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Atomic Contacts:
a Test-Bed for Mesoscopic Physics

Transport through quantum coherent conductors

Although the behavior of electrons is governed by quantum mechanics, significant
guantum effects appear in the transport properties of an electronic conductor only when one at
least of its characteristic lengths is shorter than the so-called coherence Ugr{@{hThis
length represents the distance over which an electron at the Fermi level propagates inside the
conductor without loosing its quantum coherence. For example, quantum interference effects
do modify the conductance of diffusive thin films and narrow wires [2], but only weakly. The
most spectacular quantum effects, such as Aharonov-Bohm interferences [3] arising when
electrons can follow two or more distinct paths in going from one point to another, appear
when the whole circuit is smaller thdry. In this regime, a two-probe circuit behaves as a
guantum scatterer for the electrons injected by the contact probes, which act as electron reser-
voirs (see Figure 1). This point of view, due to Rolf Landauer [4], is extremely powerful since
all the transport properties of a quantum coherent circuit can be expressed in terms of its
scattering matrix for the electron waves in the case of non interacting electrons. In particular,
the conductance of the circuit is directly related to the transmission matrix [4], which is the
part of the scattering matrix relating amplitudes of incoming waves on one end to outgoing
waves on the other end. This transmission matrix has a set of eigenmodes, called conduction

channels. Each channel contributes independently to the transport properties. As an example,



each channel contributeéS,r to the conductance, where, the transmission probability, is
the modulus square of the corresponding eigenvalue Gyw2€’/ h is the conductance
gquantum. The total conductance is then given by the famous Landauer formula:

G= GOZN:Ji whereN is the number of channels and the are the individual transmission

probabilities.
t
P 2 o P o S
Charge s "~ | Charge
reservoir ’ reservoir
Coherent

scatterer i
I

Figure 1: Transport experiment viewed as a scattering process. Electrons injected from a charge reservoir
are scattered by the quantum coherent device. In each conduction ¢ emmelectron wave has a prob-

ability amplitudet, to be transferred arr, to be reflected. Its transmission probabir,/ is the modulus

square Ot; .

The spectacular observation of steps in the conductance of 2D electron gas quantum
point contacts [5] as the number of open channels is progressively increased by means of an
external electrostatic gate, has beautifully confirmed the validity of the scattering formalism
for the description of quantum coherent transport. Since that pioneering work, a large effort
has been devoted to the investigation of quantum coherent transport in a wide range of situa-
tions, ranging from ballistic to diffusive conductors, connected to reservoirs in the normal (i.e.
non-superconducting) or in the superconducting state [1,6]. On the theoretical side, the Lan-
dauer-Bittiker scattering formalism has been extended to multiterminal conductors, fluctua-
tions, finite frequency, etc. Other transport properties, such as the shot-noise in the current or
the supercurrent in the case of superconducting reservoirs, have been calculated within this
formalism. Not surprisingly, all considered physical quantities can be expressed in terms of
the transmission probability s¢t,...,7,}, which appears to be the mesoscopic “Personal

Identity Number (PIN) code” of the conductor, regardless of other microscopic details.



On the experimental side, many interesting effects had indeed been observed before
the beginning of this thesis work. However, most of the experiments had not achieved a
guantitative comparison with the theoretical predictions because the mesoscopic codes of the
structures were unknown, but for the already mentioned quantum point contact experiment
[5], and for diffusive conductors with many channels, whose statistical distribution of channel

transmissions is known theoretically [7].

~
. . ~
metallic film ~ “~_ 7 insulating

H 'Iayer

\\\ ///
/ N\ Tpushing
elastic substrate ~ rod

counter-supports

Figure 2 : Scanning electron microscope picture of an aluminum nanofabricated bridge and schematic
drawing of the mechanically controllable break junction set-up. The pushing rod controls the bending of
the substrate.

Atomic contacts as quantum coherent conductors

Among the various systems investigated, atomic-size contacts played an important
role. These contacts were first obtained in the group of Jan van Ruitenbeek at Leiden using
the break-junction technique [8]. Since all their characteristic dimensions are of the order of
the Fermi wavelength, atomic contacts are perfect quantum conductors, even at room tem-
perature, and accommodate only a small number of channels. The discovery that their
mesoscopic code could be accurately decoded [9] paved a way to a new generation of quan-
tum transport experiments, in which the measured transport quantities could be compared to

the theoretical predictions without any adjustable parameters.



In this thesis, we report three experiments on atomic-size contacts used as a generic
guantum coherent conductor for which this comparison is performed. These experiments con-
cern
» the supercurrent flowing through a quantum coherent conductor placed between two su-
perconducting reservoirs

» the shot-noise associated to the current when a voltage difference is applied between the
reservoirs (normal or superconducting)

» the Coulomb blockade of the conductance, when the quantum coherent conductor is con-
nected in series with an electromagnetic impedance.

Before discussing these experiments and their main results, we describe both the nano-
fabrication technique that has made possible the experiments, and the way to determine the
mesoscopic code of atomic-size contacts.

We produce atomic-size contacts by means of the nanofabricated break-junction tech-
nique developed in the Quantronics group [10]. Using electron beam lithography and reactive
ion etching, a metallic bridge clamped to an elastic substrate is suspended over a few mi-
crometers between two anchors. The bridge presents in its center a constriction with a diame-
ter of approximately 100 nm. In order to obtain an atomic-size contact, the substrate is first
bent till the bridge breaks at the constriction (see Figure 2). The two resulting electrodes are
then slowly brought back into contact. The high mechanical reduction ratio of the bending
bench allows to control the number of atoms forming the contact one by one; in this way, sin-
gle atom contacts can be produced in a controlled fashion. Compared to other techniques,
nanofabricated break junctions present two major advantages essential to the realization of the
experiments presented in this thesis. First, nanofabricated atomic-size contacts are extremely
stable and can be maintained for days. Second, the versatility of this technique allows to em-
bed contacts in an adequately tailored nanocircuit that insures appropriate dissipation and fil-
tering.

Just before | started my thesis work, it had been shown that for one-atom contacts the
number of conduction channels is directly related to the number of valence orbitals of the
central atom [11]. For example gold one-atom contacts contain only one channel, while alu-
minum and lead have three, and niobium five. Moreover, it was shown that for such a small

number of channels it is possible to determine with good accuracy the mesoscopic code [9]
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from the precise measurement of the current-voltage charactdrigtic in (the supercon-
ducting state.

In the superconducting state the current results from Multiple Andreev Reflections
(MAR) of all orders (see inset p. 7). Theh order process involves the transfemoélec-
trons, and in a given channel its intensity varies asiepower of the transmission. Conse-
quently, thel (V) depends on all powers of every transmission coefficient in the code and
therefore it carries all the information necessary to reconstruct it. Figure 3(a) shows the nu-
merically calculated current-voltage characterisi¢,r) resulting from these MAR proc-
esses for a single channel of arbitrary transmissi¢h2,13,14,15]. These elementary € , )
curves are highly non-linear below twice the superconducting\gapd present current steps
at voltages & e, which mark the onset of MAR of different orders. The determination of
the code of any atomic-size contact is achieved by decomposing the measured¥ totato ( )
a series of such elementary characteristics, each of them corresponding to a well defined
transmission probability. The individual transmission probabilities of the channels are ad-
justed so as to get the best fit of the measured current-voltage characteristic (see Figure 3(b)).
We have used this procedure throughout this thesis.

We now briefly present the three experiments we have carried out and their main re-

sults.
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Figure 3: (a) Theoretical current-voltage characteristics (in reduced units) of a single conduction channel between
two superconducting reservoirs, for a transmission probabhilitanging from 0.1 to 1 by steps of 0.1. The non
linearities correspond to the onset of decreasing order multiple Andreev reflections processes as the voltage in-
creases.

(b) Mesoscopic PIN code determination of a one-atom aluminum contact. The experiméntahaiadteristic

(open dots) is decomposed into the sum of independent single channel characteristics (dashed curves). This par-
ticular contact contains three channels with transmission probabiljtie®.55, 1, =0.11 and r, =0.09. These
probabilities were adjusted so as to get the best fit (continuous curve). These procedure gives a determination
accurate to the % level for contacts containing up to five channels.
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Josephson supercurrent through a single atom

In 1962, Josephson predicted that a surprisingly large supercurrent could flow between
two superconducting electrodes coupled by a tunnel barrier [16]. This current, driven by the
superconducting phase differendebetween the two electrodes, flows at zero bias voltage.
Since this spectacular prediction, the Josephson current has been observed in all kinds of sys-
tems involving two superconducting electrodes connected by a “weak link”[17]. A weak link
can be for example an insulating layer, as originally proposed by Josephson, but also a short
normal diffusive or ballistic metallic wire, or a point contact. A great deal of theoretical activ-
ity has been devoted to relate the maximum superculyethiat a weak link can sustain to its
normal resistanceR, . In the case of tunnel junctions with a large number of very weakly
transmitting channels, Josephson established that, for BCS superconductors, theRyrfduct
only depends on the gap energy andRisl, =\/2e[16]. For metallic links, Kulik and
Omel’'yanchuk, using a Green function approach, predicted thaR fheproduct is 1.32 and
2 times greater than for a tunnel junction with the same resistance, in the diffusive and ballis-
tic limits respectively [18,19]. A unified theoretical framework, in which Andreev reflection
[20] plays again a central role, has emerged only in the last decade and provided the answer

for an arbitrary structure in terms of its transmission set [21,22].
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Figure 4: (a) Josephson coupling through a single ballistic channel between two superconducting electrodes
with phase differencd =@ —¢;. The hatched areas indicate energy intervals containing available states.

(b) Phase dependence of the energy of the two Andreev states. Dashed lines: Andreev spectrum for a ballistic
channel. Full lines: For a channel with transmis:T)a gap2A+1-T opens ad =1t in the Andreev spec-
trum.



This analysis is based on the concept of Andreev bound states, which we describe
now. In the simplest case of two superconducting electrodes connected through a ballistic
channel ¢ = }, an electron with energ§ smaller thanA (in absolute value) moving to the
right, is Andreev reflected with probability one by the right superconductor into a left moving
hole at the same energy and a Cooper pair is transferred. This hole is in turn reflected back
into a right moving electron with again the same energy (see Figure 4(a)). During one cycle,
the electron acquires a phase shift, which depends on its energy and on the superconducting
phase differencé. At a givend, a resonance occurs at an energycos@®/ 2) giving rise to a
so-called Andreev bound state localized into the channel. Of course, the same picture applies
with a left moving electron, giving rise to a second Andreev bound state with opposite energy:
+Acos@/ 2) (see Figure 4(b)). The two levels cross each othe¥ air. These Andreev
bound states carry well defined opposite currents of Cooper pairs between the electrodes
1(0) = ¢, dE(S,T)/ dd =+eA/nsin@ /2).

For a non ballistic channet & )1these Andreev bound states still exist but they are
coupled through the normal reflection of electrons into electrons and holes into holes. This
coupling mixes the states and opens a @Adﬁ at the crossing between these two states
aroundd =7. The energy of the states beconiggd) = +A[1-1sin® (6 / 2)f'?(Figure 4(b)).

Since at a given phase these two Andreev bound states result in currents
1,(8) =¢,dE,(4,7)/dd equal in magnitude but in opposite directions, the net supercurrent
results from the imbalance of their populations.

For an arbitrary quantum coherent conductor characterized by its{q@dehe phase-
driven supercurrent is given bly, (3,{t},{ n}) = zz(1 n_-n) IC ¢ ) wheren, are the
occupation numbers of the two Andreev bound states associated with ttteannel. The
maximum supercurrent the conductor can sustain is obtained when in each channel only the
Andreev bound state with the lower energy is populated (zero temperature). Its value is then:
({1} =max [1,(5{t} n, =0, n_=1)] .

We have performed an experiment on aluminum atomic contacts in which we compare
the measured maximum supercurrent with the predictions of the mesoscopic Josephson effect
theory described above. Since the contacts have to be connected to external leads in order to
determine their code, measurements could not be performed by imposing the phase differ-

ence, which would require to short-circuit the contact with a superconducting colil. Instead,
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they have been done by dc-current biasing it, and detecting the maximum possible current at
zero voltage. In such a set-up, the phase differéneequires a dynamical behavior which is

very sensitive to the electrical circuit in which the contact is embedded [23,24]. Since the Jo-
sephson coupling introduced between the two electrodes has a small characteristic energy
E;, =¢,1,(=1k;K for typical aluminum one-atom contacts),is prone to both quantum and
thermal fluctuations. In order to observe a well-developed supercurrent close to its maximum
possible value, these fluctuations have to be carefully controlled. For this reason, we have
integrated an atomic-size contact in a suitable on-chip dissipative electrical circuit (see Figure

5). This circuit ensures that the phase fluctuations do not wash out the supercurrent.

Figure 5: Micrograph of an Al microbridge in a dissipative environment. Each IV probe contains an AuCu
resistor of the order ¢150Q (10 um long suspended bridge). Left inset: side view of the central bridge.
Right inset: equivalent circuit. The atomic contacts (double triangle symbol) is connected to a current
source through a resistR. The total capacitance of measurement lineC jsand C, is the total capaci-

tance between the two sides of the bridge.

Assuming that Andreev states are thermally occupied, it is easy to calculate the
maximum supercurrent a contact can sustain as a function of temperature. For atomic contacts
with all transmissions smaller than 0.9, we find a quantitative agreement between predictions
and measurements as can be seen in Figure 6 (a) for one particular contact.

The graph in Figure 6 (b) presents measurements on an atomic contact containing an
almost ballistic channelr(= )1compared to the predictions of this “equilibrium” theory:
Measured maximum supercurrents are significantly higher than the predictions above 100

mK. We attribute this effect to a population of the upper Andreev bound states through Lan-
10



dau-Zener [25] transitions induced by the fast dynamics of the phase difference. As the trans-
mission increases, the ga&ﬂ\/ﬁin the Andreev spectrum decreases, making such dy-
namical transitions plausible. Indeed, the predictions assuming a perfect Zener transition at
each crossing are in good agreement with the data. However, if such a reasoning is justified
for a ballistic channel, there is at present no rigorous treatment valid for arbitrary transmis-

sion. Thus, a quantitative understanding of our data in the high transmission range 0.90-0.99

is still lacking.

Maximum supercurrent (nA)

0 A T T T R T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Temperature (K)

10 +

Maximum supercurrent (nA)

0 L 1 L 1 L 1 L 1 L
0.0 0.1 0.2 0.3 0.4 0.5

Temperature (K)

Figure 6 : Thermal equilibrium prediction (full lines) and measured (dots) maximum supercurrent for two
one-atom aluminum contacts as a function of temperature. Mesoscopic PIN codes are {0.52,0.26,0.26}
and {0.998,0.09,0.09,0.09} for the top and bottom panel respectively. Dashed line in right panel: predic-
tion assumin¢r =1 for the almost ballistic channel.
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Shot noise in the current at finite voltage

The discreteness of electric charge and the stochastic character of electrical transport
give rise to temporal fluctuations in the electrical current flowing through electronic devices.
This so-called shot noise was predicted and first evidenced by Schottky in vacuum diodes
[26], in which the current results from the random emission of electrons following a poisso-
nian process. At low frequencies, the spectral derfSityf the current fluctuations is thus
constant (white noise) and proportional to the mean culreahd to the sizee of the shot
“pellets™ § = 2el.

In experiments with mesoscopic conductors the situation is quite different. Due to the
Pauli principle, electrons incoming from a reservoir are completely correlated [27]. All cur-
rent fluctuations are due to the random scattering of this perfectly correlated electron flux by
the conductor. As a result, the noise is suppressed in the limit of a perfect ballistic channel
(1 =1). In the opposite limit of a weakly transmitting channel, electron transmission follows a
poissonian process and the Shottky result is recovered. For a channel with arbitrary transmis-
sion 1, the shot noise spectral density is predicted taSbe el 27 (lreduced from its
poissonian value by the so-called Fano factefr(1l FQr a multichannel conductor charac-
terized by a codér} N] the generalization is straightforward and one predicts at zero tem-

perature [27,28]:

N N N
§ =26 |(-1)= 2e|(1—;rf ) (1)
wherel; is the current through theh channel and the Fano factor(]s—zi'ilri2 /Zitlri ).

The predicted noise reduction has already been observed in quantum point contacts
tailored in 2DEG [29,30] where conduction channels open one by one. However, atomic
contacts provide a larger palette of mesoscopic codes on which to test quantitatively the gen-
eral multichannel noise formula (1). For all investigated contacts, the measured shot noise is

sub-poissonian by a factor in agreement with the predicted one (see Figure 7).

12



[(nA)

-60 -40 -20 0 20 40 60
15 T T T T T T T T

{0.21,0.20,0.20}
{0.40,0.27,0.03}
{0.68,0.25,0.22}
{0.996,0.26}

[EnY
o

S,(10™'A%Hz)

-20 -10 . 0 . 10 . 20
2el(10*'A%/Hz)

Figure 7. Symbols: measured low frequency spectral density of aluminum atomic-size contacts versus pois-
sonian spectral densi 2el . Solid lines are prediction of (1) for the corresponding mesoscopic codes. The
dashed line is the poissonian limit.

In the tunnel limit, the rati®@)’ = S /21, called the effective charge, is simply equal to
the chargee transferred by each elementary process. In the superconducting state, the current
in the sub-gap region involves the transfer of multiple charge quanta. Is it possible to measure
effective charges of € 3e or more? This question motivated our shot noise measurements in
the superconducting state. In the weak transmission limit, the theoretical answer is indeed yes.
At small transmissions , the probability of an n-th order MAR process is proportionat"to
becausen particles cross the channel during such a process (see the inset on MAR) [31]. As a
consequence, since < 1" if T «1 , only one MAR process contributes significantly to
the current at a given voltage and the effective charge is a multiple of the electronic charge
(see Figure 8).

On the contrary, for larger transmissions different order MAR processes contribute to
the current at a given voltage. Furthermore, as in the normal state, a Fano reduction factor is
also at play, all this leading to an effective charge which is not forcely a multige e
full quantum coherent MAR theory, which is able to compute its exact value, has been devel-
oped recently in the case of a single channel [31,32]. Once again, a quantitative test of this

theory is possible using atomic contacts since conduction channels are independent.
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Our results demonstrate that in the sub-gap region the carrying transport processes
between two superconducting electrodes do carry large effective charges (see Figure 8). For
not to high transmissions, the measured effective charge clearly exhibits a staircase pattern, as

predicted, and all our measurements are in quantitative agreement with MAR theory.

=S /2|

*

Q (e)

0 . ! . ! . !
0 1 2 3

20A eV

Figure 8: Effective size of the shot-noise “pellets”, in units of e, as a function of the inverse reduced voltage
for a contact in the superconducting state. Dashed line : MAR theory prediction in the tunnel limit. As the
voltage increases, MAR processes of lower order set-in one by one leading to this perfect staircase pattern.
Dots : Data for an aluminum atomic contact with mesoscopic PIN code {0.40,0.27,0.03}. Full line : MAR
theory prediction for this code.

Dynamical Coulomb blockade

The dynamical Coulomb blockade of single electron tunneling occurs when a small
capacitance tunnel junction is placed in series with an impedance [33]. A tunnel event across
the junction is accompanied by the passage of a chareough the impedance. This can
excite electromagnetic modes in the impedance and as a result electron tunneling is inelastic.
Because of this loss of energy to the environment, the phase space for allowed electronic tran-
sitions is reduced. As a consequence, at low voltages and temperature, the transfer rate is re-

duced giving rise to a dip at zero voltage in the differential conductance as a function of volt-
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age (see Figure 9). Coulomb blockade is a quantum effect, which is large when the series im-
pedance is comparable to the resistance quahtbgh. Recently, A. Levy-Yeyatet al. pro-

posed a connection between this phenomenon and shot noise in a generic quantum coherent
structure [34]. Indeed, shot noise also results from the random current pulses due to tunneling
of single electrons, and energy has to be dissipated in the impedance, thus retreiving the

situation discussed above.

Z((D) EFl =1 . Adl/dv
N ' E 1
e eV \‘ JaVaVaVar =
TN %
—EF,
tunnel junction >

0 V
(a) (b) (c)

Figure 9 : (a) Dynamical Coulomb blockade occurs in circuits where a tunnel junction is in series with a non
negligible impedance Zj).

(b) At a given voltage and zero temperature, electronic states on both side of the junction are filled up to the
Fermi energies which are shifted BY. When an electron tunnel through the junction, an amount of its
energy E is transferred to the electromagnetic environment. The phase space allowed for electronic transi-
tions is reduced.

(c) The inelastic tunneling rate is thus also reduced. This results in a dip in the differential conductance at
low voltage.

This reasoning, which can be made rigorous, rises the question of the intensity of
Coulomb blockade in a channel with arbitrary transmission. Would Coulomb blockade be
suppressed, like shot noise, in a ballistic channel? Is the link between Coulomb blockade and
shot noise generic? The theory of Coulomb blockade in this regime, in the case of an imped-
ance small compared to the resistance quantum, predicts a suppression of the conductance dip
by the same factor as for shot noise.

In order to test these new predictions, we have embedded an atomic contact in an on-
chip electromagnetic environment with a similar design as for the Josephson supercurrent
experiment. However, in this case the resistors are made out of aluminum. In the supercon-

ducting state the resistors have thus zero DC resistance, allowing the determination of the

15



code of the contattin order to measure the dynamical Coulomb blockade, the sample is then
brought into the normal state by applying a magnetic field of 200 mT perpendicular to the
plane of the electrodes, in which case the resistors have a resiBtance , arickthe differ-
ential conductance is measured as a function of voltage.

Our results, depicted in Figure 10, demonstrate that Coulomb blockade is indeed sup-
pressed when the transmission approaches one. Quantitatively, the measured conductance dip
IS in agreement with the predictions within the uncertainty on the channel content determina-

tion mentioned in the footnote.

C=0.45 fF; T=21 mK C=0.45 fF;T= 23!5 mK
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Figure 10: Measured differential conductance curves of two atomic contacts (symbols referred to the left
axe), and comparison with the predictions for the dynamical Coulomb blockade (lines). Right axes, relative
reduction of the conductance. Dashed lines are the predictions for the tunnel case. The wiggles and asym-
metry appearing on the experimental curves are reproducible conductance fluctuations due to interference
effects depending on the detailed arrangement of the atoms in the vicinity of the contact [35]. The left panel
corresponds to the case of a contact with just a single weakly transmitting channel, and the experimental
data are well described by the standard theory of dynamical Coulomb blockade valid for tunnel contacts, as
expected. On the right panel, the contact has two channels, ongeC0.835. In this case, the relative
reduction of conductance is much less than in the tunnel case. The full line, which agrees reasonably well
with the data, is the prediction of A. Levy-Yeyatiatt summing the contributions of the two channels of

the contact.

! Note however that such resistors have an impedance with a non-zero real part above twice the gap frequency
that is expected to slightly modify the shape of the current-voltage characteristic, in a way that is not yet quanti-
tatively known. As a result, the channel decomposition is slightly less accurate than in previous experiments.
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To conclude, the experiments described in this thesis show that besides being inter-
esting objects by themselves, atomic contacts provide an ideal test-bed for mesoscopic phys-
ics. The accuracy of the mesoscopic PIN code determination and the integrability of these
contacts into adequate mesoscopic environments allow quantitative test of theoretical predic-
tions. Several mesoscopic phenomena other than those addressed in this thesis remain to be
investigated. Some situations are even completely unexplored.

First, Coulomb blockade of Multiple Andreev Reflections remains an open problem
both theoretically and experimentally. Are high-order processes, because of their larger asso-
ciated charge, more strongly suppressed than lower order processes?

Second, it should be possible with these contacts to measure the basic object of the Jo-
sephson effect theory, namely the full current-phase relationship, and this for a wide range of
transmissions. This experiment poses however a formidable technical challenge.

Third, the ac Josephson effect for arbitrary transmissions remains to be explored. Is it
possible to observe the fractional Shapiro steps that have recently be predicted [36]?

Finally, the whole field of high-frequency dynamics remaarsa-incognitafrom the
experimental point of view. The usefulness of thel d¢ ¢haracteristics should not hide the
extraordinary richness of the high frequency components of the current and of its fluctuations.

Detailed predictions exist that await to be tested [13,14].
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The first experiments on small metallic point contacts were performed by bringing a
metallic needle into contact with a metallic surface, usually using a differential screw
mechanism to control the relative motion. This so-called spear-anvil technique pioneered by
Yanson [1] in the 70’s, and later developed by Jaesah [2] allowed to form stable metallic
contacts with a diameter in the range 10-100 nm, but usually the mechanical control of the
needle was not sufficiently stable to reach smaller sizes. Later on, mechanical set-ups were
developed that did control the position of the tip at the atomic scale allowing the formation of
stable contacts with diameters going all the way down to the atomic size. The Scanning
Tunneling Microscope (STM) invented by Binnig and Rohrer in 1981 is the ultimate

achievement of this technological progress. The STM as well as mechanical break-junctions
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are nowadays mature techniques to realize atomic-size contacts. We briefly present these
techniques in the first part of this chapter.

Although the exact configuration of atomic-size contacts is generally not directly
accessible, their electrical conductance provides some information about the number of atoms
constituting the contact. By monitoring the conductance while withdrawing or driving in the
metallic tip, atomic rearrangements of the contact are evidenced, and the smallest contact,
namely a one-atom contact, can be adjusted. The second part of this chapter deals with the
conductance of atomic-size contacts and the available evidence for one atom contacts.

Finally, as the coherence length of electrons in metals is larger than the atomic scale,
even at room temperature, atomic-size contacts are quantum coherent conductors.
Furthermore, as their transverse size is comparable to the Fermi wavelength, they
accommodate a small number of conduction channels, and the complete mesoscopic code is
amenable to measurement. This determination paved the way to experiments that established
the link between the conduction properties of a single atom and its chemical valence. In the

third part of this chapter, we describe how this determination is perfdrmed.

1.1 Obtaining atomic-size contacts

1.1.1 The Scanning Tunneling Microscope

The first technique to reproducibly achieve atomic-size contacts was the Scanning
Tunneling Microscope (STM) with which even a controlled atomic switch has been operated
[3]. Presently, the widespread technique to produce contacts with a STM works as follows.
The sharp metallic tip of a STM is first pressed against a metallic surface to form through a
plastic deformation a large contact. Subsequently, an elongated contact is formed as the tip is
withdrawn using a piezoelectric actuator. The conductance of the contact is monitored on-

flight providing an indirect information on the size of the contact. Generally speaking, a

! Most of the material presented in this chapter covers work by other people, but it is presented for the sake of
completeness and as a short introduction to the basic techniques.
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conductance of the order of the conductance quaGiym2e?/ h=1/12.9 Q™" indicates that

the contact has an atomic size. This fast technique (one can pull out the tip in as short as 1ms,
still slow compared to the atom dynamics), allows to perform statistical measurements of the
properties of these contacts [4]. For this kind of experiments the STMs usually operate at
room temperature in air, but in order to get accurate measurements of the properties of
individual contacts it is better to work at cryogenic temperatures. When associated to an
Atomic Force Microscope (AFM) that measures the force between the tip and the metallic
surface, this technique allows to probe the internal mechanical strength and atomic
rearrangements in atomic-size contacts simultaneously with conductance measurements [5,6].
In other experiments, the structure of the neck connecting the tip to the metallic surface has
been directly observed with a transmission electron microscope, which allows to relate the

atomic configuration to the conductance of the contact [7,8].

1.1.2 The Mechanical Controllable Break Junction technique (MCBJ)

This second technique used to obtain atomic size contacts was developed in 1992 by
the team of J.M. van Ruitenbeek at Leiden University [9] as an extension of the “break
junction technique” pioneered by Moreland and Ekin [10]. It consists essentially in breaking a
thin metallic wire by bending the elastic substrate to which it is anchored. The two resulting
electrodes are then slowly approached by controlling the strain on the substrate until a contact
is recovered. Because this bending set-up is more compact and more rigid than the one of an
usual STM, essentially by giving away the possibility of lateral scan, small contacts are
significantly more stable with this technique. Furthermore, MCBJs are much easier to
implement at low temperature and breaking the wire under cryogenic high vacuum prevents

tip or surface contamination.

1.1.2.1 “Conventional” Mechanical Controllable Break Junctions

The schematic set-up of a MCBJ is depicted in Figure 1. A metallic wire is attached to
an elastic substrate (bending beam) of thickrtebgtween two anchors separated by a

distanceu. The metallic wire presents in between the two anchors a notch. The substrate is
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placed on two countersupports a distahcapart, and bent by pushing in its center with a
pushing rod. The strain imposed on the wire by bending the substrate is geometrically
concentrated at the notch. The distance between the two anchors is increased until the metallic
wire breaks at the constriction. The two resulting electrodes are then slowly brought back into
contact. A simple calculation assuming that the regime is elastic shows that a longitudinal
displacementdx of the driving rod results in a change in the inter-electrode distance

oD =r dx, where the reduction ratio=6ut /L*[11].

- L >
notched metal epoxy droplet
wire u

t
B s

elastic
substrate

counter-supports

Figure 1 “Conventional” mechanically controllable break junction set-up. A notched wire is anchored to
an elastic substrate by two droplets of epoxy. It is broken by bending the elastic substrate. For fine
adjustment of the distance between electrodes the pushing rod is driven by a piezoelement.

In “conventional” MCBJ, the metallic wire, with a typical diameter between 20 and
200um, is notched with a knife and glued with two droplets of epoxy to the elastic substrate.
Typical values arga= 1mnand L= 20mmand in practice the distance between the two
epoxy anchors cannot be made much smaller tiran 0.,5ging rise to a reduction ratio
of the order ofr =7.10°. After breaking the wire and reestablishing back a contact, the
pushing rod is controlled by a piezoelectric actuator to achieve atomic scale control of the
interelectrode distance.

The increased stability of the atomic contacts obtained through this technique allowed

the team lead by Jan van Ruitenbeek to carry out a wide variety of elegant experiments [4].
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1.1.2.2 Nanofabricated Mechanically Controllable Break Junctions

The technique of nanofabricated MCBJ developed in the Quantronics group at Saclay
decreases the reduction ratio even further and thus improves the achievable stability [11].
Using nanofabrication techniques, a metallic film presenting in its center a constriction (see
Figure 2) is deposited on an elastic substrate coated with an insulating polyimide layer (see
Chapter 2 for the fabrication steps). The polyimide layer is then etched so as to suspend a
metallic bridge around the constriction, the large metallic regions remaining anchored to the
substrate. Typically the bridge is suspended ovenn8 and has a 100 nm diameter
constriction. For nanofabricated MCBJ, the distance between the two amchogsn is 8vo
orders of magnitude smaller than in conventional MCBJ. The much smaller reduction ratio,
typically r =9.10” results in an improved stability, allowing to form atomic-size contacts
that can be preserved identical for days. This point was essential to the realization of the
experiments presented in this thesis because most of measurements required several hours to

be completed.

anchor pads constriction (= 100 nm wide)

I metallic thin film (= 100 nm thick)
1 polyimide layer (=2 pum thick)
/2 elastic substrate

bridge
(=2 pm long)

Figure 2: Schematic view of a sample fabricated using electron beam lithography and evaporation
techniques. By carving the polyimide layer the bridge is released from the elastic substrate. The large-area
metallic regions (anchor pads) remain fixed to the substrate.
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1.2 Conductance of atomic-size contacts

1.2.1 Conductance steps and plateaus

Figure 3 presents a typical conductance trace obtained while bringing together at
constant velocity the two electrodes of an aluminum nanofabricated MCBJ. Measurements
were performed at 50 mK under a magnetic field of 200 mT to destroy superconductivity in
the aluminum films.

The conductance first increases exponentially (see inset in Figure 3), revealing the
tunnel regime in which there is a vacuum gap between the electrodes. This exponential
dependence of the conductance allows a precise calibration of the mechanical set-up and a
determination of its stability. The measured drift in the interelectrode spacing is of the order
of 0.2 pm/h, to be compared to 30 pm/h for conventional MCBJ [11].

At some point the conductance shows a discontinuity that corresponds to a mechanical
instability when the two electrodes jump into contact. Afterwards, the conductance evolves
through a series of plateaus and sharp steps. The conductance on the first plateau is close to
the conductance quantu@®, and the height of the steps is also of the ordggofA similar
staircase is observed while separating the two electrodes. Although a staircase pattern is
observed every time the experiment is performed, the horizontal extension (of the order a
fraction of nanometer) and the vertical position of the plateaus are not reproducible for
subsequent compression-extension cycles.

To date, these general features have been observed in a large palette of metals [12]:
Au, Ag, Cu, Zn, Na, K, Li, Al, Pb, Nb, Sn, ..., and under a great variety of experimental
conditions (temperature, technique to produce atomic size contacts, rate of compression and
extension). The typical conductance on the first plateau, the typical lengths of the plateaus,
and the behavior within the plateaus are characteristic of each material. For example, as can
be seen in Figure 6 and 3, Al has generally plateaus with negative slope whereas Pb and Nb

have mainly positive ones.
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Figure 3: Conductance as a function of the relative displacement between the two electrodes while
bringing them closer. Inset: Conductance in the tunnel regime on a logarithmic scale.

The succession of plateaus and conductance jumps is directly related to the dynamics
of the atomic configuration of the contact. Combined STM-AFM experiments that measure
the force between the tip and the surface simultaneously with the conductance, have
beautifully evidenced that on a plateau the atomic configuration is only elastically deformed
while a conductance jump results from an abrupt reconfiguration of the atoms at the contact
accompanied by a stress relief (see Figure 4). The experimental set-up is depicted in the inset
of Figure 4. A clean gold sample is mounted at the end of a cantilever beam. The force
between the tip and the gold sample is obtained by measuring the deflection of the cantilever
beam with an AFM working in the contact mode. At a conductance step, the contact switches
from one atomic configuration to another one. In MCBJ experiments in which the contact is
adjusted precisely at a conductance jump, temporal fluctuations between the two atomic
configurations, revealed as two levels fluctuations in the conductance, have been observed
[13,14].

Molecular dynamics simulations [15,16,17] confirm this interpretation of the staircase

pattern. Starting with a perfectly ordered cylindrical metallic wire containing a few thousands
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atoms, the position of each atom is calculated while the wire is stretched. The atomic structure
evolves through a series of stress accumulation phases, in which the relative positions of
atoms remain almost constant, and abrupt stress relief phases corresponding to an atomic
reconfiguration. During a reconfiguration the lateral dimensions of the contact changes
abruptly resulting in a jump of its conductance. Just before breaking, the last and smallest
contact corresponding to the last conductance plateau is formed by a single atom (or
sometimes a several atom long chain), for which free electron calculations predict a
conductance value of the order@f[17].

In experiments, the exact conductance of the last plateau is not reproducible from one
stretching to another but conductance histograms clearly show a peak at a particular value. In
addition, for several metals this peak is very clos&joThese facts were the first clues that
the smallest contacts are indeed one-atom contacts. Other experiments described below have
well established this point and provided a deeper insight into electrical transport through a

single atom.

20 L I B T

AFM cantilever
cantilgver beam
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Figure 4 (reproduced from [5]): Inset: Schematic representation of the set-up combining an STM and an
AFM. Main panel: Representative simultaneous recording of the measured conductance (a) and force (b)
during the elongation of an atomic-sized constriction at 300 K. Conductance steps occurs simultaneously
with relaxation of the force as a result of atomic rearrangements.
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1.2.2 One-atom contacts

1.2.2.1 Direct observation of one-atom gold contact

In the case of gold, one-atom and chain contacts have indeed been observed directly
with Ultra High Vacuum (UHV) high resolution Transmission Electron Microscopes (TEM)
[7,8]. Contacts were formed at room temperature using an STM placed at the specimen stage
of the UHV TEM. Video images of the atomic structure of the contact have been recorded at
high magnification while withdrawing the tip (see Figure 5). They show that the last contact

before breaking is constituted from a strand of gold atoms whose conductance is Glpse to

Figure 5 (reproduced from [7]): Electron microscope images of a contact while withdrawing the tip. A
gold bridge formed between the gold tip (top) and gold substrate (bottom), thinned from a to e and rupture
at f. Dark lines indicated by arrowheads are rows of gold atoms. The faint fringe outside each bridge and
remaining in f is a ghost due to interference of the imaging electrons. The conductance of the contact is 0 at
fand ~2G at e.

This formation of a chain of a few gold atoms was also reported in “standard” STM
experiments and MCBJ. By repeating at a high rate many compression-extension cycles, a
chain containing up to four or five atoms was sometimes detected, as evidenced by an
unusually long last conductance plateau before breaking [18]. The formation of such atomic
chains is not completely understood from the molecular dynamics simulation point of view.
Furthermore, this phenomenon has been observed only in gold samples and the specificity of

this metal compared to others is not well understood.
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1.2.2.2 Direct link between the conductance of a one-atom contact and its chemical
valence

As already mentioned the typical conductance value for the smallest contact depends
on the material. Conductance histograms, constructed from a large number of conductance
traces like the one in Figure 3, show a peak at a particular value, which for monovalent metals
like gold, silver, cooper and the alkali metals is clos&davhereas for lead it is centered at
1.8 Gy and for niobium at 2.8, [12]. The position of this peak is related to the chemical
valence of the material.

As described in the following, the number of conduction channels of the last contact
can be determined using the highly non-linear current-voltage characteristics in the
superconducting state. Experiments performed by three groups have shown that this number
of conduction channels is directly related to the number of valence orbital of the metal
involved [19]. Four metals, namely lead, aluminum, niobium and gold, were studied covering
a large palette of valence structures. In the case of gold, the superconductivity was induced
through the proximity effect by a thick aluminum layer in intimate contact with the metallic
gold film everywhere but at the constriction [20]. It was found that for gold only one
conduction channel contributes to the conductance on the lowest conductance plateau.
However, for aluminum and lead, which have p-electrons at the Fermi level, three channels
contribute. Niobium is a transition metal with s- and d-electrons, and five conduction channels
were found to contribute (see Figure 6).

In order to gain a microscopic insight into the link between conduction channels and
the atomic orbital structure, a tight-binding model of a one-atom constriction using an atomic
orbital basis was constructed [21,22]. The model includes small random displacements of the
atoms around their position in a perfect crystal, but neglects the atom dynamics. Remarkably,
despite the fact that the transmission probability of each channel is very sensitive to the exact
positions of the atoms in the vicinity of the contact and that the system is not at equilibrium,
the number of conduction channels was found to be robust against disorder around the central
atom. It is simply determined by its number of valence orbitals. The number of contributing
channels predicted by this microscopic calculation is in agreement with experimental results
[19].
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These theoretical and experimental works firmly established that the smallest possible
contact does consist of a single atom, and that the electrical transport properties of one-atom
contacts are determined by the chemical nature of the involved atom.

We present now the method used to determine the number of channels. It extracts the
complete mesoscopic code of atomic-size contacts from their current-voltage characteristic in

the superconducting state.
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Figure 6: Conductance traces recorded while stretching atomic-size contacts as a function of the displacement
Ax between the two electrodes for four different metals. Measurements on Pb were made using an STM. For
Nb, conventional MCBJ have been employed while for Al and Au nanofabricated ones were used. Each point

in these graphs is obtained by stopping the stretching of the contact and taking the current-voltage characteristic
in the superconducting state. From the characteristic, the number of channels (indicated below and above the
conductance traces) as well as the conductance of the contact are inferred.
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1.3 Full characterization of atomic-size contacts as quantum
coherent conductors

As explained in the Appendix B, in the superconducting state the transport through a
guantum coherent conductor occurs at small voltages through MAR processes leading to
highly non-linear current-voltage characteristics. These non-linearities strongly depend on the
transmission of the channels. Since atomic-size contacts accommodate only a small number of
channels, their current-voltage characteristic contains enough information to extract their
mesoscopic code [23]. We present now the steps leading to the determination of the

mesoscopic code and discuss the accuracy of the method.

1.3.1 Determination of the mesoscopic PIN code

The determination is achieved by breaking up the measured current-voltage
characteristid(V) into the contribution of independent channél®/) = Zi:i(\/,ri ,A) where
N is the number of channeld,the superconducting gap of the metallic films and 7 (4, , )
the current-voltage curve calculated for one channel with transmission probabiltg
latter were obtained from the numerical code developed by Cuevas, Martin-Rodero and Levy

Yeyati [24]. A least-square fitting procedure is applied withdefined as:

Xt =) (V) - Z (V. 7, 09) 2V

21
I D(V)
where D(V) is the density of data points at V in the measured current-voltage characteristic.
As the characteristics are non-linear and we do not voltage bias the contact, this density is not
at all uniform. One has to take it into accotmtensure that the current-voltage characteristic

is uniformly weighted. As the size of the voltage interval on which the n-th order MAR
process dominates the current is roughly speaking of the ord®%/afe, a uniform density

gives more relative weight i’ to the low order MAR processes. Note however that this

imbalance would be worse if the density D(V) were not taken into account. Finally, the

maximum voltage of the measured current-voltage characteristics determines the weight
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attributed to the first order process in the fits. In our fits this voltage is typically of the order

of 4—5A/e.

1.3.1.1 Measurement of the superconducting gap of the metallic film
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Figure 7: Circles: Measured current-voltage characteristic in the tunnel regime. Full line: best fit obtained
by adjusting both the superconducting gagnd the transmission of the conduction char A =182peV

and 7 =0.097. Inset: zoom around the VAZe region. Full line: best fit of main panel. Dashed line: best

fit with only the transmission as a fitting parameter, and the gap fixA =180ueV . Dotted line: best fit

with only the transmission as a fitting parameter, and the gap fi A =184peV .

For a given sample, the superconducting fyap the metallic electrodes is determined
prior to all other measurements. In the tunnel regime, only one conduction chanrekuwith 1
contributes to the current [25]. Taking a current-voltage characteristic in the tunnel r&gime,
is determined by adjusting its value as well as the transmission probability of the conduction
channel in order to obtain the best fit (see Figure 7). All measurements performed during the
course of this thesis were made on aluminum films. For all samples, the superconducting gap
was between 175 and 2Q@V, the accuracy being of the order ofudV. This is slightly

larger than the bulk value, 11%®V, as frequently observed in thin films. The valueAof
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determined in the tunnel regime is subsequently used to determine the mesoscopic codes of all

contacts obtained on the same sample, and is consequently no longer a fitting parameter.

1.3.1.2 Fitting procedure to determine the mesoscopic PIN code

For a given numbar of channels,

XM= Min X {1p...7)
{1)-...To}H0,1]"

is determined by scanning all possible combinations of transmissions with a C++ grogram
For transmission probabilities ranging from 0.1 to 0.99, the increment step is 0.01. From 0 to
0.1 and 0.99 to 1, the step is 0.001 so as to increase the precision in the tunnel and almost
ballistic regime. This brute force complete scanning is possible in a reasonable time when
considering up to 4 channels. For a larger number of channels, it is too much time consuming
and in that case we use a steepest-descent minimization algorithm performed by a

Mathematica code.
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Figure 8: Dots: Current-voltage characteristic of a one-atom aluminum contact in reduced units. Lines:
best fits using one, two and three conduction channels. jf§ex:on a logarithmic scale. The number of
channelsn is increased as long as té decreases significantly. For this particular contact, taking into
account four channels does not improve the fit. The contact is thus considered as having three conduction
channels. The best fit with three channels gives the mesoscopic PIN gdi22,1,=0.19,1;=0.18.

2 Executable available upon request.
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Of course x“(n) is a decreasing function of The fitting procedure starts with=1.

Thenn is incremented unti}%n) stops to decrease significantly. At this point increasing
corresponds to add channels that contribute in a negligible manrer ) to the current-
voltage characteristic and which can be taken as clased ). The finaln is the number of
conduction channels and the set of transmission probabilities corresponding to the minimum
XA(n) is the mesoscopic code of the atomic-size contact. This fitting procedure is presented in
Figure 8 in the typical case of a one-atom aluminum contact containing three channels.

In order to get some insight into how the individual transmission coefficients are
deduced, we now demonstrate how they can be “manually” determined. For this purpose, we
discuss the case of an atomic contact containing conduction channels with well-separated
transmission probabilities, like the contact in Figure 9. This is a two-channel contact with one
channel almost perfectly transmittedr, €0.995) and a weakly transmitted one
(r,=0.26). Two characteristics of the current-voltage curve determine the highest
transmission. The current belofwwhich is completely dominated by this well-transmitted
channel and the excess current at large voltages (see Figure 9(a)). Fitting the low voltage
region by imposing the highest transmission to be 1 gives too much current while with a
transmission of 0.99 some is missing, as depicted in Figure 9(b). Finally, the transmission of
the less transmitted channel is determined by getting the right total conductance, namely the
correct slope at large voltages.

More generally, for an atomic-size contact with an arbitrary number of channels, the
region of the current-voltage characteristic corresponding to the lowest voltages reveals the
highest transmission probability. The following lower transmission probabilities are
predominantly revealed by considering successive higher-voltage regions. The normal
conductance, which is proportional to the sum of the transmission probabilities
(G= GoziNlei ), and the excess current impose two additional constraints on the mesoscopic
code. For a number of channels equal or smaller than three, it is straightforward to determine

“manually” the transmission probabilities.
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Figure 9: (a) Circles: measured current-voltage characteristic of a one-atom aluminum contact containing two
conduction channels. Solid line: best two channelsr, =0.995, 1, =0.26. Dashed lines: contribution of

each channel. Dotted line: linear current voltage characteristic in the normal state, which for large voltages
has the same slope as the characteristic in the superconducting state. The double arrow line indicates the
excess current in the superconducting state. (b) Dots and full line: the same as in (a). Dotted line: best fit with
1,=0.99 fixed. Dashed line: best fit with=1 fixed. Note the logarithmic scale on the horizontal axis in (b).

1.3.2 Accuracy of the mesoscopic PIN code determination

Three factors, both experimental and theoretical, contribute to the uncertainty in the
determination of the individual transmission coefficients.

The first one is that currents and voltages are measured with a finite accuracy. The
influence of these measurement uncertainties is well illustrated by the contact presented in

Figure 9. Clearly, the current-voltage characteristic is noisy at low voltages (Figure 9 (b)). As
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this voltage region determines the highest transmission probability, the noise leads to an
uncertainty on its value. This uncertainty relatively decreases as the transmission increases.

The second one is the thermal smoothing of the MAR steps. The theoretical current-
voltage characteristics(V,7,A) are calculated at zero temperature but current-voltage
characteristics are typically measured at 20 mK. The MAR steps are thus smoothed on a
voltage scale of the order QD.lUskB/ez 2uV . As this smoothing is not taken into account
by the theoretical curves, the fit can not be perfect.

The last one are the possible deviations in a given sample from perfect BCS behavior,
since the theoretical curves are calculated assuming an ideal BCS spectrum. Note however
that our Aluminum samples are very close to ideal BCS, as observed in the tunnel regime.

Given all these factors the mesoscopic code can not be determined exactly. Within a
given accuracy, we can only give a set of plausible mesoscopic codes. The criteria we use to

distinguish between “possible” and “impossible” codes is the following:

XLy D) s(%ﬂ) 2 jﬁao*xw» 24V

That is, “possible” mesoscopic codes are the set of transmission probabilities
{r,...,T} that fit the experimental current-voltage characteristic with an overall accuracy
better than 1%, a conservative estimate of the actual experimental accuracy.

This inequality defines a volum@ in the transmission probability space: the smaller
this volume, the better the mesoscopic code determination. Generally speaking, the volume is
an ellipsoid with its symmetry axis not along the and a separated uncertainty can not be
assigned to each individual transmission probability. However, for the particular case of
Figure 9 of a contact having just two conduction channels with well-separated transmission
probabilities, the envelope is almost a square and it is possible to ascribe an uncertainty to

each individual transmission coefficiemi:=0.995+ 10° and1, = 0.26+ 10°.
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The accuracy is better at larger transmission probability because the “distance”
i(v,+0.01)-i¥ 1) between two current-voltage characteristics with consecutive

transmissions, defined as:

d(r) =[i(v.7+0.01)-i ¥ IH:%(} (V 7+ 001 ¥ivta hav)’

increases with transmission (see Figure 10). The discrimination between two adjacent

transmissions is consequently much easier at the high transmission end.
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Figure 10: Distance between two theoretical current-voltage characteristics with transmission probabilities
differing by 0.01 as a function of transmission probability

1.3.3 Uncertainties propagation

After we determine the mesoscopic code of a particular contact, we use it to predict
all the contact transport properties. Quantities like the maximum supercurrent for the DC
Josephson effect, or the Fano factor for shot noise in the normal state are functions of the
mesoscopic code. For example, the Fano factor for a given set of transmission probabilities

{r,...,T} Is equal to:

F({Tl,--.,TN}) =] - i:1Ti

N
i=1Ti
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The uncertainty in the prediction of these quantities from the mesoscopic code is
evaluated by calculating them for all “possible” mesoscopic code. In the case of the Fano
factor, this procedure defines an interval of “possible” Fano factors whose lower and upper

bounds are respectively:

Min F ({r,...1,}) andMax F({r, ,..1,}) fofr, .7} 0Q

1.4 Conclusion

STM and MCBJ allow to routinely make atomic-size contacts between two metallic
electrodes. Due to their small dimensions, these contacts are quantum coherent conductors
that contain a small number of conduction channels. The great variety of the microscopic
transport mechanisms in the superconducting state permits to extract from the current-voltage
characteristic the mesoscopic code of atomic-size contacts. This determination has already
allowed to relate the number of conduction channels of contacts containing only one atom to
the chemical valence of this atom [19]. Now, we are in the position to use these fully
characterized quantum coherent conductors to test quantitatively the predictions of

mesoscopic physics. We present in the following chapters three different such tests.
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In this chapter, we describe in some details the basic techniques that were
implemented to carry out the three experiments presented in the next chapters. The basic
requirement is to obtain very stable and clean atomic contacts. To fulfill it, we use
nanofabricated break-junctions operated at cryogenic temperatures. Furthermore, for two of
the experiments the break-junction had to be integrated in specially designed on-chip
environments, a goal achievable using the flexibility of electron beam lithography. Finally,
one has to detect small signals arising from fragile microscopic mechanisms that correspond
to very small energies (microelectronvolts). It is thus necessary to properly filter all the
measurement lines to ensure that the devices are really at the low-temperatures provided by

the dilution refrigerator.

2.1 Nanofabricated break junctions

The goal here is to fabricate a metallic bridge suspended over a few micrometers (see

Figure 1). First, a metallic elastic substrate is covered with an insulating polyimide layer
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topped by an electrosensitive bilayer. Then, by exposing the bilayer to the electron beam of a
scanning electron microscope, a mask with designed openings overhanging above the
polyimide layer is obtained after development [1,2,3]. Metal is subsequently evaporated
through this mask, in an electron gun or a Joule evaporator, leading after lift-off to a metallic
structure narrowed in its center and deposited on the polyimide layer. In a final step, the
narrow central region is freed from the polyimide layer by isotropic dry etching while the
large-area metallic regions remain attached to the polyimide, thus giving rise to the suspended
metallic bridge.

We now describe in detail the different steps of the fabrication process.

Suspended metallic bridge

Metallic film Polyimide layer

Figure 1 : SEM colorized micrograph of a nanofabricated suspended bridge.

2.1.1 Wafer preparation

A schematic cross section of the wafer consisting in an elastic metallic substrate

covered with a polyimide insulating layer and a electrosensitive bilayer is shown in Figure 2.
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Figure 2 : Cross section of the wafer before nanofabrication steps.

Preparation recipe

As a metallic elastic substrate we use 0.3 mm-thick bronze sheets (Cu, Sn 3%,Zn 9%).
A 7cnmx7cm square substrate is polished using a manual polisher until the residual roughness
is close to Jum. It is then cleaned in successive ultrasonic baths of RBS, water, acetone and
ethanol. Care is taken to maintain the surface of the wafer wet between the polishing and the
cleaning procedure. An adhesion promoter Ultradel A600 layer is first spread on the metallic
sheet. It is spun for 30 s at 4000 rpm and dried for 1 min on a hot plate.mn2tdck layer
of polyimide P12610 from Dupond de Nemours is then spun for 1 min at 2000 rpm and baked
for 30 min in an oven at 200 °C to remove the solvent. The polyimide layer is then annealed
for 3 hours at 350°C in a vacuum chamber under a pressure lower thea.10

The electrosensitive bilayer consists of a layer of copolymer meta-acrylate
acid/methyl-meta-acrylate (MAA/MMA) about 500 nm thick covered by a layer of PMMA
about 50 nm thick. The copolymer MAA/MMA is diluted at 10% (by weight) in ethylactate. It
is spun for 60s at 2000 rpm and dried for 2 min at 170°C on a hot plate. The PMMA polymer

is diluted at 3% in anisole, spun 60s at 4000 rpm and baked 15 min at 170°C on a hot plate.

Comments
The polyimide layer plays three roles. First, it planarizes the substrate surface to a
level compatible with the smallest dimension of the devices (100 nm). Second, it insulates the
metallic thin films from the substrate. Finally, it can be carved to free the bridge. The
annealing step is necessary for the polyimide layer to retain its elastic properties at low

temperatures. The electrosensitive bilayer is the simplest way to realize suspended masks
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using electron beam lithography. The MAA/MMA layer, which has a greater electron
sensitivity, sustains the suspended PMMA mask through which metals are evaporated. The
thin bilayer we use allows to currently fabricate nanostructures with dimensions down to 50
nm.

The coated substrate is finally diced into 20 x8nmm chips and each chip is then

processed separately.

2.1.2 Lithography and metal deposition

Bridge — Pads —

Figure 3 : Representative exposure patterns fo120um x90 pm (a) andé mmx 4.5 mm (b) exposure
fields.

The sequence of steps leading to the fabrication of the metallic nanostructure on top of

the polyimide layer is schematically represented in Figure 4.

Electron beam exposure
The electrosensitive bilayer is exposed using a JEOL-840A scanning electron
microscope. The exposure pattern, dose and blanking of the electron beam are driven by the
Proxy-writer system from Raith GmbH. We currently work with a 35 keV electron beam, for

which the standard exposure dose is a®p€um™. The writing of the full mask is done in
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two steps. The first one (12fh %90 um exposure field)with a 10 pA current beam patterns

the fine details, i.e. mainly the geometry of the bridge (see Figure 3(a)). The second step
(6 mmx 4.5 mnexposure field) patterns the leads (12 nA) and pads (30 nA) that connect the
bridge to the measurement circuit (see Figure 3(b)). The electrons penetrate the bilayer and
release their energy in the resin. In irradiated regions, PMMA and MAA are broken into
fragments of smaller molecular weight. As depicted in Figure 4(a), the same beam affects a
broader region in the copolymer layer than in the PMMA. This is due first to the greater
sensitivity of the MAA resin and second to enhanced exposure dose of this bottom layer from
electrons backscattered by the substrate. This undercut can be locally enhanced by an

additional low dose electron beam exposure that affects only the bottom layer (Figure 4(b)).

Development
The irradiated regions of the bilayer are subsequently completely removed in a
solvent while the non-exposed regions remain unaffected (Figure 4(c)). As a developer we use
methyl-isobutyl-ketone (MIBK) diluted at 25% vol. in propanol-2. Resins are usually
developed for 40s at 19°C and rinsed for 5s in propanol-2. The PMMA mask is then ready for

the metal deposition step.

Metal deposition
Metals are evaporated through the mask in an electron-gun or in a Joule evaporator.
The sample is positioned on a tiltable sample holder allowing evaporation at different angles.
The metal evaporated at an angle through PMMA openings with not much undercut is
deposited on the copolymer layer walls and not on the polyimide (Figure 4(d)).
A typical aluminum film was deposited at a pressure 6t B@ and at a rate of 4
nm/s. Its resistance at 4 K was about 3 times lower than that at 300 K.
Lift-off
Once the metallic film is deposited, the PMMA mask and the copolymer ballast are
removed in acetone at 50°C for a few minutes. The metal deposited on top of the bilayer and
on the walls of the bottom copolymer are eliminated (Figure 4 (e)).

This completes the electronic lithography steps.
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Nanofabrication steps
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Figure 4 : Schematic representation of the nanofabrication steps based on the technique of deposition

through a suspended PMMA mask.
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2.1.3 Dry etching of the polyimide layer

The polyimide layer is then isotropically dried etched so as to suspend the bridge.
The etching can be done either
* in a reactive ion etcher under the following rf plasma conditions: a flow of 50
sccm of Q and 1 sccm of SFat a total pressure of 2.7 Pa and a bias voltage of
20V, or
* in a downstream etching machine: 30 sccm gfaDa pressure of 28 Pa and a
power of 100 W.
The vertical etching depth is monitored by means of a laser interferometer. Etching
about 1um vertically is sufficient to free from the substrate the metallic features having
lateral dimensions lower thanuzh. A SEM photograph of a resulting suspended bridge is

shown in Figure 1.

2.1.4 Embedding a nanofabricated break-junction in an on-chip
electromagnetic environment

The pattern of electron beam exposure can be designed so as to embed the break
junction in an on-chip electrical circuit using metal evaporation at different angles or two
steps fabrication procedures. This was essential to the realization of the experiments on the
Josephson effect and on dynamical Coulomb blockade. In both cases, the circuit consisted of

four small resistors and four large capacitors (see the “sample part” at the bottom of Figure 9).
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(b)

Alignment
mark

AuCu/Al large
pads

Suspended AuCu
resistors

Figure 5 : SEM micrographs at different scales of one of the two samples measured in the experiments on Josephson
supercurrent. (a) AuCu/Al large pads that forms with the metallic substrate large capacitors. (b) Large SEM
micrograph of the central part : The layer superposition resulting from the two different fabrication stages is clearly

visible. (c) Suspended bridge and AuCu resistors.
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2.1.4.1 Samples measured in the Josephson supercurrent experiment

In the experiments on the Josephson supercurrent, the resistors were made out of an
AuCu alloy (see Figure 5(b) et (c)) and the large capacitors were formed between large
AuCu/Al pads and the substrate, the dielectric being the polyimide layer (see Figure 5(a)).
This was obtained in two lithography stages, with an intermediate alignment procedure. First,
the AuCu alloy (weight ratio 3:1) was deposited in a Joule evaporator to form the small
resistors and the large pads with no interconnections, and four alignment marks. After lift-off,
a new bilayer was deposited and another lithography cycle was performed to obtain the Al
bridge, the anchor pads and the interconnections. The bilayer being almost transparent to
electrons, it allows the alignment of the second pattern with respect to the previously
fabricated AuCu structures. Before depositing aluminum, an ion-mill cleaning procedure is
performed to ensure good contact between the two metallic layers. The AuCu/Al top plates of
the capacitors were 2.5mm 2 mmecttangles 180 nm thick. The measured capacitance was
of the order of 140pF. The AuCu resistors wereumQong, 500nm wide and
30 or 50 nnthick leading, respectively, to resistanced 89+ 20Q and125+ 20Q .

2.1.4.2 Sample measured in the Coulomb blockade experiment

In the experiment on dynamical Coulomb blockade, the resistors were thin aluminum
leads and the capacitors were implemented by four large aluminum g@adg. one
lithography stage was necessary in that case. Aluminum was evaporated at three different
angles (0° and +40°) through a single mask. First, a 12 nm thick film of aluminum was
evaporated perpendicularly to the substrate. This film is thus deposited on all polyimide
regions facing the openings in the mask. The break junction and pads regions were
subsequently thickened by two 75 nm depositions at + 40°. The sample is tilted around an
axis parallel to the long and narrow openings in the mask giving rise to the resistors.
Consequently, as explained before (p. 47), these angle evaporations do not add any metal to
them. The thin aluminum leads forming the resistors wergm26ng and 200 nm wide (see
Figure 6) with a resistance of the order of @20n the normal state. The resistance is

essentially due to surface scattering and thus decreases rapidly when the leads are thickened.
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Figure 6: Sample measured in the experiment on dynamical Coulomb blockade. Both the bridge and the
resistors are made out of aluminum.

2.2 Bending mechanism

The sample is placed on a three point bending bench that is thermally anchored to the
mixing chamber of a H¢He, dilution refrigerator (see Figure 7). The two countersupports are
14 mm apart. A differential screw, with a 1t pitch, controls the relative translation
between the pushing rod and the two countersupports. The sample is mounted with the bridge
centered with respect to the pushing rod. The nominal reductionrratib2x 10° translates
one turn of the screw into a 9.2 nm stretching of the suspendedbiithgedifferential screw
is driven by a DC electrical motor (controlled by a PC) through a series of three reduction
gear boxes for a typical total reduction ratio of 16260:1 (see Figure 8). The motor speed can
be continuously adjusted between 0.1 and 100 turns per seconds. The different stages are
connected through axles made of thin-walled stainless steel tubes to reduce the thermal loads

on the different parts of the fridge. The first gearbox is directly coupled to the motor and

! Note that as the substrates show some slight plastic deformation after the experiments are completed, the
nominal reduction ratio (calculated assuming a perfectly elastic deformation) is probably smaller than the actual
one.
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drives a rotating vacuum feedthrough that enters into the vacuum can of the refrigerator. The
second gearbox is thermally anchored at 4K and the third one to the 1K pot. From there, a last

section of tube, 40 cm long, directly drives the differential screw.

Figure 7 : Three point bending bench.

The bridge is broken at a typical stretching rate of 50-100 pm/s. Because of friction
in the differential screw, the temperature during this step is not lower than 500 mK. The
relative displacement between the two freshly fabricated electrodes is then controlled using
the same mechanical set-up. The contacts are adjusted changing the interelectrode distance at
speeds ranging from 5 pm/s down to 0.5 pm{9.0 rpsfor the DC motor). At the lowest

speeds, it is possible to keep the sample temperature below 50 mK.
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Figure 8 : Schematic representation of the whole mechanical bending set-up from room temperature down to
the coldest part of the dilution fridge.

2.3 Measurements at low temperature

Measurements at low temperature are made in a OxforgHéle dilution
refrigerator. The temperature is adjustable between 1K and its base value that with the
mechanical set-up mounted is 17 mK. The elastic substrate is thermalized through contact
with the two countersupports and the pushing rod. The full bending bench is enclosed in a
copper shield thermally anchored to the mixing chamber. The cryostat is equipped with an
8 Tesla superconducting coil surrounding the experimental box.

The large area pads of the sample are connected to a four terminal measurement
circuit by means of four spring contact probes. Silver paint is spread on top of the pads to
avoid piercing them while bending the substrate. The measurement lines are home-made lossy
shielded cables[4] to prevent high-frequency noise from reaching the sample.

Microfabricated distributed RC filters shaped as meander lines [5] are inserted in the lines,
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just before they enter the copper shield. The lines are carefully thermally anchored at the
different stages of the refrigerator.

The cryostat is equipped with shielded twisted-pair and coaxial lines. The inner
conductors are polyimide coated manganin wires, and the shields are stainless steel
capillaries. The coaxial cables going from 300K to 4K are made out of 0.1 mm diameter wire
(~ 60Q/m), and those going from 4K to the mixing chamber out of .05 mm wire. The shields
are ., =0.2mm,®_, = 0.7mmcapillaries. These cables have a distributed capacitance of
about 100 pF/m. The twisted pairs going from 300K to 4K are made out of 0.1 mm diameter
wire inside a®,, =0.4mm,®_, = 1.0mnshield, and those going from 4K to the mixing
chamber out of .05mm wire insidedg,, =0.2mm,®_,, = 0.7mmshield.

The distributed RC filters have an attenuation in the [40 MHz, 20 Ghz] frequency

window greater than 80 dB, when measured on 50 Ohm lines.
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Figure 9 : Schematic representation of the four point measurement set-up and on-chip electrical circuit in
experiments on Josephson supercurrent and dynamical Coulomb blockade. One bifilar line is used to current
bias the sample while the another one allows to measure the voltage across the contact. To ensure the
electronic thermalization at the lowest temperature of the fridgeQ21@ekistances are placed in between the

two lossy lines stages. Together with the cable capacitance, they f&t@ flter with a 1 MHz cut-off
frequency.
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A schematic representation of the measurement set-up used in the experiments on
Josephson supercurrent and dynamical Coulomb blockade is depicted in Figure 9. The set-up
for the shot-noise experiments will be described in Chapter 4. The valtaggoss the
contact is measured using two low-noise battery powered differential preamplifiers in series: a
x100-gain NF-LI-75A followed by a Stanford-SR560 of selectable gain. The cutrent
through the sample is produced by applying a voltage \@ja® a biasing resistanci, of
the order of 50 ® and measured by a low-noise differential preamplifier Stanford-SR560.
The current-voltage characteristics are recorded on a digital oscilloscope Nicolet Pro44 and

transferred through an IEEE data link to a PC for treatment.
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3.1 The Josephson supercurrent

Josephson predicted in 1962 [1] that a supercurrent can flow between two
superconducting electrodes even when they are weakly coupled. This so-called Josephson
supercurrent results from the coherent transfer of Cooper pairs between the superconducting

electrodes when a superconducting phase differéncey — @, is applied between them.
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This phase differencé is a purely electrodynamic quantity related to the voltage difference
V between the electrodes by the Josephson relap{;r.ﬁ.:v, whereg, =7/ 2 is the reduced

flux quantum.

The Josephson effect was observed one year after its prediction by Anderson and
Rowell [2], and later on in a large variety of weak coupling configurations (see Figure 1).
Two large classes of Josephson elements can be distinguished: the “tunnel type” consisting of
two superconducting electrodes coupled through a thin vacuum or insulating tunnel barrier,
and the “weak link” type when the two electrodes are “directly” electrically connected
through a metallic conducting region. A weak link can consist in a geometrical constriction
like a narrow bridge or a point contact, or of a small non-superconducting lead (see [3] for a

more extensive list).

How much supercurrent flows through a Josephson element for a given phase
difference depends on its electrical and geometrical characteristics, and on external
parameters like temperature or magnetic field. Many theoretical works have been devoted to
the determination of the current-phase relatiod fpr)the various types of weak links, and
in particular to the prediction of the maximum supercurrent that they can sustain, which is
called the critical current,. In this chapter, we report measurements of the critical current of

superconducting atomic contacts and compare to the theoretical predictions.

3.1.1 Current-phase relationship and critical current of various Josephson
elements

For tunnel junctions with BCS superconducting electrodes, Josephson predicted a
sinusoidal current-phase relationship and determined the critical current at zero temperature:
. : A

1(0)=1,sin(®) withl ;, =——, 1

(0)=1,sin(@) °~ %R (1)
where A is the modulus of the order parameter in the bulk superconducting electrodes and
R, the resistance of the tunnel junction in the normal state.RHg product is constant for

a given superconducting gap: the critical current is simply proportional to the normal state
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conductance of the junction. The transport properties in the superconducting state are related
to those in the normal state in a simple manner. Ambegaokar and Baratoff have completed

Josephson’s work by determining the temperature dependence of the critical current:

_m(T) . A(T)
1,(T) = 2eR, tanhg KsT) (2)

The case of weak links is more complex, and various behaviors have been found
depending on the type of weak link. Weak links are classified by comparing their lerigth
the coherence length and to the elastic mean free pdtlof the constitutive material: weak
links with L« é(L>¢&) are called short (long) weak links, and weak links wlitke ¢
(L<¢) are called dirty (clean) weak links. The current-phase relationship and the
temperature dependence of the critical current are nowadays known for all these types of

weak links (see Figure 2).

L

P
[ £ 1

A e’¢L A e’¢R
6=¢ -9,
(a) (b)

Figure 1: Examples of structures showing a Josephson effect and discussed in this section. (a) Tunnel
junction. (b) Geometrical constriction considered by Kulik and Omel'yanca < &, L) both in the dirty
¢ < L and clear/> L limit. (c): Superconducting adiabatic constriction considered by Beenakker and van

Houten S, < S..,)-

In 1969, Aslamanov and Larkin treated the case of a short and dirty weak link

(L <« & andL >1)[4]. Their calculation, based on the Ginzburg-Landau equations, is valid
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only near the critical temperature of the superconducting electrodes. In this limit,
independently of the material constituting the weak link, they established that the current-
phase relationship is sinusoidal, like for tunnel junctions. In 1975, Kulik and Omelyanchuk
extended the calculation to arbitrary temperatures by means of Usadel equations [5]. At
temperatures much smaller than the critical temperature, they predicted a non-sinusoidal

current-phase relationship:

/A 0 O .00 01
1(9) _ﬁCOSBEHarCﬂE S"E%EH . (3)

Compared to the tunnel case, Ryd, product is at zero temperature increased by a factor

1.32.

In 1977, using the more general formalism of Eilenberger equations [6], the same
authors solved the short and clean limit< and | )[7]. The current-phase relationship
at low temperature is non-sinusoidal, and, at zero temperature, the phase dependence of the
supercurrent is proportional &in(@/2) with a R 1, product twice larger than in the tunnel

case:
om0 .
I(6)——eRq sing> s O[-m;n]. (4)

In the beginning of the 90’s, motivated by the observation in 1988 of conductance
guantization in quantum point contacts tailored in 2D electron gases [8], Beenaker and van
Houten investigated the quantum regime which occurs when the width of the weak link
becomes comparable to the Fermi wavelength. In this regime, the contact accommodates only
a few conduction channels whose number increases with the point contact lateral size. They
determined the current-phase relationship for an adiabatic impurity free superconducting
constriction [9] by solving the Bogoliubov-de Gennes equations using the WBK method

introduced by Bardeeet al.[10].
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The main result is that, like the conductance in the normal state, the critical current of an
adiabatic constriction increases stepwise as a function of its width, and that the current-phase

relationship at zero temperature is given by:
eAQ. 00O
1(d)=N o|-m;mf, 5
() T %mBEH [-m;m] (5)

where N is the number of open conduction channels. This result is equivalent to the
expression (4) since the contact conductance is directly related to the number of open

channels by the Landauer relation (see Appendix A).
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Figure 2: Current-phase relationships at zero temperature (a) and temperature dependence of the critical
current (b) for different Josephson elements. Full lines: tunnel junction. Dashed lines: short dirty weak link.
Dotted lines: short ballistic weak link.

3.1.2 Current-phase relationship of a quantum coherent conductor

In the mesoscopic regime, a unified theoretical picture covering all type of weak links

from the tunnel to the ballistic limit has emerged in the last decade [11]. As explained in
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Appendix B, Bagwell established that, in the generic case of a one dimensional conduction
channel with arbitrary transmission and arbitrary length, the supercurrent is carried by
Andreev bound states. In the short limit, whens much smaller than the superconducting
coherence length, there are only two such states with opposite energy
E,(d,7) =+A\1-T sirf @ /2) that carry current in opposite directions:

al sin@)

+ . 6
: 2h [1-1siit @ 12) ©)

The supercurrent through the channel depends thus on the population imbalance

1,(0,1) :¢glcil—§*(5,r)=

between the two Andreev bound states. At thermal equilibrium, the supercurrent at a given

phase differenc® is given by:

-E_(0,7) -E (0,1)
e |_5,1)+e T I (0,1) _ aA sin@d) OE @,7)C
1(0,1)= —— = tanh———3 (7)
o kT g kT 2n fi-tsit@/2) O kT T

The current-phase relationship of a quantum coherent conductor with a mesoscopic
code{r,...,T,} is obtained by summing up the independent contribution of all conduction

channels:
@ Ty T NG =0 -n) 103 D), (8)

where then, are the occupation numbers of the two Andreev bound states associated with
the i-th channel. It is assumed here that all channels share the same phase diference
imposed by the superconducting electrodes that act as perfect superconducting phase

reservoirs. At zero temperature and thermal equilibrigms  andn_ = land :

e ¢ T,sin©0)
2n Z J1-1, it @ /2)

1,0{t}H = (9)

Note that in the single channel case, the critical current is not simply proportionahnad

thus neither to the normal conductance. It is given by:
eA
Io(7T) :7(1—\/1—r ). (10)
More generally, the expression (9) implies that transport properties in the superconducting
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state are not simply related to the normal state conductance. One recovers however a direct

link with the normal conductance in the limit cases described before. In the tunnel limit, all

transmission probabilities are sma|l<« , 4o that the denominator\%l—ri sin’ @ /2) are
equal to 1 and Exp. (9) becomes:

LGy =5

o0 A N0

T.8IN(0) =— T. (3in(90) . 11

ST AN =105 T Ein) (11
. . . N

The Josephson result (1) is then recovered using the Landauer raylmonebzizlri . The
ballistic limit corresponds to set all transmissions to one and Exp. (9) is in that case
equivalent to the result (5) of Beenakker and van Houten. The short and dirty limit follows
from (9) using the distribution functiorP r ( pf coherent diffusive wires derived by

Dorokhov [12] using random matrix theory:

/ 1 _ .
P(r)=— for 4e?"" <1 <1and 0 otherwise. (12)
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Figure 3: Full line: current-phase relationship of an atomic-size contact with mesoscopic code
{0.98,0.38,0.16}. Dashed lines: Current-phase relationship of each conduction. The maximum of this curve
is the critical currenl, of the atomic size contact.
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On the experimental side, one thus requires weak links whose channel content is
known in order to test the prediction (9). Since quantum point contacts tailored in 2D-electron
gas beautifully show quantum quantization in the normal state, this type of mesoscopic
structure appears to be an ideal system for that purpose. Superconductivity can indeed be
induced in those semiconductor heterostructures by depositing on top superconducting
metallic pads. However, because of Shottky barriers, it is difficult to realize good interfaces
between the pads and the 2D-electron gas, and the supercurrent through a point contact is then
highly dependent on the interface resistance. This is why the first experiments aiming to test

the predictions of Exp. (9) have been carried out using superconducting atomic-size contacts.

Figure 3 depicts the current-phase relationship predicted by Exp. (9) for a typical
atomic-size contact accommodating three conduction channels. Previously to our work, two
sets of experiments, described below, had been performed on superconducting atomic-size

contacts [13,14,15].

3.1.3 Previous experiments on superconducting atomic-size contacts

Muller et al.[13,14] have measured the critical curréptof MCBJs made of several
superconducting metals (Nb, Pb, In, Sn and Ta), and covering a wide range of contact sizes,
from thousand atom contacts down to a few atom contacts. This corresponds to normal state
resistances varying from a few ohms up to tenth of kiloohms. They have determined the
effective critical current, defined as the largest supercurrent on the zero voltage branch of the
current-voltage characteristics. They observed that, like the conductance, the effective critical
current decreases by steps when the break-junction is stretched. The magnitude of the steps is
of the order ofeA #, which is the predicted change when one channel closes (Exp. (5)).
However, for contacts with resistané® exceeding 8@, they found in all materials that
the R, 1, product decreases as a functionRf well below the theoretical predictions (see
Figure 4(a)).

Koops, van Duyneveldt and de Bryun Ouboter measured the current-phase

relationship of atomic-size contacts by placing a MCBJ in a superconducting loop [15]. An
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external magnetic field was applied through the loop to induce a phase difference between the
two superconducting electrodes of the break-junction. The self-induced magnetic flux
(d5)=L(lg), whereL is here the inductance of the loop containing the MCBJ, was then
measured by means of a commercial SQUID magnetometer. Measurements were performed
on niobium and tantalum atomic-size contacts. The results demonstrated for the first time the
non-sinusoidal behavior of the current phase relationship (see Figure 4(b)). However, their
experimental set-up did not allow to measure the current-voltage characteristic, and thus to
determine the mesoscopic code of the atomic-size contacts. A quantitative comparison with

the predictions (9) was thus impossible.
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Figure 4: (a) (reproduced from [14]) Symb I.R, product of niobium MCBJs with decreasing sizes.
Dotted line: theoretical prediction of Kulik and Omel'yanchuk for a short ballistic weak link. (b)
(reproduced from [15]) Self-induced fli(®;) =L(I¢) as a function of the average phase differ (¢) for
three different contact configurations of a niobium MCBJ.

3.1.4 Our experiment on Josephson supercurrent in aluminum atomic-size
contacts

We have performed an experiment on aluminum atomic-size contacts in order to test

guantitatively the predictions of Exp. (9) concerning the critical current. We made a set-up
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that allows both to determine the mesoscopic code of the contact and to measure accurately
the critical current. We used a four point measurement technique and a current-bias
configuration. Figure 5 depicts a typical current-voltage characteristic measured using this
circuit. It consists of two distinct branches: a metastable “zero voltage” branch that
corresponds to the Josephson supercurrent, and a finite voltage branch called the quasiparticle
branch. When the bias-current is increased linearly, the system stays on the zero-voltage
branch, till it switches at a current, to the quasiparticle branch. This switching is a
stochastic process governed by the phase fluctuations controlled by the bias circuit. The
switching current is smaller than the critical current, but approaches it if the phase
fluctuations are small enough. In this case, the system can reach a stable phase state at a value
close to the one that maximizes the supercurrent. For this purpose, we have embedded the
break-junction in an on-chip dissipative electromagnetic environment which allows to control
phase fluctuations, as previously demonstrated by ¥toal. [16,17] for small capacitance

tunnel junctions. The measurement of the mean switching current then provides a quantitative

test of Exp. (9).
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Figure 5: Typical experimental current-voltage characteristic of a superconducting current-biased atomic-size

contact. It consists of two branches: the supercurrent branch at nearly zero voltage, and the quasiparticle
branch at finite voltage. Upon increasing the bias-current through the contact, the voltage stays close to zero
till it jumps to a large value. The current at which switching occurs is the switching I rent

68



3.2 Theoretical analysis of the switching process

The on-chip environment we fabricated consists on each lead of a small resistor,
located as close as possible to the contact, and of a large capacitor to the ground plane formed
with the metallic substrate (see Figure 5 in Chapter 2, Figure 7(a)). The atomic-size contact is
thus unshunted at DC, which allows to measure the current-voltage characteristics. The
resistors in series with the capacitors provide a dissipative impedance at finite frequency,
which is necessary to observe a well developed supercurrent branch. We discuss in this
section the dynamics of the phase in such a dissipative environment, and determine the

relation between the switching current and the critical current.

3.2.1 Qualitative description of the phase dynamics of a DC unshunted
atomic-size contact

The atomic-size contact in its measurement circuitry can be modeled as an ideal
Josephson element characterized by the current-phase relationship (9) in parallel with its
capacitanceC,. Using Norton’s theorem, the bias-current line as well as the voltage
measurement line can be modeled by an ideal current sbpioeparallel with a frequency
dependent admittancé w( Which produces a Johnson-Nyquist noise curitentsee Figure
7(b)). The application of Kirchhoff’'s laws to this electrical circuit leads to the following

Langevin integro-differential equation for the phase differedice
CJ¢05+¢OJ’:5(t—r)y(r)dr+ 1,(0) = 1, +1(t) (13)

wherey § )is the inverse Fourier transform ¥fw (. The dynamics of the systamidentical
to that of a particle with positiod and massCqu:, in the tilted washboard-like potential
U0(5):¢O(Ib5—I§IJ(x)dx). The amplitude of the oscillating part:po'[jlj(x)dx is the
Josephson energl, =¢,1,, and the tilt of the potential is proportional to the bias currgnt
The particle is also submitted to the retarded friction force described by the lﬁémel,

and to the random forcg,l ,(t) resulting from thermal fluctuations in the admittance. We
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treat here the phase and the current as classical degrees of freedom, and we further assume
that the static current-phase relationship can be used when the phase evolves. The classical
description for the phase is valid as far as quantum fluctuations are negligible, i.e. when the
admittance across the Josephson element is large enough compared to the conductance
guantum, as recently proved by Grabert and Ingold [18]. The adiabatic approximation is valid

as long as the phase velocity is small enough and will be discussed later on.

In order to get some insight into the dynamicoin this classical adiabatic regime,
let us first consider the zero temperature case. At zero temperature, the randogylfdtye
vanishes, and the dynamics &f is deterministic. If I, is smaller thanl,, the tilted
washboard potential presents locally stable minima in which the particle can be trapped. The
phase stays constant, and the voltage is consequently zero. Upon increasing the bias-current
l,, the tilt of the potential increases. Whgnbecomes larger thah,, the wells disappear
and the particle runs away. Because the Josephson element is unshunted at DC, the limit
velocity is not fixed by the dissipation into the environment, but by the production of

guasiparticles.

T

Quasiparticle
branch

Switching

[ P——P——p—— 5

(a)

Figure 6: (a) Schematic representation of the current-voltage characteristic of atomic-size contacts at zero
temperature. Upon increasing the bias cur I, jtthe operating point stands on the supercurrent branch for

I, <I, and on the quasiparticle branch I, >1,. (b) Mechanical analog of the two possible dynamical
states of the phase at zero temperaturl, <1, (supercurrent branch), the particle is trapped in one of the
potential well , while foil, >1, (quasiparticle branch) the particle runs away down the potential at constant
velocity.
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Figure 7: (a) Schematic representation of the atomic-size contact (double triangle symbol) in its on-chip
electromagnetic environment characterized by a resis R1aed a large capacit C in each line R, is the
impedance of the current source. (b) Using Norton's theorem, the circuit can be modeled by the junction
capacitanciC, in parallel with an admittancY(w) , a bias current source and a noise current source. Circuit
(c), equivalent to circuit (a) , was used for the theoretical calculations. (d) Resistively shunted model for a
Josephson element.
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Figure 8: (a) Schematic representation of the current-voltage characteristic of dc-unshunted atomic-size
contacts at finite temperature. Due to thermal excitations, the operating point switches from the
supercurrent branch to the quasiparticle one at a ct |l 2sinaller thar 1. (b) Mechanical analog of the

phase dynamics corresponding to the diffusion branch. The particle being constantly ejected out of the
potential wells by thermal excitation, and getting retrapped in a different one because of dissipation, hops
diffusively down the potential.

At finite temperature, the phase dynamics is more complex and depends on the
dissipation. For atomic-size contacts with a typical critical currentl o810 nA, the
Josephson energy, which sets the scale of the potential wells, F3p,1,=0.25k; K.
Thermal fluctuations play thus an important role in the temperature range 20 mK-1K
accessible to the experiment (see Figure 8). In particular, thermal activation of the particle out
of the potential well at, <I, occurs on a time-scale shorter than the measurement time. In
absence of dissipation, the particle would then run-away, and the system would switch to the
quasiparticle branch well beforlg reaches the critical curretf. However, if dissipation is
sufficiently large, the particle can be retrapped in the next potential well. Subsequently, the
particle is re-ejected, retrapped in the next well, and so on. This dynamical state in which the
particle hops diffusively from a local minimum to next one down the potential is called the
diffusion state. The average phase velocity is non zero, but still M:zqﬁoﬁm« 2A Je.
Furthermore, this dynamical state is metastable. Indeed, if thermal fluctuations allow the

particle to reach a large enough velocity, dissipation is then unable to retrap the particle, and
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switching to the voltage state occurs. This new switching process is also a thermally activated
random process, but with an effective barrier which is much larger than for the escape out of a
the potential wells. We have determined the switching rate out of the diffusion state by

extending the model of Vioet al.[19,20] to atomic contacts.

3.2.2 Solving the phase dynamics

Our measurement set-up can be modeled by the electrical circuit depicted in Figure
7(c). The atomic-size contact, modeled as a pure Josephson element with cap&gitasce
connected to a current sour¢g with internal resistancdR, through anR-C circuit. The
resistancesR and R, are the sources of thermal fluctuations represented by the Johnson-
Nyquist current noise sourcds and | . Introducing the reduced voltage defined as the
ratio between the voltagé across the capacitan€z and Rl,, Eq. (13) is equivalent to the

following set of dimensionless second order differential equations:

1d°0 do , :

— +—=u—i;(9) it 14
1 d?% du_. R . :
— +a—=i,——u-i,(0)+i_ (), 15

wheret =tRl, /¢, is the reduced time, arig,i, i, and , are reduced currents in units k.

The noise currentg, andi,, are random gaussian variables characterized by their correlation
functions [, € ), (0= B3 { )and [, (7)i,,(0)(F 20R/R, (), whered(r) denotes here

the Dirac function, an® =k,T/¢,1, =k, T/ E, is the reduced temperature. The parameters
a, =¢,/R?1,C, anda = R?1,C/¢, characterize the damping and control the dynamics of the
switching process. Their typical values in our experiment make it possible to greatly simplify

Egs. (14)-(15).

3.2.2.1 Overdamped junction : a,>1

For atomic-size contacts witlh, of the order of 10 nA andC, in the pF range,

connected to on-chip resistances of the order of(156ne hasa, =1300> 1 In this limit,
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the J/orodzé/dr2 terms in Egs. (14)-(15) can be neglected, which corresponds to neglecting
the current flowing through the capacitance compared to that flowing through the admittance
Y(w) . The equations (14) and (15) then become first-order equations:
9 = u-i,(8)-i, ) (16)
dr
du . R . .
GEZIb—KU—IJ((S)'HnO(t). a7)

This regime is called the overdamped regime.

3.2.2.2 Adiabatic regime : a >1

When the damping is such that> |, tlhe time evolution ol is much slower than
that of .. This limit can only be reached by taki) as large as possible sinée has to be
much smaller thanR, to avoid quantum fluctuations of the phase. In our experiments,
C=140pFand R= 128 or 170Q, which results in a typical value = 64 the first case
(R=125Q) and a =80 in the second caseRE 1%). The separation between
characteristic time scales fad and uis then large enough to allow for an adiabatic
approximation : First, the dynamics of the phase is determined at coost@hen, the
dynamics olu is calculated using the statistical properties of the phase previously determined.
Whenu is constant, the dynamics of is governed only by the Langevin equation (16), the
dissipative circuit consisting of a pure resistor (see Figure 7 (d)). In the overdamped regime,

this model is called the RSJ model and is solvable.

3.2.3 Solving the RSJ model in the overdamped regime

3.2.3.1 Occupation factors of Andreev bound states

For atomic-size contacts, the potential is not the usual tilted sinusoidal potential but

has the more general form that follows from the expression of the Andreev state energies:

U,(0,z}) =6+ 5(n, =) L —sin*(3/2) . (18)

SIRE
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It is assumed here that the Andreev bound states evolve adiabatically as the phase varies. We
will see later that this adiabatic approximation breaks down when the dynamics of the phase
is fast enough to induce Landau-Zener transitions between Andreev bound states. The
potential depends on the mesoscopic code of the atomic-size contact and on the occupation
numbers of the Andreev bound states. Several mechanisms can change these occupation
numbers, but they are not very efficient, except one. The relaxation induced by phonons has
been addressed in [21]. Following the same hamiltonian approach as in [21] and performing a
calculation to first order in the environment impedance, we have found that the relaxation of
the upper state by creation of an electromagnetic excitation in the environment is extremely
slow, except for highly transmitted channels and atrr. On the other hand, relaxation by
exchange of quasiparticles with states in the bulk electrodes is very fast, but dndy at 0

This process is the dominant thermalization process of Andreev states.

We first consider a simplified model in which the populations of the Andreev bound
states are treated in average using their thermal equilibrium valued =at. Theé®

corresponding potentidJ) | is then:

_ 5, A, AR I Y]
U, (0{t}, T) =-ud+ E Lanh(kBT); 1-1, sin (g). (19)

We first solve the dynamics of the phase in this potential. We have checked that this time-

averaged potential yields results equivalent to those of the full numerical simulations of the

Langevin equation (16).
3.2.3.2 Ambegaokar-Halperin like calculation

We have solved Eq. (16) by solving the associated Fokker-Planck equation. We have
generalized the procedure introduced by Ambegaokar and Halperin in the case of overdamped
Josephson tunnel junctions [22]. In this ensemble formalism, the phase dynamics is described
by a probability densityo J't, )of finding the valued for the phase at timé& This
probability densityo § t, ) verifies the normalization conditioyf”a(é,t)ddzl, and the
average supercurrent through the Josephson elemﬁzﬁbieﬁ,t) [,(5)dd . When the thermal

fluctuations of the phase are large, the probability density is almost constant
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(o(d) =constant A &), and the supercurrefh,th‘[Oz"IJ (0)o is zero because the current-
phase relationship ist@periodic and even. The conservation of the probability density

provides the Fokker-Planck evolution equation [23]ddD,t) :

CLIGRIEI:S

99(6.9 _ 0 B9 5551+ 09200 -5 6., (20)

ot 65 d5 (0Jo)

where J is the probability current. In this equation, the tedtdp/déa arises from the
deterministic drift, and the ter®dag/dd from diffusion. In the steady state, the probability

density is time-independent and fulfills the boundary condition =@) T .(2 )
In this case, the solution of Eq. (20) can be explicitly written down:

18O Oy ooy A% -
70 =5 sam- s sw‘c‘ s ~eyd )

where S @ )= exptU, § )© ) The currentd is now deduced from Exp. (21) using the
normalization conditior]’;na(é) do =1.

The mean value of the reduced voltage across the cofast(V/ RI0>:<¢05/ R|0>

= [@d/drs then:

exp(2u /0 )-1

V{u) = 2r1d = 20 (22)

(5) gi +exp(2tu /O )l”dx ®d |

The average supercurrent flowing through the contact is givefyiy =u(-3Ju . ()

3.2.3.3 Numerical simulation

The dynamics of the phase can also be solved by performing a brute-force numerical
simulation of the Langevin equation (16), taking into account the full time dependence of the
potential due to changes in the population of the Andreev bound states. The Langevin
equation is integrated during a finite tirileusing a discrete time algorithm with a time-step
of lengtht =T /N. The stochastic variablé at timert,,, =(n+1)Ar is calculated from its

value at timer, =nAt according to [23]:

Opy =0, +[u=i,(3)]dr +v20dr w,, (23)
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where thew, are independent Gaussian-distributed random variables Mjfh= and
(W, w, = 20,,,. The occupation numbers of the Andreev bound-states are drawn according to
a thermal distribution when the phase reaches a multip&nfAt the end of the simulation,

the average velocity of the phase, and thus the mean reduced woltagedefined by

V{u) =3, /T. The simulation timeT is taken long enough in such a way thsf{u)

reaches a steady value. The average supercurrent iffjilen=u<30u . ()

3.2.3.4 Current-voltage characteristic of a resistively shunted atomic contact

We have calculated the current-voltage characteristic of a resistively shunted
superconducting atomic contact using the two procedures previously described. A set of
characteristics at different temperatures obtained by solving the Fokker-Planck equation is
shown in Figure 9 in the particular case of a three channel contact. Note that in this resistively
shunted scheme, no switching occurs. The results closely reproduce the characteristics of
Josephson tunnel junctions: The supercurrent branch is a supercurrent peak which is
progressively washed out and widened as the temperature is increased. In particular, the
maximum supercurrent,,,, decreases progressively starting from the critical current at zero
temperature. These general features are independent of the mesoscopic Rity.codg .
Numerical simulations that take into account the evolution of the Andreev bound-states

occupation numbers, lead to almost perfectly identical results.
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Figure 9: Calculated current-voltage characteristics of an atomic-size contact with mesoscopic PIN code
{0.46,0.18} for equally spaced temperatures ranging from (from top to bottom) 10 mK to 800 mK. The
maximum supercurrent 1, =16 nA and the Josephson ene E; =0.381k; K.

3.2.3.5 Temperature dependence of the supercurrent peak height

The maximum supercurrent,,, as a function of temperature is plotted in reduced
units in Figure 10 for the set of current-voltage characteristics shown in Figure 9. We have
similarly determined the temperature dependence of the maximum supercurrent for a large
palette of mesoscopic codes, and compared to the case of tunnel junctions with the same
critical current. The deviations are very small: the current-voltage characteristic mainly

depends on the critical current, and is not very sensitive to the potential shape.
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Figure 10: Dots: Maximum of the supercurrent p |,,,, Of the characteristics presented in Figure 9 as a
function of temperature. The critical currentl, =16 nA and the Josephson enelE; =0.381k; K. The
line connecting the dots is just a guide for the eyes.

3.2.4 Current-voltage characteristics of RC shunted atomic contacts in the
overdamped regime

In the overdamped regime > , the voltage across the large capacitor evolves
slowly and the current through the atomic contact is at a given time determined by the
parameterized current-voltage characteristic solution of Eq. (16). If one neglects the
fluctuations ofu, a static solution can be determined graphically. From Eq. (17), it follows
that such a static solution satisfies the equatign-R/R, u-0,[{uy=0. Since
u=(i,)(u)+(v)(u), the average current and voltage thus verify the equation
i, ~R/R(W=(1+ R B)Oj{(y. In the current bias modeR,> R and thus the static
solution can be graphically determined by the intersection between the load line defined by
i, ~R/R,(W=(1,) and the current-voltage characteristic solution of Eq. (16). When the slope
of the load lineR/ R, is small and the bias-current large enough, there are three solutions, as
shown in Figure 11. The stable solutions label8yl #énd (M ) correspond respectively to the
running state (large voltage) and to the diffusion state (small voltage). The solution at
intermediate voltagel ) is unstable. In this model, the maximum supercurrent is obtained

when the load-line is tangent to the current-voltage characteristic.
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Figure 11: Geometric construction yielding the average current and voltage for a given current bias. Full
line: Schematic representation of Idhcharacteristic corresponding to the RSJ model. Dashed line: load line
defined by(i,) =i, ~R/R, (V).

When fluctuations are taken into account, the diffusion stdée) (becomes
metastable, and the system can switch out of the diffusion state prior to reaching the
maximum supercurrenk,,,, 0Of the static solution. The switching rate can be inferred from
the slow evolution ofu. For that purpose, the supercurren® (n)Eq. (17) is decomposed
into a mean valuell;Ju(and a fluctuating part) u(t,,)whose statistical properties are
calculated assuming the voltageis constant. One then obtains the following Langevin
equation fou:

du_. R B .
ad_r_lb R)u W u) —n(u, t) +i (). (24)

This equation corresponds to the motion of a massless particle at positsubmitted to a
deterministic forceF(u) =i, -R/R u-0,[{y, a drag force-adu/dr, and to a position
dependent random forcg(u,t) =-n(u,t)+i,(t). The problem is then reduced to the escape
of a diffusing particle above an effective potential barfifF u dg.)At a given bias-current

I, , the escape raté i, ( 9f u above this barrier follows a Kramers law [24]:

ri)= D(ut)\/D—F 0 O-FO

on \FepH oo H exp®), (25)

where D(u) :1/012I;°E(u,0)£ (u,t)dt is a position-dependent diffusion coefficient associated
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to the random force an& :ﬁ:‘ F(u)/a D(u)du, u,and u, corresponding respectively to the
bottom and to the top of the effective potential barrier. In the case of a sinusoidal current-
phase relationship, the escape rate is easily computed because both the average current
[1; [u) and the diffusion coefficienDb(u) are known analytically [20]. The main result of the
calculation is that the exponeBtis proportional to the damping coefficierBOa . As

expected, the static solution corresponds to the infmitenit.

The switching histograms obtained when a bias-current ramp is applied are then easily
determined. The probability to switch at a given curr@&{t), is related to the escape

ratel” ( ) and to the sweeping rat&= d|,/ dt by the relation:

P(l) = S‘lll_(—l). (26)
1—'[0 P(u)du

<I3>/l,

0.00 0.25 0.50 0.75 1.00

Figure 12: Predicted average switching curi{l¢) as a function of temperature for three values of the
damping parameter. The curves are calculandlb/lodt =500s™ . Full curve: RSJ model corresponding
to thea = limit. Dashed curvea =100. Dashed-dotted curva =10.

The mean valuél ;) of the switching histograms is plotted in Figure 12 for three values of the
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damping parametesr . For a = 10Q the mean switching current is close to the maximum
supercurrent in absence of fluctuations (infinite damping limit), whereasy for , it 19
significantly reduced. The average switching current thus provides non-ambiguous

informations on the maximum supercurrent only in the largeegime.

For atomic-size contacts containing only weakly transmitted channels (typically all
transmissions smaller than 0.5), the energies of the Andreev bound states are very close to be
a cosine function, and thus the above calculation provides a good approximation for the
switching rate. In the more general case of the non-cosinusoidal potential shape, no such
guasi-analytical solution is available. However, since the dynamics of the phase in the RSJ
model is not really sensitive to the deviation from the cosinusoidal behavior, we expect even
smaller corrections for the slow dynamicswfFurthermore, the typical sweeping rates used
of to measure the switching histograms, and the typical damping parameters of our atomic-
size contacts (see Table 1 in the following section) are close to the parameters used to
calculate the dashed curve in Figure #;/1,dt =500s™and a = 100 Our measurements
were thus taken in the strong damping regime, where the mean switching current is close to
the maximum valud ,,, of the RSJ model, and the switching histograms narrow. In this
regime, the small effect of thermal fluctuations on the switching can be accurately estimated

using an effective cosinusoidal potential approximation.

3.3 Measurement of the maximum supercurrent

3.3.1 Measuring switching current histograms

We have measured the mean value of the switching cufrgnt obtained from
switching current histograms, as a function of temperature and for different contact
configurations. We have performed two runs on two different aluminum break-junction

samples whose characteristics are presented in the left column of Table 1.
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Figure 13: Schematic representation of switching current measurement set-up. The TTL synchronization
signal of the voltage generator sets the start of both timers. The stop signal is provided by the voltage
across the sample after amplification.

Histograms of the switching curret were obtained from 7640 switching events.
The contact was current-biased using a HP3325 voltage source in series with a bias resistor
R,. The sweeping function had a triangular shape and the typical sweep frequency was
100Hz. The typical reduced sweep rate wak/l,dt =500s™. Two timers (Philips
PM6654C and Fluke PM6680B) measured the elapsed time between the beginning of the
ramp and the switching event characterized by a sudden and strong change of the voltage
across the contact. Both polaritiess 0 &and  wBre measured to compensate for offsets
in the bias-current line. The start signal was the TTL synchronization signal of the voltage
source, and the stop signal the voltage across the contact (see Figure 13) after amplification
by a low-noise pre-amplifier (NF). The timers can store 764 events, and a series of ten such
packets was measured to produce histograms. Simultaneously, the average time evolution of
the currentl t( )through R, was measured. The averaging was done over 100 traces on a
Nicolet Pro 44 oscilloscope. Thet (qurve as well as the switching time records were
transferred through a IEEE data link to a PC for post-treatment. From the linear fitlaf the ()
curve part before the switching event, the two time records were converted into two current
records. The mean value of the two corresponding current histograms were equalized, leading

to the average switching currefit;[1 The standard deviatioAl ¢ was calculated from the
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standard deviation of the two histograms.

The following table reviews, for each sample, the selected atomic-size contacts whose
switching current measurements are presented and discussed in this chapter as well as their

main characteristics: critical curremf, corresponding Josephson eneigy, and damping

parametenr .
Mesoscopic PIN code| 1,(nA) | E,/kg(mK) | a=R*IC/¢,
Sample #1 {0.21,0.07,0.07} 8.0+ 0.1 190+ 2 55+ 20%
ample

A =178+ 1yeV {0.52,0.26,0.26} 25+ 0.4 600+ 10 170+ 20%
R =125+ 100 {0.95,0.09,0.09,0.09} | 39+0.2 925+ 5 260+ 20%
C 140+ 10 {0.98,0.21,0.15,0.14} | 46+ 0.4 330+ 10 300+ 20%

=140+ 10 pF
{0.998,0.09,0.09,0.09} | 44+ 0.9 1050+ 20 294+ 20%

Sample #2

{0.33,0.13,0.12} 14+ 0.2 330+ 5 170+ 30%

A =184.5+ JueV
R=170+ 200 {0.78,0.12,0.12} 29+ 0.4 690+ 10 360+ 30%
C =140+ 10 pF {0.92,0.02,0.02} 33+ 0.4 800+ 10 410+ 30%

Table 1: Characteristic parameters of the atomic size contacts discussed in this chapter. Two runs involving two
different samples have been performed. The first column indicates the superconducth@ftpe aluminum
electrodes and the environment parametrand C . The uncertainties on the critical currditare evaluated
following the procedure described at the end of Chapter 1.
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3.3.2 Atomic contacts with not too high transmission probabilities { <0.9)

0.4 0.6
T (K)

oO
o
o
N

Figure 14: Main panel: Mean switching current as a function of temperature for three atomic size contacts
(symbols) . Mesoscopic PIN codes: {0.52,0.26,0.26} (squares), {0.33,0.13,0.12} (circles),
{0.21,0.07,0.07} (up-triangles). The full lines are the prediction ola - o« adiabatic theory described

above, and the dashed line that of the fia :@¢heory using the independently measured mesoscopic codes.
The grey area represent the fuzziness on the theoretical curves due to the uncertainties in the determination
of the mesoscopic code (too thin to be visible for the lowest curve). Inset: same contacts plus contact
{0.78,0.12,0.12} (diamonds). Mean switching current in units I,f versus k;T/E;. Full curve:
Ambegaokar-Halperin result (RSJ model in the tunnel limit).

The mean switching current is plotted in Figure 14 as a function of temperature for
three atomic-size contacts, together with the theoretical predictions of the adiabatic theory
described in the preceding section. All those contacts have channels with transmissions
probabilities smaller than 0.9 . The data at high temperature are well explaineddby-the
limit of the theory that corresponds to the RSJ model. Moreover, the &init®rrections
calculated assuming a cosinusoidal potential shape explain the small deviations at

intermediate temperature. We found a similar quantitative agreement for all measured
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contacts provided no well transmitted channel>( )0i8 present. At the lowest
temperatures, the data deviate markedly from the predictions. As explained in the article (see
the Annex), we attribute this deviation to the saturation of the electronic temperature in the
resistors.

The inset in Figure 14 depicts the same data in reduced Upitsr(the currents, and
E,/k;for the temperatures). In this reduced plot, the temperature dependence appears
universal and very close to the Ambegaokar and Halperin maximum current for the RSJ
model. This means that the non-cosinusoidal shape of the potential does not affect
guantitatively the dynamics of the phase. Indeed, the thermal escape rate from a potential well

mainly depends on the energy barrier height rather than on its exact shape.

1.0
--4--{0.998,0.09,0.09,0.009}
--A--{0.98,0.21,0.15,0.14}
--®--{0.95,0.09,0.09,0.009}
0.8
-
N
n
— 0.6
V
0.4
1 | 1 | L | L |

Figure 15: Symbols: Average reduced switching current as a function of reduced temgk,T/E, for
three atomic-size contacts containing a well transmitting chat >0.9). The dotted curves are guide for
the eyes. Full curve: Ambegaokar-Halperin result (RSJ model in the tunnel limit).
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3.3.3 Atomic contacts with high transmitting channels ¢ >0.9): the ballistic
limit

For atomic-size contacts containing well transmitted conduction chanpels , th€.9

data deviate markedly from an universal behavior, as depicted in Figure 15 for three such
contacts. One of them contains an almost ballistic channel with transmission probability
T =0.998 (subsequently called “0.998 contact”). A second one has a highest transmission of
0.98 (“0.98 contact”). The last one has a highest transmigsion  (@%5 contact”). The

mean switching current of these three contacts is more temperature resilient and, but at very
low temperature, larger than predicted by the adiabatic model for the Andreev states. The
higher the transmission probability, the tougher the resistance to thermal fluctuations is: Over
the whole range of explored temperatures, the switching current of the 0.998 contact is larger

than that of the 0.98 contact, which is larger than that of the 0.95 contact.

0.dnA)

T(K)

Figure 16: Diamonds: measured mean switching current of the 0.998 contact (Mesoscopic PIN code:
{0.998,0.09,0.09,0.09}). Full curve: prediction of the adiabatic theory. Dashed-dotted curve: prediction
assuming a perfect transmissit =1. Insets: Andreev bound states energy spectrum and current-phase
relationship at zero temperature of one conduction channel with transmission pro 0.998y (bottom)

and 1 (top).

The experimental results on the 0.998 contact are well explained by assuming a
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perfect transmission for this conduction channel. At perfect transmission, the potential is
qualitatively modified since the lower Andreev st&ie at zero phase evolves adiabatically

into the upper energy Andredy, when the phase goes through the level crossing. This state

is a ballistic stateB  (see Appendix B and the upper inset in Figure 16) whose current flows

in the same direction for all values of the phase. As a result, the maximum supercurrent is
strongly resilient to thermal fluctuations, as long as the other ballistic Andree\Bstasenot

equally populated. Quantitatively, the shape of the potential is modified as shown in the insets
of Figure 16. The average switching current, calculated in the overdamped regime for this
potential, is then in good agreement with our experimental results as can be seen in the main

panel of Figure 16.

The perfect transmission hypothesis is in fact not strictly speaking necessary, since the
assumption that the system undergoe® atrr a transition from the lower Andreev bound
state E_ up the upper on&, with probability one would be equivalent. This transition could
be interpreted in terms of a Landau-Zener like transition [25] induced by the fast dynamics of

the phase at the level crossing.

0.qnA)

T(K)

Figure 17: Mean switching current as a function of temperature. Symbols: experimental results for three
atomic-size contacts. Mesoscopic PIN codes: {0.98,0.21,0.15,0.14} (up-triangles), {0.95,0.09,0.09,0.09}
(squares), {0.92,0.02,0.02} (circles). Full curves: adiabatic theory. Dashed curves: theoretical predictions
assuming a Landau-Zener transitior rmitwith probability P between the two Andreev bound states of the
high transmitting channel. From top to bott P =0.80, 0.40, 0.15Inset: schematic representation of 8@
Landau-Zener transition.



We have tried to fit the measurements for atomic-size contacts containing a highly
transmitting channel by introducing a Zener-like transition rate at the level crossing occurring
at & =71. When the transmission decreases, the minimum energdp-1 between the
two Andreev bound states increases, and the transition probability is lower. In the numerical
simulations discussed in section 3.2.3, we have implemented a temperature independent
transition probability P between the two levels al =m. Each timed crossesrm, the
Andreev state occupations are refreshed according to this transition probability. The
experimental results for the 0.98 contact are well fitted assuming a transition probability
P =0.80. For the 0.95 contact, we fourd=  0,48nd for the 0.92 contact presented in
Figure 4 of the article (see the AnnedRF= Q.15

The standard Landau-Zener theory can be used to determine the transition probability
at a level crossing when a parameter of the hamiltonian is swept at constant velocity. In our
set-up, the phase is a dynamic variable whose evolution depends on the current through the
contact. One can nevertheless use the Landau-Zener theory to check if the adiabaticity
hypothesis is valid. Assuming indeed that no transition occurs at a level-crossing, the phase
evolution can be simulated, and the adiabaticity criterion checked. The transition probability
p, between the two Andreev bound states of a single conduction channel with transmission
T is:

p, =exp(-m (1-1)/Av) (27)

where v is the phase sweep velocity. The relevant velocity is the velocity of the phase at
0 =m for the bias current at which the switching event occurs, which is of the order of
#,'Rl, (1) wherel, (1) is given by Exp. (10). When this velocity is injected in (27), one finds
that the adiabaticity criterion is not fulfilled for the 0.98 contact: the adiabatic approach is
thus non valid, and a full dynamical approach is necessary. The probabildpe estimates
assuming that the phase dynamics is the same as in absence of Zener transitions is
nevertheless of the same order of magnitude than the prob&bififgcted by hand. For the

T =0.95 contact, one finds at the opposite that the adiabaticity criterion is fulfilled, and that

no Zener transitions should occur. The observation of a large transition probability in this
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contact is thus in contradiction with the model. A rigorous theory, in which the phase and the
internal degrees of freedom of the contact would be treated together, is clearly lacking. Our
results have already inspired a reinvestigation of the Zener effect [26], but the problem is
presently beyond reach of existing theories. Experimentally, a direct measurement of the
current through the contact with a phase imposed would probe the Andreev states at
equilibrium, which would circumvent the difficulties arising from the complex dynamics of

the system in a current-bias configuration.

3.4 Conclusions

The maximum supercurrent through current-biased superconducting atomic-size
contacts embedded in a dissipative circuit is in quantitative agreement with the theoretical
predictions based on the Andreev bound states, for a large palette of mesoscopic codes, over a
wide temperature range. The departures from the theoretical predictions lie within the error
bar due to the imperfect determination of the mesoscopic codes. When highly transmitted
channels are present, we could probe quantitatively the predictions only for the perfectly
transmitted ballistic channel case because the relationship between the critical current and the
measured switching current is not well established when the Andreev state dynamics departs
from adiabaticity. In the non-adiabatic regime, we have accounted for the experiments by

introducing a transition probability at the level crossing which remains to be explained.

ANNEX: Article published in Physical Review Letters

We reproduce here an article published in Physical Review Letters presenting our

measurements of the supercurrent through atomic-size contacts.
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We have measured the supercurrent in @uminum atomic point contacts containing a small number
of well characterized conduction channels. For most contacts, the measured supercurrent is adequately
described by the opposite contributions of two thermally populated Andreev bound states per conduction
channel. However, for contacts containing an almost perfectly transmitted channel 0.9 = 7 =< 1 the
measured supercurrent is higher than expected, afact that we attribute to nonadiabatic transitions between

bound states.

PACS numbers: 73.40.Jn, 73.20.Dx, 74.50.+r

In 1962, Josephson predicted that a surprisingly large
supercurrent could flow between two weakly coupled
superconducting electrodes when a phase difference
6 is applied across the whole structure. This phase-
driven supercurrent I(6) has subsequently been ob-
served in a variety of weak coupling configurations
such as thin insulating barriers, narrow diffusive wires,
and ballistic point contacts between large electrodes.
However, a theoretica framework powerful enough to
predict the current-phase relation 7(8) in al configu-
rations has emerged only during the last decade [1].
It applies in the mesoscopic regime, when electron trans-
port between the electrodes is a quantum coherent process.
Such transport is described by a set of N transmission co-
efficients {7;} corresponding to N independent conduction
channels. In the normal state, the conductance is given
by Go> N, 7 where G, = 2¢2/h is the conductance
guantum. In the superconducting state, electrons (holes)
transmitted in one channel are Andreev reflected at the
electrodes into holes (electrons) in the same channel.
After a cycle involving two reflections at the electrodes,
they acquire at the Fermi energy an overall phase factor
7 + 6 (Fig. 1). In a “short” coupling structure, these
cycles give rise to two electron-hole resonances per chan-
nel, called Andreev bound states (AS) [2] with energies
E-(8,7) = =A[l — 7;5n%(6/2)]"/% (A is the energy
gap in the electrodes). These two AS carry current in op-
posite directions, 1+(5,7) = ¢o ' dE+(5,7:)/d5 (where
oo = hi/2e), and the net supercurrent results from the
imbalance of their populations. A quantitative comparison
of the predictions of this “mesoscopic superconductivity”
picture of the Josephson effect with experimental results
is usually hindered by the fact that in most devices the
current flows through a very large number of channels
with unknown 7;. However, an atomic-size constriction
between two electrodes, referred to hereafter smply as an
atomic contact [3], is an extreme type of weak coupling
structure which accommodates just a few channels. Be-
cause their set {r;} is amenable to a complete experimental

170 0031-9007/00, 85(1)/ 170(4)$15.00

determination and because it can be controlled in a certain
range [4], atomic contacts are ideal systems on which to
test quantitatively the concepts of mesoscopic physics.
The knowledge of {r;} alows in principle the calculation
of all transport quantities. In particular, the phase-driven
supercurrent is given by

N

18 A7} Ani+}) = Z(ni, -

i=1

where n;+ are the occupation numbers of the two AS
associated with the ith channel. The critical current of
the contact is the maximum of this current-phase rela-
tionship at zero temperature Iy({7;}) = maxs[1;(5,{r:},
ni+ = 0,n;— = 1)].  In this Letter, we present an

ni)I-(8,7), (1)

b
+A
: E /
E(3) BN~
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o
0 /P
Bﬁ‘,‘/‘ "..1-P
-A L
0 n 2n
)

FIG. 1. (a) Josephson coupling through a single channel
of transmission 7 between two superconducting electrodes
with phase difference 6 = ¢, — dr. Wavy lines repre-
sent Andreev scattering mechanism: electrons (holes) are
reflected as holes (electrons) at the electrodes. Upward and
downward arrows represent normal scattering, which couples
electron (hole) states with backward electron (hole) states.
(b) Combination of both scattering mechanisms results in two
“Andreev bound states” with phase dependent energies E-
(full lines). Gap at 6 = 7 is 2A\/1 — 7. P is interlevel
nonadiabatic transition probability aa 6 = 7. Dash-dotted
(dotted) line is B_.(B—) balistic state for = = 1, carrying
current towards the right (left).
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experiment on auminum atomic contacts in which we
compare the measured supercurrent with the predictions
of this mesoscopic Josephson effect theory.

In practice the measurement of a supercurrent is not
done by imposing a phase difference across the device
[5] but by biasing it with a dc current and detecting the
maximum current at zero voltage. As the Josephson cou-
pling introduced between the two electrodes by a single
channel of transmission = has a small characteristic en-
ergy E; = @olo(7) = @olo(r = 1) = A/2 (for Al E; =
1kgK), the phase difference § is prone to both quantum
and thermal fluctuations, which depend not only on the pa-
rameters of the contact but also on the circuit in which the
contact is embedded. In fact, unless this electromagnetic
environment is carefully designed so as to damp phase
fluctuations [6], the supercurrent time averages to nearly
zero and the observed maximum supercurrent is much
smaller than I, [3]. We have thus integrated microfab-
ricated mechanically controllable break junctions [7] into
an adequate on-chip dissipative environment (see Fig. 2).
Current-voltage characteristics (IV) were measured using
afour-probe geometry. Each line contains a small resistor
close to the atomic contact, and also a large capacitor to
the underlying ground plane formed by the substrate. The
equivalent circuit of the setup is shown in the right inset
of Fig. 2. The atomic contact is characterized by (1) and

FIG. 2. Micrograph of Al microbridge in a dissipative envi-
ronment. Each IV probe contains a AuCu (weight ratio 3:1) re-
sistor (10 wm-long, 500 nm wide, and 30 or 50 nm thick) and
alarge (2.5 mm)?, 180 nm thick AuCu/Al pad (not shown) that
forms with the metallic substrate a large capacitor. Substrate is
phosphor-bronze covered by a2 wm thick layer of polyimide.
Left inset: side view of bridge (150 nm thick Al layer with
100 nm wide constriction in the middle) suspended by selective
etching of polyimide. Bridge is broken by controlled bend-
ing of the substrate at low temperatures (77 < 1 K) and under
cryogenic vacuum to prevent contamination of the two resulting
electrodes. Right inset: equivalent circuit. The atomic con-
tact (double triangle symbol) is connected to a current source
through a resistor R. The capacitors on each line combine into
the capacitor C. Total capacitance between the two sides of the
bridge is C,;. The voltage V across the contact is related to the

phase velocity through the Josephson relation ¢¢6 = V.

its capacitance Cj. It is connected through a resistor R to
a current source I, in parallel with a capacitance C. We
now concentrate on one-atom aluminum contacts which
typically accommodate three channels and have a conduc-
tance of order Gy [4]. A typical IV measured at the lowest
temperature is shown in Fig. 3. The strong nonlinearities
in the finite voltage (dissipative) branch are associated [8]
with multiple Andreev reflection processes and alow the
determination of {7;} [4]. The supercurrent branch appears
on large voltage scales as a vertica lineat V ~ 0. How-
ever, the upper inset of Fig. 3 shows that for finite current
there is always a finite voltage across the contact. When
the bias current is ramped repeatedly, the system switches
to the dissipative branch at avalue I which fluctuates from
cycle to cycle. The slope of the supercurrent branch and
the average switching current (/) both decrease when in-
creasing the temperature.

Given the simplicity of the biasing circuit, the exact
shape of the supercurrent branch can be calculated. Fol-
lowing the analysis of [6] the circuit is described by two
dynamical variables, § and u (the ratio between the voltage
across the capacitor C and R1,), and three environment pa-
rameters. acharacteristictimes; = ¢o/RI, and the damp-
ing factors ey = ¢o/R*1yC; and @ = R?Cly/ ¢y. For al
the measured contacts the environment parameters were
chosen such that «¢ > 1 [9], and the current through C,
can thus be neglected. In this classical regime, the time
evolution of the circuit is governed by two dimensionless
equations,
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FIG. 3. Large scale IV characteristic of atomic contact, mea-
sured at 17 mK (dots). Switching at current I, from super-
current branch (almost vertical branch near zero voltage) to
dissipative branch is a stochastic process. Full line is the best
fit of this branch, obtained by decomposing the total current
into contributions of 3 independent channels, giving {r;} =
{0.52,0.26,0.26} and I, = 25.3 = 0.4 nA. Top inset: expanded
view of experimental (dots) and theoretical (lines) diffusion
branch at 370 mK (thick dashed line shows negative differen-
tial resistance region). Bottom inset: I, histogram measured at
T =17 mK and dI/Iydt = 581 s~ 1.
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L i)+ i), @
afl—’;:ih—ij(é). (3)

Here, time is in units of ¢, i;(8) = 1;(8)/1y, and i}, =
1,/Iy. The thermal current noise source i,(¢) associated
with the resistor obeys the fluctuation-di ssipation theorem.
If R and C are large enough to achieve a > 1 (keeping,
however, R < h/4e” to avoid quantum fluctuations of &
[10]), thetime evolution of u ismuch slower than that of 6.
One then first solves (2) with a constant « and afterwards
solves (3) for the slower dynamics of u. The first step
is equivalent to solving the resistively shunted junction
model [11] with a voltage source u. Asin the well-known
case of tunnel junctions, the dynamics of the phase in this
circuit is equivalent to the Brownian motion of a massless
particle in atilted washboardlike “potential,” governed by
the Langevin equation (2). However, here the potential
is not the usua tilted sinusoid but has instead the more
general form [12]
Up=—ué + D (ni+ — ni-)E_(8,7;), 4
i=1
which depends on {r;} and the time dependent n; - . Several
mechanisms can make these n;+ change, but in genera
none is very efficient. The relaxation induced by phonons
has been addressed in [13]. We have found that the relax-
ation of the upper state through the emission of photons
in the environment is extremely slow except for highly
transmitted channels at 6 ~ 7 [14]. However, relaxation
by the exchange of quasiparticles with states in the bulk
electrodes can be very fast, but only at 6 = 0 (Fig. 1). We
have solved (2) by making a straightforward generalization
of the procedure introduced by Ambegaokar and Halperin
[15] for overdamped tunnel junctions. In this adiabatic
model the* particle” movesin aconstant potential obtained
by replacing in (4) the n;~ by their thermal equilibrium
values at 6 = 0 [16].

The upper inset of Fig. 3 shows a comparison of the
measured supercurrent branch for a particular contact with
the predictions of this adiabatic model. The supercurrent
branch is, in fact, a current peak. The equivalent particle
is constantly thermally activated over the potential barriers
between the wells and undergoes a classical diffusion mo-
tion with a small, friction-limited drift velocity. The only
inputs of the calculation are the temperature, R, and the
measured values of {7;}, which determine the zero tem-
perature supercurrent Iy [17]. The value of R, which is
measured independently, sets only the voltage scale of the
supercurrent peak. In our RC biasing scheme, which keeps
the atomic contact unshunted at dc, the negative differen-
tial resistance region of the IV is unstable, and the sys-
tem switches to the dissipative branch before reaching the
maximum I, Of the current peak. The capacitor was de-
signed large enough (C = 140 pF) for al the samples to

N
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FIG. 4. Experimental (open symbols) and theoretical (lines)
average switching current (/) as a function of temperature for
different contacts on two samples. (V) {r;} = {0.21,0.07,0.07},
Ip =80 * 0.1 nA [17]. () {r;} = {0.52,0.26,0.26}, Iy =
25.3+0.4 nA. (o) {r;}={0.925,0.02,0.02}, Iy =33.4*=0.4 nA.
(A) {7,}=1{0.95,0.09,0.09,0.09}, [, =38.8 = 0.2 nA. (O) {r;}=
{0.998,0.09,0.09,0.09}, I, = 44.2 + 0.9 nA. Contacts (V),
(), (A), and (O) from sample with A/e = 178 £ 1 uV,
R =125+ 10 Q. Contact (o) from sample with A/e =
1845 = 1.0 uV,R = 170 =20 Q. Full lines (with solid
symbols): predictions of adiabatic theory for @ — oo, for which
(I;) — Imax. Dashed line: finite o corrections for contact (V).
Dash-dotted line: predictions of adiabatic theory for contact
(0), assuming the highest transmitted channel to be ballistic.
Dotted lines: predictions of extended model including empirical
interlevel nonadiabatic transition probability P a 6 = 7
(P = 0.4 for upper curve, P = 0.15 for lower one). Inset:
probability P as a function of transmission coefficient 7, of
highest transmitted channel for different contacts displaying
extra supercurrent. Symbols are best fits values from simulation.
Dotted line is guide for the eye.

bein the overdamped limit & > 1, inwhich case [, ispre-
dicted to be close to I. The fluctuations of I, are also
small, as shown by the narrow switching current histogram
in the bottom inset of Fig. 3.

The temperature dependence of (/) measured for five
contacts is shown in Fig. 4 together with the predictions
of the adiabatic model sketched above. For every contact
having all channels such that 7; < 0.9 the @ — oo limit
of the theory describes well the data at high temperature.
Moreover, in the case of very low 7, finite « corrections
can be calculated [6] and explain the small deviations at
intermediate temperatures. We attribute the remaining low
temperature deviations to the saturation of the electronic
temperature in the resistors [18]. The uppermost data
points in Fig. 4 correspond to a contact in which one of
the channels had 7 = 0.998. The measured (/) are larger
than predicted by the adiabatic theory for this 7. How-
ever, if we assume this channel to be perfectly transmitted
(7 = 1), areasonable assumption given our accuracy inthe
determination of the 7’s, we recover avery satisfactory fit
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of the data. Thisisdue to the fact that this small changein
7 has a profound impact on the shape of the potential. For
7 = 1 the AS singularly become the ballistic B~ states
(Fig. 1), which have no extremaa 6§ = 7. In this case
the current flows aways in the same direction, thus lead-
ing to amuch larger average value. For contacts having at
|east one channel with 7; = 0.9, but definitely not ballistic
within the experimental accuracy, the measured (/) isaso
larger than the predictions of the adiabatic theory, which
corresponds in principle to the maximum observable (/).
A possible explanation of this excess supercurrent could
be the existence of transitions between the adiabatic E-+
states (Fig. 1), induced by the fast dynamics of &. In the
case of an amost perfectly transmitted channd (r = 1),
the energy gap 2A+/1 — 7 a 6 = = isvery small. If the
system startsa[6 : 0 — 2] cycle in the lower adiabatic
state E_, there is a finite probability P for finding it in
the excited adiabatic state £ after § has diffused across
the region around 7 at finite speed (Fig. 1). For alarge
P the system would follow most of the time just the bal-
listic state B_., making the time-averaged supercurrent re-
sistant to thermal fluctuations, as observed experimentally.
Note that this strong nonequilibrium occupation of the AS
marks the uprising of the dissipative current [19]. We have
extended our model in a minimal way by adding to the
boundary conditions of thermal equilibrium at 6 = 0, the
possibility of interlevel transitionsat 6 = 7, with an em-
pirical, temperature independent probability P. As shown
in Fig. 4, this modified model allows fitting the experi-
mental data reasonably well. The inset of Fig. 4 shows
the best-fit value of P obtained using this procedure, as a
function of the 7 of the highest transmitted channel. We
note that the standard Landau-Zener theory [19] predicts
much too small values of P given the small drift velocity
of the phase. In fact, the Landau-Zener theory is not di-
rectly applicable to the present situation in which the phase
is not an external parameter swept at a constant rate, but is
instead a dynamical variable undergoing a driven diffusive
motion. A rigorous theory of this dissipative nonadiabatic
mechanism, valid for arbitrary transmission, remains to be
developed for our system, along the lines of [20] or [21],
for example.

In conclusion, superconducting atomic contacts can sus-
tain supercurrents close to that predicted solely from their
mesoscopic transmission set. The value of the supercurrent
is thus related to the dissipative branch of the IV char-
acteristics, like in usual macroscopic Josephson junctions,
athough in the latter the contribution of the different chan-
nels cannot be disentangled. More generally, our findings
strongly support the idea of the supercurrent being carried
by Andreev bound states and show that the concepts of
mesoscopic superconductivity can be applied down to the
level of single atom contacts.
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The discreteness of the electronic charge and the stochastic character of electrical
transport give rise to temporal fluctuations, known as shot noise, in the current flowing
through electronic devices. Schottky first evidenced these current fluctuations in vacuum
diodes as early as in 1918 [1]. Many electronic devices, like metal-insulator-metal tunnel
junctions, tunnel diodes, bipolar and FET transistors for example, also show shot noise that

usually limits their performances [2].
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In vacuum diodes, the electrical current is made up of electrons emitted by the
polarized cathode. This stochastic electron emission is a poissonian process and the time

correlation function of the currenit) is thend -correlated and equal to:
(I ®! (t')} :e<| (t)>5(t -t"), (1)

Where<...> symbolizes time average. The corresponding spectral defsity defined for

positive pulsation as twice the correlation function Fourier transform is given by:
S@=27((101(t))=2¢{1(t) @>0). 2)

This expression reveals the general features of shot noise. The spectral density is frequency
independent(white noise). It is proportional to the average cun(é(lt)), denoted simplyl

in the following, and to the charge of the current carriers, namely here the electronic charge
e. The exact value € is however specific to a perfectly random poissonian process,
commonly referred as poissonian noise, and any correlation in the electronic flow reduces this

value.

Shot noise amplitude is thus sensitive to the charge of the current carriers and to any
physical process that eliminates, generates or modifies randomness in the electronic flow like
statistical correlations, scattering or interactions. Consequently, it reveals transport properties
inaccessible through simple conductance measurements and has been widely investigated in
mesoscopic conductors during the last decade, both theoretically and experimentally (see [3]

for a review).

For example, experiments [4,5] and theoretical calculations [6,7,8,9] on diffusive
wires of various lengthiL connecting two normal charge reservoirs, reveal how shot noise
can be modified by interactions among electrons and between electrons and phonons. At low
temperature, the lengti_, over which electrons reach thermal equilibrium among
themselves through inelastic e-e collisions is typically smaller than the length over

which electrons relax to the phonon temperature, but higher than the coherence Jeafyth

! Here the emission process is supposed to be instantaneous and the current is condeguently . éorrelated
finite emission time would introduce a natural cut-off at frequencyfaf the spectral density.
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electrons. Following [4] one can distinguish several regimes. In the “macroscopic” regime
L. n< L, the electrons are always in equilibrium at the lattice temperature and the noise
does not depend on the current. In other words there is only equilibrium (Johnson) noise and
no shot-noise, which is essentially an out-of equilibrium phenomenon. In the “interacting hot-

electron” regimel, < L L electrons are still at equilibrium among themselves but at

e- ph?
a (non-uniform) higher temperature than the phonons. There is then an out of equilibrium
component to the noise, which at high voltagds k T-> is qual to(\/§/4) 2l, ie.

below the full Poisson value. In the “independent hot-electron” regimes L < L., shot

e-e’

noise is reduced to a value d¢1/3)2el. Finally, the same noise is obtained in the

“mesoscopic” regime{ < L < L, where/ is the elastic mean-free-path.

As another example of the insight gained on electronic correlations through shot noise
measurements, we mention the detection of quasiparticles of fractional charges in a 2D
electron gas under high magnetic field in the highly correlated N-body state of the fractional
quantum hall effect [10]. The size of the charge “pellets” that make up the current was

directly evidenced in the value of the spectral density of the noise.

The superconducting state is another N-body state which displays subtle electronic
correlations. As already mentioned, the current between two superconductors proceeds
through multiple Andreev reflections (MAR), for which large charge pellets are predicted.
We have carried out experiments on aluminum atomic contacts to evidence these correlations.
Along the way, as the measurement set-up had to be calibrate with enough accuracy, we
tested extensively the basic predictions for the noise in a coherent conductor between normal

charge reservoirs.

In the following, we first present the basic theoretical predictions and some existing
experimental results for shot noise in mesoscopic conductors in the normal (section 4.1) and

superconducting (section 4.2) state, before describing our experimental results (section 4.3).
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4.1 Shot noise in a quantum coherent conductor connecting
normal charge reservoirs

4.1.1 Brief review of the theoretical results

We present in Appendix A the derivation within the framework of the scattering

theory of the fluctuations in a quantum coherent conductor.

The basic ideas are the following. At zero temperature, due to the Pauli principle,
there should be no fluctuations in the occupation numbers of the states in the reservoirs. The
flow emitted by the reservoirs (considered as emitters) towards the conductor should thus be
noiseless. However, at the scattering conductor, coherent superpositions of transmitted and
reflected states are created. At the opposite reservoir, considered this time as a detector, these
superpositions have to collapse, thus leading to fluctuations on the occupation numbers of the
outgoing and incoming fluxes. Only in the case of perfect transmission, the conditions
imposed by the reservoirs and the conductor are compatible. In all other cases, there is shot-

noise across the full structure.

For a quantum coherent conductor characterized by the{egder,}, the spectral

density at voltag® and temperaturé is constant at low frequency and equal to [11,12]:
S (V, T{Ty...7,}) =2 eVeotheLoY %(@ir (-7, )+ 4 k Tg—;irz 3)
v LRttt BN %D - i i A i

In the low voltage or high temperature limey KX < , B) reduces to the equilibrium
Johnson-Nyquist spectral densitg: = 4IgT(§zitlri =4k TG On the contrary, in the large
voltage or low temperature limgV MKT> , Ihe spectral density increases linearly with

the average current:

SV Tir -t =2eft-3 1215 ' r). (4)

100



This is shot noise but reduced from its poissonian vaglebg the so-called Fano factor
F((tntd) -3 L0 ®

which depends only on the mesoscopic code. In the ballistic limit, the Fano factor vanishes,
and so does shot noise, as the noiseless electronic steady stream emitted by the reservoirs is
undisturbed by the coherent scatterer. In the opposite firét , elekctrons are randomly
transmitted like electrons are emitted in vacuum diodes. In this case the Fano factor is close to

unity and full shot nois&, = & is recovered.
4.1.2 Shot noise in qguantum point contacts tailored in 2D electron gas

Experimentally, the predictions of (3) were first tested at the beginning of the 90’s in
guantum point contacts tailored in 2D electron gas. The observation of conductance
guantization in 1988 established that conduction channels open one by one as the width of
these point contacts is enlarged by means of an electrostatic gate [13]. In other words, for all
settings of the gate the code contains only 1's and 0’s, but for one channel whose transmission
can be continuously adjusted between 0 and 1. A comparison without any adjustable
parameter between theory and experiment is then possible. First indications of sub-poissonian
noise were first obtained in 1990-91 bydtial. andWashburret al. [14,15]. Measurements
were done at low frequency and suffered of a largeribise. Quantitative conclusions were
thus hard to draw. In particular, the measured spectral density was not proportional to the
average current but to its square, probably because the working voltage bias was too high.
Subsequently, experimental techniques were much improved following different strategies to
get rid of 1/f noise. In 1995, Reznikoet al. [16] measured shot noise in the microwave
frequency range of 8-18 GHz, where flrioise is negligible, by implementing a cryogenic
microwave amplifier. They observed the linear dependence of the spectral density on the
average current but not full poissonian shot noise in the pinch-off regirae J. Apglying a
constant bias current and varying the gate voltage, the spectral density oscillates and shows

minima at integer values of the conductance in unit§ofvhere all conduction channels are
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supposed to be perfectly open. The agreement with (3) was however only qualitative. The
first measurements in quantitative agreement were performed in the group of Glattli in 1996
[17], who measured shot noise at low bias voltage and low frequency, getting Iid of

noise by means of a cross-correlation technique [18]. Their results on a single conduction
channel for different transmission probabilities as well as the crossover from thermal to shot

noise for a particular transmission probability are presented in Figure 1.
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Figure 1: (reproduced from [17]) Left: Spectral density of the QPC voltage fluctu: S, ynslso expressed

as noise temperatu T = GS, /4 k,, for one conduction channel with transmission probakr =0.5 at

T=38, 80, and 180 mK, as a function of the current or the average voltage expressed in relevant temperature
units. The dotted lines are predictions of (3) with no adjustable parameters. Right: Noise temperature versus
bias in temperature units for conductances G=1/6,1/4,1/2, anG,}/4t 38 mK. For clarity, data for
different G are offset by 100 mK. Theory corresponds to (3) with one conduction channel.

4.1.3 Shot noise in gold atomic-size contacts

Considering (3) has well established, van den Brom and van Ruitenbeek reversed the
point of view and performed shot noise measurements in atomic-size contacts in order to get
information about the number of conduction channels and their transmission probabilities,
that is about scattering process by the atomic size-contact [19]. For 27 different gold contacts
with conductances ranging fro®7G, up to 4.1G,, they measured a spectral density well

below the poissonian value, indicating that current is mostly carried by well transmitting
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channels. The values of the conductance and the shot noise density are related respectively to
the first and second moment of the transmission probability distribution. Because from two
parameters the code can be disentangled only if the contact contains no more than two
conduction channels, their results were quantitative only for conductances b€lpwror a

single gold atom contact, the conductance is aligueand their shot noise measurements
established that the contribution of partially transmitted conduction channels is only a few

percent.

4.2 Shot noise in a quantum coherent conductor when
superconducting reservoirs are involved

4.2.1 Double electronic charge transfer at a NS interface

For voltages smaller than the superconducting gape2the microscopic mechanism
of transport through a normal-superconducting interface is Andreev reflection, in which an
electron is reflected as a hole at the interface and a cooper pair is transferred [20,21]. For a
long diffusive normal wire, it has been demonstrated that independently of the transparency
of the normal-superconducting interface, the noise is increased by a factor two with respect to
the fully normal case, i.e5 =2x 2/3el. This doubling of shot noise as well as the crossover
between thermal and shot noise av2 k, P was experimentally evidenced by Jehhl.in

Cu/Nb junctions [22].

4.2.2 SNS junction

In a SNS junction, Andreev reflections occur at both NS interfaces. As presented in
Appendix B, in the limit where the length of the normal region is much smaller than the
coherence length_,, the current at voltages smaller than 2 proceeds through MAR
processes. The MAR process of oraerwhich has a threshold voltage oA Zhe/ transfers a

chargene between the two superconducting electrodes. However, for a given voltage many
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such processes contribute coherently to the current. The calculation of the effective charge
q =S/21 as a function of voltage for arbitrary transmission [23,24] leads to a staircase
pattern. As the transmission increases, the staircase pattern is progressively washed out. The
effective charge increases as the voltage decreases and diverges at low voltage like

q ~2A/eV.

In 1997, Dielemaret al. observed a divergence of the effective charge at low voltages
in NbN/MgO/NbN superconductor/ insulator/superconductor tunnel junctions [25]. It is
believed that the measured junctions consisted in fact of parallel SNS point contacts because
the 1 nm thick MgO barrier presented small pinholes. From the relative height of the
differential conductance peaks at subharmonic values fof Rieleman and coworkers
determined that the mean transmission of these point contacts was . TAey7explained
their results developing a semi-empirical theory, but the agreement with the full theory

presented above is only qualitative.

4.3 Shot noise measurements in aluminum atomic-size contacts
both in the normal and in the superconducting state

In the normal state, all our measurements of shot noise as a function of temperature
and bias current are in quantitative agreement with the predictions of the scattering theory
(see EQ. (3)) using the code determined from the current-voltage characteristics in the
superconducting state. Expression (3) was, as presented in 4.1, already tested in 2DEG
guantum point contacts where conduction channels open one by one. However, as one-atom
aluminum contacts contain typically three conduction channels they provide a larger palette
of codes with arbitrary values, and our results can be considered as a broader test of the

general multichannel formula (3).

In the superconducting state we do observe, for contacts containing no high
transmitting channels, that the effective chagge= S /2| increases by steps as the voltage

decreases revealing the transfer of multiple charge quanta through MAR processes in the sub-
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gap region. For larger transmission probabilities the staircase pattern progressively washes
out, but the effective charge still strongly increases like- e2A/eV)as the voltage
decreases. In all cases, our measurements are in quantitative agreement with the full quantum
theory of MAR [23,24] using the code determined independently from the current-voltage

characteristics in the superconducting state.

All these results were reported in “Multiple-Charge-Quanta Shot noise in
Superconducting Atomic Contacts” by R. Cron, M.F. Goffman, D. Esteve, and C. Urbina,
Phys. Rev. Lett86, 1078 (2001), which we reproduce in section 4.3.2. Some complementary
analysis is performed in section 4.3.3, and in section 4.3.1, we describe in detail the

measurement set-up and its calibration.

4.3.1 Measurement of shot noise in atomic-size contacts

The set-up used to measure shot noise is depicted in Figure 2. It consists basically of
one coaxial line, used to bias the on-chip grounded break-junction, and of two bifilar lines
used to obtain two independent measurements of the voltage across with two sets of low-
noise amplifiers. With this set-up current fluctuations are thus not directly measured, but
instead inferred from the fluctuations of the voltage across the contact. The current and
voltage fluctuations spectral densiti€}, and S, respectively, are related, at a given voltage
V through§, (V)= B $( V, whereR, (V) =0V/a1(V) is the differential resistance. In the
normal state, this differential resistance is essentially constant in the voltage range in which
the experiments are carried Hund equalsR,, the normal resistance of the contact. In the

superconducting state, the differential resistance can be highly non-linear.

All noise sources along the measurement lines, like the Johnson-Nyquist thermal noise
of the resistors or the current and voltage noise of the amplifiers input stages, induce
fluctuations that poison the shot noise signal. Because of that, the measurement lines and the

bias line were carefully designed and built so as to limit and keep under control this additional

2 Actually, the differential resistance presents small amplitude fluctuations (typically less than 1%) as a function
of voltage. These fluctuations are well understood as arising from quantum interference effects.
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noise. In the following, we first describe the details of the measurement set-up. Then we
explain how we characterize it taking into account all noise sources and the attenuation along
the lines. This characterization allows us to extract from the measured total voltage

fluctuations, the fluctuations of the current through the atomic-size contact.

4.3.1.1 Description of the measurement set-up

The bias current is obtained using M@ resistor thermally anchored to theK1
pot”, whose actual temperature is between 1.2 and 1.5 K. The room temperature part of the
bias line is simplified as much as possible to avoid picking up from external sources. Except
for the power line harmonics, the voltage background noise on the sample was checked to be
identical with or without this part of the bias line, independently of the contact resistance.
Two voltage sources produce the bias: a low-noise Yokagawa voltage source provides the dc
bias, and a Stanford Research SR830 lock-in amplifier provides an ac voltage used to measure
the differential conductance. These signals are added using an operational amplifier summing
circuit whose ground is decoupled from the power line ground. The resulting signal is fed to
the biasing resistor through 20Q adjustable attenuator. The latter is placed as close as
possible to the feed-through connection on top of the cryostat (which acts as a Faraday cage),
to avoid picking up too much noise through the cables. The bias current (both dc and ac) is
deduced from the values of the input voltage, the voltage measured on the sample and the

total resistance of the filters and resistors in the bias line.
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Figure 2: Schematic representation of the measurement set-up consisting of a coaxial line to bias the
atomic-size contact (two triangle symbol) and of two bifilar lines to measure twice the voltage across it.
The spectrum analyzer calculates the cross-correlation of these two signals.
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The voltage across the atomic-size contact is measured twice using two bifilar lines.
As close as possible to the feedthroughs that take these two lines out of the cryostat, the
signals are amplified by identical cascades of two low-noise battery-powered pre-amplifiers: a
x100 fixed gain NF LI75A, followed by a Stanford SR560 of adjustable gain. The
connections from the top of the dilution refrigerator to the pre-amplifiers are made out of
semi-rigid coaxial cables. The real part of the cross-correlation spe&yyrtv) of the two

amplified signalsv,(t) andV,(t) is calculated in real time by a spectrum analyzer SR780:
Sev, ) = Re(F (L (O)V)F (4 (0)(v)) (6)

where ¥ is the fast Fourier transform add.} refers to the vector averaging over successive
temporal traces. This cross-correlation technique allows one to get rid of thendise
coming from the preamplifiers and the measurement lines that poison the white noise signal.
Typically, the spectra were measured over 800 points in a frequency W[I360V\B560 H}

and averaged 1000 times in 4 min. At the same time, the lock-in measures the ac voltage

signal from which the differential resistance is deduced.

4.3.1.2 Characterization of the measurement set-up

Using the broadband chirp source of the spectrum analyzer, we measured for
frequencies up to 100 kHz the transfer function of each measurement line. Essentially, they
behave as one-pole RC filters with R and C being respectively the total resistance and the
total capacitance of the lines. The microfabricated filter provides most of this resistance,
whereas the lossy lines account for most of the capacitance. The electrical circuit depicted in
Figure 3, where all measurement lines contain a RC filter, is thus a good model for the
measurement set-up. The noise introduced by the line resistBnces r, ismekgligible as
compared to the other noise sources and is thus not taken into account. Furthermore, the
capacitance of the first lossy cable stage (from 300K to 1K) on the bias line is not taken into

account because the bias resistance is much higher than all other resistances in the line.
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Spectrum
analyzer

S V1Vao (V)

Figure 3: Model of the measurement set-up. The contact is characterized by its differential resistance
R, (V) =0V/aI(V), its capacitanc C, dominated by the capacitance of the on-chip connection pads, and
the noise sourci , which is the signal to measure. The bias line is characterized by the bias R; jster

current noise sourci,, and the total resistanr, and capacitancC, of the second lossy cable stage and
microfabricated filter. The total resistance and capacitance along the voltage lines are res R :tarely

C.. The current noise sources of the NF preamplifiers are deli, andi,. The total voltage noise
sources of the pre-amplifiers and of the measurement lines are du, andu,.

The exact expression &f andV, is a somewhat cumbersome combinationRélw
like terms of all resistances (excefRf) and capacitances involved in the model. However, in
all our measurements the atomic-size resistaRgewas larger thanR ang and thus
R,Cw terms are dominant. Neglecting all terms two orders of magnitude smaller than these

ones leads to a relatively simple expression$/fendV,:
Ro (i(w)+ Ig (w)+i1(w)+i2(w))+RLi1(w)
12+ B4 j0[R (€, +2G + G+ 2R G G

R (i(©) s (6) 41 (0)+12()) +Ris ()
V, (w)= R, & .
1+RB+|:\?3+Jw[RD(CJ+2CL+CB)+2aq+ EQ]

Vi (w) = +U,

(7)

+U2,

where only the fluctuating part & andV, is taken into account. The vector averaging of the
Cross correlatior\7lv2 eliminates components of the two voltage signals that do not have a
constant phase relationship between them. Consequently, <(%]§/> like terms do not
vanish and the contribution of the voltage noise sources of the amplifiers and measurement

lines, which contain an awkward f£omponent, are consequently averaged to zero.
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The cross-correlation thus writes:

S )= (RS0} = %(5+5+25,)"2 B RS,

§t+2+é§+(m)z(&<q+zq+ G)+ 2R G+ £ G)’

(8)

where S :<_i(w)i(a))>, S, :<E(w) i (@ )> and S, = <5(w)il(w)>:<g(w)i2(w)> are the
spectral densities of the various noise sources. The contact differential resistance and the

resistances of the voltage lines bring out these current noise sources as fluctuations of

V, andV, whose amplitude is attenuated through the RC filters of the lines.

In the measurement frequency wind¢@60,3560 H} , the term& C.  angC, in
the denominator are usually negligible. Indeed, they are of the same order of magnitude as the
R,C dominant terms only when the contact resistance is below a few kiloohms. But in this
low resistance regime, all these terms are negligible in the whole frequency range. The same

argument works for, /R, and (8) simplifies into:

R g -
Su, (Vs Ty T 1 V) = 1+ (wRG) ES (V Az 11 v) §+2%+ §1pﬁ (©)
| ot

whereR = R, R /( R+ RB) is the resistance of the parallel combinatiorRpfand R, , and
Co =(C, +2C_+ G,) is the total capacitance. This simplified expression retains the relevant
parameters of the set-up within the contact resistance range and frequency window
corresponding to the measurements. The current fluctuation spectrum, which depends on the
DC bias voltage, the temperature and the mesoscopic code of the involved atomic-size
contact, can thus be extracted from the measured cross-correlation spg&gfrupnovided

that the prefactorR? /(1+(2v R G, )*) and the spectral densitieS,,, and S; are well

mp

known. The determination of these factors, and the accuracy on their determination, is

described in the Annex.
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4.3.1.3 Current fluctuations spectrum deduced from the measured voltage spectrum

The spectrum of the fluctuations of the current through the atomic-size contact is thus

related to the measur&g, (V, T.{r,,....T},v) by:

1+(2wR G, ) 0
2 Vo V -I-{ i N}
g welVThenb)- §2ds

S (V. T{ty...t V) = §qp (10)

::U|r5U

Figure 4 shows for one particular contact a raw spectﬁl,m(v) together with the
correspondingS (v). The values of the parameters used for the data treatment as well as the

uncertainty in their determination are recapitulated in the following table.

Data treatment parameter Value and incertitude

Bias resistance R, = (1.06Si 5103) M2

Spectral density of the Johnson-

Nyquist current source of the biag, = (71 1) 10%° A?/Hz
resistor

Total Capacitance C. =(.16+ 0.05) nF

Resistance of the voltage _
measurement lines. R =(1.60+ 0.05)

Spectral density of the current S, _ (V) = (2.31 0_3 10%
noise source of the NF- P

preamplifiers. +(9_06i O_OQ 10%xy A /Hz

Table 1: Measured values of the parameters used to extract the spectrum of the current ﬂqu(at)ofrsm
the raw spectrung,,, (v).

111



351 B
3.0 B

251 B

SVNz(an/ Hz)

1.0+ B

0 500 1000 1500 2000 2500 3000 3500 4000

v (Hz)
Counts
0 50 100 150 200 250
1.5x107° T T T T T
1.0x10° + q
~N
I
N. 50x10*+ B
< ]
(D_ %
0.0F T i
(S)
—5.0)(1074 1 1 1 1

1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
v (Hz)

Figure 4: (Top) Raw cross-correlation specttushi the fluctuations of the voltage across an atomic-size
contact withR, =48270+ 19%Q at 20 mK in the normal state. The sharp peaks correspond to harmonics of
the power line while the wider ones (arot 2 kHz and 3.25 kHz ) correspond to microphonics. (Bottom left)
Corresponding current fluctuations spectrum calculated using Eqg. (10). (Bottom right) Spectrum histogram
and its gaussian fit from which the average value of the current fluctuation sp <$ >\ri$ determined.

Except for the peaks due to the power line harmonics and to microphonics, the current
fluctuations spectra are white within our experiment accuracy. The average value
(S)(V, T{r,}) is determined as the mean value of the gaussian fit of the speStiur.

This mean value is affected by both statistical and systematic errors. The latter arise from the
uncertainties in the determination of the data treatment parameters. To provide the bounds of
the systematic errors, the raw spectriy, (v) is treated choosing the set of parameters,
within their uncertainty range, which maximize and minimize the current spectral density.
The two resulting average valuds ), .. and(S), . give respectively the upper and the

lower bounds for(S) due to the systematic uncertainties. Taking also into account the

% The highest peaks have been removed for clarity.
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statistical error, the uncertainty(S ) on(S) is equal to:

5<S>=<S>MAX;<$>MIN+\/AN%’

where AS is the standard deviation of the current spectrum gaussian fiNgn¢he number

(11)

of points in the spectrum that do not correspond to the spurious peaks (a lower bound for this
number isN,;, = 700.

Figure 5 shows the mean val(ﬁ} measured in the normal state, at 20 mK and zero
bias voltage, for ten contacts with resistance ranging frof2 b to65 K. We also show
the predictions of Eq. (3) that corresponds to the Johnson-Nyquist thermal kgiseR4. /
The agreement is quantitative within our measurement accuracy for the whole range of
contact resistance, and the uncertainty is almost constant. Note however that for contact
resistances less than one kiloohm the voltage fluctuations become very small and the
measured voltage spectrum and conseque(rﬁly is larger than expected from Exp. (9).
Furthermore, for resistances much larger than a hundred kiloohms the attenuation along the
measurement lines becomes very large and the measured thermal equi@r)udeviates

also from the K, T R, value.

4x10™ T
3x10™ -
—
N
I 2x10* -
~~
N
<
-] -4
E’_ 1x10 -
A |
0 { ]
-1X10>4 " 1 " 1 " 1 " 1 " 1 " 1 i
10 20 30 40 50 60 70
RD(kQ)

Figure 5: Average equilibrium noi(S ) (dots), measured at 20 mK, for several contacts in the normal
state. The full line corresponds to the predicted Jonhson-Nyquist thermal noise.
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Nevertheless almost all of our measurements were in the 5 (A0@dntact
resistance range, for which the predictions of Exp. (9) are in quantitative agreement with the
equilibrium spectra. Therefore, we will use this expression also in the non equilibrium case

(V #20) to extract from the measured spectrigy, (v) the current fluctuation spectrum

S (v).

4.3.2 Multiple-Charge-Quanta Shot Noise in Superconducting Atomic
contacts (reproduced from Phys. Rev. Lett86, 4104 (2001))
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We have measured shot noise in aluminum atomic point contacts containing a small number of con-
duction channels of known transmissions. In the normal state, we find that the noise power is reduced
from its Poissonian value and reaches the partition limit, as calculated from the transmissions. In the
superconducting state, the noise reveals the large effective charge associated with each elementary trans-
fer process, in excellent agreement with the predictions of the quantum theory of multiple Andreev

reflections.
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As shown already in 1924 by Shottky, the granularity of
electricity givesriseto fluctuations, known as* shot noise,”
in the electrical current through electronic devices. Lately,
a great deal of activity has been devoted to this nonequi-
librium noise in coherent nanostructures connecting two
charge reservoirs. It is by now evident that even its low-
frequency power spectrum carries a wealth of information
on the interactions and quantum correlations between the
electrons [1,2] in both the charge reservoirs and the nano-
structure itself. When the current 7 is made up from per-
fectly independent shots, the white noise power spectrum
assumesthe well-known Poissonianform S; = 241, where
q isthe “effective charge” transferred at each shot. In the
case of normal, i.e., nonsuperconducting, metal reservoirs,
the charge of the shots is simply the electron charge e.
Interactions and correlations lead to large deviations from
this value. One of the most striking examples is the frac-
tional charge of quasiparticles in the highly correlated
electronic state achieved in two-dimensiona electronic
systems under very high magnetic fields, which was
recently evidenced through noise measurements [3]. The
mechanism giving rise to superconductivity is another
source of correlations among electrons. How big are the
shots in the current when superconducting reservoirs are
involved? The current between a superconducting reser-
voir and a normal one connected by a short normal wire
proceeds through the process of Andreev reflection in
which chargeistransferred in shots of 2e¢, thus resulting in
adoubling of the noise with respect to the normal case [4].
When two superconducting electrodes connected through
structures such as tunnel junctions or short weak links
are voltage biased on an energy scale ¢V smaller than
the superconducting gap A, the current proceeds through
multiple Andreev reflections (MAR) [5]. In a MAR
process of order n, which has a threshold voltage of V =
2A/ne, two elementary excitations are created in the
electrodes while a charge ne is transferred. For a given
voltage many such processes can contribute to the current,
but roughly speaking, “giant” shots, with an effective
charge g ~ e(1 + 2A/eV), are predicted at subgap
energies [6]. The exact value of ¢, like all other transport
properties of a coherent nanostructure, depends on its

4104 0031-9007/ 01/ 86(18) / 4104(4) $15.00

PACS numbers: 74.50.+r, 73.23.—b, 73.40.Jn, 74.40.+k

“mesoscopic pin code,” i.e, the set of transmission
coefficients {r;} characterizing its conduction channels.
A full quantum theory has been developed for the fun-
damental case of a single conduction channel connecting
two superconducting electrodes [7,8] which predicts the
voltage and temperature dependence of the current noise
power spectral density s;(V, T, 7), and therefore the size
of the shots, for arbitrary transmission 7. In this Letter,
we present an experiment on well-characterized coherent
nanostructures, namely, atomic point contacts between
two superconducting el ectrodes, which tests quantitatively
these theoretical predictions.

Using nanofabricated break junctions, we produce alu-
minum atomic point contacts whose sizes can be adjusted
in situ through a mechanical control system [9]. The
samples are mounted in a vacuum can and cooled below
1 K. Figure 1 shows schematically the setup used to mea-
sure both the 7Vs and the noise. The contact is current
biased (at low frequency) through a cold resistor Rg. The
bias and the voltage measurement lines are filtered by a
series of microwave cryogenic distributed lossy filters, an

Rg
Vi Spectrum
S S Rp analyzer
B
c ==
I S V1V2 (V)
= Va

FIG. 1. Schematic experimental setup. An atomic contact
(double triangle symbol), of dynamic resistance Rp, is current
biased through Rz = 1.065 M. The voltage V across the
contact is measured by two low noise preamplifiers through
two nominally identical lossy lines. R; = (1.60 * 0.05) kQ
is the total resistance of each line. C = (1.16 * 0.05) nF is
the total capacitance introduced by the setup across the contact.
The spectrum analyzer measures the cross-correlation spectrum
of the two voltage lines. The S;(i = B, Ampl,Amp2) are the
known current noise sources associated with the bias resistor
and the two amplifiers. S; represents the signal of interest, i.e.,
the shot noise associated with the current through the contact.
Sy, and S,, represent the voltage noise sources of each line
(amplifier + connecting leads).

© 2001 The American Physical Society
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essential requirement in order to observe MAR processes.
After establishing a contact, which can be held for days, its 4
1V characteristic is measured in the superconducting state~
(see inset of Fig. 4). Its code} is then determined by T 3
decomposing thismesoscopidingerprint [10] into the &
contributions of independent channels as calculated by the?: 2
theory of quantum coherent MAR [11]. We work with — .
the smallest possible contacts, which typically accommo- > 1 [
date in aluminum three channels for a total conductancen

G = Gy ; 7; of the order of the conductance quantum 0 BoeRess |
Go = 2¢2/h [10]. Experiments in the normal state are M M "2 [ 00
done after applying a magnefield of 50 mT, which does 1 1k 2.3 4

not affect the transmissions. Hz)

The voltage noise across the contact is measured SiG. 2. (a) Measured (symbols) and calculated (solid lines)
multaneously by two identical cascades of low noise amequilibrium (V = I = 0) cross spectrdy,y,(v) for four differ-
plifiers, and the cross spectrufy,y,(»v) of these two ent atomic contacts in the normal state (from top to bottom:
noise signals is calculated by a spectrum analyzer. Thip = 85.2, 64, 42,8.5 k(). The calculated spectra include the

“ - . . LS ohnson-Nyquist noise of the contacts, and the independently
four-point noise measurement technique eliminates th easured contributions of preanfigrs and bias-line current

voltage noise contributions of the resistive leads and ofoise. They also take into account the calibrated low-fiiss-

the preampfiers [12]. We show in Fig. 2a examples of ing of the lines. (b) The shot noise power spectrsim(M) of

raw spectraSy,y,(v) [13] of the total noise measured at the contact is obtained by subtractin_g from the total meas_ured
equilibrium (7 -V = 0) and at the lowest temperature current noiseStow ([J) the two experimental sources of noise
(T = 20 mK) for several contacts in the normal state. TheSamp andSs. For these datag, = 40.8 k@ and/ = 2.4 nA.

spectra were measured over B0O points in a frequency W."?:is well as the two background contributions which are

dov_v from 36.0 to 3560 Hz, and averaggd 1000 times "subtracted from the raw data according to (1). Within the
typically 4.m|n. In this low-frequency window, the mea- experimental accuracy, wind that shot noise is indeed
surement lines behave as one-polefRi€rs, and the cross white. The average valuss;) is the mean value of a
spectrumSy, v, (») adopts the form Gaussiarfit of the spectrum histogram.
R2 The measured voltage dependencg %} is shown in
= T”Cz Fig. 3a for a typical contact in the normal state, at three
+ QavRC) different temperatures, together with the predictions of the
R
X [s, + Sp + 2(1 + R—L>5Amp] (1)
I

0.003

0.002

0.001

(zH/Lvd) S

2 0
Frequency (

Sv,v,(v)
theory of noise for quantum coherent structures [14,15],

eV
S/ (VT {r;}) = 2eV cotf(m>Gozr,~(l - 7))

+ 4kpTGo D 77, )

Here Ry = RgRp/(Rp + Rp), where Rp(V) =
aV /a1 (V) is the dynamic resistance of the contact, which
is measured simultaneously with the noise using a lock-in
technique. C is the total capacitance mtrodu_ced by theusing the independently measured mesoscopic pin code
setup across the contact, aRd is the total resistance of ). The effective noise temperature isfided asT* =
each measurement line. Besides the noise of interest, i-%’1/4kBG. AtV = 0, the noise temperature is equalfo
the intrinsic current noise of the contagf, two SOUrces por,y s> k,T, the noise is dominated by the nonequilib-
of background current noise contribute to the signalijym part, i.e., shot noise, and becomes lineaVin At

the preampfiers current noiseSamp(¥) and the white 7 _ o the predicted effective noise temperature reduces
thermal current nois&; of the bias resistor, both of which

were measured independentl§yam,(») presents a linear v 5 2

frequency dependence almost identical for the two lines. = £ (1 — ’—T’> (3)
The solid lines in Fig. 2a correspond to (1) fér= 0, 2k 2T

in which case the contact contributes just its equilib-which is lower than the Poisson limit/ /2kg by the Fano
rium or Johnson-Nyquist white current noi§g(0,7) =  factor F{r;})) =1 — >, 77/ > 7. The noise measured

4kgT/Rp. All measured equilibrium spectra are in at the lowest temperature for four contacts having differ-
agreement with what we expect from the independenént mesoscopic pin codes is shown in Fig. 3b, together
characterization of our measurement setup. Thereforayith the theoretical predictions of (2). For all contacts
in what follows we use (1) to extract from the measuredthe noise measured in the normal state is sub-Poissonian
Sy,v,(v) the shot noise spectral densi§;(V,T), for by a Fano factor, in agreement with tfe} determined

all contacts in both the normal and the superconductingn the superconducting state. This reduction of the noise,
states. We show in Fig. 2b a typical result of this analysiswhich reflects the absence fifictuations in the occupation
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FIG. 3. (a) Symbols: measured average current noise power ev/A

density (S;) and noise temperatur&* as a function of re-

duced voltage, for a contact in the normal state at three dif-

ferent temperatures (from bottom to top: 20, 428, 765 mK).FIG. 4. Symbols: measured average current noise power den-

The solid lines are the predictions of (2), for the mesoscopic pirsity versus voltage, for a typical contact both in the normal

code{0.21,0.20,0.20} as measured independently from tHe  state (triangles) and in the superconducting state (circles). Volt-

in the superconducting state. (b) Symbols: measured effecage is normalized to the measured superconductingAgap=

tive noise temperaturg* versus reduced voltage for four dif- 185 uV. The solid lines are theoretical predictions, using (2)

ferent contacts in the normal state At= 20 mK. The solid for the normal state, and using MAR noise theory for the super-

lines are predictions of (2) for the corresponding mesoscopic piigonducting state. The gray areas represent the fuzziness on the

codes (from top to bottom{0.21, 0.20, 0.20}, {0.40,0.27,0.03}, predicted curves due to uncertainties in the determination of the

{0.68,0.25,0.22}, {0.996,0.26}). The dashed line is the Poisson mesoscopic pin code. Inset: superconducting gtate reduced

limit. units. The solid line is &t to measurements (circles) using [11]
and provides the mesoscopic pin cd@et0,0.27,0.03} and its

) ) uncertainty used in the main panel.
numbers in the reservoirs, has already been observed in

guantum point contacts tailored in 2DEG [16]. In those
systems the noise originates essentially from a single chaiperconducting state. This is visualized in Fig. 5, where the
nel, all the others being perfectly closed or perfectly openmeasured and the calculated effective chayge S;/21
On the contrary, in atomic contacts, one can have a largef the “shot$ is shown as a function of inverse voltage,
palette of mesoscopic pin codes, and our results constitufer four contacts spanning a large variety of mesoscopic
afirst test of the general multichannel formula [17]. pin codes. As can be seeq/e does not necessarily cor-

Having checked in the normal state the consistencyespond to an integer, and for a given voltage it strongly
between the measured shot noise reduction factor and tliepends on the transmission of the different channels. This
mesoscopic pin code determined from th&s in the su- is due to the interfering contributions of many MAR pro-
perconducting state, we then measured the noise in theesses of different orders. Only for very smalk, i.e.,
superconducting state. We compare in Fig. 4, for onén the tunnel regime, one expects the shots to correspond
typical contact, the measured and the predicted(V), to an integer number of electrons [7,8]. Although the sen-
in both the normal and the superconducting states. In thsitivity of this measurement scheme does not allow us to
latter the noise is markedly nonlinear, and for high enoughieach this limit, the emergence of a staircase pattern shows
voltages it is above the one measured in the formerthe successive predominant role of increasing order MAR
Note that these nonlinearities are not an artifact due to thprocesses as the voltage decreases. Note that, for some pa-
voltage dependence of the dynamical resistaRg€V) rameters, one can havyg'e < 1. This illustrates the fact
entering (1), sinceRp(V) is measured with sfitient that, as déned, the shot size not onlyftects the supercon-
accuracy. The only ingredient injected into the calculatediucting correlations, but also the more trivial dependence
curves,S;(V,T,{r;}) = >, s;(V,T, 1), is the mesoscopic of partition noise on transmissions. In other words, the
pin code{r;} extracted from thdV (see inset of Fig. 4). Fano factor is also at play in the superconducting state.
The agreement between experiment and the theory dhdeed, in the limitv — oo, one expectg/e — F{r;}).
MAR shot noise [7,8] is quantitative. The excess noiseAt low voltages, the effective charge diverges (see inset of
observed at high voltage§/ > 2A) in the supercon- Fig. 5 for contacts containing an almost ballistic channel),
ducting state with respect to the normal state arisesas has already been observed in tunnel junctions containing
from the well-known excess current resulting from MAR small defects in the insulating barrier [19] and in diffusive
processes [18]. normal weak links [20].

The highly nonlinear dependence of the noise o We draw the following conclusions from our results.
2A reveals the richness of the electronic transport in the su-irst, shot noise measurements in the normal state are in
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4.3.3 Complementary analysis

4.3.3.1 Normal state

To be quantitative, we present in the following table the Fano factor predicted from
the mesoscopic PIN code using Exp.(5) and the measured one for the atomic-size contacts
presented in Figure 3 of the article. The measured Fano factor is defined as the slope of the
curve (<S )/2e)[ | at large current, its uncertainty being negligible compared to the one of
the calculated factor. The measured factor is in agreement with the predicted one within our

experimental accuracy.

Calculated | Measured
Mesoscopic PIN code
Fano factor | Fano factor

{0.21,0.20,0.20} 0.80+ 0.02 0.79
{0.40,0.27,0.03} 0.66+ 0.02 0.65
{0.68,0.25,0.22} 0.50+ 0.01 0.49

{0.996,0.26} 0.16+ 0.01 0.17

4.3.3.2 Superconducting state

We plot in Figure 6 the same data as in Figure 5 of the article for three of the four
atomic-size contacts, but presented in terms of the current fluctuation spectral (iar)say
a function of the reduced voltage/ A/ The shape of the curves and the intensity of the
fluctuations strongly depend on the mesoscopic code. The “circle contact” that contain one
almost ballistic channel and one poorly transmitting one (  )OlZ6 almost for all

voltages a spectral density much smaller than the two others. Indeed, the spectral density in
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both channels is small: for the first oreX  0.9®@cause of its high transmission, and for

the second one because it carries a small part of the current. The “square contact” present also
one channel with high transmission£  0)9But in addition three not so well transmitting

ones. Together, they contribute with a slightly larger weight to the conductance and thus carry
almost the same amount of current which leads to a total spectral density even larger than the
“diamond contact” that contains no ballistic channel. However, both the circle and square
contacts display a strong increase at low voltages, the signature of their highly transmitting

channel. The predictions of the MAR theory account well for this richness.

0.020

0.015

0.010

(S) (PA*Hz)

0.005

eV/A

Figure 6: Dots: Measured current fluctuation spectral density as a function of reduced voltage of
three atomic-size contacts. Mesoscopic PIN codes: {0.98,0.55,0.24,0.22} (squares), {0.68,0.25,0.22}
(diamonds), {0.996,0.26} (circles). Full curves: theoretical predictions of the MAR theory using the
mesoscopic code.

120



ANNnex Determination of the measurement set-up parameters used in
the treatment of the noise spectra

Five parameters enter the procedure used to extract the spectrum of the current

fluctuations§ (v) from the raw spectrung,, (v):

1) The bias resistandg, :

The bias resistance was measured at low temperd®yre1.065+ 5¢< 10° M.

2) The spectral density of the bias resistor current fluctuagjon

The bias resistor is thermally anchored to the 1K pot of the refrigerator. Its temperature is thus
expected to bd, = 18 0.2 keading toS, =4k T,/ R =(7+1) 10* A/Hz

3) The total capacitanc€,,: The total capacitance is equal @, =C,+ C2 C,;.

The capacitances of the different lines were measured at room tempetatare, + 450 10pF
andC; = 165t 10 pF and are not expected to change a lot at low temperature. The on-chip
capacitance across the junction was measured ©,lve + 60. Grpkhe other hand, one

can determineC,, from fits of the frequency dependence of thg, (v)spectra for various
values of the contact resistance and of the bias current (within the model described by Eq.(9)).
We found C, = 1.1& 0.05nF in reasonable agreement with the values measured

independently.

4) The voltage line resistand® :

The voltage lines resistance was measured at low temperRiure:  + 1600 50

5) Spectral density of the current noise source of the NF-preampjgrs

The input current noise of the NF preamplifiers is determined by measuring the output
voltage fluctuations when the preamplifier is loaded with a high resistance. The preamplifier

input stage is characterized by its g&@n input resistancdR , and capacitanc€,, and its

in?

currenti, and voltagev, noise sources (see Figure 7).
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If a voltage sourc&/; with output impedancér; is connected to the preamplifier, the output
voltage is equal to:

R
par Dln +

O 1
Vy, =G, +—— g Vs (12)
R Gl RHE

whereR, =R, R/( R+ R).If Vg is just the Johnson-Nyquist voltage noise sourcBof

the output spectral densify,, is:

O 2
R 0 4k, T
Sw= GRS + O St % (13)
U

Here S, is the spectral density af,. It is measured by short circuiting the input, in which

case S

out

= G $. The measured spectral densiy is almost identical for the two NF
preamplifiers. It contains a white noise component aridifaone. A best fit gives for the

relevant frequency window the function:

\? /Hz.

16
S (v)=(2.20£ 0.0510° ¥ (4.5 cv)_5)1o

Figure 7: Model of the input stage of the NF preamplifier (dashed rectangle). The input resistance is
R, =100 MQ and the input capacitance C, = 30 pF. In order to measure the current noise source, a
high source resistani R is connected.

The current noise spectral density is deduced from (13) in two steps. First the transfer

function R? /1+(RDar an)2 is measured using a broadband chirp source in seriesRyith

par

In a second time, the spectral densiy, of the output voltage/,, is measured by the

ut
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spectrum analyzer SR780 with just the source resistRg@®nnected to the preamplifier.

Two source resistances were usBd= 1.52PakH 2.714 MQ , leading to the same

value of S

amp- 1S @almost identical for both preamplifiers and increases roughly linearly with

frequency. A linear fitting procedure leads to the value:

S

Amp

(v)=(2.28+£ 0.9 10°°+( 9.06 0.06 1B A /Hz

This linear frequency dependence arises from the white voltage noise in the channel of the
input transistors, which is converted into an input current noise source through a capacitive

coupling.
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Dynamical Coulomb blockade is a quantum effect which appears when a quantum

coherent conductor is connected in series with an electromagnetic impedance [1]. It manifests

itself as a reduction of the conductance of the conductor at small bias voltages and low

temperatures. Dynamical Coulomb blockade was first observed and understood within the

framework of single electron tunneling in small capacitance metallic tunnel junctions with a

large number of weakly transmitting channels. When an electron tunnels through the

insulating barrier, an electronic chargeis transferred very suddenly because the barrier is

short (a few nanometers at most), and the electron energy sevebalow the potential

barrier. This current pulse can excite the electromagnetic environment of the junction, which
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takes in that case a fraction of the energy available from the voltage source for tunneling:
electron tunneling is inelastic, and the reduced phase space available for the transmitted
electron results in a reduction of the tunneling rate. This quantum effect is large when the

impedance becomes comparable to the resistance quantum.

Recently, a connection between this blockade phenomenon and shot noise has been
put forward by Levy-Yeyatet al. [2]. Indeed, shot noise in a tunnel junction also results from
the random current pulses due to tunneling of single electrons. How deep this relation is? One
might wonder in particular if Coulomb blockade is also suppressed, like shot noise is, in an
element with perfectly transmitting channels. By treating Coulomb blockade as the response
of the current to the insertion of a small impedance in the tunnel junction circuit, Levy-Yeyati
et al. could solve the case of a single channel tunnel contact with arbitrary transmission. Their
main prediction is that Coulomb blockade is suppressed by precisely the same factor (1 )
as shot noise, which points to an intimate relationship between Coulomb blockade and shot

noise.

In this Chapter we present a first and somewhat preliminary experimental
investigation of Coulomb blockade in the high transmission regime. It is organized as follows:
first, the standard theory of Coulomb blockade is summarized, and the recent predictions for a
single channel with arbitrary transmission are given. Our results on dynamical Coulomb
blockade in aluminum atomic-size contacts are then presented and compared to these

predictions.

5.1 Coulomb blockade of single electron tunneling

Here we briefly overview the calculation of dynamical Coulomb blockade in tunnel

junctions. For detailed calculations, the reader is referred to Ref. [1].
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5.1.1 Hamiltonian of a tunnel junction embedded in an electromagnetic
environment

The generic circuit displaying Coulomb blockade is sketched in Figure 1. A tunnel
junction is placed in series with an electromagnetic impeddgge w arfd)a voltage source

V . The hamiltonian of this system writes:

H=Hy+H,,+H —eVN, 1)

q

e The first term ﬁquescribes the two uncoupled electrodes:

1 + +
qu_Z‘gk CL,k,aCL,k,a+Z£kCR|¢CRk7’ (2)
0 ,0

where ¢/, andc denote respectively the creation and annihilation operator of a

L(R),k,0

guasiparticle labeled by the quantum numBemland spino in the left (L) and right (R)

electrodes, and, their energy.

e The second term ﬁenv is the hamiltonian of the electromagnetic environment of the
tunnel element. This environment is fully described by the impedang¢e , whigh is is the

parallel combination oZ ... @ With the junction capacitandg, (see Figure 1):

series

Zseries(w)
1+ jzseries(w)c JO‘) .

Zen (@) = (3).

This impedance can be decomposed in a series combinatiod@ afcuits, with a density
determined by its real part. The hamiltonian of the environment is then obtained by

associating an harmonic oscillator to each one of these modes [3].

e The tunneling term H, couples the two electrodes:

HAT = Z Tk,qC;quU CLKG e_i¢ * kz -I:q ¢-kﬁ QQW éd" (4)
4.0

k,q.0

Besides the usual operator productg that transfer one quasiparticle from an electrode to
the other one [4], it contains the operateré and€?, in which the phase , which acts on

the environment, is canonically conjugated with the number of transferred electrons:
[#,N;] =i. These operators describe the sudden transfer of a single electron charge through

the environment impedance.

129



e The last term is the electrostatic energy associated to the number of electrons gone

through the voltage source.

Figure 1: (a) Generic circuit displaying Coulomb blockade of tunneling. A tunnel junction characterized
by its resistanceR. and capacitanc€, is connected in series with an impedar&g, . w &ngd a DC

voltage source. (b) The tunnel junction is divided into two functional elements: the capacitance of the
junction and a pure tunnel element symbolized by the double T symbol. The relevant impedance for the
Coulomb blockade of tunneling is the parallel combinatioZgf,, w ( )@nd

5.1.2 Tunneling rates

For a tunnel junction with a large number of channels, the matrix eler”ﬁgn&se all
very small and the tunnel hamiltonian can be treated as a perturbation. The current at a given
voltageV is deduced from the tunneling rates of electrons going from the left to the right
I (V) and from the right to the left (V):

(V) =e(T(V)-T(V)). ()

The tunnel hamiltonian induces transitions between states of the uncoupled hamiltonian.
These states are of the fotk) 0| Y) 0| N; ) , where|k) is a short notation for a quasiparticle
state,|y) is an environment state, anjdll;) a state with a given number of transferred
electrons. The transition rates are evaluated with the Fermi golden rule. By example, for the
transition ratel” (V) only the first part of the tunneling hamiltonian that transfers electrons

from left to right contributes:

Tkyq C;,q,a CL k.o e_i¢ . (6)

K,q.0
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The calculation then follows the standard tunneling rate calculation, but with a contribution

from the environment:

F(V)——J’ " de, de z\ I fe)a-fey) .
ngz'\e“@’|z>‘25(5k+eV+ E-£,- B),

whereE, ;, is the energy ofZ) (|2')), f(¢) =1/(1+€”*) is the Fermi function at temperature
T (B =1/k;T), and the environmental average is over thermal states.
The term f & )(& f £, ))is the probability that in the initial state the quasiparticle

state|k> is occupied in the left electrode, and the quasiparticle {aqétempty in the right

electrode. The average over the channels leads to:

- f(E)
(8)
ngz‘\e"Hz) 5(E+ev+ E- E- E).

The environment part can be expressed [1] as a function of the phase correlation function in

the Heisenberg representation:
I =(E (1)-9 (0)Ep (0)) =Tr(@ () -4 (9 (I ps),

in which the time evolution is due to the environment hamiltonian only. Heyeis the

equilibrium density matrix of the environment. One obtains:

;W5(E+eV+ E- BE- E_)

(9)
= ie p( E-E +eV)t) exp(J(t)).
= 2TTh
The expression of the rate can be recast in the following form:
— _ 1 +00 _+00 a
r(v) eerf-w.r—w f(E)(1- f(E+eV) R E E) dEdE (10)
where P(¢) is the Fourier transform of explt ()]
1 i
P(e)=——[ dtexp[J(t)+—¢t]. 11
()ij_m PLI(D+—€t (11)
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It can be calculated from the impedance using the following expression of the phase
correlation functionJ(t):

o dw RelZ, (@)1 i
J(t)_zj'o ) %Cothéﬁhw)[cos(ut DEi sm@t)@ -

with R :12:25.8 KQ.
e
Physically, P € )is the probability for an electron tunneling through the tunnel barrier

to give an amoung of its energy to the environment.

5.1.3 The distribution function P(g)

As expected for a probability density, the integral over energy ef is(nprmalized

to 1:

f P(e)de = €© =1.

Furthermore P £ )verifies the so-called detailed balance symmetry:
P(-e)=¢€" Re), (13)

which means that the probability to excite the environment is larger than the probability to

draw energy from it by a Boltzmann factor.

In absence of an environment, the phase does not fluctuate, and oh@)Fa8 and
P(e) =d(¢). Tunneling is elastic, and one recovers the usual expression for the tunneling
rate:

1
e€R

r(v)=

f: f(E)(1- f(E+ eV)) dE. (14)

In presence of an electromagnetic environment, the probability to find an occupied state in the
left electrode with energ¥ and an empty state in the right electrode with en&gyeV is
convoluted with the probability? £( Jo give an energ¥ = E-E' to the environment (see

Figure 2).
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The perturbative limit

The calculation ofP £ )s simplified when the real part of the environment impedance
is much smaller than the resistance quantumZRefv < R], so that the exponential of
J(t) can be approximated by+1 t (i Exp.(11). At zero temperature, the inelastic part of

P(¢) then writes:

2Re[Z, (€ /h)]

env

|nel( )_ RK

(15)

This approximation consists in neglecting all multi-photon excitations of the environment.

©

H

E-wL E-w)

T A
|

o ev N\
P

(a) (b)

Figure 2: Schematic representation of a tunnel event without (a) and with (b) an impedance in series at
zero temperature. Electronic states on both side of the junction are filled up to the Fermi energies, which
are shifted byeV. In absence of environment, the tunneling is elastic. An electron in the left electrode
with energy higher thend®) finds an empty state in the right electrode. In presence of an environment,
tunneling is inelastic. An electron has a probab P(¢) to give an amount of its ener(é to the
environment. As in the right electrode, states with energy bejowate not available, the phase space

for electronic transitions is reduced, and so is the tunneling rate.

5.1.4 Conductance

The conductance is derived from the expression for the current:

G(V)——(V)——J' J’ f(E)H-—(E— \/)—%E( E+ eyﬁ PE 'E dEAE  (16)
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Using the detailed balance relation (13) fBre ,(this expression can be considerably
simplified. In particular, at zero temperature, it can be shown that [1]:
1 v
G(V)——j de R), 17)

which corresponds to a relative conductance change:

oG G(V) = Q) _
E(V) G(w) .reww (18)

This expression shows that the conductance reduction is simply due to missing transitions:
inelastic tunnel events with an energy transfer to the environment largerethaare

forbidden because states below the Fermi energy are fully occupied at zero temperature.

The temporal representation

Starting from Z_, ¢ ) the calculation of the conductance using Exp. (11),(12) and

env

(16) necessitates three successive integrals. This number of integrations can be reduced to two

since the conductance change can be directly relatid) tavithout calculatingP(¢g) [5]:

oG _ © dt mt
E(V) = 2-[) 0B 1B Im[exp [0 ®)] co /smﬁ f— ]. (19)

5.1.5 The RC environment

The electromagnetic environment implemented in our experiment is close to a simple
RC circuit with impedance:

R
Z = 20
@) = s (20)

This particular case is simple and amenable to analytic calculations. The relative reduction of
the conductance predicted by Exp. (19) is plotted in Figure 3 for different temperatures, with

values of the resistance and of the capacitance close to the experimental ones.

The dynamical Coulomb blockade manifests itself as a conductance dip at zero

voltage. The dip shows up when the temperature is lessBhaky,, wihere E. =€ /2C is
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the charging energy, and gets deeper and steeper as the temperature is lowered. The relative
conductance change depends on the temperature and capacitance only through the ratio
ks T/ E,. At the base temperaturel0 mKof a dilution fridge, the capacitance has to be much
smaller thane*/2k,10°= 90fF to observe a well developed conductance dip. For the
particular values of the resistance and capacitance taken in Figure 3, at the lowest temperature
and at zero voltage, the conductance is reduced by 38 % . This maximum reduction would be
larger for a larger resistance. The representation on a logarithmic scale (see inset in Figure 3)
reveals three regimes: two saturations at small and large voltages, with an almost logarithmic
behavior at intermediate voltages. At large voltages, the conductance tends asymptotically to
the bare tunnel conductance in absence of any environment. At low voltages, the dip is

smeared on a voltage scale of the ordek df e. /

Figure 3: Normalized conductance of a tunnel junction placed in series with a resR=920Q as a
function of voltage, at different temperatures. Main panel: from top to bottom, T=4 K, 2 K, 1 K, 500 mK,
and 20 mK. Junction capacitance C, =0.40 fF. Inset: From top to bottom, T= 4 K, 500 mK, and

20 mK. Dotted line is the zero temperature perturbative expression (21). Note the log scale on horizontal
axis.
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The zero temperature perturbative limit

The logarithmic behavior appears clearly in the zero temperature perturbative limit.

For the RC environment impedance given by (20), Exp. (18) yields:

oG B _ Jl o an dH
< (RCT=0K V)= G RnL 1+Bmﬁﬁ. (21)

In the limit (#/eVRQ? > 1, the relative conductance change can be written as:

%;(R, C, T=0K,V)=2.3G Rlog(V}+ K (22)

The predictions of this perturbative and zero temperature expression are compared to the
exact result in the inset of Figure 3. For the value of the resistance considered, the

perturbative calculation reproduces quite well the intermediate voltage behavior.

However, the finite temperature perturbative calculation (not shown in Figure 3) does
not account quantitatively for the thermal rounding at small voltages: the zero voltage
conductance reduction is systematically overestimated. The environment impedance is too

large for the perturbative theory to be quantitative at small voltages.
5.2 Coulomb blockade in a single conduction channel contact

In the calculations completed by Yeyatial.[2], a contact with a single conduction
channel in series with an impedance is described by the same type of hamiltonian as in the

tunnel case, but for the tunnel term which now takes the form:

Ay = Y T(C G 89 + G 6, &), 23

with a hopping term which transfers an excitation between two localized states that are not
eigenstates of the uncoupled hamiltonian. In absence of environijerd, related to the
channel transmission probability by the relatior 4(T, /W)* /(1+ (T, / WY’ )?, where 1W is
proportional to the density of states in the electrodes. Wjemaries from O tow, the

channel transmission goes from 0 to 1. Contrary to the tunnel case, the hopping term is not
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small, and the hamiltoniarl:lT cannot be treated as a perturbation. The current is not

evaluated from transition rates, but from the average value of the current operator:
~ e N ~ :
l :%ZTO(CLJCRUem - ¢?7 G él¢)’ (24)
g

which is calculated using the Keldysh formalism [6]. The perturbative series expansion in the
hopping termT, is resummed. The calculation has been worked out in the perturbative limit
in impedance (Ré&l,,, @ X Ry).

The Coulomb blockade dip is simply reduced from its tunnel value by the same factor

(1-1) as shot noise and that at any temperakure
%(T,T) = (1—r)% (Tunnel ) (25)

At zero temperature, the conductance variation then writes (see Exp. (15) and (18)):

5G Re[Z... (E /h)]

E(r,T =0K)= G (-T)f, dE——=

= (26)

The relation between Coulomb blockade and shot noise is thus the same for a contact with an

arbitrary transmission as for a tunnel junction.

The RC environment

In the case of alRC environment, the relative reduction of the channel conductance

is, at zero temperature:

%G(r,R,c,T:0K,v):-cgJ R1-7)In 1+EGVLRC§, (27)

and in the case of several channels with transmission probahilities  :

ss
G

0 n O
T, Ty} T=0K,V)=-G RK{r,...,T\,}p)In L+ , 28
({1 N}RC ) Q F(’{I N}) Bmﬂ ( )
where F({r,...,T\}) =1—Ziri2/ziri is the Fano factor already encountered in the
expression of shot noise (see Chapter 4). The effect of the Fano factor is to reduce the
amplitude of the logarithmic term in the intermediate voltage regime, and is equivalent to a

reduction of the impedance. The relative conductance change is plotted in Figure 4 for
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different Fano factors, and for the same values of the resistance and of the capacitance as in
the previous paragraph. At finite temperature, the expression is modified like in the tunnel

case.

0%

-10%

-20% [

6G/G

-30%

-40%
10°

V (mV)

Figure 4: Relative reduction of the conductance of a quantum coherent conductor with capacitance
C, =0.40fF placed in series with a resistar R=920Q , at zero temperature, for different Fano factors.
From top to botton F =0.1,F = 0.5,F = 1(tunnel regime).

5.3 Measuring dynamical Coulomb blockade in atomic-size
contacts

In order to measure the dynamical Coulomb blockade in atomic-size contacts, we have
implemented a resistive on-chip environment as close as possible to the break-junction. This
environment consists of four thin aluminum leads as discussed in Chapter 2 (section 2.1.4).
The measurements proceed in two steps. First, the current-voltage characteristic of the
atomic-size contact is measured in the superconducting state, when the DC resistance of the
aluminum leads is zero, in order to determine the mesoscopic code. Then, a 200 mT magnetic
field is applied perpendicularly to the plane of the sample to drive the aluminum in the normal
state. The lead resistance is then al89@Q . The differential conductand® of the atomic-

size contacts is measured as a function of the DC bias voltage using lock-in techniques.

We first discuss the on-chip electromagnetic environment provided by the thin
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aluminum leads and the capacitance of the junction.

5.3.1 Characteristics of the on-chip electromagnetic environment

The design of the electrical circuit close to the break junction is constrained by several
factors. On one hand, Coulomb blockade should be large enough to be distinguished from
conductance fluctuations, of the order of one percent [7], even in the high transmission limit.
On the other hand, the lead resistance has to be kept small enough to avoid heating, and to

allow for a comparison with the perturbative calculation.

With these factors in mind, we fabricated aluminum leadgn23ong, 200 nm wide
and 12 nmthick. The resistance of each lead was ab®2®Q, which corresponds to a
resistance per unit length=36.8Qum™. The value of the resistance is small enough to
allow a comparison with the perturbative theory and avoid spurious heating. We calculated
that the Coulomb blockade dip is not significantly modified by electron heating in resistors
with these parameters, essentially because the Coulomb blockade dip is sensitive to the
electronic temperature only in the low voltage region where the current and consequently the

heating are small.

The capacitance per unit length of each lead to the underlying ground plane, calculated
from the lead geometry, is=5.10° fFum™ (Note that, after partial etching of the polyimide
insulating layer, the leads are lying onto the polyimide surface). The anchoring pads that
sustain the metallic bridge (see Chapter 2) angni2ong, 3um wide and 160 nm thick. We
estimate their mutual capacitance to be about 0.10fF. The capacitance between the two
electrodes forming the atomic-size contact is difficult to evaluate because the geometry of the
contact is not known. However, it is expected to be smaller than that of the pads. The total

contact capacitance should thus be about the same for all contacts with the same design.

5.3.2 Environment impedance

The environment impedancg,, (w) consists of the impedance of the thin resistive
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aluminum lead<Z, in parallel with the contact capacitanCg,,..:

(o) a0 oL Z)
e 1+ jzlead (w’r C ’L 7Z£oad) Cconta&) .

(29)

The aluminum leads can be modeled bR@ transmission line terminated by an impedance

Z,aq- The impedance of this transmission lidg,,(w,r,c,L,Z,,,) depends on its resistance

load *
r and capacitance& per unit length, on its lengtlhh, and on the load that closes the
transmission line. In our measurement set-up, the load impedance is provided by the large
capacitor formed by the connecting padg,,, = 150 pkRese large capacitors ensure that

the environment impedance is well defined by the on-chip electrical circuit, and not by the

remaining part of the measuring lines.

The impedancé,,, (w, r,c,L) of the transmission lines writes [1]:

B r e2ik(o),r,c)L _/\(Ol),r,C,Z,)
Z|ead (w,r,C,L)_” jOLD e2ik(ou,r,c)L +)\(C() rc ZZ)’ (30)

where
k(ew,r,c) = (- jrew)"”

is the wave vector, and
)\(w,r,c,Zé):( r /jcw—Zg)/(,/r /jcw+Z€)

is the reflection coefficient. The frequency dependendéec[zenv(w)] is shown in Figure 5.

Although the precise frequency dependence differs from that of a singleRible
circuit, the departure is small as far as Coulomb blockade is concerned. In the following, we

thus make the approximation:

R

Re[Z,,, )]= m )

(31)

where the effective capacitan€e takes into account the capacitance of the aluminum leads

and of the junction capacitance.
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Figure 5: (Full line) Real part (Z,, (w) calculated from (29) witlr =36.8Qum™, ¢=5107 fFum™,
L=25um, andZ4 =1/ jC 4 with C_,, =150 pF, and C, =0.10 fF as a function of the frequency
logarithm. The —3dB point is at 300 GHz. (Dotted line) Real part of the impedance calculated from (31)
(RC model) with R=920Q and C =0.45fF. This simplified model describes reasonably well the
overall shape of the real part of the impedance.

pads

5.4 Experimental results

We first discuss the determination of the mesoscopic code in presence of the

superconducting aluminum leads.

5.4.1 Mesoscopic code determination

The current-voltage characteristic in the superconducting state (see Figure 6) presents
two evident unusual features that make the code determination less accurate than in the case
in which there is no environment. First, a current rounded peak shows up at a voltage around
170V, which corresponds teV = 1/8. This voltage decreases with the magnetic field like
the gap energy. The origin of this current peak is not known, but it might involve a resonance

in the circuit involving the inductance of the aluminum leads.
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Figure 6: Measured current-voltage characteristic of a single atom aluminum contact embedded in the
environment described in 5.3.1(circles) and best fit by the standard MAR theory (full line) with the
mesoscopic PIN code {0.60,0.35,0.31}. The measured current-voltage characteristic presents a strong
current peak arourV =1.3A /e, which is not accounted for. The dotted line is the best fit obtained when

the correct conductance at large voltages is imposed. Clearly, this leads to an overestimated excess
current.

Second, some current at large voltagds>( A & s “missing”. This point is
particularly clear in the tunnel regime, as shown in Figure 7. In the contact regime, this makes
impossible to fit correctly both the conductance and the excess current at large voltage (see
Figure 6). We attribute these features to the residual Coulomb blockade resulting from the

impedance of the superconducting thin aluminum leads at finite frequency.

0.8

0.6

I(nA)

0.2

0.0

Figure 7: Circles: Current-voltage characteristic in the tunnel regiG=0.0136G,). Full line:
Theoretical current-voltage characteristic of one channel with transmission probt =0.0136. For
voltages larger tha 2/, the measured current is substantially smaller than expected.
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5.4.1.1 Impedance of the superconducting aluminum leads at finite frequency

At low frequency v< 2 h, the aluminum films behave like pure inductors.
However, at frequencies abové\ zh,/Cooper pairs can be broken into two quasiparticles,
and the aluminum leads become dissipative. The admitta(r(&e) per unit length of a
diffusive superconducting wire has been calculated within the framework of the BCS theory

[8]. At zero temperature, the real and imaginary parts are given by:

Y. (@) :%%H%ﬁak(w))—ﬂ K( k(w))H for hews 2A.,

ﬁl th ETl th

where k(w) :\(ZA—hw)/(ZA+hw)\, E and K are complete elliptic integrals, and where
K'(w) = (1- k(w)*)"?. The frequency dependence of these functions is shown in Figure 8, in

units of the normal state admittance.
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Figure 8: Real and imaginary part of the admittance of a superconducting lead as a function of the reduced
frequency. The gap frequency A/h =49 GHz for aluminum. The real part tends asymptotically to the
normal state admittan(1/R.
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In the superconducting state, the environment impedance of the contact is thus:

s _ 1
2l Y %, (@) jw )

5.4.1.2 Coulomb blockade of the tunnel superconducting current-voltage characteristic

The calculation of Coulomb blockade in normal tunnel junctions, whose key lines
were presented in Sec. 5.1, can be almost directly transposed to the case of quasiparticle
tunneling in the superconducting state. At zero temperature, the current-voltage characteristic
in presence of an electromagnetic environmientV i6 just the convolution of the current-
voltage characteristic without any environmdn¥ (with the functionP E )associated to

the environment impedanc&’,, (w)[9,1]:
lnV) = [ dE P(eV- B I( B & (33)

The functionP € ) presents two parts: a delta function at zero energy corresponding
to elastic transitions, and an inelastic part for energies larger thaf & weight of the zero

energy peak is in this case:

0+~ Re[zS 0
Wel :expD—Z-[ M%D-
0 Jo R W
For our particular environment parameters, the elastic contribution is reduced to about 80% of
its bare value. The inelastic contribution ltg, V (is)non zero only for voltages larger than
4A /e as the inelastic part 0P E( € and the bare current-voltage characteridtid @re

non zero only for voltages larger thaA 2. Up to 4 f, I, ) is simply given by:

lenv(v) :Wel I(V) (V<4A/©

As can be seen in Figure 9, this model fgrV €xplains the observed reduction of
the current quite well. We have also extended this Coulomb blockade model to the first MAR
process in the weak transmission regime, and reached a satisfactory agreement between

experiment and theory, using the same parameters.
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Figure 9: Circles: measured current-voltage characteristic in the tunnel nG = 0.0136G, (same data
as in Figure 7). Full line: characteristics calculated using Exp. (33) with the perturbative v P(¢) of
associated to the environment impede Z> (w) . The capacitance Z> (w) is taken equal t0.43 pF.

env env

5.4.1.3 Conclusion

The residual Coulomb blockade resulting from the high frequency impedance of the
superconducting aluminum leads is thus well understood in the tunnel regime. However, the
way in which Coulomb blockade modifies MAR processes is not known in general. At
intermediate transmissior05< 1 < 0.6 these modifications are appreciable, and excellent
fits with the standard theory are not possible, as shown in Figure 6. For higher transmissions
however, satisfactory fits become again possible, as shown in Figure 10. The unexplained
current peak around 148 progressively washes out, and the fits better account for the slope
at voltages larger thanA2 In the ballistic limit, we think that the code determination
becomes precise enough to allow possible a comparison between Coulomb blockade

measurements in the normal state and the predictions of Exp. (28).

Note that Coulomb blockade of MAR processes, presented here as a drawback, is a
very interesting phenomenon by itself. Indeed, one could expect for MAR processes of order
n, which correspond to the transferrpélectron charges, a blockadfetimes stronger than for

single charge tunneling in the weak transmission limit. The connection between Coulomb

145



blockade and shot noise could be tested here more deeply than for contacts in the normal
state. To our knowledge, this subject has not yet been investigated, neither theoretically nor

experimentally.

el/(G )

Figure 10: Superconducting current-voltage characteristics of four atomic-size contacts together with the
best theoretical fits of the standard MAR theory. Mesoscopic PIN codes: {0.993,0.06,0.05} (up-triangles),
{0.85,0.07} (circles), {0.70, 0.05} (squares), {0.52,0.14} (diamonds).

5.4.2 Coulomb blockade in the normal state: the tunnel regime

The conductance of a tunnel contact in the normal state is shown in Figure 11 at
different temperatures, together with the predictions of the full Coulomb blockade theory
(Exp. (19)) for anRC environment (the capacitance was used as the only free parameter). As
can be seen, reproducible conductance fluctuations are superposed onto the Coulomb

blockade dip. These fluctuations result from quantum interference effects that depend on the

! Notice that the last three contacts are somewhat uncommon, in that they only have two conduction channels
whereas the smallest aluminum contacts usually have three. In fact, all these contacts correspond to almost the
same atomic configuration and were all obtained on the same conductance plateau while stretching the contact.
One channel is weakly transmitting and the second one has a much higher transmission probability. The highest
transmission is adjusted by stretching elastically this particular configuration, the lowest one remaining almost
unchanged.
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detailed arrangement of the atoms in the vicinity of the contact [7]: transmitted electronic

waves interfere with the part of themselves that is back-scattered towards the contact by
different impurities in the electrode. Since the phase accumulated in these random paths
depends on the electron energy, the interference term depends on the bias voltage resulting in

a modulation of the conductance.

Beside these fluctuations, the theoretical curves describe quite well the conductance
dip. In particular, the thermal rounding of the dip is quantitatively reproduced for the three
highest temperatures. At the lowest temperature of 20 mK, the observed rounding corresponds
in fact to a temperature of 40 mK (see inset). We attribute this excess temperature to electron
heating by spurious noise. Note that the capacitance Vakie OmatfFeomes out from

these fits, is in close agreement with the estimated value given in section 5.3.2.

0.045 T T T T T T

0.040

0.030

Figure 11: Main panel : Symbols: Differential conductance in unitGyfof a tunnel contact at four
different temperatures as a function of bias voltage; from top to bottom: T=1.39 K, 615 mK, 318 mK, and
20 mK. The asymptotic conductance at large voltage 0.045G, corresponding to a resistance of
290 k. Full lines: theoretical curves calculated using Exp. (19) witl RCi environment R=920Q

and C =0.40 fF). Inset: Zoom around zero voltage for the lowest temperature T=20 mK. Dotted line is the
prediction for T= 40 mK.
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5.4.3 Coulomb blockade in the normal state: the ballistic regime

5.4.3.1 Coulomb blockade vanishes in the high transmission limit

We have measured the conductance of a series of contacts in the normal state whose
codes had been determined previously. The relative conductance change of three of them,
ranging from the tunnel regime to the almost ballistic regime, is shown in Figure 12. The
main observation is a strong reduction of the Coulomb blockade dip when the transmission
increases. At intermediate transmissing 0.6% Coulomb dip is already significantly
reduced compared to the tunnel case. For the contact containing an almost ballistic channel
with 7 =0.992 the dip has almost completely disappeared, the remaining small dip arising

from the second weakly transmitting chanrme:( .11
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Figure 12: Relative conductance reduction of three atomic-size contacts at 20 mK. Mesoscopic PIN codes
are {0.993,0.06,0.05} (up-triangles, same as in Figure 10), {0.63,0.06} (stars), and {0.045} (down-
triangles, tunnel contact presented in section 5.4.2).
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5.4.3.2 Comparison with the perturbative theory for arbitrary transmission

Our experimental results for five contacts are compared to the zero temperature
prediction of Exp. (28) in Figure 13. The corresponding current-voltage characteristics in the

superconducting state, used to determine the codes, can be seen in Figure 10.

The theoretical curves correspond to the predictions of Exp. (28) with the capacitance
used to fit the data in the tunnel regime (section 5.4.2) and the Fano factor calculated from the
mesoscopic codes. We restrict ourselves to the zero temperature predictions because, as
already mentioned in section 5.1.5, the environment impedance is too high for the
perturbative theory to account well for the thermal rounding at small voltages. The predicted
conductance reduction in the logarithmic region is in relative good agreement with the
experimental data for all Fano factors, but in all cases too large. We attribute this systematic
deviation to the deficiency of the perturbative theory. Indeed, a better agreement is reached in

the tunnel regime if one uses the full non-perturbative theory (dotted line in Figure 13).
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Figure 13: Relative conductance reduction for five different contacts at 20 mK. Down-triangles: tunnel
contact; other symbols, same contacts as in Figure 10: {0.993,0.06,0.05} (up-triangles), {0.85,0.07}
(circles), {0.70, 0.05} (squares), {0.52,0.14} (diamonds). Full lines represent Exp. (28 R=920Q,

C, =0.40 pF, and the Fano factor calculated from the measured PIN codes. Dotted line: non-perturbative
prediction of Exp. (19) at zero temperature for the : RCenvironment.
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As discussed previously (section 5.4.1.3), it is presently difficult to evaluate the systematic
error arising from the determination of the Fano factor. We think however that the good
agreement we have observed is not fortuitous because the determination of large
transmissions, which predominantly contribute to the Fano factor, is only weakly affected by

Coulomb blockade.

5.4.3.3 Comparison with the extension of the perturbative result to the non
perturbative case
The theoretical calculation by Levy Yeyati al. reveals that, in the low environment
impedance limit, the relative conductance reduction for a single conduction channel with
transmission probability is simply given by the relative conductance reduction in the tunnel

limit times the factor (31 (Exp. (25)):
oG oG
—(1,T)=(1-7)— (Tunnel T).
G( )=( )G (Tunnel )

Despite the difficulties we encountered in the interpretation of our measurements, it seems
reasonable to conclude that they agree with this simple relationship. Does this relationship
remain valid in the non-perturbative case in which the real part of the environment impedance

is not much smaller than the resistance quan®yrf

As illustrated in the previous paragraph concerning the tunnel regime, the environment
impedance in our experiment is too high for the perturbative theory to account well for the
conductance at the lowest voltages. The exact theory is necessary to explain the thermal
rounding. Expecting the same for larger transmissions, we may get a first insight into the
validity of Exp. (25) in the non-perturbative limit by comparing its predictions with our

experimental results.

This comparison is made in Figure 14 and Figure 15 for Coulomb blockade
measurements on two atomic-size contacts with measured mesoscopic codes
{0.993,0.06,0.05} (“0.993 contact”) and {0.70,0.05} (“0.70 contact”) at four different

temperatures.
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More precisely, the full theoretical curves for a contact characterized by the mesoscopic code

{r,...,T} are calculated from the expression:

G({r,...T,}, RC T V= CE‘,(ZTi +,(1-7,) 0 G Grunnel R CT V), (34)

where 6G /G funnel,R ,C,T ,V)is given by Exp. (19) withZ_, ¢ F R /@ jJRGo .)The
resistanceR is the parallel combination & and the resistance of all channels butittie As

viewed from tha-th channel, the other conduction channels are included in the environment.
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Figure 14: Circles: Conductance in unitsG; as a function of the logarithm of the DC voltage bias absolute
value for positive (full circles) and negative voltages (open circles) at four different temperatures: 24 mK (a),
330 mK (b), 665 mK (c), 1.35 K (d). The data are taken on the contact with mesoscopic PIN code
{0.993,0.06,0.05}. Full lines: predictions of Exp. (34) for a mesoscopic PIN code {0.99,0.08 R=920Q ,

C =33 pF, and the measured temperature (but for (a) where the temperature was taken to be 40 mK, instead of
the measured value of 24 mK).
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Figure 15: Circles: Conductance in unitsG, as a function of the logarithm of the DC voltage bias absolute value
for positive (full circles) and negative voltages (open circles) at four different temperatures: 26 mK (a), 295 mK (b),
620 mK (c), 1.16 K (d). The data are taken on the contact with mesoscopic PIN code {0.70,0.05}. Full lines:
predictions of Exp. (34) for a mesoscopic PIN code {0.70,0.0 R=920Q, C=57 pF, and the measured
temperature.

The parameters adjusted so as to get a good agreement with the experimental data are
the transmission of the low-transmitting channels and the total capacafi¢es errors in
the determination of the channel transmission probabilities due to Coulomb blockade in the
superconducting state are expected to be small for high transmissions. The highest
transmission of the two contacts is thus assumed to be well determined from the fit of the
current voltage in the superconducting state. However the lowest transmissions are corrected

in order to get the “right” conductance in the large voltage limit. For example, in Figure 14,
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the measured mesoscopic code was {0.993,0.06,0.05} while the one used to fit the Coulomb
blockade data was {0.99,0.08,0.07}. The capacitance value basically sets the zero voltage

conductance limit.

Using reasonable capacitance values (section 5.3.2) and corrections to the small
transmissions, the theoretical curves fit quite well the experimental data for the 0.993 contact,
but less accurately for the 0.70 contact. Unfortunately, it is not possible to conclude whether
or not Exp. (34) is quantitatively correct, because of conductance fluctuations and of the
uncertainty in the mesoscopic code determination. Troubles due to conductance fluctuations
are well illustrated in both cases. For the 0.993 contact, the conductance at large voltages
differs between the positive and the negative voltage branches by about one percent, leading
to a large uncertainty on the asymptotic conductance at high voltages. For the 0.70 contact the
situation is even worse as conductance fluctuations completely hide the Coulomb blockade
signal in the lower conductance branch corresponding to negative DC bias voltages (open
circles in Figure 15). Concerning the uncertainties on the mesoscopic code, it should be
noticed that for the 0.70 contact, better fits can be obtained by slightly increasing the highest
transmission (mesoscopic code {0.72,0.065} ahd 40 ptowever, for the time being,

such an assumption can not be justified quantitatively.

5.5 Conclusion

We have found that the dynamical Coulomb blockade of the conductance of a channel
progressively disappears when the transmission approaches unity, as recently predicted.
Within the experimental accuracy, the reduction of Coulomb blockade is the same as for shot
noise. However, a quantitative comparison with theoretical predictions is hindered by the

uncertainty in the determination of the codes, and by conductance fluctuations.
This preliminary experiment could thus be improved in two respects:

- The determination of the codes could be made more accurate by using for the thin
connecting wires a metal with a larger gap than the one of the contact. Dissipation in

the superconducting wires would not occur in the frequency range of interest for the
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contact, and the environment would not affect significantly the current-voltage
characteristics in the superconducting state. For this purpose, the sample fabrication
would require two steps, the aluminum contact being deposited onto niobium wires

and pads for example.

- Conductance fluctuations could be averaged out by measuring the same contact at
different magnetic fields. Indeed, the interference pattern responsible for the
conductance fluctuations is significantly dephased by an applied field when the flux

through the interference loops is of the order of the flux quantum.

The experiment described in this chapter is just one simple example in the exploration
of Coulomb blockade in a quantum coherent conductor. Different and richer situations could
be investigated. In particular, A. Levy Yeyati has recently considered the case of a single
channel connecting a normal metal to a superconductor [10], in which case transport occurs

through Andreev reflection. The blockade of MAR processes remains an open problem.
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Appendix A  Scattering approach of conductance
and shot noise

YN R N o =Y of= L (=T ] oo [ oo [= 157...
A.2 Reduction of the scattering problem to independent conduction channels............... 159
A.3 The Landauer formula for the conductancCe................ccccooiiiiiiiiiee e 160
A.4  Calculation of the shot noise spectral density.............cccoevevieiiiieiiiiii e, 161
A.5 Shot noise: wave packet approach..........ccccccvvviiiii e 163..

The scattering approach was introduced by Landauer [1] to describe the electrical
transport through a quantum coherent conductor in terms of scattering of incoming electronic
waves. It applies if the electrons form a fluid of non-interacting quasiparticles, i.e. when the
“independent electron” picture is valid. In this approach, the quantum coherent conductor is
described by a set of conduction channels whose transmissions determine all its transport
properties. In this Appendix, we explain this formalism, and derive the expressions of the
conductance and of the shot noise in terms of the transmission set in the case of a two-probe

circuit.

A.1 The scattering model

The scattering model is formulated as follows: Electrons emitted from reservoirs are
guided through leads to the quantum coherent conductor where they are scattered (see Figure
1). The incoming and outgoing propagating modes of the leads constitute the scattering state

basis. The reservoirs play the double role of perfect source and sink for electrons. Here,
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perfect means that no scattering occurs at the reservoir-lead interface: electrons are emitted

from the reservoir into the leads and absorbed from the leads into the reservoirs with

Reservoir R R Reservoir
i) (i
T, T,
S
H, ( H,
~ — ~
b Coherent
scatterer

Figure 1: Scattering approach to electrical transport through a quantum coherent conductor.

probability one. As a consequence, the statistical properties of the scattering states are

completely determined by the temperature and chemical potential of the reservoirs [2].

We restrict ourselves to the case where the number of propagating Modeshe

same on both sides of the conductor. Let us deip(€) (&, (B) and &, (E) (&, ( E)) with
iD[[l,N]] the creation (annihilation) operators for the electronic modeith energy E
incident upon the conductor respectively from the left and from the right, and
b (E)(&, (E) and 6;1. (E)(BZ,j (E)) the outgoing ones (see Figure 1). The mean value of
the occupation operators is imposed by the temperature and chemical potential of the
reservoirs:

at A . - 1 .

(8,83, (B)=(H, (8, (8) = gemmr = £( Bwitha =12, (1)

The incoming and outgoing operators are linked together by fhe A scattering matrix

S:
c A
%D=Smg 2)
5 .0
where
N N
b=0: Elbzzﬂf %Léﬁmi gand 3=} o
%LN g %Z,N g 2= E. v H
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Because of particle conservation, the scattering matrix is unag= SS=1. It can be

decomposed into four squdyex N blocks:

=B 0

3
1 Spl ©)

The two off-diagonal blockss, and s,, which describe the transmission of the waves
respectively from the right to the left, and from the left to the right, are called the transmission
matrices. The two diagonal oneg and s,, are the reflection matrices. They describe the
reflection of electronic waves arriving respectively from the left and from the right. We
assume here that the scattering matrix is independent of émertpe small energy range

probed by transport around the Fermi level.

A.2 Reduction of the scattering problem to independent
conduction channels

The scattering problem can be decomposed into a skt afdependent conduction
channels by changing the basis of the propagating states in the leads. In this new basis, the
propagating states are arranged in groups of four states, one for each propagation direction in
each lead, which are connected only among themselves through the scattering process. This
channel decomposition is uniquap to permutations[6]. Denoting), (U,) the unitary
matrices describing the basis transformations for the states incoming from the left (right) and
V, (V,) that for the states outgoing to the right (left), the scattering matrix in the new basis

writes:

5= g/; 0 B[ﬁl s,0U, 00 EHR”Z TY? B @)
= . M 0= : ;
H0 V, i s.fH0 UH gt -iRv?A

where R and T are real, diagonal, and positive matrices which are independent of the initial

! Typically in metals the Fermi energy is of the order of the electronvolt: for example 11.7 eV for aluminum and
in the experiments presented in this thesis the maximum measurement voltage is of the order of a meV.

ZIn Ref. [6], it is pointed out that such transformation is possible if the msitgx has no eigenvalue equal to 0
or 1. We disregard here this mathematical difficulty.
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basis. They are indeed related to the transmission and reflection matrices, respggtarely

S, by the relations:
S = _ileUZUI' 2= \411/2 Uz ' ©))
which lead to:
qu%l: UlRUI’ §2 %2: UZTUZ (6)
The unitary transformatiot), (U,) thus diagonalizes,s, (s,S,).- The coefficients ofR
and T, which represent the reflection and transmission probabilities of the independent
conduction channels, are thus the eigenvalues gfand s',5, and consequently intrinsic to

the scatterer. This set of eigenvalues forms the mesoscopic PIN code of the quantum coherent

conductor.

Since the conduction channels are independent, the multichannel expression of any
transport property thus simply writes as a sum over the contributions of the different channels.
We now consider the case of the conductance and of the shot noise, treating first the case of a
single conduction channel with arbitrary transmission probabitity The notations
a,,4a,, 5; andfgr witha =1,2now represent simple operators, agds,, S,, and s, complex

numbers, related to the transmissiorby the relationgs,|” =|s,|" =1-| 5" =1-| s)*=7.
A.3 The Landauer formula for the conductance

The current operatbrcan be expressed in terms of the creation and annihilation

operators in the leads. Its Heisenberg representation is given by [3]:

10 :E [[dEdEE (BaB)-B( g B) €. (7)

% In the derivation of this expression, it is assumed that the variation of the group velocity with energy can be
neglected.
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Using Exp. (2), the operatont%*(E) and ﬁ( E) can be expressed in terms of the incoming

waves operators, yielding:
A e A+ ~ e
It)=— dEdE SRR 8
O=}. 3 JJIEEA a(Ba(B ®

where A; =93,,0;, S, S;- The current flowing through the quantum coherent conductor is

the average value of the current operator:
A e A+ N P
0)=2 5 [joede a, (3(87a( ) £ ;
(i0)=1, ¥ [jdedea, (3838 ©)

From (1), it follows that<é;(E)éﬁ(E)>:5aﬁ f(Bo( E- B). The average current results

from the imbalance of the populations of propagating states with opposite directions:
A e a é
I(t))=—[dE f =——[dE - =—1V 10
(TO) =4 JE 3 A (D=5 - [AEC(B- K B)={ (10)

Then, taking into account the spin degeneracy, one obtains the famous Landauer formula for
the conductancé&s: G =Gy, where G, =2€" / h= 77us =1/12927 Q™" is the conductance
guantum. For a quantum coherent conductor characterized by the mesoscopic code

{r,,...1,}, the Landauer formula writes:

G:GoZTi- (11)

A.4 Calculation of the shot noise spectral density

We present now the main lines of the calculation of the spectral density of the current
fluctuations at low frequency. Denotingf(t) :IA(t)—<IA(t)> the operator associated to the

current fluctuations around the mean va<tﬁ€t)> , the spectral density is defined as [4]:

211 ( + W' )S(w) = <Ai(w)Ai(w') + Al (@)AT (a))> , (12)

WhereAf(w) is the Fourier transform cﬂf(t) :

Al (w) = f: Al e dt. (13)
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Exp. (8) of the current operator yields:

Af(w):eIdE ; As HE (B a( Brhw)~("a( B Bhw)H (14)

and
(af (w)Al“(w')>:e2HdEdE Z A A A B Bhw) X B A Biw))
a,B,y,0=1,2
~(&(E) 3 (E+hw))( F ( E)3( E+hw))).

(15)

The quantum and statistical average value of the four operator product in Exp.(15) is equal to
[3]:

(& ()3 (E+na) §(B) B( E+nw))—("3( B p( Bhw))("A Fd Bhaw))

16
= 3,50, 0(E - E ~7)3(E+hw~ E) {(BlL- §( E+hw)], (16)

which leads to:

<A|“ (a))AIA(w')> :%26(w+w') [dE A T, (B)1- f,(E+hw)]. (17)

a,p=1,2

This general expression takes a simple form at zero frequency. Using the definition (12), and
taking into account the spin degeneracy, the spectral density of current fluctuations at zero

frequency, denoted, , is:
_ 4¢? ~
S="J9ES A 180~ fCE (18)

This can be expressed as a function of the transmission probability

S =2G H[ dEf(BA- {(B)+ f(B(- f(B+r@-1) d& (& X BfH. (19)
The two integrals involving Fermi functions are respectively equal kgl 2and to
(eVcoth[eV/2k T]- 2 k T). The final result is:

S =2Gr (l—T)chothgeva% 4k TGr? . (20)
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In the multichannel case, the spectral density for a given mesoscopi{rgpdarN} Is thus

equal to:
_ A _ Oev O A
S =2G eV.ZTi -t )coth%g 4k T(@Zq : (21)

At low voltage or high temperature, i.e. wheW/2k T< 1, Exp. (21) reduces to the
Johnson-Nyquist spectral densig :4I%TC§,ZTi . In the opposite limiteV/2k, T>1, the
1=1
spectral density depends linearly on the average current. In this regime, the shot noise is

reduced from its poissonian value by the so-called Fano factor
F{Ty. Ty} == 07 3 T <1
SV, Tr1)= 26{ I(t)) F{r,,...7y}) (eV2 K B>1). (22)

A.5 Shot noise: wave packet approach

In the previous section, we derived the spectral density of shot noise in a quantum
coherent conductor within the framework of the scattering theory using second quantification
[5]. In this formalism, the Pauli exclusion principle is taken into account through the
commutation relations of creation and annihilation operators. Martin and Landauer [6] have
proposed another more transparent way to take into account the Pauli principle, the wave-

packet approach to the scattering problem.

The scattering problem is treated using a well chosen scattering state basis for the 1D
electronic transport. Electrons are visualized as traveling through the leads under the form of
orthonormal wave-packets. The authors emphasize that within the energy range

[E -AE, E+A E] , the equally time-shifted wave-packets defined as:

2
- _ [E+AE iD 1 ﬁﬂ K(E) x-iE(t+m/h
l‘)U (X! t) - E-AE dE AE % dE’ E é !

where x is the coordinate of the 1D transpd{E) the wave vectorAt = 727 AE the time

(23)

shift andn an integer, provide a complete orthonormal basis [7] for the scattering problem.
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The occupations of these orthonormal states is restricted as usual: they can be occupied at

most by a pair of opposite spin electrons.

Let us consider the single channel case. Wave-packets incoming on the scatterer are
either transmitted or reflected, and the occupation of the outgoing states fluctuates randomly.
If gdenotes the random variable counting the number of electrons transferred during any
period At (g can be equal to -1, 0 or 1), the contribution of the wave-packets in the energy

interval [E~AE/2, E+AE/ 2] to the spectral densit}S is equal to [6]:
As =2GAE(( ¢)-( 9°)( B. (24)

This contribution depends only on the fluctuationsggfthat are determined by the average
value and by the fluctuations of the wave-packet occupations, and by the scattering process

itself.

Incoming noiseless Transmitted noisy
wave-packet stream stream

DOARAAAA - AACAR
RIS

Reflected noisy
stream

Figure 2: Schematic representation of the noiseless steady stream of orthonormal wave-packets emitted by
charge reservoirs at zero temperature, partitioned into two noisy transmitted and reflected streams by the
scatterer. Note that, in reality, the orthonormal state wave-functions strongly overlap.

At zero temperature, because of Pauli principle, all wave-packets in the left and right
leads with energy lower than the chemical potential (denoted respectiveand p,) are
occupied with probability one. Assuming that —u, =eV> , the current through the
channel is made up of electrons within the energy raiptge eV,/,lL] crossing the channel
from the left to the right. For a perfect transmission , gE 1 with probability one within
this energy range and zero elsewhere. The number of transferred elegtrdoss not

fluctuate and consequently the spectral density is zero. The incoming wave-packets form a
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noiseless perfectly correlated stream which is not disturbed by the scatterer. For an arbitrary
transmission however, the wave-packet stream is randomly partitioned between a transmitted
and a reflected stream (see Figure 2). Denotird—g the random variable counting the
number of reflected electrons during any pulse pefibd the fluctuations ofg within the

energy rangéy, —eV, y, | are given by [6]:
(9%)=(9)" =(9-n)~(9)"=(g~( 99 ~(9". (25)
Because wave-packets are either transmitted or reflected, or@grl)aw, and thus:
(g°)-(9)" =(9)-(9" =1t-1), (26)

leading to a non vanishing spectral density:

S =2G eVt (1-7)= 2ell-7). (27)

At small transmissions < 1, ({@-=) d4nd S = 2el. One recovers the poissonian shot noise,

since electrons are seldomly transmitted, like electrons emitted in vacuum diodes.

At finite temperature, the occupation numbers in the leads fluctuate, which contributes

to fluctuations ofg . At a given energ)e, the variance ofjis then given by [6]:
(%)~(9) =1((B+ L(B-21(B £(B)-( (B~ LB,  (28)

where f, € ) andf; E )are respectively the Fermi function in the left and in the right lead.

The spectral density at a given voltagand temperatur@ is thus given by:
eV U
V, T,1)=2eVG (1-1)cot 4K TG? , 29
S( ) & (1-1) WKBTEW KTG (29)

in agreement with the prediction of the previous approach. The multichannel case can also be

treated along the same lines.
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Appendix B Mesoscopic superconductivity
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In this appendix, we sketch the calculation of the current-phase relationship and of the
current-voltage characteristic of a shoguantum coherent conductor connecting two
superconducting electrodes. Historically, the first theoretical approach to these problems was
formulated in terms of the tunneling hamiltonian. Treating this hamiltonian to first order in
perturbation theory, Josephson derived in 1962 the famous sinusoidal current-phase
relationship of a tunnel junction connecting two BCS electrodes. The voltage biased case was
also addressed to first order, but for a long time, the higher processes turned out to diverge.
Only in the middle on the nineties, the divergences were corrected by carrying the

perturbative treatment up to infinite order [1].

A second approach was introduced in 1982 by Blonder, Tinkham, and Klapwijk [2,3]
to explain the subharmonic gap structure and excess current observed in the current-voltage
characteristics of superconducting weak Iltnkoughly speaking, it generalizes the Landauer

scattering formalism to the superconducting state. The central concept is the Andreev

! Short means that the length of the coherent scatterer is much smaller than the superconducting coherence
length é,and thus can be considered as zero.

% See references in [2].
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reflection whereby an electron incident on a superconducting electrode is partially or
completely reflected as a hole at the same energy [4]. This approach leads to a simple
physical picture of transport through Josephson junctions and thus we adopt it in the

following.

To formally separate the Andreev scattering mechanism from the scattering by the
coherent conductor, normal leads connecting the superconducting reservoirs to the coherent
scatterer are usually introduced (see Figure 1). It should be stressed that this is just an artifice
convenient for the calculations. For atomic contacts, the length of this region is actually zero.
Andreev reflections occur at the two normal lead-superconducting reservoir (NS) interfaces.
As Andreev reflection does not mix up conduction channels [5], the problem can be treated in
terms of the independent conduction channels defined in Appendix A, and we restrict

ourselves to the one channel case.

The derivation is organized as follows: first, we introduce a representation of the
quasiparticles in the superconducting state, which we think clarifies the usual semiconductor
representation [6]. Then, the Andreev reflection probability amplitude at an NS interface is
calculated and subsequently used as the basic ingredient to calculate the current-phase and

current-voltage characteristics for SNS structures.

S

Superconductor Coherent Superconductor
p Normal lead scatterer Normal lead p

~—

Figure 1. Modelization of a quantum coherent conductor connecting two superconducting electrodes.

B.1 The quasiparticles of a BCS superconductor

The transport through a conduction channel is one-dimensional and thus we restrict

ourselves to a 1D problem along tke  adist us denote, , ,, andc, respectively the

1) 1)
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creation and annihilation operators of the independent quasiparticles of the electrode in the
normal state with spin up (down), adgd the quasiparticle energy with respect to chemical
potential . In the non-diffusive regime we are concerned with, the quasiparticles wave-
functions are well described by the eigenstates of a free electron hamiltonian:

h? 02
om oR

Hy = ( 1),

wherem is an effective mass. The labelcorresponds in this case to the wave vector of the
free wave eigenstates of, denotedy, , and called “electronic states” in the following.

The hamiltonian describing the superconducting state with homogeneous pairing
potential A = —V<c_k’1 G > V >0 being the attractive electron-electron interaction term, can

be written within the mean field approximation [6]:

HAS = ZEK(CI:TCK,T + Cl:,x Ckx) -A q;,w dk,L _A* Qk,i ch

where + and represent respectively the up and down spin states. This single particle
Hamiltonian is not of the usual form corresponding to all the operators products being of the
type ¢, G, . However, this structure can be recovered by writing the hamiltonian in terms of the
operatorsh, =c',, for the spin down states ang =¢_, for spin up ones. In this new
formulation, the spin labels are not necessary any longer as non ambiguously the operators
care related to spin up while operators concern spin down. Before presenting this rewriting

of I:|S, we discuss the implication of this change in point of view in the normal case.
B.1.1 “Hole description” of the spin down normal quasiparticles

The hamiltonian in the normal state is:

HAN = ZEK(CI:T Ck,r + CI:,L Ck,i )

Using the anti-commutation relation for the conjugated fermionic operdipendb,:

bbb +k b =1, I—A|N in terms of the operatoig  ahdis equal to:

Hy =ka(czck—b:m+zék
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The states associated to the operatofs bandubsequently called “hole states” and
denotedL,UEYN, have an energy-¢,: Contrary to the corresponding electronic states, their
energy is larger than the Fermi energykifis smaller than the Fermi wave vector and

smaller otherwise (see Figure 2).

This leads to a new vacuum state, obtained by taking the occupation number of all
electron and hole states equal to zero. Note that this corresponds in the electron representation
to taking all electronic spin down states occupied, the spin up states remaining unoccupied
(see Figure 3). Any creation operatgr then removes an electron from this fully occupied
band and the associated wave function is thus that of a hole in the semiconductor sense, which

justify our appellation. The hole statqyﬁN verify the eigenvalue equation:

HNw:,N = _Ekwt,N
and carry a positive chargee. Note however that the ground state, corresponding to all
electronic and hole states being occupied up to the Fermi level, is the same in the two
representations. Indeed, having all hole states with energy smaller Bhanccupied

correspond in the electronic representation to all states above the Fermi level being

unoccupied.
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£l &l £l

Figure 2. Schematic of the change of representation from electron to hole for the spin down states. To an
electronic state characterized by the wave vektawith energyé, corresponds an hole state with the same
wave vector but with opposite energy, (the zero of energy is taken at the Fermi energy).

CRINCRY) (&)  (h) et ()
\ E \ E E .4E E E
: —fk,..
S S o S S
S e a1
i N | :
fk fk ék'" gk f]‘”

Figure 3: In the vacuum state of the initial formulation, the spin up and down electronic states are
unoccupied (left). In the new representation, the vacuum corresponds to all the electron states and hole
states being unoccupied (middle) which corresponds to unoccupied spin up electronic states and fully
occupied spin down electronic states (right) (the hatches symbolize occupied states).

171



E
 (h)

Figure 4: The coupling of electron and hole states corresponding to the same wavek sdxtbiwith
opposite energy, respectiveé, and -, results in two quasiparticles states with ener E, sand —-E,
larger in absolute value tha|5k| and charge strictly smaller in absolute value te@x-axis).

Qle ¥ E E = Qle

Figure 5: Labeling of the solutions of the Bogoliubov-de Gennes equation resulting from the coupling of
electron and hole states corresponding to the same wave k {céar: same as in Figure 4), k' (blue)
with k andk’ being symmetric with respect to the Fermi wave vector scé, =-¢,. . (a) Wave vector

labeling. (b) Energy labeling.
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B.1.2 Quasiparticles in the superconducting state

In the electron-hole representation the superconducting hamiltonian®writes

:ZEk(CJrka_bLbl)_A dkbk_A* qck (1)

In this representation, the effective electron-electron interaction responsible for
superconductivity corresponds to the electron and hole states of the same wavek vector
being coupled through the pairing poten#ial This hamiltonian can be diagonalized using an
unitary Bogoliubov transformation [6,7]:

Ue, = u:(ym VW - %ykl =U, G — Vil
= _V*kykl UV o Vo = VUGt ukq

(2)

where y,, and y,, are new fermionic operators and the coefficienfs and v, verify
2 2
|u|” +[v| =1.
In terms of these new operators, the hamiltonian is given by:
Hs = Z E(ViW e YV TNV oY e
with

= sk(| S +8 u s Gy
g =28 UV, —A L +A'V

The diagonalization condition ig, = .0Omposing thatE, > Qand takingu, OR" yields:
£, ET _A

fkﬂ _10 &0 v, _ A
ID E H vl = szl EF ’|vk| A

U =

and E, =+,/&’ +|A|2 . The coupling repulses the electron and hole energy levels opening a
gap |A| in the quasiparticle spectrum. The superconducting quasiparticles are coherent
superpositions of electron and hole normal quasiparticles with probability amplitudes related
to the coefficientsu, and, in accordance with Exp. (2). In the high energy ligit> |A|
one recovers the normal state quasiparticlesv( -» ) (h&)leads tdy,,,Vw) — (C,bB),

while for &, = 0 the quasiparticles are an equally weighted superposition of electron and hole

% The constant terms are ignored.
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normal quasiparticles. The charge they carry varies continuously betveeor |&, |> |A|)
and zero (até, = D The energy spectrum as a function of the quasiparticle charge is

sketched in Figure 4.

The space representation of the quasiparticles states associated to the opgrators
and y,, are two component column vectors denoted respectivglyandy, , that verify the

Bogoliubov-de Gennes equatiéns

H, -AO H, -A0O
H ~ QY =Ey,,and [ ~ o =—El oy (3)
54 -H.G G4 -HE
and that write:
Ou, O 4 v, O,
g, (0= ¢ 0" andy,, (0)=0*0é¢ 4)
TV O (U [

Note that the vector components can be directly written from the expression of the operators
Y @ndy,, given in (2). The wave functiong,, andy,, are the complete set of solutions

of the Bogoliubov-de Gennes equation (3) for energies larger in absolute valtlm| than

There are also solutions for energ|iE{s< |A| which can be expressed in the same way
as in (4) by introducing complex wave vectors. However, as Andreev reflection conserve
energy but strictly speaking not momentum, it is more convenient to express all the solutions
of (4) in terms of their energy.

At a given energyk, there are four solutions corresponding to electron or hole-like

guasiparticles with both propagating directions:

+ O a(E) O +ike (E) X + O B(B) O +ikn( E) X
Yee = %(E)é(qﬁn) EF and Whe= 57( B e+ H€ )

In this expressiong is the phase of the order parame'rAr;|A| €?, and the wave vectors

k.(E) andk, € )satisfy the dispersion relations:
ke(E)=%%m(u+sign(E)\/ E—IAIZ% , (5)

* This matrix equation can be directly derived from the expression (1) of the superconducting hamiltonian.
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and

1 . /12
(8= 2 o sign(e) € -Jaf £ |
with the convention|E? —|A|" = +i|A| - E? if |E|<|a|. For |E|> 4], the coefficientsy E )

and 8 € ) are equal to:

) f% SH g -

[ O

12 . ——
\/ D ,andB CE)_\/{B —VE|AD _ (6)
[l

For |E|<|a|, a(E) and B € ) have the same modulus and are equal to:

a(E) = S|gn(E)\/7D1+|S|gnE )LD : (7)
D

and

zdz

—E
B(E) = 1/ gL usugn(E)—D
D

B.2 Andreev reflection

The Andreev reflection mechanism was first pointed out by Andreev in 1964 [8] in a
paper on heat flow through normal-superconducting interface. Nowadays, it has taken a
central role in the description of transport properties in systems involving one or several
superconducting electrodes. Here, we treat the case of a normal-BCS superconductor interface
whose pairing potential profile is depicted in Figure 6 (the sharp step corresponds to

neglecting proximity effects).
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Pairing potential

A

| A| ei¢

Normal region Superconductor

Figure 6: Pairing potential as a function of position at a normal-superconducting int x = 03.(

An electron incident from the normal electrode is Andreev reflected off the pair
potential discontinuity generating an electron-like wave in the superconducting electrode
propagating in the same direction and an hole wave travelling in opposite direction in the
normal electrode. The Andreev reflection amplitiald: ¢ is pbtained by matching at the

interfacex = Othe wave functions of both electroéles

Ao Mo 0O aE) O

A = .
o HRE BEe e
that leads ta(E, @) = u/A = B(E) '™ Ja(B.

Using (6) and (7), the Andreev reflection amplitude of an electron as a hole is then equal to:
Dl H \(p+TT
Qa(E—&gn(E)\/ E? —|A|2) e®™  for| B>|A|

a(Eq)=H, .
EE(E —isignE \|A]" - E? ) e for| <Al

(8)

®> Only the wave functions are matched here and not their derivative. This is equivalent to not taking into account
the mismatch of the wave vectors in the normal and in the superconducting electrodes. This approximation is

valid as long agA| < u (see [9]).
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The modulus square and the phaseaocE ¢( ar¢ plotted in Figure 7. FdE|<|4|, the
modulus is one which means that the electron is Andreev reflected with probability one and
the phase varies continuously betwegnand @+7m. For |E|>|4|, the modulus falls off
rapidly while the phase remains constant. The probability amplitude for a hole to be reflected

as an electron is the same as in (8), except foretfi@ factor that has to be changed by
g

P+T1/2

|la(E)|*
Phase(a(E))

E/A

A
+1

Figure 7: Andreev reflection probability (top-left) and phase of the probability amplitude (top-right) as a
function of the quasiparticle energy in units|A|. ¢ is the phase of the superconducting gap. Bottom:

Parametric representation of the Andreev reflection probability amplitucg = 0, the parameter being the
energy.

B.3 Andreev bound states: phase biased Josephson junctions

In the superconductor-conduction channel-superconductor junction, two scattering

mechanism are used to describe the electrical transport: The Andreev reflections at both NS
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interfaces whose probability amplitudes are given by (8), and the normal scattering in the

channel described by the matrix

for electrons (see Appendix A) and its conjugated for holes (see Figure 8).

When a phase differencé =¢ -¢@, is applied between the superconductors, the
electronic waves functions (as well as the hole ones) that are reflected at both interfaces
interfere producing resonant states. These so-called Andreev bound states are localized inside

the channel and carry the supercurrent between the two superconductors.
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Figure 8: Schematic representation of the pair potential profile of superconductor-single channel-
superconductor junction. Two parts that are connected through the normal scattering mechanism are
distinguished in the channel.

B.3.1 The ballistic Andreev bound states

Let us first considered the simplest case of a ballistic chanrel), Anlelectron with
energy E smaller in absolute value thga| moving to the right in the normal region is
Andreev reflected with probability one by the right superconductor into a left moving hole,
leaving an extra charge 2e in the superconductor. The hole is in turn reflected back into a
right moving electron, taking a charge 2e from the left superconductor. During this cycle, the
electron wave function acquires a phase shiiarctant [ -E2 ¥ [E| »-5:

arctanf KA|2—E2 Y2 |E| yrgu+m for the reflection at the right electrode and
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arctanf KA|2—E2 Y2 |E| @ —m for the second one (see Exp. (8)), and a charge 2e is
transferred from the left to the right electrode. The same cycle exists starting from a left going

electron that transfer charges in opposite direction. A resonance occurs for energies that

verify:
U] O]

arctarg— = Elz
g | ] =

which leads to:

E=+A| cosElcs =
Ho
There are thus two Andreev bound states whose spectrum cross each dherr atAs

expected, they carry supercurrent in opposite direction, and for that reason we denote them

B_andB_. Their current phase relationship are:

E-Few smB—Hfor B
_,2dE_[O &

1(0)=¢, <=0 :

d Dﬂn D1“orB

H % o HeH -

where¢, =%/ 2e is the reduced flux quantum.

B.3.2 Andreev bound states in a channel with arbitrary transmission
probability T

For a channel with arbitrary transmission, the supercurrent is still carried by bound
states localized in the channel. Now, electrons (holes) have a finite probability to be reflected
into electrons (holes), a mechanism that couples the two ballistic &atasd B_ . On both
side of the scattering region (see Figure 8), the bound state wave function is the sum of
electron and hole wave functions with right and left propagating direction. Keeping the same
notation as in Appendix 1 to distinguish between the waves coming in, or outgoing from the

scatterer, the wave function can be written:
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00 +|kN 00 ~ ik x EN +{kh x ;
+ gl + e+ g9 (region 1
w(x)_m%) *TE)D ?i{]ELlD 15%1% (region 1)

%2 00 rike!x + th)Hé'kN + éIH]_H élkhx+ @B]H ékhx (feglon 2)

where k! (k') corresponds tok, k{ )defined in (5) takingA= 0 The coefficients

corresponding to the electron (hole) wave functions are linked together by the scattering

matrix S:
O 0 hO [
ESED SEBtDand %hw S Balhm 9)
O &0 O B

Furthermore, the electron and hole coefficients are related by the Andreev reflection

probability amplitude:

ga?—a(E,wR)kf

(E—g) ) = (right interface), anc% q=dEn)§ (left interfack)  (10)

dE-p) = ¢

Using Expr. (9) and (10), the following eigenvalue equation is obtained:

B0 20 A(E-q) 0 B(Eq) 0 Og
M hM=
LR 0 aewbd 0 aEert

This matrix equation has a non-zero solution if:

detM -1d)=1+y Ef -y EY (2°+ 2° cosf )} O, (11)
where y(E) = (E- i(|A|2 -E*)"?)/|a|= a E¢) €°. Solving Eq. (11) forE leads to the
energy spectrum of the two Andreev bound states:

E.(5) = +|a|A-Tsir ¢/ 2H

They carry a supercurrent equal to:

erh sin@)

2n \1-1sit @ 12)

In Chapter 3 section 3.1.2, the current-phase relationship of tunnel junctions, diffusive wires

,(5) =+

and a particular atomic size-contact are derived from this expression.

® As the channel is considered dimensionless, the phase accumulated during the travel through the normal part is
zero.
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Figure 9: Andreev spectrum for a ballistic channel (dotted and dash dotted lines) and for a channel with
transmission probability = O0@ull lines). The coupling of the two ballistic bound states through the
normal scattering mecanism in the channel opens a gap at the level crdssing.(

B.4 Multiple Andreev reflections: voltage biased Josephson
junctions

When a voltage bia¥ is applied between the two superconductors, electrons and
holes gain or lose an energy each time they cross the conduction channel. Consequently,
a quasiparticle with energ¥ incident from the left superconductor, which produces an
electron in the normal region with probabiliti{ E) :[1—|a( E,O)|2]“2, generates an infinite
series of Andreev reflections at energies: ne¥ for the left interface, an€E+ (2 4y
for the right one.The wave function in the normal regions is as a result a sum of electron and

hole wave functions with energies shifted g2 which in region 1 can be written [10]:

%[(am,éh +J(BJd,) gike'x 4 B éike“‘x] @E+2nev) v []

O]

L‘U(l)(E' X =0 ik ikNx] = (E+2neV) tin O
O [Ae™+a,B e ] &= O

0 r% 0

and in region 2:
ikN _a N r
%[Cneﬂke X 4 3. Dn elke X] e'(E+(2N+1)EV)t/h

O
O
WEE 9= " e O

é[%mﬁn '+ D, e'] glErnmm d

wherea, = a E+ keV,0)
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These expressions translate the fact that in region 1 (2), right (left) going electrons and holes
result from the Andreev reflection of left (right) going holes and electrons respettiMety
coefficient A, B, ) is the probability amplitude to find a left going hole (electron) in region 1
with energyE + 21eV while C, (D,) is the probability amplitude associated to a right going
electron (hole) with energi +(2n+1)eV in region 2. The coefficients in region 1 are related

to those in region 2 by the scattering matrix. For the electronic waves, the relation is [10]:

[(B,0_ [, A+ 30,0
Tt =SO 0
nd O @b O

and for the hole waves:

OA O .0&,B, O
=S .
HDn—l H %ZH—lcn—l
The coefficients A, B, C, ,an®, are calculated from these four coupled recurrence

equations.

The wave functiongy® andy® should be thought of as the eigenstates of the time

dependent Hamiltonian describing the system. They carry the same current given by:
R GIITRI(S)

where | is the current operator. It has Fourier components at all multiples of the Josephson
frequencyw, = BV #. The total current is obtained by summing up the contribution of all
eigenstates weighted by the Fermi occupation factors. The DC component at zero temperature

writes in terms of the coefficientd, and B, [10]:

V) :2%@ ~oJENB (A A+ (1] af)( 4 - B

The numerical evaluation of this expression leads to the highly non linear current-voltage

characteristics that were presented and described in the introduction (p.5).

" Except for the source terd(E) J,,, .
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