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Atomic Contacts:

a Test-Bed for Mesoscopic Physics

Transport through quantum coherent conductors

Although the behavior of electrons is governed by quantum mechanics, significant

quantum effects appear in the transport properties of an electronic conductor only when one at

least of its characteristic lengths is shorter than the so-called coherence length Lφ  [1]. This

length represents the distance over which an electron at the Fermi level propagates inside the

conductor without loosing its quantum coherence. For example, quantum interference effects

do modify the conductance of diffusive thin films and narrow wires [2], but only weakly. The

most spectacular quantum effects, such as Aharonov-Bohm interferences [3] arising when

electrons can follow two or more distinct paths in going from one point to another, appear

when the whole circuit is smaller than Lφ . In this regime, a two-probe circuit behaves as a

quantum scatterer for the electrons injected by the contact probes, which act as electron reser-

voirs (see Figure 1). This point of view, due to Rolf Landauer [4], is extremely powerful since

all the transport properties of a quantum coherent circuit can be expressed in terms of its

scattering matrix for the electron waves in the case of non interacting electrons. In particular,

the conductance of the circuit is directly related to the transmission matrix [4], which is the

part of the scattering matrix relating amplitudes of incoming waves on one end to outgoing

waves on the other end. This transmission matrix has a set of eigenmodes, called conduction

channels. Each channel contributes independently to the transport properties. As an example,
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each channel contributes 0G τ  to the conductance, where τ , the transmission probability, is

the modulus square of the corresponding eigenvalue and 2
0 2 /G e h=  is the conductance

quantum. The total conductance is then given by the famous Landauer formula:

0 1

N

ii
G G τ

=
= ∑  where N is the number of channels and the 'siτ  are the individual transmission

probabilities.

The spectacular observation of steps in the conductance of 2D electron gas quantum

point contacts [5] as the number of open channels is progressively increased by means of an

external electrostatic gate, has beautifully confirmed the validity of the scattering formalism

for the description of quantum coherent transport. Since that pioneering work, a large effort

has been devoted to the investigation of quantum coherent transport in a wide range of situa-

tions, ranging from ballistic to diffusive conductors, connected to reservoirs in the normal (i.e.

non-superconducting) or in the superconducting state [1,6]. On the theoretical side, the Lan-

dauer-Büttiker scattering formalism has been extended to multiterminal conductors, fluctua-

tions, finite frequency, etc. Other transport properties, such as the shot-noise in the current or

the supercurrent in the case of superconducting reservoirs, have been calculated within this

formalism. Not surprisingly, all considered physical quantities can be expressed in terms of

the transmission probability set 1{ ,..., }Nτ τ , which appears to be the mesoscopic “Personal

Identity Number (PIN) code” of the conductor, regardless of other microscopic details.

Figure 1: Transport experiment viewed as a scattering process. Electrons injected from a charge reservoir

are scattered by the quantum coherent device. In each conduction channel i , an electron wave has a prob-

ability amplitude it  to be transferred and ir  to be reflected. Its transmission probability iτ   is the modulus
square of it .
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On the experimental side, many interesting effects had indeed been observed before

the beginning of this thesis work. However, most of the experiments had not achieved a

quantitative comparison with the theoretical predictions because the mesoscopic codes of the

structures were unknown, but for the already mentioned quantum point contact experiment

[5], and for diffusive conductors with many channels, whose statistical distribution of channel

transmissions is known theoretically [7].

Atomic contacts as quantum coherent conductors

Among the various systems investigated, atomic-size contacts played an important

role. These contacts were first obtained in the group of Jan van Ruitenbeek at Leiden using

the break-junction technique [8]. Since all their characteristic dimensions are of the order of

the Fermi wavelength, atomic contacts are perfect quantum conductors, even at room tem-

perature, and accommodate only a small number of channels. The discovery that their

mesoscopic code could be accurately decoded [9] paved a way to a new generation of quan-

tum transport experiments, in which the measured transport quantities could be compared to

the theoretical predictions without any adjustable parameters.

Figure 2 : Scanning electron microscope picture of an aluminum nanofabricated bridge and schematic

drawing of the mechanically controllable break junction set-up. The pushing rod controls the bending of
the substrate.
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In this thesis, we report three experiments on atomic-size contacts used as a generic

quantum coherent conductor for which this comparison is performed. These experiments con-

cern

• the supercurrent flowing through a quantum coherent conductor placed between two su-

perconducting reservoirs

• the shot-noise associated to the current when a voltage difference is applied between the

reservoirs (normal or superconducting)

• the Coulomb blockade of the conductance, when the quantum coherent conductor is con-

nected in series with an electromagnetic impedance.

Before discussing these experiments and their main results, we describe both the nano-

fabrication technique that has made possible the experiments, and the way to determine the

mesoscopic code of atomic-size contacts.

We produce atomic-size contacts by means of the nanofabricated break-junction tech-

nique developed in the Quantronics group [10]. Using electron beam lithography and reactive

ion etching, a metallic bridge clamped to an elastic substrate is suspended over a few mi-

crometers between two anchors. The bridge presents in its center a constriction with a diame-

ter of approximately 100 nm. In order to obtain an atomic-size contact, the substrate is first

bent till the bridge breaks at the constriction (see Figure 2). The two resulting electrodes are

then slowly brought back into contact. The high mechanical reduction ratio of the bending

bench allows to control the number of atoms forming the contact one by one; in this way, sin-

gle atom contacts can be produced in a controlled fashion. Compared to other techniques,

nanofabricated break junctions present two major advantages essential to the realization of the

experiments presented in this thesis. First, nanofabricated atomic-size contacts are extremely

stable and can be maintained for days. Second, the versatility of this technique allows to em-

bed contacts in an adequately tailored nanocircuit that insures appropriate dissipation and fil-

tering.

Just before I started my thesis work, it had been shown that for one-atom contacts the

number of conduction channels is directly related to the number of valence orbitals of the

central atom [11]. For example gold one-atom contacts contain only one channel, while alu-

minum and lead have three, and niobium five. Moreover, it was shown that for such a small

number of channels it is possible to determine with good accuracy the mesoscopic code [9]
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from the precise measurement of the current-voltage characteristic ( )I V  in the supercon-

ducting state.

In the superconducting state the current results from Multiple Andreev Reflections

(MAR) of all orders (see inset p. 7). The n-th order process involves the transfer of n elec-

trons, and in a given channel its intensity varies as the n-th power of the transmission. Conse-

quently, the ( )I V  depends on all powers of every transmission coefficient in the code and

therefore it carries all the information necessary to reconstruct it. Figure 3(a) shows the nu-

merically calculated current-voltage characteristic ( , )i V τ  resulting from these MAR proc-

esses for a single channel of arbitrary transmission τ  [12,13,14,15]. These elementary ( , )i V τ

curves are highly non-linear below twice the superconducting gap ∆  and present current steps

at voltages 2 /ne∆ , which mark the onset of MAR of different orders. The determination of

the code of any atomic-size contact is achieved by decomposing the measured total ( )I V  into

a series of such elementary characteristics, each of them corresponding to a well defined

transmission probability. The individual transmission probabilities of the channels are ad-

justed so as to get the best fit of the measured current-voltage characteristic (see Figure 3(b)).

We have used this procedure throughout this thesis.

We now briefly present the three experiments we have carried out and their main re-

sults.
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Figure 3: (a) Theoretical current-voltage characteristics (in reduced units) of a single conduction channel between

two superconducting reservoirs, for a transmission probability τ  ranging from 0.1 to 1 by steps of 0.1. The non

linearities correspond to the onset of decreasing order multiple Andreev reflections processes as the voltage in-
creases.

 (b) Mesoscopic PIN code determination of a one-atom aluminum contact. The experimental ( )I V  characteristic

(open dots) is decomposed into the sum of independent single channel characteristics (dashed curves). This par-
ticular contact contains three channels with transmission probabilities1 0.55τ = , 2 0.11τ =  and 3 0.09τ = . These
probabilities were adjusted so as to get the best fit (continuous curve). These procedure gives a determination
accurate to the % level for contacts containing up to five channels.
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Single charge transfer process (from the left to the right super-
conducting electrode)

We have represented the density of states of both electrodes. An elec-
tron crossing the channel from the left to the right can be reflected
back or transmitted. The transmission probability is τ. If transmitted, it
gains an energy eV provided by the voltage source. Starting from the
left electrode with an energy ε < −∆  an electron can find an empty
state in the right electrode only if eV ε≥ ∆ − ≥ 2∆ . Consequently a
gap occurs in the single electron transport for voltages 2eV < ∆ .

Two charge transfer process

For energies 2eV < ∆ , a transmitted electron can not find an empty
state in the right electrode and is Andreev reflected as a hole. The hole
crossing the channel in opposite direction but with opposite charge
gains again an energy eV. The condition for the hole to find an empty
state is no longer 2eV ≥ ∆  but eV ≥ ∆ . During this process, which for
small transmission has a probability 2τ , two electron charges are
transferred from left to right.

Three, four ,… charge transfer process

For voltages eV ≤ ∆  the Andreev reflected hole can not find an
empty state in the left electrode but can be Andreev reflected in turn as
an electron. The threshold energy for this electron to find an empty
state in the right electrode is 2 /3eV ≥ ∆ . Three charges are transferred
in this process which, for small transmission, has a probability 3τ . For
smaller voltages, Multiple Andreev Reflections (MAR) processes that
transfer four or more electron charges carry the current. A process
transferring n electron charges, called n-th order process, involves (n-
1) Andreev reflections and has a probability nτ (for small τ ) and a
threshold voltage 2V en= ∆ .

Multi ple Andreev Reflections (MAR) processes

Andreev reflection at a normal-superconducting interface [20]

In the superconducting state, the coupling of electrons
with opposite spin opens a gap in the quasiparticle density of
states n(E) (dark regions correspond to occupied states) (a).
Consequently, an electron coming from a normal electrode
with an energy smaller than the superconducting gap cannot
enter the superconductor. However, it can be reflected as a
hole, leaving an extra charge 2e in the superconducting con-
densate (b). This process, called Andreev reflection, has
emerged in the last decade as a central concept in our under-
standing of electrical transport at interfaces involving one or
more superconductors an in particular in Josephson junctions.
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Josephson supercurrent through a single atom

In 1962, Josephson predicted that a surprisingly large supercurrent could flow between

two superconducting electrodes coupled by a tunnel barrier [16]. This current, driven by the

superconducting phase difference δ  between the two electrodes, flows at zero bias voltage.

Since this spectacular prediction, the Josephson current has been observed in all kinds of sys-

tems involving two superconducting electrodes connected by a “weak link”[17]. A weak link

can be for example an insulating layer, as originally proposed by Josephson, but also a short

normal diffusive or ballistic metallic wire, or a point contact. A great deal of theoretical activ-

ity has been devoted to relate the maximum supercurrent 0I  that a weak link can sustain to its

normal resistance NR . In the case of tunnel junctions with a large number of very weakly

transmitting channels, Josephson established that, for BCS superconductors, the product 0NR I

only depends on the gap energy and is 0 2NR I eπ= ∆ [16]. For metallic links, Kulik and

Omel’yanchuk, using a Green function approach, predicted that the 0NR I  product is 1.32 and

2 times greater than for a tunnel junction with the same resistance, in the diffusive and ballis-

tic limits respectively [18,19]. A unified theoretical framework, in which Andreev reflection

[20] plays again a central role, has emerged only in the last decade and provided the answer

for an arbitrary structure in terms of its transmission set [21,22].

Figure 4: (a) Josephson coupling through a single ballistic channel between two superconducting electrodes

with phase difference L Rδ φ φ= − . The hatched areas indicate energy intervals containing available states.

(b) Phase dependence of the energy of the two Andreev states. Dashed lines: Andreev spectrum for a ballistic

channel. Full lines: For a channel with transmission τ  a gap 2 1 τ∆ − opens at δ π=  in the Andreev spec-
trum.
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This analysis is based on the concept of Andreev bound states, which we describe

now. In the simplest case of two superconducting electrodes connected through a ballistic

channel ( 1τ = ), an electron with energy E  smaller than ∆  (in absolute value) moving to the

right, is Andreev reflected with probability one by the right superconductor into a left moving

hole at the same energy and a Cooper pair is transferred. This hole is in turn reflected back

into a right moving electron with again the same energy (see Figure 4(a)). During one cycle,

the electron acquires a phase shift, which depends on its energy and on the superconducting

phase difference δ. At a given δ, a resonance occurs at an energy cos( 2)δ−∆  giving rise to a

so-called Andreev bound state localized into the channel. Of course, the same picture applies

with a left moving electron, giving rise to a second Andreev bound state with opposite energy:

cos( 2)δ+∆  (see Figure 4(b)). The two levels cross each other at δ π= . These Andreev

bound states carry well defined opposite currents of Cooper pairs between the electrodes

1
0( ) ( , ) / / sin( / 2)δ ϕ δ τ δ δ−= = ± ∆ =I dE d e .

For a non ballistic channel ( 1τ < ),  these Andreev bound states still exist but they are

coupled through the normal reflection of electrons into electrons and holes into holes. This

coupling mixes the states and opens a gap 2 1 τ∆ −  at the crossing between these two states

around δ π= .  The energy of the states becomes 2 1 2( ) [1 sin ( / 2)]E δ τ δ± = ±∆ − (Figure 4(b)).

Since at a given phase these two Andreev bound states result in currents

1
0( ) ( , ) /I dE dδ ϕ δ τ δ−

± ±=  equal in magnitude but in opposite directions, the net supercurrent

results from the imbalance of their populations.

For an arbitrary quantum coherent conductor characterized by its code { }iτ , the phase-

driven supercurrent is given by 
1

( ,{ },{ }) ( ) ( , )
N

J i i i i ii
I n n n Iδ τ δ τ± − + −=

= −∑  where in ±  are the

occupation numbers of the two Andreev bound states associated with the ith channel. The

maximum supercurrent the conductor can sustain is obtained when in each channel only the

Andreev bound state with the lower energy is populated (zero temperature). Its value is then:

0({ }) max [ ( ,{ }, 0, 1)]i J i i iI I n nδτ δ τ + −= = = .

We have performed an experiment on aluminum atomic contacts in which we compare

the measured maximum supercurrent with the predictions of the mesoscopic Josephson effect

theory described above. Since the contacts have to be connected to external leads in order to

determine their code, measurements could not be performed by imposing the phase differ-

ence, which would require to short-circuit the contact with a superconducting coil. Instead,



10

they have been done by dc-current biasing it, and detecting the maximum possible current at

zero voltage. In such a set-up, the phase difference δ  acquires a dynamical behavior which is

very sensitive to the electrical circuit in which the contact is embedded [23,24]. Since the Jo-

sephson coupling introduced between the two electrodes has a small characteristic energy

0 0JE Iϕ= ( 1 KBk≤  for typical aluminum one-atom contacts), δ  is prone to both quantum and

thermal fluctuations. In order to observe a well-developed supercurrent close to its maximum

possible value, these fluctuations have to be carefully controlled. For this reason, we have

integrated an atomic-size contact in a suitable on-chip dissipative electrical circuit (see Figure

5). This circuit ensures that the phase fluctuations do not wash out the supercurrent.

Assuming that Andreev states are thermally occupied, it is easy to calculate the

maximum supercurrent a contact can sustain as a function of temperature. For atomic contacts

with all transmissions smaller than 0.9, we find a quantitative agreement between predictions

and measurements as can be seen in Figure 6 (a) for one particular contact.

The graph in Figure 6 (b) presents measurements on an atomic contact containing an

almost ballistic channel ( 1τ = ) compared to the predictions of this “equilibrium” theory:

Measured maximum supercurrents are significantly higher than the predictions above 100

mK. We attribute this effect to a population of the upper Andreev bound states through Lan-

Figure 5: Micrograph of an Al microbridge in a dissipative environment. Each IV probe contains an AuCu

resistor of the order of 150Ω  (10 µm long suspended bridge). Left inset: side view of the central bridge.

Right inset: equivalent circuit. The atomic contacts (double triangle symbol) is connected to a current

source through a resistor R . The total capacitance of measurement lines is C , and JC  is the total capaci-
tance between the two sides of the bridge.
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dau-Zener [25] transitions induced by the fast dynamics of the phase difference. As the trans-

mission increases, the gap 2 1 τ∆ − in the Andreev spectrum decreases, making such dy-

namical transitions plausible. Indeed, the predictions assuming a perfect Zener transition at

each crossing are in good agreement with the data. However, if such a reasoning is justified

for a ballistic channel, there is at present no rigorous treatment valid for arbitrary transmis-

sion. Thus, a quantitative understanding of our data in the high transmission range 0.90-0.99

is still lacking.
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Figure 6 : Thermal equilibrium prediction (full lines) and measured (dots) maximum supercurrent for two

one-atom aluminum contacts as a function of temperature. Mesoscopic PIN codes are {0.52,0.26,0.26}

and {0.998,0.09,0.09,0.09} for the top and bottom panel respectively. Dashed line in right panel: predic-
tion assuming 1τ =  for the almost ballistic channel.
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Shot noise in the current at finite voltage

The discreteness of electric charge and the stochastic character of electrical transport

give rise to temporal fluctuations in the electrical current flowing through electronic devices.

This so-called shot noise was predicted and first evidenced by Schottky in vacuum diodes

[26], in which the current results from the random emission of electrons following a poisso-

nian process. At low frequencies, the spectral density IS  of the current fluctuations is thus

constant (white noise) and proportional to the mean current I  and to the size e of the shot

“pellets”: 2IS eI= .

In experiments with mesoscopic conductors the situation is quite different. Due to the

Pauli principle, electrons incoming from a reservoir are completely correlated [27]. All cur-

rent fluctuations are due to the random scattering of this perfectly correlated electron flux by

the conductor. As a result, the noise is suppressed in the limit of a perfect ballistic channel

( 1τ = ). In the opposite limit of a weakly transmitting channel, electron transmission follows a

poissonian process and the Shottky result is recovered. For a channel with arbitrary transmis-

sion τ , the shot noise spectral density is predicted to be 2 (1 )IS eI τ= − , reduced from its

poissonian value by the so-called Fano factor (1 )τ− . For a multichannel conductor charac-

terized by a code 
a b1,{ }i i Nτ ∈ , the generalization is straightforward and one predicts at zero tem-

perature [27,28]:

2

1 1 1

2 (1 ) 2 (1 / ),
N N N

I i i i i
i i i

S e I eIτ τ τ
= = =

= − = −∑ ∑ ∑ (1)

where Ii is the current through the i-th channel and the Fano factor is 2

1 1
(1 / )

N N

ii i i
τ τ

= =
−∑ ∑ .

The predicted noise reduction has already been observed in quantum point contacts

tailored in 2DEG [29,30] where conduction channels open one by one. However, atomic

contacts provide a larger palette of mesoscopic codes on which to test quantitatively the gen-

eral multichannel noise formula (1). For all investigated contacts, the measured shot noise is

sub-poissonian by a factor in agreement with the predicted one (see Figure 7).
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In the tunnel limit, the ratio * / 2IQ S I= , called the effective charge, is simply equal to

the charge e transferred by each elementary process. In the superconducting state, the current

in the sub-gap region involves the transfer of multiple charge quanta. Is it possible to measure

effective charges of 2e, 3e or more? This question motivated our shot noise measurements in

the superconducting state. In the weak transmission limit, the theoretical answer is indeed yes.

At small transmissions τ ��the probability of an n-th order MAR process is proportional to W
n

because n  particles cross the channel during such a process (see the inset on MAR) [31]. As a

consequence, since 1n nτ τ −
� if 1τ � , only one MAR process contributes significantly to

the current at a given voltage and the effective charge is a multiple of the electronic charge

(see Figure 8).

On the contrary, for larger transmissions different order MAR processes contribute to

the current at a given voltage. Furthermore, as in the normal state, a Fano reduction factor is

also at play, all this leading to an effective charge which is not forcely a multiple of e. The

full quantum coherent MAR theory, which is able to compute its exact value, has been devel-

oped recently in the case of a single channel [31,32]. Once again, a quantitative test of this

theory is possible using atomic contacts since conduction channels are independent.
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Figure 7: Symbols: measured low frequency spectral density of aluminum atomic-size contacts versus pois-

sonian spectral density 2eI . Solid lines are prediction of (1) for the corresponding mesoscopic codes. The

dashed line is the poissonian limit.
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Our results demonstrate that in the sub-gap region the carrying transport processes

between two superconducting electrodes do carry large effective charges (see Figure 8). For

not to high transmissions, the measured effective charge clearly exhibits a staircase pattern, as

predicted, and all our measurements are in quantitative agreement with MAR theory.

Dynamical Coulomb blockade

The dynamical Coulomb blockade of single electron tunneling occurs when a small

capacitance tunnel junction is placed in series with an impedance [33]. A tunnel event across

the junction is accompanied by the passage of a charge e through the impedance. This can

excite electromagnetic modes in the impedance and as a result electron tunneling is inelastic.

Because of this loss of energy to the environment, the phase space for allowed electronic tran-

sitions is reduced. As a consequence, at low voltages and temperature, the transfer rate is re-

duced giving rise to a dip at zero voltage in the differential conductance as a function of volt-
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Figure 8: Effective size of the shot-noise “pellets”, in units of e, as a function of the inverse reduced voltage

for a contact in the superconducting state. Dashed line : MAR theory prediction in the tunnel limit. As the

voltage increases, MAR processes of lower order set-in one by one leading to this perfect staircase pattern.

Dots : Data for an aluminum atomic contact with mesoscopic PIN code {0.40,0.27,0.03}. Full line : MAR
theory prediction for this code.
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age (see Figure 9). Coulomb blockade is a quantum effect, which is large when the series im-

pedance is comparable to the resistance quantum 2/h e . Recently, A. Levy-Yeyati et al. pro-

posed a connection between this phenomenon and shot noise in a generic quantum coherent

structure [34]. Indeed, shot noise also results from the random current pulses due to tunneling

of single electrons, and energy has to be dissipated in the impedance, thus retreiving the

situation discussed above.

This reasoning, which can be made rigorous, rises the question of the intensity of

Coulomb blockade in a channel with arbitrary transmission. Would Coulomb blockade be

suppressed, like shot noise, in a ballistic channel? Is the link between Coulomb blockade and

shot noise generic? The theory of Coulomb blockade in this regime, in the case of an imped-

ance small compared to the resistance quantum, predicts a suppression of the conductance dip

by the same factor as for shot noise.

In order to test these new predictions, we have embedded an atomic contact in an on-

chip electromagnetic environment with a similar design as for the Josephson supercurrent

experiment. However, in this case the resistors are made out of aluminum. In the supercon-

ducting state the resistors have thus zero DC resistance, allowing the determination of the

Figure 9 : (a) Dynamical Coulomb blockade occurs in circuits where a tunnel junction is in series with a non

negligible impedance Z(ω).

(b) At a given voltage and zero temperature, electronic states on both side of the junction are filled up to the

Fermi energies which are shifted by eV. When an electron tunnel through the junction, an amount of its

energy E  is transferred to the electromagnetic environment. The phase space allowed for electronic transi-

tions is reduced.

(c) The inelastic tunneling rate is thus also reduced. This results in a dip in the differential conductance at
low voltage.
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code of the contact1. In order to measure the dynamical Coulomb blockade, the sample is then

brought into the normal state by applying a magnetic field of 200 mT perpendicular to the

plane of the electrodes, in which case the resistors have a resistance 1 k
R� , and the differ-

ential conductance is measured as a function of voltage.

Our results, depicted in Figure 10, demonstrate that Coulomb blockade is indeed sup-

pressed when the transmission approaches one. Quantitatively, the measured conductance dip

is in agreement with the predictions within the uncertainty on the channel content determina-

tion mentioned in the footnote.

                                                          
1 Note however that such resistors have an impedance with a non-zero real part above twice the gap frequency
that is expected to slightly modify the shape of the current-voltage characteristic, in a way that is not yet quanti-
tatively known. As a result, the channel decomposition is slightly less accurate than in previous experiments.
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Figure 10: Measured differential conductance curves of two atomic contacts (symbols referred to the left

axe), and comparison with the predictions for the dynamical Coulomb blockade (lines). Right axes, relative

reduction of the conductance. Dashed lines are the predictions for the tunnel case. The wiggles and asym-

metry appearing on the experimental curves are reproducible conductance fluctuations due to interference

effects depending on the detailed arrangement of the atoms in the vicinity of the contact [35]. The left panel

corresponds to the case of a contact with just a single weakly transmitting channel, and the experimental

data are well described by the standard theory of dynamical Coulomb blockade valid for tunnel contacts, as

expected. On the right panel, the contact has two channels, one with τ∼ 0.835 . In this case, the relative

reduction of conductance is much less than in the tunnel case. The full line, which agrees reasonably well

with the data, is the prediction of A. Levy-Yeyati et al. summing the contributions of the two channels of
the contact.
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To conclude, the experiments described in this thesis show that besides being inter-

esting objects by themselves, atomic contacts provide an ideal test-bed for mesoscopic phys-

ics. The accuracy of the mesoscopic PIN code determination and the integrability of these

contacts into adequate mesoscopic environments allow quantitative test of theoretical predic-

tions. Several mesoscopic phenomena other than those addressed in this thesis remain to be

investigated. Some situations are even completely unexplored.

First, Coulomb blockade of Multiple Andreev Reflections remains an open problem

both theoretically and experimentally. Are high-order processes, because of their larger asso-

ciated charge, more strongly suppressed than lower order processes?

Second, it should be possible with these contacts to measure the basic object of the Jo-

sephson effect theory, namely the full current-phase relationship, and this for a wide range of

transmissions. This experiment poses however a formidable technical challenge.

Third, the ac Josephson effect for arbitrary transmissions remains to be explored. Is it

possible to observe the fractional Shapiro steps that have recently be predicted [36]?

Finally, the whole field of high-frequency dynamics remains terra-incognita from the

experimental point of view. The usefulness of the dc ( )I V  characteristics should not hide the

extraordinary richness of the high frequency components of the current and of its fluctuations.

Detailed predictions exist that await to be tested [13,14].
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The first experiments on small metallic point contacts were performed by bringing a

metallic needle into contact with a metallic surface, usually using a differential screw

mechanism to control the relative motion. This so-called spear-anvil technique pioneered by

Yanson [1] in the 70’s, and later developed by Jansen et al. [2] allowed to form stable metallic

contacts with a diameter in the range 10-100 nm, but usually the mechanical control of the

needle was not sufficiently stable to reach smaller sizes. Later on, mechanical set-ups were

developed that did control the position of the tip at the atomic scale allowing the formation of

stable contacts with diameters going all the way down to the atomic size. The Scanning

Tunneling Microscope (STM) invented by Binnig and Rohrer in 1981 is the ultimate

achievement of this technological progress. The STM as well as mechanical break-junctions
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are nowadays mature techniques to realize atomic-size contacts. We briefly present these

techniques in the first part of this chapter.

Although the exact configuration of atomic-size contacts is generally not directly

accessible, their electrical conductance provides some information about the number of atoms

constituting the contact. By monitoring the conductance while withdrawing or driving in the

metallic tip, atomic rearrangements of the contact are evidenced, and the smallest contact,

namely a one-atom contact, can be adjusted. The second part of this chapter deals with the

conductance of atomic-size contacts and the available evidence for one atom contacts.

Finally, as the coherence length of electrons in metals is larger than the atomic scale,

even at room temperature, atomic-size contacts are quantum coherent conductors.

Furthermore, as their transverse size is comparable to the Fermi wavelength, they

accommodate a small number of conduction channels, and the complete mesoscopic code is

amenable to measurement. This determination paved the way to experiments that established

the link between the conduction properties of a single atom and its chemical valence. In the

third part of this chapter, we describe how this determination is performed.1

1.1 Obtaining atomic-size contacts

1.1.1 The Scanning Tunneling Microscope

The first technique to reproducibly achieve atomic-size contacts was the Scanning

Tunneling Microscope (STM) with which even a controlled atomic switch has been operated

[3]. Presently, the widespread technique to produce contacts with a STM works as follows.

The sharp metallic tip of a STM is first pressed against a metallic surface to form through a

plastic deformation a large contact. Subsequently, an elongated contact is formed as the tip is

withdrawn using a piezoelectric actuator. The conductance of the contact is monitored on-

flight providing an indirect information on the size of the contact. Generally speaking, a

                                                          
1 Most of the material presented in this chapter covers work by other people, but it is presented for the sake of
completeness and as a short introduction to the basic techniques.
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conductance of the order of the conductance quantum 2 1
0 2 1 12.9 k
G e h −= �  indicates that

the contact has an atomic size. This fast technique (one can pull out the tip in as short as 1ms,

still slow compared to the atom dynamics), allows to perform statistical measurements of the

properties of these contacts [4]. For this kind of experiments the STMs usually operate at

room temperature in air, but in order to get accurate measurements of the properties of

individual contacts it is better to work at cryogenic temperatures. When associated to an

Atomic Force Microscope (AFM) that measures the force between the tip and the metallic

surface, this technique allows to probe the internal mechanical strength and atomic

rearrangements in atomic-size contacts simultaneously with conductance measurements [5,6].

In other experiments, the structure of the neck connecting the tip to the metallic surface has

been directly observed with a transmission electron microscope, which allows to relate the

atomic configuration to the conductance of the contact [7,8].

1.1.2 The Mechanical Controllable Break Junction technique (MCBJ)

This second technique used to obtain atomic size contacts was developed in 1992 by

the team of J.M. van Ruitenbeek at Leiden University [9] as an extension of the “break

junction technique” pioneered by Moreland and Ekin [10]. It consists essentially in breaking a

thin metallic wire by bending the elastic substrate to which it is anchored. The two resulting

electrodes are then slowly approached by controlling the strain on the substrate until a contact

is recovered. Because this bending set-up is more compact and more rigid than the one of an

usual STM, essentially by giving away the possibility of lateral scan, small contacts are

significantly more stable with this technique. Furthermore, MCBJs are much easier to

implement at low temperature and breaking the wire under cryogenic high vacuum prevents

tip or surface contamination.

1.1.2.1 “Conventional” Mechanical Controllable Break Junctions

The schematic set-up of a MCBJ is depicted in Figure 1. A metallic wire is attached to

an elastic substrate (bending beam) of thickness t between two anchors separated by a

distance u. The metallic wire presents in between the two anchors a notch. The substrate is
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placed on two countersupports a distance L apart, and bent by pushing in its center with a

pushing rod. The strain imposed on the wire by bending the substrate is geometrically

concentrated at the notch. The distance between the two anchors is increased until the metallic

wire breaks at the constriction. The two resulting electrodes are then slowly brought back into

contact. A simple calculation assuming that the regime is elastic shows that a longitudinal

displacement δx of the driving rod results in a change in the inter-electrode distance

D r xδ δ= , where the reduction ratio 26 /r ut L= [11].

In “conventional” MCBJ, the metallic wire, with a typical diameter between 20 and

200 µm, is notched with a knife and glued with two droplets of epoxy to the elastic substrate.

Typical values are 1mmt ≈  and 20mmL ≈  and in practice the distance between the two

epoxy anchors cannot be made much smaller than 0.5mmu ≈ , giving rise to a reduction ratio

of the order of 37.10r −≈ . After breaking the wire and reestablishing back a contact, the

pushing rod is controlled by a piezoelectric actuator to achieve atomic scale control of the

interelectrode distance.

The increased stability of the atomic contacts obtained through this technique allowed

the team lead by Jan van Ruitenbeek to carry out a wide variety of elegant experiments [4].

Figure 1 “Conventional” mechanically controllable break junction set-up. A notched wire is anchored to

an elastic substrate by two droplets of epoxy. It is broken by bending the elastic substrate. For fine
adjustment of the distance between electrodes the pushing rod is driven by a piezoelement.
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1.1.2.2 Nanofabricated Mechanically Controllable Break Junctions

The technique of nanofabricated MCBJ developed in the Quantronics group at Saclay

decreases the reduction ratio even further and thus improves the achievable stability [11].

Using nanofabrication techniques, a metallic film presenting in its center a constriction (see

Figure 2) is deposited on an elastic substrate coated with an insulating polyimide layer (see

Chapter 2 for the fabrication steps). The polyimide layer is then etched so as to suspend a

metallic bridge around the constriction, the large metallic regions remaining anchored to the

substrate. Typically the bridge is suspended over 3 µm and has a 100 nm diameter

constriction. For nanofabricated MCBJ, the distance between the two anchors 3�Pu ≈  is two

orders of magnitude smaller than in conventional MCBJ. The much smaller reduction ratio,

typically 59.10r −≈  results in an improved stability, allowing to form atomic-size contacts

that can be preserved identical for days. This point was essential to the realization of the

experiments presented in this thesis because most of measurements required several hours to

be completed.

Figure 2: Schematic view of a sample fabricated using electron beam lithography and evaporation

techniques. By carving the polyimide layer the bridge is released from the elastic substrate. The large-area
metallic regions (anchor pads) remain fixed to the substrate.
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1.2 Conductance of atomic-size contacts

1.2.1 Conductance steps and plateaus

Figure 3 presents a typical conductance trace obtained while bringing together at

constant velocity the two electrodes of an aluminum nanofabricated MCBJ. Measurements

were performed at 50 mK under a magnetic field of 200 mT to destroy superconductivity in

the aluminum films.

The conductance first increases exponentially (see inset in Figure 3), revealing the

tunnel regime in which there is a vacuum gap between the electrodes. This exponential

dependence of the conductance allows a precise calibration of the mechanical set-up and a

determination of its stability. The measured drift in the interelectrode spacing is of the order

of 0.2 pm/h, to be compared to 30 pm/h for conventional MCBJ [11].

At some point the conductance shows a discontinuity that corresponds to a mechanical

instability when the two electrodes jump into contact. Afterwards, the conductance evolves

through a series of plateaus and sharp steps. The conductance on the first plateau is close to

the conductance quantum 0G  and the height of the steps is also of the order of 0G . A similar

staircase is observed while separating the two electrodes. Although a staircase pattern is

observed every time the experiment is performed, the horizontal extension (of the order a

fraction of nanometer) and the vertical position of the plateaus are not reproducible for

subsequent compression-extension cycles.

To date, these general features have been observed in a large palette of metals [12]:

Au, Ag, Cu, Zn, Na, K, Li, Al, Pb, Nb, Sn, …, and under a great variety of experimental

conditions (temperature, technique to produce atomic size contacts, rate of compression and

extension). The typical conductance on the first plateau, the typical lengths of the plateaus,

and the behavior within the plateaus are characteristic of each material. For example, as can

be seen in Figure 6 and 3, Al has generally plateaus with negative slope whereas Pb and Nb

have mainly positive ones.



27

The succession of plateaus and conductance jumps is directly related to the dynamics

of the atomic configuration of the contact. Combined STM-AFM experiments that measure

the force between the tip and the surface simultaneously with the conductance, have

beautifully evidenced that on a plateau the atomic configuration is only elastically deformed

while a conductance jump results from an abrupt reconfiguration of the atoms at the contact

accompanied by a stress relief (see Figure 4). The experimental set-up is depicted in the inset

of Figure 4. A clean gold sample is mounted at the end of a cantilever beam. The force

between the tip and the gold sample is obtained by measuring the deflection of the cantilever

beam with an AFM working in the contact mode. At a conductance step, the contact switches

from one atomic configuration to another one. In MCBJ experiments in which the contact is

adjusted precisely at a conductance jump, temporal fluctuations between the two atomic

configurations, revealed as two levels fluctuations in the conductance, have been observed

[13,14].

Molecular dynamics simulations [15,16,17] confirm this interpretation of the staircase

pattern. Starting with a perfectly ordered cylindrical metallic wire containing a few thousands
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Figure 3: Conductance as a function of the relative displacement between the two electrodes while

bringing them closer. Inset: Conductance in the tunnel regime on a logarithmic scale.
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atoms, the position of each atom is calculated while the wire is stretched. The atomic structure

evolves through a series of stress accumulation phases, in which the relative positions of

atoms remain almost constant, and abrupt stress relief phases corresponding to an atomic

reconfiguration. During a reconfiguration the lateral dimensions of the contact changes

abruptly resulting in a jump of its conductance. Just before breaking, the last and smallest

contact corresponding to the last conductance plateau is formed by a single atom (or

sometimes a several atom long chain), for which free electron calculations predict a

conductance value of the order of 0G [17].

In experiments, the exact conductance of the last plateau is not reproducible from one

stretching to another but conductance histograms clearly show a peak at a particular value. In

addition, for several metals this peak is very close to 0G . These facts were the first clues that

the smallest contacts are indeed one-atom contacts. Other experiments described below have

well established this point and provided a deeper insight into electrical transport through a

single atom.

Figure 4 (reproduced from [5]): Inset: Schematic representation of the set-up combining an STM and an

AFM. Main panel: Representative simultaneous recording of the measured conductance (a) and force (b)

during the elongation of an atomic-sized constriction at 300 K. Conductance steps occurs simultaneously
with relaxation of the force as a result of atomic rearrangements.
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1.2.2 One-atom contacts

1.2.2.1 Direct observation of one-atom gold contact

In the case of gold, one-atom and chain contacts have indeed been observed directly

with Ultra High Vacuum (UHV) high resolution Transmission Electron Microscopes (TEM)

[7,8]. Contacts were formed at room temperature using an STM placed at the specimen stage

of the UHV TEM. Video images of the atomic structure of the contact have been recorded at

high magnification while withdrawing the tip (see Figure 5). They show that the last contact

before breaking is constituted from a strand of gold atoms whose conductance is close to G0.

This formation of a chain of a few gold atoms was also reported in “standard” STM

experiments and MCBJ. By repeating at a high rate many compression-extension cycles, a

chain containing up to four or five atoms was sometimes detected, as evidenced by an

unusually long last conductance plateau before breaking [18]. The formation of such atomic

chains is not completely understood from the molecular dynamics simulation point of view.

Furthermore, this phenomenon has been observed only in gold samples and the specificity of

this metal compared to others is not well understood.

Figure 5 (reproduced from [7]): Electron microscope images of a contact while withdrawing the tip.  A

gold bridge formed between the gold tip (top) and gold substrate (bottom), thinned from a to e and rupture

at f. Dark lines indicated by arrowheads are rows of gold atoms. The faint fringe outside each bridge and

remaining in f is a ghost due to interference of the imaging electrons. The conductance of the contact is 0 at
f and ~2G0 at e.
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1.2.2.2 Direct link between the conductance of a one-atom contact and its chemical
valence

As already mentioned the typical conductance value for the smallest contact depends

on the material. Conductance histograms, constructed from a large number of conductance

traces like the one in Figure 3, show a peak at a particular value, which for monovalent metals

like gold, silver, cooper and the alkali metals is close to G0 whereas for lead it is centered at

1.8 G0 and for niobium at 2.3 G0 [12]. The position of this peak is related to the chemical

valence of the material.

As described in the following, the number of conduction channels of the last contact

can be determined using the highly non-linear current-voltage characteristics in the

superconducting state. Experiments performed by three groups have shown that this number

of conduction channels is directly related to the number of valence orbital of the metal

involved [19]. Four metals, namely lead, aluminum, niobium and gold, were studied covering

a large palette of valence structures. In the case of gold, the superconductivity was induced

through the proximity effect by a thick aluminum layer in intimate contact with the metallic

gold film everywhere but at the constriction [20]. It was found that for gold only one

conduction channel contributes to the conductance on the lowest conductance plateau.

However, for aluminum and lead, which have p-electrons at the Fermi level, three channels

contribute. Niobium is a transition metal with s- and d-electrons, and five conduction channels

were found to contribute (see Figure 6).

In order to gain a microscopic insight into the link between conduction channels and

the atomic orbital structure, a tight-binding model of a one-atom constriction using an atomic

orbital basis was constructed [21,22]. The model includes small random displacements of the

atoms around their position in a perfect crystal, but neglects the atom dynamics. Remarkably,

despite the fact that the transmission probability of each channel is very sensitive to the exact

positions of the atoms in the vicinity of the contact and that the system is not at equilibrium,

the number of conduction channels was found to be robust against disorder around the central

atom. It is simply determined by its number of valence orbitals. The number of contributing

channels predicted by this microscopic calculation is in agreement with experimental results

[19].
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These theoretical and experimental works firmly established that the smallest possible

contact does consist of a single atom, and that the electrical transport properties of one-atom

contacts are determined by the chemical nature of the involved atom.

We present now the method used to determine the number of channels. It extracts the

complete mesoscopic code of atomic-size contacts from their current-voltage characteristic in

the superconducting state.
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Figure 6: Conductance traces recorded while stretching atomic-size contacts as a function of the displacement

∆x between the two electrodes for four different metals. Measurements on Pb were made using an STM. For

Nb, conventional MCBJ have been employed while for Al and Au nanofabricated ones were used. Each point

in these graphs is obtained by stopping the stretching of the contact and taking the current-voltage characteristic

in the superconducting state. From the characteristic, the number of channels (indicated below and above the
conductance traces) as well as the conductance of the contact are inferred.
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1.3 Full characterization of atomic-size contacts as quantum
coherent conductors

As explained in the Appendix B, in the superconducting state the transport through a

quantum coherent conductor occurs at small voltages through MAR processes leading to

highly non-linear current-voltage characteristics. These non-linearities strongly depend on the

transmission of the channels. Since atomic-size contacts accommodate only a small number of

channels, their current-voltage characteristic contains enough information to extract their

mesoscopic code [23]. We present now the steps leading to the determination of the

mesoscopic code and discuss the accuracy of the method.

1.3.1 Determination of the mesoscopic PIN code

The determination is achieved by breaking up the measured current-voltage

characteristic I(V) into the contribution of independent channels: 
1

( ) ( , , )
N

ii
I V i V τ

=
= ∆∑  where

N is the number of channels, ∆ the superconducting gap of the metallic films and ( , , )i V τ ∆

the current-voltage curve calculated for one channel with transmission probability τ. The

latter were obtained from the numerical code developed by Cuevas, Martin-Rodero and Levy

Yeyati [24]. A least-square fitting procedure is applied with χ2  defined as:

2 2 2
1

1

1
({ ,..., }) ( ) ( ( ) ( , , ))

2 ( )

N

N i
i

h
I V i V dV

e D V
χ τ τ τ

=

= − ∆
∆ ∑∫

where D(V) is the density of data points at V in the measured current-voltage characteristic.

As the characteristics are non-linear and we do not voltage bias the contact, this density is not

at all uniform. One has to take it into account  to ensure that the current-voltage characteristic

is uniformly weighted. As the size of the voltage interval on which the n-th order MAR

process dominates the current is roughly speaking of the order of 2 ne∆ , a uniform density

gives more relative weight in χ2 to the low order MAR processes. Note however that this

imbalance would be worse if the density D(V) were not taken into account. Finally, the

maximum voltage of the measured current-voltage characteristics determines the weight
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attributed to the first order process in the fits. In our fits this voltage is typically of the order

of 4 5 /e− ∆ .

1.3.1.1 Measurement of the superconducting gap of the metallic film

For a given sample, the superconducting gap ∆ of the metallic electrodes is determined

prior to all other measurements. In the tunnel regime, only one conduction channel with 1τ �

contributes to the current [25]. Taking a current-voltage characteristic in the tunnel regime, ∆

is determined by adjusting its value as well as the transmission probability of the conduction

channel in order to obtain the best fit (see Figure 7). All measurements performed during the

course of this thesis were made on aluminum films. For all samples, the superconducting gap

was between 175 and 200 µeV, the accuracy being of the order of 1 µeV. This is slightly

larger than the bulk value, 175 µeV, as frequently observed in thin films. The value of ∆
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Figure 7: Circles: Measured current-voltage characteristic in the tunnel regime. Full line: best fit obtained

by adjusting both the superconducting gap ∆ and the transmission of the conduction channel: 182�H9∆ =
and 0.097τ = . Inset: zoom around the V=2∆/e region. Full line: best fit of main panel. Dashed line: best

fit with only the transmission as a fitting parameter, and the gap fixed at 180�H9∆ = . Dotted line: best fit
with only the transmission as a fitting parameter, and the gap fixed at 184�H9∆ = .
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determined in the tunnel regime is subsequently used to determine the mesoscopic codes of all

contacts obtained on the same sample, and is consequently no longer a fitting parameter.

1.3.1.2 Fitting procedure to determine the mesoscopic PIN code

For a given number n of channels,

2

1

2
1

{ ,..., } [0,1]
( ) ({ ,..., })Min

n
n

nn
τ τ

χ χ τ τ
∈

=

is determined by scanning all possible combinations of transmissions with a C++ program2.

For transmission probabilities ranging from 0.1 to 0.99, the increment step is 0.01. From 0 to

0.1 and 0.99 to 1, the step is 0.001 so as to increase the precision in the tunnel and almost

ballistic regime. This brute force complete scanning is possible in a reasonable time when

considering up to 4 channels. For a larger number of channels, it is too much time consuming

and in that case we use a steepest-descent minimization algorithm performed by a

Mathematica code.

                                                          
2 Executable available upon request.
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channels n is increased as long as the χ2  decreases significantly. For this particular contact, taking into

account four channels does not improve the fit. The contact is thus considered as having three conduction
channels. The best fit with three channels gives the mesoscopic PIN code: τ1=0.22, τ2=0.19, τ3=0.18.
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Of course, χ2(n) is a decreasing function of n. The fitting procedure starts with n=1.

Then n is incremented until χ2(n) stops to decrease significantly. At this point increasing n

corresponds to add channels that contribute in a negligible manner ( 1τ � ) to the current-

voltage characteristic and which can be taken as closed ( 0τ = ). The final n is the number of

conduction channels and the set of transmission probabilities corresponding to the minimum

χ2(n) is the mesoscopic code of the atomic-size contact. This fitting procedure is presented in

Figure 8 in the typical case of a one-atom aluminum contact containing three channels.

In order to get some insight into how the individual transmission coefficients are

deduced, we now demonstrate how they can be “manually” determined. For this purpose, we

discuss the case of an atomic contact containing conduction channels with well-separated

transmission probabilities, like the contact in Figure 9. This is a two-channel contact with one

channel almost perfectly transmitted (1 0.995τ = ) and a weakly transmitted one

( 2 0.26τ = ). Two characteristics of the current-voltage curve determine the highest

transmission. The current below ∆ which is completely dominated by this well-transmitted

channel and the excess current at large voltages (see Figure 9(a)). Fitting the low voltage

region by imposing the highest transmission to be 1 gives too much current while with a

transmission of 0.99 some is missing, as depicted in Figure 9(b). Finally, the transmission of

the less transmitted channel is determined by getting the right total conductance, namely the

correct slope at large voltages.

More generally, for an atomic-size contact with an arbitrary number of channels, the

region of the current-voltage characteristic corresponding to the lowest voltages reveals the

highest transmission probability. The following lower transmission probabilities are

predominantly revealed by considering successive higher-voltage regions. The normal

conductance, which is proportional to the sum of the transmission probabilities

( 0 1

N

i i
G G τ

=
= ∑ ), and the excess current impose two additional constraints on the mesoscopic

code. For a number of channels equal or smaller than three, it is straightforward to determine

“manually” the transmission probabilities.
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1.3.2 Accuracy of the mesoscopic PIN code determination

Three factors, both experimental and theoretical, contribute to the uncertainty in the

determination of the individual transmission coefficients.

The first one is that currents and voltages are measured with a finite accuracy. The

influence of these measurement uncertainties is well illustrated by the contact presented in

Figure 9. Clearly, the current-voltage characteristic is noisy at low voltages (Figure 9 (b)). As
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Figure 9: (a) Circles: measured current-voltage characteristic of a one-atom aluminum contact containing two

conduction channels. Solid line: best two channels fit: 1 0.995τ = , 2 0.26τ = . Dashed lines: contribution of

each channel. Dotted line: linear current voltage characteristic in the normal state, which for large voltages

has the same slope as the characteristic in the superconducting state. The double arrow line indicates the

excess current in the superconducting state. (b) Dots and full line: the same as in (a). Dotted line: best fit with
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this voltage region determines the highest transmission probability, the noise leads to an

uncertainty on its value. This uncertainty relatively decreases as the transmission increases.

The second one is the thermal smoothing of the MAR steps. The theoretical current-

voltage characteristics ( , , )i V τ ∆  are calculated at zero temperature but current-voltage

characteristics are typically measured at 20 mK. The MAR steps are thus smoothed on a

voltage scale of the order of 320.10 2�9Bk e−
� . As this smoothing is not taken into account

by the theoretical curves, the fit can not be perfect.

The last one are the possible deviations in a given sample from perfect BCS behavior,

since the theoretical curves are calculated assuming an ideal BCS spectrum. Note however

that our Aluminum samples are very close to ideal BCS, as observed in the tunnel regime.

Given all these factors the mesoscopic code can not be determined exactly. Within a

given accuracy, we can only give a set of plausible mesoscopic codes. The criteria we use to

distinguish between “possible” and “impossible” codes is the following:

2 2 2 2
1

1
({ ,..., }) ( ) (10 ( ))

2 ( )N

h
I V dV

e D V
χ τ τ −≤ ×

∆ ∫

That is, “possible” mesoscopic codes are the set of transmission probabilities

1{ ,..., }Nτ τ  that fit the experimental current-voltage characteristic with an overall accuracy

better than 1%, a conservative estimate of the actual experimental accuracy.

This inequality defines a volume Ω  in the transmission probability space: the smaller

this volume, the better the mesoscopic code determination. Generally speaking, the volume is

an ellipsoid with its symmetry axis not along the iτ , and a separated uncertainty can not be

assigned to each individual transmission probability. However, for the particular case of

Figure 9 of a contact having just two conduction channels with well-separated transmission

probabilities, the envelope is almost a square and it is possible to ascribe an uncertainty to

each individual transmission coefficient: 3
1 0.995 10τ −= ±  and 2

2 0.26 10τ −= ± .
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The accuracy is better at larger transmission probability because the “distance”

( , 0.01) ( , )i V i Vτ τ+ −  between two current-voltage characteristics with consecutive

transmissions, defined as:

( )1 2
2( ) ( , 0.01) ( , ) ( ( , 0.01, ) ( , , ))

2

h
d i V i V i V i V dV

e
τ τ τ τ τ= + − = + ∆ − ∆

∆ ∫

increases with transmission (see Figure 10). The discrimination between two adjacent

transmissions is consequently much easier at the high transmission end.

1.3.3 Uncertainties propagation

After we determine the mesoscopic code of a particular contact, we use it to predict

all the contact transport properties. Quantities like the maximum supercurrent for the DC

Josephson effect, or the Fano factor for shot noise in the normal state are functions of the

mesoscopic code. For example, the Fano factor for a given set of transmission probabilities

1{ ,..., }Nτ τ  is equal to:
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The uncertainty in the prediction of these quantities from the mesoscopic code is

evaluated by calculating them for all “possible” mesoscopic code. In the case of the Fano

factor, this procedure defines an interval of “possible” Fano factors whose lower and upper

bounds are respectively:

{ }( ) { }( ) { }1 1 1,..., and ,..., for ,...,N N NMin F Max Fτ τ τ τ τ τ ∈Ω

1.4 Conclusion

STM and MCBJ allow to routinely make atomic-size contacts between two metallic

electrodes. Due to their small dimensions, these contacts are quantum coherent conductors

that contain a small number of conduction channels. The great variety of the microscopic

transport mechanisms in the superconducting state permits to extract from the current-voltage

characteristic the mesoscopic code of atomic-size contacts. This determination has already

allowed to relate the number of conduction channels of contacts containing only one atom to

the chemical valence of this atom [19]. Now, we are in the position to use these fully

characterized quantum coherent conductors to test quantitatively the predictions of

mesoscopic physics. We present in the following chapters three different such tests.
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In this chapter, we describe in some details the basic techniques that were

implemented to carry out the three experiments presented in the next chapters. The basic

requirement is to obtain very stable and clean atomic contacts. To fulfill it, we use

nanofabricated break-junctions operated at cryogenic temperatures. Furthermore, for two of

the experiments the break-junction had to be integrated in specially designed on-chip

environments, a goal achievable using the flexibility of electron beam lithography. Finally,

one has to detect small signals arising from fragile microscopic mechanisms that correspond

to very small energies (microelectronvolts). It is thus necessary to properly filter all the

measurement lines to ensure that the devices are really at the low-temperatures provided by

the dilution refrigerator.

2.1 Nanofabricated break junctions

The goal here is to fabricate a metallic bridge suspended over a few micrometers (see

Figure 1). First, a metallic elastic substrate is covered with an insulating polyimide layer
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topped by an electrosensitive bilayer. Then, by exposing the bilayer to the electron beam of a

scanning electron microscope, a mask with designed openings overhanging above the

polyimide layer is obtained after development [1,2,3]. Metal is subsequently evaporated

through this mask, in an electron gun or a Joule evaporator, leading after lift-off to a metallic

structure narrowed in its center and deposited on the polyimide layer. In a final step, the

narrow central region is freed from the polyimide layer by isotropic dry etching while the

large-area metallic regions remain attached to the polyimide, thus giving rise to the suspended

metallic bridge.

We now describe in detail the different steps of the fabrication process.

2.1.1 Wafer preparation

A schematic cross section of the wafer consisting in an elastic metallic substrate

covered with a polyimide insulating layer and a electrosensitive bilayer is shown in Figure 2.

Figure 1 : SEM colorized micrograph of a nanofabricated suspended bridge.
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 Preparation recipe

As a metallic elastic substrate we use 0.3 mm-thick bronze sheets (Cu, Sn 3%,Zn 9%).

A 7cm×7cm square substrate is polished using a manual polisher until the residual roughness

is close to 1 µm. It is then cleaned in successive ultrasonic baths of RBS, water, acetone and

ethanol. Care is taken to maintain the surface of the wafer wet between the polishing and the

cleaning procedure. An adhesion promoter Ultradel A600 layer is first spread on the metallic

sheet. It is spun for 30 s at 4000 rpm and dried for 1 min on a hot plate. A 2-3 µm thick layer

of polyimide PI2610 from Dupond de Nemours is then spun for 1 min at 2000 rpm and baked

for 30 min in an oven at 200 °C to remove the solvent. The polyimide layer is then annealed

for 3 hours at 350°C in a vacuum chamber under a pressure lower than 10-3 Pa.

The electrosensitive bilayer consists of a layer of copolymer meta-acrylate

acid/methyl-meta-acrylate (MAA/MMA) about 500 nm thick covered by a layer of PMMA

about 50 nm thick. The copolymer MAA/MMA is diluted at 10% (by weight) in ethylactate. It

is spun for 60s at 2000 rpm and dried for 2 min at 170°C on a hot plate. The PMMA polymer

is diluted at 3% in anisole, spun 60s at 4000 rpm and baked 15 min at 170°C on a hot plate.

 Comments

The polyimide layer plays three roles. First, it planarizes the substrate surface to a

level compatible with the smallest dimension of the devices (100 nm). Second, it insulates the

metallic thin films from the substrate. Finally, it can be carved to free the bridge. The

annealing step is necessary for the polyimide layer to retain its elastic properties at low

temperatures. The electrosensitive bilayer is the simplest way to realize suspended masks

Figure 2 : Cross section of the wafer before nanofabrication steps.
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using electron beam lithography. The MAA/MMA layer, which has a greater electron

sensitivity, sustains the suspended PMMA mask through which metals are evaporated. The

thin bilayer we use allows to currently fabricate nanostructures with dimensions down to 50

nm.

The coated substrate is finally diced into 20 mm×5 mm chips and each chip is then

processed separately.

2.1.2 Lithography and metal deposition

The sequence of steps leading to the fabrication of the metallic nanostructure on top of

the polyimide layer is schematically represented in Figure 4.

 Electron beam exposure

The electrosensitive bilayer is exposed using a JEOL-840A scanning electron

microscope. The exposure pattern, dose and blanking of the electron beam are driven by the

Proxy-writer system from Raith GmbH. We currently work with a 35 keV electron beam, for

which the standard exposure dose is about -22 pC.�P . The writing of the full mask is done in

Figure 3 : Representative exposure patterns for the 120�P �� �P×  (a) and 6 mm 4.5 mm×  (b) exposure

fields.
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two steps. The first one (120�P �� �P× exposure field)  with a 10 pA  current beam patterns

the fine details, i.e. mainly the geometry of the bridge (see Figure 3(a)). The second step

(6 mm 4.5 mm× exposure field) patterns the leads (12 nA) and pads (30 nA) that connect the

bridge to the measurement circuit (see Figure 3(b)). The electrons penetrate the bilayer and

release their energy in the resin. In irradiated regions, PMMA and MAA are broken into

fragments of smaller molecular weight. As depicted in Figure 4(a), the same beam affects a

broader region in the copolymer layer than in the PMMA. This is due first to the greater

sensitivity of the MAA resin and second to enhanced exposure dose of this bottom layer from

electrons backscattered by the substrate. This undercut can be locally enhanced by an

additional low dose electron beam exposure that affects only the bottom layer (Figure 4(b)).

 Development

The irradiated regions of the bilayer are subsequently completely removed in a

solvent while the non-exposed regions remain unaffected (Figure 4(c)). As a developer we use

methyl-isobutyl-ketone (MIBK) diluted at 25% vol. in propanol-2. Resins are usually

developed for 40s at 19°C and rinsed for 5s in propanol-2. The PMMA mask is then ready for

the metal deposition step.

 Metal deposition

Metals are evaporated through the mask in an electron-gun or in a Joule evaporator.

The sample is positioned on a tiltable sample holder allowing evaporation at different angles.

The metal evaporated at an angle through PMMA openings with not much undercut is

deposited on the copolymer layer walls and not on the polyimide (Figure 4(d)).

A typical aluminum film was deposited at a pressure of 10-4 Pa and at a rate of 4

nm/s. Its resistance at 4 K was about 3 times lower than that at 300 K.

 Lift-off

Once the metallic film is deposited, the PMMA mask and the copolymer ballast are

removed in acetone at 50°C for a few minutes. The metal deposited on top of the bilayer and

on the walls of the bottom copolymer are eliminated (Figure 4 (e)).

This completes the electronic lithography steps.
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Figure 4 : Schematic representation of the nanofabrication steps based on the technique of deposition

through a suspended PMMA mask.
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2.1.3 Dry etching of the polyimide layer

The polyimide layer is then isotropically dried etched so as to suspend the bridge.

The etching can be done either

• in a reactive ion etcher under the following rf plasma conditions: a flow of 50

sccm of O2 and 1 sccm of SF6 at a total pressure of 2.7 Pa and a bias voltage of

20 V, or

• in a downstream etching machine: 30 sccm of O2 at a pressure of 28 Pa and a

power of 100 W.

The vertical etching depth is monitored by means of a laser interferometer. Etching

about 1 µm vertically is sufficient to free from the substrate the metallic features having

lateral dimensions lower than 2�P . A SEM photograph of a resulting suspended bridge is

shown in Figure 1.

2.1.4 Embedding a nanofabricated break-junction in an on-chip
electromagnetic environment

The pattern of electron beam exposure can be designed so as to embed the break

junction in an on-chip electrical circuit using metal evaporation at different angles or two

steps fabrication procedures. This was essential to the realization of the experiments on the

Josephson effect and on dynamical Coulomb blockade. In both cases, the circuit consisted of

four small resistors and four large capacitors (see the “sample part” at the bottom of Figure 9).
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Figure 5 : SEM micrographs at different scales of one of the two samples measured in the experiments on Josephson

supercurrent. (a) AuCu/Al large pads that forms with the metallic substrate large capacitors. (b) Large SEM

micrograph of the central part : The layer superposition resulting from the two different fabrication stages is clearly

visible. (c) Suspended bridge and AuCu resistors.
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2.1.4.1 Samples measured in the Josephson supercurrent experiment

In the experiments on the Josephson supercurrent, the resistors were made out of an

AuCu alloy (see Figure 5(b) et (c)) and the large capacitors were formed between large

AuCu/Al pads and the substrate, the dielectric being the polyimide layer (see Figure 5(a)).

This was obtained in two lithography stages, with an intermediate alignment procedure. First,

the AuCu alloy (weight ratio 3:1) was deposited in a Joule evaporator to form the small

resistors and the large pads with no interconnections, and four alignment marks. After lift-off,

a new bilayer was deposited and another lithography cycle was performed to obtain the Al

bridge, the anchor pads and the interconnections. The bilayer being almost transparent to

electrons, it allows the alignment of the second pattern with respect to the previously

fabricated AuCu structures. Before depositing aluminum, an ion-mill cleaning procedure is

performed to ensure good contact between the two metallic layers. The AuCu/Al top plates of

the capacitors were 2.5 mm 2 mm× rectangles 180 nm thick. The measured capacitance was

of the order of 140 pF . The AuCu resistors were 10�P long, 500 nm  wide and

30 or 50 nmthick leading, respectively, to resistances of 170 20± Ω  and 125 20± Ω .

2.1.4.2 Sample measured in the Coulomb blockade experiment

In the experiment on dynamical Coulomb blockade, the resistors were thin aluminum

leads and the capacitors were implemented by four large aluminum pads.  Only one

lithography stage was necessary in that case. Aluminum was evaporated at three different

angles (0° and ± 40°) through a single mask. First, a 12 nm thick film of aluminum was

evaporated perpendicularly to the substrate. This film is thus deposited on all polyimide

regions facing the openings in the mask. The break junction and pads regions were

subsequently thickened by two 75 nm depositions at ± 40°. The sample is tilted around an

axis parallel to the long and narrow openings in the mask giving rise to the resistors.

Consequently, as explained before (p. 47), these angle evaporations do not add any metal to

them. The thin aluminum leads forming the resistors were 25�P long and 200 nm wide (see

Figure 6) with a resistance of the order of 920 Ω in the normal state. The resistance is

essentially due to surface scattering and thus decreases rapidly when the leads are thickened.
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2.2 Bending mechanism

The sample is placed on a three point bending bench that is thermally anchored to the

mixing chamber of a He3/He4 dilution refrigerator (see Figure 7). The two countersupports are

14 mm apart. A differential screw, with a 100 µm pitch, controls the relative translation

between the pushing rod and the two countersupports. The sample is mounted with the bridge

centered with respect to the pushing rod. The nominal reduction ratio 59.2 10r −×�  translates

one turn of the screw into a 9.2 nm stretching of the suspended bridge1. The differential screw

is driven by a DC electrical motor (controlled by a PC) through a series of three reduction

gear boxes for a typical total reduction ratio of 16260:1 (see Figure 8). The motor speed can

be continuously adjusted between 0.1 and 100 turns per seconds. The different stages are

connected through axles made of thin-walled stainless steel tubes to reduce the thermal loads

on the different parts of the fridge. The first gearbox is directly coupled to the motor and

                                                          
1 Note that as the substrates show some slight plastic deformation after the experiments are completed, the
nominal reduction ratio (calculated assuming a perfectly elastic deformation) is probably smaller than the actual
one.

Figure 6: Sample measured in the experiment on dynamical Coulomb blockade. Both the bridge and the
resistors are made out of aluminum.
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drives a rotating vacuum feedthrough that enters into the vacuum can of the refrigerator. The

second gearbox is thermally anchored at 4K and the third one to the 1K pot. From there, a last

section of tube, 40 cm long, directly drives the differential screw.

The bridge is broken at a typical stretching rate of 50-100 pm/s. Because of friction

in the differential screw, the temperature during this step is not lower than 500 mK. The

relative displacement between the two freshly fabricated electrodes is then controlled using

the same mechanical set-up. The contacts are adjusted changing the interelectrode distance at

speeds ranging from 5 pm/s down to 0.5 pm/s (0.9 rps� for the DC motor). At the lowest

speeds, it is possible to keep the sample temperature below 50 mK.

Figure 7 : Three point bending bench.



54

2.3 Measurements at low temperature

Measurements at low temperature are made in a Oxford He3/He4 dilution

refrigerator. The temperature is adjustable between 1 K  and its base value that with the

mechanical set-up mounted is 17 mK. The elastic substrate is thermalized through contact

with the two countersupports and the pushing rod. The full bending bench is enclosed in a

copper shield thermally anchored to the mixing chamber. The cryostat is equipped with an

8 Tesla superconducting coil surrounding the experimental box.

The large area pads of the sample are connected to a four terminal measurement

circuit by means of four spring contact probes. Silver paint is spread on top of the pads to

avoid piercing them while bending the substrate. The measurement lines are home-made lossy

shielded cables [4] to prevent high-frequency noise from reaching the sample.

Microfabricated distributed RC filters shaped as meander lines [5] are inserted in the lines,

Figure 8 : Schematic representation of the whole mechanical bending set-up from room temperature down to

the coldest part of the dilution fridge.
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just before they enter the copper shield. The lines are carefully thermally anchored at the

different stages of the refrigerator.

The cryostat is equipped with shielded twisted-pair and coaxial lines. The inner

conductors are polyimide coated manganin wires, and the shields are stainless steel

capillaries. The coaxial cables going from 300K to 4K are made out of 0.1 mm diameter wire

(~ 60 Ω/m), and those going from 4K to the mixing chamber out of .05 mm wire. The shields

are int ext0.2mm, 0.7mmΦ = Φ =  capillaries. These cables have a distributed capacitance of

about 100 pF/m. The twisted pairs going from 300K to 4K are made out of 0.1 mm diameter

wire inside a int ext0.4mm, 1.0mmΦ = Φ = shield, and those going from 4K to the mixing

chamber out of .05mm wire inside a int ext0.2mm, 0.7mmΦ = Φ =  shield.

The distributed RC filters have an attenuation in the [40 MHz, 20 Ghz] frequency

window greater than 80 dB, when measured on 50 Ohm lines.
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Figure 9 : Schematic representation of the four point measurement set-up and on-chip electrical circuit in

experiments on Josephson supercurrent and dynamical Coulomb blockade. One bifilar line is used to current
bias the sample while the another one allows to measure the voltage across the contact. To ensure the
electronic thermalization at the lowest temperature of the fridge, 10 k
  resistances are placed in between the

two lossy lines stages. Together with the cable capacitance, they form a RC  filter with a 1 MHz  cut-off
frequency.
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A schematic representation of the measurement set-up used in the experiments on

Josephson supercurrent and dynamical Coulomb blockade is depicted in Figure 9. The set-up

for the shot-noise experiments will be described in Chapter 4. The voltage V across the

contact is measured using two low-noise battery powered differential preamplifiers in series: a

100× -gain NF-LI-75A followed by a Stanford-SR560 of selectable gain. The current I

through the sample is produced by applying a voltage bias BV  to a biasing resistance BR  of

the order of 50 kΩ and measured by a low-noise differential preamplifier Stanford-SR560.

The current-voltage characteristics are recorded on a digital oscilloscope Nicolet Pro44 and

transferred through an IEEE data link to a PC for treatment.
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3.1 The Josephson supercurrent

Josephson predicted in 1962 [1] that a supercurrent can flow between two

superconducting electrodes even when they are weakly coupled. This so-called Josephson

supercurrent results from the coherent transfer of Cooper pairs between the superconducting

electrodes when a superconducting phase difference L Rδ φ φ= −  is applied between them.
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This phase difference δ  is a purely electrodynamic quantity related to the voltage difference

V between the electrodes by the Josephson relation: 0 0, where 2V eϕ δ ϕ= =
<

=  is the reduced

flux quantum.

The Josephson effect was observed one year after its prediction by Anderson and

Rowell [2], and later on in a large variety of weak coupling configurations (see Figure 1).

Two large classes of Josephson elements can be distinguished: the “tunnel type” consisting of

two superconducting electrodes coupled through a thin vacuum or insulating tunnel barrier,

and the “weak link” type when the two electrodes are “directly” electrically connected

through a metallic conducting region. A weak link can consist in a geometrical constriction

like a narrow bridge or a point contact, or of a small non-superconducting lead (see [3] for a

more extensive list).

How much supercurrent flows through a Josephson element for a given phase

difference depends on its electrical and geometrical characteristics, and on external

parameters like temperature or magnetic field. Many theoretical works have been devoted to

the determination of the current-phase relation ( )I δ  for the various types of weak links, and

in particular to the prediction of the maximum supercurrent that they can sustain, which is

called the critical current 0I . In this chapter, we report measurements of the critical current of

superconducting atomic contacts and compare to the theoretical predictions.

3.1.1 Current-phase relationship and critical current of various Josephson
elements

For tunnel junctions with BCS superconducting electrodes, Josephson predicted a

sinusoidal current-phase relationship and determined the critical current at zero temperature:

0 0( ) sin( ) with 
2 N

I I I
eR

πδ δ ∆= = , (1)

where ∆  is the modulus of the order parameter in the bulk superconducting electrodes and

NR  the resistance of the tunnel junction in the normal state. The 0NR I  product is constant for

a given superconducting gap: the critical current is simply proportional to the normal state
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conductance of the junction. The transport properties in the superconducting state are related

to those in the normal state in a simple manner. Ambegaokar and Baratoff have completed

Josephson’s work by determining the temperature dependence of the critical current:

0

( ) ( )
( ) tanh( ).

2 N B

T T
I T

eR k T

π∆ ∆= (2)

The case of weak links is more complex, and various behaviors have been found

depending on the type of weak link. Weak links are classified by comparing their length L  to

the coherence length ξ  and to the elastic mean free path A  of the constitutive material: weak

links with L ξ� ( L ξ≥ ) are called short (long) weak links, and weak links with L � A

( L ≤ A ) are called dirty (clean) weak links. The current-phase relationship and the

temperature dependence of the critical current are nowadays known for all these types of

weak links (see Figure 2).

In 1969, Aslamanov and Larkin treated the case of a short and dirty weak link

( and L L lξ� � )[4]. Their calculation, based on the Ginzburg-Landau equations, is valid

Figure 1: Examples of structures showing a Josephson effect and discussed in this section. (a) Tunnel

junction. (b) Geometrical constriction considered by Kulik and Omel’yanchuk ( ,a Lξ� ) both in the dirty
LA �  and clean LA �  limit. (c): Superconducting adiabatic constriction considered by Beenakker and van

Houten ( min maxS S� ).
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only near the critical temperature of the superconducting electrodes. In this limit,

independently of the material constituting the weak link, they established that the current-

phase relationship is sinusoidal, like for tunnel junctions. In 1975, Kulik and Omelyanchuk

extended the calculation to arbitrary temperatures by means of Usadel equations [5]. At

temperatures much smaller than the critical temperature, they predicted a non-sinusoidal

current-phase relationship:

( ) cos arcth sin .
2 2N

I
eR

π δ δδ ∆     =         
(3)

Compared to the tunnel case, the0NR I  product is at zero temperature increased by a factor

1.32.

In 1977, using the more general formalism of Eilenberger equations [6], the same

authors solved the short and clean limit ( and L L lξ� � )[7]. The current-phase relationship

at low temperature is non-sinusoidal, and, at zero temperature, the phase dependence of the

supercurrent is proportional to sin( 2)δ  with a 0NR I  product twice larger than in the tunnel

case:

[ ]( ) sin ; .
2N

I
eR

π δδ δ π π∆  = ∈ −  
(4)

In the beginning of the 90’s, motivated by the observation in 1988 of conductance

quantization in quantum point contacts tailored in 2D electron gases [8], Beenaker and van

Houten investigated the quantum regime which occurs when the width of the weak link

becomes comparable to the Fermi wavelength. In this regime, the contact accommodates only

a few conduction channels whose number increases with the point contact lateral size. They

determined the current-phase relationship for an adiabatic impurity free superconducting

constriction [9] by solving the Bogoliubov-de Gennes equations using the WBK method

introduced by Bardeen et al. [10].
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The main result is that, like the conductance in the normal state, the critical current of an

adiabatic constriction increases stepwise as a function of its width, and that the current-phase

relationship at zero temperature is given by:

[ ]( ) sin ; ,
2

e
I N

δδ δ π π∆   = ∈ −      =
(5)

where N is the number of open conduction channels. This result is equivalent to the

expression (4) since the contact conductance is directly related to the number of open

channels by the Landauer relation (see Appendix A).

3.1.2 Current-phase relationship of a quantum coherent conductor

In the mesoscopic regime, a unified theoretical picture covering all type of weak links

from the tunnel to the ballistic limit has emerged in the last decade [11]. As explained in
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Figure 2: Current-phase relationships at zero temperature (a) and temperature dependence of the critical

current (b) for different Josephson elements. Full lines: tunnel junction. Dashed lines: short dirty weak link.

Dotted lines: short ballistic weak link.
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Appendix B, Bagwell established that, in the generic case of a one dimensional conduction

channel with arbitrary transmission τ  and arbitrary length, the supercurrent is carried by

Andreev bound states. In the short limit, when L  is much smaller than the superconducting

coherence length, there are only two such states with opposite energy

2( , ) 1 sin ( / 2)E δ τ τ δ± = ±∆ −  that carry current in opposite directions:

1
0 2

sin( )
( , ) ( , ) .

2 1 sin ( / 2)

dE e
I

d

τ δδ τ ϕ δ τ
δ τ δ

− ±
±

∆= = ±
−=

(6)

The supercurrent through the channel depends thus on the population imbalance

between the two Andreev bound states. At thermal equilibrium, the supercurrent at a given

phase difference δ  is given by:

( , ) ( , )

( , ) ( , ) 2

( , ) ( , ) sin( ) ( )
( , ) tanh

2 1 sin ( 2)

B B

B B

E E

k T k T

E E
Bk T k T

e I e I e E
I

k T
e e

δ τ δ τ

δ τ δ τ
δ τ δ τ τ δ δ τδ τ

τ δ

− +

− +

− −

− + +
− −

 + ∆ ,= =  
−  +

=
. (7)

The current-phase relationship of a quantum coherent conductor with a mesoscopic

code 1{ ,..., }Nτ τ  is obtained by summing up the independent contribution of all conduction

channels:

1
1

( ,{ ,..., },{ }) ( ) ( , ),
N

J N i i i i
i

I n n n Iδ τ τ δ τ± − + −
=

= −∑ (8)

where the in ±  are the occupation numbers of the two Andreev bound states associated with

the i-th channel. It is assumed here that all channels share the same phase difference δ

imposed by the superconducting electrodes that act as perfect superconducting phase

reservoirs. At zero temperature and thermal equilibrium, 0in + = and 1in − = and :

2
1

sin( )
( ,{ }) .

2 1 sin ( / 2)

N
i

J i
i i

e
I

τ δδ τ
τ δ=

∆=
−

∑
=

(9)

Note that in the single channel case, the critical current is not simply proportional to τ  and

thus neither to the normal conductance. It is given by:

0( ) (1 1 ).τ τ∆= − −
=

e
I (10)

More generally, the expression (9) implies that transport properties in the superconducting
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state are not simply related to the normal state conductance. One recovers however a direct

link with the normal conductance in the limit cases described before. In the tunnel limit, all

transmission probabilities are small 1iτ � , so that the denominators 21 sin ( / 2)iτ δ−  are

equal to 1 and Exp. (9) becomes:

0
1 1

( ,{ }) sin( ) sin( )
2 2

N N

J i i i
i i

e
I G

e

πδ τ τ δ τ δ
= =

∆ ∆   = =      
∑ ∑

=
. (11)

The Josephson result (1) is then recovered using the Landauer relation 0 1
1

N

N ii
R G τ

=
= ∑ . The

ballistic limit corresponds to set all transmissions to one and Exp. (9) is in that case

equivalent to the result (5) of Beenakker and van Houten. The short and dirty limit follows

from (9) using the distribution function ( )P τ  of coherent diffusive wires derived by

Dorokhov [12] using random matrix theory:

( ) 2 /1
for 4 1and 0 otherwise.

1
LP e

L
τ τ

τ τ
−= ≤ <

−
AA

(12)
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Figure 3: Full line: current-phase relationship of an atomic-size contact with mesoscopic code

{0.98,0.38,0.16}. Dashed lines: Current-phase relationship of each conduction. The maximum of this curve

is the critical current 0I  of the atomic size contact.
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On the experimental side, one thus requires weak links whose channel content is

known in order to test the prediction (9). Since quantum point contacts tailored in 2D-electron

gas beautifully show quantum quantization in the normal state, this type of mesoscopic

structure appears to be an ideal system for that purpose. Superconductivity can indeed be

induced in those semiconductor heterostructures by depositing on top superconducting

metallic pads. However, because of Shottky barriers, it is difficult to realize good interfaces

between the pads and the 2D-electron gas, and the supercurrent through a point contact is then

highly dependent on the interface resistance. This is why the first experiments aiming to test

the predictions of Exp. (9) have been carried out using superconducting atomic-size contacts.

Figure 3 depicts the current-phase relationship predicted by Exp. (9) for a typical

atomic-size contact accommodating three conduction channels. Previously to our work, two

sets of experiments, described below, had been performed on superconducting atomic-size

contacts [13,14,15].

3.1.3 Previous experiments on superconducting atomic-size contacts

Muller et al. [13,14] have measured the critical current 0I  of MCBJs made of several

superconducting metals (Nb, Pb, In, Sn and Ta), and covering a wide range of contact sizes,

from thousand atom contacts down to a few atom contacts. This corresponds to normal state

resistances varying from a few ohms up to tenth of kiloohms. They have determined the

effective critical current, defined as the largest supercurrent on the zero voltage branch of the

current-voltage characteristics. They observed that, like the conductance, the effective critical

current decreases by steps when the break-junction is stretched. The magnitude of the steps is

of the order of /e∆ = , which is the predicted change when one channel closes (Exp. (5)).

However, for contacts with resistance NR  exceeding 80Ω , they found in all materials that

the 0NR I  product decreases as a function of NR  well below the theoretical predictions (see

Figure 4(a)).

Koops, van Duyneveldt and de Bryun Ouboter measured the current-phase

relationship of atomic-size contacts by placing a MCBJ in a superconducting loop [15]. An
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external magnetic field was applied through the loop to induce a phase difference between the

two superconducting electrodes of the break-junction. The self-induced magnetic flux

S SL IΦ = , where L  is here the inductance of the loop containing the MCBJ, was then

measured by means of a commercial SQUID magnetometer. Measurements were performed

on niobium and tantalum atomic-size contacts. The results demonstrated for the first time the

non-sinusoidal behavior of the current phase relationship (see Figure 4(b)). However, their

experimental set-up did not allow to measure the current-voltage characteristic, and thus to

determine the mesoscopic code of the atomic-size contacts. A quantitative comparison with

the predictions (9) was thus impossible.

3.1.4 Our experiment on Josephson supercurrent in aluminum atomic-size
contacts

We have performed an experiment on aluminum atomic-size contacts in order to test

quantitatively the predictions of Exp. (9) concerning the critical current. We made a set-up

(b)(a)

Figure 4: (a) (reproduced from [14]) Symbols:C NI R  product of niobium MCBJs with decreasing sizes.

Dotted line: theoretical prediction of Kulik and Omel’yanchuk for a short ballistic weak link. (b)

(reproduced from [15]) Self-induced flux S SL IΦ = as a function of the average phase differenceϕ for

three different contact configurations of a niobium MCBJ.



68

that allows both to determine the mesoscopic code of the contact and to measure accurately

the critical current. We used a four point measurement technique and a current-bias

configuration. Figure 5 depicts a typical current-voltage characteristic measured using this

circuit. It consists of two distinct branches: a metastable “zero voltage” branch that

corresponds to the Josephson supercurrent, and a finite voltage branch called the quasiparticle

branch. When the bias-current is increased linearly, the system stays on the zero-voltage

branch, till it switches at a current sI  to the quasiparticle branch. This switching is a

stochastic process governed by the phase fluctuations controlled by the bias circuit. The

switching current is smaller than the critical current, but approaches it if the phase

fluctuations are small enough. In this case, the system can reach a stable phase state at a value

close to the one that maximizes the supercurrent. For this purpose, we have embedded the

break-junction in an on-chip dissipative electromagnetic environment which allows to control

phase fluctuations, as previously demonstrated by Vion et al. [16,17] for small capacitance

tunnel junctions. The measurement of the mean switching current then provides a quantitative

test of Exp. (9).
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Figure 5: Typical experimental current-voltage characteristic of a superconducting current-biased atomic-size

contact. It consists of two branches: the supercurrent branch at nearly zero voltage, and the quasiparticle

branch at finite voltage. Upon increasing the bias-current through the contact, the voltage stays close to zero

till it jumps to a large value. The current at which switching occurs is the switching current sI .
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3.2 Theoretical analysis of the switching process

The on-chip environment we fabricated consists on each lead of a small resistor,

located as close as possible to the contact, and of a large capacitor to the ground plane formed

with the metallic substrate (see Figure 5 in Chapter 2, Figure 7(a)). The atomic-size contact is

thus unshunted at DC, which allows to measure the current-voltage characteristics. The

resistors in series with the capacitors provide a dissipative impedance at finite frequency,

which is necessary to observe a well developed supercurrent branch. We discuss in this

section the dynamics of the phase in such a dissipative environment, and determine the

relation between the switching current and the critical current.

3.2.1 Qualitative description of the phase dynamics of a DC unshunted
atomic-size contact

The atomic-size contact in its measurement circuitry can be modeled as an ideal

Josephson element characterized by the current-phase relationship (9) in parallel with its

capacitance JC . Using Norton’s theorem, the bias-current line as well as the voltage

measurement line can be modeled by an ideal current source bI  in parallel with a frequency

dependent admittance ( )Y ω  which produces a Johnson-Nyquist noise current nI  (see Figure

7(b)). The application of Kirchhoff’s laws to this electrical circuit leads to the following

Langevin integro-differential equation for the phase difference δ :

0 0 0
( ) ( ) ( ) ( )J J b nC t y d I I I tϕ δ ϕ δ τ τ τ δ

∞
+ − + = +∫

<< <

(13)

where ( )y τ  is the inverse Fourier transform of ( )Y ω . The dynamics of the system is identical

to that of a particle with position δ  and mass 
0

2
JC ϕ , in the tilted washboard-like potential

0 0 0
( ) ( ( ) )b JU I I x dx

δδ ϕ δ= − ∫ . The amplitude of the oscillating part 0 0
( )JI x dx

δϕ− ∫  is the

Josephson energy 0 0JE Iϕ= , and the tilt of the potential is proportional to the bias current bI .

The particle is also submitted to the retarded friction force described by the kernel 
0

2 ( )y tϕ ,

and to the random force 0 ( )nI tϕ  resulting from thermal fluctuations in the admittance. We
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treat here the phase and the current as classical degrees of freedom, and we further assume

that the static current-phase relationship can be used when the phase evolves. The classical

description for the phase is valid as far as quantum fluctuations are negligible, i.e. when the

admittance across the Josephson element is large enough compared to the conductance

quantum, as recently proved by Grabert and Ingold [18]. The adiabatic approximation is valid

as long as the phase velocity is small enough and will be discussed later on.

In order to get some insight into the dynamics of δ  in this classical adiabatic regime,

let us first consider the zero temperature case. At zero temperature, the random force 0 ( )nI tϕ

vanishes, and the dynamics of δ  is deterministic. If bI  is smaller than 0I , the tilted

washboard potential presents locally stable minima in which the particle can be trapped. The

phase stays constant, and the voltage is consequently zero. Upon increasing the bias-current

bI , the tilt of the potential increases. When bI  becomes larger than 0I , the wells disappear

and the particle runs away. Because the Josephson element is unshunted at DC, the limit

velocity is not fixed by the dissipation into the environment, but by the production of

quasiparticles.

Figure 6: (a) Schematic representation of the current-voltage characteristic of atomic-size contacts at zero

temperature. Upon increasing the bias current bI , the operating point stands on the supercurrent branch for

0bI I<  and on the quasiparticle branch for 0bI I> . (b) Mechanical analog of the two possible dynamical

states of the phase at zero temperature. If 0bI I<  (supercurrent branch), the particle is trapped in one of the

potential well , while for 0bI I>  (quasiparticle branch) the particle runs away down the potential at constant

velocity.
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Figure 7: (a) Schematic representation of the atomic-size contact (double triangle symbol) in its on-chip

electromagnetic environment characterized by a resistance R  and a large capacitor C  in each line; 0R  is the

impedance of the current source. (b) Using Norton’s theorem, the circuit can be modeled by the junction

capacitance JC  in parallel with an admittance ( )Y ω , a bias current source and a noise current source. Circuit

(c), equivalent to circuit (a) , was used for the theoretical calculations. (d) Resistively shunted model for a

Josephson element.
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At finite temperature, the phase dynamics is more complex and depends on the

dissipation. For atomic-size contacts with a typical critical current of 0 10 nAI ≈ , the

Josephson energy, which sets the scale of the potential wells, is 0 0 B0.25 k KJE Iϕ= ≈ .

Thermal fluctuations play thus an important role in the temperature range 20 mK-1K

accessible to the experiment (see Figure 8). In particular, thermal activation of the particle out

of the potential well at 0bI I<  occurs on a time-scale shorter than the measurement time. In

absence of dissipation, the particle would then run-away, and the system would switch to the

quasiparticle branch well before bI  reaches the critical current 0I . However, if dissipation is

sufficiently large, the particle can be retrapped in the next potential well. Subsequently, the

particle is re-ejected, retrapped in the next well, and so on. This dynamical state in which the

particle hops diffusively from a local minimum to next one down the potential is called the

diffusion state. The average phase velocity is non zero, but still small: 00 2 /V eϕ δ< = 〈 〉 ∆
<

� .

Furthermore, this dynamical state is metastable. Indeed, if thermal fluctuations allow the

particle to reach a large enough velocity, dissipation is then unable to retrap the particle, and

Figure 8: (a) Schematic representation of the current-voltage characteristic of dc-unshunted atomic-size

contacts at finite temperature. Due to thermal excitations, the operating point switches from the

supercurrent branch to the quasiparticle one at a current SI  smaller than 0I . (b) Mechanical analog of the

phase dynamics corresponding to the diffusion branch. The particle being constantly ejected out of the

potential wells by thermal excitation, and getting retrapped in a different one because of dissipation, hops

diffusively down the potential.
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switching to the voltage state occurs. This new switching process is also a thermally activated

random process, but with an effective barrier which is much larger than for the escape out of a

the potential wells. We have determined the switching rate out of the diffusion state by

extending the model of Vion et al. [19,20] to atomic contacts.

3.2.2 Solving the phase dynamics

Our measurement set-up can be modeled by the electrical circuit depicted in Figure

7(c). The atomic-size contact, modeled as a pure Josephson element with capacitance JC , is

connected to a current source bI  with internal resistance 0R  through an R-C  circuit. The

resistances R  and 0R  are the sources of thermal fluctuations represented by the Johnson-

Nyquist current noise sources nI  and 0nI . Introducing the reduced voltage u  defined as the

ratio between the voltage U  across the capacitance C  and 0RI , Eq. (13) is equivalent to the

following set of dimensionless second order differential equations:

2

0

1
( ) ( )J n

d d
u i i t

d d

δ δ δ
α τ τ

+ = − − (14)

2

0
0 0

1
( ) ( ),b J n

d du R
i u i i t

d d R

δ α δ
α τ τ

+ = − − + (15)

where 0 0tRIτ ϕ= is the reduced time, and 0, , andJ b n ni i i i  are reduced currents in units of 0I .

The noise currents ni  and 0ni  are random gaussian variables characterized by their correlation

functions ( ) (0) 2 ( )n ni iτ δ τ〈 〉 = Θ  and 0 0 0( ) (0) 2 ( )n ni i R Rτ δ τ〈 〉 = Θ , where ( )δ τ  denotes here

the Dirac function, and 0 0B B Jk T I k T EϕΘ = =  is the reduced temperature. The parameters

2
0 0 0 JR I Cα ϕ=  and 2

0 0R I Cα ϕ= characterize the damping and control the dynamics of the

switching process. Their typical values in our experiment make it possible to greatly simplify

Eqs. (14)-(15).

3.2.2.1 Overdamped junction : 0 1�αα

For atomic-size contacts with 0I  of the order of 10 nA and JC  in the pF range,

connected to on-chip resistances of the order of 150Ω , one has 0 1300 1α � � . In this limit,
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the 2 2
01 d dα δ τ  terms in Eqs. (14)-(15) can be neglected, which corresponds to neglecting

the current flowing through the capacitance compared to that flowing through the admittance

( )Y ω . The equations (14) and (15) then become first-order equations:

( ) ( )J n

d
u i i t

d

δ δ
τ

= − − (16)

0
0

( ) ( ).b J n

du R
i u i i t

d R
α δ

τ
= − − + (17)

This regime is called the overdamped regime.

3.2.2.2 Adiabatic regime : 1α �

When the damping is such that 1α � , the time evolution of u is much slower than

that of δ . Τhis limit can only be reached by taking C  as large as possible since R  has to be

much smaller than QR  to avoid quantum fluctuations of the phase. In our experiments,

140 pFC =  and 125R = Ω  or 170Ω , which results in a typical value 64α =  in the first case

( 125R = Ω ) and 80α =  in the second case ( 170R = Ω ). The separation between

characteristic time scales for δ  and u is then large enough to allow for an adiabatic

approximation : First, the dynamics of the phase is determined at constant u. Then, the

dynamics of u is calculated using the statistical properties of the phase previously determined.

When u is constant, the dynamics of δ  is governed only by the Langevin equation (16), the

dissipative circuit consisting of a pure resistor (see Figure 7 (d)). In the overdamped regime,

this model is called the RSJ model and is solvable.

3.2.3 Solving the RSJ model in the overdamped regime

3.2.3.1 Occupation factors of Andreev bound states

For atomic-size contacts, the potential is not the usual tilted sinusoidal potential but

has the more general form that follows from the expression of the Andreev state energies:

2

1

( ,{ }) ( ) 1 sin ( 2)
N

p i i i i
iJ

U u n n
E

δ τ δ τ δ+ −
=

∆= − + − −∑ . (18)
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It is assumed here that the Andreev bound states evolve adiabatically as the phase varies. We

will see later that this adiabatic approximation breaks down when the dynamics of the phase

is fast enough to induce Landau-Zener transitions between Andreev bound states. The

potential depends on the mesoscopic code of the atomic-size contact and on the occupation

numbers of the Andreev bound states. Several mechanisms can change these occupation

numbers, but they are not very efficient, except one. The relaxation induced by phonons has

been addressed in [21]. Following the same hamiltonian approach as in [21] and performing a

calculation to first order in the environment impedance, we have found that the relaxation of

the upper state by creation of an electromagnetic excitation in the environment is extremely

slow, except for highly transmitted channels and at δ π� . On the other hand, relaxation by

exchange of quasiparticles with states in the bulk electrodes is very fast, but only at 0δ = .

This process is the dominant thermalization process of Andreev states.

We first consider a simplified model in which the populations of the Andreev bound

states are treated in average using their thermal equilibrium values at 0δ = . The

corresponding potential pU  is then:

2

1

( )
( ,{ }, ) tanh( ) 1 sin ( ).

2

N

p i i
iJ B

T
U T u

E k T

δδ τ δ τ
=

∆ ∆= − + −∑ (19)

We first solve the dynamics of the phase in this potential. We have checked that this time-

averaged potential yields results equivalent to those of the full numerical simulations of the

Langevin equation (16).

3.2.3.2 Ambegaokar-Halperin like calculation

We have solved Eq. (16) by solving the associated Fokker-Planck equation. We have

generalized the procedure introduced by Ambegaokar and Halperin in the case of overdamped

Josephson tunnel junctions [22]. In this ensemble formalism, the phase dynamics is described

by a probability density ( , )tσ δ  of finding the value δ  for the phase at time t. This

probability density ( , )tσ δ  verifies the normalization condition 
2

0
( , ) 1t d

π σ δ δ =∫ , and the

average supercurrent through the Josephson element is 
2

0
( , ) ( )Jt I d

π σ δ δ δ∫ . When the thermal

fluctuations of the phase are large, the probability density is almost constant
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( ( ) constant 1 2σ δ π= = ), and the supercurrent 
2

0
1 2 ( )JI d

ππ δ δ∫  is zero because the current-

phase relationship is 2π-periodic and even. The conservation of the probability density

provides the Fokker-Planck evolution equation [23] for ( , )tσ δ :

( , ) ( , )
( ) ( , ) ( , )pdUt t J

t t
t d

σ δ σ δδ σ δ δ
δ δ δ δ

 ∂ ∂ ∂ ∂= + Θ ≡ − ∂ ∂ ∂ ∂ 
, (20)

where J  is the probability current. In this equation, the term pdU dδ σ  arises from the

deterministic drift, and the term σ δΘ∂ ∂  from diffusion. In the steady state, the probability

density is time-independent and fulfills the boundary condition (0) (2 )σ σ π= .

In this case, the solution of Eq. (20) can be explicitly written down:

2

0

( )
( ) (0) (2 ) ,

(2 ) (0) ( ) ( )

J S dx dx
S S

S S S x S x

δ π

δ

δσ δ π
π

 
= + Θ −  ∫ ∫ (21)

where ( ) exp( ( ) / )pS Uδ δ= − Θ . The current J  is now deduced from Exp. (21) using the

normalization condition 
2

0
( ) 1d

π
σ δ δ =∫ .

The mean value of the reduced voltage across the contact 0 0 0/ϕ δ〈 〉 = = �v V RI RI

δ τ= 〈 〉d d is then:

2
2

0
0

exp(2 / ) 1
( ) 2 2

( ) exp(2 / )
( ) ( )

u
v u J

dx dx
S u d

S x S x

δ ππ

δ

ππ π
δ π δ

Θ −〈 〉 = = Θ
 

+ Θ 
 

∫ ∫ ∫
. (22)

The average supercurrent flowing through the contact is given by ( ) ( )Ji u u v u〈 〉 = − 〈 〉 .

3.2.3.3 Numerical simulation

The dynamics of the phase can also be solved by performing a brute-force numerical

simulation of the Langevin equation (16), taking into account the full time dependence of the

potential due to changes in the population of the Andreev bound states. The Langevin

equation is integrated during a finite time T  using a discrete time algorithm with a time-step

of length /T Nτ = . The stochastic variable δ  at time 1 ( 1)n nτ τ+ = + ∆  is calculated from its

value at time n nτ τ= ∆  according to [23]:

[ ]1 ( ) 2 ,n n J nu i d d wδ δ δ τ τ+ = + − + Θ (23)
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where the nw  are independent Gaussian-distributed random variables with 0nw〈 〉 =  and

' '2n n nnw w δ〈 〉 = . The occupation numbers of the Andreev bound-states are drawn according to

a thermal distribution when the phase reaches a multiple of 2π . At the end of the simulation,

the average velocity of the phase, and thus the mean reduced voltagev , is defined by

( ) Nv u Tδ〈 〉 = . The simulation time T  is taken long enough in such a way that ( )v u〈 〉

reaches a steady value. The average supercurrent is then ( ) ( )Ji u u v u〈 〉 = − 〈 〉 .

3.2.3.4 Current-voltage characteristic of a resistively shunted atomic contact

We have calculated the current-voltage characteristic of a resistively shunted

superconducting atomic contact using the two procedures previously described. A set of

characteristics at different temperatures obtained by solving the Fokker-Planck equation is

shown in Figure 9 in the particular case of a three channel contact. Note that in this resistively

shunted scheme, no switching occurs. The results closely reproduce the characteristics of

Josephson tunnel junctions: The supercurrent branch is a supercurrent peak which is

progressively washed out and widened as the temperature is increased. In particular, the

maximum supercurrent MAXI  decreases progressively starting from the critical current at zero

temperature. These general features are independent of the mesoscopic PIN code 1{ ,..., }Nτ τ .

Numerical simulations that take into account the evolution of the Andreev bound-states

occupation numbers, lead to almost perfectly identical results.
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3.2.3.5 Temperature dependence of the supercurrent peak height

The maximum supercurrent MAXI  as a function of temperature is plotted in reduced

units in Figure 10 for the set of current-voltage characteristics shown in Figure 9. We have

similarly determined the temperature dependence of the maximum supercurrent for a large

palette of mesoscopic codes, and compared to the case of tunnel junctions with the same

critical current. The deviations are very small: the current-voltage characteristic mainly

depends on the critical current, and is not very sensitive to the potential shape.
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Figure 9: Calculated current-voltage characteristics of an atomic-size contact with mesoscopic PIN code

{0.46,0.18} for equally spaced temperatures ranging from (from top to bottom) 10 mK to 800 mK. The

maximum supercurrent is 0 16 nAI =  and the Josephson energy 0.381 KJ BE k= .
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3.2.4 Current-voltage characteristics of RC shunted atomic contacts in the
overdamped regime

In the overdamped regime 1α � , the voltage across the large capacitor evolves

slowly and the current through the atomic contact is at a given time determined by the

parameterized current-voltage characteristic solution of Eq. (16). If one neglects the

fluctuations of u , a static solution can be determined graphically. From Eq. (17), it follows

that such a static solution satisfies the equation 0 ( ) 0b Ji R R u i u− − 〈 〉 = . Since

( ) ( )Ju i u v u= + , the average current and voltage thus verify the equation

( )0 01 ( )b Ji R R v R R i u− = + 〈 〉 . In the current bias mode, 0R R�  and thus the static

solution can be graphically determined by the intersection between the load line defined by

0b Ji R R v i− =  and the current-voltage characteristic solution of Eq. (16). When the slope

of the load line 0R R  is small and the bias-current large enough, there are three solutions, as

shown in Figure 11. The stable solutions labeled (S) and (M ) correspond respectively to the

running state (large voltage) and to the diffusion state (small voltage). The solution at

intermediate voltage (U ) is unstable. In this model, the maximum supercurrent is obtained

when the load-line is tangent to the current-voltage characteristic.
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Figure 10: Dots: Maximum of the supercurrent peak MAXI  of the characteristics presented in Figure 9 as a

function of temperature. The critical current is 0 16 nAI =  and the Josephson energy B0.381 k KJE = . The

line connecting the dots is just a guide for the eyes.
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When fluctuations are taken into account, the diffusion state (M ) becomes

metastable, and the system can switch out of the diffusion state prior to reaching the

maximum supercurrent MAXI  of the static solution. The switching rate can be inferred from

the slow evolution of u . For that purpose, the supercurrent ( )Ji δ  in Eq. (17) is decomposed

into a mean value ( )Ji u〈 〉 and a fluctuating part ( , )u tη , whose statistical properties are

calculated assuming the voltage u is constant. One then obtains the following Langevin

equation for u:

0
0

( ) ( , ) ( )b J n

du R
i u i u u t i t

d R
α η

τ
= − − 〈 〉 − + . (24)

This equation corresponds to the motion of a massless particle at position u , submitted to a

deterministic force 0( ) ( )b JF u i R R u i u= − − 〈 〉 , a drag force du dα τ− , and to a position

dependent random force 0( , ) ( , ) ( )nu t u t i tξ η= − + . The problem is then reduced to the escape

of a diffusing particle above an effective potential barrier ( )F u du−∫ . At a given bias-current

bi , the escape rate ( )biΓ  of u  above this barrier follows a Kramers law [24]:

' '
( )

( ) exp( ),
2π α α

− −   Γ =       
b t

t
b

u u

D u F F
i B

D D
(25)

where 2

0
( ) 1/ ( ,0) ( , )D u u u t dtα ξ ξ∞= ∫  is a position-dependent diffusion coefficient associated

Figure 11: Geometric construction yielding the average current and voltage for a given current bias.  Full

line: Schematic representation of an IV characteristic corresponding to the RSJ model. Dashed line: load line

defined by 0/J bi i R R v= − .
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to the random force and ( ) ( )t

b

u

u
B F u D u duα= ∫ , bu and tu corresponding respectively to the

bottom and to the top of the effective potential barrier. In the case of a sinusoidal current-

phase relationship, the escape rate is easily computed because both the average current

( )Ji u〈 〉  and the diffusion coefficient ( )D u  are known analytically [20]. The main result of the

calculation is that the exponent B is proportional to the damping coefficient: B α∝ . As

expected, the static solution corresponds to the infinite α  limit.

The switching histograms obtained when a bias-current ramp is applied are then easily

determined. The probability to switch at a given current ( )P I , is related to the escape

rate ( )IΓ  and to the sweeping rate bS dI dt=  by the relation:

1

0

( )
( ) .

1 ( )
I

I
P I S

P u du

− Γ=
− ∫

(26)

The mean value SI of the switching histograms is plotted in Figure 12 for three values of the
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Figure 12: Predicted average switching current SI  as a function of temperature for three values of the

damping parameter. The curves are calculated at 1
0 500bdI I dt s−= . Full curve: RSJ model corresponding

to the α = ∞  limit. Dashed curve: 100α = . Dashed-dotted curve: 10α = .
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damping parameter α . For 100α = , the mean switching current is close to the maximum

supercurrent in absence of fluctuations (infinite damping limit), whereas, for 10α = , it is

significantly reduced. The average switching current thus provides non-ambiguous

informations on the maximum supercurrent only in the large α  regime.

For atomic-size contacts containing only weakly transmitted channels (typically all

transmissions smaller than 0.5), the energies of the Andreev bound states are very close to be

a cosine function, and thus the above calculation provides a good approximation for the

switching rate. In the more general case of the non-cosinusoidal potential shape, no such

quasi-analytical solution is available. However, since the dynamics of the phase in the RSJ

model is not really sensitive to the deviation from the cosinusoidal behavior, we expect even

smaller corrections for the slow dynamics of u . Furthermore, the typical sweeping rates used

of to measure the switching histograms, and the typical damping parameters of our atomic-

size contacts (see Table 1 in the following section) are close to the parameters used to

calculate the dashed curve in Figure 12: 1
0 500bdI I dt s−= and 100α = . Our measurements

were thus taken in the strong damping regime, where the mean switching current is close to

the maximum value MAXI  of the RSJ model, and the switching histograms narrow. In this

regime, the small effect of thermal fluctuations on the switching can be accurately estimated

using an effective cosinusoidal potential approximation.

3.3 Measurement of the maximum supercurrent

3.3.1 Measuring switching current histograms

We have measured the mean value of the switching current SI , obtained from

switching current histograms, as a function of temperature and for different contact

configurations. We have performed two runs on two different aluminum break-junction

samples whose characteristics are presented in the left column of Table 1.
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Histograms of the switching current SI  were obtained from 7640 switching events.

The contact was current-biased using a HP3325 voltage source in series with a bias resistor

0R . The sweeping function had a triangular shape and the typical sweep frequency was

100 Hz . The typical reduced sweep rate was 1
0/ 500dI I dt s−= . Two timers (Philips

PM6654C and Fluke PM6680B) measured the elapsed time between the beginning of the

ramp and the switching event characterized by a sudden and strong change of the voltage

across the contact. Both polarities: 0 and 0I I> <  were measured to compensate for offsets

in the bias-current line. The start signal was the TTL synchronization signal of the voltage

source, and the stop signal the voltage across the contact (see Figure 13) after amplification

by a low-noise pre-amplifier (NF). The timers can store 764 events, and a series of ten such

packets was measured to produce histograms. Simultaneously, the average time evolution of

the current ( )I t  through 0R  was measured. The averaging was done over 100 traces on a

Nicolet Pro 44 oscilloscope. The ( )I t  curve as well as the switching time records were

transferred through a IEEE data link to a PC for post-treatment. From the linear fit of the ( )I t

curve part before the switching event, the two time records were converted into two current

records. The mean value of the two corresponding current histograms were equalized, leading

to the average switching current SI〈 〉 . The standard deviation SI∆  was calculated from the

Figure 13: Schematic representation of switching current measurement set-up. The TTL synchronization

signal of the voltage generator sets the start of both timers. The stop signal is provided by the voltage

across the sample after amplification.
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standard deviation of the two histograms.

The following table reviews, for each sample, the selected atomic-size contacts whose

switching current measurements are presented and discussed in this chapter as well as their

main characteristics: critical current 0I , corresponding Josephson energy JE , and damping

parameter α .

Mesoscopic PIN code 0(nA)I / (mK)J BE k 2
0 0/R I Cαα ϕϕ=

{0.21,0.07,0.07} 8.0 0.1± 190 2± 55 20%±

{0.52,0.26,0.26} 25 0.4± 600 10± 170 20%±

{0.95,0.09,0.09,0.09} 39 0.2± 925 5± 260 20%±

{0.98,0.21,0.15,0.14} 46 0.4± 330 10± 300 20%±

Sample #1

178 1�H9∆ = ±

125 10R = ± Ω

140 10 pFC = ±
{0.998,0.09,0.09,0.09} 44 0.9± 1050 20± 294 20%±

{0.33,0.13,0.12} 14 0.2± 330 5± 170 30%±

{0.78,0.12,0.12} 29 0.4± 690 10± 360 30%±

Sample #2

184.5 1�H9∆ = ±

170 20R = ± Ω

140 10 pFC = ± {0.92,0.02,0.02} 33 0.4± 800 10± 410 30%±

Table 1: Characteristic parameters of the atomic size contacts discussed in this chapter. Two runs involving two
different samples have been performed. The first column indicates the superconducting gap ∆  of the aluminum
electrodes and the environment parameters R  and C . The uncertainties on the critical current 0I  are evaluated
following the procedure described at the end of Chapter 1.
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3.3.2 Atomic contacts with not too high transmission probabilities ( 0.9ττ < )

The mean switching current is plotted in Figure 14 as a function of temperature for

three atomic-size contacts, together with the theoretical predictions of the adiabatic theory

described in the preceding section. All those contacts have channels with transmissions

probabilities smaller than 0.9 . The data at high temperature are well explained by the α → ∞

limit of the theory that corresponds to the RSJ model. Moreover, the finite α  corrections

calculated assuming a cosinusoidal potential shape explain the small deviations at

intermediate temperature. We found a similar quantitative agreement for all measured
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Figure 14: Main panel: Mean switching current as a function of temperature for three atomic size contacts

(symbols) . Mesoscopic PIN codes: {0.52,0.26,0.26} (squares), {0.33,0.13,0.12} (circles),

{0.21,0.07,0.07} (up-triangles). The full lines are the prediction of the α → ∞  adiabatic theory described

above, and the dashed line that of the finite α  theory using the independently measured mesoscopic codes.

The grey area represent the fuzziness on the theoretical curves due to the uncertainties in the determination

of the mesoscopic code (too thin to be visible for the lowest curve). Inset: same contacts plus contact

{0.78,0.12,0.12} (diamonds). Mean switching current in units of 0I  versus /B Jk T E . Full curve:

Ambegaokar-Halperin result (RSJ model in the tunnel limit).
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contacts provided no well transmitted channel ( 0.9τ > ) is present. At the lowest

temperatures, the data deviate markedly from the predictions. As explained in the article (see

the Annex), we attribute this deviation to the saturation of the electronic temperature in the

resistors.

The inset in Figure 14 depicts the same data in reduced units (0I  for the currents, and

/J BE k for the temperatures). In this reduced plot, the temperature dependence appears

universal and very close to the Ambegaokar and Halperin maximum current for the RSJ

model. This means that the non-cosinusoidal shape of the potential does not affect

quantitatively the dynamics of the phase. Indeed, the thermal escape rate from a potential well

mainly depends on the energy barrier height rather than on its exact shape.
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Figure 15: Symbols: Average reduced switching current as a function of reduced temperature B Jk T E  for

three atomic-size contacts containing a well transmitting channel (0.9τ > ). The dotted curves are guide for

the eyes. Full curve: Ambegaokar-Halperin result (RSJ model in the tunnel limit).
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3.3.3 Atomic contacts with high transmitting channels ( 0.9ττ > ): the ballistic
limit

For atomic-size contacts containing well transmitted conduction channels 0.9τ > , the

data deviate markedly from an universal behavior, as depicted in Figure 15 for three such

contacts. One of them contains an almost ballistic channel with transmission probability

0.998τ =  (subsequently called “0.998 contact”). A second one has a highest transmission of

0.98 (“0.98 contact”). The last one has a highest transmission 0.95τ =  (“0.95 contact”). The

mean switching current of these three contacts is more temperature resilient and, but at very

low temperature, larger than predicted by the adiabatic model for the Andreev states. The

higher the transmission probability, the tougher the resistance to thermal fluctuations is: Over

the whole range of explored temperatures, the switching current of the 0.998 contact is larger

than that of the 0.98 contact, which is larger than that of the 0.95 contact.

The experimental results on the 0.998 contact are well explained by assuming a
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Figure 16: Diamonds: measured mean switching current of the 0.998 contact (Mesoscopic PIN code:

{0.998,0.09,0.09,0.09}). Full curve: prediction of the adiabatic theory. Dashed-dotted curve: prediction

assuming a perfect transmission 1τ = . Insets: Andreev bound states energy spectrum and current-phase

relationship at zero temperature of one conduction channel with transmission probability 0.998  (bottom)

and 1 (top).
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perfect transmission for this conduction channel. At perfect transmission, the potential is

qualitatively modified since the lower Andreev state E−  at zero phase evolves adiabatically

into the upper energy Andreev E+  when the phase goes through the level crossing. This state

is a ballistic state B→  (see Appendix B and the upper inset in Figure 16) whose current flows

in the same direction for all values of the phase. As a result, the maximum supercurrent is

strongly resilient to thermal fluctuations, as long as the other ballistic Andreev state ←B  is not

equally populated. Quantitatively, the shape of the potential is modified as shown in the insets

of Figure 16. The average switching current, calculated in the overdamped regime for this

potential, is then in good agreement with our experimental results as can be seen in the main

panel of Figure 16.

The perfect transmission hypothesis is in fact not strictly speaking necessary, since the

assumption that the system undergoes at δ π=  a transition from the lower Andreev bound

state E−  up the upper one E+  with probability one would be equivalent. This transition could

be interpreted in terms of a Landau-Zener like transition [25] induced by the fast dynamics of

the phase at the level crossing.
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Figure 17: Mean switching current as a function of temperature. Symbols: experimental results for three

atomic-size contacts. Mesoscopic PIN codes: {0.98,0.21,0.15,0.14} (up-triangles), {0.95,0.09,0.09,0.09}

(squares), {0.92,0.02,0.02} (circles). Full curves: adiabatic theory. Dashed curves: theoretical predictions

assuming a Landau-Zener transition at π  with probability P  between the two Andreev bound states of the

high transmitting channel. From top to bottom: 0.80, 0.40, 0.15.P =  Inset: schematic representation of the

Landau-Zener transition.
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We have tried to fit the measurements for atomic-size contacts containing a highly

transmitting channel by introducing a Zener-like transition rate at the level crossing occurring

at δ π= . When the transmission decreases, the minimum energy gap 2 1 τ∆ − between the

two Andreev bound states increases, and the transition probability is lower. In the numerical

simulations discussed in section 3.2.3, we have implemented a temperature independent

transition probability P  between the two levels at δ π= . Each time δ  crosses π , the

Andreev state occupations are refreshed according to this transition probability. The

experimental results for the 0.98 contact are well fitted assuming a transition probability

0.80P = . For the 0.95 contact, we found 0.40P = , and for the 0.92 contact presented in

Figure 4 of the article (see the Annex) 0.15P = .

The standard Landau-Zener theory can be used to determine the transition probability

at a level crossing when a parameter of the hamiltonian is swept at constant velocity. In our

set-up, the phase is a dynamic variable whose evolution depends on the current through the

contact. One can nevertheless use the Landau-Zener theory to check if the adiabaticity

hypothesis is valid. Assuming indeed that no transition occurs at a level-crossing, the phase

evolution can be simulated, and the adiabaticity criterion checked. The transition probability

zp  between the two Andreev bound states of a single conduction channel with transmission

τ  is:

( )( )exp 1zp vπ τ= − ∆ − = (27)

where v  is the phase sweep velocity. The relevant velocity is the velocity of the phase at

δ π=  for the bias current at which the switching event occurs, which is of the order of

1
0 0( )ϕ τ− RI  where 0( )τI  is given by Exp. (10). When this velocity is injected in (27), one finds

that the adiabaticity criterion is not fulfilled for the 0.98 contact: the adiabatic approach is

thus non valid, and a full dynamical approach is necessary. The probability Zp  one estimates

assuming that the phase dynamics is the same as in absence of Zener transitions is

nevertheless of the same order of magnitude than the probability P injected by hand. For the

0.95τ =  contact, one finds at the opposite that the adiabaticity criterion is fulfilled, and that

no Zener transitions should occur. The observation of a large transition probability in this
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contact is thus in contradiction with the model. A rigorous theory, in which the phase and the

internal degrees of freedom of the contact would be treated together, is clearly lacking. Our

results have already inspired a reinvestigation of the Zener effect [26], but the problem is

presently beyond reach of existing theories. Experimentally, a direct measurement of the

current through the contact with a phase imposed would probe the Andreev states at

equilibrium, which would circumvent the difficulties arising from the complex dynamics of

the system in a current-bias configuration.

3.4 Conclusions

The maximum supercurrent through current-biased superconducting atomic-size

contacts embedded in a dissipative circuit is in quantitative agreement with the theoretical

predictions based on the Andreev bound states, for a large palette of mesoscopic codes, over a

wide temperature range. The departures from the theoretical predictions lie within the error

bar due to the imperfect determination of the mesoscopic codes. When highly transmitted

channels are present, we could probe quantitatively the predictions only for the perfectly

transmitted ballistic channel case because the relationship between the critical current and the

measured switching current is not well established when the Andreev state dynamics departs

from adiabaticity. In the non-adiabatic regime, we have accounted for the experiments by

introducing a transition probability at the level crossing which remains to be explained.

 Annex: Article published in Physical Review Letters

We reproduce here an article published in Physical Review Letters presenting our

measurements of the supercurrent through atomic-size contacts.



VOLUME 85, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 3 JULY 2000

170
Supercurrent in Atomic Point Contacts and Andreev States

M. F. Goffman,1 R. Cron,1 A. Levy Yeyati,2 P. Joyez,1 M. H. Devoret,1 D. Esteve,1 and C. Urbina1

1Service de Physique de l’Etat Condensé, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France
2Departamento de Física Teórica de la Materia Condensada C-V, Universidad Autónoma de Madrid,

E-28049 Madrid, Spain
(Received 13 December 1999)

We have measured the supercurrent in aluminum atomic point contacts containing a small number
of well characterized conduction channels. For most contacts, the measured supercurrent is adequately
described by the opposite contributions of two thermally populated Andreev bound states per conduction
channel. However, for contacts containing an almost perfectly transmitted channel 0.9 # t # 1 the
measured supercurrent is higher than expected, a fact that we attribute to nonadiabatic transitions between
bound states.

PACS numbers: 73.40.Jn, 73.20.Dx, 74.50.+r
In 1962, Josephson predicted that a surprisingly large
supercurrent could flow between two weakly coupled
superconducting electrodes when a phase difference
d is applied across the whole structure. This phase-
driven supercurrent I�d� has subsequently been ob-
served in a variety of weak coupling configurations
such as thin insulating barriers, narrow diffusive wires,
and ballistic point contacts between large electrodes.
However, a theoretical framework powerful enough to
predict the current-phase relation I�d� in all configu-
rations has emerged only during the last decade [1].
It applies in the mesoscopic regime, when electron trans-
port between the electrodes is a quantum coherent process.
Such transport is described by a set of N transmission co-
efficients �ti� corresponding to N independent conduction
channels. In the normal state, the conductance is given
by G0

PN
i�1 ti where G0 � 2e2�h is the conductance

quantum. In the superconducting state, electrons (holes)
transmitted in one channel are Andreev reflected at the
electrodes into holes (electrons) in the same channel.
After a cycle involving two reflections at the electrodes,
they acquire at the Fermi energy an overall phase factor
p 1 d (Fig. 1). In a “short” coupling structure, these
cycles give rise to two electron-hole resonances per chan-
nel, called Andreev bound states (AS) [2] with energies
E6�d, ti� � 6D�1 2 ti sin2�d�2��1�2 (D is the energy
gap in the electrodes). These two AS carry current in op-
posite directions, I6�d, t� � w

21
0 dE6�d, ti��dd (where

w0 � h̄�2e), and the net supercurrent results from the
imbalance of their populations. A quantitative comparison
of the predictions of this “mesoscopic superconductivity”
picture of the Josephson effect with experimental results
is usually hindered by the fact that in most devices the
current flows through a very large number of channels
with unknown ti . However, an atomic-size constriction
between two electrodes, referred to hereafter simply as an
atomic contact [3], is an extreme type of weak coupling
structure which accommodates just a few channels. Be-
cause their set �ti� is amenable to a complete experimental
0031-9007�00�85(1)�170(4)$15.00
determination and because it can be controlled in a certain
range [4], atomic contacts are ideal systems on which to
test quantitatively the concepts of mesoscopic physics.
The knowledge of �ti� allows in principle the calculation
of all transport quantities. In particular, the phase-driven
supercurrent is given by

IJ�d, �ti�, �ni6�� �
NX

i�1

�ni2 2 ni1�I2�d, ti� , (1)

where ni6 are the occupation numbers of the two AS
associated with the ith channel. The critical current of
the contact is the maximum of this current-phase rela-
tionship at zero temperature I0��ti�� � maxd�IJ �d, �ti�,
ni1 � 0, ni2 � 1��. In this Letter, we present an

FIG. 1. (a) Josephson coupling through a single channel
of transmission t between two superconducting electrodes
with phase difference d � fL 2 fR. Wavy lines repre-
sent Andreev scattering mechanism: electrons (holes) are
reflected as holes (electrons) at the electrodes. Upward and
downward arrows represent normal scattering, which couples
electron (hole) states with backward electron (hole) states.
(b) Combination of both scattering mechanisms results in two
“Andreev bound states” with phase dependent energies E6

(full lines). Gap at d � p is 2D
p

1 2 t. P is interlevel
nonadiabatic transition probability at d � p. Dash-dotted
(dotted) line is B!�B√� ballistic state for t � 1, carrying
current towards the right (left).
© 2000 The American Physical Society
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experiment on aluminum atomic contacts in which we
compare the measured supercurrent with the predictions
of this mesoscopic Josephson effect theory.

In practice the measurement of a supercurrent is not
done by imposing a phase difference across the device
[5] but by biasing it with a dc current and detecting the
maximum current at zero voltage. As the Josephson cou-
pling introduced between the two electrodes by a single
channel of transmission t has a small characteristic en-
ergy EJ � w0I0�t� # w0I0�t � 1� � D�2 (for Al, EJ #

1kBK), the phase difference d is prone to both quantum
and thermal fluctuations, which depend not only on the pa-
rameters of the contact but also on the circuit in which the
contact is embedded. In fact, unless this electromagnetic
environment is carefully designed so as to damp phase
fluctuations [6], the supercurrent time averages to nearly
zero and the observed maximum supercurrent is much
smaller than I0 [3]. We have thus integrated microfab-
ricated mechanically controllable break junctions [7] into
an adequate on-chip dissipative environment (see Fig. 2).
Current-voltage characteristics (IV ) were measured using
a four-probe geometry. Each line contains a small resistor
close to the atomic contact, and also a large capacitor to
the underlying ground plane formed by the substrate. The
equivalent circuit of the setup is shown in the right inset
of Fig. 2. The atomic contact is characterized by (1) and

FIG. 2. Micrograph of Al microbridge in a dissipative envi-
ronment. Each IV probe contains a AuCu (weight ratio 3:1) re-
sistor (10 mm-long, 500 nm wide, and 30 or 50 nm thick) and
a large �2.5 mm�2, 180 nm thick AuCu�Al pad (not shown) that
forms with the metallic substrate a large capacitor. Substrate is
phosphor-bronze covered by a 2 mm thick layer of polyimide.
Left inset: side view of bridge (150 nm thick Al layer with
100 nm wide constriction in the middle) suspended by selective
etching of polyimide. Bridge is broken by controlled bend-
ing of the substrate at low temperatures (T , 1 K) and under
cryogenic vacuum to prevent contamination of the two resulting
electrodes. Right inset: equivalent circuit. The atomic con-
tact (double triangle symbol) is connected to a current source
through a resistor R. The capacitors on each line combine into
the capacitor C. Total capacitance between the two sides of the
bridge is CJ . The voltage V across the contact is related to the
phase velocity through the Josephson relation w0

�d � V .
its capacitance CJ . It is connected through a resistor R to
a current source Ib in parallel with a capacitance C. We
now concentrate on one-atom aluminum contacts which
typically accommodate three channels and have a conduc-
tance of order G0 [4]. A typical IV measured at the lowest
temperature is shown in Fig. 3. The strong nonlinearities
in the finite voltage (dissipative) branch are associated [8]
with multiple Andreev reflection processes and allow the
determination of �ti� [4]. The supercurrent branch appears
on large voltage scales as a vertical line at V � 0. How-
ever, the upper inset of Fig. 3 shows that for finite current
there is always a finite voltage across the contact. When
the bias current is ramped repeatedly, the system switches
to the dissipative branch at a value Is which fluctuates from
cycle to cycle. The slope of the supercurrent branch and
the average switching current 	Is
 both decrease when in-
creasing the temperature.

Given the simplicity of the biasing circuit, the exact
shape of the supercurrent branch can be calculated. Fol-
lowing the analysis of [6] the circuit is described by two
dynamical variables, d and u (the ratio between the voltage
across the capacitor C and RI0), and three environment pa-
rameters: a characteristic time tJ � w0�RI0 and the damp-
ing factors a0 � w0�R2I0CJ and a � R2CI0�w0. For all
the measured contacts the environment parameters were
chosen such that a0 ¿ 1 [9], and the current through CJ

can thus be neglected. In this classical regime, the time
evolution of the circuit is governed by two dimensionless
equations,

FIG. 3. Large scale IV characteristic of atomic contact, mea-
sured at 17 mK (dots). Switching at current Is from super-
current branch (almost vertical branch near zero voltage) to
dissipative branch is a stochastic process. Full line is the best
fit of this branch, obtained by decomposing the total current
into contributions of 3 independent channels, giving �ti� �
�0.52, 0.26, 0.26� and I0 � 25.3 6 0.4 nA. Top inset: expanded
view of experimental (dots) and theoretical (lines) diffusion
branch at 370 mK (thick dashed line shows negative differen-
tial resistance region). Bottom inset: Is histogram measured at
T � 17 mK and dI�I0 dt � 581 s21.
171
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dd

dt
� u 2 iJ�d� 1 in�t� , (2)

a
du
dt

� ib 2 iJ �d� . (3)

Here, time is in units of tJ , iJ�d� � IJ�d��I0, and ib �
Ib�I0. The thermal current noise source in�t� associated
with the resistor obeys the fluctuation-dissipation theorem.
If R and C are large enough to achieve a ¿ 1 (keeping,
however, R ø h�4e2 to avoid quantum fluctuations of d

[10]), the time evolution of u is much slower than that of d.
One then first solves (2) with a constant u and afterwards
solves (3) for the slower dynamics of u. The first step
is equivalent to solving the resistively shunted junction
model [11] with a voltage source u. As in the well-known
case of tunnel junctions, the dynamics of the phase in this
circuit is equivalent to the Brownian motion of a massless
particle in a tilted washboardlike “potential,” governed by
the Langevin equation (2). However, here the potential
is not the usual tilted sinusoid but has instead the more
general form [12]

Up � 2ud 1

NX

i�1

�ni1 2 ni2�E2�d, ti� , (4)

which depends on �ti� and the time dependent ni6. Several
mechanisms can make these ni6 change, but in general
none is very efficient. The relaxation induced by phonons
has been addressed in [13]. We have found that the relax-
ation of the upper state through the emission of photons
in the environment is extremely slow except for highly
transmitted channels at d � p [14]. However, relaxation
by the exchange of quasiparticles with states in the bulk
electrodes can be very fast, but only at d � 0 (Fig. 1). We
have solved (2) by making a straightforward generalization
of the procedure introduced by Ambegaokar and Halperin
[15] for overdamped tunnel junctions. In this adiabatic
model the “particle” moves in a constant potential obtained
by replacing in (4) the ni6 by their thermal equilibrium
values at d � 0 [16].

The upper inset of Fig. 3 shows a comparison of the
measured supercurrent branch for a particular contact with
the predictions of this adiabatic model. The supercurrent
branch is, in fact, a current peak. The equivalent particle
is constantly thermally activated over the potential barriers
between the wells and undergoes a classical diffusion mo-
tion with a small, friction-limited drift velocity. The only
inputs of the calculation are the temperature, R, and the
measured values of �ti�, which determine the zero tem-
perature supercurrent I0 [17]. The value of R, which is
measured independently, sets only the voltage scale of the
supercurrent peak. In our RC biasing scheme, which keeps
the atomic contact unshunted at dc, the negative differen-
tial resistance region of the IV is unstable, and the sys-
tem switches to the dissipative branch before reaching the
maximum Imax of the current peak. The capacitor was de-
signed large enough (C � 140 pF) for all the samples to
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FIG. 4. Experimental (open symbols) and theoretical (lines)
average switching current 	Is
 as a function of temperature for
different contacts on two samples. (�) �ti� � �0.21, 0.07, 0.07�,
I0 � 8.0 6 0.1 nA [17]. (}) �ti� � �0.52, 0.26, 0.26�, I0 �
25.360.4 nA. (±) �ti� � �0.925,0.02,0.02�, I0 �33.460.4 nA.
(�) �ti�� �0.95,0.09,0.09,0.09�, I0 �38.860.2 nA. (�) �ti� �
�0.998, 0.09, 0.09, 0.09�, I0 � 44.2 6 0.9 nA. Contacts (�),
(}), (�), and (�) from sample with D�e � 178 6 1 mV ,
R � 125 6 10 V. Contact (±) from sample with D�e �
184.5 6 1.0 mV, R � 170 6 20 V. Full lines (with solid
symbols): predictions of adiabatic theory for a ! `, for which
	Is
 ! Imax. Dashed line: finite a corrections for contact (�).
Dash-dotted line: predictions of adiabatic theory for contact
(�), assuming the highest transmitted channel to be ballistic.
Dotted lines: predictions of extended model including empirical
interlevel nonadiabatic transition probability P at d � p
(P � 0.4 for upper curve, P � 0.15 for lower one). Inset:
probability P as a function of transmission coefficient t1 of
highest transmitted channel for different contacts displaying
extra supercurrent. Symbols are best fits values from simulation.
Dotted line is guide for the eye.

be in the overdamped limit a ¿ 1, in which case Is is pre-
dicted to be close to Imax. The fluctuations of Is are also
small, as shown by the narrow switching current histogram
in the bottom inset of Fig. 3.

The temperature dependence of 	Is
 measured for five
contacts is shown in Fig. 4 together with the predictions
of the adiabatic model sketched above. For every contact
having all channels such that ti & 0.9 the a ! ` limit
of the theory describes well the data at high temperature.
Moreover, in the case of very low t, finite a corrections
can be calculated [6] and explain the small deviations at
intermediate temperatures. We attribute the remaining low
temperature deviations to the saturation of the electronic
temperature in the resistors [18]. The uppermost data
points in Fig. 4 correspond to a contact in which one of
the channels had t � 0.998. The measured 	Is
 are larger
than predicted by the adiabatic theory for this t. How-
ever, if we assume this channel to be perfectly transmitted
�t � 1�, a reasonable assumption given our accuracy in the
determination of the t’s, we recover a very satisfactory fit
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of the data. This is due to the fact that this small change in
t has a profound impact on the shape of the potential. For
t � 1 the AS singularly become the ballistic B: states
(Fig. 1), which have no extrema at d � p . In this case
the current flows always in the same direction, thus lead-
ing to a much larger average value. For contacts having at
least one channel with ti $ 0.9, but definitely not ballistic
within the experimental accuracy, the measured 	Is
 is also
larger than the predictions of the adiabatic theory, which
corresponds in principle to the maximum observable 	Is
.
A possible explanation of this excess supercurrent could
be the existence of transitions between the adiabatic E6

states (Fig. 1), induced by the fast dynamics of d. In the
case of an almost perfectly transmitted channel �t � 1�,
the energy gap 2D

p
1 2 t at d � p is very small. If the

system starts a �d : 0 ! 2p� cycle in the lower adiabatic
state E2, there is a finite probability P for finding it in
the excited adiabatic state E1 after d has diffused across
the region around p at finite speed (Fig. 1). For a large
P the system would follow most of the time just the bal-
listic state B!, making the time-averaged supercurrent re-
sistant to thermal fluctuations, as observed experimentally.
Note that this strong nonequilibrium occupation of the AS
marks the uprising of the dissipative current [19]. We have
extended our model in a minimal way by adding to the
boundary conditions of thermal equilibrium at d � 0, the
possibility of interlevel transitions at d � p , with an em-
pirical, temperature independent probability P. As shown
in Fig. 4, this modified model allows fitting the experi-
mental data reasonably well. The inset of Fig. 4 shows
the best-fit value of P obtained using this procedure, as a
function of the t of the highest transmitted channel. We
note that the standard Landau-Zener theory [19] predicts
much too small values of P given the small drift velocity
of the phase. In fact, the Landau-Zener theory is not di-
rectly applicable to the present situation in which the phase
is not an external parameter swept at a constant rate, but is
instead a dynamical variable undergoing a driven diffusive
motion. A rigorous theory of this dissipative nonadiabatic
mechanism, valid for arbitrary transmission, remains to be
developed for our system, along the lines of [20] or [21],
for example.

In conclusion, superconducting atomic contacts can sus-
tain supercurrents close to that predicted solely from their
mesoscopic transmission set. The value of the supercurrent
is thus related to the dissipative branch of the IV char-
acteristics, like in usual macroscopic Josephson junctions,
although in the latter the contribution of the different chan-
nels cannot be disentangled. More generally, our findings
strongly support the idea of the supercurrent being carried
by Andreev bound states and show that the concepts of
mesoscopic superconductivity can be applied down to the
level of single atom contacts.
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The discreteness of the electronic charge and the stochastic character of electrical

transport give rise to temporal fluctuations, known as shot noise, in the current flowing

through electronic devices. Schottky first evidenced these current fluctuations in vacuum

diodes as early as in 1918 [1]. Many electronic devices, like metal-insulator-metal tunnel

junctions, tunnel diodes, bipolar and FET transistors for example, also show shot noise that

usually limits their performances [2].
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In vacuum diodes, the electrical current is made up of electrons emitted by the

polarized cathode. This stochastic electron emission is a poissonian process and the time

correlation function of the current ( )I t  is then δ -correlated and equal to:

( ) ( ) ( ) ( ),I t I t e I t t tδ′ ′= − (1)

where ...  symbolizes time average. The corresponding spectral density ( )IS ω  defined for

positive pulsation as twice the correlation function Fourier transform is given by:

( )( ) 2 ( ) ( ) 2 ( ) ( 0).IS I t I t e I tω ω′= = >- (2)

This expression reveals the general features of shot noise. The spectral density is frequency

independent1 (white noise). It is proportional to the average current ( )I t , denoted simply I

in the following, and to the charge of the current carriers, namely here the electronic charge

e. The exact value 2eI  is however specific to a perfectly random poissonian process,

commonly referred as poissonian noise, and any correlation in the electronic flow reduces this

value.

Shot noise amplitude is thus sensitive to the charge of the current carriers and to any

physical process that eliminates, generates or modifies randomness in the electronic flow like

statistical correlations, scattering or interactions. Consequently, it reveals transport properties

inaccessible through simple conductance measurements and has been widely investigated in

mesoscopic conductors during the last decade, both theoretically and experimentally (see [3]

for a review).

For example, experiments [4,5] and theoretical calculations [6,7,8,9] on diffusive

wires of various length L  connecting two normal charge reservoirs, reveal how shot noise

can be modified by interactions among electrons and between electrons and phonons. At low

temperature, the length e eL −  over which electrons reach thermal equilibrium among

themselves through inelastic e-e collisions is typically smaller than the length e phL −  over

which electrons relax to the phonon temperature, but higher than the coherence length Lφ  of

                                                          
1 Here the emission process is supposed to be instantaneous and the current is consequently correlatedδ − . A
finite emission time t would introduce a natural cut-off at frequency 1/t for the spectral density.
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electrons. Following [4] one can distinguish several regimes. In the “macroscopic” regime

e phL L− � , the electrons are always in equilibrium at the lattice temperature and the noise

does not depend on the current. In other words there is only equilibrium (Johnson) noise and

no shot-noise, which is essentially an out-of equilibrium phenomenon. In the “interacting hot-

electron” regime e e e phL L L− −� � , electrons are still at equilibrium among themselves but at

a (non-uniform) higher temperature than the phonons. There is then an out of equilibrium

component to the noise, which at high voltages / 1BeV k T�  is equal to ( )3 / 4 2eI , i.e.

below the full Poisson value. In the “independent hot-electron” regime, e eL L Lφ −� � , shot

noise is reduced to a value of ( )1 3 2eI . Finally, the same noise is obtained in the

“mesoscopic” regime, L LφA � � , where A  is the elastic mean-free-path.

As another example of the insight gained on electronic correlations through shot noise

measurements, we mention the detection of quasiparticles of fractional charges in a 2D

electron gas under high magnetic field in the highly correlated N-body state of the fractional

quantum hall effect [10]. The size of the charge “pellets” that make up the current was

directly evidenced in the value of the spectral density of the noise.

The superconducting state is another N-body state which displays subtle electronic

correlations. As already mentioned, the current between two superconductors proceeds

through multiple Andreev reflections (MAR), for which large charge pellets are predicted.

We have carried out experiments on aluminum atomic contacts to evidence these correlations.

Along the way, as the measurement set-up had to be calibrate with enough accuracy, we

tested extensively the basic predictions for the noise in a coherent conductor between normal

charge reservoirs.

In the following, we first present the basic theoretical predictions and some existing

experimental results for shot noise in mesoscopic conductors in the normal (section 4.1) and

superconducting (section 4.2) state, before describing our experimental results (section 4.3).
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4.1 Shot noise in a quantum coherent conductor connecting
normal charge reservoirs

4.1.1 Brief review of the theoretical results

We present in Appendix A the derivation within the framework of the scattering

theory of the fluctuations in a quantum coherent conductor.

The basic ideas are the following. At zero temperature, due to the Pauli principle,

there should be no fluctuations in the occupation numbers of the states in the reservoirs. The

flow emitted by the reservoirs (considered as emitters) towards the conductor should thus be

noiseless. However, at the scattering conductor, coherent superpositions of transmitted and

reflected states are created. At the opposite reservoir, considered this time as a detector, these

superpositions have to collapse, thus leading to fluctuations on the occupation numbers of the

outgoing and incoming fluxes. Only in the case of perfect transmission, the conditions

imposed by the reservoirs and the conductor are compatible. In all other cases, there is shot-

noise across the full structure.

For a quantum coherent conductor characterized by the code 1{ ,..., }Nτ τ , the spectral

density at voltage V  and temperature T  is constant at low frequency and equal to [11,12]:

2
1 0 0

1 1

( , ,{ ,..., }) 2 coth (1 ) 4 .
2

N N

I N i i B i
i iB

eV
S V T eV G k TG

k T
τ τ τ τ τ

= =

 
= − + 

 
∑ ∑ (3)

In the low voltage or high temperature limit / 2 1BeV k T� , (3) reduces to the equilibrium

Johnson-Nyquist spectral density: 0 1
4 4

N

I B i Bi
S k TG k TGτ

=
= =∑ . On the contrary, in the large

voltage or low temperature limit / 2 1BeV k T� , the spectral density increases linearly with

the average current:

( )2
1 1 1

( , ,{ ,..., }) 2 1 / .
N N

I N i ii i
S V T eIτ τ τ τ

= =
− ∑ ∑� (4)
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This is shot noise but reduced from its poissonian value 2eI  by the so-called Fano factor

( ) 2
1 1 1

{ ,..., } 1 /
N N

N i ii i
F τ τ τ τ

= =
= − ∑ ∑ , (5)

which depends only on the mesoscopic code. In the ballistic limit, the Fano factor vanishes,

and so does shot noise, as the noiseless electronic steady stream emitted by the reservoirs is

undisturbed by the coherent scatterer. In the opposite limit 1iτ � , electrons are randomly

transmitted like electrons are emitted in vacuum diodes. In this case the Fano factor is close to

unity and full shot noise 2IS eI=  is recovered.

4.1.2 Shot noise in quantum point contacts tailored in 2D electron gas

Experimentally, the predictions of (3) were first tested at the beginning of the 90’s in

quantum point contacts tailored in 2D electron gas. The observation of conductance

quantization in 1988 established that conduction channels open one by one as the width of

these point contacts is enlarged by means of an electrostatic gate [13]. In other words, for all

settings of the gate the code contains only 1’s and 0’s, but for one channel whose transmission

can be continuously adjusted between 0 and 1. A comparison without any adjustable

parameter between theory and experiment is then possible. First indications of sub-poissonian

noise were first obtained in 1990-91 by Li et al. and Washburn et al. [14,15]. Measurements

were done at low frequency and suffered of a large 1/f noise. Quantitative conclusions were

thus hard to draw. In particular, the measured spectral density was not proportional to the

average current but to its square, probably because the working voltage bias was too high.

Subsequently, experimental techniques were much improved following different strategies to

get rid of 1/f noise. In 1995, Reznikov et al. [16] measured shot noise in the microwave

frequency range of 8-18 GHz, where 1/f noise is negligible, by implementing a cryogenic

microwave amplifier. They observed the linear dependence of the spectral density on the

average current but not full poissonian shot noise in the pinch-off regime ( 1τ � ). Applying a

constant bias current and varying the gate voltage, the spectral density oscillates and shows

minima at integer values of the conductance in units of 0G  where all conduction channels are
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supposed to be perfectly open. The agreement with (3) was however only qualitative. The

first measurements in quantitative agreement were performed in the group of Glattli in 1996

[17], who measured shot noise at low bias voltage and low frequency, getting rid of 1/ f

noise by means of a cross-correlation technique [18]. Their results on a single conduction

channel for different transmission probabilities as well as the crossover from thermal to shot

noise for a particular transmission probability are presented in Figure 1.

4.1.3 Shot noise in gold atomic-size contacts

Considering (3) has well established, van den Brom and van Ruitenbeek reversed the

point of view and performed shot noise measurements in atomic-size contacts in order to get

information about the number of conduction channels and their transmission probabilities,

that is about scattering process by the atomic size-contact [19]. For 27 different gold contacts

with conductances ranging from 00.7G  up to 04.1G , they measured a spectral density well

below the poissonian value, indicating that current is mostly carried by well transmitting

Figure 1: (reproduced from [17]) Left: Spectral density of the QPC voltage fluctuations VS , also expressed

as noise temperature * / 4V BT GS k= , for one conduction channel with transmission probability 0.5τ =  at
T=38, 80, and 180 mK, as a function of the current or the average voltage expressed in relevant temperature

units. The dotted lines are predictions of (3) with no adjustable parameters. Right: Noise temperature versus

bias in temperature units for conductances G=1/6,1/4,1/2, and 3/4 0G  at 38 mK. For clarity, data for

different G are offset by 100 mK. Theory corresponds to (3) with one conduction channel.
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channels. The values of the conductance and the shot noise density are related respectively to

the first and second moment of the transmission probability distribution. Because from two

parameters the code can be disentangled only if the contact contains no more than two

conduction channels, their results were quantitative only for conductances below 02G . For a

single gold atom contact, the conductance is about 0G  and their shot noise measurements

established that the contribution of partially transmitted conduction channels is only a few

percent.

4.2 Shot noise in a quantum coherent conductor when
superconducting reservoirs are involved

4.2.1 Double electronic charge transfer at a NS interface

For voltages smaller than the superconducting gap 2 /∆ e, the microscopic mechanism

of transport through a normal-superconducting interface is Andreev reflection, in which an

electron is reflected as a hole at the interface and a cooper pair is transferred [20,21]. For a

long diffusive normal wire, it has been demonstrated that independently of the transparency

of the normal-superconducting interface, the noise is increased by a factor two with respect to

the fully normal case, i.e. 2 2 3IS eI= × . This doubling of shot noise as well as the crossover

between thermal and shot noise at 2 2BeV k T=  was experimentally evidenced by Jehl et al. in

Cu/Nb junctions [22].

4.2.2 SNS junction

In a SNS junction, Andreev reflections occur at both NS interfaces. As presented in

Appendix B, in the limit where the length of the normal region is much smaller than the

coherence length Lφ , the current at voltages smaller than 2 /e∆  proceeds through MAR

processes. The MAR process of order n , which has a threshold voltage of 2 /ne∆ , transfers a

charge ne between the two superconducting electrodes. However, for a given voltage many
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such processes contribute coherently to the current. The calculation of the effective charge

* 2Iq S I=  as a function of voltage for arbitrary transmission [23,24] leads to a staircase

pattern. As the transmission increases, the staircase pattern is progressively washed out. The

effective charge increases as the voltage decreases and diverges at low voltage like

* 2 /q eV∆� .

In 1997, Dieleman et al. observed a divergence of the effective charge at low voltages

in NbN/MgO/NbN superconductor/ insulator/superconductor tunnel junctions [25]. It is

believed that the measured junctions consisted in fact of parallel SNS point contacts because

the 1 nm thick MgO barrier presented small pinholes. From the relative height of the

differential conductance peaks at subharmonic values of 2∆ , Dieleman and coworkers

determined that the mean transmission of these point contacts was 0.17τ = . They explained

their results developing a semi-empirical theory, but the agreement with the full theory

presented above is only qualitative.

4.3 Shot noise measurements in aluminum atomic-size contacts
both in the normal and in the superconducting state

In the normal state, all our measurements of shot noise as a function of temperature

and bias current are in quantitative agreement with the predictions of the scattering theory

(see Eq. (3)) using the code determined from the current-voltage characteristics in the

superconducting state. Expression (3) was, as presented in 4.1, already tested in 2DEG

quantum point contacts where conduction channels open one by one. However, as one-atom

aluminum contacts contain typically three conduction channels they provide a larger palette

of codes with arbitrary values, and our results can be considered as a broader test of the

general multichannel formula (3).

In the superconducting state we do observe, for contacts containing no high

transmitting channels, that the effective charge * / 2Iq S I=  increases by steps as the voltage

decreases revealing the transfer of multiple charge quanta through MAR processes in the sub-
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gap region. For larger transmission probabilities the staircase pattern progressively washes

out, but the effective charge still strongly increases like * (2 / )q e eV∆� as the voltage

decreases. In all cases, our measurements are in quantitative agreement with the full quantum

theory of MAR [23,24] using the code determined independently from the current-voltage

characteristics in the superconducting state.

All these results were reported in “Multiple-Charge-Quanta Shot noise in

Superconducting Atomic Contacts” by R. Cron, M.F. Goffman, D. Esteve, and C. Urbina,

Phys. Rev. Lett. 86, 1078 (2001), which we reproduce in section 4.3.2. Some complementary

analysis is performed in section 4.3.3, and in section 4.3.1, we describe in detail the

measurement set-up and its calibration.

4.3.1 Measurement of shot noise in atomic-size contacts

The set-up used to measure shot noise is depicted in Figure 2. It consists basically of

one coaxial line, used to bias the on-chip grounded break-junction, and of two bifilar lines

used to obtain two independent measurements of the voltage across with two sets of low-

noise amplifiers. With this set-up current fluctuations are thus not directly measured, but

instead inferred from the fluctuations of the voltage across the contact. The current and

voltage fluctuations spectral densities, IS  and VS  respectively, are related, at a given voltage

V  through 2( ) ( )V D IS V R S V= , where ( ) ( )DR V V I V= ∂ ∂  is the differential resistance. In the

normal state, this differential resistance is essentially constant in the voltage range in which

the experiments are carried out2, and equals NR , the normal resistance of the contact. In the

superconducting state, the differential resistance can be highly non-linear.

All noise sources along the measurement lines, like the Johnson-Nyquist thermal noise

of the resistors or the current and voltage noise of the amplifiers input stages, induce

fluctuations that poison the shot noise signal. Because of that, the measurement lines and the

bias line were carefully designed and built so as to limit and keep under control this additional

                                                          
2 Actually, the differential resistance presents small amplitude fluctuations (typically less than 1%) as a function
of voltage. These fluctuations are well understood as arising from quantum interference effects.
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noise. In the following, we first describe the details of the measurement set-up. Then we

explain how we characterize it taking into account all noise sources and the attenuation along

the lines. This characterization allows us to extract from the measured total voltage

fluctuations, the fluctuations of the current through the atomic-size contact.

4.3.1.1 Description of the measurement set-up

The bias current is obtained using a 1ΜΩ  resistor thermally anchored to the “1Κ

pot”, whose actual temperature is between 1.2 and 1.5 K. The room temperature part of the

bias line is simplified as much as possible to avoid picking up from external sources. Except

for the power line harmonics, the voltage background noise on the sample was checked to be

identical with or without this part of the bias line, independently of the contact resistance.

Two voltage sources produce the bias: a low-noise Yokagawa voltage source provides the dc

bias, and a Stanford Research SR830 lock-in amplifier provides an ac voltage used to measure

the differential conductance. These signals are added using an operational amplifier summing

circuit whose ground is decoupled from the power line ground. The resulting signal is fed to

the biasing resistor through a 50Ω  adjustable attenuator. The latter is placed as close as

possible to the feed-through connection on top of the cryostat (which acts as a Faraday cage),

to avoid picking up too much noise through the cables. The bias current (both dc and ac) is

deduced from the values of the input voltage, the voltage measured on the sample and the

total resistance of the filters and resistors in the bias line.
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Figure 2:  Schematic representation of the measurement set-up consisting of a coaxial line to bias the

atomic-size contact (two triangle symbol) and of two bifilar lines to measure twice the voltage across it.

The spectrum analyzer calculates the cross-correlation of these two signals.
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The voltage across the atomic-size contact is measured twice using two bifilar lines.

As close as possible to the feedthroughs that take these two lines out of the cryostat, the

signals are amplified by identical cascades of two low-noise battery-powered pre-amplifiers: a

x100 fixed gain NF LI75A, followed by a Stanford SR560 of adjustable gain. The

connections from the top of the dilution refrigerator to the pre-amplifiers are made out of

semi-rigid coaxial cables. The real part of the cross-correlation spectrum 
1 2

( )V VS ν  of the two

amplified signals 1( )V t  and 2( )V t  is calculated in real time by a spectrum analyzer SR780:

( ) ( )
1 2 1 2( ) Re ( ( )) ( ( ))V VS V t V tν ν ν= ⋅- - . (6)

where - is the fast Fourier transform and ...  refers to the vector averaging over successive

temporal traces. This cross-correlation technique allows one to get rid of the 1/f  noise

coming from the preamplifiers and the measurement lines that poison the white noise signal.

Typically, the spectra were measured over 800 points in a frequency window [ ]360,3560 Hz

and averaged 1000 times in 4 min. At the same time, the lock-in measures the ac voltage

signal from which the differential resistance is deduced.

4.3.1.2 Characterization of the measurement set-up

Using the broadband chirp source of the spectrum analyzer, we measured for

frequencies up to 100 kHz the transfer function of each measurement line. Essentially, they

behave as one-pole RC filters with R and C being respectively the total resistance and the

total capacitance of the lines. The microfabricated filter provides most of this resistance,

whereas the lossy lines account for most of the capacitance. The electrical circuit depicted in

Figure 3, where all measurement lines contain a RC filter, is thus a good model for the

measurement set-up. The noise introduced by the line resistances andL BR r  is negligible as

compared to the other noise sources and is thus not taken into account. Furthermore, the

capacitance of the first lossy cable stage (from 300K to 1K) on the bias line is not taken into

account because the bias resistance is much higher than all other resistances in the line.



109

The exact expression of 1 2andV V  is a somewhat cumbersome combination of RCω

like terms of all resistances (except BR ) and capacitances involved in the model. However, in

all our measurements the atomic-size resistance DR  was larger than andL BR r  and thus

DR Cω  terms are dominant. Neglecting all terms two orders of magnitude smaller than these

ones leads to a relatively simple expressions for 1 2andV V :

( ) ( ) ( ) ( )( ) ( )
[ ]

( ) ( ) ( ) ( ) ( )( ) ( )
[ ]

1 2 1
1 1

1 2 2
2 2

( )
1 ( 2 ) 2

,
1 ( 2 ) 2

D B L

D B
D J L B L L B B

B B

D B L

D B
D J L B L L B B

B B

R i i i i R i
V

R r
j R C C C R C r C

R R

R i i i i R i
V

R r
j R C C C R C r C

R R

ω ω ω ω ω
ω υ

ω

ω ω ω ω ω
ω υ

ω

+ + + +
= +

+ + + + + + +

+ + + +
= +

+ + + + + + +

(7)

where only the fluctuating part of 1 2andV V  is taken into account. The vector averaging of the

cross correlation 1 2VV  eliminates components of the two voltage signals that do not have a

constant phase relationship between them. Consequently, only X X  like terms do not

vanish and the contribution of the voltage noise sources of the amplifiers and measurement

lines, which contain an awkward 1/f component, are consequently averaged to zero.

Figure 3: Model of the measurement set-up. The contact is characterized by its differential resistance

( ) ( )DR V V I V= ∂ ∂ , its capacitance JC  dominated by the capacitance of the on-chip connection pads, and

the noise source i , which is the signal to measure. The bias line is characterized by the bias resistor BR , its

current noise source Bi , and the total resistance Br  and capacitance BC  of the second lossy cable stage and

microfabricated filter. The total resistance and capacitance along the voltage lines are respectively LR  and

LC . The current noise sources of the NF preamplifiers are denoted 1 2andi i . The total voltage noise

sources of the pre-amplifiers and of the measurement lines are denoted 1 2andυ υ .
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The cross-correlation thus writes:

( ) ( )
( ) ( )

1 2

2

1 2 2
2 2

2 2
Re ,

1 2 ( 2 ) 2

D I B Amp D L Amp

V V

D B
D J L B L L B B

B B

R S S S R R S
S VV

R r
R C C C R C r C

R R

ν
πν

+ + +
 = =   

+ + + + + + + 
 

(8)

where ( ) ( )IS i iω ω= , ( ) ( )B B BS i iω ω=  and ( ) ( ) ( ) ( )1 1 2 2AmpS i i i iω ω ω ω= =  are the

spectral densities of the various noise sources. The contact differential resistance and the

resistances of the voltage lines bring out these current noise sources as fluctuations of

1 2andV V  whose amplitude is attenuated through the RC filters of the lines.

In the measurement frequency window [ ]360,3560 Hz , the terms andL L B BR C r C  in

the denominator are usually negligible. Indeed, they are of the same order of magnitude as the

DR C dominant terms only when the contact resistance is below a few kiloohms. But in this

low resistance regime, all these terms are negligible in the whole frequency range. The same

argument works for B Br R and (8) simplifies into:

( )
( )

( )
1 2

2

1 12, ,{ ,..., }, , ,{ ,..., }, 2 1 ,
1 2

L
V V N I N B Amp

tot

R R
S V T S V T S S

RR C
τ τ ν τ τ ν

πν

  
= + + +    +   

&

&&

(9)

where ( )B D B DR R R R R= +
&

 is the resistance of the parallel combination of BR  and DR , and

( )2tot J L BC C C C= + +  is the total capacitance. This simplified expression retains the relevant

parameters of the set-up within the contact resistance range and frequency window

corresponding to the measurements. The current fluctuation spectrum, which depends on the

DC bias voltage, the temperature and the mesoscopic code of the involved atomic-size

contact, can thus be extracted from the measured cross-correlation spectrum 
1 2V VS  provided

that the prefactor 2 2/(1 (2 ) )totR R Cπν+
& &

 and the spectral densities AmpS  and BS  are well

known. The determination of these factors, and the accuracy on their determination, is

described in the Annex.
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4.3.1.3 Current fluctuations spectrum deduced from the measured voltage spectrum

The spectrum of the fluctuations of the current through the atomic-size contact is thus

related to the measured ( )
1 2 1, ,{ ,..., },V V NS V T τ τ ν  by:

( ) ( ) ( )
1 2

2

1 12

1 2
, ,{ ,..., }, , ,{ ,..., }, 2 1 .tot L

I N V V N B Amp

R C R
S V T S V T S S

R R

πν
τ τ ν τ τ ν

+  
= − − +   

&

& &

(10)

Figure 4 shows for one particular contact a raw spectrum ( )
1 2V VS ν  together with the

corresponding ( )IS ν . The values of the parameters used for the data treatment as well as the

uncertainty in their determination are recapitulated in the following table.

Data treatment parameter Value and incertitude

Bias resistance ( )31.065 510 MBR −= ± Ω

Spectral density of the Johnson-
Nyquist current source of the bias

resistor
( ) 29 27 1 10 A /HzBS −= ±

Total Capacitance (1.16 0.05) nFtotC = ±

Resistance of the voltage
measurement lines. (1.60 0.05) kLR = ± Ω

Spectral density of the current
noise source of the NF-

preamplifiers.

( ) ( ) 282.3 0.2 10AmpS ν −= ±

( ) 32 29.06 0.06 10 A /Hzν−+ ± ×

Table 1: Measured values of the parameters used to extract the spectrum of the current fluctuations ( )IS ν  from
the raw spectrum ( )

1 2V VS ν .
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Except for the peaks due to the power line harmonics and to microphonics, the current

fluctuations spectra are white within our experiment accuracy. The average value

{ }( ), ,I iS V T τ  is determined as the mean value of the gaussian fit of the spectrum ( )IS ν .

This mean value is affected by both statistical and systematic errors. The latter arise from the

uncertainties in the determination of the data treatment parameters. To provide the bounds of

the systematic errors, the raw spectrum ( )
1 2V VS ν  is treated choosing the set of parameters,

within their uncertainty range, which maximize and minimize the current spectral density.

The two resulting average values, I MAX
S  and I MIN

S , give respectively the upper and the

lower bounds for IS  due to the systematic uncertainties. Taking also into account the

                                                          
3 The highest peaks have been removed for clarity.

Figure 4: (Top) Raw cross-correlation spectrum3 of the fluctuations of the voltage across an atomic-size

contact with 48270 1%DR = ± Ω  at 20 mK in the normal state. The sharp peaks correspond to harmonics of

the power line while the wider ones (around 2 kHz and 3.25 kHz ) correspond to microphonics. (Bottom left)

Corresponding current fluctuations spectrum calculated using Eq. (10). (Bottom right) Spectrum histogram

and its gaussian fit from which the average value of the current fluctuation spectrum IS  is determined.
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statistical error, the uncertainty ISδ  on IS  is equal to:

,
2

I IMAX MIN I
I

bin

S S S
S

N
δ

− ∆= + (11)

where IS∆  is the standard deviation of the current spectrum gaussian fit and binN  the number

of points in the spectrum that do not correspond to the spurious peaks (a lower bound for this

number is 700binN � ).

Figure 5 shows the mean value IS  measured in the normal state, at 20 mK  and zero

bias voltage, for ten contacts with resistance ranging from 5 kΩ  up to65 kΩ . We also show

the predictions of Eq. (3) that corresponds to the Johnson-Nyquist thermal noise 4 /B Dk T R .

The agreement is quantitative within our measurement accuracy for the whole range of

contact resistance, and the uncertainty is almost constant. Note however that for contact

resistances less than one kiloohm the voltage fluctuations become very small and the

measured voltage spectrum and consequently IS  is larger than expected from Exp. (9).

Furthermore, for resistances much larger than a hundred kiloohms the attenuation along the

measurement lines becomes very large and the measured thermal equilibrium IS  deviates

also from the 4 /B Dk T R  value.
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Figure 5: Average equilibrium noiseIS  (dots), measured at 20 mK, for several contacts in the normal

state. The full line corresponds to the predicted Jonhson-Nyquist thermal noise.
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Nevertheless almost all of our measurements were in the 5 100 k− Ω  contact

resistance range, for which the predictions of Exp. (9) are in quantitative agreement with the

equilibrium spectra. Therefore, we will use this expression also in the non equilibrium case

( 0V ≠ ) to extract from the measured spectrum ( )
1 2V VS ν  the current fluctuation spectrum

( )IS ν .

4.3.2 Multiple-Charge-Quanta Shot Noise in Superconducting Atomic
contacts (reproduced from Phys. Rev. Lett. 86, 4104 (2001))
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Multiple-Charge-Quanta Shot Noise in Superconducting Atomic Contacts

R. Cron, M. F. Goffman, D. Esteve, and C. Urbina
Service de Physique de l’Etat Condensé, Commissariat à l’Energie Atomique, Saclay, F-91191 Gif-sur-Yvette Cedex, France

(Received 21 December 2000)

We have measured shot noise in aluminum atomic point contacts containing a small number of con-
duction channels of known transmissions. In the normal state, we find that the noise power is reduced
from its Poissonian value and reaches the partition limit, as calculated from the transmissions. In the
superconducting state, the noise reveals the large effective charge associated with each elementary trans-
fer process, in excellent agreement with the predictions of the quantum theory of multiple Andreev
reflections.

DOI: 10.1103/PhysRevLett.86.4104 PACS numbers: 74.50.+r, 73.23.–b, 73.40.Jn, 74.40.+k

As shown already in 1924 by Shottky, the granularity of
electricity gives rise to fluctuations, known as “shot noise,”
in the electrical current through electronic devices. Lately,
a great deal of activity has been devoted to this nonequi-
librium noise in coherent nanostructures connecting two
charge reservoirs. It is by now evident that even its low-
frequency power spectrum carries a wealth of information
on the interactions and quantum correlations between the
electrons [1,2] in both the charge reservoirs and the nano-
structure itself. When the current I is made up from per-
fectly independent shots, the white noise power spectrum
assumes the well-known Poissonian form SI � 2qI, where
q is the “effective charge” transferred at each shot. In the
case of normal, i.e., nonsuperconducting, metal reservoirs,
the charge of the shots is simply the electron charge e.
Interactions and correlations lead to large deviations from
this value. One of the most striking examples is the frac-
tional charge of quasiparticles in the highly correlated
electronic state achieved in two-dimensional electronic
systems under very high magnetic fields, which was
recently evidenced through noise measurements [3]. The
mechanism giving rise to superconductivity is another
source of correlations among electrons. How big are the
shots in the current when superconducting reservoirs are
involved? The current between a superconducting reser-
voir and a normal one connected by a short normal wire
proceeds through the process of Andreev reflection in
which charge is transferred in shots of 2e, thus resulting in
a doubling of the noise with respect to the normal case [4].
When two superconducting electrodes connected through
structures such as tunnel junctions or short weak links
are voltage biased on an energy scale eV smaller than
the superconducting gap D, the current proceeds through
multiple Andreev reflections (MAR) [5]. In a MAR
process of order n, which has a threshold voltage of V �
2D�ne, two elementary excitations are created in the
electrodes while a charge ne is transferred. For a given
voltage many such processes can contribute to the current,
but roughly speaking, “giant” shots, with an effective
charge q � e�1 1 2D�eV �, are predicted at subgap
energies [6]. The exact value of q, like all other transport
properties of a coherent nanostructure, depends on its

“mesoscopic pin code,” i.e., the set of transmission
coefficients �ti� characterizing its conduction channels.
A full quantum theory has been developed for the fun-
damental case of a single conduction channel connecting
two superconducting electrodes [7,8] which predicts the
voltage and temperature dependence of the current noise
power spectral density sI �V , T , t�, and therefore the size
of the shots, for arbitrary transmission t. In this Letter,
we present an experiment on well-characterized coherent
nanostructures, namely, atomic point contacts between
two superconducting electrodes, which tests quantitatively
these theoretical predictions.

Using nanofabricated break junctions, we produce alu-
minum atomic point contacts whose sizes can be adjusted
in situ through a mechanical control system [9]. The
samples are mounted in a vacuum can and cooled below
1 K. Figure 1 shows schematically the setup used to mea-
sure both the IVs and the noise. The contact is current
biased (at low frequency) through a cold resistor RB. The
bias and the voltage measurement lines are filtered by a
series of microwave cryogenic distributed lossy filters, an

FIG. 1. Schematic experimental setup. An atomic contact
(double triangle symbol), of dynamic resistance RD , is current
biased through RB � 1.065 MV. The voltage V across the
contact is measured by two low noise preamplifiers through
two nominally identical lossy lines. RL � �1.60 6 0.05� kV
is the total resistance of each line. C � �1.16 6 0.05� nF is
the total capacitance introduced by the setup across the contact.
The spectrum analyzer measures the cross-correlation spectrum
of the two voltage lines. The Si�i � B, Amp1, Amp2� are the
known current noise sources associated with the bias resistor
and the two amplifiers. SI represents the signal of interest, i.e.,
the shot noise associated with the current through the contact.
Sy1 and Sy2 represent the voltage noise sources of each line
(amplifier 1 connecting leads).

4104 0031-9007�01�86(18)�4104(4)$15.00 © 2001 The American Physical Society
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essential requirement in order to observe MAR processes.
After establishing a contact, which can be held for days, its
IV characteristic is measured in the superconducting state
(see inset of Fig. 4). Its code�ti� is then determined by
decomposing this“mesoscopicfingerprint” [10] into the
contributions of independent channels as calculated by the
theory of quantum coherent MAR [11]. We work with
the smallest possible contacts, which typically accommo-
date in aluminum three channels for a total conductance
G � G0

P
i ti of the order of the conductance quantum

G0 � 2e2�h [10]. Experiments in the normal state are
done after applying a magneticfield of 50 mT, which does
not affect the transmissions.

The voltage noise across the contact is measured si-
multaneously by two identical cascades of low noise am-
plifiers, and the cross spectrumSV1V2 �n� of these two
noise signals is calculated by a spectrum analyzer. This
“four-point” noise measurement technique eliminates the
voltage noise contributions of the resistive leads and of
the preamplifiers [12]. We show in Fig. 2a examples of
raw spectraSV1V2 �n� [13] of the total noise measured at
equilibrium �I � V � 0� and at the lowest temperature
�T � 20 mK� for several contacts in the normal state. The
spectra were measured over 800 points in a frequency win-
dow from 360 to 3560 Hz, and averaged 1000 times in
typically 4 min. In this low-frequency window, the mea-
surement lines behave as one-pole RCfilters, and the cross
spectrumSV1V2 �n� adopts the form

SV1V2�n� �
R2
k

1 1 �2pnRkC�2

3

∑
SI 1 SB 1 2

µ
1 1

RL

Rk

∂
SAmp

∏
. (1)

Here Rk � RBRD��RB 1 RD�, where RD�V � �
≠V�≠I�V � is the dynamic resistance of the contact, which
is measured simultaneously with the noise using a lock-in
technique. C is the total capacitance introduced by the
setup across the contact, andRL is the total resistance of
each measurement line. Besides the noise of interest, i.e.,
the intrinsic current noise of the contactSI , two sources
of background current noise contribute to the signal:
the preamplifiers current noiseSAmp�n� and the white
thermal current noiseSB of the bias resistor, both of which
were measured independently.SAmp�n� presents a linear
frequency dependence almost identical for the two lines.
The solid lines in Fig. 2a correspond to (1) forV � 0,
in which case the contact contributes just its equilib-
rium or Johnson-Nyquist white current noiseSI �0, T � �
4kBT�RD. All measured equilibrium spectra are in
agreement with what we expect from the independent
characterization of our measurement setup. Therefore,
in what follows we use (1) to extract from the measured
SV1V2 �n� the shot noise spectral densitySI �V , T �, for
all contacts in both the normal and the superconducting
states. We show in Fig. 2b a typical result of this analysis,
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FIG. 2. (a) Measured (symbols) and calculated (solid lines)
equilibrium �V � I � 0� cross spectraSV1V2 �n� for four differ-
ent atomic contacts in the normal state (from top to bottom:
RD � 85.2, 64, 42,8.5 kV). The calculated spectra include the
Johnson-Nyquist noise of the contacts, and the independently
measured contributions of preamplifiers and bias-line current
noise. They also take into account the calibrated low-passfilter-
ing of the lines. (b) The shot noise power spectrumSI ��� of
the contact is obtained by subtracting from the total measured
current noiseSTotal ��� the two experimental sources of noise
SAmp andSB. For these data,RD � 40.8 kV andI � 2.4 nA.

as well as the two background contributions which are
subtracted from the raw data according to (1). Within the
experimental accuracy, wefind that shot noise is indeed
white. The average value�SI � is the mean value of a
Gaussianfit of the spectrum histogram.

The measured voltage dependence of�SI � is shown in
Fig. 3a for a typical contact in the normal state, at three
different temperatures, together with the predictions of the
theory of noise for quantum coherent structures [14,15],

SI �V , T , �ti�� � 2eV coth

µ
eV

2kBT

∂
G0

X
i

ti�1 2 ti�

1 4kBTG0

X
i

t2
i , (2)

using the independently measured mesoscopic pin code
�ti�. The effective noise temperature is defined asT� �
SI�4kBG. At V � 0, the noise temperature is equal toT .
For eV ¿ kBT , the noise is dominated by the nonequilib-
rium part, i.e., shot noise, and becomes linear inV . At
T � 0, the predicted effective noise temperature reduces
to

T� �
eV
2kB

√
1 2

P
i t2

iP
i ti

!
, (3)

which is lower than the Poisson limiteV�2kB by the Fano
factor F��ti�� � 1 2

P
i t2

i �
P

i ti. The noise measured
at the lowest temperature for four contacts having differ-
ent mesoscopic pin codes is shown in Fig. 3b, together
with the theoretical predictions of (2). For all contacts
the noise measured in the normal state is sub-Poissonian
by a Fano factor, in agreement with the�ti� determined
in the superconducting state. This reduction of the noise,
which reflects the absence offluctuations in the occupation

4105



117

VOLUME 86, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 APRIL 2001

-2 -1 0 1 2

0.000

0.001

0.002

0.003

0.004

0.005

0.006 (b)(a)

 

 〈
S

I〉 
(p

A
2
/H

z)

eV/2kB (K)
-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

 

 T
*(K

)

eV/2kB (K)

FIG. 3. (a) Symbols: measured average current noise power
density �SI � and noise temperatureT� as a function of re-
duced voltage, for a contact in the normal state at three dif-
ferent temperatures (from bottom to top: 20, 428, 765 mK).
The solid lines are the predictions of (2), for the mesoscopic pin
code�0.21, 0.20, 0.20� as measured independently from theIV
in the superconducting state. (b) Symbols: measured effec-
tive noise temperatureT� versus reduced voltage for four dif-
ferent contacts in the normal state atT � 20 mK. The solid
lines are predictions of (2) for the corresponding mesoscopic pin
codes (from top to bottom:�0.21, 0.20, 0.20�, �0.40, 0.27, 0.03�,
�0.68, 0.25, 0.22�, �0.996, 0.26�). The dashed line is the Poisson
limit.

numbers in the reservoirs, has already been observed in
quantum point contacts tailored in 2DEG [16]. In those
systems the noise originates essentially from a single chan-
nel, all the others being perfectly closed or perfectly open.
On the contrary, in atomic contacts, one can have a large
palette of mesoscopic pin codes, and our results constitute
a first test of the general multichannel formula [17].

Having checked in the normal state the consistency
between the measured shot noise reduction factor and the
mesoscopic pin code determined from theIV ’s in the su-
perconducting state, we then measured the noise in the
superconducting state. We compare in Fig. 4, for one
typical contact, the measured and the predicted�SI � �V �,
in both the normal and the superconducting states. In the
latter the noise is markedly nonlinear, and for high enough
voltages it is above the one measured in the former.
Note that these nonlinearities are not an artifact due to the
voltage dependence of the dynamical resistanceRD�V �
entering (1), sinceRD�V � is measured with sufficient
accuracy. The only ingredient injected into the calculated
curves,SI �V , T , �ti�� �

P
i sI �V , T , ti�, is the mesoscopic

pin code�ti� extracted from theIV (see inset of Fig. 4).
The agreement between experiment and the theory of
MAR shot noise [7,8] is quantitative. The excess noise
observed at high voltages�V ¿ 2D� in the supercon-
ducting state with respect to the normal state arises
from the well-known excess current resulting from MAR
processes [18].

The highly nonlinear dependence of the noise forV ,
2D reveals the richness of the electronic transport in the su-
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FIG. 4. Symbols: measured average current noise power den-
sity versus voltage, for a typical contact both in the normal
state (triangles) and in the superconducting state (circles). Volt-
age is normalized to the measured superconducting gapD�e 	
185 mV. The solid lines are theoretical predictions, using (2)
for the normal state, and using MAR noise theory for the super-
conducting state. The gray areas represent the fuzziness on the
predicted curves due to uncertainties in the determination of the
mesoscopic pin code. Inset: superconducting stateIV in reduced
units. The solid line is afit to measurements (circles) using [11]
and provides the mesoscopic pin code�0.40, 0.27, 0.03� and its
uncertainty used in the main panel.

perconducting state. This is visualized in Fig. 5, where the
measured and the calculated effective chargeq � SI�2I
of the “shots” is shown as a function of inverse voltage,
for four contacts spanning a large variety of mesoscopic
pin codes. As can be seen,q�e does not necessarily cor-
respond to an integer, and for a given voltage it strongly
depends on the transmission of the different channels. This
is due to the interfering contributions of many MAR pro-
cesses of different orders. Only for very smallt’s, i.e.,
in the tunnel regime, one expects the shots to correspond
to an integer number of electrons [7,8]. Although the sen-
sitivity of this measurement scheme does not allow us to
reach this limit, the emergence of a staircase pattern shows
the successive predominant role of increasing order MAR
processes as the voltage decreases. Note that, for some pa-
rameters, one can haveq�e , 1. This illustrates the fact
that, as defined, the shot size not only reflects the supercon-
ducting correlations, but also the more trivial dependence
of partition noise on transmissions. In other words, the
Fano factor is also at play in the superconducting state.
Indeed, in the limitV ! `, one expectsq�e ! F��ti��.
At low voltages, the effective charge diverges (see inset of
Fig. 5 for contacts containing an almost ballistic channel),
as has already been observed in tunnel junctions containing
small defects in the insulating barrier [19] and in diffusive
normal weak links [20].

We draw the following conclusions from our results.
First, shot noise measurements in the normal state are in
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FIG. 5. Symbols: effective sizeq�e � SI�2eI of the noise
shots versus reduced inverse voltage, for three different contacts
in the superconducting state. These symbols are experimental
results and the lines are predictions of the MAR theory for noise,
using the mesoscopic pin codes determined fromfits of the
IV 0s. From top to bottom:�0.40, 0.27, 0.03�, �0.68, 0.25, 0.22�,
�0.98, 0.55, 0.24, 0.22�. Inset: data for two contacts containing
an almost ballistic channel (top�0.98, 0.55, 0.24, 0.22�, bottom
�0.996, 0.26�) shown on a larger scale.

quantitative agreement with the independent electron mul-
tichannel theory using the�ti� determined in the super-
conducting state. Second, our results directly show that
at finite bias voltage the microscopic current carrying pro-
cesses between two superconductors do carry large effec-
tive charges. Furthermore, our results are in quantitative
agreement with the predictions of the full quantum the-
ory of MAR through a single channel. More generally,
thesefindings, together with our previous measurements
of Josephson supercurrents [21] and current-voltage char-
acteristics [10] of superconducting atomic contacts, con-
stitute a comprehensive positive test of the microscopic
theory of superconducting transport, andfirmly establish
the central role of multiple Andreev reflections.
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4.3.3 Complementary analysis

4.3.3.1 Normal state

To be quantitative, we present in the following table the Fano factor predicted from

the mesoscopic PIN code using Exp.(5) and the measured one for the atomic-size contacts

presented in Figure 3 of the article. The measured Fano factor is defined as the slope of the

curve ( / 2 )[ ]IS e I  at large current, its uncertainty being negligible compared to the one of

the calculated factor. The measured factor is in agreement with the predicted one within our

experimental accuracy.

Mesoscopic PIN code
Calculated

Fano factor

Measured

Fano factor

{0.21,0.20,0.20} 0.80 0.02± 0.79

{0.40,0.27,0.03} 0.66 0.02± 0.65

{0.68,0.25,0.22} 0.50 0.01± 0.49

{0.996,0.26} 0.16 0.01± 0.17

4.3.3.2 Superconducting state

We plot in Figure 6 the same data as in Figure 5 of the article for three of the four

atomic-size contacts, but presented in terms of the current fluctuation spectral density IS  as

a function of the reduced voltage /eV ∆ . The shape of the curves and the intensity of the

fluctuations strongly depend on the mesoscopic code. The “circle contact” that contain one

almost ballistic channel and one poorly  transmitting one ( 0.26τ = ) has almost for all

voltages a spectral density much smaller than the two others. Indeed, the spectral density in
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both channels is small: for the first one ( 0.996τ = ) because of its high transmission, and for

the second one because it carries a small part of the current. The “square contact” present also

one channel with high transmission ( 0.98τ = ), but in addition three not so well transmitting

ones. Together, they contribute with a slightly larger weight to the conductance and thus carry

almost the same amount of current which leads to a total spectral density even larger than the

“diamond contact” that contains no ballistic channel. However, both the circle and square

contacts display a strong increase at low voltages, the signature of their highly transmitting

channel. The predictions of the MAR theory account well for this richness.
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Figure 6: Dots: Measured current fluctuation spectral density as a function of reduced voltage of

three atomic-size contacts. Mesoscopic PIN codes: {0.98,0.55,0.24,0.22} (squares), {0.68,0.25,0.22}

(diamonds), {0.996,0.26} (circles). Full curves: theoretical predictions of the MAR theory using the

mesoscopic code.



121

Annex    Determination of the measurement set-up parameters used in
the treatment of the noise spectra

Five parameters enter the procedure used to extract the spectrum of the current

fluctuations ( )IS ν  from the raw spectrum ( )
1 2V VS ν :

1) The bias resistance BR :

The bias resistance was measured at low temperature: 31.065 5 10 M
BR −= ± × .

2) The spectral density of the bias resistor current fluctuation BS :

The bias resistor is thermally anchored to the 1K pot of the refrigerator. Its temperature is thus

expected to be 1.3 0.2 KBT = ±  leading to ( ) 29 24 / 7 1 10 A /HzB B B BS k T R −= = ± .

3) The total capacitance totC : The total capacitance is equal to 2tot J L BC C C C= + + .

The capacitances of the different lines were measured at room temperature, 450 10 pFLC = ±

and 165 10 pFBC = ± , and are not expected to change a lot at low temperature. The on-chip

capacitance across the junction was measured to be 60 5 pFJC = ± . On the other hand, one

can determine totC  from fits of the frequency dependence of the ( )
1 2V VS ν spectra for various

values of the contact resistance and of the bias current (within the model described by Eq.(9)).

We found 1.16 0.05 nFtotC = ± , in reasonable agreement with the values measured

independently.

 4) The voltage line resistance LR :

The voltage lines resistance was measured at low temperature: 1600 50
LR = ± .

5) Spectral density of the current noise source of the NF-preamplifiers AmpS :

The input current noise of the NF preamplifiers is determined by measuring the output

voltage fluctuations when the preamplifier is loaded with a high resistance. The preamplifier

input stage is characterized by its gain G , input resistance inR , and capacitance inC , and its

current ni  and voltage nυ  noise sources (see Figure 7).
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If a voltage source SV  with output impedance SR  is connected to the preamplifier, the output

voltage is equal to:

,
1

par S
out n n

par in S

R V
V G i

jR C R
υ

ω
  

= + +   +   
(12)

where ( )par in S in SR R R R R= + . If SV  is just the Johnson-Nyquist voltage noise source of SR ,

the output spectral density outS  is:

( )
2

2
2

4
.

1

par B
out V Amp

Spar in

R k T
S G S S

RR C ω

   = + +  +   
(13)

Here VS  is the spectral density of nυ . It is measured by short circuiting the input, in which

case 2
out VS G S= . The measured spectral density VS  is almost identical for the two NF

preamplifiers. It contains a white noise component and a 1 f one. A best fit gives for the

relevant frequency window the function:

( )
16

18 2(4.5 0.5)10
(2.20 0.0510 ) V /HzVS ν

ν

−
− ±= ± + .

The current noise spectral density is deduced from (13) in two steps. First the transfer

function ( )22 /1par par inR R C ω+  is measured using a broadband chirp source in series with SR .

In a second time, the spectral density outS  of the output voltage outV  is measured by the

Figure 7: Model of the input stage of the NF preamplifier (dashed rectangle). The input resistance is

100 M
inR �  and the input capacitance is 30 pFinC � . In order to measure the current noise source, a

high source resistance SR is connected.
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spectrum analyzer SR780 with just the source resistance SR  connected to the preamplifier.

Two source resistances were used, 1.522 M
 DQG�������0SR = Ω , leading to the same

value of AmpS . It is almost identical for both preamplifiers and increases roughly linearly with

frequency. A linear fitting procedure leads to the value:

( ) ( ) ( )28 32 22.28 0.2 10 9.06 0.06 10 A /HzAmpS ν ν− −= ± + ± .

This linear frequency dependence arises from the white voltage noise in the channel of the

input transistors, which is converted into an input current noise source through a capacitive

coupling.
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Dynamical Coulomb blockade is a quantum effect which appears when a quantum

coherent conductor is connected in series with an electromagnetic impedance [1]. It manifests

itself as a reduction of the conductance of the conductor at small bias voltages and low

temperatures. Dynamical Coulomb blockade was first observed and understood within the

framework of single electron tunneling in small capacitance metallic tunnel junctions with a

large number of weakly transmitting channels. When an electron tunnels through the

insulating barrier, an electronic charge e is transferred very suddenly because the barrier is

short (a few nanometers at most), and the electron energy several eV below the potential

barrier. This current pulse can excite the electromagnetic environment of the junction, which
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takes in that case a fraction of the energy available from the voltage source for tunneling:

electron tunneling is inelastic, and the reduced phase space available for the transmitted

electron results in a reduction of the tunneling rate. This quantum effect is large when the

impedance becomes comparable to the resistance quantum.

Recently, a connection between this blockade phenomenon and shot noise has been

put forward by Levy-Yeyati et al. [2]. Indeed, shot noise in a tunnel junction also results from

the random current pulses due to tunneling of single electrons. How deep this relation is? One

might wonder in particular if Coulomb blockade is also suppressed, like shot noise is, in an

element with perfectly transmitting channels. By treating Coulomb blockade as the response

of the current to the insertion of a small impedance in the tunnel junction circuit, Levy-Yeyati

et al. could solve the case of a single channel tunnel contact with arbitrary transmission. Their

main prediction is that Coulomb blockade is suppressed by precisely the same factor (1 )τ−

as shot noise, which points to an intimate relationship between Coulomb blockade and shot

noise.

In this Chapter we present a first and somewhat preliminary experimental

investigation of Coulomb blockade in the high transmission regime. It is organized as follows:

first, the standard theory of Coulomb blockade is summarized, and the recent predictions for a

single channel with arbitrary transmission are given. Our results on dynamical Coulomb

blockade in aluminum atomic-size contacts are then presented and compared to these

predictions.

5.1 Coulomb blockade of single electron tunneling

Here we briefly overview the calculation of dynamical Coulomb blockade in tunnel

junctions. For detailed calculations, the reader is referred to Ref. [1].
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5.1.1 Hamiltonian of a tunnel junction embedded in an electromagnetic
environment

The generic circuit displaying Coulomb blockade is sketched in Figure 1. A tunnel

junction is placed in series with an electromagnetic impedance ( )seriesZ ω  and a voltage source

V . The hamiltonian of this system writes:

ˆ ˆ ˆ ˆ
qp env T TH H H H eVN= + + − . (1)

��7KH�ILUVW�WHUP� ˆ
qpH describes the two uncoupled electrodes:

, , , , , , , ,

, ,

ˆ ,qp k L k L k k R k R k

k k

H c c c cσ σ σ σ
σ σ

ε ε+ += +∑ ∑ (2)

where ( ), ,L R kc σ
+  and ( ), ,L R kc σ  denote respectively the creation and annihilation operator of a

quasiparticle labeled by the quantum number k  and spin σ  in the left (L) and right (R)

electrodes, and kε  their energy.

��7KH�VHFRQG�WHUP� ˆ
envH  is the hamiltonian of the electromagnetic environment of the

tunnel element. This environment is fully described by the impedance ( )envZ ω , which is is the

parallel combination of ( )seriesZ ω  with the junction capacitance JC (see Figure 1):

( )
( ) .

1 ( )
series

env
series J

Z
Z

jZ C

ωω
ω ω

=
+

(3).

This impedance can be decomposed in a series combination of LC circuits, with a density

determined by its real part. The hamiltonian of the environment is then obtained by

associating an harmonic oscillator to each one of these modes [3].

 ��7KH�WXQQHOLQJ�WHUP� ˆ
TH  couples the two electrodes:

, ,

*
, , , , , , , ,

, , , ,

ˆ .
k q k q

i i
T R q L k L k R q

k q k q

H T c c e T c c eϕ ϕ
σ σ σ σ

σ σ

+ − + += +∑ ∑ (4)

Besides the usual operator products ˆ ˆc c+  that transfer one quasiparticle from an electrode to

the other one [4], it contains the operators ie ϕ−  and ieϕ , in which the phase ϕ , which acts on

the environment, is canonically conjugated with the number of transferred electrons:

[ , ]TN iϕ = . These operators describe the sudden transfer of a single electron charge through

the environment impedance.
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��7KH�ODVW�WHUP�LV�WKH�HOHFWURVWDWLF�HQHUJ\�DVVRFLDWHG�WR�WKH�QXPEHU�RI�HOHFWURQV�JRQH

through the voltage source.

5.1.2 Tunneling rates

For a tunnel junction with a large number of channels, the matrix elements 
,k q

T  are all

very small and the tunnel hamiltonian can be treated as a perturbation. The current at a given

voltage V  is deduced from the tunneling rates of electrons going from the left to the right

( )VΓ
JG

 and from the right to the left ( )VΓ
HJ

:

( ) ( ( ) ( )).I V e V V= Γ − Γ
JG HJ

(5)

The tunnel hamiltonian induces transitions between states of the uncoupled hamiltonian.

These states are of the form Tk N⊗ ∑ ⊗  , where k  is a short notation for a quasiparticle

state, ∑  is an environment state, and TN  a state with a given number of transferred

electrons. The transition rates are evaluated with the Fermi golden rule. By example, for the

transition rate ( )VΓ
JG

, only the first part of the tunneling hamiltonian that transfers electrons

from left to right contributes:

, , , , ,
, ,

k q

i
R q L k

k q

T c c e ϕ
σ σ

σ

+ −∑ . (6)

V Zseries(ω)

CJ

V Zseries(ω)

RT,CJ

(a) (b)

Figure 1: (a) Generic circuit displaying Coulomb blockade of tunneling. A tunnel junction characterized

by its resistance TR  and capacitance JC  is connected in series with an impedance ( )seriesZ ω  and a DC
voltage source. (b) The tunnel junction is divided into two functional elements: the capacitance of the

junction and a pure tunnel element symbolized by the double T symbol. The relevant impedance for the
Coulomb blockade of tunneling is the parallel combination of ( ) andseries JZ Cω .
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The calculation then follows the standard tunneling rate calculation, but with a contribution

from the environment:

( )

2

2
'

'
, '

2
( ) ( )(1 ( ))

,

k q kq k q
k q

i
k q

V d d T f f

e eV E E

σ

ϕ

π ε ε ε ε

δ ε ε

+∞

−∞

−
Σ Σ

Σ Σ

Γ = −

× Σ Σ + + − −

∑∫

∑

G

=
(7)

where ( ')EΣ Σ  is the energy of Σ ( 'Σ ), ( ) 1/(1 )f eβεε = +  is the Fermi function at temperature

T ( 1/ Bk Tβ = ), and the environmental average is over thermal states.

The term ( )(1 ( ))k qf fε ε−  is the probability that in the initial state the quasiparticle

state k  is occupied in the left electrode, and the quasiparticle state q  empty in the right

electrode. The average over the channels leads to:

( )

2

2
'

'
, '

1
( ) ( )(1 ( ))

' .

T

i

V dEdE f E f E
e R

e E eV E E Eϕ δ

+∞ +∞

−∞ −∞

−
Σ Σ

Σ Σ

′ ′Γ = −

× Σ Σ + + − −

∫ ∫

∑

G

(8)

The environment part can be expressed [1] as a function of the phase correlation function in

the Heisenberg representation:

( ) ( ) ( ) ( ) ( ) ( )( )( ) 0 0 =Tr 0 0J t t t βϕ ϕ ϕ ϕ ϕ ϕ ρ= − −       ,

in which the time evolution is due to the environment hamiltonian only. Here, βρ  is the

equilibrium density matrix of the environment. One obtains:

( )
2

'
'

, '

'

exp( ( ) ) exp( ( )).
2

ie E eV E E E

dt i
E E eV t J t

ϕ δ

π

−
Σ Σ

Σ Σ

+∞

−∞

Σ Σ + + − −

′= − +

∑

∫
= =

(9)

The expression of the rate can be recast in the following form:

( ) ( )2

1
( ) 1 ( ) ( ) ,

T

V f E f E eV P E E dEdE
e R

+∞ +∞

−∞ −∞
′ ′ ′Γ = − + −∫ ∫

JG
(10)

where ( )P ε  is the Fourier transform of exp[ ( )]J t  :

1
( ) exp[ ( ) ].

2

i
P dt J t tε ε

π
+∞

−∞
= +∫

= =
(11)
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It can be calculated from the impedance using the following expression of the phase

correlation function ( )J t :

( )
0

2

Re[ ] 1
( ) 2 coth( )[cos( 1)] sin( )]

2

with 25.8 k
�

env

K

K

Zd
J t t i t

R

h
R

e

ωω β ω ω ω
ω

+∞
 = − − 
 

=

∫ =

�

(12)

Physically, ( )P ε  is the probability for an electron tunneling through the tunnel barrier

to give an amount ε  of its energy to the environment.

5.1.3 The distribution function ( )P ε

As expected for a probability density, the integral over energy of ( )P ε  is normalized

to 1:

(0)( ) 1JP d eε ε
+∞

−∞
= =∫ .

Furthermore, ( )P ε  verifies the so-called detailed balance symmetry:

( ) ( )P e Pβεε ε−− = , (13)

which means that the probability to excite the environment is larger than the probability to

draw energy from it by a Boltzmann factor.

In absence of an environment, the phase does not fluctuate, and one has ( ) 0J t =  and

( ) ( )P ε δ ε= . Tunneling is elastic, and one recovers the usual expression for the tunneling

rate:

( ) ( )2

1
( ) 1 ( )

T

V f E f E eV dE
e R

+∞

−∞
Γ = − +∫
JG

. (14)

In presence of an electromagnetic environment, the probability to find an occupied state in the

left electrode with energy E  and an empty state in the right electrode with energy E eV′ +  is

convoluted with the probability ( )P ε  to give an energy E Eε ′= −  to the environment (see

Figure 2).
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The perturbative limit

The calculation of ( )P ε  is simplified when the real part of the environment impedance

is much smaller than the resistance quantum Re[ ( )]env KZ Rω � , so that the exponential of

( )J t  can be approximated by 1 ( )J t+  in Exp.(11). At zero temperature, the inelastic part of

( )P ε  then writes:

Re[ ( / )]2
( ) .env

inel
K

Z
P

R

εε
ε

= =
(15)

This approximation consists in neglecting all multi-photon excitations of the environment.

5.1.4 Conductance

The conductance is derived from the expression for the current:

1
( ) ( ) ( ) ( ) ( ) ( )

T

dI f f
G V V f E E eV E eV P E E dEdE

dV R E E

+∞ +∞

−∞ −∞

∂ ∂ ′ ′ ′ ′= = − − − + − ∂ ∂ ∫ ∫ . (16)

Figure 2: Schematic representation of a tunnel event without (a) and with (b) an impedance in series at

zero temperature. Electronic states on both side of the junction are filled up to the Fermi energies, which

are shifted by eV. In absence of environment, the tunneling is elastic. An electron in the left electrode

with energy higher then EF(R) finds an empty state in the right electrode. In presence of an environment,

tunneling is inelastic. An electron has a probability ( )P ε  to give an amount of its energy ε  to the

environment. As in the right electrode, states with energy below EF(R) are not available, the phase space
for electronic transitions is reduced, and so is the tunneling rate.
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Using the detailed balance relation (13) for ( )P ε , this expression can be considerably

simplified. In particular, at zero temperature, it can be shown that [1]:

1
( ) ( )

eV

T

G V d P
R

ε ε
−∞

= ∫ , (17)

which corresponds to a relative conductance change:

( ) ( )
( ) ( ).

( ) eV

G G V G
V d P

G G

δ ε ε
+∞− ∞≡ = −

∞ ∫ (18)

This expression shows that the conductance reduction is simply due to missing transitions:

inelastic tunnel events with an energy transfer to the environment larger than eV  are

forbidden because states below the Fermi energy are fully occupied at zero temperature.

The temporal representation

Starting from ( )envZ ω , the calculation of the conductance using Exp. (11),(12) and

(16) necessitates three successive integrals. This number of integrations can be reduced to two

since the conductance change can be directly related to( )J t , without calculating ( )P ε [5]:

( ) [ ] 2

0

2 Im exp [ ( )] cos / sinh [ ].
G dt t eVt t

V J t
G

δ π π
β β β

+∞
 =   ∫ = = = =

(19)

5.1.5 The RC  environment

The electromagnetic environment implemented in our experiment is close to a simple

RC circuit with impedance:

( ) .
1env

R
Z

jRC
ω

ω
=

+
(20)

This particular case is simple and amenable to analytic calculations. The relative reduction of

the conductance predicted by Exp. (19) is plotted in Figure 3 for different temperatures, with

values of the resistance and of the capacitance close to the experimental ones.

The dynamical Coulomb blockade manifests itself as a conductance dip at zero

voltage. The dip shows up when the temperature is less than /C BE k , where 2 / 2CE e C=  is
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the charging energy, and gets deeper and steeper as the temperature is lowered. The relative

conductance change depends on the temperature and capacitance only through the ratio

/B ck T E . At the base temperature 10 mK� of a dilution fridge, the capacitance has to be much

smaller than 2 2/ 2 10 90 fFBe k −
�  to observe a well developed conductance dip. For the

particular values of the resistance and capacitance taken in Figure 3, at the lowest temperature

and at zero voltage, the conductance is reduced by 38 % . This maximum reduction would be

larger for a larger resistance. The representation on a logarithmic scale (see inset in Figure 3)

reveals three regimes: two saturations at small and large voltages, with an almost logarithmic

behavior at intermediate voltages. At large voltages, the conductance tends asymptotically to

the bare tunnel conductance in absence of any environment. At low voltages, the dip is

smeared on a voltage scale of the order of /Bk T e.
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Figure 3: Normalized conductance of a tunnel junction placed in series with a resistance 920R = Ω  as a

function of voltage, at different temperatures. Main panel: from top to bottom, T=4 K, 2 K, 1 K, 500 mK,

and 20 mK. Junction capacitance is 0.40 fFJC = . Inset: From top to bottom, T= 4 K, 500 mK, and

20 mK. Dotted line is the zero temperature perturbative expression (21). Note the log scale on horizontal
axis.
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The zero temperature perturbative limit

The logarithmic behavior appears clearly in the zero temperature perturbative limit.

For the RC environment impedance given by (20), Exp. (18) yields:

2

0( , , 0 K, ) ln 1 .
G

R C T V G R
G eRCV

δ    = = − +     

=
(21)

In the limit 2( / ) 1eVRC= � , the relative conductance change can be written as:

0( , , 0 K, ) 2.3 log( ) K
G

R C T V G R V
G

δ = +� (22)

The predictions of this perturbative and zero temperature expression are compared to the

exact result in the inset of Figure 3. For the value of the resistance considered, the

perturbative calculation reproduces quite well the intermediate voltage behavior.

However, the finite temperature perturbative calculation (not shown in Figure 3) does

not account quantitatively for the thermal rounding at small voltages: the zero voltage

conductance reduction is systematically overestimated. The environment impedance is too

large for the perturbative theory to be quantitative at small voltages.

5.2 Coulomb blockade in a single conduction channel contact

In the calculations completed by Yeyati et al. [2], a contact with a single conduction

channel in series with an impedance is described by the same type of hamiltonian as in the

tunnel case, but for the tunnel term which now takes the form:

0
ˆ ( ) ,i i

T L R R LH T c c e c c eϕ ϕ
σ σ σ σ

σ

+ − + += +∑ (23)

with a hopping term which transfers an excitation between two localized states that are not

eigenstates of the uncoupled hamiltonian. In absence of environment, 0T  is related to the

channel transmission probability by the relation 2 2 2
0 04( / ) /(1 ( / ) )T W T Wτ = + , where 1/W  is

proportional to the density of states in the electrodes. When 0T  varies from 0 to W , the

channel transmission goes from 0 to 1. Contrary to the tunnel case, the hopping term is not
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small, and the hamiltonian ̂ TH  cannot be treated as a perturbation. The current is not

evaluated from transition rates, but from the average value of the current operator:

0
ˆ ( )i i

L R R L

ie
I T c c e c c eϕ ϕ

σ σ σ σ
σ

+ − + += −∑
=

, (24)

which is calculated using the Keldysh formalism [6]. The perturbative series expansion in the

hopping term 0T  is resummed. The calculation has been worked out in the perturbative limit

in impedance ( Re[ ( )]env KZ Rω � ).

The Coulomb blockade dip is simply reduced from its tunnel value by the same factor

(1 )τ−  as shot noise and that at any temperature T:

( )( , ) 1 ( , )
G G

T Tunnel T
G G

δ δτ τ= − (25)

At zero temperature, the conductance variation then writes (see Exp. (15) and (18)):

( ) 0

Re[ ( / )]
, 0 K (1 ) .env

eV

Z EG
T G dE

G E

δ τ τ
+∞

= = − − ∫
=

(26)

The relation between Coulomb blockade and shot noise is thus the same for a contact with an

arbitrary transmission as for a tunnel junction.

The RC  environment

In the case of an RC environment, the relative reduction of the channel conductance

is, at zero temperature:

( )
2

0, , , 0 K, (1 ) ln 1
G

R C T V G R
G eVRC

δ τ τ  = = − − +   
=

, (27)

and in the case of several channels with transmission probabilities 1,..., Nτ τ :

( )
2

1 0 1{ ,..., }, , , 0 K, ({ ,..., }) ln 1N N

G
R C T V G RF

G eVRC

δ τ τ τ τ  = = − +   
=

, (28)

where 2
1({ ,..., }) 1 /N i ii i

F τ τ τ τ= − ∑ ∑  is the Fano factor already encountered in the

expression of shot noise (see Chapter 4). The effect of the Fano factor is to reduce the

amplitude of the logarithmic term in the intermediate voltage regime, and is equivalent to a

reduction of the impedance. The relative conductance change is plotted in Figure 4 for
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different Fano factors, and for the same values of the resistance and of the capacitance as in

the previous paragraph. At finite temperature, the expression is modified like in the tunnel

case.

5.3 Measuring dynamical Coulomb blockade in atomic-size
contacts

In order to measure the dynamical Coulomb blockade in atomic-size contacts, we have

implemented a resistive on-chip environment as close as possible to the break-junction. This

environment consists of four thin aluminum leads as discussed in Chapter 2 (section 2.1.4).

The measurements proceed in two steps. First, the current-voltage characteristic of the

atomic-size contact is measured in the superconducting state, when the DC resistance of the

aluminum leads is zero, in order to determine the mesoscopic code. Then, a 200 mT magnetic

field is applied perpendicularly to the plane of the sample to drive the aluminum in the normal

state. The lead resistance is then about 900Ω . The differential conductance G  of the atomic-

size contacts is measured as a function of the DC bias voltage using lock-in techniques.

We first discuss the on-chip electromagnetic environment provided by the thin
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Figure 4: Relative reduction of the conductance of a quantum coherent conductor with capacitance

0.40 fFJC =  placed in series with a resistance 920R = Ω  , at zero temperature, for different Fano factors.
From top to bottom, 0.1, 0.5, 1F F F= = =  (tunnel regime).
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aluminum leads and the capacitance of the junction.

5.3.1 Characteristics of the on-chip electromagnetic environment

The design of the electrical circuit close to the break junction is constrained by several

factors. On one hand, Coulomb blockade should be large enough to be distinguished from

conductance fluctuations, of the order of one percent [7], even in the high transmission limit.

On the other hand, the lead resistance has to be kept small enough to avoid heating, and to

allow for a comparison with the perturbative calculation.

With these factors in mind, we fabricated aluminum leads 25�P  long, 200 nm  wide

and 12 nmthick. The resistance of each lead was about 920Ω , which corresponds to a

resistance per unit length 136.8 .�Pr −= Ω . The value of the resistance is small enough to

allow a comparison with the perturbative theory and avoid spurious heating. We calculated

that the Coulomb blockade dip is not significantly modified by electron heating in resistors

with these parameters, essentially because the Coulomb blockade dip is sensitive to the

electronic temperature only in the low voltage region where the current and consequently the

heating are small.

The capacitance per unit length of each lead to the underlying ground plane, calculated

from the lead geometry, is 2 -15.10 fF.�Pc −
�  (Note that, after partial etching of the polyimide

insulating layer, the leads are lying onto the polyimide surface). The anchoring pads that

sustain the metallic bridge (see Chapter 2) are 12�P  long, 3�P  wide and 160 nm thick. We

estimate their mutual capacitance to be about 0.10 fF. The capacitance between the two

electrodes forming the atomic-size contact is difficult to evaluate because the geometry of the

contact is not known. However, it is expected to be smaller than that of the pads. The total

contact capacitance should thus be about the same for all contacts with the same design.

5.3.2 Environment impedance

The environment impedance ( )envZ ω  consists of the impedance of the thin resistive
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aluminum leads leadZ  in parallel with the contact capacitance contactC :

( ) ( )
( )

, , , ,
.

1 , , , ,
lead oad

env
lead oad contact

Z r c L Z
Z

jZ r c L Z C

ω
ω

ω ω
=

+
A

A

(29)

The aluminum leads can be modeled by a RC transmission line terminated by an impedance

loadZ . The impedance of this transmission line ( ), , , ,lead loadZ r c L Zω  depends on its resistance

r  and capacitance c  per unit length, on its length L , and on the load that closes the

transmission line. In our measurement set-up, the load impedance is provided by the large

capacitor formed by the connecting pads 150 pFpadsC � . These large capacitors ensure that

the environment impedance is well defined by the on-chip electrical circuit, and not by the

remaining part of the measuring lines.

The impedance ( ), , ,leadZ r c Lω  of the transmission lines writes [1]:

( )
2 ( , , )

2 ( , , )

( , , , )
, , ,

( , , , )

ik r c L

lead ik r c L

r e r c Z
Z r c L

j c e r c Z

ω

ω
λ ωω

ω λ ω
−=
+

A

A

, (30)

where

( )1/ 2
( , , )k r c jrcω ω= −

is the wave vector, and

( ) ( )( , , , ) / / /r c Z r jc Z r jc Zλ ω ω ω= − +
A A A

is the reflection coefficient. The frequency dependence of ( )Re[ ]envZ ω  is shown in Figure 5.

Although the precise frequency dependence differs from that of a single pole RC

circuit, the departure is small as far as Coulomb blockade is concerned. In the following, we

thus make the approximation:

2
Re[ ( )] ,

1 ( )env

R
Z

RC
ω

ω
=

+
(31)

where the effective capacitance C  takes into account the capacitance of the aluminum leads

and of the junction capacitance.
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5.4 Experimental results

We first discuss the determination of the mesoscopic code in presence of the

superconducting aluminum leads.

5.4.1 Mesoscopic code determination

The current-voltage characteristic in the superconducting state (see Figure 6) presents

two evident unusual features that make the code determination less accurate than in the case

in which there is no environment. First, a current rounded peak shows up at a voltage around

170�9 , which corresponds to 1.3eV ∆� . This voltage decreases with the magnetic field like

the gap energy. The origin of this current peak is not known, but it might involve a resonance

in the circuit involving the inductance of the aluminum leads.
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Figure 5: (Full line) Real part of ( )envZ ω  calculated from (29) with 136.8
��Pr −= , 2 1510 fF.�Pc − −= ,

25�PL = , and 1/load padsZ jC ω=  with 150 pFpadsC = , and 0.10 fFJC =  as a function of the frequency

logarithm. The –3dB point is at 300 GHz. (Dotted line) Real part of the impedance calculated from (31)

( RC  model) with 920
R =  and 0.45 fFC = . This simplified model describes reasonably well the
overall shape of the real part of the impedance.
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Second, some current at large voltages ( 2 /V e> ∆ ) is “missing”. This point is

particularly clear in the tunnel regime, as shown in Figure 7. In the contact regime, this makes

impossible to fit correctly both the conductance and the excess current at large voltage (see

Figure 6). We attribute these features to the residual Coulomb blockade resulting from the

impedance of the superconducting thin aluminum leads at finite frequency.
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Figure 6: Measured current-voltage characteristic of a single atom aluminum contact embedded in the

environment described in 5.3.1(circles) and best fit by the standard MAR theory (full line) with the

mesoscopic PIN code {0.60,0.35,0.31}. The measured current-voltage characteristic presents a strong

current peak around 1.3V ∆� /e, which is not accounted for. The dotted line is the best fit obtained when

the correct conductance at large voltages is imposed. Clearly, this leads to an overestimated excess
current.
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Figure 7: Circles: Current-voltage characteristic in the tunnel regime ( 00.0136G G� ). Full line:

Theoretical current-voltage characteristic of one channel with transmission probability 0.0136τ = . For
voltages larger than 2∆ , the measured current is substantially smaller than expected.
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5.4.1.1 Impedance of the superconducting aluminum leads at finite frequency

At low frequency 2 /hν < ∆ , the aluminum films behave like pure inductors.

However, at frequencies above 2 /h∆ , Cooper pairs can be broken into two quasiparticles,

and the aluminum leads become dissipative. The admittance ( )Y ω  per unit length of a

diffusive superconducting wire has been calculated within the framework of the BCS theory

[8]. At zero temperature, the real and imaginary parts are given by:

1

1 2 4
( ) 1 ( ( )) ( ( )) for 2 .Y E k K k

R
ω ω ω ω

ω ω
 ∆ ∆  = + − ≥ ∆    

=
= =

,

( ) ( ) ( )2

1 1 2 1 2
1 1

2 2
Y E k K k

R
ω

ω ω
 ∆ ∆    ′ ′= − + − −        = =

,

where ( ) ( )( ) 2 / 2k ω ω ω= ∆ − ∆ += = , E  and K  are complete elliptic integrals, and where

2 1/ 2( ) (1 ( ) )k kω ω′ = − . The frequency dependence of these functions is shown in Figure 8, in

units of the normal state admittance.
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Figure 8: Real and imaginary part of the admittance of a superconducting lead as a function of the reduced

frequency. The gap frequency is / 49 GHzh∆ �  for aluminum. The real part tends asymptotically to the
normal state admittance 1/ R .
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In the superconducting state, the environment impedance of the contact is thus:

( ) ( )1 2

1
.

( )
S
envZ

Y jY jC
=

+ +
ω

ω ω ω
(32)

5.4.1.2 Coulomb blockade of the tunnel superconducting current-voltage characteristic

The calculation of Coulomb blockade in normal tunnel junctions, whose key lines

were presented in Sec. 5.1, can be almost directly transposed to the case of quasiparticle

tunneling in the superconducting state. At zero temperature, the current-voltage characteristic

in presence of an electromagnetic environment ( )envI V  is just the convolution of the current-

voltage characteristic without any environment ( )I V  with the function ( )P E  associated to

the environment impedance ( )S
envZ ω [9,1]:

( )( ) ( ) .envI V dE P eV E I E e
+∞

−∞
= −∫ (33)

The function ( )P E  presents two parts: a delta function at zero energy corresponding

to elastic transitions, and an inelastic part for energies larger than 2∆ . The weight of the zero

energy peak is in this case:

0

Re[ ( )]
exp 2 .

S
env

el
K

Z d
W

R

+∞ 
= − 

 ∫ ω ω
ω

For our particular environment parameters, the elastic contribution is reduced to about 80% of

its bare value. The inelastic contribution to ( )envI V  is non zero only for voltages larger than

4 /e∆  as the inelastic part of ( / )P E e  and the bare current-voltage characterictic ( )I V  are

non zero only for voltages larger than 2 /e∆ . Up to 4 /e∆ , ( )envI V  is simply given by:

( ) ( ) ( 4 / ).env elI V W I V V e= < ∆

As can be seen in Figure 9, this model for ( )envI V  explains the observed reduction of

the current quite well. We have also extended this Coulomb blockade model to the first MAR

process in the weak transmission regime, and reached a satisfactory agreement between

experiment and theory, using the same parameters.
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5.4.1.3 Conclusion

The residual Coulomb blockade resulting from the high frequency impedance of the

superconducting aluminum leads is thus well understood in the tunnel regime. However, the

way in which Coulomb blockade modifies MAR processes is not known in general. At

intermediate transmissions 0.05 0.6τG G  these modifications are appreciable, and excellent

fits with the standard theory are not possible, as shown in Figure 6. For higher transmissions

however, satisfactory fits become again possible, as shown in Figure 10. The unexplained

current peak around 1.3∆  progressively washes out, and the fits better account for the slope

at voltages larger than 2∆ . In the ballistic limit, we think that the code determination

becomes precise enough to allow possible a comparison between Coulomb blockade

measurements in the normal state and the predictions of Exp. (28).

Note that Coulomb blockade of MAR processes, presented here as a drawback, is a

very interesting phenomenon by itself. Indeed, one could expect for MAR processes of order

n, which correspond to the transfer of n electron charges, a blockade n2 times stronger than for

single charge tunneling in the weak transmission limit. The connection between Coulomb

2 3 4 5 6
0.00

0.02

0.04

0.06

0.08

 

 

e
I/

(G
0
∆ )

eV/∆

Figure 9: Circles: measured current-voltage characteristic in the tunnel regime: 00.0136G G�  (same data

as in Figure 7). Full line: characteristics calculated using Exp. (33) with the perturbative value of ( )P ε
associated to the environment impedance ( )S

envZ ω . The capacitance in ( )S
envZ ω  is taken equal to 0.43 pF.
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blockade and shot noise could be tested here more deeply than for contacts in the normal

state. To our knowledge, this subject has not yet been investigated, neither theoretically nor

experimentally.

5.4.2 Coulomb blockade in the normal state: the tunnel regime

The conductance of a tunnel contact in the normal state is shown in Figure 11 at

different temperatures, together with the predictions of the full Coulomb blockade theory

(Exp. (19)) for an RC environment (the capacitance was used as the only free parameter). As

can be seen, reproducible conductance fluctuations are superposed onto the Coulomb

blockade dip. These fluctuations result from quantum interference effects that depend on the

                                                          
1 Notice that the last three contacts are somewhat uncommon, in that they only have two conduction channels
whereas the smallest aluminum contacts usually have three. In fact, all these contacts correspond to almost the
same atomic configuration and were all obtained on the same conductance plateau while stretching the contact.
One channel is weakly transmitting and the second one has a much higher transmission probability. The highest
transmission is adjusted by stretching elastically this particular configuration, the lowest one remaining almost
unchanged.
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Figure 10: Superconducting current-voltage characteristics of four atomic-size contacts together with the

best theoretical fits of the standard MAR theory. Mesoscopic PIN codes: {0.993,0.06,0.05} (up-triangles),
{0.85,0.07} (circles), {0.70, 0.05} (squares), {0.52,0.14} (diamonds).1
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detailed arrangement of the atoms in the vicinity of the contact [7]: transmitted electronic

waves interfere with the part of themselves that is back-scattered towards the contact by

different impurities in the electrode. Since the phase accumulated in these random paths

depends on the electron energy, the interference term depends on the bias voltage resulting in

a modulation of the conductance.

Beside these fluctuations, the theoretical curves describe quite well the conductance

dip. In particular, the thermal rounding of the dip is quantitatively reproduced for the three

highest temperatures. At the lowest temperature of 20 mK, the observed rounding corresponds

in fact to a temperature of 40 mK (see inset). We attribute this excess temperature to electron

heating by spurious noise. Note that the capacitance value 0.40 fFC =  that comes out from

these fits, is in close agreement with the estimated value given in section 5.3.2.
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Figure 11: Main panel : Symbols: Differential conductance in units of 0G  of a tunnel contact at four

different temperatures as a function of bias voltage; from top to bottom: T=1.39 K, 615 mK, 318 mK, and

20 mK. The asymptotic conductance at large voltages is 00.045G  corresponding to a resistance of

290 k
 . Full lines: theoretical curves calculated using Exp. (19) with an RC  environment ( 920
R =
and 0.40 fFC = ). Inset: Zoom around zero voltage for the lowest temperature T=20 mK. Dotted line is the
prediction for T= 40 mK.



148

5.4.3 Coulomb blockade in the normal state: the ballistic regime

5.4.3.1 Coulomb blockade vanishes in the high transmission limit

We have measured the conductance of a series of contacts in the normal state whose

codes had been determined previously. The relative conductance change of three of them,

ranging from the tunnel regime to the almost ballistic regime, is shown in Figure 12. The

main observation is a strong reduction of the Coulomb blockade dip when the transmission

increases. At intermediate transmission 0.63τ � , the Coulomb dip is already significantly

reduced compared to the tunnel case. For the contact containing an almost ballistic channel

with 0.992τ = , the dip has almost completely disappeared, the remaining small dip arising

from the second weakly transmitting channel ( 0.11τ = ).
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Figure 12: Relative conductance reduction of three atomic-size contacts at 20 mK. Mesoscopic PIN codes

are {0.993,0.06,0.05} (up-triangles, same as in Figure 10), {0.63,0.06} (stars), and {0.045} (down-
triangles, tunnel contact presented in section 5.4.2).
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5.4.3.2 Comparison with the perturbative theory for arbitrary transmission

Our experimental results for five contacts are compared to the zero temperature

prediction of Exp. (28) in Figure 13. The corresponding current-voltage characteristics in the

superconducting state, used to determine the codes, can be seen in Figure 10.

The theoretical curves correspond to the predictions of Exp. (28) with the capacitance

used to fit the data in the tunnel regime (section 5.4.2) and the Fano factor calculated from the

mesoscopic codes. We restrict ourselves to the zero temperature predictions because, as

already mentioned in section 5.1.5, the environment impedance is too high for the

perturbative theory to account well for the thermal rounding at small voltages. The predicted

conductance reduction in the logarithmic region is in relative good agreement with the

experimental data for all Fano factors, but in all cases too large. We attribute this systematic

deviation to the deficiency of the perturbative theory. Indeed, a better agreement is reached in

the tunnel regime if one uses the full non-perturbative theory (dotted line in Figure 13).
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Figure 13: Relative conductance reduction for five different contacts at 20 mK. Down-triangles: tunnel

contact; other symbols, same contacts as in Figure 10: {0.993,0.06,0.05} (up-triangles), {0.85,0.07}

(circles), {0.70, 0.05} (squares), {0.52,0.14} (diamonds). Full lines represent Exp. (28) with 920R = Ω ,

0.40 pFJC = , and the Fano factor calculated from the measured PIN codes. Dotted line: non-perturbative
prediction of Exp. (19) at zero temperature for the sameRCenvironment.
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As discussed previously (section 5.4.1.3), it is presently difficult to evaluate the systematic

error arising from the determination of the Fano factor. We think however that the good

agreement we have observed is not fortuitous because the determination of large

transmissions, which predominantly contribute to the Fano factor, is only weakly affected by

Coulomb blockade.

5.4.3.3 Comparison with the extension of the perturbative result to the non
perturbative case

The theoretical calculation by Levy Yeyati et al. reveals that, in the low environment

impedance limit, the relative conductance reduction for a single conduction channel with

transmission probability τ  is simply given by the relative conductance reduction in the tunnel

limit times the factor (1 )τ− (Exp. (25)):

( )( , ) 1 ( , )
G G

T Tunnel T
G G

δ δτ τ= − .

Despite the difficulties we encountered in the interpretation of our measurements, it seems

reasonable to conclude that they agree with this simple relationship. Does this relationship

remain valid in the non-perturbative case in which the real part of the environment impedance

is not much smaller than the resistance quantum KR ?

As illustrated in the previous paragraph concerning the tunnel regime, the environment

impedance in our experiment is too high for the perturbative theory to account well for the

conductance at the lowest voltages. The exact theory is necessary to explain the thermal

rounding. Expecting the same for larger transmissions, we may get a first insight into the

validity of Exp. (25) in the non-perturbative limit by comparing its predictions with our

experimental results.

This comparison is made in Figure 14 and Figure 15 for Coulomb blockade

measurements on two atomic-size contacts with measured mesoscopic codes

{0.993,0.06,0.05} (“0.993 contact”) and {0.70,0.05} (“0.70 contact”) at four different

temperatures.
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More precisely, the full theoretical curves for a contact characterized by the mesoscopic code

1{ ,..., }Nτ τ  are calculated from the expression:

1 0({ ,..., }, , , , ) ( (1 ) / ( , , , , ))N i i i i
i

TunnelG R C T V G G G R C T V= + −∑τ τ τ τ τ δ , (34)

where / ( , , , , )iTunnelG G R C T Vδ  is given by Exp. (19) with ( ) /(1 )env i iZ R jR Cω ω= + . The

resistance iR  is the parallel combination of R and the resistance of all channels but the i-th. As

viewed from the i-th channel, the other conduction channels are included in the environment.
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Figure 14: Circles: Conductance in units of 0G as a function of the logarithm of the DC voltage bias absolute

value for positive (full circles) and negative voltages (open circles) at four different temperatures: 24 mK (a),

330 mK (b), 665 mK (c), 1.35 K (d).  The data are taken on the contact with mesoscopic PIN code

{0.993,0.06,0.05}. Full lines: predictions of Exp. (34) for a mesoscopic PIN code {0.99,0.08,0.07}, 920R = Ω ,

33 pFC = , and the measured temperature (but for (a) where the temperature was taken to be 40 mK, instead of
the measured value of  24 mK).
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The parameters adjusted so as to get a good agreement with the experimental data are

the transmission of the low-transmitting channels and the total capacitance C. The errors in

the determination of the channel transmission probabilities due to Coulomb blockade in the

superconducting state are expected to be small for high transmissions. The highest

transmission of the two contacts is thus assumed to be well determined from the fit of the

current voltage in the superconducting state. However the lowest transmissions are corrected

in order to get the “right” conductance in the large voltage limit. For example, in Figure 14,
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Figure 15: Circles: Conductance in units of 0G as a function of the logarithm of the DC voltage bias absolute value

for positive (full circles) and negative voltages (open circles) at four different temperatures: 26 mK (a), 295 mK (b),

620 mK (c), 1.16 K (d). The data are taken on the contact with mesoscopic PIN code {0.70,0.05}. Full lines:

predictions of Exp. (34) for a mesoscopic PIN code {0.70,0.085}, 920R = Ω , 57 pFC = , and the measured
temperature.
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the measured mesoscopic code was {0.993,0.06,0.05} while the one used to fit the Coulomb

blockade data was {0.99,0.08,0.07}. The capacitance value basically sets the zero voltage

conductance limit.

Using reasonable capacitance values (section 5.3.2) and corrections to the small

transmissions, the theoretical curves fit quite well the experimental data for the 0.993 contact,

but less accurately for the 0.70 contact. Unfortunately, it is not possible to conclude whether

or not Exp. (34) is quantitatively correct, because of conductance fluctuations and of the

uncertainty in the mesoscopic code determination. Troubles due to conductance fluctuations

are well illustrated in both cases. For the 0.993 contact, the conductance at large voltages

differs between the positive and the negative voltage branches by about one percent, leading

to a large uncertainty on the asymptotic conductance at high voltages. For the 0.70 contact the

situation is even worse as conductance fluctuations completely hide the Coulomb blockade

signal in the lower conductance branch corresponding to negative DC bias voltages (open

circles in Figure 15). Concerning the uncertainties on the mesoscopic code, it should be

noticed that for the 0.70 contact, better fits can be obtained by slightly increasing the highest

transmission (mesoscopic code {0.72,0.065} and 40 pFC = ). However, for the time being,

such an assumption can not be justified quantitatively.

5.5 Conclusion

We have found that the dynamical Coulomb blockade of the conductance of a channel

progressively disappears when the transmission approaches unity, as recently predicted.

Within the experimental accuracy, the reduction of Coulomb blockade is the same as for shot

noise. However, a quantitative comparison with theoretical predictions is hindered by the

uncertainty in the determination of the codes, and by conductance fluctuations.

This preliminary experiment could thus be improved in two respects:

- The determination of the codes could be made more accurate by using for the thin

connecting wires a metal with a larger gap than the one of the contact. Dissipation in

the superconducting wires would not occur in the frequency range of interest for the
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contact, and the environment would not affect significantly the current-voltage

characteristics in the superconducting state. For this purpose, the sample fabrication

would require two steps, the aluminum contact being deposited onto niobium wires

and pads for example.

- Conductance fluctuations could be averaged out by measuring the same contact at

different magnetic fields. Indeed, the interference pattern responsible for the

conductance fluctuations is significantly dephased by an applied field when the flux

through the interference loops is of the order of the flux quantum.

The experiment described in this chapter is just one simple example in the exploration

of Coulomb blockade in a quantum coherent conductor. Different and richer situations could

be investigated. In particular, A. Levy Yeyati has recently considered the case of a single

channel connecting a normal metal to a superconductor [10], in which case transport occurs

through Andreev reflection. The blockade of MAR processes remains an open problem.
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The scattering approach was introduced by Landauer [1] to describe the electrical

transport through a quantum coherent conductor in terms of scattering of incoming electronic

waves. It applies if the electrons form a fluid of non-interacting quasiparticles, i.e. when the

“independent electron” picture is valid. In this approach, the quantum coherent conductor is

described by a set of conduction channels whose transmissions determine all its transport

properties. In this Appendix, we explain this formalism, and derive the expressions of the

conductance and of the shot noise in terms of the transmission set in the case of a two-probe

circuit.

A.1  The scattering model

The scattering model is formulated as follows: Electrons emitted from reservoirs are

guided through leads to the quantum coherent conductor where they are scattered (see Figure

1). The incoming and outgoing propagating modes of the leads constitute the scattering state

basis. The reservoirs play the double role of perfect source and sink for electrons. Here,
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perfect means that no scattering occurs at the reservoir-lead interface: electrons are emitted

from the reservoir into the leads and absorbed from the leads into the reservoirs with

probability one. As a consequence, the statistical properties of the scattering states are

completely determined by the temperature and chemical potential of the reservoirs [2].

We restrict ourselves to the case where the number of propagating modes N  is the

same on both sides of the conductor. Let us denote 1, 1,ˆ ˆ( ) ( ( ))i ia E a E+  and ( ) ( )2, 2,ˆ ˆ( )i ia E a E+  with

a b1,i N∈  the creation (annihilation) operators for the electronic mode i  with energy E

incident upon the conductor respectively from the left and from the right, and

( ) ( )1, 1,
ˆ ˆ( )i ib E b E+  and ( ) ( )2, 2,

ˆ ˆ( )j jb E b E+  the outgoing ones (see Figure 1). The mean value of

the occupation operators is imposed by the temperature and chemical potential of the

reservoirs:

, , , , ( ) /

1ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) with 1,2.
1 B

i i i i E k T
a E a E b E b E f E

e α αα α α α αµ α+ +
−= = ≡ =

+
(1)

The incoming and outgoing operators are linked together by the 2 2N N×  scattering matrix

S:

1 1

22

ˆ ˆ
,

ˆ ˆ

b a
S

ab

   
=   

   
(2)

where

1,1 2,1 1,1 2,1

1 2 1 2

1, 2,1, 2,

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ, , and .

ˆ ˆ ˆ ˆN NN N

b b a a

b b a a

a ab b

       
       = = = =       
                
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Figure 1: Scattering approach to electrical transport through a quantum coherent conductor.
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Because of particle conservation, the scattering matrix is unitary S S SS+ += = 1. It can be

decomposed into four squareN N×  blocks:

11 12

21 22

.
s s

S
s s

 
=  

 
(3)

The two off-diagonal blocks 12 21ands s , which describe the transmission of the waves

respectively from the right to the left, and from the left to the right, are called the transmission

matrices. The two diagonal ones 11 22ands s  are the reflection matrices. They describe the

reflection of electronic waves arriving respectively from the left and from the right. We

assume here that the scattering matrix is independent of energy1 in the small energy range

probed by transport around the Fermi level.

A.2  Reduction of the scattering problem to independent
conduction channels

The scattering problem can be decomposed into a set of N  independent conduction

channels by changing the basis of the propagating states in the leads. In this new basis, the

propagating states are arranged in groups of four states, one for each propagation direction in

each lead, which are connected only among themselves through the scattering process. This

channel decomposition is unique2 up to permutations[6]. Denoting 1 2( )U U  the unitary

matrices describing the basis transformations for the states incoming from the left (right) and

1 2( )V V  that for the states outgoing to the right (left), the scattering matrix in the new basis

writes:

1/ 2 1/ 2
11 12 11

1/ 2 1/ 2
21 22 22

00

00

s s UV iR T
S

s s UV T iR

+

+

   −   ′ = =       −      
, (4)

where R  and T are real, diagonal, and positive matrices which are independent of the initial

                                                          
1 Typically in metals the Fermi energy is of the order of the electronvolt: for example 11.7 eV for aluminum and
in the experiments presented in this thesis the maximum measurement voltage is of the order of a meV.
2 In Ref. [6], it is pointed out that such transformation is possible if the matrix 11 11s s+  has no eigenvalue equal to 0

or 1. We disregard here this mathematical difficulty.
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basis. They are indeed related to the transmission and reflection matrices, respectively 11s  and

12s  by the relations:

1/ 2 1/ 2
11 1 1 12 1 2,s iV R U s VT U+ += − = , (5)

which lead to:

11 11 1 1 12 12 2 2, .s s U RU s s U TU+ + + += = (6)

The unitary transformation 2 1( )U U  thus diagonalizes 12 12s s+  ( 11 11s s+ ). The coefficients of R

and T , which represent the reflection and transmission probabilities of the independent

conduction channels, are thus the eigenvalues of 11 11s s+ and 12 12s s+  and consequently intrinsic to

the scatterer. This set of eigenvalues forms the mesoscopic PIN code of the quantum coherent

conductor.

Since the conduction channels are independent, the multichannel expression of any

transport property thus simply writes as a sum over the contributions of the different channels.

We now consider the case of the conductance and of the shot noise, treating first the case of a

single conduction channel with arbitrary transmission probability τ . The notations

ˆ ˆˆ ˆ, , and with =1,2a a b bα α α α α+ +  now represent simple operators, and 11 12 21 22, , , ands s s s  complex

numbers, related to the transmission τ  by the relations 
2 2 2 2

12 21 11 221 1s s s s τ= = − = − = .

A.3  The Landauer formula for the conductance

The current operator3 can be expressed in terms of the creation and annihilation

operators in the leads. Its Heisenberg representation is given by [3]:

( )
1 1 1 1

ˆ ˆˆ ˆ ˆ( ) ( ( ) ( ) ( ) ( )) .i E E te
I t dE dE a E a E b E b E e

h
′+ + −′ ′ ′= −∫∫ = (7)

                                                          
3 In the derivation of this expression, it is assumed that the variation of the group velocity with energy can be
neglected.
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Using Exp. (2), the operators ( ) ( )1 1
ˆ ˆandb E b E+ ′  can be expressed in terms of the incoming

waves operators, yielding:

� � ( )

, 1,2

( ) ( ) ( ) i E E te
I t dEdE A a E a E e

h
α βαβ

α β

+ ′−

=

′ ′= ∑ ∫∫ =� (8)

where 1 1 1 1A s sαβ α β α βδ δ ∗= − . The current flowing through the quantum coherent conductor is

the average value of the current operator:

( ) � � ( )

, 1,2

( ) ( ) .i E E te
I t dEdE A a E a E e

h
α βαβ

α β

+ ′−

=

′ ′= ∑ ∫∫ =� (9)

From (1), it follows that ˆ ˆ( ) ( ) ( ) ( )a E a E f E E Eα β αβ αδ δ+ ′ ′= − . The average current results

from the imbalance of the populations of propagating states with opposite directions:

( )
2

1 2
1,2

( ) ( ( ) ( )) .
2

e e e
I t dE A f E dE f E f E V

h hαα α
α

τ τ
π=

= = − =∑∫ ∫�

=
(10)

Then, taking into account the spin degeneracy, one obtains the famous Landauer formula for

the conductance G : 0G Gτ= , where 2 1
0 2 / 77�V �������G e h −= Ω� �  is the conductance

quantum. For a quantum coherent conductor characterized by the mesoscopic code

{ }1,..., Nτ τ , the Landauer formula writes:

0
1

.
N

i
i

G G τ
=

= ∑ (11)

A.4  Calculation of the shot noise spectral density

We present now the main lines of the calculation of the spectral density of the current

fluctuations at low frequency. Denoting ̂ ˆ ˆ( ) ( ) ( )I t I t I t∆ = −  the operator associated to the

current fluctuations around the mean value ˆ( )I t , the spectral density is defined as [4]:

ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) ( ) ( ) ( )S I I I Iπδ ω ω ω ω ω ω ω′ ′ ′+ ≡ ∆ ∆ + ∆ ∆ , (12)

where ˆ( )I ω∆  is the Fourier transform of ̂ ( )I t∆ :

ˆ ˆ( ) ( ) .i tI I t e dtωω
+∞ +

−∞
∆ = ∆∫ (13)
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Exp. (8) of the current operator yields:

, 1,2

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )I e dE A a E a E a E a Eαβ α β α β
α β

ω ω ω+ +

=

 ∆ = + − + ∑∫ = = (14)

and

2

, , , 1,2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) [ ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ].

I I e dEdE A A a E a E a E a E

a E a E a E a E

αβ γδ α β γ δ
α β γ δ

α β γ δ

ω ω ω ω

ω ω

+ +

=

+ +

′ ′ ′ ′ ′∆ ∆ = + +

′ ′ ′− + +

∑∫ ∫ = =

= =

(15)

The quantum and statistical average value of the four operator product in Exp.(15) is equal to

[3]:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )[1 ( )],

a E a E a E a E a E a E a E a E

E E E E f E f E

α β γ δ α β γ δ

αδ βγ α β

ω ω ω ω

δ δ δ ω δ ω ω

+ + + +′ ′ ′ ′ ′ ′+ + − + +

′ ′ ′= − − + − − +

= = = =

= = =
(16)

 which leads to:

2
2

, 1,2

ˆ ˆ( ) ( ) ( ) ( )[1 ( )].
e

I I dE A f E f Eαβ α β
α β

ω ω δ ω ω ω
=

′ ′∆ ∆ = + − +∑∫ =
=

(17)

This general expression takes a simple form at zero frequency. Using the definition (12), and

taking into account the spin degeneracy, the spectral density of current fluctuations at zero

frequency, denoted IS , is:

2
2

, 1,2

4
( )[1 ( )] .I

e
S dE A f E f E

h αβ α β
α β =

= −∑∫ (18)

This can be expressed as a function of the transmission probability τ :

2
0 1 1 2 2 1 22 ( )(1 ( )) ( )(1 ( )) (1 ) ( ( ) ( )) .IS G dEf E f E f E f E dE f E f Eτ τ τ = − + − + − − ∫ ∫ (19)

The two integrals involving Fermi functions are respectively equal to 2Bk T  and to

( coth[ / 2 ] 2 )B BeV eV k T k T− . The final result is:

2
0 02 (1 ) coth 4 .

2I B
B

eV
S G eV k TG

k T
τ τ τ

 
= − + 

 
(20)
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In the multichannel case, the spectral density for a given mesoscopic code { }1,..., Nτ τ  is thus

equal to:

2
0 0

1 1

2 (1 )coth 4 .
2

N N

I i i B i
i iB

eV
S G eV k TG

k T
τ τ τ

= =

 
= − + 

 
∑ ∑ (21)

At low voltage or high temperature, i.e. when 2 1BeV k T� , Exp. (21) reduces to the

Johnson-Nyquist spectral density 0
1

4I B i
i

S k TG τ
=

= ∑ . In the opposite limit 2 1BeV k T� , the

spectral density depends linearly on the average current. In this regime, the shot noise is

reduced from its poissonian value by the so-called Fano factor

2
1 1 1

({ ,..., }) 1 / 1
N N

N i ii i
F τ τ τ τ

= =
= − <∑ ∑ :

1( , , ) 2 ( ) ({ ,..., }) ( / 2 1).I N BS V T e I t F eV k Tτ τ τ� � (22)

A.5  Shot noise: wave packet approach

In the previous section, we derived the spectral density of shot noise in a quantum

coherent conductor within the framework of the scattering theory using second quantification

[5]. In this formalism, the Pauli exclusion principle is taken into account through the

commutation relations of creation and annihilation operators. Martin and Landauer [6] have

proposed another more transparent way to take into account the Pauli principle, the wave-

packet approach to the scattering problem.

The scattering problem is treated using a well chosen scattering state basis for the 1D

electronic transport. Electrons are visualized as traveling through the leads under the form of

orthonormal wave-packets. The authors emphasize that within the energy range

[ ],E E E E− ∆ + ∆ , the equally time-shifted wave-packets defined as:

1/ 2
( ) ( ) ( )1 1

( , )
2

E En ik E x iE t n t

E E

dk
x t dE e

E dE
ψ

π
+∆ ′ ′− + ∆

−∆

 ′=  ′∆  ∫ = , (23)

where x  is the coordinate of the 1D transport, ( )k E  the wave vector, 2 /t Eπ∆ = ∆=  the time

shift and n  an integer, provide a complete orthonormal basis [7] for the scattering problem.
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The occupations of these orthonormal states is restricted as usual: they can be occupied at

most by a pair of opposite spin electrons.

Let us consider the single channel case. Wave-packets incoming on the scatterer are

either transmitted or reflected, and the occupation of the outgoing states fluctuates randomly.

If g denotes the random variable counting the number of electrons transferred during any

period t∆  ( g  can be equal to –1, 0 or 1), the contribution of the wave-packets in the energy

interval [ ]/ 2, / 2E E E E− ∆ + ∆  to the spectral density IS∆  is equal to [6]:

( )( )22
02 .IS G E g g E∆ = ∆ − (24)

This contribution depends only on the fluctuations of g , that are determined by the average

value and by the fluctuations of the wave-packet occupations, and by the scattering process

itself.

At zero temperature, because of Pauli principle, all wave-packets in the left and right

leads with energy lower than the chemical potential (denoted respectively Lµ  and Rµ ) are

occupied with probability one. Assuming that 0L R eVµ µ− = > , the current through the

channel is made up of electrons within the energy range [ ],L LeVµ µ−  crossing the channel

from the left to the right. For a perfect transmission 1τ = , 1g =  with probability one within

this energy range and zero elsewhere. The number of transferred electrons g  does not

fluctuate and consequently the spectral density is zero. The incoming wave-packets form a

Figure 2: Schematic representation of the noiseless steady stream of orthonormal wave-packets emitted by

charge reservoirs at zero temperature, partitioned into two noisy transmitted and reflected streams by the

scatterer. Note that, in reality, the orthonormal state wave-functions strongly overlap.
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noiseless perfectly correlated stream which is not disturbed by the scatterer. For an arbitrary

transmission however, the wave-packet stream is randomly partitioned between a transmitted

and a reflected stream (see Figure 2). Denoting 1r g= −  the random variable counting the

number of reflected electrons during any pulse period t∆  , the fluctuations of g  within the

energy range [ ],L LeVµ µ−  are given by [6]:

2 2 22 (1 ) .g g g r g g gr g− = − − = − − (25)

Because wave-packets are either transmitted or reflected, one has 0gr = , and thus:

2 22 (1 )g g g g τ τ− = − = − , (26)

leading to a non vanishing spectral density:

02 (1 ) 2 (1 ).IS G eV eIτ τ τ= − = − (27)

At small transmissions 1, (1- ) 1τ τ� �  and 2IS eI= . One recovers the poissonian shot noise,

since electrons are seldomly transmitted, like electrons emitted in vacuum diodes.

At finite temperature, the occupation numbers in the leads fluctuate, which contributes

to fluctuations of g . At a given energy E , the variance of g is then given by [6]:

( ) ( )2 22 2( ) ( ) 2 ( ) ( ) ( ) ( )L R L R L Rg g f E f E f E f E f E f Eτ τ− = + − − − , (28)

where ( ) and ( )L Rf E f E  are respectively the Fermi function in the left and in the right lead.

The spectral density at a given voltage V and temperature T  is thus given by:

2
0 0( , , ) 2 (1 )coth 4 ,

2I B
B

eV
S V T eVG k TG

k T
τ τ τ τ

 
= − + 

 
(29)

in agreement with the prediction of the previous approach. The multichannel case can also be

treated along the same lines.
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In this appendix, we sketch the calculation of the current-phase relationship and of the

current-voltage characteristic of a short1 quantum coherent conductor connecting two

superconducting electrodes. Historically, the first theoretical approach to these problems was

formulated in terms of the tunneling hamiltonian. Treating this hamiltonian to first order in

perturbation theory, Josephson derived in 1962 the famous sinusoidal current-phase

relationship of a tunnel junction connecting two BCS electrodes. The voltage biased case was

also addressed to first order, but for a long time, the higher processes turned out to diverge.

Only in the middle on the nineties, the divergences were corrected by carrying the

perturbative treatment up to infinite order [1].

A second approach was introduced in 1982 by Blonder, Tinkham, and Klapwijk [2,3]

to explain the subharmonic gap structure and excess current observed in the current-voltage

characteristics of superconducting weak links2. Roughly speaking, it generalizes the Landauer

scattering formalism to the superconducting state. The central concept is the Andreev

                                                          
1 Short means that the length of the coherent scatterer is much smaller than the superconducting coherence
length 0ξ and thus can be considered as zero.
2 See references in [2].
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reflection whereby an electron incident on a superconducting electrode is partially or

completely reflected as a hole at the same energy [4]. This approach leads to a simple

physical picture of transport through Josephson junctions and thus we adopt it in the

following.

To formally separate the Andreev scattering mechanism from the scattering by the

coherent conductor, normal leads connecting the superconducting reservoirs to the coherent

scatterer are usually introduced (see Figure 1). It should be stressed that this is just an artifice

convenient for the calculations. For atomic contacts, the length of this region is actually zero.

Andreev reflections occur at the two normal lead-superconducting reservoir (NS) interfaces.

As Andreev reflection does not mix up conduction channels [5], the problem can be treated in

terms of the independent conduction channels defined in Appendix A, and we restrict

ourselves to the one channel case.

The derivation is organized as follows: first, we introduce a representation of the

quasiparticles in the superconducting state, which we think clarifies the usual semiconductor

representation [6]. Then, the Andreev reflection probability amplitude at an NS interface is

calculated and subsequently used as the basic ingredient to calculate the current-phase and

current-voltage characteristics for SNS structures.

B.1  The quasiparticles of a BCS superconductor

The transport through a conduction channel is one-dimensional and thus we restrict

ourselves to a 1D problem along the axisx− . Let us denote , ( )kc+
↑ ↓  and , ( )kc ↑ ↓  respectively the

Figure 1: Modelization of a quantum coherent conductor connecting two superconducting electrodes.
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creation and annihilation operators of the independent quasiparticles of the electrode in the

normal state with spin up (down), and kξ  the quasiparticle energy with respect to chemical

potential µ . In the non-diffusive regime we are concerned with, the quasiparticles wave-

functions are well described by the eigenstates of a free electron hamiltonian:

2 2

* 2
ˆ ( ),

2
NH

m x
µ∂= − −

∂
=

where *m  is an effective mass. The label k  corresponds in this case to the wave vector of the

free wave eigenstates of ˆ
NH  denoted ,

e
k Nψ  and called “electronic states” in the following.

The hamiltonian describing the superconducting state with homogeneous pairing

potential , ,− ↓ ↑∆ = − k kV c c , 0>V  being the attractive electron-electron interaction term, can

be written within the mean field approximation [6]:

*
, , , , , , , ,

ˆ ( )S k k k k k k k k k
k

H c c c c c c c cξ + + + +
↑ ↑ ↓ ↓ ↑ − ↓ − ↓ ↑= + − ∆ − ∆∑

where and↑ ↓  represent respectively the up and down spin states. This single particle

Hamiltonian is not of the usual form corresponding to all the operators products being of the

type q kc c+ . However, this structure can be recovered by writing the hamiltonian in terms of the

operators ,
+
− ↓=k kb c  for the spin down states and ,k kc c ↑=  for spin up ones. In this new

formulation, the spin labels are not necessary any longer as non ambiguously the operators

care related to spin up while b  operators concern spin down. Before presenting this rewriting

of ˆ
SH , we discuss the implication of this change in point of view in the normal case.

B.1.1 “Hole description” of the spin down normal quasiparticles

The hamiltonian in the normal state is:

, , , ,
ˆ ( ).N k k k k k

k

H c c c cξ + +
↑ ↑ ↓ ↓= +∑

Using the anti-commutation relation for the conjugated fermionic operators andk kb b+ :

1k k k kb b b b+ ++ = , ˆ
NH  in terms of the operators andk kc b  is equal to:

ˆ ( ) .N k k k k k k
k k

H c c b bξ ξ+ += − +∑ ∑
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The states associated to the operators andk kb b+ , subsequently called “hole states” and

denoted ,
h
k Nψ , have an energy kξ− : Contrary to the corresponding electronic states, their

energy is larger than the Fermi energy if k  is smaller than the Fermi wave vector Fk  and

smaller otherwise (see Figure 2).

This leads to a new vacuum state, obtained by taking the occupation number of all

electron and hole states equal to zero. Note that this corresponds in the electron representation

to taking all electronic spin down states occupied, the spin up states remaining unoccupied

(see Figure 3). Any creation operator kb+  then removes an electron from this fully occupied

band and the associated wave function is thus that of a hole in the semiconductor sense, which

justify our appellation. The hole states ,
h
k Nψ  verify the eigenvalue equation:

, ,
ˆ h h

N k N k k NH ψ ξ ψ= −

and carry a positive charge e+ . Note however that the ground state, corresponding to all

electronic and hole states being occupied up to the Fermi level, is the same in the two

representations. Indeed, having all hole states with energy smaller than FE  occupied

correspond in the electronic representation to all states above the Fermi level being

unoccupied.
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Figure 2: Schematic of the change of representation from electron to hole for the spin down states. To an
electronic state characterized by the wave vector k  with energy ξk  corresponds an hole state with the same
wave vector but with opposite energy ξ− k  (the zero of energy is taken at the Fermi energy).

Figure 3: In the vacuum state of the initial formulation, the spin up and down  electronic states are

unoccupied (left). In the new representation, the vacuum corresponds to all the electron states and hole

states being unoccupied (middle) which corresponds to unoccupied spin up electronic states and fully

occupied spin down electronic states (right) (the hatches symbolize occupied states).
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Figure 4: The coupling of electron and hole states corresponding to the same wave vector k  but with

opposite energy, respectively kξ  and kξ−  results in two quasiparticles states with energies kE  and kE−
larger in absolute value than kξ  and charge strictly smaller in absolute value than e(x-axis).

Figure 5: Labeling of the solutions of the Bogoliubov-de Gennes equation resulting from the coupling of

electron and hole states corresponding to the same wave vector k (red: same as in Figure 4), or k′  (blue)

with andk k′ being symmetric with respect to the Fermi wave vector so that k kξ ξ ′= − . (a) Wave vector
labeling. (b) Energy labeling.
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B.1.2 Quasiparticles in the superconducting state

In the electron-hole representation the superconducting hamiltonian writes3:

*ˆ ( )S k k k k k k k k k
k

H c c b b c b b cξ + + + += − − ∆ − ∆∑ (1)

In this representation, the effective electron-electron interaction responsible for

superconductivity corresponds to the electron and hole states of the same wave vector k

being coupled through the pairing potential ∆ . This hamiltonian can be diagonalized using an

unitary Bogoliubov transformation [6,7]:

*
11 0

* **
01 0

k k k k kk k k k k

k k k k kk k k k k

u c v bc u v

v c u bb v u

γγ γ
γγ γ

= − = + 
⇔  = += − + 

(2)

where 0kγ  and 1kγ  are new fermionic operators and the coefficients ku  and kv verify

2 2
1k ku v+ = .

In terms of these new operators, the hamiltonian is given by:

*
1 1 0 0 1 0 0 1

ˆ ( ) ,S k k k k k k k k k k k
k

H E γ γ γ γ η γ γ η γ γ+ + + += − + +∑

with

2 2 * * *

2 * 2

( )
.

2
k k k k k k k k

k k k k k k

E u v u v u v

u v u v

ξ
η ξ

 = − + ∆ + ∆


= − ∆ + ∆

The diagonalization condition is 0kη = . Imposing that 0kE > , and taking ku +∈\  yields:

1/ 2 1/ 2
1 1

1 , 1 , ,
2 2

k k k
k k

k k k

v
u v

E E v

ξ ξ    ∆= + = − =    ∆   

and 
22

k kE ξ= + + ∆ . The coupling repulses the electron and hole energy levels opening a

gap ∆  in the quasiparticle spectrum. The superconducting quasiparticles are coherent

superpositions of electron and hole normal quasiparticles with probability amplitudes related

to the coefficients andk ku v  in accordance with Exp. (2). In the high energy limit kξ ∆� ,

one recovers the normal state quasiparticles: ( , ) (1,0)k ku v →  that leads to 1 0( , ) ( , )k k k kc bγ γ → ,

while for 0kξ =  the quasiparticles are an equally weighted superposition of electron and hole

                                                          
3 The constant terms are ignored.
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normal quasiparticles. The charge they carry varies continuously between e±  (for kξ ∆� )

and zero (at 0kξ = ). The energy spectrum as a function of the quasiparticle charge is

sketched in Figure 4.

The space representation of the quasiparticles states associated to the operators 1kγ

and 0kγ  are two component column vectors denoted respectively 1,kψ  and 0,kψ  that verify the

Bogoliubov-de Gennes equations4:

* *

1, 1, 0, 0,

ˆ ˆ
, and 

ˆ ˆ
N N

k k k k k k

N N

H H
E E

H H
ψ ψ ψ ψ

   −∆ −∆
= = −   

−∆ − −∆ −      
(3)

and that write:

*

1, 0, *
( ) and ( )k ikx ikxk

k k
k k

u v
x e x e

v u
ψ ψ

  
= =   −   

(4)

Note that the vector components can be directly written from the expression of the operators

1kγ  and 0kγ  given in (2). The wave functions 1,kψ  and 0,kψ  are the complete set of solutions

of the Bogoliubov-de Gennes equation (3) for energies larger in absolute value than ∆ .

There are also solutions for energies < ∆E , which can be expressed in the same way

as in (4) by introducing complex wave vectors. However, as Andreev reflection conserve

energy but strictly speaking not momentum, it is more convenient to express all the solutions

of (4) in terms of their energy.

At a given energy E , there are four solutions corresponding to electron or hole-like

quasiparticles with both propagating directions:

( ) ( )
, ,( ) ( )

( ) ( )
and .

( ) ( )
e hik E x ik E x

e E h Ei i

E E
e e

E e E eφ π φ π

α β
ψ ψ

β α
± ± ± ±

+ +

   
≡ ≡   

   

In this expression, φ  is the phase of the order parameter: ieφ∆ = ∆ , and the wave vectors

( )ek E  and ( )hk E  satisfy the dispersion relations:

1/ 2
221

( ) 2 ( sign( ) ) ,ek E m E Eµ = + − ∆  =
(5)

                                                          
4 This matrix equation can be directly derived from the expression (1) of the superconducting hamiltonian.
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and

1/ 2
221

( ) 2 ( sign( ) ) ,hk E m E Eµ = − − ∆  =

with the convention 
2 22 2E i E− ∆ = + ∆ −  if E < ∆ . For E > ∆ , the coefficients ( )Eα

and ( )Eβ  are equal to:

1/ 2 1/ 2
2 22 2

1 1
( ) 1 , and ( ) 1 .

2 2

E E
E E

E E
α β

   − ∆ − ∆   = + = −
   
   

(6)

For E < ∆ , ( )Eα  and ( )Eβ  have the same modulus and are equal to:

1/ 2
2 2

( ) sign( ) 1 sign( ) ,
2

EE
E E i E

E
α

 ∆ − = +
 ∆
 

(7)

and

1/ 2
2 2

( ) 1 sign( )
2

EE
E i E

E
β

 ∆ − = −
 ∆
 

.

B.2  Andreev reflection

The Andreev reflection mechanism was first pointed out by Andreev in 1964 [8] in a

paper on heat flow through normal-superconducting interface. Nowadays, it has taken a

central role in the description of transport properties in systems involving one or several

superconducting electrodes. Here, we treat the case of a normal-BCS superconductor interface

whose pairing potential profile is depicted in Figure 6 (the sharp step corresponds to

neglecting proximity effects).
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An electron incident from the normal electrode is Andreev reflected off the pair

potential discontinuity generating an electron-like wave in the superconducting electrode

propagating in the same direction and an hole wave travelling in opposite direction in the

normal electrode. The Andreev reflection amplitude ( , )a E φ  is obtained by matching at the

interface 0x =  the wave functions of both electrodes5:

( )

1 0 ( )

0 1 ( ) i

E

E e φ π

α
λ µ ν

β + +

     
+ =     

     

that leads to ( )( , ) / ( ) / ( )ia E E e Eφ πφ µ λ β α+ += = .

Using (6) and (7), the Andreev reflection amplitude of an electron as a hole is then equal to:

( )
( )

22 ( )

2 2 ( )

1
sign( ) for

( , )
1

sign( ) for

i

i

E E E e E

a E

E i E E e E

φ π

φ π
φ

+

+

 − − ∆ > ∆ ∆= 
 − ∆ − < ∆
 ∆

. (8)

                                                          
5 Only the wave functions are matched here and not their derivative. This is equivalent to not taking into account
the mismatch of the wave vectors in the normal and in the superconducting electrodes. This approximation is
valid as long as µ∆ � (see [9]).

Figure 6: Pairing potential as a function of position at a normal-superconducting interface (0x = ).
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The modulus square and the phase of ( , )a E φ  are plotted in Figure 7. For E < ∆ , the

modulus is one which means that the electron is Andreev reflected with probability one and

the phase varies continuously between φ  and φ π+ . For E > ∆ , the modulus falls off

rapidly while the phase remains constant. The probability amplitude for a hole to be reflected

as an electron is the same as in (8), except for the ( )ie φ π+  factor that has to be changed by

( )ie φ π− + .

B.3  Andreev bound states: phase biased Josephson junctions

In the superconductor-conduction channel-superconductor junction, two scattering

mechanism are used to describe the electrical transport: The Andreev reflections at both NS
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Figure 7: Andreev reflection probability (top-left) and phase of the probability amplitude (top-right) as a

function of the quasiparticle energy in units of ∆ . φ  is the phase of the superconducting gap. Bottom:

Parametric representation of the Andreev reflection probability amplitude for 0φ = , the parameter being the

energy.
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interfaces whose probability amplitudes are given by (8), and the normal scattering in the

channel described by the matrix

ir t
S

t ir

− 
=  − 

for electrons (see Appendix A) and its conjugated for holes (see Figure 8).

When a phase difference L Rδ φ φ= −  is applied between the superconductors, the

electronic waves functions (as well as the hole ones) that are reflected at both interfaces

interfere producing resonant states. These so-called Andreev bound states are localized inside

the channel and carry the supercurrent between the two superconductors.

B.3.1  The ballistic Andreev bound states

Let us first considered the simplest case of a ballistic channel ( 1τ = ). An electron with

energy E  smaller in absolute value than ∆  moving to the right in the normal region is

Andreev reflected with probability one by the right superconductor into a left moving hole,

leaving an extra charge 2e in the superconductor. The hole is in turn reflected back into a

right moving electron, taking a charge 2e from the left superconductor. During this cycle, the

electron wave function acquires a phase shift 
2 2 1/ 22arctan( ( ) / )E E− ∆ − −δ :

2 2 1/ 2arctan( ( ) / ) RE E− ∆ − + +φ π  for the reflection at the right electrode and

Figure 8: Schematic representation of the pair potential profile of superconductor-single channel-

superconductor junction. Two parts that are connected through the normal scattering mechanism are

distinguished in the channel.
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2 2 1/ 2arctan( ( ) / ) LE E− ∆ − − −φ π  for the second one (see Exp. (8)), and a charge 2e is

transferred from the left to the right electrode. The same cycle exists starting from a left going

electron that transfer charges in opposite direction. A resonance occurs for energies that

verify:

2 2

arctan ,
2

E

E

δ ∆ − − = −
 
 

which leads to:

cos .
2

E
δ = ± ∆   

There are thus two Andreev bound states whose spectrum cross each other at δ π= . As

expected, they carry supercurrent in opposite direction, and for that reason we denote them

B→  and B← . Their current phase relationship are:

1
0

sin for B
2

( )

sin for B
2

e

dE
I

d e

δ

δ ϕ
δ δ

→
−

←

 ∆  +    = = 
∆  −    

=

=

,

where 0 / 2eϕ = =  is the reduced flux quantum.

B.3.2  Andreev bound states in a channel with arbitrary transmission
probability ττ

For a channel with arbitrary transmission, the supercurrent is still carried by bound

states localized in the channel. Now, electrons (holes) have a finite probability to be reflected

into electrons (holes), a mechanism that couples the two ballistic states B→  and B← . On both

side of the scattering region (see Figure 8), the bound state wave function is the sum of

electron and hole wave functions with right and left propagating direction. Keeping the same

notation as in Appendix 1 to distinguish between the waves coming in, or outgoing from the

scatterer, the wave function can be written:
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1 1 1 1

2 2 2 2

1 1 0 0
(region 1)

0 0 1 1
( )

1 1 0 0
(region 2)

0 0 1 1

N N N N
e e h h

N N N N
e e h h

ik x ik x ik x ik xe e h h

ik x ik x ik x ik xe e h h

a e b e a e b e

x

a e b e a e b e

ψ

+ − − +

− + + −

        
+ + +        

        = 
        + + +               

where ( )N N
e hk k  corresponds to ( )e hk k  defined in (5) taking 0∆ = . The coefficients

corresponding to the electron (hole) wave functions are linked together by the scattering

matrix S:

*1 1 1 1

2 2 2 2

and .
e e h h

e e h h

b a b a
S S

b a b a

       
= =       

       
(9)

Furthermore, the electron and hole coefficients are related by the Andreev reflection

probability amplitude:

2 2 1 1

2 2 1 1

( , ) ( , )
(right interface), and (left interface)

( , ) ( , )

h e h e
R L

h e h e
R L

a a E b a a E b

a E b a a E b a

φ φ
φ φ

 = =
 − = − = 

6. (10)

Using Expr. (9) and (10), the following eigenvalue equation is obtained:

*1 1

2 2

( , ) 0 ( , ) 0
with =

0 ( , ) 0 ( , )

e e
L L

e e
R R

a E a Ea a
M M S S

a E a Ea a

φ φ
φ φ

−       =       −      

This matrix equation has a non-zero solution if:

4 2 2 2det( ) 1 ( ) ( ) (2 2 cos( )) 0,M Id E E r tγ γ δ− = + − + = (11)

where 
2 2 1/ 2( ) ( ( ) ) / ( , ) iE E i E a E e φγ φ += − ∆ − ∆ = . Solving Eq. (11) for E  leads to the

energy spectrum of the two Andreev bound states:

1/ 22( ) 1 sin ( 2) .E δ τ δ±  = ± ∆ − 

They carry a supercurrent equal to:

2

sin( )
( ) .

2 1 sin ( / 2)

e
I

τ δδ
τ δ

±
∆= ±

−=

In Chapter 3 section 3.1.2, the current-phase relationship of tunnel junctions, diffusive wires

and a particular atomic size-contact  are derived from this expression.

                                                          
6 As the channel is considered dimensionless, the phase accumulated during the travel through the normal part is
zero.
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B.4  Multiple Andreev reflections: voltage biased Josephson
junctions

When a voltage bias V  is applied between the two superconductors, electrons and

holes gain or lose an energy eV  each time they cross the conduction channel. Consequently,

a quasiparticle with energy E  incident from the left superconductor, which produces an

electron in the normal region with probability 
2 1/ 2( ) [1 ( ,0) ]J E a E= − , generates an infinite

series of Andreev reflections at energies: 2E neV+  for the left interface, and (2 1)E n eV+ +

for the right one.The wave function in the normal regions is as a result a sum of electron and

hole wave functions with energies shifted by 2eV , which in region 1 can be written [10]:

( 2 ) /
2 0

(1)

( 2 ) /
2

[( ( ) ) ]

( , )
[ ]

N N
e e

N N
h h

ik x ik x i E neV t
n n n n

n

ik x ik x i E neV t
n n n

n

a A J E e B e e

E x
A e a B e e

δ
ψ

+ − − +

∈

+ − − +

∈

 + +
 

=  
+ 

 

∑

∑

=

`

=

`

,

and in region 2:

( (2 1) ) /
2 1

(2)

( (2 1) ) /
2 1

[ ]

( , )
[ ]

N N
e e

N N
h h

ik x ik x i E n eV t
n n n

n

ik x ik x i E n eV t
n n n

n

C e a D e e

E x
a C e D e e

ψ

+ − − + +
+

∈

+ − − + +
+

∈

 +
 

=  
+ 

 

∑

∑

=

`

=

`

,

where ( ,0)ka a E keV= + .

Figure 9: Andreev spectrum for a ballistic channel (dotted and dash dotted lines) and for a channel with
transmission probability 0.9τ = (full lines).  The coupling of the two ballistic bound states through the
normal scattering mecanism in the channel opens a gap at the level crossing (δ π= ).
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These expressions translate the fact that in region 1 (2), right (left) going electrons and holes

result from the Andreev reflection of left (right) going holes and electrons respectively7. The

coefficient ( )n nA B  is the probability amplitude to find a left going hole (electron) in region 1

with energy 2E neV+  while ( )n nC D  is the probability amplitude associated to a right going

electron (hole) with energy (2 1)E n eV+ +  in region 2. The coefficients in region 1 are related

to those in region 2 by the scattering matrix. For the electronic waves, the relation is [10]:

2 0

2 1

n n n n

n n n

B a A J
S

C a D

δ

+

+   
=   

   
,

and for the hole waves:

2*

1 2 1 1

n n n

n n n

A a B
S

D a C− − −

   
=   

   
.

The coefficients , , , andn n n nA B C D  are calculated from these four coupled recurrence

equations.

The wave functions (1) (2)andψ ψ  should be thought of as the eigenstates of the time

dependent Hamiltonian describing the system. They carry the same current given by:

(1) (1)ˆ( ) ( )E I Eψ ψ ,

where Î  is the current operator. It has Fourier components at all multiples of the Josephson

frequency 2 /J eVω = = . The total current is obtained by summing up the contribution of all

eigenstates weighted by the Fermi occupation factors. The DC component at zero temperature

writes in terms of the coefficients nA  and nB  [10]:

( )
2

2 2 2*
0 0 0 2

2 1
( ) ( ) ( ) 1 ( )n n n

n

e
I V V dE J E a A A a A B

h e

  = − + + + −  
  

∑∫

The numerical evaluation of this expression leads to the highly non linear current-voltage

characteristics that were presented and described in the introduction (p.5).

                                                          
7 Except for the source term 0( ) nJ E δ .
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