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Enfin, je remercie D. Hermann, P. Gonzalez Perez et V. Zoonekynd pour
leur aide informatique.



iv
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CHAPTER 1

Introduction.

1. Overview.

More than 30 years ago, V.I. Arnold introduced symplectic geometry in
the realm of singularity theory ([Arn1]). Later on, he observed that many
problems in projective geometry turn out to be problems in symplectic and
contact geometries (see for example [Arn6]). Vice-versa new results in pro-
jective geometry motivate new developments in symplectic and contact ge-
ometries. A basic example of this relationship is given by the ”generic”
singularities of the Gauss map of a smooth hypersurface in Euclidean space
Rn ([Arn2]). We shall come back to this example when dealing with the
contactification of Kazarian’s theory in the second part of this thesis.
The first part of this thesis deals with the classical theory of vanishing flat-
tening points. Therefore, we avoid the language of contact and symplectic
geometries.
In the second part, we shall see how the study of vanishing flattening points
arises in the context of contact and symplectic geometries. For the reader’s
convenience the two parts are written independently one from the other once
the reader is acquainted with the basic definitions given in chapter 2 section
1 and section 3.
So, our starting point is the study of special points of a curve (complex
holomorphic or real C∞). Roughly speaking, these special points called
flattening points are defined as follows. A flattening point of a curve say in
(real or complex) n-dimensional affine space is a point where the osculating
hyperplane to the curve at the point has a higher order of tangency than
at an usual point. For example for plane curves, they are commonly called
inflection points1.
At the end of the eighties’, M.E. Kazarian developed in a series of works
([Ka1],[Ka2],[Ka3], [AVGL2]) the local theory of flattening points for fam-
ilies of rational curves that is families of curves which are locally the images
of a family of say real C∞ maps

fλ : R −→ Rn

1That might seem odd to an analyst but for a geometer the curve y = x4 has an
inflection point of multiplicity 2 at the origin.

3
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with C∞ dependence on the parameter λ.
The subject was also treated independently from the algebro-geometric view-
point by D. Eisenbud and J. Harris ([EH1],[EH2]).
M.E. Kazarian proved that the local study of rational curves with respect
to their flattening points can always be reduced to the study of families of
smooth curves (see [Ka3]).
When dealing with families of curves depending on a parameter, it may
happen that the family cannot be considered as a family of rational curves.
A simple example is given by the family of hyperbolas {xy = ε} degenerat-
ing at ε = 0. The study of such families cannot be reduced to the study of
families of smooth curves.
The behaviour of the flattening points (or more generally of the projective
extrinsic invariants) of a family of smooth curves degenerating at a singular
point is a subject of long study. The works of great mathematicians like
Descartes, Newton, Poncelet, Plücker and Clebsch (e.g. [Clebsch], [Pl],
[Poncelet]) where in included in the classical treatises (e.g. [Salmon],
[Klein1], [EC]).
It seems that the Kazarian-Eisenbud-Harris theory does not include this set-
ting. We shall develop a theory that does. Although the relationship with
usual singularity theory (say for example with the Mixed Hodge structures)
is still unclear to me.
There is not yet a contactification nor a symplectization of the “classical”
theory that we shall develop. However, for smooth curves (that is for the
case treated by M.E. Kazarian, D. Eisenbud and J. Harris), we did make
such a theory and this will occupy our last chapter.
Surprisingly enough, at least for symplecticians, there are only a few cases
for which the normal forms arising from the theory of flattening points of
space curves coincide with the corresponding normal forms for wave fronts
dual to the given curves. These cases are what we call the excellent cases.
They are excellent because it suffices to study a simple problem on space
curves in order to get results on families of wave fronts.
Before starting the theory, we would like to give an informal account on
what is commonly called Plücker’s theorem. The approach we will follow is
somehow different from the one of the classics although all the results that
we shall give are contained in the classical treatises (e.g. [Klein1], [Jor]).
This introduction will be informal because we are not going to be completely
rigorous. However I hope that these informal considerations will help the
reader for the formal ones.

2. Plücker’s theorem.

By holomorphic curve in the affine plane C2, we mean an analytic subvariety
of C2 with isolated singular points.
Denote by

D = {t ∈ C :| t |≤ 1}
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the unit disk centered at the origin.
A parameterization in a neighbourhood of a smooth point p ∈ V is a holo-
morphic embedding γ : D −→ C2 whose image is contained in V and con-
tains p.

Definition 1.1. A smooth point p ∈ C2 of a plane holomorphic curve V ⊂
C2 is called an inflection point provided that for a given local holomorphic
parameterization of V in a neighbourhood of p ∈ V the two first derivatives
of the parameterization are linearly dependent at the point p.

Remark. It can be easily proved that the inflection points of a holomorphic
curve V ⊂ C2 are the points for which the multiplicity of intersection of the
curve with its tangent line at the given point is at least equal to 3.
Example. The curve

{
(x, y) ∈ C2 : y = xk+2

}
has an inflection point at the

origin if and only if k > 0.

Fix a coordinate system (x, y) (not necessarily affine) in C2.
Define the holomorphic function H : C2 −→ C by the formula

H(x, y) = xy.

The holomorphic curves:

Hε =
{
(x, y) ∈ C2 : H(x, y) = ε

}

have no inflection point.
Let U ⊂ C2 be a neighbourhood of the origin.
Denote by ϕ : U −→ C2 a holomorphic embedding in the affine plane C2

such that ϕ(0) = 0.
In general for a fixed value of ε, the image of the curve Hε under ϕ have
inflection points (see figure 1).

Theorem 1.1. There are 6 complex inflection points of the curve Vε = ϕ(Hε)
that converge towards the origin when ε −→ 0 provided that ϕ is generic2.

This theorem is due to Plücker ([Pl]). In chapter 2 section 2, we shall
generalize this theorem to curves with arbitrary singularities in affine or
projective spaces of arbitrary dimensions.

For the moment, we consider an example.
Let ϕ : U −→ C2 be defined by the polynomials

ϕ(x, y) = (x+ y2, y + x2).

Denote by Vε the image of the curve Hε under ϕ. Consider the curve:

Ẋ =
{
p ∈ C2 : ϕ(p) is an inflection point of VH(p)

}
.

2The variety of k-jets of map germs ϕ : (C2, 0) −→ (C2, 0) that do not satisfy this
property is a semi-algebraic variety of codimension at least one in the space of k-jets at
the origin, provided that k > 2



6 1. INTRODUCTION.
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Figure 1. The Plücker theorem. In the right part of the
figure among the 6 inflection points of a curve Vε = ϕ(Hε)
only 2 have real coordinates (for a real value of the parameter
ε). The preimages of the inflection points of Vε under ϕ
are the intersection points of the curve Hε with the curve
X =

{
(x, y) ∈ C2 : D[ϕ](x, y) = 0

}
.

We denote by X the closure of the curve Ẋ .
Classically the curve ϕ(X) is called the Hessian curve of the holomorphic
function H ◦ ϕ−1 ([Klein1]).
We search for an equation of the curve X.
The so-called Hamilton vector field h of H is tangent to the level curves Hε.
It is defined by the Hamilton differential equations

(1)

{
ẋ = ∂yH,
ẏ = −∂xH.

In our case (∂yH)(x, y) = x and (∂xH)(x, y) = y.
Consequently the Hamilton vector field h is defined by

h(x, y) = x∂x − y∂y.

This field depends, of course, on the choice of the coordinate system (x, y)
in C2.
Denote by ϕ̇ the Lie derivative along the Hamilton vector-field h defined by

ϕ̇(x0, y0) =
d

dt |t=0
ϕ(x(t), y(t))

where t −→ (x(t), y(t)) is the solution of (1) satisfying the initial condition

(x(0), y(0)) = (x0, y0).
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The first and second derivative of ϕ along the field h have the values
{
ϕ̇(x, y) = (x− 2y2,−y + 2x2),
ϕ̈(x, y) = (x+ 4y2, y + 4x2).

The point ϕ(x, y) ∈ C2 is an inflection point of the image of Hε, ε 6= 0, under
ϕ if and only if ϕ̇ and ϕ̈ are linearly dependent at (x, y) ∈ C2, provided that
(x, y) 6= 0 is in a sufficiently small neighbourhood of the origin.
Denote by D[ϕ] the 2×2 determinant whose columns are the first and second
derivative of ϕ along the Hamilton vector field h.
We have the equality

(2) D[ϕ](x, y) = 2xy + 2y3 + 2x3 − 16x2y2.

The curve X being given by

X =
{
(x, y) ∈ C2 : D[ϕ](x, y) = 0

}
.

In other words, the inflection points of the image of the curve Hε under ϕ
when ε −→ 0 are the images under ϕ of the points of intersection of the
curve

Hε =
{
(x, y) ∈ C2 : xy = ε

}

with the curve X provided that (x, y) 6= 0 is in a sufficiently small neigh-
bourhood of the origin.
In figure 1, we depicted the curves Hε, X and their images under ϕ for
different values of ε.
When ε approaches 0 with real values, two real points of intersections of the
curve X with Hε converge towards the origin.
These points correspond to the 2 inflection points of Vε = ϕ(Hε) with real
coordinates that approach the origin as ε −→ 0. The other 4 inflection
points are not real.
In order to find some approximate formula for the coordinates of the 6 in-
flection points, we approximate the plane holomorphic curve X in a neigh-
bourhood of the origin.
The curve X “looks like” the union of two parabolas that intersect at the
origin. Each one of these looking like parabolas is called a branch of the
curve X.
Put y = ax2 for the parabola tangent to the x-axis.
Substituting y = ax2 in equation (2) we get the approximation

D[ϕ](x, ax2) = 2(a + 1)x3 + o(x3)

Hence a = −1 provides the best approximation to this branch of X that we
can have with parabolas. The curve X is not exactly a parabola. One can
prove that it is given by an infinite convergent series y =

∑
n≥2 cnx

n with
c2 = −1. This series is called the Newton-Puiseux series of the branch of
the curve X ([New]).
Similarly, the other branch of X is given by

x = −y2 + o(y2)
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We just drop the higher order terms and consider the approximation of the
branches of the curves given by x = −y2 and y = −x2. There is a priori
no justification for these approximations. This is what “informal account”
means.
The approximated points of intersection of X with Hε satisfy either the
system of equations {

xy = ε
y = −x2

or the system {
xy = ε
x = −y2

Solving the first system of equations, we find that

x3 = −ε.
These 3 solutions correspond to 3 approximated inflection points of the
curve Vε = ϕ(Hε). The other system gives also 3 solutions. Hence there are
3+3 = 6 approximated inflection points of the curve Vε in a neighbourhood
of the origin. They are the images under ϕ of the points whose coordinates
have the expressions

(3)
(−ε1/3,−ε2/3), (−ωε1/3,−ω2ε2/3), (−ω2ε1/3,−ωε2/3),
(−ε2/3,−ε1/3), (−ω2ε2/3,−ωε1/3), (−ωε2/3,−ω2ε1/3)

Here ε1/3 denotes a determination of the cube root of ε and ω = e2iπ/3.
Remark that for ε real, only the points (−ε1/3,−ε2/3) and (−ε2/3,−ε1/3) are
real. These are the approximations of the preimages of the real inflection
points that are visible in figure 1.

Our example allows us to illustrate the relationship between asymptotics,
monodromy and Galois groups. In the sequel, we shall in general avoid Ga-
lois theory because of its arithmetical subtleties. However Galois theory is
inherent in our work because of this relationship that we explain now. The
geometric Galois groups defined below is a classical object of study ([Jor],
[Seg]).

Recall that Vε is the image of the level-curve Hε under ϕ.
For each value of ε, the curve Vε has 6 inflection points that ”vanish” at the
origin when ε −→ 0.
Put ε(t) = δ3e2iπt, where δ is a small non-zero real number.
The inflection points of Vε depend continuously on the parameter t. Hence,
when t varies from 0 to 1 the inflection points of Vε are permuted. The
group generated by this permutation is called the monodromy group with
respect to inflection points of the family of curves (Vε).
We assert that, in the example we are studying, the monodromy group with
respect to the approximated inflection points of the family of curves (Vε) is
the cyclic group Z/3Z. A generalization of this theorem is given in chapter
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2 page 54 (see also theorem 2.6 on page 35).
For the rest of this subsection, the preimages of the inflection points of
Vε = ϕ(Hε) under ϕ will be called preinflection points of Hε.
Project the preinflection points of Hε on the complex line

L =
{
(x, y) ∈ C2 : y = −x

}
.

We take the first coordinate x times
√

2 for coordinate-system in L.
With these coordinate-systems, the projection on L is given by:

C2 −→ L
(x, y) 7→ x− y.

We consider only the leading term in ε when ε −→ 0 of the projected
points. For example for the projection of the first point of the list (3) above

we take −ε1/3 instead of −ε1/3 − ε2/3. Still there is no justification for this
approximation but as we shall see later, we get the correct answer for the
monodromy when we make it (see theorem 2.6 on page 35).
The approximated projections of the 6 preinflection points of the curve Hε

are given by ±ωkε1/3 with k ∈ {1, 2, 3}. These are the six vertices of a
regular hexagon (see figure 2 on page 12).
We put ε(t) = δ3e2iπt, then the 6 approximated projections of the preinflec-
tion points of Hε(t) are given by the expressions:

{
z1(t) = δe

2iπt
3 , z2(t) = δe

2iπt
3

+ 2iπ
3 , z3(t) = δe

2iπt
3

+ 4iπ
3

z4(t) = −δe 2iπt
3 , z5(t) = −δe 2iπt

3
+ 2iπ

3 , z6(t) = −δe 2iπt
3

+ 4iπ
3 .

When t moves from 0 to 1, the six vertices of the regular hexagon rotate by
an angle 2π

3 .
The points are numbered such that the permutation corresponding to the
loop

[0, 1] −→ C
t 7→ ε(t)

exchanges the numbering of the zi’s like the cyclic permutation

(123)(456).

This permutation generates the cyclic group Z3 of order 3.
This result is of course connected with the fact that the asymptotics of the
approximated preinflection points of Hε when ε −→ 0 are ±ωiε1/3. If the
asymptotics had been ε2, there would have been no monodromy. If the
asymptotics had been ε1/6, the monodromy group would have exchanged
cyclically the 6 points and so on. This is the relation between the asymp-
totics and the monodromy.
Finally remark that the asymptotics discussed above form continuous invari-
ants related to a discrete one: the monodromy. But in fact the continuous
invariants contain much more information as we shall see in chapter 6.
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The connection with Galois theory is as follows. First I recall the definition
of the Galois group of a polynomial ([Gal1]). Consider a polynomial:

P (x) = xn + a1x
n−1 + · · ·+ an,

where the ak’s are fixed complex numbers. Denote by x1, . . . , xn the roots
of P over C. Denote by L the field generated by the ai’s over Q.

Theorem 1.2. (Galois) There exists one and only one permutation group
G on (1, . . . , n) having the following property:
for any polynomial function f : Cn −→ C defined by a polynomial with
coefficients in the field L, the complex number f(x1, . . . , xn) belongs to the
field L if and only if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)), ∀σ ∈ G .

This theorem is proved in [Gal1] by an explicit construction. Namely the
group G of the theorem is isomorphic to the automorphisms of the field K
generated by the xk’s over Q that fix the elements of the subfield L ⊂ K.
The group G is called the Galois group of the polynomial. For example,
the Galois group of P (x) = x2 − 1 is trivial, whereas the Galois group of
P (x) = x2 − 2 is the cyclic group Z/2Z. In the second case the map:

(4)
Q[
√

2] −→ Q[
√

2]

A+B
√

2 7→ A−B
√

2

is the generator of the automorphism group described above. The corre-
sponding permutation exchanges the two roots of the polynomial.
To compute the Galois groups of the classical equations (e.g. the Galois
groups of the modular equations) was a classical problem for the XIX th

century mathematicians. In fact this was one of Galois’ motivations for cre-
ating his theory ([Gal2]).
We come back to the inflection points of the curves Vε = ϕ(Hε).
Fix a complex number ε. Consider the polynomial P of degree 6 whose roots
are the coordinates of the approximated projections of the 6 preinflection
points of Hε.
We have P (x) = (x3 + ε)(x3 − ε). It is easily seen that the Galois group
of the polynomial P is the product S3 × S3 of two permutation groups on
3 elements provided that ε1/3 /∈ Q. The monodromy group Z/3Z that we
computed above is an invariant subgroup of this Galois group.
Of course, to construct this Galois group several choices were made: the
affine coordinate-system in C2, the line of projection and so on.
However, it can be proved that for almost all possible choices we get the
same result.
Following Jordan ([Jor]), given a projective plane curve, we consider the
polynomial whose roots are the projections of the inflection points of the
curve on a generic line. The Galois group of this polynomial is called the
geometric Galois group of the curve. At the end of the XIX th century and
at the beginning of this century the geometric Galois groups were considered
by Jordan, Weber, Dickson, Segre and others.
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We now give few results concerning these geometric Galois groups.
The first of these results is proved in the classical treatises some other are
not. For the other ones I do not know wether these are new results or not. I
give them without proofs, just for the reader curiosity. The proofs are based
on the local theory which is developed in the thesis but they can also be
proved directly.

Theorem 1.3. The geometric Galois group of an elliptic curve is the group
of affine transformation of the affine plane (Z3)

2 over the finite field Z3.

This theorem is proved in [Jor], a beautiful exposition of it is also given
in [BrKn]. Direct computations show that this group coincide with the
monodromy group of the covering whose base is the set of (smooth) elliptic
curves and the fibre consists of the inflection points of the corresponding
elliptic curve.

Theorem 1.4. The geometric Galois group of a generic curve of degree 4 is
the permutation group on its 24 inflection points.
The geometric Galois group of a generic hyperelliptic curve of degree d > 3
is the permutation group on its 3d+ 3 inflection points.

Here again the geometric Galois group coincides with the monodromy group
of the covering whose base is the set of smooth curves of degree 4 (resp.
smooth hyperelliptic curves of degree d > 3) with non-degenerate inflection
points3 and the fibre consists of the inflection points of the corresponding
curve.
Remark that the inflection points of a plane complex curve of degree 4
coincide with its Weierstrass points ([GrHa]). Theorem C.1 asserts that for
a generic curve these points cannot be distinguished one from the other.
In this thesis, we shall rather be interested in the local analytic case than in
the algebraic case. As a general rule we shall compute monodromy groups
rather than geometric Galois groups. Although it seems that when dealing
with projective extrinsic invariants a strange phenomenon occurs:
when the complexity increases the monodromy groups tend to become a full
permutation group Sk (and consequently coincides with the corresponding
Galois group).
This is not a theorem but rather an experimental fact based on the previous
theorems and on some other examples. On the other hand, it seems that
the exceptional varieties of CP n might lead to unexpected geometric Galois
groups which up to my knowledge have not been considered since Segre
([Seg]).
We have finished with Plücker’s example. The next chapter presents most
of our results, except for the results concerning the Legendrian theory which
are given in the second part of the thesis.

3An inflection point p of a curve V ⊂ C
2 is degenerate if there exists a line L inter-

secting V at p with intersection multiplicity at least 4.
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Figure 2. Approximated projections of the preinflection
points of the curves Hε on the y = −x complex-line. The
line with an arrow represents the projection for real values of
x and y. It contains the two real approximated preinflection
points 1 and 4.



CHAPTER 2

The classical theory of vanishing flattening points.

1. Basic definitions.

For notational reasons, we consider only the complex holomorphic case. The
definitions of section 1 and of section 3 can be easily adapted to the real C∞

case and for K formal or analytic series, K = R or K = C.

1.1. The Young diagram of a map-germ. We follow O.P. Scherback
[Sch] and M.E. Kazarian [Ka1].
Consider a holomorphic map-germ f : (C, 0) −→ Cn, where Cn denotes the
n-dimensional complex affine space.

Definition 2.1. The map-germ f is called triangular provided that there
exists an affine coordinate system in Cn such that:

f : (C, 0) −→ Cn

t 7→ (tα1 + (. . . ), tα2 + (. . . ), . . . , tαn + (. . . )),

The dots inside the parenthesis stand or higher order terms in the Taylor
series and 0 < α1 < α2 < · · · < αn are integers.

Example 1. The map-germ f : (C, 0) −→ C2 defined by f(t) = (t, t) is not
triangular.
Example 2. The map-germ f : (C, 0) −→ C2 defined by f(t) = (t2, t4) is
triangular.
Example 3. The map-germ f : (C, 0) −→ C3 defined by f(t) = (t, t2, t2) is
not triangular.
Remark 1. Examples 1 and 3 are in some sense exceptional: the set of non-
triangular holomorphic map-germs (for a fixed dimension n) form a variety
of infinite codimension in the space of holomorphic map-germs.
Remark 2. The sequence α1 < · · · < αn does not depend on the choice of
the affine coordinate system in Cn, nor on the choice of the coordinate in
C. We explain this fact.
Define an osculating k-plane of a curve V ⊂ Cn at a point p to be a complex
k-plane intersecting V with maximal multiplicity at p.
For instance, the osculating 1-plane at a point p ∈ V is the tangent line at
p.
For simplicity, assume that the map f : (C, 0) −→ (Cn, 0) is the germ of
map f̄ which defines a topological embedding.
Denote by V the curve germ parameterized by f̄ .

13
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Since f is triangular, the osculating k-plane at the origin is unique. The
number αk is the multiplicity of intersection at the origin of V with this
osculating k-plane.
Remark that this coordinate free definition of the sequence α1, . . . , αn de-
pends only of the local projective structure. In particular, it is well defined
for a map-germ

f : (C, 0) −→ CP n.

Definition 2.2. Let j be the least number such that αj − j > 0. The
sequence a1 = αn − n, . . . , an−j+1 = αj − j is called the anomaly sequence
of the map-germ f (the anomaly sequence can be empty).

Example 1. The anomaly sequence of the map-germ t 7→ (t, t3, t4, t6) is
(2, 1, 1).
Example 2. The anomaly sequence at the origin of the map-germ t 7→
(t, t2, t6) is (3).
Remark. To each non-increasing sequence of positive integer numbers (aj),
j ∈ {1, . . . , k} is associated a Young diagram. The number of squares in the
jth line of the Young diagram being equal to aj . The Young diagrams of

example 1 and example 2 are
� �
�
�

and ���.

1.2. Conventions. By holomorphic curve in affine space Cn, we mean
the choice of a collection of holomorphic maps

fj : Uj −→ Cn−1

satisfying the 2 following conditions.
1) the analytic subvariety V = {p ∈ Cn : ∃j, fj(p) = 0} of Cn is of dimen-
sion one,
2) In any coordinate system, the components of fj form a reduced system
of equations of V ∩ Uj .
The points p ∈ (V ∩ Uj) for which (Dfj)(p) is not surjective are called the
singular points of the curve V ⊂ Cn.
The points which are not singular points are called the smooth points of V .
The object that we call a curve is sometimes called a local complete inter-
section.
Let p be a point of a holomorphic curve V ⊂ Cn. Let Br ⊂ Cn be a
small closed ball centered at p of radius r. The connected components of
(V ∩ Br) \ {p} for r small enough are called the branches of V at p. If p is
a smooth point then V has only one branch.
The plane holomorphic curve of equation xy = 0 has two branches at the
origin, namely the two coordinate axis.
A parameterization of a curve-germ (V, 0) (resp. of a curve V ) in Cn is a
holomorphic map-germ g : (C, 0) −→ (Cn, 0) (resp. a holomorphic map)
such that:
1) the image of g is equal to (V, 0) (resp. contained in V ),
2) the map g is a topological embedding (i.e. a homeomorphism onto its
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image).
For example, the map defined by the polynomials t 7→ (t2, t4) is not a pa-
rameterization of the lane curve given by the equation y = x2.
Analogous conventions hold for curves in projective space CP n.

1.3. Flattening points of holomorphic curves.

Definition 2.3. A point p ∈ Cn (or in CP n) of a holomorphic curve V in
affine space Cn is called triangular if for any branch Vj of V at p the germ
of Vj at p can be parameterized by a triangular map-germ. The curve V is
called triangular if all its points are triangular.

Example 1. A line V =
{
(x, y) ∈ C2 : y = ax+ b

}
is not a triangular curve.

Example 2. The plane curve V =
{
(x, y) ∈ C2 : xy + x3 = 0

}
is not trian-

gular. The plane curve W =
{
(x, y) ∈ C2 : xy + x3 + y3 = 0

}
is triangular.

In the sequel, all the curves that we consider are triangular unless we mention
explicitly the contrary.

Definition 2.4. The anomaly sequence at a point p of a curve V in affine
space Cn is the anomaly sequence of a triangular map-germ f : (C, 0) −→ Cn

parameterizing the germ of V at p.

Remark 1. The anomaly sequence at a point of a curve does not depend on
the choice of the triangular parameterization of the germ of the curve at the
point.
Remark 2. The anomaly sequence of a point of a curve is also well-defined
for curves in projective space CP n.

Definition 2.5. A point p of a holomorphic curve V ⊂ Cn is called a
flattening point of the curve V provided that:
- p is a smooth point of V ,
- the anomaly sequence of V at p is not empty.

Example. For n = 2, the flattening points are the so-called inflection points.
For instance, the plane holomorphic curve:

Vk =
{

(x, y) ∈ C2 : y − xk+2 = 0
}

has an inflection point at the origin provided that k > 0.

Definition 2.6. A flattening point p of a holomorphic curve V ⊂ Cn is
called a degenerate flattening point of the curve V provided that the anomaly
sequence of V at p is not equal to (1).

1.4. The Milnor number of a complete intersection map-germ.
We recall the definition of the Milnor number of a one-dimensional complete
intersection ([Mil], [Hamm]).
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Definition 2.7. A holomorphic map-germ f : (Cn, 0) −→ (Cp, 0) is called a
complete intersection map-germ provided that the following three conditions
are satisfied
1) the variety1 f−1(0) of dimension n− p,
2) the origin is either a smooth point or an isolated critical point of f−1(0),
3) the equations f define a reduced system of equations of V .

Remark. With respect to the usual definition, we have added the conditions
2 and 3 for convenience.
Example. The map-germ f : (C2, 0) −→ (C2, 0) defined by f(x, y) =
(x, x+ xy) is not a complete intersection map-germ.

Consider a complete intersection map-germ f : (Cn, 0) −→ (Cn−1, 0).
Let f̄ : U −→ Cn−1 be a representative of f . Consider the family of curves
(Vε) defined by:

Vε =
{
p ∈ U : f̄(p) = ε

}
.

Assume that V0 has a singular point at the origin.
Denote by Bδ the closed ball of radius δ centered at the origin. Choose δ
small enough so that V0 intersects transversally the boundary of the ball Br

for any 0 < r ≤ δ. Choose ε such that Vε ∩Bδ is smooth.
Then Vε∩Bδ is homotopically equivalent to a bouquet of circles S1∨· · ·∨S1

provided that ε is small enough. Moreover, the number of circles depends
only on f . These facts are proved in [Mil] for function-germs and in
[Hamm] for complete intersection map-germs.

Definition 2.8. The number of circles in the bouquet described above is
called the Milnor number , denoted µ(f), of the complete intersection map-
germ f .

Remark. When there is no possible misunderstanding, we simply write µ
instead of µ(f).
Example. An explicit formula was found by Milnor ([Mil]) and completed
by Greuel ([Gre]) and Hamm ([Hamm]. For plane holomorphic curves this
formula is as follows.
Consider a holomorphic function-germ f : (C2, 0) −→ (C, 0) with an isolated
critical point at the origin.
Choose coordinates x, y in C2.
Denote by:
- Ox,y the ring of holomorphic function-germs,
- Jf the Jacobian ideal of f in Ox,y generated by the partial derivatives ∂xf ,
∂yf .
Then the Milnor number of f is given by the formula

µ(f) = dimC[Ox,y/Jf ].
1More precisely the germ at the origin of the zero-level set of a representative of f .

Here and in the sequel, we, abusively, use this ”shortened” formulation.
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The assumption that the singularity is isolated is equivalent to the assump-
tion dimC[Ox,y/Jf ] < +∞ ([AVG]).
For example, take f(x, y) = xp+yq. Then Jf is generated by xp−1 and yq−1.
Consequently, in this particular case, the Milnor number of f is equal to

µ = (p− 1)(q − 1).

2. Vanishing flattening points and generalized Plücker formulas.

2.1. The number of vanishing flattening points. Consider a holo-
morphic function f : U −→ C where U denotes an open neighbourhood of
the affine plane C2.
Assume that f has an only critical point in U . Then, some inflection points
of the curves:

Vε = {(x, y) ∈ U : f(x, y) = ε} ,
converge towards the critical point of f when ε approaches the corresponding
critical value.
Following Arnold ([Arn7]), we say that the inflection points ”vanish” at
the critical point. For example Plücker proved that the number of vanishing
inflection points at a generic Morse critical point (the meaning of generic
will be explained in the sequel) of a holomorphic function is equal to 6 ([Pl]).
Among these 6 vanishing inflection points no more than two can be real (see
figure 1).
More generally consider a one parameter family (Vε) of holomorphic curves
in affine space Cn of arbitrary dimension n > 1.

Definition 2.9. A flattening point p1 ∈ Vε1 vanishes at a singular point
p0 ∈ Vε0 provided that there exists a holomorphic function h : Sθ −→ Cn

such that:
- h(1) = p1,
- h(t) is a flattening point of the curve Vε(t) where ε(t) = tε1 + (1− t)ε0.
Here Sθ denotes the closure of the sector {t ∈ C : 0 <| t |≤ 1, | Argt |≤ θ}
with θ > 0.

Remark. A similar definition holds in projective space CP n.

2.2. Generalized Plücker formula. We denote by Cn the n-dimensional
vector space.
In this subsection and in the next one the flattening points are counted mul-
tiplicities: if a flattening point of a curve has anomaly sequence a1, . . . , ak
then it is counted

∑k
j=1 aj times.

Consider a complete intersection map-germ f : (Cn, 0) −→ (Cn−1, 0) with
an isolated critical point at the origin. Denote by f̄ : U −→ Cn−1 a repre-
sentative of f . Let f̄ε : U −→ Cn−1 be a one-parameter family of complete
intersection map germs such that f0 = f .
Denote by Vε the curve in affine space Cn which is the zero-level set of fε.
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Figure 1. Vanishing inflection points at a generic Morse
critical point of a real analytic function f . We have drawn
the level curves f = ε in the affine plane R2. The complex-
ification of the level curve f = ε is a Riemann surface with
6 inflection points. Among the six inflection points of this
complex holomorphic curve no more than two can reals. The
two inflection points of the real curve of equation f = ε lie
either on two distinct components or on the same component
(depending on the sign of ε).

Assume that the family of curves (Vε) in Cn is such that:
- for ε 6= 0, Vε is smooth,
- the germ of V0 at the origin is triangular.
To each branch Ck of V0 at the origin, we associate a number ηk as follows.
The anomaly sequence of Ck at the origin is say (ak1 , . . . , a

k
s) or empty. We

put:

ηk =

s∑

j=1

akj

if the anomaly sequence is not empty, ηk = 0 either.

Theorem 2.1. The number N(f) of vanishing flattening points at the origin
of the family of curves (Vε) when ε −→ 0 is equal to:

N(f) =
n(n+ 1)

2
(µ+ r − 1) +

r∑

k=1

ηk.

Here r is the number of branches of the curve V0 and µ is the Milnor number
of f .

This theorem is proved in chapter 3, section 2 where the relation with
Teissier’s polar invariants is given.
Theorem 2.1 implies that the number of vanishing flattening points at the
origin of the family of curves (Vε) depends only on the map-germ f :
(Cn, 0) −→ (Cn−1, 0). Consequently the following definition makes sense.
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Definition 2.10. The number N(f) given in theorem 2.1 is called the num-
ber of vanishing flattening points of f .

Example. Let f(x, y) = xy + x3 + y3. Put:

Vε =
{
(x, y) ∈ C2 : f(x, y) = ε

}
.

According to Milnor’s formula cited above, the Milnor number of (V0, 0) is
µ = 1. The number of branches at the origin of V0 is equal to r = 2.
The germs at the origin of the branches of V0 are parameterized by:

(C, 0) −→ (C2, 0)
t 7→ (t,−t2 + (. . . ))

and:
(C, 0) −→ (C2, 0)
t 7→ (−t2, t+ (. . . )).

Here the dots stand for higher order terms in the Taylor series. Both anom-
aly sequences are empty, thus N = 6 as found by Plücker.

Remark (for specialists). This theorem can be proved using Chern classes
of line bundles and a result of Bassein which generalizes Milnor’s formula
2δ = µ+ r − 1 ( [Mil], [Bas], [BuGr], [MoSt]) .
This leads to a more general theorem which is in fact valid for curves which
are not necessarily local complete intersections.
The proof we shall give is much more elementary. Vice-versa our proof im-
plies both Milnor’s formula 2δ = µ+ r− 1 and Bassein’s generalization of it
for one dimensional complete intersection.

After Plücker, particular cases where obtained by several authors [EC],
[Gud], [Sh]. Other kind of generalizations of the so-called Plücker-Poncelet
formulas have also been given ([Kl], [Tei1], [Vi], [Yang]). In the plane
case (n = 2), theorem 2.1 is explicitly cited in [AVGL2]. A special case of
theorem 2.1 was obtained in [Ga].

Definition 2.11. Let V ⊂ CP n be a triangular curve. A singular point
p ∈ V is called minimal if the number of vanishing flattening points at
p is minimal among all the curve-germs having a singularity analytically
equivalent to (V, p).

According to Veronese, a smooth curve of degree d and genus g in CP n has
(n+ 1)(d+ ng − n) flattening points2 ([Ve]).
Assume that there exists a family of curves (Vε) such that:
- for ε 6= 0, Vε is a smooth curve of degree d and genus g,
- V = V0.
Then theorem 2.1 implies that V has (n + 1)(d + ng − n) flattening points

2Such a curve exists only for particular values of g, d ([GrHa]).
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minus the number of vanishing flattening point at the critical point given
by the theorem. This is a generalization of the classical Plücker formula:

i = 3d(d − 2)− 6m− 8κ

giving the number i of point of inflection points of a plane curve of degree
d with m minimal double points and κ semi-cubical cusps and no other
singularities ([Pl]).
The most simple non-trivial example is obtained as follows. Consider a
curve V ⊂ CP 3 of degree 6 obtained as the intersection of a quadric with
a cubic surface. Assume that V has no other singularities than minimal
double points and semi-cubical cusp points.
If V is smooth then according to Veronese it has 60 flattening points (d =
6, g = 4, n = 3).
If V has m minimal double points and κ minimal cusp points then, the
number f of flattening points of V is:

f = 60− 12m− 15κ.

In particular if no branch of V is contained in a plane (i.e.: V is triangular)
then V has can have at most:
- 5 double points,
- 3 double points and 1 semi-cubical cusp point,
- 2 double points and 2 semi-cubical cusp points,
- 1 double point and 3 semi-cubical cusp points,
- 4 semi-cubical cusp points.

2.3. The generic number of vanishing flattening points for A,D,E
singularities.

Definition 2.12. A holomorphic function-germ H : (C2, 0) −→ (C, 0) be-
longs to a singularity class Ak,Dk, E6, E7, E8 provided that there exists a
biholomorphic map-germ g : (C2, 0) −→ (C2, 0) such that one of the follow-
ing equalities hold

Ak H ◦ g(x, y) = y2 + xk+1,
Dk H ◦ g(x, y) = x2y + yk−1,
E6 H ◦ g(x, y) = x3 + y4,
E7 H ◦ g(x, y) = x3 + xy3,
E8 H ◦ g(x, y) = x3 + y5

Choose a singularity classX among the singularity classes Ak,Dk, E6, E7, E8.
Let H be a function-germ belonging to X.
Let H̄ be a representative of H. Denote by Hε the level curves H̄−1(ε).
Given a holomorphic map ϕ : (C2, 0) −→ (Cn, 0) denote by Nϕ the number
of vanishing flattening points at the origin of the family of curves Vε = ϕ(Hε)
when ε −→ 0.
Theorem 2.1 implies that, for any k big enough, there exists a semi-algebraic
variety Σ of codimension at least one in the space J k0 (C2,Cn) of k-jets at
the origin of maps such that the number Nϕ is constant for jk0ϕ /∈ Σ. In the
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table below this number is denoted by N [X].

n = 2 3 4 n n = 2 3 4 n
N [A1] = 6 12 20 n(n+ 1) N [D4] = 18 36 60 3n(n+ 1)
N [A2] = 8 15 24 n(n+ 2) N [D5] = 20 39 64 n(3n+ 4)
N [A3] = 12 24 40 2n(n+ 1) N [E6] = 22 43 70 n(3n+ 6)− 2
N [A4] = 15 29 47 2n(n+ 2)− 1 N [E7] = 26 51 84 n(4n+ 5)
N [A5] = 18 36 60 3n(n+ 1) N [E8] = 29 56 92 4n(n+ 2)− 4, n ≥ 3

Remark that if H ∈ X is such that the branches of H−1(0) are smooth then
theorem 2.1 implies the equality

N [X] = (µ(H)− 1)N [A1].

Figure 2. The real part of the family of curves Vε ={
(x, y) ∈ C2 : y2 + x3 = ε

}
for real values of the parameter

ε. Among the 8 complex inflection points of Vε, ε 6= 0 only
2 are real.
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3. The Plücker discriminant.

The results of this section and of the next one can be stated in the real
C∞ case, in the K analytic case and for K formal power series with K = R
or K = C. However, for simplicity, we give the definitions in the complex
holomorphic case. The theorems will be stated in the real C∞ case and in
the complex holomorphic case but they are valid for all the other categories
stated above.

3.1. Inflection points of holomorphic curves. The flattening points
of plane curves in the affine plane C2 (or in the projective plane CP 2) are
the inflection points.
For the reader’s convenience, we state equivalent but simpler definitions for
this case (n = 2).

Definition 2.13. Let p ∈ C2 (or in CP 2) be a smooth point of a holo-
morphic curve V ⊂ C2. Denote by L the tangent complex line of V at p.
The point p is called an inflection point provided that the multiplicity of
intersection at p of V with L is at least equal to 3.

Definition 2.14. The anomaly at a point p of a holomorphic curve V ⊂ C2

is the maximal multiplicity of intersection at p of a line with the curve V .

Example. At an inflection point the anomaly is at least equal to 1.

Definition 2.15. An inflection point p ∈ C2 of a holomorphic curve V ⊂ C2

is called a degenerate inflection point provided the anomaly of p ∈ V is at
least equal to 2.

Example. The holomorphic curve:

Vk =
{

(x, y) ∈ C2 : y − xk+2 = 0
}

has an inflection point at the origin provided that k > 0. For k > 0, the
anomaly of the origin is equal to k. Thus, the origin is a degenerate inflection
point of the curve Vk provided that k > 1.

3.2. The Plücker discriminant of a family of curves. In the se-
quel, by family of holomorphic curves (Vλ) in the affine complex plane C2,
we mean the choice of a holomorphic map:

G : Λ× U −→ C

such that the curves of our family are given by

Vλ = {p ∈ U : G(λ, p) = 0} .
Here Λ ⊂ Ck is the space of the values of the parameter λ and U denotes
an open neighbourhood of the complex affine plane C2.

Definition 2.16. Let (Vλ) be a family of holomorphic curves in C2. The
set of the values of the parameter λ for which the curve Vλ has either a
degenerate inflection point or a singular point is called the P-discriminant
(read Plücker discriminant) of the family (Vλ).
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Figure 3. The P-discriminant of the family of curves (Vλ)
given by Vλ =

{
(x, y) ∈ R2 : y + x5 + λ1x

3 + λ2x
2 = 0

}
. In-

side the disks, we represented the real parts of the curve of
the corresponding value of the parameter. The marked points
on the curves stand for the inflection points. In case of a de-
generate inflection point, we have put the marked points near
one to the other.

Example 1. Consider the two parameter family of mappings

fλ : C −→ C2

t −→ (t, t5 + λ1t
3 + λ2t

2),

depending on the parameter λ = (λ1, λ2) ∈ C2.
Denote by Vλ the curve parameterized by fλ.
The curve Vλ ⊂ C2 is smooth for any value of λ ∈ C2. Thus, the P-
discriminant consists only of the values of the parameter λ ∈ C2 for which
the curve Vλ has a degenerate inflection point.
Consider the two parameter family of holomorphic functions gλ : C −→ C
defined by

gλ(t) = t5 + λ1t
3 + λ2t

2.

The point fλ(t) is an inflection point of the curve Vλ if and only if the second
derivative of gλ vanishes at t, that is g”λ(t) = 0.
Consequently, the P-discriminant Σ of the family of curves (Vλ) is given by

Σ =
{
λ ∈ C2 : ∃t ∈ C, gλ”(t) = g

(3)
λ (t) = 0

}
.
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By direct computations, we get that the P-discriminant of the family of
curves (Vλ) is the semi-cubical parabola

Σ =
{
λ ∈ C2 : 2λ3

1 + 5λ2
2 = 0

}
.

We depicted the P-discriminant Σ for real values of the parameter λ in fig-
ure 3.

Example 2. Consider the holomorphic function G : C2 × C2 −→ C defined
by the polynomial

G(λ, x, y) = y2 + x3 + λ1x+ λ2.

The plane holomorphic curves Vλ = {(x, y) : G(λ, x, y) = 0} are of degree 3.
Hence, they have no degenerate inflections.
The P-discriminant of the family (Vλ) consists only of the values of the
parameter λ for which the curve Vλ is singular. Consequently, the P-
discriminant Σ of the family (Vλ) is given by:

Σ =
{
λ ∈ C2 : ∃(x, y) ∈ C2, ∂xG(x, y, λ) = ∂yG(x, y, λ) = G(x, y, λ) = 0

}
.

By direct computations, we get:

Σ =
{
λ ∈ C2 : 4λ3

1 + 27λ2
2 = 0

}
.

The singularities of Plücker discriminants of families of rational holomor-
phic curves where studied by M.E. Kazarian. He obtained in particular the
bifurcation diagrams for the two and three parameters ”generic” families of
such curves (see [Ka1]).

3.3. The genericity notion. In the following theorems, we consider
”generic holomorphic functions” of the type F : Λ× U −→ C where Λ and
U are open neighbourhoods of a in the affine plane C2 and in the analytic
space Ck.
The word generic means that there exists an integer N and a variety M ⊂
JN (Λ× U,C) such that F satisfies the theorem provided that the map

jNF : Λ× U −→ JN (Λ× U,C)

is transversal to M .
In fact in all our cases M will be of codimension strictly higher than k + 2.
Consequently the transversality condition means simply that the image of
jNF , which is of dimension at most k + 2, does not intersect M .
Replacing the words complex and holomorphic by real and C∞ we get the
meaning of the genericity notion in the real case.
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3.4. The generic Plücker discriminants of foliations by plane
curves. The theorems stated in this subsection are corollaries of the gen-
eral methods developed in section 4 and section 5.
Consider a holomorphic function F : Λ×U −→ C depending on the param-
eter λ = (λ1, . . . , λk) ∈ Λ. Here U denotes an open subset in the complex
affine plane C2 and Λ is an open neighbourhood in the analytic space Ck.
The level-curves of F (λ, .) define a family of holomorphic curves (Vλ,ε) in
the affine plane C2. The curve Vλ,ε being defined by:

Vλ,ε = {p ∈ U : F (λ, p) = ε} .
The curve Vλ,ε is defined as the zero level-set of the function G(λ, ε, .) =
F (λ, .)− ε depending on the k + 1 parameters λ1, . . . , λk, ε.
Thus, the parameter of the family of curves which was denoted by λ in the
preceding subsection is denoted in this subsection by (λ, ε).

Definition 2.17. The P-discriminant of the function F is the P-discriminant
of the family of curves (Vλ,ε).

Denote respectively by Λ1, U neighbourhoods of the origin in C and in C2.

Theorem 2.2. Let F : Λ1 ×U −→ C be a generic function. Let Σ ⊂ Λ×C
be the P-discriminant of F . Then, the germ of Σ at an arbitrary point
(λ, ε) ∈ Σ is biholomorphically equivalent to the germ at the origin of one of
the following curves in C2, provided that U is small enough:
PA1,K1 : A line.
PA1

1 : The curve
{
(λ, ε) ∈ C2 : ε(ε − λ4) = 0

}
.

PA2,K2 : The curve
{
(λ, ε) ∈ C2 : ε2 − λ3 = 0

}
.

Remark. In the C∞ category, for a generic C∞ function F : Λ × U −→ R,
Λ ⊂ R, U ⊂ R2, the germ at the origin of the P-discriminant is diffeomor-
phic to the real part of one of the complex P-discriminants listed above.

The ”typical” deformations giving the bifurcation diagrams PA1, PA1
1 and

PA2 are as follows:

PA1 PA1
1 PA2

xy + x3 + y3 xy + x4 + λx3 + y3 y2 + x3 + λx

The first deformation is constant in the parameter λ.
The P-discriminant of the family F : R×R2 −→ R defined by the polynomial

F (λ, x, y) = xy + x4 + λx3 + y3

is depicted in figure 4.
The level-curves

Vλ,ε =
{
p ∈ R2 : F (λ, p) = ε

}

corresponding to different values of the parameter (λ, ε) are depicted in fig-
ure 5.
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2
4

1

3

PA1PA1

K 1

PA1
1 λ

ε

Figure 4. The real P-discriminant of the function
F (λ, x, y) = xy + x4 + λx3 + y3. The curves corresponding
to values of the parameter (λ, ε) in the connected components
1, 2, 3 are depicted in figure 5. The stratum K1 corresponds
to the values of the parameter (λ, ε) for which the curve Vλ,ε
has a degenerate inflection point of anomaly 2. The values
of the parameters (λ, ε) for which the curve Vλ,ε is singular
has two strata. One stratum of dimension 1 denoted PA1

and a stratum of dimension 0 denoted PA1
1 which lies in the

closure of the the strata of dimension 1. The stratum PA1 is
not connected (while in the complex case it is connected).

We turn on to the case where the space of the parameters (λ, ε) is of dimen-
sion 3. We recall the following definition.

Definition 2.18. A holomorphic function f : U −→ C is called a Morse
function provided for any critical point p ∈ U of f , the second differential of
f at p is a non-degenerate quadratic form. Here U is an open neighbourhood
in C2.

Denote by Λ2, U neighbourhoods of the origin in C2.

Theorem 2.3. Let F : Λ2 × U −→ C be a generic function. Let λ0 be such
that F (λ0, .) is a Morse function. Denote by p0 ∈ C2 a critical point of
F (λ0, .) of critical value ε0 ∈ C.
Then, the germ at (λ0, ε0) of the P-discriminant of F is biholomorphically
equivalent to the germ at the origin of one of the following 4 surfaces in
(λ, ε)′s space Λ2×C ⊂ C3, provided that U is a sufficiently small neighbour-
hood of p0:
1) PA1,1

1 : One of the polynomials x4 + λ1x
3 + ε, y4 + λ2y

3 + ε has at least
a double root .
2) PA2

1 : The polynomial x5 + λ1x
4 + λ2x

3 + ε has at least a double root.
3,4) Cylinders over the P-discriminants denoted PA1

1 or PA1 in the list of
theorem 2.2.
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Figure 5. We have numbered the level curves in R2 by
1, 2, 3. The black disks stand for the inflection points of the
curves labelled 1, 2, 3. The number 1 curve and the number 2
curve have 3 (real) inflection points. The number 3 curve has
only one real inflection point. Between the curve 2 and the
curve 3 there is a curve with a degenerate inflection point.
Between 1 and 2 there is a curve with a node singular point.
This singular curve has an inflection point.

The ”typical” deformations giving the bifurcation diagrams PA1,1
1 and PA2

1
of theorem 2.3 are:

PA1,1
1 PA2

1

xy + x4 + y4 + λ1x
3 + λ2y

3 xy + x5 + y3 + λ1x
4 + λ2x

3 .

The real C∞ version of this theorem is as follows.
The levels Vε = {(x, y) ∈ U : f(x, y) = ε} of a Morse function f : U −→ R
whose second differential has signature (+,+) or (−,−) are either convex
curves or empty, provided that ε 6= 0 is small enough. Thus, they have no
inflection points provided that U is small enough. Consequently, we do not
consider these cases. Denote by Λ2, U neighbourhoods of the origin in R2.

Theorem 2.4. Let F : Λ2 × U −→ R be a generic function, U ⊂ R2.
Let λ0 be such that F (λ0, .) is a Morse function. Denote by p0 ∈ R2 a
critical point of F (λ0, .) of critical value ε0 ∈ R. Assume that the Hessian
of F (λ0, .) at p0 is neither positive definite nor negative definite.
Then, the germ at (λ0, ε0) of the P-discriminant of F is diffeomorphic to
the germ at the origin of one of the following 5 surfaces in (λ, ε)′s space
Λ2 × R, provided that U is a sufficiently small neighbourhood of p0:
1,2) PA1,1,±

1 : One of the polynomials x4 + λ1x
3 + ε, ±y4 + λ2y

3 + ε has at
least a (real) double root .
3) PA2

1 : The polynomial x5 + λ1x
4 + λ2x

3 + ε has at least a (real) double
root.
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4,5) Cylinders over the P-discriminants denoted PA1
1 or PA1 in the list of

theorem 2.2.

The ”typical” deformations giving the bifurcation diagrams PA1,1,±
1 and

PA2
1 of theorem 2.3 and theorem 2.4 are:

PA1,1,±
1 PA2

1

xy + x4 ± y4 + λ1x
3 + λ2y

3 xy + x5 + y3 + λ1x
4 + λ2x

3 .

The surfaces corresponding to the P-discriminant of theorem 2.4 are de-
picted in figure 6, figure 8 and figure 9. The complex P-discriminants of
theorem 2.3 are obtained by complexifying these real surfaces. Remark
that the surface drawn in figure 6 is not the discriminant of the boundary
singularity B3 ([AVGL1]). Indeed a transversal slice of this surface gives
two curve intersecting with multiplicity 4 at the origin (instead of 2 for the
discriminant of the boundary singularity B3).

 PA1
1

 PA1
2

K2

PA1
K

1

K
1

Figure 6. The P-discriminant of the family of curves PA2
1 :

xy+x5+λ1x
4+λ2x

3+y3 = ε. The stratum Kj corresponds to
the values of the parameter (λ, ε) for which the curve Vλ,ε has
a degenerate inflection of anomaly j + 1. A transversal slice
of the surface gives two curves intersecting with multiplicity
4 at the origin.
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+

Figure 7. One component of the P-discriminant of PA2
1 is

diffeomorphic to a cylinder over a semi-cubical parabola. The
other component is a plane.

1
1

PA1

K 1

PA1
1

K 1

PA1

PA
1,1
1

PA

Figure 8. The P-discriminant of the family of curves
PA1,1,+

1 : xy + x4 + y4 + λ1x
3 + λ2y

3 = ε. The stratum Kj

corresponds to the values of the parameter (λ, ε) for which
the curve Vλ,ε has a degenerate inflection point of anomaly
j + 1.
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PA1
1

PA1

K

K

PA1
1,1

1

1

Figure 9. the P-discriminant of the family of curves
PA1,1,−

1 : xy + x4 − y4 + λ1x
3 + λ2y

3 = ε. The stratum Kj

corresponds to the values of the parameter (λ, ε) for which
the curve Vλ,ε has a degenerate inflection point of anomaly
j + 1.

K1

1
1

K1

PA1 PA1
1 PA PA1

K1

K2

1PA
1

PA1

Figure 10. Left-hand side: plane section of the P-
discriminant PA1,1,+

1 . Right-hand side: plane section of the
P-discriminant PA2

1. The stratum Kj corresponds to the
values of the parameter (λ, ε) for which the curve Vλ,ε has a
degenerate inflection point of anomaly j + 1.
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4. The classification with respect to inflection points.

The results that we have presented in section 3 are by-products of a classi-
fication method that we shall explain in this section.
In this section, several uses will be made of the symbol C2.
It will denote either the affine complex plane, the complex two dimensional
vector space, the analytic manifold. If no precision is given then we are
just considering the analytic manifold otherwise we shall specify the addi-
tional structure which is involved. We made that choice in order to avoid
complicated notations.

4.1. The bordered Hessian. Denote by U an open neighbourhood of
the affine complex plane C2.
Let f : U −→ C be a holomorphic function with isolated critical points.
Consider the family of curves (Vε) defined by:

Vε = {p ∈ U : f(p) = ε} .
For simplicity, assume that:
1. the set of values of ε ∈ f(U) for which the curve Vε has a degenerate
inflection point is finite.
2. Ẋf =

{
p ∈ U : p is an inflection point of Vf(p)

}
is a curve.

Definition 2.19. The closure Xf of the curve Ẋf is called the Hessian
curve of f (see figure 11).

Fix an affine coordinate-system in affine space C2.

Definition 2.20. The bordered Hessian , denoted ∆f , of a holomorphic
function f : U −→ C2 is the determinant of the matrix:



fxx fxy fx
fxy fyy fy
fx fy 0


 .

Remark. The bordered Hessian depends on the choice of the affine coordi-
nate system.

According to Klein [Klein1], the following proposition is due to Plücker (for
simplicity, we assume that f satisfies the conditions 1 and 2 stated above).

Proposition 2.1. 1. The Hessian curve Xf is given by:

Xf = {(x, y) ∈ U : ∆f (x, y) = 0} .
2. The multiplicity of intersection at p of the curve Vε with the Hessian
curve Xf = {(x, y) ∈ U : ∆f (x, y) = 0} is equal to the anomaly of p.

The proof of this proposition is elementary, it is given, in a more general
form, in chapter 3, page 59.
Example. Consider the function f(x, y) = y− x3. The Hessian curve of f is
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V

0

−1

1

V

V

∆  =0f

V

∆ f =0

V

V

−1

0

1

Figure 11. Two examples of Hessian curves. The Hessian
curve Xf = {(x, y) : ∆f (x, y) = 0} intersects the curve Vε =
{(x, y) : f(x, y) = ε} at an inflection point. If the point p is
a non-degenerate inflection point then the intersection of Vε
with Xf at p is transversal (left-hand side).

the line of equation x = 0 in the (x, y)-plane (see left part of figure 11).

The map f together with the function ∆f contains all the information on
the inflection points of the curves Vε. Once ∆f is calculated, we forget the
affine structure of U ⊂ C2 and we study the map:

(f,∆f ) : U −→ C× C.

This is the main idea for the classification of function-germs with respect to
inflection points. In order to study the map (f,∆f ), we apply G-equivalence.
This equivalence relation was introduced by V.V. Goryunov ([Go],[AVGL2]).

4.2. V -equivalence, G-equivalence and the Plücker space. In this
subsection, we recall basic facts of singularity theory ([Tyu],[Math],[Mar])
and introduce the G-equivalence relation ([Go]).
A more detailed exposition of the notions introduced in this section is given
in chapter 4.
We use the following notations:
1. Diff(k) is the group of biholomorphic map-germs ϕ : (Ck, 0) −→ (Ck, 0)
preserving the origin.
2. Ox,y is the ring of holomorphic function-germs f : (C2, 0) −→ C.
3. GL(2,Ox,y) is the ring of invertible matrices with entries in Ox,y.
The space Diff(2) × GL(2,Ox,y) can be endowed with a group structure
which makes it a semi-direct product. This semi direct product is defined
as follows.
Any matrix A ∈ GL(2,Ox,y) is of the form

A =

(
α β
γ δ

)
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with α, β, γ, δ ∈ Ox,y and (αδ − βγ)(0) 6= 0.

Given a holomorphic map germ f̃ : (C2, 0) −→ (C ×C, 0), define A× f̃ by:
(
α β
γ δ

)
f̃ = (αf + βEf , γf + δEf ),

where f̃ = (f,Ef ).
The action of Diff(2)×GL(2,Ox,y) on Ox,y ×Ox,y is defined by:

(ϕ,A).f̃ = A× (f̃ ◦ ϕ−1).

The composition law in Ox,y×Ox,y induces a semi-direct product structure
on Diff(2)×GL(2,Ox,y), namely:

(5) (ϕ,A).(ϕ′, A′) = (ϕ ◦ ϕ′, A× (A′ ◦ ϕ)).

This group is denoted by K, it is sometimes called the contact-group but we
shall not use this terminology.

Definition 2.21. Two holomorphic map-germs f̃ , g̃ : (C2, 0) −→ (C×C, 0)
are called V -equivalent provided that they are in the same orbit under the
action of the group K defined above.

Definition 2.22. The group G is the subgroup of Diff(2) × GL(2,Ox,y)
defined by the following condition:

(ϕ,A) ∈ G ⇐⇒ ∃α, β ∈ Ox,y, A =

(
1 α
0 β

)
.

Remark. With the notations of the definition, since A is invertible we have
β(0) 6= 0.

Definition 2.23. Two holomorphic map-germs f̃ , g̃ : (C2, 0) −→ (C×C, 0)
are called G-equivalent provided that there exists a biholomorphic map-germ
ψ : (C, 0) −→ (C, 0) such that ψ ◦ f̃ and g̃ are in the same orbit under the
action of the group G.

Definition 2.24. The Plücker space is the set of holomorphic map-germs
(g,Eg) : (C2, 0) −→ (C×C, 0) for which there exists a holomorphic function-
germ f : (C2, 0) −→ (C, 0) and a coordinate system C2 centered at 0 such
that the following G-equivalence relation holds:

(f,∆f ) ∼ (g,Eg).

Remark. The holomorphic function-germ Eg : (C2, 0) −→ (C, 0)g is not
necessarily the bordered Hessian of g.

Choose a vector space structure on C2.

Definition 2.25. Two holomorphic function-germs f, g : (C2, 0) −→ (C, 0)
are called P-equivalent if the map-germs (f,∆f ), (g,∆g) are G-equivalent.
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Remark. The function-germ ∆f depends on the choice of the linear coordi-
nates in C2. However, the G-orbit of (f,∆f ) depends only on the choice of
the vector space structure in C2 and not on the choice of the linear coordi-
nate system introduced for computing the bordered Hessians. Indeed, it is
readily verified that the computations of the bordered Hessians in two dis-
tinct systems of linear coordinates are equal up to a multiplicative non-zero
constant.

4.3. The finite determinacy theorem for G-equivalence. Con-
sider a holomorphic map-germ: f̃ : (C2, 0) −→ (C× C, 0). Put f̃ = (f,Ef ).
Fix coordinates (x, y) in C2 and in C× C.

Definition 2.26. The G-tangent space to f̃ , denoted T f̃ is theOx,y-submodule

ofOx,y×Ox,y generated by the 6 map-germs x∂xf̃ , x∂y f̃ , y∂xf̃ , y∂y f̃ , (Ef , 0), (0, Ef ).

Remark. We have used here a shortened formulation. The G-tangent space
to f̃ is in fact the tangent space at the ”point” f̃ ∈ (Ox,y × Ox,y) to the

orbit of f̃ under the action of the group G ×Diff(1) (with the semi-direct
product structure induced by the composition law). .

The space (Ox,y ×Ox,y)/T f̃ is a C-vector space.

Definition 2.27. The G-Milnor number of a holomorphic map-germ f̃ :
(C2, 0) −→ (C× C, 0) is defined by the formula

µG(f̃) = dimC[(Ox,y ×Ox,y)/T f̃ ].

Remark. When no confusion is possible we simply write µG instead of µG(f̃).

Denote by Mk the kth power of the maximal ideal of Ox,y.
Denote by M̃k the submodule of Ox,y × Ox,y of map-germs of the type

g = (g1, g2) such that g1, g2 ∈Mk.
The following theorem is the finite determinacy theorem for G-equivalence.

Theorem 2.5. Let f̃ : (C2, 0) −→ (C × C, 0) be a holomorphic map-germ

satisfying µG(f̃) < +∞. Then for any map-germ ψ ∈ M̃µG+1, we have the
following G-equivalence

f̃ + ψ ∼ f̃ .

This theorem is proved in a slightly a more general form in appendix B.
It is proved along the same lines than the standard finite determinacy the-
orem ([Math], [Tyu], [Mar]). I do not know whether Damon’s general
theory ([Da]) can be applied to the group G or not.

4.4. The Plücker theorem. Here is the most elementary result that
one can obtain using the methods of the preceding subsection (compare
chapter 1, section 2).
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Theorem 2.6. If f : (C2, 0) −→ (C, 0) is a generic Morse function-germ3

then the pair (f,∆f ) is G-equivalent to (x3 + y3, xy).

Let f̄ be a representative of a generic Morse function-germ.
Then, theorem 2.6 implies that:
1) there are 6 inflection points of the curve Vε = {(x, y) ∈ U : f(x, y) = ε}
that ”vanish” at the origin when ε −→ 0 ([Pl]),
2) when ε turns counterclockwise around the origin the 6 inflection points
permute of Vε and one can number the inflection points in such a way that
the resulting monodromy is (123)(456).

4.5. The P-simple function germs. Following Arnold, who intro-
duced the modality and the simplicity notions in [Arn2] for the case of
critical points of functions, we introduce the notion of modality in Plücker
space.
Assume that we are given an equivalence relation on a (finite dimensional)
manifold M . Then according to Arnold, the modality of a point in M is
the least number m such that a neighbourhood of the point is covered by
a finite number of m-parameter families of equivalence classes4. If m = 0
then the point is called simple. More details on the modality under various
circumstances can be found in [AVGL1].
Here and in all this subsection C2 denotes the two-dimensional vector space.
Consider the algebra M̄2 of the holomorphic function-germs of the type

g : (C2, 0) −→ (C, 0)

with a critical point at the origin.
The algebra M̄2 is not the square of the maximal ideal of Ox,y because we
are considering germs of function defined on the vector space C2 and not on
the analytic variety C2.

Let f ∈ M̄2 be a holomorphic function-germ such that (f,∆f ) has finite
G-Milnor number, that is µG(f,∆f ) < +∞.

Definition 2.28. The holomorphic function-germ f : (C2, 0) −→ (C, 0) has
P-modality m provided that m is the least number satisfying the following

3The Morse function-germs that do not satisfy the property form a semi-algebraic
variety of codimension at least one in the space of r-jets of Morse function of two variables
for any r > 3.

4One of the basic examples is the following.
Let M = GL(2, R) be the space of invertible 2 × 2 matrices. Consider the equivalence
relation:

A ∼ B ⇐⇒ (∃P ∈ GL(2, R) such that A = PBP−1)

Let ρ : GL(2, R) −→ R
2 be the map sending a matrix A to its characteristic polynomial

det(A− Id.X).
Assume that A has two distinct eigenvalues. Then, in a neighbourhood of A the equiv-
alence classes are parameterized by the value of ρ. Hence the modality of A is equal to
2.



36 2. THE CLASSICAL THEORY OF VANISHING FLATTENING POINTS.

property. For any k > µG, a neighbourhood of jkf ∈ JkM̄2 is parameterized
by a finite number of m-parameter families of k-jets of P-equivalence classes.

Remark. The G-finite determinacy theorem implies that m does not depend
on the choice of k.

Theorem 2.7. For any k > 3, the variety of the non P-simple function-
germs is of codimension 2 in the space J kM̄2 of k-jets of maps with a critical
point at the origin of critical value equal to zero.

In order to give the complete list of the P-simple function-germs, we need
to state some definitions.

Definition 2.29. A P-singularity class is a subset of the space of function-
germs f : (C2, 0) −→ (C, 0) in M̄2 which is invariant under P-equivalence.

Definition 2.30. A holomorphic Morse function-germ f : (C2, 0) −→ (C, 0)
belongs to the P-singularity class PAp,q1 , with p ≤ q, provided that the
following property holds. There exists a linear coordinate-system in the
vector space C2 such that the two branches of the zero-level set of f admit
holomorphic parameterizations of the type:

(C, 0) −→ (C2, 0)
t 7→ (t, t2+p + o(t2+p))

and
(C, 0) −→ (C2, 0)
t 7→ (t2+q + o(t2+q), t).

Here p, q are either integers or equal to zero. If p or q is equal to zero, we
omit to write it.

Example. The function-germ f : (C2, 0) −→ (C, 0) defined by the polynomial

f(x, y) = xy + x4 + y5 belongs to the P-singularity class PA1,2
1 .

Definition 2.31. A holomorphic function-germ f : (C2, 0) −→ (C, 0) with
an isolated critical point at the origin belongs to the P-singularity class PA2

provided that the following property holds. There exists a linear coordinate-
system in C2 such that the zero-level set of f admits a holomorphic param-
eterization of the type:

(C, 0) −→ (C2, 0)
t 7→ (t2 + o(t2), t3 + o(t3)).

Theorem 2.8. The (complex holomorphic) classes PAp,q1 and PA2 coincide
with the list of the P-simple singularities. Moreover any function-germ be-
longing to one of these P-singularity classes is P-equivalent to one of the
following function-germs:

PA1 PAp1 PAp,q1 PA2

xy + x3 + y3 xy + xp+3 + y3 xy + xp+3 + yq+3 y2 + x3

τ = 0 τ = p τ = p+ q τ = 1
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where p, q are strictly positive integers. Here τ denotes the codimension of
the P-singularity class in the space M̄2 (see below).

The techniques for proving theorem 2.7 and theorem 2.8 are developed in
chapter 4. The details of the computations are given in appendix A.

We explain the meaning of the number τ in the table of theorem 2.8.
Recall that M̄2 denotes the space of function germs:

g : (C2, 0) −→ (C, 0)

with a critical point at the origin.
Consider a function-germ f ∈ M̄2 of the previous list. Remark that the
G-Milnor number of (f,∆f ) for such a function-germ is finite.
Denote by V the variety of map-germs which are P-equivalent to f .
The finite determinacy theorem for G-equivalence implies that the codimen-
sion of JkV ⊂ JkM̄2 does not depend on k provided that k > µG(f,∆f ).
This codimension is denoted by τ (because of the analogy with the Tyurina
number of singularity theory).
Although, we defined it in the complex holomorphic case, the P-equivalence
relation has an immediate variant in the real C∞ case.
Let f : (R2, 0) −→ (R, 0) be a (real C∞) Morse function-germ whose second
differential at the origin has signature (+,+) or (−,−). Here R2 denotes
the (real) two dimensional vector space.
The curves Vε = {p ∈ U : f(p) = ε} are either convex curves or empty, pro-
vided that ε 6= 0 is small enough. Hence we do not consider these cases.

Definition 2.32. A C∞ function-germ f : (R2, 0) −→ (R, 0) is of the type

PAp,q,±1 provided that the following property holds. There exists a linear
coordinate-system in R2 such that the two branches of the zero-level set of
f admit C∞ parameterizations of the type:

(R, 0) −→ (R2, 0)
t 7→ (t, t2+p + o(t2+p))

and

(R, 0) −→ (R2, 0)
t 7→ (±t2+q + o(t2+q), t).

Here p, q are either integers or equal to zero. If p or q is equal to zero, we
omit to write it.

Remark 1. The real C∞ function-germs f, g : (R2, 0) −→ (R, 0) defined
by the polynomials f(x, y) = xy + x4 + y4 and g(x, y) = xy − x4 − y4 are
P-equivalent since −f(−x,−y) = g(x, y).

Remark 2. For p = q(mod2) the P-singularity classes PAp,q,+1 and PAp,q,−1
are equal. We denote this P-singularity by PAp,q1 omitting the +,− symbols.
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The definition of the P-singularity class PA2 in the real C∞ case is obtained
from the complex one by replacing the words complex holomorphic by real
C∞.

Theorem 2.9. Any (real C∞) function germ belonging to the class PAp,q1
or PA2 is P-equivalent to one of the following function-germ:

PAp,q1 PAp,q,±1 PA2

xy + xp+3 + yq+3 xy + xp+3 ± yq+3 y2 + x3

τ = p+ q, p = q(mod2) τ = p+ q, p 6= q(mod2) τ = 1

,

where p ≥ 0, q ≥ 0. If p or q is equal to 0 then we omit to write it.

4.6. Adjacencies of the P-singularity classes.

Definition 2.33. A P-singularity class L is adjacent to a P-singularity class
K, denoted L −→ K, if every map f ∈ L can be deformed to a map of class
K by an arbitrary small perturbation.

If L is adjacent to K and K is adjacent to J then L is adjacent to J . We
simply write:

L −→ K −→ J,

omitting the arrow between L and J .

Here are the list of all the adjacencies for the P-simple singularities in the
space M̄2 of holomorphic function-germs with a critical point of critical
value 0.
The P-singularity class A3 denotes the function-germs f : (C2, 0) −→ (C, 0)
equal to y2 +x4 up to a biholomorphic change of variables where C2 denotes
the complex two dimensional vector space. The parenthesis means that this
P-singularity class is not P-simple.

PA2 ← (A3)
ւ ւ

PA1 ← PA1
1 ← PA2

1 ← PA3
1 ← PA4

1 ← . . .
տ տ տ տ
PA1,1

1 ← PA1,2
1 ← PA1,3

1 ← . . .
տ տ
PA2,2

1 ← . . .

Remark that there is only one non-simple class A3 ”bounding” the list of
P-simple singularities.
The relation with Kazarian’s classification (in the plane case only) is as
follows. Denote by Kj the set of function germs g : (C2, 0) −→ (C, 0) such
that the origin is an inflection point of the 0 level-curve germ of g with
anomaly j + 1.

Definition 2.34. A P-singularity class L is adjacent to Kj , denoted L −→
[Kj ], if every function-germ f ∈ L can be deformed to a map g ∈ Kj by an
arbitrary small perturbation
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Remark. Kj is not a P-singularity class for example both map-germ f(x, y) =
y+x4 and g(x, y) = y+x4+yx2 are in K2 and are not P-equivalent. Indeed,
denote respectively by ∆f , ∆g the Hessian determinants of f and g. Direct
computations show that the origin is not an isolated critical point of ∆f ,
while it is an isolated critical point of ∆g.

The adjacencies with the Kj ’s are as follows:

[K1] ← [K2] ← [K3] ← [K4] ← [K5] ← . . .
տ տ տ տ տ

PA1 ← PA1
1 ← PA2

1 ← PA3
1 ← PA4

1 ← . . .
տ տ տ տ
PA1,1

1 ← PA1,2
1 ← PA1,3

1 ← . . .
տ տ
PA2,2

1 ← . . .

Remark that the adjacencies PA1
1 −→ K1 and PA2

1 −→ K2 can be seen in
figure of the corresponding P-discriminants that we depicted in subsection
3.4. The adjacencies listed above are direct corollaries of theorem 2.11 cited
below in page 42.
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5. P-versal deformation theory.

In this section, we introduce the notion of versality with respect to inflec-
tion points of plane curves. As usual the versal deformation is the ”largest”
possible deformation.
In subsection 5.1, we define G-versality and state the G-versal deformation
theorem.
In subsection 5.2, we define P-versality, that is versality with respect to in-
flection points.
In subsection 5.3, we apply these techniques to the case of Morse functions.
A more detailed exposition of the notions developed in the two first subsec-
tions of this section is given in chapter 4.

5.1. Versal deformation theory for G-equivalence. Consider a holo-
morphic map-germ:

f̃ : (C2, 0) −→ (C× C, 0).

In this subsection, no affine structure is involved, in particular C2 denotes
the analytical manifold and neither the affine complex plane nor the two-
dimensional vector space.

Definition 2.35. A holomorphic map-germ F̃ : (Ck ×C2, 0) −→ (C×C, 0)
such that F̃ (0, .) = f̃ is called a deformation of f̃ .

Definition 2.36. A deformation G̃ : (Cr × C2, 0) −→ (C × C, 0) of f̃ is

induced from a deformation F̃ : (Ck × C2, 0) −→ (C × C, 0) of f̃ , provided
that there exists a holomorphic map-germ h : (Cr, 0) −→ (Ck, 0) such that

G̃(λ, .) = F̃ (h(λ), .). We use the notation: G̃ = h∗F̃ .

Definition 2.37. The translation by a vector u ∈ C2 is the map-germ:

τ (C2, 0) −→ (C2, u)
x −→ x+ u.

We denote by T ≈ C2 the group of all translations.

Definition 2.38. Two deformations F̃ , G̃ : (Ck × C2, 0) −→ (C × C, 0)
are called G-equivalent provided that there exist holomorphic map-germs
γ : (Ck, 0) −→ G ⊕ T ψ : (Ck × C, 0) −→ (C, 0) such that the following
equality holds identically

(γ(λ).(G1, G2))(λ, p) = (ψ(λ, F1(λ, p)), F2(λ, p))

and ψ(0, .) is a biholomorphic map-germ.

Here F̃ = (F1, F2), G̃ = (G1, G2).

Definition 2.39. A deformation F̃ is called G−versal if any other defor-
mation of the same germ is G-equivalent to a deformation induced from
F̃ .

Fix a coordinates (λ1, . . . , λk) in Ck and (x, y) in C2.
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Definition 2.40. Let F̃ : (Ck × C2, 0) −→ (C × C, 0) be a deformation of

a holomorphic map-germ f̃ : (C2, 0) −→ (C×C, 0). The G-tangent space to

F̃ is the sum of the following C-vector subspaces of Ox,y ×Ox,y:
- theOx,y module generated by the four map-germs ∂xf̃ , ∂y f̃ , (Ef , 0), (0, Ef ),

- the C-vector space generated by the restriction to λ = 0 of the ∂λi
F̃ ’s,

- the C-vector space generated by (1, 0).

The tangent space to F̃ is denoted by T F̃ .

Remark. We have used a shortened formulation. The tangent space is the
restriction to λ = 0 of the tangent space at F to the orbit of F under the
action of the group Diff(1)×G × T (with the obvious semi-direct product
structure induced by the composition law).

The following theorem is the versal deformation theorem for G-equivalence.

Theorem 2.10. A deformation F̃ : (Ck × C2, 0) −→ (C × C, 0) of a holo-

morphic map-germ f̃ = F̃ (0, .) is G-versal provided that the equality

T F̃ = Ox,y ×Ox,y
holds.

The proof is given in a slightly more general form in appendix B. It is anal-
ogous to the proof for the standard versal deformation theorem ( [Math],
[Tyu], [Mar]). I do not know whether this theorem follows from Damon’s
general theory or not ([Da]).

5.2. Versal deformation theory in Plücker space. In this subsec-
tion, we denote by C2 the (complex) two dimensional vector space.
Let f : (C2, 0) −→ (C, 0) be a holomorphic function-germ.

Definition 2.41. A holomorphic map-germ F : (Ck×C2, 0) −→ (C, 0) such
that F (0, .) = f is called a deformation of f .

Fix coordinates (λ1, . . . , λk) in Ck and linear coordinates (x, y) in C2.
Given a deformation F : (Ck × C2, 0) −→ (C, 0) of a holomorphic function-
germ f : (C2, 0) −→ (C, 0).
We denote by ∆F : (Ck × C2, 0) −→ (C, 0) the Hessian determinant of F
with respect to the variables (x, y).

Definition 2.42. A deformation F (λ, .) of a function-germ f : (C2, 0) −→
(C, 0) is called P-versal if for any other deformation G of f , the germ of

the deformation G̃ = (G,∆G) is G-equivalent to the germ of a deformation

induced from F̃ = (F,∆F ).

5.3. P-versal deformations of germs belonging to PAp,q1 . Denote
by C2 the two-dimensional vector space.
Let g : (C2, 0) −→ (C, 0) be a holomorphic function-germ belonging to the
P-singularity class PAp,q1 .
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Theorem 2.8 asserts that g is P-equivalent to the holomorphic function-germ
f defined by

f : (C2, 0) −→ (C, 0)
(x, y) 7→ xy + xp+3 + yq+3.

We keep these notations.
For notational reasons assume that pq > 0.

Theorem 2.11. The p + q-parameter deformation F : (Cp+q × C2, 0) −→
(C, 0) of f defined by:

F (α, β, x, y) = xy + xp+3 + yq+3 +

p∑

j=1

αjx
j+2 +

q∑

k=1

βky
k+2

is P-versal.
Moreover, the deformation (F,∆F ) is G-equivalent to the deformation
(α, β, x, y) 7→ (P (α, β, x, y), xy) defined by:

P (α, β, x, y) = xp+3 + yq+3 +

p∑

j=1

αjx
j+2 +

q∑

k=1

βky
k+2.

Here ∆F denotes the bordered Hessian of F with respect to the variables
(x, y), α = (α1, . . . , αp) and β = (β1, . . . , βq).

Remark.If p 6= 0 and q = 0, then the theorem holds if we replace the expres-
sions of F and P by the function-germs defined by the polynomials

{
F (α, x, y) = xy + xp+3 + y3 +

∑p
j=1 αjx

j+2,

P (α, x, y) = xp+3 + y3 +
∑p

j=1 αjx
j+2.

The case p = q = 0 has been considered in theorem 2.6.
The proof of this theorem is given appendix A.
The case p = 1, q = 0 is treated in chapter 4 page 95.
The results of section 3 on the bifurcation diagrams associated to Morse
functions follow directly from this theorem.
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6. The modality of map-germs with respect to flattening points.

In the previous sections, we have concentrated ourselves to the case of plane
curves. In this section, we deal with the higher dimensional case. A more
detailed exposition of the notions introduced in the first two subsections is
given in chapter 3.

6.1. The generalized Wronskian. Denote by U a neighbourhood of
the origin in the analytic space C2.
Consider a holomorphic map H : U −→ C with isolated critical points.
Notations. Denote by h the Hamilton vector field of H. Let h. be the Lie
derivative along the vector field h. We denote by [g1, . . . , gn] the determinant
whose columns are (h.gi, h.h.gi, . . . , h

ngi). Fix an affine coordinate system
in the affine space Cn.

Definition 2.43. The (generalized) Wronskian of a holomorphic map ϕ :
U −→ Cn with respect to H is the determinant

D[ϕ] = [ϕ1, . . . , ϕn].

Remark. The generalized Wronskian depends on the choice of the analytic
coordinate-system in C2 and on the affine coordinate-system in Cn. How-
ever, the zero-level set of the generalized Wronskian does not depend on
these choices.

In order to simplify the notations, we omit the dependence of the differential
operator D on H and on the coordinate systems in C2 and Cn.

Let p ∈ U be a smooth point of the curve:

Hε = {p ∈ U : H(p) = ε} .
Assume that ϕ is a holomorphic embedding.
Denote by Vε the image of the curve Hε under ϕ. The proof of the following
proposition is analogous to that of proposition 3.3 (see chapter 3 section 1).

Proposition 2.2. a. The curveHε intersects the variety {x ∈ Cp : D[ϕ] = 0}
at p if and only if ϕ(p) is a flattening point of Vε.
b. A flattening point ϕ(p) is a degenerate flattening of the curve Vε if and
only the multiplicity of the solution p of the system of equations{

H(p) = ε,
D[ϕ](p) = 0.

is strictly higher than one (see figure 12).

6.2. P-equivalence in higher dimensions. The map H together
with the function D[ϕ] contains all the information on the flattening points
of the curves Vε. Once D[ϕ] is calculated, we forget the affine structure of
Cn and we study the orbit of the map:

(H,D[ϕ]) : U −→ C× C,
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Figure 12. The inflection points of Vε = ϕ(Hε) are the
images under ϕ of the intersection points of the curve
X =

{
(x, y) ∈ R2 : D[ϕ](x, y) = 0

}
with the level-curve Hε ={

(x, y) ∈ R2 : H(x, y) = ε
}
. For ε = 1 the curve Vε has two

(real) inflection points that coalesce for ε = 0. The intersec-
tion of the curves H0 and X at the origin is not transversal.

under G-equivalence.
We denote by Cn the n-dimensional complex vector space.

Definition 2.44. Two holomorphic map-germs
(H,ϕ), (H ′, ϕ′) : (C2, 0) −→ (C × Cn, 0) are called P-equivalent if the map-
germs
(H,D[ϕ]), (H ′,D[ϕ′]) : (C2, 0) −→ (C× C, 0) are G-equivalent.

The P-modality of a map germ (H,ϕ) : (C2, 0) −→ (C×Cn, 0) is the modal-
ity with respect to P-equivalence.

6.3. A lower bound for the P-modality. We fix the dimension n
of the affine space Cn.
We now state a theorem giving a lower bound for the P-modality. This
theorem is related to some combinatorics.
Denote by Tj the triangle of vertices (0, 0), (j, 0), (0, n − j + 1). Let hj be
the number of integer points lying on the hypotenuse of Tj distinct from the
vertices. Let aj be the number of integer points contained in the interior of
Tj.
For j ∈ {1, . . . , n}, we define the integer cj by:

cj = max {0, j − aj − hj} .

Theorem 2.12. Let H : (C2, 0) −→ (C, 0) be a holomorphic function-germ
with a critical point at the origin. Then, for any holomorphic map-germ
ϕ : (C2, 0) −→ (Cn, 0) the P-modality of the map-germ (H,ϕ) is not less
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than:

m = (

n∑

j=1

cj)− (n+ 1),

provided that n > 2.

Example 1. Let n = 3. We have three triangles depicted in the left part
of figure 13. None of these triangles contains integer points in its interior.
Consequently, the numbers ai vanish

a1 = 0, a2 = 0, a3 = 0.

Only the second triangle contains an integer point on its hypotenuse distinct
from the vertices, thus the values of the hj ’s are equal to

h1 = 0, h2 = 1, h3 = 0.

We get that the values of the cj ’s are equal to

c1 = 1, c2 = 1, c3 = 3.

According to the theorem, for n = 3 the P-modality of a pair (H,ϕ), where
H has a critical point at the origin is at least equal to 5− 4 = 1.
Example 2. Let n = 4. We have 4 triangles depicted in the right part of
figure 13. the values of the aj ’s are equal to:

a1 = 0, a2 = 1, a3 = 1, a4 = 0.

None of the triangles contains integer points on its hypotenuse distinct from
the vertices, thus the values of the hi’s vanish:

h1 = 0, h2 = 0, h3 = 0, h4 = 0.

We get that the values of the cj ’s are equal to

c1 = 1, c2 = 1, c3 = 2, c4 = 4.

According to the theorem, for n = 4 the P-modality of a pair (H,ϕ), where
H has a critical point at the origin is at least equal to 8− 5 = 3.
Example 3. Let n = 5. We have 5 triangles (see figure 14). The sequences
are: 



a1 = 0, a2 = 1, a3 = 1, a4 = 1, a5 = 0
h1 = 0, h2 = 1, h3 = 2, h4 = 1, h5 = 0
c1 = 1, c2 = 0, c3 = 0, c4 = 2, c5 = 5

According to the theorem, for n = 5 the P-modality of a pair (H,ϕ), where
H has a critical point at the origin is at least equal to 8− 6 = 2.

Remark that the first triangle and the last do not contain integer points in
their interior, thus c1 + cn = n+ 1.
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Moreover the values of cn−1 are easily computed.
We have the equalities

cn−1 =





n−1
2 for n odd

n
2 for n even

Thus we have the following corollary of theorem 2.12.

Corollary 2.1. Let H : (C2, 0) −→ (C, 0) be a map-germ with a critical
point at the origin. Then, for any map-germ ϕ : (C2, 0) −→ Cn the P-
modality of the map-germ (H,ϕ) is at least equal to n−1

2 provided that n > 2.

In particular the list of the P-simple map-germs for map-germs of the type

(H,ϕ) : (C2, 0) −→ (C × Cn, 0)

such that H has a critical point at the origin coincides with the list of the
P-simple function germs of section 4.

Figure 13. Counting a lower bound of the P-modality by
means of combinatorics for the cases n = 3 and n = 4.

Figure 14. Counting a lower bound of the P-modality by
means of combinatorics for the case n = 5.

6.4. Vanishing flattening points at a node singular point. We
now state a simple theorem generalizing theorem 2.6. This theorem is re-
lated to the lower bound for the P-modality given in theorem 2.12, as we
shall see in chapter 6.
In this subsection, H : U −→ C denotes the map defined by H(x, y) = xy.
Here U is a neighbourhood of the origin in the analytic space C2 with a
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fixed coordinate-system.
Consider a non-constant holomorphic map ϕ : U −→ Cn where Cn denotes
the n-dimensional complex vector space. For simplicity, assume that ϕ pre-
serves the origin that is ϕ(0) = 0 holds.
Denote by Vε the image of the curve H−1(ε) under the holomorphic map ϕ.

Definition 2.45. A value x ∈ C for which there exists y such that ϕ(x, y)
is a flattening point of Vε, with ε = H(x, y), is called a label of a flattening
point of Vε.

We use the old-fashioned language of multi-valued functions. Thereafter, we
explain how to avoid it.
We shall prove the following theorem in chapter 6 section 1 (compare chapter
1, section 2).

Theorem 2.13. The vanishing flattening points of the curves Vε when ε 7→ 0,
are given n-labels. These labels are (n+ 1)-valued function x1, . . . , xn of the
type:

xi(ε) = aiε
i

n+1 + o(ε
i

n+1 ),

provided that ϕ : (C2, 0) −→ (Cn, 0) is generic5.

Remark 1. There are n labels each of them is n+1-valued. Thus the number
of vanishing flattening at a ”generic” Morse singular points is n(n+1). This
is in accordance with the generalized Plücker formula (theorem 2.1 of page
18).
Remark 2. To avoid using multi-valued function put ε = tn+1. Then, for
each i ∈ {1, . . . , n}, instead of one (n+ 1)-valued function xi we get (n+ 1)
holomorphic functions xi,1, . . . , xi,(n+1) of the type:

xi,k = aiω
kti + o(ti),

where ω = e
2iπ
n+1 .

Theorem 2.13 does not give only the number of ”vanishing flattening points”,
it also gives the monodromy of the vanishing flattening points that is how
the points permute when ε makes a turn around the origin.
The monodromy is one of the so-called projective topological invariants that
we shall study. The multi-valued functions giving the vanishing flatten-
ing points are the continuous invariants related to the extrinsic projective
structure. Whereas the monodromy and the number of vanishing flattening
points are discrete invariants related to it.

5In the space of k-jets Jk
0 (C2, Cn) the set of maps that do not satisfy this theorem

form a semi-algebraic variety of codimension at least one, for any k > n.
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7. Projective-topological invariants.

7.1. Introduction. In [Arn10], Arnold introduced the notion of pro-
jective topological invariant of a variety in real or complex projective plane.
It is a discrete invariant of the variety defined by means of the projective
structure. For example the number of inflection points of a plane curve is a
projective topological invariant.
Now, a local projective topological invariant (abbreviated PT -invariant) of a
holomorphic function f : U −→ C is a discrete invariant depending on the
projective structure CP 2. Here U ⊂ CP 2 denotes an open neighbourhood.
That an invariant of a holomorphic function f : U −→ C depends only
on the projective structure means that for any projective transformation
A ∈ PGL(2,C), the invariant take the same value for f and for f ◦ A.
As a general rule, we consider the open subset U of the affine plane C2 and
not in CP 2. This means that there exists a complex line L ⊂ CP 2 which
does not intersects U . The affine plane C2 is identified with CP 2 \ L. The
projective-topological of a holomorphic function f : U −→ C should not
depend on the choice of the line L.
We already encountered a projective-topological invariant of a function: the
sequence giving the number of vanishing flattening points at the critical
points of the function.
Assume that f has just one critical point in U . Then, the number of inflec-
tion points of the plane holomorphic curves:

Vε = {(x, y) ∈ U : f(x, y) = ε} ,

that vanish at that critical point of f when ε approaches the corresponding
critical value is a PT -invariant of f .
For example, we saw that the number of vanishing inflection points at a
generic Morse critical point of a holomorphic function is equal to6 6 ([Pl]).
The general formula for the number of vanishing flattening points of a family
of curves at a singular point was given in section 2. We now turn on to
subtler PT -invariants.

7.2. PT -invariants of a family of curves. Let (Vλ), λ ∈ Λ be a fam-
ily of holomorphic curves in C2. We recall that the values of the parameters
λ ∈ Λ for which the curve Vλ is either singular or has a degenerate inflection
point is called the Plücker-discriminant (abbreviated P-discriminant) of the
family (Vλ) (see section 3).

Definition 2.46. A family of curves (Vλ), λ ∈ Λ is called good provided
that:
- for any λ ∈ Λ, the number of inflection points of the curve Vλ does not

6According to our classification by P-singularity types (see section 4), f : U −→ C has
a generic critical point at p ∈ U means that the germ of f at p belongs to the P-singularity
class PA1.
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depend on the choice of λ,
- the P-discriminant of (Vλ) is a variety of codimension one.

Example. LetBr = {ε ∈ C :| ε |< r}, B̃r =
{
(x, y) ∈ C2 :| x |2 + | y |2< r2

}
.

The family of complex holomorphic curves (Vλ), λ ∈ B3:

Vλ =
{
(x, y) ∈ B̃2 : y = x3 + λ

}

is not good. For | λ |< 2, the curve Vλ has one inflection point. For | λ |≥ 2
it has no inflection point. The ”subfamily” (Vλ), λ ∈ B1 is good.

Definition 2.47. The PT -covering (read projective-topological covering)
of a good family of curves (Vλ), λ ∈ Λ is the covering:
1. whose base is B = Λ \ Σ, where Σ denotes the P-discriminant of (Vλ) .
2. whose fibre at a point λ ∈ B is the set of inflection points of the curve
Vλ ⊂ Cn.

Remark. It is readily seen that the PT -covering is locally trivial (just apply
the implicit function theorem).

Definition 2.48. The PT -fundamental group (read projective-topological
fundamental group) of a good family of curves (Vλ) is the fundamental group
of the complement Λ \Σ of the P-discriminant Σ of (Vλ).

Definition 2.49. The PT -monodromy group (read projective-topological
monodromy group) of a good family of curves is the monodromy group of
the PT -covering.

Example. Consider the family (Vλ), λ ∈ C of holomorphic plane curves
defined by:

Vλ =
{
(x, y) ∈ C2 : y = x4 − 6λx2

}
.

Obviously, the Plücker discriminant Σ ⊂ C of this family is Σ = {0}.
The curve Vλ has two inflection points namely p± = (±

√
λ,−5λ2) provided

that λ 6= 0. The curve Vλ is parameterized by its first coordinate.
Thus, the PT -covering of (Vλ) is biholomorphically equivalent to the cover-
ing:

C∗ −→ C∗

α 7→ α2.

where C∗ = C \ {0}.
Indeed (α,−5α4) and (−α,−5α4) are the inflection points of Vλ for λ = α2.
Consequently, we get that:
1) the PT -fundamental group of the family (Vλ) is π1(C∗) = Z,
2) the PT -monodromy group of the family (Vλ) is Z2.

7.3. PT -invariants of holomorphic functions. Let U be an open
neighbourhood in the affine complex plane C2.
Let f : U −→ C be a holomorphic function with µ Morse critical points of
P-singularity class PA1 (roughly speaking ”generic Morse critical points”).
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φ

D

Figure 15. Vanishing inflection points at a generic Morse
critical point of a holomorphic function f from the topological
view-point (compare with figure 1 of page 18). The complex
curve of equation f = ε is locally homeomorphic to a cylinder
provided that ε 6= 0. The inflection points are 6 marked points
on the cylinder. When ε goes to zero the 6 points converge
towards the singular point of the cone.

Denote by ε1, . . . , εµ the corresponding critical values. Assume that the
curves:

Vε = {(x, y) ∈ U : f(x, y) = ε} ,
have non-degenerate inflection points except for a finite number of values
ε = v1, . . . , vp.
The holomorphic curve Vε is a Riemann surface for ε /∈ {ε1, . . . , εµ}. When
ε approach a critical value of f some of the inflection points vanish at the
corresponding critical point.
From the topological view-point the local ”behaviour” at a Morse critical
point of the type PA1 is shown schematically in figure 15.
Indeed, assume that f has a Morse critical point at the origin of critical
value equal to zero.
Then, the intersection of the surface Vε with a small ball B centered at the
origin is:
- homeomorphic to a cylinder provided that ε 6= 0 is small enough,
- homeomorphic to a cone for ε = 0.
To see it, just apply the Morse lemma stating that there exists (non-affine)
coordinates x̃, ỹ such that in this coordinates f is given by

f(x̃, ỹ) = x̃ỹ.
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Now, the curve Vε ⊂ C2 has 6 inflection points vanishing at the critical point
of the cone (Plücker formula again). These considerations “explain” figure
15.

Definition 2.50. A holomorphic function f : U −→ C is called good pro-
vided that the family of curves (Vε) defined by:

Vε = {(x, y) ∈ U : f(x, y) = ε}
for ε ∈ f(U) is good.

Definition 2.51. The PT -covering of a good function f : U −→ C is the
PT -covering of the family of curves:

Vε = {(x, y) ∈ U : f(x, y) = ε} .
Definition 2.52. The PT -monodromy group of a good function f : U −→ C
is the PT -monodromy group of the family of curves:

Vε = {(x, y) ∈ U : f(x, y) = ε} .
We now define a braid group related to the projective structure. First, we
recall some basic definitions from topology.

Definition 2.53. The configuration space B(X, k) of a topological manifold
X is the topological space of k pairwise distinct unordered points on X:

B(X,n) = {{x1, . . . , xn} : xl ∈ X,xj 6= xk for j 6= k} .
Definition 2.54. The (classical) braid group on k strands, denoted Br(k),
is the fundamental group of the configuration space B(C, k).

We come back to our discussion.
We shall use the notations D = f(U), D′ = D \ {ε1, . . . , εµ, v1, . . . , vp} .
Choose a base point α∗ ∈ D′. Fix a closed loop α ⊂ D′ starting at α∗. The
inflection points of Vε lie on the intersection of Vε with the smooth part of
the Hessian curve X of f .
When t varies, the points of intersection of Vα(t) with the Hessian curve X
vary continuously with t. Consequently each element of the fundamental
group π1(D

′) gives rise to an element of π1(B(Ẋ, k)) where Ẋ is the smooth
part of the Hessian curve X.

Definition 2.55. The image of the group π1(D
′) in π1(B(Ẋ, k)) is called

the PT-braid group of the holomorphic function f : U −→ C.

Definition 2.56. The PT -invariants defined above are called the funda-
mental PT -invariants of the holomorphic function f .

Example. Let f : Bδ −→ C be a holomorphic function with a Morse critical
point at the origin. Here Bδ ⊂ C2 denotes the closed ball centered at the
origin of radius δ. Assume that the germ of f at the origin belongs to the
P singularity class PA1. Roughly speaking ”the origin is a generic Morse
critical point”.



52 2. THE CLASSICAL THEORY OF VANISHING FLATTENING POINTS.

Let ∆f be the Hessian determinant of f .
Theorem 2.6 asserts that the germ at the origin of (f,∆f ) is G-equivalent
to the map germ

(C2, 0) −→ (C× C, 0)
(x, y) mapsto (x3 + y3, xy).

This means that there exists r ≤ δ such that for any ε ∈ f(Br), ε 6= 0, the
two following facts hold.
1) The inflection points of Vε = {(x, y) ∈ Br : f(x, y) = ε} are in one-to-one
(biholomorphic) correspondence with the solutions of the system of equa-
tions

(6)

{
x3 + y3 = ε,
xy = 0.

2) The Hessian curve of f is biholomorphically equivalent to the curve
{(x, y) ∈ Br : xy = 0}.
Consequently the Hessian curve is homeomorphic to a cone.
As an immediate corollary of 1) and 2), we get that the PT -invariants of the
restriction of f to Br (under the smallness assumptions of r and ε stated
above) are as follows (compare chapter 1 section 2):
- the PT -braid group of f is isomorphic to the group Z,
- the PT -monodromy group of f is isomorphic to the cyclic group Z3 of
order 3.

7.4. Plücker functions and the fundamental PT -invariants of a
function-germ. Denote by Br the closed ball of radius r centered at the
origin in the complex two dimensional vector space C2.
By analogy with Morse functions, we define Plücker functions.

Definition 2.57. A holomorphic function g : Bδ −→ C is called a Plücker
function if the conditions 1,2,3,4,5 below are satisfied.
Denote by Vε the curve

Vε = {p ∈ Bδ : g(p) = ε}
1) g is a Morse function,
2) there are only a finite number of values of the parameter ε ∈ g(Bδ) for
which the curve Vε has a degenerate inflection point,
3) the anomaly sequence at a degenerate inflection point of a curve Vt is
equal to (2),
4) the number of singular points of a curve Vt plus the number of degenerate
inflections of it is at most equal to one,
5) the Hessian curve of g is transverse to the boundary of the ball Bδ.

By analogy with the Morsification of a function germ, we define the Plückerization
of a function germ.
Recall that for a given holomorphic function-germ f : (C2, 0) −→ (C, 0),
N(f) is the number of vanishing flattening points of f (see page 17).
Denote by D the unit disk of C centered at the origin.
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Definition 2.58. A Plückerization of a holomorphic function-germ f :
(C2, 0) −→ (C, 0) with an isolated critical point at the origin is any Morse
function g : Bδ −→ C for which there exists a holomorphic function G :
D ×Bδ −→ C satisfying the conditions 1,2,3,4 below.
1) The germ of G(0, .) at the origin is equal to f and g1 = g.
2) for any t ∈]0, 1], gt has exactly µ(f) distinct Morse critical points of the
type PA1 with distinct critical values in the interior of Bδ,
3) for any (t, ε) /∈ Σ, Vt,ε has exactly N(f) distinct inflection points in the
interior of Bδ,
4) for each t ∈]0, 1], the function G(t, .) is a Plücker function.

Remark. Like for the Morsification, a Plückerization of a function germ is not
always possible. Take for example the function-germ f : (C2, 0) −→ (C, 0)
defined by f(x, y) = xy.
Note that the zero-level set of f consists of two lines (and consequently is
not a triangular curve).
The Hessian of f is equal to ∆f (x, y) = 2xy. In particular, the multiplicity
at the origin of the system of equations

{
f(x, y) = 0,

∆f (x, y) = 0

is undefined.
However such cases are of infinite codimension in the space of function-
germs at the origin. If a function germ f : (C2, 0) −→ (C, 0) admits a P-
versal deformation then one can construct the Plückerization from it (in the
same way that the Morsification can be defined using a versal deformation
[AVGL1]).

Definition 2.59. The fundamental PT -invariants of a holomorphic function-
germ f : (C2, 0) −→ (C, 0) are the fundamental PT -invariants of any
Plückerization of f .

Remark. It is readily verified that the fundamental PT -invariants of a holo-
morphic function-germ do not depend on the choice of the Plückerization.

7.5. Computation of some of the PT -invariants for the P-simple
singularities. We first need a definition. The PT -braid group of a holo-
morphic function is a subgroup of the fundamental group of a configuration
space B(Ẋ, k). Here Ẋ is a holomorphic curve (the smooth part of a Hessian

curve). Assume that the closure X of Ẋ has only one singular point. Let

X̃ −→ X be a resolution of the singular point. We get an inclusion map:

F : B(Ẋ, k) −→ B(X̃, k)

which induces a group homomorphism

F∗ : π1(B(Ẋ, k)) −→ π1(B(X̃, k))
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between the fundamental groups of both space. We call this (injective)
group homomorphism, the forgetting homomorphism (because we forget the
singular point).

Theorem 2.14. The image of the PT -braid groups Br(Y ) for f ∈ Y under
the forgetting homomorphism is as follows (in particular it does not depend
on the choice of the resolution):

F∗(Br(PA1)) = Z,

F∗(Br(PAp1)) = Br(3 + p)⊕ Z,

F∗(Br(PAp,q1 )) = Br(3 + p)⊕Br(3 + q).

Here p, q denote strictly positive integers.

Theorem 2.15. The PT -monodromy group S(Y ) of the P-simple function
germs f ∈ Y are given by the following list:

S(PA1) = Z3,

S(PAp1) = Z3 ⊕ Sp+3,

S(PAp,q1 ) = Sp+3 ⊕ Sq+3,

S(PA2) = SL(2,Z3).

Here:
1. Z3 is the cyclic group of order 3.
2. Sk is the permutation group on k elements.
3. SL(2,Z3) is the group of invertible linear transformation in the two
dimensional vector space (Z3)

2 over the field Z3.
And p, q denote strictly positive integers.

Theorem 2.14 and theorem 2.15 are direct corollaries of theorem 2.11.
For the description of the PT -fundamental groups, we will use Dynkin type
diagrams.
Notation. We consider the free group G generated by a1, . . . , ak. Each circle
of the diagram represents an ai. We describe the subgroup R of G giving
the relation. A line between two circles corresponding to ai, ai+1 means that
aiai+1ai(ai+1aiai+1)

−1 ∈ R. A double line means that (aiai+1)
4(ai+1ai)

−4 ∈
R. The minimal invariant subgroup H containing R is called the relation
subgroup. That is H is generated by the elements of R and by all their
conjugates. The group corresponding to the Dynkin diagram is G/H.

Let F : (Ck × C2, 0) −→ (C, 0) be a P-versal deformation .
Take a representative F̄ : Λ × U −→ C of the function germ F . Denote
respectively by B̃r ⊂ C2 and Bδ ⊂ Ck ×C the closed balls of radius r and δ
centered at the origin in C2 and in Ck.
Consider the family of curves:

Vλ,ε =
{
p ∈ U : F̄ (λ, p) = ε

}
.
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Theorem 2.16. Assume that F (0, .) is a P-simple function-germ. Then,
for any r, δ small enough the PT -fundamental group of the family of curves
(Vλ,ε∩ B̃r), (λ, ε) ∈ Bδ is given by one of the Dynkin type diagrams of figure
16.

P A

P A2

1

p , q

p times q times

Figure 16. Dynkin type diagrams for the P-fundamental
groups of the P-simple singularities.

The proof of this theorem is given in chapter 5. It requires the construction
of a Lyaschko-Loojenga type mapping (see below).

7.6. A K(π, 1) theorem for P-simple singularities.

Definition 2.60. A connected topological space X is called a K(π, 1) space
if πi(X) = 0 for all i > 1.

One of the classical questions in singularity theory is the problem of knowing
if the complement of a discriminant or of a bifurcation diagram is a K(π, 1)
space or not.
Consider a holomorphic function G : Λ×Br −→ C and the family of curves:

Vλ,ε = {p ∈ Br : G(λ, p) = ε} .
Here Br denotes the closed ball of radius r centered at the origin in the
vector space C2.

Definition 2.61. The P-bifurcation diagram of the holomorphic function
G : Λ × Br −→ C is the set of values of the parameter λ ∈ Λ for which
G(λ, .) is not a Plücker function.

For the definition of a Plücker function see page 52.
Let F : (Ck × C2, 0) −→ (C, 0) be a P-versal deformation . Take a repre-
sentative F̄ : Λ × U −→ C of the function-germ F . Denote respectively by
Bδ ⊂ Ck and B̃r ⊂ C2 the open balls of radius r and δ. Let Fδ,r be the

restriction of F̄ to Bδ × B̃r.

Theorem 2.17. If F (0, .) is a P-simple function germ then for any (δ, r)
small enough the complement of the P-bifurcation diagram of Fδ,r is a K(π, 1)
space.
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Remark. I do not know whether a similar theorem does hold for P-discriminants
or not.

The proof of this theorem is given in chapter 5. It is based on the construc-
tion of a variant of the Lyaschko-Loojenga mapping, that we shall give in
the next subsection.

7.7. A Lyaschko-Loojenga mapping for PAp,q1 . We keep the same
notations than those of the preceding subsection.

Definition 2.62. The PT Lyaschko-Loojenga mapping is the map sending
λ ∈ Bδ \∆ to the polynomial whose roots are:
1) the critical values of Fδ,r(λ, .) and,

2) the values of ε for which the curve Vλ,ε =
{
p ∈ B̃r : F (λ, p) = ε

}
has a

degenerate inflection point.

Using the covering property of the usual Lyaschko-Loojenga mapping ([Arn4],
[Loo]), theorem 2.11 implies the following result (the details are given in
chapter 5).

Theorem 2.18. If f ∈ PAp,q1 then the PT Lyaschko-Loojenga mapping of
Fδ,r defines a covering onto its image provided that r and δ are small enough.
Moreover, the image of this PT Lyaschko-Loojenga mapping is diffeomorphic
to the complement of the discriminant of the direct product Bp × Bq of the
Coxeter group Bp and Bq.



CHAPTER 3

The generalized Hessian.

Consider a non-constant holomorphic function f : U −→ C, where U denotes
an open neighbourhood of the affine complex plane C2.
The inflection points of a plane holomorphic curve:

V = {(x, y) ∈ U : f(x, y) = 0}
can be computed in terms of f .
Indeed, we saw in chapter 2, section 4 that one can consider a determinant
∆f called the bordered Hessian of f such that the points of inflection of V
lie on the curve

X = {(x, y) ∈ U : ∆f (x, y) = 0} .
The curve Xf is called the Hessian curve. In this chapter, we generalize this
fact to higher dimensions.
Let U be an open neighbourhood in the affine space Cn. Fix a complete
intersection map:

f : U −→ Cn−1

whose level-curves have isolated flattening points.
Given an affine coordinate-system in Cn, we construct a holomorphic func-
tion ∆f : U −→ C called the generalized Hessian determinant.
The function ∆f satisfies the following property: the flattening points of the
level curves of f lie on the hypersurface:

X = {p ∈ U : ∆f (p) = 0} .
The hypersurface X ⊂ Cn will be called the Hessian hypersurface. We also
study an analog of the bordered Hessian for the case of non-affine coordinate-
systems.
We apply these techniques in order to generalize Plücker formula giving the
number of vanishing inflection points at node and cusp singular points of
space curves to higher dimensions.

1. The Hessian hypersurface.

1.1. The Hessian equation in affine coordinates. Let U be an
open neighbourhood in the affine space Cn.
In all this subsection we fix an arbitrary complete intersection map:

f : U −→ Cn−1

57
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and an affine coordinate system x = (x1, . . . , xn) in Cn.

The calculation of the equation of the Hessian hypersurface (in case it is a
hypersurface) is based on the choice of parameterizations of the curves Vε.
These parameterizations are given by the time of the so-called generalized
Hamilton vector field that we shall now define.
We consider the restriction to U ⊂ Cn of the differential n-form:

ω = dx1 ∧ . . . ∧ dxn.
We denote abusively this restriction by the same symbol ω.
First, we recall the following definition.

Definition 3.1. The interior product iXω of ω with the vector field X is
the n− 1 differential form defined by:
∀p ∈ U , iXω takes the value ω(p)(X(p), Y1, . . . , Yn−1) on arbitrary vectors
Y1, . . . , Yn−1 of the tangent plane to Cn at p.

The following proposition is straightforward ([AVGL2]).

Proposition 3.1. There exists a unique holomorphic vector field Xf such
that iXf

ω = df1 ∧ . . . ∧ dfn−1.

Remark. The Hamilton vector-field Xf of f depends on the choice of the
affine coordinates in Cn.

Definition 3.2. The vector-field of the previous proposition is called the
(generalized) Hamilton vector field of f .

Remark 1. The time differential of the Hamilton vector-field is defined by

dx1 ∧ . . . ∧ dxn
df1 ∧ . . . ∧ dfn−1

.

Remark 2. The Hamilton vector-field depends on the choice of the affine
coordinate system.
Example 1. If n = 2, then the Hamilton vector field of f : U −→ C is given
by the formula

Xf = (∂x2f)∂x1 − (∂x1f)∂x2.

Definition 3.3. The (generalized) Hessian determinant ∆f of f is the de-

terminant of the matrix whose kth column is formed by the kth derivatives
of the coordinates x = (x1, . . . , xn) with respect to the Hamilton vector field
of f for 1 ≤ k ≤ n.

Definition 3.4. The Hessian hypersurface of f : U −→ Cn−1 is the zero
level-set of the holomorphic function ∆f .

Example. Assume that n = 2 and that f : C2 −→ C is defined by the
polynomial

f(x1, x2) = x2 − x3
1.
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Then, the Hamilton vector-field of f is equal to

Xf = ∂x1 + 3x2
1∂x2 .

In the old-fashioned notations, the Hamilton vector-field is defined by the
Hamilton differential equations

{
ẋ1 = 1,
ẋ2 = 3x2

1.

The Hessian determinant ∆f is equal to:

∣∣∣∣
1 3x2

1

0 6x1

∣∣∣∣ = 6x1.

Straightforward computations show that we get the same result by comput-
ing the bordered Hessian of f (defined at page 31).
The Hessian curve of f is the plane curve of equation equation x1 = 0.

Fix a point called 0 in Cn. The proof of the following proposition is obvious
(see also lemma 3.1 of page 60).

Proposition 3.2. Let A : Cn −→ Cn be a linear non-degenerate map then
the following equality holds

∆f◦A = k(∆f ◦ A)

with k = (detA)n(n+1)−1.

Thus up to a multiplicative non-zero constant, the function ∆f does not
depend on the choice of the affine coordinate system.
Consider the curve V = {x ∈ U : f(x) = 0}.
Proposition 3.3. a. The curve V intersects the Hessian hypersurface
X = {x ∈ U : ∆f (x) = 0} at a smooth point p of V if and only if p is a
flattening point of V (see figure 1).
b. A flattening point p ∈ V having an anomaly sequence equal to (a1, . . . , ak)
is a solution of the system of equations

{
f(p) = ε,

∆f (p) = 0

of multiplicity
∑k

i=1 a1 (see figure 1, page 1).

1.2. Proof of proposition 3.3. Consider a biholomorphic map ϕ :
U −→ U ′ where U and U ′ denote open neighbourhoods in affine space Cn.
Fix affine coordinates x = (x1, . . . , xn) in Cn.
Denote respectively by TU and TU ′ the holomorphic tangent bundles over
U and U ′.
The map ϕ sends a holomorphic vector field X : U ′ −→ TU ′ to a holomor-
phic vector field Y : U −→ TU by:

Y (x) = ((Dϕ)(x))−1X(ϕ(x)).
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Here D denotes the derivative of ϕ. The map (Dϕ)(x) is a linear map from
TxU to Tϕ(x)U

′. Hence ((Dϕ)(x))−1 is a linear map from Tϕ(x)U
′ to TxU .

We use the notation Y = ϕ∗X.

Lemma 3.1. Let f : U −→ Cn−1, g : U ′ −→ Cn−1 be two holomorphic maps
such that g = f ◦ ϕ. Then the Hamilton vector fields Xf , Xg of f and g
satisfy the relation

Xf (x) = det(B)(ϕ∗Xg)(x),

where B : TxU −→ Tϕ(x)U
′ denotes the linear map (Dϕ)(x).

Proof.
Let Y1, . . . , Yn be arbitrary vectors of the tangent plane at x ∈ Cn.
The map B = (Dϕ)(x) sends a vector Yi of tangent plane at x ∈ U to the
vector BYi of the tangent plane at ϕ(x) ∈ U ′. Moreover:

(df1∧. . .∧dfn−1)(x).(Y1 . . . , Yn−1) = (dg1∧. . .∧dgn−1)(ϕ(x)).(BY1 . . . , BYn−1).

The definition of the Hamilton vector field implies:

(dg1∧. . .∧gn−1)(ϕ(x)).(BY1 . . . , BYn−1) = ω(ϕ(x))(Xg(ϕ(x)), BY1, . . . , BYn−1).

Put ξ(x) = B−1(Xg(ϕ(x))). We get:

ω(ϕ(x))(Xg(ϕ(x)), BY1, . . . , BYn−1) = det(B)ω(x)(ξ(x), Y1, . . . , Yn−1).

Hence Xf (x) = det(B)ξ(x). Lemma is proved.

Lemma 3.1 implies that in order to prove proposition 3.3, we can use an
arbitrary affine coordinate-system in Cn.
Recall that we consider only triangular curves. This means that the germ
of V at a smooth point p is parameterized by a triangular holomorphic
map-germ of the type

γ : (C, 0) −→ (Cn, 0)
t −→ (t+ (. . . ), tα2 + (. . . ), . . . , tαn + (. . . )),

with 0 < α2 < · · · < αn. Here the dots stand for higher order terms in the
Taylor series.
Recall from chapter 2 section 1 that by definition the anomaly sequence
(a1, . . . , ak) of the point p ∈ Vε is defined by

a1 = αn − n, . . . , an−j+1 = αj − j
where j is the least number such that αj − j > 0.
Take the point p for the origin of the time τ of the Hamilton vector-field.
The time τ of the Hamilton vector-field Xf can be expressed as a holomor-
phic function h of the parameter t.
The proof of the following lemma is straightforward.

Lemma 3.2. The Taylor expansion at the origin of the holomorphic function
h is of the type h(t) = ct+ o(t) with c 6= 0.
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The restriction of the Hessian determinant ∆f to V can be expressed as a
holomorphic function δ of the parameter t.
By definition, the order of δ at the origin is equal to the multiplicity of
intersection of the system f = 0, ∆f = 0.

Denote by W the determinant whose kth column is the kth-derivative of γ
with respect to t.
Lemma 3.2 implies that the order of W at the origin is equal to the order
of δ at the origin.
By straightforward computations, we get:

W (t) = ctk + o(tk),

where k =
∑k

i=1 ai, c 6= 0. Proposition 3.3 is proved.

V

0

−1

1

V

V

∆  =0f

V

∆ f =0

V

V

−1

0

1

Figure 1. Two examples of Hessian curves. At a non-
degenerate inflection point the Hessian curve intersects
transversally the level curve (left part).

1.3. The Hessian equation in non-affine coordinates. Denote by
U a neighbourhood of the origin in the analytic space Cp.
Consider a complete intersection map H : U −→ Cp−1 and a holomorphic
map ϕ : U −→ Cn with n ≥ p.
We fix a coordinate system in Cp and denote by h the (generalized) Hamilton
vector field of H defined in the preceding subsection. Recall that this vector
field depends on the choice of the coordinate system. Let h. be the Lie
derivative along the vector field h. We denote by [g1, . . . , gn] the determinant
whose kth column is given by (h.gk, h.h.gk , . . . , h

ngk).

Definition 3.5. The generalized Wronskian of the map ϕ (with respect to
h) is the determinant

D[ϕ] = [ϕ1, . . . , ϕn].

Remark. In order to simplify the notations, we omit the dependence of the
differential operator D on H and on the coordinate system.

Let m ∈ U be a smooth point of the curve:

Hε = {z ∈ U : H(z) = ε} .
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Assume that ϕ : U −→ Cn is a holomorphic embedding.
Denote by Vε the image of the curve Hε under ϕ. The proof of the following
proposition is analogous to that of proposition 3.3.

Proposition 3.4. a. The curveHε intersects the variety {x ∈ Cp : D[ϕ] = 0}
at m if and only if ϕ(m) is a flattening point of Vε.
b. The multiplicity of the solution m of the system of equations

{
H(m) = ε,
D[ϕ](m) = 0

is equal to
∑k

i=1 ai where (a1, . . . , ak) is the anomaly sequence of the point
ϕ(m) ∈ Vε (see figure 2).

Example 1. Consider the pair

H(x, y) = y,
ϕ(x, y) = (x, x4 + yx2 + y).

The Hamilton vector field of H is h = ∂x.
We get the following values for the derivatives of ϕ along the Hamilton
vector-field h {

(h.ϕ)(x, y) = (1, 4x3 + 2yx),
(h.h.ϕ)(x, y) = (0, 12x2 + 2y).

Consequently, the function D[ϕ] evaluated at (x, y) is equal to

D[ϕ] = 12x2 + 2y.

We apply proposition 3.4. The image of the curveHε =
{
(x, y) ∈ C2 : y = ε

}

under ϕ has two non-degenerate inflection points provided that ε 6= 0. It
has a degenerate inflection point at the origin if ε = 0 (see figure 2).
Take ε ∈ R. If ε > 0 the two inflection points are real. If ε < 0 the two
inflection points are complex conjugate.

Another fundamental example was given in chapter 1, section 2.

1.4. Vanishing flattening points at a Morse double point. In
this subsection, we prove proposition 3.5 cited below. This proposition is a
particular case of the generalized Plücker formula.
The flattening points of a curve are counted with multiplicities.
Denote by H : (C2, 0) −→ (C, 0) the holomorphic function-germ defined by

H(x, y) = xy.

Proposition 3.5. For a generic holomorphic map ϕ : (C2, 0) −→ (Cn, 0)
the number N of vanishing flattening points of the curves ϕ̄(H̄ε) when ε −→
0 is equal to n(n + 1) for any representatives ϕ̄, H̄ of the germs of ϕ and
H.

Remark. The word generic means that in the space of N -jets at the origin
of such map-germs, the set of map-germs that do not satisfy the theorem
form a semi-algebraic variety of codimension at least one for any N > n.
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∆=0

0

−1

D[    ]=0ϕ

H1

H

H

0

−1

ϕ

V

V

V

1

Figure 2. The inflection points of Vε are the im-
ages under ϕ of the intersection points of the
curve X =

{
(x, y) ∈ C2 : D[ϕ](x, y) = 0

}
with

Hε =
{
(x, y) ∈ C2 : H(x, y) = ε

}
. For ε = 1 the curve

Vε has two real inflection points that coalesce for ε = 0. The
intersection of the curves H0 and X at the origin is not
transversal.

Proof.
Proposition 3.4 implies that the number N is equal to the multiplicity of
the solution x = 0, y = 0 of the system of equations

(7)

{
H(x, y) = 0
D[ϕ](x, y) = 0

The plane curve-germ of equation H = 0 is the germ at the origin of the
two coordinate axis in the plane x, y.
Denote respectively by δ1, δ2 : (C, 0) −→ (C, 0) the holomorphic function-
germ obtained by substituting x by 0 and y by 0 in D[ϕ].
The holomorphic function-germ δi is of the form:

δi(t) = cit
Ni + o(tNi),

with i = 1 or i = 2.
By definition of the multiplicity of a solution of a system of equations, the
number N is equal to N1 +N2.
Let ψ : (C, 0) −→ (Cn, 0) be the restriction of the map ϕ : (C2, 0) −→ (Cn, 0)
to the line of equation y = 0.
The holomorphic map ψ can be represented in the form

ψ(t) = a1t+ · · · + ant
n + o(tn)

where the ai’s are vectors of Cn.
If the map ϕ is generic then the ai’s form a basis of Cn.
Denote by D the restriction of the derivation along the Hamilton vector field
of H to y = 0.
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In the basis a1, . . . , an, the function-germ δ1 is the determinant of the matrix
whose kth column is

(8) (Dtk,D(2)tk, . . . ,D(n)tk),

where D(m) is the mth derivative with respect to D.

Lemma 3.3. We have the equality Dtk = ktk for any integer k > 0.

Proof.
The Hamilton differential equations are:

(9)

{
ẋ(x, y) = x
ẏ(x, y) = −y

The first equation of the system can be interpreted as follows.
The derivative of the linear function (x, y) 7→ x along the Hamilton vector-
field is equal to (x, y) 7→ x. Consequently the derivative of the function t
with respect to D satisfies the equality Dt = t. This proves the lemma.

This lemma implies that the expression (8) is equal to

tk(k, k2, . . . , kn).

Consequently, the first term appearing in the Taylor series at the origin of
δ1 with a possibly non-zero coefficient is the determinant of the matrix

t
n(n+1)

2




1 2 3 . . . n
1 22 32 . . . n2

. . . . . . . . . . . . . . .
1 2n 3n . . . nn.




Thus, we get the equality

δ1(t) = c1t
n(n+1)

2 + o(tn(n+1))

where c1 is the Vandermonde determinant of (1, 2, . . . , n) times n!, in par-
ticular c1 6= 0.
Similarly, we get the equality

δ2(t) = c2t
n(n+1)

2 + o(tn(n+1))

with c2 6= 0.
From this two last equalities, we deduce that the multiplicity of the solution
x = 0, y = 0 of the system (7) is equal to n(n+ 1). Proposition is proved.
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2. Generalized Plücker formulas.

The techniques introduced in the preceding chapter allow us to generalize
Plücker’s theorem on the 6 vanishing inflections at a ”generic” Morse critical
point. The proof is related to the classical Poncelet-Plücker formula and to
polar varieties. So, we would like to make a digression on this subject and
prove a generalization of the Poncelet-Plücker formula. This digression will
show the relationship between vanishing flattening and polar varieties. We
point out that the generalized Poncelet-Plücker formula giving the degree of
the dual curve to a given curve that we will obtain is not new. Indeed, B.
Teissier obtained a generalization of the Poncelet-Plücker formula to hyper-
surfaces ([Tei2]). Teissier’s formula was completed by Kleiman ([Kl]) who
obtained a formula much more general than ours. However, our proof is
elementary and lies on our way1. Hence, we have thought that it was worth-
while to present it and to relate it to the calculation of vanishing flattening
points.

2.1. The classical Poncelet-Plücker formula. The dual projective
space (CP n)

∨

to CP n is the space of the hyperplanes of CP n. The space

(CPn)
∨

can be identified with CP n. Indeed:
- a point of CP n is a complex line in Cn+1 passing through the origin,
- a point in (CP n)

∨

is a complex hyperplane in Cn+1 passing through the
origin.
Fix an Hermitian product in Cn+1. Then, to a complex hyperplane passing
through the origin corresponds the Hermitian orthogonal complex line pass-
ing through the origin.
Let V ⊂ CP n be an algebraic manifold.
If V is smooth then the dual variety V

∨

to V is the variety formed by the
hyperplanes tangent to V in dual projective space (CP n)

∨

.
If V has isolated singular points then the dual variety is the closure of the
dual variety of the smooth part of V .

Consider an algebraic curve V of degree d in projective space CP 2. First
assume that V is smooth. According to Poncelet ([Poncelet]), the degree

d
∨

of the dual curve to V is given by the formula

d
∨

= d(d− 1).

This is essentially Bézout’s theorem. Indeed, a complex line l
∨

in dual
projective space (CP 2)

∨

corresponds to a pencil of complex lines (Lt), t ∈
CP 1 in CP 2 (since each point of the line l

∨

corresponds to a line in CP n).

The statement: ”the complex line l
∨

intersects the dual curve V
∨

at a
point p

∨

” means that the complex line corresponding to the point p
∨

is
tangent to the curve V . Consequently the degree of the dual curve is the
number of complex lines of the pencil (Lt) tangent to the curve (counted

1Our proof uses Picard-Lefschetz theory, hence it is not completely self-contained.
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with multiplicities).
Choose homogeneous coordinates [x : y : z] in CP 2. Take the pencil Lt ={
[x : y : z] ∈ CP 2 : x = tz

}
.

Let f(x, y, z) = 0 be an equation of the curve V . Assume that the complex
line z = 0 is not tangent to the curve. Put g(x, y) = f(x, y, 1). Then the
points [x : y : 1] where the complex line Lt is tangent to V satisfy:

{
g(x, y) = 0,
∂yg(x, y) = 0.

The first equation is of degree d, the second equation is of degree d−1. The
Bézout theorem implies that the number of solution of this system, counted
with multiplicities, is equal to

(10) d
∨

= d(d− 1).

This proves Poncelet’s formula.
Remark that the points of V for which there exists a complex line of the
pencil (Lt) tangent to the curve V lie on the curve:

{
(x, y) ∈ C2 : ∂yg(x, y) = 0

}
.

The closure of this curve in CP 2 is called the polar curve associated to the
pencil (Lt). We denote it by Γ (see figure 3 on page 67).
Denote by (V.Γ) the number of points of intersection of V with the polar
curve Γ counted with multiplicities and deg(Γ) stands for the degree of the
curve Γ.
Then the Poncelet formula (10) can be divided into two parts, as follows

(11)

{
d
∨

= (V.Γ),
deg(Γ) = (d− 1).

Here, we have identified the affine space C2 with the complex projective
plane CP 2 minus the complex line {[x : y : z] : z = 0}. That is we represent
the affine plane as

C2 ≈
{
[x : y : z] ∈ CP 2 : z 6= 0

}
.

The identification is given by [x : y : z] 7→ (x/z, y/z). This makes sense
since z 6= 0.

We come back to Poncelet’s formula. Plücker observed that the formula
fails if V is not smooth. Geometrically, the reason is as follows (see figure
3 on page 67). Consider a holomorphic function f : U −→ C with an only
critical point in U ⊂ C2. For simplicity, assume that:
- the critical point is the origin,
- the critical point is a Morse critical point,
- the critical value is equal to zero.
Put Vε = {(x, y) ∈ U : f(x, y) = ε}. Fix a direction transversal to the
branches of V0, say x = constant for simplicity.
For a real value ε 6= 0, there are two real points of the curve Vε for which
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a line x = constant is tangent to Vε. When ε −→ 0 these two real tangent
lines ”vanish” at the singular point (see figure 3). According to Plücker
([Pl]), if V ⊂ CP 2 is an algebraic curve of degree d whose singular points
are Morse double points (biholomorphically equivalent to xy = 0) then the

degree d
∨

of the curve dual to V is ([Pl]):

(12) d
∨

= d(d− 1)− 2δ

where δ is the number of Morse double points of the curve V .
More generally, the general Poncelet formula (10) for a singular curve is
given by:

(13) d
∨

= d(d− 1)−
∑

p∈Σ

(V.Γ)p,

where Σ denotes the set of singular points of the curve Γ and (V.Γ)p is the
multiplicity of intersection at p of V with Γ. However,it should be remarked
that this formula doesn’t tell us anything unless we know the value of (V.Γ)p
either explicitly or in terms of the usual invariants of a singular point.
For example, Plücker’s result (formula (12)) asserts that (V.Γ)p = 2 if p is a
Morse double point of V (see figure 3).

Γ

Figure 3. There are two vanishing tangent lines at a node
singular point. The polar curve Γ intersects the singular
curve with multiplicity equal to two at the singular point.

2.2. The Poncelet-Plücker formula for space curves. Let f :
(Cn, 0) −→ (Cn−1, 0) be an complete intersection map-germ.
Choose coordinates (x1, . . . , xn) in Cn such that the hyperplane of equation
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xn = 0 is transverse to the each branch2 of the curve germ of equation f = 0
in Cn.

Definition 3.6. The multiplicity of 0 as a solution of the system of equa-
tions {

f(x) = 0,
xn = 0

is called the multiplicity of the map-germ f .

Example. Let f : (C2, 0) −→ (C, 0) be the holomorphic map-germ defined
by f(x, y) = y3 +x4 +y4. The multiplicity of f is equal to 3. More generally
write f = fk+ . . . where fk is a non-zero homogeneous polynomial of degree
k and the dots stand for terms of order higher than k in the Taylor series of
f . Then the multiplicity of f is equal to k.

Theorem 3.1. Let V̄ ⊂ CP n be an algebraic curve given by a system of n−1
reduced polynomial equations (i.e. a one-dimensional complete intersection)

g1 = · · · = · · · = gn−1 = 0.

Then the degree d
∨

of the variety dual to V is equal to

d
∨

= d

n−1∏

i=1

(di − 1)−
∑

p∈Σ

(mp + µp − 1),

where:
- di denotes the degree of the polynomial gi,
- Σ is the set of singular points of V ,
- µp and mp denote respectively the Milnor number and the multiplicity of
the germ of g = (g1, . . . , gn−1) at p ∈ V .

Example. Assume that V is a plane curve and that V has no other singular
points than Morse double points (biholomorphically equivalent to xy = 0)
and semi-cubical cusp singular points (biholomorphically equivalent to y2 =
x3).
The multiplicities of both node singular point and cusp singular points are
m = 2. The Milnor number of the node singular point and of the cusp
singular point are respectively µ = 1 and µ = 2. Consequently the formula
gives the classical Poncelet-Plücker formula ([Pl]):

(14) d
∨

= d(d− 1)− 2δ − 3κ

where δ is the number of Morse double points of the curve and κ is the
number of cusps singular points of the curve.

2Transverse to a branch means transverse to the limiting tangent line to the branch
at the singular point.



2. GENERALIZED PLÜCKER FORMULAS. 69

2.3. Teissier numbers and the generalized Plücker formula. Let
f : (Cn, 0) −→ (Cn−1, 0) be a complete intersection map-germ with an
isolated critical point at the origin.
Let (V, 0) be the curve-germ defined as the zero level-set of f . Choose a
linear function l : Cn −→ Cn−1 such that the hyperplane l = 0 intersects
transversally each branch of the curve germ (V, 0).
Recall that the critical locus of a map is the set of points for which the
determinant of derivative of the map vanishes.

Definition 3.7. The critical locus of the map-germ:

(Cn, 0) −→ (Cn, 0)
x 7→ (f(x), l(x))

is called the polar hypersurface-germ of f associated to l.

Example. Let f : (C2, 0) −→ (C, 0) be defined by f(x, y) = y2 + xk then the
polar curve is the germ at the origin of the curve Γ = {(x, y) : y = 0}.

Let f : (Cn, 0) −→ (Cn−1, 0) be a complete intersection-map. Let (V, 0) be
the curve-germ defined as the zero level-set of f . We assume that (V, 0) is a
triangular curve-germ.
Denote by (C1, 0), . . . , (Cr, 0) the branches-germ of (V, 0). Let (Γ, 0) be a
polar hypersurface-germ of f .

Definition 3.8. The Teissier numbers of f , denoted τ1(f), . . . , τr(f), of a
curve-germ (V, 0) in affine space Cn (or in projective space CP n) are the
intersection multiplicities of the branch-germ (C1, 0), . . . , (Cr, 0) with the
polar curve-germ (Γ, 0).

Theorem 3.1 follows directly from the following proposition.

Proposition 3.6. Let f : (Cn, 0) −→ (Cn−1, 0) be a non-degenerate com-
plete intersection map-germ then:

r∑

k=1

τk(f) = m(f) + µ(f)− 1.

Here m(f), µ(f) denote respectively the multiplicity of f and the Milnor
number of f . The number τ1(f), . . . , τr(f) are the Teissier numbers of f .

Remark. An analogous proposition holds for hypersurfaces ([Tei1]). A
similar equality holds for arbitrary analytic subvarieties of CP n ([Kl]).
Example. Fix coordinates x, y in C2.
Let f(x, y) = x2 − y2. We have µ(f) = 1. Consider, the polar curve-germ
(Γ, 0) associated to the linear function l(x, y) = x. The germ at the origin
of

{
(x, y) ∈ C2 : y = 0

}
is equal to Γ. Consequently:

τ1(f) = τ2(f) = 1.

And the equality 1 + 1 = 2 + 1− 1 holds.
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With the same notations than those of definition 3.8, we have the following
splitting of the generalized Plücker formula (theorem 2.1, page 18).

Theorem 3.2. Let f : (Cn, 0) −→ (Cn−1, 0) be a complete intersection map-
germ such that the curve germ f−1(0) is triangular. Then the multiplicity
of intersection of the Hessian hypersurface-germ of f with the branch-germ
(Ck, 0) is given by the formula

Nk =
n(n+ 1)

2
(τk −mk + 1) + ηk

where:
- ηk is the sum of the elements of the anomaly sequence of Ck at the origin
(ηk = 0 if the sequence is empty).,
- mk is the multiplicity of Ck at the origin.

Remark 1. Combining theorem 3.2 with proposition 3.6 we get the general-
ized Plücker formula:

N(f) =
n(n+ 1)

2
(µ+ r − 1) +

r∑

k=1

ηk.

Remark 2 (for specialists). We defined the generic number of vanishing
flattening points N [X] for a given singularity class (see chapter 2 subsection
2.3). Similarly, we can define the generic number Nk[X] corresponding to
the number Nk of theorem 3.2.
Obviously we have the equality

N [X] =
r∑

k=1

Nk[X].

It is readily verified that the left hand-side of the equality is a topological
invariant while the right hand-side in only an analytical invariant.

2.4. Proof of theorem 3.2. We fix a coordinate system t i C.
Since the branch curve-germ (Ck, 0) of (V0, 0) is triangular, there exists affine
coordinates in Cn such that the curve germ (Ck, 0) admits a parameteriza-
tion:

(15)
γk : (C, 0) −→ (Cn, 0)

t 7→ (tα
k
1 + (. . . ), . . . , tα

k
n + (. . . )).

Here the dots denote higher order terms in the Taylor series.
Denote by:
- OCk

the ring of holomorphic function-germs on the curve-germ (Ck, 0),
- Ot the ring of holomorphic function-germ in the variable t ∈ C.
The parameterization γk allows us to identify OCk

with a subring of Ot.

Let δk be the restriction of the Hessian determinant ∆f to the branch Ck.
Via the identification OCk

⊂ Ot, the holomorphic function germ δk is iden-
tified with an element of Ot.
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The number Nk is the order of δk that is:

δk(t) = ctNk + o(tNk),

with c 6= 0.
Denote by Dk the restriction to Ck of the derivation along the Hamilton
vector-field Xf .
Via the identification OCk

⊂ Ot, Dk can be identified with a (holomorphic)
derivation on Ot.
We are now going to consider only the branch Ck for a fixed number k.
Consequently, in order to avoid too many indices, we drop the index k for
the following objects, we write:
- α1, . . . , αn instead of αk1 , . . . , α

k
n,

- D for Dk,
- δ for δk,
- τ for the Teissier number of the branch Ck instead of τk,
- m for the multiplicity of the branch curve-germ (Ck, 0) instead of mk.
- N for the number Nk.

Lemma 3.4. We have:

Dtj = bjtj+τ−m + (. . . ),

where:
- j is an arbitrary positive integer,
- b is a non-zero (complex) multiplicative constant,
- τ is the Teissier number of the branch curve-germ (C, 0),
- m is the multiplicity of the branch curve-germ (C,0)
Here the dots stand for higher order terms in the Taylor series.

Proof.
Let l be a linear function such that the hyperplane of equation l = 0 is
transverse to C. The definition of the multiplicity implies that the function
l restricted to C is of the type

l|C(t) = atm + o(tm),

with a 6= 0.
By definition of τ , we have

Dt = btτ + o(tτ ),

with b ∈ C \ {0}. This proves the lemma.

We now prove that:

(16) N =
n(n+ 1)

2
(τ −m) +

n∑

j=1

αj .
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Denote by a1, . . . , as the anomaly sequence of C at the origin.
the definition of the anomaly sequence implies that

n∑

j=1

αj =
n(n+ 1)

2
+

s∑

j=1

aj .

Consequently, equation (16) concludes the proof of the theorem.
The function-germ δ : (C, 0) −→ (C, 0) is the determinant of the n × n
matrix whose kth columns is:

(Dtαk ,D(2)tαk , . . . ,D(n)tαk),

where D(j) is the jth derivative with respect to the derivation D.
In order to compute the order of δ, we can assume, without loss of generality,
that the constant b of lemma 3.4 is equal to one.
Lemma 3.4 implies the equality

D(j)tαk = αk(αk + τ) . . . (αk + jτ)tαk+j(τ−m) + (. . . ),

Thus the holomorphic function-germ δ is of the type

δ(t) = ct
n(n+1)

2
(τ−m)+

∑n
j=1 αj + (. . . ).

In both formulas the dots stand for higher order terms in the Taylor series.
The number c is the determinant of the n× n matrix (ak,j) where:

ak,j = αk(αk + τ) . . . (αk + jτ).

Consequently c is the Vandermonde determinant of α1, . . . , αn times α1α2 . . . αn.
Thus c 6= 0 and the order of δ is equal to

n(n+ 1)

2
(τ −m) +

n∑

j=1

αj.

This concludes the proof of theorem 3.2.

2.5. Proof of proposition 3.6. As we pointed out at the beginning
of the section, our proof is not completely self-contained because at the end
of it, we shall use a fact of Picard-Lefschetz theory which can be proved say
using Morse theory ([Mil],[Hamm]).
Consider a complete intersection map-germ f : (Cn, 0) −→ (Cn−1, 0). Take
a representative f̄ : U −→ Cn−1 of f . Consider the curves:

Vε =
{
p ∈ U : f̄(p) = ε

}
.

Denote by Br the closed ball of radius r centered at the origin. Choose r
small enough so that V0 intersects transversally the boundary of the ball Bδ

for any δ ≤ r.
Consider the curve Xε = Vε ∩Br, with r small enough.
Let l : Cn −→ C be a linear function such that the hyperplane of equation
l = 0 is transversal to all the branches of the curve X0.
Choose base points ε∗ ∈ Cn−1 such that:
- the curve Xε∗ is smooth,
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- the restriction of l to Xε∗ has only Morse critical points of distinct critical
values say δ1, . . . , δk.

Remark that the critical points of the restriction of l to Xε∗ are precisely
the points where a hyperplane parallel to {x ∈ Cn : l = 0} is tangent to
Xε∗ . Consequently the multiplicity of intersection of X0 with the polar
hypersurface-germ Γ is equal to the number k of critical values of l restricted
to Xε∗ . Thus, we get the equality

k =
r∑

j=1

τj(f)

where the τk(f) are the Teissier numbers of f .
Let δ∗ ∈ C be such that the hyperplane H = {p ∈ Cn : l(p) = δ∗} intersects
Xε∗ inm distinct points wherem denotes the multiplicity of f . The situation
is summarized in figure 4.
We have the exact sequence (we take the homology groups reduced modulo
a point):

. . . −→ H̃j(Xε∗∩H) −→ H̃j(Xε∗) −→ H̃j(Xε∗ , (Xε∗∩H)) −→ H̃j−1(Xε∗∩H) −→ . . .

But Xε∗ ∩ H is a finite set of points. Consequently, the exact sequence
reduces to

(17) 0 −→ H̃1(Xε∗) −→ H̃1(Xε∗ , (Xε∗ ∩H)) −→ H̃0(Xε∗ ∩H) −→ 0.

By definition:
- H1(Xε∗) = Zµ where µ is the Milnor number of f ,

- H̃0(Xε∗ ∩H) = Zm−1 where m is the multiplicity of f ,

- H̃0(Xε∗ ,Xε∗ ∩ H) = Zk, where k is the number of critical points of the
restriction of l to Xε∗ .
The last equality is the ”fact from Picard-Lefschetz theory” that we shall
not prove. However we shall explain it. But first remark that this exact
sequence achieves the proof of proposition 3.6. Indeed the exact sequence
(17) implies the equality

µ− (m− 1) + k = 0

and this concludes the proof of proposition 3.6 since k =
∑r

j=1 τj(f).

Now, we ”explain” why H̃0(X,Xε∗ ∩H) = Zk.
Consider the function, say g : Xε∗ −→ C which is the restriction of l to Xε∗ .
Choose an open subsetD ⊂ C in the image of g containing all the critical val-
ues δ1, . . . , δk and containing δ∗ on its boundary. Put D′ = D \ {δ1, . . . , δk}.
The group π1(D

′) with base point δ∗ is a free group.
Choose a set of path φ1, . . . , φk : [0, 1] −→ D′ such that:
- φj connects δ∗ with δj ,
- for any t ∈ [0, 1[, φj(t) ∈ D′.
Let α1, . . . , αk be a set of loops in D′ obtained by following φj from δ∗ to δj
turning counterclockwise around δj and coming back to δ∗ along φj .



74 3. THE GENERALIZED HESSIAN.

We chose the φj ’s in such a way that the αj’s generate π1(D
′) (the path φj’s

are called a distinguished basis see page 101).
The homology class of the preimage of a path φj under g : Xε∗ −→ C is a
cycle σj in H1(Xε∗ ,Xε∗ ∩H) (see figure 4). It can be proved that the ho-
mology classes σ1, . . . , σk generate H1(Xε∗ ,Xε∗ ∩H) ([AVGL2], [Hamm]).

This implies that H̃0(Xε∗ ,Xε∗ ∩H) = Zk, where k is the number of critical
points of the restriction of l to Xε∗ . Proposition 3.6 is proved.

δ
3Γ

X

X

δ
∗

ε

ε

δ2δ1

∗

∗

Figure 4. We have drawn the real part of a complex curve
(in fact an elliptic curve in this case) Xε∗ for ε∗ ∈ R. The
restriction g of the linear function l : (x, y) 7→ x to Xε∗ has
three critical points of critical values δ1, δ2, δ3. The bolded
part of the oval is the pre-image under g of δ2. It defines
a relative one-dimensional cycle associated to δ2. The other
half of the oval is the pre-image under g of δ3. The relative
cycle associated to δ1 passes through the complex domain.



CHAPTER 4

The Plücker space.

We come back to our main subject of study that is the classification of
families of curves in affine or projective spaces with respect to their flattening
points.
Let f : U −→ Cn−1 be a complete intersection map where U denotes an
open (connected) subset in affine space Cn.
Define the n− 1 -parameter family of curves Vε by

Vε = {p ∈ U : f(p) = ε} .
In the preceding chapter, we defined the Hessian variety (in general a hyper-
surface) to be the variety of flattening points of the curves Vε when ε varies.
For a given affine coordinate system, we computed an equation of the Hes-
sian variety in case it is a hypersurface (chapter 2, section 4). This equation
was denoted by ∆f = 0, where ∆f : U −→ C is a holomorphic function
called the Hessian determinant of the map f .
Instead of considering f with the affine structure on U , we consider (f,∆f )
with the analytic structure on U and forget the affine structure on U .
Singularity theory for map-germs of the type

(g,Eg) : (Cn, 0) −→ (Cn−1 × C, 0)

has been settled down by V.V. Goryunov ([Go], [AVGL2]).
In chapter 2, section 4, we gave an account on G-equivalence for n = 2 but
there is no essential differential for one-dimensional complete intersections.
We make this generalization in this chapter.
Given a map-germ (f,∆f ) : (Cn, 0) −→ (Cn−1 × C, 0) we search for the
”simplest element” (g,Eg) which is G-equivalent to (f,∆f ).
For example, theorem 2.6 on page 2.6 states that if f : (C2, 0) −→ (C, 0) is
a generic Morse function-germ then (f,∆f ) is G-equivalent to the map-germ
(x, y) 7→ (x3 + y3, xy).
This chapter is divided as follows.
In the first section, we define G-equivalence. This section repeats most of
the theory settled in the particular case n = 2 in chapter 2, section 4 with
more examples and details. For the reader’s convenience, they are both in-
dependent. We do not assume any background in singularity theory.
The proofs of the G-finite determinacy theorem and of the G-versal defor-
mation theorem for this particular theory are given in appendix B. I do not
know whether these theorems follow from J. Damon’s theory of geometrical
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subgroups or not. Damon’s theory is exposed for example in [Da]. Also,
remark that instead of using V.V. Goryunov’s G-equivalence, one can use
Zakalyukin’s flag equivalence [Zak2].

In the second section, we restrict the general theory to the map-germs of the
type (g,Eg) for which there exists a map-germ f : (Cn, 0) −→ (Cn−1, 0) and
a coordinate system in Cn such that (g,Eg) is G-equivalent to a map-germ
(f,∆f ) (the map f depends on g). This leads us to the definitions of the
Plücker space and of the Plücker equivalence.

In the third section we apply this theory to some simple cases. The com-
plete computations are given in appendix A. We have thought that only the
simplest cases are important in order to understand the techniques. The
theorems on the generic bifurcation diagrams for Morse functions are direct
corollaries of the general theory developed in this chapter (see appendix A,
section 4).

Finally remark that we consider the complex holomorphic case for notational
reasons. The theory can also be formulated in the real C∞ case or for K
analytic or formal power series, K = R or C without major differences.

1. Theory of normal forms for G-equivalence.

In this section the notation Cn stand for the analytical space, no additional
structure (affine, vector-space) is involved.
In all this section we fix a coordinate system x = (x1, . . . , xn) in Cn and a
coordinate system in Cn−1 × C.

1.1. Notations. We shall use the following notations:
1. Diff(k) is the group of biholomorphic map-germs of the type ϕ :
(Ck, 0) −→ (Ck, 0) preserving the origin.
2. diff(k) is the group of holomorphic vector fields of the type v : (Ck, 0) −→
(TCk, 0) vanishing at the origin.
3. Okx is the ring of holomorphic map-germs of the type f : (Cn, 0) −→ Ck.
4. O∗

x is the multiplicative group of holomorphic function-germs of the type
f : (Cn, 0) −→ C such that f(0) 6= 0.

Consider a holomorphic map-germ v : (Cn, 0) −→ Ck.
Given a k × k matrix A with elements in Ox. Then A × v is defined as
follows.
For a fixed value of x, v(x) is a vector of Ck and A(x) is a k × k matrix.
The image of v(x) under A(x) is denoted by (A× v)(x).
Given a holomorphic function-germ u : (Cn, 0) −→ C. We denote by u × v
the product defined by the formula

(u× v)(x) = u(x)v(x).
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For a fixed value of x, v(x) is a vector in Ck and u(x) is a complex number
so the product is a vector denoted (u× v)(x).
When writing a formula, the rules of priority are ◦, ×, +.
For example f + α× E ◦ ϕ means f + (α × (E ◦ ϕ)).

1.2. The G-equivalence.

Definition 4.1. Two holomorphic map-germs f, g : (Cn, 0) −→ (Ck, 0)
are called (R − L)0-equivalent if there exist biholomorphic map-germs ϕ :
(Cn, 0) −→ (Cn, 0), ψ : (Ck, 0) −→ (Ck, 0) such that:

f = ψ ◦ g ◦ ϕ−1.

Definition 4.2. Two holomorphic map-germs Ef , Eg : (Cn, 0) −→ (Ck, 0)
are called V -equivalent if there exists an invertible matrix A with coefficients
in Ox and a biholomorphic map-germ ϕ : (Cn, 0) −→ (Cn, 0) such that:

Ef = A× (Eg ◦ ϕ−1).

Example. The function-germs defined by the following 4 polynomials are
V -equivalent (here n = 2, k = 1):

x1x2, (1 + x1x2)x1x2, x
2
1 − x2

2, (x1 + x2
2)(x2 + x2

1).

Remark. If two map-germs are V−equivalent then the germs at the origin
of their zero level-sets are biholomorphically equivalent varieties.

These definitions are classical, see for instance [Tyu], [Math], [AVG].
Following Goryunov [Go], we introduce the analog of (R− L)0-equivalence
for the restriction of a map-germ:

f : (Cn, 0) −→ (Ck, 0)

to the hypersurface-germ of equation Ef = 0. Here Ef : (Cn, 0) −→ (C, 0)
denotes a holomorphic function-germ.
Put f̃ = (f,Ef ), g̃ = (g,Eg).

Definition 4.3. The map-germs f̃ , g̃ : (Cn, 0) −→ (Cn−1 × C, 0) are called
G-equivalent if there exists α, β, ψ, ϕ such that:

(ψ ◦ (f ◦ ϕ+ (Ef ◦ ϕ)× α), (Ef ◦ ϕ)× β) = (g,Eg),

with ψ ∈ Diff(n− 1), ϕ ∈ Diff(n), α ∈ On−1
x and β ∈ O∗

x.

Remark 1. It is readily verified that G-equivalence is an equivalence relation.
Remark 2. We can forget the product structure on Cn−1 × C. That is we
consider (f,Ef ) : (Cn, 0) −→ Cn−1 × C as a map from Cn to Cn. Then if
two maps are G-equivalent then they are V -equivalent as maps from Cn to
Cn.
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We explain the ”meaning” of the formula defining G-equivalence. We use
the same notations than the ones of definition 4.3.
We are considering the restriction of the holomorphic map germ:

f : (Cn, 0) −→ (Cn−1, 0)

to the hypersurface-germ of equation Ef = 0 (which is in general a singular
hypersurface).
Multiplying the function-germEf by a holomorphic function-germ β : (Cn, 0) −→
C such that β(0) 6= 0 does not change the hypersurface-germ of equation
Ef = 0 but only the equation.
Algebraically, this means that we can replace Ef by βEf .
The restriction of f to Ef = 0 does not change if we had Ef ×α to f . Thus,
we can replace f by f + Ef × α.
We can make change of variables in the source space Cn and in the target
space Cn−1.

Examples. Take n = 2 then the following G-equivalence relations hold:
(x3

1 + x3
2, x1x2 + x1x

2
2) ∼ (x3

1 + x3
2, x1x2 − x1x

3
2) since x1x2 − x1x

3
2 = (1 −

x2)(x1x2 + x1x
2
2).

(x3
1 + x3

2, x1x2) ∼ ((x1 + x2
1)

3 + x3
2, (x1 + x2

1)x2)
(x1x2 + x3

1 + x3
2, x1x2) ∼ (x3

1 + x3
2, x1x2) while

(x1x2, x1x2 + x3
1 + x3

2) is not G-equivalent to (x1x2, x
3
1 + x3

2) .

1.3. The G-equivalence group. The G-equivalence is given by the
action of an ”infinite dimensional Lie group1”.
The groups Diff(n), Diff(n− 1), On−1

x , O∗
x act on the space On−1

x ×Ox
as follows.
Let (f,E) ∈ On−1

x ×Ox. We define the actions as follows:

1. ψ.(f,E) = (ψ ◦ f,E) for ψ ∈ Diff(n− 1).
2. ϕ.(f,E) = (f,E) ◦ ϕ−1 for ϕ ∈ Diff(n).
4. α.(f,E) = (f + α× E,E) for α ∈ On−1

x .
3. β.(f,E) = (f, β ×E) for2 β ∈ O∗

x.
For algebraic computations, the action of Diff(n − 1) is hard-to-handle.
We consider it separately.
The formulas 2, 3, 4 induce a group structure on the product Diff(n) ×
On−1
x ×O∗

x, we put:

(ϕ,α, β).(f,E) = β.(α.(ϕ.(f,E))).

This group structure is a semi-direct product, where Diff(n) is a distin-
guished subgroup.

1It is not our intention to use infinite dimensional Lie group theory. In the sequel, we
shall consider finite dimensional Lie group approximations of the group G.

2Recall that u × v is the function-germ defined by (u × v)(x) = u(x)v(x)
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The explicit formula (following from 2, 3, 4 and the composition of maps) is
given by:

(18) (ϕ,α, β).(ϕ′ , α′, β′) = (ϕ◦ϕ′, (α′ ◦ϕ−1)+(β′ ◦ϕ−1)×α, β×(β′ ◦ϕ−1)),

Formula (18) looks rather complicated. It can be written in a more compact
form as we shall see in the next subsection.

Definition 4.4. The G-equivalence group is the set G = Diff(n)×On−1×
O∗ endowed with the group structure given by formula (18).

The following proposition is obvious.

Proposition 4.1. Two holomorphic map-germs f̃ , g̃ : (Cn, 0) −→ (Cn−1 ×
C) are G-equivalent provided that there exists a biholomorphic map germ

ψ : (Cn−1, 0) −→ (Cn−1, 0) such that ψ ◦ f̃ and g̃ are in the same orbit
under the action of the group G.

1.4. The V -equivalence group and the G-equivalence group. De-
note by GL(n,Ox) the space of invertible matrices with coefficient in Ox.
Remark that a matrix A = (aj,k), aj,k ∈ Ox is invertible provided that
Det(A(0)) 6= 0.
Consider the group structure on K = Diff(n)×GL(n,Ox) defined by

(19) (ϕ,A).(ϕ′, A′) = (ϕ ◦ ϕ′, A× (A′ ◦ ϕ)).

The group K acts on On−1
x ×Ox as follows

(ϕ,A).f̃ = A× (f̃ ◦ ϕ−1)

with f̃ ∈ Onx .

The following proposition is obvious.

Proposition 4.2. Two holomorphic map-germs f, g : (Cn, 0) −→ (Cn−1 ×
C, 0) are V -equivalent if and only if they are in the same orbit under the
action of the group K.

Definition 4.5. The group K is called the V-equivalence group.

The G-equivalence group can be ”naturally’ identified with a subgroup of
the V -equivalence group K.
Indeed, let (ϕ,α, β) ∈ Diff(n)×On−1 ×O∗ be an element of the group G.
Put α = (α1, . . . , αn−1). Consider the n×n invertible matrix A(α, β) whose
left-upper (n−1)×(n−1) block is the identity matrix and whose last column
is α1, . . . , αn−1, β. That is:

(20) A(α, β) =




1 0 . . . 0 α1

0 1 . . . 0 α2

. . . . . . . . . . . . . . .
0 0 . . . 1 αn−1

0 0 . . . 0 β



.
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since β ∈ O∗
x the matrix A(α, β) is invertible.

The map
G −→ K

(ϕ,α, β) 7→ (ϕ,A(α, β))

gives the identification of G with a subgroup of K. The complicated formula
(18) is the same than formula (19).

1.5. The Lie algebra of the group G. In this subsection and in the
next one e denotes the identity element of the group G.
Definition 4.6. The tangent space to G at a point γ0, denoted Tγ0G, is
the vector space of elements m such that there exists a holomorphic map
γ : (C, 0) −→ (G, γ0) with:

dγ

dt
(0) = m.

We denote by g the tangent space to G at e.
Recall that diff(n) denotes the set of germs of vector fields vanishing at
the origin of the type

n∑

j=1

aj∂xj
,

where aj : (Cn, 0) −→ (C, 0) denotes a holomorphic function-germ.

Proposition 4.3. The tangent space g to the group G at e is equal (as a
vector space) with the infinite dimensional vector space:

diff(n)×On−1
x ×Ox.

Proof.
Consider a holomorphic map

γ : (C, 0) −→ (G, e).
By definition of G, the element γ(t) can be represented as

γ(t) = (ϕt, αt, βt) ∈ (Diff(n)×On−1 ×O∗).

We represent ϕt : (Cn, 0) −→ (Cn, 0) in the form

(21) ϕt = Id+ tv + o(t),

where o(t) means that all the components are of order at least t and Id
stands for the identity map in Cn.
We have ϕt(0) = 0 hence the vector field-germ v vanishes at 0 (v(0) = 0).
Consequently v belongs to diff(n).
Similarly write

(22) αt = ta+ o(t), βt = 1 + tb+ o(t)

with a ∈ On−1
x , b ∈ Ox and 1 denotes the constant function equal to 1.
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Putting together equation (21) and equation (22) we get the equality

dγ

dt
(0) = (v, a, b)

with (v, a, b) ∈ (diff(n) × On−1
x × Ox). This concludes the proof of the

proposition.

1.6. The G-tangent space to a germ. The action of the Lie group
on the space On−1

x ×Ox induces an action of g on the space On−1
x ×Ox.

Let m ∈ g. The definition of g implies that there exists a holomorphic map:

γ : (C, 0) −→ (G, e),

such that m = dγ
dt (0).

We define the action of m ∈ g on a holomorphic map-germ f̃ : (Cn, 0) −→
(Cn−1 × C, 0) by the formula

m.f̃ =
d

dt
|t=0 (γ(t).f̃).

Here γ(t) belongs to G and γ(t).f̃ stands for the image of f̃ under γ(t).

Definition 4.7. The G-tangent space to the holomorphic map-germ f̃ =
(f,E) : (Cn, 0) −→ (Cn−1 × C, 0), denoted by T f̃ , is the tangent space to

the orbit of f̃ under the action of the group G at the point f̃ :

T f̃ =
{
m.f̃ ∈ On−1

x ×Ox : m ∈ g

}
.

Fix coordinate systems in Cn and in Cn−1 × C.

Denote by vj = (vj1, . . . , v
j
n) ∈ Cn−1 ×C the vector having the coordinates

{
vjj = 1,

vjk = 0 for j 6= k.

Proposition 4.4. The tangent space to f̃ = (f,E) is the Ox-module gen-
erated by the n2 + n elements of On−1

x ×Ox:
{
xj

∂f̃
∂xk

∀j, k ∈ {1, . . . , n}
E × vj ∀j ∈ {1, . . . , n}

Remark. For a fixed value of x ∈ Cn, E(x) is a complex number, vj is
a vector in Cn−1 × C, E(x)vj is a vector in Cn−1 × C. Thus E × vj is a
map-germ of On−1

x ×Ox.
Example. Consider the case n = 2. Let f̃(x1, x2) = (x2

1 + x2
2, x1x2). The
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tangent space to f̃ is the Ox-module generated by:




x1∂1f̃(x1, x2) = (2x2
1, x1x2),

x2∂1f̃(x1, x2) = (2x1x2, x
2
2),

x1∂2f̃(x1, x2) = (2x1x2, x
2
1),

x2∂2f̃(x1, x2) = (2x2
2, x1x2),

E(1, 0) = (x1x2, 0),
E(0, 1) = (0, x1x2).

The tangent space to f̃ is a C-vector space of codimension 6 in Ox ×Ox.
1.7. Proof of proposition 4.4. First, we investigate each component

of the group G separately. We assume that the group elements of a one-
parameter family depend holomorphically on the parameter t.
Denote by Id the identity map in Cn.
Let ϕt be the germ of a one parameter family of maps in Diff(n) with
ϕ0 = Id.
We expand, ϕt with respect to t

ϕt = Id+ tv + o(t).

We have ϕt(0) = 0 hence the vector field-germ v vanishes at 0 (v(0) = 0).
Consequently v belongs to diff(n).

The action of ϕt on an arbitrary map-germ f̃ ∈ On−1
x ×Ox is defined by

f̃ ◦ ϕt = f̃ + tv.f̃ + o(t),

where v.f̃ denotes the derivative of f̃ along v (v.f̃ = Df̃.v).
Consequently, we get the equality

(23)
d

dt
|t=0 (ϕt.f̃) = v.f̃ .

Let αt be the germ of a one parameter family of maps in On−1
x with α0 = 0.

We expand βt with respect to t:

αt = ta+ o(t), a ∈ On−1
x

The action of αt ∈ On−1
x on the map-germ f̃ = (f,E) is defined by

αt.(f,E) = (f + E × αt, E)

Consequently, we get the equality

(24)
d

dt
|t=0 (αt.f̃) = (E × a, 0).

Let βt be the germ of a one parameter family of maps in O∗
x with β0 = 1

(the constant function equal to 1).
We expand βt with respect to t:

βt = 1 + tb+ o(t), b ∈ Ox.
The action of βt on the map-germ f̃ = (f,E) is defined by

βt.(f,E) = (f,E × βt)
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Consequently, we get the equality

(25)
d

dt
|t=0 (βt.f̃) = (0, E × b).

Equations 23, 24, 25 imply the equality

d

dt
|t=0 ((ϕt, αt, βt).f̃) = (v.f +E × a,E × b+ v.E),

with (v, a, b) ∈ diff(n)×On−1
x ×Ox.

The Ox-module diff(n) is generated (as an Ox-module) by the xj
∂f̃
∂xk

’s.

The Ox-module On−1
x ×Ox is generated (as an Ox-module) by the vectors

vj of coordinates vjj = 1, vjk = 0, i 6= j.
This proves the proposition.

1.8. The finite determinacy theorem. Consider a holomorphic map-
germ f̃ : (Cn, 0) −→ (Cn−1×C, 0). The space (On−1

x ×Ox)/T f̃ is a C-vector
space.

Definition 4.8. The G-Milnor number of the holomorphic map-germ f̃ :
(Cn, 0) −→ (Cn−1 × C, 0) is defined by the formula

µG(f̃) = dimC[(On−1
x ×Ox)/T f̃ ].

Example. In subsection 1.6, we found that the tangent space to the germ of
the map f̃ = (x2

1 + x2
2, x1x2) is of codimension 6. In this case µG(f̃) = 6.

Remark. When no confusion is possible we simply write µG instead of µG(f̃).

Fix coordinates x = (x1, . . . , xn) in Cn. Denote byMk
x the kth power of the

maximal ideal of Ox.
Denote by M̃k

x the Ox-submodule of On−1
x ×Ox which consists of map-germs

g = (g1, . . . , gn) such that gj ∈Mk
x, ∀j ∈ {1, . . . , n}.

The following theorem is the finite determinacy theorem for G-equivalence.
The proof is given in appendix.

Theorem 4.1. Assume that µG(f̃) < +∞. Then for any holomorphic map-

germ ψ such that ψ ∈ M̃x
µG+1

, f̃ + ψ is G-equivalent to f̃ .

Remark. This theorem allows us to consider approximations of a function f̃
by Taylor polynomials provided that µG(f̃) < +∞.

1.9. Goryunov’s C2,2 singularity class. We give here an example for
the reader which is not acquainted with these techniques. In this subsection,
we use the notation (x, y) ∈ C2 instead of (x1, x2) ∈ C2.
Denote by Mk the kth power of the maximal ideal M of the ring Ox,y.
Consider the map-germs f̃ , f̃0 : (C2, 0) −→ (C × C, 0) defined by the poly-
nomials

f̃(x, y) = (x2 + y2 + r1(x, y), xy + r2(x, y))
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with r1, r2 ∈M3, and

f̃0(x, y) = (x2 + y2, xy)

Denote by ∼ the G-equivalence relation.
Assertion (Goryunov): the map-germ f̃ is G-equivalent to f̃0.

In subsection 1.6, we saw that the G-tangent space to f̃0 contains M2.
This means that there exists (v, a, b) ∈ diff(2)×Ox,y ×Ox,y such that the
following equality holds

(v, a, b).f̃0 = (r1, r2).

Put ϕ = Id+ v, α = a, β = 1 + b.
It is readily verified that the map-germ ϕ is biholomorphic and that β(0) 6= 0.
Thus, (ϕ,α, β) ∈ G.
We have the equality

(ϕ,α, β).f̃ = f̃0 + (r3, r4),

with (r3, r4) ∈M4.
Repeating this process three times, we get that the following G-equivalence
holds

f̃(x, y) ∼ f̃0 + ψ(x, y)

where ψ = (ψ1, ψ2) and ψ1, ψ2 ∈M7.
Consequently, the finite determinacy theorem implies that:

f̃(x, y) ∼ (x2 + y2, xy).

This proves the assertion. This is the standard technique in singularity
theory for finding normal forms. For the series PAp,q1 , we shall use a more
direct method.

1.10. Versal deformation theory for G-equivalence. In this sub-
section, we fix a holomorphic map-germ:

f̃ : (Cn, 0) −→ (Cn−1 × C, 0).

Definition 4.9. A holomorphic map-germ F : (Ck×Cn, 0) −→ (Cn−1×C, 0)
such that F (0, .) = f̃ is called a deformation of f̃ .

Definition 4.10. The deformation G : (Cr × Cn, 0) −→ (Cn−1 × C, 0) of

f̃ is induced from the deformation F : (Ck × Cn, 0) −→ (Cn−1 × C, 0) of

f̃ , if there exists a holomorphic map-germ h : (Cr, 0) −→ (Ck, 0) such that
G(λ, .) = F (h(λ), .). We use the notation: G = h∗F .

Definition 4.11. The translation by a vector u ∈ Cn−1×C is the map-germ:

τ (Cn, 0) −→ (Cn−1 × C, u)
x −→ x+ u.

We denote by T ≈ Cn the group of translations.
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Definition 4.12. Two deformations F,G of f are called G-equivalent if
there exist holomorphic map-germs γ : (Ck, 0) −→ G ⊕ T and ψ : (Ck ×
Cn−1, 0) −→ (Cn−1, 0) such that the following equality of map-germs holds

(γ(λ).G)(λ, x) = (ψ(λ, F1(λ, x)), F2(x, λ)),

with F = (F1, F2).

Definition 4.13. A deformation F is called G−versal if any other defor-
mation of the same germ is G-equivalent to a deformation induced from
F .

Fix coordinate-systems λ = (λ1, . . . , λk) in Ck and x = (x1, . . . , xn) in Cn.

Denote by vj = (vj1, . . . , v
j
n) the constant map-germ of On−1

x × Ox defined
by {

vjk = 0 for j 6= k

vjj = 1.

Fix a coordinate-systems λ = (λ1, . . . , λk) in Ck, x = (x1, . . . , xn) in Cn and
a coordinate system in Cn−1 × C.

Definition 4.14. The G-tangent space to a deformation F : (Ck×Cn, 0) −→
(Cn−1 × C, 0) of f̃ is the C-vector subspace of On−1

x × Ox which is sum of
the following C-vector subspaces:
1) the C-vector space generated by the restriction to λ = 0 of the ∂λk

F̃ ’s ,

2) the Ox-module generated by the ∂xk
f̃ ’s,

3) the C-vector space generated by the vk’s for k ∈ {1, . . . , n− 1}.
The tangent space to F is denoted by TF .

The following theorem is the versal deformation theorem for G-equivalence.
The proof is given in appendix B.

Theorem 4.2. A deformation F : (Ck × Cn, 0) −→ (Cn−1 × C, 0) of a
holomorphic map-germ F (0, .) is G-versal provided that TF = On−1

x ×Ox.
Example. Let f̃ : (C2, 0) −→ (C×C, 0) be the holomorphic map defined by

f̃(x1, x2) = (x2
1 + x2

2, x1x2).

Consider the 3-parameter deformation F of f̃ defined by the formula

F (λ, x1, x2) = (x2
1 + x2

2, x1x2 + λ1x1 + λ2x2 + λ3).

We saw that the tangent space T f̃ to f̃ isM2. The G-tangent space to f̃ is
the sum of T f̃ with the C-vector space generated by the following map-germs

(∂λ1F )|λ=0 = (0, x1), (∂λ2F )|λ=0 = (0, x2), (∂λ3F )|λ=0 = (0, 1),

(∂x1F )|λ=0 = (2x1, x2), (∂x2F )|λ=0 = (2x2, x1), v
1 = (1, 0).

Hence we have the equality TF = Ox ×Ox. Thus, the deformation F of f̃
is G-versal.
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2. Theory of normal forms, the Plücker space.

2.1. Summary. Fix an affine coordinate system x = (x1, . . . , xn) in
affine space Cn.
Let f : U −→ Cn−1 be a holomorphic map such that, for ε ∈ f(U), the
varieties:

Vε = {x ∈ U : f(x) = ε}
are of dimension one. Here U denotes a neighbourhood of the origin in affine
space Cn and f = ε is assume to be a reduced equation of Vε.
In chapter 3, we saw that for any ε = (ε1, . . . , εn−1) ∈ f(U), the flattening
points of the curve Vε are the preimages of (ε, 0) under the map:

(f,∆f ) : U −→ Cn−1 × C,

provided that Vε is smooth. Here ∆f denotes the generalized Hessian deter-
minant of f with respect to the coordinate system x = (x1, . . . , xn).
By considering (f,∆f ), we can forget the affine structure on U . This means
that we consider the map (f,∆f ) up to a biholomorphic change of variables
in U . In fact, we saw in section 1, that not only biholomorphic change
of variables can be made but that when considering the germ of (f,∆f )
at a point, an equivalence relation, called G-equivalence can be introduced
between map-germs of the type:

(g,Eg) : (Cn, 0) −→ (Cn−1 × C, 0).

In this section, we apply G-equivalence to holomorphic map-germs of the
type (f,∆f ). That is we search for the ”simplest (g,Eg)” which is G-
equivalent to (f,∆f ). This leads to the construction of the Plücker space,
that we shall now describe.

2.2. Preliminary examples. We fix an affine coordinates (x, y) in
affine space C2.
We denote by:
- Bδ ⊂ C2 the closed ball of radius δ centered at the origin,
- f : (C2, 0) −→ C a holomorphic function-germ and f̄ a representative of
f .
Example 1. Assume that the following G-equivalence relation holds

(f,∆f ) ∼ (y, x)

The two plane curves
{
(x, y) ∈ C2 : y = 0

}
and

{
(x, y) ∈ C2 : x = 0

}
inter-

sect transversally. Consequently, for δ 6= 0 and ε 6= 0 small enough, the
G-equivalence relation above implies that the curve:

Vε =
{
(x, y) ∈ Bδ : f̄(x, y) = ε

}

has a non-degenerate inflection point in a neighbourhood of the origin (see
figure 1).
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Example 2. Assume that the following G-equivalence relation holds

(f,∆f ) ∼ (y − x2, y).

The two plane curves
{
(x, y) ∈ C2 : y − x2 = ε

}
and

{
(x, y) ∈ C2 : y = 0

}

intersect:
- tangentially at the origin for ε = 0,
- transversally in two points for ε 6= 0.
Consequently, for δ 6= 0 and ε 6= 0 small enough, the G-equivalence above
implies that curve

Vε =
{
(x, y) ∈ Bδ : f̄(x, y) = ε

}

has:
- a degenerate inflection point at the origin (of the type y = x4) for ε = 0,
- two non-degenerate inflection points for ε ∈ f̄(Bδ) and ε 6= 0.
This example is illustrated in figure 2.

Example 3. Assume that f : (C2, 0) −→ (C, 0) is a Morse function-germ
such that none of the branches of the curve-germ of equation f = 0 is the
germ of a complex line.
We shall prove in section 3 that under these conditions, there exists integers
p, q ≥ 0 such that the following G-equivalence holds.

(f,∆f ) ∼ (x3+p + y3+q, xy).

In particular, for δ small enough, the curve

Vε =
{
(x, y) ∈ Bδ : f̄(x, y) = ε

}

has 6 + p+ q inflection points in Bδ for ε ∈ f̄(Bδ), ε 6= 0.

Example 4. Let f : (C2, 0) −→ (C, 0) be a holomorphic function-germ.
Denote by ϕ : (C2, 0) −→ (C2, 0) a biholomorphic map-germ.
Define the holomorphic function-germ H : (C2, 0) −→ (C, 0) by H = f ◦ ϕ.
With the notation of chapter 3, section 1, we have the G-equivalence relation

(f,∆f ) ∼ (H,D[ϕ]).

2.3. The Plücker space (first part). We denote by Cn the analytic
manifold with a marked point, denoted 0, on it.

Definition 4.15. The Plücker space (for complete intersection map-germs)
is the set of the holomorphic map-germs (g,Eg) : (Cn, 0) −→ Cn−1 × C for
which there exists a holomorphic map-germ f : (Cn, 0) −→ (Cn−1, 0) and
a coordinate system centered at the origin in Cn such that the following
G-equivalence relation holds:

(f,∆f ) ∼ (g,Eg),
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where ∼ denotes the G-equivalence3.

We fix a vector space structure in Cn.

Definition 4.16. Two complete intersection map-germs
f, g : (Cn, 0) −→ (Cn−1, 0) are called P-equivalent if the map-germs (f,∆f ), (g,∆g)
are G-equivalent.

Remark. The P-equivalence class of a complete intersection map-germ is
well-defined and does not depend on the choice of the linear coordinate
system. Indeed, the definition ∆f requires only a linear coordinate system
(x1, . . . , xn).
The G-equivalence class of (f,∆f ) does not depend on this choice. Too see
it, consider a non-degenerate linear map A : Cn −→ Cn (or equivalently a
linear change of coordinates). Then we have the equality (chapter 3 page
59)

∆f◦A = kn(n+1)∆f ◦A
with k = (detA)n(n+1)−1.
This equality implies the following G-equivalence

(f,∆f ) ∼ (f ◦ A,∆f◦A).

H

  ϕ

∆ = 0

V
1

0

−1

D[    ]=0

1

0H

H −1

ϕ
V

V

f

Figure 1. In the left hand-side the intersection points of
the curves of equations y = ε, x = 0 correspond to inflection
points of the curves Vε ⊂ C2 in the right hand-side.

3The Plücker space depends on the dimension n.
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∆=0

0

−1

D[    ]=0ϕ

H1

H

H
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−1

ϕ

V

V

V

1

Figure 2. For ε = 1 the curve V1 has two real inflection
points that coalesce when ε −→ 0.

2.4. The Plücker space (second part).

Definition 4.17. The Plücker space4 (for map-germs of the type
(H,ϕ) : (C2, 0) −→ (C × Cn, 0)) is the set of holomorphic map-germs
(g,Eg) : (C2, 0) −→ (C × Cn, 0) for which there exist a holomorphic map-
germ
(H,ϕ) : (C2, 0) −→ (C × Cn, 0) and coordinate systems in C2 and in Cn

such that the following G-equivalence relation holds

(H,D[ϕ]) ∼ (g,Eg).

Denote by Cn the n-dimensional complex vector space.

Definition 4.18. Two holomorphic map-germs (H,ϕ), (H ′, ϕ′) : (C2, 0) −→
(C×Cn, 0) are called P-equivalent if the map-germs (H,D[ϕ]) and (H ′,D[ϕ′])
are G-equivalent.

Remark. The P-equivalence class of (H,ϕ) does not depend neither on the
choice of the coordinates in C2 nor on the choice of the linear coordinate
(see the remark following definition 4.16 on page 88).

2.5. Versal deformation theory in Plücker space. In this subsec-
tion Cn denotes the n-dimensional vector space.

Definition 4.19. A k-parameter deformation of a holomorphic map-germ
f : (Cn, 0) −→ (Cn−1, 0) is a holomorphic map-germ F : (Ck × Cn, 0) −→
(Cn−1, 0) such that F (0, .) = f .

Fix a linear coordinate system x = (x1, . . . , xn) in the vector space Cn.
Consider a deformation F : (Ck × Cn, 0) −→ (Cn−1, 0) of a holomorphic
map-germ f .
We denote by:

∆F : (Ck × Cn, 0) −→ (C, 0)

4The Plücker space depends on the dimension n.
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the Hessian determinant of F with respect to the variables x = (x1, . . . , xn).
Like ∆f the function-germ ∆F depends on the choice of the coordinate sys-
tem x = (x1, . . . , xn).

Definition 4.20. A deformation F (λ, .) of a holomorphic map-germ f :
(Cn, 0) −→ (Cn−1, 0) is P-versal if for any other deformation G of f , the

germ of the deformation G̃ = (G,∆G) is G-equivalent to the germ of a

deformation induced from F̃ = (F,∆F ).

Remark. The condition for a deformation to be P-versal does not depend on
the choice of the coordinate-systems but only on the vector space structure
of a small neighbourhood U of the origin in Cn. This is due to the fact that
the orbit of a map-germ (f,∆f ) under the G-equivalence group depends only
on the vector space structure (see the remark following definition 4.16 on
page 88).

In the example below, we use the notation (x, y) for an affine coordinate
system in affine space C2 instead of (x1, x2).

Example 1. Consider the biholomorphic map-germ ϕ : (C2, 0) −→ (C2, 0)
defined by the polynomials

ϕ(x, y) = (x, x4 + yx2 + y).

Let H(x, y) = y. Put f = H ◦ ϕ−1.
Assertion: the constant deformation F = f is P-versal.
Indeed, with the notations of chapter 3 section 1, we have the following
G-equivalence relation

(f,∆f ) ∼ (H,D[ϕ]).

We already calculated the function-germ D[ϕ] on page 62, we found that it
is given by the polynomial

(D[ϕ])(x, y) = 12x2 + 2y.

The G-tangent space to (H,D[ϕ]) is the sum of the following C-vector sub-
spaces of Ox,y ×Ox,y:
- theOx,y-module generated by ∂x(H,D[ϕ]), ∂y(H,D[ϕ]), (0,D[ϕ]), (D[ϕ], 0),
- the C-vector space generated by (1, 0).
It is readily verified that this vector space is Ox,y ×Ox,y. Consequently the
constant deformation (H,D[ϕ]) is G-versal. Thus (f,∆f ) is G-versal and f
is P-versal. Assertion is proved.

Example 2. Consider the holomorphic map-germ f : (C2, 0) −→ (C, 0)
defined by the polynomial

f(x, y) = xy + x4 + y3.
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We shall prove in the next subsection that the deformation

F : (C× C2, 0) −→ (C, 0)

of f given by the formula

F (x, y) = xy + x4 + λx3 + y3

is P-versal.

2.6. The modality in Plücker space (first part). Denote by:
- Ox the ring of holomorphic function-germs in Cn,
-M2 the square of the maximal ideal of Ox,
- M̃2 the space of holomorphic map germs f = (f1, . . . , fn−1) such that the
fj’s are in M2,

- Jk0M2 the space of k-jets at the origin of elements in M2.

Definition 4.21. A holomorphic map-germ f ∈ M̃2 has P-modality m
provided that m is the smallest number satisfying the following property.

There exists a number N , such that a neighbourhood of jk0f ∈ Jk0 M̃2 is
covered by a finite number ofm-parameter families of k-jets of P-equivalence
classes for any k > N .

Remark. For n > 2, it may happen that µ(f,∆f ) = +∞ while f has finite
modality.

2.7. The modality in Plücker space (second part). Denote by
M̄2 the space of holomorphic map germs (H,ϕ) : (C2, 0) −→ (C × Cn, 0)
such that H ∈M2.
Denote by Jk0 M̄2 the space of k-jets at the origin of elements in M̄2.
Let (H,ϕ) : (C2, 0) −→ (C × Cn, 0) be a holomorphic map-germ such that
the G-Minor number µG(H,D[ϕ]) of (H,D[ϕ]) is finite.

Definition 4.22. The map (H,ϕ) has P-modality m provided that for any
k > µG(H,D[ϕ]) a neighbourhood of jk0 (H,ϕ) ∈ Jk0 M̄2 is covered by a finite
number of m-parameter families.
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3. The PAp,q1 series.

We have now settled the necessary tools for computing the P-normal forms.
We treat here the case of PAp,q1 as an example. The other cases are treated
in appendix A.
We shall use some ”tricks” in order to avoid long computations. This is of
course unnecessary and one can make the computations in the most straight-
forward manner.
In, the second subsection, we compute the P-versal deformation of PA1

1.
We have thought that it is more instructive to treat this case rather than
the general PAp,q1 case. The general proof is also given in appendix A. But
remark that the difference with the case PA1

1 lies only in the notations.
Unfortunately, the P-versal deformations are in fact complicated to compute
and we shall only do it for the series PAp,q1 .

3.1. Normal form PAp,q1 . We denote by ∼ the G-equivalence relation.
The aim of this subsection is to prove proposition 4.5 cited below.
In the real C∞ category the proof of the corresponding statement is analo-
gous.

Proposition 4.5. For any holomorphic function-germ f : (C2, 0) −→ (C, 0)
belonging to the P-singularity class PAp,q1 , the following G-equivalence holds:

(f,∆f ) ∼ (x3+p + y3+q, xy).

Denote by Mk the kth power of the maximal ideal of Ox,y.
A non-degenerate linear map sends the inflection points of a curve to the
inflection points of its image.
Consequently, for any non-degenerate linear transformation: α : C2 −→ C2,
f is P-equivalent to f ◦ α.
Hence without loss of generality, we can assume that f is of the form

f(x, y) = xy + r0,

with r0 ∈M3.

Lemma 4.1. For f ∈ PAp,q1 , there exists function germs a, b : (C, 0) −→
(C, 0) such that the following G-equivalence holds (f,∆f ) ∼ (a(x)+b(y), xy).

Proof.
The Hamilton vector-field of f is of the following form

Xf = (x+ r1)∂x − (y + r2)∂y,

where r1, r2 ∈M2.
Consequently the Hessian determinant ∆f of f is given by:

∆f (x, y) = 2xy + r3

where r3 ∈M3.
The Morse lemma implies that there exists a biholomorphic map-germ

ϕ : (C2, 0) −→ (C2, 0)
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such that we have:

(26) (∆f ◦ ϕ)(x, y) = xy.

By definition of G-equivalence, we have the following G-equivalence relation:

(f,∆f ) ∼ (f ◦ ϕ,∆f ◦ ϕ).

The division theorem implies that one can represent f ◦ ϕ in the form

(f ◦ ϕ)(x, y) = a(x) + b(y) + c(x, y)xy,

where a, b, c are holomorphic function germs.
The definition of G-equivalence implies the following G-equivalence relation:

(a(x) + b(y) + c(x, y)xy, xy) ∼ (a(x) + b(y), xy).

Lemma is proved.

Lemma 4.2. The holomorphic function germs a, b of the preceding lemma
are of the form: {

a(x) = a0x
3+p + o(x3+p)

b(y) = b0y
3+q + o(y3+q)

with a0b0 6= 0.

Proof.
Put E(x, y) = xy. Recall, that we have the following G-equivalence relation

(f,∆f ) ∼ (a+ b,E).

Denote by j (resp. k) the highest number such that a ∈Mj (resp. b ∈Mk).
That is the first term in the Taylor series of a (resp. b) appearing with a
non-zero coefficient is of degree j (resp. k). A priori j or k can be infinite
but we shall see that this is not the case.
Denote by:
- C1 (resp. C2) the branch of the plane curve-germ of equation f = 0 tangent
to the x-axis (resp. to the y-axis),
- ∆1 (resp. ∆2) the branch of the plane curve-germ of equation ∆f = 0
tangent to the x-axis (resp. to the y-axis).
- (Cl.∆m) the multiplicity of intersection at the origin of the curve germs Cl
and ∆m.
The definition of the multiplicity of intersection implies the equalities5

{
j = (C1.∆1) + (C2.∆1),
k = (C1.∆2) + (C2.∆2).

The curve-germ C1 is tangent to the x-axis while ∆2 is tangent to the y-axis.
Hence, their intersection number is equal to

(C1.∆2) = 1.

Similarly, we have the equality

(C2.∆1) = 1.

5Remark that the equations of the curves that we consider are reduced.
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Consequently the numbers j, k are given by the following system of equations

(27)

{
j = (C1.∆1) + (C1.∆2),
k = (C2.∆1) + (C2.∆2).

The definition of the P-singularity class PAp,q1 implies that the curve-germ
C1 is parameterized by a holomorphic map-germ of the type

(28)

{
x(t) = t,
y(t) = −t2+p + o(t2+p).

This parameterization allows us to identify the ring of holomorphic function-
germs on C1 is with a subring of Ot.
Denote by δ ∈ Ot the holomorphic function-germ of the parameter t obtained
by restricting ∆f to the curve-germ C1.
The number (C1.∆1) + (C1.∆2) is equal to the degree of the first term in
the Taylor series of δ appearing with a non-zero coefficient.
Using the old-fashioned notations, the Hamilton vector field Xf of f is
defined by the Hamilton equations

(29)

{
ẋ(x, y) = x+m1(x, y),
ẏ(x, y) = −y +m2(x, y),

with m1,m2 ∈M2.
Via the embedding OC1 ⊂ Ot, the restriction D of the derivation along the
Hamilton vector-field Xf to C1 is a (holomorphic) derivation of Ot. The
first equality of the system of equations (29) implies that:

Dt = t+ o(t).

We get the formula

δ(t) =

∣∣∣∣
t (2 + p)t2+p

t (2 + p)2t2+p

∣∣∣∣ + o(t3+p)

Thus δ(t) = (2 + p)(1 + p)t3+p + o(t3+p) and consequently:

(C1.∆1) + (C1.∆2) = 3 + p.

The proof for the branch C2 is different only in notations. This concludes
the proof of the lemma.

Lemma 4.3. For any holomorphic function germs a ∈ Ox, b ∈ Oy such that

a(x) = a0x
j+o(xj), b(y) = b0y

k+o(xk) we have the following G-equivalence
relation

(a(x) + b(y), xy) ∼ (xj + yk, xy)

provided that a0b0 6= 0.

Proof.
Since a0b0 6= 0, we can write:

a(x) = (α(x)x)j

and:
b(y) = (β(y)y)k
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where α and β are holomorphic function germs that do not vanish at the
origin.
Consider the biholomorphic map-germ g : (C2, 0) −→ (C2, 0) defined by

g(x, y) = (α(x)x, β(y)y).

The map-germ g induces the G-equivalence relation

(xj + yk, xy) ∼ ((α(x)x)j + (β(y)y)k, α(x)β(y)xy).

By definition of G-equivalence, we have the G-equivalence relation

((α(x)x)j + (β(y)y)k, α(x)β(y)xy) ∼ ((α(x)x)j + (β(y)y)k, xy).

This concludes the proof of the lemma.
This lemma concludes the proof of proposition 4.5.

3.2. PAp,q1 is P-simple. Let f : (C2, 0) −→ C be a holomorphic
function-germ such that f ∈ PAp,q1 where p ≥ 0, q ≥ 0 are integers.
The G-Milnor number of f is finite say equal to k−1. The finite determinacy
theorem for G-equivalence implies that for computing the modality of f is
suffices to compute the modality of the k-jet of f in J k0M2.
Here Jk0M2 denotes the space of k-jets at the origin of elements of M2.
Denote by e1, . . . , es a basis of the finite dimensional vector space J k0M2.
Consider the deformation of f defined by:

F = f +

s∑

j=1

λjej

for any λ small enough, the germ of F (λ, .) at the origin is of the type PAp′,q′

1
with p′ ≤ p, q′ ≤ q.
Proposition 4.5 implies that two germs in PAp′,q′1 are in the same G-orbit.
Thus, there is only a finite number of P-equivalence classes, indexed by the
integers p′, q′, in a neighbourhood of the k-jet of f .

3.3. P-versal deformation for the class PA1
1. In this subsection,

we compute the P-versal deformation for the simplest ”non-trivial” case,
namely PA1

1.
For the case PA1 proposition 4.5 implies that the constant deformation is
P-versal.
We shall prove the following proposition.

Proposition 4.6. The deformation F : (C × C2, 0) −→ C of f(x, y) =
xy + x4 + y3 defined by:

F (λ, x, , y) = xy + x4 + λx3 + y3

is P-versal.
Moreover (F,∆F ) is G-equivalent to the deformation defined by the pair

(C × C2, 0) −→ (C× C, 0)
(λ, x, y) 7→ (x4 + λx3 + y3, xy)



96 4. THE PLÜCKER SPACE.

3.4. Proof of proposition 4.6. Denote by

G : (Ck × C2, 0) −→ (C, 0)

an arbitrary deformation of the holomorphic function-germ f ∈ PA1
1.

Lemma 4.4. The deformation (G,∆G) is G-equivalent to a deformation in-
duced from the one-parameter deformation

(λ, x, y) 7→ (x4 + λx3 + y3, xy).

Proof.
The holomorphic function-germ f = G(0, .) belongs to the P-singularity
class PA1

1. Thus, proposition 4.5 implies that the following G-equivalence
holds

(f,∆f ) ∼ (x4 + y3, xy)

Hence (G,∆G) is G-equivalent to a deformation of (x4 + y3, xy).
Define the deformation A : (C6 × C2, 0) −→ (C × C, 0) of (f,∆f ) by the
polynomials

A(µ, λ, x, y) = (x4 + λx3 + y3 + µ1x
2 + µ2y

2 + µ3x+ µ4y, xy + µ5).

Direct calculations show that the G-tangent space to A is TA = O2
x,y.

Thus, the G-versal deformation theorem (see subsection 1.10) implies that
the deformation A of (f,∆f ) is G-versal. Consequently (G,∆G) is G-equivalent
to a deformation induced from A by a holomorphic map-germ

h : (Ck, 0) −→ (C6, 0).

Denote respectively by γ = (γ1, . . . , γk) the parameters of the deformations
G.
We use the old-fashioned notation:

h(γ) = (µ1(γ), . . . , µ5(γ), λ(γ)).

Lemma 4.4 is a consequence of the following lemma.

Lemma 4.5. The map-germ µ vanishes identically.

Proof.
Denote by Ḡ a representative of G.
The function Ḡ(γ, .) has a Morse critical point in a neighbourhood the origin
provided that γ is small enough.
A translation sends an inflection point of a curve to an inflection point of
its translation. Consequently, we can assume without loss of generality that
the Morse critical point of Ḡ(γ, .) is the origin.
Proposition 4.5 implies that for any γ small enough:
1) ∆Ḡ(γ, .) has a Morse critical point at the origin of critical value 0,
2) the restriction of Ḡ(γ, .) to each branch of the plane curve

{
(x, y) ∈ C2 : ∆Ḡ(γ, x, y) = 0

}
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has a critical point of the type Ak with k ≥ 2.
Condition 1 implies that µ5 vanishes identically. Then, condition 2 implies
that µ1, . . . , µ4 also vanish identically. Lemma is proved.

Lemma 4.6. Assume that the vector (x3, 0) is contained in the G-tangent
space to (G,∆G). Then the following G-equivalence holds
(G,∆G) ∼ (x4 + y3 + λx3, xy).

Proof.
By direct calculations, we get that under the conditions of the lemma the
G-tangent space to the deformation B : (Ck+5 × C2, 0) −→ (C × C, 0) of
(f,∆f ) defined by:

B(µ, γ, x, y) = (G(γ, x, y) + µ1x
2 + µ2y

2 + µ3x+ µ4y,∆G(γ, x, y) + µ5)

is TB = O2
x,y.

The G-versal deformation theorem implies that B is G-versal. Hence the
deformation

(C × C2, 0) −→ (C× C, 0)
(λ, x, y) 7→ (x4 + y3 + λx3, xy)

is induced from a deformation G-equivalent to B.
The same argument as the one given in lemma 4.5 implies that (x4 + y3 +
λx3, xy) is induced from a deformation G-equivalent to (G,∆G).
On the other hand, lemma 4.5 implies that (G,∆G) is induced from a de-
formation G-equivalent to (x4 + y3 + λx3, xy).
We have shown that:
- (G,∆G) is induced from a deformation G-equivalent to (x4 +y3 +λx3, xy),
- (x4 +y3 +λx3, xy) is induced from a deformation G-equivalent to (G,∆G).
Consequently (G,∆G) and (x4 + y3 + λx3, xy) are G-equivalent. Lemma is
proved.

By definition of P-versality, these two lemmas imply that a function-germ
G satisfying the conditions of lemma 4.6 is a P-versal deformation.

It remains to find a deformation G of f such that (x3, 0) belongs to the
G-tangent space to (G,∆G).
Define the deformation F : (C×C2, 0) −→ (C, 0) of f : (C2, 0) −→ (C, 0) by

F (α, β, x, y) = xy + x4 + y3 + λx3

Final assertion. The map germ

(C2, 0) −→ (C× C, 0)
(x, y) 7→ (x3, 0)

is contained in the G-tangent space to the deformation F .

Denote by:
-Mk the kth power of the maximal ideal M⊂ Ox,y,
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- M the Ox,y-module:

M =
{
(0,m) : m ∈M2

}
.

Lemma 4.7. The module M is contained in the G-tangent space to (F,∆F ).

Proof.
The function germ f = F (0, .) belongs to the P-singularity class PA1

1, thus
proposition 4.5 implies the G-equivalence relation

(F (0, .),∆F (0, .)) ∼ (x4 + y3, xy).

Hence the G-tangent space to (F,∆F ) contains the tangent space to the
constant deformation equal to (x4 + y3, xy). It is readily verified that the
G-tangent space to this constant deformation contains the Ox,y-module M .
Lemma is proved.

We conclude the proof of the assertion.
The Hamilton vector-field of F (λ, .) is of the form

hλ(x, y) = (x+ r1(λ, x, y))∂x − (y + r2(λ, x, y))∂y .

Here r1(λ, .), r2(λ, .) ∈ M2. Thus for any value of λ, we have ∆F ∈ M2.
Consequently the restriction of ∂λ∆F to λ = 0 is contained inM2

x,y.
Lemma 4.7 implies that the restriction of (0, ∂λ∆F ) to λ = 0 is contained in
the G-tangent space to (F,∆F ).
Thus the map germ

((∂λF, ∂λ∆F )− (0, ∂λ∆F ))|λ=0 = (x3, 0)

is contained in the G-tangent space to (F,∆F ). This concludes the proof of
the final assertion. Proposition 4.6 is proved.



CHAPTER 5

Projective topological invariants and the K(π, 1)

theorem.

The theory of normal forms that we developed in the preceding chapter al-
lows us to compute most of the projective topological invariants of P-simple
function-germs. Indeed, the P-versal deformation theorem for the PAp,q

1
series makes the computation of the corresponding PT -monodromy group a
simple exercise. In this chapter, we focus our attention on the computation
of the PT -fundamental group for the series PAp,q1 and on the K(π, 1) theo-
rem stated in chapter 2 section 7. This is done by constructing a variant of
the Lyaschko-Loojenga mapping. The construction of this mapping is the
main tool from which we shall deduce our results.

1. Preliminaries.

1.1. The PAp,q1 series. For notational reasons assume that pq > 0.
Let F : (Cp+q × C2, 0) −→ C be a P-versal deformation of a function-
germ f ∈ PAp,q1 . Denote by ∆F the bordered Hessian of F with respect to
the variables (x, y). Theorem 2.11 ( chapter 2, section 5) asserts that the
deformation (F,∆F ) is G-equivalent to the deformation (P (α, β, x, y), xy)
with:

P (α, β, x, y) = x3+p + y3+q + α1x
2+p + · · · + αpx

3 + β1y
2+q + · · ·+ βqy

3.

The G-equivalence relation preserves all the PT -invariants (in fact G-equivalence
was introduced for computing them). This leads us to the following propo-
sition.
Put: {

Q(α, x) = x3+p + α1x
2+p + · · ·+ αpx

3,
R(β, y) = y3+q + β1y

2+q + · · ·+ βqy
3.

Let Σ̃ ⊂ Cp+q+1 be the set of values of the parameters (α, β, ε) for which at
least one one of the two polynomials Q(α, x)− ε or R(β, y)− ε has a double
root.

Proposition 5.1. The PT -covering of f is C∞-equivalent to the covering

whose base is Cp+q+1 \ Σ̃, whose fibre at (α, β, ε) ∈ Cp+q+1 \ Σ̃ is the set of
values of x and y such that Q(α, x) = ε, R(β, y) = ε.

This proposition imply the results on the monodromy and on the PT -braid
groups for the P-singularity classes PAp,q1 .

99
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All that remains to work out for the PAp,q1 singularity classes is:
- to calculate the PT -fundamental groups,
- to prove the K(π, 1) theorem.

1.2. The PA2 series. Consider a holomorphic function-germ f : (C2, 0) −→
(C, 0) belonging to the P-singularity class PA2.
Let F : (Ck × C2, 0) −→ (C, 0) be a P-versal deformation of f .
Theorem 2.8 implies that f = F (0, .) is P-equivalent to the function-germ
defined by the polynomial y2 + x3.
The PT -invariants being unchanged under P-equivalence, we can assume
without loss of generality that f(x, y) = y2 + x3.
Take a representative F̄ : Λ× U −→ C of the function germ F . Put:

Vλ,ε = {p ∈ U : F (λ, p) = ε}

Denote by Br ⊂ C2 the closed ball of radius r.

Lemma 5.1. The curve Vλ,ε ∩Br does not have degenerate inflection points
provided that r, || λ || and ε are small enough.

Proof.
First, we make a preliminary remark. Assume that for some value (λ, ε),
the curve Vλ,ε has a degenerate inflection point p. Let g be the germ at p
of the restriction of F̄ to the line tangent to Vλ,ε at that point. Then, the
third degree Taylor polynomial of g at p vanishes.
Let L ⊂ C2 be a fixed line. For each value of the parameter (λ, ε), choose a
point p(λ, ε) ∈ C2 such that:
- the dependence of p on the parameter (λ, ε) is holomorphic,
- p(0, 0) = 0.
Denote by kλ the degree of the first term of the Taylor expansion at p(λ, ε)
of the restriction of F̄ (λ, .) to L.
Since F (0, x, y) = y2 + x3, we have k0 ≤ 3. Thus k(λ) ≤ 3 for λ small
enough. According to the preliminary remark this means that p(λ, ε) is not
a degenerate inflection point provided that λ is small enough. Lemma is
proved.

This lemma implies that the P-discriminant of the family of curves (Vλ,ε∩Br)
consists only of the values of the parameter (λ, ε) for which the curve Vλ,ε
has a singular point provided that || l || and ε are small enough.
Consequently the corresponding P-bifurcation diagram is C∞ diffeomorphic
to the germ of a complex hyperplane H ([AVGL1]) in Ck.
Obviously the space Ck \H is a K(π, 1) space. Thus the K(π, 1) theorem
(theorem (2.17) 55) holds for the PA2 series.
Another consequence of the lemma is that for any two deformations of the
function-germ f ∈ PA2 which are (R−L)-equivalent, the PT -invariants will
be the same.
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Thus it suffices to compute the PT -invariants for an (R − L)-versal defor-
mation of f say:

F (λ, x, y) = y2 + x3 − 3λx.

In this case the curves Vλ,ε ⊂ C2 are elliptic curves minus one point.
Fix the origin of the group of the elliptic curve Vλ,ε to be the ”missing”
point.
Abel’s theorem implies that the inflection points of an elliptic curve are the
points of order three of its group ([Clebsch]). That makes the computations
of the PT -monodromy group trivial1 .
Indeed, the Plücker discriminant of the family of curves:

Vλ,ε =
{
(x, y) ∈ C2 : y2 + x3 − 3λx = ε

}

is the semi-cubical parabola:

Σ =
{
(λ, ε) ∈ C2 : λ3 + ε2 = 0

}

Fix a value of (λ, ε) ∈ C2 \ Σ. Let ω be the restriction of the holomorphic
one-form dx

y to Vλ,ε. The Abel mapping:

Vλ,ε −→ C/Γ
p 7→

∫ p
∞ ω

sends the inflection points of Vλ,ε to the points of order 3 in C/Γ distinct
from 0.
We identify these points with the non-zero vectors of the vector space Z3×Z3.
Then the PT -monodromy is generated by the matrices ([BrKn] for details):





A =

(
1 0
1 1

)

B =

(
1 −1
0 1

)

The group generated by these matrices is SL(2,Z/3Z).

2. Basic singularity theory.

We review various facts that we shall need.

2.1. Distinguished basis and vanishing cycles. In this subsection,
we consider no longer holomorphic functions of two variables but of one
variable. We follow word for word the textbook [AVGL1].
Let f : Bδ −→ C be a holomorphic function with Morse critical points
p1, . . . , pµ of corresponding critical values ε1, . . . , εµ. Here Bδ denotes the
closed disk of radius δ in C centered at the origin.
We assume that:
- distinct critical points have distinct critical values,
- for any ε ∈ C, any point belonging to the set f−1(ε) lies on the interior of

1I do not know how to describe the PT -braid group of the singularity PA2 in an
invariant form although we have this simple normal form.
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φ

D

ε

ε
ε µ

k

1

k
α ∗

Figure 1. Zero-dimensional vanishing cycle at a Morse crit-
ical point. When ε approaches a critical value of a Morse
critical point of f two preimages coalesce.

Bδ.

Put D = f(Bδ). Choose a point α∗ on the boundary of D. Let D′ =
D \ {ε1, . . . , εµ}. Fix an arbitrary j ∈ {1, . . . , µ} . Let φk : [0, 1] −→ D be a
path connecting α∗ with the critical value εk ∈ D of f . The word connecting
means that:
- for t 6= 1, φk(t) ∈ D′,
- φk(0) = α∗, φk(1) = εk.
When t −→ 1, two preimages of φk(t) under f , say xj(t) and xk(t), approach
one towards the other continuously with the parameter t (see figure 1).

Definition 5.1. The zero-dimensional reduced homology class
∆k = {xj(0)} − {xk(0)} is called the vanishing cycle associated to the path
φk.

Consider a loop β obtained by going along φ from α∗ then going anti-
clockwise around εk and returning to α∗ along φk (see figure 2).

Definition 5.2. The loop α described above is called a loop associated to
the path φk.

A loop α associated to a path φk connecting the base point α∗ ∈ D′ with
a Morse critical value εk gives rise to a permutation of two points of the
fibre of f at the base point. We say that this permutation is associated to
the loop α. Classically this permutation is called the monodromy operator
associated to α.
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Figure 2. On the left hand side: the closed loop α associ-
ated to the path φ. On the right hand side: the monodromy
associated to the loop α.

The fundamental group π1(D
′) is the free group with µ generators. Consider

a set φ1, . . . , φµ : [0, 1] −→ D of paths such that φk connects the base point
α∗ to the critical value εk.

Definition 5.3. The system of paths φ1, . . . , φµ is called a weakly distin-
guished basis (of D′ with base point α∗) if the set of corresponding loops
generates the fundamental group π1(D

′).

Definition 5.4. A weakly distinguished basis φ1, . . . , φµ of D′ is called
distinguished provided that:
- the paths φk’s have no self-intersections,
- two different paths φj , φk intersect only at t = 0 at the base point α∗ =
φj(0) = φk(0),
- the paths φk are indexed in the order of increase of Argφ′

k(0) (assuming
that one reads the picture clockwise, see figure 3).

The following theorem is a particular case of a much more general theorem
of Picard-Lefschetz theory ([Br3]).

Theorem 5.1. The vanishing cycles ∆1, . . . ,∆µ associated to a (weakly)
distinguish basis of paths φ1, . . . , φµ form a basis of the reduced homology

group H̃0(V∗) where V∗ is the fibre of f at the base point α∗.

2.2. Zariski’s first theorem. In this section we discuss a variant of
Zariski’s classical theorem ([Za], [VK]). For details the reader is sent to
[HL].
The theorem that we shall state depends on a technical ”genericity” con-
dition. We first give the theorem and then explain what this genericity
condition means.
Let Σ ⊂ Cn be an algebraic hypersurface.
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εk
ε

D

µ

ε
1

φα*
k

Figure 3. A distinguished basis.

Theorem 5.2. Let L ⊂ Cn be a Zariski generic complex line. Then the
inclusion:

i : L \ (L ∩Σ) −→ Cn \ Σ

induces a surjective homomorphism

i∗ : π1(L \ (L ∩ Σ)) −→ π1(C
n \ Σ).

We now explain what is a Zariski generic complex line.
First, consider the case n = 2.

Definition 5.5. A complex line L ⊂ C2 is called Zariski generic with
respect to a complex algebraic curve C ⊂ C2 provided that there exists a
pencil of complex lines (Lt), t ∈ C such that:
- L0 = L intersects C transversally at m distinct points,
- for any t ∈ C except a finite number of them the complex line Lt intersects
Σ transversally at m distinct points,
- for any t ∈ C, Lt intersects C at a finite number of points.

Remark. We point out that the notion of Zariski genericity does not mean
necessarily that the complex line intersects transversally the curve at a max-
imal number of points. This is made clear by the following example.

Example. Let Σ =
{
(x, y) ∈ C2 : y = x2

}
. The complex line L of equation

x = 0 is ”Zariski generic”. To see it consider the pencil (Lt) defined by
Lt = {(x, y) : x = t}.

We turn on to the general case. To explain this general case, we assume
that the reader is acquainted with the definition of a Whitney stratification
([Wh],[Tei3]).
We fix a hyperplane H∞ ≈ CPn−1 in CP n and identify CP n \H∞ with the
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affine space Cn.
Given a variety V ⊂ Cn, we denote by V̄ its closure in CP n.
Let Σ ⊂ Cn be an an algebraic hypersurface.
Since the surface Σ̄∪H∞ is algebraic it admits a minimal Whitney stratifi-
cation ([Wh],[Tei3]). We consider this minimal stratification.

Definition 5.6. An affine complex line L ⊂ Cn is called Zariski generic if
the following conditions are satisfied:
- there exists an affine complex 2-plane P ⊂ Cn containing L such that P̄
intersects each stratum of Σ ∪H∞ transversally.
- the complex line L is Zariski generic with respect to C = P ∩Σ in P ≈ C2.

2.3. The Zariski, Van-Kampen theorem. We keep the same nota-
tions as those of the preceding subsection.
Assume that there exists a linear projection:

p : Cn −→ Cn−1,

such that:
- the values of the parameter ε ∈ Cn−1 for which the complex line p−1(ε) is
not Zariski generic form a hypersurface ∆ ⊂ Cn−1,

- there exists a complex line L̃ ⊂ Cn−1 such that the 2-plane p−1(L̃) inter-
sects each strata of Σ̄ ∪H∞ transversally.

The Zariski Van-Kampen theorem describes the group π1(Cn \ Σ) in terms
of the projection p.
Fix a base point α∗ ∈ Cn−1 \ ∆. Then the complex line L∗ = p−1(α∗) is
Zariski generic.

A loop γ : [0, 1] −→ Cn−1 \∆ acts on the free group π1(L
∗ \ (L∗ ∩ Σ)) by

monodromy. Indeed,for each value of t ∈ [0, 1], the set of intersection points
of Lt with Σ is identified with a set of points in C say {ε1(t), . . . , εs(t)} .
Let D′

t ⊂ C be the complement in C of {ε1(t), . . . , εs(t)}. Choose the same
base point ε∗ for the fundamental groups in the complement of {ε1(t), . . . , εs(t)}
for all values of t.
We get a locally trivial covering:
- the base of the covering is the oriented circle S1,
- the fibre at t is the fundamental group π1(D

′
t, ε

∗) with base point ε∗ (this
group is a free group).

By definition, the monodromy automorphism of this covering associated to
the loop t 7→ e2iπt is the monodromy automorphism associated to γ. We
denote it by ρ[γ].
The automorphism ρ[γ] : π1(D

′
0, ε

∗) −→ π1(D
′
0, ε

∗) depends only on the ho-
motopy class of γ : [0, 1] −→ Cn−1 \∆, γ(0) = γ(1) = ε∗.
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Example. Let Σ =
{
(x, y) ∈ C2 : x = y2

}
. Consider the projection p(x, y) =

x. We have ∆ = {0} ⊂ C∗. Let γ : [0, 1] −→ C2 be defined by γ(t) =
(e2iπt, 0). The line:

Lt =
{
(x, y) ∈ C2 : x = e2iπt

}

is identified with C via the map:

C −→ C2

ε 7→ (e2iπt, ε).

The points of intersection of Lt with Σ are identified with the points ε1(t), ε2(t) ∈
C: {

ε1(t) = eiπt

ε2(t) = −eiπt

Denote by D′
t the complement of {ε1(t), ε2(t)} in C. We choose the base

point ε∗ to be any point on the imaginary axis with sufficiently small negative
coordinate.
The group π1(D

′
t, ε

∗) is the free group with two generators. Consider loops
α1, α2 of figure 4. Denote respectively by a1 and a2 their homotopy classes.
They generate π1(L

′
t, ε

∗). The monodromy action of γ is as follows:
{

ρ[γ].a1 = a2

ρ[γ].a2 = a2a1a
−1
2 .

εε

αα

ε ε

1 2

1 2
1 2

α *
α *

Figure 4.

We come back to the general case. We say that a subgroup of a group is
invariant (sometimes called distinguished) if it is invariant under conjugation
by the elements of the group.
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Definition 5.7. The relation subgroup H of the free group π1(L
∗\(L∗∩Σ))

is the minimal invariant subgroup containing all the elements of the type
η−1(ρ[γ].η) for all η′s in π1(L

∗ \ (L∗ ∩ Σ)) and all γ’s in π1(Cn−1 \∆).

Theorem 5.3. The quotient of the free group π1(L
∗\(L∗∩Σ)) by the relation

subgroup is isomorphic to the group π1(Cn \ Σ).

Example. We come back to the computations of the preceding example. In
this case, the free-group G = π1(L

∗ \ (L∗ ∩ Σ)) has two generators a1, a2.
The relation subgroup H is generated by a1a

−1
2 . Thus π1(C2 \Σ) is isomor-

phic to Z.
Denote by āi the image of ai under the canonical projection G −→ G/H.
We have ā1 = ā2. This means that the loops α1 and α2 are homotopic in
C2 \ Σ.

3. A variant of the Lyaschko-Loojenga mapping.

3.1. The PAp1 Lyaschko-Loojenga mapping. We consider a variant
of the usual Lyaschko-Loojenga mapping [Arn4], [Loo]. This variant is the
restriction of the usual mapping to a particular strata. Consequently, it
shares the same properties than the usual Lyaschko-Loojenga mapping.

Consider the family of polynomials:

(30) Q(λ, x) = xp+3 + λ1x
p+2 + · · · + λpx

3.

We say that a critical point of a polynomial is degenerate if both the first and
the second derivative of the polynomial vanish at the given point. Denote
by ∆ the set of values of the parameter λ ∈ Cp for which either:
- the polynomial Q(λ, .) has a non-zero degenerate critical point or,
- two distinct critical points of Q(λ, .) have the same critical value.
Let Σ ⊂ Cp be the set of values of the parameter µ ∈ Cp for which the
polynomial:

Q̃(µ, x) = xp + µ1x
p−1 + · · ·+ µp−1x+ µp

either has a double root or vanishes at the origin.

Definition 5.8. The PAp1 Lyaschko-Loojenga mapping, denoted π[p], is
the map that sends λ ∈ Cp \ ∆ to the coefficients µ = (µ1, . . . , µp) of the
polynomial Q(µ, .) whose roots are the non-zero critical values of Q(λ, .).

Remark. Proposition 5.1 of page 99 implies that this definition is equivalent
to the one given in chapter 2 page 56.
Example. Consider the case p = 1. Put:

Q(λ, x) = 3x4 − 4λx3.

We have changed the coefficients with respect to formula 30 in order to
simplify the calculations. The critical points of Q(λ, .) are 0 and λ. The
critical value corresponding to the critical point x = λ of Q(λ, .) is Q(λ, λ) =
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−λ4. Consequently the PA1
1 Lyaschko-Loojenga mapping π[1] is (up to a

multiplicative constant) given by the formula

π[1] : C∗ −→ C∗,
λ 7→ −λ4,

Here and in the sequel the symbol C∗ stands for C \ {0}.

The following proposition follows Riemann’s theorem on the unicity of the
analytic structure of CP 1 (like for the usual Lyaschko-Loojenga mapping).

Proposition 5.2. The PAp1 Lyaschko-Loojenga mapping π[p] : Cp \∆ −→
Cp \ Σ is a (holomorphic) covering.

Corollary 5.1. The space Cp \∆ is a K(π, 1) space.

We explain why proposition 5.2 implies this corollary.
Recall that given a, say topological, covering the homotopy groups πk of the
base space and of the total space are the same provided that k > 1. Indeed,
for k > 1, the exact homotopy sequence of a fibration E −→ B of fibre F is:

. . . −→ πk(F ) −→ πk(E) −→ πk(B) −→ πk−1(F ) −→ . . . ,

If F is discrete the πk(F ) = πk−1(F ) = 0. Hence πk(E) ≈ πk(B) for k > 1.
Thus Cp \∆ is a K(π, 1) space provided that Cp \ Σ is a K(π, 1) space.
The space Cp \ Σ can be identified with the space of polynomials Q with
distinct roots that do not vanish at 0. According to Brieskorn, this space is
the classifying space of the Coxeter group Bp. In particular it is a K(π, 1)
space (see [Br2] for details).
There is no difficulty in generalizing our discussion to the case PAp,q

1 . This
will occupy the next subsection.

3.2. The PAp,q1 Lyaschko-Loojenga mapping. Consider the family
of pairs of polynomials (for fixed integers p > 0, q > 0):

(31)

{
Q(α, x) = xp+3 + α1x

p+2 + · · ·+ αpx
3

R(β, y) = yq+3 + β1y
p+2 + · · ·+ βqy

3

Denote by ∆ the set of values of the parameter (α, β) ∈ Cp+q for which
either:
- at least one of the polynomials Q(α, .) or R(β, .) has a non-zero degenerate
critical point or,
- there are two critical points of P or of Q with the same critical values (it
can be two critical points of the same polynomials or of the two polynomials
).

Let Σ ⊂ Cp+q be the set of values of the parameters (a, b) ∈ Cp+q for which
one of the polynomials:

{
Q̃(a, x) = xp + a1x

p−1 + · · ·+ ap−1x+ ap
R̃(b, y) = yq + b1y

p+2 + · · ·+ bq−1y + bq
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either has a double root or vanishes at the origin.

Definition 5.9. The PAp,q1 Lyaschko-Loojenga mapping, denoted π[p, q]
is the map which sends the parameter (α, β) ∈ Cp+q to the coefficients

a = (a1, . . . , ap), b = (b1, . . . , bq) of the polynomials Q̃(a, .), R̃(b, .) whose
roots are the non-zero critical values of Q and of R.

Remark. Proposition 5.1 of section 1 implies that this definition is equivalent
to the one given in chapter 2, subsection 7.7 .
Example. Consider the case p = q = 1. Take:

{
Q(α, x) = 3x4 − 4αx3,
R(β, y) = 3y4 − 4βy3.

We have multiplied the coefficients of Q,R by constants with respect to for-
mula 31 in order to simplify the calculations.
The variety ∆ is the union of 6 complex lines passing through the origin:
- the 4 complex lines

{
(α, β) ∈ C2 : α4 = β4

}
,

- the 2 complex lines
{
(α, β) ∈ C2 : αβ = 0

}
.

The variety Σ is the union of 3 complex lines:
- the coordinate axis of equation a = 0 and b = 0,
- the complex line

{
(a, b) ∈ C2 : a = b

}
.

The only non-zero critical point of Q(α, .) (resp. R(β, .)) is α (resp. β). The
corresponding critical value is Q(α,α) = −α4 (resp. R(β, β) = −β4). Con-

sequently the PA1,1
1 Lyaschko-Loojenga mapping is (up to a multiplicative

constant) given by the formula

π[1, 1] : C2 \∆ −→ C2 \ Σ,
(α, β) 7→ (−α4,−β4).

Like for the PAp1 we have the following proposition.

Proposition 5.3. The restriction of the PAp,q1 Lyaschko-Loojenga mapping
π[p, q] : Cp+q \∆ −→ Cp+q \ Σ is a covering.

Proposition 5.4. The space Cp+q \∆ is a K(π, 1) space.

In order to prove proposition 5.4, we need to make a digression.

3.3. Coloured configuration spaces. Consider a topological space
X. We have denoted by B(X, k) the configuration space with k elements.
That is the space whose points are sets with k pairwise distinct elements in
X.
We define the two coloured configuration space of X with p elements of one
colour and q elements of another colour denoted B(X, p, q).
We use the notation ε = {ε1, . . . , εp} ∈ B(X, p) and ε′ = {ε−1, . . . , ε−q} ∈
B(X, q).
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Definition 5.10. The topological space

B(X, p, q) =
{
(ε, ε′) ∈ B(X, p)×B(X, q) : εj 6= εk

}
,

where j (resp. k) runs over all values in {1, . . . , p}(resp. {−1, . . . ,−q}) is
called the two coloured configuration space of X with p white elements and
q black elements.

Remark. The topological spaces B(X, p, q) and B(X, q, p) are homeomor-
phic.

With the notations of the previous subsection we have the following propo-
sition.

Proposition 5.5. The topological space B(C∗, p, q) is homeomorphic2 to
Cp+q \ Σ.

The proof is obvious. We send the point ({ε1, . . . εp} , {ε−1, . . . ε−q}) ∈
B(C∗, p, q) to the value of the parameters (a, b) ∈ Cp+q \Σ such that:

- the polynomial Q̃(a, .) has the roots {ε1, . . . εp},
- the polynomial R̃(a, .) has the roots {ε−1, . . . ε−q}.

3.4. Proof of proposition 5.4. In order to prove that Cp+q \∆ is a
K(π, 1) space, it is sufficient to prove that Cp+q \ Σ is a K(π, 1) space. As
usual this is due to the following two facts:
- the PAp,q1 Lyaschko-Loojenga mapping π[p, q] : Cp+q \∆ −→ Cp+q \Σ is a
covering,
- the homotopy groups of order strictly higher than one of the base space of
a covering coincide with those of the total space.

As we saw in the preceding subsection, the space Cp+q \Σ is homeomorphic
to B(C∗, p, q).
Assertion: the space B(C∗, p, q) is a K(π, 1) space.

The proof of this assertion will conclude the proof of proposition 5.4.
Consider the map B(C∗, p, q) −→ B(C∗, p + q) obtained by forgetting the
colours of the elements.
This map is a covering, hence B(C∗, p, q) is a K(π, 1) space provided that
B(C∗, p+ q) is a K(π, 1) space.
The space B(C∗, p+ q) is the K(π, 1)-classifying space of the Coxeter group
Bp+q(see [Br2]). This concludes the proof of proposition 5.4.

2We defined the configuration spaces B(X, k) as topological spaces. However this
space carries a natural (obvious) analytical structure when X is an analytical manifold.
For this structure B(C∗, p, q) and C

p+q \ Σ are biholomorphic.
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3.5. Description of the fundamental group via the PAp1 Lyaschko-
Loojenga mapping. We are going to describe the fundamental group of
Cp \∆ in terms of the covering:

π[p] : Cp \∆ −→ Cp \ Σ.

We fix respective base points ε∗ and λ∗ in Cp \ Σ and Cp \∆ such that λ∗

belongs to the fibre of ε∗, that is π[p](λ∗) = ε∗.
Any element γ ∈ π1(Cp \ Σ) acts on the fibre of the covering π[p] at ε∗ by
monodromy. We denote by γ. this action.

Definition 5.11. The order of γ (with respect to the base point λ∗) is the
smallest number k such that γk.λ∗ = λ∗.

So if we have a loop γ of order k (with respect to the base point λ∗), then
starting from λ∗, γk can be lifted to a closed loop.
Example. Put Q(λ, x) = 3x4 − 4λx3. We computed the corresponding
Lyaschko-Loojenga mapping π[1] previously. We found that it is given by
the formula

π[1] : C∗
1 −→ C∗

2,
λ 7→ −λ4.

In order to distinguish the source space and the target space (both equal to
C∗) of π[1], we have put lower indices 1, 2.
Choose 1 ∈ C∗

1 and −1 ∈ C∗
2 as the base points.

Consider the loop γ defined by

γ : [0, 1] −→ C∗
2

t 7→ −e2iπt

The pre-images of −1 ∈ C∗
2 under π[1] are the four values ±1,±i correspond-

ing to the four polynomials Q(±1, .), Q(±i, .).
The action of γ on them is the multiplication by −i. Indeed the loop γ can
be lifted to the loop

γ : [0, 1] −→ C∗
1,

t 7→ e
iπt
2 .

Thus γ is of order 4. Indeed, the loop γ4 given by the formula

γ4 : [0, 1] −→ C∗
2,

t −→ e8iπt,

can be lifted to the closed loop:

γ̃ : [0, 1] −→ C∗
1,

t 7→ e2iπt.

We now describe a set of loops {γj,k} , 0 ≤ j < k ≤ p in Cp \ Σ with base
point ε∗ and a sequence of numbers (mj,k) such that:

- the loop γj,k has order mj,k i.e. the loop γ
mj,k

j,k can be lifted to a closed

loop γ̃j,k,
- the homotopy classes of the loops γ̃j,k’s generate the fundamental group
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Cp \∆.

Recall that Cp \ Σ is homeomorphic to the configuration space B(C∗, p) of
p unordered pairwise distinct points in C∗. In the sequel, we identify both
spaces.
Denote by ε∗ = {ε1, . . . , εp} ∈ B(C∗, p), the set of non-zero critical values
of Q(λ∗, .), λ∗ ∈ Cp \∆.
The εk’s are numbered such that εk < εk+1.
For simplicity, we choose the base point λ∗ ∈ Cp \ ∆ so that the critical
values of Q(λ∗, .) are real and the critical points non-negative.
For 0 < j < k, the loop γj,k is any loop obtained by exchanging εj and εk
on the lower half-plane (Im(ε) < 0) as indicated in the left part of figure 5).
The loops γ0,k are obtained by turning counterclockwise the critical value
εj around the origin as indicated in the right part of figure 5.
In the description of the loops, we have used the fact Cp \ Σ and B(C∗, p)
are homeomorphic. Moreover the corresponding loops are closed in B(C∗, p)
because we start with the configuration ε∗ ∈ B(C∗, p) and end with the same
configuration.

iεε
0

ε j ε p

D

iεε ε p

D

0

Figure 5. The loops γj,k that generate the fundamental
group of Cp \Σ.

Proposition 5.6. Let mj,k, j < k be the sequence defined by:

mj,k =





2 if k − j > 1,
3 if k = j + 1, i > 0
4 if j = 0, k = 1.

Then the loops γ
mj,k

j,k can be lifted to a system of generators of π1(Cp \ ∆)

via the map:

π[p] : Cp \∆ −→ Cp \ Σ.
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ε0

α ∗

α
1

α
0

ε
1

α p

p

Figure 6.

3.6. Proof of proposition 5.6. Choose a closed disk D ⊂ C suffi-
ciently big so that it contains all the εk’s in its interior.
Put D′ = C \ {ε0, . . . , εp}. Choose a base point α∗ in the boundary of D′

and on the lower half-plane. Fix a set of loops α0, . . . , αp associated to a
distinguished basis of L′ like in figure 6.
Consider the map:

f : C1 −→ C2,
x 7→ Q(λ∗, x).

We have used here indices to distinguish the source and the target space of
f which are both equal to C.
By definition:
- the critical values of f are ε0, . . . , εp,
- the restriction of f to f−1(D′), D′ ⊂ C2 is a covering.
Each loop αk : [0, 1] −→ D′ acts on the fibre of f at the base point α∗ ∈ D′

by permutation.
We denote formally by 0, 1, . . . , p+ 3 the points of the fibre of f at α∗. Let
sk be the permutation associated to the loop ak. It is readily seen that the
numbering can be chosen so that:

{
s0 = (123)
sk = ((2 + k)(3 + k)) for k > 0

The γj,k’s act on the loops αk ⊂ D′ by monodromy and consequently they

act on the permutations sk’s associated to the αk’s. The action3 τ. of the
loop γj,k on the permutations is as follows:

3The map τ depends on j, k but we want to avoid too many indices.
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- for 0 < j < k,



τ.sj = sk
τ.sk = sksjs

−1
k

τ.sr = sr for r 6= i, r 6= j,

- for j = 0, k > 0,



τ.s0 = sks0s

−1
k

τ.sk = sks0sks
−1
0 s−1

k
τ.sr = sr for r 6= 0, r 6= j,

We denote by:
- Sp+4 the group of permutation on p+ 4 elements,

- Sp+1
p+4 the direct product of p+ 1 copies of the group Sp+4.

Definition 5.12. The transformation τ : Sp+1
p+4 −→ S

p+1
p+4 defined for 0 <

j < k by 



τ.σj = σk
τ.σk = σkσjσ

−1
k

τ.σr = σr for r 6= i, r 6= j,

and for j = 0, k > 0 by



τ.σ0 = σkσ0σ

−1
k

τ.σk = σkσ0σkσ
−1
0 σ−1

k
τ.σr = σr for r 6= 0, r 6= j,

for σ = (σ1, . . . , σp) ∈ Sp+1
p+4 is called the transformation associated to the

loop γj,k.

We keep the previous notations. The following (classical) lemma is also a
consequence of the unicity of analytic structure on the Riemann sphere.

Lemma 5.2. A loop γj,k has order mj,k if and only if mj,k is the smallest
number such that τmj,k .(s0, . . . , sk) = (s0, . . . , sk). Here τ is the transfor-
mation associated to the loop γj,k.

Thus we can calculate explicitly the mj,k’s, we get:

mj,k =





2 if j − i > 1,
3 if j = i+ 1, i > 0
4 if i = 0, j = 1.

Let g̃j,k be a lifting of the loop γ
mj,k

j,k . It remains to prove the following

lemma.

Lemma 5.3. The fundamental group of the space Cp \∆ is generated by the
γ̃j,k’s where j, k run over all values such that 0 ≤ j < k ≤ p.
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Proof.
Take a line L ⊂ Cp Zariski generic with respect to ∆ containing λ∗.
The first Zariski’s theorem implies that the resulting homomorphism

π1(L \ (L ∩∆)) −→ π1(C
p \∆)

is surjective.
Fix a disk in L containing all the points of L ∩∆ with base point λ∗ on its
boundary.
Consider a set of loops β1, . . . , βs associated to a distinguished basis φ1, . . . , φs
of L \ (L ∩∆).
The map π[p] : Cp \∆ −→ Cp \ Σ sends the distinguished basis φ1, . . . , φs
to a set of paths

φ′1, . . . , φ
′
s : [0, 1] −→ Cp

such that for t 6= 1, φ′k(t) ∈ Cp \Σ for any k ∈ {1, . . . , s}.
Denote by β′

j the image of βj under π[p].

Fix k ∈ {1, . . . , s} and consider a path φk of the distinguished basis.
For t 6= 1, we have φ(t) ∈ Cp \∆. A point Cp \∆ can be identified with a
set {ε1, . . . , εp} of unordered points in C∗.
When t −→ 1, either to points say εj , εk coalesce or a point say εj ap-

proaches 0. Consequently the loop β ′
k is conjugated to γ

mj,k

j,k .

Now, it is readily seen that a loop conjugated to a γj,k is necessarily of the
type γr,s. Thus the loop βk is in the same homotopy class as γ̃r,s where γ̃r,s
is the lifting of γ

mr,s
r,s . This concludes the proof of the lemma.

Proposition is proved.

3.7. An example. We use the same notations than those of the pre-
ceding subsection.
We consider the case p = 1. As before, for simplicity, we take:

Q(λ, x) = 3x4 − 4λx3.

The PA1
1 Lyaschko-Loojenga mapping is given by

π[1] C∗
1 −→ C∗

2,
λ 7→ −λ4.

Here again we have used small subscripts for the source and the target space
in order to distinguish them.
Take the base points λ∗ = 1 ∈ C1, ε

∗ = −1 ∈ C∗
2. In this case B(C∗, 1) is

homeomorphic to C∗. That is there is an unique non-zero critical value ε∗.
Choose a base point α∗ in C∗. Take the loops α0, α1 as indicated in figure
7. Choose the numbering of the 4 points of the fibre of the function Q(λ∗, .)
at α∗ so that:
- the permutation associated to s0 is (123),
- the permutation associated to s1 is (34).
Let ak be the homotopy class in C \ {−1, 1} of the loop αk. The loop γ1,0
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acts on the homotopy classes a0, a1 of the loops α0 and α1 as indicated in
figure 7 that is:

τ.a0 = a1a0a
−1
1

τ.a1 = a1a0a1a
−1
0 a−1

1 .

Consequently: 



τ(s0, s1) = ((124), (32)),
τ2(s0, s1) = ((134), (12)),
τ3(s0, s1) = ((234), (14)),
τ4(s0, s1) = ((123), (34)).

Hence τ 4(s0, s1) = (s0, s1). This implies γ1,0 : [0, 1] −→ C∗
2 has order 4 with

respect to λ∗ = 1 ∈ C∗
1. Indeed γ4

1,0 : t 7→ e8iπt can be lifted to:

γ̃1,0 : [0, 1] −→ C1

t 7→ e2iπt

and the homotopy class of γ̃1,0 generates the fundamental group of C∗
1.

1
ε0

αα 10

ε
1

α ∗

0

α∗

Figure 7.

3.8. Computation of the fundamental group for PAp1. We keep
the same notations as that of the preceding subsection.
We have the projection:

ξ : Cp+1 −→ Cp,
(α1, . . . , αp, ε) −→ (α1, . . . , αp).

Denote by Σ̃ the set of values of the parameter (α1, . . . , αp, ε) for which the
polynomial

x3+p + α1x
2+p + · · ·+ αpx

3 − ε
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has at least double root.
A point of C \ {ε0, ε1, . . . , εp} can be identified with a point of L \ (L ∩ Σ̃)
where L is the complex one-line ξ−1(α∗) via the map:

C −→ Cp+1,
ε 7→ (α∗, ε).

This map gives an identification of a loops αk inD′ with a loops in L\(L∩Σ̃).
The first Zariski theorem (theorem 5.2) implies that the resulting homomor-
phism:

π1(D
′) −→ π1(C

p+1 \Σ)

is surjective. It remains to calculate the relation subgroup.
The group Cp \∆ is generated by the γ̃j,k’s. The monodromy automorphism
associated to γ̃j,k is easily calculated. Let ar be the homotopy class of αr.
Define τj,k by the formula

τj,kar =





ak if r = i
akaja

−1
k if r = j

ar if r 6= i and r 6= j

Then one finds the action

ρ[γ̃j,k] = τ
mj,k

j,k

provided that lk 6= 0 and:

ρ[γ̃j,k] = τ
2mj,k

j,k

if jk = 0.
This concludes the computations of the fundamental group for the P-singularity
class PAp1.

3.9. Description of the fundamental group via the PAp,q1 Lyaschko-
Loojenga mapping. The procedure is analogous to that of PAp1. The dif-
ference lies essentially in the notations.
We describe the fundamental group of Cp+q \∆ in terms of the covering:

π[p, q] : Cp+q \∆ −→ Cp+q \ Σ.

We fix respective base points ε∗ and λ∗ in Cp+q \ Σ and in Cp+q \∆ such
that λ∗ belongs to the fibre of ε∗, that is π[p, q](λ∗) = ε∗.

We consider a set of loops {γj,k} , −q ≤ j < k ≤ p in Cp \Σ with base point
ε∗ and a sequence of numbers (mj,k) such that:

- the loop γj,k has order mj,k i.e. the loop γ
mj,k

j,k can be lifted to a closed

loop γ̃j,k,
-the γ̃j,k’s generate the fundamental group of Cp+q \∆.

For −q ≤ j < k ≤ p and jk 6= 0, the loop γj,k is any loop obtained by
exchanging εj and εk on the lower half-plane (Im(ε) < 0) like in the case
PAp1.
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The loops γ0,j are obtained by turning counterclockwise the critical value εj
around the origin like in the case PAp1.

Proposition 5.7. Let mj,k,−q ≤ j < k ≤ p be the integers defined by:

mj,k =





2 if | k − j |> 1,
3 if k = j + 1, ij 6= 0
4 if j = 0, k = ±1.

Then the loops γ
mj,k

j,k can be lifted to a system of generators of π1(Cp \ ∆)

via the map:
π[p] : Cp \∆ −→ Cp \ Σ.

The rest of the proof is the same than for PAp1.



CHAPTER 6

The modality in Plücker space.

The projective topological invariants of a family of curves (Vε) are discrete
invariants related to the extrinsic projective structure. In this chapter, we
study the continuous invariant corresponding to the PT -monodromy group:
the asymptotics of the multivalued functions giving the vanishing flattening
points of a one-parameter family of curves (Vε) when ε −→ 0. The com-
putations of these functions at a node singular point are made in the first
section.
In the second section, we apply the results obtained in the first section in
order to obtain a lower bound for the P-modality. The answer is given in
terms of the geometry of a Newton Polygon. This is how the geometry of
integer points contained in a triangle arises in this study.
In this chapter, we shall say that a property holds for a generic holomorphic
map ϕ : (Cn, 0) −→ (Cn, 0) provided that there exists an integer N and
a semi-algebraic variety Σ ⊂ JNO (C2,Cn) of codimension at least one such

that for jN0 ϕ /∈ Σ, ϕ satisfies the given property.

1. Asymptotics of vanishing flattening points.

1.1. Summary and notations. Let H : U −→ C be a non-constant
holomorphic function and ϕ : U −→ Cn holomorphic embedding. Here U
denotes a neighbourhood of the origin in C2 and Cn denotes the affine n-
dimensional space.
Denote by Vε[ϕ] the image under ϕ of the curve H−1(ε).
We use the notations of chapter 3, subsection 1.3.
We fix a coordinate-system (x, y) in U .

Definition 6.1. The value of the coordinate x at a flattening point of the
curve Vε[ϕ] is called a label of the flattening point.

Remark. This definition is, of course, coordinate dependent. We do not take
into account the value of the y-coordinate.

A label of a flattening point of a curve Vε[ϕ] depends on the parameter ε
as a multi-valued function. These multi-valued function-germs is the object
that we are going study.

1.2. Asymptotics of vanishing flattening points (case n = 3).
For the rest of section 1, we put H(x, y) = xy.

119
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We state a refinement of theorem 2.13 in the particular case n = 3. We use
the old-fashioned language of multi-valued functions. We keep the notations
introduced in the preceding subsection.

Theorem 6.1. The germs of the labels of the flattening points of Vε[ϕ] at
the origin are function-germs given by convergent series of the form





x1(ε) = α1ε
1/4 + o(ε1/4),

x2(ε) = α2ε
1/2 + o(ε1/2),

x3(ε) = iα2ε
1/2 + o(ε1/2),

x4(ε) = α3ε
3/4 + o(ε3/4)

provided that ϕ is generic.

The function-germs x1 and x4 are 4-valued. The function germs x2 and
x3 are 2-valued. This makes 12 values. That is the curves Vε[ϕ] have 12
flattening points that ”vanish” at the origin when ε −→ 0. When ε makes
a turn around the origin the 4 values of x1 and x4 are permuted as well as
the two values of x2 and x3.
The language of multi-valued function can be avoided. Put ε = t4 and
consider the curves Vt4 [ϕ]. Instead of a set of 4 multi-valued function, we
get a set of 12 holomorphic functions.
Theorem 6.1 admits a converse. In order to avoid complicated notations,
we return to the language of multi-valued functions.

Theorem 6.2. Let g1, . . . , g4 be multi-valued functions given by convergent
(or formal) power series





g1(ε) =
∑

k>0 akε
k/4,

g2(ε) =
∑

k>0 bkε
k/2,

g3(ε) =
∑

k>0 ckε
k/2,

g4(ε) =
∑

k>0 dkε
3k/4.

Assume that b1 = ±ic1. Then for any N there exists a holomorphic map
ϕ : (C2, 0) −→ (Cn, 0) such that the labels x1, . . . , x4 of the flattening of the
curves Vε[ϕ] satisfy

xk − gk = o(εN )

provided that the functions g1, g2, . . . , g4 are generic1.

Keeping in mind our general philosophy, once this theorem is proved we
study a functional space and forget about the projective nature of our prob-
lem.

1For any k, the set of coefficients a1, . . . , aN , b1, . . . , bN , c1, . . . , cN , d1, . . . , dN such
that b1 = ±ic1 that do not satisfy the theorem form a semi-algebraic variety of codimension
at least one in the space C

4N−1 of the values of the ai, bi, ci, di’s.
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1.3. Proof of theorem 6.1 and theorem 6.2. In order to simplify
the notations, we denote by the same characters D[ϕ] the germ at the origin
of D[ϕ] which was previously a function in U .

Lemma 6.1. One can represent D[ϕ] in the form

D[ϕ](x, y) = a1x
6 + a2x

3y + a3xy
3 + a4y

6

where the ak’s denote some holomorphic function-germs.

Proof.
We start by proving the equality

(32) [xα1yβ1 , xα2yβ2, xα3yβ3] = cxα1+α2+α3yβ1+β2+β3 ,

where the constant c is equal to the Vandermonde determinant of

(α1 − β1, α2 − β2, α3 − β3)

multiplied by
∏3
i=1(αi − βi).

The Hamilton vector-field of H(x, y) = xy is h(x, y) = x∂x− y∂y. Thus, the

derivative of xαkyβk along h is given by

h.(xαkyβk) = (αk − βk)(xαkyβk .

Consequently the kth column of the 3×3 determinant [xα1yβ1, xα2yβ2, xα3yβ3 ]
is given by:

xαkyβk((αk − βk), (αk − βk)2, (αk − βk)3).
This proves equality 32.
The multilinearity of the determinant implies that D[ϕ] is the sum of such
terms. All these terms belong to the ideal generated by x6, x3y, xy3, y6.
Hence, lemma is proved.

Let I be the ideal generated by x6, x3y, xy3, y6. Denote by Ik the elements
of I of degree not more than k.
For the rest of this chapter, we denote by jkg denotes the Taylor polynomial
of degree k of a holomorphic function germ g : (Cr, 0) −→ C at the origin.
It is usually denoted by jk0g but we drop the subscript 0 to simplify the
notations.
The way the coefficients of D[ϕ] depend on the coefficients of ϕ is compli-
cated. Nevertheless, one has the following lemma, which is the main lemma
of this chapter.

Lemma 6.2. For any generic polynomial2 m ∈ Ik and for any number N
there exists a map-germ ϕ : (C2, 0) −→ C (depending in N) such that
jN (D[ϕ]) = jNm.

2The subspace of Ik of polynomials that do not satisfy this property is a semi-algebraic
variety of codimension at least one in Ik.
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Proof.
For any N ≥ 4, consider the map:

P : JN (C2,C3) −→ IN ,
jNϕ 7→ jN (D[ϕ]).

This map is well-defined since jN (D[ϕ]) depends only on the jet of order N
of ϕ (in fact even less than N is sufficient).
The map P is a polynomial map. Hence the image of P is a semi-algebraic
subvariety V . The lemma asserts that the subvariety V is of codimension 0.
We give here a proof which can be readily extended to the case where the
dimension of the affine space is greater than 3.
Assume that there exists a polynomial function F : IN −→ C such that:

F (a) = 0, ∀a ∈ V.
We are going to prove that F is identically 0. This will conclude the proof
of the lemma.
Let e1, . . . , er be a basis of monomials of IN . Denote by a1, . . . , ar : IN −→ C
the coordinates associated to this basis.
Let ∂1, . . . , ∂r be the partial derivatives with respect to a1, . . . , ar. Fix an
arbitrary vector j = (j1, . . . , js) where the jk’s are integers not greater than
r. We denote by ∂j the operator obtained by applying successively the par-
tial derivatives ∂j1 . . . ∂js .

Assertion: for any integer vector j = (j1, . . . , js), we have ∂jF (0) = 0.

Since F is a polynomial function this assertion implies the lemma. We prove
this assertion.
Fix an arbitrary vector j = (j1, . . . , js).
Recall that we have numbered (in an arbitrary way) the monomials of IN
by e1, . . . , er.
For any m ∈ {1, . . . , s}, define the holomorphic map-germ fm : (C3, 0) −→
(C3, 0) by the formulas

fm(tm, x, y) =





1
2t

2
m(0, 0, xjy2+k) if ejm = x1+jy3+k,

1
2t

2
m(0, 0, x2+jyk) if ejm = x3+jy1+k,
tm(0, x2, x3) if ejm = x6,
tm(y2, 0, y3)) if ejm = y6.

Let ϕ0 : (C2, 0) −→ (C3, 0) be the map-germ defined by the formula

ϕ0(x, y) = (x, y, 0).

Define the s-parameter family of mapping ϕt : (C2, 0) −→ (C3, 0), with
t = (t1, . . . , ts) ∈ Cs by the equation

ϕt = ϕ0 +

s∑

m=1

fm(tm, .).
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By Leibniz rule, we get the evaluation

(33) (∂2
t1 . . . ∂

2
ts(F ◦ p))(0) = c(∂jF )(0),

where c is a non-zero constant.
The constant can be calculated without difficulty, it is equal to

∏s
l=1 cm

where:

cm =





[x, y, xjy2+k] if ejm = x1+jy3+k,
[x, y, x2+jyk] if ejm = x3+jy1+k,
[x, x2, x3]) if ejm = x6,
[y2, y, y3]) if ejm = y6.

We come back to equation 33. The function F ◦p vanishes identically, hence:

(∂2
t1 . . . ∂

2
ts(F ◦ p))(0) = 0.

Thus equation 33 implies the evaluation

∂jF = 0.

Assertion is proved.

We now come to the end of the proof of the theorem. We search the solutions
of the system of equations:

{
xy = ε,

a1x
6 + a2x

3y + a3xy
3 + a4y

6 = 0,

where the a′ks are arbitrary holomorphic function-germs.
The second equation of this system is just D[ϕ] = 0. Lemma 6.2 implies
that for a generic map ϕ we have a1a2a3a4(0) 6= 0.
Thus, the Newton algorithm for finding the Puiseux series ([New]) implies
the curve germ of equation D[ϕ] = 0 has four branches. Each branch being
given by one of the edges of the Newton diagram of D[ϕ].
The Puiseux series of the branches are holomorphic functions of the form:





y = − b1
b2
x3 + o(x3)

y = −
√

−b3
b2
x+ o(x)

y =
√

−b3
b2
x+ o(x)

x = − b4
b3
y3 + o(y3)

Substituting these equation in xy = ε we get the 4 multi-valued functions
we were looking for

(34)





x1(ε) = α1ε
1/4 + o(ε1/4)

x2(ε) = α2ε
1/2 + o(ε1/2)

x3(ε) = −α2ε
1/2 + o(ε1/2)

x4(ε) = α3ε
3/4 + o(ε3/4)

This functions being given by convergent power series.
If we want to avoid the multi-valued function language then we just put
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ε = t4 as we pointed out at the beginning of our discussion.
Conversely let g1, . . . , g4 be four multi-valued function-germs of the type:

(35)





g1(ε) =
∑

k>0 akε
k/4,

g2(ε) =
∑

k>0 bkε
k/2,

g3(ε) =
∑

k>0 ckε
k/2,

g4(ε) =
∑

k>0 dkε
3k/4,

with b1 = ±ic1.
The gk’s parameterize a curve-germ of equation say S(x, y) = 0. The equal-
ity b1 = ±ic1 implies that the coefficient of x2y2 in S(x, y) vanishes.
Thus lemma 6.2 implies that there exists ϕ such that S = D[ϕ] provided
that S is generic. Theorem is proved.
From this particular example, we see how the geometry of integer points
arises.
Take an arbitrary set of 4 multivalued function-germs g1, g2, g3, g4 like
in system 35. These multivalued functions parameterize a curve-germ of
equation say S(x, y) = 0. A necessary condition for S to be in the image of
ϕ −→ D[ϕ] is that the coefficient of x2y2 in the Taylor series of S vanishes.
That is b1 = ±ic1. Lemma 6.2 implies that for finite jets, this necessary
condition is sufficient except maybe for some exceptional values of the coef-
ficients of S.
Consequently, the number of independent equations that the coefficients of
the series gi’s should satisfy is at most equal to the the number of integer
points which are contained in the Newton polygon of the polynomial

x6 + x3y + xy3 + y6

and which are not contained in D, where D denotes the points (m,n) for
which xmyn belongs to the ideal I generated by x6, x3y, xy3, y6. This
number is the same than the number of integer points contained either in
the interior or in the hypotenuse of one of the triangles T1, T2, T3 depicted
in figure 1 on page 125.

1.4. Statement of the theorem (general case). Denote by Tk the
triangle of vertices (0, 0), (k, 0), (0, n− k+ 1). Let hk be the number of in-
teger points lying on the hypotenuse of Tk distinct from the vertices. Let ak
be the number of integer points contained in Tk or on its boundary distinct
from the vertices.

Convention. In this subsection a multi-valued function of the type ε2/4 is a
2-valued function equal to ε1/2.
We write A(ε2/4) for the 4 valued function, the letter A means all values.

Theorem 6.3. The labels x1, . . . , xn of the flattening points of Vε[ϕ] at the
origin are (n + 1)-valued function-germs, given by convergent series of the
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T3

IT1

Figure 1. The monomial x2y2 is the only monomial belong-
ing to the Newton diagram of x6 + x3y + xy3 + y6 which is
not contained in the ideal I. It lies on the hypotenuse of the
triangle T2.

type:

xl(ε) = α1A(ekl/(n+1)) + o(εkl/(n+1)),

with kl ∈ {1, . . . , n} provided that ϕ is generic.

As in the preceding subsection, this theorem admits a converse.

Theorem 6.4. Let g1,1, . . . , gn,hn+1 be a collection of multi-valued functions
defined by convergent power series




g1,k(t) =
∑

j>0 b
1
j,kε

j/(n+1) for k ∈ {1, . . . , h1 + 1} ,
g2,k(t) =

∑
i>0 b

2
j,kε

j/(n+1) for k ∈ {1, . . . , h2 + 1} ,
. . .

gn,k(t) =
∑

i>0 b
n
j,kε

nj/(n+1) for k ∈ {1, . . . , hn + 1} .
Then there exists a set of hj + aj polynomials P1, . . . , Ps in the coefficients

b = (blj,k) of the gj,k’s having the following property.

If P1(b) = · · · = Ps(b) = 0, then, for any N there exists a biholomorphic
map-germ

ϕ : (C2, 0) −→ (Cn, 0)

such that the labels x1,1, . . . , xn,hn+1 of the flattening of the curves Vε[ϕ] for
ε = tn+1 satisfy:

xj,k − gj,k = o(tN ),

for any 0 < j ≤ n and k ∈ {1, . . . , hj + 1}, provided that the holomorphic
functions g1,1, . . . , gn,hn

are generic3.

Example. For n = 3, this theorem is the same as theorem 6.2.

3The set of values of b satisfying P1(b) = · · · = Ps(b) = 0 for which the theorem
is untrue form a semi-algebraic variety of codimension at least one in the variety of the
values of the b satisfying the relations P1(b) = · · · = Ps(b) = 0.
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1.5. Proof of theorem 6.3 and theorem 6.4. We use the notation
[k] = 1 + 2 + · · ·+ k, where k is a positive integer.

Let I be the ideal generated by the x[j]y[k]’s with j + k = n, j 6= k. The
proofs of the following lemmas are analogous to that for n = 3.

Lemma 6.3. We have the equality

(D[ϕ])(x, y) =
∑

i+j=n

ai,jx
[i]y[j]

where the ai,j ’s denote some holomorphic function germs.

Denote by Ik the space elements of I of degree at most k.

Lemma 6.4. For any generic polynomial4 m ∈ Ik and for any number N
there exists a map-germ ϕ : (C2, 0) −→ (Cn, ) such that jND[ϕ] = jNm.

One can define similar map-germs fl : (C × C2, 0) −→ (Cn, 0) than the
ones,we define for n = 3.
For example, in case n = 4, we take:

fl(tl, x, y) =





1
3!(0, 0, tlx

2+j , t2l y
2+k) if ejl = x3+jy3+k,

1
3!(0, 0, tlx

2+j , tlx
3+k) if ejl = x6+jy1+k,

1
3!(0, 0, tly

2+j , tly
3+k) if ejl = x1+jy6+k,

(0, tlx
2, tlx

3, tlx
4) if ejl = x10,

(tly
2, 0, tly

3, tly
4) if ejl = y10.

The rest of the proof of the lemma is analogous to the proof of lemma 6.2.
Let ϕ0 : (C2, 0) −→ (Cn, 0) be the map-germ defined by:

ϕ0(x, y) = (x, y, 0).

Define the mappings ϕt : (C2, 0) −→ (Cn, 0) , depending on the parameter
t = (t1, . . . , ts) ∈ Cs by:

ϕt = ϕ0 +

s∑

l=1

fl(tl, .).

By Leibniz rule, we get:

(36) (∂n−1
t1 . . . ∂n−1

ts (F ◦ p))(0) = c(∂iF )(0).

Where c is a non-zero constant. The conclusion of the proof is the same as
that of preceding subsection.

4The subspace of Ik of polynomials that do not satisfy this property is a semi-algebraic
variety of codimension at least one.
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2. The modality representation.

In this section, the notation H stands for the holomorphic function-germ
H : (C2, 0) −→ (C, 0) defined by

H(x, y) = xy.

The knowledge of the asymptotics of the flattening points that vanish at
Morse double points will give us a lower bound for the P-modality of a map-
germ (H,ϕ) : (C2, 0) −→ (C × Cn, 0), where Cn denotes the n-dimensional
affine space.
This is of course due to the fact that in the space of function-germs with
a critical point, Morse functions form a dense open subset. Consequently
the lower bound that we shall find for the modality of map-germs (H,ϕ) is

also a lower bound for the modality of an arbitrary map (H̃, ϕ) such that

H̃ : (C2, 0) −→ (C, 0) is a holomorphic function-germ with a critical point
at the origin.

2.1. The H-equivalence group. Let ϕ : (C2, 0) −→ (Cn, 0) be a
generic map-germ.
Denote by Vt[ϕ] the image of the curve H−1(tn+1) under ϕ.
In the preceding section, we saw that there are n(n+1) labels x1, . . . , xn(n+1)

of the curves Vt[ϕ] which are holomorphic functions of the parameter t.
We now search how the holomorphic function-germ x1, . . . , xn(n+1) are trans-
formed under G-equivalence.
For example, let α ∈ Ox,y then:

α.(H,D[ϕ]) = (H + α×D[ϕ],D[ϕ]).

Here the α. denotes the image under the action of α ∈ G (see chapter 4).
Let yk be the multi-valued function-germ such that xk(t)yk(t) = tn+1. By
assumption for any i, (xk(t), yk(t)) is a solution of;

{
H(x, y) = tn+1,
D[ϕ](x, y) = 0.

The solutions of this system are the same than that of:
{
H(x, y) + α×D[ϕ](x, y) = tn+1,

D[ϕ](x, y) = 0.

Thus the action of α ∈ O on the set (x1, . . . , xn(n+1)) is trivial.
Similarly the action of any element β ∈ O∗

β.(H,D[ϕ]) = (H,β × (D[ϕ]))

on the holomorphic function-germs x1, . . . , xn(n+1) is trivial.

- Action of Diff(1).
Let ψ ∈ Diff(1), it acts as

ψ.(H,D[ϕ]) = (ψ ◦H,D[ϕ]).
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The new system to be solved to find the coordinates x, y of the flattening
points of the transformed curve is

{
H(x, y) = ψ(tn+1),

(D[ϕ])(x, y) = 0.

Let s : (C, 0) −→ (C, 0) be any function-germ such that:

(s(t))n+1 = ψ(tn+1).

Then if (xk(t), yk(t)) is a solution of the old system then (xk(s
−1(t)), yk(s

−1(t)))
is a solution of the new one. The map s is not uniquely determined there

are n + 1 possible choices. Denote by π : D̃iff(1) −→ Diff(1) the n+ 1
fold-covering of Diff(1) defined by π(s) = ψ where ψ is biholomorphic and:

(s(t))n+1 = ψ(tn+1).

The group D̃iff(1) acts on the labels (x1, . . . , xn(n+1)) of the flattening
points by

s.(x1, . . . , xn(n+1)) = (x1, . . . , xn(n+1)) ◦ s−1.

Put ψ = π(s) then the (xk(s
−1(t)), yk(s

−1(t)))’s are solutions of the equation

(ψ ◦H,D[ϕ]) = (tn+1, 0).

Here yk is the holomorphic function-germ such that xk(t)yk(t) = tn+1.

- Action of Diff(2).
Let g ∈ Diff(2), it act as

g.(H,D[ϕ]) = (H ◦ g−1, (D[ϕ]) ◦ g−1).

The new system is:
{

(H ◦ g−1)(x, y)) = tn+1,
(D[ϕ] ◦ g−1)(x, y) = 0.

Then if (xk, yk) is a solution of the old system then (g1(xk, yk), g2(xk, yk))
is a solution of the new one. Here g = (g1, g2) and yk is the holomorphic
function germ such that xk(t)yk(t) = tn+1.

The composition of maps induces a direct product group structure on D̃iff(1)×
Diff(2):

(s, g)(s′, g′) = (s ◦ s′, g ◦ g′).

Here s, s′ ∈ D̃iff(1), g, g′ ∈ Diff(2).
We shall give the definition of the group H below. This definition is moti-
vated by a proposition that we state first.
Let ϕ,ϕ′ : (C2, 0) −→ (Cn, 0) be two holomorphic map-germs.
Assume that (H,D[ϕ]) is G-equivalent to (H,D[ϕ′]).
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This means that there exists (ψ, g, α, β) ∈ Diff(1)×Diff(2)×Ox,y×O∗
x,y

such that:

(37)

{
(ψ ◦H ◦ g−1) + α× (D[ϕ] ◦ g−1) = H

β × (D[ϕ] ◦ g−1) = D[ϕ]

We assume that the dimension n of Cn is at least equal to 3.

Proposition 6.1. If (ψ, g, α, β) satisfy equation 37 then:
a. there exists a, b ∈ C∗ such that one of the two following equalities hold

(Dg)(0) =

(
a 0
0 b

)
or (Dg)(0) =

(
0 a
b 0

)
.

b. With the notations of a., we have (Dψ)(0) = ab.
c. Put g = (g1, g2). Then, the n-degree Taylor polynomial at the origin of
the restriction of the function-germ g1 to x = 0 is equal to zero.

Definition 6.2. TheH-equivalence group is the subgroup of elements (g, s)

of Diff(2)× D̃iff(1) such that:
1. there exists α, β such that (π(s), g, α, β) satisfy equation 37,

2. there exist a, b ∈ C∗ such that Dg(0) =

(
a 0
0 b

)
.

Recall that a holomorphic function-germ f : (C, 0) −→ C has order tk if:

f(t) = ctk + o(tk),

with c 6= 0.

Definition 6.3. The flattening-space Fn is the set of ordered holomorphic

function-germs X = (x1, . . . , xn(n+1)) of On(n+1)
t such that:

- there exists a map-germ ϕ : (C2, 0) −→ Cn such that X are the labels of
the image Vtn+1 [ϕ] of the curve H−1(tn+1) under ϕ,
- the holomorphic function germs x1+k(n+1), . . . , x(k+1)(n+1) have order tk+1.

The following proposition is straightforward.

Proposition 6.2. Let ϕ : (C2, 0) −→ (Cn, 0) be a generic map germ. The
P-modality of a map-germ (H,ϕ) : (C2, 0) −→ (C× Cn) is at least equal to
the modality of the corresponding holomorphic map X(ϕ) ∈ Fn under the
action of the H-equivalence group.

Denote by Tk the triangle of vertices (0, 0), (k, 0), (0, n − k + 1). Let hk
be the number of integer points lying on the hypotenuse of Tk distinct from
the vertices.
Let ak be the number of integer contained in Tk or in its boundary distinct
from the vertices. Put:

ck = max {0, k − ak − hk} .
The results of the preceding section imply the following proposition.
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Proposition 6.3. The dimension of the space JnFn of n-jets of elements
in the flattening space Fn is at least equal to

∑n
k=1 ck.

Consequently to find a lower bound for the modality of a map germ (H,ϕ) :
(C2, 0) −→ Cn it suffices to find an upper bound for the dimension of the
orbit of an element of JnFn under the action of the H-equivalence.
Theorem 2.12 (chapter 2, section6) giving the lower bound for the P-modality
is a consequence of the following proposition that we shall prove in the next
subsection. Let H0 be the subgroup of H containing all the elements that
act trivially on JnFn.
Proposition 6.4. The group H/H0 is isomorphic to a quotient of a semi-
direct product of the Lie groups Cn−1 and (C∗)2. In particular the dimension
of the orbit of the n-jet of a function-germ X = (x1, . . . , xn(n+1)) ∈ Fn is
not higher than n+ 1.

Since the dimension of JnFn is at least equal to
∑n

k=1 ck, the modality of a
map germ (H,ϕ) : (C2, 0) −→ (Cn, 0) is at least (

∑n
k=1 ck)− n− 1.

2.2. Proof of proposition 6.1. Part a. and part b. of the proposition
are easily obtained. Just remark that for n > 2, the four-degree Taylor
polynomial of D[ϕ] vanishes. Hence equating the terms of degree 2 in the
first equation of the system 37, we get part a. and b. of the proposition.
We prove part c. of the proposition.
Define the holomorphic function-germ m : (C, 0) −→ C by

g1(0, y) = ykm(y),

and m(0) 6= 0.
We have to prove that k > n.
Restricting the first equation of the system 37 to x = 0, we get the equation
on the unknown y

(38) ψ(yk+1m(y)) + (α×D[ϕ] ◦ g)(0, y) = 0.

The term of least degree in the Taylor series of D[ϕ] is of degree 2n − 2.
Thus D[ϕ] ◦ g is a holomorphic function-germ of order at least 2n− 2:

(D[ϕ] ◦ g)(0, y) = O(y2n−2).

Coming back to equation 38 and composing by ψ−1, we get an inequality
for k given by

yk+1 = O(y2n−2).

That is:

(39) k ≥ 2n − 3

For n > 3, we have 2n− 3 > n, this proves the lemma for n > 3.
For n = 3, inequality 39 implies that there exists l ∈ Ox,y satisfying the
equality

(40) g1(0, y) = y3k(y)
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Lemma 6.1 of the preceding section asserts that the holomorphic function-
germ D[ϕ] belongs to the ring generated by x6, x3y, xy3, y6 oven Ox,y.
Using equation 40, we get the estimative

(D[ϕ] ◦ g)(0, y) = O(y6),

Coming-back to equation 38 we get:

yk+1 = O(y6).

Thus for n = 3, k ≥ 5, this concludes the proof of the proposition.

2.3. A more precise version of proposition 6.4. To prove propo-
sition 6.4, we make two remarks and set some notations.

Recall that the H-equivalence group is a subgroup of Diff(2) × D̃iff(1).
We denote by Idn the identity map of Cn.

Consider a holomorphic map-germ g : (C2, 0) −→ (C2, 0) such that (g, Id1) ∈
H acts on a map x = (x1, . . . , xn(n+1)) : (C, 0) −→ (Cn(n+1), 0) by:

g.xk = g1(xk, yk),

where g = (g1, g2) and the yk’s are the holomorphic function-germs such
that xk(t)yk(t) = tn+1.
We have used the old fashioned notation g1(xk, yk) instead of g1 ◦ (xk, yk).

Denote byMk
x the kth power of the maximal ideal of the ring Ox of holomor-

phic function in one variable. Assertion: for any holomorphic function-germ
m : (C, 0) −→ (C, 0) belonging toM2

x, there exists a holomorphic map-germ
g : (C2, 0) −→ (C2, 0), such that (g, Id1) ∈ H and g1(x, y) = x+m(x) where
g = (g1, g2).

The map g of the assertion is denoted by v[m].
By definition, the action of (v[m], Id1) ∈ H on a label xk is given by:

(v[m], Id1).xk = xk +m(xk).

We have used here an old-fashioned notation. In modern notations we should
write m ◦ xk instead of m(xk).

We prove the assertion. Since m belongs to Mx there exists k ∈ Mx such
that:

m(x) = xk(x).

Define the map-germ g = (g1, g2) by the formula

g(x, y) = (x(1 + k(x)), y(1 + k(x))−1).

It satisfies the condition (g, Id1) ∈ H and g1(x, y) = x+m(x).

The H-equivalence group contains the following subgroup L (L for linear)
isomorphic to (C∗)2.
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To (a−1, b−1) ∈ (C∗)2, we associate the element (g, s) ∈ H defined by the
linear map

g(x, y) = (ax,
bn+1

a
y), s(t) = bt.

The equality:
ψ ◦H ◦ g−1 = H,

implies that (g, s) ∈ H. Here ψ = π(s) that is ψ(tn+1) = (s(t))n+1.

Consider the vector space V ≈ Cn−1 of biholomorphic map-germs of the
type g : (C2, 0) −→ (C2, 0) defined by

V =

{
n∑

i=2

τiv[x
i] : (τ2, . . . , τn) ∈ Cn−1

}
.

Denote by V ⊕ L the direct sum of V and L as subgroups of H. The sub-
group V ⊕ L is isomorphic to a semi-direct product of V × (C∗)2.

Recall that H0 ⊂ H denotes the subgroup of elements of H acting trivially
on JnFn ⊂ Jn(C,Cn(n+1)). Proposition 6.4 is a consequence of the following
proposition.

Proposition 6.5. The restriction of the canonical projection

H −→ H/H0

to the subgroup (V ⊕ L) ⊂ H is surjective.

2.4. Proof of proposition 6.5. Let (g, s) be an element of the group
H such that (Dg)(0) = Id2.
The definition of H and the division theorem imply that there exists holo-
morphic function-germs p, q, r and a polynomial m of degree n such that:

g1(x, y) = m(x) + xn+1p(x) + yn+1q(y) + r(x, y)xy,

where g = (g1, g2).
We keep the same notations.

Lemma 6.5. For any X = (x1, . . . , xn(n+1)) ∈ Fn we have

(g, s).(jnX) = (v[m], Id1).(j
nX)

provided that (Dg)(0) = Id2.

Proof.
Fix k ∈ {1, . . . , n(n+ 1)} . The action of (g, s) on the label xk is defined by

(g, s).xk = (xk +m(xk) + xn+1
k p(xk) + yn+1

k q(yk) + r(xk, yk)xkyk) ◦ s−1,

where the yk’s are defined by xk(t)yk(t) = tn+1. We have:



xn+1
k = o(tn),
yn+1
k = o(tn),
xkyk = o(tn).
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Thus, the following equality holds

(g, s).xk = (v[m], s).xk + o(tn).

We assert that s(t) = t+ o(tn).

By definition of D̃iff(1), there exists ψ ∈ Diff(1) such that the following
equality between function-germs holds

(s(t))n+1 = ψ(tn+1).

Thus s is of the type s(t) = at+ o(tn) with a ∈ C∗.
By definition of H, Det((Dg)(0)) = a consequently a = 1.
Thus (g, s).xk ◦ s = (v[m], Id1).xk + o(tn). This proves the lemma.

Let (g̃, s̃) be an arbitrary element of H. Here g̃ : (C2, 0) −→ (C2, 0) and
s̃ : (C, 0) −→ (C, 0) are biholomorphic.
Define (g, s) ∈ H by the equality

(g̃, s̃) = (D(g̃)(0) ◦ g,D(s̃)(0) ◦ s).
with Dg(0) = Id2, Ds(0) = 1.
Let g = (g1, g2). The definition of H and the division theorem imply that
there exist holomorphic function-germs p, q, r and a polynomial m of degree
n such that:

g1(x, y)) = m(x) + xn+1p(x) + yn+1q(y) + r(x, y)xy.

Applying lemma 6.5 we get that (g̃, s̃).xk is of the form

(g̃, s̃).xk = (Dg̃(0)v[m],Ds̃(0)).xk + o(tn).

By definition of L and V , we have

(Dg̃(0),Ds̃(0)) ∈ L
and

(v[m], Id1) ∈ V.
This concludes the proof of proposition 6.5.
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CHAPTER 7

Legendrian versal deformation theory and its

applications.

So far, we have avoided contact and symplectic geometries. In this chapter,
we will try to gather the classical projective-geometric approach with contact
geometry of Legendre manifolds. We shall do it essentially for families of
smooth curves.
There are only a few cases for which both approach coincides. We shall call
them the excellent cases. We would like first to come back once again to
projective geometry. One of the reasons for doing this is to throw the light
on the advantages and the difficulties related to this new approach.
In this chapter, unless we mention explicitly the contrary, all the objects that
we consider (functions, maps, manifolds) are assumed to be C∞. In case we
consider a function, a map or manifold depending on some parameters, we
assume implicitly that the dependence on the parameter is C∞.

1. The Kazarian folded umbrella.

1.1. Stable Plücker discriminants. For the definitions of the Young
diagram of a map germ and of the Plücker discriminant the reader should
refer to chapter 2 section 1 and section 3. The definitions were given in the
complex holomorphic case. In order to transform the complex holomorphic
definitions to the real C∞ case just replace C by R and the words complex
holomorphic by real C∞.

Definition 7.1. The P-discriminant Σ of a family of curves (Vλ) is called P-
stable at a point λ0 if the following property holds. Let (V ′

λ) be an arbitrary
sufficiently small C∞ perturbation (V ′

λ) of the family (Vλ). Denote by Σ′

the P-discriminant of (V ′
λ). Then there exists a diffeomorphism-germ ϕ :

(Rk, λ0) −→ (Rk, ϕ(λ0)) close to identity sending the germ of Σ at λ0 to the
germ of Σ′ at some point ϕ(λ0) close to λ0.

1.2. A preliminary example. The example of this subsection and of
the next one are special cases of a theorem of M.E. Kazarian giving the list
of the generic P-discriminant for families of smooth curves ( [Ka2]).
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Consider the two-parameter family of curves in R3 defined by the parame-
terizations

fλ : R −→ R3

t 7→ (t, 1
6t

3, 1
20t

5 + 1
12λ1t

4 + 1
2λ2t

2).

Denote by Vλ the curve parameterized by fλ. The P-discriminant of the
family of curves (Vλ) is depicted in figure 1. We shall explain how to com-
pute it but we give first the results of these computations.
In this case the P-discriminant has three strata.
Two of them are of dimension 1, the other component is the point (0, 0) of
dimension 0.
One of the components of dimension one, denoted Σ(1, 1) consists of curves
having a degenerate flattening of anomaly sequence1 (1, 1). The other com-
ponent of dimension 1, denoted Σ(2) consists of curves having a degenerate
flattening of anomaly sequence (2). Both strata consist of two connected
components.
The origin λ = 0 of the space of parameters R2 corresponds to the curve V0.
This curve V0 has a degenerate flattening point of anomaly sequence (2, 1)
at the origin.
The computation of the equation of the P-discriminant is as follows. At a
flattening point the first three derivatives of fλ with respect to t are linearly
dependent.
The determinant Wλ whose columns are the first three derivatives of fλ is
called the Wronskian . The Wronskian vanishes at a flattening point.
Consequently, the P-discriminant of the family (Vλ) is given by:

Σ =
{
λ ∈ R2 : ∃t ∈ R, Wλ(t) = ∂tWλ(t) = 0

}
.

By explicit calculations we get the equality

Wλ(t) = 2t3 + λ1t
2 − λ2.

Consequently:

Σ(1, 1) =
{
(λ1, λ2) ∈ R2 : λ2 = 0, λ1 6= 0

}
,

and:

Σ(2) =

{
(λ1, λ2) ∈ R2 : λ2 =

1

27
λ3

1, λ1 6= 0

}
.

M.E. Kazarian proved the stability of this P-discriminant at the origin
[Ka2]. We shall generalize this result to contact geometry.

1.3. Kazarian folded umbrella and space curves. Consider the
three-parameter family of space curves defined by the parameterizations

fλ : R −→ R3

t 7→ (t, t3, t6 + λ1t
5 + λ2t

4 + λ3t
2).

1The notation refers to the anomaly sequence and not to the Thom-Mather
stratification.
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Denote by Vλ the curve parameterized by fλ .
Direct computations, analogous to the ones of the preceding subsection but
longer give the following result.
The P-discriminant has two components of dimension 2. The closure of the
component Σ(1, 1) consisting of the values of the parameter λ for which the
curve Vλ has a degenerate flattening of anomaly sequence (1, 1) is a plane.
The closure of the component Σ(2) consists of of the values of the parameter
λ for which the curve Vλ having a degenerate flattening of anomaly sequence
2 is called the folded umbrella .
A transversal slice of this P-discriminant by a plane λ1 = constant gives two
curves intersecting with multiplicity equal to three at the origin, provided
that the constant is distinct from zero.
This P-discriminant is P-stable. This was also proved by M.E. Kazarian.
We shall also extend this result to contact geometry.

Definition 7.2. The P-discriminant of example 3 is called Kazarian’s folded
umbrella.

The Legendrian theory that we shall develop will show that the Kazarian
folded umbrella is a somehow universal object that may appear in several
seemingly unrelated problems. In the next subsection, we shall show another
appearance of it.

Figure 1. One of Kazarian’s “generic” bifurcation dia-
grams. The curves intersect cubically at the origin (like the
plane curves of equation y = x3 and y = 0 at the origin).
One of the components corresponds to the curves having a
degenerate flattening point of anomaly sequence 2 while for
the other component the anomaly sequence is (1, 1).

1.4. A Kazarian folded umbrella theorem for surfaces. Consider
a surface M embedded in projective space RP 3 or in affine space R3.
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Figure 2. Kazarian’s folded umbrella. The cuspidal edge
consists of the values of the parameter λ for which the curve
Vλ has a degenerate flattening point of anomaly sequence (3).

Definition 7.3. A line l of the tangent plane to M at a point p is called
an asymptotic direction of M at p provided that the algebraic multiplicity
of intersection of the line with M is at least three.

Remark. Usual textbooks (but not [Arn6]) define the asymptotic direction
using an Euclidean structure but this is unnecessary.
Example. The two lines

{
(0, t, 0) ∈ R3 : t ∈ R

}
, and

{
(t, 0, 0) ∈ R3 : t ∈ R

}
,

are both asymptotic directions at the origin of the surface defined by

M =
{
(x, y, z) ∈ R3 : z = xy + x3 + y3

}
.

On a surface M ⊂ RP 3, one can distinguish (at least) three type of points.
The elliptic points are the points of M for which there does not exist an
asymptotic direction (for example all the points of a sphere are elliptic).
The hyperbolic points are the points of M for which there exists at least two
distinct hyperbolic directions (for example on a one-sheeted hyperboloid all
the points are hyperbolic).
The parabolic points are the points of M for which there is only one asymp-
totic direction (for example on the affine surface

{
(x, y, z) ∈ R3 : z = x3 + y2

}
,

the set of parabolic points is the line {(t, 0, 0) : t ∈ R}).

Fix affine coordinates (x, y, z) ∈ R3. Assume that a surface M ⊂ R3 is the
graph of a function f : R2 −→ R:

M =
{
(x, y, z) ∈ R3 : z = f(x, y)

}
.

Denote by Q(p) the quadratic form which is the second derivative of f at
p = (x, y, z) ∈M .
Recall that a vector v ∈ R2 is an isotropy vector of a quadratic form
q : R2 −→ R if q(v) = 0.
We have the following immediate result:
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- the point p is elliptic if and only if there are no isotropy vectors of Q(p),
- the point p is hyperbolic there are at least two distinct isotropy vectors of
Q(p),
- the point p is parabolic if and only there is only one isotropy vector ofQ(p) .

Assume that the set of parabolic points of M is a curve.

Definition 7.4. A point of a surface M ⊂ RP 3 is called a special parabolic
point if the asymptotic direction ofM at this point is tangent to the parabolic
curve of M .

Example. The origin is a special parabolic point of the surface parameterized
by the mapping

R2 −→ R3

(s, t) 7→ (t, s+ t2, s2 + t4).

We recall some basic facts.
The dual projective space to RP 3, denoted by (RP 3)

∨

, is the space of hy-
perplanes in RP 3.
The space (RP 3)

∨

can be identified with RP 3. To see it choose a Euclidean
scalar product in R4.
A point in RP 3 is a line in R4 passing through the origin. A point in (RP 3)

∨

is a hyperplane in R4 passing through the origin. To such a hyperplane in
R4, we associate the orthogonal line passing through the origin. This gives
an identification of (RP 3)

∨

with RP 3.

In homogeneous coordinates, the hyperplane H ∈ (RP 3)
∨

, defined by

H =
{
(x : y : z : t) ∈ RP 3 : ax+ by + cz + dt = 0

}
,

is identified with the point (a : b : c : d) ∈ RP 3.

The dual surface M
∨ ⊂ (RP 3)

∨

to a surface M ⊂ RP 3 is the surface of the
tangent planes to M :

(H ∈M∨

) ⇐⇒ (∃p ∈ RP 3, H = TpM).

Here TpM is the plane in RP 3 tangent to M at p ∈ RP 3.

Definition 7.5. The germ at the origin of the variety:
{
(q1, q2, q3) ∈ R3 : x4 + q1x

2 + q2x+ q3 has a real double root
}

is called the swallowtail .

We depicted this variety in figure 3. To define the degenerate and non-
degenerate parabolic points of a surface in RP 3, we fix some conventions.
Consider two surfaces M,N ⊂ RP 3 (possibly singular) and two points
m ∈M , n ∈ N .
We say that the germ of M at m is ambientally equivalent to the germ of N
at n provided that the following property holds.
There exists a diffeomorphism map-germ ϕ : (RP 3,m) −→ (RP 3, n) such
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Figure 3. The swallowtail.

that the restriction ψ : (M,m) −→ (N,n) of ϕ to (M,m) is a homeomor-
phism map-germ.

Proposition 7.1. If the germ of the surface M
∨

dual to a surface M ⊂ RP 3

at H = TpM is ambientally equivalent to a swallowtail then p is a special
parabolic point of M .

Remark. We do not prove this (elementary) proposition but we shall come
back to it in subsection 4.4 (so the reader will understand why it is an
elementary statement).

Definition 7.6. A special parabolic point p of a surface M ⊂ RP 3 is called
a degenerate special parabolic point if the germ at TpM of the dual surface

M
∨

to M is not diffeomorphic to the swallowtail.

Definition 7.7. The P-discriminant of a family (Mλ) of smooth C∞ sur-
faces Mλ ⊂ R3 is the set of values of the parameter λ for which the surface
Mλ has a degenerate special parabolic point.

The notion of P-stability extends directly to the case of surfaces in real
projective space RP 3.

Theorem 7.1. The P-discriminant of the 3-parameter family of surfaces
Mλ in R3 parameterized by the embeddings

fλ : R2 −→ R3,
(s, t) 7→ (t, s+ t3, s2 + t7 + t6 + λ1t

5 + λ2t
4 + λ3t

2)

is P-stable at the origin. The P-discriminant of the family (Mλ) is the
Kazarian folded umbrella.
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This theorem is a particular case of a more general theorem (theorem 7.4,
page 159).
This P-discriminant is depicted in figure 2. Remark. We have restricted
ourselves to the most simple case which is not covered neither by Arnold
theory of wave fronts nor by Kazarian’s theory of flattening points of space
curve.
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2. Contact geometry.

2.1. Basic definitions. In this subsection, we follow Arnold and Maslov
[Arn3], [Mas].
Consider the 1-jet space J1(Rn,R) with standard coordinates (q, p, u) ∈
Rn × Rn × R.

Definition 7.8. The differential one-form ω = du − ∑n
i=1 pidqi is called

the (standard) contact form of J 1(Rn,R). The hyperplane Ker(ω(m)) (con-
tained in the tangent plane to J 1(Rn,R) at m) is called the contact hyper-
plane at m ∈ J1(Rn,R).

Remark. One can alternatively consider the 1-jet space J 1(Rn,R) to be
the manifold R2n+1 endowed with a product structure so that R2n+1 =
Rn × Rn × R and with the contact form defined above.

Definition 7.9. A diffeomorphism ϕ : J 1(Rn,R) −→ J1(Rn,R) is called a
contactomorphism provided that ϕ∗ω = hω, where h : J1(Rn,R) −→ R is a
function such that h(q, p, u) 6= 0, ∀(q, p, u) ∈ J 1(Rn,R).

Remark. In other words at each point m ∈ J 1(Rn,R), the derivative
(Dϕ)(m) of a contactomorphism ϕ sends the contact hyperplane at m to
the contact hyperplane at ϕ(m).
Example 1. Take n = 1. The map ϕ : J 1(R,R) −→ J1(R,R) defined by
ϕ(q, p, u) = (p, q, pq − u) is a contactomorphism called Legendre duality
map.
Example 2. Take n = 1. Consider a function f : R −→ R. The map
ϕ : J1(R,R) −→ J1(R,R) defined by ϕ(q, p, u) = (q, p+ f ′(q), u+ f(q)) is a
contactomorphism.

Definition 7.10. An integral n-dimensional submanifold L ⊂ J 1(Rn,R) of
the field of contact hyperplanes is called a Legendre manifold .

Remark. An n-dimensional manifold L ⊂ J 1(Rn,R) is a Legendre manifold
if and only if ω|L = 0, where ω|L denotes the restriction of the contact form
ω to L.
Example 1. A basic example of a Legendre manifold is the 1-graph of a
function. Consider a function f : Rn −→ R. Then the manifold:

L =
{
(q, p, f(q)) ∈ J1(Rn,R) : p1 = ∂q1f, . . . , pn = ∂qnf

}

is a Legendre manifold called the 1-graph of f .
Example 2. Consider a function f : R −→ R. Denote by L, the Legendre
manifold which is the 1-graph of f . Then, the manifold:

L
∨

=
{
(q, p, u) ∈ J1(R,R) : q = f ′(p), u = pf ′(p)− f(p)

}

is the image of L under the Legendre duality map (see example above).

Hence L
∨

is a Legendre manifold.
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Example 3. Another basic example of a Legendre manifold is the fibre at a
point (q0, z0) of the projection defined by

J1(Rn,R) −→ J0(Rn,R)
(q, p, z) 7→ (q, z).

That is the manifold

L =
{
(q0, p, z0) ∈ J1(Rn,R) : p ∈ Rn

}

is a Legendre manifold.

Definition 7.11. The map defined by

J1(Rn,R) −→ J0(Rn,R)
(q, p, z) 7→ (q, z),

is called the standard projection from J 1(Rn,R) to J0(Rn,R).

Definition 7.12. The image of a Legendre manifold of the space J 1(Rn,R)
under the standard projection J 1(Rn,R) −→ J0(Rn,R) is called the wave
front (or simply the front) of the initial Legendre manifold.

Example 1. If the Legendre manifold is the 1-graph of a function (see ex-
ample above) then the associated front is the graph of the function.
Example 2. If the Legendre manifold is the fibre of the projection J 1(Rn,R) −→
J0(Rn,R), then the front is a point.

2.2. Legendre duality. In this subsection, we fix an Euclidean struc-
ture on Rn and denote by (, ) the scalar product.

Definition 7.13. The map :

l : J1(Rn,R) −→ J1(Rn,R),
(q, p, z) 7→ (p, q, (p, q) − z).

is called the Legendre duality map. The image under this map of a Legendre
submanifold of J1(Rn,R) is called the Legendre dual manifold to the initial
manifold. The front of the dual Legendre manifold is called the dual front.

Remark 1. The Legendre duality map depends on the choice of the Euclidean
structure in Rn.
Remark 2. The Legendre duality map is an involutive contactomorphism
(i.e. l2 = Id).
Remark 3. Consider a wave front V ⊂ J 0(Rn,R) ≈ Rn+1 which is an affine
sub-variety of RP n+1. Then the dual front to V coincides with the projective
dual variety to2 V (see example 1).
Example 1. The front dual to the front γ parameterized by the mapping

f1 : R −→ R2,
t 7→ (t, 1

3t
3),

2Via the identification of the dual projective space (RP n+1)
∨

with RP n+1.
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is the front γ
∨

parameterized by the mapping

f2 : R −→ R2,
t 7→ (t2,−2

3t
3).

From the projective view-point, this is interpreted as follows. Consider the
curve γ̄ parameterized by the mapping

f̄1 : RP 1 −→ RP 2,
[s : t] 7→ [s : t : 1

3t
3].

Via the identification (RP 2)
∨ ∼ RP 2, the curve projectively dual to γ̄ is the

curve parameterized by the mapping

f̄2 : RP 1 −→ RP 2

[s : t] 7→ [s : t : − 2
3t

3].

With these homogeneous coordinates, denote by L the line defined by

L =
{
[x : y : z] ∈ RP 2 : x = 0

}
.

We identify RP 2 \ L with R2.
We denote by ∞ ∈ RP 1 the point [1 : 0]. We identify RP 1 \ {∞} with R.
Then the restriction of the maps f̄1 and f̄2 to R are the parameterization
f1, f2 of the curves γ and γ

∨

given above.
Example 2. Consider a Legendre manifold L which is the one graph of a
function f : R −→ R:

L =
{
(t, f ′(t), f(t)) ∈ J1(R,R) : t ∈ R

}
.

The Legendre dual manifold is given by the parameterization

L
∨

=
{
(f ′(t), t, tf ′(t)− f(t)) ∈ J1(R,R) : t ∈ R

}
.

If f is a convex function then L
∨

is the 1-graph of a function g called the
Legendre dual function of f . That is for f convex, there exists a function g
such that the Legendre manifold L

∨

is given by

L
∨

=
{
(t, g′(t), g(t)) ∈ J1(R,R) : t ∈ R

}
.

2.3. Generating families and singularities of wave fronts. We
follow Arnold ([Arn2]). Consider a function F : Rn × R× Rk −→ R.
Fix coordinates q = (q1, . . . , qn) in Rn, u in R, and t = (t1, . . . , tk) in Rk.
Assume that ∀(q, u, t) ∈ Rn+k+1, ∂uF (q, u, t) 6= 0.
Define the submanifold S ⊂ Rn+k+1, by the equations

F (q, u, t) = ∂t1F (q, u, t) = · · · = ∂tkF (q, u, t) = 0.

Assume that S is a smooth manifold.
Define the submanifold L of J1(Rn,R) with standard coordinates (q, p, u)
by the conditions:
1) there exists t ∈ Rk such that (q, u, t) ∈ S,
2) pi(∂uF (q, u, t)) + ∂qiF (q, u, t)) = 0 for any i ∈ {1, . . . , n} .



2. CONTACT GEOMETRY. 147

Here p has the coordinates (p1, . . . , pn).
Define the map v : S −→ Rn by its components (v1, . . . , vn)

vi(q, u, t) = −∂qiF (q, u, t)

∂uF (q, u, t)
.

In other words vi(q, u, t) is the solution pi of the equation given by condition
2) defined above.
The manifold L is the image of S under the map:

iF : S −→ J1(Rn,R)
(q, u, t) −→ (q, v(q, u, t), u)

If iF is an embedding then L = iF (S) is a Legendre manifold. Under
these assumptions (S is smooth and that iF is an embedding), we give the
following definition.

Definition 7.14. The function F is called a generating family of the Le-
gendre manifold L ⊂ J1(Rn,R). We say that the Legendre manifold L is
generated by F .

Theorem 7.2. Let m be an arbitrary point of a Legendre manifold L ⊂
J1(Rn,R). Then there exists a neighbourhood U ⊂ J 1(Rn,R) of m such that
L ∩ U is generated by a generating family.

The proof of this theorem is given in [AVG] chapter III.
Example 1. Consider a function f : R −→ R. Then the function:

F : R2 −→ R,
(q, u) 7→ f(q)− u.

is a generating family of the Legendre manifold:

L =
{
(q, p, u) ∈ J1(R,R) : p = ∂qf, u = f(q)

}

which is the 1-graph of f .

Example 2. The function F (q, u, t) = t3

3 + qt+ u is a generating family of
the Legendre manifold:

L =

{
(−t2, t, 2t

3

3
) ∈ J1(R,R) : t ∈ R

}
.

The wave-front of L is a semi-cubical parabola.
Example 3. Consider a function f : R −→ R. The Legendre manifold:

L =
{
(f ′(t), t, tf ′(t)− f(t)) ∈ J1(R,R) : t ∈ R

}
.

is not a 1-graph. However, the dual Legendre manifold L
∨

to L is the 1-
graph of the function f . In such a situation, the function F : R3 −→ R
defined by:

F (q, u, t) = −f(t) + qt− u
is a generating family of L.
To conclude with this example, remark that this construction implies theo-
rem 7.2 for n = 1.
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Indeed take a point z in a Legendre manifold L ⊂ J 0(Rn,R).
Then, in a sufficiently small neighbourhood U ⊂ J 1(Rn,R) either:
- L ∩ U is a 1-graph or,
- the dual Legendre manifold to L ∩ U is a 1-graph.
Thus L ∩ U admits a generating family.

2.4. Legendre varieties.

Definition 7.15. A variety L ⊂ J 1(Rn,R) whose smooth part is a Legendre
manifold is called a Legendre variety.

We keep the same notations than those of the preceding subsection.
We consider the case, where S is not necessarily smooth.
Denote by Σ the set of singular points of S.
Assume that the restriction of iF to S \ Σ is a C∞ embedding and that iF
is a topological embedding (i.e. a homeomorphism onto its image).
Under such conditions, we have the following definition.

Definition 7.16. The function F is called a generating family of the Le-
gendre variety L ⊂ J1(Rn,R).

Example. Consider the function F : R2 × R −→ R defined by

F (q, u, t) = 2t3 − 3qt2 + u.

Then the Legendre subvariety L of J 1(R,R) generated by F is the union
L = L1 ∪ L2 of the two Legendre manifolds L1, L2 defined by

L1 = {(q, p, u) : p = u = 0}

and

L2 =
{
(q, p, u) : u = q3, p = 3q2

}

.

3. A brief review of the theory of Legendre singularities.

We review Arnold’s theory of Legendre singularities and singularities of
wave-fronts [Arn3]. It is necessary for us to give a detailed exposition of it
because we shall generalize this theory to the case of ”multi-dimensional”
wave front propagation.
Following Arnold ([Arn2]), we express Legendre equivalence and Legendre
stability of singularities of wave fronts in terms of generating family-germs
of the corresponding Legendre manifold-germs. This will lead us to an al-
gebraic criteria of the stability of Legendre manifold-germs due to Arnold.
We shall take this theory one step further in section 6.
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q

u

Figure 4. The wave front of the Legendre variety generated
by F (q, u, t) = 2t3− 3qt2 +u. It has two branches: the q-axis
and a smooth curve cubically tangent to it.

3.1. Legendrian equivalence (first part).

Definition 7.17. Two Legendre manifolds L, L̃ of J1(Rn,R) are called
Legendre-equivalent provided that there exists a contactomorphism ϕ and a
diffeomorphism ψ such that the following diagram commutes:

L
i−−−−→ J1(Rn,R)

π−−−−→ J0(Rn,R)
y ϕ

y ψ

y

L̃
i−−−−→ J1(Rn,R)

π−−−−→ J0(Rn,R).

Here i and π denote respectively the inclusion and the standard projection.

Let L, L̃ be two Legendre manifolds of J 1(Rn,R). The local version of the
previous definition is as follows.

Definition 7.18. The germ of L at a point x is Legendre-equivalent to the
germ of L̃ at y provided that there exists small neighbourhoods U, V of x
and y such that L ∩ U is Legendre-equivalent to L̃ ∩ V .

Definition 7.19. The germ of a Legendre submanifold L ⊂ J 1(Rn,R) at a
point x is called Legendre-stable provided that the following property holds.
For any Legendre submanifold L′ ⊂ J1(Rn,R) sufficiently C∞-close to L
there exists a point y close to x such that the germ of L at x is Legendre
equivalent to the germ of L′ at y.
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Remark. The study of generating families of Legendre varieties is more
general than the study of Legendre manifolds since every Legendre manifold
germ admits a generating family germ (see subsection 2.3).

3.2. V -equivalence. In this subsection, we recall basic notions of sin-
gularity theory (for details see [Poin], [Tyu], [Math], [AVG], [Da]).
In order to avoid confusion with contact geometry we use the term V -
equivalence and not contact equivalence. The letter V stands for variety.
Notations. Given two function-germs u, v : (Rk, 0) −→ R, we denote by
u× v their product:

(u× v)(x) = u(x)v(x).

Definition 7.20. Two function-germs f, g : (Rk, 0) −→ (R, 0) are called V -
equivalent if there exists a function-germ A : (Rk, 0) −→ R, with A(0) 6= 0,
and a diffeomorphism map-germ ϕ : (Rk, 0) −→ (Rk, 0) such that:

f = A× (g ◦ ϕ−1).

Example. The function-germs defined by the germs at the origin of the
following polynomials are V -equivalent:

t1t2, (1 + t1t2)t1t2, t
2
1 − t22, (t1 + t22)(t2 + t21).

Remark. If two function-germs are V -equivalent then the germ at the origin
of their zero level sets are biholomorphically equivalent.
Denote by Diff(k) the group of diffeomorphism map-germs of the type
ϕ : (Rk, 0) −→ (Rk, 0) fixing the origin.
The law of composition of functions induces a semi-direct product group
structure on E∗t × Diff(k). Here E∗t denotes the space of function-germs
A : (Rk, 0) −→ R such that A(0) 6= 0.
The semi-direct product is given by:

(A,ϕ).(A′, ϕ′) = (A× (A′ ◦ ϕ′), ϕ ◦ ϕ′),

whereA,A′ : (Rk, 0) −→ R are function-germs such that A(0) 6= 0, A′(0) 6= 0
and ϕ,ϕ′ : (Rk, 0) −→ (Rk, 0) are diffeomorphism map-germs.
We denote this group by K. Two function-germs are V -equivalent provided
that they are on the same orbit under the action of K.
Notation. Let γ0 = (A,ϕ) be an element of K and f : (Rk, 0) −→ (Rk, 0) a
function-germ , we use the notation

γ0.f = A× (f ◦ ϕ−1).

3.3. Legendrian equivalence of generating families.
Notation. Let F : (Rn+1 × Rk, 0) −→ (R, 0) be a generating family-germ.

Consider a map-germ h : (Rn+1, 0) −→ (Rn+1, 0). The deformation f̃ de-

fined by F̃ (q, t) = F (h(q), t) is denoted by h∗F .



3. LEGENDRE SINGULARITIES. 151

Definition 7.21. The translation by a vector u ∈ Rn is the map-germ:

τ : (Rn, 0) −→ (Rn, u)
x 7→ x+ u.

We denote by T the space of translations.

Definition 7.22. Two generating family-germs F,G : (Rn+1 × Rk, 0) −→
(R, 0) are called Legendre-equivalent provided that there exists a map-germ
γ : (Rk, 0) −→ K ⊕ T and a diffeomorphism map-germ h : (Rn+1, 0) −→
(Rn+1, 0) such that: h∗(γ.G) = F .

Example. The generating family-germs defined by F (t, q) = t2 + q and
G(t, q) = t2 + q + q2 are Legendre-equivalent.

Definition 7.23. Two generating family-germs F : (Rn+1 × Rk, 0) −→
(R, 0), G : (Rn+m+1×Rk, 0) −→ (R, 0) are called stably Legendre-equivalent
provided that there exists a quadratic form Q : (Rm, 0) −→ (R, 0) such that
the deformation F ⊕Q : (Rn+m+1 × Rk, 0), defined by:

(F ⊕Q)(q, r, t) = F (q, t) +Q(r),

is Legendre-equivalent to G.

We have the following proposition ([AVG], chapter III).

Proposition 7.2. Let L, L′ be two Legendre submanifold germs of J 1(Rn,R)
generated by two function-germs. Then L and L′ are Legendre-equivalent if
and only if their generating family-germs are stably Legendre-equivalent.

3.4. Legendre stability. In this subsection, we give the stability cri-
terion for a Legendre manifold germ due to Arnold ([Arn2],[AVG]).

Definition 7.24. The Jacobian ideal of a function-germ f : (Rk, 0) −→
(R, 0) is the ideal generated by the partial derivatives ∂t1f, . . . , ∂tkf , where
t1, . . . , tk denotes an arbitrary coordinate-system on Rk.

Denote by If the ideal which is the sum of the Jacobian ideal of a function

germ f : (Rk, 0) −→ (R, 0) with the ideal generated by f .
Denote by Et =

{
g : (Rk, 0) −→ R

}
the ring of germs of functions. Let

π : Et −→ Et/If be the canonical projection.

Definition 7.25. The Tyurina number of a function-germ f : (Rk, 0) −→
(R, 0) is the dimension of the R-vector space Et/If .

Example. The Tyurina number of the function germ f : (R, 0) −→ (R, 0)
defined by f(t) = t4 is equal to 3.

Definition 7.26. A deformation of a function germ f : (Rk, 0) −→ (R, 0)
is a function germ F : (Rm × Rk, 0) −→ (R, 0) such that F (0, .) = f .
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Remark. Let F : (Rn+1×Rk, 0) −→ (R, 0) be a generating family-germ of a
Legendre manifold-germ (L, 0). As a function-germ F defines a deformation
of3 f = F (0, .).

Definition 7.27. The deformation F : (Rm×Rk, 0) −→ (R, 0) of f = F (0, .)
is a V -versal deformation of f = F (0, .) provided that the image under
the canonical projection Et −→ Et/If of the vector space generated by the

restrictions of ∂F
∂λ1

, . . . , ∂F
∂λm

to λ = 0 is equal to Et/If .

Remark. This definition is not the usual one. However it is equivalent to it
because of the V -versal deformation theorem ([AVG] chapter I).
Example. Let f : (R, 0) −→ (R, 0) be defined by f(t) = t4. The Tyurina
number of f is equal to 3. The deformation F : (R3 × R, 0) −→ (R, 0) of f
defined by F (λ, t) = t4 + λ1t

2 + λ2t+ λ3 is V -versal.

Theorem 7.3. A Legendre manifold-germ is Legendre stable if and only it
is generated by a generating family germ F : (Rn+1×Rk, 0) −→ (R, 0) which
is a V -versal deformation of f = F (0, .).

Example 1. Consider the Legendre manifold L ∈ J 1(R,R) generated by
F (q, u, t) = −t3 + qt− u. That is:

L =
{
(3t2, t, 2t3) ∈ J1(R2,R) : t ∈ R

}
.

The front of this Legendre manifold is the semi-cubical parabola of equation
27u2 + 4q3 = 0. The germ of F at the origin is a V -versal deformation of
f(t) = −t3. Hence the germ at the origin of L is Legendre-stable. Roughly
speaking: ”a generic plane wave front may have semi-cubical cusp points”.
Example 2. Consider the Legendre manifold L ∈ J 1(R2,R) generated by
the generating family F (q, u, t) = t4 + q1t

2 + q2t− u. That is:

L =
{
(q1, q2, t

2, t, t4 + q1t
2 + q2t) ∈ J1(R2,R) : 4t3 + 2q1t+ q2 = 0

}
.

The germ at the origin of the front of this Legendre manifold is the swal-
lowtail. The germ of F at the origin is a V -versal deformation of f(t) = t4.
Hence the germ at the origin of L is Legendre-stable. Roughly speaking: ”a
generic wave front in J0(R2,R) ≈ R3 may have swallowtails singularities.”
Our aim is to generalize theorem 7.3 to the case where the Legendre mani-
fold depends on some parameters. Before doing this, we digress in order to
give a first result concerning the normal forms of non-stable wave fronts.

4. Geometrical digression: Legendrian special points.

The relation between Legendrian singularities and projective geometry was
one of Arnold’s motivation for his investigations in symplectic and contact
geometries in the late 60’s ([Arn6]). We give an account on it and then

3We point out that in singularity theory of differentiable functions (q, u) ∈ R
n×R and

t ∈ R
k are respectively called the parameter and the argument while in contact geometry

the convention is the opposite one.
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generalize the Young diagram of a point of a curve in projective space to
contact geometry.

4.1. Special points of Legendre submanifolds of J 1(Rn,R). In
this subsection, we generalize the notion of flattening points of space curves
and of special parabolic points of surfaces.
For defining the special parabolic points and the flattening points an Eu-
clidean structure on Rn is needed. The definition of Legendrian special
points does not involve such a structure but just the standard projection
J1(Rn,R) −→ J0(Rn,R).
Consider a Legendre submanifold L of J 1(Rn,R).
Take a point m0 = (q0, p0, u0) in L and choose a coordinate-system in
Rn+1 × Rk centered at (q0, u0, t0) ∈ Rn+1 × Rk.
Let F : (Rn+1 × Rk, 0) −→ (R, 0) be a generating family-germ of the germ
(L,m0) of L at the point m0 ∈ J1(Rn,R).

Definition 7.28. The point (q0, p0, u0) ∈ J1(Rn,R) is called a Legendrian
special point of L if the Tyurina number of the function-germ of f = F (0, .) :
(Rk, 0) −→ R is at least equal to n.

Remark 1. It is readily verified that this definition does not depend on the
choice of the generating family-germ nor on the choice of the coordinates in
Rn+1 × Rk.
Remark 2. Legendrian equivalence sends a Legendrian special point of a
Legendre submanifold of J1(Rn,R) to a Legendre special points of its image.

Definition 7.29. A Legendrian special point (q0, p0, u0) of the Legendre
submanifold L is called a degenerate Legendrian special point provided that
either:
- the Tyurina number of f is strictly higher than n or,
- the generating family-germ F is not a V -versal deformation of f .

Example 1. Consider the Legendre manifold L generated by the function
F (q, u, t) = t4 + q1t

2 + q2t− u. That is:

L =
{
(q1, q2, t

2, t, t4 + q1t
2 + q2t) ∈ J1(R2,R) : 4t3 + 2q1t+ q2 = 0

}
.

The origin is a non-degenerate Legendrian special point of the Legendre
manifold L.
Example 2. Let F (q, u, t) = t5 + q1t

2 + q2t− u. The origin is a degenerate
Legendrian special point of the Legendre manifold generated by F .
Example 3. Let F (q, u, t) = t4 + q1t

3 + q2t− u. The origin is a degenerate
Legendrian special point of the Legendre manifold generated by F .

4.2. The Young diagram of a point of corank one on a Legendre
manifold. Let F : (Rn+1 × Rk, 0) −→ (R, 0) be a generating family-germ
of a Legendre variety.

Definition 7.30. The dimension of the kernel of the second differential of
f = F (0, .) at the origin is called the corank of F .
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Choose a coordinate system (t, s1, . . . , sk−1) in Rk such that ∂t is the kernel
of the second differential of f = F (0, .) at the origin.
The following definition is a contactification of the notion introduced previ-
ously in chapter 2, section 1 for curves in projective spaces.

Definition 7.31. The Young diagram (resp. the anomaly sequence) of the
generating family F is the Young-diagram (resp. the anomaly sequence) of
the map-germ defined by

(R, 0) −→ (Rn+1, 0),
t 7→ (F (0, t), (∂q1F )(0, t), . . . , (∂qnF )(0, t)).

Remark. Proposition 7.2 implies that the Young diagram is independent
on the choice of the coordinate system (t, s1, . . . , sn) that we made. It is
defined only in terms of the Legendre variety-germ generated by F and of
the standard projection J1(Rn,R) −→ J0(Rn,R).

4.3. Legendrian special points and flattening points of curves.
In this subsection, we fix an Euclidean structure on the space Rn and denote
by (, ) the scalar product.
Let L ⊂ J1(Rn,R) be a Legendre manifold such that its front γ ⊂ J 0(Rn,R)
is of dimension one. Let π be the projection J 1(Rn,R) −→ J0(Rn,R). Re-
mark that at each point m ∈ γ, the intersection of the Legendre submanifold
manifold L with the fibre π−1(m) is of dimension n− 1.

Denote by L
∨

the Legendre manifold dual to L. The following proposition
is readily verified.

Proposition 7.3. The Legendre manifold L
∨

has a Legendrian special point
at (q, p, u) with a given Young diagram if and only if the front γ of L has a
flattening point at (p, (p, q) − u) with the same Young diagram.

Example. Consider the front γ parameterized by:

R −→ J0(R2,R),
t 7→ (t, t2, t4).

The front γ has a non-degenerate flattening point at the origin.
Let L be the Legendre manifold whose front is γ. Denote by L

∨

the dual
Legendre manifold to L.
A generating family F : R2 × R× R −→ R for L

∨

is given by the formula

F (q, u, t) = −t4 + q2t
2 + q1t− u.

Indeed, the Legendre manifold corresponding to this generating family is:

L
∨

=
{
(q1, q2, t, t

2, u) ∈ J1(R2,R) : ∂tF (q, u, t) = 0, F (q, u, t) = 0
}
.

And by Legendre duality:

L =
{
(t, t2, q1, q2, t

4) ∈ J1(R2,R) : ∂tF (q, t) = 0
}
.

The front of L is:

γ =
{
(t, t2, t4) ∈ J0(R2,R) : t ∈ R

}
.
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The origin is a non-degenerate flattening point of γ, while the germ of the
function F at the origin is a V -versal deformation of the function-germ

f : (R, 0) −→ R
t 7→ t4.

We have the following commutative diagram:

L ⊂ J1(R2,R)
l−−−−→ L

∨ ⊂ J1(R2,R)

π1

y π1

y

γ ⊂ J0(R2,R) γ
∨ ⊂ J0(R2,R)

g

y π2

y

Σ ⊂ R2 Id−−−−→ Σ ⊂ R2

Here π1 is the standard projection. The map π2 is defined by π2(q, u) = q.
The 0-jet space J0(R2,R) is diffeomorphic to the product R2 × R. Call a
plane in R2×R vertical if it does not intersects the line ({0}×R) ⊂ R2×R.
Then, the intersection of the Legendre manifold L with the fibre π−1

1 (m),
m ∈ γ can be identified with the set of non-vertical planes in J 0(R2,R) that
are tangent to γ.
The Legendre duality map is denoted by l, Id stands for the identity map.
The front γ

∨

is a swallowtail.
The map g is the Gauss map: if the osculating plane to the curve γ at a
point m is

{
(x, y, z) ∈ J0(R2,R) : z = ax+ by + u

}
then g(m) = (a, b) ∈ Σ.

On the other hand, Σ is the image of the critical locus of the restriction of
the projection π2 to the swallowtail γ

∨

.
The restriction of the projection π2◦π1 to L

∨

is the so-called Whitney pleat.
The right hand-side of this commutative diagram is depicted in figure 5.

4.4. Legendrian special points and special parabolic points of
surfaces. In this subsection, we fix an Euclidean structure on the space Rn

and denote by (, ) the scalar product.
Let L ⊂ J1(R2,R) be a Legendre manifold such that its frontM ⊂ J 0(R2,R)
is a smooth surface.
Let π be the standard projection J 1(Rn,R) −→ J0(Rn,R). Denote by L

∨

the Legendre manifold dual to L.

Proposition 7.4. The Legendre manifold L
∨

has a non-degenerate (resp.
degenerate) Legendrian special point at (q, p, u) if and only the front M of L
has a non-degenerate (resp. degenerate) special parabolic point at (p, (p, q)−
u).

Example. Consider the front M parameterized by

R2 −→ J0(R2,R),
(s, t) 7→ (t, s+ t2, s2 + t4).
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π1

π2

L

γv

Σ

v

Figure 5. The Legendrian projection corresponding to a
non-degenerate flattening point of a space curve.

Direct calculations show that the front M has a non-degenerate special
parabolic point at the origin. We assert that the germ at the origin of
the front dual to M is diffeomorphic to a swallowtail.
Let L be the Legendre manifold whose front is M . Denote by L

∨

the dual
Legendre manifold to L. We assert that a generating family for L

∨

is given
by:

F (q, u, s, t) = −t4 − s2 + q2s+ q2t
2 + q1t− u.
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Figure 6. A ”typical” bifurcation of wave-fronts.

Indeed, the Legendre manifold corresponding to this generating family is:

L
∨

=
{
(q1, q2, t, s + t2, u) ∈ J1(R2,R) : ∂tF (q, u, s, t) = ∂sF (q, u, s, t) = F (q, u, s, t) = 0

}
.

And by Legendre duality, we get that the Legendre manifold L is given by

L =
{
(t, s+ t2, q1, q2, s

2 + t4) ∈ J1(R2,R) : ∂tF (q, u, s, t) = ∂sF (q, u, s, t) = 0
}
.

The front of L is the surface

M =
{
(t, s+ t2, s2 + t4) ∈ J0(R2,R) : (s, t) ∈ R2

}
.

The germ of F at the origin is a V -versal deformation of the function-germ
of:

f : (R2, 0) −→ R
(s, t) 7→ s2 + t4.

Hence the origin is a non-degenerate Legendrian special point of L
∨

. We
get the following commutative diagram:

L ⊂ J1(R2,R)
l−−−−→ L

∨ ⊂ J1(R2,R)
y

y

M ⊂ J0(R2,R) γ
∨ ⊂ J0(R2,R)

g

y
y

Σ ⊂ R2 Id−−−−→ Σ ⊂ R2

Assertion. There exists a Legendre manifold L̃
∨

Legendre-equivalent to L̃
∨

whose dual front γ̃ is a space curve with a non-degenerate flattening point
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at the origin.

The Legendre manifold L
∨

, generated by F , is also generated by the gener-
ating family G : (R2 ×R, 0) −→ (R, 0) defined by

G(q, u, t) = t4 + q1t
2 + q2t+

1

4
q22 − u.

To see it, remark that:

(∂sF (q, u, s, t) = 0) ⇐⇒ (s =
q2
2

).

Substituting s by q2
2 in F , we get G.

The map:

ϕ : J1(R2,R) −→ J1(R2,R)
(q1, q2, p1, p2, u) 7→ (q1, q2, p1 − 1

2q1, p2, u− 1
4q

2
1)

is a contactomorphism. Moreover ϕ preserves the standard projection from
J1(R2,R) to J0(R2,R). The image of the manifold L

∨

under ϕ is the Le-

gendre manifold L̃ generated by:

G̃(q, u, t) = t4 + q1t
2 + q2t− u,

that we were looking for.
Assertion is proved.
The Legendrian equivalence between this example and the example of the
preceding subsection explains the analogy between special parabolic points
of surfaces and flattening points of space curves: from the Legendrian view-
point there is no difference between them.

4.5. The L-discriminant. Consider a family of Legendre submani-
folds (Lλ) of J1(Rn,R).

Definition 7.32. The L-discriminant (read Legendrian discriminant) of the
family (Lλ) is the set of values of the parameters λ for which the Legendre
manifold Lλ has a degenerate Legendrian special point or has a singular
point.

Remark. The definition of the L-discriminant depends only on the standard
projection J1(Rn,R) −→ J0(Rn,R). In particular, no additional structure
(Euclidean, affine, projective) on Rn is required.
The definition of the stability of the L-discriminant of a given family of Le-
gendre manifolds is analogous to that of the stability of the P-discriminant
of a family of curves (see section 1).

4.6. A Kazarian folded umbrella theorem for wave fronts. With
the techniques developed below, we shall obtain the following generalization
of theorem 7.1 (see section 1).
Fix an Euclidean structure in R2 × R.
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Consider the 3-parameter family of surfaces Mλ in R3 parameterized by the
embeddings

fλ R2 −→ R2 × R,
(s, t) 7→ (t, s+ t3, s2 + t7 + t6 + λ1t

5 + λ2t
4 + λ3t

2).

Identify R2 × R with J0(R2,R).
The surfaces are the wave fronts of a family of Legendre manifolds (Lλ),
Lλ ⊂ J1(R2,R).

Denote by L
∨

λ ⊂ J1(R2,R) the Legendre manifold dual to Lλ.

Theorem 7.4. The P-discriminant of the 3-parameter family of Legendre
manifolds (L

∨

λ) in J1(R2,R) is L-stable at the origin. The L-discriminant
of the family (Lλ) is the Kazarian folded umbrella.

Remark. The complete list of L-stable bifurcation diagrams for two and
three parameter families is yet unknown.
This theorem is a special case of theorem 7.7 stated in page 162.

5. The excellent Young diagrams.

5.1. New notations. We change slightly our notations. In J 0(Rn,R),
we use to denote the coordinates by q1, . . . , qn, u. We now use q1, . . . , qn, qn+1

and q = (q1, . . . , qn, qn+1) instead of (q, u).
Given a Legendre manifold, we used to denote a generating family of it with
capital letters (like F ), we now use small letters (like f). The capital letters
will be used for another purpose.

5.2. The Legendrian codimension.

Definition 7.33. The L-tangent space, denoted Tf , to a generating family-
germ f ∈ Eq,t is the R-vector subspace of Eq,t which is the sum of the following
modules:
- the Eq,t-module generated by ∂t1f, . . . , ∂tkf, f ,
- the Eq-module generated by ∂q1f, . . . , ∂qnf, ∂qn+1f .

Definition 7.34. The Legendrian codimension, of a Legendre manifold
germ (L, 0) generated by a family-germ f : (Rk × Rn+1, 0) −→ (R, 0) is
the codimension in Eq,t of the L-tangent space Tf to f .

5.3. Excellent generating family-germs and excellent Young di-
agrams. Consider a generating family germ f : (Rk × Rn+1, 0) −→ (R, 0)
of a Legendre manifold-germ. Denote by (ai) the anomaly sequence of f .

Definition 7.35. A generating family-germ f : (Rk × Rn+1, 0) −→ (R, 0)
of a Legendre manifold-germ is called excellent provided that:
- it is of corank one,
- the Legendrian codimension of f is equal to

∑s
i=1 ai − 1.
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Definition 7.36. A pair (n, Y ) where Y denotes a Young diagram is called
excellent provided that there exists an excellent generating family-germ f :
(Rk × Rn+1, 0) −→ (R, 0) with Young diagram Y .
A Young diagram is called excellent provided that there exists an integer
n > 0 such that (n, Y ) is excellent.

Theorem 7.5. The excellent generating-family germs and the correspond-
ing Young diagrams are given up to stable Legendrian equivalence by the
following list. They form 4 infinite series and two sporadic cases.

An :(�) tn+2 + q1t
n + q2t

n−1 + · · · + qnt+ qn+1

Wn :(��) tn+3 + q1t
n + q2t

n−1 + · · · + qnt+ qn+1

Xn :( �
�

) tn+2 + q1t
n+1 + q2t

n−1 + · · · + qnt+ qn+1

Yn :( � �
�

) tn+4 + tn+3 + q1t
n+1 + q2t

n−1 + · · ·+ qnt+ qn+1

Z1 :(���) t7 + t5 + q1t+ q2

Z2 :( � � �
�

) t6 + t5 + q1t
2 + q2

Remark 1. For n > 1, the series An,Wn,Xn are contained in Arnold’s classi-
fication [Arn5] because their Legendrian codimension is not more than one.
Remark 2. By definition, the Legendrian codimension of an excellent gen-
erating family-germ is equal to the number of squares of its Young diagram
minus 1.

The proof of this theorem is given in section 2.
The typical families in which the Legendre manifold (or the Legendre vari-
ety) of theorem 7.5 arise is given in subsection 6.4.

6. Legendrian versal deformation theory.

In section 4, we saw that the local study of flattening points of space curves
as well as the study of special parabolic points of surfaces are included in
the study of Legendre manifolds of J 1(Rn,R) depending on parameters.
In the seventies’ Arnold and Zakalyukin studied families of wave front de-
pending on one parameter ([Arn5], [Zak1]).
This is not sufficient because our families arising from the study of projec-
tive geometry might depend on many parameters.
In this section, we introduce the algebraic structures that are needed in
order to study multi-parametric families of wave-fronts.

6.1. Legendrian deformations of generating families.

Definition 7.37. A parametric generating family of a family (Lλ) of Le-
gendre varieties is a function F : Rl×Rn+1×Rk −→ (R, 0) such that F (λ, ., .)
is a generating family of a Legendre variety Lλ. The family (Lλ) of Legendre
varieties is said to be generated by F .
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Example 1. Consider the parametric generating family F : R× R3 × R −→
(R, 0) defined by:

F (λ, q, t) = t4 + q1t
3 + q2t− q3 + λt2,

with λ ∈ R, q = (q1, q2, q3) ∈ R3, t ∈ R.
The Legendre manifold generated by F (λ, .) is:

Lλ =
{
(q1, q2, t

3, t, t4 + q1t
3 + λt2 + q2t) ∈ J1(Rn,R) : ∂tF (λ, q, t) = 0

}
.

The wave-fronts corresponding to this one-parameter family are depicted in
figure 6. The local version of the previous definition is as follows.

Definition 7.38. A Legendrian deformation of a generating family-germ
f : (Rn+1 × Rk, 0) −→ (R, 0) of a Legendre variety-germ is the germ at the
origin of a parametric generating-family F : (Rl × Rn+1 × Rk, 0) −→ (R, 0)
such that the germ at the origin of F (0, ., .) is equal to f .

The following proposition is a consequence of the construction given in
[Arn2] and [AVG] for the generating family germ of a Legendre manifold
germ (see also example 3, subsection 2.3).

Proposition 7.5. Let (Lλ) be a family of Legendre manifolds. For any point
p ∈ Lλ there exists a neighbourhood U ⊂ J 1(Rn,R) of p and a parametric
generating family F such that the manifold (Lλ∩U) is generated by F (λ, .).

6.2. Legendrian versal deformations. Let f : (Rn+1 × Rk, 0) −→
(R, 0) be a generating family-germ of a Legendre of variety-germ.

Definition 7.39. A map-germ g : (Rl × Rn+1, 0) −→ (Rl′ × Rn+1, 0) is

fibered over Rl and Rl′ if the following diagram commutes:

(Rl × Rn+1, 0)
g−−−−→ (Rl′ × Rn+1, 0)

y
y

(Rl, 0)
g1−−−−→ (Rl′ , 0)

In other words g(λ, q) = (g1(λ), g2(λ, q)).

Let F : (Rl × Rn+1 × Rk, 0) −→ R be of a Legendrian deformation of a
generating family-germ f = F (0, ., .).

Definition 7.40. A Legendrian deformation F̃ of the generating family-
germ f is induced from F provided that there exists the germ of a fibered
map g : (Rl′ ×Rn+1, 0) −→ (Rl × Rn+1, 0) such that:

F̃ (λ, q, t) = F (g1(λ), g2(λ, q), t)

with g = (g1, g2).

We use the notation F̃ = g∗F .

Recall that T denotes the space of translations.
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Definition 7.41. Two Legendrian deformations F̃ , F : (Rl×Rn+1×Rk, 0) −→
(R, 0) of a generating family-germ f = F (0, ., .) are called L-equivalent pro-
vided that there exists the germ of a map-germ γ : (Rl×Rn+1, 0) −→ K⊕T
such that:

γ.F̃ = F.

Remark. The formula above can be written in the more explicit form:

F̃ (λ, q, t) = A(λ, q, t)F (λ, q, ϕ(λ, q, t))

where (A,ϕ) ∈ K ⊕ T .

Definition 7.42. The germ of a Legendrian deformation F of a generating
family-germ f = F (0, ., .) is called a L-versal deformation of f if any other
Legendrian deformation of f is induced by a Legendrian deformation L-
equivalent to F .

Example. Let f : (Rn+1 × R, 0) −→ (R, 0) be defined by:

f(q, t) = t4 + q1t
3 + q2t− q3.

Consider the Legendrian deformation F : (R× Rn+1 × R, 0) −→ (R, 0) of f
defined by:

F (λ, q, t) = f(q, t) + λt2.

We shall prove that F is a L-versal deformation of f .

6.3. The Legendrian versal deformation theorem.

Definition 7.43. The L-tangent space to a Legendrian deformation germ
F : (Rl×Rn+1×Rk, 0) −→ (R, 0) of a generating family-germ f = F (0, ., .),
denoted TF , is the sum of the following R-vector subspaces of Eq,t:
- Tf ,
- the R-vector space generated by the restrictions to λ = 0 of the function-
germs ∂λ1F, . . . , ∂λl

F .

Theorem 7.6. A Legendrian deformation F : (Rl × Rn × Rk, 0) −→ (R, 0)
of a generating family-germ is L-versal provided that TF = Eq,t.

Remark. We have considered the C∞ case. However, a similar theorem
holds in the K-analytic category and for K power series category, K = R or
C.

6.4. The L-versal deformations of the excellent Young dia-
grams.

Theorem 7.7. The Legendrian versal deformations of the excellent gen-
erating family germs are given up to stable Legendrian equivalence by the
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following list:

An : tn+2 + q1t
n + q2t

n−1 + · · ·+ qnt+ qn+1

Wn : tn+3 + q1t
n + q2t

n−1 + · · ·+ qnt+ qn+1 + λ1t
n+1

Xn : tn+2 + q1t
n+1 + q2t

n−1 + · · · + qnt+ qn+1 + λ1t
n

Yn : tn+4 + tn+3 + q1t
n+1 + q2t

n−1 + · · · + qnt+ qn+1 + λ1t
n+2 + λ2t

n

Z1 : t7 + t5 + q1t+ q2 + λ1t
3 + λ2t

2

Z2 : t6 + t5 + q1t
2 + q2 + λ1t

4 + λ2t
3 + λ3t

Remark. The series An,Wn,Xn are contained in Arnold’s classification
[Arn5] because their Legendrian codimension is not more than one.
This theorem is proved in section 2.

6.5. Stabilization of L-discriminants.
Let F : Rl×Rn+1×R −→ R be a parametric generating family of Legendre
varieties Lλ, Lλ ∈ J1(Rn,R). Assume that:

F (λ, q1, . . . , qn+1, t) = F̃ (λ, q1, . . . , qn−1) + qnt+ qn+1.

Then G = ∂tF : Rl×Rn×R −→ (R, 0) is a parametric generating family of

Legendre varieties L̃λ, L̃λ ∈ J1(Rn−1,R).

Definition 7.44. The parametric generating family G is called a derived
generating family from F .
The deformation of a generating family-germ obtained by taking the germ
of a derived generating family of an arbitrary representative of the germ is
called the derived deformation.

The following proposition is straightforward. It generalizes Kazarian’s con-
struction of the trace of a curve ([Ka3]).

Proposition 7.6. The L-discriminant of a parametric generating family
F : Rl × Rn+1 × R −→ R coincides with the L-discriminant of a derived
parametric generating family of F .

Remark. This proposition together with the normal forms for the L-versal
deformations of perfect pairs allows us to ”multiply the theorems”. We give
an example in the next subsection.

6.6. Theorem 7.4 is a corollary of theorem 7.7. A parametric
generating family-germ F : (R3 ×R3 ×R2, 0) −→ (R, 0) of the germs at the

origin of Legendre manifolds L
∨

λ of subsection 4.6 is given by:

F (λ, q, t, s) = t7 + t6 + q1t
3 + q2t+ q3 + λ1t

5 + λ2t
4 + λ3t

2 + s2 + q1s.

The function F is a deformation of the generating family-germ f(R3 ×
R2, 0) −→ (R, 0) defined by:

f(q, t, s) = t7 + t6 + q1t
3 + q2t+ q3 + s2 + q1s.
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Obviously the deformation F is stably L-equivalent to:

F̃ (λ, q, t, s) = t7 + t6 + q1t
3 + q2t+ q3 + λ1t

5 + λ2t
4 + λ3t

2

To see it, write s2 + q1s = (s+ 1
2q1)

2 − 1
4q

2
1 .

The generating family derived from F̃ is a L-versal deformation of a gener-
ating family-germ L-equivalent to the element Z2 of theorem 7.7.
Consequently the L-discriminant of F is stable.



CHAPTER 8

Normal forms of generating families.

1. Normal forms theory.

1.1. The finite determinacy theorem for L-equivalence. Denote
by Mq,t the maximal ideal in Eq,t that is the ideal of function-germs of the
type

g : (Rn+1 × Rk, 0) −→ (R, 0).

LetMj
q,t be the jth power of Mq,t.

We denote by Tf the L-tangent space to f (see subsection 5.2).

Proposition 8.1. Let f : (Rn+1 × Rk, 0) −→ (R, 0) be a generating family
germ such that there exists a positive integer ν satisfying Mν

q,t ⊂ Tf .
Then for any function germ ψ ∈Mν+2

q,t the following L-equivalence holds

f + ψ ∼ f.
The proof of this proposition is given in subsection 3.2.

1.2. Quasi-homogeneous functions. We recall some facts from sin-
gularity theory (see [AVG] for details). We fix a coordinate system in Rm.
The construction depends on the choice of this coordinate-system.

Definition 8.1. A function-germ f : (Rm, 0) −→ (R, 0) is called quasi-
homogeneous of degree d with exponents α1, . . . , αm provided that for any
λ > 0 and any (x1, . . . , xm) ∈ Rm we have:

f(λα1x1, . . . , λ
αmxm) = λdf(x1, . . . , xm).

Example. The function-germ defined by f(x1, x2) = xp1 + xq2 is quasi-
homogeneous of degree pq with exponents α1 = q, α2 = p. The function
germ defined by f(x1, x2) = x3

1 + x1x2 + x3
2 is not quasi-homogeneous.

Fix a vector α = (α1, . . . , αk) ∈ Nk.

Definition 8.2. A monomial xi11 x
i2
2 . . . x

ik has weight d provided that α1i1+
· · ·+ αmim = d.

Remark. Once the weights of the xi’s are fixed, the vector α is fixed and
consequently so is the weight of a monomial.

Definition 8.3. A function-germ in Ex has order d if all the monomials
appearing with non-zero coefficient in its Taylor series at the origin are of
weight at least d.

165
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Notations. The R-vector space of functions-germs of order d is denoted by
Fd (F for filtration).
The R-vector space generated by the monomials of weight d is denoted by
Gd (G for graduation).

Definition 8.4. The nested sequence F0 ⊃ F1 ⊃ F2 ⊃ . . . of R-vector
spaces is called the quasi-homogeneous filtration of Ex associated to α.

1.3. The order of a vector-field. Take coordinates q = (q1, . . . , qn+1)
in Rn+1 and t = (t1, . . . , tk) in Rk.
Fix a quasi-homogeneous filtration F0 ⊃ F1 ⊃ F2 ⊃ . . . of Eq,t.
We denote by:
- Lq,t the set of vector fields of the type:

k∑

i=1

ai∂ti +

n+1∑

i=1

bi∂qi

with a1, . . . , ak ∈ Eq,t, b1, . . . , bn+1 ∈ Eq,
- Lq the set of vector fields of the type:

n+1∑

i=1

ci∂qi

with c1, . . . , cn+1 ∈ Eq.
The letter L stands for Lie.

Any element in Lq,t acts on the Fd’s. Namely, put:

v =

k∑

i=1

ai∂ti +

n+1∑

i=1

bi∂qi ,

for m ∈ Fd, the Lie derivative of m along v is defined by the formula

v.m =

k∑

i=1

ai∂tim+

n+1∑

i=1

bi∂qim.

We put v.Fd = {v.m : m ∈ Fd}.
Definition 8.5. A vector field v ∈ Lq,t (resp. w ∈ Lq) has order s provided
that for any d and for any m ∈ Fd we have v.m ∈ Fd+s (resp. w.m ∈ Fd+s).

1.4. Normal forms of semi-quasi-homogeneous generating fam-
ilies. Fix a quasi-homogeneous filtration F0 ⊃ F1 ⊃ F2 ⊃ . . . of Eq,t.
Definition 8.6. The reduced tangent space (with respect to the fixed quasi-
homogeneous filtration), denoted Trf , to a generating family germ f :
(Rn+1 × Rk, 0) −→ (R, 0) is the R-vector subspace of Eq,t which is the sum
of the following modules:
- the Eq,t-module generated by the v.f ’s where v ∈ Lq,t has order 1,
- the Eq,t-module generated by the h× f where h ∈ F1,
- the Eq-submodule generated by the w.f where w ∈ Lq has order 1.
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Remark that Fd is an Eq,t-submodule of Eq,t while Tf and Trf are Eq-
submodules of Eq,t.

Proposition 8.2. Let f : (Rn+1 ×Rk, 0) −→ (R, 0) be a generating family-
germ such that there exists a positive integer d and pairwise distinct mono-
mials e1, . . . , es ∈ Eq,t satisfying the following conditions

{
Fd ⊂ (Trf⊕ < e1, . . . , es >),
∀i ∈ {1, . . . , s} , ei ∈ Fd+1.

Then for any function-germ ψ ∈ Fd, there exists a1, . . . , as ∈ R such that
the following L-equivalence relation holds

f + ψ ∼ f +
s∑

k=1

akek.

The proof of this proposition is given in subsection 3.3.

1.5. Finite dimensional reduction. We state a proposition which
shall be useful for the computations of the normal forms and for the L-
versal deformations.
Let f0 : (Rn+1 ×Rk, 0) −→ (R, 0) be a generating family germ.
We have used here the notation f0 instead of f to be consistent with the
next section.
Fix a quasi-homogeneous filtration of Eq,t.
Denote by Trf0, the reduced L-tangent space to f0.
Let M̄q ⊂ Eq,t be the Eq,t-module of function-germs that vanish at q1 =
· · · = qn+1 = 0.
Remark that M̄q is neither the maximal idealMq,t of Eq,t nor the maximal
ideal Mq of Eq.
Denote by Vd the R-vector subspace of Eq,t which is the sum of the following
modules:
- the Eq submodule of Eq,t generated by the w.f0’s where w ∈ Lq is of order
one,
- the Eq,t submodule of Eq,t generated by the h×f0 where h ∈ Eq,t is of order
one,
- the Eq-submodule M̄qFd of Eq,t.

Denote by πd : Eq,t −→ Eq,t/Vk the canonical projection.
The projection πd is a morphism of Eq-modules and is not a morphism of
Eq,t-modules.

Proposition 8.3. Let f0 : (Rn+1 ×Rk, 0) −→ (R, 0) be a generating family
germ.
Then the inclusion πd(Fd) ⊂ πd(Trf0) implies the inclusion Fd ⊂ Trf0.
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Example 1. Define a quasi-homogeneous filtration in Eq,t by fixing the fol-
lowing weights:

monomial t q1 q2 q3
weight 1 1 3 4

Let f : (R3×R, 0) −→ R be a generating family germ such that f = f0 + f1

with
f0(q, t) = t4 + q1t

3 + q2t+ q3,

f1 ∈ F5.
We assert that f is L-equivalent to f0.
Proposition 8.2 implies that it suffices to prove that F5 is contained in the
reduced tangent space to f0.
With the notation of subsection 1.5, it suffices to prove that π5(F5) ⊂
π5(Trf).
It is readily seen that the R-vector space π5(F4) is of dimension three and
that it is generated by the images under π5 of the three monomials:

q21t
2, q2t

2, q3t
2.

Moreover, by straightforward computations we get the equalities


π5(q1∂tf0) = π5(3q

2
1t

2),
π5(t

2∂tf0) = π5(−3q2t
2),

π5(t
3∂tf0) = π5(−4q3t

2).

Consequently we have the inclusion π5(F5) ⊂ π5(Trf). Assertion is proved.
To compute a L-versal deformation of f0, we proceed as follows.
Recall that Gd denotes the R-vector space generated by the monomials of
weight d.
define the R-vector space W by W = ⊕4

d=0Gd.
It remains to find a basis for the transversal to the R-vector space W ∩ Tf
in W . We have:




G0 = < 1 >,
G1 = < t, q1 >,
G2 = < t2, q1t, q

2
1 >,

G3 = < t3, q1t
2, q21t, q

3
1 , q2 >,

G4 = < t4, q1t
3, q21t

2, q31t, q
4
1, q2t, q2q1, q3 >,

where < . > denotes the R-vector space generated by the monomials inside
the brackets.
Straightforward computations show that all the listed monomials except t2

are contained in Tf .
Thus the Legendrian deformation F : (R×R3×R, 0) −→ R of f defined by:

F (λ, q, t) = f(q, t) + λt2

is L-versal.
The corresponding one-parameter family of wave fronts are depicted in figure
6. This is a reformulation of a result due to Arnold [Arn5].
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If proposition 8.3 applies then the computation of a L-versal deformation is
reduced to a simple problem of linear algebra.

2. Proof of the theorem on the excellent generating families.

2.1. Preliminary normal form. Let f : (Rn+1 ×Rk, 0) −→ (R, 0) be
a generating family-germ of anomaly sequence (a0, . . . , am).
By assumption f is of corank one. Consequently, up to L-stable equivalence,
we can assume that k = 1 without loss of generality.
We fix coordinates q = (q1, . . . , qn+1) in Rn+1.
The function germ f admits a representation of the following type

f(q, t) = f0(q, t) + f1(q, t) + f2(q, t)

where f0, f1, f2 satisfy the 5 conditions cited below.
1) f0 is of degree at most 1 in q1, . . . , qn+1,
2) f1(0, t) = ∂q1f1(0, t) = · · · = ∂qn+1f1(0, t) = 0,
3) the anomaly sequences of f0 and f are equal.
4) see below.
5) see below.
By assumption, one can choose coordinates in J 0(Rn,R) such that the gen-
erating family-germ f is given by:

(41) f(q, t) = tαn+1 +q1t
αn +q2t

αn−1 + · · ·+qntα1 +qn+1+f1(q, t)+f2(q, t).

with αn−s − (n − s) = as+1 if −1 ≤ s < m, and αn−s = (n − s) if s ≥ m.
We introduce in Eq,t a quasi-homogeneous filtration by specifying the weights
of q1, . . . , qn, t as follows:
- the weight of t is equal to 1,
- for i < n+ 1, the weight of qi is equal to αn − αn−i,
- the weight of qn+1 is αn.
Then condition 4 is that f2 ∈ Fαn+1+1 and for any monomial e ∈ Eq,t ap-
pearing with a non-zero coefficient in the Taylor series of f1, the weight of
e is at most equal αn+1.

The function-germ f2 can be written in the form:

f2(q, t) = c0(q) + c1(q)t+ c2(q)t
2 + · · ·+ cαn(q)tαn + cαn+1(q)t

αn+1 ,

where the ci’s are arbitrary function germs in Eq,t.
By a change of variables in the space Rn+1 of the parameter q, we can
assume, without loss of generality, that cαi

= 0 for all i ∈ {0, α1, α2, . . . , αn} .
Moreover, we can also assume that cαn+1 = 0, just multiply f by 1−cαn+1(q).
Condition 5 is that f2 can be written in the form described above with
cα1 , . . . , cαn+1 = 0.

2.2. Notations.
For the computations of the normal forms, we use the same notations than
those of subsection 1.5.
At the beginning of each computation, we fix a number s and write π instead
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of πs. We also denote by F̃d, G̃d the images of the R-vector spaces Fd and
Gd under πs.

2.3. Pairs which are not excellent.
(n,���) is not excellent provided that n > 1
We take s = n+ 5.
The weights of the quasi-homogeneous filtration are defined by the table

monomial t q1 q2 . . . qn+1

weight 1 4 5 . . . n+ 4

The elements f0, f1 of the prenormal form are given by

f0(q, t) = tn+4 + q1t
n + q2t

n−1 + · · ·+ qnt+ qn+1.

f1 = 0 and f2 is an arbitrary function-germ in Fn+5.

By straightforward computations, we get that for n > 1,the images of the

following 6 monomials under the canonical projection Fn+5 −→ F̃n+5/F̃n+8

form a basis of the R-vector space F̃n+5/F̃n+8:

q1t
n+1 q1t

n+2 q1t
n+3

q2t
n+1 q2t

n+2

q3t
n+1

Thus the R-vector space F̃n+5/F̃n+8 is of dimension 6.

By elementary linear algebra, we get that the space π(Tf ∩ Fn+5)/F̃n+8 is
generated by the images of the following 5 vectors:

t∂tf, t
2∂tf t3∂tf t4∂tf

q1∂tf

Thus the R-vector space π(Tf∩Fn+5)/F̃n+8 is at most of dimension 5. Con-
sequently the codimension of Tf∩Fn+5 in Fn+5 is at least equal to 6−5 = 1.
The codimension of Tf ∩ Fn+5 in Fn+5 is at least equal to 1.
Next, straightforward computations show that the monomials tn+2, tn+1 are
not contained in Tf .
Thus the codimension of Tf in Eq,t is at least equal to three. Hence (n,���)
is not excellent provided that n > 1.

(1,����) is not excellent.
We take s = 10.
The weights of the quasi-homogeneous filtration are defined by the table

monomial t q1 q2
weight 1 5 6

The elements f0, f1 of the prenormal form are given by

f0(q, t) = t6 + q1t+ q2.
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f1 = 0 and f2 is an arbitrary function-germ in F7.

By straightforward computations, we get that the images of the 5 following

monomials under the canonical projection F7 −→ F̃7/F̃10 form a basis of

the R-vector space F̃7/F̃10:

q1t
2 q1t

3 q1t
4

q2t
2 q2t

3

Thus the R-vector space F̃7/F̃10 is of dimension 5.

By elementary linear algebra, we get that the R-vector space π(Tf∩F7)/F̃10

is generated by the images of the following 4 function germs:

t∂tf, t
2∂tf t3∂tf t4∂tf

Thus the R-vector space π(Tf ∩ F7)/F̃10 is of dimension at most 4.
Consequently Tf ∩ F7 is a least of codimension 5− 4 = 1 in F7.
Moreover, straightforward computations show that none of the monomials
t4, t3, t2 is contained in Tf .
Thus Tf is at least of codimension 4 in Eq,t. Hence the pair (1,����) is
not excellent.

(n, � �
� �

) is not excellent.

The weights of the quasi-homogeneous filtration are defined by the table

monomial t q1 q2 q3 . . . qn+1

weight 1 1 4 5 . . . n+ 3

The elements f0, f1, f2 of the prenormal form are given by

{
f0(q, t) = tn+3 + q1t

n+2 + q2t
n−1 + · · ·+ qnt+ qn+1,

f1(q, t) = α1q
2
1t
n+1 + α2q

3
1t
n + α3q

2
1t
n,

where the αi’s are arbitrary constants and f2 is an arbitrary function-germ
in Fn+4.
Denote by W the R vector subspace of Eq,t/Fn+4 generated by the images
of the following 9 monomials under the canonical projection π : Eq,t −→
Eq,t/Fn+4:

tn, q1t
n, q21t

n, q31t
n, tn+1, q1t

n+1, q21t
n+1, tn+2, q1t

n+2.

By elementary linear algebra, we get that the R-vector space W ∩ π(Tf) is
generated by the images under π of the 5 function-germs:

∂tf, t∂tf, q1∂tf, ∂q1f, q1∂q1f.
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Thus, the R-vector space Tf is of codimension at least 4 in Eq,t. Conse-
quently the pair (n, � �

� �
) is not excellent .

(n,
�
�
�

) is not excellent.

The weights of the quasi-homogeneous filtration are defined by the table

monomial t q1 q2 q3 . . . qn+1

weight 1 1 2 4 . . . n+ 2

The elements f0, f1, f2 of the prenormal form are given by
{
f0(q, t) = tn+2 + q1t

n+1 + q2t
n + q3t

n−2 + · · ·+ qnt+ qn+1,
f1(q, t) = α1q

3
1t
n−1 + α2q1q2t

n−1,

where the αi’s are arbitrary constants and f2 is an arbitrary function-germ
in Fn+3.
Denote byW the vector subspace of Eq,t/Fn+3 generated by the images of the
following 11 monomials under the canonical projection π : Eq,t −→ Eq,t/Fn+3

tn−1, q1t
n−1, q21t

n−1, q31t
n−1, q1q2t

n−1

tn, q1t
n, q21t

n, q2t
n,

tn+1, q1t
n+1.

By elementary linear algebra, we get that π(Tf) ∩ V is generated by the
images under π of the following 8 function-germs:

∂tf, t∂tf, q1∂tf,
∂q1f, q1∂q1f, ∂q2f, q1∂q2f, q2∂q2f.

Thus, the R-vector space Tf is at least of codimension 3 in Eq,t. Conse-

quently, the pair (n,
�
�
�

) is not excellent .

2.4. Excellent pairs for n = 1.
(1,���) is excellent.
We take s = 8.
The weights of the quasi-homogeneous filtration are given by:

monomial t q1 q2
weight 1 4 5

The elements f0, f1 of the prenormal form are given by

f0(q, t) = t5 + q1t+ q2.

f1 = 0 and f2 is an arbitrary function-germ in F6.

Lemma 8.1. We have the inclusion F6 ⊂ (Trf0⊕ < t7 >).
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Proof.
By straightforward computations, we get that the vector space G6 ⊕ G7 is
generated by the 6 following monomials

q1t
2, q1t

3, q2t
2, t6, t7, q1t.

The images of the following 6 function-germs under p belong to G6 ⊕G7

t2∂tf0, t
3∂tf0, tf0, t

2f0, q2∂q1f0, t
7

Straightforward computations show that these 6 elements of G6 ⊕ G7 are
independent. Consequently, the R-vector space G6⊕G7 is contained in Trf .

It remains to prove that F8 ⊂ Trf0.
Proposition 8.3 implies that it suffices to prove the inclusion

F̃8 ⊂ π(Trf0).

Or equivalently that the following property holds:
- any monomial of the type a(q)tk with k < 8 is contained in Trf0.
We have:
- a(q)∂q2f0 = a(q),
- a(q)∂q1f0 = a(q)t,
thus the property holds for k = 0 and k = 1.
For k = 2, we have a(q)(t2(∂tf0) − 5tf0) = −4q1t

2 − q2t. Consequently
a(q)t2 ∈ Trf .
For k = 3, we have a(q)(t3(∂tf0) − 5t2f0) = −4q1t

3 − q2t2. Consequently
a(q)t3 ∈ Trf0.
By induction, we get that a(q)tk ∈ Trf0 for any k ∈ N. This concludes the
proof of the lemma.

This lemma implies the L-equivalence (cf. proposition 8.2):

f ∼ f0 + at7

for some value a ∈ R.

Lemma 8.2. If a 6= 0 then the following L-equivalence holds

f0 + at7 ∼ f0 + ǫt7,

with ǫ = 1 if a > 0 and ǫ = −1 if a < 0.

Proof.
Define the function-germ ga by the formula

ga(q1, q2, t) = f0(q1, q2, t) + at7.

For any λ > 0, we have:

1

λ5
ga(λ

4q1, λ
5q2, λt) = f0(q, t) + aλ2t7.



174 8. NORMAL FORMS OF GENERATING FAMILIES.

We take λ =
√
a for a > 0 and λ =

√
−a for a < 0, we get the L-equivalence

f0 + at7 ∼ f0 ± t7,
where the sign is the sign of a. Lemma is proved.

Put W =
⊕5

d=0Gd.
By elementary linear algebra, we get that the monomials t3 and t2 form a
basis of a transversal to (Trf0 ∩W ) in W .
Thus, the deformation

F (λ, q, t) = f0(q, t) + λ1t
3 + λ2t

2 + λ3t
7

is L-versal.
Next, define the function-germs g± : (R2 ×R, 0) −→ (R, 0) by the formula

g±(q, t) = f(q, t)± t7.
The equality

t∂tg±(q, t) + 3q1∂q1g±(q, t) + 5q2∂q2g±(q, t)− 5g±(q, t) = ±5t7

implies that the monomial t7 belongs to the L-tangent space to g(Cn−1,0).

Consequently the deformation G : (R2 × R2, 0) −→ (R, 0) of g± defined by
the polynomial

G(λ, q, t) = g±(q, t) + λ1t
3 + λ2t

2

is L-versal. Thus the pair (n,���) is excellent .

(1, � � �
�

) is excellent
We take s = 7.
The weights of the quasi-homogeneous filtration are given by:

monomial t q1 q2
weight 1 3 5

The elements f0, f1 of the prenormal form are given by

f0(q, t) = t5 + q1t
2 + q2.

f1 = 0 and f2 is an arbitrary function-germ in F6.

Lemma 8.3. We have the inclusion F6 ⊂ (Trf0⊕ < t6 >).

Proof.
By straightforward computations, we get that the vector space G6 is gener-
ated by the images of the following monomials:

t6, q1t
3, q2t, q

2
1 .

By straightforward computations, we get that the 4 function-germs

tf0, t
2∂tf0, q

2
1∂q2f0, t

6
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are independent and generate G6.

It remains to prove that F7 ⊂ Trf0.
Proposition 8.3 implies that it suffices to prove the inclusion

F̃7 ⊂ π(Trf0).

Straightforward computations show that the images of the monomials of he

following table generate F̃7

monomials q2
1t, q1t

4 q2t
3 q1q2t, q

2
1t

3, q2t
4 q22t

weight 7 8 9 11

By elementary linear algebra we get that the images under π of the 7 fol-
lowing function-germs

t3∂tf0, q1∂tf0, t
4∂tf0, t

5∂tf0, q1t
2∂tf0, q2∂tf0, t

7∂tf0

are independent and consequently generate F̃7. This concludes the proof of
the lemma.

The lemma implies the L-equivalence:

f ∼ f0 + at6

for some value a ∈ R (cf proposition 8.2).

The proof of the following lemma is analogous to the proof of lemma 8.2

Lemma 8.4. If a 6= 0 then the following L-equivalence holds

f0 + at6 ∼ f0 + t6.

Like in the preceding case, by elementary linear algebra, we get that the
deformations:

F (λ, q, t) = t5 + q1t
2 + q2 + λ1t

6 + λ1t
4 + λ2t

3 + λ3t

and

G(λ, q, t) = t6 + t5 + q1t
2 + q2 + λ1t

4 + λ2t
3 + λ3t

are L-versal.
Consequently, the pair (1, � � �

�
) is excellent.

2.5. Excellent pairs for n > 1.
(n,�) is excellent.
We take s = n+ 3.
The weights of the quasi-homogeneous filtration are given by the table:

monomial t q1 q2 . . . qn+1

weight 1 2 3 . . . n+ 2
.

The elements f0, f1 of the prenormal form are given by

f0(q, t) = tn+2 + q1t
n + q2t

n−1 + · · ·+ qnt+ qn+1.
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f1 = 0 and f2 is an arbitrary function-germ in Fn+3.

The monomials generating F̃n+3 are the n monomials

q1t
n+1, q2t

n+1, . . . , qn+1t
n+1.

This n dimensional R-vector space is generated by the images under π of
the function-germs

q1∂tf, . . . , qn+1∂tf.

Consequently f is L-equivalent to f0.

Obviously, the tangent space to f0 contains the R-vector space
⊕n+2

k=1 Gk.
Thus, the constant deformation F = f is L-versal.

(n,��) is excellent.
We take s = n+ 4.
The weights of the quasi-homogeneous filtration are given by the table:

monomial t q1 q2 . . . qn+1

weight 1 3 4 . . . n+ 3

The elements f0, f1 of the prenormal form are given by

f0(q, t) = tn+3 + q1t
n + q2t

n−1 + · · ·+ qnt+ qn+1.

f1 = 0 and f2 is an arbitrary function-germ in Fn+4.

By elementary linear algebra, we get that the images under π of the following

monomials form a basis F̃n+2:{
q1t

n+1, q2t
n+1, . . . , qnt

n+1,
q1t

n+2, q2t
n+2, . . . , qn+1t

n+2.

Remark the monomial qn+1t
n+1 is missing because of the equality:

π(qn+1t
n+1) = −π(qn+1t

n+2).

It is readily verified that the images of the function-germs{
t2∂tf, . . . , t

n+1∂tf,
q1∂tf, . . . , qn+1∂tf

under π are independent. Hence they form a basis of F̃n+2.
By elementary linear algebra, we get that the deformation:

F (λ, q, t) = f(q, t) + λtn+1

is L-versal. Thus the pair (n,��) is excellent.

(n, �
�

) is excellent.
We take s = n+ 3.
The weights of the quasi-homogeneous filtration are given by the table:
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monomial t q1 q2 . . . qn+1

weight 1 1 3 . . . n+ 2
.

The elements f0, f1 of the prenormal form are given by

f0(q, t) = tn+2 + q1t
n+1 + q2t

n−1 + · · · + qnt+ qn+1.

f1 = αq21t
n with α ∈ R and f2 is an arbitrary function-germ in Fn+4.

Lemma 8.5. The function-germ f is Legendre equivalent to a function germ
of the type f0 + f3 with f3 ∈ Fn+4.

Proof.
For any value of λ, the function-germ f is L-equivalent to the function-germ
fλ defined by:

fλ(q, t) = f(q, t+ λq1).

It is readily verified that fλ is L-equivalent to a function-germ of the type

tn+2 + q1t
n+1 + q2t

n−1 + · · ·+ qnt+ qn+1 + (a(λ) + α)q2
1t
n + f3

with f3 ∈ Fn+4 and a is a C∞ function-germ.
Direct computations show that the Taylor series of a is of the type

a(λ) = 2λ+ o(λ).

Thus, the implicit function theorem implies that the equation a(λ) + α = 0
can be solved in a neighbourhood of λ = − 1

2α.
This concludes the proof of the lemma.

Straightforward computations show that the R-vector space F̃n+3 is gener-
ated by the images under π of the following monomials:

q31t
n, q2t

n, q3t
n, . . . , qn+1t

n.

The images under π of the function-germs

q21∂tf, t
2∂tf, . . . , t

n∂tf

are independent and consequently generate F̃n+3.
By elementary linear algebra, we get that the deformation:

F (λ, q, t) = f(q, t) + λ1t
n

is L-versal. Thus the pair (n, �
�

) is excellent.

(n, � �
�

) is excellent.
We take s = n+ 5.
The weights of the quasi-homogeneous filtration are given by the table:

monomial t q1 q2 . . . qn+1

weight 1 2 4 . . . n+ 3
.

The elements f0, f1 of the prenormal form are given by

f0(q, t) = tn+3 + q1t
n+1 + q2t

n−1 + · · · + qnt+ qn+1,
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f1 = 0 and f2 is an arbitrary function-germ in Fn+4.

Lemma 8.6. If f is an excellent generating family-germ then Fn+4 ⊂ Tf .
Proof.
Consider the canonical projection p : Eq,t −→ Eq,t/Fn+3.
By elementary linear algebra, we get that the images under p of the mono-
mials tn+2 and tn generate a transversal to p(Tf).
Consequently, the monomials tn+2 and tn are contained in a basis of a
transversal to Tf in Eq,t.
Thus, if f is excellent then they should form a basis of a transversal to Tf .
This proves the lemma.

Lemma 8.7. The function-germ f is L-equivalent to a function-germ of the
type f0 + atn+4 + f3 with f3 ∈ Fn+5.

Proof.
The function-germ f admits a representation of the form

f = f0 + g1 + g2

with g1 ∈ Gn+4 and g2 ∈ Fn+5.
By straightforward computations, we get that the R-vector space Gn+4 is
contained in Trf0⊕ < tn+4 >.
Consequently, the function-germ g1 admits a representation of the form

−g1 = v.f0 + w.f0 + h× f0 − atn+4

for some a ∈ R.
Here v ∈ Lq,t, w ∈ Lq and h ∈ F1 are of order one.
We have

(1 + h)× f(q + w(q), t + v(q, t)) = f + v.f + w.f + h.f + f3

with f3 ∈ Fn+5. This proves the lemma.

The following lemma is straightforward.

Lemma 8.8. If the number a of the preceding lemma vanishes then tn+4 is
not contained in Tf .

This lemma together with lemma 8.6 implies that if f is excellent then f is
L-equivalent to a function-germ of the type f0 + atn+4 + f3 with a 6= 0 and
f3 ∈ Fn+5.
The proof of the following lemma is analogous to the proof of lemma 8.2.

Lemma 8.9. Any function germ of the type f0 + atn+4 + f3 with a 6= 0 and
f3 ∈ Fn+5 is L-equivalent to f0 + tn+4 + f4 with f4 ∈ Fn+5.

Put f̃ = f0 + tn+4.

Lemma 8.10. The R-vector subspace Fn+5 is contained in Trf̃ .
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Proof.
Consider the canonical projection of R-vector spaces

p1 : Fn+5 −→ (F̃n+5/F̃n+6).

Straightforward computations show that the vector space F̃n+5/F̃n+6 is of
dimension one and generated by the image of the monomial q3t

n under p1.

The image under p1 of t3∂tf̃ does not vanish. Consequently F̃n+5/F̃n+6 is

in the image of Trf̃ un der p1.
Consider the canonical projection of R-vector spaces

p2 : Fn+6 −→ (F̃n+6/F̃n+7).

Straightforward computations the images under p2 of the 5 monomials

q4t
n, q31t

n, q2t
n+2, q1q2t

n, q1t
n+4

form a basis of the vector space F̃n+6/F̃n+7. Denote this basis by B
Denote by e (e for Euler) the vector field defined by

e = t∂t + 2q1∂q1 + 4q2∂q2 + 5q3∂q3 + · · ·+ (n+ 2)qn∂qn + (n+ 3)qn+1∂qn+1 .

Remark that the following equality holds:

e.f̃ − (n+ 3)f̃ = tn+4.

We assert that the images under p2 of the following vectors are independent

t4∂tf̃ , q
2
1∂tf̃ , q2∂tf̃ , q

2
1∂tf̃ , (q1e).f̃ .

To see it just notice that the coordinates of these vectors expressed in the
basis B is triangular.

Consequently F̃n+6/F̃n+7 is in the image of Trf̃ under p2.
Consider the canonical projection of R-vector spaces

p3 : Fn+7 −→ (F̃n+7/F̃n+8).

Straightforward computations show that:
1) the images under p3 of the 2 monomials

q5t
n, q3t

n+2

form a basis of the vector space F̃n+7/F̃n+8,
2) the images under p3 of the following vectors are independent

t5∂tf̃ , q3∂tf̃ .

Consequently F̃n+7/F̃n+8 is in the image of Trf̃ under p3.
More generally for any n − 1 ≥ s ≥ 3, consider the canonical projection of
R-vector spaces

pj : Fn+4+j −→ (F̃n+4+j/F̃n+5+j).

Straightforward computations show that:
1) the images under pj of the 2 monomials

qj+2t
n, qjt

n+2
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form a basis of the vector space F̃n+4+j/F̃n+5+j ,

2) the images under pj of the following vectors generate F̃n+4+j/F̃n+5+j

tj+2∂tf̃ , qj∂tf̃ .

Consequently F̃n+4+j/F̃n+5+j is in the image of Trf̃ under pj n−1 ≤ j ≥ 3.
For j = n or j = n+ 1, straightforward computations show that:
1) the image under pj of the monomial qjt

n+2 form a basis of the vector space

F̃n+4+j/F̃n+5+j , 2) the images under pj of qj∂tf̃ generates F̃n+4+j/F̃n+5+j .
It is readily verified that Fn+4+j = {0} for j = n + 2. This concludes the
proof of the lemma.

Lemma 8.10 together with proposition 8.2 implies the L-equivalence

f ∼ f̃
provided that the number a of lemma 8.7 is not equal to zero.
Using the inclusion Fn+5 ⊂ Trf0, we get by elementary linear algebra the
equality

(T f̃⊕ < tn+2, tn >) = Eq,t.
Consequently the deformation F of f̃ defined by

F (λ, q, t) = f̃(q, t) + λ1t
n+2 + λ2t

n.

is L-versal and the pair (n, � �
�

) is excellent.
This concludes the proof of theorem 7.5

3. Proofs of the theorems on normal forms.

3.1. Proof of the L-versal deformation theorem. Following R.
Thom, we use the homotopy method. Following Martinet [Mar], the fun-
damental step in the proof of a versal deformation theorem is the following
proposition.

Proposition 8.4. Let F : (Rl ×Rn+1×Rk, 0) −→ (R, 0) be an l-parameter
deformation of a generating family-germ f : (Rn+1 × Rk, 0) −→ (R, 0) such
that TF = Eq,t.
Then, for any (l + 1)-parametric deformation

Φ : (R× Rl × Rn+1 × Rk, 0) −→ (R, 0)

of f such that Φ(0, .) = F , the Legendrian deformation Φ of f is L-equivalent
to a deformation induced from F .

Proof.
We fix coordinate-systems τ in R, λ = (λ1, . . . , λl) in Rl, q = (q1, . . . , qn+1)
in Rn+1, t = (t1, . . . , tk) in Rk.
Denote by Diff(k) the group of diffeomorphism map germ of the type

ϕ : (Rk, 0) −→ (Rk, 0),
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and by T ≈ Rk the space of translations of Rk.
Recall that the group K is a semi-direct product of Eq,t with Diff(k).
Denote by e the identity element of the direct sum K ⊕ T of the group K
with T .
We search for a map-germ γ : (R × Rl × Rn+1, 0) −→ (K ⊕ T, e) and for a
map-germ h : (R× Rl × Rn+1, 0) −→ (Rl × Rn+1, 0) such that:

(42) Φ = h∗(γ.F ),

- h(τ, ., .) is fibered over Rl,
- h(0, ., .) is the identity mapping.
We shall use the notations

γτ = γ(τ, .), hτ = h(τ, .).

The equality γ0 = e implies that there exists a map-germ

γ̃ : (R× Rl × Rn+1, 0) −→ (K ⊕ T, e)
such that the following equality holds identically

γ(τ, λ, q).γ̃(τ, λ, q) = e.

We denote the map-germ γ̃(τ, ., .) by γ−1
τ .

Similarly the equality h0 = Id implies that there exists a map germ

h̃ : (R× Rl × Rn+1, 0) −→ (Rl × Rn+1, 0)

such that the following equality holds identically

h̃(τ, λ, q)h(τ, λ, q) = (λ, q).

We denote the map-germ h̃(τ, ., .) by h−1
τ .

Having fixed this notations, equation 42 is then equivalent to:

(43) (h−1
τ )∗(γ−1

τ .Φ) = F,

Equation 43 can be written in the less compact but more explicit form:

Aτ (λ, q, t)Φ(h−1
τ (λ, q), ψτ (λ, q, t)) = F (λ, q, t),

where Aτ ∈ Eλ,q,t is such that A(0) 6= 0.
The components of γ−1

τ are given by

γ−1
τ = (Aτ , ψτ )

Before differentiating with respect to τ equation 43, we fix some notations:
- vτ .Φ = γτ .

d
dτ (γ

−1
τ .Φ),

- wτ .Φ = h∗τ
d
dτ ((h

−1
τ )∗Φ).

We differentiate with respect to τ equation 43 and multiply on the left the
result by γτh

∗
τ . We get the homological equation:

(44) vτ .Φ + wτ .Φ + ∂τΦ = 0.
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Equation 44 can be written in the less compact form:

(45) B × Φ +

k∑

i=1

ai∂tiΦ +

n+1∑

i=1

bi∂qiΦ +

l∑

j=1

cj∂λj
Φ = −∂τΦ.

Here B ∈ Eτ,λ,q,t, a1, . . . , ak ∈ Eτ,λ,q,t, b1, . . . , bn+1 ∈ Eτ,λ,q, c1, . . . , cl ∈ Eτ,λ.
Define the vector field-germs v and w by

vτ (λ, q, t) = v(τ, λ, q, t), wτ (λ, q) = w(τ, λ, q).

The function-germs ai(τ, ., ., .), bi(τ, ., .), ci(τ, .) vanish at the origin. Thus
we can integrate v and w along τ .
Consequently, the ordinary theorem for non-autonomous differential equa-
tions implies that it is sufficient to find the maps v, w in order to find γ, h.

We interpret equation 45 as follows.
Consider the following R-vector subspaces of Eτ,λ,q,t:
- the Eτ,λ,q,t-module generated by the ∂tiΦ’s and by Φ,
- the Eτ,λ,q-module generated by the ∂qiΦ’s,
- the Eτ,λ-module generated by the ∂λi

Φ’s.

Main assertion:” the equality TF = Eq,t implies the sum of the three R-
vector subspaces of Eτ,λ,q,t described above is equal to Eτ,λ,q,t”.

Equation 45 can be solved provided that this main assertion is proved.
To prove the main assertion, we use the Weierstrass-Malgrange-Mather
([Mar] chapter X) theorem1.

Theorem 8.1. Let M be an Ez,w-module of finite type with z ∈ Ru, w ∈ Rv.
Let N ⊂M be an Ez-module of finite type. Denote byMz the maximal ideal
of Ez. Let π : M −→ M/(MzM) be the standard projection. Then N = M
provided that π(M) = π(N).

Consider the following modules:
-M1 = Eτ,λ,q,t/I1 where I1 is the Eτ,λ,q,t-module generated by ∂t1Φ, . . . , ∂tkΦ,Φ,
- M2 = M1/I2 where I2 is the Eτ,λ,q-module generated by ∂q1Φ, . . . , ∂qn+1Φ.

We shall apply the Weierstrass-Malgrange-Mather theorem twice.
First, in order to prove the following lemma.

Lemma 8.11. The equality TF = Eq,t implies that the Eτ,λ,q-module M2 is
of finite type.

Proof.
Assertion: ”the Eτ,λ,q-module M2 is generated by the images of the functions
germs:

∂λ1Φ, . . . , ∂λl
Φ

1We state this theorem in the C∞ case but it is valid for K analytic and K formal
power series K = R or C.
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under the canonical projection Eτ,λ,q,t −→M2.”
This assertion implies the lemma. To prove the assertion consider the Eτ,λ,q-
submoduleN1 of M1 generated by the images under the canonical projection
Eτ,λ,q,t −→M1 of the functions germs:

∂q1Φ, . . . , ∂qn+1Φ

and by the function-germs

∂λ1Φ, . . . , ∂λl
Φ.

The assertion is equivalent to the equality N1 = M1.
To prove this equality, we use the Weierstrass-Malgrange-Mather theorem
with z = (τ, λ, q) and w = t.
Recall that F : (Rl × Rn+1 × Rk, 0) −→ (R, 0) is a deformation of the
function-germ f : (Rn+1 × Rk, 0) −→ (R, 0).
Denote by If the Et-module (=the ideal) generated by the restrictions of
∂t1f, . . . , ∂tkf, f to q = 0.
With the notations of the theorem, we get the following canonical identifi-
cations:
- π(M1) = Et/If ,
- π(N1) is the vector space generated by the images under the canonical
projection Et −→ Et/If0 of the restriction of ∂λ1F, . . . ∂λl

F to q = 0, λ = 0.
The hypothesis TF = Eq,t implies that π(M1) = π(N1). Hence the assertion
is proved and so is the lemma.

We now prove the main assertion.
Recall that Tf is the sum of the Eq,t module generated by the ∂tif ’s and by
f with the Eq-module generated by the ∂qif ’s.
Let N2 be the Eτ,λ-module generated by ∂λ1Φ, . . . , ∂λl

Φ. Then the main
assertion is equivalent to M2 = N2. We apply the Weierstrass-Malgrange-
Mather theorem with z = (τ, λ), w = q. We get the natural identifications:
- π(M2) = Eq,t/Tf .
- π(N2) is the R-vector space generated by the images under the canon-
ical projection Eq,t −→ Et,q,t/Tf of the restriction of the function-germs
∂λ1F, . . . , ∂λl

F to λ = 0.
With these identification, the equality π(N2) = π(M2) is equivalent to the
equality TF = Eq,t. This equality holds and the main assertion is proved.
This concludes the proof of the proposition.

The rest of the proof of the L-versal deformation theorem is straightforward.
Let G : (Rs × Rn+1 × Rk, 0) −→ (R, 0) be a deformation of f : (Rn+1 ×
Rk, 0) −→ (R, 0) satisfying the condition TG = Eq,t.
Let G̃ : (Rs′ × Rn+1 × Rk, 0) −→ (R, 0) be an arbitrary deformation of f .
Define the sum

G⊕ G̃ : (Rs′ ×Rs × Rn+1 × Rk, 0) −→ (R, 0)
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of the deformations G and G̃ by the formula

(G⊕ G̃)(µ, λ, q, t) = G(λ, q, t) + G̃(µ, q, t)− f(q, t).

Fix coordinates (λ1, . . . , λs) in Rs, (µ1, . . . , µs′) in Rs′ .

The restriction of G ⊕ G̃ to λ = 0 is equal to G̃. Hence, G̃ is induced
from a deformation equivalent to G provided that G̃⊕G is induced from a
deformation equivalent to G.

Lemma 8.12. The deformation G⊕ G̃ is induced from a deformation equiv-
alent to G.

Proof.
Denote by Ai the restriction of G⊕ G̃ to the vector space µ1, . . . , µi = 0.
We apply proposition 8.4 with Φ = As+s′−1, F = G. We get that As+s′−1

is induced from a deformation equivalent to G. In particular the L-tangent
space to As+s′−1 is equal to Eq,t.
Next, we apply Proposition 8.4 with Φ = As+s′−2 and F = As+s′−1. We get
that As+s′−2 is induced from a deformation equivalent to As+s′−1. Hence
As+s′−2 is induced from a deformation equivalent to G. By induction we get

that G⊕G̃ is induced from a deformation equivalent to G. Lemma is proved.

This lemma concludes the proof of the L-versal deformation theorem.

3.2. Proof of the finite determinacy theorem for L-equivalence.
The proof is along the same lines than that of the standard finite determinacy
theorem ([Math], [Mar], [AVG]), see also appendix B of the thesis.
Consider a function-germ f : (Rn+1 × Rk, 0) −→ (R, 0).
Fix coordinates q = (q1, . . . , qn+1) in Rn+1 and t = (t1, . . . , tk) in Rk.
LetMq,t be the maximal ideal of Eq,t andMd

q,t the dth power of it.
Following R. Thom, we use the homotopy method.
That is, we search a one parameter family of function-germs

Aτ : (Rn+1 × Rk, 0) −→ (R, 0)

and a one parameter family of diffeomorphism map-germs

ϕτ : (Rn+1 × Rk, 0) −→ (Rn+1 × Rk, 0)

such that the following equation holds

(46) Aτ × (fτ ◦ ϕτ ) = f.

where fτ = f + τψ, ψ ∈ M̃µ+1.
Moreover the maps Aτ should satisfy Aτ (0) 6= 0 and ϕτ is fibered over Rn+1.
This means that the components (ϕ1

τ , ϕ
2
τ ) of ϕτ are of the type

(q, t) −→ (ϕ1
τ (q), ϕ

2
τ (q, t)).

If the functions Aτ and the maps ϕτ are found then:

A1 × (f ◦ ϕ+ ψ ◦ ϕ) = f,
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thus f and f + ψ are L-equivalent.

We differentiate equation (46) with respect to τ at τ = u. We obtain:

(47) Au×
d

dτ |τ=u

(fu◦ϕτ )+
d

dτ |τ=u

(Aτ×(fu◦ϕu))+Au×(
d

dτ |τ=u

fτ )◦ϕu = 0.

Define the time-dependent vector field germ vu and the one parameter family
hu : (Rn+1 × Rk, 0) −→ R by the formulas

{
vu(ϕu(q, t)) = d

dτ |τ=u
ϕτ (q, t),

(A−1
u × hu) ◦ ϕu = d

dτ |τ=u
Aτ .

Multiplying equation (47) on the right by ϕ−1
u and on the left by A−1

u , we
get the equation

(48) vu.fu + hu × fu + ψ = 0.

For any value of u, the vector field-germ vu vanishes at q = t = 0 since
ϕu(0, 0) = (0, 0).
The fundamental theorem for non-autonomous differential equations im-
plies that for any vector-field vu vanishing at the origin there exists a one
parameter-family of diffeomorphism ϕu such that

vu(ϕu(q, t)) =
d

dτ |τ=u

ϕτ (q, t).

Consequently in order to find the one-parameter family of map-germs ϕu it
is sufficient to find the one-parameter family of vector field-germs vu.
Moreover, if the one parameter family of function-germs hu is known, then
by integrating hu along u we get the one parameter family of function-germs
Bu satisfying the equality

Bu = log(Au).

Remark that log(Au) is well-defined since A0(0) 6= 0. From this equality, we
get Au = eBu .
Consequently in order to solve equation (47), it is sufficient to solve equation
(48).

Lemma 8.13. There exists a one-parameter family of vector field-germs vu
and a one-parameter family of function-germs hu satisfying equation 48 pro-
vided that the following inclusion holds

Mν
q,t ⊂ Tf.

Proof.
The proof is analogous to the proof of Nakayama’s lemma.
Denote by m1, . . . ,ml the monomials generating the Mq,t-moduleMν

q,t.
Obviously, the following assertion implies the lemma.
Assertion. The monomials m1, . . . ,ml belong to the L-tangent space to

fu = f + uψ
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and the formula expressing the mi’s in terms of the generators of Tfu has a
C∞ dependence on u.

The inclusion Mν
q,t ⊂ Tf implies that for any j ∈ {1, . . . , l}, the mi’s can

be written in the following form

(49) mi = ai × f + vi.f + wi.f

with ai ∈ Eq,t, vi ∈ Lq,t, wi ∈ Lq.
Rewrite the right hand-side of the equality 49, in the following way
(50)
ai×f+vi.f+wi.f = ai×(f+uψ)+vi.(f+uψ)+wi.(f+uψ)−ai×(uψ)−vi.(uψ)−wi.(uψ).

Since ψ ∈Mν+2
q,t , we have that





vi.ψ ∈Mν+1
q,t ,

wi.ψ ∈Mν+1
q,t ,

ai × ψ ∈Mν+2
q,t .

Thus there exists function-germs αi,1, . . . , αi,l inMq,t such that the following
equality holds

ai × ψ + vi.ψ + wi.ψ =

l∑

j=1

αi,jmj.

Coming back to equation (50) and using the notation fu = f + uψ, we get
a system of l equations:





a1 × fu + v1.fu + w1.fu = m1 + u
∑l

j=1 α1,jmj,

. . .

ai × fu + vi.fu + wi.fu = mi + u
∑l

j=1 αi,jmj ,

. . .

al × fu + vl.fu + wl.fu = mj + u
∑l

j=1 αl,jmj .

Denote by A the matrix whose coefficients are the αi,j’s.
Using the matrix formalism, the system of l equations can be written as

~afu + ~vfu + ~wfu = (Id+ uA)~m

where ~a = (a1, . . . , al), ~v = (v1, . . . , vl), ~w = (w1, . . . , wl), ~m = (m1, . . . ,ml)
and Id is the identity matrix.
The matrix (Id+ uA) is invertible indeed (Id+A)(0) 6= 0.
By inversion of the matrix (Id+uA) in the last equality, we express the m′

is
as elements of the tangent space to f +uψ with C∞ dependence on u. This
concludes the proof of the assertion.
Lemma is proved.
This lemma achieves the proof of the finite determinacy theorem for L-
equivalence.
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3.3. Proof of proposition 8.2. The proof is standard ([Math],[Mar],[AVG]).
The assumption Fd ⊂ Trf⊕ < e1, . . . , es > implies that there exists h ∈ Eq,t,
v ∈ Lq,t, w ∈ Lq, b1, . . . , bs ∈ R such that −ψ admits the representation

(51) −ψ = v.f + h× f + w.f +
∑

j=1

jsbjej .

Define the diffeomorphism map-germ ϕ : (Rn+1 ×Rk, 0) −→ (Rn+1 ×Rk, 0)
by its components:

(ϕ1(q, t), ϕ2(q)) = (q + w(q), t + v(q, t)).

Define the function-germ A ∈ Eq,t by the formula

A(q, t) = 1 + h(q, t).

By a straightforward computation, we get that

A× ((f + ψ) ◦ ϕ) = f + ψ + h× f + v.f + w.f + r

with r ∈ Fd+1.
Using equation (51), we get that

A× ((f + ψ) ◦ ϕ) = f + ψ1 +

s∑

i=1

biei

with r ∈ Fd+1.
By induction, for any d′ > d there exists c1, . . . , cs ∈ R ad r′ ∈ Fd′ such that
the following L-equivalence relation holds

(52) f + r ∼ f + r′ +
s∑

j=1

cjej .

We have the following variant of the Nakayama lemma.

Lemma 8.14. There exists a number ν ∈ N such that for any fixed value of
c1, . . . , cs, Mν

q,t is contained in the L-tangent space to f +
∑s

j=1 cjej .

Proof.
Denote by m1, . . . ,ml a set of monomials generating theMq,t-moduleMν

q,t.
For any i ∈ {1, . . . , l}, the mi’s can be written in the following form

(53) mi = ai × f + vi.f + wi.f

where ai× ∈ Eq,t, vi ∈ Lq,t, wi ∈ Lq are of order one.
Define the function-germ g by

g =

s∑

j=1

cjej

Rewrite the right hand-side of the equality 53, in the following way

ai×f+vi.f+wi.f = ai×(f+g)+vi.(f+g)+wi.(f+g)−ai×g−vi.g−wi.g.
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Since ai, vi and wi are of order one, the function germ

ai × g − vi.g − wi.g
belongs to Fν+1.
Consequently, there exists αi,1, . . . , αi,l inMq,t such that the following equal-
ity holds

ai × g + vi.g + wi.g =

l∑

j=1

αi,jmj.

Finally, we get a system of l equations:



a1(f + g) + v1(f + g) + w1(f + g) = m1 +
∑l

j=1 α1,jmj,

. . .

ai(f + g) + vi(f + g) + wi(f + g) = mi +
∑l

j=1 αi,jmj,

. . .

al(f + g) + vl(f + g) + wl(f + g) = mj +
∑l

j=1 αl,jmj.

Denote by A the matrix whose coefficients are the αi,j’s.
Using the matrix formalism, the system of l equations can be written as

~a(f + g) + ~v(f + g) + ~w(f + g) = (Id+A)~m

where ~a = (a1, . . . , al), ~v = (v1, . . . , vl), ~w = (w1, . . . , wl), ~m = (m1, . . . ,ml)
and Id is the identity matrix.
The matrix (Id+A) is invertible since (Id+A)(0) 6= 0.
By inversion of the matrix (Id+A) in the last equality, we express the m′

is
as elements of the reduced tangent space to f + g.
Lemma is proved.

The L-finite determinacy theorem implies that for d′ big enough, the follow-
ing L-equivalence relation holds

f + ψ′ +
s∑

j=1

cjej ∼ f +
s∑

j=1

cjej .

Using the L-equivalence relation of equation (52), we get that f + ψ is L-
equivalent to f +

∑s
j=1 cjej. This concludes the proof of the proposition.

3.4. Proof of proposition 8.3. We fix coordinate-systems q = (q1, . . . , qn+1)
in Rn+1 and t = (t1, . . . , tk) in Rk.
We are given a function germ

f0 : (Rn+1 × Rk, 0) −→ (R, 0)

together with a quasi-homogeneous filtration of Eq,t.
To simplify our notations, since we are not going to use the letter f for a
special purpose, we write simply f instead of f0. Denote by Mf denotes the
Eq,t-submodule of Eq,t which is the sum of the following Eq,t-submodules:
- the Eq,t-submodule of function-germs of the type h× f where h has order
one,
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- the Eq,t-submodule of the type v.f where v ∈ Lq,t has order one.

Consider the canonical projections:

p1 : Eq,t −→ Eq,t/(Mf ∩ Fd),
p2 : Eq,t −→ Eq,t/(M̄qFd).

Put F̄d = Fd/(Mf ∩ Fd), Ēq,t = Eq,t/Mf . We get the commutative diagram:

Eq,t
p1−−−−→ Ēq,t

p2

y p̄2

y

Eq,t/(MqFd)
p̄1−−−−→ Ēq,t/(Mq Ēq,t)

The Eq,t-module Mf is contained in Trf . Thus we the following equivalence
holds

(54) (Fd ⊂ Trf) ⇐⇒ (F̄d ⊂ p2(Trf))

Using the notations of the commutative diagram put ξ = p̄2 ◦ p1.
Our previous discussion implies that proposition 8.3 is equivalent to the
following implication

(55) (ξ(Fd) ⊂ ξ(Trf)) =⇒ (F̄d ⊂ p2(Trf))

In order to prove this implication, we apply the Weierstrass-Malgrange-
Mather theorem (see theorem 8.1 page 182).
With the notations of theorem 8.1, we put:
- M = F̄d,
- N = p1(Fd ∩ Trf),
- z = q, w = t.

The Weierstrass-Malgrange-Mather theorem implies that the implication
(55) holds provided that F̄d is an Eq-module of finite type.
Since F̄d is a submodule of Ēq,t proposition 8.3 is a consequence of the fol-
lowing lemma.

Lemma 8.15. The Eq-module Ēq,t is of finite type.

Proof.
The proof of this lemma also requires the use of the Weierstrass-Malgrange-
Mather theorem.
Define the function-germ g : (Rk, 0) −→ (R, 0) by the formula

g(t) = f(0, t).

Consider the projection

η : Eq,t −→ Et
obtained by restricting a function-germ in Eq,t to q = 0. For example g =
η(f).
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This projection can be factorized through the projection (see subsection 1.5
for the notations)

πd : Eq,t −→ Eq,t/Vd.
This means that there exists a map

ρ : Eq,t/Vd −→ Et
such that the following equality holds

ρ ◦ πd = η.

The map ρ being also the restriction to q = 0.
The assumption πd(Fd) ⊂ πd(Trf) implies that πd(Trf) is a R-vector space
of finite codimension in Eq,t/Vd. consequently η(Trf) is of finite codimension
in Et.
Let v1, . . . , vs ∈ Et be a basis of a transversal to η(Trf) in Et.
We assert that the Eq-module, denoted Ñ , generated by v1, . . . , vs is a R-
vector space transversal to Mf in Eq,t.
In order to prove this assertion, we apply the Weierstrass-Malgrange-Mather
theorem (theorem 8.1).
With the notations of the theorem we take:
- z = q, w = t.
- M = Eq,t/Mf .

- N = Ñ/Mf We have canonical identifications:
- M/(MqM) is identified with Et/η(Trf).
- N/(MqM) is identified with the R-vector space generated by the images
of the vi’s under the canonical projection Et −→ Et/η(Trf).
The definition of the vi’s implies the equality

N/(MqM) = M/(MqM).

Thus the Weierstrass-Malgrange-Mather theorem implies that M = N .
Lemma is proved and so is the proposition.
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APPENDIX A

Computations of the normal forms.

1. Quasi-homogeneous filtrations.

In this section, we recall basic facts from singularity theory(see [AVGL1]
for details). One of the reason for doing this is to fix the notations.
We fix a coordinate system x = (x1, . . . , xm) in the analytic space Cm.
The space of germs of holomorphic functions in the variable x is denoted by
Ox.
The construction of this subsection depends on the choice of this coordinate-
system. We denote by Ox the ring of germs of holomorphic functions f :
(Cm, 0) −→ C.

Definition A.1. A holomorphic function-germ f : (Cm, 0) −→ C is called
quasi-homogeneous of degree d with exponents α1, . . . , αm provided that for
any λ > 0 and any (x1, . . . , xm) ∈ Cm we have:

f(λα1x1, . . . , λ
αmxm) = λdf(x1, . . . , xm).

Example. The function-germ defined by f(x1, x2) = xp1 + xq2 is quasi-
homogeneous of degree pq with exponents α1 = q, α2 = p. The function
germ defined by f(x1, x2) = x3

1 + x1x2 + x3
2 is not quasi-homogeneous.

Fix a vector α = (α1, . . . , αk) ∈ Nk.

Definition A.2. A monomial xk11 x
k2
2 . . . xkk has weight d provided that

α1k1 + · · ·+ αmkm = d.

Definition A.3. A function-germ in Ox has order d if all the monomials
appearing with non-zero coefficient in its Taylor series at the origin are of
weight at least d.

We denote by Fd ⊂ Ox the C-vector subspace of function-germs of order d.

Definition A.4. The nested sequence F0 ⊃ F1 ⊃ F2 ⊃ . . . of C-vector
spaces is called the quasi-homogeneous filtration of Ox associated to α.

Definition A.5. A quasi-homogeneous function f is non-degenerate if the
origin is an isolated critical point of1 f

1The condition for a holomorphic function-germ to have an isolated critical point at
the origin is equivalent to dim[Ox/J(f)] < +∞ where J(f) is the Jacobian ideal of f in
Ox generated by the partial derivatives ∂xk

f .

193
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Notations. The C-vector space of functions-germs of order d is denoted Fd.
The notation:

f = f0 + õ(k),

means that f = f0 + f1 where f0 is a non-degenerate quasi-homogeneous
function containing only monomials of weight at most than k and f1 ∈ Fk+1.

2. Normal forms of the P-simple singularities.

We denote by Cn the n-dimensional complex vector space.
Following Arnold [Arn2], we give the following definition.

Definition A.6. A function-germ f : (Cn, 0) −→ (C, 0) is of the type Ak,
denoted f ∈ Ak, provided that there exists a biholomorphic map-germ ϕ :
(Cn, 0) −→ (Cn, 0) such that

(f ◦ ϕ)(x) = xk+1
1 +

n∑

i=2

x2
i .

In all this section C2 denotes the two-dimensional complex vector space.

2.1. Normal form PAp,q1 . The normal form for a holomorphic function-
germ belonging to the P-singularity class PAp,q1 has already been calculated
in chapter 4 subsection 3.1. In this subsection, the following proposition was
proved.

Proposition A.1. For any holomorphic function-germ f belonging to the
P-singularity class PAp,q1 , the following G-equivalence holds

(f,∆f ) ∼ (x3+p + y3+q, xy).

2.2. PA2 normal form.

Proposition A.2. For any holomorphic function-germ f : (C2, 0) −→
(C, 0) belonging to the P-singularity class PA2, the two following statements
hold.
1) The G-Milnor number of (f,∆f ) is finite,
2) We have the G-equivalence (f,∆f ) ∼ (y2 + x3, 3x4 + 4xy2).

We fix a linear coordinate system (x, y) in C2.
In Ox,y we introduce a quasi-homogeneous filtration.
The weight of the monomial xiyj is equal to 2i+ 3j.
Let f : (C2, 0) −→ (C, 0) be a function belonging to the P-singularity class
PA2.
A non-degenerate linear map α : C2 −→ C2 sends the inflection points
of a curve to the inflection points of its image. Consequently, for any non-
degenerate linear map α : C2 −→ C2, the maps f and f ◦α are P-equivalent.
Hence, without loss of generality, we can assume that:

f(x, y) = y2 + x3 + õ(6).



2. NORMAL FORMS OF THE P-SIMPLE SINGULARITIES. 195

Lemma A.1. The function-germ f is P-equivalent to a function-germ of the
type y2 + x3 + õ(7).

Proof.
We have

f(x, y) = y2 + x3 + cx2y + õ(7).

Moreover

y2 + x3 + cx2y + õ(7) = y2 + (x+
c

3
y)3 + õ(7).

Put α(x, y) = (x − c
3y, y). Remark that if g ∈ Fk then g ◦ α ∈ Fk since the

weight of y is higher than the weight of x. Hence the function-germ f ◦α is
of the type

(f ◦ α)(x, y) = y2 + x3 + õ(7).

A non-degenerate linear map sends an inflection point of a curve to an in-
flection point of its image. Lemma is proved.

Hence, without loss of generality, we can assume that our holomorphic
function-germ f : (C2, 0) −→ C is of the type

f(x, y) = y2 + x3 + õ(7).

Put H(x, y) = y2 + x3.
According to Arnold’s classification ([Arn2]), we have f ∈ A2. This means
that there exists a biholomorphic map-germ ϕ : (C2, 0) −→ (C2, 0) such
that:

(56)

{
f ◦ ϕ = H.

(Dϕ)(0) = Id.

Here Id denotes the identity mapping of C2.
Let D[ϕ] be the determinant of the 2× 2 matrix whose columns are the first
and second derivatives of ϕ along the Hamilton vector field of H.
We have the G-equivalence (see chapter 3, section 1 for the notations)

(H,D[ϕ]) ∼ (f,∆f ).

Lemma A.2. The function D[ϕ] is of the type
D[ϕ](x, y) = −18x4 − 24xy2 + õ(9).

Proof.
From the equalities f = H + õ(7) and (Dϕ)(0) = Id we get that

ϕ(x, y) = (x+ õ(3), y + õ(4)).

The Hamilton vector field of H is h = 2y∂x − 3x2∂y. The derivation along
h increases the weight by 1.
Hence, we find the following expression for D[ϕ]

D[ϕ](x, y) = [x, y] + õ(9),
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where [x, y] denotes the determinant of the matrix
[

2y −3x2

−6x2 −12xy

]
.

Lemma is proved.

Define the holomorphic function germ E ∈ Ox,y by

E(x, y) = 3x4 + 4xy2.

Lemma A.2 implies the following G-equivalence relation

(f,∆f ) ∼ (H,E + r)

with r ∈ F10.
We now prove the G-equivalence

(57) (H,E + r) ∼ (H,E).

This will conclude the proof of proposition A.2.
In order to prove the G-equivalence relation (57), it is needed to introduce
a subspace of the G-tangent space to (H,E). Recall from section 4 that the
G-tangent space to the function-germ (H,E) is the Ox,y-module generated
by the map-germs:

{
x∂x(H,E), y∂x(H,E), x∂y(H,E), y∂y(H,E),

(E, 0), (0, E).

We denote by diff(2) the set of germs of vector-field f the type a∂x + b∂y
with a, b ∈ Ox,y.
We say that a vector-field v ∈ diff(2) has order d if for any k and any
m ∈ Fk, we have v.m ∈ Fk+d.
Denote by T the Ox,y-submodule of the tangent space to (H,E) generated
by:
- {v.(H,E) : v ∈ diff(2) has order 1},
- (E, 0), (0, xE), (0, yE).
Here v.(H,E) denotes the Lie derivative of the map-germ (H,E) along the
vector-field v. Thus v.(H,E) ∈ O2

x,y.
Next, consider the Ox,y-module M defined by

M = {(g, h) ∈ Ox,y ×Ox,y : g ∈ F8, h ∈ F10} .

Lemma A.3. The G-equivalence (H,E + r) ∼ (H,E) holds provided that M
is contained in T .

Proof.
The proof is in two steps. First we prove the assertion for formal power
series and then use the G-finite determinacy theorem.
Assume that we have proved the following G-equivalence relation:

(H,E + r) ∼ (H +m1, E +m2)
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with m1 ∈ Fd1 and m2 ∈ Fd2 , d1 ≥ 8, d2 ≥ 10.
Assertion. We have a G-relation of the type

(58) (H,E + r) ∼ (H + õ(d1), E + õ(d2)).

The inclusion M ⊂ T implies that (m1,m2) admits a representation of the
type

(59) (m1,m2) = a(E, 0) + b(0, E) + v.(H,E)

with a, b ∈ Ox,y, v ∈ diff(2).
Put v(x, y) = v1(x, y)∂x + v2(x, y)∂y .
Define the biholomorphic map-germ ϕ : (C2, 0) −→ (C2, 0) by

ϕ(x, y) = (x+ v1(x, y), y + v2(x, y)).

Define the matrix A ∈ Gl(2,Ox,y) by

A =

(
1 −a
0 1− b

)
.

With the notations of subsection 4.2, we get the equality

(ϕ,A).(H+m1, E+m2) = (H,E)−v.(H,E)−(aE, bE)+(m1 ,m2)+(õ(d1), õ(d2)).

Coming back to equation (59), we get that equation (58) holds.
This proves the assertion.
We denote byMk

x,y the kth power of the maximal ideal Mx,y ⊂ Ox,y.
The assertion implies that for any k, there exists a holomorphic map-germ
ψ = (ψ1, ψ2) ∈ O2

x,y with ψ1 ∈ Mk, ψ2 ∈ Mk such that the following
G-equivalence holds

(60) (H,E) ∼ (H,E + r) + ψ.

We claim that under the assumption of the lemma, this implies that (H,E)
and (H,E + r) are G-equivalent.
Indeed, the Ox,y module T is contained in the G-tangent space to (H,E).
Thus, the inclusion M ⊂ T implies that the G-Milnor number of (H,E) is
finite.
The G-finite determinacy theorem implies that for k big enough, the G-
equivalence (60) implies the following G-equivalence

(H,E) ∼ (H,E + r).

This concludes the proof of the lemma.

The following lemma concludes the proof of proposition A.2. We keep the
same notations.

Lemma A.4. The Ox,y-module M is contained in T .

Proof.
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The division theorem (or the Nakayama lemma) implies that module M is
generated by the 8 following four map-germs:

(x4, 0), (xy2, 0), (0, x5), (0, x2y2)

and

(x3y, 0), (y3, 0), (0, x4y), (0, x3y).

Denote by V the C-vector space generated by these 8 map-germs. Direct
computations show that the eight following map-germ of V ∩T are linearly
independent:

(E, 0), (0, xE), x2∂x(H,E), xy∂y(H,E)

and

(0, yE), xy∂x(H,E), y3∂y(H,E), x3y∂y(H,E).

Thus V is contained in T . Lemma is proved.

2.3. A3 is not P-simple.

Proposition A.3. For any holomorphic function-germ f : (C2, 0) −→
(C, 0) belonging to the singularity class A3. Then, the holomorphic function-
germ f : (C2, 0) −→ (C, 0) is not P-simple.

Proof.
Since f ∈ A3 means that there exists a biholomorphic map-germ ϕ : (C2, 0) −→
(C2, 0) such that:

H = f ◦ ϕ,
with H(x, y) = y2 + x4.
A non-degenerate linear map sends the inflection points of a curve to the
inflection points of its image. Hence, without loss of generality we can
assume that:

(Dϕ)(0) = Id.

Consider the one-parameter family fλ of function-germs f defined as follows.
Let ϕλ(x, y) = ϕ(x, y) + (0, λx2) and put fλ = H ◦ ϕ−1

λ .
We denote by D[ϕλ] the generalized Wronskian of ϕ.
This means that D[ϕλ] is the determinant of the 2 × 2 matrix whose lines
are the first and second derivative of ϕλ along the Hamilton vector-field of
H.
We have the following G-equivalence

(H,D[ϕλ]) ∼ (fλ,∆fλ
).

The proof of proposition A.3 is based on the three following assertions.
Assertion 1: if fa is P-equivalent to fb then a2 = b2.
Assertion 2: if (H,D[ϕa]) is V -equivalent to (H,D[ϕb]) then a2 = b2.
Assertion 3: assertion 2 implies assertion 1.
Assertion 1 implies that λ is a modulus. Hence the modality of f is at least
1 provided that assertion 1 is proved.
We prove assertion 3.
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Denote by ∼ the G-equivalence. By definition, fa is P-equivalent to fb if
and only if the following G-equivalence holds

(fa,∆fa
) ∼ (fb,∆fb

)

For any value of λ, we have the G-equivalence:

(fλ,∆fλ
) ∼ (H,D[ϕλ])

Thus the G-equivalence (fa,∆fa
) ∼ (fb,∆fb

) is equivalent to the G-equivalence
(H,D[ϕa]) ∼ (H,D[ϕb]). If two map-germs are G-equivalent then in partic-
ular they are V -equivalent since the group G is a subgroup of the group K
(see section 4). This proves assertion 3.
It remains to prove assertion 2.
Define the quasi-homogeneous weight of xiyj to be i+ 2j.

Lemma A.5. The map-germ (H,D[ϕλ]) is V -equivalent to a holomorphic
map-germ of the form (H, 7

6 (c+ λ)y3 + x6 + õ(6)) for some c ∈ C

Proof.
The holomorphic map-germ ϕ : (C2, 0) −→ (C2, 0) is of the form

ϕ(x, y) = (x+ õ(1), y + cx2 + õ(2)).

Hence ϕλ : (C2, 0) −→ (C2, 0) is of the form:

ϕλ(x, y) = (x+ õ(1), y + (λ+ c)x2 + õ(2)).

Consequently, we get that

D[ϕλ] = (λ+ c)[x, x2] + [x, y] + õ(6),

where the brackets are equal to the following 2× 2 determinants

[x, y] =

∣∣∣∣
2y −4x3

−12x3 −24x2y

∣∣∣∣ ,

[x, x2] =

∣∣∣∣
2y 4xy
−7x3 8y2 − 16x4

∣∣∣∣ .

Denote by ≡ the V -equivalence relation.
We substitute y2 by −x4 in [x, y] and x4 by −y2 in [x, x2]. We get the
V -equivalence

[x, y] + (λ+ c)[x, x2] ≡ 24x6 + 28(λ+ c)y3.

This proves the lemma.

Define the family of function-germs Eα : (C2, 0) −→ (C, 0) depending on the
parameter α ∈ C by

Eα(x, y) = αy3 + x6.

The next lemma concludes the proof of proposition A.3.

Lemma A.6. If a holomorphic map-germ of the type (H,Ea + õ(6)) is V -
equivalent to a holomorphic map-germ of the type (H,Eb+õ(6)) then a2 = b2.
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Proof.
Denote the two holomorphic map-germs by (H,Ea + r1) and (H,Eb + r2)
with r1, r2 ∈ F7.
Assume that there exist an invertible 2× 2 matrix A with elements in Ox,y
and biholomorphic map-germs g : (C2, 0) −→ (C2, 0), ψ : (C, 0) −→ (C, 0)
such that:

(61) A× ((H,Ea + r1) ◦ g) = (ψ ◦H,Eb + r2).

Remark that this equation is in fact a system of two equations, that we shall
call the first and second equation of the system (61).
The matrix A is of the type

A =

(
α β
γ δ

)

with α, β, γ, δ ∈ Ox,y.
Write:

g(x, y) = (mx+ õ(1), nx+ py + qx2 + õ(2)), m, p ∈ C \ {0} .

Equating the terms of quasi-homogeneous weight 2 in the first equation of
the system (61), we get that n = 0.
Equating the terms of quasi-homogeneous weight 4 in the first equation of
the system (61), we get that:

p2y2 +m4x4 + 2pqx2y = c(y2 + x4)

where c denotes a non-zero constant.
Thus p = ±m2, q = 0. The second equation of the system (61) is of the
form:

γH + δ(Ea + r1) = Eb + r2.

Equating the terms of weight 4 and 5 we get that γ ∈ F2. Equating the
terms of weight 6, we get that γ ∈ F3. Consequently:

δ(0)(ap3y3 +m6x6) = by3 + x6.

As we saw previously p = ±m. Thus identifying the coefficient of x6 and y3

in this equality, we get:

δ(0) = m−6

and:

a2 = b2.

Lemma is proved.
This lemma concludes the proof of Assertion 2. Proposition A.3 is proved.
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2.4. PA2 is P-simple. First, we consider a one parameter deformation
F : (C × C2, 0) −→ (C, 0) of f ∈ PA2.
Denote by F̄ a representative of the germ F .
Assume that for any λ small enough the origin is a critical point of F̄ (λ, .)
of critical value zero (i.e. F̄ (λ, .) ∈M2).
According to Arnold’s classification [Arn2], the germ at the origin of the
holomorphic function F̄ (λ, .) belongs either to the P-singularity class A1 or
A2 provided that λ is small enough.
Remark that the P-singularity class Ak gives rise to a singularity class in
the usual sense by ”forgetting” the vector space structure on C2 ([AVG]).
According to our P-classification the germ at the origin of F̄ (λ, .) belongs
either to a P-singularity class PAp,q1 for some value of p, q depending on
λ or to the P-singularity class PA2, provided that λ is small enough. By
definition of the P-singularity class PAp,q1 , if the germ of F̄ (λ, .) at the origin
belongs to the P-singularity class PAp,q1 then there exists two lines d1, d2

passing through the origin such that:
- the germ at the origin of the restriction of F̄ (λ, .) to d1 is a function-germ
with a critical point A3+p at the origin,
- the germ at the origin of the restriction of F̄ (λ, .) to d2 is a function-germ
with a critical point A3+q at the origin.
The following lemma implies that if the germ at the origin of F̄ (λ, .) belongs
either to a P-singularity class PAp,q1 then p = q = 0.

Lemma A.7. Let G : (C × C2, 0) −→ (C, 0) be an arbitrary one-parameter
deformation of a germ f ∈ A2. Fix an arbitrary complex line L ⊂ C2 passing
through the origin. Let k(λ) be such that the restriction of G(λ, .) to the line
L has a singularity Ak(λ) at the origin.
Then the inequality k(λ) ≤ 2 holds provided that λ is small enough.

Proof.
Let L ⊂ C2 be the line such that the restriction of G(λ, .) has a critical point
of the type Ak(λ).
The restriction of G(0, .) to L has a critical point adjacent to Ak(λ) provided
that λ is small enough.
In an appropriate linear coordinate system the function G(0, .) is of the form

G(0, x, y) = y2 + x3 + yr1(x, y) + r2

with r1 ∈M2
x,y and r2 ∈M3

x,y.
Consequently, the germ at the origin of the restriction of G(0, .) to L has
either an A2 critical point or an A1 critical point. Thus, either A2 or A1

is adjacent to Ak(λ) provided that λ is small enough. Consequently the in-
equality k(λ) ≤ 2 holds provided that λ is small enough. Lemma is proved.

Remark that at a degenerate inflection point of a curve of equation f = 0,
the restriction of f to its tangent line has a critical point A3. Thus the
preceding lemma has the following corollary.
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Corollary A.1. Let F be a deformation of f ∈ A2 then the P-discriminant
of F consists only of points corresponding to curves with singular points.

We come back to the simplicity of PA2. We have proved that:
- all the function-germs in PA1 are P-equivalent (proposition A.1),
- all the function-germs in PA2 are P-equivalent (proposition A.2).
Thus lemma A.7 implies that there are only two P-equivalence classes in a
small neighbourhood of f namely PA1 and PA2. This concludes the proof
of the simplicity of PA2.

2.5. PAp,q1 and PA2 are the only P-simple plane singularities.

Lemma A.8. If f : (C2, 0) −→ (C, 0) is a holomorphic function-germ with a
critical point at the origin such that f /∈ A1 ∪A2, then f is not P-simple.

Proof.
Arnold’s classification ([Arn2]) implies that under the assumptions of the
lemma there exists a deformation F : (C × C2, 0) −→ (C, 0) of f satisfying
the following property.
There exists a representative F̄ of F such that
- for any λ 6= 0 small enough, the germ at the origin of F̄ (λ, .) has a critical
point of critical value 0;
- for any λ 6= 0 small enough, the germ at the origin of F (λ, .) belongs to
the singularity class A3.
We have proved in subsection 2.3 that any holomorphic function-germ in A3

satisfying these conditions is not P-simple. Consequently f is not P-simple.
Lemma is proved.

Lemma A.9. Assume that f : (C2, 0) −→ (C, 0) is a Morse function-germ
such that for any (p, q), f /∈ PAp,q1 then there are an infinity P-singularity
classes in any small neighbourhood of f . In particular f is not P-simple.

Proof.
By definition the plane curve-germ of equation f = 0 contains a line. That
is up to a linear change of coordinates f has the form

f(x, y) = x(y + ax2+p + o(x2+p)).

Assume for notational reasons that a 6= 0. Consider the deformation:

Fq(λ, x, y) = f(x, y) + λy3+q.

We have Fq(λ, .) ∈ PAp,q1 provided that λ 6= 0. Hence for any neighbourhood
U of f , for any value of q ∈ N, there exists a function-germ Fq(λ, .) belonging
to the P-singularity class PAp,q1 . Lemma is proved.

3. Proof of the P-versal deformation theorem for PAp,q1 .

In this section we prove theorem 2.11 of page 42.
For notational reasons, we assume that p and q are strictly positive integers.
We fix a linear coordinate-system (x, y) in the two-dimensional vector space
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C2.
Let P : (Cp+q ×C2, 0) −→ (C, 0) be the holomorphic function-germ defined
by the polynomial

P (α, β, x, y) = x3+p + y3+q +

p∑

j=1

αjx
2+j +

q∑

k=1

βky
2+k,

with α = (α1, . . . , αp), β = (β1, . . . , βq).
Denote by

G : (Ck × C2, 0) −→ (C, 0)

an arbitrary deformation of a holomorphic function-germ
f : (C2, 0) −→ (C, 0) belonging to the P-singularity class PAp,q1 .

Lemma A.10. The deformation (G,∆G) is G-equivalent to a deformation
induced from (P (α, β, x, y), xy).

Proof.
The holomorphic function-germ f = G(0, .) belongs to the P-singularity
class PAp,q1 . Thus proposition A.1 implies the following G-equivalence holds

(f,∆f ) ∼ (x3+p + y3+q, xy)

Hence (G,∆G) is G-equivalent to a deformation of (x3+p + y3+q, xy).
Define the deformation A : (Cp+q+5×C2, 0) −→ (C×C, 0) of (f,∆f ) by the
polynomials

A(µ,α, β, x, y) = (P (α, β, x, y) + µ1x
2 + µ2y

2 + µ3x+ µ4y, xy + µ5).

Direct calculations show that the G-tangent space to A is TA = O2
x,y. Thus,

the G-versal deformation theorem (see chapter 4, section 5) implies that
the deformation A is G-versal. Consequently (G,∆G) is G-equivalent to a
deformation induced from A.
Denote respectively by γ, λ the parameters of the deformations G and P .
We have λ = (α, β) ∈ Cp+q. Put µ = (µ1, . . . , µ5). We use the old-fashioned
notation:

λ = λ(γ)
µ = µ(γ)

for a map inducing the deformation equivalent to (G,∆G) from A. Lemma
A.10 is a consequence of the following lemma.

Lemma A.11. The map-germ µ vanishes identically.

Proof.
Denote by Ḡ a representative of G.
The function Ḡ(γ, .) has a Morse critical point in a neighbourhood the origin
provided that γ is small enough.
A translation sends an inflection point of a curve to an inflection point of
its translation. Consequently, we can assume without loss of generality that
the Morse critical point of Ḡ(γ, .) is the origin.
Proposition A.1 implies that for any γ small enough:
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1) ∆Ḡ(γ, .) has a Morse critical point at the origin of critical value 0,
2) the restriction of Ḡ(γ, .) to each branch of the plane curve

{
(x, y) ∈ C2 : ∆Ḡ(γ, x, y) = 0

}

has a critical point of the type Ak with k ≥ 2.
Condition 1 implies that µ5 vanishes identically. Then, condition 2 implies
that µ1, . . . , µ4 also vanish identically. Lemma is proved.

Lemma A.12. Assume that ∀j ∈ {1, . . . , p}, ∀k ∈ {1, . . . , q}, the vectors
(x2+j , 0), (y2+k, 0) are contained in the G-tangent space to (G,∆G). Then
the following G-equivalence holds
(G,∆G) ∼ (P (α, β, x, y), xy).

Proof.

Consider the deformation B : (Ck+5×C2, 0) −→ (C×C, 0) of (f,∆f ) defined
by the formula

B(µ, γ, x, y) = (G(γ, x, y) + µ1x
2 + µ2y

2 + µ3x+ µ4y,∆G(γ, x, y) + µ5).

By direct computations, we get that under the conditions of the lemma the
G-tangent space to B is TB = O2

x,y.
The G-versal deformation theorem implies that B is G-versal.
Consequently the deformation

(C2, 0) −→ (C× C, 0)
(α, β, x, y) 7→ (P (α, β, x, y), xy)

is induced from a deformation equivalent to B. The same argument as the
one given in lemma A.11 implies that (P (α, β, x, y), xy) is induced from a
deformation equivalent to (G,∆G).
On the other hand, lemma A.11 implies that (G,∆G) is induced from a de-
formation equivalent to (P (α, β, x, y), xy). We have shown that:
- (G,∆G) is induced from a deformation equivalent to (P (α, β, x, y), xy),
- (P (α, β, x, y), xy) is induced from a deformation equivalent to (G,∆G).
Consequently (G,∆G) and (P (α, β, x, y), xy) are G-equivalent. Lemma is
proved.

By definition of P-versality, these two lemmas imply that a function-germ
G satisfying the conditions of lemma A.12 is a P-versal deformation.

It remains to find a deformation G such that (x2+j , 0), (y2+k, 0) belong to
the G-tangent space to (G,∆G) for all2 0 < j ≤ p, 0 < k ≤ q.
We assert that the deformation F : (Cp+q×C2, 0) −→ (C, 0) of f : (C2, 0) −→
(C, 0) defined by the formula

F (α, β, x, y) = xy + x3+p + y3+q +

p∑

j=1

αjx
2+j +

q∑

k=1

βky
2+k,

2Recall that for notational convenience, we have assumed that pq > 0.
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satisfies this property.
We show that the G-tangent space to (F,∆F ) contains (x2+j , 0), j ≤ p.
The proof that (y2+k, 0) k ≤ q is contained in the G-tangent space to (F,∆F )
differs only in notations.

Denote by Fj the restriction of F to the complex line αk = 0 for k 6= j,
βk = 0 for all k’s. That is Fj is the one-parameter deformation induced
from F defined by:

Fj(αj , x, y) = xy + x3+p + y3+q + αjx
2+j .

To avoid to many indices we put αj = τ .
Final assertion: the vector (x2+j , 0) is contained in the G-tangent space to
Fj .
The G-tangent space to F contains the G-tangent space to Fj . Thus, this
assertion implies that (x2+j , 0) is contained in the G-tangent space to F .
Consequently the proof of this assertion will conclude the proof of the the-
orem.

Denote byMk the kth power of the maximal idealM⊂ Ox,y and by M the
Ox,y-module:

M =
{
(0,m) : m ∈M2

}
.

Lemma A.13. The module M is contained in the G-tangent space to (Fj ,∆Fj
).

Proof.
The function germ f = Fj(0, .) belongs to the P-singularity class PAp,q1 ,
thus proposition A.1 implies that:

(Fj(0, .),∆Fj
(0, .)) ∼ (x3+p + y3+q, xy).

Hence the G-tangent space to (Fj ,∆Fj
) contains the tangent space to the

constant deformation equal to (x3+p + y3+q, xy). It is readily verified that
the G-tangent space to this constant deformation contains the Ox,y-module
M . Lemma is proved.

We conclude the proof of the final assertion.
The Hamilton vector-field of Fj(τ, .) is:

hτ = (x+ r1(τ, x, y))∂x − (y + r2(τ, x, y))∂y

with r1(τ, .), r2(τ, .) ∈M2.
Thus for any value of τ , we have ∆Fj

∈ M2. Consequently the restriction

of ∂τ∆Fj
to τ = 0 is contained inM2.

Lemma A.13 implies that the restriction of (0, ∂τ∆Fj
) to τ = 0 is contained

in the G-tangent space to (Fj ,∆Fj
). Thus (∂τF, 0)|τ=0 = (x2+j , 0) is con-

tained in the G-tangent space to (Fj ,∆Fj
). This concludes the proof of the

final assertion. Theorem is proved.
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4. The ”generic” bifurcation diagrams.

4.1. A general remark concerning the notion of genericity. Fix
respective neighbourhoods Λ, U of the origin in Ck and C2. A holomorphic
functions F : Λ× U −→ C defines a k + 3-parametric deformation
G : (Ck+3 × C2, 0) −→ (C, 0) defined by

G(λ, α, γ, p) = F (λ, p+ α) + γ

where α ∈ C2, γ ∈ C are the additional parameters.
The deformationG defines a k+3-dimensional variety in the space JN0 (C2,C)
of N -jets at the origin, for N big enough.
Consequently, the property:
- ”there exists a point λ0, p0 such that the germ of F (λ0, .) at p0 belongs to
the P-singularity class X”
is generic provided that for any N big enough the set of N -jets of function-
germs f : (C2, 0) −→ C such that f ∈ X is a variety of codimension at most
than k + 3 in JN0 (C2,C).
The case where f is a function-germ without a critical point at the origin is
already treated by Kazarian’s theory [Ka1].
Consequently for the rest of the section, we consider only the case where
f ∈M2 has critical point at the origin.
The space M2 is of codimension 3 in JN0 (C2,C).
Consequently, in order to compute the “generic bifurcation diagrams” ap-
pearing in k-parameter families (which do not follow from Kazarian’s the-
ory), we do as follows:
- first, we compute the R-singularity classes of codimension at most k in the
space M2 of function-germs with a critical point at the origin,
- for a given R-singularity class, we search the P-singularity classes con-
tained in this R-singularity classes of codimension at most k in M2,
- when possible, we compute the P-versal deformations for each represen-
tative of a P-singularity class. This P-versal deformation gives a ”generic”
bifurcation diagram.

4.2. Proof of theorem 2.2 of page 25. Denote by Σ[X] the set of
holomorphic function germs inM2, belonging to a given P-singularity class
X.
According to Arnold’s classification [Arn2] , the complement of Σ[A1] ∪
Σ[A2] is of codimension 2 in the space M2.
Let G : (C × C2, 0) −→ (C, 0) be a generic 1-parameter deformation of the
holomorphic function-germ f = G(0, .).
The P-versal deformation theorem proved in section 3 of this chapter implies
that the codimension of Σ[PAp,q1 ] in M2 is equal to p+ q.
Consequently, if G is generic such that f ∈ A1 then f belongs either to the
P-singularity class PA1 or to the P-singularity class PA1

1.
According to same P-versal deformation theorem, if f ∈ PA1

1 then the P-
discriminant of G is biholomorphically equivalent to the germ at the origin
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of the values (λ, ε) such that ε is a critical value of the restriction of

x4 + λx3 + y3

to the curve of equation xy = 0.
Hence the P-discriminant of G is biholomorphically equivalent to the germ
of the curve of equation ε(ε− λ4) = 0.
For f ∈ PA1 the P-discriminant is biholomorphically equivalent to the germ
at the origin of the values (λ, ε) such that ε is a critical value of the restriction
of

x3 + y3

to the curve xy = 0. That is the germ of the line ε = 0.
If f belongs to the singularity class A2, then f also belongs to the P-
singularity class PA2.
Lemma A.7 of page 201, implies that the P-discriminant of G consists only
of singular curves.
Hence the P-discriminant coincides with the germ at the origin of the usual
discriminant consisting of the values of the parameter (λ, ε) for which the
curve

Vλ,ε = {p ∈ U : G(λ, p) = ε}
is singular.
Usual singularity theory ([AVGL1]) implies that this discriminant is bi-
holomorphically to the germ at the origin of the semi-cubical parabola given
by {

(λ, ε) ∈ C2 : ε2 = λ3
}
.

4.3. Proof of theorem 2.3 of page 26. LetG : (C2×C2, 0) −→ (C, 0)
be a generic 2-parameter deformation of the function f = G(0, .) such that
for each λ, G(λ, .) is a Morse function. Then, according to the previous
discussion, the holomorphic function germ f belongs to the P-singularity
class PAp,q1 with p+ q ≤ 2.
The case p+ q < 2 has been treated in the preceding subsection.
If p+ q = 2 then either

f ∈ PA1,1
1

or

f ∈ PA2
1.

If f ∈ PA1,1
1 then the bifurcation diagram is biholomorphically equivalent

to the germ at the origin of the variety consisting of the values (λ, ε) for
which ε is a critical value of the restriction of the function

(x, y) 7→ x4 + λ1x
3 + y4 + λ2y

3

to the plane curve-germ of equation xy = 0.
If f ∈ PA2

1 then the bifurcation diagram is biholomorphically equivalent to
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the germ at the origin of the variety consisting of the values (λ, ε) for which
ε is a critical value of the restriction of the function

(x, y) 7→ x5 + λ1x
4 + λ2x

3 + y3

to the plane curve-germ of equation xy = 0.



APPENDIX B

The finite determinacy and versal deformation

theorems for G-equivalence.

1. Proof of the finite determinacy theorem for G-equivalence.

In this section, we use the notation f : (Cn, 0) −→ (Cn−1 × C, 0) instead of

f̃ : (Cn, 0) −→ (Cn−1 × C, 0) as we did before.
We denote by e the identity element of the group G.
We used the symbols µG for the G-Minor number in order to make the
distinction with the usual Minor number µ of singularity theory. We are
not going to use the the usual Minor number any longer. Consequently, we
simply denote by µ the G-Milnor number of f instead of µG as we did before.
The other notations are those of chapter 4.
So, let f : (Cn, 0) −→ (Cn−1 × C, 0) be a holomorphic map-germ.
Fix coordinates x = (x1, . . . , xn) in Cn . LetM be the maximal ideal of Ox
andMk the kth power of it.
consider the Ox-module of map-germs vanishing at order at least k, that is

M̃k =
{

(ψ1, . . . , ψn) ∈ Onx : ∀i, ψi ∈Mk
}
.

Remark that the Ox-module M̃k is finitely generated.
Following R. Thom, we use the homotopy method [AVG], [Math], [Mar].

Denote by D ⊂ C the unit disk centered at the origin

D = {t ∈ C :| t |≤ 1} .
Consider the one-parameter family ft, t ∈ D defined by

ft = f + tψ,

where ψ is an arbitrary map in M̃µ+1.
The finite determinacy theorem for G-equivalence asserts that f1 is G-equivalent
to f .
To prove this theorem, we search for a holomorphic map γ : D −→ (G, e)
such that:

(62) γ(t).ft = f.

For any value of t γ(t) is an element of the group G and γ(t).f is the image
of f under the action of γ(t).

209
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If a holomorphic map γ satisfying equation (62) is found then the following
equality holds

γ(1).(f + ψ) = f,

and consequently f and f + ψ are G-equivalent.
We differentiate equation (62) with respect to t at t0.
To do this we identify the group G with a subgroup of the V -equivalence
group K (see page 79).
Via this identification, we write

γ(t) = (ϕt, At)

where ϕt : (Cn, 0) −→ (Cn, 0) is a biholomorphic depending on the parame-
ter t ∈ D and At is a matrix of GL(n,Ox) also depending on the parameter
t.
Equation 62 can be written in the more explicit form

(63) At × (ft ◦ ϕt) = f.

We differentiate equation 63 with respect to t at t = u, we get

(64) Au×
d

dt |t=u

(fu ◦ϕt)+
d

dt |t=u

(At× (fu ◦ϕu))+Au× (
d

dt |t=u

ft)◦ϕu = 0.

Define the time-dependent holomorphic vector field germ vu and the one
parameter family of matrices hu with entries in Ox by the formulas

{
vu(ϕu(x)) = d

dt |t=u
ϕt(x),

(A−1
u × hu) ◦ ϕu = d

dt |t=u
At.

Multiplying equation (47) on the right by ϕ−1
u and on the left by A−1

u , we
get the homological equation

(65) vu.fu + hu × fu + ψ = 0.

Where mu = (vu, hu) belong to the tangent space g to G at the identity
element (see page 80).

Lemma B.1. Equation (63) can be solved provided that there exists a holo-
morphic map

D −→ g

u −→ (vu, hu)

satisfying equation (65).

Proof.
This is a straightforward application of the fundamental theorem on differ-
ential equations.
First we search for a one-parameter family of biholomorphic map germ
gt : (Cn, 0) −→ (Cn, 0) such that

(66)
dg

dt
|t=u (t, x) = vu(gu(x))
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and t ∈ D.
The germ of the time dependent vector field

vt : (Cn, 0) −→ (TCn, 0)

gives rise to the germ of a vector field

ṽ : D × (Cn, 0) −→ TD × T (Cn, 0).

The vector field ṽ being defined by the formula

ṽ(t, x) = (1, vt(x)).

We have the equality
vt(0) = 0, ∀t ∈ D.

Hence S = {(t, x) ∈ D × Cn : x = 0} is everywhere tangent to ṽ.
The fundamental theorem on differential equations implies that in a neigh-
bourhood of S, we can integrate the vector field ṽ. That is there exists a
biholomorphic map

g̃ : D × (Cn, 0) −→ D × (Cn, 0)

such that:
dg̃

dt
|t=u (t, x) = ṽ(g̃(u, x)),

where g̃(t, x) = (t, g(t, x)). Put gt = g(t, .). The map gt, satisfies equation
(66).
Moreover, if the one parameter family of function-germs ht is known, then
by integrating ht along t we get the one parameter family of holomorphic
function-germs Bt satisfying the equality

Bt = log(At).

Remark that log(At) is well-defined since det(A0(0)) 6= 0. From this equal-
ity, we get At = eBt . Lemma is proved.

Lemma B.2. There exists a map satisfying equation 65 provided that M̃µ ⊂
Tf .

Proof.
The proof is the same as the proof of Nakayama’s lemma.
Fix coordinates in Cn−1 × C.
Denote by v1, . . . , vn the vectors of Cn−1 × C having the components:

{
vjj = 1

vik = 0 for k 6= j

We construct a basis α1, . . . , αl of the Ox-module M̃µ as follows.
Let e1, . . . , es be a basis of monomials of the µth power Mµ

x ⊂ Ox of the

maximal ideal Mx ⊂ Ox. Then the map-germs ej .v
k’s form a basis of M̃µ.

It remains to prove is that there exists holomorphic maps:

v1, . . . , vl : D −→ g
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such that:
vj .ft = αj.

If this assertion is proved then we write:

ψ =
l∑

j=1

bjαj, bj ∈M.

This is made possible by the fact that ψ ∈ M̃µ+1 . Then mt =
∑
bjvj ∈ g

is a holomorphic map from D to g satisfying equation (65).

Thus we search for the maps v1, . . . , vl.

The assumption M̃µ ⊂ Tf , implies that for all j ∈ {1, . . . , l} there exists
mj ∈ g such that:

mj .f = αj.

Write the left-hand side of this equation in the following way

(67) mj.f = mj.ft − tmj.ψ.

Remark that by definition of G, we have the implication

(ψ ∈ M̃µ+1) =⇒ (mj .ψ ∈ M̃µ+1).

Hence there exists aj,k ∈ M̃ such that for all j ∈ {1, . . . , l}:

mj.ψ =

l∑

k=1

aj,k × αk.

Here αk : (Cn, 0) −→ (Cn−1 × C, 0) is a holomorphic map-germ. The aj,k’s
are holomorphic function germs, hence to multiply αk by aj,k makes sense.
Substituting these equalities in formula 67, we get a system of l-equations

(68)





m1.ft = α1 + t
∑l

k=1 a1,k × α1,
. . .

mj.ft = αj + t
∑l

k=1 aj,k × αk,
. . .

ml.ft = αl + t
∑l

k=1 al,k × αk.
where the aj,k belong to the maximal ideal Mx.
Define the map-germs ~vt and ~α by their components

~vt = (m1.ft, . . . ,mk.ft),
~α = (α1, . . . , αk).

Let A be the matrix whose coefficients are the function-germs aj,k’s.
With the matrix formalism, the system of equations (68) is written in the
following form

~vt = (Id+ tA)~α.

We assert that for any t ∈ D, the matrix B(t) = Id + tA is invertible and
that B−1(t) depends holomorphically on t ∈ D.
Fix the value of t ∈ D. The coefficients of A are function germs in Ox.
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For x = 0 the matrix (Id + tA)(0) = Id is invertible. Since we are only
considering germs at the origin this is a sufficient condition for the matrix
to be invertible (in the same way that for a function-germ f(0) 6= 0 implies
that it is invertible). The formula giving the inverse of a matrix implies that
the dependence on t is holomorphic.

We have:

~α = (Id+ tA)−1~vt.

This means that for any j ∈ {1, . . . , k}, we have:

αj =
k∑

k=1

bj,k(mk.ft).

Here the bj,k’s are the coefficients of the matrix (Id+ tA)−1. The mk’s are
elements of g.
Define the map-germ vj by

vj =

k∑

k=1

bj,kmk,

we get the equality

vj .ft = αj.

According to the discussion that we made at the beginning of the proof of
the lemma, this concludes the proof of the lemma.

It remains to prove that the Ox-module M̃µ is contained in the G-tangent
space Tf to f .

Lemma B.3. M̃µ ⊂ Tf .
Proof.
We use the same notations as the one that we have fixed at the beginning
of the proof of the preceding lemma.

The Ox-module M̃µ is generated by the map-germs α1, . . . , αl.
Each of these monomials is of the form ejv

k. Thus we have to prove that

for an arbitrary j, k, ejv
k belongs to Tf .

Here ej is a function-germ belonging to the ideal Mµ ⊂ Ox and vk is a

vector in Cn−1 × C. Hence ejv
k is an element of On−1

x ×Ox.
We fix j, k. Since ej is a monomial of Mµ, there exist function-germs
a1, . . . , aµ ∈M such that:

ej = a1a2 . . . aµ.

The C−vector space Tf is of codimension µ in On−1
x × Ox. Consequently

Tf contains a linear combination of the µ+ 1 vectors:

a0v
j , a1v

j , a1a2v
j , . . . , a1a2 . . . aµv

j
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with a0 = 1.
That is there exists complex numbers ck, ck+1, . . . , cµ such that:

(cka0 . . . ak + · · ·+ cµa0 . . . aµ)v
j ∈ Tf

and ck 6= 0.
We have the identity

(cka0. . . . .ak + · · · + cµa0. . . . .aµ)v
j = (ck + · · · + cµak+1. . . . .aµ)a0. . . . .akv

j

But ck + ck+1ak+1 + · · · + cµak+1. . . . .aµ is invertible, hence the previous
identity implies the inclusion

a0. . . . .akv
j ∈ Tf.

Consequently (ak+1 . . . aµ)(a0 . . . akv
j) ∈ Tf . Lemma is proved.

This lemma achieves the proof of the finite determinacy theorem for G-
equivalence.

2. Proof of the versal deformation theorem for G-equivalence.

We first state an easy lemma that we shall need.
Let C : (Cr × Cn, 0) −→ (Cn−1 × C, 0) be an arbitrary deformation of a
holomorphic map-germ

f : (Cn, 0) −→ (Cn−1 × C, 0)

Denote by A : Cr × (Cn, 0) −→ (Cn−1, 0), B : (Cr × Cn, 0) −→ (C, 0) the
components of C so that C = (A,B).
Let g : (Cr, 0) −→ (Cn−1, 0) be the holomorphic map-germ defined by:

g(λ) = A(λ, 0).

Lemma B.4. The deformation C = (A,B) is G-equivalent to the deformation
(A− g,B).

The proof is of course obvious. However this lemma implies that we need
only to consider deformations (A,B) such that A(λ, .) vanishes.
Having made this remark, we start the proof of the theorem. The notations
are those of chapter 4.
Following R. Thom, we use the homotopy method. Following Martinet
[Mar], the fundamental step in the proof of a versal deformation theorem
is the following proposition.

Proposition B.1. Let F : (Ck ×Cn, 0) −→ (Cn−1×C, 0) be a k-parameter
deformation of a map-germ f : (Cn, 0) −→ (Cn−1 × C, 0) such that TF =
On−1
x ×Ox. Then, for any holomorphic map-germ

Φ : (C × Ck × Cn, 0) −→ (Cn−1 × C, 0)

such that Φ(0, .) = F , the k+ 1 parameter deformation Φ of f is equivalent
to a deformation induced from F .
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Proof.
We fix coordinate-systems x = (x1, . . . , xn) in Cn, λ = (λ1, . . . , λk) in Ck, τ
in C and a coordinate-system in Cn−1 × C.
In the sequel, for simplicity we write Onz instead of On−1

z ×Oz for z = x or
z = (τ, λ, x).
Denote by e the identity element of the group G ⊕ T where T ≈ Cn denotes
the group of translation in Cn.
We search for a holomorphic map-germ γ : (C×Ck, 0) −→ (G ⊕ T, e) and a
holomorphic map-germ h : (C× Ck, 0) −→ (Ck, 0) such that:

(69) Φ = h∗(γ.F ),

We shall use the notations γτ = γ(τ, .) and hτ = h(τ, .). We have the
equalities

γ0 = e, h0 = Id.

Consequently there exists holomorphic map-germs

γ̃ : (C× Ck, 0) −→ (G ⊕ T, e),
h̃ : (C× Ck, 0) −→ (Ck, 0),

such that the following equalities hold identically

γ̃(τ, λ)γ(τ, λ) = e, h̃(τ, λ)h(τ, λ) = λ.

The maps γ̃(τ, .) and h̃(τ, .) will be denoted by γ−1
τ and by h−1

τ .
Equation 69 is equivalent to the equation

(70) (h−1
τ )∗(γ−1

τ .Φ) = F.

The map Φ has n components. So, equation 70 is in fact a system of n equa-
tions. They can be written in a more explicit form but this is unnecessary.
Before differentiating with respect to τ equation 70, we fix some notations:
- mτ .Φ = γτ .

d
dτ (γ−1

τ .Φ),

- wτ .Φ = h∗τ
d
dτ ((h

−1
τ )∗Φ).

We have mτ = (
∑n

j=1 aj∂xj
, ατ ) and ατ ∈ On−1

x ×Ox, the aj’s being holo-
morphic map-germs belonging to Oτ,λ.
We differentiate with respect to τ equation 70 and multiply the result on
the left by h∗τ and then by γτ .
We get the so-called homological equation:

(71) Φn × ατ + vτ .Φ + ∂τΦ = 0.

with Φ = (Φ1, . . . ,Φn).

The vector fields vτ , wτ , tτ vanish at the origin. Consequently, the ordinary
theorem on non-autonomous differential equation implies that it is sufficient
to find the maps vτ , wτ , tτ in order to find γ, h.

We interpret equation 71 as follows.
Consider the C-vector subspace of Onτ,λ,x which is the sum of the following
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modules:
- the Oτ,λ,x-module consisting of all maps of the form Φn×ατ + vτ .Φ where
(vτ , ατ ) is the value at τ of an arbitrary holomorphic map-germ m = (v, α) :
(C× Ck, 0) −→ g,
- the Oτ,λ-module generated by the ∂λi

Φ’s.
Main assertion:” the C-vector space described above is equal to Onτ,λ,x pro-

vided that the equality TF = On−1
τ,λ,x ×Oτ,λ,x”.

Then equation (71) can be solved provided that this main assertion is proved.
To this aim, we use the Weierstrass-Malgrange-Mather ([Mar] chapter X)
theorem.

Theorem B.1. Let M be an Oz,x-module of finite type. Let N ⊂ M be
an Oz module of finite type. Denote by Mz the maximal ideal of Oz. Let
π : M −→ M/(MzM) be the standard projection. Then N = M provided
that π(M) = π(N).

Denote by ek ∈ Cn the vector whose coordinates are all zero except the kth

coordinate which is equal to 1.
Consider the following modules:
- M = Onτ,λ,x/I where I is the Oτ,λ,x-module generated by the ∂xk

Φ’s and

by the ekΦn’s,
- N is the Oτ,λ-submodule of M generated by the images of the ∂λi

Φ’s under
the canonical projection Onτ,λ,x −→M .

The main assertion is equivalent to the equality M = N .
We prove that this equality holds by applying the Weierstrass-Malgrange-
Mather theorem with z = (τ, λ).
The map π can be identified with the map sending a map-germ of Onτ,λ,x to
its restriction to λ = 0, τ = 0 in Ox.
Consequently, we get the natural identifications:
- π(M) = Onx/(Tf ⊕ V ) where Tf is the G-tangent space to f and V is the
C-vector space generated by the ∂xk

f ’s ,
- π(N) is the C-vector space generated by the images under the canonical
projectionOx −→ Ox/(Tf⊕V ) of the restrictions to λ = 0 of ∂λ1F, . . . , ∂λk

F .

With these identification, the equality π(N) = π(M) is equivalent to the
equality TF = On−1

x × Ox. This equality holds and the main assertion is
proved. This concludes the proof of the proposition.

The rest of the proof of the G-versal deformation theorem is straightforward.
Let G : (Cs × Cn+1, 0) −→ (C, 0) be a s-parameter deformation of f satis-
fying the condition TG = Onx .

Let G̃ : (Cs′ ×Cn×Ck, 0) −→ (C, 0) be an arbitrary s′-parameter deforma-
tion of f .
Fix coordinates λ = (λ1, . . . , λs) in Cs, µ = (µ1, . . . , µs′) in Cs′ . Define the
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sum
G⊕ G̃ : (Cs × Cs′ × Cn × Ck, 0) −→ (C, 0)

of the deformations G and G̃ by:

G⊕ G̃(λ, µ, x) = G(λ, x) + G̃(µ, x)− f(x).

The restriction of G ⊕ G̃ to λ = 0 is equal to G̃. Hence, G̃ is induced
from a deformation equivalent to G provided that G̃⊕G is induced from a
deformation equivalent to G.

Lemma B.5. The deformation G⊕ G̃ is induced from a deformation equiv-
alent to G.

Proof.
For i ≤ s′, denote by Ai the restriction of G ⊕ G̃ to the vector subspace
µ1, . . . , µi = 0.
We apply proposition B.1 with Φ = As+s′−1, F = G. We get that As+s′−1 is
induced from a deformation equivalent to G. In particular TAs+s′−1 = Onx .
Next, we apply proposition B.1 with Φ = As+s′−2 and F = As+s′−1. We get
that As+s′−2 is induced from a deformation equivalent to As+s′−1. Hence
As+s′−2 is induced from a deformation equivalent to G. By induction we

get that G⊕ G̃ is induced from a deformation equivalent to G. This lemma
concludes the proof of the G-versal deformation theorem.
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APPENDIX C

Other results concerning PT -monodromy groups

1. Statement of the results

We fix some notations.
Take a linear coordinate system X,Y,Z in the vector space C3.
Identify CP 2 with the set of lines of C3 passing through the origin. We
denote by [X : Y : Z] the line passing through the point of coordinate
(X,Y,Z). The set of lines for which Z 6= 0 can be identified with the affine
plane C2, we shall use the notations x = X

Z , y = Y
Z for the corresponding

affine coordinate system.
To a homogeneous polynomial P in three variables, we associate the curve
V [P ] ⊂ CP 2 defined by

V [P ] = {[X : Y : Z] : P (X,Y,Z) = 0} .

Let B be the topological space of homogeneous polynomials P of degree 4
such that the curve V [P ] is smooth and does not have degenerate inflection
points.
Applying Bézout’s theorem to the curve V [P ] and to its Hessian we get that
for P ∈ B, the number of inflection points of V [P ] is 24.
Denote by ξ : E −→ B the topological covering whose fibre at the point
P ∈ B is the set formed by the 24 inflection points of V [P ].
Fix a polynomial P0 ∈ B, the fundamental group π1(B,P0) acts on the fibre
ξ−1(P0) by monodromy. Consequently, we get a group homomorphism:

ρξ : π1(B,P0) −→ S24.

The image of the homomorphism ρξ defines an abstract group G called the
monodromy group of the covering ξ : E −→ B. This is a basic notion of
topology.

Theorem C.1. The monodromy group of the covering ξ : E −→ B is the
full permutation group S24.

1.1. Scheme of the proof. This theorem is proved in three steps.
The three steps of the proof of theorem C.1 are summarized by the following
three lemmas.
Put F (λ, x, y) = λ1x

2y + λ2x
3 + λ3x

2 + λ4.

219
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Lemma C.1. The PT -monodromy group of the family of (affine) curves (Vλ)
defined by

Vλ =

{
(x, y) ∈ C2 :

1

2
y2 +

1

4
x4 + F (λ, x, y) = 0

}

is equal to S12.

Lemma C.2. ?? The PT -monodromy group of the family of (affine) curves
(Wλ,α) defined by

Wε =

{
(x, y) ∈ C2 :

1

2
(y − x)2 − 1

5
x3y − ε = 0

}

contains a subgroup isomorphic to Z5 which permutes cyclically 15 of the
inflection points.

Put P (λ,X,Z) = λ1X
3Z + λ3X

2Z2 + λ4Z
4.

Lemma C.3. The PT -monodromy group of the family of (projective) curves
(Sλ) defined by

Sλ,µ =
{
[X : Y : Z] ∈ CP 2 : Y 2Z2 +X4 +X2Y Z + P (λ,X,Z) + P (µ,X, Y ) = 0

}

contains a subgroup equal to S12 × S12.

Before proving each of the lemmas, we make some straightforward remarks.
The only subgroup of S15 wich contains a cyclic permutation of order 5
permuting ciclically 15 points and a subgroup isomorphic to S12 is S15.
Consequently, the first two lemmas imply that the monodromy group of
ξ : E −→ B contains a subgroup isomorphic to S15.
The only subgroup of S24 containing both a subgroup isomomorphic to S12×
S12 and a subgroup isomorphic to S15 is S24. Consequently, the three lemma
imply theorem C.1.
Next, remark that lemma C.3 is a corollary of lemma C.1. Indeed denote
by Σ the Plücker discriminant of the family Sλ,µ. For (λ, µ) /∈ Σ the curve
Sλ,µ has 24 inflection point.
Take λ and µ small enough.
When λ −→ 0, there are 12 inflection point that vanish at the point [0 : 0 : 1]
(theorem ?? ??. Similarly, when µ −→ 0, there are 12 other inflection point
that vanish at [0 : 1 : 0]. If we restrict the family (Sλ,µ to µ = 0 and consider
the curve Sλ,0 \ (Sλ,O ∩ {Z = 0}) we get the family Vλ. Thus lemma C.1
implies that the PT -monodromy group of Sλ,µ contains all the permutation
on the 12 inflection points that vanish at [0 : 0 : 1]. In a similar way, we
get that the PT -monodromy group of Sλ,µ contains all the permutation on
the 12 inflection points that vanish at [0 : 1 : 0]. Thus lemma C.3 is a
consequence of lemma C.1.
Consequently it remains to prove lemma C.1 and lemma ??.
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1.2. Proof of lemma ??. The proof of the lemma is done by a direct
computation.
Let f be the polynomial defined by

f(x, y) =
1

2
(y − x2)2 − 1

5
x3y.

The curves Wε are the level-curves f = ε of f .
The function f has an A4 critical point at the origin. This means that
there exists neighbourhoods U and V of the origin and a biholomorphic
map ϕ : U −→ V such that:

f ◦ ϕ−1(x, y) =
1

2
y2 − 1

5
x5.

By direct computations, we get that the Taylor expansion of ϕ at the origin
is given by:

ϕ(x, y) = (x+ . . . , y − x2 + . . . ).

We explain the meaning of the dots.
In the space Ox,y of holomorphic function-germ, we introduce a quasi-
homogeneous filtration by fixing the weight of x to be equal to 2 and the
weight of y to be equal to 5. the dots stand for higher order terms in this
quasi-homogeneous filtration.
We compute the generalized Wronskian of ϕ with respect to H(x, y) =
1
2y

2 − 1
5x

5 (see page ??).
With the notations of section ??, we get that

D[ϕ] = −[x, x2] + [x, y] + . . .

where the dots denote higher order terms in the quasi-homogeneous filtration
defined above.
We have the equalities

[x, x2] = | y −2xy
−x4 −2y2 + x5 |

and

[x, y] = | y −x4

−x4 −4xy3 | .

Consequently, the Taylor expansion at the origin of D[ϕ] is given by

D[ϕ] = y3 + x3y2 + x8 + . . .

where the dots denote higher order terms i the quasi-homogeneous filtration.
The zero level-set of D[ϕ] has two branches at the origin are parameterized
by two convergent power series

{
t 7→ (t, t3 + . . . )
t 7→ (t2, t5 + . . . )
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where the dots denote higher order terms.
Substituting these series in H we get that the parameters corresponding to
the inflection points satisfy the equations

{
t5 + · · · = ε
t10 + · · · = ε

Consequently, when ε make a small turn around the origin the 5 points
corresponding to the first equation are cyclically permuted while the 10
points corresponding to the second equation are also‘ cyclically permuted.
This proves lemma ??.

1.3. Proof of lemma C.1. Define the polynomial f by

f(x, y) =
1

2
y2 +

1

4
x4 − 1

2
x2.

The germ of f at the origin has a critical point belonging to the P-singularity
class PA1,1

1 .
Consider the two-parameter deformation F : (C2×C2, 0) −→ (C, 0) defined
by the formula

F (λ, x, y) = f + λ1x
2y + λ2x

3.

Lemma C.4. The deformation F is a P-versal deformation of f .

THe proof of this lemma is analoguous to the proof given at page ??f theorem
??.
Consequently, theorem ?? implies that:
1) there are the eight inflection points of fε that vanish at the origin when
ε −→ 0,
2) the vanishing inflection points are given by two formal power series of the
type {

xi(ε) = aiε
1/4 + o(ε1/4)

yi(ε) = biε
1/4 + o(ε1/4)

3) the PT -monodromy group of any representative of F contains all the
permutation on the 4 points that vanish along the same branch (y = x or
y = −x).
The first two facts can easily be proved by explicit computations.
For our computations it is needed to number these eight points. We chose
this numbering as follows. For ε ∈ R and ε > 0, p1(ε), . . . , p4(ε) denote
the points vanishing along the branch y = x and p1(ε), . . . , p4(ε) denote the
points vanishing along the branch y = −x.
The x-coordinate of the points p1 and p5 are real positive. The point pk+1

is the image of pk when ε makes a turn couter-clockwise around the origin.
In first approximation pk+1 is obtain from pk by multiplying it by i =

√
−1.

To avoid complicated notations the point pk(ε) will be denoted by the letter
k, omiting the dependence on ε.
In figure ??, we depicted the projections of the inflection points of Vε on the
x-line and on the y-line (the lines are complex lines hence two dimensional).
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The notation (k, l) on this figure means that the point k and the point l are
projected to the corresponding marked point on the line.
As we pointed out before the PT -monodromy group of Wλ contains all the
permutations on 1, 2, 3, 4 and all the permutations on 5, 6, 7, 8.
The following assertions are straightforward
1) for any value of ε the curve fε has no degenerate inflection point,
2) the curve Vε is singular only for the values ε = 0 and ε = − 1

4 , 3) the
germs of f at the points x = 1 and x = −1 belong to the P-singularity class
PA1.
We now search the inflection points that vansih at x = ±1 when ε −→ − 1

4 .
Once these points are known the monodromy is given by theorem ?? at ??.
Let ε be a small real strictly positive number.
The curve Vε has 12 inflection points. We have chosen the numbering of
8 of the points. To number the other 4 points, we first need the following
lemma.

Lemma C.5. The 4 inflection point that do not vanish at the origin when
ε −→ 0 have real and opposite x-coordinates and pure imaginary conjuguate
y-coordinates (provided that ε be a small real strictly positive number).

Proof.
The implicit function theorem implies that it suffices to prove the lemma
for the curve V0.
SI ON POUVAIT EVITER LES CALCULS..
So we fix the numbering as indicated by figure ??.
In the space of the parameter ε, we chose the path as indicated by figure
??, where A,B are choosen sufficiently close to the origin so that theorem
?? giving the normal form of the PT -covering in a small neighbourhood of
the origin can be applied to a neihgbourhood containing A and B.
Consequently, theorem ?? implies that at the point B the points are located
as indicated by figure ??.
By location, we take care of the quadrant(s) to which the point belongs (if
it is real or pure imaginary it belongs to 2 quadrants).
The fundamental assertions of this subsection are the two lemma that follow.

Lemma C.6. When ε goes from B to C, the x-labels of the inflection points
stay in the same quadrants.

Proof.
The projection of fe on the x-line namely

fε −→ C
(x, y) −→ y

is a ramified covering of degree 2.
Since the equations of the inflection are with real coefficients if x is the x-
label of an inflection point then its complex conjuguate x̄ is the x-label of



224 C. OTHER RESULTS CONCERNING PT -MONODROMY GROUPS

the conjuguate inflection point.
The equality f(x, y) = f(−x, y) implies that if x is the x-label of an inflection
point then −x is also the x-label of an inflection point.
Assume that for some value ε0, the labels (xk, yk) are such that the value
xk(ε) converges to a point of the real axis in the x-line when ε −→ ε0. Then,
the same thing occurs for the conjuguate labels (x̄k, ȳk). Since, the curve
fε is invariant under the involution (x, y) −→ (−x, y), the same thing occur
for the inflection points (xk,−yk) and (x̄k,−ȳk).
The projection p of fe on the x-line namely

p : fε0 −→ C
(x, y) −→ y

is a ramified covering of degree 2. Consequently the four points±xk(ε0),±x̄k(ε0)
cannot correspond to four distinct inflection points under p. Consequently
the curve fε0 has a degenerate inflection point. This contradict assertion 2)
stated above.

Lemma C.7. When ε goes from B to C, the y-labels of the inflection points
stay in the same quadrants.

Proof.
Put w = y2, z = x2. In the variables w, z the system of equations (??)
whose solutions are the inflection points of fε becomes

{
Write w = w1 + iw2, z = z1 + iz2 with w1, w2, z1, z2 ∈ R. Then, direct
computations show that if there exists a solution (w, z) of the system of
equation (??) such that w2 = 0 then either z2 = 0 or w = 0.
The solution z2 = 0 is forbidden otherwise we would have a solution of the
system (?? with z ∈ R. Such a solution corresponds to a solution of the
system of equations (??) with either x ∈ R or ix ∈ R. This would contradict
lemma ??. Lemma C.7 is proved.

With the help of the two preceeding lemmas, we can compute what are
the numbers of the 6 inflection points vanishing at (x, y) = (1, 0) and the
6 inflection points vanishing at (x, y) = (−1, 0) when ε −→ − 1

4 . The two
lemmas give also the branches along wich the inflection point vanish.
If three inflection points numbered j, k, l vanish for ε −→ − 1

4 are such that
the x-coordinate of j is real, the imaginary part of the x-coordinate of k is
positive and the imaginary part of the x-coordinate of l is negative, we say
that the triangle denoted T (j, k, l) vanish at the given point. As a corollary
of the two preceeding lemma, we get the following lemma.

Lemma C.8. The 6 inflection points vanishing at (1, 0) form two triangles
T (9, 5, 4) and T (10, 1, 8). The 6 inflection points vanishing at (−1, 0) form
two triangles T (12, 7, 2) and T (11, 3, 6).
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Using theorem ?? of page ??, we get that the PT -monodromy group of F
contains the cyclic permutations:
c1 = (9, 5, 4)(10, 1, 8) and c2 = (12, 7, 2)(11, 3, 6).
The following lemma concludes the roof of proposition ??.

Lemma C.9. The subgroup of S12 containing c1, c2 anbd the subgroup of all
permutations on {1, 2, . . . , 8} is equal to S12.

Proof.
The proof is elementary. Indeed, denote by G the subgroup of S12 containing
c1, c2 anbd the subgroup of all permutations on {1, 2, . . . , 8}. Then G
contains the transpositions:

c2(5, 8)c
−1
2 = (9, 8), c−1

2 (9, 8)c2 = (5, 10).

Thus G contains all the permutations on {1, 2, . . . , 10}.
Next, G contains the transpositions:

c1(3, 1)c
−1
1 = (1, 11), c1(7, 1)c

−1
1 = (1, 12)

and consequently is equal to S12.
Lemma is proved.
This lemma concludes the proof of proposition C.1 part 1.
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A guide for the reader.

1. Notations that are commonly used (I).

Unless, we mention explicitly the contrary, the following notations are used
from chapter 1 to chapter 6.
◦ is the composition law between maps, functions.
× the multiplication between maps germs or a map with a matrix.
Rules of priority are: first the composition laws, second the multiplications
and the additions:

α× f ◦ ϕ+ g = (α× (f ◦ ϕ)) + g.

Ck the affine space, the vector space or the analytic variety depending on
the context.
C∗ the multiplicative group C \ {0}.
Ox the ring of holomorphic function germs of the type f : (Cn, 0) −→ C.
O∗
x the multiplicative group of holomorphic function germs of the type

f : (Cn, 0) −→ C with f(0) 6= 0.
Okx the ring of holomorphic map-germs of the type f : (Cn, 0) −→ Ck.
Mx the maximal ideal of Ox consisting of function-germs vanishing at the
origin.
Mk

x the kth power ofMx.
Ox,y the ring of holomorphic function germs of the type f : (C2, 0) −→ C.
O∗
x,y the multiplicative group of holomorphic function germs of the type

f : (C2, 0) −→ C with f(0) 6= 0.
Mx,y the maximal ideal of Ox,y.
Mk

x,y the kth power ofMx,y.
M the maximal ideal of Ox or of Ox,y.
Fd the vector space of elements ofOx of order d for a given quasi-homogeneous
filtration.
Gd the vector subspace of Ox generated by the monomials of weight d for a
given quasi-homogeneous filtration.
GL(n,Ox) the group of invertible n× n matrix with coefficients in Ox.
GL(n,Ox,y) the group of invertible n× n matrix with coefficients in Ox,y.
Diff(n) the group of biholomorphic map germs from Cn to itself, preserv-
ing the origin.
diff(n) the space of germs of holomorphic vector-fields that vanish at the
origin.

226
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G the G-equivalence group.
H the H-equivalence group.
K the V -equivalence group.
γ.f the image of a map germ f under the action of γ ∈ G.
m.f the image of a map germ f under the action of m ∈ g.
v.f the Lie derivative of a map germ f along a vector field v.
µG the G-Minor number.
µ the usual Milnor number.
TF the G-tangent space to a deformation F .
Tf the G-tangent space to a holomorphic map-germ.

N(f) the number of vanishing flattening points of a complete intersection
map-germ.
N [X] the generic number of vanishing flattening points for a given singular-
ity class X.
Jk0 (M,N) space of jets of order k at the origin of (holomorphic or C∞ de-
pending on the context) function-germs f : M −→ N .
jk0f jet of order k at the origin of a (holomorphic or C∞ depending on the
context) function-germs f : M −→ N .
Jk(M,N) space of jets of order k of (holomorphic or C∞ depending on the
context) function-germs f : M −→ N .
jkf jet of order k a (holomorphic or C∞ depending on the context) function-
germs f : M −→ N .
D[ϕ] the generalized Wronskian.
∆f the generalized Hessian.
Fn the flattening space.
π[p], π[p, q] the PAp1 and the PAp,q1 Lyaschko-Loojenga mapping.
Br(k) the braid group with k elements.
B(X, p) the configuration of p elements in a topological space X.
B(X, p, q) the configuration of p white elements and q black elements in a
topological space X.

H̃k(X) the reduced homology group with coefficients in Z of the topological
space X.

2. Notations which are commonly used (II).

Unless, we mention explicitly the contrary, the following notations are used
in chapter 7 (we do not repeat the notations which are common with the
other chapters).
Rn+1 either the Euclidean space, the affine space or the C∞ manifold de-
pending on the context.
RPn the n-dimensional real projective space.
Jk(Rn,R) the space of k-jets of C∞ functions from Rn to R.

L
∨

the Legendre dual manifold to a Legendre manifold L ⊂ J 1(Rn,R).

V
∨

the Legendre dual wave front to a given wave front V ⊂ J 0(Rn,R).
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M
∨

the dual variety to a variety M ⊂ RP n.
Et the ring of C∞ function-germs of the type f : (Rk, 0) −→ R.
Eq the ring of C∞ function-germs of the type f : (Rn+1, 0) −→ R.

Eq,t the ring of C∞ function-germs of the type f : (Rn+1 × Rk, 0) −→ R.
Mt the maximal ideal of Et.
Mq the maximal ideal of Eq.
Mq,t the maximal ideal of Eq,t.
M̄q,t the Eq-submodule of Eq,t of function-germs that vanish for q = 0.
Fd the vector space of elements of Eq,t of order d for a given quasi-homogeneous
filtration.
Gd the vector subspace of Eq,t generated by the monomials of order d for a
given quasi-homogeneous filtration.

3. A quick survey of the thesis.

In chapter 1, we discuss a fundamental example (Plücker theorem) from an
informal standpoint.
In chapter 2, we state the results that we have obtained concerning the clas-
sical theory of vanishing flattening points of curves.
After giving the basic definitions in section 1, we generalize Plücker’s theo-
rem in section 2.
In section 3, we define the Plücker discriminant which plays the role of
the bifurcation diagram of families of curves with respect to the flattening
points. We give most of the generic Plücker discriminant arising in 2 and 3
parameters families of curves.
The results of section 3 are mainly a motivation for the theory developed in
section 4.
In section 4, an equivalence relation between function-germs of the type

f : (K2, 0) −→ (K, 0)

is introduced. Here K = R or C and the germs that we consider are holomor-
phic if K = C and C∞ if K = R. The notation K2 stands for the affine plane.
The equivalence relation, called P-equivalence, preserves the inflection points
of the level curves of f .
A notion of modality, called P-modality, analogous to the usual modality
notion of singularity theory is introduced. The P-simple elements are those
for which the P-modality is equal to zero. The classification of P-simple
function-germs is given.
In section 5, we introduce the notion of P-versal deformations and compute
the P-versal deformations of almost all the P-simple function-germs.
Most of the results of section 3 follow from the P-versal deformation theo-
rem stated in subsection 5.3.
In section 6, we generalize the P-equivalence relation for curves in higher
dimensional spaces. Under some assumptions, a lower bound for the P-
modality is given for curves in Cn for n > 2. In particular, the list of the
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P-simple function-germs contains all the P-simple elements in all dimen-
sions.
In section 7, we define the discrete invariants related to the extrinsic pro-
jective structure. We compute most of these invariants for the P-simple
function-germs. The section ends with the statement of a K(π, 1) theorem
for the P-simple singularities.

In chapter 3, we generalize the classical notion of bordered Hessian of plane
curves to one-dimensional complete intersections.
This allows us to generalize the classical Plücker theorem to local one-
dimensional complete intersection. We also give a splitting of the formula
and show the relation with Teissier polar invariants.
We could have given a more general proof avoiding the hypothesis that the
curves are local one-dimensional complete intersection. We did not make
this choice because only the elementary proof shows the relation with polar
invariants.

Chapter 4 repeats the notions introduced in chapter 2 section 4 and section
5 with more details and in a slightly more general context.
In section 1 and section 2, we give detailed accounts on G-equivalence and
on P-equivalence.
In section 3, by means of examples, we show how to use the methods devel-
oped in the preceding two sections.
Once the theory is settled, the proofs the theorems of chapter 2 are straight-
forward. The details are given in appendix A.

In chapter 5, we compute the fundamental group of the complement of the
P-discriminant of the P-simple singularities and prove the K(π, 1) theorem
stated in chapter 2, subsection 7.6.
To do this, we introduce a variant of the Lyaschko-Loojenga mapping.

In chapter 6, we prove the theorem on the P-modality stated in chapter 2
section 6. To do this, we investigate the multi-valued functions giving the
coordinates of the flattening points of families of curves.
In section 1, an equivalence relation, called H-equivalence, between these
multi-valued functions is introduced. By these means, we get the lower
bound for the P-modality in section 2.

In the second part of this thesis, we study the Legendrian counterpart of the
classical theory. This leads us to new problems in the theory of wave front
propagation.
In chapter 7 we give the results that we have obtained concerning this rela-
tionship. The most simple corollary of the methods developed in the sequel
is the stability of a certain bifurcation diagram, called the folded umbrella,
arising in the study of parabolic curves on surfaces (section 1, theorem 7.1).
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In section 2 and section 3, we recall the theory of singularities of wave fronts
developed by Arnold and Zakalyukin in the seventies’.
In section 4, we discuss the geometric aspects of this theory.
In section 5, we give the start of a classification of non-generic wave-fronts.
In section 6, a versal deformation theory of non-generic wave fronts is intro-
duced called L-versal deformation theory.
We state a L-versal deformation theorem and compute the L-versal defor-
mations of the start of the classification that we gave previously.
In chapter 8, we prove the theorems stated in chapter 7.
In section 1, we adapt the classical tools of quasi-homogeneous filtrations
and normal form theory to the case of germs of generating families of Le-
gendre manifolds.
In section 2 we prove the theorems stated in sections 5 and section 6.
In section 3, we prove the theorems for the reduction to normal forms of
section 1 and the L versal deformation theorem.

In appendix A, using the theory developed in chapter 4, we give the details
of the computations that are needed in order to prove the theorems of chap-
ter 2 giving the P-normal forms and P-versal deformation theorem for the
P-singularity class PAp,q1 .

In appendix B, we prove the finite determinacy and the versal deformation
theorem for G-equivalence.
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Plücker space, 33, 87, 89
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