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Avant-propos

Ce mémoire fait le point de mes travaux sur le modele de Potts et le modele O(n). J’étudie ces modeles
en deux dimensions, ot des méthodes performantes sont disponibles : théorie conforme, intégrabilité,
matrices aléatoires, matrices de transfert. Nous verrons que, en deux dimensions, le modéle de Potts et
le modeéle O(n) sont étroitement liés. C’est pourquoi I'intitulé du mémoire fait seulement référence a 1'un
d’entre eux.

La rédaction m’a mené a relire un nombre de références clefs. Cette lecture m’a parfois guidé vers
d’autres travaux intéressants que je ne connaissais pas auparavant. Je me suis alors rendu compte qu’il
existe encore de nombreux thémes & approfondir dans ce domaine. J’espére que ma future recherche saura
en profiter.

Je souhaite ici remercier les membres du jury qui ont bien voulu participer & la soutenance de cette
these. Mes pensées vont aussi vers mes collaborateurs et vers les collegues avec lesquels j’ai eu des
conversations fructueuses au cours des années. Enfin, un grand merci & Gisele Bannier qui a apporté une
aide précieuse en relisant les textes en francais.

Publications

Un certain nombre de publications sont attachées & chaque chapitre de ce mémoire. Leurs références
d’origine sont les suivantes :

Chapitre 2 :

— J. L. Jacobsen, Duality relations for M coupled Potts models, cond-mat/0001367.

Physical Review E 62, R1-4 (2000).
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— J. L. Jacobsen, J. Salas et A. D. Sokal, Transfer matrices and partition-function zeros for antifer-
romagnetic Potts models. III. Triangular-lattice chromatic polynomial, cond-mat/0204587.
Journal of Statistical Physics (soumis).

Chapitre 4 :

— S. C. Chang, J. L. Jacobsen, J. Salas et R. Shrock, Ezact Potts model partition functions for strips
of the triangular lattice, cond-mat/0211623.
Journal of Statistical Physics (soumis).

Chapitre 5 :

— J. L. Jacobsen et J. Kondev, Field theory of compact polymers on the square lattice, cond-mat/9804048.
Nuclear Physics B 532 [F'S], 635688 (1998).

— J. L. Jacobsen et J. Kondev, Conformal field theory of the Flory model of protein melting, cond-
mat/0209247.
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Chapitre 1

Introduction

1.1 Le modele de Potts

Le modele de Potts est sans doute parmi les modéles les plus étudiés dans la littérature de la physique
théorique. Nous devons son introduction & C. Domb, qui, au début des années 1950, proposa & son thésard
R. B. Potts d’étudier une généralisation du célebre modeéle d’'Ising ol chaque spin peut étre dans un
nombre arbitraire d’états discrets. Pourtant, le modeéle suggéré par Domb est maintenant connu comme
le modeéle Zy, ou bien le modéle d’horloge, alors que le modéle qui nous intéresse ici ne fut mentionné
que dans une petite remarque vers la fin de P'article de Potts [142].

Sa formulation précise est simple : Soit G = (V, E) un graphe avec des sommets V et des arétes
E, et associons & chaque v € V une variable discréte (dite spin) pouvant prendre g valeurs distinctes,

oy =1,2,...,q. Le hamiltonien du modele de Potts a ¢ états sur G vaut alors
—BH =K Y §(0i,0), (1.1)
€;j €E

ou B = 1/kT est la température inverse, K la constante de couplage et e;; I’aréte qui relie les sommets
i et j. La fonction delta de Kronecker §(z,y) vaut 1 si z = y, sinon elle vaut 0. Le but devient alors de
calculer la fonction de partition

q
Z = Z exp(—BH), (1.2)

;=1
et plus généralement de trouver les propriétés thermodynamiques du modele comme fonction de K et de
q.

L’intérét principal du modele de Potts est qu’il démontre (au moins dans le domaine ferromagnétique,
K > 0) une compétition entre I’énergie et ’entropie, avec une phase ordonnée (ferromagnétique) & basse
température et une phase désordonnée (paramagnétique) a haute température. On s’attend alors & ce qu’il
y ait, pour un choix de G approprié avec |V| — oo, une ou plusieurs transitions de phase comme fonction
des parametres (¢, K). Ensuite on s’interroge sur la localisation et la nature exacte de ces transitions
ainsi que sur leurs dépendances de G.

Le modéle de base permet plusieurs variantes intéressantes. Typiquement, G est pris comme un
réseau régulier en dimension d, mais, on peut également considérer G comme un arbre ou moyenner sur
un ensemble de réseaux aléatoires. Le couplage K peut étre complété soit par d’autres interactions entre
plusieurs spins, soit par des champs externes. On peut aussi considérer les couplages comme des variables
aléatoires sur lesquelles il faut moyenner au niveau des quantités thermodynamiques.

1.2 Bref apercu historique

I1 existe une littérature tres riche sur le modele de Potts, notamment apres ’explosion d’activité de
recherche qu’il a engendrée a partir de 1970. Parmi les techniques tres utilisées pendant les années 70,
citons la transformation de dualité, le développement en séries, le groupe de renormalisation, les simula-
tions numériques, et avant tout I'intégrabilité sous la forme de I’ansatz de Bethe [163, 13]. Ces approches
ont permis la construction des diagrammes de phase, la localisation exacte des certains points critiques,
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I’évaluation exacte de ’énergie libre en certains cas particuliers, ainsi que l’estimation d’exposants cri-
tiques.

Comme trés souvent dans la physique statistique, le cas de deux dimensions (d = 2) s’est avéré
un champ de travail particulierement fructueux. D’autres méthodes spécialisées & ce cas, a savoir les
approches d’ondes de spin et de gaz de Coulomb, vinrent s’ajouter a celles évoquées précédemment autour
de 1980. Ce développement a notamment permis de calculer de maniére exacte (mais non rigoureuse) les
valeurs de plusieurs exposants critiques en fonction de gq.

Tous ces résultats furent résumés en 1982 dans l'excellente revue de Wu [163], et la méme année
apparut la monographie de Baxter [13] qui demeure la référence idéale sur ’approche d’intégrabilité a ce
jour. La technique du gaz de Coulomb fut treés clairement exposée par Nienhuis [136]. Le lecteur cherchant
un apercu du bilan au début des années 80, ainsi que des références précises aux travaux d’origine peut
se tourner vers ces trois ceuvres.

Le but de ce mémoire est d’exposer quelques développements postérieurs dans le domaine du modeéle
de Potts et de certains autres modeles, tels que le modéle O(n), qui sont étroitement liés & celui-ci. Sans
une précision explicite du contraire, nous allons désormais considérer uniquement le cas bidimensionnel
(d = 2). La présentation prend comme point de départ quelques aspects du sujet général qui rentrent
dans les intéréts de recherche de 'auteur et auxquels il a parfois contribué. En effet, & ’heure actuelle,
lactivité qui se déroule autour du modele de Potts a pris une telle ampleur! qu’une revue exhaustive sur
le sujet ne serait probablement envisageable que sous forme d’une collaboration entre plusieurs auteurs.

1.3 La théorie conforme de champs

Une large partie de cette recherche a été déclenchée par ’apparition de la théorie conforme de champs
qui fit son entrée dans la littérature physique en 1984 [17]. Cette technique est basée sur une observation
faite par Polyakov en 1970 [141]. Rappellons que I’hypothése qui est au cceur de ’approche du groupe
de renormalisation est 'invariance sous un changement d’échelle. Cette approche a été appliquée avec
beaucoup de succés aux systémes ayant une transition de phase de second ordre. Polyakov argumente
donc que si, en plus, les interactions sont de courte portée, cette invariance globale sous changement
d’échelle peut étre promue en une symétrie locale.

En d = 2, les conséquences de cette observation sont considérables, puisque les générateurs infi-
nitésimaux L, d’une telle symétrie sont en nombre infini. L’élaboration mathématique [17] montre alors
Pexistence d’une infinité de contraintes sur la théorie de champs dont la manifestation algébrique est
I’algebre de Virasoro

[Lny L] = (1 — m) Lysom + %n(nQ —1)6(n + m, 0). (1.3)

La constante ¢, dite la charge centrale, joue ici le role d’un parametre qui caractérise complétement la
théorie de champs sous-jacente.

La construction de la théorie de représentation de cet algebre permet de fixer la valeur de ¢ et des
exposants critiques des opérateurs physiques. Il est naturel d’imposer deux contraintes de nature physique
sur les représentations acceptables :

— unitarité (la norme d’un opérateur physique est positive) et

— minimalité (le nombre d’opérateurs physiques est fini).

Les modeles M, satisfaisant ces critéres, dits modeles minimaux, seront alors spécifiés par un entier

p=3,4,5,.... Leur charge centrale
6
clp)=1— ——— 1.4
(p) p (1.4)

ainsi que les exposants critiques (poids conformes) de leurs opérateurs physiques
[(p+1)r —ps]” — 1
4p(p +1)

sont connus pour chaque valeur de p [69]. (La formule (1.5) est souvent appelée le tableau de Kac.) En
particulier, les cas p = 3 et p = 5 de ce classement correspondent respectivement aux cas g =2 et ¢ =3

hr,s(p) = (1<s<r<p) (1.5)

"Une recherche sur les archives électroniques http ://fr.arxiv.org démontre I'apparition d’environ un article par
semaine ayant le mot “Potts” dans son titre.



du modele de Potts ferromagnétique au point critique. Les cas p = 4 et p = 6 sont associés aux modeles
tricritiques correspondants. Une exposition plus détaillée peut étre trouvée dans [62].

1.4 Contenu de ce mémoire

Le reste de ce mémoire va, présenter quelques développements plus récents et, notamment, leur rapport
avec la théorie conforme.

Nous commencons, dans le Chapitre 2, par l'introduction de quelques transformations utiles sur la
fonction de partition (1.2), transformations qui permettront de concevoir ¢ comme un nombre complexe
arbitraire, plutot que comme un nombre entier d’états. Ces transformations sont ensuite utilisées pour
établir des transformations de dualité pour une certaine classe de fonctions de corrélation du modele de
Potts et pour la fonction de partition de plusieurs modeles de Potts couplés entre eux.

Dans le Chapitre 3, nous entamons une étude du modele de Potts dans le régime antiferromagnétique.
En particulier, la limite 77 — 0 permet d’interpréter le modele comme un probléme de coloriage des
sommets V. Nous discutons le diagramme de phase de ce probléme en fonction de g complexe. Ensuite
nous continuons, dans le Chapitre 4, par une discussion du diagramme de phase ainsi que les proprietés
critiques associées dans 1’espace (g, eX) pour deux choix de G, les réseaux carré et triangulaire.

Le probléme correspondant de coloriage d’arétes (coloriage de Tait) est exposé dans le Chapitre 5.
Une suite de transformations exactes établie le lien avec le modele O(n) & T — 0 dont nous trouvons de
nouvelles phases. Ces phases s’interprétent comme des modeéles de polymeéres compacts qui présentent un
intérét dans I’étude des protéines confinées. A titre d’application concréte, nous résolvons le modele de
Flory pour la fusion d’une protéine.

Nous discutons ensuite, dans le Chapitre 6, des possibilités de définir des modeles de Potts ou des
modeles O(n) sur des réseaux aléatoires planaires. Plusieurs de ces possibilités ménent & des modeles
combinatoires intéressants, permettant notamment d’énumérer les classes topologiques des intersections
entre deux courbes autoévitantes fermées (méandres) et des nceuds alternés.

Dans le Chapitre 7, nous considérons un autre type de désordre, ou les couplages du modele de Potts
sont des variables aléatoires gelées. Ce désordre permet, dans certains cas, de modifier la nature de la
transition de phase. Par la technique des répliques, ce probléme est étroitement lié & celui de modéles
couplés que nous étudions dans le Chapitre 8. Le role du désordre est de coupler les répliques entre elles
par leurs opérateurs de densité d’énergie. Ce type de couplage rend possible un développement perturbatif
autour de ¢ = 2. Nous confrontons ce développement avec des résultats numériques, et nous discutons
les perspectives d’un éventuel traitement analytique exact.






Chapitre 2

Dualité

Depuis l'introduction du modele de Potts [142], il était clair que sa fonction de partition admet une
transformation de dualité. De maniére générale, la dualité remplace le graphe (planaire, car d = 2) sur
lequel est défini le modele par son dual. Elle est donc particuliérement utile si ces deux graphes coincident,
comme c’est le cas pour le réseau carré. La supposition de I'unicité de la transition de phase permet alors
immédiatement de déterminer la température critique. Un apercu détaillé des résultats obtenus par cette
technique peut étre trouvé dans [151, 163].

11 est possible de dériver la relation de dualité de plusieurs maniéres différentes [163], mais, la plus
simple passe par une réécriture de (1.2) due & Kasteleyn et Fortuin [103]. Comme cette réécriture va jouer
un role important dans ce mémoire, nous allons la présenter en détail dans le paragraphe suivant.

Des relations de dualité existent aussi pour des fonctions de corrélation de n spins. Le cas n = 2 est
un résultat classique qui relie les opérateurs de spin & des opérateurs de désordre. Or, son utilité pratique
ne semble avoir été exploitée que plus récemment. En effet, cette relation est un outil performant dans
I’étude numérique des propriétés magnétiques du modele de Potts [49, 51], méme avec du désordre [82].
Sur le c6té analytique, elle a été utilisée dans [31, 96]. Plus généralement, Wu et collaborateurs ont trouvé
des relations de dualité pour des corrélateurs & n spins, mais & condition que tous les spins se situent
autour d’une seule face du réseau [164, 81, 165, 125]. Il parait difficile de lever cette condition [107, 108].

Finalement, la dualité s’applique aussi au cas de N modeéles de Potts couplés entre eux & travers
leurs opérateurs d’énergie. Le cas N = 2 est un résultat ancien [43], obtenu en utilisant la méthode de
transformation de Fourier sur réseau [162]. Cette méme méthode appliquée au cas N = 3 devient trés
compliquée [49], et doit étre abandonnée pour des valeurs de N plus élevées. Cependant, en généralisant
la transformation de Kasteleyn-Fortuin au cas de plusieurs modeéles, les calculs se simplifient rendant
possible la généralisation & N arbitraire [89, 51].

2.1 Modele d’amas

Nous allons exposer la transformation de Kasteleyn-Fortuin pour la fonction de partition

Z = Z H exp [Kijé(di,aj)], (2.1)

{o} (ig)CE

oll nous permettons des constantes de couplage K;; distinctes pour chaque aréte de G. Comme d(0;,0;)
ne prend que deux valeurs, nous avons l’identité

exp [K;;j0(0o4,05)] = 1 4+ u;56(03,05) (2.2)

avec u;; = exp(Kj;j) — 1. Dans le développement du produit, nous associons un sous-ensemble E' de E &
chaque terme selon la régle suivante : une aréte (ij) C E fait partie de E’ si, et seulement si, nous avons
pris le facteur w;;0(0;,0;). Apres la sommation ) {o} DOUS trouverons alors

7= [ I wj)e®, (2.3)

E'CE \(ij)el’
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ou C(E") est le nombre de composantes connexes dans le sous-graphe induit par E'.
Dans le cas homogene, u;; = u,

Z(u,q) = Yy ul®lg?®) (2.4)
E'CE

est connu comme le polyndme dichromatique dans la théorie de graphes (aprés un changement de variables
non linéaire). Dans ce contexte, il fut introduit par Whitney en 1932 [161], alors que le cas particulier
u = —1 (dit polyndme chromatique) entra dans la littérature mathématique déja en 1912 [25]. Nous allons
étudier le polynéme chromatique en détail dans le Chapitre 3.

L’avantage du polynéme dichromatique est qu’il permet, par prolongement analytique, de définir le
modele de Potts pour ¢ non entier. Cette remarque sera cruciale par la suite. La représentation (2.3) de
Z, due a Kasteleyn et Fortuin [103], est souvent appelée le modéle d’amas.

II est également possible de définir un modeéle d’amas pour le cas ou l'interaction spin-spin est
complétée par un champ magnétique [27]. L’idée est d’augmenter G par un spin “imaginaire” fixe, o9 = 1,
qui sera relié & tout autre spin par une aréte supplémentaire. Un alternatif plus adapté & des simulations
numériques a été développé dans [82].

Une autre représentation utile [13] de Z, dite modéle de boucles, est obtenue de (2.3) en utilisant la
relation d’Euler :

U4 ’
7 = g"I/2 Z H 72 g“E)/2, (2.5)
E'CE \(ij)eE

Ici, L(E') est le nombre de boucles autoévitantes fermées sur le graphe Gy, médial & G. Plus précisement,
Gy, est le graphe dont les sommets bisectent les arétes de G ; deux sommets du graphe médial sont reliés
par une aréte, si leurs arétes correspondantes en G sont incidentes a4 un méme sommet et & une méme
face. Par convention, chaque aréte de Gy, est couverte par une boucle; & chaque sommet, deux boucles
sont tangentes. Enfin, une aréte (ij) € V est coupée par deux segments de boucles sur Gy, si (ij) ¢ V',
et par aucun segment si (ij) € V'.

La Figure 2.1 montre I'application de ces concepts & un cas concret.

La représentation en modele de boucles est capitale pour la solution exacte du modeéle de Potts [13],
car elle permet de distribuer les poids /g par boucle de maniere locale [11, 13]. La méme construction
apparait dans le développement de haute température du modele O(n) [134] et ses généralisation plus
récentes [7, 112, 83]. En effet, le modele de boucles est le lien formel entre les modeles de Potts et O(n).

Dans la suite, nous allons montrer que la représentation en modele d’amas (ou de boucles) est
également possible quand plusieurs modeéles de Potts sont couplés par leur densité d’énergie [89, 51].

2.2 Dualité de 7

A partir de la représentation (2.3), il est facile de déduire la transformation de dualité de Z. Stipulons
d’abord la dualité entre le terme E' = E avec le poids

Zo({ui}) =q ] wy (2.6)

(ij)eE
et le terme E' = () avec le poids
Z:({u) =a"". (2.7)
Le nombre de spins sur le réseau dual est fixé par la relation d’Euler, |E| = |V| + |V*| — 2.

Etablir la dualité entre les fonctions de partition complétes, Z et Z*, équivaut & montrer que tous
leurs termes, reliés deux & deux par une régle de dualité, ont le méme poids relatif par rapport aux états
de référence. Par état de référence, nous entendons Z, pour le cas de Z, et Z* pour le cas de Z*. La regle
de dualité est la suivante :

— une configuration E’ contribuant & Z est duale & une configuration E’* contribuant & Z*, ou E™*

est le complément de E' par rapport & E (modulo la bijection qui relie chaque aréte dans F & son
aréte coupante dans E*).



En particulier, I’élimination d’une aréte de la configuration F (poids relatif 1/u;;) correspond a I'ajout
d’une aréte a la configuration duale (poids relatif u;‘j /q). Les couplages u;; et u;-“j doivent alors étre reliés
par

T (2.8)

L’élimination successive de plusieurs arétes de E peut impliquer la création d’un nouvel amas (com-
posante connexe) portant un facteur supplémentaire de ¢q. Réciproquement, selon la régle de dualité, ceci
entraine la création d’un cycle sur le graphe dual, ce qui donne encore une fois un facteur supplémentaire
de gq. Comme tout sous-ensemble E’ C FE peut étre construit par de telles éliminations d’arétes, nous
avons donc prouvé la transformation de dualité [162]

Z({uij}) = ¢CZ* ({uis}), (2.9)

o C =qg V"l H(ij) u;j est une constante.

Pour voir comment la dualité permet de fixer la température critique, considérons & titre d’exemple
le cas ol G est le réseau carré infini et u;; = u. On a alors G = G* et (2.8) relie le méme modele de
Potts & deux températures différentes. Si la transition de phase est unique, elle doit donc étre située au
point autodual, c’est-a-dire & u = +,/g. La branche u = /g correspond effectivement au point critique
ferromagnétique, comme le montre la solution exacte de Baxter [13]. Or, cette méthode ne permet pas de
déterminer deux autres branches critiques u = —2++/4 — ¢ qui sont mutuellement duales et correspondent
aux points critiques antiferromagnétiques [14]. Nous allons étudier les propriétés antiferromagnétiques
du modele de Potts dans les Chapitres 3 et 4.

Il est également possible d’utiliser (2.8) pour déterminer le point critique du modele avec des couplages
aléatoires ferromagnétiques [109, 82].

2.3 Dualité du corrélateur a deux spins

Afin de discuter la dualité des fonctions de corrélation, définissons d’abord le parametre d’ordre local

M,(r) = d(oy,a) — (2.10)

1
q
avec composantes a = 1,2, ..., q. Dans la phase de haute température, toutes ses composantes sont nulles.
En revanche, dans la phase ordonnée (& basse température), la symétrie Z, est spontanément brisée et
une des composantes, disons a = 1, posséde une espérance positive.

Un simple calcul montre que le corrélateur spin-spin

Gaa(r1,7m2) = (Mg (r1)My(12)) (2.11)

est proportionnel & la probabilité que les deux points r1,79 € V résident dans le méme amas. Soit S(ri,72)
un chemin sur G qui relie les sommets 71 et 9. Selon la régle de dualité, il y a une correspondance
biunivoque entre [les configurations ou r; et ry appartiennent au méme amas| et [les configurations
duales ot aucun cycle sur les amas duaux ne coupe S(ri,r2) un nombre impair de fois].

L’interprétation de 'objet S(r1,72), dit coupure (ou seam en anglais), est plus simple dans le contexte
du modele de boucles : S(r1,r2) n’est coupé par aucune boucle un nombre impair de fois. Encore un autre
point de vue est que Gy4(71,72) est proportionnel au rapport Z'/Z, ot Z' dessine la fonction de partition
calculée en présence d’un opérateur qui décale les états de Potts

o — (04 1) mod ¢ (2.12)

le long de chaque aréte qui traverse S(r1,r2). Ces conditions au bord sont souvent appelées tordues
(ou twisted en anglais). La ligne de défauts (2.12) peut étre vue comme l'insertion d’un opérateur, dit
opérateur de désordre, aux points 71 et ro. Dans ce sens, la dualité transforme le corrélateur spin-spin en
un corrélateur désordre-désordre.

Cette construction est illustrée sur la Figure 2.1. A travers une matrice de transfert appropriée [82],
elle permet le calcul numérique de la fonction de partition contrainte Z’ dans une géométrie cylindrique.
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Fi1c. 2.1 — Illustration des transformations de dualité pour le cas ou G est une partie du réseau carré
(incliné d’un angle 7/4) avec des conditions aux bords périodiques dans la direction horizontale. Les cercles
noirs sont les sommets V', et les lignes noires montrent la représentation d’amas. Les lignes pointillées
indiquent la position des boucles correspondantes. Les boucles vivent sur le réseau médial Gy, et elles
sont reflétées a la fois par les amas et par les amas duaux (non montrés). Nous montrons également le
calcul de la fonction de partition Z' dans la présence d’une coupure S(r1,72) (ligne brisée).

Comme autre application analogue, nous pouvons mentionner les calculs de gaz de Coulomb avec une
charge a l'infini [46, 47, 83]. En effet, le concept de coupure facilite le calcul de 'exposant magnétique.

Il est également possible de pondérer les boucles qui traversent la coupure un nombre impair de
fois par une constante non nulle, mais différente de celle de /g utilisée pour les autres boucles. Cette
possibilité a été exploitée dans [31] pour des calculs de gaz de Coulomb, tandis que [96] traite le cas
supersymétrique.

2.4 Corrélateurs de n spins de bord

Les considérations de la section précédente se généralisent au cas des fonctions de corrélation de n
spins, pour peu que tous ces spins soient autour d’une méme face du réseau. Par la suite, nous supposons
que le plongement de G dans le plan est tel que cette face entoure le point a I'infini.

A titre d’exemple, nous allons reproduire le calcul pour n = 2 dans une formulation [164] qui se
généralise vers n plus élevé. Le méme calcul pour n = 3 peut étre trouvé dans [164]. Pour n > 4, la
méthode doit étre complétée [81] avec des considérations supplémentaires [165] (voir ci-dessous).

2.4.1 Méthode diagrammatique

Soit G un graphe planaire avec n = 2 sommets marqués (i et j) sur le bord extérieur ; voir la Figure 2.2.
La probabilité que {o;,0;} soient dans les états {0, o’} vaut

Py(0,0") = (6(0i,0)d(0j,0")). (2.13)
En termes de la fonction de partition restreinte Z,,» = Z(0; = 0,0; = ¢'), nous avons 1'égalité évidente

Z = qZn +q(q — 1) Z1a. (2.14)
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F1G. 2.2 — Calcul du corrélateur de n = 2 spins de bord [164]. Les croix dénotent les spins duaux sur les
faces intérieures. a) Tous les spins au bord interagissent avec un méme spin s sur la face extérieure. b)
Deux spins distincts s et s’ sur la face extérieure. ¢) Graphe auxiliaire.

Pour le calcul de la fonction de partition duale, nous imaginons que les spins adjacents & la face
extérieure interagissent avec deuz spins, s et s', localisés sur cette face. Avec une notation analogue a
celle introduite ci-dessus, Z} , = Z*(s = 0,s' = o). Pour I'instant, s = s’ et nous avons Z* = ¢Z{;.
L’équation (2.9) produit alors la relation

Z11 + (q — 1)Z12 = qCZfl (215)

Soit maintenant G’ le graphe auxiliaire obtenu de G en reliant ¢ et j par une aréte supplémentaire
de couplage K. Comme cette nouvelle aréte sépare s et s’, les fonctions de partition du réseau modifié
valent 5 R

Z=q"Z14+q(¢q—1)215, Z*= qe’” Zi1 +qlq — 1) Z71,. (2.16)

La dualité (2.9) donne alors une seconde relation :
211+ (q—1)Z1z = C(e" = 1)[e" Z}, + (¢ — 1) Z1). (2.17)

On peut maintenant résoudre (2.15) et (2.17) :
71 =CZ1 + (=125, Zip = C[Z1) — Z7,]. (2.18)

Remarquons que ce résultat ne dépend pas de K. Le résultat pour la probabilité P» vaut finalement

Py(o,0') = q1—2 {1 + [¢6(a,0") — 1] Zﬁ} : (2.19)

2.4.2 Regles de sommation

Ce calcul se généralise sans probléme au cas n = 3, ou le nombre de fonctions de partition restreintes
vaut cing : Z111, Zo11, 2191, 4112 et Z123. Le nombre de graphes auxiliaires vaut également cing, chaque
graphe donnant une équation, et I'on peut déduire les quantités Z;;;, [164].

Pourtant, pour n > 4, le nombre ¢, de graphes auxiliaires est inférieur au nombre b, de Z;ji;... [81].
En effet, les b, s’interprétent comme le nombre de partitions d’un ensemble de n éléments, tandis que
les ¢, sont les nombres de Catalan. Ces derniers sont soumis & des contraintes de planarité. Par exemple,
pour n = 4 la quantité Zis12 ne correspond & aucun graphe auxiliaire planaire.

Suivant cette remarque, Wu et Huang [165] ont montré que le probléme redevient soluble & cause de
I'existence de b, — ¢, regles de sommation parmi les quantités Z;j;....

Considérons, & titre d’exemple, le cas n = 4, avec by = 15 et ¢4 = 14. La quantité “non planaire”
Z1912 s’écrit alors comme une somme de trois termes :

Zig1a =T +To + T3, (2.20)

ol 11 regroupe les contributions dans lesquelles ¢ et k£ appartiennent &4 un méme amas. De méme, T5
dénote les contributions ol j et [ appartiennent & un méme amas, et T3 représente les contributions oi
tous les quatre spins de bord appartiennent & des amas différents.



Le méme type de raisonnement donne les relations Zi913 = 11 + 13, Zo131 = 1o + 13 et Zyo34 = T5.
Ce qui prouve la régle de sommation

Zi912 = Z1213 + Z2131 — Z1234 (2.21)

qui fournit la quinziéme équation manquante.

De maniere générale, la planarité des amas de Kasteleyn-Fortuin assure ’existence d’une regle de
sommation pour chaque Z;jx... “non planaire”. Ces régles sont ensuite déduites du principe d’inclusion-
exclusion [25]. Chaque identité ainsi trouvée est distincte & cause de 1'unicité du développement en amas.

Le relations de dualité pour les Z;;y;... dans le cas de n général ont une forme remarquablement simple.
Cette forme a été conjecturée dans [165] et prouvée dans [125]. Une formulation de ces résultats dans le
cadre de la théorie de graphes a été donnée dans [166].

2.4.3 Cas de plusieurs faces

La question qui s’impose maintenant est de savoir si ces résultats peuvent étre étendus au cas ou
les n spins se trouvent autour de plusieurs faces différentes du réseau (et, bien siir, généralement & des
positions complétement arbitraires). En particulier, le cas n = 4 de deux spins autour d’une face et deux
spins autour d’une autre face a un grand intérét pratique : il permettrait de trouver le comportement
du corrélateur énergie-énergie sous la transformation de dualité [81]. Des résultats de ce type pourraient
servir, par exemple, a construire le secteur énergétique de la matrice de transfert en s’appuyant sur des
considérations topologiques. Une application au modeéle de Potts désordonné ol ’absence d’automoyenne-
ment rend trés délicat 1’évaluation numérique des exposants énergétiques [82, 88] parait particulierement
désirable [81].

Cette question fut examinée par King [107]. Il trouva que la dualité ne permet pas de déterminer
la transformation de toutes les fonctions de partition restreintes individuellement, mais seulement de
quelques combinaisons linéaires. Une généralisation a plus de deux faces de ce type de résultat est
également possible [108]. Or, & I’heure actuelle, approche de [108] ne retrouve pas toutes les relations
données dans [107] pour le cas de deux faces.

2.5 Couplage de plusieurs modeles de Potts

La transformation de dualité s’applique également au cas de N modeles de Potts couplés au travers
de leurs opérateurs d’énergie. Le hamiltonien pour le cas le plus simple, N = 2, s’écrit

—BH=Y [K.oa(a§1>,a§.l>) + Koad(0\”,0\7) + K..5(a,(1),Uj(-l))é(az@,%(?))] : (2:22)
(i7)

ot 0¥ dénotent les spins de Potts dans le modele numéro k = 1,2. Ce modele fut d’abord étudié dans
[43].

La technique utilisée & ’époque était celle d’une transformation de Fourier sur réseau [162]. Elle
s’applique au cas ou une symétrie (ici de type Z,;) permet d’écrire les poids de Boltzmann sous forme
d’une matrice cyclique. Or, cette technique devient d’une grande complexité si le nombre de modeles
augmente. En particulier, N = 3 est un exercice assez compliqué [49].

Dans D’article joint & ce chapitre, nous montrons comment le cas de N général devient faisable si
le systéme de modeles couplés est reformulé en modéle d’amas ou en modéle de boucles. En termes
des variables qui généralisent les u;; dans (2.3) ou (2.5), les relations de dualité sont d’une simplicité
consternante. Nous considérons ici le cas ou le couplage entre les modeles réalise une symétrie Sy ; le
cas de couplages arbitraires est traité dans la Section 3 de [51], attachée au Chapitre 8. Nous remettrons
également & ce chapitre la motivation physique pour étudier des modeéles couplés.



4.0 Article "Duality relations ror /4 coupled rotts modadels™

Nous établierons des transformations de dualité explicites pour des systémes de M modeles de Potts
a ¢ états couplés a travers leurs densités locales d’énergie. Ceci généralise des résultats connus pour
M =1,2,3. L’espace M-dimensionnel de constantes de couplages contient une sous-variété autoduale de
dimension Dy = |M/2]. Pour le cas M = 4, la variation de la charge centrale effective le long de la
surface autoduale est étudiée par des techniques numériques de matrice de transfert. Nous mettons en
évidence D'existence d’un ensemble de points critiques qui correspondent & des théories conformes avec
un algébre étendu de symétrie Syy.
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For several decades, the g-state Potts model has been used
to model ferromagnetic materials [1], and an impressive
number of results are known about it, especially in two di-
mensions [2—4]. More recently, its random-bond counterpart
has attracted considerable attention [5], primarily because it
permits one to study how quenched randomness coupling to
the local energy density can modify the nature of a phase
transition.

But despite the remarkable successes of conformal invari-
ance applied to pure two-dimensional systems, the amount of
analytical results on the random-bond Potts model is rather
scarce. Usually the disorder is dealt with by introducing M
replicas of the original model, with mutual energy-energy
interactions, and taking the limit M —0. The price to be paid
is, however, that the resulting system loses many of the prop-
erties (such as unitarity) that lie at the heart of conventional
conformal field theory [6,7].

Very recently, an alternative approach was suggested by
Dotsenko et al. [8]. These authors point out that the pertur-
bative renormalization group [6] (effectively an expansion
around the Ising model in the small parameter e=q—2)
predicts the existence of a nontrivial infrared fixed point at
interlayer coupling g, = — /(M —2)+O(&?), so that the re-
gions M <2 and M >2 are somehow dual upon changing the

1063-651X/2000/62(1)/1(4)/$15.00 PRE 62

sign of the coupling constant' [9]. More interestingly, for
M =3 they identify the exact lattice realization of a critical
theory with exponents consistent with those of the perturba-
tive treatment, and they conjecture that this generalizes to
any integer M=3. Their proposal is then to study this class
of coupled models, which are now unitary by definition, and
only take the limit M—0 once the exact expressions for the
various critical exponents have been worked out. One could
hope to attack this task by means of extended conformal field
theory, thus combining the Z, symmetry of the spin variable
by a non-Abelian Sy symmetry upon permuting the replicas.

Clearly, a first step in this direction is to identify the lat-
tice models corresponding to this series of critical theories,
parametrized by the integer M=3. For M=3 this was
achieved [8] by working out the duality relations for M
coupled Potts models on the square lattice, within the
M-dimensional space of coupling constants giving rise to Sy,
symmetric interactions amongst the lattice energy operators

1The case M =2 is special: For q=2 (the Ashkin-Teller model)
the coupling presents a marginal perturbation, giving rise to a
halfline of critical points along which the critical exponents vary
continuously [3]. On the other hand, for q>2 where the perturba-
tion is relevant, the model is still integrable, but now presents a
mass generation leading to noncritical behavior [9].

R1 ©2000 The American Physical Society
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of the replicas. Studying numerically the variation of the
effective central charge [10] along the resulting self-dual
line, using a very powerful transfer matrix technique, the
critical point was unambiguously identified with one of the
endpoints of that line.

Unfortunately, it was hard to see how such dudlity rela-
tions could be extended to the case of general M. The calcu-
lations in Ref. [8] relied on a particular version [11] of the
method of lattice Fourier transforms [12], already employed
for M = 2 two decades ago [13]. Though perfectly adapted to
the case of linear combinations of cosinoidal interactions
within asingle (vector) Potts model [12], this approach led to
increasingly complicated algebra when several coupled mod-
els were considered. Moreover, it seemed impossible to re-
cast the end results in areasonably simple form for larger M.

In the present Rapid Communication we wish to assess
whether such a scenario of a unique critical point with an
extended Sy, symmetry can indeed be expected to persist in
the general case of M =3 symmetrically coupled models. We
explicitly work out the duality transformations for any M,
and show that they can be stated in a very simple form [Eq.
(9)] after redefining the coupling constants.

The lattice identification of the M =3 critical point in Ref.
[8] crucialy relied on the existence of a one-parameter self-
dual manifold, permitting only two possible directions of the
initial flow away from the decoupling fixed point. We find in
general a richer structure with an [ M/2]-dimensional self-
dual manifold. Nonetheless, from a numerical study of the
case M =4 we end up concluding that the uniqueness of the
nontrivial fixed point can be expected to persist, since the
decoupling fixed point acts as a saddle point of the effective
central charge.

Consider then a system of M identical planar lattices,
stacked on top of one another. On each lattice site i, and for
each layer ©u=1,2,...,M, we define a Potts spin o that
can beinany of g=2,3, ... distinct states. The layers inter-
act by means of the reduced Hamiltonian

H=2 Hij, (1)
(ij)
where (ij) denotes the set of lattice edges, and an Sy, sym-
metric nearest-neighbor interaction is defined as

lljl 8 a_i(#l) ’O.I{MI))_ 2

M
Hij=*mZ=1 Km 2

MAF2F

By definition the primed summation runs over the (M) terms
for which the indices 1< <M with1=12,...,m are al
different, and &(x,y)=1 if x=y and zero otherwise.

For M =1 the model thus defined reduces to the conven-
tional Potts model, while for M=2 it is identical to the
Ashkin-Teller-like model considered in Ref. [13], where the
Potts models of either layer are coupled through their loca
energy density. For M>2, additional multienergy interac-
tions between several layers have been added, since such
interactions are generated by the duality transformations, as
we shall soon see. However, from the point of view of con-
formal field theory these supplementary interactions are ir-
relevant in the continuum limit. The case M =3 was dis-
cussed in Ref. [8].
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By means of a generalized Kasteleyn-Fortuin transforma-
tion [14] the local Boltzmann weights can be recast as

M

exp(—Hij) = I1

M=1 u1#up# - pm

!

X 1+(e'<m—1)|1:[l 8o o). (3

In analogy with the case of M =1, the products can now
be expanded so as to transform the origina Potts model into
its associated random cluster model. To this end we note that
Eqg. (3) can be rewritten in the form

M
exp(—Hij)=bo+ > bnm X'

m=1 H1F R m

Il;[l 5( o.i(ﬂl) ,O_J(M)),
(4)

defining the coefficients {b,}M_,. The latter can be related
to the physical coupling constants {K}™_, by evaluating
Egs. (3) and (4) in the situation where precisely m out of the
M distinct Kronecker S-functions are nonzero. Clearly, in
this case Eq. (3) is equa to &’m, where

=3 (T)Kk ®)

for m=1, and we set Jo=Ky=0. On the other hand, we find
from Eq. (4) that this must be equated to S () by This
set of M + 1 equations can be solved for the b, by recursion,
considering in turn the cases m=0,1,...,M. After some
algebra, the edge weights by (for k=0) are then found as

k
k
b= > (—1)'“”( )e’m. (6)
m=0 m
The partition function in the spin representation

z=2 ] exp(—H;) ¥
{o} (i}

can now be transformed into the random cluster representa-
tion as follows. First, insert Eq. (4) on the right-hand side of
the above equation, and imagine expanding the product over
the lattice edges (ij). To each term in the resulting sum we
associate an edge coloring G of the M-fold replicated lattice,
where an edge (ij) in layer mis considered to be colored
(occupied) if the term contains the factor 8(a{™ ,o{™), and
uncolored (empty) if it does not. (In this language, the cou-
plings J, correspond to the local energy density summed
over al possible permutations of precisely k simultaneously
colored edges.)

The summation over the spin variables {a} is now ftrivi-
aly performed, yielding a factor of q for each connected
component (cluster) in the coloring graph. Keeping track of
the prefactors multiplying the -functions, using Eq. (4), we
conclude that

M

z=> qcmb:?{“ , (8)
G m=1
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where C,, is the number of clusters in the mth layer, and B,
is the number of occurencies in G of a situation where pre-
cisdly m (0sm=<M) edges placed on top of one another
have been simultaneoudly colored.

It is worth noticing that the random cluster description of
the model has the advantage that q only enters as a param-
eter. By analytic continuation one can thus give meaning to a
noninteger number of states. The price to be paid is that the
C, ae, a priori, nonlocal quantities.

In terms of the edge variables by, the duaity transforma-
tion of the partition function is easily worked out. For sim-
plicity we shall assume that the couplings constants {K,,} are
identical between all nearest-neighbor pairs of spins, the gen-
eralization to an arbitrary inhomogeneous distribution of
couplings being trivial. By analogy with the case M=1, a
given coloring configuration G is taken to be dua to a col-
oring configuration G of the dual lattice obtained by applying
the following duality rule: Each colored edge intersects an
uncolored dual edge, and vice versa. In particular, the de-
mand that the configuration G;,;, with all lattice edges colored
be dua to the configuration Gy With no colored (dual)
edge fixes the constant entering the duality transformation.
Indeed, from Eq. (8), we find that Gy, has weight qMbE,,
where E is the tota number of lattice edges, and Gengy IS

weighted by gMFb§ , where F is the number of faces, includ-
ing the exterior one. We thus seek for a duality transforma-
tion of the form q"Fb5Z({bm}) =q"bEZ({bym}), where for
any configuration G the edge weights must transform so as to
keep the same relative weight between G and Gy, as between
G and Gempry -

An arbitrary coloring configuration G entering Eg. (8) can
be generated by applying afinite number of changes to Gy,
in which an edge of weight by, is changed into an edge of
weight b, for some m=0,1,...,M—1. By such a change,
in general, anumber k<M —m of pivotal bonds are removed
from the coloring graph, thus creating k new clusters, and the
weight relative to that of G, will change by qby,/by . On
the other hand, in the dua configuration G a number M
—m—k of clusters will be lost, since each of the k new
clusters mentioned above will be accompanied by the forma-
tion of a loop in G. The weight change relative to Gempty
therefore amounts to by _/(bog™ ~™ ). Comparing these
two changes we see that the factors of g* cancel nicely, and
after a change of variables m— M —m the duality transfor-
mation takes the smple form

m

- by -

bm=q MM for m=0,1,...,M, (€)
by

the relation with m=0 being trivial.

Self-dual solutions can be found by imposing b,,=b,.
However, this gives rise to only [(M +1)/2] independent
equations

M-1
by_m=g"? ™Mb, for m=01,... {T}' (10)

and the M-dimensional parameter space {b,}n_,, or
{KntM_., thus has a self-dual submanifold of dimension
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Dy=[M/2]. In particular, the ordinary Potts model (M
=1) has a unique sdlf-dua point, while for M =2 [13] and
M =3 [8] one has a line of self-dual solutions.

Our main result is constituted by Egs. (5) and (6) relating
the physical coupling constants {K,} to the edge weights
{bn}, in conjunction with Egs. (9) and (10) giving the ex-
plicit (self-)duality relations in terms of the latter.

Since the interaction energies entering Eq. (3) are invari-
ant under a simultaneous shift of all Potts spins, an aterna-
tive way of establishing the duality transformations procedes
by Fourier transformation of the energy gaps [11]. This
method was used in Refs. [13] and [8] to work out the cases
M=2 and M =3, respectively. However, as M increases,
this procedure very quickly becomes quite involved. To bet-
ter appreciate the ease of the present approach, let us briefly
pause to see how the parametrizations of the self-dual lines
for M=2,3, expressed in terms of the couplings {K,,}, can
be reproduced in a most expedient manner.

For M =2, Eq. (10) gives b,=q, where from Egs. (5) and
(6) by=e? 12— 2eK14- 1, Thus,

~2d4+(q-1)

e K

11)

in accordance with Ref. [13]. Similarly, for M =3 one has
b;=qb,/bs=b,/\q, with b;=€‘1—1, b, as before, and
by=e3K1t3KatKs_3e2K1+Ka 1 3eK1— 1, This immediately
leads to the result given in Ref. [8],

2+ g (1+o)
_ e ,

2

(12
L (€911 (1+ Vo) +g¥*+ Lo,

L@+ e 1+ Jt]?

Returning now to the general case, we notice that the self-
dual manifold always contains two specia points for which
the behavior of the M coupled models can be related to that
of a single Potts model. At the first such point,

—qm2 = M
bn,=q for m 0,1,...,2

; (13

one has K;=log(1+q) and K,=0 for m=23,...,M,
whence the M models simply decouple. The other point

bp=46(m0) for m=01,...,

M
?} (14)

corresponds to K,=0 for m=12,...,M—1 and Ky
=log(1+g""2), when the resulting mode! is equivalent to a
single qM-state Potts model. Evidently, for M=1 these two
specia points coincide.

Specializing now to the case of a regular two-dimensional
lattice, it is well-known that at the two specia points the
model undergoes a phase transition, which is continuous if
the effective number of states (g or g™ as the case may be)
is <4 [15]. In Ref. [8] the question was raised whether one
in general can identify further nontrivial critical theories on
the self-dual manifolds. In particular, it was argued that for
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FIG. 1. Contour plot of the effective central charge ¢(6,8) along
the self-dual surface (b,,b,) for four coupled three-state Potts
models. The decoupled fixed point is shown as an asterisk, and
renormalization group flow lines are sketched as a guide to the eye.

M = 3 thereisindeed such a point, supposedly corresponding
to a conforma field theory with an extended S; symmetry.

To get an indication whether such results can be expected
to generalize also to higher values of M, we have numeri-
cally computed the effective central charge of M =4 coupled
models aong the two-dimensional self-dua surface. We
were able to diagonalize the transfer matrix for strips of
width L=4,6,8 lattice constants in the equivalent loop
model. Technical details of the simulations have been re-
ported in Ref. [8]. Relating the specific free energy fo(L) to
the leading eigenvalue of the transfer matrix in the standard
way, two estimates of the effective central charge, c(4,6)
and c¢(6,8), were then obtained by fitting data for two con-
secutive strip widths according to [16]

C
fo<L>:fo<oo>—%+-~-. (15)

A contour plot of ¢(6,8), based on a grid of 21X 21 param-
eter values for (by,b,), is shown in Fig. 1. The data for
c(4,6) look qualitatively similar, but are less accurate due to
finite-size effects. We should stress that even though the ab-
solute values of ¢(6,8) are some 4% below what one would
expect in the L—oo limit, the variations in ¢ are supposed to
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be reproduced much more accurately [8]. On the figure g
=3, but other values of g in the range 2<g=<4 lead to
similar results.

According to Zamolodchikov's c-theorem [10], a system
initially in the vicinity of the decoupled fixed point
(by,b,)=(/q,q), shown as an asterisk on the figure, will
start flowing downhill in this central charge landscape. Fig-
ure 1 very clearly indicates that the decoupled fixed point
acts as a saddle point, and there are thus only two possibili-
ties for the direction of the initial flow.

The first of these will take the system to the stable fixed
point at the origin which trivialy corresponds to one self-
dual q*-state Potts model. For q=3 this leads to the genera-
tion of a finite correlation length, consistent with c=0 in
the limit of an infinitely large system. As expected, the flow
starts out in the b, direction, meaning that it is the energy-
energy coupling between layers (K,) rather than the spin-
spin coupling within each layer (K,) that controls the initial
flow.

More interestingly, if the system is started out in the op-
posite dirrection (i.e., with K, dlightly positive) it will flow
towards a third nontrivial fixed point, for which the edge
weights tend to infinity in some definite ratios. (Exactly what
these ratios are is difficult to estimate, given that the
asymptotic flow direction exhibits finite-size effects.) Seem-
ingly, at this point the central charge is only slightly lower
than at the decoupled fixed point, as predicted by the pertur-
bative renormalization group [8]. From the numerica data
we would estimate the drop in the central charge as roughly
Ac=0.01-0.02, in good agreement with the perturbative
treatment which predicts Ac=0.0168-+ O(&®) [8].

All of these facts are in agreement with the conjectures
put forward in Ref. [8], and in particular one would think
that this third fixed point corresponds to a conformal field
theory with a non-Abelian extended S, symmetry.

Finaly, the numerics for q=2 (four coupled Ising mod-
els) is less conclusive, and we cannot rule out the possibility
of a more involved fixed point structure. In particular, a ¢
=2 theory is not only obtainable by decoupling the four
models, but also by a pairwise coupling into two mutually
decoupled four-state Potts (or Ashkin-Teller) models. In-
deed, a similar phenomenon has already been observed for
the case of three coupled Ising models [8].

The author is indebted to M. Picco for some very useful
discussions.
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Chapitre 3

Coloriage de sommets

3.1 Le polynome chromatique

Il est trés intéressant de prendre la limite u — —1 du polynéme dichromatique (2.4) : cette li-
mite correspond & la limite X — —oo du modele de Potts, c’est-a-dire au modele antiferromagnétique
a température nulle. Dans cette limite, la fonction de partition est connue sous le nom de polyndéme
chromatique et elle fut d’abord considérée par Birkhoff [25].

L’intérét du polynome chromatique Z(—1,q) est double. Premiérement, ainsi que nous l'indique la
nomenclature, Z(—1, ¢) s’interpréte de maniére combinatoire comme le nombre de coloriages des sommets
V du graphe G par g couleurs différentes. Plus précisement, si deux sommets 7,7 € V sont reliés par une
aréte e;; € E, alors ces deux sommets doivent porter des couleurs différentes, o; # o;. Deuxiemement,
c’est bien connu que des contraintes géométriques de ce type sont susceptibles d’introduire de la frustration
dans le modele. Par frustration, nous entendons 1'impossibilité du systeme de satisfaire simultanément
toutes les contraintes qu’on lui impose. En méme temps, la rigidité de la contrainte de g-coloriabilité
fait que si 'on cherche a adapter I’état du systéme aux contraintes en un endroit défini, on va souvent
engendrer des conflits avec ces mémes contraintes en un autre endroit. Autrement dit, le systéme possede
des corrélations effectives de longue portée et il est susceptible d’étre dans un état critique.

Le polynéme chromatique a fait ’objet d'un grand nombre d’études dans la littérature mathématique.
Le lecteur intéressé pourra se tourner vers les revues classiques [144, 145]. Une excellente bibliographie a
été dressée par Chia [38].

3.2 Frustration géométrique : un exemple

L’exemple le plus connu (et le plus ancien) de la frustration géométrique est sans doute le modele
d’Ising sur le réseau triangulaire [155, 26, 135]. Bien sir, on a Z(u = —1,q = 2) = 0 puisque ce réseau
n’est pas bicoloriable. Mais il existe toujours un nombre macroscopique d’états fondamentaux [160] qui
sont caractérisés par le fait que, autour de chaque face triangulaire, les trois spins ne prennent pas tous la
méme valeur. Autrement dit, précisement une des trois arétes entourant chaque face est frustrée (puisque
les deux spins qu’elle relie prennent la méme valeur).

11 est facile de voir que, dans la limite continue, la classe d’universalité du modele ainsi défini est
différente de celle du modele d’Ising ferromagnétique [26, 135]. En effet, si on efface les arétes frustrées, le
réseau est transformé en un pavage du plan par trois types de losanges; voir la Figure 3.1. Ces losanges
peuvent étre vus comme la projection bidimensionnelle d'un empilement de boites cubiques en trois
dimensions. Le modeéle se transforme donc en un modeéle d’interface avec une hauteur scalaire. On peut
se convaincre que ce modele est régi par la théorie conforme d’un champ bosonique libre. En particulier,
la charge centrale vaut ¢ = 1. Ceci est en contraste avec le cas ferromagnétique [137] qui est équivalent &
un fermion libre [153], ce qui donne ¢ = 5 [62].

Une autre transformation exacte met en évidence la présence de corrélations effectives de longue
portée. Dessinons les arétes du réseau hexagonal qui sont duaux aux arétes non frustrées du réseau
triangulaire. Ces arétes forment un gaz de boucles compactes sur le réseau hexagonal : chaque sommet
est traversé par exactement une boucle. La Figure 3.1 montre que ces boucles peuvent étre trés longues :
dans le Chapitre 5 nous montrerons que la distribution des longueurs est en effet une loi de puissance.
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F1a. 3.1 — Coloriage des sommets du réseau triangulaire avec deux couleurs (e et o). En permettant une
aréte frustrée (e—e ou o—o) par face, les arétes non frustrées (trait continu) définissent un pavage du plan
par trois types de losanges. Les duaux des arétes frustrées (exemple en trait brisé) forment des boucles
compactes sur le réseau hexagonal.

Le fait que Z(u = —1,q = 2) = 0 est un exemple d’un zéro de la fonction de partition en un nombre
de Beraha, g = B, = 2. Des zéros de ce type vont jouer un role important par la suite. En quelque sorte,
on pourrait considérer que “l’accident” que Z s’annule exactement & g = 2 cache le vrai comportement
critique du systéeme. Ce comportement serait donc plutot visible en s’approchant & ¢ = 2 dans le sens
d’une limite, ¢ — 2. Nous allons adopter ce point de vue dans le Chapitre 4, ou nous verrons que la
charge centrale dans la limite ¢ — 2 vaut ¢ = —22—5 # 1.

3.3 Zéros de la fonction de partition

L’étude du role des zéros de la fonction de partition pour le comportement critique d’un systéme
fut initiée dans deux publications classiques par Lee et Yang [167, 120]. Leur idée était de considérer
Pénergie libre F'(L) d’un systéme thermodynamique de taille caractéristique L comme une fonction d’un
parametre p prenant des valeurs complezes. Dans 1'exemple traité par Lee et Yang, ce parametre est le
champ magnétique du modele d’Ising [120], mais en principe on pourrait traiter n’importe quel paramétre
physique d’un systéme thermodynamique arbitraire de la méme maniére.

Pour tout L fini, F/(L) est une fonction analytique de la restriction de p & 1’axe réel. Pourtant, ceci n’est
plus forcément vrai dans la limite thermodynamique L — co. Notamment, il est possible de développer
des discontinuités, ou d’autres types de singularités, dont ’interprétation physique est 1'existence d’une
transition de phase & une certaine valeur critique p. réelle. En utilisant un résultat pour les fonctions
d’une variable complexe, Lee et Yang argumentérent que, déja pour L finie, cette transition doit laisser
des signatures dans le plan de p complexe.

Plus précisement, si une région infinitésimale autour d’un point py sur I'axe réel est dépourvue de
singularités pour tout L fini, alors F(L — oo) est analytique en py. Dans le cas contraire, des zéros de
Z(L) dans le plan de p complexe vont s’approcher & pg lorsque L augmente afin de “pincer” ’axe réel
dans la limite L — oc.

De nombreux auteurs, beaucoup trop nombreux pour étre mentionnés ici, ont poursuivi ce programme
pour une grande variété de modeles. Une vague d’activité a notamment été déclenchée par la possibilité
de calculer Z(L) exactement (typiquement sous forme d’un polynéme dans le parametre p) a 'aide d’un
ordinateur. Pour la partie de I’histoire liée au polyndéme chromatique, on peut consulter les références de
[147].



9.4 Les nompres de berahna

Beraha observa [18] que le polynéme chromatique d’un graphe planaire a souvent des zéros trés
proches a un ou plusieurs des nombres

B, = 4cos’(n/n), n=2,3,... (3.1)

dits nombres de Beraha. Pourtant, on peut prouver [147] qu’aucun nombre de Beraha non entier, & la
possible exception de Big pour lequel la preuve ne marche pas, agit comme zéro pour un graphe fini. Par
contre, il a été prouvé [19, 20] que certains graphes en forme de rubans de largeur fixe et de longueur L
variable fournissent des zéros qui convergent vers quelques B, non entiers quand L — oo.

L’idée d’origine derriére les travaux de Beraha et collaborateurs fut probablement de trouver un graphe
planaire fini avec un zéro chromatique & ¢ = 4. Une telle découverte aurait contredit la Conjecture de
Quatre Couleurs [75] : 'ironie de D’histoire était qu’entre la date de soumission (1976) de [19] et sa
publication (1979), cette conjecture avait été promue en théoréme [3, 4]! Néanmoins, Beraha et Kahane
observerent que certains familles de rubans ont des zéros chromatiques qui s’accumulent & ¢ = 4 lorsque
L — .

Le role des nombres de Beraha dans le contexte d’une théorie de champs fut illuminé par Saleur [150].

Récemment, une série de travaux [147, 90, 95] fut initiée afin de trouver les zéros chromatiques dans
le plan de ¢ complexe pour certaines familles de rubans, directement dans la limite L — oo. Nous allons
en donner quelques résultats apres une petite digression technique.

3.5 Outils techniques

Le polynéme chromatique d’un ruban Gy, de longueur L peut étre trouvé a partir de sa matrice de
transfert :

M
Za,(=1,0) = tr [A(QT(9)"] = Y cnl@) M ()" (32)
k=1

Ici, A(q) est une matrice qui implante les conditions au bord libres aux extrémités du ruban. ay(q)
et Ag(q) sont respectivement les amplitudes et les valeurs propres de la matrice de transfert 7'(q) de
dimension M.

Il n’est pas évident que le polynéme (di)chromatique puisse étre calculé & partir d’'une matrice de
transfert, puisque les amas de Kasteleyn-Fortuin sont a priori des objets non locaux. Pourtant, une telle
construction est tout & fait possible : elle fut discutée pour le cas chromatique dans [24] et pour le cas
dichromatique dans [27].

Les points d’accumulation lorsque L — oo des zéros chromatiques forment soit des courbes continues,
soit des points isolés dans le plan de ¢ complexe. Appelons une valeur propre Ag(g) dominante si |Ag(q)| >
|Ai(g)| pour tout I = 1,2,..., M. Par le théoréeme de Beraha-Kahane-Weiss [19, 20, 154], les points
d’accumulation z sont alors caractérisés par, soit

— l'existence d’une unique valeur propre dominante dont ’amplitude correspondante s’annule en z,

— soit I'existence d’au moins deux valeurs propres dominantes en z.

La premiere condition correspond au cas des zéros isolés et la deuxiéme au cas de courbes continues.

Une maniére de tracer les courbes continues passe par le calcul, pour une grille de valeurs de 6 € [0, [,
des racines de la résultante [147]

Ry(g) = Resy [P(,q), P(e” X, 9)] , (33)

ou P(A,q) = det[A\] — T'(q)] est le polynéme caractéristique de T'(q). Les extrémités de la courbe corres-
pondent & une double racine de P(),q) et seront alors trouvées pour 6 = 0.

On peut argumenter [147] que la convergence des zéros vers leurs points d’accumulation lorsque
L — oo posséde des effets de taille finie d’ordre 1/L pour un point & I'intérieur d’une courbe et d’ordre
1/L? pour un point d’extrémité. Remarquons aussi que les courbes peuvent former des bifurcations
lorsque plus de deux valeurs propres deviennent dominantes en un méme point.
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F1a. 3.2 — Zéros chromatiques des rubans du réseau carré de tailles 10 x 50 (carrés) et 10 x 100 (lo-
sanges). Les conditions au bord sont libres dans la direction longitudinale et périodiques dans la direction
transversale. Les points d’accumulation des zéros forment des points isolés (croix) ainsi qu’une courbe
continue. Une inspection minutieuse de cette courbe montre qu’elle posséde dix composantes connexes et
deux points de bifurcation.

Finalement, les zéros isolés peuvent étre identifiés & partir du résultat simple :

detD = T[axle) I [l — X0, (34)

k=1 1<i<j<M

ol D est une matrice M x M avec entrées D;; = S0 1 ax(q)[M ()72

3.6 Structure des zéros chromatiques

Les courbes B,,, des points d’accumulation des zéros chromatiques ont été calculées pour des rubans
des réseaux carré [147, 90] et triangulaire [95] de taille m X oo pour tout m < 11. Les effets de différents
types de conditions au bord dans la direction de m ont également été étudiés. (Pour les références aux
articles d’origine pour quelques valeurs de m moins importantes, voir [147, 90, 95].)

Pour ces deux réseaux, on trouve que les B,, coupent 1’axe réel en un point go(m) qui s’interpréte
comme un point de non analyticité de I’énergie libre. Lorsque m — oo, on a go(m) — go, ou le nombre
qo dépend du réseau. Numériquement, il semblerait que gy = 3 pour le réseau carré [90] : la Figure 3.2
montre Big pour ce réseau.

Les B,, possedent aussi une paire de branches ouvertes qui s’approchent & I'axe des q réels lorsque m
augmente. Il est raisonnable de supposer que ces branches coupent 1’axe réel en un point critique g. dans
la limite m — oo. Numériquement, il semblerait que ¢. = 3 pour le réseau carré et g. = 4 pour le réseau
triangulaire. Ce scénario est d’autant plus crédible qu’on peut se convaincre de la criticité de ces deux
modeles :



— Le polyndme chromatique sur le réseau carré avec ¢ = 3 est équivalent au modele de six vertex
[122] avec ¢ = 1.

— Le cas du réseau triangulaire avec ¢ = 4 est équivalent au tricoloriage du réseau Kagomé [78, 131]
avec ¢ = 2.

Le réle important de gy est souligné par ’observation empirique que seuls les nombres de Beraha
avec B, < ¢o sont des points d’accumulation des zéros chromatiques [16, 149, 147, 90, 95]. Autrement
dit, la phase dont l'intersection avec 'axe des ¢ réels est I'intervalle [go, gc] est distincte de la “phase de
Beraha” (qui, en fait, est techniquement une phase de Berker-Kadanoff, comme nous I’expliquerons dans
le Chapitre 4).

De l'information supplémentaire sur le cas du réseau triangulaire est disponible directement dans la
limite thermodynamique (m — 00), ou Baxter [15, 16] a trouvé une solution exacte. En particulier, la
position de la courbe By, est donnée implicitement par un systéme d’équations faisant intervenir des
produits infinis. Or, ces produits convergent trés lentement quand ¢ s’approche de I'axe réel, rendant
difficile ne serait-ce qu’une estimation numérique du point ¢y. Ce point est discuté en détail dans I’article
[95] attaché & ce chapitre, ol nous montrons que la valeur correcte n’est pas celle donnée par Baxter [16]
mais plutot

qo(triangulaire) = By = 2 + V/3. (3.5)

Pour le réseau carré, la limite thermodynamique n’a pas été résolue. Une explication possible est que
la courbe B,, a tendance & se fractionner en une multitude de composantes connexes quand m augmente
[147, 90] : sur la Figure 3.2 on peut en distinguer dix. Paradoxalement, c’est justement pour le réseau
carré que le diagramme de phase compléte dans le plan (u, ¢) est le mieux compris au niveau de la théorie
de champs [149, 150]. Nous y reviendrons lors du prochain chapitre ot nous discuterons également les
classes d’universalité des polynomes chromatiques.



o.( Article "lriangular lattice cahromatic polynomial™

Nous étudions le polynéme chromatique Pg(g) des rubans m X n du réseau triangulaire avec largeur
m < 12p,9r (avec des conditions au bord périodiques et libres respectivement) et avec longueur n
arbitraire (avec des conditions au bord longitudinales libres). Le polynéme chromatique est la limite &
température nulle de la fonction de partition du modéle de Potts antiferromagnétique & g états. Nous
calculons la matrice de transfert pour de tels rubans dans la représentation de Fortuin-Kasteleyn et nous
obtenons les ensembles correspondants de points d’accumulation des zéros chromatiques dans le plan de
q complexe, dans la limite n — oo. Nous recalculons la courbe limite obtenue par Baxter dans la limite
thermodynamique m,n — oo et nous trouvons de nouvelles propriétés intéressantes avec de possibles
conséquences physiques. Finalement, nous analysons les points d’accumulation isolés et leur relation avec
les nombres de Beraha.
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Abstract

We study the chromatic polynomial Pg(q) for m x n triangular-lattice strips
of widths m < 12p,9r (with periodic or free transverse boundary conditions,
respectively) and arbitrary lengths n (with free longitudinal boundary condi-
tions). The chromatic polynomial gives the zero-temperature limit of the par-
tition function for the g-state Potts antiferromagnet. We compute the transfer
matrix for such strips in the Fortuin—Kasteleyn representation and obtain the
corresponding accumulation sets of chromatic zeros in the complex g¢-plane in
the limit n — co. We recompute the limiting curve obtained by Baxter in the
thermodynamic limit m,n — oo and find new interesting features with possi-
ble physical consequences. Finally, we analyze the isolated limiting points and
their relation with the Beraha numbers.

Key Words: Chromatic polynomial; chromatic root; antiferromagnetic Potts model;
triangular lattice; transfer matrix; Fortuin—Kasteleyn representation; Beraha—Kahane—
Weiss theorem; Beraha numbers.



1 Introduction

The antiferromagnetic g-state Potts model [1, 2, 3,4, 5,6,7,8,9,10,11, 12,13, 14]
exhibits unusual behavior not found in ferromagnets. Indeed, its phase diagram and
critical behavior depend crucially on the lattice structure, unlike the ferromagnetic
case where the concept of universality applies. Specifically, for each lattice £ there
exists a number ¢.(£) such that for all ¢ > ¢, the model is disordered at any temper-
ature, including zero temperature [11]. Exactly at ¢ = ¢.(£) the system is disordered
at all positive temperatures and has a zero-temperature critical point. The zero-
temperature limit of the antiferromagnetic Potts model is particularly interesting
because its partition function on a finite graph G coincides with the chromatic poly-
nomial Pg(q), which counts the number of ways of coloring the vertices of G using ¢
colors subject to the constraint that adjacent vertices always receive different colors
[15].

In Refs. [16, 17] we undertook a study of the zeros of the chromatic polynomial
when the parameter ¢ is allowed to take complex values (see [16] for detailed references
to the previous literature). In those papers we studied strips of the square lattice;
here we extend that work to the triangular lattice. The triangular-lattice case is
of particular interest because the path-breaking work of Baxter [18, 19] provides a
conjectured exact solution in the thermodynamic limit.

The study of the complex zeros of the chromatic polynomial is inspired by the
Yang—Lee picture of phase transitions [20]. We study families of graphs G,, for which
the chromatic polynomial can be expressed via a transfer matrix of fixed size M x M:

Pa,(q) = tr[A(q) T(q)"] (1.1a)

3" anlg) Mla)" (1.1b)

where the transfer matrix T'(¢) and the boundary-condition matrix A(g) are polyno-
mials in ¢, so that the eigenvalues {\;} of T and the amplitudes {ay} are algebraic
functions of ¢. Rather than using T'(¢) to compute the zeros of the chromatic poly-
nomial for a finile strip m x n, we have focussed on the direct calculation of their
accumulation points in the limit n — oo, i.e. for the case of an semi-infinite strip
[21, 22, 23, 24, 16, 17]. According to the Beraha—Kahane-Weiss theorem [25, 26, 27],
the accumulation points of zeros when n — oo can either be isolated limiting points
(when the amplitude associated to the dominant eigenvalue vanishes, or when all
eigenvalues vanish simultaneously) or belong to a limiting curve B (when two dom-
inant eigenvalues cross in modulus). By studying the limiting curves for different
values of the strip width m, we hope to learn new features of the thermodynamic
limit m — oo.

To determine the isolated limiting points, we shall take advantage of the following
simple result [22]:

M
det D = Hak H ()\J - )\i)Z 5 (12)
k=1

1<i<j<M
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where D is the M x M matrix with entries D;; = 224:1 ap(Ap) 7 = Faiy, s

An important feature of the limiting curve B is that it typically crosses the positive
real axis at a point go(mn)." Physically, go(m) corresponds to a point of non-analyticity
of the ground-state degeneracy per site [23, 28]. As the strip width m grows, this
crossing point gy(m) increases and presumably tends to a limiting value gy(c0). On
the other hand, as m — oo the curve B = B,, presumably tends to a thermodynamic-
limit curve B.,. We define ¢, to be the largest value where B, crosses the real ¢-axis:
please note that ¢. may or may not correspond to crossings of the real axis for any
finite m. In general the value go(00) is smaller than ¢, although for some lattices
they may coincide (this depends on the shape of the curves B,, and B.,). Indeed, in
Ref. [17] evidence was presented suggesting that for the square lattice go(o0) = ¢. = 3.

The crucial role of ¢ is further emphasized by studying the relation between
chromatic polynomials and the so-called Beraha numbers

B, — 4eos? T :2+2c052—7r forn=2,3,.... (1.3)
n n

It has been found in a number of cases [29, 21, 22] that chromatic roots tend to
accumulate at some of the Beraha numbers. In the case of the square lattice, we
have found empirically [16, 17] that on a strip of width m with either free or periodic
transverse boundary conditions?, there is at least one vanishing amplitude a;(q) at
each of the first m Beraha numbers Bs,..., Bnmy1 (but not higher ones). It thus
appears that in the limit m — oo all the Beraha numbers will be zeros of some
amplitude.® Moreover, we found that the vanishing amplitude corresponds to the
eigenvalue obtained by analytic continuation in ¢ from the one that is dominant
at small real ¢, in agreement with a conjecture of Baxter [19, p. 5255]. Thus, the
first few Beraha numbers — namely, those (up to at most B,41) that lie below
the point gq(m) — correspond to the vanishing of a dominant amplitude and hence,
by the Beraha—Kahane—Weiss theorem, to a limit point of chromatic roots, while
the remaining Beraha numbers do not. As the strip width m grows, ¢o(m) tends
to go(00), and the limiting points of chromatic roots are thus constrained to be the
points By, Bs, ..., B, < qo(00). This scenario for the accumulation of chromatic roots
at some of the Beraha numbers was set forth by Baxter [19] and elaborated by Saleur
[8]; further references can be found in [16].

1 If there is more than one such crossing, we define go(m) to be the smallest such crossing. When
no such crossing occurs, the limiting curve often includes a pair of complex-conjugate endpoints
rather close to the positive real g-axis. In these cases, we define go(m) to be the point closest to
that axis with positive imaginary part.

2 Let m (resp. n) denote the number of sites in the transverse (resp. longitudinal) direction of
the strip, and let F (resp. P) denote free (resp. periodic) boundary conditions in a given direction.
Then we use the terminology: free (mg x ny), cylindrical (mp x ng), cyclic (mg x np), and toroidal
(mp x np). In this paper we consider free and cylindrical boundary conditions, as well as a new
type of boundary condition that we shall call “zig-zag” (Section 5).

3 As we shall see, a similar (but not identical) statement appears to hold true also for the
triangular lattice: see Section 7.2.



In the present publication we shall be concerned with the antiferromagnetic Potts
model on the triangular lattice. For this case, Baxter and collaborators [30, 18, 19]
have determined the exact free energy (among other quantities) on two special curves
in the (g, v)-plane:

v’ 4+ 30t —q = 0 (1.4)
v o= —1 (1.5)

The uppermost branch (v > 0) of curve (1.4) is known to correspond to the ferro-
magnetic critical point [30, 3], and Baxter [18] initially conjectured (following a hint
of Nienhuis [31]) that the zero-temperature antiferromagnetic model (1.5) is critical
in the interval 0 < g < 4. This prediction is known to be correct for ¢ = 2 [32, 33, 34]
and is believed to be correct also for ¢ = 4 [5, 35, 36]. On the other hand, for ¢ = 3
the conjecture contradicts the rigorous result [37], based on Pirogov-Sinai theory, that
there is a low-temperature phase with long-range order and small correlation length.*
In any case, for ¢ > 4 we expect that the triangular-lattice Potts model is noncritical
even at zero temperature; this has recently been confirmed by Monte Carlo simulation
of the models with ¢ = 5,6 [38]. We therefore expect that for the triangular lattice
q =4

For the model (1.5), Baxter [18] used a Bethe Ansatz to compute three different
expressions \;(¢q) [ = 1,2, 3] that he argued correspond to the dominant eigenvalues of
the transfer matrix in different regions D; of the complex ¢-plane; in a second paper
[19] he provided corrected estimates for the precise locations of Dy, Dy, D3. Using
these formulae, he determined the value of go(00) as

qo(00, tri) = 3.81967 (Baxter) (1.6)

An important outcome of the present paper (see Section 6) is that the “phase dia-
gram” of the triangular-lattice model is actually more complicated than what Baxter
found. In particular, it now appears that the correct value of go(oo,tri) is slightly
smaller than Baxter’s value (1.6), the corrected value being

qo(oo,tri) = By =2+ V3~ 3.73205  (this paper) (1.7)

As a consequence we conjecture that the isolated limiting chromatic roots of the
infinite-size triangular lattice are By, . .., By; and possibly Bya, rather than Bs, ..., B4
as conjectured by Baxter.

To study the approach to the thermodynamic limit, we have computed the transfer
matrix for triangular-lattice strips of widths 2 < m < 9 with free boundary conditions
and 2 < m < 12 with cylindrical boundary conditions, and we have determined the
corresponding limiting curves B. These results also serve as a testing ground for
the general conjectures on Beraha numbers as stated above (see Ref. [16] for further
details).

% A Monte Carlo study of the ¢ = 3 model found strong evidence for a first-order transition to

an ordered phase at AJ ~ —1.594 [10].



Previous studies using a similar approach have been made notably by Shrock
and collaborators. In particular, they have considered triangular-lattice strips of
width m <5 for free and cylindrical boundary conditions [24, 41, 42, 43, 44].° They
have also considered other boundary conditions for the same lattice [44, 45, 46, 47].
Generalizations to nonzero temperature for several boundary conditions have been
carried out in Refs. [48, 49]. Finally, Refs. [47, 50] discuss some general structural
properties of the Potts-model partition function and chromatic polynomial on square-
lattice and triangular-lattice strips.

This paper is laid out as follows: In Section 2 we discuss some brief preliminaries.
In Section 3 we give our numerical results for free transverse boundary conditions, and
in Section 4 for periodic transverse (cylindrical) boundary conditions. We have also
examined a third type of boundary conditions, called “zig-zag”, which we introduce
and motivate in Section 5. In Section 6 we analyze Baxter’s [18, 19] exact solution
for the thermodynamic limit and revisit his phase diagram. Finally, in Section 7 we
present our conclusions.

2 Preliminaries

The general theory of the transfer-matrix method used here has been explained
in Ref. [16], and the implementational details of an improved algorithm have been
given in Ref. [17]. Suffice it here to mention that we have used the Fortuin-Kasteleyn
representation [39, 40] of the Potts model in the computation of the transfer matrix;
therefore, all quantities are expressed as polynomials in ¢.

To compute the limiting curves B we have used two different techniques: the
resultant method and a direct-search method. These techniques have been described
in [16, Section 4.1], and we use here the same conventions and notation.

Let us briefly mention a few improvements/additions to our methodology:

Computation of T points. We have adopted an improved method for locating T
points, based on applying a numerical minimization algorithm (e.g. MATHEMATICA’s
FindMinimum) to the function

F(q) = (IM(@)] = Pa(0)])” + (M)l = Pa(@)])* + (Pa(a)l = Pa(g)))*, (2.1)

where A1, A9, A3 are the three eigenvalues of the transfer matrix of largest modulus.
At any given ¢ these eigenvalues can easily be computed numerically by finding the
roots of the characteristic polynomial of the transfer matrix. Using this method, we
are able to locate T points far more precisely than in our previous work.

Fized zeros. When ¢ is an integer and the graph G is not ¢-colorable, we have
Ps(q) = 0. For this reason, certain small integers ¢ can be “fixed” zeros of the

5 The case m = 4 with cylindrical boundary conditions was first done by Beraha and Kahane
[21]. The case m = 5 with cylindrical boundary conditions was first done by Beraha, Kahane and
Weiss [22].

6 The case 2F x np (i.e., cyclic boundary conditions) was first done by Beraha, Kahane and Weiss
[22].



zero-temperature partition function, independent of the strip length n. In particular,
g = 0,1 are roots for all widths m > 2 and lengths n > 1. Furthermore, ¢ = 2 is a
root for all triangular-lattice strips of widths m > 2 and lengths n > 2, because the
triangular lattice is not bipartite. Finally, ¢ = 3 is a root for all eylindrical triangular-
lattice strips of widths that are not multiples of 3 (with lengths n > 2), because these
graphs are not 3-colorable.

It is interesting to see how these behaviors come about from the point of view of
the transfer-matrix formalism. The partition function on a lattice of length n has the
form

M
Zn =Y on(@) Ml (2.2)
k=1

where the {\;} are the eigenvalues of the transfer matrix and the {a} are the cor-
responding amplitudes. A particular value ¢ can then be a “fixed” zero of Z for any
of three reasons:

1) All the amplitudes ay vanish at g. Then Z,(¢) =0 for all n > 1.
2) All the eigenvalues Mg vanish at ¢. Then Z,(¢) =0 for all n > 2.

3) “Mixed case”: Neither all the amplitudes nor all the eigenvalues vanish at g,
but for each k either ay, or Ay vanishes at ¢ (or both). Then Z,(¢) = 0 for all
n > 2.

As we shall see, the points ¢ = 0 and ¢ = 1 will be fixed roots belonging to Case 1:
all the amplitudes vanish due to an overall prefactor ¢(¢ — 1). The point ¢ = 2 will
be a fixed root belonging sometimes to Case 1 and sometimes to Case 3 (and to Case
2 when m = 2 for all boundary conditions). For cylindrical strips where the width is
not a multiple of 3, the point ¢ = 3 will be a fixed root belonging to Case 2 for m = 4p
and to Case 3 for m > 5p. We shall endeavor to explain in each case the mechanism
underlying the fixed zeros; these results will be summarized in Section 7.3.

Computation of isolated limiting points. To find the isolated limiting points, we
first compute symbolically the determinant det D(q) defined by (1.2); this determinant
is a polynomial in ¢ with integer coefficients, typically of very high degree. We
then compute numerically the zeros of this polynomial, using the MPSolve 2.1.1
package [51, 52]; these zeros correspond to points ¢ where at least one amplitude
ai(q) vanishes. Finally, we test numerically each of these zeros to see whether the
amplitude corresponding to the dominant eigenvalue is vanishing; if it is, then the
point in question is an isolated limiting point. This method is guaranteed to discover
all of the isolated limiting points. We shall not bother to report here all the zeros
of det D(g), but only (a) the isolated limiting points and (b) the Beraha numbers B,
that are zeros of some subdominant amplitude. Please note that whenever B, is a
zero of det D(q), so are all the primitive generalized Beraha numbers

k 2k
BW — 4cos2—7r = 2—|—2C0sL (2.3)
n

n
n



where k is relatively prime to n, since they have the same minimal polynomial p,(q)
[16, Section 2.3].

Unfortunately, in some cases the matrix D(q) is so large that we have been unable
to compute symbolically its determinant. In these cases, it is more convenient to
compute numerically the eigenvalues {);} and their corresponding amplitudes {c;}
and check (a) whether any of the amplitudes vanish and (b) whether the amplitude
o associated to the dominant eigenvalue vanishes. We have restricted our search to
certain “candidate” values of ¢ (or neighborhoods in the complex ¢-plane), namely
(a) the Beraha numbers B, for n < 50, and (b) any real or complex values of ¢ ¢ B
where zeros of Z, seem to be accumulating as n gets large. When there is a exact
candidate (such as the Beraha numbers B,,), we have computed the amplitudes with
high-precision arithmetic (200 digits of precision at least). We considered that an
amplitude is zero when its absolute value is less than (for instance) 107!, When we
do not have an exact candidate, we tried to minimize the dominant amplitude |o*|
around a region where zeros of Z, tend to accumulate as n grows. This situation
occurred only for the strips of widths 8z and 10z (“zig-zag” boundary conditions, see
Section 5). The condition |o*| £ 107°% holds for all the cases reported here.

In all the cases where we are unable to compute det D(¢) symbolically, we are able
to assert that certain points are indeed isolated limiting points, but we cannot claim
with confidence that we have found all of the isolated limiting points.

3 Numerical Results for the Triangular-Lattice
Chromatic Polynomial:
Free Boundary Conditions

We have computed the transfer matrix T(mg) and the limiting curves B for
triangular-lattice strips of widths 2 < m < 9 with free boundary conditions in both
directions. We also write L, as a synonym for the strip width m.

As explained in Ref. [16], the chromatic polynomial for this family of strip lattices
can be written as

Z(TTLF X TLF) = UTHT(TnF)n_IVid (31)

where u and viq are certain vectors, and T(mp) = VH is the transfer matrix. Here
H (resp. V) corresponds to adding one new layer of horizontal (resp. vertical and
diagonal) bonds: see Figure 1(a). The matrices H, V and T(mg) act on the space of
connectivities of sites in the top layer, whose basis elements vp are indexed by parti-
tions P of the single-layer vertex set {1,2,...,m}. In particular, via = V{13,123, {m}}-
Since the strip lattices we are dealing with are planar, only non-crossing partitions
‘P can occur.

In the particular case of the chromatic polynomial (i.e. the zero-temperature an-
tiferromagnet), the horizontal operator H is a projection (H? = H), and we can work
in its image subspace by using the modified transfer matrix T'(mg) = HVH in place
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of T(mg) = VH, and using the basis vectors
wp = Hvp (3.2)

in place of vp. Then we can rewrite (3.1) as
Z(mp X np) = uTT'(mF)"_lwid (3.3)

where wig = Hvjq. Please note that wp = Hvp = 0 for any partition P that includes
nearest-neighbor sites in the same block, so we can ignore all such partitions. The
dimension of the transfer matrix T'(mp) is therefore equal to the number of non-
crossing non-nearest-neighbor partitions of the set {1,2,...,m}, which is given by
the Motzkin number M,,_; [16]. To simplify the notation, we will drop the prime
in T'(mp) and denote the basis elements wp by a shorthand using Kronecker delta
functions: for instance, Wi sy 2},44,61,4533 Will be written §i3d46. We denote the set
of basis elements for a given strip as P = {wp}. For instance, the basis for m = 3 is
P= {1, 513}.
We have checked the self-consistency of our finite-lattice results using the trivial
identity
Z(mp X np) = Z(ngp X myg) (3.4)

for all pairs 2 < m,n <9.

3.1 L,=2p
This case is trivial, as the transfer matrix is one-dimensional:
Z(2p x np) = q(q = 1)(q — 2)°*7Y (3.5)
Since there is only one eigenvalue, there is obviously no crossing, hence B = @.

However, there are zeros for all n at ¢ = 0,1 and for n > 2 at ¢ = 2. The fixed zeros
at ¢ = 0,1 arise from a vanishing amplitude, and the fixed zero at ¢ = 2 arises from
a vanishing eigenvalue.

3.2 L,=3p
The transfer matrix is two-dimensional. In the basis P = {1,d;3} it can be written
as
3 2 2
¢ —7¢ +17¢—14 ¢ —6¢+9
T(3r) = 3.6
e = (77T A (3.6)

and the partition function is equal to

23 x ng) = qlg—1) ( ! )T T(36) " - ( . ) (3.7)



The limiting curve B (see Figure 2) contains three disconnected pieces and it
crosses the real axis at ¢p ~ 2.5698402910. There are six endpoints:

~ 1.2047381150 £ 1.1596169599 ¢ (3.8a)
A~ 2.3930361082 £ 0.2538745688 1 (3.8b)
~R o 3.4022257768 £ 0.5865084714 1 (3.8¢)

These results were previously obtained by Rocek et al. [24].
The determinant det D(g) has the form

det D(q) = ¢*(¢ = 1)(¢ — 2)° (3.9)

Thus, it vanishes at the first three Beraha numbers ¢ = 0,1,2. At those points the
dominant amplitude vanishes, hence they are isolated limiting points.

In fact, the partition function vanishes at ¢ = 0,1 for all n, and at ¢ = 2 for all
n > 2. Obviously, at ¢ = 0,1 both amplitudes vanish, due to the prefactor g(q¢ — 1)
in (3.7). [This happens for all strips of width m > 2; we will henceforth call these
zeros “trivial”.] At the fixed zero ¢ = 2, there is one nonzero eigenvalue (\* = —1)
with a vanishing amplitude and one zero eigenvalue with a nonvanishing amplitude;
we are therefore in Case 3 described in Section 2. The fourth real zero (see Table 1)
converges at an approximate 1/n rate to the value qq ~ 2.5698402910.

3.3 L,=4p

The transfer matrix is four-dimensional. In the basis P = {1, 13, 624, 14}, it takes
the form

Ty, T2 T3 T4
2 2
| —¢+5¢—-6 ¢ —5¢g+6 —q¢+3 —2(q—3)
TR} = | g i5g—6 ¢ =5¢+6 ¢—6g+9 ¢ —8q+15 (3.10)

q—2 ¢ —5+6 —q+3 ¢ —Tq+13

where
T = ¢"—10¢% + 39¢* — 70q + 48 (3.11a)
Tie = q¢°—9¢*+26q — 24 (3.11b)
T13 = q3 — 9q2 + 28q —30 (311C)
T = ¢ —10¢* + 36q — 45 (3.11d)

The partition function is equal to

(¢—1)° 1
q_l n—1 O

Z(4r x ng) = ¢(qg—1) g1 -T'(4r) 0 (3.12)
q—2 0



The limiting curve B (see Figure 3) contains two complex-conjugate disconnected
pieces that do not cross the real axis. The closest points to the real axis are ¢o ~

2.7592502040 £ 0.1544431251 ¢. There are six endpoints:

~ 0.8164709452 + 1.2804094073 ¢ (3.13a)
/R 2.7592502040 £ 0.1544431251 ¢ (3.13b)
3.6398304896 + 0.5986827987 ¢ (3.13¢)

There are T points at ¢ ~ 3.3341785562 + 0.8829730283 i. These results were previ-
ously obtained by Rocek et al. [24, 41].
The determinant det D(g) has the form

det D(q) = —¢*(¢—1)"(¢—2)"*(¢* ~3¢+1)(q—3)°(¢" ~11¢° +46¢" —86¢+61)* (3.14)

We recognize, as factors in (3.14), the first five minimal polynomials pi(q) for the
Beraha numbers By, [16, Table 1]; therefore det D(q) vanishes at the first five Beraha
numbers ¢ = 0,1,2, Bs,3. The dominant amplitude vanishes at ¢ = 0,1,2, Bs, so
these are isolated limiting points. At ¢ = 3 only two subdominant amplitudes vanish,
so this is not an isolated limiting point. Similarly, all of the zeros of the last factor in
(3.14) correspond to the vanishing of subdominant amplitudes only, so none of them
is an isolated limiting point.

In fact, the partition function vanishes at ¢ = 0,1 for all n, and at ¢ = 2 for
all n > 2. The fixed zeros at ¢ = 0,1 are trivial. At ¢ = 2, there are three zero
eigenvalues and a unique leading eigenvalue \* = 4 with zero amplitude. Notice that
the transfer matrix is not diagonal for ¢ = 2: there is a 2 x 2 nontrivial Jordan block
corresponding to A = 0 and whose contribution to the partition function is zero for all
n. The amplitude corresponding to the other A = 0 eigenvalue is 2; we are therefore
in Case 3 described in Section 2. Finally, the fourth real zero converges exponentially
fast to Bs (see Table 1).

Please note that for this strip there is a vanishing subdominant amplitude at
q = By, for a Beraha number k greater than m 4+ 1 (namely, Bs = 3). As we shall
see, this occurs frequently for the triangular lattice, and contrasts with the behavior
observed for the square lattice [16, 17].

3.4 L,=>5p

The transfer matrix is nine-dimensional; it can be found in the MATHEMATICA file
transfer3.m available as part of the electronic version of this paper in the cond-mat
archive. This strip has been previously studied by Shrock and Tsai [44]; but they did
not compute the limiting curve.

The limiting curve B is connected (see Figure 4). It crosses the real axis at ¢o = 3.
There are six endpoints:

~ 0.5586170364 £ 1.28161496101 (3.15a)
~ 3.0474871745 £ 0.8171660680 ¢ (3.15Db)
R 3.7782975917 £ 0.5699779858 1 (3.15¢)
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The topology of the limiting curve is rather involved. It has 12 T points: ¢ &~
3.157258926140.7951215102 ¢, ¢ ~ 3.1251751109+0.8152460413 ¢, ¢ ~ 3.2093444343+
0.9296294663 1, q ~ 3.345206264340.9758086833 ¢, ¢ ~ 3.3248793469+0.9987588766 ¢,
and ¢ & 3.2492362818 + 1.1185073809 ¢. These points define four closed regions. The
first five T points are the vertices of two complex-conjugate regions which look ap-
proximately like rectangular bands. The third, fifth and sixth T points above define
two complex-conjugate triangular-like regions.

The determinant det D(q) is given by

det D(q) = ¢°(¢ —1)°(¢ —2)*(¢* = 3¢+ 1)"(¢ — 3)*' P(q)? (3.16)

where the polynomial P(¢) can be found in the MATHEMATICA file transfer3.m.
The factors appearing in det D(q) are the first five polynomials py(q) given in [16,
Table 1]; therefore det D(q) vanishes at ¢ = 0,1,2, Bs,3. The dominant amplitude
vanishes at the first four of them (but not at ¢ = 3), so that ¢ = 0,1, 2, Bs are isolated
limiting points. All of the zeros of P(g) correspond to the vanishing of subdominant
amplitudes only, so none of them is an isolated limiting point.

The first two real zeros ¢ = 0,1 are trivial ones. At ¢ = 2 there are two nonzero
eigenvalues with zero amplitudes and seven zero eigenvalues. The transfer matrix is
not diagonalizable: there are two Jondan blocks of dimension 3 and 2 respectively
associated to the eigenvalue A = 0. The contribution of these blocks to the partition
function vanishes for all n. In addition, the amplitude corresponding to the other two
zero eigenvalues are 0 and 2; we are therefore in Case 3 described in Section 2. The
fourth real zero converges exponentially fast to the value ¢ = Bs (see Table 1); and
the fifth real zero converges at an approximate 1/n rate to the value ¢o = 3. This
agrees with the fact that ¢ = 3 is a regular limiting point and not an isolated limiting
point.

3.5 L,=6p

The transfer matrix is 21-dimensional; it can be found in the MATHEMATICA file
transfer3.m.
The limiting curve B is connected (see Figure 5). It crosses the real axis at

go ~ 3.1609256737. There are six endpoints:

~  0.3796307748 £ 1.2450702104 1 (3.17a)
R 2.9641235697 £ 1.1179839989 ¢ (3.17Db)
3.8664092416 £ 0.5329463088 1 (3.17¢)

There are four T points at ¢ &~ 3.3081144403+£1.21714942821, and ¢ ~ 3.5005856709+
0.9442298756 1.
The determinant det D(q) is given by

det D(q) = ¢*'(¢—1)*(¢—2)**(¢*—3¢+1)"*(¢—3)**(¢*—5¢*+6¢—1)P(q)* (3.18)

where the polynomial P(g) can be found in the MATHEMATICA file transfer3.m.
The factors appearing in det D(q) are the first six polynomials pi(g) given in [16,
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Table 1]. Thus, det D(q) vanishes at ¢ = 0,1,2, Bs,3, B;. The dominant amplitude
vanishes at the first five of them (but not at Br), so that ¢ = 0,1, 2, Bs, 3 are isolated
limiting points. All of the zeros of P(gq) correspond to the vanishing of subdominant
amplitudes only, so none of them is an isolated limiting point.

The first two real zeros ¢ = 0,1 are trivial ones. At ¢ = 2 we get six nonzero
eigenvalues with zero amplitudes and 15 zero eigenvalues. We find again that the
transfer matrix is not diagonalizable for ¢ = 2: there are five nontrivial Jordan blocks
(one of dimension 3 and four of dimension 2) corresponding to the eigenvalue A = 0,
and whose contribution to the partition function always vanishes. The amplitudes of
the other four zero eigenvalues are (0,0,0,2). This combination seems to be the generic
case for free boundary conditions: all amplitudes vanish except one corresponding to
a zero eigenvalue. When the transfer matrix is not diagonalizable, then the nontrivial
Jordan blocks correspond to A = 0 and their contribution is always zero. The fourth
and fifth real zeros converge exponentially fast to the values ¢ = Bs and ¢ = 3,
respectively (see Table 1); the sixth real zero converges at an approximate 1/n rate

to the value gg ~ 3.1609256737.

3.6 L,="Tp

The transfer matrix is 5l-dimensional; it can be found in the MATHEMATICA
file transfer3.m. In this case we have been unable to compute symbolically the
resultant, hence the computation of the limiting curve has been performed using the
direct-search method.

The limiting curve B is connected (see Figure 6). It crosses the real axis at

qo =~ 3.2764013231. There are six endpoints:

q ~ 0.250538 +1.196864i (3.192)
~ 3.925804 £ 0.496672i (3.19b)
~ 2.878928 + 1.3438514 (3.19¢)

There are four T points at ¢ ~ 3.6146786603 +0.9081562491 ¢ and ¢ ~ 3.2704141478+
1.51943104194.

We have been unable to compute the determinant det D(¢). However, we com-
puted the amplitudes numerically at each of the Beraha numbers B, up to Bsy and
determined in particular whether it is an isolated limiting point or not. As always,
g = 0,1 are trivial isolated limiting points where all the amplitudes vanish. The
dominant amplitude also vanishes at ¢ = 2, Bs, 3, By, so they are isolated limiting
points too. Finally, a subdominant amplitude vanishes at ¢ = Bs.

The first two real zeros ¢ = 0,1 are trivial ones. At ¢ = 2, all amplitudes vanish
except one corresponding to a zero eigenvalue. In particular, there are 12 nonzero
eigenvalues with zero amplitudes, 8 zero eigenvalues with zero amplitudes, and one
zero eigenvalue with nonzero amplitude. We also find 12 nontrivial Jordan blocks
corresponding to A = 0, whose contibution to the partition function is always zero.
The fourth, fifth and sixth real zeros converge exponentially fast to the values Bs, 3
and By, respectively (see Table 2); however, the convergence to B; = 3.246979603717
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is slowed by its nearness to the regular limiting point ¢ ~ 3.2764013231. For lengths
n 2 77, a seventh real zero appears: it converges (at an approximate 1/n rate) to ¢o.

3.7 L,=28

The transfer matrix is 127-dimensional; it can be found in the MATHEMATICA file
transfer3.m. Again we have used the direct-search method to locate the points of
the limiting curve B.

The limiting curve B is connected (see Figure 7). Tt crosses the real axis at

Qo ~ 3.3610599515. There are six endpoints:

~ 0.154432 £ 1.146669 (3.20a)
A~ 2.793496 + 1.521468 (3.20Db)
A~ 3.967566 + 0.463648 (3.20c)

There are four T points at ¢ &~ 3.2555859898 £1.7000353877 1 and ¢ = 3.6703287722+
0.8845072864 1.

We were unable to compute the determinant det D(¢). However, we computed the
amplitudes numerically at each of the Beraha numbers B, up to Bsp and determined
in particular whether it is an isolated limiting point or not. As always, ¢ = 0,1
are trivial isolated limiting points where all the amplitudes vanish. The dominant
amplitude vanishes also at ¢ = 2, Bs, 3, By, so they are isolated limiting points too.
Finally, some subdominant amplitudes vanish at ¢ = Bs, Bg; they are not isolated
limiting points.

The first two real zeros ¢ = 0,1 are trivial ones. At the third real zero ¢ = 2, all
amplitudes vanish except one corresponding to a zero eigenvalue. At ¢ = 2 the transfer
matrix is not diagonalizable: we find 30 nontrivial Jordan blocks corresponding to
A = 0, but their contribution to the partition function vanishes for all n > 1. We
also get 33 nonzero eigenvalues with zero amplitudes, 20 zero eigenvalues with zero
amplitudes, and one zero eigenvalue with nonzero amplitude. The fourth, fifth and
sixth real zeros converge exponentially fast to the values Bs, 3 and Bz, respectively
(see Table 2). We also expect a seventh real zero converging (at an approximate 1/n
rate) to ¢o ~ 3.3610599515. Such zero does not appear up to lengths n = 96 (see
Table 2). We would need to go to very large n to observe this additional zero.

3.8 L,=9

The transfer matrix is 323-dimensional; it can be found in the MATHEMATICA
file transfer3.m. The size of this transfer matrix prevented us from computing the
limiting curve B. However, we were able to compute the point where the limiting
curve crosses the real axis: it is ¢o = 3.4251304673. In Figure 8 we show the zeros of
Z for the finite lattices 9 x 45g and 9¢ X 90g.

The first two real zeros ¢ = 0,1 are trivial ones. We have checked numerically
that the dominant amplitude vanishes at ¢ = 2, Bs, 3, B7, Bs (and at no other Beraha
numbers up to Bsg); these are therefore isolated limiting points. By inspection of
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Figure 8 we do not find any candidate for a non-Beraha real isolated limiting point or
for a complex isolated limiting point. A subdominant amplitude vanishes for ¢ = By
and Bio.

At ¢ = 2 the transfer matrix is not diagonalizable: we find 76 nontrivial Jordan
blocks (up to dimension 5 x 5) corresponding to A = 0; none of these blocks contribute
to the partition function for any n > 1. We also get 74 nonzero eigenvalues with zero
amplitudes, 50 zero eigenvalues with zero amplitudes, and one zero eigenvalue with
nonzero amplitude. The fourth, fifth, and sixth real zeros converge exponentially fast
to the values Bs, 3 and By, respectively (see Table 2). We expect that the seventh real
zero will converge exponentially fast to Bs = 2+ 1/2 and that there will be (for large
enough length n) an additional real zero that will eventually converge to the value
q =~ 3.4251304673 > Bg at an approximate 1/n rate. However, we would probably
need to go to very large lengths n in order to observe this behavior.

4 Numerical Results for the Triangular-Lattice
Chromatic Polynomial:
Cylindrical Boundary Conditions

We have also computed the transfer matrix T(mp) and the limiting curves B
for triangular-lattice strips of widths 2 < m = L, < 12 with cylindrical boundary
conditions, i.e. periodic b.c. in the transverse direction and free b.c. in the longitudinal
direction.

The partition function can be written analogously to (3.3) as

Z(mp X ng) = uTT(mp)“_lwid (4.1)

where T(mp) = HVH. (See [16, Section 3.1] for some remarks about the actual
computation of this transfer matrix.) Since T(mp) commutes with translations (due
to the periodic b.c.) and the vectors u and wiq are translation-invariant, we can
restrict attention to the translation-invariant subspace. The dimension of T(mp)
is therefore given by the number of equivalence classes modulo translation of non-
crossing non-nearest-neighbor partitions. This number is denoted by TriCyl(m) in
[16, Table 2]. A general analytic expression for TriCyl(m) is not known, although
such a formula has been obtained for prime values of m [53, Theorem 3].

We have checked our results for widths 2 < mp < 12 and lengths ngp = 2,3,4 by
comparing to the results of Beraha—Kahane—Weiss [22] (resp. Chang—Shrock [44]) for
width ng = 2 (resp. np = 3,4) and length mp (i.e. cyclic boundary conditions), using
the trivial identity

Z(mp X np) = Z(ng X mp) . (4.2)

This is a highly non-trivial check of the correctness of our results.
The triangular lattice with cylindrical boundary conditions possesses a curious
reflection symmetry that we shall now explain. Note first that the triangular lattice is
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not invariant under reflection in the transverse direction’, since reflection changes the
direction of the diagonal bonds. Nevertheless, in the translation-invariant subspace
the transfer matrix does commute with reflection, because by translating the upper
row (of a pair of rows) by one unit, one can change [\ into .1, thereby converting
the triangular lattice into a reflected triangular lattice! Because the transfer matrix
(in the translation-invariant subspace) commutes with reflection, we can pass to a
new basis consisting of connectivities that are either even or odd under reflection.®
In this new basis, the transfer matrix T(mp) is block-diagonal:

T(me) = (T+(énp) T_(?np)) , (4.3)

where T, (resp. T_) corresponds to the reflection-even (resp. reflection-odd) sub-
space. Furthermore, the reflection-odd components of the start vector wig = Hviq are
identically zero, since both viq and H are manifestly reflection-invariant. Likewise,
the reflection-odd components of the final vector u are identically zero, since the def-
inition of u involves only H and not V. Therefore (for either of these two reasons),
the amplitudes a(q) corresponding to the reflection-odd subspace are all identically
vanishing; these eigenvalues make no contribution whatsoever to the partition func-
tion. It follows that we can work entirely within the reflection-invariant subspace,
which has dimension SqCyl(m) [16, Table 2]. For strip widths m > 8, SqCyl(m) is
strictly smaller than TriCyl(m), so that the matrix T_ is nontrivial.

41 L,=2p
This case is trivial, as the transfer matrix is one-dimensional:

Z(20 xnp) = qlq—1)[(q—2)(¢—3)]""". (4.4)

Please note that the triangular-lattice strip 2p X ng is not equivalent to the strip
2r X np for any length n > 2.

Since there is only one eigenvalue, there is obviously no crossing, hence B = @.
However, there are zeros for all n at ¢ = 0,1 and for n > 2 at ¢ = 2, 3.

7 More precisely, if the strip width is even, one can choose to reflect either through a pair of
lattice sites or through a pair of bisectors (sites with half-integer coordinates); the two choices differ
by a subsequent translation. If the strip width is odd, then every reflection axis passes through one
lattice site and one bisector.

& Let us call {v; }]Ai] the connectivity basis in the translation-invariant subspace. Some of these
basis elements are invariant under reflection; the rest can be grouped into pairs (va,vs) that map
into each other under reflection. A basis for the reflection-even (i.e. reflection-invariant) subspace
is then given by the basis elements in the first set together with the combinations v, 4+ vg from the
second set. A basis for the reflection-odd subspace is given by the combinations v, — vg from the
second set.
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4.2 L,=3p

This case is also trivial, as the transfer matrix is again one-dimensional:
Z(3p xnp) = qlg—1)(q—2)(¢° — 9¢* +29¢ — 32)" " . (4.5)

Again B = @, and the amplitude vanishes at ¢ = 0,1,2 (which are the first three
Beraha numbers). For n > 2 there are additional fixed zeros at ¢ ~ 2.5466023485
and ¢ ~ 3.2266988258 + 1.4677115087 ¢, where the eigenvalue vanishes. This strip
was studied by Rocek et al. [41].

4.3 L,=4p

The transfer matrix is two-dimensional. In the basis P = {1,153 + d24} it can be
written as

4 3 2 3 2
q* —12¢° + 58¢* — 135¢ 4+ 126  2(¢° — 10¢* + 33¢ — 36)

T(4p) = . 4.6

(4e) ( —2(q* — Tq +12) 2(¢* — 69+ 9) (46)

and the partition function is equal to

2w xnw) = a0 (53 rwr ()

The limiting curve B (see Figure 9) contains three pieces: two complex-conjugate
arcs and a self-conjugate loop. In addition, at the point ¢ = 3 both eigenvalues
vanish simultaneously (i.e. the transfer matrix T'(4p) itself vanishes); this is a special
(degenerate) species of isolated limiting point [27]. (One of the amplitudes does not
vanish at ¢ = 3, but that is irrelevant.) The self-conjugate loop-like component
crosses the real axis at ¢o =~ 3.4814056002 and ¢ = 4. There are four endpoints:

~ 1.3705340683 £ 2.7508526144 1 (4.8a)
~r  3.6294659317 £ 0.6958422780 ¢ (4.8b)

This limiting curve was first obtained the pioneering paper of Beraha and Kahane
[21]. They drew the important conclusion that ¢ = 4 is a limiting point of (complex)
chromatic roots for the sequence 4p x ng of planar graphs — hence the wonderful
title of their paper, “Is the Four-Color Conjecture Almost False?”®

The determinant det D(g) has the form

det D(q) = 8¢* (¢ — 1)*(¢ — 2)(¢* = 3¢ + 1)(q — 3)*(¢ — 4)* (4.9)

We recognize the first five minimal polynomials px(q) given in [16, Table 1]. Hence,
the determinant vanishes at the first five Beraha numbers ¢ = 0,1,2, Bs, 3. It also

9 Tronically, by the time that this article was published, the Four-Color Conjecture had become
the Four-Color Theorem. The Beraha—Kahane article was submitted in 1976 but not published until
1979.
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vanishes at ¢ = 4, which corresponds to B,,. The dominant amplitude vanishes only
at ¢ =0,1,2, Bs; these values of ¢ correspond to isolated limiting points.

The fixed zeros at ¢ = 0,1 are trivial ones. At the fixed zero ¢ = 2, there is one
nonzero eigenvalue (A* = 10) with a vanishing amplitude and one zero eigenvalue with
a nonvanishing amplitude (o = 2); we are therefore in Case 3 described in Section 2.
The fourth real zero converges exponentially fast to Bs (see Table 3), in agreement
with the fact that this is an isolated limiting point. The fifth real zero, at ¢ = 3, is a
fixed zero where both eigenvalues vanish (one of the amplitudes is 0 and the other is
18); we are therefore on Case 2 described in Section 2. The fact that ¢ = 3 is a fixed
zero is due to the width not being a multiple of 3. Finally, ¢ = 4 is a crossing point
where both eigenvalues take the value A = 2 and one of the amplitudes vanishes.
The sixth real zero in Table 3 converges at an approximate 1/n rate to the value
qo & 3.4814056002.

For this strip there is a vanishing subdominant amplitude at ¢ = Bg = 3, which is
greater than Bp,+1 = Bs, in contrast with the behavior observed for the square lattice

[16, 17].

4.4 L,=5p

The transfer matrix is two-dimensional. In the basis P = {1,d;3 + perm.} it can
be written as

_ Ti 5(q* — 14¢° + 76¢* — 187q + 174)
T(e) = < —¢® 4 11¢* — 43¢ + 58 3¢° — 35¢% + 132¢ — 162 (4.10)
where
Ty = ¢° —15¢" + 95¢° — 320¢° + 579¢ — 452, (4.11)

and the partition function is equal to

¢ —2q+2

Z(5 x ng) = q(q—l)(q—Q)( I )T‘T(5p)"—1 . ( : ) (4.12)

The limiting curve B (see Figure 10) contains three disconnected pieces: two
complex-conjugate arcs and a self-conjugate loop-like arc. This latter piece crosses the

real axis at qp &~ 3.2072219810 and at ¢ ~ 3.2847747616. There are four endpoints:

0.4772525688 + 2.5694937945 i (4.13a)
3.5227474312 + 0.1876729035 i (4.13b)

X

q
q

X

The limiting curve was first obtained in [44].
The determinant det D(g) has the form

det D(q) = 5¢°(¢—1)*(¢—2)*(¢* =3¢+ 1)(¢— 3)(¢> — 11¢° + 43¢ — 58)"  (4.14)

We recognize the first five minimal polynomials py.(q) given in [16, Table 1]. Hence, the
determinant vanishes at the first five Beraha numbers ¢ = 0,1, 2, Bs, 3. Furthermore,
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the dominant amplitude vanishes at all these points; hence they are isolated limiting
points. The last factor of the determinant does not provide additional isolated limiting
points.

The fixed zeros at ¢ = 0,1,2 are trivial ones where all amplitudes vanish due to
the prefactor ¢(¢ — 1)(¢ — 2) in (4.12). The fourth real zero converges exponentially
fast to Bs (see Table 3). The fifth real zero, at ¢ = 3, is a fixed zero where there is one
nonzero eigenvalue (A* = —2) with a vanishing amplitude and one zero eigenvalue
with a nonvanishing amplitude (a = 30); we are therefore in Case 3 described in
Section 2. The fact that ¢ = 3 is a fixed zero is due to the width not being a multiple
of 3. Finally, the sixth real zero in Table 3 converges at an approximate 1/n rate to

the value g &~ 3.2072219810.

4.5 L,=606p

The transfer matrix is five-dimensional; it can be found in the MATHEMATICA file
transfer3.m.

The limiting curve B is connected (see Figure 11). It crosses the real axis at
qo =~ 3.2524186216. There are four endpoints:

q ~ 0.0207708231 £ 2.2756742729¢ (4.15a)
q ~ 4.2838551928 £+ 0.6111544521 12 (4.15Db)

There are T points at ¢ ~ 3.9766954928 + 0.9167681670 1.
The determinant det D(¢) has the form

det D(q) = 1769472¢°(¢ —1)°(¢ — 2)°(¢* — 3¢+ 1)*(¢ — 3)**(¢° — 5¢* + 6¢ — 1)
(¢ = 5q+5)*(¢ — 4)*P(q)* (4.16)

where the polynomial P(¢) can be found in the file transfer3.m. The first six
factors in (4.16) are the first six minimal polynomials given in [16, Table 1]; hence
the determinant vanishes at the first six Beraha numbers ¢ = 0,1, 2, Bs, 3, B;. It also
vanishes at the Beraha number By, whose minimal polynomial is ¢* — 5¢ + 5, and
at ¢ = 4. The dominant amplitude vanishes only at the first six Beraha numbers,
so these values are the only isolated limiting points. The polynomial P(q) does not
provide additional isolated limiting points.

The first two zeros ¢ = 0,1 are trivial ones. At ¢ = 2 we have three nonzero eigen-
values with vanishing amplitudes, one zero eigenvalue with zero amplitude, and one
zero eigenvalue with nonzero amplitude; we therefore fall in Case 3 of Section 2. The
fourth and fifth real zeros converge exponentially fast to ¢ = Bs,3 (see Table 3). The
next Beraha number B; &~ 3.2469796037 is very close to the value ¢o ~ 3.2524186216
where the limiting curve B crosses the real axis. This explains why the convergence
rate to the sixth real zero in Table 3 is not as fast as expected (empirically the con-

~19): but we expect that it will be ultimately exponential

vergence is roughly ~ n
(for very large n). We also expect a seventh real zero for large enough n; this zero is
expected to converge (at an approximate 1/n rate) to the value g ~ 3.2524186216.

We would need to go to very large n to observe this additional zero.
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Finally, for this strip there is a vanishing subdominant amplitude at ¢ = Bjq,
which is greater than B,,+1 = Bz, in contrast with the behavior observed for the
square lattice [16, 17].

46 L,="Tp

The transfer matrix is six-dimensional; it can be found in the MATHEMATICA file
transfer3.m.

The limiting curve B is connected (see Figure 12). Tt crosses the real axis at
g0 =~ 3.4790022937 and ¢ ~ 3.6798199576. It enters the half-plane Re(q) < 0, and

there are four endpoints

q ~ —0.2279183274 + 2.0134503491 ¢ (4.17a)
g~ 3.9930118897 + 0.6273386181 ¢ (4.17D)

There are four T points at ¢ ~ 3.6222949363+0.1398555812¢ and ¢ ~ 3.9816630253+
0.8993269516 ¢. Finally, it is worth noticing that the limiting curve encloses a small
region around 3.479 < Re(q) < 3.680 and |Im(q)| < 0.14.

The determinant det D(g) has the form

det D(q) = 68841472¢°(¢ —1)%(q¢ —2)%(¢* — 3¢ + 1)"(¢ — 3)*'(¢° — 5¢* 4+ 6¢ — 1)
x(¢* —4q+2)(q" = 5q + 5)*P(q)* (4.18)

where the polynomial P(¢) can be found in the file transfer3.m. The first seven
factors in (4.18) are precisely the first minimal polynomials given in [16, Table 1].
The next one (¢*—5q+5) is the tenth minimal polynomial in [16, Table 1]. Hence, the
determinant det D(q) vanishes at the Beraha numbers ¢ = 0, 1,2, Bs, 3, Br, Bs, Bio.
However, the dominant amplitude vanishes only at the first seven Beraha numbers
q = 0,1,2, Bs, 3, By, Bg; these values are the only isolated limiting points for this
strip. The polynomial P(q) does not provide additional isolated limiting points.

The first three zeros ¢ = 0,1,2 are trivial ones. The fifth real zero, at ¢ = 3,
is a fixed zero where there are 2 nonzero eigenvalues with zero amplitudes, one zero
eigenvalue with zero amplitude, and 3 zero eigenvalues with nonzero amplitudes. The
fourth, sixth and seventh real zeros converge exponentially fast to ¢ = Bs, By, Bs (see
Table 3). The eighth real zero seems to converge at an approximate 1/n rate to the
value ¢p &~ 3.4790022937.

In contrast with the behavior observed for the square lattice, we find a vanishing
subdominant amplitude at ¢ = Bjg, which is greater than B,,+; = Bs.

4.7 L,=28p

The transfer matrix 7'(8p) is 15-dimensional. As discussed at the beginning of
this section, the transfer matrix can be brought into block-diagonal form

Ti(8) 0
T(8p) = ( +0 T_(sp)) (4.19)

19



where the block T4 (resp. T_) is 14-dimensional (resp. 1-dimensional) and corresponds
to the subspace of reflection-invariant (resp. reflection-odd) connectivities. Moreover,
the amplitude corresponding to the reflection-odd eigenvalue is identically vanishing;
this eigenvalue therefore makes no contribution to the partition function. The reduced
transfer matrix T4 (8p) can be found in the MATHEMATICA file transfer3.m. The
one-dimensional block is T7_(8p) = —¢* + 6¢* — 8¢ — 3.

There are, however, two further curious features for which we have, as yet, no
explanation. First of all, we find another eigenvalue A = —¢® + 6¢* — 8¢ — 3, this
time inside the reflection-invariant subspace. Secondly (and even more mysteriously),
this eigenvalue too has an identically vanishing amplitude. (We have checked this fact
numerically.) The pair of eigenvalues A = —q¢®+6¢* —8¢— 3 can be observed explicitly
by forming the characteristic polynomial of the transfer matrix, which can be factored
asl0

det[T(8p) = M] = (A+¢" = 6¢> + 8¢ +3)? Qu(g, \) (4.20)

where 2(q, A) is a polynomial in ¢ and A (it is obviously of degree 13 in X). Un-
fortunately, we have been unable to find a further change of basis to make T (8p)
block-diagonal and thereby bring out explicitly the eigenvalue A = —¢®+ 6¢? — 8¢ — 3
lying inside that subspace.

In order to compute the limiting curve B we have mainly used the resultant
method. The existence of a double eigenvalue A = —¢* + 6¢* — 8¢ — 3 in the full
transfer matrix 7'(8p) makes the resultant identically zero for # = 0. However, this
problem does not arise if we consider the reduced matrix 74(8p). Nevertheless, the
existence of an identically zero amplitude within the reduced subspace makes the
computation of the limiting curve B not completely straightforward, as only those
eigenvalues with non-identically-vanishing amplitudes should be taken into account
in computing B. A simple solution is devised by noting that the resultant method
uses only the characteristic polynomial of the transfer matrix. Therefore, we can
drop the factor (A + ¢* — 6¢* + 8¢ + 3)? in (4.20) and compute the resultant using
the polynomial Q2(g, A). In this way, we obtain a nonzero resultant, into which the
zero-amplitude eigenvalues do not enter.!!

The limiting curve B is connected (see Figure 13). Tt crosses the real axis at
qo = 3.5147694243. It enters the half-plane Re(¢) < 0, and there are four endpoints

qg ~ —0.3713655472 + 1.7983425919 1 (4.21a)

10Tn most of the previously studied cases with cylindrical boundary conditions (namely, triangular-
lattice strips of widths 4p < m < 7p and square-lattice strips of widths 4p < m < 9p), the
characteristic polynomial associated to the transfer matrix cannot be factored as in (4.20). In other
words, none of the eigenvalues A is a polynomial in gq. The cases with m < 3p are trivial as the
transfer matrix is one-dimensional: there is a single eigenvalue, which is indeed a polynomial in ¢.

11 We also checked — though this is not relevant to computing B for the boundary conditions
being considered here — that the zero-amplitude eigenvalue A = —¢3 4+ 6¢% — 8¢ — 3 is not dominant
at any of the zeros of our resultant. If the zero-amplitude eigenvalue A = —¢® 4 6¢% — 8¢ — 3 were in
fact dominant somewhere in the complex ¢-plane, then by modifying the top and bottom endgraphs
(as shown in [41]) it might be possible to make that eigenvalue (in either the reflection-even or
reflection-odd sector or both) contribute to the chromatic polynomial and thereby obtain a different
limiting curve B for the different choice of endgraphs.
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qg ~  4.0496984440 4 0.7359317819 1 (4.21D)

There are cusp-like structures around ¢ =~ 4.04 + 0.74:. A closer look shows that
these structures are in fact T points located at ¢ ~ 4.0428606488 + 0.7417105390 ¢,
from which there emerge very short branches terminating at the endpoints ¢ ~
4.0496984440 + 0.7359317819¢.

We form a matrix D(¢) of dimension 13 rather than 15; in this way we can avoid
the two identically vanishing amplitudes.!? Its determinant has the form

det D(q) = const. x ¢"*(¢ = 1)"(¢ = 2)*(¢" = 3¢ +1)"°(¢ - 3)"""
x(¢* = 54"+ 60— 1)"(¢* — 49+ 2)(¢° — 64" +9¢ — 1)
><(q2 —5q+5)14(q3 —7q2 + 14q — 7)2(q—4)54
x(12¢° — 196¢" + 1355¢" — 5126¢” + 11337¢* — 14086¢ + 7755)
x Py(q)? (4.22)

where the polynomial Pi(¢) can be found in the file transfer3.m. The first nine
factors in (4.22) are precisely the first minimal polynomials given in [16, Table 1];
therefore, det D(q) vanishes at the Beraha numbers ¢ = By, ..., Big. The next factor
is the square of the polynomial ¢° — 7¢* 4+ 14q — 7, which is py4(q) [16, Table 1], so
that det D(q) also vanishes at ¢ = Bjy. Finally, the determinant also vanishes at
¢ = 4 = B. Unlike what we have seen for cylindrical strips of smaller width, in this
case the remaining part of det D(q) is not the square of a polynomial with integer coef-
ficients; rather, there is the additional degree-6 factor preceding P;(¢q)*. The dominant
amplitude vanishes only at the first seven Beraha numbers ¢ = 0,1,2, Bs, 3, By, Bs,
so these values are the only isolated limiting points for this strip. The degree-6 factor
and the polynomial P;(g) do not provide additional isolated limiting points.

The first two zeros ¢ = 0,1 are trivial ones. At ¢ = 2,3, all amplitudes vanish
except for a few corresponding to zero eigenvalues; we are thus in Case 3 of Section 2.
At g = 2, there are 10 nonzero eigenvalues with zero amplitudes, 3 zero eigenvalues
with zero amplitudes, and one zero eigenvalue with nonzero amplitude. At ¢ =
3 the transfer matrix is not diagonalizable: there are 2 nonzero eigenvalues with
zero amplitudes, one 2 x 2 nontrivial Jordan block corresponding to A = 0 with no
contribution at all to the partition function for all n, and 10 zero eigenvalues with
nonzero amplitudes. The fourth, sixth and seventh real zeros converge exponentially
fast to ¢ = Bs, Bz, Bs (see Table 3). The eighth real zero seems to converge at an
approximate 1/n rate to the value gy & 3.5147694243.

Finally, we find vanishing subdominant amplitudes at ¢ = B, B14, which are
greater than B,,1; = Bo.

12 1f we were to form a 15-dimensional or 14-dimensional matrix D(q), its determinant would be
identically zero. This tells us (in case we did not know it already) that two of the amplitudes are
identically zero.
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4.8 L,=9

The transfer matrix T'(9p ) is 28-dimensional. It can be brought into block-diagonal
form

T4 (9 0
T(9%) = ( +0 ) T_(9p)) : (4.23)

where the block Ty (resp. T-) is 22-dimensional (resp. 6-dimensional) and corresponds
to the subspace of reflection-invariant (resp. reflection-odd) connectivities. Moreover,
all the amplitudes corresponding to the reflection-odd subspace are identically van-
ishing; this subspace therefore makes no contribution to the partition function. The
reduced transfer matrix 74 (9p ) can be found in the MATHEMATICA file transfer3.m.

Mysteriously, all of the eigenvalues in the reflection-odd subspace have “copies”
in the reflection-even subspace. This can be seen by computing the characteristic
polynomial associated to the transfer matrix 7'(9p), which can be factored as follows:

det[T(9p) = A1] = Qi(q,))* Qa(q,A) (4.24)

where (1(q, ) and (Q2(q, ) are polynomials in ¢ and A; here @, (resp. @2) is of
degree 6 (resp. 16) in A. More specifically, @ (resp. Q1Q)3) is the characteristic
polynomial of T_ (resp. T4 ); the fact that @1 appears as a factor in the characteristic
polynomial of T is direct proof of the just-mentioned “copying” of eigenvalues. Even
more mysteriously, our numerical checks suggest that all the eigenvalues coming from
@1 have identically zero amplitudes — not only in the reflection-odd subspace (where
this is well understood) but also in the reflection-invariant subspace. We thus find 6
pairs of equal eigenvalues with identically vanishing amplitudes.

In order to be able to use the resultant method in this case, we proceed as in
the previous subsection: we drop the polynomial @, (¢, A)? (which contains the zero-
amplitude eigenvalues) from the characteristic polynomial associated to 7'(9p) and
compute the resultant with the polynomial Q2(g,A) (which contains the eigenvalues
with nonzero amplitudes). We have computed the points with # = 0 with the resultant
method; the points with other values of # have been computed using the direct-search
method.

The limiting curve B is connected (see Figure 14). It crosses the real axis at
qo ~ 3.5270636990. It enters the half-plane Re(gq) < 0, and there are four endpoints

Q

—0.4576020413 £ 1.6238415411 ¢ (4.25a)
4.2828643197 £+ 0.3823491910 ¢ (4.25D)

&

There are T points located at ¢ &~ 4.0160853030 4 0.7870153859 1.
We form a matrix D(q) of dimension 16 rather than 28, in order to avoid the 12
identically zero amplitudes. Its determinant has the form

det D(q) = const x ¢'%(¢ —1)"°(¢ = 2)"(¢* = 3¢ +1)"*(¢ - 3)'
<(q" = 5¢" + 6 — 1)°(¢* — 4q+2)"(¢" — 6¢° + 9¢ — 1)
x(¢* = 5q+5)"(¢" = T¢" + 14 = 7)*P(q) , (4.26)
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where the polynomial P(q) can be found in the file transfer3.m. We find the same
“Beraha factors” as in the triangular-lattice strip of width 8p (Section 4.7). Thus,
det D(q) vanishes at the Beraha numbers ¢ = By, ..., B, Bis. The polynomial P(q)
is not the square of any polynomial with integer coefficients; rather it can be written
as Pi(q)Px(q)* where P, and P, are integer-coefficient polynomials. The dominant
amplitude vanishes only at the first seven Beraha numbers ¢ = 0,1,2, Bs, 3, Bz, Bs;
thus, these values are the only isolated limiting points for this strip. The polynomial
P(q) does not provide additional isolated limiting points.

The first three zeros ¢ = 0,1,2 are trivial ones (i.e., all amplitudes vanish iden-
tically). The fourth, fifth, sixth and seventh real zeros converge exponentially fast
to ¢ = Bs,3, By, Bs (see Table 4). The eighth real zero seems to converge at an
approximate 1/n rate to the value ¢y &~ 3.5270636990.

We again find a vanishing subdominant amplitude at ¢ = B4, which is greater
than Bm+1 = BlO-

49 L,=10p
The transfer matrix T(10p) is 67-dimensional. It can be brought into block-

diagonal form
(70 0 i
T(10p) = ( 0 T_(100) ) , (4.27)

where the block T, (resp. T_) is 51-dimensional (resp. 16-dimensional) and corre-
sponds to the subspace of reflection-invariant (resp. reflection-odd) connectivities. All
the amplitudes corresponding to the reflection-odd subspace are identically vanishing;
this subspace therefore makes no contribution to the partition function. The reduced
transfer matrix 7% (10p) can be found in the MATHEMATICA file transfer3.m.

The characteristic polynomial of the transfer matrix 7'(10p) obviously factors as
det[T'(10p) — A\1] = Q1(¢, A) Q(g, A), where @ (resp. @) is the characteristic polyno-
mial of 7_ (resp. T4 ). Numerically we have found, once again, that all the eigenvalues
in the reflection-odd subspace have “copies” in the reflection-even subspace. There-
fore, the polynomial @Q(g, A) should have Qi(g, A) as a factor, so that

det[T(10p) = M] = Qi(q,1)* Q2(q, ) (4.28)

where @Q2(¢, A) is a polynomial of degree 35 in A. Unfortunately, we have been un-
able to compute the characteristic polynomial Q(q, A) of the reduced transfer matrix
T4(10p) and verify the conjectured factorization (4.28).

Once again, we have found numerically that the “copied” eigenvalues have identi-
cally vanishing amplitudes. We thus find 16 pairs of equal eigenvalues with identically
vanishing amplitudes.

We have used the direct-search method in the computation of B. The limiting
curve B is connected (see Figure 15). It crosses the real axis at g ~ 3.6348299654.
It enters the half-plane Re(q) < 0, and there are four endpoints

g ~ —0.510807 + 1.481233i (4.29a)
g ~ 4113231 £ 0.492835i (4.29b)
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There are T points located at ¢ ~ 4.0632619066 + 0.8803786140 :.

We have numerically checked that the dominant amplitude vanishes at the first
nine Beraha numbers ¢ = 0,1,2, Bs, 3, Br, Bs, Bg, Bio (and at no others); therefore,
these values are the only isolated limiting points for this strip. We have found no
evidence of complex isolated limiting points from the zeros of the finite-length strips.

The first two zeros ¢ = 0, 1 are trivial ones. At ¢ = 2,3 we are in Case 3 described
in Section 2. At ¢ = 2, there are 38 nonzero eigenvalues with zero amplitudes, 12 zero
eigenvalues with zero amplitudes and one zero eigenvalue with a nonzero amplitude.
At ¢ = 3 the transfer matrix is not diagonalizable: we find 4 nonzero eigenvalues
with zero amplitudes, one 2 x 2 nontrivial Jordan block corresponding to A = —3
which does not contribute to the partition function for any n, 40 zero eigenvalues
with nonzero amplitudes, and two nontrivial Jordan blocks (of dimensions 3 and 2
respectively) corresponding to A = 0. The contribution of these later blocks is zero
except for n = 1. The fourth, sixth, seventh, eight and ninth real zeros converge
exponentially fast to ¢ = Bs, Br, Bs, By, Bio (see Table 4). The tenth real zero seems
to converge at an approximate 1/n rate to the value qq ~ 3.6348299654.

Finally, we have also checked that there are vanishing amplitudes (in addition to
the trivial 32 identically zero amplitudes) for ¢ = By, Bi4, and Bis. In all these
cases, the vanishing amplitude corresponds to a subdominant eigenvalue; thus, none
of these points is an isolated limiting point. Please note that the last two values
(namely, B4 and Big) are greater than By,41 = Bi;.

4.10 L,=11p
The transfer matrix T(11p) is 145-dimensional. It can be brought into block-

diagonal form
_(Tl) 0
T(11p) = ( 0 T (11p) ) , (4.30)

where the block T (resp. T-) is 95-dimensional (resp. 50-dimensional) and corre-
sponds to the subspace of reflection-invariant (resp. reflection-odd) connectivities. All
the amplitudes corresponding to the reflection-odd subspace are identically vanishing;
this subspace therefore makes no contribution to the partition function. The reduced
transfer matrix 7 (11p) can be found in the MATHEMATICA file transfer3.m.

The characteristic polynomial of the transfer matrix 7(11p) obviously factors as
det[T'(11p) — A1] = Q1(q, A) Q(gq, A), where @, (resp. @) is the characteristic polyno-
mial of 7_ (resp. T4 ). Numerically we have found, once again, that all the eigenvalues
in the reflection-odd subspace have “copies” in the reflection-even subspace. There-
fore, the polynomial Q(g, A) should have @;(q, A) as a factor, so that

det[T(11p) = M] = Q1(q, A Qulg, N (4.31)

where Q2(q, A) is a polynomial of degree 45 in A. Unfortunately, we have been un-
able to compute the characteristic polynomial Q(¢, A) of the reduced transfer matrix
T4 (11p) and verify the conjectured factorization (4.31).
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Once again, we have found numerically that the “copied” eigenvalues have identi-
cally vanishing amplitudes. We thus find 50 pairs of equal eigenvalues with identically
vanishing amplitudes.

As in the preceding subsection, we used the direct-search method in the compu-
tation of B. This curve crosses the real g-axis at go & 3.6441399017 (see Figure 16).
It enters the half-plane Re(q) < 0, and there are four endpoints

%

q
q

—0.543988 + 1.363241 (4.32a)
4.156093 + 0.529420 i (4.32b)

%

There are T points located at ¢ &~ 4.0425923021 + 0.6927608569 7.

We have numerically checked that the dominant amplitude vanishes at the first
nine Beraha numbers ¢ = 0,1,2, Bs, 3, Bz, Bs, Bg, Bio (and at no others), so that
these values are the only real isolated limiting points for this strip. We inspected the
zeros of the finite-length strips and found no evidence of complex isolated limiting
points.

The first three zeros ¢ = 0,1,2 are trivial ones, as all amplitude vanish. At
g = 3 the transfer matrix is not diagonalizable. There are four nontrivial Jordan
blocks corresponding to four nonzero eigenvalues. Furthermore, the contribution
of these Jordan blocks to the partition function vanishes for all n > 1. We also
find 8 nonzero eigenvalues with zero amplitudes, 30 zero eigenvalues with nonzero
amplitudes, and 30 zero eigenvalues with zero amplitudes. The fourth, sixth, seventh,
eighth and ninth real zeros converge exponentially fast to ¢ = Bs, Bz, Bs, By, Bio (see
Table 4). The tenth real zero seems to converge at an approximate 1/n rate to the
value g &~ 3.6441399017.

Finally, we have also checked that there are vanishing amplitudes (in addition
to the trivial 100 identically zero amplitudes) for ¢ = Byy, Bi2, B4, Bis. In all these
cases, the vanishing amplitude is subdominant; thus, none of these points is an isolated
limiting point. Again, the values Bys and Bs are greater than B,,+1 = Bis.

411 L, =12

The transfer matrix T(12p) is 368-dimensional. It can be brought into block-

diagonal form
_(T2) 0
T(12p) = ( 0 T_(12) ) , (4.33)

where the block T4 (resp. T-) is 232-dimensional (resp. 136-dimensional) and corre-
sponds to the subspace of reflection-invariant (resp. reflection-odd) connectivities. All
the amplitudes corresponding to the reflection-odd subspace are identically vanishing;
this subspace therefore makes no contribution to the partition function. The reduced
transfer matrix 7% (12p) can be found in the MATHEMATICA file transfer3.m.

The characteristic polynomial of the transfer matrix 7'(12p) obviously factors as
det[T(12p) — A1] = Q1(q, A) Q(gq, A), where @, (resp. Q) is the characteristic polyno-

mial of 7_ (resp. T4 ). Numerically we have found, once again, that all the eigenvalues
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in the reflection-odd subspace have “copies” in the reflection-even subspace. There-
fore, the polynomial Q(g, A) should have (g, A) as a factor, so that

det[T(12P) - /\1] = Ql(q7 )‘)2 QQ(qv )‘) (434)

where @2(¢, A) is a polynomial of degree 96 in A. Unfortunately, we have been un-
able to compute the characteristic polynomial Q(q, A) of the reduced transfer matrix
T4 (12p) and verify the conjectured factorization (4.34).

Once again, we have found numerically that the “copied” eigenvalues have iden-
tically vanishing amplitudes. We thus find 136 pairs of equal eigenvalues with iden-
tically vanishing amplitudes.

Due to the large dimension of the transfer matrix, we have been unable to compute
the limiting curve. However, we have managed using the direct-search method to
compute the point where B crosses the real g-axis: ¢y ~ 3.6431658979. We have also
computed the position of the pair of complex-conjugate T points that are obvious in
Figure 16; the result is ¢ ~ 4.05713658 £ 0.73432479 1.

We have numerically checked that the dominant amplitude vanishes at the first
nine Beraha numbers ¢ = 0,1, 2, Bs, 3, B7, Bs, By, and Byp. These values are the only
isolated limiting points for this strip. We have found no evidence of complex isolated
limiting points by inspecting the zeros of the finite-length strips.

The first two zeros ¢ = 0,1 are trivial ones. At ¢ = 2 there are 164 nonzero
eigenvalues with zero amplitudes, 2 zero eigenvalues with nonzero amplitudes, and
66 zero eigenvalues with zero amplitudes. The convergence to ¢ = Bs, 3, Bz, Bs, Bo,
By is exponentially fast (see Table 4). The tenth real zero seems to converge at an
approximate 1/n rate to the value gy = 3.6431658979.

Finally, we have also checked that there are vanishing amplitudes (in addition to
the trivial 272 identically zero amplitudes) for ¢ = Byy, Bi2, B1s, Bia, Bis, B2a. In all
these cases, the vanishing amplitude is subdominant; thus, none of these points is an
isolated limiting point.

In this case we find three vanishing subdominant amplitudes (B4, Bis, and Bsy)
that are greater than the value B,,+1 = Bis.

5 Numerical Results for the Triangular-Lattice
Chromatic Polynomial:
Zig—Zag Boundary Conditions

Until now, we have built up the triangular lattice by transferring along a direction
that is perpendicular to one of the principal directions of the lattice. An alternative
choice, of course, would be to transfer along a direction that is parallel to a principal
direction. When periodic boundary conditions are imposed across the strip, these
two constructions are inequivalent: they yield different finite graphs. We shall refer
to this alternative construction, with periodic boundary conditions in the transversal
direction and free boundary conditions in the longitudinal direction, as “zig-zag”
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boundary conditions, and it will be denoted by the subscript Z. Note that the lattice
width m must be even.

For zig—zag boundary conditions, the transfer matrix is not given by the formulae
of Ref. [16]. Rather, as is evident from Figure 1(b), the transfer matrix now takes
the following form

T(Tn'Z) = HVevenHVodd 3 (51)

where Veyen (resp. Voaq) is the product of the matrices associated to the vertical bonds
located at even (resp. odd) sites of the lattice. With this definition, all the formulae
applied in the previous sections hold.

Our original motivation for introducing this new construction was the following:
It is clear from Sections 3 and 4 that the limiting curves for the strips with free and
cylindrical boundary conditions differ qualitatively by the existence of a small addi-
tional inward-pointing branch for the case of free b.c., which is absent for cylindrical
b.c. In the limit of infinite width, one might wonder whether this branch extends
to ¢ = 2, as the triangular-lattice Ising model is known to have a zero-temperature
critical point [32]. We found it interesting to examine whether we can recover such a
branch by imposing zig—zag boundary conditions. The answer turns out to be nega-
tive; but it seems to us that zig—zag b.c. are interesting in their own right, irrespective
of this initial motivation.

We have computed the transfer matrix T'(my) and the limiting curves B for
triangular-lattice strips of even widths 2 < m = L, < 10. It is interesting to note
that the trick discussed in [16, Sections 3.1 and 3.3] for the standard construction of
a cylindrical triangular-lattice strip is not necessary here. On the other hand, the di-
mension of the transfer matrix T'(my) is in general different from TriCyl(m), because
the invariances are different: for zig-zag boundary conditions, the system is invariant
under translations of even (but not odd) length and under reflections.

5.1 L,=2y4

This case is trivial, as the transfer matrix is one-dimensional:
Z(27 x ng) = qlqg — 1)(g — 2)*"~ (5.2)

Please note that the strip 2z x ng is equivalent to 2p x np. Since there is only one
eigenvalue, there is obviously no crossing, hence B = @. However, there are zeros for
all n at ¢ = 0,1 and for n > 2 at ¢ = 2.

5.2 L,=4

The transfer matrix is three-dimensional. In the basis P = {1, d13,d24} it can be
written as

Ti Tio T3
T(4z) = 2¢—5 ¢*—4q+4 1 (5.3)
Ty, ¢*—4g+4 3¢ —17¢+25

27



where

Ty = ¢'—12¢° 4 56¢° — 121¢ + 101 (5.4a)
Ty, = ¢*—8¢* +20q— 16 (5.4b)
Tis = ¢° —10¢% + 34¢ — 40 (5.4c)

(5.4d)

and the partition function is equal to

¢ —3¢+3 T 1
Z(4P X nz) = q(q — 1) q— 1 . T(4z)n_1 . 0 (55)
qg—1 0

The limiting curve B (see Figure 18) contains two complex-conjugate arcs, which
do not cross the real ¢g-axis. There are four endpoints:

X

2.0991442518 + 2.5589234827 ¢ (5.6a)
27371672817 £ 0.1723332852¢ (5.6b)

%

We have found a complex-conjugate pair of double zeros of the resultant for # = 0
(see [16, Section 4.1.1]) at ¢ ~ 3.7718445063 £ 1.1151425080:. At these values the
limiting curve appears at first glance to be singular (see Figure 18). However, a closer
look reveals that this is not the case; in fact, the limiting curve is perfectly analytic
around these two points.!

The determinant det D(g) has the form

det D(q) = —¢’(¢—1)*(¢—2)*(¢* =3¢+ 1)(¢—3)*(2¢ —5)"
x(q* — 10¢? + 34q — 38)? (5.7)

We recognize the first five minimal polynomials pi(¢) given in [16, Table 1]. Hence, the
determinant vanishes at the first five Beraha numbers ¢ = 0,1, 2, Bs, 3. The dominant
amplitude vanishes at all these points except at ¢ = 3; therefore, ¢ = 0,1,2, Bs are
isolated limiting points. It is interesting to note that the dominant amplitude vanishes
also at ¢ = 5/2, so that this too is an isolated limiting point. This is the first time we
have found a real isolated limiting point that is not a Beraha number. (For the square
lattice, we did not find any non-Beraha real isolated limiting point [16, 17].) There are
no additional isolated limiting points coming from the last factor ¢® —10¢? + 34¢ — 38,
as the vanishing amplitudes in question all correspond to subdominant eigenvalues.

13 In the notation of [16, Section 4.2], the characteristic polynomial of T'(4z) can be expanded as
P(X,q) = (A =X0)* +d(g—q0)* +e(g—go)(A = o) + ...

around the points ¢y & 3.7718445063 & 1.11514250807 and the dominant (double) eigenvalue A\ =
—0.5237532362 + 4.5580089825 i (the linear terms in A — X\ and ¢ — ¢o vanish). This expansion leads

to analytic eigenvalues A4 (¢) around ¢ = ¢¢ and to an analytic equimodular locus around ¢ = gq.
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The first two real zeros ¢ = 0,1 are trivial as all the amplitudes vanish. The third
real zero ¢ = 2 belongs to Case 3 of Section 2: the two nonzero eigenvalues have
zero amplitude, and there is an additional zero eigenvalue with a nonzero amplitude.
Finally, the fourth and fifth real zeros converge exponentially fast to the values 5/2
and Bs, respectively. In summary, we find five isolated limiting points ¢ = 0,1,2,5/2
and Bs. This is in agreement with Table 5.

Please note that there is a vanishing subdominant amplitude at ¢ = Bg = 3.
This value is greater than B,,+1 = Bs, in contrast with the observed behavior for the
square lattice [16, 17].

5.3 L,=60g

The transfer matrix is seven-dimensional; it can be found in the MATHEMATICA
file transfer3.m.

The limiting curve B is connected (see Figure 19). It crosses the real axis at
q ~ 3.1752579126. There are four endpoints:

X

0.3618461880 + 2.5093731708 i (5.8a)
4.2589504182 + 0.7015734543 i (5.8b)

There are T points at ¢ ~ 3.8395346820 + 1.1149959335 1.
The determinant det D(g) has the form

det D(q) = 81¢"(q —1)"(q—2)"*(¢* =3¢+ 1)*(¢— 3)""(¢* = 5¢° + 6 — 1) P(q)* (5.9)

where the polynomial P(q) can be found in the file transfer3.m. The first six polyno-
mial are the first six minimal polynomials given in [16, Table 1]; hence the determinant
vanishes at the first six Beraha numbers ¢ = 0,1, 2, Bs, 3, B;. The dominant ampli-
tude vanishes at the first five Beraha numbers ¢ = 0, 1,2, Bs, 3 as well as at three of
the zeros of P(q), namely ¢ 2 2.7226328355 and ¢ & 3.6696077451 + 0.9506864736 1.
This is the first triangular-lattice strip where we find complex isolated limiting points.
In the square-lattice case, complex isolated limiting points were quite common: we
found such limiting points for L > 6 with both free and cylindrical boundary condi-
tions [16, 17].

The first two real zeros ¢ = 0,1 are trivial ones. The third real zero ¢ = 2 falls in
Case 3 of Section 2: there are four nonzero eigenvalues with zero amplitudes, two zero
eigenvalues with nonzero amplitudes, and one zero eigenvalue with zero amplitude.
The convergence of the fourth, fifth and sixth real zeros to their corresponding limiting
values (namely, Bs,2.7226328355, and 3) is exponentially fast, as shown in Table 5.
Finally, the seventh real zero converges at an approximate 1/n rate to the value
q ~ 3.1752579126.

In summary, we find six real isolated limiting points at ¢ = 0,1, 2, Bs, 2.7226328355, 3
and By (see Table 5) and two complex isolated limiting points at ¢ ~ 3.6696077451 +
0.9506864736 1. However, since the complex isolated limiting points are very near B,
it is very difficult to observe the convergence to them as distinct from the convergence

to B (see Figure 19).
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54 L,=28;

The transfer matrix is 24-dimensional; it can be found in the MATHEMATICA file
transfer3.m.
The limiting curve B is connected (see Figure 20). It crosses the real axis at

q ~ 3.3941047539. There are four endpoints:

~  —0.2143469947 + 2.0301412598 ¢ (5.10a)
4.2899063418 £ 0.5046183096 : (5.10D)

%

There are T points at ¢ ~ 4.0055796610 + 0.8830638824 ¢.

In this case we were unable to compute the determinant det D(q). However, we
checked numerically whether any of the amplitudes vanishes at the Beraha numbers
B, and if this occurs, whether the vanishing amplitude is the leading one or not.
We have made this check up to n = 50. We have found that at least one amplitude
vanishes at the Beraha numbers ¢ = 0,1, 2, Bs, 3, By, Bg, Bg. The dominant amplitude
vanishes only at the first six (namely, ¢ = 0,1,2, Bs,3, Br), so that these latter
numbers are isolated limiting points (see Table 5). In Table 5 we also notice an
additional isolated zero at ¢ ~ 2.8214204955. We have numerically confirmed that
this point is indeed an isolated limiting point by minimizing the absolute value of the
dominant amplitude o* in a neighborhood of that point.

The first two real zeros ¢ = 0,1 are trivial ones. At ¢ = 2, there are 13 nonzero
eigenvalues with zero amplitudes, 2 zero eigenvalues with nonzero amplitudes, and 9
zero eigenvalues with zero amplitudes. Finally, the other real zeros in Table 5 converge
exponentially fast to their corresponding limiting values (namely, Bs, 2.8214204955, 3,
and B7). We expect, for sufficiently larger lengths n, an additional real zero larger
than B and converging to ¢ ~ 3.3941047539; but we apparently need to go beyond
n = 80 to see it. In summary, there are seven real isolated limiting points at ¢ = 0,
1, 2, Bs, 2.8214204955, 3, and B;.

By minimizing the absolute value of the dominant amplitude «*, we have found a
pair of complex-conjugate isolated limiting points at ¢ ~ 3.832741567440.73050211595 2
(See Figure 20). Again, we are not sure that we have found all complex isolated lim-
iting points for this strip.

5.5 L,=10g

The transfer matrix is 87-dimensional; it can be found in the MATHEMATICA file
transfer3.m.

In this case we were unable to compute the limiting curve. However, we were able
to compute the value of ¢ where that curve crosses the real axis: ¢ ~ 3.5204366907.

The matrix D(q) is too large for us to compute its determinant. Instead, we
have checked numerically the eigenvalues and amplitudes of the transfer matrix at
the Beraha numbers B,, with 2 < n < 50. We have found that at least one amplitude
vanishes at the Beraha numbers ¢ = 0, 1,2, Bs, 3, B7, Bs, By, B1g, B11- The dominant
amplitude vanishes only at the first seven (namely, ¢ = 0,1,2, Bs, 3, Br, Bs), so that
these latter numbers are isolated limiting points (see Table 5). In Table 5 we also

30



notice two additional isolated zeros at ¢ &~ 2.8737312493 and ¢ ~ 3.3831285312. We
have numerically checked that in both cases the leading amplitudes vanish, so they
too are isolated limiting points.

The first two real zeros ¢ = 0,1 are trivial. At ¢ = 2, there are 35 nonzero eigenval-
ues with zero amplitudes, 31 zero eigenvalues with zero amplitudes, and 21 zero eigen-
values with nonzero emplitudes. The convergence of the fourth through ninth real ze-
ros to their corresponding limiting values (namely, Bs, 2.8737312493, 3, B7,3.3831285312, Bg)
is exponentially fast as shown in Table 5. Finally, the tenth real zero converges at an
approximate 1/n rate to the value ¢ ~ 3.5204366907.

In summary, there are nine real isolated limiting points at ¢ = 0, 1, 2, Bs,
2.8737312493, 3, By, 3.3831285312, and Bs. We have been unable to say whether
or not there are any complex isolated limiting points; but we do not see any candi-
date in Figure 21.

6 Thermodynamic Limit

In this section we will review the Bethe-Ansatz solution found by Baxter [18, 19]
for the thermodynamic limit of the zero-temperature triangular-lattice Potts antifer-
romagnet, and carefully recalculate the limiting curve B, where the chromatic roots
are expected to accumulate. The resulting picture will be substantially similar to
that set forth by Baxter [19], but with a few important qualitative differences.

6.1 Baxter’s solution
In terms of the variables & and # defined by
q=2—z—z' = 24+2cosb (6.1)

with |z| < 1 and 0 < Ref < 7, Baxter defined three functions (eigenvalues) g;(q) as
follows:

o lyp (=2 (1 — 2821 — 28T
ald) = -3 J[[l =)0 = (1 — (o) (%)
_[™ ,, sinhkf sinh[k(m — 20)/2]
log 2(q) = /_Oo dk 2k ((2 cosh k# — 1) sinh(7k/2)
cosh[k(m — 20)/2]
B (2cosh k6 + 1) cosh(jrk/Z)) (6.2b)
e sinh k6 [sinh k(7 — 0)]
log gs(q) /_Oo ksinh 7k [2 cosh k(7w — 8) — 1] (6.2¢)

These formulae were obtained in [18], but the corresponding ranges of validity were
established only in [19]. In particular, Baxter found that the complex g-plane can be
divided into three domains D; [ = 1,2, 3], in each of which the dominant eigenvalue
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is ¢;. According to Baxter [19], the intersections of these regions with the real axis
are as follows:

DiNR = {¢>4}U{¢<0} (6.3a)
D:NR = {q<q<4} (6.3b)
DsNR = {0<q¢<q} (6.3¢)

Baxter therefore determined the parameter ¢q by solving the equation

92(%) = 95(q0) (6.4)

via Newton’s method and numerical integration of (6.2b)/(6.2c), and found ¢ =
3.81967. We have refined this computation using the same method, and find

@o(Baxter) ~ 3.819671731239719 . (6.5)

This point is labelled F in Figures 24 and 26 (6p = 0.427907971348122). We have
also plotted the eigenvalues ¢g; and g3 over the entire range 0 < 6 < 7 and verified
that there is only one crossing point, namely (6.5). However, as we will argue later,
the intersections D; N R are in fact more complicated than what is claimed in (6.3),
so that (6.5) is not in fact the correct value of ¢o.

In order to obtain the limiting curve Be, in the complex ¢-plane, Baxter [19] took
advantage of the following simpler expressions for the ratios of eigenvalues:

9200) _ rp(l-wp\? 1—p¥ (6.6a)
gl(Q) B o1 1 —wp¥ 1 — pbi-3 -ba
sl pp(Eey o (6.6b)

gl(Q) o1 1—w2yj 1+ ysj -

where

= T (6.7a)
y = 6_2?-”2/3(,"_9) (67b)
w = & (6.7¢)

In these equations we require that |p| < 1 and |y| < 1 so that the products converge;
this corresponds to Imé < 0.

As Baxter [19] noted, the parameter 6 enters into the products (6.6a,b) only via
p or y, respectively, and these two variables are invariant under the transformations

% — %—I—Gk‘ = p—p (6.8a)
™ ™ ,
— ﬂ__g—i—Sk = y—y (6.8b)



for any integers k,k'. Thus, each solution of |g3/¢;| = 1 in the complex p-plane
corresponds to an infinite family of solutions in the complex #-plane: these can be
thought of as a “primary” solution (namely, the one with largest Reé contained in
the physical region 0 < Ref < 7) and its “images” under the transformation (6.8a)
with & > 1. As k — oo these “image” curves converge to §# = 0 (¢ = 4). Likewise,
each solution of |g3/g1| = 1 in the complex y-plane corresponds to an infinite family
of solutions in the complex #-plane: a “primary” solution (the one with smallest Re ¢
contained in the physical region) and its “images” under the transformation (6.8b)
with &' > 1. As k' — oo these “image” curves converge to § = 7 (¢ = 0). It
is important to note that the transformations (6.8) do not tell anything about the
dominant or subdominant character of the equimodular curve at the transformed
value of 0; this property has to be checked by other means.

Important Remark. Neither the eigenvalues (6.2b,c) nor the eigenvalue ratios
(6.6a,b) or gs/g1 = (6.6a)/(6.6b) — nor even their absolute values — are invariant
under the transformation 8 — 6 + 2wk” that leaves ¢ invariant. Therefore, we must
require 0 < Ref < 7 when using these formulae.

Remarks. 1. The formula ¢ = 2 — 2 — 2~! maps the disc |z| < 1 one-to-one onto

the g-plane cut along the interval [0,4]. Therefore (as Baxter observed [19]), when ¢
is real and ¢ > 4 or ¢ < 0, the parameter x is also real, as is the eigenvalue ¢, defined
in (6.2a).

2. The formula ¢ = 2 + 2 cos § maps the strip 0 < Ref < 7 one-to-one onto the
g-plane cut along the intervals (—oo, 0] and [4,00). In particular, when ¢ is real and
0 < ¢ < 4, the parameter 0 is real (0 < § < 7), as are the eigenvalues g, and gs
defined in (6.2b)/(6.2c).

3. The definitions (6.2a), (6.6a) and(6.6b) cannot be applied directly on the real

g-axis for 0 < g < 4; rather, one must consider a limit in which Tm# 1 0 and hence

2], 1, Iyl 1 1.

6.2 Computation of limiting curves

Our goal is to compute the locus of points where two or more of the eigenvalues
g; are equimodular, and to determine at each such point whether these equimodular
eigenvalues are dominant or subdominant. We carry out this procedure as follows:

1) We use (6.6a) to compute the locus |gz/gi| = 1 in the complex p-plane (Fig-
ure 22); we then transform the resulting plot to the complex #-plane using
(6.7a). As noted above, each curve in the p-plane corresponds to an infinite
family of curves in the #-plane. Along each of these latter curves, we compute
|ga/g1| and classify the curve (or portions of it) as dominant or subdominant.

2) We use (6.6b) to compute the locus |gs/g1| = 1 in the complex y-plane (Fig-
ure 23); we then transform the resulting plot to the complex #-plane using
(6.7b). Each curve in the y-plane corresponds to an infinite family of curves in
the #-plane. Along each of these latter curves, we compute |g2/g;1| and classify
the curve (or portions of it) as dominant or subdominant.
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3) We use (6.6a,b) to compute the locus |gs/g2| = 1 directly in the complex #-plane
and to determine dominance or subdominance.

4) We combine the three families of equimodular curves into a single #-plane plot

(Figure 24).

5) Finally, we transform the resulting curves to the complex ¢-plane using (6.1).
The resulting “phase diagram” is shown in Figure 25; a detailed view near the
point ¢ = 4 is shown in Figure 26.

Despite the explicit formulae (6.6), these computations are far from straightfor-
ward, due to the slow convergence of the products when |p| or |y| is near 1 (i.e. when
q is near the interval 0 < ¢ < 4 of the real axis) and to the need for very high numer-
ical precision in intermediate stages of the computation. We discuss these technical
points in the Appendix.

The equimodular curves |g2/¢;| = 1 in the complex p-plane are shown in Figure 22.
Each equimodular curve C), has exactly two endpoints. As we approach the circle [p| =
1, more smaller equimodular curves appear. In order to disentangle the larger curves
from these new smaller curves, we have followed each equimodular curve carefully as

it approaches the |p| = 1 limit. In Figure 22 we have shown all equimodular curves
that intersect the circle |p| = 0.99.
The principal feature is a curve C; running from point G (p = —1, § = 7/6 and

images) via the origin (p = 0, § = —i0) to point H (p = —i, § = 27/3 and images).
The next-longest curve (C3) runs from point I (p = ¢, § = 27/9 and images) to point
J (p =€ 0 = Tr/30 and images). The third-longest curve (C3) runs from point
K (p=e"/5 0 = 5r/12 and images) to point L (p = e™™/*, § = 47 /9 and images).
Some further equimodular curves and their endpoints are shown on Figure 22 and
enumerated in Table 8. In this table we have first shown the curves C, for which
both endpoints are well-determined (see below). Then we have listed some other
well-determined endpoints whose counterparts could not be estimated with sufficient
accuracy; these points are grouped into the category “Others”.

It is curious that all these endpoints appear to lie at p = € where ¢ is a rational
multiple of 7 (with a small denominator). In order to test this conjecture, we have
performed detailed fits as follows: For each endpoint we first obtained ten nearby
equimodular points p with |p| = 0.990,0.991,...,0.999. Then we performed a least-
squares fit of the data'* using the polynomial Ansatz

Argp Arg pry ®
BP . DIEPRC N (1 — [l (6.9)

™ ™
k=1

in order to estimate the phase p = Arg pr;; at the endpoint. If the equimodular curve
is smooth close to |p| = 1, this Ansatz is expected to work well. We have chosen an

14 We have made the computations with data truncated to eight decimal digits, hence the error of
the input data is 108. Note, however, that the deviations from (6.9) are not statistical flcutuations;
rather, they are “corrections to scaling”, i.e. due to neglected higher-order terms in (6.9). A large
value of the y? is thus a signal that we need to include higher-order terms in our Ansatz.
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eighth-order polynomial in order to take into account as many data points as possible
while allowing a little freedom (we have one degree of freedom in the fits). As a
check, we have repeated this computation with lower-degree polynomial Ansatze and
dropping the data with the smallest values of |p| (in order to have at least one degree
of freedom in the fit). We have used the stability of the estimates for Argpg;; as a
guideline to decide whether a fit is good or not (see below).

We next asked whether the estimated value of Argpr;/7 is or is not close to a
rational number with a small denominator. We have used the following criterion: the
real number z is “close” to the rational number m/n whenever the

“discrepancy” = |nz — m| (6.10)

is sufficiently small. Since every real number = and integer n have a “discrepancy”
of at most 1/2 (for a suitable choice of m), one must insist that the “discrepancy”
be much smaller than 1/2 in order to have good evidence that z = m/n. We have
chosen to accept that the number z is close enough to the rational number m/n only
when the “discrepancy” is < 0.001.

We have been able to fit the data corresponding to 42 endpoints. (We have nu-
merically located additional endpoints, but we have not included here those endpoints
that correspond to very small equimodular curves close to the circle |p| = 1.) Of these
42 endpoints, we have obtained a reasonably good fit for the 32 points displayed in
Table 8: here a “reasonably good fit” is defined as one for which the “discrepancy” is
< 1072 and for which the values of Arg pr;; and the “discrepancy” are stable under
changes in the degree of the polynomial Ansatz (6.9). It is interesting to note that
there are 15 endpoints satisfying the the stronger condition “discrepancy” < 107°.

We have found several smaller equimodular curves that are hard to see on Fig-
ure 22, and we suspect that they too have rational endpoints. Indeed, we would not
be surprised to learn that such rational endpoints are dense in the unit circle (though
we have no idea how to prove this conjecture).

The equimodular curves |g3/g;| = 1 in the complex y-plane are shown in Fig-
ure 23. Again, each equimodular curve D, has exactly two endpoints, and smaller
equimodular curves appear as we approach the |y| = 1 limit. We have shown in
Figure 22 all equimodular curves that intersect the circle |y| = 0.99.

The principal feature is again a curve Dy running from point G (y = e
6 = 7/6 and images) via the origin (p = 0, § = m — 10) to point H (y =1, § = 27/3
and images). The next-longest curve (Dy) runs from point K (y = e5™/7, § = 5r/12
and images) to point L (y = e*™/® 0 = 47/9 and images). A much shorter curve
(D3) runs from point T (y = e=57/7 0 = 27 /9 and images) to point J (p = =207/
6 = 77 /30 and images). Finally, a small curve (D4) runs from point G’ (y = ¢
0 = 7/12 and images) to point H' (y = e=1°™/13 9 = 27/15 and images); we call
these points G’ and H' because they correspond to # values that are images of the
points G and H under the p-plane transformation (6.8a) [though they are not images
in the y-plane].

Once again, all the endpoints appear to lie at y = ¥ where @ is a rational
multiple of 7 with small denominator. Even more curiously, many of these endpoints

—4rif5
)

—8mi/11
)
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correspond to # values that are also observed as endpoints in the |g,/g;| = 1 plot
(e.g., all points with a label in Tables 8 and 9). We performed fits to those endpoints
in the same manner as just explained for the p-plane. We found 44 endpoints, and of
these we obtained reasonably good fits for the 36 endpoints displayed in Table 9. All
these points satisfy the criterion “discrepancy” < 0.001, and both Arg prix and the
“discrepancy” are rather stable as we vary the polynomial Ansatz in the fits (6.9).
Of these 36 endpoints, we find 13 satisfying “discrepancy” < 1075.

We have also found more smaller equimodular curves that are hard to see on
Figure 23; we conjecture that they have rational endpoints and we wonder whether
these rational endpoints are dense in the unit circle.

Remark. It is important to note that the two main points in Figures 24-25 (namely,
G and H) are extremely well determined in both the p- and y-planes. In particular,
their “discrepancies” range from 107¢ down to 2 x 1078, Thus, we can trust that the

values of @ for these two points are given ezactly by 0 = m/6 and 8y = 27/3 (see
Tables 8-9).

6.3 Summary of f-plane phase diagram

Let us now describe the resulting zero-temperature “phase diagram” in the com-
plex #-plane (Figure 24) and discuss the agreements and discrepancies with respect
to Baxter [19]. For simplicity we have labelled the points by the same letters as
in Figure 5 of [19]. The portions of curves where the equimodular eigenvalues are
dominant (resp. subdominant) are depicted in black (resp. pink).

The curve A-B (resp. B-C) corresponds to the dominant equimodularity of gs
(resp. g2) and ¢;. These two curves together with the real f axis enclose the rest of
the dominant curves. The position of these points is

O = = (6.11a)
s =~ 0.508588719845180 — 0.625516375803391 ¢ (6.11Db)
0o = 0 (6.11c)

The point B is triply equimodular (i.e. a T point), so that three equimodular
curves cross there:

1) C-B-H, which corresponds to |g1| = |gz| (it is dominant along C-B and sub-
dominant along B-H); and

2) A-B-Q-G, which corresponds to |g;| = |gs| (it is dominant along A-B, sub-
dominant along B-Q, and dominant again along Q-G);

3) R-B-Q-F, which corresponds to |¢g2| = |gs| (it is subdominant along R-B,
dominant along B-Q, and subdominant again along Q-F). Point R corresponds
to = —i00.
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This last result contradicts [19], where the entire curve B-Q-F is claimed to be
dominant. The position of these points is'®

fg ~ 0.440568708859061 — 0.235993788540783 i (6.12a)
Op ~ 0.427907971348122 (6.12b)

The point @ is also triply equimodular, so that three equimodular curves cross
there. Two of them have just been discussed: A-B—Q-G and R-B-Q-F. The third is
C-Q-G, which corresponds to |g1| = |gz[; it is dominant along C—Q and subdominant
along Q—G. Please note that the subdominant curve Q—G lies always to the right of
(but very close to) the dominant curve Q—G.

There are infinitely many equimodular curves |g;| = |g2| terminating at point C
(¢ = 4) and converging to it: they are images under (6.8a) of the two curves C-B-H
and C—Q-G. The dominant eigenvalue alternates between ¢, and g2 as these curves
are crossed. For simplicity, we have shown in Figure 24 only the first few of these
image curves. The endpoints of these curves can be obtained easily using the values

of g = /6 and 0y = 27 /3 (see Table 8) and transformation (6.8a). The result is

T
Opr = — 1
Gk 611 %) (6.13a)
2
O, = —— 13b
Hok 3(1 4 4k) (6.13b)

According to (1.3)/(6.1), they correspond to Beraha numbers: gy is Biayi2k, and
9H,k is Bayiok.

Likewise, there are infinitely many equimodular curves |g;| = |gs| terminating at
point A (¢ = 0) and converging to it: they are images under (6.8b) of the two curves
A-B—Q-G and A-H. The dominant eigenvalue alternates between g, and ¢3 as these
curves are crossed. Once again, we have shown in Figure 24 only the first few of these
image curves. The endpoints of these curves can be obtained easily using the values

of ¢ = /6 and 8y = 27 /3 (see Table 9) and transformation (6.8b). The result is

1+ 15K

Oop = —— 14

T Gy (6.142)
2+ 3K/

Opp = —oO 14D

S T (6.14b)

In this case, none of them corresponds to a Beraha number.

There are also many small equimodular curves lying near the real f-axis, some
of which are dominant; they arise from the curves I-J, K-L, etc. in Figures 22 and
23. The number of these curves grows rapidly as |Imé| — 0, so we cannot possibly
compute all of them; moreover, the computation becomes increasingly difficult as
[Im#| — 0, since |p| and |y| are tending to 1. We have, in any case, shown in

15 Despite appearances, the point F in Figure 24 is not triply equimodular: the dominant equimod-
ular curve |g1| = |g2| meets the real axis at H' (f = 27/15 ~ 0.41888), i.e. slightly below point F;
this is discussed below at (6.13b) ff. This splitting is somewhat more visible on Figure 26.
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Figure 24 all those curves in the range 0.2 < Ref < 2.3 that intersect the half-
plane Im# < —0.01. Again, one can obtain the endpoints of these curves by applying
transformations (6.8) to the corresponding 6 values in Tables 8 and 9. These endpoints
are not in general Beraha numbers. Only point I (§; = 27/9) and its transformed
values under (6.8a),

6, — 2T
M9 1ok

are Beraha numbers (namely, Boy1ak).
It follows from Figure 24 that the point ¢ should not be identified with F (as
Baxter [19] did), but rather with the point G at position

(6.15)

O = — ~ 0.523598775598299 (6.16)

[N ]

(see Tables 8 and 9).

6.4 Summary of ¢-plane phase diagram

In Figure 25 we show the above “phase diagram” in the g-plane (for clarity, only
the dominant equimodular curves have been depicted). This is quite similar to Fig-
ure 5 of [19], except for four issues:

1) The “phase diagram” around point C (¢ = 4) is richer than the one found by
Baxter (see Figure 26 for a detailed plot of this region). The largest components of
the region Dy (where g3 is dominant) are bounded by C-B-Q-C and its complex-
conjugate counterpart C-E-Q'-C. The points B and Q take the values

g ~ 4.099903170634857 + 0.649694690705481 1 (6.17a)
3.859627688708099 + 0.203154495450945 ¢ (6.17b)

%

aqQ

However, there are additional components of D; and D, near point C; indeed, as we
approach point C the dominant eigenvalue alternates between ¢, and g,. Thus, ¢, is
dominant on the region lying between C-Q-G-Q'-C and C-B;5—C; g, is dominant
on the region between the curve C—B;5—C and the next curve we find towards C, etc.
Baxter found [via the transformation (6.8a)] only half of the curves around point C,
namely, those curves that are images of C-B—H and past through the Beraha numbers
Bsi2k. (In Figure 26 we have shown two of these curves, corresponding to Bjs and
B27.)

2) If we define ¢g as the point on the real g-axis where the region Dj ends, then the
above discussion implies that ¢o is not given by ¢r = 3.819671731239719 as Baxter
believed [cf. (6.5)], but rather by

G = ga = Bia = 2+ /3 ~ 3.73205080 7568877 (6.18)

[cf. (6.16)].
3) The “phase diagram” around point A (¢ = 0) is also richer than the one found
by Baxter. The analytic structure is similar to the one already discussed for the point
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C, except for the fact that now the dominant eigenvalue alternates between ¢, and ¢s.
Again, Baxter found [via (6.8b)] only some of the equimodular curves in this region.
The physical meaning of these new curves is not clear to us.

4) We also find many new dominant equimodular curves lying very close to the
real g-axis between points A and C. Some of them (lying between H and G) have
been depicted in Figure 25. These curves were missed by Baxter and their physical
meaning is unclear.

On Figure 25 we have also superposed the limiting curve for L = 11p (see Fig-
ure 16).' This curve lies quite close to the main parts of the infinite-strip-width
limiting curve obtained in this section. The point ¢ for the L = 11p strip (as well
as for the rest of the strips considered in this paper: see Table 6) lies below both
Baxter’s prediction (6.5) and our somewhat lower prediction (6.18). So our results
in Sections 3-5 are compatible with both predictions; unfortunately our strips are
not yet wide enough to distinguish between them. On the other hand, it is pre-
cisely around points A and C that the finite-strip limiting curve is not defined, so our
transfer-matrix results do not give any clue as to whether the additional dominant
equimodular curves we have found there can be neglected (as Baxter did) or not.

Another way of discovering whether the true value of go is given by point F (6.5) or
by point G (6.18) is to consider the isolated limiting points of wide triangular-lattice
strips. We expect that all real isolated limiting points are smaller than go. Thus, if
we find any isolated limiting point larger than (6.18) [and smaller than (6.5)], then
we should conclude that our prediction is false. In Tables 1, 3, 4 and 5 we do not
find any such zero. The largest real zero we have found is & 3.6345747 < qa = B2 &~
3.7320508 . ... On the other hand, for free and cylindrical boundary conditions, all
real isolated limiting points are expected to be Beraha numbers. Thus, if ¢y were
given by F, as Baxter predicts, then the largest real isolated limiting point would be
By, =~ 3.801938. On the other hand, if ¢y is given by G, as we predict, then the largest
real isolated limiting point would be By; /2 3.682507 (or perhaps B &~ 3.732051). In
Figure 26 we have also depicted the position of the Beraha numbers By, ..., Big to
make easier the comparison with the two alternative values of ¢.

7 Summary and Outlook

7.1 Behavior of dominant-eigenvalue-crossing curves B

In this paper we have computed the transfer matrix for triangular-lattice strips
of width 3 < L, < 9 for free boundary conditions, 4 < L, < 12 for cylindrical
boundary conditions, and L, = 4,6,8,10 for “zig—zag” boundary conditions. The
transfer matrix allows the computation of the chromatic zeros for strips of arbitrary
length L,. As the length L, tends to infinity (for fixed width L,), the chromatic
zeros accumulate along certain curves (limiting curves B) and around certain points
(isolated limiting points) according to the Beraha—Kahane-Weiss theorem [25, 26, 27].

16 [, = 12p would be substantially similar, had we been able to compute the limiting curve for it
(compare Figures 16 and 17).
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For all the above strips except L, = 10, 12p, 107, we have been able to compute the
limiting curves B. The exact computation of all the isolated limiting points has been
carried out for L, < 6p, L, < 9p and L, < 6z; for the larger strips we were able to
check that certain values of ¢ are isolated limiting points, but we cannot be certain
that we have found all of them. By studying the behavior of the limiting curves and
isolated limiting points as a function of the strip width L, (and boundary conditions),
we hope to shed light on the thermodynamic limit L,, L, — oo.

The basic properties of both limiting curves and isolated limiting points are sum-
marized in Table 6. In all cases the identity

endpoints = (2 x components) + (2 x double points) + (T points)
— (2 x enclosed regions) (7.1)

holds. This identity can be derived by simple topological /graph-theoretic arguments.

By inspection of Table 6, we observe some regularities when L, becomes large.
For all three boundary conditions, the curve B appears to become connected (#C =
1) when L, is large enough. For all L,, the number of endpoints (#E) is 6 for free
boundary conditions and 4 for the other two boundary conditions. (Note, however,
that for L, > Tg, L, > 10p and L, = 8z our counts on the number of endpoints are
only lower bounds: we may have missed some.) When L, is large enough, the number
of T points (#T) is 4 for free boundary conditions and 2 for the other boundary con-
ditions. We have found no evidence of double points for any of the strips considered.
Finally, the number of enclosed regions is zero except for L, = 5p, L, < 5p and
L, = Tp. These regularities are in sharp contrast with the square-lattice case [16, 17],
where the number of connected components and endpoints seems to grow with the
strip width. In particular, we have not found in the triangular-lattice limiting curves
any trace of the small gaps and bulb-like regions that are so common in the square-
lattice case. It therefore seems that the thermodynamic limit may be achieved in a
smoother way for the triangular lattice than for the square lattice. Finally, it is worth
mentioning that in all cases except L, = 4r and 47, the limiting curve B crosses the
real g-axis, thus defining ¢q. By contrast, for the square lattice, ¢q is well-defined only
for odd widths; for even widths with both free and cylindrical boundary conditions,
we found either that B fails to intersect the real axis or that it contains a segment of
the real axis passing through a double point [16, 17].

Let us also note that, as in the square-lattice case [16, 17], we find chromatic zeros
with Req < 0. Indeed, for L, > 7p and L, > 8z we find that the limiting curve B
intersects the half-plane Re ¢ < 0. For free boundary conditions, none of our limiting
curves (L, < 8p) reach this half-plane; but from Table 6 we can see that minReq is
decreasing and we expect that it will be < 0 for L, > 10p (and possibly already for
).

The regularities exhibited by the limiting curves become clearer when we super-
pose them all (with fixed boundary conditions). This is done in Figures 27, 28 and 29
for free, cylindrical and zig-zag b.c., respectively. We find an overall behavior similar
to that found for the square lattice [16, 17]. For free boundary conditions (Figure 27),
we find a monotonic behavior with the width L,: both the leftmost arcs and the right-
most arcs move outwards as L, is increased (see also the columns labelled minRe ¢
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and max Re ¢ in Table 6). The value of ¢q (or Re g for L, = 4p) is also monotonically
increasing in L,. The overall shape of the limiting curves is similar to the expected
limiting curve in the thermodynamic limit (Figure 25). We expect that as L, grows,
the leftmost endpoints will tend towards ¢ = 0, while the rightmost endpoints will
go to g = q.(tri) = 4. The crossing point go will eventually go to either point F [cf.
(6.5)] or point G [cf. (6.18)] in Figure 25. Unfortunately, our numerical data are not
good enough to tell unambiguously the true limit. There is additional one feature of
the limiting curves with free boundary conditions that does not correspond to any
feature of the predicted thermodynamic-limit curve: namely, a pair of small complex-
conjugate branches emerging from T points and pointing inwards. From Figure 27,
it seems that the size of these branches does not go to zero as L, is increased (at
least up to 8 or 9); rather their size stays more or less constant. We are unable to
say whether these branches will get shorter for larger L, and ultimately disappear in
the limit L, — oo.

In Figure 28 we superpose all the limiting curves with cylindrical boundary condi-
tions. As in the square-lattice case, the behavior of the leftmost part of these curves
seems to be monotonic: the arcs move outwards as L, is increased. In particular,
min Re ¢ decreases monotonically with the strip width (see Table 6). However, the
behavior on the right side of the plot is clearly not monotonic: there are differences
depending on the quantity L, mod 3. This is to be expected, since with periodic
boundary conditions in the transversal direction, strip widths that are not multiples
of 3 are somewhat unnatural as they introduce frustration in the 3-state Potts an-
tiferromagnet. Thus, the dependence on L, in the interval 3 < Req < 4.5 is not
a surprise (the same feature is present in the square-lattice case, where we find an
even-odd dependence on the limiting curves [16, 17]). For fixed values of L, mod 3,
we find that ¢y is monotonic in L,: for L, = 1 mod 3 it decreases, while for L, = 0
or 2 mod 3 it increases. The shape of the limiting curves for L, = 0 mod 3 is very
similar to the expected thermodynamic limit (Figure 25), while in the other cases
we find stronger finite-size effects that we expect to disappear in the limit L, — oo.
Finally, it is worth mentioning the absence of the extra branches that appear for free
boundary conditions.

In Figure 29 we superpose the limiting curves for “zig-zag” boundary conditions.
In this case we only have three curves, so we are unable to extract any definitive
conclusion. We can only confirm the monotonic behavior on the leftmost side of the
curves and the absence of any extra branches. Again, the overall shape is similar to
the expected thermodynamic limit depicted in Figure 25.

If we compare the limiting curves for different boundary conditions, we see that
the thermodynamic limit is achieved faster for cylindrical and “zig-zag” boundary
conditions than for free boundary conditions (due to existence of “surface” effects in
the later). This is similar to the behavior observed in the square-lattice case.

Remark. In the computation of the limiting curves B for triangular-lattice strips
with eylindrical boundary conditions, we have found a curious behavior involving
identically vanishing amplitudes. (This is important, because the eigenvalues corre-
sponding to the identically vanishing amplitudes must be ezcluded from the compu-
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tation of the equimodular curves. For square-lattice strips, by contrast, we have not
observed any identically vanishing amplitudes [16, 17].) As explained in the intro-
duction to Section 4, the transfer matrix can be written (after a change of basis) in
the block-diagonal form

T(mp) = <T+((;nl>) T_(Omp)> 7 (7.2)

where the matrix T, (mp) lives on the subspace of reflection-invariant connectivi-
ties and has dimension SqCyl(m) [i.e., the dimension of the transfer matrix for a
square-lattice strip of width m with cylindrical boundary conditions], while the ma-
trix T_(mp) lives on the subspace of reflection-odd connectivities and has dimension
TriCyl(m) — SqCyl(m). For m > 8p we have TriCyl(m) > SqCyl(rm) and this de-
composition becomes nontrivial. Now, simple symmetry arguments (see Section 4)
explain why all the eigenvalues in the reflection-odd subspace should have identically
vanishing amplitudes. But what is curious and mysterious is that each of these eigen-
values has an identical “partner” in the reflection-even subspace, also with identically
vanishing amplitude. This means that the characteristic polynomial associated to the
transfer matrix T(mp) can be factored as

det[T(mp) — M] = Qu(q,\)* Qa(g, ), (7.3)

where the zero-amplitude eigenvalues are those coming from the factor Q(g, A)?. In
particular, the number of eigenvalues with zero amplitude (# VA) is always even,
and it equals twice the dimension of the reflection-odd subspace:

#VA(m) = 2 x [TriCyl(m) — SqCyl(m)] (7.4)

(see Table 7). This is, at any rate, what we have found for 8 < m < 12p (see
Sections 4.7-4.11); we conjecture that it holds for larger widths as well. It follows
that the effective dimension of the transfer matrix TriCyl’(m) is given by

TriCyl'(m) = 2SqCyl(m) — TriCyl(m) . (7.5)

Numerical values for all these quantities are displayed in Table 7; of course, the values
of # VA and TriCyl'(m) for m = 13,14 are conjectures.

Numerical values of TriCyl(m) and SqCyl(m) were first reported in [16, Table 2].
An analytic formula of TriCyl(m) for prime values of m has been obtained in [53,
Theorem 3]. This paper also contains a conjecture for SqCyl(m) with prime m > 3
[53, Conjecture 2]. Finally, an analytic formula for TriCyl’'(m) has been conjectured
for arbitrary values of m [53, Conjecture 1].

7.2 Behavior of amplitudes and the Beraha conjecture

Let us now discuss the isolated limiting points and the role of the Beraha numbers
in the triangular-lattice strips. Our results show that the number of isolated limiting
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points is a non-decreasing function of the strip width L, (for each boundary condi-
tion), at least up to the maximum L, we have been able to investigate. For free and
cylindrical boundary conditions we did not find any complex isolated limiting points
(see Table 6). For “zig-zag” boundary conditions we find a pair of complex-conjugate
isolated limiting points for L, = 67, and we have evidence of the existence of another
pair of complex-conjugate isolated limiting points for L, = 8.

Concerning the real isolated limiting points, most of them are Beraha numbers
(1.3). It is only for “zig-zag” boundary conditions that we find real isolated limiting
points that are not Beraha numbers: for L, = 47 we find ¢ = 5/2; for L, = 6y,
q =~ 2.722633; for L, = 87, ¢ ~ 2.821420; and for L, = 10z, we find two such points,
q ~ 2.873731 and ¢ =~ 3.383129. It is not clear to us how these non-Beraha real
isolated limiting points behave as L, — oo, e.g., whether their number is bounded or
unbounded.

For all the lattices we have studied, we observed empirically that there is at
least one vanishing amplitude «;(q) at each of the Beraha numbers up to Bpyi (see
Table 10). It is reasonable to conjecture that this holds for all L (in agreement with
a similar conjecture for the square lattice [16, Conjecture 7.1]):

Conjecture 7.1 For a triangular-lattice strip of width L with free, cylindrical or
“zig-zag” boundary conditions, at each Beraha number q = Ba,. .., Bry1 there is at
least one vanishing amplitude ;(q). That is, det D(q) = 0 for ¢ = By, ..., Brt1-

In contrast with the square-lattice case [16, Conjectures 7.2 and 7.3], however, we
find that there is a vanishing amplitude [hence det D(¢) = 0] also at some Beraha
numbers larger than Br,;. Indeed, we find examples for each boundary condition

(see Table 10):

e For free boundary conditions, ¢ = Bg is a zero of det D(q) for L = 4p.

e For cylindrical boundary conditions, ¢ = B is a zero of det D(q) for L = 4p; ¢ =
By is a zero for L = 6p,7p,8p; ¢ = By4 is a zero for L = 8p,9p, 10p, 11p, 12p;
q = Bjgis azerofor L = 10p, 11p, 12p; and finally, ¢ = Bys is a zero for L = 12p.

e For “zig-zag” boundary conditions, ¢ = Bg is a zero of det D(q) for L = 45.

We have systematically checked all Beraha numbers up to Bsg to make this list.

Please note that for free and “zig-zag” boundary conditions, we have found only
one case each in which a Beraha number beyond Br; is a zero of det D(g¢), namely
the relatively small value of I = 4. It is conceivable that for all larger L there are
no such Beraha zeros, as is conjectured for all L for the square lattice [16, Conjec-
ture 7.2]. However, this conjecture clearly cannot be true for cylindrical boundary
conditions. There is presumably some pattern that tells us which Beraha numbers
q = By with k > L+1 can be zeros of det D(q). Thus far only a few Beraha numbers
(Bs, B1o, B1a, Bis, Ba2) have appeared on that list. Indeed, we conjecture that the
pattern is the following:
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Conjecture 7.2 For a triangular-lattice strip of width L with cylindrical boundary
conditions, the Beraha numbers where det D(q) vanishes is given by the union of the
sets {Ba, Ba, ..., BLy1} and {Bak—2 | k = 1,2,...,| L/2]}, the upper limit on k being
the integer part of L/2.

7.3 Nature of the fixed zeros

In Section 2 we discussed the “fixed” zeros that occur at small integers ¢ (here
q = 0,1,2,3) when the graph fails to be g-colorable. From the point of view of the
transfer-matrix formalism, these fixed zeros can arise in either of three ways:

1) All the amplitudes ay vanish at g. Then Z,(q) = 0 for all lengths n > 1.
2) All the eigenvalues Mg vanish at ¢. Then Z,(¢) =0 for all n > 2.

3) “Mixed case”: Neither all the amplitudes nor all the eigenvalues vanish at g,
but for each k either ay, or Ay vanishes at ¢ (or both). Then Z,(¢) = 0 for all
n > 2.

Let us now summarize what we have found concerning the nature of these fixed zeros
for triangular-lattice strips:

g = 0,1. At ¢ = 0,1 all the amplitudes vanish, due to the prefactor ¢(¢ — 1) in
the left vector u. These points therefore belong to Case 1.

q = 2. At ¢ = 2 the behavior depends on the boundary conditions and on the
strip width L,:

e Free boundary conditions:

— L, = 2p: The one eigenvalue vanishes at ¢ = 2 (Case 2).

— L, = 3p: There is one nonzero eigenvalue with a zero amplitude, and one
zero eigenvalue with a nonzero amplitude (Case 3).

— L, = 4p: There is at least one nonzero eigenvalue with a zero amplitude
and exactly one zero eigenvalue with a nonzero amplitude (Case 3). The
transfer matrix at ¢ = 2 is not diagonalizable: it has a nontrivial Jordan
block corresponding to A = 0.

— L, > 5p: There is at least one nonzero eigenvalue with a zero amplitude,
at least one zero eigenvalue with a zero amplitude, and exactly one zero
eigenvalue with a nonzero amplitude (Case 3). We also find that for all
L, > 4g the transfer matrix at ¢ = 2 is not diagonalizable, i.e. it has
nontrivial Jordan blocks (all corresponding to eigenvalue A = 0).

e Cylindrical boundary conditions:

— L, odd: All the amplitudes vanish, due to the prefactor ¢(¢ — 1)(¢ — 2) in
the left vector u (Case 1).
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— L, = 2p: The one eigenvalue vanishes at ¢ = 2 (Case 2).

— L, = 4p: There is one nonzero eigenvalue with a zero amplitude, and one
zero eigenvalue with a nonzero amplitude (Case 3).

— L, even > 6p: There is at least one nonzero eigenvalue with a zero ampli-
tude, at least one zero eigenvalue with a zero amplitude, and at least one
zero eigenvalue with a nonzero amplitude (Case 3).

e Zig-zag boundary conditions:

— L, = 25: This is identical to L, = 2p (Case 2).

— L, = 4z: There are two nonzero eigenvalues with zero amplitudes, and one
zero eigenvalue with a nonzero amplitude (Case 3).

— L, even > 67: There is at least one nonzero eigenvalue with a zero ampli-
tude, at least one zero eigenvalue with a zero amplitude, and at least one
zero eigenvalue with a nonzero amplitude (Case 3).

g = 3. The point ¢ = 3 is a fixed zero only for cylindrical boundary conditions
with strip widths L, that are not a multiple of 3. There are two distinct situations:

— L, = 4p: Both eigenvalues vanish, so that the whole transfer matrix van-

ishes (Case 2).

— L, = 5p: There is one nonzero eigenvalue with a zero amplitude, and one
zero eigenvalue with a nonzero amplitude (Case 3).

— L, = 7p,8p,10p, 11p: There is at least one nonzero eigenvalue with zero
amplitude, at least one zero eigenvalue with a nonzero amplitude, and at
least one zero eigenvalue with a zero amplitude [or nontrivial Jordan block
corresponding to A = 0 with no contribution to the partition function for
any n > 1] (Case 3). We also find that for L, > 8p the transfer matrix at
¢ = 3 is not diagonalizable, i.e. it has nontrivial Jordan blocks.
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A Numerical Computation of [] (1 — tz™)

n=1

In this appendix we discuss briefly some of the technical issues involved in the
numerical computation of Baxter’s products (6.6). Everything can be expressed in

terms of the function .

R(t,z) = [ —ta"), (A1)
n=1
which is defined for complex ¢ and = satisfying |z| < 1 and was first studied by Euler
[54]. Here we need the cases t = +1 and ¢ = £ a cube root of unity. A more detailed
discussion, including proofs, can be found in [55].

The numerical computation of R(¢,z) clearly becomes delicate when |z| 1 1. In
particular, direct use of the product (A.1) gives an algorithm that is only “linearly
convergent”, i.e. the number of significant digits in the answer grows linearly with
the number of terms taken. Moreover, the constant of proportionality in this relation
is proportional to 1 — |2|, and thus deteriorates linearly as |z| T 1. Finally, there is
severe loss of numerical precision when multiplying numbers that are very near 1. An
alternative approach can be based on the representation

—
log R(t,z) = 251_:&’ (A.2)
k=1

which is valid whenever |z| < 1 and |tz| < 1. This sum is again only linearly
convergent, but the problem of loss of numerical precision is alleviated by use of the
logarithm.

A much more efficient algorithm can be based on the identity

B . (—t)nflfn(n+l)/2
R(t,z) = Z(l-m)(l—:v?)---(l—x") (A.3)

(n+1)/2

due to Euler.'” Because of the z" factor in the numerator, this algorithm is

“quadratically convergent”:

Proposition A.1 ([55]) Define
_ \n..n(n+1)/2
0 — (=) . (A4)
=)0 =)=
Then, for |t| <1 and |z| < e (v >0), we have

=N

1r2/6"/—N(N+1)'y/2

(a) Ay =

S T

17 For a proof of (A.3), see e.g. [56, p. 19, Corollary 2.2], [57, p. 34, Lemma 4(a)] or [58, pp. 22-23].
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3

€1r2/3'y—N(N+1)')//2

A

_ |n=N
(b) on = |R(t,z)] = 1—e N+

Corollary A.2 ([55]) Let K >0, and suppose that |t| <1 and |z| <e™ (v>0).

T2

7

(b) If N > 1/ , then oy < e K.

It turns out | 55] that the @ priori bound of Proposition A.1(b) is asymptotically
within 9.1% of being sharp when t =1, 0 < 2 = ¢™” < 1 and N >> 1/v (moreover,
in this case it is asymptotically sharp as v | 0). But since this bound is overly
pessimistic in other cases, it is of some value to provide an a posteriori bound on the
truncation error that is more realistic, when = ¢ (0,1), than the a priori bound. Here
is such a bound, which can be used a stopping criterion in the numerical algorithm:

K i
(a) If N > —‘, then Ay < e K.

Proposition A.3 ([55]) Let |t| <1, |z|<e™ (y>0) and N > (log2)/~y. Then:

o0 e_]\],y
(a) Ay = Za < |aN—1|1 Sy
n=N
—N~n N-1
b) & = n=N < |aN—1| € here Sv = .
(b) oy Sel = [Sw| 1=2eM where Sy Z_: a

[Note also that y < 6i/(1 — dly).]
In particular, if N > (log 3)/~, we have Ay < |an-1| and 8y < |an-1]/|Sn|.

Let us conclude by making some brief remarks about the numerical precision that
is required in intermediate stages of the calculation based on (A. 3) It turns out [55]
that the largest term max |a,| can be as large in magnitude as €” 212y (and is indeed

of this order when 0 < z < 1), while the answer R(¢,z) can be as small in magnitude
as €™ /7 (and is indeed of this order when { = 1 and 0 < z < 1). It is there-
fore necessary to maintain, in intermediate stages of the calculation, approximately
(m%/47)/log 10 &~ 1.07 /v digits of working precision beyond the number of significant
digits desired in the final answer.

We used all three algorithms — the product (A.1), the logarithmic sum (A.2) and
the quadratically convergent sum (A.3) — and carefully cross-checked the value of
R(t, z); we also verified numerically the error bounds of Proposition A.1, Corollary A.2
and Proposition A.3. In order to guarantee that the roundoff error is under control,
we performed all computations using MATHEMATICA with a working precision of
at least 100 digits and often much more (increasing the working precision until the
answer is independent of the precision used).
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Lattice

‘ 4th Zero

| 5th Zero

| 6th Zero

3r
3r
3r
3r
3
3r
3p
3r
3r
3p

X 31:‘

X 6F

X 9F

X 12}?
X 15F
X 18F
X 211:‘
X 24F
X 271~‘
X 301:

2.552816126636

2.562658027317

2.565287184975

2.566507072062

2.567211365497

4
4
4
4
4
4
4
4
4
4

X 4F

X SF

X 12}:‘
X 16F
X 201:
X 24F
X 281:
X 321.:‘
X 36F
X 401?

2.604661945742
2.618028652707
2.618033986251
2.618033988749
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750

oF

SF
OF
SF
57
OF
S5F
oy
OF

SF

X 5F

X 10F
X 15F
X 201:
X 251:
X 30F
X 351:
X 40F
X 45F
X 50F

2.618161303055
2.618033988749
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750

2.795370504128

2.947523648832

2.968180058756

2.976760450197

2.981534673779

6
6F

6F

X GF

X 12]5‘
X 18F
X 241:
X 30F
X 36F
X 42F
X 48F
X 54]:
X 601:

2.618033979731
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750

3.001429148693
3.000001523178
3.000000001785
3.000000000002
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000

3.054848659601
3.100527321592
3.118151997375
3.127749140385
3.133811079422
3.137993327670
3.141054810628
3.143393623378
3.145239011028

Beraha ‘ 2.618033988750 | 3

| 3.246979603717

Table 1:

all lattices. “Beraha” indicates the Beraha numbers Bs

B:.

51

Real zeros of the chromatic polynomials of finite triangular-lattice strips
with free boundary conditions in both directions, to 12 decimal places. A blank means
that the zero in question is absent. The first three real zeros ¢ = 0,1,2 are exact on

(34+5)/2, Bs = 3, and




Lattice | 4th Zero

| 5th Zero

‘ 6th Zero

‘ 7th Zero

X TF

X 141:‘
X 21F
X 28]:‘
X 351:‘
X 421:
X 49]:‘
X 561:‘
X 63F
X 70F
X 771:‘
X 841:‘
X 91F

2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750

2.978584823651
3.000000029690
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000

3.160410975706
3.218685236695
3.236121891966
3.243833695579
3.246633282347
3.247059872523

3.246965843358
3.246982133140

3.254369173708

3.258435734303

X SF

X 16F
X 241:
X 321:‘
X 40F
X 48F
X 561:‘
X 641:‘
X 721:‘
X 801:‘
X 88F
X 96F

2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750

3.000359693703
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000

3.095706393163
3.229632685380
3.246928323759
3.246979586275
3.246979603712
3.246979603717
3.246979603717
3.246979603717
3.246979603717
3.246979603717
3.246979603717
3.246979603717

9

X 9F
X 181:‘

> X 271<

X 361:‘
X 451:‘

X d4p

X 631:‘
X 721:‘
X 811:‘
X 90F

2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750
2.618033988750

2.999999518372
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000
3.000000000000

3.246969773686
3.246979603720
3.246979603717
3.246979603717
3.246979603717
3.246979603717
3.246979603717
3.246979603717
3.246979603717

3.342943823308

3.374646284957

3.387946181123

3.395349738491

Beraha | 2.618033988750 | 3 | 3.246979603717 | 3.414213562373 |

Table 2:  Real zeros of the chromatic polynomials of finite triangular-lattice strips
with free boundary conditions in both directions, to 12 decimal places. We use the
same notation as in Table 1.
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Lattice 4th Zero 5th Zero 6th Zero 7th Zero 8th Zero

4p X 4p | 2.617986010522 | 3 3.465246100723

4p X 8p | 2.618033988740 | 3 3.475055224065

4p X 12 | 2.618033988750 | 3 3.477452996799

4p X 16 | 2.618033988750 | 3 3.478536268722

4p X 20p | 2.618033988750 | 3 3.479153472532

4p X 24 | 2.618033988750 | 3 3.479552148708

4p x 28p | 2.618033988750 | 3 3.479830901859

4p X 32 | 2.618033988750 | 3 3.480036768366

4p X 36p | 2.618033988750 | 3 3.480195030232

4p x 40p | 2.618033988750 | 3 3.480320488501

5p X by | 2.618033990394 | 3

5p X 10p | 2.618033988750 | 3 3.196843987850

5p x 15p | 2.618033988750 | 3

5p X 20p | 2.618033988750 | 3 3.202699178454

5p X 25p | 2.618033988750 | 3

5p X 30p | 2.618033988750 | 3 3.204333275156

5p X 35p | 2.618033988750 | 3

5p X 40p | 2.618033988750 | 3 3.205100311429

5p X 45p | 2.618033988750 | 3

5p X 50p | 2.618033988750 | 3 3.205545558020

6p x 6p | 2.618033988750 | 3.001033705947 | 3.125892136302

6p X 12p | 2.618033988750 | 3.000000003803 | 3.198900652620

6p X 18 | 2.618033988750 | 3.000000000000 | 3.217111179820

6p X 24p | 2.618033988750 | 3.000000000000 | 3.225649637432

6p x 30p | 2.618033988750 | 3.000000000000 | 3.230657835149

6p X 36p | 2.618033988750 | 3.000000000000 | 3.233968503481

6p x 42 | 2.618033988750 | 3.000000000000 | 3.236327213212

6p X 48p | 2.618033988750 | 3.000000000000 | 3.238096251767

6p X 54p | 2.618033988750 | 3.000000000000 | 3.239473538415

6p x 60p | 2.618033988750 | 3.000000000000 | 3.240576619481

6p X 66p | 2.618033988750 | 3.000000000000 | 3.241479828709

6p X T2p | 2.618033988750 | 3.000000000000 | 3.242232528364

6p X 78 | 2.618033988750 | 3.000000000000 | 3.242868805497

6p X 84p | 2.618033988750 | 3.000000000000 | 3.243412961909

6p X 90 | 2.618033988750 | 3.000000000000 | 3.243882786313

7p X 7p | 2.618033988750 | 3 3.247001348628 | 3.404690481534

7p X 14p | 2.618033988750 | 3 3.246979603718 | 3.414217072295 | 3.458917430738

7p X 21p | 2.618033988750 | 3 3.246979603717 | 3.414213561735

7p X 28p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.470544903913

7p X 35p | 2.618033988750 | 3 3.246979603717 | 3.414213562373

7p X 42p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.473634831556

7p X 49p | 2.618033988750 | 3 3.246979603717 | 3.414213562373

7p X 56p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.475070205361

7p X 63p | 2.618033988750 | 3 3.246979603717 | 3.414213562373

7p X 70p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.475899672990

8p X 8p | 2.618033988750 | 3 3.246979601854

8p X 16p | 2.618033988750 | 3 3.246979603717 | 3.414214415195 | 3.472683999084

8p X 24p | 2.618033988750 | 3 3.246979603717 | 3.414213562387 | 3.488644630018

8p X 32p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.495735217349

8p X 40p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.499773262291

8p x 48p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.502387969424

8p X 56p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.504221641913

8p X 64 | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.505579831565

8p X T2p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.506626776159

8p X 80p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.507458740757

[ Beraha [ 2.618033988750 | 3 [ 3.246979603717 | 3.414213562373 | 3.532088886238 |

Table 3: Real zeros of the chromatic polynomials of finite triangular-lattice strips

with periodic boundary conditions in the transverse direction and free boundary con-
ditions in the longitudinal direction, to 12 decimal places. A blank means that the
zero in question is absent. The first three real zeros ¢ = 0, 1,2 are exact on all lattices.
“Beraha” indicates the Beraha numbers Bs = (3 ++/5)/2, Bs = 3, Bz, Bs = 2+ /2,
and By.
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Latt

ice

| 4th Zero

| 5th Zero

6th Zero

7th Zero

8th Zero

| 9th Zero

| 10th Zero

9p X 9p 2.618033988750 | 3.000000000000 | 3.246980644227 | 3.382733076359

9p X 18p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414215827400 | 3.467483864312

9p X 27p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562359

9p X 36p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.499429426359

9p X 45p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373

9p X 54p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.508825024982

9p X 63p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373

9p X T2p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.513393802382

9p X 81 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373

9p X 90p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.516109505154

10p X 10p 2.618033988750 | 3 3.246979603717 | 3.414213601215 | 3.522072913706

10p X 20p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088885496

10p X 30p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238

10p X 40p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238

10p X 50p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238

10p X 60p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618274945403 | 3.620352727045

10p X 70p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618041117772 | 3.623157797032

10p X 80p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618034257877 | 3.624885448640

10p X 90f 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033998995 | 3.626138707957

10p X 100p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033989140 | 3.627101535574

11p X 11g 2.618033988750 | 3 3.246979603717 | 3.414213539527

11p X 22§ 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088885575

11p X 33p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.608601511861

11p X 44p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238

11p X 55¢ 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.617975980728

11p X 66R 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618034451624 | 3.627344614702

11p X 77f 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033985241

11p X 88p 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033988777 | 3.631979435582

11p X 99¢ 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033988750

11p X 110p | 2.618033988750 | 3 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033988750 | 3.634574709990

12p X 12¢ 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213593041 | 3.511032635472

12p X 24p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088885001

12p X 36F 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088886238

12p X 48p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088886238

12p X 60p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088886238

12p X 72¢ 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618040035384 | 3.624320958404

12p X 84p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618034035926 | 3.627419917635

12p X 96p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033989120 | 3.629588218978

12p x 108p | 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033988753 | 3.631215401061

12p X 120F | 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033988750 | 3.632487726562
[ Beraha [ 2.618033988750 | 3 | 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033988750 | 3.682507065662 |

Table 4:

Real zeros of the chromatic polynomials of finite triangular-lattice strips

with periodic boundary conditions in the transverse direction and free boundary con-
ditions in the longitudinal direction, to 12 decimal places. We use the same notation

as in Table 3.
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Latt

ice

| 4th Zero

‘ 5th Zero

| 6th Zero

| 7th Zero

| 8th Zero

| 9th Zero

‘ 10th Zero

4z, X 4p 2.485072022789 | 2.527537649962 | 2.596617094656
4z % 8p 2.499965989337 | 2.500034085574 | 2.618031965217

47 X 12p 2.499999937358 | 2.500000062643 | 2.618033988527

4z X 16p 2.499999999885 | 2.500000000115 | 2.618033988750

4z % 20p 2.500000000000 | 2.500000000000 | 2.618033988750

4y X 24p 2.500000000000 | 2.500000000000 | 2.618033988750

47 X 28p 2.500000000000 | 2.618033988750

4z X 32p 2.500000000000 | 2.618033988750

4z X 36p 2.500000000000 | 2.618033988750

4z X 40p 2.500000000000 | 2.618033988750

67 X 6F 2.618033988528

67 x 12p 2.618033988750 | 3.000017186720 | 3.117917986708

67 X 18p 2.618033988750 | 3.000000004191 | 3.141107899326

67 X 24p 2.618033988750 | 3.000000000001 | 3.150834657646

67 X 30p 2.618033988750 | 3.000000000000 | 3.156227017803

67 X 36p 2.618033988750 | 2.722632835458 | 3.000000000000 | 3.159661924115

67 X 42p 2.618033988750 | 2.722632835458 | 3.000000000000 | 3.162043675850

67 X 48p 2.618033988750 | 2.722632835458 | 3.000000000000 | 3.163793040154

67 X 54p 2.618033988750 | 2.722632835458 | 3.000000000000 | 3.165132700997

67 X 60p 2.618033988750 | 2.722632835458 | 3.000000000000 | 3.166191662980

87 X 8p 2.618033988750 | 3.000000844168 | 3.203925019292

87 X 16p 2.618033988750 | 3.000000000000 | 3.246976356780

8 X 24p 2.618033988750 | 3.000000000000 | 3.246979603696

8z X 32p 2.618033988750 | 2.821420495535 | 3.000000000000 | 3.246979603717

8z X 40p 2.618033988750 | 2.821420495535 | 3.000000000000 | 3.246979603717

87 x 48p 2.618033988750 | 2.821420495535 | 3.000000000000 | 3.246979603717

87 X 56p 2.618033988750 | 2.821420495535 | 3.000000000000 | 3.246979603717

87 X 64p 2.618033988750 | 2.821420495535 | 3.000000000000 | 3.246979603717

87 X T2p 2.618033988750 | 2.821420495535 | 3.000000000000 | 3.246979603717

87 X 80p 2.618033988750 | 2.821420495535 | 3.000000000000 | 3.246979603717

107 X 10p 2.618033988750 | 3.000000000000 | 3.246953122227

10z X 20p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.416320582746 | 3.428202969384

10y X 30p 2.618033988750 | 3.000000000000 | 3.246979603717 | 3.414213564771 | 3.470075808656

10z x 40p 2.618033988750 | 2.873731249334 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.484585415185

10z X 50p 2.618033988750 | 2.873731249334 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.492475877808

107 x 60p 2.618033988750 | 2.873731249334 | 3.000000000000 | 3.246979603717 | 3.414213562373 | 3.497477600415

107 x 70p 2.618033988750 | 2.873731249334 | 3.000000000000 | 3.246979603717 | 3.383128531235 | 3.414213562373 | 3.500942791087
10z x 80p 2.618033988750 | 2.873731249334 | 3.000000000000 | 3.246979603717 | 3.383128531235 | 3.414213562373 | 3.503489509874
10z x 90p 2.618033988750 | 2.873731249334 | 3.000000000000 | 3.246979603717 | 3.383128531235 | 3.414213562373 | 3.505442176204
10y x 100y | 2.618033988750 | 2.873731249334 | 3.000000000000 | 3.246979603717 | 3.383128531235 | 3.414213562373 | 3.506987965042
Beraha | 2.618033988750 | 3 | 3.246979603717 | 3.414213562373 | 3.532088886238 | 3.618033988750 | 3.682507065662

Table 5:

Real zeros of the chromatic polynomials of finite triangular-lattice strips

with zig-zag boundary conditions, to 12 decimal places. We use the same notation as

in Table 3.
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H Eigenvalue-Crossing Curves B H Isolated Points |

Lattice H#C|#E‘#T|#D|#ER| min Reg ‘ q |maXReqH#RI| # CI |
2 2 0
3r| 3 6 0 0 0 1.20474 | 2.56984 3.40223 3 0
4 | 2 6 2 0 0 0.81647 | 2.75925 + 0.15444 i* | 3.63983 4 0
5p | 1 6 12 0 4 0.55862 | 3 3.77830 4 0
6p | 1 6 4 0 0 0.37963 | 3.16093 3.86641 5 0
e || 1t 6t 4t 0 ot 0.25054 | 3.27640 3.92580 6 0
8 || 1t 6t 4t 0 of 0.13343 | 3.36106 3.96756 6 0
9p 3.42513 7 0
2p 2 0
3p 3 0
4p || 3 4 0 0 1 1.37053 | 3.48141 4 5 0
5p | 3 4 0 0 1 0.47725 | 3.20722 3.87699 5 0
6p | 1 4 2 0 0 0.02077 | 3.25242 4.28386 6 0
el 1 4 4 0 1 —0.22792 | 3.47900 3.99964 7 0
8 || 1 4 2 0 0 —0.37137 | 3.51477 4.04970 7 0
9 || 1 4 2 0 0 —0.45760 | 3.52706 4.28286 7 0

10p || 1f 4t ot 0 0t | —0.51081 | 3.63483 4.12341 9 0
11p || 1f 4t ot 0 of | —0.54399 | 3.64414 4.15609 9 0
12p ot 3.64317 9 0
27 2 0
47 | 2 4 0 0 0 2.09914 | 2.73717+ 0.17233 i* | 4.00485 5 0
67, 4 2 0 0 0.36185 | 3.17526 4.25895 6 1
8, || 1t 4t ot 0 ot | —0.21435 | 3.39410 4.28991 7 1t
10y, 3.52044 9

Table 6: Summary of qualitative results for the eigenvalue-crossing curves B and
for the isolated limiting points of zeros. For each triangular-lattice strip considered
in this paper, we give the number of connected components of B (# C), the number
of endpoints (# E), the number of T points (# T), the number of double points (#
D), and the number of enclosed regions (# ER); we also give the minimum value
of Req on B, the smallest value gy where B intersects the real axis (* denotes an
almost-crossing), and the maximum value of Reg on B. We also report the number
of real isolated limiting points of zeros (# RI) and the number of complex-conjugate
pairs of isolated limiting points (# CI). The symbol T indicates uncertain results.
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| m | TeiCyl(m) | # VA | TriCyl'(m) [ SqCyl(mn

~—

1 1
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Table 7:  Transfer-matrix dimensions for a triangular-lattice strip of width m and
cylindrical boundary conditions. For each value of the strip width m we give the
dimension of the transfer matrix [TriCyl(m)], the number of vanishing amplitudes (#
VA), and the effective dimension of the transfer matrix [TriCyl'(m) = TriCyl(m) —
# VA]. For comparison, we also give the dimensionality of the transfer matrix for a
square-lattice strip of width m and cylindrical boundary conditions [SqCyl(m)]. The
values of TriCyl(m) and SqCyl(m) were obtained in [16, 53]. An asterisk denotes

conjectured results.
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‘ Curve | Point |

Arg pri /7

| Argp/m | “discrepancy” | 0/

Cy G 1.0000000(3) 1 0.00000005 1/6
H —0.4999999(3) —1/2 | 0.0000001 2/3
Cy I 0.5000001(3) 1/2 1 0.0000002 2/9
J 0.4285703(3) 3/7 | 0.000008 7/30
Cs L —0.2500003(3) —1/4 | 0.000001 4/9
K —0.1999993(3) —1/5 | 0.000004 5/12
Cs P 0.2727311(7) 3/11 | 0.00004 11/42
0 0.2499995(3) 1/4 | 0.000002 4/15
Cs M —0.1428584(3) —1/7 | 0.000009 7/18
N —0.1249980(3) —1/8 | 0.00002 8/21
Cy T —0.3846221(7) —5/13 | 0.00009 13/24
S —0.3749980(3) —3/8 | 0.00002 8/15
Cs 0.1250023(3) 1/8 [ 0.00002 8/27
0.1199957(7) 3/25 | 0.0001 25/84
Cy \Y 0.2000006(3) 1/5 | 0.000003 5/18
U 0.1875171(7) | 3/16 | 0.0003 16/57
Cis 0.1034699(7) 3/29 | 0.0006 29/96
0.0999991(7) 1/10 | 0.000009 10/33
Cha 0.1500210(7) 3/20 | 0.0004 20/69
0.1428558(3) 1/7 | 0.00001 7/24
Cir —0.4285727(3) | —3/7 | 0.000009 7/12
—0.4230929(3) | —11/26 | 0.0004 26/45
Cis —0.1000025(3) | —1/10 | 0.00003 10/27
—0.0909045(7) —1/11 | 0.00005 11/30
Cio —0.0769285(7) —1/13 | 0.00007 13/36
—0.0714257(7) —1/14 | 0.00004 14/39
Others —0.7500002(3) —3/4 | 0.00000009 4/27
—0.7727176(7) | —17/22 | 0.0002 22/147
—0.5999993(3) —3/5 | 0.000004 5/6
0.7499995(3) 3/4 | 0.000002 4/21
0.6000006(3) 3/5 | 0.000003 5/24
0.2999986(7) | 3/10 | 0.00001 10/39
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Table 8: Endpoints in the complex p-plane with |p| = 1 of the curves where |g2/g1| =
1. For each endpoint we show the “Curve” to which it belongs (see Figure 22), the
estimated value of its phase Arg ppi; (see text), the conjectured exact value Arg p, the
“discrepancy” (6.10), and the corresponding “primary” 6 value. For some selected
values we also include a label (“Point”). When we have a curve for which one endpoint
is well-determined and the other is not, we include the former point in the category
“Others” (see text).




| Curve | Point | Argype/m | Argy/m | “discrepancy” | 6/m |
D, G | —0.8000002(3) | —4/5 0.000001 1/6
H 0.0000000(6) 0 0.00000002 2/3
D, K 0.8571435(3) 6/7 0.000005 5/12
L 0.7999997(3) 4/5 0.000002 4/9
Ds J —0.8695494(7) | —20/23 | 0.0004 7/30
I —0.8571420(1) | —6/7 0.000006 2/9
Dy —0.7692308(7) | —10/13 | 0.0000004 2/15
—0.7272743(3) | —8/11 | 0.00002 1/12
Ds —0.5263122(7) | —=10/19 | 0.00007 53/72
—0.4827684(7) | —14/29 | 0.0003 79/108
De —0.4615359(7) | —6/13 | 0.00003 35/48
—0.4000003(3) | —2/5 0.000001 13/18
D- —0.5714279(3) | —4/7 | 0.000004 20,27
—0.5454561(3) | —6/11 | 0.00002 31/42
Dy N 0.9230794(3) | 12/13 | 0.00003 8/21
M 0.9090890(3) 10/11 | 0.00002 7/18
D | U | —0.9268596(7) | —38/41 | 0.001 16/57
V| —0.9230785(7) | —12/13 | 0.00002 5/18
D3 0.2857149(7) 2/7 0.000004 11/18
0.2816705(7) 20/71 | 0.001 112/183
Dis —0.7200434(7) | —18/25 | 0.001 5727
—0.7058815(7) | —12/17 | 0.00001 1/18
Dis P | —0.9032084(7) | —28/31 | 0.0005 11/42
O | —0.9090929(3) | —10/11 | 0.00002 4/15
Others —0.4705939(7) | —8/17 | 0.0001 46/63
—0.4800291(7) | —12/25 | 0.0007 68/93
—0.5161460(7) | —16/31 | 0.0005 86/117
—0.5217586(3) | —12/23 | 0.0004 64/87
—0.6153817(3) | —8/13 | 0.00004 38/51
—0.6315679(7) | —12/19 | 0.0002 56/75
—0.6956730(7) | —16/23 | 0.0005 1/24
S 0.5714292(3) 4/7 0.000004 8/15
0.5599911(7) 14/25 | 0.0002 29/54
0.5516847(7) | 16/29 | 0.001 34/63
T 0.5454538(7) 6/11 | 0.000008 13/24
0.3999997(3) | 2/5 | 0.000002 7/12
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Table 9: Endpoints in the complex y-plane with |y| = 1 of the curves where |g5/¢1| =
1. For each endpoint we show the “Curve” to which it belongs (see Figure 23), the
estimated value of its phase Arg yri; (see text), the conjectured exact value Argy, the
“discrepancy” (6.10), and the corresponding “primary” 6 value. For some selected
values we also include a label (“Point”). When we have a curve for which one endpoint
is well-determined and the other is not, we include the former point in the category
“Others” (see text).



| L | Beraha numbers

2r | By B3

3r | B; B3 By

4p | By B3 B4 Bs Bg

5¢ | By B3 By Bs Bg

6r | By Bs By Bs Bg By

7r | By B3 By Bs Bs B; By

8¢ | By B3 By Bs Bs B; Bg By

9¢ | By B3 By Bs Bs By Bs By By

2p | By B3

3p | By B3 By

4p | B; B3 By Bs Bg

5p | By B3 By Bs Bs

6p | By Bs By Bs B¢ Br By

7p | By B3 By Bs Bs B; Bg By

8p | B2 B3 By Bs Bs By Bg By Byy Bys

99 | B2 B3 By Bs Bs By Bg By Biy Bys

10p | By B3 By Bs Bs By By By By Byy Bis Bis
11p | By B3 By Bs Bs By By By By By Byy B4 Bis
12p | By Bs B4 Bs Bs By Bs By Big Bi1 Bia Biz Bia Bis By
27 | By B3

47 | By B3 B4 Bs Bg

6z | B, B3 By Bs Bs B

8z | By B3 B4 Bs Bg Br By By

10z | B, B3 B4y Bs Bg B; Bg By Bio Bu

Table 10: Beraha numbers B, that are zeros of det D(q). Those shown in boldface
(resp. normal face) correspond to the vanishing of a dominant (resp. subdominant)
amplitude.

60



(b)

Figure 1: Two ways of building a triangular-lattice strip using a transfer-matrix
approach. (a) Standard method (see e.g. Ref. [16]). (b) Alternative method (called
“zig-zag” boundary conditions).
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Zeros tri lattice Lx = 3F

Im(q)
0
|
./
|

0 2 4
Re(q)

Figure 2: Zeros of the partition function of the ¢-state Potts antiferromagnet on the
triangular lattices 35 x 155 (squares), 3x x 30p (circles) and 35 X oop (solid line).

The isolated limiting points are denoted by a x.
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Zeros tri lattice Lx = 4F

Im(q)
0

0 2 4
Re(q)

Figure 3: Zeros of the partition function of the g-state Potts antiferromagnet on the
triangular lattices 45 x 20p (squares), 45 x 405 (circles) and 45 X oop (solid line).

The isolated limiting points are denoted by a x.
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Zeros tri lattice Lx = 5F

0 2 4
Re(q)

Figure 4: Zeros of the partition function of the ¢-state Potts antiferromagnet on the
triangular lattices by x 255 (squares), 5r x 50 (circles) and 55 X oop (solid line).

The isolated limiting points are denoted by a x.
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Zeros tri lattice Lx = 6F

0 2 4
Re(q)

Figure 5: Zeros of the partition function of the g-state Potts antiferromagnet on the
triangular lattices 65 x 30p (squares), 65 x 60p (circles) and 65 X oop (solid line).

The isolated limiting points are denoted by a x.
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Zeros tri lattice Lx = '?F

Re(q)

Figure 6: Zeros of the partition function of the g-state Potts antiferromagnet on the
triangular lattices 7y x 355 (squares), 7p x 70p (circles) and 75 X oop (solid line).
The isolated limiting points are denoted by a x.
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Zeros tri lattice Lx = 8F

Re(q)

Figure 7:  Zeros of the partition function of the g-state Potts antiferromagnet on the
triangular lattices 84 x 40p (squares), 8 x 80 (circles) and 85 X oop (solid line).
The isolated limiting points are denoted by a x.
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Zeros tri lattice Lx = 9F

I ' I ' I
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S 'D‘»gnﬂgﬁ‘étnmnnmnnu
vi ok x x -
—
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nnﬁ&gmu
l L l L l

Re(q)

Figure 8: Zeros of the partition function of the g-state Potts antiferromagnet on the
triangular lattices 95 x 455 (squares) and 9p x 905 (circles). The isolated limiting
points are denoted by a x.
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Zeros tri lattice LX = 4P

Im(q)
0
|

0 2 4
Re(q)

Figure 9: Zeros of the partition function of the g-state Potts antiferromagnet on the
triangular lattices 4p x 20p (squares), 4p x 40 (circles) and 4p X oop (solid line).
The isolated limiting points are denoted by a x.
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Zeros tri lattice LX = 5P

Im(q)
0

Re(q)

Figure 10: Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 5p X 255 (squares), 5p X 50 (circles) and 5p X ocop (solid line).
The isolated limiting points are denoted by a x.



Zeros tri lattice LX = 6P

Re(q)

Figure 11:  Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 6p X 30 (squares), 6p X 605 (circles) and 6p X cop (solid line).
The isolated limiting points are denoted by a x.



Zeros tri lattice LX = '?‘P

Re(q)

Figure 12: Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 7p X 355 (squares), 7p X 70x (circles) and 7p X ocop (solid line).
The isolated limiting points are denoted by a x.



Zeros tri lattice LX = 8P

Re(q)

Figure 13: Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 8p X 40 (squares), 8p x 80 (circles) and 8p X cop (solid line).
The isolated limiting points are denoted by a x.



Zeros tri lattice L. = 9P

Re(q)

Figure 14: Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 9p X 455 (squares), 9p x 905 (circles) and 9p X cop (solid line).
The isolated limiting points are denoted by a x.

74



Zeros tri lattice LX = 10P

Re(q)

Figure 15: Zeros of the partition function of the g-state Potts antiferromagnet on
the triangular lattices 10p X 505 (squares), 10p x 100 (circles) and 10p X cop (solid
line). The isolated limiting points are denoted by a x.
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Zeros tri lattice L = 11P

Re(q)

Figure 16: Zeros of the partition function of the g-state Potts antiferromagnet on
the triangular lattices 11p X 555 (squares), 11p x 110p (circles) and 11p x cop (solid
line). The isolated limiting points are denoted by a x.



Zeros tri lattice L, = 12

Im(q)

0 2 4
Re(q)

Figure 17: Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 12p x 60y (squares) and 12p x 120p (circles). The isolated
limiting points are denoted by a x.
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Zeros tri lattice Lx = 4Z

Im(q)
0
|

0 2 4
Re(q)

Figure 18: Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 4p x 20 (squares), 4p x 40 (circles) and 4p X ooy (solid line).

The isolated limiting points are denoted by a x.



Zeros tri lattice Lx = 6Z

Im(q)
0

Re(q)

Figure 19: Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 6p X 30 (squares), 6p x 60 (circles) and 6p X 0oy (solid line).
The isolated limiting points are denoted by a x.



Zeros tri lattice Lx = 8Z

Re(q)

Figure 20: Zeros of the partition function of the ¢-state Potts antiferromagnet on
the triangular lattices 8p X 40 (squares), 8p x 80 (circles) and 8p X ooy (solid line).
The isolated limiting points are denoted by a x.
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Zeros tri lattice LX = 10Z

I ' I ' I
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Re(q)

Figure 21: Zeros of the partition function of the ¢-state Potts antiferromagnet on the
triangular lattices 10p x 50 (squares) and 10p x 80y (circles). The isolated limiting
points are denoted by a x.
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lg./g,] = 1 in complex p—plane

Figure 22: Equimodular curves |ga/g1| = 1 in the complex p-plane. Several important
points are labelled G, H, I, J, ... (see text).
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lgs/g,] = 1 in complex y—plane
g T

Figure 23: Equimodular curves |g3/¢g1| = 1 in the complex y-plane. Several impor-
tant points are labelled G, H, I, J, ... (see text).
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Limiting Curves Tri Lattice
¢ Dy FG IJ KL Do H A

MR

P,O\ NM S,T

Im(0)

0 R 0.5 1
Re(6)/m

Figure 24: Equimodular curves for the eigenvalues ¢; in the complex §-plane. The
portions of curves where the equimodular eigenvalues are dominant (resp. subdomi-
nant) are depicted in black (resp. pink). The eigenvalue ¢; is dominant in each region
labelled D;. Several important points are labelled A, B, C, ... (see text). To facili-
tate comparison with Baxter’s results [19, Fig. 5], we have used the same labelling of
points wherever possible.
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Limiting Curves Tri Lattlice

—2

Re(q)

Figure 25: Dominant equimodular curves for the eigenvalues ¢; in the complex ¢-
plane (in black). For comparison, we show (in pink) the limiting curve B for the strip
L, = 11p. To facilitate comparison with Baxter’s results [19, Fig. 5], we have used
the same labelling of points wherever possible.
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Limiting Curves Tri Lattice

| - | - |
0 | -
o
e ]
~
Zo
E- s
- 11 -
0
O_ —
|
!

3.6

Re(q)

Figure 26: Detail of Figure 25 around the point ¢ = 4. We depict the dominant
(resp. subdominant) equimodular curves in black (resp. pink). The solid circles (o)
denote special points discussed in the text, while the squares (O) and empty circles
(o) denote the Beraha numbers ¢ = By, ..., Big, B4, B2y and By, = 4 (point C).
The empty circles denote those Beraha numbers which belong to any equimodular
curve. We denote by D; the regions where the eigenvalue g; is dominant.
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Limiting Curves Tri Lattice

: MT/K\- .

8F 6F 4F

Im(q)
0

0 2 4
Re(q)

Figure 27: Limiting curves for the triangular-lattice strips Ly x cop with 3 < I, < 8.
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Limiting Curves Tri Lattice

Im(q)
0

/.
L 11P ‘ Z

Re(q)

Figure 28: Limiting curves for the triangular-lattice strips Lp x cop with 4 < L < 11.
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Limiting Curves Tri Lattice
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Re(q)

Figure 29: Limiting curves for the triangular-lattice strips Ly x cop with L. = 4,6, 8.
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Chapitre 4

Diagramme de phase

Le diagramme de phase du modele de Potts posseéde une structure trés riche, en particulier dans le
domaine antiferromagnétique. En vue de la formulation du modeéle en tant que modeéle d’amas (2.4) il
est naturel de paramétrer le diagramme de phase par (¢, u) pour des valeurs de u = eX — 1 quelconques,
bien que seul u > —1 corresponde & des températures physiques dans la formulation de spins (1.1).

Dans le Chapitre 3, nous avons vu que la dépendance du réseau est cruciale, au moins a température
nulle (u = —1). Afin de mettre en évidence d’éventuels effets non universels, nous allons désormais
considérer deux réseaux différents : les réseaux carré et triangulaire. Le réseau hexagonal présente égale-
ment un intérét pratique, mais il est 1ié au réseau triangulaire par dualité (voir le Chapitre 2).

En particulier, nous allons nous intéresser aux lignes critiques dans le plan (g, u). Il est bien connu
que ces lignes coincident souvent avec les valeurs des parametres pour lesquelles le modele est intégrable :
en effet, 'invariance conforme et I'intégrabilité sont tous les deux liés & ’existence d’un nombre infini de
lois de conservation.

Pour le réseau carré, Baxter [13, 14] a déterminé ’énergie libre (ainsi que d’autres quantités d’intérét
physique) le long des courbes

= 44, (4.1)
= —24+./4—q¢. 4.2

Pour le réseau triangulaire, les courbes intégrables sont [12, 15, 16]

wd+3u = g, (4.3)
v = -1 (4.4)

Dans le deux cas, il est bien établi que la branche avec u > 0 décrit la transition entre les phases
ferromagnétique (u > 1) et paramagnétique (u < 1). Ces transitions sont de premier ordre (avec une
chaleur latente non nulle) si ¢ > 4 et de second ordre si 0 < g < 4 [10]. Les transitions de second ordre
sont universelles dans la mesure que les exposants critiques ne dépendent que de g et non pas du réseau :

en posant
q = 4cos? (#) (4.5)

on retrouve exactement les modeles minimaux unitaires (1.4)—(1.5). Cette universalité est par ailleurs
confirmée par des calculs de type gaz de Coulomb [136].

Dans ce chapitre, nous sommes plutot concernés par le comportement antiferromagnétique. Une étude
intéressante du réseau carré fut initiée par Saleur [150], mais de nombreuses questions demeurent ouvertes,
en particulier en ce qui concerne le réseau triangulaire. Nous allons également nous appuyer sur des
résultats numériques [34, 98].

Bien sur, on s’attend & ce que les résultats dépendent de maniére cruciale du choix des conditions
au bord. Sauf indication contraire, nous allons adopter des conditions au bord cylindriques car ce choix
facilite le contact avec la théorie conforme et avec le formalisme de matrice de transfert. Des conditions
au bord ouvertes donneraient des résultats similaires, car les deux possibilités (ouverte/cylindrique) sont
plongeables dans le plan. Par contre, la situation serait trés différente pour des conditions au bord
périodiques dans la direction de transfert (géométrie toroidale/ruban de Mdbius/bouteille de Klein) :
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par exemple, le Théoreme de Quatre Couleurs |3, 4] pour le coloriage de graphes planaires devient un
théoreme de sept couleurs sur le tore [146].

4.1 Reéseau carré

L’approche d’intégrabilité pour le modele de Potts est basée sur une réécriture de la fonction de
partition faisant intervenir l’algébre de Temperley-Lieb [126]. Un grand pas en avant se fit autour de
1990 quand il fut réalisé que le modele posseéde également la symétrie du groupe quantique Ugsl(2) pour
toute valeur de u [149, 150]. Plus précisement, la formulation en modéle de boucles (2.5) permet une
redistribution locale des poids ¢ : ceci définit un modele de vertex. C’est la matrice de transfert de ce
modele de vertex qui commute avec les générateurs de Ugsl(2) [149].

4.1.1 Phase de Berker-Kadanoff

En évoquant une théorie de champ moyen, Berker et Kadanoff [23] prédirent que pour une dimension d
suffisamment élevée il doit y avoir une région antiferromagnétique avec des exposants qui ne dépendent pas
de la température. Le point de terminaison d’une telle région serait un point critique antiferromagnétique.
Or, pendant longtemps une telle phase ne fut pas observée en dimension finie.

Avec 'approche d’intégrabilité basée sur Ugsl(2) il est possible d’identifier la théorie conforme décri-
vant la ligne critique v = —,/g pour 0 < ¢ < 4 [150]. Avec la paramétrisation ¢ = B,, (3.1), la charge
centrale et les exposants critiques sont

c = 1- G("HJ (4.6)
by = (nr — 5)24; (n— 1)2. (47)

En particulier, 'exposant thermique s’identifie comme z7 = 2hy; = 3n/2 — 1. On notera que zp > 2
partout : la température est donc une perturbation non pertinente le long de la ligne u = —./q et il
s’agit bien d’une phase de Berker-Kadanoff. Des calculs numériques de matrice de transfert confirment
ces valeurs de c et de z7 [98].

A partir d’une interprétation basée sur les flots sous le groupe de renormalisation, il est naturel de
s’attendre & ce que le domaine d’attraction de la ligne u = —,/g soit compris entre les courbes (4.2).
Nous allons revenir & ce point dans un instant.

4.1.2 Role des nombres de Beraha

Saleur [149] argumenta que le long de la courbe u = —,/g, 'amplitude de la valeur propre dominante
s’annule quand ¢ = B, (3.1) avec n positif entier. En particulier, les expressions (4.6)—(4.7) ne sont
plus applicables. Cet argument est encore basé sur la symétrie Ugsl(2), mais avec quelques hypotheses
supplémentaires sur la structure des valeurs propres. Par le théoréme de Beraha-Kahane-Weiss [19, 20,
154], on déduit V’existence d’un point d’accumulation des zéros de Z en g = B,,.

Pourtant, ce résultat n’implique pas nécessairement I’annulation de Z & T' = 0 dans la limite thermo-
dynamique. Pour clarifier le lien avec la limite chromatique, Saleur évoqua encore une supposition : que

la structure des valeurs propres ne change pas dans le domaine d’attraction des points fixes u = —,/g.
Comme nous ’avons vu, on s’attend & ce que ce domaine soit limité par u = —2++/4 — ¢q. Par conséquence,

dans la plage de températures comprise entre ces deux courbes, 'amplitude de la valeur propre dominante
devrait s’annuler & tout nombre de Beraha, g = B,, avec n =1,2,3,....

Un support numérique pour cette prédiction peut étre trouvé dans [33], ou les auteurs calculent les
courbes limites B (discutées lors du Chapitre 3) dans le plan de u complexe. Pour plusieures valeurs de g,
on voit que ces courbes ont tendence a couvrir un segment sur I'axe de u réel, centré environ a u = —,/g.
Cependant, les largeurs des rubans traités dans [33] sont assez faibles, et il est difficile de se former une
idée claire du comportement dans la limite thermodynamique.

Il est intéressant de constater que la ligne de température nulle n’intersecte la phase de Berker-
Kadanoff que pour 0 < ¢ < 3. Si le scénario proposé par Saleur est juste, cela veut dire que seuls les



nombres de Beraha B, < 3 (c’est-a-dire, n = 2,3,4,5) sont des point d’accumulation des zéros chroma-
tiques. C’est effectivement ce qu’on observe numériquement [147, 90]. Pourtant, une étude minutieuse de
la matrice de transfert [147, 90] montre aussi que tout nombre de Beraha est associé & une amplitude
nulle dans la limite thermodynamique : or, cette amplitude est seulement dominante pour g < 3. Ce role
“caché” des B,, est encore assez mal compris.

Saleur [149, 150] a suggéré que le mécanisme faisant intervenir les nombres de Beraha pourrait étre
universel. En effet, la limite anisotropique des réseaux triangulaire et hexagonal posséde le méme hamil-
tonien que la limite anisotropique du réseau carré. Par contre, les points fixes qui contrblent la phase
Berker-Kadanoff sont moins bien compris pour ces réseaux.

4.1.3 Lignes parafermioniques

Quand on traverse les bords (4.2) de la phase de Berker-Kadanoff, beaucoup de niveaux se croisent
dans la matrice de transfert [150]. Exactement sur les lignes (4.2), Saleur a trouvé encore un opérateur
qui commute avec la matrice de transfert du modele de vertex : il s’agit d’un opérateur de conjugaison
de charge C, ayant la propriété C? = I. Comme candidat pour une théorie conforme avec la symétrie
Ugsl(2) et un opérateur de conjugaison, Saleur proposa les théories parafermioniques Zj construites par
Zamolodchikov et Fateev [168, 71].

La charge centrale et les dimensions des opérateurs physiques des parafermions sont [168]

6

- 9_ 4.
¢ k+2 (4.8)
g+
Dj = TR =01 k2 (4.9)
r(k—r)
= — =12, ... — 1. 4.1
d?‘ 2k(k+2)7 r 7 ’k ( 0)

Les dimensions D; des opérateurs énergétiques et les dimensions d, des opérateurs de spin sont celles des
champs primaires par rapport & I’algébre de Virasoro. La construction de la théorie de représentation des
modules dégénérés montre que seulement un sous-ensemble de ces champs sont primaires par rapport a
I’algebre chirale parafermionique.

Avec la paramétrisation habituelle, ¢ = By, la connaissance préalable des dimensions de certains
opérateurs a conduit Saleur [150] & proposer la relation k = n— 2. Ici, n € [2, 00[ prend des valeurs réelles
quelconques. Cette identification est bien vérifiée numériquement au niveau de la charge centrale [98].
Par contre, les prédictions [150]

TH — Qdk/Q, (4.11)
rr = 2D (4.12)

pour les dimensions physiques des opérateurs d’aimantation et d’énergie sont contredites par un certain
nombre d’observations. Premiérement, la valeur z7 = 2/3 4 ¢ = 3 ne coincide pas avec le résultat
exact zr = 3/2 du modele de six vertex, obtenu en supposant que les excitations dominantes & faible
température sont de type tourbillon-antitourbillon [32]. La valeur z7 = 3/2 est aussi trouvée par des
calculs numériques de type matrice de transfert [98]. Deuxiémement, la proposition pour zy est (en
partie) basée sur le résultat exact zy = 1/16 du modeéle d’Ising ferromagnétique. Certes, les modeéles
d’Ising ferromagnétique et antiferromagnétique sont équivalents dans le secteur de I'identité par une
réflexion des spins sur un des deux sous-réseaux. Par contre, cette équivalence n’est pas assurée dans le
secteur impair. La construction topologique de celui-ci au niveau de la matrice de transfert montre que,
en effet, la dimension z g est négative [98] pour tout ¢ € [0, 4].

En conclusion, le rapport entre la ligne antiferromagnétique et la théorie parafermionique n’est pas
encore compris au niveau du contenu en opérateurs.

La présence de la symétrie discréte Z; parait assez mystérieuse, comme ’avait déja remarqué Saleur
[150]. Une explication possible pour le cas de ¢ = 3 (k = 4) a été avancée dans [83]. Pourtant, il se peut
que la symétrie Zj soit réalisée de maniére non linéaire (dans un sens & préciser), ce qui rendrait son
interprétation physique difficile.
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Fic. 4.1 — Points d’accumulation des zéros du polynéme dichromatique avec ¢ = 3 sur des rubans du
réseau triangulaire. Les conditions au bord sont cylindriques. Chaque couleur correspond a une largeur
du ruban : L = 2 (noir), L = 3 (rouge), L =4 (vert), L =5 (bleu), L = 6 (rose).

4.1.4 Température infinie

Il est intéressant de constater qu’on peut s’approcher & la limite de température infinie (v — 0) de
plusieurs manieres inéquivalentes. Le long de u = +,/q, on a une théorie critique avec ¢ — —2. Le long
de u = 0, la théorie est bien siir non critique avec, formellement, ¢ = 0. Finalement, en s’approchant &
g =0 le long de v = —2 + /4 — g, la conjecture parafermionique donne ¢ — —1.

Cette derniére limite correspond a des foréts sur le réseau carré, ou chaque aréte porte un poids
w = —1/4 [150]. Par le flot de renormalisation, on peut comprendre ce point comme une transition de
phase entre les régimes w < —1/4 avec ¢ = —2 et w > —1/4 qui est non critique. Cette interprétation est
confirmée par le calcul des courbes limites B [98].

4.2 Réseau triangulaire

Dans la section précédente, nous avons déja fait allusion & d’autres réseaux que le réseau carré. Bien
que certains aspects de 'approche d’intégrabilité [149, 150] aient des traits universels, le rdle de la phase
de Berker-Kadanoff n’est pas tout aussi bien compris pour le cas du réseau triangulaire dont nous allons
discuter dans ce paragraphe.

On peut facilement se convaincre qu’un diagramme de phase composé des trois branches de la courbe
(4.3) ne peut étre complet, au moins si ’on suppose que ces branches sont des points fixes pour le groupe
de renormalisation. Car, hormis ces branches il existe trois branches triviales de points fixes attractifs
non critiques & u = —o00, & u = 0 et & u = 400. Pour que les flots sous renormalisation soient consistants
il faut donc un nombre pair de branches non triviales.

Une possibilité serait de supposer que la limite chromatique (4.4) soit encore une ligne de points fixes.
Pourtant, cette solution nécessiterait une inversion de la nature (attractive/répulsive) des deux branches
qui se rencontrent en (u,q) = (—1,2). Ceci ne serait pas trés crédible. Il parait plus probable qu’une autre
ligne, dont la paramétrisation exacte n’est pas connue pour 'instant, émerge du point (u,q) = (—1,4)
qui est un point critique avec ¢ = 2 [78, 131].

Pour éclaircir ces points, nous avons entrepris une étude numérique du diagramme de phase [34, 98].
Les résultats principaux sont les suivants :



— Les trois branches de (4.3) sont respectivement dans la classe d’universalité de la transition ferro-
magnétique (branche supérieure, u > 0), de la phase de Berker-Kadanoff (branche intermédiaire)
et de la théorie parafermionique (branche inférieure).

— Le domaine d’attraction de la phase de Berker-Kadanoff est borné d’en bas par la branche inférieure
de (4.3) et d’en haut par une ligne de non analyticité de I’énergie libre. Cette ligne est le prolon-
gement, pour u # —1, du point (u,q) = (—1,qp) déterminé par (3.5) qu’elle relie & (u,q) = (0,0).
Les transitions correspondantes sont du premier ordre.

— Le point critique & (u,q) = (—1,4) fait en effet partie d’une ligne de transitions de second ordre.
Cette ligne se termine & son intersection avec la ligne de non analyticité (voir ci-dessus), dans un
point tricritique situé & environ ¢, =~ 3.5. Les charges centrales des théories correspondantes sont
numériquement proches de 2.

— Les courbes limites B dans le plan de u complexe sont d’une complexité considérable, notamment
dans le domaine antiferromagnétique : voir la Figure 4.1. Elles possédent des branches qui pincent
l’axe réel au niveau de la branche inférieure de (4.3) et de la ligne de non analyticité.

De plus amples détails sont donnés dans l'article [34] qui est attaché & ce chapitre.



4.0 Article "Lxact rotts model partition runctions™

Nous présentons des calculs exacts de la fonction de partition Z(G, ¢,v) du modéle de Potts & g états
et avec une variable de température v. Le modele est défini sur des rubans G & n sommets du réseau
triangulaire ayant une largeur transversale L variable et une longueur m arbitrairement élevée. Nous
imposons des conditions au bord longitudinales libres et des conditions au bord transversales soit libres,

e e s . . N _
soit périodiques. La fonction de partition a alors la forme Z(G, q,v) = Z]-:ZiG’A cz,6,j(Az,G,;)™ ! Nous
donnons des expressions de Nz g ; et de sa spécialisation au cas v = —1 pour L arbitraire. L’énergie

libre est calculée exactement dans la limite de rubans infiniment longs et nous discutons la limite ther-
modynamique. Nous démontrons comment 1’énergie interne d’un ruban avec des conditions aux bords
cylindriques est reliée aux propriétés critiques du modele de Potts sur le réseau triangulaire infini. Dans le
cas des valeurs complexes arbitraires de ¢ et de v nous déterminons la courbe singuliére B : cette courbe
est formée des points d’accumulation des zéros de la fonction de partition dans la limite m — oo, soit
dans le plan de g pour v fixé, soit dans le plan de v pour ¢ fixé.
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Abstract

We present exact calculations of the Potts model partition function Z (G, ¢, v)
for arbitrary ¢ and temperature-like variable v on n-vertex strip graphs G of
the triangular lattice for a variety of transverse widths equal to L vertices and
for arbitrarily great length equal to m vertices, with free longitudinal boundary
conditions and free and periodic transverse boundary conditions. These have



the form Z(G, q,v) = Z;V:Zf’* ¢z,6,j(Az,6;)™!. We give general formulas for
Nz, and its specialization to v = —1 for arbitrary L. The free energy is
calculated exactly for the infinite-length limit of the graphs, and the thermo-
dynamics is discussed. It is shown how the internal energy calculated for the
case of cylindrical boundary conditions is connected with critical quantities for
the Potts model on the infinite triangular lattice. Considering the full general-
ization to arbitrary complex ¢ and v, we determine the singular locus B, arising
as the accumulation set of partition function zeros as m — oo, in the ¢ plane
for fixed v and in the v plane for fixed q.

Key Words: Potts model, triangular lattice, exact solutions, transfer matrix, Fortuin-
Kasteleyn representation, Tutte polynomial.



1 Introduction

The ¢-state Potts model has served as a valuable model for the study of phase
transitions and critical phenomena [1, 2]. In this paper we present some theorems on
structural properties of Potts model partition functions on triangular-lattice strips of
arbitrary width equal to L vertices and arbitrarily great length equal to m vertices.
We also report exact calculations of Potts model partition functions for a number of
triangular-lattice strips of various widths and arbitrarily great lengths. Using these
results, we consider the limit of infinite length. For this limit we calculate thermo-
dynamic functions and determine the loci in the complex ¢ and temperature planes
where the free energy is non-analytic. These loci arise as the continuous accumulation
sets of partition-function zeros. This work is an extension to the triangular lattice of
our earlier study for the square lattice [3].

Consider a graph G = (V, E), defined by its vertex set V' and edge set E. Denote
the number of vertices and edges as |V| = n and |E|, respectively. For technical
simplicity, we restrict to connected loopless graphs. On this graph G, at temperature
T, the Potts model is defined by the partition function

Z(G,qv) =) ™ (1.1)

{on}
with the (zero-field) Hamiltonian
H=—T b0, (1.2)
(i4)
where 0; = 1,...,q are the spin variables on each vertex i € V; 8 = (kgT)~!; and

(ij) € E denotes pairs of adjacent vertices. We use the notation
K=pJ, a=¢X, v=a-1 (1.3)

so that the physical ranges are (i) @ > 1, i.e., v > 0 corresponding to oo > T > 0
for the Potts ferromagnet, and (ii) 0 < ¢ < 1, i.e., =1 < v < 0, corresponding to
0 < T < oo for the Potts antiferromagnet. One defines the (reduced) free energy per
site f = —(BF, where F is the actual free energy, via

F{GY,4,0) = lim W[Z(G, g,0)"""] (1.4)

where we use the symbol {G} to denote lim,_,., G for a given family of graphs G.

For our results in this paper we shall consider two types of boundary conditions:
free and cylindrical. Here, free boundary conditions mean free in both the transverse
and longitudinal directions (the latter being the one that is varied for a fixed width),
while cylindrical boundary conditions mean periodic in the transverse direction and
free in the longitudinal direction. For free (resp. cylindrical) boundary conditions, we
have studied strips of widths 2 < L < 6 (resp. 2 < L < 9). As noted, we shall also
give exact results valid for these strips with arbitrary width and length.



There are several motivations for this work. Clearly, new exact calculations of
Potts model partition functions are of value in their own right. In addition, these
calculations can give insight into the complex-temperature phase diagram of the two-
dimensional (2D) Potts model on a particular lattice. This is useful, since the 2D Potts
model has never been solved except in the ¢ = 2 Ising case. From a mathematical
point of view, the partition function of the Potts model on a graph G is equivalent to
the Tutte polynomial on the same graph G (see below). Thus, we can extract very
useful combinatorial information on the graph G.

Let G' = (V, E’) be a spanning subgraph of G, i.e. a subgraph having the same
vertex set V and an edge set E' C E. Then Z(G, ¢,v) can be written as the sum

[4, 5, 6]
Z(G,q,v) =Y ¢ Ol¥ (1.5)

G'CG

where k(G’) denotes the number of connected components of G'. The formula (1.5)
enables one to generalize ¢ from Z, to R, (keeping v in its physical range), and it
also shows that Z(G, ¢,v) is a polynomial in ¢ and v (equivalently, a).

The Potts model partition function on a graph G is essentially equivalent to the
Tutte polynomial [7, 8, 9] and Whitney rank polynomial [10, 2, 11, 12, 13, 14]. Here
the Tutte polynomial of an arbitrary graph G = (V, E) is

T(G,z,y) = Y (v = )OOy — 1)@ (1.6)

G'CG

where G’ again denotes a spanning subgraph of G and ¢(G') denotes the number

of independent circuits in G, satisfying ¢(G') = |E'| + k(G') — |V|. Since we only

consider connected graphs G, we have k(G) = 1. From (1.5) and (1.6), it follows

that the Potts model partition function Z(G, ¢, v) is related to the Tutte polynomial
T(G,z,y) according to

Z(G,q,v) = (z = Dy - YT(G, z,y) (1.7)
where
g = 1414 (1.82)
y = o=t (1.8b)
so that
¢=(z-1)(y—1) (1.9)

Previous exact calculations of Potts model partition functions for arbitrary ¢ and v
on lattice strips and/or studies of their properties include [3, 15, 16, 17, 18, 19, 20, 22,
23, 24, 25, 26]; a related early study of chromatic and Tutte polynomials for recursive
families of graphs is [27].

Various special cases of the Potts model partition function are of interest. One
special case is the zero-temperature limit of the Potts antiferromagnet, i.e., v = —1.
For sufficiently large ¢, on a given lattice or graph G, this exhibits nonzero ground
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state entropy Sy (without frustration). This is equivalent to a ground state degeneracy
per site (vertex), W > 1, since Sy = kglnW. The T = 0 partition function of the
g-state Potts antiferromagnet on G satisfies

Z(G,q,—1) = P(G,q) (1.10)

where P(G,q) is the chromatic polynomial (in ¢) expressing the number of ways of
coloring the vertices of the graph G with ¢ colors such that no two adjacent vertices
have the same color [4, 12, 28, 29]. The minimum number of colors necessary for this
coloring is the chromatic number of G, denoted x(G). We have

W({G},q) = lim P(G,q)"/" (1.11)

In the context of our current work we recall that the chromatic number for the 2D
triangular lattice is x(tri) = 3. This chromatic number also applies to strips of
the triangular lattice with free longitudinal boundary conditions and free transverse
boundary conditions. For the triangular-lattice strips with cylindrical (i.e., free longi-
tudinal and periodic transverse) boundary conditions, x = 3 if the width L = 0 mod
3and y =4 if L =1 or 2 mod 3. References to papers on the special case v = —1
are given, e.g., in [17, 25, 30, 3].

Using the formula (1.5) for Z(G, g, v), one can generalize ¢ from Z, not just to
R, but to C and v from its physical ferromagnetic and antiferromagnetic ranges
0<v<ooand —1 <wv<0towv € C. A subset of the zeros of Z in the two-complex
dimensional space C? defined by the pair of variables (¢, v) can form an accumulation
set in the n — oo limit, denoted B, which is the continuous locus of points where
the free energy is nonanalytic. This locus is determined as the solution to a certain
{G}-dependent equation. For a given value of v, one can consider this locus in the ¢
plane, and we denote it as B,({G}, v). In the special case v = —1 where the partition
function is equal to the chromatic polynomial, the zeros in ¢ are the chromatic zeros,
and By({G},v = —1) is their continuous accumulation set in the n — oo limit. With
the exact Potts partition function for arbitrary temperature, one can study B, for
v # —1 and, for a given value of ¢, one can study the continuous accumulation set
of the zeros of Z(G, ¢,v) in the v plane (complex-temperature or Fisher zeros [31] -
other early references include [32, 33, 34]). This set will be denoted B,({G}, q).

2 General Results for Recursive Families of Graphs

A recursive family of graphs is one in which one constructs successive members of
the family in a recursive manner starting from an initial member. Recursive families
of graphs that are of particular interest here are strips of regular lattices of a given
width L vertices (with free or cylindrical boundary conditions) and arbitrarily great
length m vertices (with free boundary conditions).

A general form for the Potts model partition function for the strip graphs consid-
ered here is [17]

Nz ax
Z(G,q,v) = Z caj(Aa )™ (2.1)

=1

)



where the coefficients ¢ ; and corresponding terms Ag ;, as well as the total number
Nz of these terms, depend on the type of recursive graph G (width and boundary
conditions) but not on its length. (In [17], a slightly different labelling convention
was used so that A7 ; rather than /\7531 appeared in the summand of eq. (2.1).) In the
special case v = —1 where Z reduces to the chromatic polynomial (zero-temperature
Potts antiferromagnet), eq. (2.1) reduces to the form [35]

Np,g,a

P(G,q)= > cai(Ara)™" (2.2)

j=1

For the lattice strips of interest here, we define the following explicit notation. Let
Nz sqBC: BC,,L,x denote the total number of \’s for the square-lattice strip with the
transverse (t) and longitudinal (¢) boundary conditions BC; and BC, of width L.
Henceforth where no confusion will result, we shall suppress the A subscript. The
explicit labels are Ny s pr 1, and Ny i pp 1, for the strips of the square and triangular
lattices with free boundary conditions, and Nzgqpr,r and Nz i pr, for the strips of
these respective lattices with cylindrical boundary conditions.

For the lattice strip graphs of interest here we can express the partition function
via a transfer matrix T (in the Fortuin-Kasteleyn representation) of fixed size M x M:

Z(G,q,v) =tr [A(q, v) - T(q, v)m_l] (2.3)

which then yields the form (2.1). Since the transfer matrix T and the boundary-
condition matrix A are polynomials in ¢ and v, it follows that the eigenvalues {A;}
of the transfer matrix and the coefficients ¢ ; are algebraic functions of ¢ and v.

One of the basic structural properties of the Potts model partition function on a
given strip is the number of different eigenvalues of the transfer matrix (in the Fortuin-
Kasteleyn representation), Nz ¢ g1, in eq. (2.1). In [3], in addition to proving various
formulas for these numbers for certain strip graphs, we presented a conjecture (de-
noted Conjecture 3 in [3] and given as Theorem 4.3.5 by one of us (S.-C.C.) in [36]).
Using extensions of the sort of reasoning employed in [3, 36], we have now succeeded
in proving this conjecture. We have

Theorem 2.1 For arbitrary L,

Ny sqtri pp, for even L
_ . o ’ IR )
2Nz sqpP,L. — Nz triPF,L = { %NZ,Sqm,FP,% for odd I, (2.4)
where the quantity Ny sqwrire,r s given by [20]:
2L
NZ,sqtri,FP,L = < L) (25)

Proof ~ We recall first that the quantity 2Nz rr,z — Nzipr, discussed in [3]
gives the number of non-crossing partitions for a transverse slice of these two respec-
tive strips (which is the path graph 77) such that these partitions are symmetric under
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reflection about the longitudinal axis. The quantity 2Nz sq pr,;, — Nz i pr,r gives the
corresponding number of non-crossing partitions for a transverse slice (which is the
circuit graph Cp) of the two respective cylindrical strips such that these partitions
are symmetric under reflections about the longitudinal axis and rotations around this
axis (the latter being included since there is no special azimuthal direction). We shall
prove eq. (2.4) for odd L first and then for even L.

For odd L, letn = (L+1)/2, and denote 2NZ,sq,PF,L:2n—1_NZ,tri,PF,L:Zn—l as Xn for
simplicity. Consider a transverse slice with periodic boundary conditions. Since this
is topologically invariant under rotations around the longitudinal axis, we can label
one vertex as 1 and other vertices 2,3,...,n,n/,(n—1),...,2', in a counterclockwise
manner (relative to a specified longitudinal direction), and consider the reflection
symmetry with respect to the longitudinal axis passing through vertex 1. In order to
classify the types of colorings of the vertices, we shall introduce diagrams consisting
of the L vertices on this transverse slice. In this context, we shall refer to two vertices
as being “connected” if these have the same color and shall denote this by using the
Kronecker delta function.

The sets Px, of partitions for n = 1,2, 3 that are invariant under this reflection
symmetry are: Py, = {1}, Px, = {1,89,2,01 20,2 = 0192}, and

Px, = {1,052, 033, 0122, 0133, 023023, 022033,
02,3.2/,3, 0122033, 51,2,3,2/,3'} (2.6)

We can classify these partitions into cases that have m vertices on one side of the
slice (including vertex 1) connected to at least one other vertex (on the same side
or the other side, indicated by the primes above), where 0 < m < n. For m = 0,
this is the partition 1, that is the identity partition, defined as the one in which
all blocks are “singletons”, i.e., there are no connections in the sense given above.
For m = 1, there is only one possibility: 0z, ., where 2 < x; < n. For m = 2,
let us denote the connected vertices as zy, x5 and, with no loss of generality, take
71 < To; then there are the partitions s, sy, 0z 0.0, a0 Oz, 27 Oy 0~ For the first
case, r1 can be vertex 1, but for the second and third cases, 2 < z; < n since z;
and z are different vertices. The corresponding partitions &, ., for the first and
second cases can be obtained by reflection symmetry from the ones that we have
listed and hence, for simplicity, are not shown. With no loss of generality, we take
71 < Ty <...< Ty. For m =3, the partitions are 0z, 2,025 4%, Ox1,20,23) Oz1,20,2" Oz 2,5
Oy a9,03,2) s Ozr 2t Oy 2> Oxr 2!, Ozs wa,alyy Oy o), Os o), Ons 2ty Having given these illustrations
of the specific partitions for 0 < m < 3, we next proceed to the general case.

The partitions that have m vertices on one side of the slice connected to as least
one other vertex (on the same or opposite side) can be classified further. Let us
denote a,, as the number of cases where the vertex z; has only the connection 5z1,z’1
for 1 < m. In these cases, 21 cannot be vertex 1, and the number of the partitions
for each m < n — 1is ("'). The last three partitions of m = 3 given above are
examples of these cases. We denote b, as the number of cases where the vertex x;
has connection to at least one unprimed vertex with or without 511,13 for 2 < m. The
first and second partitions for m = 3 are examples of these cases without 0, ., and



the third and fourth partitions for m = 3 are examples of these cases with &z, ..
Notice that while z; cannot be vertex 1 for the cases with 5,1,z11, which have the
number of partitions ("n_ll) for each m < mn — 1, z; can be vertex 1 for the cases
without dz, 4+, and the number of partitions for each m < n is (:l) Therefore,

= n—1 L n—1 " n
Xn:1+mz_1am( o >+mz_2bm( N )+mz_2bm<m> (2.7)

Next, we shall obtain expressions for a,, and b,,. The cases for a,, can be obtained
from all the cases with m — 1 vertices by changing z; to ;1 for 1 < i < m — 1 and
adding 0z, 47, i.€., Gy, is the same as the total number of the cases with m—1 vertices,

Uy = Um—1 + 2bm_1 (28)

Now consider the cases for b,, without 511)13 . These can be further divided into two
possibilities: the cases with dg, 5, and the cases with dg, ,, where 2 < 4 < m. Denote
the numbers of these two possibilities as d,, and e, respectively. Clearly,

by = dp + €, (2.9)

The cases for d,, can be obtained from the cases for b,, ; by changing z; to x;,, for
1 <i<m —1 and adding d,, 4,, and from all the cases with m — 2 vertices, where
the number is a,,_;1, by changing x; to wijtp for 1 < ¢ < m — 2 and adding 0z, 4.
Therefore,

dm = Qm_1 + bm_1 (210)

The cases for e, can be obtained from the cases for d,,_o by changing z; to x;o for
2 <i < m—2 and adding 6, ,,, from the cases for d,,_3 by changing z; to z;;3 for
2 <4 < m— 3 and adding 6y, 4,,4,, etc. In general, the cases for e, are obtained
from the cases for d,,—¢ by changing x; to z;1ofor 2<i<m-—fand2<{¢<m-—2,
and adding a set of ¢ vertices, where all the vertices in this set must have at least
one connection to at least one other vertex in this set without reflection or rotation
symmetry. The number of all possible connections of this set with ¢ vertices is the
Riordan number (given as sequence A005043 in [37]), which will be denoted as r, and
may be defined via the generating function [38]

I+2z—(1-22-32)12 &
R(2) = 2(z(1 v ) = szl (2.11)
=0

Therefore,
m—2
em = Z Ay ¢ (2.12)
=2

We list the first few numerical values of a,, by, dpm, €m, ™m in Table 1. In terms of
generating functions

A(z) = az+ asz? 4+ a3z + . ..
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B(2) = by2® +b32® +bg2* + ...
D(2) = do2®+ds2® +dy2* + ...
E(z) = eu* +es2” +ee2®+...
R(z) = 14r2® +r32® 4zt + ... (2.13)

(recalling the zero entries in Table 1), we can re-express egs. (2.8) to (2.12) as

A(z) — a2

. = A(z) +2B(z)

B(z) = D(z)+ E(z)

Diz) — A(2)+ B(2)
E(z) = D(2)(R(z) —1) (2.14)
We find .
AR = s (2.15)

The coefficients in the expansion of A(z) in eq. (2.13) are, up to a shift, the central
trinomial coefficients (given as sequence A002426 in [37]), i.e., for each value 1 < m
the largest coefficient of (1 + z + 22)™~!. Next,

1 1-=2
B(z) = 5| —s - 1] 2.16

(=) 21y/1 - 22— 322 (2.16)
The coefficients in the expansion of B(z) in (2.13) are given by the coefficients for

the next-to-central column in the expansion of (1 4 z + 2%)™! for 1 < m (listed as
sequence A005717 in [37]). For D(z) we have the closed form

D(s)=1] f_*;z 1] (2.17)

The coefficients in the expansion of D(z) in (2.13) are the numbers of directed animals
of size m — 1 on the square lattice for 1 < m (given as sequence A005773 in [37]).
Finally, we have

p 1-32+(1—-22)v1—2z—32%
1-22—322+ (32— 1)V1 —22— 322
The coefficients in the expansion of E(z) in (2.13) are the coefficients forming the

second column from the center, in a tabular format, in the expansion of (1+ 2+ 22)™~2
for 2 < m (given as sequence A014531 in [37]).

E(z) = 1+ 2 (2.18)
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Recall the binomial transformation for two sequences of numbers [sg, s1, s, - . .],
[to, 1, to, . ..] with generating functions S(z) = Y 07 sn2™ and T(z) = Y 0o (t,2". If
these sequences have the relation

tn = zn: (;;) Sm (2.19)

then [39]
1 z
T(z) = S
() = =
In our case, if the generating function of X, is X(z) = Y02, X,,2", then we can
combine egs. (2.7), (2.15) and (2.16) to get

1 z z z z 1 z
X -1 A B B
() 1-=2 +1—z (1—z>+1—z <1—z>+1—z (1—2)
1 1 1}
AN

This has the expansion

T (2.20)

X(z) = f: <2nn— 1) " (2.22)

n=1

Note that (*"1) = $(*") = %((Lfg)l/g) (given as sequence A001700 in [37]).
Let us next proceed to consider the number of non-crossing partitions for a slice
of the transverse vertices which has periodic boundary conditions and reflection sym-
metry for even L. Denote n = L/2, and 2NzqpF,L=2n — NztripF,L=2n by Y, for
simplicity. There are two possibilities: the reflection axis does not go through any
vertex or goes through two vertices. These possibilities will be denoted as type I
and and type II partitions, respectively, and the number of partitions of each of
these two types as Y, and Y. For type I partitions, label the vertices on one
side of the reflection axis as 1, 2,..., n and the corresponding reflected vertices as
1/,2')...,n' on the other side. For type II partitions, label the vertices as 1, 2,
.., n,n+1, n, ..., 2 where vertices 1 and n + 1 are on the reflection axis.
The sets Py of type I partitions for n = 1,2 having this reflection symmetry are:
PY1I = {1,5171/} and PY21 = {].,(5171r,5272/,5172(51r72/,5172,1/,5171/5272r}. The sets Pyr{l of
type II partitions for n = 1,2 having this reflection symmetry are: Pyn = {1,6,2}
and PYZH = {1, 52)2!, 61,3, 617272/, (52,3,2!, 51,273’2/73/}. We notice that partitions ]., i.e. iden-
tity and 12,1 (i.e., a unique block) are both contained in the type I and type II
classes of partitions. Since we have rotational symmetry, the partitions which are not
symmetric with respect to the central axis perpendicular to the reflection axis are
counted twice in either type I or type II classes of partitions. A similar statement
applies to the partitions which are symmetric with respect to the axis perpendicular
to the reflection axis if L is a multiple of 4. If L is not a multiple of 4, the partitions
that are symmetric with respect to the perpendicular axis are counted once in both
type I and type II classes. Therefore, 2Y,, is the sum of all possible partitions in these
two classes of partitions.

10



We again classify these partitions into cases which have m vertices on one side
of the slice connected to at least one other vertex (including vertex 1 and vertex
n + 1 for type II partitions). It is clear that 0 < m < n for type I partitions and
0 <m < n+1 for type II partitions. Let us consider type I first. For m = 0, there
is the partition 1 (identity). For m = 1, there is only one possibility: 0, ., where
1 <z < n. Form = 2, there are 0z, 45, Oz, 20,07 and Oz, 41 Oz, 2, Where z1 < 2.
The corresponding d,; ., for the first and second cases are not shown for simplicity.
We shall again take z; < 25 < ... < Z,. The number of the cases with m vertices
connected i8 ap, + 2by, = apme1 as discussed above eq. (2.8), and the number of the
partitions is (::1) for each 0 < m < n. Therefore,

Yi=) ma (Z) for1<n (2.23)

m=0

Let the generating function of Y, be Y'(2) = >°° V,2". Using eq. (2.15) and
modifying eq. (2.20), we have

1
Vv1—4z B

For type II partitions, neither vertex 1 nor vertex n 4+ 1 has a corresponding
symmetric partner, 1’ and (n + 1)', respectively. We have to classify the cases where
x1 is only connected to at least one other unprimed vertex (in these cases, z; can be
vertex 1), the number of which cases was denoted by, earlier, into two possibilities: the
cases where z,, is only connected to at least one other unprimed vertex (so that z,
can be vertex n + 1), and the cases where z,, is connected to z}, (so that z,, cannot
be vertex n+1) among other possible connections. The number of partitions for these
two possibilities will be denoted as f,, for 2 < m and h,, for 3 < m, respectively. The
partitions where z; is connected to z7, i.e., d, o#, among other possible connections
can also be classified into two possibilities: the cases where z,, is only connected to
other unprimed vertices, and the cases where x,, is connected to z!, among other
possible connections. The number of partitions for these two possibilities will be
denoted as h!, for 3 < m and i, for 1 < m, respectively. Notice that hl, = hy,
because of the reflection symmetry. We shall need another set of partitions where z;
is connected to z,, with possible connection to other unprimed vertices, and all the
other vertices are connected to at least one other unprimed vertex; we denote the
number of partitions for them as j,, for 2 < m. If we add an additional connection
0z,,24 to these partitions, and denote the number of partitions as k,, then k; =1 and
kpm = jm for 2 < m.

For the cases for f,,, 1 and z,, can be vertices 1 and n + 1, respectively, so the
number of the partitions is ("T:l) for each m. For the cases for h,,, 1 can be vertex
1 but z,, cannot be vertex n + 1, so the number of the partitions is (TZ) for each m.
For the cases for i,,, neither x; can be vertex 1 nor z,, can be vertex n + 1, so the

Yi(2) =

1 (2.24)

—a) =

1—2

11



n—1

number of the partitions is ("~') for each m. Therefore,

n+1 n n—1
Y;1=1+rni_2fm(";:l> HmZ_g,hm(:l) +mz_1im(”;l) (2.25)
We next obtain expressions for f,,, h,, and i,,. From the definitions,
Jm =+l = by, (2.26)
and
Py + iy = G + by = dipi1 (2.27)

where we use eq. (2.10). The cases for f,, include all the cases for j,, plus the cases
for both f,_o and h,_o with the additional connection §,,, , .., plus the cases for

both fp—3 and hp,—3 with the additional connection 65, , 4., 1.2, €tc. We have
m—2 m—2
= Jm+ Y de [t + Bnt) = jin + Y o bns (2.28)
=2 /=2

The cases for h,, can be obtained by adding 6, . to the cases for fr,_; and hp_,
and adding 6z, , ¢,z to the cases for fr,_o and h,,_o, etc. We have

—2

m—2
b =Y ke [+ hmel = > ke bs (2.29)
(=1

1

3

~
Il

The cases for hl, can be obtained by adding d,,, , ., to the cases for hl,_, and i,,_o,
and adding ¢ to the cases for b}, , and i,,_3, etc. We have

Im—2Tm—1,Tm

m—1 m—1
iy, = ij e+ im—e] = ij g1 (2.30)
=2 =2

which should be equal to h,,, as mentioned before. The cases for i,, include all the
cases for kp,, plus the cases for both h;,_, and i,,_; with additional connection &,,, 4 ,
plus the cases for both h;,_, and i, 5 with additional connection d,,_, z,,.2. , etc. We
have

m—15

m—1 m—1
im = km+ > ki Mg+ imt] = b+ > ki e (2.31)
=1 =1

The cases for j,, can be obtained from the cases for r,, by removing the cases for r,, »
with additional 0;,,_, .., removing the cases for r,_s with additional J,
etc. We have

m—2,m—1,Tm)

m—2
jm =Tm — Z]l T'm—¢ (232)
=2

We list the first few numerical values of f,,, b, tm, jm, km in Table 2. In terms of
the generating functions

F(2) = foi?+ f222 + fazt + ...

12



H(z) = H(2) = hsz® + hyz* + hs2® + ...

ilz+i222 +Z-323 4+ ...

~

Ny
N

N—r
Il

J(z) = jo2® 4 g3 4+ a2t 4 ...
K(z) = kiz+ky2® + k32 + ... (2.33)
we can reexpress egs. (2.26) to (2.32) as
F(z)+ H(2) = B(2)

D(z)

F(z) = J(z)+ B(2)J(?)

H(z)+1(z) =

J(2) = R(x)—1-(R(z) = 1)J() = (R(z) = 1)(1 - J(2)) (2.34)

We find
J(z)=————==(1-2—-V1-22-32?), (2.35)

which is essentially the Motzkin number [40, 41] (given as sequence A001006 in [37]).
This can be understood since the cases for j,, are in one-to-one correspondence with
the non-crossing, non-nearest-neighbor partitions of m —1 vertices with free boundary
condition, as given in eq. (2.1.1) of [3], i.e., jm = Mpm_s. We also have

K(z) = 2+ J(2) = %(1 +2-VT=2: =32 (2.36)

The first five equations in eq. (2.34) are redundant, and can be solved to have
2

V1—2z— 322 -
i.e., fm = @m_1, which is the largest coefficient of (1 + z + 22)™=2 for 2 < m. Next,
we have

F(z) = zA(z) , (2.37)

H(z) = ;[G - :2;> VI—2:-322 - 1 (2.38)

The coefficients in the expansion of H(z) are the numbers of directed animals of size
m — 2 on the square lattice with the first two quadrants (which can grow in right, left
and up directions) for 2 < m (given as sequence A005774 in [37]). Finally,

1+=z

I(z) =2 T_3,

=2D(2) + 2, (2.39)
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which is given as sequence A0025565 in [37].

Denote the generating function of Y;\' as Y (z) = 3>°° | ¥'2". Combining egs. (2.25),
(2.37), (2.38), (2.39), and using the binomial transformation (2.20), we obtain the re-
lation

1 1 z 1 z z z
v = -1 F H I
() 1-2 +z(1—z) (1—z)+1—z (l—z)+1—z(1—z)
1 14 z n 1 [ 1-3z2 n 1]
= — z —
1-=2 (1—2)2y/1 -4z 2(1-2)2Ly/1 -4z
2
(1—-2)%V/1—4z
1
= — -1 2.40
Vv1—4z ’ ( )
which is the same as the Y1(2) in eq. (2.24). We finally have
y! yt 1
y() = L@V 1, (2.41)
2 V1—4z

L

which is the generating function of (2:) = (L/Q)’ i.e., the central binomial coefficients
given as sequence A000984 in [37].

Egs. (2.21) and (2.41) prove the theorem for odd and even L, respectively. O

Using extensions of the methods in [3, 36], we have also succeeded in proving
Conjecture 4 in [3] (given as Theorem 4.3.7 in [36]) for the number of N’s for the
triangular lattice with cylindrical boundary condition for the Potts model partition
function:

Theorem 2.2 For arbitrary L,

Nz tripr,L = % [CL + Z P(L/d) (Zjﬂ (2.42)

d|L; 1<d<L

where d|L means that d divides L and ¢(n) is the Euler function, equal to the number
of positive integers not exceeding the positive integer n and relatively prime to n.

Proof  As shown in [19], Nz 4 pr,. = Cy, is the number of non-crossing partitions
of a set of L vertices with free boundary conditions. LNz tvi pr.i, — Nz tiFr,r is equal
to 2(L — 1) for prime L, as shown in [3, 36], since all the partitions of Ny pr, 7, have
periodicity L for prime L except for the partitions 1 (i.e., all blocks being singletons)
and 09, 1, (i.e., a unique block) which have periodicity 1. Consider a general L and
assume that L has the factor d (so that for prime L, d can only be 1 or L). Denote
the number of partitions which have periodicity d modulo rotations as 2cg. Then

LNZ,tri,PF,L - NZ,tri,FF,L = Z 2Old(L - d) (2-43)
d|L

14



where d are all the positive integers that divide L.

There are two kinds of partitions among 2«y4, each of which contains a4 specific
partitions. The first kind of partitions is defined by the condition that each set of d
adjacent vertices does not have connection with any other vertex in the complemen-
tary subset of vertices. Let us label the vertices in one set of d vertices as 1,2,...,d.
For d = 1, the set of partition is {1}. For d = 2, the set of partition is {d;2}. For
d = 3, the set of partitions is {d;,2,01,3,0123}. The second kind of partitions is de-
fined by the condition that all of the first vertices of each of the sets of d vertices are
connected to each other. For d = 1, the set of partition is {d, 1/}, where 1’ is the first
vertex of the adjacent set of d vertices. For d = 2, the set of partition is {d;1/}. For
d = 3, the set of partitions is {d;,1/,01,1/02,3,01,173}. Since there is a one-to-one corre-
spondence between these two kinds of partitions, let us only consider the second kind
of the partitions which always have the connection ¢, ;.. Denote ¢, as the number of
partitions which has periodicity less than or equal to d modulo rotations. This can

be written in term of «y as

oy = Z Qg (2.44)

&'|d

For the set of d vertices, if vertex 1 does not connect to any other vertex except 1, the
first vertex of an adjacent set, then the number of partitions is equal to Nz i rrg—1 =
Cgy_1. If vertex 1 has a connection to vertex b for 1 < b < d in addition to vertex
1’, then the number of partitions is Cy_oCy_p. The connection of vertex 1 to vertex
d—b+2 is equivalent to the connection of vertex 1 to vertex b under rotation symmetry,
and should not be considered again. Of course, vertex 1 can have connection to more
than one vertices in addition to 6, 1. Therefore, to calculate o, we have to partition d
first. For each partition of d, e.g., [z1, T2, ..., x;] with 21+ 2o+ ...+ 2; = d, where 7 is
the numbers of vertices in the set of d vertices connected to vertex 1 (including vertex
1), we multiply all the corresponding C,, 1’s by the number of different combinations
of this partition modulo rotations (thus [2,2,1,1] is the same as [2,1,1,2] and [1,1,2,2],
but different from [2,1,2,1]). As an example, for d = 5, we have the partitions
5=44+1=34+2=34+141=2424+1=24+14+141=1414+1+1+1, and
therefore

) 1 2\ 1 2\ 1 3 1 3
o i+ 5C5Co <1> + 500 <1> + 50203 <1> + ngCo <2>

1 4 5
+4clcg( 1) e <5>

= 14+5x1+2x14+2x 1P+ 1" x1+1x1°+1°=26 (2.45)

The factors %, %, and i are included because of the equivalence under rotations. The
numbers «; for small d are listed in Table 3.

We find that < is the same as the rooted planar trees with d edges with the
property that rotations about the root vertex yield equivalent trees, given as sequence
A003239 in [37]. The reason can be explained as follows. Define a “planted” tree as a
rooted tree with the property that the root vertex has degree one (where the degree

of a vertex is the number of edges connected to it). Now we can construct planted
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trees from subtrees of the rooted planar tree that are each connected to the root
vertex. Note that the number of planted tree with d edges is Cy—1 [38]. The sequence
A003239 also gives the number of necklaces with a total of 2d beads where d beads
have one color and the other d beads have another color. The explicit formula is

I l 2d,
o = 2d%¢d/d( ) (2.46)

where ¢(n) was defined above after eq. (2.42).
Now the number of partitions that have periodicity equal to d modulo rotations,
@, is the Mobius transformation [39] of ¢}, given by

g =3 pld/d)aly (2.47)
d'|d

where p(n) is the Mdbius function, defined as —1 if n is prime, 0 if n has a square
factor, and 1 for other n. We find that « is listed as sequence A022553 in [37], which
is the Lyndon words containing a total of 2d letters with d letters of one type, and
the other d letters of another. The values of a4 for small d are listed in Table 3. One

has the explicit formula
1 [ 2d
= oo Z w(d/d) < d, ) , (2.48)
@'|d
i.e., 2dayg, is the Mobius transformation of (Qdd), or equivalently,
2d
( d) = 2oy (2.49)
&'|d
Therefore, the total number of partitions that have periodicity d modulo rotations is
1 n [ 2d
200 = 5 dzl;p(d/d ) ( p ) (2.50)

This is given as sequence A060165 in [37].
We finally have

LNgzsipr,r, — Nzifr,, = Z 204(L — d)

- Tigro(s)- ()
-2 3 ()= (%)
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Sown (%) - (%)

d'|L

> i) (2:51)

d|L; 1<d<L

and the theorem follows. O

Theorems 2.1 and 2.2 imply a simple corollary which gives an exact formula for
Nz,sq,PF,Li

Corollary 2.1 For arbitrary L,

1 L
NzsqpF,L = 3 [Nz,m',PF,L + ([L/2]>] (2.52)

Proof For even L is trivial. For odd L, we only have to notice that

1 o) = = (0 L) = () @

2

This proves the corollary. [

One of us (S.-C.C.) has presented a conjecture, Conjecture 4.2.2 in [36], which
generalizes Theorem 3 in [3] (i.e., Theorem 4.2.6 in [36]). We restate this conjecture
here. Consider the number of A’s in the chromatic polynomial for a strip of the
triangular lattice with cylindrical boundary conditions:

Conjecture 2.1 For arbitrary L,

Npripr,L = %[dL + Z ¢(L/d)td] (2.54)

d|L; 1<d<L

where ty = aqy, is the largest coefficient in the expansion of (1 + z + 22)¢, i.e., the
central trinomial coefficient (given as sequence A002426 in [37]), and df, is essentially
the Riordan number ry, (given as sequence A005043 in [37])

1 L=1
dy, = { . >3 (2.55)

where the reader is cautioned not to confuse the dj, in eq. (2.54) with the different
quantity d,, in egs. (2.9) and (2.10). We can motivate this conjecture as follows.
We know that dj is the number of non-crossing non-nearest-neighbor partitions of a
set of L vertices with periodic boundary conditions, as shown in [19]. The number
LNpgipr, — dr, is equal to L — 1 for prime L, as shown in [3, 36], since all the
partitions of Np v pr 1, have periodicity L for prime L except for the partitions 1 (i.e.,
all blocks being singletons) which have periodicity 1. Consider a general L having
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the factor d, and denote the number of non-nearest-neighbor partitions that have
periodicity d modulo rotations as 8;. Then

LNpipr,L —dr = Z Ba(L — d) (2.56)

d|r.

There are two kinds of partitions among (; we denote the number of these as 3}
and Y, respectively. The first kind of partitions is defined by the condition that each
set of d adjacent vertices does not have connection to any other vertices in other sets.
Label the d vertices as 1,2,...,d. For d = 1, the set of partitions consists of just {1}.
There is no non-nearest-neighbor partition for d = 2. For d = 3, the set of partitions
is {613}. For d = 4, the set of partitions is {614, d1,3}. The second kind of partitions
is defined by the condition that all of the first vertices of each set of d vertices are
connected to each other. There is no non-nearest-neighbor partition for d = 1. For
d = 2, the set of partitions is comprised of {d, 1/}, where 1’ is the first vertex of an
adjacent set of d vertices. For d = 3, the set of partitions is {61,11}. For d = 4, the set
of partitions is {d1,1/,01,11024}. Notice that for d = 4, {01,1r3} is the same as {11/}
for d = 2, and should not be included to avoid double-counting.

Consider the first kind of partitions. If the first vertex 1 is connected to the
last vertex d among other possible connections with other vertices in the set of d
vertices, the number of these partitions is r4_;, the Riordan number (given as sequence
A005043 in [37]). This can be seen by identifying the vertices 1 and d to form a circuit
with d — 1 vertices [19]. In addition, the set of d vertices can also be partitioned into
several parts where the first and the last vertices of each part are connected, but parts
are not connected to each other. To calculate 8., we partition d, and apply the same
transformation as illustrated in Theorem 2.2 (above Table 3) on r4_;, then apply a
Mobius transformation. The values of B} for small d are listed in Table 4.

Consider the second kind of partitions. By an argument similar to that given in
the proof of Theorem 2.2, if vertex 1 is not connected to any other vertex except 1’
among the set of d vertices, then the number of partitions is just Npyipra—1 = Mi_o.
In addition, the vertex 1 can also be connected to other vertices among the set of d
vertices. To calculate BY, we again partition d, and apply the same transformation,
as illustrated in Theorem 2.2 on My 5. We then apply a Mébius transformation. The
values of BY for small d are listed in Table 4. We find that 3} and S are the same
up to d = 10, except for d = 1 and 2. The values of 8; = B} + Bl are also listed
in Table 4 for small d. Although S, is not listed in [37], we find that the following
relation holds up to d = 10, and is similar to eq. (2.50):

Ba = %Zu(d/d’)td (2.57)

d'\d

If this is correct for arbitrary d, then the conjecture is proved.
Combining Conjecture 2.1 and Conjecture 1 in [3], we have
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Conjecture 2.2 For arbitrary L,

1 1
2 [NP,tri,PF,L + ENP,sqtri,FP,%:| for even L

Npsqpr,L = (2.58)

1 1 1
3 [Np,tri,PF,L + ZNP,sqtri,FP,L'z"l — E'I"L;l] fOT odd L > 3

where Npgqrirp,, was given in [20], and T, is the Riordan number (given as sequence

A005043 in [37]).

3 Potts Model Partition Functions for Triangular-
lattice Strips with Free Boundary Conditions

The Potts model partition function Z(G, g, v) for a triangular-lattice strip of width
L and length m with free boundary conditions is given by

Z(Lp x mp,q,v) = vig-H-T™1.u (3.1a)
= wl.Tm .y (3.1b)

where w! = v} - H. Hereafter we shall follow the notation and the computational
methods developed in [3, 19, 42, 30] (For chromatic polynomials, a related matrix
formulation has been discussed in [43, 44, 45, 46].) Concerning notation, no confusion
should result between the vertex set V', the variable v, and the vector v. Here
T = V- H is the transfer matrix, and H (resp. V) corresponds to adding one more
layer of horizontal (resp. vertical) bonds. The matrices T, V, and H act on the
space connectivities of sites on the top layer, whose basis elements are indexed vp
are indexed by partitions P of the single-layer vertex set {1,...,L}. In particular,
Vid = V{{1},{2},.{L}}-

To simplify the notation, we shall denote the elements of the basis vp by a short-
hand using Kronecker delta functions: for instance v 3} 23,445} Will be written
01,3015. We denote the set of basis elements for a given strip as P = {vp}.

As we are dealing with planar lattices, only non-crossing partitions occur. The
number of such partitions is given by the Catalan numbers

Cn:njrl(z:) (3.2)

In the triangular-lattice strip with free boundary conditions there is no additional
symmetry that allows us to reduce the number of partitions; thus the dimension of
the transfer matrix for width L is [19]

Nz uirr, = Cr, (3.3)

We have obtained the transfer matrices T(Lr) and the vectors wiq and u using
symbolic computation with MATHEMATICA as in [19, 3]. We have double-checked
these results using a different program written in PERL.
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An equivalent way to present a general formula for the partition function is via a
generating function. Labelling a lattice strip of a given type and width as G,,, with
m the length, one has

I'G,q,v,2) = Z 2" Z(Gm,y q,v) (3.4)

m=0

where T'(G, ¢,v, z) is a rational function

N(G,q,v,2)
G =—"" "' 3.5
G005 = B(Grg0,2) &

with

deg, (V) _

N(Ga(bva Z) = Z AG,jZ] (36)
§=0
Nz tri,BC,L Nz tri,BC,L

D(G,q,v,2) =1+ Z bg 2’ = H (1= Ag,j2) (3.7)

j=1 j=1

where the subscript BC denotes the boundary conditions. In the transfer-matrix
formalism, the Ag ;’s in the denominator of the generating function, eq. (3.7), are the
eigenvalues of T.

Strips of the triangular lattice are well-defined for widths L > 2. The partition
function Z(G, ¢, v) has been calculated (for arbitrary ¢, v, and m) for the strip with
L = 2 in [18] by two of us using a systematic iterative application of the deletion-
contraction theorem. Z(G,q,v) was also studied for arbitrary ¢ and v and zeros
calculated for L = 3,4 and various lengths in [16]. Here we shall review the L = 2
case in the context of the transfer-matrix method. We note that for . > 4p, the
expressions for T(Lg), wiq(Lr) and u(Lyp) are so lengthy that we cannot include
them here. They are available from the authors on request and in the MATHEMATICA
file transfer_Tutte_tri.m which is available with the electronic version of this paper
in the cond-mat archive at http://www.lanl.gov.

31 L=2

The number of elements in the basis is equal to Cy = 2: P = {1,6,,}. In this
basis, the transfer matrices and the other relevant quantities are given by

T _ @+ 4qu +50? +v* (1 +v)(q + 3v + v?) (3.8)
N v*(q + 3v + v?) v*(1+v)(2+v) '

wy = q(g+v,1+v) (3.8b)

u’ = (1,0) (3.8¢)

Because certain expressions recur in transfer matrices for wider strips, it is convenient
to re-express (3.8) in terms of these expressions; we have

_ Ty DiEj
T = <v2E3 v2D1D2> (3.9a)
wiq = q(Fi, D) (3.9b)
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where

D = vtk (3.10a)
F, = q+kv (3.10b)
Ey = ¢*+kv+? (3.10¢)
To = ¢+4qu+50+0° (3.10d)

In terms of this transfer matrix and these vectors one calculates the partition function
Z(Gm, q,v) for the strip with a given length m via eq. (3.1). Equivalently, one can
calculate the partition function using a generating function, and this was the way in
which the results were presented in [18], with

2

N =1]0 = M2 2) (3.11)
j=1
and )
Atfa,(1,2) = 3 [Tsu +(¢+3v+ 1)2)\/ Rg19 ] (3.12)
where
Ts12 = v* +40° + T0* + dqu + ¢° (3.13)
and
Rg12 = ¢ + 2qv — 2qv* + 5v% + 20% + v (3.14)

The product of these eigenvalues, which is the determinant of T, is
det(T) = v*(1 +v)*(v + ¢q)? = v’ D?F} (3.15)

The vanishing of this determinant at v = —1 and v = —g occur because in each
case one of the two eigenvalues is absent for, respectively, the chromatic and flow
polynomials [47]. Analogous formulas can be given for det(T) for higher values of L;
we omit these for brevity.

3.2 L=3p

The number of elements in the basis is equal to C3 = 5: P = {1, ;2,01 3,023,012}
In this basis, the transfer matrices and the other relevant quantities are given by

T, D\FEs T, DT, DT,
’I)2F3E3 ’UQDIDQFQ ’UZT5 /UQDITL; /U2D%D2
T = ’U3E3 ’()2D1E3 ’1)2T5 ’U3D1D2 ’U2D%D2 (316&)
’U2E3E4 ’1)2D1D2E3 ’I)ZTS U2D1D2E4 ’I)QD?D%
’()4D3E3 ’U?’DngEg ’1)3T7 ’()4D1D2D3 U3D%D%
wy = ¢ (F?,DiF\, By, DiFy, DY) (3.16b)
t (1,0,0,0,0) (3.16¢)

]
I
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where the T} are shorthand notations used in this section, defined as

Ty = ¢+ 7¢% + 19¢v® + 190 4 2¢qv® + 50* (3.17a)
T, = ¢+ 7qu+ 160* + qv* + 90° + 20* (3.17b)
Ty = ¢*+6qu+ 1102 + qv? + 403 (3.17¢)
Ty = q+ 50+ 20 (3.17d)
Ts = q+6v+40°+0° (3.17e)
Ts = 2¢+13v+ 130 +60° +0* (3.17f)
T = q+12v+13v% + 60 + o* (3.17g)

4 Potts Model Partition Functions for Triangular-
lattice Strips with Cylindrical Boundary Condi-
tions

The Potts model partition function Z(G, ¢, v) for a triangular-lattice strip of width

L vertices and length m vertices with cylindrical boundary conditions can be written
as

Z(Lp x mp,q,v) = vig-H-T"-u (4.1a)
wh-T™ ! u (4.1b)

where again wi; = vl - H.

In the computation of the transfer matrix for a triangular-lattice strip with cylin-
drical boundary conditions there is a technical complication in order to treat correctly
the last diagonal bond joining columns L and 1 [19, Section 3]. Instead of consider-
ing a triangular-lattice strip of width L and cylindrical boundary conditions, we start
with a strip of width L+1 and free boundary conditions. The parameter v is the same
for all edges, except for the vertical edges corresponding to column L + 1, where it
takes the value v = 0. After performing the computation, we identify columns 1 and
L + 1. This procedure implies that there are double vertical edges (with parameters
v and 0) connecting sites on column 1; but their net contribution is v, as expected.

We obtain in this way a transfer matrix of dimension C ;. This matrix can be
simplified by noting that there are many zero eigenvalues. Let us denote by {vgs)}
(resp. {VJ(-")} ) the basis elements corresponding to L + 1 being (resp. not being) a

singleton. The number of elements of {v§-s)} is Cp; hence the cardinality of {v](-”)}
is Cp.1 — Cf. The zero eigenvalues are associated with certain eigenvectors of the
form v; — vy where v, € {v](s)} and vy € {VJ(-")}. Let us make the following change
of variable

V, = VZ(S) o V§n) Z = 1, o .,CL+1 N CL (4'2)
L VZ(S) i:CL+1_CL+1;---:CL+1
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where the first elements corresponds to eigenvectors with zero eigenvalues, and the
last C}, elements are those of the basis {vjs)}. Then, the transfer matrix takes the

simple form
, 0 TM

where T®) (resp. T(™) is a matrix of dimension Cy, (resp. Cp 11 — C1). In this new
basis the vectors w;q and u take the form

wiy = (0.w) (4.4a)
u = (0,u®) (4.4b)

Thus, we can write the partition function in terms of T¢*), w(*) and u(®) alone
Z(Lp x me, (g,0) = wi) T [TOP=1. 4@ (4.5)

So far we have a transfer matrix with the same dimension as for free boundary
conditions (namely, Ny i rr,, = Cr). We can reduce even more the dimension of the
transfer matrix by noting that cylindrical boundary conditions introduce an extra
symmetry (i.e. translations along the transverse direction). In particular, we can
make a further change of basis in the subspace {v](s)} so that

(s)r — { :ZES;”) i = ]-5 N CL - NZ,tri,PF,L (46)

i=CL— Nzuiprr +1,...,0L

where the last Ny ipr,, (resp. the first Cp — Ny yipr,) elements {vgs’t)} (resp.
{vgs’")}) are translational-invariant (resp. non-translational-invariant) combinations
of the original vectors {vlgs)}. In this new basis, the transfer matrix T(*) takes a block

diagonal form
o[ TEm g
TG — ( 0 TN (4.7)

and the vectors wi(j) and u®) take the form
wi = (0,w") (4.82)
u(s)’ = (0,ul*?) (4.8b)
The partition function can be computed using the transfer matrix T(*)
Z(Lp x my, (g,0) = wi? T [TEOm=L. 460 (4.9)

The dimension of T®% will be denoted by Nzuipr,r and is given by Theorem 2.2
(See also Table 5).

For L > 6 there is a further simplification, which is also present in the chromatic-
polynomial case [30]: in the translation-invariant subspace the transfer matrix does
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commute with the reflection operation. Thus, we can pass to a new basis consisting
of connectivities that are either even or odd under reflection. In this new basis, the
transfer matrix T(*% has the block diagonal form

(1)
Tty _ (T— 0 ) (4.10)

and the vectors w" and u(*" take the form

wfé’t)' = (0, WS’?) (4.11a)
u(s,t) = (0,ul”) (4.11b)

Thus, we can compute the partition function using the transfer matrix T2
Z(Ly x my, (g,0) = wig?) " [TEO)m =t ul? (412)

In what follows, we shall drop the superindices ¥ and the subindex . to simplify the
notation. The dimension of the transfer matrix TS’t) = T corresponds to the number
of partition classes of the numbers {1,2,..., L} that are invariant under translations
and reflections. Thus, this number is precisely Nzgq pr,r and is given in terms of L
by eq. (2.52) (See Table 5 for some numerical values).

We have obtained the transfer matrices T(Lp) and the vectors wiq(Lp) and u(Lp)
using symbolic computation with MATHEMATICA for L < 5p. For L > 6p, we have
used two different programs (one written in C and the other one in PERL), which
were also used to double-check the results for L < 5p.

For L > 5p, the expressions for T(Lp) and the vectors wiq(Lp) and u(Lp) can be
found in the MATHEMATICA file transfer Tutte_tri.m which is available with the
electronic version of this paper in the cond-mat archive at http://www.lanl.gov.

4.1 L=2p

The number of elements in the basis is two, with P = {1,01.}; the transfer
matrices and the other relevant quantities are given by

7o (€ Ow 12 g 8 2t Dilg ot n?) )y
- v?3(2q + 120 + 130 + 60° + vt) v?DiD; '
PR (4.13b)
& = (1L0) (4.13¢)

As before, we have used the shorthand notation introduced above (3.10a)/(3.10c).

4.2 L=3p

The number of (translational-invariant) elements in the basis is three: P =
{1,612 + 013 + 023,0123}. The transfer matrices and the vectors wiq and u are
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given by

T 3D Ty D%TIS
T = ’UQTQI U2D1T22 ’UQD?Dg
1)4D3T31 3’03D1D2T32 ’U3D:1)’Dg

_.
a
|

wy = q(Vi,3D1E,, D})
u' = (1,0,0)

where the factors Dy, Ej, are given in (3.10a)/(3.10c), and

Vi = ¢+ 3qu+ 30+ 203

Ty = ¢ +9¢% + 33qv® + 4qv® + 500% + 210" 4 30°

Tis = ¢*+ 8qu+ 200° + 2¢qv? + 140 + 3v*

Tis = q+6v+30°

Ty = ¢°+10qu + 300% + 2qv* + 220 4+ Tv* + 0°
Ty = 6q+ 380+ 2qu + 420° + 18v* + 3v*

Ty = 3¢+ 18v + 150% 4+ 60° + v*
Ty = q+ 120+ 13v% +60° + 0t

4.3 L=4p

The number of (translational-invariant) elements in the basis is six: P = {1,d; 2+
09,3+ 034 + 014,013 + 02,4, 01,23 + 01,24 + 01,34 + 02,34,01,234,01,4023 + 012034}. The

transfer matrix is given by

T =
T 4D\ Ty, 2E4Th3 4DPTh4
U2T21 2’1}2D1T22 ’UQT23 ’1)2D%T24
’USTgl 2’02D1T32 4’()2T324 4’[)2D%D2T34

’U4D3T41 03D1T42 2’03T34T54 2’[}3D%D2T44
UGD§T51 4U5D1D2D3T52 2’1}4T524 4’1}4D%D%T54
’U4T622 4:’[)4D1D2T62 ’U4T63 2U4D%Dg

DiTis
v2D{D3
v?D}D?2
v*Di{D3
v*DiD;

0

(4.16)
2D%T]6
202 D? Dy T
v2D?T36
3D2DyTyg
205 D2 D2 Dy T
204 D? D2

where the factors Dy(v) and Fj are defined in (3.10a)/(3.10c); the T;; are given by

T = q¢*+12¢% + 62¢°0? + 164qv® + 4¢°v® + 1920* + 29¢v*

+720° + 60°

T = ¢+ 11¢% +47qv* + ¢*v? + 800 + 11¢qv® + 400v* + 50° (4.17b

Tis = ¢+ 8qu+ 240> + qv* + 160> + 40*
Tu = ¢+ 10qv + 28v% + 3qv* + 200° + 4v*
Tis = q+8vu+40?

T = ¢+ 10qv + 32v% + 3qv® + 240® + 5v*
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¢ + 12¢%v + 54qv® + 2¢%0* + 960° + 18¢v® + 59v* + qv?

+120° 4 2® (4.17g)
3¢% + 28qu + ¢*v + 80v% + 13qu? + 650v° + qv® + 18v* + 20° (4.17h)
3¢% + 34qu + 96v° + 23quv? + 1200° + 8¢quv® + 67v* + quv*

+180° + 20° (4.17)
10g + 56v + 6qv + 630 4 qv? + 260° + 40v* (4.17j)
q+8v+5v”+v° (4.17k)
2¢% + 18qu + 48v% + 4qv? + 3103 + 8vt + 1° (4.17)
¢ + 1dqu + 520° + 4qv? + 430% + 140 + 20° (4.17m)
q+ 6v + 40? + 3 (4.17n)
2q + 24v + 27v° + 120° + 20* (4.170)
¢ + 11qu + 360 4 2qv* + 2403 + Tv* +0° (4.17p)
2¢% + 43qu + ¢*v + 216v* + 28quv* + 2700 + 4quv® + 138v*

+360° 4 405 (4.17q)
3¢ + 24v + qu + 27v? + 120° + 20* (4.17r)
q + 24v + 270 + 120° + 20* (4.17s)
4q + 24v + 17v% + 60° + o* (4.17t)
2¢ + 18v + 150% + 6v° + v* (4.17u)
q+ 120+ 130? + 60* + v* (4.17v)
4+ 3v + v (4.17w)
q+ 6v+ 207 (4.17x)
3¢ + 24v + 26v° + 120° + 20* (4.17y)

The vectors wig and u are given by

where

wiy = ¢(Vi,4D\Vs, 2E3,AD}E,, D}, 2D} E,) (4.18a)
u’ = (1,0,0,0,0,0) (4.18b)
Vi = ¢ +4¢%v + 6qv* + 40 + v* (4.19a)
Vo = ¢*+3qu+30°+0° (4.19Db)

5 Partition Function Zeros in the ¢ Plane

In this section we shall present results for zeros and continuous accumulation
sets B, (in the g-plane) for the partition function of the Potts antiferromagnet on
triangular-lattice strips of widths L < 5 with free or cylindrical boundary conditions.

In Figure 1 we show the partition-function zeros in the g-plane for strips of sizes
Ly x (10L)r with 2 < L < 5 and free boundary conditions. We also show the corre-
sponding limiting curves B, (L, v) for the infinite-length limit. Figure 1(a) displays the
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zeros for v = —1 (i.e., the chromatic zeros [48, 51, 30]), and Figures 1(b)—(d) display
the corresponding zeros for the non-zero temperatures v = —0.75 (b), v = —0.5 (c),
and v = —0.25 (d). The case L = 2 was studied in [18] and the cases L = 3,4 were
studied in (Figs. 3.15, 3.22 of) [16]) for arbitrary temperature, and our zeros are in
agreement with these earlier works.

The corresponding partition-function zeros and accumulation sets for triangular-
lattice strips with cylindrical boundary conditions are shown in Figure 2. Again,
Figure 2(a)—(d) displays the zeros for v = —1 (a), v = —0.75 (b), v = —0.5 (c), and
v = —0.25 (d). The cases L = 3,4 were studied previously in (Figs. 3.19, 3.25 of)
[16] for arbitrary temperature, and our zeros are in agreement with this work.

The case v = —1, which is the zero-temperature Potts antiferromagnet (chromatic
polynomial) has been previously studied in [48, 50, 51, 19, 30] for the free longitudi-
nal boundary conditions and in [52, 53, 51, 54, 20] for periodic longitudinal boundary
conditions. For the case of free longitudinal boundary conditions [30] contains results
for L <9 and L < 12p. Our Figures 1(a) and 2(a) include calculations up to L =5
for comparison with other values of v. Although some curves, such as those for cylin-
drical boundary conditions, may enclose regions, the curves do not enclose regions
containing the origin. One observes that for either type of transverse boundary con-
dition, as the width L increases, the left-hand arc endpoints move slowly toward the
origin. When this was observed in earlier work for several different lattice strips, [48],
it motivated the suggestion that in the limit . — oo for strips with free longitudinal
boundary conditions, the limiting B, would separate the ¢ plane into regions includ-
ing a curve passing through ¢ = 0 [48, 15]. The specific calculation of By(v = —1)
in the limit L — oo reported by Baxter [46] has this feature. (For critical comments
on certain features of Baxter’s results, see the detailed discussion in [30].) The prop-
erty that B, separates the ¢ plane into regions with one of the curves on B, passing
through the origin is also observed for lattice strips with finite width L if one imposes
periodic longitudinal boundary conditions [55, 56, 52, 53, 57, 58, 51, 54, 59].

In making inferences about possible L — oo characteristics of the continuous
accumulation set of zeros B(G,, L X 00) in the ¢ or v plane for infinite-length, width-L
lattice strip graphs of type G, one should recall that, in general, limy . B(Gs, L x
o0) is different from the continuous accumulation set of the zeros of the partition
function for the usual 2D thermodynamic limit defined by starting with an L, x
L, section of a regular lattice and letting L, and L, both approach infinity with
Ly/L, a finite nonzero constant. This type of noncommutativity was encountered
in previous studies of B for the Potts model free energy on infinite-length, finite-
width strips with periodic longitudinal boundary conditions [17, 18, 23, 22]; for these
strips, B is noncompact in the v plane, reflecting the fact that the Potts model has a
ferromagnetic critical point only at 7= 0 (i.e. K = 0o, hence v = 00) for any width
L, no matter how great, whereas for the 2D lattice defined in the thermodynamic
limit, it has a ferromagnetic critical point at a finite temperature, so B is compact
in the v plane. Noncommutativity of this type was also found in studies of B,.
For example, in calculations of B, for infinite-length strips of the triangular lattice
with cyclic boundary conditions, it was found that this locus always passes through
g = 2 [52, 53, 51, 54], whereas, in contrast, the locus found in [46] for the infinite-
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width limit of strips with cylindrical boundary conditions does not pass through
g = 2. Similarly, in calculations of B, for infinite-length strips of the square lattice
with cyclic boundary conditions, it was found that this locus always passes through
g = 2, whereas in calculations of B, for infinite-length strips of the square lattice
with cylindrical boundary conditions [50, 19, 59, 42], it was found that B does not
pass through ¢ = 2, strongly suggesting that this difference will persist in the limit
L, — oo.

At nonzero temperature for the antiferromagnet, as represented in our figures by
the range —0.75 < v < —0.25, the partition-function zeros in the g-plane have a
different shape: as L increases, the limiting curves By(L,v) tend to a bean-shaped
curve or set of arcs, open on the left, without substantial protruding branches, in
contrast to many of the v = —1 curves. For a given value of v in the range considered,
as the width L increases, the curve envelope moves outward somewhat and the arc
endpoints on the left move slowly toward ¢ = 0. This behavior is consistent with
the hypotheses that for a given v, as L — oo, (i) B, would approach a limiting
locus as L — oo and (ii) this locus would separate the ¢ plane into different regions,
with a curve passing through ¢ = 0 as well as a maximal real value, ¢.(v). This is
qualitatively the same type of behavior that was found earlier for the square-lattice
strips [17, 23, 3]. In particular, our results are consistent with the inference that as
L — oo, By for v = —1 would pass through ¢.(v = —1) = 4, corresponding to the
property that the ¢ = 4 Potts antiferromagnet has a zero-temperature critical point
on the (infinite) triangular lattice [60].

For a given L, as v increases from —1 to 0, i.e., as the inverse temperature (3
decreases from infinity to 0 for the antiferromagnet, the zeros and the limiting curve
contract to a point at ¢ = 0. This is an elementary consequence of the fact that
these lattice strips have fixed maximal vertex degree and as the parameter K = J
approaches zero, the spin-spin interaction term in H, eq. (1.2), vanishes, so that the
sum over states just counts all ¢ possible spin states independently at each vertex, and
7 (G, q,v) approaches the value Z (G, ¢q,0) = ¢". An upper bound on the magnitudes
of the zeros is given by the following theorem by Sokal:

Theorem 5.1 (Sokal [61]) Let G = {V, E} be a loopless finite undirected graph of
mazimum degree < 1, equipped with complez edge weights {ve}eer satisfying |1+v.| <
1 for all e. Let |v|max = MaxXeer |ve|. Then all the zeros of Z(G,q,{v.}) lie in the
disc |q| < C(7)vmax with C(r) < 7.9639077.

This is a loose bound; for all of the strips with cylindrical boundary conditions
and for the free strips with widths L > 3, the maximal degree is 7 = 6, so that the
above theorem implies that |¢| < 47.8|v|max- Thus, for example, for v = —1, this
reads |¢| < 47.8, whereas in fact |¢| < 4 for free boundary conditions and |¢| < 4.5
for cylindrical boundary conditions. A general feature is that the limiting curves and
associated zeros tend to be located mostly in the Re(g) > half plane.

As noted, it is evident in Figures 1 and 2 that as L increases, the accumulation set
B,(L,v) moves outwards. As expected, the convergence to the limit  — oo seems to
be faster with cylindrical boundary conditions, as there are no surface effects when
the length is made infinite.
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One can also plot B, for the ferromagnetic region 0 < v < oo (e.g., Figs. 2 and 13
of [18]). Although we have not included these plots here, we note that an elementary
Peierls argument shows that the g-state Potts ferromagnet on infinite-length, finite-
width strips has no finite-temperature phase transition and associated magnetic long
range order. Hence, for this model B, does not cross the positive real ¢ axis for
0<v<oo.

6 Partition Function Zeros in the v Plane

6.1 General

In this section we shall present results for zeros and continuous accumulation
sets B, (in the v-plane) for the partition function of the Potts antiferromagnet on
triangular-lattice strips of widths L < 5 and free or cylindrical boundary conditions.
Our results hold for arbitrarily great length L and for any real or complex value of
¢; they thus complement calculations of the Potts model partition function for fixed
positive integer values of ¢ on sections of the triangular lattice [62, 63, 64, 65]. We
shall focus here on integer values of ¢, since these are the most relevant from a physical
point of view. We recall the possible noncommutativity in the definition of the free
energy for certain integer values of ¢ (see egs. (2.10), (2.11) of [17] or (1.17) of [18]):

lim lim Z(G,q,v)"/™ # lim lim Z(G,q,v)"/" (6.1)
n—00 q—*qs q—qs N—00
As discussed in [17], because of this noncommutativity, the formal definition (1.4)
is, in general, insufficient to define the free energy f at these special points ¢g; it is
necessary to specify the order of the limits that one uses in eq. (6.1). We denote the
two definitions using different orders of limits as fqn, and fnq:

fre({G},q,v) = lim lim n™'In Z(G, q,v) (6.2)

n—00 q—(qs

fqﬂ({G}a%v) = qlg;ls nll)rgo TL71 In Z(Ga(I:v) . (63)

As a consequence of the noncommutativity (6.1), it follows that for the special

set of points ¢ = ¢, one must distinguish between (i) (B,({G}, ¢s))ng, the continuous

accumulation set of the zeros of Z(G, ¢, v) obtained by first setting ¢ = ¢; and then

taking n — oo, and (ii) (B,({G}, ¢s))gn, the continuous accumulation set of the zeros

of Z(G, q,v) obtained by first taking n — oo, and then taking ¢ — ¢s. For these
special points (cf. eq. (2.12) of [17]),

(By({G},45))ng # (Bo({G},45))gn (6.4)

Here this noncommutativity will be relevant for ¢ = 0 and ¢ = 1.

In Figures 3-7 we show the partition-functions zeros in the v-plane (for a fixed
value of ¢) for strips of sizes Ly x (10L) with 2 < L < 5 and free boundary conditions.
We also show the corresponding limiting curves B, (L, ¢) for the limit of infinite strip
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length. For simplicity, we have displayed each value of L on a different plot: L = 2 (a),
L=3(b), L =4(c), and L =5 (d). The corresponding partition-function zeros and
accumulation sets for triangular-lattice strips with cylindrical boundary conditions are
shown in Figures 8-12 with the same notation as for the former figures. Complex-
temperature phase diagrams and associated partition function zeros were given in [18]
for I = 2 for free and periodic longitudinal boundary conditions and free transverse
boundary conditions. Results for . = 4z and L = 4p at zero and finite temperatures
were given before in [16]. Our present calculations are in agreement with, and extend,
this previous work.

On the infinite triangular lattice (defined via the 2D thermodynamic limit as given
above), the phase transition point separating the paramagnetic (PM) and ferromag-
netic (FM) phases is determined as the (unique) real positive solution of the equation
[67]

v*+ 302 —q=0 (6.5)
In previous studies such as [17, 18], it has been found that although infinite-length,
finite-width strips are quasi-one-dimensional systems and hence the Potts model
has no physical finite-temperature transition on such systems, some aspects of the
complex-temperature phase diagram have close connections with those on the (infi-
nite) triangular lattice. We shall discuss some of these connections below.

6.2 ¢g=0

From the cluster representation of Z(G, ¢,v), eq. (1.5), it follows that this partition
function has an overall factor of ¢*(%) where k(G) denotes the number of components
of G, i.e., an overall factor of ¢ for a connected graph. Hence, Z(G,q = 0,v) = 0.
In the transfer matrix formalism, this is evident from the overall factor of ¢ coming
from the vector wiq. However, if we first take the limit n — oo to define B for ¢ # 0
and then let ¢ — 0 or, equivalently, extract the factor ¢ from the left vector wiq,
we obtain a nontrivial locus, namely (B,({G},0)4,. This is a consequence of the
noncommutativity (6.4) for ¢ = 0.

With the second order of limits or the equivalent removal of the factor of ¢ in
Z, we obtain the locus B,(¢ = 0) shown in Figures 3 (free boundary conditions)
and 8 (cylindrical boundary conditions). The accumulation set B,(L,q = 0) seems
to converge to a roughly circular curve. We see in Figures 3 and 8 that the limiting
curves cross the real v-axis at v &~ —3. We note the interesting feature that this
is a root of eq. (6.5) for ¢ = 0. For the case of cylindrical boundary conditions,
B,(g¢ = 0) includes a small line segment on the real axis near v = —3, with a length
that decreases as L increases. As L increases, the arc endpoints on the upper and
lower right move toward the real axis. It is possible that these could pinch this axis
at v =0 as L — oo, corresponding to the other root of (6.5) for ¢ = 0.

6.3 qg=1

For ¢ = 1, the spin-spin interaction in (1.2) always has the Kronecker delta func-
tion equal to unity, and hence the Potts model partition function is trivially given
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by
Z(G,q=1,0v) = Il = (1 4 ¢) /P! (6.6)

where |E| is the number of edges in the graph G. This has a single zero at v = —1.
But again, one encounters the noncommutativity (6.4) for ¢ = 1. It is interesting to
analyze this in terms of the transfer matrix formalism. At this value of ¢, both the
transfer matrix and the left vector w;q are non-trivial. There is thus a cancellation
of terms that yields the result (6.6). The case L = 2p is the simplest one to analyze:
the eigenvalues and coefficients for ¢ = 1 are given by

M(L,v) = 20%; c1(1,0) =0 (6.7a)
Ao(l,v) = (14+0)%; ¢(1,0) = (1+0)* (6.7b)

Thus, only the second eigenvalue contributes to the partition function, and it gives
the expected result Z(2p x mp,q =1,v) = (1 +v)*™*. For L = 2 we obtain:

M(1v) = 0% c1(1,0) =0 (6.8a)
Mao(1,0) = (1+0)*; (1,0) = (1+v) (6.8b)

giving rise to Z(2p X mg,q = 1,v) = (1+v)*™=3. The case L = 3p is similar: there is
a single eigenvalue A (1,v) = (1 + v)? with a non-zero coefficient ¢;(1,v) = (1 + v)?,
and the other two eigenvalues [which are the roots of 2 — zv*(3v3 + 13v% + 24v +
3) +v°(1 +2)(6 + 5v + 6v?)] have identically zero coefficients ¢53(1,v) = 0. Thus, the
partition function takes the form Z(3p x mg,q = 1,v) = (1 +v)*™% = (1 4 v)!®l,

In general, we conclude that at ¢ = 1 only the eigenvalue A = (1 + v)3.® (resp.
A = (1 + v)**~2) contributes to the partition function for cylindrical (resp. free)
boundary conditions, and its coefficient is ¢ = (1 + v)L? (resp. ¢ = (1 + v)Lr—1).
The other eigenvalues do not contribute as they have zero coefficients. This is the
analogue of what was found for the strips with cyclic boundary conditions, where the
various A’s fall into sets Ag 4 ; such that all of the A’s with a fixed d have a unique
coefficient which is a polynomial of degree d in ¢ given by [17, 18, 20]

(@ = 1y ( YY) = e (Qd.‘ j)w (6.9)

=0 J

where U, (z) is the Chebyshev polynomial of the second kind. These coefficients
vanish at certain values of ¢, which means that if one evaluates the partition function
first at these values and then takes the limit n — oo, the corresponding A’s will
not contribute to Z, while if one takes n — oo first, calculates the free energy and
the locus By,, and then sets ¢ equal to one of these values, the A’s will, in general
contribute. In particular, we recall (eq. (2.18) of [20]) that if ¢ = 1, then c(9) vanishes
if d =1 mod 3. Thus, we see similar manifestations of the noncommutativity (6.4)
for strips with free and periodic boundary conditions.

In our present case, in order to obtain By,, we have computed the Tutte-polynomial
zeros and the corresponding limiting curves for ¢ = 0.999 (see Figures 4 and 9). The
accumulation sets B, (L, q = 0.999) for L = 2p to L = 5p consists of arcs that come
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close to forming an almost closed bean-shaped curve, with an involution on the right
that deepens as L increases. Solving the ¢ = 1 special case of eq. (6.5) yields the
roots v = —2.879385.., v = —0.652703..., and v = 0.5320888... The locus B, crosses
the real v axis at two points, and our results are consistent with the inference that
as L. — 00, these two crossing points are the first two roots listed above. For free
boundary conditions with width L = 3,4,5, By, exhibits a small involution on the
left. A noteworthy feature of this locus is that it is relatively smooth, without the
prongs that tend to occur for the other values of ¢ discussed here.

6.4 ¢=2

The zeros and accumulation sets for ¢ = 2 are displayed in Figures 5 and 10 for
free and cylindrical boundary conditions. Fig. 5(a) contains the same information
as Fig. 4 of [18] (which is plotted in a different temperature variable, a='). The
finite-size effects for the accumulation sets B,(L,q = 2) are noticeably larger for
free, in comparison with cylindrical, boundary conditions, as expected. In the latter
case, the curves B,(L,q = 2) for L = 2,3,4,5 fall very approximately one on top
of the preceding one. For cylindrical boundary conditions, we see that the curve
B,(L,q = 2) is symmetric under the replacement a — —a. The reason for this is
that in this case all of the vertices except for the end-vertices, which constitute a
vanishingly small fraction in the limit of infinite length, are equivalent (i.e., the graph
is r-regular) and have even degree . In general, this property applies for the complex-
temperature phase diagram of the ¢ = 2 (Ising) special case of the Potts model for
an infinite lattice where the coordination number is even [68, 69, 70]. Our strips with
free transverse boundary conditions are not r-regular graphs because the vertices on
the upper and lower sides have a different degree than those in the interior. Because
of this, the B, in this case does not have the ¢ — —a symmetry. From previous
work [17, 18] one knows that the loci B, are different for strips with free or periodic
transverse boundary conditions and free longitudinal boundary conditions, on the one
hand, and free or periodic transverse boundary conditions and periodic (or twisted
periodic) longitudinal boundary conditions. One anticipates, however, that in the
limit of infinite width, the subset of the complex-temperature phase diagram that
is relevant to real physical thermodynamics will be independent of the boundary
conditions used to obtain the 2D thermodynamic limit.

In the 2D thermodynamic limit, one knows the complex-temperature phase di-
agram exactly for the ¢ = 2 (Ising) case. (This isomorphism involves the redefini-
tion of the spin-spin exchange constant Jpotts = 2.J5ing and hence Kpgrts = 2Kiging,
where Kpgs is denoted simply K here.) The simplest way to portray the complex-
temperature phase diagram is in the a? or u = a2 plane since this automatically
incorporates the ¢ — —a symmetry noted above. In the u plane, the complex-
temperature phase diagram, with boundaries given by B,, is (see Fig. 1(a) of [70]
which is equivalent, by duality to the complex-temperature phase diagram for the
honeycomb lattice given as Fig. 2 in [72])

1 2 1
: Z=2 —co<u< —2 .
B,: {Ju+ 3| 3} U {—~oo<u< 3} (6.10)
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i.e., the union of a circle centered at w = —1/3 with radius 2/3 and the semi-infinite
line segment extending leftward from v = —1/3 along the real v axis. In the ¢!
plane (Fig. 1(b) of [70], related by duality to Fig. 3 of [72]), B is the union of a
vertically elongated oval crossing the real axis at +1/ V/3, the imaginary a~' axis at
+i, and two semi-infinite line segments extending from i/v/3 to ico and from —i//3
to —ioo along the imaginary axis. Equivalently, in the a plane, B is the union of
a horizontally elongated oval crossing the real ¢ axis at ++/3 and the imaginary «
axis at +i, and a line segment along the imaginary axis extending between v/3i and
—+/3i. The locus B, in the v plane is obtained from this by translation by one unit,
since v = a — 1. This locus separates the complex v plane into three phases: (i)
the paramagnetic phase, including the infinite-temperature point v = 0, where the
S, symmetry is realized explicitly (S, being the symmetric group on ¢ numbers, the
symmetry group of the Hamiltonian), (ii) the ferromagnetic phase, including the real
interval v.(¢ = 2) < v < co where the S, symmetry is spontaneously broken by the
existence of a nonzero magnetization, and (iii) an unphysical phase (denoted “O” for
“other” in [70]) including the point v = —2. Here

ac(g=2)=v.(¢g=2)+1=V3 (6.11)

is the physical critical point separating the PM and FM phases (for a review of the
Ising model on the triangular lattice, see, e.g., [73]) . These physical PM and FM
phases have complex-temperature extensions off the real v axis. The PM and O
phases are separated by the subset of the vertical line segment extending between
a =i and a = —i; this line segment terminates at the points a = ++/3i. Because of
the maximal frustration, there is no antiferromagnetic phase at finite temperature.
The presence of a zero-temperature critical point in the 2D Ising antiferromagnet [74]
is manifested by the fact that B, passes through v = —1, i.e., a = 0 (as part of the
above-mentioned vertical line segment). The complex-temperature phase boundary
B, crosses the real v axis at v = /3 — 1, separating the FM and PM phases, at
v = —1, separating the PM and O phases, and at v = —1 — /3, separating the O
and (complex-temperature analytic continuation of the) FM phases. In [18] the B for
an infinite-length free or cyclic strip with width L = 2 were compared with this 2D
phase diagram. These three points, v = —1, —14+/3, are the three roots of the ¢ = 2
special case of eq. (6.5).

Using our exact results, we can compare our loci B, for a wide variety of widths
and either free or periodic transverse boundary conditions with the known complex-
temperature phase diagram for the Ising model on the infinite 2D triangular lattice.
This comparison is simplest for the case of cylindrical boundary conditions, so we
concentrate on these results. For the finite values of L that we have considered, B,
has the form of two complex-conjugate arcs that cross two complex-conjugate line
segments on the imaginary axis at ¥ = —1 £ ¢. One sees that as L increases, the
endpoints of the arcs move down toward the real axis, as do the endpoints of the
line segments. As L — oo, we expect that these arc endpoints will close, forming
the above-mentioned horizontally elongated oval and vertical line segment extending
from v = —1 ++/3i to v = —1 — v/3i that constitute the complex-temperature phase
boundaries B for the Ising model on the infinite triangular lattice.
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6.5 ¢=3

In contrast to the ¢ = 2 case, the free energy of the g-state Potts model has not
been calculated exactly for ¢ > 3 on any 2D (or higher-dimensional) lattice and hence
the complex-temperature phase diagrams are not known exactly. The ¢ = 3 special
case of eq. (6.5) has the root

VP pg=3 = Ve(q = 3) = =1+ cos(21/9) + V3sin(27/9) = 0.879385...  (6.12)

corresponding to the physical PM-FM phase transition point, and two other roots at
the complex-temperature values

v = —1+cos(21/9) — V/3sin(27/9) = —1.347296... (6.13)

and
v=—1—2cos(2m/9) = —2.532089... (6.14)

Discussions of the complex-temperature solutions of eq. (6.5) and their connections
with the complex-temperature phase diagram have been given in [62, 63, 64, 65]. A
number of studies involving exact calculation of the partition function for various ¢
values on large sections of the triangular lattice have been performed [62, 63, 64, 65].
(There have also been many studies calculating zeros for the Potts model with ¢ > 3
on the square lattice; see [3] for references to these works.)

The zeros and accumulation sets for ¢ = 3 are displayed in Figures 6 and 11 for free
and cylindrical boundary conditions. We expect that the pair of complex-conjugate
endpoints in this regime will eventually converge to the ferromagnetic critical point
ve(q = 3) as L — oo. However, obviously, an infinite-length strip of finite width L is a
quasi-one-dimensional system, so the Potts model has no physical finite-temperature
phase transition on such a strip for any finite L.

In the antiferromagnetic regime —1 < v < 0, we observe noticeable finite-size
effects even with cylindrical boundary conditions. In this regime, we also observe a
complex-conjugate pair of endpoints with small value of Im(v) that, as L — oo, are
expected to approach the real v axis at the transition point separating the param-
agnetic and antiferromagnetic (AFM) phases of the ¢ = 3 Potts antiferromagnet on
the infinite triangular lattice. Monte Carlo and series analyses [75, 76, 77, 78] have
yielded the conclusion that the PM-AFM transition in the ¢ = 3 Potts antiferromag-
net on the triangular lattice is weakly first-order. A high-accuracy determination of
the location of the PM-AFM transition temperature 7' was obtained in [78] by means
of Monte Carlo simulations: T = 0.62731 4+ 0.00006, or equivalently

VpM—Arm,g—=3 = —0.79691 £+ 0.00003 (6.15)

We shall improve this estimate below.

Finally, in the complex-temperature interval v < —1, the finite-size and bound-
ary condition effects are evidently very strong. Because of this, in previous work, a
combination of partition-function zeros and analyses of low-temperature series expan-
sions was used [65]; these enable one at least to locate some points on the complex-
temperature phase boundary. As regards the infinite 2D triangular lattice, because
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of a duality relation, the complete physical temperature interval 0 < T < oo, i.e.,
0 < a <1 of the g-state Potts antiferromagnet on the honeycomb lattice is mapped
to the complex-temperature interval —oo < v < —g) on the triangular lattice (and
vice versa) [63]. As was noted in [63], it follows that because the ¢ = 3 Potts an-
tiferromagnet on the honeycomb lattice is disordered for all temperatures, including
T = 0, the free energy for this model on the triangular lattice is analytic in the inter-
val —oo < v < —3, and hence no part of the complex-temperature phase boundary B,
can cross the negative real axis in this interval. In particular, one anticipates that as
L — oo for the infinite-length, width-L strips, the left-most arcs on B, will not close
and pinch the negative real axis in this interval. Our calculations of B, are consistent
with the inference that as L — oo, this locus crosses the real axis at the points (6.13)
and (6.14), although there are significant differences between the loci obtained with
free and cylindrical boundary conditions.

We also observe certain line segments on the real v axis in the complex-temperature
region. We note that massless phases with algebraic decays of correlation functions
have been suggested for the Potts model on the (infinite) square lattice at real val-
ues of v and ¢ in the intervals —2 — /4 —¢ < v < =2 + /4 — ¢ with ¢ € (0,4)
and ¢ # B, = 4cos*(m/r) [66]. However, the correspondence of these suggestions
with our results is not clear; for example, the above interval suggested in [66] shrinks
to zero as ¢ — 4, but we observe clear line segments on the real v axis for ¢ = 4
for both free and cylindrical boundary conditions (see Figs. 7 and 12). A possible
physical subset of the above range of v given in [66] would be the antiferromagnet
interval —1 < v < 0. However, the condition that ¢ # B, excludes all of the integral
values of ¢ in the indicated range (recall that By = 0, B3 = 1, By = 2, Bs = 3,
and B; = 4). The claim in [66] is thus complicated by the fact that although it is
possible formally to define the Potts model partition function Z (G, ¢,v) using (1.5)
for real positive non-integral ¢ for the antiferromagnetic case, —1 < v < 0, here the
model does not satisfy the usual statistical mechanical requirement that the partition
function is positive, and hence does not, in general, admit a Gibbs measure [71, 17].
This leads to pathologies that preclude a physical interpretation, such as negative
partition function, negative specific heat, and non-existence of a |V| — oo limit for
thermodynamic functions that is independent of boundary conditions [71, 17, 18]. As
regards the connection with the locus B, a signal of a massless phase would be a line
segment on B on the real v axis for fixed ¢ or the real g axis for fixed v. For the zero-
temperature Potts antiferromagnet, i.e., chromatic polynomial, v = —1, these phases
would thus occur in the intervals between the Beraha numbers, 0 < ¢ < 1,1 < ¢ < 2,
2 < ¢ < (1/2)(3+ v/5), and so forth. However, it has been proved that there are no
real zeros of a chromatic polynomial in the intervals —co < ¢ < 0, 0 < ¢ < 1, and
1 < ¢ <32/27 (79, 80]. Since B forms as an accumulation set of zeros, this makes
it difficult to see how there could be a line segments in these intervals, in particular,
the intervals 0 < ¢ < 1 and 1 < ¢ < 32/27. Again, it is not clear how to reconcile the
results of these theorems with a suggestion that there would be massless phases with
associated real line segments on B in these intervals.
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6.6 ¢g=4
For ¢ = 4, eq. (6.5) has the physical root
VpM—FMg=4 = V(g =4) =1 (6.16)

corresponding to the PM-FM phase transition point and a double root at the complex-
temperature point
v=—-2 (6.17)

The zeros and accumulation sets for ¢ = 4 are displayed in Figures 7 and 12. One
observes the approach of the right-most complex-conjugate arcs to the real axis as L
increases, i.e. the approach to the PM-FM critical point in this case. For a given L,
the approach to the exactly known value vpp_parg=4 = 1 in eq. (6.16) is closer for
cylindrical versus free boundary conditions, as is anticipated since the former minimize
boundary effects. The ¢ = 4 Potts antiferromagnet on the triangular lattice has a zero-
temperature critical point, so that v = —1 is on B, [60] (this is not a root of eq. (6.5)).
For L > 2 for free boundary conditions and for L > 2 for cylindrical boundary
conditions, we see how a pair of complex-conjugate arc endpoints approaches the
real axis as L increases, consistent with the inference that these would pinch at
v = —1 in the L — oo limit. For both free and cylindrical boundary conditions and
various values of L, one sees that B, contains an intersection point at the complex-
temperature value v = —2, in agreement with the expectation from eq. (6.17). The
fact that the ¢ = 4 Potts antiferromagnet is disordered on the honeycomb lattice for
all temperatures 7" including 7" = 0 implies that B, does not cross the negative real
axis in the interval —oo < v < —4 [63]. In particular, this implies that as L — oo, the
leftmost arc endpoints on B, in the figures do not move down to pinch the negative
real axis in this interval —oo < v < —4, provided that the limit L. — oo of these
infinite-length, width-L strips commutes with the 2D thermodynamic limit for the
triangular lattice as regards this aspect of the complex-temperature phase diagram.

We do not show plots for ¢ > 5, but recall that the Potts antiferromagnet is
expected to be disordered (with exponential decay of spin-spin correlation functions)
even at 7' = 0 on the triangular lattice. This can be proved rigorously for ¢ > 11 as
a slight improvement of the result that g-state Potts antiferromagnet is disordered at
all temperatures on a lattice with coordination number r if ¢ > 2r [71]. The property
that the Potts antiferromagnet is disordered at all T' on the triangular lattice for
q > 5 is reflected in the property that B, does not pass through v = —1.

7 Internal Energy and Specific Heat

The partition function (1.1) can be used to derive the free-energy density f(G, ¢, v)

1

f(Gaqav):m

log Z(G, q,v) (7.1)

for finite |V|, with the V' — oo limit having been defined in eq. (1.4) above. The
internal energy F and the specific heat C' are derived in the usual way from the free
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energy as

L0 af
and OF af 8 f
- — = 2 - — | = 2
C = 8T = kBK (’U + 1) 81) + (1) —+ 1) 8’1)2 = kBK CH (73)

Henceforth, for convenience, we shall use a definition of £ without the factor —J in
(7.2), and we shall use the dimensionless function Cy in discussions of the specific
heat. Let us suppose that G is a triangular-lattice strip graph of size L x m. In
the limit m — oo, since only the dominant eigenvalue A\4(q, v) of the transfer matrix
contributes to the free energy, one has

flg,v;L) = %logAd (7.4a)
1

E(gv;L) = th (7.4Db)
1

Cr(q,v;L) = Z[A2+A1—Aﬂ (7.4c)

where the A;(g,v; L) are defined by

Az(Qav)L) - )\d(q,U,L) a’l)i (75)

The infinite-length limits of the triangular-strips considered here are quasi-one-
dimensional systems with analytic free energies at all temperatures. Hence the dom-
inant eigenvalue ), is the same on the whole semi-axis Im(v) = 0, Re(v) > —1.
Furthermore, as discussed in [17], the free energy and its derivatives with respect to
the temperature are independent of the longitudinal boundary conditions in the limit
m — oo (although they depend on the transverse boundary conditions).

In Figure 13 we have plotted the internal energy E (7.2), the specific heat Cg
(7.3), and the Binder cumulant Uy (7.11) (see below) for ¢ = 3 on a triangular-lattice
strip of width I and infinite length with cylindrical boundary conditions.

The behavior of the energy for the triangular-lattice strips with cylindrical bound-
ary conditions is interesting: the curves cross each others close to the critical value v,
in the ferromagnetic regime. In particular, for ¢ = 2 we find that all curves cross at
v.(2) = V3 — 1 & 0.7320508... (See Table 7). For ¢ = 3,4 we find that the crossings
are close to the respective PM-FM critical points v.(3) given exactly in eq. (6.12)
(= 0.8793852...) and v.(4) = 1, but they do not coincide precisely with these crit-
ical points (see Table 8). The reason for the above behavior is the following: the
triangular-lattice Potts model on a triangular lattice at a given value of the tempera-
ture Boltzmann variable v is related by duality to the hexagonal-lattice Potts model
at a different temperature variable

r 9
=z 7.6
v (79
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This relation is exact when the original triangular-lattice is defined on an infinitely
long cylinder of width L. In the Ising case ¢ = 2, there is an additional transformation
(namely, the star-triangle transformation) that maps back the hexagonal-lattice Potts
model onto a triangular-lattice Potts model at temperature variable v”(v). This
transformation allows us to compute the critical temperature v, (i.e., v, is the unique
fixed point of the equation v"(v) = v) and the critical energy E. = E(q,v.; L). When
we perform the computation of E, in the limit m — oo, all finite-size corrections
disappear, so that [81]

E(q=21L) = E(g=2,v;L) = E(q =2;00) = 5 (7.7)

However, for ¢ # 2 there is no star-triangle transformation, and this implies the
existence of corrections to scaling:

Ag
Wh ’

Eo(q; L) = B, v L) = Be(g;00) + ) 7

k=1

q#2 (7.8)

where the parameters {wi(q)} are correction-to-scaling exponents that depend in
general on the value of ¢.
One can obtain a pseudo-critical temperature vy = vg(g, L, L) by solving the
equation
E(q,vg,L) = E(q,vg, L") (7.9)

When L, I/ — 0o, we expect that this quantity will converge to the true critical value
ve(q). This method has been employed in the the literature to locate critical points
for several statistical-mechanical systems [82, 83, and references therein)].

Another pseudo-critical temperature can be obtained by looking at the point ve =
ve(q, L) where the specific heat C(g,v; L) attains a maximum value. This value differs
from the bulk critical value v.(g) by finite-size-corrections of order ~ L~/" [84].

We can also consider higher derivatives of the free energy with respect to K. In
particular, the quantity @4 is the fourth derivative of the free energy with respect to
K and, in the limit m — oo it can be written as

a7
K1

Instead of 1y, it is more useful to deal with the phenomenological quantity U, (also
called the Binder cumulant [85]) defined as

t4(q,v; L) = (7.10)

Us(g,v; L) = %% (7.11)

A plot of this quantity for ¢ = 3 is given in Figure 13(c). A third pseudo-critical

temperature vy = vy (g, L) can be defined as the value at which the Binder cumulant

(7.11) attains a minimum value. Again, this estimate is expect to differ from the bulk
critical temperature v.(¢) by terms of order L='/* [84].

The computation of the transfer matrices for triangular-lattice strips of width L

allows us to compute these three pseudo-critical temperatures (namely, vg(g, L, L'),
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ve(q, L), and vy (g, L)). We have computed these estimates for several values of 1/2 <
¢ < 4 in the ferromagnetic regime for strips with cylindrical boundary conditions
(See Tables 6-8)."? We expect a finite-size behavior of these three pseudo-critical
temperatures of the type

2 A
vo(g; L) = ve(q) + Y L‘jj;’“ (7.12)
k=1

where Q = E,C,U, and the {Ag k,wk} are correction-to-scaling amplitudes and expo-
nents, respectively. These quantities depend in general on ¢. We can try to estimate
the critical temperature v.(g) by fitting the data to the above Ansatz (7.12) with only
the leading correction-to-scaling term included 3

vo(¢; L) = velq) + AgL "¢ (7.13)

The data listed in Tables 6-8 does not have any statistical error; there is only a
truncation error (~ 107'%) due to the truncation of the data to ten decimal places.
We have performed the fits in the following way: for a given value of the width Ly,
we take the three data points with L = Lpin, Lmin+1, Lmin +2 and perform a standard
least-squares fit (notice that there are no degrees of freedom and hence, x* = 0). The
variation of the estimates for v, with the value of Ly, will give us an estimate of its
error bar.

Although the exact phase transition temperature for the g-state Potts ferromagnet
is known, it is of some interest to compare these pseudo-critical temperature compar-
isons since we do not know, a priori, which estimate vg will give the most accurate
results. In addition, we do not know the values of the correction-to-scaling exponents
Ag as (a) we do not know whether some of the dominant amplitude will vanish and
(b) we expect that the estimates for A will be an effective exponent, as the widths
are not very large and we are dropping all subdominant corrections to scaling. It is
thus very important to perform a comprehensive check of the method before studying
a phase transition whose critical temperature is not known (for instance, the 3-state
triangular-lattice Potts antiferromagnet; see below).

The exact phase transition temperature is quoted on the rows labelled ”E” in
Tables 6-8. It is clear that the estimates coming from the pseudo-critical temperature
vg are better by far than the other two; and the estimate vy is more accurate than
ve. More precisely, the difference between the extrapolated value for v, and the exact
value is ~ 1077 for vy for all the 1.5 < ¢ < 4 values considered. However, for vy the

IThe blank entries in Table 6 correspond to values for which the estimates belong to the antifer-
romagnetic regime.

2To compute the values at ¢ = 1, we have computed all quantities at ¢ = 0.999 and ¢ = 1.001,
and then taken their mean value. In practice, this procedure has only been done for vg, as there
are no estimates for ve for ¢ < 1, and the estimates for vy have a very different finite-size behavior
when ¢ — 17F.

3We have included an explicit dependence on the observable Q = E,C, U in both the amplitude
and the exponent A because they are both effective quantities (See below).
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discrepancy is of order ~ 107° for ¢ 2 1.5 and ~ 1072 to 10~ for ¢ < 1. Finally, for
ve the discrepancy is ~ 107 for ¢ 2 2, and ~ 1072 for 1 < ¢ < 1.5. In conclusion,
we can establish the position of the ferromagnetic critical temperature v.(q) (over the
whole range of values of ¢) by using the pseudo-critical temperature vg(L, L'). The
results for vg and vy are at least two orders of magnitudes worse, and the accuracy
also depends on the value of ¢: it worsens for ¢ < 2 for vg, and for ¢ < 1.5 for vy .

Let us finish this discussion by quoting the estimates for Ag. Indeed, the values
of Ag are larger than the rest. In fact, A = 3.57 for ¢ & 2.5, and it decreases
from Ap =~ 3.41 at ¢ = 1.5 down to Ar = 2.94 at ¢ = 0.5. The values of Ay
increases smoothly with ¢. In the interval where it works better 1.5 < ¢ < 4 it goes
from Agp =~ 1.89 to Ag =~ 2.95. However, when it does not work so well (namely,
0.5 < ¢ < 1.001) it increases from Ag & 0.41 to Ag = 1.56. Finally, the specific-heat
exponent grows from A¢g & 1.60 to A¢ &~ 2.52 along the interval 2 < g < 4 (where it
gives the better estimates), and takes the values A¢ = 1.30 at ¢ = 1.5 and A = 0.86
at ¢ = 1.001.

One can try to extend the previous analysis to the antiferromagnetic regime. In
Table 9 we show the estimates for the critical temperature of the 3-state Potts an-
tiferromagnet using strips with cylindrical boundary conditions and widths that are
multiples of 3. This constraint is due to the (mod 3)-oscillations that appear in antifer-
romagnets: in Figure 13 we clearly observe such oscillations in the antiferromagnetic
regime. Thus, we keep only the data with L = 3,6,9,12 that is expected to be
closer to the thermodynamic limit. (When L is not a multiple of 3, the corresponding
triangular-lattice strip with cylindrical boundary conditions is not tripartite, unlike
those strips with L a multiple of 3 or the infinite triangular lattice; recall our earlier
discussion of the chromatic number for these strips.) The value quoted on the row
labelled "MC” comes from the Monte-Carlo study by Adler et al. [78]. For L = 12
we just list the estimate from the energy crossing since this is superior to the other
two estimates, and this gives the value

ve(g = 3) = —0.796927(20) (7.14)

The error bar quoted in (7.14) was roughly estimated by comparing the above result
to the value of v.(¢ = 3) obtained by fitting the data points vg(L, L') with L = 3,6,9
and I/ = L + 3, namely, v.(¢ = 3) = —0.796907. This is indeed a very conservative
estimate for this error bar. Our results in (7.14) is in agreement with, and more
accurate than, the estimate from [78] listed above in eq. (6.15).
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|m|1]2[3]4] 5] 6] 7] 8] 9] 10
am [1]1]3]7]19]51[141 [ 393 ] 1107 [ 3139
bn |0 [1]2[6]16]45 [ 126|357 [ 1016 | 2907
dn [0]1]2]5]13]35][ 96267 7502123
em |[0]0]0[1] 3]10] 30| 90 266 | 784
rm [0]1]1]3] 6]15] 36| 91 232] 603

m [1]2]3] 4] 5] 6] 7] 8] 9] 10]
fm [O]1]1] 3] 7]19] 51]141] 3931107
hn |[0]0]1] 3] 9]26] 75216 6231800
im |1]2][4]10]26]70] 192|534 | 1500 | 4246
Jm |O]1]1] 2] 4] 9] 21| 51| 127 323
km [1]1]1] 2] 4] 9] 21[ 51 [ 127] 323

Table 2: Numbers of fp,, b, imy Jms km
d J1[2][3] 4] 5] 6] 7] 8] 9] 10]

Ca—i [1[1]2] 5[14]42]132]429 [ 1430 | 4862
of [1]2]4]10]26]80 246 | 810 | 2704 | 9252
ag [1]1]3] 8[25][75] 245800 | 2700 | 9225

Table 3: Numbers of Cq_1, o), g
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[d[1][2][3] 4] 5] 6] 7] B8] 9] 10]

Byl1io|1] 2] 5[ 11| 28 68 | 174 | 445

Tloj1j1] 2 5| 11| 28 68 | 174 | 445
Ba |11 2] 4110 22| 56| 136 | 348 | 890
tg |13 |7]|19|51|141 | 393 | 1107 | 3139 | 8953

Table 4: Numbers of 8%, I, B4, and t,.

L Nywipr, Croy1 Nzwiprr, Nzsqpr,r
1 1 2 1 1
2 2 5 2 2
3 ) 14 3 3
4 14 42 6 6
5 42 132 10 10
6 132 429 28 24
7 429 1430 63 49
8 1430 4862 190 130
9 4862 16796 546 336

10 16796 58786 1708 980

11 58786 208012 5346 2904

12 208012 742900 17428 9176

Table 5: Dimensions of the transfer matrix for triangular-lattice strips. For each
strip width L we give the dimension of the transfer matrix for free boundary con-
ditions Nz i rr,r, (Which is equal to the Catalan number Cy), the dimension of the
full transfer matrix for cylindrical boundary conditions (which is Cy11), the dimen-
sion for cylindrical boundary conditions when translational symmetry is taken into
account Nz i pr 1, and the dimension when we project onto the subspace of reflection-
invariant connectivities Nz sq pr,L-
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‘ q |L vc Yu ‘L' Vg
0.5 2 3 0.3855829942
3 4 0.3847515915
4 0.0362505003 | 5 0.3845315269
) 0.0683846033 | 6 0.3844522368
6 0.0922653853 | 7 0.3844168074
7 0.1110484508 | 8 0.3843985957
8 0.1263790456 | 9 0.3843882849
9 0.1392308072
00 0.402 0.38436686
E 0.3843671526 0.3843671526 0.3843671526
0.999 | 2 3 0.5326299901
3 4 0.5320721491
4 0.0855663158 | 5 0.5319334539
) 0.1493120749 | 6 0.5318861979
6 0.1946816994 | 7 0.5318661552
7 0.2291028542 | 8 0.5318563347
8 0.2562939069 | 9 0.5318510121
9 0.2784080729
00 0.558 0.53184119
E 0.5318414075 0.5318414075 0.5318414075
1 2 3 0.5328765341
3 4 0.5323192792
4 5 0.5321807427
5 6 0.5321335445
6 7 0.5321135278
7 8 0.5321037207
8 9 0.5320984057
00 0.53208860
E 0.5320888862 0.5320888862 0.5320888862
1.001 | 2 0.1911168937 0.0890417228 | 3 0.5331230781
3 0.3006378613 0.2852335683 | 4 0.5325664093
4 0.3532531983 0.3750722572 | 5 0.5324280315
5 0.3855204044 0.4214503869 | 6 0.5323808911
6 0.4076019935 0.4490378514 | 7 0.5323609004
7 0.4237541586 0.4669772403 | 8 0.5323511067
8 0.4361202804 0.4793897234 | 9 0.5323457993
9 0.4459098965 0.4883826060
oo 0.5378 0.53288 0.53233601
E 0.5323362257 0.5323362257 0.5323362257

Table 6: Pseudo-critical temperatures for the ¢g-state Potts model in the ferromagnetic
regime. For each value of ¢ < 1 and the strip width L, we show the pseudo-critical
temperatures ve, vy, and vg. At v = v [resp. v = vy], the specific heat Cy(q,v; L)
[resp. the cumulant Uy(g, v; L)] attains its maximum [resp. minimum] value. At v = vg
the energies for widths L and L' = L 4+ 1 cross. The rows labelled L = oo show the
extrapolated data to I = oo (see text), and the rows labelled "E” show the exact

values of the critical temperature v.(g). e
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0.3528174426
0.4761242418
0.5283927381
0.5571932786
0.5752485686
0.5875189961
0.5963385107
0.6029456311
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0.5117472589
0.5662745790
0.5922393905
0.6066812044
0.6155591541
0.6214146331
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2.5

0.6069444365
0.7143925462
0.7537340192
0.7728306915
0.7835975327
0.7902789716
0.7947142805
0.7978101827

0.6576959827
0.7495237824
0.7792175664
0.7918221561
0.7981861988
0.8017934770
0.8040139149
0.8054677154

© 00~ O Ut i W

0.8097033821
0.8099490872
0.8100049902
0.8100228881
0.8100300791
0.8100334325
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0.81003803

mg @Oo\lacnﬂkoommg © 00 -1 O U W N m8 © 00 ~1 O T W N

0.8100379292

0.8100379292

0.8100379292

Table 7: Pseudo-critical temperatures for the ¢g-state Potts model in the ferromagnetic
regime. For each value of 1.5 < ¢ < 2.5 and the strip width L, we show the pseudo-

critical temperatures v, vy, and vg. Notation is as in Table 6.
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Xe

Uy

&

Vg

W

0.7037350269
0.8024796990
0.8367131720
0.8525340980
0.8610840803
0.8661968447
0.8694810441
0.8717067404
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3.5

0.7878934565
0.8789024847
0.9089394979
0.9222116633
0.9291089227
0.9330936401
0.9355757822
0.9372119953

0.8376620405
0.9064866067
0.9259778215
0.9334431103
0.9369143229
0.9387526207
0.9398209283
0.9404864726

© 00 I O U i W

0.9413319636
0.9420076334
0.9421562000
0.9422030026
0.9422216338
0.9422302741
0.9422347354
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0.942221

0.94224203
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0.9422418510

0.9422418510

0.8627238740
0.9469004865
0.9734479683
0.9846953640
0.9903282704
0.9934777281
0.9953829235
0.9966059950

0.9107070432
0.9714927384
0.9877041563
0.9936232441
0.9962710802
0.9976288578
0.9983964745
0.9988633354

© 00~ O Ut i W

0.9988399935
0.9997049072
0.9998924497
0.9999512055
0.9999745475
0.9999853718
0.9999909679

1.00015

0.999988

1.00000014

8w o0 10 o o rof H 8w oo 1o ot w8 o0 1o ot oo

1.0000000000

1.0000000000

1.0000000000

Table 8: Pseudo-critical temperatures for the ¢g-state Potts model in the ferromagnetic
regime. For each value of 3 < ¢ < 4 and the strip width L, we show the pseudo-critical

temperatures vg, vy, and vg. Notation is as in Table 6.
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| q | L o vy ‘ L Vg
3 3 -0.7537129688 -0.7746989054 | 6 -0.7984897326
6 -0.7916555922 -0.7942230532 | 9 -0.7971540641
9 -0.7952008646 -0.7959971452 | 12 -0.7969905288
12 15 -0.7969527708
oo -0.79660 -0.79668 -0.796927(20)
MC -0.79691(3)  -0.79691(3) -0.79691(3)

Table 9: Pseudo-critical temperatures for the 3-state Potts model in the antiferromag-
netic regime. For each value of the strip width L = 3k, we show the pseudo-critical
temperatures ve, vy, and vg computed on strips with cylindrical boundary condi-
tions. Notation is as in Table 6, and the row labelled “MC” shows the Monte Carlo

estimate for v.(q).
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Tri lattice F be's v = —1 Tri lattice F be's v = —0.75
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Figure 1: Limiting curves forming the singular locus B, for the Potts model free
energy for (a) v = -1, (b) v = =3/4, (¢) v = —1/2, and (d) v = —1/4 on strips with
free boundary conditions and several widths L: 2 (black), 3 (red), 4 (green), and 5
(blue). We also show the partition-function zeros for the strips Ly x (10L)g for the
same values of L: 2 (O, black), 3 (o, red), 4 (A, green), and 5 (¢, blue).
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Tri lattice P be's v = —1 Tri lattice P be's v = —0.75
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Figure 2: Limiting curves forming the singular locus B, for the Potts model free
energy for (a) v = —1, (b) v = =3/4, (¢) v = —1/2, and (d) v = —1/4 on strips with
cylindrical boundary conditions and several widths L: 2 (black), 3 (red), 4 (green),
and 5 (blue). We also show the partition-function zeros for the strips Lp x (10L)

for the same values of L. The symbols are as in Figure 1.
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Zeros tri lattice q = 0, L = 24
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Figure 3: Limiting curves forming the singular locus B, in the v plane, for the free
energy, defined with the order f,,, of the Potts model for ¢ = 0 on the Ly x oog
triangular-lattice strips with (a) L =2, (b) L =3, (¢) L =4, and (d) L = 5. We also
show the zeros of Z (G, 0,v)/q corresponding to the strips Ly x (10L)F for each value

of L.
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Zeros tri lattice q = 0.999, L = 2, Zeros tri lattice q = 0.999, L = 3
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Figure 4: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model for ¢ = 0.999 on the Lg X cop triangular-lattice strips with
(a L =2, (b) L =3, (c) L =4, and (d) L = 5. This are essentially equivalent
to the limiting curves for f,, at ¢ = 1. We also show the partition-function zeros
corresponding to the strips Ly x (10L)g for each value of L.
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Zeros tri lattice q = 2, L = 2F Zeros tri lattice q = 2, L = SF
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Figure 5: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model for ¢ = 2 on the Ly x oof triangular-lattice strips with (a)

L=2 (b)L=3,(c)L=4,and (d) L =5. We also show the partition-function
zeros corresponding to the strips Ly x (10L)r for each value of L.
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Zeros tri lattice q = 3, L = 2F Zeros tri lattice q = 3, L = SF
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Figure 6: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model for ¢ = 3 on the Ly x oof triangular-lattice strips with (a)
L=2 (b)L=3,(c)L=4,and (d) L =5. We also show the partition-function
zeros corresponding to the strips Ly x (10L)r for each value of L.
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Figure 7: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model for ¢ = 4 on the Ly x oof triangular-lattice strips with (a)
L=2 (b)L=3,(c)L=4,and (d) L =5. We also show the partition-function
zeros corresponding to the strips Ly x (10L)r for each value of L.
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Figure 8: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model, defined with the order fg,, for ¢ = 0 on the Lp x oog
triangular-lattice strips with (a) L =2, (b) L =3, (¢) L =4, and (d) L = 5. We also
show the zeros of Z (G, 0,v)/q corresponding to the strips Lp x (10L)r for each value

of L.
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Figure 9: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model for ¢ = 0.999 on the Lp X cop triangular-lattice strips with
(a L=2, (b) L =3, (¢) L =4, and (d) L = 5. These are essentially equivalent
to the limiting curves for f,, at ¢ = 1. We also show the partition-function zeros
corresponding to the strips Lp x (10L)f for each value of L.
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Zeros tri lattice q = 2, L = 2P Zeros tri lattice q = 2, L = 3P
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Figure 10: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model for ¢ = 2 on the Lp x oor triangular-lattice strips with (a)
L=2 (b)L=3,(c)L=4,and (d) L =5. We also show the partition-function
zeros corresponding to the strips Lp x (10L)g for each value of L.
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Zeros tri lattice q = 3, L = 2P Zeros tri lattice q = 3, L = 3P
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Figure 11: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model for ¢ = 3 on the Lp x oor triangular-lattice strips with (a)
L=2 (b)L=3,(c)L=4,and (d) L =5. We also show the partition-function
zeros corresponding to the strips Lp x (10L)g for each value of L.
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Zeros tri lattice q = 4, L = 2P Zeros tri lattice q = 4, L = 3P
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Figure 12: Limiting curves forming the singular locus B, in the v plane, for the free
energy of the Potts model for ¢ = 4 on the Lp x oor triangular-lattice strips with (a)
L=2 (b)L=3,(c)L=4,and (d) L =5. We also show the partition-function
zeros corresponding to the strips Lp x (10L)g for each value of L.
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Energy tri lattice P bc's q=3

Cy tri lattice P be's q=3

Figure 13: Thermodynamic observables for the 3-state Potts model on triangular-
lattice strips of sizes Lp x oop. We show (a) the energy density E, (b) the specific heat
Cy, and (c) the Binder cumulant Uy as a function of the temperature-like parameter
v for several strip widths L: 2 (black), 3 (red), 4 (green), 5 (blue), and 6 (pink). —1 <
v < 0 corresponds to the antiferromagnetic regime, while v > 0 to the ferromagnetic

one.
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Chapitre 5

Coloriage d’arétes : polymeres compacts

La non universalité mise en évidence par le probléme de coloriage de sommets (voir le Chapitre 3)
souléve également la question de savoir si d’autres types de coloriages peuvent mener & des problémes
intéressants. Par exemple, on pourrait colorier les faces plutot que les sommets du graphe, avec la
contrainte que chaque aréte sépare deux faces de couleurs différentes. Or, par dualité, ceci équivaut
a colorier les sommets du graphe dual ce qui nous ramene au probléme étudié précédemment. Une autre
possibilité, plus intéressante, de colorier les faces serait d’exiger la différence des couleurs de toutes les
faces qui touchent un méme sommet : par dualité, ceci correspond & un coloriage de sommets avec une
contrainte sur les faces. Il parait que ce probléme a été assez peu étudié, sauf pour le cas du réseau
triangulaire [163, 13].

Le point de départ du présent chapitre est encore une variante du probleme de coloriage : on attribue
maintenant une couleur & chaque aréte avec la contrainte que toutes les arétes incidentes a un méme
sommet aient des couleurs différentes. Les configurations qui en résultent sont connues commes des
coloriages de Tait [158]. On s’attend & ce que ce probléme soit plus intéressant pour des graphes de
valence constante et avec un nombre de couleurs (supérieure ou) égale & celle-ci.

Bien évidemment, un probléme de coloriage d’arétes équivaut toujours a un probleme de coloriage de
sommets d’un graphe associé. Par exemple, le tricoloriage des arétes du réseau hexagonal est équivalent
au tricoloriage des sommets du réseau Kagomé ; ce probléme a ¢ = 2 [78, 131]. Pourtant, le graphe associé
n’est pas toujours planaire comme le montre I'exemple du tétracoloriage des arétes du réseau carré.

Lors de I’étude du coloriage de sommets, nous avons utilisé le parametre ¢ du polynéme chromatique
afin de définir une déformation intéressante du probléme de coloriage proprement dit. Cette déformation
faisait appel & des objets non locaux : les amas de Kasteleyn-Fortuin [103]. Le coloriage d’arétes ouvre des
possibilités similaires, comme nous le verrons dans un instant, ou les objets non locaux sont des boucles
autoévitantes compactes.

Cette extension du probléme constitue sa motivation physique, car les boucles servent & modéliser
les conformations de polymeres compacts. Ce type de polymeres bidimensionnels a été étudié dans des
expériences récentes de microscopie fluorescente : dans ces expériences, des molécules d’ADN sont ad-
sorbées sur des bicouches lipides, ce qui confine leurs espace de phase & deux dimensions [130].

Au niveau formel, les boucles fournissent un autre lien entre le modele de Potts et le modele O(n).

5.1 Tricoloriage du réseau hexagonal

A partir d’un tricoloriage des arétes du réseau hexagonal, il est possible de définir une configuration
de boucles fermées autoévitantes en effacant toutes les arétes avec une couleur donnée. Ces boucles sont
des cycles le long desquels les deux couleurs restantes alternent. Une boucle donnée est donc invariante
sous une permutation de ces deux couleurs le long de sa trajectoire. En particulier, si tous les tricoloriages
ont un poids 1, alors chaque boucle porte un poids de 2.

Pourtant, les boucles définies de cette maniere ne sont pas les boucles intervenant dans le développe-
ment de haute température du modeéle O(n). Par construction, ’ensemble de boucles passe par la totalité
de sommets du réseau. Dans le modeéle O(n), par contre, des sommets incidents & aucune boucle appa-
raissent avec un poids ¢, ou ¢ peut étre interprété comme la température [134].
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F1G. 5.1 — Diagramme de phase du modele O(n) sur le réseau hexagonal. Les fléches représentent les flots
sous le groupe de renormalisation.

Plus précisement, le modele O(n) est défini par le hamiltonien

—BH =Y"KS;-S; (5.1)
(i3)

ou ,5_'; est un vecteur de n composantes ayant la normalisation 5’; . .S_'; = n. Le modeéle de boucles associé
apparait par une troncature du développement de haute température :

exp(—BH) = [ (1+ K5 - §)). (5.2)
(i4)
Le célebre travail de Nienhuis [134] est basé sur le développement graphique de cette expression qui prend
la forme du modele de boucles énoncé ci-dessus.

Nous allons discuter la validité de cette troncature du développement de haute température dans le
Chapitre 6. Pour l'instant, la fonction de partition du modéle O(n) vaut donc

Z=> t"n" (5.3)
g

ou V est le nombre de sommets incidents & aucune boucle, L représente le nombre de boucles fermées et
G dénote les configurations de boucles sur le réseau hexagonal. I1 est facile de se convaincre que, pour ce
choix de réseau, V est toujours un nombre pair. On a donc Z = Z(t?), et le modele est invariant sous la,
transformation ¢ — —t.

Nienhuis a montré que le modele (5.3) est soluble pour [134]

2=2+v2—-n (5.4)

avec une transition de second ordre quand —2 < n < 2. La branche “4+” (dite phase diluée) est le point
critique proprement dit, tandis que la branche “—” (dite phase dense) est une ligne de points fixes ou
la température est une perturbation non pertinente. (Le lecteur ne manquera pas d’apprécier ’analogie
avec la phase de Berker-Kadanoff discutée lors du Chapitre 4.) Les résultats de Nienhuis ont été rendus
rigoureux par une solution du type ansatz de Bethe pour Iénergie libre [15] : 'extension de cette solution
a taille finie [6] montre que la charge centrale dans la phase dense est identique & celle des modeles
minimaux (1.4), & condition de mettre ¢ = n? dans la paramétrisation (4.5). Ceci fournit encore un lien
entre le modele de Potts et le modele O(n). Il existe également des coincidences frappantes au niveau des
exposants critiques [54].

Le diagramme de phase, avec les flots du groupe de renormalisation, est montré dans la Figure 5.1.
L’invariance sous t — —t se traduit par le fait que la limite ¢ — 0 constitue une autre branche de points
fixes [28] : le modele de tricoloriage est le point n = 2 sur cette ligne. (Le point n = 1 a déja été discuté
dans le Chapitre 2 : c’est le modeéle d’Ising antiferromagnétique sur le réseau triangulaire.) En vue de la



nature des conformations des boucles, nous allons appeler cette branche la phase compacte du modele
O(n).

Pour compléter le diagramme de phase, remarquons que la ligne n = 2, 0 < t? < 2 est également
critique (phase de Berezinskii-Kosterlitz-Thouless, ou BKT) [22, 116] et que la région n > 2 contient un
flot vers un point critique & n = co qui est dans la classe d’universalité du modele de Potts & trois états
[74].

Nous allons désormais nous concentrer sur la phase compacte, ¢ = 0. La compacité des boucles se
traduit par une loi de conservation de lignes qui permit & Baxter de résoudre rigoureusement le modele
pour n > 2 [9]. Dans ce régime, le modele est non critique et toutes les boucles restent de longueur
finie dans la limite thermodynamique. Quand n — 2, la longueur de la plus grande boucle (qui peut
s’interpréter comme la longueur de corrélation) diverge. Par contre, la longueur moyenne d’une boucle
prise au hasard reste finie [86] : elle vaut en fait 18. Exactement & n = 2 ’énergie libre a une singularité
essentielle [9], ce qui signale une transition de phase.

Pour —2 < n < 2, le modeéle est critique. Ses exposants critiques, différents de ceux des phases dense
et diluée discutées ci-dessus, furent d’abord trouvés de maniére numérique [28] avant qu’une solution
exacte ne fit établie [7]. L’ensemble de ces exposants, ainsi qu’un exposant nouveau qui décrit 'influence
d’une température infinitésimale, fut ensuite retrouvé par Kondev et collaborateurs par une approche
trés différente [112]. Bien que non rigoureuse, cette approche est intéressante pour plusieurs raisons :

— Elle construit explicitement la théorie conforme qui décrit les fluctuations critiques des boucles. En
particulier, les objets géométriques seront associés a des opérateurs dans une théorie de champs
dite théorie de Liouville.

— Elle permet de résoudre d’autres modeles ou la technique de I'ansatz de Bethe ne convient pas ou
est trés difficile & appliquer.

Par la suite, nous allons illustrer les ingrédients de cette approche appliquée & la phase compacte du
modele O(n) sur le réseau hexagonal.

5.2 Théorie de Liouville

Nous allons suivre en partie la présentation de [112] mais avec I'ajout de quelques simplifications
postérieures [114, 83].

La construction de la théorie de Liouville passe par un certain nombre de transformations exactes
ainsi que quelques suppositions de nature physique qui permettront de faire le contact avec la théorie de
champs.

5.2.1 Modele d’interface

L’idée de base est de décrire les fluctuations critiques des boucles au travers de celles d’'un modéle
d’interface associé. Ce modele fait intervenir une variable de hauteur définie sur les faces du réseau ou
vivent les boucles. La variation de la hauteur entre deux faces voisines est déterminée par I’état de ’aréte
qui les sépare. Par contre, la valeur absolue des hauteurs n’a aucun sens pour 'instant : il y a une symétrie
sous une translation globale de I'interface.

Nous avons vu que chaque configuration de L boucles est compatible avec 2% tricoloriages. Plus
précisement, la spécification d’un tricoloriage permet non seulement de définir les boucles mais aussi
d’attribuer une orientation a chacune d’entre elles. Cette possibilité sera pleinement exploitée dans le
paragraphe suivant : & présent, nous en tirons la conséquence que les états de l'interface (modulo une
translation globale) doivent étre en correspondance biunivoque avec les tricoloriages.

Soit A, B et C les trois états (couleurs) possibles d’une aréte. Pour que la variable de hauteur soit
bien définie quand on entoure un sommet, il faut que la somme des différences de hauteur s’annule :

A+B+C=0. (5.5)

L’interprétation la plus libérale qui respecte cette unique relation parmi trois quantités consiste en ce
qu’on permet aux hauteurs de prendre des valeurs vectorielles dans un espace bidimensionnel. Plus
généralement, pour satisfaire une relation du type (5.5) parmi @ couleurs différents, tout en traitant



les couleurs différentes de maniere symétrique, les vecteurs associés doivent former un hypertétraedre en
@ — 1 dimensions : dans le cas Q = 3 discuté ici, il s’agit tout simplement d’un triangle équilatéral.

11 est utile de comparer cette construction avec celle qu’on trouverait pour le modele O(n) usuel. Soit
A et B les deux couleurs choisies qui alternent le long de la trajectoire d’une boucle. Alors, le modele
O(n) & température non nulle comprend des sommets dont les trois arétes incidentes sont toutes dans
I’état C, avec un poids t # 0. Ceci donne la contrainte supplémentaire 3C = 0, ou bien A+ B =0 : on
peut alors se contenter d’une hauteur scalaire. Cette observation permet d’expliquer de fagon intuitive la
différence des classes d’universalité des deux modeéles.

5.2.2 Redistribution locale des poids

Le prochain pas est de redistribuer le poids n par boucle de maniere locale : cette redistribution est
nécessaire afin de définir une théorie de champs locale.
Nous allons décomposer le poids n de la maniére suivante [134]

n = 2cos(meg) = exp(imey) + exp(—imep). (5.6)

La bijection entre les tricoloriages et les configurations de boucles orientées permet alors d’attribuer un
poids exp(imeg) & une boucle chirale (orientée contrairement au sens des aiguilles d’une montre) et un
poids exp(—imeg) & une boucle antichirale. Comme, en plus, une boucle chirale sur le réseau hexagonal
tourne nécessairement six fois plus & gauche qu’a droite, ces poids peuvent étre redistribués localement en
attribuant un poids exp(imey/6) & chaque sommet ot une boucle tourne & gauche et un poids exp(—imrey/6)
a chaque sommet ot une boucle tourne & droite. Soit A\(x) la valeur de ce poids en un sommet situé au
point x. La fonction de partition prend alors la forme locale

Z=>"T] x), (5.7)
g x

ou G’ représente les configurations de boucles compactes orientées.

C’est le modele de vertex correspondant qui forme le point de départ pour I’approche d’ansatz de
Bethe [7].

5.2.3 Limite continue

Le passage & la limite continue du modele d’interface passe par une construction particuliere qui a été
expliquée en [111] et élaborée en [112, 83, 99]. Par la suite, nous allons en évoquer les points essentiels.

Le changement minimal d’un tricoloriage donné consiste en la permutation de deux couleurs (pas
nécessairement A et B) le long d’une trajectoire fermée le long de laquelle les deux alternent. Les coloriages
qui permettent un maximum de tels changements sont caractérisés par le fait que toutes les boucles de
deux couleurs alternées ont la longueur minimale de six arétes : dans le modéle d’interface, les états
correspondants sont macroscopiquement plats. Par une raisonnement entropique, on s’attend alors & ce
que l'interface fasse des fluctuations bornées autour de domaines d’états plats.

Deux états plats peuvent étre liés par une transformation qui permute les couleurs des arétes autour
d’un tiers des faces. Il est naturel de considérer deux états ainsi liés comme des voisins dans un espace
vectoriel ou chaque état plat est repéré par un point qui correspond a sa hauteur moyenne. En faisant
subir & un état plat donné un certain nombre de transformations de permutation des couleurs il est
possible de revenir au méme état plat, mais situé en un autre point dans ’espace des hauteurs. Les
translations correspondantes constituent un réseau R appelé réseau de répétition.

Dans cette construction, I'interface n’est plus invariante par une translation quelconque, mais seule-
ment par des translations qui appartiennent & R. Dans la limite continue, la hauteur h(x) € R? doit
alors étre compactifiée par rapport & I'espace IR?/R. Comme cet espace n’est pas simplement connexe, la
construction du gaz de Coulomb associée au modele d’interface induit la possibilité d’avoir des défauts
topologiques de type tourbillon avec une charge m (dite charge magnétique) qui prend ses valeurs en R.
Inversement, des charges e € R* dites électriques seront associées aux opérateurs de vertex (aussi appelés
ondes de spins) exp(ie - h).



5.2.4 'I'héorie de champs

Dans la limite continue, il est possible de définir une fonction de partition modifiée Z-. qui décrit
correctement les fluctuations de longue portée présentes dans Z. Par la théorie de champs, Z- est relié
a une intégrale fonctionnelle

75 = / Dh exp(—S[h)), (5.8)

ou S est 'action euclidienne d’une théorie de Liouville aux couplages imaginaires. L’action contient trois
termes

S=8g+ 58+ 5L (5.9)

dits respectivement le terme d’élasticité, le terme au bord et le terme de Liouville.
— Le terme d’élasticité Sy garantie la consistance du modele d’interface car il limite les fluctuations
entropiques autour des états plats. Il prend la forme

1
Sn=1 / d2x K 50K - 1P, (5.10)

ou 8 = (01,02) dénote le gradient. L'objet K = K,p est un tenseur d’élasticité agissant sur les
composantes des hauteurs. En général, les symétries du modeéle entraine I’annulation d’un certain
nombre de composantes de Kz : ici, c’est un tenseur diagonal 2 x 2.

— Le terme au bord Sy attribue un poids n aux boucles qui sentent le bord du systéme. Le plus
aisé pour l'application de la théorie conforme est de définir le modele sur un cylindre : les boucles
concernées par Sp seront alors celles qui possédent un enroulement par rapport au cylindre. Pour
de telles boucles, la redistribution locale des poids expliqueé ci-dessus ne marche pas, car leurs
nombres de virages & droite et & gauche sont égaux. Ce probléme est résolu en mettant

Sp = i/d2xe0 - [h(+00) — h(=o0)], (5.11)

c’est-a-dire en couplant la différence de hauteur entre les deux extrémités du cylindre & une charge
de vide €. Autrement dit, Sg correspond & l'insertion de deux opérateurs de vertex exp(=tieg - h)
aux bords du systéme. La charge ey est choisie de maniere & donner aux boucles enroulantes le
poids désiré, n.

— Le terme de Liouville Sy, implante les poids locaux A(x) de (5.7). Par Panalyse de Fourier, il peut étre
développé sur des opérateurs de vertex dont on ne retient que les plus pertinents (dans le sens d’une
théorie conforme). Comme le poids d’une boucle est invariant par rapport & la renormalisation, il
faut exiger la marginalité de ces opérateurs [114] : ils servent alors & écranter le gaz de Coulomb
[46, 47]. Cette partie de la construction est cruciale, car I’ansatz de marginalité permet de relier les
constantes élastiques K,g au poids n.

La théorie de Liouville (5.9) est une théorie conforme exactement soluble. En particulier, les exposants

critiques z(e, m) des opérateurs ayant une charge électromagnétique (e, m) ainsi que la charge centrale
¢ sont exactement connus [46, 47] :

z(e,m) = %[e-K’l-(e—2e0)+m-K-m], (5.12)
¢ = dim(h) + 12z(e, 0). (5.13)

Remarquez en particulier la dépendance de la dimensionalité de ’espace de hauteurs : cette dépendance
traduit, dans le langage de la théorie de champs, le fait que la phase compacte posséde plus de degrés de
liberté que les phases dense et diluée.

5.2.5 Exposants critiques

La formule (5.12) permet de calculer un ensemble d’exposants critiques liés aux propriétés conforma-
tionnelles des boucles.

En particulier, il est fructueux de considérer I'insertion de deux défauts topologiques de charge
magnétique +m dans le modéle d’interface. Par exemple, le choix m = 3C permet d’obtenir I’exposant
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Fi1a. 5.2 — Les six configurations des boucles autour d’un sommet dans le modele de boucles compactes
sur le réseau carré.

thermique z; = z(0,3C) qui caractérise V’effet d’une température infinitésimale sur la phase compacte
[112].

D’autres choix de m correspondent & une situation ou un nombre k£ de cordes ouvertes se propagent
au milieu des boucles, entre les deux points d’insertion. Par exemple, pour n — 0, 1 = z(ey,C — B)
donne le rapport entre le nombre de chemins et de cycles hamiltoniens sur le réseau hexagonal avec N
sommets :

#chemins
Fcycles ~

L’exposant v = 1 — z1 caractérise aussi I'interaction entropique entre les deux extrémités d’un chemin
hamiltonien : interaction est répulsive siy > 1 et attractive si~y < 1. La solution explicite [7, 112] montre
que le réseau hexagonal fournit un cas marginal : v = 1, ce qui veut dire qu’un chemin hamiltonien se
comporte comme prédit par la théorie du champ moyen [138, 79].

N (5.14)

5.3 Tétracoloriage du réseau carré

11 est possible d’adapter cette construction de boucles compactes au réseau carré [111]. Ce cas est
particulierement intéressant puisque des calculs numériques [8] demontrérent que l’exposant 7y est en
désaccord avec la théorie du champ moyen [138, 79]. La solution exacte [115, 83] fournit ensuite le
résultat y = 117/112, en excellent accord avec les calculs numériques [8, 115].

Le modéle sur le réseau carré fait intervenir deuz types de boucles qui peuvent se rencontrer & un
sommet en six manieres différentes : voir la Figure 5.2. Remarquez que les deux types de boucles peuvent
se traverser : cette propriété sera cruciale pour la discussion des méandres lors du Chapitre 6.

La solution du modele de boucles compactes sur le réseau carré fut donnée dans I’article [83], attaché
a ce chapitre.

5.4 Autres réseaux

Vu que les boucles compactes, et en particulier les cycles hamiltoniens, ont des propriétés conforma-
tionnelles différentes sur les réseaux hexagonal et carré, on pourrait étre tempté d’adapter la construction
de la théorie de Liouville & d’autres réseaux. Pourtant, pour que le lien entre des configurations de co-
loriage et de boucles orientées puisse étre fait, il faut que le réseau soit biparti et de valence constante.
Notamment, les réseaux bipartis ont la propriété que tous leurs cycles sont de longueur paire [158], ce
qui permet de réaliser une boucle comme une trajectoire de deux couleurs alternées.

Ces critéres ne sont satisfait que par un nombre de réseaux réguliers (techniquement : de type ar-
chimeédéen ou k-uniforme) trés restreint [72]. Parmi ceux-ci on trouve le réseau (4.82) qui est un pavage
régulier du plan par des carrés et des octagones. Or, une étude détaillee montre que le modele O(n) défini
sur ce réseau n’a pas de point fixe & température nulle [85].

Une autre possibilité est d’étudier des modeles de boucles compactes sur des réseaux orientés. Dans
un tel modele, les arétes du réseau sont équippées d’une fleche de direction fixe. Seules sont autorisées
les boucles le long desquelles I'orientation de toutes les fleches est constante. Par exemple, le modéle de
boucles compactes sur le réseau Manhattan (qui est un réseau carré avec une orientation particuliére [102])
est équivalent au modele de Potts sur un réseau associé [53] : ce réseau est simplement le réseau carré
non orienté. Le résultat pour les chemins hamiltoniens (limite » — 0) met en évidence un comportement
du type champ moyen [138, 79] : v = 1.

Le réseau Manhattan a aussi été étudié dans le cas qui présente deux types de boucles, comme
indiqué sur la Figure 5.2 [68]. Ce modéle est équivalent & deux modeéles de Potts définis respectivement
sur un réseau carré et sur son dual. Les deux modeles sont couplés par une interaction de quatre spins et
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Fi1G. 5.3 — Transformation entre le modele de deux types de boucles compactes et le modele a six sommets
sur le réseau carré. Sur le sous-réseau impair il faut invertir ’orientation des fleches par rapport & la figure.

possede un point intégrable avec ¢ = 1 quand la fugacité de toutes les boucles vaut v/2. Des simulations
numériques indiquent que le couplage de quatre spins est non pertinent quand ¢ < 1 : on trouve alors le
comportement de deux modeles O(n) découplés, chaque modele étant dans la phase dense. Par contre,
dans le domaine de fugacités qui aurait ¢ > 1 le couplage est pertinent et le modele devient massif [68].

5.5 Modele de Flory

Le modeéle de deux types de boucles compactes sur le réseau carré est équivalent au modeéle & six
sommets quand la fugacité de toutes les boucles vaut un : voir la Figure 5.3. Il devient alors naturel de
définir un modele plus général o, en plus des fugacités des boucles, I’'on met des poids locaux a, b et ¢
comme indiqué sur la figure. Pour le cas isotrope on peut mettre a = b = 1 sans perte de généralité :
pour éviter la confusion avec la charge centrale, nous allons désormais noter wx = c.

Ce modele n’est rien d’autre que le modele de Flory pour la fusion d’une protéine [60, 148]. La
modélisation d’une protéine par un polymere compact est justifiée par le fait que les acides aminés d’une
protéine sont, soit hydrophobes, soit polaires : Aprés mise en contact de la protéine avec de I'eau dans
une cellule, cette protéine forme alors des structures compactes afin d’éviter le contact de 1’eau avec ses
parties hydrophobes. Dans le modeéle de Flory, la rigidité de la protéine est représentée sur le réseau carré
par un poids wx a chaque sommet ou deux monomeéres consécutifs sont alignés.

On s’attend & ce qu’il y ait une transition de phase entre le domaine de grand wx (basse température),
ou la protéine cherche & s’aligner le plus possible en formant de la structure secondaire, et le domaine de
petit wx = 1 (haute température), ol la protéine est dans une phase fondue : les fluctuations thermiques
détruisent alors la structure secondaire.

La théorie de Liouville de [83] peut étre généralisée afin d’étudier l'effet d’un poids wx # 1. En
particulier, il est possible de calculer les exposants critiques de maniére exacte au point de fusion [99].
On trouve v = 11/16, ce qui signifie une attraction assez forte entre les extrémités du polymeére : c’est
effectivement le mécanisme physique prévu par analogie avec 1’effondrement d’'un polymére au point
theta.

Toute la phase de haute température est critique, avec des exposants critiques qui dépendent de la
température de maniére non universelle. Cette dépendance peut étre étudiée numériquement avec une
grande précision [99].

D’autres généralisations du modeéle permet d’étudier la transition vers la phase non compacte ainsi
que le lien avec une généralisation du modele & huit sommets. Nous reportons 1’étude de ces sujets a
Particle [99] qui est attaché & ce chapitre.

5.6 Questions de classification

Au niveau formel, la structure des vecteurs d’écran du modele de deux types de boucles compactes
[83] présente des similitudes frappantes avec la théorie conforme étendue, basée sur ’algebre de Lie W A;.
On s’interroge alors pour savoir si le modele de boucles posséde une symétrie étendue, ce qui permettrait
éventuellement une étude systématique de son contenu d’opérateurs. De tels résultats seraient tres utiles,
voir indispensables, afin de coupler ce modéle de boucles au désordre. Le modele désordonné serait un
bon candidat pour la résolution du modele dit HP qui décrit la physique d’un hétéropolymeére compact.



Dans [50], le dernier article attaché a ce chapitre, nous montrons que le modele de boucles rentre en
effet dans une classification plus générale des gaz de Coulomb que celle basée sur les algebres de Lie.



J2.( Article "rleld theory oI compact polymers on the square lattice”

A partir d’un modele de deux types de boucles compactes sur le réseau carré, nous dérivons des
résultats exacts pour la statistique conformationnelle des polymeéres compacts. Ce modeéle de boucles
posséde une wvariété bidimensionnelle de points fixes critiques, chaque point étant caractérisé par une
infinité d’exposants critiques géométriques. Nous calculons ces exposants ezactement en transformant le
modele de boucles en un modele d’interface, dont la limite thermodynamique est une théorie de champs
de type Liouville. Les formules pour la charge centrale et les premiers exposants critiques sont comparées
a des résultats numériques de matrice de transfert : 'accord est excellent. Les polymeéres compacts sont
identifiés par un point particulier dans le diagramme de phase du modeéle de boucles. La valeur de
Pexposant conformationnel v = 117/112, calculée ici pour la premiére fois, est en contradiction avec la
théorie de champ moyen. Des polymeéres compacts en interaction sont décrits par une ligne de points fixes
le long de laquelle v varie continiment.
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Abstract

Exact results for conformational statistics of compact polymers are derived from the two-flavour
fully packed loop model on the square lattice. This loop model exhibits a two-dimensional manifoid
of critical fixed points each one characterised by an infinite set of geometrical scaling dimensions.
We calculate these dimensions exactly by mapping the loop model to an interface model whose
scaling limit is described by a Liouville field theory. The formulae for the central charge and
the first few scaling dimensions are compared to numerical transfer matrix results and excellent
agreement is found. Compact polymers are identified with a particular point in the phase diagram
of the loop model, and the non-mean field value of the conformational exponent y = 117/112 is
calculated for the first time. Interacting compact polymers are described by a line of fixed points
along which y varies continuously. (© 1998 Elscvier Science B.V.

PACS: 05.50.4q; 11.25.Hf; 64.60.Ak; 64.60.Fr

1. Introduction

Lattice models of loops have emerged as an important paradigm in two-dimensional
critical phenomena. They allow for a determination of the scaling properties of different
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types of random walks which are used to model conformations of different phases of
polymers [ 1]. For instance, the solution of the O(#n) loop model has led to exact results
for conformational exponents of swollen and dense polymers [2], as well as polymers
at the theta point [3]. The theta point is the tricritical point which governs the transition
between the swollen and the collapsed phase of polymers in solution [1]. Examples of
conformational exponents are 7y, which describes the scaling of the number of polymer
conformations with the number of monomers AV, and », for the scaling of the linear size
of a polymer, as measured by the radius of gyration, with A", Here we calculate for the
first time the exact value of y for polymers on the square lattice, in the compact phase.
Compact polymers completely fill the lattice and are of direct relevance to statistical
studies of protein folding [4,5].

Further motivation for studying loop models comes from the Fortuin-Kasteleyn con-
struction which maps many discrete spin models (e.g., Q-state Potts) to random cluster
models. Since cluster boundaries in two dimensions form loops this naturally leads to
a loop model representation. This random geometrical description of two-dimensional
lattice models then provides a setting in which a general theory of their scaling limits
can be sought. [t 1s one of the goals of this paper to outline a specific proposal for such
a theory in the form of an effective field theory of fluctuating loops. This field theory is
constructed following the Coulomb gas recipe [6] with some important new ingredients
added [7]. It describes the fluctuations of a random surface for which the loops are
contour lines.

Scaling limits of many (but not all) two-dimensional lattice models are described
by conformally invariant field theories [8,9]. This observation has led to exact results
for critical exponents and other universal quantities, and to a classification of critical
points based on their symmetry properties with respect to the group of conformal
transformations. An obvious question which is often difficult to answer is: given a
particular lattice model how does one construct the conformal field theory of its scaling
limit? Loop models provide examples for which the scaling limit can be constructed
in a physically transparent way. This is accomplished by mapping a loop model to an
interface model, where the loops are simply equal-height contours. An explicit coarse
graining procedure is then implemented for the height model, and it leads to a well-
known conformal field theory — the Liouville field theory.

Interesting examples of loop models are also provided by one-dimensional quantum
models, spin chains in particular, where loops appear as world lines of the spin. This
mapping of spins to loops has recently been used to formulate very efficient numerical
schemes for simulating spin chains and ladders. These loop algorithms allow one to
simulate much bigger system sizes and lower temperatures than by using more traditional
algorithms with local updates [10]. The loop representation of quantum spin chains also
gives an illuminating stochastic-geometrical view of their quantum fluctuations [ 11]. For
example, the spin-spin correlation function is related to the probability that two points
on the space-time lattice belong to the same loop. This insight might lead to a practical
theory of plateau transitions in the Integer Quantum Hall Effect, i.e. one that would
allow for a calculation of the correlation length exponent and other universal quantities
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which have been measured in experiments. Namely, the Chalker—Coddington network
model [12}, which is believed to be in the same universality class as the plateau
transitions, was recently mapped to an SU(n — 0) quantum spin chain [ 13]. It remains
to be seen if this spin chain has a tractable loop-model representation.

In the bigger picture, loop models are of interest as simple examples where the
fundamental constituents are non-local, extended objects as opposed to point-like objects
such as particles and spins. Fluctuating geometries of this sort are used to model flux
lines in superconductors, domain walls in magnets, and crystalline interfaces, to name a
few experimentally relevant systems.

The extended nature of loops turns out to have profound consequences when one
attempts to write down an effective continuum description of these models, say, following
Landau’s dictum of expanding the free energy (Euclidean action) in powers of the order
parameter and its derivatives. Namely, terms which are geometrical in origin and non-
perturbative in nature, and hence cannot be inferred from symmetry arguments alone,
appear in the action. On the other hand, exactly because these geometrical terms are
present the values of the effective coupling constants of the field theory are completely
determined, a rather remarkable occurrence.

Usually in an effective description provided by a field theory, coupling constants are
phenomenological parameters fixed by auxiliary information about observable quantities,
such as the response functions or the related correlation functions. The Coulomb gas
approach to two-dimensional critical phenomena is an example of an effective theory
wherein the electromagnetic coupling constant (i.e. the “magnitude of the unit charge™)
is determined from an exact solution of the model; typically it suffices to calculate the
exact value of a single critical exponent. Our construction of an effective field theory
of loop models closely parallels the Coulomb gas method with the important difference
that the coupling constants are determined without recourse to any exact information
about the model. For the model at hand no such information is available anyway, and
moreover there are indications that the model is not exactly solvable [ 14]. On one level
our theory can be viewed as a trick that allows one to calculate critical exponents in two-
dimensional loop models without doing the “hard work” of exactly solving the model.
On a deeper level it shows that lattice models of loops lead to continuum theories that
are geometrical in nature, i.e. devoid of any couplings that depend on the microscopic
details.

Here we study in detail the two-flavour fully packed loop (FPL?) model on the square
lattice. This is a statistical model which describes two flavours of loops that occupy the
bonds of the square lattice, subject to certain close packing constraints to which we shall
return shortly. The phase diagram of this model is described by two variables, n;, and
#ny, which are the loop fugacities of the two flavours; see Fig. 1. The phase diagram of
the FPL? model has three important features that we wish to emphasize from the outset:

(1) For loop fugacities that fall into the region 0 < ny, ny < 2 of the phase diagram
the model is critical, i.e. it exhibits a power-law distribution of loop sizes. The novel
feature is that every point in the critical region defines a different universality class
characterised by an infinite set of geometrical critical exponents. All previously studied
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Fig. |. Phase diagram of the two-flavour fully packed loop model on the square lattice. The loop model is
critical for loop fugacities 0 < np, ngy < 2. Particular points in the critical phase map to previously studied
models: 6V — equal weighted six-vertex model [16], DL - dimer loop model [15], 4C - four-colouring
model |28]. The dashed line is the fully packed loop model studied numerically in Ref. [14]; the point CP
along this line corresponds to the problem of compact polymers. Finally, the dotted line is the loop model for
which an effective Liouville field theory was constructed in Ref. [7].

loop models (e.g., @-state Potts, O(n) models) exhibit a line of fixed points.

(ii) The effective field theory of the FPL? model in the critical region describes
a fluctuating two-dimensional interface in five dimensions, which is characterised by
three elastic constants. We calculate these three couplings exactly as a function of the
two-loop fugacities. It is important to note that all previously solved loop models are
characterised by a single clastic constant.

(iii) From the field theory of the FPL? model we calculate for the first time exact
results for the conformational exponents of compact polymers on the square lattice.
Furthermore, a particular line of fixed points in the phase diagram of the FPL* model
can be identified with interacting compact polymers (n, = 0,n, < 2). We find that
along this line the exponent y changes continuously, whilst » stays constant.

The organisation of the paper is as follows. In Section 2 we review the scaling
theory of compact polymers which provides our main motivation for introducing the
two-flavour fully packed loop model on the square lattice in Section 3. The rest of
the paper is devoted to the study of this model using field theoretical techniques and
numerical transfer matrix calculations.

The FPL? model is mapped to an interface model in Section 4. For the interface
model we construct the scaling limit in terms of a Liouville field theory, in Section 5.
In Sections 6 and 7 we make use of the field theory to calculate the central charge and
the infinite set of geometrical exponents associated with loops, in the critical region of
the loop model. A short description of the non-critical region based on the field theory
1s given next in Section 8.

Following the field theoretical treatment of the FPL2 model, in Sections 9 and 10 we
describe the construction of transfer matrices for different boundary conditions. They are
used to determine the central charge, the first few geometrical exponents, and the residual
entropy; the numerical results are in excellent agreement with the theoretical predictions.
Finaily, in Section 11, we present some general observations regarding compact polymers
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Fig. 2. Compact polymer on the square lattice; x and y are the positions of the chain ends.

and the Coulomb gas description of conformal field theories. We also comment on the
dimer-loop model [15] and the three-state Potts antiferromagnet [16], in light of our
solution of the fully packed loop model on the square lattice. The appendices are reserved
for the calculation of scaling dimensions of operators in the Liouville field theory and
the enumeration of connectivities which are used for constructing the transfer matrices.

2. Compact polymers

Compact polymers, or Hamiltonian walks, are self-avoiding random walks that visit
all the sites of the underlying lattice; see Fig. 2. They have been used as simple
models of polymer melts [17] and appear in statistical studies of protein folding [4,5].
Unlike dilute and dense polymers whose scaling properties were calculated exactly
from the O(n) loop model [18], compact polymers defied a similar treatment until
recently. Numerical transfer matrix calculations [19], a Bethe-ansatz solution [20], and
a Coulomb gas theory [21] of the fully packed loop model on the honeycomb lattice,
all conclude that compact polymers define a new universality class of critical behaviour.
Here we study compact polymers on the square lattice. We calculate exact scaling
exponents and find them to be distinct from the honeycomb case. This was first reported
in Ref. [14] on the basis of numerical transfer matrix results.

The lattice dependence of critical properties distinguishes the compact polymer pro-
blem from its dilute and dense counterparts in a crucial way. It places them into the
class of geometrically frustrated critical systems.® A physically relevant measure of
frustration for compact polymers is the number of contacts per monomer. Contacts are
realised by monomer pairs where the two monomers are nearest neighbours on the lattice
but are not adjacent along the polymer chain. In lattice models of proteins hydrophobic
interactions among the amino acids occur at contacts [4,5]. For the square model studied
here the number of contacts per monomer is nwo, whilst on the honeycomb lattice it is
one.

3 Another example is the antiferromagnetic three-state Potts model which has a zero-temperature critical
point on the square |16 and the Kagomé [22] lattices characterised by different critical exponents.
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In order to study the scaling properties of compact polymers we focus our attention
on the two most widely studied conformational exponents v and . If R is the radius of
gyration of the polymer then

R~ N7, (2.1)

where NV is the number of monomers. Since compact polymers visit all the sites of a
lattice, they are space-filling and we conclude that » = 1/2. This simple result will serve
as an important check of our field theoretical calculations where it will be recovered.

In order to define the conformational exponent y we introduce C (A), the number
of compact polymers (Hamiltonian walks) on a square lattice with A sites. Since a
compact polymer fills the lattice, boundary conditions (free, periedic, etc.) play an
important role. Following Saleur and Duplantier [23], we define y in a way that is
insensitive to the boundaries. Namely, if we introduce the quantity C,(A), the number
of compact-polymer rings, then we can expect

C(N)

Co(N)
where y does not depend on the choice of boundary conditions. Therefore, in order to
calculate ¥ we need to solve the hard combinatorial problem of counting the number of
open and closed compact polymers on the square lattice. Following de Gennes we do
this by mapping the counting problem to the calculation of a correlation function in a
particular statistical model at the critical point.

Consider the quantity Z (x, y; '), the number of compact polymer conformations that
start at the vertex x of the VAN x VA square lattice, and end at y (see Fig. 2); we
consider the limit 1 < |x—y| < VAV, where x and y are chosen far from the boundaries
of the lattice. For this quantity we can write down the scaling form [23]

~ N7, (2.2)

Z(x,y;N)=Co(N)IX-yrmf(hM_n/g')’ (23)

where f(u) is a scaling function with the property f(u) — const. as u — 0, and x| is
a geometrical exponent related to y. Integrating Z(x,y; N') over all end-points y and
comparing the result to Eq. (2.2), the scaling relation

y=1—x (2.4)

follows.

To calculate the geometrical exponent x; we introduce the two-flavour fully packed
loop model on the square lattice. The fact that we need two loop flavours follows
from the simple observation that the bonds not covered by the compact polymer also
form loops whose number is unconstrained. For the loop model we then construct an
effective field theory in which Z(x,y; ') becomes a two-point correlation function.
The asymptotics of this function can be calculated exactly and we find x; = —-5/112,
from which

y=117/112=1.0446 . .. (2.5)
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follows. This is to be compared to the mean-field theory value ymr = 1 [24], which is
also the result obtained for compact polymers on the honeycomb lattice [20].

The conformational exponent v was measured directly from enumerations of confor-
mations of chains with lengths up to 30 in Ref. [4], and the value y = 1.01(5) was
reported. More recently, from a numerical transfer matrix study of the fully packed
loop model on the square lattice the geometrical exponent x; = —0.0444(1) was deter-
mined [14], in excellent agreement with the exact result.

Another quantity of interest is the connective constant « which determines the leading,
exponential with system size scaling of the number of compact polymers [25]

C(NY ~ kN N1, (2.6)

Here «; is the surface connective constant; it appears due to the space-filling nature of
compact polymers. Both the value x = 1.475(15) found in Ref. [4], and the estimate
Kk =2 1.472 obtained from transfer matrix calculations similar to ours [26], seem in
favour of the mean-field result xpyp = 4/e = 1.4715. .. [24].* In Section 10.4 we
report the very accurate numerical value

« = 1.472801(10), (2.7

which shows that the connective constant for compact polymers also deviates slightly
from the mean-field result.

For the remainder of the paper we elaborate on the calculation of y for compact
polymers, in the process unveiling an extremely rich phase diagram of the associated
loop model. As remarked earlier, it contains a two-dimensional region of fixed points,
which we characterise in detail by calculating the central charge and the geometrical
exponents associated with loops for each point on the critical manifold.

3. Two-flavour loop model

The two-flavour fully packed loop model on the square lattice was introduced in
Ref. [28] as the loop representation of the four-colouring model [29]. It is the natural
generalisation of the fully packed loop model on the honeycomb lattice, which is the
loop representation of the three-colouring model [21]. In general, a g-colouring model
on a g-fold coordinated lattice is given by edge colourings of the lattice with g different
colours; an edge colouring of a graph is one where no two bonds that share a common
vertex are coloured equally. The colouring model is mapped to a loop model by choosing
[g/2] colour pairs; each pair defines strings of alternating colour that necessarily form
loops (unless they terminate at the boundary). In this way we end up with a loop model
with [¢/2] flavours of loops.

4 Very recently the field theory of Ref. [24] has been improved [27] yielding, however, unchanged values
for ¥MF and KMF.
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Fig. 3. The six vertex configurations of the FPL2 model that are allowed by the fully packing constraint.
Black and grey loop segments are shown here as solid and hatched lines respectively. Each vertex is adjacent
to four edges, here shown as dots, that are referred to as “dangling™ if they are not connected to an edge of a
neighbouring vertex. Note that the two rightmost vertices explicitly permit the two flavours to cross.

To define the FPL? model we first specify the allowed loop configurations G. In G
every bond of the square lattice belongs to one and only one loop of either flavour, and
loops of the same flavour are not allowed to cross. Representing the two flavours by
solid (black) and hatched (grey) line segments respectively this fully packing constraint
allows each vertex of the square lattice to have one of the six appearances depicied in
Fig. 3. Each loop is assigned a fugacity depending on its flavour: n,, for black loops and
ng for grey loops. The partition function of the FPL? model is then

zZ= n)ny". (3.1)
g

The fully packed loop model of Batchelor et al. [14] is obtained by setting the loop
fugacity of the grey loops to unity. In the limit 7, — 0 we recover the compact polymer
problem.

If we define a restricted partition function of the FPL? model, to which only configu-
rations with a single black loop segment propagating between points x and y contribute,
then Z(x,y; N') in Eq. (2.3) is obtained in the limit n, — 0, ng — 1. The first limit
discards all configurations with black loops present, leaving only the black Hamiltonian
walk (compact polymer) between x and y, whilst the second ensures that all walks
are weighted equally. We could also consider weighting different Hamiltonian walks
differently by setting n, # 1. This situation can be interpreted as describing interacting
compact polymers, and, as will be shown later, it leads to a continuously varying ex-
ponent y. A similar property of interacting oriented polymers in the swollen phase was
suggested by Cardy from a field theoretical calculation [30]. Recent numerical studies
of the interacting oriented self-avoiding walk by Trovato and Seno [31], though, seem
to be at odds with Cardy’s prediction of an exponent y that varies continuously with the
interaction strength.

Some idea of the phase diagram of the FPL? model as a function of a; and n, can be
obtained by examining the extreme limits of the loop fugacities. Namely, for ny, ng — oc
all loops have the minimum length of four, i.e. they each surround a single plaquette of
the square lattice. There are no large loops in the system and the model is non-critical,
or in other words, the average loop length is finite. On the other hand, in the critical
phase of the loop model, which is the subject of this paper, in a typical configuration
one finds loops of all sizes characterised by a power-law distribution. This leads to an
average loop length which diverges with the system size. Such is the case in the other
extreme limit of loop fugacities, ny, 1y — 0, when the loops cover the whole lattice.

Other previously studied models that are particular points in the phase diagram of the
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FPL? model are the four-colouring model, the dimer loop model, and the equal weighted
six-vertex model; see Fig. 1. For (m,,n,) = (2,2) the loop fugacity of each loop can
be evenly (141) distributed among the two ways of colouring the bonds occupied
by the loop with two colours in an alternating fashion: ABAB. .. for black loops and
CDCD... for grey loops. This is then the symmetric four-colouring modei (A, B, C,
and D are the colours) studied by Baxter [32]. In the dimer loop model black and
white dimers are placed on the square lattice so that every vertex is covered by one of
each [15]. If we identify the dimer covered bonds with the black loops then this model
is mapped to the (ny,n,) = (2, 1) FPL? model. And finally (ny,ng) = (1, 1) constitutes
the equal-weighted six-vertex model [33], the allowed vertices being those of Fig. 3.

4. Height representation

The critical phase of the FPL? model can be described in terms of an effective field
theory, following the general procedure discussed in Ref. {6]. The idea is to think of
loops as contours of a scalar field, which we refer to as the height. Depending on the
loop model in question the height can have one or more components. If the number
of components is D then the effective field theory of the loop model describes a
fluctuating two-dimensional interface in D) -+ 2 dimensions.

To introduce the heights we first map the loop model to an oriented loop model, as
shown in Fig. 4. The orientation of every loop is chosen randomly and independently.
Every non-oriented loop configuration is thus transformed into an oriented one (G');
the number of oriented configurations that correspond to the same non-oriented loop
configuration is simply 2% ¥,

Next, for each loop we redistribute its weight (fugacity), ny or n, depending on
whether it is black or grey, between the two possible orientations. For the black loops
we do this by assigning to, say, the clockwise orientation the phase factor exp(imey), and
the opposite phase, exp(—imep), 10 a counter-clockwise oriented black loop. Similarly
for grey loops the clockwise oriented ones are assigned a weight exp(ime,) whilst the
counter-clockwise loops are weighted with exp(—isrey). The loop fugacities are related
to the newly introduced parameters ey, and e, by

ny=2cos{mey),

ng =2cos(mey), (4.1)

since the partition function of the original (non-oriented) model, as given by Eq. (3.1),
must be recovered by independently summing over the two possible orientations for
each loop. Note that for 0 < ny,ng < 2 the parameters e, and ey are real, whilst for
Ny, 1y > 2 they are purely imaginary. As discussed in more detail in Section 8 this is
the crucial property that leads to a critical state of the loop model in the former and a
non-critical one in the latter case.
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Fig. 4. Mapping of the FPL? model to an interface model. (a) — (b): Transform the loop configuration
into an eriented loop configuration by choosing the orientation of each loop independently and randomly. (b)
— (¢): Every bond in the oriented loop configuration is in one of four states, depending on its flavour and
direction; these four states are represented by three-vectors A, B, C, and D. (¢) — (d): The microscopic
height z of the interface model changes from plaquette to neighbouring plaquette by A, B, C, or D depending
on the state of the bond between the two plaquettes. The change in z is positive going clockwise around even
vertices and counterclockwise around odd ones.

Now that the loops are oriented we can interpret them as contours of a height field;
the orientation is necessary as it determines the direction of increasing height. The
systematic construction of the microscopic heights sets out from the observation that
every bond of the square lattice is in one of four possible states: it can be coloured
black or grey, and oriented from an even to an odd site, or from odd to even. “Even”
and “odd” refer here to the two sublattices of the bipartite square lattice; every even site
is surrounded by four nearest neighbouring odd sites, and vice versa.

The four possible bond-states are represented by four vectors — which are the colours
in the four-colouring representation - A, B, C and D; see Fig. 4c. The microscopic
heights {z} are defined on the dual lattice and the change in height when going from
one plaquette centre to the next is given by A.B, C or D, depending on the state of
the bond which is crossed; see Fig. 4d. For the height to be uniquely defined the four
vectors must satisfy the constraint A + B + C + D = 0. This means that the microscopic
heights live in a three-dimensional vector space, which we take to be Z3. In other words,
the oriented FPL? model maps to a model of a two-dimensional interface in five spatial
dimensions.

By reasons of symmetry the four vectors are chosen so as to point from the centre
to the vertices of a regular tetrahedron. With a suitable choice of coordinates they are
represented by three-vectors:
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A=(-1,+1,+1),
B=(+1,+1,-1),
C=(-1,—-1,-1),
D=(+1,—-1,41). (4.2)

This is the same normalisation as the one used in Ref. [28].

Mapping the loop model to on oriented loop model also allows for a local redistri-
bution of the loop weights. This is important since it leads to a local field theory for
the heights. As we shall find out shortly, though local, this field theory is somewhat
unconventional due to the non-local, exiended nature of the fundamental microscopic
objects it purports to describe.

To redistribute the phase factors associated with oriented loops we assign a phase
exp( —imep/4) to a vertex of the square lattice if a black loop makes a left turn at
that vertex, the opposite phase exp(+imey/4) if it makes a right turn, and the weight
I if it continues straight. The total vertex weight A(x) is a product of the phase factor
originating from the black loop and an equivalent one from the grey loop passing through
the same vertex x. The partition function of the FPL? model, Eq. (3.1), can now be
rewritten as a sum over oriented loop configurations (i.e. colouring configurations)

z=>"1]rx. (4.3)
o7

X

Once the height at a single point is fixed G is in a one-to-one correspondence with the
configurations of the microscopic heights, and the summand in the above equation is
the appropriate weight. In the critical phase of the FPL? model the interface described
by Eq. (4.3) is rough, and the field theory is constructed so as to correctly reproduce
its long-wavelength fluctuations.

4.1. Spectrum of electromagnetic charges

The mapping from oriented loop configurations, which are equivalent to edge colour-
ings, to microscopic height configurations is one to many. In particular, two height
configurations corresponding to the same edge colouring can have their heights shifted
with respect to each other by a global shift m € R. The set R forms a three-dimensional
Bravais lattice, i.e. it is closed under integral linear combinations, and its elements are
the magnetic charges in the Coulomb gas representation of the FPL? model. The lattice
reciprocal to the lattice of magnetic charges, R*, defines the electric charges e € R*,
with the property e -m =27m,m € Z.

The construction of the lattice R for the FPL? model follows the usual prescription
for height models, and has been carried out in detail in Ref. [28]. For the sake of
completeness we outline this construction below.

It is convenient to first identify the flat states (also referred to as the ideal states), i.e.
those colouring states which minimise the variance of the nlicroscopic height z. From the
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Fig. 5. The ideal state graph of the FPL? model in the four-colouring representation.

height mapping described above it follows that these states have all of their plaquettes
coloured with two colours only; an example is shown in Fig. 4c. This leads to a colouring
state that is periodic, with the same 2 x 2 colouring pattern repeated throughout the
lattice. There are twenty four flat/ideal states for the colouring representation of the
FPL? model, corresponding to the number of permutations of four different colours.
Namely, an ideal state is completely specified by listing the colours of the bonds around
a single site (say the origin), starting from the left horizontal bond and proceeding
clockwise. To each flat state we assign a coarse grained height h = (z), which is the
average microscopic height over a 2 x 2 unit cell of the colouring.

The flat states form a three-dimensional graph, which we refer to as the ideal state
graph, Z. Namely, starting from any ideal state four other ideal states can be reached
by exchanging a pair of colours that form a plaquette. For example, by exchanging the
colours A and B in Fig. 4c all the ABAB plaquettes arc turned into BABA plaquettes
to give a new ideal state. Under these plaquette flips only the microscopic heights at
the centres of the affected plaquettes are changed. In this way the ideal states form a
four-fold coordinated graph in height space, where each vertex is indexed by a colour
permutation, and its position in R? is given by the coarse grained height h. Bonds are
associated with transpositions of two colours; they lie along the direction defined by the
difference of the two colour vectors, and have a length of 1/v/2 if the normalisation in
Eq. (4.2) is chosen.

The ideal state graph is a tiling of R with truncated octahedra; this regular polyhedron
is better known as the Wigner-Seitz cell of a body-centred cubic (bee) lattice (see
Fig. 5). A single truncated octahedron in Z has twenty four vertices corresponding to
the twenty four different ideal states. The set of vertices in Z representing the same ideal
state form the repeat lattice R, which is face-centred cubic (fcc) with a conventional
cubic cell of side 4.

To obtain the continuum description of the FPL? model we coarse grain the micro-
scopic height over domains of ideal states. This gives rise to the coarse grained height
h which we can consider to be compactified on R?/R. The phase space of the height is
not simply connected, thus allowing for topological defects (vortices) with topological
charges that take their values in R [34]. These defects are associated with magnetic
charges in the Coulomb gas representation of the FPL? model. Electric charges on the
other hand are associated with vertex operators exp(ie-h). If we take the height to live
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in R*/R then vertex operators are well defined only for values of the electric charge
e € R*. R* is the lattice reciprocal to the lattice of magnetic charges R, and it is a
body-centred cubic (bce) lattice with a conventional cubic cell of side 7.

5. Construction of the field theory

An effective field theory of the FPL? model should describe large scale properties of
loops. The kind of questions we expect it to answer are ones that do not refer to the
microscopic details of the lattice model. For example, from the effective field theory we
shall calculate the asymptotics of the probability that two points lie on the same loop,
when the separation between the points is large compared to the lattice spacing. From
this and related quantities the conformational exponents of compact polymers can be
extracted.

The field theory of the FPL? model is defined by the Euclidean action for the coarse
grained height h. Consider a typical configuration of the oriented FPL2 model which
is equivalent to the colouring model. It consists of domains of ideal states. To each
ideal state domain we assign a coarse grained height, defined earlier as the average
microscopic height over the domain. In the continuum limit we assume that this height
is a smoothly varying function of the basal plane coordinates (x',x). The partition
function that takes into account only the large scale fluctuations of the height can be
written as a functional integral,

Z>=/Dhexp(—S[h]), (5.1)

where § is the Euclidean action of a Liouville field theory with imaginary couplings [7].
The Liouville action contains three terms,

S:SE+SB+SL. (52)

Each one has a concrete geometrical interpretation in the FPL? model, which we describe
next.

5.1. Elastic term

The first term in the effective action for the FPL? model describes the elastic fluc-
tuations of the interface. It gives less weight to configurations that deviate from the
flat states, by penalising finite gradients of the height. This term is entropic in origin.
Namely, in order to change the colour of a particular bond in the four-colouring repre-
sentation of the loop model, say C — B, all the C’s and B’s have to be interchanged
along the CB loop which contains the chosen bond. This transformation we call a loop
Mip; see Fig. 6. The ideal states maximise the number of loops of alternating colour and
consequently they have the largest entropy of loop flips.
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Fig. 6. A loop flip changes one oriented loop configuration into another. Here the bond states C and B are
exchanged along a single BC plaquette (cf. Fig. 4¢).

In its most general form the elastic term in the effective action can be written as a
gradient expansion,

1 ij @
Sk = E/d%; K/ 30iha;h", (5.3)

where higher powers of the height gradients and higher derivatives of the height are
less relevant at large scales. The stiffness tensor K:;’ﬁ nominally has 36 components; the
indices ¢, j = 1,2 are for the basal plane coordinates, whilst , 8 =1, 2, 3 label the three
components of the height. Summation over repeated indices is assumed throughout.

The number of independent non-zero components of the stiffness tensor (i.e. elastic
constants) is actually only three, once all the symmetries of the FPL? model are taken
into account. The relevant symmetry transformations, that is the ones that become the
symmetries of the effective action, are the ones that leave the weights of oriented
loop configurations unchanged. First, there are the lattice symmetries, translations and
rotations, which cut the number of independent elastic constants down to six. The terms
that are allowed in Sg are scalars under rotations in the basal plane {(x', x*)}, and they
are necessarily of the form @h® - @hP, where 9 = (4, ) is the usual gradient. Second,
the FPL? model possesses colour symmetries,

A< B:e, — —ey, and 7 « 23 (5.4)
and
CoD:ey s —ey and z; ¢ —23, (5.5)

which interchange the colours and at the same time transform the microscopic heights.
Taking into account the colour symmetries the elastic contribution to the action takes on
the form

1
Se =3 /d2x {Kn[(8h")? + (817)*] + 2K13(8h' - 9R°) + Kan(9HY)?}.
(5.6)
Furthermore, by introducing a change of coordinates in height space,

H'=1n' —nY,  H=12  HE=1'+r) (5.7)
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Sk becomes diagonal,

Sg = % /dzxg,,((')H"‘)z. (5.8)

The three coupling constants g, (& = 1,2,3) are linearly related to the three elastic
constants,

& =2(Kn — Ki3), g2 = Kn, g3 =2(K +Ki2). (5.9)

The appearance of three elastic constants is rather intriguing from the viewpoint of
loop models that have been solved previously. The Q-state Potts, the O(n), and the
honeycomb FPL models are all characterised by a single coupling constant, which has
been determined case by case from their exact solutions. Below we shall show that all
three couplings in Eq. (5.8) can be calculated exactly from the loop ansatz introduced
in Ref. [7].° The ansatz states that the operator which enforces the complex weights
assigned to oriented loops is marginal in the renormalisation group sense. This property
of the field theory is intimately related to the random geometry of loops; we elaborate
on this important point in Section 5.3.2,

5.2. Boundary term

The mapping of the loop model to an oriented loop model with local complex weights
A(x) (Eq. (4.3)) fails for loops that experience the boundary. For example, if we define
the FPL? model on a ¢ylinder, loops that wind around the cylinder will not be weighted
properly. The winding loop has an equal number of left and right turns and hence it will
be assigned a weight one. Summing over the two orientations gives a weight two, and
not the correct ap or ng, depending on the flavour. To correctly weight these loops one
introduces a boundary term into the effective action,

Sp = —l—/dzx (eg-h)R: (5.10)
dar

R is the scalar curvature and e is the background electric charge, which is to be
determined. Since we are only concerned with the situation where the lattice on which
the FPL? model is defined is flat, the scalar curvature vanishes everywhere except at the
boundary.

To determine ey we consider the FPL? model on the cylinder. The scalar curvature of
the cylinder is proportional to the difference of two delta functions situated at the two
far ends of the cylinder: R = 477 [6(+00) — 8(—00)]. Therefore Sy has the effect
of placing vertex operators exp(ziep - h) at x> = +o00; here x? is the coordinate
along the length of the cylinder. These vertex operators assign an additional weight
exp(iep - (h(+00) —h(—oc)) to oriented loop configurations on the cylinder. Now, in

SThe coupling constant g for all the loop models known to date can be calculated using this method,
therefore dispensing with the need for an exact solution.
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order for h(+00) —h(—00) to be non-zero there must be at least a single winding loop
present. If this winding loop is black, then the height difference is A or B depending on
its orientation; similarly if the loop is grey the height difference is C or D. Furthermore,
if the background charge is chosen so as to satisfy

ey - A=1ey, e B=—meyp,

e - C=1e,, e D= —me,, (5.11)

then the winding loops will be assigned their proper weights. This is again seen by
summing over the two possible orientations of the winding loop. In the normalisation
chosen for the colour vectors, Eq. (4.2), the unique solution of the system of linear
equations in Eq. (5.11) is

m
eO:AE(eg%—eb,O,eg—eb). (5.12)

This calculation of the vector background charge generalises the scalar case studied
previously [6].

5.3. Liouville potential

The elastic term and the boundary term make up the usual Coulomb gas approach to
two-dimensional critical phenomena. Recently we have argued that this description is
incomplete and that an extra term S must be added to the effective action. To see this
consider a large loop in the bulk, one that does not experience the boundary. Without the
extra term this loop would be weighted exclusively by the bulk term Sg. There are two
problems with this: Sg is real whilst an oriented loop should be weighted by a complex
phase, and, Sg does not distinguish between the two orientations of a loop which are
assigned different weights. We conclude that an extra bulk term is necessary!

The most general form of a bulk term is

SL :/a'zxw[h(x)], (5.13)

where exp(—w[h(x)]) is the scaling limit of A(x) in Eq. (4.3). In this sense S is
energetic in origin, as opposed to Sg, which we argued in Section 5.1 accounts for the
entropy of edge colourings.

Microscopically, the vertex weight A can be written in terms of the colours of the
bonds around the particular vertex as A = exp(—w) where

w(B,C,A,D)=0,
w(B,D,A,C) =0,
w(A,B,C,D) = :Fig(eg +ep),

w(B,A,C,D) :;lg-wg —ep),
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K
W(A9 B’ D9 C) = :Fl_4—(eb - eg),
m
w(B,A.D,C) = Fi (~ey — ey); (5.14)

the top sign is for even vertices whilst the bottom sign applies to odd vertices of the
square lattice. Here we adopt the notation (o7, 03,03, 04) for the ordering of the
colours around a vertex by listing the colours clockwise from the leftmost bond. The
operator w is completely specified by the values it takes on the six edge colourings
listed above since it does not change under cyclic permutations of its arguments.

By explicitly going through the six colour configurations listed above it is easily
checked that

w(x) = % e - Q(x), (5.15)
where the cross-staggered operator [28] is defined by
Q(x) = £[o(x) — o3(x) ] X [02(x) — o4(x) ]. (5.16)

Since Q(x) is manifestly invariant under 90° rotations of the colours around x, (5.15)
is seen to hold true for any distribution of the colours around a given vertex.

In order to find the coarse grained version of w(x) we express it as a function of the
height field h(x). First note that the microscopic operator w(x) is uniform in each of
the 1deal states of the four colouring model. As such it defines a function on the ideal
state graph w(h}, where h € 7 is the coarse grained height. Furthermore, it is a periodic
function of h and it can therefore be written as a Fourier sum:

w(h) = > vecxp(ie-h). (5.17)

ecRy

The electric charges appearing in the sum take their values in the sub-lattice RY, © R*,
which is the lattice reciprocal to the lattice of periods of w(h). In the continuum limit
the coarse-grained height h is promoted into the height field h(x), and the scaling limit
of the operator w is obtained by replacing h by h(x) in Eq. (5.17). Therefore, w[h(x) ]
is a sum of vertex operators,

wlh(x)] = 3 Weexp(ie-h(x)), (5.18)

eCRyY

of which only the most relevant one(s) are kept in the effective action. Since the
relevance of an operator is determined by its scaling dimension we turn to this calculation
next.

5.3.1. Dimensions of charge operators

In the Coulomb gas formalism operators are associated with either electric or magnetic
charges. Electric operators are vertex operators exp(ie - h) and they appear as the
scaling limits of microscopic operators in the FPL? model that can be expressed as local
functions of the colours; the loop-weight operator is one example.
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Magnetic operators on the other hand cannot be expressed as local functions of
the height but can be thought of as a constraint on the height field that generates a
topological defect of strength m. If x is the position of the defect core then the net
height increase around any loop that encloses x is m (assuming no other defects are
encircled). Geometrical exponents for loops in the FPL? mode] are given by dimensions
of electric and magnetic operators in the associated Coulomb gas.

For an operator that has total electromagnetic charge (e,m), where e = (e, e2,€3)

and m = (m',m?, m*), the scaling dimension is the sum of the electric and magnetic
6

dimensions,

2X(e,m):§17—7_ %EH(EH—2an)+gu(M")2 : (5.19)
where

Ey =ey — e3, Ey) = e, Ez=e; 4+ e3 (5.20)
and

M'=1(m' —my, M? =nm?, M =L1m' +m) (5.21)

are the electric and magnetic charge vectors in the basis in which the elastic term in
the action is diagonal. Since the magnetic charges are given by height differences they
must transform according to Eq. (5.7), whilst the electric charges transform in a dual
fashion (cf. their appearance in the vertex operators).

5.3.2. Loop ansatz

With the dimension formula in hand, we can settle the issue of the most relevant
operators appearing in the Fourier expansion of w(h); see Eq. (5.18). There are twelve
vertex operators to choose from corresponding to the twelve (110)-type vectors in the
bee lattice R*; these are the shortest vectors in the lattice R, To find which of these
electric charges minimise x(e,0) (Eq. (5.19)) it is convenient to first consider the
simpler case of the FPL? model for ny = n,.

For the FPL? model with equal fugacities for the black and grey loops the effective
action is considerably simplified. Namely, in this case the cyclic permutation of the
colours,

(AaBa CaD) A (B’ C$D7A) : (211223 23) A (_ZI,ZB», _‘22) (522)

does not change the vertex weight A, and is thus an additional symmetry of the action S.
This symmetry implies that K3 = 0 and K3 = K in Eq. (5.6). Consequently there is
only one elastic constant, K = K,|. This then simplifies the formula for the dimension
of an electromagnetic charge,

1 K
2x(e, = ——e-(e— —m?, .
x(e,m) 27rKe (e — 2eg) + 27Tm (5.23)

& The derivation of Eq. (5.19) is an exercise in Gaussian integration and is reviewed in Appendix A.
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where from Eq. (5.12) it follows that the background charge in this case has only one
non-zero component, ey = —m(ey, ¢,0). Now it is a simple matter to check that of the
twelve (110)-type vectors in the lattice of electric charges R*, the four charges

e =(—7,0,+7),
e = (—m,0,-m),
eV = (—7, +,0),
eV =(—7, —7,0) (5.24)

are degenerate in dimension and they minimise 2x(e, 0). These are therefore the electric
charges of the vertex operators that are kept in the action.

Now we turn to the loop ansaiz which states that the operator w(h) is exactly marginal
in the renormalisation group sense. This is the statement that the loop weight does not
renormalise at large scales. The geometrical meaning of this becomes obvious when
one realises that the number of loops inside a domain of size p, whose linear size is
comparable to p, is thermodynamically conjugate to the loop weight at scale p. Thus
the loop ansatz states that the number of large loops does not grow with scale (more
precisely it is sufficient to assume that it does not grow faster than any power of the
scale). The analogous statement can be proven rigorously for critical percolation where
it is the source of hyperscaling [35].

The assumption that there is of order one loop at every scale is linked to the variance of
the height difference between two points in the basal plane, separated by a macroscopic
distance |x|. Namely, if we assume that when going from one point to the other there
is of order one contour loop that is crossed at every scale, and further assuming that
the directions of these contours are independent from scale to scale, it follows from the
law of large numbers that the variance of the height difference grows as the number
of contours crossed, that is as log(|x|). This, of course, is nothing but the large |x]
behaviour of ((H*(x) — H*(0))?) calculated in the Gaussian model of Eq. (5.8).

The loop ansatz, or in other words the marginality hypothesis for the loop weight
operator, simply translates into a statement about its scaling dimension:

x(e, 0 =2 i=1,23.4 (5.25)

This, using the dimension formula Eq. (5.23), leads to a formula for the single elastic
constant K.
In the general case ny, # ng, the scaling dimensions of the four electric charges
identified above are
I — ()

x(e('),()):n' ,
&

| —e
X(B(Z),O):’n’ 8’
&3

a1 —2e 1 -2
(e, 0) = x(e®, 0= (——3 + — + _,,_2) ; (5.26)
4 J £2 23
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the last two remain degenerate in dimension. The dimensions of the first two charges
are also equal due to the “duality” transformation of the FPL?> model which exchanges
the two flavours, n, < n,. This transforms the microscopic heights z; — —z, and z3 —
—z3 (and similarly for the appropriate components of the height field). Furthermore, the
elastic constants K| and Kz in Eq. (5.6) are unchanged, whilst K|35 — —Kj4. Finally,
from Eq. (5.9) it follows that the duality transformation exchanges the couplings g; «»
g3 thus rendering e/ and €' degenerate in dimension, as the FPL? model is self-dual.

Unlike the case of ny = ny, the loop ansatz in the general case requires that at least
mwo of the electric charges e (i=1,2,3,4) remain marginal, thus enforcing the non-
renormalisability of the two fugacities ny and ng. If we now further assume that these
charges are unrelated by the “duality” transformation described above, it follows that in
fact all four are marginal. The three couplings are then simply calculated by setting the
right-hand sides of Eq. (5.26) equal to 2. We find

-
8 =—2‘(1 —ep),

a
g3=§(1 —€g),
1 1 1
LIPS (5.27)
£ £ 83

One final comment is in order. The relation 1/g, = 1/g,+1/g3 comes as somewhat of
a surprise, as it was not anticipated on symmetry grounds. Of course, since a particular
point in the critical region of the FPL? model is determined by two parameters, ny,
and ng, one relation between the three couplings is to be expected. It is therefore an
interesting open question whether a critical loop model can be constructed in which g,
would be unconstrained.’

With the values of the couplings g;, g2, and g3 in hand, as well as the formula for the
scaling dimensions of charged operators, Eq. (5.19), we are fully equipped to calculate
critical exponents of the FPL? model. In particular, in the next section we calculate the
formulae for the central charge and the geometrical exponents associated with loops as
a function of the loop fugacities, ny, and ny, for the whole critical region of the model.

6. Central charge

We now turn to the calculation of the central charge in the critical region, 0 < ay, ng <
2. Exactly at the point (ny, ng) = (2,2) the background charge vanishes, ey = 0, and the
action consists only of the elastic term Sg given by Eq. (5.8). Since this is then simply
a theory of three free massless bosonic fields we conclude that, in this case, ¢ = 3 [28].

For a general value of the background charge this generalises to [36]

c=3412x(eg,0). (6.1)

7 This possibility was suggested to us by D. Huse.
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One way to rationalise the factor of 12 is to compare the coefficients of the finite-size
corrections in the well-known formulae [37,38]

fo(OO)—fo(L)=6WTL;_+..., (6.2)
Fi(L) —fo(L)=3—L”2—“" - (6.3)

where fo;(L) is the free energy density on a cylinder of circumference L, the subscript
0 referring to the vacuum and i to the case when an operator of scaling dimension x;
is inserted. The physical meaning of Eq. (6.1) is that the presence of the background
charge — +e9 and —ep at the two ends of the cylinder - lowers the free energy and with
it the central charge.

Now using the dimension formula, Eq. (5.19), and inserting the values of the cou-
plings g, from Eq. (5.27), we arrive at

2 P
6:3—6( I ) (6.4)

1 — ey I —e,

where we recall that n, = 2cos(rep) and similarly for ny. In Table 1 the numerically
calculated values of the central charge are compared to the above formula, and excellent
agreement is found.

7. Geometrical scaling dimensions
7.1. Two-string dimension

In addition to the central charge, the Coulomb gas representation of the loop model
provided by the Liouville field theory, Eq. (5.2), allows for the evaluation of various
geometrical scaling dimensions. As an example of such a quantity, consider the proba-
bility G>(r) that two points separated by a distance r lie on the same, say, black loop.
In the critical phase we expect this probability to decay as G»(7) ~ r~2*2, which defines
the scaling dimension xa. Since a black loop is represented as a sequence of alternating
A- and B-coloured edges it follows from the colouring constraint that the microscopic
heights z just outside this loop differ by integer multiples of C and D only. In other
words, a black loop is a contour loop for the component of the height along the direction
perpendicular to both C and D, i.e. the (1,0, - 1) direction in height space. Similarly
the grey loops are contour loops for the height component along the (1,0, 1) direction.

It has been argued that the scaling dimension governing the probability that two points
belong to the same contour loop of a random Gaussian surface equals 1/2, independent
of the stiffness [39]. Thus, for (np,ng) = (2,2) when ey = 0 and the effective field
theory is Gaussian, we expect x; = 1/2. For other values of the fugacities the Gaussian
theory is modified by the background charge and the same argument cannot be made.



656 J.L. Jacobsen, J. Kondev/Nuclear Physics B 532 [FS] (1998) 635-688
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Fig. 7. Defect configurations used to calculate geometrical exponents x; (a) and x5 (b) in the FPL? model.
In (a) there 1s a single oriented black loop segment and a single oriented grey loop segment propagating from
0 to r, whilst in (b) there are two oriented black loop segments between 0 and r.

A more illuminating way of making contact with the interface representation is to
view Ga(r) as a two-string correlation function associated with defect configurations
where two black strings emanating from the origin annihilate one another at a distant
point r; see Fig. 7b. This can be accomplished by rewriting G,(r) as Z(r)/Z, where Z
is the partition function defined by Eq. (4.3), and Z(r) is similarly defined but with the
summation restricted to those configurations G'c where an oriented black loop passes
through the points 0 and r. Now consider reversing the direction of one half of the
loop, so that instead of having one oriented loop passing through 0 and r we have two
oriented loop segments directed from 0 to r [6]. This corresponds to the introduction
of defect configurations at these two points, where we have violated the edge-colouring
constraint. At 0 we find a (C,D,A,A) configuration of colours which in the height
language corresponds to a vortex of strength

m=A-B=(-2,0,2). (7.1)

The strength of the vortex (its Burgers charge) at 0 is calculated as the total height
change around 0. Similarly, at r we have the corresponding antivortex (B, B, C,D) of
strength —m; as illustrated in Fig. 7b.

In order to calculate x, for general values of the loop fugacities we have to take
into account the effect of the complex phase factors associated with oriented loops.
Namely, when one or more, say, black sirings are associated with a vortex—antivortex
configuration, spurious phase factors exp(zime,) will arise whenever a black loop
segment winds around one of the vortex cores [6]; for example, in Fig. 7b one of
the two black strings winds once around point r. The spurious winding phase can be
removed by inserting the vertex operator exp(ie, - h) at the positions of both vortex
cores. Since a black loop has alternating A and B colours the electric charge e, must
satisfy
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e, A = mep, € B = ey, (7.2)
eb-C:O, eb-DZO.

Similarly, if there are grey strings propagating between two vertices the spurious phase
factors associated with winding configurations are corrected with vertex operators whose
electric charge e, is determined by

e, A =0, e,-B =0,

7.3
e, C = mey, e D= —7ey. (7.3)
Using Eq. (4.2) for the colour-vectors we find
T i
eb:“E(Eb’Os _eb)’ eg:_"z“(eg’o’eg)‘ (74)

Going back to the two-string operator we conclude that it has total electromagnetic

charge (ep, my).
Finally, from the general expression for the scaling dimension of an electromagnetic

operator, Eq. (5.19), it follows that

2x = 2x(ep,mz) = (1 —ep) — (7.5)

| €1
In Table 5 exact values of x; calculated from this formula are compared to numerical
results, and excellent agreement is found.

Interestingly the expression for x; is independent of eg, i.e. it is not affected by the
fugacity of grey loops. This observation conforms to our understanding of the scaling
of compact polymers. The compact polymer problem is recovered in the limit n, — 0
in which case there is a single black loop on the lattice. Since the loop fills space its
Hausdorff dimension is necessarily D = 2. Scaling tells us that [40]

D=2—x,, (7.6)

from which the result x; = O follows, independent of the fugacity of the grey loops.
The fact that our formula reproduces this simple result in the n, = 0 (ep, = 1/2) case
provides a non-trivial check on its validity.

7.2. One-string dimension

The scaling dimension x;, corresponding to one black and one grey string propagating
between two points on the lattice, can be computed in a way that is completely analogous
to the case of two black strings discussed above. (Note that the fully packing constraint
ensures that if there is a single black string between two points then these points are also
connected by a grey string; see Fig. 7a.) Choosing one point on the even sublattice and
the other on the odd leads to the appearance of the defect configuration (A, C, C,D)
on both sites of the square lattice. These in turn correspond to vortices in the height
representation with topological charges +m,;, where

m=C-B=(-2,-2,0). (7.7)
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Since strings of both flavours are now present the compensating electric charge is
e, + €5 = €p. Hence

(1—ep)(1—e,)
(1 —ep) +(1—¢y)

’ 2
—[ % 4 ‘e ] (7.8)

lveb 1*€g

1
2x) =2x(eo,m1)=z [(1—ep) + (1 —ep)] +

There are of course several different ways of choosing the defect configurations (in
this case, eight), but it should hardly come as a surprise that they all lead to the same
expression for the scaling dimension.

Unlike x3, x; depends on both loop fugacities. Going back to our original motivation,
the compact polymer problem (n, = 0 = e, = 1/2), x| determines the value of the
conformational exponent v = | — x;, which describes the scaling of the number of
compact polymers with the number of monomers. We see that depending on e, there
will be a continuum of y’s. How do we interpret this?

First note that the problem of counting the number of conformations of a single
compact polymer is the case n, = 1 (e, = 1/3) which simply assigns equal weights
to all conformations. Using Eq. (7.8) this choice leads to x; = —5/112 and to the
result y = 117/112 advertised in the abstract. Changing n, (ey) away from n, = 1, on
the other hand, has the effect of favouring certain compact polymer conformations over
others depending on the number of loops formed by the uncovered (grey) bonds. In
this sense the weight assigned to grey loops can be thought of as an interaction between
the monomers of the compact polymer, albeit a peculiar non-local one. Nonetheless, it
is interesting that this interaction changes the scaling properties of the compact polymer
leading to a continuously varying exponent ¥ {(more on this in Section 11).

7.3. Many-string dimensions

The dimensions x; and x; given above are contained in a more general set of string
dimensions x, , governing the probability of having s, black loop segments and s,
grey loop segments propagating between two points on the lattice [ 18]. More precisely,
we consider two microscopic regions centred around points separated by a macroscopic
distance, one region being the source and the other the sink of the oriented loop segments.
Since the defect configurations obtained by violations of the edge colouring constraint
must necessarily give rise to an even number of strings we will only consider the case
when s, + 55 IS even.

Consider first the case s, = 2k, and s, = 2k,. The appropriate magnetic charge is
obtained by combining k, vortices with charge A —~ B = (-2,0,2), and kg vortices
with charge C — D = (-2,0, —-2). The defect with charge A — B acts as a source of
two black segments, whilst C — D is associated with two grey loop segments. We also
need to introduce the electric charge ey, + e, to compensate for the extra winding phase
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associated with the black and grey loop segments. The total electromagnetic charge is
therefore

{€24,,26, - Mok, 2k, ] = [€6(1 — B4 0) + €g(1 — 8 0), —2(kp + kg, 0, ky — kyy) 1,

(7.9)
and from the dimension formula, Eq. (5.19), we find
2 2 e eg
2xok,0k, = (1 —ep) ki + (1 — eg)k, — 7 —eb(] — Oky0) — 1 —eg(] = Ok.0).
(7.10)
This formula generalises Eq. (7.5).
Similarly, for s, = 2k, — 1 and s, = 2k, — 1 the electromagnetic charge is
[€2k,— 1,26, — 1, Moy —1 26, —1 1 = [€0, =2(ky + kg — 1, 1, kg — kp) | (7.11)

the magnetic charge is obtained by combining k, — 1 defects of charge A — B, kg — 1
defects of charge C — D, and a single defect of charge C — B which produces the
remaining single black and grey strings originating from the same vertex. The scaling
dimension is found to be

1 2 2
2X 2k, 1,2k —1 = ) [(1—ep) (2ky — 1) + (1 — eg) (2kg — 1)?]

(1—ep)(1—eg) e e§
(l_eb)+(1—€g) [l“€b+1—eg . (7.12)

This generalises the expression given in Ref. [7] and correctly reduces to Eq. (7.8) for
kp kg = 1.

7.4. Thermal dimension

We now turn our attention to the thermal scaling dimension. The FPL2 model can be
thought of as the zero-temperature limit of a more general model where we allow for
thermal excitations that violate the close packing constraint. In this sense the temperature
variable is thermodynamically conjugate to the constraint that every vertex be visited
by (say) a black loop. An appropriate defect configuration for computing x7 within the
FPL* model is therefore (C,D, C, D). This is a vortex of strength

my =2(C+D) = (0,-4,0), (7.13)
and since no strings terminating in the bulk are generated there is no compensating

electric charge. The scaling dimension is then

(I —ep)(1—¢y)
(1 —ep) + (1 —ey)
The exact values of x7 quoted in Table 2 are calculated using this formula. The numerical
results are in excellent agreement.

2xr =2x(0,my) =4 (7.14)
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7.5. Boundary-string dimensions

The simplest example of a string operator that cannot be accessed within the formalism
presented above is that of one black and no grey strings propagating between two vertices
of the square lattice. Since this configuration has an odd number of sirings connecting
two sites of the lattice these two sites necessarily reside on the boundary.

If we define the FPL? model on the cylinder, as will be the case when we construct its
transfer matrix in Section 9, a single black string can be enforced to run along the length
of the cylinder if its circumference is chosen odd. Taking our cue from the formulae
derived above for the bulk string operators we guess the formula

1 1 — ep eﬁ

2X = - - 7.15
1777 1 — ey (7.15)

from the numerical results shown in Table 3. X is the scaling dimension of the boundary

operator which corresponds to a single black (or grey) string.

The Coulomb gas interpretation of the second and third term in Eq. (7.15) is rather
apparent when one compares them with Eq. (7.5). The second term can be rationalised
as coming from a magnetic charge (—1,0, 1) which is half the charge m, in Eq. (7.1),
associated with two black strings; this is saying that we have a partial dislocation
generated at the boundary. The third term is due to the compensating electric charge ey,
for a single black string, same as in the two-string case.

The first, constant term does not have an immediate interpretation. A possible scenario
is that it is due to the boundary condition imposed on the height by virtue of having a
cylinder of odd circumference. Namely, a translation along the periodic coordinate by an
amount equal to the circumference (L) exchanges an even site for an odd site (and vice
versa) resulting in a transformation of the height: h(x', x%) = Ph(x' + L, x?). Since
P? = | this boundary condition can be thought of as the insertion of a twist operator into
the partition function. The twist operator has dimension 1/8 regardless of the stiffness
of the interface [41].

The above considerations permit us to calculate the scaling dimension for the general
case of an odd number of strings. For definiteness we consider the case of s, = 2k, — |
and s, = 2k;. The magnetic charge pertaining to this situation is found by combining
2kp — 1 defects of charge %(A — B) with k, defects of charge C — D, totalling

[€2k, 12k M2k —12k, ] = [€0 + €g(1 — i, 0), (1 — 2kp — 2ky, 0, 2ky — 2k — 1) ].
(7.16)

Taking into account the contribution from the twist operator, i.e. adding 1/4 to the result
obtained from Eq. (5.19), the scaling dimenston is then

1 1
2104, = 7+ 7 [(1 = €0) (2o = 1)7 = (1~ ) (2k)7]

L= )

el
eq €
_ b
1 — ey 1 —e,

(1 — S4,0) | . (7.17)
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7.6. Complete spectrum of string dimensions

Finally, the results of Egs. (7.10), (7.12) and (7.17) can be combined into a single
equation for the scaling dimension of a string operator that corresponds to s, black loop
segments and s, grey loop segments:

I

1 2 \
2y, = 55.531‘,-‘“,1 +7 (1= ep)sg+ (1 —ep)s?]
2 2
€y s 2) o2y (I—ep)(l—eg)
- 1 —3,0)+ 1 -6, +6.°16; ,
1 - Eb( .h,()) | — ()g( -g,O) Sp. 1 A\g,l (] - eb) + (] A eg)
(7.18)

)
where we have defined 8/ = 8i-j(mod 2.

8. Termination of critical behaviour

In the preceding sections we have developed an effective description of the critical
phase of the FPL? model in the form of a field theory. This theory has to break down
at large values of the loop fugacity since in this case a typical state of the model will
consist of small loops only, i.e. a power-law distribution of loop sizes will be absent.
That this indeed happens can be seen from the Liouville field theory itself as it carries
the seeds of its own demise.

The mapping of the loop model to an oriented loop model for ny,ng < 2 works
equally well for ny > 2 or ny > 2. From Eq. (4.1) it follows that in the latter case at
least one of the parameters, ey, or ey, will be pure imaginary. This affects the Liouville
potential which for n, > 2 or ny > 2 becomes a relevant perturbation to the (modified)
Gausstan action Sg + Sg.

To understand how this comes about we consider the simple case provided by the
1y = ny FPL? model, discussed in Section 5.3.2. Namely, as we increase the value of the
loop fugacity we expect small loops to be favoured and the stiffness K of the interface
to grow. In the critical phase this is offset by the decrease in the background charge in
a way that leaves the Liouville potential marginal. Now when the loop fugacity exceeds
2 the background charge eq = —w(ep, 0, 0) becomes pure imaginary and the dimension
of the Liouville potential

ml—ey
2 K

(8.1)

X, =

can no longer stay marginal; here x. = x(e'”,0), where the charges e!” are given
in Eq. (5.24), and their scaling dimensions are calculated from Eq. (5.23). In fact,
assuming that the stiffness K continues to increase with the loop fugacity for ny, == ng > 2,
X turns complex with a real part that is smaller than two, rendering the Liouville
potential relevant.
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If we make the usual assumption of no intervening fixed points, the relevant Liouville
potential will generate a finite correlation length and the loop model will no longer be
critical. The correlation length has the physical interpretation of the average size of a
loop in the system. This scenario has been confirmed for the fully packed loop model
on the honeycomb lattice, from the Bethe ansatz solution of this model [42].

A different view of the non-critical region of the FPL? model is provided by the
locking potential V(h). Namely, the discrete nature of the microscopic heights can be
taken into account in the field theory by a negative potential in height space that is
peaked around the flat, ideal states. As such, this potential is uniform on the ideal
state graph and can therefore be expanded in a Fourier series. Examination of the most
relevant vertex operators in this series [28] reveals that they are the same as the ones
for the loop-weight (Liouville) potential, w(h). Therefore, just like w(h), the locking
potential in the non-critical region of the phase diagram is a relevant perturbation. Thus,
it will lock the interface in one of the ideal, flat states. In this flat phase the height
fluctuations are bounded (as opposed (o being logarithmically divergent) which is just
another way of saying that large contour loops are exponentially suppressed. On the
other hand, in the critical region of the FPL? model the locking potential is marginal as
it would be for an interface model af the roughening transition [43]. This might indicate
that the whole critical region of the FPL? model can be understood as a manifold of
essential singularities in some more general model, as was the case for the honeycomb
FPL model [21,44].

As stated in Sections 6 and 7, our results for the central charge and a number of the
geometrical scaling dimensions have been very accurately confirmed by transfer matrix
calculations. Before turning to a discussion of our numerical results we describe the
particular representation of the transfer matrix used to obtain them.

9. Construction of the transfer matrix

To construct the transfer matrix for the FPL? model on a cylinder of circumference
L we write the partition function as

Ny M
Z M) _ ng«h”gk, (9.1
Gu

where the length of the cylinder M has been explicitly indicated. Periodic boundary
conditions are imposed in the horizontal direction, whereas the bottom and the top
row of the cylinder have open boundary conditions and hence terminate in L dangling
edges. We recall that the restriction of the summation to the set of fully packed graph
configurations Gy implies that locally the vertices are constrained to have one of the six
appearances shown in Fig. 3. In the first four possible vertices the loop segments do not
cross, whilst in the last two vertices the two flavours intersect. The global constraint that
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Fig. 8. A typical loop configuration for L = 6 and M = 12. The dashed lines along the left and the right
boundaries illustrate the periodic boundary conditions. Horizontally the vertices are numbered from 1 to L,
whilst vertically the rows arc labelled by the number of the vertex immediately below them. This particular
configuration is constrained to having precisely one string of each flavour spanning the length of the cylinder,
and hence it contributes to the geometrical exponent x. To the right we show the index representation of
the connectivity state pertaining to each row (see Appendix B for details). Any valid configuration can be
interpreted as a “jigsaw puzzle” assembled from the six “pieces” shown in Fig. 3. Note that when laying
down the first row of this puzzle it must be stipulated how the dangling edges of row 0, which are not part of
a string, are pairwise interconnected below that row. These implicit connections as well as their counterparts
in row M have been depicted by dashed loop segments.

all loops be closed in the limit of an infinite system means that loop segments cannot
terminate in the bulk but only at the dangling edges in the top and bottom rows.

A typical loop configuration for a cylinder with L = 6 and M = 12 is shown in
Fig. 8. The horizontal numbering pertains to the vertices, whilst in the vertical direction
it is more convenient to label each row by the number of the vertex immediately below
it. Accordingly the labels 0 and M refer to the bottom and the top row of dangling
edges respectively. We shall soon see that the inclusion in Gy of one or more strings
running between the dangling edges of row 0 and M helps us access the geometrical
exponents of the model. In particular, the configuration of Fig. 8 having one such string



664 J.L. Jacobsen, J. Kondev/Nuclear Physics B 532 [FS] (1998) 635-688

of each flavour furnishes a contribution to the scaling dimension x; which determines
the conformational exponent y = 1 — x).

9.1. Connectivity basis

The construction of a transfer matrix (TM) for Eq. (9.1) appears to be obstructed by
the non-locality of N; (i = b, g). The key to solving this problem is to write the TMs
in a basis of connectivity states comprising information about how the dangling ends
of row M are pairwise interconnected in the preceding rows and, if strings are present,
information about the positions of such strings. In addition the connectivity states must
keep track of the particular flavour of any loop or string segment terminating in row
M. Our construction generalises the work of Blote and Nightingale for the Q-state Potts
model [45,46] and that of Blote and Nienhuis for the O(n) model [47] to take the
extra flavour information into account, and our notation is consistent with that of these
authors.

It is essential to be able to represent a given connectivity state both in an index rep-
resentation giving direct access to the flavour and connectedness information just men-
tioned, and in a number representation assigning an integer in the range 1,2,.. ,C, ™"
to the state under consideration. The latter representation enables us to enumerate the
entries of the TM, whilst the former allows us to determine the number of loop closures
when going from one conneclivity state to another and hence the value of a particular
entry in the TM. Here C("‘ “t) is the number of distinct connectivity states for a cylin-
der of width L accommodating s; strings of flavour i = b, g. The construction of these
two representations, the mapping between them, and the evaluation of the C; i) for
(sb.5g) = (0,0), (1,0}, (1,1) and (2,0) is deferred to Appendix B.

Designating the connectivity states by Greek letters we can write the partition function
as a sum of restricted partition functions

z0 =3 7y =% Y (B b (G )mng (9:2)
B B Cx

where @(Gp) is the connectivity of the L dangling edges of row M, and 8(i, j) is the
Kronecker delta. Now consider appending another row to the cylinder, giving us a total
graph configuration Guy) = Gy U G'. Evidently the connectivity of the dangling edges
of row M + | is determined solely by that of the preceding row and by the appended
subgraph G’

A (Grui1) =4 (d(Gn).G'). (9.3)
Letting N/ denote the number of loop closures induced by G’ we arrive at the relation

ZMD =37 5 p(Gar) ) Mo
Gmii

=33 8(B. 4Gt 3" B(e(S(Gu), G )nomy

B Owm G'|Gu
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L - 0

L+2 2 L+2

(@) (b) (©)

Fig. 9. Adding the first vertex of the (M + 1)th row increases the number of dangling edges from L to L+ 2.
The labelling of the “active” edges (filled circles) before and after addition of the new vertex (shaded) is
as shown in the left part of the figure. The part of the lattice relevant for determining which of the vertices
of Fig. 3 fit onto a given connectivity of row M, has been depicted in the right part of the figure. This
information constitutes the vertex rules, and is explained in the text.

=2 TapZ", &4
B
where the transfer matrix is defined by

Tug= 3 8(c,p($(Gu), G )nling". (95)
G Gum

The notation G’|Gy means that the summation is constrained to those subgraphs G that
fit the dangling edges of Gy.

9.2. Single-vertex decomposition

A quintessential step in the practical implementation of the TM is its decomposition
into matrices each corresponding to the addition of a single vertex,

T=Ty Tr_y-...-Ty. (9.6)

Here the single-vertex matrix T;, which adds the vertex at horizontal position i of the
new row, has the advantage of being sparse, and we shall soon see that it has at most
three non-zero entries per column. This property leads to a dramatic reduction of the
time and storage requirements for the calculations.

As was the case in the O(n) model [47], a minor complication arises due to the
fact that the addition of the first vertex of a new row increases the number of dangling
edges from L to L 4 2. This is illustrated in the left part of Fig. 9. Upon addition
of further vertices the number of dangling edges is kept fixed at L + 2, until the Lth
vertex completes the row, and we are back at L dangling edges. Thus the dimensions
of the single-vertex matrices are C;., x C for Ty, Cp.2 x Cryo for Ty, ..., Ty _,, and
CL X CL+.2 for TL.
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Fig. 10. Addition of subsequent vertices keeps the number of dangling edges fixed at L + 2, In the left part
of the figure the system is shown before and after the addition of the second vertex (shaded). Vertex rules
are displayed to the right. Situation (a) allows for the possibility of a black loop closure,

In Fig. 9 we illustrate the action of T, on Z'™ in detail. To ensure that row M + 1,
when completed, will have the same labels on its dangling edges as was the case in the
preceding row, the solid dots illustrating the “active” dangling edges must be relabelled
as shown in the lower left part of the figure. Shown to the right are the three possible
choices of vertices fitting onto a black loop segment terminating at the dangling end |
of Z™)_ There are thus three non-zero entries in each column of T;. Since no loop
closures of either flavour can be induced (N = Né =0 in Eq. (9.5)) all these entries
are unity. Similar considerations hold truec when the loop segment to be fitted is grey,
and the vertex rules can be read off from the figure by interchanging the two flavours.

When acting with any one of the subsequent single-vertex TMs T,, ..., T;_, the
situation is as depicted in Fig. 10 for the case of T,. As the number of dangling edges
is kept fixed no relabelling is needed, apart from the translation of labels 2 and 3 up on
top of the newly added vertex. The vertex rules for the case where edge 2 of T, Z™
is black are shown in the right part of the figure; similar rules for the case where it is
grey can be obtained by permuting the two flavours.

In situation (a) only one vertex fits onto the two dangling edges. The column of T,
determined by the number representation of the connectivity pertaining to the L + 2
dangling ends that are active in the upper part of the figure thus has only one non-zero
entry. Its value is either ny, or 1 depending on whether a black loop closure is induced
(&3 = i3) or not ({§ # ). In the index representation of the new connectivity state
= i§ is set equal 1o a positive integer not assumed by any other if. The new values
of the black indices depend on whether a loop closure is induced or not. In the former
case we simply set i = /% = 0. In the latter, the two left-over black partners must be
mutually connected before assigning i = % = 0.

Situations (b) and (c) correspond to two entries of each column of T, taking the
value unity, the others being zero. Since loop closures are out of the question the
handling of these cases is simple. In (b) the two flavours cross, and the indices of sites
2 and 3 are interchanged. Casc (c) is even simpler: it corresponds to a diagonal entry
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in T>.

When strings are present a few modifications of the above rules are necessary. In
situation (a), if one of & and i} equals — 1 and the other is positive, the left-over partner
to the non-string black segment must be made the new string. And if both & and #
equal —1 the corresponding entry of T, must be forced to zero, since two strings cannot
be allowed to annihilate.

Finally, consider closing the (M + 1)th row through the action of T, as depicted in
Fig. T1. The labels L + 1 and L + 2 now disappear, and as far as the labelling goes
the system is back in its original state. Each column of T; has at most one non-zero
entry per column, as witnessed by the vertex rules displayed in the right part of the
figure. Once again, only half of the vertex rules are shown, and the other half’ is found
by mterchanging the two flavours.

In situation (a) no vertex of Fig. 3 can fit onto the three dangling edges at positions
L, L+ 1 and L + 2. The corresponding entry of T; must therefore be forced to zero.
Situations (b), (¢) and (d) leave us to determine whether, for a given connectivity of
the L + 2 dangling edges, a black loop closure occurs or not. The handling in terms of
the index representation is exactly as described above,

10. Numerical results
10.4. Central charge

The reduced free energy per vertex in the limit M — oo of an infinitely long cylinder

is given by
. _ 1 1
A () = Jim F Tz = A, (o)
where A(()S““\'“ is the largest eigenvalue of T""*). The partition function for a cylinder

of length M is found by iterating the no-string TM
(M) _ (T(O‘O)>MZ(0). (10.2)

It is well known that conformal invariance relates the amplitude of the 1/L? cor-
rections to fég‘o)(oo) to the central charge ¢ [37]. A further (non-universal) 1/L*
correction due to the operator 77, where T denotes the stress tensor, must also be
present in any conformally invariant system [48]. It is therefore found in a number of
cases {45,49,50] that fits of the form

e A
7Ly = £ (00) = o5 4 1 (10.3)

yield very rapidly converging estimates for ¢. An efficient application of Eq. (10.3) is to
determine ¢ from parabolic least-squares fits of the finite-size data against 1/L% [49,50].
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Table 1
Estimants ¢( Ly, Lmax) for the central charge are obtained from parabolic least-squares fits against I/L2 using
the numerical data for Ly < L < Lmax. The extrapolation in Ly is described in the text

1h fg c(4,14) c(6, 14) (8, 14) (10, 14) Extrapolation Exact

0.0 0.0 —2.8943 —2.8861 —2.9220 —2.9514 —3.0037 -3.0000
0.5 0.0 —1.8528 —1.7641 —-1.7716 ~1.7873 —1.8152 —1.8197
0.5 0.5 —0.7295 —0.6249 —0.6159 —0.6220 —0.6328 —1).6395
1.0 0.0 -1.0012 —0.9542 —0.9636 -0.9761 —0.9983 —1.0000
1.0 0.5 0.1341 (0.1877 0.1924 0.1895 0.1843 13,1803
1.0 1.0 09918 0.9969 0.9986 (.9999 1.0004 1.0000
1.5 0.0 —-0.3765 —0.3669 —(1.3817 —0.3923 —04111 —4).4124
1.5 0.5 0.7652 0.7746 0.7729 0.7715 0.7690 0.7678
1.5 1.0 1.6215 1.5818 1.5778 1.5806 1.5856 t.5876
15 1.5 2.2541 2.1691 2.1581 2.1627 2.1709 21751
2.0 0.0 0.0706 0.0549 0.0342 0.0235 —-0.0019 0.0000
2.0 0.5 1.2209 1,1937 1.1868 1.1861 1.1849 1.1803
2.0 1.0 2.0792 2.0002 1.9899 1.9937 2.0005 2.0000
2.0 1.5 27139 2.5919 25737 2.5781 2.5859 2.5876
2.0 2.0 3.1629 3.0121 2.9885 29936 3.0027 3.0000

In Table 1 the results of such fits including the data points for Ly < L < Ly, are
shown as a function of L. Numerically we were able to access Ly = 14, in which
case the largest single-vertex TMs have dimension ~ 7 x 10® (see Table B.1). The
extrapolation of the estimants ¢{ Lg, Lmax) to the limit of infinite Lg is assumed to take
the form of a power law,

c( Loy Lmax) = ¢+ kLg ", (10.4)

at least within an asymptotic regime of large enough Lo. As is evident from Table 1 the
last three estimants usually exhibit monotonicity, thus allowing us to fix the constants ¢,
k and p. When this was not the case, or whenever the power p thus obtained was too
small to produce a reliable extrapolation, the Ising-like value p = 2 was used by default
to extrapolate the last two estimants. An error bar for this type of fit can be estimated
from the variation among the individual estimants. The extrapolants are invariably in
excellent agreement with our analytical results, the relative deviation being typically of
the order 10~

The results for ¢ are shown for all integer and half-integer values of n; ¢ [0,2].
Because of the symmetric appearance of the two flavours in Eq. (9.1) only n, > g
need be considered. For either np = 1 or ny = | the FPL? model reduces to the simpler
FPL model earlier considered by Batchelor et al. [14], and for ny, = iy We recover
another special case recently investigated by one of us [7].

10.2. Thermal scaling dimension

A further prediction of conformal invariance is that the finite-size scaling of the first
gap in the eigenvalue spectrum of T*® is related to the thermal scaling dimension [38]
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Table 2

The thermal scaling dimension xr. The extrapolation of the estimants x7(Ly, Lmax) is described in the text.
For comparison we also show the numerical data for the case of either ny or g being uvnity | 14]. Due to
level crossing the values of xy for (ny, 1) = (0,0) and (2,2) are found from the gap f;”*m(L) — f((,"‘m(L)

rather than from fim”([‘) _ f(‘)“'”)(L)

Iy iy x7(4,14)  xr(6,14) xr(8,14) xr(10,14) Exwapolation Ref. [14] Eixact

0.0 0.0 05712 (.5280 05121 0.5060 0.4987 (.5000
0.5 0.0 05704 0.5535 0.5452 0.5417 0.5366 (.5372
0.5 05 05916 0.5882 0.5845 0.5825 0.5789 0.5804
1.0 0.0 0.5826 0.5798 0.5765 0.5748 0.5708 0.573 (1) 0.5714
1.0 0.5 0.6204 0.6227 0.6218 0.6211 0.6199 0.6200 (5) 0.6206
1.0 1.0 0.66368 0.66600 0.66642 0.66654 0.66663 0.6666 (1) 0.66667
1.5 0.0 0.5965 .6053 0.6060 0.6058 0.6054 0.6063
1.5 0.5 0.6493 (.6559 0.6574 0.6578 0.6585 0.6619
1.5 1.0 0.7782 0.7094 0.7108 0.7115 0.7130 0713 (1) 0.7146
1.5 1.5 0.8950 0.7657 0.7674 0.7684 0.7702 0.7699
20 0.0 06167 0.6295 0.6338 0.6349 0.6356 0.6667
20 0.5 0.7481 0.6878 0.6913 0.6927 0.6945 0.7345
20 1.0 08741 0.7566 0.7552 0.7565 0.7588 0.76 (1) 0.8000
20 1.5 09436 0.8735 0.8284 ().8303 0.8337 0.8702
20 20 09996 (.9850 0.9400 (0.9200 0.8876 1.0000
£y - £ = 27;" o (10.5)
where fl(o’o) is found from the next-largest eigenvalue of T through fl(o.())

—(1/L)n )150'0). These computations were also carried through for even L up to Ly
14. In this case as well the convergence of the estimants can be considerably sped up by
including a 1/L* term in Eq. (10.5) and performing parabolic least-squares fits versus
/L2

The results for x7 as displayed in Table 2 again agree with those of the previously
studied special cases [14,7]. The data for (nn,ng) = (0,0) merit a special com-
ment. Monitoring the three leading eigenvalues Aéo‘o), /\50’0) and /\g"'“’ as a function
of n for ny, = ny = n we found that /\](0‘()) and /\5_0’0) are exactly degenerate for all
n down to n ~ 0.20. Hereafter /\fo’o) splits oft from /\éo,m and eventually becomes
degenerate with /\(()()’O) at n = 0. Because of this level crossing it thus seeras very
likely that near (n;,n;) = (0,0) the thermal eigenvalue should be related to the gap
' EO‘O) (L) — 80.0) (L). Comparison with the exactly known result xy = 1/2 [7] confirms
this suspicion. A similar comment holds true near (#, ng) = (2,2), and again we find
fair agreement with the exact result if we apply Eq. (10.5) to A(ZO‘O), and not to /\50’0)
(which in this case becomes two-fold degenerate).

For ny, < 2 the extrapolants are again in excellent (~ 107* or better) agreement with
our analytical results. For ny = 2 the slower convergence can be attributed to logarithmic
corrections [51] arising from an enhanced number of marginal vertex operators. Indeed,
of the twelve vertex operators corresponding to the shortest vectors in R?, Eq. (5.18),

seven stay marginal when either n, < 2 or n, < 2. In the general case, when both
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ny < 2 and ng < 2, there are only four marginal vertex operators; this is the loop ansatz,
Eq. (5.25).

10.3. Dimensions of string operators

We now turn our attention to the determination of the scaling dimensions associated
with one or more strings spanning the length of the cylinder. The presence of one black
string corresponds to a height mismatch in the ideal states, and the relevant scaling
dimension X is therefore that of a twist-like operator [41]. We have calculated the
leading eigenvalue of T"? for odd system sizes up to Lmay = 13 and determined
the corresponding estimants cogq( Lo, Lmax) by the usual parabolic fits to f(()l'o)(L),
cf. Eq. (10.3). Estimants X (Lg, Lyax) are then defined by

€ — Codd (Lo, Lmax)
, 10.6
3 (10.6)

X( Lo, Lipax) =

where the factor of 12 originates from a comparison of Eq. (10.3) with Eq. (10.5). For
the central charge ¢ of an even-sized system we use our analytical results, Eq. (6.4).

These estimants and their extrapolations are found in Table 3. Note that we can
no longer limit the parameter values by n, > n,, as the condition (sp,5p) = (1,0)
treats the two flavours asymmetrically. In the case of the FPL model (np = 1) it was
found [14] that X was independent of n,. It is evident from our numerical data that
this ng-independence in fact pertains to all ny, € [0, 2]. Final results for X as a function
of ny have therefore been computed by averaging the available extrapolated scaling
dimensions over ng. For np, = | the agreement with the result X ~ 1/8 found by
Batchelor et al. [14] is excellent. Furthermore we are able to conjecture the general
formula, Eq. (7.15), for X as a function of the loop fugacities.

When (sy, sp) = (1, 1) the parity of L must again be even, and we can make parabolic
fits for the gap fé]’”(L) — f(‘)o‘o)(l,), as in Eq. (10.5), without taking resort to the less
accurate method of fitting for two central charges separately as above. The corresponding
universal amplitude is identified with the scaling dimension x,. The results, now for
Lmax = 12, are shown in Table 4, and our values for the scaling dimension are once
again in agreement with the analytical results, apart from ng = 2 where logarithmic
corrections are the most likely source of systematic errors [51].

Finally, the results for x; as obtained from parabolic fits for the gap f((]:z‘o)(L) -
f(()o_()) (L) are shown in Table 5. Again we have Ly, = 12. Just like in the case of X we
find the extrapolated values of x» to be independent of ng, and final results are obtained
by averaging over this parameter.

10.4. Entropy
Apart from the various universal quantities, such as the central charge and the scaling

dimensions, the transfer matrices also provide numerical values for the residual entropy
per vertex, s = fo(oo). In the limit n, — 0 of compact polymers this quantity is of
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Table 3

Estimants X ( Ly, Lmax) for the scaling dimension of the twist operator along with their extrapolations to the
infinite-system limit. For ny, = | the value X = 1/8 was previously found to be independent of n; [14]. It
is evident that this ng-independence holds for any value of ny, and in accordance herewith our final result is
obtained by averaging the various extrapolants over 7,

n, oy X{(3,13) X(5,13) X(7, 13)  X(9,13) Extrapolation Result Exact

0.0 00 -0.0558 —0.06109 -0.06203 -0.06232 —0.06257 —0.06269 (31) —0.06250
0.0 05 —-0.06080 —0.06197 -—0.06220 —0.06233 -—-0.06253 —0.06250
0.0 1.0 —0.06043 —0.06198 --0.06221 —-0.06233 —-0.06250 —(1.06250
0.0 1.5 —005869 —0.06156 -—0.06215 —0.06233 -—0.06259 —0.06250
0.0 2.0 -—-0.05804 -=0.06190 ~0.06297 —0.06316 —0.06324 —{).06250
05 00 0.04674 0.04538 0.04558 0.04569 0.04587 0.04583 (16) ().04591
05 0.5 0.04572 0.04585 0.04589 0.04588 0.04588 0.04591
05 1.0 0.04643 0.04622 0.04614 0.04607 0.04595 (.04591
05 1.5 0.04781 0.04675 0.04638 0.04622 0.04590 0.04591
05 2.0 0.04828 0.04664 0.04593 0.04573 0.04555 .04591
1.0 0.0 0.11895 0.12278 0.12398 0.12438 0.12501 0.12497 (8) 0.12500
10 05 0.12346 0.12422 0.12458 0.12470 0.12489 0.12500
1.0 1.0 0.12465 0.12485 0.12495 0.12496 0.12498 0.12500
1.0 1.5 0.12584 0.12540 0.12529 0.12521 0.12508 (.12500
1.0 20 0.12652 0.12549 0.12513 0.12501 0.12490 0.12500
1.5 00 0.17106 0.18253 0.18453 0.18536 0.18662 0.18663 (25) 0.18687
1.5 05 0.18283 0.18468 0.18553 0.18585 0.18633 0.18687
1.5 1.0 0.18515 0.18588 0.18620 0.18632 0.18646 0.18687
1.5 15 0.18684 0.18684 0.18687 0.18684 0.18680 0.18687
1.5 20 0.18878 0.18796 0.18759 0.18741 0.18696 0.18687
20 0.0 0.2076 0.2296 0.2321 0.2340 0.2369 0.2392 (27) 0.2500
20 03 0.2283 0.2323 0.2342 0.2351 0.2371 0.2500
20 1.0 0.2325 0.2347 0.2358 0.2363 0.2383 0.2500
20 15 0.2357 0.2372 (0.2379 0.2383 0.24060 (.2500
20 20 0.2402 0.2413 0.2417 0.2420 0.2435 0.2500

interest to the protein folding community, due to the fact that native conformations of
all globular proteins are compact [5].

Using our knowledge of the exact form of the finite-size corrections of order 1/L?,
Eq. (10.3), we have obtained very accurate extrapolations to the limit of an infinite
system.® After subtracting the 1/L? correction a series of estimants s(L, Ly, ) may be
obtained by fitting the residual size dependence to a pure 1/L* form. The remaining
L-dependence of these estimants turns out to be well accounted for by a further 1/L*
fit, and in this way we arrive at a final value for s. The error bar on the final value can
be estimated as its deviation from the most accurate extrapolant, $(Lpax — 2, Lyax ) -

The most accurate results are quite naturally found by employing this procedure on

[()O‘O)( L), and they are shown in Table 6. Results obtained by extrapolating the free
energies for other sectors of the transfer matrix containing strings are consistent herewith

® The logarithmic corrections to the free energy implied by the A”*~! term in Eq. (2.6) does not pertain to
the cylindrical geometry implicit in our transfer matrix calculations. A similar remark applies to the surface
N((/~l)/d

term Ky
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Scaling dimension x;, corresponding to one string of each flavour

673

nh iy x(4,12) x1(6,12) x(8,12) Extrapolation Ref. [ 14) Exact
00 00 —0.2433 ~0.2447 —0.2470 —0.2500 ~0.2500
0.5 00 —0.1328 —0.1295 —0.1303 —0.1313 -0.1323
05 05 —-0.01713 —-0.01228  —-0.01217 -0.01217 ~0.0131]
1.0 00 —-0.0440 —0.0423 —0.0430 —0.0439 —0.0444 (1) -0.0446
1.0 05 0.0737 0.0763 0.0764 0.0765 0.0750 (3) 0.0761
1.0 1.0 0.16608 0.16646 0.16657 0.16663 0.1667 (1) 0.16667
1.5 00 0.0267 0.0271 0.0264 0.0255 0.0260
15 05 0.1466 0.1472 0.1472 0.1472 0.1483
1.5 1.0 0.2411 0.2395 0.2395 0.2394 0.242 (2) 0.2405
I.5 1.5 0.3196 0.3159 0.3156 0.3156 0.3162
20 00 0.0845 0.0848 0.0844 0.0839 0.1042
20 05 0.2070 0.2067 0.2071 0.2076 0.2295
2.0 1.0 0.3048 0.3021 0.3024 0.3028 0.307 (2) 0.3250
2.0 1.5 0.3882 0.3841 0.3842 0.3843 0.4044
20 20 0.4640 0.4618 (1.4635 0.4657 0.5000
Table 5
Scaling dimension x;, corresponding to two black strings
M ny x2(4,12) x2(6,12) x2(8,12) Extrapolation Result Exact
0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 ¢0) 0.0000
0.0 0.5 0.0000 0.0000 0.0000 0.0000 0.0000
0.0 1.0 0.0000 0.0000 0.0000 0.0000 0.0000
0.0 1.5 0.0000 0.0000 0.0000 0.0000 0.0000
0.0 20 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.0 0.1279 0.1355 0.1372 0.1389 0.1386 (2) 0.1386
0.5 0.5 0.1365 0.1371 0.1378 0.1387 0.1386
05 1.0 0.1377 0.1374 0.1379 0.1385 0.1386
05 1.5 0.1383 0.1375 0.1379 0.1384 0.1386
0.5 2.0 0.1392 0.1376 0.1379 0.1383 0.1386
1.0 0.0 0.2333 0.2447 0.2472 0.2504 0.2495 (5) 0.2500
1.0 0.5 0.2488 0.2477 0.2484 0.2493 0.2500
1.0 1.0 0.2514 0.2487 0.2490 0.2494 0.2500
1.0 1.5 0.2538 0.2497 0.2495 0.2492 0.2500
1.0 2.0 0.2573 0.2512 0.2504 0.2494 0.2500
1.5 0.0 0.3197 0.3377 0.3416 0.3466 0.3487 (26) 0.3506
1.5 0.5 0.3429 0.3425 0.3443 0.3466 0.3506
1.5 1.0 0.3486 0.3457 0.3466 0.3478 0.3506
1.5 1.5 0.3548 0.3497 0.3496 0.3494 0.3506
1.5 20 0.3636 0.3561 0.3547 0.3529 0.3506
2.0 0.0 0.3920 0.4202 0.4268 0.4353 0.446 (12) 0.5000
2.0 0.5 (0.4244 0.4277 0.4323 0.4382 0.5000
2.0 1.0 0.4346 0.4348 0.4382 0.4426 0.5000
2.0 1.5 0.4468 0.4452 0.4474 0.4502 0.5000
2.0 2.0 0.4640 04618 0.4635 0.4657 0.5000
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Table 6

Residual entropy s, obtained by extrapolating f},“‘” !

(L) to the infinite-system limit

g f(()n.u)(4) ‘((,“'“)(6) f(g)u.n)(g) f((,”'(”(l()) f(()”‘"’(lz) _f((,“'”)(l4) P

0.0 0.0 0.17328680 0.28881133 0.31784496 0.32923359 0.33490107 0.33815371 0.346575 (14)
0.5 0.0 0.26740000 0.33317928 0.35057672 0.35745438 0.36088114 0.36284872 0.367950 (9)
0.5 0.5 0.35063553 0.37668215 0.38371283 0.38639599 0.38769210 0.38842126 0.390258 (3)
1.0 0.0 0.32923947 0.36764369 0.37752555 0.38137032 0.38327066 0.38435762 0.387166 (7)
1.0 0.5 040772622 0.41103439 0.41126990 041111188 041095017 0.41082815 0.410405 (2)
1.0 1.0 0.46298939 0.44576535 0.43960110 0.43671524 0.43513763 0.43418273 0.4315233 (4)
1.5 0.0 037601935 0.39599984 0.40063320 0.40233073 0.40314475 0.40360330 0.404771 (5)
1.5 0.5 045180855 0.43964968 0(.43509788 0.43291844 (.43171625 0.43098591 0.4289459 (10)
1.5 1.0 0.50024745 0.47501911 0.46431698 0.45948057 0.45688890 0.45533728 0.4510742 (17)
1.5 1.5 054930614 0.50513652 0.49006459 0.48331974 0.47972832 0.47758588 0.471726 (2)
20 0.0 041389271 0.42018005 1.42097629 042111147 042113891 0.42114428 0.421145 (6)
2.0 0.5 048795109 0.46429984 0.45622604 0.45257417 0.45061901 0.44945033 0.4462607 (10)
2.0 1.0 0.54202495 0.50046092 0.48641918 0.48016010 0.47683419 0.47485271 0.4694505 (18)
2.0 1.5 058515036 0.53158535 0.51333087 0.50520022 0.50088581 0.49831761 0.491323 (3)
2.0 2.0 0.62122666 0.55918707 0.53795845 0.52850379 0.52348906 0.52050483 0.5123870 (19)

but have error bars that are roughly 10 times larger. If the fugacity of one of the strings
equals two the error bars are even larger, which is to be anticipated from the fact that
logarithmic corrections to the scaling dimensions are larger than similar corrections to
the central charge [51].

In the special case of the equal-weighted six-vertex model, (np,ng) = (1.1), our
value for s is in excellent agreement with the exact result due to Lieb [52],

3 4
s(l,l):iln (E) ~ (0.4315231..., (10.7)

and in the limit of two mutually excluding Hamiltonian walks, (#, ng) = (0,0), we are
able to conjecture the result

1
5(0,0) = iln(2) ~ 0.3465735 ... (10.8)

In fact, after having made this conjecture we discovered that the numerical values of
'él‘];'(L), Le. the free energy per site in the sector where we enforce one string of
each flavour, are independent of L for 4 < L < 12, and equal to 11n(2) with full
16-digit machine precision. Since the free energy per site in the therr}mdynamic limit
is unchanged by the introduction of a string defect, this observation lends credibility to
the correctness of the above conjecture.

Our result in the compact polymer limit merits special attention. Traditionally the
entropy is quoted in terms of the so-called connective constant « = e*}9; see Eq. (2.6).
Early approximations due to Flory [53] and Huggins [54] yielded respectively

A

Ve
KFlory =

I
~ 1.104 (10.9)

and
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7/2—1
2 3
KHuggins = (z—-1) (] - ;) =5- (10.10)

Here z =4 is the coordination number of the square lattice. More recently, x ~ 1.472
was found from transfer matrix calculations [26] and « = 1.475(15) by exhaustive
computer enumeration of short-chain configurations [4]. Both these results are very
close to the mean-field value kmp = z/e = 1.4715... [24], and it is tempting to
conclude that conformations of compact polymers are in fact described by mean-field
theory [4]. However, our result

k= 1.472801(10) (10.11)

demonstrates that this is not the case.

11. Discussion

From the construction of the effective field theory of the FPL? model some rather
general conclusions regarding the scaling of compact polymers, and the relation between
loop models and conformal field theory can be drawn. It also provides new insights into
the three-state Potts antiferromagnet and the dimer loop model, which are identified with
specific points in the phase diagram of the FPL? model. We conclude the paper with a
discussion of these topics.

11.1. Compact polymers

One of the main motivations for studying fully packed loop models is provided by
compact polymers, their scaling properties in particular. Just like polymers in the dilute
and dense phase, compact polymers form a critical geometrical system characierised by
conformational exponents y¥ and ». The exponent y relates the number of conforma-
tions of the polymer to the number of monomers; see Section 2 for details. The other
conformational exponent (») relates the linear size of the polymer to the number of
monomers. For compact structures it has the trivial value 1/2 since these polvmers are
space filling.

Prior to our work, exact results have been obtained for compact polymers on the
Manhattan [55] and the honeycomb [20] lattice, and the mean-field value y = 1 was
found in both cases. This value of y indicates that the two ends of the compact polymer
are independent at large distances. This follows from the scaling relation x; = | —y = 0,
where the one-string dimension x; describes the probability G,(r) ~ r~2* that the
two chain ends are separated by a distance r. In this regard the scaling of compact
polymers on the Manhattan and the honeycomb lattices is equivalent to that of ideal
chains. Ideal chain configurations are described by simple random walks for which each
step 1s independent of the previous one.
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Here we have calculated the exact conformational exponent y = 117/112 for compact
polymers on the square lattice. The fact that y > 1 is tantamount to an effective repulsion
between the ends of the chain, indicating non-ideal behaviour. Indeed, the fact that the
connective constant « in Eq. (10.11) is larger than its mean-field value indicates that the
origin of this repulsion is entropic. Earlier numerical studies of this problem utilising
direct enumerations of chain conformations have failed to see any deviation from the
ideal chain result ypyr = 1 [4]; we can attribute this to the fact that the actual difference
is indeed very small (y — ymp = 5/112) and below the numerical accuracy previously
achieved. The same comment can be made for the connective constant.

Another interesting aspect of compact polymers is that their scaling properties are
fattice dependent. This is in contrast to the dilute and dense case which are described by
conformational exponents that do not depend on the lattice type (e.g., honeycomb versus
square). As remarked carlier this “lack of universality” is due to a kind of geometrical
frustration that arises from the fully packing constraint imposed on the loop models
which are employed in studies of compact polymers.

Finally, the field theory solution of the FPL? model uncovered a property of compact
polymers that, to our knowledge, was not previously anticipated. The fact that there is a
whole line of critical points in this loop model in the Hamiltonian walk limit (n, — 0)
indicates a continuum of universality classes described by compact polymers on the
square lattice. In particular the exponent y can be changed continuously by adjusting
the fugacity of the loops uncovered by the polymer. The loop weight of the uncovered
(grey) loops can be thought of as an effective interaction amongst the monomers,
albeit a non-local one. A similar effect of interactions on directed self-avoiding walks
was discovered by Cardy [30] from a field theoretical analysis of the problem. The
existence of a continuously varying vy in this case was recently challenged by numerical
results [31].

11.2. Relation to other models

The FPL? model is a loop model which exhibits a two-dimensional manifold of fixed
points in its phase diagram. Certain points in the critical region map to previously
studied lattice models and here we comment on the relevance of our results for these
models.

11.2.1. Dimer loop model

The dimer loop model studied by Raghavan et al. [15] is the ny, = 2, ng =1 FPL?
model; see Fig. 1. The dimer loop model is defined by placing black and white dimers
on the square lattice so that every vertex of the lattice is covered by exactly one black
and one white dimer. Every such configuration is given equal weight. The mapping to
the FPL? model is achieved by identifying the bonds covered by dimers as making up
the black loops, whilst the uncovered bonds form the grey loops. The original motivation
for studying this dimer problem is that it leads to a height model with a two-component
height; cf. the traditional dimer model which is described by a single component height.
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Performing Monte Carlo simulations of the dimer loop model Raghavan et al. reached
the conclusion that one of the two height components is rough whilst the other one is
“anomalously smooth”, i.e. its structure function decays at small wave-vectors q slower
than 1/q% a 1/q* dependence is to be expected in a Gaussian field theory.

In the light of our results we would conclude that the dimer loop model is critical
with a central charge ¢ = 2. This follows from Eq. (6.4) for ny, = 2 and ng = 1. The
two components of the height found by Raghavan et al. should therefore both be rough,
each contributing one to the central charge (¢ = 1 + 1). Furthermore, we believe that
the observed anomalous behaviour of onc of the heights can be attributed to the fact
that this model is exactly at the boundary of the critical region of the FPL? model.
We observe a similar effect in our numerical transfer matrix results which show largest
deviations from the proposed exact formulae for loop fugacities at the critical-region
boundary. The culprit might be logarithmic corrections due to the presence of marginal
operators. To check this hypothesis and reconcile it with the fact that no such effects
are seen in Monte Carlo simulations of the four-colouring model [28] (n, = n, = 2),
which is also at the boundary of the critical region, simulations of the dimer loop model
for larger system sizes would be welcome.

11.2.2. Three-state Potts antiferromagnet

The critical ground state of three-state Potts antiferromagnet maps to the equal-
weighted six-vertex model [16] which is the ny = n, = | point in the critical region
of the FPL? model; see Fig. 1. Along the line n, = n, the colouring representation of
the FPL? model has the additional symmetry with respect to cyclic permutations of the
four colours; see Section 5.3.2. This explains the origins of the Z; symmetry found by
Saleur for the rhree-state Potts antiferromagnet [56].

11.2.3. Folding model

The folding model of the square-diagonal lattice recently investigated by Di Francesco
[57] maps onto a constrained version of the (n,,ny) = (2,2) FPL? model. The con-
straint consists in allowing only the vertices 1, 3, 5 and 6 of Fig. 3 for sites on the even
sublattice, and similarly vertices 2, 4, 5 and 6 on the odd sublattice.

We have modified our transfer matrices to take this constraint into account. Our result
for the folding entropy, s = 0.4604(4), is in complete agreement with Ref. [57].°
Interestingly enough the finite-size scaling of the gaps in the eigenvalue spectrum seems
to indicate that the model is not critical for general values of the loop fugacitics. From
the field theory of the FPL? model we should be able to understand why the constraint
imposed by the folding model leads to a relevant perturbation which takes the system
away from criticality. This we leave as an interesting open question. Incidentally, the
sttuation is very reminiscent of the reformulation of the Q-state Potis model in terms of

 Our normalisation is “per vertex” whilst that of Di Francesco is “per triangle”. Accordingly we find twice
his result.
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a staggered vertex model. Only at the critical point are the vertex weights on the even
and odd sublattices identical, thus allowing for an exact solution of the model [32].

11.3. Conformal field theory

The Liouville field theory proposed for the effective theory of the FPL? model in the
critical region is conformally invariant. Each point in the critical phase is characterised
by the central charge and the scaling dimensions of primary fields, which are associated
with electric and magnetic charges in the Coulomb gas. For generic values of the loop
fugacities the background charge ey is not commensurate with the electric charges that
make up the lattice /®*. This implies that amongst the electric operators there will be
many (an infinite number, in fact) that have negative dimensions, signaling the non-
unitary nature of the conformal field theory. Non-unitary CFTs appear in many other
critical geometrical models, critical percolation being the best known example.

Liouville field theory provides the Euclidean action for the Coulomb gas description
of conformal field theories proposed by Dotsenko and Fateev [36]. As such it contains
the so-called screening charges which are the vertex operators that make up the Liouville
potential. In the original formulation these charges were introduced on formal grounds
80 as to ensure the existence of non-vanishing four-point correlation functions in the
theory. In order for these vertex operators not to disrupt the conformal symmetry of
the modified Gaussian model (the modification is the addition of the boundary term to
the gradient-square action) they are necessarily marginal, i.e. their scaling dimension is
two.

Here we have found a physical interpretation of the screening charges. Their role in
loop models is to ensure that the number of large loops from scale to scale stays of
order one; this translates into the statement that the loop fugacities do not flow under
the action of the renormalisation group.

The fact that we have a concrete physical interpretation of the screening charges
directly leads to the calculation of the elastic constants in the Liouville field theory.
In the traditional Coulomb gas approach these coupling constants are calculated by
comparing with formulae derived from an exact solution of the model. Once these
constants are known marginal vertex operators that play the role of screening charges
can be written down. Our construction basically reverses this procedure, and by doing
S0 makes no reference to an exact solution.

Finally, we end with a speculatory note concerning the prospects of solving the FPL?
model via Bethe ansatz. Namely, all loop models to date have been solved by this
method after mapping them to a vertex model, following a procedure analogous to the
one outlined in Section 4. This does not seem to work for the FPL? model, at least not
along the ny = 1 line [14]. Why this is so is an interesting open question.

One possibility is that the full FPL? model needs to be considered as opposed to the
FPL model studied by Batchelor er al. for which ng = 1 is fixed. A more intriguing
possibility is that a Bethe ansatz solution might be hindered (or made more difficult)
by the non-trivial elasticity displayed by the FPL? model in its interface representation.



J.L. Jacobsen, J. Kondev/Nuclear Physics B 532 [FS] (1998) 635-688 679

This statement we base solely on the observation that all previously solved loop models
are simple as interface models in the sense that the height fluctuations are described by a
single elastic constant. For the FPL? model, as described in Section 5, the stiffness tensor
consists of three independent components. Whether indeed the interface representation
of the loop model has any bearing on its Bethe ansatz solvability remains to be seen.
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Appendix A. Dimensions of electric and magnetic operators

We calculate the scaling dimensions of electric and magnetic operators in the Coulomb
gas theory described by the action

1 [ [ ~

Sca = = d2Xga(6H“)2+i/dZX(Eo~H)73, (A.1)
2 47

where R is the scalar curvature. We are interested in the situation when the height field

is defined on a flat surface, in which case R is zero everywhere except at the boundaries.

A.l. Electric charges

The scaling dimension x(E) of the electric-type operator exp(iE-H(x)) follows from
the two-point function

<ciE-H(x)e—i(E—ZE[,)~H(y)> ~ |x — y|7HE) (A2)
where the expectation value is with respect to the measure defined by the action Scg.
The extra electric charge 2Eg appears due to the charged boundary conditions enforced
by the curvature term in the Coulomb gas action, Eq. (A.1).

We break up the calculation into two parts. First we calculate the two-point function,
Eq. (A.2), in the absence of the background charge (Eg = 0). We make use of the
property of Gaussian integrals,

<ciE-H(X)e*iE'H(y)> = exp (___é_(Ea)z <(Ha(x) _ Ha'(y))2>) , (A3)
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and of the known propagator for the massless scalar field in two dimensions (where we
have dropped the regulators at large and small distances),

|
{(H*(x) = H*(y))") = — In|x —y]. (A4)
T

Combining the above two equations and comparing the result with Eq. (A.2), we find

1

27Tga(Eo,)"; (A.5)

2x{9E) =

the superscript (0) is there to remind us that this formula is valid only for Eq = 0.
This result for the two-point function can be rewritten as

<eiE'H(")e_iE‘H(Y)> = exp[Elf:O)(x,Y) IR (A.6)
where
1
4]
P (x,y) = I (Ex)?In|x —y| (A7)

is the energy of two (vector) electric charges interacting via the two-dimensional
Coulomb force; in this language Sg is the energy of the electrostatic field set up by the
electric charges =E, expressed in terms of the electrostatic potential h. This seemingly
trivial rewriting makes the calculation of x(E), the electric dimension in the presence
of a background charge, physically transparent.

To properly take into account the curvature term we define the height field over a
disc of radius R, instead of the infinite plane, keeping in mind that at the end of the
calculation we need to take the limit R — oc. In the case of the disc R = 87w6(R), and
the curvature term introduces a charge —2E; at the disc boundary. Therefore, the vacuum
of the modified Coulomb gas must contain a floating charge +2E; in the disc interior,
and the electrostatic energy of this charged vacuum is Ez(g())(o, R) = ~4E3a In(R) [2mg,.
Now, to find the scaling dimension of a vertex operator of charge E, we imagine
placing charges +E and —E at points x and y in the disc interior, and we calculate the
total electrostatic energy with respect to the charged vacuum. The floating charge will
coalesce with that of the oppositely charged vertex operator, —E. Using Coulombs law,
Eq. (A.7), we then calculate the interaction energy of charges +E at x, —E + 2E at y,
and —2Ey at R, keeping in mind R > |x — y|. The final result

. 1

Ee(x,y) =—E——Ea(Ea — 2Eqe) In|x —y| (A.8)
is obtained after the energy of the charged vacuum is subtracted. Now it is a simple
matter to read off the scaling dimension as the negative coefficient in front of the
logarithm,

1
2x(E) = %EQ(E(,~2EOQ). (A.9)

o
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This result can be derived in a more rigorous fashion by constructing the stress-energy
tensor for the field theory Scg and calculating its operator product with the vertex
operator exp(iE - H) [36].

A.2. Magnetic charge

To calculate the magnetic dimension x(M) we consider the ratio of partition functions,
Zom(X.9)/Zs ~ x ~ y| 72D, (A.10)

Z.m(X,y) is the sum (path integral) over height configurations where a vortex and an
antivortex, of topological charge =M, are placed at positions x and y of the basal plane,
whilst Z., is the unconstrained sum:

Z. :/DHexp (%/dzxga(am)z). (A.11)

Here we have dropped the curvature term since it does not affect correlation functions
of magnetic operators.

We can use the electrostatic analogy once again. Namely, we consider the interaction
energy between two topological defects, Em(x,y). Since Z. is a Gaussian path integral,
it follows that

Zom(%,¥)/Z> =exp[Em(x,¥) ], (A.12)
where
—SM(x,y)=§—a—(M“)2ln|x—y|. (A.13)
w

The above interaction energy is calculated as the Gaussian action of the classical con-
figuration of the height field, h.. h; solves the classical equations of motion (Laplace’s
equation) with boundary conditions dictated by the presence of topological defects at x
and y [34]. The scaling dimension of a magnetic-type operator is then the coefficient
in front of the logarithm in Eq. (A.13),

26(M) = $2 (1) (A.14)

Appendix B. Enumeration of the connectivities

The implementation of the transfer matrix (TM) for the FPL? model on a cylinder
of width L and length M requires an enumeration of the possible connectivity states of
the L points on the dangling edges of row M. Each of these L points can either

(1) be connected by Gy to one of the dangling edges of row O through a string of

flavour i = b, g, or
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(i1) be connected by Gy to one and only one other point in row M through a loop
segment of flavour i = b, g.
A suitable representation of this information is furnished by a double state vector

bbb b
[[iply.. .0}

] (B.1)
EEE.H

which we shall refer to as the index representation. The indices 52 (k=1,2,...,L) are

defined as follows:
(i) i = i is a (non-unique) positive integer if and only if points k and / are inter-

connected through a black string.

(ii) % =0 if and only if point k touches a grey string or loop segment.

(iii) i = —1 if and only if point k is connected to a dangling edge of row 0 through a
black string.

A similar definition is true for the indices i% provided that one reads “grey” instead of

“black” and vice versa. Two index representations are said to be identical if they are so

up to the arbitrariness of the choice of positive integers. Also note that if # # 0 we

have i = 0 and conversely.

A restriction on those indices that take positive values follows from the fact that
loops of the same flavour are not allowed to intersect. Namely, if j < k < I < m the
equalities i = if and i = i cannot both be true. So in addition to being pairwise these
connectivities are also well-nested [45]. The same is true for the grey indices, whereas
there are no such restrictions when both flavours are involved. Indeed, connectivity states
with % = i and i = &, are explicitly allowed by the last two vertices shown in Fig. 3.

In practice we are only interested in the first few eigenvalues of TMs having a definite
number of strings of each flavour. The relevant sectors of the TM are denoted T,
where s; is the number of strings of flavour i = b,g. The fully packing constraint
means that we can only examine system sizes L that have the same parity as s, + s,.
The various sectors have different physical interpretations and each requires a different
enumeration of the connectivity states. Since the two flavours enter at an equa! footing
in the partition function, Eq. (9.1), we only need consider s, > sg. The T gector
contains information about the free energy and the energy-like correlation length. The
geometrical scaling dimensions x; and x> can be obtained from the T'"-! and the T2®
sectors respectively. Finally the sector T¢"'?" gives the scaling dimension of the twist-like
operator.

Whilst the index representation contains all information necessary for determining the
value of a given entry in the TM it is obviously not suttable for labelling the entries. We
therefore need another representation, the so-called number representation, in which the
connectivities are labelled by the integers 1,2,...,C,"™", where C,™" is the number
of different connectivity states in the relevant sector. The practical implementation of the
TMs relies on the mapping from the index to the number representation and its inverse.

We shall now consider, one by one, the various sectors of the TM.
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B.1. TO® sector

When no strings are present all the L dangling edges of row M are pairwise connected
with either a black or a grey loop segment. In particular L must be even. For any
particular connectivity we can then decompose L as L = 2p, + 2p,, where p; > 0 is the
number of pairs of dangling edges covered by a flavour i loop segment. Since loops of
different flavours are allowed to cross (see Fig. 3) the total number of connectivities is

L
CIEO.O): Z (2pb)c,,hc,,g, (B.2)

L=2pn+2p,

where ¢, is the number of pairwise well-nested connectivities of 2p points. The ¢,’s
were first considered in the context of the Potts model [45], but were also found to
play a central r6le in the TM formulation of the O(»n) model [47]. We shall now briefly
recall how they are evaluated.

Consider a well-nested pairwise connectivity of 2p points given by the index rep-
resentation (fjfy...d3,). A recursion relation follows from observing that iy = iy for
precisely one integer k > 1. According to the well-nestedness criterion the sub-sequences
(263 ... fx—1) and (iogqiizk+2 - .. 02, ) are both well nested, and indices occurring in one
of them do not occur in the other. Hence for p > 1

»
cp = E Ch—1Cp—ks» (B3)
k=1

and ¢q = 1. By means of the generating function P(x) = Z,C:o cpx? it 1s readily
shown [47] that
¢, = (2p)! ’
plip+1)!
and that asymptotically ¢, ~ 4.
Using Egs. (B.2) and (B.4) we can now compute explicit values for the C
These are shown for 2 < L < 16 in Table B.1.
For obvious reasons we shall call the function

(B.4)

(0.0)
PR

p(lb]l'z...l.gp) =k (B.S)

defined by i) = iy the cut function of the index representation (iyis. .. i2p). A complete
ordering of the well-nested sequences is now induced by applying the cut function first
to the whole sequence, then recursively to its right and finally to its left part [45,47].
Accordingly, the mapping from the index to the number representation for a well-nested
one-flavour connectivity is accomplished by

1 if p<i
k—1

G'(iliz...iz,,) = ZC!~IC,J—I +0'(i2---i2k-l) (Bﬁ)
=1

+lo (i1 ... i2p) — 1]ck—;  otherwise,
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Table B.1

The number Ci"“""g) of FPL? connectivity states for L dangling edges accommodating s; strings of flavour
i =b, g. Only values of L with the same parity as s, + s, are shown. When more than one string of any flavour
is present further restrictions than the well-nestedness criterion apply, as described in the text, Accordingly
the number é,ﬂz‘m is merely a useful upper limit on the true Ciz‘m. The efficiency of writing the TMs in the
connectivity basis can be appreciated by comparing Ci”‘m to 4-, the latter being the dimensions of the TM
written in the conventional colour basis. where every dangling end is labelled independently by A. B, C or D

3 4k (,[S(),()) Cim) é[(z.m L Clu.n)
2 16 2 2 1 1 l
4 256 10 24 12 3 6
6 4096 70 300 150 5 50
8 65536 588 3920 1960 7 490

10 1048576 5544 52920 26460 9 5292

12 16777216 56628 731 808 365904 LI 60984

14 268435456 613470 L0306 296 5153148 13 736 164

16 4294 667 296 6952660 147 232 800 73616400 15 9202050

where the ¢, are given by Eq. (B.4).

To give a complete specification of the connectivity of any one flavour in the
state (B.1) we need to keep track of the positions of those indices that are zero.
For a fixed number of z zero indices this is accomplished by the lexicographic ordering

1 if L=1orz="L
Yriais ... 0p) ifip #0

L—1
( . )+¢r(i2i3...i,d) if i) =0,

<

(/l(i]iz...iL): (B7)

assigning the lowest value to the sequence with all the zeros accumulated to the right.

The number representation of the two-flavour state (B.1) is now obtained by first
ordering according to the number of indices ig being zero, then lexicographically ordering
the positions of these zero indices, and finally using the ordering (B.6), first on the
well-nested subsequence of non-zero black indices and then on the corresponding grey
subsequence. More precisely, the mapping from the index to the number representation
in the (sp,55) = (0,0) sector is given by

L/’ 2

20 (1)= 3 (})ee
i 2 ) CkELI=k
k=pn+i
+ (P = Nepep, + Lo @) — ey, + (i), (B.8)

where i* = (% ... %) denotes the sequence of black indices and i the subsequence of
the py pairs of non-zero indices (and, of course, similarly for the grey flavour).

The inversion of Eq. (B.8), so as to furnish a mapping from the number to the
index representation, is straightforward if we know how to invert the functions o and
. Details on this have already been given in Ref. [50].
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B.2. TUO sector

In the case of one black string spanning the length of the cylinder the number of
dangling edges in row M can be written as L = 2py, + 2p, + 1, where the p; have the
same meaning as above. In particular L must be odd.

The presence of one string of either flavour does not impose any additional restric-
tions on the connectivity states of the subsequence of positive indices of that flavour.

Indeed, if the position of the string is given by i = —1 the non-zero subsequence of
(i, ...%%. .. ) is still well nested, and the arguments given above apply. The

number of connectivity states is therefore found by multiplying the L possible positions
of the string by the number of (sy,s5) = (0,0) states of the remaining L — | points

Cil,O) - LCL((i?). (B.9)

Explicit values are shown in Table B.1.

Similarly the mapping from the index to the number representation s found by first
ordering after the position r of the string, and then after the value of ¢®% taken of the
remaining indices

(1.0 R\ C (00 (0.0) T Y SRR
¢ ez g )=r=DCT +6 PR s L. (B.10)
iyi5...07 AP N IR )

B.3. TV sector

When one string of each flavour is present L = 2py + 2pg +2 must be even, and again
it suffices to augment the considerations from the T®® case by some book-keeping as
to the positions of the two strings. Explicit values of

C{"”zL(L—l)CL((fOz) (B.11)

are shown in Table B.1.
Letting r; denote the position of the string of flavour i = b, g we find that

b
A (:g) =[(ro — (L — 1) + (Irg = ro| = 1)]1C%9

L PP P

(0,0) | O ML R IR AT R S S IR 5
+¢ [.g l.g l.g l.g l.g g (B]2)

[ 1 b IR LS I )

is the desired mapping from the index to the number representation.

A possibie configuration of the system for (sp,s,) = (1,1) is illustrated in Fig. 8,
where the index representation of the connectivity state for each completed row is shown
to the right of the figure,
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B.4. T2 sector

Considering now the case of two black strings, it appears that the number of connec-
tivity states for L even is given by

~ L
20 (0,0)
0 = (2)CL-2 : (B.13)
where we have simply divided Eq. (B.11) by 2 to take into account the indistinguisha-
bility of two strings of the same flavour. This is however not quite true, since for L > 4
the number (B.13) includes certain disallowed basis states. For L = 4 these are

(34w (30el)
The reason why these states are not valid is that, by definition of the allowed vertices
(see Fig. 3), black loop segments cannot cross a black string. In general, therefore, any
configuration where a positive black index is positionally separated from its “partner”
by one or more black strings, both to the right and to the left (since periodic boundary
conditions are assumed throughout), is not a valid one, even though the positive indices
of each flavour satisfy the well-nestedness criterion. Accordingly, the true C 152,0) is less
than the C/* of Eq. (B.13).

We have not found it worthwhile to pursue the solution of this complication, since the
numbers C{** are already less than the C IV, and we need to diagonalise the transfer
matrices T'!) and T*% for the same values of L in order to determine the scaling
dimensions x; and x, with the same numerical precision. Instead we found it efficient
to construct all the € 22,0) basis states, list the number representations of those that are
disallowed, and force the corresponding entries of T(>% to zero.

With this proviso the mapping from the index to the number representation is

:b
<ﬁ“”’(;g>==[w(w-+1)-—1lcti?

ooy [ b b

; L SRR SR M N 4

+o" >(g p=ttt et .g), (B.15)
S AT ST R LAY (NI 1

where r| and r; are the positions of the two black strings, and ¢ (i® + 1) means that
we should lexicographically order the positions of the black indices that are —1.
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2.6 Article "Conliormal 1ield theory of the rlory model™

Nous étudions la limite d’échelle d’'un modele de boucles compactes en deux dimensions dont les
boucles possédent une rigidité de courbure. Cette limite d’échelle est décrite par une théorie conforme 4
trois parametres que nous caractérisons par sa représentation de gaz de Coulomb. Un choix de deux de
ces trois parametres reproduit la ligne critique du modéle @ siz sommets qui est exactement soluble. Un
autre choix correspond au modéle de Flory de la fusion de protéines. Nous calculons les valeurs exactes
de la charge centrale et des exposants critiques du modele de Flory, au point de fusion. Nous montrons
que la fusion de protéines, comme décrite par le modéle de Flory, est une transition de phase de second
ordre, en contradiction avec la théorie de champ moyen [138]. Les résultats de la théorie conforme sont
comparés avec des calculs numériques du type matrice de transfert.
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We study the scaling limit of a fully packed loop model in two dimensions, where the loops are
endowed with a bending rigidity. The scaling limit is described by a three-parameter family of
conformal field theories, which we characterize via its Coulomb-gas representation. One choice for
two of the three parameters reproduces the critical line of the exactly solvable six-vertex model,
while another corresponds to the Flory model of polymer melting. Exact central charge and critical
exponents are calculated for polymer melting in two dimensions. Contrary to predictions from
mean-field theory we show that polymer melting, as described by the Flory model, is continuous.
We test our field theoretical results against numerical transfer matrix calculations.

I. INTRODUCTION

Over the years, polymers physics has greatly benefited from studies of lattice models. One persistent theme has been
the use of lattice models to uncover universal properties of chain molecules. An example is provided by the scaling
exponents which characterize the statistical properties of polymer conformations, in the limit of very long chains [1].
For polymer chains confined to live in two dimensions, exact values of exponents were calculated by Nienhuis [2] using
the self-avoiding walk on the honeycomb lattice. The predicted value of the swelling exponent, which relates the linear
size of the polymer to the number of monomers, was directly measured in recent fluorescence microscopy studies of
DNA absorbed on a lipid bilayer [3].

Here we turn to the problem of polymer melting, which deals with a possible phase transition induced by the
competition between chain entropy and bending rigidity. Bending rigidity determines the persistence length of the
polymer. This is the distance over which the relative orientations of two chain segments are decorrelated due to
thermal fluctuations. The long chain limit mentioned in the previous paragraph is obtained when the polymer length
is much greater than its persistence length.

It is important to point out that the effect of finite bending rigidity depends crucially on the steric constraints
imposed on the polymer by its interactions with the solvent. For example, in the presence of a good solvent the
polymer is in a “dilute” phase. Typical chain conformations are swollen with empty space between the monomers
filled by solvent molecules. On the lattice, the dilute phase is characterized by a vanishing fraction of sites occupied
by monomers. In this phase, the bending rigidity simply increases the persistence length of the polymer, and it does
not lead to a phase transition. This can be verified analytically in two dimensions, within the framework of Nienhuis’
self-avoiding walk model [4, 5].

The picture changes considerably when the polymer is in a “compact” phase, with the monomers occupying all
the available space. Such a situation is relevant, for instance, when modelling the conformations of globular proteins
[6]. Compactness in this case follows from the interaction between hydrophobic amino-acids and the solvent (water),
which leads to the expulsion of the solvent from the bulk of the protein. The simplest way to model this effect is to
enforce compactness as a global, steric constraint on the polymer configurations [6]. Within this compact phase, one
expects a phase transition from a disordered melt to an ordered crystal as the stiffness of the polymer is increased.

To study this melting transition, in 1956 Flory introduced a lattice model [7]. Flory’s model, in its simplest
formulation, consists of a single chain, described by a self-avoiding walk on the square lattice, endowed with a bending
rigidity. To describe the melted phase the chain is taken to be maximally compact, filling all the sites of the square
lattice; see Fig. 1. The resistance to bending is modelled by an energy penalty for making 90° turns.

In the Flory model, at infinite temperature the entropy dominates and the polymer will exhibit a finite density of
bends, as in Fig. 1a. As the temperature is lowered to zero all the bends are expelled from the bulk and their density
goes to zero, as in Fig. 1b. The nature of the transition from the high temperature melt to the low temperature
crystal has been debated over the years [8]. Here we show that the melting transition is continuous and calculate
exact values of scaling exponents at the transition.



FIG. 1: Compact polymer configurations on an 11 x 15 square lattice: a) Typical configuration in the melt phase, and b)
zero-temperature crystalline state, in which the number of bends is minimum.

In his original paper, Flory [7] proposed a mean-field treatment which predicts a first order transition. According
to [7], the density of bends goes to zero at the transition and the chain entropy vanishes. This prediction of a first
order transition with a vanishing entropy was challenged by Nagle [9]. Namely, he showed that the exactly solvable
six-vertex model maps to a related polymer model which differs from Flory’s by the presence of polymer loops of all
sizes. Applying Flory’s mean-field approximation to this model leads once again to the prediction of a first order
melting transition. However, as Nagle pointed out, this is at odds with the exact solution of the six-vertex model [10]
which predicts a continuous, infinite order transition. This observation makes it questionable that the Flory approach
is valid in the original model as well. In fact, a few years later Gujrati and Goldstein [11] proved that the polymer
entropy in Flory’s model stays finite all the way down to zero temperature when it finally vanishes. However, the
order of the transition still remained an unresolved question.

Monte Carlo simulations of Baumgartner and Yoon [12], where they allowed for many chains and a finite density
of empty sites, showed a first order melting transition. Soon thereafter Saleur [13], using a transfer matrix approach,
presented numerical evidence of a continuous transition, similar to the one found in the six-vertex model. More
recently, Bascle, Garel and Orland [14] proposed an improved mean-field treatment of the Flory model, which does
not suffer from the problem of a vanishing entropy at the transition. It also predicts a first order transition.

Here we show that polymer melting is continuous, as originally argued by Saleur [13], by making use of a particular
model, the semiflezible loop (SFL) model, and its height representation. Furthermore we calculate the central charge
and exact scaling exponents at the transition. These results are checked against detailed numerical transfer matrix
computations.

The SFL loop model can be thought of as a “loop generalization” of the so-called F-model [9], in which suitably
defined loops carry additional Boltzmann weights. The F-model is a special case of the six-vertex model [10], in which
all vertices carry equal weights. This connection will serve as the motivation for introducing a more general model,
the generalized siz-vertez model, in which the general (zero-field) six-vertex model is endowed with extra loop weights.
We shall finally introduce a similarly generalized version of the eight-vertex model [10]. Its interest from a polymer
point of view is that it allows for a unified description of semiflexible lattice polymers in a variety of phases: compact,
dense and dilute. Furthermore it allows us to discuss the effect of vacancies on the polymer melting transition.

The paper is organized as follows. In the next section we introduce the SFL model, which, in the limit of zero loop
weight, gives the Flory model of polymer melting, and we discuss its phase diagram. In Sec. III we discuss the height
representation of the loop model and how it leads to a conformal field theory in the scaling limit. We make use of
the field theory in Sec. IV to calculate the central charge and scaling exponents, which we check against numerical
transfer matrix computations in Sec. V. In Sec. VI we propose a phase diagram for the generalized six-vertex and
eight-vertex models. We end with a discussion of the scaling of semiflexible compact polymers, and we argue that
the generalized eight-vertex model furnishes a rather complete description of non-compact semiflexible polymers. An
appendix is reserved for a detailed discussion of the construction of the transfer matrices.

II. SEMIFLEXIBLE LOOP MODEL

Here we define the SFL model, and give a rough sketch of its phase diagram based on the limits of weak and strong
bending rigidity. The fact that the SFL model reduces to the F-model in the limit of unit loop fugacity [9], plays an
important role in guiding our intuition about the loop model. It also provides an exactly solvable line in the phase



diagram, against which the field theoretical and numerical results can be checked.

A. Definition of the model

The semiflexible fully packed loop model on the square lattice (the “semiflexible loop model”, or SFL for short) is
defined by filling the square lattice with loops drawn along the lattice edges. Allowed loop configurations satisfy two
constraints:

o Self avoidance — loops are not allowed to cross, and
e Full packing — every site is visited by exactly one loop.

On the square lattice with periodic boundary conditions, edges that are not covered by loops also form loops, as there
are two unoccupied edges associated with every site of the lattice. These we refer to as “ghost loops”.

Given the configurations of the semiflexible loop model, the Boltzmann weights are defined in the following way.
Every real loop is given weight ny,, and every ghost loop has weight ng. (In all the figures the real and ghost loops
are shown as black and gray respectively, whence the subscripts b and g.) The parameters ny, and n, act as fugacities
of the two loop flavors, and as such they control the average number of loops of each flavor [32]. They can be varied
independently as the number of ghost loops is not fixed by the number of real loops [15]. Furthermore, a weight wx
is assigned to each vertex of the lattice at which the real and ghost loops cross. For wx > 1 this has the effect of
disfavoring vertices at which the loop makes a 90° bend, or, in other words, the loops are semiflexible. The partition
function of the semiflexible loop model is

Z = Znév"nlgvgw)‘é , (1)
g

where the sum runs over all allowed loop configurations G. N, and N are the number of real and ghost loops,
respectively, while V' is the number of crossing vertices; these are the two rightmost vertices in Fig. 3. In the limit
np, — 0, with ng = 1, we recover the Flory model: Z/n}, counts compact polymer loops each weighed by w)‘é .

The semiflexible loop model can be thought of as the generalization of the FPL? model introduced in Ref. [15].
The FPL? model is given by the partition function, Eq. (1), with wx = 1. It has a critical phase for |ny|, |ng| < 2,
characterized by a power law distribution of loop sizes. For other values of the loop weights the model is non-critical
with a distribution of loop sizes cut off at a finite value (fixed by the correlation length). Below we will show that
the vertex weight wx, for each point in the critical phase of the FPL? model, produces a line of fixed points which
terminates in a Kosterlitz-Thouless transition.

B. Qualitative phase diagram

Rough, qualitative features of the phase diagram of the semiflexible loop model can be deduced from the limits of
zero and infinite bending rigidity. The motivation for developing a precise theory of the phase diagram, as mentioned
in the introduction, stems from the interest in the ny, — 0, ng = 1 case, which is the Flory model of polymer melting.
We are also motivated by the relation of the SFL model to the integrable six-vertex model, and its generalizations.

1. Flory model

In the Flory limit of the SFL model, the wx = 1 point is the compact polymer problem, which we have studied
previously [15]. Here one is concerned with enumerating all self-avoiding walks that visit every site of the lattice.
We have shown that compact polymers on the square lattice are a critical geometry characterized by non-mean-field
scaling exponents which can be calculated exactly from a field theory.

As wx is increased away from one, we are dealing with a compact polymer with a bending rigidity. In the limit
wx — 0o we arrive at a frozen phase in which the density of vertices at which the polymer bends goes to zero. This
is the polymer crystal. At an intermediate weight wx = w§ (1 < w§ < 00) there will be a melting transition. One of
the important unresolved problems is the nature of this transition. Here we construct an effective field theory of the
Flory model and show that the melting transition is continuous.
