,r[x,2)p (2x)p (x). (3.6)

Since z is deduced from x, in (3.6) one has

p (2lx) = {1 if z=F (x)

0 otherwise.
Consequently, (3.6) becomes
Xymap = argmaxp (p,r|F (x)) p (x), (3.7)
where the fact that the knowledge of x does not bring any additional information

on p and r once F (x) is known has been taken into account.

Even if p (p,r|F (x)) in (3.7) is quite easy to evaluate for a given x, the evaluation of
Xmap requires the maximization of a discontinuous function (due to the quantization
present in F(+)), over a prohibitively large number of variables (i.e., the components
of x, which are all the pixels within the considered video sequence frames).

3.1.2.2. Constrained Estimation of the Entropy Coded Bit Stream z

Alternatively, one may try to estimate z in a first time, accounting for the fact
that this bit stream has been generated from a video sequence x. The resulting
constrained MAP estimator of z, knowing p and r, is

Zyiap = argmaxp (z[p, ), (3.8)
where
S={zstIx,z=F(x)} (3.9)

is the set of all the bit streams that can be generated from all the vectors x. We point
out here that performing the estimation among the elements of S takes into account
the information fed back from the source coder to the estimator, and implies that
Zuap is a valid sequence, since it could have been generated by the source encoder.

Using Bayes’ rule, (3.8) becomes

Zyap = argmaxp (p,x|z) p (). (3.10)
In (3.10) one has
p(p,r|z) =p(r|p,z)p(plz). (3.11)
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3.2 Overview of Vidwav Video Coder

Assuming that the congestion conditions for each packet of z are independent, one
gets

Np

p(plz) =TI p (pklzs) . (3.12)

k=1

Usually p(px|zx), K = 1,..., N, only depends on the length of the packet z, and
not on its content. Assuming now that each packet z, of z encounters independent
transmission channel realizations, one gets

Np

p(rlp,z) = kl:[ p (velpr, zk) - (3.13)

Since we assumed that p, > 1, the evaluation of p (ry|pk, zr) depends on the values
of zy, pr, and on the channel model. Combining (3.10)—(3.13) one gets

Np
ZMApP = arg max p (z) [ p (xilpr. z&) p (pr|2s) - (3.14)
P

In (3.14), determining whether z € S depends on the function F(.) used to perform
the video encoding.

In this work, the subband video coder Vidwav [120] has been considered. In the next
section, a brief overview of this coder is presented, as well as a description of the
bit stream it delivers. This will help to identify a part of the residual redundancy
which will be used to build the set S.

3.2. Overview of Vidwav Video Coder

Vidwav is a 3D scalable wavelet-based video coder using motion-compensated tem-
poral filtering (MCTF) based on the Barbell filter [126]. It allows both spatial and
in-band MCTF (¢ 4 2D or 2D + ¢ + 2D). In this work we consider only the ¢ + 2D
scheme, illustrated in Figure 3.2. First, the MCTF is performed on the frames of the
input video sequence x, then the spatial wavelet transform is applied on the result-
ing temporal subbands. The obtained spatio-temporal subbands are then divided
into 3D blocks which are entropy encoded in an independent manner.

Consider an input video sequence x of Ny frames X, ..., Xy,, represented by the
vectors x,,, n = 1, ..., N; of size N, N., where N, and N, denote the number of rows
and columns in each frame X,,. Then

x = ()" e () ()T (3.15)
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Chapter 3 JSC Decoding of t + 2D Video Streams

This input sequence is temporally decorrelated by performing MCTF with J de-
composition levels to get N; temporal subband frames y,, of size N,N., and which
are gathered in the vector y

y=TyTyos . Tix = ()" ya) oo ym)”) . (3.16)

where T;, j = 1...,J is an N x N matrix, with N = N{N,N,, representing the
MCTF at level j, 7 = 1,...,J. The vectors y,, n = 1,..., Ny are further spatially
transformed

Sn = S1¥Yn; (3.17)

where S is the N, N, x N, N, spatial transform matrix. The vector of spatio-temporal
subbands is then obtained as follows

s= SNy = ((sl)T,...,(st)T)T, (3.18)

where Sy, is a N x N block diagonal matrix defined as

S, 0 ... 0

Sy, = 9 R (3.19)
. o0
0 ... 0 S

and representing the spatial transform operation of the entire vector of temporal
subbands y.

Input video sequence

ﬁ:

i

DD
B 5
Spatial _|Entropy | @&

MCTF > . > Packets
transform coding Packetization ———
| Sieinformation [
\/ |
_ | Motion Motion vectors :
estimation

Figure 3.2.: Vidwav encoder modules.

The vector s defined in (3.18) is further divided into several 3D blocks. Each 3D
block is obtained by gathering several temporally-successive 2D blocks belonging to
the same spatio-temporal subband of s. An example of a 3D block formation is
illustrated in Figure 3.3 for a given temporal subband, where the number of spatial
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Frames within a
temporal subband

'\

A spatio-temporal

,Q‘t‘)band

Figure 3.3.: 3D block formation process within a spatio-temporal subband.

decompositions is equal to 2. Let NV, be the total number of obtained 3D blocks.
The vector of spatio-temporal subbands s is then reorganized as follows

T

s=((b)",....(b)" ..., (by,)") ", (3.20)
where the vectors by, k =1,..., N, represent the content of the N, 3D blocks.

The aim of the temporal and spatial transforms presented so far is to decorrelate
the input video signal x. A very small amount of redundancy is left in the result-
ing vector of spatio-temporal subbands s. The 3D blocks of s are further entropy
encoded.

In the next section, the entropy coding operation is presented and the information
obtained after this step is described. It is important to detail such information, since
a part of it will be considered as a residual redundancy, which may be exploited in
order to perform JSC decoding.

3.2.1. Entropy Coding

The obtained 3D blocks by, k =1, ..., N}, are independently entropy coded using the
3D Embedded Subband Coding with Optimal Truncation (3D-ESCOT) algorithm
[71]. For each 3D block, bitplane coding and context-based arithmetic coding are
used. The coding algorithm consists of three basic, primitive operations:

1. Zero Coding: indicates whether a non-significant sample becomes significant
in the current bitplane. The coding is then performed using the context given
by the sample’s neighbors.

2. Sign Coding: when a sample becomes significant its sign is encoded using an
adaptive context-based arithmetic coder.

3. Magnitude Refinement: it is used to code the new information of an already
significant sample. This operation has three contexts depending on whether
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Chapter 3 JSC Decoding of t + 2D Video Streams

the magnitude refinement has been used or not for the current sample and on
the significance state of its neighbors.

For each bitplane, the 3D-ESCOT algorithm uses, in turn, three distinct coding
passes:

1. Significance propagation pass: this pass encodes the neighbors of samples al-
ready found significant (either at the current bitplane or at previously coded
bitplanes). For each processed sample, the zero coding primitive is applied.
Moreover, if the sample becomes significant at the current bitplane, then the
sign coding primitive is used to code its sign.

2. Magnitude refinement pass: in this pass, only the significant samples are con-
sidered and the symbols of these samples in the current bitplane are coded
using the magnitude refinement primitive.

3. Cleanup pass: in this pass, the samples that are not yet coded in the previous
two passes are coded using the zero coding primitive.

Finally, rate distortion (R-D) optimization is used to decide how many bytes are
allocated for each coding block. After all these operations, the following information
is obtained for each 3D block by:

1. the number of bitplanes d;, within b;, and the number of coding passes® n;, =
3d;, — 2.

2. the coded bit stream p;. of by, which is an embedded bit stream formed by ny
segments, each one corresponding to the output bit stream of one coding pass.

3. the length in bytes of each bit stream segment and its spatio-temporal subband.
4. the R-D slope information at the end of each coding pass.
Let E(.) denotes the 3D-ESCOT entropy coding function. The bit stream

Zk:E(bk), k= 1,...,Nb (321)

is the output associated to the 3D block by. This bit stream is formed by the
embedded payload py corresponding the entropy-coded spatio-temporal wavelet co-
efficients of the block by, and by a header hy containing the motion information
associated to by and other metadata necessary for decoding, e.g., the number of
coding passes used to code the block, its length in bytes, its spatio-temporal index,
its R-D slope information, etc. Then
hy,
Zi = ( D1 ) , (3.22)

2= ()", ... @), (2)") (3.23)

!For the first bitplane, the significance propagation pass is not performed.

and the vector
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represents the compressed bit stream delivered by the Vidwav encoder for the input
video sequence x. Finally, the video coding function F(-) defined in (3.1) can be
written as follows

F(X) = E(SNfTJ . T1X). (324)

The Vidwav encoder generally produces a fully embedded and scalable output by
generating bit streams formed by several layers, each layer corresponding to a scal-
abiliy degree (i.e., temporal, spatial and/or SNR or quality scalability).

In Section 3.3, the proposed joint source-channel decoding scheme is described for
single layer bit streams and the obtained simulation results are presented. This
decoding scheme is further extended to multiple layers bit streams in Section 3.4.

3.3. JSCD of Single Layer Bit Streams

In this section, the entropy-coded bit stream z is assumed to be formed by one
layer. The aim is to provide an implementable counterpart of the optimal estimation
schemes presented is Section 3.1.2, which is adapted to the Vidwav coder presented
in Section 3.2 and to the structure of the bit stream it delivers. The estimation
schemes presented here are based on JSCD by exploiting the redundancy left by the
Vidwav encoder.

To simplify the notations, and without loss of generality, each packet of z defined in
(3.2) is assumed to contain one entropy-coded bit stream z; of some 3D block by.
Therefore, N, = Ny, and

2= ((@)",...,(m)") . (3.25)

The decoder soft information r and the channel state information p, defined in (3.3)
and (3.4) are then rewritten as follows

r=(()",....(e;)") (3.26)

p=(pi,....pnm)" . (3.27)
Assume now that all the vectors z € S are a priori equally probable, so that (3.14)
becomes

Ny

Zyap = arg max 11 » (cilpe, ze) p (ox|2i) - (3.28)
k=1

This assumption is reasonable as long as no informative a priori probabilities on
x are available, where x represents the uncoded video sequence. If such a priori
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knowledge was available, deducing p (z) would be far from being trivial and (3.28)
would be suboptimal compared to (3.14).

Consider the sets

Sy = { Zj \ Jx, El(ila--wikflaikJrla---vab)v

st (@)oo @) @) @) @)T) = B (Sh, T Tix) }
(3.29)

defined for each k =1, ..., N,. The set S, contains all the possible bit streams that
can result from the entropy coding of a 3D block b, obtained for a video sequence
x of N; frames.

Remark 1. Consider the set S introduced in (3.9) which contains all the possible
entropy-coded sequences z that can be generated from all the video sequences x.
One has

SC& X xSy, (3.30)

In general, & # &) x --- x Sy,. Consider (zy,...,2z5,) € S1 X -+ X Sy, and let
Xk (z) be the set of the vectors x such as the k—th entropy-coded sequence of
E (SNfTJ...Tlx) is equal to z,. One knows that Xy (zx) # 0, since z;, € S;. If
N, Xy (z1) # 0 then (zy,...,2zy,) € S. Now assume that for all (zy,...,zy,) €
S X - X Sy s ﬂffil Xy (z1.) # (), this means that the sequences z,...,zy, are
uncorrelated, which is not usually the case since these sequences are obtained from
the entropy coding of the same video sequence, and thus present some correlation.

Using (3.28)—(3.30), one may derive a suboptimal estimator for each z; as follows

2, = arg max p (vi|px, 2) p (ok|2k) - (3.31)
2, €Sy
. ~\T ~ \\T. . . .
The estimator ((zl) yeoos (Zny) ) is a suboptimal solution of (3.28) since

(@) ,....@n)")"

is not necessarily in S, see (3.30).

As described in Section 3.2.1, each entropy-coded bit stream z,, is formed by a header
h; and a payload p;. After the transmission of z;, the received vector

re = ()" (rk,p)T)T

contains soft information on hy, given by ry,, and on p; given by ry .
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Assuming that the headers hy have been received without errors, the estimation
problem in (3.31) is reduced to the constrained estimation of py from ry, hy and py

pr = arg max  p(Teplpk, P)- (3.32)
p St (hy,p)eSk
In (3.32), the term p (pg|zx) of (3.31) is removed. As mentionned in Section 3.1.2.2,

p (pr|zx) usually depends on the length of z, which is stored in hy. Since hy is
assumed to be error-free, p (px|zx) is known and does not depend on zy.

The value of py gives information on the channel characteristics, e.g., signal to noise
ratio (SNR), bit error probability, level of fading and allows to evaluate the likelihood

p(rrplpe, P) in (3.32).

The search space for py is the set of all the payloads p that may be generated from
some video sequence x and which are compliant with the information stored in hy,.

In the next section, two tests are introduced to determine whether a given payload p
is syntax-compliant 7.e., whether (hg,p) € Si. These tests are then used to perform
JSCD using the M —algorithm [3] to obtain approximate versions of (3.32).

3.3.1. Syntax Compliance Tests

Recall that the payload py represents the output of the 3D-ESCOT coder for a given
3D block by. It results from a known number of coding passes n; and has a known
length ¢, in bits. As mentioned in Section 3.2.1, n; and ¢} are stored in the header
h; at the encoder side. The 3D-ESCOT decoder has then to process exactly
bits when decoding nj passes for a given stream p. If more or less than ¢, bits are
processed, the arithmetic encoder and the arithmetic decoder are desynchronized,
which implies that p contains transmission errors.

More formally, let A(p) be the number of bits processed when decoding ny passes
for a given payload p and let A(hy) be the number of bits that should be processed
in p. The value of A(hy) is extracted from hy. Consider the following compliance
test

1 if A(p) = A(hy)

i (3.33)
0 otherwise.

tb<hk7p> = {

Assuming that the headers hy are error-free, A(hy) = ¢, and n; are known at the
decoder. Therefore, for a given sequence p, t"(hy, p) = 0 implies that p # py.

For a given header bit stream hy, consider the sets
C°(hy) = {p st t*(hy,p) = 1} (3.34)
and

C(hy) = {p st (hy,p) € S} . (3.35)
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Each element p € C(hy) is compliant with hy, i.e., the pair (hy, p) can be obtained
from some x, which implies that A(p) = A(hy) and thus p € CP(hy). Therefore

C(hy) C C"(hy) (3.36)

and t"(hy, p) = 0 implies that p ¢ C(hy). The test t"(hy, p) allows thus to prove
that a payload p is not compliant with a given header hy, but it is unable to prove
that some p is compliant with a given header h;. The bits contained in some p # pg
may lead to the processing of exactly ¢ bits by the 3D-ESCOT decoder. In absence
of desynchronisation between the encoder and decoder, the fact that p # py is not
detectable by ¢P.

In the bit stream generated by the Vidwav coder, as specified in [126], the data is
byte-aligned and A(hy) is only known in bytes. Without any modification of the
Vidwav specifications, (3.33) becomes

1 if 8[A(p)/8] = A(hy)

) (3.37)
0 otherwise.

tB(hk,P) = {

where [-] means the upward rounding. Error detection with ¢® is then only possible
when the desynchronization is sufficient. For a given header hy consider the set

CP(hy) = {p st t*(hy, p) = 1} . (3.38)
One has
C(hy) c C*(hy) C CB(hy) (3.39)

and B is thus less efficient? in terms of error detection than ¢P.

One may write A(hy) = €5+ A, where A\, = 0, ..., 7 is the number of bits used to pad
pr. In order to implement t(hy, p) at the Vidwav decoder, one has to supplement
h; with the content of A\, at the encoder side. This side information requires only
three additional bits per entropy-coded 3D block z.

Using (3.33) or (3.37), one gets the approximate versions of (3.32)

~b
=arg ma r , 3.40
pp =arg max p(rep|or. p) (3.40)
and respectively
~B
= arg max r ,P) s 3.41
pp =arg max p(Tiplp, p) (3.41)

which require to consider all the sequences in C”(hy) or in CB(hy), when ¢ or B
are used. These two sets are not well-structured, i.e., their content cannot be easily

2Note however that in this case, the packet length information, stored in the header, is shorter.
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generated by a finite-state automaton with a reasonable number of states as is the
case for Huffman-based variable-length codes [12]. Thus, efficient decoders derived
from the BCJR algorithm [6] may not be employed in this case.

Approximate versions of (3.40) and (3.41), with manageable complexity, may be ob-
tained using sequential decoding algorithms, such as the M-algorithm [3] described
in the next section.

3.3.2. Sequential Estimation

All the vectors p of ¢ bits may be represented by a binary tree 7 of 2¢ leaves.
A given node at depth d in T represents a subsequence pi.; of d bits, which is
represented by the path of length d, starting from the root of 7 and leading to
the considered node. For a given hy, only a subset of leaves in T corresponds to
sequences belonging to CB(hy) or C*(hy). The aim of the M —algorithm is to partly
explore T. At iteration d, the M sequences of length d maximizing the metric

M<p1:d7 rk) = - 10gp<rk|p1:d7 pk) (342)

are kept in a list £ to be used at iteration d+1. When d = A(hy), the test t®(hy, p)
or t"(hy, p) is used to eliminate the sequences in £ which do not belong to C®(hy)
or C"(hy), starting from the sequence maximizing (3.42).

The steps of the M — algorithm are:

1. Initialization: £ = (), corresponding to the root of 7 to which the null metric
is assigned.

2. Extend all paths in £ to the following nodes in 7.

3. Among the extended paths, keep at most M paths with the largest metric
according to (3.42).

4. Go to Step 2 until all the paths in £ reach the depth A(hy).

5. Select the path p in £ with the largest metric satisfying t2(hg,p) = 1 or
tb<hk7 p) =1

This algorithm is suboptimal [3]: if M is not large enough, the transmitted vector
pr may be discarded at Step 3.

At Step 5, if no vector in £ satisfies one of the compliance tests, py could be consid-
ered as dropped and error concealment methods may be used to alleviate the missing
blocks effect at the spatial and temporal inverse transform levels. Alternatively, one
may use the first element in the list £, corresponding to M = 1, even if it does not
satisfy tB(hg,p) = 1 or t°(hy, p) = 1; this translates into considering that errors
have occurred only at the end of pg, leading thus to moderate decoding artifacts.
In this work this latter strategy is adopted.

In the next section, the simulation results obtained by using the syntax compliance
tests t” and t® are presented.
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3.3.3. Simulation Results

For the experiments presented in this section, two video sequences are considered:
foreman.qcif and mobile.cif. The following coding parameters are used:

o Haar temporal filtering with J = 3 decomposition levels.

9 x 7 spatial filtering with 3 decomposition levels.

e N; = 32 frames.

» frame rate equal to 15 fps for foreman.qcif and to 30 fps for mobile.qcif.

« coding rate equal to 128 kbps for foreman.qcif and to 768 kbps for mobile.cif.

As described in Section 3.2.1, entropy coding is performed on Ny, 3D blocks by. The
term block size is further used to refer to the width and the height of these blocks,
the depth being fixed to 4 pixels. Two typical block sizes are considered: 22 x 18
and 11 x 9 pixels.

The vector z of the entropy-coded 3D blocks is organized into packets of approxi-
mately the same size, with a maximal length of 1000 bytes. Each packet consists
of an integer number of sequences pi. The headers hy, corresponding to these se-
quences, are gathered at the beginning of the packet and are assumed to be protected
using a strong FEC code, to ensure their good reception at the decoder side, see
Figure 3.4. This assumption is reasonable, as headers represent less than 10% of the
total bit stream, as presented in Table 3.1.

I
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e
-

- streams of 3D blocks TTe~
/// \\\
L |h| P hy | P2 hy | P3 )

N 7
\\\\\ S \\\ \\ \\ | ’//!
ST o= ———="X I I
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Figure 3.4.: Packetization of the 3D blocks: hy are the 3D blocks headers, p; are
the 3D blocks payloads and h,, is the packet header.

The channel presented in Section 3.1.1 is modeled by a BPSK modulation and an
additive white Gaussian noise (AWGN) channel with a signal to noise ratio (SNR)
going from 9 dB to 12 dB. The generated bit streams are transmitted through this
channel and only the payloads pg, £ = 1,..., N}, are assumed to be corrupted by
noise.
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Ny, | Headers size | Payloads size
foreman.qcif, block size 22 x 18 | 273 2712 32257
foreman.qcif, block size 11 x 9 | 654 3723 31201
mobile.cif, block size 22 x 18 526 10485 94326
mobile.cif, block size 11 X 9 1455 12955 91918

Table 3.1.: Number of 3D blocks, NV}, and headers and payloads size in bytes within
the compressed bit streams, as function of the block size.

The JSC decoding is performed using the M —algorithm described in Section 3.3.2
for different values of M in order to estimate py, £k =1,,..., Ny. The JSCD scheme
based on the test t* defined in (3.33) is referred to as JSC-SI, since it uses the side
information inserted into the headers at the encoder side. The JSCD scheme based
on the test t® defined in (3.37) does not use the side information and it is referred to
as JSC-NoSI. As discussed in Section 3.3.1, the side information used to perform the
test t” consists of 3 additional bits per sequence pj. The size of this information is
then equal to 3NV}, bits. From Table 3.1, one sees that this supplementary information
represents less than 1 % of the total size of the bit stream.

Both JSC-NoSI and JSC-SI schemes are compared to the standard non-robust de-
coder, which also benefits from the noiseless headers assumption. This decoder
corresponds to M = 1 and is based on hard decisions of the channel decoder.

All the presented results are averaged over 100 noise realizations for both foreman.qcif
and mobile.cif sequences.

3.3.3.1. Influence of the 3D Block Size on JSCD Performance

The aim of this part is to compare the performance of JSCD as function of the
block sizes. As previously mentioned, for these simulations we consider block sizes of
22x 18 and 11 x9 pixels. Decreasing the block size results into increasing the number
of blocks in the bit stream and thus the frequency at which the arithmetic encoder
is reinitialized, but it reduces the encoder efficiency, as illustrated in Figure 3.5.

Block size 22 x 18 11x9
Channel SNR (dB) 9 10 11 12 9 10 11 12
Initial PEB 52.20 3271 1441 3.79 | 42.19 21.87 7.24 1.98

PEB, M =2 44.44 2470 824 1.95]| 3293 13.61 3.36 0.86
PEB, M =38 36.32 1752 5.80 1.77|24.26 7.42 203 0.77
PEB, M = 32 32.11 1411 5.62 1.72120.09 521 1.95 0.71

Table 3.2.: Percentage of erroneous blocks (PEB) as function of M, the block size
and the channel SNR for the JSC-NoSI scheme, foreman.qcif sequence.
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Figure 3.5.: Y-PSNR (dB) as function of the coding rate (kbps) for block sizes of
22 x 18 and 11 x 9 pixels.

Block Size 22 x 18 11 x9
Channel SNR (dB) 9 10 11 12 9 10 11 12
Initial PEB 65.92 46.91 21.96 5.94 | 55.74 28.84 9.83 1.86

PEB, M =2 5894 3798 1293 2.76 | 45.48 17.90 4.67 1.00
PEB, M =8 52.04 28.85 7.27 1.85|33.78 892 263 0.69
PEB, M = 32 4715 24.14 447 157 2820 6.08 1.62 0.57
PEB, M =64 45.67 21.77 390 1432641 543 141 0.52

Table 3.3.: Percentage of erroneous blocks (PEB) as function of M, the block size
and the channel SNR for the JSC-NoSI scheme, mobile.cif sequence.

Tables 3.2 and 3.3 present the percentage of erroneous blocks (PEB) present in
the compressed bit stream as function of M, the channel SNR and the block size,
for the foreman.qcif and mobile.cif sequences respectively. Here only the JSC-
NoSI scheme is considered. The initial PEB, i.e., before correction, is larger when
considering larger blocks, which is explained by the fact that these blocks have a
higher probability to be corrupted than blocks with smaller size. This probability
is equal to 1 — (1 —n)", where 7 is the bit error probability and ¢ is the length in
bits of the entropy-coded 3D block.

Moreover, the PEB decreases when M increases for both block sizes. Relatively to
the initial PEB, this decrease is more significant for blocks of size 11 x9, which means
that the M —algorithm presented in Section 3.3.2 is more efficient for sequences with
smaller size. This is not surprising since the number of candidates examined by the
M —algorithm is relatively more important when considering smaller sequences.

Figure 3.6 shows the average peak signal to noise ratio (PSNR) on the luminance
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Figure 3.6.: Y-PSNR (dB) as function of the channel SNR (dB) for the non-robust
decoder and the JSC-NoSI scheme, for different block sizes.

component Y (Y-PSNR) for the reconstructed foreman.qcif and mobile.cif se-
quences using a standard decoder and the JSC-NoSI scheme, for blocks sizes of
22 x 18 and 11 x 9 pixels. Different values of the parameter M of the M —algorithm
have been considered. As expected, for both block sizes, increasing M increases
the JSCD performance in terms of PSNR, since more candidates are examined by
the M —algorithm. For both sequences, the reconstruction PSNR of the standard
decoder is lower for blocks of size 22 x 18, since the initial PEB is more important.
For a given value M > 1, gains in terms of reconstruction PSNR and in terms of
channel SNR are more important for a smaller block size, e.g., for M = 32 and
for a channel SNR of 11.5 dB, gains in PSNR reach up to 5 dB and up to 2.5 dB
for blocks of size 11 x 9 and 22 x 18 respectively, for the foreman.qcif sequence.
Moreover, for M = 64 and for a channel SNR of 10.5 dB, gains in PSNR reach up
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to 9 dB and up to 4 dB for blocks of size 11 x 9 and 22 x 18 respectively, for the
mobile.cif sequence.

This difference in performance is explained by the fact that the PEB that was
corrected is higher for blocks of size 11 x 9, as deduced from Tables 3.2 and 3.3.
Note that the performance is more important for mobile.cif, which contains a
richer texture; a single erroneous block which is corrected may significantly increase
the reconstruction PSNR.

3.3.3.2. Influence of the Additional Side Information on JSCD Performance

In this section, the improvement brought by the use of the additional side informa-
tion is evidenced. Tables 3.4 and 3.5 compare the PEB when using the JSC-NoSI
and the JSC-SI schemes for the foreman.qcif and mobile.cif sequences respec-
tively, and for blocks of 11 x 9 pixels. As expected, the use of the side information
reduces the PEB present in the bit stream.

JSC-NoSI JSC-SI
Channel SNR (dB) 9 10 11 12 9 10 11 12
Initial PEB 42,19 21.87 7.24 198 | 4219 21.87 7.24 198

PEB, M =2 3293 13.61 3.36 086 | 32.32 13.01 2.74 0.73
PEB, M =38 2426 742 2.03 0777|2286 6.38 181 0.69
PEB, M = 32 20.09 521 195 0.71 1734 3.66 1.75 0.62

Table 3.4.: Percentage of erroneous blocks (PEB) as function of M and the channel
SNR for the JSC-NoSI and the JSC-SI schemes, foreman.qcif sequence.

JSC-NoSI JSC-SI
Channel SNR (dB) 9 10 11 12 9 10 11 12
Initial PEB 05.74 28.84 9.83 1.86 | 55.74 2884 9.83 1.86

PEB, M =2 4548 1790 4.67 1.00 | 45.00 17.44 3.40 0.72
PEB, M =38 33.78 892 263 0.69 |31.79 7.66 134 0.62
PEB, M = 32 28.20 6.08 1.62 0.57|23.77 4.09 0.86 048
PEB, M =64 2641 543 141 0522088 3.17 082 041

Table 3.5.: Percentage of erroneous blocks (PEB) as function of M and the channel
SNR for the JSC-NoSI and the JSC-SI schemes, mobile.cif sequence.

The performance of the JSCD schemes based on the syntax-compliance tests intro-
duced in Section 3.3.1 depends on their ability to detect and correct the erroneous
3D blocks. For a given channel SNR and a given value of M, some of the corrupted
blocks may be deemed as corrected by the M —algorithm, while they still contain
some errors. As mentioned in Section 3.3.1, this comes from the fact that some of
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3.3 JSCD of Single Layer Bit Streams

the errors do not lead to a desynchronization between the arithmetic encoder and
the arithmetic decoder.
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Figure 3.7.: PEB corrected (%) as function of the PEB erroneously corrected (%)
for the JSC-SI and the JSC-NoSI schemes, foreman.qcif sequence, block size
11 x 9.

Figure 3.7 illustrates the PEB that are corrected as function of the PEB deemed
as corrected, while they still contain some errors, for channel SNRs of 9 dB and
10 dB, and for the foreman.qcif sequence. Each curve is parametrized by M = 29,
qg=20,...,5. For M = 32 and a channel SNR equal to 10 dB only 2 % of the
corrupted blocks are erroneously corrected using the additional side information,
while they are about 6.5 % without the use of this information. Moreover, almost
83 % of the corrupted blocks are well-corrected when using JSC-SI, in comparison
with the 75 % when using JSC-NoSI.

The gains brought by the use of the side information reach up to about 2 dB in PSNR
as illustrated in Figure 3.8 for both foreman.qcif and mobile.cif sequences.

Figure 3.9 illustrates the qualitative improvement brought by the JSCD schemes
(JSC-SI and JSC-NoSI) when compared to the standard decoder for the mobile.cif
sequence.

3.3.3.3. Decoding Complexity of the JSCD Schemes

In this part, an upper bound of the decoding complexity for the JSCD schemes is
provided. Let nd, be the number of 3D blocks that are detected as erroneous in the
bit stream for a given parameter M = 27, ¢ € N of the M —algorithm. The N, — n¢
3D blocks, initially deemed as correct, are processed only once by the arithmetic
decoder. The number of 3D blocks, deemed corrected when increasing ¢ by one, is
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Figure 3.8.: Y-PSNR (dB) as function of the channel SNR (dB) for the non-robust
decoder, the JSC-NoSI scheme and the JSC-SI scheme, block size 11 x 9.

ngs —n341. Each 3D block, detected as erroneous when M = 27 and deemed correct

when M = 297! is processed by the arithmetic decoder at most 29** times. Finally,
the ngq,,,ax remaining 3D blocks, detected as erroneous after using M., = 2%
Gmax € N* are processed 29"=< times by the arithmetic decoder. An upper bound
D (Gmax) of the number of 3D block decoding trials is then

Gmax—1

D (Qmax) = (Nb — n(il) + Z (ngq — ngq+1) 2q+1 —I— ngqmax QQmax.
q=0

(3.43)

With the standard decoder, the NV}, 3D blocks are only processed once. The relative
decoding complexity of JSC decoding compared to the standard non-robust decoder
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Figure 3.9.: Reconstructed frames of mobile.cif, sent over an AWGN channel
with SNR= 10 dB and decoded using the non-robust decoder (NR-D), the JSC-
NoSI and JSC-SI schemes with M = 64.

is then

D (Gmax) ‘

C’D (Qmax) - Nb

(3.44)

The relative decoding complexity Cp (¢max ), Gmax = logy M of the JSC-NoSI scheme
is evaluated for the foreman.qcif sequence for different block sizes and channel
SNRs. The results are reported in Figure 3.10-(a). The complexity increases when
the channel SNR decreases, as the number of erroneous 3D blocks to process in-
creases. Moreover, for a given channel SNR, the decoding complexity is higher for
large blocks since the PEB is larger for these blocks. For example, for a channel
SNR of 11 dB and M = 16, the JSC-NoSI decoding complexity is equal to four
times the decoding complexity of a standard decoder, when blocks of size 22 x 18
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Figure 3.10.: Relative decoding complexity Cp (¢) of the JSC decoding schemes, as
function of ¢ = log, (M) for different block sizes and channel SNRs, foreman.qcif
sequence.

are considered. With blocks of size 11 x 9, this complexity is reduced to less than
three times the complexity of the standard decoder.

Figure 3.10-(b) compares the relative decoding complexity Cp (Gmax) of the JSC-
NoSI and the JSC-SI schemes, for blocks of size 11 x 9 and for various SNR levels.
The complexity slightly increases with the use of the side information, as the pro-
portion of erroneous blocks that are detected is increased. With a channel SNR
equal to 11 dB, the decoding complexity of both schemes is less than four times the
decoding complexity of a standard decoder. With an SNR of 12 dB, it is less than
twice.

3.4. JSCD of Multiple Layers Bit Streams

In this section, the JSC decoding presented in Section 3.3 is applied to multiple
layers bit streams.

3.4.1. Layered Bit Stream Generation

As mentioned in Section 3.2, the Vidwav encoder produces a fully embedded and
scalable output by generating a multiple-layer bit stream formed by Ny, layers. To
each layer L,,, m = 1..., Ny, is assigned a target bit rate and a spatial and temporal
resolution.

The layered bit stream generation is illustrated in Figure 3.11. To build the bit
stream of layer L,, at some target bit rate, it is necessary to determine, for each
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Block b,

Entropy

Figure 3.11.: Illustration of the layered bit stream generation.

coding block by, how many bytes of its embedded payload p, have to be included
into this layer. The R-D slope information, obtained at the end of each coding pass
during the entropy coding of by, is used to perform an R-D optimization which
determines the number of coding passes n; ' of py that have to be considered in
Ly,.

Let pém) be the substream of the payload p; that is included into layer L,,. The

header hfcm) associated to pfcm) contains information such as its size e,ﬁm) in bytes, the
number n,(cm) of coding passes involved in p,(cm), as well as the R-D slope information

associated to these coding passes. One has £, = >0 E,(cm) and nj, = Y01 ném).

The header h,(cl) contains also other information of hj that is independent of the
way the payload pj is partitioned between the different layers, such as the spatio-
temporal subband index of the 3D block b, and the associated motion vectors.
Thus, one may write

pr = ((pff))T,..., (p,iNL))T)T (3.45)

and

h, = ((h,(j))T,..., (h;Nw)T)T. (3.46)
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The layers L,,, m = 1,..., Ny, are then formed as follows
Lm = <(h§m))T e (Y (Y () >T. (3.47)

Finally, the vector z to be transmitted is reorganized in layers

= ()" (@a)") (3.48)

3.4.2. JSCD Scheme

The JSCD scheme presented in this section relies on the same Comphance tests
introduced in Section 3.3.1, which are applied here to each substream pk , k=
1,..., Ny of each layer L,,, m =1,..., Ny.

As defined in Section 3.3.1, let A (p,(ﬁm)) be the number of bits processed when

decoding n,(gm) passes of a given payload p,(gm). The number of bits A (h ) that

should be processed in p,(ﬁm) is deduced from the header h,gm). As the header hy
defined in (3.46) is assumed to be reliably transmitted, then A (h,(gm)) = E,(Cm)

For a given layer m =1, ..., Ny, if for some estimate

o = ((6)" (b))

the decoding of > , nk passes requires strictly more or strictly less than > (h,(f))
bits, then p\"™ # pi™™.

As mentioned in Section 3.3.1, the lengths A (h,(gm)) are known in bytes at the

decoder side. The syntax compliance test t® defined in (3.37) may then be used
without introducing any additional information. In this case, error detection is
possible when the desynchronization between the arithmetic encoder and decoder
is sufficient, i.e., when more or less bytes than expected are consumed. The most
reliable compliance test t defined in (3.33) may be considered, provided that each
header hlgm) is supplemented with three bits indicating the number of bits used to

pad the last byte of p,(gm). Erros leading to a single bit desynchronization may then

be detected using ¢ for each substream p,(gm).

The tests t” and t® may be performed to estimate each substream p,(ﬁm) of each layer

L,,,m=1,..., Ny, as follows:

1. form =1, p,(gl) is estimated as in Section 3.3 and 13,(91) is obtained by (3.40) or

by (3.41).

2. for m = 2,..., Ny, assume that estimates f),(f), t=1,....m—1of p,(f) have
been obtained:
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a) as in Section 3.3.2, the M —algorithm is used to get the M most likely

candidates p (1),...,p (M) to estimate pém)

b) k=1
c) do
i if
AR Y B (k) =D A (), (3.49)
i=1
return f),(gm) =p (k)
ii. else k=k+1
d) while k < M.
If no vector p (k), k = 1,..., M satisfying (3.49) is found, the vectors p,gm), o ,p,(CNL)
are dropped and the recovery of the content of the 3D block by is obtained by entropy

decoding the sequence ﬁl(glszl)

3.4.2.1. Efficiency of the Compliance Tests in the Multi-Layer Case

As discussed in the single-layer case, the compliance tests t* and ¢® allow only to
prove that some payload p is not syntax-compliant.

Generalizing to the multi-layer case, the bits contained in some corrupted sequence

<(f,]<€1>)T,...,(f>§€m>)T>T, m=1,..., Ny,

may lead to the processing of exactly > ", E,(f) bits. Therefore, for m = 2,..., Ny,
the fact that

A(BE™) =30 A ()
=1

does not imply that f),(ﬁm) = p,(cm), for each m = 2,..., Ny.

As a consequence, form = 2, ..., Ni, and for a given sequence of estimates f),(:), e ,ﬁ,&m_l)
verifying

AGBE™) =S A M) w11,

i=1

the fact that

A (L B) # oA (uf)
=1
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~(m)

does not necessarily imply that p, "~ # p,gm). Indeed, the arithmetic decoder may
not be desynchronized while decoding a corrupted sequence

(6)" - o))

but a desynchronization may happen while decoding the sequence

()" ) 7))

Therefore, for m = 2, ..., Ny, the syntax-compliance tests t® and t® are less efficient
than for m = 1, since they are based on the estimations f),(j), e ,ﬁ,(gmfl), obtained

at previous layers and which may be corrupted.

3.4.3. Simulation Results

40
sl //e/é—;—/f
& S D

w
L
t
1
1
*
i
i
4
!
1
j
i
o
!
1
a

7.1 —9— Reference PSNR 3 layers
W4 —6— JSC-SI, M=32, 3 layers
- —O— Non-robust decoder, 3 layers|
—6— Reference PSNR 2 layers
—e— JSC-SI, M=32, 2 layers
—o6— Non-robust decoder, 2 layers,
-—*— Reference PSNR, 1 layer
—*—JSC-SI, M=32, 1 layer
—*—JSC-SI, M=8, 1 layer
10 : : : -—*— Non-robust decoder, 1 layer
9

9.5 10 10.5 11 11.5 12 12,5 13
Channel SNR (dB)

Y-PSNR (dB)
N N
o [¢]

N
Pyl

Figure 3.12.: Y-PSNR (dB) comparison of the standard non-robust decoder and
JSC-SI, as a function the channel SNR (dB) when one, two and three layers are
decoded, foreman.qcif, block size 11 x 9.

In this part, the simulation results obtained for the multiple-layer case are presented.
The foreman.qcif sequence is encoded using three layers, corresponding to cumu-
lative bit rates 32 kbps (1 layer), 64 kbps (2 layers) and 128 kbps (3 layers). Side
information is generated for each layer and the JSC-SI decoding is performed using
the syntax-compliance test ¢°.

Figure 3.12 compares the average PSNR obtained at the output of the JSC-SI de-
coder and at the output of the non-robust decoder. The decoding of one, two, and
three layers is performed. Note that the improvement in terms of PSNR brought
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Figure 3.13.: Frame 6 of foreman.qcif transmitted over an AWGN channel with
SNR = 11 dB. Layer L; is decoded using the non-robust decoder (a) and using
the JSC-SI decoder with M = 32 (b).

" \ T g, S T
(b) PSNR=32.63 dB

Figure 3.14.: Frame 6 of foreman.qcif transmitted over an AWGN channel with
SNR = 11 dB. Layer L; is decoded using the JSC-SI decoder with M = 32. Layer
Ly is decoded using the non-robust decoder (a) and using the JSC-SI decoder
with M = 32 (b).

by decoding the third layer becomes less important for low channel SNRs. This is
mainly due to the fact that corrupted substreams which are not detected as erroneous
at the two first layers do not allow the corrupted substreams at the third layer to be
corrected. Even substreams at third layer, which are error-free, may be deemed as
erroneous as discussed in Section 3.4.2.1. The JSC-SI scheme is thus less efficient for
higher (low-priority) layers. However, note that at an equivalent bit rate of 128 kbps,
the JSC-SI scheme working on a three-layered bit stream provides more improve-
ment in PSNRs than the JSC-SI scheme working on a single-layered bit stream, see
Figure 3.8-(b). For example, for M = 32 and for a channel SNR= 10.5 dB, the gain
in PSNR brought when considering three layers is about 10 dB when compared to
the non-robust decoder, while it is about 5 dB in the single layer case.

Figures 3.13, 3.14 and 3.15 show the qualitative improvement brought by the pro-
posed JSC-SI scheme on the 6—th frame of the decoded foreman.qcif sequence,
when compared to the non-robust decoder. The layers are successively decoded and
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|

(a) PSNR=35.75 dB (b) PSNR=36.30 dB

Figure 3.15.: Frame 6 of foreman.qcif transmitted over an AWGN channel with
SNR = 11 dB. Layers L; and Ly are decoded using the JSC-SI decoder with
M = 32. Layer Lj is decoded using the non-robust decoder (a) and using the
JSC-SI decoder with M = 32 (b).

the visual improvement is illustrated for each decoded layer.

3.5. Conclusion

In this chapter, we have presented an efficient joint-source channel video decoding
scheme which exploits the source residual redundancy. Simulations have shown that
this scheme is able to correct transmission errors introduced by error-prone channels
and improves the reconstruction of the corrupted video bit streams. Moreover, the
additional redundancy, introduced in the headers at the encoder side, improves the
decoding performance at the price of a slight modification of the syntax of the bit
stream and of a little increase in the bit rate. The number of erroneous blocks is
then significantly reduced.

In the next chapter, we propose to apply this robust decoding scheme in a multiple
description context.
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In Chapter 3, we have proposed a joint-source channel decoding technique which
combats errors occurring during a noisy transmission.

In this chapter, we consider a more general transmission scheme consisting of a
mixed network, formed by a packet-loss wired part followed by a noisy wireless
channel. The effect of packet losses occurring on the wired part is mitigated by
multiple description coding, which avoids packet retransmission and reduces trans-
mission delays. The aim of the joint source channel decoding approach described in
Chapter 3, is to correct transmission errors introduced by the wireless part of the
network and remaining after channel decoding. This allows to increase the number
of error-free packets which are processed by the multiple description decoder. The
redundancy introduced between the descriptions is then used to exploit the received
and corrected packets and reconstruct the video sequence.

4.1. Problem Formulation

Assume that some video sequence has to be encoded and transmitted from a server
to a client via a heterogeneous network. A typical application context, illustrated
in Figure 4.1, is video streaming to a mobile client connected to some 3G /4G base
station or WiFi access point. The network consists of a wired part introducing some
losses e.g., packet-switched network such as Internet, and a wireless part introducing
some noise in the transmitted bit stream.

As in Chapter 3, the frames of the video sequence are assumed to be represented by
a vector x. In Chapter 3, we have assumed that the transmission were losses-free. In
this chapter, the wired part of the network is not reliable. To mitigate packet losses
occurring in this part e.g., due to congestion or router failure, a multiple description
(MD) encoder is employed to produce two correlated descriptions x") and x of x

xW =F (x), i=1,2, (4.1)

where F (-) is the coding function for the i-th description. Prior to transmission,
the descriptions are quantized and entropy coded to get

z) = E (X(i)) : (4.2)
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Figure 4.1.: Heterogeneous video transmission scheme of multiple description bit
streams.

where as in Chapter 3, E () denotes the entropy coding function assumed indepen-
dent of the description' . The entropy-coded descriptions z®, i = 1,2 are then
packetized into N, ; packets zg) of more or less similar lengths to get

= () )T)
(@)

Some packets z;” may be lost in the wired part of the network, some are received
affected by noise introduced by the wireless part of the network. The channel model
introduced in Chapter 3, is adopted here and similar notations are used for each
description to model the channel state information

p(z) _ (P(1)> o ’pgv)’i)
and the decoder soft information

(0= () ()

The content of r,(f), k =1,...,N,; may only be exploited if p,(f) > 1, d.e., if the
packet is not lost.

Tn some MD coding schemes, such as MD scalar quantization not considered here, F(?) may
incorporate the quantization step.
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4.1 Problem Formulation

4.1.1. Optimal MAP Estimation

The aim here is to evaluate the MAP estimate Xyap of x knowing p(i) and r,
1=1,2

Ruap = argmaxp (x|p"), p@, 1), r@) (4.3)
Marginalizing (4.3) with respect to z(!) and z(?), one gets

52MAP = arg l’Il)E(i,X Z p (Xv Z(l)v Z(2)|p(1)7 p(Q)a r(l)a r(2)) ) (44)

2(1) 2(2)

where

1 H@ 1) 2 1) (2 1) 2
p<X 20, 2| p0_ p@ 31 r(z)):p(x)p(ﬁ’ pP e r®x, 21 7 )p(z ,Z |x).

p(pW, p®,r0), r)
(4.5)

Since z(!) and z® are deduced from x, in (4.5) one has

p (20,29 )x) = {1 it 20=E (F (x), i = 1,2

0 otherwise.

Using the fact that x does not provide more information than E (F(i) (X)), 1=1,2
on p@ and r™ | from (4.5) one gets

X\MAp = argmax p (x) p (p(l), p? rW @ E (F(l) (x)) JE (F(Q) (X))) . (4.6)

Again, the estimator in (4.6) is not easily obtained. This estimator has been em-
ployed, e.g., in [1], where MD is performed by duplicating spatial subbands ade-
quately quantized to minimize redundancy. However, (4.6) is unpractical for the
MD scheme we have considered.

As in Section 3.1.2.2 of Chapter 3, one may proceed by estimating first z(!) and z®,
accounting for the fact that these entropy-coded descriptions have been generated
from the same video signal x, before deducing an estimate for x. The resulting
constrained MAP estimator of z() and z® knowing p® and r®, i = 1,2, is

71 7(2)) — 1) 22,1 H2) (1) (2
AN/ = ar ma VAN / ) , v ) 4.7
( ) 5 (z(1)7z(2))()68p ( pp ) (4.7)

where

S = {(z(l), Z(Q)) st 3x | z=E (F(l) (x)) and z? = E (F(Q) (X))} (4.8)
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Chapter 4 JSC Decoding of Multiple Description Encoded Video

is the set of all pairs of entropy-coded descriptions that may be generated from all
the possible x.

Using Bayes’ rule, (4.7) becomes

(2(1)’ 2(2)) =arg max p (p(l), p@ M @z Z(Q)) P (z(l), Z(Q)) . (4.9)
(Z(l),Z(Q))ES

In (4.9), one has

p (P, p, 10 2P0 22) = (0 2|0, p@ 70 7 (p0, o[z, 7)) .
(4.10)

Assuming that the transmission of each description follows its own route, with in-
dependent transmission conditions, in the wired part of the network, one has

2
W @1,0 @) _ ()1, | _
p(p N VAN ) i]_[lp(p |z ) (4.11)

Furthermore, assuming that the realizations of the wireless part of the network are
independent for each description, one gets

P (ru)’ 1@ p@ 5O Z@)) — ﬁ » (r<@'>| p, z<i>) : (4.12)
i=1

The assumptions made in Section 3.1.2.2 of Chapter 3 for a single description bit
stream and which concern the independence of the congestion conditions and of the
wireless channel realizations, for each transmitted packet, may be considered here
for each description z. One finally obtains

(2(1)’ 2(2)) = arg (Z(lglz?;)()esp (z(l), Z(z)) Z:Hl k:;p (r](gi)‘pl(j)’ z,(f)) D (Pi(j)|zi(j)) )

(4.13)

Note that in (4.13), when ,0,(;) = 0, the packet has been lost before reaching the

wireless part of the network. In this case, p (rg)| p,(j),z,(f)) is independent of z,(j).

When p,(;) > 1, the evaluation of p (r,(f)| p,(;), z,(f)) depends on the values of z,(;) and
p,(f) and on the channel model. Moreover, in (4.13), determining whether a pair
(z), z?)) belongs to the set S, depends on the MD coding scheme used to generate

the two descriptions. This scheme is described in the next section.

4.2. MD Coding Scheme

As in Chapter 3, the number of frames considered in x is denoted by N, and
N = N¢N,N. is the total number of entries of x, where N, and N. denote the
number of rows and columns in each frame respectively.
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4.2 MD Coding Scheme

The considered MD coding scheme relies on a redundant motion-compensated wavelet
decomposition with J levels in the temporal domain based on the Haar filter bank
[148]. We have implemented the MD scheme of [145], on the Vidwav coder presented
in Section 3.2, which is originally designed for single description coding. This MD
scheme belongs to the family of frame expansion, presented in Section 2.4.2.3 of
Chapter 2.

The redundancy between the descriptions is introduced by an oversampled decom-
position at the last temporal level J, leading to a redundancy factor in terms of

J
number of frames equal to 1 + (%) . The J-th temporal decomposition is repre-

sented by an N(1 + (3)7) x N redundant transform matrix 7. The redundant
vector of temporal subbands y* of size N(1 + (3)”), is obtained as follows

T T
y =17y T () (i) ) (414

where Nf = Ni(1 + (3)7) and y%, n = 1,..., Nf is of size N,N.. The temporal

subbands y" are spatially transformed to get

s = S’y = ((sg)T o (sﬁvfr)T)T, (4.15)

where S is the N* x N' block diagonal matrix, with N* = N{N, N, of the same
structure as the matrix S defined in (3.18).

The vector of redundant spatio-temporal coefficients s' is further partitioned into two
descriptions. Let N and N'® be a partition of {1,..., Nf}. Then the description
x( contains all s, with n € A/, This partitioning can be represented by x) =
PUWs' i =1,2, where PY is a % x N' binary matrix defining the partition of frames
in the spatio-temporal subbands within each description. As in [148], a balanced
partitioning scheme is considered, to allow an independent reconstruction of each
description with similar quality. The MD encoding functions F) introduced in (4.1)
are then

PO — P(i)SrTﬁijl T =12 (4.16)

As in the case of single description coding, each x* is organized into Ny, ; 3D blocks
by, k =1,..., Ny;. These blocks are further independently entropy-coded using the

3D-ESCOT algorithm to get z,(;), leading to the bit streams

7 — ((zgi))T ey (Z%{)’i)T)T = E(x(i))7 1=1,2.

In this chapter, one layered bit streams are considered for each description. Note
however that multiple layer bit streams may be generated for each description,
leading to a scalable MD coding scheme. Along this chapter, the notation (-)(’),
1= 1,2 is used to refer to which description a given sequence belongs.
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4.3. JSCD of the Descriptions

The aim of this section is to provide a practical implementation of (4.13), which is
adapted to the MD coding scheme presented in Section 4.2.

As in Chapter 3, we assume for simplicity sake that each packet z,(f) introduced in

Section 4.1 contains a single 3D block. In this case, N,; = Ny, © = 1,2. Moreover,
all the pairs (z(l), Z(Z)) € § are assumed to be equally probable a priori, so that
(4.13) becomes

i

(2(1)’ 2(2)) — arg max ﬁ ﬁ P (rg»i)\py), ij)) D (pg»i)\zy)) . (4.17)

(ZEZ)Vb 20, 2) esi=1j=1

where

Zg%%¢:: <<Z¥))T7"'7(Z%%¢)T>Tt

Now let us consider the sets
SO = {z(i) st 3Ix | z=E (F(i) (X))} (4.18)

and

S]E:Z) — {Z](;) St HX | 3 (igl), e ey Z](i.lzl, i](ﬁlj_la ceey Zgl/{’z) )

() () ) 682) o ()') (0 00)
(4.19)

The sets S® and S,Ei) contain respectively all the entropy-coded descriptions and all
the entropy-coded 3D blocks z,(;), k=1,..., Np,; one may obtain considering all the
possible values of x.

Remark 2. One has

Np1 N2
Sc8Wx8?c (@ 3,@”) X (@ 5,9) . (4.20)
k=1 k=1

Consider (z(l), Z(Q)) € S. From (4.8), there exists some sequence x such that z() =
E(F9(x)), i = 1,2, which implies z) € S and (z(l), Z(Q)) € SW x 8@, Consider
now (z(l),z@)) e SW x S@ . Fori=1,2

Ix; st z® = ((zgi))T e (z%)bl)T)T = E(FY(x,)), (4.21)
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and thus zl(f) € S,gi), kE=1,..., Ny, leading to PAC= ( NbZS(Z ) and (z,z?)) ¢
N)l N 2

(@i 8”) x (@21 5.7).

In general, S # SM x S®). Consider (z(l) Z(2)) c S x 8@ and let X (z(i)) =
{X st z) = E(F(i)(x))}. If X( ) N X( ) # () then (z(l),z(z)) € S. Assume
now that for all (z(l) z 2)) € SW x 8@ one has X (z(l)) n&x (Z(Q)) # (. This
means that z") and z® are independent, which is not the case in a general MD
coding scheme, as soon as it 1ntroduces some redundancy. Similarly, to show that
S x S@ = <®Nf’1 S,gl)) <®Nb2 ), it suffices to show that (®k )) C

S, § = 1,2. For that purpose, one has to show that ﬂN‘” ( Z;, ) # () for all

zgl N <®Nb18,€l ) Necessary conditions for this is that the quantization and

entropy-coding operations of each z,(f) are performed independently and that each
individual F® does not introduce any redundancy.

Similarly to the single descrlptlon codmg case on may derive a suboptimal estimator
for each component zl(€ Jk=1,...,Ny; of z9 i =12 using (4.17) and (4.20)

Z,(;) = arg ma)%)p (rk \pk , (Z)) D (p,(;)|z,(j)) . (4.22)
€S,

This estimator may be used only when pgi) 1. The estimator (zﬁvb ,2&2])% ) is a

suboptimal solution of (4.17) since (2%1])% . zﬁ)\,b 2) is not necessarily in S, see (4.20).

In what follows the estimation process of z k) is described when p,g) > 1, then when

pi = 0.

4.3.1. When )\ > 1

As in Chapter 3, each transmitted packet z , k=1,..., Ny, consists of a header
h,(g and a payload pk

o = ()" )"

The received vector

= ()" (5))

(4)

contains soft information on h( ) given by r and on p;’ given by rk)

P’

Moreover, the header h,; is assumed to be received without errors. As mentioned
earlier, the term p (p,(;)|z§;)) in (4.22) does not depend on the content of z,(J) but on
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its length which is stored in h,(j). Thus, the estimation problem in (4.22) reduces to
evaluate

py =arg  max  p(ri)le.py). (4.23)
pf’ st (np" )es(”

The estimation in (4.23) is performed as in the case of single description bit streams,
presented in Section 3.3 of Chapter 3 by using a JSC decoder which exploits the
residual redundancy left in each description. The syntax compliance tests t” and
tB introduced in Section 3.3.1 are considered for each p,ﬁ’ to eliminate the elements
which are not syntax-compliant by using the M —algorithm as described in Sec-

tion 3.3.2.

4.3.2. When " =0

When pgi) = 0, the estimator in (4.22) cannot be used since neither r,(f)h nor I'ii%
are available. All vectors z()

z,(;) is to take the all zero vector and to replace the coefficients in the corresponding
spatio-temporal subband by zeros, or to ignore these coefficients when performing

reconstruction, as will be presented in the next section.

are equally likely. The most reasonable estimate for

4.4. Reconstruction

. . . - (2
In this section, we propose to reconstruct the video stream x from (zgj)v ,zg.])v )
«4iVb,1 «iVb,2

obtained as described in the previous section. Consider the vector

20 — <<)~(§z))T’” ( %ll)T)T,

with i,(f) = Eil(i,(j)) if ,0,(;) > 1 and x ~(Z = 0 otherwise, where E™! represents
the entropy decoding function assomated to E. By combining X and x®, and
assuming that all the corrupted blocks have been efficiently corrected, one gets the
vector s which is a version of the transmitted vector of spatio-temporal subbands
s, affected by quantization noise and block losses. The aim is to recover x from s'.

In a first time, we consider the case where there are no lost blocks, i.e., ,0,(;) > 1,
k=1,...,Ny;, i =1,2. Then s" is only affected by the quantization noise and the
reconstruction of x corresponds to central decoding. After inverse spatial transform

of s', one obtains the vector of temporal subbbands w = (S’“)_1 S

As mentioned in Section 4.2, the redundancy between the two descriptions is intro-
duced at the last temporal level J by the means of oversampled motion-compensated
temporal filtering. In [148], the central decoding is performed on w to recover the
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frames of the temporal approximation subband at level J — 1 (the detail frames of
the temporal levels 1, .., J — 1 do not contain any redundancy). The reconstruction
for a temporal approximation frame at level J — 1 is performed by the central de-
coder either by taking into account only one reconstructed description, given by one
of the side decoders, or by computing the mean of the reconstructions provided by
the two side decoders, as proposed in [148]. We point out that this central decod-
ing corresponds to multiplying w by the pseudo-inverse of the redundant temporal
transform 7" when no motion estimation/compensation is considered.

Let us now consider the case where blocks have been lost. The spatio-temporal
approximation subband contains the most important part of the bit stream. A
block lost in this subband can seriously damage the whole reconstruction of the
video sequence. To limit the damage propagation when losses occur within this
subband, we identify the frames of the temporal approximation subband at level
J — 1 that would be affected by these losses. Once these frames are identified, they
are reconstructed by taking into account only the description wherein these blocks
have been correctly received; otherwise, if the same blocks have been corrupted in
both descriptions, the central decoding is performed as in [148]. For the temporal
detail subbands, the lost blocks are simply replaced with zero coefficients, losing
thus the details of the inverse motion-compensation.

In this reconstruction approach, neither spatial nor temporal concealment has been
considered. Only the temporal correlation between the descriptions has been ex-
ploited to reconstruct the temporal approximation frames at level J — 1.

4.5. Simulation Results

For the experimental part, the foreman.qcif sequence has been encoded at a frame
rate Ry = 15 frames per second (fps) using the temporal MD coding scheme pre-
sented in Section 4.2, with J = 3 temporal decomposition levels and 3 spatial
decomposition levels. The 3D blocks are of size 11 x 9, as in the Chapter 3, the
proposed JSC decoding scheme has proven to be more efficient for this block size
than for a block size of 22 x 18. The number of frames considered in x is Ny = 32.

In the next section, we provide some statistics about the proportion of headers and
data generated by the MD coder and the amount of redundancy introduced by the
additional side information (SI) to allow the use of the syntax-compliance test t°.

4.5.1. Bit Stream Organization
For both single description (SD) and MD coding schemes, the generated bit stream

is put into packets of approximately the same size, with a length limit of L., =
1000 bytes. Each packet contains an integer number of encoded 3D blocks. The
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headers of these 3D blocks are gathered in the beginning of each packet. These
headers are then protected using a strong FEC, to ensure their good reception, even
when the wireless part of the channel is noisy. Alternatively, one may use the FEC
provided by the network, such as the check sum of UDP-Lite [90, 108], which may
then be used as error-correcting code as detailed in [108] to improve the reliability
of the header in presence of channel impairments. In what follows, we assume that
thanks to the strong FEC or using the technique in [108], one gets error-free headers
at decoder side.

Figure 4.2 presents the percentage of headers ¢fP (R) and ¢} (R) in the generated
SD and MD bit streams as function of the coding rate R. In both cases, as the rate
increases, ¢y decreases. Moreover for the same coding rate R, one has ¢MP (R) >

SD(R). There is some redundancy in the headers generated by the MD coder
(number of frames N¢, number of spatial and temporal levels, number of descriptions,
etc.). In what follows, we assume that using properly-designed header compression,
one manages to get ¢MP (R) ~ ¢5P (R).

—— MD coding
—e— SD coding

Percentage of headers (%)

8 i i i i i i i i i
50 60 70 80 90 100 110 120 130 140 150
Rate (Kbps)

Figure 4.2.: Percentage of headers (%) in the total bit stream as function of the
coding rate (kbps), for MD and SD coding.

As mentioned before, the length in bytes of each encoded 3D block is already present
in the headers. Transmitting this size in bits requires three additional bits per 3D
block. The corresponding amount of redundancy is

ds1 = i 3N
- Ny i i i)y’
Y2 s i) + o(py)

(4.24)

where £(h") and £(p\”) denote the lengths of h{” and p” respectively. This redun-
dancy has been evaluated for several coding rates going from 50 kbps to 150 kbps
and found to be almost constant and equal to 1 %. The 3 bits per 3D block may be
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inserted into the headers to implement the syntax compliance test t" instead of ¢®
as described in Section 3.3.1.

4.5.2. Performance of the JSCD Scheme

In this section, we present the performance of the robust JSC decoding scheme
applied to both descriptions as presented in Sections 4.3 and 4.4. We assume in
a first time, that no packet is lost in the wired part of the network and that the
wireless link is described by a BPSK modulation and an additive white Gaussian
noise (AWGN) channel with a known signal-to-noise ratio (SNR), i.e, p,(f) =1,
k=1,...,Ny;, © = 1,2. The first N; frames of foreman.qcif are encoded at
75 kbps. The parameter M of the M —algorithm is increased to M = 1024.

Figure 4.3 shows the residual bit error rate (BER) for various channel SNRs as
function of M when using the test ® defined in (3.37) (JSC-NoSI) and when using
the test t* defined in (3.33), requiring the SI (JSC-SI). The results for both descrip-
tions are similar and have been averaged in all the presented figures. The value
M = 1 corresponds to a plain standard central decoder. As expected, increasing
M decreases the BER in the compressed bit stream. Moreover, the use of the side
information decreases the BER and is especially useful when M is large. It allows
to gain more than 0.5 dB in terms of channel SNR at 9.5 dB or higher.

T T T T
—6— SNR=9 dB JSC-NoSI
—-0- SNR=9 dB JSC-SI
—=8— SNR=9.5 dB JSC-NoSI
—-o-- SNR=9.5 dB JSC-SI
: —b>-- SNR=10 dB JSC-NoSI
o= —>— SNR=10 dB JSC-SI
—— SNR=10.5 dB JSC-NoSl|.. |
—0-- SNR=10.5dB JSC-SI |9
=g
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o
L
m
e
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h=|ogz(M)

Figure 4.3.: BER as function of ¢ = log, (M), for various channel SNRs.

As discussed in Chapter 3, the performance of the JSC decoding schemes based on
the syntax-compliance tests t” and t® depends on their ability to detect and correct
erroneous 3D blocks. With a channel SNR of 9 dB, initially with JSC-NoSI, about
9 % of the erroneous 3D blocks were deemed as correct and thus missed. With
JSC-SI, the percentage of erroneous blocks (PEB) missed is reduced to 3 %.
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Figure 4.4.: PEB corrected (%) as function of the PEB erroneously corrected (%)
for the JSC-SI and the JSC-NoSI schemes, channel SNR of 9 dB.

Figure 4.4 illustrates the PEB that are well corrected as function of the PEB that
are erroneously corrected for the JSC-SI and JSC-NoSI schemes and for a channel
SNR of 9 dB. For M = 1024, only 7.2 % of the corrupted blocks are erroneously
corrected using the SI while they are 16.9 % without SI. Moreover 87.4 % of the
corrupted blocks are well corrected when considering JSC-SI to be compared with
71.8 % when considering JSC-NoSI. As in SD coding, the additional side information
reduces the amount of corrupted blocks which are erroneously corrected.

Figure 4.5 presents the performance of the JSC decoding schemes in terms of the re-
construction PSNR, for different values of the channel SNR and of the parameter M.
The reference PSNR for the MD decoder without channel impairment is 34.14 dB.
The gain obtained by the JSC-SI scheme reaches up to 6 dB in PSNR when com-
pared to the JSC-NoSI scheme, for a channel SNR of 9 dB and for M = 1024. As
previously mentioned, the curve for M = 1 corresponds to the standard non-robust
MD decoder. Compared to this non-robust decoder, the gain in PSNR reaches up to
7 dB considering the JSC-NoSI scheme and up to 10 dB using the JSC-SI scheme,
with M = 1024 and a channel SNR of 9.5 dB.

In terms of decoding complexity, the upper bound D (guax) defined in 3.43 is eval-
uated here as follows

Gmax — 1

D (Qmax) = (Nb,l + Nb,2 - TLT) + Z (ngq — ngq-H) 2q+1 + ngqmax 2qmax’
q=0

(4.25)

where ng, denotes the number of 3D blocks of both descriptions, deemed as corrupted
for M = 29, g € N. The relative decoding complexity of the JSC decoding scheme
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Figure 4.5.: Y-PSNR (dB) as function of the channel SNR (dB) for JSC-SI and
JSC-NofI for different values of M.

compared to a standard MD decoder is computed as

C(D <Qmax> =

D (qmax)
Ny + Ny o

(4.26)
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decoding schemes as function of ¢ = log, M, for different channel SNRs.

Figure 4.6 presents Cp (¢max) With ¢umax = logy, M for the JSC-SI and JSC-NoSI
schemes and for different values of the channel SNR. As in the case of SD coding,
the complexity increases when the channel SNR decreases, since the number of
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erroneous 3D blocks increases. Moreover, the complexity increases with the use
of the SI since the detection rate of corrupted blocks is more important. With a
channel SNR above 10 dB, the JSC decoding complexity is less than three times the
decoding complexity of a standard decoder. With an SNR above 10.5 dB, it is less
than twice.

The performance of JSCD obtained for the considered MD scheme is similar to the
one obtained in the SD case. As discussed in the Chapter 2, the aim of using an
MD scheme is to enhance the robustness of the transmitted data to transmission
errors and/or to channel erasures. The price of such a robustness is an increase of
the total bit rate due to redundancy introduction between the descriptions.

In the next section, the MD scheme proposed in Section 4.3 is compared to a classical
SD coding scheme introducing the same amount of redundancy.

4.5.3. Comparison to an SD Scheme Combined with a FEC

In this section, the proposed JSC coding schemes are compared to an SD coding
scheme introducing the same amount of redundanct. The PSNR as function of the
coding rate for the SD scheme and MD schemes (without and with the use of the
side information) is depicted in Figure 4.7 in absence of channel impairments (errors
and losses).

sl —e— 8D coding |
—— MD coding, NoSI
30 -o--MD coding, SI .
29 L L L L L L L
20 40 60 80 100 120 140 160 180
Rate (Kbps)

Figure 4.7.: Y-PSNR (dB) as function of the coding rate (kbps) for the SD coding
scheme and the MD coding scheme with and without the use of the additional
side information (SI).

Let Ry, and R3p be the bit rates corresponding to the transmission of the texture
(payloads of the entropy-coded blocks) of the MD and SD coding schemes. For an
equivalent reconstruction quality, one has R{;p > RSp. To get an equal bit rate, the
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rate of the FEC to be used to protect the data generated by the SD coding scheme
is equal to

Rd
TINoSI = Rl(\j/[Da (427)
SD

without the use of the additional side information. When this information is con-
sidered, the rate of the FEC to be used is

 3B(N1 + No)Re/Ne + Ry
nNs1 = d )
Rgp
where 35(Ny + Ny)R;/Ng is the rate due to the three additional bits stored in the

headers to use the test tPand 3 accounts for the redundancy that may be introduced
to protect the headers of the 3D block.

(4.28)

In what follows, 5 = 1.2. Packet-erasures FECs [134, 15, 142], bit-error correcting
FECs or a combination of both FECs may be associated to the SD coding scheme.
Here, we choose to focus on bit-error correcting FECs implemented using Reed
Solomon codes. The JSC multiple description coding schemes are compared to an
SD coding scheme followed by a Reed Solomon code and denoted by SD-FEC.

1.15
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" -o--JSC-S|
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32 25 5 35 54 345 3 %55 36
Y-PSNR (dB)

Figure 4.8.: Redundancy nnos1 and ng; as function of the Y-PSNR (dB).

The values of nnos1 and 7 are shown in Figure 4.8, as function of the reconstruction
PSNR. As one can see, the redundancy increases with the PSNR. The performance
comparison is done considering the same amount of redundancy for the same recon-
struction PSNR between SD-FEC and JSC-SI, or between SD-FEC and JSC-NoSI.
For JSC-NoSI, a redundancy nnos1 = 1.06 is obtained at 78 kbps with a PSNR
of 34.34 dB, whereas ns; = 1.06 is obtained for JSC-SI at 67.5 kbps leading to a
PSNR of 33.5 dB. Moreover for JSC-NoSI, a redundancy nnes1 = 1.04 is obtained
at 62 kbps with a PSNR of 33 dB, whereas ng; = 1.04 is obtained for JSC-SI at
55.5 kbps leading to a PSNR of 32.4 dB.
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In a first set of experiments, the wired network is assumed to be lossless, i.e, impair-
ments are only introduced by the wireless channel. In a second set of experiments,
packet losses as well as channel impairments are considered.

4.5.3.1. Lossless Wired Network

Here again, the wired part of the network is assumed lossless. For various channel
SNRs, Figure 4.9 compares the PSNR obtained with SD-FEC and JSC-NoSI for
MNost = 1.06. It also compares SD-FEC and JSC-SI for ng; = 1.06. The JSC-NoSI
performs better than SD-FEC for a channel SNR less than 9.15 dB while JSC-SI is
better than SD-FEC when the channel SNR is less than 9.3 dB. The degradation
in PSNR is quite abrupt with the SD-FEC scheme, and smoother with both JSC
schemes.

35 T T T T 35

301

©
S
T

N
o
T
N
o
T

/
;
/
,
/
’

Reference PSNR
- --(DC-FEC
—>—JSC-NoSI, M=1024 ——JSC-SI, M=1024
e —e—JSC-NoSI, M=256 L —o—JSC-SI, M=256
0l L ——JSC-NoS|, M=64 ] 10l . —e—JSC-SI, M=64
-7 ——JSC-NoSI, M=32 - ——JSC-SI, M=32
——M=1, Non-robust Decoder -

Reference PSNR
- --SD-FEC

Y-PSNR (dB)
8
Y-PSNR (dB)
N
5]

——M=1, Non-robust Decoder

I I I
9.5 10 10.5 8 8.5 9.5 10 10.5

8 s.‘s 9 9
Channel SNR (dB) Channel SNR (dB)

(a) JSC-NoSI (a) JSC-SI

Figure 4.9.: Y-PSNR (dB) as function of the channel SNR (dB) for SD-FEC, JSC-
NoSI and JSC-SI with nyest = 1.06.

Figure 4.10 compares the PSNR obtained with SD-FEC and the JSC schemes, as
function of the channel SNR when nnos1 = ns1 = 1.04. With this smaller redundancy,
JSC-NoSI performs better than SD-FEC for a channel SNR less than 10 dB. The
JSC-SI scheme performs better than the SD-FEC one for a channel SNR less than
10.4 dB. At a channel SNR of 9.5 dB, a gain in PSNR of about 7 dB is obtained
with JSC-NoSI and about 8 dB with JSC-SI.

4.5.3.2. Lossy Wired Network

Now, the wired part of the network introduces packet losses. The first Ny = 256
frames of foreman.qcif are encoded at the same frame rate R¢ = 15 fps. The wired
part of the network is modeled by a memoryless packet erasure channel with loss
probability pr,. The wireless part is still modeled as an AWGN channel. At the
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Figure 4.10.: Y-PSNR (dB) as function of the channel SNR (dB) for SD-FEC,
JSC-NoSI and JSC-SI with nyost = 51 = 1.04.

decoder side, the approach described in Section 4.4 is adopted, in order to mitigate
the effect of packet losses in the JSC case. For the SD case, lost data are replaced
by zeros. Moreover, for the JSC decoding schemes, M = 256 is considered.
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Figure 4.11.: Y-PSNR (dB) as function of py, for SDC-FEC and JSC-SI for a chan-
nel SNR of 10 dB.

Figure 4.11 shows the performance of SD-FEC and JSC-SI in terms of reconstruction
PSNR as function of py, for ns; = 1.06 and for ns; = 1.04. Without losses, SD-FEC
outperforms JSC-SI. However, with pr, > 5 % (resp pr, > 3 %), JSC-SI outperforms
SD-FEC by up to 1 dB (resp. 2 dB) for ns; = 1.06 (resp.ns; = 1.04). The difference
is mainly due to the compensation of the lost 3D blocks in one description by the
other description, and by the use of the JSC decoding scheme in the MD schemes.
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Chapter 4 JSC Decoding of Multiple Description Encoded Video

4.6. Conclusion

In this chapter, we have applied joint source channel decoding exploiting the source
residual redundancy in a multiple description coding context. The aim was to
present a typical application of such a scheme, e.g., video broadcasting over mixed
architectures, in which retransmission of the lost data is not allowed. The redun-
dancy introduced between the descriptions is exploited to compensate packet losses,
whereas the joint decoding allows to increase the number of error-free packets reach-
ing the multiple description decoder, and thus to improve its performance.

In the considered multiple description scheme, the redundancy is introduced by using
an overcomplete temporal decomposition which operates an expansion of the input
video signal to generate the two descriptions. The linear relations between the entries
of the descriptions may be exploited to detect and correct some of the transmission
errors. However, this redundancy is only exploitable after entropy decoding and
inverse spatial transform. This makes it difficult to use this redundancy directly from
the channel soft outputs. Moreover due to motion estimation and compensation,
a single entry in one of the descriptions may be involved in several linear relations
making the error detection and correction particularly difficult.

In the next chapter, we study, in a more theoretical context, schemes operating
such a signal expansion. The aim is to explore the way the introduced redundancy
could be exploited to detect and correct transmission errors in a joint source channel
coding framework.
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5. Robust Estimation from Noisy
Overcomplete Signal
Representation

In Chapter 4, multiple description coding based on a redundant transform in the
temporal domain has been combined with joint source-channel decoding techniques
in order to enhance the robustness of transmitted video content to transmission
errors and losses. Such signal expansion introduces some redundancy within the
data to be transmitted, which may be efficiently exploited to detect and correct the
transmission errors.

In this chapter, the general problem of estimating the input signal of some redundant
linear transform is addressed and two efficient estimation approaches are proposed.
These estimation schemes are then applied to oversampled filter banks used in image
coding applications and a comparison of their performance is provided.

5.1. Introduction

X y z
— » H »
\ 4
Channel
X y r
<« |Fstimation| Q7' |

Figure 5.1.: Considered transmission scheme.

The considered transmission scheme is presented in Figure 5.1. The vector x € RY
to be transmitted is assumed to be the realization of some random (yet correlated
in the case of video sequences) vector X. This vector goes through an M x N
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Chapter 5 Robust Estimation from Noisy Overcomplete Signal Representation

transform matrix H. The resulting vector y = Hx is first quantized to get the
vector of quantization indexes z, then transmitted through some noisy channel.

The problem one is faced with is to estimate the input vector x. Classical approaches
handle this problem by using the hard decisions of the channel decoder, then by
performing a reconstruction which minimizes a given metric, e.g., the mean squared
error. In the particular expansion case (M > N), these approaches are not efficient,
since they do not fully exploit the redundancy introduced in the output vector y,
i.e., the linear dependencies between the entries of y are not taken into account
during the estimation of x, in order to detect, e.g., the transmission errors.

As discussed in the previous chapters, the redundancy present in y may efficiently
be exploited at the receiver side to perform joint source-channel decoding (JSCD).
To implement JSCD at the application layer, we assume as in Chapters 3 and 4 that
permeable protocol layers [75, 42] and robust header recovery mechanisms [101] are
implemented, so that the soft information coming from the channel decoders at
physical layer reaches the application layer. The channel represents then all what is
between the quantization output and the inverse quantization input, including the
entropy coding, the network packetization and the physical channel, as well as the
corresponding robust depacketization and entropy decoding modules [42]. At the
output of this channel, the soft information r on the transmitted bits is obtained.

In this chapter, data redundancy is introduced by the mean of a redundant linear
transform. A first direction to exploit such a structured redundancy between the
samples of y is to perform a consistent estimation of the input x, i.e., an estimation
in the subspace of the vectors that could have been obtained from the expansion
matrix H. A second proposed direction to estimate x considers the estimation
problem illustrated in Figure 5.1 as a linear mixing problem, which may be handled
using belief propagation [120] in order to evaluate the marginal posterior probability
distribution of each entry of x knowing r [128, 129].

In the sequel, we present the linear mixing problem in Section 5.2. Then the optimal
estimator is derived in Section 5.2.1. The proposed reconstruction approaches, based
on consistent estimation and belief propagation are described in Sections 5.3 and
5.4. Finally, the application to oversampled filter banks is presented in Section 5.6.

5.2. Problem Formulation

Let px (x) be the probability density function (PDF) of the random vector X =
(Xq,..., X M)T. The vector y obtained at the output of H is a realization of the
random vector Y = (Yi,... ,YM)T. Along this chapter, the study is limited to the
case of an expansion (M > N), i.e., the output vector

y = Hx, (5.1)
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5.2 Problem Formulation

contains more samples than the input vector x and the M x N matrix H is thus a tall
matrix. Moreover, this matrix is assumed to be of full rank N. Each component y,,,
m=1,..., M of y is quantized with a scalar quantizer () of rate p. The quantization
intervals [s(0)],...,[s (2” — 1)] form a partition of R.

After quantization, one gets a vector z of quantization indexes, which is a realization
of the random vector Z = (Zy, ..., Zy)" with

Zm=Q (Ynm) =2z <Y, €[s(2)] =[s(2),5(2)], z€{0,...,22 =1}, (5.2)
where for a given quantization index z € {0,...,2” — 1}, s(z) and 5(2) denote the
lower and upper bounds of the interval [s(z)] respectively.

The quantization indexes z,, are then transmitted through some noisy channel, as
described in Section 5.1. This channel is assumed to be memoryless, property which
may be ensured by employing proper interleavers prior to channel coding. The
channel output related to z,, is assumed to be described by the vector r,, € R” (or
Cr),m=1,..., M. The effect of the transmission channel is then described by the
channel transition probability pgr| (r|2).

The considered problem consists in the evaluation of the MAP estimate of x
XMAP = arg max px g (X|riaz) - (5.3)
xeRN
In the sequel, for a set of k vectors ay, ..., ay, the following notation is used ay.;, =

T
T T
(al 9 ° ak ) .

5.2.1. Optimal MAP Estimator

In this part, we propose to derive the optimal estimator for (5.3). Using Bayes’ rule,
one may rewrite (5.3) as

XMAP = arg Hel%?;g PrR|X (1“1:M|X)px (X) ) (5-4)
where
Pr|x (F1:M|X) = Z Pr,z|x (I“le, Z1:M|X)
Z1:M
= Z PRr|z,X (riv|Z1iar, X) Pzix (z1.m]%) . (5.5)
Zi:M
In (5.5), once zy,...,zy are known, x does not bring additional knowledge on
ry,...,ry, and since the channel is memoryless, one gets
M
PR|Z,X (I“1;M\Z1;M7X) = H Pr|z (I'm\zm) . (5-6)
m=1
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Chapter 5 Robust Estimation from Noisy Overcomplete Signal Representation

Moreover, since a scalar quantization is considered, one has

M
Pz|x (z1.m]x) = Pzy (z1.m|Hx) = H Pziy <2m|h§X) ) (5.7)

m=1
where h? is the m-th row of H. According to (5.2), one has
Pz|y (zm|hz;bx) = Ijs(z)) (h%x) , (5.8)

where the indicator function is

0 otherwise.

Iy (2) — {1 if x € [s], (5.9)

Finally, combining (5.5)—(5.9) in (5.4), one obtains
M
Zyap = arg max px (%) 3 [T priz (tnlm) L (h7x). (5.10)
x z1:M m=1

For a given x € RY, by definition of the indicator function and due to the fact that
the quantization intervals form a partition of R, the sum over z;.); consists of a
single non-zero term when z,, = Q (hfnx), m=1,..., M. Thus (5.10) becomes

M
XMAP = arg )I(Ié%% px (X) ngl PR|Z (rm|Q (hﬁx)) . (5.11)

Obtaining Xyap requires the maximization of the function

f (% ) = px (X) 1‘_[1 priz (rm|@ (h]x)) (5.12)

over all possible x € RY. The evaluation of f (x,r1.)) is easy, however, due to the
quantization, this function is only piecewise-continuous, which makes its maximiza-
tion difficult, especially when N is large.

5.2.2. Running Example

In this example, M = 3 and N = 2. Consider a vector x € RY such as px(z,) ~
N(0,1),n=1,...,N and an M x N transform matrix H defined as follows

1

—0.62
X“( 1.49 )’H_ B

§w|§ )

D= N =
|
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5.2 Problem Formulation

The components of the vector y = ( —0.62,1.54, —0.92 )T obtained at the output
of H are quantized using a scalar quantizer () of step A = 1.03 and rate p = 2
bits. The resulting vector z = (1, 3, 1)T of quantization indexes is then modulated
using the binary phase-shift keying (BPSK) modulation, before being transmitted
through an AWGN channel with an SNR level of 2 dB. The observation at the
channel output is

—0.65 —0.97
vy = | —1.01 —1.44 |. (5.13)
0.07 —0.92

The aim is to estimate x from ry.),. First, the estimator obtained from the chan-
nel’s hard decisions is presented. Then the brute-force estimation scheme using the
channel’s soft information is described.

Estimation using the hard decisions of the channel

Using the hard decisions (HD) of the channel, the vector zyp = (3, 3, 1)T is obtained
at the channel output. As one can see, the first component of z has been corrupted.
After inverse quantization, the vector yup = Q! (Zup) = (1.54,1.54, —0.51)" is
used to perform least squares estimation

—1
RiD = (HTH) H yup = (0.68,1.19)" .

The mean squared error (MSE) obtained using this estimator is eyp = 0.8715.

Brute-force estimation using the soft information of the channel

The function f (x,ry.p) expressed in (5.12) is numerically evaluated using discretized
PDFs, in order to obtain the values for px(z,), n = 1,..., N and for the product
12, pryz(r|Q(hTx)). The range considered for the random variables X, is from
—10 to 10, and the number of points on which these PDFs are evaluated is equal to
1024. One obtains then a 1024 x 1024 matrix representing f (x,r1.p7). A 2-D plot
of the level curves of this matrix is presented in Figure 5.2. As one can see, the
obtained f (x,ry.ps) is discontinuous.

The estimate Xyap is obtained by choosing the vector corresponding to the maximal

T
value in the matrix representing f (x,ry.5s). One obtains Xyap = ( —1.00,1.73 ) .
The MSE obtained using this estimator is eyjap = 0.1203.

Implementing this brute-force MAP estimation is very complex for high dimensional
input vectors x and for dense matrices H.

In the two next sections, two different suboptimal estimation approaches are pre-
sented. The first one uses linear programming and tools from interval analysis [73] to
perform a consistent estimation of x, whereas the second one uses belief propagation
[120] to handle the MAP estimation problem in (5.3).
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Chapter 5 Robust Estimation from Noisy Overcomplete Signal Representation

Figure 5.2.: Contour plot of f (x,ry.3) for ry.5 defined in (5.13) .

5.3. Consistent Estimation of x

In this section, the redundancy introduced by H is exploited and the bounded quan-
tization noise is explicitly taken into account. A suboptimal implementation of the
MAP estimator presented in Section 5.2.1 is derived by performing the estimation in
the subspace of all the consistent quantization indexes, i.e, indexes that can result
from the quantization of a vector y which may be generated at the output of the
expansion matrix H.

First, in Section 5.3.1, we propose to perform the estimation of x in a particular case,
where the noise introduced by the channel is negligible. The estimation approach,
in the general case, is described in Section 5.3.2.

5.3.1. Negligible Channel Noise

Assume that the noise introduced by the channel is very small. It is likely that
PR|z (m|2m) Will be vanishing for all values of z,,, except for some 275, € {0,...,27 — 1},
which is very likely to correspond to the actual transmitted quantization index
Q (Ym) . In this case, when considering in (5.10) the sum over z;.p, only the term
corresponding to zj.,, may be kept and one gets

M
XMAP = aIg Max. px (%) 11 priz (tmlz,) Tz (hﬁx) : (5.14)
X m=1

Now, the product [T, pr|z (tm|25,) does not depend any more on x and (5.14)
becomes the following constrained optimization problem
XMAP = arg 2%% px (%),

sthlxe[s(z)], m=1,...,.M (5.15)
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which may be written with linear constraints as follows

Xuap = arg max px (x),
X

st Hx <5 (z].,) (5.16)
—Hx < —s (z1./)

where, for a given z., € {0,...,2° — 1}M, S(z1.m) = (5(21),---,§(ZM))T and
s(zin) = (8(21),...,85(2m)) -

5.3.1.1. Running Example

Let us consider the example presented in Section 5.2.2, where N =2, M = 3 and
0
. ( —O.62>’ Ho| 1 v
1.42 PR
2

The vector of quantization indexes z = (1, 3, 1)T is BPSK modulated, then transmit-
ted through an AWGN channel introducing a negligible noise, e.g., with and SNR
equal to 12 dB. The observation at the channel output is

—0.97 —1.20
i3 = —0.92 —-1.33
1.17  —0.59

Table 5.1 shows the values of pr|z(rym|2zm = 2) for m = 1,2,3 and 2z = {0,...,3}.
The vector of quantization indexes z* = (1,3,1)", maximizing [[>,_, PR|Z (Tm|Zm),
is equal to the transmitted vector z.

prmlzm) | 2m =0 zn=1|2,=2| 2, =3
m=1 0.00 1.00 0.00 0.00
m=2 0.00 0.00 0.00 1.000
m=3 0.00 1.00 0.00 0.00

Table 5.1.: Obtained values for p(r,|zm)-

Finally, one selects z* = (1, 3,1)” to solve (5.16), where instead of maximizing px (x)
one minimizes x’x, since X ~ AN (0,I5). One gets a simple quadratic problem
with linear constraints. The obtained solution is Xyap = (—0.51, 0.89)T, which is
reasonably close to x = (—0.62,1.42)".
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5.3.2. General Case

Let us now assume that the noise introduced by the channel is no longer negligible.
The vector z* maximizing pryz (r1:a|21:7) may not correspond to the vector of
transmitted indexes @ (y1.a7). It may even not correspond to a vector of quantization
indexes that may be obtained from a given Hx, due to the relations between the
entries of Hx.

The proposed suboptimal implementation of (5.3) is to keep in (5.10), in the sum

over z.)s, only the vector z!.,, maximizing Pr|z (T1:07]Z1:0) and which is consistent

(or feasible), i.e., for which there exists some x € RY satisfying Q (Hx) = z! ,,.

Then (5.16) is solved with z!_,,.
Let

Z={ze{0,...,2 -1} | X eR", z=Q (Hx)} (5.17)

be the set of consistent vectors of quantization indexes. The algorithm performing
the consistent MAP estimation is described in the sequel.

5.3.2.1. Consistent MAP Estimation Algorithm

The proposed consistent MAP estimation algorithm has two steps:

1. Evaluate

M
2.0 = argmax [ priz (tml2m) . (5.18)
m=1
2. Solve
XMAP = arg max px (x) . (5.19)

st Hx <8 (ziM)

—Hx < —s (zgzM)

The first step of this algorithm may be performed as follows

1. Sort the values of zy.5; € {0,...,2° — I}M, in decreasing order of pryz (r1:3|Z1:01),
in alist £, = {zglj)\/[, N sz]\)ﬂ}, with L = 2°™. Thus

PR|Z (1"1:M|Z§lj}\)4) Z PRz (1"1:M|Z§%\)4) , (5.20)
if ¢4 <y, with 01,0, =1,..., L.
2. 0=1
3. Do
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5.3 Consistent Estimation of x

a) Ifz¥) € Z
b) z' = z; End;
c) Else ¢ =0+ 1;
4. While ¢ < L.
Our aim now is to describe how Step 3 (a) may be performed. Consider the set

X(z) = {x eR" | z = Q(Hx)} (5.21)

containing all the vectors x from which the quantization vector z may be obtained.
Alternatively, this set may be defined as follows

X (z) = Ol X (2m) (5.22)

where, for a given z € {0,...,2/ — 1}, X, (2) = {x ERN | 2=Q (h%x)}
By definitions (5.17) and (5.22), one has
X(z)#V<=zecZ. (5.23)

For a given ¢ = 1,..., L, in order to determine whether z¥) € Z. or equivalently,
whether X (z(z)) # (), one may use, e.g., linear programming [3] or interval analysis
tools [73].

5.3.2.2. Consistency Test using Linear Programming

For a given ¢/ =1, ..., L, consider the maximization problem

max alx,

]
XG‘X(ZI:]M)

a being any non-zero vector of size N. This is equivalent to the following linear
problem

st Hx <§ (z%u) (5.24)

If a solution x is found for (5.24), then X (Z(Z)) # 0 and 2z is consistent.

Note that one could try to directly solve (5.16) with 2\, starting from ¢ = 1 and
increasing ¢ until a solution exists. Nevertheless, solving first (5.24) for various Z%M
with increasing ¢ is much less complex than solving (5.16), especially if px (x) is a

general PDF.
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5.3.2.3. Consistency Test using Interval Analysis

Another approach to determine whether a quantization vector z belongs to Z in-

volves the parity-check matrix P associated to H. Since H is of rank N, there exists
an (M — N) x M matrix P of rank (M — N) such that

PHx =0, ¥x ¢ RY. (5.25)
One has
Py =0 <= 3x ¢ R" st y = Hx. (5.26)
From (5.26), one deduces
Jy st Py =0and z = Q(y) < Ix st z = @ (Hx) . (5.27)

Using the definition of Z in (5.17) and (5.27), one obtains
z€Z+JycRM z=Q(y)and Py =0. (5.28)

Now let us apply the equivalence (5.2) to all the components z,,, m = 1,..., M of
a given vector z

z=Q(y) <=y €ls(z)], (5.29)
where [s(z1.0)] = ({s (zg))} ey [s (zg\?)DT is a box, i.e., a vector of intervals.

The box P [s(z1.a)], which can be evaluated using basic interval additions and
multiplications [73], is such that

{Py with y € [s(z1.:)]} C P[s(z1.01)] - (5.30)
Using (5.29) and (5.30)
z=Q(y) and Py =0=0€ P|[s(z)]. (5.31)
Finally, from (5.28) and (5.31) one gets
ze Z=0¢cPIs(z)]. (5.32)
One may rewrite (5.32) as
0¢P[s(z)=2z¢Z. (5.33)

The test (5.33) allows to prove that a vector of quantization indexes z is not con-
sistent, but it is unable to prove that some z is consistent, as the inclusion (5.30) is
strict. This test allows to eliminate some of the inconsistent vectors z, ¢ =1,..., L
and has a complexity between O (M) and O (M (M — N)), which is in general lower
than solving directly (5.24).
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5.3 Consistent Estimation of x

5.3.2.4. Running Example

In this example, we consider the same transmission scheme in Sections 5.2.2 and 5.3.1.1,
where the same transform matrix H is used. A parity-check matrix associated to H
is P = (1,1,1). Recall that the input signal is x = (—0.62,1.42)" and the output
signal is y = (—0.62,1.54, —0.92)""

A 2-bit quantizer () is considered with

[5(0)] =] — o0, —1.03]
[s(1)] = [~1.03,0.00]
[s(2)] = [0.00, 1.03]
(5(3)] = [1.03, +00]

The obtained vector of quantization indexes is thus z = (1,3, 1)T. This vector is
BPSK modulated, then transmitted over an AWGN channel with a channel SNR of
2 dB. The observation

—0.65 —0.97
r=| —1.01 —-1.44
0.07 —-0.92

is obtained. One may sort the various combinations of z;.3 by decreasing value of
p(r1.3]2z1.3) to obtain zgg, ¢=1,...,L, with L = 64. In what follows, we will only
consider the four first vectors zgl%, ¢ =1,...,4. Table 5.2 shows the obtained values
for pr|z <r1:3|z§2), (=1,...,4.

14 1 2 3 4
7 (33,17 [ (3,3,3)" | (1,3,1)" | (1,3,3)"
priz (rislz) | 042 | 033 | 005 | 004

Table 5.2.: Obtained values for pr)z (r1:3|z§g), ford=1,...,4.

We first consider the consistency test based on linear programming described in
Section 5.3.2.2. No solution is found for the linear problem in (5.24), when ¢ €
{1,2,4}. For ¢ = 3, a solution is found for (5.24).

Let us illustrate this result by visualizing the sets X (z*), ¢ = 1,...,4 intro-

duced in (5.21). Figure 5.3 illustrates X3(3) and Figure 5.4 illustrates X (Z%) =
S Xu(zm), £ = 1,...,4. As one can see, X(Z&%) =0, ¢ € {1,2,4} and

X (243) #0.

Consider the consistency test (5.33) based on the parity-check matrix P, which is

performed by using interval analysis, as described in Section 5.3.2.3. The results of
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10

70 PCT
z) = (3,3, )T | 0 ¢ P[s(zV)]
z? = (3,3,3)T | 0 ¢ P[s(z?)]
z® = (1,3,1)T | 0 € P[s(z®)]
zW = (1,3,3)T | 0 ¢ P[s(z™W)]

Table 5.3.: The 4 most likely z¥) and the corresponding parity-check test (PCT).

this test are reported in Table 5.3. Again, only z® is deemed consistent with the
parity-check test (PCT).

Table 5.4 evaluates the execution times trp and tqp required to solve the linear
program (5.24) and the quadratic program (5.16) respectively with zgg, (=1,...,4,
as well as the execution time tpcr required to perform the consistency test (5.33),
based on the parity-check matrix P. As expected, the parity-check test takes less
time than solving the linear program (5.24). For example, finding out that z™) is

inconsistent takes 5 times less time when considering the parity-check test (5.33)
than when (5.24) is solved.

Selecting z' = z® = (1,3,1)" to solve (5.16), the MAP estimate Xyap = (—0.51,0.89)"
is obtained.
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Figure 5.4.: Visualization of X (z%), (=1,...,4.

5.3.3. Practical Implementation

In order to implement the consistent MAP estimation algorithm, one has to sort
the possible values of zy.; in decreasing order of prjz (ri:a|21:a). The number
of possible combinations of z;.;; is L = 2°, which may be intractable even for
moderate values of M.

For m = 1,..., M, one may sort the possible values of z,, in decreasing order of
PR|Z (Tm|2m). One then keeps only the N, values of z, associated to the largest
PR|Z (Tm|2m). This leads to [1¥_, N,, possible combinations of values for zy.,;, which
may in turn be sorted in decreasing order of pgr|z (r1:|21:07). Again, only the best
N’ vectors zﬁw, e ,zﬁ} may be kept. The consistent MAP estimation may then
be applied to these N’ vectors. The choice of N,, and N’ depends on the level
of the channel noise, on the relative values of pgr|z (rm|2n), and on the targeted

complexity-efficiency trade-off.
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Chapter 5 Robust Estimation from Noisy Overcomplete Signal Representation
l 1 2 3 4
z\) 3,3, )7 1 (3,3,3)7 | (1,3, D)7 | (1,3,3)7
tqp(seconds) | 0.0058 0.0066 0.0072 0.0164
trp(seconds) | 0.0024 0.0030 0.0014 | 0.0022
tper(seconds) | 0.00048 | 0.00048 | 0.00047 | 0.00047

Table 5.4.: Execution time of (5.24), (5.16) and (5.33) for 2, £ =1,... 4.

On the other hand, solving (5.16) may be very complex when px (x) is a general PDF
and when N is large. One could alternatively consider the least square estimator
X1s of x defined as

fus = (H'H) HIQ (<), (5.34)

where Q! denotes the inverse quantization operation associated to Q.

For the example in Section 5.3.2.4, one obtains X5 = (—0.68, 1.19)T, which is closer
to x = (—0.62,1.42)" than Xyap = (—0.51,0.89)", in the MSE sense.

5.4. Estimation by Belief Propagation

In this section, a different approach to estimate Xyap defined in (5.11) is presented.
This approach applies the belief propagation (BP) algorithm to compute the pos-
terior probability distributions px g (z,|ria), n =1,..., N of each entry z,, of the

input vector x = (z1,...,2,)" , knowing the observation ry.y;.

5.4.1. BP algorithm

BP is a general estimation algorithm where the dependencies between the variables
are represented by a factor graph [95]. Estimates (beliefs) of the marginal distri-
butions of the variables are iteratively updated via a message passing procedure
along the edges of this graph [30, 95, 38]. This algorithm has proven to be efficient
in numerous applications, including iterative decoding of low-density parity-check
(LDPC) codes and turbo codes, which typically work over finite fields [105, 97].
It has also been applied in real field problems, such as random linear mixing and
compressed sensing problems [38, 32, 128].

The problem considered here is to estimate the input vector x from the noisy ob-
servations r of linear measurement y = Hx. This estimation problem has been
adressed with BP by Rangan et al. in [128, 129, 77], where the linear relations be-
tween the variables are represented by a factor graph Gy, associated to the transform
matrix H, see Figure 5.5. This graph is formed by two types of nodes: the variable
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Figure 5.5.: Factor graph for the linear mixing estimation problem.

nodes n = 1..., N, describing the variables z,, and the factor nodes m =0,..., M,
describing the variables y,,. Let

Ea{(nm) € {1,...,N} x {1,..., M} | H(m,n) # 0}

be the set of edges connecting these nodes: an edge between node n and node m
signifies that the variables x,, and y,, are linearly dependent. The set of variable
nodes connected to a factor node m is denoted by N (m). Similarly, the set of factor
nodes connected to some variable node n is denoted by A'(n). These different nodes
talk to each others by exchanging messages (beliefs) along the edges of Gy.

An implementation of BP, which is adapted to the MAP estimation considered in
(5.11), is presented in what follows. The exchanged messages are beliefs on the
posterior probability distributions of each entry x,,, which are iteratively updated
by passing them along £g. The BP algorithm presented here is inspired by the one
presented by Rangan in [128] and has the following steps:

1. Initialization:

a) set the current iteration ¢ = 1

b) V(n,m) € Ex set the messages sent by n to m to the initial distribution
of the random variable X,

Prnenly Tn) = D (i n) = px (Tn). (5.35)

2. Linear mixing:

a) assume that the random variables X,, are independent and that X, ~

pfnen(% l‘n)
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Chapter 5 Robust Estimation from Noisy Overcomplete Signal Representation

b) ¥(n,m) € &g compute the distribution p¥ . (i,Yym_n) of the random
variables

Yoom = 3 H(m,n')X,. (5.36)
n'eN(m)
n'#n

3. Output Update:

a) Y(n,m) € Eg compute the likelihood function

pum_m(% um) = / pR\Y(rm|um + ym%n)p%q—wl(la ym—ﬂz)dlym—ﬂz
Ym—n
(5.37)

4. Input update:

a) V(n,m) € &g update the message sent by n to m

Prmen(i+ 1 20) = apx(z) [ ppoon (i H( n)2,),  (5.38)
m/eN (n)
m'#m
where « is a normalization constant obtained by imposing that p?,, . (i +
1,z,) sum up to 1.

b) ¥n =1,...,.N update the distribution

pai+ L) = Bpx(za) [ Phon(i, Him,n)z,), — (5.39)

meN (n)

where ( is a normalization constant obtained by imposing that pZ(i +
1,z,) sum up to 1.

5. Incrementation:
a) i=1i+1
b) return to Step. 2 until a sufficient number of iterations is performed.

The message pf,. (i, 2,), sent by the variable node n to the factor node m at
iteration 7, expresses the beliefs of the variable node n about the states in which
X, could be. In our case, it expresses the posterior probability distribution of z,
as believed by the neighboring factor nodes y,» € N(n), m’ # m at iteration i.
The message p¥, ., (4, Ym—n), sent by the factor node m to the variable node n at
iteration ¢, allows to evaluate the likelihood function pY ., (i, u,,), which measures
how likely the observation r,, is obtained when X,, = x,,. When Gy has no cycles,
this message passing procedure is likely to converge to a consensus that determines
the true marginals pxr (2 |r1:a1)-
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After N iterations of the BP algorithm, the MAP estimate of x defined in (5.3) is
obtained as follows

Xnmap = (T1,mAP, - - - afN,MAP)T : (5.40)
where, forn=1,..., N

TpMAp = arg g{%ﬁépﬁ(Ni’ Tp).
The steps of the BP presented here are derived from the sum-product algorithm,
which is a generic representation of the message-passing algorithms operating in a
factor graph [31, 95]. A presentation of the sum-product algorithm is provided in
Appendix C.1, where it is shown how the BP algorithm presented in this section
can be viewed as a particular instance of this generic algorithm.

5.4.2. Running Example

In this section the example of Section 5.3.2.4 is considered. The input signal is
x = (—0.62,1.42)" and the output signal is y = (—0.62,1.54, —0.92)". Moreover,
the same 2-bit quantizer @) is used.

The MAP estimation based on the BP algorithm described in Section 5.4.1 is im-
plemented by considering probability mass functions approximating the continuous
distributions. The range considered for the input variables x,, n = 1,2 is from —10
to 10 and the number of points on which the probability distribution functions are
evaluated is set to 1024. The considered resolution is then of 20/1024. The total
number of iterations of the BP algorithm is equal to 10. At each iteration, the mes-
sages pr. (i, x,) and p¥ (i, u,,) are vectors of 1024 entries, where the probability
distribution is evaluated. The MAP estimate described in (5.40) is then obtained:
nap = (—1.33,2.20)".

5.5. Comparison between the two Estimation
Schemes

In this section, the two estimation schemes presented in Sections 5.3 and 5.4 are
compared. The same running example introduced previously is considered: N = 2,
M =3, X ~N(0,I,) and
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Chapter 5 Robust Estimation from Noisy Overcomplete Signal Representation

A 4—bit quantizer () is used here for each entry of y = Hx. The components of
z = Q(y) are BPSK modulated, then transmitted over an AWGN channel, with an
SNR varying between 0 dB and 14 dB. The number of noise realizations is set to
3000 for each value of the channel SNR.

In the sequel, we describe the different reconstruction approaches and compare them.

Consistent estimation scheme

The consistent MAP estimation scheme presented in Section 5.3 is performed, and
the most likely feasible vector of quantization indexes z! defined in (5.18) is obtained.

Two MAP estimates of the input x are considered. The first one is obtained by
solving the quadratic program (QP) in (5.19) with z. This estimate is reffered to
as iQP-

The second estimate we consider is the one obtained using least squares (LS) recon-
struction, as follows

%15 = (H'H) H'Q™ ().

Estimation using BP
The MAP estimation based on the BP algorithm and presented in Section 5.4.1 is

performed as described in the example of Section 5.4.2. The MAP estimate defined
in (5.40) is then obtained. In this section, this estimate is reffered to as Xgp.

Estimation scheme using the hard decisions of the channel

This estimation scheme uses the hard decisions taken by a classical non-robust de-
coder on the received vector ry.;s. As described in Section 5.2.2, after demodulation
and inverse quantization, the received vector ygp is obtained, and the input vector

may be reconstructed using LS estimation as:

fup = (H'H)  H 5.

Reference reconstruction scheme

The scheme serving as a reference considers the noise-free signal Xggp, reconstructed
after inverse quantization of z. Let yrer = Q' (z). Then

XREF = (HTH) - H' yrer.
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Figure 5.6.: SNR (dB) of the reconstructed signals as function of the channel
SNR (dB).

Figure 5.6 shows the average SNR of the signal reconstructed using the estimation
schemes previously described, as function of the channel SNR.

For a channel SNR less than 8.5 dB, all the proposed estimation schemes outperform
the classical reconstruction approach based on the hard decisions of the channel. For
example, for a channel SNR of 6 dB, the gain observed in terms of reconstruction
SNR is of 4 dB, and of 5.5 dB, when considering Xqp, and Xy, respectively. For the
same channel SNR level, the gain in reconstruction SNR is more important when
considering estimation by BP, and is almost equal to 7 dB.

For a channel SNR less than 4 dB, the consistent estimates Xrg and Xqp lead to
a similar reconstruction SNR performance. For a higher channel SNR level, X;g
performs better than Xqp and the gap between the two estimates becomes more
important with the channel SNR. This is explained by the fact that for a negligible
channel noise, the most likely vector of quantization indexes z* is usually the one
which has been transmitted as presented in Section 5.3.1. The least squares estimate
Xps in this case minimizes the quantization error, since there are no transmission
errors, and is then more efficient than maximizing the source’s a priori px(x) over
the set X' (z%).

The estimation scheme using the BP algorithm is more efficient than the consistent
estimation schemes at low channel SNRs. For a channel SNR higher than 6.5 dB,
X1s becomes more efficient than Xgp and for a channel SNR higher than 10.5 dB,
Xpp outperforms Xgp. This may be explained by the fact that the evaluation of
Xgp involves the computation of the marginal probability distributions instead of
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Chapter 5 Robust Estimation from Noisy Overcomplete Signal Representation

the joint distribution of x. Moreover, the BP algorithm may not converge to the
exact marginals due to the presence of cycles in the factor graph. Both effects do
not appear when the impact of the channel noise is significant.

5.6. Application to Oversampled Filter Banks

In this section, oversampled filter banks [151] are considered as a practical example
of schemes operating a signal expansion. The estimation approaches presented in
Sections 5.3 and 5.4 are described and applied to theses filter banks.

In the next section, a brief presentation of oversampled filter banks is provided. A
more detailed presentation is provided in Appendix B.

5.6.1. Brief Presentation of OFBs

An oversampled filter bank (OFB) is a filter bank whose number of output subbands
is larger than the downsampling factor. These subbands form then a redundant
representation of the input signal.

A typical M—band OFB with a downsampling factor of N < M is presented in
Figure 5.7. This OFB is formed by M analysis filters h,,, m = 1,..., M assumed
of finite impulse responses (FIR). The polyphase representation of this OFB is the
M x N matrix

H(z) = Kf H;z* (5.41)

where K € N* and Hy,, £ = 0,..., K — 1 is a sequence of M x N matrices which
can be constructed from the filters h,,,, m = 1,..., M, see Appendix B.

2(iN) y1(9)

z7t ¢N x(iN — 1) " ya(i)

=2
=
\
-
=
\/

\4
\4

. ;’WV a:(iN—N—|—1)= | ym(D)

Figure 5.7.: Analysis stage of an M —band oversampled filter bank.

Assuming further that H(z) has full column rank, there exists an FIR filter bank,
having the polyphase representation given by the an (M — N) x M matrix P(z)
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5.6 Application to Oversampled Filter Banks

which verifies
P(z)H(z) =0, Vz € C (5.42)

and

K'—1

P(z) = Z sz_k,
k=0

where K’ € N* and Py, k =0,..., K’ — 1 is a sequence of (M — N) x M matrices,
see Appendix B. The matrix P(z) is the parity-check matrix associated to H(z).
5.6.2. Signal Expansion using OFBs

Let x € RYY and y € RV™ be the input and output vectors of an OFB, where V is
some positive integer . One may write

and
_ N~ N\
where
x' = (x(iN-=N+1),...,z(iN))"
and

yio=(y (M —M+1),...,y(iM)"

are the input and the output of the OFB at time instant ¢ =1,..., V.
It is shown in Appendix B that

K-1

y =Y Hx'" (5.43)
k=0

with x’ = 0, if i < 0.

Let Hg 1.0 = (Hg_1,...,Hp) be the M x KN matrix constructed from the matrices
H, and let

T

o () )
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be the vector containing all the input samples affecting the OFB output at time
instant i. Then (5.43) may be written as

yi — HKil:OXifKJrl:i. (544)

Using (5.44), one can write the whole OFB operations as the linear expansion pre-
sented in (5.1), where

H, 0 0
H H, 0
H=| H, , . - (5.45)
0o . - 0
: . Hxk., -~ H; Hy, 0
0 0 Hy; ., --- H, H,

is an VM x VN block-diagonal matrix.

Now let us write (5.42) in the temporal domain for each output y*, i = 1,...,V of
the OFB
K'—1 _
S Py F=o0, (5.46)
k=0

where y* = 0, if i < 0. At each time instant 4, the relation (5.46) defines a set of
M — N equations, which may be used to check whether a given subband vector

()" @)

could have been generated by the OFB. These equations are referred to as the
parity-check equations and may be rewritten as (5.25), where

P, O 0
P, P, O
P=| Py, . - (5.47)
0o . - .0
: Py, - P, Py, O
0 0 Py, -+ P, Py

is the parity-check matrix associated to H defined in (5.45).
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5.6 Application to Oversampled Filter Banks

5.6.2.1. Example and Simulation Results

In this example, an OFB based on the Haar filter bank is considered with N = 4
and M = 6. Let x € R'? be the input vector. Then V = 3. The components of
x are i.i.d., have a normal distribution, and are of variance 62 = 1. The transform
matrix H that has been considered is of size 18 x 12 and is defined as follows

Hy, 0 0
H=| H H, 0 , (5.48)
0 H, H,
where
1 1 00 0 0 00
0 000 0 0 11
1 -1 100 1 0 0 00
0 000 0 1 1 0
0 000 0 -1 1 0
The associated parity-check matrix is
P, 0 O
P=| P, P, O ,
0o P, Py
where
00 00 —-05 05 0 -1 1 1 0.5 0.5
PO_(O 000 -1 1 )aHdP1_<1 010 0 0 )
(5.50)

Each component of the vector y € R'8, obtained at the output of H, is quantized
using the scalar quantization function ) over p = 4 bits, then BPSK modulated and
transmitted over an AWGN channel with an SNR level between 0 dB and 14 dB.

The estimation schemes described in Section 5.5 are compared and the results are
reported in Figure 5.8. The same observations as the running example of Sec-
tion 5.4.2, may be made here. At low channel SNRs, the BP algorithm leads to a
better reconstruction SNR when compared to the consistent estimation. Moreover,
the consistent estimation using the least squares reconstruction outperforms the

consistent estimation using quadratic programming, for moderate to large values of
the channel SNR.

5.6.3. lterative Implementation of the Consistent MAP
Estimator

The aim of this section is to provide an iterative implementation of the consistent
MAP estimation presented in Section 5.3, when the expansion matrix H has the
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Figure 5.8.: SNR (dB) of the reconstructed signals as function of the channel
SNR (dB), for the OFB based on the Haar filters.

structure described by (5.45), as in the case of OFBs. This iterative implementation
is particularly useful when considering large-scale input and output signals.

As in Section 5.3, the aim is to estimate the source outcome x € RVY from the
reception of some channel output vector

= () ))

Assume, at time instant ¢, that estimates X/, j =i — K + 1,...,i — 1 have been
obtained for the components of x at the K — 1 previous time instants.

The MAP estimate of x' using the knowledge of r.;, and x7 is then
X = arg Max px (Xi|ri:M, LI ,)Acifl) . (5.51)

Using Bayes’ rule, one gets

i i i ol si—1 il Si—1
X' = arg max pr|x (I'I:M‘X XX )px (x X, ..., X ) , (5.52)
xteRN
where
i i ol ci-1) _ i i ol si—1
pR|X(r1:M|X7X7"'7X )_ZpR,ZD((rl:M?ZlZM‘X?X7"'7X )
Zi:M
_ i i o1 ci—1
- ZPR|Z I‘1;]\4|Z1:M pZ\X Zl:M|X ,y X0y o, X

Z1:M

(5.53)
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The second term of the sum (5.53) may be written as
Pz|x (Z1:M|Xi, X', .. ,ﬁi_l) = Pz <Z1:M|H0Xi + HK_1:1>A<i_K+1:i_1) . (5.54)
Now using (5.2), one obtains

K-1
pzix <Z1:M|H0XZ + Z Huil—u> = I[S(ZLM)] (HOXZ —+ HK—l:l)/EZ_K—H:Z_l) ’

u=1
s [[S(Zl;]w)]—HK71;1;i7K+1:i71 (H(]XZ) . (555)

Finally, one gets

E A il Si—1 7 7
%' = arg max px (X% %) 3 Pz (Ylarl2ar) Tugeyp g mener (Hox).
X
Z1:M

(5.56)
Consider the set
z' = {ZLM €{0,...,2 - 1}M | Ix! € RY st Hox! € [Z1.00] — HKil:liifKJrl:ifl}
(5.57)
of feasible quantization indexes, defined at each time instant i.

As in Section 5.3.2, in the sum (5.56) over all the vectors z;.,;, one keeps only

z! = arg max DR|Z (rli:M\zle) ) (5.58)
z1.MEZ?

Finally, the following linearly-constrained optimization problem derived from (5.56)
is obtained

%= arg max px (Xi|>?1, . ,)A(i_l) . (5.59)
st H()Xi < S (Zf) — HK_lzl}/Ei_K—i_l_i_l
B Hoxi < —s (Zf) + HK—l;lii7K+17i71

In what follows, we will present a practical implementation of this estimator, using
interval analysis.

5.6.3.1. Practical Implementation

Assume that the estimation process at the previous instants j =¢— K +1,...,1 —
1 has been able to provide boxes [x7], such that x/ € [x’]. The set of feasible
quantization indexes at time instant ¢, defined in (5.57), becomes

2 ={za €{0,...,20 - 1}¥|3x' € RY and I HH11 ¢ [g K]

st H()Xi € [Zl:M] - HK,Ll)’ZiiKJrl:iil} .

(5.60)
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Assume further that the estimation process in the previous instants j' =i — K’ +
1,...,7—1 has been able to provide boxes [Sfj/}, such that y/' € [}Afj/}.

Using (5.27)—(5.30), (5.46) and the definition in (5.60)
0 ¢ PO [S (Z)] + Pi*K’*f’lZi*l [yiiKurl:iil} = Z ¢ ZZ
Now consider the set

X0 (z) = {Xﬁﬂii*KH:i*l € [)A(FKH”;I} st Hyx" € [s (z)] — HK_lzlfii*KH:i*l},
(5.61)

defined for a given z € {0,,2° — l}M at time instant i. Therefore
X9 (z) £ 0 ze 2.
The set X@ (z) is called a polytope [159]. An outer approximation' [X @) (z)} of

this polytope may be obtained using basic operations on the intervals [x7], j =
i—K+1,...,i—1and [s(z)] [73]. Since

X0 (z) c [x9) (z)], (5.62)

one has
(X0 (z)] =0 = X0 (2) = 0. (5.63)
Therefore, for a given vector of quantization indexes z € {0,...,27 — I}M, if an

empty box {X @ (z)} is obtained as an outer approximation of X (z), then z ¢ Z°.

Estimation at i = 1, input: rY), output [X'], [y'], §!

The estimation of z' at initialization is performed as described in Section 5.3.2.1,
using only r!', with H = Hy and P = P,

1. Evaluate z';

2. Evaluate [X(l) (zf)};

3. Return [x'] = {X(l) (zf)}, yt = [5 (zf)} and y' = Q! (zf).

'An outer approximation of XV (z) is a box enclosing X (z).
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5.6 Application to Oversampled Filter Banks

Estimation at i > 2, input: r?, [}Aci_K“:i_l}, [yi—K’H:i—l}, output: [x], [y'], y*

1. Sort the vectors of quantization indexes z € {0,...,2° — I}M in decreasing
order of pryz (r'|z) in a list £; = {z(l), e z(L)}, with L = 2°M,

2. Do

a) If 0 € Py [s (z(f))} + P11 {yi—K’-i-l:i—l}
i If [0 (20)] #0
A. Return [X'] = {X(i) (Z(Z))}’ [y] = [5 (Z(f))} and §' = Q! (Z(Z));
End;
ii. Else
A =10+1,
b) Else
i =041,

3. While ¢ < L.

5.6.3.2. Simulation Results

In this section, the OFB described in the example of Section 5.6.2.1 is considered.
Recall that the polyphase representations of this OFB and the associated parity-
check filter are

1
H(z) =Y Hz"*
k=0
and
1
P(z) = Z P.z",
k=0

where the matrices Hy, and Py, k£ = 0, 1 are defined in (5.49) and (5.50) respectively.

Two types of signals are considered: a discrete-valued signal formed by 4 lines of the
image Lena.pgm and a continuous-valued signal corresponding to the realizations of
a zero-mean unit variance correlated Gaussian signal, with a correlation coefficient
¢ =0.9. The first NV = 2000 samples are kept for each signal, with V' = 500. The
output vector y is then of length MV = 3000. The components of the vector y?,
1 =1,...,V are quantized with a rate p = 4. A BPSK modulation of the result-
ing quantized indexes is then performed before their transmission over an AWGN
channel with an SNR level between 6 dB and 11 dB.
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The iterative algorithm described in Section 5.6.3.1 is used. The obtained results
are averaged over 250 noise realizations for both signals.

Figures 5.9 and 5.10 show the average SNR of the reconstructed signals as function
of the channel SNR. The noiseless signal reconstructed after inverse quantization
(in blue) serves as reference. The signal estimated using the algorithm presented
in Section 5.6.3.1 (in green) has a higher SNR than the one estimated using the
hard decisions of the channel (in yellow). The gains reach up to 10 dB in terms of
reconstruction SNR and up to 3 dB in terms of channel SNR.
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Figure 5.9.: SNR of the reconstructed signals as function of the channel SNR, for
the 4 lines of Lena.pgnm.

5.7. Conclusion

In this chapter, we have considered the problem of estimating a vector x from its
quantized and noisy linear measurements. As the complexity of the optimal MAP
estimator is intractable in general, two different suboptimal solutions have been
proposed. The first approach exploits the linear dependencies between the entries
of the output vector, as well as the fact that the quantization noise is bounded, to
perform a consistent estimation of the input vector x. Leveraging on techniques
from interval analysis, it is possible to quickly eliminate solutions which are not
consistent. The second technique uses the belief propagation, implemented by a
message passing algorithm on a factor graph, to evaluate the a posteriori probability
distributions of each entry of x.
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Figure 5.10.: SNR (dB) of the reconstructed signal as function of the channel
SNR (dB) for the continuous-valued one-dimensional signal.

The proposed techniques are generic and may find application in the schemes per-
forming signal expansion. Such schemes are, for example, oversampled filter banks,
which provide an overcomplete representation of the signal placed at its input. We
have shown that, for these applications, the linear mixing matrix has a particular

structure, which leads to practical implementations of the consistent MAP estima-
tor.

135






6. Conclusions and Perspectives

The extensive usage of heterogeneous best-effort networks puts the transmission
reliability and the processing complexity at the core of any communication system.
During the few past years, increasing efforts have been dedicated to the development
of practical joint source-channel coding and decoding schemes responding to these
issues.

In this thesis, we investigated some of these schemes and mainly focused on propos-
ing techniques to increase the robustness of multimedia contents transmitted over
unreliable networks, with limited transmission delay and complexity.

To conclude this dissertation, we provide in this chapter a synthesis of our contri-
butions, before opening up some perspectives to the pursuit of this work.

6.1. Synthesis of the Contributions

Joint Source-Channel Decoding

We have proposed an efficient joint source-channel decoder for an error-resilient video
transmission. The proposed joint decoder employs the residual redundancy left in
the bit stream by the video coder, combined with bit reliability information provided
by the channel, in order to detect and correct transmission errors. We have shown
that this technique leads to a manageable complexity, while significantly improving
the decoding performance.

Application to Multiple Description Coding

We applied the joint source-channel decoder to multiple description video streams
transmitted over a mixed architecture, consisting of a wired lossy network and a
wireless noisy channel. The joint decoding increases the number of error-free packets
received by the multiple description decoder. As a consequence, the lost packets are
better compensated and the decoder performance is improved.
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Robust Estimation Techniques

Also, we focused on studying joint source-channel coding schemes relying on a re-
dundant transform.

We proposed a consistent estimation technique exploiting the structured redundancy
introduced by such schemes and accounting for the bounded nature of the quanti-
zation noise. More precisely, we have shown how the estimation problem can be
formulated as a constrained optimization problem, to which suboptimal solutions
may be delivered by solving several linear programs or by using tools from interval
analysis. In the presence of transmission errors, we illustrated how this estimation
scheme improves the decoding performance when compared to a classical approach
based on the hard decisions of the channel.

Further, we applied this consistent estimation to recover the input of an oversampled
filter bank from its noisy subbands. We proposed an iterative implementation of
this estimation scheme, particularly adapted to oversampled filter banks.

Alternatively, we proposed to apply the belief propagation algorithm, widely used
in inference problems, to estimate the signals placed at the input of an oversampled
filter bank. More precisely, we used belief propagation to compute the probability
distribution of each entry of the input vector, knowing the noisy subbands. We have
shown that this approach is particularly efficient when the noise introduced by the
channel is significant.

6.2. Perspectives

At the end of this thesis, several directions may be investigated to pursue this work
and open up some new perspectives for future development.

First of all, the joint source-channel decoding scheme may be improved by exploiting
other sources of redundancy. One may even consider to add some supplementary
redundancy on the transmitted packets in the corresponding headers, such as the
number of non-zero coefficients within a spatio-temporal subband, the check-sum
of some video frame or a part of it, etc. The amount of this information may
be chosen according to the importance of the transmitted packets. Moreover, an
optimization of the decoding complexity as a function of the packets sensitivity may
also be considered. More precisely, the number of candidates examined by the joint
decoder may be adapted to the current layer and to the spatio-temporal subband of
the processed block.

The application of the proposed joint source-channel decoder to multiple description
coding has proven to be efficient for small redundancy levels. Indeed, combining both
error correcting and packet erasure codes should increase the performance of classical
single description schemes, at higher redundancy levels. The multiple description
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scheme could further benefit from this redundancy increase, by duplicating, for
example, some spatio-temporal subbands in both descriptions, to better compensate
the effect of packet losses.

To connect our work on redundant joint source channel coding schemes and on joint
source-channel decoding, a direction to further investigate is how to use the proposed
consistent estimation technique and the belief propagation algorithm to improve
the multiple description decoding. Indeed, the two descriptions are generated by
an oversampled filter bank in the temporal domain. It is thus possible to exploit
the structured redundancy introduced by this filter bank jointly with the residual
redundancy, in order to improve the joint decoding of the descriptions.

More generally, a great deal of effort still needs to be made to optimize the proposed
estimation algorithms in the case of oversampled filter banks with a dense analysis
matrix and a reduced oversampling ratio. In particular, the estimation algorithm
based on belief propagation may be improved by including the parity-check con-
straints in the factor graph. Finally, in order to apply these estimation approaches
to image and video coding applications, it seems necessary to study its performance
when oversampled filter banks with high coding gains are considered.
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A. Sum-Product Algorithm

Most of practical algorithms have to deal with multivariables global functions which
are very complex to handle. Usually such global functions admit a factorization into
a product of local functions, each one depending on a subset of variables, which are
easier to handle. Such a factorization can be represented by a bipartite graph, called
factor graph [81, 95].

It is shown in [81, 95] how a single generic algorithm, namely the sum-product
algorithm (SPA), can encompass a large variety of practical algorithms dealing with
complicated global functions. The SPA operates by message-passing in the factor
graph associated with the global function to compute its different marginal functions.

The aim of this appendix is to briefly present the SPA and to show how the BP
algorithm presented in Section 5.4.1 of Chapter 5 can be regarded as a particular
instance of the SPA.

A.1. Problem Formulation

Consider a global function g(z,...,zx) of N variables x, € A, where A, is some
domain or alphabet. Assuming that the summation operation is well defined for
g, one may introduce the marginal functions g,, n = 1,..., N associated with g as
follows

)= % S Y glan,. .. an)

T1€AL Tn—1€An_1 Tnt1€ART1 T1€EAN

= Z g(xla"'axN)7 (Al)
~{an}

where the notation Y- _, ) has been introduced in [31] to indicate that the summa-
tion is over all the variables except x,,.

Assume now that ¢ factors into a product of local functions f; as follows

jeJ
where J is a discrete set of indexes and X; C {z1,...,2n}. The factorization (A.2)

may be visualized by a bipartite factor graph G which is formed by two types of
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Appendix A Sum-Product Algorithm

nodes, the variable nodes (VN) representing x,, n = 1,..., N and the factor nodes
(FN) representing f;, 7 € J. An edge between the VN z and the factor node f
signifies that the variable x is an argument of the local function f.

A.1.1. Simple Example

Consider for example a global function g(x1, x2, 23, 14, x5) of 5 variables which admits
the following factorization

9(901, Lo, X3, T4, !E5) = fA(!E1)fB(!E2)fC(!E1, L2, $3)fD(!E3, $4)fE($37 IE5)-

Therefore, the index set J = {A, B, C, D, E} and the local functions fa, f5, fc, [b,
fr of g take their values respectively in X4 = {21}, Xp = {22}, Xo = {x1, 22, 23},
Xp = {w3, 24}, Xg = {x3,25}. The factor graph G corresponding to g is represented

in Figure A.1.
ONONONONO

fa IB e Ip JE

Figure A.1l.: Factor graph associated to the global function g.

A.2. Computation of the Marginals

The aim of the SPA is to compute the marginals g, (x,) defined in (A.1) by ex-
changing a set of messages between the variable nodes and the factor nodes of G.
By message, one means a given representation or description of the marginal func-
tions, e.g, the a posteriori probability distribution of x,,, the mean and variances of
Zn, etc. The message sent by a variable node x to a factor node f is denoted by
s () and the message sent by the factor node f to the variable node x is denoted

by pif—a(z).

For cycle-free graphs, authors in [31] showed how each single marginal function
gn(z,) may be computed separately by using the graph representation in a tree of
root x,. The message passing procedure starts at the leaves nodes. Each leaf VN
sends the trivial unit function to its parent, and each leaf FN f sends a description
of f to its parent. Each non-leaf node waits for the messages of all its children before
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A.2 Computation of the Marginals

computing the message to be sent to its parent. The message computation follows
a single rule which will be introduced further in this section. The computation
terminates at the root x, where the marginal g,(z,) is obtained as the product
of all the messages received at x,. This algorithm is referred to as the single—n
sum-product algorithm.

The marginals g, (x,) may also be computed simultaneously, which is more efficient
than computing each marginal separately. This algorithm is refereed to as the sum-
product algorithm. All the possible instances of the single—n sum-product algorithm
are overlayed on the graph G and the message passing procedure is initialized at
the leaves nodes as in the single—n sum-product algorithm. Each non-leaf node u
remains idle until it has received messages coming from all but one of its neighboring
nodes v. The node w is then able to compute the message to be sent to node v which
is temporarily considered as its parent. Once this message is sent, node u returns
to the idle state until a return message arrives from v. Once this message arrives,
node u sends it to each of its neighbors other than v, each being regarded in turn as
a parent of u. The algorithm terminates when two messages have been exchanged
along each edge of G, one in each direction. The marginals g, (z,) are then computed
as in the case of the single—n sum-product algorithm.

The computation of the messages passed along the edges of G is performed according
to the following rule [31]:

The Sum-Product update rule: The message sent from a node v on an edge e is
the product of the local function at v (or the unit function if v is a variable node)
with all messages received at v on edges other than e, summarized for the variable
associated with e.

According to the SPA update rule, the message j7.,(z) is computed as follows
prea@) =TI (o), (A3)
heN (@)\{f}

where N (z) is the set of neighbors of x and the message ps.(z) is obtained as
follows

proa(z) =D (f (x) 11 Mfey(y))a (A.4)

~{z} yeN (H)\{=}
where X = N(f) is the set of neighbors of the FN f, i.e, its set of arguments.

Here, the product or summary of the messages involved in (A.3) and (A.4), shall be
understood as appropriate descriptions of the pointwise product or summary. For
example, if the messages are parametrization of the functions, then the product of
theses messages is the parametrization of the resulting product function and not
necessarily the product of the messages themselves.

Figures A.2 and A.3 illustrate the computation of p17. ,(x) and p s, (x) respectively.
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Figure A.3.: Message computation at the factor node f.

The update rule at the VN x takes the simple form in (A.3) because there is no
local function to consider ' and the summary 3" {z} over a product of functions of =
is equal to that product. The computation of ps_,,(x) in (A.4) is less trivial, since
it involves function multiplications, followed by the summary operator 3 ;.

Finally the marginal functions are exactly obtained as follows

gulza) = 11 Hyoen(20). (A.5)
JEN (zn)

For a more detailed analysis of the SPA update rule and the computation formula
(A.5) which gives the exact value of g, in the cycle-free case, one may refer to [31]

(Appendix-A).

A.2.1. Detailed Example

The computation of the marginals associated with the function g presented in the
example of A.1.1 is illustrated in Figure A.4, where all the steps of SPA are detailed.

Lthe local function taken here is the unit function
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A.3 Sum-Product Algorithm for Factor Graphs with Cycles

A.3. Sum-Product Algorithm for Factor Graphs with
Cycles

The SPA presented so far considered cycle-free factor graphs. In the case of factor
graphs with cycles, the computations introduced in the cycle-free case may be ap-
plied by following the same update SPA rule, since all the updates are local. However
due to the presence of cycles, the SPA has no natural termination and the messages
may be passed infinitely along the same edge. The exact summary in (A.4) usually
includes an infinite number of terms.

The number of iterations of the SPA is usually decided according to whether the
algorithm has converged or not. The convergence occurs when identical messages
are obtained between two successive iterations. Nonetheless, the major problem
of graphs with cycles is that the convergence is usually not perfect, messages may
oscillate between a set of values or states, or the convergence may be obtained for a
wrong fixed point. Therefore, unlike the cycle-free case, the results obtained when
operating the SPA on graphs with cycles are not considered as exact.

In some applications, e.g, Markov chains, the associated factor graphs are naturally
cycle-free. In other applications, e.g, decoding of LDPC and Turbo codes, the
underlying graphs contain cycles but the algorithm performances can still achieve
very good performance as shown in [14, 97].

It is shown in [81] how equivalent cycle-free representations may be obtained from a
factor graph with cycles, e.g for Bayesian networks. Such representations are usually
achieved by operating a number of graph transformations. Note however that the
cycles elimination comes at the expense of an increase of the complexity. In [167], two
modified versions of belief-propagation decoding, referred to as normalized belief-
propagation and offset belief-propagation are proposed to improve the performance
of BP in graphs with cycles.

A.4. Belief Propagation

The SPA described in Section A.1 can encompass a wide number of practical algo-
rithms such as the forward/backward algorithm, the Viterbi algorithm, the belief
propagation (BP) algorithm, ete [31].

In this section its is shown how BP presented in Section 5.4.1 of Chapter 5, may be
derived as a particular instance of the SPA to compute the a posteriori probability
distributions (APPDs) p(x,|ri.a)-

The function to maximize in the MAP estimation problem of Chapter 5, is recalled

g(ZL‘l, . ,I‘N) = p(ZL‘l, . ,I‘N|I'1:M)

= p(m, BN ,$N)p(r1:M|$1, s axN)
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Assuming that the variables x,, are independent with prior px, (z,), the joint APPD
g admits the following factorization

g(x1,...,xN) = Ulpxn(xn) Ulp (rm\ Z;H(m, n)xn> ) (A.6)

The graph Gy associated to the factorization (A.2) has N variables nodes z,,, M fac-
tor nodes f,,, each of which represents the likelihood function p (rm| ZnN:1 H(m, n)xn)
and N (leaf) factor nodes h,, which represent the a priori distribution of the vari-
ables z,,. Note, that these NV factor nodes have not been mentioned in Section 5.4.1
of Chapter 5, for simplicity sake. However they are implicitly taken into account in
the initialization step of the presented BP algorithm.

In deed, the SPA starts at these FN since they are the (only) leaves of Gy. Each
node h, sends the message py, (x,) to x,. At this level, there is no computation to
be made, these messages are simply transferred from each VN z,, to its neighboring
FN f,, as described in (5.35) .

From now on, the nodes z,, and f,, are refereed to as n and m respectively. More-
over, the messages (i, 4, (2,) and pif, .. (z,) exchanged at iteration i of the BP
algorithm are denoted by p* . (i,z,) and p¥ ., (i,u, = u,,) respectively (with
U, = H(m,n)x,), as introduced in Section 5.4.1, to refer to the fact that these
messages represent PDFs.

At the level of each FN m, the messages product [1,,en(m) Pinen (i, Tn) is defined here
as the distribution p,, (7, Ym—n) of the random variable y,, ., defined in (5.36).

The function f,,(X), X = N(f,,) defined in (A.4) is the likelihood p (rm| SN H(m, n)xn)
which takes the elements of A/(m) as argument, r,, being a fixed parameter of this
function.

The message computation in (A.4) is performed as described by (5.38), where the
summary operator Y-y, 1 is defined as the integration over the (continuous) random
variable 1, .

At the level of each VN node n, the message computation in (A.3) is performed
as described by (5.38), where the actual product of the messages is performed?.
The same observation is made for the computation (A.5) of the marginals g, (x,) =
p(n|r1.r) which performed in (5.39).

2Tt is the product of likelihoods sent by the FN nodes m’ € N (n)\ {m}
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A4 Belief Propagation

Step 1 (initialization)

Hf gz (T1) = Z~{zl} fa(z1) = fa(z1)
Mgy (T2) = ZN{Z y fB(22) = fB(22)
Bfpaq(xa) =1
Bfgeas(®s) =1

Step 2

= pif gz (T1)
= fifp—ay (T2)
=D gy D@8, 3 gy iy (24)
= ZN{ZS} fe(x3,5) sy as (T5)

Hfo—sas(23) = ZN{IS} Jfo(@1, 2, 23) by o ay (T1) i as (T2)

Hfc+mz3 (z3) = Hfp—zxs (xS),ufE%zg (z3)

Step 4
gy (@1) =321,y fo (@102, 28) s oy (12)1f 6 a5 (3)

Bio—wy (@2) =320y o (@122, 28)ifc oy (21) 150 a5 (3)

Hfp+ax3 (2133 Hfc—azs (xS):ufE—»zd (:Eg)

1) =
z2) =
)=
)=

Hfp—zs (z3 Hfc—wx3 (13):“fp%zg (x3)

Step 5

Mf;ﬁ—acl(xl) = Nfc—mcl(l'l)
/JfBezg(mQ) = /“Lfc*)fllz('rQ)

Bfp—saq(Ta) = Zw{u} o3, xa)pf ) oy (w3)

gy (@5) =D,y JE(@3, 25) sy ay (23)
Step 6 (End)

91(x1) = pfp—ay (B Bfo -0 (71)

92(22) = pfp—an (T2)Pfo—us (T2)

)=
)=
93(23) = Hfo s (T3)Hfp s (T3)HFg—as (23)
9a(%4) = pfp 2y (T4)

)=

95(5) = pfp—sas(25)

Figure A.4.: Example of the computation steps of the SPA.
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B. Oversampled Filter Banks

Oversampled filter banks [151] are filter banks whose number of output subbands
is larger than the decimation factor. These filter banks provide several advantages
over the critically sampled filter banks, such as increased design freedom [10], noise
shaping and reduction [16, 17], as well as robustness to erasures and transmission
errors [56, 131, 54, 79, 86, 130, 2].

This appendix briefly introduces the oversampled filter banks and some of their
properties. The aim is to show that the estimation schemes presented in Chapter 5
may be applied to these filter banks by exploiting the overcomplete representation
they provide.

In Section B.1 a description of the oversampled filter banks in both time and
polyphase domains is provided. In Section B.2, the parallelism between these filter
banks and error-correcting codes is evidenced.

B.1. Introduction to Oversampled Filter Banks

B.1.1. Time Domain Analysis

Consider an M —band filter bank (FB), wherein each band is subsampled by an
integer factor N. The analysis and synthesis filters have the impulse responses
{hm(n)},cz and {gm(n)}, 5, respectively, where m = 1,..., M, see Figure B.1.

> hi(n) s1(n) > ¢N — y1(i) —> TN > g1(n)

»| ha(n) 52 (n) > ¢N —> Y (Z) —> TN > 92(n)
— . . . .

> hy(n) su(n) > ‘N—» yr (i) — TN > gu(n)

Figure B.1.: Block diagram of an M —band filter bank.
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The input signal z (n), n € N, goes through the M analysis filters and M output
signals s,,(n), m = 1,..., M are obtained. The n—th sample of the m—th analysis
filter output, s,,(n) is expressed as

Sm(n) = ZOO hm(€)z(n — ), n € N. (B.1)

l=—00

After downsampling by N, downsampled subband signals are obtained

Yn(i) = +ZOO hon (O)2(iN — 0), i € N, (B.2)

l=—00
The reconstructed signal Z(n), at the synthesis stage, is obtained as follows

M—-1 +oco

z(n) = > > ym(i)gm(n —iN), neN. (B.3)

m=0 i=—o0

In critically sampled FBs, one has N = M and the subband signals y,,(i), i € N,
m =1,..., M contain exactly the same number of samples, per unit of time, as the
input signal z(n), n € N.

In the case of oversampled filter banks (OFBs), M > N and the output subbands
form a redundant representation of the input signal.

When the analysis filters h,,, m = 1,..., M are of finite impulse responses (FIR)
and of maximal length L, (B.2) becomes

Un(i) = 3 (OGN = 0), T €N (B.4)

Without loss of generality, one can take L as the smallest multiple of N that is
larger than the largest length of the filters impulse responses (zeros may be added
to impulse responses if necessary). Then L = N x K, where K is some positive
integer. Consider the M x N matrices

hi(kN+ N —1) -+ hy(kN)
H, = : : , k=0,..., K — 1. (B.5)
hy (BN + N —1) -+ hy(kN)
The temporal relation between the input and the output of the OFB, at time instant
1 € N, can be written as

K-1

y' = Z H,x" %, (B.6)
k=0

where

x' = (z(iN = N +1),...,z(iN))"
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and
y = (y(iM — M +1),...,y(iM))",

with y (iM —m) =yp—m (1), m=0,...,M — 1.

The vectors x’ and y* contain the polyphase components at time instant i of the
input signal x and the output subband signal y, respectively. The relation in (B.6)
may be rewritten as follows

y' = Hg_pox' "1, (B.7)

where Hi 1.0 = (Hg_1,...,Hp) is the M x KN matrix formed by the matrices Hy,
k=0,...,K —1, defined in (B.5) and the vector

T

N ST ((XiK+1)T . (Xi)T) (B.8)

contains all the input samples affecting the OFB output at time instant i.

In (B.7), the oversampling character of the filtering operation is not obvious due to
the length L of the analysis filters, which may exceed the length M of the output
vector y’. To illustrate the redundancy introduction, consider J > K successive
output vectors y*~/*1 ... y® gathered in the vector y'=/*'% of size JM, which is

defined similarly to (B.8), as follows

T

yim Tt <<yi—J+1)T o (yi)T) . (B.9)

Using (B.7)—(B.9), one gets

yi—J+1:i _ Hxi—J+1—K+1:i’ (B.10)
where the matrix
Hy , --- H, H, 0O --- 0
w=| O Heooo Ho Ho 0 (B.11)
0 . 0 Hy, --- H H,

is of size JM x (J+ K —1)N. When enough output vectors are gathered in (B.9),
i.e., J > (K —1)N/(M — N), the matrix H becomes tall, i.e, with more rows
than columns and the redundancy introduction performed by OFBs becomes more
evident.

The time-domain analysis of OFBs presented in this section aims at providing the
basic filtering operations carried out on the input signal in the time domain. In
the next section a similar, but more general, analysis of OFBs is carried out in the
z—domain, by using the polyphase representation of OFBs.
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B.1.2. Polyphase Domain Analysis

Polyphase representation of FBs is a classical description of the input-output re-
lationships of FBs [151]. This representation simplifies computations and leads to
efficient implementations. Figures B.2 and B.3 illustrate the polyphase represen-
tations H(z) and G(z) of given analysis and synthesis FBs, respectively. In these
representations, the downsampling and upsampling operations are performed before
analysis and synthesis filtering, which simplifies the computations, e.g., as it can
be seen in (B.2), where the computation of s,,(n) is not necessary when n is not a
multiple of V.

z(n) N ¢N z(iN) N v (D)
R p(iN-1) y2(0)
1Y '¢N e [ .

1 I 2(iN — N + 1) Y (7)

> >

Figure B.2.: Polyphase representation of an OFB at the analysis stage.

yl(z) f(zN) . TN
Yo () T(iN —1) . TN X z

. G(z) . vo
yar (i) f(iN—NﬂLiTN . 2(n)

Figure B.3.: Polyphase representation of an OFB at the synthesis stage.

The M x N polyphase analysis matrix H(z) is expressed as

H(z) = io H,2 ", (B.12)

k=—00

and the relation between the input X(z) and the output Y(z) of the OFB in the
polyphase domain is given by

Y(2) = H(2)X(2). (B.13)

The relation (B.13) is more general than (B.10), as it is not limited to the FIR case.

152



B.1 Introduction to Oversampled Filter Banks

In a similar way, the N x M polyphase matrix G(z) at the synthesis stage is expressed
as

+o0o
G(z) = > Gz F, (B.14)
k=—o00
where
g1(kN) e gu(EN)
Gy = : : : (B.15)
g (kN+N—-1) -+ gy(kN+ N —1)

and the reconstructed signal is obtained as follows

X(2) = G(2)Y(2). (B.16)

B.1.3. Perfect Reconstruction

A filter bank satisfies the perfect reconstruction property X(z) = X(z)* if
G(2)H(z) =1y, (B.17)

where Iy is the N x N identity matrix.

In the case of critically sampled FBs, the matrices H(z) and G(z) are N x N
square matrices of full rank N and (B.17) admits a unique solution G(z) = H™!(2)
[151, 158, 31].

For OFBs, the matrix H(z) is tall and perfect reconstruction is satisfied if H(z)
has full normal column rank N [31]. In this case, the solution of (B.17) is not
uniquely determined and any inverse of H(z) is a valid solution. It has been shown
in [10, 92, 18], that any left inverse G(z) of H(z) can be written as follows

G(2) = G(2) + R(2) (Iy — H(2)G(2)) , (B.18)

where G(z) is any particular solution of (B.17) and R(z) is any N x M matrix, whose
elements (R(z)),, ,, satisfy ‘(R(z))nm‘ < 00. Using the fact that G(2)H(z) = Iy, it
is easy to see that G(z) defined in (B.18) is a solution of (B.17).

In case of OFBs, the non-uniqueness of the synthesis FB for a given analysis FB
H(z) offers freedom in the design of G(z) through the elements of R(z) [18]. This
allows to construct synthesis FBs with desired properties, which is particularly useful
in the case of erasure channels where the content of one or more subbands may be
erased [79, 130, 2].

Tt is assumed here that no delay is introduced, but the theory presented in this section can easily
be extended to perfect reconstruction with non-zero delay.
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Consider the matrix H(z) = (H*(21))", where (-)* stands for the complex conju-
gation operation. A particular synthesis FB, that can be used in (B.18), is

— — 1 —

G(2) = (H(2)H(2)) H(2), (B.19)

which is called the para-pseudo-inverse of H(z).

The next section shows how an OFB with perfect reconstruction property can be
assimilated to a channel code.

B.2. OFBs as Error Correcting Codes

A parallelism between OFBs and channel codes has been evidenced in [85, 86] by
introducing the notions of generator matrix, code subspace and parity-check matrix,
as well as the associated operators.

These operators are presented in the time domain in Section B.2.1, then they are
described using the corresponding polyphase matrices in Section B.2.2.

B.2.1. Time Domain

In this section, the study is presented for real-valued signals and filters, but it can
be extended to the general complex case.

Consider an integer J > (K — 1) N/ (M — N). As presented in Section B.1.1, at
time instant i, one has

il gy KL

where H is defined in (B.11). The input vector x"~7/T =5+ gpan the whole real
space RUHE-DN "whereas the output vector y*~7/*1% belongs to the subspace C of
R7M generated by the columns of H.

The matrix H may then be seen as the generator matrix of an error-correcting code
in the real field. The subspace C is considered as the code subspace associated to
the analysis filter bank for a given integer J, in the sense that any subband signal
obtained from the generator matrix H should belong to C

y € C <= Ix e RVIE-DN ot v — Hx. (B.20)

When the subband signal is corrupted by noise, a possible decoding approach con-

sists in projecting the corrupted vector y*~/+1% onto C using the orthogonal projec-

tion operator Il¢, defined in [30]

Mo =H (H'H) ' (B.21)
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and verifying
Iley =y,Vy €C. (B.22)

The projection onto C is illustrated in Figure B.4, where C is a two-dimensional
subspace of a three-dimensional space.

Vey

Figure B.4.: Tllustration of the projection onto the subspace code C [37].

Similarly to error-correcting codes, the concept of parity-check operator Wy = Il
is also defined in [30]

We = Ly — Tlg, (B.23)

where I, is the identity operator defined in the JM —dimensional space R/M.
Using (B.22)-(B.23), one has

Ty =0, Vy € C. (B.24)

RIM—(J+K-1)N

The syndromes s € are then computed by applying Ve on any re-

ceived vector y € R7M
s = Vey. (B.25)
Similarly to channel coding
Vey #0 =1y ¢ C. (B.26)

Using (B.26), one may detect the occurence of transmission errors in the received
subband vector y.
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B.2.2. Polyphase Domain

In Section B.2.1, the subspace interpretation of OFBs as error-correcting codes is
illustrated by stacking up J successive subband vectors, which is somewhat restric-
tive.

In this section, the parallelism between OFBs and error-correction codes is drawn
in the more general polyphase domain framework.

B.2.2.1. Smith-McMillan Decomposition

As mentioned in Section B.1.3, in the case of OFBs, the perfect reconstruction
property is satisfied if H(z) has full column rank N. In this case, H(z) admits a
Smith-McMillan decomposition [151] of the form

H(2) = U(2) ( A(()Z) ) Wi(2), (B.27)

where U(z) and W(z) are unimodular® matrices of sizes M x M and N x N respec-
tively, and A(z) is an N x N diagonal matrix, see Figure B.5.

X(2) v Xo(2) | . . Yi(2)
z71 =¢N Xi(2)) - . Yo (2
Y : W(z) |, | Az) : | v .
z71 |—>¢N XN—l(Z)V s R

0, Y (2)

Figure B.5.: Illustration of the Smith-McMillan decomposition [85].

The decomposition (B.27) allows a more clear understanding of the different op-
erations performed at the analysis stage of an OFB. First an N x N multiple
input multiple output (MIMO) filter A(z)W(z) transforms an N-input sequence
X(2) = (X1(2),...,Xn(2))T into a sequence of N subbands. These subbands
are padded with M — N null subbands. The M resulting subbands enter then
an M x M MIMO filter U(z). At the output of U(z), an M-subband vector
Y(2) = (Yi(2),...,Yu(2)" is obtained.

A mapping as the one illustrated by Figure B.5 cannot span the entire output space.
The output subband vector Y(z) only spans a subspace C of RM of dimension N.

2Unimodular matrices are polynomial matrices with polynomial inverse [151].
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B.2 OFBs as Error Correcting Codes

This code space C is spanned by the columns of H, or equivalently, by the first N
columns of U(z) [87, 85, 80].

The analogy between H and the generator matrix of an error-correcting channel
code becomes more clear through the Smith-McMillan form, and OFBs may then be
considered as real-valued error-correcting codes [104, 25]. The orthogonal projection
onto the code subspace Iz defined in (B.21) is implemented by using the para-
pseudo-inverse G(z) defined in (B.19), at the synthesis stage [17]. It is shown in
[85, 87] how the parity-check matrix and the syndrome associated to H(z) may be
computed using (B.27). This is the topic of next part.

B.2.2.2. Parity-Check Matrix and Syndrome Computation

Since the matrix U(z) is unimodular, it is invertible and its inverse may be written
as follows

Ul(2) = ( ;/Ej)) ) , (B.28)

where V(z) and P(z) are matrices of sizes N x M and (M — N) x N, respectively.
From (B.27)-(B.28), one gets

()o-(*39). o

and thus
P(z)H(z) = 0. (B.30)

Consider a subband signal Y (z) obtained at the output of the OFB from some input
signal X(z). Then, using (B.30), one obtains

P(2)Y(z) = P(2)H(2)X(2)
~0. (B.31)

Now assume that Y(z) is corrupted by some error signal of polyphase representation
E(z). The corrupted subband signal Y(z) = Y (z) + E(z) verifies

P(2)Y(2) = P(2)E(z). (B.32)

Therefore P(z) is considered as the parity-check matrix associated to H(z) and

is the syndrome associated to Y (z), which has to be equal to zero in the error-free
case, and may be different from zero if some transmission errors are encountered?®.

3As in error-correcting codes, some transmission errors lead to a null syndrome and are thus
undetectable.

157



Appendix B Oversampled Filter Banks

The parity-check matrix P(z) may be written as follows

P(z) = io | (B.33)

k=—00

where Py, k € Z are (M — N) x M matrices.
In the case of FIR analysis filters, the parity-check filter P(z) is also FIR [87] and
(B.33) becomes
K'—1
P(z)= > Pz ", (B.34)
k=0

where K’ € N*.
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C. Image Denoising by Adaptive
Lifting Schemes

This appendix addresses the problem of image denoising by using adaptive lifting
schemes. Such methods can adapt themselves to the analyzed signal, allowing to
keep useful information for denoising applications. However, these schemes result in
non-isometric transforms, impacting thus the denoising approaches performing the
noise energy estimation in the subband domain. In [118] 119], the authors proposed
a model to evaluate the subband energies of an uncorrelated signal when using such
adaptive lifting schemes. Based on this work, an estimation of the noise energies in
the wavelet transform domain is proposed in the sequel for image denoising.

C.1. Introduction

During its acquisition or transmission, an image is often corrupted by noise. The
aim of denoising techniques is to remove this noise while keeping as much as possible
the important features of the image. A particular interest has been dedicated to
denoising by wavelet thresholding [35, 39, 36]. The principal motivation relies on
the energy compaction property inherent to wavelet transforms: the small detail
coefficients are more likely due to noise whereas the large ones are due to impor-
tant signal features [72]. These small coefficients can be then thresholded without
affecting the significant features of the image.

The lifting scheme (LS), introduced by Sweldenes [115] is a practical way for con-
structing wavelets, which leads to the so called second generation wavelet trans-
forms. It is popular because it has the capability of adjusting the wavelet transform
to complex geometries and offers a simple, yet efficient, implementation of the first
generation wavelet transforms. However, an important limitation of the LS is that it
does not cope well with the sudden changes in the input signal, that hide important
information in many applications, such as denoising. It becomes desirable to have a
lifting scheme that is able to adapt itself to the data. The adaptive lifting schemes
(ALS) have been designed for this particular purpose [124, 29, 68, 125, 106].

The idea behind the ALS application in the particular case of denoising via thresh-
olding, is that these schemes allow to perfectly preserve the original characteristics
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of the input signal, offering a sparse representation, which make the thresholding
rules more effective than in the case of the traditional non-adaptive LS. The most
known thresholding methods are VisuShrink [35] and SureShrink [30].

In this work, we have considered a soft thresholding method. The threshold se-
lection algorithm proposed by Donoho in [35] for VisuShrink is used to derive a
specific threshold for each subband when using an ALS. This approach relies on the
estimation of the noise energy in each subband when an ALS is used, which is not
a trivial task. Usevitch [150] has shown, for generic linear wavelet filter banks, that
for an uncorrelated signal, the energy in the spatial domain is the weighted sum of
subband energies. This allows, for example, to estimate the distortion introduced
by the quantization noise, but also it can be used to analyze other kinds of noise.
This result has been generalized to non-linear ALS in [118, 119, 23] and the obtained
subband weights have been used to perform optimal resource allocation.

The contribution of the work presented in this annex is to use these weights in order
to derive estimates of the noise energy in each subband, prior to the application of
the soft thresholding procedure.

C.2. Adaptive Lifting Schemes

C.2.1. Classical Lifting Schemes

A typical lifting stage is composed of three steps : Split, Predict and Update as
shown in Figure C.1.

Xa Ya

- Split P U

. X T~
_/ >

Figure C.1.: Analysis stage of a classical lifting scheme.

The input signal x is first split into its even and odd polyphase components, called
the approximation signal x, and respectively, the detail signal x4. The odd samples
of x are then predicted from the neighboring even ones. The predictor operator P
is a linear combination of these samples and generally, it is chosen such that it gives
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C.3 Adaptive Prediction Lifting Scheme

a good estimate of x4q. The obtained signal yq4 = x4 — P(x,) has smaller energy
than x4. Finally, the even samples of x are transformed into a low-pass filtered
and subsampled version y, of the original signal x. This is performed by using
an updating operator U which is a linear combination of the elements of y4. The
approximation signal y, = x, + U(yq) is then obtained.

The principal disadvantage of the LS described above is that the linear filtering
structure is fixed and therefore it can not match well the sharp transitions in the
signal. The lifting schemes with adaptive prediction (APLS) [50, 29, 106] or adaptive
update (AULS) [124, 68, 125] have been designed to overcome this limitation by
using a filter that is able to adapt itself to the input signal. In what follows, the
APLS are briefly described.

C.3. Adaptive Prediction Lifting Scheme

Let x be the input signal of length N and y; ; the wavelet subband obtained from x,
where ¢ € 7 identifies the decomposition level starting from 0, and 5 € J identifies
the channel. Usually J = {0,1}, with 0 used for the low-pass and 1 for the high-
pass channel, but more channels can be used, as in the case of multi-dimensional
transforms. For example, the subbands produced by one decomposition level are
called yo and yq ;.

In the APLS, the adaptivity is built into the prediction step of the lifting scheme as
shown in Figure C.2.

P I T

i I W

Figure C.2.: Adaptive prediction lifting scheme.

[

—{ Split

Such schemes are based on the design of a data-dependent prediction filter in order
to minimize the predicted detail signal. In this work, the considered APLS is the
one proposed by Claypoole et al. in [29], which lowers the order of the prediction
filter near jumps to avoid prediction across discontinuities, and uses higher order
predictors where the signal is locally smooth.

The choice of the prediction operator to be used is made at each decomposition level
i. A decision map d;(-) is computed at each decomposition level i. The decision
map allows to discriminate the smooth parts of the signal to be filtered from its
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textured parts. Usually, the decision map takes its value in a discrete index set
{1,..., N¢}, each value h of this set being associated to a given prediction filter
{(n), n € Z}. The position k, e.g. d;(k) = h, h = 1,..., Ni, indicates that the
h—th prediction filter v, has to be used. Once the decision maps are calculated, the
following equations are used for the analysis stage at level ¢

vio(k) = yi—10(2k) + Z B(n)yi-10(2k + 1 —2n)

nez

Vii(k) =yic10(2k +1 Z’Yd k) )yiolk)(k—n),

nez

where y;,_10 = x, if i« = 0, and {#(n), n € Z} represents the non-adaptive update
filter. The synthesis stage at level ¢ is described by

Yi-10(2k+1) = Yii(k) + > vaw (n)yio(k —n)
nez
Yi-10(2k) = Vio(k) =Y B(n)yi-10(2k +1—2n)
nez

where y; 10, if ¢ = 0, is the reconstructed input signal x.

As one can notice, this system is non-linear since the prediction operator depends
on the decision map which, at its turn, depends on the input signal.

C.4. Distortion Estimation in the Transform Domain

For generic linear wavelet filter banks, Usevitch showed [150] that the energy o
(in the spatial domain) of an uncorrelated one-dimensional signal is related to the
energies cr - of the wavelet subbands y; ; by the following linear relation

1
o’ = Z 22+1w'ngi2d" (C.1)

7_]

The weights w; ; are computed as the norm of the synthesis polyphase matrix G; ;
used to reconstruct the subband y; ; of size N;; [150]

2
wm = N Z Gm(m, TL)Q. (CZ)

This approach has been extended in [118, 119] to the case of the inherently non-
linear ALS, for which no polyphase representation exists. The basic idea was to
look at the overall ALS as a linear time-varying system, which is possible once the
decision maps d;(-) are given. In fact, the authors have shown that the non-linearity
of the system depends only on the decision maps and not on the whole input signal.
Therefore, the weights depend only on the values of d;(+), and more precisely on the
choice of the prediction filters.
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C.5 Application to Image Denoising

Consider the polyphase synthesis matrix Gg}) corresponding to the value h of the
decision map d;(-). This matrix can be considered as the polyphase synthesis matrix
used in the non-adaptive lifting case, where the h—th prediction filter ~, is always
used. Let Nl-(f]l») be the number of times the h—th filter is used in the subband y; ;.
In [118, 119] is shown that

N, (h) N,
wiy = 30 2 00§ 0,0 (C.3)
i,j — N i P i .
h=1 h=1

(h)
where wglj) is obtained from (C.2) and p) = QN# measures the relative frequency

of using filter h for the current subband y; ;.

C.5. Application to Image Denoising

In the APLS approach, the prediction operator adapts itself to the input signal so
that the characteristics of the original signal are very well preserved. This property
has been successfully exploited to perform optimal resources allocation [118; 119],
by estimating the distortion, introduced by quantization, in the transform domain.

In this work, the APLS properties are exploited for the purpose of image denoising.
Let the image input signal be x(k,¢), k, ¢ = 1,...,N. Assume that this signal
is corrupted by an additive noise € of energy o2 assumed independent of x. The
corrupted image z is then obtained as

z(k,0) = x(k,0) + €(k, 0). (C4)

The goal is to denoise z(k, ¢) and to obtain an estimate X(k, ¢) of x(k, /).

Let I denotes the coarsest scale of the APLS decomposition. As introduced in
Section C.3, the same notation y; ; is kept for the subbands obtained from x, where
i€Z,jeJ, T={0,...,]—1}and J ={0,...,3}, the only difference being that
the two-dimensional case is considered here. The noisy subbands obtained from z
are denoted by y; ;. In the case of an orthogonal wavelet transform, the coefficients
in each noisy subband y; ; are i.i.d, as (0, 0?). In the case of an APLS, this result
does not hold anymore since the considered transform is neither isometric nor linear.
The standard deviation o; ; of the noise within the subband y; ; is not equal to the
standard deviation o of the noise introduced the spatial domain.

In what follows, wavelet thresholding is used for removing the noise. It consists in
thresholding only the wavelet coefficients of the detail subbands (i.e., ¥;1, ¥;2 and
Vi3), while keeping the low resolution coefficients unchanged. The soft thresholding
method in [37] is considered here as it gives the best performances when coupled
with an undecimated discrete wavelet transform [30]. For an one-dimensional signal
of length M, Donoho and Johnstone [35] proposed the universal threshold, Ty =

oy/2log(M), which results in an asymptotic optimal estimate in the minimax sense.
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In the case of APLS, the soft thresholding is applied to each noisy detail subband y; ;,
i €I, j =1,2,3, with a specific threshold T; ; = 0; ;1/21og(N?), where N? = % is
the number of coefficients in the subband y; ; and o; ; is the noise standard deviation
of the corrupted detail subband y; ;. The problem is thus to obtain a good estimation
0;,; of o; ; within each subband. The relation in C.1 is only valid when o; ; represents
the energy of an uncorrelated signal, which might not be the case when using APLS
on a noisy signal.

Consider the equation C.1 for the two-dimensional APLS, wherein the energy of
the noise introduced in the spatial domain is 02 = > ﬁwmai ;- As explained in
[150], the use of a non-orthogonal transform results in weighting the energy in each
subband. The weights can be seen as a measure of the closeness of the biorthogonal
filters to the class of orthogonal filters. The introduction of these weights allows thus
to approach the behavior of the orthogonal transform in the sense that the equality
between the energies in the subbands, which is verified by an orthogonal transform,
is changed into an equality between the weighted energies when a non-orthogonal

transform is used. This relation may be written as
2 2
Wi j0; j A Wir 1Ty o, (C.5)

where i # i and j # j'.

At the first decomposition level, the noise energy of the diagonal details subband
p

Yo,3 may be estimated [35, 39] as: 634 = (%) , where m is the median absolute

deviation of the wavelet diagonal details at the finest decomposition level. From

(C.5), an estimation of o, ; can be derived

~ w ~
Oi5 = ( 073)0'0,3. <C6>

Wi,j

One should point out that the equation (C.5), from which (C.6) is derived, relies
on the assumption of equality between the weighted subband energies. In the next
section, the energies expressions in (C.6) are used to achieve soft thresholding.

C.6. Simulation Results

C.6.1. Noise Standard Deviation Estimation

In this subsection, the aim is to evaluate the correctness of the noise standard devia-
tion estimation provided by equation (C.6). A white Gaussian noise with a standard
deviation o is introduced in the original image, which is further transformed using
an APLS with five decomposition levels, as described in Section C.3. The equation
(C.6) is then used to calculate the estimations &;; of the noise standard deviation
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C.6 Simulation Results

Barbara Lena

o 30 50 80 30 50 80
Subband yo3 | 0.86 0.51 0.12 | 0.51 0.20 0.03
Subband yo | 0.71 0.48 0.30 | 0.54 0.22 0.16
Subband yo; | 0.98 0.55 0.32 | 0.58 0.32 0.17
Subband y;3 | 816 871 877|884 9.02 9.17
Subband y;o | 7.25 7.57 7.52 | 7.61 782 7T.77
Subband y;; | 5.09 556 5.71 | 564 5.68 5.84

Table C.1.: Relative error of the standard deviation estimation in some of the
detail subbands for the images Barbara.pgm and Lena.pgm, corrupted with a
spatial noise of standard deviation o € {30, 50, 80}.

within each subband y; ;. The percentage of relative errors of this estimation are
reported in Table C.1 for the six first subbands.

For the first decomposition level the estimation is accurate, but the estimation errors
become more important in the second level of decomposition and so on. The reason
is that the signal is not entirely decorrelated as supposed in [150] and imposed
in [119]. However, these estimations are good enough in the particular context of
denoising by soft thresholding as will be shown in the next subsection.

C.6.2. Denoising by Soft Thresholding

In this subsection, a soft thresholding method is used on the detail subbands of
the noisy image, obtained with the considered APLS. A specific threshold is used
for each detail subband as described in Section C.5. This denoising approach is
compared to the conventional soft thresholding approach performed on the same
noisy image, but this time transformed with the classical, non-adaptive 9/7 wavelet
transform. Three different images have been considered: Lena.pgm, House.pgm
and Barbara.pgm. PSNR and SSIM curves as function of the introduced noise are
reported in Figures C.3, C.4 and C.5.

There is an improvement in PSNR and SSIM with the proposed approach when
compared to the 9/7 filter. When considering the image House.pgm, the obtained
gain is up to 1 dB in PSNR and 0.03 in SSIM.

Figure C.6 compares the visual reconstruction quality for the image Lena.pgm for
both denoising methods, e.g. when the image is transformed with the non-adaptive
9/7 filter and further denoised using the soft thresholding method, and when the
APLS scheme is used and the proposed denoising approach, described in Section C.5,
is adopted.

The noise introduced in the image has a standard variation of 30. One can see that
the APLS scheme allows to better preserve the edges. For example, the nose, mouth
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Figure C.3.: PSNR and SSIM performance as function of the spatial noise intro-
duced in the image Lena.pgn.

and eyes areas in Figure C.6 are recovered with more details. The non-adaptive
9/7 wavelet transform tends in general to oversmooth the image whereas the APLS
scheme catches better the details. Note however that there are some artifacts in the
image denoised using the proposed scheme. The reason is that the soft threshloding
method introduces a bias in the estimation of the wavelet coefficients of important
amplitude. Other techniques that lead to an unbiased estimation, as the SURE
method, may be considered and should give a higher visual quality. Also, the energy
estimation within each subband is performed using (C.6), based on the assumption

in (C.5).

C.7. Conclusion

In this appendix, we proposed an approach for image denoising via soft thresholding,
by using an adaptive lifting scheme. This approach, based on the estimation of
the energy in the transform subbands, gives better performance than the classical
non-adaptive 9/7 wavelet transform. Other thresholding methods, for example the
SURE method, may be considered to improve the visual quality of the reconstructed
images. Moreover, the SureShrink technique, which is an hybrid of the universal
thresholding method, and the SURE threshold may be investigated as well, the
choice of the threshold in this case depends on the energy of a particular subband.
In addition, more elaborated expressions than (C.6) may be developed for estimating
the subbands energies in presence of noise.
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Figure C.4.: PSNR and SSIM performance as function of the spatial noise intro-
duced in the image House.pgm.
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Figure C.5.: PSNR and SSIM performance as function of the spatial noise intro-
duced in the image Barbara.pgm.
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(a) 9/7 wavelet filter, (b) APLS scheme,
PSNR= 24.4 dB, SSIM= 0.740 PSNR= 24.9 dB, SSIM= 0.742

Figure C.6.: Visual reconstruction quality of the denoised image Lena.pgm when
using the 9/7 wavelet filter and the APLS scheme, for o = 30.
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List of Acronyms

ARQ Automatic Repeat Request

AVC Advanced Video Coding

AWGN Additive White Gaussian Noise
BER Bit Error Rate

BP  Belief Propagation

BPSK Binary Phase-Shift Keying
CRC Cyclic Redundancy Check

DCT Discrete Cosine Transform

FB  Filter Bank

FEC Forward Error Correction

FIR Finite Impulse Response

HD  Hard Decisions

JSC  Joint Source-Channel

JSC-NoSI JSC with No Side Information
JSC-SI JSC with Side Information
JSCC Joint Source-Channel Coding
JSCD Joint Source-Channel Decoding
LDPC Low-Density Parity-Check

LS  Least Squares

MAC Media Access Control

MAP Maximum a Posteriori
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MCTF Motion-Compensated Temporal Filtering
MD  Multiple Description

MDCT Multiple Descriptions with Correlating Transform
MDS@Q Multiple Description Scalar Quantization
ML  Maximum Likelihood

MSE Mean Squared Error

NALU Network Abstraction Layer Unit

NR-D Non Robust Decoder

OFB Oversampled Filter Banks

PCT Parity-Check Test

PDF Probability Density Function

PEB Percentage of Erroneous Blocks

PSNR Peak Signal to Noise Ratio

R-D Rate-Distorsion

RTP Real Time Protocol

SD  Single Description

SNR Signal to Noise Ratio

UEP Unequal Error Protection

VLC Variable Length Code

Y-PSNR PSNR on the luminance component Y
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