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Abstract

Part I: Disorder

The effect of quenched impurities on systems which undergo first-order phase
transitions is studied within the framework of the g-state Potts model. For large
¢ a mapping to the random field Ising model is introduced which provides a
simple physical explanation of the absence of any latent heat in two dimensions,
and suggests that in higher dimensions such systems should exhibit a tricritical
point with a correlation length exponent related to the exponents of the random
field model by v = vrr/(2 — arr — Frr). A phase diagram unifying pure,
percolative and non-trivial random behaviour is proposed.

In two dimensions we analyze the model using finite-size scaling and con-
formal invariance, and find a continuous transition with a magnetic exponent
B/v which varies continuously with ¢, and a weakly varying correlation length
exponent v & 1. For ¢ > 4 the first-order transitions of the pure model are
softened due to the impurities, and the resulting universality class is different
from that of the pure Ising model. We find strong evidence for multiscaling of
the correlation functions, as expected for such random systems.

Part II: FPrustration

Exact results for conformational statistics of compact polymers are derived
from the two-flavour fully packed loop model on the square lattice. This loop
model exhibits a two-dimensional manifold of critical fixed points each one char-
acterised by an infinite set of geometrical scaling dimensions. We calculate these
dimensions exactly by mapping the loop model to an interface model whose scal-
ing limit is described by a Liouville field theory. The formulae for the central
charge and the first few scaling dimensions are compared to numerical transfer
matrix results and excellent agreement is found. Compact polymers are iden-
tified with a particular point in the phase diagram of the loop model, and the
non-mean field value of the conformational exponent v = 117/112 is calculated
for the first time. Interacting compact polymers are described by a line of fixed
points along which v varies continuously.
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Paper 3-4 form the backbone of Part T of the present thesis. The content
of Paper 2 is of a rather technical nature, and has been summarised in Section
4.3.2.
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Auch kleine Dinge konnen uns entziicken,
Auch kleine Dinge konnen teuer sein.
Bedenkt, wie gern wir uns mit Perlen schmicken;
Sie werden schwer bezahlt und sind nur klein.
Bedenkt wie klein ist die Olivenfrucht,
Und wird um ihre Giite doch gesucht.
Denkt an die Rose nur, wie klein sie ist,
Und duftet doch so lieblich, wie ihr wifit.
Cha pter I —Paul Heyse, Italienisches Liederbuch

Introduction to scaling and renormalisation

Mouch effort has been dedicated to the study of phase transitions in two-
dimensional lattice models. Although these models can constitute quite accurate
realisations of real experimental systems exhibiting magnetic ordering, such as
thin magnetic films or layered three-dimensional crystals with a large interlayer
separation, we shall take the theoretician’s point of view that they are physically
(and mathematically) interesting on their own right. By avoiding obscuring the
very simple formulation of the models with considerations on their experimental
realisations we also attain a certain transparency that is highly appropriate for
such versatile models, which have been applied within such different areas as
nuclear physics, the social sciences [1] and, of course, condensed matter physics.

In order to give a flavour of the physics controlling the above-mentioned
phase transitions we shall briefly consider the canonical example of the class of
discrete lattice models under consideration, namely the celebrated Ising model.
This model has discrete degrees of freedom s; = +1 defined on each of the
vertices 7 of a lattice £, which for simplicity we shall take to be a d-dimensional
hypercube of side L. In accordance with the most common interpretation of the
model we shall call the s; spins; note, however, that they are completely classical,
as opposed to quantum mechanical, variables. Each pair of nearest neighbour
spins (s;, s;) interacts ferromagnetically with an exchange interaction® J;; =
J, and with the symbol (ij) we shall designate the totality of such nearest
neighbour pairs on the lattice £. Though again a classical object, the energy
functional is usually called the Hamiltonian #, and can be written as

H=-J S5iS;. (1.1)
(i7)

The thermal equilibrium of the system at a temperature 7' 1s described by the

1This nomenclature, however, reveals the quantum mechanical origin of the interaction.
Indeed, for a system of two spins it is a simple matter to show that .J is simply the singlet-
triplet splitting, which can be conveniently cast as an exchange integral [2].
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partition function

Z::%;exp<—z%§%ﬁ), (1.2)

where {s} designates the configuration of the spin degrees of freedom and kg is
Boltzmann’s constant.
The free energy F' defined by F = —kpT'In Z can be cast as

F=E-TS, (1.3)

where F is the energy and S the entropy of the system. As is well known,
the free energy is minimised in thermal equilibrium. At very low temperatures
(T' — 0) this is accomplished by minimising F, and from Eq. (1.1) we see that
the ground state is two-fold degenerate according to whether all spins point up
(si = 1) or down (s; = —1). In both cases the system is in a ferromagnetic phase
with all spins aligned, and since fluctuations are frozen out it has to choose one
of the two ground states, hence breaking the spin reversal symmetry manifest
in . On the other hand, at very high temperatures (T" — oo) we have to
maximise S, and therefore the spins will tend to be completely uncorrelated.
The system is thus in a paramagnetic phase.

In between these two extremes it then appears that some phase transition
must take place?. This must happen at a critical temperature 7. determined by
kpT. ~ J up to some numerical constant of order unity, J being the only energy
scale in the problem. Since the transition separates the high-temperature phase
with short-range correlations and the low-temperature phase where correlations
extend throughout the system, it appears reasonable to suppose that exactly
at T, fluctuations occur on all length scales intermediate between the lattice
constant and the size of the system I, and a thorough study of Eq. (1.2) shows
that this is indeed the case. In particular, in the thermodynamic limit I — oo
fluctuations on all length scales occur in the critical system, and there is thus
no characteristic length scale in the problem. As a consequence we expect
thermodynamic quantities to exhibit scale-independent power law relationships.
An example of such a relationship is the divergence of the correlation length ¢
upon approach of the critical point

o [t (1.4)

where t = (T'—T¢) /T is a dimensionless measure of the deviation from T,. Away
from the critical point, on the other hand, ¢ < co serves as a non-trivial length
scale of the problem, and thermodynamic quantities are expected to exhibit
scale-dependent exponential relationships.

2If the dimensionality d is too low it may happen that the ground state is unstable with
respect to even the slightest thermal fluctuation. In this case the phase transition moves down
to T = 0. Let us for the moment assume that d is greater that the lower critical dimension
dy = 1.
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The number v introduced in Eq. (1.4) is an example of a so-called critical
exponent associated with the phase transition. For the Ising model in d = 2 1t
can be shown that v = 1 [3]. In general, all relationships between thermody-
namic quantities at a critical point are governed by a very small number (two
for the Ising model) of such critical exponents. For some deep reasons, that can
only be fully understood within the framework of conformal field theory [4] the
exponents are typically simple rational numbers. But even then, not all com-
binations of rational numbers are valid sets of critical exponents. Instead one
finds that the exponents are very robust to quantitative changes of the micro-
scopic interactions present in . For instance, if we augmented Eq. (1.1) with
a ferromagnetic interaction between next-nearest neighbours, or assigned differ-
ent strengths to the vertical and the horizontal coupling constants, we would
end up with exactly the same critical exponents. Each possible set of exponents
defines what is known as a universality class, of which there is only a very re-
stricted number. Tt is reassuring to see that the idea of universality to a large
extent makes an exact quantitative knowledge of the microscopic interactions
immaterial.

A profound consequence of the scale invariance at the critical point is that
the system, when viewed on different length scales, looks not only qualitatively,
but even quantitatively the same. This observation forms the basis of the so-
called renormalisation group approach in which the nature of the large-scale
fluctuations of a critical system is inferred by viewing the system on successively
larger and larger length scales.

Having introduced these central ideas on phase transitions of lattice models
in the context of a simple example, we shall dedicate the rest of this chapter to a
more general (and formal) presentation. Since all of this material can be found
in any modern textbook on the subject (see Ref. [5] for a delightful presentation)
we shall be very brief and focus on those topics needed in later chapters.

1.1 Real space renormalisation

The basic assumption that the critical system looks statistically the same on all
length scales gives rise to the so-called block spin construction. Useful both as
a conceptual framework bringing out the ideas of scaling and universality and
as an approximate calculational scheme, this construction amounts to thinning
out the degrees of freedom of the model at hand and reexpressing the interesting
physical quantities by means of new block degrees of freedom.

Specifically, one divides the original N-site lattice £ into small identical
blocks of b vertices and assigns a so-called block spin s}, = %1 to each vertex
in this “renormalised” N’-site lattice £’, which is taken to be isomorphic to
the original one in the limit N, N — co. The integer b is called the rescaling
factor. Projecting the original spins onto the block spins is accomplished by
a weight factor P(s’,s), which must be positive and satisfy the completeness
relation ),y P(s’,s) = 1. The weight factors used in practice almost invari-
ably implement either decimation or majority projection, the terminology being
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self-explanatory.
The Hamiltonian H'(s’) of the block spin system is determined by the rela-
tion

6G+’H/(s/) _ ZP(S/’S)e’H(s)’ (15)
{s}

known as the renormalisation transformation, where the quantity G is chosen so
that Z{s,} H'(s') = 0. As the blocking transformation is iterated, of course, the
renormalised Hamiltonians will develop interaction terms of longer and longer
range. A key assumption then is that the dominant interactions will remain
short-ranged.

The renormalisation transformation (1.5) can be regarded as the definition
of a flow in the space of all possible coupling constants {K'}

{K'} = R{K}. (1.6)

Although this space is in general infinite-dimensional, the above assumption
means that we can capture the physics of the problem by retaining only a
finite number of terms. The feasibility of actual calculations within this scheme
should now be obvious®. In general P(s’,s) must be chosen so as to render R
an analytic function within the domain of interest.

Similarly, the flow of the specific (i.e., intensive) free energy is obtained as

FUKY) = g({K}) + b~ F({K"}), (1.7)

where the rescaling factor b~ follows directly from the free energy’s being an
extensive quantity, and g({K}) is a regular contribution arising from the trace
over the short-range degrees of freedom within each block.

1.2 Fixed points and scaling fields

A fixed point {K*} for the flow (1.6) is defined by R{K*} = {K*}. Usually
there exist two trivial fixed points, since at zero (infinite) temperature (K* = oo
and K* = 0, respectively) the system should retain its complete (lack of) order
upon renormalisation. In the vicinity of { K*} we introduce the linear operator

T through its matrix elements 7, = %‘ and obtain the linearised flow
K*

equations

K, —KL=> Tis(Ks— Kj). (1.8)
E

3To proceed, further approximations are necessary, though. One possible approach is to
split H(s) of Eq. (1.5) into a sum of uncoupled cell Hamiltonians H( and a remainder, treated
as a small perturbation. The quantity e71(s) is then evaluated through a cumulant expansion

(6]-
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1.3. Scaling and critical exponents

In terms of the left eigenvectors {¢%,} of T*, which are given by > _ ngTa*ﬁ =
)\iqﬁg, we define a new set of coordinates, called the scaling fields, by u;

>, ¢, (Ko — K2). The flow (1.8) can now be rewritten as

up =Y 6L Y Tis(Ks — Kj) = A, (1.9)
o P

i.e. the scaling fields transform multiplicatively in the vicinity of the fixed point.

Assuming the eigenvalues A; to be real, positive quantities we rewrite them
as A\; = bY where the y; are the so-called renormalisation group eigenvalues
which can be directly related to the critical exponents. A scaling field is called
relevant, irrelevant or marginal according to whether the corresponding value
eigenvalue y; 1s greater than, less than or equal to 0. The rationale of this
nomenclature is obvious, since an irrelevant scaling field tends to zero upon
repeated renormalisation.

The region of coupling constant space where the linear approximation is
valid and where all relevant scaling fields vanish is called the critical surface.
By continuity, of course, we expect this surface to persist in some finite region
around the fixed point, regardless of the validity of Eq. (1.9). We may say that
the fixed point acts as a sink for its adjacent critical surface.

Returning now to our introductory example of the Ising model it is known
that two experimental parameters, the reduced temperature ¢ and the exter-
nal magnetic field h, must be adjusted in order to render the model critical.
We therefore expect there to be two relevant scaling fields, u; and wuy. The
redundancy of an next-nearest neighbour ferromagnetic interaction is born out
by the fact that it corresponds to an irrelevant scaling field and vanishes un-
der repeated renormalisation. At the same time, however, the reduced nearest
neighbour coupling K flows towards its value at the critical fixed point, and we
thus expect the presence of irrelevant couplings to change the critical tempera-
ture. The Tsing model has one non-trivial (critical) fixed point, and in general
we expect each universality class to correspond to a distinct critical fixed point.

1.3 Scaling and critical exponents

The presence of a number of relevant scaling fields along with Eq. (1.7) imme-
diately leads to a scaling form for the free energy that will allow us to relate
the critical exponents to the renormalisation group eigenvalues. In particular
we shall be able to deduce certain scaling laws.

As an example we again consider the Ising model with two relevant scaling
fields that by (spin-reversal) symmetry must take the form u; ~ t/tg and up ~
h/hg, the constants ¢y and hg setting the scale of the temperature and the field
respectively. On a small portion of the critical surface in the vicinity of the
critical fixed point, the singular part of the free energy scales like

Folur,un) = b7 L (6™ g, by, (1.10)
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as is seen by iterating Eq. (1.7) n times. Here y and y, are respectively the
renormalisation group eigenvalues of the thermal and the magnetic scaling field,
as defined above. Since the linear approximation is only valid for small values of
uy and uy we halt the iteration when |[6"Ytu,| = u?, where u? 1s small but finite.

Absorbing u) into a redefinition of ¢, we arrive at the fundamental scaling form

Fot,h) = |t/to] V@ <h/¢) : (1.11)

[t tol T

in which the only non-universality enters through the scaling factors ¢y and hy.
Now taking the appropriate derivatives of f5, four of the six usual critical
exponents immediately follow

Specific heat Ch=0)x|t|T* a=2-—d/y
Spontaneous magnetisation m(h =0) x [t|° = (d—yn)/u (1.12)
Susceptibility (h =0)x [t|7Y v=Q2yr—d)/y:
Equation of state ~ |m|? d=yn/(d—yp)

along with two scaling laws

{ Rushbrooke’s law o+ 20+ =2

Griffith’s law a+pB(1+48) =2, (1.13)

named after those who rigorously established them as inequalities (with >).
The last two critical exponents pertain to the scaling of the connected two-
point correlator

G(ri—ra) = (s(r1)s(r2)) = (s(r1))(s(r2)). (1.14)
Analogously to Eq. (1.10) this renormalises to
G(r,t) = b= 2nd=v) G (5 /b7 p7Vet) (1.15)

after n iterations, the front factor of b27¥» originating from the renormalisation
of the magnetic field and that of 5=2"¢ being due to the fact that a block spin
consists of b spins, each of which has almost identical correlation with some
spin far away from that block.

Choosing n as before we arrive at

G(r,t) = |t/to =15 (rftto] /1) | (1.16)

and stipulating that G(r,t) « exp(—r/&) for r > 1 the remaining critical expo-
nents follow

{ Correlation length E(h=0) o [t|7 v=1/y (1.17)

Correlation function  G(r,0)],_, xr*=%7 n=d+2— 2y,
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along with two further scaling laws

{ Fisher’s law 2-nv=y (1.18)

Josephson’s law  vd =2 — a.

The latter scaling law is particularly interesting because it involves the dimen-
sionality of the system. For that reason it is called a hyperscaling relation, and
we shall later see that this relation may fail when a dangerous irrelevant variable
(such as the temperature at a zero-temperature fixed point) modifies the scaling
form of the free energy but not that of the two-point correlator.

Resumo en Esperanto

La Ising-modelo (1.1) estas la klasika ekzemplo de du-dimensia modela sistemo
havanta duaordan faztransiron. Je altaj temperaturoj la entropio dominas kaj la
spinoj estas en paramagneta fazo, dum je malaltaj la sistemo elektas unu el la du
statoj kun kompleta magneta ordo (spontanea rompo de simetrio). Inter tiuj du
limoj estas faztransiro kiun karakterizas fluktuoj je ¢iuj longoskaloj kaj nevario
je renormigaj transformoj (1.6). Kritaj eksponentoj priskribas la makroskopan
konduton de la sistemo; tiuj ¢i ne dependas de kvantaj mikroskopaj detaloj kaj
plenumas skalumajn legojn (1.12 kaj 1.17).
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Random fields and random bonds

In real life no material is perfectly homogeneous, and to attain a better descrip-
tion of magnetic systems we must take into account the possibility of having
some kind of impurities distributed randomly throughout the material. In par-
ticular, for a pure system exhibiting a phase transition, the imposition of such
randomness may give rise to a range of different scenarios.

Since impurities will inevitably tend to disorder the system we expect the
mildest possible effect to be a lowering of the critical temperature. For a second-
order phase transition this effect may or may not be accompanied by a change
of the universality class. Whenever such a change occurs the randomness is
called relevant, and the critical behaviour of the random system must, from a
renormalisation group point of view, be governed by a new fixed point, which
in the limit of vanishing randomness must somehow merge with the fixed point
controlling the critical behaviour of the pure system. This observation can be
systematised and used to perturbatively calculate the change in the critical
exponents [5].

A more dramatic consequence is encountered when the randomness changes
the order of the phase transition. Intuitively it seems reasonable that inclusion of
randomness in a system exhibiting a first-order phase transition may under some
circumstances smooth out the discontinuities of the thermodynamic quantities
across the phase boundary, thus resulting in a second-order phase transition.
The investigation of this issue forms a main theme of Part T of the present
thesis.

Certain severe types of randomness may drive the transition temperature all
the way down to zero, or even eliminate the phase transition altogether. These
eventualities can be detected by investigating the stability of the ordered phase
upon imposition of the randomness at zero temperature.

Clearly, in order to further discuss the issue of impurities we must decide how
to implement the effect of the randomness in the theoretical models describing
the pure system. Depending on the particular physical situation at hand this
may lead us to consider random bonds (site dependent coupling constants, J —
Jij), random fields (h — h;), and even models defined on graphs with random

13
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coordination number or subject to dynamical triangulations (random gravity
graphs).

In all cases a first distinction to be made is that between quenched and
annealed randomness. In the latter case we consider the magnetic spins and
the impurities to be in thermal equilibrium. This is an appropriate description
if we want to study the system on time scales during which the impurities are
free to wander away from their original positions, and accordingly the partition
function is formed by tracing over both the magnetic degrees of freedom and the
positions of the impurities. Random gravity is an example of a problem with
annealed randomness.

For most systems that have a straightforward interpretation in terms of real
magnetic materials, however, the time scale associated with the motion of the
impurities is so huge that their position can essentially be regarded as fixed.
This is the case of quenched randomness to which we dedicate the remainder of
this chapter.

2.1 Quenched bond randomness

Let us consider a magnetic material with impurities which is initially held at
some very high temperature where the impurities are in thermal equilibrium
with the magnetic degrees of freedom. Now imagine abruptly lowering the
temperature, thus quenching the material to a state where the impurities are
positionally fixed whilst the magnetic ions organise themselves so as to attain
thermal equilibrium at the new temperature. In this situation the Hamilto-
nian H({s}, D) is a function of both the ionic spins {s} and the fixed disorder
configuration D. The appropriate partition function is

Z(D) = Trye” #UshP) (2.1)

and depends explicitly on the disorder.

For illustrative purposes we shall consider the simple example of the random-
bond Ising chain [7] with # = — Zf\;l K;s;si4+1. The quenched disorder con-
figuration is here specified by the values of the random exchange constants,
D = {K}, and the partition function is easily found to be

N
Z=1]e, (2.2)

=1

where ¢; = 2 cosh K.

2.1.1 Self-averaging

At this point we must confront the problem that even though the probability
distribution P(D) presumably exhibits translational invariance, any particu-
lar realisation of the randomness drawn from it does not. In particular, local
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physical quantities computed from a fixed randomness realisation are not trans-
lationally invariant. In order to proceed we must somehow average over the
disorder, but the partition function Z is not the appropriate place to do so since
this would correspond to the case of annealed randomness.

Instead, the average must be performed on the level of the free energy
F(D) = —InZ(D). This comes about in the following way. Tmagine divid-
ing a huge sample into many macroscopically large domains. For each domain
the disorder configuration, which we think of as drawn from some ensemble gov-
erned by the probability distribution P(D), differs, but since the free energy of
the entire sample is equal to the sum of the free energies for each domain (apart
from surface effects which are irrelevant in the limit of sufficiently large domains)
the specific free energy in the thermodynamic limit will, according to the cen-
tral limit theorem, be equal to the free energy averaged over the ensemble. The
physics of the disordered system is thus described by suitable derivatives of the
quenched average free energy

F = Trp P(D)F(D), (2.3)

where the overline is the standard notation for a disorder average. In particular
we note that translational invariance has been restored to the problem.

The fact that F' is a self-averaging quantity in the sense just described is
nicely illustrated within the context of our simple example, where the free energy
is

N
F==> loge;. (2.4)
i=1

It is evident that the quenched average of this quantity also describes the
behaviour of a typical system with some definite realisation of the random-
ness, since this average coincides with the most probable value: F = Fop =
—Nloge;. As explained above this property is exactly accounted for by the fact
that F' is a sum of random numbers and hence normally distributed. Relative
fluctuations away from this result hence die out like 1/v/N as N — co, N being
the (one-dimensional) volume of the system.

In the case of the partition function the situation is different. Since 7 is a
product of random numbers it is log-normally distributed, and in particular the
quenched average 7 = exp[N log@;] does not coincide with the most probable
value Zm, . = exp[Nloge;]. In other words, Z is a non-self averaging quantity.
Now, normally 7 is not a physically observable quantity, but correlation func-
tions certainly are. The importance of the lack of self-averaging can therefore
be appreciated by noting that the two-point correlator

R-1
(s18R) = H tanh K; (2.5)
i=1
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is again a product of random numbers and hence non-self averaging. In partic-

2
ular (s1sgr)? # (s1sr) , a remarkable occurrence that leads to multiscaling, and
to which we shall return in later chapters.

2.1.2 The replica method

Taking the disorder average on the level of the free energy and not in Z con-
stitutes a technical complication which can be circumvented by means of the
so-called replica method. This relies on the identity

anzlimZ -1

n—0 n

, (2.6)

which is easily proved by expanding the right-hand side as a power series in n.
Thus the disorder average can be performed at the level of Z, but a the price
of having to raise it to the n-th power before doing the average.

For positive integral n the replica method is tantamount to replicating the
system n times, thus generalising the spin degrees of freedom to s, ;, where the
index @ = 1,2,...,n runs over the replicas. Each replica is subject to the same
disorder configuration. Then

77 = Try, 1 Trp P(D) exp (— Z%({sa},i))) : (2.7)

and since it is usually easy to perform the Trp operation (e.g. using a cumulant
expansion) one is left with a customary trace over the replicated spins. The
price for doing this is of course that the different replicas are now coupled.

Finally, the limit n — 0 is taken by analytic continuation. This is normally
done without much ado, but when dealing with spin glasses complications may
arise, leading to the eventuality of replica symmetry breaking. For the disor-
dered ferromagnets which are our prime concern no such problem occurs, and
the n — 0 limit is trivially taken at the end of the calculations.

2.2 The Harris criterion

The effect of quenched bond randomness on a classical statistical mechanics
system whose pure version undergoes a second-order phase transition is well
understood. Namely, the so-called Harris criterion states that if the critical
exponent aP""® governing the divergence of the specific heat at the transition
point of the pure system is negative, weak bond randomness is irrelevant in the
renormalisation group sense and the pure fixed point is stable [8]. On the other
hand, if P > (0 the randomness is relevant and causes a crossover to critical
behaviour governed by a new random fixed point nearby, at least if the crossover
exponent aP""® is small.

To prove this statement we consider any system in which there is some ran-
domness coupling to the local energy density. Apart from the case of quenched
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bond randomness this also addresses site dilution, where a certain fraction of
the magnetic spins are replaced by vacancies (at quenched random positions).
Letting H* designate the Hamiltonian at the fixed point of the pure system,
and passing on to the continuum limit for notational beauty, we thus have

H=H" +/dd;;v m(x)e(x), (2.8)

where m(x) is the field due to the random impurities, and ¢(x) is the local
energy density.

Using the replica method, the trace over the disorder in the interaction part
of Z™ can be evaluated by means of a cumulant expansion

Trp P (D) exp (— Z / d%z m(x)eq (x)) (2.9)

n 1 n
a=1 a,b=1

where the second cumulant of m(x), ¢ = (m(x)m(x’) — m?), plays the role
of a coupling constant determining the interaction between the replicas. The
higher-order contributions on the right-hand side can be seen by power counting
to generate only less relevant modifications to what has already been written
out.

The important new term is the one coupling the energy densities of two
different replicas, since the term with ¢ = b just contains the energy density
itself in its operator product expansion.! Together with the term proportional
to m this diagonal term leads to a shift of the critical temperature, which in
this context is trivial. The issue of whether m(x) is a relevant perturbation is
thus settled by examining the relevance of Za;éb €a(x)ep(x). By performing the
relevant contractions its two-point function is easily calculated

<Z€a(x)eb(x) > ea/(x')eb/(x’)> = 2n(n — 1)(eq(x)ea(x'))?, (2.10)

aZb a'£b

and we conclude that its scaling dimension is twice that of the energy operator.
The renormalisation group eigenvalue of the most relevant term generated
by the random impurities is therefore

y=d—2x.,=d—-2(d—w)=2/v—d, (2.11)

and randomness is irrelevant if y < 0, or, since the pure system can usually be
assumed to exhibit hyperscaling, a < 0.

In conformal field theory, the product of a number of operators evaluated a nearby points
can be replaced by a linear combination of the scaling operators in the theory, at least as far as
the evaluation of its correlations with a product of other, distant local operators is concerned.
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2.3 Quenched field randomness

The above discussion on quenched bond randomness should be contrasted with
the more dramatical effects of randomness in the field conjugate to the local mag-
netisation. Such randomness can eliminate low-dimensional phase transitions
altogether, and at least it always changes the values of the critical exponents
[9]. For this reason most early research concentrated on field randomness.

In this context a particularly popular model is the random field Ising model
(RFIM) defined by the Hamiltonian

HRFIM _ —JZSiSj - th{FSZ — hzsi, (212)
(i7) i i

where the ARF = +h®F are quenched random variables with mean h = 0.
The phase transition between the ordered and the disordered phase occurs for
vanishing uniform magnetic field, h = 0.

Repeating the argument given above for the case of bond randomness we
see that the most relevant perturbation due to the randomness is of the form
Za;éb $q(x)sp(x), which at the pure fixed point has renormalisation group eigen-
value

y=d— 2z, =2yn —d = yy:. (2.13)

Since t 1s a relevant scaling field in the pure Ising model and 4 > 0 for any phase
transition, we conclude that random fields are always relevant.

2.3.1 The Imry-Ma argument

A classical argument due to Imry and Ma [10] predicts that the lower critical
dimension of the RFIM is d; = 2. This argument, in which a comparison is
made between the field fluctuations and the stabilising effect caused by the
formation of a domain wall, turns out to be applicable for discussing the effect
of bond randomness imposed on a first-order phase transition as well, so we will
repeat 1t in 1ts most basic form here. In a slightly improved version the Imry-Ma
argument can also be used to deduce the renormalisation group equations for an
RFIM interface, which is going to be an essential ingredient of the next chapter.

To find out the value of d; for the RFIM we study the model at zero tem-
perature in arbitrary dimension d. The question to be settled is whether the
ordered ground state (say, s; = 1) is stable to the disordering effect of the fluc-
tuating random field. If not, it will be energetically advantageous to introduce
very large domains of the opposite phase (s; = —1), and the ordered state will
be destroyed.

Imagine introducing such a region R of linear dimension L. This will of
course lead to an energy penalty 2JL%! due to the formation of a domain
wall. The random term, on the other hand, changes the energy by an amount
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2) iephi which by a judicious choice of R can be made negative?. Indeed,
since this is a sum of random variables it is normally distributed in the limit
of large L. In particular the width of the distribution is (h2L%)'/2 and the
proper choice of R means that the energy change will be of the order minus this
amount. For d < 2 and large enough L this outweighs the domain wall term,
and we conclude that the ordered state 1s unstable, whilst for d > 2 the opposite
1s true. Therefore d; = 2.

2.4 Discontinuity fixed points

Consider the RFIM with h = 0 at zero temperature. For ARF < 2J, where z is
the coordination number of the lattice, the aligning tendency of neighbouring
spins is stronger the the disordering effect of the random field. Since we are at
T = 0 thermal fluctuations are frozen out, and the ground state is the completely
ordered configuration s; = 1. For h®F > 2J, on the other hand, the random
field is strong enough to break the exchange coupling and since, once again,
entropic effects are ruled out the ground state is the disordered configuration in
which each spin is aligned with the random field at that site, s; = h}F /RRF,

It is thus seen that at AR®F = 2J a phase transition must take place. From
the above argument it follows that the specific heat diverges like |RRF — zJ|~1.
Furthermore, since both the magnetisation and the derivative of the energy
with respect to hRF change discontinuously, the transition is of the first order.
Interestingly, since there are no fluctuations the correlation length is zero.

Now imagine gradually increasing the temperature. Since thermal fluctu-
ations constitute a further disordering tendency the transition is expected to
take place at lower and lower values of hR¥. Eventually, above the critical tem-
perature T, thermal effects are so strong that even the pure system (hRF = 0)
is disordered, and the phase transition disappears. These facts are presented
in the schematic phase diagram given in Fig. 2.1. Here RF is the fixed point
controlling the zero-temperature phase transition, whilst 7 is the usual critical
point of the pure Ising model.

It remains to discuss the topology of the projected RG flows, and to that end
we set out discussing the fixed point RF. Let us consider the scaling variable
w = ARF/J — (RRF/J)*, where (hRF/J)* is the value of h®F/J at RF, and
define its RG eigenvalue to be y. Analogously to the derivation of the critical
exponent a we expect the specific heat to diverge like |w|d/y_2 as w — 0, and
comparing that to the exact result C' ~ |w|™! we deduce that

y=d, (2.14)

meaning that w is strongly relevant at the transition. This is a very general
feature of zero-temperature fixed points. To check this result we remark that

2In practice, of course, R will automatically adjust itself so as to minimise the energy. A
thorough analysis of exactly how this happens leads to the RG equations for the interface,
and will be presented in Chapter 3.
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h /7

disordered

ordered

Figure 2.1: Schematic phase diagram and projected renormalisation group flows
for the random-field Ising model in dimension d = 2 + €. RF is the zero-
temperature fixed point which leads to a violation of hyperscaling, and I is the
standard pure Ising fixed point. Taken from Ref. [5].

it implies # = d — y = 0, whence the correlation functions are supposed to be
trivial. But this is exactly what one would expect for a phase transition where
fluctuations are absent.

The fixed point RF is known as a discontinuity fized point, since upon cross-
ing the phase boundary the variable conjugate to w changes discontinuously. A
further characteristic of this fixed point is that the temperature T is irrelevant.
To see this we note that as J ~ 1/T — oo the flow equation giving the change
of J upon rescaling the system with a linear factor of b is simply

J ~ %1 (2.15)

since near T = 0 we expect the spins to be completely aligned. In other words,
the thermal exponent yr = 1 — d, and temperature is irrelevant for any d > 1.

To summarise, we have found that at RF w is relevant and 7' is irrelevant.
On the other hand, since [ is just the ordinary Ising fixed point we know that
T is relevant there, and the projected RG flows given in Fig. 2.1 follow.

2.4.1 Modified scaling at a zero-temperature fixed point

For a critical fixed point situated at T = 0 the scaling arguments for the free
energy given in Sect. 1.3 are no longer appropriate, and as a consequence the
usual scaling laws have to be modified [11]. This is due to an additional rescal-
ing of the exchange constant J, which would be a constant at a thermal fixed
point. At a zero-temperature fixed point, however, it is the ratio A*¥ /.J that is
constant.
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Under a scale transformation x — x’ = bx the parameters h, J and w
become

R =bh, J =b"J, w =0bVw, (2.16)

defining the quantities y, # and y;. The notational clash between y; thus
defined and the customary thermal exponent is not coincidental: as we shall
soon see w is completely analogous to a temperature variable in the modified
scaling relations. Inserting into the expressions for the singular part of the
energy density e(w,hJ 1) = J~1E, and the correlation length &(w, hJ~1), and
using the same tricks as in Sect. 1.3, we arrive at the scaling forms

e(w,hJ™Y) o w? O ®(hJ ' jw?), (2.17)
E(w,hJ™Y) < tTVE(RT T w?),

where
v=1/y, A=(n—0)/y, a=2-(d=0)/y. (2.19)

Defining the magnetisation and the susceptibility as appropriate derivatives of
Es, which replaces the customary f;, we can furthermore deduce the following
critical exponents:

B=(d—uyn)/ye, v=Qu—0—-d)/ye, = (yn—0)/(d—yn). (2.20)

Until now everything looks much like in Sect. 1.3, apart from the fact that
w takes over the role of the temperature variable, and that the rescaling of
J occasionally modifies the expressions for the critical exponents through the
presence of 6.

When we turn to the scaling forms for the correlation function it is found
that its connected and disconnected parts have to be investigated separately:

G(r) = (sosr)— (s0)(s,) = r* = g(r/€), (2.21)

Gais(r) = (so)(sy) = r* " Tgaa(r/8). (2.22)

However, the appearance of two anomalous dimensions
n=d+2+60—-2y,, n=d+4-2y, (2.23)

should hardly come as a surprise, since starting out from three scaling fields (A,
J and w) will necessarily lead to three independent exponents instead of the
usual two. The modified scaling laws can now be written as
a+2ﬁ+7:21 V(2_77):’717
a+ p(14+6) =2, 2—a=(d-0H), (2.24)

and the only modification is the violation of hyperscaling effected by 6.
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2.4.2 T as a dangerous irrelevant variable

A very interesting situation occurs when, as is the case in the RFIM, 6 < 0.
From the scaling treatment just given we see that even though 7T is irrelevant
in the RG sense it still leads to a violation of hyperscaling. In this situation 7'
acts as a dangerous irrelevant variable.

By definition an irrelevant variable u is dangerous if the thermodynamic
functions depend on it in a singular manner as v — 0. As a result u may not
simply be set equal to zero in calculations, and the way that the free energy, and
possibly other quantities, depend on a small but finite u should be thoroughly
investigated.

Apart from the temperature in the RFIM another celebrated example of
a dangerous irrelevant variable is that of the quartic coupling in the Landau-
Ginzburg-Wilson model above its upper critical dimension d,, = 4 [5]. This
situation is quite general. Above d, the critical exponents are known to be
constant and assume their mean-field values. On the other hand, since one of
the scaling relations depends continuously on the dimensionality there has to be
some violation of hyperscaling in order to keep a and v constant as functions

of d.

2.5 Softening of first-order phase transitions

Though the Harris argument provides a simple criterion for the relevance of
quenched bond randomness on a second-order phase transition the issue of such
randomness imposed on a system that undergoes a thermal first-order phase
transition has been less studied. An adaptation of the Imry-Ma argument can
be established by noting that the bond randomness couples to the local energy
density, which differs for the two phases that co-exist at the critical point of
the pure system, in exactly the same way that the random field couples to the
local magnetisation in the RFIM. Consequently the existence of a non-vanishing
latent heat for d < 2 can be ruled out. Early work by Imry and Wortis [12]
furnished a heuristic argument, reminiscent of that of the Harris criterion, that
the bond randomness indeed softens any such phase transition in d = 2 to a con-
tinuous one. A subsequent phenomenological RG argument by Hui and Berker
[13] confirmed that the lower critical dimension for random-bond tricriticality
and end-point criticality is dj = 2. As the dimensionality increases, tricritical
points and critical end points emerge from 7' = 0. Finally, a mathematically
rigorous theorem by Aizenman and Wehr [14] stated quite generally that for
d < 2 an arbitrarily weak amount of quenched bond randomness leads to the
elimination of any discontinuity in the density of the variable conjugate to the
fluctuating parameter.

The question then emerges whether this softening of the phase transition
can be verified for specific models and, if so, what are the universality classes of
these novel second-order phase transitions. An investigation along these lines
has recently been initiated by Cardy [15], by considering a system of N two-
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dimensional Ising models coupled by their energy operators which, according
to mean-field theory (MFT), is supposed to display a second-order phase tran-
sition. For N > 2, however, the RG flow of the model exhibits a runaway
behaviour, which is characteristic of a fluctuation-driven first-order transition
[5]. In this sense the transition is only weakly first-order and hence amenable to
perturbative calculations. On adding weak bond randomness it was found that
the RG trajectories curl back towards the pure decoupled Ising fixed point, and
consequently Ising exponents are expected, up to possible logarithmic correc-
tions. This study was extended by Pujol [16] to the case of N coupled g-state
random-bond Potts models for 2 < ¢ < 4, but here the universality class of the
impurity-softened transition was found to depend on the coupling between the
models.

2.5.1 The random-bond Potts model

A more interesting model for studying the effect of quenched bond impurities on
a first-order transition is the g-state random-bond Potts model (RBPM). This
generalisation of the Ising model is defined by the reduced Hamiltonian [17]

H = _Zl{ijédldjﬂ (225)
(i7)

where the spins, situated on the vertices of the square lattice, can now take the
values o; = 1,2,..., ¢ (in the Ising model ¢ = 2), and the summation is over all
nearest neighbour bonds on the lattice. We shall specialise to the ferromagnetic
case, where the reduced couplings K;; > 0 measure the strength of the aligning
tendency of nearest-neighbour spins.

Although the free energy of the pure model (K;; = K) is not known in
closed form for general ¢, a wide range of exact results 1s nevertheless available
[18]. In particular it is well-known that the model exhibits a second-order phase
transition for ¢ < 4 [19] and both the critical exponents and the central charge
are known exactly from conformal field theory. For ¢ > 4 the phase transition is
first-order with a latent heat that is an increasing function of ¢ [19]. In fact, since
the transition is first-order already in MFT, on the RG level it is controlled by
a zero-temperature discontinuity fixed point with the eigenvalue of the relevant
scaling operator being y = d [5]. Quenched randomness coupling to the local
energy density thus has the eigenvalue d — 2(d — y) = d and is strongly relevant,
whence an RG treatment appears to be problematic.

The work undertaken until now has therefore mainly been numerical. Ex-
tensive Monte Carlo (MC) simulations have been carried out for ¢ = 8 by Chen,
Ferrenberg and Landau [20] confirming the transition softening scenario outlined
above, and finding critical exponents numerically consistent with those of the
pure Ising model. Similar conclusions were reached by Wiseman and Domany
[21] for ¢ = 4 and also for the Ashkin-Teller model. It thus appears that in a
variety of situations the universality class of the bond disordered models is that
of the Ising model, irrespective of the symmetry underlying the original model.
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To explain these findings Kardar et al. [22] have proposed an interface mo-
del for the RBPM which, after several approximations, is amenable to an RG
treatment that is exact on the hierarchical lattice. In the pure model the in-
terface exhibits a branching structure with fractal dimension at criticality, but
when randomness is present the critical interface is asymptotically linear. As-
suming that the vanishing of the interfacial free energy is governed by a zero-
temperature fixed point, the Widom exponent p turns out to be independent of
q for all sufficiently large ¢, taking the Ising value p = 1.

This is in contrast to the perturbative expansion in powers of (¢ — 2) inves-
tigated by Ludwig and Cardy [23], Ludwig [24, 25], and Dotsenko et al. [26].
Using the RG approach for the perturbation series around the conformal field
theories representing the pure models, these authors find the critical behaviour
of the RBPM to be controlled by a new random fixed point which merges with
the pure fixed point as ¢ — 2. Critical exponents are found to depend continu-
ously on ¢, at least for (¢ — 2) small, and in the case of the magnetic exponent
zp a calculation to three loop order yields a prediction which is supposed to
be very precise even up to ¢ = 3 [26]. Unfortunately, extending these results
beyond ¢ = 4 is impossible, even in principle, since this is the limiting case in
the range of minimal conformal theories around which the perturbative calcula-
tions take place. Another interesting implication of this line of research is that
the local operators exhibit multiscaling [25], meaning that correlation functions
of different moments of such operators decay with powers that are, in general,
independent.

It has been suggested by Kardar et al. [22] and Cardy [15] that these con-
trasting theories describe very different fixed points. Indeed, it can be argued
that the interface model pertains to the case of strong non-self dual randomness,
whilst the (¢ — 2)-expansion is relevant for weak self-dual randommess. Also,
even though it may turn out that the critical exponents do not depend on g¢,
the central charge ¢ evidently must, since even when the critical behaviour is
controlled by a decoupled Ising fixed point there is generally not just one Ising
model but several.

The work described in Part I of this thesis was originally motivated by the
wish to resolve this controversy. The outcome is given by our numerical re-
sults presented in Chapter 6. We shall see that although the critical exponent
v only depends weakly on ¢ and is numerically consistent with its Ising value,
the magnetic exponent z;, = /v exhibits a pronounced g¢-dependence. In par-
ticular, the results of Ref. [20] for ¢ = 8 must now be dismissed, since both
our results and two subsequent Monte Carlo studies [27, 28] are consistent with
zp(¢ = 8) ~ 0.15, far away from the Ising value.

Further evidence for this conclusion is furnished by our proposed phase di-
agram, to which we turn next.
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Resumo en Esperanto

Parto I de la jena tezo celas eltrovi kiel malpurajoj influas unuaordan magnetan
faztransiron. Cefe interesas nin la q > 4 stata Potts-modelo (2.25) kun aleatoraj
kuplajoj. Por ¢ < 2 la malpurajoj nur malaltigas la kritan temperaturon, at, per
aliaj vortoj, la malordo ne modifivas. En la intervalo 2 < ¢ < 4 8angigas ankat
la kritaj eksponentoj (modifiva malordo), kaj kiam ¢ > 4 la unuaorda transiro
de la pura modelo farigas duaorda kun novaj eksponentoj kalkulendaj—cu ili
vere estas Isingaj, kiel asertis Ref-o [20]?

Pli drastas la efiko de aleatora magneta kampo, kiu ¢iam modifivas. Gi
katizas malkontinuan fikspunkton je temperaturo nula. Pro renormigo de la
kuplajo, la temperaturo rolas kiel dangera nemodifiva variablo kaj kondukas al
malobeo de hiperskalumo.
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Phase diagram

After these preliminaries we now propose a phase diagram for the random-bond
Potts model, based on a mapping between the interfacial models governing
the random cluster model in the limit of an infinite number of states (¢ —
oo) and the random-field Ising model in the zero-temperature limit (T" — 0).
The portion of the phase diagram near ¢ = oo can then be inferred from the
known renormalisation group behaviour of the Ising interface [11], whereas the
properties for small ¢ are furnished by a perturbative expansion around the
point where the bond randomness is marginal [24, 25, 26]. Taking into account
exact results valid in the limits of zero [19] and infinite [29] randomness the
global structure of the renormalisation group flows is then established.

From the explicit relations between the scaling variables in the two models
we are also able to establish two exact relations between the respective critical
exponents, thus determining the universal behaviour of the random-bond Potts
model in terms of that of the random-field Ising model.

The discussion of the numerical evidence supporting the correctness of the
proposed phase diagram, at least for d = 2, is the subject of Chapter 6.

3.1 Mapping between interface models

As will become clear, many of our results generalise, but let us for definiteness
consider a Potts model on the square lattice with degrees of freedom o; taking
q values, and a reduced Hamiltonian
H=- Kijboio;, (3.1)
(i7)
where the sum is over nearest neighbour pairs. The ferromagnetic couplings

K;; > 0 are quenched random variables, taking the values K; and K3, each
with probability one half

P(K;;) = %[6([&}5 — K1) +6(K;; — K9)). (3.2)

26
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For the special choice
(e = 1) ("2 —1) = ¢ (3.3)

this model is on average self-dual, as discussed in more detail in Chapter 4.
Assuming that the phase transition is unique the model is therefore at its critical
point [30]. Tt is useful to parametrise

eKlj — 1= Ui = q%+w’j7 (34)

where w;; = +w, and w > 0 measures the strength of the randomness.

The partition function of this model may be mapped onto that of the random
cluster model [31], in which each bond of the lattice is either occupied, when it
is counted with weight u;;, or empty, in which case it is counted with weight
1. The partition sum is over all such configurations, in which each connected
cluster of sites 1s weighted by a factor ¢

7 = Z H Ujj qc. (35)

(i5)€G

Here C' is the total number of such clusters in the graph configuration GG. Note
in particular that a single isolated site is to be counted as a cluster on i1ts own.

3.1.1 The pure model

Let us first consider the pure model, with w = 0. In the limit ¢ — oo, the sum
over configurations is dominated by only two: the empty lattice, in which no
bonds are occupied, which contributes a factor ¢”V, where N is the total num-
ber of sites, and the full lattice, with a weight q(\/ﬁ)zN, since the number of
bonds per site is exactly two in the limit of an infinite system. The extra factor
of g, originating from the number of clusters in the full lattice being one, is
attributable to the fact that the full lattice really corresponds to ¢ distinct con-
tributions, one for each possible value of the order parameter in the completely
ordered state.

All other configurations are down by powers of q%. At the self-dual point,
there are therefore two coexisting states, namely the ordered phase correspond-
ing to the full lattice and the disordered phase corresponding to the empty
lattice. These phases have identical bulk free energy, since their weight in the
partition function is the same, but different internal energy densities of —K
and 0 respectively. This indicates, as expected, that the transition has a non-
vanishing reduced latent heat per bond of

1
L=K=In(yq+1)~ ilnq. (3.6)

For the pure model, this analysis may be extended to take into account higher
order corrections in 1/,/g, with no essential change in the physical picture.
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The enumeration of such sub-dominant configurations has recently been carried
through to 10th order in this small parameter [32].

Now consider an interface between these two phases. For large ¢, the lowest
energy interface is parallel to a lattice direction, say the z-axis, and is such
that all the bonds with y < some integer are occupied, and those above this
are empty (or vice versa). There will also be entropic fluctuations y = h(z)
of this interface, described by the usual solid-on-solid interfacial Hamiltonian,
proportional to the length of the interface.

In order to determine the interfacial tension it is useful to convert the equal-
ity of the weight factors for the dominant contributions into a local balance
criterion. Consider therefore the weight factor of the full lattice relative to that
of the empty lattice. Each site in the full lattice constitutes the loss of a poten-
tial cluster, and thus carries a relative weight of 1/¢. This can be distributed
as a factor of q_% to each of the four adjacent bonds. On the other hand, these
bonds each carry a relative weight of /g, which we distribute as a factor of q+%
to each end of the bond. At every bulk site inside a portion of the full lattice
there is therefore an exact balance due to the cancellation of these factors of
q_% and q+%.

This balance is not satisfied at the interface. Neglecting for the moment the
possibility of overhangs and of ‘bits sticking out’ (i.e., assuming all the square
lattice plaquettes in the full phase to be surrounded by four occupied bonds) it
is easily found that the number of excess factors of q_% is precisely equal to the
length of the interface. The interfacial tension for large ¢ is therefore

1
o~ Zlnq7 (3.7)

independent of the local shape of the interface. This is to be compared with
o ~ 2J between the two ordered phases of a low temperature Ising model with
reduced exchange coupling .J.

A more careful analysis reveals that the result

1
4

Excess factors of ¢~ 7 = Interfacial length (3.8)

actually holds true even when overhangs and ‘bits sticking out’ are present. This
relies on a more careful definition of the interfacial length. As described in more
detail in Chapter 4 the empty and the full phases are dual in the sense that every
empty bond is crossed by an occupied bond on the dual lattice. Thus, between
the occupied bonds constituting the full phase and the occupied dual bonds
forming the empty phase there is a gap of half a lattice spacing. We now define
the interface to reside in the middle of this gap, i.e., a quarter of a lattice spacing
from the nearest occupied bond, whether original or dual. By construction, the
interfacial length is now invariant under a duality transformation. Moreover,
by starting from a flat interface and recursively adding any desired number of
bonds to the full phase it can be shown that Eq. (3.8) is satisfied as long as the
interface stays simply connected.
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On the other hand, when bubbles of the wrong phase occur within either
the empty or the full phase Eq. (3.8)—and hence the analogy between the Tsing
and Potts interfaces—breaks down. The correcting factors of ¢ can be related
to the Euler characteristic y of the interface, but whether this observation is
useful remains an interesting open question.

3.1.2 Including the bond randomness

Now consider the effect of adding bond randomness to the random cluster model.
As is seen from Eq. (3.5) the clusters are weighted as in the pure model, whereas
Eq. (3.4) implies assigning an extra weight of ¢“# to each bond. Since these
are only present below A(z) the interfacial Hamiltonian will now take the form

Hine = O'A—}—Z E (z,y)Ingq, (3.9)

T y<h(z)

where (z,y) labels bond positions. The first term corresponds to the surface
tension given by Eq. (3.7), where A designates the area of the interface (in two
dimensions, of course, this has the dimension of a length). The second may be
rewritten, up to a term independent of h(z), as

%Z Z Z w(z,y)Ing. (3.10)

@ y<h(z) y>h(z

Now compare this with the energy of an interface between the spin-up and
spin-down phases of the random field Tsing model (RFIM) with spins s(z,y) =
+1 coupled to a reduced random field h(z,y) = +hrr

%RFIM:—JZSiSj—EhZRFSi—hZSi' (3.11)
(i) i i

Taking the spin-up phase to reside below an interface parametrised by y = h(z)
the interfacial energy is now given by

HE™M =274+ | Y - Y | b=y, (3.12)

¢ \y<h(z) y>h(z)

Thus the interfacial models are seen to be identical with the correspondence
J & ln q, and hrp wlnq In addition, the imposition of a uniform
reduced magnetic field A on the RFIM, which distinguishes between the two
coexisting phases, is seen to be equivalent to a deviation t = (T'— T¢) /T, in the
Potts model temperature variable away from the critical self-dual point. Since
this couples to the energy density we find the correspondence h it Ing.

At this point a comment is in order. Until now we have only considered an
interface between the ordered and the disordered phase in the Potts model, and
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it should hardly be surprising that this two-state picture leads to an equivalence
with the Ising model. One may then raise the objection that since the ordered
phase can correspond to any of the ¢ different values of the Potts model order
parameter, it is in fact (for ¢ > 2) possible to have a second type of interface
between any two of the ordered phases. Fortunately this is of no consequence
to the mapping that we have established. Consider namely an interface of this
type, which we for simplicity take to be straight (h(z) = yo). This interface
consists of a row of empty vertical bonds separating the two portions of the
full lattice, and since each of the two ends of these empty bonds carries an
uncompensated factor of q_% the (unrenormalised) interfacial tension is twice
that of Eq. (3.7). In the limit ¢ — oo this type of interface is therefore strongly
suppressed in comparison with the one studied above.

We conclude that the hitherto unknown behaviour of the Potts model inter-
face can be read off from the better studied RFIM, provided that one translates
quantities between the two models using the ‘dictionary’

1
P*Y & —wing,

2

1
J & glnq, (3.13)
h & ltl

Jtne.

Of course, this is strictly valid only as ¢ — co. At finite ¢ the ¢g-dependence
of cluster configurations with more complicated topologies is not simply ac-
counted for by the interfacial tension. For the same reason, the mapping is not
between bulk configurations of the two models. However, it will be argued that
certain universal properties are controlled by an RG fixed point at infinite ¢,
and for these the mapping should be asymptotically exact. Although this has
been described in terms of a two-dimensional self-dual model, it should be clear
that 1t is more general: lack of self-duality corresponds to a skewness in the
distribution of the random fields h(z, y), which may be compensated by adding
a suitable uniform field (corresponding to a shift in the Tt of the Potts model),
and, similarly, higher dimensions may be taken into account by appropriately

replacing ,/q by gt/

3.2 Renormalisation of the Ising interface

A keystone in the derivation of the RG equations for an RFIM interface is a
refinement of the Imry-Ma argument presented in Sect. 2.3.1. The question to be
answered is how does the adjustment of the region R take place when viewed on
different length scales. Using what is essentially the Imry-Ma argument on each
successive length scale, Binder [33] found an explicit expression for the energy
gain associated with the optimum adjustment of R. With this information
at hand Bray and Moore [11] have established the corresponding infinitesimal
RG equations for the quantities RRF| J and h. After reviewing this we shall
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demonstrate in the following section how this determines the ¢ — co part of the
phase diagram of the random-bond Potts model.

3.2.1 Optimisation of the interfacial shape

Consider a RFIM (with A = 0) defined on a portion of the square lattice having
the geometry of a strip of width L and length N. We are interested in studying
the formation of an interface across the strip in the limit N > L > a, the
lattice constant being a. To that end we impose boundary conditions along
the sides of the strip so that, for hRF = 0 and vanishing temperature, there is
a straight interface separating the spin-up domain from the spin-down domain
with interfacial energy F = 2J La.

In the presence of a random field the interface may choose to move a dis-
tance wo(hRY) = w(L, hRF) without changing its shape, in order to minimise
its energy with respect to the field. This is illustrated in Fig. 3.1.a. By doing
so there will be an energy penalty associated with the boundary conditions and
a further change due to hRF

AE,=42752 3 hfF, (3.14)
a
i€ Rg

where Ry is the region enclosed by the initial and the present position of the
interface. The minus sign correspond to an enlargement of the spin-up domain
and wvice versa.

The direction of the displacement will be automatically chosen so as to render
the sum on the right-hand side negative. Repeating the Imry-Ma argument
we find that it will typically assume a value of —ARF (woL/a?)'/? up to an
unimportant constant of order unity. Minimising A Ey with respect to wg yields

wo(h™F) ~ (AR /8L, AEy ~ —4J (A% /80)2(L/a), (3.15)

which for AR /J « 1 does not yet compensate the initial energy cost E.

Further adjustments are possible, however, if we allow for displacements on
successive length scales L/n!, { = 1,2,..., where we have stipulated that [ =
n‘a for n,l > 1. Although treating the adjustment of each interface segment
as independent is going to imply some double counting relative to the previous
step (as illustrated by the cross-hatched areas in Fig. 3.1) this correlation can be
neglected in the limit of large n. The direction of the displacement within each
segment is going to optimise the shape of the interface relative to the random
field, and in step k the magnitude of the displacement and the corresponding
energy gain are of the order

L L/a
wy (ART) ~ (hRF/SJ)Qn—k, AEy ~ —4J(hRF/8J)2nLk. (3.16)

The minimal length scale on which adjustments can take place is L/n*mex
where wy,, (A?Y) = a, the lattice constant. Summing up the energy gains
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Figure 3.1: Renormalisation of the zero-temperature Ising interface. By succes-
sive uniform distortions on length scales L (a), L/n (b), and L/n? (c), the inter-
face fits 1s shape to obtain an energetic optimisation relative to the configuration
of the random field. The double-counting, here shown by the cross-hatched ar-
eas, is of no consequence as discussed in the text. Taken from Ref. [33].

leaves us with the important result

k
Sy Ln(L/a)

AE ~ FAEL ~ —J(RRF /)22 —2L ) 3.17
3 AR~ I TS (3.17)

There is only a weak dependence on n, and we conclude that the total interfacial
energy £+ AFE becomes negative for L larger than

Lo/a ~ exp[C(J/h"F)?], (3.18)
where C' is a constant of order unity. In other words, beyond the length scale
set by Lg the system will spontaneously break up into domains.

3.2.2 Infinitesimal renormalisation group equations

The zero-temperature analysis of the Ising interface just given is particularly
relevant in view of the fact that the fixed point governing the critical behaviour
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of the low-temperature RFIM is situated exactly at T' = 0. This was discussed at
length in Sect. 2.4 where we also found that since there were three scaling fields
at play the universal behaviour had to be specified through three independent
critical exponents. These are y, and y; (the ratio w = h®/J playing the role
of a temperature variable!), and # governing the violation of hyperscaling.

To find the exponents to order O(¢) in an expansion around the lower critical
dimension it i1s convenient to write the infinitesimal RG equations corresponding
to a length scale factor b = ¢! in the following form

dhRF dJ dh

3 = A" f1 (w), 57 = I (w), oy = hfa(w). (3.19)

A trivial change of variables yields

dw .
& = w(fi(w) - (), (3.20)

whence fi(w*) = fo(w*) at the fixed point.
The exponents y, and 6 are immediately read off from the RG equations

yh = fa(w™), 0= fi(w") = fo(w"), (3.21)

whereas to get y: the functions fi(w) and fa(w) have to be expanded to first
order in w (i.e., we ‘linearise around the fixed point’):

ye = w* (fi(w") — fo(w")). (3.22)

In the pure system (w = 0) the RG equations are trivial. Namely, since the
fixed point is at zero temperature fluctuations are absent, and the renormalisa-
tion originates from simple geometrical considerations. The coupling constant
is multiplied by a factor giving the area of the wall separating two neighbouring
block spins, J = b4~ J, and the magnetic field scales like the volume of a block
spin, A’ = b%h. Finally, by the central limit theorem we have RRF' — pd/2pRE
Thus

fi(0)=4d/2,  fo(0)=d—1, f3(0) =d. (3.23)

In particular we find that dw/dl = (1 — d/2)w + O(w?), and since from the
phase diagram of Sect. 2.4 we expect the fixed point to move towards w* = 0
when we approach the lower critical dimension from above we infer that d; = 2.

To obtain the critical exponents to first order in € = d — 2 we need the
functions f;(w) to second order in w. Actually we expect the expressions for
fi(w = 0) and fs(w = 0) just given to be correct to all orders in w. Indeed,
the renormalised field is related to the energy cost of reversing a block of ¢
spins, and the argument given above should hold true whenever all spins within

L Although the definitions are different we use the same symbol w for the strength of the
randomness in the RFIM and in the RBPM.
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a given block can be expected to be predominantly parallel. The only way this
could fail 1s by the random field’s creating a domain of flipped spins, but the
probability hereof is exponentially small [11].

On the other hand, the coupling constant J has a non-trivial renormalisa-
tion to order O(w?). This is exactly given by the energy associated with the
adjustment of the domain wall to the local shape of the random field. To the
order needed it is enough to evaluate this energy at d = 2, and using Eq. (3.17)
we thus find

fo(w) =d—1— Auw?, (3.24)

where A > 0 is a non-universal constant. Inserting the f;(w) in Eq. (3.20) we
get

dw/dl = —(e/2)w + Aw?®, (3.25)

whence the fixed point is situated at w* = (¢/2A4)/2. The critical exponents
are then finally evaluated as

yh=2+4+¢ O=1+4¢/2, y—c. (3.26)

3.3 The proposed phase diagram

The infinitesimal RG equations for the RBIM can now be inferred from the
similar results for the RFIM by translating via Eq. (3.13). Near d = 2 they read

dw/dl = —(d/2 - 1w+ Aw® + - -- (3.27)
dlng)~/dl = —(lng)™'((d—1)— Auw? +---) g
dt/dl = t(1+ Aw? + ), (3.29)

where we recall that A > 0 is a non-universal constant. Corrections to these
equations are supposed to be higher order in w and in ¢~'/2. The reader who is
concerned that the number of Potts states ¢ is allowed to flow in these equations
is reminded that ¢ is merely a parameter of the random cluster model. Only if
magnetic quantities are considered is the permutation symmetry of the model
revealed, and this is lost in the mapping to the cluster model. The RG flows for
d > 2 and the consequent phase diagram are shown in Fig. 3.2.

In the pure models, for ¢ > some q2(d) (low T in the RFIM), there is phase
coexistence with a non-vanishing latent heat (spontaneous magnetisation), con-
trolled by a fixed point at infinite ¢ (7' = 0). For d > 2 this persists into the
shaded region, bounded by a line of tricritical points where the latent heat,
vanishes. The universal behavior along this line i1s controlled by the fixed point
R at w = O((d — 2)1/2) and infinite q.

Above the line Rq, the flows go to large w beyond the validity of Egs. (3.27-
3.29). In addition, the renormalised interfacial tension flows to zero and the
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Figure 3.2: Schematic phase diagram in the critical surface for d > 2. g increases
to the left and w 1s the disorder strength, with P; P; being the percolation limit.
RG flows are indicated. The latent heat is non-vanishing within the shaded
region, and elsewhere the transition is continuous, controlled by the line of fixed
points Piq1. As d — 2 the shaded region collapses to a line q50 of first-order
transitions in the pure system. For d = 2 we have q; = 2 and ¢5 = 4.

mapping between the models breaks down as domains of different topologies
proliferate. However, for infinite ¢ the mapping remains exact and the flows
go to infinite w. This cannot happen for finite ¢ since this is the percolation
limit K;/Ky = 0, at which w™?! is relevant [29]. There must therefore exist
another line of stable fixed points emerging from P;, which control the universal
continuous transition for large, but finite, values of w and ¢. It is tempting to
conjecture, as indicated by the dashed line in Fig. 3.2, that this connects on to
that found by expansion in powers of ¢ — ¢ [24], where ¢; is the point where
the exponent a of the pure model changes sign [8]. In Chapter 6 we present
numerical evidence that, at least for d = 2, this is the case.

In two dimensions (when ¢ = 2, g2 = 4 [19]), the shaded region collapses,
and for any non-zero w the renormalised interfacial tension, and thus the latent
heat, vanishes. The flows should be towards the line Pjq;, with a crossover
length which, from Eq. (3.27), has the form

Ex ~ el/2Av” (3.30)

and therefore may become very large for weak randomness. (To see this, note
that the RG eigenvalue of £x must equal —1, whence d¢x /dl = —¢x. Using
Eq. (3.25) we then find the differential equation

déx  déx dI dw) ™' 1
dw ~ dl dw - X <dl> = X L (3.31)

which is readily solved.)
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3.4 Exact exponent relations

Using the correspondences between scaling variables in the RFIM and the
RBPM given by Eq. (3.13) it is possible to establish exact exponent relations
between the two models. Of course, the derivations presented here are only
strictly valid close to d = 2, but, if the topology of the RG flows does not
change, the resulting exponent relations should hold also in three and higher
dimensions.

3.4.1 The relation 3 = Brr

For the RBPM we define Grr as the exponent governing the vanishing of the
latent heat as the line Rgy is approached from below

L(nq,w) ~ (we — w)Pr*, (3.32)

and we aim at showing that grp is identical to the magnetisation exponent in
the RFIM, namely 8 = (d — ys)v.

Imagine starting out from some point (Inq,w) just below the line of tricrit-
ical points in the phase diagram of Fig. 3.2 and following an RG trajectory,
parametrised by [, that brings us within the vicinity of the fixed point R situ-
ated at (oo, w*). By definition of the RG transformation the partition function
stays constant under the renormalisation, whence

InZ

o= flt,Ing,w) = e~ f(¢(1),Inq(l), w(l)). (3.33)

The latent heat is obtained by differentiating with respect to ¢ and taking the
limit ¢ — 0. Using the chain rule on the right-hand side this becomes

L(lng,w) = e ata—(tl) t_OL(lnq(l),w(l)). (3.34)

The partial derivative can be evaluated by employing the correspondence
t & %hTRF, remembering that Ty is irrelevant at R with RG eigenvalue —@.2
We find that

dt  1dh 1 dTwe
= 3q [Rr + 2h TR (yn — O)t, (3.35)

which upon integration becomes #(l2) = exp[(l2 —{1)(yn — )]t(l1), so that finally

8t(12) _ (la=l1)(yn—9) :
el . (3.36)

2This is to be contrasted with the situation where we move towards the fixed point 0 along
the line of pure models. In this case T = 1/.J is trivially related to the surface area via the
interfacial model, and the corresponding RG eigenvalueis d — 1.
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Inserting this in Eq. (3.34) we arrive at
Llng,w) = eWr=#=D 1 (Ing(1), w(l)), (3.37)

and since it is expected from Eq. (3.6) that L(ln q(l), w(l)) x %ln q(1) the next
task is to find the ! dependence of In ¢() in the vicinity of R. This is done using
the correspondence T' ¢ 8(Inq)~!, which follows from Eq. (3.13). In complete
analogy with Eq. (3.36) we find that

(nq(l2))™ =M= (Ing(1y)) ™, (3.38)

and in particular In ¢(I) = ¢ In q. This cancels the §-dependence of Eq. (3.37),
which now assumes the form

L(ng,w) ==l ng (3.39)

It only remains to relate [ to the distance from the transition point. This is
easily done by considering the correlation length, which increases according to
&(1) = €'€(0), and since by definition of v we have ¢ ~ (w* — w)~™" we find that
el ~ (w* —w)7V. Tt follows that

L(ng,w) ~ (w* —w) @Y ng, (3.40)

which is what we wanted to show.

3.4.2 The relation v = vgr/(2 — arr — Orr)

In contradistinction to what was the case for the exponent 3 the task of relat-
ing v to quantities in the RFIM 1is quite elementary, since the latter exponent
has identical definitions in the two models. Namely, the correlation length is
supposed to diverge like £(t) ~ ¢t~ upon approach of the critical point, where
v = 1/y;. From the relation ¢ < %hTRF we infer that y; in the RBPM equals
yp — 6 in the RFIM; see also Eq. (3.35).

The values of y, and # in the RFIM can be inferred from the scaling relations
given in Sect. 2.4. These are

Brr = (d—yn)vrr, 2— arr = (d— 8)vrr, (3.41)

where we recall that hyperscaling is violated through the presence of §. We thus
end up with the relation

v =yn— 0= (2— arr — fBrr)/vrF. (3.42)
Since there are only two independent critical exponents in the RBPM, the two

exponent relations given this far suffice to relate the universal information about
the RBPM fixed point R to the corresponding information about the RFIM.
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Resumo en Esperanto

Ni proponas fazdiagramon por la Potts-modelo kun aleatoraj kuplajoj en di-
mensio d > 2 (vidu Fig-on 3.2). Ci tie w estas la forto de la malordo kaj la
nombro da stato) ¢ kreskas maldekstren. Por d = 2, ¢; = 2 kaj ¢2 = 4. La
sago] indikas la renormigan fluon. La specialaj kazoj de la pura modelo [19] kaj
la perkola limo [29] estas bone konataj. Perturba kalkulo éirkati ¢; [24, 25, 26]
demonstras la emergon de linio da stabilaj fikspunktoj.

Proksime de ¢ = oo du statoj, la tute ordita kaj la tute malordita, dominas la
statan sumon. De tie sekvas ekvivalenton inter la koresponda interfaca modelo
kaj tiu de la malalttemperatura Ising-modelo kun aleatora magneta kampo. En
la griza regiono la transiro havas pozitivan latentan varmon, kaj la linion Rgs da
trikritaj punktoj kontrolas la fikspunkto R. La najbaran renormigan fluon, Ekv-
ojn (3.27-3.29), ni transprenas de Ref-o [11]. La menciita ekvivalento ankai
implicas ekzaktan rilaton inter la kritaj eksponentoj de la du modeloj (vidu
sekcion 3.4). El P; emergas alia linio da stabilaj fikspunktoj; ni konjektas ke gi
konektigas al tiu ce ¢q; kaj prezentos nombran apogon tiurilate en Capitro 6.



Chapter IV

Potts duality

Many discrete lattice models allow for a duality transformation, and in the
case of the Potts model this i1s a most important ingredient in the analysis of
the critical behaviour. Roughly speaking duality amounts to a transformation
of the original lattice model under which each plaquette is turned into a spin
site and wvice versa. There is a one-to-one correspondence between interacting
pairs of spins in the original and the dual model, but the interaction strengths
transform non-trivially under duality.

The duality of the Ising model partition function has been known for almost
as long as the model itself [34]. The generalisation to the g-state Potts model is
relatively straightforward, but its statement in terms of the equivalent random
cluster model is particularly illuminating, and we shall give the details shortly.
Arguably the greatest benefit arising from the duality of the partition function is
the resulting ezact knowledge of the critical temperature. The duality arguments
can easily be adapted to the case of bond randomness, a feature which shall turn
out to be crucial for extracting the thermal scaling dimension in Chapter 6 using
the technique of phenomenological renormalisation.

Duality also applies to the correlation functions between n spins situated
at the boundary of the system. Quite naturally these results depend on the
particular geometry imposed (planar, cylindrical, ... ), and consequently the
boundary conditions have to be specified carefully. For a planar geometry,
such as a long strip with open boundary conditions, a clever diagrammatic
method recently invented by Wu and coworkers [35, 36, 37, 38] now allows
for the mapping of any n-point function in this way. The case of cylindrical
geometry, which is particularly relevant to long strips with periodic boundary
conditions along the transverse direction, and hence to the construction of the
transfer matrices of Chapter 5, is more evasive. Results for a general n-point
function (n > 3) are presently unknown, but we shall see how the two-point
function is mapped onto a disorder operator in the dual model. Eventually
this will allow us to devise an ingenious way of extracting magnetic properties
from the transfer matrix through the imposition of so-called twisted boundary
conditions. This point is elaborated in Chapter 5.

39



40 Chapter 4. Potts duality
4.1 Duality of the partition function

The notion of duality applies to a lattice model through a transformation of both
the model itself and of the underlying lattice. For lattices that can be embedded
in a surface of genus g the duality transformation amounts to converting all
plaquettes of the lattice into vertices of the dual lattice. Each edge of the
original lattice is intersected by exactly one edge of the dual lattice, so that any
two plaquettes separated by a common edge is transformed under duality into
two vertices connected by a common dual edge. Evidently, a second application
of the duality transformation gives us back the original lattice, whence the
terminology.

A common example among the infinite regular lattices is the duality between
the triangular and the honeycomb lattice. The square lattice is its own dual,
that 1s to say it is self-dual. Finite regular lattices are usually not self-dual,
since the exterior infinite plaquette is transformed into a vertex with a (large)
coordination number equal to the number of edges along the circumference of the
original lattice. Clever arrangements of the boundaries are possible, however,
so as to obtain a finite self-dual lattice which resembles a square lattice at every
bulk edge [39, 40]. Such lattices are important for the investigation of exact
partition function zeroes [41].

Quite generally the dual of a lattice model i1s obtained by replacing the
degrees of freedom on the vertices of the lattice with (possibly other) degrees
of freedom on the vertices of the dual lattice. These new degrees of freedom
may of course interact in an altogether different fashion than the old ones. As
a relatively simple example we mention the duality between the SOS and the

XY models [5].

The Ising and Potts models both allow for a duality in which the lattice and
the interaction strengths are altered whereas the degrees of freedom themselves
as well as the type of interaction remain the same. The duality of the Ising
model 1s by now standard textbook material, and we shall not repeat it here.
As far as the Potts model goes we begin by examining the duality of the par-
tition function. Since the main purpose is to see how the free energy per site
maps under duality in the limit of an infinite system, boundary conditions are
not of much consequence. In particular the argument determining the critical
temperature essentially applies to any boundary conditions on a lattice that is
self-dual (i.e., square) in the bulk.

4.1.1 Connection to the random cluster model

The g-state Potts model with degrees of freedom o; = 1,2, ... | q defined on the
vertices ¢ of a lattice £ can be mapped onto the so-called random cluster model
introduced by Kasteleyn and Fortuin [31]. Writing the partition function of the
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Potts model without a magnetic field as

7 =Y " [Iexp(Kijdo.,), (4.1)
{0} (if)

where H“j) is a product over the edges of £, and K;; are the edge-dependent
(reduced) coupling constants, we notice that the main obstacle to the evaluation
of the sum Z{o} is the fact that the Kronecker deltas d,,,; appear exponenti-
ated. Fortunately the latter can take only two values and can hence be written

eXp(I{ijéglgj) =1 + uijéo'lo']w (42)

where we have defined the variables u;; = exp(Kj;;)—1. Now imagine expanding
out the product H“j) of these binomials. Each term in the resulting sum is
given a graphical representation G in which each choice of the factor u;; (1) is
associated with the edge [ij] € £ being present in (absent from) G. An example
of a valid configuration G is shown in Fig. 4.1. The deltas enforce the equality
between all spins belonging to the same connected cluster of GG, and the sum
Z{a} can now be performed with the result that each such cluster (including
isolated vertices) is weighted with a factor of ¢. Thus

Z=> | I wi] 9, (4.3)

Gee \(i)ea

where C'(G) designates the number of independent clusters on G.
We first stipulate the duality between two very special graphs. Namely, the
full graph G = £ with partition function

Zean({uij}) = q ]___[ Ui (4.4)

(7)€L

is taken to be dual to the empty graph G* = () with

*

ngpty({u?j}) = qN ) (45)

where the number of dual sites N* is fixed by the Euler relation |{(ij)| = N +
N* —2.

Establishing the duality then amounts to ascertaining that all other graphs
have the same weight relative to this reference state as is the case in the dual
model. In the terminology introduced above, duality means that a graph con-
figuration G on the original lattice £ is dual to a configuration G* on the dual
lattice £* in which every bond of strength u;; being ‘present’ in G corresponds
to the dual bond of strength u;; being ‘absent’ from G* and vice versa.

In particular, removing one bond from the full graph (relative weight: 1/u;;)
must correspond to adding the corresponding dual bond to the empty dual graph
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Figure 4.1: Graphical representation of a typical term contribution to the par-
tition function of the random cluster model. Taken from Ref. [42].

(relative weight: u};/q), meaning that the bond strengths and their duals must
obey the relation

ujju; = q. (4.6)

When removing further bonds from G i1t may happen that a new cluster is
separated from the rest of the graph, yielding an additional factor of q. But
such a cluster formation corresponds precisely to a loop closure on the dual
lattice, also giving an extra factor of ¢! Since all graph configurations G can
be constructed by successive removals of bonds from the full reference state we
have thus proven the fundamental duality relation [43]

Z({uij}) = ¢CZ" ({ui;}), (4.7)

where C' = ¢~ V' H(U) u;; is a constant.

4.1.2 Determination of the critical temperature

One would now expect, again in analogy with the Ising model, that the funda-
mental duality relation (4.7) in conjunction with an assumption on the unique-
ness of the phase transition determines the critical temperature of the random-
bond Potts model on the square lattice.

To see that this is indeed the case we shall reproduce an argument first
given by Kinzel and Domany [30]. Consider for simplicity the case where the
couplings are drawn from a binary probability distribution

P(u) = pd(u—u1) + (1 — p)d(u — ug), (4.8)
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and where the two possible values u] and u} of the couplings in the dual system
are given by Eq. (4.6). By taking the logarithm of the fundamental duality
relation (4.7) we find the following identity between the singular parts of the
free energy in the original system and its dual'

Fs(ula UQJp) = FS(UT, U;;P) = FS(“;; UT, 1 _p)J (49)

where in the last step we have used a simple symmetry property of the function
Fs.

Assuming that the phase transition is unique this identity can be used to
determine the value of p and the relation between the couplings u; and uy for
which it occurs. To fix the value of p we examine the percolation limit (u; — 0,
ug — 00), where Eq. (4.9) becomes

Fy(0,00,p) = F5(0,00, 1 — p). (4.10)

Since by assumption there is precisely one singularity as a function of p this
must occur at p = 1/2, the percolation concentration. Inserting this value in
Eq. (4.9) and invoking once more the uniqueness assumption we furthermore
see that the couplings have to satisfy u] = us.

It is clear that this argument generalises to more complicated probability
distributions than (4.8). In fact, any discrete or continuous distribution P(u)
will locate the system at its critical point provided that it is self-dual

P(u) = P(u"), (4.11)

and that the random bonds are chosen in a spatially uncorrelated fashion. Any
particular realisation of the randomness is then self-dual ‘on average’.

4.2 Duality of cylindrical two-point correlators

In addition to the duality relation (4.7) for the partition function a similar
relation can be established for the spin-spin correlation function with both spins
situated on the boundary. We shall first consider the case of £ having the
geometry of a cylinder. This is particularly relevant to the construction of the
transfer matrices in Chapter 5, and will eventually allow us to devise a very
efficient way of extracting the magnetic scaling dimension.

As usual we define the local order parameter as [5]

. 1
Ma(r) = (Oa(r),a — g) s a = 1, e q. (412)

IThe constant ¢C appearing in Eq. (4.7) may seem problematic since it apparently de-
pends on the thermodynamic parameters u;; and hence may contribute non-trivially to F;.
Fortunately this is not so. Indeed it is easy to see, using Eq. (4.6) and the Euler relation, that

(N-N*)/2

for any self-dual realisation of the random bonds we have qC = ¢ , which depends

only on geometric factors.
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In the high temperature phase all components of the order parameter vanish,
whilst in the ordered (low temperature) phase the Z, symmetry is spontaneously
broken and one of the components, say a = 1, has a positive expectation value.
A simple calculation now shows that the correlation function Ggq(r1,72) =
(Mg (r1)Mg(rq)) is proportional to the probability that the points 71 and 7y
belong to the same cluster.

In a cylindrical geometry the graphs for which two points r; and rs, that
reside at opposite ends of the cylinder, are connected correspond to dual graphs
where clusters are forbidden to wrap around the cylinder. This is equivalent to
computing the dual partition function with twisted boundary conditions

o— (c+ 1) mod q (4.13)

across a seam running from r; to ry. By permuting the Potts spin states the
shape of this seam can be deformed at will as long as it connects r; and ry.
Duality thus maps the correlation function onto a disorder operator

(M (r1) My (rs)) = < II exp(_K*o‘Mj)> , (4.14)
7

seam

where 7* = Z*({K*}) is the dual partition function with periodic boundary
conditions. The factors of exp(—K*d,,,,) explicitly delete the seam-crossing
edges (ij) otherwise implied by the factors of exp(K*d,,0,) in Z*, cfr. Eq. (4.1).

4.3 Duality of planar n-point boundary correlation functions

As regards the n-point boundary correlation functions of the Potts model defined
on a planar graph £ a dramatic development has taken place during the last
year. A novel diagrammatic approach which enables such correlators to be
related to ratios of dual partition functions under fixed boundary conditions
(alias generalised surface tensions) was introduced by F. Y. Wu, and the well-
known result for n = 2 was explicitly generalised to n = 3 [35]. In an attempt
to carry through an analogous calculation for n = 4 we have suggested that
an appropriate generalisation of Wu’s method would be to extract one linear
relationship between the b, different partition functions with fixed values of the
boundary spins for each way of connecting the n boundary points by means of
a so-called auxiliary graph [36]. For reasons of planarity these graphs have to
be well-nested, but for n > 4 the number ¢, of well-nested graphs is less than
the number of unknowns b,,, whence the problem appeared insoluble.

Further progress was made when Wu and Huang realised that for n > 4 the
¢, equations thus obtained could be supplemented by certain sum rule identities.
The number of such identities is precisely b, — ¢,, hence providing a complete
solution of the problem [37]. Finally, a conjecture made in Ref. [37] for the case
of general n was proved by Lu and Wu [38].

In this section we first present the unadorned diagrammatic method, illus-
trated for the simplest non-trivial case of n = 2. We then present a proof that
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this method is insufficient for solving the case n = 4. Next, the sum rules are
discussed along with the solution for general n. We conclude with some ob-
servations on the presently unsolved case of n > 3 with cylindrical boundary
conditions.

4.3.1 The diagrammatic method

Consider the g-state Potts model defined on any lattice £ which can be embed-
ded in the plane so as to have a unique? boundary L. Let i and j be two sites
on 9L occupied by Potts spins ¢; and ¢;. The (generalised) two-point correlator
giving the probability that {o;, o;} are in the states {, ¢’} is defined by

Py(0,0") = (05,,605,,00), (4.15)

and its diagonal element is related to the conventional two-point correlator I's
through

T3(0i,05) = (400,,0, — 1) = ¢* P20, 0) — 1. (4.16)

The object of this subsection is to express Py through ratios of dual partition
functions under fixed boundary conditions.

By permutation symmetry of the Potts spins (o = 1,2,...,q) the partition
function can be written as

Z =qZ1+qlqg— 1) 712,

where Z,,0 = Z(0; = 0,0; = 0') denotes a restricted partition function with
fixed values of the boundary spins. Similarly, for the dual model we define
restricted partition functions with a fixed value of the dual spin that is situated
in the infinite region exterior to £ and that interact with all the dual spins
adjacent to the boundary L. For purposes that will become clear shortly we
shall imagine that there are two such exterior spins: one interacting with all the
spins adjacent to the portion of the boundary traversed when going clockwise
from ¢ to j, and another interacting with the remaining boundary spins as
shown in Fig. 4.2. For the moment these two spins are identical, and invoking
the permutation symmetry once more we have the identity Z2* = ¢Z7,. From
the fundamental duality relation (4.7) we then find

Z11 —|— (q — 1)Z12 = qCZTl (417)

To obtain another relation involving 7211 and Z15 we consider augmenting £
by an auziiary graph, which in this elementary example simply consists of an
additional bond of strength K located outside 0L that connects the sites ¢ and
j. Clearly, such a bond separates the two exterior dual spins just introduced,

2The cylinder can also be embedded in the plane, but will then have both an inner and an
outer boundary. It is thus excluded from the subsequent discussion.
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S S S S S S
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s s s s’ s’ s’ s’ s’ s’

(a) (b) (c)

Figure 4.2: A simple example of a planar lattice £ for which the duality transfor-
mation of the two-point function applies. Dual spins inside the lattice boundary
0L are shown as crosses. In situation (a) all dual spins adjacent to 9L interact
with a unique dual spin s in the exterior region. When computing 77, there are
two such exterior spins, s and s’. In (c) sites ¢ and j are connected through a
bond of strength K. Any such connectivity among the boundary spins is known
as an auziliary graph. Taken from Ref. [35].

and these in turn now interact through a bond of strength K*. The partition
functions for the modified system are

Z=q 2+ q(q— 121, 2" =q" 2} +qlg — 1) 77,
and Eq. (4.7) now yields
K7+ (= 1) 212 = C(e" = )[R 25, + (¢ - 1) 27,), (4.18)

since when including the auxiliary graph we have increased N* by one.

Solving Egs. (4.17) and (4.18) we find
71 =ClZn + (e = 1)Z75),  Z12 = ClZ7, — 7], (4.19)

which, of course, does not depend on the dummy variable K. For the correlators
one then finally obtains

Z1s
i)’

Z*
Ta(oi, 05) = (4= 1))

— (4.20)
"7

1
Py(o,0') = q—2 14 (¢bo,0r — 1)

In particular for T # T. and |i—j| > a the exponential decay (a;0;) ~ e~li=il/¢
is related to the surface tension 7 = —limy;_jj»c0 |t — j| 7" In(Zf,/Z5,) in the

dual model through ¢ = 1/7.

4.3.2 Inadequacy of equations for n = 4

This very elegant method of obtaining duality identities for the boundary corre-
lation functions works equally well for n = 3 [35]. There are now five restricted
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partition functions to be determined, viz. Z111, Z123, Z211, 4121 and Z119, and
accordingly one can find five independent relations. The first of these is trivial
and corresponds to Eq. (4.17) above. The other four are obtained by connect-
ing either of the two boundary spins through an auxiliary bond as before (three
equations) and by connecting all three spins to an auxiliary (non-dual) spin
placed outside 9L. Tt is then tempting to conjecture that the method gener-
alises straightforwardly to the case of n > 4 points [35].

This i1s however not so, as we shall now demonstrate. The essence of the
argument is there are in general b, quantities 7,, 5, . -, to be determined, but
there are only ¢,, topologically distinct auxiliary graphs each furnishing a single
independent relation among these quantities [36]. Here, ¢, is the number of
well-nested n-point connectivities (see Eq. (5.8) for a precise definition), whilst
b, is the total number of n-point connectivities, including the non-well nested
ones. For n < 3 these two numbers are identical, but for n > 4 we have b, > c,.
Further details on well-nestedness are given in Chapter 5.

As the argument is admittedly somewhat laborious the reader who is willing
to trust his geometrical intuition may wish to skip the rest of this subsection.
Before doing so, however, his attention is drawn to Eq. (4.28) which shows that
the result for the conventional four-point correlator

Z
20y (4.21)

Ty(oi, 05,08, 01) = q4P4(0'7 o,0,0)—1=q
can still be deduced by rather elementary means.
Consider then the ¢g-state Potts model on a two-dimensional planar graph £
having a free boundary L. As a simple generalisation of the situation shown in
Fig. 4.2 for the two-point case we let ¢, j, k and [ be four sites on 9L, following
one another in a clockwise fashion, and we define exterior dual spins sq, s3, s3
and s4 so that all boundary spins between sites [ and i of £ interact with a spin
in state s1, boundary spins between 7 and j interact with s, spins between j and
k with s3, and finally spins between k and [ with s4. The partition function with
the four Potts spins o, 0, o and o fixed in definite states is called Z5.5,0,0,,
and similarly the dual partition function for fixed exterior dual spins is denoted
by Z:1528354'
Up to the g-fold permutation symmetry of the Potts spin labels there exist
15 different boundary conditions for Z5,5,5,5, out of which we can form five
combinations

Zy = Zi111,

Z3 = Zai11+ Zi211 + Z1121 + Zi11e,

Zop = Zag1 + Za121 + Za112,

Zy = Zi123+ Zi213 + Z1231 + Z2113 + Z2131 + 22311,

Zy = 1934, (4.22)

which are symmetric under permutations of the four sites ¢, j, £ and I. We
introduce them here in order to simplify the notation in subsequent equations.
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Following the strategy outlined by Wu [35] we should extract equations re-
lating the Z5,5,0,0, and the 7 , . . by running through all possible ways of
connecting the sites ¢, j, k and [ by auxiliary bonds and using the fundamental
duality relation (4.7). Each time a bond is added one of the exterior dual spins
s is separated from its neighbours and thus allowed to take a different value.
We remark here that since the auxiliary bonds have to be drawn outside 90.L
they must necessarily be well-nested in the sense of Blote and Nightingale [44].

First, using the ‘empty’ connection (i.e., introducing no auxiliary bonds) we
find the relation

Za+(q—=1)[Zs+ Zapl + (¢ = 1)(q = 2)Zp + (¢ = 1) (¢ = 2)(¢ = 3) Z0 =
qC 7}, (4.23)

corresponding to Wu’s Eq. (19) for n = 3 (or to Eq. (4.17) given above for the
simplest case of n = 2).

Next, consider adding a bond between sites & and /. Summing over the two
‘free’ sites, ¢ and j, we obtain a reduction to the two-point case:

Zq:ijziju (4.24)

i=1j=1
= Znu+ (= D[Za111 + Z1211 + Z2211] + (¢ — 1)(q — 2) Zaz11.

VAR

Among the exterior dual spins, s4 has been separated from s; = sy = s3, so that
731 = Zf1p and 73 = 7711, Using the known result for 711, Wu’s Eq. (12),
along with the duality we find that

Z1111 + (@ — D[Z2111 + Z1211 + Zao11] + (¢ — 1)(q — 2) Zaz11 = (4.25)
ClZi1 + (g — 1) Z1110]

The equation is one out of a set of six obtained by connecting two of the sites
i, j, k and [ with a bond. Further equations can be found by considering 71,
instead of 711, but they can be shown to be linear combinations of Eq. (4.23)
and the six equations just obtained.

Another set of four equations can be found by letting one of the sites ¢,
j, k and [ be ‘free’ and connecting the remaining three. This corresponds
to a reduction to the three-point case. For example, adding a bond between
sites j and k and another between k and [, we find that 7111 = 23:1 Zii11 =
Z1111 + (¢ — 1)Z2111. The exterior dual spins now satisfy s; = s1, and from
Wu’s Eq. (25) for Z111 and the duality we obtain

Z1111 + (g — 1) 72111 = (4.26)

C * * * * < *
; 1Z511 + (@ = D[ 23500 + Z1101 + Z7110] + (0 = 1)(q — 2) 7123} -

Again, the equations found by reducing to Wu’s expressions for Z123, Z211, Z121
or 7113 do not contain any new information.
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The remaining equations can be found by connecting all of the sites ¢, j, k
and [ with auxiliary bonds of strength K. One way of doing this corresponds to
Wu’s Eq. (24) and implies connecting all the four sites to a common new point
n outside the boundary of £. All of the exterior dual spins are now separated
from one another. Summing over n we can express the partition function 7 of
this system through the Z; 5,0, and relate it by duality to its corresponding

dual partition function Z*. The result is
Za(e™ +q=1)+ (¢ = 1)Zs(* + e +9-2) +
(0= 172" +q=2) + (4= 1)(0 = 2)Zp(e* + 26" +¢=3) +
(7 - 1)(q —2)(q—3)Zo(4e™ +q—4) =

C * * * * *

q_ —-1) {Z 4 (g- 125+ Z3p — Z31mle™ +

(9= 1250 + (0= (9 = 2)[Z] — Zi515 — Zymle™ +

(=D —2)[Z1ns+ Zos] + (- 1)(9—2)(¢ —3)Z5}. (4.27)
From this equation the quantity Z4 can be found by substituting the duality
relation e®” = 14 ¢/(eX — 1) on the right-hand side, expanding, and comparing
the terms multiplying (eX — 1)* on both sides:

Ty = q% {73 + (e = D75 + Z5, ]+
(a—D(q—2Z;+ (¢—1)(a—2)(¢—3)Z; } . (4.28)

The other way of connecting all four sites is to connect two of them to a new
point m and the remaining two to another new point n. For instance, connecting
each of 7 and j to m with a bond of strength K, and similarly & and [ to n, we
find that sy and s4 are separated whilst s3 = s;. Summing over m and n as
before we arrive at

YU AZa+ (¢ — ) Za211} + Z11 %0 {(g — 1) 75 +
(= 1)(g = 2)[Z1123 + Zos11)} + 531 {(¢ — 1)[Zo112 + Zoroa]+
(¢— 1)(q = 2)[Zp = Z1123 — Zasu] + (¢ = 1)(¢ = 2) (g — 3) 70} =

— - 1) {Z* K (¢ = D[Z1a11 + Zf112]@2K* +
(q — 1) 73191 + (¢ = 1)(q = 2) Z7515} (4.29)

where we have defined ¥1; = 2K + (¢g—1) and ¥g; = 2¢K 4+ (¢ —2). A similar
equation can be obtained by connecting 7 and [ to m, and j and & to n.
Exactly at this point we get into trouble. For the 15 unknown quantities
appearing on the right-hand side of Eq. (4.22) we have obtained 14 independent
equations, namely Eq. (4.23), six equations of the type (4.26), four equations of
the type (4.27), Eq. (4.27), and two equations of the type (4.29). Clearly, what
is missing is a third equation of the type (4.29) in which ¢ and k are connected
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to m, and j and [ are connected to n. But the auxiliary bonds making such a
connection would necessarily intersect, thus violating the planarity of the graph
L. In other words, it would be impossible to define the four exterior dual spins.

This problem has to do with the connectedness [44] of the four points. Gen-
erally, for an n-point correlation the number of partition functions 75,5, o,
with fixed values of the n boundary spins equals the number of ways b, in
which n points can be interconnected, as is easily seen by interpreting o; = o;
as a connection between sites 7 and j. But the number of equations obtainable
using the method of Wu is only equal to the number ¢,, of well-nested n-point
connectivities [44], which is in general less than b,. Forn = 1,2,3,4,5,... we
have b, = 1,2,5,15,52,..., whilst ¢, = 1,2,5,14,42, .. ..

In an attempt to obtain more equations one could imagine introducing con-
nections between spins in the infinite face, thus converting any spin of valence
four or higher into interconnected spins of valence three.® In the case of the
four-point function this would mean discarding Eq. (4.27) and in addition to
the two equations of type (4.29) considering two new equations obtained from
these by connecting spins m and n with a fifth auxiliary bond. The first of
these, corresponding to Eq. (4.29), looks like

Z4(ST1 4 24) + (g — 1) Z3(Z11 821 + E3) + (0 — 1) Zo211 (5], + Sap) +

(¢ —1)(q—2)[Z1123+ Za311](Z11 821 + 3p) +
(0 —1)(qg—2)[Zp — Z1123 — Z2311) (23 + Zp) +
(4 = D[ Z2121 + Zo112] (B3, + Bop) + (¢ = 1)(q — 2)(g — 3)Z0 (T35, + Do) =
C * * * *
_3(6K )5 {24551( + (¢ — V)[Z7911 + Z1112]63K +
(¢ = V[ Z5111 4 ZT191 + Z3911 + Z3110)€” 2K 4 (9 — 1)Z§121€K* +
(¢ —1)(q—2)[Z] — Z3131]e K 4 (g —1)(qg—2)Z55 +
(¢—1)(¢—-2) (q -3)7Z5}, (4.30)

where we have defined X4 = (e — 1)(e*f 4+ ¢ — 1), T3 = (eX — 1)(e3K + K +
q—2), Zop = (B —1)(2e2K + ¢ —2), , = (ef — 1)(e?X + 2eK + ¢ - 3), and
Yo = (eX — 1)(4e® + ¢ — 4). Now, subtracting the sum of Egs. (4.30) from
the sum of Eqgs. (4.29) we regain, after some tedious algebra, 2(e® — 1) times
Eq. (4.27). But, on the other hand, subtracting the difference of Eqs. (4.30)
from the difference of Eqs. (4.29) we find the result zero, i.e., out of the four
equations where all the four spins are connected to auxiliary bonds there are
still only three that are linearly independent.

Although the method thus fails to isolate the Z,,5,0,0,, which would enable
us to construct the generalised correlation function Ps(c, o', ", ") as defined
in Wu’s Eq. (1), the ordinary correlation function F4(0’Z, 0j,0k,01) (see Wu's
Eq. (2)) has been fixed by our determination of Z4 in Eq. (4.28). By finding
linear combinations of the above set of equations for which the left-hand sides

3This was suggested to us by F. Y. Wu.
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are symmetric in the sense of Eq. (4.22) one could pursue the more modest goal
of obtaining the remaining four of these symmetrised combinations.

Clearly, Eqgs. (4.23) and (4.27) are already in this form. The sum of the six
equations of type (4.26) yields

6Z4+3(q—1)Z3+2(q— 1) Zpp + (¢ = 1)(9 = 2) 2 =
C{6Z; + (4= VIZ5 + Z3, — Z31:]} (4.31)

while the four equations of type (4.27) sum up to

424+ (¢ —1)Z3 = (4.32)
C 473+ 0= D =215 - Zis — Zirpl+
(4= D27 + 27, ~ Zia)]}. (4

As before, employing the two-point reduction Z75 or the three-point reductions
7193, 4911, 4121 and 7115 merely provides us with linear combinations of what
we already know.

But again, the two equations of the type (4.29) lead us into trouble. When
taking their sum it can easily be seen that the left-hand side cannot be written
in terms of the symmetrical combinations (4.22). To symmetrise we would again
need the non-well nested equation, which however leaves the exterior dual spins
undefined.

In conclusion we have shown that, although the ordinary correlation function
is fairly easily determined, the method of Ref. [35] does not permit a complete
evaluation of the generalised correlation function for n > 4 points, due to the
appearance of non-well nested connectivities.

4.3.3 Sum rule identities and general solution

Despite this apparent shortage of equations the general problem of mapping
the planar n-point correlator under duality can be solved. This was made clear
when Wu and Huang subsequently realised that the ¢, equations furnished by
drawing well-nested auxiliary graphs [36] must be supplemented by certain new
sum rule identities [37]. The number of such identities is exactly b, — ¢y, thus
allowing for a complete determination of the b, quantities 7Z;;..5;.

The idea is surprisingly simple, at least for n = 4 which we consider first.
Imagine expanding the restricted partition functions as sums over graphical
configurations in the random cluster model. In Eq. (4.3) the number of clusters
C(G) now excludes those that are connected to any of the four boundary spins,
which are taken to have fixed values. The contributions to the ‘non-well nested’
quantity Zy212 can then be written as a sum of three terms

Zigia =T1 + Ty 4+ T3, (4.34)

where 77 are the graphs where sites i and k belong to the same cluster, T3 are
those where j and [ belong to the same cluster, and finally 75 are the graphs
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where all four boundary spins ¢, j, k£ and [ belong to different clusters. Note
that it is of course possible for two boundary spins to be in the same fixed state
without belonging to the same cluster, but not conversely!

From the same line of reasoning it is then found that

Zioiz =Ty + T3, Zo131 = Ts + T3, Z1934 = 13, (435)
and we thus infer the sum rule identity
Z1212 = Z1213 + Z2131 — Z1234. (4.36)

This provides the fifteenth equation missed so far, and indeed allows for a com-
plete determination of all the Z;;;.

In general, the existence of one sum rule identity for each non-well nested
Zij...11 originates from the planarity of the random cluster graphs. The identities
then follow from the principle of inclusion-exclusion [45]. All identities thus
obtained are distinct due to the uniqueness of the random cluster expansion.

Having obtained explicit expressions for the fifteen Z;;z; in the case n = 4
the authors of Ref. [37] were then able to conjecture the structure of the solution
for general n. Very recently this conjecture has been proven by Lu and Wu [38].

4.3.4 Cylindrical boundary conditions

The question now arises how these results can be generalised to other geometries
(i.e., £ non-planar). Here the case of the four-point correlator with two points
placed as nearest neighbours on each end of a cylinder is especially interesting,
since it is related to the energy-energy correlation of the Potts model. If one
could sort out how such a correlation function maps under duality and then go
on to compute 1t by imposing certain boundary conditions on the dual lattice
transfer matrix, one would have devised a useful alternative way of computing
the thermal scaling dimension z; from what is essentially a free energy. The
existence of such a method would be particularly desirable in the context of
the random-bond Potts model, since here the lack of self-averaging leads to
highly non-trivial problems about using generalisations of standard conformal
field theory predictions to extract the scaling dimensions from the transfer ma-
trix (Lyapunov) spectrum [46, 47]. These aspects will be discussed further in
Chapter 6, where we shall also shown how the duality relation for the two-point
function in a cylindrical topology, Eq. (4.14), leads to a very powerful method
of determining the magnetic exponent zp,.
Writing, for general n,

Zpiwgzy = Cnl(0) Y M(zi,2o, . Zalyr, ¥o, o Un) 25, gy (437)
et

with Cy,(q) = ¢~ (N=N")/2 [37], duality can be viewed as a linear transforma-
tion with coefficients equal to the elements of some matrix M. The dimension
of M is ¢™ x ¢™, but taking into account the permutation symmetry between
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the states of the n Potts spins the effective dimensionality is in fact only b, x b,,.
Applying the duality transformation twice one ends up with the identity trans-
formation

M? (21,29, ... xa|2), 2y, ..., 2h) = ¢"T10 (21, 25)0(2a, 25) - - -6 (2n, 2),
(4.38)

apart from a trivial constant and a cyclic permutation of the indices*.

This reciprocal inversion relation [37] is valid for any geometry that can be
embedded in the plane, at does not depend on the existence of auxiliary graphs.
To be specific, let us imagine the cylinder embedded in the plane, in which
case its boundaries are topologically equivalent to those of an annulus. The
physically interesting case corresponds to boundary spins ¢ and j residing on
the exterior boundary 0L, and spins k£ and [ on the interior boundary 9.L,.

At first sight Eq. (4.38) provides us with 15 x 15 = 225 equations for the 15
unknown quantities 7Z;;5;. However, a detailed study reveals that a lot of these
are in fact linearly dependent. This information can be supplemented with
relations obtained from ¢y x ¢3 = 4 auxiliary graphs, but despite a thorough
investigation undertaken by Wu and the present author this still does not appear
sufficient to determine the duality relations. A simple derivation in the spirit of
Eq. (4.28) is impossible since the topology at hand does not allow for auxiliary
graphs interconnecting spins on 9£; and dL2. Another worrying observation is
that the result (4.14) for the equivalent n = 2 case reveals that the physically
interesting boundary condition has to do with a seam connecting 9L and 9L,
and it is not obvious how this can be related to boundary condition on the dual
spins adjacent to 9L ».

Resumo en Esperanto

Ni montras ke la Potts-modelo ekvivalentas al la grapolmodelo (4.3) en kiu ¢iu
konfiguracio estas egperkola grafikajo kiel tiu de Fig-o 4.1. Ciu sendependa
‘grapolo’ portas faktoron de q. Ci—reprezentigo faciligas la diskuton de dualeco
(4.7). Ajna atitoduala distribuo (4.11) de la aleatoraj kuplajoj lokas la sistemon
sur la kritan punkton. La dupunkta korelacia funkcio en cilindra geometrio
dualas al orlo da frustritaj egoj (4.14).

Nova diagrama metodo de Wu [35] permesas la dualigon de n-punkta randa
korelacio por ebena reto (Fig-o 4.2). Por n > 4 estas malpli da diagramoj
(t.e. ekvacioj) ol nekonataj Z,, o, . 0., kaj necesas suplementi ilin per sum-
reguloj (4.36). La analoga problemo por malebena (ekz-e cilindra) reto restas
nesolvita.

4The permutation arises when both the z; and the y; variables follow one another in a
clockwise fashion. By orienting the y; anti-clockwise this asymmetry could be circumvented.
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Construction of the transfer matrices

Although a large amount of high-precision results has been obtained by com-
bining transfer matrix (TM) techniques with finite-size scaling for almost any
conceivable type of pure statistical mechanics system (see, e.g., Ref. [48] for a
review) the use of TMs in the study of disordered systems seems to have at-
tracted rather little interest as compared with the complementary approach of
Monte Carlo simulations.

A straightforward way of setting up the TMs for the ¢-state Potts model is
to use the traditional spin basis where the state of a row of L spins is labeled
by the ¢ basis states {o1,04,...,0r}, ; = 1,...,q. Whilst this approach is
highly efficient for ¢ = 2,3 it has two major shortcomings in the general case.
First, the dimension of the matrices grows exponentially with ¢, in particular
making inaccessible the regime of ¢ > 4 which is our main concern. Second, the
restriction to integer values of ¢ is unnecessary and in fact makes it difficult to
compare numerical results with analytical calculations in the (¢ — 2)-expansion
[24, 25, 26].

Both these shortcomings can be remedied by writing the TMs in the con-
nectivity basis introduced by Blote and Nightingale [44]. In this representation
the dimension of the TMs is independent of ¢ which enters only as a continuous
parameter. In fact, the number of basis states is asymptotically ~ 4% (or ~ 5%
upon imposition of a magnetic field) with a rather small coefficient of propor-
tionality, in practice making this basis the preferred choice for all but the Ising
model (¢ = 2).

We have generalised these TMs to include quenched bond randomness, and
also devised an alternative method of accessing the magnetic properties through
the introduction of a seam along the strip. Furthermore, in the percolation limit
the TMs are found to simplify in a manner that makes calculations for rather
large strip widths feasible. For convenience these results are presented along
with a review of the relevant parts of Ref. [44] thus making our description of
the Potts model TMs self-contained.

Before turning to the details on this construction, let us briefly recapitulate
how numerical results about the universal behaviour of a system at a second

54
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order phase transition can be extracted from the transfer matrices.

5.1 Numerical results from transfer matrices

Although our transfer matrices will apply to the random cluster model with
any inhomogeneous distribution of the bond strengths and the cluster weights'
we shall mainly be concerned with the random bond Potts model (RBPM)
where the quenched random couplings K;; are drawn from the symmetric binary
distribution?

P(K) = %[J(K — K1) 4+ 6(K — Ky)]. (5.1)

Here the ratio between strong and weak bonds R = K,/K; measures the
strength of the randomness. For the special choice

(efr —1) (2 = 1) =¢ (5.2)

the model is on average self-dual, as was discussed in detail in Chapter 4. As-
suming that the phase transition is unique the model is therefore at its critical
point [30].

5.1.1 Eigenvalue and Lyapunov spectra

One could thus hope that the transfer matrices constructed in accordance with
Egs. (5.1) and (5.2) do somehow contain exact numerical information about the
universal behaviour of the RBMP at its critical point. That this is indeed the
case for any pure system that is conformally invariant constitutes one of the
remarkable triumphs of the application of conformal field theory (CFT) to the
description of two-dimensional critical phenomena.

Namely, it is well-known that in the pure case (R = 1) the operator content
of the CFT underlying the model is related to the eigenvalue spectrum {\;(L)},
i=0,1,2,..., of the TM for a strip of width L through [49]

2mx; .
fil) = fo(L) = 5=+, (5.3)
where f;(L) = —+InX;(L) are the generalised free energies per site (in units of

kpT) and z; the scaling dimensions of the corresponding operators.
Similarly the central charge (also known as the conformal anomaly) ¢, mea-
suring the number of bosonic degrees of freedom of the CFT, is related to the

1We do not know of any model, though, where the latter generalisation is of any physical
relevance.

20ther self-dual distributions of the random bonds than that of Eq. (5.1) have also been
investigated in order to check our results. In particular, we have found the trinary distribution
introduced in Sect. 6.2 useful, since it gives us a clearer idea about the length scale associated
with the random impurities.
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finite-size corrections to the customary free energy through [50, 51]

me

ezt

fo(L) = fo(o0) (5.4)

Both these results can be derived by conformally mapping the plane onto the
strip through the logarithmic transformation w(z) = % In z.

In the random case the TMs are no longer constant but depend on the partic-
ular realisation of the random bonds within each row of the strip. Accordingly
the concept of eigenvalues generalises to that of Lyapunov exponents. Start-
ing with some suitable initial vector of unit norm |vg), the leading Lyapunov

exponent can be found by the Furstenberg method [52]
. 1 “«
Ao(L) = lim —In| | TT7 | vo)| . (5.5)

where 7; is the TM acting between rows j—1 and j. The average free energy per
site is given as before by fo(L) = —%Ao (L). Higher exponents are found by iter-
ating a set of n vectors {|vg)}7Z), where a given |vg) is orthogonalised to the set
{|vi)};=) after each multiplication by 7; [53]. Surprisingly, this method works
even for a non-hermitian TM, and it is numerically shown to be independent of
the choice of the initial vectors.

When some symmetry (e.g., spin reversal or duality) is manifest in 7; the
orthogonalisation can be circumvented by iterating vectors which belong to def-
inite irreducible components of that symmetry, but the S, permutational sym-
metry inherent in the Potts model has been lost through the mapping to the
random cluster model which forms the backbone of our TMs; see Sect. 5.2.

As to the extraction of physical information from the spectra, Eq. (5.4) is
supposed to retain its validity provided that ¢ is replaced by the effective central
charge ¢/, that in the standard replica formalism is the derivative of ¢(n) with
respect to the number of replicas at n = 0 [23]. The question to which extent
Eq. (5.3) also remains valid is by no means trivial and we shall dedicate a fair
part of the discussion in Chapter 6 to it.

5.2 Mapping to the random cluster model

Introducing an imaginary ‘ghost site’ with fixed spin og = 1 the partition func-
tion for the Potts model can be written as

7 = Z Hexp([(ijfiglgj) HGXP(Hi5a,oD) , (5.6)
{e} \ (i) (i0)

where H(ij is the usual product over pairs of nearest neighbour sites and each
site 7 has fjeen connected to the ghost site 0 with a similar notation. The
reduced magnetic field H;, here taken to be site-dependent, now enters at the
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same footing as the reduced exchange couplings K;;. It should be pointed
out, however, that a random coupling to the ghost site is not a true random
field, since the latter would try to force different sites into different Potts states
and not just into the particular state of the ghost site with a site-dependent
probability. To avoid any confusion we shall therefore specialise to the case of
a homogeneous field H; = H.

The site variables can now be traded for bond variables through the mapping
to the random cluster model introduced by Kasteleyn and Fortuin [31]. Details
on the case of H = 0 have already been given in Sect. 4.1.1. In terms of the
variables u;; = efii — 1 and v = eff — 1 the appropriate generalisation to the
case of H > 0 reads

7= S\ IL 4L IO ) 6o

GCL GoClo \(ijea 1 (30)€Go

where £ denotes the set of all nearest neighbour bonds, £4 the bonds from each
of the N Potts spin to the ghost site, and {(GUGY) is the number of independent
loops on the combined graph G'U Gy.

The usual construction of the transfer matrix 7 for a strip of width L seems
to be obstructed by the non-local factor (G U Gyg), but this can be taken into
account by choosing a basis containing information about which sites of a given
row are interconnected through the part of the lattice below?® that row (including
connections via the ghost site). This leads us to the concept of connectivity
states, which we consider next.

5.3 The connectivity states

In order to determine the number of loop closures induced by appending a new
row of L sites along with the corresponding L connections to the ghost site to
the top of G U Gy, we need information about how the sites in the top row of
G U G were previously interconnected. This information is comprised in the
connectivity state (i1i2...1r), where iz = 0 if site ¢ is connected to 0 within
the combined graph G U Gg and, otherwise, i, = i, is a (non-unique) positive
integer if and only if sites » and s are connected within G.

Whilst this ‘index representation’ is useful for determining whether a newly
appended bond does or does not close a loop, and thus will allow us to explicitly
construct the single-bond TMs in the next subsection, a one-to-one mapping to
the set of consecutive integers {1,2,...} is clearly needed to define a ‘number
representation’ which will enable us to label the entries of the TM and thus
to perform actual computations. These representations and the mapping were
supplied by Ref. [44] as were the determination of the number of connectivity
states (dr with and er, without a magnetic field). We shall review the necessary
details and also give details on the construction of the inverse of the mapping
just mentioned.

3Unlike what is commonly the case we take the TM to act in the positive y-direction.



58 Chapter 5. Construction of the transfer matrices

5.3.1 Enumeration and ordering of the connectivities

Consider first the case of H = 0 where all ghost bonds carry zero weight (v = 0).
The connectivity states then have all 7, > 0 and can be recursively ordered by
noting that the index representation is well-nested, 1.e., forr < s <t < u

(ip = ie) A (iy = iu) = iy = iy (5.8)

It follows that if we define the cut function p(i1is...i1) to be the smallest ¢ > 1
such that 4; = ¢, if such a ¢ exists, and L 4 1 otherwise, the left (iziz...7,_1)
and right (i,i,41...71) parts of the index representation are both well-nested.
A complete ordering of the well-nested sequences is now induced by applying
the cut function first to the whole sequence, then recursively to its right and
finally to its left part.

More precisely, the mapping from the index to the number representation is

effected by

sliviy. iy = { 1IFL<]
1520 = e k-1 + [o(ip...ip) — er—o+ o(ia .. . ig_1) otherwise,
(5.9)
where k = p(i192...iz) and ¢, ; = 2222 Ci—9Cn—;i+1 With
(2n)!
n = Cn,n = Y, 5.1
fn = Cnn+l nl(n+ 1)! (5.10)

giving the number of well-nested n-point connectivities [44, 54]. Explicit values
are shown in Table 5.1.

To consider the general case of v # 0 we remark that the subsequence of
non-zero indices is still well-nested. A complete ordering of an index represen-
tation (i1¢2...ir) with precisely s zero indices is then induced by first ordering
according to the value of s, then lexicographically ordering the zeros, and fi-
nally using the ordering of the well-nested subsequence (ip,¢p, ...%p,_,) given
by Eq. (5.9). The lexicographic ordering is carried out by

1 lfL = 1 or s = L
Y(irig...ip) = Y(iziz...ir) if i #0 (5.11)
(57 + liais .. i) if i1 = 0,

and the mapping to the number representation is finally
T(i1dy ... 4p) =dp s—1 4 [Y(hda .. .in) — Ler—s + 0(ip,Ipy - - 3p,_,), (5.12)
where d,, ; = Zi’:o (?)Cn—i with

do Zdpn=Y <“) Cn_i (5.13)
N 2

giving the number of general n-point connectivities. Again, explicit values are
presented in Table 5.1.
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L Cy, dL dL — CJ, LCL bL
1 1 2 1 1 1
2 2 ) 3 4 2
3 5 15 10 15 5
4 14 51 37 56 15
5 42 188 146 210 52
6 132 731 599 792 203
7 429 2,950 2,521 3,003 877
8 1,430 12,235 10,805 11,440 4,140
9 4,862 51,822 46,960 43,758 21,147
10 16,796 223,191 206,395 167,960 115,975
11 58,786 974,427 915,641 646,646 678,570
12 | 208,012 4,302,645 4,094,633 2,496,144 4,213,597

Table 5.1: The number of connectivity states for a Potts model transfer matrix
of width I with (dz) and without (cz) an external magnetic field. Also shown
is the size of the magnetic sector when using a ghost site (dr, — ¢r) and a seam
(Ler). For large strip widths the seam is advantageous. The number c¢f of
well-nested L-point connectivities should be compared to the total number of
L-point connectivities by, which increases faster than exponentially as a function

of L.

5.3.2 The inverse mapping

To construct the inverse mapping, z.e., the one taking us from the number to
the index representation, we solve 7 = 7(i1is...11,) for the indices (i1i5...11)
by performing the following steps. First, the number of zero indices is found as
s = max{s|dy, ,_1 < 7}. Second, perform a slightly modified integer division by
writing

T—drs—1=Qcr—s+ R, (5.14)
where the remainder R is restricted to take its values in the interval [1,cz_g].
From Eq. (5.12) we infer that ¢y = @+ 1 and ¢ = R. Third, the position of the

first (leftmost) zero index is given by if_; = 0, where k£ = max{k|(§) < ¢}
This procedure of finding the zero indices is then iterated with

k
we¢mz¢—<g (5.15)
until %) = 1, and the remaining s — s’ zeros are filled in from the right:

lsrig1 = - =151 =15 = 0.

It remains to deduce the subsequence of non-zero indices by inverting o =
0(ip, tpy - - .3p, ) with [ = L—s. After initialising 7,, = p1 we proceed by recursion
as follows. First, choose

k = min{k|e; g1 + cr_aci—k41 > 0} (5.16)
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If £ <1 we have then found a connection: 2,, = 1,,. This procedure of find-
ing the connections is now iterated on the left (i,,...,7y,_,) and the right
(Yps- - - ,ip,) parts of the remaining sequence. If k > 2 the assignment i,, = ps
is performed. By (modified) integer division we then write

c—cr-1=0Qck_2+ R (5.17)
with R € [1, ¢i—k41], and pass over the left part of the sequence with
ool =R 110 =k-2 (5.18)
and the right part with

ool =Q 41, 11l =ikt (5.19)
The recursion stops when for any sequence (™) < 2. If then 1(™) = 2 and the
sequence is (ip,, ip,,,) We perform the assignment i, =ip, if o™ =1 and
ipa+1 = Pa+1 if U(m) =2.

Any way of constructing the index representation (415 ...ir) will of course
reflect the above-mentioned arbitrariness as to the actual values of the non-zero
indices, but the particular procedure just outlined is easily seen to ensure that
all indices are < L. This invariant is useful since then any given site ¢ can be
disconnected from the rest by assigning iy = L + 1.

5.4 The single-bond transfer matrices

The amount of computer time necessary for building up a long strip by repeated
application of the transfer matrix 7 can be enormously reduced by decomposing
the latter as a product of sparse matrices, each corresponding to the addition
of a single bond to L.

Specifically we write 7 = 77TPTV, where

T =T TT (5.20)

is connecting each of the L spin sites in the uppermost row of the strip to a new
spin site situated vertically above it, and

T" = 7-151,1 o 7-2h3/r1h2 (5.21)

is finishing the new row of £ by appending horizontal bonds between each of
the nearest-neighbour dangling ends created by 7. The matrix 7,1, imposes
periodic boundary conditions by interconnecting the newly added spiyns at sites
L and 1. Finally

TO =T TTY (5.22)

furnishes the bonds of £ from each of the new spin sites to the ghost site. Each
of these single-bond TMs is implicitly understood to depend on the particular
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realisation of the bond randomness and, in the case of 7.°, the possibly random
coupling to the ghost site pertaining to the site in question (but see Sect. 5.2).
Upon addition of one single bond the summation over graphs in Eq. (5.7) is
augmented by a sum over the two possible states of this new degree of freedom,
viz. the bond added to £ (Ly) can be either present or absent in G (Gy). Cor-
respondingly each column of the TM has at most two distinct non-zero entries.
Consider first adding a vertical bond by action of 7Y, € {1,..., L}. If the
bond is ‘present’ any given connectivity state (i1iz...ir) of the L uppermost
spin sites will be left unchanged. In case of an ‘absent’ bond site [ will be dis-
connected, and the number representation of the new connectivity state can be
found by assigning ¢; = L 4+ 1 and using Eq. (5.12). Interpreting the factor of
¢~ in Eq. (5.7) as an extra factor of ¢ going with each vertical bond we see that
the non-zero entries in 7;" corresponding to a column with a given connectivity
number are a diagonal contribution of u;; and a possibly off-diagonal contribu-
tion of ¢. In particular the vertical bonds do not induce any loop closures.
Similarly the TM of a horizontal bond 7;3_1_1 has a diagonal entry of 1 for
each column, corresponding to the bond being absent. The other non-zero
entry corresponds to a present bond, and its value depends on whether a loop
is being closed or not. Given the connectivity state (éy...4%41 ...i1) of some
column in the TM this is determined by comparing ¢; and #41: if they are equal
we get an additional diagonal contribution of w; ;41 corresponding to a loop
closure, whereas if they are different there is an off-diagonal entry with value
uy141/q. In the latter case the connectivity number is found by assigning the
value min{i;, 4,41 } to all indices that were formerly equal to either 7; or #;41 and
applying Eq. (5.12). (The reason why we copy the minimum index is to ensure
the proper handling of spins connected to the ghost site.)
Finally, the TM of a ghost bond 7, has the same form as in the case of a
horizontal bond if we make the substitutions u; ;41 — v; and 441 — 0.

54.1 Anexample: L=3and v =10

As a simple illustration of this decomposition of the transfer matrices we shall
explicitly construct the single-bond TMs in the non-magnetic sector (v = 0) for
a strip of width L = 3. In this case there are ¢ = 5 connectivity states, which
are ordered according to Eq. (5.9) as

o(111) =1, o(112)=2, o(121)=3, o(122) =4, o(123)=5. (5.23)

Consider first adding the first vertical bond of strength uy. The task is to
find out what are the possible transitions among the connectivity states and, for
each allowed transition, what is the value of the appropriate Boltzmann factor.
For each connectivity state the bond may be either ‘present’ or ‘absent’. The
former case will lead simply to a diagonal element uy, whereas the latter will
imply the disconnection of site 1 and hence the following non-trivial transitions
between connectivities

1—4, 2-5, 3—5 4—-4 55 (5.24)
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In each of these cases site 1 has been liberated and must at the present stage
be regarded as an isolated site. Accordingly it will carry a weight of ¢q. The
single-bond TM is therefore

w0 0 0 0
0 u 0 0 0
V=0 0 uw 0 0 (5.25)
q 0 0 ui+g 0
0 ¢ ¢ 0 uy +¢

Expressions for 75" and 73’ can be found from analogous considerations, or alter-
natively by a cyclic shift of the site labels leading to the following permutations
of the connectivity states

{1,2,3,4,5} — {1,3,4,2,5}, (5.26)

which can be used to obtain 75 from 77" and again to get 73" from 75 .

The matrix 7_1}32 pertains to the horizontal bond of strength u}i2 connecting
sites 1 and 2. For any connectivity state there is a diagonal contribution of 1
corresponding to this bond being ‘absent’. A ‘present’ bond, on the other hand,
will lead to the following transitions

151, 22, 3—=1 451, 5—2. (5.27)

In the two cases where the connectivity state does not change, sites 1 and 2 were
connected beforehand and the Boltzmann weight is u}iz. The three off-diagonal
transitions correspond to a merger of two clusters and must hence be weighted
by u¥ ,/q. Hence

I+ U}f,z 0 U}f,z/q U}11,2/f] 0
0 1+ u}fyz 0 0 u}fyz/q
Ty = 0 0 1 0 0 (5.28)
0 0 0 1 0
0 0 0 0 1

Once again, ’7-2}}3 and ’7}}}1 can be found by permuting the basis states according
to Eq. (5.26).

Finally, since v = 0 in this example, 7q is just the identity matrix.

5.5 Magnetic properties

It is well known, at least in the case of a pure system, that physically interesting
quantities like the central charge ¢ as well as the thermal (z7) and the magnetic
(zgr) scaling dimensions can be extracted from the transfer matrix spectrum;
this has already been mentioned in Sect. 5.1.1. Consider for the moment the
case of vanishing magnetic field, H = 0. Since connections to the ghost site are
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then generated with zero weight (v = 0) such connections can only be present
in any row if they were already there in the preceding row. In particular, noting
that in the numbering of connectivities induced by Eq. (5.12) the non-ghost
connectivities precede the others, we see that the TM assumes the following
block form [44]
11 12
T = [ 7-0 ;22 ] ) (5.29)
where superscript 2 (1) refers to the (non-)ghost connectivities.
The largest and the next-largest eigenvalues of 7 turn out to be the largest
eigenvalue of block 71! and 722 respectively, and from the corresponding (re-
duced) free energies per site fii (L) = —+ A5 (i = 1,2) for a strip of width I the

— L
magnetic scaling dimension can be found from the CFT formula [49]

2mx
FEAL) = M (1) = =5
Physically this relation to g can be understood by noting that by acting re-
peatedly with 722 on some initial (row) state |vg) # 0 one measures the decay of
clusters extending back to row 0. This must have the same spatial dependence
as the spin-spin correlation function and hence be related to zp [44]. Analo-
gously 7' measures the decay of two-point correlations between pairs of spins
being interconnected within the random cluster model. This is nothing but the
energy-energy correlation in the strip geometry, and accordingly we expect that

(5.30)

2mey
M - ) =2

o (5.31)

where fl1(L) is the next-largest eigenvalue of 711

We have checked the results for 2z by constructing a realisation of the TM
in the presence of a seam spanning the length of the cylinder. Our algorithm
also merits attention on its own right since it improves the asymptotic number
of basis states necessary for finding f22(L) from dy, — ¢z, ~ 5 (the dimension
of T%2) to Leg, ~ L4T . In practice, however, with the strip widths L accessible
using present-day computers the two algorithms perform more or less equally
fast (see Table 5.1 for a comparison).

Let us recall from Sect. 4.2 that the spin-spin correlator for the Potts mo-
del on a cylinder is mapped onto a disorder operator under duality. Since the
relation between the transfer matrix spectrum and the scaling dimensions of
physical operators pertains to the limit of an infinitely long cylinder, and the
square lattice wrapped on such a cylinder is in fact self-dual, we need not distin-
guish between the lattice and its dual. The task then is to compute the (dual)
partition function with twisted boundary conditions

o — (c+1) mod ¢ (5.32)

across a seam spanning the length of the cylinder. The permutational symme-
try between the Potts spin states implies that the shape of this seam can be



64 Chapter 5. Construction of the transfer matrices

deformed at will as long as its end-points remain fixed. Obviously the boundary
condition (5.32) is equivalent to restraining the clusters of the random cluster
model from wrapping around the cylinder.

The construction of the TM in the presence of a seam is facilitated by the
following observation: If no cluster is allowed to wrap the cylinder, each graph
contributing to the partition function can be associated with a function s(j) of
the row number j, such that s(j) = k& € {1,..., L} means that in row j no
horizontal bond connecting sites k& and &k + 1 (mod L) is present. For obvious
reasons we shall refer to s as the virtual seam. We can then write the TM in a
basis which is the direct product of the I possible values of the virtual seam and
the customary ¢y non-ghost connectivities. The virtual seam is initialised by
assigning to it a definite value in row 0, viz. s(0) = L for all graph configurations
of that row.

The single-bond TM of a vertical bond is diagonal in s, but a present hori-
zontal bond not inducing a loop closure may alter the value of the virtual seam.
Let us recall from Sect. 5.4 that to find the connectivity state (é; ...4 441 ...91)
giving the row label of Tll ; that corresponds to the off-diagonal entry with
value u;;41/q we would join the two distinct clusters formerly labeled by either
1; or #41. But such a merger would ruin the invariant stated above, unless we
move the virtual seam at the same time. On the other hand, if 4 = 4,41 and
s(j) = ! we must explicitly prevent a cluster from wrapping the cylinder by
leaving out that extra diagonal contribution which would otherwise by implied
by the condition #; = #;41. In this case the virtual seam is not moved.

5.6 The percolation limit

In the random bond Potts model the couplings u;; > 0 are quenched random
variables, and the critical point can be accessed by drawing them from the
symmetric binary distribution P(u) = %[5(11 —uy) + 6(u — ug)], where ujus =
q. For details, see Sect. 4.1.2. Bond percolation can be studied in the limit
u; — 0, us — oo of infinitely weak and strong bonds respectively. In this
limit considerable simplifications occur in the TM, rendering computations with
rather large strip widths feasible.

In the percolation limit all single-bond TM have only one non-zero entry per
column. Recall from Sect. 5.4 that in the general case there are two such entries
of which one is diagonal and the other is ‘non-trivial’. In the case of the strong
vertical bonds and the weak horizontal bonds only the diagonal entries survive,
so that the matrices 7., = u21 and Th . =1 both become trivial. On the
other hand, a weak vertical bond corresponds to a TM having one non-trivial
entry of ¢ per column, whilst a strong horizontal bond is represented by a TM
that is us times a non-trivial matrix with entries of 1’s and 1/¢’s.

The factors of uy multiplying both 7. and Ttmng are innocuous albeit
infinite, since of the 2L single-bond matrices constituting the entire 7 there will
on average be L strong ones, hence L factors of us. On the level of the specific
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free energy this amounts to an infinite additive constant
IHL) = —Inuy + fN(D) (5.33)

independent of the strip width L. In particular, the central charge ¢ can be
extracted from the finite quantity fl1(L).

As we shall see in Chapter 6 this quantity can be found by measuring the
asymptotic growth of the norm of (H;n:l 7}11) [vo), where |vg) is some largely
arbitrary initial vector. In the percolation limit the TM turn out to be so
sparse that after a very few iterations the resulting vector has only one non-zero
component. Computationally this means that it is sufficient to store the row
index of that non-zero component as well as its norm. Both time and memory
requirements are thus enormously reduced, allowing us to access larger system
sizes.

The disadvantage of this projective quality of the percolation point TM is
that neither the thermal nor the magnetic scaling dimensions can be found from
the Lyapunov spectrum. In the case of £y an initial vector in the 722 sector

£22

will rapidly decay to zero, thus invalidating the procedure for finding f5*(L),
and the alternative of using a seam is obstructed by the fact that disallowing
the entry in the horizontal bond TM that corresponds to a cluster wrapping
the cylinder is incompatible with the argument of pulling out an overall factor
of us from the TM. Very recently, an analogous problem encountered when
constructing the TM for simple bond percolation has been resolved [55].

Resumo en Esperanto

La grapolmodelo (5.6) estas la elirpunkto de tre efika reprezentigo de la trans-
fermatrico por la aleatora Potts-modelo. Anstatau la tradicia spinbazo uzatas
bazo de ¢iuj eblaj konektecoj de I punktoj plenumantaj (5.8). Tiel la dimensio
de transfermatrico por rubando de largo L reduktigas de ¢© al ¢z, ~ 4L (vidu
Tab-on 5.1). Alia avantago estas ke ¢ nun aperas kiel kontinua parametro. La
magneta] proprecoj perdigas en la proceso, sed eblas retrovi ilin tra kuplado de
¢iuj spinoj al ‘fantoma spino’ oy = 1.

Ni detale konstruas la konektostatojn kaj nombre ordigas ilin. Malkombi-
nado de la transfermatrico en magrajn matricojn por la unuopaj egoj kompleti-
gas la optimumigon de nia algoritmo. En la perkola limo okazas simpligoj kiuj
permesas kalkulajojn por ec¢ pli largaj rubandoj.



Chapter VI

Numerical results

Some of the most powerful predictions of conformal field theory pertain to the
relation between the structure of the transfer matrix spectra and the critical
exponents of physical operators. Using these and other techniques we determine
the central charge and various scaling dimensions of the random-bond Potts
model. The generalisation from eigenvalue to Lyapunov spectra turns out to
imply that certain well-established predictions must be modified. We conclude
the chapter with a few considerations on the presently unknown CFT underlying

the RBPM.

6.1 Softening of the transition

Before attempting to determine the universality classes of the RBPM it is es-
sential to make sure that quenched bond randomness indeed renders the phase
transitions second-order. For ¢ > 4 the pure system has a first-order transition
for which the free energy per site is expected to scale like [44]

fo(L) = fo(oo) +aL™" exp(~L/¢€), (6.1)

where & is the bulk correlation length and a is an amplitude depending on ¢. In
Fig. 6.1 we show plots of the function

~ const — L/¢

A(L)

for various values of ¢ and the randomness strength R. These plots are rather
sensitive to the value of fy(c0), but although this is known exactly only for the
pure model [19] it can nevertheless be determined with sufficient accuracy from
the parabolic fits described in Sect. 6.2 below.

For ¢ = 8 the finite correlation length of the pure system (& ~ 70) is seen
to be rendered effectively infinite (¢ ~ 10%) upon imposition of the randomness,
whilst the transition of the Ising model (¢ = 2) simply stays second order.
Despite the simplicity of these plots we also find a fair agreement with the
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Figure 6.1: Plots of A(L), normalised to A(1) = 1, showing that bond ran-
domness renders the phase transition second order. The random systems have

recently found analytical values of € for the pure systems [56]; near ¢ = 4 these
assume the simple form

= gexp <%) . (6.3)

Another criterion for distinguishing between first and second-order phase
transitions is the values of the (effective) exponents zpy and zr as found from
Eq. (5.30) and (5.31) respectively. Generally speaking, for pure systems with ¢ >
4 these equations give rise to rather poor fits which however have extrapolated
values of the effective exponents that are in the vicinity of, and slightly below,
zero, whereas when randomness is added the fits are much better and yield
exponents in the interval ]0,2[. In view of the problems justifying such fits in
the random case (see below) this evidence for a softening of the transition is
however not to be taken too seriously.

6.2 Free energy and central charge at the random fixed point

6.2.1 Free energy

The free energy per site fi!(L) for the RBPM on long strips of width L is readily
found from Eq. (5.5) applied to the 71! sector of the TM. We have performed
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extensive simulations for various values of ¢ and the randomness strength R,
though in most cases R = 2 was found to describe the random FP adequately.

Representative samples of our data are shown in Table 6.1. For each run
a normalised initial vector |vo) was prepared by choosing its components ran-
domly, and after discarding the results of the first 2,000 multiplications by 7;'!
in order to eliminate transients, data collection was made for each 200 iterations
until a strip of a total length of m = 10® had been built up. For ¢ > 2 a total
of 100 independent runs were made for 1 < L < 8, and 3 runs for 9 < L < 12,
whilst for the Ising model (¢ = 2) we were able to make 100 runs for 1 < I < 13
by using the conventional spin basis. Final results and error bars were extracted
by computing the mean and the standard deviation for the totality of patches
of length 200.

It is not a priori obvious that the Lyapunov exponents found from Eq. (5.5)
are independent of the norm used. The standard norm in both the spin basis
and the connectivity basis is given by the square root of the sum of the squared
components, and these two are of course not identical. To impose the spin
basis norm on the connectivity basis each term in the sum must be weighted
by a factor ¢©, where C is the number of clusters in the relevant connectivity
state. We have checked the consistency of our results by comparing the first
few Lyapunov exponents obtained from imposing the two different norms on
the connectivity basis, and we find that not only are the results identical but
there is even a complete agreement of the first three significant digits of the
error bars. For ¢ = 2 we found that the results using the spin basis and the
connectivity basis were consistent, but that the error bars obtained using the
spin basis were slightly smaller.

Our results for the free energies of the random-bond Ising model agree with,
and are more precise than, those of de Queiroz! [57].

6.2.2 Central charge

Values of the effective central charge ¢’ can be extracted from Eq. (5.4) by
employing various fitting procedures. In spite of the relatively slow convergence
of both two-point fits (L, L+ 1) and straight-line least-squares fits against 1/L?
[57], iterating such fits yields quite good results in the pure model. When
randomness is added this is no longer so, since rather substantial error bars on
the first estimates prevent us from efficiently iterating the fits.

A better scheme is to include the leading correction to the scaling of Eq. (5.4),
which in the pure case has been shown numerically to take the form [44]

wc A

&I(L):fo(oo)—m+ﬁ+~-m (6.4)

! Actually they differ by a constant since the Hamiltonian in Ref. [57] is defined as
— E(i]) Kijsis; with s; = £1, as opposed to our Eq. (2.25). Since s;5; = 260,0; — 1 thereis
a free energy difference of 2K, which for R = 2 equals 0.91407.



L|lqg=2 qg=3 qg=1 qg=2_8 qg=16 q =64

1| 2.17460 (12) 2.62881 (13) 2.96193 (13) 3.80035 (16) 4.68198 (18) 6.54635 (24)
2 1 1.95329 (8) 2.26650 (9)  2.49558 (9) 3.06980 (10) 3.67393 (11) 4.95619 (14)
31 1.90971 (7) 2.19534 (7)  2.40405 (7) 2.92819 (8)  3.48241 (9)  4.67423 (11)
4| 1.89550 (6) 2.17203 (6)  2.37431 (6) 2.88328 (7)  3.42387 (8)  4.59557 (10)
5 | 1.88895 (5) 2.16182 (6)  2.36126 (6) 2.86392 (6)  3.39934 (7)  4.56442 (9)
6 | 1.88568 (5) 2.15649 (5)  2.35449 (5) 2.85395 (6)  3.38683 (6)  4.54893 (8)
7 | 1.88377 (4) 2.15328 (5)  2.35040 (5) 2.84798 (5)  3.37948 (6)  4.53974 (7)
8 | 1.88250 (4) 2.15113 (4)  2.34782 (4) 2.84424 (5)  3.37479 (5)  4.53394 (7)
9 | 1.88164 (4) 2.14993 (24) 2.34624 (25) 2.84172 (11) 3.37186 (31) 4.53017 (39)
10 | 1.88098 (4) 2.14858 (23) 2.34504 (23) 2.84011 (26) 3.36918 (29) 4.52653 (25)
11 | 1.88048 (4) 2.14804 (22) 2.34386 (22) 2.83851 (24) 3.36768 (29) 4.52465 (34)
12 | 1.88017 (3) 2.14744 (20) 2.34314 (21) 2.83765 (24) 3.36639 (26) 4.52316 (34)
13 | 1.87991 (3)

Table 6.1: Critical free energies per site, —f3!(L), for R = 2 and various values of q. The figures in parentheses indicate the

error bar on the last quoted digits.
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One then performs either three-point fits (L, L + 1, L 4 2) or parabolic least-
squares fits against 1/L2, and because of the much faster convergence no iter-
ation is needed [57]. Although a correction proportional to 1/L*, due to the
operator TT, must necessarily be present in every system that is conformally
invariant [4] it can of course not be guaranteed to be the dominant one in gen-
eral.

In Table 6.2 the results of parabolic fits including the data points for Ly <
L < Lmax have been shown as a function of Lg. It is seen that Ly must be
chosen large enough to justify the omission of higher terms in the series (6.4),
and small enough to minimise error bars. From the special cases of the Ising
model and of the percolation point (see Sect. 6.3 below) we concluded that the
choice Lo = 3 is optimal.

Apart from the results shown in Table 6.2 we have also performed some
runs for ¢ = 1.5, finding, as expected from the Harris criterion [8], no difference
between the results for the pure and the random model.

In the intermediate regime 2 < ¢ < 4 our results compare favourably to
those of the (¢ — 2)-expansion, at least up to ¢ = 3. On the other hand, it is
evident from Fig. 6.2 that the difference between ¢ for the pure model and ¢’
for the random one is of the same order of magnitude as our error bars, and
only near ¢ = 4, where the expansion 1s expected to break down anyway, are
our results able to distinguish between the two different behaviours. Exactly
at ¢ = 2 the randomness is marginal and logarithmic corrections to the finite-
size scaling forms, Eqs. (5.3) and (5.4), are expected. Whilst this issue has
recently attracted considerable interest in the case of the critical exponents [58]
the corrections to the central charge are much weaker [59] and accordingly our
result is consistent with that of the pure Ising model.

6.2.3 crossover effects

In Fig. 6.3 we have displayed our results for ¢’ as a function of log;,q for
selected values of ¢ € [1.5,64]. We have juxtaposed the results for two strengths
of the randomness, namely weak randomness (R = 2, closed circles on Fig. 6.3)
and strong randomness (R = 10, open circles). For small values of ¢ both
randomness strengths give rise to the same ¢/, as witnessed by the overlap of
the ¢ = 4 data points. However, for larger ¢ the R = 2 curve flattens out and
grows slower than logarithmically. Sample runs show that the same is true for
larger values of R, the difference being that the range of ¢-values for which the
growth is logarithmic is extended as R is increased. This is illustrated by the
R = 10 curve’s staying above, but very close to, the percolative result ~ loggq
(see Sect. 6.3 below) for the whole range of ¢g-values shown on the plot. Another
way to state this is that for fixed ¢ and varying R, the quantity ¢’ is an increasing
function of R that eventually reaches a plateau as R becomes large enough. It
then appears from Fig. 6.3 that for ¢ < 64 the randomness strength R = 10 is
sufficient to reach this plateau.

These findings are interpreted as follows. According to the (¢ —2)-expansion



Lo | qg=2 qg=3 g=1 qgq=28 qg=28 qg=16 qg=16 q =64 qg =64
R=2 R=2 R=2 R=2 R=10 R=: R=10 R=: R=10
110.563 (1)  0.927 (1) 1.184 (1) 1.787 (1) 1.731 (3) 2.330 (1)  2.322 (4) 3.120 (1)  3.476 (5)

2 10508 (2) 0.825 (3) 1.042 (2) 1.515 (3) 1.586 (10) 1.864 (3)  2.101 (10)  2.194 (4)  3.150 (13)
3 | 0.499(3) 0.800(6) 1.003(6) 1.441(7) 1.521(23) 1.752 (8) 2.052(25) 2.065 (10) 3.034(30)
41 0.500 (6)  0.813 (14) 0.994 (14) 1.424 (15) 1.548 (52) 1.750 (17) 2.089 (57)  2.157 (22) 3.079 (68)
51 0.505 (11) 0.842 (30) 1.005 (31) 1.426 (33) 1.622 (113) 1.785(38) 2.203 (125) 2.305 (47) 3.209 (148)
6 | 0.500 (20) 0.818 (62) 0.963 (63) 1.360 (67) 1.587 (228) 1.794 (78) 2.196 (251) 2.384 (93) 3.213 (300)

Table 6.2: Effective central charge ¢’ extracted from parabolic fits with Ly < I < Lyayx, as described in the text. Error bars
on the last quoted digit are shown in parentheses. The choice Ly = 3 appears to be optimal, provided that the strength of
the randomness R is large enough (see text), and the corresponding values of ¢/, shown in bold face, should be regarded as
our results.
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Figure 6.2: The effective central charge ¢’ as a function of ¢ for 2 < ¢ < 4. The
perturbative results by Ludwig and Cardy [23] do not differ appreciably within
the range of g-values where the expansion is supposed to be valid. Accord-
ingly the numerical data are unable to distinguish between pure and non-trivial
random behaviour. They are also quite close to, but distinguishable from, the
percolation point values.

the randomness strength R* corresponding to the random FP is an increasing
function of q. Assuming this FP to persist as we enter the regime ¢ > 4 (see
Fig. 3.2) we now claim that the monotonicity of R*(q) also holds true when the
(¢ — 2)-expansion breaks down. From the RG flows given in Fig. 3.2 we see that
any initial value of R €]1, co[ will eventually flow to the random FP as the system
is viewed on larger and larger length scales. However, if we start out very far
from R* the onset of the asymptotic scaling given by Eq. (5.4) may be deferred to
much larger length scales than the strip widths L numerically accessible for our
TMs. We therefore expect poor scaling for strip widths L < Lyax. Conversely,
if we choose the strength of the randomness as R ~ R* the resulting value of
¢’ is expected to be more or less independent of the precise choice of R and
equal to the true value of the central charge. But in our simulations we find
that this is precisely accomplished by choosing R as an increasing function of q.
Further justification for this interpretation is found from the phenomenological
RG treatment in Sect. 6.6 below.

A heuristic argument explaining that the “effective” ¢/(R,q) obtained for
small values of R is less than the “correct” value ¢/(R*, q) associated with the
random FP is readily furnished, at least for large q. Namely, from Zamolod-
chikov’s e-theorem [60] we know that there exists a function ¢({K}) of the
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Figure 6.3: Effective central charge as a function of log,, ¢ for 1.5 < ¢ < 64.
For large g the data for R = 10 are supposed to represent the true behaviour
at the random fixed point, as argued in the text. For ¢ =4 the R = 2 and the
R = 10 data points overlap; this is barely visible on the graph.

couplings that decreases along the RG flow and equals the central charge at the
fixed points. As a corollary the curves of constant ¢ are orthogonal to the RG
flow. In particular, for large g where the RG flow is known from the mapping to
the RFIM (see Eqgs. (3.27) and (3.28)), it is evident from Fig. 3.2 that ¢/(R, q)
is equal to ¢/(R*, ¢*) for some ¢* < ¢q. Since our numerical results indicate that
¢(R*, q) is an increasing function of ¢ the proposition follows.

Very recently, the complicated issue of crossover effects in the RBPM has
been addressed by Picco [27]. The results of this author are consistent with the
picture given above.

6.2.4 Trinary randomness

To check our results for ¢’ we have also made 100 independent runs for each
of the strip widths 1 < L < 8 where the random bonds were drawn from the
trinary distribution

P(K) = pl§(K — K1) +6(K — Ks)]
+ (1-2p)8(K — K*), (6.5)

where K; and K5 = 1000K; satisfy the criterion (3.3) and (exp K* — 1)? = q.
Here p < 1 is the strength of the randomness. Of course this realisation of
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the randomness also preserves self-duality, and hence the model is again at its
critical point [30].

Numerical results for ¢’ using trinary randomness are shown in Table 6.3 and
they are consistent with the binary results given above, again provided that p is
increased as we go to larger and larger ¢. In particular it is reassuring to verify
that we seem to probe the true random behaviour when 2/p (the length scale
associated with this randomness) is comparable to the correlation length of the
pure system (6.3).

6.2.5 Zamolodchikov's c-theorem

An interesting question is whether the asymptotic value of ¢’ is approached from
above or below when the system is viewed on larger and larger length scales. For
models exhibiting reflection positivity Zamolodchikov’s e-theorem [60] ensures
that the convergence is from above. In particular the condition of positivity
holds true for unitary models, whereas for a random model 1t may well fail to
be fulfilled. Indeed, in the case of the RBPM a perturbative calculation [23]
suggests that the convergence may be from below in some cases.

In order to discuss this point the parabolic fits versus 1/L? employed above
are no longer appropriate. Apart from speeding up the rate of convergence to
a point where information about its direction becomes obliterated due to error
bars, the inclusion of higher-order corrections to the finite-size scaling form
(5.4) may have the effect of reversing this direction. E.g., in the case of the
pure Ising model it is found [57] that the estimators obtained from parabolic
fits converge from below, whereas the corresponding linear fits (i.e., without the
1/L* correction) yield estimators that converge from above in accordance with
the theoretical prediction.

In Table 6.4 we show the results of such linear least-squares fits for several
values of ¢q. The randomness strength R was chosen in accordance with the
considerations given above. It appears that in all cases the finite-size estimators
converge towards the asymptotic values of Table 6.2 from above.

6.2.6 Alternative representation of the transfer matrices

We remark that values of ¢’ similar to ours have recently been reported by
Picco [61]. For ¢ = 8 this author found ¢’ = 1.45 4+ 0.06 which agrees with
our result of respectively ¢/ = 1.52 & 0.02 for binary randomness of strength
R =10, and ¢/ = 1.51 4 0.04 for trinary randomness of strength p = 0.10. Our
observation that ¢’ appears to be an increasing function of R, eventually reaching
a plateau as R becomes large enough, was confirmed by Ref. [61] that used
binary randomness of strength R = 10 throughout. Strong evidence was also
given that ¢/(¢) grows roughly logarithmically with ¢ in the regime ¢q € [5, 256],
but a further discussion of what this implies will be deferred to Sect. 7.1 below.

It is worthwhile to compare the TM algorithm used in Ref. [61] to ours. Tt



p q=2 qg=1 qg=2_8 q=16 q=232 q =164
0.05 | 0.522 (25) 1.030 (26) 1.477 (27) 1.780 (29) 1.920 (30) 1.974 (31)
0.10 | 0.519 (35) 1.032 (36) 1.510 (38) 1.915 (40) 2.251 (42) 2.552 (43)
0.15 1.539 (46) 1.996 (48) 2.416 (50) 2.817 (52)

Table 6.3: Effective central charge ¢’ obtained using a trinary distribution of the random bonds. There is a fraction p of very
weak and very strong bonds respectively, the remaining fraction 1 — 2p being critical.
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Lo | qg= q=3 q=4 q=38 q=16 q =64
R=2 R=2 R=2 R=10 R=10 R=10

2 105662 (6) 0.9300 (7) 1.1903 (7) 1.723 (3) 2.313 (3)  3.469 (4)
310535 (1) 0878 (1) 1117 (1)  1.656 (5)  2.207 (6)  3.311 (7)
410521 (2)  0.848 (3) 1.075(3)  1.605 (10) 2.148 (11) 3.206 (13)
510514 (3) 0836 (5)  1.051(5)  1.585(19) 2.125 (20) 3.163 (24)
610512 (4) 0.839(9)  1.043(9)  1.595 (34) 2.144 (38) 3.174 (45)
710510 (6)  0.840 (18) 1.022 (18)
810509 (9) 0.812(33) 1.011 (34)
9 | 0.503 (14)

10 | 0.500 (23)

Table 6.4: Effective central charge ¢’ extracted from linear fits of f}1(L) — fil(co) versus 1/L?, with Lo < L < Lypax. In all
cases the approach towards the asymptotic values of Table 6.2 is from above. Error bars on the last quoted digit are shown
in parentheses.
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was found that the number of distinct entries in the pure model TM in the spin
basis is

2 m3 mg my,
=333 >0, (6.6)
ig=113=114=1 i =1

where m; = max(is, i3, ...,m;_1), and L designates the strip width as usually.
Further taking into account the 2% different realisations of the binary random-
ness in each strip, recursion relations between the different elements of the TM
were found by computing a total of (b )22~ polynomials. Since this number
of polynomials increases rapidly with L high-precision computations could only
be performed up to Lmax = 6. The number of iterations used to determine
Jo(L = 6) was similar to ours, whereas more iterations were used for the smaller
strip Wldths.

Evidently this algorithm also has the advantage that ¢ enters only as a
parameter, thus making accessible any value of ¢ for the simulations?. However,
for large L it performs inefficiently, as we will now show. The numbers by,
of Eq. (6.6) are by no means unfamiliar. Indeed, they are nothing but the
total number of L-point connectivities, including the non-well nested ones [36].
Alternatively they can be viewed as the number of ways that L objects can be
partitioned into indistinguishable parts [37]. With m, parts of v objects each
(v=1,2,...) this can be rewritten as

bL — ZO Hl mvm 1 (67)

where the primed summation is constrained by the condition Z _,vm, = L.
From this representation the generating function can be immediately inferred

exp(e’ — 1) = E bnt”. (6.8)

n!
n=0

Explicit values, found by Taylor expansion of the left-hand side, are shown in
Table 5.1. Asymptotically the by, are seen to grow faster than L’ whereas the
well-nested connectivities only grow as ~ 4.

6.3 The percolation limit

In the case of the binary randomness (3.2) the percolation limit is reached by
letting (ef1 — 1) — 0 and (2 — 1) — oo whilst maintaining the self-duality
criterion (3.3). The partition function of the random cluster model is then
dominated by one graph only, viz. the one that covers all of the strong bonds

2 A minor drawback, however, is that the number of polynomials depends on the randomness
distribution, which in practice limits the method to the case of binary randomness.
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and none of the weak ones. (Note in particular that the limits R — oo and
q — oo do not commute.) Expressed in terms of the free energy per site this
reads

bere = —g In(ef2 — 1) — %lnq, (6.9)
where B is the number of strong bonds and C' is the number of clusters in the
dominant graph.

The quenched average over the randomness must be taken on the level of the
free energy. Evidently, with the chosen distribution of the randomness, B = N
whence the first term is simply a trivial, albeit infinite, constant. (Incidentally
this is the same constant that was pulled out in Eq. (5.33).) On the other hand,
the average number of percolation clusters is related to a derivative in the pure

Q-state Potts model [5]

— 0
C=—InZ(Q ‘ , 6.10
90 @) oo (6.10)
thus determining the effective central charge ¢/(q) at percolation as
9c(Q) ‘
d(q)=1Ingq . 6.11
W=ms 53| (6.11)

An alternative argument for this relation is furnished by the observation that
the replicated model is simply the Potts model with ¢™ states; differentiating
¢(q™) with respect to the number of replicas n and taking the limit n — 0 one
recovers the result (6.11). The central charge of the pure model is given by an
expression due to Kadanoff [4, 62]

=34y 612

2-y)
where /@ = 2cos(my/2) and 0 < y < 1, and taking the appropriate derivative
of this we finally arrive at

d(q) = 5f Ing. (6.13)

As described in Sect. 5.6 the single-bond TMs in the percolation limit have
only one non-zero entry per column, equal to either ¢, 1 or 1/q. Taken together
with their projective quality and Eq. (5.5) for the largest Lyapunov exponent
it is clear that the free energy, and hence the central charge, must be explicitly
proportional to Ing. So it suffices to do the numerics for one value of ¢ #
1. Because of the simple form of these TMs we were able to average f~011(L)
of Eq. (5.33) over 100 strips of length m = 10° for the range 1 < L < 19.
Consequently the factor of proportionality could be determined quite accurately

as 0.688 + 0.003, in excellent agreement with % ~ 0.689.
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It is evident from the mapping between bond percolation and the pure @ = 1
Potts model that the critical exponents of the two models are identical: zp = %
and zg = 45—8 [4]. Since all correlation functions at percolation can only take
the values 0 and 1, it is also clear that different moments of a given correlation
function all have the same scaling dimension. Thus, in the notation of Ludwig
[25], , = 21 for all n > 1. The pure model represents the other trivial extreme

case of multiscaling behaviour: z, = nz;.

6.4 The cumulant expansion

The concept of multiscaling was briefly introduced in Sect. 2.1 where we consid-
ered the simple example of the random-bond Ising chain [7]. We recall that al-
though the free energy was found to be self-averaging—essentially a consequence
of the central limit theorem—this was not so for the correlation functions. In
particular (s;sg)? and (s;sr) are expected to scale with different exponents.

In Sect. 5.5 we related the spin-spin correlation function G(m) on a strip
of the RBPM to the free energy in the presence of a seam of frustrated bonds
(or with a ghost site). Taking the logarithm of Eq. (4.14) and exploiting the
self-duality of the lattice we have

AF(E) = F2(1) = ANE) = —= InGi(m), (6.14)

and in the pure system, according to conformal symmetry [49], this decays along
the strip as 27z /L?, cfr. Eq. (5.30). When randomness is present Af(L) is
a fluctuating quantity, and since free energies are supposed to be normally dis-
tributed these fluctuations are @(1/4/m). Consequently In G is a self-averaging
quantity and G is not [7], exactly as in the simple example given above.

In the multiscaling scenario of Ludwig [25] different moments G(m)” scale
with dimensions z,, which, as opposed to what is the case in the pure model,
are not necessarily linear in n. (In this notation y = z1.) For n; > na we have
Tp, > Tpn, and z,,/n1 < z,,/ns (convexity); pure and percolative behaviour
are thus realisations of the two possible extremes of multiscaling.

Since translational invariance is one of the basic assumptions of conformal
symmetry [4], the latter only refers to the averaged quantities G(m)? and not
to the G(m)" themselves. These averages cannot be computed directly in a
numerical experiment because of the lack of self-averaging; this can however be

circumvented by performing a cumulant expansion
_ —_ 1 D —
InG" = nlnG + §n2(lnG—lnG)2—|—~~~ , (6.15)

where each term on the right-hand side s self-averaging and can be directly
extracted from the statistical fluctuations in Af(L) between the patches of
length 200 into which we have divided our strip.
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Quite generally for a stochastic variable X we have
=
(exp X) = expz ﬁkj’ (6.16)
j=1

where explicit expressions for the six first cumulants k; in terms of the moments
m; of X are given by [63]

ki = my
ks = mg— m%
ks = m3—3momq + Qm?
ky = my—4mszmq — 3m§ + 12m2m% — 6m111
ks = my5 —5mymy — 10msmsy + 20m3m%
+  30mim; — 60mam? + 24m3
ke = mg—6msmy — 1bmamsy + 3Om4m% — 10m§

+  120mgmamy — 120mgm? + 30m3 — 270mim?

+  360mgm] — 120m§

We have computed these six cumulants of Af(L) for various values of R and
q, based on 100 independent strips of length m = 10° and width 1 < L < 7.
Sample results for R = 2 and ¢ = 3,8 are shown in Table 6.5.

For ¢ = 3 the cumulant expansion converges well. The magnitude of the
higher cumulants decreases very rapidly, especially for L > 3, and reliable esti-
mates for the left-hand side of Eq. (6.15) can be obtained simply by summing the
first 3 or 4 cumulants, at least when n is not too large. Performing parabolic
least-squares fits using Eq. (5.30) with an 1/L* correction we thus expect to
extract quite accurate values of x, at the random FP.

As q increases the convergence is slower. This is witnessed by the ¢ = 8
results of Table 6.5 decreasing noticeably slower, both for a definite cumulant
as a function of L (vertically) and for a definite L as a function of the cumulant
number (horizontally). The approximation of leaving out the higher cumulants
in the sum (6.15) thus becomes increasingly difficult to justify, and eventually
the cumulant expansion breaks down. This problem is enhanced by the fact
that for ¢ > 8 we expect a randomness strength of R = 2 to be insufficient
in order to access the true behaviour at the random FP. We are thus forced to
increase R, whence the fluctuations become even more violent and the cumulant
expansion accordingly ill-behaved.

6.4.1 Results for the magnetic exponent z;

Our results for z; are shown in Fig. 6.4. Since error bars on the individual
cumulants are related to the magnitude of the higher cumulants the question of
how to assign a final error bar to 1 becomes a delicate one. We have addressed



L 1. cumulant 2. cumulant 3. cumulant 4. cumulant 5. cumulant 6. cumulant
q=3 ] 1 -1.039786 (242) 0.060716 -0.000791 0.000830 -0.004583 -0.000778
2 -0.253209 (146) 0.012391 -0.000347 0.000279 0.000059 0.000386
3 -0.106163 (113) 0.004963 -0.000246 0.000063 -0.000102 0.000046
4 -0.057901 (95) 0.002784 -0.000143 0.000006 0.000034 0.000003
5 -0.036521 (84) 0.001810 -0.000105 0.000001 -0.000002 -0.000003
6 -0.025172 (76) 0.001289 -0.000075 0.000008 -0.000001 -0.000002
7 -0.018426 (69) 0.000968 -0.000069 0.000002 0.000002 -0.000001
q=8 ] 1 -1.380171 (289) 0.104382 0.004069 0.014001 0.019452 -0.013889
2 -0.326484 (177) 0.028366 -0.001683 -0.000432 0.000157 -0.003145
3 -0.132560 (138) 0.014908 -0.001822 0.000356 0.000221 -0.000083
4 -0.071296 (115) 0.010129 -0.001610 0.000319 -0.000959 0.002323
5 -0.044886 (102) 0.007880 -0.001619 0.000252 -0.000082 -0.000456
6 -0.031045 (92) 0.006450 -0.001538 0.000607 -0.000184 -0.001096
7 -0.022851 (84) 0.005401 -0.001505 0.000237 0.000234 -0.000280

Table 6.5: The first six cumulants of —Af(L) for 1 < L < 7 and R = 2. The error bar on the first cumulant (shown in
parentheses) is related to the second cumulant; error bars on the higher cumulants are not shown.
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Figure 6.4: Magnetic exponent 1 = /v for R = 2 as obtained from the
cumulant expansion. zi is an increasing function of ¢, continuously connecting
onto the perturbative results near ¢ = 2. For ¢ > 8 the cumulant expansion
begins to break down. The agreement with the third-order perturbative result
by Dotsenko, Picco and Pujol [26] is excellent up to about ¢ = 3.

this issue by averaging the estimates for 21 obtained from various parabolic least-
squares fits. More precisely, the average is calculated from 4 values, namely fits
with Ly = 3 or 4 and including the first 3 or 4 cumulants on the right-hand side
of Eq. (6.15). The consistency of these 4 values is regarded as a check of the
validity of the expansion.

In particular, for ¢ = 3 we find z;(3) = 0.13467 £ 0.00013 which is 10
standard deviations above the value z}"(3) = % ~ (.13333 of the pure three-
state Potts model [4] and at the same time in perfect agreement with the result
z1(3) = 0.13465 + O(e*) of the (q — 2)-expansion [26]. The Monte Carlo result
21(3) = 0.1337 £ 0.0007 of Picco [64] was not able to distinguish convincingly
between pure and random behaviour.

For ¢ = 4 our result is z1(4) = 0.1396 + 0.0005, in nice agreement with
Picco’s preliminary result z1(4) ~ 0.139 [65] and decidedly different from the
corresponding pure value of z§""°(4) = %.

As discussed at length in Sect. 2.5.1 a major motivation for this work was to
determine whether the impurity softened transitions for ¢ > 4 do or do not have
the critical exponents of the pure Ising model. The data of Fig. 6.4 clearly show a
smooth continuation of the perturbative results [25, 26] exhibiting no singularity
whatsoever at ¢ = 4. Our result 21(8) = 0.1415 4+ 0.0036 is comfortably away
from the pure Ising value and provides a striking piece of evidence for both our
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Figure 6.5: Comparison of our numerical results for aq (asterisks) with various
orders of the (¢ — 2)-expansion: Zeroth order (solid line), first order (dotted
line), and second order (dashed line). The numerical results are for R = 2, and
the error bars are smaller than the size of the symbols.

phase diagram and the FP structure of the (¢ — 2)-expansion.

All the results quoted for 1 were computed using R = 2. We have checked
that other values of R yield results consistent herewith, provided that R is
chosen neither too small, in which case the crossover length £x ~ exp(1/2Aw?)
found from Eq. (3.27) becomes too large for the random FP to be reached, nor
too large, in which case the cumulant expansion breaks down. The same holds
true when the random bonds are drawn from the trinary distribution (6.5) with
various values for the dilution parameter p.

6.4.2 Other multiscaling exponents

Because of the positive sign of the second cumulant the values of z; are in-
variably smaller than those one would have obtained without the cumulant
expansion (i.e., using only the first cumulant). The latter, however, determine
a universal exponent «q that describes the asymptotic decay of the spin-spin
correlation function in a fized sample at criticality. In terms of the multiscaling
exponents this reads

_ dz,
a0 = dn

(6.17)

n=0

Ludwig’s original first-order expansion around ¢ = 2 [25] has recently been
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Figure 6.6: Numerical results for the multiscaling exponents z, for n = 1 (as-
terisks), n = 1.5 (diamonds), n = 2 (triangles), n = 2.5 (squares), and n = 3
(crosses). The comparison to the results of the (¢ — 2)-expansion is made to
both first and second order (lower and upper curves respectively). As usual the
numerical results exhibit logarithmic corrections exactly at ¢ = 2. Evidently
the radius of convergence of the perturbative expansion decreases rapidly as a
function of n.

extended to second order by Lewis [66] with the result

9 /2 11 2K
ag =z + 3 <§€ + (— - i) 52) +0(e%). (6.18)

Here € is the usual Coulomb gas parametrisation of the deviation from ¢ = 2
(for ¢ = 3 we have ¢ = 2/15), and K = 6In2 and o = —33 + 297//3 are
constants. In Fig. 6.5 we show the comparison between both the first- and the
second-order results with our numerical values in the interval ¢ € [2,4]. For
small fractional values of (¢ — 2) the agreement is quite good if one takes into
account the logarithmic corrections expected exactly at ¢ = 2. On the other
hand, it is clear that the radius of convergence of the perturbative results for
ag is smaller than in the case of the magnetic exponent z;.

Actually, Eq. (6.18) is merely a special case of the second-order result for
the general multiscaling exponent z,, [66]

2 11 2K n 3
12 3 24

Zn = na"e — B%n(n—l) <§e+ (n—2)) 62) +O().

(6.19)
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A comparison with the numerical results as found from the cumulant expansion
(6.15) is provided by Fig. 6.6. As anticipated the evaluation of higher moments
of the spin-spin correlator leads to convergence problems in both the (¢ — 2)-
expansion and the cumulant expansion. However, for the data given on the
figure the error bars are believed to be of the order of the symbol size. It should
be obvious that Eq. (6.19) cannot pretend to be very accurate in the physically
interesting case of ¢ = 3, not even for n = 2.

6.4.3 Replica interpretation of the breakdown

Before concluding this section we should like to give a heuristic argument that
the cumulant expansion breaks down for large ¢. In a replica formulation we
can imagine the central charge ¢(n) as a function of the number of replicas n.
In this notation the central charge of the pure and the random systems are ¢(1)
and ¢/(0) respectively, where the prime denotes a differentiation with respect to
n. The partition function of the replicated strip is then

77 = [ expl-nmLy)P()
= exp (—mLT+ m’é‘;(") _ ) , (6.20)

where P(f) is the probability distribution of the free energy. Differentiating this
expression twice with respect to n and taking the replica limit n — 0 we infer
that the second cumulant of f contains a term that is proportional to ¢”’(0). The
cumulant expansion is thus expected to break down if ¢(n) has a large curvature
at n = 0.

For 2 < ¢ < 4 the replicas are weakly coupled, since ¢(1) ~ ¢/(0) [23]. Hence
¢’(0) « 1. But when ¢ = 4 + ¢ the transition of the pure system goes first
order so that the function c¢(n) starts out with slope ¢/(0) = 1 and somehow
curves down to assume the value ¢(1) = 0. Consequently ¢/ (0) = O(1) and the
higher cumulants begin to contribute significantly to the sum (6.15). Finally,
for ¢ > 4 we are in the strong coupling regime. We still have ¢(1) = 0 and as
our numerical data indicate that ¢/(0) ~ Inq it follows that ¢//(0) > 1. This
means that the cumulant expansion must break down.

One may speculate whether the transition actually becomes first-order when-
ever ¢" > 4. Clearly this is the case for the pure Potts model [19], but a similar
statement 1s true when N Ising models are coupled by their local energy density.
Namely, in this case an RG analysis [15] implies a fluctuation-driven first-order
transition whenever N > 2, that is to say for 2V > 4. If this conjecture is
correct one would then suppose the function ¢(n) to vanish for n > ng, where
q"° = 4. Evidently such a scenario is in accordance with our observation that

¢’(0) > 1 for ¢ > 4.
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6.5 The thermal exponent

Because of the rather striking success of the cumulant expansion for 21 one would
now expect the thermal exponent xp to be similarly related to the fluctuations
of Afr(L) = fi*(L) — fa*(L). Surprisingly, this seems not to be the case.
Computing the equivalent of aq, i.e., using only the first cumulant, we find
the following results for different values of ¢: ol (2) = 1.028 £0.001, of'(3) =
0.91£0.01, af (4) = 0.81 £ 0.02 and o7 (8) = 0.65 4 0.01. As remarked above
the results using more cumulants can only be lower.

This is bad news since the quenched correlation length exponent v can be
shown quite rigorously to satisfy the bound [67, 68]

: (6.21)

Qul b

v>

or, in our notation, zr > 1. Though the proof of Ref. [67] refers to the divergence
of the correlation length as the critical point 1s approached, and hence strictly
speaking does not apply to the system under consideration since we work exactly
at the critical point, the RBPM is among the simplest physical systems for which
Eq. (6.21) is believed to be valid [68]. The point is strengthened by noting that
the (¢ — 2)-expansion yields zr = 1.02 + O(€3) at ¢ = 3 [24]. Tt is therefore
difficult to have confidence in the cumulant expansion for the thermal exponent,
and independent methods of assessing z7p must be devised.

At this point we note that although the RG equation (3.29) seems to warrant
an effective exponent of :EGTH = 1 — Aw? for ¢ large, this argument is only
superficially true. Indeed, near ¢ = oo the RG flows must extend to infinite w
before reaching the random FP, and consequently an expansion valid for weak
randomness is not to be trusted.

The alternative method for finding zp that comes closest to the spirit of
Refs. [67, 68] is that of finite-size scaling off the critical point. This is discussed
at length in the next subsection, and for the moment we concentrate on less
“obvious” possibilities.

6.5.1 Duality relations

One of the key points in the construction of the cumulant expansion was the
realisation that the spin-spin correlation function was mapped onto a surface
tension under duality, and hence could be expressed in terms of the largest
Lyapunov exponent of a TM with twisted boundary conditions. Reinterpreting
the latter as a free energy the self-averaging property was evident, and the
cumulant expansion correspondingly behaved quite well if the fluctuations were
not too large. In Sect. 4.3 we have seen that under duality four-point correlation
functions are similarly mapped onto (generalised) surface tensions. Presently
these duality relations have only been worked out for planar graphs, but there
is some hope that they may be extended to the case of cylindrical boundary
conditions as well. Taking two of the points as nearest neighbours on either end
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of the cylinder we would then recover the energy-energy correlator, and if the
corresponding boundary conditions can be implemented in the TM z7 follows
from a cumulant expansion.

6.5.2 The Furstenberg method revisited

Next, we discuss the method of iterating orthogonal vectors in order to extract
the second Lyapunov exponent [53] in more physical terms. The energy-energy
correlator (Green’s function) can be written as

_ TrE(r1)E(rs) exp(—H)

(E(r1)E(r2)) = Tr oxp(—H) . (6.22)

Now imagine building up the strip by repeated action with the random TMs on
some initial state situated at r = —oo. When we reach rq the system is in a
state |ag) on which we act with the energy operator to define |bg) = F(r1)|ag).
After n further iterations these states become

|an> = Tn-- 'T2/T1|a0>

Ibn) = Tn-- T2Ti|bo). (6.23)
Defining a new state |b,) by orthogonalising |b,) with respect to |a,)
S .
we find that
(bulbn) _ (balbn) _ {an[bn) (bnlan)
(anlan) (anlan) (anlan)?
= (E(r)E(r2) — (E(r)) (E(r2)). (6.25)

Thus the process of orthogonalisation corresponds precisely to subtracting off
the disconnected part of the correlation function.

When n > 1 the states |b,) and |a,) are almost identical due to contamina-
tion and have a huge norm ~ Af. The idea of orthogonalising them is therefore
numerically extremely unsound. Fortunately a simple calculation shows that
orthogonalising after n; iterations and then again after n —ny further iterations
is equivalent to orthogonalising only once, as above. Hence, by induction, we
are allowed to orthogonalise after each iteration, leaving us with the method
of Benettin et al. [53]. Similar observations hold true for the higher Lyapunov
spectrum.

At this point an objection may be raised. Since

(anlan) = <a0|7‘117-2T...7;LT7;L...7‘27‘1|a0>’ (6.26)

where the dagger denotes transposition, the correlation function (6.25) corre-
sponds to a realisation of the randomness that is always symmetric around the
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midpoint of 7y and ry. From the above physical picture leading to Eq. (6.25) it
seems that what we really ought to compute is

(by[bn)
(aylan)’

where the (transposed) TMs used to obtain the states on the left implement a
different realisation of the randomness than that used to obtain the states on
the right.

Numerically we are now facing the problem of computing the average of huge
numbers that are no longer necessarily positive. As discussed in connection with
Eq. (6.15) we do not expect the correlation function to be self-averaging, and
because of possible negative values of Eq. (6.27) the subterfuge of averaging its
logarithm will not help us out. Trial runs seem to indicate that for sufficiently
small values of ¢ and R (such as ¢ = 3 and R = 2) the matrix elements appearing
in Eq. (6.27) computed for the usual samples of length 200 may have either sign,
but that their quotient is invariably positive. The corresponding result for z7 is
roughly equal to that obtained from the cumulant expansion. Unfortunately, for
larger values of ¢ or R rare events of negative quotients begin to occur, and any
attempt of averaging Eq. (6.27) without resorting to logarithms is hampered
by such large fluctuations as to render the results insufficiently accurate at the
very best. Computations along these lines, though physically appealing, must
therefore be abandoned on numerical grounds.

(6.27)

6.5.3 Conformal sum rule

Yet another possibility of determining at least an approximate value of zp is
through the conformal sum rule [69, 70] that for an n-fold replicated system
reads

c(n) >, di(n)z;e™ 2"
12 1+ ),di(n)e-27:’

where the sum runs over all operators in the theory, including the descendants
of the Verma module with their appropriate multiplicities, and d;(n) are the
multiplicities pertaining to the permutational symmetry of the n replicas and
the ¢ Potts states. For the magnetic operator d;(n) = n(q — 1), since there are
(¢ — 1) independent order parameters, and in the case of the energy operator
d;(n) = n. In the pure system this yields quite accurate estimates for zp if the
exact values of ¢(1) and zy are inserted along with the first descendant of the
latter. Differentiating and going to the replica limit we find that for a random
system

(6.28)

¢(0) Z3

— Zg—1)%e72mT 4 6.29
so that for values of 21, 2 and z7 near those of the Ising model the term with
z7 enters only as a small correction. Consequently, at the very best only z,

—2nzry _

=z1(¢—1)e
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can be determined with some confidence from our previous results for ¢/(0) and
x1. Its value appears to be consistent with that obtained from the cumulant
expansion.

6.5.4 Exact partition function zeroes

Finally we should like to mention that preliminary studies of exact partition
function zeros for small I x L lattices with quenched bond randomness hints at
an interesting new method of estimating z7. Although the different realisations
of the quenched bond randomness in general lead to a considerable scatter in
the positions of such zeros, it turns out that the zeros that are closest to the real
axis only exhibit a very weak dependence on the realisation. But these zeros are
precisely those that fix 7 through their finite-size scaling. Results along these
lines, both for zeros of the Lee-Yang and of the Fisher type, will be published
elsewhere [41].

6.6 Phenomenological renormalisation

In view of the difficulties encountered in our attempts to extract zp directly
at the critical point we turn our attention to the method of phenomenological
renormalisation [T1], which is closer in spirit to the ideas that lead to the bound

(6.21).
The magnetic correlation length can be found from the TM spectra through
3 All
L, 7)) =1n <A—22) = L(f5* = f3h), (6.30)
0

and we note that this quantity would be self-averaging in the random case.
Motivated by the form & ~ (T — T¢)™¥ of the divergence of the correlation
length in the infinite system we make the finite-size scaling ansatz

¢(L,T) = L ((T — T.) L"), (6.31)

For pure systems, then, one traditionally scans through the vicinity of 7 to find
an effective T.(L) as the solution of

g(L’TC(L)) £(L—1,TC(L))

= .32
7 1 (6.32)
and computes an approximant v(L) from
1 In(u(L,T)/u(L—1,T
v(L) In(L/(L—1)) —_—
where the derivatives
0¢(L, T K ,
u(L,T) = % =Ly (T —T.) L") (6.34)

are found by numerical differentiation. As I — oo we have T.(L) — T, and
v(L) = v.
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u(L) v(L)

L
1] 1.087 (1) -

2| 4229(3) 1.041(1)
3| 10.426 (8) 0.816 (2)
4| 19.682 (18) 0.827 (3)
5 | 31.867 (33) 0.863 (5)
6 | 46.994 (53) 0.885 (7)
7 | 65.020 (79) 0.904 (9)

Table 6.6: Phenomenological renormalisation for the thermal scaling dimension
zp =2—1/v at ¢ =8 and R = 10. For each strip width L the 100 independent
strips of length m = 10° are divided into patches of length 200. Within each
patch the ezact u(L,T;) is computed, based on evaluations of (L, K1, K3) at
K{ = K1(1+ek) and K, = RK, where K; is found from Eq. (3.3). Final results
and error bars are obtained as the mean value and the standard deviation over
the totality of patches.

6.6.1 Efficient numerical implementation

In the random case the extracted values of £(L,T) are hampered by substan-
tial error bars, and the method just outlined becomes by far too inefficient.
Fortunately the very costly idea of scanning for T.(L) can be discarded, since
the exact T of the RBPM is known from Eq. (3.3). Consequently the deriva-
tives (6.34) and the approximants (6.33) are evaluated at the exact Tt., whence
the only remaining source of errors is that of statistical fluctuations over the
different realisations of the randomness.

Naively one would now find the derivative (6.34) by subtraction of the free
energies evaluated at 7' = T¢(1 + ¢), where ¢ < 1. Although this method yields
reasonable results for ¢ ~ 1072 it is way too inaccurate, since it involves the
subtraction of almost identical quantities (with error bars). A superior strategy
is to divide the strip into patches of length 200, calculate exact® values of (L)
for each of those, and finally average over the totality of such patches. In this
way one exploits the fact that £(L, T(1 — e)) and E’(L, To(1+ e)) are strongly
correlated when the realisation of the randomness is kept fixed. In practice we
found that this trick leads to a reduction of the error bars with a factor ~ 120.

Sample results obtained by using these prescriptions are shown in Table 6.6.
It is seen that although the convergence is still too slow for reliable extrapola-
tions to the limit of an infinite system to be made, the conflict with the bound
(6.21) appears to be resolved.

We have found that the convergence of the estimators v(L) can be signif-
icantly sped up if one performs the numerical differentiation (6.34) by going

3Since we are now faced with differentiating a quantity that is known with full machine
precision (1071€) we can concentrate on minimising the rounding and truncation errors. This
is accomplished by choosing ¢ = 10~ [72].
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L (L) v(L)
R=6 | 2| 1.898(1) -
3| 4456 (2) 0905 (1)
41 8172(6)  0.902 (2)
51 12.974 (11)  0.933 (4)
6 | 18.883 (18)  0.945 (6)
7| 25.891 (27)  0.955 (8)
R=10] 2| 1.832(1) -
3| 3917(2)  1.144 (2)
4| 6.815(5)  1.081 (4)
5| 10486 (9)  1.074 (6)
6 | 14.948 (15)  1.059 (8)
7| 20.198 (22) 1.050 (11)

Table 6.7: Phenomenological renormalisation going perpendicularly off the crit-
ical surface for ¢ = 8 and R = 6 and 10 respectively. The data collection was
done as before.

perpendicularly off the self-duality criterion in (K1, K3) space instead of main-
taining the condition Ks = RK;. Indeed, one may imagine that there is another
exponent associated with motion along the critical surface, and maintaining
Ky = RK; one would then measure an admixture of this spurious exponent,
in particular for large R. A simple calculation using Eq. (3.3) shows that one
should then evaluate (L, K7, K}) at

K
g <1 :|:€Re (ef2 — 1)2)

geltz

K!
Kb = Ky(l+e). (6.35)

The sample results shown in Table 6.7 exhibit a conspicuous improvement over
those of Table 6.6. Not only is the convergence faster, but it is even seen that
the estimators v (L) form a monotonically increasing sequence for low values of
R and a monotonically decreasing one for high R. The extrapolated v is pinched
between those two sequences and consequently quite accurately determined.

6.6.2 Results for the exponent v

Plots of the estimators v(L) for 3 < L < 7 and several values of R are shown
in Figs. 6.7 and 6.8 for ¢ = 8 and ¢ = 64 respectively. It is seen that the
curves for v(L) and v(L — 1) intersect at a unique value of R that seemingly
converges quite fast to a definite value R* as L increases. We interpret R* as
the randomness strength at the critical FP and the corresponding value of v as
the correct critical exponent. Tt is tempting to conjecture that the curves v (L)
approach v on the entire interval R €]1,00[ as L — oo. From the graphs it
seems that the convergence is faster for large q.
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Figure 6.7: Estimants v(L) for the thermal exponent at ¢ = 8 as obtained from
phenomenological renormalisation applied to strips of width L and L—1. In the
pure system (R — 1, see rightmost inset) the estimants converge to v(oo) = %
Curves for neighbouring system sizes intersect at values of v and R that converge
to those at the random fixed point as L — oco. In this case v = 1.01 £ 0.02 and

R* &~ 9 (see left inset). Error bars are no larger than the size of the symbols.

The values of ¥ and R* corresponding to this scenario are shown in Table
6.8. In accordance with the phase diagram (Fig. 3.2) R* is a slowly, supposedly
logarithmically* , increasing function of ¢q. For ¢ = 2 the deviation from v = 1
can be ascribed to logarithmic corrections [58], and for ¢ = 3 our result for v
is in agreement with the (¢ — 2)-expansion [24] though the possibility of replica
symmetry breaking cannot be ruled out [73]. Also for ¢ > 4, our values for v
are numerically consistent with unity, indicating that, unlike what is the case
for the magnetic exponent, the thermal one displays only a weak ¢-dependence.

From Figs. 6.7 and 6.8 a remarkable feature about the pure system (R = 1)
is apparent. For ¢ = 8 the estimators v (L) seem to converge to v = % whilst for
q = 64 the extrapolated value is v >~ 0. The former value is hardly surprising
since, as we also remarked above, a first-order transition is expected to exhibit
scaling with trivial effective exponents (in this case: zp = 0). On the other
hand, v ~ 0 for ¢ = 64 has to do with the length scales of the system. Namely,

4This supposition constitutes the simplest possibility allowed by the phase diagram of
Fig. 3.2 in which R* — o0 as Ing — oo.
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Figure 6.8: Phenomenological renormalisation at ¢ = 64. The curves intersect
at larger angles than before, allowing for a rather accurate determination v =
1.02 £ 0.03 in spite of the large fluctuations. Error bars are comparable to the
size of the symbols. From the rightmost inset it is seen that v — 0 in the pure
systems, as explained in the text. The left inset is a magnification of the region
around R* & 10.

from the asymptotic behaviour of the correlation length of the pure system [56]
2

E~—asqg— oo (6.36)
Ing

we infer that £ ~ 1 < L at the transition point of the ¢ = 64 system. But away
from the transition point we also expect & = O(1), since the lattice spacing
(unity) is the smallest length scale in the system. After all there is a ferromag-
netic interaction between nearest-neighbour spins. We thus conclude that ¢ is
roughly temperature-independent in this case. In order for this to be consistent

q v R

2 | 112(3) 7(1)
3 |1.04(4) 8(1
8 | 1.01(2) 9(1)
64 | 1.02 (3) 10 (1)

Table 6.8: Values of the critical exponent v and the randomness strength R* at
the random fixed point as obtained from phenomenological renormalisation.
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with the asymptotic behaviour of the finite-size scaling ansatz (6.31)
dz) ~z7" forz < 1 (6.37)

we must then have v >~ 0. This is to be contrasted to the case of ¢ = 8 where
¢ > L so that we clearly “see” the phase transitions in our strips of width L.

6.6.3 The criticism by Pazmandi et al.

Very recently the bound (6.21) was challenged by Pdzmaéndi et al. [74]. These
authors claimed that the standard method of averaging over the disorder in
finite-size (FS) systems introduces a new diverging length scale into the problem,
whence the resulting vpg may be unrelated to the true exponent v governing
the divergence of the correlation length in the infinite system. In particular v
can be less than %, and if this 1s the case the standard method is liable to yield
exactly vps = %. Ref. [74] then went on to suggest a noise reduction procedure
that professedly would allow one to access the true v. For each realisation of the
binary randomness (3.2) used in the disorder average there will be a fraction p
of weak bonds (K1). The noise due to the fluctuations of p around its average
value p = % can then be reduced by adjusting the couplings (K7, K2) for that
particular realisation to the values they would assume at the critical point of
an infinite system with a (mean) fraction of weak bonds equal to p.

To implement this we are faced with the task of finding, to lowest or-
der in (p — 1), the two-dimensional critical surface in the space (K1, K3,p)
from our knowledge of its one-dimensional intersection with the plane p = %,
viz. Eq. (3.3). Let the fraction of weak bonds in a particular realisation be

p= %(1+€p)7 (6.38)
where €, < 1. The symmetry p <+ 1 — p ensures that, to first order in ¢,, we
must still go perpendicularly off the self-dual curve in the (K1, K3) subspace,
as in Eq. (6.35). Since an increase in the number of weak bonds must be offset
by an increase of the K-s in order to keep the coupling to the energy density
constant, the correct prescription is

R R Ref1
K = K (1+ Ko (K2 — 1)2)

for some ex > 0. Demanding that the combined change in p and in (K, K2)
must leave the coupling to the energy density invariant furnishes a relation
between ¢, and ¢x

Ky — Ky

€ =
P ReK
' 1 K 2 g
I\lqu2 (e 2 —1) —1—[&2

K = (640)
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1. gap 2. gap 3. gap 4. gap 5. gap

0.899 (4) 1.877 (13) 1.885(12) 2.045 (24) 2.050 (23)
0.817 (5) 1.811 (9) 1.818 (8) 2.043 (23) 2.049 (24)
0.754 (6) 1.771 (6) 1.779 (6) 2.058 (24) 2.065 (25)

Ot W

Table 6.9: Scaling dimensions corresponding to the first five gaps in the Lya-
punov spectrum of 71! for R = 2. The parabolic least-squares fits included
the first three cumulants of the probability distribution, and error bars were
extracted based on the fits with Lo = 4,5 and 6.

and the derivatives (6.34) are now evaluated at these values of the parameters by
going perpendicularly off the critical surface. To first order, of course, Eq. (6.35)
still gives the correct way of doing so.

Our confidence in the results of Table 6.8 is increased by observing that
the implementation of this novel averaging procedure does not alter our results.
Indeed, trial runs for ¢ = 8, where the discrepancy between the zp extracted
from the Lyapunov spectrum and phenomenological RG respectively is large,
render the values of the estimators p(L) unchanged within (small) error bars.
It is thus concluded that even though our results for v are conspicuously close
to satisfying the bound (6.21) with equality, this is not due to an artifact in the
averaging procedure.

6.7 The higher Lyapunov spectrum

Although the second Lyapunov exponent of 7! fails to yield the thermal scal-
ing dimension zp in the standard way it is hard to believe that the Lyapunov
spectrum is not in some way related to the operator content of the CFT under-
lying the RBPM. In the case of the pure three-state Potts model, for example,
it is well known [4] that the first five gaps of the Zs-even sector are related
to the energy density e, its first descendants L_i¢ and L_je, the stress tensor
T and its conjugate T. To wit, the scaling dimensions of these operators can
be found from the gaps through Eq. (5.3), and we have verified this using our
connectivity basis TMs.

In view of the bound (6.21) it is problematic to associate the first gap with
the energy density in the random case, but it is nevertheless a beguiling question
whether such concepts as descendants and the stress tensor are preserved by the
randomness. To investigate this issue we have computed the first few Lyapunov
exponents of 71! for 1 < I < 8, averaging over 100 runs as usual. The scal-
ing dimensions corresponding to the first five gaps for ¢ = 3,4,5 and R = 2
are shown in Table 6.9. Self-averaging was ensured by utilising the cumulant
expansion, and parabolic least-squares fits included the first three cumulants.

It is quite remarkable that even if the scaling dimension corresponding to
the first gap may not be equal to z7 our data give strong reasons to believe
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that it has a descendant, and that this descendant has the expected degeneracy
of two. And even though the scaling dimensions in general depend on ¢ those
corresponding to the fourth and the fifth gaps are constant within error bars
and very close to 2, as is expected for the stress tensor of a conformally invari-
ant system [4]. Preliminary data for even higher Lyapunov exponents seem to
hint at descendants at level two, but since we have found that in the pure sys-
tem higher and higher eigenvalues require larger and larger system sizes before
the asymptotic scaling form (5.3) is valid, massive computations are needed to
establish reliable results for all but the first few scaling dimensions.

Another interesting feature of our data for the higher Lyapunov exponents
is that the Harris criterion seems to be valid in a very complete sense. Namely,
trial runs for ¢ = 1 seem to indicate that although individual cumulants ex-
hibit a pronounced dependence of R, their sum is virtually independent of the
strength of the randomness in the whole range R € [1,2]. Tt thus appears that
all exponents z; that we can extract numerically from the Lyapunov spectrum,
using Eq. (5.3) and the cumulant expansion, obey the Harris criterion. Since
the connection between these exponents and the scaling dimensions of the un-
derlying CFT is not completely known (witness z7) this may well turn out to
be a non-trivial observation.

Resumo en Esperanto

La nombraj rezultoj akiritaj per niaj transfermatricoj prezentigas. Kiel antat-
dirite [14] la malordo sangas la ordon de la Potts-modela faztransiro por ¢ > 4
(Fig-o 6.1). La skalumo de la libera energio lali sistemgrando fiksas la valoron
de la (efika) centra §argo ¢’ (6.4). Por ¢ < 4 la nombra precizeco apenaii suficas
por distingi inter la pure modelo kaj perturba kalkulo en potencoj de (¢ — 2)
(Fig-o 6.2). Aliflanke, por ¢ > 4, ¢/(q) kreskas proksimume logaritme kaj tre
proksimas al la ekzakta rezulto (6.13) por la perkola limo (Fig-o 6.3). SkalSangaj
efikoj subtilas kaj estas zorge pridiskutataj.

Manke de atitoaverago ne eblas senpere mezuri la magnetan korelacion.
Anstatatie ni proponas la kumulantan serion (6.15) en kiu la dekstreflankaj
termoj ja estas atitoaveragaj kvankam la maldekstra flanko (la dezirata grando)
ne. Por malgrandaj ¢ la serio rapide konvergas kaj donas tre precizajn valorojn
por la magneta eksponento (Fig-o 6.4). La divergo por pli grandaj ¢ okazas pro
forta kuplajo inter la replikoj. La ekzisto de ne-nula dua (kaj pli altaj) kumu-
lanto implicas multiskalumon, t.e. ke eksponentoj por diversaj potencoj de la
korelacio generale ne simple rilatas inter si.

La termika eksponento kasas kelkajn surprizojn. Giaj valoroj sajne malobeas
al (6.21), kaj la kumulanta serio nur pligrandigas tiun problemon. Ni sercas al-
ternativajn manierojn fiksi zp kaj i.a. diskutas pli fizikan interpreton (6.25)
de la Furstenberga metodo [52, 53]. Finfine ni trovas zp per fenomenologia
renormigo, sed necesas iom modifi la metodon por atingi sufice rapidan kon-
vergon por malpuraj sistemoj. La rezultaj valoroj de zp estas superaj de (sed
tre proksimaj al) unu por éiu q.
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Kvankam z7 8ajne ne simple rilatas al la Lyapunova spektro, tiu lasta en-
havas du gravajn ecojn antatuviditajn por sistemo kun konforma simetrio. Unue
la eksponentoj havas entjeran interspacon (supozeble implicante la ekziston de
Verma-modulo kun descendaj operatoroj) kaj due ekzistas duoble degenera op-
eratoro kun skaluma dimensio du (la streco-energia tensoro) sendepende de g.
La malobeo de la unua Lyapunova interspaco al (6.21) tiel restas ankorai pli
mistera.



Chapter VII

Discussion and outlook

Values for some of the critical exponents of the RBPM have previously been
obtained by other authors. We comment on the relation between their results
and ours, and conclude Part T with a discussion of various open questions as
well as other models relevant to the issue of whether impurities soften first-order
phase transitions.

7.1 Central charge

In a recent paper by Picco [61] it has been suggested that for ¢ = 2P the
effective central charge at the random FP is ¢/ = %, and that this class of
models thus behaves as p decoupled Ising models. Even without referring to
our values of the magnetic exponent we should like to point out that all the
data show is that ¢’ oc In ¢ with a constant of proportionality that is very close

to ﬁ ~ (.721. But this constant is also very close to that of the percolation

point, wviz. % ~ 0.689. Indeed, these two numbers differ by less than 5%,
and since our error bars and those of Picco are in the 2% and the 4% range
respectively, there is no irrefutable way of numerically distinguishing between
percolative, Ising-like or indeed some other, presently unknown, behaviour of
the central charge. A similar observation is valid for 2 < ¢ < 4 where our
numerical data as displayed in Fig. 6.2 are compatible, within error bars, with
both the values at the pure and the random FP (but not, in this case, with
those at the percolation point).

7.2 Magnetic exponent

On the other hand, our results for the magnetic exponent should leave no doubt
that the correct CFT describing the RBPM cannot be that of a number of
decoupled Ising models. In particular, the non-Ising value at ¢ = 8 is in sharp
disagreement with the Monte Carlo results of Ref. [20].

98
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One possible explanation of this discrepancy would seem to be that these
authors define a non-standard order parameter through

p=L~%max(Ny, No, ..., N,)), (7.1)

where N; is the number of spins in state 7, which is related to our local order
parameter defined in Eq. (4.12) by N; =5~ (M;(r)+q¢~'). The site label r runs
over a hypercube of side L with 24 < I < 84. Note that p may also be written
as

q 1/k
p= L‘dkli_{r;o (wa)) : (7.2)

Expressed in terms of the local order parameter, (Nf) gives a sum of terms each
of the form

D (Mi(r1)Er Mi(ra)*2 o Mi(ra)fm), (7.3)
where k1 + ko +--- = k. As k — oo at fixed L, it is clear that at least some

of the k; must grow large. In the pure system, this should not matter, since
each term will scale in the same manner. But when multiscaling is present, the
scaling behaviour of the k; power of the local order parameter may be different.
Indeed, in the limit of & — oo one would expect p to scale with dimension
limg o0 2 /k, which is less than z; by convexity.

Though appealing, this explanation must now be dismissed since more recent
Monte Carlo simulations using the same non-standard order parameter [27, 28]
are also at odds with Ref. [20]. For ¢ = 8 these new results are 7 = 0.153(3) [28§]
and z; = 0.151(4) [27]. Using a different method the authors of Ref. [28] offered
the alternative estimate 1 ~ 0.145, which is closer to the value z; = 0.142(4)
found by us [46, 47]. A very likely explanation of our value’s being somewhat
too small is that the breakdown of the cumulant expansion for large values of ¢
forced us to use a rather small randomness strength (R = 2) in the calculation
of z1, although we knew from both phenomenological renormalisation and the
results for the central charge that R ~ 10 would be closer to the random fixed
point at ¢ = 8. Incidentally, R = 10 was used in both Ref. [27] and [28].
Despite of these details the conclusion is very clear: Both zi(q = 4) ~ 0.139
and z1(q = 8) ~ 0.15 are most definitely non-Ising exponents.

Another criticism of Ref. [20], which does not apply to Refs. [27, 28], is that
the realisations of the binary randomness considered were confined to those for
which the number of strong and weak bonds in each of the two lattice directions
were equal. Though this restriction is clearly innocuous in the limit L — oo
this may not be so as far as the finite-size scaling is concerned. From trial runs
where similar restrictions were imposed to the bond distributions of the TMs
we found that seemingly harmless noise reductions schemes can influence the
output substantially.
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Finally, the mapping to the RFIM [46] illustrated that for large ¢ typical
configurations consist of large clusters of spins in the same Potts state, separated
by domain walls. Whilst our very long strips are guaranteed to accommodate
large regions in which all ¢ values of the order parameters are realised, it is
not clear that this should be the case in the much smaller square geometries
of Ref. [20]. Indeed it seems likely that one would find Ising exponents if the
geometry under consideration typically can accommodate at most two different
large clusters.

7.3 Lyapunov spectrum of the even sector

We now turn our attention to the thermal exponent. If the phenomenological
RG scheme is to be trusted the values of 7 only exhibit a weak dependence
on ¢, although the (¢ — 2)-expansion gives us reason to believe that there is
some variation [24]. Tt is interesting that z7 stays so close to unity even at very
high ¢, but presently we do not have any arguments to explain this finding.
Unfortunately the method employed was unable to resolve the slight deviations
from unity, and it is indeed a challenge to future research to find more accurate
ways of assessing z7 for disordered systems. Our results on the higher Lyapunov
spectrum are nothing if not intriguing, and we believe that a great effort must
be made to understand why the first gap in the spectrum fails to be related to
z7 in the standard way, even though the higher gaps show clear indications of
a conformal field theory underlying the RBPM.

A very interesting issue to be addressed by future research is that of the
dynamical universality class of the RBPM. In particular it would be interesting
to see whether the dynamic critical exponent z does or does not agree with the
Ising value of z & 2, or whether, in analogy with the RFIM, there is logarith-
mically slow dynamics due to the pinning of domain walls by impurities.

7.4  Other softening scenarios

Other types of randomness are also of interest to the question whether a first-
order phase transition is softened due to impurities. In Part I of this thesis we
have studied the effect of quenched bond randomness in a flat, regular lattice. A
somewhat different scenario is obtained by investigating the pure ¢-state Potts
model on lattices with quenched connectivity disorder. In Ref. [75, 76] MC
simulations of the ¢ = 8 model on two-dimensional Poissonian random lattices
(Voronoi tessellations) with toroidal topology unambiguously showed that the
first-order nature of the transition was not modified.

An argument why this must be so, at least for large ¢, can readily be given.
For simplicity consider the model on the dual Delaunay random lattice, which by
construction is a triangulation of space [77]. As on the regular lattice, at large ¢
there are only two important states in the equivalent random cluster model: the
empty lattice, which contributes a term g™vertices to the partition function, and
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the full lattice, contributing a factor u’Vedses where u = X — 1. Since for any

triangulation 2Negges = 3Nvertices, the transition occurs when u ~ q2/3 for any
geometry. If we now consider that part of the lattice within a large hypercube
of side L, the fluctuations in the difference of the energies of these two states
inside this region will come solely from the edges which penetrate the boundary.
On average, the difference in the energies of these two states will still be zero,
but there will be fluctuations of the order of the square root of the number
of bonds which penetrate the boundary, which will therefore be (’)(L(d_l)/2).
These are very much smaller than the analogous fluctuations which are present
when random bonds are added: these are O(Ld/2), which leads to the Imry-Ma
type of argument [10, 13, 14]. For d = 2 Voronoi tessellations the fluctuations
are thus always smaller than the domain wall energy @(L%~!), and we conclude
that such randomness is strongly irrelevant (at least for large ¢), in agreement
with the results of Ref. [75, 76].

Yet another kind of randomness is obtained by studying the Potts model on
quenched random gravity graphs, for which MC simulations for ¢ = 10 have
provided strong evidence for a softening scenario similar to ours [78]. However,
in this case the curvature is random and hence when the lattice is embedded in
the plane, it is fractal. Although the argument about compensation of the bulk
energies when u ~ ¢2/3 works for any triangulation, the number of boundary
edges may well scale in a different manner for these lattices. Whilst it would be
interesting to study this in detail, it is clear that this problem is quite different
from ours, and neither our arguments nor those of Refs. [13, 14] can be directly
applied.

Resumo en Esperanto

La rilato inter niaj rezultoj kaj tiuj de aliaj attoroj estas pridiskutata. Unu
el niaj cefaj rezultoj estas la ne-Isingaj valoroj por la magneta eksponento zj
kiam ¢q > 4. Ref-o [20] tiel estas refutita.

Fine ni komentas pri aliaj situacioj kiuj koncernas la demandon ¢u malordo
sangas la unuaordon faztransiron de la pura sistemo. Ni montras ke Potts-
modelo sur reto kun frostita konekta malordo havu nesangitajn valorojn de la
kritaj eksponentoj [75, 76].
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Chapter VIII

Geometrical frustration

In Chapter 1 we have given some intuitive arguments why discrete lattice models
of the Ising type can be expected to display a second order phase transition at
some critical temperature Ti, that is of the order of the exchange coupling .J.
These considerations were epitomised by the equation ' = F—T'S, showing that
a system that has a finite number of minimum energy states will tend to favour
one of these states at low temperatures whilst being in a paramagnetic state at
high temperatures. Although this would suggest that T, is always non-zero, we
have also seen from our survey of the random-field Ising model in Sect. 2.4 that
disorder may drive the critical temperature all the way down to zero.!

Other types of systems with 7, = 0 exist, however, and they are the subject
of this part of the present thesis. These are models that exhibit geometrical
frustration, i.e., they have an infinite number of degenerate ground states. More
precisely, the systems with which we shall be concerned are fully frustrated in
the sense that their ground states have a finite residual entropy per degree of
freedom. A large class of such systems can be shown to have critical ground
state ensembles, so that local operators constructed from the fundamental (spin)
degrees of freedom display power law correlations at large distances. Evidently
in such cases the criticality cannot be said to arise from the conflict between
entropy and energy, but is indeed driven by entropy alone.

8.1 Critical ground state ensembles

To get an idea about the physics underlying the various fully frustrated systems,
let us briefly consider some of the models which have been found over the years
to display this type of behaviour.

I Another example of a system with T, = 0 is the one-dimensional Ising model, as is easily
seen from simple phase space considerations.
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8.1.1 Triangular antiferromagnetic Ising model

The simplest of these models, and the first that was solved [79], is the isotropic
antiferromagnetic Ising model on the triangular lattice.? The frustration of this
model originates from the fact that the three spins on each elementary triangle
of the lattice cannot all be pairwise antiparallel. Indeed, any configuration in
which the tree spins on any elementary triangle are not all in the same state
(up or down) is one of minimum energy.

An argument that the model is in fact fully frustrated can readily be given.
Consider dividing the triangular lattice into the conventional three sublattices
A, B and C, such that any spin on sublattice A has as its nearest neighbours
three spins on sublattice B and three on sublattice C'. Choosing all the B-spins
to be up and all the C-spins to be down it is seen that any spin configuration
on sublattice A will lead to a minimum energy state. Thus the residual entropy
per spin has the lower bound s > %1112 ~ 0.231. It follows from Wannier’s
evaluation of the free energy [79] that the exact expression is

™

9 /3
STAT = —/ In(2 cosw) dw ~ 0.323. (8.1)
0

An analytical evaluation of the spin-spin correlation function that is asymp-
totically exact along the three main directions of the lattice [81] shows that the
ground state ensemble is critical and with exponents that differ from those of
the ferromagnetic Ising model. These findings were also among the first to be
placed into the general framework of loop models that shall be an important
ingredient in the remainder of this thesis [82, 83].

8.1.2 Six-vertex model

Another fully frustrated model, crucial to the development of statistical mechan-
ics around 1970, is the celebrated six-vertex model [84]. Originally introduced
as a model of the hydrogen bonds in an ice crystal, this model is defined by
placing arrows on the bonds of the square lattice subject to the constraint that
the divergence of arrows at every vertex be zero. In the context of ice the ver-
tices are taken to represent oxygen atoms. A hydrogen atom then lives on each
lattice bond, and the direction of the arrow indicates to which oxygen atom
it is bonded. The demand of local charge neutrality (the so-called ice rule) is
equivalent to the above constraint on the arrows. The ice rule implies that every
vertex can be in one of six configurations, and the fact that each arrow must
be shared by the two vertices to which its bond is adjacent suggests that the
six-vertex model is fully frustrated. Lieb’s exact solution [85] implies that this
is indeed the case:

3 4 .

2 A near-perfect experimental realisation can be found in the yavapaiite layered structure
of anhydrous alums such as RbFe(SO4)2 [80].
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For various special choices of the vertex weights the six-vertex model can be
recast as a loop model. The case where each of the four vertices with non-zero
polarisation of the arrows carry half the weight of the two unpolarised vertices
was considered in [86, 87], whereas the equal-weighted model emerges as special
cases of a variety of models [88, 89, 90].

8.1.3 Potts vertex antiferromagnets

In both the examples mentioned this far the fully frustrated state can be viewed
as the ground state ensemble of some more general model, in which a temper-
ature variable T is taken to control the density of violations of the constraint
associated with the frustration. This generalisation makes close contact with
the zero-temperature critical points alluded to in the introduction, since a fully
frustrated state is typically critical. We shall now present a few more examples
of systems exhibiting this behaviour, and at the same time get acquainted with
a class of combinatorial problems which are closely related to the two-flavour
fully packed loop (FPL?) model that is considered in detail in the subsequent
chapters.

For any regular lattice of coordination number ¢ one can define a ¢-state
antiferromagnetic Potts verter model through the Hamiltonian

H=T> > doix),0(x)). (8.3)

x i<j=1

Here x labels the sites of the lattice, and Potts spins o;(x) = 1,2,...,q are
taken to live on the bonds i = 1,2,...,q adjacent to site x. (Note that this
is in contrast to the traditional definition of a Potts model, where the spins
live on the vertices and interact along the bonds.) Evidently, in the limit of
vanishing temperature the only allowed states are those for which the ¢ spins
surrounding any given site are in states that are all different. Associating each
Potts state with a colour the T' = 0 ground state encompasses the following
combinatorial problem: “In how many ways can one colour the bonds of a ¢-
fold coordinated lattice, using ¢ different colours, subject to the constraint that
all neighbouring bonds must be coloured differently?” It should hardly come as
a surprise that the ground state ensemble thus defined is indeed fully frustrated.
More importantly, in the colouring problems examined this far it was found to
be critical.

The two-dimensional lattices for which this colouring problem has been ad-
dressed are the honeycomb lattice with ¢ = 3 [91, 92] and the square lattice
which has ¢ = 4 [93, 90]. Investigations of the six-colouring problem on the
triangular lattice are currently being undertaken.

Quite generally the g-colouring problem can be recast as a loop model. The
idea is to define the loops as alternating sequences of a colour pair. These loops
are then necessarily closed, and fully packed in the sense that every site of the
lattice is visited by a loop. When ¢ > 4, there is more than one independent
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colour pair, and consequently more than one flavour of loops can be defined.
The various flavours are all fully packed and mutually excluding.

Since loop models are seen to be ubiquitous in the study of geometrically
frustrated systems, and indeed in all of statistical mechanics, we now turn to a
general presentation of this subject.

8.2 Loop models

8.2.1 Introduction

Lattice models of loops have emerged as an important paradigm in two-dimen-
sional critical phenomena. They allow for a determination of the scaling prop-
erties of different types of random walks which are used to model conformations
of different phases of polymers [94]. For instance, the solution of the O(n) loop
model has lead to exact results for conformational exponents of swollen and
dense polymers [95], as well as polymers at the theta point [96]. The theta
point is the tricritical point which governs the transition between the swollen
and the collapsed phase of polymers in solution [94]. Examples of conforma-
tional exponents are 7, which describes the scaling of the number of polymer
conformations with the number of monomers A, and v, determining the scaling
of the linear size of a polymer, as measured by the radius of gyration, with A
In Chapter 12 we calculate for the first time the exact value of 5 for polymers
on the square lattice, in the compact phase. Compact polymers completely fill
the lattice and are of direct relevance to statistical studies of protein folding
[97, 98].

Further motivation for studying loop models comes from the Fortuin-Kaste-
leyn construction which maps many discrete spin models (e.g., @-state Potts) to
random cluster models. Since cluster boundaries in two dimensions form loops
this naturally leads to a loop model representation. This random geometrical
description of two-dimensional lattice models then provides a setting in which
a general theory of their scaling limits can be sought. It is one of the goals of
Part II of this thesis to outline a specific proposal for such a theory in the form
of an effective field theory of fluctuating loops. This field theory is constructed
following the Coulomb gas recipe [99] with some important new ingredients
added [89]. Tt describes the fluctuations of a random surface for which the loops
are contour lines.

Scaling limits of many (but not all) two-dimensional lattice models are de-
scribed by conformally invariant field theories [100, 101]. This observation has
lead to exact results for critical exponents and other universal quantities, and to
a classification of critical points based on their symmetry properties with respect
to the group of conformal transformations. An obvious question which is often
difficult to answer is: “Given a particular lattice model, how does one construct
the conformal field theory of its scaling limit?” Loop models provide examples
for which the scaling limit can be constructed in a physically transparent way.
This is accomplished by mapping a loop model to an interface model, where the
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loops are simply equal-height contours. An explicit coarse graining procedure is
then implemented for the height model, and it leads to a well known conformal
field theory—the Liouwville field theory.

Interesting examples of loop models are also provided by one-dimensional
quantum models; spin chains in particular, where loops appear as world lines
of the spin. This mapping of spins to loops has recently been used to formulate
very efficient numerical schemes for simulating spin chains and ladders. These
loop algorithms allow one to simulate much bigger system sizes and lower tem-
peratures than by using more traditional algorithms with local updates (see
Ref. [102] and references therein). The loop representation of quantum spin
chains also gives an illuminating stochastic-geometrical view of their quantum
fluctuations [103]. For example, the spin-spin correlation function is related to
the probability that two points on the space-time lattice belong to the same
loop. This insight might lead to a practical theory of plateau transitions in
the Integer Quantum Hall Effect, i.e., one that would allow for a calculation
of the correlation length exponent and other universal quantities which have
been measured in experiments. Namely, the Chalker-Coddington network mo-
del [104], which is believed to be in the same universality class as the plateau
transitions, was recently mapped to an SU(n — 0) quantum spin chain [105]. Tt
remains to be seen if this spin chain has a tractable loop-model representation.

In the bigger picture, loop models are of interest as simple examples where
the fundamental constituents are non-local, extended objects as opposed to
point-like objects such as particles and spins. Fluctuating geometries of this
sort are used to model flux lines in superconductors, domain walls in magnets,
and crystalline interfaces, to name a few experimentally relevant systems.

The extended nature of loops turns out to have profound consequences when
one attempts to write down an effective continuum description of these models,
say, following Landau’s dictum of expanding the free energy (Euclidean action)
in powers of the order parameter and its derivatives. Namely, terms which
are geometrical in origin and non-perturbative in nature, and hence cannot be
inferred from symmetry arguments alone, appear in the action. On the other
hand, exactly because these geometrical terms are present the values of the
effective coupling constants of the field theory are completely determined, a
rather remarkable occurrence.

Usually in an effective description provided by a field theory, coupling con-
stants are phenomenological parameters fixed by auxiliary information about
observable quantities, such as the response functions or the related correlation
functions. The Coulomb gas approach to two-dimensional critical phenomena
is an example of an effective theory wherein the electromagnetic coupling con-
stant (i.e., the “magnitude of the unit charge”) is determined from an exact
solution of the model; typically it suffices to calculate the exact value of a single
critical exponent. Our construction of an effective field theory of loop models
closely parallels the Coulomb gas method with the important difference that the
coupling constants are determined without recourse to any exact information
about the model. For the FPL? model at hand no such information is available
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Figure 8.1: Phase diagram of the two-flavour fully packed loop model on the
square lattice. The loop model is critical for loop fugacities 0 < ny,,ng < 2.
Particular points in the critical phase map to previously studied models: 6V —
equal weighted six-vertex model [106], DL — dimer loop model [107], 4C — four-
colouring model [93]. The dashed line is the fully packed loop model studied
numerically in Ref. [88]; the point CP along this line corresponds to the problem
of compact polymers. Finally, the dotted line is the loop model for which an
effective Liouville field theory was constructed in Ref. [89).

anyway, and moreover there are indications that the model i1s not exactly solv-
able [88]. On one level our theory can be viewed as a trick that allows one to
calculate critical exponents in two-dimensional loop models without doing the
“hard work” of exactly solving the model. On a deeper level it shows that lattice
models of loops lead to continuum theories that are geometrical in nature, i.e.,
devoid of any couplings that depend on the microscopic details.

8.2.2 The FPL? model

In Chapter 10 we study in detail the two-flavour fully packed loop (FPL?) model
on the square lattice. This is a statistical model which describes two flavours
of loops that occupy the bonds of the square lattice, subject to certain close
packing constraints to which we shall return shortly. The phase diagram of this
model is described by two variables, n, and ng, which are the loop fugacities of
the two flavours; see Fig. 8.1. The phase diagram of the FPL? model has three
important features that we wish to emphasize from the outset:

i) For loop fugacities that fall into the region 0 < ny,, ng < 2 of the phase dia-
gram the model is critical, i.e., it exhibits a power-law distribution of loop sizes.
The novel feature is that every point in the critical region defines a different uni-
versality class characterised by an infinite set of geometrical critical exponents.
All previously studied loop models (e.g., @-state Potts, O(n) models) exhibit a
line of fixed points.

i1) The effective field theory of the FPL? model in the critical region describes a
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fluctuating two-dimensional interface in five dimensions, which is characterised
by three elastic constants. We calculate these three couplings exactly as a func-
tion of the two loop fugacities. It is important to note that all previously solved
loop models are characterised by a single elastic constant.

it7) From the field theory of the FPL? model we calculate for the first time eract
results for the conformational exponents of compact polymers on the square
lattice. Furthermore, a particular line of fixed points in the phase diagram of
the FPL? model can be identified with interacting compact polymers (np =
0,ng < 2). We find that along this line the exponent 5 changes continuously,
whilst v stays constant.

The organisation of the remainder of this thesis is as follows. In Chapter
9 we review the scaling theory of compact polymers which provides our main
motivation for introducing the two-flavour fully packed loop model on the square
lattice. The subsequent chapters are devoted to the study of this model using
field-theoretical techniques and numerical transfer matrix calculations.

The FPL? model is mapped to an interface model in Chapter 10. For the
interface model we construct the scaling limit in terms of a Liouville field theory,
in Chapter 11. In Chapter 12 we make use of the field theory to calculate the
central charge and the infinite set of geometrical exponents associated with
loops, in the critical region of the loop model. A short description of the non-
critical region based on the field theory is given afterwards.

Following the field-theoretical treatment of the FPL? model, in Chapters 13
and 14 we describe the construction of transfer matrices for different boundary
conditions. They are used to determine the central charge, the first few geome-
trical exponents, and the residual entropy; the numerical results are in excellent
agreement with the theoretical predictions. Finally, in Chapter 15, we present
some general observations regarding compact polymers and the Coulomb gas
description of conformal field theories. We also comment on the dimer-loop mo-
del [107] and the three-state Potts antiferromagnet [106], in light of our solution
of the fully packed loop model on the square lattice.

Resumo en Esperanto

Krita konduto ne necese ekestas pro konflikto inter energio kaj entropio. Ge-
ometrie frustritaj sistemo) provizas ekzemplojn de kritaj statoj je temperaturo
nula kies origino estas pure entropia. Aparte interesas nin kolorigaj problemoj
de la tipo: “En kiom da manieroj eblas kolorigi la egojn de regula reto per g
koloroj, tiel ke la aro da egoj tusantaj iun verticon enhavas precize ¢ malsamajn
kolorojn?” Uzanta paron da koloroj por difini buklon kiel sekvencon da alternaj
koloroj oni atingas modelon de fermitaj bukloj kiuj vizitas ¢iun verticon de la
reto.

Nia cefa motivo por studi tiajn modelojn estas la problemo de kompakta
polimero sur la kvadrata reto. La kvarkoloriga problemo sur tiu reto nature
difinas du specojn da bukloj, po kun sia pezo (kemia potencialo). Kiam ambati
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buklopezoj apartenas al la intervalo [0, 2] la buklomodelo estas krita. Gia faz-
diagramo estas tre rica kaj enhavas plurajn punktojn kiujn ni identigas kun
modeloj antatie konsideritaj (Fig-o 8.1).



Chapter IX

Compact polymers

Novel universality classes for lattice polymers can be found by studying compact
polymers, or Hamiltonian walks, which are self-avoiding random walks that visit
all the sites of the underlying lattice; see Fig. 9.1. They have been used as simple
models of polymer melts [108] and appear in statistical studies of protein folding
[97, 98]. Unlike dilute and dense polymers (to be defined below) whose scaling
properties were calculated exactly from the O(n) loop model [109], compact
polymers defied a similar treatment until recently. Numerical transfer matrix
calculations [110], a Bethe-ansatz solution [91], and a Coulomb gas theory [92] of
the fully packed loop model on the honeycomb lattice, all conclude that compact
polymers define a new universality class of critical behaviour. Here we study
compact polymers on the square lattice. We calculate exact scaling exponents
and find them to be distinct from the honeycomb case. This was first reported
in Ref. [88] on the basis of numerical transfer matrix results.

The lattice dependence of critical properties distinguishes the compact poly-
mer problem from its dilute and dense counterparts in a crucial way. It places
them into the class of geometrically frustrated critical systems'. A physically
relevant measure of frustration for compact polymers is the number of con-
tacts per monomer. Contacts are realised by monomer pairs where the two
monomers are nearest neighbors on the lattice but are not adjacent along the
polymer chain. In lattice models of proteins hydrophobic interactions among
the amino acids occur at contacts [97, 98]. For the square model studied here
the number of contacts per monomer is two, whilst on the honeycomb lattice
it is one; see figure 9.2. The triangular lattice, for which the compact polymer
problem has not yet been solved, has four contacts per monomer.

At first sight it is somewhat surprising that the critical exponents for dense
polymers, which by definition cover a finite fraction 0 < f < 1 of the vertices,
are lattice independent whilst those of compact polymers define new lattice
dependent universality classes. A key to the understanding of this fact lies in the

I Another example is the antiferromagnetic three-state Potts model which has a zero-
temperature critical point on the square [106] and the Kagomé [111] lattices characterised
by different critical exponents.
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Figure 9.1: Compact polymer on the square lattice; x and y are the positions
of the chain ends.
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Figure 9.2: Number of contacts per monomer for compact polymers on the
honeycomb (left), square (middle) and triangular (right) lattices. A macroscop-
ically straight portion of the compact polymer (shown in thick solid linestyle) is
surrounded on either side by other portions of the polymer (dashed lines) that
are close to it in terms of the distance on the lattice, but far away in terms
of the distance along the monomer chain. Contacts, i.e., empty lattice edges
connecting the different portions of the polymer, are shown as dotted lines. It
is seen that the number of contacts is one per (thick solid) monomer on the
honeycomb lattice, two on the square lattice, and four on the triangular lattice.
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construction of the height representation for the equivalent interface model (see
Chapter 10). Dense polymers, even for f = 0.999, are adequately described by
a scalar height [112], whereas compact polymers (f = 1) necessitate a vectorial
height, the dimensionality of which depends on the underlying lattice [92, 93].
In spite of this, certain contact exponents do turn out to be independent of
f > 0. We shall return to the issue of universality in Chapter 15.

Compact polymers are crucial for the description of protein folding. We
conclude this chapter by a concise review of basic questions addressed by this
intriguing and very active field of research, and we state what can be learned
about proteins from the study of two-dimensional statistical mechanics models.

9.1 Conformational exponents

9.1.1 The exponents v and ~

In order to study the scaling properties of compact polymers we focus our at-
tention on the two most widely studied conformational exponents, v and ~. If
R = +/{(r — (r))?) is the radius of gyration of the polymer then

R~ N”, (9.1)

where A is the number of monomers. Since compact polymers visit all the sites
of a lattice, they are space-filling and we conclude that » = 1/2. This simple
result will serve as an important check on our field theoretical calculations where
it will be recovered.

In order to define the conformational exponent 4 we introduce C'(N), the
number of compact polymers (Hamiltonian walks) on a square lattice with A
sites. Since a compact polymer fills the lattice, boundary conditions (free, pe-
riodic, ete.) play an important role. Following Duplantier and Saleur [112], we
define v in a way that is insensitive to the boundaries. Namely, if we introduce
the quantity C,(N), the number of compact-polymer rings, then we can expect

CWN)
Co(N)

~ N7, (9.2)

where v does not depend on the choice of boundary conditions. Therefore, in
order to calculate v we need to solve the hard combinatorial problem of counting
the number of open and closed compact polymers on the square lattice. Follow-
ing de Gennes we do this by mapping the counting problem to the calculation
of a correlation function in a particular statistical model at the critical point.

9.1.2  Scaling theory for v

Consider the quantity Z(x,y; '), the number of compact polymer conforma-
tions that start at the vertex x of the VAN x VA square lattice, and end at y
(see Fig. 9.1); we consider the limit 1 < |x — y| € VN, where x and y are
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chosen far from the boundaries of the lattice. For this quantity we can write
down the scaling form [112]:

—2zq |X - Y|
Zxyi V) = G-y (B (9.9
where f(u) is a scaling function with the property f(u) — const. as u — 0,
and z; is a geometrical exponent related to 7. Integrating Z(x,y;N) over all
end-points y and comparing the result to Eq. (9.2), the scaling relation

y=1-—x (9.4)

follows.

To calculate the geometrical exponent z; we introduce in the next chapter
the two-flavour fully packed loop model on the square lattice. The fact that
we need two loop flavours follows from the simple observation that the bonds
not covered by the compact polymer also form loops whose number is uncon-
strained. For the loop model we then construct an effective field theory in which
Z(x,y;N) becomes a two-point correlation function. The asymptotics of this
function can be calculated exactly and we find 21 = —5/112, from which

v =117/112 = 1.0446 . .. (9.5)

follows. This is to be compared to the mean-field theory value yyr = 1 [113],
which is also the result obtained for compact polymers on the honeycomb lattice
[91].

The conformational exponent v was measured directly from enumerations
of conformations of chains with lengths up to 30 in Ref. [97], and the value
v = 1.01(5) was reported. More recently, from a numerical transfer matrix study
of the fully packed loop model on the square lattice the geometrical exponent
z; = —0.0444(1) was determined [88], in excellent agreement with the exact
result.

9.1.3 Connective constant

Another quantity of interest is the connective constant x which determines the
leading, exponential with system size, scaling of the number of compact poly-
mers. For a system with a surface its scaling form reads [114]

C(N) ~ wN N N1 (9.6)

Here ks 1s the surface connective constant; it appears due to the space-filling
nature of compact polymers. Both the value k = 1.475(15) found in Ref. [97],
and the estimate k ~ 1.472 obtained from transfer matrix calculations [115]
similar to ours, seem in favour of the mean-field result kyr = g = 1.4715...
[113].% In Sect. 14.4 we report the very accurate numerical value

Kk = 1.472801(10), (9.7)

2Very recently the field theory of Ref. [113] has been improved [116] yielding, however,
unchanged values for yyp and k.
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which shows that the connective constant for compact polymers also deviates
slightly from the mean-field result.

In the following chapters we elaborate on the calculation of v for compact
polymers, in the process unveiling an extremely rich phase diagram of the asso-
ciated loop model. As remarked earlier, it contains a two-dimensional region of
fixed points, which we characterise in detail by calculating the central charge and
the geometrical exponents associated with loops for each point on the critical
manifold.

9.2 Protein folding

Recently, compact polymers on two and three-dimensional lattices have become
the model of choice for protein folding studies [117]. Here the focus is on the
effect of non-specific and non-local hydrophobic interactions among the amino
acids, on the folding process, and on the formation of secondary structure (he-
lices and sheets). These investigations have been almost exclusively numerical,
and an analytical theory of protein conformations that takes into account self-
avoidance and compactness, as well as specific sequence information, would be
of considerable interest [117].

The field theory of compact polymers on the square lattice® developed in the
following chapters should be regarded as a first step towards this goal. Being
a loop model our theory automatically takes self-avoidance into account, and
compactness is modeled through the fully packing constraint. Chain connec-
tivity, z.e., the fact that there is a unique polymer covering the whole lattice,
corresponds simply to taking one of the loop weights (fugacities) to zero. As it
stands the model describes homopolymer folding and does not implement the re-
strictions due to specific sequences of amino acids. However, there is some hope
that this effect may be incorporated in a similarly transparent way through the
imposition of quenched randomness. We shall return to this point in Chapter
15.

To appreciate the connection between our results [118] and the questions
raised by the protein folding community we begin by reviewing some basic
properties of proteins, based on Refs. [119, 117]. Of course one may question
the relevance of two-dimensional model systems to a problem that is essentially
three-dimensional. However, from numerous numerical studies it has become
clear that in most situation the physics of proteins is adequately captured in
two dimensions. As stressed in Ref. [117] the advantage of exact model studies
as ours is that they have few implicit biases and arbitrary parameters and that,
in the spirit of universality, their predictions are often independent of our limited

3 As mentioned earlier the compact polymer problem on the honeycomb lattice has pre-
viously been studied [91, 92]. However, within the context of protein folding this model is
somewhat unphysical since there is only one contact per monomer. Indeed, since hydropho-
bic interactions in lattice models of proteins occur at contacts, the square and honeycomb
problem describe different physical situations. (We thank Terry Hwa for pointing this out to
us.)
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knowledge of exact microscopic details.

Apart from the conformational exponents mentioned in Sect. 9.1 above and a
definite prediction on the cooperativity of protein folding thermodynamics (see
Sect. 9.2.5 below) it is our hope that the FPL? model will eventually enable
us to make many further quantitative predictions for two-dimensional model
proteins. The discussion of some of the things that we have in mind is deferred
to Chapter 15.

9.2.1 Classification of biopolymers

Heteropolymers, long chain molecules made of different species of monomers,
are ubiquitous in biological systems. Here they are known as biopolymers; and
can be divided into several classes such as polysaccharides, nucleic acids (DNA,
RNA), and proteins. Proteins are distinguished from other biopolymers by
the fact that in their native aquatic environment they fold to (almost) unique
compact structures. The prediction of the three-dimensional folded state from a
particular sequence of monomers (amino acids) is known as the protein folding
problem. This is an extremely hard problem involving both frustration and
disorder, and the rugged nature of the phase space leads to slow dynamics and
glassy behaviour. It is therefore quite legitimate to study the simpler problem
of homopolymer collapse separately.

Proteins mediate many important biological processes such as catalysis (en-
zymes) and ionic transport (hemoglobin, chlorophyll). They are also present
in virus shells and prions. The monomers building up proteins are the amino
acids

NH, — C,HR — COOH (9.8)

consisting of the amine group NHjy, the alpha-carbon group C,HR, and the
acidic group COOH. There are 20 different amino acids, each characterised by
a particular residue R in the alpha-carbon group. The size of R ranges from a
single hydrogen atom (glycine) to CHy — C — CH — NH — CgHy (tryptophan).
A useful classification of the amino acids consists of first dividing them into hy-
drophobic (non-polar) and hydrophilic (polar), and then subdividing the latter
according to their ionic charge (neutral, positive or negative). The hydrophobic
amino-acid residues are responsible for the compactness of the folded state.

9.2.2 Formation of the native state

The full protein is formed by polycondensation of the amino acids: a water
molecule is formed by splitting off an OH™ ion from the acid group of one
amino acid and an HT ion from the amine group of a second amino acid. As
a result the two amino acids are now tied together by the peptide bond CONH,
which is strongly planar. Symbolically the protein can then be represented by
its backbone chain

.= Ca—C=N-Ca—C=-N-Ca—C—N—.... (9.9)
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Typically proteins consist of 100-500 amino acids, thus placing them into the
class of mesoscopic systems. In model studies, however, they can for most pur-
poses be regarded as infinitely long, and they are then in principle tractable
using the methods of statistical mechanics. At room temperature the soft de-
grees of freedom are the so-called ¢-1 angles, which are just the torsion angles
along the backbone.

A remarkable fact about protein folding is that the folded state is essentially
unique, t.e., the conformational entropy in the native state is zero. Further-
more, this statement appears to be independent of detailed knowledge of the
sequential information. Since the sole restriction of compactness does not pre-
vent the conformational entropy from being quite large, cfr. our evaluation of
the connective constant x in Eq. (9.7), it is seen that the steric exclusion in a
compact chain cannot by itself account for the uniqueness of the folded state.
The entropy of the remaining degrees of freedom in the compact state must
somehow be overcome by the forces of folding.

Another surprise is that the time needed for the folding is very large—of
the order of one second, which should be compared to the time scale of 1071%
seconds associated with the atomic motion. However, even this astronomic sep-
aration of time scales does not permit the protein to find its unique native state
by a ‘trial and error’ search among its huge number of possible configurations,
not even if the search could somehow be restricted to the compact states. In-
deed, the question how the protein ‘selects’ an efficient folding pathway remains
one of the great mysteries of protein folding. The large folding time has to do
with a rugged energy landscape with high free energy barriers and an expo-
nentially large number of metastable states. Incidentally, this is true even for
homopolymers.

9.2.3 Structure: Helices and sheets

The structure of a globular protein in its native state is conventionally classified
in a three-state hierarchy. Primary structure is simply the sequential informa-
tion for the amino acids along the backbone. This structure is present even
in the denaturated (swollen) phase. Secondary structure is the local ordering
in the folded state occurring due to the tendency of maximising the number
of hydrogen bonds between the remnants of the acidic (C — O) and the amine
(H — N) groups once the polycondensation has taken place.

The secondary structure can be further divided into the celebrated a-helices
and 3-sheets (see Fig. 9.3), which are quasi one- and two-dimensional structures
respectively. The average number of turns (for the helices) and strands (for the
sheets) is approximately as shown on the figure.

Finally, tertiary structure is the full three-dimensional structure of the glob-
ular protein, encompassing the compact packing of the secondary structure.
Very large proteins sometimes consist of several globular domains, which are
interconnected by only a few amino acids. The global arrangement of domains
is then referred to as quaternary structure.
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Figure 9.3: a-helix (left) and g-sheet (right). The dashed lines denote the
hydrogen bonds. Taken from Ref. [119].

9.2.4 Interactions driving the folding

Over the years much effort has been made to answer the question which force(s)
dominate the folding process. According to the framework model local inter-
actions are determinant. This point of view was first set forth by Mirsky and
Pauling in 1936 [120], who proposed that the local force of hydrogen bonding
leads to the helical propensities (cfr. Fig. 9.3). The idea then is that local in-
teractions drive the formation of secondary structure before the collapse, and
that the tertiary structure is formed subsequently by close-packing of helices
and sheets. Thus, symbolically, primary — secondary — tertiary.

The observation made by Kauzmann in 1954 [121] that hydrophobicity alone
can drive folding put global properties into focus anew. Namely, in its native
aquatic environment the protein globule tends to have the hydrophilic groups
among its amino acids on the surface, thus shielding the hydrophobic core from
the surrounding water. Two decades later these two points of view were syn-
thesised into the commonly held belief that hydrophobicity is responsible for
the compactness of the folded state, whereas hydrogen bonding leads to the
formation of secondary structure.

An alternative view is contained in the collapse model, promoted by Dill and
coworkers [117]. According to this model folding is driven by global proper-
ties alone, and the collapse drives concurrent formation of secondary structure.
Clearly, our FPL? model is based on this point of view. The model property
leading to the formation of a single compact chain is the loop fugacity’s being
taken to zero, and this is clearly expressing a non-local interaction.
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9.2.5 Protein folding thermodynamics

A question within protein folding thermodynamics that has attracted much
attention is whether cooperativity is a one-state or a two-state process [117].
In the language of biochemistry, cooperativity refers to a sigmoidal transition
from the denatured to the native state, i.e., one that is accompanied by a
peak in thermodynamic quantities such as the heat capacity. Generally, this
issue is discussed in terms of heteropolymers where hydrophobic contacts are
energetically favoured, but it is also of interest to answer the question within
the context of homopolymer collapse.

In the FPL? model denatured states are identified with finite-temperature
excitations that violate the fully-packing constraint. To see in detail how this
can be implemented in the colouring representation we refer to our calculation
of the thermal exponent z7 in Sect. 12.2.4 below. Each violation corresponds
an increase of the energy. For a polymer near the collapse transition, u.e., a
loop configuration in thermal equilibrium at a small but non-zero temperature,
one can then imagine plotting the population of the states at various energies
as a function of temperature. One-state and two-state behaviour refers to the
number of peaks in the population-versus-energy distribution upon approach of
the collapse transition.

Tt can be argued [117] that two-state behaviour corresponds to the density of
states’ having a gap separating native states from the denatured ones. In view
of this, our identification of compact polymers with a critical model amounts
to a definite prediction on the cooperativity of protein folding thermodynamics.
Namely, since in a critical state there is no energy gap separating the first excited
(non-compact) state from the native (compact) ones, at least in the large chain
limit, we conclude that homopolymer collapse in two dimensions is a one-state
process.

Resumo en Esperanto

Kompaktaj polimeroj difinas novajn retdependajn klasojn da krita konduto,
malsamajn ol tiuj de densaj kaj §velaj polimeroj. Ni enkondukas la konformaci-
ajn eksponentojn v (9.1) kaj v (9.2). Por kompakta éeno v = 1/2 (triviale), kaj
v = 117/112 kalkuleblas tra la duspeca buklomodelo (9.4) kun buklopezo nula
por unu el la specoj. Transfermatricoj donas tre precizan nombran valoron por
la konekta konstanto & (9.7).

Globetaj proteinoj en akvo kompaktas, kaj tiel niaj rezultoj—kvankam en
nur du dimensioj—koncernas la studadon de proteinfaldado. Ni resumas tiun
problemon [119, 117]. La buklomodelo nature pritraktas la spacan ekskludon kaj
kompaktecon de proteinoj, sed ankorati ne la hidrofoban interagon kiun katizas
specifa sekvenco da aminoacidoj. Gi tre bele montras kiel neloka interago suficas
por krei kompaktan strukturon.

Car la buklomodelo estas krita ni konkludas ke homopolimera kolapso en du
dimensioj estas unu-stata proceso.



Chapter X

The FPL? model and its height representation

Last chapter conveyed our motivation for studying compact polymers on the
square lattice, and it is now time to explicitly introduce the loop model which
contains the polymer problem as a special case. Interpreting loops as height
contours allows for an interfacial representation, the continuum limit of which
is described by the field theory of Chapter 11. Eventually, in Chapter 12,
this construction will enable us to calculate ezxact values of the conformational
exponents.

10.1 Four-colouring model and its loop generalisation

The two-flavour fully packed loop (FPL?) model on the square lattice was intro-
duced in Ref. [93] as the loop representation of the four-colouring model [122].
It is the natural generalisation of the fully packed loop model on the honeycomb
lattice, which is the loop representation of the three-colouring model [92]. In
general, a g-colouring model on a ¢-fold coordinated lattice is given by edge
colourings of the lattice with ¢ different colours; an edge colouring of a graph
is one where no two bonds that share a common vertex are coloured equally.
The colouring model is mapped to a loop model by choosing [¢/2] colour-pairs!;
each pair defines strings of alternating colour that necessarily form loops (unless
they terminate at the boundary). In this way we end up with a loop model with
[¢/2] flavours of loops.

10.1.1 Partition function

To define the FPL? model we first specify the allowed loop configurations G. In
G every bond of the square lattice belongs to one and only one loop of either
flavour, and loops of the same flavour are not allowed to cross. Representing
the two flavours by solid (black) and hatched (grey) line segments respectively
this fully packing constraint allows each vertex of the square lattice to have one

IThe symbol [z] denotes the integer part of .

122
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3 B R g

Figure 10.1: The six vertex configurations of the FPL? model that are allowed
by the fully packing constraint. Black and grey loop segments are shown here
as solid and hatched lines respectively. Each vertex is adjacent to four edges,
here shown as filled circles, that are referred to as “dangling” if they are not
connected to an edge of a neighbouring vertex. Note that the two rightmost
vertices explicitly permit the two flavours to cross.

SN\ AN\

of the six appearances depicted in Fig. 10.1. Each loop is assigned a fugacity
depending on its flavour: ny, for black loops and ng for grey loops. The partition
function of the FPL? model is then

Z=> nyralls (10.1)
g

where Ny, and Ny are the respective number of black and grey loops. The fully
packed loop model of Batchelor et al. [88] is obtained by setting the loop fugacity
of the grey loops to unity. In the limit np, — 0 we recover the compact polymer
problem.

10.1.2 Compact polymer limit

If we define a restricted partition function of the FPL? model, to which only
configurations with a single black loop segment propagating between points x
and y contribute, then Z(x,y; ') in Eq. (9.3) is obtained in the limit n,, — 0,
ng — 1. The first limit discards all configurations with black loops present,
leaving only the black Hamiltonian walk (compact polymer) between x and y,
whilst the second ensures that all walks are weighted equally. We could also
consider weighting different Hamiltonian walks differently by setting ng # 1.
This situation can be interpreted as describing interacting compact polymers,
and, as will be shown later, it leads to a continuously varying exponent -~.
A similar property of interacting oriented polymers in the swollen phase was
suggested by Cardy from a field-theoretical calculation [123]. Recent numerical
studies of the interacting oriented self-avoiding walk by Trovato and Seno [124],
though, seem to be at odds with Cardy’s prediction of an exponent v that varies
continuously with the interaction strength.
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10.1.3 Phase diagram

Some idea of the phase diagram of the FPL? model as a function of ny, and
ng can be obtained by examining the extreme limits of the loop fugacities.
Namely, for ny,,ng — oo all loops have the minimum length of four, z.e., they
each surround a single plaquette of the square lattice. There are no large loops
in the system and the model is non-critical, or in other words, the average loop
length is finite. On the other hand, in the critical phase of the loop model,
which is our main interest, in a typical configuration one finds loops of all sizes
characterised by a power-law distribution. This leads to an average loop length
which diverges with the system size. Such is the case in the other extreme limit
of loop fugacities, ny, ng — 0, when the loops cover the whole lattice.

Other previously studied models that are particular points in the phase
diagram of the FPL? model are the four-colouring model, the dimer loop model,
and the equal-weighted six-vertex model; see Fig. 8.1.

For (np,ng) = (2,2) the loop fugacity of each loop can be evenly (1+1)
distributed among the two ways of colouring the bonds occupied by the loop
with two colours in an alternating fashion:

ABAB.. . AB for black loops,
CDCD...CD for grey loops. (10.2)

More precisely, starting from a given vertex a black loop can be realised as either
an ABAB... ora BABA ... sequence (and similarly for the grey loops), thus
giving rise to a loop fugacity of n, = ng = 2. This is then the symmetric
four-colouring model (A, B, C, and D are the colours) studied by Baxter [125].

In the dimer loop model black and white dimers are placed on the square
lattice so that every vertex is covered by one of each [107]. If we identify
the dimer-covered bonds with the black loops then this model is mapped to
the (np,ng) = (2,1) FPL? model. And finally (ny,ng) = (1,1) constitutes
the equal-weighted six-vertex model [126], the allowed vertices being those of
Fig. 10.1.

10.2 Height representation

The critical phase of the FPL? model can be described in terms of an effective
field theory, following the general procedure discussed in Ref. [99]. The idea is
to think of loops as contours of a scalar field, which we refer to as the height.
Depending on the loop model in question the height can have one or more
components. If the number of components is D then the effective field theory
of the loop model describes a fluctuating two-dimensional interface in D; + 2
dimensions.
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Figure 10.2: Mapping of the FPL? model to an interface model. (a) — (b):
Transform the loop configuration into an oriented loop configuration by choosing
the orientation of each loop independently and randomly. (b) — (c): Every
bond in the oriented loop configuration is in one of four states, depending on its
flavour and direction; these four states are represented by three-vectors A, B, C,
and D. (c) — (d): The microscopic height z of the interface model changes from
plaquette to neighbouring plaquette by A, B, C, or D depending on the state
of the bond between the two plaquettes. The change in z is positive going
clockwise around even vertices and counterclockwise around odd ones.

10.2.1 Oriented loop model

To introduce the heights we first map the loop model to an oriented loop model,
as shown in Fig. 10.2. The orientation of every loop is chosen randomly and
independently. Every non-oriented loop configuration is thus transformed into
an oriented one (G'); the number of oriented configurations that correspond to
the same non-oriented loop configuration is simply 2V»+Vs .

Next, for each loop we redistribute its weight (fugacity), ny, or ng depend-
ing on whether it is black or grey, between the two possible orientations. For
the black loops we do this by assigning to the clockwise orientation the phase
factor exp(imep), and the opposite phase, exp(—imep), to a counter-clockwise
oriented black loop. Similarly for grey loops the clockwise oriented ones are as-
signed a weight exp(imeg) whilst the counter-clockwise loops are weighted with
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exp(—imeg). The loop fugacities are related to the newly introduced parameters
ep and eg by

ny, = 2cos(mey),
ng = 2cos(meg), (10.3)

since the partition function of the original (non-oriented) model, as given by
Eq. (10.1), must be recovered by independently summing over the two possible
orientations for each loop. Note that for 0 < ny,, ng < 2 the parameters e, and
eg are real, whilst for ny, ng > 2 they are purely imaginary. As discussed in
more detail in Sect. 12.4 this is the crucial property that leads to a critical state
of the loop model in the former and a non-critical one in the latter case.

10.2.2 Definition of microscopic heights

Now that the loops are oriented we can interpret them as contours of a height
field; the orientation is necessary as it determines the direction of increasing
height. The systematic construction of the microscopic heights sets out from
the observation that every bond of the square lattice 1s in one of four possible
states: it can be coloured black or grey, and oriented from an even to an odd
site, or from odd to even. “Even” and “odd” refer here to the two sublattices
of the bipartite square lattice; every even site is surrounded by four nearest
neighbouring odd sites, and vice versa.

The four possible bond-states are represented by four vectors—which are
the colours in the four-colouring representation—A | B, C and D; see Fig. 10.2c.
The microscopic heights {z} are defined on the dual lattice and the change in
height when going from one plaquette centre to the next is given by A, B,C
or D, depending on the state of the bond which is crossed; Fig. 10.2d. For the
height to be uniquely defined the four vectors must satisfy the constraint

A+B+C+D=0. (10.4)

This means that the microscopic heights live in a three-dimensional vector space,
which we take to be Z>. In other words the oriented FPL? model maps to a
model of a two-dimensional interface in five spatial dimensions.

By reasons of symmetry the four vectors are chosen so as to point from
the centre to the vertices of a regular tetrahedron. With a suitable choice of
coordinates they are represented by three-vectors:

A=(-1,41,41), B=(+1,41,-1),
C=(-1,-1,-1), D= (41,-1,+1). (10.5)

This is the same normalisation as the one used in Ref. [93].

10.2.3 Local redistribution of loop weights

Mapping the loop model to an oriented loop model also allows for a local redis-
tribution of the loop weights. This is important since it leads to a local field
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theory for the heights. As we will find out shortly, though local, this field the-
ory is somewhat unconventional due to the non-local, extended nature of the
fundamental microscopic objects it purports to describe.

To redistribute the phase factors associated with oriented loops we assign
a phase exp(—imep/4) to a vertex of the square lattice if a black loop makes
a left turn at that vertex, the opposite phase exp(+imey,/4) if it makes a right
turn, and the weight 1 if it continues straight. The total vertex weight A\(x) is a
product of the phase factor originating from the black loop and an equivalent one
from the grey loop passing through the same vertex x. The partition function
of the FPL? model, Eq. (10.1), can now be rewritten as a sum over oriented
loop configurations (i.e., colouring configurations)

7=>"T[ = . (10.6)
g x

Once the height at a single point is fixed G’ is in a one-to-one correspondence
with the configurations of the microscopic heights, and the summand in the
above equation is the appropriate weight. In the critical phase of the FPL?
model the interface described by Eq. (10.6) is rough, and the field theory is
constructed so as to correctly reproduce its long-wavelength fluctuations.

10.3 Continuum description

10.3.1 Spectrum of electromagnetic charges

The mapping from oriented loop configurations, which are equivalent to edge
colourings, to microscopic height configurations is one to many. In particular,
two height configurations corresponding to the same edge colouring can have
their heights shifted with respect to each other by a global shift m € R. The
set R forms a three-dimensional Bravais lattice, z.e., it is closed under integral
linear combinations, and its elements are the magnetic charges in the Coulomb
gas representation of the FPL? model. The lattice reciprocal to the lattice of
magnetic charges, R*, defines the electric charges e € R*, with the property
e-m=2mm m¢cZ.

The construction of the lattice R for the FPL? model follows the usual
prescription for height models, and has been carried out in detail in Ref. [93].
For the sake of completeness we outline this construction below.

10.3.2 Ideal states

Tt is convenient to first identify the flat states (also referred to as the ideal
states), i.e., those colouring states which minimise the variance of the micro-
scopic height z. From the height mapping described above it follows that these
states have all of their plaquettes coloured with two colours only; an example
is shown in Fig. 10.2c. This leads to a colouring state that is periodic, with the
same 2 X 2 colouring pattern repeated throughout the lattice. There are twenty
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four flat /ideal states for the colouring representation of the FPL? model, corre-
sponding to the number of permutations of four different colours. Namely, an
ideal state is completely specified by listing the colours of the bonds around a
single site (say the origin), starting from the left horizontal bond and proceeding
clockwise. To each flat state we assign a coarse grained height h = (z), which is
the average microscopic height over a 2 x 2 unit cell of the colouring.

The flat states form a three-dimensional graph, which we refer to as the
ideal state graph, Z. Namely, starting from any ideal state four other ideal
states can be reached by exchanging a pair of colours that form a plaquette.
For example, by exchanging the colours A and B in Fig. 10.2c all the ABAB
plaquettes are turned into BABA plaquettes to give a new ideal state. Under
these plaquette flips only the microscopic heights at the centres of the affected
plaquettes are changed. In this way the ideal states form a four-fold coordinated
graph in height space, where each vertex is indexed by a colour permutation,
and its position in IR® is given by the coarse grained height h. Bonds are
associated with transpositions of two colours; they lie along the direction defined
by the difference of the two colour vectors, and have a length of 1/4/2 if the
normalisation in Eq. (10.5) is chosen.

The ideal state graph Z is instrumental in the continuum description of the
loop model. The basic assumption being made is that the dominant contribu-
tions to the partition function consist of bounded fluctuations around the ideal
states, a point that will be clarified though the explicit construction of the (Li-
ouville) field theory of the continuum limit in Chapter 11. In order to have
a well-defined continuum limit local operators of the microscopic height must
then be defined so as to be uniform in the ideal states. We turn to this issue
next, and at the same time find occasion to discuss the details of the explicit
construction of 7.

10.3.3 Definition of local operators

Labeling the ideal states by the colour configuration (o1 (x), o2(x), 03(x), 04(x))
around a fixed vertex x local operators that are uniform in the ideal states can
be defined as functions of the colours o;(x). Following Ref. [93] we define the
staggered spin S(x), the row-staggered spin R(x), the parity P(x) and the cross-
staggered spin Q(x) as follows:

S(x) = o1(x)+ioa(x) — o3(x) — io4(x),

R(x) = 01(x) = 02(x) + o3(x) — 04(x),

P(x) = oi(x)-[oa(x )>< US(X)L

Q(x) = [o1(x) = o3(x)] x [72(x) = 7a(x)]. (10.7)

In Table 10.1 we show the explicit values of these four operators in each of
the ideal states and at the same time give detailed information about how to
construct the ideal state graph Z. The first column lists the colour configuration
(01(x),02(x), 03(x), 04(x)) of the 24 different ideal states. Each state is related
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ABCD (0,+2+2i,42—-2i) (—4,0,0) +4 (-8,0,0)
BACD (B-—A)/4=(+1/2,0,-1/2) (+2—2i, —}-2—1—21,0) (0,0,—4) -4 (0,0,+8)
BCAD (C—-A)/4=(0,—-1/2,-1/2) (+2-2i,0,—2-2i) (0,4+4,0) +4 (0,+8,0)
CBAD (C-B)/4=(-1/2,-1/2,0) (0,—-2+42i,—2—-2i) (-4,0,0) —4 (+8,0,0)
CABD (A-B)/4=(-1/2,0,41/2) (-2-2i,—2+2i,0) (0,0,—4) +4 (0,0,—8)
ACBD (A-C)/4=(0,4+1/2,41/2) (-2-2i,0,+2-2i) (0,44,0) —4 (0,-8,0)
DCBA (A-D)/4=(-1/2,41/2,0) (0,-2—2i,4+42—-2i) (+4,0,0) +4 (+8,0,0)
CDBA (C-D)/4=(-1/2,0,-1/2) (-2+2i,—-2-2i,0) (0,0,—4) -4 (0,0,+8)
CBDA (B-D)/4=(0,+1/2,-1/2) (-2+2i,0,—2-2i) (0,—4,0) +4 (0,—8,0)
BCDA (B-C)/4=(+1/2,41/2,0) (0,42—2i,—2-2i) (+4,0,0) —4 (-8,0,0)
BDCA (D-C)/4=(+1/2,0,+1/2) (+2+2i,42-2i,0) (0,0,—4) +4 (0,0,—8)
DBCA (D-B)/4=(0,—-1/2,41/2) (+2+2i,0,+2-2i) (0,—4,0) —4 (0,+8,0)
DBAC (A-C)/4=(0,41/2,41/2) (+2+ 2i, —2—1—21,0) (0,0,+4) +4 (0,0,+8)
BDAC (B-D)/4=(0,+1/2,-1/2) (+2+2i,0,—2+2i) (0,4+4,0) —4 (0,—8,0)
BADC (A-D)/4=(-1/2,41/2,0) (0,424 2i,—2+2i) (+4,0,0) +4 (+8,0,0)
ABDC (A-B)/4=(-1/2,0,41/2) (-2+2i,42+2i,0) (0,0,+4) -4 (0,0,—8)
ADBC (D-B)/4=(0,—-1/2,41/2) (-2+2i,0,+2+2i) (0,4+4,0) +4 (0,+8,0)
DABC (D-A)/4=(4+1/2,-1/2,0) (0,-24 2i,4+2+2i) (+4,0,0) -4 (-8,0,0)
DACB (C-B)/4=(-1/2,-1/2,0) (+2-2i,0,+2+2i) (0,—4,0) +4 (0,-8,0)
ADCB (A-D)/4=(-1/2,41/2,0) (0,—1—2_21 +2+4+2i) (-4,0,0) —4 (+8,0,0)
ACDB (C-D)/4=(-1/2,0,-1/2) (-2-2i,42-2i,0) (0,0,+4) +4 (0,0,+8)
CADB (C—-A)/4=(0,—-1/2,-1/2) (-2-2i,0, —2—1—21) (0,—4,0) -4 (0,+8,0)
CDAB (D-A)/4=(+1/2,-1/2,0) (0,—2—2i,—2+42i) (-4,0,0) +4 (-8,0,0)
DCAB (D-C)/4=(+1/2,0,+1/2) (+2-2i,—2-2i,0) (0,0,+4) -4 (0,0,—8)

Table 10.1: The 24 ideal states are labeled by the colour configuration around a fixed vertex. Colour transpositions correspond
to bonds Ah of the ideal state graph Z. Also shown are the values of various operators defined in the text.
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Figure 10.3: The ideal state graph of the FPL? model in the four-colouring
representation.

to the following one by a transposition of two of the o;, corresponding to an
exchange of the two colours around one fourth of the lattice plaquettes and an
according modification of the microscopic heights. Considering the heights on
the remaining three fourths of the plaquettes to be fixed during this process,
the change in the coarse-grained height Ah is then one fourth of the difference
between the concerned colour vectors (see column 2). Each value of Ah furnishes
a link between two nodes on Z. By subsequently translating the 24 links thus
obtained so as to fill space periodically we trace out Fig. 10.3. Note that as a
result of this construction distinct nodes on Z may correspond to the same ideal
state.

10.3.4 The repeat lattice

The ideal state graph is a tiling of IR® with truncated octahedra; this regular
polyhedron is better known as the Wigner-Seitz cell [2] of a body-centred cubic
(bee) lattice (see Fig. 10.3). A single truncated octahedron in Z has twenty
four vertices corresponding to the twenty four different ideal states. The set of
vertices in 7 representing the same ideal state? form the repeat lattice R, which
is face-centred cubic (fcc) with a conventional cubic cell of side 4.

For this reason heights differing by a vector in R can be identified
h=h+7R, (10.8)

and the local operators O(x) just defined do by construction display the same

2We emphasize that two different vertices in 7 that correspond to the same ideal state do
not necessarily occupy identical positions on the two octahedra to which they belong.
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periodicity. They can therefore be expanded as a Fourier series

Ox) = Z Oe exp (ie . h(x)), (10.9)
ecR*

where R* is the lattice reciprocal to the lattice of magnetic charges R. It
is a body-centred cubic (bcc) lattice with conventional cubic cell of side .
The scaling dimension of O(x) is equal to the scaling dimension of the most
relevant term(s) in this expansion, and this in turn is associated with the shortest
vector(s) e for which O, is non-zero.

We are now ready to discuss the four different operators of Eq. (10.7) in
turn. Here Table 10.1 proves useful for determining the most relevant reciprocal
lattice vector occurring in the expansion (10.9). Another aid is to infer from
the definitions (10.7) the various symmetries under permutations of the colours.
For each operator the task is to find the shortest vectors in the sublattice of R*
that constitutes the height periods of the given operator.

The staggered spin S(x) assumes different values for all twenty four ideal
states, and hence serves as a kind of order parameter in the model. Quite
naturally the operator taking the highest number of different values on Z must
have the shortest electric charges in its Fourier expansion. The latter is therefore
dominated by the eight vectors of type

111
=7(=,=-, = 10.1
€s ﬂr<2a2;2> (00)

since these are the shortest vectors in the bece-lattice R* (which has a conven-
tional cubic cell of side ).

The row-staggered spin R(x) and the parity P(x) turn out to have the same
periodicity. Their expansions are dominated by the next-shortest vectors in R*,
which are the six vectors of type

er = ep = (1,0,0). (10.11)

Finally, the expansion of the cross-staggered spin Q(x) is dominated by the
third-shortest vectors in R*, which are the twelve vectors of type

eq = 7(1,1,0). (10.12)

10.3.5 Coarse graining the microscopic height

To obtain the continuum description of the FPL? model we coarse grain the
microscopic height over domains of ideal states. Fig. 10.4 illustrates this pro-
cess which can be thought of as a two-step continuum limit: In (a) — (b) the
identification of ideal state domains implies taking the continuum limit of the
space variable x whereas h € 7 remains discrete. Then, in (b) — (c), a coarse
graining of h promotes it to a continuously varying height field h(x).
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Figure 10.4: The coarse graining procedure. In (a) both the space variable
x € Z? labeling the vertices of the square lattice and the microscopic height
z € 773 are discrete. Dividing the particular colouring configuration into ideal
state domains means that, when passing from (a) to (b), x may be coarse
grained so as to constitute a continuous variable. At the same time z has been
averaged over the ideal states, but the resulting coarse grained height z € 7
is still discrete. Finally, in (c¢) we take the continuum limit of the height, thus
promoting it to the height field h(x). Taken from Ref. [93].

According to Eq. (10.8) we should consider the height field to be compactified
on the ‘three-torus’ IR?®/R. The phase space of the height is not simply con-
nected, thus allowing for topological defects (vortices) with topological charges
that take their values in R [127]. These defects are associated with magnetic
charges in the Coulomb gas representation of the FPL2 model. FElectric charges
on the other hand are associated with vertex operators exp(ie - h). If we take
the height to live in IR®/R then vertex operators are well defined only for values
of the electric charge e € R*.

We emphasize that the basic assumption being made is that most of the
entropy in the FPL? model is contained in bounded fluctuations around the
ideal states [93]. The crucial property that selects out the ideal states is that
they are states of maximum entropy. To make this statement more precise
consider what is the minimum change that can be made to a given colouring
configuration. Clearly, at least one of the colours has to be changed, say C — B
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at some vertex x. But then, in order not to violate the colouring constraint, the
other B-bond at x must be changed to a C-bond. Now this implies a mismatch
at the neighbouring vertex x’, and further updates must be made. The end
result 1s that the colours C and B along the entire loop passing through x
defined by these two colours are transposed; cfr. Fig. 11.1. By saying that ideal
states are states of maximum entropy we mean that they maximise the number
of loops of alternating colour and hence allow for the maximum number of loop
flips just described.

These considerations form one of the main ingredients of the construction of
the field theory for the FPL? model, which is the subject of the next chapter.

Resumo en Esperanto

Ni konstruas interfacan reprezentigon por la buklomodelo (10.1). TLa difino
de bukloj kiel alternaj sekvencoj de du koloroj ebligas direkti la buklojn kaj
distribui ilian pezon inter la du direktojn (10.3). Car ekz-e dekstruma buklo sur
la kvadrata reto turnas kvarfoje pli dekstren ol maldekstren oni povas ec¢ fari
lokan redistribuon (10.6), kiu finfine implicos lokan kampteorion.

La egaj koloroj difinas diferencojn inter mikroskopaj altoj sur la duala reto
se oni reprezentas ¢iun koloron per vektoro. Por plenumi (10.4) la vektoroj
estu tri-dimensiaj (10.5). Kontinua limo de la mikroskopaj altoj konstruigas
tra la 24 idealaj statoj (Fig-o 10.2¢). Tli makroskope ebenas (Fig-o 10.2d) kaj
estas entropie selektitaj car ili ebligas la maksimuman nombron da sangigoj. La
averaga alto en la idealaj statoj formas kovron de IR® per trancitaj okedroj (Fig-
0 10.3). Verticoj sur malsamaj okedroj povas korespondi al la sama ideala stato,
kaj ni do kompaktigas la averagan alton h rilate al la koresponda tri-dimensia
krado R (10.8).

Fig-o 10.4 ilustras la manieron trovi la kontinuan limon por ajna stato. Unue
dividu la staton en regionojn de idealaj statoj (a). Al ¢iu regiono atribuu la
avaragan alton de la koncerna ideala stato (b). Finfine, pasu al la kontinua
limo por la alto (c). Tiu procedo donas kulombgasan reprezentigon por la
bukloj. Elektraj kaj magnetaj vektoraj sargoj apartenas al la kradoj R* kaj R
respektive. Fizike, elekta Sargo korespondas al vertica operatoro exp(ie - h) kaj
magneta Sargo al topologia difekto (vortico), kiu povas ekesti ¢ar la alto estas
kompaktigita sur la nekonektita objekto IR®/R.



Chapter XI

Liouville field theory

In constructing an effective field theory of the FPL? model one should aim at
describing large-scale properties of loops. The kind of questions we expect it to
answer are ones that do not refer to the microscopic details of the lattice model.
For example, from the effective field theory we will calculate the asymptotics
of the probability that two points lie on the same loop, when the separation
between the points is large compared to the lattice spacing. From this and
related quantities the conformational exponents of compact polymers can be
extracted.

The field theory of the FPL? model is defined by the Euclidean action for the
coarse-grained height h. Consider a typical configuration of the oriented FPL?2
model which is equivalent to the colouring model. It consists of domains of ideal
states. To each ideal state domain we assign a coarse-grained height, defined
earlier as the average microscopic height over the domain. In the continuum
limit we assume that this height is a smoothly varying function of the basal
plane coordinates (z!,22). The partition function that takes into account only
the large-scale fluctuations of the height can be written as a functional integral,

Zs = /Dh exp(—STh]), (11.1)

where S is the Euclidean action of a Liouville field theory with imaginary cou-
plings [89]. The Liouville action contains three terms,

S =S+ S+ 5 . (11.2)

Each one has a concrete geometrical interpretation in the FPL? model, which
we describe next.

11.1 Elastic term

The first term in the effective action for the FPL? model describes the elastic
fluctuations of the interface. It gives less weight to configurations that deviate

134
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Figure 11.1: A loop flip changes one oriented loop configuration into another.
Here the bond states C and B are exchanged along a single BC plaquette
(efr. Fig. 10.2¢).
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from the flat states, by penalising finite gradients of the height. This term is
entropic in origin. Namely, in order to change the colour of a particular bond
in the four-colouring representation of the loop model, say C — B, all the C’s
and B’s have to be interchanged along the CB loop which contains the chosen
bond. This transformation we call a loop flip; see Fig. 11.1. The ideal states
mazimise the number of loops of alternating colour and consequently they have
the largest entropy of loop flips.

In its most general form the elastic term in the effective action can be written
as a gradient expansion,

1 -
Sp =5 /dQXK;fﬁﬁiho‘ﬁjhﬁ : (11.3)

where higher powers of the height gradients and higher derivatives of the height
are less relevant at large scales. The stiffness tensor K;Jﬁ nominally has 36
components; the indices 7, j = 1,2 are for the basal plane coordinates, whilst
a, = 1,2, 3 1abel the three components of the height. Summation over repeated
indices 1s assumed throughout.

The number of independent non-zero components of the stiffness tensor (i.e.,
elastic constants) is actually only three, once all the symmetries of the FPL?
model are taken into account. The relevant symmetry transformations, that
is the ones that become the symmetries of the effective action, are the ones
that leave the weights of oriented loop configurations unchanged. First, there
are the lattice symmetries, translations and rotations, which cut the number of
independent elastic constants down to six. The terms that are allowed in Sy are
scalars under rotations in the basal plane {(z!, ?)}, and they are necessarily of
the form 8h® - OhP, where 8 = (81, J3) is the usual gradient. Second, the FPL?
model possesses colour symmetries,

Ao Bie, & —ep and 21 & 23 (11.4)
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and
CoDieg & —egand 2y & —z3, (11.5)

which interchange the colours and at the same time transform the microscopic
heights. [We recall that (z1,z2,z3) are the components of the microscopic
height.] Taking into account the colour symmetries the elastic contribution
to the action takes on the form:

Sk = %/d%c {Ki[(0h")? + (8R%)"] + (11.6)
2K13(8h' - 8R%) + K2n(8Rh*)?}.

Furthermore, by introducing a change of coordinates in height space,
1 1
lei(hl—h:”), H*=h*, H?= 5(h1+h3) (11.7)
St becomes diagonal,
1 2 a2
Sg = ) d°x go(OH*)* . (11.8)

The three coupling constants g, (@ = 1,2,3) are linearly related to the three
elastic constants,

g1 = 2([&711 — 1(13), g2 = [{22, g3 = 2([\711 + 1(13). (119)

The appearance of three elastic constants is rather intriguing from the view-
point of loop models that have been solved previously. The @-state Potts, the
O(n), and the honeycomb FPL models are all characterised by a single coupling
constant, which has been determined case by case from their exact solutions.
Below we will show that all three couplings in Eq. (11.8) can be calculated
exactly from the loop ansatz introduced in Ref. [89].! The ansatz states that
the operator which enforces the complex weights assigned to oriented loops is
marginal in the renormalisation group sense. This property of the field theory
is intimately related to the random geometry of loops; we elaborate on this
important point in Sect. 11.3.2.

11.2 Boundary term

The mapping of the loop model to an oriented loop model with local complex
weights A(x) (Eq. (10.6)) fails for loops that experience the boundary. For
example, if we define the FPL? model on a cylinder then loops that wind around
the cylinder will not be weighted properly. The winding loop has an equal

1The coupling constant g for all the loop models known to date can be calculated using
this method, therefore dispensing with the need for an exact solution.
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number of left and right turns and hence i1t will be assigned a weight one.
Summing over the two orientations gives a weight two, and not the correct ny
or ng, depending on the flavour. To correctly weight these loops one introduces
a boundary term into the effective action,

Sp = — [d’x (eg-h)R ; (11.10)
4
R is the scalar curvature and eq is the background electric charge, which is
to be determined. Since we are only concerned with the situation where the
lattice on which the FPL? model is defined is flat, the scalar curvature vanishes
everywhere except at the boundary.
To determine eq we consider the FPL? model on the cylinder. The scalar
curvature of the cylinder is proportional to the difference of two delta functions
situated at the two far ends of the cylinder:

R = 47 [§(+00) — §(—0)] . (11.11)

Therefore Sp has the effect of placing vertex operators exp(+ieg - h) at z? =
+00; here z? is the coordinate along the length of the cylinder. These vertex
operators assign an additional weight exp(ieg - (h(4+00) — h(—00)) to oriented
loop configurations on the cylinder. Now, in order for h(+00) — h(—o0) to be
non-zero there must be at least a single winding loop present. If this winding
loop is black, then the height difference is A or B depending on its orientation;
similarly if the loop is grey the height difference is C or D. Furthermore if the
background charge is chosen so as to satisfy

ey A =me, ey -B = —mep
eg - C = meg ey - D= —meg (11.12)

then the winding loops will be assigned their proper weights. This is again
seen by summing over the two possible orientations of the winding loop. In the
normalisation chosen for the colour vectors, Eq. (10.5), the unique solution of
the system of linear equations in Eq. (11.12) is

eoz—g(eg—i—eb,o,eg—eb). (11.13)

This calculation of the wvector background charge generalises the scalar case
studied previously [99].

11.3 Liouville potential

The elastic term and the boundary term make up the usual Coulomb gas ap-
proach to two-dimensional critical phenomena. Recently it has been argued that
this description is incomplete [89] and that an extra term Sp, must be added
to the effective action. To see this consider a large loop in the bulk, one that
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does not experience the boundary. Without the extra term this loop would be
weighted exclusively by the bulk term Sg. There are two problems with this: Sg
is real whilst an oriented loop should be weighted by a complex phase, and, Sg
does not distinguish between the two orientations of a loop which are assigned
different weights. We conclude that an extra bulk term is necessary!

The most general form of a bulk term is

St = /d2x whh(x)], (11.14)

where exp(—w[h(x)]) is the scaling limit of A(x) in Eq. (10.6). In this sense S,
is energetic in origin, as opposed to Sk, which we argued in Sect. 11.1 accounts
for the entropy of edge colourings.

Microscopically, the vertex weight A can be written in terms of the colours
of the bonds around the particular vertex as A = exp(—w) where

w(B,C,A,D) = 0,

w(B,D,A,C) = 0,

w(A,B,C,D) = ;i%(eg+eb),

w(B,A,C,D) = :Fi%(eg—eb)v

w(A,B,D,C) = :Fig(eb_eg)a

w(B,A,D,C) = qiig(—eb—eg); (11.15)

the top sign is for even vertices whilst the bottom sign applies to odd vertices of
the square lattice. Here we adopt the notation (o1, 02,03, 04) for the ordering
of the colours around a vertex by listing the colours clockwise from the leftmost
bond. The operator w is completely specified by the values 1t takes on the six
edge colourings listed above since it does not change under cyclic permutations
of its arguments.
By explicitly going through the six colour configurations listed above it is
easily checked that
w(x) = % eo - Q(x), (11.16)
where the cross-staggered operator (cfr. Sect. 10.3.3) is defined by
Q(x) = +[o1(x) — 03(x)] X [02(x) — oa(x)]. (11.17)

Since Q(x) is manifestly invariant under 90° rotations of the colours around
x, Eq. (11.16) is seen to hold true for any distribution of the colours around a
given vertex.

In order to find the coarse-grained version of w(x) we express it as a function
of the height field h(x), following the general procedure outlined in Sec. 10.3.4.
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First note that the microscopic operator w(x) is uniform in each of the ideal
states of the four colouring model. As such it defines a function on the ideal
state graph w(h), where h € 7 is the coarse-grained height. Furthermore, it is
a periodic function of h and it can therefore be written as a Fourier sum:

w(h) = Z Weexp(ie - h) . (11.18)
eERZJ

The electric charges appearing in the sum take their values in the sub-lattice
RE C R*, which is the lattice reciprocal to the lattice of periods of w(h). In the
continuum limit the coarse-grained height h is promoted into the height field
h(x), and the scaling limit of the operator w is obtained by replacing h by h(x)
in Eq. (11.18). Therefore w[h(x)] is a sum of vertex operators,

wlh(x)]= > deexp(ie-h(x)) (11.19)

ecRz,

of which only the most relevant one(s) are kept in the effective action. Since
the relevance of an operator is determined by its scaling dimension we turn to
this calculation next.

11.3.1 Dimensions of charge operators

In the Coulomb gas formalism operators are associated with either electric or
magnetic charges. Electric operators are vertex operators exp(ie - h) and they
appear as the scaling limits of microscopic operators in the FPL? model that
can be expressed as local functions of the colours; the loop-weight operator is
one example.

Magnetic operators on the other hand cannot be expressed as local functions
of the height but can be thought of as a constraint on the height field that
generates a topological defect of strength m. If x is the position of the defect
core then the net height increase around any loop that encloses x is m (assuming
that no other defects are encircled). Geometrical exponents for loops in the
FPL? model are given by dimensions of electric and magnetic operators in the
associated Coulomb gas.

For an operator that has total electromagnetic charge (e, m), where e =
(e1,€e2,e3) and m = (m',m? m?), the scaling dimension is the sum of the

electric and magnetic dimensions,?
111 .
2e(e,m) = — | —FEo(Fo — 2F0a) + g (M*)?| (11.20)
T LYo

where

E1:61—63, Eg:(ig, E3:61+€3 (1121)

2The derivation of Eq. (11.20) is an exercise in Gaussian integration and is reviewed in
Appendix A.
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Figure 11.2: The twelve root vectors of the Lie algebra su(4). Taken from
Ref. [87].

and

1 1
M1: §(m1_m3) , ]\4’2:7712 , M3:§(m1—+—m3) (1122)

are the electric and magnetic charge vectors in the basis in which the elastic term
in the action is diagonal. Since the magnetic charges are given by height differ-
ences they must transform according to Eq. (11.7), whilst the electric charges
transform in a dual fashion (c¢fr. their appearance in the vertex operators).

11.3.2 Loop ansatz

With the dimension formulain hand, we can settle the issue of the most relevant
operators appearing in the Fourier expansion of w(h); see Eq. (11.19). There are
twelve vertex operators to choose from corresponding to the twelve (110)-type
vectors in the bee lattice R*. These are the shortest vectors in the lattice R}, ; see
Fig. 11.2. To find which of these electric charges minimise z(e, 0) (Eq. (11.20))
it is convenient to first consider the simpler case of the FPL? model for ny, = Ng.

For the FPL? model with equal fugacities for the black and grey loops the
effective action is considerably simplified. Namely, in this case the cyclic per-
mutation of the colours,

(A,B,C,D) & (B,C,DA) :
(21,22,23) L d (—21,23,—22) (1123)
does not change the vertex weight A, and is thus an additional symmetry of the

action S. This symmetry implies that K13 = 0 and K33 = Ki;1 in Eq. (11.6).
Consequently there is only one elastic constant, K = Ki;. This then simplifies
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the formula for the dimension of an electromagnetic charge,

K
(e—2 —m? 11.24
s e (6 2e0) + gomt (11.24)

2z(e,m) =

where from Eq. (11.13) it follows that the background charge in this case has
only one non-zero component, e = —m(ep, 0,0). Now it is a simple matter to
check that of the twelve (110)-type vectors in the lattice of electric charges R*,
the four charges

e(l) = (_ﬂ-v 07 +7T), e(2) = (—Tl', 07 —7T),
® = (Cr4m0),  o® = (om,—m0) (11.25)

are degenerate in dimension and they minimise 2z(e, 0). These are therefore
the electric charges of the vertex operators that are kept in the action. From
the viewpoint of conformal field theories endowed with Lie algebra symmetries
the twelve shortest vectors in R* are the so-called root vectors; see Fig. 11.2.
The connection with conformal field theory is discussed further in the following
section.

Now we turn to the loop ansatz which states that the operator w(h) is exactly
marginal in the renormalisation group sense. This is the statement that the loop
weight does not renormalise at large scales. The geometrical meaning of this
becomes obvious when one realises that the number of loops inside a domain of
size p, whose linear size is comparable to p, is thermodynamically conjugate to
the loop weight at scale p. Thus the loop ansatz states that the number of large
loops does not grow with scale (more precisely it is sufficient to assume that it
does not grow faster than any power of the scale). The analogous statement can
be proven rigorously for critical percolation where it is the source of hyperscaling
[128].

The assumption that there is of order one loop at every scale is linked to
the variance of the height difference between two points in the basal plane,
separated by a macroscopic distance |x|. Namely, if we assume that when going
from one point to the other there is of order one contour loop that is crossed
at every scale, and further assuming that the directions of these contours are
independent from scale to scale, it follows from the law of large numbers that
the variance of the height difference grows as the number of contours crossed,
that is as log(|x|).> This of course is nothing but the large |x| behaviour of
<(H°‘(x) - HO‘(O))2> calculated in the Gaussian model of Eq. (11.8).

The loop ansatz, or in other words the marginality hypothesis for the loop
weight operator, simply translates into a statement about its scaling dimension:

e 0)y=2 i=1,234. (11.26)

This, using the dimension formula Eq. (11.24), leads to a formula for the single
elastic constant K.

3Proof: Let p(r) be the density of loops on scale r. By assumption frkr p(r')dr’ is inde-
pendent of r, whence upon differentiation p(r)/p(kr) = k. It follows that p(r) o 1/r.
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In the general case ni, # ng, the scaling dimensions of the four electric
charges identified above are

1—
I(e(l)io) = eba
g1
1—
ze?,0) = 7 —%& (11.27)
gs
1-2 1 1-2
(0,0 = o(e0) = T (12 g 1R,
4 g1 g2 93

the last two remain degenerate in dimension. The dimensions of the first two
charges are also equal due to the “duality” transformation of the FPL? model
which exchanges the two flavours, ny, <+ ng. This transforms the microscopic
heights z9 — —z3 and z3 — —z3 (and similarly for the appropriate components
of the height field). Furthermore, the elastic constants K17 and Kag in Eq. (11.6)
are unchanged, whilst K13 = —Kj3. Finally, from Eq. (11.9) it follows that the
duality transformation exchanges the couplings g1 <> g3 thus rendering e(!) and
e(?) degenerate in dimension, as the FPL2 model is self-dual.

Unlike the case of ny, = ng, the loop ansatz in the general case requires that
at least two of the electric charges e(?) (¢ = 1,2,3,4) remain marginal, thus
enforcing the non-renormalisability of the two fugacities ny, and ng. If we now
further assume that these charges are unrelated by the “duality” transformation
described above, it follows that in fact all four are marginal. The three couplings
are then simply calculated by setting the right hand sides of Eq. (11.27) equal
to 2. We find:

g1 = 5(1_6b)a

7r .
gz = 5(1 —eg), (11.28)
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One final comment is in order. The relation 1/gs = 1/g1 + 1/g3 comes
as somewhat of a surprise, as it was not anticipated on symmetry grounds.
Of course, since a particular point in the critical region of the FPL? model
is determined by two parameters, n;, and ng, one relation between the three
couplings is to be expected. It is therefore an interesting open question whether
a critical loop model can be constructed in which g» would be unconstrained.*

With the values of the couplings g1, g2, and g3 in hand, as well as the for-
mula for the scaling dimensions of charged operators, Eq. (11.20), we are fully
equipped to calculate critical exponents of the FPL? model. In particular, in
the next chapter we calculate the formulae for the central charge and the geo-
metrical exponents associated with loops as a function of the loop fugacities, ny,
and ng, for the whole critical region of the model.

4This possibility was suggested to us by D. Huse.
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11.4 Relation to Conformal field theory

The Liouville field theory proposed for the effective theory of the FPL? model
in the critical region is conformally invariant. Each point in the critical phase
is characterised by the central charge and the scaling dimensions of primary
fields, which are associated with electric and magnetic charges in the Coulomb
gas. For generic values of the loop fugacities the background charge eg is not
commensurate with the electric charges that make up the lattice R*. This im-
plies that amongst the electric operators there will be many (an infinite number,
in fact) that have negative dimensions, signaling the non-unitary nature of the
conformal field theory.

To see this, note that the operator product expansion of two vertex operators
with respective electric charges E; and Es reads [42]

81 () oBr () | _ y[BPES /2nan JBIHEDR() 4L (11.29)

where we are working in the basis (11.21) for notational simplicity. The main
point here is that we generate a new electric operator with a charge that is the
sum of the electric charges we started out from. Therefore, the complete set of
electric operators available in the Coulomb gas theory have charges that can be
formed as integral linear combinations of e € R* and the background charge eg.
If the latter is not commensurate with R* there exists non-zero electric charges
of arbitrarily small length. In particular, the scaling dimension (11.20) can be
made negative.

Non-unitary CFT’s appear in many other critical geometrical models, critical
percolation being the best known example.

11.4.1 Screening charges and the loop ansatz

Liouville field theory provides the Euclidean action for the Coulomb gas de-
scription of conformal field theories proposed by Dotsenko and Fateev [62, 129].
As such it contains the so-called screening charges which are the vertex oper-
ators that make up the Liouville potential. In the original formulation these
charges were introduced on formal grounds so as to ensure the existence of non-
vanishing four-point correlation functions in the theory. In order for the modified
Gaussian model (the modification is the addition of the boundary term to the
gradient-square action) to stay conformal, these vertex operators are necessarily
marginal, z.e., their scaling dimension is two.

Here we have found a physical interpretation of the screening charges. Their
role in loop models is to ensure that the number of large loops from scale to scale
stays of order one; this translates into the statement that the loop fugacities do
not flow under the action of the renormalisation group.

The fact that we have a concrete physical interpretation of the screening
charges directly leads to the calculation of the elastic constants in the Liouville
field theory. In the traditional Coulomb gas approach these coupling constants
are calculated by comparing with formulae derived from an exact solution of
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the model. Once these constants are known marginal vertex operators that play
the role of screening charges can be written down. Our construction basically
reverses this procedure, and by doing so makes no reference to an ezxact solution.

11.4.2 Lie algebra symmetries

Perhaps the most pleasing aspect of loop models is that they offer a concrete
geometrical interpretation of many of the usual CFT concepts. For instance,
the conformal field itself is just the height field h(x), but a lot more is true [87].
Here we just mention some of the main points, since the introduction of the
necessary formalism [42] would take us too far afield.

The four-colouring model, which is contained as the point (ny,ng) = (2, 2)
in the phase diagram of the FPL.? model, was originally proposed by Read [122]
as a critical lattice model whose continuum limit is endowed with an su(4) Lie
algebra symmetry. From the theory of simple Lie algebras it is well known [130]
that the symmetry algebra of a conformal field theory can be larger than the
Virasoro algebra. This happens if the repeat lattice is equal, up to a scale factor,
to the root lattice of some simple Lie algebra and the compactification radius
(or, in other words, the® elastic constant) has the correct value, so as to render
the vertex operators associated with the root vectors currents of conformal di-
mension one. In the case of the four-colouring model this is precisely the case,
and the continuous symmetry of the effective field theory can be shown to be
given by the su(4)r=1 Kac-Moody algebra [87]. In particular, the root lattice of
the su(4) algebra is an fec-lattice, as is the repeat lattice R entering our height
construction.

Not only does the four-colouring model have a Kac-Moody symmetry alge-
bra, but its stress-energy tensor can also be shown to have the Sugawara form
[87]. This implies that the four-colouring model is the free-field representation of
the SU(4)k=1 Wess-Zumino-Witten (WZW) model. An equivalent programme
can be carried through for the six-vertex model and the three-colouring model
on the honeycomb lattice, which turn out to be free field representations of the
SU(2)g=1 and the SU(3)g=1 WZW models, respectively. An interesting open
question, which we are currently pursuing, is whether the six-colouring model
on the triangular lattice does similarly represent the SU(6)x=1 WZW model.

When moving away from the (ny,, ng) = (2,2) point in the FPL? phase dia-
gram by means of a non-zero background charge and perturbation by an exactly
marginal operator, the SU(4)g=1 symmetry disappears, since the background
charge changes the compactification radius.

To complete our ‘geometrical’ identification we note that R* is the weight
lattice of the su(4) Lie algebra. R is the root lattice, and its twelve shortest
vectors are the roots; see Fig. 11.2. As expected for an su(4) algebra the quotient
of the weight lattice and the root lattice is Z4.

5For ny, = ng there is only one elastic constant, as mentioned in connection with
Eq. (11.23).
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Resumo en Esperanto

La Liouville kampteorio por la interfaca reprezentigo de la buklomodelo havas
tri termojn en sia efika ago. FElasta termo (11.6) kontrolas la devion de la
entropie selektitaj idealaj stato]. Post konsidero de simetrioj restas tri malsamayj
elasta) konstantoj; ¢iuj gisnunaj buklomodeloj nur havis unu tian konstanton.
Randa termo (11.10) asignas la gustan pezon al bukloj kiuj ¢irkatias la punkton
transfinian. Gi kuplas la altokampon al la skalara kurbigo R tra fona elektra
gargo (11.13). Finfine, la Liouwille potencialo (11.14) asignas la gustan pezon
al ¢iuj ceteraj bukloj. En la kontinua limo gi esprimeblas kiel serio da verticaj
operatoroj (11.19), inter kiuj ni sercas la plej modifivajn.

La skalumadimensio (11.20) por operatoro kun vektora elektromagneta sargo
estas eltrovita en Apendico A. Montrigas ke el la verticaj operatoroj, kiuj
korespondas al la dekdu malplej longaj elektraj Sargoj en la krado R}, nur kvar
estas degeneraj laii la linio ny, = ng, kaj ni argumentas ke ili estu degeneraj en la
tuta krita regiono. Fakte ili estu ekzakte margenaj (11.26) por ke la buklopezoj
ne renormigu je largaj longoskaloj; ili do estas geometria interpreto de la kutimaj
§irmoSargoj [62, 129]. La margena kondico fiksas la elastajn konstantojn (11.28),
kaj la modelo estas solvita.
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Critical exponents

Some of the critical exponents of the FPL? model have already been alluded to
in Chapter 9. A supposedly complete characterisation of the critical behaviour
in the region 0 < np,ng < 2 is furnished by the values of the central charge ¢
and an infinity of geometrical scaling dimensions associated with height defects
in the interface representation. We calculate these universal quantities in turn
and conclude the Chapter with a short description of the termination of critical
behaviour as one of the fugacities becomes larger than two; this is based on the
field theory developed in Chapter 11.

12.1 Central charge

We first turn to the calculation of the central charge in the critical region.
Exactly at the point (ny,ng) = (2,2) the background charge vanishes, e; = 0,
and the action consists only of the elastic term Sg given by Eq. (11.8). Since
this is then simply a theory of three free massless bosonic fields we conclude
that, in this case, ¢ = 3 [93].

For a general value of the background charge this generalises to [62, 129]

c=3+4 122(eo,0) . (12.1)

One way to rationalise the factor of 12 is to compare the coefficients of the
finite-size corrections in the well-known formulae [49, 50, 51]

me

foloo) = fo(L) = gz +-- (12.2)
F(L) = fo(L) = 2;f+ (12.3)

where fo;(L) is the free energy density on a cylinder of circumference L, the
subscript 0 referring to the vacuum and 7 to the case when an operator of scaling
dimension z; is inserted. The physical meaning of Eq. (12.1) is that the presence
of the background charge—+eg and —eq at the two ends of the cylinder—lowers
the free energy and with it the central charge.

146
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Now using the dimension formula, Eq. (11.20), and inserting the values of
the couplings g, from Eq. (11.28), we arrive at

e e
c=3-6 b ¢ 1, (12.4)
1—ep 1—eg

where we recall that ny, = 2cos(me,) and similarly for ng. In Table 14.1 the
numerically calculated values of the conformal charge are compared to the above
formula, and excellent agreement is found.

12.2  Geometrical scaling dimensions

12.2.1 Two-string dimension

In addition to the central charge, the Coulomb gas representation of the loop
model provided by the Liouville field theory, Eq. (11.2), allows for the evaluation
of various geometrical scaling dimensions. As an example of such a quantity,
consider the probability G»(r) that two points separated by a distance r lie on
the same, say, black loop. In the critical phase we expect this probability to
decay as Ga(r) ~ 7272 which defines the scaling dimension z5. Since a black
loop is represented as a sequence of alternating A and B-coloured edges it follows
from the colouring constraint that the microscopic heights z just outside this
loop differ by integer multiples of C and D only. In other words, a black loop is
a contour loop for the component of the height along the direction perpendicular
to both C and D, i.e., the (1,0, —1) direction in height space. Similarly the grey
loops are contour loops for the height component along the (1,0, 1) direction.

It has been argued that the scaling dimension governing the probability that
two points belong to the same contour loop of a random Gaussian surface equals
1/2, independent of the stiffness [131]. Thus, for (ny, ng) = (2,2) when eg =0
and the effective field theory is Gaussian, we expect z5 = 1/2. For other values
of the fugacities the Gaussian theory is modified by the background charge and
the same argument cannot be made.

A more illuminating way of making contact with the interface representation
is to view G(r) as a two-string correlation function associated with defect
configurations where two black strings emanating from the origin annihilate
one another at a distant point r; see Fig. 12.1b. This can be accomplished
by rewriting Ga(r) as Z(r)/Z, where 7 is the partition function defined by
Eq. (10.6), and Z(r) is similarly defined but with the summation restricted to
those configurations G’ where an oriented black loop passes through the points
0 and r. Now consider reversing the direction of one half of the loop, so that
instead of having one oriented loop passing through 0 and r we have two oriented
loop segments directed from 0 to r [99]. This corresponds to the introduction
of defect configurations at these two points, where we have violated the edge-
colouring constraint. At 0 we find a (C,D, A, A) configuration of colours which



148 Chapter 12. Critical exponents

b)

\\/

Figure 12.1: Defect configurations used to calculate the geometrical exponents
z1 (a) and 22 (b) in the FPL? model. In (a) there is a single oriented black
loop segment and a single oriented grey loop segment propagating from 0 to r,
whilst in (b) there are two oriented black loop segments between 0 and r.

in the height language corresponds to a vortex of strength
m; =A-B=(-2,0,2). (12.5)

The strength of the vortex (its Burgers charge) at 0 is calculated as the total
height change around 0. Similarly, at r we have the corresponding antivortex
(B, B, C, D) of strength —my as illustrated in Fig. 12.1b.

In order to calculate x5 for general values of the loop fugacities we have
to take into account the effect of the complex phase factors associated with
oriented loops. Namely, when one or more, say, black strings are associated
with a vortex-antivortex configuration, spurious phase factors exp(+imey) will
arise whenever a black loop segment winds around one of the vortex cores [99];
for example, in Fig. 12.1b one of the two black strings winds once around the
point r. The spurious winding phase can be removed by inserting the vertex
operator exp(iey, - h) at the positions of both vortex cores. Since a black loop
has alternating A and B colours the electric charge e, must satisfy

ey - A = +mey,, e, -C =0,
e, B = —7ey, e, -D=0. (12.6)
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Similarly, if there are grey strings propagating between two vertices the spurious
phase factors associated with winding configurations are corrected with vertex
operators whose electric charge e; is determined by

eg-A=0, eg - C = +meg,
e;-B=0, eg-D = —meg. (12.7)

Using Eq. (10.5) for the colour-vectors we find,

71' T .
e, = —§(€b,0, —6b), eg = _5(6g7 0’ eg) . (128)
Going back to the two-string operator we conclude that it has total electromag-
netic charge (e, ms).
Finally, from the general expression for the scaling dimension of an electro-
magnetic operator, Eq. (11.20), it follows that

2
b

229 = 2z(ep, my) = (1 —ep) — (12.9)

1-— €n '
In Table 14.5 exact values of x5 calculated from this formula are compared to
numerical results, and excellent agreement is found.

Interestingly the expression for x5 is independent of ey, 1.e., it is not affected
by the fugacity of grey loops. This observation conforms to our understanding
of the scaling of compact polymers. The compact polymer problem is recovered
in the limit n, — 0 in which case there is a single black loop on the lattice.

Since the loop fills space its Hausdorff dimension is necessarily D = 2. Scaling
tells us that [132]

D=2—u, (12.10)

from which the result z5 = 0 follows, independent of the fugacity of grey loops.
The fact that our formula reproduces this simple result in the n, = 0 (ep, = 1/2)
case provides a non-trivial check on its validity.

12.2.2  One-string dimension

The scaling dimension z; corresponding to one black and one grey string prop-
agating between two points on the lattice, can be computed in a way that is
completely analogous to the case of two black strings discussed above. (Note
that the fully packing constraint ensures that if there is a single black string
between two points then these points are also connected by a grey string; see
Fig. 12.1a.) Choosing one point on the even sublattice and the other on the
odd, leads to the appearance of the defect configuration (A, C,C,D) on both
sites of the square lattice. These in turn correspond to vortices in the height
representation with topological charges +mj, where

m; =C—-B=(-2-20). (12.11)



150 Chapter 12. Critical exponents

Since strings of both flavours are now present the compensating electric charge
is ey, + eg = eg. Hence

207 = 2z(ep,m,)
_ %[(1—eb)—|—(1—eg)] (12.12)

(1—en)(1—cg) _[ et s ]
(1 —ep)+ (1 —eg) l—ep  1—eg|

There are of course several different ways of choosing the defect configurations
(in this case, eight), but it should hardly come as a surprise that they all lead
to the same expression for the scaling dimension.

Unlike x9, 1 depends on both loop fugacities. Going back to our original
motivation, the compact polymer problem (ny, = 0 = e, = 1/2), 21 determines
the value of the conformational exponent v = 1 —z, which describes the scaling
of the number of compact polymers with the number of monomers. We see that
depending on eg there will be a continuum of 4’s. How do we interpret this?

First note that the problem of counting the number of conformations of a
single compact polymer is the case ng = 1 (eg = 1/3) which simply assigns equal
weights to all conformations. Using Eq. (12.12) this choice leads to #; = —5/112
and to the result ¥ = 117/112 advertised in the abstract. Changing ng (eg) away
from ng = 1, on the other hand, has the effect of favouring certain compact
polymer conformations over others depending on the number of loops formed
by the uncovered (grey) bonds. In this sense the weight assigned to grey loops
can be thought of as an interaction between the monomers of the compact
polymer, albeit a peculiar non-local one. Nonetheless, it is interesting that this
interaction changes the scaling properties of the compact polymer leading to a
continuously varying exponent 4 (more on this in Chapter 15).

12.2.3 Many-string dimensions

The dimensions z; and zs given above are contained in a more general set
of string dimensions zs, s, governing the probability of having sy black loop
segments and s; grey loop segments propagating between two points on the
lattice [109]. More precisely, we consider two microscopic regions centred around
points separated by a macroscopic distance, one region being the source and
the other the sink of the oriented loop segments. Since the defect configurations
obtained by violations of the edge colouring constraint must necessarily give rise
to an even number of strings we will only consider the case when sy, 4 54 is even.

Consider first the case s, = 2k, and s; = 2kz. The appropriate magnetic
charge is obtained by combining ky, vortices with charge A—B = (-2, 0, 2), and
kg vortices with charge C —D = (—2,0, —2). The defect with charge A —B acts
as a source of two black segments, whilst C — D is associated with two grey loop
segments. We also need to introduce the electric charge e}, 4 e; to compensate
for the extra winding phase associated with the black and grey loop segments.
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The total electromagnetic charge is therefore

[@3k,,2k5 Mok, 2k,] = (12.13)
[en(1 — 6y 0) +eg(l = dr,0), —2(kp + kg, 0, kg — k)],

and from the dimension formula, Eq. (11.20), we find

229k, 08, = (1 — ev)kp + (1 — eg)kz
2

% (1_5 %€ (1-s 12.14
_ 1—€b( - kb’0)+1—eg( — 0k 0) | - (12.14)

This formula generalises Eq. (12.9).
Similarly, for s, = 2k, — 1 and sz = 2k — 1 the electromagnetic charge is

[€2k1,— 1,2k 1, Mog,—1,28,—1] = [€0, =2(kn + kg — 1,1, kg — kp)]; (12.15)

the magnetic charge is obtained by combining ky, — 1 defects of charge A — B,
kg — 1 defects of charge C — D, and a single defect of charge C — B which
produces the remaining single black and grey strings originating from the same
vertex. The scaling dimension is found to be

1
2okt okt = 7 (1= en)(Zho = 1)7 + (1 = eg) (2kg — 1)°]

(l—e)(l—cg)
T i)+ (—e

2
b

1—ep 1—eg

2
g

] . (12.16)

This generalises the expression given in Ref. [89] and correctly reduces to (12.12)

for ky,, kg = 1.

12.2.4 Thermal dimension

We now turn our attention to the thermal scaling dimension. The FPL? model
can be thought of as the zero-temperature limit of a more general model where
we allow for thermal excitations that violate the close packing constraint; see
Sect. 8.1.3. In this sense the temperature variable is thermodynamically con-
jugate to the constraint that every vertex be visited by (say) a black loop. An
appropriate defect configuration for computing z7 within the FPL? model is
therefore (C,D, C, D). This is a vortex of strength

mr = 2(C + D) = (0, —4,0), (12.17)

and since no strings terminating in the bulk are generated there is no compen-
sating electric charge. The scaling dimension is then

- 4(1(1—;:;151(1_—62) . (12.18)

The exact values of zp quoted in Table 14.2 are calculated using this formula.
The numerical results are in excellent agreement.

2¢7 = 22(0,m7)
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12.2.5 Boundary-string dimensions

The simplest example of a string operator that cannot be accessed within the
formalism presented above is that of one black and no grey strings propagating
between two vertices of the square lattice. Since this configuration has an odd
number of strings connecting two sites of the lattice these two sites necessarily
reside on the boundary.

If we define the FPL? model on the cylinder, as will be the case when we
construct its transfer matrix in Sec. 13.1, a single black string can be enforced
to run along the length of the cylinder if its circumference is chosen odd. Taking
our cue from the formulae derived above for the bulk string operators we guess
the formula

1 1—ep 1 e%
X == — = 12.19
8+ 8 21—€b ( )

from the numerical results shown in Table 14.3. X is the scaling dimension of
the boundary operator which corresponds to a single black string.

The Coulomb gas interpretation of the second and third term in Eq. (12.19)
is rather apparent when one compares them to Eq. (12.9). The second term can
be rationalised as coming from a magnetic charge (—1,0,1) which is half the
charge ms in Eq. (12.5), associated with two black strings; this is saying that
we have a partial dislocation generated at the boundary. The third term is due
to the compensating electric charge ey, for a single black string, same as in the
two-string case.

The first, constant term does not have an immediate interpretation. A pos-
sible scenario is that it 1s due to the boundary condition imposed on the height
by virtue of having a cylinder of odd circumference. Namely, a translation along
the periodic coordinate by an amount equal to the circumference (I) exchanges
an even site for an odd site (and vice versa) resulting in a transformation of
the height: h(z',z?) = Ph(2! + L,2%). Since P? = 1 this boundary condition
can be thought of as an insertion of a twist operator into the partition function.
The twist operator has dimension 1/8 regardless of the stiffness of the interface
[133].

The above considerations permit us to calculate the scaling dimension for
the general case of an odd number of strings. For definiteness we consider the
case of s, = 2kp — 1 and sz = 2k;. The magnetic charge pertaining to this
situation is found by combining 2k, — 1 defects of charge 1(A — B) with kg
defects of charge C — D, totaling

b= L,4Rg —L,4Rg = 2.
[€2k,—1,2k,, Mok, —1,2k,] (12.20)
[eb + eg(l — ()ikgyo), (1 — 2ky, — 2kg, 0, 2k, — 2kg — 1)]

Taking into account the contribution from the twist operator, i.e., adding 1/8
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to the result obtained from Eq. (11.20), the scaling dimension is then

1 1
220k, 1,2k, = 3 T3 [(1 = en)(2ky — 1) + (1 — eg)(2kg)°]
2 2
_ % 4 % (1-4 0)|. (12.21)

1—ep 1—eq

12.2.6 Complete spectrum of string dimensions

Finally, the results of Egs. (12.14), (12.16) and (12.21) can be combined into a
single equation for the scaling dimension of a string operator that corresponds
to s, black loop segments and sg grey loop segments:

) 1 o 1 9 2
25,5, = gfsgb)-ysg@ + 1 [(1 - 6b)512 + (1 - eg)é‘;]
2 2
er e
— 1— 4, 1 -4, 12.22
1—eb( b’0)+1—eg( o) ( )

5 5@ (1 —ep)(l —eg)
$p,17sg,1 .
1) + (1 - e

_|_

Here we have defined 51-(? = bi=j(mod 2)-

12.3  Scaling dimensions of other local operators

We now turn to the determination of the scaling dimensions of the microscopic
operators defined in Sect. 10.3.3. The cross-staggered operator Q(x) has already
been discussed in Sect. 11.3 in connection with the loop ansatz. The electric
charges corresponding to the four most relevant vertex operators in its Fourier
expansion turned out to play the role of the screening charges of the field theory.
Consequently Q(x) is exactly marginal throughout the critical region:

2xq = 4. (12.23)

The staggered spin S(x) was shown in Sect. 10.3.4 to have the eight vectors of
type Z(1,1,1) as it shortest height periods. Explicit insertion in the dimension

2
formula (11.20) reveals that four of these vectors minimise the scaling dimension:

of) = Z(-1,41,+1), e = Z(=1,-1,+1),
e(SS) — g(_la"i'la_l)a e(54) = g(_la_la_l)' (1224)
Their dimensions are
1—2e 1 2—e,—¢€
22(el),0) = 22(eP,0) = >4 - ot
slesh O =2lesn 0 = g e (=)
1—2e 1 2—e,—¢
9. (3) 0) = 2. (4) 0 g 4 b g 12.2
#les”,0) =2x(es”, 0) l—eg  4(1—ep)(l —eg)’ (12.25)
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and 1t 1s seen that e(sl) and e(sz) have the smallest dimension when e, > eg
and wice versa. Defining es = max{ey, ez} and e« = min{ep, ¢z} the resulting
scaling dimension for the staggered spin can be written

l 2—6>—€<
T—es 4(l—es)(1—eq)

(12.26)

It remains to determine the dimension of the parity operator P(x), which
coincides with that of the row-staggered spin R,(x). Of its six shortest (1,0, 0)
type electric charges the one generating the most relevant vertex operator turns
out to be m(—1,0,0). The corresponding scaling dimension is

1—2e 1-2
b+ eg.
1—ep 1—eq

22p = 2¢p = (12.27)
For the four-colouring model (eq = 0) Egs. (12.26) and (12.27) correctly reduce

to the values previously found by Kondev and Henley [93]: zs = 3/4 and
rp = IR — 1.

12.4  Termination of critical behaviour

In the preceding chapters we have developed an effective description of the
critical phase of the FPL? model in the form of a field theory. This theory has
to break down at large values of the loop fugacity since in this case a typical
state of the model will consist of small loops only, i.e., a power-law distribution
of loop sizes will be absent. That this indeed happens can be seen from the
Liouville field theory itself as it carries the seeds of its own demise.

The mapping of the loop model to an oriented loop model for ny,,ng < 2
works equally well for n, > 2 or ng > 2. From Eq. (10.3) it follows that in the
latter case at least one of the parameters, ey, or ez, will be pure imaginary. This
affects the Liouville potential which for ny, > 2 or ng; > 2 becomes a relevant
perturbation to the (modified) Gaussian action Sg + Sp.

To understand how this comes about we consider the simple case provided by
the ny, = ng FPL? model, discussed in Sect. 11.3.2. Namely, as we increase the
value of the loop fugacity we expect small loops to be favoured and the stiffness
K of the interface to grow. In the critical phase this is offset by the decrease
in the background charge in a way that leaves the Liouville potential marginal.
Now when the loop fugacity exceeds 2 the background charge eg = —7(ey,, 0, 0)
becomes pure imaginary and the dimension of the Liouville potential

T 1—ep
T, = —
L=9% K

(12.28)

can no longer stay marginal; here 21, = x(e(i), 0), where the charges el!) are given
in Eq. (11.25), and their scaling dimensions are calculated from Eq. (11.24). In
fact, assuming that the stiffness K continues to increase with the loop fugacity
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for n, = ng > 2, xr turns complex with a real part that is smaller than two,
rendering the Liouville potential relevant.

If we make the usual assumption of no intervening fixed points, the relevant
Liouville potential will generate a finite correlation length and the loop model
will no longer be critical. The correlation length has the physical interpretation
of the average size of a loop in the system. This scenario has been confirmed for
the fully packed loop model on the honeycomb lattice, from the Bethe ansatz
solution of this model [134].

A different view of the non-critical region of the FPL? model is provided
by the locking potential V(h). Namely, the discrete nature of the microscopic
heights can be taken into account in the field theory by a negative potential in
height space that is peaked around the flat, ideal states. As such, this potential
is uniform on the ideal state graph and can therefore be expanded in a Fourier
series. Examination of the most relevant vertex operators in this series [93] re-
veals that they are the same as the ones for the loop-weight (Liouville) potential,
w(h). Therefore, just like w(h), the locking potential in the non-critical region
of the phase diagram is a relevant perturbation. Thus, it will lock the interface
in one of the ideal, flat states. In this smooth phase the height fluctuations
are bounded (as opposed to being logarithmically divergent) which is just an-
other way of saying that large contour loops are exponentially suppressed. On
the other hand, in the critical region of the FPL? model the locking potential
is marginal as it would be for an interface model at the roughening transition
[135, 136]. This might indicate that the whole critical region of the FPL? model
can be understood as a manifold of essential singularities in some more general
model, as was the case for the honeycomb FPL model [92, 137].

Resumo en Esperanto

Ni kalkulas la centran Sargon c¢ kaj diversajn skalumajn dimensiojn por la buk-
lomodelo. Tri liberaj bosonaj kampoj donas ¢ = 3, sed tiun rezulton Sangas la
fona elektra Sargo (12.4). Vorticaj difektoj en la interfaca reprezentigo generas
direktitajn kordojn (Fig-o 12.1). Kiam la difekta Sargo (vidu ekz-e 12.5) estas
konata eblas kalkuli la korespondan geometrian skaluman dimension. Ekv-o
(12.22) estas la generala rezulto por s, nigraj kaj s, grizaj kordoj. La ter-
mika dimensio (12.18) korespondas al malobeo de la kondico ke éiu vertico estu
vizitata de kaj nigra kaj griza buklo.

Kiam unu el la buklopezoj superas du la Liouville potencialo farigas modifiva
perturbo. Gi generas finian longon de korelacio kaj igas la interfacon glata.
Aliflanke, en la tuta krita regiono la interfaca modelo estas ée aspriga transiro.



Chapter XIII

Loop model transfer matrices

Estimants of the central charge and a number of the geometrical scaling dimen-
sions obtained from transfer matrix calculations provide the conclusive evidence
in favour of the analytical results presented in Sects. 12.1 and 12.2. Before turn-
ing to a discussion of our numerical results, which is the subject of Chapter 14,
we describe the particular representation of the transfer matrix used to obtain
them.

13.1 Construction of the FPL? transfer matrix

To construct the transfer matrix for the FPL? model on a cylinder of circum-
ference L we write the partition function as

ZM =3 "n)enlls, (13.1)
Gnmr

where the length of the cylinder M has been explicitly indicated. Periodic boun-
dary conditions are imposed in the horizontal direction, whereas the bottom and
the top row of the cylinder have open boundary conditions and hence terminate
in I dangling edges. We recall that the restriction of the summation to the
set of fully-packed graph configurations Gas implies that locally the vertices are
constrained to have one of the six appearances shown in Fig. 10.1. In the first
four possible vertices the loop segments do not cross, whilst in the last two ver-
tices the two flavours intersect. The global constraint that all loops be closed
in the limit of an infinite system means that loop segments cannot terminate in
the bulk but only at the dangling edges in the top and bottom rows.

A typical loop configuration for a cylinder with L = 6 and M = 12 is shown
in Fig. 13.1. The horizontal numbering pertains to the vertices, whilst in the
vertical direction it is more convenient to label each row by the number of the
vertex immediately below it. Accordingly the labels 0 and M refer to the bottom
and the top row of dangling edges respectively. We shall soon see that the
inclusion in Gas of one or more strings running between the dangling edges of row
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Figure 13.1: A typical loop configuration for L = 6 and M = 12. The dashed
lines along the left and the right boundaries illustrate the periodic boundary
conditions. Horizontally the vertices are numbered from 1 to L, whilst vertically
the rows are labeled by the number of the vertex immediately below them.
This particular configuration is constrained to having precisely one string of
each flavour spanning the length of the cylinder, and hence it contributes to
the geometrical exponent z1. To the right we show the index representation of
the connectivity state pertaining to each row (see Sect. 13.4 for details). Any
valid configuration can be interpreted as a “jigsaw puzzle” assembled from the
six “pieces” shown in Fig. 10.1. Note that when laying down the first row of
this puzzle it must be stipulated how the dangling edges of row 0, which are
not part of a string, are pairwise interconnected below that row. These implicit
connections as well as their counterparts in row M have been depicted by dashed
loop segments.
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0 and M helps us access the geometrical exponents of the model. In particular,
the configuration of Fig. 13.1 having one such string of each flavour furnishes a
contribution to the scaling dimension #; which determines the conformational
exponent v =1 — z;.

13.2  Connectivity basis

The construction of a transfer matrix (TM) for Eq. (13.1) appears to be ob-
structed by the non-locality of N; (i = b,g). The key to solving this problem is
to write the TMs in a basis of connectivity states comprising information about
how the dangling ends of row M are pairwise interconnected in the preceding
rows and, if strings are present, information about the positions of such strings.
In addition the connectivity states must keep track of the particular flavour of
any loop or string segment terminating in row M. Our construction generalises
the work of Blote and Nightingale for the @)-state Potts model [44, 46] and that
of Blote and Nienhuis for the O(n) model [54] to take the extra flavour infor-
mation into account, and our notation is consistent with that of these authors.

As mentioned in Chapter 5 it is essential to be able to represent a given
connectivity state both in an index representation giving direct access to the
flavour and connectedness information just mentioned, and in a number repre-
sentation assigning an integer in the range 1,2,... ,C’I(Jsb’sg) to the state under
consideration. The latter representation enables us to enumerate the entries of
the TM, whilst the former allows us to determine the number of loop closures
when going from one connectivity state to another and hence the value of a
particular entry in the TM. Here C’f’b’sg) is the number of distinct connectivity
states for a cylinder of width L accommodating s; strings of flavour i = b, g. The
construction of these two representations, the mapping between them, and the
evaluation of the C’ésb’sg) for (sp,sg) = (0,0), (1,0), (1,1) and (2,0) is deferred
to Sect. 13.4.

Designating the connectivity states by Greek letters we can write the parti-
tion function as a sum of restricted partition functions

Z(M) _ Z ZgM) — Z Z(S(ﬂ, ¢(Gar))npyon s, (13.2)
8

B Gm

where ¢(Gar) is the connectivity of the L dangling edges of row M, and §(1, 5)
is the Kronecker delta. Now consider appending another row to the cylinder,
giving us a total graph configuration Gar41 = Gy U G’. Evidently the connec-
tivity of the dangling edges of row M + 1 is determined solely by that of the
preceding row and by the appended subgraph G’

é(Grrs1) = lb(QS(GM),g/). (13.3)

Letting N/ denote the number of loop closures induced by G’ we arrive at the
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relation
b+ Ny Ne Ny
ZMH = 3" §(e, d(Gargr))mp o ng
[e3 V)
1 N/
= ZZ (B, 6(Gmr)) nb nN E §(a )gl))ng‘)ngg
B Gm G'Gm
= Y Tupz, (13.4)
s

where the transfer matrix is defined by

i

Tup= 3 (o, ¥(6(Ga),G))np g . (13.5)

G'|Gnm

The notation G'|Gas means that the summation is constrained to those sub-
graphs G’ that fit the dangling edges of Gpy.

13.3 Single-vertex decomposition

A quintessential step in the practical implementation of the TM is 1ts decom-
position into matrices each corresponding to the addition of a single vertex,

T=T, Tp_y ... -Ty. (13.6)

Here the single-vertex matrix T;, which adds the vertex at horizontal position
¢ of the new row, has the advantage of being sparse, and we shall soon see
that it has at most three non-zero entries per column. This property leads to a
dramatical reduction of the time and storage requirements for the calculations.

13.3.1 First vertex in a new row

As was the case in the O(n) model [54], a minor complication arises due to the
fact that the addition of the first vertex of a new row increases the number of
dangling edges from L to L + 2. This is illustrated in the left part of Fig. 13.2.
Upon addition of further vertices the number of dangling edges is kept fixed at
L + 2, until the L’th vertex completes the row, and we are back at L dangling
edges. Thus the dimensions of the single-vertex matrices are C'y2 x C, for T,
CL+2 X CL_|_2 for T2, . ,TL_l, and CL X CL+2 for TL.

In Fig. 13.2 we illustrate the action of T; on Z(™) in detail. To ensure that
row M + 1, when completed, will have the same labels on its dangling edges
as was the case in the preceding row, the solid dots illustrating the “active”
dangling edges must be relabeled as shown in the lower left part of the figure.
Shown to the right are the three possible choices of vertices fitting onto a black
loop segment terminating at the dangling end 1 of Z(M)_ There are thus three
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L-1 L 1 2 3
Z(M)

L+2¢ 2

(@) (b) (c)

Figure 13.2: Adding the first vertex of the (M + 1)’th row increases the number of dangling edges from L to L + 2. The
labeling of the “active” edges (filled circles) before and after addition of the new vertex (shaded) is as shown in the left part
of the figure. The part of the lattice relevant for determining which of the vertices of Fig. 10.1 fit onto a given connectivity
of row M, has been depicted in the right part of the figure. This information constitutes the verter rules, and is explained
in the text.
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non-zero entries in each column of T;. Since no loop closures of either flavour
can be induced (N{ = Ng; = 0in Eq. (13.5)) all these entries are unity. Similar
considerations hold true when the loop segment to be fitted is grey, and the
vertex rules can be read off from the figure by interchanging the two flavours.

13.3.2 Adding subsequent vertices

When acting with any one of the subsequent single-vertex TMs Ty, ..., Tr_1
the situation is as depicted in Fig. 13.3 for the case of Ty. As the number of
dangling edges is kept fixed no relabeling is needed, apart from the translation
of labels 2 and 3 up on top of the newly added vertex. The vertex rules for the
case where edge 2 of T1ZM) is black are shown in the right part of the figure;
similar rules for the case where it 1s grey can be obtained by permuting the two
flavours.

In situation (a) only one vertex fits onto the two dangling edges. The column
of T determined by the number representation of the connectivity pertaining
to the L+2 dangling ends that are active in the upper part of the figure thus has
only one non-zero entry. Its value is either ny, or 1 depending on whether a black

loop closure is induced (i5 = i5) or not (i5 # 4%). In the index representation of

the new connectivity state i§ = 1§ is set equal to a positive integer not assumed
by any other i¢. The new values of the black indices depend on whether a loop
closure is induced or not. In the former case we simply set i5 = i = 0. In
the latter, the two left-over black partners must be mutually connected before
assigning 5 = i§ = 0.

Situations (b) and (c) correspond to two entries of each column of T5 taking
the value unity, the others being zero. Since loop closures are out of the question
the handling of these cases is simple. In (b) the two flavours cross, and the
indices of sites 2 and 3 are interchanged. Case (c) is even simpler: it corresponds
to a diagonal entry in Ts.

When strings are present a few modifications of the above rules are necessary.
In situation (a), if one of i and 7% equals —1 and the other is positive, the left-
over partner to the non-string black segment must be made the new string. And
if both 5 and i5 equal —1 the corresponding entry of Ts must be forced to zero,
since two strings cannot be allowed to annihilate.

13.3.3 Completing the row

Finally, consider closing the (M +1)’th row through the action of T, as depicted
in Fig. 13.4. The labels L+ 1 and L +2 now disappear, and as far as the labeling
goes the system is back in its original state. Each column of T7 has at most
one non-zero entry per column, as witnessed by the vertex rules displayed in
the right part of the figure. Once again, only half of the vertex rules are shown,
and the other half is found by interchanging the two flavours.

In situation (a) no vertex of Fig. 10.1 can fit onto the three dangling edges
at positions L, L+ 1 and L+ 2. The corresponding entry of T must therefore
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Figure 13.3: Addition of subsequent vertices keeps the number of dangling edges fixed at L + 2. In the left part of the figure
the system is shown before and after the addition of the second vertex (shaded). Vertex rules are displayed to the right.
Situation (a) allows for the possibility of a black loop closure.
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be forced to zero. Situations (b), (c) and (d) leave us to determine whether, for
a given connectivity of the L 4+ 2 dangling edges, a black loop closure occurs or
not. The handling in terms of the index representation is exactly as described
above.

13.4 Enumeration of the connectivities

The implementation of the transfer matrix (TM) for the FPL? model on a
cylinder of width L and length M requires an enumeration of the possible con-
nectivity states of the L points on the dangling edges of row M. Each of these
L points can either

1. be connected by Gar to one of the dangling edges of row 0 through a string
of flavour i = b, g, or

2. be connected by Gy to one and only one other point in row M through a
loop segment of flavour ¢ = b, g.

A suitable representation of this information is furnished by a double state

vector
ivibib i 131
EiEiE . S ) :
which we refer to as the inder representation. The indices i (k =1,2,... L)

are defined as follows:

1. i? =i is a (non-unique) positive integer if and only if points k and [ are
interconnected through a black string.

2. i® = 0 if and only if point k touches a grey string or loop segment.

3. i2 = —1 if and only if point k is connected to a dangling edge of row 0
through a black string.

A similar definition is true for the indices #§ provided that one reads “grey”
instead of “black” and wvice versa. Two index representations are said to be
identical if they are so up to the arbitrariness of the choice of positive integers.
Also note that if if # 0 we have i§ = 0 and conversely.

A restriction on those indices that take positive values follows from the
fact that loops of the same flavour are not allowed to intersect. Namely, if
j < k <l < m the equalities z';? = i}) and 2'2 = iP cannot both be true. So in
addition to being pairwise these connectivities are also well-nested [44].1 The
same is true for the grey indices, whereas there are no such restrictions when

1Because of the reappearance of well-nestedness this section necessarily has some overlap
with the discussion of the Potts model transfer matrices in Chapter 5. However, we have
preferred to write this section so that it can be read independently.
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both flavours are involved. Indeed, connectivity states with i;? = iP and i§ = 8,
are explicitly allowed by the last two vertices shown in Fig. 10.1.

In practice we are only interested in the first few eigenvalues of TMs having
a definite number of strings of each flavour. The relevant sectors of the TM are
denoted T(»%8) where s; is the number of strings of flavour i = b, g. The fully
packing constraint means that we can only examine system sizes L that have the
same parity as s, +sg. The various sectors have different physical interpretations
and each requires a different enumeration of the connectivity states. Since the
two flavours enter on an equal footing in the partition function, Eq. (13.1),
we only need consider s, > sgz. The T(%.9 sector contains information about
the free energy and the energy-like correlation length. The geometrical scaling
dimensions z; and z, can be obtained from the T(11) and the T(39 sectors
respectively. Finally the sector T(1%) gives the scaling dimension of the twist-
like operator.

Whilst the index representation contains all information necessary for de-
termining the value of a given entry in the TM it is obviously not suitable for
labeling the entries. We therefore need another representation, the so-called
number representation, in which the connectivities are labeled by the integers
1,2,... ,C’ésb’sg), where C’ésb’sg) is the number of different connectivity states
in the relevant sector. The practical implementation of the TMs relies on the
mapping from the index to the number representation and its inverse.

We shall now consider, one by one, the various sectors of the TM.

13.4.1 T(0 gector

When no strings are present all the L dangling edges of row M are pairwise
connected with either a black or a grey loop segment. In particular L must be
even. For any particular connectivity we can then decompose L as L = 2pp+2p,,
where p; > 0 is the number of pairs of dangling edges covered by a flavour 7 loop
segment. Since loops of different flavours are allowed to cross (see Fig. 10.1) the
total number of connectivities is

L
CI(JO,O) — Z (2 )cpbcpg, (13.8)

L=2py+2pg po

where ¢, is the number of pairwise well-nested connectivities of 2p points. The
cp’s were first considered in the context of the Potts model [44], but were also
found to play a central role in the TM formulation of the O(n) model [54]. We
shall now briefly recall how they are evaluated.

Consider a well-nested pairwise connectivity of 2p points given by the index
representation (i14s...73,). A recursion relation follows from observing that
11 = 19, for precisely one integer & > 1. According to the well-nestedness
criterion the sub-sequences (is4s3 . ..i2x—1) and (isgy182k42 . . . 12p) are both well-
nested, and indices occurring in one of them do not occur in the other. Hence
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I 4L CEO’O) 021,1) éf’o) I Cél,o)
2 16 2 2 T 1 1
4 256 10 24 12 3 6
6 4,096 70 300 150 || 5 50
8 65,536 588 3,920 1,960 || 7 490

10 1,048,576 5,544 52,920 26,460 || 9 5,292

12 16,777,216 56,628 731,808 365,904 || 11 60,084

14| 268435456 613,470 10,306,296 5,153,148 || 13 | 736,164

16 | 4,294,967,296 6,952,660 147,232,800 73,616,400 || 15 | 9,202,050

Table 13.1: The number C’ésb’sg) of FPL? connectivity states for L dangling
edges accommodating s; strings of flavour 2 = b, g. Only values of L with the
same parity as s, + sz are shown. When more than one string of any flavour is
present further restrictions than the well-nestedness criterion apply, as described

in the text. Accordingly the number CN'I(JQ’O) is merely a useful upper limit on
the true C'](JQ’O). The efficiency of writing the TMs in the connectivity basis can

be appreciated by comparing CI(JO’O) to 47, the latter being the dimensions of
the TM written in the conventional colour basis, where every dangling end is
labeled independently by A, B, C or D.

forp>1

4

ep = ch_lcp_k, (13.9)

k=1

and ¢g = 1. By means of the generating function P(z) = Z;O:O cpxP it is readily
shown [54] that

(2p)!

— P 13.10
P oplp+ 1) ( )

and that asymptotically ¢, ~ 47.

Using Egs. (13.8) and (13.10) we can now compute explicit values for the
CEO’O). These are shown for 2 < L < 16 in Table 13.1.

For obvious reasons we shall call the function

defined by 11 = isx the cut function of the index representation (i1is...45,). A
complete ordering of the well-nested sequences is now induced by applying the
cut function first to the whole sequence, then recursively to its right and finally
to its left part [44, 54]. Accordingly, the mapping from the index to the number
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representation for a well-nested one-flavour connectivity is accomplished by

1ifp<1

oliviz...i0p) =8 S e+ olia .. iak_1) (13.12)
+[o(ioks1 - - -12p) — l]eg—1 otherwise,

where the ¢, are given by Eq. (13.10).

To give a complete specification of the connectivity of any one flavour in the
state (13.7) we need to keep track of the positions of those indices that are zero.
For a fixed number of z zero indices this is accomplished by the lexicographic
ordering

1 lfL = 1 or z = L
Glivia .. ir) =4 lizig...ir) if iy #0 (13.13)
("2 + @linis . ..i1) if iy = 0,

assigning the lowest value to the sequence with all the zeros accumulated to the
right.

The number representation of the two-flavour state (13.7) is now obtained
by first ordering according to the number of indices i? being zero, then lexi-
cographically ordering the positions of these zero indices, and finally using the
ordering (13.12), first on the well-nested subsequence of non-zero black indices
and then on the corresponding grey subsequence. More precisely, the mapping
from the index to the number representation in the (sy,sg) = (0,0) sector is
given by

ib
(%)

L/2

> <2Lk> CKCL/2-k (13.14)

k=pp+1
+ [P — epyep, +[0(i®) — 1ep, + o (i8),

where i® = (i35 ...i%) denotes the sequence of black indices and 1 the subse-
quence of the py, pairs of non-zero indices (and, of course, similarly for the grey
flavour).

The inversion of Eq. (13.14), so as to furnish a mapping from the number
to the index representation, is straightforward if we know how to invert the
functions o and . Details on this have already been given in Sect. 5.3.2.

13.4.2 T sector

In the case of one black string spanning the length of the cylinder the number
of dangling edges in row M can be written as L = 2py, + 2pg + 1, where the p;
have the same meaning as above. In particular L must be odd.

The presence of one string of either flavour does not impose any additional
restrictions on the connectivity states of the subsequence of positive indices of
that flavour. Indeed, if the position of the string is given by i = —1 the non-

bbb

zero subsequence of (z'}?_}_l ...1947 .. .12 ) is still well-nested, and the arguments
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given above apply. The number of connectivity states is therefore found by
multiplying the L possible positions of the string by the number of (sy,,sg) =
(0, 0) states of the remaining L — 1 points

c = ol (13.15)

Explicit values are shown in Table 13.1.

Similarly the mapping from the index to the number representation is found
by first ordering after the position r of the string, and then after the value of
6% taken of the remaining indices

b b b
¢<1,o><%’,§'“’,g> = (r—1c™Y (13.16)

15 ...

13.43 T sector

When one string of each flavour is present L = 2py, + 2pg + 2 must be even,
and again it suffices to augment the considerations from the T(%:?) case by some
book-keeping as to the positions of the two strings. Explicit values of

oY = (L = ey, (13.17)

are shown 1n Table 13.1.

Letting r; denote the position of the string of flavour z = b, g we find that

b
629 (3 ) = 1w = 1= 1)+ (g — ol = 11CLY
400 < LRI SRU SRR SO )(13_18)

; 8 8 8 ;
RS =T =R SR = I 4

is the desired mapping from the index to the number representation.

A possible configuration of the system for (sy,sg) = (1,1) is illustrated
in Fig. 13.1, where the index representation of the connectivity state for each
completed row is shown to the right of the figure.

13.4.4 T(209 gector

Considering now the case of two black strings, it appears that the number of
connectivity states for L even is given by

. L
20 = (2)020_’?, (13.19)

where we have simply divided Eq. (13.17) by 2 to take into account the indistin-
guishability of two strings of the same flavour. This is however not quite true,
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since for L > 4 the number (13.19) includes certain disallowed basis states. For
L = 4 these are

(200 Y aa (L) e
The reason why these states are not valid is that, by definition of the allowed
vertices (see Fig. 10.1), black loop segments cannot cross a black string. In
general, therefore, any configuration where the positions of two equal, positive
black indices are separated by exactly one black string is not a valid one, even
though the positive indices of each flavour satisfy the well-nestedness criterion.
Accordingly, the true 022’0) is less than the CN'EQ’O) of Eq. (13.19).

We have not found it worthwhile to pursue the solution of this complication,
since the numbers 6182’0) are already less than the C](Jl’l), and we need to diag-
onalise the transfer matrices T(11) and T(%9 for the same values of L in order
to determine the scaling dimensions z; and zs with the same numerical preci-
sion. Instead we found it efficient to construct all the CN'S’O) basis states, list the
number representations of those that are disallowed, and force the corresponding
entries of T(29) to zero.

With this proviso the mapping from the index to the number representation
is

o0 () =+ 1) - ey

00) [y i Y 13.21)
+ ¢ ig ig ig ig ig ig ) ( B
[ - SEE SO NI SRS SR BN ) )

where 71 and rg are the positions of the two black strings, and 1/)(ib + 1) means
that we should lexicographically order the positions of the black indices that
are —1.

Resumo en Esperanto

Uzante denove bazon de konektecoj ni konstruas la transfermatricojn por la
duspeca buklomodelo. La nombro da statoj en la diversaj sektoroj kun kaj
sen kordoj (Tab-o 13.1) estas multe malpli granda ol 4%, la nombro da statoj
en la kolora reprezentigo de la senkorda sektoro. Malkombinado en magrajn
matricojn korespondajn al la unuopaj verticoj de tavolo implicas diferencon
inter la ago de la unua matrico (Fig-o 13.2), la dua (Fig-o 13.3) kaj la lasta kiu
kompletigas la tavolon (Fig-o 13.4).



Chapter XIV

Numerical results

The transfer matrices constructed in the last chapter can be used to extract
values of the central charge and various geometrical scaling exponents for the
FPL? model. We use these results to check the analytical formulae given in
Chapter 12. Combining the analytical values for the central charge with numer-
ical results also provides us with very accurate values for the residual entropy,
a quantity which would otherwise only be available from an ezact solution.

14.1 Central charge

The reduced free energy per vertex in the limit M — oo of an infinitely long
cylinder is given by

(0,0) . 1 oy _ L (0,0)
fo (D) = ﬂ/jh_r}noo M InTr 7% = I InAy~, (14.1)
where /\ésb’sg) is the largest eigenvalue of T(*»*s) The partition function for a

cylinder of length M is found by iterating the no-string TM
Z(M) — (T<070))M 408 (14.2)

It is well-known that conformal invariance relates the amplitude of the
1/L? corrections to féo’o)(oo) to the central charge ¢ [50, 51]. A further (non-
universal) 1/L* correction due to the operator TT, where T denotes the stress
tensor, must also be present in any conformally invariant system [4]. Tt is there-
fore found in a number of cases [44, 57, 47] that fits of the form

féo’o)(L) _ féo,o) o e A

(o) - ezt 13 (14.3)

yield very rapidly converging estimates for ¢. An efficient application of this
expression 18 to determine ¢ from parabolic least-squares fits of the finite-size

data against 1/L? [57, 47].
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ny ng | c(4,14) ¢(6,14) ¢(8,14) ¢(10,14) | Extrapolation Exact
0.0 0.0 -2.8043 -2.8861 -2.9220 -2.9514 -3.0037 -3.0000
0.5 0.0]-1.8528 -1.7641 -1.7716  -1.7873 -1.8152 -1.8197
0.5 0.5 -0.7295 -0.6249 -0.6159  -0.6220 -0.6328 -0.6395
1.0 0.0 | -1.0012 -0.9542 -0.9636  -0.9761 -0.9983 -1.0000
1.0 0.5 0.1341 0.1877 0.1924 0.1895 0.1843  0.1803
1.0 1.0 | 0.9918 0.9969  0.9986 0.9999 1.0004  1.0000
1.5 0.0 | -0.3765 -0.3669 -0.3817  -0.3923 -0.4111 -0.4124
1.5 0.5 | 07652 0.7746  0.7729 0.7715 0.7690  0.7678
1.5 1.0 1.6215 1.5818 1.5778 1.5806 1.5856  1.5876
1.5 1.5 | 2.2541 2.1691 2.1581 2.1627 2.1709  2.1751
2.0 0.0| 0.0706 0.0549 0.0342 0.0235 -0.0019  0.0000
20 0.5 1.2209 1.1937 1.1868 1.1861 1.1849  1.1803
2.0 1.0| 2.0792 2.0002 1.9899 1.9937 2.0005  2.0000
2.0 15| 27139 25919 25737 2.5781 2.5859  2.5876
2.0 2.0 3.1629 3.0121  2.9885 2.9936 3.0027  3.0000

Table 14.1: Estimants ¢(Lg, Lmax) for the central charge are obtained from
parabolic least-squares fits against 1/L? using the numerical data for Ly < L <
Lmax. The extrapolation in Lg is described in the text.

In Table 14.1 the results of such fits including the data points for Ly <
L < Lmax are shown as a function of Ly. Numerically we were able to access
Lmax = 14, in which case the largest single-vertex TMs have dimension ~ 7-10°
(see Table 13.1). The extrapolation of the estimants ¢(Lg, Lmax) to the limit of
infinite Ly 1s assumed to take the form of a power law

(Lo, Dmax) = ¢+ kLY, (14.4)

at least within an asymptotic regime of large enough Lg. As is evident from
Table 14.1 the last three estimants usually exhibit monotonicity, thus allowing
us to fix the constants ¢, k¥ and p. When this was not the case, or whenever
the power p thus obtained was to small to produce a reliable extrapolation the
Ising-like value p = 2 was used by default to extrapolate the last two estimants.
An error bar for this type of fit can be estimated from the variation among the
individual estimants. The extrapolants are invariably in excellent agreement
with our analytical results, the relative deviation being typically of the order
1073,

The results for ¢ are shown for all integer and half-integer values of n; € [0, 2].
Because of the symmetric appearance of the two flavours in Eq. (13.1) only
ny > ng need be considered. For either n, = 1 or ng = 1 the FPL2 model
reduces to the simpler FPL model earlier considered by Batchelor et al. [8§],
and for ny, = ng we recover another special case recently investigated by Kondev

[89].
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14.2 Thermal scaling dimension

A further prediction of conformal invariance is that the finite-size scaling of the
first gap in the eigenvalue spectrum of T(%?) is related to the thermal scaling
dimension [49]

2mrr

ALY = J5 (L) = =+

(14.5)

where fl(o,o) is found from the next-largest eigenvalue of T(%:?) through ffo,o) =

—% In )\(10’0). These computations were also carried through for even L up to
Lmax = 14. In this case as well the convergence of the estimants can be consid-
erably sped up by including a 1/L* term in Eq. (14.5) and performing parabolic
least-squares fits versus 1/L2.

The results for zp as displayed in Table 14.2 again agree with those of the
previously studied special cases [88, 89]. The data for (ny,, ng) = (0,0) merit
a special comment. Monitoring the three leading eigenvalues )\(()0’0), )\go,o) and

AL

as a function of n for n, = ng = n we found that )\(10’0) and )\(20’0) are

exactly degenerate for all n down to n ~ 0.20. Hereafter )\(10’0) splits off from
)\go,o) and eventually becomes degenerate with )\(()0’0) at n = 0. Because of this

level crossing it thus seems very likely that near (ni,n2) = (0,0) the thermal

eigenvalue should be related to the gap féo’o)(L) — féo’o)(L). Comparison with
the exactly known result zp = 1/2 [89] confirms this suspicion. A similar
comment holds true near (ny,ng) = (2,2), and again we find fair agreement
with the exact result if we apply Eq. (14.5) to )\(20’0), and not to )\(10’0) (which
in this case becomes two-fold degenerate).

For ny, < 2 the extrapolants are again in excellent (~ 1073 or better) agree-
ment with our analytical results. For np = 2 the slower convergence can be
attributed to logarithmic corrections [59] arising from an enhanced number of
marginal vertex operators. Indeed, of the twelve vertex operators correspond-
ing to the shortest vectors in R, Eq. (11.19), seven stay marginal when either
ny, < 2 or ng < 2. In the general case, when both n,, < 2 and ng < 2, there are
only four marginal vertex operators; this is the loop ansatz, Eq. (11.26).

14.3 Dimensions of string operators

14.3.1 One black string

We now turn our attention to the determination of the scaling dimensions associ-
ated with one or more strings spanning the length of the cylinder. The presence
of one black string corresponds to a height mismatch in the ideal states, and
the relevant scaling dimension X is therefore that of a twist-like operator [133].
We have calculated the leading eigenvalue of T(1:9) for odd system sizes up to
Lmax = 13 and determined the corresponding estimants coqd (Lo, Imax) by the



ny ng | xp(4,14) xp(6,14) 2p(8,14) 2p(10,14) | Extrapolation Ref. [88] Exact
0.0 0.00.5712 0.5280 0.5121 0.5060 0.4987 0.5000
0.5 0.0 |0.5704 0.5535 0.5452 0.5417 0.5366 0.5372
0.5 0.5 |0.5916 0.5882 0.5845 0.5825 0.5789 0.5804
1.0 0.0 | 0.5826 0.5798 0.5765 0.5748 0.5708 0.573 (1)  0.5714
1.0 0.5 0.6204 0.6227 0.6218 0.6211 0.6199 0.6200 (5) 0.6206
1.0 1.0 ]0.66368  0.66600 0.66642  0.66654 0.66663 0.6666 (1) 0.66667
1.5 0.0 | 0.5965 0.6053 0.6060 0.6058 0.6054 0.6063
1.5 0.5 0.6493 0.6559 0.6574 0.6578 0.6585 0.6619
1.5 1.0 | 0.7782 0.7094 0.7108 0.7115 0.7130 0.713 (1)  0.7146
1.5 1.5 ] 0.8950 0.7657 0.7674 0.7684 0.7702 0.7699
2.0 0.0 |0.6167 0.6295 0.6338 0.6349 0.6356 0.6667
2.0 0.5 |0.7481 0.6878 0.6913 0.6927 0.6945 0.7345
2.0 1.0 |0.8741 0.7566 0.7552 0.7565 0.7588 0.76 (1) 0.8000
2.0 1.5 |0.9436 0.8755 0.8284 0.8303 0.8337 0.8702
2.0 2.0 | 0.9996 0.9850 0.9400 0.9200 0.8876 1.0000

Table 14.2: The thermal scaling dimension zp. The extrapolation of the estimants 7 (Lo, Lmax) is described in the text. For
comparison we also show the numerical data for the case of either ny, or ng being unity [88]. Due to level crossing the values

of p for (ny, ng) = (0,0) and (2,2) are found from the gap fz(o’o)(L) — féo’o)(L) rather than from fl(o’o)(L) - féo’o)(L).
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ny, ng | X(3,13) X(5,13) X(7,13) X(9,13) | Extrapolation Result Exact
0.0 0.0 |-0.05586 -0.06109 -0.06203 -0.06232 -0.06257 -0.06269 (31) -0.06250
0.0 0.5 -0.06080 -0.06197 -0.06220 -0.06233 -0.06253 -0.06250
0.0 1.0 -0.06043 -0.06198 -0.06221 -0.06233 -0.06250 -0.06250
0.0 1.5]-0.05869 -0.06156 -0.06215 -0.06233 -0.06259 -0.06250
0.0 2.0 -0.05804 -0.06190 -0.06297 -0.06316 -0.06324 -0.06250
0.5 0.0 | 0.04674 0.04538  0.04558  0.04569 0.04587  0.04583 (16)  0.04591
0.5 0.5 | 0.04572 0.04585 0.04589  0.04588 0.04588 0.04591
0.5 1.0 | 0.04643 0.04622 0.04614  0.04607 0.04595 0.04591
0.5 1.5| 0.04781 0.04675 0.04638  0.04622 0.04590 0.04591
0.5 2.0 | 0.04828 0.04664 0.04593  0.04573 0.04555 0.04591
1.0 0.0 | 0.11895 0.12278 0.12398  0.12438 0.12501 0.12497 (8)  0.12500
1.0 0.5 | 0.12346  0.12422  0.12458  0.12470 0.12489 0.12500
1.0 1.0 | 0.12465 0.12485 0.12495 0.12496 0.12498 0.12500
1.0 1.5 | 0.12584  0.12540 0.12529  0.12521 0.12508 0.12500
1.0 2.0 0.12652 0.12549 0.12513  0.12501 0.12490 0.12500
1.5 0.0 | 0.17106 0.18253  0.18453  0.18536 0.18662  0.18663 (25)  0.18687
1.5 0.5 | 0.18283 0.18468 0.18553  0.18585 0.18633 0.18687
1.5 1.0 | 0.18515 0.18588 0.18620 0.18632 0.18646 0.18687
1.5 1.5 | 0.18684 0.18684 0.18687  0.18684 0.18680 0.18687
1.5 2.0 | 0.18878 0.18796  0.18759  0.18741 0.18696 0.18687
2.0 0.0 0.2076 0.2296 0.2321 0.2340 0.2369 0.2392 (27) 0.2500
20 0.5 0.2283 0.2323 0.2342 0.2351 0.2371 0.2500
2.0 1.0 0.2325 0.2347 0.2358 0.2363 0.2383 0.2500
2.0 1.5 0.2357 0.2372 0.2379 0.2383 0.2400 0.2500
20 2.0 0.2402 0.2413 0.2417 0.2420 0.2435 0.2500

Table 14.3: Estimants X (Lo, Lmax) for the scaling dimension of the twist operator (see text).
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usual parabolic fits to fél’o)(L), cfr. Eq. (14.3). Estimants X (Lo, Lmax) are then
defined by

— Lo L aLmax
X (L. L) = < Cot8l L0 ) (14.6)

where the factor of 12 originates from a comparison of Eq. (14.3) with Eq. (14.5).
For the central charge ¢ of an even-sized system we use our analytical results,
Eq. (12.4).

These estimants and their extrapolations are found in Table 14.3. Note
that we can no longer limit the parameter values by ni, > ng, as the condition
(sb,sg) = (1,0) treats the two flavours asymmetrically. In the case of the
FPL model (ny, = 1) it was found [88] that X was independent of ng. Tt is
evident from our numerical data that this ng-independence in fact pertains to
all n, € [0,2]. Final results for X as a function of n, have therefore been
computed by averaging the available extrapolated scaling dimensions over ng.
For np = 1 the agreement with the result X ~ 1/8 found by Batchelor et al.
[88] is excellent. Furthermore we are able to conjecture the general formula,
Eq. (12.19), for X as a function of the loop fugacities.

14.3.2 One black and one grey string

When (sp,sg) = (1,1) the parity of L must again be even, and we can make
parabolic fits for the gap fél’l)(L) —féo’o)(L), as in Eq. (14.5), without resorting
to the less accurate method of fitting for two central charges separately as above.
The corresponding universal amplitude is identified with the scaling dimension
z1. The results, now for Lyax = 12, are shown in Table 14.4, and our values for
the scaling dimension are once again in agreement with the analytical results,
apart from ng = 2 where logarithmic corrections are the most likely source of
systematic errors [59)].

14.3.3 Two black strings

Finally, the results for z5 as obtained from parabolic fits for the gap fé2’0) (L)—

féo’o)(L) are shown in Table 14.5. Again we have Lya.x = 12. Just like in the
case of X we find the extrapolated values of x5 to be independent of ng, and
final results are obtained by averaging over this parameter.

14.4  Entropy

Apart from the various universal quantities, such as the central charge and
the scaling dimensions, the transfer matrices also provide numerical values for
the residual entropy per vertex, s = fy(co). In the limit ngy — 0 of compact
polymers this quantity is of interest to the protein folding community, due to
the fact that native conformations of all globular proteins are compact [98].



Chapter 14. Numerical results

176

ny ng | ®1(4,12) x1(6,12) x,(8,12) | Extrapolation Ref. [88] Exact
0.0 0.0]-0.2433  -0.2447  -0.2470 | -0.2500 -0.2500
05 0.0]-0.1328  -0.1295  -0.1303 | -0.1313 -0.1323
0.5 0.5]-0.01713 -0.01228 -0.01217 | -0.01217 -0.0131
1.0 0.0 | -0.0440  -0.0423  -0.0430 | -0.0439 -0.0444 (1) -0.0446
1.0 0.5 | 0.0737 0.0763 0.0764 0.0765 0.0750 (3) 0.0761
1.0 1.0 | 0.16608 0.16646  0.16657 | 0.16663 0.1667 (1) 0.16667
1.5 0.0 | 0.0267 0.0271 0.0264 0.0255 0.0260
1.5 0.5 | 0.1466 0.1472 0.1472 0.1472 0.1483
1.5 1.0 | 0.2411 0.2395 0.2395 0.2394 0.242 (2) 0.2405
1.5 1.5 | 0.3196 0.3159 0.3156 0.3156 0.3162
2.0 0.0 ] 0.0845 0.0848 0.0844 0.0839 0.1042
2.0 0.5 0.2070 0.2067 0.2071 0.2076 0.2295
2.0 1.0 0.3048 0.3021 0.3024 0.3028 0.307 (2) 0.3250
2.0 1.5 0.3882 0.3841 0.3842 0.3843 0.4044
2.0 2.0 0.4640 0.4618 0.4635 0.4657 0.5000

Table 14.4: Scaling dimension z1, corresponding to one string of each flavour.



ny  ng | x2(4,12)  x2(6,12) 25(8,12) | Extrapolation Result Exact
0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 (0)  0.0000
0.0 0.5 0.0000 0.0000 0.0000 0.0000 0.0000
0.0 1.0 0.0000 0.0000 0.0000 0.0000 0.0000
00 1.5 0.0000 0.0000 0.0000 0.0000 0.0000
0.0 2.0 0.0000 0.0000 0.0000 0.0000 0.0000
05 0.0 0.1279 0.1355 0.1372 0.1389 0.1386 (2)  0.1386
05 0.5 0.1365 0.1371 0.1378 0.1387 0.1386
05 1.0 0.1377 0.1374 0.1379 0.1385 0.1386
05 1.5 0.1383 0.1375 0.1379 0.1384 0.1386
05 2.0 0.1392 0.1376 0.1379 0.1383 0.1386
1.0 0.0 0.2333 0.2447 0.2472 0.2504 0.2495 (5)  0.2500
1.0 0.5 0.2488 0.2477 0.2484 0.2493 0.2500
1.0 1.0 0.2514 0.2487 0.2490 0.2494 0.2500
1.0 1.5 0.2538 0.2497 0.2495 0.2492 0.2500
1.0 2.0 0.2573 0.2512 0.2504 0.2494 0.2500
1.5 0.0 0.3197 0.3377 0.3416 0.3466  0.3487 (26) 0.3506
1.5 0.5 0.3429 0.3425 0.3443 0.3466 0.3506
1.5 1.0 0.3486 0.3457 0.3466 0.3478 0.3506
1.5 1.5 0.3548 0.3497 0.3496 0.3494 0.3506
1.5 2.0 0.3636 0.3561 0.3547 0.3529 0.3506
2.0 0.0 0.3920 0.4202 0.4268 0.4353 0.446 (12)  0.5000
20 0.5 0.4244 0.4277 0.4323 0.4382 0.5000
20 1.0 0.4346 0.4348 0.4382 0.4426 0.5000
20 1.5 0.4468 0.4452 0.4474 0.4502 0.5000
2.0 2.0 0.4640 0.4618 0.4635 0.4657 0.5000

Table 14.5: Scaling dimension z3, corresponding to two black strings.
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Using our knowledge of the exact form of the finite-size corrections of order
1/L?, Eq. (14.3), we have obtained very accurate extrapolations to the limit of
an infinite system.! After subtracting the 1/L? correction a series of estimants
s(L, Lmax) may be obtained by fitting the residual size dependence to a pure
1/L* form. The remaining L-dependence of these estimants turns out to be well
accounted for by a further 1/L* fit, and in this way we arrive at a final value
for s. The error bar on the final value can be estimated as its deviation from
the most accurate extrapolant, s(Lmax — 2, Lmax)-

The most accurate results are quite naturally found by employing this pro-
cedure on féo’o)(L), and they are shown in Table 14.6. Results obtained by
extrapolating the free energies for other sectors of the transfer matrix contain-
ing strings are consistent herewith but have error bars that are roughly 10 times
larger. If the fugacity of one of the strings equals two the error bars are even
larger, which is to be anticipated from the fact that logarithmic corrections to
the scaling dimensions are larger than similar corrections to the central charge
[59].

)

In the special case of the equal-weighted six-vertex model, (np,ng) = (1
[

our value for s is in excellent agreement with the exact result due to Lieb [85],
3 4 -
s(1,1) = Eln 3 ~ 0.4315231- -, (14.7)

and in the limit of two mutually excluding Hamiltonian walks, (ny, ng) = (0,0),
we are able to conjecture the result

1
5(0,0) = 5 In(2) = 0.3465735 - - (14.8)

In fact, after having made this conjecture we discovered that the numerical
values of fél’l)(L), 1.e., the free energy per site in the sector where we enforce
one string of each flavour, are independent of L for 4 < I < 12, and equal to
%ln(?) with full 16-digit machine precision. Since the free energy per site in the
thermodynamic limit is unchanged by the introduction of a string defect, this
observation lends credibility to the correctness of the above conjecture.

Our result in the compact polymer limit merits special attention. Tradi-
tionally the entropy is quoted in terms of the so-called connective constant
k = e*(10); see Eq. (9.6). Early approximations due to Flory [138] and Huggins
[139] yielded respectively

-1
KFlory = ——— =~ 1.104 (14.9)
and
9 z/2-1 3
KHuggins — (Z - 1) <1 - ;) = 5 (1410)

IThe logarithmic corrections to the free energy implied by the A7~! term in Eq. (9.6)
does not pertain to the cylindrical geometry implicit in our transfer matrix calculations. A
A(d=1)/d

El

similar remark applies to the surface term &
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Table 14.6: Residual entropy s, obtained by extrapolating féo,o)

(L) to the infinite-system limit.

Adoxguy pp]

6L1



180 Chapter 14. Numerical results

Here z = 4 is the coordination number of the square lattice. More recently,
k ~ 1.472 was found from transfer matrix calculations [115] and x = 1.475(15)
by exhaustive computer enumeration of short-chain configurations [97]. Both
these results are very close to the mean-field value kyp = % =1.4715--- [113],
and it i1s tempting to conclude that conformations of compact polymers are in

fact described by mean-field theory [97]. However, our result
k = 1.472801(10) (14.11)

demonstrates that this is not the case.

Resumo en Esperanto

La transfermatricoj donas nombrajn valorojn por la centra Sargo ¢ (Tab-o 14.1),
la termika dimensio (Tab-o 14.2) kaj diversaj kord-dimensioj (Tab-oj 14.3-14.5)
kiuj tre precize konfirmas la rezultojn de Capitro 12.

Car ni ekzakte konas ¢ eblas komputi ege precizajn valorojn por la rezidua
entropio (Tab-o 14.6). Por du reciproke ekskludaj kompaktaj polimeroj ni kon-
jektas la rezulton (14.8), kaj en la kazo de unu kompakta polimero la konekta
konstanto (14.11) malsamas ol gia valoro en la avaragkampa aproksimo.



Chapter XV

Discussion and outlook

Asa by-product of the effective field theory constructed for the FPL? model
some rather general conclusions regarding the scaling of compact polymers, and
the relation between loop models and conformal field theory can be drawn. It
also provides new insights into the three-state Potts antiferromagnet and the
dimer loop model, which are identified with specific points in the phase diagram
of the FPL? model. After a remark on the possible Bethe ansatz solvability of
the model we conclude with a description of possible future developments.

15.1 Compact polymers

One of the main motivations for studying fully packed loop models is provided
by compact polymers, their scaling properties in particular. Just like polymers
in the dilute and dense phase, compact polymers form a critical geometrical
system characterised by conformational exponents v and v. The exponent =
relates the number of conformations of the polymer to the number of monomers;
see Chapter 9 for details. The other conformational exponent (v) relates the
linear size of the polymer to the number of monomers. For compact structures
it has the trivial value 1/2 since these polymers are space filling.

Prior to our work, exact results have been obtained for compact polymers
on the Manhattan [140, 141] and the honeycomb [91] lattice, and the mean-field
value v = 1 was found in both cases. This value of v indicates that the two
ends of the compact polymer are independent at large distances. This follows
from the scaling relation z; = 1 —+ = 0, where the one-string dimension z;
describes the probability G1(r) ~ r=2%1 that the two chain ends are separated by
a distance r. In this regard the scaling of compact polymers on the Manhattan
and the honeycomb lattices 1s equivalent to that of ideal chains. Ideal chain
configurations are described by simple random walks for which each step is
independent of the previous one.

Here we have calculated the exact conformational exponent y = 117/112 for
compact polymers on the square lattice. The fact that v > 1 is tantamount
to an effective repulsion between the ends of the chain, indicating non-ideal
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behaviour. Indeed, the fact that the connective constant & in Eq. (14.11) is
larger than its mean-field value indicates that the origin of this repulsion is
entropic. Earlier numerical studies of this problem utilising direct enumerations
of chain conformations have failed to see any deviation from the ideal chain result
ymr = 1 [97]; we can attribute this to the fact that the actual difference is indeed
very small (y — ymr = 5/112) and below the numerical accuracy previously
achieved. The same comment can be made for the connective constant.

Another interesting aspect of compact polymers is that their scaling prop-
erties are lattice dependent. This is in contrast to the dilute and dense case
which are described by conformational exponents that do not depend on the
lattice type (e.g., honeycomb wversus square). As remarked earlier this “lack of
universality” is due to a kind of geometrical frustration that arises from the fully
packing constraint imposed on the loop models which are employed in studies
of compact polymers.

Finally, the field theory solution of the FPL? model uncovered a property
of compact polymers that, to our knowledge, was not previously anticipated.
The fact that there is a whole line of critical points in this loop model in the
Hamiltonian walk limit (n, — 0) indicates a continuum of universality classes
described by compact polymers on the square lattice. In particular the exponent
v can be varied continuously between 43/48 and 9/8 by adjusting the fugacity
of the loops uncovered by the polymer. The loop weight of the uncovered (grey)
loops can be thought of as an effective interaction amongst the monomers, albeit
a non-local one. A similar effect of interactions on directed self-avoiding walks
was discovered by Cardy [123] from a field-theoretical analysis of the problem.
The existence of a continuously varying « in this case was recently challenged
by numerical results [124].

15.2 Relation to other models

The FPL? model is a loop model which exhibits a two-dimensional manifold of
fixed points in its phase diagram. Certain points in the critical region map to
previously studied lattice models and here we comment on the relevance of our
results for these models.

15.2.1 Dimer loop model

The dimer loop model studied by Raghavan et al. [107] is the ny, = 2, ng =1
FPL? model; see Fig. 8.1. The dimer loop model is defined by placing black and
white dimers on the square lattice so that every vertex of the lattice is covered
by exactly one black and one white dimer. Every such configuration is given
equal weight. The mapping to the FPL? model is achieved by identifying the
bonds covered by dimers as making up the black loops, whilst the uncovered
bonds form the grey loops. The original motivation for studying this dimer
problem is that it leads to a height model with a two-component height; cfr. the
traditional dimer model which is described by a single component height.
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Performing Monte Carlo simulations of the dimer loop model Raghavan et
al. reached the conclusion that one of the two height components is rough whilst
the other one is “anomalously smooth”, i.e., its structure function decays at
small wave-vectors q slower then 1/q?; a 1/q% dependence is to be expected in
a Gaussian field theory.

In light of our results we would conclude that the dimer loop model is critical
with a central charge ¢ = 2. This follows from Eq. (12.4) for n, = 2 and
ng = 1. The two components of the height found by Raghavan et al. should
therefore both be rough, each contributing one to the central charge (¢ = 1+
1). Furthermore, we believe that the observed anomalous behaviour of one
of the heights can be attributed to the fact that this model is exactly at the
boundary of the critical region of the FPL? model. We observe a similar effect
in our numerical transfer matrix results which show largest deviations from
the proposed exact formulae for loop fugacities at the critical-region boundary.
The culprit might be logarithmic corrections due to the presence of marginal
operators. To check this hypothesis and reconcile it with the fact that no such
effects are seen in Monte Carlo simulations of the four-colouring model [93]
(np, = ng = 2), which is also at the boundary of the critical region, simulations
of the dimer-loop model for larger system sizes would be welcome.

15.2.2 Three-state Potts antiferromagnet

The critical ground state of three-state Potts antiferromagnet maps to the equal-
weighted six-vertex model [106] which is the n, = ng = 1 point in the critical
region of the FPL? model; see Fig. 8.1. Along the line n, = ng the colouring
representation of the FPL2 model has the additional symmetry with respect to
cyclic permutations of the four colours; see Sec. 11.3.2. This explains the origins
of the Z4 symmetry found by Saleur for the three-state Potts antiferromagnet
[142].

15.2.3 Folding model

The folding model of the square-diagonal lattice recently investigated by Di
Francesco [143] maps onto a constrained version of the (ny,ng) = (2,2) FPL?
model. The constraint consists in allowing only the vertices 1, 3, 5 and 6 of
Fig. 10.1 for sites on the even sublattice, and similarly vertices 2, 4, 5 and 6 on
the odd sublattice.

We have modified our transfer matrices to take this constraint into account.
Our result for the folding entropy, s = 0.4604(4), is in complete agreement
with Ref. [143].1 Interestingly enough the finite-size scaling of the gaps in the
eigenvalue spectrum seems to indicate that the model i1s not critical for general
values of the loop fugacities. From the field theory of the FPL? model we should
be able to to understand why the constraint imposed by the folding model

1Our normalisation is “per vertex” whilst that of Di Francesco is “per triangle”. Accord-
ingly we find twice his result.
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leads to a relevant perturbation which takes the system away from criticality.
This we leave as an interesting open question. Incidentally, the situation is
very reminiscent of the reformulation of the @)-state Potts model in terms of a
staggered vertex model. Only at the critical point are the vertex weights on the
even and odd sublattices identical, thus allowing for an exact solution of the

model [125].

15.3 Bethe Ansatz solvability

Finally, we end with a speculatory note concerning the prospects of solving the
FPL? model via Bethe Ansatz. Namely, all loop models to date have been solved
by this method after mapping them to a vertex model, following a procedure
analogous to the one outlined in Sect. 10.2. This does not seem to work for
the FPL? model, at least not along the ny = 1 line [88]. Why this is so is an
interesting open question.

One possibility is that the full FPL.2 model needs to be considered as opposed
to the FPL model studied by Batchelor et al. for which ng = 1 is fixed. A more
intriguing possibility is that a Bethe Ansatz solution might be hindered (or
made more difficult) by the non-trivial elasticity displayed by the FPL? model
in its interface representation. This statement we base solely on the observation
that all previously solved loop models are simple as interface models in the sense
that the height fluctuations are described by a single elastic constant. For the
FPL? model, as described in Chapter 11, the stiffness tensor consists of three
independent components. Whether indeed the interface representation of the
loop model has any bearing on its Bethe Ansatz solvability remains to be seen.

15.4 Open questions

15.4.1 Universality

As mentioned in the introduction to Chapter 9 it is rather intriguing from
the viewpoint of universality that dense polymers exhibit density- and lattice-
independent critical exponents, whereas precisely at filling fraction f = 1 one
encounters the problem of compact polymers with critical exponents that de-
pend on the lattice. At the time when the dense polymer problem was solved
[112] this possibility was not taken into account, and it appeared natural to
identify compact and dense polymers.

Thus, although the conformational exponent v places compact polymers on
the honeycomb (y = 1) and the square (y = 117/112) lattices into different
universality classes, it is an interesting question whether there exists other crit-
ical exponents that are identical for dense polymers and the two solved cases of
compact polymers. A trivial example, of course, is v = 1/2 which just reflects
the fact that both dense and compact polymers have Hausdorff dimension two.
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More interestingly, from the exact results for the string dimensions one can
compute an infinity of contact exponents [112] g giving the asymptotic decay
of the probability Pg(y) ~ y’¢ that a certain number of points on the polymer
simultaneously have a spatial distance on the order of y, in the limit y —
0. Since Pg is the ratio of two partition functions the resulting exponent g
is independent of the boundary conditions. The most commonly encountered
contact exponents pertain to the spatial approaching of the two endpoints of
the polymer (6p), an endpoint and an interior point (), and two interior points
(62).

Now, 8y turns out to be simply related to v, and so it is ‘non-universal’. On
the other hand, ; and #; are functions of the string dimensions only through the
combinations 21 + 3 and 24 respectively,? and these are ‘universal’. Therefore
1 3
2’ 02 = 7] (15.1)
for both known cases of compact polymers and for dense polymers on arbitrary
networks.

Contact exponents should be relevant to protein folding, since hydrophobic
interactions take place at contacts. It would therefore be most interesting to ex-
amine whether the above equalities are purely coincidental or whether they hold
true in general. In particular, this question gives motivation for investigating
the compact polymer problem on the triangular lattice (see below).

0 =

15.4.2 Compact polymers on the triangular lattice

The six-colouring problem on the triangular lattice gives rise to a fully-packed
loop model with three different flavours of loops. Extrapolating what is known
for the honeycomb and the square lattices one would expect this FPL? mo-
del to have a five-dimensional interfacial representation embedded in seven-
dimensional space and to possess a three-dimensional manifold of critical fixed
points. The six-colouring problem would be critical with central charge ¢ = 5
and have a scaling limit described by a SU(6)x=1 symmetry.

If all of these statements were just obvious, of course, the FPL? model would
be of rather limited interest from the point of view of learning new physics. But
since closed loops on the triangular lattice can have any length > 3 (and not just
even ones), it poses a serious challenge to the mapping between the colouring
and the interfacial representations used this far. In particular, the loops cannot
be simply defined as alternating sequences of two different colours.

15.4.3 More about protein folding

The usefulness of the FPL? model for calculating conformational properties of
proteins leaves one wondering whether further quantities of relevance to pro-
tein folding can be calculated. In particular we are currently looking into the

2For the FPL? model we have defined z; = x1,1, the grey being assigned unit weight
anyway. Similarly 3 = 31 and 4 = 4.
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possibility of making quantitative predictions on the formation of secondary
structure, i.e., the two-dimensional restrictions of a-helices and -sheets, in the
compact states.

Even more interesting, one could imagine incorporating specific sequential
(amino acid) information through the imposition of quenched randomness. A
suitable model for this investigation is the FPL model on the honeycomb lat-
tice. If we assign quenched random numbers w; € [0, w] to each of the lattice
edges and augment the conventional loop Hamiltonian with a term assigning
energy penalties w; to each of the N/3 edges which are not covered by a loop
in any given configuration, one would end up with a model in which certain
loop configurations are preferred to others. Evidently this would bring down
the conformational entropy, and the question is whether it would go to zero,
reflecting the fact that polymers fold to a unique native state.

On a more theoretical level this model would contain both frustration and
disorder as two competing effects. Since the disorder just described couples
to the local energy density the techniques of Part T would be applicable, in
particular the perturbative renormalisation group. As such, this disordered
loop model can be considered to be the missing ‘Part III’ of the present thesis,
providing a unifying view of frustration and disorder in discrete lattice models.

Resumo en Esperanto

La devio inter niaj ekzaktaj rezultoj por kompaktaj polimeroj sur la kvadrata
reto kaj la averagkampa aproksimo estas komentata. v > 1 signifas ke la du
ekstremajoj de la polimero sin reciproke forpusas pro entropiaj kialoj.

Por (np,ng) = (2, 1) ni retrovas la dimer-buklomodelon [107]. Kontratie al
la konkludo de Ref-o [107] ni trovis ke tiu modelo estas krita kun centra argo
¢ = 2. Kun aldonaj kondicoj sur la permesataj verticoj nia buklomodelo ankat
povas priskribi la faldadon de membrano [143].

Finfine, ni listigas diversajn proponojn por estonta reserco. Aparte interesas
nin buklomodelo kun malordo, esperante ke gi adekvate modelumas la specifan
sekvencan informon en la proteinfalda problemo.



Appendix A

Dimensions of electric and magnetic operators

We calculate the scaling dimensions of electric and magnetic operators in the
Coulomb gas theory described by the action
i

Seq = %/fﬂx gl + /d2x (Eo - H)R | (A1)

where R 1s the scalar curvature. We are interested in the situation when the
height field 1s defined on a flat surface, in which case R is zero everywhere except
at the boundaries.

A.1 Electric charges

The scaling dimension z(E), of the electric-type operator exp(iE-H(x)), follows
from the two-point function

<eiEAH<x>e—i<E—2Eo)~H<y>> ~|x —y|2®), (A.2)
where the expectation value is with respect to the measure defined by the ac-
tion Scg. The extra electric charge 2Eq appears due to the charged boundary
conditions enforced by the curvature term in the Coulomb gas action, Eq. (A.1).

We break up the calculation into two parts. First we calculate the two-point

function, Eq. (A.2), in the absence of the background charge (Eq = 0). We
make use of the property of Gaussian integrals,

<eiE~H(x)e—iE'H(y)> — (A.3)

exp (=3B (1) = H*0))7)).

and of the known propagator for the massless scalar field in two dimensions
(where we have dropped the regulators at large and small distances),

((H*(x) — H*(y))*) = Lln|x -yl . (A 4)
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Combining the above two equations and comparing the result to Eq. (A.2), we

find

1
=3 (
To

Eo)?; (A.5)

the superscript (0) is there to remind us that this formula is valid only for
E, =0.

This result for the two-point function can be rewritten as

<eiE~H(X)e—iE‘H(Y)> = eXp[g](EO)(Xa y)]a (A6)
where
1
8 (x,9) = =gy, (Fe) " =] (A7)

is the energy for two (vector) electric charges interacting via the two-dimensional
Coulomb force; in this language S is the energy of the electrostatic field set
up by the electric charges +E, expressed in terms of the electrostatic potential
h. This seemingly trivial rewriting makes the calculation of z(E), the electric
dimension in the presence of a background charge, physically transparent.

To properly take into account the curvature term we define the height field
over a disc of radius R, instead of the infinite plane, keeping in mind that at
the end of the calculation we need to take the limit R — co. In the case of the
disc R = 87d(R), and the curvature term introduces a charge —2Eq at the disc
boundary. Therefore, the vacuum of the modified Coulomb gas must contain
a floating charge +2Eq in the disc interior, and the electrostatic energy of this
charged vacuum is EQ(OE)D(O, R) = —4E2_In(R)/27g,. Now, to find the scaling
dimension of a vertex operator of charge E, we imagine placing charges +E and
—E at points x and y in the disc interior, and we calculate the total electrostatic
energy with respect to the charged vacuum. The floating charge being positive
will coalesce with the negative charge —E. Using Coulombs law, Eq. (A.7), we
then calculate the interaction energy of charges +E at x, —E + 2Eq at y, and
—2E, at R, keeping in mind R > |x — y|. The final result

Eu(x,y) = Eo(Eo — 2Epq) In|x — y| (A.8)

2744

is obtained after the energy of the charged vacuum is subtracted. Now it is a
simple matter to read off the scaling dimension as the negative coefficient in
front of the logarithm,

1
- 2mg,

2z(E) Eo(Eo —2EFqq) - (A.9)
This result can be derived in a more rigorous fashion by constructing the stress-

energy tensor for the field theory Scg and calculating its operator product with
the vertex operator exp(iE - H) [62, 129].
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A.2 Magpnetic charges

To calculate the magnetic dimension (M) we consider the ratio of partition
functions,

Zom(x,y)/Z5 ~ [x —y|72M) (A.10)

Zsm(X,y) is the sum (path integral) over height configurations where a vortex
and an antivortex, of topological charge M, are placed at positions x and y
of the basal plane, whilst Z- is the unconstrained sum:

7y = /DH exp <—%/d2x ga(BHa)2) . (A.11)

Here we have dropped the curvature term since it does not affect correlation
functions of magnetic operators.

We can use the electrostatic analogy once again. Namely, we consider the
interaction energy between two topological defects, &m(x,y). Since Zs is a
Gaussian path integral, it follows that

Z>m(x,y)/ 7> = explEm(x,¥)] (A.12)

where
—En(x,y) = Z5(M*)’In|x—y] . (A.13)

The above interaction energy is calculated as the Gaussian action of the the
classical configuration of the height field, h.. h. solves the classical equations of
motion (Laplace’s equation) with boundary conditions dictated by the presence
of topological defects at x and y [127]. The scaling dimension of a magnetic-type
operator is then the coefficient in front of the logarithm in Eq. (A.13),

2:(M) = L2 (my2 (A.14)

T om
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alpha-carbon group, 118

a-helix, 119
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amino acid, 113, 117, 118, 186
hydrophilic, 118
hydrophobic, 118

anomalous dimension, 21

Ashkin-Teller model, 23

auxiliary graph, 45

backbone, 118

(-sheet, 119

Bethe ansatz, 113, 184
biopolymer, 118

block spin construction, 5

bond percolation, 64, 141
boundary condition, 115, 136, 185
boundary correlation function, 44
boundary operator, 152

Burgers charge, 148

cell spin construction, see block spin
construction

central charge, 55, 146, 170

effective, 6874, 98

in percolation limit, 78
central limit theorem, 15, 33
CFT, see conformal field theory
Chalker-Coddington model, 109
chlorophyll, 118
coarse graining, 131

of microscopic operator, 138
collapse model, 120
compactification, 130, 131
compactification radius, 144

201

conformal anomaly, see central charge
conformal field theory, 5, 55, 108
non-unitary, 143
conformal invariance, 143, 170
conformational exponent, 108, 115,
150, 181, 184
connective constant, 116
surface, 116
connectivity basis, 54
connectivity state, 57, 158
contact, 113, 117
contact exponent, 115, 185
contour loop, 147
convexity, 79, 99
cooperativity, 121
correlation function
four-point, 143
correlation length, 4
energy-like, 165
Coulomb gas, 109, 127, 139
critical behaviour
termination of, 154-155
critical end point, 22
critical exponents, 5
exact relations, 36-37
geometrical, 116
of Ising model, 8-9
critical surface, 7
critical temperature
of RBPM, 42
cross-staggered spin, 128, 131, 138,
153
crossover effects, 16, 70-73
crossover length, 35
crystalline interface, 109
cumulant expansion, 17, 79
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cut function, 58, 166

dangerous irrelevant variable, 22
dangling edge, 156
decimation, 6
defect configuration, 147
denaturated state, 119
density of states, 121
descendant operator, 95
dimer loop model, 124, 182
discontinuity fixed point, 20, 23
disorder average, 15
disorder operator, 44, 63
DNA, see nucleic acid
domain, 119
domain wall, 109
duality, 27, 86

in FPL? model, 142

in Potts model, 39-53

of correlation function, 43

of partition function, 42
duality transformation, 40
dynamic critical exponent, 100

eigenvalue spectrum, 55
elastic constant, 111, 136
electric charge, 127, 132, 139
background, 137
compensating, 150
screening, 153
energy density, 94, 95
entropy, 4
conformational, 119
residual, 105, 175
enzyme, 118
essential singularity, 155
Euclidean action, 109, 134
Euler characteristic, 29
exchange interaction, 3

ferromagnetic phase, 4

finite-size scaling, 5556, 63, 89
at first-order transition, 66

fixed point, 6

flat state, see ideal state

flow

Index

in RFIM, 19
under renormalisation, 6
fluctuations, 4, 23
flux line, 109
folding model, 183
folding pathway, 119
four-colouring model, 124
FPL? model, see two-flavour fully
packed loop model
framework model, 120
free energy, 4, 165
generalised, 55
fully frustrated system, 105
Furstenberg method, 56
independence of norm, 68
physical interpretation, 87-88

geometrical frustration, 105, 113, 182
ghost site, 56
Green’s function, 87

Hamiltonian, 3
interfacial, 29
Hamiltonian walk, 113
two mutually excluding, 178
Harris criterion, 16, 70
“inverse”, 86
generalised, 96
Hausdorff dimension, 149, 184
height
coarse grained, 128
microscopic, 126
height field, 131
helical propensity, 120
hemoglobin, 118
heteropolymer, 118
hierarchical lattice, 24
homopolymer, 117, 121
hydrogen bond, 106, 119
hydrophobicity, 113, 117, 120
hyperscaling, 9, 141
violation of, 21

ice model, 106
ice rule, 106
ideal state, 127, 135
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ideal state graph, 128
impurities, 13
Imry-Ma argument, 18, 22, 101
Binder’s refinement of, 30
inclusion-exclusion, 52
index representation, 57, 158, 164
integer division
modified, 59
integer quantum Hall effect, 109
interface
in RBPM, 28
rough, 127, 183
smooth, 155
interfacial tension, 28, 29
generalised, 44
inversion relation
reciprocal, 53
Ising model, 3
antiferromagnetic, 106
renormalisation flow in, 7

Kac-Moody algebra, 144

Landau theory, 109
latent heat, 22, 27, 36
law of large numbers, 141
length scale, 4
level crossing, 172
lexicographic ordering, 58, 167
Lie algebra, 144
Liouville field theory, 134
local operator, 128
locking potential, 155
log-normal distribution, 15
logarithmic corrections, 23, 70, 172
loop ansatz, 140-142
loop flip, 133, 135
loop model, 108-111

oriented, 125
lower critical dimension, 4, 33
Lyapunov spectrum, 56

higher, 95-96

mad cow disease, see prion
magnetic charge, 127, 132, 139
magnetic exponent
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of RBPM, 98
majority projection, 6
Manhattan lattice, 181
mean-field theory, 23, 116, 180, 181
mesoscopic system, 119
metastable state, 119
MFT, see mean-field theory
Monte Carlo simulation, 54, 98, 183
multiscaling, 16, 24, 79, 99

native state, 118

noise reduction, 94

normal distribution, 15

nucleic acid, 118

number representation, 57, 158, 165

O(n) model, 108, 113
open boundary conditions, 156
operator product expansion, 17
order parameter
in Potts model, 43
non-standard, 99
overhangs, 28

paramagnetic phase, 4
parity, 128, 131, 154
partition function, 4

restricted, 45, 158
partition function zeroes, 40, 89
peptide bond, 118
percolation, 143
percolation limit, 35, 64, 77-79, 98
periodic boundary conditions, 60, 156
perturbative renormalisation group,

see (¢ — 2)-expansion

phase diagram

of FPL? model, 110, 124

of RBPM, 34

of RFIM, 19
phase transition, 4

first-order, 13

phenomenological renormalisation, 89—

91
¢-1 angles, 119
plateau transition, 109
polycondensation, 118
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polymer

compact, 108, 113-121, 123, 149,
178, 181

compact interacting, 150, 182
compact ring, 115
dense, 108, 113, 184
interacting oriented, 123
swollen, 108

polymer melt, 113

polysaccharide, 118

Potts antiferromagnet
three-state, 183

Potts vertex model, 107

power counting, 17

primary structure, 119

prion, 118

protein, 118

protein folding, 108, 117-121, 185

(¢ —2)-expansion, 13, 24, 35, 54, 70,
82, 86, 92

g-colouring problem, 107, 122

quantum spin chain, 109

quaternary structure, 119

radius of gyration, 115
random bond Potts model, 23, 26
random cluster model, 27, 40, 57,
108
random field Ising model, 18, 29
random gravity, 14, 101
random lattice
Delaunay, 100
Poissonian, 100
random-bond Ising chain, 14
randomness
annealed, 14
binary, 26, 42, 55
coordination number, 14, 100
quenched, 117
quenched bond, 13, 17, 54
quenched field, 13, 18
site dilution, 17
trinary, 73, 83
RBPM, see random bond Potts mo-
del

Index

reflection positivity, 74
relevance

of scaling field, 7
renormalisation

of RBPM interface, 34
renormalisation group, 5
renormalisation group eigenvalue, 7
renormalisation transformation, 6
repeat lattice, 130
replica method, 16, 85, 88
replica symmetry breaking, 16, 92
RFIM, see random field Ising model
RG, see renormalisation group
RNA, see nucleic acid
root lattice, 144
roughening transition, 155
row-staggered spin, 128, 131, 154
runaway behaviour

of RG flow, 23

SAW, see self-avoiding random walk
scalar curvature, 137
scaling dimension, 55
geometrical, 147-153, 172-175
negative, 143
of FPL? operator, 139
thermal, 151, 172
scaling field, 7
scaling form
of correlation function, 8, 116
of free energy, 8
scaling law, 8, 9
screening charge, 143
seam, 44, 53, 63, 79
virtual, 64
secondary structure, 117, 119, 120,
186
self-averaging, 15, 88
self-avoiding random walk, 113, 117
self-duality, 40, 55, 74
six-vertex model, 106, 124, 178
solid-on-solid model, 28
SOS model, see solid-on-solid model
spin glass, 16, 118
spontaneous symmetry breaking, 4
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staggered spin, 128, 131, 153
steric exclusion, 119
stiffness tensor, 135
stress tensor, 95, 144, 170
Sugawara form

of stress tensor, 144
sum rule

conformal, 88

in Potts model duality, 52
superconductor, 109
surface tension, see interfacial ten-

sion

tertiary structure, 119, 120
thermal equilibrium, 4
thermodynamic limit, 4
theta point, 108
three-flavour fully packed loop mo-
del, 185
TM, see transfer matrix
topological defect, 131, 139
transfer matrix, 54-65, 87, 156-169
non-hermitian, 56
sparse single-bond, 60
sparse single-vertex, 159
triangulation, 100
tricritical point, 22, 34, 108
twist operator, 152, 172
twisted boundary conditions, 44, 63
two-flavour fully packed loop model,
110, 116
colour symmetries, 135, 140
constrained, 183
height representation, 124-127
partition function, 127

universality, 5, 184
upper critical dimension, 22

vacuum, 146

vertex operator, 132, 137, 139
marginal, 172

vertex rule, 160

violation of hyperscaling, 33

Virasoro algebra, 144

virus shell, 118
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Voronoi tessellation, 100
vortex, see topological defect, 148

weight factor, 5
weight lattice, 144
well-nestedness, 47, 58, 77, 164
Wess-Zumino-Witten model
SU(4)g=1, 144
SU(6)g=1, 185
Widom exponent, 24
Wigner-Seitz cell, 130
winding loop, 137
winding phase, 148
world line, 109
WZW, see Wess-Zumino-Witten

Zamolodchikov’s e-theorem, 72, 74
zero-temperature fixed point, 20, 23,
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