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Abstract

This thesis deals with perturbative QCD-corrections to four-jet production in
electron-positron annihilation.

The one-loop corrections to the subprocess efe™ — ¢gQQ are calculated, us-
ing modern techniques in order to calculate the one-loop amplitudes efficiently.

+

These techniques include colour decomposition, the spinor helicity method and
decompositions inspired by supersymmetry. The cut technique and the factoriza-
tion in collinear limits are used to constrain the analytic form of the amplitudes.
In a second step the virtual corrections from ete™ — ¢gQQ and ete™ — qggq
are implemented together with the corresponding real emission parts into a nu-
merical program. The cancelation of the infrared singularities is based on the
dipole formalism.

Numerical values are given for the total cross-section, the D-parameter and the
jet broadening variable.

Résumé

Cette these a pour objet les corrections perturbatives de CDQ) pour la production
de quatre jets dans ’annihilation des électrons et positrons.

Les corrections & une boucle pour le sous-processus ete™ — ¢gQQ sont cal-
culées avec de nouvelles méthodes qui comprennent la décomposition de couleur,
la méthode des spineur d’hélicité, et une décomposition inspirée par la super-
symmétrie. Nous avons également profité des contraintes découlants de I'unitarité
et des limites colinéaires pour restreindre la forme analytique des amplitudes.
Dans une deuxieme phase, j’ai écrit un programme numérique qui combine des
contributions dues aux corrections radiatives des sous-processus ete™ — ¢gQQ
et ete™ — ¢ggq et dues aux corrections d’émission réelle. Le programme utilise
le formalisme des dipoles pour annuler les divergences infra-rouge.

[’analyse numérique contient des résultats sur la section efficace totale, le parametre
D et la variable d’élargissement d’un jet.

Keywords

Perturbative QCD, spinor helicity method, cut technique, four-jet production

*e~-annihilation, phase space slicing, dipole formalism, global event shape

variables and jet shape variables.
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1 Introduction

The phenomenology of particle physics is the bridge between theory and exper-
iment. On the theoretical side particle physics is described by the Standard
Model, based on local gauge symmetries. The Standard Model describes strong,
weak and electromagnetic interactions in terms of the gauge group

SU(3) @ SU2), @ U(1)y. (1)

The colour group SU(3) is the symmetry group of the strong interactions. The
theory of strong interactions is called Quantum Chromodynamics (QCD). The
group SU(2),@U(1)y is the gauge group of the unified weak and electromagnetic
interactions. The weak isospin group SU(2);, and the hypercharge group U(1)y
are at “low energies” (roughly below 250GeV) spontaneously broken down to the
U(1)em gauge group of electromagnetism. The symmetry breaking mechanism is
referred to as the Higgs mechanism and postulates the existence of an yet unob-
served scalar particle, the Higgs boson. Gravity is not included in the Standard

Model.

The particle content of the Standard Model is divided into three sectors: first
there are the matter fields, quarks and leptons, carrying spin 1/2. The leptons,
like the electron or the neutrino, do not carry any colour charges and therefore
do not interact strongly.

Secondly the interactions are mediated by gauge bosons of spin 1. There are eight
gauge bosons for the strong interaction, called gluons. After electroweak symme-
try breaking the electroweak interactions are described by four gauge bosons, two
of them carrying no charge (the photon and the Z-boson), and the two charged
W-bosons W+ and W~. The photon is massless, whereas the W*, W~ and the
/ are massive.

The third part of the particle content of the Standard Model consists of the Higgs
sector. In the Standard Model there is only one additional scalar particle, asso-
ciated with the electroweak symmetry breaking and the generation of masses for
the matter fields.

Experiments are mainly done at high-energy colliders like LEP (CERN), where
electrons and positrons are accelarated and brought into collision. Other ma-
chines are, for example, the electron-proton collider HERA (DESY) or the proton-
antiproton collider TEVATRON at Fermilab. Whereas the theoretical model of
the strong interactions is formulated in terms of quarks and gluons, sometimes col-
lectively called partons, experiments only observe leptons and hadrons. Hadrons
are divided into mesons (like the pion or kaon) and baryons (like the proton or
neutron). In this context two features of QCD are of relevance: confinement
and asymptotic freedom. The non-observation of quarks and gluons is due to
confinement: At low energies the effective strong coupling constant is large, and
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colour-charged particles cannot be observed. Asymptotic freedom states that the
effective coupling decreases with the energy scale. Thanks to asymptotic freedom
one may calculate the hard subprocesses of high-energy scattering experiments
in terms of quarks and gluons, using perturbation theory. On the other hand the
formation of hadrons out of quarks and gluons is the domain of non-perturbative
QCD. Quantities which are not sensitive to the details of hadronisation may
therefore be calculated within perturbation theory.

This leads to the concept of jet physics. A jet is roughly speaking a bunch
of hadrons in a small angular region. Viewed as pseudoparticles, it is assumed
that jets correspond to the original partons in the hard scattering process and
that hadronization corrections are small. Jet quantities are hadronic observables
which are infrared safe. This means that their actual value does not vary if the
final state changes by the addition of one more particle which is soft or collinear
to another particle. Infrared safe quantities may be calculated within perturba-
tion theory.

With the success of the Standard Model the ultimate goal of particle physics
is no longer the verification of a well established model, but the search of new
features beyond the Standard Model. One popular direction is the supersymmet-
ric extension of the Standard Model.

The search for new physics beyond the Standard Model of particle physics re-
lies on precise theoretical predictions of QCD background processes. Very often
processes containing new physics will have the same signature in the detectors
as standard QCD processes which might give the dominant contribution for a
given final state. A precise understanding of the QCD background is therefore
required. A leading-order (LO) calculation will give a rough estimate of the
expected background, but suffers from an arbitrary choice of a renormalization
scale. Furthermore, since in a leading-order calculation each jet is modelled by
only one parton, the internal structure of a jet is overly simplified. In order to
improve the calculation, one has to go to next-to-leading order (NLO). Here one
explicitly takes into account the first logarithms, ultraviolet and infrared in na-
ture, which are the source of the problems mentioned above.

One-loop amplitudes may have ultraviolet divergences. After renormalization, a
logarithm depending on the arbitrary renormalization scale remains. In principle,
if the calculation were done to all orders in perturbation theory, the dependence
on the arbitrary renormalization scale would drop out. In practise, one is limited
to the first few orders in perturbation theory and a residual renormalization scale
dependence remains.

In an NLO calculation the cross section receives contributions not only from
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the virtual corrections, but also from the real emission part ( the (n 4 1)-parton
tree-level matrix element integrated over the (n + 1)-parton phase space). Both
contributions are divergent, only their sum is finite. Since the two contributions
are integrated over different phase spaces ( the n-parton phase space for the vir-
tual part and the (n + 1)-parton phase space for the real part), the cancellation
of these divergences is not a trivial matter. Since in an NLO-calculation the
tree-level (n + 1)-parton matrix element contributes to the n-jet cross section,
one begins at NLO to reconstruct the internal structure of a jet, improving thus
the simplifed model of “one parton = one jet” and taking into account the de-
pendence of the observables on the jet defining parameters.

Needless to say, an NLO calculation is much more involved than an LO cal-
culation. The two bottlenecks are the calculation of the one-loop amplitudes and
the cancellation of infrared singularities needed in order to set up a numerical
program.

In this work I consider the QCD corrections to ete™ — 4 jets. This is the
lowest-order proccess which contains the non-abelian three-gluon vertex at lead-
ing order and therefore allows a measurement of the colour charges (C'r,Cy4,TR)
of QCD (for which the gauge group is of course supposed to be SU(3)). This
measurement allows putting limits on additional light fermions or scalar particles
(such as a light gluino in a supersymmetric extension of QCD).

The QCD-process ete™ — 4 jets will also be a dominant background for the
production of a pair of W-bosons at LEP 200, in the case where both W-bosons
decay hadronically. Since the branching ratio is roughly 46% one does not want
to ignore this channel.

tem S 7 S

Furthermore the QCD-process will be background to the process e
ZH — 4 jets relevant for the Higgs search at LEP 200.

This thesis has two main parts :

The first part concerns the calculation of the one-loop amplitude for ete™ —
qGQQ, which is one of the two subprocesses needed for the NLO-calculation.
Chapter 2 gives a short introduction to modern techniques, which were used in
the calculation. This “toolbox” consists of colour decomposition, the spinor helic-
ity method, the unitarity-based cut-technique, techniques using supersymmetry
or inspired by string theory, as well as constructing ansatze from the known fac-
torization in collinear limits. Various techniques for the reduction of tensor loop
integrals are discussed as well.

Chapter 3 gives the decomposition of the one-loop amplitudes for ete™ — ¢ggg
and ete™ — ¢gQQ into primitive amplitudes. The explicit results for the ampli-
tudes ete™ — ¢gQQ are also given here.

14



The second part of this work consists in setting up the numerical program “MER-
CUTIO”, which allows the calculation of any infrared-safe observable up to four
jets at NLO.

Chapter 4 is devoted to infrared singularities. Two general methods, phase space
slicing and the dipole formalism, are discussed and compared. The numerical
program uses the dipole formalism. The second part of this chapter reviews some
technical details of various dimensional regularization schemes.

Since the integration over phase space has to be done numerically, I briefly re-
view basic Monte Carlo integration techniques in chapter 5 and explain how the
integration is performed in practise.

Chapter 6 is devoted to phenomenology. Through the comparision to event gener-
ators [ show what a NLO-program does and what not. Several jet algorithms and
event shape variables are introduced. Numerical results are given for the four-jet
fraction, the D-parameter and the jet broadening variable for 3-jet events.

The appendix contains sections on Feynman rules, spinor algebra and renormal-
ization. In a further section the tree- and loop-splitting amplitudes are collected.
The last section contains various integral functions, used in the text, and shows
how they are implemented numerically.

15



2 Tools and Techniques for the Calculation

*te~ collisions seems

Setting up a numerical NLO-program for jet quantities in e
at first sight to be only a matter of work and good will, since for each step in the
calculation there is a known solution. In principle one could follow the good old—

fashioned approach:

e Draw all Feynman diagrams for the n-parton tree amplitude, the n-parton
one-loop amplitude and the (n+1)-parton tree amplitude, which is relevant
for the real emission part. If you are lucky, somebody has already calculated
some of these processes (usually the tree-amplitudes). In any case you will
realize that there are many diagrams, especially for the loop amplitude and
the (n + 1)-tree amplitudes.

e Do the calculation for each Feynman diagram. This may lead to a huge
number of different structured terms. The non-abelian three gluon vertex,
in particular, produces many different terms.

e Do the calculation with unspecified polarization vectors for external gluons.
Sum over the polarizations only after squaring the amplitudes.

e Use a standard integral reduction algorithm for the loop integrals, like the
Passarino-Veltman algorithm, in order to express tensor loop integrals in
terms of standard scalar integrals. The good thing about these algorithms
is, that they can be implemented into a symbolical computer program, the
bad thing, that the result is often a rational function, where the numer-
ator and the denominator are complicated expressions, and furthermore,
the denominator contains spurious singularities, which cancel only after
summation over different terms.

e To cancel the infrared singularities between the real and the virtual part,
consider each corner of the (n+1)-parton phase space, in which singularities
might occur, separately. Make extensive use of partial fraction decomposi-
tion, especially in the colour-subleading pieces of the real emission part.

Calculating the QCD corrections to ete™ — 4 jets by this approach would involve
a tremendous amount of work. Fortunately one can do better with the help of
some modern techniques for the calculation of tree- and loop-amplitudes (and the
cancelation of infrared singularities). This approach has sometimes been called
“total quantum-number management” and is summarized in the following points:

o Keep track of quantum phases by computing analytically only the transition
amplitude rather than the cross-section.

e Use the colour information to decompose the amplitude into simpler, gauge-
invariant pieces, called partial amplitudes.
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e Use the spinor helicity method to calculate the partial amplitudes in a
helicity basis. This is easier than a calculation for arbitrary polarizations.

e In many cases the partial amplitudes may be built of still simpler objects,
called primitive amplitudes.

o Exploit the “effective” supersymmetry of QCD at tree level, and use su-
persymmetry at loop-level to organize the particles, which are propagating
around the loop, into super-multiplets.

e Square amplitudes to get probabilities, and sum over helicities and colours
to obtain unpolarized cross-sections, only at the very end of the calculation.
These steps should be done numerically.

e Cancel the infrared singularities by adding and subtracting a universal sub-
traction term. This subtraction term can be implemented into a separate
subroutine in the numerical program, and there is no need to split up the
matrix element for the (n + 1)—parton configuration.

In the following I will give a short introduction to the tools and techniques, which
simplify the calculation. The material is mainly based on reviews [1] - [5].

2.1 Colour Decomposition

Amplitudes in QCD may be decomposed into group-theoretical factors (carrying
the colour structures) multiplied by kinematic functions called partial amplitudes
[10] - [14]. These partial amplitudes do not contain any colour information and
are gauge-invariant objects. The generators of the colour group SU(N,) in the
fundamental representation are traceless N. x N, matrices T The conventional
normalization of the colour matrices is Tr7*7T* = %5“6. The commutation relation
is then [T, T% = if**T¢ and the field strength and the covariant derivative
appearing in the Lagrange density are F}, = d,A; — 3, A, —I—gfabcAZAf, and D, =
0, —1gT*Aj. In the modern literature the normalization TrTeT? = 6% is often
preferred. The commutation relation is then [T, T°] = iv/2f***T* and the field
strenght and the covariant derivative are given by F}, = aﬂAg—ayAZ—l—gf"“bcAZAj
and D, =0, — %T“AZ. We choose here the normalization Tr (T“Tb) = 6%, The

colour decomposition is obtained by replacing the structure constants f**¢ by
i
V2

which follows from [T“,Tb] = i\/2f%¢T¢. The resulting traces and strings of
colour matrices can be further simplified with the help of the Fierz identity :

= () - e (1) ®)

a a 1
Tl = 5il5jk_ﬁcéij5kl- (3)

17



The colour algebra can be carried out diagrammatically, resulting in colour flow
lines. As an example we consider the exchange of a gluon between two quarks.
Concentrating only on the colour part we can use the double line notation of 't
Hooft [15] and write symbolically:

7 i1 i N \\U//
- % )
29 J2

a a _ 5. 1 e c
Tiljl Tigjg - 521]2 522]1 N. 621]1 522]2

In the last line we have used the Fierz identity to contract out the generators of
the SU(3) algebra.

In the pure gluonic case tree level amplitudes with n external gluons may be
written in the form

Atree = ¢"7° Y. Tr(T%0..T*M) A, (0(1),....0(n)), (5)

0€ESn/Zn

where the sum is over all non-cyclic permutations of the external gluon legs.
The A, (o(1),...,0(n)), called the partial amplitudes, contain the kinematic in-
formation. They are colour-ordered, e.g. only diagrams with a particular cyclic
ordering of the gluons contribute. Therefore they can only have singularities like
poles and cuts in a limited set of momenta channels, those made out of sums of
cyclically adjacent momenta.

The colour decomposition for a tree amplitude with a pair of quarks is
Apree(q,1,2,..,n,q) = g"? E (TU(I)...T‘T(H))W Antalq,o(1),0(2),...,0(n),q).
Sn

(6)

where the sum is over all permutations of the gluon legs. For the colour matrices
I used a short-hand notation (77M),; = (T*); ;.. Similar decompositions may
be obtained for amplitudes with more than one pair of quarks.

In the pure gluonic case the partial amplitudes A, have the following proper-
ties :

1. A, is gauge invariant. This follows from the orthogonality to leading order

in 1/N of TrT™... T .

2. A, is invariant under cyclic permutations (since Tr7* .. T is invariant
under cyclic permutations).

18



3. Reflective property :

An(ny oy 1) = (=1)" Au(1, ..., ). (7)

4. The U(1)-decoupling identity (sometimes also called the dual Ward identity
or subcyclic identity):

> A (0(1),...,0(n—1),n) = 0. (8)

U'EZn—l

This is most elegantly proven by enlarging the gauge group from SU(N,)
to U(N,.). The additional generator, sometimes called the U(1)-photon, is
proportional to the unit matrix and commutes with all SU(N,) generators.
Therefore f** = 0 if one index refers to the U(1)-photon and the photon
does not couple directly to the gluons. Equation (8) is just the coefficient
of TrT*...T* = which has to vanish if particle n corresponds to the U(1)-
photon.

These properties reduce the number of independent amplitudes.

Example : For the tree-level process with four gluons (n = 4) there are only two
independent partial amplitudes, e.g. A4(1,2,3,4) and A4(1,2,4,3).

Property (4) is just the identity

As(1,2,3,4) + A4(1,2,4,3) + A4(1,3,2,4) = 0. (9)

The discrete symmetries of parity and charge-conjugation may be used to reduce
further the number of independent partial amplitudes. Parity states that the
partial amplitude with all helicities reversed is the complex conjugate of the
original one:

A(M 2% oty = AN 27 T (10)
where the particles 1...n may be either quarks or gluons. A; = 4 denotes the
helicity of particle . Charge conjugation reverses the arrows of each fermion
line. In addition there is a factor of (—1) for each external gauge boson:

A A i ==Xgr. . Aam A A ==Agn) _
Al ™, 17 e gy g, (B + 1) ot g ) =

(1) A(g i, 1M ey g e (k1) ). (1)

2.2 The Spinor Helicity Method

The spinor helicity method [16] -[19] allows one to obtain rather compact fi-
nal expressions for tree and loop amplitudes in (massless) QCD. It also neatly
captures the collinear behaviour of these amplitudes The basic idea is to work
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with irreducible representations (of the universal covering group) of the Lorentz
group SL(2,C), namely two-component spinors of definite helicity, instead of the
usual Lorentz four-vectors. The application to fermions is straightforward if one
chooses the appropriate representation of the Dirac matrices (namely the Weyl

= (7)) (12)

where o = (1, —0;), 0" = (1,0;) and o, are the Pauli matrices. It is convenient

representation):

to work with spinors of definite helicity :

ur(p) = (1 £7)u(p),

(1 F 7s) v(p)- (13)

DO | — DD | —

ve(p) =

For the calculation of amplitudes with a large number of external momenta p; it
is useful to introduce the following short-hand notation for spinors :

|i£) = [pit) = ux(pi) = v=(pi),

(1 ] =(pi £]=us(pi) = vx(pi)- (14)
The spinor products are then defined as
(pg) = (p—la+),
pal  {p+lg—) (15)

A detailed explanation of the notation and useful properties of the spinor algebra
are given in the appendix.

The application to massless vector bosons involves the introduction of an arbi-
trary null reference momentum ¢ to express the polarization vectors :

+ <q - |7M|k_>
€y (k,q) W?

V2[kq]

The dependence on the arbitrary reference momentum ¢ will drop out in gauge
invariant quantities. Changing the reference momentum will give a term propor-
tional to the momentum of the gluon:

V2(q142) . an

ef(k,q) —ei(k,q2) = Tk k)
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The polarization vectors are transverse to k and g,

e*(k,q) k = 0,

e*(k,q)-q = 0, (18)
and normalized as

et. (5+)* = —1,

et (5_)* = 0. (19)

Complex conjugation reverses the helicity:

(5:) = £,. (20)
Further simplifying properties are:

et (ki,q) et (ks q) = e (k1,q) - e (ka,q) = 0,
*(ky, q) - e (ko ky) = 0. (21)

The polarization sum is that of an light-like axial gauge:

* k.q, + kuq
A A _ 4 4
Z Eﬁ(kv q) (Ey(k7 q)) = —Guw + k- p . (22)

A==

A separate reference momentum ¢ may be chosen for each gluon. One should be
careful not to change the reference momenta within the calculation of a gauge-
invariant quantity, since the choice of a certain set of reference momenta corres-
ponds to fixing a gauge. Of course for the calculation of different gauge-invariant
quantities (like different partial amplitudes), one is free to change the reference
momenta. A clever choice may reduce significantly the number of colour-ordered
Feynman diagrams, which have to be evaluated. For example, it is useful to
choose the reference momenta of like-helicity gluons to be identical and to equal
the external momentum of one of the opposite-helicity set of gluons.

2.3 Recursive Relations

Recursive techniques [21] - [22] build tree amplitudes from smaller building blocks,
usually called colour-ordered gluon currents or quark currents. These building
blocks are neither gauge-invariant nor on-shell, but nevertheless quite useful.
The colour-ordered gluon current .J, is obtained through the following steps:

e One starts from a pure gluonic partial amplitude A,11(1,...,n,n 4+ 1).

e One removes the polarization vector ¢#(n 4 1) for the gluon (n + 1).
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e One adds a propagator

—1 kH 1ka 1
(gw - 5>M) . (23)

2 2
kn+1 kn+1

e The gluon (n+ 1) may be off-shell, but momentum conservation is imposed

n+1

Zk = 0. (24)

The partial amplitude can be recovered from the gluonic current by multiplying
by the inverse gluon propagator, contracting with a polarization vector and taking
k2., on mass-shell. Tt should be noted, that the gluon current J, is not a gauge
invariant quantity. It depends on the choice of the reference momenta, on the
choice of the gauge fixing parameter ¢ and on the helicity configuration. The
recursive relation states that a gluon couples to other gluons only via the three-
or four-gluon vertices :

N n—1
JH1,...n) = :P—; STV (P, Piyrn) o1, o) (04 1, )
1n |¢—1
n—1 n—2
Z Z‘QWMJU(L...,@')JP(Z'—I-1,...,j)]a(j—|-1,...,n) (25)
7=i+1 =1
where
Pj = pitpiqi+...+p; (26)

and V3 and Vj are the colour-ordered three-gluon and four-gluon vertices

Va(PQ) = (9”7 (P = Q)" +2¢"Q" — 29" P"),

Sl

wvpo
Vi =

(29" 9" — g"" 9" — g"7g9""). (27)

DO | .

The gluon current .J, is conserved:

(z k;) 5 = 0 (28)

i=1

The gluon current further satisfies the photon decoupling relation
JH1,2,3,..,n)+ J4(2,1,3,..,n) + ..+ JH(2,3,..,n,1) = 0 (29)

and the reflection identity

JH(1,2,3,....n) = (=1)" ¥ (n,...,3,2,1). (30)
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In some cases the recurrence relations can be solved in closed form. If all the
gluons have the same helicity one obtains [21]

(¢ — 7" 1 nlg+)
V2(q1)(12)...(n — 1,n)(nq)

if a common reference momentum ¢ is chosen for all gluons. The backslash

JHLF, 2%, nt) (31)

notation stands for contraction with ~,, e.g.
P = %l 4.+ (32)
If one gluon has opposite helicity, one obtains

N

where the reference momentum choice is ¢; = p2, g2 = ... = ¢, = p1.

By contracting with an appropriate polarization vector, it can be shown that
pure gluonic amplitudes, where all gluons have equal helicities vanish, as well as
gluon amplitudes where only one gluon has opposite helicity.

From the last equation one obtains the maximally helicity violating gluon am-
plitudes ( where (n — 2) gluons have equal helicities and 2 gluons have opposite
helicity):

(k)"

A (1t ikt Y
AT G BT ) "12)...(n1)

(34)
This equation has been conjectured by S.J.Parke and T.R.Taylor [20] and proven
by F.A.Berends and W.T.Giele [21] using recursive relations. A closed form for

the amplitude with three opposite helicity gluons has been obtained by D.A.
Kosower [22].

2.4 Use of Supersymmetry

After removing the colour factors, QCD at tree-level may be viewed as an effective
supersymmetric theory, where the quarks and the gluons form a super-multiplet
[23]. In an unbroken supersymmetric theory, the supercharge () annihilates the
vacuum, and therefore [24]

n

(0][Q, B1P5...8,])[0) = 5" (0]P;... [Q, B,]...8,] 0) = 0 (35)

=1

where the field ®; denotes either a gauge boson ¢ or a fermion A. It is convenient
to multiply the supercharge @ by a Grassmann spinor 7, defining Q(n) = 7%Q.,.
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n is usually chosen to be a Grassmann number # times a spinor for an arbitrary
null-vector g. The commutators are then given by

[Q(0), g% (k)] = FT%(k, A% (k),
Q(9), A (k)] = FTF(k, q)g*(k), (36)
with
PH(kg) = (g + k=), T (k,q) = 0lg — k+). (37)
Using the supersymmetric relation
0 = <0\[Q,Mgl*---g;---gigiﬂ]\0>
= _F_(qvl)A(g-}_agi}_a"'79]‘_7"'797—1_797:-}-1)

+F_(j7 Z)A(A-I_agf_7 Ty Aj_7 "'792_79;—1—1)
—I—F_(n—l—1,Z)A(A+,gi",...,g]-_,...,g:,AT_L_l_l), (38)
setting the reference momentum equal to ¢; = k; and using the expression for the

maximally helicity violating gluon amplitudes in equation (34) one obtains the
expression for an amplitude with a pair of quarks:

. - 3
AT 1F ety ) = i WOUD 39
( T LT A
The effective supersymmetry of QCD at tree-level does not hold at loop-level.
However it is still advantageous ([3], [5]) to rewrite the particles propagating
in the loop in terms of supermultiplets plus remaining contributions of complex
scalar particles. We have for a gluon and a fermion

g = (g+4f+33) _4(f‘|‘5)—|—8 = AN:4_4AN:1_|_ASCG,IQT7
f = (f + S) — g = AN=1 _ pscalar (40)

AN=%denotes a N = 4 super-Yang-Mills-multiplet, which contains a gluon ¢, four
gluinos f and three complex scalars s, AV=! denotes an N = 1 chiral multiplet
with one fermion and one complex scalar. The advantages of this decomposition
are

e The supersymmetric terms are much simpler than the non-supersymmetric
ones; not only do they obey the supersymmetric Ward identity, but one can
also arrange of a diagram-by-diagram cancellation in a special gauge. Fur-
thermore N = 4 amplitudes are known to satisfy a certain power counting
criterion for cut-based calculations, explained in the next section, and can
therefore be uniquely reconstructed from their cuts.

e The scalar loop, while more complicated than the supersymmetric compo-
nents, is algebraically simpler then a gluon loop, because a scalar cannot
propagate spin information around the loop.
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2.5 Unitarity and the Cut Technique

The cut technique [26] is based on the unitarity of the S-matrix
Sts = 1. (41)
With

Sy = 1+i(2m)'" (Xpr = 2mi) Tri (42)

one derives

i(Ti-17) = % / A T3, T (43)
n hel
where the sum is over all physical states crossing the cut. With the help of the

Cutkosky rules [25] and by expanding the transition amplitude perturbatively we
may rewrite this formula as

k1 1
Ab bAlOOp = Ab b/ Atree gtree m
sor sor (27) k2 + ic k2 + ic L AR (44)
Therefore
k1 1
loo _ ree ree .
AT = /(277)4 k2 + ic k§_|_@'gAtL A}} + cut free pieces. (45)

One advantage of a cut-based calculation is that one starts with tree amplitudes
on both sides of the cut, which are already sums of Feynman diagrams. Using
the spinor helicity method simplifications can already performed at the level of
the tree amplitudes.

Within the unitarity based approach one chooses first a basis of integral func-
tions I; € F,. The loop amplitude A, is written as a linear combination of these
functions

By evaluating the cuts, one determines the coefficients ¢;.

Z.Bern, L..Dixon, D.C.Dunbar and D.A.Kosower have proven the following power
counting criterion [26]: If a loop-amplitude has in some gauge a representation,
in which all n-point loop integrals have at most n — 2 powers of the loop mo-
mentum in the numerator (with the exception of two-point integrals, which are
allowed to have one power of the loop momentum in the numerator), then the
loop amplitude is uniquely determined by its cuts. This does not mean that the
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amplitude has no cut-free pieces, but rather that all cut-free pieces are associated
with some integral functions.

In particular N = 4 supersymmetric amplitudes satisfy the power-counting cri-
terion above and are therefore cut-constructible.

If the amplitude does not satisfy the power-counting criterion, the cut calcu-
lation determines the amplitude up to an ambiguity, which is a rational function
in the momentum invariants (scalar products and spinor products). One example
for such an ambiguity would be

Ak kPR — lquqv + Lgﬁwq2
/( 3 12 (47)

27)4 k*(k — q)?

This term does not have a cut and will therefore not be detected in a cut-based
calculation. One way out is to do the calculation to order . At one-loop order
an arbitrary scale ¢ is introduced in order to keep the coupling dimensionless.
In a massless theory the factor p?° is always accompanied by some kinematical
invariant s~° for dimensional reasons. If we write symbolically

1 s\ 1 s1\ so\
loo _ 2 1 0
Ao — 6—202 (?) + gCl (E) + ¢ (E) s (48)

—&

the cut-free pieces co(so/p?)™° can be detected at order e:

So - So
Co (/L_Q) = Cp — ECy In (E) + 0(52). (49)

It is useful to split the loop momentum into a four-dimensional part and a (—2¢)-
dimensional part

EP) = @) 4 p(=2e) (50)
Setting (k(=29))2 = —)2 one replaces the propagator by

1 1 (51)
H
(k™) +p)* (k@ 4 p)* — 22

and the integral by

4=\ e T a1
/W = —(47r)5m/d)\ (%) (52)

if the integrand is a function of A? only. The net result is that one gets the
cut-free pieces by using massive formulas on both sides of the cut.
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2.6 Factorization and Constraints from Collinear Limits

The general form of an tree-level n-point partial amplitude in the limit that Pﬁm
vanishes (where Py, = p1 + ...+ pn) is

P2 =0 7

Alree(1,..,n) s AZi@l(l,...,m,P’\)
A=+

Alree (m+1,...,n, P7Y).

P12 n—m-+1
(53)
For two-particles channels (m = 2) three-point massless amplitudes are kinemati-

cally not possible. In the limit Pﬁ2 — 0 the momenta p; and py become collinear.
The factorization property is then written in terms of “splitting amplitudes” as

ree a allb s tree a ree
AI;L ("'7p2 7"'7p2\b7 ) - Z Sphtt—)\ (pé 7pbAb)A$L—1("'7P)\7 ) (54)
A=+

One-loop amplitudes factorize according to [28]

loop P127m_>0 loop A U tree —A
APP(1,..,n) Am+1(1,...,m),P)P2 A (m 41,0, P77
A== 1,m
FALE (L, ey m), P g A (m 4 1 m, P7Y)
1m
1Fact,(1,...,n
+Ar (1, m), PY) 13(2 )
1,m
AL (1, PTY) (55)

where the one-loop factorization function Fact, is independent of helicities and
does not cancel the pole Pﬁm. But Fact,, may contain logarithms of kinematic
invariants built out of momenta from both side of the pole in P? . The collinear
limit of a one-loop amplitude is given by

allb

Agfop("'api‘av'-'7p1/)\b7---) - Z (Sphtﬁ’i@(pia’pb/\b)AiLOEZi(“.’P)\7‘“)
A=+

SIS (p), g AL (s P )) . (56)

The splitting amplitudes Split”* and Split’” are universal, they depend only
on the two momenta becoming collinear, and not upon the specific amplitude
under consideration. The splitting functions are collected in the appendix. One
may use the above equation to constrain the analytic form of A%? since in any
calculation of AP the amplitudes Aiffzi and A% are usually known. Especially
the combination with the unitarity-based method allows one to place tight con-
straints on the possible analytic form of A?°?. There are not many terms, which
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will vanish in any collinear limit and which do not contain any cut. One known

exception for a five-point amplitude is the term
e(1,2,3,4)

(12)(23)(34)(45) (51)

(57)
which vanishes in any collinear limit and which has no branch cuts.

2.7 Integral Reduction

Much tedious work is usually involved in the reduction of tensor loop integrals
(e.g. integrals where the loop momentum appears in the numerator) to standard
scalar integrals.

2.7.1 The Passarino—Veltman Algorithm

Consider the following three-point integral

d**k k* kY

@r) 2 20k = (k= 1 — p)?

where p; and p, denotes the external momenta. The reduction technique accord-
ing to Passarino and Veltman [43] consists in writing I}” in the most general

= —n [ (58)

form in terms of fourvectors times external momenta and/or the metric tensor.
In our example above we would write

I8 = pip{Cor + phypsCos + {pips}Cos + 9" Caa (59)

where {pi'py} = pi'py+p5pY. One then solves for the form factors Cay, Caa, Ca3 and
Cy4 by first contracting both sides with the external momenta pi'pY, p5py, {pirs}
and the metric tensor ¢"”. On the left-hand side the resulting scalar products
between the loop momentum k* and the external momenta are rewritten in terms
of the propagators, as for example

2p1 -k = k' —(k—pi)’+pi. (60)

The first two terms of the right-hand side above cancel propagators, whereas the
last term does not involve the loop momentum anymore. The remaining step is
to solve for the formfactors Cy; by inverting the matrix which one obtains on the
right-hand side of equation (59). Due to this step Gram determinants usually
appear in the denominator of the final expression. In the example above we would
encounter the Gram determinant of the triangle
n2 ; ;
A, = 4‘ P

61
P1- P2 P% ( )
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One drawback of this algorithm is closely related to these determinants : In
a phase space region where p; becomes collinear to py, the Gram determinant
will tend to zero, and the form factors will take large values, with possible large
cancellations among them. This makes it difficult to set up a stable numerical
program for automated evaluation of tensor loop integrals.

2.7.2 The Feynman Parameter Space Technique
This method is due to Z.Bern, I..Dixon and D.A.Kosower [48]. Within this ap-

proach one introduces Feynman parameters before reducing any tensor integral.
After the usual shift of the loop momentum such that the denominator depends
only on k% but not on k* any more, the momentum integration can be performed
with the help of identities like

/d“‘kkk“f(k?) - 0,
|

/d4—2£kkukuf(k‘2) — 4_2€gﬁw/d4—2£kk2f(k‘2)_ (62)

One is left with a Feynman parameter integral. Let P({a;}) be a polynomial in
the Feynman parameter a; and denote

L, [P({a;})] = F(n_2+€)/dai5(1—2ai) P({a:})

n—24e
(Z Sijaiaj — E)
,7

where S;; = —1/2(p; + ...pj_1)* if i # j and S;; = 0 otherwise. Here the indices i
and j are understood to be mod n. Note that [,[1] is the scalar n-point integral

L[] = T(n—2 —|—5)/dai6(1 - Zai)( L
! E SZ']‘CLZ'CL]' — 6)

(63)

o d*%k 1
= (U [ e 2
(2m)4 =20 k2(k — p1)%..(k —p1 — co. — Pu1)
(64)
One changes then integration variables according to
QU .
a; = — (no sum on ),
,E a;U;
7=1
n—1
a,(1 — ‘2—:1 u;)
oy = (65)
D, aju;
71=1



and defines a matrix p;;

S = Pii_ ho summation implied, (66)
(6716 %1

such that all dependence on the a;-variables is scaled out of the denominator. It
is convenient to introduce the reduced integrals

-1
L[P{ai})] = (H %‘) L, [P({ai/ai})] . (67)
7=1
If P, is a homogenous polynomial of degree m, then the reduced integral

= ( il Pijuiuj)

(68)

Z7j:

can be obtained from the reduced scalar integral by differentiation :

Lipdan) = g, ({a%}) L. ()

Sometimes one wants to express a n-point integral in terms of lower point integrals
plus a 6-dimensional n-point integral. In order to derive the equations, which
relate these quantities, one defines the Gram determinant

A, = det(2p;-p;). (70)

(For an n-point function A, is a (n — 1) x (n — 1) determinant, e.g. one of the
external momenta has to be omitted. Note that the external momenta satisfy
momentum conservation > p; = 0.) One further defines the rescaled Gram

=1
determinant

An = (H 0412) An = E i QG0 (71)
=1 2,7=1
where the matrix n is proportional to the inverse of p:

n = an_l (72)

where N, = 2" 1detp. The variables ~; are defined as
Vo= Dm0 (73)
7=1
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and are in a sense conjugate to the «; variables :
Nooi = > pijvi- (74)
J=1

The equations, which relate a n-point integral with up to two Feynman parame-
ters in the numerator to a scalar 6-dimensional integral plus lower point integrals,

are
A 1 n A5 A AD=6—2¢
L = 5y (E Wl [0+ (n =5+ 26) A, 17=02 [1]) :
n =1
A 1 (& o e
QMJ::QN,(E)mgﬂuhwn—5+2@%g%62ug,
no\j=1
. A+ (n = 64 26)77) ap—
]n[aia]] — 7] J —I_ (27,;\[ A —I_ 6)7 7] ]nD_G—Qa[l]
n—6+2< nanaYt - Viviv\ ;D=6-2e (1)
) 18 - ~ ]n— 1
4N7’2L ; (77 1+ nay - A, 1 [ ]
L &S miphiimu — namiip (1
I1VP].
+4N2 Z_: I n—2[ ] (75)
n {,p=1 n

The above equations can be applied to reduce pentagon and hexagon integrals.
For more than six external legs there are some complications, since in this case
An and N,, vanish and a careful limit has to be taken.

It has been shown in [48] that the six-dimensional pentagon integral always drops
out of physical quantitites when applied to pentagon integrals.

2.7.3 Modified Integral Functions

One way to avoid Gram determinants in the denumerator is to enlarge the set of
scalar integral functions. Apart from the scalar n-point functions in D =4 — 2¢
one considers also scalar n-point functions in (D + 2m) dimensions [51]. Of
course, when relating these higher-dimensional integrals to the ordinary scalar
loop integrals, the Gram determinant reappears. Campbell et al. [49] have set
up a scheme which combines n-point scalar integrals with lower point scalar
integrals to form a new set of integral functions :

L = L+ BIY,. (76)

These new integral functions are constructed in such a way that the ratio L/A,,
is finite, when the Gram determinant A, of the n-point system tends to zero.
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2.7.4 Dual Vectors

In four dimensions an n-point integral (n > 4) can always be reduced to a com-
bination of m;-point functions, where all m; < 4. This follows from the fact that
there can be no more than 4 linear independent vectors in a 4 dimensional space.
Vermaseren and van Neerven [46] have given an efficient method, which relates
a scalar pentagon integral to scalar boxes. They introduce the (not necessarily
orthogonal) dual vectors

€(q17 M, 4qs, q4)7

:€(Q1,QQ7IMQ4)7 v 5(9179’27%7#) (77)

2 _
.=
4 _
=
where the notation &(p, q1, q2, ¢3) = 4i€ 4,095 q5q] 1s used. They use the Schouten
identity between the Levi-Civita tensor in order to express the loop momentum

k, as a linear combination of the dual vectors v* :

e(q1,q2,q3,q0)ky = e(pt, 92,93, 9a)k - qu + e(qu, 11, 43, )k - Go
+e(q1, g2, 11, qa)k - g3 + (g1, 92, G35 p) k- qa. (78)

This equation is then contracted with k* and the scalar products written as
2kq; = ki — k? + ¢?. After integration over d*k the box integrals with one
antisymmetric tensor in the numerator vanish for ¢ > 1. The resulting expression
is then multiplied by €(q1,q2,¢3,¢4) and the terms &(qi, g2, g3, ga)k - v* written
in terms of k- ¢; by contracting the Levi-Civita tensors. Finally one obtains a
expression, which relates the five-point integral to 4-point integrals. This method
works in four dimensions and can be used when the integral is finite. In the case
where the integral is divergent one can rely on the Feynman parameter technique.
The technique of dual vectors has been further developed by A.Signer [52].

2.7.5 Using the Spinor Algebra

Consider the integral
/ d4—25k k% (79)
(2m)4 2= k2 (k —p1)?2.(k—p1 — ... — pa)?

Calculating this integral using standard reduction techniques is quite tedious, but
using

o= k1, (80)

immediately reduces the integral to a scalar box integral. Recently Pittau [50]
has shown that, if at least two external momenta are massless, one can always
permute Dirac-matrices inside traces such that

Tr(fof) = ALK+ 3BT (81)
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where Trl) contain at most one power of the loop momentum, Tr'Y does not con-
tain the loop momentum, and the loop momentum dependence in the coefficients
A; and B; can be rewritten in terms of propagators. Assume that p; and p, are
the two massless legs. The algorithm consists in writing

Fo= ! [(2kp2) p1 + (2kp1) P2 — prkpa — Pofpr] - (82)

2p1p2

The first two term already cancel propagators, whereas a product of the last two
terms can be rewritten as

(1= [F2=)2 = [f1=) = (2kp1) (2kp2) — (2p1p2) K,

(L= 1H22) @+ K1) = gy (2mmn) (2pak) (1 = FR-)

— (2pik) (1 — [pofips|2—)
+ (2pak) (1 — [pofir 2—)
+HEH(1 = |paps 2-)] (83)

where p3 is another (not necessarily massless) external leg.

2.7.6 The Trace Formula

Combining the basic ideas of reduction methods based on dual vectors and on the
spinor algebra, I derive a formula, which allows an efficient reduction of higher
point integrals.

The kinematics are

ka k

T

Pa P3 P2 M

with

% = > pi
7=1
ki = k‘—qi. (84)

The p; are supposed to be external momenta whereas k is taken as a loop mo-
mentum. It is convenient to set kg = k and ps = —qg4. We have

2% -q = kK —ki+qf,
2k pi = ki, — Kk +pi. (85)
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It is convenient to work in a scheme where the Dirac matrices are in four di-
mensions (like the four-dimensional helicity scheme). If the integral is finite we
can take all vectors in four dimensions. The case of a divergent integral will be
considered later on. As above I start from the dual vectors written as

v = ée“bc%iewmqb”qfqg, (86)
and the Schouten identity
(g1, 42,43, 9k = (k-v") (k- qa). (87)
Now
k-e? = iée“’”d (2Trs kdededa — Trkdedoqa)
= ié€ab0d2Tfikéb¢cgd (88)

where Tri denotes a trace of Dirac matrices with the insertion of a projection
operator 3 (1 %+ s). Since

Tr(kdoficqa) = (2kqs)(29.94) — (2kq:)(2q594) + (2k49a)(2gp4.) (89)

and each terms has one scalar product symmetricin two indices, these terms drop
out.

Writing 2kq, = k* — k? + ¢2, one sees that the first two terms cancel propagators,
whereas the last term yields

1
e Teskuos = F (Trabhpopabats + aias (k5 — k)
+gigi (k3 — k3) + g5k} — K)) . (90)

This has been carefully arranged such that no constant term survives. One finally
obtains

Tfikoﬁlﬁﬂba}%h = —kngik1ﬁ2]b3[54
‘|‘k%Tr:|:k0(i)1 + P2)pspa
—k3Trafopr (P2 + hs)ha
-I-kng"iko]/?li)Q (Ps + pa)
—kZTI'i koﬁﬂbﬂba
+ (TfikOkOﬁlﬁﬂ%ﬁzi - kgTriﬁ1ﬁ2ﬁ3ﬁ4) : (91)
This equation holds if the Dirac matrices and the external momenta are in four

dimensions. The loop momentum k& may be in D dimensions, allowing the ap-
plication also to divergent integrals. (A careful inspection of the basic equation
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(87) shows that the term e(qi,¢2,¢s,q4)k* on the left-hand side has to be in
four dimensions, whereas the manipulations on the right-hand side involved only
scalarproducts 2kq, = k? — k% + ¢? which may be continued into D dimensions
as long as the external momenta ¢, stay in four dimensions.) If the integral is
finite, £ may be taken to be four dimensional and the last term vanishes. The
equation above may be rewritten as :

Try (Fprpapspaps) = —Trg (Pripapspa) (No + MOQ)
—= (Bo £ e(k — p1,p2,ps; pa)) (No + M;

_|_

[Nl I N I N N I NN el N

(
(B £ e(k, p1 + p2, pa, pa) (N1 + M
- (

(BQ + €(k‘7p17p2 + p37p4))

(BS + €(k7p17p27p3 +p4)) (N3 + Mi’?

_|_

(B4 + €(k7p17p27p3)) (N4 + MZ)

+Trs (b papaps) — Trs (Brpapspa) (No + M)

(92)
where the internal propagators and masses are denoted by N; and M;, respec-
tively. B; depends only on the box integral under consideration and is given
by

B; = st—mimi—mimj. (93)

For a tensor box-integral one can use

Trs (fprpaps) = 5 (BEe(k,pi;pa,ps))

DO | —
—~

+
e e e

(94)

_|_

with
C; = mi+mi—ml. (95)

This equation is just obtained by expanding the trace. If there is only a single
power of the loop momentum in the numerator, the terms with the antisymmetric
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tensor will vanish after integration.

It remains to investigate under which condition the traces may be formed. In
the next section I show that it is always possible to form a trace Trikpipapspaps
with ps = —p1 — p2 — ps — pa, if at least one external leg is massless.

2.7.7 Strings of Spinor Products

In practical calculations one often encounters strings of spinor products, so it is
convenient to define some short-hand notation :
First of all, if ¢ 1s a four-vector, it can be written as a sum of null-vectors :

¢ = >.d (96)

A string of spinor products with one uncontracted spinor is denoted for even [

by :
((p=11= X [pp?)(pps)- IS w1t — |, (97)
12,23...%]
whereas for odd [ :
(r=ll= 5 (our) o] loini ot — | (95)
22,83 ...7]

All vectors p;J are assumed to be null vectors. A similar definition applies for
({(p + ||- The sign of the helicity corresponds to the sign of the helicity of the
open spinor. Ket-spinors are defined analogously.

One example for the notation would be

((p—=1I = (pr = (b2 + P3) (Pa + ps + P6) - (99)
In order to keep track of minus signs, it is also useful to define a “parity” of these
objects.
PP =1if [is odd and
PP = —1if [ is even.

One can also define generalized spinor products :

((rg)) = ({p—llgt)),
[[pall = ((p+1llg—)) (100)
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Then

{({gp)) = —P"P*{{pq)),
lgp]] = —P"P[[pql],
((pa)) (ki) = ((ps)){(kq)) + PTP*((pk)){{qs)),
[pq] [[k51] = [lps]l[[kql] + P P*[[pk]][[gs]). (101)

For [ = 1 these definions give the usual spinor products.

Terms like ({(¢ — ||k||l—)), where k is the loop momentum, appear in the nu-
merator of tensor integrals . Using the Schouten identity twice, one can write:
[N (@) (g = 1IklI=)) = —P'P({qj

{agD 0 = [Ik][i=))
=P P (i) [[01((G — [I%115-))
HU @M = (] -))

+P P ()G + IR +). (102)

This will be the basic equation (together with suitable choices of ¢ and j) for
reducing tensor integrals. If a n-point integral (n > 4) has at least one massless
external leg, say pi, one can choose

li=)) = ;=)
i=)) = Ppspapspalpr—) (103)

where ps = —py — p3 — p2 — p1. Of course, if there are more massless legs,
simpler choices are possible. This method is in some sense the completion of the
algorithm given by Pittau. Pittau has shown how to reduce tensor integrals to
scalar integrals plus integrals with a single power of the loop momentum in the
numerator (rank 1 integrals). The trace method explained here allows an efficient
reduction of the rank 1 integrals.

2.8 An Example

As an example I evaluate here explicitly the cut in the channel s15 for the one-loop

amplitude A(1}, 25, 30,47 )
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The notation for the cut evaluation. Only a representative diagram

is drawn. Due to the convention to take all momenta outgoing the

helicity assignment is reversed upon crossing a cut.

Momentum conservation reads as

p+pt+ps+pa+ps+ps = 0,
ps+patps+pst+prt+ps = 0. (104)

The amplitude on the left side of the cut (corresponding in this case to two
Feynman diagrams) is given by

Z, ([78]<54><3 — 1T+ 816-) | (BHI67I5 — 13 + 4|8—>) _ (105)

5385565378 5385565348

The other diagram, where the positions of the electroweak vertex and the gluon
vertex are exchanged is not shown here. The amplitude on the right side is simply

[12](8T7)

S17

—1

(106)

Here a factor of (z)? for two crossed spinors is included. Using the cut technique
we may write

Aloop |cut -

1 dPks [ s12[12)(54)(3 — |1 + 2/6—)

~ (56) / (27)P ( 5123 No N1 Ny N5
(34)(5 — |(3 4 4)8(1 + 2)|6—)[12]

a NoNy Ny N3N,

(107)

where we have used momentum conservation and the notation Ny = k2, Ny =
—s17, Na = k3, N3 = s33 and Ny = sa48 for the propagators. Note that the
first line already corresponds to a scalar integral. To reduce the tensor integral
in the second term, we first try to sandwich the loop momentum kg between its
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neighbouring external legs by using twice the Schouten identity:

[23](23)(5 — |(3 + 4)8(1 + 2)[6—) =
(6 4+ |14 2[3+)(3 4+ |3 4+ 4[5+)(2 — [8]2—)
(6 4 |14 2124)(2 + |3 + 4]5+)(3 — [8|3—)
+(6 + |1+ 213+)(2 + |3+ 4]5+)(2 — |8|3—)
+(6 4 |1+ 2124)(3 + |3+ 4/54)(3 — 8]2—).

(108)

The first two terms already cancel propagators, whereas the last two terms may
be multiplied and divided by appropriate spinor products to form the traces
Tro21(3+ 6)43. Using the trace formula from above and keeping only the terms
which are relevant to the evaluation of this cut we may replace

Try (B21(B + 9)43) — %3123534]\[1 + %8125234]\[3

1
—5312334]\[4- (109)

(Since there are no other powers of the loop momentum in the numerator, the
terms with an antisymmetric tensor vanish. Furthermore terms with Ny or N,
will give contributions which do not have a cut in the sy channel and cannot
be detected in this evaluation. We may therefore drop them. They will be fixed
by evaluation in other channels.) This completes the evaluation of the cut. We
collect the different pieces and obtain

s1o[12)(54)(6 + |1 + 2I34)

5123556

!
AP |Cut12

Boxy

+—2119)(6 + |1 + 2|3+) (45) Box,

556523
~ 28 [61)(2 + |3 + 4]54) Boxs

556523
(164 12302+ 134 454 | 611234 (45)

(4+15+6[1+) (1+15+64+)
l (3123334130X1_+_5123234130X3__ 312534130X4>
2 \ 523856 523556 523556
(110)

where Box; denotes the four-dimensional box integral, where the propagator N;
has been removed, e.g.

B B / dPk 1
oXe = (27T)D NON1N2N3
?
= Wﬁ[l](s = Slg,t = 523,mi = 8123). (111)
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Using the flip-symmetry we may obtain the coefficient of the scalar box integral
Boxg from the coefficient of Boxy with the help of the flip-operation

l—4, 23, 56, (ab) < [ab]. (112)

bl
By the evaluation of a single cut we have obtained all coefficients of the scalar box
integrals with the exception of Boxg, this integral demands the evaluation of the
cut in the channel sy3 or s55. We also have shown that in the four-dimensional
integral-function basis there are no triangles Triys, Trij4 or Trizs nor a bubble
integral Bubble;z4. Again, making use of the flip-symmetry, it follows that the
coefficients of Trigs, Trig; and Bubbleg;3 vanish as well.

After some slight simplifications one obtains the result in the form published

in [34].
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3 Virtual Corrections to ete™ to Four Partons

The virtual corrections to ete™ to four partons require the one-loop amplitudes
to ete™ — qqgg and ete™ — ¢gQQ. These amplitudes have been calculated by
two groups independently. One group, in which I participated, was able to obtain
compact expressions by calculating helicity amplitudes using the cut-technique.
The Durham group did a conventional calculation and furnished only computer
code. The results can be found in [34] - [37] and they agree numerically. Here
I collect the decomposition of the loop amplitudes into primitive amplitudes for
both subprocesses eTe™ — qggg and ete™ — ¢GgQQ and give the explicit results

for the one-loop amplitude for the four quark process.

3.1 One-Loop Amplitude for ete™ — ¢ggg

By convention we take all momenta outgoing. A representative diagram for

+

ete”™ — qqggg is depicted in figure 3.1 and explains the labelling of external

legs.

6t +
2+

3+

Figure 3.1: A tree-level Feynman diagram for ete™ — qqgg.

For this particular diagram we have for our convention at position 5 an outgo-
ing positron with negative helicity and at position 6 an outgoing electron with
positive helicity. Crossing the momenta at position 5 and 6 to incoming states,
corresponding to the situation in e™
particle — anti-particle assignment. Therefore the diagram above corresponds to

e~ -annihilation, reverses the helicities and the

an incoming electron with positive helicity at position 5 and an incoming positron
with negative helicity at position 6. The letter R at the vertex denotes a right-
handed coupling. If the arrow of the fermion line points from minus (e.g. from
an outgoing particle with negative helicity) to plus (e.g to an outgoing particle
with positive helicity) then we have a right-handed coupling, and conversely, if
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the arrow points from plus to minus, we have a left-handed coupling. The colour
decomposition for the tree amplitude is

Aree = 26°¢%co ((T°7°), Atree(1,2,3,4)
+(T°T7),, Atree(1,3,2,4)) (113)

where the factor 2 results from the Fiertz identity for the electromagnetic cur-
rent. The short-hand notation for the colour-matrices corresponds to (727%);4 =
(T2T);,;,. co denotes a factor from the electro-magnetic coupling:

o = —Q"+vv"Ps(ss),
S
~ . 114
L v (1)

The electron — positron pair can either annihilate into a photon or a Z-boson.
The first term in the expression for ¢y corresponds to an intermediate photon,
whereas the last term corresponds to a Z-boson. The left- and right-handed
couplings of the Z-boson to fermions are given by

Is — Qsin? Oy —(@) sin O

(115)

vr

sin Oy cos Oy cos Oy

where () and I3 are the charge and the third component of the weak isospin of
the fermion. For an electron and up- or down-type quarks we have:

Q I

(2) (2h) (42)

e ~1 —1/2

The colour decomposition of the one-loop amplitude is
Al lgop = 262g4{c0 [N ((T*T%)15A1(1,2,3,4) + (T°T?)14A4(1,3,2,4))
+6%61445(1,4,2,3)]

2
b [(TT%)ua o (TT3)0a = 5-8%60] A5(1,4,2,3)

1
—|—CQ [((T2T3)14 — N—O623514> Aiw(l, 4, 2, 3)

1
n ((T3T2)14 _ N—523514) A2(1,4,3,2)
C
1
N

[

_|_

§23814A%(1,4,2,3 116
5
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where

Ny

. 1 ) )
a = Z <_Q2 + 5“2,1%(“3: + U}%)pZ(S%)) ,
=1
Ca AL Pz(ss6)- (117)
sin 20w

Ay denotes the one-loop leading-colour partial amplitude, A3 a subleading-colour
contribution. The partial amplitudes A}, A" and AZ” represent the contributions

from a photon or Z coupling to a fermion loop through a vector or axial-vector
coupling. For the squared amplitudes one obtains

Z (AzreeAtree) =

colours

N 1
= st Dot vz - 1) Aot 20,00

_A:Eree(lv 27 37 4)Atree(1a 37 27 4)}
+{2 < 3},
(118)

Z (A:EreeAl—loop + Ai—loopAtfee) =2 Z Re (AzreeAl-loop)

colours colours
= 8e*gS(NZ — 1)Re{c3A;ree(1,2, 3,4) [co (N2 = 1)Ai(1,2,3,4)
—Ay(1, 3,2,4) + As(1,4,2,3))
+or (N )A“(l 4,2,3)

2 2 1
N. — AZF(1,4,2, —A(1,4,3,2) + — AZ"(1,4,2,: )]
por (M- ) AP0, - A 0,0.9.2) 4 yoar0,429)] |
—I—{Q — 3}.
(119)
The partial amplitudes Ay, Az and A} may be further decomposed into primitive
amplitudes. Primitive amplitudes are gauge-invariant objects from which one can

build partial amplitudes. The main utility of primitive amplitudes as compared to
partial amplitudes is that their analytic structures are generally simpler because
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fewer orderings of external legs appear:

1
A1(1727374) = Aqgg§(1727374)_N—éAQJ99(1747372)

Ny — Ny
A3(1747273) = Aqgg§(1727374) + Aqgg§(1737274) + Aqgﬁg(1727473)

—I'Aqgfig(lv 3,4, 2) + Aq@99(1747 2, 3) + Aq@99(1747 3, 2)7
AY(1,4,2,3) = —A"(1,4,2,3) — A*(1,4,2,3). (120)

Ny 1
1.2.3.4) — —L A%(1.2.3.4) + — A%(1.2.3.4
(7 737 ) NC (7 737 )+NC (7 737 )7

The primitive amplitudes A* and A’ correspond to diagrams where a scalar or a
fermion is circulating in the loop and where only gluons are attached to the loop.
A" denotes the contribution from the top quark. The fermion loop in the vector
coupling contribution AY has been decomposed into a scalar loop piece A" and
an additional piece A/, It is also useful to replace in the primitive amplitudes
Aggaqs Agaeg and Agyz, the gluon in the loop by a scalar (labelled “sc”) and the
difference of a gluon and a scalar (labelled “cc”). For example A,,,; is rewritten
as

_ cc
Aqggcj - A

9999

+ A% (121)

9997"
It turns out that A is cut-constructible. The primitive amplitudes are decom-
posed into a part containing the poles in ¢ and a finite part according to

gone-loop  _ or (VAtree n ZF) (122)

where

1 T4 —¢)
T Grp T T(-2) (123)

In order to add a term proportional to the tree contribution to the virtual con-
tribution, one replaces

const
Al — Al + mAtree. (124)

For example this is needed to convert the one-loop amplitudes which have been
calculated in the FDH-scheme from the FDH-scheme into the 't Hooft-Veltman
scheme. The difference between the two schemes is proportional to the tree am-
plitude.

The explicit results for the primitive amplitudes can be found in ref. [35].
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3.2 One-Loop Amplitude for ete™ — ¢QQq

Figure 3.2: A tree-level Feynman diagram for ete™ — ¢QQq.

The tree-level amplitude is decomposed as follows

Atree = Atree(la 2,3, 4) + Atree(gv 4,1, 2)
—6f1avAtree(1,4,3,2) = f1avAtree(3,2,1,4)
= Xtree(1,2,3,4) = df1auXtree(l; 4, 3,2),

1
Atpee(1,2,3,4) = 2% (512534 - N—514532) co(1)A(1,2,3,4),

Xtree(1:2,3,4) = 2e%g <512534 - —514532) (co(1)A(1,2,3,4)
Fa(3)A(3,4,1,2)),
X(1727374) = Co(l)A(1,273,4) +c0(3)A(3747172) (125)

Here Atpee(1,2,3,4) denotes the contribution where the Z or the photon couples
to the quark line ¢1¢4 and ¢o(1) denotes the corresponding electroweak coupling.
The decomposition of the one-loop amplitude is

Al—loop = Al—loop(lv 2,3,4) + A1_100P(3,4, 1,2)
_5flavA1_1oop(1a 4,3,2) — 5flavA1_100p(3, 2,1,4)
= Xl-loop(1:2:3:4) = 81avX1_Jg0p (1543, 2);
Alloop = 263" (Nobiabsaco(1)A1(1,2,3,4) + bradsaco(1)Ax(1,2,3,4))

1
514532> c2As(1,2,3,4),

1
‘|‘§ <512534 - N—C
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X1-loop = 2e?g" (No61263ax1(1,2,3,4) + 614632x2(1, 2, 3, 4)

+ <512534 - %514532) x3(1,2, 374)> )
C
X1(1,2,3,4) = co(1)Ax(1,2,3,4) + co(3)A1(3,4,1,2),
X2(1727374) = 00(1)A2(1727374) + 60(3>A2(3747 172)7
X3(1,2,3,4) = CQA3(1,2,3,4). (126)

The function As is symmetric in the simultaneous exchange 1 «+» 3 and 2 < 4

and arises from a fermion triangle graph with an axial coupling of the Z. For the
squared amplitudes one obtains

Z (AzreeAtree) =

colours

444(]\%7_1)2\[ (1,23, 4)2 + 6 (1,4,3.2)]?
'y =51 Vo (Ix(1,2:3, 9" + 8nulx(1,4,3,2)F)

+é a0 [X7(1,2,3,4)x(1,4,3,2) + x*(1,4,3,2)x(1,2,3,4)] }, (127)

Z (AyfreeAl—loop + Ai—loopAtfee) =2 Z Re (AzreeAl-loop)

colours colours
= 8@496(2\% — 1)Re{N0X*(1,2,3,4)X'1(1,2,3,4)

+5flavNCX*(17 47 37 2)X1(17 47 37 2)
x(1,2,3,4)x3(1,2,3,4) + 5100 (1,4,3,2)x3(1, 4, 3,2)
—b1a0 [X7(1,2,3,4)x2(1,4,3,2) + x™(1,4,3,2)x2(1,2,3,4)]

1
‘|‘5flauN— [X*(1727374)X3(1747372) —I' X*(1747372)X3(1727374)] } (128)
C

To add a term proportional to the tree-amplitude one adds

const
X1 — x1+t 2927NOX’
const

The minus sign is due to our convention for the colour decomposition of Al—loop‘

The decomposition of the partial amplitudes A;, A; and Az for the helicity con-
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figuration 17273747 is
A(11)27.3747) =
Ns — N N
= A++(17 27 37 4) + TfAS7++(17 27 37 4) - VfAf’-H-(lv 27 37 4)

2 ) 1
v (A++(1,2,3,4) + At (1,3,2,4)) + 774 (2,3,1,4),

Ap(11,27.3747) =
N,— N N
= A+_(1737274) - TfAS7++(1727374) —I_ WfAf’++(1727374)

C Cc

2 _ Lo
—I_m (A+ (1737274) + A++(1727374)) - WA 1(2737 174)7

As(11,27,37,47) = A*(1,4,2,3) (130)
where N is the number of scalars (N; = 0 in QCD) and Ny is the number of

Dirac fermions. The other independent helicity configuration is decomposed into
primitive amplitudes as follows :

A(17,27 37 .47) =
N

—Nf _ Nf —

— T ASt(1,2,3,4) — L AST(1,2.3.4

Nc (7 737 ) Nc (7 737 )
2

1
~ (A*=(1,2,3,4) + A*¥(1,3,2,4)) — FANB.2.14),
Ap(1%,27,3% 47) =

= ATT(1,2,3,4) +

N, — N N
ATH(1,3,2,4) — =T Ast=(1,2,3,4) + =L AIF(1,2,3,4)
N, N,
2 _ Lo
3 (A**(1,3,2,4) + AT7(1,2,3,4)) + A (3,2, 1,4),
As(1F,27,3% 47) = —A°“(1,4,3,2) (131)

Note that A* and A appear with a different permutation of the arguments,
and the opposite sign, compared with the previous helicity structure. Although
colour decompositions do not depend on the helicity choices, these sign differences
appear because we have used the symmetries of the primitive amplitudes to reduce
the number of independent ones required. The signs in the above expressions also
depend on the relative phase conventions of the two helicity amplitudes; we have
chosen a convention where

Atree,+—(1’372’4) — _Atree,++(1’2’3’4)_ (132)

Of course, consistency in phase conventions between tree and loop amplitudes
must be maintained.
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The primitive amplitudes A¥+* and A**+* are proportional to tree amplitudes

As,—}-:l: — CFAtree,-}-:l: _i /LQ : . §
3e —S893 9 ’

and are given by

L p?\°
AlTE = pAlreetE [— (—“ ) +2] (133)

9 —S93

Atree,-}-:l:

where is given below. The remaining primitive amplitudes are decom-

posed into divergent (V') and finite (F') pieces as
Aone—loop — o (VAtree n ZF) ‘ (134)

In the formulae below the Lorentz products are denotes as s;; = (p; + p;)* and
tijg = (pi + p; + px)?. It is convenient to appreviate the following combinations
of kinematic invariants

012 = Si2 — S34 — Ss6,
034 = S34 — Ss6 — S12,
056 = Ss6 — S12 — S3a,
Ag = S%Q + 8?)’4 + 836 — 2812534 — 2534856 — 2856812. (135)

3.2.1 The Helicity Configuration ¢*QtQ~¢-

We first give the primitive amplitude AZ*(1,2,3,4) which contributes to the
leading colour part of A6;1(1;', 25, 30:47; 5-,61). This amplitude is odd under a
‘flip symmetry’, which is the combined operation of a permutation and spinor-

product complex conjugation:
flip: le4, 23, 506,
(ab) < [ab], <a_‘ b‘c_> — <a+‘ b‘c+> . (136)

For example

flip (<13> In (‘tm)) — [13]In <_t234) . (137)

—3556 — 3556

The corresponding tree amplitude for this helicity configuration is

Aot _ [12](54) BI(1 +2)[6) ,  (BH[61]BIB+4)2)

+ 1 138
5938561123 5238561934 ( )
We have
V++ _ _i /LQ 6+ /LQ : ‘|‘3 /l2 :
e? —S12 — 534 3e \ —s923
3 —S93 10
~21 ( ) —, 139
2 t —S56 —I_ 9 ( )
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F++:< BlL+2)6)? [12)" (45)° )
(23) [56] ras(11(2 + 3)14) 23] (56) haas(4](2 + 3)[1)

—S12 —S93 ~ 2mh
X [Ls_1< ) + Ls_; (834, t123; 12, 356)]

t123 _t123

BI(1 +2)[6) l<1|(2+3)|6> 1 1o(55) | Bl46) Lo( =2 )]
[56] (1](2 +3)|4) t123 t123 (23) t123

I I T (232)

S BT (PRI +10) 2

Lo (5=
+<3|4|6>2t%237§2t )]
123

—flip, (140)

where ‘flip’ is to be applied to all the preceding terms in F*+.

3.2.2 The Helicity Configuration ¢*Q~-Q%¢~

We now give the result for AF(1,2,3, 4) which contributes to the leading colour
part of the partial amplitude Ag; (17, 25 3Q, 7352,6%). This amplitude is odd

under the same flip symmetry as AF". The tree amplitude is

pueet— — 18G9 @IU+3)I6)  2HEUGIREDIH oy

5238560123 5238561934

For the one-loop contributions we have

V+— — _i /LLQ 5+ /LZ ) ‘|‘3 /52 )
e? —S12 — 834 3e \ —s93
— 1
—gln ( 523) L0 (142)

— 556

e _ (_ [13]° (45)° (12)* (3](1 + 2)[6)* )
(23] (56) t123(4[(2 +3)[1) ~ (23) [56] L1253 (13)> (1](2 + 3)|4)

e
+(_ [13)% (45) B](1+2)16)%(2|(1 + 3)|4)* )
(23] (56) t123(4|(2 + 3)[1) ~ (23) [56] L123(1[(2 + 3)[4)(3|(1 + 2)[4)?

~ 2mh
x Ls_y (834, 11235 512, S56)
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+F 312_334 VBI3+D)IAI2+DI3) 1 (s12— 554) [23] (51) (52)

2 1| 2+3 )43 + 4)[2) - 2(56) (12 +3)[4) (13 +4)2)

1 t134—t234)[34]<51><54> 1261 (52 e +B)

2(56) (1|2 +3)[9([B +4)[2)  (56) (1[(2 + 3)[49)(1[(3 +4)[2)

1(51) [62] (1](2 +4)[3)(f234 — 2534) 1 (5|(1 + 2)[6)(L[(2 + 4)[3)

2 (12 +3)[4)(1I(3 +4)[2) 2 (1|(2 4 3)[4) (13 +4)[2)

C{HE+4HB) (s12612((3]116) — (51216)) — 656((5[1]2)(2]5]6) — (5]6]1)(1]2[6)))
(11(2 4 3)[4)(L[(3 + 4)[2)As

1<2|<1+4>|3><5|<1+2>|6>656]]3m(3 san 1)

2 <1|(2—|—3)|4>A3 3 129 9344 956

_|_

[13](12) (3|1 + 2/6)? L0<i?f§’) 13 23) (12 + 3)[6)° Ll(-fﬁ)
[56] 1123 (13) B|(1 +2)[4)  s12 2 [56]t123(1](2 + 3)[4) 533

[13] (1](2 + 3)[6) (1 + 3)]6) LO(—ff)
[56] t123(1|(2 + 3)|4) S93

NI 2) 2+ 300 + 21 (=)
[56] L1253 (13) (1](2 + 3)[4) 523

1 (64 (42)” 311+ 2)4) iy 1 (=)
2(23) BO] (L2 + 3)MBI(1+2)[4) s
ey, ()
BE] {12 +3)GI(1+2)14) s

LBl el L+l o(22)
GBI+ s
1 [(5 o )<<12>[61][62]t123
TRl G + OR)A LT 56]
[12](51) (52) ts
LT )

)
+(2s12 — 656) (52) (1](3 + 4)[2) [1 6]

-|-((813 + 893)(S23 + S24) — S12(S12 + S23 — 314)) (5]116)
-I-((S14 + 824) (513 + S14) — S12(S12 — S23 + 514)) <5|2|6>] ln<_212)
— 3856
—flip, (143)

where ‘flip’ is to be applied to all the preceding terms in F*~.
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3.2.3 Subleading Colour Primitive Amplitude

Here we give the primitive amplitude A$(1,2,3,4), which contributes only at
subleading order in N.. The “tree amplitude” appearing in eq. 134 is

13](54) 2[A+3)6) (24 [63] (G2 +4)[1)

5128560123 5125561124

Agree,sl — Z [ (144)

In this case it is convenient to introduce the ‘exchange’ operation where the 5,6
fermion pair is exchanged with the 1,2 fermion pair,

exchange: 16, 25, (145)

Some of the terms also possess a symmetry “flip_sl” (distinct from the leading-
colour ‘flip’),

flip_sl: leb, 26, 34,
(ab) < [ab], <a_‘ b‘c_> — <a+‘ b‘c+> . (146)

The singular contribution is

L2\ 2/( 2\ 7
—— - — ——1. 147
+l g2 (-Slg) 3¢ (—812 2 ( )

The finite contribution is

el — l [13]° (45)° B1(1 +2)[6)*2|(1 +3)|4>2]

[12](56) tas{d[(1 +2)[3)  (12) [56]125(3[(1 +2)|4)°

~ 2mh
. 3m
x Ls_y (834, t123; S12, 856) + T 137 (S12, S34, S56)

+[1 64 (1297 11 (5) L, [641(42) |1 +3)]6) Lo( =)
2(12) BO] BT+ 2)H) 1 (12) 6] BI(1+2)1) 53

3) 1) 4 1 o(222) !
TBO G+ se 2
§ {2(1 + 3)[6)* 1n<_t123)
4(12) [56] t123(3|(1 4 2)|4)

(23) [64] 2|(1 + 3)6) 1n<—t123)
(12) [56] 3/(1 + 2)[4)?

— ﬂip_sll
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—S512 3 [1 2] 2 2 2
+ [1n<_834) (§<3|(1 DA ([56] (25)* 834656 — 2(12)* (56) [61]° 61
+4(12) 556 (52) [61] 836)
1 [12] (25)
B D (56 A3(<52> (512 — s34) — 2(56) [61] (12))

3 t123 9
B0 T 28 Az ((52) [16] (834656 + 2512612) +2([12] [56] (25)

+(12) (56) [61]°) 856)

1 <<52> g - 12 (25)°  (12) [61]2)
[49)As

203I(1+2) (56) [56]
[12][64] (32) (512 +3)1)
+<‘<3|<1+2>|4>m3 <56><3|<1+2>|4>A3)<<52>656—2<5|<3+4>|1><12>>

b 61[?;11(35 ;Ti?mg (11161 656 — 2 21(3 + 4)16) [12])

e +42)|4>A3 ((34) [41] @1(1 + 3)[6) +[63] (23) (5](2 + 4)|1))
(12)[5 6[]6<Zil’>]|(<f?:2)|4m3 (=2 (21516)656 + (2I(3 + 4)[6)854)
(12) (56) <<35|(21> oA, (53) [34] (42) + (34) [41] (12)

—(5/(1+2)I3) (32))

+2

—2

[64] 2|1 +3)[6)27[(5+6)(1 +2)[3%) | 1 (23)[46] 2|(1 +3)[6)
(12) [56] t125(3[(1 + 2)|4) 2(12)[56] 3[(1 +2)[4)2

_L @d+3)[6)” (52) ((45) 21(1 +3)|4) — (25) tm))

4(12) [56] 1123(3|(1 + 2)[4) (12) (56) L123(3[(1 + 2)|4)

—ﬂip_sl]

1 (t123634 + 2512856) ( [61]7 (52)° [61] (52)
T2 B0+ 2 A, ([12] ERGE) <56>)+<t123_t124)<3|(1—|—2)|4>A3
+exchange, (148)

where ‘exchange’ is to be applied to all the preceding terms in F*!, but “flip_sl’ is
to be applied only to the terms inside the brackets ([ ]) in which it appears. The
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three-mass triangle coefficient T' is given by

([12](25)* [56] + (56) [61]” (12))
@BI(142)|4)A3
(t123 — t124)
@BI(1 +2)[4)A3
AT (52 1] (550 12+ s00) +[12) (25)° 56
+(56) [61](12))
- <3<|5(|1(2++2i31|>23 (165] (52) 656 — [61] (12) 612) —
(23) [64]

(BI(1+2)]4)2As
[12] 612((25) tras — (21) [16] (65)))

(23)[64] (5|2 +3)[1) 1 (23)%[64]
_ <3|(1 - 2)|4>2 — §(t123534 + 2312556) <1 2> 56] <3|(1 n 2)|4>3

[63](24)
(12) [56] A
+2 (— (21314 (4]5]6) 636 + (2[113)(3[4]6)812 + (2[(1 + 3)[6)s54634)
y 2[(1 +3)]6)

(12) [56] (3](1 + 2)[4)As
(2[(1 +3)]6)(5[(2 + 3)[1) s34 (2](1 +3)|6) [14] (35)

(3[(1+2)[4)As s12556(3[(1 + 2)[4)*
+2 (— [12](23) [34] (45) +(56) [64] (43) [31] + (5](2 + 3)|1>834)
21(1 +3)16)
5125563 (1 + 2)[4)

T = 3534(t123034 + 2512556)

—6812856834 <5 2> [6 1]

[12](56) (2|3 + 4)[6)
BI(1+2)19As

((56) 656 ([61] 1125 — [65] (52) [21])

—2([65] (52) 56 — [61](12) 615)

+4

— (123034 + 2512556)

1 [16](25)
——(t1236 2
2( 123034 + 2512556) 5125563 (1 + 2)[4)

1 (13 —ti24)
T 212856 B3](1 + 2)[4) (2211 +3)[6)((513]1) — (5]4/1))

+((21316) — (21416))(3](2 + 4)[1) + [6 1] (25) b4)
[14](35)  [13](45)
( ! D

_|_(_<5|3|1> + (5l41) + l(75123 — t124)

2 30 +2)1) W0+ 209
Bl
~ (111 +3)16) - @316) + (2a]6)) (149
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3.2.4 Axial Vector Contribution

The primitive amplitude A2%(1,2,3,4) is unique in that neither of the external
quark pairs couples directly to the vector boson; instead they couple through
the fermion-loop triangle diagram. The contribution to the amplitude vanishes
when the vector boson is a photon (by Furry’s theorem, i.e. charge conjugation
invariance) The Z contribution is proportional to the axial vector coupling of the
7 to the quarks in the loop. Ignoring the u,d, s, ¢ quark masses, only the ¢, b
quark pair survives an isodoublet cancellation in the loop, due to its large mass
splitting. We use the results of ref. [39] to obtain this contribution; they present
the fully off-shell Zgg vertex, and we need only contract it with the three fermion
currents. The infrared- and ultraviolet-finite result is :

24 f(mt§ 512, 534, 556) - f(mb; 512, 834, 556)

A = —
(47)? Ssa
- ([63]<42><25> B [61][13]<45>)
(12) [12]
+(1 3,2 4), (150)

where the integral f(m) is defined in the appendix. We need only the large mass
expansion (for m = my) and the m = 0 limit (for m = m;) of this integral; these
are presented in the appendix.
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4 Cancellation of Infrared Divergences

Throughout this chapter the conventional normalization of the colour matrices is

used: Tr7T? = %5“().

4.1 Infrared Divergences

The NLO cross section receives contributions from virtual corrections and from
te~ — 4 jets the virtual part consists of the interference
terms between the tree amplitudes and the one-loop amplitudes for ete™ — gggq
and efe™ — ¢gQQ The real emission part consists of the squared tree-level

real emission. For e

amplitudes with one additional parton, e.g. ete™ — ¢gggq and ete™ — ¢gQQyg.
Both the virtual and the real emission contributions contain infrared divergences,
arising when one particle becomes soft or two particles collinear. Only the sum
of the virtual corrections and the real emission part is finite. Since the virtual
part is integrated over n-particle phase-space, whereas the real emission part is
integrated over the (n + 1)-particle phase space, this gives rise to a numerical
problem: Obviously it is not possible to integrate the divergent contributions
numerically and to cancel the divergences after the (numerical) integration. The
cancellation of infrared singularities has to be performed before any numerical
integration is done. There are basically two approaches to overcome this obstacle:
phase-space slicing [54] and the subtraction method. ( Within the subtraction
method there are two variants: the subtraction method by Frixione, Kunszt and
Signer [56] and the dipole formalism of Catani and Seymour [57]. ) To illustrate
the difference between the two approaches consider the following toy example due
to Z. Kunszt [4]: consider integrals of the form

(F) = [ 2R+ ), (151)

where the first term on the right-hand side corresponds to real emission, whereas
the second term corresponds to the virtual corrections. The function F'(x) repre-
sents a final-state observable that is infrared safe, i.e. with the requirement that
F(z) tends smoothly to F(0) as z tends to 0.

4.1.1 Slicing the Integration Region

Within the phase-space slicing method, the (n+1)-particle phase-space is divided
into a small part, containing all singular regions, and the remaining part, which
is by definition free of divergences. In the latter one the integration can be
performed numerically, whereas in the former the integrand is approximated by
the eikonal or collinear approximation. This approximation is then integrated
analytically over the one-particle subspace and then combined with the virtual
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part. In the sum all divergences cancel and the integral over the remaining hard
n-particle phase space can be performed. In the simple example above we would
split the region of integration into [0, Sin] and [S,min, 1] and approximate F(z) in

the former by F(0):

1

d.f Smin d:L' 1 /
(Fy = /xHEF(x)Jr / x1+sF(0)+gF(O)+O(5minF(0))
Smin 0
1

$1+s

Smin

Note that this method introduces an error of O(s,i,). In an actual calculation
one has to show that it is possible to choose s,,;, small enough such that the
systematical error of O(s,,i,) is smaller than the desired accuracy. It should also
be noted that in general the resulting numerical values of the terms [dx/x'**
and F(0)In s,,;, will be large in magnitude, whereas their sum may not. This
forces us to calculate the integrals over the real emission and the virtual parts
with high precision. Since this is usually done by Monte Carlo techniques, it is
computer-time consuming.

4.1.2 Subtraction Method

The subtraction method consists in subtracting and adding again suitable chosen
functions to the integrand. In the simple example above one would add and

subtract F'(0)/z'*e.

(F) =

= [ S - ro) + (L) + Lro)
- /;ff (F(z) — F(0)). (153)

In this approach no approximation is involved. The modified real and virtual
parts can be integrated without further problems. In this toy example the inte-
grand had only one singularity at z = 0. In an actual calculation there are usually
multiple singularities. Care has to be taken in overlapping regions of phase space,
where the integrand has more than one singularity. If the subtraction term does
not approximate the integrand in all singularities these singularities have to be
disentangled and subtracted separately.

Depending on the precise shape of the function F(z) the term F(xz)— F/(0) might
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oscillate such that there is a cancellation between different integration regions.
Monte Carlo integration will yield the (small) result with large statistical errors.
Again one is forced to use a high number of integrand evaluations.

4.2 Phase Space Slicing

Phase space slicing ([54], [55]) is the oldest general method on the cancellation
of infrared divergences. In the next subsection I outline the main points of this
method for the terms leading in the number of colours. Colour-subleading terms
are dealt with in the subsequent section.

4.2.1 Cross Section

Within the phase space slicing method one introduces the auxiliary concept of
a parton cross section. If two partons have an invariant mass smaller than s,,;,
they are considered not to be resolved by a hypothetical parton detector. In
this case they are considered as one parton and the integration over the soft or
collinear phase space is performed analytically, using the appropriate approxima-
tion formulae. Denote the momenta of the incoming particles by p; and p,, and
their helicities by Ay and A;. Denote the mommenta of the outgoing partons by
k; and the helicities by p;. The parton cross section is defined as

1

dobarton  _ K E E |A|2 AT (py + po, k1, ..., ko)
A1y Ag n partons
P15 .ees fln,  Tesolved

(154)

where we have averaged over all initial particle helicities and summed over all
outgoing parton helicities. The kinematical factor is given by

K(s)= \/(3 —(my + m2)2) (5 —(mq — m2)2). (155)

|A|” is the relevant matrix element for n resolved partons to a given order in
as. The resolved n-parton phase space is given by (including identical particle
factors):

dor*(Q,1,..,n) =

1
= ||® Sii — Smin )dP,(Q, 1, ...,1). 156

The jet cross-section is then obtained from the parton cross-section by applying
the jet algorithm and/or the experimental cuts:

dolet — O(experimental cuts)daparton. (157)

This gives the following picture :
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Yeut Ymin

Inside the small cone of order Ymin = Smin/Q? the (n 4 1) parton matrix element
is approximated by its soft and collinear limits and integrated analytically over
the soft or collinear phase space. The result is combined with the virtual part.
The sum is infrared finite and can be integrated over the remaining n-parton
phase space. Outside the small cone, but inside the big cone of order y.,;, which
represents the experimental cuts and the jet clustering algorithm, the (n + 1)-
parton matrix element is integrated numerically. (Depending on the details of
the jet finding algorithm and the experimetal cuts, the big cone need not be
“cone-shaped”.) By construction this region does not contain any singularities
and the integration can therefore be performed safely. The region outside the big
cone corresponds to the (n+ 1)-jet region, and is therefore of no relevance for the
n-jet cross-section.

The Lorentz-invariant phase space d®,, is given by

)1 5(k?
) T om0t
dP 1k,

12)]._.[ D12E

i:l

dq)n(kalv"7kn) = (QT)D5D (

= (2r)P6P (

The phase space volume is

/dd)n S (g)M% (159)

The phase space factorizes according to

(27)Pd®, (P, p1y..pn) =
= (QW)D_ldQqu)j(vala "'7pj)dq)n—j+1 (P7 vaj+17 7p7b) (160)

(158)

Q->k
Q-3 k

J
where () = 3~ p;.
i+1

4.2.2 Leading Terms in the Number of Colours

Within the phase space slicing method the integration region for real emission
is divided into two regions : One small region, which contains all the singular-
ities and where the calculation is done analytically but approximately. In the
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remaining region the integration can be done exactly by numerical methods. It
is convenient to define the inner cone via an invariant mass $,,;,. The approxi-
mation of the matrix elements within this small region by its soft and collinear
limits introduces an error of O(s,i,). Therefore one has to show, that one can
choose s,,;, small enough that the systematical errors due to this approximation
are negligible. On the other hand one wants to choose s,,;, as large as possible
in order to reduce statistical errors in the Monte Carlo integration.

The formalism for phase space slicing is explained in detail in the paper by
Giele and Glover [54]. Here I recall the basic features. In the soft limit each
coloured-ordered amplitude factorizes according to

2
N, ) ) )
Ap? = 2 5 © (2Fiky1 + 2Fikys + ... + 2Fik,;) | A, (161)
where the eikonal factors are
25,
Wik, = 2—2 (162)
SacSch

The factor of 2 in front comes from the summation over the (unobserved) soft
gluon helicities. The integration of an eikonal factor over the soft phase space
yields

2Sab 1 12w\ < Sab )
do —_— = — . 1
/ soft SacSch (477)2_5 F(l - 5) e? <szn) Smin ( 63)
Note that

1 1
(4m)2=T(1 —¢)

= o+ 0(e%). (164)

In the collinear case there is an overall factorization of the amplitudes (after
averaging over angles):
1
|A(ecyn,a,bym,. ) = ¢*—Pe_w |A(.,ne,m, )] (165)
Sab

The integration over the collinear phase space yields

1 1 1 4?2\
Ao 1—Powy = — - Iew 166
/ coll = emet (4%)2_5F(1—6)6<5mm) ’ (166)
where
1—22

1 P"—>ab
I = - / dz—rczah 167
A ETE) (167)



and

Smin Smin
Z1 = 5 Z9 = . (168)
Sne Sem

The integration over z is bounded by z; and 1—2z5 in order to avoid the soft region,
which was already accounted for. The splitting functions in the conventional
scheme are given by

1—|—z4—|—(1—z)4

P, = (C

9799 4 z(1—z)
z 1 —=z

= 2 1 —
OA(l—z+ z +Z( Z))’
1+22—€(1—2)2

Pieqg = 2CF 1—~

2z

= 20r (T (1 =e)(1-2),
2+ (l—z)P—c¢

1—¢

= 2TRN; (1 - %__j)) . (169)

Pyngg = 2TrNy

The integrated splitting functions in the conventional scheme are then

C P2t =2 11 67 2
]g_>gg = —A<%———|—<———|—W—)€—|—O(E2))

2 € 6 18 3
C 11 1 1 67 w2
= TA (—lﬂzl —IHZQ — F + (511’1221 + §1ﬂ222 - E + ?) e+ 0(62)) 5
2°—1 3 7T
]q—>qg — CF ( 2 - - Z —I_ <_Z -I_ F) & ‘I’ 0(52)
3 1 7T w2
= CF (_IHZQ_Z—I_ (§1H222—Z—|—F)€+0(62)) ) (170)
1 5 9
Iy—qs = TrNy (g + 55 + O(e ))
1 5
= TRNf (g + 66 + 0(62)) . (171)
In the following we will write
Tmay = 12, +ell , +O0(). (172)
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Plugging everything together, the finite part of the multiplicative factor for a
colour-ordered antenna with n gluons is :

4 2
g*er N, <Rn — ﬁnlg_}qq> = gQCch{(n +1)In® ( a )

Smin
o (0] ()
2 _
-I-an( a ) (ln( a1 ) -|-...—|-1n< 51g ))
Smin Smin Smin
4 CA 1 Smin /1'2 0 Smin
—— | — |1 | 1
i Lo (e () o () e (5
2
Smin  Smin 124 0 Smin  Smin
I! | I —_—
* 9799 ( Sq1 7 S12 ) +in (Smm) 9799 ( Sq1 7 S12 )
4.+
2
Smin Smin H 0 Smin Smin
b (e e () e (2
gmas S(n—-1)n Sng Smin g9 S(n-1)n  Sng
CA 1 Smin ﬂQ 0 Smin
-|-—20F (]q—>qg ( Sr ) +1In (Smm I, ., o
R L P (173)
n 9—99 n Sumin 9—99 '

The factor C4/(2CF) = N2/(N2? — 1) compensates the different colour factors in
the definition of the splitting functions.

4.2.3 Subleading Terms in the Number of Colours
A partial amplitude factors in the soft gluon limit like
App — g-Eik), - A, (174)

where the eikonal factors are
(ab)
(as)(sb) ’

In subleading colour we have terms like

[ad]
[as][sh]

Eikh =2 Eik,, = -2 (175)

AZL AL, + AT AT,
soft gluon helicity A
= ¢* (Bik®-EikO* + Bk EiKO7) (AD=A0 + AD-AD) - (176)

There are three different cases, depending how the soft gluon is inserted into the
partial amplitude A(l_gl and Aﬁfjl.

n
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1. Two common legs

S AZAL + AUAL, 22 (AP A+ AP AL)
A

n
SasSsh

(177)

2. One common leg.

Co

<

S ALAL + A A =
A

2, {ab)  [cd] [ab] ~ (ca) @) 4(1) 1 A1) A(2)
o2 Gy e+ ) (748 AT A)

— g? . 2( Sab . She + Sac > (A(Q)*A,Ell) T A(l)* ’ELQ)) (178)

n n
SasSsh SbsSsc SasSsc

3. No common legs.
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oA AL, + Al A, =
A

) (LB abl __{cd) (@ A1) 4 AW A()
2 (e * e ) (A7 A + A0

— g? 2( Sac . Sad + Sbd . She ) A(2)*A7(11)+A(1)*A(2))
(

n n n
SasSsc SasSsd SbsSsd ShsSsc

179)

In each case the last line indicates the different regions of phase space where the
matrix element will be approximated by the appropriate eikonal approximations.
Note that there are several soft regions.

In the collinear limit tree-level partial amplitudes factorize like

An-l—l — 4 Z Spht—A(pjavpl/)\b)An('”vPA?"') (180)
/\:+/—

where P = p, + py, po = zP and p, = (1 — 2)P. A, A, and Ay denote the

corresponding helicities. The splitting functions are given in the appendix.

4.2.4 Real Emission with Two Quarks and Three Gluons

The colour decomposition of the tree-level amplitude for ete™ — ggggq is

As = (T'T°T%)13A5(4,1,2,3,q) + (T T°T?)45A5(q, 1,3, 2, q)
+H(T*TT)3A5(q,2,3,1,q) + (T°T'T%);A5(¢,2,1,3,q)
HIPT %) A5(q,3,1,2,9) + (T°TT")4qA5(q, 3,2, 1,9). (181)

The partial amplitudes are given in [38]. The matrix element squared can be
written as

A2 = AlCA; (182)

where

DN — = WD W DD
— N W= N W

QR R QR

e e N N’ N’

(183)

=
[
N
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and the colour matrix is given by

ch) ch) ch) ch) ch) CEIS)
cg?)) 053) 0513) ch) ch) ch)
ch) 0513) ch) ch) ch) ch)

O = 184
ch) ch) ch) ch) 04(13) ch) ( )
ch) 0(23) ch) 6513) ch) ch)

0513) ch) ch) ch) ch) 653)

where the colour factors are

) _ <1>3 (N2 — 1)

1 2 N2 )

B <l>3 (N? —1)?

2 2 N2 Y

(3) (1)3 N2 -1

c = [=

3 2 N2 Y

N2 (N2 =1)(N?2+1
&Y = (5) ( ;;2 ) o _ . (185)

If one gluon becomes soft or collinear, the matrix element squared reduces to the
one with one gluon less

ot [ Riing(0,1,2,0) & Ros(9,1,2,9) ) ¢
|A5|2 R AZ ( C1(2) dzag(Q7 3 7?) c(22) off(Q7 ’ 7q7) )A4 (186)
62 Roff(q71727q) cl Rd’iag(q72717Q)

where the colour factors are

S - o 3
2 N
1\2 N2 — ]
4 = - <§> N (187)
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The finite R-factors are given by
Rdiag(Q7 17 27 Q) =

N?Z -1 _
= gQCF{ LN RQ(q71727Q)

[

@R, 1.2,0) = Rale,1.0) - Rila:2.0)
1
v o
—I_QIQ_“?@}?

ROff(Qv 17276) =
2

N? ) ) .
= 9201‘{ N (Ri(q,1,9) + Ri(q,2,9) — Ro(q,q))

_|_

+ RQ(Q717276) _Rl(Q7lvq) _Rl(Q727Q)+RO(Q7Q))

1 _ _ _
—I_ﬁ (Rl(q7 17 Q) —I_ Bl(Q727 q) - QBO(q7q))
+21, 07} - (188)

The first three lines for Ry;,, give the separate contributions from the terms with

(3) (3) (3) (3)

the colour factors ¢;”,¢;” and ¢35, respectively. (¢;” has been written as cf) =
2c§3) — c(23).) The last line corresponds to the contribution from the A(q, ¢, Q, Q, g)
amplitudes, when one pair of quarks become collinear. The first two lines for R,

®3)

correspond to the contributions from ¢y and cgg). We have used the notation

2 2
S(a,b) = m?( a )+ln2 (ﬂ) +21n< a )m( S“b), (189)
Smin Smin Smin Smin

2
]ﬂ*bc(zh 22) = ]alJ—>bc(Zl7 22) + L?—»bc(zh 22) In ( ! ) 3 (190)

Smin

4 OA Smin
2 — a) — —21,_, N 191
Ro(q,q) S(q,q) N.2Cy 1% ( Seq ) o

q ~ 4 CA Smin
R1(q,1,q) = S(Q71)+S(1vq) - F [E]q—n;g (?)
¢ q

Smin  Smin CA Smin
I : A i 192
+ggg(5q1 Slq)+20qug(51q)] (192)

a — 4 O min
Ra(q,1,2,q) = S(q,1)+5(1,2) + 5(2,9) - N, [ﬁ]qqu (2—1)
¢ q

Smin  Smin Smin  Smin
—I_]g_>gg ? —I_ ]g_ﬁgg ’
Sq1 S12 S12 Sag
Cy

Smin
q
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4.2.5 Real Emission with Four Quarks and One Gluon

The tree-level amplitude for ete™ — ¢gQQg can be written as

1 1 1 1
As = 5514T32D1 + 5532T14D2 - 5512T34D3 - 5534T12D4

where the factor 1/2 is due to the conventional normalization of T* and

D1 = Co(l)B1(0,1,2,3,4) —|—Co( ) 2 0:3 4,1,2)

D2 = Co(l)B2(0,1,2,3,4)—|—Co( ) 1 03 4,1,2)
1
+5flﬂUN ( (1)B4(07174 3,2 —I_CO( )B3(0;372;174))7
C

Ds = co(l)5~ 330,1,2;3,4)+co() —Ba(0;3,4;1,2

Dy = co(l )
+6flav (Co(l B2(0,1,4 3 2) —I-Co( )

40,1,2,3 4)‘|‘Co() 3303,4,1,2

The partial amplitudes B; are given in [38]. One can write
145)2 = DCD.

Then the colour matrix is given by

cgl) 0 0(21) 0(21)
0 cgl) c(21) cgl)
O =
0(21) 0(21) cgl) 0
cgl) cgl) 0 cgl)

where

1 1
AV = ch(Né -1, = —g(Né - 1)

The colour decomposition of the four quark amplitude can be written as

1 1
Ay = = 1,2.3.4
4 2( Nc >X(777)
1(55 155)5 (1,4,3,2)
5 14032 N. 12034 | Oflav X1, %, 9,

where

¥(1,2,3,4) = A4(1,2,3,4) + A4(3,4,1,2).
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(0;

+5”““N10( o(1)Bs(0;1,4;3,2) + ¢o(3) Ba(0;3,2; 1,4))
(0;
)

( ( )
+5ﬂw( o(1)B1(0;1,4;3,2) +c0( ) By(0;3,2;1,4)),

( ( )

) 1 )

0;3,2;1,4)).

(194)

(195)

(196)

(197)

(198)

(199)

(200)



The matrix element squarred we may write as
(0) _(0)
A2 = ot G =
| A4l X ( cgo) cgo) X

with

and

L x(1,2,3,4)
X7 Shmex(1,4,3,2) -

In the soft gluon limit, the functions B; behave like

B1(0;1,2;3,4) — g¢-FEiksy - A(1,2;3,4),
By(0;1,2;3,4) — g¢-Eikqys- A(1,2;3,4),
Bs(0;1,2;3,4) — g Eikss - A(1,2;3,4),
B4(0;1,2;3,4) — g¢-Eikqg- A(1,2;3,4).

(201)

(202)

(203)

(204)

In the limit where one pair of quarks becomes collinear, the amplitudes factorize

as
B1(0;172;374) - gzSphtP(374)A4(17P7072)7
A
32(0;172;374) - gzSplitP(374)A4(1707P72)7
A

B5(0;1,2;3,4) — 0,

B4(0;1,2;3,4) — ¢>_ Splitp(3,4) (As(1, P,0,2) + A4(1,0, P, 2)).
A

One of the functions B; is redundant, since
Bl—|—BQ—Bg—B4:0.

The contribution from unresolved phase space is written as

A Ry (1,2,3,4) &V Ropr(1,2,3,4) \
YN R (1,2,3,4) P Ruiay(1,4,3,2)
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with
Rdmg(l, 2,3,
[ o(1,4) + Ro(2,3)) + Ro(1,2) + Ro(3,4)

( o(1,3) + Ro(2,4) — Ro(1,2) — Ro(2,3) — Ro(3,4) — Ro(1,4))],
Roff(1,2,3 4) =
N:(Ro(1,2) + Ro(2,3) + Ro(3,4) + Ro(1,4))
NZ+1
N,

[

4) =
C(R

_|_

(Ro(1,3) + Ro(2,4) — Ro(1,2) — Ro(2,3) — Ro(3,4) — Ro(1,4)).
(208)
(1)

The first line gives the contribution from the colour factor ¢;’ while the second

(1)

line gives the contribution from ¢; .

4.2.6 Subtleties of Phase Space Slicing

Phase space slicing requires to split up the (n + 1)-parton matrix element into
terms with a definite singularity structure. For each of these terms only the
regions of phase space have to be cut out in which singularities actually occur.
These regions may be different for different terms. Cutting out additional regions
may result in neglecting contributions which do not vanish in the s,,;, — 0 limit
but give a finite contribution. Therefore multiplying the squared amplitude by
a product of O-functions [T O(s;; — Smin) Which cuts out all regions in which the
integrand may have singularities may give a wrong result. To illustrate this point
consider a simplified 4-parton matrix element

AP = —— i — (209

S¢1512527 5425215173

The first terms has singularities in s,1, 512 and s3 7, whereas the second has singu-
larities in s,2, 512 and s1 7. Assume that this matrix element gives the real emission
to a 3-jet quantity. Cutting out additional phase space consists in considering
integrals of the form

1
I = /d@4m®(sq1 - Smin)®(312 - Smin)®(32tj - Smm)
O (Smin — S42)0(3 jets). (210)

Here we have taken only the first term of equation (209), the first three © -
functions cut out the poles, whereas O(s,,in — S42) forces in addition 0 < s, <
Smin- O(3 jets) denotes the jet defining function. It is easily verified numerically
that this integral approaches a constant value in the limit s,,;, — 0 and may
therefore not be cut out.
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In conclusion it is essential to decompose the matrix element into terms with
definite singularity structure and to cut out for each term separately only the
regions in which singularities actually occur.

4.3 The Dipole Formalism

The dipole formalism [57] is based on the subtraction method. The NLO cross
section is written as

GNLO  _ /dUR_I_/dUV

= / (dO'R - dO‘A) —I—/ (dav + /dJA) (211)

where in the last line an approximation term do has been added and subtracted.
The approximation do# has to fulfill the following requirements:

e do? must be a proper approximation of dof* such as to have the same
pointwise singular behaviour (in D dimensions) as do® itself. Thus, do*
acts as a local counterterm for dof and one can safely perform the limit
¢ — 0. This defines a cross-section contribution

O'?;ﬁ_?} = /(daR — do?

e=0
n+1

EZO) . (212)

e Analytic integrability (in D dimensions) over the one-parton subspace lead-
ing to soft and collinear divergences. This gives the contribution

ohi0 = /(daV+/daA) : (213)
1

n e=0

The final structure of a NLO calculation is then

oMo = ol o le. (214)

Catani and Seymour derive the dipole formalism within the conventional dimen-
sional regularization scheme (CDR). The approximation term is written as the
n-parton Born term do® times the dipole factors :

dUA = Z dUB®dVdipole' (215)
dipoles

The integration over the (n + 1)-parton phase space yields

/ do? = Zdipoles/dUB ®/dvdipole - / [dJB ®]] (216)
n+1 n 1

n
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where the universal factor [ is defined by

I = Z /dvdipoleS' (217)
dipoles 1

The (n + 1) matrix element is approximated by

2. 2. Din=

pairs i,j k#i.J

:ZE_

pairs i,j k#i.J

1 - s Iy T - =
Loy (1), s by | == Vi1, ooy (27), s Ky o
s (B )b V1))

(218)

where the emitter parton is denoted by 75 and the spectator by k. The momenta
are defined by

1
s N7
Dk 11— ypka
- Y
Py = pi+p - Hpg (219)
where
- PPy (220)

Pipj + PiPk + Pipi.
Both the emitter and the spectator are on-shell (]5?] = p; = 0) and momentum
conservation is implemented exactly

pi+pi e = P+ (221)

The Ty and T;; are the colour charges of the spectator and the emitter, respec-
tively. The colour charge operator is defined as if.,; if the emitting particle
is a gluon, as T} if it is a quark and as (T,S-)Jr = =T} if it is an anti-quark.
The V,; 1 are matrices in the helicity space of the emitter. They are related to
the D-dimensional Altarelli-Parisi splitting functions and depend on y and the
kinematic variables z;, Z;, which are given by

s PPk _ DiPk
Z PiPe + PiPe PijPe’
5 o= 1z =—bilk Bl (222)

Copipk+Pipe Pibr
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One finds

€ 2 z z
Vagb = 87 aubosCr [1_5.(1—y) _(1“2')—6(1—22')],
€ v 2 ~ ~ XV XV
Voo = 8rp*a,Tr l—g“ — ——(Zipt — Zpf ) (Zipf — ijj)] ,
DiPj
V. = 87u*a,20, | —¢™ ! + ! -2
gk = ST G T T 20 —y) 1= 5(1—y)
1 ~ ~ XV X
H1 = )t — 5t sznl (223)
i Pj

where s, s are the spin indices of the fermion 5 and p, v are the spin indices of
the gluon z5. Note that the spin correlation tensor

1
pip;

(Zipl — 2305 ) (Zip} — Z3p%) (224)

is orthogonal to both pi: and p;. Integrating the dipole factors over the dipole
phase space and averaging over the polarizations of the emitter one obtains

/d' (P Pe)(Vigk) = o1 ( dmp” )EVZ']‘(&?); (225)

27 T(1 — &) \ 2pi;pr

3(1—e) F[1 1 3+4e¢ ]

Vi(e) = m 2 Em
= CF[%+;—€+5—%2+0(6)]7
T, [ 1 20
Vaa(e) = T(1—3¢) R[_g(l—&s)(i%—?@)]
= TR[_?)Z_E_§+O(€)]’
B F3(1_€) 1 1 11 — 7e
Vole) = mwf‘ l§+22(1—35)(3—25)]

1 11 50 T
_ o0, |1 Ea , 22
Ca LQ + 6e + 9 2 + O(E)] (226)

By subtracting from the real emission part the fake contribution we obtain

do®™ —do®* = dén4 [|M(P17---7Pn+1)|29§f1(P17---7Pn+1)
- Z E Dij,k(plv"'7pn+1)07iut(p17"'7}5ij7"'7}~7k7"'7pn+1) .
pairs i,j k#6.J

(227)
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Both do® and do# are integrated over the same (n + 1) parton phase space, but
it should be noted that dof is proportional to 0:4, , whereas do* is proportional
to 8<*. Here 6** denotes the jet-defining function for n-partons.

The integral over the subtraction term is written as

/“daA - t/[daB-](eﬂ (228)

n+1 n
where
Qg 1 1 drp? )
Ipp) = — 2 1 Sy T - T 229
(p17 » P ) e F(l _€)Z:T22V(€)kz;éz k <2p2pk> ( )
where
v = (LT L K40 (230)
: = i - — — - 2 7 €
e 3 € !
with
3 11 2
7 7{_2 67 7{'2 10
Ki—gs=|z—— ; Kieg =13 — % — 9 RNy 231
SO SR

Note that the T; are acting on the colour space of the amplitudes. In summary
the dipole formalism needs

e a set of independent colour projections of the matrix element squared at
the tree level in D dimensions, summed over parton polarizations.

e the one-loop matrix element in D dimensions;

e an additional projection of the Born level matrix element over the helicity
of each external gluon in four dimensions;

e the tree-level (n + 1)-matrix element in four dimensions.

4.3.1 Spin Correlation

In this subsection I give the relevant formulae for the implementation of the spin
correlation using helicity amplitudes. Let A* denote the n-parton amplitude,
where the polarization vector €, of the emitter gluon has been amputated. Using

g Piiq” + pi;q"

eV e 4 (M) e”
() e+ () o

, (232)
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where ¢ is an arbitrary reference momentum, we obtain
(A") (—gw) AY = A3 AL+ AT A (233)

where A4 denotes the helicity amplitude where the emitter gluon has positive or
negative helicity. The dependence on the reference momentum ¢ drops out, since
(}52']4)M A" =0 (gauge invariance), ¢, = 0 (property of the polarization vectors)

and (p;;)* = 0 (the gluon is on mass-shell). For the spin correlation we obtain
(A (ot —22p2) GGant = 29) A, = |BAL + EPAL[E, (234)
where

g — lat|Zbi — Zipilpit)
V2(gpij]

As reference momentum one may choose ¢ = p;, in that case F reduces to

(235)

Zilqpil(pipij
V2[gpi;]
Using the fact that the spin correlation tensor is orthogonal to p;; one shows
again that the dependence on the reference momentum drops out.

4.3.2 Colour Correlation

The colour correlation matrices may be obtained by two ways. The first approach
is the one given by Catani and Seymour. Within this approach one acts with the
colour charge operators on the n-parton amplitudes. For example

a9’ 739

<q71727Q|Tq'T1|q71727 > <T2T1 A(qal 2 ) Tl T2’A(q72 )*)

, ) TLT2A(q,1,2,q)
Real Vrpargpl _ mparp1'rply | gi g ’
T, 2Tr (T Tr =TT T ) ( Tq?ZfZ“ZlqA(q,2 q) (237)
Here the colour charge operator for the gluon has been written as
ifr = 2T (T°TT" — T°T°T") (238)

On the other hand one may start from the colour decomposition of the (n + 1)
-parton matrix element in the form of equations (182) and (196). One then
considers the soft and collinear limits using the partial fraction decompositions
(177) - (179). This procedure is identical to the one followed in the phase space
slicing approach. With the help of the identity

Sab Sab Sab

= + (239)

SasSsh Sas(sas + Ssb) Ssb(sas + Ssb)
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the colour correlation matrix can then be read off from equations (186) and
(207). This approach has the advantage that it makes the connection between
each divergent term in the (n + 1) -parton matrix element and the corresponding
subtraction term transparent.

The leading order matrix element ete™ — ¢g19293¢ needs 27 dipole factors. There
are six terms where the quark is the emitter and a gluon the spectator and three
terms where the role of the emitter and spectator are exchanged. The colour
correlation matrices are invariant under the exchange of emitter and spectator.
The colour correlation matrix for the case T, - Tj is given by

G _ 0 1.3 _ (3
T, Ty = 1 62(3)_ 61(3) 2 (?g) - ((je?) ) (240)
5(04 _‘32) C3 — G
If the antiquark ¢ is the spectator we obtain
®3) (3)

—c —c
T, Ty = ( _0?3) _c?s) ) (241)

4 3

Finally the colour correlation matrix where both emitter and spectator are gluons
is given by

(3) G _ ()
B —c; 4 2¢;7 —c3 0
T -1y = ( 0 _e® 49 _ ) (242)

All other colour correlation matrices can be obtained by a permutation of indices.

The leading order matrix element ete™ — ¢gQQg needs 12 dipole factors associ-
ated with the splitting ¢ — ¢¢ and 12 dipole factors assocoiated to the splitting
g — qg or ¢ — ¢q. The relevant colour correlation matrices for the first case
where already given above. The colour correlation matrices for the latter case

are
(1 M (1
¢ c c (1)
T .7 — _]if_?_QJifc _J{TC_CQ 1+NLC2) (243)
T R O N SR (1) _ 9"
~% e’ (1+5) a’ = 2%
(1) e SR ) 1
T,-Tg RN e ) Mo wt N N°) (244)
- (14 5m) —ar 7AW
c(l) 1) 1
, 2 2 CQ 1 ‘I_ N2
&’ (1+ %) 2%



4.4 Comparison between Phase Space Slicing and the Dipole
Formalism

Both phase space slicing and the dipole formalism provide a general algorithm
for the cancellation of infrared divergences. Apart from that they have several
advantages and disadvantages.

e Within the dipole formalism the matrix elements of the real contributions,
the virtual corrections, the subtraction term and the integrated subtraction
term can be put in different subroutines and tested separately. In particular
the integrand do® — do# can be checked in each collinear limit.

e In order to construct the subtraction term colour correlated (and helicity
projected) amplitudes are only needed for the n-parton configuration.

e The subtraction term requires the evaluation of many dipole factors (51 for
ete™ — 4 jets). Although do” — do# does not give large numerical values,
this term tends to give large statistical errors. This requires a high number
of integrand evaluations. It turns out that a straightforward implementa-
tion of the dipole formalism requires roughly the same computer time as
the phase space slicing method with a remapping of phase space.

e Within the phase space slicing method the (n+41)-parton matrix element has
to be broken up to implement the 6(s;; — $min )-functions, which cut out the
singular regions. In the colour subleading part, the implementation of the
f-functions has to be done according to the partial fraction decomposition
of the eikonal factors. Care has to be taken that no finite region of phase
space 1s cut out.

e Within phase space slicing one has to reproduce a logarithmic term by
numerical integration. This is not always easily achieved. The problem can
be cured by a remapping of phase space, as explained in the next chapter,
such that the poles of the integrand are absorbed into the integral measure.

e Using phase space slicing the result will be a difference between two large
numbers, which therefore have to be computed with high precision. A pos-
sible way to circumvent this problem is to cancel the logarithmic terms on
a point-by-point basis. Starting from a “hard” n-parton configuration, one
integrates numerically the real emission part over all “soft” one-parton con-
figurations. The sum of the real emission part and the virtual contributions
is then integrated over the “hard” phase space. The mapping of the “hard”
n-parton phase space into all “soft” (n+1)-parton configurations is in some
sense the inverse mapping of the dipole formalism, which maps a (n + 1) -
parton configuration into all possible n-parton configurations.
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e Using the phase space slicing method one has to show that the result is
independent of s,,i,.

4.5 Regularization Schemes and Splitting Functions

Theoretical calculations of infrared-safe quantities in QCD should lead to unam-
biguous results, independent of the chosen regularization scheme. Regularization
schemes are needed in order to handle ultraviolet and infrared singularities. Since
the results are only calculated within perturbation theory, numerical differences
between results obtained in different regularization schemes are attributed to un-
calculated higher orders. In a NLO calculation infrared singularities cancel be-
tween one-loop integrals and phase space integrals of tree-level matrix elements.
The independency of physical quantities is only achieved if the regularization
scheme is unitary. Unitarity means that the amplitudes have to fullfill the con-
dition

2AbsT,, = Y |Tw| (246)
b

up to the relevant order in perturbation theory. In particular, at NLO the dis-
continuity of the one-loop matrix element on left-hand side provides a constraint
on the squares of the tree-level matrix elements on the right-hand side. Unitarity
demands therefore that unobserved particles are treated uniformly. Unobserved
particles are virtual, collinear or soft particles. Catani, Seymour and Trécsanyi
[61] have shown that this recipe enforces unitarity up to the calculated order.
Terms sensitive to the precise definition of the regularization scheme enter the
calculation usually in the virtual part through tensor loop integrals, and in the
real emission part through the splitting functions, which enter the dipole factors
(in the dipole formalism) as well as the contribution from unresolved phase space
( within phase space slicing).

4.5.1 Dimensional Regularization Schemes

All schemes entail continuing the momentum integrals (both the loop integrals
and the integrals over soft and collinear phase space) to 4—2¢ dimensions in order
to render them finite. Having done this, one is left with a lot of freedom how to
treat the momenta of the observed particles and the polarization vectors of all
particles. As a pratical matter the observable external momenta can be effectively
taken to be four-dimensional by taking the momentum components in the (—2¢)-
dimensions to vanish in a given scattering process. Various regularization schemes
are :

e Conventional dimensional regularization (CDR) [63]: All momenta and all
polarization vectors are taken to be in I dimensions.
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e 't Hooft-Veltman scheme [64]: The momenta and the helicities of the unob-
served particles are D dimensional, whereas the momenta and the helicities
of the observed particles are 4 dimensional.

e Four-dimensional helicity scheme (FDH) [32]: All polarization vectors are
kept in four dimensions, as well as the momenta of the observed parti-
cles. Only the momenta of the unobserved particles are continued to D
dimensions. Today most calculations are carried out in this scheme, mainly
because it fits nicely with the spinor helicity method and respects super-
symmetry.

4.5.2 Splitting Functions

The probability of finding a particle b inside a particle @ with fraction z of the
longitudinal momentum of @ in the p.-frame to lowest order in «; is given by

[60]

APaipe(2)dz = Z—Spwbﬂ(z)dzdt (247)
™

where ¢ = In(Q?/Q2). The splitting function P,_p;.(z) is given by

| 2

|Aa—>b c
Paciyelz) = 2(1-2) 3 =3 (248)
spins, +
colours

where a sum over the spins and colours of b and ¢ and an average over the spin
and colours of a is taken (if the case).
In QCD one has the following symmetries:

Pq—>q+g(z) = Pq—>g+q(1 _Z)7
Pymgiq(2) = Pogrg(l —2),
Pysgig(2) = Pyogyy(l = 2). (249)

The limit where p; and p; become collinear is precisely defined as

k? v
R R e e
z 2p-n
N
o= (1 — )t — k- 2L . 250

n* is an auxiliary light-like vector which is necesarry to specify the transverse
component k; (ki -p = ki -n = 0) or, equivalently, how the collinear limit is
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approached. The polarized splitting functions are [57]:

. 1 2
Pyogg(z,ki,e) = 26,5CF ( 1+Z —e(1 —Z)) ,
3 N z 1—2
Pyegg(z, ki e) = 204 [—g“ (1 +

— Z z

— Z

Ly
)—2(1—5)2(1—2)2%CL :

- kM kY
Pz, ki,e) = 2Tg (—g‘“’ +4z(1 — z) ZQL) (251)
1

where the spin indices of the parent parton a have been denoted by s, s if a is

a fermion and p,v if a is a gluon. A statistical factor of 1/2! for two identical
particles is included in the ¢ — gg case. The D-dimensional splitting functions
are obtained after averaging over the polarizations of the parton a. They are
according to Catani, Seymour and Trécsanyi [61] given by

z 1—=2 hy

Pyyy = QOA(1_2+ - +1_€Z(1_Z)>a
2z

= —I—hg(l—z)),

2 - z)) (252)

—c
where the parameter depends on the scheme and is equal to by, = 1 — ¢ in

Pingy = 20F<1

Py—yi = 2TrN; (1 -

the conventional dimensional regularization scheme and the ’t Hooft-Veltman
scheme and h, = 1 for dimensional reduction. In particular they obtain the
same splitting functions in the conventional scheme and in the 't Hooft-Veltman
scheme. The integrated splitting functions, entering the contribution from the
unresolved phase space within the phase space slicing method, are then as follows
(only the terms I' are scheme-dependent) :

Ca (1 1 67 7?2
];*gg(CDR) = 7 (5 In® z1 + §1n2 29 — E + ?) ,
1 7T 7l
1 2
IQﬁqg(CDR) = CF (5 In® z9 — 1 + ?) ,
5
In the FDH-scheme one obtains, using the results from Catani, Seymour and
Trocsanyi :
Ca (1 1 32 x?
];—wg(FDH) = 7 (5111221 + §1n222 - ? + ?) ,
1 3 x?
1 2
Iy y(FDH) = Cr (§ln 2= 5 + F) ,
5
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In the literature there is some disagreement concerning the splitting functions in
the 't Hooft-Veltman scheme. The splitting functions in the HV scheme given
in the paper by Giele and Glover [54] as well as in the paper by Kunszt, Signer
and Trécsanyi [62] disagree with the result from Catani, Seymour and Trécsanyi.
Since the results from Catani et al. are manifest unitarity, they appear to be
correct. (D.A. Kosower has rechecked the splitting function for ¢ — gg¢ in the
HV scheme and agrees with Catani et al.) Further confirmation is certainly
desirable.

4.5.3 Conversion to the 't Hooft — Veltman Scheme

The one-loop amplitudes have been calculated in the four-dimensional helicity
scheme. The transition rules between one-loop amplitudes calculated in the FDH
scheme and the corresponding ones calculated in the HV scheme are [52]

N, n ng NV,
Aone—loop _ Aoney—loop — 2Atree <_C . q q c) 255
FDH HV cryg 3 T IN. T (255)
where n, is the number of quarks. The one-loop amplitude for ete™ — ¢ggg is
converted into the 't Hooft-Veltman scheme by

1 ] 1 1
A](?Ir‘l/e oop _  jone loop or §g2NC (1 _ W) Atree7 (256)
c

whereas the one-loop amplitude for eTe™ — ¢gQQ is converted by

Aoneloop - jone-loop _ 2y (% - %) Atree. (257)
C

4.5.4 Procedure Adopted in the Numerical Program

The procedure adopted in the numerical program is as follows : The one-loop
amplitudes have been calculated in the FDH scheme and are converted in the
HV-scheme with the formulae quoted above. The splitting functions entering
the contribution from the unresolved phase space or the integrals over the dipole
factors have then to be taken in the 't Hooft-Veltman scheme as well. We take
the formulae for the splitting functions in the HV-scheme from Catani, Seymour
and Trécsanyi (which are identical to the ones in the CDR scheme).
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5 Monte Carlo Integration Techniques

Due to the complicated excluded phase space regions (due to the experimental
cuts and the jet algorithm) and the complicated expressions involved, the in-
tegration over phase space has usually to be done by Monte Carlo techniques.
Reducing the statistical errors involves a variety of techniques. First I give an
overview of the basic principles of Monte Carlo integration, based on the review
by F.James [66].

The heart of Monte Carlo integration is a pseudorandom number generator. The
default random number generators provided by the standard libraries are quite
often not appropriate for these purposes. As an example, the standard ran-
dom number generator of the C implementation at our institute has a period of
215 — 1 = 32767, certainly not enough, if one integration involves up to 10® calls
to the random number generator. Subsection 5.2 deals therefore with pseudoran-
dom number generators and is based on [67] and [68].

Monte Carlo integration of complicated functions in high dimensions is most ef-
ficiently done with the VEGAS-algorithm ([69], [70]), briefly described in section
5.3.

The numerical NLO program requires the integration of the virtual corrections
(and the Born contribution) over an n-parton phase space. I will call an n-parton
phase space configuration a hard phase space configuration. Mapping a hyper-
cube of random numbers in the intervall [0,1] and of dimension 4n into a set
of n physical four-momenta is done with the RAMBO-algorithm [71], described
in section 5.4. Furthermore the integration of the real emission part requires
the integration over an (n + 1)-parton phase space. Using phase space slicing
it is desirable to generate phase space configurations which are “close” to the
Smin-boundary of phase space slicing. I will call such an (n+ 1)-parton configura-
tion a soft phase space configuration. Although originally developped for phase
space slicing, this remapping is also useful to improve the efficiency of the dipole
formalism. The remapping of phase space is described in section 5.5 and the
application to the dipole formalism is given in section 5.5.1.

5.1 Basic Monte Carlo Techniques

e Crude Monte Carlo : Choose randomly values of x and average the values

of f(x).

e Stratified sampling : This technique consists of dividing the full integration
space into subspaces, performing a Monte Carlo integration in each sub-
space, and adding up the partial results in the end. If the subspace and the
number of points in each subspace are chosen carefully, this can lead to a
dramatic reduction in the variance compared with crude Monte Carlo, but
it should be noted that it can also lead to a larger variance if the choice is
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not appropriate. Without further improvement this method is limited to a
small number of dimensions.

Importance sampling : Mathematically, importance sampling corresponds
to a change of integration variables :

dG(x)
9(z)

f(z)dz — [(z) ;o glx) = : (258)

The relevant variance is now var(f/g), which will be small if g is chosen to
be close to f in shape. The function g has to fullfill the following criteria:

1. g(x) is a probability density function, e.g. g(z) > 0 for all x and g is
normalized

/da:g(:z;) = 1. (259)

2. G/(z), the integral of g(x) is known analytically.

3. G(z) can be inverted (e.g. solved for z) analytically, or a g-distributed
random number generator is available.

4. the ratio f(z)/g(z) is as constant as possible, so that the variance
var(f/g) is small compared with var(f).

One disadvantage of importance sampling is the fact, that it is dangerous
to choose functions g, which vanish somewhere. If ¢ vanishes somewhere
where f is not zero, var(f/g) may be infinite and the usual technique of
estimating the variance from the sample points may not detect this fact if
the region where ¢ = 0 is small.

Control variates : As in importance sampling one seeks an integrable func-
tion ¢ which approximates the function f to be integrated, but this time
the two functions are subtracted rather than divided,

[def@)y = [de(f@) - g() + [ drg(). (260)

If the integral of ¢ is known, the only uncertainty comes from the integral
of (f — g), which will have smaller variance than f if ¢ has been chosen
carefully. The method of control variates is more stable than importance
sampling, since zeros in g cannot induce singularities in ( f —g). Another ad-
vantage over importance sampling is that the integral of the approximating
function g need not be inverted analytically.

Antithetic variates : Usually Monte Carlo calculations use random points,
which are independent of each other. The method of antithetic variates
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5.2

deliberately makes use of correlated points, taking advantage of the fact
that such a correlation may be negative. Mathematically this is based on
the fact that

var(fi + f2) = var(fi)+ var(f2) + 2covar(fi, f2). (261)

If we can arrange to choose points such that f; and f; are negative corre-
lated, a substantial reduction in variance may be realized. The most trivial
example for the application of the method of antithetic variates would be
a Monte Carlo integration of the function f(x) = z in the interval [0, 1] by
evaluating the integrand at the points x; and 1 — x;.

Pseudorandom Number Generators

Pseudorandom numbers are produced in the computer by a simple algorithm,
and are therefore not truly random.

So-called “quasirandom” numbers are also produced by a numerical algorithm,
but are not designed to appear to be random, but rather to be distributed as
uniformly as possible, in order to reduce the errors in numerical integration.

A good random number generator should have the following properties:

Good distribution. For pseudorandom numbers, this means good random-
ness. For quasirandom numbers, the desired quality is uniformity.

Long period. Both pseudorandom and quasirandom generators always have
a period, after which they begin to generate the same sequence of numbers
over again. To avoid undesired correlations one should in any practical
calculation not come anywhere near exhausting the period.

Repeatability. For testing and development, it may be necessary to repeat
a calculation with exactly the same random numbers as in the previous
run. Furthermore the generator should allow the possibility of repeating a
part of a calculation without having to start at the very beginning. This
requires to be able to store the state of a generator.

Long disjoint subsequences. For large problems it is extremely convenient
to be able to perform independent subsimulations whose results can later
be combined assuming statistical indepedence.

Portability. This means not only that the code should be portable (i.e. in a
high-level language like Fortran or C), but that it should generate exactly
the same sequence of numbers on different machines.

Efficiency. This was considered very important in the early days.

82



Some algorithms for pseudo-random number generators:

e Multiplicative linear congruential generator. Each succesive integer is ob-
tained by multiplying the previous one by a well chosen multiplier, option-
ally adding another constant, and throwing away the most significant digits
of the result:

si = (asi—1 + ¢) mod m. (262)

One choice for the constants [68] would be a = 69069, ¢ = 0 and m = 232,
Other choices are a = 1812433253, ¢ = 0 and m = 2°? or a = 1566083941,

¢=0and m = 232,

e Fibonacci-type generators. Each number is the result of an arithmetic or
logical operation (addition, subtraction or exclusive-or) between two num-
bers which have occured somewhere earlier in the sequence, not necessarily
the last two :

$i = (Si—p 0 8i—y) mod m. (263)
The generator used in the program is of this type:
s; = (Si_ga + 5i_55) mod 2°%, (264)

It was proposed in 1958 by G.J. Mitchell and D.P. Moore. This generator

has a period of
2! (27 1) (265)
where 0 < f < 32.

o Shift register or tausworthe. This class of generators is based on the same
formula as lagged Fibonacci generators, but with m = 2 and the o-operation
is exclusive-or.

5.3 VEGAS - Monte Carlo Integration in High Dimen-
sions

Whereas the variance-reducing techniques described above require some advance
knowledge of the behaviour of the function to be integrated, the VEGAS algo-
rithm ([69], [70]) is adaptive, e.g. it learns about the function as it proceeds. The
algorithm combines the basic ideas of importance sampling and stratified sam-
pling into an iterative algorithm, which automatically concentrates evaluations of
the integrand in those regions where the integrand is largest in magnitude. The
algorithm starts by subdividing the integration space into a rectangular grid and
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performs an integration in each subspace. These results are then used to adjust
the grid for the next iteration, according to where the integral receives dominant
contributions. Eventually after a few iterations the optimal grid is found. After
this initial exploratory phase, the grid may be frozen and in a second evaluation
phase the integral may be evaluated with high precision according to the opti-
mized grid. The separation into an exploratory phase and an evaluation phase
allows one to use fewer integrand evaluations in the first phase and to ignore the
numerical estimates from this phase (which will in general have a larger variance).

5.4 Generating Hard Phase Space Configurations
The RAMBO algorithm [71] is used to map a hypercube [0,1]*" of random

numbers into n physical four-momenta with center-of-mass energy w. Mass-
less fourvectors can be generated with uniform weight and this routine is used
in the Monte Carlo integration. In order to test the program, it is also useful to
be able to generate phase space configuration, where two particles are collinear.
This is done by first generating an (n — 1)-parton configuration with one massive
particle, and letting this particle subsequently decay.

5.4.1 Massless Particles

The phase space measure for a system of n massless particles with center-of-mass
energy w is

- d4pi
=1 (271—)3

The RAMBO algorithm generates a set of massless four-momenta p! according
to the phase-space measure (266) as follows:

R (P-Yn) . e66)

e Generate independently n massless four-momenta ¢ with isotropic angular
distribution and energies ¢? distributed according to the density ¢%e~%dq?.
Using 4n random numbers p; uniformly distributed in [0, 1] this is done as
follows:

ci = 2py; — 1, i = 27y, @ = —In(pi, pi,),

@ = ¢\J1—clcosyi, qf =q¢)\/1—cising;, ¢ =qc. (267)

e The four-vectors ¢! are then transformed into the desired four-vectors p',
using the following Lorentz and scaling transformations:

P o= (v +b-q),
po= o (g +bg)+a(b-q)0) (268)
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where

QT

M

w
M’

4= -— Q# = quﬁx M = \Y; QQ' (269)
=1

5.4.2 Massive Particles

Phase-space configurations corresponding to massive particles can be generated
by starting from a massless configuration and then transforming this configuration
into one with the desired masses. This is done as follows : Let p! be a set of
massless momenta. The p!' are transformed into the four-momenta k! as follows:

K= /m? 4+ ()2,
ko= &p (270)

where ¢ is a solution of the equation

>/t + €00 )

It should be noted that in the general case no analytic expression for ¢ exists and
¢ has to be computed numerically. The phase space integral can be written as

.. ({r}) /1‘[ d4p2 8(ki — mi)0(k)(2x 454( Zk) ({p}: {k})
(272)

where the weight is given by

(%i%) B (ﬁl |]7§é|) (Z|k|2) | -

In contrast to the massless case, the weight is no longer constant but varies over
phase space.

This algorithm is used to generate events with n massless particles, such that
m particles have an invariant mass A. For m = 2 and A — 0 this gives a use-
ful routine to check collinear limits of amplitudes numerically. The algorithm
consists of the following steps :

o Generate an event with (n —m + 1) massless particles.
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Find ¢ by solving f(£) =0, e.g.

F(&) =w =3 \mi+(Epf)* =0 (274)

where mqy = X and m; =0 for z > 1.

Transform to k; and m;.

Generate an event with m massless particles and w = A.

e Do a Lorentz transformation such that @ = A~'(}\, 6)

5.5 Remapping of Phase Space

The remapping of phase space is due to D.A.Kosower [72] and was originally
intended for the phase space slicing method. The application to the dipole for-
malism is straightforward and given in the next subsection. Within the phase
space slicing approach one wants to improve the efficiency of the Monte Carlo
integration of the real emission part by absorbing the poles of the matrix ele-
ment into the integral measure. Soft and collinear singularities appear in the
real emission part of the squared amplitudes as poles 1/(sqp85:) (soft) or 1/s4
(collinear). For example the leading colour contribution to the real emission part
te~ — ¢¢19293q is a incoherent sum of cyclic-ordered partial amplitudes.
A specific term in this sum has singularities in

from e

Sq15 5125 S23, S35 (275)

where the indices correspond to the specific cyclic order. (The other terms are
obtained by a permutation of the gluons.) Soft singularities occur only when
two adjacent invariants become small. Let us consider the set of products of
invariants

S = {(sa-1)i " sian) b (276)

such that for every soft or collinear pole, the corresponding combination is in-
cluded into the set. In the example above we would consider the set

{(sq1512), (s12523), (S23537) } (277)

In the region where s,554 is the smallest product, we remap the phase space
as follows: Let k!, ks and ki be the corresponding momenta such that s,, =
(K + k)%, sap = (ky + ks)? and s, = (k) + ks + k})?. We want to relate this
(n 4 1) particle configuration to a nearby “hard” n-particle configuration with
(ko + k»)* = (K. + ks + k})?, where k, and k; are the corresponding “hard”
momenta. Using the factorization of the phase space, we have

dK?
dq)n_|_1 = dq)n—l —2 dq)g(lﬁ, ka? k‘s, k‘b) (278)
T
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The three-particle phase space is given by

dos(K, k' k., ki —ds,sds5dQ d o
3( 1, a’ 9 b) 32(27)5501) S Ssh b ¢
1
= —————ds,,dsgdod®o (K, k,, k 2
TEISEe SasdsspdsdDo( K 5) (279)
and therefore
ds,sdsgdo,
dd, = do,——— . 2
+1 4(27)3 8 ap (280)

The region of integration for s, and sg 1S Sus > Smin, Ssp > Smin (from the
O-functions of phase space slicing) and s,s 4+ ss < sq (Dalitz plot for massless
particles). It is desirable to absorb poles in s,s and sg into the measure. (Using
phase space slicing these poles will give after integration numerically large terms
with In? s,,;, and Ins,,;,. A naive numerical integration of these poles without
any remapping results in a poor accuracy.) This is done by changing the variables

according to
o Smin \ "™
Sas = Sab ’
Sab

Ssb =  Sab <Sm”L) (281)

Sab

where 0 < uq,uy < 1. Note that uy,us > 0 enforces s,5, 84 > Smin. Therefore
this transformation of variables may only be applied to invariants s;; where the
region 0 < s;; < Spin 1s cut out. The phase space measure becomes

1 ass min
40,0y = db,— S5 (5 )@(sw—l—ssb<3ab)du1du2d¢>s. (282)
4(27)3 Sap Sab

This give the following algorithm for generating a (n + 1)-parton configuration:

o Take a “hard” n-parton configuration and pick out two momenta k, and
ky. Use three uniformly distributed random number w1, uy, u3 and set

2
Sap = (ko + k)7,
Smin “
Sas = Sab 5
Sab
Smin “z
Ssb =  Sab 5
Sab

¢s = 2mus. (283)

o If (845 + Ss5) > Sap, reject the event.
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If not, solve for k!, kj and k. If s,s < sy we want to have k; — k; as
Sqs — 0. Define

Ea _ Sab — Ssb’ ES _ Sas + 3567 Eb _ Sab — Sas’ (284)
2 SL’Lb 2 Sab 2 Sab

0., = arccos (1 — %) , By = arccos <1 — QE:bEb) (285)

It is convenient to work in a coordinate system which is obtained by a
Lorentz transformation to the center of mass of &, + k; and a rotation such
that k; is along the positive z-axis. In that coordinate system

p. = FE,(1,sin 0y cos(¢s + 7),sin Oy sin(gs + 7), cos 0,),
ps = Fy(1,sin 0 cos ¢, sin O sin ¢, cos ),
pg = Eb(lvoaoal)' (286)

The momenta p/, ps and p} are related to the momenta k!, ks and &} by a
sequence of Lorentz transformations back to the original frame

Ky = Aoostay(¢)Ar(0)p, (287)

and analogous for the other two momenta. The explicit formulae for the
Lorentz transformations are obtained as follows :

Denote by K = y/(k, + k3)? and by py the coordinates of the hard mo-
mentum k; in the center of mass system of &k, + k;. pp is given by

Q, k-Q - ky - Q ky\ A
S ot E (e D 9
p (Kb K "\ R ® @ (288)
with () = k, + ky. The angles are then given by

!
f = arccos (1_[)5 pb),

t ot

2pypy

o

¢ = arctan (—i) (289)
Dy

The explicit form of the rotations is

1 0 0 0

cos 0 sinb

A(0) = o 1 0 |
—sinf 0 cosé
0 0 0

cos¢p —sing 0
sing cos¢ 0
0 0 1

Asy(8) = (290)

O OO = O OO



The boost k' = Ap,osiq is given by
Q ., 7 Q . qQ ¢\ =
K = 0 L 4+ 291

with @ = ko + ky and K = /(ka + ky)2.

o If 5,5 > su, exchange a and b in the formulae above.

o The “soft” event has then the weight

1 asos min
Wit SCLELEN (3 )Wn (292)

s
2(27)3 s Sab
where W,, is the weight of the original “hard” event.

Note that the set S contains only invariants in which the integrand has actually
poles. This set is different for different terms obtained from the (n + 1)-parton
matrix element after decomposition into terms with definite singularity structure.

5.5.1 Improving the Dipole Formalism

Within the dipole formalism we have to evaluate the terms

/ (daV +doP o ]) and / do®t — do?. (293)

n n+1

The first term is most efficiently integrated by splitting this term into a leading
colour piece and a subleading colour piece. The leading-colour piece gives the
numerically dominant contribution. The leading-colour one-loop amplitudes are
relative simple and can therefore be integrated without further problems. The
subleading-colour one-loop amplitudes are more complicated and need therefore
more computer time. On the other hand they will result in numerical smaller
contributions and therefore can be evaluated with fewer integrand evaluations.
Although the second term do® — do# gives usually only a modest numerical
contribution, a naive Monte Carlo integration will give large statistical errors. A
simplified model for this term would be

F o= /ldx (f(“') - @) (294)

T x

with the additional condition f(0) = ¢(0). The integral can be rewritten as

Poe [ adWD e - ge) (295)
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Using the Taylor expansion for f(z) — g(x) one sees that the first term gives a
contribution of order O(s,i,). In the second term the 1/z behaviour has been
absorbed into integral measure by a change of variables y = Inz, and the inte-
grand tends to be more flat. This may reduce the statistical error in a Monte
Carlo integration. The precise implementation for the term do® — do# is done
as follows: Consider a set of products of invariants, including all the invariants
in which the (unsubtracted) matrix elements has poles (and which may give rise
to logarithms therefore). The relevant set of products of invariants for the two-
quark, three-gluon final state consists of the pairs

Sg = {5q15127Sq151375q25217Sq252373q333175q3532
523537, 532527, 513537, 531517, S1252¢, 521517
512523, 513532, 521513
Sq1517, $4252q5 Sq252¢ - (296)
Singularities associated with the last three pairs appear only in the colour-

subleading part.
The set for the four-quark, one-gluon final state consists of the pairs

S, = {ngsgciaSQQSngSqQSg@SQgSg@
59754Q5 5¢Q5Qq> 57959Q > 59Q5QQ
Sqg59Q ngSgQ} . (297)

The second line takes care of the collinear singularities when two quarks become
collinear. The phase space is then partitioned according to

q)n-}—l = Z @((1, b, C)®n+1 (298)
S

where O(a, b, ¢) = 1 if s4p8s. is the smallest product in the set S, and O(a, b,¢) =0
otherwise. The sum is over all products in the set §. We may use the symmetries
under permutations in order to reduce the number of summands which need to
be evaluated. For the two-quark, three-gluon case we have to evaluate the terms
with O(g,1,2) and ©(2,3,¢q) with weight 6, as well as the terms with ©(1,2,3)
and O(q, 3, q) which are weighted by a factor of 3. For the four quark, one gluon
case we evaluate the terms with ©(q, ¢, Q) and ©(q, g,q), which are weighted by
a factor 2, the term with 0(q, ¢, Q) weighted by a factor 4 and the terms with
0O(q,9,Q) and O(q, g, q) with unit weight.

If 54554 1s the smallest product in the set the phase space is split into two regions:
the first region is defined as the region where s,5 > S, and sg > S, Where
Smin 18 NOw an arbitrary parameter. In this region the phase space mapping of
the previous section is applied.
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The second region is necessarily defined as the complement of the first region:
Sas < Smin OF Ssp < Smin. In this region the integration is performed without any
phase space mapping.

In summary the term dof — do* is calculated as follows:
do® — do? = E (dG'R — ClG‘A) O(Sas — Smin)O(Ssp — Smin)O(a, s,b)

+ zsj (do™ — do™) (1 = O(5as — $min)O (505 — $min)) O(a, 5, )
(299)

Note that this slicing does not involve any approximations and is exact whatever
value s,,i, might take. The aim is of course to choose $,,;, such that the statis-
tical errors are reduced.

It turns out that by choosing $,,;, small enough the second region gives a vanish-
ing contribution. The result obtained from the first region has a statistical error
reduced roughly by a factor of 10 compared to the result without any remapping
and the same number of integrand evaluations. Empirically

S A (300)

is a good value.
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6 Phenomenology

6.1 Exact General Purpose Programs at NLO for ete™ —
4 Jets

The numerical program developed in this work is a general purpose program for
calculating four-, three- and two-jet quantities to next-to-leading order (NLO)
in a, (and five-jet quantities at leading order). I will call it MERCUTIO. It is
similar to MENLO PARC [92], DEBRECEN [97] and EERAD2 [100]. The main
difference among the programs is the technique used for the cancellation of real
and virtuel singularities: MERCUTIO uses the dipole formalism [57]. The cancel-
lation of the infrared singularities in the program MENLO PARC is based on the
subtraction method according to [56], the program DEBRECEN uses the dipole
formalism whereas the cancellation in the program EERAD2 is done with the
help of phase space slicing. The only approximations which have been made are
the neglect of the light quark masses and terms which are suppressed by 1/mfop
or higher powers of the top quark mass. MERCUTIO calculates the quantities
in fixed order in ag, no resummation of terms of In y.,; or In y.,; has been imple-
mented. Therefore our results are reliable only for values of y.,; which are not
too small. The program calculates the jet quantities at the partonic level, and
no hadronization is done.

The program is designed to calculate any infrared-safe observable. An observable
is called infrared-safe, if its actual value does not change when an arbitrarily soft
gluon is emitted, nor when a parton splits into a pair of collinear partons.

6.1.1 Power Corrections

An infrared-safe observable R that depends on some large momentum scale /s
has the following form

R <\/§) = Ryeps (Oés (\/E)) + Ruon—pert (\/g) . (301)

The term R,.,; denotes the perturbative component that can be calculated as
a power-series expansion in as(y/s) and, thus behaves as (1/In+/s)". This is
exactly what the program MERCUTIO does, calculating the perturbative com-
ponent to NLO. The remaining contribution R,,,,_per¢ 1s due to non-perturbative
phenomena ( hadronization) and is power-behaved, i.e. proportional to (1/4/s)".
Since the power p is positive, R,on—pert 15 suppressed when s — oo but can be
quantitatively relevant at finite values of y/s. Techniques to estimate the size of
the power corrections are the operator product expansion (where it is applicable),
the renormalon approach and the estimation based on event generators.
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6.1.2 Small y.,,

At small y.,; one hopes to probe the interface between perturbative and non-
perturbative QQCD. There are two obstacles to that :

First of all the perturbative expansion in not only an expansion in ay, but also
in In® y,r and Inyes. At small y,,; the logarithms become large and the jet algo-
rithm has to allow a resummation of these terms to all orders. The factorization
properties of the Durham algorithm allow such a resummation, while the JADE
algorithm does not.

Secondly hadronization corrections might be substantial.

6.1.3 Differences to Event Generators

The NLO programs like MERCUTIO shall not be confused with Monte Carlo
event generators like HERWIG [89] or JETSET [90]. These event generators ba-
sically consist of a hard subprocess (with L.LO matrix elements), final state parton
shower descriptions and a non-perturbative component, at a certain scale of the
order of 1GeV, where the partons from the shower are converted into hadrons
according to some phenomenological model. The hadronization parameters are
tuned in order to reproduce the experimental data. The parton shower description
usually simplifies the kinematics and the helicity structure and neglects interfer-
ence effects. In contrast to QED, where the photon emission is incoherent due to
the eikonal identity, the gluon emission in QCD is coherent beyond the leading
logarithmic approximation. This is sometimes referred to as the angular ordering
property of QCD.

Furthermore the final state radiation and the hard matrix element can in princi-
ple not be treated separately. This is also an approximation.

The event generators may be used to estimate the size of hadronization correc-
tions.

6.1.4 Colour Coherence

In QED the photon emission is incoherent : The photons know only about their
source, 1.e. a fermion line, but they don’t know about each other. Up to an over-
all factor, the probability for the emission of n photons is just the product of the
probabilities for the independent emission of each of them in the soft photon limit.

The situation is different in QCD : The gluon emission is incoherent only in
leading order in the number of colours, but becomes coherent beyond this ap-
proximation. This is illustrated by the following example : The amplitude for
a qq pair plus n gluons, where one gluon has opposite helicity as the others, is
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given by

bt e o Loy 09?1
AlgT 17, g ) = 1g {17;@}(71 A )qq (@) (g (nd)

(302)

where the sum is over all permutations of the gluon legs. In the case for the
corresponding QED-amplitude for the emission of n photons one replaces the
colour matrices by a unit matrix 1,;. With the help of the eikonal identity

AL S L)
o Tn-en = g (303)

the squared matrix element in the QED case may be written as

8°:Sq 1
@ .
E = eQ”NC% —— + interference terms
colours Saq {1,...,n} $91512---5ng
3 n
52,845 S
2 @ qq
= N LT . (304)
g2 1l o
qq =1 “gqt<q

In contrast in QCD the interference terms are suppressed by a factor of 1/N? and
they therefore no longer sum up to cancel the coherence inherent in the sum of
squares.

6.2 Jet Algorithms

A jet is qualitatively a large amount of hadronic energy in a small angular region.
In ete~-annihilation the initial state is purely electromagnetic and therefore all
hadrons in the final state can be associated with the hard scattering process. A
jet algorithm has to be infrared safe. Given a set of four-momenta ( which may
either correspond to the measured four-momenta of particles in an experiment
or to the four-momenta of partons obtained from a theoretical calculation) a jet-

algorithm assigns in et

e~ -collisions each four-momentum to a jet. Usually this is
done by introducing a resolution variable y;;, where a smaller value of y;; means
that the particles ¢ and j are “closer” to each other. The clustering procedure of

a jet algorithm is in most cases defined through the following steps:
1. Define a resolution parameter y.,;.

2. For every pair (pg,pr) of final-state hadron momenta compute the corre-
sponding resolution variable yy;.
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3. Ify;; is the smallest value of y;; computed above and y;; < Y.y then combine
(ps, p;) into a single jet ("pseudo-particle’) with momentum p;; according to
a recombination prescription.

4. Repeat until all pairs of objects (particles and/or pseudo-particles) have
Y&l > Yeut-
The various jet algorithms differ in the precise definition of the resolution variable

and the recombination prescription.

It is desirable that a jet algorithm also have some additional features :
o A jet algorithm should have small hadronization corrections.

o A jet algorithm should allow the possibility of resumming large logarithmic
terms to all orders in perturbation theory.

o A jet algorithm should have a reduced renormalization scale dependence in
fixed order in perturbation theory.

6.2.1 Definition of the Resolution Variable

e Minimum mass cut:

2
i + D
i = M‘ (305)

Smin
e JADE algorithm [73]:

2E;E; (1 — cos 0,;)
vij = : 0 . (306)
where E; is the energy of particle i and 0;; is the relative angle in the ete™-
centre-of-mass frame. The JADE-algorithm merges soft particles first, even

if they are far apart in angle.
e DURHAM algorithm (or kg algorithm) [74]:

B 2min(E7, E7) (1 — cos ©35)
The DURHAM-algorithm merges a soft particle with the energetic particle

(307)

closest in angle.
e GENEVA algorithm [75]:

8 ZEZE] (1 — COS 62]>
9 (Bt B

Vis (308)
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The factor 8/9 is provided so that the maximum value for y.,; for which
three-jet events can still be obtained from three partons is y.,; = 1/3, as it
is for the JADE and DURHAM versions. The GENEVA algorithm merges
soft particles together only if the angle is much smaller than the angle they
make with a high-energetic particle.

6.2.2 Recombination Prescriptions
e [-scheme:
Ei; = E+Ej,
pij = Pi+D; (309)

The E-scheme conserves energy and momentum, but the recombined mo-
mentum is not massless.

o F0-scheme:

E; = E +E;

o E+E; L,

pij = =7 WPi+P;). 310
J |pi‘|‘pj|( J) ( )

The EO0-scheme conserves energy, but not momentum. The recombined
momentum is massless.

e P-scheme:

|Pi + 1 L
B o= i (1)

The P-scheme conserves momentum, but not energy. The recombined mo-
mentum is massless, as in the E0-scheme.

6.2.3 Angular-Ordered Durham Algorithm

The jet algorithms described above may be modified by distinguishing an ordering
variable v;; and a resolution variable y;;. The alogrithm works as follows :

e Select a pair of objects (z7) with the minimal value of the ordering variable
Vsj-

o If y;; < y.u they are combined, one recomputes the relevant values of the
ordering variable and goes back to the first step.
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o If y;; > Yeu, then the pair (if any) with the next smallest value of the
ordering variable is considered. If no such pair exists, then clustering is

finished.

For the angular-ordered Durham algorithm one takes for the ordering variable
e 2(1 — COS 0”) (312)

where 6;; is the relative angle between the particles ¢ and j in the ete™ c.m.
frame. The angular ordering corresponds to the fact, that a soft gluon emitted at
some angle to the jet axis cannot resolve the colours of jet constituents at smaller
angles. The resolution variable y;; is the same as in the usual Durham algorithm.

6.2.4 The Cambridge Algorithm

While the angular-ordered Durham algorithm already avoids a lot of spurious
junk-jet formation, one weakness of the angular-ordered Durham algorithm is
the possible wrong assignment of soft wide-angle radiation to already-resolved
jets [76]. For example consider the parton-level application of the algorithm to
the splitting ¢ — g1 + g2, accompanied by a soft large-angle gluon g3, such that

E1 >> E2 >> Eg, 612 << (913 ~ (923. (313)

According to the angular ordering property the soft gluon g¢s is radiated coher-
ently and the corresponding radiation intensity is proportional to the total colour
charge of the system ¢; + g2, which is just that of the initial quark. However,
in half of the events the algorithm will erroneously assign g; to the gluon jet
g2 because the latter happens to lie a little bit closer in angle. If at some y.,;
the jets ¢; and gy are resolved as two jets, the gluon jet will be overpopulated.
Dokshitzer, Leder, Moretti and Webber [76] therefore proposed modifying the
angular-ordered Durham algorithm by freezing the softer of two already resolved
objects in order to prevent it from attracting any other extra partners among
the remaining objects with large emission angles. The Cambridge algorithm is
defined as follows:

e Select a pair of objects (z7) with the minimal value of the ordering variable
Vsj-

o If y;; < y.u they are combined, one recomputes the relevant values of the
ordering variable and goes back to the first step.

o Ify;; > your and F; < E; then ¢ is defined as a resolved jet and deleted from
the table.

e Repeat until only one object is left in the table. This object is also defined
as a jet and clustering is finished.
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This procedure suffices to prevent mis-clustering in the dominant region of phase
space where, in the above example, the gluon gs is softer then the quark ¢;. It
will still cluster the partons incorrectly in the subleading configuration where the
gluon is accidentally harder than the quark.

6.3 Global Event Shape Variables

Event shape variables describe the topology of an event. They may be calculated
without reference to a jet defining algorithm. Like jet algorithms they have to be
infrared safe. Examples for event shape variables are:

6.3.1 Thrust
The thrust 7" is defined as [78]
g - i

T = max;———— 314
> 17 (314)

and maximizes the total longitudinal momentum (along the unit vector n) of
the final state particle p; in a given event. The direction of n that produces the
maximum is known as the thrust axis. The range of the values for the thrust is :

<T<1. (315)

T =1 corresponds to an (ideal) collinear two-jet event (e.g. all momenta are
along one line), whereas T' = 1/2 corresponds to the topology of a sphere (e.g.
the momenta of the n final state particles are equally distributed and n approaches
infinity).

6.3.2 The C- and D-Parameters

The C- and D-parameters are derived from the eigenvalues of the momentum
tensor [82]

)

al

e

P
gii — 3 |
> |Pal

a

™

L=

(316)

where the sum runs over all final state particles and p! is the i-th component
of the three-momentum p, of particle a in the c.m. system. The tensor 6 is
normalized to have unit trace. In terms of the eigenvalues of the 6 tensor, A1, A,
Az, with Ay + Ay + A3 = 1, one defines
C = 3(MAz2+ XAs + A3)h),
D = 27TA )3 (317)
= 27detf". (318)
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The range of values is 0 < (., D < 1. The D-parameter measures aplanarity,
since one needs at least four final-state particles to obtain a non-vanishing value.

6.4 Jet Shape Variables
6.4.1 Four-Jet Angular Shape Variables

After having defined jets as pseudo-particles with the help of a jet algorithm, one
may consider angular correlations between them. The jets are labelled in order
of descending jet energy, such that jet 1 has the highest energy and jet 4 has the
smallest. The definitions of various four-jet angular shape variables are:

1. the Kérner-Schierholz-Willrodt variable [84], cos ¢xsw, is the cosine of the
average of two angles between planes spanned by the jets,

1 . fosd . Poug od
drsw = = [arccos ((pix p“_? gp2 qug))
2 7 % pallde % o)
B x 75) - (7 qu“))] ; (319)
|p1 X p3||p2 X p4|

+ arccos (

2. the modified Nachtmann-Reiter variable [85], |cos 0% g|, is the absolute
value of the cosine of the angle between the vectors p; — py and ps — py,
(Pl_)— Pz_)) . Eps —_)P4)_ (320)

|1 — Pa|lps — P

*
cos Oy p

3. cos aay, the cosine of the angles between the two smallest energy jets [86],

COSQ3q4 = |; (321)

4. the Bengtsson-Zerwas correlation [87], | cos xpz| is the absolute value of the
cosine of the angle between the plane spanned by jets 1 and 2 and that by
jets 3 and 4,

(171 X 172) : (173 X 174)
P11 % Pa|[ps X pal

(322)

COS XBZ

6.4.2 Three-Jet Shape Variables

With the numerical program for ete™ — 4 jets one may also study the internal
structure of 3 jets events. One example is the jet broadening variable defined as
> |ph
Biey = —— (323)

! > 1p

k3

Here p’ is the momentum of particle ¢ transverse to the jet axis, and the sum
extends over all particles in the jet.
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6.5 Numerical Analysis

As our nominal choice of input parameters we use N, = 3 colours and Ny = 5
massless quarks. We take the electromagnetic coupling to be a(myz) = 1/127.9
and the strong coupling to be ag(mz) = 0.118. The numerical values of the Z°-
mass and width are myz = 91.187 GeV and I'; = 2.490 GeV. For the top mass
we take m; = 174 GeV and for the weak mixing angle sin®fy, = 0.230. Unless
stated otherwise, we take the center of mass energy to be /Q% = my and we set
the renormalization scale equal to pu? = Q2.

The numerical program is based on the dipole formalism. In addition T imple-
mented for the leading colour contribution also phase space slicing. The results
from the two methods agree with each other.

6.5.1 Four-Jet Fraction

The four-jet fraction has been calculated by each group which has provided a
numerical NLO four-jet program and serves as a cross-check. The four-jet fraction
is defined as by

R, = Jiziet (324)

Otot

where oy, is the total hadronic cross-section at O(«a;) given by
O
Ot = opil, (1 + ?) : (325)

The values obtained for the four-jet fraction for different jet algorithms and vary-
ing y., are given in table 1, together with the corresponding values from the

programs MENLO PARC by L. Dixon and A. Signer [92], DEBRECEN by Z.
Nagy and 7. Trécsanyi [97] and EERAD2 by E.W.N. Glover [100].
6.5.2 The D-Parameter

At NLO the D-parameter distribution is expanded as

win = () e (5) o0 320
The average of the shape variable is defined as
1 [ do
(D) = — 0/ D=ZdD. (327)

In leading order I find for the average value for the D-parameter
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Algorithm | yeu MERCUTIO MENLO PARC
0.005 | (3.90 £0.22)- 10" | (3.79 + 0.08) - 10~
JADE-E0 | 0.01 | (1.9340.01) 107" | (1.88 +0.03)- 10~
0.03 | (3.37£0.02) - 1072 | (3.46 £+ 0.05) - 102
Yeut DEBRECEN EERAD2
0.005 | (3.88£0.07)- 10" | (3.87 +£0.03) - 10~
0.01 | (1.9240.01)-10"" | (1.93 +0.01)- 107"
0.03 | (3.37+0.01)-1072 | (3.35 £ 0.01) - 102
Algorithm | yew MERCUTIO MENLO PARC
0.005 | (1.05 £ 0.02) - 10" | (1.04 +0.02) - 10~
DURHAM | 0.01 | (4.73 £0.07)-1072 | (4.70 4 0.06) - 102
0.03 | (6.944+0.08)- 107 | (6.82 +0.08) - 10~
Yeut DEBRECEN EERAD2
0.005 | (1.05 £ 0.01) - 10" | (1.05 +0.01) - 10~
0.01 | (4.66 4 0.02)- 1072 | (4.65 + 0.02) - 102
0.03 | (6.87 +0.04)- 102 | (6.86 = 0.03) - 10~
Algorithm | yeu MERCUTIO MENLO PARC
0.02 | (274 £0.19) - 1071 | (256 £ 0.06) - 10"
GENEVA | 0.03 | (1.80 +0.06) - 10~! | (1.71 £ 0.03) - 10~
0.05 | (8.54+0.15)- 1072 | (8.58 £ 0.15) - 102
Yeut DEBRECEN EERAD2
0.02 | (2.63£0.06)- 107" | (2.61 £ 0.05) - 10"
0.03 | (1.75 4+ 0.03) - 10! | (1.72 +£0.03) - 10~
0.05 | (8.374+0.12)-1072 | (8.50 = 0.06) - 102

Table 1: The four-jet fraction as calculated by MERCUTIO, MENLO PARC,
DEBRECEN and EERAD2, for different jet algorithms and varying y.,;.
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Figure 1: The D-parameter distribution at NLO (diamonds) and LO (crosses).

D do a,\?
——— ) = (604+02) (= 328
<JQB_°;’Q dD> ( ) (%) (328)

which is in perfect agreement with the value given by FEllis, Ross and Terrano

[91]:

as\?
60.5 [ — 329

(271') (329)
The values for the functions Bp and Cp are given in table 2. These numbers
agree with the ones given by Nagy and Trécsanyi as published in [97] after taking
care of different normalizations (o4, in our case and O'QB_O;Z in [97]). (In the first
preprint version of [97] there was a mismatch of factors C'r.) Figure 1 shows the
D-parameter distribution. For the average I obtain

T ™

(D) = (;—)2 (58.2£0.2) + (;—)3 (2.32 £ 0.18) - 10%, (330)

6.5.3 The Jet Broadening Variable
At NLO the Bj.-distribution is expanded as

1 B'e d s 2 s 3
jet 2 — (oz_) BBM_|_<Q_) CBM- (331)

Otot Njets dBjet 27
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Table 2: The Born level and next-to-leading order functions Bp and Cp for the

D-parameter.

D Bp Co
0.02 | (6.36+£0.04)-10° (38.21 £3.53)-10°
0.06 | (2.23+0.02)-10> (1.14 +£0.07) - 10*
0.10 | (1.4240.01)-10* (8.17 +0.29) - 103
0.14 | (9.93+0.05)-10"  (6.00 +0.36) - 103
0.18 | (7.44£0.06)-10"  (4.95 +0.42) - 103
0.22 | (5.71£0.08)-10" (4.44 +2.37)- 10
0.26 | (4.53+0.05)-10" (2.90 +0.22) - 103
0.30 | (3.59£0.04)-10" (2.40 £0.14) - 103
0.34 | (2.90+0.05)-10" (1.97 +0.23) - 103
0.38 | (2.36+£0.06)-10" (1.54 +0.12) - 10
0.42 | (1.89+0.06)-10" (1.35+0.28) - 103
0.46 | (1.56+0.03)-10" (1.01 £0.12) - 103
0.50 | (1.25+0.02)-10" (8.68 + 1.26) - 102
0.54 | (1.01+£0.03)-10" (7.14 %+ 0.59) - 102
0.58 | (8.0940.22)-10° (5.27 +0.70) - 102
0.62 | (6.54+0.16)-10° (4.43 +0.62) - 102
0.66 | (5.06+0.24)-10° (3.32 %+ 0.48) - 102
0.70 | (3.914£0.12)-10° (2.37 + 0.56) - 102
0.74 | (2.93+£0.08)-10° (2.94 + 2.56) - 102
0.78 | (2.214£0.18)-10° (1.33 +0.25) - 102
0.82 | (1.5240.07)-10° (1.03 +0.25) - 10
0.86 | (9.94 +£0.96) - 10~ (5.52 +1.96) - 10!
0.90 | (5.64 £0.63) - 107" (3.32 +1.85) - 10
0.94 | (249 +£0.37) - 107" (1.55 +0.63) - 10!
0.98 | (5.11£0.93) - 1072 (0.77 +8.47) - 10°
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Figure 2: The Bj.- distribution at NLO (diamonds) and LO (crosses).

The average of the shape variable is defined as

1

1 [ By d
(Bjet) = / B (332)

Ttot 0 Njets dBjet

The jet broadening variable is calculated for three-jet events defined by the
DURHAM algorithm and y.,; = 0.1. For the average I obtain

(Bju) = (ﬁ)Z (17.9 £ 0.1) + (;—)3 (5.25 +0.31)-10°.  (333)

27 T

The values for the functions Bg,,, and Cp,,, are given in table 3. Figure 2 shows
the distribution of the jet broadening variable.
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Bjet

Bg

get

Ch

get

0.02
0.06
0.10
0.14
0.18
0.22
0.26
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

7.31 £0.22
5.13 £0.05
4.27 £ 0.06
3.75 £ 0.06
3.36 £ 0.06
2.99 £ 0.03
2.74 £ 0.03
2.50 £0.02

2.08 £0.02
1.87 +0.01
1.67 +0.02
1.44 £ 0.02
1.20 £ 0.01
9.42 £0.18
6.46 £ 0.12
3.76 £ 0.07
1.60 £ 0.04

( )- 10!
( )- 10!
( )- 10!
( )- 10!
( )- 10!
( )- 10!
( )- 10!
( )- 10!
(2.28 £ 0.03) -
( )
( )
( )
( )
( )
( )
( )
( )
( )

10

10!
10!
10!
10!
10!
-10°
-10°
-10°
-10°

(3.39 +0.28) - 10~
(1.11+0.31) - 1072

0.00
0.00
0.00
0.00
0.00

(—6.34 % 5.49) - 107
( ) - 107
( )- 103
( )- 103
( )- 103
( )- 103
( )- 103
( )- 103
( ) - 107
( ) - 107
(8.74 +0.62) -
( )
( )
( )
( )
( )
( )
( )
( )
( )

9.24 £+ 2.68
1.05 £ 0.16
1.28 £0.18
1.14 £ 0.16
1.18 £0.09
1.10 £0.10
1.05 £0.08
9.50 £ 0.93
9.14 £1.69

7.59 +£0.59
6.52 £ 0.61
5.76 £ 0.54
4.90 £ 1.06
3.07 £ 0.64
1.77 £0.28
7.77 £ 1.60
2.45+0.94
242 £2.45

0.00
0.00
0.00
0.00

10?

107
107
107
107
107
107
.10
.10
- 10°
(0.43 + 1.36) - 102

Table 3: The Born level and next-to-leading order functions Bg,,, and Cp

the jet broadening variable.

105

get

for



7 Conclusions

In this thesis the QCD corrections to ete™ — 4 jets have been considered. Rela-
tively compact expressions for the one-loop amplitudes have been obtained with
the help of modern techniques for the calculation of loop amplitudes: Colour
decomposition, spinor helicity method, the unitarity based cut-technique, tech-
niques using supersymmetry or inspired by string theory, as well as the factor-
ization in collinear limits.

I also developped an efficient algorithm for the reduction of tensor loop integrals,
which makes use of the facts that (a) loop momenta are usually sandwiched
between Dirac spinors and that (b) in four dimensions there can be only four
independent vectors.

In the second part of the thesis I described the numerical program “MERCU-
TIO”, which can be used to calculate any infrared safe four-jet quantity in
electron-positron annihilation at next-to-leading order. The program is based
on the dipole formalism and uses a remapping of phase-space in order to improve
the efficiency of the Monte Carlo integration.

Numerical results were given for the four-jet fraction R4, the D-parameter and
the jet broadening variable Bj.. The numerical values for the first two quan-
tities agree with the results from other groups. The NLO-correction to the jet
broadening variable is a new result.
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A Feynman Rules

A.1 QCD Lagrange Density
The Lagrange density for QCD is given by:

L = Lr+ Lo+ Ler+ Lrp,

Lr = Y ("D —my67),
flavours
1 a apy
ﬁG — _ZFMVF ,
1
Lop = ——(0"A%)?
GF 25( #) 9
fCFP — (aﬂxa*)Dib /67

Fi, = 0,AL —0,A% + gf*™ AL A

ny 1 )

DY = 699, —ig(T*)" AL,
Dib — 5(168# . gfabcAZ-

(334)

(335)

(336)

(337)

The colour indices ¢ and j run from 1 to 3, whereas the indices a, b and ¢ label the
generators of SU(3) and run from 1 to 8. D, is the covariant derivative. It appears
in the fermionic part of the Lagrange density in the fundamental representation
(Djf), whereas it appears in the ghost-part in the adjoint representation (Dzb).

A.2 Conventional Feynman Rules

Fermion propagator:

Gluon propagator:

Ghost propagator:
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Quark-gluon-vertex:

197 Tz’?

3-gluon-vertex :
lk37/\76

P AN
ky,p,a ko,v.b

gfabc [(k?) _ k‘Q)MglN\ + (kl — kg)yg)\ﬂ + (kQ - kl)AgMU]

4-gluon-vertex :

_292 |:fabefecd (gu)\gup . g#ngA) T facefebd (g;ngp . gﬂpg/\y) 4+ fadefecb (g,uyg)\p . g,u)\gyp)]

Gluon-ghost-vertex :
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A.3 External Particles

By convention we take outgoing particles to have no phase factor.

Outgoing fermion with positive helicity : (p + |
Outgoing fermion with negative helicity : (p — |
Outgoing antifermion with positive helicity : |p—)
Outgoing antifermion with negative helicity : |p+)

Then we have to include a phase factor ¢ for particles with incoming momenta.
Incoming antifermion with negative helicity : i(p + |

Incoming antifermion with positive helicity : ¢(p — |

Incoming fermion with negative helicity : ¢|p—)

Incoming fermion with positive helicity : ¢|p+)

Polarization vectors for gluons :

+ (¢ = Iulk—)
%(kaQ) W
6;(k,q) <Q‘|’ |7M|k+>

V2 [kq]

where ¢ is an arbitrary null reference momentum.

109



B Spinor Algebra
We take the contravariant vector as
P = (Pt Py Py, ) (338)
and the signs of the metric as
g = diag(+1,—-1,-1,-1). (339)
The two-dimensional antisymmetric tensor needed to raise and lower indices of

two-component spinors is given by:

0 1
EAB = ( 1 0 ) 5 E€BA = —E€A4AB- (340)

The two-dimensional antisymmetric tensor satisfies the Schouten identity:

EABECD + €acépB + eapee = 0. (341)

It is also useful to have the four-dimensional antisymmetric tensor ¢,,,,. We
define the sign as

€0123 = —|—1 (342)

The Pauli matrices are

01 0 —: 1 0
Uﬂ”—<10)7ay—<i 0)702—<0 _1). (343)
We define the four-dimensional o#-matrices as
oy =(1,—0), P =(1,0). (344)

The Weyl representation for the Dirac matrices is then given by

0 ot 10
VM:<O-M 0)7 75:<0_1) (345)

Using the commutation relation for the Pauli matrices it is easily verified that
the v* satisfy indeed the Dirac algebra

{7#771/} = 29/w- (346)

The Fierz identity for the Dirac matrices is:
(V)i (dwr + (V)i (s = = [(V)a(Vu)ki + (7*75)it (775 k5] - (347)
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Two-component spinors : There are two types of notations used in the literature
to denote Weyl spinors : The one with dotted and undotted indices as well as the
bra- and ket-vector notation. While the former is more useful when indices are
left uncontracted, the latter is more convenient in expressions where all indices
are contracted.

lp+) =pB, (¢4 |=q4
=) =p", (¢—|=q" (348)

Four-component Dirac spinors can be constructed out of two Weyl spinors:

pPA
= (%),
a(p) = (p*,ps)- (349)
Raising and lowering of indices is done with the help of the antisymmetric tensor
EAB:
pB _ gBApA’ qA _ €ABQB,
_ A _ B
P =P €ip> 94 = q EBa. (350)
Each four-vector gets a bispinor representation :

PAB — pﬂ5“AB or Pup = pﬂaiB. (351)

The Fierz identities are

v -BB _ B¢ B
0l 300 = 20067,
ol o nn = 2e4BE
AAYuBB T ABC ARB>
5“A‘455B = 92e4BAB (352)
Other useful identities :
¢ —vCB v I7/¢C.’B _ B _uv
00 + 040 = 26, ¢",
7/LLA.C v _vAC _p _ A uy
o ol 0" oL, = 25Bg . (353)

Spinor products are defined as

(pg) = pqa,
[pa] = pig”. (354)
The normalization of spinors is given by
(p £ |7ulpE) = 2ps. (355)
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Useful formulas in the bra-ket notation:

(P £ Vi Voznaa [95) = (G F Tzngr Yo [PF),
<p + |7M1-'-7M2n|q:|:> = _<q + |’7ﬂzn---7m |p:F>- (356)

Schouten identity:

(AB){(CD) = (AD){CB) + (AC)(BD),
[AB][CD] = [AD]|CB]+[AC]BD). (357)

Fierz identity:
(A+ [yl B+)(C = y"|D=) = 2[ADKCB). (358)

Given the four-momentum p#, we can obtain the corresponding two-component
spinor up to an arbitrary phase a. For positive energy spinors we have

o= () (359

where we used light-cone coordinates

pr=pt et pT = =, =t 4t (360)
Since p* is a null-vector, we have
et o= ptp (361)
It is easily verified that py satisfies
pM6“BApA =0 and pB6““BApA = 2p*. (362)

For negative energy spinors we have

2ot o+
pa = z-fi——-( “ﬂﬂ ) . (363)

lpt| \ P

The spinor products are then given by

(pa) = —E:EXL—(q+pL-—p+qL),
Iptat]
lqp] = (pq)*sign(pq) (364)

where n is the number of negative energy spinors.
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C Splitting Amplitudes

The expressions for the tree- and loop-splitting amplitudes are given in [28].

C.1 Tree Splitting Amplitudes

In the collinear limit tree-level partial amplitudes factorize
Tee (1|| T@e TEE
At P S Gl (phe, g AT( P L) (365)
A=t/ —

where p, and p, are the momenta of two adjacent legs, P = p, + p», p, = 2P and
p = (1 —2)P. A, A, and Ay denote the corresponding helicities. The splitting
functions are:

Split,+ (g%, %) =0 Split,-(¢,¢47) =0

. + -y _ (1_2)% . - (1_2)%
Sphtg"‘ (g ) )_ \/5 ﬁ(ab> Sphtg—(g 9 )_ \/5 \/E[Clb]
Split,+ (g7, 9%) = V2o Split,_(g*,97) = —v2——
(97297 (1 — 2){ab) 6797 (1 — 2)[ab)
1 1
Split,s (97,97) = —V2——— Split,-(¢7,¢9%) = V2
srlg797) (1 — 2)[ab] o(97:97) (1 — 2)(ab)
1 1
lit, (¢%,¢") = V2—n——o lit T, )= V22—
Splq ((] g ) \/_\/m<ab> Splq"‘(q ) ) \/_\/E[ab]
lit, (¢+,g7) = —V2—— lit,+ (g7, g7) = V2o
Splq (q ' 9 ) \/_\/E[ab] Splq"‘(q ) ) \/_\/m<ab>
1 1
. + 7+ _ . — R _
Split,-(g%,7%) = V2 NECD Split,+(97,47) = —V2 Jelal]
11—z 1—=z
. S i + ) —
Split,-(97,q7) = —V2 Tl Split,+(g9%,77) = V2 NETD
1—=z 11—z
. + P _ . p— 7+ _
Sphtg"‘ (q y q ) - \/5 <6Lb> Sphtg—(q s q ) - \/5 [ab]
it (0m.at) = —\/2—— it _(¢t.57) = V2—
Split,+(¢7,¢") = \/§<a6> Split,—(¢*, ") ﬂ[ab] (366)
C.2 Loop Splitting Amplitudes
Loop amplitudes factorize according to
Alen el SN Gl (e, prt) AP (., PP L)
A=t /-
—I-SphthOp(pa ,pb DATE(LL P L), (367)
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The loop splitting amplitudes are expressed as

SPIt (pae, i) = er - SPItUS (P}, py") - roa (Pl py") (368)

with the exception of the g7 — ¢~¢~ and the ¢g= — ¢gtg¢™ splitting amplitudes.
In this case the tree splitting amplitudes vanish. The loop splitting amplitudes
depend also on the particle circulating in the loop. Splitt”! denotes the contri-
bution from an adjoint spin-J particle (with two helicity states). To obtain the
splitting amplitudes where the internal particle is in the fundamental represen-
tation one divides by N..

We have
Sl by L [ad]
Spht+ (pa » Py ) — _48772 Z(l - Z) <ab>27 (369)
Splitl (pF, pi) = —Splith 2 (pt, pif) = Split} (pF, pif). (370)
The remaining g — gg loop splitting amplitudes are
2 c 2
M+ 4y — L F 21n 2z In(1 — 1 1o
rZ(pa . py) -2 (Z(l — Z)(_Sab)) +2InzIn(l —2) + 32( z) s
1
PPt p) = —32(1=2),
1
ot ) = +32(1 = 2),
2 c 2
Uk, pF) = —— a 20n zln(l — 2) — —
ry (pg y Pp ) 52 (Z(l _ Z)(—Sab)) + nz 1’1( Z) 6 s
0E pF) = 0,
ot = 0. (371)
The loop splitting amplitudes for ¢ — g¢ and ¢ — ¢q are given by
rilg7.9") =r_(q%.97) = f(1—2z54),
_ 1\1—=2
T'+(q » g ):T_(q+,g+) = f(l_zﬂsqg)—l_(l—l_m) 9 )
Pt ) = o) = S + (14 55 )
J ) Y99 NCQ 27
r(97.q") =497, 07) = f(2,549) (372)

where

flz,s) = —i( 1 )E—Lnu—z)




The loop splitting amplitudes for ¢ — ¢q are given by

Yot = -z |() + (=hm) 2 ()]
+E(_"2 )E+1n(z)1n(1_z)—”—+§—5—3

6
SR R U R I /A R
N? 2\ (—34q) 2 \(—34q) 2 2]’

9
B 2 p? \° 10
~ 9
_ 1 p? \" 8
Pt ) = ~3 ((—3 )) ~ 5 (374)
9

Here 6R is a parameter depending on the dimensional regularization scheme used.

6r = 0 for the FDH-scheme and 6z = 1 for the CDR-scheme.
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D Renormalization

Let g be the unrenormalized coupling constant, g, the renormalized coupling
constant and gr the dimensionless renormalized coupling constant. They are
related by

g = Zggra
gr = ¢grpS. (375)
The p-function is defined by
d
3 = p©—gr. 376
B ol (376)
As usual, denote a, = %. Then
d 1 1 4
—a, = ——f - — — — .. 377
ludlua 271_}30 S 61 S 327]’3520{8 ( )
where the first few coefficients of the ﬂ—functlon are given by [101] - [103]
11 4
= —C4—-TgN
Bo 5 a3 lRN,
34 5
b = S —4(504+Cp) TaNy,
2857 1415 205
B o= O - ( 7 O3+ Z52CaCr — 20} ) Taly
158
For a group SU(N¢) the fundamental and the adjoint Casimirs are given by
T, = el = e
(T°T%);; = Créy = =3
fabcfdbc — CAéad NC5ad (379)
The standard normalization is
1
Te (T°7") = Tpé™ = 55“. (380)
An approximate solution for a; at NLO is
s 1 In L
aslw) _ L (_ hlnl (381)
w GBI\ "B I

where L = In(p /AQCD) The one-loop amplitudes presented in the papers [34]
and [35] are bare ones, i.e. no ultraviolet subtraction has been performed. The
renormalized amplitudes are obtained from the unrenormalized ones by

112N, 1Ns\
~ Zerg®N, (————f )Aree 382
s\ 3N, 3N, (382)

where Ng is the number of scalars (Ng = 0 in QCD).

A%ne—loop one-loop

116



E Integral Functions

E.1 Loop Integrals
A general loop integral is denoted by
d**k P(k)

(27)42%0 k2(k — )2 (k — p1 — . — Pus)?
(383)

LIP(R)] = (1) (4n)* [

where P(k) denotes a polynomial in the loop momentum. The bubbles are given

by

L[] = 5(1’“_—F2€)<—s>—5,
LIk = %12[1] (384)
where
LT -
The one- and two-mass scalar triangles are
() = s,mE = 0,mE =0) =
& —S
Bt = s =i =0) = LEL DT e

2 (=s) = ()
Sometimes it is convenient to give the explicit expression for the scalar box inte-
grals I4[1] in terms of a scalar box function F=*% times a kinematical factor

rr

1,1 — F. 387
M= s (387)
where 5;; = —%(Pi + ...pj_1)? for i # j and S; = 0.
We have
1 4
VdetS = - BQ—4HmZZ,
4 =1
B = st— mfm?)) — mgmi (388)

where s = (p1 + p2)?, t = (p2 + p3)? and m? = p?. If at least one external mass

vanishes, det(S) factorizes as det(S) = (3B)? and we have the relation

2rr _
L[] = —=FP=*"2  one external mass zero.

B
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Sometimes it’s also useful to define the six-dimensional scalar box function via

4
2rr(1 — 2¢),| B2 — 4 [ m2F]=57% =
=1

2—¢ d4_26k E(kap17p27p3)5(k7p17p27p3)
(47T) y 2 2 2 2 2 :
(2m)*=20 k2(k — p1)?(k — p? — p3)*(k — pf — pi — p3)?
(389)

The no-mass box :

1omy) = _zrpi{ 1[(—5)_5+(—t)_5]—|—%1n2 (=) 6w

The one-mass box :

2 3
| ‘4
5V
1 1
Ll o= —2rr {—5—2 [(=512) 7 + (—528) ™ = (—5123) "]
_ — 1 — 2
iy (1= 222 gy (1- 222 4 e (222 +1},
— 3812 — 893 2 — 8923 6
(391)
1 — 9¢)Fim-D=6-2¢ L —s ! 392
Two-mass boxes :
2 43 /
| D
6"
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(1—2e)F{moP=07% = Ls27e (5,4, m2,m3) . (394)

Two adjacent massive legs :

3 4
9 D
1" 6"
§ = 5123, m% = 512,
t = 534, mi = 856,
1) =
— 2 1 1 [ —e { —& 2 5 2 —s]
2 (= ()7 ()7 () = (o)
1 (m) o (mml)
2e? (=)=
—m? —m? 1 —t
+14, (1— 1)+L12 (1— 4)—}——1112 (—)},
—S —S —S
(395)
(1—2e) Py P=07% = Ls3% (1,5,m3,m3) . (396)

The integral functions Ls_; are given below. The integral functions appearing in
the final result of the loop amplitude are

L) = 15

—1 -2
— Lo (=) +1

Ly <_S) — %_ (397)
—1 -2



These function are related to two-mass triangles. The functions related to box
integrals are

—S81 —S2 . 52
sy |—,— ) = Liy[1—— Lig {1 —-—=
° 1<—t1’—t2) 12( t1)+ 12( —t2)

2
81 — S92 ™
Tl L) T

1 —52
L —S1 TS2y Ls—l( t17—t2)
S N e T
ty ta

o (2 2y = DGR b ) G
T\t 1

Ls? (s,1,m,m3) = —Li (1 - 1) — Liy

2
Loy (s,t,m2,m3) = —LiQ( - ml) ~ Liy

2m#, 2y 2k
LsZ, <5 t ml,mQ) = Ls_, t,m}, m;

The imaginary parts of the logarithm and the dilogarithm are given by

S

n(=2) = m([3)) - im0 - 000,

Li, (1 - :—‘;) = Reli, (1 - ;) —if (-?) In (1 - ;) ImIn (:_‘D

(399)

where the step function 6(s) is defined as 6(s) = 1 for s > 0 and 6(s) = 0
otherwise. The three-mass triangle is defined by

1

3m 3
I3 (51273347556) = /d «;

0

5(1-0[1-0[2-0[3)

(400)

—Q1 (03819 — (NaX3534 — (¥3(V1S56
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With the notation

d12 = Si2 — S34 — Ss6,
034 = S34 — S36 — S12,
0s6 = Ss6 — Si2 — S34,
Ag = 832 + 83’4 + S?G — 2812834 — 2834856 — 2856812 (401)

the three-mass triangle I3™ is expressed in the region si9, 834, 556 < 0 and Az < 0

by [42]
pmo_ \/—Q—Ag, lClz (2 arctan <\/5_12T3)) +Cl (2 arctan <\/5_34T3))

et parn (2]

(402)

In the region si9, 834,556 < 0 and Az > 0 as well as in the region sq9, 556 < 0,
s34 > 0 (for which Az is always positive) the integral I3™ is given by [53]

B = = Re[2 (Lia(—pr) + Lia(=py)) + In(pa) Inp)

+1n(3)1n Ltpe) o
x 1+ py 3

iw0(s34) | (512 + v Aa) (556 + VAB) (103)
- n
VAs (512 - VAS) (556 - VAS)
where
S12 534 2556
== == = 404
S56 S56 P 056 + Az (404)

The Clausen function Cly(x) is defined by

Cly(z) = ni::l sinir;:z:) = —jdt In ( 2 sin (%) D : (405)

In the axial vector contribution the integral

1

f(m§51275347556) = /d?’aimQ

0

a2a35(1 — a1 — dg — Clg)

— S120109 — 5340203 — Sze03071

(406)
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appears. For m = 0 we get

3534534 1 3Im
- 512356]3 (51275347356>

f(0;51275347556) = ( A% As
3556556 1 —3S12
— |
*( Al 2A3)5“<—534)
3512012 1 <_556) 034
— | - 407
+ ( A% 2A3) S56. 1 —S34 2A3 ( )

For m = m; the integral is approximated by its Taylor expansion

1 (2834 + S12 + S36)
24m? 360m}

(408)

f(mt; 512, S34, 556)

E.2 Numerical Implementation
E.2.1 The Dilogarithm

The real part of the dilogarithm Lis(z) is numerically evaluated as follows [40] :
Using the relations

Liz(z) = —Lip(1—z)+ % —In(z)In(1 — ),
1 S|
Liz(z) = —Liy (E) - % — 5 (In(=2))” (409)
the argument is shifted into the range —1 < z < 1/2. Then
Lig(z) = S
2(e) Z; (i +1)!
By —~ B,
_ B B 4 2n41 410
OZ—I_QZ—I_?;(Qn—I—l)!Z (410)
with z = —In(1 — z) and the B; are the Bernoulli numbers. The Bernoulli
numbers B; are defined through the generating function
t > t"
i EB”E (411)

=0

E.2.2 The Clausen Function

The numerical evaluation of the Clausen function is done as follows [42] : Using
the symmetry

Cly(—z) = —Cly(z), (412)
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the periodicity
Cly(z +2n7) = Cly(z), (413)

and the duplication formula
Cly(22) = 2Cly(z) — 2Cly(x — ) (414)

the argument may be shifted into the range 0 < z < 27/3. Then

(415)

- (_1)n+132n 2n+1
1 = —zl AL Rt
Cly(z) T n(a:)—l—a:—l—nzz:l 2n(2n £1)!
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