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Introduction

In this thesis, we study the 0-problem with exact support in certain do-
mains with Levi-degenerate boundaries. This is the following problem:

Consider a complex manifold X and a relatively compact domain Q CC
X. Let f € Cpo(X)N Kerd be a smooth 0-closed (p, q)-form on X such that
suppf C Q (in other words, f vanishes to infinite order at the boundary of
). We want to find a smooth (p,q — 1) form u on X satisfying

(e { T

suppu C Q

We will give some positive answers to the problem (), , for two different
types of domains.

The first type will be a domain satisfying a certain pseudoconvexity con-
dition, which we call "log é-pseudoconvexity”. More precisely, let (X, w) be
an n-dimensional Kahler manifold and 2 CC X a domain. Let J be the
boundary distance function of 2 with respect to w. We assume that  has
Lipschitz boundary and is log §-pseudoconvex, that is 99(—log§ +h) > Cw
for some C' > 0 and some bounded function h on 2.

Let E — X be a holomorphic vector bundle and set
Cg’q(X, O, E)={f¢€ Cg’q(X, E) | suppf C Q}, k€ NU{+co},
HP(X,Q,E) = Co(X,9Q, E) NKerd/d(Cye, 1 (X, Q, E)).

Our result is then the following:

Theorem 1
HPY(X,Q,FE) =0 for0 <p<mn, 0<qg<n-1and H?"(X,Q,E) is
separated.

For example, if X is a Stein manifold, then any 2 CC X, which is locally
Stein, satisfies the log d-pseudoconvexity condition (see [El]). The same is
true if (X,w) has positive holomorphic bisectional curvature, that is 750X
is positive in the sense of Griffiths (see [Ta], [El], [Su]).

The case where 2 CC C" and 0N is piecewise smooth was settled in
[Mi/Sh] using some kernel method. On the other hand, if X is compact and
HP4(X,E) = H” (X, E) = 0, then solving the 0-problem with exact sup-
port (*),,, in Q is equivalent to solving the §-equation with regularity up to
the boundary in X \Q in bidegree (p, g—1). This equation has been discussed
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INTRODUCTION 3

in [He/Io] under the same assumption on 2. If  has smooth boundary, then
Theorem 1 implies that smooth functions (more generally, smooth forms of
certain bidegrees) satisfying the tangential Cauchy-Riemann equations on
09 extend to holomorphic functions in Q. This has been previously proved
in [Oh2].

The proof of Theorem 1 consists essentially of two steps. In the first
step, we use L? estimates with weights =" for large N € N. More pre-
cisely, combining the standard L? estimates in the form of [Del] with some
duality argument, we obtain the following result:

Let f be a O-closed (0, q)-form on Q with values in F, 1 < g <n— 1.
Then there exists a (0,qg — 1)-form u on Q satisfying du = f in the sense of
distributions and

/ 26 Nav, < / 28 N2V,
Q Q

provided the integral on the right hand side is finite and N is sufficiently
large.

Now, since 2 has Lipschitz boundary, the integral on the right hand side
will be finite for every N if f vanishes to infinite order at the boundary of
Q. Thus we obtain a solution w which is square integrable with respect to
the weight 6 V. It is then natural to ask whether this solution maybe van-
ishes to some finite order at the boundary. In fact, the second step consists

V) (X,9, E) with

of showing that the minimal L* solution satisfies u € Cy,"’|

s(N) ~v/N.

Finally, if one starts with f vanishing to infinite order at the boundary,
then, applying a Mittag-Lefller procedure, one gets a solution u which also
vanishes to infinite order at the boundary. Also, the separation statement
in the theorem is proved similarly. One in fact shows that the range of 0
consists of all (p,n)-forms orthogonal to holomorphic (n — p,0)-forms with
polynomial growth at the boundary.

Theorem 1 and its dual version yield information about the tangential
Cauchy-Riemann equations on boundaries of smooth weakly pseudoconvex
domains (by weakly pseudoconvex we mean that the Levi form of the bound-
ary is semi-positive). We prove the following theorem, which generalizes well
known statements in case the boundary is strongly pseudoconvex.

Theorem 2
Let X be an n-dimensional Stein manifold and Q CC X a weakly pseudocon-
vex domain with smooth boundary M. Then we have HP4(M) = HEL(M) =



4 INTRODUCTION

0 for0 <p<mn,1<q<n-—2 Moreowver HP’O(M),Hg’ag(M),Hp’"_l(M)
and Hfﬁ?-_l(M) are infinite dimensional and, if n > 3, separated.

Let us also mention that under the hypothesis of Theorem 2, if @ cC C”,
the tangential Cauchy-Riemann equations for smooth forms have been stu-
died in [Ro]. The dual version of Theorem 1 can also be applied to show the
following;:

Theorem 3

Let X be an n-dimensional Stein manifold and Q CC X a smooth weakly
pseudoconvexr domain. Let M be a Levi-flat hypersurface in X, such that M
intersects OS) transversally and Q\ M has ezactly two connected components.
Then HZL(MNQ) =0 for0<p<n,1<qg<n-1.

By an induction argument, the above result can also be generalized to
Levi-flat C R manifolds of arbitrary codimension k£ > 1 by taking nice generic
intersections of Levi-flat hypersurfaces.

Next, we discuss the J-problem with exact support in some weakly g-
convex domains. We consider the following situation:

Let X be an n-dimensional Stein manifold and 2 CC X a smooth strictly
pseudoconvex domain. Let M be a real hypersurface of class C* intersecting
0N} transversally such that Q\ M has exactly two connected components.
We suppose that M = {p = 0} where p is a C* function whose Levi form
has exactly pt positive, p° zero and p~ negative eigenvalues on Tg} OM for
eachze M, p~+p°+pF=n—1. Weput D=0QN{p<0}. Let E — X
be a holomorphic vector bundle.

Our result is then as follows.

Theorem 4
HP4(X,D,E) =0 for0<p<n, q<p’+p" and H?"*?"+*1(X D, E) is
separated.

Under the assumption that M is strictly g-convex, the 0-equation with
vanishing along M has been studied by Andreotti and Hill in order to obtain
a Poincaré lemma for the tangential Cauchy-Riemann operator on hyper-
surfaces. Also, in the setting of strictly g-convex (or concave) domains,
the J-equation with exact support has been studied by Sambou in his the-
sis, where he proves some Dolbeault isomorphism between the tangential
Cauchy-Riemann cohomology groups of smooth forms and currents on hy-
persurfaces (see [Sal], [Sa2]). Let us also mention that M. Derridj [Der]

has studied the d-equation with exact support and L? regularity in certain
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weakly g-convex domains in C".

The proof of Theorem 4 follows the same scheme as the proof of The-
orem 1, but this time it is far more difficult to obtain the L? estimates.
The crucial point is to construct a metric on D which permits to prove L2
estimates with inverse powers of the boundary distance as weight functions
as before for some appropriate bidegrees.

The dual version of Theorem 4 then leads to the following application.

Theorem 5
HEL(MNQ) =0, ¢ >n—min(p~,p") — p°.

In particular, the above theorem gives a Poincaré lemma, for currents on
this particular type of hypersurfaces. For smooth forms, the correspond-
ing Poincaré lemma was obtained by V. Michel, who studied the 0-equation
with regularity up to the boundary in weakly ¢g-convex domains near a point

where the number of negative eigenvalues of the Levi form is constant (see
[Mi]).

Theorem 4 also leads to the following theorem.

Theorem 6

Assume that M s a closed connected real hypersurface of a Stein mani-
fold which has signature (p~,p°,p*) at each point. Then HEY(M) = 0,
¢ < min(p~,p*) +p° - 1.

Here H??(M) denote the tangential Cauchy-Riemann cohomology groups
of smooth forms with compact support on M. This in turn has the following
interesting corollary.

Theorem 7
Assume moreover that p~ +p° > 2, pT + p® > 2 and that M is globally
minimal. Then the Hartogs phenomenon for CR funtions holds in M.

Note that the assumption of global minimality is necessary only to as-
sure that the weak analytic continuation principle for C'R functions holds in
M. Tt is however satisfied as long as p™ # 0 or p~ # 0. An interesting case
is e.g. the one of signature (1,1,1).

The Hartogs phenomenon has already been previously discussed on hy-
persurfaces whose Levi form has at least ¢ positive and g negative eigenvalues
everywhere. Indeed, Henkin [He| proved that for ¢ = 1, the Hartogs phe-
nomenon holds in sufficiently small open sets. For ¢ = 2, it was proved in
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[L-T] that the Hartogs phenomenon holds globally if M is closed in a Stein
manifold. For ¢ = 1, however, a counterexample was given in [Hi/Na3],
which shows that the Hartogs phenomenon fails to hold globally.

This thesis is organized as follows. In Chapter 1, we provide a (nonex-
haustive) introduction to L? estimates for the d-operator on complex ma-
nifolds. In Chaper 2, we study the regularity of the equation Lu = f, where
L is an elliptic operator on an open set {2 C R", whose principle symbol
can be controlled by some power of the boundary distance of 2, and f van-
ishes to some finite order at the boundary of €2. This regularity result will
provide the desired vanishing at the boundary of the minimal L? solutions
mentioned in the sketch of Theorem 1. In Chapter 3, we discuss the weakly
pseudoconvex case and prove Theorem 1. Theorem 4 is proved in Chapter
4, and in Chapter 5, we give the applications to C'R manifolds.

Acknowledgements. This thesis was prepared while I was staying at the
Institut Fourier in Grenoble and at the Humboldt-Universitat in Berlin. The
travels between the two institutions were financed by the European network
“Complex analysis and analytic geometry”. I would also like to thank the
mathematiciens which I met at both institutions for valuable mathematical
as well as personal discussions. In particular, I am gratefully indebted to
Christine Laurent and Jiirgen Leiterer for having supervised and encouraged
this work, while at the same time letting me a huge amount of liberty in
choosing my research topics, which I appreciated very much.



Chapter 1

£2 estimates for the
0-operator

In this chapter we briefly describe the most important L? estimates for the 0-
operator on holomorphic hermitian vector bundles over complex manifolds.
We first recall the most basic definitions of hermitian differential geometry
related to the concepts of connection and curvature of a vector bundle. We
then state some purely functional analytic theorems before turning to L?
theory on Riemannian manifolds. We introduce the concept of a complete
metric. Proving the fundamental approximation theorem for complete met-
rics, we explain why it is particularly convenient to work with complete
metrics. We then turn to the G-operator on holomorphic vector bundles,
stating the Bochner-Kodaira-Nakano identity and Nakano’s inequality. At
the end of this chapter, we prove the general existence theorem on weakly
pseudoconvex manifolds, allowing also non complete metrics and singular
weights. There is nothing original in this chapter. Almost everything is
shamelessly copied from Demailly’s beautiful book [De3]. All the left-out
details and proofs can be found there.

1.1 Hermitian vector bundles

Let X be an n-dimensional complex manifold and let (z1,...,2,) be holo-
morphic local coordinates on some open set 2 C X (we usually think of Q
as being just an open set in C*). We write z; = z; +iy;, Z; = ©; — iy;, and
de = d:l,‘j + 'idyj, dfj = d.Tj — idyj.

A (p, g)-form on X is a differential form of total degree p+¢ with complex
coefficients, which can be written as

u(z) = Z ’U,[J(Z)dZ[ ANdz g
|=p,|J|=q

7



8 CHAPTER 1. L? ESTIMATES FOR THE 0-OPERATOR

where I = (i1,...,4p) and J = (j1,...,J4) are multiindices (arranged in
increasing order) and dzy = dz;, A ... ANdz;,, dz; = dzj A... \NdZj,.

We denote by AP4T*X the vector bundle of complex-valued (p, g)-forms
over X and by C%(X) (resp. Cﬁ’q(X)) the smooth (resp. C*) sections of
APAT* X,

In this setting, the exterior derivative du of the (p, ¢)-form w is

_ Oury Oury _
du = > ( I dzi + s dzy) Ndzr Ndz s
\I|=P:|J\=‘J:1Sk§n

We may therefore write du = Ou + Ou with uniquely defined forms du of
type (p+ 1,q) and Ou of type (p,q + 1) such that

ou = Z Oury dzp Ndzr Ndzy,
0z,
|I|:pa“]|:q’1§k5n
du = 3 OULT o Ny A dz
azk k 1 J

|I|:pa“]|:q11§k§n

The operator 0 is usually called the Cauchy-Riemann operator and satisfies
900 =0.

Let E be a C* vector bundle of rank r over X. We denote by C;%, (X, E)
the space of C* sections of the bundle A»IT*X ® F.

Now let us consider a holomorphic vector bundle £ — X. By defini-
tion, this means that we have a collection of trivializations Ey, ~ U; x C',
r = rankE, such that the transition matrices g;i(2) are holomorphic. We
consider the complex of E-valued smooth (p,g)-forms. Again, C;% (X, E)
possesses a canonical 0-operator. Indeed, if v is a smooth (p, ¢)-section of
E represented by forms u; € C;5(U;,C") over the open sets Uj;, we have
the transition relation u; = gj;ug; this relation implies Euj- = gjkguk (since
0gji = 0), hence the collection (Ou;) defines a unique global (p, g+1)-section
ou.

Let us recall that a Riemannian metric on a (real) differentiable manifold
M is a positive definite symmetric form

g= Z gjk(z)dz; @ dxy,
1<j,k<n

on the tangent bundle T M, where (z1,...,z,) are local coordinates for M.
We usually assume that the coefficients g;;(z) are smooth. Then, for any
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tangent vector ¢ = ij% € T, M, one defines its norm with respect to g
by
2= > gin(@)&é.
1<j,k<n
If M is moreover assumed to be oriented, one defines a corresponding volume
element
dVy = y/det(gji(x)) dx1 A ... Adxy,

whenever (z1,...,z,) fit with the given orientation. It is easy to check by
the jacobian formula that this definition of dV} is independent of the choice
of coordinates.

On any coordinate open set 2 C M, we can use the Gram-Schmidt orthogo-
nalization procedure in order to construct an orthonormal frame ({3, ...,{,)
for T Mq for the metric g. The dual basis ((7,...,(,) defines an orthonor-
mal frame for the dual metric, furthermore, any p-form can be written in a
unique way u = E| I|=p U 1¢7. We define the (pointwise) Riemannian norm
of u to be |u|Z = Y, |ur[>. In this way, we get a Riemannian metric on
APT* M, which is actually independent of the initial choice of the orthonor-
mal frame ((;).

Now, we consider the complex case. Let X be a complex n-dimensional
manifold. A hermitian metric on X is a positive definite hermitian form of
class C* on T'X; in a coordinate system (z1,...,25,), such a form can be
written h(2) = 371 <; p<p, hjk(2)dz; ® dZ), where (k) is a positive hermitian
matrix with C* coefficients. Thanks to the hermitian condition m = hgj,
our form h can be written as h = g — iw, where

hEm) = Y hip(2)éEmy,

1<j,k<n

g(&;mn) =Reh(&n) = D (he(2)Emg + hir(2)€ jmr)

1
2
1 _

i _ = .
w&n) =-Imh(&n) =5 Y hu(2) & — &), ie
1<j,k<n
1
w=-Imh = Z hjk(2)dz; A dZy.
1<j,k<n
By definition, w is the fundamental (1,1)-form associated with h. Since w
and h are ”isomorphic” objects, we usually do not make any difference and
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will think of hermitian metrics as being positive (1,1)-forms. A hermitian
manifold is a pair (X,w) where w is a C* positive definite (1,1)-form on
X. Here a (1,1)-form w = i) wjrdz; A dZy is said to be positive definite,
denoted by > 0, resp. positive (> 0), if and only if

§— Z Wik,

is a positive (resp. semi-positive) hermitian form on C".

Let E be a complex vector bundle of rank r over a smooth differentiable
manifold M. A connection D on E is a linear differential operator of order
one

D:C®(M,E) — C2,(M, E)

such that
D(f Au) =df Au+ (1) f A Du

for all forms f € C°(M), u € C7°(M, E). On an open set 2 C M, where E
admits a trivialization 0 : Ejq ~ 2 x C", a connection D can be written

Du~gdu+T Au

where I' € C$°(2, Hom(C", C")) is an arbitrary matrix of 1-forms and d acts
componentwise. It is then easy to check that

D?u =~y (dT +T AT) Au on Q.
Since D? is a globally defined operator, there is a global 2-form
O(D) € C5°(M,Hom(E, E))
such that D?u = ©(D) A for every form u with values in E. ©(D) is called

the curvature of D.

Assume now that E is endowed with a C* hermitian metric along the
fibers and that the isomorphism Ejg ~  x C" is given by a C* frame (e)).
We then have a canonical sesquilinear pairing

CX(M,E) xCP(M,E) — Cp%,(M,E)
(u,0) — {u,v}
given by
{u,v}:ZuA/\ﬁu(eA,eu), u:ZuA@)eA, v:Zqu@eu.

Au

The connection D is said to be hermitian if it satisfies the additional property

d{u,v} = {Du,v} + (—1)%8%{u, Dv}.
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Assuming that (e)) is orthonormal, one easily checks that D is hermitian if
and only if I'* = —I". In this case ©(D)* = —O(D), thus

iO(D) € C3°(M,Herm(E, E)).

We now concentrate ourselves on the complex analytic case. If M = X is
a complex manifold X, every connection D on a complex C*° vector bundle
E can be split in a unique way as a sum of a (1,0) and of a (0, 1)-connection,
D = D'+ D". In a local trivialization 6 given by a C*® frame, one can write

D'u~g0u+T' Au,

D"u ~g Ou+T" Au,

with I' = IV + T, The connection is hermitian if and only if I = —(I"')* in
any orthonormal frame. Thus there exists a unique hermitian connection D
corresponding to a prescribed (0, 1) part D".

Assume now that the bundle F itself has a holomorphic structure. The
unique hermitian connection for which D" is the d-operator as defined before
is called the Chern connection of E. In this situation, we will write 0 instead
of D'.

In a local holomorphic frame (ey) of E|q, the metric is given by the hermitian
matrix H = (hy,), hay = (ex, eu). We have

{u,v} = Zh,\“u,\ AT, = Tu A HT,
Ap

where Tu is the transposed matrix of u. Easy computations yield that
O(D) ~y O(H '0H)  on Q. (1.1.1)
In particular, the Chern curvature tensor O(E) := ©O(D) is such that
iO(F) € €79 (X, Herm(E, E)).
Moreover, it is important to observe that
O(E®F)=0(F)®Ildr +1dg @ O(F) and
O(E*) = —'O(E)

where ¢ denotes transposition.

Let (21, .., 2n) be holomorphic local coordinates on X and let (ex)i<x<r
be an orthonormal frame of E. Writing

Z(")(E) = E Cjk:)\udzj A df/c &® 6; ® €us
1<,k <n, 1 <A u<r
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we can identify the curvature tensor to a hermitian form

O(E)(E®v,E0v) = Z Ciinn€iERUAT

1<j,k<n,1<Au<r

on TX ® E. This naturally leads to the following concepts of positivity:

_ The vector bundle E' is said to be positive in the sense of Griffiths if
O(E)((®v,£®v) > 0 for all non zero decomposable tensors Qv € TX Q E.

The vector bundle F is said to be positive in the sense of Nakano if

@(E)(T, 7') = Z CikAuTiAT by > 0
for all non zero tensors 7 = ) 7,,0/07;®e) € TX®E. We then write E > 0.

Example. Assume that E is a line bundle. The hermitian matrix
H = (hq1) associated to a trivialization 0 : E|g =~ Q x C is simply a positive
function which we find convenient to denote by e™%, ¢ € C*°(Q,R). In this
case, the curvature form ©(E) can be identifiend with the (1,1)-form 80,
and
iO(E) = i00¢p

is areal (1,1)-form. E is positive in either the sense of Griffiths or the sense
of Nakano if and only if :00¢ > 0.

1.2 L? theory on complete manifolds

A few preliminaries of functional analysis will be needed here. Let H1,Hs
be complex Hilbert spaces. We consider a linear operator 1" defined on a
subspace DomT C H; (called the domain of T') into Hg. The operator T is
said to be densely defined if Dom T is dense in H1, and closed if its graph

GrT = {(z,Tz) | z € DomT}

is closed in H1 x Ho.

Assume now that 7" is closed and densely defined. The adjoint 7™ of T' (in
Von Neumann’s sense) is constructed as follows: Dom 7 is the set of y € H,
such that the linear form

DomT > z — (Txz,y)2

is bounded in the #H;-norm. Since Dom T is dense, there exists for every y
in Dom 7™ a unique element T*y € #; such that (T'z,y)s = (z, T*y); for all
z € Dom T*. Tt is immediate to verify that Gr T* = (Gr(—T))"' in H; x Ho.
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It follows that 7™ is closed and that every pair (u,v) € H; x Hg can be
written

(u,v) = (z,—Tz) + (T*y,y), = € DomT, y € DomT".
Take in particular v = 0. Then
e+ Ty=0, v=y-Te=y+TTy, (v,y)2 =yl + Ty}

If v € (DomT*)* we get (v,y)2 = 0, thus y = 0 and v = 0. Therefore T* is
densely defined and our discussion implies:

Theorem 1.2.1

If T : Hy — Ho is a closed and densely defined operator, then its adjoint
T* is also closed and densely defined and (T*)* =T. Furthermore, we have
the relations Ker T* = (ImT)* and (Ker T)* = Im T*.

Consider now two closed and densely defined operators T', S:
Hi — Ho 5 Ha

such that S o T = 0. The starting point of all L? estimates is the following
abstract existence theorem.

Theorem 1.2.2
There are orthogonal decompositions

Ho = (Ker SNKerT*) @ ImT & Im S*,
Ker S = (Ker SNKerT*) & ImT.
In order that ImT = Ker S, it suffices that
|T*z||? + ||Sz||2 > C||z||3, for all z € Dom S N Dom T*

for some constant C > 0. In that case, for every v € Ho such that Sv =0,
there exists u € Hy such that Tu = v and

1
Jul} < Z ol

In particular

Im7T =Im7T =KerS, ImS*=ImS*=KerT".
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Let (M,g) be a Riemannian manifold and let Fij, F5 be hermitian C*
vector bundles over M. Then we can define the spaces L?(M, F;) of square-
integrable sections of F; with respect to the metrics of M and F;. If P :
C>®(M, Fy) — C*®(M, F5) is a differential operator with smooth coefficients,
then P induces a non bounded operator

P:L*(M,F) — L*(M, F),

as follows: if u € L?(M, F1), we compute Pu in the sense of distribution
theory and we say that u € DomP if Pu € L2(M, F,). Tt follows that P is
densely defined, since DomP contains the set D(M, F;) of compactly sup-
ported sections of C*°(M, F}), which is dense in L?(M, Fy). Furthermore
GrP is closed: if w, — u in L*(M,F;) and Pu, — v in L?(M, F3),
then Pu, — Pu in the weak topology of distributions, thus we must have
Pu = v and (u,v) € GrP. By the preceeding general results, we see that
P has a closed and densely defined Von Neumann adjoint (P)*. We want
to stress, however, that (P)* does not always coincide with the extension
P* of the formal adjoint P* : (M, Fy) —s C°(M, F}), computed in the
sense of distribution theory. In fact u € Dom(ﬁ)*, resp. u € Domﬁ;, if
and only if there is an element v € L?*(M, F1) such that (u, Pf) = (v, f)
for all f € DomP, >, resp. for all f € D(M, Fy). Therefore we always have
Dom(P) C DomP* and the inclusion may be strict because the integration
by parts to perform may involve boundary integrals for (P)*. This is why
we have to introduce the concept of complete metrics.

Let (M, g) be a Riemannian manifold of dimension n, with metric

Zg]k z)dz; @ dzy.

The length of a path v : [a,b] — M is by definition

b b
:/ Y @)l = / O ACIOIACRAGINE 2

The geodesic distance of two points z,y € M is
0(z,y) = infily) withy(a) =z, 7(b) =y,
if 2,y are in the same connected component of M, 6(z,y) = +oo otherwise.

The following standard definitions and properties will be useful in order
to deal with the completeness of the metric.
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Definitions.

(i) A riemannian manifold (M, g) is said to be complete if (M,0d) is com-
plete as a metric space.

(ii) A continuous function v : M — R is said to be ezhaustive if for every
¢ € R the sublevel set M, = {z € M | ¥(x) < c} is relatively compact
mn M.

(iii) A sequence (K, )yen of compact subsets of M is said to be exhaustive
if M = U, K, and if K, is contained in the interior of K,+1 for all v.

Lemma 1.2.3
The following properties are equivalent:

(i) (M,g) is complete;
(ii) there exists an ezhaustive function ¢ € C*°(M,R) such that |di|s < 1;

(iii) there exists an exhaustive sequence (K, ), en of compact subsets of M
and functions ¥, € C*°(M,R) such that

1, = 1 in a neighborhood of K,,, supp, C IO{VH,
0<%, <1and |dp,|g <27".

Let F — M be a differentiable hermitian vector bundle. Let us consider
the Hilbert space LIZ,(M ,E) of p-forms v on M with values in E, having
measurable coefficients, such that

|2 = / w24V < +oo.
M

We denote by < , > the global inner product on L?-forms. Let D be a
hermitian connection on E. We denote by § the formal adjoint of D and put
A = Di+6D. Extended in the sense of distribution theory, these operators
are thus closed and densely defined operators on L2(M, E) = @D, LIZ,(M ,E).
We also introduce the spaces DP(M, E) of compactly supported forms in
C;°(M, E). The theory relies heavily on the following important result.

Theorem 1.2.4
Assume that (M, g) is complete. Then

(i) De(M, E) is dense in DomD, Domd and DomD N Domé respectively
for the graph norms

w flull +[[Dull,  w = fluf +[|ull, w = flul] + | Dul| + [[du]].
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(i) D* = §, 6" = D as adjoint operators in Von Neumann’s sense.

(i43) One has {u, Au)) = ||Dul|®>+||6ul|? for every u € DomA. In particular
DomA C DomD NDomd, KerA = KerD N Kerd,
and A is self-adjoint.
(iv) If D? = 0, there are orthogonal decompositions
Li(M,E) = H*(M,E) @ TmD & TmJ,

KerD = H*(M,E) & ImD,

where H*(M,E) = {u € L2(M,E) | Au = 0} C C®(M,E) is the
space of L? harmonic forms.

Sketch of the proof. (i) We show that every element u € DomD can be
approximated in the graph norm of D by smooth and compactly supported
forms. By hypothesis, u and Du belong to LZ(M, E). Let (1,,) be a sequence
of functions as in Lemma 1.2.3 (iii). Then ¥,u — u in LZ(M,E) and
D(¢,u) = 1, Du + dip, A u where

|dipy Au| < |dipy| |ul < 27"[ul.

Therefore diy, Au — 0 and D(¢,u) — Du. After replacing u by ¥, u,
we may therefore assume that u has compact support, and by using a finite
partition of unity on a neighborhood of supp u, we may also assume that
supp u is contained in a coordinate chart of M on which F is trivial. Let I’
be the connection form of D on this chart and (p.) a family of smoothing
kernels. Then u * p. € Ds(M, E) converges to u in L2(M, E) and

D(ux*p:) — (Du) xp: =T A (ux*p:) — (T Au) * pe

because d commutes with convolutions (as any differential operators with
constant coefficients). Moreover (Du)* p. converges to Du in L2(M, E) and
LA (u%*pe), ([ Au)*pe both converge to I' Au since I' A e acts continuously on
L?. Thus D(u * p.) converges to Du and the density of Do(M, E) in DomD
follows. The proof for Domé and DomD N Domd is similar, except that
the principal part of § no longer has constant coefficients in general. The
convolution technique requires in this case a lemma due to K.O. Friedrichs
(see e.g. [De3]), which we omit here.

The assertion (ii) is equivalent to the fact that

{(Du,v) = {u,ov), VYu € DomD, Vv € Domé.
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By (i), we can find u,,v, € De(M, E) such that
u, = u, v, —v, Du,— Du, andév, — dvin L:(M,E),

and the required equality is the limit of the equalities
{Duy,vp)) = (uy, bv,)-

We skip the proof of (iii) and remark that (iv) is an immediate conse-
quence of (ii), (iii) and Theorem 1.2.2. O

On a complete hermitian manifold (X, w), there are of course similar re-
sults for the operators D', D", §', 6", [0', 0" attached to a hermitian vector
bundle E.

1.3 General estimates for 9

Let (X,w) be a hermitian manifold, and let E be a hermitian holomorphic
vector bundle over X. We denote by D = 0 + 0 its Chern connection (or
Dg; if we want to specify the bundle), and by § = 0* +8" the formal adjoint
operator of D. Another important operator is the operator L of type (1,1)
defined by

Lu=wAu

and its adjoint A:
((u, Av)) = (Lu,v)).

If A,B are endomorphisms of CJ5, (X, E), their graded commutator is
defined by

[A,B] = AB — (-1)®BA

where a, b are the degrees of A and B respectively.

We can now state the fundamental Bochner-Kodaira-Nakano identity,
which is the basis of all L? vanishing theorems for hermitian holomor-
phic vector bundles. It expresses the antiholomorphic Laplace operator
0" = 99" + & 0 in terms of its conjugate ' = §9* + 8*8, plus some
extra term involving the curvature of £ and the torsion of the metric w.

Theorem 1.3.1

o' =0 + [ZQ(E),A] + [617—*] - [5,?*]7
where T is the operator of type (1,0) defined by T = [A, 0w] on C, (X, E).
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For a large class of manifolds, called Kahler manifolds, the above iden-
tity has a much simpler form, expressing (1 — [ as an operator of order 0
closely related to the curvature of E.

Definition. w is a Kahler metric if dw = 0.
(X,w) is said to be a Kdhler manifold if w is a Kéhler metric.

Corollary 1.3.2
If w is a Kdhler metric, then

0" =0 + [iO(E), A).

Now assume that w is a complete hermitian metric. Then for every form
u € DomdNDomd of bidegree (p, q) we have the following a priori inequality

3 - % . * — —%
5 (I0ull*+1107u]?) > (liO(E), Alu, wh) =3 ([l + [l ull* +[[7ul*+ 7],

(1.3.1)

1
2

provided the integrals on the right hand side are finite. This inequality is
known as Nakano’s inequality.

Indeed, for every u € DP4(X, E), since ((1"u,u)) = ||oul/? + |8 u|? and
(O'u,u)) = ||0u||* + ||0*u||?, we get from Theorem 1.3.1

1Bl + 1[0"ul* =
18ul? +1|0*ull* + ([iO(E), Alu, u) + ([0, 7"Tu, u) — ([0, 7Tu, u)).
Moreover, we have

([0, m"]u,u)) = (Or"u,u)) — {770u, u))
{(T*u, 0" u)) — {(Ou, Tu))

1
=5l ull* + [|0"ull* + [|Qull* + [|rull*).

\%

Analogously, we find
a3 =% 1 —* a* a _
([0, 7w u) > =5 (17" ull* + [[07ull” + [0ull” + |[7ull®),
thus establishing (1.3.1) for allu € DPI(X, E). This result is easily extended
to every u € Domd N Domd" by density of DP4(X, E) in virtue of Theorem
1.2.4 ().

In virtue of the general Theorem 1.2.2, Nakano’s inequality yields a va-
nishing theorem for the 9-cohomology if, for some bidegree (p, ¢q), the right
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hand side of (1.3.1) can be made > C||u|? for some C > 0.

We would also like to mention that there are far more precise inequa-
lities than (1.3.1) (see e.g. [De2]). However, since we will use exactly this
inequality in Chapter 4, we content us with this statement.

In the case where w is a Kahler metric, the same reasoning as above
yields of course
- % .
18ull® + [0 ul? > ([iO(E), Alu, u)) (1.3.2)

for every u € Domd N Domd" of bidegree (p,q) if [iO(E),A] acting on
APIT*X ® E is semi-positive.

1.4 0 on weakly pseudoconvex manifolds

Let (X,w) be a Kéhler manifold and £ — X a hermitian holomorphic
vector bundle. Then the operator

ALY, = [10(E), Al

acting on AP4T*X ® FE is of fundamental importance, as shown by the
following existence theorem, which is the basic result of L? theory on Kihler
manifolds.

Theorem 1.4.1
Let E — X be a hermitian holomorphic vector bundle over a complete
Kahler manifold (X,w). Suppose A%’?w is a positive hermitian operator, and

let f € Lg,q(X, E) satisfy 0f =0 and

/ (AZL)1F, £)dV,, < +oo,
X

g > 1. Then there exists u € Lg,q_l(X, E) such that Ou = f and

[ Pav < [ (agt) s, pav..
X X

We include a proof of this theorem, since we have not given a proof of
Theorem 1.2.2, which is basically the same.

Proof. Consider the Hilbert space orthogonal decomposition
2 _ 3 AL
L; (X, E) = Kerd ® (Kerd)—,

observing that Kerd is weakly (hence strongly) closed. Let v = vy + vy be
the decomposition of a smooth form v € DP?(X, F) with compact support
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according to this decomposition (vi, v2 do not have compact support in
general!). Since (Kerd)l = Imd" C Kerd and f,v; € Kerd by hypothesis,

we get @ vy = 0 and

(ool = ko0 < [ (87 .00V [ (A 0)av,
X X

thanks to the Cauchy-Schwarz inequality. The a priori inequality (1.3.2)
applied to u = vy yields

»w

/ (AR w1, v1)dV,, < [[Qo1]]” + 10" 0|” = (18701 [|* = 070>
X
Combining both inequalities, we find

(o)l < ([ (AL 1, 1)V 3ol

for every smooth (p, ¢q)-form v with compact support. This shows that we
have a well defined linear form

w=0vr— (v, f), Lg,q_l(X, E)D 5*('Dp’q(X, E)—C

on the range of 8". This linear form is continuous in L2 norm and has norm
< C with

C=( /X (ABL)7LF, PV, 2.

By the Hahn-Banach theorem, there is an element u € Lf,,q_l(X , F) with

|u|| < C, such that (v, f)) = (@ v, u)) for every v, hence Ju = f in the sense
of distributions. The inequality ||u|| < C' is equivalent to the last estimate
in the theorem. O

Remark. One can always find a solution u € (Kerd)*: otherwise replace
u by its orthogonal projection on (Kerd)t. This solution is clearly unique
and is precisely the solution of minimal L? norm of the equation du = f.

We have u € Imd", thus u satisfies the additional equation
9'u=0.

Consequently 0"u = 9'0u = 0 f. If f € C3%(X, E), the ellipticity of 0"

shows that u € C)5,_1(X, E).

With Theorem 1.4.1 in mind, it is important to compute the term
AB1, = [i©(E), A).

In particular, we want to know when it is > 0. Unfortunately, this operator
can be quite complicated in general. It turns out, however, that A%’i} is
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positive under the assumption that F is positive in the sense of Nakano.
Moreover, if F is a line bundle and A\; < ... < A, are the eigenvalues of
i©(F) with respect to w, we have

([(O(E), AJu,u) > (A1 + ... + A\)|ul?

if u is of bidegree (n,q).

We now introduce a large class of complex manifolds on which the L?
estimates will be easily tractable.

Definition. A complex manifold is said to be weakly (resp. strongly) pseu-
doconvex if there exists an exhaustion function ¢ € C*°(X,R) such that
i00% > 0 (resp. > 0) on X, i.e. 9 is plurisubharmonic (resp. strictly
plurisubharmonic). A strongly pseudoconvex manifold is also called a Stein
manifold.

Lemma 1.4.2
Every weakly pseudoconver Kahler manifold (X,w) carries a complete Kahler
metric W.

Proof. Let ¢ € C*(X,R) be an exhaustion function which is plurisub-
harmonic on X. After adding a constant to 1, we can assume 1 > 0. Then
@ = w+i00(h?) is a Kihler metric and

@ = w + 26990 + 210y A O > w + 20y A Op.

Since dip = 01 + O, we get |dy|s = V/2|0%|s < 1 and Lemma 1.2.3 shows
that @ is complete. O

If we apply the main L? existence theorem (Theorem 1.4.1) to a sequence
we of complete Kahler metrics, we see, by passing to the limit, that the
theorem even applies to non necessarily complete metrics if our manifold is
pseudoconvex. Precisely, we have the following result:

Theorem 1.4.3
Let (X,w) be a Kahler manifold (w is not assumed to be complete). Assume
that X is weakly pseudoconver. Let E be a hermitian holomorphic vector
bundle over X and assume that there exists a positive continuous function
v: X — R such that

iO(F) > yw @ Idg.

Then for any (n,q)-form f with L% coefficients, ¢ > 1, such that of =0
and

/ YU f 2V, < +o0,
X
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there exists u € Li,qq(Xa E) such that Ou = f and

1
/ luf2dV,, < —/ I f 2V,
X qJx

Proof. Indeed, under the assumption on E, we have
(AR u,u) > gyluf,

2

ioc instead

hence ((A%L) ™ u,u) < %7_1|u|2. The assumption that f is only L
of f € L?L’q(X, E) is not a real problem, since we may restrict ourselves
to X, = {z € X | ¥(z) < ¢} CC X, where 9 is a plurisubharmonic
exhaustion function on X. Then X, is itself weakly pseudoconvex (with
exhaustion function 9. = 1/(c — %)), hence X, can be equipped with a
complete Kahler metric we = w + €i09(12) (cf the proof of Lemma 1.4.2).
For each (c,€), Theorem 1.4.1 yields a solution u., € Lf,e (X, AP 1IT*X ®

E) of the equation du.. = f on X, such that

/ |uc;5|ic,5 dVUJc,e S / <(A%7i’c s)_lf’ f)dec,a
X Xe ’

A simple computation shows that the integral on the right hand side is
monotonically decreasing with respect to the metric, hence

/ (AL ), PV, < / (AZ)1F, )V,
Xe Xe

[ Ztispav.

x q

Therefore the solutions u.. are uniformly bounded in L? norm on every
compact subset of X. Since the closed unit ball of an Hilbert space is
weakly compact (and metrizable if the Hilbert space is separable), we can
extract a subsequence

IA

2
Ucy, e —uc LIOC

converging weakly in L? on any compact subset K C X, for some ¢ — 400
and g — 0. By the weak continuity of differentiations, we get again in the
limit du = f. Also, for every compact set K C W, we get

2 o 2
V, < lim V
/K [uludVe < lkl—> f}va/K luck’skl“’%akd We.ek

by weak L12Oc convergence. Finally, we let K increase to X and conclude

that the desired estimate holds on all of X. O

An important observation is that the above theorem still applies when
the hermitian metric on F is a singular metric with positive curvature in
the sense of currents.
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Theorem 1.4.4

Let (X,w) be a Kdahler manifold. Assume that X is weakly pseudoconvez.
Let E be a hermitian holomorphic vector bundle and let ¢ € LllOC be a weight
function (no further regularity assumption is made on ¢). Suppose that

iO(E) +i00p @ Idg > yw @ Idg

for some continuous positive function v on X. Then for any (n,q)-form f
with L2 . coefficients, ¢ > 1, satisfying 0f = 0 and Ix vy fI2dV, < +oo,

there exists u € L. (X, E) such that du = f and

1
/ e #dV, < X / VU 2e eV,
X q9Jx

Proof (Sketch). The general proof is based on regularization techniques
for plurisubharmonic function (see e.g. [Del]). It is technically involved
essentially because the required regularization techniques are difficult in the
case of arbitrary manifolds. We will therefore just explain the proof in the
simple case when X = Q is a weakly pseudoconvex open set in C* with a
plurisubharmonic exhaustion function . Then the functions ¢, = ¢ * p.,
where (p:) is a family of smoothing kernels, is well defined, smooth on
Q. ={z € Q| ¢¥(z) < ¢} for € small enough. Moreover, it satisfies a
lower bound of the form

i00p. ® Idg > v.w @ Idg — iO(E)

for some continuous function 7, converging uniformly to v on compact sub-
sets of ) as ¢ — 0. We define new hermitian metrics h. on the vector
bundle £ by multiplying the original metric A with the weight e~%=, i.e. we
set he = he ¥:. Then

iOh. (E) = iOh(E) +i00p. @ Idg > 7w ® Idg.

From Theorem 1.4.3 we thus get solutions u.. on X, such that
1
/ |uc,8|26_(psde < _/ 75_1|f|26_(p5de
X qJ/x,

whenever 7, > 0 on X.. As ¢, > ¢ converges to ¢ monotonically, we
conclude by extracting weak limits and applying Lebesgue’s monotone con-
vergence theorem as before. O
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Chapter 2

Elliptic operators with
polynomial growth at the
boundary

In this chapter we prove some regularity results for certain elliptic opera-
tors on a bounded domain 2 CC R”. Namely, we will consider an elliptic
operator L, whose principal symbol can be controlled by some power of the
boundary distance of 2. We show that if  has Lipschitz boundary and if
u is a smooth function on (2 satisfying Lu = f, where f vanishes to some
finite order at the boundary of 2, then also u vanishes to some finite order
at the boundary.

2.1 The Sobolev spaces

The purpose of this section is to fix some terminology and to recall some of
the basic properties of Sobolev spaces (see [Fo| for more details).

Let D(R™) be the space of C* functions on R" with compact support, and
S the Schwartz space of rapidly decreasing functions on R", i.e. the space

of all C* functions u such that sup,cgn [2*DPu(x)| < oo for all multiindices
a and B. We define the Fourier transform of a function u € § by

n

a(€) = (2m) 2 / u(z)e " d,

where £ = (&1,...,&,) and (2,€) = z1&1 + ... + 2pén.

The Sobolev norms || ||s of order s on R", s € R, are defined by
lp = [ (0 lePylac) e

25
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where u € S. The Sobolev space H;, = H4(R") is the completion of S under
the norm || ||5.

For u € S, a straightforward computation shows that
Deu(é) = il¥'e%a(¢).
It follows that if k is a positive integer, we have

lullz ~ Y |IDlff for allu € S.
0<lal<k

Here we write a < b (resp. b 2 a), if there exists an absolute constant
C > 0 such that a < C - b (resp. b > C -a). a ~ b signifies a < b and a 2> b.

From this remark it follows that v € H} admits weak distribution deriva-
tives D% € L?(R") for |a| < k. Although Sobolev spaces make the mani-
pulation of distribution derivatives very easy, they would be of limited use-
fulness if we could not relate derivatives in the L? sense to classical pointwise
derivatives. Fortunately, the Sobolev lemma provides a simple and beautiful
connection between the two.

If u is a function of class C¥ on R® whose derivatives up to order k are
bounded, we define |u|; to be the supremum over z € R* and |a| < k of
| D%u()|.

Proposition 2.1.1 (Sobolev lemma)
Hy CC* and | |x S| |5 if and only if s > k+ 2.

It is also possible to define Sobolev spaces on bounded domains. Namely,
let @ C R™ be a bounded open set in R” and m a nonnegative integer.
Consider the space of all those C*° functions f : 2 — C such that

£lgi= X [ 1D < +oc.
jaj<m !

The completion of the above space relative to the norm || ||, o is called the
Sobolev space Hp,(€2). The completion of the space D(€2) of C*° functions

with compact support in Q2 relative to || ||, is denoted by H,,(€2). Roughly,

H () is the set of elements of H,,, which are supported in Q. Indeed, under
mild regularity assumptions on 2 (e.g. © with Lipschitz boundary suffices,

see [Gr]), then if f is of class C¥ on R™ and supported in Q, then f € Hy(9).

On the other hand, if f € Hs(2) and s > k + 5, then it follows from the
Sobolev lemma that f is of class C¥ on R® and supported in Q.
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2.2 A regularity theorem for elliptic operators

In this section, we will study the regularity of the equation Lu = f, where L
is an elliptic operator on a bounded open set in R”, whose principal symbol
can be controlled by some power of the boundary distance.

More precisely, let 2 be an open set in R”, and let
L= Y aa(z)D*+ Y bg(x)D’
la|=m Bl<m
be a differential operator of order m with smooth coefficients a,, bg € C*(12)

on Q. Let A : Q — Rt be a smooth function on €.

We say that L is an elliptic operator of polynomial growth with respect
to A on € if there exist k,I € N such that

| > aa(@)€%] 2 AF(z) [¢™ for every & € R? (2.2.1)
|a|=m
and
|Daq(2)] S AT (x), |DVbs(x)| S AT (z) (2.2.2)

for all multiindices «, 3, 7.

We define C"(R",9) := {f € C"(R") | suppf C Q}.

Theorem 2.2.1

Let L be a differential operator of order m with smooth coefficients on an
open set 2 CC R™, which is of polynomial growth with respect to a smooth
function A € C*®°(Q,RT) .

Then we have the following a priori estimate

— _ 2
lullfo S HAT Lullf_pma + 1A7 " ul§ o (2.2.3)

for some t,T € N and s > 1, u € C®(R).

Moreover, let Q0 have Lipschitz boundary and assume that A has essen-
tially the same features as the boundary distance function d of 2, i.e. A ~
d and |D*A| < d'1°l for every multiindez o. Let u € C®(Q) satisfy
Jo lu(@)PA™N(z)dA(z) < 400 and Lu € CN(R™,Q) N C™(Q). Then u €
C*N(R, Q) N C®(Q), where s(N) ~ /N for all N > 1.

Proof: We will first show that it suffices to prove the a priori esti-
mate (2.2.3). Let u € C®°(Q) satisfy [, |u(z)|?A™N(z)dA(z) < +oo and
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Lu € CN(R", Q) NC®(N). We want to show that u € C*V)(R", Q) NC®(N)
with s(N) ~ +/N for all N > 1. As noted in the preceeding section, it

suffices by the Sobolev lemma to show that u € H ) (€2).

Since €2 has Lipschitz boundary, it follows from a general result of Gris-
vard that

CERM, ) € {f € CH(Q) | / IF2d 2£d) < +oo)
U

(see [Gr,theorem 1.4.4.4] or Theorem A.2.2). Hence the a priori estimate
(2.2.3) together with the assumptions on u yields u € Hy)(€2) with s(V) ~

VN.

Next, we define the open sets 2; C Q2 as follows:
1

For every j € N, it is then possible to construct x; € C*°(R") with compact
support in €21 such that x; = 1 in a neighborhood of €2;, and moreover,
for every multiindex «,

sup [Dx;j(x)| < Njgji* (2.2.4)
T€ER"?

(IV|q| does not depend on j!). The existence of such functions y; is proved
in the appendix (cf Lemma A.3.1); note that dist(982;,0Q;4+1) > j 2

We can also find functions 7; € C°°(R”)_satisfying 0<mn;<1,suppn; C
Q12 \ -1, n; =1 in a neighborhood of 2, \ ©2; and

sup |Dn;(z)| < M g2
TER™

for every multiindex o, where M ,| does not depend on j. Thus In;l? < j%.

Let us now estimate ||u — Xju||§,9. Using the a priori estimate (2.2.3)
and (2.2.4), we obtain

— _ 2

S AT Lw — xu) 3 + A7 (u = x5u)llG 0
_ _ 2
S AT (L = xsLu)lf g + 1877 (u = xju)

+5 Injull?_ o

llu = xjull? 0

2
0,2

for some large ¢ € N.
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We also have
el ~ [ @l @) P

/ (1 + [€12)° iyu() Pde
{14]¢]2>j(a+e)s+1}

+ [ 1+ IRy e @)
{14[g]2<g(re)st1}

P _ Al o2
S T a2 g + 5 Injulie

. — o Al g2
S T 2 g + 5T AT u]g g
<

-—cs—1 2 a2 2
37 (lully o + 1A ullg o)
for some large /,¢” € N; note that 5 <A™ on Q\ Q.
Combining this with the above inequalities, we obtain

_ )
lu = xjullle S AT (Lu = xiLu)li_ma + 1A7T (u - x;u) 3 0

1 a2
+3(IIUI|§,9 +HIAT uF o)

We have already shown that for some s ~ v/N, Jul|2 < +o0. By hy-
pothesis on u, we also have ||A*c”32u||gQ < +oo for some s ~ /N, thus
the last term in the above inequality tends to zero as j — +o00. Moreover,
the assumptions on w imply that also the first two terms tend to zero as
j = +oo for some s ~ /N (use Grisvard’s result, see Theorem A.2.2). We
have therefore proved the last assertion of the theorem.

Now, let us finally turn to the proof of the a priori estimate (2.2.3). We
prove this estimate by simply expliciting the dependence on A of all the
constants involved in the classical proof of the hypoellipticity of uniformly
elliptic operators (see [Fol).

Let us fix zg € Q and let Bys(z) be the ball of radius § < 1 centered at
zo. Let u be a smooth function with support in Bjs(zo).
First, we assume that bg = 0 for every multiindex 8. Then we have
(Logu)(§) = i™ ) aa(zo) £ (€)

al=m

where L, = L(zy) is the differential operator with frozen coefficients at z.
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This implies

(L+[g*)*la€)* < 2™+ €)™ L+ [E™) la()f?
S (LHEPY ™™ (@) + A7 (zo) (L +[€%)* ™ |(Lagu) (&)

by (2.2.1). Integrating both sides and using the inequality |lul/s—m0 <
||lul|s—1,0, one obtains
lull30 S A2 (o) || Lagulls_m,0 + lull3_1,0-
Hence there exists Cy > 0 such that
lullf.0 < Co A (20) (| Lagullz—m, + lull-1,0)- (2.2.5)
We now wish to estimate
2
1Lt = Logull—ma = | ) (aa(®) = aa(20)) D*ulli_p 0.
«
The estimates (2.2.2) yield

|aa(z) — aa(zo)| < C1 AT (z0) |70 — 2]

for some C > 0 and all o, z, zg.

Set 6 = (SCOC%nmA_%_Ql_Z(xO))_% and fix ¢ € D(Bys(0)) with 0 <
¢ <1and ¢ =1 on Bs(0). Suppose u is a smooth function supported in
Bs(zg). Then

(aa(z) — aa(z0)) Du(z) = ¢(z0 — 7) (a0(2) — aa(m0)) Du(z)

and

sup |¢(zo—x) (aa(:c)—ao‘(aco))|2 < 4012A_21_2(a:0)52 = (2nmCOA_2k(x0))_1.
Hence by (2.2.2)

I(aa(2) = aa(z0)) Dulima < (20™CoA™ (20))™" |luliq
+ CoaAT 0 (z0) [lullf 1 o

for some Cy > 0, sp,s1 € N.

Thus, since there are at most »" multiindices a with |a| = m, we have

ILzu—Lagulls_ma < (2CoA > (0)) ™ [[ullf o™ Col ™1 () [|ull3_1 0
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Combining this with (2.2.5), we then obtain

_ 1
||U||§,Q < GoA 2k(ﬂﬂo)(||LU||§fm,Q + ||u||f,1’9) + 5”“”3,9,
hence
lull2,0 S A7 (@) Ll + AR () [ull3_1,0
for some myg, ky € N.

Next, we consider the case bg Z 0. Replacing mg, ko by larger inte-
gers if necessary, we can absorb the additional terms of Lu in the term
A~m05=ko (z0)||lu||?_, , and still have the estimate

s—1,Q
lulls S A % (20) 1Ll g + A0 5 (z0) ull2_1 g

We emphasize that all the constants involved are independent of ¢ € 2.

Next, one can cover ) by balls Bs,(x;) of the above type, i € N, such
that there exists a partition of unity (6;);eny with respect to this covering

satisfying 3, < |D*0;|% < ;| Ps(6;2)| where P is a polynomial of degree s
in one variable (see Lemma A.4.1). One has

~J

10513 0 S A7 (i) | LOiulls_ o + AT (z) 65031 0
for every smooth function u on €.

Replacing myg, ko by larger integers if necessary, we get

10:ul? o < C{A (@) 0 Lull;_n 0 + A5 () 10;ull3_1 o

1 A—mos—ho(g,) / 0:lul2d)}
Q

< MATmosHo(g) {3 /Q 6:| D® (L) [2dA

la|<s—m

6l 0 + /Q 6:lul2d)) (2.2.6)

for some C, M > 0; note that §; 2 ~ A72k=2=2(g,),

Moreover,
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MAT™057R0 () [|Gul|2_,
= MA‘mOs_’“O(:vi)/ (1+ |€[%)° 1 Giu(€)2dA
Rn

_ MAmos ko) / (14 €2)° 1 |;u(&)[2dA
{1+]¢]2>2M A~™05 k0 (z;)}

+MA_mOS_k0 (-'L'z)/ (1 + |£|2)8_1|0/Z-ZL(£)|2dA
{1+/g2<2MA~m0s k0 ()}

1
< SllBul3q + C'A Mmoo ko R (4y) gy

for some C' > 0. Thus, by (2.2.6),

620 S S /Q 0;A=2t5| DY(Lu)[2d\ + /Q 0;A=275% |y 24\

la|<s—m

for some t,7 € N and s > 1. So

— _Ts2
lullio = 11D Owullie < Y 6wulio SIA  Lull} o+ 1A T ulfq
i i

which completes the proof. O



Chapter 3

The pseudoconvex case

In this chapter, we consider a domain €2, which is relatively compact in an
n-dimensional Kahler manifold X and has Lipschitz boundary. We moreover
assume that (2 satisfies some pseudoconvexity condition, which we call “log ¢-
pseudoconvexity”. Roughly speaking, this means that there exists a metric
on X such that — log(boundary distance) admits a strictly plurisubharmonic
extension to 2. We then show that the d-equation with exact support in Q
admits a solution in bidegrees (p,q), 0 < p < n, 1 < g < n — 1. Moreover,
the range of 0 acting on smooth (p,n — 1)-forms with support in Q is closed.
This result can be applied to solve the 0-equation with regularity up to
the boundary in the domain X \ Q as well as the 0-equation for currents
on (2, wich are the restriction of a currents defined on X. This in turn
gives the vanishing of the Cech-cohomology groups of the sheaf of germs of
holomorphic functions on €2 admitting a distribution boundary value.

3.1 Pseudoconvex domains in Kahler manifolds

In order to prove a solvability result for the d-problem with exact support
in pseudoconvex domains, we have to make a global assumption on the am-
bient complex manifold as well as an additional assumption on the domain
itself.

We will denote by (X,w) an n-dimensional Kéhler manifold. Let Q CC
X be an open set. Let §(z) be the distance from z € Q to the boundary of
Q with respect to the metric w.

Definition.
We say that 2 is log §-pseudoconvex, if there exists a smooth bounded func-
tion A on 2 such that

i00(—log § + h) > Cw in Q. (3.1.1)

33
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for some C > 0.
In particular, every log §-pseudoconvex domain € admits a strictly plurisub-
harmonic exhaustion function, therefore €2 is a Stein manifold.

Example 1.

Let X be a Stein manifold and let 2 CC X be a domain which is locally
Stein, i.e. for every x € 01}, there exists a neighborhood U, of x in X such
that Q N U, is Stein. It was shown in [El] that there exists a Kéhler metric
w on X such that © is log d-pseudoconvex.

The same remains true if X is only assumed to admit a strictly plurisub-
harmonic function (see [El]).

In particular, every bounded weakly pseudoconvex domain with smooth
boundary in C" is log §-pseudoconvex.

Example 2.

Let (X,w) be a Kahler manifold with positive holomorphic bisectional cur-
vature, that is T1°X is positive in the sense of Griffiths. Then every domain
Q CC X, which is locally Stein, is log é-pseudoconvex (see [Ta] for the case
X =P, [Bl], [Su)).

In particular, the complex projective space P is a Kihler manifold with
positive holomorphic bisectional curvature. Indeed, let wrg be the natural
Kahler metric on P”, called the Fubini-Study metric, which is defined by

* Z ¥a)
prwps = 509og(|Col* + |G + -+ +[Gal?)

where (g, ..., (, are coordinates of C**! and where p : C"*! — P” is the
projection. Let z = ((1/Co,---,(n/Co) be non homogeneous coordinates on
C* = {¢o # 0} C P"™. Then, since 901og |(p|> = 0 on {¢y # 0}, we see that

(1+[2°)di; — zizj
(1+12[2)2

Wps = %E)Elog(l + |Z|2) = % Z dz; \ dfj,

1<4,j<n

thus P 5 5 -
(=% N9 _ O Zi%
hig(2) = (5 (&) gy PMhors = T30 ~ T P

To calculate the curvature of T1°P" at a point zy, we may without loss of
generality suppose zg = 0. A Taylor expansion around z = 0 shows that

hi(2) = (1 = 210k — Zpz + O(|2]°).
Formula (1.1.1) then shows that the curvature coefficients are as follows:

cijri(0) = 95,0 (0) = 6i50k1 + 010
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Hence
Cz’z’ii(o) = 2, Ciijj(o) =1if ) 7é j, Cz'jjz'(()) =1 if’i 7é j, Cijkl(o) = 0 otherwise.
Thus
o~ n p—
OT P (¢ @v,E@v) = 2) [&Gluil® + Y 1il’lojI” + ) &€ jv;mi
1=1 i£] i£]
= [Pl + (&, 0) 7 = 1€o)* > 0

if0#¢& =30 &izz € THP" and 0 # v = Zyzluja% e THOP" | which
shows that P™ has positive holomorphic bisectional curvature.

By [Si/Ya] we moreover know that a compact Kéhler manifold with po-
sitive holomorphic bisectional curvature is biholomorphic to P".

In general, § is not a smooth function in Q. However, in [St,p.171], the
existence of a regularized distance having essentially the same profile as ¢ is
proved:

There exists a function A € C*°(Q,R) satisfying

c10(z) < A(z) < e2d(x) and

o 1-a
—|a
o A)] < Ba(3(2)
where x = (x1,...,Toy,) are local coordinates on X. By, c1 and ¢y are inde-
pendent of 2.

3.2 The L? estimates

Let (E,h) be a hermitian holomorphic vector bundle on X, and let N € Z.
We denote by Lg,q(Q, E, N) the Hilbert space of (p,q)-forms u with values
in F which satisfy

Jully = [ pA¥aV, < +oc.
Q
Here dV,, is the canonical volume element associated to the metric w,

and | |,p is the norm of (p, g)-forms induced by w and h.

Proposition 3.2.1
Let Q be a relatively compact domain in a Kdhler manifold (X,w). We
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assume that Q is log é-pseudoconvex. Let (E,h) be a hermitian holomor-
phic vector bundle on X and let N > 1 and 1 < g < n. Suppose f €
L?L,q(Q,E, N) N Kerd. Then there exists u € L2, (Q, E,N) such that

— n’qil
Ou = f and ||u||y < | fln~-

Proof. This follows immediately from Theorem 1.4.4. Indeed, since A
has essentially the same features as § exp(—h)(cf (3.1.1)), it suffices to prove
the statement with A replaced by d exp(—h) in the definition of the spaces
Lf,’q(Q, E,N). But for N sufficiently large, we clearly have

iO(E) + Ni0d(—1logd + h) @ ldg > w ® Idg

by (3.1.1), thus Theorem 1.4.4 yields the desired vanishing result; note that
—logé + h = —log(d exp(—h))). O

Proposition 3.2.2

Let Q be a relatively compact domain in an n-dimensional Kdhler manifold
(X,w). We assume that Q is log §-pseudoconvez. Let (E,h) be a hermitian
vector bundle on X and let N > 1. Suppose f € L%yq(Q,E, —N) N Kerd,

1< g <mn-—1. Then there exists u € L%’q_l(Q,E, —N +2) such that Ou = f
and [lul|-n12 < || fll-n~-

Proof. Suppose 1 < g <n—1andlet f € L§ (2, E,—N)NKerd, N > 1.
We define the linear operator

Ly or2,. (QE*N-2) — C

n,n—q
0y —> /f/\w
Q

Note that the integral on the right hand side is finite, since

[ nel < ([ 1rBANav) - ([ loBava) < 112 ylelf
Let us first show that Ly is well defined.

Indeed, let ¢y, w2 € L2, (2, E*,N — 2) such that dp; = dps. Then
9(¢1 — @2) = 0, and by Proposition 3.2.1, since n — g > 1, there exists
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o€ L%’n,q,I(Q,E*,N — 2) such that da = @1 — @9. But then
/f/\((pl—gog) = f A Oa
Q Q
= lim(-1)? fAa
e—0 aQE
= —lim f A O
e—0 Q\QE
= —bm Q\st/\ (01~ )

with (Q¢)e>0 an exhaustion of Q by smoothly bounded domains such that
Q: D {z € Q| A(z) > ¢}. Here we have used Stoke’s theorem several times.
The third equality is obtained as follows: Fix ¢ < 0 and choose for each large
j> g a C* function x; such that x; =1 on ng, Xx; =0 on Q%, 0<x; <1,

|Dx;| < Cj, and set aj = xja € D"~ 771(Q2). Then we have

/ f/\gaj:/ Xjf/\ga+/ fAOX A
Q\Q. O\ O\ Qe

and

| / f ATx; Aaf?
Q\ Qe

IA

C / IF2A=NaV, - / il ANaV,
Q\ Qe AN\Q 2
J

IA

ClAZ Nl —s-

Hence the dominated convergence theorem gives

/ fAOa = lim fAdaj = (—1)71lim a(f A qj)
Q\Q. i Joe. i Jo\e.

= —(-1)¢ liﬂm/ags fAa;=—(-1)1 fAa.

0.

Moreover,
[ in—el<([ 1R - ANy
Q\Q. O\ Qe O\ Q.

_>5—>OO

(note that (fQ\QE lor — pa|2AN)H/2 < dfn\ns o1 — pa2AN-2)1/2 <
ellor — p2lln—2 — 0 as e — 0 since @1, 2 € L3 ,_,(Q, E*, N — 2)).

Thus L(p1) = L (p2).
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Now let
¢ € Dom(0 : L2, (Q,E*, N —2) — Lnn ¢+1(82, E*, N — 2)). Applying

n,n—q - _
Proposition 3.2.1, there exists ¢ € L2 (Q, E*, N — 2) satisfying 0p = 0y

n,n—q

and ||@||n—2 < ||0¢||n—2. This yields
L (B9)| = |L;(35)| = | /Q FAE < IF w13l

< fll-nl@ln-2 < [ fll-n[10¢lln-2-

Thus Ly is a continuous linear operator of norm < |[f||-n and therefore,
using the Hahn-Banach theorem, L; extends to a continuous linear operator
with norm < ||f||-n on the Hilbert space Lnn ¢+1(8, E*, N — 2). By the
theorem of Riesz, there exists u € L§, (2, E,—N +2) with [lu]-n12 <
|||~ such that for every ¢ € L2 ,_.(Q, E*, N — 2) we have

(01 [ unBo=Ls0) = [ £

ie. Ou=f. O

3.3 The 0-problem with exact support

In this section, we will show some vanishing and separation theorems for the
0-cohomology groups with values in a vector bundle E supported in 2:

HP(X,Q,E) = {fe€CX(X,E) |suppf C Q} NKerd/
a{fe D,q— l(X’E) | Suppf Cﬁ}

This is done by solving the d-equation in the L?-sense as in the last sec-
tlon and then applying the results of Chapter 2 to the operator O_y =
80" y + 0 5O for N > 0. Here 8 , is the Von Neumann adjomt of
0 : Lqu(Q,E, —-N+2) > Lf, ¢+1(€, E,—N). An easy computation shows
that 8 yu = AN=25 (A~Nu), where 8., is the Von Neumann adjoint of 8
with respect to the metric w on X.

Theorem 3.3.1
Assume that Q has Lipschitz boundary. Let u € L?,,q(Q,E, —N) satisfy

Ou = f and 8" yu =0 with f € CY,(X,Q, E) NC3(Q, E).
Then u € C;,(,jv) (X,9Q, E)NC(Q, E) where s(N) is a function proportional
to VN, N> 1.
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Proof: The above theorem is a consequence of the results of Chapter 2.
Indeed, since - yu = AN-29] (A~Nu), where 8, is the adjoint of & with
respect to the metric w on X, it is clear that (J_ is an elliptic operator of
polynomial growth with respect to A on €. Since 8 yu =0, and Ou = f,
we have O_yu = 0. nf. From general results on domains with Lipschitz
boundaries (see [Gr]), we deduce that 9 y f € C2\- "¢ (X, Q, E)NCS,_, (9, E)
for some kg not depending on N. The result then follows from Theorem
2.2.1, using a finite partition of unity.

More precisely, fix z € 92 and let U be a coordinate neighborhood of z.
We assume that AP?7T*X ® E is trivial over U. On U NQ, u = (u1,...,uy)
can then be regarded as a mapping UNQ — C', r = rank(AP4T*X ® E).
Moreover, O_yu is of the form (Luy,..., Lu,)+ lower order terms, where
the lower order terms involve only derivatives of order at most 1 of u and
multiplication by functions whose derivatives can be bounded by some power
of A; L is an elliptic operator of order 2 on U N 2, which is of polynomial
growth with respect to A.

Choose a function x € D(U) which equals one in a neighborhood of z.
Multiplying all functions by y, we may assume that we are in C" and may
define Sobolev norms for mappings componentwise; hence we get from the
a priori estimate (2.2.3)

_ o 2
||Xu||§,UﬂQ RN tsD—N(XU)H?q,UnQ + AT XUHg,UﬁQ

_ _ a2
RN tSXELNUHg—Z,UﬂQ + A tSXU“g—l,UnQ +[|a~Ts XU||(2),Urm

(note that it follows from the proof of Theorem 2.2.1 that the lower order
terms have no essential importance). By carefully looking at the proof of
Theorem 2.2.1, we see that the term ||A*':sxu||§71,UOQ can be absorbed by

the term ||A*Ts2 Xqu,UﬂQ’ replacing ¢t and T' by larger integers if necessary.
Putting this together with the above inequality, we have

_ a2
Ixulls e S 1A XO-null3_ouna + 1A xull§ vras

i.e. xu verifies the a priori estimate (2.2.3). Since (2 is relatively compact
in X, we may even assume that ¢ and 7" are independent of z € 9{2. Note
that in the proof of Theorem 2.2.1, we have seen that it suffices to show the
a priori estimate in order to prove the vanishing to some finite order at the
boundary. Hence the theorem is proved. O

We are now ready to prove the main theorem of this section.
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Theorem 3.3.2
Let Q) be a relatively compact domain with Lipschitz boundary in an n-
dimensional Kdhler manifold (X,w). We assume that Q is log -pseudoconvex.
Let E be a holomorphic vector bundle on X. Then we have
HPM(X,Q,E)=0 for1<q<n-—1
and
HP™(X,Q, E) is separated for the usual C* — topology.
Moreover,
8( gc))?n—l(X’ QaE)) =
n {f € C;,’f’n(X,ﬁ,E) | / fAR=0VYhEe€ Li_p,O(Q,E*,N) N Kerd}.
NeN Q

Proof: Replacing the vector bundle E by AP(T*°X)* ® E, it is no loss
of generality to assume p = 0.

We will begin by proving the following claim:

Let f € C{iq(X, Q, E)NCss, (% E) NKerd, 1 < qg<n-—1, k> 1. Then there

exists u € CJ0) | (X, 0, E) NC3,1(R, E) such that Ju = f with j(k) ~ V&.

Proof of the claim:
Let f € C(’iq(X,ﬁ, E)NnCs, (L E) N Kerd, 1 < q¢<n—1, k> 1. General
results on Lipschitz domains (see e.g. [Gr, Theorem 1.4.4.4] or Theorem
A.2.2) show that f € Lg,q(Q,E, —2k). Proposition 3.2.2 implies that there
exists u € L%’qfl(Q, E,—2k +2) such that Ou = f in 2. Moreover, choosing
the minimal solution, we may assume gi%u = 0. Applying Theorem 3.3.1,

we then have u € cgffll(x, Q,E)N C3%—1(, E) with j(k) ~ Vk.

Let us now prove the theorem.

H%(X,Q,E) = 0 follows immediately from the above claim and the
hypoellipticity of d in bidegree (0,1).

Now assume 1 < ¢ < n—1 and let f € C§(X,Q, E) NKerd. By in-
duction, we will construct uy € Cf, (X,Q,E) NC5S (2, E) such that
Ouy, = f and |ug41 —ugljr—1 < 27F. It is then clear that (uy)gen converges
to u € C§5,_1 (X, Q, E) such that 0u = f.

Suppose ihat we have constructed uq, ..., ug. Ey the above claim, since
[ € C§4,(X,Q, E), there exists aji1 € ng;l(X,Q,E) N C5%-1(, E) such
that f = Oayy1. We have a1 —uy € C(’iq_l(X, O, E) NCso—1(8% E) NKerd.
Once again by the above claim, there exists g € CSS(QQ(X, O, E) NCGo—2(% E)
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satisfying a1 — ug = 0g.

Since Eé’,‘;f?(X, ), E) is dense in Cgf;lQ(X, O, E), there exists gry1 €
Coo—2(X, 2, E) such that [g — gki1|j) < 27k,

Define upp1 = apy1 — g1 € Coily(X,Q,E) N CE, 1(Q, E). Then
Augyr = f and |up g1 —uglje)-1 = 109 — Ogrr1ljky-1 < |9 — grs1li) < 275
Thus ug41 has the desired properties.

It remains to show that

5(C(C;,onfl()(a ﬁa E)) =

N {f €C(X,0,B) | / fAR=0Vh e L2,4(Q, E*, N) N Kerd}.
NeN Q

This clearly implies that H"(X,Q, E) is separated.

First of all, suppose f = da with a € C&On_l(X,ﬁ, E) and let h €
L2 o(Q, E*,N) N Kerd. Then we have

/f/\h = Oa Ah
Q

with Q; D {z € Q| A(z) > ¢} and

[ ran < (/ FRATN-2)Y2 (/ |2 AN+2)1/2
Q\ Qe Q

Q\Q.

Qe

< ellfll-n-2llhlly —>e=0 0

which shows the inclusion C (note that f € Cg5,(X, Q, E) implies f €
L%,R(Q,E, —N —1) for all N € N, cf Theorem A.2.2, and see the proof of
Theorem 3.2.2 for the justification of some of the equalities).

Now, let us take f € (yen{f € Cé’fn(X,ﬁ,E) | Jof Nh =0 Vh €
L2 (9, E*,N) N Kerd}.
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We first show that for each N € N, N > 1, there exists
Pn € L%,n—1(Q,E, —N) satisfying 08y = f.

To see this, we define the linear operator

Ly: Im(9 : L2 4(?, E*,N) — L ,(Q, E*,N))

— C
5(,0 — /f/\(p.
Q

First of all, notice that L; is well-defined because of the moment condi-
tions imposed on f.

By Proposition 3.2.1, Im(0 : L?L,O(Q,E*,N) — L%yl(Q,E*,N)) is a
closed subspace of L?L,I(Q,E*,N )- Applying Banach’s open mapping the-
orem, we know that L; is a continuous linear operator and therefore ex-
tends to a continuous linear operator on the Hilbert space L%,I(Q,E*,N )
by the Hahn-Banach theorem. By the theorem of Riesz, there exists Sy €
L3, 1(, E,—N) such that for every ¢ € L2 ,(Q2, E*, N) we have

(—1)’"/Qﬁzv/\590=Lf(<p)=/Qf/\so,

i.e. 9By = f.

Now the proof follows the same lines as above, and we construct (ug)ren €
Cg,n,I(X, Q, E) converging to u € C§5, 1(X,Q, E) such that du = f, which
concludes the proof. O

Corollary 3.3.3 (see [He/Io])

Let Q C X be a C®-smooth domain in a compact Kahler manifold (X, w)
of complex dimension n. We assume that Q is log d-pseudoconver. Let E
be a holomorphic vector bundle on X. Assume that HP4(X,E) = 0 and put
D=X\O.

Then for every O-closed form f € Cg?q(ﬁ, E), which is smooth up to the
boundary, there exists u € I‘,’?q_l(ﬁ, E) such that Ou=f,1<q<n—2.

For ¢ = n — 1, the same holds true if there ezists f € on—1(X, B) such
that f~@ = f, Of vanishes to infinite order on 0Q and fQ 8f ANh =0 for all

h € L%_p’O(Q,E*,N) N Kerd, for all N € N.

Proof: Choose f € C53(X, E) such that f; = f. Then 8 vanishes to
infinite order on 9€2. Applying Theorem 3.3.2, there exists h € Cp% (X, O, E)
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such that Oh = 5f~. F .= f — h is then a O-closed C*® extension of f to X.
As HPY(X, E) = 0, we have F' = du for some u € C;5_;(X, E). Then Up
has the desired properties. O

3.4 The 0-equation for extensible currents

The results of the previous section will allow us to solve the 0-equation for
extensible currents by duality.

Let 2 C X be an open set in an n-dimensional complex manifold X. A
current 7" defined on (2 is said to be extensible, if T is the restriction to 2
of a current defined on X.

It was shown in [Ma] that if 2 satisfies Q = Q (which is always satisfied
in our case), the vector space D'%?(X) of extensible currents on €2 of bide-
gree (p, q) is the topological dual of C2° (X,Q)NDrPra(X).

n—p,n—q

Theorem 3.4.1

Let Q be a relatively compact domain with Lipschitz boundary in a Kdhler
manifold (X,w). We assume that Q is log §-pseudoconvez.

Let T_E D'BY(X) be an extensible current on Q of bidegree (p,q), q > 1 such
that 0T = 0 in Q. Then there exists S € D’%’q*l(X) satisfying 0S = T in
Q.

Proof: Since 2 is relatively compact in X, we have C2° (X, Q)N

e L n—p;n—q
DPPPY(X) = C2 i o(X, Q). Let T € D'Y(X) be an extensible current

on ) of bidegree (p,q), g > 1, such that 3T = 0 in Q.

Consider the operator

Ly : gczo_p’n_q(X,ﬁ) — C

Op — <T,p>
We first notice that Ly is well-defined. Indeed, let ¢ € C;°, , .(X,0Q)
be such that dp = 0.

If ¢ = n, the analytic continuation principle for holomorphic functions yields
p=0,s0 <T,p >=0.

If 1 < ¢ <n-1,one has p = da with a € Cfl‘ip,n,q,l(X,ﬁ) by The-
orem 3.3.2. As D" Pn~9-1(Q) is dense in Crdpn—q—1(X, Q), there exists
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J
Hence < T, p >=<T,0a >= lim; o <T, gaj >=0, because 0T = 0.

) . n—p,n—q—1 s 9 in O 0
(aj)jen € D (€2) such that Oa; _)—+>oo OainC2, . (X,9).

By Theorem 3.3.2, 9C°,,,_,(X, Q) is a closed subspace of
e pm—q+1(X ), thus a Fréchet space. Using Banach’s open mapping the-
orem, L7 is in fact continuous, so by the Hahn-Banach theorem, we can
extend Lt to a continuous linear operator L : C2° onqr1(X, ) — C, ie.

Lt is an extensible current on Q satisfying
<OLr,p >= (-1’1 < Ly, 0p >= (-1)PT1 < T, >

for every ¢ € C° (X, Q). Therefore T = (—1)Pt99Ly. O

n—p,n—q

For the notion of differential forms admitting distribution boundary va-
lues, which is used in the following corollary, we refer the reader to [Lo/To].

Corollary 3.4.2

Let Q2 CC X be a C®-smooth relatively compact domain in a Kahler manifold
(X,w). We assume that Q is log 6-pseudoconvez. Let f be a smooth 0-closed
(0,1)-form on Q admitting a distribution boundary value on OS).

Then there ezists a smooth function g on X admitting a distribution boundary
value on 082 such that Og = f on €.

Proof: As f admits a distribution boundary value, we may view f as
an extensible 0-closed current on (2 (see [Lo/Tol). Applying Theorem 3.4.1,
there exists an extensible current S of bidegree (0, 0) on  such that 95 = T.

The hypoellipticity of 0 in bidegree (0,1) yields that S is in fact a C*°-
smooth function on 2. But a C*°-smooth function S, extensible as a current,
such that 05 admits a distribution boundary value, admits itself a distribu-
tion boundary value (see [Sal, Lemme 4.3]). O

Corollary 3.4.3
Let Q CC X be a C*®-smooth domain in a Kdhler manifold (X,w). We
assume that §) is log §-pseudoconvez. Then we have

HY(Q,0q) =0
for every q > 1, where Oq is the sheaf of germs on Q of holomorphic func-
tions admitting a distribution boundary value.
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Proof: We will show that

0— Oq — D2x) L .. L DO (X) — 0

is an exact sequence of sheaves on . Then the de Rham-Weil theorem
yields
. Ker(D'%9(x) -2 D00 (X))
,0,g—1 8 &,0,
Im(D'57(X) — D'g"(X))

and by Theorem 3.4.1, the right hand side of the above isomorphism is 0 for
q=>1

First of all, Ker(D'$°(X) 2 DS (X)) = Oq was proved in [Lo/To).

Now fix zy € Q and let B(z) be a small ball around zy such that either
B(zp) N 0Q = B or B(zp) intersects 9 transversally. Set V = QN B(zp).
épplying Theorem 3.4.1, we con(ilude that for every T € 'D'Q,’q (X) satisfying
OT = 0 in V, there exists S € D’?}qfl(X) such that S =T in V, g > 1.
This proves the exactness of the rest of the above sequence. O



46

CHAPTER 3. THE PSEUDOCONVEX CASE



Chapter 4

The weakly g-convex case

In this chapter, we consider the following situation:

Let Q be a smooth bounded completely strictly pseudoconvex domain in
a complex n-dimensional manifold X and M a real hypersurface of class C*®
intersecting OS2 transversally, such that Q \ M has exactly two connected
components. We suppose that M = {p = 0} where p is a C* function
whose Levi form has exactly p positive, p° zero and p~ negative eigenval-
wes on To® M for each z € M, p~+p'+p+ =n—1. Weput D = QN{e < 0}.

We show that the J-equation with exact support in D admits a solution
in bidegrees (p,q), 0 < p < n, 1 < g < p* + p°. Moreover, the range of 9
acting on smooth (p,pt + p®)-forms with support in D is closed.

4.1 Basic properties of weakly g-convex domains

Let X be an n-dimensional complex manifold. Let v be a real-valued C2-
function on X and x € X. Then we define the hermitian form L(+,z) on
T2 X -the Levi form of - as follows:

Choose holomorphic coordinates (z1, ..., 2,) in a neighborhood of z and set
n
0% =
L = ;
J.k=1

if € =27 &5 (2) € To°X.

By p;;(x) (resp. p%(:c), resp. p,(z)) we denote the number of positive
(resp. zero, resp. negative) eigenvalues of L(1, ).

We say that 1 is a g-convex function if £(1,z) has at least ¢ positive
eigenvalues for each z € X i.e. pg(w) >qforall z € X.

47
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Let M be a smooth hypersurface in X. We denote by T+°M the holo-
morphic tangent space of M at .

Such a hypersurface can be represented locally in the form
MNU={z€U|p(z) =0},

where g is a real valued C* function in an open subset U of X. In this
representation, we have

n n
0 0o
1,0 _ . 1,0 e
T, M_{chazj €T, Xlzazj(x)gj—o}a
7j=1 Jj=1
where (z1,. .., 2z,) are local holomorphic coordinates in a neighborhood of z.

Now let 2 CC X be a domain with C? boundary:
QNU ={z€U|o(z) <0}

where U is an open neighborhood of 89 and p is a function of class C2 on
U satisfying do # 0 on 0Q = {z € U | o(z) = 0}.

Let z € 0Q. By plo(2) (resp. pdo(2), resp. pyo(z)) we denote the
number of positive (resp. zero, resp. negative) eigenvalues of £L(p, z)|Tz1,o 59"
This number is independent of the defining function p for 2. We say that
Q is weakly g-convex if py,(z) <n —q— 1 for all z € 9.

It is well known that an open set with C? boundary, whose Levi form
is semi-positive at each boundary point, admits a strictly plurisubharmonic
exhaustion function. The following two lemmas generalize this property to
domains whose Levi form also has some negative eigenvalues. They have
been proved in [Mi].

Lemma 4.1.1

Let Q C C* be an open set with C*> boundary. Let rq be the function defined
by rq(z) = —dist(z,09Q) if z € Q, rq(z) = dist(z,090) if z ¢ Q.

Let ¢ € 002 and assume that py,(z) < s for every z € OS2 close to (. Then
there exists an open neighborhood U of ¢ such that L(—log|ral,z) has at
most s negative eigenvalues for each z € QN U.

Proof: Define ¢ = —log|rq|. Let V' be a neighborhood of { such that
rq is of class C2 on V and such that on V N 09, Poq < 8. Let U CV be a

sufficiently small open neighborhood of ¢ such that the orthogonal projec-
tion on 9%, , is defined on U and satisfies 7#(U) C V N 0N.
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Let z € UNQ and define k = p;,(z). Then there exists a k-dimensional
subspace E of C* such that L(p, z) g is negative definite.

Let w = (w1,...,w,) € E'\ {0}. We consider the function f, defined in
an open neighborhood of 0 in C"* by
f(7) = p(z + Tw) = —log |ra(z + Tw)|.
f is of class C? in a neighborhood of 0 and Taylor’s formula implies

—f(1) = —p(2) + Re(AT + B7?) + c|7|* + o(|7|*), T—0 (4.1.1)

. n 2
with A = —20p(z)(w) = —237_; §2(2)wj, B = = X7, 5oder (z)wjwy
and ¢ = —L(p, z)w > 0.

Let P=m(z) e VNOQ. Set a = P — z and

z2(t) =z+ 71w+ ae 7B

If 7 is suffiently small, (4.1.1) yields
dist(z(7), 0Q) > dist(z + 7w, Q) — |aeT B | > |a|(e7I*/2 — 1)|eATHET.

The function

g: 71— —rq(z(7))
has therefore a minimum at the point 7 = 0. We must therefore have
dg(0) = 0 and (—278%) ;> 0. Hence 2/(0) = w — 20p(2)(w)a € Tp 00
and L(rq, P)z'(0) < 0. We observe that L(rq P) '(0) < 0 implies in par-
ticular that 2'(0) # {0}.

Let L be the endomorphism of C" defined by L(u) = u — 20¢(z)(u)a; in
fact, L is the orthogonal projection of C* onto T};OBQ. We set F = L(E).
Then the preceeding computations show that F C T;;Oan, dimF = k and
L(ra, P)|r is negative definite. But by hypothesis, p;,(P) < s. Hence
k < s, which proves the lemima. O

Lemma 4.1.2

Let Q CcC C" be an open set with C* boundary, k > 2. We assume that
Paa(C) < s for all ¢ € 02. Then, for all A > 0, there exists a defin-
ing function r € C*(Q,R) for Q such that L(—1log|r|,z) has n — s positive
eigenvalues, greater than or equal to A, for each z € (.

Proof: We set pq = —log |rq| (see Lemma 4.1.1). Let V be a small open
neighborhood of 9 where rq is of class C*. By Lemma 4.1.1, £L(¢q, s) has
n — s nonnegative eigenvalues for all z € VN Q if V is small enough. We set

¢ = x 0 pa+ Alz|,
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where x is a convex increasing C*° function on R such that
1.
x(z) =c+ 2 if z €] — o0, (],

x(z) =z if z € [c+1,+00]

with ¢ such that Q\ V C {¢q < ¢}. Since x is a convex increasing function,
we have

L(p, )€ = X' (0a) L(0a, e+X" (00)|00a (&) P+A|2|> > X (pa) L(pa, ) E+A|z[%.

If z € {pa < c}, L(p,z)¢ = Al€|?, thus all the eigenvalues of L(¢, z) are > A.
If z € Q\{pq < ¢}, z € QNV and L(p, z) has n—s positive eigenvalues > A.

Let 7 be the function defined by
r(z) = 67A|Z‘2TQ(Z) if z ¢ Q,

r(z) = —e @) if z € Q.

By definition, r = exp(—A|z|?)rq on the set {|rq| < exp(—c — 1)} and r is
thus a defining function of class C* of Q. As ¢ = —log|r| in Q, r has the
desired properties. O

If one replaces C" in Lemma 4.1.2 by an arbitrary Stein manifold X,
one obtains a similar result, which is, however, more difficult to prove (see
[M, Proposition 7.2] and its proof):

Theorem 4.1.3

Let X be an n-dimensional Stein manifold, w a complete Kdhler metric on
X and Q be a weakly g-conver domain with C? boundary. Then there exists
a positive function 65q of class C? on Q, which coincides with the boundary
distance function of Q with respect to w near 02, having the following prop-
erty:

There exists ¢ > 0 and a smooth bounded plurisubharmonic function h on )
such that L(—1logdsn + h,-) has at least (g + 1) positive eigenvalues which
are > ¢ with respect to w.

Let @ CC X be a nonempty domain. We say that € is completely
strictly pseudoconvex if there exists a function o of class C? in a neighbor-
hood Ug of Q such that @ = {z € Ug | o(z) < 0} and such that L(p,z) is
positive definite for all z € Ug.

The remainder of this chapter is dedicated to the study of the 0-equation
with exact support in a certain domain which is a transversal intersection



4.2. CONSTRUCTION OF A FAMILY OF METRICS 51

of a completely strictly pseudoconvex domain with smooth boundary and
a weakly g-convex domain with smooth boundary. In particular, it follows
from Theorem 4.1.3 that such a domain is piecewise smooth and is a g-
convex manifold, i.e. it admits a (¢ + 1)-convex exhaustion function.

4.2 Construction of a family of metrics

Let Q2 be a smooth bounded completely strictly pseudoconvex domain in a
complex n-dimensional manifold X and M a real hypersurface of class C*®
intersecting OS2 transversally, such that Q \ M has exactly two connected
components. We suppose that M = {p = 0} where g is a C* function
whose Levi form has exactly pT positive, p° zero and p~ negative eigenval-
wes on To® M for each z € M, p~+p°+pT =n—1. Weput D = Qn{e < 0}.

As ) is completely strictly pseudoconvex, there exists a neighborhood
Ug of Q in X and a strictly pseudoconvex smooth function 9 on Ug such
that @ = {z € Ug | ¥(2) < 0}. We define w, = i99%. w, is then a hermitian
metric on Ug.

We can find a weakly (0 + p+)-convex domain Q CcC X with smooth
boundary such that M N Q C 02. Then by Theorem 4.1.3, there exists
¢ > 0 and a smooth defining function d3; for M, defined on a neighbor-
hood V of M N Q such that for every z € V N {0 < 0}, L(—logdss, ) has
p~ negative eigenvalues less than or equal to ﬁ(‘;), p° positive eigenvalues
greater or equal to ¢ and p* + 1 positive eigenvalues greater than or equal

to vc(c) with respect to wy. For later convenience, we set V™ =V N{p < 0}.

The proof of the following lemma basically follows from the proof of
Proposition 2.3 in [Mi]. However, since we have made some adjustments
and precisions, we include the complete proof.

Lemma 4.2.1

Fiz zg € M N Q. Then there exists a neighborhood U of zo in X and a
smooth orthonormal basis (C1(z), ..., (%)) of (Ta*X)* with respect to Wy
on U such that on U N D we have
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L(x) := —iddlog éps(z)
P B p +p° 3
= Y a@G@ALE@ Y @)@ AL)
py=1 psv=p~+1
n—1
+ Y (@) A () + an(@)Cu(@) Ay (@)
pv=p~ +p0+1
= L (z)® L%z) ® LT (z) ® L (2)

such that L (z) has p~ eigenvalues smaller than the p° eigenvalues of
L0(x), which in turn are smaller than the pT eigenvalues of L1 (z), and
an(z) is the biggest eigenvalue of L(z).

Moreover, if (L1 (x), ..., Ly(z)) is the dual basis of (¢1(z), ..., u(x)), we
can arrange that

(i) [La, Lg)(z) € Span(Ly-1(x),...,Ly-po(x)) for z € M and o, €
{p~+1,...,p7 +9%

(it) [La,Lg|(z) € Span(Li(z),...,Ly—1(z)) for o, € {1,...,n — 1} and
reM

(7’7'7') [La,fﬂ](l‘) € Spa‘n(Lp7+1(x)7'--7Lp_+p0(‘r)’zp*+1(x)7"'7Zp_+p0(‘r))
forz e M and o, €{p  +1,...,p  +p°}

(i) [Lq,Lg)(z) € Span(Li(z),...,Ln—1(z),L1(z),...,Ln_1(z)) for a €
{1,...,n—1}, Be{p +1,....p" +p° andz € M

Proof: The Levi form of M at the point z is the bilinear map L, :
{TH°M & TH'M} x {T3°M & T3’ M} — {T,M & C}/{T3° M & T+° M}
defined by £,(X,,Y;) = %ww[Xw, Y]z, where 75 is the projection
{T,M @C} — {T,M @ C}/{T3° M & Ty’ M}. Since, by hypothesis on M,
the Levi form of M has exactly p° zero eigenvalues everywhere, NVOM =
1,0
Uzerm Nz M, where

NpM ={Ly € T}M | Lo(Lq,Yz) =0V Y, € THOM}

is the Levi null set at z, forms a subbundle of TrOM of rank p°. Moreover,
it is easy to see (use the Jacobi identity, cf [Fr]) that NM'M @ N s
involutive.

Now fix zp € M. We may then choose a subbundle N = U, N, of rank
p° of 719X on a neighborhood V of zg in X such that N, = N2PM for
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x € M NV. Moreover, we may assume that N is itself a subbundle of
T = Ker0y; NTYX. Note that T is a subbundle of T%°X of rank (n — 1)
on V such that T, = Tg}’OM forre MNV.

Let A7 < ... < XZ_, be the eigenvalues of M(z) := iagéM(x)m. It
is well known that the functions z — AZ are continuous on V. Using the
assumptions on M, we have

Ap- <O =A7 Lo=A7

— T
= =N <AL

+p0+1

for every x € M NV. For a small € > 0, we therefore get a neighborhood
W of 2y in X such that forz € W

xr X
)\p, < —¢, )\p_+p0+1 > ¢,

A} € (—¢,¢) fori=p +1,....p +p°

Moreover, we can find R > 0 such that all the AZ are of absolute value
smaller than R for each z € W.

Intersecting the cercle of radius R centered at 0 with the lines [—¢ + iR]
and [e + iR], we obtain three closed paths '™, T” and I't such that for
x € W, none of the eigenvalues of M(z) lieson ', T? or I'*.

We may assume that W is small enough such that there exists a smooth
orthonormal basis X1,..., X,—1 of T on W such that X— ;,..., X, 0 is
a smooth basis of N on W.

We denote by M (z) the matrix of M(z) in the basis X1,...,X,—; and
by (e1,...,en 1) the standard basis of C*~!. We then have KerM(z) =
Span(e,—41,---,ep—4p0) for every z € M NW.

For x € W, we may set

I (z) = i Fi(M(w)—zId)*ldz,
m(z) = % FO(M(gc)—zld)—ldz,
Mt (z) = i F+(M(a:)—zlol)—ldz

Then I1~, TI° and IT+ are C° mappings in a neighborhood of z (e.g. T~
is the composition of the C** map z + M (z) and the holomorphic mapping
from the space of hermitian (n — 1) x (n — 1) matrices to itself given by
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A 5 [ (A—21d)"'dz). It is easy to see that I~ (z), II°(z) and IT*(z)
are the orthogonal projections of C*~! onto

E-(z) = Y Ker(M(z)- XId),

p~+p°
E%z) = Z Ker(M(z) — A21d) and
v=p—+1
n—1
Et(z) = > Ker(M(z) — X1d)
v=p~+po+1

For every 2 € MNW we have E°(z) = Span(e,-;1,---,€p- ). There-
fore, if W is small enough, the vectors

Ep-41(T) := Ho(w)(ep_+1), B e Ho(x)(ep—+po)

form a basis for E°(z). After a permutation of some indices, we can also
achieve that

span E~(z) and that

Ep-1p041(@) =TI (z)(ep- 1o 41)s- - » En—1(z) == TIF(z)(en—1)

span ET(z). Due to the Gram-Schmidt orthonormalization procedure and
the fact that eigenvectors associated to different eigenvalues are orthogonal,
we may assume that (é1(z),...,é,-1(z)) is an orthonormal basis for the
standard scalar product on C*1.

We define ;;(x) by é;(z) = E?;ll lij(z)e; and set
Li(z) = Z?;ll lij(z)X;(z). Then (Li(z),...,Lp—1(z)) is an orthonormal

basis of T on W. Moreover, we have Ny M = span(Ly-41(x),...,Ly-4y0(z))
force WnNn M.

Now we apply the same procedure as above to the hermitian form
62 (z)L(x) = —i6m (z)000ps + i05m A O6py on THOX . We observe that this
hermitian form has (n—1) eigenvalues which vanish on M as well as 1 eigen-
value which is positive on M. After possibly shrinking W, we then obtain
a unitary vector L, € T'°X on W, depending smoothly on z, which is
an eigenvector of £(z) and which is orthogonal to Li(z),...,L,_1(z) with
respect to wy.
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Let (C1(x),...,¢u(z)) € (TH°X)* be the dual basis of (Li(x),..., L,(z))
on W. This basis then gives the desired decomposition of £(z) on W. The

assertion (ii) follows because T'°M is stable under [ , ]. Moreover, since
N'YYM @ N1OM is involutive, we get (i) and (iii). Finally, (iv) follows by
definition of N":0M. O

Let dp,y be the boundary distance function of D with respect to wy.
0p,g Will not be smooth since D is only a Lipschitz domain. However, like
in Chapter 3, Theorem A.1.2 (see also [St]) provides us with a regularized
distance having essentially the same profile as dp 4:

There exists a function A € C*°(D,R) satisfying
c16pg(z) < A(z) < c26p () and

o° _
5 M) < Ba(op,g(2)' )
where © = (21, ...,Zoy,) are local coordinates on X. Bg,c1 and co are inde-

pendent of D.

We also need to define a regularized maximum function. For each 8 > 0,
let xs be a fixed non negative real C*°-function on R such that, for all

z € R, xp(x) = xp(—2), 2] < x5(z) < |z|+ 8, [xj(z)] <1, xj(z) > 0 and
xg(z) = |z if |z] > ﬁ We moreover assume that xjs(z) > 0 if z > 0 and
Xp(z) <0if z <0. We set maxg(t, s) = &2 + x5(552) for t,5s € R

We omit the proof of the following simple lemma:

Lemma 4.2.2
Let @, be two real-valued C*-functions on some real C?> manifold X. Then,
for all B >0, and x € X, the following assertions hold:

(i) max(p(z),9(r)) < maxg(p(z),9(r)) < max(p(z), () + 5
(1) maxg(p(x), ¢ (x)) = max(p(x),¢(z)) if [p(z) - p(z)| = B
(11i) There is a number Az(p, ) with 0 < A\z(p,v) < 1, namely

Aa(p, ) = % + %X%(M)a

such that
ﬁ(mgx(¢’¢)7m) = Aw(‘Pan) (9053") + (1 - Az(‘Pad)))[’(d)ax)

+ ()00 ) Ao — ) (@)
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Finally, we write a < b (resp. b 2 a) if there exists an absolute constant
C > O such that a < C-b (resp. b > C-a). We writea ~ bifa Sbanda 2 b.

For some > 0, we define ¢ = maxg(—logdar, —log(—%)) € C*(D).
Then ¢ is an exhaustion function for D and (i) of Lemma 4.2.2 implies

max(—log dar, — log(—v)) < ¢ < max(—logdnr, —log(—%)) + 8,
thus
e P min(0yr, —1) < e ? < min(dp, —1).

Hence e™% ~ A.
We set Dj = {z € D | e=#(@) > %}

The following technical lemma is the key point of this chapter. It per-
mits to obtain L2-vanishing theorems on D with powers of the boundary
distance as weight functions.

Lemma 4.2.3

There ezists a hermitian metric wpr on D and a family (wj)jen of complete
hermitian metrics on D with the following properties:

(i) wj = wyr on a neighborhood of Dj, w; > wyr on D.

(ii) Lety1 < ... < 7y, be the eigenvalues of i00¢ with respect to wyr. There
exists 0 > 0 such that vy + ...+, > o forr >n—pt —p°.

(iii) There are constants a,b > 0 such that a wy < wpyr < b 5;/[2(4)9 for all
jEN.

(iv) There is a constant C > 0 such that |Owprw,, < C.

(v) Let wy =435, whydzu Adz, on UN D, where U is a neighborhood
of £ € M and (z1,...,2,) are local holomorphic coordinates on U.
Then, for every multiindex o, there exists a constant C, such that

Sup,, |Dwhy (2)] < Ca 5];[27|a|(z) for every z €e UN D.

Proof: Let Ay € C*°(EndT(?) be the hermitian endomorphism associated
to the hermitian form —i90log dps with respect to wy and let v{ < ... <~
be the eigenvalues of A,.
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a constant ¢ > 0 such that

We have —i00 log 6y = gM 000y +i0log dpr A Olog 3. Thus there is

9 _c 9 _c
Vl(w)g 5M""”yp—(x)g 5M’
7§—+1($) Z Cyovny g—+p0(x) Z ¢,

g ¢ g <
,ypf+p0+1($) Z @""’ ’y'n,fl(x) Z 6M’ and

Y(z) > c |8log5M|§(x)

for every x € V—, after possibly shrinking V.

Moreover, we claim that there exists a constant ¢’ > 0 such that

g !/

’Yp—+1($) Scla"'a g—+p0(w) SC
This can be seen as follows:
Fix g € M. As in the proof of Lemma 4.2.1, there exists a neighborhood
U of zp in X and a smooth extension T of T"9M on U, such that for every
zeU
M(z) :=i006p 1, = M~ (z) & M°(z) ® M* ()

in a smooth orthonormal basis with respect to wy on U, such that the eigen-
values of M~ (z) are the p~ smallest eigenvalues of M(z) and those of
M™(z) are the p* biggest. Since M has exactly p° zero eigenvalues ev-
erywhere, this implies that for z € M N U, M%) = 0. Therefore the
eigenvalues of M?(z) are of absolute value smaller than ¢/8y/(z) for some
', which proves the claim.

Choose a strictly positive function 8 € C*° (R, R) such that

—nt fort< —c
0(t)=1< ¢ for0 <t <
t fort>cd +1
We use the following notation:
Let ¢ € C®(R,R). If A is a hermitian n X n matrix with eigenvalues

A1 < ... < )\, and corresponding eigenvectors v, ..., v,, we define ¢[A] as
the hermitian matrix with eigenvalues ¢();) and eigenvectors vj, 1 < j < n.

We let wps be the hermitian metric defined by the hermitian endomor-
phism A(z) = 0[A4(z)]. wpr is then a smooth metric (cf [De3]). By con-
struction, the eigenvalues of A(x) are o,(x) = 0(vi(z)) and we have

0’1(:E) =n |’Yf(w)|a’ Jp—(:E) =n |7§—($)|’

0p11(x) = ¢,y 0p4po(T) =,

Oy 1941(@) =101 (@), Oule) = 1i(a)
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for every x € V—, after possibly shrinking V.

The eigenvalues of —i00logdys with respect to wys are a,(z) = Z‘i Eg
Thus we have for every z € V™ ay(z) = —% and a,,_,+_,0(z) > 1, hence

1 1
at...dap>1——(n—p"—p"—1)>=forr>n—p" —p° (4.2.1)
n

S

Let us now estimate |0wnz |y, -

Fix o € M N Q. Using Lemma, 4.2.1, there exists a neighborhood U of
zo in X such that we have on U N}

P~ p~+p°
—28510g (5M(£I,‘) = Z a’/.w( )CN( ) A Cu(m) + Z a’?w(x)gu(x) A Zu(x)
psv=1 pr=p~+1
n—1
+ Y b @)u(@) A (@) + an(@)a(@) A, (2)
mr=p~ +pO+1
where ((1(z), . .., Cu(2)) is an orthonormal basis of T;° X with respect to Wy

onU.

By construction of wys, we have

p+p°
Z b/,w /\ Cu + c Z Cl/ /\ Cu )
pur=1 v=p~+1

n—1
+ Y (@) Gul@) AC (@) +an(2) Gule) A, (2)
pr=p~ +p0+1
+ +
where (buy)u,y = 0[(auv)u,y]- In order to get more condensed formulae, we
+
extend by, to all pairs (u,v) € {1,...,n} x {1,...,n} by setting it equal to

zero whenever it is not defined for such a pair.

Let (Li(z),-..,Ln(z)) be the dual basis of (¢i(z),...,{n(z)). The well
known Cartan formula for d implies that

9Cu(La, L) = La(Cu(Lp)) — Lp(Cu(La)) — Cul[Las Lp]) = —Cul[La, Lgl),

6Zu(Lonf,B) = La(Zu(Zﬂ)) - zﬁ(?u(La)) - Zu([Laafﬁ]) = _Zu([Laafﬂ])-
Thus
oy = 2055Ca A (s
a,8
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- ng,b’Ca /\Z/Ba
B

where the ;5 and dg 5 are determined by the conditions

[La, Lp](z) = _anﬁ Ly(z) mod(Ly(z), ..., Ln(z))

[La, Lg)(z) = Zd ) mod(Ly(x), ..., Ln(z))

(i)-(iv) of Lemma 4.2.1 therefore yield
cgﬂ ~ O, d’;ﬁ ~ On (4.2.2)

for (o, B, ) such that u & {p~+1,...,p~ +p°}, a,B € {p~+1,...,p” +
p’} and
Cgﬂ ~ (5M, dgﬁ ~ (5M (4.23)

for (o, 8) such that a € {1,...,n -1}, 8 € {p~ +1,...,p~ +p°}.
Moreover, by definition of ¢ ; and dt 50 We have

Own = Z Z > L z) Ca ACu NG, (4.2.4)

a=1pv=lec{—,+}

n p-
+Y> > b ) o ACAC,  (4.2.5)

a,p=1 =1 56{ ,+}

+ Z Z Z b C,u/\Ca/\C/B (4.2.6)

a,B=1p,v=1ec{—,+}

n p +p°
e Y Y (@) NNl (4.2.7)
a,f=1v=p=+1
n p~+p°
te Y Y dis() G ACa NG (4.2.8)
a,f=lv=p=+1
+ Z Lo(an)(x) Ca A Cn A Cn (4.2.9)
+ Z an(m)cgﬂ (z) Ca A G A Zn (4.2.10)
a,B=1
+ Z an(m)dz,b’ (7) Cn ACa A Zﬂ (4.2.11)
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As A, is the hermitian endomorphism associated to —iddlogdy =

o _ + +
+—006) +10log s A Olog 6y, it is easy to see that we have by, = ibwj,

—O0M
-t
where by, is defined and positive definite on U. Moreover, we see that
ap = 6%&”, where a,, is also defined and positive on U. From this we
M

conclude that
Gl2,, ~ O forve{l,...,p~,p~ +p° +1,...,n — 1}, (4.2.12)

|Cv|¢2uM ~lforve{p +1,...,p +p° and |Cn|f,M ~ 0% (4.2.13)

By construction of wys, we clearly have wys > 0log das A 0log 6ar,50

|01og 6ul2,, S 1. (4.2.14)
We have
> La(b,)(x) Calx) = (06,)(x) = (a(igﬁu))(w)
a=1

— b, ()0 log by () + i 3 La(B)(@) Gala),

n

Y Lalon)@)6a() = ~200(2)0108 011 (3) + 5 D Lal@n)(2)a(a),

a=1 M q=1

therefore (4.2.4) and (4.2.9) are bounded with respect to wys by (4.2.14),
(4.2.12) and (4.2.13).

(4.2.7) and (4.2.8) are bounded with respect to wps by (4.2.12) and
(4.2.13). Finally, (4.2.2), (4.2.3), (4.2.12) and (4.2.13) imply that (4.2.5),
(4.2.6), (4.2.10) and (4.2.11) are bounded with respect to wpy.

It is also clear that (iii) and (v) of Lemma 4.2.3 are satisfied.

Let us now prove (ii). We assume p~ > 1 (the weakly pseudoconvex case
p~ = 0 was settled in Chapter 3). We then have r > 2.

From Lemma 4.2.2, we get
i00p > —Xid0log dpr — (1 — \)iddlog

where \ = % + %X%(bg(_wf_lom). On the set where A > %, the asser-

tion (ii) is clear by (4.2.1). On the other hand, on {\ < 1}, we have
—1p < 0pr (see the definition of xg), and thus by construction of wy we
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get wy S g-wy < _%pwg < —i001og(—v) on Kerddy N THOX, which is a
subbundle of rank (n—1) of T?°X. If0 < f; < ... < B, are the eigenvalues
of —i00 log(—1) with respect to wys, we thus have B > 20 on {\ < %} for
some o > 0. Since oy + ...+ a, > 0 for r >n — pt — p® > 2, we then have

Yty > %(,31 +...406)>0con{A< %} This establishes (ii).

We define w; = wy + i6;0p A dp where 6; € C®(D) vanishes on a
neighborhood of D; and equals one on D \ Dj;;. Then |dp|,; is bounded
(j is fixed!), thus, by Lemma 1.2.3, w; is complete and has all the desired
properties. O

4.3 The L? estimates

From now on, D will be equipped with the metric wys given by Lemma
4.2.3. Properties (ii) and (iv) will be used to obtain L?-solutions of some
O-equation. Property (v) will yield regularity results for these solutions.

Let (E, h) be a hermitian vector bundle on X, and let N € Z. We denote
by Lf,’q(D, E, N) the Hilbert space of (p, q)-forms u on D with values in F
which satisfy

lul = /D 2, AAN AV, < +oo.

Here dV,,,, is the canonical volume element associated to the metric wyy,
and | |y,,,» 18 the norm of (p, g)-forms induced by wys and h.

Proposition 4.3.1
Let N > 1. Suppose f € L%,T(D,E, N)NKerd, r > n—pt —p°. Then there
ezists u € L2 (D, E,N) such that Ou = f and ||lu||xy < ||f||~-

n,r—1

Proof: We have already seen that A ~ e™%. Also AN ~ e N9 for N € N.
Thus it suffices to prove the statement with AN replaced by e V% in the
definition of the spaces Lg,q(D, E,N).

For j € N, let us denote by Lg,q(D,E, N, j) the Hilbert space of (p, q)-
forms u on D with values in £ which satisfy

lul3, = / [uf2, e VSOV, < +oo.
D;j

where x; € C*(R,R) with x;(t) =t ift <logj, x;(t) >t forallt e R
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Let 5},]- be the Hilbert adjoint of § with respect to the canonical scalar
product {( , ), of (p,q)-forms with values in E induced by || ||~

Nakano’s inequality (1.3.1) yields

3 = - .
5 (19ullfy;+19njully ) = (EO(EN,5), Ajlu, uh

(4.3.1)

1 « _ —x
=5 (lmgullze + I ulli + I75ulliy, + 175 ully,)

where ©(Ey ;) is the curvature of the bundle Ey ; = (E,e”MXi(¥)p), A, is
the adjoint of multiplication by w; and 7; = [A;, Ow;]. wj; is the metric given
by Lemma 4.2.3.

As iO(En,;) = iN09x,(¢) ® Idg + iO(E), a standard calculation (cf
[De2]) yields

[iO(EN,j), Aj]_ = N[i00x;(¢) ® Idg, A;] + [iO(E), A;]
> Nxj(@) (v + -+ + 1) ® ldg + [ic(E), Aj]

when this curvature tensor acts on (n,r)-forms. Here %j are the eigenvalues
of 100y with respect to w;.

For r > n —p" —pY, we have 71 + ...+, > o on D;. Since |0wnslw,,
is bounded on D by (iv) of Lemma 4.2.3 and w; = wy on Dj, the point-
wise norms |7;ulw;, [Tjulw,, |7} ulw; and [TFuly, are uniformly bounded with
respect to j by some constant times |ul,,, on D;. Thus, choosing N big
enough and x; sufficiently rapidly increasing on {t > log j}, the right hand
side of (4.3.1) can be made > %||u||?w

Let f € L%,T(D,E,N) NKerd, r > n —pt —p°. Since f is of bidegree
(n,7) and x;(¢) > ¢, a standard calculation (see [Del]) yields ||f||n,; <
|| fll~- By standard L2-theory (cf Chapter 1 or [Del], [De3], [Oh1]), we then
get u; € L2, (D, E,N,j) satisfying du; = f and |lujl|n; < [|fllvy <
| fllx- Therefore the solutions u; are uniformly bounded in L? norm on
every compact subset of D. Since the unit ball of a Hilbert space is weakly
compact, we can extract a subsequence g, U € L12OC converging weakly
in L? on any compact subset K C D, for some ¢; — +oo. By the weak
continuity of differentiation, we get again in the limit Ou = f. Also, since

Xj(‘P) = ¢ on Dj;, we have

J

NulEye Ve < liminf / Tt By e, < 111
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hence [|ul/3 < ||IfI%- -

Proposition 4.3.2
Let N > 1. Suppose f € L%,T(D,E, —N)NKerd, r < pt + p°. Then there
exists u € L%yr_l(D,E, —N +2) such that Ou = f and ||u|_nio < ||fll-nN-

Moreover, Im(0 : L} pripo(D B, =N +2) — L o101 (D, B, —N)) s
closed in L(Z),p++p0+1(D’ E,—N).

Proof. The line of the proof follows exactly the proof of Proposition
3.2.2. Suppose r < pT +p° and let f € L§ (D, E,—N) NKerd, N > 1. We
define the linear operator

L;:  OLZ

n,n—r

(D,E*,N-2) — C
0g +—» /f/\g
D

Note that the integral on the right hand side is finite, since

| / FAgl<( / P ANV, ) - ( / 92 ANAVL) < 171w lgll%s.
D D D
Let us first show that L 7 is well defined.

Indeed, let g1, g2 € Lfm_r(D,E*,N — 2) such that dg; = Ogo. Then
(g1 — g2) = 0 and by Proposition 4.3.1, since n —r > n — pt — p°, there
exists o € L2 (D, E*,N — 2) such that da = g1 — g2. But then

nn—r—1

/DfA(gl—gQ) - /DfAéa
= lim(—l)’"/aDsf/\a

e—0

= —lim f A O«
e—0 D\DE

= —lim F A (g1 —g2)
e—0 D\DE

with (D.). an exhaustion of D by smooth open sets such that D, D {z €
D | A(z) > €}. Here we have used Stoke’s theorem several times. The third
equality is obtained as in the proof of Theorem 3.2.2.

Moreover,

| fA(gl—gQ>|s</ |f|iMAN)1/2</ g1 — gof2,, A2
D\D. D\D. D\D.
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—7e—0 0.

(note that (fD\DE g1 — 22, AN)/2 < efD\DE g1 — gal2,, AN=2)1/2 <
ellgi — g2ll-N—2 — 0 as € — 0 since g1, 92 € L2 ,,_.(D,E*, N — 2)).

n,n—r

Thus Ly (g1) = Ls(g2)-

Now let
g € Dom(d : L}, .(D,E*,N —2) — L%,n—r+1(DaE*>N — 2)). Applying
Proposition 4.3.1, there exists § € L2, (D, E*,N — 2) satisfying 8¢ = dg

and ||g]|n—2 < ||0g||y—2. This yields
L;(3g)| = |L;(39)| = | /D FAG < I l-nlgln

< fl-~llgllv—2 < 11 £ -~ 1[0gllv—2-
Thus Ly is a continuous linear operator of norm < ||f||-x and therefore,
using the Hahn-Banach theorem, L; extends to a continuous linear operator
with norm < ||f||-n on the Hilbert space L%,H_T_H(D,E*,N —2). By the
theorem of Riesz, there exists u € L§, (D, E,—N + 2) with |lu|| _y42 <
||f|l-~ such that for every g € L2, (D, E*, N — 2) we have

—1)" g =L =
(-1) /DU/\ g f(g) /Df/\g’
ie Ou=f.

To prove the last assertion, we show that

Im(G: L§ 1, po(D,E,—~N +2) — L3 o, (D,E,—N)) =

{g € Lg’p0+p++1(D,E, —N) | /Dg/\h =0Vh € Li’n_po_er_l(D,E*,N—Q)}.
Suppose f € Im(0: L§ y  o(D, E,~N+2) — L} , o ,(D,E,~N)).
Then there exists o € L? o p0 (D,E,—N + 2) such that da = f. Thus we

get for every h € Li n,po,p+,1(DaE*aN -2)

/ fAR = OaAh

D D
= lim alh
e—0 aDE



4.3. THE L? ESTIMATES 65

with (D.). an exhaustion of D by smooth open sets such that
D.D>{ze€ D|A(z) > ¢} and

[ san < (/ |f|iMAN>1/2(/ 12, AN)1/2
D\D. D\D.

D\D

N

< ellfll-nlPlln—2 —e=0 0,

which shows the inclusion C (see the proof of Theorem 3.2.2 for the justifi-
cation of some of the equalities).

Conversely, we show that for every f €

{9€Lf ot 1 (DyE,~N) | [ gAh =0Vh € Li,n_fpofpﬂl(D,E*,N—?)}a
there exists u € Lg o p0 (D, E,—N +2) satisfying 0u = f. Again, we define
the linear operator
Ly OLL, v o0 (D,EX,N-2) — C
dg — / fAg
D
ﬁere we write gLi’n_p+_p0_1(D, E*,N —2) for

Im(0 : Lfl,n_ptpo_l(D, E* N-2) — Li,n_er_pO (D, E*,N —2)). Ly is well
defined because of the moment conditions imposed on f. We then show the
existence of the desired u as in the first part of the proof. O

Let U C X be an open set and E a holomorphic vector bundle on X.
For k € NU {400}, we define

ch (X,U,E)={f €Ck (X,E) |supp f CU}

As in Chapt_er 3, we get a regularijy theorem for CI_ .
Here O_y = 00y + 0 5O where 8 is the Von Neumann adjoint of

o:12,(D,E,—~N+2)— L2,  (D,E,—N).

Theorem 4.3.3 B B

Ifu € Lg,q(D,E, —N) satisfies Ou = f and 0 yu = 0 with f € C;,Yq(X, D,E)N
CyY(D, E), then u € C;,(év)(X, D,E)NCy (D, E) where s(N) ~ V'N for all
N> 1.

Proof: We will show that 00y is an elliptic operator of polynomial
growth with respect to A on D. Then all the assertions follow in the same
way from Theorem 2.2.1 as Theorem 3.3.1 if we keep in mind property (iii)
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of Lemma 4.2.3.

In order to avoid too many sums over too many indices, we will assume
that E is the trivial bundle and restrict our attention to (0, 1)-forms. The
general case is handled analogously.

An easy computation yields that 0_ yu = AN=29, (A~Nu) where 9,
is the Von Neumann adjoint of 0 for the metric wys. Hence

O nu=A"20,,u + lower order terms

where O, = %:M + EZME and the lower order terms are sums and pro-
ducts of terms like A*, 9(A¥u) and EZM(Aku) for some integers k € Z. It

therefore suffices to calculate 9,

oy a0nd Dy

Let zg € 0D and let (z1,...,2,) be local holomorphic coordinates of X
in a neighborhood U of zy.

We have wy; = iE?,kzl w“MUdzu Adz, on U N D, where the coeffients wﬁ/';
satisfy (v) of Lemma 4.2.3.

Let Ly,...,L, be an orthonormal basis of Tl’oX‘UnD with respect to
whr, e, Ly = Ej<k ljkaizj where the [;; have to be determined by the con-

dition ), > e j llkfijw%/[ = 0. It is therefore clear that all derivatives of
Lji, can be bounded by some power of §y;.

Let €;,...,¢; € (TLOX)TUOD be the dual basis of Ly,..., L.

For u = 3%, u;€; we then have

_ _ o o
ou = Z Ly(uj)ép N — Z CljUi€k N Ej
J:k Jikil

where cé-k can be determined by the condition [L;,Lg] = Y, cé.kfl, because
we have 0¢;(Ly, L;) = —€,([L, L;]) by the Cartan formula for 8. Therefore
also all derivatives of the cé- . can be bounded by some power of ;.

Now let v = 37, | v;j€,\€; be a smooth (0, 2)-form with compact support
in U N D. Then we have



4.4. THE 0-EQUATION WITH EXACT SUPPORT 67

(Fu, o), = 2 / (3 Tug)ag — 3 i) det (w2 dA

N kg,
= on 16 25— b ) det (w02 dA
= Z( lkgvkg - ijulvlcy) et(wyy )
D; Py !
n 8 7. = —
= -2 A Z{uj%(llkvkjdet(wf\‘f)) +c§cjuwkjdet(wf\‘f)}d>\
I kgl
Thus
=+ Ol 0 aB\—1 N
BwM’U = — Z(Lk(vkj)+’ukj8—2l +Ukjllk8_zl(det(waﬂ))det(wM) —I—vkjckj)ej

kgt

Hence the coefficients of EZJM satisfy the condition (2.2.2) and

w0 = Z L Ly,(u;)e; + lower order terms

Jk

WM

= 82’11,]' _

= Z liglik=—F==F¢; + lower order terms
ey leazj

Z,.]i bl

where the lower order terms involve only derivatives of order < 1 of u and
multiplication by functions whose derivatives can be bounded by some power
of § M- O

4.4 The 0-equation with exact support

Let 2 be a smooth bounded completely strictly pseudoconvex domain in a
complex n-dimensional manifold X and M a real hypersurface of class C*®
intersecting 02 transversally, such that © \ M has exactly two connected
components. We suppose that M = {p = 0} where p is a C* function
whose Levi form has exactly p positive, p° zero and p~ negative eigenval-
wes on TP M for each z € M, p~+p'+p+ =n—1. Weput D = Qn{e < 0}.

In this section, we will show some vanishing and separation theorems
for the d-cohomology groups with values in a holomorphic vector bundle F
supported in D:

HM(X,D,E) =X (X,D,E) NKerd/0(Cy,,_1(X, D, E))
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Theorem 4.4.1
Let E be a holomorphic vector bundle on X. Then we have
HP4(X,D,E) =0 for1<q<p®+pt
and
Hp’p0+p++1(X, D, E) is separated for the usual C*-topology.

Proof: The proof is exactly the same as the proof of Theorem 3.3.2. Re-
placing the vector bundle E by AP(T*°X)* ® E, it is no loss of generality
to assume p = 0.

We will begin by proving the following claim:
Let f € C§(X,D,E) NC§Y(D,E)NKerd, 1 < q < p’+p", k> 1.
Then there exists u € C&(kzl(X, D,E)N C5%—1(D, E) such that Ou = f with
s(k) ~ Vk.

Proof of the claim: Let f € C(’iq(X, D,E)NKerd, 1 <qg<p’+pt, k>
1. General results on Lipschitz domains (see e.g. [Gr, Theorem 1.4.4.4]
or Theorem A.2.2) show that f € L%,q(D,E, —2k) if we keep in mind
property (iii) of Lemma 4.2.3. Proposition 4.3.2 implies that there exists
we L§, (D,E,~2k +2) such that fu = f in D and |Jul|_gk42 < [|f||—2-
Moreover, choosing the minimal solution, we may assume g*,gku = 0. From
Theorem 4.3.3 we get that u € Cg(k)Tl(X, D, E) with s(k) ~ Vk.

sqd—
Let us now prove the theorem.

H%'(X,D,E) = 0 follows immediately from the above claim and the
hypoellipticity of d in bidegree (0,1) if 1 < p® + p™.

Now assume 1 < ¢ < p® +pT and let f € C&‘j](X, D,E) N Kerd. By
i_nduction, we will construct uy € C(’iq_l(X, D,E)n C5%—1(D, E) such that
Oug, = f and |ugy1 — ug|sry—1 < 27k Tt is then clear that (uy)gen converges
to u € C§%,_1(X, D, E) such that Ou=f.

Suppose that we have constructed uq, ..., u;. By the above claim, there
exists apy1 € Coily(X,D,E) NC, (D, E) such that f = Joyqr. We
have apt1 — ug € C(’iq,l(X, D,E)n Coo1(D, E) N Kerd. Once again by
the above claim, there exists g € CS,(;ZZ(X, D,E)n C5S—2(D, E) satisfying
Qp+1 — up = 0g.

Since C&‘;,Q(X, D,E) is dense in CS};Q(X, D, E), there exists gyy1 €

C3%_o(X, D, E) such that |g — gry1lsp) <27

Define ug1 = o1 — Oge1 € Choty(X, D, E) NCGS_1(D,E). Then
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gulﬁ—l = f and |ug41 _uk|s(k:)—1 = |59_59k+1|s(k)—1 < |g_gk+1|s(lc) < 27"
Thus ug41 has the desired properties.

The last assertion is proved similarly, using the "moreover” statement in
Proposition 4.3.2 and the fact that the C*® topology is stronger that the L?
topologies. O

As in Chapter 3, the results of this section will allow us to solve the
0-equation for extensible currents by duality.

We recall the notations. A current 1" defined on D is said to be eztensi-
ble, if T' is the restriction to D of a current defined on X.

Tt was shown in [Ma] that, since D satisfies D, the vector space D"55?(X)
of extensible currents on D of bidegree (p,q) is the topological dual of
Cx (X, D).

n—p,n—q

Theorem 4.4.2

Let T € D'HI(X) be an extensible current on D of bidegree (]v), q), ¢ >
n — p° — pt such that T = 0 in D. Then there exists S € 'D'%q_l(X)
satisfying 0S8 =T in D.

Proof: Let T € D'J}(X) be an extensible current on D of bidegree
(p,q), ¢ >n—p° — p*, such that 9T = 0 in D.

Consider the operator

Ly ECﬁp’n,q(X,ﬁ) — C

Oy — <T,p>

We first notice that Ly is well-defined. Indeed, let ¢ € C;°,,, (X, D)
be such that dp = 0.
If ¢ = n, the analytic continuation principle for holomorphic functions yields
p=0,s0 <T,p >=0.

Ifn—1>¢q>n—p’—p", one has ¢ = da with o € C;'L‘lp,n,tl(X,E)

by Theorem 4.4.1. As D" P"~%"}(D) is dense in C3° , . . (X, D), there

exists (o;)jen € D""P""971(D) such that da; — Oda in C pn o X, D).
j—+oo ’

Hence < T, p >=<T,0a >= lim; 4o <T, Eaj >= 0, because 0T = 0.

By Theorem 4.4.1, 9C° ,,, (X, D) is a closed subspace of
Col pn—qi1(X, D), thus a Fréchet space. Using Banach’s open mapping the-

orem, L7 is in fact continuous, so by the Hahn-Banach theorem, we can
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extend L to a continuous linear operator Lz : C2° omqr1(X,D) — C, ie.

Lt is an extensible current on D satisfying
<OLp, @ >= (-1’19 < Ly, 8¢ >= (-1)PH < T,p >

for every ¢ € C3°, , (X, D). Therefore T' = (—=1)P+99 L. O

Remark. Analogous results have been obtained in [Sal] for completely
strictly g-convex domains with smooth boundary. These are domains of the
form Q = {z € Ug | ¥(2) < 0} where 1 is a smooth function defined on an
open neighborhood Ug of Q whose Levi form has at least g+ 1 positive eigen-
values everywhere. Sambou shows that for such a domain the d-equation is
solvable for extensible currents of bidegree (p,r), r > n — ¢. In [Sa2], also
the strictly g-concave case is discussed.



Chapter 5

Applications to C'R manifolds

In this chapter, we apply the results of Chapter 3 and Chapter 4 to the
study of the tangential Cauchy-Riemann complexes on C'R manifolds. We
first define the tangential Cauchy-Riemann complexes for smooth forms and
currents on generic C'R submanifolds. Then we show that the tangential
Cauchy-Riemann cohomology groups for both smooth forms and currents
vanish for all intermediate bidegrees on boundaries of weakly pseudoconvex
domains in Stein manifolds. We also prove that the tangential Cauchy-
Riemann equations for currents can be solved on Levi flat C'R submanifolds
of arbitrary codimension. Finally, we give some results on the solvability of
the tangential Cauchy-Riemann equations for currents and for smooth forms
with compact support on hypersurfaces with constant signature. We also
prove a new version of the Hartogs phenomenon in weakly 2-convex-concave
hypersurfaces in Stein manifolds.

5.1 The tangential Cauchy-Riemann complexes

Let X be a complex manifold of complex dimension n. Let M be a C*-
smooth real submanifold of real codimension k£ in X. Such a manifold M
can be represented locally by

M={z€Q|pi(z) =... = pr(z) =0}, (5.1.1)
where the p,’s, 1 < v < k, are real C*° functions on an open set € of
X. M is called a generic CR manifold of real codimension k if and only if

Op1 A...NOpr #0 on M. In particular, every smooth real hypersurface in
X is a generic C'R manifold of real codimension 1.

In this situation, the holomorphic tangent spaces to M form a subbundle

71
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THOM of T'0X 5. In the local representation (5.1.1) we have

n apu
BZj

THOM = {¢eC| (2)¢; =0, v=1,...,k}
J

—
and dime T3°M = n — k for z € M N Q, where (z1,...,2,) are local holo-
morphic coordinates of X in a neighborhood of z.

For p € M, let
mp: {T,M ® C} — {T,M @ C}/{T,°M & T, M}
be the natural projection map. The Levi form at a point p € M is the map
Ly:Ty°M — {T,M @ C}/{T,* M & T, M}
defined by £,(X,) = £mp{[X, X]p} for X, € T,"°M, where X is any vector
field in TH9M that equals X, at p. The Levi form of M takes values in a
k-dimensional complex vector space.

We say that M is Levi flat if and only if £, = 0 for every p € M.

Now consider the case where M is a real hypersurface in X. Then the
Levi form of M takes values in a 1-dimensional complex vector space, and
there is a different way of defining it by means of the Levi form of a lo-
cal defining function: Let ¢ be a smooth local defining function for M in
a neighborhood of p with do(p) # 0. The Levi form of M at p can then
be identified with the hermitian form L£(p, p)‘Tpl,O A+ If 0 is another defining
function for M with dg # 0 on M, then E(é,p)‘Tg,oM

of [,(Q,p)|T1,oM. We say that M has signature (p—,p°,pT) at p € M if there
P

is a nonzero multiple

exists a smooth local defining function for M in a neighborhood of p with
do(p) # 0 such that £(p, p)m},o 1 has p~ negative, p° zero and pt positive
eigenvalues at p.

In order to define the tangential Cauchy-Riemann complexes on a generic
CR manifold M of real codimension k, we consider the sheaf Jjs of germs
of C*® functions on X which vanish on M.

On X, we have the Dolbeault complexes for sheaves of germs of smooth
forms: B B B
g0 et L el 2, Oy e ),
where £P7 is the sheaf of germs of complex valued C*® forms of bidegree
(p,j) on X, 0 < p,j < n. We denote by Z,;" the sheaf of £y"-modules
which is locally generated by Jus and 07,. We set P =Ty7 NERI. Since
EIgz,j C Igz,j +1, we have subcomplexes

. 0 9, op1 0 9, rpn
By 01 Lt B Lo,
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for each 0 < p < m, of the complex £P* and hence quotient complexes [EP*],
defined by the exact sequence of fine sheaf complexes

0 — I8 — EP* — [EP] — 0.

The induced differentials are denoted by dp;. M being generic, we have
[EPY] =0 for ¢ > n — k + 1. We write the quotient complex as

[EP*]: 0 — [EP] 5_M> [EP] 5_M> E_M) [5p,n—k] = 0.

It is called the tangential Cauchy-Riemann complex of C*°-smooth forms. If
2 is an open subset of X, the cohomology groups of [EP**] on M N ) are
denoted by HP4(M N Q).

Let Far denote the ideal sheaf of germs of smooth complex valued dif-
ferential forms on X that are flat on M, i.e. whose coefficients as well
as all its derivatives vanish on M. We set .7-"]1\’/}] = Fu NEPJI. Note that

FPI  FPITL therefore FP7* is a subcomplex of £P*, and the short exact
sequence of fine sheaf complexes

0 — Fif — EP* — WP — 0
defines the complex
w05 Wi L wnl 2 2 e g
of Whitney germs on M.

From the formal Cauchy-Kowalewski Theorem for generic CR subma-
nifolds of a complex manifold (cf. [AFN]), we get the following

Theorem 5.1.1

If M is a generic CR submanifold of real codimension k in X, then for
all (p,q), 0 <p<mn, 0<q<n-—k, and every open subset Q of X with
MNQ#0, the maps

HI(MNQWh) — HPY(M NQ),
induced by the natural map WZI\),}* — [EP*], are isomorphisms.

In order to define the current d,;-cohomology groups on M N2, we first
consider the spaces [DP7|(M N Q) of sections of [EP¥] having compact sup-
port in M N with their usual inductive limit topology.
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We define [D'PJ](M N) as the topological dual of [D" P~ k=i|(M N Q).
In this way we obtain, for each 0 < p < n, a complex of sheaves

[D'P*] 1 0 — [D'P0] 24 [py 2y L O ipein=1)
whose cohomology groups on M N Q will be denoted by HZH(M N Q).

Let D’ be the sheaf of currents on X, we denote by D/, the subsheaf of
D' of currents with support contained in M. Dualizing the formal Cauchy-
Kowalewski theorem (cf. [Hi/Na2], [Na/Va]), we get the following

Theorem 5.1.2
If M is a generic CR submanifold of real codimension k in X, then for
all (p,q), 0 <p<mn, 0<q<n—k, and every open subset Q of X with
M NQ#0Q, there are natural isomorphisms

HPA(M N Q) — HPIH (D), (Q)).

cur

5.2 Boundaries of weakly pseudoconvex domains

Theorem 5.2.1

Let Q be a relatively compact domain in an n-dimensional Kahler manifold
(X, w) with smooth boundary M. We assume that Q is log §-pseudoconver.
Let f € [EP9 N Kerdys satisfy the tangential Cauchy-Riemann equations on
M,0<p<mn,qg<n-—2.

Then there ezists F € C39(S2) such that Fpy = f and OF = 0 in Q.

Proof: There exists f € If’on_l(ﬁ) such that f| u = f and 8f vanishes to
infinite order on M. Applying Theorem 3.3.2, one can find a solution u to
the equation Ou = 0f in such a way that wu is of class C*™ on 2 and vanishes

on M. F = f —u is then the desired extension of f to Q. O

Theorem 5.2.2

Let X be an n-dimensional Stein manifold and Q@ CC X a domain with
smooth boundary M. We assume that Q) is weakly pseudoconvex. Then
HP4(M) = HZIL(M) = 0 for 0 < p < mn, 1 < q < n—2. Moreover,
HPO(M), HEQ (M), HP"=Y(M) and HYl} (M) are infinite dimensional and,
if n > 3, separated.

Proof. It was proved in [Hi/Nal] that HP°(M) and HP""~'(M) are infi-
nite dimensional. H{}’q}?a(M ) is infinite dimensional since HP9(M) is infinite
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dimensional. Moreover, it was proved in [Hi/Nal] that there exists a point
zo € M such that M is strictly pseudoconvex in a neighborhood of zy. It
follows from the failure of the Poincaré Lemma for 957 (see [AFN] and its re-
fined version [Hi/Na5]) that there exists a smooth 9ys-closed (p,n — 1) form
defined on a neighborhood U of zy in M such that the equation 03,8 = f
admits no solution in the distribution sense on any neighborhood of zg in
M. Since all (p,n — 1) forms on M are 9ps-closed, we may assume that f
is defined on all of M. Thus we have H% (M) # 0. But then the Laufer
alternative proved in [BHN] permits to conclude that Hg’ﬁ_l(M ) is infinite
dimensional.

Now let f € [EP9] satisfy the tangential Cauchy-Riemann equations,

1< qg<n-—2. It follows from Theorem 5.2.1 that there exists F' € C;,’%(Q)
satisfying F|pr = f. Using Kohn’s result on the solvability of the d-equation
with regularity up to the boundary in weakly pseudoconvex domains [Kol],
[Ko2], there exists U € C;5,_1(€2) satisfying OU = F in Q. Then u = Uy
satisfies Opyu = f. Hence HPY(M) =0for 1 <qg<n —2.

Moreover, we know from abstract duality arguments (see [Se], also
[L-T/Le]) that HEZL(M) is separated if and only if H™ P ¢(M) is sepa-
rated. Furthermore, if any one of these equivalent conditions is satisfied, we
have HZL(M) ~ (H™ P9 1(M))'.

Therefore we have HZL(M) = 0 for 2 < ¢ < n — 2 and H%}L*l(M) is
separated for n > 3; to complete the proof of the theorem, it remains to
show that Hg’{blr(M) =0ifn>3,0<p<n.

To prove this, we note that we have a direct splitting

HP9(M) ~ HP(Dh(X)) ® Hp’q(@;(\ﬁ(X))a

cur

q > 1. Here HP4(D} (X)) (resp. Hp’q(’D’X\ﬁ(X))) denote the d-cohomology
groups for currents on Q (resp. on X \ Q) which are extendable to X (see
Chapter 3, Section 4 for the definitions). Indeed, it is a well known fact that

we have the following long exact sequence (cf. [Hi/Na2], [Na/Val))
coo = HPU(X) — HPY(DY\ (X)) = HPHH(D)y (X)) — HPHH(X) — ..

where Hp’q(ﬁ'X\ 1 (X)) are the 8-cohomology groups of currents on X \ M,
which are extendable across M. Since X is Stein, it follows that H??(X) = 0
for ¢ > 1. Together with Theorem 5.1.2, this yields

HEL(M) = HP9(D\ (X)) = HP (Do (X)) © HP(Dy, (X)),

cur
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q > 1. Theorem 3.4.1 implies HP(D4(X)) = 0 for ¢ > 1. HE;.(M) = 0 for
n > 3 is now an immediate consequence of the following lemma. O

Lemma 5.2.3
Let X be an n-dimensional Stein manifold and Q@ CC X a domain with

smooth boundary M. We assume that Q is weakly pseudoconvez. Then

Hp’q(ﬁ'x\ﬁ(X)) =0forl1<g<mn-2.

Proof. We first prove the following claim:

Let Qq, Qo be two weakly pseudoconver domains witﬁ smooth bound-
ary such that Q1 CC Q9 cC X. Then we have HPI(X, Qo \ Q1) = 0 for
2<q¢g<mn-—1and HP"(X,Qy \ Q1) is separated, 0 < p < n.

Indeed, let f € Cp%(X, Q2 \ Q1) NKerd, 2 < g < n—1. Then, since Qy
satisfies the assumptions of Theorem 3.3.2, there exists u € Cp5_; (X, Q)
satisfying Ou = f in X. This implies that Gu = 0 in Q;. Hence, since
g—1 > 1, there exists h € ;,’f’q_l(ﬁl) satisfying Oh = u in ; (see [Kol] and
[Ko2]). Let h be a smooth extension of h to X with compact support in Qy
and set g = u — Oh. Then g satisfies dg = f and suppg C O \ Q1. The
separation statement is proved similarly, using the separation statement of
Theorem 3.3.2.

With the same proof as the proof of Theorem 3.4.1, it follows from the
above claim that Hp’q(D;b\51 (X)) =0for0<p<n,1<g<n-—2

Now let ¢ € C*°(X) be a strictly plurisubharmonic exhaustion function
such that ¢ < 0 on Q and set Q; = {z € X | 9(2) < j}, where we may
suppose that 0€); is of class C*.

Let T € ﬁ’?éliﬁ(X) be d-closed in X \Q, 1 < ¢ < n—2. As shown before,

there exists S; € T)'gg{g(X ) satisfying 0S; = T in ©; \ Q. We then have
5(5j+1 — SJ) =0in Qj \ Q.

First assume ¢ > 2. Then there exists H € 25’?("%2(X ) such that
OH = Sj11 — 8 in Q; \ Q. Setting S;11 = Sj41 — OH, we have 8S; 11 =T
in Q41 \Qand Sj41 =S, in ©; \ Q. We can thus find a sequence (G;);en,
G; € DRIN(X), satisfying 9G; = T in 5\ Q and Gy = G in 9\ &

Then (G;); converges to G € Yj’gé'gl(X) such that 0G =T in X \ Q.
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Now assume g = 1. Then S;;1 — S; is a holomorphic p-form on
2;\ €. From the Hartogs phenomenon on Stein manifolds, S;1 —S; extends
to a holomorphic p-form on §; (see [He/Le]). Moreover, we may approxi-
mate holomorphic p-forms on €2; uniformly on €;_; by holomorphic p-forms
on Qo (cf [He/Le]), hence there exists a holomorphic p-form H on ;9
satisfying [(H — (841 —S;), )| < 277 || for every p € C° (X, Q51 \ Q).
Let x € C®(X \ Q) satisfy x = 1 on Qj11, suppx C Qjyo. Setting
§j+1 = Sj+1 - XH, we have §j+1 S ,D/p,q—l(X)’ 5§j+1 =T on Qj+1 \ﬁ

x\Q
and ' B
1(Sj+1 — Sj, )| < 27| for every ¢ € C32,, (X951 \ Q). Thus there
exists a sequence (G;)jen, Gj € DPI_1(X), such that 0G; =T inQ;\Q

x\Q -
and [{(Gjy1 — Gj, )| < 277|p| for every ¢ € C32, ,(X,Q; 1\ Q). It fol-
lows that (G;);en is a Cauchy sequence for the weak topology. In fact, let
p € C°p (X, X\ Q)N D" P(X). Then there exists N € N such that

suppye C Qn \ Q and for all j > N, p > 0

1 1
{Gjtp = Gl < (55 +--- + 555) el

27
hence (Gjip — Gj,) —rj—st00 0. Thus (G;)jen converges weakly to G.
We claim that G is an extensible current on X \ Q. G is obviously linear.
Indeed, let ,% € C32, (X, X \ Q) N D" P"*(X). Then there exists N € N
such that suppy C Qn \ Q, suppey C Qn \ Q and supp (¢ + %) C Qn \ Q.
Hence

(Goo+) = lm(Gj, o+ 1)
>N
_ }i%(Gj,wHJli;}lV(Gj,«/f)
= (G, )+ (G,).

Let (¢u)ven be a sequence of elements of C2° (X, X \ Q) N D" P"(X)

n—p,n
converging to 0 in C°, (X, X \ Q) N D" P"(X). Then there exists N € N

n—p,n

such that suppp, C Qy \ Q for all v € N. Hence

|<G7 <:01/>| = | };I%<G]a <pu>|

j—1
1
< Z ok lou| + (G 1, 00)]-
k=N+1

Since Gy 41 is an extensible current, we have (Gyi1,9,) —v—+00 0 and
by hypothesis ¢, —,100 0, L.e. [py| = 0. Hence (G, ¢y) —v—+400 0 and
G is therefore an extensible current on X \ 2 satisfying 0G =T in X \ Q.00
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5.3 Applications to Levi flat C R manifolds

Here we want to solve the tangential Cauchy-Riemann equation for currents
on certain domains in Levi flat submanifolds of a Stein manifold. The sub-
manifolds will be of any codimension where the problem makes sense. More
precisely, we consider the following set-up.

Let M C X be a smooth generic C R manifold of real codimension k& in
an n-dimensional Stein manifold X. We moreover assume that M is globally
defined by

M={z€X|p(z) =... = pr(z) =0},

where the p,’s, 1 < v < k are real C*® functions in X satisfying dp1 A ... A
Opr. # 0 on M. Our most important assumption is that M should be Levi
flat, i.e.

‘C(plla Z)§ =0

forv=1,...,k z € M and every £ € C* satisfying 37, 222 ()¢, = 0 for
g J=1 0z; J

p=1....k

Foreachv =1,...,k, we set ¢, = p,,—l—ing?zl p? and @y = — 2?21 pi+
P 2?21 p?, where 1) is a positive stricly plurisubharmonic function of class
C*® on X. Then for every ordered collection of k£ integers 0 < 41 < ... <
i, < k we have Op;; A... A Op;, # 0 on M. For an adequate choice of 9,
we can arrange that if we set Q, ={z € X | ¢,(2) <0}, v =0,...,k, then
each €2, is weakly pseudoconvex and

k k k k
M=% x\M=J, X=J%and [ Q =0.
v=0 v=0 v=0

v=0

Let ©Q be a piecewise C*° bounded weakly pseudoconvex domain such
that €2 intersects each 2, transversally.

Theorem 5.3.1
Let M and Q be as above and 0 <p<mn,2<qg<n-—k.
Then HEL(M N Q) =0.
Moreover, let ' be any open set which is relatively compact in Q. Then the
restriction mapping

HZp (M N Q) — HE (M N Q)
is the zero mapping. In other words, let T € [D'P(M N Q) such that
OuT = 0 in M N Q. Then there exists S € [D'PP)(M N Q') satisfying
OuS =T in MNQ.
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Proof: Tt is a well known fact that we have the following exact sequence
(cf. [Hi/Na2], [Na/Va])

oo = HEA(Q) — HP(Dly 1,(Q)) — HPT(D)y(Q)) — HEZ() ...
Here HZ1(2) denote the g—coh(im_ology groups for currents on Q and
HP(Dg () = D’Z;Z’gM(Q) N Ker[‘)/ap’g’g;/[l(ﬂ) denote the d-cohomology
groups for currents on © \ M which are extendable to Q (see Chapter 3,

Section 4 for the relevant definitions).
We denote by HP4(D',(2)) the 9-cohomology groups of currents on  with
support in M.

Since 2 is weakly pseudoconvex and X is Stein, it follows that 2 is a
Stein manifold (see [El]), thus we have HEL(Q) = 0 for all ¢ > 1.

Moreover, by Theorem 5.1.2 there are natural isomorphisms

HEL(M 0Q) — HPTH (D (Q)).

We then get
HEE (M N Q) = HPOR1 (Dl 1 (2))

cur

for ¢ > 1. Without loss of generality, we may assume that £’ is also weakly
pseudoconvex. Then the above isomorphisms also holds with € replaced by
Y. The theorem is then an immediate consequence of the following lemma.
For the case ¢ = 1, note that all diagrams induced by the restriction map-
ping are commutative. O

Lemma 5.3.2

For0<p<mnand q>k+1 we have Hp’q(f);)\M(Q)) =0.

Moreover, let Q' be any open set which is relatively compact in Q. Then the
restriction mapping

HPM(Dgy 40(2)) — HP* (D 3, (2))
is the zero mapping.

Proof: The proof follows an induction argument of [Na/Va]. By induc-
tion on £, we show the following claim:

Let Q,Dy,...,Dy be piecewise smooth domains in X which are locally
Stein and which intersect pairwise transversally. Set D = QN Uﬁ:o Dj and
let Q' be any relatively compact open set of Q.

If T € D"Y(Q) satisfies T = 0 in DNQ', ¢ > £+ 1, then there exists
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S e ﬁ’%q_l(Q) satisfying 0S =T in D N Y.

First assume £ = 0 and let T' € 75"1’5309'(9) satisfy 0T = 0 in Dy N Q,
g > 1. Without loss of generality, we may assume that Q' is a piecewise
smooth domain which is locally Stein and which intersects Dy transversally.
Then Q' N Dy has Lipschitz boundary and is relatively compact in Q. More-
over, since X is a Stein manifold and since Q' N Dy is locally Stein, it follows
from [El] that Q' N Dy is log é-pseudoconvex for some Kéhler metric on X.
We apply Theorem 3.4.1 and conclude that there exists S € T)"Bg;g}(ﬁ) sat-

isfying 08 = T in Q' N Dg. This proves the claim for £ = 0.

Now assume the claim is true for £ — 1 and let us prove it for £ > 1. Set
U = QﬂUﬁ-;é Dj and Us = QNDy. Let T € D'1(Q) satisfy 9T = 0in DNEY,
q > £+1. Then, by the induction hypothesis, there exist S1, So € 75’%’(1_1((2)
such that 05; = T in Uy N Q' and 852 = T in Uy N Q. Then we have
9(81 — S3) = 0in Uy NU; N Q. Again, since ¢ — 1 > 1, we may apply
Theorem 3.4.1 to the domain U; N Us N Q/; note that U; N U N Y is rela-
tively compact in 2 and locally Stein with Lipschitz boundary. We conclude
that there exists H € ﬁ'%q_Q(Q) satisfying 0H = S; — S in Uy NU; N QY.
We define the current S of bidegree (p,q — 1) on D by S = S7 in U; and
S = Sy + O0H in Uy. Then S is well defined and 85 = T in Q' N Uﬁ:o D;.
Moreover, S is extendable to a current on 2. This proves the claim.

Let us now prove that for every relatively compact subset ' of Q and

every T € ﬁ%gM(Q) satisfying T = 0 in Q \ M, ¢ > k, there exists

S € D' (Q) such that 85 =T in @'\ M.

We recall that we have 2\ M = J*_,(2, N Q) and NF_,Q, = 0.

Let T € @'ggM(Q) satisfy 0T = 0 in Q\ M, ¢ > k. From the above

claim, there exist S1, S, € ﬁ'g’g&l(ﬂ) such that 0S; = T in Ullf;(l)(Q,, n Q')
and 0SSy = T in Q4 N €Y. This settles the case k = 1, since in this situation,

Qo N Q' and O, N Q' are disjoint sets.

Now we assume k > 2. Then 9(S; — S2) = 0 in Uf;(l) Q,NNQ =
UsZ2 (2, NN Q) U (1 NN Q). We set Wi = UEZ2 (02, NQN Q) and
Wy = Qp_1NQL N, Then, since ﬂﬁ:o Q, = (0, W1 and W5 are disjoint sets.
Thus, in order to solve the d-equation for extensible currents on W7 U W,
it suffices to solve the J-equation for extensible currents separately on Wi
and Wy. Since ¢ —1 > k—1, it then follows from the above claim that there

exists G € ﬁ’g’gﬂ_f(ﬂ) satisfying 0G = S1 — Sy in (W1 U Ws) N &Y. Tt follows

that the current S defined by S = S; in U’;;é(ﬂu NQ), S =8 +0G in
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QN Y is well defined, extendable to  and satisfies 3S = T in Q' \ M.
We have thus proved the last assertion of the lemma.

Now suppose ¢ > k+ 1 and let T € ﬁ’ggM(Q) satisfy 0T =0 in Q\ M.
Let (€2)ien be an exhaustion of Q by smooth pseudoconvex domains. We
just proved that for every i € N, there exists S; € Dlls)z’ng(Q) satisfying
8S; =T in Q,\ M. Then 9(S;+1 — Si) = 0 in Q/\ M. Thus, since ¢—1 > k,

there exists H € ’D,Is)ig MQ(Q) satisfying Siy1 — S; = 0H; in Q) \ M. We set

§i+1 = S’H—l — EHZ Then §i+1 € ﬁ’gg;j(ﬂ), 5§i+1 =T in Q;-f—l \ M and
Sit1 = S; in Q) \ M. Thus it is possible to construct a sequence (S;);en,
Sj € DI} (9) satisfying 8S; = T in @) \ M and Sj41 = 5; in Q) \ M.

Then (S;);jen converges to S € @'g’g;j(ﬂ) satisfying S =T in Q\ M. O

5.4 Applications to hypersurfaces with constant
signature

If M is a CR manifold, then we denote by H2(M) the d;s-cohomology
groups for smooth forms with compact support in M. We have the follow-
ing result:

Theorem 5.4.1

Let X be a Stein manifold of complex dimension n > 2 and M a smooth,
closed, connected hypersurface in X. Suppose that M has signature (p—,p°,p™T)
at each point. Then HEY (M) =0 for 0 < p <mn, 0 < g < min(p~,p") +
p0 — 1.

Proof: Let f € [EP4] N Kerdys such that supp f C K, where K is a
compact subset of M. Since X is Stein, there exists a smooth bounded com-
pletely strictly pseudoconvex domain €2 such that K C Q, Q\ M has exactly
two connected components DT and D, and M intersects 052 transversally.

Next, we can find f € Cp5(X) such that ﬂM = f,suppf CC Q and 8f
vanishes to infinite order on M.

Applying Theorem 4.4.1, we conclude that HP4+1(X E )=0forg+1 <
p° +min(p—,pt). Therefore there exists a solution u € C;5(X) to the equa-
tion Ou = Of in such a way that u vanishes on M U(X \ Q). F = f —u is
then O-closed in X and we have Fp = f,supp F C Q.
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If ¢ = 0, the analytic continuation principle yields F' = 0, thus f = 0,
proving H?(M) = 0.

Now let ¢ > 1. Q being completely strictly pseudoconvex, there exists
an open set ) O Q which is also completely strictly pseudoconvex. Then the
8-cohomology groups with compact support in Q, H??(Q), vanish for ¢ > 1
(cf [He/Le]). Thus we can find U € C;5_;(X), supp U CC Q satisfying

OU = F. We then have 5M(U|M) = f, which proves the theorem. O

It is well known that if X is a Stein manifold of complex dimension
n > 2 and K a compact subset of X with X \ K connected, then every
holomorphic function on X \ K extends holomorphically to X. In fact it
is sufficient that X satisfies Ho''(X) = 0, which holds for example under
the assumption that X is completely 1-convex in the sense of definition 5.1
of [He/Le]. This extension property of holomorphic functions is called the
Hartogs phenomenon.

The Hartogs phenomenon has also been studied in so-called ¢-convex-
concave hypersurfaces. These are hypersurfaces, whose Levi form has at
least g positive and g negative eigenvalues at each point.

Indeed, it is known that the Hartogs phenomenon holds if M is a 2-
convex-concave hypersurface in a Stein manifold or if M is 1-convex-concave
and K sufficiently small (see [He] and [L-T]).

On the other hand, the following example given in [Hi/Na3] shows that
the Hartogs phenomenon fails to hold globally for 1-convex-concave hyper-
surfaces:

Set M = {z€ C? | |z1|2+|2)?—|23|? =1} and K = {z € M | z3 = 0}. Then
M is 1-convex-concave and the CR function f(z) = % defined on M \ K
has no CR extension to M.

Here we will prove the following result on the Hartogs phenomenon in
hypersurfaces:

Theorem 5.4.2

Let X be a Stein manifold and M a smooth, closed, connected hypersurface
in X. Suppose that the signature of M is the same at each point and that
M is weakly 2-convez-concave. Let K be a compact subset of M such that
M\ K is connected and globally minimal. Then every smooth CR function
on M\ K extends to a smooth CR function on M.

M being weakly 2-convex-concave signifies that the Levi form of M has
at least 2 nonnegative and 2 nonpositive eigenvalues at each point. In par-
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ticular, this class of hypersurfaces contains all Levi flat hypersurfaces of real
dimension at least 5. Another interesting case is the one of signature (1,1, 1).

M \ K is globally minimal if any two points p,q € M \ K can be joined
by a piecewise smooth curve vy =y U... U, v : [0,1] — M \ K, such
that v;(t) € Ty,yM NJT,,) M for all t € (0,1); here J denotes the complex
structure on X. This assumption of global minimality is needed in order to
assure that the weak analytic continuation principle holds for C'R functions.
However, this assumption is always satisfied as long as the Levi form is not
identically zero (or if M is of finite bracket type).

Proof of Theorem §.4.2: If M is weakly 2-convex-concave, we have
min(p~,pt) + p°® — 1 > 1, thus Theorem 5.4.1 implies that Hg’l(M) = 0.
Keeping in mind that the weak analytic continuation principle holds for CR
functions on minimal C'R manifolds, we have thus proved Theorem 5.4.2.
Indeed, let K be a compact subset of M such that M \ K is connected,
and let f € C®°(M \ K) satisfy pf = 0. Choose a smooth function x
with compact support in M such that y = 1 in a neighborhood of K. Set
fo=(1—=x)f, defined as 0 in K. Then f, € C*°(M). Define

[ —foux ImM\K
9=V 0 in K

g is then a das-closed (0, 1)-form with compact support in M. As Ho'' (M) =
0, there exists a smooth function uw with compact support in M satisfying
Oyu = g. Define F = f, — u. Clearly 0pF = 0 in M. Moreover, there
exists an open set in M \ K where v = 0 and f, = f, thus F = f. Since
the weak analytic continuation principle for CR functions holds on globally
minimal C R manifolds, we therefore get F = f in M \ K.

Similar to the results of the previous section, we can also prove a result
on the solvability of the Jj/-equation for currents on hypersurfaces with
constant signature.

Theorem 5.4.3
Let X be a complex manifold of dimension n and M a smooth, closed, con-
nected hypersurface in X. Suppose that M has signature (p—,p°, pT) at each
point. Let Q CC X be a smooth bounded completely strictly pseudoconver
domain in X such that Q\ M has ezactly two connected components and
M intersects OQ transversally. Then HEL(M N Q) =0 for 0 < p < n,
g >n—min(p—,p*) —p’ 4 1.
Moreover, let Q' be any open set which is relatively compact in Q. Then for
g =mn—min(p ,pt) — p°, the restriction mapping

H2I(MNQ) — HEI(M N Q)

cur cur
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is the zero mapping.

Proof: We denote by DT and D~ the connected components of Q \ M.

Let HP4(D), () (resp. HP4(D),_(R))) the d-cohomology groups of
currents on DT (resp. D~) which are extendable to 2. Moreover, we con-
sider the 9-cohomology groups HP4(M N Q,D},) of currents on Q with
support on M N Q.

We then have the following long exact sequence (cf [Hi/Na2], [Na/Va])

oo HEL(Q) = HPI (D, (9)) © HPA(Dy- (Q)) — HPH (M N9, D)

cur

— HPOHH(Q) — ...

Since Q is completely strictly pseudoconvex, we have H%%(2) = 0 for all
g > 1 (see [He/Le]). Moreover, it follows from Theorem 5.1.2 that we
have a natural isomorphism H%H(M N Q) — HPTH (M N Q, D);nq)- Hence
HEL(M NQ) ~ HP(D) (Q)) @ HPI(D', (2)). The theorem is now a con-
sequence of the following lemma, (for the case ¢ = n—min(p~,p*) —p°, note
that all diagrams induced by the restriction mapping are commutative). O

Lemma 5.4.4

For 0 <p<mn and ¢ >n—min(p~,p") — p° + 1 we have HP(D'),(Q)) =
HP4(D,_(Q)) = 0.

Moreover, let ' be any relatively compact domain in Q. Then for q =
n —min(p~,pt) — p°, the restriction mappings

HPI(D)4 () — HPY( Vb+nQI(QI))a
HPY(D), (Q)) — HPI(Dy- g (?))

are the zero mappings.

Proof. Let (£;)jen be an exhaustion of € by smooth bounded strictly
pseudoconvex domains such that M intersects 9€); transversally.

Let T € ’D'%imﬂ(ﬁ) satisfy 0T = 0 in DT NQ, ¢ > n—min(p~,p*) — p°.

It follows from Theorem 4.4.2 that there exists S; € 25’%’_1[1(9) satisfying

0S; =T in D™ N Q;. The same holds true of course with DT replaced by
0

D~ . This proves the assertion of the lemma for ¢ = n — min(p—,p*) — p°.

Now let ¢ > n — min(p~,p™) — p® + 1. We have 9(S;41 — S;) =0 in
D* N Q;. Hence, again by Theorem 4.4.2, there exists H € D'%%%(Q) sat-
isfying 0H = S;41 — Sj in DT N Q. Setting Sj41 = S;+1 — OH, we have
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8Sj41 = T in DY N Q4 and Sj4; = S in DT N Q. Thus we can find
a sequence (Gj)jen, Gj € DV’%’(_IF_I(Q) satisfying 9G; :VT in DT NQ; and
ng = G, in DT N Q. Hence (G;) converges to G € D’%’(fl(ﬂ) satisfying
0G =T in DT N Q. Since the same holds true also for D~, we have proved
the lemma. O

We remark that Theorem 5.4.3 gives a Poincaré lemma for currents on a
certain type of hypersurfaces. Combining this with the results of [Na/Va],
[An/Hi|, [Mi] and [Hi/Na5], we obtain the following corollary:

Corollary 5.4.5

Let X be a smooth hypersurface in C* and suppose that M has signature
(p~,p° pt) at each point in a neighborhood of xo € M. Then the Poincaré
lemma holds for smooth forms and for currents of bidegree (p,q) at the point
zo if 1< q#p ,pT,i.e. each smooth form (resp. current) of bidegree (p,q),
1< q#p,pt, which is 0-closed on some open neighborhood of xy is O-
exact on some open neighborhood of x.

The Poincaré lemma fails to hold at xy for smooth forms and currents of

bidegree (p,p~) and (p,p™).

Proof. Let M be defined by {¢ = 0} in a neighborhood of zy, where
o0 is a C*® function whose Levi form has exactly pT positive, p° zero and
p~ negative eigenvalues on To°M for each z € M. Let Q be a small ball
around zo such that M intersects 02 transversally and © \ M has exactly
two connected components. Set 2T = QN {p <0} and 2~ = QN {p > 0}.

It follows from [Na/Va] that there exists a neighborhood Q' of zy in C”
such that the restriction mappings

HPT (Dl () — HPT (Dlyy 00 (),

HP (D (2)) — HP? (Do o/ (Q))
are the zero mappings for 1 < ¢* < p™ and 1 < ¢~ < p~. In virtue of
Theorem 4.4.2, the same holds true for ¢g* >n—p~ —p°, ¢~ >n—pT —p'.
Since we may assume that Q and €2’ are Stein, this proves the Poincaré
lemma for currents of bidegree (p,q), 1 < ¢ # p~,p*"; remember that we
have a direct splitting

HZA(M N Q) = HP(Dp () & HPY (D (1))

cur

(cf the proof of Theorem 5.4.3).

Moreover, it follows from [An/Hi] and [Mi] that after possibly shrinking
), the restriction mappings

Hp,q(Q_+) — HPYQT NQ),
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HPI(Q~) — HP(Q N YY)

are the zero mappings for 1 < g # p~,p™; here — denotes the closure in
(resp. in ') and the cohomology groups are the cohomology groups of the

0-operator acting on smooth forms with regularity up to the boundary.

In virtue of Theorem 5.1.1, we also have direct splittings
HPA(@T) @ HP9() ~ HP9(M 1 Q)

induced by (f*,f7) — f‘;[ — fiu (cf [An/HI]). This proves the Poincaré
lemma, for smooth forms on M in bidegree (p,q), 1 < q#p ,p™.

The failure of the Poincaré lemma in bidegree (p,p~) and (p,p*) was
proved in [Hi/Na5]. O

5.5 Examples

1. Let p1,...,pn be positive integers. Then

Q={ze |Z|zj|2pf <1}

=1
is a smooth bounded weakly pseudoconvex domain in C".

2. Let M be a smooth hypersurface in C* with signature (p~,0,p") at
each point. Then M = M X C’ has signature (p~,p°, pT) at each
point.

3. Any real-analytic hypersurface in C" has constant signature outside a
proper real-analytic subvariety (in particular, on a dense open subset).

4. The tube in C" defined by

Q(z):w%+...+wg—w3+1—...—xi:O,

z; = Rez;, has signature (n — ¢ — 1,1,¢ — 1) at every nonsingular
point, i.e. at every point where it is a real submanifold of C™.

Indeed, it is clear that L£(g,2) 1.0,, has at least ¢ — 1 positive and
n — ¢ — 1 negative eigenvalues for every z € M \ {0}. Moreover, if we
define ¢ € C* by

=1z, 1<j5<n,

then & € T, °M for every z € M \ {0} and £(o, 2)(€,n) = 0 for every
1,0
nel, M.
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In particular, the tube in C" over the light cone in R”, i.e. the variety
M defined by
oz)=ai4+. ... +x2 | —22=0

has signature (0,1,n — 2) at every nonsingular point.

5. The following example is taken from [Hi/Na4]. Consider the unit
sphere S® in €3, where we look at C® as one of the standard holo-
morphic coordinate patches in P3. Let M denote the smooth subma-
nifold of the Grassmannian G(2,4) of all P!’s in P3, consisting of those
P'’s which are tangent to S° at some point. Then M is a compact
7-dimensional hypersurface in G(2,4) with signature (1,1,1) at each
point.

Indeed, we can represent S° C P? in homogeneous coordinates by
S5 = {2023 + 2320 + 2121 + 2222 = O}.

This is a homogeneous manifold for the action of SU(1, 3), i.e. SU(1, 3)
is a group of C R-automorphisms acting transitively on M. Here we
identify SU(1,3) with the group of 4 x 4 complex matrices A, with
determinant 1, which satisfy A*K A = K for

00

o O
O = O O
oo o=

1
0
0

and the action on P2 is the quotient of the standard action on C*. With
this identification, the line £ = {22 = 0, z3 = 0} is a point of M. We can
choose complex coordinates wi, wo, w3, w4 near £ in the Grassmannian
of the projective lines of P3, (w1, we, w3, w,) representing the projective
line corresponding to the plane V of C* generated by the vectors

1 0
0 1
U1 = ) V2 =
w1 w3
w2 wy

Then V € M if and only if V N (KV)1 # {0}, i.e.
det((v;, Kv;)) = 0.
Hence the local equation for M in these coordinates is given by

wo +wo +wiw, wiws + wa
det _ _ _ =0,
Wy + wiws 1+ wsws
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1.e.
wo + Wo + W1 W1 — WaW4 — W1wW3W4 — wW3wW4 + (w2 + We)wzws = 0.

By the homogeneity, it suffices to compute the Levi form at wy = wo =
w3 = w4 = 0, where wy, w3, wy can be taken as tangential holomorphic
coordinates: it is proportional to the hermitian matrix

0 0
0 0
0 -1

S O =

and hence M has signature (1,1,1) at every point.



Appendix A

Some results of real analysis

A.1 A regularized distance function

In this section, we recall some results from [St, Chapter VI].

In what follows, F' will denote an arbitrary non-empty closed set in R”,
Q its complement. By a cube we mean a closed cube in R", with sides
parallel to the axes, and two such cubes will be said to be disjoint if their
interiors are disjoint. For such a cube @, diam(Q) denotes its diameter, and
dist(Q, F) its distance from F. Let now @ be any cube with center z. For
any €, 0 < e < %, which is arbitrary but will be kept fixed in what follows,
denote by Q* the cube which has the same center as ) but is expanded by
the factor 1+ ¢; that is, Q* = (1 + ¢)[Q — z] + =.

Theorem A.1.1
Let F be given. Then there exists a collection of cubes F, F = {Q1,Q2,...}
such that

(i) Uy Qk = Q2 = (°F),
(ii) The Qy are mutually disjoint,
(iii) diam(Qy) < dist(Qg, F) < 4diam(Qy),

(iv) Each point of Q is contained in a small neighborhood intersecting at
most N = (12)" of the cubes Q5.

Proof. Consider the lattice of points in R” whose coordinates are in-
tegral. This lattice determines a mesh M, which is a collection of cubes;
namely all cubes of unit length, whose vertices are points of the above lattice.
The mesh M leads to a two-way infinite chain of such meshes {M;}1%,
with M, = 27¥*MPC. Thus each cube in the mesh M, gives rise to 2" cubes

89
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in the mesh Mj by bisecting the sides. The cubes in the mesh Mj each
have sides of length 2% and are thus of diameter \/n2*.

We also consider the layers ) defined by
Q= {z | 2v/n27% < dist(z, F) < 2¢/n27FF1}.

Obviously Q = [J{2° Q.
We now make an initial choice of cubes and consider the resulting col-
lection Fy:

Fo=|J{@Qr € Mr | QN # 0}.
k

We then have Jger @ = 2 and diam(Q) < dist(Q, F') < 4diam(Q) for all
Q € Fo. Hence the collection Fy has the required properties (i) and (iii).
However, the cubes in it are not necessarily disjoint. We now refine our
choice leading to Fy, eliminating those cubes which are really unnecessary.

Start with any cube @) € Fy and consider the mazimal cube in Fy which
contains it. Observe that any cube Q' € Fy which contains Q € F satisfies
diam(Q') < 4diam(Q). Moreover, any two cubes Q' and Q" which contain
@ have obviously a non-trivial intersection. Thus each cube @ € Fj has
a unique maximal cube in Fy which contains it. By the same token these
maximal cubes are also disjoint. We let F denote the collection of maximal
cubes of F. Then F satisfies (i), (ii) and (iii).

It remains to show that F also satisfies (iv).

Let us say that two distinct cubes of F, Q1 and Q2, touch if their bound-
aries have a common point. Suppose @1 and Q2 touch. Then diam(Q1) <
dist(Q1, F) < dist(Q2, F) + diam(Q2) < 5diam(Q2). However diam(Q2) =
2kdiam(Q,) for some k € Z, thus diam(Q;) < 4diam(Q2). Together with
the symmetrical implication, this proves

1
Zdiam(Qz) < diam(Q;) < 4diam(Q2),
provided @1, @2 € F touch.

Now let @) € F. We claim that there are at most N = (12)" cubes in F
which touch Q. Indeed, if the cube @ belongs to the mesh My, then there
are 3" cubes which belong to the mesh M}, and touch (). Next, each cube in
the mesh My, can contain at most 4" cubes of F of diameter > Idiam(Q).
Since we have already seen that if a cube of F touches @ it must be of
diameter > diam(Q), this shows that there are at most (12)" cubes in F
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which touch Q.

Now let z € 2. We choose a cube @) € F such that z € Q). Consider
the union of @ with all the cubes in F which touch (). Since the diame-
ters of these cubes are all > $diam(Q)y), it is clear that this union contains
@}, (we have choosen € < i) Therefore () intersects Q7. only if ) touches
Q. As we have already seen, there are at most N cubes of F which touch
Q. Thus there are at most N cubes @} which intersect Q). This proves (iv).]

Again, let F be an arbitrary closed set in R", and let §(z) denote the
distance of z from F. While this function is smooth on F' (it vanishes there),
it is in general not more differentiable on 2 = “F’ than the obvious Lipschitz-
condition-inequality |§(z) — §(y)| < |z — y| would indicate. For applications,
it is desirable to replace §(x) by a regularized distance which is smooth for
z € Q. In addition, this regularized distance is to have essentially the same
profile as 6(x). Its existence is guaranteed by the following theorem.

Theorem A.1.2
There exists a function A € C*®°(Q) such that

(a) c16(z) < A(z) < c26(x),
(b) |DeA(z)| < Bo(6(z)) 1% for every multiindez o.
Bg,c1 and co are independent of F.

Proof. We keep the notations of Theorem A.1.1. Let @)y denote the cube
of unit length centered at the origin. Fix a smooth function ¢ satisfying
0<p<lg()=1ifzeQpand p(z) =0ifz ¢ Qf = (1 +¢)Qo- Let ¢
denote the function ¢ adjusted to the cube Q, that is

.T-.Ik

£y,

where z* is the center of Q;, and £, is the common length of its sides. Notice
that therefore g (z) = 1if z € Qp and ¢ (z) = 0if z ¢ Q}. We also observe
that

D0 (2)] < Aa(diam(Q)) ™. (A.1.1)

We set A(z) =), diam(Qg)pr(z)-

Observe that if z € Qp, then d(z) = dist(z, F) < dist(Qg, F)+diam(Qy) <
5diam(Qy) by (iii) of Theorem A.1.1. However, if z € Qf, then ¢ (z) = 1,
so A(z) > diam(Qy) > £6(z).
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Also, if z € Qj, then d(x) > dist(Qy, F) — %diam(Qk) > %diam(Qk) by
(iii) of Theorem A.1.1. On the other hand, any given x lies in at most N of
the QF by (iv) of Theorem A.1.1, thus A(z) < Z“”EQZ diam(Qy) < %N(S(a:).
We have therefore proved the conclusion (a) with ¢; = % and cp = %N .

To prove conclusion (b), we argue similarly but invoke inequality (A.1.1)
and the observation that if z € Q}, then §(z) < dist(Qg, F') + diam(Qy) +
tdiam(Qy) < 6diam(Qy). This gives the desired result with B, = A N6lel—1,
O

A.2 Imbeddings of Sobolev spaces on Lipschitz do-
mains

Definition A.2.1

Let Q C R™ be an open set. We say that its boundary U is Lipschitz if for
every x € ' there exists a neighborhood V' of x in R" and local coordinates
(Y1,---,Yn) such that

(a) V is a cube in the new coordinates:
V={(y1,--,yn) | -1<y; <1, 1<j<mn}

(b) there exists a Lipschitz function ¢, defined in
Vi={ly1,--syn1) [ -1<y; <1, 1<j<n—1}
such that
ANV ={y= (' y1) €V | yn < 0(y)},

LNV ={y=("'ym) €V ]yn=0@)}

In other words, in a neighborhood of z, ) is below the graph of a Lip-
schitz function ¢, and I is the graph of ¢.

The following theorem is taken from [Gr].

Theorem A.2.2

Let Q0 be a bounded open subset of R* with Lipschitz boundary T’ and let
k € N. Then for all u € Hi(Q) we have § *u € L2(Q), where §(x) is the
distance from a point x to T. Moreover, we have an estimate |6 %uljo.0 <
|k,

Proof. Let us first consider the case when Q = R* is the nonnegative
real axis. Then, for u € D(R") we have

T — k—1
ue) = [y
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and consequently
|u(z)| 1 1/w (k)
< — dy.
& SGhoDiz ), W

Hardy’s inequality implies that

2
(k—1)!

Iz~ Fullo < lu® lo.

By density of D(RT), this implies the desired result for H(R").

We conclude by extending this result to a general 2. Let us use the
same notation as in Definition A.2.1 and consider a function u whose sup-
port is contained in V. One can always reduce the general case to this
particular case, using a partition of unity. Now for v/ € V' let us set
uy (t) = u(y',o(y') —t). For almost all y' € V', we have u, € IC-)I,C(]R’L)
and consequently t~*u,, € L*(R") with ||t_kuy:||g,R+ < K||luy ||i,R+, where

K does not depend on 3'.
Integrating this inequality in 3/’ leads to

1) = yn)Fullf o < Kllulli .

Since ¢ is a Lipschitz function, the weight ¢(y') — y,, is equivalent to 6(y),
the distance from y to I', throughout V. O

A.3 A cut-off function

The following lemma is taken from [Du].

Lemma A.3.1

Let Fy, Fy be two closed subsets of R™ with d(Fy,F) > €. Then there ex-
ists x € C®(R"™) such that x = 1 in a neighborhood of F1, x = 0 in a
neighborhood of Fo and for every multiindex o, x satisfies

o Niq|
sup |[D%x(z)| < =5
TER" S

(where Ny does not depend on Fi, Fy).

Proof; Let ¢ € C° (]R”) have support in the unit ball of R" and Sa.tisfy
Jon WX = 1. We set :(z) = (2)p(22).
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Let ¢ be the function defined on R™ by ¢(z) = 1 if d(Fy, F>) < § and
o(z) = 0 otherwise.

We set x = ¢ x 1).. Then it is immediate that x = 1 in a neighborhood
of F1 and x = 0 in a neighborhood of F». Moreover, we have

3
D) < [ 1Dy < (D) sup (Do)

and it suffices to take

Njo = 31*l max (sup [DPy(z))).
Bl=lal| zern

A.4 A partition of unity

Lemma A.4.1

Let Q2 be an open set of R" and denote by 6(x) the distance of x € Q to
the complement of Q. Let € be an arbitrary small positive number < % and
¢ € N. Then there exists a locally finite open covering of 2 by balls B(x*,r;),
with center z* and radius 7; = e6(x*)¢, and a partition of unity (0;);en with
respect to this covering satisfying

D IDi|* < 0:Py(r?),

la|<s

where Ps is a polynomial of degree s in one variable.

Proof.  'We may choose a locally finite open covering of € by balls
B(z',r;), mi = £6(z%)¥, such that also the balls B(z?, 7;) cover (.

Let g : R — [0, 1] be a smooth function satisfying

L, 1< 3
g(t) = exp(—ﬁg), % <[t <1
0, [t >1

|z —a]
Ti

). We obviously have ¢;(z) = 1 if z € B(z?, 1r;) and
supp ¢; C B(z*,r;). Moreover, a straightforward computation yields

We set ¢; = g(

> D% < @il Pi(r;?)],
el <s



A.4. A PARTITION OF UNITY 95

where P; is a polynomial of degree s in one variable.

We set _
91' QOZ

ek
The family (6;);en then defines a partition of unity with respect to the
covering (B(z’,7;)ieN-

Moreover, since (B(z¢,r;)); covers ©, we clearly have Y, ¢ > 1 in €.
Without loss of generality, we may also assume that e6(z)¢! < 1 for all
i € N. Then, if B(z¥,r,) N B(z%,r;) # 0, we must have §(zF) > 15(z%), i.e.
r,;l < 457"1'—1. But this implies

> 1D < 6i| Py(r;?)]

lal<s

for some polynomial Ps of degree s. O
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