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Résumé

Le principal objectif de cette thèse est l’étude des fonctions de structure,
polarisées et non-polarisées, des nucléons à partir des fonctions de structure
du système à trois nucléons. Un premier aspect de cette étude est consacré
à l’extraction des fonctions de structures des nucléons libres, et plus parti-
culièrement du neutron (pour lequel il n’existe pas de cible pure), à partir de
celle du système à trois nucléons. Un second point d’intérêt est l’étude des
modifications des propriétés des nucléons dans la matière nucléaire légère.

Nous avons commencé ce travail par le calcul de la fonction d’onde non-
relativiste du système à trois nucléons. Pour effectuer ce calcul nous avons
utilisé les équations de Faddeev. Pour simplifier le problème, nous avons
considéré que le système est invariant par symétrie d’isospin et donc composé
de particules identiques. Pour simplifier encore plus notre problème, nous
avons décomposé la fonction d’onde en ondes partielles et fait appel à un
potentiel séparable.

Nous posons ensuite les bases du formalisme de convolution. Ce forma-
lisme permet d’obtenir les fonctions de structure de noyaux complexes à par-
tir de celles de leurs constituants. Nous avons alors montré comment calculer
les distributions d’impulsion sur le cône de lumière des différents nucléons
à l’aide de la fonction d’onde du système à trois nucléons que nous avions
précédemment calculée.

Nous sommes alors passés à l’étude des fonctions de structure non-polarisées
des noyaux d’hélium 3 et de tritium. Dans un premier temps nous présentons
notre prédiction pour l’effet EMC dans ces deux noyaux . Nous avons ensuite
étudié les prédictions de notre modèle pour la règle de somme de Gottfried.
Enfin, nous avons terminé cette partie par la présentation d’une nouvelle
façon d’accéder à la fonction de structure F2 du neutron libre à partir des
mesures de cette quantité pour les noyaux d’hélium 3 et de tritium.

Après avoir étudié les fonctions de structure non-polarisées du système à
trois nucléons nous sommes passés au cas polarisé. On sait depuis longtemps
que la fonction de structure g1 de l’hélium 3 constitue une bonne approxima-
tion de cette même fonction pour le neutron libre. Nous avons donc étudié les
diverses corrections qu’il est nécessaire d’inclure pour avoir la meilleure ex-
traction possible de cette fonction pour le neutron libre à partir des données
de l’hélium 3.

Pour finir, nous présentons nos conclusions et les extensions possibles de
ce travail dans deux directions : l’étude de la fonction g2 du neutron et du
système à trois nucléons ; les fonctions de structure du noyau de lithium 6
considéré comme un cœur d’hélium et de deux nucléons. L’étude du lithium
6 pourrait compléter les données provenant de l’hélium et du tritium.
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Abstract

In this thesis, we study the structure functions, both polarised and unpo-
larised, of the three nucleon system and how they can give us information on
two aspects of nuclear physics. First, we examine how to extract informa-
tion on the free neutron structure functions and second we ask how does the
nucleon’s structure change in nuclei. Starting from a non-relativistic wave
function for the three nucleon system, we use the standard convolution for-
malism to produce both polarised and unpolarised structure functions of 3He
and 3H. In the unpolarised case we demonstrate a new way of extracting the
unpolarised structure function F2 of the neutron from the measurement of
the EMC effects in both 3He and 3H. In the polarised case we discuss how
close an approximation g

3He
1 is to gn

1 . We also study the different corrections
which must be included to obtain the best possible estimate for gn

1 . In this
case we study the nuclear effects included in the convolution formalism, the
contribution of the ∆-resonance and novel off-shell corrections to the free
structure functions inside 3He computed in QMC (Quark Meson Coupling
model). With respect to the effects of the nuclear medium on nucleons, this
thesis presents estimates of the EMC effect in both 3He and 3H and of the nu-
clear medium on the Gottfried sum rule. Finally, we present a clear signature
of off-shell effects on the proton inside 3H. In this case off-shell corrections
from QMC have been used but the results show that a variety of off-shell
effects are, in fact, enhanced by the convolution formalism and consequently,
can be similarly identified.
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2 CHAPTER 1. INTRODUCTION

One the main issue of today’s physics, is the understanding of nuclear
matter from its most fundamental description – Quantum Chromo-Dynamics
(QCD). For years, physicists have been able to describe, with some success,
many nuclear phenomenon in terms of hadronic degrees of freedom, that is
in terms of baryons and mesons. However, a full understanding of nuclear
matter can only be reached by a description in terms of quarks and gluons
in interaction.

After the discovery of the nucleus, by E. Rutherford and his students in
1909 [83], what physicists wanted to know was: what, exactly, is a nucleus?
Slowly, we learned that the nucleus is a composite object. The first indication
of the compositeness of the nucleus came in 1919, when Rutherford discovered
the proton. Not long after, in 1921, J. Chadwick and E. S. Bieler concluded
that some ”strong force” must be holding the nucleus together. Then in
1931, Chadwick discovered the neutron. The central question of nuclear
physics then definitely moved to: what is holding these particles, neutrons
and protons together in such a compact object? The first theory of this
strong interaction, came from H. Yukawa in 1933. It not only explained some
features of the interaction, but also made the prediction that there should
exist a particle with a mass of about 200 MeV. Such a particle, called pion,
was eventually discovered in 19471, giving a lot of credibility to Yukawa’s
theory. Subsequently during the 1950s and 1960s, a wide variety of particles
were found, first in cosmic rays and then in ever more powerful accelerators.

This proliferation of particles leads physicists to search for ways to put
some order into their bestiary. First, in 1961, they came with a mathematical
classification based on the group SU(3) [86]. Then in 1964, M. Gell-Mann
and G. Zweig [85] came up with the idea that all hadrons could be made
up of smaller particles which would be later be universally known as quarks.
This idea was treated more as mathematical scheme to put some order in the
increasing number of hadrons rather than a physical reality. This, because of
the facts that nobody ever observed a quark and that quarks have fractionary
electric charge never found in nature before. In 1965, O. W. Greenberg [97],
M. Y. Han and Y. Nambu [87] added the property of colour charge to quarks
in order to be able to describe the ∆++ particle in terms of quarks. All
observed hadrons are colour neutral. In 1968 and 1969, at SLAC in an
experiment in which electrons are scattered off protons [88], the electrons
appeared to be bouncing off small hard core inside the proton. J. Bjorken
and R. P. Feynman [89] suggested that these data reflect the existence of
constituent particles inside the proton. This was the first evidence for quarks.

1In 1937, there was indication of a particle of similar mass. However it was later
identified as being a heavy charged lepton: the muon.
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Finally, in 1973, QCD was formulated as a gauge theory by H. Fritzsch,
M. Gell-Mann and H. Leutwyller [98]. In this theory, quarks exchange colour
via new particles called gluons which are similar to the photon of Quantum
Electro-Dynamics (QED). It was soon found that QCD has a number of
unique features, like ”asymptotic freedom” [90]. This means that the effective
coupling constant of the strong interaction becomes small at short distances,
so that one can make use of perturbation theory to describe short-distance
processes – or equivalently, processes involving large momentum transfer.
This property is responsible for the fact that one cannot observe quarks
directly outside a hadron. Perturbative QCD, which deals with the behaviour
of QCD at high energy and small distance is quite reliable. However, tools
that would be able to unveil the secrets of QCD in “normal” nuclear matter,
like lattice QCD, are still in their infancy and need further development and
ever more computing power.

To help us build an understanding of nuclear matter we need to have
a good knowledge of its properties and of its behaviour. There are several
aspects to the study of the properties of nuclear matter. First, one can study
the properties of the fundamental building blocks of the nucleus, that is the
proton and neutron. Then one can also study the properties of more complex
nuclear matter like light, or even heavy. One can also probe a nuclear target
with different probes or under different physical conditions (unpolarised or
polarised scattering for example).

If we had a complete understanding of QCD, we could precisely predict
the cross-section of a probe of any kind on a nuclear target. While we are
not able to make such predictions, we know, from first principles, how to
write such a cross-section as a function of unknown quantities. These quan-
tities could be computed from QCD, if we had a complete understanding of
it. While we cannot compute them, they can be measured experimentally.
These quantities called either form factors, in elastic scattering (at low energy
transfer), or structure functions, in deep inelastic scattering (at high energy
transfer), contain all the information one can extract from the target with a
given probe. In the electromagnetic scattering of a lepton off a nuclear target
of spin 1/2, that is a nucleon or 3He and 3H for example, the behaviour of
the target is completely described by four structure functions called F1, F2,
g1 and g2 [59, 60, 18]2. Nuclear targets with higher spin have more structure
functions, however the four mentioned above are the dominant ones.

A point-like target does not have any form factors (structure functions),
its behaviour is entirely determined by kinematic variables. The observation

2Or equivalently by four form factors: W1, W2, G1 and G2 or by some combinations of
the above.
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of a form factor is a proof of the fact that the target has a complex structure
and is not point-like. From 1953 to 1957, various experiments of electron
scattering off of nuclei [84] revealed that both proton and neutron have a
”charge density”, that is they do have form factors. At that time it was not
interpreted as a sign that the nucleons were composite objects, but rather
that nucleons were surrounded by a cloud of pions or other mesons constantly
in interaction with the nucleon. This interpretation in terms of hadronic
degrees of freedom can explain the existence of nucleon form factors and
can give a somewhat accurate description of the hadronic system at low
energy. However, at high momentum transfer, the picture is different. In
this regime, experiments at SLAC in 1968 and 1969 [88] showed that the
measured structure functions of the nucleon exhibit scaling and are become
almost independent of the momentum transfer. This phenomenon is the clear
signature of the presence of smaller elementary objects inside the nucleon,
the quarks. In deep inelastic scattering, one probes directly the quarks inside
nuclear matter, as if they were quasi-free. Thus, deep inelastic scattering,
offers a clear picture of the quark structure of nuclear matter.

Since then, experimentalist have continued to probe nuclear matter under
different conditions. The properties of the proton are still studied to this day.
As there is no such thing as a pure neutron target, it is not possible to access
to the properties of the neutron directly. To study the neutron one has to
make experiment on a nucleus and extract the neutron information from the
nucleus data. The target of choice to study the structure functions of the
neutron in unpolarised has for a long time been the deuteron. This nucleus,
made of only one proton and one neutron weakly bound, was usually thought
to be very simple and the extraction of the neutron straightforward. However,
recent analysis has cast a new light on the extraction of neutron information
from deuterium data in some kinematic regions [66]. Experiments have also
been performed on heavier targets, leading to the discovery in 1983, to what
is now known as the ”EMC effect” by the Electron Muon Collaboration [42].
It was followed by the discovery of two other effects known as ”shadowing”
and ”anti-shadowing”. These effects show that the the properties of the
neutron and proton inside a nucleus are changed in a non trivial way and
that some physical phenomenon have more importance than was previously
thought. Several models have been put forward to explain these effects. The
EMC effect in particular, may be dealt with using convolution formalism, see
Ref. [17] for a review of the various experiment and of some models.

In their investigation of proton and neutron, physicists have, for a long
time, focused on unpolarised (or ”spin averaged”) experiments (at least in
electromagnetic scattering). In these kind of experiments F1 and F2 are the
only structure functions contributing to the cross-section. F1 and F2 are for
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this reason called the unpolarised, or spin averaged, structure functions while
on the other hand g1 and g2 are called polarised, or spin, structure functions.
To access g1 and g2, one needs to devise an experiment where both the target
and the probe are polarised [18, 19]. The first experiment of this kind took
place at SLAC in 1976 and was, of course, probing the proton [91]. Several
experiments followed after that throughout the 1980s and lead to at least two
unexpected results. First, the strange quark from the ”sea” are polarised and
contribute to the spin of the proton [92]. The other unexpected result, is the
fact that the quark contribute little to the total spin of the proton [92, 99].

Like we already said, there is no such thing as a pure neutron target.
To extract the polarised structure functions of the neutron, experimentalists
have to use more complex nuclear target. Like for the unpolarised case, one
can extract the information from the deuteron. However, for the measure-
ment of polarised structure functions of the neutron we have a better target:
3He. The nucleus of 3He is made up of one neutron and two protons and in
first approximation the spin of the nucleus is entirely carried by the neutron
while the two protons must have opposite spin. Of course, this is only an
approximation, but a very good one as the neutron polarisation is about 87%
while the polarisation of the protons is about −2.5%. The first experiment
measuring the structure function g1 of the neutron were conducted 1992 [93]
using a 3He target. These results were then combined with the previous re-
sults from the proton to get a new estimate of the fraction of nucleon spin
carried by the quarks [51]. Since then, several new experiments have mea-
sured the structure functions of 3He to extract information on the neutron,
among those we can mention HERMES at DESY, E154 and E155 at SLAC.

This thesis has several goal. First we want to show how it is possible to
extract information on the neutron from 3He and even, in one occurrence,
from 3He and its mirror nucleus, 3H. The other aim of this thesis, which is
closely related to the first one, is to try to understand how the properties of
nucleons change in light nuclear matter. This thesis has five main parts:

• First we will show how to compute the wave function of 3He with the
help of Faddeev equations and of separable potentials. Since we will use
isospin symmetry to simplify the problem, we will really compute wave
functions for the three nucleon system and our results will be applicable
to 3H. We will compute wave functions for four different potentials in
order to isolate any model dependence from the potential.

• Then we will turn on the definition of the structure functions for a
spin 1/2 target and to the derivation of the convolution formalism.
The convolution formalism will enable us to link structure functions of
the free nucleons to structure functions of more complex nuclei. We
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will also discuss the domain of applicability and the limitations of this
formalism.

• In the next part, we will show how one can extract the fundamental
ingredient of the convolution formalism from the three nucleon wave
function we computed in the first part. The fundamental quantity
needed in the convolution formalism is the light-cone momentum dis-
tribution. We will examine the dependence of this quantity to the kind
of potential used to compute the wave function.

• In this fourth part we will apply our knowledge of the convolution
formalism and of the light-cone momentum distribution to study un-
polarised structure functions of the three nucleon system and of the
nucleon themselves. First we will show our prediction for the EMC
effects in both 3He and 3H and its dependence to various parameters
like the potential and the parton distributions used to compute the
free nucleons structure functions. We will also apply our results to the
computation of the Gottfried sum rule in the 3He-3H system. Finally,
we will how one can extract unpolarised neutron structure functions
from measurements of both 3He and 3H structure functions.

• Lastly, we will study the polarised structure functions of the three
nucleon system and their relationship with free nucleon structure func-
tions. Since one usually wants to extract neutron information from 3He,
we will study very carefully different kinds of corrections that must in-
cluded in such a computation. We will then study the effects of our
corrections to experimental results. Finally, 3H is a perfect target to
study the effect of nuclear medium on the polarised structure functions
of the proton. So we will investigate how to single out such effects.

Finally, we will summarise and make some concluding remarks.
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8 CHAPTER 2. THE THREE NUCLEON WAVE FUNCTION

2.1 Introduction

For the three-nucleon problem we can determine the non-relativistic wave
function by solving the Faddeev equations exactly for any realistic two-body
interaction. However, to simplify the computational aspects of the problem,
with no sacrifice in the quality of the wave function, we turn to separable
expansions that have been extensively tested [7, 8]. This will result in a three-
nucleon wave function that can be used to calculate the spectral function and
the light-cone momentum distribution. In the present chapter we detail the
three-nucleon formalism required to evaluate the wave functions for 3He and
3H.

2.2 Notation

With the extensive literature on the Faddeev equations [12] and their use
in the three-nucleon system, we restrict ourselves here to a summary of the
notation used in the present analysis. The Faddeev decomposition of the
three-nucleon wave function is given by

|Ψ〉 = |ϕ1〉+ |ϕ2〉+ |ϕ3〉 = {e + (123) + (132)} |ϕ3〉 . (2.1)

Here “e”, “(123)” and “(132)” are members of the permutation group of
three objects, with e being the unit element (i.e. e |ϕα〉 = |ϕα〉) and the
other two being cyclic permutations of {1, 2, 3}. The second equality results
from the requirement that we have identical particles, the wave function
is then invariant under any cyclic permutation of our particles. Since we
have a system of identical fermions, the total wave function must also be
antisymmetric under the exchange of any two particles in the system. This
requirement leads to following conditions

(αβ) |ϕα〉 = − |ϕβ〉 ,
(αβ) |ϕβ〉 = − |ϕα〉 ,
(αβ) |ϕγ〉 = − |ϕγ〉 .

(2.2)

In the above equations α, β and γ are indices running from 1 to 3, and
always different from each other, and (αβ) is again a member of the permu-
tation group of three objects which exchange particles α and β leaving the
third one unchanged. Since we are dealing with a three-body problem, there
will be only two independent momenta in the centre of mass frame. All the
particles have spin and isospin 1

2
and one must account for their orbital angu-

lar momentum. We briefly summarise the quantum numbers and momenta
used throughout this chapter:
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α

(βγ) +
ϕ

α
ϕ

β
ϕ

γ

= +β

(αγ)

γ

(αβ)

Ψ

Figure 2.1: A graphical representation of Eq. (2.1).

• Nα is a set of quantum numbers describing a three body channel from
the point of view of the particle α, which is the spectator; the set is
unique for each channel.

• ~̀
α is the orbital angular momentum between particles β and γ (see

Fig. 2.2).

• ~Lα is the orbital angular momentum between particle α and the centre
of mass of the system consisting of particles β and γ (see Fig. 2.2).

• ~α, ~β, ~γ are the spins of each particle.

• ~ıα, ~ıβ, ~ıγ are the isospins of each particle.

• ~pα is the momentum of particle α in the centre of mass frame.

• ~qα is the relative momentum of the pair of particles β and γ, defined
as ~qα = (~pγ − ~pβ)/2.

• ~I and ~J are respectively the total isospin and total angular momentum
of the system.

l α

L α α
β

γ

β γ

, αijα

jα , αi

qα
p
α

α

Figure 2.2: Angular momentum and momentum in the three body system.
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2.3 The partial wave expansion

We now turn to the partial wave expansion of our wave function. To minimise
the number of coupled Faddeev equations, having truncated the interaction
to a set of partial waves, we have used the following coupling scheme:

~β + ~γ = ~sα, ~̀
α + ~sα = ~̄α, ~̄α + ~α = ~Sα, ~Lα + ~Sα = ~J,

~ıβ +~ıγ = ~̄ıα, ~̄ıα +~ıα = ~I,

which is known as the channel coupling scheme. With this coupling scheme
the complete set of quantum numbers Nα describing a three body channel is;
Nα = {ı̄α, sα, ̄α, Sα, Lα}. A subset of these quantum numbers that describes
the two-body channels is; nα = {ı̄α, sα, ̄α}, and therefore Nα = {nα, Sα, Lα}.
We have not included `α in the set of quantum numbers since the tensor
force mixes values of `α. This allows us to define the angular momentum and
isospin basis as

∣

∣ΩJI
`αNα

〉

= |{Lα, [(`α, ( β, γ) sα) ̄α, α] Sα} J〉 |[( ıβ, ıγ) ı̄α, ıα] I〉 , (2.3)

These basis states satisfy the following orthogonality relation
〈

ΩJI
`αNα

∣

∣ΩJI
`βNβ

〉

=
δ`α,`β

δ
Nα,Nβ

.

We are now in a position to write the partial wave expansion of the total
three-nucleon wave function as

|Ψ〉 =
∑

`αNα

∣

∣ΩJI
`αNα

〉
∣

∣U IJ
`αNα

〉

, (2.4)

where
∣

∣U IJ
`αNα

〉

is defined as the radial part of the wave function corresponding
to the partial wave {`α, Nα}.

2.4 Separable potential

To reduce the dimensionality of the Faddeev integral equations (after par-
tial wave expansion) from two to one, and in this way simplify the three-
body wave function, we have employed a separable expansion of the nucleon-
nucleon interaction. Our potential for the interaction of particles β and γ in
a given partial wave is of the form [9]

V nα

`α,`′α
=

∣

∣

∣
gnα

`α

〉

λnα

`α`′α

〈

gnα

`′α

∣

∣

∣
, (2.5)

where
∣

∣gnα

`α

〉

is a “form factor” and λnα

`α`′α
is the strength of the potential in that

partial wave. By taking `α 6= `′α we can accommodate a tensor interaction,
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as in the case of the 3S1-
3D1 nucleon-nucleon channel. The above expression

for the potential is for a rank one potential. To incorporate higher rank
potentials, we turn the strength λnα

`α`′α
into a matrix and as a result

∣

∣gnα

`α

〉

is a row matrix. In resorting to separable expansions, we have taken the
view that the expansion is a numerical procedure analogous to the use of
quadratures. The main problem with the use of a separable expansion is
that the resulting potential is non-local. However, the use of a low order
expansion, such as the UPA (Unitary Pole Approximation [9, 95, 13]) or of
a separable potential, is justified on the grounds that it generates the same
analytic structure in the amplitude (i.e., bound or anti-bound state poles)
as a corresponding realistic potential [13]. Thus, we can assume it is safe to
use a separable expansion. The use of a separable potential gives rise to a
separable t-matrix that satisfies the Lippmann-Schwinger (LS) equation;

tα(E) = Vα + Vα G0(E) tα(E) = (1−G0(E) Vα)−1 Vα, (2.6)

with G0(E) = (E − H0)
−1 the two-body Green’s function. It is simple to

show that the separable t-matrix in a given partial wave, resulting from a
solution of the LS equation, is of the form

tnα

`α,`′α
(E) =

∣

∣

∣
gnα

`α

〉

τnα

`α`′α
(E)

〈

gnα

`′α

∣

∣

∣
, (2.7)

where the form factor
∣

∣gnα

`α

〉

is identical to that used in the separable potential.
The function τnα

`α`′α
(E), in a given channel, can be a written in matrix form

as

[τnα(E)]−1 = [λnα]−1 − 〈gnα |G0(E) | gnα〉 . (2.8)

This separability of the t-matrix will allow us to reduce the dimensionality
of the Faddeev integral equations from two to one after the partial wave
expansion described in Eq. (2.4).

2.5 The three-nucleon wave function

Having determined the structure of the two-body amplitude, we now turn to
the wave function for the three-nucleon system. The Schrödinger equation
for this system is

(E −H0) |Ψ〉 = V |Ψ〉 =

3
∑

α=1

Vα |Ψ〉 . (2.9)
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This can be rewritten in a form that suggests the Faddeev decomposition
stated in Eq. (2.1), i.e.,

|Ψ〉 = G0(E) V |Ψ〉 =

3
∑

α=1

G0(E) Vα |Ψ〉 =

3
∑

α=1

|ϕα〉 . (2.10)

Here, G0(E) = (E −H0)
−1 is the three-body Green’s function. We now can

write an equation for the Faddeev components of the wave function as

|ϕα〉 = G0(E) Vα |Ψ〉 = G0(E) Vα |ϕα〉+
∑

γ 6=α

G0(E) Vα |ϕγ〉 . (2.11)

With the help of Eq. (2.6), the set of coupled integral equations for the
Faddeev components of the wave function, |ϕα〉, becomes

|ϕα〉 = G0(E) Tα(E) (|ϕβ〉+ |ϕγ〉) . (2.12)

Here Tα(E) is the t-matrix for particles β and γ in the three-particle Hilbert
space, which is related to the two-body amplitude considered in the last
section by

Tα(E) = tα(E − εα), (2.13)

where εα is the energy of the spectator particle α in the three-body centre of
mass.1

Eq. (2.12) is in fact a set of three coupled integral equations, known as
the Faddeev equations, for the three-body bound state. In their most general
form one can write in a matrix form





ϕα

ϕβ

ϕγ



 = G0(E)





0 Tα(E) Tα(E)
Tβ(E) 0 Tβ(E)
Tγ(E) Tγ(E) 0









ϕα

ϕβ

ϕγ



 . (2.14)

Eq. (2.11) tells us that the component ϕα describes the three body system
when the particles β and γ are interacting together with α as a spectator.
The Faddeev equation, Eq. (2.12) and Eq. (2.14), tell us how the Faddeev
components are linked together. It tells how to exchange a spectator particle
with an interacting one in the system. For the three-nucleon system, where
we have identical Fermions, we can take advantage of the anti-symmetry, as
given in Eq. (2.2), and the fact that (βγ)Tα = Tα(βγ) = −Tα, to reduce the
Faddeev equations to

|ϕα〉 = G0(E) Tα(E) (1− (βγ)) |ϕβ〉 = 2 G0(E) Tα(E) |ϕβ〉 , (2.15)

1For the three-nucleon system in a non-relativistic formulation, εα = 3

4m
p2

α, where m
is the nucleon mass.
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with α 6= β. To recast this equation into a form that will admit numerical
solutions, we need to first partial wave decompose the Faddeev equations and
take into consideration the separability of the two-body amplitudes. This
can all be achieved by partial wave expanding the two-body amplitude in
three-body Hilbert space in terms of the angular momentum states defined
in Eq. (2.3) [14]

Tα(E) =
∑

`α`′α
NαJI

∞
∫

0

dpα p2
α

∣

∣

∣
ΩJI

`αNα
; pα

〉

tnα

`α`′α
(E − εα)

〈

pα; ΩJI
`′αNα

∣

∣

∣

=
∑

`α`′α
NαJI

∞
∫

0

dpα p2
α

∣

∣

∣
ΩJI

`αNα
; gnα

`α

〉

τnα

`α`′α
(E − εα)

〈

gnα

`′α
; ΩJI

`′αNα

∣

∣

∣

(2.16)

where εα = 3
4m

p2
α and

∣

∣ΩJI
`αNα

; gnα

`α

〉

=
∣

∣ΩJI
`αNα

〉
∣

∣gnα

`α
; pα

〉

. (2.17)

We now can write Eq. (2.15) as

|ϕα〉 = 2 G0(E)
∑

`α`′α
NαJI

∞
∫

0

dpα p2
α

∣

∣ΩJI
`αNα

; gnα

`α

〉

τnα

`α`′α
(E − εα)

〈

gnα

`′α
; ΩJI

`′αNα

∣

∣ϕβ

〉

≡ 2 G0(E)
∑

`α`′α
NαJI

∞
∫

0

dpα p2
α

∣

∣ΩJI
`αNα

; gnα

`α

〉

τnα

`α`′α
(E − εα)XJI

Nα`′α
(pα),

(2.18)

with the spectator function, XJI
Nα`α

(pα), satisfying the equation

XJI
Nα`α

(pα) ≡
〈

gnα

`α
; ΩJI

`αNα

∣

∣ϕβ

〉

= 2
∑

`β`′β
Nβ

∞
∫

0

dpβ p2
βZJI

`αNα;`βNβ
(pα, pβ; E)τ

nβ

`
β
`′
β
(E − εβ)XJI

Nβ`′β
(pβ),

(2.19)

where

ZJI
`αNα;`βNβ

(pα, pβ; E) ≡
〈

gnα

`α
; ΩJI

`αNα

∣

∣ G0(E)
∣

∣ΩJI
`βNβ

; g
nβ

`β

〉

, (2.20)
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with α 6= β. We give a succinct derivation of ZJI
`αNα;`βNβ

for the coupling

scheme used in the present analysis in appendix A [12, 14]. In Eq. (2.19) we
have a set of coupled, homogeneous, integral equations for the spectator wave
function, XJI

Nα`α
(pα), which we can use to construct the total wave function.

Here, we note that the spectator wave function is only a function of the
momentum of the spectator particle and the energy of the system, which is
the binding energy of 3He or 3H. We now turn to the total wave function for
the three-nucleon system. Making use of the orthogonality of the angular
functions,

∣

∣ΩJI
`αNα

〉

, we can write the total radial wave function, defined in
Eq. (2.4), as

∣

∣UJI
Nα`α

〉

=
〈

ΩJI
`αNα

∣

∣Ψ
〉

=
〈

ΩJI
`α,Nα

∣

∣ϕα

〉

+
〈

ΩJI
`αNα

∣

∣ϕβ + ϕγ

〉

=
∣

∣ηJI1
`αNα

〉

+
∣

∣ηJI2
`αNα

〉

,

(2.21)

where

ηJI1
`αNα

(pα, qα) ≡
〈

pαqα

∣

∣ηJI1
`αNα

〉

=
〈

pαqα; ΩJI
`αNα

∣

∣ϕα

〉

= 2G0(qα, pα; E) gnα

`α
(qα)

∑

`′α

τnα

`α`′α
(E − εα)XJI

Nα`′α
(pα),

(2.22)

with G0(qα, pα; E) =
[

E − 1
m

(

q2
α + 3

4
p2

α

)]−1
. The second component of the

radial wave function in Eq. (2.21) is given by

ηJI2
`αNα

(pα, qα) ≡
〈

pαqα

∣

∣ηJI2
`αNα

〉

,

=
〈

pαqα; ΩJI
`αNα

∣

∣ϕβ + ϕγ

〉

,

=
〈

pαqα; ΩJI
`αNα

∣

∣ {1− (βγ)}
∣

∣ΩJI
`βNβ

〉∣

∣ηJI1
`βNβ

〉

,

= 2
∑

`βNβ

〈

pαqα; ΩJI
`αNα

∣

∣ΩJI
`βNβ

〉
∣

∣ηJI1
`βNβ

〉

.

(2.23)

The exact form of this equation, which we call the permutation term, will
be the object of section B. We can write the last line because we have
(βδ)|ΩJI

`αNα
〉 = −|ΩJI

`αNα
〉 from Eq. (2.2), since the permutation operator acts

through the angular part of |ϕα〉. The normalisation of the total wave func-
tion is then given by

〈Ψ|Ψ〉 = 3〈ϕα|ϕα〉+ 6〈ϕα|ϕβ〉
= 3

∑

`αNα

[〈

ηJI1
`αNα

∣

∣ηJI1
`αNα

〉

+ 2
〈

ηJI1
`αNα

∣

∣ηJI2
`αNα

〉]

. (2.24)
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Here the sum is restricted by the two-body partial waves included in the
Faddeev equations. Since the partial wave expansion of the total wave func-
tion involves an infinite sum, we need to truncate this sum such that the
normalisation evaluated by the truncated sum, that is:

〈Ψ|Ψ〉 =
∑

`αNα

〈

UJI
Nα`α

∣

∣UJI
Nα`α

〉

, (2.25)

agrees with the result of Eq. (2.24). In this way we ensure that our total wave
function includes all the partial waves dictated by the two-body interaction.

2.6 Numerical results

As a first step in the determination of our wave function, we calculate the
binding energy of the three-nucleon system for the class of potentials being
considered. For the UPA to the Reid Soft core (RSC)[10] and the Yamaguchi
(YAM) potentials [11] the interaction is restricted to the 1S0 and 3S1-

3D1

channels. This reduces the homogeneous Faddeev equations to five coupled
integral equations for the spectator wave function. For the PEST (a multi-
rank separable expansion of the Paris potential)[5, 6] potentials the number
of coupled channels depends on the rank of the interaction in a given channel
and the number of partial waves included. To get the optimal representation
of the Paris potential we need to have achieved convergence in the rank. This
varies from channel to channel. In all cases the rank has been chosen in such
a way that the binding energy for a given number of channels has converged
and is in agreement with the results of calculations using the Paris potential
directly [8].

In Table 2.1 we present the result for the binding energy for the three
classes of potentials. The experimental binding energy of 3He is −7.72 MeV
while the binding energy of 3H is −8.48 MeV. The difference in binding en-
ergy between the two nucleus is caused by isospin symmetry breaking and
Coulomb forces. Since we did not include any of those our results should be
compared to the binding energy of 3H. For the PEST potentials we have taken
the 5, 10, and 18 channel potentials. The 18 channel calculation corresponds
to including all nucleon-nucleon channels with J ≤ 2. This will allow us to
examine the contribution to the spectral function from higher partial waves.
We observe that the Yamaguchi potentials over-bind the three-nucleon sys-
tem, while the UPA and PEST potentials under-bind. Since the binding
energy determines the long range part of the wave function, this difference
allows us to examine the sensitivity of the structure functions to the binding
energy and therefore to the tail of the wave function.
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Table 2.1: Binding energy for a given potential and components of the wave
function.

Potential number of binding energy P (S) P (S ′) P (D)
channels (MeV) % % %

RSC 5 −7.15 88.37% 1.88% 8.89%
YAM4 5 −9.12 93.08% 1.58% 4.97%
YAM7 5 −8.05 89.1% 1.59% 8.71%
PEST 5 −7.27 89.3% 1.88% 8.11%
PEST 10 −7.10 89.72% 1.71% 7.85%
PEST 18 −7.32 89.56% 1.66% 8.07%
PARIS – −7.31 89.88% 1.62% 8.43%

PEST (3He) 5 −7.72 89.52% 1.6% 8.11%
PEST (3H) 5 −8.48 89.95% 1.23% 8.1%

A comparison of the PEST five channel and the UPA suggests that the
difference between these two models is minimal. In fact, that is the case for
most realistic potentials that do not include energy dependence. The higher
partial waves in the PEST potential seem to have a small but significant
contribution to the binding energy. Here again, this potential, in common
with all realistic potentials, tends to under-bind the three nucleon system.
As we can see from Table 2.1 the result from PEST and RSC potential
are more than 1 MeV short (more than 10%). This is also the case of the
PARIS potential we give as comparison to PEST and also other potential. A
review of the triton binding energy given by recent potentials can be found
in Ref. [96]. In [96], the value of the binding energy for potential from
the Nijmegen group (Nijm-I and Nijm-II) and the Argonne group (V18) are
between −7.6 and 7.7 MeV. The solution to this under-binding problem may
involve the short-range, velocity dependence of the two-nucleon force [15], as
well as a genuine three-body force [16].

Table 2.1 also gives the contribution of the three dominant kind of partial
waves (S, S ′ and D waves) to the wave function. The fundamental distinction
between the different kind of waves is based on the total angular momentum
of the system ~L = ~L + ~̀ which can only have the following value L =
0, 1 or 2 (S, P or D wave)2. Further distinction between S and S ′ wave are
based on other properties of symmetry of the different waves, a complete
and accurate description of the classification of the different kind of waves

2The spin of the three nucleons add up to either 1

2
or 3

2
. The total angular momentum

of the tri-nucleon system is 1

2
, this requirement limits L to the above values.
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in the tri-nucleon system can be found in [80]. The figures for the different
kind of waves are similar for all potential, with the exception of YAM4 which
presents an excess of S waves and a depletion of D waves.

Since we have neglected the Coulomb contribution to the energy of 3He,
and our more realistic potentials under-bind the three nucleon system, we
have chosen to adjust the strength of the 1S0 interaction to reproduce the
experimental binding energy of both 3He and 3H. This procedure does not
affect the deuteron wave function, but could have some influence on the
continuum wave function in the 1S0. In this way, we may estimate the error
in neglecting the Coulomb energy for 3He, and the possible error in the tail
of the wave function due to under-binding of the three nucleon system. The
contribution of this correction will be discussed when considering the spectral
functions and light-cone momentum distributions.
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3.1 The electromagnetic cross section

The cross section for the scattering of a charged lepton with a nucleus, as-
suming we exchange only one photon, as in Fig. 3.1, is proportional to the
product of the leptonic tensor Lµν with the hadronic tensor Wµν . In the
following we consider a lepton of mass m, initial (final) four momentum k
(k′) and s (s′) its covariant polarisation vector, such that s·k = 0 (s′·k′ = 0)
and s·s = −1 (s′·s′ = −1). The hadronic system will have a mass M and four
momentum and polarisation P and S. In the laboratory frame we consider
that P = (M,~0), k = (E,~k) and k′ = (E ′, ~k′). Then the differential cross
section for detecting a final lepton in a solid angle dΩ and in the energy range
(E ′, E ′ + dE ′) is

d2σ

dΩdE ′
=

α2

q4

E ′

E
LµνW

µν , (3.1)

where q = k−k′ is the momentum of the exchanged photon and α is the fine
structure constant. The leptonic tensor has the following form in the case of

PA

q

l l’

k k’

X

Figure 3.1: Scattering of a lepton l on a nucleus A, with one photon exchange.
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an electromagnetic current

Lµν(k, s; k′, s′) = [ū(k′, s′)γµu(k, s)]
†
[ū(k′, s′)γνu(k, s)]

= L(S)
µν (k; k′)+L(A)

µν (k, s; k′)+L′
(S)
µν (k, s; k′, s′)+L′

(A)
µν (k; k′, s′).

(3.2)

Here the leptonic tensor is a sum of four parts because we consider the
possibility of a different polarisation for the final state of the lepton. In
practice, the measurement of the polarisation of the final lepton is difficult
and never done. So one sums over the polarisation of the final lepton, s′,
and the leptonic tensor is reduced to a sum of two terms: 2L

(S)
µν (k; k′) +

2L
(A)
µν (k, s; k′). Finally if we average over initial polarisation, to consider the

use of an unpolarised lepton probe, the leptonic tensor is reduced to only
one, symmetric, component: L

(S)
µν (k; k′). We have

L(S)
µν (k; k′) = kµk′ν+k′µkν+gµν(k ·k′ −m2) (3.3)

L(A)
µν (k, s; k′) = imεµναβsα(k−k′)β (3.4)

L′
(S)
µν (k, s; k′, s′) = k ·s′

(

k′µsν +sµk
′
ν−gµνs·k′

)

−
(

k ·k′ −m2
) (

sµs′ν+s′µsν−gµνs·s′
)

(3.5)

+k′ ·s
(

s′µkν+kµs
′
ν

)

−s·s′
(

kµk
′
ν +k′µkν

)

L′
(A)
µν (k; k′, s′) = imεµναβs′

α
(k−k′)β. (3.6)

Since leptons are point like objects, the leptonic tensor is very simple and
depends only on the kinematics. The hadronic tensor, on the other hand,
represents a composite object. It depends on how the composite object is
made, and how it is bound. However, from general principles one can write
the general form of the electromagnetic current for the hadronic system. For
an hadronic system of spin 1

2
(i.e. free nucleon, 3He, 3H etc.) the hadronic

tensor has the following form [17, 18, 19]

Wµν(q; P, S) =

∫

d4ξeiqξ 〈PS |Jµ(ξ)Jν(0)|PS〉

= W (S)
µν (q; P ) +W (A)

µν (q; P, S),

(3.7)

where Jµ is the electromagnetic current. Here we have separated the hadronic
tensor into symmetric and antisymmetric parts. As in the case of the lep-
tonic tensor, if one averages over the initial polarisation only the symmetric
component, W (S)

µν , remains. Each of these components depends on two form
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factors:

W(S)
µν (q; P ) =

(

−gµν +
qµqν

q2

)

W1(P ·q, q2)

+

(

Pµ−
P ·q
q2

qµ

) (

Pν−
P ·q
q2

qν

)

W2(P ·q, q2)

M2
,

(3.8)

and

W(A)
µν (q; P, S) =iεµναβqα

[

MSβG1(P ·q, q2)

+
[

(P ·q)Sβ−(S ·q)P β
] G2(P ·q, q2)

M

]

,

(3.9)

where W1, W2, G1 and G2 are the form factors of the hadronic system. All
the dependence of the cross section on the internal structure of the hadronic
system is included in the form factors. Therefore these form factors may be
used as a probe of the structure of the hadronic system. The deep inelastic
scattering (DIS) or Bjorken limit is given by the following conditions, in the
rest frame of the target

−q2 = Q2 →∞, ν = E−E ′ →∞ and x =
Q2

2P ·q =
Q2

2Mν
, fixed.

(3.10)
Note that Q2 and x are defined covariantly while ν is defined in the labo-
ratory frame. In the deep inelastic (Bjorken) regime, one prefers to use the
strucutre functions which are known to approximately scale as functions of
x (to logarithmic corrections in Q2):

lim
Bj

MW1(P ·q, Q2) = F1(x),

lim
Bj

νW2(P ·q, Q2) = F2(x),

lim
Bj

(P ·q)2

ν
G1(P ·q, Q2) = g1(x),

lim
Bj

ν(P ·q)G2(P ·q, Q2) = g2(x).

(3.11)
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3.2 Particularly interesting cross sections

3.2.1 Unpolarised scattering

In unpolarised scattering one has to sum over the final polarisations and
average over the initial polarisations. The cross section becomes

d2σunp

dΩdE ′
=

1

4

α2

q4

E ′

E

∑

s,s′,S

LµνWµν ,

=
α2

q4

E ′

E
2L(S)

µν Wµν(S),

=
4α2E ′2

q4

[

2W1 sin2 θ

2
+ W2 cos2 θ

2

]

,

(3.12)

or
d2σunp

dxdQ2
=

4πα2E ′2

xQ4

E ′

E

[

F2 cos2 θ

2
+ 2

ν

M
F1 sin2 θ

2

]

, (3.13)

where θ is the scattering angle of the lepton. So in unpolarised scattering
the cross section depends only on the two first form factors, or in DIS the
two first structure functions F1 and F2. This is why they are often called
unpolarised form factors (structure functions).

3.2.2 Polarised scattering

To measure the polarised structure function g1 and g2 one needs not only a
polarised target but also a polarised probe as one can tell by the structure
of the hadronic and leptonic tensors. To access precisely the two polarised
structure functions one forms the difference of the cross sections between a
polarised probe and two targets of opposite polarisation. That is

d2σs,S

dΩdE ′
− d2σs,−S

dΩdE ′
=

α2

q4

E ′

E

∑

s′

Lµν(k, s; k′, s′) [Wµν(q;P,S)−Wµν(q;P,−S)]

=
α2

q4

E ′

E
4L(A)

µν (k, s; k′)Wµν(A)(q; P, S)

=
8mα2E ′

q4E

{

[

(q ·S)(q ·s)+Q2(s·S)
]

MG1

+ Q2 [(s·S)(P ·q)−(q ·S)(P ·s)] G2

M

}

.

(3.14)
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In particular, if we polarise the probe longitudinally (→) and then polarise
the target, first in the same direction as the probe (⇒), then in the opposite
direction (⇐), we have (to the first order in m/E)

d2σ
→
⇒

dΩdE ′
− d2σ

→
⇐

dΩdE ′
= −4α2

Q2

E ′2

E

[

(E + E ′ cos θ)MG1 −Q2G2

]

. (3.15)

The structure of Eq. (3.15) is such that it is mainly sensitive to G1. Another
set up, which is important if one wishes to measure the polarised G2 structure
function, is to polarise the hadronic target transversely ( ⇑ or ⇓) while the
probe is polarised longitudinally (→). In this case Eq. (3.14) leads to

d2σ
→⇑

dΩdE ′
− d2σ

→⇓

dΩdE ′
= −4α2

Q2

E ′2

E
sin θ cos φ (MG1 + 2EG2) , (3.16)

where φ is the angle between the scattering plane, (~k,~k′), and the polarisation

plane, (~k, ~S).

3.3 The convolution formalism

3.3.1 The partial wave impulse approximation

As we have said the hadronic tensor has the same form for both the nucleon
and tri-nucleon system. What we are looking at now is how one can relate the
free nucleon structure functions to the structure functions of a nucleus. We
will use the plane wave impulse approximation (PWIA) to derive a relation
between the hadronic tensor of nucleus and its constituent nucleons . The
PWIA involves the following assumptions:

1. Only the sum of single-nucleon currents contributes to the inclusive
cross section.

2. Interference between different constituent nucleons does not contribute.

3. The effect of final-state interactions between the products of the struck
nucleon and the residual hadronic state is neglected.

Assumption (1) implies that we will neglect multiple rescattering. It is jus-
tified by the fact that at high Q2 we expect to be in the perturbative regime
of QCD. Consequently, the contribution from multiple scattering should be
low. However, this does not apply at small Bjorken-x. x is a measure of the
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q

A P (A−1)
λ

k

Figure 3.2: In PWIA, only one nucleon of the nucleus is struck by the photon.

momentum of the struck nucleon along the impulsion of the photon. A low
value of x means that the interaction between the photon and the nucleus
occurs at a low energy scale, outside the perturbative regime.

(2) implies that the nucleon constituents are quasi-free, which is expected
in DIS as the energy of interaction is far greater than the binding energy of
the constituent. So from the point of view of the probe, the constituent
nucleons are quasi-free.

Finally (3) means that we consider the final state as the product of a wave
function describing the products of the struck nucleon with an independent
wave function describing the spectators. This supposes that the products of
the collision will not interact or that the contribution of such interaction will
be very small. We checked the validity of this assumption for the neutron in
3He and we found that indeed the contribution of this interaction was very
small in this case.

Using (1) we can write the electromagnetic current of the nucleus as the
sum of the individual particle currents, so in the three nucleon system

Jµ =

3
∑

α=1

jµ
α , (3.17)
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where jµ
α is the electromagnetic current of the nucleon α in the nucleus. Note

that in the previous equation we assumed that the nucleus did not have any
other constituents beside the nucleons. However, one can easily extend the
derivation of the convolution formalism to include other components of the
nucleus if needed. So now we can write the hadronic tensor for the three
nucleon system as

Wµν(q; PA, SA) =
3

∑

α=1

∫

d4ξeiqξ 〈PASA |jµ
α(ξ)jν

α(0)|PASA〉 , (3.18)

note that here we used (2) to get rid of the possibility of cross terms of
the kind jµ

α(ξ)jν
β(0). This hadronic tensor arises from the reaction depicted

in Fig. 3.3, cross terms would arise from a diagram of the form of Fig. 3.4.
Assumption (3) also gets rid of the diagram represented in Fig. 3.5, thanks to
this assumption we can write the final state as a product |pαsα〉|PA−1SA−1f〉,
where f is an index over all A − 1 states having same PA−1 and SA−1. We
can then write the hadronic tensor as

Wµν(q; PA, SA) =
3

∑

α=1

∑

final
states

∫

d4ξeiqξ 〈PASA|pαsα〉 |PA−1SA−1f〉 δ4(PA−(pα+PA−1))

× 〈PA−1SA−1f | 〈pαsα| jµ
α(ξ)jν

α(0) |p′αs′α〉
∣

∣P ′
A−1S

′
A−1f

′
〉

×
〈

P ′
A−1S

′
A−1f

′
∣

∣ 〈p′αs′α|PASA〉 δ4
(

PA−(p′α−P ′
A−1)

)

. (3.19)

In Eq. (3.19) the sum over all final states refers to both |pαsα〉|PA−1SA−1f〉
and |p′αs′α〉|P ′

A−1S
′
A−1f

′〉 , and where it is needed an integral over 4-momentum
as well. If the set of A− 1 states is complete then we have

〈PA−1SA−1f |P ′
A−1S

′
A−1f

′〉 = δ4(PA−1−P ′
A−1)δ(SA−1−S ′A−1)δf,f ′ . (3.20)

Since the current operators in Eq. (3.19) act only on the particle labeled α
leaving the A−1 state untouched we can use Eq. (3.20) to simplify Eq. (3.19)

Wµν(q; PA, SA) =

3
∑

α=1

∑

final
states

∫

d4ξeiqξ 〈pαsα| jµ
α(ξ)jν

α(0) |pαsα〉

× 〈PASA|pαsα〉 |PA−1SA−1f〉 δ4(PA−(pα+PA−1))

× 〈PA−1SA−1f | 〈pαsα|PASA〉 . (3.21)

In the previous equation we can easily spot the nucleon hadronic tensor
times a term defined as the spectral function for the nucleon α. This term is
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Figure 3.3: Handbag diagram.

interpreted as being the number density of the given nucleon α, with given
momentum p and polarisation s, while the remaining system is in a state f
with momentum PA−1 and polarisation SA−1 multiplied by a delta-function:

Sα
f (p, s, PA, SA) =

∑

PA−1

SA−1

|〈PASA|ps〉|PA−1SA−1f〉|2 δ4(PA−(p+PA−1)) .

(3.22)
In instant form dynamic the sum over the state of momentum PA−1 is an
integral over ~PA−1. We can split the delta-function of Eq. (3.22) in two

parts: δ4(PA−(p+PA−1)) = δ(P 0
A−(p0+P 0

A−1))δ
3(~PA−(~p+ ~PA−1)), using the

spatial part of this delta-function one can integrate the integral over ~PA−1 in
Eq. (3.22). Since from assumption (2) we consider the constituent nucleons
to be quasi-free, we will consider that the struck nucleon can be described
by a plane wave. Therefore, we can replace |ps〉 by a†s(~p)|0〉, where a†s(~p) is
the creation operator of the nucleon of spin s and momentum ~p. We can now
rewrite Eq. (3.22) as:

Sα
f (p, s, PA, SA) =

∑

SA−1

〈PASA|a†s,α(~p)|0〉|PA−1SA−1f〉

× 〈PA−1SA−1f |〈0|as,α(~p)|PASA〉δ
(

P 0
A−p0−P 0

A−1

)

,

(3.23)
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Figure 3.4: Cross term diagram.
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Figure 3.5: Higher twist diagram neglected using assumption (3).
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with ~PA−1 = ~PA−~p. In the previous equation, the index α in the creation
and destruction operators indicates that we act on the nucleon labelled α
inside the nucleus. If we suppose that for a given value of PA−1 and label f ,
the set of state |PA−1SA−1f〉 is complete, we can replace the sum over those
states by the identity. In the end the spectral function is expressed by:

Sα
f (p, s, PA, SA) = 〈PASA|a†s,α(~p)as,α(~p)|PASA〉δ

(

p0−(P 0
A−P 0

A−1)
)

. (3.24)

Alternatively the energy p0 of the nucleon in Eq. (3.24) can also be expressed
phenomenologically [17] as the sum of the nucleon mass, m, plus the sepa-
ration energy of this nucleon, εf

1, and minus the recoil kinetic energy, Trf ,
of the remaining A− 1 state. In this case we have p0 = m+εf−Trf . As we
will see later, one can find εf and Trf in terms of PA and PA−1. So one can
write Eq. (3.24) in the following way:

Sα
f (p, s, PA, SA) = 〈PASA|a†s,α(~p)as,α(~p)|PASA〉δ

(

p0−(m+εf−Trf)
)

.
(3.25)

It is easier to express the spectral function as well as the nucleon electro-
magnetic tensor in terms of protons and neutrons rather than particle α. In
the following we will introduce an isospin index t for the spectral function
and the nucleon electromagnetic tensor. So we have:

Wµν(q; PA, SA) =

1
2

∑

t=− 1

2

∑

s,f

∫

d4pSt
f(p, s, PA, SA)W t

µν(q; p, s) . (3.26)

Of course, because of momentum conservation, the electromagnetic tensor
of the nucleon actually involves an off-shell particle. We only have mea-
surements and parametrisations of structure functions for on-shell nucleons.
There are several ways to deal with this problem. One is to develop the
convolution formalism on the light front, where particles are always on-shell
– the drawback being that the hadronic system has to be described as a sum
of Fock-states. We have also to be careful of the fact that the electromag-
netic tensor of the nucleus is defined in terms of q, PA and SA, while the
nucleon one is defined in terms of q, p and s. In the following we extend the
hadronic tensor off-shell by assuming that the off-shell structure functions of
the nucleons are equal to the on-shell ones.

3.3.2 Convolution of the structure functions

With Eq. (3.24) and Eq. (3.26), we have all the necessary ingredients for the
convolution formalism for the hadronic tensor. However we are ultimately

1εf is defined as εf = MA −Mf − m where Mf is the mass of the remaining A − 1
remaining hadronic system in the state f .
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interested in observable quantities like the structure functions. So, now that
we have a convolution formula for the hadronic tensor we will derive con-
volution formulas for the structure functions. There are several ways to
access individual structure functions from the hadronic tensor, see for exam-
ple Refs. [24, 20]. Before proceeding we will introduce some new notation
and some definitions. First the Bjorken variable x, as defined in Eq. (3.10),
is not always very convenient, so from now on we will use a new definition
for x:

x =
Q2

2PA ·q
MA

MN
=

Q2

2MNν
, (3.27)

where MA is the mass of the target and MN is the nucleon mass. For the
nucleon both definitions of x give the same results. The Bjorken limit is
defined in the same way for both definitions and gives the same physics. In
our system we want to know the nuclear structure functions, which are given
as functions of x = Q2/(2MNν) and Q2, as a combination of nucleon structure
functions given in terms of x̃ = Q2/(2p · q) and Q2. For the convolution
formula to be useful we also need to know how to link x and x̃.

In the nuclear rest frame we define the z-axis as being along the direction
of the virtual photon. In this frame we have the nuclear momentum PA =
(MA, 0, 0, 0), and the virtual photon momentum, q = (ν, 0, 0,−

√

ν2 + Q2).
In the Bjorken limit we have q → (ν, 0, 0,−ν − MNx). We will now move
to light-cone coordinates which we define as a± = (a0 ± a3)/

√
2, a1 and a2

being unchanged and denoted as ~a⊥. In this coordinate system we have a·b =
a+b−+ a−b+−~a⊥·~b⊥. Finally we have P +

A = P−
A = MA/

√
2, q+ =−MNx/

√
2

and q− = (2ν+MNx)/
√

2. In the Bjorken limit we have q− →
√

2ν which is
infinite. So in the Bjorken limit Eq. (3.27) becomes x → MAQ2/(2MNP+

A q−)
and is dominated by q−. We now define the quantity y by:

y =
p+

P+
A

MA

MN
=

√
2p+

MN
. (3.28)

Thus y is the fraction of the momentum of the nucleus carried by the struck
nucleon, defined so it runs from 0 to approximately A(≈ MA/MN), like x.
With this definition, we can now express both p+ and p− in terms of y:

p+ = yP +
A

MN

MA
=

yMN√
2

, (3.29)

p− =
M2

N−~p2
⊥

2p+
=

M2
N−~p2

⊥√
2yMN

. (3.30)

If we suppose that the transverse momentum of the struck nucleon cannot
become very big, then p− will remain finite and the dot-product p·q will be
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dominated by the term p+q− which goes to infinity in the Bjorken limit while
p−q+ stays finite. Consequently we have p · q ≈ p+q− = yP +

A q−MN/MA ≈
yPA ·qMN/MA, and the argument of the structure function needed in the
nuclear calculation, x̃ = Q2/(2p·q), is:

x̃ =
x

y
. (3.31)

We now can express the convolution formula for the various structure func-
tions, in the Bjorken limit:

F A
1 (x, Q2) =

1
2

∑

t=− 1
2

∑

s,f

∫

d4pSt
f(p, s, PA, SA)

MA

MN
F t

1

(x

y
, Q2

)

, (3.32)

F A
2 (x, Q2) =

1
2

∑

t=− 1

2

∑

s,f

∫

d4pSt
f(p, s, PA, SA)yF t

2

(x

y
, Q2

)

, (3.33)

gA
1 (x, Q2) =

1
2

∑

t=− 1
2

∑

s,f

∫

d4pSt
f(p, s, PA, SA)

MA(q ·s)
yMN(q ·SA)

gt
1

(x

y
, Q2

)

. (3.34)

The ratio of masses in Eq. (3.32) comes from the fact that W1 = F1/M .
In Eq. (3.33) this ratio is in fact included in the definition of y. We did
not include a convolution formula for g2 as it is quite complex compared to
the other structure functions and we will not study it in the following. As
one can notice the structure function of the nucleon on the right hand side
depends only on y, which is in fact a measure of p+. Consequently we can
simplify the integrals in the Eqs. (3.32) to (3.34) to the form:

F A
1 (x, Q2) =

1
2

∑

t=− 1
2

Nt

∫

dy
f t(y)

y
F t

1

(x

y
, Q2

)

, (3.35)

F A
2 (x, Q2) =

1

2
∑

t=− 1
2

Nt

∫

dyf t(y)F t
2

(x

y
, Q2

)

, (3.36)

gA
1 (x, Q2) =

1
2

∑

t=− 1
2

Nt

∫

dy
∆f t(y)

y
gt
1

(x

y
, Q2

)

. (3.37)

In those equations Nt is the number of particles of isospin t in the nucleus
and we have:

f t(y) =
1

Nt

∑

s,f

∫

d4pSt
f(p, s, PA, SA)

p0+p3

p0
δ

(

y− p0+p3

MN

)

. (3.38)
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f t(y) is called the (unpolarised) light-cone momentum distribution for the
nucleon of isospin t. It is in fact the probability of finding a nucleon of isospin
t and fraction of momentum y in the nucleus. The division by Nt is necessary
because the spectral function is not a probability but a number density. For
the definition of ∆f t we have to remember that a spin 1/2 particle only has
two possible spin projections along any given axis, we will call them “+” and
“−”. We also have the choice of the polarisation SA, which we will take as
being positive (+), so:

∆f t(y) =
1

Nt

∑

f

∫

d4p
(

St
f(p, +, PA, +)−St

f(p,−, PA, +)
)

× p0+p3

p0
δ

(

y− p0+p3

MN

)

. (3.39)

∆f t(y) is known as the polarised light-cone momentum distribution of the
nucleon of isospin t. It is interpreted as the probability of finding a nucleon
of given isospin t with the same spin projection as the nucleus along the
z-axis, minus the probability of finding the same nucleon with opposite spin
projection to that of the nucleus along the z-axis.
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4.1 The spectral function

As we saw in the last chapter, to compute the nuclear structure functions,
we ultimately need to know the light-cone momentum distributions of the
various nucleons. To determine these light-cone momentum distributions we
need to know how to compute the spectral function. As we have seen pre-
viously in section 3.3.1, the spectral function is proportional to a number
density. As one can see in Eqs. (3.38) and (3.39) the light-cone momentum
distributions depend on combinations of spectral functions. Those combi-
nations of spectral functions are not dependent on the nuclear polarisation,
SA (up to a sign in the case of ∆f). So one can replace the combination of
spectral functions in Eqs. (3.38) and (3.39) by spectral functions that have
been ”averaged” over polarisation. That is:

f t(y) =
1

Nt

∑

f

∫

d4pS̄t
f (p, PA)

p0+p3

p0
δ

(

y− p0+p3

MN

)

, (4.1)

∆f t(y) =
1

Nt

∑

f

∫

d4p∆S̄t
f (p, PA)

p0+p3

p0
δ

(

y− p0+p3

MN

)

, (4.2)

with:

S̄t
f(p, PA) =

1

2JA+1

∑

s,SA

St
f(p, s, PA, SA) , (4.3)

∆S̄t
f(p, PA) =

1

2JA+1

∑

±

(

St
f(p,±, PA,±)−St

f(p,∓, PA,±)
)

. (4.4)

The quantity S̄t
f (p, PA), called the ”diagonal spectral function” in Refs. [30,

31], can be interpreted as the number density of particles of isospin t inside
the nucleus (while the remaining hadronic system is in a state f). On the
other hand, ∆S̄t

f (p, PA) is interpreted as the number density of particles of
isospin t, with spin aligned with the spin of the nucleus, minus the number
density of the same particles, with spin anti-aligned with the spin of the
nucleus (while the remaining hadronic system is in a state f). Since we are
summing over all polarisations, we can replace sums over polarisation by
sums over spin states, which is easier to use. Note also, that those spectral
functions are sometimes defined in terms of E and ~k rather than the four
vector k (see for example Refs. [28, 29]). Then E is the energy of the state
λ, that is, what has been called P 0

A−1 in Eqs. (3.24) and (3.25). E and k0

are, of course, related by energy conservation.
One can define two extra polarised spectral functions, S̄t,+

f and S̄t,−
f . S̄t,+

f

(S̄t,−
f ) is the number density of particle of isospin t, with spin aligned (anti-



4.1. THE SPECTRAL FUNCTION 35

aligned) with the spin of the nucleus, while the remaining hadronic system
is in a state f . They are defined by:

S̄t,+
f (p, PA) =

1

2JA+1

∑

±

St
f (p,±, PA,±) , (4.5)

S̄t,−
f (p, PA) =

1

2JA+1

∑

±

St
f (p,∓, PA,±) . (4.6)

We can also define the corresponding light-cone momentum distributions f t,+

and f t,− with equations similar to Eqs. (4.1) and (4.2). We have the following
relations between the various spectral functions defined by Eqs. (4.3) through
(4.6): S̄t

f = S̄t,+
f +S̄t,−

f and ∆S̄t
f = S̄t,+

f −S̄t,−
f .

In the following we will denote the product a†σ,N (~k) aσ,N(~k) – where σ is

a spin index – as the familiar number density operator ρσ,N (~k) and we will
define it in a way similar to Ref. [33]. For example, the density of protons

with spin +1
2

along the z–axis and momentum ~k, 〈ρ+
p (~k)〉 , in a tri-nucleon

with wave function |Ψ〉 and spin projection σ, is defined by

〈ρ+
p (~k)〉 =

1

2

∑

σ

〈

Ψσ
∣

∣ρ+
p (~k)

∣

∣Ψσ
〉

=
1

2

∑

σ

3
∑

i=1

∫

d3~p d3~q
〈

Ψσ (~p,~q)
∣

∣ρ+
p,i

∣

∣ Ψσ (~p,~q)
〉

δ3
(

~pi−~k
)

,

(4.7)

with

ρ+
p,i =

(1+τ3,i)

2

(1+σz,i)

2
. (4.8)

In Eq. (4.8), τ3,i is the projection operator of the particle i on the third axis
in the isospin space, likewise σz,i is the spin projection operator for the same
particle on the z-axis. ~pi is the momentum of the particle i in the nucleus,
by default ~p and ~q are understood as being ~p1 and ~q1. In Eq. (4.8) one can
recognise the number density, in the sense of Ref. [33]. The other density
operators which we may use are

ρ−p,i =
(1+τ3,i)

2

(1−σz,i)

2
, (4.9)

ρ+
n,i =

(1−τ3,i)

2

(1+σz,i)

2
, (4.10)

ρ−n,i =
(1−τ3,i)

2

(1−σz,i)

2
. (4.11)

Using the notation of section 2, and more specifically Eq. (2.4), we can rewrite
Eq. (4.7) in a slightly different way, showing explicitly how the calculation is
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performed with our three body wave function

〈ρ+
p (~k)〉 =

1

2

∑

`1,N1

`1′ ,N1′

∑

i,σ

∫

d3~p1 d3~q1

〈

ΩJI
`1N1

, σ (p̂1, q̂1)
∣

∣ρ+
p,i

∣

∣ΩJI
`1′N1′

, σ (p̂1, q̂1)
〉

×
〈

U IJ
`1N1

(p1, q1)
∣

∣U IJ
`1′N1′

(p1, q1)
〉

δ3
(

~pi−~k
)

. (4.12)

Since this definition of the number density is averaged over the nuclear
spin, it may be used to compute the spectral functions defined in Eqs. (4.3)
to (4.6).

4.2 The case of 3He

3He is one of simplest nuclei, along with 3H and deuterium. It consists of 2
protons and 1 neutron. If we compute the light-cone momentum distribution
of the neutron, the remaining two protons can only be in a scattering state,
since there is no bound state of two protons. On the other hand, if we
compute the light-cone momentum distribution of the proton, the remaining
two nucleons are a proton and a neutron, which can be in either a bound
state, the deuteron, or a scattering state. We will therefore study first the
simpler case of the neutron momentum distribution and then turn to the
more difficult proton momentum distribution. In the following equations ρN

will mean the following
∑

i,± ρ±N,i. Whenever we omit the index i it means
that we implicitly sum over all three particles.

4.2.1 Neutron in 3He

In this case, the remaining two-body system is made up of two protons in
a scattering state. The scattering state is characterised by a specific energy
distribution. The two scattering protons are on-shell and consequently the
neutron is off-shell. As a result the neutron does not satisfy the on-mass-shell
relation E2 = ~p2 + m2. Since we are using a non-relativistic wave function
for 3He we will use a non-relativistic approximation for the relation between
the energy and the momentum. We then define the binding energy of the
nucleus, E, by the relation M = 3m + E, where m is the mass of a nucleon.
Since we are working with a non-relativistic wave function, we make use of
the approximation p0 ≈ m + ~p2/(2m). Since we are working in the frame of
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the centre of mass of the nucleus we have the following

M = p0
α + p0

β + p0
γ,

p0
α = M − p0

β − p0
γ,

p0
α = m + E −

~p2
β

2m
−

~p2
γ

2m
,

p0
α = m + E − ~p2

α

2µ
− ~q2

α

2ν
,

where ν is the reduced of the mass of the interacting pair and µ is their total
mass1. If we compare this result with the expression given in Eq. (3.25), then
the recoil energy Tr is ~p2

α/(2µ), while the separation energy, ε, is E−~q2
α/(2ν).

So the unpolarised spectral function for the neutron in 3He is given by

S̄n(k) =
1

2

∑

σ

∑

i

∫

d3~p d3~q 〈Ψσ (~p,~q)|ρn,i|Ψσ (~p,~q)〉

× δ3
(

~k−~pi

)

δ

(

k0−
(

m+E− ~p2
i

2µ
− ~q2

i

2ν

))

. (4.13)

We stress that Eqs. (3.23) and (3.24) are equivalent and should give the same
results. In order to demonstrate this we computed the light-cone momentum
distribution:

fn(y) =

∫

d4k

(

1+
k3

k0

)

δ

(

y−k0+k3

m

)

S̄n(k) , (4.14)

with the two equations . To compute the light-cone momentum distribution
with Eq. (3.23), the final state |PA−1SA−1〉 was taken to be a plane wave
plus a pair of protons interacting in the 1S0 channel. This is by far the most
important channel for the final state interaction. We found that the light-
cone momentum distributions computed with Eqs. (3.23) and (3.24) were
identical, within numerical precision.

For the polarised case we have:

∆S̄n(k) =
1

2

∑

±

∑

i

∫

d3~p d3~q
〈

Ψ±(~p,~q)
∣

∣

(

ρ±n,i−ρ∓n,i

)∣

∣ Ψ±(~p,~q)
〉

× δ
(

~k−~pi

)

δ

(

k0−
(

m+E− ~p2
i

2µ
− ~q2

i

2ν

))

. (4.15)

This spectral function can then be used in Eq. (4.2) to compute the polarised
light-cone momentum distribution.

1Note that here, in the case of two identical particles we have ν = m/2 and µ = 2m.



38 CHAPTER 4. SPECTRAL FUNCTIONS . . .

0.4 0.6 0.8 1 1.2 1.4
y

0

1

2

3

4

5

6

f(
y)

PEST
RSC
YAM7

Figure 4.1: Neutron light-cone momentum distribution in 3He for various
potentials.
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Figure 4.2: Neutron polarised light-cone momentum distribution in 3He for
various potentials.
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4.2.2 Proton in 3He

In the case of the proton we have two possibilities for the final state, so we
also have two spectral functions to compute for each light-cone momentum
distribution. The first state is a scattering state similar to the final state
encountered in the neutron case, with which it shares the formula for p0.
The second possible final state is made of a scattered proton and a deuteron.
We can find the form of the proton energy in the same way we did for the
scattering state, only it is now much more simple as we have only two particles
in the final state and not three. With the same non relativistic approximation
as before, one easily finds that in this case: p0

α = M −Md−~p2
α/(2Md), where

Md is the deuteron mass. Defining the binding energy of the deuteron, Ed,
in same way we did for the tri-nucleon we have Md = 2m + Ed and finally,
p0

α = m + E − Ed − ~p2
α/(2Md).

Because there are two states, it is more practical to use the formulation
of Eq. (3.23). To use Eq. (3.23), we have to separate the contributions to
each final state by taking the projections of the tri-nucleon wave function
over the two-body wave function of the corresponding final state. Here, we
can separate the tri-nucleon wave function in two orthogonal parts, one in
which the system is a proton plus a deuteron, and one in which the system
is a proton plus a proton and a neutron in a scattering state. That is:

|Ψ±〉 = |Ψ±
p,(pn)〉+|Ψ±

p,d〉 , (4.16)

where we have:

|Ψ±
p,d〉 =

+1
∑

σ=−1

|Φσ
d〉〈Φσ

d |Ψ±〉 . (4.17)

In Eq. (4.17), |Φσ
d〉 is the wave function of the deuteron with spin projection

σ on the z-axis. The deuteron has a spin equal to 1, so σ can run from −1
to +1. One can access |Ψ±

p,(pn)〉 by subtracting |Ψ±
p,d〉 from the total wave

function. That is: |Ψ±
p,(pn)〉 = |Ψ±〉−|Ψ±

p,d〉. In momentum space Eq. (4:17)
becomes:

|Ψ±
p,d(~pi,~qi)〉 =

+1
∑

σ=−1

|Φσ
d(~qi)〉

∫

d3~p′1d
3~q′1〈Φσ

d(~q′i)|Ψ±(~p′1,~q
′
1)〉δ3

(

~pi−~p′i
)

.

(4.18)
We can now write the two spectral functions for the unpolarised case:

S̄p
d(k) =

1

2

∑

±

∑

i

∫

d3~pi d
3~qi

〈

Ψ±
p,d (~pi,~qi)|ρp,i|Ψ±

p,d (~pi,~qi)
〉

× δ3
(

~k−~pi

)

δ

(

k0−
(

m+E−Ed−
~p2

i

2Md

))

, (4.19)
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S̄p
s (k) =

1

2

∑

±

∑

i

∫

d3~pi d
3~qi

〈

Ψ±
p,(pn) (~pi,~qi)

∣

∣

∣
ρp,i

∣

∣

∣
Ψ±

p,(pn) (~pi,~qi)
〉

× δ3
(

~k−~pi

)

δ

(

k0−
(

m+E− ~p2
i

2µ
− ~q2

i

2ν

))

. (4.20)

In term of these spectral functions we can write the light-cone momentum
distribution of the proton

fp(y) =
1

2

∫

d4k

(

1 +
k3

k0

)

δ

(

y − k0 + k3

m

)

(

S̄p
s (k) + S̄p

d(k)
)

. (4.21)

In the preceding equation we introduced factor one-half because there are two
protons in a 3He nucleus. This is the coefficient Nt, ensuring the normalisa-
tion of the light-cone momentum distribution, we introduced in Eqs. (3.35)
to (3.37).

One can easily compute the various polarised spectral functions by sub-
stituting the appropriate combination of number densities in Eqs. (4.19) and
(4.20). It is then possible to compute the corresponding polarised light-cone
momentum distributions, following the procedure outlined in Eq. (4.21).

4.3 Results

Using the formalism presented above, we have computed light-cone momen-
tum distributions for some of our three nucleon wave functions. For all those
distributions we used only the first 42 three body channels. This is because
the computation of the polarised distributions involves some complicated ma-
trix elements. However, for all these wave functions the 42 first channels add
up to more than 99% of the total normalisation, so one can safely assume that
the contribution of the remaining channels is negligible. For the unpolarised
distribution the matrix elements are quite simple, so one can easily check,
in this case, that the contribution from higher channels is indeed small. We
compared the light-cone momentum distribution for a proton and a neutron
in 3He for respectively 42 and 130 channels and found that for all purposes
they were indistinguishable. For the PEST potential we also compared wave
functions including 5 and 18 three-body channels and found that they were
also indistinguishable.

In Figs. 4.1 and 4.2 we show the proton and neutron light-cone momen-
tum distributions for our potentials (PEST, RSC and YAM7). The light-cone
momentum distributions given by the RSC and PEST potentials are almost
indistinguishable and they cannot be separated on these figures. The YAM7
potential, however, shows some differences, probably because this potential



4.3. RESULTS 41

0.4 0.6 0.8 1 1.2 1.4
y

0

1

2

3

4

5

6

f(
y)

PEST
RSC
YAM7

Figure 4.3: Proton light-cone momentum distribution in 3He for various po-
tentials.
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Figure 4.4: Proton polarised light-cone momentum distribution in 3He for
various potentials.
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Table 4.1: Effective polarisation of the nucleons in 3He for various potentials.
∑

P (X)
∫

f(y)
n+ n− p+ p− n+ n− p+ p−

PEST 93.97% 6.03% 48.96% 51.04% 93.62% 6.32% 48.98% 50.96%
RSC 93.45% 6.55% 48.83% 51.17% 92.92% 6.79% 48.76% 50.95%

YAM7 93.66% 6.34% 48.81% 51.19% 93.25% 6.35% 48.69% 50.92%

Table 4.2: Effective polarisation of the nucleons in 3He and 3H, with two-
body interaction adjusted to produce the experimental binding energies.

∑

P (X)
∫

f(y)
n+ n− p+ p− n+ n− p+ p−

3He 93.97% 6.03% 48.91% 51.09% 93.73% 6.24% 48.94% 51.02%
3H 48.85% 51.15% 93.45% 6.55% 48.89% 51.10% 93.86% 6.13%

does not include short range repulsion. It is also important to note that to
have consistent results one needs to use a deuteron wave function computed
with the same potential as the three nucleon system. In Figs. 4.3 and 4.4 we
show the proton and neutron polarised light-cone momentum distributions
for the same potentials used in Figs. 4.1 and 4.2. The polarised neutron light-
cone momentum distribution shows the same behaviour and is similar in size
to its unpolarised counterpart. However, for the proton the polarised mo-
mentum distribution is far smaller than its unpolarised counterpart. In this
case all the potentials give very similar results. We note that one can extract
more information from the polarised momentum distributions. While in the
unpolarised case the distributions are normalised to one, in the polarised case
they are normalised to the polarisation of the given nucleon. From Ref. [33]
one can compute these polarisations analytically in terms of the S, S ′ and D
waves probabilities (neglecting the small contribution of the P waves). One
can compute those probabilities from the wave function and then compare
them with the values extracted from the momentum distributions. From
Ref. [33] we have the following relations

n+ =
∫

dyf+
n (y) = 1− 1

3
(P (S ′)+2P (D)) , (4.22)

n− =
∫

dyf−n (y) =
1

3
(P (S ′)+2P (D)) , (4.23)

p+ =
∫

dyf+
p (y) =

1

2
− 1

6
(P (D)−P (S ′)) , (4.24)

p− =
∫

dyf−p (y) =
1

2
+

1

6
(P (D)−P (S ′)) . (4.25)
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In Table 4.1 we compare the numerical values of these two expressions in 3He,
for our various potentials. The results are in quite good agreement, with the
small discrepancies arising from numerical errors in the computation of many
nested integrals. (Note, for example, that the overall normalisation is correct
to about 0.06%.) In Table 4.2 we make the same comparison but with wave
functions in which we have adjusted the binding energies to the experimental
values.



44 CHAPTER 4. SPECTRAL FUNCTIONS . . .



Chapter 5

Unpolarised structure functions
of the three nucleon system

45
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5.1 Parton model

As we explained in chapter 3, in the unpolarised deep inelastic scattering of
a charged lepton on a nuclear target, all the target information is included
in the two structure functions F1 and F2. In our computations we will use
a simple quark parton model (QPM) for the structure functions of the free
nucleon. One can find a derivation of the QPM in various text books and
lectures such as Refs. [19, 59, 60, 61]. We will not derive the QPM here, but
we will recall its main assumptions and results regarding structure functions.

The relevant time scale involved in DIS is O(1/
√

Q2) and is far shorter
than the time scale which characterises strong interactions. Therefore the
virtual photon probes a frozen nucleon, where the partons (i.e. quarks and
gluons) are quasi-free and do not interact. The last two assumptions consti-
tute the impulse approximation on which the QPM is based.

Those assumptions are similar to the ones we have seen in Section 3.3.1,
describing the PWIA, when we were studying the convolution formalism.
The derivation of the formulae for the structure functions of the free nucleon
have some similarity with the derivation of the convolution formalism. The
hadronic tensor for the nucleon is a convolution of the probability of finding
a given parton with the tensor for the parton. The main difference between
the QPM and the convolution formalism, is that the quarks and gluons, like
the leptons, are elementary particles and their tensor is easy to write down.
In the end, if one neglects the transverse momentum of the quarks, we have:

F1(x, Q2) =
1

2

∑

i

e2
i qi(x, Q2), (5.1)

F2(x, Q2) = 2xF1(x, Q2) = x
∑

i

e2
i qi(x, Q2). (5.2)

In the previous equations qi(x, Q2) is usually interpreted as the number den-
sity of quarks of flavour i and fraction of the nucleon momentum x1 at the
momentum scale Q2. ei is the electric charge of the parton of flavour i. The
first part of Eq. (5.2) is called the Callan-Gross relation [62]. This relation
is valid for a simple parton model if one neglects the transverse momentum
of the partons and if they have spin 1/2. A more general relation between
F1 and F2 [17] is:

F2(x, Q2) = 2xF1(x, Q2)
1+R

1+2xmN/ν
, (5.3)

1Here x is defined by x = k+/p+, where k is the four-momentum of the struck quark
inside the nucleon of four-momentum p. In the QPM this quantity is equal to the Bjorken
variable x, defined by Eq. (3.10).
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where R is the ratio of the cross section for absorbing a longitudinal photon
to that for a transverse photon. Given the relation between F1 and F2, most
studies concentrate on the latter and we will do so as well using, Eq. (5.2) to
compute F2 in this study.

5.2 EMC effect

The convolution formula between the free and in medium structure functions
[17, 25] are

F̃ N
1 (x, Q2) =

MA
m

∫

x

dy
fN(y)

y
F N

1

(

x

y
, Q2

)

, (5.4)

F̃ N
2 (x, Q2) =

MA
m

∫

x

dyfN(y)F N
2

(

x

y
, Q2

)

. (5.5)

Hence the F2 structure function of a nucleus of mass number A and proton
number Z is given by

FA
2 (x, Q2) =

MA
m

∫

x

dy

(

Zfp(y)F p
2

(

x

y
, Q2

)

+(A−Z)fn(y)F n
2

(

x

y
, Q2

))

. (5.6)

In comparing the F2 structure functions on various targets, the European
Muon Collaboration (Aubert et al. [42]) discovered what is now called the
“EMC” effect. We define a theoretical EMC ratio as the ratio of the F2

structure function of the nucleus to the sum of the free structure functions
of the nucleons in this nucleus:

Rt =
FA

2

ZF p
2 + (A−Z)F n

2

. (5.7)

On the other hand, it is more common to compare the ratio of the F2 structure
function of the nucleus to that of deuterium:

Rx =
FA

2 /A

FD
2 /2

. (5.8)

This should be close to Rt if the deuteron is a quasi-free system of a proton
and a neutron and if the nucleus studied is symmetric, or almost, in its
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content of neutrons and protons. 3He and 3H are highly asymmetric nuclei,
as their content in one type of nucleon is twice as much as the other. To take
this into account, it is common to add an isosymmetric correction so that
the ratio studied is [25]:

RA(x, Q2) =
FA

2 (x, Q2)

FD
2 (x, Q2)

I(x, Q2), (5.9)

with:

I(x, Q2) =
F p

2 (x, Q2)+F n
2 (x, Q2)

ZF p
2 (x, Q2)+(A−Z)F n

2 (x, Q2)
. (5.10)

This ratio is, strictly speaking, the ratio of the EMC ratios of the nucleus
A and the deuteron. Following the same kind of procedure used in the
previous section, one can compute the light-cone momentum distribution of
a nucleon in the deuteron. To be consistent, this ratio has to be computed
with the same interaction for both the three nucleon system and the deuteron.
To compute RA we used several parametrisations for the quark distributions:

• The parametrisation “CTEQ5” from the CTEQ collaboration [37]. This
collaboration gives several parametrisations, but we mainly used the
one called “leading order”, and it will be the one used when we talk
about the CTEQ5 parametrisation, unless explicitly stated otherwise.

• The “GRV” parametrisation from Glück, Reya and Vogt [43].

• The “DOLA” parametrisation from Donnachie and Landshoff [44].

These distributions are usually given for quarks in a proton and in order
to compute neutron structure functions we used charge symmetry2 [45]. In
Figs. 5.1 and 5.2 one can see the ratio R3 for 3He and 3H, with the CTEQ5
parametrisation at Q2 = 10 GeV2, for the three potentials studied. In Fig. 5.3
we show R3 in 3He for the PEST potential alone but for all three quark
distributions (again at Q2 = 10 GeV2). We also studied the effect of adjusting
the binding energy as described at the end of the first section but did not
include it in Figs. 5.1 and 5.2 because it would have confused the plot. This
adjustment of the binding energy caused a slightly deeper EMC effect in both
3He and 3H and also a slightly steeper increase at high x.

2With the exception of the DOLA distribution which gives proton and deuteron distri-
butions. In this case we took the neutron as the difference between the deuteron and the
proton.



5.2. EMC EFFECT 49

0.2 0.4 0.6 0.8 1

x

0.95

1

1.05

1.1

1.15

1.2

R
3

PEST
RSC
YAM7

Figure 5.1: The ratio R3, given in Eq.(5.9), for 3He, at Q2 = 10 GeV2,
calculated for various potentials using the CTEQ5 quark distributions.
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Figure 5.2: The ratio R3, given in Eq.(5.9), for 3H, at Q2 = 10 GeV2, calcu-
lated for various potentials using the CTEQ5 quark distributions.
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Figure 5.3: The ratio R3, given in Eq.(5.9), for 3He, at Q2 = 10 GeV2,
calculated for the PEST potential, using various quark distributions for the
nucleons.

5.3 Gottfried sum rule

Since we have computed the structure functions for both 3He and 3H we can
investigate the Gottfried sum rule (GSR) in the tri-nucleon system. The GSR
provides a way to probe the flavour asymmetry of the quark. For example,
in a simple parton model where we assume charge symmetry, we have

F p
2 (x)−F n

2 (x) =
1

3
x [u(x)−d(x)]+

1

3
x

[

ū(x)−d̄(x)
]

,

=
1

3
x [uv(x)−dv(x)]+

2

3
x

[

ū(x)−d̄(x)
]

.
(5.11)

In Eq. (5.11), qv is the valence distribution of the quark q and we have qv =
q − q̄. This is why we have a factor 2 in front of the anti-quark distribution
in the second line. The difference expressed in Eq. (5.11), divided by x and
integrated, gives the Gottfried sum, IN

G . For the nucleon it gives

IN
G (z) =

1
∫

z

dx
F p

2 (x)−F n
2 (x)

x
. (5.12)
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Using the normalisation of the valence quark distributions in the proton
immediately leads to

IN
G (0) =

1

3
+

2

3

1
∫

0

dx
[

ū(x)−d̄(x)
]

. (5.13)

This quantity provides a measure of flavour asymmetry. If the sea was flavour
symmetric, i.e. ū(x) = d̄(x), the GSR would simply give IN

G (0) = 1/3.
However, the experimental value obtained by the NMC collaboration [38]
was IN

G (0) = 0.235± 0.026 (at Q2 = 4 GeV2). This value is clearly less than
1/3, and it implies that d̄(x) exceeds ū(x) in the proton [38, 39]:

1
∫

0

dx
[

d̄(x)−ū(x)
]

= 0.148± 0.039. (5.14)

The origin of the flavour asymmetry in the proton may be attributed to either
the pion cloud required by chiral symmetry [34, 100] or to the Pauli exclusion
principle at the quark level [35, 36, 100], or both. The existence of a pion
cloud around the proton can generate pairs of dd̄ quarks. For example, in the
pion cloud picture the proton can undergo the following process: p → n+π+.
The proton, on the left hand side, has the following quark content: (uud),
while the neutron and pion on the right hand side have the following quark
content: (udd) + (ud̄). One can immediately see that a dd̄ pair is generated
in the process. The Pauli exclusion principle would also favour the creation
of dd̄ pair over uū in the proton, as the two u quarks are already filling more
degrees of freedom than the single d quark.

Our point of interest here is to see how the GSR changes in a nucleus, and
especially in the three nucleon system. The study of the flavour asymmetry
of a bound nucleon may gives us insight into the non-perturbative structure
of the nucleon in nuclear matter. We will now consider the ”nuclear Gottfried
sum” defined on a pair of mirror nuclei as

IA,A′

G (z) =

A
∫

z

dx
FA

2 (x)−F A′

2 (x)

x
, (5.15)

where A and A′ are mirror nuclei, A being proton rich (here 3He) while A′

is neutron rich (here 3H). To compute the nuclear Gottfried sum we have
used the wave function given by the PEST potential, adjusted to reproduce
the binding energy of the corresponding nuclei. However, it turns out that
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the difference of structure functions is not very sensitive to this change in
the wave function, so we can expect the charge symmetry breaking to be
very small in our study. We have used the CTEQ5 parametrisation for the
free nucleon structure functions. This incorporates the measured flavour
asymmetry in the free nucleon [37]. We restrict ourselves to x > 0.1 because
the study of the small x region should include correction to take into account
nuclear shadowing and physics neglected in the convolution formalism.

The effect of charge symmetry breaking is to break the nuclear Gottfried
sum rule:

IA,A′

G (0) = Y × IN
G (0), (5.16)

where Y is the excess proton (neutron) number in A (A′) – in our case Y = 1.
Eq. (5.16) should hold if the nuclear environment does not affect the flavour
asymmetry. In Fig. 5.4 we show F A

2 (x)−F A′

2 (x) for both the tri-nucleon
system and the free nucleon. The curve that one gets using an isosymmetric
wave function for the three nucleon system is identical. We can see in Fig. 5.4
that the difference between the free nucleon and three nucleon system case
is very small. In the present calculation we find that for Q2 = 10 GeV2,

we have IN
G (0.1) = 0.152 whereas I

3He,3H
G (0.1) = 0.1503, so charge symmetry

breaking in the A = 3 system gives very little change in the distribution d̄−ū,
at least for x > 0.1. As one can see in Fig. 5.5 there may be an increase in
the difference between the free case and the three nucleon case at small x.

5.4 The neutron structure function F n
2

One of the most interesting things about the tri-nucleon system is the fact
that we can extract data on the free neutron. Either by experiments on 3He
alone, as we will see in the next chapter, or by combining results from exper-
iments on both 3He and 3H, as we will see here. So far most parametrisations
of the structure functions of the nucleon use data from proton and deuteron
experiments and several assumptions, like, but not limited to, charge sym-
metry. The charge symmetry assumption seems to be valid in most cases,
however the extraction of neutron data from deuteron experiments is at best
problematic for values of x that are not small (x & 0.4), see for example
[63, 64, 65, 66]. We present here another way to access the structure func-

3If we use isosymmetric wave functions for 3H and 3He we have I
3
He,3H

G (0.1) = 0.153.
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Figure 5.4: The difference F A
2 (x)−F A′

2 (x) for both the tri-nucleon system and
the free nucleon, at Q2 = 10 GeV2, using the CTEQ5 quark distributions.
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2 (x))/x for both the tri-nucleon system
and the free nucleon, at Q2 = 10 GeV2, using the CTEQ5 quark distributions.
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tion F n
2 of the neutron. From Eq. (5.7) we have:

Rt(
3He) =

F
3He
2

2F p
2 +F n

2

, (5.17)

Rt(
3H) =

F
3H
2

F p
2 +2F n

2

. (5.18)

Now we can form the ratio of EMC ratios:

R =
Rt(

3He)

Rt(3H)
=

F
3He
2

F
3H
2

F p
2 +2F n

2

2F p
2 +F n

2

. (5.19)

This expression can now be inverted to give us the ratio of the free neutron
to proton structure functions as a function of R:

F n
2

F p
2

=
2R−F

3He
2 /F

3H
2

2F
3He
2 /F

3H
2 −R . (5.20)

The ratio F
3He
2 /F

3H
2 can be measured experimentally in the same way one

measures the ratio Rx of Eq. (5.8). So the extracted ratio F n
2 /F p

2 depends,
not on the size of the EMC effect in either 3He or 3H, but on the ratio of
the EMC effects in 3He and 3H. If the neutron and proton distributions in
tri-nucleon system are not dramatically different, one can expect R ≈ 1.
Incidentally one can see that we have R = R3(

3He)/R3(
3H), so by studying

Figs. 5.1 and 5.2 we can already see that indeed R is close to 1, within a few
percent up to x ≈ 0.8, the variation with x is quite rapid.

We computed R in our approach for various potentials for the light cone
momentum distributions and various quark parametrisations for the struc-
ture functions. What we want to establish is that we can set R to “a central
value” from which it deviates only a few percent, independent of the cho-
sen model. The smaller the deviation the better the extraction of the ratio
F n

2 /F p
2 .

Figs. 5.6 to 5.7 show the super-ratio, R, for various potentials and quark
distributions. In Fig. 5.6 we plot R computed using our three different kinds
of potential and the CTEQ5 quark distribution at Q2 = 10 GeV2. As one
can see on this figure, R seems to depend very little on the potential and
is very close to unity. In Fig. 5.7 we investigate the effect on the isospin
breaking in the three-nucleon wave function. The curve labelled PEST is
identical to the one labelled PEST in Fig. 5.6 and corresponds to the use of an
isospin symmetric wave function for 3He and 3H. The curve labelled PEST(E)
corresponds to the use of binding energy adjusted wave functions for 3He and
3H, which are not isospin symmetric anymore. The effect observed here is
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Figure 5.6: The ratio of ratios, Eq. (5.19), for various potentials, using the
CTEQ5 parametrisation at Q2 = 10 GeV2.

much greater than those observed in Fig. 5.6. So the extraction of the ratio
F n

2 /F p
2 may have some dependence on the model used for the wave functions

of 3He and 3H.

In Fig. 5.8 we show R for various quark distributions using the PEST
potential for the convolution formula. This figure is again at Q2 = 10 GeV2

except for the curve labelled BBS which is at Q2 = 4 GeV2. The solid curve
is for CTEQ5 at leading order, the dash-dotted curve is the GRV parametri-
sation. There are two dashed curves for the DOLA parametrisation (labelled
DL). The first one labelled DL(HT) includes a higher twist contribution to
the structure function F2, while none of the other parametrisations, including
the one simply labelled DL, has it. This is why this curve behaves differently
from the others. The curve labelled BBS uses the parametrisation of Ref. [76].
Most fits of parton distributions assume that the ratio d/u → 0 as x → 1,
however that assumption can be questioned on theoretical and phenomeno-
logical grounds [77]. The BBS parametrisation incorporates constraints from
perturbative QCD and forces the ratio d/u → 0.2 as x → 1.

As one can see, the dependence on the parton distributions is rather weak
at low x but becomes large at high x. However this dependence is actually
artificial and reflects the lack of knowledge of the neutron structure function
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Figure 5.7: The ratio of ratios, Eq. (5.19), using the CTEQ5 quark parametri-
sation at Q2 = 10 GeV2, for isospin symmetric and non isospin symmetric
three-nucleon wave functions.
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Figure 5.8: The ratio of ratios, Eq. (5.19), for various quark distributions,
using the PEST potential.
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F n
2 . In practice, once the ratio F

3He
2 /F

3H
2 is measured one can use an iterative

procedure to eliminate this dependence altogether. After extracting F n
2 /F p

2

for some R one can use the resulting F n
2 to compute a new R and extract

a new F n
2 . This procedure is iterated until convergence is achieved and a

self-consistent solution for F n
2 /F p

2 and R is obtained.
So from this study it appears that main dependence in the extracted ratio

F n
2 /F p

2 may come from the model used for the tri-nucleon wave function. But
even this dependence as shown in Fig. 5.7 is not very strong and the ratio
R still deviates only by approximately 2% from unity. This shows that the
measurement of the ratio F

3He
2 /F

3H
2 would enable us to have an accurate

estimate of the neutron structure function F2.
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Chapter 6
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6.1 Parton model

If one does experiments with both a polarised lepton beam and a polarised
spin 1

2
nuclear target, one needs two more structure functions, g1 and g2,

to completely describe the target. As we have mentioned in Section 3.2.2
it is possible to isolate the contribution of the polarised structure functions
by using combinations of cross sections measured with different polarisations
of the target and the beam. If we use the same QPM as in the previous
chapter and neglect again the transverse momentum of the quarks one finds
that [18, 19, 46, 47]:

g1(x, Q2) =
1

2

∑

i

e2
i ∆qi(x, Q2), (6.1)

g2(x, Q2) = 0. (6.2)

In Eq. (6.1), x, Q2 and ei are the same as in Eqs. (5.1) and (5.2). The
meaning of ∆qi is less trivial, we have [18, 19]:

qi(x, Q2) = q+
i (x, Q2)+q−i (x, Q2), (6.3)

∆qi(x, Q2) = q+
i (x, Q2)−q−i (x, Q2), (6.4)

where q+
i is the probability of finding a quark of flavour i with the same

helicity as the nucleon and q−i is the probability of finding a quark of flavour
i with opposite helicity compared to the nucleon. So the probability of finding
a quark of flavour i, which we used in Eqs. (5.1) and (5.2), is just the sum
of q+

i and q−i . On the other hand, in g1 we need the difference of those
probabilities. Eq. (6.2) shows that, at leading order in the QPM, g2 = 0.
In fact, g2 does not have a simple, consistent parton model interpretation
[18, 69], but from the previous facts, we can say it is small.

The polarised structure functions are smaller than their unpolarised coun-
terparts, g2 in particular, as we have just seen, is very small and very difficult
to measure (see for example Refs. [67, 68] for such measurements). In prac-
tice, in most experiments measuring g1, the contribution of g2 is suppressed
by a factor x2/Q2 [18] and so it is neglected. We will not study g2 at all. As
we have already seen in Section 4.3 and Tables 4.1 and 4.2, the figures for the
polarisation of the various nucleons in the tri-nucleon system indicate that
the contribution from the doubly represented nucleon will be considerably
suppressed. Therefore the system should be a good approximation to a pure
target of the singlet nucleon.

The following computation will be made with a next to leading order
(NLO) parametrisation of the parton distribution and a NLO formula for g1,
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as found in Refs. [48, 70]. We will use hereafter the standard NLO scenario
of the parton distribution given in [70] (GSRV00 hereafter). In Ref. [71] we
made those computations with the previous version of this parametrisation
(GSRV96 [48] hereafter) and the conclusions were similar.

6.2 Off-shell corrections

As we have mentioned at the end of Section 3.3.1, in the convolution for-
mula (6.5) we should not use the free nucleon structure functions as the
parametrisations we have of them are for on-shell nucleons, while in our
present formalism the struck nucleons are off-shell. Because of our lack of
knowledge on the off-shell structure functions, we have so far used on-shell
structure functions for off-shell ones. Here we will also study the impact
of the off-shell corrections for g1, calculated within the QMC model [50] in
Ref. [49]. This off-shell correction was calculated using a local density ap-
proximation to estimate the change of the parton distributions in a bound
nucleon. This off-shell correction has only been given for polarised parton
distributions, which is why we did not study the impact of this model on
unpolarised structure functions earlier.

In this model we have the following relation between the polarised quark
distribution in a free nucleon and in a nucleon in 3He:

δq̃v(x)

δqv(x)
=

1

aqxbq +cqxdq(1−x)eq
, (6.5)

where δq̃v is the quark distribution in a nucleon in 3He and the parameters
are the following:

au = 118.41 , ad = 8.964,
bu = 18.97 , bd = 7.5848,
cu = 1.0758 , cd = 1.0515,
du = 0 , dd = −0.0048,
eu = 0.0335 , ed = 0.01086.

(6.6)

Notice that in Eq. (6.5) the relation is between valence quark distributions
and that we do not have any corrections for quarks from the sea. So, this
correction is most useful for the the region of x dominated by valence quarks,
namely for 0.2 ≤ x ≤ 0.8. (The upper limit is determined by uncertainties in
the structure functions calculated for the MIT bag, which underlies the QMC
model.) However, since we will be using NLO formula in the MS scheme for
the parton distribution [48, 70] for g1, a correction applied on a limited range
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of x for the quark distribution will have an impact on all x for g1. This is
not true for a leading order calculation in any scheme, but we should note
that the use of this correction is scheme dependent in NLO. While those
corrections have been initially computed for 3He we will apply them to the
case of 3H as well.

6.3 Non-nucleonic degrees of freedom

The convolution formula we will use to produce 3He and 3H polarised struc-
ture functions are the following:

g
3He
1 (x, Q2) =

MA
m

∫

x

dy

y

(

∆fn(y)g̃n
1

(

x

y
, Q2

)

+2∆fp(y)g̃p
1

(

x

y
, Q2

))

,(6.7)

g
3H
1 (x, Q2) =

MA
m

∫

x

dy

y

(

∆fn(y)g̃p
1

(

x

y
, Q2

)

+2∆fp(y)g̃n
1

(

x

y
, Q2

))

,(6.8)

where it is assumed that the polarised light-cone momentum distribution of
the proton (neutron) in 3H is equal to the light-cone momentum distribu-
tion of the neutron (proton) in 3He, thanks to isospin symmetry. In these
equations g̃1 stands for the off-shell structure function of the corresponding
nucleon in medium.

As has been already mentioned in section 3.3.1, a nucleus is more than
just a collection of protons and neutrons and can contain other particles
which should also be taken into account in the convolution formalism. We
have here a perfect example of such a thing with the tri-nucleon system
[72]. The Bjorken sum rule [73] relates the difference of the first moments of
the proton and neutron polarised structure function g1, to the axial vector
coupling constant of the neutron β-decay gA, with gA = 1.2670± 0.0035 [74]:

1
∫

0

(

gp
1(x, Q2)−gn

1 (x, Q2)
)

dx =
1

6
gA

(

1+O
(αs

π

))

. (6.9)

In the previous equation O(αs/π) represents a standard QCD radiative cor-
rection. This sum rule can be generalised to the 3He-3H system:

MA
m

∫

0

(

g
3H
1 (x, Q2)−g

3He
1 (x, Q2)

)

dx =
1

6
gA(3H)

(

1+O
(αs

π

))

, (6.10)
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where gA(3H) = 1.211 ± 0.002 [75] is the axial vector coupling constant
measured in 3H β-decay. Taking the ratio of the two previous equations one
gets:

MA
m
∫

0

(

g
3H
1 (x, Q2)−g

3He
1 (x, Q2)

)

dx

1
∫

0

(gp
1(x, Q2)−gn

1 (x, Q2)) dx

=
gA(3H)

gA

= 0.956± 0.004 . (6.11)

Note that the QCD corrections to both Eqs. (6.9) and (6.10) cancels exactly.
We can now compare the experimental value of Eq. (6.11) with the prediction
we get using the convolution formalism and Eqs. (6.7) and (6.8). Using the
following property of the convolution formalism:

A
∫

0

dx

A
∫

x

dy

y
C(y)f

(

x

y

)

=

A
∫

0

dyC(y)

1
∫

0

dxf(x) , (6.12)

and remembering Eqs. (4.15) to (4.18), we define Pn = n+−n− =
∫

dy∆fn(y)
and Pp = p+−p− =

∫

dy∆fp(y), which are the effective polarisations of the
neutron and proton (proton and neutron) in 3He (3H). We also define the
first moment of the polarised structure function g1 by ΓN =

∫

dxgN
1 (x, Q2).

Then, using the value for the PEST potential in table 4.1, we can rewrite
the left hand side of Eq. (6.11) as:

MA
m
∫

0

(

g
3H
1 (x, Q2)−g

3He
1 (x, Q2)

)

dx

1
∫

0

(gp
1(x, Q2)−gn

1 (x, Q2)) dx

= (Pn−2Pp)
Γ̃p−Γ̃n

Γp−Γn
= 0.921

Γ̃p−Γ̃n

Γp−Γn
.

(6.13)
Since off-shell corrections [49] slightly decrease the value of the structure
function g1 we have (Γ̃p−Γ̃n)/(Γp−Γn) < 1, and thus this theoretical prediction
underestimates the result of Eq. (6.11). Note that if we do not include
off-shell corrections, the right hand side of Eq. (6.13) becomes Pn−2Pp =
0.921 which also underestimates the ratio of Bjorken sum rules. This simple
computation demonstrates the needs for new nuclear effects that are not
included in the convolution formula (6.7) and (6.8).

Our theoretical result from Eq. (6.13) underestimates the experimental
result from Eq. (6.11) by about 3.5%. An effect has been proposed that
can make up for this discrepancy [72]. The direct correspondence between
the calculations of the Gamow-Teller matrix element in the triton β-decay
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and the Feynman diagrams of DIS on 3He and 3H suggests that two-body
exchange currents should play an equal role in both processes. Of particular
interest is the fact that analyses [78] have shown that the two-body exchange
currents involving a ∆(1232) isobar increase the theoretical prediction for the
axial vector coupling of the triton (gA(3H)) by about 4%, making it consistent
with the experimental value. In the same way, this process should increase
the value of the Bjorken sum rule in the tri-nucleon system, making the
theoretical value of Eq. (6.13) consistent with the experimental value given
in Eq. (6.11).

The ∆(1232) isobar contributes to g
3He
1 and g

3H
1 through Feynman di-

agrams involving the non diagonal transitions: n → ∆0 and p → ∆+.
This requires the introduction of new polarised structure functions, gn→∆0

1

and gp→∆+

1 , as well as the corresponding light-cone momentum distributions,
∆fn→∆0 and ∆fp→∆+. If we suppose that these light-cone momentum dis-
tributions are peaked enough around y equal one, then we can replace them
by the effective polarisations1 Pn→∆0 and Pp→∆+ times the delta function
δ(1− y). With this addition Eqs. (6.7) and (6.8) become:

g
3He
1 (x, Q2) =

MA
m

∫

x

dy

y

(

∆fn(y)g̃n
1

(

x

y
, Q2

)

+2∆fp(y)g̃p
1

(

x

y
, Q2

))

+2Pn→∆0gn→∆0

1 + 4Pp→∆+gp→∆+

1 , (6.14)

g
3H
1 (x, Q2) =

MA
m

∫

x

dy

y

(

∆fn(y)g̃p
1

(

x

y
, Q2

)

+2∆fp(y)g̃n
1

(

x

y
, Q2

))

−2Pn→∆0gp→∆+

1 − 4Pp→∆+gn→∆0

1 . (6.15)

The minus sign in front of the contribution from the ∆ in the formula for
g

3H
1 comes from the convention that Pn→∆0 ≡ Pn→∆0/3He = −Pp→∆+/3H and

Pp→∆+ ≡ Pp→∆+/3He = −Pn→∆0/3H.

In the quark parton model, the interference structure functions gn→∆0

1

and gp→∆+

1 can be related to the usual structure functions gp
1 and gn

1 thanks
to the general form of the SU(6) nucleon wave function [79]:

gn→∆0

1 = gp→∆+

1 =
2
√

2

5
(gp

1−4gn
1 ) . (6.16)

This relation is valid in the domain of x and Q2 where the contributions from
sea quarks and gluons to g1 can be omitted, that is for 0.2 ≤ x ≤ 0.8 and

1Those effective polarisations are defined as the integral over x of the corresponding
light-cone momentum distributions.
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0.5 ≤ Q2 ≤ 5 GeV2 in the case of the parametrisation GSRV00. However, as
shown in Ref. [81], this expression can be extended to all x, as it provides a

satisfactory value for the following sum rule
∫

(gn→∆0

1 (x)+gp→∆+

1 (x))dx, when
the integral is performed over all x.

Effective polarisations Pn→∆0 and Pp→∆+, as well as the corresponding
light-cone momentum distributions, could be computed with the help of a
tri-nucleon wave function including the ∆ resonance. This would require the
computation of new wave functions and would involve computational meth-
ods beyond the scope of the present study. Instead, we will fix the effective
polarisation by requiring that the ratio of Bjorken sum rules is consistent
with the experimental result. This leads to the following condition:

−2(Pn→∆0 + 2Pp→∆+)

∫

dx
(

gn→∆0

1 (x) + gp→∆+

1 (x)
)

Γp−Γn

= 0.956−0.921
Γ̃p−Γ̃n

Γp−Γn

.

(6.17)
Then using Eq. (6.16) to link the interference structure functions to the off-
shell neutron and proton polarised structure functions g1 we have:

2(Pn→∆0 + 2Pp→∆+) =
0.814(Γ̃p−Γ̃n)−0.845(Γp−Γn)

Γ̃p−4Γ̃n

= −0.024 . (6.18)

The numerical value in Eq. (6.18) has been computed at 4 GeV2 with the
standard NLO parametrisation of GSRV00 for the quark distributions. This
correction has also been computed with the PEST potential and other po-
tentials could yield slightly different results.

6.4 The neutron in 3He

Computing g
3He
1 using Eq. (6.7) and our three usual potentials, we found

that the results are sufficiently close that we can limit ourselves to the PEST
potential in the following. We will compute the polarised structure function
g1 of 3He for three cases:

• Simple convolution using Eq. (6.7) but without off-shell corrections.

• Convolution including off-shell corrections as per Eq. (6.7).

• Same as above plus corrections from the inclusion of the ∆ resonance
as per Eq. (6.14) and using the results of Eqs. (6.16) and (6.18).

In Fig. 6.1 we show four curves at Q2 = 4 GeV2: xg1(x) for the free neutron
and xg1(x) for 3He for each one of our three cases. As one can see, the four
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Figure 6.1: Comparison of several calculations of xg1(x) for 3He and the free
neutron at Q2 = 4 GeV2.

curves are quite close. There are two main sources of complications when one
tries to extract gn

1 from 3He. As one can see from Fig. 6.1, the contribution
of the ∆ resonance can be important for values of x less or equal to 0.2.
Another complication is the contribution of the proton. The free proton
spin structure function is very big compared with that of the neutron, so
while the proton contribution in 3He is severely reduced by the low effective
polarisation, it may not be negligible. One way to estimate the size of the
contribution of the proton is to compare g

3He
1 with a formula often used in

experimental analysis2:

g
3He
1 ≈ ∆ngn

1 +2∆pg
p
1. (6.19)

If the contribution of the proton to g
3He
1 is negligible, Eq. (6.19) is equivalent

to: g
3He
1 ≈ ∆ngn

1 . To estimate the effect of the proton contribution in the
extraction of gn

1 , we plotted the following differences:

∆g =
g

3He
1 −2∆pg

p
1

∆n
− gn

1 , (6.20)

2There are several ways to find this result. One would be to use the same argument we
already used for the ∆ isobar in the previous section. See Ref. [19] for another derivation.
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and

∆
′

g =
g

3He
1

∆n
− gn

1 . (6.21)

In Figs. 6.2 and 6.3 we plot ∆g, ∆
′

g and gn
1 . We have plotted gn

1 as one
ultimately wants to extract it and one needs to have an idea of the relative
size of the error. In Fig. 6.2 the dotted curve is gn

1 , the dash-dotted curve
is ∆

′

g, where g
3He
1 has been computed with Eq. (6:7), including the off-shell

effects of Ref. [49], the dashed curve is ∆g, where g
3He
1 is the same as for the

dash-dotted curve, finally the solid curve is ∆g where g
3He
1 as been computed

as per Eq. (6.14), that is, with both off-shell effects and the ∆ isobar. In
Fig. 6.3 we plotted the same curves as in Fig. 6.2 (except the solid curve),
without including the off-shell effects of Ref. [49] in the computation of g

3He
1 .

These computations have been done at Q2 = 4 GeV2. We do not plot the
ratio of structure functions because in both the neutron and 3He cases g1 can
be zero, leading to singularities in the plots.

If we do not include off-shell effects, it is clear from Fig. 6.4, that one
gets more accurate results for most values of x, by taking into account the
contribution of the protons. In Fig. 6.2, one can see that once we turn on the
off-shell effects of Ref. [49], one gets more accurate results on 0.5 ≤ x ≤ 0.8
by including the contribution of the protons. However on 0.2 ≤ x ≤ 0.5
both computations give similar errors. Surprisingly, when we include the
contribution of the ∆ isobar, Eq. (6.19) is very accurate for x ≥ 0.2. In this
case the inclusion of the protons contribution is essential as without it, we
get a far greater error than with any other computations. In all cases, the
relative error is at its biggest, for 0.2 ≤ x ≤ 0.8, around the point where gn

1

cross the x-axis.

For values of x below 0.2, all computations give big absolute differences
and one clearly needs some other tools to accurately extract the free neutron
structure function, even if the relative difference seems to be small. For
values of x over 0.8, the differences are all very small, but so is the structure
function gn

1 . For those values of x, Fermi motion effects are significant, but
this cannot be shown on a difference plot. Fermi motion effects will be more
apparent for 3H, in the next section. We find similar curves for other parton
distributions, such as those from Refs. [54, 48].

In Figs. 6.4 and 6.5, we apply our previous results to experimental data.
Fig. 6.4 shows results from E154 [82] while Fig. 6.5 shows results from HER-
MES [52]. In the following we compute the value of ∆g, defined in Eq. (6.20),
using the standard NLO parton distribution of Ref. [70], for each experimen-
tal point, including the various corrections we studied previously. Then we
apply this correction, ∆g, to the experimental data. In both figures the white
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Figure 6.4: Corrections to gn
1 data from E154. White circles represent the

original data. Black circles are corrected for binding energy and nuclear
effects. Diamonds have all corrections from the black circles as well as off-
shell corrections. Squares have all the corrections from the diamonds as well
as ∆ isobar corrections. The error bars are statistical errors.
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Figure 6.5: Corrections to gn
1 data from HERMES. White circles represent

the original data. Black circles are corrected for binding energy and nuclear
effects. Diamonds have all corrections from the black circles as well as off-
shell corrections. Square have all the corrections from the diamond as well
as ∆ isobar corrections. The error bars are statistical errors.
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circles represent the original data given in Refs. [52, 82] and are assumed to
have been extracted as per Eq. (6.19). One gets the black circles by correct-
ing for the nuclear effects included in the convolution formalism. One gets
the diamonds by including the off-shell effects of Ref. [49], and finally, one
gets the squares by including the correction from the ∆ isobar discussed in
section 6.3.

In Fig. 6.4, we did not apply the correction associated with the ∆ isobar
on all points, as for points with x ≥ 0.1 the corresponding Q2 is more than
6 GeV2 which is outside the range of application of the model used. The
E154 collaboration has evolved its data to Q2 = 5 GeV2 which would be in
the limit of applicability of the model, however, we believe that data should
be corrected before being evolved. So, we will not use the evolved data of
E154. In Fig. 6.5 we did apply the ∆ isobar correction to the last point,
x = 0.464 and Q2 = 5.25 GeV2, as it is not far off the limit of applicability
of our model. Both figures show that the most important correction comes
from the inclusion of the ∆ isobar for values of x smaller than 0.2. All
other corrections are small and well within error bars. However at small
x, one probably needs to take into account some other physics to get a
good description of the system. This suggests that we can make an accurate
extraction of gn

1 from 3He data for medium and large values of x. In the
small x region, however, one may need other tools to perform an accurate
extraction of gn

1 from g
3He
1 .

6.5 The proton in tritium

For tritium we will compute the polarised structure function g1 using Eqs. (6.8)
and (6.15). In this case one can plot a ratio, as gp

1 and g
3H
1 do not change

sign. Therefore, to illustrate the effect of the neutron contribution in this
case one can plot:

Rg =
g

3H
1 − 2∆ngn

1

∆pg
p
1

, (6.22)

and

R
′

g =
g

3H
1

∆pg
p
1

. (6.23)

In Fig. 6.6 we show both ratios (Rg is the solid line and R
′

g is the dashed
line) without including the off-shell corrections [49] as well as Rg with the
off-shell corrections (dot-dashed line). In this figure we can clearly see that
on most of the interval the contribution of the neutron is negligible, some
difference appearing for small x. This is expected simply because gn

1 is sig-
nificantly smaller than gp

1 for most values of x, but starts to grow at small
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x in most parametrisations. For the next figure we will concentrate on R
′

g.
Since this ratio does not depend on the structure function of the neutron it
may be more accurately compared with experiment.

In Fig. 6.7 we study the impact of off-shell corrections and ∆ isobar
corrections on R

′

g. On this figure there are three curves. The dotted curve is
identical to the dashed one in Fig. 6.6 and does not include any corrections.
The dashed line includes the off-shell corrections of Ref. [49] for 0.2 ≤ x ≤ 0.8.
As one can see, on this curve there is a correction of at least 5% for all x.
One can also see that there is also a big drop of R

′

g for x ≈ 0.8. At its lowest

point, in this dip we have R
′

g ≈ 0.68. If apply these off-shell corrections for

all x this dip is present and we have R
′

g ≈ 0.44 at its lowest point. This dip
is almost certainly spurious and may come from the inclusion of the off-shell
correction outside its domain of validity. If we limit the off-shell corrections
to 0.2 ≤ x ≤ 0.7 the dip remains but its lowest point is now R

′

g ≈ 0.85, which

is more credible. We also note that we now have a “jump” in R
′

g at x = 0.2,
so the behaviour at small x is not clearly determined as the transition should
be smoother. The solid line includes corrections from both off-shell effects
and ∆ isobar. The ∆ isobar has no effects on the dip around x ≈ 0.8, but it
reduces the contribution of off-shell effects for 0.2 ≤ x ≤ 0.6. For x ≤ 0.2 the
∆ increases g

3H
1 compare to gp

1, however, as in the case of 3He one probably
needs to take into account some additional physics, such as shadowing and
meson exchange currents, in order to get an accurate description of g

3H
1 .

From Fig. 6.7 we can conclude that any corrections from the nuclear
medium can probably be put in evidence in the ratio R

′

g at moderate x.
In the high x region the behaviour of this ratio is still unclear. The dip
observed in Fig. 6.7 can have two origins. One is that off-shell corrections
are not properly handled at high x, which is why we tried to reduce the
range on which we apply the correction. The second may be a breakdown
of the convolution formalism we used for those values. However, if both the
convolution formalism and the off-shell corrections hold for values of x as
high as 0.8 we would have a very big effect on the ratio that could definitely
be measured. In fact even if the off-shell corrections applies to a smaller
range of x, a dip may still be spotted – basically because the effects from
off-shell corrections act against the effect of Fermi motion3

3In Ref. [71] where the OSC were put by taking the inverse of Eq. (6.5), the effects of
OSC goes in the same way as the Fermi motion and thus there is no dip, but the effect is
added to the Fermi motion making it seem to start earlier and be bigger.
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In the first part of this work we have shown how to derive the Faddeev
equation and how to write them down in order to be used with a separable
potential. We have used these equations to get the wave function of the
three nucleon system with several potentials. We compared the figures for
the binding energy and the contribution of the different partial waves to the
wave function. We have concluded that most realistic potentials under-bind
the three nucleon system. This problem may have several origins, such as
the lack of a contribution from genuine three-body forces in our computation
or from a misrepresentation of the short range behaviour of the two-body
potential. However, these kinds of potentials have proved to be able to give
a good description of a wide range of phenomena both in the two-nucleon and
the three-nucleon sector. While in that chapter we have focused on systems
made up of identical particles, this work can be easily extended to systems
made of different kinds of particles.

Then, we presented, how from first principles one can write the cross-
section of an electromagnetic probe with a nuclear target of spin 1/2. We
pointed out that such a cross-section depends on four nuclear unknowns, the
structure functions. We then presented a short derivation of the convolution
formalism. This formalism gave us basic tools to link the structure functions
of simple objects like the nucleons to the structure functions of more complex
objects, made of nucleons, like 3He and 3H. During the presentation of this
formalism we have carefully enumerated the hypotheses and approximations
made in its derivation. This formalism supposes that only one photon ex-
change occurs and that there is no rescattering. It is know that in the small
x region multiple scattering is likely to occur, so the convolution formalism
cannot be used to make predictions for small x. It also supposes that there
is no interaction between the components of the final state of the reaction.
If it is known that such interactions are important then, it is likely to have
consequences for the applicability of the formalism.

We moved on to the computation of the fundamental ingredients of the
convolution formalism: the light-cone momentum distributions. We have
shown how one can compute those quantities from the tri-nucleon wave
function we first computed. The light-cone momentum distributions we get
from different potentials are very similar, curves computed from the PEST
and RSC potentials are very close, while there is some discrepancy between
those and the Yamaguchi type of potential. These discrepancies were already
present in the computed value of the binding energy of the wave function and
it was likely to have an influence on the light-cone momentum distribution.
We also studied the figures for the polarisation of the nucleon in 3He and
saw that they were in agreement with the figures given in the literature,
with the exception of the polarisation of the proton, which is very slightly
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underestimated.
Next, we studied the structure functions of the three nucleon system.

We started with the unpolarised structure functions. Using the QPM, we
wrote down the expression of the structure functions of the free nucleons in
terms of quark distribution. Using the convolution we then computed the
unpolarised structure functions of both 3He and 3H. We, then, used these
results to compute the EMC effect in the three nucleon system (i.e. for both
3He and 3H). We studied the dependence of the EMC effect to both the
potential used and the quark distribution. We found that all the potentials
we used give similar results. In fact, we found that our predictions for the
EMC effect are more dependent on the quark distributions used than the
potential. After computing the EMC effect we evaluated the Gottfried sum
rule in the (3He, 3H) system. We found, that according to our model, the
nuclear medium in the three nucleon system had little effect on the Gottfried
sum rule. This implied that the flavour asymmetry of the quark sea in the
tri-nucleon system is the same as in the nucleons.

At last, in this chapter we have shown how one can extract the struc-
ture function F2 of the neutron by measuring the EMC effect in both 3He
and 3H. This work led to a proposal for a experiment a TJNAF [56, 94] to
cross check previous results from deuteron experiments and to determine the
behaviour of F n

2 at high x. This, in turn, could lead to re-analysis of most
current quark distributions which enforce the following behaviour: d/u → 0
as x → 1. However, computations from perturbative QCD predict the fol-
lowing behaviour: d/u → 1/5 as x → 1. This experiment will help clarify the
behaviour of the ratio d/u as x goes towards 1. Our perspective on the be-
haviour of quark distribution in the limit x → 1 could be changed completely
by this experiment.

After studying the unpolarised structure functions of the three nucleon
system we moved to the study of the polarised one. One the main interests
in the study of the polarised structure functions of 3He, is the extraction of
the neutron ones. So, we have analysed the usual formula used to extract
gn
1 from g

3He
1 and the effects of the most important corrections that one can

make in this extraction. First, the convolution formalism required the use
of off-shell structure functions. In this work we have studied the effect of
novel off-shell corrections computed with the help of the QMC [49, 50]. We
also included the contribution of the resonance ∆(1232) in the computation
of the g

3He
1 . This contribution is needed if one wants to recover the Bjorken

sum rule in the tri-nucleon system. In the absence of the contribution of
the ∆ resonance the convolution formalism, with or without the inclusion of
off-shell corrections, cannot satisfy this sum rule. We found that the results
from the experiments HERMES [52] and E154 [82] were almost not changed
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by our corrections except at small x were the applicability of our method is
uncertain. This shows that the data extracted from these experiments are
quite reliable.

In the last part of this chapter we have shown that one could detect effects
of the nuclear medium on the proton in 3H. As polarised 3He behaves almost
as a polarised neutron, polarised 3H behaves almost like a polarised proton.
However, while in 3He we must be careful to include the contribution from
the proton to g

3He
1 , in 3H we can discard totally the small contribution of

the neutron to g
3H
1 . So, 3H is a perfect target to measure effects of the light

nuclear medium on the polarised proton structure function. Using the same
corrections discussed for 3He we have shown that for 0.7 ≤ x ≤ 0.8 there
is a very big discrepancy between results computed with and without off-
shell corrections. This shows that measurements of the polarised structure
function of 3H could help us understand the effect of the light nuclear medium
on nucleons. Such an experiment, while technically possible at TJNAF,
cannot be done safely at the moment. Thus, it constitutes a future test of
the QMC.

This work can have several natural extensions. First, as the Faddeev
equations can be cast for a system made several kinds of particle, we could
explicitly break the isospin symmetry we have used in most of this thesis
and use different potential for proton-proton, neutron-proton and neutron-
neutron interactions. Some potentials, for example, include the Coulomb
corrections in their proton-proton potential. In this work, we neglected the
second polarised structure function g2. While the study of g2 is more difficult
than the study of g1, one can derive a convolution formula for it and study the
relationship between g2 in the tri-nucleon system and g2 of the free nucleon,
and gn

2 in particular.
To extract the structure functions of the neutron, 3He is not the only

choice of target. Of course, deuterium has already been used, and will prob-
ably be used again for that purpose. But, some other target like 6Li, may be
used for that purpose as well. In first approximation, 6Li can be described as
an α-particle plus two nucleons (one proton and one neutron) more weakly
bound. This system can be described as a three-body system provided that
one does not probe the α-particle very deeply. In that case, one can hope
that the weakly bound peripheral neutron can give useful information on the
free neutron structure functions.

Such a study would re-use the Faddeev equations, for two different kinds
of particles this time (α-particle and nucleon), to compute the wave function
of 6Li and the same convolution formalism. If one does not break the α-
particle, the final state of the reaction can only be a scattering state (if one
nucleon or the α-particle is struck) or a deuteron state (if the α-particle is
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struck). This similarly to the case of 3He. Good care should be taken of the
fact that 6Li is not a spin 1/2 target but a spin 1 target. However, similar
studies have been done on the deuteron which has the same spin, and should
be readily usable. A similar study to that performed on g

3H
1 could be done

in the hope of finding a clear signature of the effects of nuclear medium on
free nucleon, such a study could be done with the help of off-shell corrections
computed with the QMC and readily available [49].
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We now review the derivation of the kernel of the homogeneous Faddeev
equation, ZJI

`αNα;`βNβ
. We note that the derivation of the permutation term

will be very similar. First of all we will use the following notation for the
z-projections of the various angular momenta: mα, mβ and mγ for the z-
projections of jα, jβ and jγ ; σα for sα; mα for ̄α; λα for `α; Λα for Lα; Σα

for Sα and M for J . If for simplicity we forget isospin and use the notation
Ĵ =

√
2J + 1, we have

ZJ
`αNα;`βNβ

(pα, pβ, E) ≡
〈

gnα

`α
; `αNα; pα

∣

∣G0(E)
∣

∣pβ; `βNβ; g
nβ

`β

〉

=
1

Ĵ2

∑

all
z-projections

〈jβ mβ jγ mγ |sα σα〉 〈jγ mγ jα mα|sβ σβ〉

× 〈`α λα sα σα|̄α mα〉 〈`β λβ sβ σβ|̄β mβ〉
× 〈̄α mα jα mα|Sα Σα〉 〈̄β mβ jβ mβ|Sβ Σβ〉
× 〈Lα Λα Sα Σα|J M〉 〈Lβ Λβ Sβ Σβ|J M〉
×

〈

gnα

`α
;Y`αλα;YLαΛα; pα

∣

∣G0(E)
∣

∣pβ;Y`βλβ
;YLβΛβ

; g
nβ

`β

〉

.

(A.1)

The last term in Eq. (A.1) is given by

G =
〈

gnα

`α
;Y`αλα;YLαΛα; pα

∣

∣G0(E)
∣

∣pβ;Y`βλβ
;YLβΛβ

; g
nβ

`β

〉

=

∫

d3~p′αd3~qαd3~p′βd3~qβ Y`αλα(q̂α)YLαΛα(p̂′α)Y∗`βλβ
(q̂β)Y∗LβΛβ

(p̂′β)

×
g

nβ†

`β
(qβ)gnα

`α
(qα)

E − p′2α
2m
− p′2

β

2m
− (~p′α+~p′β)2

2m

δ(p′α−pα)

p2
α

δ(p′β−pβ)

p2
β

× δ3
(

~qα−(~p′β + ρα~p
′
α)

)

δ3
(

~qβ−(−~p′α − ρβ~p
′
β)

)

.

(A.2)

In the last equation the integrals are only on p̂′α and p̂′β. ~qα and ~qβ are com-

pletely determined once we know ~p′α and ~p′β, as shown by the delta functions
present in the integral. For a system of particles with identical masses we
have ρα = ρβ = 1/2 in Eq. (A.2). Since p̂′α and p̂′β are the only indepent
variables in Eq. (A.2), one needs to express every components of the integral
in terms of them. The spherical harmonics in q̂α and q̂β can be expressed in
terms of p̂′α and p̂′β using the following [1]

p`Y`m(p̂) =
∑

ab
mamb

δ`,a+b

√

4π(2` + 1)!

(2a + 1)!(2b + 1)!
〈a ma b mb|` m〉

× (αq)aYama(q̂)(βr)bYbmb
(r̂),

(A.3)
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with ~p = α~q + β~r. To completely eliminate the dependence on q̂α and q̂β of
G, one needs to expand the products of the Green’s function with the form
factors in terms of spherical harmonics in p̂′α and p̂′β. That is

q
−`β

β g
nβ†

`β
(qβ)gnα

`α
(qα)q−`α

α

E − p2
α

2m
− p2

β

2m
− (~p′α+~p′β)2

2m

= 4π
∑

LML

F
L,`α,`β
nα,nβ (pα, pβ, E)Y∗LML

(p̂′β)YLML
(p̂′α),

(A.4)
with

F
L,`α,`β
nα,nβ (pα, pβ, E) =

1

2

+1
∫

−1

dx
q
−`β

β g
nβ†

`β
(qβ)gnα

`α
(qα)q−`α

α

E − p2
α

2m
− p2

β

2m
− (~p′α+~p′β)2

2m

PL(x), (A.5)

where PL is the Legendre polynomial of order L and x = p̂′α · p̂′β. Using all
the previous equations leads to an expression for G that contains 4 spherical
harmonics in both p̂′α and p̂′β. Those can be reduced, using the following
formula [2, 3]

Y`1m1
(p̂)Y`2m2

(p̂) =
∑

`,m

√

(2`1+1)(2`2+1)(2`+1)

4π

×
(

`1 `2 `
m1 m2 m

) (

`1 `2 `
0 0 0

)

Y∗`m(p̂), (A.6)

to a product of two spherical harmonics in each variable, for which we can
use standard orthogonality relation between spherical harmonics. The result
involves several vector coupling coefficients and 3-j symbols. Summing over
some z-projections with the help of Eqs. (2.20) and (3.21) of Ref [2] one finds:

G = (−1)`α+λα+Λα ˆ̀
α
ˆ̀
βL̂αL̂β

∑

L

(−1)LL̂2F
L,`α,`β
nα,nβ (pα, pβ, E)

×
∑

aa′bb′

δ`α,a+bδ`β ,a′+b′ρ
a
αρb′

β pa+a′

α pb+b′

β

√

(2`α + 1)!(2`β + 1)!

(2a)!(2b)!(2a′)!(2b′)!

×
∑

ΛΛ′f

(

f̂ Λ̂Λ̂′
)2

(

a a′ Λ
0 0 0

) (

b b′ Λ′

0 0 0

) (

ΛLLα

0 0 0

) (

Λ′ LLβ

0 0 0

)

×
{

Lα Lβ f
Λ′ Λ L

}







`α `β f
a a′ Λ
b b′ Λ′







∑

mf

(

`α `β f
−λα λβ mf

)(

Lα Lβ f
Λα −Λβ mf

)

. (A.7)
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Going back to the expression for the kernel one can replace all Clebsch-
Gordan coefficients by 3-j symbols1 and then use the following relations to
simplify the expression:

∑

ΛαΛβM

(−1)Λβ−2M

(

Lα Lβ f
Λα −Λβ mf

) (

Lα Sα J
Λα Σα −M

) (

Lβ Sβ J
Λβ Σβ −M

)

= (−1)J−f+Σα

(

Sα Sβ f
−Σα Σβ mf

) {

Sα Sβ f
Lβ Lα J

}

, (A.8)

and

∑

all
z-projections

(−1)−Σα−mα−mβ−σα−σβ+λα

(

Sα Sβ f
−Σα Σβ mf

) (

`α `β f
−λα λβ mf

)

×
(

̄α jα Sα

mα mα−Σα

) (

̄β jβ Sβ

mβ mβ −Σβ

) (

`α sα ̄α

λα σα −mα

) (

`β sβ ̄β

λβ σβ −mβ

)

×
(

jβ jγ sα

mβ mγ −σα

) (

jγ jα sβ

mγ mα−σβ

)

= (−1)2f+2Sβ+2`α+2̄β−sα+2sβ−jα+2jβ







jα Sα Sβ jβ

̄α f ̄β jγ

sα `α `β sβ







, (A.9)

where the 12-j symbol is defined by Ord-Smith[58]. One can find these re-
lations using the diagrammatic procedures of Ref. [4]. In the end the kernel
can be expressed in the following way:

ZJI
`αNα;`βNβ

≡
〈

gnα

`′α
; ΩJI

`′αNα

∣

∣G0(E)
∣

∣ΩJI
`βNβ

; g
nβ

`β

〉

= p`α

β p
`β
α BNαNβ

∑

L

F
L`α`β
nα,nβ (pα, pβ, E)

lα
∑

a=0

lβ
∑

b=0

AL,a,b
`αNα;`βNβ

(

pα

pβ

)a−b

.

(A.10)

The coefficients AL,a,b
`αNα;`βNβ

which result from the recoupling of the spin and

1We have the following relation between Clebsch-Gordan and 3-j symbol:

〈j1 m1 j2 m2|j m〉 = (−1)−j1+j2−m
√

2j+1

(

j1 j2 j
m1 m2−m

)

.
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orbital angular momentum are given by

AL,a,b
`αNα;`βNβ

= (−1)R ˆ̀
α
ˆ̀
βL̂αL̂βŜαŜβ ˆ̄αˆ̄β ŝαŝβL̂2ρa

αρb
β

×
√

(2`α+1)!(2`β+1)!

(2a)!(2b)!(2`α−2a)!(2`β−2b)!

×
∑

fΛΛ′

(

f̂ Λ̂Λ̂′
)2

{

Sα Sβ f
Lβ Lα J

}{

Lα Lβ f
Λ′ Λ L

}

×







jα Sα Sβ jβ

̄α f ̄β jγ

sα `α `β sβ













`α `β f
a `β−b Λ

`α−a b Λ′







×
(

a `β−b Λ
0 0 0

)(

Λ′ LLβ

0 0 0

) (

ΛLLα

0 0 0

) (

`α−a b Λ′

0 0 0

)

,

(A.11)

with the phase R defined as

R = −J+Lα+Lβ+Sα+Sβ+ ̄α+ ̄β−jα+sβ+`α+L. (A.12)

Finally, the isospin recoupling coefficient BNαNβ
is given in terms of a 6-j

symbol by the relation

B
NαNβ

= (−1)iα+iγ−ı̄β+2Iˆ̄ıαˆ̄ıβ

{

iβ iγ ı̄α
iα I ı̄β

}

. (A.13)
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This section is devoted to the extraction of the form of Eq. (2.23). We call
it the permutation term because it originates from Eq. (2.1). Its derivation
has a lot of similarities with the derivation of the kernel. The contribution
of a given channel (`βNβ) to a given channel (`αNα) can be written as the
sum over all z-projections over the same series of clebsch-gordan. Only the
term we called G in the previous section will be different. For this reason we
will call it G ′. We have

G ′ =
〈

Y`αλα ;YLαΛα ; pαqα

∣

∣Y`βλβ
;YLβΛβ

; ηJI1
`βNβ

〉

=

∫

d3~p′αd3~q′αd3~pβd3~qβ Y`αλα(q̂′α)YLαΛα(p̂′α)Y∗`βλβ
(q̂β)Y∗LβΛβ

(p̂β)

× ηJI1
`βNβ

(pβ, qβ)
δ(p′α−pα)

p2
α

δ(q′α−qα)

q2
α

× δ3
(

~pβ−(~q′α − %α~p
′
α)

)

δ3(~qβ−(−%β~qα − %γ~pα)) ,

(B.1)

with %α = 1/2, %β = 1/2 and %γ = 3/4, for a system of particles with identical
masses. Here the integral is really only on p̂′α and q̂′α, the same way that the
integral in Eq. (A.2) depends only on p̂′α and p̂′β. However we can use the
delta function in Eq. (B.1) to make it an integral over p̂′α and p̂β instead. The
advantage being that we can reuse our derivation of the kernel to express the
permutation term. The only significative difference will be in the expression
of the coefficient F given by Eq. (A.5). What we want to express as an
expansion in spherical harmonics here, is

∫

dpβ

(

pβ

qα

)2 p`α+b−a
β

q′`α
α q

`β

β

ηJI1
`βNβ

(pβ, qβ)δ(q′α−qα) =

4π
∑

LML

QL,a,b
`βNβ ;`α

(pα, qα)YLML
(p̂′α)Y∗LML

(p̂β), (B.2)

where we have

QL,a,b
`βNβ ;`α

(pα, qα) =

+1
∫

−1

dx

∫

dpβ

(

pβ

qα

)2 p`α+b−a
β

q′`α
α q

`β

β

ηJI1
`βNβ

(pβ, qβ)δ(q′α−qα)PL(x), (B.3)

where x = p̂′α·p̂β. We have to put the integral on pβ in the coefficient because
pβ is dependent on x through the delta function δ(q′α−qα). From the integral
on ~q′α and ~qβ we have ~q′α = ~pβ +ρα~p

′
α (see Eq. (A.2)). Therefore we have
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q′α =
√

p2
β+ρ2

αp′2α +2ραxp′αpβ and pβ is dependent on x and qα. So one can

finally write the equivalent of Eq. (A.7) for G ′

G ′ = (−1)`α+λα+Λα ˆ̀
α
ˆ̀
βL̂αL̂β

∑

L

(−1)LL̂2

`α
∑

a=0

`β
∑

b=0

×QL,a,b
`βNβ ;`α

(pα, qα)ρa
αρb

βp`α+a−b
α

√

(2`α + 1)!(2`β + 1)!

(2a)!(2b)!(2`α−2a)!(2`β−2b)!

×
∑

ΛΛ′f

(

f̂Λ̂Λ̂′
)2

(

a `β−b Λ
0 0 0

) (

`α−a b Λ′

0 0 0

)(

ΛLLα

0 0 0

) (

Λ′LLβ

0 0 0

)

×
{

Lα Lβ f
Λ′ Λ L

}







`α `β f
a `β−b Λ

`α−a b Λ′







∑

mf

(

`α `β f
−λα λβ mf

) (

Lα Lβ f
Λα −Λβ mf

)

. (B.4)

Finally using the same formula as in appendix A, one can write the permu-
tation term

〈

pαqα; ΩJI
`αNα

∣

∣ΩJI
`βNβ

〉
∣

∣ηJI1
`βNβ

〉

= p`α
α BNαNβ

∑

L

`α
∑

a=0

`β
∑

b=0

pa−b
α QL,a,b

`βNβ ;`α
AL,a,b

`αNα;`βNβ
,

(B.5)
where the coefficients AL,a,b

`αNα;`βNβ
and BNαNβ

are given by Eqs. (A.11) and

(A.13).
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