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RÉSUMÉ EN FRANÇAIS

Contrairement à l’homme qui manipule des valeurs symboliques lors de ses calculs (
√

2, π, etc.),

un ordinateur calcule à partir d’approximation des nombres. En effet, même s’il est possible,

de nos jours, d’implémenter le calcul symbolique, celui-ci reste coûteux en ressources et est

beaucoup plus lent qu’un calcul direct à base d’approximations. Bien entendu, le fait d’arrondir

les nombres provoque des erreurs de calculs, et même si tout est fait au niveau de l’architecture

des processeurs pour rendre ces erreurs aussi négligeables que possible, celles-ci peuvent, dans

certaines circonstances, perturber fortement le résultat.

Ces erreurs d’arrondis dont certaines sont restées tristement célèbres (explosion de la fusée

Ariane 5, explosion d’un missile sur une mauvaise cible) ont toujours été et font toujours l’objet

d’études approfondies. Comme les preuves manuelles de correction ont toujours le risque d’être

fausses et requerraient trop de travail pour des logiciels industriels comportant des milliers de

lignes de code, on a développé des programmes pour automatiser l’analyse des programmes.

L’analyse de programmes est appelée statique car le programme n’est pas exécuté, contraire-

ment aux analyses à base de tests. Cela lui permet de fournir une garantie totale de la robustesse

du programmes aux erreurs (contrairement aux tests qui, généralement, ne sont pas exhaustifs

et sont donc faillibles). Dans cette thèse cependant, nous ne cherchons pas à développer une

méthode d’analyse automatique ou semi-automatique mais nous cherchons à relier des preuves

de corrections d’algorithmes à des analyses automatiques de code. En effet, dès que le principe

d’un programme est non trivial, il repose souvent sur un théorème qui prouve que l’algorithme

va fournir le bon résultat. Ce théorème peut potentiellement utiliser des arguments mathéma-

tiques complexes et sera donc la plupart du temps hors d’atteinte d’un analyseur automatique.

Mais malheureusement, les théorèmes sont souvent prouvés uniquement pour un calcul exact et

ne permettent pas de prédire quantitativement l’influence des erreurs d’arrondis lors du calcul.

Le but de cette thèse est de proposer pour deux classes d’algorithmes des théorèmes étendus qui,

en se basant sur la preuve exacte et sur une analyse simple du code, permettent de quantifier

l’erreur finale résultant des arrondis.

Les deux problèmes que nous avons abordés sont les suivants. D’abord nous nous sommes

intéressé à la question de la confidentialité différentielle (differential privacy). Il s’agit d’un
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vi 0.1

mécanisme permettant à un individu de participer à une étude statistique sans que l’on puisse

retrouver ses données personnelles. L’intérêt de ce problème est que le programme ne calcule pas

la valeur d’une fonction mais produit une valeur (pseudo)-aléatoire. Or, comme un analyseur

automatique ne fournit qu’une borne sur la déviation maximale d’un calcul, il faut réussir à

réinterpréter cette déviation en terme de variation de la loi de probabilité.

Dans notre second problème, on s’intéresse à des programmes où les branchements condi-

tionnels modifient radicalement la façon dont on atteint le résultat. Dans de tels programmes,

une infime variation dans les valeurs peut conduire le programme à emprunter deux branches

dont les effets sont radicalement différents. Bien sûr, de tels programmes fonctionnent car, au

final, il y a une sorte de convergence qui s’opère. Cependant, un analyseur fait progresser son

analyse ligne après ligne par compositions successives et ne peut pas appréhender cette conver-

gence globale. De fait, quand il se retrouve face à deux branches distinctes qui mènent à des

résultats différents, il risque de simplement conclure que le programme est instable. Pour palier

à ce problème nous proposons un théorème qui utilise la propriété de convergence prouvée pour

des calculs exacts ainsi qu’une analyse du programme qui ne se soucie pas des branchements

pour conclure un résultat de robustesse pour le programme en calcul arrondis.

0.1 Robustesse

Représentation finie

Avant de prouver la fiabilité d’un programme, il est important de comprendre en quoi consiste

exactement le calcul en représentation finie. Principalement, nous nous intéressons à deux types

de représentations finies : les nombres à virgules flottantes et les nombres à virgules fixes.

Les nombres à virgules fixes sont utilisés soit sur des processeurs rudimentaires soit pour des

calculs où l’amplitude des nombres est connue à l’avance (la monnaie par exemple) soit dans

quelques cas où ils sont plus performants que les nombres à virgule flottante. Leur représen-

tation consistent principalement en un entier divisé par une constante prédéfinie. Lors d’un

calcul en virgule fixe, les additions et soustractions se font sans erreur car le résultat est aussi

représentable. Le principal problème de cette représentation, c’est qu’elle ne permet pas de

représenter de très grand nombres donc une multiplication peut facilement déclencher un dé-

passement de capacité.

Les nombres à virgules flottantes sont plus élaborées car ils possèdent un exposant variable et

non constant (d’où le nom de flottant). Ces nombres étant les plus utilisés, leur comportement est

strictement encadrée par le standard IEEE 754. Les opérations primitives (addition, soustraction,

multiplication, division, logarithme, exponentielle, passage à l’exposant) sont garantis pour avoir
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un résultat avec une précision totale: le résultat (arrondi) est tel qu’il n’existe aucun autre nombre

représentable entre lui et le résultat exact. En d’autres termes, l’erreur vient juste de l’arrondi,

il n’y a pas d’erreur de calcul. Cependant, cette propriété n’est vraie que pour une opération.

Dès qu’un programme va enchaîner un nouveau calcul sur une opération déjà arrondie, l’arrondi

final ne sera pas forcément optimal.

Analyse statique

Le but de cette thèse est de proposer des outils qui viennent en aval d’une première analyse

statique du code, aussi, nous décrivons brièvement leur principe de fonctionnement ainsi que les

enjeux de ces analyses.

Il y a deux familles de méthodes généralement utilisées. D’une part il y a les preuves

logiques basées sur les triplets de Hoare. Cette méthode reprend les techniques utilisées pour

prouver les formules logiques. Un triplet de Hoare consiste en une précondition, un élément

de syntaxe du code à étudier et une postcondition. L’autre famille d’analyseur est basée sur

l’interprétation abstraite. Dans ce cas, on définit à l’avance un domaine abstrait qui, en re-

groupant plusieurs états de la mémoire en un seul, permet de prédire des propriétés du résultat

pour n’importe quel entrée.

Indépendamment de la méthode employée, il faut définir ce qu’on entend par robustesse.

La première définition est une relation entre l’entrée et la sortie. On souhaite que de petites

perturbations de l’entrée n’aient pas d’impact majeur sur la sortie du programme. Dans le cas

contraire, une erreur de mesure ou une erreur provenant d’un calcul précédent générerait une

erreur arbitraire indépendamment de la précision du programme lui-même.

La deuxième propriété à considérer est celle de l’erreur interne causée par le programme.

Tandis que la question de l’entrée / sortie est inhérente à la fonction qu’on calcule, l’erreur

interne se définit entre la sémantique exacte du programme et sa sémantique effective avec erreur.

Enfin, nous soulevons la question de la gestion de plusieurs variables. Comme nous souhaitons

une modélisation la plus souple possible, nous introduisons la notion de mesure qui permet de

gérer de façon simple et uniforme un ensemble arbitraire de variables.

Notre approche

A partir de ces analyses sur ce qu’est un nombre en représentation finie et ce que fait une analyse

statique de programme, nous justifions deux définitions de la robustesse que nous utiliserons par

la suite. En effet, la plupart des propriétés que fournit un analyseur automatique permettent de

déduire les propriétés que nous proposons. De plus, celles-ci sont simples à manipuler mathé-

matiquement et permettent ainsi de se combiner facilement aux preuves du programme dans la
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sémantique exacte. La première des deux définitions, la propriété P(k,ε), concerne uniquement

la question des entrées/sorties. Tandis que la seconde, la propriété de (k,ε)-promixité, concerne

l’écart entre la sémantique exacte et la sémantique effective.

0.2 Confidentialité différentielle

L’analyse statique permet, dans son usage le plus fréquent, de mesurer l’erreur induite par le pro-

gramme et permet, par exemple, d’informer l’utilisateur du programme du nombre de décimales

qui ne sont pas affectées par ces erreurs. Dans le chapitre 3, nous nous intéressons aux problèmes

de l’erreur dans un contexte différent. Ici, il s’agit de comprendre l’impact des erreurs de calculs

pour un programme utilisé dans la protection des données. Précisément, on peut vouloir fournir

un résultat à partir de données qui doivent rester confidentielles. Dans ce cas, le problème n’est

pas vraiment que le résultat soit imprécis mais, avant tout, qu’une corrélation entre la nature

de l’erreur et les entrées peut permettre à celui qui reçoit le résultat d’obtenir des informations

sur les entrées confidentielles. Dans le cas qui nous intéresse, la confidentialité différentielle,

nous montrons que son implémentation stricte, telle que spécifiée théoriquement pour un calcul

exact, va provoquer des failles importantes. Il est donc nécessaire d’adapter l’implémentation

pour empêcher ces failles. Ensuite, il s’agit de montrer que le nouveau protocole est sûr malgré

les erreurs de calcul. Plus précisément, il s’agit de mesurer la perte provoquée par les erreurs

d’arrondis et de montrer que celle-ci est acceptable. Après avoir montré brièvement le type

de faille qui peuvent apparaître, l’essentiel de ce chapitre se concentre sur une modélisation

du problème qui soit la plus indépendante possible de la représentation finie utilisée ainsi que

du programme lui-même (on suppose juste qu’il répond aux spécifications sans présupposer du

code lui-même). A partir de cette modélisation, nous établissons, via un théorème, la perte en

confidentialité induite par les erreurs. Enfin, nous montrons deux applications possibles de ce

théorème suivant le type de données à protéger.

Description de la confidentialité différentielle

La confidentialité différentielle est une approche ayant pour but de garantir la confidentialité

des données des participants à une étude statistique. En effet, une base de donnée à usage

statistique doit révéler des informations générales sur les participants telles que des moyennes

ou l’existence de certaines corrélations. Cependant, la plupart des participants à ses bases de

données n’acceptent de livrer leur données que si on leur promet que leurs informations person-

nelles ne seront pas divulguées. Ainsi, il faut pouvoir, par exemple, être en mesure de donner le

pourcentage de la population qui fume sans révéler qui, précisément, fume.
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Pour satisfaire ces deux contraintes, la protection de la vie privée et la publication d’infor-

mations générales, de nombreuses méthodes ont été proposées. La première a été de se contenter

d’anonymiser les identifiants personnels des participants puis de transmettre les données ainsi

anonymisées aux analystes qui sont alors libres de faire les requêtes qu’ils souhaitent. Une

telle méthode ne permet cependant pas de garantir l’anonymat: rien ne garantit en effet qu’un

analyste ne possède pas déjà une partie des informations de la base de donnée. Par exemple,

dans une base médicale, même si on supprime les nom, prénom et numéro de sécurité sociale

des participants, on conservera leur âge selon toute vraisemblance. Supposons maintenant que

la doyenne des français participe à l’étude. Étant probablement la seule de son âge, il est facile

pour un analyste de trouver à quelle entrée elle correspond et de connaître ainsi tout son dossier

médical. On peut chercher, par exemple, la proportion de diabétiques parmi les personnes de

plus de 112 ans.

Ce type d’attaque peut sembler simple à prévenir, aussi d’autres méthodes d’anonymisation

ont vu le jour pour parer au problème. Cependant, par des attaques plus complexes ces autres

méthodes se sont elles aussi avérées vulnérables. La confidentialité différentielle repose sur un

protocole plus strict que ses prédécesseurs : aucune partie de la base de données n’est jamais

fournit à l’analyste. Au lieu de cela, l’analyste doit, pour chaque requête, contacter la base de

données qui est détenue par un agent de confiance. Celui-ci répond aux requêtes de façon prob-

abiliste en ajoutant de l’aléatoire dans sa réponse. La propriété de confidentialité différentielle

stipule que la probabilité d’obtenir une réponse donnée à une requête est sensiblement la même

qu’une personne donnée participe ou non à la base de donnée. Autrement dit, on ne risque rien

à participer à la base de donnée puisque si on ne participait pas, les analystes obtiendraient des

réponses qui seraient indiscernables à celles obtenues en cas de participation.

Pour obtenir cette propriété, il faut que le facteur aléatoire soit proportionnel à la sensibilité

de la requête à la présence d’un individu supplémentaire quelconque. De la sorte, si une requête

cible trop précisément un individu, le bruit ajouté sera suffisamment important pour masquer

l’information.

L’implémentation théorique et ses faiblesses en pratique

Pour obtenir cette propriété, la méthode théorique consiste à calculer le résultat réel de la re-

quête puis d’ajouter une valeur aléatoire répartie selon une distribution adéquate (par exemple

la distribution de Laplace) dont l’amplitude dépendra du degré de confidentialité recherché et de

la sensibilité de la requête.

Cette méthode fonctionne en théorie mais elle s’appuie sur le fait qu’il existe des proba-

bilités de distribution continue (deux valeurs proches ont des probabilités quasiment identiques
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d’apparaître). Elle repose également sur le fait qu’il est possible qu’une variable aléatoire puisse

produire des valeurs arbitrairement grandes avec une probabilité arbitrairement faible. Or ces

deux propriétés ne sont plus conservées lorsqu’on génère une valeur pseudo-aléatoire en pré-

cision finie. En effet, à cause des arrondis (et, a fortiori, en cas d’erreur de calcul) certaines

valeurs précisent peuvent ne pas être représentée du tout tandis qu’une valeur proche peut appa-

raître avec une probabilité plus élevée qu’elle ne devrait (voir figure 3.1). De cette façon, il n’y

a plus de continuité dans la distribution de la probabilité. Nous montrons dans l’exemple 3.1.1

comment ce défaut permet d’accéder à des informations confidentielles.

Modélisation et analyse de la situation en précision finie

Dans la partie technique du chapitre 3, nous montrons d’abord comment sont générées les vari-

ables pseudo-aléatoires. Nous montrons que celles-ci peuvent être assimilées à des variables

aléatoires parfaites qui ont subit une perturbation (non contrôlée celles-ci) d’amplitude bornée.

Ensuite nous proposons une amélioration du protocole qui va palier aux défauts décrits

précédemment: pour éviter les irrégularités locales de la distribution, on impose que le résultat

retourné soit arrondi plus que la précision de la machine. Pour palier au fait qu’une représenta-

tion finie ne peut produire des nombres arbitrairement grands avec une probabilité arbitrairement

faible, on impose de retourner une erreur si le résultat produit dépassait une certaine borne. En-

fin, on traduit la déviation en terme de distance entre distributions de probabilité. Après avoir

rajouté une dernière contrainte quant à la forme de la distribution utilisée, on prouve que la perte

de confidentialité est bornée par une constante calculable.

On montre ensuite comment le théorème s’applique dans le cas standard le plus simple. On

montre que dans certains cas, malgré les contraintes supplémentaires, la perte peut demeurer

importante. On propose alors une autre façon de générer les nombres pseudo aléatoire pour ce

cas qui réduit drastiquement cette perte. Enfin on montre que notre analyse permet aussi de

traiter des données plus complexes comme des bases de données ayant des données à valeur

dans le plan euclidien.

0.3 Analyse globale d’un programme

Dans le chapitre 4, nous nous intéressons à l’analyse du programme elle-même, à savoir borner

l’erreur provoquée par la représentation finie d’un programme donné. Comme nous l’avons

précédemment évoqué, il existe déjà plusieurs façon d’analyser automatiquement un code donné.

Cependant ces méthodes fonctionnent de façon progressives. En quelque sorte, elles extraient

une information sur cette borne pour les n premières lignes du code à partir de laquelle elles
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fournissent une information sur les n+1 lignes de code. Et ainsi de suite jusqu’à atteindre la fin

du programme.

Ici on s’intéresse à des programmes qui ne peuvent pas être analysés de cette façon. En

effet, certains programmes produisent une erreur importante en cours d’exécution qui ne se

résorbe qu’à la fin de l’exécution. C’est le cas par exemple des programmes qui effectuent une

dichotomie pour trouver une valeur : au moment où on teste si la valeur cherchée est supérieure

ou inférieure, une erreur de calcul peut mener dans l’autre branche du test. Dans ce cas, le

programmes va poursuivre avec des valeurs très différentes de celles qu’il aurait dû prendre mais

la valeur finale va tout de même s’approcher de la valeur exacte. Pour illustrer notre analyse sur

ce type de phénomène, on a pris comme exemple l’algorithme CORDIC qui calcule la fonction

sinus. Un autre cas est celui où l’ordre dans lequel on effectue une tâche permet un certain

parallélisme: à cause des erreurs de calcul, on peut choisir de commencer par une tâche plutôt

que par une autre (et donc avoir un état intermédiaire très différent de l’état théorique) mais, à

la fin, une fois les deux tâches effectuées le résultat est quasiment identique. Pour illustrer cet

autre type de phénomène, nous avons choisi d’étudier l’algorithme de Dijkstra qui calcule le

plus court chemin dans un graphe.

La méthode d’analyse que nous proposons utilise la preuve mathématique qu’un algorithme

est correct pour borner l’erreur que peut générer son implémentation en représentation finie. Par

exemple, dans le cas de CORDIC, on va utiliser le fait qu’avec des calculs exacts l’algorithme

produit une fonction continue de dérivée bornée (pour le calcul de la fonction sinus). Cependant

cette propriété ne peut pas être exploitée directement car la preuve part du principe, entre autres,

que des rotations d’un point autour d’un même axe vont conserver la distance de ce point à l’axe.

Cela ne sera plus le cas dans l’implémentation: les erreurs de calculs pourront aussi translater ce

point et l’éloigner ou le rapprocher de l’axe.

En plus de cette preuve en sémantique exacte, nous décomposons le programme selon un

motif prédéfini qui va nous permettre, d’une part, d’analyser chacune des parties isolément via

les méthodes classiques existantes et, d’autre part, d’analyser le programme en terme de système

de réécriture. En effet, les systèmes de réécritures possèdent des outils efficaces pour traiter de

la confluence (le fait qu’un comportement puisse diverger mais ne puisse atteindre qu’un seul

état final).

Cette analyse par décomposition est donc une méthode globale qui permet de calculer l’erreur

liée aux arrondis et nous montrons qu’elle fonctionne aussi bien avec l’algorithme CORDIC

qu’avec l’algorithme de Dijkstra.
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Conclusion

Dans cette thèse, nous nous intéressons aux rapports qu’entretiennent les résultats théoriques

exacts avec leur implémentation en précision finie. Nous avons traité de ce problème dans le

cadre de la confidentialité différentielle ainsi que dans le cadre d’une méthode d’analyse globale

se basant sur la preuve en calcul exact. Dans les deux cas, nous montrons qu’il est possible

d’étendre les résultats exacts aux résultats approchés mais que cela nécessite une adaptation

préalable. Ainsi, en confidentialité différentielle, l’implémentation directe conduit à des failles

majeures. Pour garantir la validité du résultat théorique en précision finie l’algorithme doit

être renforcé. En ce qui concerne l’analyse globale, celle-ci nécessite, en plus de la stabilité

mathématique de la fonction programmée, une analyse plus fine des propriétés de confluence du

système de réécriture sous-jacent.

⋆
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Computers have been created to replace slide rules and manual computations. Unlike human

beings, they do not make careless mistakes, they compute must faster and they never get tired.

Now that producing processors has become very cheap and their size has became very small,

computers are used everywhere for any purpose.

However, computers are not intelligent robot that can program themselves. Their automated

computations are conceived by engineers. These developers rely most of the time on some

mathematical results that state that some equations or algorithms should return the intended

results.

Unfortunately, mathematical results are obtained with symbolic computations: for instance,

we can directly states that (cosx)2 +(sinx)2 = 1 without even knowing the value of x. Even if

some programs allows symbolic computations, these programs are resource consuming and they

cannot be used in most cases. So, instead of computing with mathematical values, computers

make approximations of numbers and provide approximate results. Fortunately, these approx-

imate results are very close to the exact ones so that in most cases, not having the exact result

is acceptable. Sometimes, however, the result can be too different to be useful. It may occur,

for instance, when a program makes long computations: errors stack and can become non neg-

ligible with respect to the true answer. But, sometimes, errors can be critical even for a short

program in case a little shift leads to a completely different option. This can happen because of

1
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some conditional instructions that can lead the program into different branches depending on a

comparison of an approximate value with some threshold. This may also happen because the

result is analyzed by a nasty agent who succeed in retrieving initial confidential inputs from the

nature of the error of the output.

In this setting, how can we be confident in a program given that it does not behave exactly as

it should? There are several approaches to answer this question. At one extreme, the developer

implements his program from some mathematical results then adapt the theorem such that it

remains true even if there is some deviation. Such kind of technique is heavy since it requires

hand proof, and since such proofs can be quite long there is a strong risk of errors. However, this

method is the most flexible: the manual proof allows to use complex arguments that no auto-

mated algorithm can produce. At the other extreme, one can try to develop a static analyzer that

reads the code and that quantifies the error without any human intervention. Such an approach

is mandatory when the code to check is a large software package with millions of code lines.

This method, however, has some drawbacks. First, a generic algorithm for analysis has only

generic rules to apply to the code: it cannot use subtle arguments. Secondly, an automatic proof

is almost never readable. Indeed, when the problem becomes too complex, the analyser splits

the input domain which can lead to combinatory explosion. Finally, even if it succeeds in finding

the proof, the proof is not well structured as a human proof and does not help to understand any

general principle behind the proof.

In this thesis, we develop an approach that falls in between the above approaches. We model

errors at a high level such that it is possible to get simple mathematical statements about them.

Then we provide theorems that start from the mathematical proof of the algorithm on which we

add some additional conditions about errors. These new theorems provide a little weaker results

than the initial one but they grant properties about the actual computation, not on the exact result.

Our results are quite general, in the sense that they apply to a large class of algorithms, and

are not tied to a particular implementation.

More precisely, we have studied two classes of programs and we have proved they are safe.

The first class consists of programs that implement differential privacy, a new technique to hide

personal information when providing the results of a survey. In this case, our high level modeling

allows us to provide, from information about the maximal deviation, information about the shift

on a probabilistic distribution. The other class consists of programs which have some kind of

erratic behavior during the execution but that, at the very end, renders a good approximation of

the exact result.

Our results are based on assumptions that are not guaranteed by all algorithms. However,

they are general enough to capture many interesting programs, which makes worthwhile to de-

velop proof methods.
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1.1 Contributions and plan of the thesis

Our first contribution consists in providing two definitions to deal with deviation errors due

to finite representation. The first one, the P(k,ε) property, allows to define functions which

are robust in a finite precision setting and which are less constraining than usual mathematical

definitions. The second one is the (k,ε)-closeness property between two functions. This property

allows us to grant that the function in the finite-precision semantics is never far away from the

exact function.

Our first main result is about differential privacy. When differential privacy protocols are de-

signed, the question of the finite representation was, until recently, not considered as a sensitive

source of leakage. However, we show that the straightforward transcription of the algorithms

in a finite representation architecture leads to a protocol that critically leaks information. This

problem was also studied, independently, in [Mir12]. That paper provides guarantees for a given

implementation of the most used function. Here, we provide a general method to analyze any

noise function that aims at implementing differential privacy. By modeling errors as a shift in

the probability distribution, we are able to prove that the addition of some safeguards prevents

massive leakage. In addition, we also measure the additional leakage induced by rounding errors

depending on the amplitude of the error and on the function which is implemented. As a side

result, we also propose an improved algorithm in the standard case of the Laplacian noise in one

dimension.

The second main result is a theorem to prove that a class of algorithms based on some

“global behavior” can be safely implemented in finite representations. These algorithms cannot

be studied by standard methods because they rely on subtle arguments. Indeed, small deviations

can totally change the control flow and leads to completely different values in internal states.

We mainly study two characteristic examples: the CORDIC algorithm to compute trigonometric

function and the Dijktra’s algorithm to find the shortest distance between two nodes of a graph.

As a first try, we expose in section 4.3 a direct method to analyze the robustness of the code

without considering the behavior of the exact algorithm. The theorem proves the P(k,ε) property

for the program. This theorem relies on an underlying program transformation proof.

Since we found the application to the example not straightforward, we develop a second

method in section 4.4 that considers the relation between the exact and the finite precision se-

mantics. The method consists in interpreting the control flow as a non deterministic process

and then we use techniques based on rewrite abstract systems to prove the global confluence of

the program. The new theorem states the closeness property between the exact and the finite-

precision semantics. The theorem is based on the hypothesis that the exact semantics as already

been stated robust (P(k,ε)) and requires some additional hypothesis. This theorem is highly non
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trivial since the regularity is not implied by the stopping condition like in a classical convergent

algorithm and since the proof in the exact semantics relies on invariants that are broken in the

finite representation.

The thesis consists of three chapters. In chapter 2, we start by a technical introduction pre-

senting notations and usual definitions about computations and errors as well as techniques for

analysis of programs. Then we introduce our approach of robustness: our definition and the

properties they enjoy. Chapter 3 is about differential privacy. We start by a technical intro-

duction specific to this domain. Then we present our method to analyze the leakage due to

finite representation of numbers. In chapter 4, we present our work on programs that are locally

discontinuous while they are robust as a global function.

1.2 Publications

This thesis is based on two published papers and on some unpublished work.

• The first article [GMP12a], by Dale Miller, Catuscia Palamidessi and myself, was pre-

sented in QAPL 2012.

• The second article [GMP12b], by the same authors, is in course of submission to a journal.

This article is an extension of the former one because it considers the same problem but

the methodology and techniques used are new material.

• The third article [GMP13] by the same authors was presented in QAPL 2013.

Chapter 2 starts with a technical introduction then Section 2.3 is based on the articles

[GMP12a, GMP12b]. Chapter 3 is mostly based on the article [GMP13]. However, the im-

provement proposed in section 3.6.3, is an unpublished material. Chapter 4 is based on the

articles [GMP12a, GMP12b]. The subsection 4.4.6 is a little extension based on an idea of a

reviewer.

⋆
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In this chapter, we are interested in the definition and the study of robustness in a generic

way. Informally, robustness is a property that indicates that the program “behaves well” even

when it is exposed to perturbations. Here, the considered perturbations are the ones due to finite

precision. Finite precision means that real numbers are approximated so that they can be stored

in a finite memory space.

Such approximation is a central problem in computer science. It has been well studied and

it is still an active research area. In this thesis, we are looking for new theoretical techniques to

find solutions for specials cases where standard methods cannot apply.

In this thesis, we do not aim at analyzing code from scratch. Such an analysis actually

requires a strong control of the properties of the program and is dependent on the finite repre-

sentation used. Here, we start from the analysis made by an existing analyzer and we use the

result either to prove another property (the differential privacy property in chapter 3) or to an-

alyze a program more complex than the analyzed one (in chapter 4 we prove the correctness

of the whole program while we start from the analysis of some parts). So, we need a definition

of robustness general enough so that most analyzers can be able to prove it and that is not too

technical to be able to use it in theorems.

In the literature, there are several definitions of robustness that have been considered and

many of them are mathematical properties about classical functions. These definitions coined

for pure mathematical statements are not suitable for the problem we examine here. The goal of

this chapter is to explain why, and to propose other definitions.

5
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In the first section, we start by describing the behavior of a computer and the basic definitions

to formalize such a behavior. In the next section, we explain what is program analysis and what

is our policy about it. Finally, the last section contains our contribution: it consists of a definition

about the regularity of function and of a definition that expresses how close to the exact semantics

is the finite-precision semantics. We also provide various properties of these definitions.

2.1 Hardware and semantics preliminaries

At the hardware level, an instruction is a function from bits to bits where bits are binary values.

To represent more complex structures than sequences of bits, types are defined: they allow to

provide an interpretation of the meaning of each bits as well as constraints to manipulate them.

Processors can do a fixed number of operations on a succession of bits. An n bit processor

is a processor that operates with n bits simultaneously. Most processors, presently, are either 32

bits or 64 bits. When a computation requires more than these n bits, the operation is split into

several successive operations.

In any case, we do not have infinite sequences of bits to represent reals. So, apart from exact

computations based on symbolic representation of numbers, real numbers have to be rounded.

There exists mainly two kinds of representation for real numbers that mostly depends on the

processor. The floating-point representation, that requires a processor with a specific module

(the floating point unit) is the most used. The other one is the fixed-point representation. It is

used on low-cost processors which do not have floating-point units and also, sometimes, when

floating point representation is not suitable (computations on currencies, for instance).

2.1.1 The fixed-point representation

In this simple representation, each value is stored in n bits. Let i0, . . . , in−1 denote these n bits.

In this representation the number i represented is ±in−2 . . . id .id−1 . . . i0 where d is the number of

bits used for the fractional part of the number. Hence the set of representable numbers is

D= {z·2−d |z ∈ [−2n−1,2n−1]}.

With this representation, numerical operations work in the same way as for integers. The advan-

tage of this representation is that processing is easy. On the other hand, it can be used only when

the number to manipulate are all in the same range D, so that there is no need to use a dynamic

exponent.
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1 1 . 1 0 1

1 0 . 0 1 0∗

. 1 1 1 0 1

1 1 .1 0 1+

1 1 1 1 . 0 1 1 0 1

Figure 2.1: A multiplication in fixed-point representation, as taught in school.

The fixed-point arithmetic The main advantage of fixed-point representation is that addition

and subtraction are done without any error. The only case in which an error can happen is when

the sum of two numbers exceeds the maximal capacity. Technically this is not a rounding error

but rather an overflow error.

The multiplication of two fixed-point numbers generates both rounding and overflow error as

illustrated in figure 2.1. The rounding is an inherent problem of finite precision representation.

But, here it can easily lead to an underflow exception: the result is rounded to 0. Rounding to 0

a non zero number is problematic since it cannot be used to divide a number while it is possible

with the exact number. On the other hand, the overflow (i.e. the loss of the most significant

bits) is the most serious problem of this representation. Indeed, the returned number is not

related anymore to the exact number, so that most of the time it leads to a fatal error. These two

problems, underflow and overflow, are permanent problems to the developer since the amplitude

of representable numbers is just 2n which is very limiting.

2.1.2 The floating-point representation

Representation of reals in an efficient way is a central problem in computer science. Reals are

manipulated so often that the processor contains a part dedicated to manipulate them. This part

is called the floating point unit (FPU). Since errors on representation of reals are a big issue,

this unit has been fully optimized and therefore it is more complex to explain than fixed point

representation.

As we explained, there are two main problems with fixed-point representation. On one hand,

to define their type, we need an additional parameter: the number of digits that stands for the

fractional part. On the other hand, avoiding overflow and underflow errors requires a special

attention. To avoid these two issues, the floating-point representation allocates some bits to
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define the exponent.

There are several kinds of floating-point representations that are used depending on their

size. Here, we detail only the most used one called “doubles” which stands for double precision

floating-point number.

Doubles use 64 bits: one bit s for the sign, another one e0 for the sign of the exponent, 10

bits e1, . . . ,e11 for the absolute value of the exponent and 52 bits m1, . . . ,m52 for the mantissa.

The number d represented in this way is:

d = (−1)s

(

1+
52

∑
i=1

mi2
−i

)

e(−1)e0 ∑10
j=1 e j2 j

In addition, there are some additional combinations of bits that represent errors like “infinite

result” when a division by zero occurs.

Full precision for atomic operators in floating-point representation There are two kinds of

rounding errors. The first ones is intrinsic to the finite precision representation, i.e., any time

the result of a computation would be a non representable number then it has to be rounded to

a representable number. For instance,
√

2 cannot be represented by a finite number. The other

kind of error is due to a wrong result for the computation, i.e., the returned result is not the

closest representable number of the mathematical result.

Definition 2.1.1 (full precision). An implementation of a function is “full precision” if there is

no representable number in between the provided result and the exact one.

The main goal that motivated the creation of floating-point numbers was to provide full

precision for all mathematical operators. Another objective was to be able to specify which

one of the two admissible results (the greater or the lower one) has to be returned such that

the programmer can fully determine which result will be returned. These two goals have been

achieved years ago: the IEEE standard 754 [IEE08] for floating-point arithmetic certifies that

the returned result for any one step operation is one of the closest numbers that the floating point

can represent. This standard also proposes several policies for rounding: to return the greater or

the lower number, to return the closest to zero number or to return the number closest to the true

result.

Addition and subtraction While fixed point representation adds no rounding error for addi-

tion, floating point numbers rounds result each time the ratio a/b is outside of [−0.5,−2]. Indeed,

let ea and eb the two exponents of a and b that are added. If ea = eb (and a and b have the same
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sign) then the final exponent will be ea +1, so the last bit is lost. If ea > eb then either ea+b = ea

or ea+b = ea +1. In that case, the last ea− eb bits of b are not used to compute a+b.

Multiplication and division Multiplicative operators have a much better implementation with

floating-point than with fixed-point representations since the exponent will change in order to

always keep the most significant bits. So, in this representation, there is no useless zeros or

strong bit truncation. The result is not always the exact one however. A rounding happens at

least each time we divide by a number such that the rational result has a quotient which is not

a power of two. In addition, the multiplication of the two mantissas is a multiplication of two

integers: the returned result is twice as long as the initial numbers. So, since the size of the

mantissa is also 53, half of the least significant bits are rounded.

Exponentiation Exponentiation is also considered as a primitive by the IEEE standard. How-

ever, the actual computation is done through three steps according to the following formula:

xy = 2log2(x)y

To be able to provide full precision for this composed operations, processors use a larger internal

floating-point representation with 80 bits such that rounding errors remain small and do not affect

the final result.

2.1.3 Semantics of programs. Definitions and notations

As we have seen, the actual problem of rounding numbers does not occur when there is just

one operation that is performed: the floating-point semantics grants that the error is negligible

proportionally to the value. As we will see, the situation is different for a whole program. But

in order to speak about programs we need to introduce first some definitions and notations.

Programming language Programming languages allow programmers to produce machine

code without worrying about the actual machine instructions of a specific processor. The more

elaborate is the language, the more high-level is the code written by the programmer. In our

study, we choose to describe programs through a pseudo language, so that we can highlight the

arithmetic operations.

We represent functions with the following syntax:

f(x,y){

...

return z;
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}

Here f is he name of the function and x,y are the parameter of the function. The instruction

return z; indicates that the function returns z (which has to be defined in the body of the

program).

For instance, the following code is an implementation of the square function.

square(x){

return x * x;

}

The following code, is also an implementation of the square function.

square(x){

y=(x+1);

return x * y - x;

}

In general, given a mathematical function, there is not a unique implementation of it. While

two implementations are equivalent in theory, their rounding errors have no reason to be the

same.

To make the link between a program code and a mathematical function, we use an inductive

definition called denotational semantics. We use the notation [[instructions;]] to represent

the semantics of the code instruction. The base case are the variables and the constants. The

semantics of a variable x is its value (we will describe later which one). The semantics of

a composite expression, like x + y, is obtained from the semantics of the components. For

instance, [[x + y]] = [[x]]+ [[y]].

This definition is non ambiguous, while we consider there is no rounding. But, for our

purpose we need to differentiate between the intended computation i.e. where operations are

made on reals and the actual computation where operations are the ones described by the finite-

precision arithmetic. To distinguish between them, we note [[x + y]]′ the result of the computa-

tion in the finite precision system.

When we have already set that [[instructions;]] = f where f is a function, we will use the

more readable notation f ′ instead of [[instructions;]]′ such that [[instructions;]]′ = f ′.

2.1.4 Problems induced by the rounding error

We have briefly presented finite-precision implementations and the semantics of programs. Now,

we present some of the challenges raised by floating-point representation. Indeed, while a single
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operation grants the most accurate result, a succession of several operations may lead to critical

deviations.

Difficulty to compute the exact error Finite representations do not enjoy traditional proper-

ties [Gol91]. In particular, the associativity of the addition is broken in floating-point represen-

tation. Indeed, when computing (a+ b)+ c, first a+ b is rounded then c is added, while for

computing a+(b+ c), (b+ c) is rounded first. So, if b = −c and a≪ b, a+ b is rounded to b

such that the final result is 0 , while b+ c = 0 so the result of a+(b+c) is a.

This kind of errors is unpredictable for the developer since compiler optimizations may

change the order the operations are executed. Thus, if the programmer writes in a high-level

programing language, it might be impossible to predict the errors that the compiled code will

make. That is one of the reasons why we do not try to compute the error but just to compute a

bound on it.

Absolute or relative error? When dealing with rounding errors, we would like to ensure

a property like “the error never exceeds p percents of the exact number”. Such a property,

however, is not compositional. Indeed, as we have seen in the previous example, if an addition

is made between two numbers a and b such that the ratio b/a is big, then adding−b increases the

relative error significantly. Since such a phenomenon is not easily traceable (except in case of

a simple addition of positive numbers), we prefer in our study to concentrate on absolute errors

(i.e. we do not provide a percentage but the deviation itself).

Absolute errors are harder to compute when an algorithm is mostly based on multiplications.

Indeed, if we know some bounds ε on the absolute error on a and b then the error after the

multiplication is aε+bε+ε2, which is not bounded as long as a and b are not bounded. However,

in the algorithms we study this is not problematic because we never do iterative multiplications

and because there always exists a maximal bound on all inputs values. In addition, we present

an example to show that in some cases relative errors are also hard to compute and can lead to

weaker results than absolute errors.

Example 2.1.1 (Robustness breaks with a simple iterative loop). In this example, we stress

that non robust behaviors (i.e., behaviors vulnerable to rounding errors) can emerge even from

simple and regular programs. Consider the following code.

geo(x0,x1,n){

u=x0;

v=x1;

w=0;
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for(i=0 to n){

w= a*v + b*u;

u= v;

v= w;

}

return w;

}

This code, in the exact semantics, computes the value un+1 of the sequence defined by: u0 = x0,

u1 = x1 and

un+1 = aun +bun−1

A mathematical theorem states that

un = Arn
1 +Brn

2

where r1 and r2 are the distinct roots of the quadratic

X2−aX−b

and A and B are fixed by the initial condition.

Now, assume that a and b are representable numbers such that r1 < 1 and r2 > 1. Then,

assume we run this program with parameter x0 = 1 and x1 = r1. In that case, we have A = 1

and B = 0. So, in the exact semantics, a big value of n provide a result close to 0. In the finite

precision semantics however, if r1 is not representable then the input will be an approximation

r′1. Since the initial conditions are changed the B value is not zero anymore but ε. If n is big, the

term in Arn
1 tend to zero while the term in εrn

2 due to errors tend to infinity.

Finally, it is not possible to efficiently bound the relative error of this program due to just

one critical case, while the absolute error is pretty regular for all values.

2.2 Quantitative analysis

A quantitative analysis means that we measure the error made by the finite representations.

There are several choices to do this measure. Before presenting our definitions, we explain the

reason of our choice.

Our goal in chapter 3 is to provide a method to compute the probabilistic information leakage

of a program once a quantitative analysis of the error has already been performed. In chapter

4, we provide a method such that once some parts of the code have been analyzed then it is
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possible to analyze the whole program from the point of view of its robustness to errors. We are

interested in some formulation of robustness which can be performed by traditional tools and

which can be easily manipulated from a mathematical point of view.

2.2.1 Static analysis

The term “static” means that the analysis is done without executing the program but just by

processing the code of the program. Static analysis provides over approximations of the studied

property. In our case, this means that a bound on the error is not necessary the optimal one. A

static analysis is better than a battery of test cases since it provides a result valid for the whole

domain while dynamic testing may fail to test some cases.

There are two main methods to do a static analysis of a program, whatever the analysis is

about. We briefly present them.

Logic based proof This technique has been introduce by Hoare [Hoa69] and has now several

variants. The principle of this analysis consists on considering any instruction as a transforma-

tion between preconditions and post conditions. The main feature of Hoare logic are the Hoare

triple that describe the execution of one instruction. A Hoare triple is written as:

{P}I{Q}

where P is a formula that is the precondition, I is the instruction and Q is the post condition.

From these triples it is possible to derive other triples with inference rules. For instance, the

following rule allows to derive a triple for a sequence of instructions.

{P}I1{Q} {Q}I2{R}
{P}I1; I2{R}

Abstract interpretation Abstract interpretation [CC77] aims at providing over approxima-

tions of all possible behaviors of a program. In abstract interpretation, the semantics of a pro-

gram, i.e., [[.]]′, is called the concrete semantics. The domain whose elements constitute the over

representations of values and states of programs is called “abstract domain”. For instance, an ab-

straction of the exact value of a variable can be an interval in which this variable belongs. Once

an abstract domain is defined, the abstract interpretation computes the abstraction that results

from the previous abstraction by applying the instruction. For instance, if our abstract domain

consists of intervals, from an interval [a,b] the instruction x=2*x; leads to the interval [2a,2b].
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2.2.2 Input-output relation

There are several kinds of properties that may be interesting for studying the errors due to fi-

nite precision. The first question when we study error is the sensitivity of the output for small

variations of the input. Indeed, even if a program computes the result in full precision, the input

value, in general, comes from either a physical value or another computation and is not the exact

value. If the program has an erratic behavior then even a small error on the input leads to a big

error to the output.

A weak property that can be defined about the relation between input and output is continu-

ity:

Definition 2.2.1 (continuity). A function f : R→ R is continuous, if

∀ε > 0 ∀x,x′ ∈ R ∃δ |x− x′| ≤ δ =⇒ | f (x)− f (x′)| ≤ ε

The continuity property ensures that the correct output can be approximated when we can

approximate the input closely enough. This notion of robustness, however, is too weak in many

settings, because a small variation in the input can cause an unbounded change in the output.

On the other hand, a function which is not continuous has little chance to be robust. Since

various regularity properties imply continuity, it is sometime useful to prove a function is not

continuous in order to avoid to waist time trying to prove these properties.

A stronger property is the k-Lipschitz property.

Definition 2.2.2 (k-Lipschitz). A function f : Rm→R
n is k-Lipschitz, according to the distances

dm and dn, respectively, if

∀x,x′ ∈ R
m dn( f (x), f (x′))≤ k ·dm(x,x

′)

The k-Lipschitz property amends this problem because it fixes a bound on the variation of

the output linearly to the variation of the input.

The k-Lipschitz property has been used by Chaudhuri et al [CGL10, CGLN11] to define

robustness. To prove a program to be k-Lipschitz, they first prove the function is continuous

then they prove the function is piecewise k-Lipschitz while they compute k .

However, the k-Lipschitz property does not deal with algorithms that have a desired precision

e as a parameter and are considered correct as long as the result differs by at most e from

the results of the mathematical function they are meant to implement. A program of this kind

may be discontinuous (and therefore not k-Lipschitz) even if it is considered to be a correct

implementation of a k-Lipschitz function.
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Figure 2.2: The function g−1 and its approximation

Example 2.2.1. The phenomenon is illustrated by the following program f which is meant to

compute the inverse of a strictly increasing function g : R+→ R
+ whose inverse is k-Lipschitz

for some k.

f(i){ y=0;

while(g(y) < i){

y = y+e; }

return y; }

The program f approximates g−1 with precision e in the sense that

∀x ∈ R
+ f (x)− e≤ g−1(x)≤ f (x)

Given the above inequality, we would like to consider the program f as robust, even though the

function it computes is discontinuous (and hence not k-Lipschitz, for any k). We illustrate in

figure 2.2 how the function cos is approximated by such an algorithm.

This example motivates our definition of input output relation that we will define later.

2.2.3 Dealing with several variables

The previous definitions are valid only for functions with one argument and one output. How-

ever, to be general, we should give definitions that are applicable to programs with several argu-

ments.

In general, a program may have an arbitrary number of arguments. For instance, a program

sorting a list deals with all the numbers the list contains. Another example is a program receiving

a stream of physical data every second. These two examples are not analyzed in the same way

however. Indeed, a program that receives a stream and agglomerates the results (like a program

that sums all entries) has a fixed memory size. In that case, we can consider that the program

has only one variable that receives all the values, as illustrated by the following code.
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sum(){

y = 0 ;

while(input not empty)

y = y + new_input();

return y;

In that case, we can consider the program only has one internal variable y while the input vari-

ables are the outputs of the new_input() instruction. With this interpretation, inputs errors are

seen as internal errors of the instruction new_input() instead of input errors of the program.

The case where the program can use an arbitrary large memory is more difficult. However,

the memory capacity of any device is limited and allocation of too much memory can crash the

program. So, to prove the robustness of the program, it is necessary to prove that this allocation

will be bounded, and therefore we can only consider the cases up to the maximal size. On

the other hand, dynamic allocation slows down the execution of the program. Since robustness

analysis is mostly made for critical system like embedded system that have to be fast and simple,

these kind of programs with dynamic allocation are not really studied and we do not study them

either.

Therefore, we restrict our study to programs that deal with a fixed number of variables. To be

able to do an accurate analysis of the propagation of error, it is interesting to track each variable

individually.

For instance, an approach used by Majumdar et al in [MS09,MSW10] consists on formulat-

ing robustness with the following definition. A function f is (δ,ε)-robust on the i-th input, if a

variation of at most δ on the i-th variable while all other are identical, makes a shift of at most ε.

Another approach has been considered to deal with error annihilation when computations

add then remove the same quantity. For instance, the expression 3y− y can only double the

initial error from y, while 3y− x can have an error which is the sum of the deviations of 3y and

x.

Studying how robustness depends on each variable is very useful to get better approxima-

tions of the error. However in our case, we use results coming from automated analysis to obtain

either a more complex property than just error deviation (the differential privacy in chapter 3) or

a property about a more complex program (in chapter 4). To be able to use any kind of former

analysis which can be more or less precise and to provide general results, we need a general

enough definition. That is why we prefer to use the notion of distance that aggregates errors

from several variable into one quantity. Formally, a distance is defined as follows:

Definition 2.2.3 (Metric space). A metric space is an ordered pair (M,d) where M is a set and

d is a distance on M, i.e., a function
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d : M×M→ R

such that for any x,y,z ∈M, the following holds:

1. d(x,y)≥ 0 (non-negative),

2. d(x,y) = 0 ⇐⇒ x = y (identity of indiscernibles),

3. d(x,y) = d(y,x) (symmetry) and

4. d(x,z)≤ d(x,y)+d(y,z) (triangle inequality) .

Since we are interested in programs computing with real valued inputs and outputs, we

mostly use metric spaces based on R
m, the cross product of R m times where m ∈ N.

The set Rm is a normed vectorial space [Rud86]. This means we can add two vectors, we

can multiply any vector a vector by a scalar (an element of R) and there is a norm on it. In the

case of Rm, if x = (x1, . . . ,xm) and y = (y1, . . . ,ym) are in R
m, then x+ y is defined components

by components :x+ y = (x1 + y1, . . . ,xm + ym). The scalar multiplication is done the same way:

λx = (λx1, . . . ,λxm). We also use the notation x− y that stands for x+(−1) · y.

Finally, norms are defined as follows.

Definition 2.2.4 (Lp norm). For n ∈ N and x = (x1, . . . ,xn) ∈ R
m, the Lp norm of x, which we

will denote by ‖x‖p, is defined as

‖x‖p = p

√

n

∑
i=1

|xi|p

From these norms, it is possible to define all natural distances (the one that only rely on the

normed vectorial space structure).

Definition 2.2.5 (distance). The distance function corresponding to the Lp norm is

dp(x,y) = ‖x− y‖p.

We extend this norm and distance to p = ∞ in the usual way:

‖x‖∞ = max
i∈{1,...,n}

|xi|

and

d∞(x,y) = ‖x− y‖∞.

When clear from the context, we will omit the parameter p and write simply ‖x‖ and d(x,y)

for ‖x‖p and dp(x,y), respectively.
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2.2.4 Internal rounding error

The relationship between inputs and outputs does not give any information on how big the com-

putational error can be inside the program itself. If we prove that the exact semantics of a

program is k-Lipschitz, it means that if the input contains an error e then the result amplifies this

error by at most k. However, an arbitrary large error (i.e., not function of e) can still appear as a

consequence of rounding errors associated to the computation.

On the other hand, even if we prove that the finite-precision semantics of the program is k-

Lipschitz, this does not mean that the computation is close to the exact function. We can imagine

for instance a program that, due to errors, returns always 0 while the function is supposed to

return a less trivial result.Such a program is 0-Lipschitz but is not robust.

In general, to know a robustness condition between inputs and outputs is necessary to have

a robust program, but it is not sufficient. So, to analyze internal errors, we need to develop

other specifications than just a property about the function. Mainly, we need to consider a

relation between both the exact semantics and the finite precision semantics of the program.

Both abstract interpretation [GP11] and Hoare based logic [BF07] study internal errors through

pairs consisting of the value in the exact semantics and the finite precision semantics.

In abstract interpretation, the concrete semantics is a triple (r, f ,e) where r is the real value

(in the exact semantics), f the actual floating point value and e is the error (e = f − r). The

abstract domain consists of the values of the following form:

f = r+∑
i

aiεi

where the εi represent any value in the interval [−1,1] and the ai are real-valued scale factors.

In the Hoare logic, the preconditions and the post conditions are properties that state the

maximal distance between the two semantics.

Since the former approach also implies a maximal distance (the sum of the ai) and that

distances are nice to be manipulated mathematically, we will consider the following definition.

Definition 2.2.6 (L∞ norm (on functions)). The L∞ norm of a function f : Rm→ R
n, according

to a given norm Lp on R
n, is defined as:

‖ f‖∞ = sup
x∈Rm

‖ f (x)‖p.

This definition makes an implicit reference on the norm ‖ ·‖p used to measure single vector.

In our study, we will mostly use the ‖ · ‖1 norm. From the last definition, we can also define the

infinite distance between two functions.
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Definition 2.2.7. Let f and f ′ two functions Rm→ R
n,

d∞( f , f ′) = sup
x∈Rm

‖ f (x)− f (x)‖p.

2.3 Our approach to robustness

In this section, we provide the definitions we will use in the next chapters as well as the properties

that these definitions enjoy.

2.3.1 Input-output relation

First, we consider only the relationship between inputs and outputs of the function. As we have

explained in section 2.2.2, some work in the literature consider the k-Lipschitz property. How-

ever, example 2.2.1 illustrates an example where a function which is not k-Lipschitz has to be

considered robust because the discontinuity are less than some small value. In [BF07], they

amend this problem by considering a third semantics in addition to the exact and the finite pre-

cision one: the so-called intended semantics. Here, we prefer not to introduce another semantics

but to consider that the implemented function is close up to ε to a regular function.

Definitions

The definition we propose is the following.

Definition 2.3.1 (The P(k,ε) property). Let (Rm,dm) and (Rn,dn) two metric spaces. Let f :

R
m→ R

n, k,ε ∈ R
+∪{0} , we say that f is P(k,ε) if

∀x,x′ ∈ R
m,dn( f (x), f (x′))≤ k ·dm(x,x

′)+ ε

This property is a generalization of the k-Lipschitz property, which can be expressed as Pk,0.

In general, for ε > 0, P(k,ε) is less strict than k-Lipschitz and avoids the problem illustrated in

example 2.2.1. The function in that example,in fact, is Pk,e.

In some cases, a large deviation on the input may cause the deviation on the output to go

out of control, independently from “how well” the program behaves on small deviations. In

general, we hope to maintain the deviation small, hence it is useful to relax the P(k,ε) definition

to consider only inputs that are quite close (up to some δ). So we provide the following P(k,ε,δ)

definition:
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Figure 2.3: A P(k,ε) function

Definition 2.3.2 (The property P(k,ε,δ)). Let (Rm,dm) and (Rn,dn) be metric spaces , f :Rm→
R

n be a function, k,ε ∈ R
+, and let δ ∈ R

+∪{+∞}. We say that f is P(k,ε) if:

∀x,x′ ∈ R
m, dm(x,x

′)≤ δ =⇒ dn( f (x), f (x′))≤ kdm(x,x
′)+ ε

This new definition is an extension of the former one since P(k,ε) = P(k,ε,∞).

Properties of our notions of robustness

We, now, provide some useful properties about the above definitions. First, we relate the P(k,ε)

property to the k-Lipschitz property.

Proposition 2.3.1. If f is k-Lipschitz and ‖ f ′− f‖∞ ≤ ε, then f ′ is P(k,2ε).

Proof. Consider the triangular inequality

dn( f ′(x), f ′(y))≤ dn( f ′(x), f (x))+dn( f (x), f (y))+dn( f (y), f ′(y))

Then since f is k-Lipschitz:

dn( f ′(x), f ′(y))≤ dn( f ′(x), f (x))+ kdm(x,y)+dn( f (y), f ′(y))

Finally, since ‖ f ′− f‖∞ ≤ ε:

dn( f ′(x), f ′(y))≤ ε+ kdm(x,y)+ ε

which is the definition of P(k,2ε).

Regular functions in the intended semantics are k-Lipschitz, we introduced the P(k,ε) prop-

erty to weaken the k-Lipschitz property in order to also accept functions that are close to their

intended semantics. This property states that functions close up to ε to a k-Lipschitz intended

function are actually P(k,2ε).
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The next property allows to compose two functions that are P(k,ε). This composition is

less optimized than the mechanisms described to do static analysis. Indeed, our metric does not

keep any trace of the correlations between variables or about the particular influence of each

variable. However, it is still useful to achieve composition at a mathematical level between parts

of programs.

Proposition 2.3.2 (Compositionality). If f : R
n → R

q and g : R
m → R

n are P(k1,ε1) and

P(k2,ε2) respectively, then f ◦g is P(k1k2,ε1 + k1ε2)

Proof. Since f is P(k1,ε1) we have:

dq( f (g(x)), f (g(y)))≤ k1dn(g(x),g(y))+ ε1

Since g is P(k1,ε1) we have:

dg( f (g(x)), f (g(y)))≤ k1(k2dm(x,y)+ ε2)+ ε1

The following property allows to deduce from the weak P(k,ε,δ) property a stronger P(k,ε)

property when P(k,ε,δ) holds for the whole metric space.

Proposition 2.3.3. If f is P(k,ε,δ) on R
m, then f is also P(k+ ε/δ,ε) on R

m.

Proof. Let x and y in R
m. Let n = ⌊d(x,y)/δ⌋, we can apply the P(k,ε,δ) between the points xi

and xi+1 with xi = x+ iδ(y−x/d(x,y)) for i = 0 to n. Note that d(xi,xi+1) = δ and x0 = x. By using

the hypothesis between xi and xi+1 we get

dn( f (xi), f (xi+1))≤ kdm(xi,xi+1)+ ε.

We derive

dn( f (xi), f (xi+1))≤ (k+
ε

d(xi,xi+1)
)dm(xi,xi+1).

From the triangular inequality,

dn( f (x0), f (xn))≤
n−1

∑
i=0

dn( f (xi), f (xi+1))

We derive

dn( f (x0), f (xn))≤ (k+
ε

δ

n−1

∑
i=0

dm(xi,xi+1).
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Furthermore, from

dm(x0,xn) = nδ =
n−1

∑
i=0

dm(xi,xi+1).

We derive

dn( f (x), f (xn))≤ (k+
ε

δ
)dm(x,xn)

Since dm(xn,y)≤ δ, we have

dn( f (xn), f (y)≤ kdm(xn,y)+ ε.

By triangular inequality, we derive

dn( f (x), f (y))≤ (k+
ε

δ
)dm(x,xn)+ kdm(xn,y)+ ε

Finally, observe that dm(x,y) = dm(x,xn)+dm(xn,y). We conclude that

dn( f (x), f (y))≤ (k+
ε

δ
)dm(x,y)+ ε

2.3.2 Robustness with respect to the exact semantics

As we explained, properties about the function itself do not measure the deviation with respect

to the exact semantics. To express this deviation, we can consider that the two functions f and

f ′ are close if the distance d∞ (definition 2.2.6) between them is less than some ε:

∀x ∈ R
m,d( f (x), f ′(x))≤ ε.

However, this definition has the disadvantage of not being compositional. Indeed, consider the

two following function f and g on R:

f (x) =







0 x < 0

1 x≥ 0

g(x) = x

Depending on the finite-precision semantics of the architecture that computes f and g, we

can have f ′ = f while g′ 6= g. In particular, we could have g′(0) =−ε. In this scenario, we have

( f ◦g)(0) = 1 while ( f ′ ◦g′)(0) = 0: the difference is not small anymore.
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Figure 2.4: An example of functions that are (k,ε)-close

In addition, we also need to know how sensitive is f ′ to input errors otherwise, even if f = f ′,

the output error can be large.

To solve the compositionality problem and to keep information about the regularity of f ′

itself, we define a stronger property that we call (k,ε)-closeness property:

Definition 2.3.3 ((k,ε)-Closeness property). Let (Rm,dm) and (Rn,dn) be metric spaces. Let f

and g be two functions from R
m to R

n and let k,ε ∈ R
+. We say that g is (k,ε)-close to f if the

following holds:

∀x,y ∈ R
m,dn( f (x),g(y))≤ kdm(x,y)+ ε

With this definition, we ensure that if there was an error on the input the output error would

still be bounded in an affine way. In particular, if there is no error on the input (x = y), f and g

are within ε of one another.

Properties of our notion of closeness

We provide here the main interesting properties about this definition. At first, we have a compo-

sitional property about f ◦g.

Proposition 2.3.4. If f and f ′ are (k,ε)-close and g and g′ are (k′,ε′)-close then f ◦g and f ′ ◦g′

are (kk′,ε+ kε′)-close.

Proof. Let x and y in R
m, we have

dq( f (g(x)), f ′(g′(y)))≤ kdn(g(x),g
′(y))+ ε

Then, we derive:

dq( f (g(x)), f ′(g′(y)))≤ k(k′dm(x,y)+ ε′)+ ε



24 Robustness 2.4

The following straightforward observation provides a link between the notion of (k,ε)-

closeness and the property P(k,ε) defined previously.

Remark 1. f is P(k,ε) if and only if f is (k,ε)-close to itself.

The following proposition relates the property of being (k,ε)-close and the one of being

k-Lipschitz.

Proposition 2.3.5. If f is k-Lipschitz and ‖ f − f ′‖∞ ≤ ε then f and f ′ are (k,ε)-close.

Proof. Since k is k-Lipschitz, we have:

dn( f (x), f (y))≤ kdm(x,y)

Since ‖n−n′‖∞ ≤ ε,

dn( f (y), f ′(y))≤ ε

We conclude by applying the triangular inequality:

dn( f (x), f ′(y))≤ kdm(x,y)+ ε

Finally, we should notice that not all functions are (k,ε)-close to themselves. In fact, some

function are not (k,ε)-close to any function.

Theorem 2.3.1. If there exist u,v, d( f (u), f (v)) > kd(u,v)+ 2ε then there exist no function g

such that f and g are (k,ε)-close.

Proof. Let u, v such that d( f (u), f (v))> kd(u,v)+2ε.

Assume, by contradiction, that there exists g such that f and g are (k,ε)-close.

From the definition of closeness, we get

d( f (u), f ′(u))≤ ε

and

d( f ′(u), f (v))≤ kd(u,v)+ ε.

Hence, by applying the triangular inequality, we derive

d( f (u), f (v))≤ kd(u,v)+2ε.

Which contradicts the assumption of the theorem.
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2.4 Conclusion

In this chapter, we have presented the finite-precision representation and we explained that, even

if for one operation the rounding error is as precise as the rounding of the exact operation, it is

not the case anymore for a sequence of multiple instructions.

Then we presented the main analysis methods for dealing with this problem. There are

mainly two issues when analyzing a code: the propagation of existing errors and the internal

errors added by the program itself. We have proposed general definitions based on distances

since our main purpose is not to try to get the best possible bound to the error, but to propose

principles to prove robustness and safety properties.

⋆
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3.1 Introduction

In the last section, we provided tools to measure the computational error in a way independent of

the given architecture. The notions of (k,δ)-closeness and the property P(k,ε) allow to provide

a bound to the maximal deviation from the exact semantics and from the initial inputs errors,

respectively. Such kind of bounds are useful for program analysts since they allow measuring a

26
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loss of precision. Once we know a program to be (k,ε)-close to its exact semantics, it is possible

to know how many bits are not significant because the error amplitude is greater. Then, either

the precision is enough and the program is certified correct or it is not sufficient for its use and

the program has to be designed again, using data types whose implementation guarrantees more

precision.

The traditional methods to analyze the error usually consider an environment where all parts

are trusted. This is often the case when the program processes information internally to some

system, like an air plane controller. In this chapter, we investigate another context where results

are not used internally but transmitted for further processing.

Here we are in a security and confidentiality setting. Indeed, if an agent provides the result

of a computation this does not mean that it wants to reveal the data from which it computes the

result: some input data may be secret even if the result can be revealed. We investigate here

the security issues caused by the finite precision. More specifically, we study the information

leak about the input data that can be caused by the errors in the result, assuming that the ad-

versary knows the result and the way the program works (because the program may be public

for example). The standard techniques to measure the security breach do not apply, because

those techniques analyze of the system in the ideal (i.e. exact) semantics and do not reveal the

information leaks caused by the implementation.

Consider, for instance, the following simple program

if f (h)> 0 then ℓ= 0 else ℓ= 1

where h is a high (i.e., confidential) variable and ℓ is a low (i.e., public) variable. Assume that h

can take two values, v1 and v2, and that both f (v1) and f (v2) are strictly positive. Then, in the

ideal semantics, the program is perfectly secure, i.e. it does not leak any information. However,

in the implementation, it could be the case that the test succeeds in the case of v1 but not in the

case of v2 because, for instance, the value of f (v2) is below the smallest representable positive

number. Hence, we would have a total disclosure of the secret value.

The example above is elementary but it should give an idea of the pervasive nature of the

problem, which can have an impact in any confidentiality setting, and should therefore receive

attention by those researchers interested in (quantitative) information flow.

From this example, we see that errors due to finite precision can provide additional secret

information. This is due to the fact that errors should not be considered as non deterministic for

all agents but controlled by the attacker. From the attacker point of view errors are knowledge.

In this chapter, we consider a more tricky case where the agent returns a noisy answer by

using random numbers. Often the addition of random noise is done in purpose to prevent access
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to secret values. We will see that, however, since noises are generated in finite-precision, these

noises contain computational-error perturbations that allow an attacker to retrieve secrets.

To be able to have concretes examples and already existing specifications, we will study the

particular case of differential privacy.

Differential privacy is an approach to the protection of private information in the field of sta-

tistical databases. Statistical databases are databases containing individual records, and aim at

providing general information like finding plausible causes for diseases, social laws, or tenden-

cies about politic opinion. In most countries, statistical databases are legal only if the anonymity

and privacy of participants are preserved. Moreover, it is likely that people will not participate to

a survey if they know that their personal information will be revealed to anybody. As we explain

further in section 3.3, granting anonymity and privacy is not a trivial task.

Differential privacy has been first proposed in [Dwo06, DMNS06] as a formal approach to

preserve the anonymity an privacy of the participants in a statistical database. This approach

is now being used in many other domains ranging from programming languages [BKOB12,

GHH+13] to social networks [NS09] and geolocation [MKA+08, HR11, ABCP13].

The key idea behind differential privacy is that whenever someone queries a dataset, the

reported answer should not allow him to distinguish whether a certain individual record is in

the dataset or not. More precisely, the presence or absence of the record should not change

significantly the probability of obtaining a given answer. The standard way of achieving such a

property is by using an oblivious mechanism1 which consists in adding some noise to the true

answer. Now the point is that, even if such a mechanism is proved to provide the desired property

in the ideal semantics, its implementation may induce errors that alter the least significant digits

of the reported answer and cause significant privacy breaches. Let us illustrate the problem with

an example.

Example 3.1.1. Consider the simplest representation of reals: the fixed-point numbers defined

in subsection 2.1.1. Each value is stored in a memory cell of fixed length. In such cells, the last

d digits represent the fractional part. Thus, if the value (interpreted as an integer) stored in the

cell is z, its semantics (i.e., the true real number being represented) is z ·2−d .

To grant differential privacy, the standard technique consists in returning a random value

with probability p(x) = 1/2b · e−|x−r|/b where r is the true result and b is a scale parameter which

depends on the degree of privacy to be obtained and on the sensitivity of the query which is

the maximal difference in the result when one entry is removed or added. To get a random

variable with any specific distribution, in general, we need to start with an initial random variable

provided by a primitive of the machine with a given distribution. To simplify the example, we

1The name “oblivious” comes from the fact that the final answer depends only on the answer to the query and not
on the dataset.
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Figure 3.1: The probability distribution of the reported answers after the addition of Laplacian
noise PbX(x) with b = 4, for the true answer r1 = 0 (black) and r2 = 3 ·2−4 +2−5 (green).

assume that the machine already provides a Laplacian random variable X with a scale parameter

1. The probability distribution of such an X is pX(x) = 1/2e−|x|. Hence, if we want to generate

the random variable bX with probability distribution

pbX(x) =
1
2b
· e−

|x|
b ,

we can just multiply by b the value x = z ·2−d returned by the primitive.

Assume that we want to add noise with a scale parameter b = 2n for some fixed integer n (b

can be big when the sensitivity of the query and the required privacy degree are high). In this

case, the multiplication by 2n returns a number 2nz · 2−d that, in the fixed-point representation,

terminates with n zeroes. Hence, when we add this noise to the true result, we return a value

whose representation has the same n last digits as the secret. For example, assume b = 22 = 4

and d = 6. Consider that the true answers are r1 = 0 and r2 = 1 + 2−5. In the fixed-point

representation, the last two digits of r1 are 00, and the last two digits of r2 are 10. Hence, even

after we add the noise, it is still possible to determine which was the true value between r1 or r2.

Note that the same example holds for every b = 2n and every pair of true values r1 and r2 which

differ by (2nk+h)/2d where k is any integer and h is any integer between 1 and 2n−1. Figure 3.1

illustrates the situation for n = 2, b = 4, d = 6, k = 3 and h = 2.

Another attack, based on the IEEE standard floating-point representation [IEE08], was pre-

sented in [Mir12]. In contrast to [Mir12], we have chosen an example based on the fixed point

representation because it allows to illustrate more distinctively a problem for privacy which rises
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from the finite precision2 and which is, therefore, pandemic. This is not the case for the example

in [Mir12]: fixed-point and integer-valued algorithms are immune to that attack.

In this chapter, we propose a solution to fix the privacy breach induced by the finite-precision

implementation of a differentially-private mechanism for any kind of implementation. Our main

concern is to establish a bound on the degradation of privacy induced by both the finite repre-

sentation and by the computational errors in the generation of the noise. In order to achieve this

goal, we use the concept of closeness introduced in chapter 2, which allows us to reason about

the approximation errors and their accumulation. In addition, we make as few assumptions as

possible about the procedure for generating the noise. In particular, we do not assume that the

noise has a linear Laplacian distribution: it can be any noise that provides differential privacy

and whose implementation satisfies a few properties (normally granted by the implementation

of real numbers) which ensure its closeness. We illustrate our method with two examples: the

classic case of the univariate (i.e., linear) Laplacian, and the case of the bivariate Laplacian. The

latter distribution is used, for instance, to generate noise in privacy-aware geolocation mecha-

nisms [ABCP13].

3.1.1 Related work

As far as we know, the only other work that has considered the problem introduced by the finite

precision in the implementation of differential privacy is [Mir12]. As already mentioned, that

paper showed an attack on the Laplacian-based implementation of differential privacy within the

IEEE standard floating-point representation3. To thwart such an attack, the author of [Mir12]

proposed a method that avoids using the standard uniform random generator for floating point

(because it does not draw all representable numbers but only multiple of 2−52). Instead, his

method generates two integers, one for the mantissa and one for the exponent in such a way that

every representable number is drawn with its correct probability. Then it computes the linear

Laplacian using a logarithm implementation (assumed to be full-precision), and finally it uses a

snapping mechanism consisting in truncating large values and then rounding the final result.

The novelties of our work, w.r.t. [Mir12], consist in the fact that we deal with a general

kind of noise, not necessarily the linear Laplacian, and with any kind of implementation of real

numbers, not necessarily the IEEE floating point standard. Furthermore, our kind of analysis

allows us to measure how safe an existing solution can be and what to do if the requirements

needed for the safety of this solution are not met. Finally, we consider our correct implementa-

2More precisely, the problem is caused by scaling a finite set of randomly generated numbers. It is easy to prove
that the problem raises for any implementation of numbers, although it may not raise for every point like in the case
of the fixed-point representation.

3We discovered our attack independently, but [Mir12] was published first.
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tion of the bivariate Laplacian also as a valuable contribution, given its practical usefulness for

location-based applications.

The only other work we are aware of, considering both computational error and differential

privacy, is [CGLN11] However, that paper does not consider at all the problem of the loss of

privacy due to implementation error: rather, they develop a technique to establish a bound on the

error, and show that this technique can also be used to compute the sensitivity of a query, which

is a parameter of the Laplacian noise.

3.1.2 Plan of the chapter

This chapter is organized as follow. In section 3.2, we recall some mathematical definitions and

introduce some notation. In section 3.3, we describe the standard Laplacian-based mechanism

that provides differential privacy in a theoretical setting. In section 3.4, we discuss the errors

due to the implementation, and we consider a set of assumptions which, if granted, allows us to

establish a bound on the irregularities of the noise caused by the finite-precision implementation.

Furthermore we propose a correction to the mechanism based on rounding and truncating the re-

sult. Section 3.5 contains our main theorem, stating that with our correction the implementation

of the mechanism still preserves differential privacy, and establishing the precise degradation

of the privacy parameter. The two sections that follow present some applications of our result:

Section 3.6 illustrates the technique for the case of Laplacian noise in one dimension and section

3.7 shows how our theorem applies to the case of the Euclidean bivariate Laplacian. Section 3.8

concludes and discusses some future work.

3.2 Preliminaries and notation

In this section, we recall some basic mathematical definitions and we introduce some notation

that will be useful in the rest of the chapter. We will assume that the queries give answers in R
m.

Examples of such queries are the tuples representing, for instance, the average height, weight,

and age of the people in the database. Another example comes from geolocation, where the

domain is R2.

3.2.1 Geometrical notations

Let S⊆ R
m.

We denote by Sc the complement of S, i.e., Sc = R
m \S.
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The diameter of S is defined as

�(S) = max
x,y∈S

d(x,y).

For ε ∈ R
+, the +ε-neighbor and the −ε-neighbor of S are defined as

S+ε = {x | ∃s ∈ S,d(x,s)≤ ε}

S−ε = {x | ∀s ∈ R
m,d(x,s)≤ ε =⇒ s ∈ S}

These two definitions relate to each other with the following properties. The definitions coincide

for ε = 0:

S+0 = S−0 = S

From one definition, we can define the other one through the complement of S:

Proposition 3.2.1. We have the following equality:

(S−ε)c = (Sc)+ε

Proof. By definition, the complement of a set defined by the points where a property holds is

the set where the property does not hold, so we have:

(S−ε)c = {x | ¬(∀s ∈ R
m,d(x,s)≤ ε =⇒ s ∈ S)}

This is equivalent to:

(S−ε)c = {x | ∃s ∈ R
m,d(x,s)≤ ε ∧ s /∈ S}

This can be rewritten as:

(S−ε)c = {x | ∃s ∈ Sc,d(x,s)≤ ε}

For x ∈ R
m, the translations of S by x and −x are defined as

S+ x = {y+ x | y ∈ S}

S− x = {y− x | y ∈ S}

where + and − are the vectorial spaces operations presented in section 2.2.3.
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3.2.2 Measure theory

In this chapter, we will make use of measure theory. We recall, therefore, the basic notions of

measure theory and some of its properties.

Definition 3.2.1 (σ-algebra and measurable space). A σ-algebra T for a set M is a nonempty

set of subsets of M that is closed under complementation (wrt to M) and (potentially empty)

enumerable union. The tuple (M,T ) is called a measurable space.

Definition 3.2.2 (Measure). A positive measure µ on a measurable space (M,T ) is a function

µ : T →R
+∪{0} such that µ( /0) = 0, and if (Si) is a enumerable family of disjoint subsets of M

then

∑µ(Si) = µ(
⋃

Si).

A positive measure µ where µ(X) = 1 is called a probability measure.

We will make use of the Lebesgue measure λ on (Rm,S) where S is the Lebesgue σ-algebra.

The Lebesgue measure is the standard way of assigning a measure to subsets of Rm.

Definition 3.2.3 (Measurable function). Let (M,T ) and (V,Σ) be two measurable spaces. A

function f : M→V is measurable if f−1(v) ∈ T for all v ∈ Σ.

Definition 3.2.4 (Absolutely continuous). A measure ν is absolutely continuous according to a

measure µ, if for all M ∈ S , µ(M) = 0 implies ν(M) = 0.

Theorem 3.2.1 (Radon-Nikodym). If a measure is absolutely continuous according to the Lebesgue

measure then we can express it as an integration of a function f called the density function of

the measure:

µ(M) =
∫

M
f (x)dλ

Definition 3.2.5 (Support). Let µ be a measure on (Rm,S), then the support of µ is defined to

be the set of all points x ∈ X for which every ball Bx with a positive radius that contains x has

positive measure:

supp(µ) := {x ∈ X |x ∈ Bx ∈ T =⇒ µ(Bx)> 0}

Definition 3.2.6 (Essential supremum). The essential supremum of a function f , esssup f , is

defined by

esssup f = inf{a ∈ R : µ({x : f (x)> a}) = 0}
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3.2.3 Probability theory

We focus now on the particular case of measure theory which is probability theory, and its

specific definitions.

Definition 3.2.7 (Probability space). A probability space consists of three parts:

• A sample space, Ω, which is the set of all possible outcomes.

• A set of events F , where each event is a set containing zero or more outcomes. F must be

a σ-algebra on Ω.

• The assignment of probabilities to the events, that is, a measure P on (Ω,F ) such that

P(Ω) = 1. .

Definition 3.2.8 (Random variable). Let (Ω,F ,P) be a probability space and (E, E) a measur-

able space. Then a random variable is a measurable function X : Ω → E. We shall use the

expression P [X ∈ B] to denote P
(

X−1(B)
)

.

Let f : Rm→ R
m be a measurable function and let X : Ω → R

m be a random variable. In

this paper, we will use the notation f (X) to denote the random variable f (X) : Ω → R
m such

that f (X)(ω) = f (X(ω)). In particular, for m ∈ R
m we denote by m+X the random variable

m+X : Ω → R
m such that (m+X)(ω) = X(ω)+m.

Definition 3.2.9 (Density function). Let X : Ω→ E be a random variable. If there exists a

function f such that, for all S ∈ S , P[X ∈ S] =
∫

S f (u)du, then f is called the density function

of X.

In this chapter, we use the following general definition of the Laplace distribution (centered

at zero).

Definition 3.2.10 (Laplace distribution). The density function F of a Laplace distribution with

scale parameter b is Fb(x) = K(b)e−b‖x‖ where K(b) is a normalization factor which is deter-

mined by imposing
∫

S Fb(x)dx = 1.

This definition is not the standard definition of the multivariate Laplacian considered, for

instance, in [EKL06]. Indeed, the standard definition generalizes the characteristic function

of the Laplace distribution while, here, we generalize the density function. The reason to use

this definition of Laplacian instead of the standard one is that this is the only one that ensures

differential privacy (in the exact semantics).
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Definition 3.2.11 (Cumulative function). The cumulative distribution function of a real-valued

random variable X is the function given by

FX(x) = P(X ≤ x),

Definition 3.2.12 (Joint probability). Let (X ,Y ) be a pair of random variable on R
m. The joint

probability on (X ,Y ) is defined for all I,J ∈ S as:

P[(X ,Y ) ∈ (I,J)] = P[X ∈ I ∧ Y ∈ J].

Definition 3.2.13 (Marginals). Let X and Y : (Ω,F ,P)→ (Rm,S). The marginal probability of

the random variable (X ,Y ) for X is defined as:

P[X ∈ B] =
∫
Rm

P[(X ,Y ) ∈ (B,dy)].

3.3 Differential privacy

As we stated in the introduction of this chapter, differential privacy emerged from a general

problem of confidentiality. In this section, we first present the historical background to show

why this approach has been chosen and why other approaches are problematic. Then, we define

formally the differential privacy property. Next, we explain how differential privacy can be used

and we illustrate some of its properties. In the last subsection, we explain how this property is

achieved in case of real valued answer.

3.3.1 Context and vocabulary

A statistical database has to be considered as a collection of rows. Each rows contains tuples of

values that can be seen as a vector. In practice rows can contain any kind of type like strings for

names, integers for id numbers, booleans for answer to yes/ no question or reals for measures

like height. Here, for simplicity, we only consider reals which are the kind of data for which the

problem of finite precision arises.

We consider three agents concerned by the database: the participants, also called respon-

dents, that provide personal data to the database, the curator of the database, and the analysts

which ask for queries.

In our setting, we consider that the owner can be trusted by the respondents while the analysts

are not trusted by the respondent. This is the case when the database is own by a public institution

for instance. The analysts can be researchers looking for correlations between some diseases or
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companies that are looking for new tendencies. In another context, the database can consist of

the employee of a company that has all the private information and wants to mandate an external

analyst to adapt its strategy, but does not want to reveal any personal information.

In these situations, the analyst chooses the queries to ask to the database. He can ask simple

queries like “how many people in the database have diabetes?”, or more complex queries. In

general, we assume no limitations in the expressiveness of the query language, i.e., we assume

that it is Turing complete. Since the query language is Turing complete, it is undecidable whether

two syntactically different queries are equivalent.

Since any kind of query can be asked, the analyst can ask for “What is the average age

of people named X”. Answering to such a query would of course break the privacy of X. To

avoid the leakage an agent called the curator “sanitizes” the answer.In the next subsection, we

present some of the approach that have been proposed in the literature, and we show that are not

satisfactory.

3.3.2 Previous approaches to the privacy problem

Before we introduce the formal definition of differential privacy we present the previous pro-

posed methods to grant privacy and we discuss their shortcomings.

The first approaches to sanitize private data consisted in releasing an altered database and

the analyst was able to answer himself to his queries on this altered database.

Anonymization The first approach to prevent leakage was to remove all identifiers of indi-

viduals. Mainly, the identifiers (name, address, id number, etc.) were removed from the survey

while all other information was provided to the analyst. Such a mechanism is not safe however.

Indeed, records contains other information like gender, ZIP code, birthday or whatever is pub-

licly available. Even if each of these data separately does not allow to identify an individual,

some combination of them might. For this reason, they are called quasi-identifiers.

k-anonymity The k-anonymity property [Swe02] has been coined to prevent the previous at-

tack. The k-anonymity requirement consists in providing an altered database such that whatever

is a query, it is not possible to link the result to less than k rows. The underlying idea is that,

since there are always at least k individuals that are bunched with one specific individual, so

that it is not possible to extract the row corresponding to a particular participant. To achieve

k-anonymity, some fields are either removed or generalized. For instance, in a survey, the ZIP

code can be removed while the birth date can be generalized such that only the year appears.

This solution, however, has weaknesses. First, since there can be several databases that are
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protected independently, it is possible that released data from one curator grants privacy for

its own database but it allows to attack another database thanks to the additional correlations

it provides. Next, getting k rows with the same public information does not means that the k

rows are different according to the private data. For instance, if there are k individual with the

same birthday and that birthday is the only public information, the database is k-anonymous.

However, if, by chance, all people born at some date have more or less the same incomes then

it is possible to have a precise information about the incomes of all the individuals having this

birthday.

To solve this problem, other improvements have been tried like l-diversity [MKGV07] that

also requires for the k rows to have different private values. This approach is too restrictive

however when considering binary private data like having some illness where 99.99% of par-

ticipants are negative. The t-closeness property [LL07] amends the problem by asking that the

distribution in the sampling is close to the distribution of values in the whole database.

Noise perturbations To provide the t-closeness property for a database, one proposal was

based on the use of noise perturbations [RMFDF08]. Noise perturbations consist in modifying

the initial database by adding noise to all values. In the family of noise perturbations techniques,

a simple procedure consists in replacing some percentage of the values by random values so

that when an answer is returned about a single row it is not possible to determine if the result

corresponds to the real answer or to a random value. Such kind of techniques can be sufficient

for simple data but if data are too complex it either becomes unfeasible or the alteration is too

invasive and the altered database provide a poor utility. For instance, it has been shown that

graph relationship can be re-identified even with addition of fake links [NS09].

Towards differential privacy To avoid the problems above, a different approach was pro-

posed. Instead of altering the database and then releasing it to the analyst, the curator keeps the

database secret and just communicates answers to the queries of the analyst. In this setting, it is

possible to have a better control of the data leakage.

The basic principle consists in providing a noisy answer to each query. However, if the

same query is asked several times then the analyst could average the results so to get more and

more close to the true answer. It is also not possible to always add the same noise to the same

query since two queries can be syntactically different while they are semantically identical, and

semantical identity is undecidable.

In any case, we need a formal definition of what we consider to be a good privacy guarantee.

An idea for the definition might be that the knowledge about any particular individual does

not change much by answering a query. Such kind of definition would be too strict however.
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Indeed, since we want to provide general information, it might be possible that the analyst

already has a particular knowledge about some individual which links a general information

to one of this individual. For instance, if we know that the income of someone is exactly the

same as the average then, revealing the average income of the people in the database reveals the

exact income of this individual. However, we note that this problem arises independently from

whether or not this individual participates to the database. Now, one of the main issues is to

reassure the individuals that their participation in the database is safe,i.e., it does not harm their

privacy. For this reason, the definition of differential privacy is based on the idea that whether an

individual participates or not in the database does not affect much the probabilistic knowledge.

3.3.3 Definition of differential privacy

We start by formalizing the notion of participation versus non-participation of an individual in

the database.

Definition 3.3.1 (adjacent databases). Given two databases D1 and D2, we denote by D1 ∼ D2

the fact that D1 and D2 differ by exactly one row. Namely, D2 is obtained from D1 by adding or

removing the data of one individual.

In order to ensure (almost) the same knowledge whether an individuals is in the database or

not, it is not a good idea to use a deterministic noise like rounding the result. Indeed, such a

method leaks information each time one individual causes the answer to shift to another round-

ing. For instance, if the value of some attribute for each individual is between 0 and 0.01, and

we decide to round the result to the closest integer, then two successive sum queries (one on a

subset S and another one on S plus one individual i) can provide information any time there is a

shift one integers. If we assume that the analyst has a side information which is the true value of

S, like 9.995, then he can learn whether the value of i is greater or smaller than 0.005.

To avoid this problem, the solution consists on adding a random noise. In this way, even if

the analyst already knows the whole data but one individual, the probabilistic noise still hides

the personal result. We define a noisy answer as follow.

Definition 3.3.2 (randomized mechanism). A randomized mechanism A is a function that takes

a database D and a query q and returns a random variable X.

X = Aq(D)

We omit the q parameter when there is no ambiguity.
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We can now provide the formal definition of differential privacy. We denote by D the set of

all possible databases, which, in general, may be an infinite set since the number of entries may

not be bounded.

Definition 3.3.3 (ε-differential privacy). A randomized mechanism A : D→R
m is ε-differentially

private if for all databases D1 and D2 in D with D1 ∼D2, and all S∈ S (the Lebesgue σ-algebra

on R
m), we have :

P[A(D1) ∈ S]≤ eεP[A(D2) ∈ S]

This definition is based on the idea that, since the probabilities of obtaining a certain an-

swer are similar, it is not possible to extract probabilistic information from the presence of an

individual.

3.3.4 Some properties of differential privacy

We now mention some of the main results about differential privacy in order to show the strength

of this definition.

Since differential privacy is a proportional relation, there are two immediate propositions

about compositions.

Proposition 3.3.1 (Several users privacy [Dwo11]). A ε-differentially private mechanism pre-

serve privacy for a single user. If we are interested to protect groups on n users, the definition of

adjacent database should be that D1 and D2 differs for the addition or removal of n users. A sim-

ple transitivity argument leads to conclude that according to this definition the same mechanism

is nε-differentially private.

Proposition 3.3.2 (Multiple queries). If n successive answers are returned such that the i-th

answer is issued by a εi-differentially private mechanism, then the global mechanism is ∑n
1 εi-

differentially private.

As a corollary, a standard protocol consists to attribute a privacy budget to each analyst. In

this protocol, the analyst chooses how much of the privacy budget he wants to spend for a query

and the curator returns the answer with a noise corresponding to this amount. When the budget

is over, the analyst cannot ask further queries. By the above proposition, this protocol grants

ε-differential privacy.

A final proposition is about compositionality of mechanisms which states that once a result

enjoy differential privacy then any post process is also differentially private.

Proposition 3.3.3. If a mechanism A is ε-differentially private in range R
m, then for any func-

tion f : Rm→ R
m, we have that f ◦A is also ε-differentially private.
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For instance, if the possible domain for the true value is bounded, then, when the returned

answer is outside this domain, it is possible to return instead the closest value inside this domain

without any loss of privacy.

3.3.5 Standard technique to implement differential privacy

Differential privacy is also interesting because it is a property easy to implement property, at

least from a mathematical point of view.

There are several ways to achieve it. For instance, a possible solution consists in replacing

some of the entries, randomly selected, by a random one. In the simplest case where answer have

value in {0,1}, and where one half of the entries are replaced by a random one with equiproba-

bility then it has been proved in [Dwo11] that such a mechanism is ln(3)-differentially private.

Such a mechanism, which enjoys also that the database owner has not to be trusted (since the

respondent can provide a random answer), is an example of non oblivious mechanism.

Here we will be interested in the oblivious mechanisms, defined formally as follow.

Definition 3.3.4 (oblivious mechanisms). A process to sanitize the database is oblivious if it

takes as input only the true answer, i.e., not the database. We use the notation fq(D) to denote

the true answer on the database D and f (D) when there is no ambiguity about q.

Such class of mechanisms does not need to consider the database anymore, the only interest-

ing parameter is the maximal deviation that one individual can generate for a given query. This

leads to the following definition.

Definition 3.3.5 (sensitivity). The sensitivity ∆ f of a function f : D→ R
m is

∆ f = sup
D1,D2∈D,D1∼D2

d( f (D1), f (D2)).

In this class of oblivious mechanisms, we are interested in the particular subcase of mecha-

nisms that only add a random value to the result.

Mechanism 1.

A0(D) = f (D)+X

These mechanisms are useful enough (in the exact semantics) and we will limit our study to

them.Utility is a formal notion even though there is no unique definition, and it is an important

notion. For instance, a mechanism that only returns a random variable is 0-differential private

but since it never allows to learn anything, this mechanism is perfectly useless. For the subset of

the additive mechanism the utility can be defined as a function of the variance between the true

answer and the real value.
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Figure 3.2: The two distributions corresponding to a true answer f (D1) and f (D2)

In case of no prior knowledge, the Laplace distribution is an optimal distribution in term

of ratio between utility and privacy for the class of additive noise (mechanism 1). Indeed, the

Laplace enjoys a constant ratio of ε between two adjacent databases as illustrated in 3.2.

3.4 Error due to the implementation of the noise

In this section, we detail our quantification of the error due to the finite precision semantics.

From the analysis of the implementation, we can extract properties of the chapter 2. We start

by considering the different parts where finite precision causes deviation. In section 3.4.1, we

briefly explain why we do not focus on the implementation of the function computing the true

answer. In section 3.4.2, we explain what is the generally used pattern to implement a random

noise. This generation is made in two steps: generation of a uniformly distributed noise and then

the computation of a function from this initial noise. In section 3.4.3, we detail this implemen-

tation and we provide a model that provide a bound on the maximal error. In section 3.4.4, we

analyze how the function that transform the initial noise produces more deviation.

The rest of this section aims at using this maximal deviation to quantify the increase of

the differential privacy parameter (how much leakage the finite precision adds to the theoretical

leakage). In fact, the direct implementation of the algorithm in exact semantics without any

adaptation is unsafe. So, it is not possible to get a bound on the leakage without any change

in the algorithm. Therefore, during the quantification of the leakage, we introduce changes in

the algorithm motivated both by the fact a proof is not possible without these changes and some

illustrations on how the exact mechanism can be attacked. In section 3.4.5, we aims at proving

that the total deviation is bounded. This is not the case in the initial mechanism, however.

In order to get a maximal bound, we propose a safer mechanism that truncates the result. In
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section 3.4.6, we consider a specific distance, the ∞-Wassertein distance, between distributions.

We prove that the existence of a maximal bound of the deviation implies some bounds in the

distance between the exact distribution and the finite-precision one. In section 3.4.7, we show

that this bound is not precise enough and we motivate the need to round the result provided by

our former mechanism. In section 3.4.8, we consider some problems caused by some specifics

distribution and we measure an additional leakage due to the weakness of these distributions

when they are implemented. At the end of this section, we are able to measure the leakage due

to the finite precision. The measure itself and its proof constitute the next section.

3.4.1 The problem of the approximate computation of the true answer

Before any consideration about how the noise X is generated and induces errors when computed,

we consider the errors appearing during the computation of f itself.

First of all, we note that, while X is produced by a unique algorithm, f is generated for each

query from the syntax of the query. Indeed, X has to change according to the privacy budget

we want to spend for the query and according to the sensitivity of the asked query. But these

two parameters do not change the code of the function itself. In the case of the query, the user

“codes” a function with the syntax of the language. Then the function is interpreted or compiled

into the native language of the machine to the function f ′.

If the function f ′ is not close to f , then the utility of the answer will be less valuable. In

term of differential privacy however, it is not important that the function f ′ is used instead of f .

The only possible leakage that may happen appears if the scale factor for the noise is based on

∆ f instead of ∆ f ′ . For instance the following query :

f (D) = min
i∈D

(((i+Big)−Big)− i)

where Big is a huge number of the form 2n should return the minimal value among all entries

of an expression that is always 0 in the exact semantics. So if we compute ∆ f in the exact

semantics we get 0. However, if the computation is done in the floating-point arithmetic with

IEEE standard, i+Big−Big is equal to 0 if i < 2−52Big else i+Big−Big is greater than 0.

If we use ∆ f then no noise will be added to the answer of f ′, hence by asking this query, it is

possible to learn if there exists some value greater than 2−52Big in the database without spending

any privacy budget.

There exist several ways to compute the sensitivity of a query. One of these methods consists

in doing a statical analysis of the generated function to find a parameter k for which f is k-

Lipschitz (such a mechanism has been proposed in [CGLN11]). Once we know that f is k-

Lipschitz and that each entry belongs to some domain of diameter d, then we know that the



3.4 Error due to the implementation of the noise 43

sensitivity is at most kd. To avoid the problem illustrated previously, we have to be careful that

the k factor be actually computed in the finite-precision semantics and not in the exact one.

For the following, for readability reasons, we only mention ∆ f but we mean ∆′f .

3.4.2 General method to implement real valued random variables

Computers are deterministic machines. To implement probabilistic algorithms, operating sys-

tems provide a random seeds: it is a value in a register that is updated according to the most

erratic behaviors that the computers can access: mouse moves, some microtime values, etc.

Since the random seed use is limited (a user makes a limited number of mouse moves during

a period), an additional mechanism simulates pseudo-random numbers through erratic functions.

Example 3.4.1. In the Java language, the following function provides the new random integer

from the last one:

synchronized protected int next(int bits) {

seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);

return (int)(seed >>> (48 - bits));

}

This is a deterministic function made from simple arithmetic operators and bits shifts.

In both cases, however, random variables are initially set with the help of an external process.

An algorithm accesses these values through primitive of the language. For instance in the C

language, there exists a unique primitive rand() that returns an integer between 0 and some

fixed value RAND_MAX. There exist many functions in Java, but all of them call the next()

function above, i.e. every generators are made from the integers random generator.

In order to generate real-valued random variables, a random integer has to be cast into a dou-

ble (or any finite-precision representation type for reals). The most straightforward mechanism

to do it consists of dividing the random integer by the greatest value of the random generator. In

that case, we obtain a random value between 0 and 1. The actual mechanism in the Java library

is given in figure 3.4. The distribution is uniform in some weak sense: the pseudo-random gen-

erator generates once and only once all possible values before looping. Since the set of all the

possible values has a mean of 1/2, when the random generator is called enough time, the average

of generated numbers is 1/2.

In case of floating point numbers it is possible to build a better generator [Mir12]. Indeed,

the last method just provides numbers that are multiple of 1/mr. However representable numbers

are not equally spaced since the exponent allows to represent very small numbers. So to have



44 Differential Privacy 3.4

synchronized public double nextGaussian() {

if (haveNextNextGaussian) {

haveNextNextGaussian = false;

return nextNextGaussian;

} else {

double v1, v2, s;

do {

v1 = 2 * nextDouble() - 1;

// between -1.0 and 1.0

v2 = 2 * nextDouble() - 1;

// between -1.0 and 1.0

s = v1 * v1 + v2 * v2;

} while (s >= 1 || s == 0);

double multiplier = Math.sqrt(-2 * Math.log(s)/s);

nextNextGaussian = v2 * multiplier;

haveNextNextGaussian = true;

return v1 * multiplier;

}

}

Figure 3.3: The source code of the Gaussian generator in the Random library of Java

a better generator, we need to draw an integer to be the mantissa and another according to the

exponential law to the exponent.

We have seen various ways to get a uniform random variable in [0,1[. From a perfectly uni-

form random variable generator, it is theoretically possible to build any kind of random variable

in any domain R
m. There exists two main techniques to get other distribution from this initial

one. The first one is used for real valued random variable (m = 1). Indeed, to draw a value from

a random variable X on R distributed according to the cumulative function C : R→]0,1], it is

sufficient to pick a value u from the uniform generator in ]0,1] and then return C−1(u). The

second one uses already generated random variables and combines them into some arithmetic

expression to get a new distribution. For instance, to have a Gaussian distribution, the Java ran-

dom library have a function (Figure 3.3) that makes two calls to the uniform pseudo-random

generator nextDouble() (Figure 3.4).

The code of figure 3.3 highlights that the number q of random numbers drawn to generate

a random variable does not depend on the dimension m of its co-domain. The only condition is

q≥ m due to cardinality reasons (in the example q = 2 while m = 1).

Since, several uniform random values can be drawn to generate the noise, we do not consider

the probability distribution of one draw but the one of several draws whose its support is [0,1]q.
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public double nextDouble() {

return (((long)next(26) << 27) + next(27))

/ (double)(1L << 53);

}

Figure 3.4:

This drawn variable U ′ is an approximation of a uniformly distributed variable on [0,1]q.

3.4.3 Errors due to the initial random generator

Now we have explained how the generation of a random number works, we explicit the kind of

errors that can happen and how to bound them.

There are mainly three reasons why a uniform random generator may induce errors, i.e. the

random variables generated are not perfectly independent uniformly distributed in [0,1]q.

Equiprobability The first issue is inherent to the principle of generating random values itself.

Whether the random value is drawn by dices or by a computer, there is remains a bias in the

equiprobability. This bias comes at least from the initial seed (real world events are never per-

fectly equipossible). Even if this bias is not really part of our main concern, it should not be

forgotten.

Dependency The next bias is due to the dependence of returned results when we pick several

random values to generate the noise. Indeed, as we explained, most of the generator imple-

mentations are pseudo generators. When a value is picked, the next one is generated as a hash

function of the first one. This means that if we have N possibilities for one choice then we also

have N possible pairs of successive random values instead of N2. This is represented in Figure

3.5. In the first square, we have represented all the possible outputs if the two random values

were really independent (here N = 25 and so there are 625 possibilities). In the second square,

we have represented the outputs when the second random value is fully determined by the first

one.

Depending on how erratic is the pseudo random generator, it may be possible to observe big

area where there is no possible value. Even if these areas are hard to compute for an attacker

some of them might be found and then exploited: the computation have to be done once for all

attacks on the same architecture. To avoid this leakage, it can be decided to uniformly spread

the possible outputs of the random generator on N2 by splitting the bits of the initial integer such

that there is m
√

N possible values on each axis (third square in figure 3.5). This is not a good
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Figure 3.5: In the first picture is represented the intended possible values when picking two
random numbers. In the second figure, the actual possible draws. The last one is the best
repartition.

solution, however, since now the distribution of the possible value is perfectly known by any

attacker without doing any computations. Moreover, this problem also appears in the case of

multiple identical queries. A careful study has been made about this problem in [DLAMV12].

This problem is complex because it concerns the initial random-integer generator about its cryp-

tographic properties. Here, we do not enter into the details of the problem. We only assume

that the knowledge of this distribution needs too much time and space resources, so we do our

modeling as if real valued random values were actually independent from each other.

Finite representation The most important bias, however, is due to the finite-precision repre-

sentation itself. Indeed, whenever we use a perfect random generator, this generator has to return

a result into the set of representable numbers. The following example shows that any finite im-

plementation makes it impossible for a mechanism to achieve the degree of privacy predicted by

the theory (i.e. the degree of privacy it has in the exact semantics). This example is more general

than the one in the introduction in the sense that it does not rely on any particular implementation

of the real numbers, just on the (obvious) assumption that in a physical machine the representa-

tion of numbers in memory is necessarily finite. On the other hand it is less “dramatic” than the

one in the introduction, because it only shows that the theoretical degree of privacy degrades in

the implementation, while the example in the introduction shows a case in which ε-differential

privacy does not hold (in the implementation) for any ε.

Example 3.4.2. Consider the standard way to produce a random variable with a given proba-

bility law, such as the Laplace distribution. Randomness on most computers is generated with

integers. When we call a function that returns a uniform random value on the representation

of reals, the function generates a random integer z (with uniform law) between 0 and N (in

practice N ≥ 232) and returns u = z/N. From this uniform random generator, we compute n(z/N)
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Figure 3.6: The probability distributions of Laplace noises generated from a discretized uniform
generator

where n depends on the probability distribution we want to generate. For instance, to generate

the Laplace distribution we have n(u) =−bsgn(u−1/2) ln(1−2|u− 1/2|) which is the inverse

of the cumulative function of the Laplace distribution. However the computation of n is per-

formed in the finite precision semantics, i.e. n is a function F→ F where F is the finite set of

the representable numbers. In this setting, the probability of getting some value x for our noise

depends on the number of integers z such that n(z/N) = x : if there are k values for z such that

n(z/N) = x then the probability of getting x is k/N. This means, for instance, that, if the theoretical

probability to draw x is 1.5/N, then the closest probability that can be actually associated with

this drawing of x is either 1/N or 2/N and in both cases the error is at least 33%. In figure 3.6,

we illustrate how the error on the distribution breaks the differential-privacy ratio that holds for

the theoretical distribution. The ratio between the two theoretical Laplacian distributions is 4/3.

However, since the actual distribution is issued from a discretization of the uniform generator,

the resulting distribution is a step function. So on the domain where the theoretical probability

is very low, like in x0, the discretization creates an artificial ratio of 2 instead of 4/3.

We model this last form of leakage in the following. We consider that a perfect random

values u = (u1, . . . ,uq) ∈ [0,1]q is picked with all its decimals. Then we consider the ran-

dom variable Uq′ actually provided as generated from a function n0 : Rq → R
q, (u′1, . . . ,u

′
q) =

n0(u1, . . . ,uq) where n0 is a mathematical function that takes u and returns the closest value u′ in

the set of the possible outputs of our pseudo random generator. For instance, if our pseudo ran-

dom generator can only return numbers that are multiple of 2−53, the n0 function is the function

that truncates numbers after the 53th decimal bit. In figure 3.7, we illustrate such a shift: white

circles represent the ideal values that should have been drawn while the black circles represents
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Figure 3.7: Generation of an ideal value (in white) and its finite-precision related value (in black)

the actual drawn value in the fixed-point representation. The size of the link between the two

circles represents the initial error.

From this definition of n0 we can define δ0 ∈ R
+ that corresponds to the maximal distance

between n0(u) and u for any u ∈ [0,1]q. Denoting by Id the identity function, we have:

δ0 = ‖n0− Id‖∞. (3.1)

So in case the random generator generates numbers that are multiple of δ, we have δ0 = δ.

3.4.4 Errors due to the function transforming the noise

We have defined the error done by the initial uniform random generator, and we now consider

the errors of computation when transforming this noise into a noise with the desired distribution.

For instance, in the code 3.3, the function nextGaussian takes as an input a uniform random

variable in [0,1]2 (there are two calls to the uniform random variable nextDouble) and returns

two independent variables with a Gaussian distribution.

Formally, given the random variable X chosen for the mechanism 1, there may exist a func-

tion n that takes a tuple u ∈ [0,1]q and returns a value in R
m such that the distribution of n(Uq)

(where Uq is the uniform random variable on [0,1]q) is the same as the distribution of X . When

such a function exists, it can be used to draw the variable X . Hence mechanism 1 can be spe-

cialized to:
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Mechanism 2.

A0(D) = f (D)+n(U)

In other words, mechanism 2 specifies that we have an additive noise generated from a uni-

form one. Since we are considering errors of computations, we denote by n′ the actual function

in the finite-precision semantics and by X ′ the random variable actually generated. So we have

in the exact semantics:

X = n(U)

and in the finite-precision semantics:

X ′ = n′(U ′) = n′(n0(U))

In order to establish a bound on the difference between the probability distribution of X and

X ′, we need some conditions on the implementation n′ of n. For this purpose we use the notion

of (k,δ)-closeness between two functions that we defined in Definition 2.3.3. Indeed, from

equation 3.1, the fact Id is 1-Lipschitz and Proposition 2.3.5, n0 and Id are (1,δ0)-close. Then, if

n and n′ are (k,δ)-close on R
m, since n0 and Id are (1,δ0)-close, from the weak compositionality

property 2.3.4 , we get n and n′ ◦ n0 to be (k,kδ0 + δ)-close. We derive: ∀u ∈ [0,1]q,d((n′ ◦
n0)(u),n(u))≤ kδ0 +δ. Finally, if we denote by x a draw from the exact random variable and x′

the corresponding draw in the finite precision, we have,

∀x ∈ R
m,d(x,x′)≤ kδ0 +δ

Unfortunately, we have the following impossibility property.

Proposition 3.4.1. Any generation of random variable that achieves ε-differentially-privacy ac-

cording to mechanism 2 cannot have an implementation which is (k,δ)-close to the exact seman-

tics on [0,1]q, for any k and δ.

Remark 2. The main idea is that, from Theorem 2.3.1, functions with a vertical asymptote are

not close to any function.

To prove this proposition, we need the following lemma which states that in a differentially

private mechanism with additive noise there is no finite bound to the amplitude of the noise.

Lemma 3.4.1. In any ε-differentially private mechanism 1 on a set of databases where at least

two different true answers are possibles on two adjacent databases, the random variable X is

such that esssup‖X‖= ∞.
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Proof. Let r1 and r2 two possible answers.

Let M ∈ S (the set of measurable sets) such that ‖M‖ is bounded and P(X ∈M) > 0. With

the definitions about translations of section 3.2.1, we also have P(r1 +X ∈M+ r1)> 0, hence,

since A is ε-differentially private, P(r2 +X ∈M+ r1)> 0 (otherwise the ratio between the two

probabilities would be infinite). So we have

P(X ∈M)> 0 =⇒ P(X ∈M+ r1− r2)> 0.

Since, this is valid for any M, we have in particular, for any h ∈ N:

P(X ∈M+h(r1− r2))> 0 =⇒ P(X ∈M+(h+1)(r1− r2))> 0.

From the assumption P(X ∈M)> 0 and the last implication, we conclude, by induction, that for

all h ∈ N :

P(X ∈M− r1 +h(r1− r2))> 0 (3.2)

Finally, since M is bounded, for any m there exists a h such that

{0}m∩M− r1 +h(r1− r2) = /0 (3.3)

where {0}m is the ball centered in 0 of radius m. This means that the set M− r1 +h(r1− r2)

does not have any element e with d(0,e) ≤ m. From equations 3.2 and 3.3, we have exhibited

sets (M− r1 +h(r1− r2)) with non null probability that are arbitrary far from the origin. We can

conclude that, for all s ∈ R, P(‖X‖> s)> 0 i.e. esssup‖X‖= ∞.

Proof of proposition 3.4.1. From Lemma 3.4.1, it follows that

‖n([0,1]q)‖∞ = ∞.

Moreover, ‖n([0,1]q)‖∞ = ∞ and the fact that [0,1]q is bounded implies that, for all k and δ,

there exist u,v, such that

d(n(u),n(v))> kd(u,v)+2δ.

We conclude from Theorem 2.3.1 that n′ (k,δ)-close to the exact semantics cannot exist.

Figure 3.8 illustrates the problem: while the returned result is close enough to zero, the

n function is safe enough. But then, the greater is the returned value, the higher is the error

between the exact and the finite-precision semantics.
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Figure 3.8: The bias after applying n to u.

3.4.5 Truncating the result

One possible approach to keep the computed results in a range where we are able to bound the

computational errors thus avoiding the problem mentioned in the previous section, consists in

truncating the result.

Some differential privacy mechanisms already use a truncation procedure.This traditional

truncation works as follows: choose a subset Mr ⊂ R
m and, whenever the reported answer x is

outside Mr return the closest point to x in Mr. However, while such a procedure is safe in the

exact semantics because remapping does not alter differential privacy, the fact n and n′ are not

close prevent to rely on the computed result on which we do not control any property. So we

cannot use this kind of truncation. Redrawing a new random value is not possible either because

it would change the final distribution. So, to remain in a general framework where we do not

have any additional knowledge about computational errors for large numbers, we decide here

to return an exception value when the computed result is outside of some bounded subset Mr

of Rm. We represent the truncation in figure 3.9. The red dashed area represents Mr
c, the set

that we decide to truncate. Like in the previous figures, the small white circles correspond to the

generated noise in the exact semantics while the black circles are the finitely generated noise.

By returning an exception when the result is outside Mr, we just keep results that are slightly

deviated.

Raising an error means we loose significant utility. Better mechanisms can be found but they

are specific to some algorithms or to some dimensions. For instance, we will show later that in

the uni-dimensional case (q = 1) it is possible to return an extremal value because extremal

values are into two disjoint sets. However, this truncation procedure has the advantage to be safe
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Mr
c

Figure 3.9: When the result is not in Mr (red area), we raise an exception.

in all cases.

We denote by ∞ the value returned by the mechanism when f (D)+X /∈Mr. Hence, the

truncated mechanism A returns the randomized value or ∞:

Mechanism 3.

AMr
(D) =







f (D)+X if f (D)+X ∈Mr

∞ otherwise

We truncate the result because we want to exclude non-robust computations from our mech-

anism. However, to be efficient, this procedure need that computations from the input domain

we define as unsafe provide output that are only in the unsafe domain where we raise an excep-

tion. To grant that erroneous outputs do not belong to the same domain as the safe ones, we

need two more conditions. One requires the implementation to respect the monotonicity of the

computed functions:

Condition 3.4.1. This condition states that a function g : Rm → R
k and its implementation g′

are such that for all x,y ∈ R
m, ‖g(x)‖ ≤ ‖g(y)‖ implies ‖g′(x)‖ ≤ ‖g′(y)‖.

With this property, if we know that the exact result corresponding to some obtained result

is not in Mr then for any greater result we can obtain the exact result is also not in Mr either.

If we do not require this property, we may have an implementation that returns 0 anytime an

overflow occurs. Such an implementation would be valid because we do not ask for closeness

outside of Mr but would generate a leakage since 0 would have a bigger probability to appear

than expected.
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The other condition is about the closeness of the implementation of the noise and its exact

semantics in a safe area.

Condition 3.4.2. The function n and its implementation n′ are (k,δn)-close on some set Ur such

that

∀u ∈Uc
r f (D)+n(u) /∈Mr

+kδ0+δn

To find such a set Ur, one possible way is by a fix point construction. We begin by finding

the smallest k0 and δn0 such that n and n′ are (k0,δn0)-close on Mr. Then for the generic step

m > 0, we compute the smallest km+1 and δnm+1 such that n and n′ are (km+1,δnm+1)-close on

Mr
kmδ0+δnm .

If Conditions 3.4.1 and 3.4.2 hold, then from (3.1) we derive

∀u ∈Uc
r f ′(D)+n′(n0(u)) /∈Mr (3.4)

So whatever happens outside of Ur, the result will be truncated. We can then consider that there

is no implementation error outside Ur. In other words, the implementation is observationally

equivalent to a one such that n0 is the identity on Uc
r and for all u ∈Uc

r , n(u) = n′(u).

Finally, we reformulate that fact into the following proposition.

Proposition 3.4.2. When conditions 3.4.1 and 3.4.2 hold, the implementation of Mechanism 3

is equivalent to truncate the function f (D)+n(u) whose implementation is such that

∀u ∈Uq,d( f (D)+n(u), f (D)+n′(n0(u)))≤ δt

where δt = kδ0 +δn

3.4.6 Modeling the error : a distance between distributions

In the last section, we have bounded the error between the exact semantics and the finite-

precision one. But this error was expressed in term of maximal error of computation i.e. we

have bounded the distance between two functions. However, since we want to bound probabili-

ties we have to get properties in terms of probabilities instead of maximal error.

So, we first define the measures associated to X and X ′.

Definition 3.4.1. We denote by µ and ν the probability measure of X and X ′, respectively: for

all S ∈ S (where S is the set of measurable sets),

µ(S) = P[X ∈ S]
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and

ν(S) = P[X ′ ∈ S]

Given that we are in a probabilistic setting, the errors due to finite representation cannot be

measured in terms of numerical difference as they can be in the deterministic case, they should

rather be measured in terms of distance between the theoretical distribution and the actual distri-

bution. Hence, we need a notion of distance between distributions. There exists several distance

between probability laws, and in particular there is a family of distance called Wassertein dis-

tances. This is particularly interesting for our purpose because, as we will see, it has a direct

relation with the computation error.

In the following, we use Γ(µ,ν) to denote the collection of all measures on R
m×R

m with

marginal µ and ν respectively.

Definition 3.4.2 (p-Wassertein distances). Let µ,ν two probability measures on R
m such that,

for some x0 ∈ R
m, ∫

Rm
d(x,xO)

pdµ(x)<+∞

, we have:

Wp(µ,ν) :=

(

inf
γ∈Γ(µ,ν)

∫
(Rm)2

d(x,y)p dγ(x,y)

)1/p

This definition is extended for p = ∞ as follows:

Definition 3.4.3 (∞-Wassertein distance [CDJ08]). Let µ, ν two probability measures on (Rm,S)

such that there exists a compact Ω, µ(Ω) = ν(Ω) = 1. the ∞-Wassertein distance between µ and

ν is defined as follows:

W∞(µ,ν) = inf
γ∈Γ(µ,ν)

(

inf
t≥0

(

γ
({

(x,y) ∈ (Rm)2
∣

∣d(x,y)> t
}))

= 0

)

We choose to use this ∞-Wassertein distance which, as we will show, is the natural metric to

measure our deviation.

If we denote by supp(γ), the support where γ(x,y) is non zero, we have an equivalent defini-

tion [CDJ08] for the ∞-Wassertein distance:

W∞(µ,ν) = inf
γ∈Γ(µ,ν)

(

sup
supp(γ)

d(x,y)

)

We extend this definition to any pair of measures that differ only on a compact (Mr in our

case) by considering the subset of Γ(µ,ν) containing only measure γ(x,y) with γ(x,y) = 0 if

x 6= y and either x ∈Mr
c or y ∈Mr

c.
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S−δt

S

S+δt

Figure 3.10: A bound on probabilities

We have introduced this measure because it has a direct relation with the computational error

as expressed by the following proposition.

Proposition 3.4.3. Let X and X ′ be two random variables Ω→ R
m with distribution µ and ν

respectively. We have that ‖X−X ′‖∞ ≤ δ implies W∞(µ,ν)≤ δ.

Proof. We consider the measure γ on M×M, ∀A,B ∈ S ,γ(A,B) = P(X ∈ A ∧ X ′ ∈ B). The

marginals of γ are µ and ν. Moreover, the maximal distance between two elements in the support

of γ is δ since P(X ∈ A ∧ X ′ ∈ B) = 0 when A and B are distant by more than δ. Since we have

such a γ the minimum on all the γ ∈ Γ(µ,ν) is less than δ.

In our case, according to Proposition 3.4.2, we have W∞(µ,ν) ≤ δt . The following proposi-

tion allows us to bound the µ measure of some set with the measure ν.

Proposition 3.4.4. Let µ,ν two probability measures on R
m, we have:

W∞(µ,ν)≤ ε =⇒ ∀S ∈ S ,ν(S−ε)≤ µ(S)≤ ν(S+ε)

Proof. The property of marginals is ν(S) =
∫
Rm×S dγ(x,y). Since γ(x,y) = 0 if d(x,y) > ε, we

derive ν(S) =
∫

Sε×S dγ(x,y). Then we get ν(S) ≤ ∫
Sε×Rm dγ(x,y). The last expression is the

marginal of γ in Sε, hence by definition of marginal: ν(S)≤ µ(Sε). The other inequality is obtain

by considering Sc = R
m \S.

In Figure 3.10, we illustrate the link between the computation error and the probability

bound. The white circles represents possible results in the exact semantics and the linked black



56 Differential Privacy 3.4

Figure 3.11: The problem of very small sets

circles represents the result computed in finite precision. All these links represent a mapping

from R
m to R

m. The probability that X ′ (in the actual semantics) belongs to some set S is equal

to the probability that X (in the exact semantics) belongs to the set S∗ which is the inverse image

of S by this mapping. Since the norm of the links is bounded by δt , we get an over and an under

approximation of S∗ by expanding S or by shrinking S by δt (i.e. the sets S+δt and S−δt ).

3.4.7 Rounding the answer

The way we bound probabilities about X ′ by expanding and shrinking S gives suitable bounds

when S is big enough. If S has a small area, S−δt can be much smaller than S or even be the

empty set as it is illustrated in Figure 3.11. It follows that the probability of the returned answer

to be in S−δt will be close to 0 or even null, and, since differential privacy is about ratio, this

case will not be bound suitably.

We might argue that this problem is an artifact because we are modeling the computational

errors through the ∞-Wassertein distance. This, however, is not the case. Indeed, this leakage is

exactly the one described in example 3.1.1 where we actually built an attack.

For this reason, the analyst should be prevented to measure too small sets. The most natural

way to achieve it consists in rounding the answer. Indeed rounding consists in mapping all values

from a neighborhood to a unique value. Finally, it become impossible to measure sets that are

smaller than these neighborhoods.

Therefore, once the computation of A(D) is achieved, we do not return the answer but a

rounding of the answer. There will be no condition about this rounding, instead we will provide
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a measure R of its strength that will be used to the measure of the overall leakage due to finite

precision.

Mechanism 4. The mechanism rounds the result by returning the value closest to f (D)+n′ in

some discrete subset S′. So K (D) = r(A(D)) where r is the rounding function.

From the above rounding function we define the set S ′0 of all sets that have the same image

under r. Then we define the σ-algebra S ′ generated by S ′0: it is the closure under union of

all these sets. Observe now that it is not possible for the user to measure the probability that

the answer belongs to a set which is not in S ′. Hence our differential privacy property is now

equivalent to the same formula where S has been replaced by S ′:

∀S ∈ S ′,P[A(D1) ∈ S]≤ eεP[A(D2) ∈ S] (3.5)

In this way, we grant that any measurable set has a minimal measure and we prevent the

inequality from being violated when the probabilities are small.

We still have to quantify this rounding to be able to measure the leakage in function of the

rounding function used.

Definition 3.4.4 (Rounding ratio). We define R to be the maximal ratio between the areas S+δt

and S−δt over all values that can be returned:

R = max
S∈S ′0,S 6= /0

λ(Sδt \S−δt )

λ(S−δt )
(3.6)

This definition may look quite hard to compute, however, in case the rounding function is

quite regular, we have the following proposition.

Proposition 3.4.5. Let (x1, . . . ,xm)∈R. If the chosen rounding function belongs to the following

family

rndl(x1, ,̇xm) = (
⌊lx1⌋

l
, . . . ,

⌊lxm⌋
l

)

then

R≤ m
4δt

l +2δt

(

l +2δt

l−2δt

)m

whatever is the used distance (definition 2.2.5).

Proof. With such a rounding, the space is split in hypercubes C of uniform size l. Therefore Cδt

is include in a hypercube of size l + 2δt and C−δt is a hypercube of size l− 2δt . The Lebesgue

measure of an hypercube of size s is by definition sm. Then the measure of Cδt \C−δt is (l +
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2δt)
m− (l−2δt)

m. Then we have

∫ l+2δt

l−2δt

mxm−1dx = (l +2δt)
m− (l−2δt)

m

We can bound the integral by its higher value, we get:

(l +2δt)
m− (l−2δt)

m ≤ 4δtm(l +2δt)
m−1

Finally, we conclude:

R≤ m
4δt

l +2δt

(

l +2δt

l−2δt

)m

3.4.8 Strengthening the differential privacy property

The differential privacy expresses that the probability of reporting some answer differs by at

most a factor eε when adding or removing one individual from the database. Once we decide to

provide the differentially private mechanism 1 with a noise X that is absolutely continuous with

the Lebegue measure ,i.e. there exists a distribution function p that describe X , this is equivalent

to the following equation.

∀x,y ∈ R
m,d(x,y)≤ ∆ f =⇒ p(x)≤ eε p(y) (3.7)

But as we have seen in the subsection 3.4.6, when we want to bound some probability that

X belongs to some set S, we need to know the probability it belongs to Sδt . This is problematic

in the case in which the random variable X has a distribution p such that (3.7) holds, but it is not

valid anymore when ∆ f ≤ d(x,y)≤ ∆ f +δt . In following example we illustrate the problem.

Example 3.4.3. Consider a database with a field which can store values between 0 and 1.

Consider the query that asks for the sum of this field over all the rows. We also assume that

this summation is done without any computational error (which is the case for instance in the

fixed-point representation). The sensitivity of this query is 1 since adding or removing a row will

change the sum by at most 1.

We decide to implement the mechanism 1 with a noise X with the following density distribu-

tion:

p(x) = Ke−ε⌊x⌋

where K is the normalizing constant and ⌊x⌋ the function that returns the integer part of x.
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0x0

x

P(x)

0x0

Figure 3.12: This distribution is differentially private in x0 only in the exact semantics repre-
sented above.

This noise allows differential privacy since for all x,y ∈ R with ‖x− y‖ ≤ 1:

p(x)≤ eε p(y)

However, a small computational error leads to a distribution slightly different as illustrated in

figure 3.12. In this figure, we represent the distributions for two true answers 0 and 1 either

in the exact semantics (the graph above) or in the finite precision semantics (the graph below).

In the finite precision, due to the deviation, there appear some small intervals where the ratio

become twice higher than the maximum in the exact semantics (in x0 for instance).

In the last section, Proposition 3.4.4 uses the set S+δ0 to bound the probability of the set S.

In the previous example, when values differ by more than the sensitivity of the function, the eε

ratio of differential privacy is not granted anymore leading to some leakage. In that case, we can

only have a weaker ratio, by transitivity. Indeed, if d(x,y)≤ 2∆ f then p(x)≤ e2ε p(y). So when

the probability in S+δ0 \S is high, the differential privacy is broken (we loose a factor 2).

There are several ways to solve this leakage problem.

A first solution is to consider the following inequality as a new requirement replacing the
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differential privacy property.

∀δ1,δ2, |δ1| ≤ δt ∧ |δ2| ≤ δt ,P[A(D1)+δ1 ∈ S]≤ eεP[A(D2)+δ2 ∈ S]

In case of a Laplacian noise, however, such a requirement will increase the differential factor ε

by ∆ f +2δt

∆ f
from the one obtained in the exact semantics. Indeed such a definition, is equivalent

to assert that the sensitivity of the query is multiplied by ∆ f +2δt

∆ f
.

Another solution consists in using the fact that results are rounded. Indeed, in the previous

example, we illustrate the fact that the error can be big (twice leakage than expected) but on a

very small area. We might prove that this area A is bounded and cannot represent more than

some fraction of the set S such that the influence of the factor 2 is limited by the small area

where it applies. Then, the sketch of the proof is the following. First, we prove that P(A(D2) ∈
A)≤ qP(A(D2) ∈ S). Then, we consider divide S in its inner part and its borderline part A:

P(A(D1) ∈ S) = P(A(D1) ∈ A)+P(A(D1) ∈ A)

Then we bound each of them.

P(A(D1) ∈ A)≤ 2eεP(A(D2) ∈ A)

P(A(D1) ∈ S\A)≤ eεP(A(D2) ∈ S\A)

Then we can conclude

P(A(D1) ∈ S)≤ (1+q)eεP(A(D2) ∈ S)

This solution is correct, but it adds a factor (1+q). We chose, therefore, a third solution which

constrains the distribution of X a little bit but which is optimal for the Laplacian noise because

it does not add any multiplicative factor.

To achieve our purpose we need to impose some further condition on the mechanism.

Condition 3.4.3. Given a mechanism A(D) = f (D)+X, we say that A satisfies condition 3.4.3

with parameter ε (the desired parameter of differential privacy) if the random variable X has a

probability distribution which is absolutely continuous according to the Lebesgue measure, and

∀S ∈ S ,r1,r2 ∈ R
m,P[r1 +X ∈ S]≤ e

ε
d(r1 ,r2)

∆ f P[r2 +X ∈ S]

This property is actually stronger than differential privacy as we state in the following propo-

sition.
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Proposition 3.4.6. Condition 3.4.3 implies that the mechanism A(D)= f (D)+X is ε-differentially

private.

Proof. Let D1 and D2 be two databases such that D1 ∼ D2. Let r1 = f (D1) and r2 = f (D2) be

two answers. By definition of sensitivity, d(r1,r2)≤ ∆ f so e
ε

d(r1 ,r2)
∆ f ≤ eε. Hence,

P[A(D1) ∈ S]≤ eεP[A(D2) ∈ S]

We chose this condition because in case the noise has a Laplacian distribution then the

converse of Proposition 3.4.6 holds and therefore in this case Condition 3.4.3 and differential

privacy are equivalent.

Proposition 3.4.7. Let A(D) = f (D)+X be a mechanism, and assume that X is Laplacian. If

A is ε-differentially private (w.r.t. f ), then Condition 3.4.3 holds.

Proof. First, we show that if A is ε-differentially private then b≤ ε
∆ f

holds for the scale param-

eter b of X . Let D1 ∼D2 with d( f (D1), f (D2)) = ∆ f . By ε-differential privacy we have, for any

S ∈ S :

P[ f (D1)+X ∈ S]≤ eεP[ f (D2)+X ∈ S]

From the density function of the Laplace noise (Definition 3.2.10), we derive:

K(n,d)dλ≤ eεK(n,d)e−b∆ f dλ

Hence,

b≤ ε

∆ f

. (3.8)

Now, by definition of the density function, we have

P[r2 +X ∈ S] =
∫

x∈S
K(n,d)e−bd(x,r2)dλ

From the triangular inequality, we derive:

P[r2 +X ∈ S]≥
∫

x∈S
K(n,d)e−b(d(x,r1)+d(r1,r2))dλ

Hence,

P[r2 +X ∈ S]≥ e−bd(r2,r1)
∫

x∈S
e−bd(r1,x)dλ
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From inequality (3.8), we derive:

P[r2 +X ∈ S]≥ e
− εd(r2 ,r1)

∆ f

∫
x∈S

e−bd(r1,x)dλ

Finally,

P[r2 +X ∈ S]≥ e
− εd(r2 ,r1)

∆ f P[r1 +X ∈ S]

3.5 Preserving differential privacy

Now, we have introduced a more robust mechanism and we have defined all the parameters we

need to measure the leakage, we prove that if all conditions are met, then the finite-precision

implementation of the mechanism satisfies differential privacy.

Theorem 3.5.1. The finite-precision implementation of Mechanism 4 with a noise X that satisfies

condition 3.4.3, a truncation procedure that satisfies condition 3.4.2 and a rounding function

with parameter R, is ε′-differentially private, namely:

∀S ∈ S ,P[A ′(D1) ∈ S]≤ eε′P[A ′(D2) ∈ S]

where

ε′ = ε+ ln(1+Re
ε L+δt

∆
f ′ )

with δt = kδ0 +δn and L = maxS∈S ′0
�S.

Proof. Let S in S . We first consider the case S 6= ∞.

Define P1 = P[A ′(D1) ∈ S] and P2 = P[A ′(D2) ∈ S]. Since the result has been rounded

(Definition 4), it is equivalent to consider the set S′ ∈ S ′ with S′ = r−1(S) instead of S.

Now we have Pi = P[ f ′(Di)+n′(X) ∈ S′] = P[n′(X) ∈ S′− f ′(Di)] where i is 1 or 2. Since ν

is the measure associated to n′, we have

Pi = ν(S′− f ′(Di)).

From (3.4.2) and Theorem 3.4.3, d(ν,µ)≤ δt . From Theorem 3.4.4 we derive

P1 ≤ µ(Sδt − f ′(D1)) and P2 ≥ µ(S−δt − f ′(D2)).

The additivity property of measures grants us µ(Sδt ) = µ(S−δt )+µ(Sδt −S−δt ). Condition 3.4.3
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can be expressed in term of the measure as:

∀S ∈ S ,r ∈ R
m‖r‖,µ(S)≤ e

ε
‖r‖
∆

f ′ µ(S− r).

From this inequality, we can derive, since ‖r‖= ∆ f ′ :

µ(Sε)≤ eεP2 +µ(Sδt \S−δt ).

Since the probability is absolutely continuous according to the Lebesgue measure (Condition

3.4.3), we can express the probability with a density function p:

∀S ∈ S ,µ(S) =
∫

S
p(x)dλ

We derive:

∀S ∈ S ,min
x∈S

p(x)≤ µ(S)

λ(S)

By applying this property on S−δt − f ′(D2), we get:

min
x∈S−δt− f ′(D2)

p(x)≤ µ(S−δt − f ′(D2))

λ(S−δt − f ′(D2))

We derive:

∃x0 ∈ S− f ′(D2), p(x0)≤
P2

λ(S)

By the triangular inequality, we can bound the distance between x0 and any point of Sδt by

∆ f ′+L+δt Hence, from Condition 3.4.3 we derive:

∀x ∈ Sδt − f ′(D1), p(x)≤ e
ε

∆
f ′+L+δt

∆
f ′ p(x0)

Then by integration:

µ(Sδt − f ′(D1)\S−δt )≤ e
ε

∆
f ′+L+δt

∆
f ′

λ(Sδt \S−δt )

λ(S−δt )
P2.

We rewrite this inequality according to definition 3.4.4:

µ(Sδt − f ′(D1)\S−δt )≤ e
ε

∆
f ′+L+δt

∆
f ′ RP2.
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Finally we obtain :

P1 ≤ (1+Re
ε L+δt

∆
f ′ )eεP2.

In case S is ∞, due to (3.4), P[A ′(D) = ∞] is the same as P[ f ′(D) + X ′ ∈ Mr
c] where

d(µ,ν) ≤ δt . Moreover, Mr
c can be decomposed in a enumerable disjoint union of element

of S0. Therefore, the first part of the proof applies: ε′-differential privacy holds for all these

elements. By the additivity of the measure of disjoint unions, we conclude.

3.6 Application of the Laplacian noise in one dimension

In our main theorem 3.5.1, we state a very general result which is parametric in the dimension

m of the range space, in the law X of the added noise and on the implementation of this noise.

Now, we consider the original case for which differential privacy has been used for and for

which is the mostly used mechanism i.e. the case where m = 1 and X is distributed according to

the standard linear Laplacian. This specific case will allow us to quantify the loss numerically.

We show that the proposed mechanism 4 is still unsafe. Indeed, as we explain further, a set Mr

that would prevent a large error δt would be too small to be useful. To solve this problem, we

propose an improvement on the implementation of the random noise and show that, in this new

setting, the loss is negligible.

3.6.1 Requirements and architecture assumptions

To be able to give numerical result we need to define which mechanism we use and where it is

implemented.

Differential privacy mechanism We consider some intended degree of privacy ε. We con-

sider the function f ranges over some interval Mr = [m,M]. We denote by r = M−m the size of

this interval. We also express the sensitivity in function of a parameter N: ∆ f = r/N. If the query

is the summation of some subset of the entries, N represents the minimal number of entries that

will be in the subset by the query.

A Laplace noise that provides ε-differential privacy in the exact semantics must have scale

parameter ∆ f/ε. Now, to respect the pattern of mechanism 4, we need to decide the truncation

range and the rounding function. Since f ranges in [m,M], we truncate the result and return an

error if we output a result outside of this range. For this example, we decide to round the result

so that the result is a multiple of r
252−s where s is an integer representing the number of significant

digits that are removed.
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Assumptions about the machine architecture We consider that the mechanism is imple-

mented into a machine with the floating-point architecture following the IEEE standard [IEE08]

on 64 bits.

We assume that the uniform generator used here is the one of the Java random library 3.4 i.e.

it returns a multiple of 2−53.

The next step consists on picking a number according to the Laplace distribution. The easier

way to achieve this is to use the following formula.

X = n(U) =−bsgn(U−1/2) ln(1−2|U−1/2|)

Indeed, if U is a random uniform variable then X is a centered Laplacian distribution with

scale parameter b. This standard technique to get a Laplace distribution is very convenient since

its implementation just uses arithmetic operators, absolute values and the logarithm function that

can be implemented without any loss of precision [HD93].

n(u) =
∆ f

ε
sgn(u−1/2) ln(1−2|u−1/2|). (3.9)

The computation of the logarithm is in two steps. First, from the representation of u = um2ue

where um is the mantissa and ue the exponent of u, we have ln(u) = ue ln(2)+ ln(um). Hence,

we reduce the problem to computing the logarithm for numbers in [1,2[. This computation is

achieved by the CORDIC algorithm described in the forward section 4.1.1. This algorithm has

been proved full-precision for some implementations [KC93], meaning that the error made by

the algorithm is just the one due to the finite representation.

3.6.2 Weakness of the mechanism

Initial uniform noise As we explained in the subsection 3.4.3, since the uniform random

generator returns numbers that are multiple of 2−53, the δ0 parameter defined in (3.1) is δ0 =

2−53.

Closeness of n and n′ In order to apply our theorem, we need to prove that condition 3.4.2 is

satisfied. By proposition 2.3.5, it is sufficient to prove that, in the interval of interest, n(u) is

k-Lipschitz and that |n(u)−n′(u)| ≤ δn.

Proposition 3.6.1. In our case, n is k-Lipschitz with

k =
2∆ f e

εr
∆ f

ε
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Proof. Since the result n(u) is always truncated if the final result of our mechanism is outside of

[m,M], this means, since f (D) belongs to [m,M], that the result of n(u) is always truncated when

|n(u)| ≥ r = (M−m). So we are interested to know the k factor for which n is k-Lipschitz in

n−1([−2r,2r]). Since n ∈C1 (its derivative is continuous), it is enough to compute the maximal

value of its derivative in this interval. So first we have to compute n−1([−2r,2r]). |n(u)| = r is

equivalent to:
∣

∣

∣

∣

∆ f

ε
sgn

(

u− 1
2

)

ln

(

1−2

∣

∣

∣

∣

u− 1
2

∣

∣

∣

∣

)∣

∣

∣

∣

= r

We derive:

u =
1
2
±
(

1
2
− 1

2
e
− εr

∆ f

)

(3.10)

We have:
n.
u.
=

∆ f

2ε(1−2|u−1/2|)
Finally, the derivative is maximal on the limit of the interval computed in (3.10):

n.
u.
≤ 2∆ f e

εr
∆ f

ε
= k

So our function n is k-Lipschitz for the previously defined value of k.

This factor is too big as we now illustrate in a numerical application. Indeed, as we can see,

this factor depends exponentially on εr
∆ f

. Now, in case of a sum query where values are in the

interval [0,∆ f ], if the database contains N rows the result will be in [0,N∆ f ]. Since we would

like the truncation not to truncate any possible true results, we would like r = N∆ f . Finally, we

get k = 2 ∆ f

ε eεN .

We have now to compute δt = kδ0 + δn. We have, in our architecture δ0 = 2−53. Since

summations and multiplication of values only generate error up to their precision and that the

log function is full precision, the computational error δn will be less than 2−53∆ f/εr. Therefore it

can be negligible.

Finally, we have δt ≈ 2 ∆ f δ0

ε eεN .

Rounding the result The parameter 3.4.4 definition is

R =
4δt

L−2δt

.

This implies that, at least, 2δt < L. On the other hand, L should be not bigger than ∆ f/ε
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otherwise the impact of the rounding on the utility of the answer would be bigger than the one

due to the noise. This means that we have 2δt < ∆ f/ε. We expand this inequality:

4
∆ f δ0

ε
eεN <

∆ f

ε

We derive:

εN < 51ln(2)

The standard deviation of the exact mechanism is d = ∆ f/ε and corresponds to the average shift

between the true value and the returned value, hence, the ratio D = d/∆ f corresponds to some

“relative expected deviation”. From the last inequality and the fact that 51ln(2) < 36, we get:

D > N/36. Since to be useful the relative deviation should be lesser than 1, it means the protocol

does not work for query summing more than 36 rows, which is not acceptable (N is normally

greater than one hundred).

3.6.3 Improvement of the implementation

The last mechanism was not able to provide accurate results in a large range. To solve this

problem, we need the uniform generator to be able to return numbers smaller than 2−53. One

way to do it consist in generating the mantissa of the number in the classical way and then

generating the exponent according to an exponential law as in [Mir12]. One slightly different

way to proceed consists in using a formula equivalent to (3.9):

n(u,v) =
∆ f

ε
v ln(|u|). (3.11)

where v ∈ {−1,1} and P(v = 1) = 0.5.

If we decompose u between its mantissa 1+um and its exponent−(1+ue) which is a positive

integer, we obtain:

n(u,v) =
∆ f

ε
v ln(|(1+um)2

−(1+ue)|).

Therefore, we derive:

n(um,ue,v) =
∆ f

ε
v(ln(|1+um|)− ln(2)(1+ue))

If we want U to be uniform, then the probability to pick u = (1+ um)2−(1+ue) has to be

proportional to the interval in the exact semantics which is rounded in u for that um has to be

uniform and ue has to be picked according to an exponential law i.e. P(ue = n+1) = 2−(1+ue).
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There is a simple way to generate such a random variable ue:

count = 0;

while( random_bit )

count++ ;

return count;

where random_bit can be 0 or 1 with probability 1/2.

Since there is no rounding error when computing integer random values, we only have to

consider errors depending on um. But, now, for um ∈ [0,1], n(um) is ∆ f

ε -Lipschitz.

Finally, the total error δt will be of the same order than the precision of the returned result

i.e δt = 2−52r.

The parameter R defined in 3.4.4 is now very close to 0.

R =
4δt

L−2δt

Since L = 2−52+sr and δt = 2−52r, we derive:

R =
4

2s−2

Finally the ε′ parameter

ε′ = ε+ ln(1+Re
ε L+δt

∆ f )

can be rewritten with the computed values:

ε′ = ε+ ln(1+
4

2s−2
e

ε L+δt
∆ f )

If we set s = 22, then we have 2s≫ 1. By approximating 1+2s ≈ 2s we get:

ε′ ≈ ε+ ln(1+2−s+2e
ε 2sr

252∆ f )

When we use the parameter N = r/∆ f :

ε′ ≈ ε+ ln(1+2−s+2e
ε 2sN

252 )

Since N is an indicator of the number of the entries in the database, we can assume that

εN≪ 230
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So the exponential is approximately equals to 1.

Then since ln(1+ x)≤ x, and 210 ≈ 103 we conclude that

ε′ ≈ ε+10−6

3.7 Application to the Laplacian noise in two dimensions

One of the nice features of our theorem 3.5.1 is its ability to deal with multi-dimensional vari-

ables. Here, we present the case in which queries return points in an Euclidean plan. This

domain is used, for instance, in geo-location (see [ABCP13]). We consider the same architec-

ture as in the previous section. The new difficulty, here, is to generate a random variable with a

bivariate Laplace distribution. Since our definition of the multivariate Laplacian is not a standard

one, there is no generation protocol in the literature. To generate this noise, we can generate it in

polar coordinates and then converts it into Cartesian ones. Another option consists in generating

the bivariate Laplacian for the d1 distance. In the rest of this chapter, we will follow the first

option, but we want to discuss briefly also this second option, for the sake of completeness.

This second option relies on the fact that

d2(x,y)≤
√

2d1(x,y).

So if we generate a noise which is
√

2ε-private for the distance d1, then it is also ε-private

for the Euclidean distance d2. This noise is easy to implement since two independent Laplace

distributed random variables (X ,Y ) follows this bivariate Laplacian law. Indeed, we have

p(x,y) = Ke−bxe−by =Ce−(x+y)

where K is the normalizing constant. So if we accept to loose a
√

2 factor either in the degree

of privacy or in the utility we can just use the same method as in the previous section. We will

not develop further this implementation since the purpose of this section consists in presenting

difficulties that can happen with the proposal in [ABCP13].

We now focus on the first option. The probability density function in Cartesian coordinates

is

p(x,y) = Keb
√
|x−x0|2+|y−y0|2

Following [ABCP13], we consider a transformation to polar coordinates. The radial probability
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density function is expressed by the following formula:

p(r,θ) =
b2

2π
rebr

Hence the cumulative function for the radius is:

Cb(r) = 1− (1+br)e−br

To generate the random variable, we have to compute r =C−1
b (u). We have Cb(r) = u is equiv-

alent to:

−(1+br)e−(1+br) =
u−1

b

To solve this equation, we need to introduce the Lambert function defined as the reciprocal of

the function

f (x) = xex

Since f is not injective, there actually exist two functions W0 and W−1 such that

W (x)eW (x) = x

Here we use the W−1 negative function defined on [−1/e,0[. Finally, we get the equation:

r =−W−1
(

u−1
e

)

+1

b

While Lambert functions are not algebraic, there exist iterative algorithms to compute them

with arbitrary precision [CGH+96]. The problem we had with the logarithm in the last section

is still relevant here. Indeed, even if we can bound the computational errors, the maximal value

that the initial generator can provide is not close enough to 1 to return very large values. In order

to avoid a too narrow truncation domain, we might add an additional protocol. Here, however,

we will neither describe such a protocol, nor actually compute the maximal error that can be

expected with such an algorithm. In the following, we just assume that the error is at most some

δr value.

Once we have got the radius, the angle is obtained by multiplying a uniform random variable

in [0,1[ by 2π. Finally, we convert (r,θ) into Cartesian coordinates.

In conclusion, the noise function is

n(ur,uθ) =

(

−W−1
(

ur−1
e

)

+1

e
cos(2πuθ),−

W−1
(

ur−1
e

)

+1

e
sin(θ)

)
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Truncation Since most of the time the domain studied is bound (for instance the public trans-

portation of a city is inside the limit of the city), we can do a truncation. However, we recall

that our truncation is made for robustness purpose and not just for utility reasons. Hence, if our

domain of interest is a circle, we will not choose Mr to be the same circle because the probability

that the truncation would return an exception would be too high (more than one half if the true

result is on the circumference).

Robustness of n As in the previous section, we do not analyze an actual implementation but

we care about the k factor used for Condition 3.4.2. First, we analyze for which kC(ε,�(Mr))

the function C−1
ε is k-Lipschitz in [0,�(Mr)]. Since C is differential, this question is equiv-

alent to find the inverse of the minimal value taken by its derivative function on the interval

C−1
ε ([0,�(Mr)]). By computing this minimum value, we get:

KC(ε,�(Mr)) =
eε�(Mr)

2ε+ rε2

On the other hand, the computation of θ is just a multiplication by 2π of the uniform generator

hence kθ = 2π. Then, with the conversion (r,θ) 7→ (r cos(θ),r sin(θ)) from polar coordinates to

Cartesian coordinates we obtain the global k factor:

k =
√

KC(ε,�(Mr))2 +2π�(Mr)

Let δn be the distance between n and n′, and δ0 be the error of the uniform generator. From

(3.4.2) we get:

δt =
√

KC(ε,�(Mr))2 +2π�(Mr)δ0 +δn.

Rounding the answer We now compute the parameter R in (3.4.4). The rounding is made in

the Cartesian coordinates, hence the inverse image of any returned value is a square S of length

L. Note that Sδt is included in the square of length L+2δt and S−δt is a square of length L−2δt .

Hence the ratio value is smaller than R = (L+2δt

L−2δt
)2.

Differential privacy By Theorem 3.5.1 we get that (the implementation of) our mechanism is

ε′-differentially private with

ε′ = ε+ ln(1+(
L+2δt

L−2δt

)2e
ε L+δt

∆
f ′ )
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3.8 Conclusion and future work

3.8.1 Conclusion

This chapter was concerned by differential privacy: a security protocol that relies on real-valued

random numbers generation. Existing study on differential privacy focus either on its property

on the exact semantics or on the technical problem raised by a particular implementation. In this

chapter, we present a theoretical model for errors to study them at high level.

To do so, we model the error as a non deterministic bias. While in cryptographic pro-

tocols, adversaries have limited capacities (they cannot solve hard problem), here (except for

dependency between random values), we make no assumptions: the analyst can have a perfect

knowledge about how rounding errors occurs.

With this model, we have been able to prove that the additive mechanism 1 which is safe from

a theoretical point of view breaks the differential privacy once implemented in finite precision

architecture. This loss has two origins: first, from extreme values the errors are significant, and

secondly, locally, last digits can provide fingerprints of the secret. Our solution solves these

two problems: the last digits leakage has been fixed by a rounding procedure and the extreme

perturbations by raising an error when the result is outside some values.

After proposing these fixes, we have done a quantitative analysis to measure the loss of

privacy induced by finite-precision representation. We have proved that when the fixes on the

mechanism are implemented the differential privacy parameter is just increased by some additive

factor.

To analyze the relevance of our general result, we have applied it for the standard method

(Laplacian in one dimension). This strict application was not really satisfactory: in general, the

loss is too important. Therefore, we have proposed a last fix where the uniform random generator

of mechanism 2 has been replaced by a dynamic procedure that provides as much random bits

as necessary to grant differential privacy.

Finally, we have explained the steps for implementing bivariate Laplace noise. Here there is

no obvious way to allow a random value to be generated in a large range.

3.8.2 Future work

As future developments of this work, we envisage two main lines of research:

• Deepening the study of the implementation error in differential privacy: there are several

directions that seem interesting to pursue, including:

– Improving the mechanisms for generating basic random variables. For instance,
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when generating a one-dimensional random variable, it may have some advantage to

pick more values from the uniform random generator, instead than just one (we recall

that the standard method is to draw one uniformly distributed value in ]0,1] and then

apply the inverse of the cumulative function). For instance, u1 + u2 has a density

function with a triangular shape and costs only one addition. The other advantage is

due to the finite representation: if the uniform random generator can pick N different

values then two calls of it generate N2 possibilities, which enlarge considerably the

number of possibilities, and therefore reduce the “holes” in the distribution.

– Considering more relaxed versions of differential privacy, for instance the (ε,δ)-

differential privacy allows for a (small) additive shift δ between the two likelihoods

in Definition 3.3.3 and it is therefore more tolerant to the implementation error. It

would be worth investigating for what values of δ (if any) the standard implementa-

tion of differential privacy is safe.

• Enlarging the scope of this study to the more general area of quantitative information

flow. There are various notions of information leakage that have been considered in the

computer security literature; the one considered in differential privacy is just one par-

ticular case. Without the pretense of being exhaustive, we mention the probabilistic ap-

proaches [PHW05,HO05,BP05], the information-theoretic approaches based on Shannon

entropy [CHM05,Mal07,CPP08] and those based on Rényi min-entropy [Smi09,BCP09,

BPP11, BP12] and the more recent approach based on decision theory [ACPS12]. The

main difference between differential privacy and these other notions of leakage is that in

the former any violation of the bound in the likelihood ratio is considered catastrophic,

while the latter focuses on the average amount of leakage, and it is therefore less sensitive

to the individual violations. However, even though the problem of the implementation er-

ror may be attenuated in general by the averaging, we expect that there are cases in which

it may still represent a serious problem.

⋆
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In the previous chapter, we have seen how to prove a probabilistic property (namely differ-

ential privacy) on an implemented algorithm from our knowledge about its robustness.

In this chapter we are interested in how to prove that a given implementation of a program

is robust. We consider both the P(k,ε) property of the implemented semantics and the (k,ε)-

closeness property between the exact and the finite precision semantics.

There already exist lot of methods to prove robustness of implementation. Some are based on

formal logic like Hoare triple proofs. Others are based on abstract interpretation with zonotopes

[Gou01]. Others are specialized in particular numerical programs like polynomial roots solver.

These methods are either fully automatic or need human directives.

The work we present here investigates a new direction for analysis. Standard analysis either

based on Hoare logic or abstract interpretation are mainly bottom-up analysis. Indeed, the global

property for the program is provided by a composition of properties about single instructions.

Here, we try a non compositional top-down approach. Going in the other direction means we

already have knowledge about the context then we identify a pattern that allows to decompose

some part of the code into thinner parts of codes. Providing such a general method is an am-

bitious project and we do not claim we have achieved it. In this chapter, we target a restrictive

objective: how to apply such a given pattern on some code such that its decomposition allows

to conclude on the robustness to the program. The main idea would be to be able to develop a

library of patterns such that any kind of code can be decomposed in simpler parts until reach-

ing basic code. Here, we focus on finding a pattern for one of the most difficult problem for

compositional analyzers: programs that are robust only at the end of the execution but not in

the middle. Indeed, systematic compositional analyzers try to preserve some knowledge about

robustness all along the code. If, at some point, there is no robustness property that can hold

then the robustness property is lost and cannot be retrieved afterward.
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To study this problem and to investigate some solutions, we consider two examples of code

with such a behavior: the CORDIC algorithm for computing trigonometric functions and the

Dijkstra’s shortest path graph algorithm. We choose these algorithms since they use general

principles (actually, they are classes of algorithms since there are several variants of them), they

are different from each other and they are relatively simple and short algorithms. We mainly

propose two solutions and show how they apply to these two examples. The first solution is

based only on the finite precision semantics. However, this solution was not so conclusive since

the decomposition in smaller parts does not lead to a simpler analysis. So, we developed a

second solution, which is based both on mathematical proofs on the exact semantics and on a

analysis of the actual code in the finite precision semantics. Such hybrid analyze is justified

because most algorithms are based on mathematical theorems that already exists. So, in general,

this method should not require too much additional proof in the exact semantics to be completed.

This chapter is organized in the following manner. In section 4.1, we describe precisely the

problem of programs that are not locally robust. We also present our two examples CORDIC and

Dijkstra and we explain why they are challenging. In section 4.2, we do a general description

on the way we define the patterns. In section 4.3, we present our first solution and in section 4.4,

we present the second one based on the rewriting framework.

4.1 Presentation of the problem

The specific problem we investigate in this chapter is the problem of global behavior that are

not local behavior. For instance, if a program only manipulates one variable, and all instructions

make a continuous transformation on x = fi(x) (like x= sin(x);) then the whole program is

also continuous because of the compositionality of continuity.

A program that is not locally continuous but globally continuous is a program which is

not continuous at an intermediate stage. For instance, the code in figure 4.1 is only globally

continuous. Indeed, if we stop its execution after the first branch the computed function is

discontinuous in 0, while at the end, the computed function is f (x) = x+2 which is a continuous

function.

Such programs cannot be analyzed line by line for any property that implies continuity like

k-Lispchitz or P(k,ε) properties. In addition, even if it may be quite easy to prove that the code

interpreted in the exact semantics has the global behavior, it become much harder to prove the

same property in the finite-precision semantics.

To analyze the problem in details, we propose two examples of programs that are actually

used. These examples will be our tests for the solutions we propose in the next sections.
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1 if(x < 1)

2 x = x - 1;

3 else

4 x = x + 1;

5 if(x < 0)

6 x = x + 3;

7 else

8 x = x + 1;

Figure 4.1: An example where the continuity property is lost line 4 but reappear line 8

4.1.1 Cordic

CORDIC (COordinate Rotation DIgital Computer) [Vol59] is a class of simple and efficient

algorithms to compute hyperbolic and trigonometric functions using only basic arithmetic (ad-

dition, subtraction and shifts), plus table look-up. The notions behind this computing machinery

were motivated by the need to calculate the trigonometric functions and their inverses in real

time navigation systems. Still now-a-days, since the CORDIC algorithms requires only sim-

ple integer math, CORDIC is the preferred implementation of math functions on small hand

calculators.

CORDIC is a successive approximation algorithm: a sequence of successively smaller ro-

tations based on binary decisions drives the algorithm towards the value we want to find. The

CORDIC version illustrated in the code 4.2 computes the cosine of any angle in [0,π/2]. In the

code, the instruction << operates a shift of the bits to the left such that x << i computes 2ix.

Note that this program makes call to trigonometric functions like cosine itself or arc tangent. In

fact, whatever is the input, these functions are always called on the same inputs ±2−i for i in

[1,n]. So, in practice, it is just a fixed set of constants that is stored by the program and not real

instructions.

Before analyzing the consequences of computational errors in the CORDIC algorithm, we

start by explaining its principle and prove its correctness in the exact semantics.

Presentation of the algorithm

To compute the cosine of a given angle β, the CORDIC algorithm computes the coordinates

(x,y) of a point P on the unit circle by successive rotations until the polar coordinates of P are

(α,1) with α≈ β.
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1 double cos(double beta) {

2 double x = 1, y = 0, theta = 0, x_new , sigma;

3 int n = 15, i;

4 for( i = 1 ; i < n ; i++ ) {

5 if( beta > theta )

6 sigma = 1;

7 else

8 sigma = -1;

9 sigma = sigma / (1 << i);

10 theta = theta + atan(sigma); // Value stored

11 fact = cos(atan(sigma)); // Value stored

12 x_new = x + y * sigma;

13 y = fact * (y - x * sigma);

14 x = fact * x_new; }

15 return x; }

Figure 4.2: An implementation of CORDIC

During these iterations, the invariant is

(x,y) = (cosα,sinα)

Indeed, at each iteration, a predefined angle σ is chosen for which the trigonometric func-

tions are inside a database. The point P is replaced by itself rotated by σ while α is incremented

by α.

The choices of the σ angles are such that at the end of the process α is very close to β and

then x and y are close to cosβ and sinβ. This process is represented in figure 4.3. The successive

positions of P and α are represented. In the exact semantics, α always corresponds to the angle

of P with the x axis and P always belongs to the unit circle. Finally, the final value of α is close

to β.

In this chapter, we consider two variations in the way σ values are chosen.

In the algorithm (code 4.2), the values of σ are± tan−1 2i where i is the number of iterations.

By doing this, the rotation can be expressed as (for a positive σ):

(

x

y

)

= cos(tan−1(2−i))

(

1 2−i

−2−i 1

)

This calculus enjoys just addition and multiplication by a power of 2 (which is fast in a binary

representation).



4.1 Presentation of the problem 79

y

x

β

α0• P0

α1

•P1
α2

• P2

α3

•P3

α4

•P4

Figure 4.3: Iterative steps of the CORDIC algorithm in the exact semantics

In fact in the actual algorithm, the product of all factors cos(tan−1(2−i)) is stored since it

does not depend on β. But, we do not present this version which is more complex to analyze.

Analysis of CORDIC algorithm in the exact semantics

The purpose of this chapter is not to study the exact semantics of CORDIC but what is hap-

pening when errors occur. However, if the algorithm itself is unsafe, there is no chance for the

implementation to be correct. In addition, in section 4.4, we use the assumption that most imple-

mented algorithms have already been proved in their mathematical setting and that we can use

these proofs to study the behavior in the finite precision semantics. Here, we present the proof

even if this algorithm has already been proved by several ways to stress the difference between

proving a program in the exact semantics and proving it in the finite-precision semantics.

To prove the correction of the algorithm, we need two properties. First, we have to prove

that the algorithm always terminates on its validity domain. Then, we have to prove that the final

result corresponds to what is intended.

Proposition 4.1.1. The CORDIC implementation terminates for all valid inputs.

Proof. The number of iterations is constant equals to n.

To prove the correctness of the algorithm, we have to provide a bound on the distance

d([[cos(beta)]],cos(β)). First we need to find a bound on the distance between α the final

value of theta and β.
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Proposition 4.1.2 ( [Vol59]). At the end of the execution, we have:

|α−β| ≤ tan−1(2n−1)

Proposition 4.1.3. We can bound the distance between the result of the computation and the

actual result. d([[cos(beta)]],cos(β))

Proof. We already know that:

(x,y) = (cosα,sinα)

From proposition 4.1.2, |α−β| ≤ tan−1(2n−1) and the fact cos is
√

2-Lipschitz function, we

get:

d([[cos(beta)]],cos(β))≤
√

2tan−1(2n−1)

Proposition 4.1.4. The Cordic implementation 4.2 is P(
√

2,2−(n−1)
√

2) in the exact semantics.

Proof. From proposition 2.3.1, since cos is
√

2-Lipschitz and

d([[cos(beta)]],cos(β))≤
√

2tan−1(2n−1)

we get the result.

The CORDIC algorithm in the finite-precision semantics

Now, we present how the behavior in finite precision can differ from the exact behavior.

First, the correctness of CORDIC relies on the invariant:

(x,y) = (cosα,sinα)

In finite precision, however, this invariant does not hold anymore since there are small variations

at each iteration. In section 4.3 where we do a direct analysis of the finite precision, we have to

consider that the invariant is replaced by

d((x,y),(cosα,sinα))≤ ε

Since, we are looking for a quantitative analysis, this means we have to compute the value of ε

at each iteration. However, this new definition complicates a lot the proof of the correctness of
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Figure 4.4: The invariant is broken

the algorithm. We illustrate in figure 4.4, this kind of deviation: now, the point P is just close to

the unit circle.

The second problem is about the stopping condition. In our program, where the number of

iterations is fixed, the termination is still granted. The final value that α should have, however,

can become problematic. Indeed, when i become very small, an unsafe arithmetic might round

the value such that the values of x, y and α do not change at all instead of changing just a little

bit. If this phenomena happens, the reasoning we have done about the final value is not valid

anymore. The phenomena is represented figure 4.5: the final value P4 has now an angle not close

to β.

In case the stopping condition is dependent on the value of α, for instance, with a condition

like while (| beta - theta | > e) for some small constant e, the problem is even worse:

we cannot grant the termination of the algorithm anymore.

The main concern of this chapter is not about these kinds of deviation, even if we have to deal

with them, but about changes in the control flow. The change in the control flow is illustrated in

figure 4.6. The problem appears when β is very close to π/2 for instance. In that case, while the

exact semantics takes one branch of the if, the finite precision semantics takes the other one.

This leads to two intermediate values that are completely different. However, such a behavior

should not be considered as non robust since the final values can still be quite close to the true

result.

Such a behavior is challenging for compositional analyzer: indeed, such analyzers tries to

maintain a distance between the exact and the finite precision semantics at each step of the
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process. When they encounter a shift in the control flow, the distance cannot be maintain any-

more so they return a failure. The main goal of this chapter is to propose an alternative when

compositional analysis is structurally inefficient, like in this case.

4.1.2 Dijkstra’s shortest path algorithm

Our second working example is the Dijkstra’s shortest path algorithm [Dij71].

This graph algorithm allows to compute the minimal path from a given node to any node of

the graph. In its traditional formulation, the length is defined as the number of edges to link the

source and the destination.

Here, as we are interested in real valued algorithms, we consider the extension of the algo-

rithm where a real valued length is associated to each edge such that the distance for a given

path is the sum of these lengths.

To compute this minimal distance, the algorithm associates an estimated distance to each

node. At the beginning, the source node is associated to 0 and all other nodes are set to ∞.

The algorithm also stores the nodes that have already been processed. No node are marked as

processed at the beginning.

The iterative step is the following (see figure 4.8). The algorithm looks for the node among

the non-processed nodes, which one has the minimal estimated distance. From this node, it

computes an estimated distance for all its neighbors: if this distance is better than the older one,

the estimated value for the node is updated. Once, this computation is done for all the neighbors,

the node is marked as processed.
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The algorithm stops when all node are marked (see figure 4.9). An implementation of the

Dijkstra’s algorithm in the C language is given in figure 4.7.

In this implementation, we use some conventions: the number of nodes is fixed to w and the

maximum value for a path is 999 (some stand-in of infinity).

For this algorithm we do not recall the proof of its correction. It can be found in [Dij71]. We

only stress that such an algorithm works only with positive values for the edges, otherwise it is

not even possible to define what is the minimal path (due to the possibility of infinite circles).

Dijkstra’s in the finite precision semantics

The Dijkstra’s algorithm is more robust to errors than the CORDIC algorithm. Indeed, it does

not rely on some analogical invariant: in finite precision even if values are shifted, the fact that

marked nodes have smaller values than non marked one is still preserved.

However, such a program can also have a very different control flow for its finite precision

semantics compared to the exact one. Indeed, when lengths change a little bit, the node with the

minimal value can change. Then, if the node with minimal value changes, the next update is not

done at the same nodes so that the intermediate values after i iterations can differ a lot between

the two semantics. For instance, in one case, the estimated value for a node has not been done

so the value is still 999 while in the exact semantics, the node has been processed and then has

a smaller value. So, in this algorithm too, compositional analysis is not possible and another

solution has to be found.
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int[] dijkstra( int graph[w][w]){

int pathestimate[w],mark[w];

int source ,i,j,u,predecessor[w],count=0;

int minimum(int a[],int m[],int k);

for(j=1;j<=w;j++){

mark[j]=0;

pathestimate[j]=999;

predecessor[j]=0;}

source=0;

pathestimate[source]=0;

while(count <w){

u=minimum(pathestimate ,mark ,w);

mark[u]=1;

count=count+1;

for(i=1;i<=w;i++){

if(pathestimate[i]>pathestimate[u]+graph[u][i]){

pathestimate[i]=pathestimate[u]+graph[u][i];

predecessor[i]=u;}}}

return pathestimate;}

int minimum(int a[],int m[],int k){

int mi=999;

int i,t;

for(i=1;i<=k;i++){

if(m[i]!=1){

if(mi>=a[i]){

mi=a[i];

t=i;}}}

return t;}

Figure 4.7: An implementation of the Dijkstra’s algorithm
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Figure 4.8: Dijkstra’s algorithm after two steps
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Figure 4.9: Dijkstra’s algorithm final state

if(cond(x))

for(i=0;i<n;i++){

instr;

}

for(i=0;i<n;i++)

if(cond(x)){

instr;

}

Figure 4.10: Equivalent programs that do not have the same syntactic structure

4.2 Semantic pattern matching

A solution, when a program is not locally robust, may be to rewrite it in a higher level language

where the compositional analysis may apply. Such solutions have been proposed in [CGL10]

and this method actually applies for the Dijkstra’s algorithm (without being general enough to

deal with the CORDIC algorithm). However, this solution is heavy since the program has to

be written again. There is also another concern we decided to investigate. Indeed, there exist

programs that are computationally equivalent while they differ only by the syntax. For instance,

the two programs in figure 4.10 are equivalent while the if branch and the for loop are inverted

in case the instructions in the loop do not change the value of x. If our analyzer only follows

the syntax, it may fail in one case while it succeeds in the other case. Moreover, sometimes the

analysis of a program would be easier with an additional syntactic constructor. Such a trick is not

suitable, since maybe another analysis of the code (to prove another property than robustness)

would be harder with this construct than with the original code. From these remarks, it appears

that a pattern based only on the syntax is not sufficient. So, instead of the classic pattern based

on the syntax, we would like to use pattern based on the trace semantics of the program.

However, we do not develop a systematic pattern matching mechanism in this work but we

introduce some notions for our particular purpose.

In order to do the pattern matching, we need to use an abstract language. This language only

contains information about control flow and communication between processes.
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To define interacting processes from a single process, we first split the memory space in

a partition, each part is represented by an abstract variable. Once such a partition is defined,

it is possible to categorize instructions depending on which partition is read and which one is

written. Hence, in our abstract language, one instruction can match a block of instructions of the

concrete language such that all of them access and modify the same sets of variables:

(x,y) = O(a,b,c);

This abstract code denotes a collection of program instructions O that modifies values of the

abstract variables x and y while accessing only the variables a, b and c. If a concrete variable

has a local scope, it can be considered as a local variable within the collection of instructions

(x,y)=O(a,b,c) and not part of the global variables. For instance, the instructions

{ int x = z * z;

y = z + x;

} // end of the scope of x

can match the abstract code

(y) = T(z);

even if it contains x because x does not have any access to other instructions than the ones in T.

Program inputs and outputs are specified in the following way.

foo(i,j){

...

return r,s;}

These declaration lines mean that the concrete parameters of the function should belong to the

union of the abstract variables i and j and that the set of the returned concrete variables are

included in r and s.

For each abstract variable a, we use the following notations.

• We denote by a, the value of a at some point to be specified.

• We denote by Da, the domain to which belongs a. Given that the abstract variable a can

correspond to na variables (na depends on the matching), and since these na variables are

finite representations of real numbers, Da is essentially R
na (the cross product R na times).

In some cases, however, an abstract variable can instantiate integers. In this particular

case, Da is a cross product of N.

• We denote by da a distance on Da. For the input and the output, this distance has to be

consistent with one of the studied property (P(k,ε) and (k,ε)-property implicitly depends
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foo(i){

a = a0;

b = b0;

while(S(i,a)){

c = O(a,b,c,i);

a = M(a,c);

b = N(i,b,c);

}

return b; }

Figure 4.11: The main template

on a distance on the input and the output). For the other variables, the distance can be

chosen freely. However, in most analysis here, we only use the d1 distance (definition

2.2.5).

• We use the Kleene star notation D∗a to denote the set of all finite lists over Da.

4.3 A direct analysis of the finite precision semantics through pro-

gram transformation

In this first pattern, we do not consider the exact semantics but only the finite precision one.

Here, we prove the definition 2.3.2 of robustness i.e. the P(k,ε,δ) property. Such an analysis is

interesting in case we do not have any knowledge about the program and we try to discover a

minimal set of properties that grants the robustness result.

4.3.1 The schema structure

The main characteristic of this first pattern is to produce, from an initial program containing an

if branch, another program that does not contain the if branch. To achieve this “removal”, the

body of the while loop is split into three parts. Then, owing to some transformations, we reduce

the analysis of the whole program to simpler programs without the instructions in O(a,b,c,i);

that contain the if branch: once the new programs are proved P(k,ε,δ) with a compositional

analysis, our theorem states that the whole program is P(k′,ε′,δ′) with parameters depending on

the compositional analysis.

Precisely, we consider the pattern in figure 4.11. In this particular pattern, a = a0; means

a = A() i.e. a is initialized independently of the input (with the value a0). The stopping

condition for the loop is given by the Boolean valued expression S(i,a).
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ListFoo(i){

a = a0;

b = b0;

while(! S(i,a)){

c = O(a,b,c,i);

l.add = c;

a = M(a,c);

b = N(i,b,c); }

return l; }

Figure 4.12: Collecting c values in a list

We shall now prove that a program having the generic structure of foo given in Figure 4.11

has, under certain conditions, the property Pk,ε,δ for some k,ε,δ.

4.3.2 A sufficient condition for robustness

Once a program matches the template in figure 4.11, the schema variables O, M and N will be

bound to fragments of the original program. We will now construct new, related programs using

the values bound to O, M and N.

The first such program in figure 4.12 extracts the list of the values of c during the execution

of the list. For instance, if, when foo is executed with input i, the loop is executed 3 times and

the value of c is 1 at the first iteration then 2 and 3, then listFoo, executed with the same input

i, returns the list {1,2,3}.
In this pseudo code, we use the notation l.add=c; to denote the addition of the element c

to the end of the list l which is initially empty. This line is not part of the initial code but can be

implemented in any language: the format of that list just needs to be consistent with the rest of

the programs.

We now define two new programs. The first one is the foob program given in figure 4.13: it

has the same shape as foo but instead of setting c by the computation of O(a,b,c,i), it sets c

with the values of a list given in input. Naturally, the stop condition for the loop is now that all

elements of the list have been accessed. Note that, since a was just used in the computation of

O, the commands affecting a are now useless and can be removed. They have been commented

with the // syntax.

Here, we have used Java-style instructions such as l.length for the length of the list l and

l[j] for the jth element of the list l. The foob program, by its structure, allows us to do a

dissociation between the variations due to the control flow and the ones coming from the com-

putations themselves : we define a new function fooB(i, i
′) = foob(listFoo(i), i′). This function
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foo_b(l,i){

// a = a0;

b = b0;

for(int j = 0; j < l.length; j++ ){

c = l[j];

// a = M(a,c);

b = N(i,b,c); }

return b; }

Figure 4.13: The foob program

foo_a(l){

a = a0;

// b = b0;

for(int j = 0; j < l.length; j++ ){

c = l[j];

a = M(a,c);

// b = N(i,b,c);

}

return a; }

Figure 4.14: The pattern of fooa

mixes the control flow that would appear with input i but does computations with inputs i′. In

particular, fooB(i, i) = foo(i).

The second program fooa(l) is the same program as foob except that a is returned instead of

b. In this program, the lines where b is set are now useless. When l contains the first k elements

of listFoo(i), fooa(l) returns the value of a after k iterations of the execution of the loop in foo(i).

For readability reasons, we define fooA(i) = fooa(listFoo(i)) : this value correspond to the final

state of the variable a when foo is executed with input i. In particular, S(i, fooa(i)) is true.

We now introduce four conditions that need to hold to prove that the foo program satisfies

the Pk,ε,δ property for appropriate values of k, ε, and δ. Condition 4.3.1 expresses the property

PkN∗ ,εN∗ ,δ for the transformed program fooB, condition 4.3.2 expresses the fact that there is a

relationship between the values stored in a and the values stored in b, and conditions 4.3.3 and

4.3.4 address the stability of the stop condition S(i,a).

Condition 4.3.1.

∀l ∈C∗.PkN∗ ,εN∗ ,δ(λz.foob(l,z)).

The next condition expresses that when the program fooA returns similar results with some
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arguments i and i′, it is also the case for the program fooB.

Condition 4.3.2.

∀i1, i ∈ I,di(i, i1)≤ δ =⇒ db(fooB(i, i), fooB(i1, i))≤ kAda(fooA(i1), fooA(i))+ ε2

The stopping condition S should satisfy the following two conditions. The first expresses

that the boundary of the region {a | S(i,a)} cannot vary too much.

Condition 4.3.3.

∀a ∈ A,∀i, i′ ∈ I,di(i, i
′)≤ δ ∧ S(i′,a) =⇒ ∃a′ ∈ A,da(a,a

′)≤ ksdi(i
′, i)+ εs ∧ S(i,a′)

The following condition on S states that the diameter of the region {a | S(i,a)} is as small as

the desired precision.

Condition 4.3.4.

∀a,a′ ∈ A,∀i ∈ I,S(i,a) ∧ S(i,a′) =⇒ da(a,a
′)≤ εt

Finally, our main theorem is the following.

Theorem 4.3.1. If the program foo terminates and the four conditions hold, then Pk0,ε0,δ holds

for the function computed by foo with k0 = kN∗+ kAks and ε0 = εN∗+ kA(εs + εt)+ ε2.

Proof. In the proof, we will use these two observations:

1. Since listFoo(i) is obtained from the computation of foo(i), and since fooB(i, i
′) replaces

the result of O by this list, if we compute fooB(i, i) we are replacing each value for c by

itself. Therefore we have that foo(i) = fooB(i, i).

2. In the execution of foo(i), the final value of a that satisfies the stopping condition S(i,a)

is fooA(i).

By the observation 1, proving the theorem is equivalent to proving

∀i, i0 ∈ I,di(i, i0)≤ δ =⇒ db(fooB(i, i), fooB(i0, i0))≤ k0di(i, i0)+ ε0.

By condition 4.3.1, choosing l = listFoo(i0), we have

∀i, i0 ∈ I,di(i, i0)≤ δ =⇒ db(foob(listFoo(i0), i0), foob(listFoo(i0), i))≤ kN∗di(i, i0)+ εN∗ .
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By definition of fooB, we have

∀i, i0 ∈ I,di(i, i0)≤ δ =⇒ db(fooB(i0, i0), fooB(i0, i))≤ kN∗di(i, i0)+ εN∗ . (4.1)

From observation 2, S(i0, fooA(i0)) holds. By condition 4.3.3 (instantiating i′ with i0) we derive

that:

∀i, i0 ∈ I,di(i, i0)≤ δ =⇒ ∃a′ ∈ A,da(fooA(i0),a
′)≤ ksdi(i, i0)+ εs ∧ S(i,a′). (4.2)

Hence, by observations 2 and 1, S(i, fooA(i)) also holds. From inequality (4.2) and condi-

tion 4.3.4, we derive

da(a
′, fooA(i))≤ εt . (4.3)

From the last inequality and from inequality (4.2), we derive, using the triangle inequality

da(fooA(i0), fooA(i))≤ ksdi(i, i0)+ εs + εt . (4.4)

From condition 4.3.2 and inequality (4.4), we have

∀i, i0 ∈ I,di(i, i0)≤ δ =⇒ db(fooB(i0, i), fooB(i, i))≤ kA(ksdi(i, i0)+ εs + εt)+ ε2. (4.5)

From inequalities (4.1) and (4.5), using the triangle inequality, we derive

∀i, i0 ∈ I,di(i, i0)≤ δ

=⇒
db(fooB(i, i), fooB(i0, i0))≤ kN∗di(i, i0)+ εN∗+ kA(ksdi(i, i0)+ εs + εt)+ ε2.

Finally, we define ε0 = εN∗+ kA(εs + εt)+ ε2 and k0 = kN∗+ kAks.

4.3.3 Application to the CORDIC algorithm

We now illustrate how the theorem applies with the implementation of the CORDIC algo-

rithm 4.1.1.

Our proof is not done for the code 4.2 given in 4.1.1 but instead on the code in 4.15. The only

change to the CORDIC code is that the stopping condition has been replaced by an equivalent

one.

Now, we prove this implementation is Pk,ε,∞. We do not compute the exact constants since

they depend on the analysis of fooB which can be optimized much better than with a “by hand”
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double cos(double beta)

{

double x = 1, y = 0, x_new , theta = 0, sigma , e = 1E-10;

int Pow2 = 1;

while(|theta - beta| > e) {

Pow2 *= 2;

if(beta > theta)

sigma = 1;

else

sigma = -1;

sigma = sigma / Pow2;

theta = theta + atan(sigma); // Value stored

fact= cos(atan(sigma)); // Value stored

x_new = x + y * sigma;

y = fact * (y - x * sigma);

x = fact * x_new; }

return x; }

Figure 4.15: Another implementation of the CORDIC algorithm

proof.

Scheme instantiation

To apply our method, we have first of all to instantiate the schema variables a, b, c (cf. Sec-

tion 4.3.2) with a suitable partition of the variables of the program. The variables in i are

instantiated with the variables which represent the input.

In this example, the partition for the variables will be the following.

a := double theta;

b := double x,y;

c := double sigma;

i := double beta;

We now must define a suitable metric on the types of the variables in a and b. We choose

the following:

• da is the usual distance on R.

• db is the L2 norm on R
2.

Then, we need to instantiate the functions M(a,c), N(i,b,c), O(a,b,c,i) of the schema

with suitable regions of code. We choose these as it follows.
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O(theta ,<x,y>,sigma ,beta) {

Pow2 = 2 * Pow2;

if(beta > theta)

sigma = 1;

else

sigma = -1;

sigma = sigma / Pow2;

return sigma; }

M(theta ,sigma) {

theta = theta + atan(sigma);

return theta; }

N(beta ,<x,y>,sigma) {

fact = cos(atan(sigma));

x_new = x + y * sigma;

y = fact * (y - x * sigma);

x = fact * x_new;

return <x,y>; }

Finally, we need to prove that the conditions 4.3.1, 4.3.2, 4.3.3 and 4.3.4 of section 4.3.2 are

satisfied.

Proofs of the conditions

Condition 4.3.1

∀l ∈C∗.PkN∗ ,εN∗ ,δ(λz.foob(l,z))

To prove this condition we have to analyze the following code that corresponds to foob.

double cos(double beta , int[] listFoo)

{

double x = 1, y = 0, x_new , theta = 0, sigma , e = 1E-10;

for(int j=O;j<listFoo.length;j++) {

sigma=listFoo[j];

theta = theta + atan(sigma); // Value stored

fact = cos(atan(sigma)); // Value stored

x_new = x + y * sigma;
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y = fact * (y - x * sigma);

x = fact * x_new; }

return x;

}

As we have explained, the main goal of our method is to transform a code into a simpler

code which does not have branches anymore. Since this code contains only simple instructions

and the domain of the variables remain bounded, it is staightforward to see it is P(kN∗ ,εN∗) for

some kN∗ and εN∗ . The exact computation of kN∗ and εN∗ is not the purpose of this example

however.

Condition 4.3.2

∀i1, i ∈ I,di(i, i1)≤ δ =⇒ db(fooB(i, i), fooB(i1, i))≤ kAda(fooA(i1), fooA(i))+ ε2

The proof of condition 4.3.2, is the most difficult part of this example. We have proved it

“by hand”, and we do not claim that there is an easy way to automate it. More precisely, it is

the difficulty of this proof that motivates us to find another method which is presented in the

next section. However, this proof points out that we can prove the intended property without

considering the whole semantics of the program, but just the relevant properties.

We start by observing that our program satisfies the following properties.

1. There exists ε−M, such that ∀a ∈ A,kM|c− c′|− ε−M ≤ da(M(a,c),M(a,c′))

2. For all i ∈ I,λxN(i,b0,x) is PkN ,ε
+
N ,∞

.

3. For all c ∈C, λaM(a,c) is P1,εM ,∞.

4. For all i ∈ I,c ∈C, λbN(i,b,c) is P1,ε′N ,∞
.

5.

∃εN2 ,∀z,c ∈ [0,π],db(N(i,N(i,b0,z),c),N(i,b0,( f (z,c))))≤ εN2

where f (z,c) = tan(atan(z)+ atan(c))

6.

∃εM2 ,∀z,c ∈ [0,π],da(M(M(a0,z),c),M(a0,( f (z,c))))≤ εM2

7. The number s of loop iterations is fixed.
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The observation 1 is kind of reciprocal of the P(k,ε) property. The constants can be found with

the same compositional techniques.

The observations 2, 3 and 4 that some functions are Pk,ε for some k and ε is straightforward

since all these functions are composition of basic Pk,ε function like addition and multiplication

on a bounded domain. The exact computation of these constants have to be done automatically:

there is no interest in computing them by hand here.

The observations 5 and 6 are closeness relationship between the composition of M and N,

respectively, and some mathematical functions. To obtain these epsilons, an analyzer has to

compute the closeness of all atomic operation and use the weak compositionality property.

The observation 7 is true whenever the parameter e of the stopping condition is not too small,

this problem have been detail in 4.1.1 on the paragraph about figure 4.5.

We will now prove the following generalization of Condition 4.3.2:

∀i, i1 ∈ I,db(fooB(i, i), fooB(i, i1)≤ kAda(fooA(i), fooA(i1))+ ε2

We start by proving the following lemma.

Lemma 4.3.1.

∀l ∈ R
n,∀i ∈ I,∃z ∈ R,db(N(i,b0,z)), foob(l, i))≤ εB ∧ da(M(a0,z), fooa(l))≤ εA

Proof. This lemma is proved by induction on the size n of a list l. The initial case where the list

is empty holds for z = 0.

For the general case, we assume the property proved for any list of size n and we prove it for

the size n+1. First, we have foob(l : c, i) = N(i, foob(l, i),c). The induction hypothesis gives us:

∀l ∈ R
n,∀i ∈ I,∃z ∈ R,db(N(i,b0,z), foob(l, i))≤ nεB ∧ da(M(a0,z), fooa(l))≤ nεA

Where εB = εN + εN2 and εB = εM + εM2 .

Let call zl ∈ R be the real provided by our induction hypothesis for our list l. So we have

db(N(i,b0,zl), foob(l, i))≤ nεB

Now using our observation 3, we derive:

db(N(i,N(i,b0,zl),c),N(i, foob(l, i),c))≤ db(N(i,b0,zl), foob(l, i))+ εN
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Hence, from the two last inequalities:

db(N(i,N(i,b0,zl),c),N(i, foob(l, i),c))≤ εB + εN

By a triangular inequality using observation 5 and the last inequality, we derive:

db(N(i,b0,( f (zl,c))),N(i, foob(l, i),c))≤ nεB + εN + εN2

The same steps for M (we use observation 4) ends at:

da(M(a0,( f (zl,c)),M(fooa(l),c))≤ nεA + εM + εM2

Finally we have

∀l ∈Rn+1,∀i∈ I,∃z∈R, db(N(i,b0,z), foob(l, i))≤ (n+1)εB ∧ da(M(a0,z), fooa(l))≤ (n+1)εA

We can now complete the proof of condition 4.3.2.

Proof. From the first inequality of Lemma 4.3.1 (we get from observation 7 that n can be bound

by s) and triangular inequalities, we have

∀l1, l2 ∈C∗, i ∈ I,∃z1,z2 ∈ R,db(foob(l1, i), foob(l2, i))≤ db(N(i,b0,z1),N(i,b0,z2))+2sεB

By using observation 2, we have

db(N(i,b0,z1),N(i,b0,z2))≤ kN |z1− z2|+ ε+N

Because of observation 1, we have

|z1− z2| ≤ kMda(M(a0,z1),M(a0,z2))+ ε−M

From the three last inequalities we get

∀l1, l2 ∈C∗, i ∈ I,db(foob(l1, i), foob(l2, i))≤ (kN(kMda(M(a0,z1),M(a0,z2))+ε−M)+ε+N +2sεB

By using the second part of our lemma we have

da(M(a0,z1), fooa(l1))≤ sεA
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and

da(M(a0,z2), fooa(l2))≤ sεA

Finally, the triangle inequality between the three last inequalities, allows us to derive:

∀l1, l2 ∈C∗, i ∈ I,db(foob(l1, i),

foob(l2, i))≤ (kN(kM(da(fooa(l1), fooa(l2)+2sεA))+ ε−M)+ ε+N +2sεB

Hence we have kA = kNkM and ε2 = 2kNkMsεA + kNε−M + ε+N +2sεB.

Condition 4.3.3

∀a ∈ A,∀i, i′ ∈ I,di(i, i
′)≤ δ ∧ S(i′,a) =⇒ ∃a′ ∈ A,da(a,a

′)≤ ksdi(i
′, i)+ εs ∧ S(i,a′)

Proof. The instantiation of S(i,a) corresponds to |i− a| ≤ e, so condition 4.3.3 is given by the

condition:

∀a ∈ A,∀i, i′ ∈ I, |i−a| ≤ e,∃a′ ∈ I, |a−a′| ≤ ks|i− i′|+ εs ∧ |i′−a′| ≤ e

We can satisfy this property by setting a′ = a+ i′− i, ks = 1, and εs = 0.

Condition 4.3.4

∀a,a′ ∈ A,∀i ∈ I,S(i,a) ∧ S(i,a′) =⇒ da(a,a
′)≤ εt

Proof. Condition 4.3.4 can be rewritten, once we instantiate S(i,a) to

∃εt ,∀a,a′ ∈ A,∀i ∈ I, |i−a| ≤ e ∧ |i−a′| ≤ e =⇒ |a−a′| ≤ εt

Which is true for εt = 2e.

4.3.4 Application to the Dijkstra’s shortest path algorithm

Now, we apply our method to Dijkstra’s shortest path algorithm 4.1.2. We prove by instantiating

our schema that the Dijkstra’s algorithm is P(1,ε,δ) for some ε depending on the finite repre-

sentation on the input domain where all edge have a greater value than δ. The restriction on the

domain is a weakness of this method as we will detail further.
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Scheme instantiation

To apply our theorem, we have to instantiate the abstract variables a, b and c with some vari-

ables of the program. The abstract variable i are instantiated with the variables that represent

the input. We choose the following instantiation: a contains the variables count and mark, b

the array of double pathestimate and c the variable u which identifies the current vertex to

propagate.

A := int count;int mark[w];

B := pathestimate[w];

C := int u;

I := graph[w][w];

We, now, have to choose a suitable metric on the types of the variables, and we choose the

following: di is the L1 norm on an array of real numbers, db is the L∞ norm on array of real

numbers and da is the identity metric: that is, the distance between two elements of A is 0 if they

are the same elements and it is ∞ otherwise.

Next, we identify the stopping condition:

S(graph ,<count ,mark >) := count >= w

Finally, we identify the functions M(a,c), N(i,b,c), O(a,b,c, i) with the following regions of

code:

O (count , mark , pathestimate , u, graph) {

u=minimum(pathestimate ,mark ,w);

int minimum(int a[],int m[],int k){

int mi=999;

int i,t;

for(i=1;i<=k;i++){

if(m[i]!=1){

if(mi>=a[i]){

mi=a[i];

t=i;

}

}

}

return t;

}

return u;
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}

M (<mark , count >, u) {

mark[u]=1;

count=count+1;

return <mark ,count >;

}

N (graph , pathestimate , u) {

for(i=1;i<=w;i++){

if(pathestimate[i]>pathestimate[u]+graph[u][i]){

pathestimate[i]=pathestimate[u]+graph[u][i];

}

}

return pathestimate;

}

We, now, have to prove that the four conditions hold for the given instantiation.

Proof of the conditions

Condition 4.3.1

∀l ∈C∗.PkN∗ ,εN∗ ,δ(λz.foob(l,z))

For all i0 ∈ I, fooa(i0, i) is k-Lipschitz and k does not depend on i0. The proof of this condition

can be done by using standard technical (such as Hoare triples or abstract interpretation) on the

following program.

int[] dijkstra( int graph[w][w], int[] listFoo)

{

int pathestimate[w],mark[w];

int source ,i,j,u,predecessor[w],count=0;

int minimum(int a[],int m[],int k);

for(j=1;j<=w;j++){

mark[j]=0;

pathestimate[j]=999;

predecessor[j]=0;

}
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source=0;

pathestimate[source]=0;

for(j=0;j<listFoo.length;j++){

u=listFoo[j];

for(i=1;i<=w;i++) {

if(pathestimate[i]>pathestimate[u]+graph[u][i]){

pathestimate[i]=pathestimate[u]+graph[u][i];

predecessor[i]=u;

}

}

}

return pathestimate;

}

Condition 4.3.2

∀i1, i ∈ I,di(i, i1)≤ δ =⇒ db(fooB(i, i), fooB(i1, i))≤ kAda(fooA(i1), fooA(i))+ ε2

Since da is the identity metric, the condition 4.3.2 can be rewritten as

∃ε2 ∈ R, i, i1 ∈ I,di(i, i1)≤ δ =⇒ fooA(i1) = fooA(i) =⇒ db(fooB(i, i), fooB(i1, i))≤ ε2

Like for the CORDIC algorithm, condition 4.3.2 is rather difficult to prove. Here, there is

an additional problem. Indeed, our program analysis compel us to analyze the program with

the control flow of another input. However, in general, this other input can be far away from

the original one. More precisely, the order the nodes are processed can be in an arbitrary order:

for any order, there exists a graph such that the Dijkstra’s algorithm processes the nodes in this

order. Since at the end of the program, we always have fooA(i1) = fooA(i), if we take δ = ∞ to

prove this condition we have to prove that the order in which we do the computation does not

matter. This assertion is false, however. For instance, if an update is made from a node which

have never been updated (the value associated to the node is still 999) then the update does not

change any other values of neighbor node. This update, however, marks the node as processed

preventing the node to propagate values anymore.

So, we need to limit the range of i1 such that the ensued order is not too different from

the initial one. More precisely, we can allow the control flow to select a node which is not

the minimal one provided that this node cannot be updated further by a minimal value. This is
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possible if the selected value differs from the minimal value of at most the minimal value of any

edge in the graph. That is why we introduce δ: the value of δ is a lower bound on edge length.

This limitation is strong since it restricts the domain of validity for the input (no graph with

null edge is allowed) and compel us to only prove the P(k,ε,δ) property instead of the much

more natural P(k,ε) property.

Proof. Since da is the identity metric and by instantiating the variables of the pattern, we can

derive from the equality fooA(i) = fooA(i1) that fooA(graph) and fooA(graph1) return the same

pair 〈count,mark〉. In particular, we have these two properties.

• Since count is incremented once at each iteration of the loop, listFoo(i) and listFoo(i1)

have the same length.

• Since mark sets u to 1 the element , this means listFoo(i) and listFoo(i1) contains the same

values for u (which instantiates c).

So listFoo(i1) is a permutation of listFoo(i). Moreover, any permutation on a list can be gener-

ated by a sequence of transpositions. In our particular case, this means that there exists a list of

lists l0, . . . , ln where l0 = listFoo(i) and ln = listFoo(i0) such that: lp+1 is a transposition 〈np,np+

1〉 of lp. A auxiliary analysis about the program N(graph,N(graph, pathestimate,u),v) can pro-

vide the following result:

∀u,v ∈ N, pathestimate ∈ R
n, pathestimate[v]≤ pathestimate[u]+graph[u][v]

=⇒ N(graph,N(graph, pathestimate,u),v) = N(graph,N(graph, pathestimate,v),u)

Moreover,

pathestimate[v]≤ pathestimate[u]+graph[u][v]

implies the values pathestimate[u] and pathestimate[v] does not change while computing

N(graph,N(graph, pathestimate,u),v).

Hence, it is sufficient to prove in our particular case,

∀u,v, pathestimate[v]≤ pathestimate[u]+graph[u][v].

We will prove the equivalent condition:

∀u,v, |pathestimate[u]− pathestimate[v]| ≤ graph[u][v].

We denote by (pathestimate(l, i)) the list of B whose the jth element is the value

pathestimate[l[ j]] at the end of the execution of foob(l, i).
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From the analysis of O(count,mark, pathestimate,u,graph), we can see that it extracts al-

ways the minimum of pathestimate which are not in mark and since N(graph, pathestimate,u)

always sets value greater than pathestimate[u], the list pathestimate(listFoo(i), i) is sorted.

Moreover, since the code fragment N(graph, pathestimate,u) always decreases the val-

ues of pathestimate, the value of pathestimate[u] is not changed from the iteration where

u = O(a,b,c, i).

Since (pathestimate(listFoo(i0), i0)[u]) is sorted,

∀u ∈ [0,n−1], pathestimate(listFoo(i0), i0)[u]< pathestimate(listFoo(i0), i0)[u+1].

Moreover since λxfoob(listFoo(i0),x) is PkN∗ ,εN∗ , (pathestimate(listFoo(i0), i) is almost sorted,

that is,

∀u, pathestimate(listFoo(i0), i)[u]−kN∗di(i−i0)−εN∗ < pathestimate[u+1]i0+kN∗di(i−i0)+εN∗ .

So, if two elements are not well ordered then they differ by at most 2kN∗ |i− i0|+2εN∗ . So, we

can permute them without changing the result if

2kN∗di(i− i0)+2εN∗ ≤ δ. (4.6)

Since, the list obtained through these transpositions is sorted, we obtain the same list as

(pathestimate(listFoo(i), i)[u]). So, this new list actually computes foo(i). So, we proved

∃ε2 ∈ R, i, i1 ∈ I,di(i, i1)≤ δ ∧ fooA(i) = fooA(i1) =⇒ db(fooB(i, i), fooB(i1, i))≤ 0

Condition 4.3.3

∀a ∈ A,∀i, i′ ∈ I,di(i, i
′)≤ δ ∧ S(i′,a) =⇒ ∃a′ ∈ A,da(a,a

′)≤ ksdi(i
′, i)+ εs ∧ S(i,a′)

Proof. Since the instantiation of S(i′,a) is count >= w, the stopping condition does not depend

on i (when the number of nodes w is fixed). Hence, the formula is satisfied for a′ = a with the

constant ks = 0 and εs = 0.

Condition 4.3.4

∀a,a′ ∈ A,∀i ∈ I,S(i,a) ∧ S(i,a′) =⇒ da(a,a
′)≤ εt
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Proof. Since {a|S(i,a)} is a singleton for every i (it corresponds to the state where all the nodes

are marked), the property holds for εt = 0.

4.3.5 Discussion

In this section, we only consider the finite-precision semantics. The analysis of the program

was based on program transformation so that the discontinuity of program does not appear in its

transformed version. This approach seemed appealing until we really try to apply it on concrete

example. Indeed, the conditions of the theorems aimed at being straightforward to prove, which

is not actually the case.

There are two main problems in this method. First, working only with the finite precision

semantics induce big over-approximations. Indeed, to instantiate condition 4.3.2 on CORDIC,

we had to introduce the exact trigonometric function (observation 5).

Secondly, our program transformation introduces the foob(i, i
′) program. This new function

allows us to study the behavior of the program when the control flow is fixed. In return, this

function looses information by considering cases that can never happen. This has been illustrated

by the Dijkstra’s instantiation where we were just able to prove a P(k,ε,δ) property while there

is no inherent reason to limit the result for a particular δ (smaller than the minimal edge).

To solve these problems, we have developed another solution based one the exact semantics

that we present in the next section.

4.4 Analysis through rewriting techniques

The previous section aims at proving the P(k,ε) property for the finite-precision semantics. This

approach is useful for automatic analysis when we just have the code of the program but not its

meaning. We tried this approach because working only on the finite precision is standard when

programs are quite simple and when the difficulty resides mostly on the size of the code.

However, when people are writing programs, they want a precise property for their program.

We can assume, for instance, the program relies on some mathematical property coming from

some theorem. In that case, we have additional knowledge: the program is correct in the exact

semantics (we assume that the transcription has been done without error). However, we do not

know what the program does in the finite-precision semantics. Mostly, we cannot be sure that

the control flow in the finite-precision semantics is the same as in the exact semantics.

Indeed, consider the following example:

root(a,b,c){

if( 0.25 * b * b >= a * c){
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return (- b + sqrt( b * b - 4 a * c)) / (2 * a);

else

return - b / (2 * a);

}

From a mathematical point of view, this program always returns the real part of the root of the

quadratic aX2+bX +c. In the finite precision semantics however, this program can fail. Indeed,

due to rounding error, we can have the test (0.25 * b * b >= a * c) that succeeds while the

expression b * b - 4 a * c is evaluated into a negative value. Since the square root function

cannot handle negative values, a run-time exception is raised.

In this setting, we propose a method that allows to extend a result for exact semantics to

finite-precision semantics for the same problem as in the last section: when the continuity of the

function just appears once the execution ends while intermediate steps are non robust.

Since, the method is based on the knowledge of the exact semantics, we will be able to get

a better property than just the P(k,ε): we prove the (k,ε)-closeness between the exact and the

finite-precision semantics.

4.4.1 Preliminaries: the rewriting framework

We have seen in chapter 2 that the finite precision semantics is never computed but over ap-

proximated either by a particular semantics like zonotopes or by studying a property that states

the semantics remains in some range. The main idea, when a branch is encounter, consisted in

merging the properties of the two branches in to one property. Here, we are interested, in the

case, such kind of technique is impossible. Indeed, when the control flow can select a branch

which has nothing to do with the other one there is no common denominator. Therefore, after

the branch, there is no more information available about the program.

Here, we split the problem into two parts: what happens in one branch is still studied in a

classical way, but, here, branching is seen as a non deterministic choice. In this setting, we do

not have to merge the properties of all branches, we just analyze all branches then with some

additional conditions, we prove that for any branch the result will be almost the same.

In this setting, the problem of a global property which does not hold in intermediate step can

be seen as a problem of confluence in the rewriting system theory.

Before looking at how this framework applies, we first present what are rewriting systems.

We first present the formal definition about abstract rewrite systems (also called reduction sys-

tems).

Definition 4.4.1 (Abstract reduction system). An abstract reduction system is a pair (A,−→ )

where the reduction −→ is a relation between on the set A, i.e. −→ ⊆ A×A. We denote by a−→ b
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the property (a,b) ∈−→ .

Definition 4.4.2 (Transitive closure). The transitive closure −→∗ of −→ is the least transitive and

reflexive relation that contains −→ .

Definition 4.4.3 (Normal form). An element a of A is in normal form if there is no reduction

a−→ b.

Definition 4.4.4 (Acyclic). A reduction system is acyclic if there exists no a such that a−→ b−→∗a.

Definition 4.4.5 (Terminating). A reduction system is terminating if there is no infinite chain

a−→ b−→ c−→ . . . .

Definition 4.4.6 (Local confluence). A reduction system is locally confluent if for all a, b and c,

we have some d such that

b←− a−→ c =⇒ b−→ ∗d ∗←− c

Definition 4.4.7 (Global confluence). A reduction system is globally confluent if for all a, b and

c, we have some d such that

b ∗←− a−→ ∗c =⇒ b−→ ∗d ∗←− c

In this section, we only make use of two propositions about reduction systems.

Proposition 4.4.1 ( [New42]). In a reduction system which is terminating and globally conflu-

ent, all elements a have a unique normal form ā, i.e. there exists an unique element in normal ā

form such that a
>−→ ∗ā.

Proposition 4.4.2 (Newman’s Lemma [New42]). A terminating and locally confluent reduction

system is globally confluent.

Thus to compute the normal form for a terminating and either local or global confluent

reduction, one must repeatedly apply a rewrite rule until no more reduction rules can be applied.

4.4.2 Application of the rewriting framework

The problematic if branches that induces local discontinuity can be seen as a choice between

different rules we can apply. If we can prove that these rules correspond to a confluent system,

then, even if rounding errors change the control flow, the final result will be the same final term.

That is the rough idea we develop in this section. We, now, need to formalize it.

The standard way for program to reduce a term to its normal form consists of a while loop

that proceeds the successive reduction. The stopping condition corresponds to checking whether
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the term is in its normal form. In the body of the loop, there are two parts: a first one that selects

the reduction rule to apply and the other one that actually does the selected reduction.

This leads us to the following pattern:

foo(m){

(n,i) = Init();

while(! S(m,n,i)){

(i,n) = C(m,n,i);

m = R(i,m);

}

return m; }

This pattern follows the same conventions as described in section 4.2. Moreover, m belongs

to R
m (such that we can match program with several variables), n also belongs to R

m while i has

to belong to a finite set I.

Remark 3. This pattern only works for programs of type Rm→R
m. However, any program can

be transformed in order to fit this requirement: if the input domain In and the output domain

Out are different, then we can just set m such that In×Out = R
m.

From our former description, the term is represented by the variable m, i is the number of

the selected rule and n represent internal variables the scheduler can use. There is four sub-parts

of our program: Init(), S, C and R. Init() just initializes n and i with some constant values.

S(i,m,n) is the stopping condition. C(i,m,n) is the selector of the rules: it returns the number

i of the rule to apply and can change its internal state n. Finally, R(i,m) is the part that applies

the selected rewriting rule.

We denote by R = { fi | i∈ I} the set of rules of our rewriting system. So fi(m) = [[R(i,m)]].

In the finite precision, the rules do not behave exactly in the same way, we denote by fi(m) =

[[R(i,m)]]′ and R ′= { f ′i | i∈ I}. Finally, the closure of R (resp. R ′) under function composition

is denoted by R ∗ (resp. R ′∗).

With these definitions, we can define three paths of reductions relative to the computation of

foo in its exact and finite-precision semantics.

Definition 4.4.8 (Path a). We denote by an(x) the value of the variable m after n executions of

the while loop of foo(x) in the exact semantics. With this notation, we have:

x = a0(x)−→ a1(x)−→ . . .−→ an(x) = [[foo]](x)

Definition 4.4.9 (Path c). We denote by cn(y) the value of the variable m after n executions of
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the while loop of foo(y) in the finite-precision semantics. With this notation, we have:

y = c0(y)−→ ′c1(y)−→ ′ . . .−→ ′cn(y) = [[foo]]′(y)

Definition 4.4.10 (Path d). Given c0(y) −→ ′c1(y) −→ ′ . . . −→ ′cn(y), we derive the path. Indeed,

when we write c j(y)−→ ′c j+1(y) we implicitly refer to the function applied:

c j+1(y) = f ′i j
(c j(y))

where i j is the value of i at the jth iteration of the program. We can define another path by

induction: we start with x and we define di −→ di+1 the reduction made by applying the rule i j

such that

d j+1(x) = fi j
(d j(x)).

We denote by p(x) the final value:

x = d0(x)−→ d1(x)−→ . . .−→ dn(x) = p(x)

Our rewrite system is not confluent since there is always a rewriting rule that can be applied

to any given a ∈ R
m.

We are interested in programs that do an iteration on a variable m and where the stopping

condition depends on m. In this setting, we would like that any term that satisfy the stopping

condition to be a final term. However, it is not enough to prevent reduction rules to apply when

they reach a final term: if we want to be able to have any kind of confluence property, we need

our rewrite system to be acyclic.

To solve this problem, we consider a subsystem of−→ . This subsystem is designed such that

any normal form satisfies the stopping condition S. To define such a subsystem, we consider a

function h : Rm→R that measures the progress of the reduction. Our subsystem is then defined

by removing all rules a−→ b such that h(a)≤ h(b). In this setting, a normal form is an element

a such that h(a)< h(b) for any b 6= a with a−→ b.

Definition 4.4.11. Let h : Rm → R and −→ a rewrite system where elements belongs to R
m,

we define the rewrite system
>−→ with the same elements and the subset of relations a −→ b that

satisfy: h(a)> h(b).

We also denote by a
>−→ ∗b the transitive closure of

>−→ .

Finally, we denote by R̄m the set of normal forms in R
m with respect to the relation

>−→ , i.e.

R̄m = {m ∈ R
m| 6 ∃m′ ∈ R

m. m
>−→ m′}.

To illustrate how works this rewriting sub system, we propose a toy example.
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a = 9

b = 3

c = 6

d = 18
g = 12

e = 1

f2
f1

f3

f1

f3

f2

h(x) = (x−5)2

Figure 4.16: A simple rewrite system

Example 4.4.1. Assume that the elements of our rewrite system are real numbers and that our

reduction system −→ consists of three rules: f1(x) = x− 3, f2(x) = x/3 and f3(x) = 2x. The h

function is defined with h(x) = (x−5)2.

In figure 4.16, we represent the reductions from a = 9 and c = 6. To express that a reduction

belongs to
>−→ , we represent the elements x at a height that corresponds to h(x). That way, if the

arrow x−→ y goes down it means that h(x)> h(y) and so x
>−→ y.

On this picture, we can see that c is in a normal form.

4.4.3 Sufficient conditions to prove the closeness property

To prove the (k,ε)-closeness property between [[foo]] and [[foo]]′ by considering the rewriting

framework, we have first to match foo with the pattern in section 4.4.2 then we have to check

the following conditions. The first three conditions are concerned with the rewriting system.

Condition 4.4.1.
>−→ is locally confluent.

Condition 4.4.2. The rewriting system
>−→ is terminating.

Condition 4.4.3. The following property holds.

∀a,b ∈ R
m,a−→ b =⇒ ∃c ∈ R

ma
>−→ ∗c ∗ <←− b

The next conditions are about the exact semantics. The forth one asks the “smoothness” of

the exact function and the fifth one requires that the code C terminates to an element close to its

normal form.

Condition 4.4.4. The function [[foo]] is P(ke,εe).

Condition 4.4.5. In the exact semantics, when the stopping condition is reached, the final value

m is such that m
>−→ ∗z implies d(m,z)≤ εs.
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In addition of these constraints on the exact semantics, there are conditions to grant that the

finite-precision semantics is not too far away from the exact semantics. The sixth one is about

the closeness between the idealized semantics and the finite-precision semantics and the seventh

one is about the termination in the finite-precision semantics.

Condition 4.4.6. We require the closeness property between [[foo]]′ and p (from definition 4.4.10):

∀x,y ∈ R
m, d(p(x), [[foo]]′(y))≤ k f d(x,y)+ ε f .

Remark 4. Depending on the exact code of the program we can get some properties about

the possible paths over the approximate semantics. For instance, we might be able to bound

the number of iterations. This will allow us to consider a subset of R ′∗ otherwise, since R ′∗

contains arbitrary long path, there is no chance the closeness property holds for any path of

R ′∗.

Condition 4.4.7. In the finite-precision semantics, when the stopping condition is reached, the

final value m′ is such that

∃z′ ∈ R̄m, d(m′,z′)≤ ε′s

Remark 5. By reading these condition, there is no mention of the finite precision semantics

of the code of C. However, in most cases, if the finite precision semantics of the code of C is

completely unsafe, there is no chance that our program is close to the exact semantics.

In fact, the finite precision semantics of the code of C is implicitly mentioned in condition

4.4.6 and condition 4.4.7. Indeed, either the maximal number of iteration is granted by the stop

condition in which case condition 4.4.6 does not need to refer to the code C but condition 4.4.7 is

proved through the analysis of code C, or condition 4.4.7 is granted by the stopping condition but

condition 4.4.6 should be proved through an analysis of code C to show the program terminates

in a bounded number of operations.

Finally, our main theorem is the following.

Theorem 4.4.1. If all the conditions are satisfied, the function [[foo]]′ computed in a finite-

precision semantics and the function [[foo]] that would be computed in the idealized semantics

are (k,ε)-close (with k = ke and ε = ke(ε f + εs)+ εe +2εs + ε′s) i.e.

∀x,y ∈ R
m,d([[foo]](x), [[foo]]′(y))≤ ked(x,y)+ ε

Before starting the proof, we state some useful lemmas.

Proposition 4.4.3. The rewrite system
>−→ is globally confluent.
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Proof. The rewrite system
>−→ is terminating according to Condition 4.4.2 and locally confluent

according to Condition 4.4.1, hence, according to the Newman lemma 4.4.2, the rewrite system

is globally confluent:

∀a,b,c ∈ R
m,b ∗

<←− a
>−→ ∗ c =⇒ ∃d ∈ R̄m,b

>−→ ∗d ∗
<←− c

Proposition 4.4.4. All elements x ∈ R
m have a unique normal form x̄.

Proof. Our rewrite system is terminating by Condition 4.4.2 and globally confluent from propo-

sition 4.4.3, then from proposition 4.4.1 any element a ∈ R
m has a unique normal form ā.

Proposition 4.4.5. The following assertion, which extends the global confluence property, holds.

∀x,a,b ∈ R
m,b ∗←− x−→∗ a =⇒ ∃d ∈ R̄m,b

>−→ ∗d ∗ <←− a

Proof. Let x−→ x1 −→ x2 −→ . . .xn be a rewrite sequence. We proceed by induction on n. The base

case is n = 0. Thus x has the same normal form as x̄.

Now, we assume that x and xi have the same normal form.

We apply Condition 4.4.3 on xi −→ xi+1, we get

∃d,xi
>−→ ∗d ∗ <←− xi+1

and, so, the normal form of xi and xi+1 are the same.

From our induction hypothesis, we derive that the normal form of x and xi+1 is x̄.

Finally, we get:

∀x,a ∈ R
m,x−→∗ a =⇒ x

>−→ ∗ x̄ ∗
<←− a

By applying this result twice (b ∗←− x−→∗ a), we get our proposition.

Definition 4.4.12 (Path b). From proposition 4.4.5, we also have the existence of a path that

starts from x to x̄ using only
>−→ rules.

x = b0(x)
>−→ b1(x)

>−→ . . .
>−→ bn′(x) = x̄

This path and the three previous ones are represented in figure 4.17.

Now, we can prove that [[foo]]′ and [[foo]] are (k,ε)-close.
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[[foo]](x)
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[[foo]]′(x)
[[foo]](z′)

[[foo]](y)

Figure 4.17: The elements introduced in the proof.

Proof. Let x,y ∈ R
m, we have to prove there exist k and ε such that

d([[foo]](y), [[foo]]′(x))≤ kd(y,x)+ ε.

From a triangular inequality, we get

d([[foo]](y), [[foo]]′(x))≤ d([[foo]](y), [[foo]](x))+d([[foo]](x), [[foo]]′(x))

From condition 4.4.4, we have

d([[foo]](y), [[foo]](x))≤ ked(x,y)+ εe. (4.7)

So, now, we have to find a bound for d([[foo]](x), [[foo]]′(x)).

We have proved the
>−→ rewriting system to be normalizing (proposition 4.4.4), so there

exists a unique normal form x̄ for x. Moreover, we can derive from the property 4.4.5 [[foo]](x)
>−→

∗x̄. Then, condition 4.4.5 states that d([[foo]](x), x̄)≤ εs.

By definition of the path d, we have x→∗ p(x). Since x→∗ p(x) and x
>−→ ∗(̄x), we derived

from the property 4.4.5:

∃d ∈ R̄m, p(x)
>−→ ∗d ∗ <←− (̄x).
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Then, since (̄x) ∈ R̄m, d = (̄x) and so:

p(x)
>−→ ∗(̄x). (4.8)

Now, Condition 4.4.7 provides some z′ ∈ R̄m with d([[foo]]′(x),z′)≤ εs. From this inequality

and the inequality of the Condition 4.4.6, we derived with a triangular inequality: d(z′, p(x))≤
k f d(x,x)+ ε f + εs And then:

d(z′, p(x))≤ ε f + εs. (4.9)

Moreover, since [[foo]] computes a value close to the normal form and by using equation 4.8, we

have

d([[foo]](p(x)), p(x))≤ εs (4.10)

Also, since z is a normal form, we have

d([[foo]](z′),z′)≤ εs. (4.11)

Condition 4.4.4 on p(x) and z:

d([[foo]](p(x)), [[foo]](z′))≤ ked(p(x),z′)+ εe

become the following by using equations 4.10 and 4.11.

d([[foo]](x),z′)≤ ked(p(x),z′)+ εe +2εs.

Then, by using the inequality 4.9, we get:

d([[foo]](x),z′)≤ ke(ε f + εs)+ εe +2εs (4.12)

Now, we do a triangular inequality from inequalities 4.12, 4.7 and condition 4.4.7:

d([[foo]](y), [[foo]]′(x))≤ ked(x,y)+ εe + ke(ε f + εs)+ εe +2εs + ε′s.

Therefore [[foo]] and [[foo]]′ are (ke,ke(ε f + εs)+ εe +2εs + ε′s)-close.

4.4.4 Application to the CORDIC algorithm

Here, we explain how to apply our method to the CORDIC algorithm presented in section 4.1.1.

We prove the exact and the finite-precision semantics are (k,ε)-close for some computable k and

ε parameters. We do not prove the presented code 4.2 but a slightly different version (see figure
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1 double cos(double beta) {

2 double x = 1, y = 0, theta = 0, x_new , sigma;

3 int n = 15, i;

4 for( i = 1 ; i < n ; i++ ) {

5 if( beta > theta )

6 sigma = 1;

7 else

8 sigma = -1;

9 sigma = sigma / (1 << i);

10 theta = theta + atan(sigma); // Value stored

11 fact = cos(atan(sigma)); // Value stored

12 x_new = x + y * sigma;

13 y = fact * (y - x * sigma);

14 x = fact * x_new; }

15 return x; }

Figure 4.18: A simplification of the CORDIC algorithm

4.18). The only difference is in the choice of the angles: while code 4.2 selects angles that are

optimal from a computational point of view, here the angles makes a perfect bisection. We will

prove the correctness of the original algorithm with an extended theorem in section 4.4.6.

While the method of section 4.3 is based only on the finite precision semantics, here part of

the proof is based on the exact semantics. In particular, this means that the part of the code we

extract got a mathematical meaning which has more properties.

The first step of the method consists of considering a possible matching against the template.

To do so, we need first to partition variables into the defined abstract variables and then to

split the code such that all parts satisfy the conditions about their right to access and to modify

variables (4.2). The next step consists of defining the h function which can not be retrieved from

the code. Finally, all conditions have to be proven. Here, we only prove the mathematical part,

the exact computation of the constants for the finite precision part does not bring anything to our

example.

Scheme instantiation

We recall that our pattern is the following:

foo(m){

(n,i) = Init();

while(! S(m,n,i)) {
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(i,n) = C(m,n,i);

m = R(i,m); }

return m; }

First, we need to find out which variables are part of m, n and i and which parts of the code

correspond to C and R.

The variable m has to be the input and the output which is not the case for CORDIC code 4.2.

However, as we explain in remark 3, we still can merge beta and x into m. Here, we also need

to include y and theta into m. Since there are several variables, we have to choose a distance:

we take the d1 distance that is the sum of the distance of each component (definition 2.2.5).

When doing this merge, we have to recall that only beta is the actual input: the closeness

property does not have to deal with initial perturbations of x or theta for instance, since they

are initialized at the beginning of the program.

Once, we have instantiated m, we have to decide where to split the body of the loop to define

C and R. R can only modify variables in m, but in fact, it can contains local variables: variables

that are initialized from variables m and i at each loop iteration and that are never used outside

of R. The variable sigma is modified inside the if branch: it is not a variable of R. Hence, since

this variable is set in line 9 we can conclude that C begins line 5 and ends line 9 while R begins

line 10 and ends line 14.

C(<x,y,beta >,<>,<sigma ,n>) {

if( beta > theta )

sigma = 1;

else

sigma = -1;

sigma = sigma * M_PI / (1 << i);

i = i + 1; //due to the syntactic sugar

return <sigma ,i>; }

R(<sigma ,n>,<x,y,beta >) {

theta = theta + sigma;

fact = cos(sigma); // Value stored

atan_sigma = atan(sigma); // Value stored

x_new = x + y * atan_sigma;

y = fact * (y - x * atan_sigma);

x = fact * x_new;

return <x,y,beta >;}
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Finally, the variable i contains all other variables than the ones in m and which are local

variables of R or C: i contains i and sigma (there is no variable in n) .

Now we have instantiated C and R, we need to express the exact semantics of R in order to

define the rewrite system R .

In the exact semantics, we have:

[[R( < sigma,i >, < x,y,beta,theta >)]] = (rotσi(x,y),β,θ+σn)

where rotα is the rotation function of angle α of the vector (x,y).

From [[R]](〈σ, i〉,〈x,y,β,θ〉), we get our rewrite system where the objects are tuples with a

point in R
4 (〈x,y,β,θ〉) and the rules are the partial functions λxyβθ.[[R]](σ, i,x,y,β,θ) where i

and σ are finite. So, the rewrite system that corresponds to R is the set of rotations with an angle

α where

α ∈ {±2−iπ|i ∈ [|1,n|]}

We denote by Rα the corresponding rule.

Finally, we have to define the h function on R
m. This function has to measure the progress

done by the algorithm while successive iterations are achieved. Since the algorithm stops when

β and θ are close, it is natural to define h by:

h(x,y,β,θ) = |β−θ|

Proofs of the conditions

Now, we prove the conditions of section 4.4.3.

Condition 4.4.1 We have to prove the local confluence of
>−→ .

Proof. We denote by m(α,β) ∈ R
m, the tuple (cos(α),sin(α),β,α). When there is no ambiguity

about β (which is invariant by the rewrite rules) we write mα instead of m(α,β). We can check

that Rγ(mα) = mγ+α since the rules are rotation based. The subsystem
>−→ ⊂−→ just allows rules

mα −→ mα′ where |α′−β|< |α−β|.
Consider the fork:

mα1

<←− mα
>−→ mα2

We can remark that all the allowed angles are multiple of 2−nπ. Consider the value ρ such that

β−2−n−1π≤ ρ≤ β+2−n−1π
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and

|ρ−α|= k2−nπ.

In words, the closest value of β which is reachable from α in −→ .

If there is two values for ρ (limit case), then the proof fails. This is not a problem, however,

since such a failure set is enumerable. In other cases, me can reduce

mα1

>−→ ∗ρ ∗ <←− mα2

by a succession of rules R2−nπ and R−2−nπ.

Condition 4.4.2 We have to prove the termination of the rewriting system
>−→ .

Proof. From mθ ∈ R
m, the set reachable points by

>−→ is the finite set

{θ+ k2−nπ|k ∈ Z ∧ |θ+ k2−n−β| ≤ |θ−β|}.

Since
>−→ is acyclic by construction,

>−→ is terminating.

Condition 4.4.3 We have to prove:

a−→ b =⇒ ∃c,a >−→ ∗c ∗ <←− b.

Proof. The −→ system is symmetric. So either a
>−→ b and the property holds for c = b or a

<←− b

and the property holds for c = a.

Condition 4.4.5 At the end of the computation, in the exact semantics, the final value of m is

such that m
>−→ ∗m̄ implies d(m̄,m)≤ εs.

Proof. The modified algorithm of CORDIC does a strict bisection of angles. At the first iter-

ation, the only possible angle for α is π/2. At the second iteration, the possibles angles reach-

able by [[foo]] are π/4 and 3π/4 but not π/2 anymore. After n iterations, the possibles angles are
(2k+1)π/2n, k ∈N. Since the possible angles of our rewrite system are in kπ/2n, k ∈N, the maximal

distance for α is π/2n. This distance is actually reached when β = π/2: in that case, the exact

value is reached after one iteration of the algorithm but since the algorithm does not stop, the
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final value is just close to π/2. Since we consider the L1 distance, we have

d(m̄,m) = sup
d(α1,α2)≤π/2n

(cosα1− cosα2)+(sinα1− sinα2)+ |α1−α2|

And then

εs ≤ (1+
√

2)
π

2n

Condition 4.4.4 The function [[foo]] is P(ke,εe).

Proof. From the previous proof, we know that the final values for α are in (2k+1)π/2n, k ∈ N. We

also know that the result of [[foo]] is the tuple mα = (cosα,sinα,α,β) with |α−β| ≤ π/2n. By

definition, the P(ke,εe) property provide a bound on the following value.

[[foo]](m0,β,m0,β′) = d((cosα,sinα,α,β−α),(cosα′,sinα′,α′,β′−α′))

With the last inequality, we get

|α−α′| ≤ π

2n−1 + |β−β′|

By use of trigonometric property, we get:

[[foo]](m0,β,m0,β′) =
√

2d(m0,β,m0,β′)+
√

2
π

2n−1

Condition 4.4.6 This condition expresses that, if the control flows were the same, the finite-

precision semantics and the exact semantics would be close to each other.

Proof. The program does exactly n iterations of the loop. All the operations in R are basic

k-Lipschitz arithmetic operations in a bounded domain. All these instructions should enjoy

the closeness property in a safe finite-precision arithmetic representation. Since closeness is,

somehow, compositional (proposition 2.3.4), the two control flows are close to each other.

The computation of the actual constant is too dependent on the architecture to be computed

here.
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Condition 4.4.7 In the finite-precision semantics, when the stopping condition is reached, the

final value m′ is such that

∃z′ ∈ R̄md(m′,z′)≤ ε′s

Proof. The z′ we have to exhibit does not have to have any relationship with the z of condition

4.4.5. Moreover, any mα with

|α−β| ≤ 2−n−1π

is in a normal form. So, to obtain ε′s, we just have to compute the maximal distance that can

exists between the α′ and β′ of m′ and then subtract 2−n−1π. To find this value, we need to

analyze the code of C in the finite semantics. Here, again, we do not do this analyze, but since

the control flow depends on theta and always selects the branch that reduces theta the most it

should not be a source of difficulty.

4.4.5 Application to Dijkstra’s algorithm

In this section, we apply our method to Dijkstra’s shortest path algorithm (described in 4.1.2).

We prove the closeness property according to the d1 distance for the input (the list of weighted

edge) and for the output (the list of the minimal length for each node).

Scheme instantiation

Here, m also contains the input and the output, so m is the tuple <graph, pathestimate>. The

distance is then the d1 metric on the pair.

Then we need to split the body of the loop into code C and code R. This is not possible from

a syntactic point of view since the main loop contains another loop. However, the code 4.7 can

be rewritten in the equivalent code 4.19.

With this new code, the tuple i is instantiated by <u,i> an oriented edge: the node i is the

node to potentially update from the value of the node u and the length of the edge graph[u][i].

The tuple n contains the auxiliary variables <count, mark> used to mark the nodes which

already have their definitive value in pathestimate.

The part that chooses the rules is the following.

C (<graph , pathestimate >, <count , mark >, <u, i>) {

if(i == n){

u = minimum(pathestimate , mark , n);

mark[u] = 1;

count = count + 1;

i = 0; }
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int[] dijkstra( int graph[n][n]){

int pathestimate[n],mark[n];

int source ,i,j,u,predecessor[n],count=0;

int minimum(int a[],int m[],int k);

for(j=1;j<=n;j++){

mark[j]=0;

pathestimate[j]=999;

predecessor[j]=0;}

source=0;

pathestimate[source]=0;

while(count <n){

if(i==n){

u=minimum(pathestimate ,mark ,n);

mark[u]=1;

count=count+1;

i=0;}

else {

i=i+1;}

if(pathestimate[i]>pathestimate[u]+graph[u][i]){

pathestimate[i]=pathestimate[u]+graph[u][i];

predecessor[i]=u;}}

return pathestimate;}

int minimum(int a[],int m[],int k){

int mi=999;

int i,t;

for(i=1;i<=k;i++){

if(m[i]!=1){

if(mi>=a[i]){

mi=a[i];

t=i;}}}

return t;}

Figure 4.19: A rearrangement of the Dijktra’s code
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else {

i = i + 1; }

return <u, i>;

}

The rewrite rules are implemented by:

R (<u, i>, <graph , pathestimate >) {

if(pathestimate[i] > pathestimate[u] + graph[u][i]){

pathestimate[i] = pathestimate[u] + graph[u][i];

}

return <pathestimate ,graph >;

}

For readability reason, we denote by G the value of graph in the exact semantics and P the

value of pathestimate in the exact semantics. So G = [[graph]] and P = [[pathestimate]]. In

addition, we denote by Pu the value in pathestimate[u].

With this notation, the exact semantics of R is the function that returns the identity excepts

for pathestimate[i]:

[[R(<u,i>,<graph,pathestimate>)]]i = min(Pi,Pu +Gu,i)

So our rewrite system −→ contains rules indexed by two nodes u and i. Finally, since the

program is computing a minimal possible value for P , it is natural to define h as the sum of

the values of all nodes of pathestimate. Hence, if the minimal value is reached, then h cannot

decrease anymore which means P is in a normal form. In that setting, we have
>−→ =−→ (strictly

speaking the identity rules are removed).

Proofs of the conditions

We have to prove that the conditions hold for the given instantiations. Once again, we do not

compute the constants related to the finite precision semantics.

Condition 4.4.1 Local confluence.

Proof. Let a ∈ R
m and

c←−−−−
<u′,v′>

a−−−→
<u,v>

b
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two pairs of nodes where we apply the rules. We can compute that

c
≥−−−→

<u,v>
e

≥−−−−→
<u′,v′>

f
≤←−−−

<u,v>
d

≤←−−−−
<u′,v′>

b

where x
≥−−−→

<u,v>
y means that when we apply the rules that updates v from u and the length of the

edge (u,v) either x
>−→ y (the value Py has been updated with a smaller value) or x = y and (the

rules does not do anything).

Condition 4.4.2 Termination of
>−→ .

Proof. For each node, the possible values for Pu are in

{∑
i, j∈S

Gi, j|S⊂ [[1,n]]2}.

This is due to the fact a new value is computed from already computed values that are already a

sum of edge length. Then, since all values are positive, summing twice an edge always increases

the estimated value. Hence, it is never less than a previous value. So since values belongs to a

finite set and there is no circle, the system terminates.

Condition 4.4.3

∀a,b ∈ R
m,a−→ c =⇒ ∃c ∈ R

ma
>−→ ∗c ∗ <←− b

Proof. Since −→ =
>−→ , this property is immediate.

Condition 4.4.4 The function [[foo]] is P(ke,εe).

Proof. The function [[foo]] is the Dijkstra’s algorithm of 4.1.2 which is an n-Lipschitz function.

So the function [[foo]] is hence P(n,0).

Condition 4.4.5 At the end of the computation, in the exact semantics, the final value of m is

such that m
>−→ ∗m̄ implies d(m̄,m)≤ εs.

Proof. Unlike for CORDIC, Dijkstra’s algorithm computes exactly the minimum length for each

node. Since h is defined as the sum for all node, h([[foo]](G)) is the actual minimal value. In

particular, we have εs = 0.
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Condition 4.4.6 The closeness property holds between [[foo]]′ and p (from definition 4.4.10).

Proof. By looking at C, we can see that the number of rules that can be applied is bounded by

n2. More precisely i and n are initialized to 0. Then either i increase by 1 or count increase by

1 and i is reset to 0. Finally count has to be less than n.

Condition 4.4.7 In the finite-precision semantics, when the stopping condition is reached, the

final value m′ is such that

∃z′ ∈ R̄md(m′,z′)≤ ε′s

Proof. Adding a positive value never renders a smaller result in floating or fixed-point repre-

sentation. Moreover, looking for the minimum cannot produce errors (by returning a number

which is not the minimal). To prove this condition, we need to ensure these assertions are true

(formally a finite precision representation might not provide these guarantees even if the float-

ing and fix-point representation do). We also notice that reading the value of an edge does not

change its value (otherwise the algorithm would not be safe).

Hence, the only sources of error are the additions. This means that, while updating an edge

(u,v), we get

|P ′u−min
v

P ′v−G(u,v)| ≤ ε (4.13)

We have to find a variable z′ ∈ R̄m, in our case, this means exhibiting a pair (P z,G z). We

take, P z = P ′ and G z such that in case an edge (u,v) has actually been used to update a node,

we define G z
u,v = P ′u−P ′v and G z

u,v = Gu,v otherwise. This pair is terminating by construction and

we derive from equation 4.13 and the fact there are n nodes:

d(G z,G) = ∑
u,v

|G z
u,v−Gu,v| ≤ n2ε

4.4.6 Approximate confluence

As we have seen for the CORDIC algorithm, sometimes programs do not achieve strict conflu-

ence but just an “approximate” one. In that case, our theorem does not apply. To deal with this

case, we propose here an extension to our theorem (i.e. a more general theorem but with a harder

to prove condition).

First, we define formally what is “approximate” confluence.
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Definition 4.4.13 (Approximate confluence). A rewrite system −→ is approximately confluent

when for any ε ∈ R
+, there exists e and f such that d(e, f )≤ ε and:

b ∗←− a−→ ∗c =⇒ b−→ ∗e ∧ f ∗←− c

This definition is interesting only for non terminating rewrite system since otherwise this

definition is equivalent to global confluence.

Proposition 4.4.6. The two propositions are equivalent:

• A rewrite system is globally confluent

• A rewrite system −→ is approximately confluent and terminating

Proof. A globally confluent rewrite system implies approximate confluence in any case (with

d = e).

For the other direction, let a1 and a2 to be two normal forms of a. The approximate conflu-

ence applied on a1
∗←− a−→ ∗a2 states d(a1,a2)≤ ε for all ε. So we conclude a1 = a2.

With this definition, however, there is no equivalent to the Newman’s lemma that allows us

to prove only local confluence. Then, even if we assume the approximate confluence for
>−→ ,

proposition 4.4.5 would not hold. Here, since we are just fixing the CORDIC example with the

original code, we do not try to find convenient conditions, we just assume a condition to replace

proposition 4.4.5.

Condition 4.4.8. The following assertion holds.

∀x,a,b ∈ R
m,∀ε ∈ R

+,a ∗←− x−→∗ b =⇒ ∃e, f ,a
>−→ ∗e ∧ f ∗

<←− b ∧ d(e, f )≤ ε

Since condition 4.4.1, condition 4.4.2 and condition 4.4.3 was mainly used to prove propo-

sition 4.4.5, they are not useful now and they are not part of our new theorem.

On the other hand, we have to change our condition 4.4.7, since the set R̄m is not defined

anymore. We replace it by this one.

Condition 4.4.9. In the finite-precision semantics, when the stopping condition is reached, the

final value m′ is such that

∃z′, d(m′,z′)≤ ε′s ∧ z′
>−→ ∗z′f =⇒ d(z′,z′f )≤ εs

With this change, we obtain a new theorem with almost the same conclusion (there is just an

additional εs) but with less restrictive premisses.
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Theorem 4.4.2. If conditions 4.4.8, 4.4.4 4.4.7, 4.4.6 and 4.4.7 hold, the function [[foo]]′ com-

puted in a finite-precision semantics and the function [[foo]] that would be computed in the ide-

alized semantics are (k,ε)-close with k = ke and ε = ke(ε f + εs)+ εe +3εs + ε′s.

∀x,y ∈ R
m,d([[foo]](x), [[foo]]′(y))≤ ked(x,y)+ ke(ε f + εs)+ εe +3εs + ε′s

The proof scheme of this new theorem is basically the same as the one of theorem 4.4.1.

But, since we have weaker hypothesis, the details of the proof changes and there is no exactly

identical part in the proof.

Proof. Let x,y ∈ R
m and ε0 ∈ R

+, we have to prove there exist k and ε such that

d([[foo]](y), [[foo]]′(x))≤ kd(y,x)+ ε+ ε0.

From a triangular inequality, we get

d([[foo]](y), [[foo]]′(x))≤ d([[foo]](y), [[foo]](x))+d([[foo]](x), [[foo]]′(x))

From condition 4.4.4, we have

d([[foo]](y), [[foo]](x))≤ ked(x,y)+ εe. (4.14)

So, now, we have to get a bound for d([[foo]](x), [[foo]]′(x)).

Now, Condition 4.4.9 provides some z′ with

d([[foo]]′(x),z′)≤ ε′s (4.15)

and

z′
>−→ ∗z′f =⇒ d(z′,z′f )≤ εs. (4.16)

From inequality 4.15 and the inequality of the Condition 4.4.6, we derived with a triangular

inequality: d(z′, p(x))≤ k f d(x,x)+ ε f + ε′s. And then:

d(z′, p(x))≤ ε f + εs. (4.17)

Now, from condition 4.4.8, we have, since z′ −→ ∗[[foo]](z′):

∃e, f , [[foo]](z′)
>−→ ∗e ∧ f ∗

<←− z′ ∧ d(e, f )≤ ε0.
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Then from equation 4.16 d(z′, [[foo]](z′))≤ εs. From condition 4.4.5, we have:

d([[foo]](z′),e)≤ εs.

Finally, we derive from a triangular inequality with these three last inequalities

d([[foo]](z′),z′)≤ 2εs + ε0. (4.18)

By definition of the path d, we have x −→ ∗p(x). Since x −→ ∗p(x) and x −→ ∗[[foo]](x), we

derived from condition 4.4.8:

∃u,v, p(x)
>−→ ∗u ∧ v ∗

<←− [[foo]](x) ∧ d(u,v)≤ ε0.

Then with condition 4.4.5, we derive:

d([[foo]](p(x)),v)≤ εs. (4.19)

Condition 4.4.4 on p(x) and z′:

d([[foo]](p(x)), [[foo]](z′))≤ ked(p(x),z′)+ εe.

By using equation 4.17, we get:

d([[foo]](p(x)), [[foo]](z′))≤ ke(ε f + εs)+ εe.

Then, a triangular inequality with equation 4.19

d(v, [[foo]](z′))≤ ke(ε f + εs)+ εe + εs.

Then, a triangular inequality with equation 4.18

d(v,z′)≤ ke(ε f + εs)+ εe +2εs + ε0.

Then condition 4.4.5 on [[foo]](x) and the fact that d(u,v) ≤ ε0, allow us to derive with a trian-

gular inequality:

d([[foo]](x),z′)≤ ke(ε f + εs)+ εe +3εs +2ε0. (4.20)
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Figure 4.20: A picture of the proof

Now, we do a triangular inequality from inequalities 4.20, 4.14 and 4.15:

d([[foo]](y), [[foo]]′(x))≤ ked(x,y)+ εe + ke(ε f + εs)+ εe +3εs +2ε0 + ε′s.

Since this result is true for all ε0 ∈ R
+, we conclude [[foo]] and [[foo]]′ are (ke,ke(ε f + εs)+ εe +

3εs + ε′s)-close.

Figure 4.20 represents the paths and elements used in the proof. As we can see, the scheme

of the proof is almost identical of figure 4.17.

Application to CORDIC Since the analysis is almost the same than in subsection 4.4.4, we

just mention here the differences. Here, the rewrite system is now composed by all rotation rules

Rα with α ∈ R and not only α ∈ {±2−iπ|i ∈ [|1,n|]} as in subsection 4.4.4. Now, we have to

prove again all conditions for the program 4.2 with a new rewrite system. Condition 4.4.8: the

following assertion holds.

∀x,a,b ∈ R
m,∀ε ∈ R

+,a ∗←− x−→∗ b =⇒ ∃e, f ,a
>−→ ∗e ∧ f ∗

<←− b ∧ d(e, f )≤ ε

Proof. Let mγ,β
∗ <←− mα,β

>−→ ∗mθ,β, we have

mγ,β
>−→ mβ,β

<←− mθ,β
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So, we can choose mβ,β = e = f in the condition.

Condition 4.4.5:

Proof. In the exact semantics, after the n iterations we have |α−β| ≤ δ (proposition 4.1.2) Since

mx
>−→ ∗my implies d(x,β)> d(y,β), we can conclude that d(x,y)≤ 2δ. Finally, we have

εs = sup
β∈[0,π/2]

2δ+ |cos(β−δ)− cos(β+δ)|+ |cos(β−δ)− cos(β+δ)|

With trigonometric properties, we can get

εs = 2δ+2
√

2δ

Condition 4.4.4 states that the program computes a function which is P(k,e) in the exact

semantics.

Proof. The proof is the same as the one of section 4.4.4 except that π/2n−1 is replaced by

tan−1(2n−1) according to proposition 4.1.2.

Condition 4.4.6 concerns the closeness of the program when the control flow is respected.

Proof. There is no change in the proof of section 4.4.4.

Condition 4.4.9 states that in the finite-precision semantics, when the stopping condition is

reached, the final value m′ is such that

∃z′, d(m′,z′)≤ ε′s ∧ z′
>−→ ∗z′f =⇒ d(z′,z′f )≤ εs

Proof. We look for an element m(ρ,ρ) to be z′. Indeed, such an element is in a normal form.

Then, since as for the initial proof from section 4.4.4, we still can prove that the final value of α

and β is bounded by some tan−1(2n−1)+ ε. Then, it is possible to compute a bound for ε′s.

4.5 Conclusion

In this chapter, we have investigated non compositional techniques for analysis.

In our first try, our goal was to analyze the robustness of the code directly in its finite-

precision semantics. The idea was to identify a pattern that decomposes the code into smaller

parts and then to analyze these parts and some relationship between them. The pattern we
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investigate provides an easier analysis of the parts of code. However, our main problem was

to prove condition 4.3.2 that states a relationship between the two main parts of the template.

Since, we only study the finite precision semantics, relationships are harder to prove because

they cannot be based on a mathematical statement. In fact, we show that this technique works,

but, in both studied examples, it is difficult to prove condition 4.3.2.

From this first try, we conclude that proving robustness from scratch was a too difficult goal.

In addition, we also assume that, when an algorithm is not locally robust, its proof of correctness

is not obvious. So, there are good reasons to believe that it has been proved mathematically (in

its exact semantics) before to be written. Therefore, we decide, in our second attempt, to mix

conditions about the exact semantics with conditions about the finite semantics. The result we

got is much more convincing than the first try. First, the proved property is stronger since it is not

just the P(k,ε) property that has been proved but the closeness to the exact semantics. Next, the

conditions to prove are easier and more natural than in the direct analysis, essentially because

the difficulty is now concentrated on the correctness of the algorithm in its exact semantics.

As a future work, it might be interesting to investigate close problems to enlarge the scope of

this method. For instance, a difficult problem, which has not been studied here, is the question

of the stopping condition of loops. Indeed, on some algorithms (like computation of series), the

number of loop iterations that has to be done is not the same in the finite precision and in the

exact precision. In some cases, the program in the finite precision diverges while it converges

in the exact semantics. Providing simple conditions to check how the finite precision semantics

differs from the exact algorithm would be a nice extension of this work.

⋆



CHAPTER 5

CONCLUSION

In this thesis, we have investigated the problem of how to extend a proof of an algorithm in the

exact semantics into a proof about its implementation in finite precision. In the first chapter,

we details the behavior of finite precision representations and we briefly presented standard

technique to analyze code. From these description we provide general definitions: the P(k,ε)-

property and the (k,ε)-closeness property that are easy to use in a manual proof and which

can be stated by most static analyzers since these definition are not optimized. Then from this

general framework, we have studied the problem of implementation of differential privacy and

the problem of confluent programs that cannot be analyzed by compositionality.

The question of leakage in differential privacy are well studied while the question of its

implementation is a new problematic [Mir12]. In general, implementation questions are con-

sidered as a special problem which is only in the domain of program analysis. This follows the

idea that, once an algorithm is proved mathematically, the question of its implementation is just

a technical question. By providing a mathematical statement about how the differential privacy

is altered by errors and by proving that there is no implementation in finite precision that can

satisfy the designed algorithm 1, we stress that implementation should also be seen as a main

concern. Although our theorem, by considering a simple characterization of errors, may not be

optimal in its constants, it allows to bridge the gap between results that are obtained by software

and not directly related mathematical statements. In particular, when we applied the theorem in

the standard case, we found that the result was not convincing. Then we was able to provide a

new mechanism that is more efficient than the one proposed in [Mir12].

In the chapter about global behavior, we address the problem of changes of the control flow

induced by rounding errors. When, the two branches of the control flow do not share any similar-

ity, it is not possible to consider a property about their union. A standard compositional analysis

is then not possible. We start our investigation from this fact and try to propose another kind of

129
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analysis. The framework we have developed considers control flow errors as non determinism

and provides robustness through a kind of confluence property. The theorem we have provided

bridge the gap between the algorithm proof and the automated analysis by mixing conditions on

the exact semantics and the finite semantics. We do not know how large is the class of algo-

rithms that can be analyzed this way, but our main goal was to open research directions about

interleaving between exact and finite precision semantics.
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Résumé

Dans cette thèse, nous analysons les problèmes liés à la représentation finie des nom-

bres réels et nous contrôlons la déviation induite par cette approximation. Nous nous

intéressons particulièrement à deux problèmes.

Le premier est l’étude de l’influence de la représentation finie sur les protocoles de

confidentialité différentielle. Nous présentons une méthode pour étudier les perturba-

tions d’une distribution de probabilité causées par la représentation finie des nombres.

Nous montrons qu’une implémentation directe des protocoles théoriques pour garantir

la confidentialité différentielle n’est pas fiable, tandis qu’après l’ajout de correctifs, la

propriété est conservée en précision finie avec une faible perte de confidentialité.

Notre deuxième contribution est une méthode pour étudier les programmes qui ne peu-

vent pas être analysés par composition à cause de branchements conditionnels au com-

portement trop erratique. Cette méthode, basée sur la théorie des systèmes de réécri-

ture, permet de partir de la preuve de l’algorithme en précision exacte pour fournir la

preuve que le programme en précision finie ne déviera pas trop.

Abstract

In this thesis, we analyze the problem of the finite representation of real numbers and

we control the deviation due to this approximation. We particularly focus on two

complex problems.

First, we study how finite precision interacts with differentially private protocols. We

present a methodology to study the perturbations on the probabilistic distribution in-

duced by finite representation. Then we show that a direct implementation of differen-

tial privacy protocols is not safe while, with addition of some safeguards, differential

privacy is preserved under finite precision up to some quantified inherent leakage.

Next, we propose a method to analyze programs that cannot be analyzed by a compo-

sitional analysis due to “erratic” control flow. This method based on rewrite system

techniques allows us to use the proof of correction of the program in the exact seman-

tics to prove the program is still safe in the finite representation.
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