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Résumé

Nous nous intéressons aux approches par EDP pour la régularisation d’images multivaluées, et
leurs applications à une large classe de problèmes d’intérêts. L’étude et la comparaison des
méthodes existantes nous permet à la fois de proposer un cadre mathématique commun mieux
adapté aux interprétations géométriques locales de ces EDP, mais aussi de concevoir des schémas
numériques efficaces pour leur mise en oeuvre. Nous développons de cette façon une nouvelle
approche de régularisation multivaluée vérifiant certaines propriétés géométriques locales impor-
tantes, qui peut être utilisée dans de nombreuses applications différentes. Nous abordons ensuite
le problème lié à la régularisation de données multivaluées contraintes. Un formalisme varia-
tionel est proposé afin de traiter dans un cadre unifié, des données de direction comme les champs
de vecteurs unitaires, de matrices de rotation, de tenseurs de diffusion etc. Les solutions ap-
portées sont analysées et utilisées avec succès pour résoudre de nombreux problèmes, notamment
la régularisation et l’interpolation d’images couleurs, la visualisation de flots, la régularisation de
mouvements rigides estimés à partir de séquences vidéos, et l’aide à la reconstruction de réseaux
cohérents de fibres dans la matière blanche du cerveau, à partir de la régularisation d’images
d’IRM de diffusion.

Abstract

We are interested in PDE-based approaches for vector-valued image regularization, and its ap-
plications for a wide class of interesting image processing problems. The comparative study
of existing methods allows us to propose a common mathematical framework, better adapted
to understand the underlying diffusion geometry of the regularization processes, as well as de-
sign corresponding numerical schemes. Thus we develop a new multivalued image regulariza-
tion approach that verifies important geometric properties. It can be used in a large range of
regularization-related applications. We also tackle the problem of constrained regularization and
propose a specific variational formalism unifying in a common framework, the equations acting
on direction features : unit vectors, rotation matrices, diffusion tensors, etc. Proposed solutions
are analyzed and used with success to solve applications of interest, such as color image reg-
ularization and interpolation, flow visualization, regularization of rigid motions estimated from
video sequences, and aided reconstruction of coherent fibers network models in the white matter
of the brain, using DT-MRI imaging.
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Introduction

Les approches variationnelles et les outils EDP (équations aux dérivées partielles) ont depuis la
fin des années 1980 soulevés un vif intérêt dans le domaine du traitement d’image. La possibilité
de travailler avec des équations non-linéaires, a permis à la fois d’améliorer de façon significa-
tive l’ensemble des algorithmes essentiels pour le traitement d’image (segmentation, restauration,
recalage, etc.), mais aussi de définir un cadre mathématique rigoureux pour leur étude théorique.
Nous nous intéressons ici aux méthodes de régularisation de données. Ces types d’approches sont
très utilisés en traitement d’images car ils permettent d’introduire un à-priori de régularité sur les
données considérées, et de nombreuses applications concrètes en découlent directement. Ce sujet
a été particulièrement bien traité dans le cas de la régularisation d’images scalaires, c’est-à dire
en niveau de gris (une valeur par pixel). Plus récemment, des EDP de régularisation agissant
sur des image multivaluées contraintes ou non contraintes ont été proposées, en se basant sur des
formalismes très variés.

Cette thèse se propose de faire un point sur ces nombreuses formulations EDP pour la
régularisation de données multivaluées contraintes et non contraintes, et de contribuer à étendre
certains aspects de ces méthodes. Nous avons organisé ce document de la façon suivante :

Chapitre 1
Nous essayons ici de donner un aperçu rapide de l’intérêt des méthodes variationelles et EDP pour
résoudre des problèmes de traitement d’images, notamment ceux reliés à la vision par ordinateur.
Nous définissons aussi les notations mathématiques et les concepts de bases utilisés tout au long
de cette thèse.

Chapitre 2
Dans ce chapitre, nous proposons un état de l’art sur les méthodes de régularisation existantes,
aussi bien dans le cas scalaire que dans le cas multivalué contraint et non-contraint. Nous nous
efforçons de lier ces nombreuses méthodes entres elles en les comparant et en illustrant leur
comportement local pour le problème particulier de la restauration d’images couleurs.

Chapitre 3
Nous contribuons à comprendre plus précisément les différentes méthodes de régularisation multi-
valuées, en proposant un formalisme mathématique commun qui permet de développer et de relier
les différents niveaux d’interprétations des EDP de diffusion correspondantes (des approches les
plus globales aux plus locales). Cela nous permet à la fois de proposer une nouvelle EDP de
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régularisation vérifiant certaines propriétés géométriques souhaitées, mais aussi de proposer un
schémas numérique commun pour implémenter toutes ces EDP.

Chapitre 4
Cette partie nous permet d’illustrer de manière pratique l’analyse proposée dans le chapitre
précédent. Nous appliquons en effet nos équations de diffusion multivaluées pour résoudre
différents problèmes traitant des images couleurs, notamment la restauration et l’interpolation,
ainsi que la visualisation de champs de vecteurs.

Chapitre 5
Nous nous intéressons ici à l’extension de nos méthodes au cas multivalué contraint. L’unification
des EDP de régularisation agissant sur des données de direction (vecteurs unitaires, matrices de
rotations, etc.) est réalisée grâce à un formalisme variationnel considérant des images d’ensemble
de vecteurs orthonormés. Cela contribue à étendre les types d’images multivaluées qui peuvent
être traitées par des EDP de régularisation. Nous proposons notamment des approches originales
permettant de restaurer des champs de matrices de rotation, et des images de tenseurs de diffusion.

Chapitre 6
Les applications de nos EDP multivaluées contraintes sont illustrées dans ce chapitre, avec trois
problèmes différents : D’abord nous traitons le cas ’classique’ de la restauration de champs de
direction et d’images couleurs avec bruit chromatique. Puis nous nous attaquons aux problèmes
plus novateurs de la régularisation de mouvements estimés de caméra, afin de permettre des re-
projections d’objets virtuels 3D dans des séquences filmées de manière plus réaliste, et de la
restauration d’images IRM de tenseurs de diffusion, autorisant en particulier la construction de
modèles de réseaux cohérents de fibres dans la matière blanche du cerveau.

Annexe :
Dans cette dernière partie, nous faisons partager notre expérience sur le travail de programma-
tion nécessaire pour implémenter des flots de régularisation par EDP. Nous commentons notam-
ment des programmes en C , permettant l’application des algorithmes nouveaux présentés dans le
chapitre 3 de cette thèse.

? Dans ce manuscrit, nous nous sommes toujours efforcés de mettre en avant la motiva-
tion générale qui nous a amené aux développement mathématiques de nouvelles équations de
régularisation. Une des motivations importante de ce travail de recherche a été de valoriser
l’aspect applicatif de nos méthodes, en illustrant dès que possible les algorithmes correspondant
pour des problèmes concrets de traitement d’images. Nous espérons ainsi avoir soulevé d’une part
de nouvelles questions théoriques, et apporté d’autre part des méthodes originales et efficaces, sur
la base de l’utilisation des EDP de régularisation ?



Introduction

PDE (partial differential equations) and variational methods have raised a strong interest since
the end of the 1980’s, in the image processing field. The ability to deal with nonlinear equations
significantly improved a whole range of image processing algorithms (segmentation, restoration,
registration, etc.). But it also defined a rigorous mathematical framework for their theoretical stud-
ies. We are interested more particularly in data regularization methods. This kind of approaches
is very often used to solve image processing problems, because it introduces a prior regularity
knowledge on the considered data, which have frequently to satisfy smoothness constraints. This
subject has been deeply analyzed for the case of scalar images, i.e gray level data (a single value
per image pixel). More recently, regularization PDE’s acting on multivalued images have been
proposed, relying on various formalisms.

In this thesis, we propose to review this large set of constrained and unconstrained multivalued
regularization methods, and contribute to extend some aspects of these approaches. This docu-
ment is organized as follows :

Chapter 1
We try to give a general idea of variational and PDE-based methods which are useful to solve
image processing problems, particularly those linked to computer vision. We also define the usual
mathematical notations and basic concepts used throughout this thesis.

Chapter 2
In this chapter, we propose a state of the art on existing PDE regularization methods acting on
scalar images, and constrained or unconstrained multivalued datasets. We try to link these meth-
ods together as much as possible, by comparing and illustrating them with the problem of color
image restoration.

Chapter 3
We contribute to understand more precisely the different multivalued regularization methods, by
proposing a common mathematical formalism that allows to stress the different interpretation lev-
els (local and global) of the corresponding diffusion PDE’s. On one hand, it allows to propose a
new multivalued regularization PDE respecting desired geometric properties. On the other hand,
it naturally design an unified numerical scheme that can be used to implement all these regular-
ization equations.
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Chapter 4
This part illustrates from a practical viewpoint, the analysis proposed in the previous chapter.
Indeed, we apply our multivalued diffusion PDE’s in order to solve different problems related to
color images (restoration and interpolation) and flow visualization.

Chapter 5
We are interested in the extension of our regularization methods to the constrained multivalued
case. The unification of the diffusion PDE’s acting on direction features (such as unit vectors,
rotation matrices, etc.) is done using a general variational formalism considering images of or-
thonormal vector sets. It contributes to extend the different data types that can be handled by
regularization PDE approaches. Particularly, we propose original methods allowing to restore
fields of rotation matrices, and diffusion tensor images.

Chapter 6
The application of our multivalued and constrained PDE’s is illustrated in this chapter, with three
different problems of interests. We first tackle the ’classical’ cases of direction field restoration
and chromaticity denoising of color images. Then, we address more recent and difficult issues :
the regularization of estimated camera motions, in order to project smoothly virtual 3D objects
into real movies. Then, the restoration of DT-MRI tensor images, allowing the computation of
regularized and coherent models of fiber networks in the white matter of the brain.

Annex :
In this last part, we share our coding experience. We propose C source code that implements PDE
regularization flows, more particularly the original one presented in chapter 3 of this thesis.

? In this document, we always tried hard to explain the general motivation leading to the mathe-
matical developments of new regularization equations. One of the main motivation of this research
work has been the illustration of applicative aspects of the proposed methods, in order to deal with
various and concrete regularization-related problems, encountered in image processing. Thus, we
hope that we raised new theoretical questions and we brought new and efficient regularization
methods.



Chapter 1

General Context and Notations

This chapter is intended to describe the general context of PDE’s and related computer
vision problems. It quickly sums up the important stakes and contributions in this large field
and emphasizes the specific interests of such approaches for image processing. We also define
the mathematical notations used in the sequel of this manuscript and remind some classical
results on variational calculus and PDE evolutions.

1.1 PDE’s and Computer Vision : A quick tour

Preliminary note : For three years, my close friends and my family had no precise idea about
what I did in front of my computer everyday. This section is intended to popularize computer
vision and image processing for them and explain how we can solve some of the related problems
within the framework of PDE’s and variational tools, as well as it gives the general context where
our work takes place. I would like to apologize to the initiated reader for the over-simplified view
of this large scientific domain and invite him to go directly to the notations section 1.2.

1.1.1 What is Computer Vision ?

Computers are anywhere. Since the invention of the computer sciences, the technology has raised
with an exponential speed and many dreams that were unbelievable before became realizable.
Only few years were needed to see the growing power of the processors, the emergence of graph-
ical screens, the extreme miniaturization and the cheap prices of electronic components, allowing
the democratization of computers in the industries and at home (Fig.1.1 and [195]).
Nowadays computers assist humans for a large range of tasks : from communication tools (cellu-
lar phones, computer networks) to automated industrial processes (car industry, CAD modeling)
going through leisures and art (video games and digital painting).
Despite the fact that computers are now powerful enough to execute almost any automated jobs as
complex as desired, one of the promised revolution has still to come : The ability for computers
to think and to react to the surrounding environment, like humans do.
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(a) Evolution of graphical screens (b) Miniaturization of computers

Figure 1.1: Evolution of the computer technology.

Computers can be easily connected with video cameras, micros, and other acquisition peripherals
that supply measures of the real world (photons, air vibrations, electromagnetic waves, X-ray,
etc.), but the automatic interpretation of these data is not fully resolved yet. For instance, binary
data coming from a digital camera is not enough to make a computer seeing, just like the electric
current propagating in our optical nerves doesn’t suffice to speak about human vision : our brain
is the required element to interpret these raw input stimuli. Simulating the understanding of
the digital measures coming from the input peripherals is the key point to overstep the current
limitations of the computer use. Actually, this is a very hard problem and its resolution implies
the creation of some artificial intelligence. It is one of the important aim of the computer sciences
today.

One of the expected way of creating computer intelligence is to copy the different abilities of a
working model in the nature : the human (more often than not). In this sense, computer input
peripherals are analogous to human senses (Fig.1.2).

(a) Hearing (b) Vision (c) Touch

Figure 1.2: Some of the human senses and their computer analogues.

Trying to simulate the ability of the brain to treat the informations coming from the outside world
has opened new research areas in computer sciences, each of them concerned with specific parts of
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our global understanding process (from the lowest level of comprehension to the highest). These
branches are for instance : Learning, Reasoning, Speech Recognition, Computer Vision.

Computer vision is then the field interested in creating computer algorithms that could analyze and
understand the underlying semantic informations contained in digital images. These informations
of interest include for instance :

• 3D understanding, or how to perceive the original 3D world behind images shot by a digi-
tal camera ? Actually, this problem has been one of the most studied in the computer vision
literature (see [71, 73] for a complete theory on this subject). Nowadays, computer algo-
rithms are reaching the goal of retrieving 3D models from a set of photographs (Fig.1.3).

(a) Two photographs of a human face (b) Reconstructed 3D computer model from (a) [68]

Figure 1.3: Understanding the 3D behind photographs.

• Shape and object recognition, or how to discriminate different objects and shapes in a
natural image ? This is the matter of segmentation algorithms. See [122, 123] for classical
works on this subject, with different mathematical formulations. Automated segmentation
algorithms are now more and more used to track objects in video sequences (Fig.1.4b).

• Simple models of images, or how to simplify images, so that only important image features
are preserved ? Regularization algorithms are designed to perform such low-level tasks
(Fig.1.4c), and are often used as low-level processes before (or in parallel with) any other
computer vision algorithm. See [2, 14, 78, 79, 97, 143] for pioneering works in this area. In
this thesis, we will focus on these regularization schemes and apply them in order to handle
a wide range of image processing problems as for instance : image restoration, interpolation
and magnification, flow visualization, simplification of fibers in the white matter of the brain
and stabilization of camera motions.

This is of course a non-exhaustive list of computer vision objectives. Other useful schemes have
been proposed for instance to find transformations between two images (image registration al-
gorithms) or to compute estimated objects velocity in video sequences (optical flow algorithms).
The point is that one wants to automate specific abilities of the human vision using computers, and
even enhance it if possible. Indeed, possible industrial applications are numerous : from the assis-
tance of the medical diagnostics [50, 70] to the detection of drowning people in swimming pools
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(a) Original image (b) Segmented image [139] (c) Regularized image [153]

Figure 1.4: Retrieving image features and shapes : segmentation and regularization algorithms.

[144] going through the realization of visual effects for movies and advertising [150], computer
vision algorithms are today invading the industry products and the general public market.
The formalization of these algorithms lies on various mathematical frameworks. Some of them are
using statistical and discrete theories, while others are based on variational tools and continuous
formulations. The fact is that no unique image definitions exist, then a wide variety of theoretical
results can be successfully applied to solve computer vision problems. In this thesis, we propose
to focus on PDE-based methods.

1.1.2 The framework of PDE’s

Firstly created to describe physical laws and natural motions of mechanic objects and fluids
(strings, water, wind [193]) partial differential equations (PDE’s) have been widely studied and
extended to other branches of mathematics and physics. This kind of equations is particular in
the sense that variables and their derivatives appear in the equation expression. For instance, the
following PDE :

∂2φ(t)

∂t2
+ ω2

0 φ(t) = 0

states the physical law followed by a simple harmonic oscillator, leading to the motion φ(t).
PDE’s also appear in optimization problems when one wants to minimize energy functionals, via
the Euler-Lagrange equations (see further section 1.2.3).

In the late 80’s, the computer vision community started to be interested in such equations and
found interesting properties well adapted to handle classical computer vision problems (see [66]
for a state-of-the-art review in 1995). Indeed, PDE’s can describe highly non-linear and itera-
tive continuous object evolutions like curves, surfaces or vector fields. In the other hand, many
computer vision algorithms try to fit a model (image, corner, edge, surface, etc.) with image ob-
servations (photographs, video, MRI data or other complex image modalities) in order to retrieve
the observed image semantic.
Representing such models with continuous surfaces, curves or vector fields and evolving them
with PDE’s has then become a natural way to proceed, and a lot of algorithms based on this idea
have been proposed so far in the computer vision literature. We present some classical PDE-based
algorithms and briefly explain how the modeling of curves and surfaces may occur.
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• Image regularization : A noisy 2D image may be considered for instance as a surface I :

(x, y)→ (x, y, I(x, y))

With this kind of model, regularizing the image I may be equivalent to find a smooth surface
similar enough to the original noisy one. This can be done by minimizing energy function-
als or directly designing PDE’s with specific regularization behaviors that evolve the noisy
surface (Fig.1.5). Note that other interesting approaches can be conceived. Regularization
PDE-based algorithms constitute the main topic of this thesis and will be analyzed through-
out this document, starting from a state of the art, in chapter 2.

(a) Noisy input image (b) Restored image

(c) Noisy surface corresponding to (a) (d) Regularized surface corresponding to (b)

Figure 1.5: Image restoration, treated as the evolution of a surface.

• Image segmentation : A classical way of segmenting images with PDE’s is to model a
closed contour with a 2D curve and then to evolve it from an initial position (random or
user-defined) until it fits the exact shape of the objects present in the picture (Fig.1.6). Like
image restoration purposes, a PDE is describing the curve evolution and may come from
energy minimization or from pertinent local segmentation heuristics.

Abundant literature on this subject can be found for instance in [34, 42, 57, 98, 101, 119,
136, 137, 134, 133, 135, 138, 155, 159, 160].
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(a) Original color image with initialization curve (b) Segmented color image [152]

Figure 1.6: Image segmentation, treated as the evolution of a 2D contour curve.

• Image registration and Optical flow : The idea is to find a function allowing to trans-
form an image to another one. It is particularly used to detect motions in video sequences
(by registering consecutive frames), or readjust two images in a way that they fit together
(applications in medical images analysis). Here, a vector field models the “pixels motion”
between the two images and a PDE is used to describe its evolution until it converges to the
expected image transformation (Fig.1.7).

Interesting survey and references on this subject can be found in [5, 3, 6, 11, 13, 15, 17, 18,
49, 56, 67, 74, 94, 98, 109, 117, 124, 151, 172, 183, 192].

(a) Direct superposing of two MRI images of the brain (b) Superposing after image registration [49]

Figure 1.7: Image registration, treated as the evolution of a displacement field.

• Shape from Shading : This new and challenging problem consists in reconstructing a 3D
representation of an object from a single photograph of it. It is possible if one looks at the
intensity variations of the image pixels due to the shadows and the different illumination
conditions during the snapshot. PDE’s can describe the flow of an originally flat 3D surface
converging to the 3D shape of the real object (Fig.1.8a).

See [95, 96, 148] for a nice panorama of the research in this area.
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• Shape simplification : Like image restoration, shapes modeled with 3D surfaces can be
simplified by regularization PDE’s. There are for instance applications in medical imag-
ing, by studying the particular structures of biological objects (for instance the brain, as
illustrated in Fig.1.8b and [93]).

(a) Shape from shading [149]

(b) Brain model simplification [87, 93]

Figure 1.8: Two other computer vision problems, treated as 3D surface evolutions.

This application list is obviously incomplete, but it illustrates the high interest in PDE-based
methods in computer vision and the large number of applications that follows. Other examples
are illustrated for instance in [129, 130]. 1

From now on, we will focus on the pioneering and particular problem of image regularization with
PDE’s methods. We close now our general review on computer vision and PDE’s formulations
and introduce some necessary notations used in the sequel of this manuscript.

1Some of the images illustrating section 1.1 were kindly provided by C. Chefd’hotel, G. Hermosillo, E. Prados
and M. Rousson / ODYSSEE, INRIA Sophia-Antipolis
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1.2 Mathematical notations

1.2.1 Definition of images

When dealing with digital image analysis, one has to properly define the notion of image. Nowa-
days, images on computers are stored using discrete representations of the data but one generally
assumes that the discretization is thin enough (in spatial and value steps) to be able to approxi-
mate these discrete signals by continuous mathematical functions (or at least piecewise continu-
ous). This is debatable and we refer the reader to [75, 110] for interesting discussions about this
metaphysic subject. Nevertheless, the possibility to apply classical mathematical tools as well
as the good results obtained with continuous models have often illustrated that this hypothesis is
interesting in any way and we will use it from now on.

Let Ω ⊂ R
p be a closed spatial domain of dimension p. Ω is the generic name for the definition

domain of our images, curves or surfaces. p ∈ N
+ is the dimension of the underlying space : for

the most part of this thesis, p = 2 which means that we deal with 2D images. Anyway, we will
sometimes consider volumes (p = 3) and functions defined on a subset of R (p = 1).
We can now define

• a scalar image/volume :

I :

∣

∣

∣

∣

∣

Ω ⊂ R
p → R

x→ I(x)

where x = x when p = 1, x = (x, y) when p = 2 and x = (x, y, z) when p = 3.

Even if pixel values of digital images are discrete and bounded, we assume that I(x) takes
its values in the continuous space R. Note that this kind of image can represent only gray-
valued images or volumes (a single intensity per pixel).

• a vector-valued image/volume :

I :

∣

∣

∣

∣

∣

Ω ⊂ R
p → R

n

x→ I(x)

Here, each image point is a vector of dimension n ∈ N
+. Note that color images correspond

to n = 3, with vector values in (R,G,B) (or another color space, see [147]).

We denote by Ii : Ω → R, the ith vector component of I, also called image channel (with
1 ≤ i ≤ n). This is obviously a scalar image itself. Note then that

∀x ∈ Ω, I(x) = ( I1(x), I2(x), ..., In(x) )T

Generally, we will denote multi-valued variables by bold letters. This includes vector-
valued as well as matrix-valued images (i.e when I : Ω→ R

p×q)

To be more concise, we will often omit the spatial variable x in the expressions, i.e we will write
I instead of I(x), when no ambiguities are possible.
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1.2.2 Image derivatives

The derivative of the image I with respect to the variable a is written

Ia =
∂I

∂a

For vector-valued images I, we have Ia(x) ∈ R
n and

Ia =

(

∂I1
∂a

,
∂I2
∂a

, ... ,
∂In
∂a

)T

The derivation of a scalar image I with respect to its spatial coordinates x is called the image
gradient and is noted by ∇I :

{

∇I = ( Ix , Iy )T ( when p = 2 )

∇I = ( Ix , Iy , Iz )T ( when p = 3 )

It forms a vector-valued field ∇I : Ω → R
p representing the maximum variation directions and

magnitudes of the scalar image I . The image of the gradient norms ‖∇I‖ is often used in image
analysis, since it gives a scalar and pointwise measure of the image variations (Fig.1.9).







‖∇I‖ =
√

I2
x + I2

y ( when p = 2 )

‖∇I‖ =
√

I2
x + I2

y + I2
z ( when p = 3 )

As for directional derivatives in a direction u ∈ R
p, we use the notations :

Iu =
∂I

∂u
= ∇I . u

It is for 2D images (p = 2) and 3D volumes (p = 3) :










if p = 2, u = (u, v)T , Iu = uIx + vIy

if p = 3, u = (u, v, w)T , Iu = uIx + vIy + wIz

In the same way, the second derivative of a scalar image I with respect to a then b is denoted by

Iab =
∂2I

∂a∂b

and we define the Hessian of I as the matrix H of the second derivatives with respect to the spatial
coordinates :

H =

(

Ixx Ixy
Iyx Iyy

)

The matrix H will be largely used throughout this thesis. We consider that our images are regular
enough, Ixy = Iyx. Then, H is a symmetric matrix. We will also use the Laplacian operator ∆,
defined as

∆I = trace (H) = Ixx + Iyy
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(a) Scalar image I : Ω → �
(b) Image ‖∇I‖ =

�
I2x + I2y

(b) Image Ix (c) Image Iy

Figure 1.9: Spatial derivatives of a scalar image I .

As for second directional-derivatives in a direction u ∈ R
p, the following notations are equiva-

lent :

Iuu =
∂2I

∂u2
= ∇ (∇I.u) .u = uTHu = trace

(

HuuT
)

It is for 2D images (p = 2) and 3D volumes (p = 3) :










when p = 2, u = ( u, v ), Iu = u2Ixx + 2uvIxy + v2Iyy

when p = 3, u = ( u, v, w ), Iu = u2Ixx + 2uvIxy + 2uwIxz + v2Iyy + 2vwIyz + w2Izz

For a vector-valued image I, the notion of gradient and Hessian is more complex, and we will
generally use the gradient and Hessian of its different image channels Ii, respectively written ∇Ii
and Hi. Besides, we extend the concept of the gradient norm for vector-valued images, with the
vector gradient norm ‖∇I‖ :

‖∇I‖ =

√

√

√

√

n
∑

i=1

‖∇Ii‖2 =
√

Ix . Ix + Iy . Iy (1.1)

Like scalar configurations, the image of ‖∇I‖ is a useful scalar and pointwise measure of the
local vector variations (both in term of vector norms and orientations) of the image I.
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1.2.3 Calculus of variations and PDE’s

Calculus of variations is a mathematical tool that teaches us how to find extrema of functionals
(expressions depending on function integrals rather than simple parameters), for instance :

min
I:Ω→ � E(I) =

∫

Ω
F (x, y, I(x, y), Ix(x, y), Iy(x, y)) dΩ (1.2)

Finding the function I that minimizes the functional E(I) is not a trivial problem. Nevertheless,
the Euler-Lagrange equations give a necessary condition that must be verified by I to reach a
minimum of E(I) :

∂F

∂I
− d

dx

∂F

∂Ix
− d

dy

∂F

∂Iy
= 0 (1.3)

To avoid the direct and difficult resolution of the PDE (1.3), a classic iterative method is used :
the gradient descent. Actually, equation (1.3) can be considered as the gradient of the functional
E(I). Starting from an initial function I0 and following the opposite direction of this gradient
leads to a local minimizer Imin of E(I) :











I(t=0) = I0

∂I
∂t = −

(

∂F
∂I − d

dx
∂F
∂Ix
− d

dy
∂F
∂Iy

)

In the general case when the considered functional E(I) is not convex, the starting point I0 must
be carefully chosen, ideally near the global minimum of the functional E(I). Choosing different
initializations I0 may lead to different results (different local minima).
Note that this PDE evolution has been parameterized with an (artificial) time variable t. It de-
scribes the continuous progression of the function I until it minimizes E(I). Then the PDE
velocity vanishes : ∂I

∂t = 0.

The Euler-Lagrange equations make the link between PDE’s evolution and gradient descents for
functional minimizations. Generally, we will be more interested in the gradient descent itself than
the functional minima, and we will often use the term PDE flows to describe such evolutions.
Please refer to [180] for an exhaustive theory about the calculus of variations.

1.2.4 Definition of tensors

In this thesis, we will generally use the term tensor to designate a symmetric and semi positive-
definite matrix. This is a slight abuse of notations, since a tensor is generally more than a simple
matrix (see for instance [1, 166] for detailed tutorials about tensor calculus), but we associate
the word ’tensor’ to the particular concept of diffusion tensors : indeed, a symmetric and semi
positive-definite n× n matrix T ∈ P(n) may be used to represent amounts of diffusion in privi-
leged spatial directions.
The generic term diffusion describes for instance :

• The spatial dispersions of the error in statistical calculus (in this case, diffusion tensors are
also named covariance matrices), see for instance [32, 100, 141, 116].
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• The local smoothing behaviors of regularization processes. This point will be particu-
larly detailed in chapters 2 and 3. Note that in these chapters, we will sometimes skip
the positive-definiteness properties, allowing then the tensors to represent inverse diffusion.

• The water molecule motion in some biological tissues fibers. The tensors reporting this
motion are encountered for instance in DT-MRI imaging (this subject will be tackled in
chapter 6).

As this thesis deals with diffusion tensors in two different contexts (DT-MRI images and regular-
ization PDE’s), we remind here some classical results that we have to keep in mind.

Let T = (tij) ∈ P(n) be a n× n tensor. We have then the following properties :

T is symmetric ⇐⇒ ∀i, j ∈ [1, n], tij = tji

T is semi positive-definite ⇐⇒ ∀x ∈ R
n, xTTx ≥ 0

Actually the meaningful informations contained in a tensor T can be retrieved from its spectral
decomposition giving its eigenvectors uk ∈ R

n and its eigenvalues λk. These elements verify
interesting properties :

T is semi positive-definite ⇐⇒ ∀k ∈ [1, n], λk ≥ 0

T is real and symmetric ⇐⇒ ∀k, l ∈ [1, n], uk . ul = δkl =

{

1 (if k = l)

0 (if k 6= l)

It means that the eigenvectors uk form an orthonormal vector basis in R
n, and T may be written

as :
T = R Γ RT (1.4)

where Γ ∈ R
n×n is the diagonal matrix of the eigenvalues λk

Γ = diag(λ1, λ2, . . . , λn) =













λ1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 λn













and R is a rotation matrix whose columns ũk are built from the eigenvectors uk of T, such that
the determinant of R is det(R) = +1.

R = ( ũ1 | ũ2 | . . . | ũn ) where ∀k = 1..n, ũk = ±uk

The formulation (1.4) clearly separates the orientation R and the diffusivities Γ of the tensor T.
A natural graphical representation of a diffusion tensor T is then a n-dimensional ellipsoid whose
axes and radii are respectively the eigenvectors uk and the (positive) eigenvalues λk.
Fig.1.10 illustrates this representation for the case of 2D and 3D diffusion tensors.
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(a) 2D tensor (n = 2) (b) 3D tensor (n = 3)

Figure 1.10: Diffusion tensor representation with ellipsoids.

Note also that developing T in formula (1.4) gives :

T =

n
∑

k=1

λk uku
T
k

This second formulation emphasizes the fact that T is the sum of weighted elementary orthogonal
tensors (uku

T
k ). The n eigenvalues of such elementary tensors (uku

T
k ) are respectively :

• 0, associated to arbitrary n− 1 orthogonal eigenvectors vl such that

vl⊥uk (l = 1...(n− 1))

• 1, associated to the eigenvector uk.

These elementary tensors can be viewed as thin ellipsoids with one axe of length 1 and the others
of length 0. They are well designed to represent the orientations of the vectors uk, without the
vector direction information. A whole tensor T is simply a combination of these (weighted)
orthogonal orientations.
When all the n eigenvalues λk of a tensor T have the same value λ > 0, there are no preferred
diffusion directions. Then the tensor is isotropic, corresponding to a weighted identity matrix :

T =
n
∑

k=1

λuku
T
k = λRRT = λId

In this case, we can’t speak of a specific tensor orientation. The tensor representation is then a
sphere with a radius λ, and the corresponding diffusion process is done with the same weight in all
the directions of the space. Detailled diffusion tensor theory and applications in image processing
can be found in [89, 121]

Bah oui, mais pourquoi t’as commencé une thèse, aussi ?

Lolo.
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Chapter 2

State of the Art and Motivations

We get to the heart of the matter and survey the range of PDE-based algorithms for image
regularization, proposed in the literature. First, we review the classical methods successfully
applied for scalar image regularization. Then, we examine and compare the proposed diffusion
PDE’s dealing with multivalued data, including the recent works on constrained feature regu-
larization (particularly direction vectors). All examples are illustrated and analyzed. Thus, we
emphasize the open questions investigated throughout this thesis.

2.1 Regularization of scalar images with PDE’s

For several years, regularization algorithms have attracted a growing interest in the computer
vision community. It consists in simplifying data in a way that only interesting features are pre-
served (see Fig.1.4c and Fig.1.5b).
Using regularization terms R in PDE’s formulations like ∂I

∂t = R , necessarily introduces the
additional notion of scale-space : the data are iteratively regularized and a continuous sequence
of smoother images I(t) is generated whereas the evolution time t goes by. A desired behavior of
such regularization algorithms is that the less significant data features disappear first, while the
interesting ones are preserved as long as they become unimportant themselves within the image
[7, 118, 126, 143, 194]. This concept is illustrated on Fig.2.1 : the woman’s face contour is firstly
well conserved compared to the noise, then it smoothly disappears.
Roughly speaking, regularization PDE’s may be seen as non-linear filters that simplify the image
little by little and minimize then the image variations. Note therefore that they generally don’t
converge towards a very interesting solution. Most of the time, the image obtained at convergence
(t→∞) is constant, corresponding to an image without any variations. This is actually the most
simplified image we can obtain. However, regularization terms constitute the key elements for
solving ill-posed computer vision problems [91] : restoration, segmentation, registration, surface
reconstruction, etc. It allows variational and PDE-based algorithms to find realistic and smooth
solutions. Indeed, when modeling real world’s objects on computers using curves or surfaces, one
generally expects differentiable models (eventually piecewise differentiable) since these objects
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(a) Initial image I0 (b) t = 200 (c) t = 1000 (d) t = 5000

Figure 2.1: Regularization PDE’s and the notion of scale-space.

are often quite regular and too many discontinuities should be avoided. This constraint is usually
translated into some smoothness properties of the PDE flows, converging into solutions that are
regular enough. This is the role of the additive regularization term R, which may come from an
additive smoothness energy term in the minimizing functional, if any.
Understanding the exact behavior of regularization PDE’s has then stakes in the whole range
of computer vision algorithms. For that reason, many PDE-based regularization methods acting
on scalar images (and more recently on vector-valued images) have been proposed so far in the
literature. In the following, we propose to describe some of the most classical ones.

Note that denoising algorithms are usually based on a regularization term R coupled with a data
attachment term (Inoisy−I) (also called fidelity term). Basically, it avoids the expected solution at
convergence to be too different from the original noisy image (not constant, by the way) (Fig.2.1).

∂I

∂t
= R+ (Inoisy − I)

(a) Noisy scalar image
(b) Only Regularization term :
∂I
∂t

= R. (after 200 it.)
(c) Regularization + Data attachment :
∂I
∂t

= (I0 − I) + R. (after 200 it.)

Figure 2.2: Regularization term for image restoration.

Another classical restoration technique is done by stopping the pure regularization flow ∂I
∂t = R

after a finite number of iterations.
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In this state of the art, we describe the different classes of PDE methods that regularize 2D images.
The matching piece to these equations for 3D volumes (or higher dimensional fields) is quite
similar and can be found in the cited references.

2.1.1 Isotropic smoothing

Isotropic regularization is a natural way to smooth and simplify data and has consequently
been reached by several mathematical formulations : From the restoration scheme proposed by
Tikhonov in [170] to the classical linear filtering of images (in the Fourier spectral space for
instance [76]), the proposed methods all lead to the same regularization behavior. Using a varia-
tional formalization, it may be understood like this :
Let Inoisy : Ω → R be an irregular (noisy) 2D scalar image we want to regularize. The noise is
considered as high frequency variations ν with low amplitude, added to the pixels of the regular
image Iregular.

Inoisy = Iregular + ν

To regularize Inoisy, a common idea is to minimize its variations, estimated by ‖∇I‖. The corre-
sponding variational problem has been initiated in [170] as the minimization of the functional :

min
I:Ω→� ETikhonov(I) =

∫

Ω
‖∇I‖2 dΩ (2.1)

Note that the original functional in [170] also consists in an additional data attachment term
‖Inoisy − AI‖ originally used to restore images filtered by the linear operator A. Actually, the
minimum of such a functional (2.1) is known : a constant image, since thenETikhonov(Iconst) =

0. Nevertheless, the important point we emphasize here is the behavior of gradient descent of the
regularization term alone. It will be more generally the case in the whole chapters 2 and 3.
Using the Euler-Lagrange equations (1.3) gives the following gradient descent (PDE) that mini-
mizes ETikhonov(I), starting from the initial noisy image Inoisy.















I(t=0) = Inoisy

∂I

∂t
= ∆I

(2.2)

The regularization term ends up with the well known heat equation, used in physics for instance
to describe heat flows through solids. This kind of PDE is called a diffusion equation.

Koenderink noticed in [108] that the solution of (2.2) at a particular time t is the convolution of
the original image Inoisy with a normalized 2D Gaussian kernel Gσ of variance σ =

√
2t :

I(t) = Inoisy ∗Gσ i.e I(t)(x, y) =

∫∫

Inoisy(x− u, y − v) Gσ(u, v) du dv

with

Gσ =
1

2πσ2
exp

(

−x
2 + y2

2σ2

)

and σ =
√

2t
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which means that the regularization is linear (based on a convolution).

The regularization behavior is also clear : the signal is blurred little by little in an isotropic way
during the PDE evolution (Fig.2.3). Note that convolving an image by a Gaussian kernel is equiv-

(a) Noisy image Inoisy (b) Result of the Heat equation (2.2) after respectively 5, 10 and 50 iterations

Figure 2.3: Heat equation applied on a noisy scalar image.

alent to multiply the Fourier transform of this image by another Gaussian kernel : the isotropic
regularization behaves then as a low-pass filter suppressing high frequencies in the image I .
Unfortunately, image contours are high frequency signals as well as noise. As illustrated in
Fig.2.3, they are quickly blurred by such an isotropic scheme. The need to find more complex
non-linear and anisotropic regularization methods has then quickly appeared (in particular for
image restoration purposes).

Please note that in this thesis, we will use the term anisotropic as the opposite of isotropic, i.e
to designate a regularization process that doesn’t smooth the image with the same weight in all
the spatial directions. In the literature, some authors have different definitions. For instance,
Weickert [188] introduces the notions of homogeneous and inhomogeneous filtering, as well as
different definitions for the terms isotropic and anisotropic.

2.1.2 Perona-Malik regularization

To overcome the limitations of linear methods leading to isotropic smoothing, Perona and Malik
[143] proposed a nonlinear extension of the heat equation (2.2). The idea is built on the fact that
the heat equation can be written in a divergence form :

∂I

∂t
= ∆I = div (∇I)

Adding a function c(‖∇I‖) bounded in [0, 1] in the divergence allows to control more precisely
the regularization process :

∂I

∂t
= div (c(‖∇I‖)∇I) (2.3)

where c : R → R is a decreasing function vanishing on edges (high gradients) in order to stop
the diffusion, and close to 1 on quite regular regions (low gradients) for an isotropic smoothing
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therein. Perona-Malik proposed :

c(‖∇I‖) = exp

(

−‖∇I‖
2

K2

)

(2.4)

K is a fixed gradient threshold that differentiates homogeneous areas and regions of contours.

In order to understand the exact diffusion behavior of the PDE (2.3), a specific decomposition of
this equation has been proposed in [46, 112] :

∂I

∂t
= cξ Iξξ + cη Iηη (2.5)

where cξ = c(‖∇I‖) and cη = c
′
(‖∇I‖)‖∇I‖ + c(‖∇I‖) , i.e using the proposed function

(2.4) :

cξ = exp

(

−‖∇I‖
2

K2

)

and cη = exp

(

−‖∇I‖
2

K2

)(

1− 2
‖∇I‖2
K2

)

Iξξ and Iηη denote the second derivatives of I in orthogonal directions ξ and η and can be seen as
1D oriented Laplacian :

Iξξ =
∂2I

∂ξ2
= ξTHξ and Iηη =

∂2I

∂η2
= ηTHη where H is the Hessian of I .

The unit vectors η and ξ are respectively defined by the gradient direction and its orthogonal :

η =
∇I
‖∇I‖ and ξ = η⊥

Note that ξ is everywhere tangent to the isophote lines I(x, y) = a, i.e to the contours in the
image. The set (ξ, η) is then a moving orthonormal basis whose configuration depends on the
current point coordinate x = (x, y) (Fig.2.4).

ξ

η

ξ

η
I(x,y)=a

(x0,y0)

(x1,y1)

Figure 2.4: An image contour and its moving vector basis ( ξ , η ).
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Thus, the equation (2.5) : ∂I
∂t = cξ Iξξ + cη Iηη can be interpreted as two coexistent and

oriented 1D heat flows that smooth the image respectively in the direction of the isophotes ξ with
a weight cξ , and in the direction of the gradient η with a weight cη .
In this respect, (η, ξ, cη , cξ) defines the local diffusion geometry of the Perona-Malik process.
As cξ ≥ cη , the resulting smoothing is anisotropic, mainly directed by the image isophotes and
preserving then the image contours. A result of the Perona-Malik flow is illustrated on Fig.2.5.

(a) Noisy image (b) 20 iterations (c) 40 iterations (d) 100 iterations

Figure 2.5: Perona-Malik flow applied on a noisy scalar image.

Image features are obviously better preserved during the PDE flow (2.3) than with the isotropic
one (2.2). Nevertheless, a small amount of noise doesn’t vanish and is even enhanced.
Unfortunately, the function c proposed in (2.4) may lead to a negative coefficient cη :

cη = exp

(

−‖∇I‖
2

K2

)(

1− 2
‖∇I‖2
K2

)

then cη < 0 , if ‖∇I‖ > K√
2
.

It conducts to an inverse diffusion on some image points, even for regions where ‖∇I‖ < K

(assumed to be a-priori quite homogeneous).
Inverse diffusion is an unstable process that enhances image features, and in this case, the noise.
The Perona-Malik formulation is then ill-posed, despite the quite good experimental results ob-
tained with this method. The complete study of its stability has been deeply investigated in
[102, 189, 190] : the authors especially noticed that the classical discretization schemes used
to implement the Perona-Malik flow (2.3) behave actually as numerical stabilizers of the method.

After all, the Perona-Malik formulation has been the starting impetus for a huge literature on
scale space methods using diffusion PDE’s. We will quickly review the main approaches that
have significantly improved this pioneering work, using the concepts of variational methods,
divergence formulations and oriented Laplacian based expressions.
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2.1.3 Variational methods and φ-functionals

The idea behind regularization with variational methods is as follows. Regularizing images can be
done by minimizing energy functionals measuring the global image variations. The acknowledged
aim is to suppress low image variations mainly due to the noise, while preserving the high ones
representing the image contours. Reference books describing data regularization with variational
tools are [37, 46, 19, 122, 156, 188] among others.

The interesting framework of the φ-functionals gathers some of these approaches and gives the
general way to proceed :
A noisy scalar image Inoisy can be regularized by minimizing the following φ-functional :

min
I:Ω→ � E(I) =

∫

Ω
φ(‖∇I‖) dΩ (2.6)

where φ : R → R is an increasing function, directing the regularization behavior and penalizing
high gradients. The minimization is performed via the corresponding diffusion PDE evolution,
coming from the Euler-Lagrange equations (1.3) of E(I) :



















I(t=0) = Inoisy

∂I

∂t
= div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇I

) (2.7)

Different choices of functions φ lead to different proposed regularization methods. One especially
finds the expected Tikhonov and Perona-Malik schemes (Fig.2.6).

Function name φ(s) Reference
Tikhonov s2 [170]
Perona-Malik 1− exp(−s2/K2) [143]
Minimal surfaces 2

√
1 + s2 − 2 [45]

Geman-McClure s2/(1 + s2) [80]
Total Variation s [153]
Green 2log(cosh(s)) [90]

Figure 2.6: List of different proposed φ-functions.

Like the Perona-Malik flow, the local diffusion behavior of the φ-functionals can be analyzed
from a geometric development of the equation (2.7). Indeed, the decomposition of the divergence
in term of two simultaneous oriented 1D heat flows also applies here :

∂I

∂t
= cξ Iξξ + cη Iηη with cξ =

φ
′
(‖∇I‖)
‖∇I‖ and cη = φ

′′
(‖∇I‖) (2.8)

The smoothing process is then performed along the isophote direction ξ with a weight
φ

′
(‖∇I‖)/‖∇I‖, and in the gradient direction η with a weight φ

′′
(‖∇I‖).
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Considering this alternative formulation (2.8), natural regularization properties should be verified
by cη and cξ :

• Non-inverse diffusion : To avoid inverse diffusion (e.g Perona-Malik flow), one wishes
that the coefficients cξ and cη are always positives. It means that the function φ should be
increasing in ‖∇I‖ as well as convex :

φ
′
(‖∇I‖) ≥ 0 and φ

′′
(‖∇I‖) ≥ 0 (2.9)

• Anisotropic diffusion on the edges : Blurring the edges (high gradient points) is avoided
by smoothing the image preferably in the isophote direction ξ instead of the gradient direc-
tion η. The corresponding constraints are translated as

lim
‖∇I‖→+∞

cη = 0 and lim
‖∇I‖→+∞

cη
cξ

= 0 (2.10)

• Isotropic diffusion on regular regions : In the other hand, ξ and η do not designate coher-
ent directions of image structures on noisy homogeneous regions. The desired smoothing
must behave as an isotropic one therein :

lim
‖∇I‖→0

cη = lim
‖∇I‖→0

cξ = α > 0 (2.11)

Latest proposed φ functions in the literature follow these constraints [45, 90]. Examples illus-
trating the different regularization behaviors obtained with various φ-functions are presented on
Fig.2.7. The PDE flows were stopped after a finite number of iterations (160), in order to avoid
constant resulting images. Interesting survey and theoretical analysis of the φ-functional frame-
work can be also found in [19, 46, 66, 110, 111].

(a) Noisy image
(b) Tikhonov :
φ(s) = s2

(c) Geman-McClure :
φ(s) = s2/(1 + s2)

(d) Hyper-surface :
φ(s) = 2

√
1 + s2−2

Figure 2.7: φ-function based PDE’s applied on a noisy scalar image.

Despite the gathering character of this framework, some diffusion behaviors may not be obtain-
able. For instance, the two diffusion weights cξ and cη defined by (2.8) are not independent but
linked through a φ-function which disables at least one degree of freedom. Fortunately, these
limitations can be surpassed by local formulations allowing more independence to design regu-
larization PDE’s.
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2.1.4 Divergence-based PDE’s

One level of release has been reached in [19, 8, 35, 112, 156, 188]. The idea is to replace the
function φ

′
(‖∇I‖)/‖∇I‖ in the divergence of (2.7) by expressions depending on more appropri-

ate image features. This gives more freedom to design regularization PDE’s even if we lost the
global meaning of the regularization process : generally, obtained equations do not correspond to
a functional minimization anymore.
For instance, authors in [8] proposed to use a function g(‖∇I ∗Gσ‖) depending on the convolved
gradient norm ‖∇I ∗Gσ‖, rather than simply considering ‖∇I‖ :

∂I

∂t
= div (g(‖∇I ∗Gσ‖) ∇I)

where

Gσ =
1

2πσ2
exp

(

−x
2 + y2

2σ2

)

is a normalized 2D Gaussian kernel of variance σ.

This has initially been done to deal with a well-posed regularization formulation. But, it allows
also to respect a more coherent local diffusion geometry by involving a larger neighborhood in
the computation of the local image structures that drive the smoothing process.

A major generalization of divergence-based equations has been recently proposed by Weickert
[185, 186, 187, 188] : he considered image pixels as chemical concentrations diffusing with
respect to some physical laws (Fick Law and continuity equations) and proposed a very generic
equation :

∂I

∂t
= div (D∇I) (2.12)

where D : Ω → P(2) is a field of diffusion tensors, i.e symmetric and (semi) positive-definite
2 × 2 matrices (see section 1.2.4). It defines a gradient flux and controls then the local diffusion
behavior of the process (2.12). For simplicity, we will now write D to designate the tensor D(x)

at each point x ∈ Ω of the tensor field.
Note that the φ-functional formalism is a particular case of the PDE (2.12), with

D =
φ

′
(‖∇I‖)
‖∇I‖ Id

The author rather proposed to design the diffusion tensors D for each image point x = (x, y), by
selecting its two eigenvectors u,v and eigenvalues λ1, λ2 as functions of the spectral elements of
a smoothed structure tensor Gσ :

Gσ = (∇I∇IT ) ∗Gσ (2.13)

Note that an alternative method proposed in [83], consists in considering the non-smoothed struc-
ture tensor of the smoothed image I ∗Gσ . Let us name η∗, ξ∗ the eigenvectors of Gσ and µ1, µ2

its corresponding eigenvalues.
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Note that

lim
σ→0

ξ∗ = ξ =
∇I⊥
‖∇I‖ and lim

σ→0
η∗ = η =

∇I
‖∇I‖

but we have generally
η∗ 6= (η ∗Gσ) and ξ∗ 6= (ξ ∗Gσ)

The directions η∗ and ξ∗ are smoothed versions of η and ξ but do not correspond to the gaussian
smoothing of η and ξ.

Then, the spectral elements of the diffusion tensor D are chosen as :

∣

∣

∣

∣

∣

∣

∣

u = η∗

v = ξ∗
and

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ1 = α

λ2 =

{

α (if µ1 = µ2)

α+ (1− α)exp
(

−C
(µ1−µ2)2

)

else

(2.14)

( C > 0 and α ∈ [0, 1] are fixed thresholds ).
The corresponding D is then computed at each image point as :

D = λ1uuT + λ2vvT

Weickert assumed that the tensor shapes at each point x = (x, y) of the field D give the preferred
diffusion geometry. The idea behind the choice (2.14) is then :

• On almost constant regions, we should have µ1 ' µ2 ' 0 and then λ1 ' λ2 ' α, i.e

D ' α Id where D is the identity matrix.

The tensor D is defined to be isotropic in these regions. Here, one can represent the tensor
as a circle (2D sphere) of radius α (relations between the tensor shape and the smoothing
behavior will be discussed in section 2.4).

• Along image contours, we have

µ1 � µ2 � 0 and then λ2 > λ1 > 0

The diffusion tensor D is then anisotropic, mainly directed by the smoothed direction ξ ∗

of the image isophotes. Here, one can represent the tensor as a stretched ellipse with two
different radii µ1 > µ2.

A result of the flow (2.12) with D defined as in (2.14) is illustrated in Fig.2.8b. Notice how
the Gaussian convolution of the structure tensor allows to create fiber effects by reinforcing the
local coherence of the gradient directions. For this reason, the flow has been named coherence
enhancing flow in the related papers [185, 186, 187, 188].
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2.1.5 Diffusion PDE’s based on oriented 1D Laplacians

While divergence based equations are only expressed from first derivative operators (divergence
div (), and gradient ∇), second-derivative expressions are rather based on oriented 1D Lapla-
cians :

∂I

∂t
= c1Iuu + c2Ivv (2.15)

where u,v ∈ R
2 , c1, c2 > 0 and u⊥v. Iuu and Ivv denotes the second derivatives of I in the

directions u and v and are formally (see section 1.2.2) :

Iuu = uTHu and Ivv = vTHv where H is the Hessian of I .

Here, the regularization process is considered as two orthogonal and weighted 1D oriented heat
flows, directed by the vectors u and v. This is the general matching piece to the equations (2.5)
and (2.8) used to interpret Perona-Malik and φ-functionals flows. Here, the diffusion behavior is
entirely defined by the knowledge of the smoothing directions u,v and the corresponding weights
c1 and c2.

For instance, the authors of [110, 111] proposed to choose










u = ξ

v = η

and











c1 = 1

c2 = g(‖∇I ∗Gσ‖)

where g : R → R is a function decreasing to 0 (the diffusion vanishes on high gradients). It
allows a permanent noise removal along the edges ξ, even on very high gradients since c1 = 1

everywhere. As for low gradient regions, an isotropic smoothing is performed therein as long as
g tends to 1. The corresponding equation is :

∂I

∂t
= Iξξ + g(‖∇I‖)Iηη with lim

‖∇I‖→0
g(‖∇I‖) = 1 (2.16)

However, the constant diffusion along ξ has an effect of over-smoothing the sharp corners.
The general formulation (2.15) allows to find other well-known equations, as the mean curvature
flow, obtained with c1 = 1, c2 = 0, u = ξ and v = η [66] :

∂I

∂t
= Iξξ (2.17)

These two last equations (2.16) and (2.17) are applied on a noisy image in Fig.2.8c,d.
Note that with the formulation (2.15), the φ-functional framework (2.7) corresponds to











u = ξ

v = η

and















c1 =
φ

′
(‖∇I‖)
‖∇I‖

c2 = φ
′′
(‖∇I‖)

As we may notice, there is also a close link between oriented Laplacians and diffusion tensors.
Actually, second derivatives expressions like (2.15) are based on two smoothing orientations u
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(a) Noisy image
(b) Coherence enhancing
flow (2.12)

(c) Oriented Laplacian flow
(2.16)

(d) Mean curvature flow
(2.17)

Figure 2.8: Locally designed PDE’s applied on a noisy scalar image.

and v, as well as two diffusion weights c1 and c2. Diffusion tensors are well adapted to represent
such geometric parameters (see section 1.2.4) and can be used to write the equation (2.15) in a
more convenient form :

∂I

∂t
= c1 Iuu + c2 Ivv

= trace (TH) (2.18)

where
T = c1 uuT + c2 vvT

is the 2 × 2 symmetric matrix whose eigenvalues are c1 and c2 and respective eigenvectors are
u and v. More discussions about the relation between the formulations (2.12) and (2.18), both
written with a diffusion tensor can be found in section (2.4) and chapter 3.

Finally, we cannot conclude this state of the art on regularization methods acting on scalar images,
without refering the reader to the following papers and books, which propose other interesting
formalisms and viewpoints on image regularization. We can cite for instance the works of Kim-
mel,Sochen & Malladi for scalar images [165] (we will go back on this interesting formulation
for the case of vector-valued images), but also Black & Sapiro [28], Caselles & Morel [35], Cottet
& Germain [59], Ng [125], Nikolova [127, 128], Krim [92], etc.
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2.2 Regularization of multivalued images with PDE’s

Recently and thanks to increased computer memory capacities, the problem of regularizing im-
ages of vector-valued features has become an active research topic. Of course, the large number
of related applications explains this sudden enthusiasm. Actually, vector-valued images may be
encountered with a lot of different and interesting datasets. Here are some of them, with a quick
link to reference papers :

• Digital color images : a color pixel may be seen as a 3D vector (R,G,B) and color images
can be likened to vector fields. Vector-valued regularization flows allow noise removal in
color images [31, 104, 157, 165, 184]. Moreover, these vector-valued PDE’s may be used to
fill undesired holes in color images allowing nonlinear interpolation schemes. This process,
commonly named image inpainting, is very interesting to assist image restoration processes
[26, 41].

• Optical flow and Direction fields : Optical flows algorithms lead to 2D or 3D vector fields
representing pixel motions between two images. Thus, adapted vector-valued regularization
terms may be used for better estimation of optical flows. In the particular constrained case,
vector-valued regularization PDE’s can also successfully deal with fields of unit vectors,
also called direction fields [39, 106, 142, 168, 167].

• Fields of diffusion tensors : DT-MRI images are quite noisy matrix-valued fields encoun-
tered in medical imaging. Regularizing such images is a challenging issue to better under-
stand the anatomical structure of the brain [61, 48, 146, 181]. This will be considered in
details in chapters 5 and 6.

As the PDE framework has been powerful enough to deal with the regularization of scalar images
(section 2.1), many authors proposed to extend the existing scalar schemes to regularize noisy
vector-valued 2D images as

Inoisy : Ω→ R
n where Ω ⊂ R

2

In this section, we review the principal algorithms proposed in this field and illustrate their appli-
cations on color test images (n = 3) with synthetic noise. Of course, these vector-valued schemes
also apply for the particular case when n = 1 (scalar images) and often reduce then to their scalar
equivalents. Note also that we first consider the problem of unconstrained vector-valued datasets.
This means for instance that no links between vector components are taken into account. A survey
of the recent constrained regularization problem using PDE’s will be proposed in section 2.3.

2.2.1 Channel by channel regularization

A very common idea to restore vector-valued images is to use classical scalar diffusion PDE’s on
each channel Ii of a noisy image Inoisy. But one fastly notices that this scheme is useless, since
each image channel Ii evolves independently with different smoothing geometries.
In particular, the image isophotes have different directions ξi = ∇I⊥i /‖∇Ii‖ for each vector
components Ii. Even if the ξi are relatively close between each-others, the diffusion process will
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not behave in a coherent way and a high risk of vector components blending (that will blur the
edges) may occur.
This is very clear for the cartoon picture in Fig.2.9 : For this kind of images, the channel isophotes
ξi are mainly in the same direction in each channel of the clear image Iclear (since a cartoon image
is almost a piecewise constant function). But, we added a non-Gaussian additive noise on Iclear

that highly perturbed these direction ξi, independently in each image channel (Fig.2.9a). As a
result, the channel by channel diffusion smooths the image contours faster (Fig.2.9b) than with a
vector-valued PDE (Fig.2.9c), in a way that could be assimilated to color blending.

(a) Noisy color image (b) Channel by channel approach (c) Vector approach

Figure 2.9: Channel by channel approach vs Vector-valued PDE’s.

2.2.2 Defining a vector geometry

To avoid this blending effect, the regularization process must be driven in a common and coherent
way for all the vector image channels Ii. As we noticed in section 2.1, the diffusion geometry is
defined from the local geometry of the image structures. This is done intrinsically (by variational
methods), by geometry-adapting diffusion tensors or oriented Laplacian.
These three definition are not always equivalent, but they designate the important local parameters
of the regularization schemes. Extending scalar algorithms to the multivalued case needs to define
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such local vector geometries that describe vector-valued image variations and structures.
It has to be defined on each point x = (x, y) ∈ Ω by :

• A vector gradient norm N that detects edges and corners when its value becomes high. N
should naturally reduce to ‖∇I‖ for scalar images (when n = 1).

• Two corresponding variation orientations θ+ and θ− that are respectively orthogonal and
tangent to the vector edges, if any. In the same way, they should have the desired property
of reducing to the gradient and isophote directions for scalar images :

if n = 1, θ− = ξ =
∇I⊥
‖∇I‖ and θ+ = η =

∇I
‖∇I‖

Note that in the general case when n > 1, we can’t talk about vector isophotes : Contrary
to scalar images, paths of constant (vector-valued) intensity may not exist.

In order to construct such a vector geometry, different approaches can be considered :

1. Computing the vector geometry from a reduced scalar version of the vector image :

One method would be to compute first a scalar image f(I), using a function

f : R
n → R

that could models the human perception of vector edges, if it exists. It is particularly con-
ceivable for color images : One could choose the lightness function (perceptual response to
the luminance) coming from the CIELAB color base [58, 147] :

f = L∗ = 116 g(Y )− 16 with Y = 0.2125R + 0.7154G + 0.0721B

and g : R→ R is defined by
{

g(s) = 3
√
s if s > 0.008856

g(s) = 7.787s + 16
116 else

Then we may define the local vector geometry as














θ+ =
∇f(I)

‖∇f(I)‖

θ− ⊥ θ+

and N = ‖∇f(I)‖

However, there are mathematically no functions f that can detect all possible vector varia-
tions. For instance, the luminance function defined above is not able to detect iso-luminance
vector contours. It is the case on Fig.2.10 : the contours inside the colored yin-yang symbol
won’t be detected by N = ‖∇f(I)‖, since f(I) is constant therein.

Here, the diffusion is going to be isotropic and the existing color edges inside the yin-yang
will not be preserved.

Note that if your printer converts colors to gray-levels using the luminance or lightness
function, you won’t be able to see correctly the color image in Fig.2.10d.
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(a) Red channel R (b) Green channel G (c) Blue channel B
(d) Color image
(R,G,B)

(e) Lightness
(scalar) image L∗

Figure 2.10: Color image with iso-luminance pixels.

2. Di Zenzo multivalued geometry :

In order to surpass this limitation, another solution has been proposed by Di Zenzo in [196].
He considers a multivalued image I as a 2D → n-D vector field, and looks for the local
variations of the vector norm ‖dI‖2, mainly given by a variation matrix G = (gi,j).

we get :
dI = Ix dx+ Iy dy (∈ R

n)

then

‖dI‖2 = dIT dI

= ‖Ix‖2 dx2 + 2 ITx Iy dxdy + ‖Iy‖2 dy2

i.e.

‖dI‖2 = dxT G dx where G =

n
∑

i=1

∇Ii ∇ITi and dx =

(

dx

dy

)

Note that G is the sum of the scalar structure tensors ∇Ii∇ITi of each image channel Ii,
as defined in section 2.1.4. It can be named itself a vector-valued structure tensor. Indeed,
it is easy to see that G is symmetric as well as semi positive-definite. Its coefficients are :



























g11 =
∑n

i=1 I
2
ix

g12 = g21 =
∑n

i=1 IixIiy

g22 =
∑n

i=1 I
2
iy

From now on, we will equally use the terms Di Zenzo matrix or structure tensor to designate
this matrix G.

In the useful case of color images I = (R,G,B), G is defined as :

G =

(

R2
x +G2

x +B2
x RxRy +GxGy +BxBy

RxRy +GxGy +BxBy R2
y +G2

y +B2
y

)

(2.19)

The interesting point about G is that its positive eigenvalues λ+/− are the maximum and
the minimum of ‖dI‖2 while the orthogonal eigenvectors θ+ and θ− are the corresponding
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variation orientations, and are formally given by :

λ+/− =
g11 + g22 ±

√
∆

2
(2.20)

and

θ+/− //

(

2 g12
g22 − g11 ±

√
∆

)

where ∆ = (g11 − g22)2 + 4 g2
12 .

With this simple and efficient approach, Di Zenzo opened a natural way to deal with the local vec-
tor geometry of vector-valued images, through the use of the oriented orthogonal basis (θ+ , θ−)

and the variations measures λ±. These eigenvalues are indeed well adapted to discriminate dif-
ferent geometric cases :

1. If λ+ ' λ− ' 0, there are very few vector variations around the current point x = (x, y) :
the region is almost flat and doesn’t contain any edges or corners (it is the case for the
inside of the strips in Figure 2.11a). For this configuration, the variation norm N we have
to define should be low.

2. If λ+ � λ−, there are a lot of vector variations. The current point may be located on a
vector edge (it is the case for the edges of the strips in Figure 2.11a). For this configuration,
the variation norm N should be high.

3. If λ+ ' λ− � 0, we are located on a saddle point of the vector surface, which can possibly
be a vector corner in the image (the intersections of the strips in Figure 2.11a). In this case
N should be even higher than the case 2. Regularization algorithms have indeed a tendency
to smooth corners fastly. A very high variation estimated on corner points would attenuate
the smoothing there, which is a desired effect.

Actually, proposed regularization algorithms acting on multivalued images are implicitly or ex-
plicitly based on these Di Zenzo’s attributes. In particular, three different choices of vector gradi-
ent norms N have been proposed so far in the literature :

1. N =
√

λ+, as a natural extension of the scalar gradient norm viewed as the value of maxi-
mum variations [30, 154, 155] (Figure 2.11b).

2. N− =
√

λ+ − λ−, also called coherence norm, have been chosen in [157, 181, 184]. Note
that this norm fails to detect discontinuities that are saddle points of the vector-valued sur-
face (Figure 2.11c). This may perturb regularization processes since certain sharp corners
will be considered as quite homogeneous regions and will be probably smoothed.

3. N+ =
√

λ+ + λ−, also denoted by ‖∇I‖ is often chosen [25, 31, 140, 167, 175, 176]
since it detects edges and corners in a good way, and is easy to compute (doesn’t require an
eigenvalue decomposition of G) :

N+ = ‖∇I‖ =
√

trace(G) =

√

√

√

√

n
∑

i=1

‖∇Ii‖2 (2.21)
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Moreover, the norm N+ has the property of giving preferences to certain corners (Figure
2.11d). This is very interesting for image restoration purposes, since the smoothing will be
attenuated on these points.

(a) Color checkerboard
(real size 40 × 40) (b) N = � λ+ (c) N− = � λ+ − λ− (d) N+ = � λ+ + λ−

Figure 2.11: A list of possible vector variation norms.

Note that for the scalar case (n = 1), the Di Zenzo calculus reduces to :

when n = 1 , ‖dI‖2 = dx G1 dx where G1 = ∇I∇IT =

(

I2
x IxIy

IxIy I2
y

)

In this case, the eigenvectors θ1
+/− and the eigenvalues λ1

+/− of G1 are :























θ1
− = ξ =

∇I⊥
‖∇I‖

θ1
+ = η =

∇I
‖∇I‖

associated to











λ1
− = 0

λ1
+ = ‖∇I‖2

It particularly means that the three above defined normsN+,N− andN all reduce to ‖∇I‖ in the
scalar case.

Once a local vector geometry is defined, we can use it as a measure in many image analysis
processes acting on vector images (and not only for regularization schemes).
For instance, color edge detection can be performed by finding the local maxima of N in the
θ+ direction (Figure 2.12 and [114, 174, 177]). This vector geometry computation has also been
integrated for color image segmentation purposes in [154, 155].

In the following sections, we will analyze the recently proposed diffusion PDE’s acting on vector-
valued images. We will use the previous notations ξ, η to refer to the scalar local geometry (see
section 2.1.2), and θ±, λ± and the matrix G to refer to the Di Zenzo’s vector local geometry.
This survey ends up with two comparative figures Fig.2.13 and Fig.2.14 illustrating the different
methods applied on synthetic and real color images.
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(a) Color image of the “arc de triomphe” in Paris (b) Detected color edges with the norm N+ = � λ+ + λ−

Figure 2.12: Using vector variation norms for color edge detection.

2.2.3 Color Total Variation

In order to regularize color images (n = 3), Blomgren and Chan [31] proposed to minimize a
measure of a Color Total Variation CTVn. This is a variational formulation that is the vector-
valued matching piece of the total variation formalism, largely used to regularize scalar images
(it corresponds to the φ-functional framework with φ(s) = s, see section 2.1.3).

The color total variation has been formulated as the minimization :

min
I:Ω→�

n
CTVn(I) =

√

√

√

√

n
∑

i=1

[
∫

Ω
‖∇Ii‖ dΩ

]2

. (2.22)

Minimizing the CTVn leads to the following vector-valued diffusion PDE’s (written in a compo-
nent by component style), coming from the Euler-Lagrange equations of (2.22) :















I(t=0) = Inoisy

∂Ii
∂t

=

∫

Ω ‖∇Ii‖
CTVn(I)

div

( ∇Ii
‖∇Ii‖

)

(i = 1..n)

(2.23)

In order to understand the behavior of this regularization equation, we can decompose (2.23) and
express it with directional 1D-Laplacian, as we did in section 2.1.3 for the φ-functional approach.
Actually, if we introduce the isophote directions ξi = ∇I⊥i /‖∇Ii‖ in the channels Ii, the PDE
(2.23) writes :

∂Ii
∂t

= Ai
Iξiξi
‖∇Ii‖

where Ai =

∫

Ω ‖∇Ii‖
TVn(I)

The interpretation is immediate. the diffusion is similar to a channel by channel Total Variation,
weighted by a coupling term Ai which is constant for a whole channel Ii. Each channel is more
or less denoising depending of its own total variation

∫

Ω ‖∇Ii‖.
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It means that no local vector interactions are considered. Noisy vector edges that do not clearly
appear in each image channel Ii may be smoothed, exactly as the channel by channel diffusion
behaves.
Note also that the smoothing is always done along the isophote directions ξi and never along
the gradient direction ηi. It doesn’t allow isotropic diffusion in noisy homogeneous regions.
Surprisingly, we notice anyway that the regularization obtained in flat regions behaves almost
as isotropic ones (Fig.2.13b). This remarkable property is due to the color blending effect which
is the peculiarity of decoupled diffusion methods : each channel Ii diffuses in such different
directions ξi in flat regions that it leads to isotropic-like diffusion.

Besides, the main noticeable point of the CTVn method is that minimizing a vector coupled
functional does not necessarily lead to a PDE that implicitly considers a local vector geometry.

2.2.4 Vector Φ-functionals

Another natural extension of variational methods for multivalued image regularization is the one
proposed in [154, 155, 161, 168]. The general idea is to consider that the image variations are
given by a vector gradient norm, as N ,N+ or N−, defined in section 2.2.2.
Then, one minimizes a functional measuring global image variations :

min
I:Ω→ �

n
E(I) =

∫

Ω
φ(N±) dΩ (2.24)

More particularly, the cited authors focused on the norm N+ = ‖∇I‖ :

‖∇I‖ = N+ =
√

λ+ + λ− =

√

√

√

√

n
∑

i=1

‖∇Ii‖2 (2.25)

and minimize then the following φ-functional :

min
I:Ω→�

n
E(I) =

∫

Ω
φ(‖∇I‖) dΩ

This is performed via the corresponding Euler-Lagrange multivalued equations :


















I(t=0) = Inoisy

∂Ii
∂t

= div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇Ii

)

(i = 1..n)

(2.26)

This is a very similar expression to the φ-functional PDE (2.7) used for scalar image regular-
ization. Unfortunately, the local geometric behavior of the equation (2.26) is not as easily under-
standable as in the scalar case. Indeed, the raw development of (2.26) in term of second derivatives
introduces additional vector coupling terms which hampers the diffusion interpretation. Analyz-
ing this local diffusion comportment is one of the aims of chapter 3.
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2.2.5 Coherence Enhancing Diffusion

In [184, 186, 188], Weickert proposed to extend his coherence enhancing scheme (2.12), in or-
der to deal with vector-valued images, by choosing a common diffusion tensor D for all image
channels Ii :















I(t=0) = Inoisy

∂Ii
∂t

= div (D ∇Ii ) (i = 1..n)

(2.27)

where D = λ1uuT + λ2 vvT is constructed such that its spectral elements λ1,λ2 (eigenvalues)
and u,v (eigenvectors) take the Di Zenzo’s local vector geometry into account (D is pointwise
defined). Rather than defining D directly from the eigenvalues/eigenvectors of the structure tensor
G, the author uses a smoothed version G∗ of G :

G∗ =

(

n
∑

i=1

∇Ii∇ITi

)

∗Gσ where Gσ =
1

2πσ2
exp

(

−x
2 + y2

2σ2

)

This is indeed a very good idea allowing to retrieve a more coherent local vector geometry.
The spectral elements of D are then chosen in a similar way to the scalar case (2.14) :

∣

∣

∣

∣

∣

∣

∣

u = θ∗+

v = θ∗−

and

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ1 = α

λ2 =

{

α (if λ∗+ = λ∗−)

α+(1−α) exp
(

−C
(λ∗+−λ∗−)2

)

else

(2.28)

where the λ∗± and θ∗± are the eigenvalues and corresponding eigenvectors of the smoothed struc-
ture tensors G∗.

The assumption is that the diffusion tensors give the general diffusion geometry of the PDE
(2.27). Following the proposal (2.28) we notice that the local vector geometry is detected us-
ing a smoothed version N ∗

− =
√

λ∗+ − λ∗− of the coherence norm N− =
√

λ+ − λ− :

• On flat regions the diffusion tensor is almost isotropic. It occurs when

N ∗
− ' 0 =⇒ D ' αId

• Near the “edges” ( N ∗
− � 0 ), the diffusion tensor is anisotropic, mainly directed by the

vector contours θ∗− since λ2 � λ1, but also in the direction θ+ with a constant weight α.
Remind that the norm N− may be inadequate for certain image corners (Fig.2.11).

Note that the vector φ-functional formulation (2.25) is a particular case of the divergence equation
(2.27) with the following isotropic diffusion tensor field D :

D =
φ

′
(‖∇I‖)
‖∇I‖ Id

where Id is the identity matrix. As we will see in further sections, it doesn’t mean that the
corresponding regularization process behaves as an isotropic one. Note that like the scalar case,
a divergence-based expression with a generic diffusion tensor D may not correspond to a known
variational formulation.
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2.2.6 The Beltrami Flow

With a variational approach, different from the φ-functional one, Kimmel, Sochen and Malladi
[104, 164, 165] found another interesting particular case of the divergence-based equation (2.27).
Considering a vector-valued image I : Ω→ R

n as a 2D surface embedded in a (n+ 2)D space :

(x, y) −→ ( x , y , I1(x, y) , I2(x, y) , . . . , In(x, y) ) ,

the authors proposed to minimize this generic Polyakov action :

min
I:Ω→ �

n
E(I) =

∫

Ω
σ
√
ggµν∂µX

i∂νX
jhij(X) dΩ (2.29)

The functional (2.29) is actually a physical measure of the surface area, and can be written more
simply for our case of vector-valued images, defined on a flat 2D domain Ω :

min
I:Ω→ �

n
E(I) =

∫

Ω

√

det(Id + G) dΩ

where G is the Di Zenzo matrix defined in (2.19) and Id is the identity matrix. We notice that
det(Id + G) = (1 + λ+)(1 + λ−), i.e the minimization problem is

min
I:Ω→ �

n
E(I) =

∫

Ω

√

(1 + λ+)(1 + λ−) dΩ

The corresponding gradient descent, with respect to the surface metric (Id + G), ends up in the
following diffusion PDE called Beltrami Flow :














I(t=0) = Inoisy

∂Ii
∂t

=
1

√

det(Id + G)
div
(

√

det(Id + G) (Id + G)−1 ∇Ii
)

( i = 1...n )

(2.30)

This flow is minimizing the global area of the surface representing the vector-valued image, with
respect to the surface metric. The resulting equation (2.30) is then a weighted version of the
coherence enhancing diffusion (2.27), with the following anisotropic diffusion tensor :

D =
√

det(Id + G) (Id + G)−1

One can easily verify that the spectral elements λ1/2 (eigenvalues) and u,v (eigenvectors) of this
diffusion tensor D can be expressed from the Di Zenzo’s geometry attributes :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ1 =

√

1 + λ−
1 + λ+

λ2 =

√

1 + λ+

1 + λ−

and

∣

∣

∣

∣

∣

∣

∣

u = θ+

v = θ−

The diffusion tensor shape is then adapting with respect to the local vector geometry of the image,
using implicitly the coherence normN− =

√

λ+ − λ− to discriminate flat regions and contours :



2.2 Regularization of multivalued images with PDE’s 57

• When λ+ ' λ− (i.e N− ' 0), the current point is supposed to be on a quite flat region, the
tensor D becomes isotropic, i.e λ1 ' λ2 ' 1.

• Near edges λ+ � λ− (i.e N− � 0), the diffusion tensor is mainly directed by the vector
edge direction θ−.

As for the general weighting term of the equation (2.30),

1
√

det(Id + G)
=

1
√

(1 + λ+)(1 + λ−)

It quickly decreases the amount of diffusion near high vector variations, and vector edges are
preserved for a long time during the flow (and unfortunately noisy sharp edges too).

2.2.7 Vector Iξξ Diffusion

In [157], Ringach and Sapiro proposed an extension of the mean curvature equation (2.17)
It = Iξξ for vector-valued images, using an oriented Laplacian. Conversely to the previous meth-
ods, their equation is directly based on a second-derivative expression, unlike variational or di-
vergence based approaches. They naturally used the Di Zenzo vector geometry to design this
vector-valued regularization PDE :

∂I

∂t
= g(λ+ − λ−) Iθ−θ− (2.31)

where g : R → R is a positive decreasing function, avoiding the smoothing of high gradients re-
gions. Note that the coherence normN− =

√

λ+ − λ− is also used here, in order to discriminate
homogeneous regions and image contours.
It was one of the first attempts to construct an oriented Laplacian vector PDE directly from a local
vector geometry viewpoint. At a given point, all channels Ii are smoothed along a common vector
edge direction with a common intensity. Despite this great designing, some drawbacks subsist :

• The coherence norm N− =
√

λ+ − λ− is not always adapted to detect certain vector
corners (Figure 2.11d).

• In flat regions (N− → 0), the diffusion is made along a single direction θ−, which is
mainly directed by the noise since no coherent structures exist in these regions. Texture
effects may result from this mono-directional smoothing. This is particularly true since
contrary to decoupled regularizations, vector components are not blended with this method
(the diffusions in all image channels Ii follow a common direction).

We may also notice that the regularizing flow (2.31) can be written using a trace operator coupled
with a diffusion tensor, exactly as the case of oriented Laplacians for scalar images (see section
2.1.5) :

∂Ii
∂t

= trace (THi) where T = g(λ+ − λ−) θ−θ
T
−

This will be more particularly discussed in the open questions (section 2.4).
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(a) Noisy color image (b) Color TV regularization (2.23)
(c) Vector φ-function (2.25) with
φ(s) =

√
1 + s2

(d) Coherence enhancing (2.27) (e) Beltrami Flow (2.30) (f) Vector Iξξ (2.31)

Figure 2.13: Comparison of classical vector-valued regularization PDE’s (I).

2.2.8 Comparative figures

We close our survey on multivalued regularization PDE’s with a comparative figure, intended to
highlight the different comportments of the (proposed above) equations. Obviously, the aim is
not to discriminate bad and good methods since each approach is more or less adapted to certain
image configurations. We rather want to put the accent on the use of a local vector geometry in
the equations and its effect on the obtained results.
The experiments have been carried out with the following protocol :

• Types of images : We applied the different regularization algorithms (CTV, Vector Φ-
functional, Coherence enhancing, Beltrami flow, Vector Iξξ) on a synthetic color image
(128× 128) and a real color photograph (290× 290). Both images are initially clear but we
added artificial noise into them. The test images and the PDE evolutions are considered in
the (R,G,B) color space.

• Model of noise : The added noise is high intensity variations and is a mix of several differ-
ent stochastic processes :
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1. Correlated and uncorrelated uniform noises :

∀x ∈ Ω,











R(x) = R(x) + δR + δ

G(x) = G(x) + δG + δ

B(x) = B(x) + δB + δ

where δR, δG, δB and δ are four different uniform distributions.

2. A Gaussian noise on the vector directions and norms :
The principle is to decompose each vector I = (R,G,B)T into its orientation part ~i
and its norm ‖I‖ :

~i =
1√

R2 +G2 +B2







R

G

B






and ‖I‖ =

√

R2 +G2 +B2

For color images, this decomposition splits the image into :

– The scalar image ‖I‖ : Ω→ R, representative of the brightness informations of
the colors.

– The vector-valued image ~i : Ω → S2(⊂ R
3), representative of the chromaticity

informations of the colors.

Then, a Gaussian noise is added in both fields ~i and ‖I‖. The corresponding noisy
color image Inoisy is then constructed as :

∀x ∈ Ω, Inoisy(x) =~inoisy(x) ‖I‖noisy(x)

This leads to a non-Gaussian noise in the (R,G,B) space, with an effect of chro-
maticity noise as well as brightness noise.

The global resulting noise is finally not only Gaussian nor additive and should not favor any
of the algorithm.

• Algorithms parameters : Classically, the choice of the parameters for a regularization
algorithm is a very difficult issue. Indeed, the stopping evolution time (i.e the number of
iterations) and the different thresholds, used in PDE expressions, play an important role
for the quality of the resulting images. As the different regularization expressions have
different PDE velocity scales, the use of a common data attachment term would not be
suitable here.

Our experimental protocol has then been chosen as follows : we ran each algorithm with
several set of parameters and saved each PDE iteration until 1000 iterations (which always
corresponded to over-smoothed images). The results presented in Fig.2.13 and 2.14 are
simply the best looking images (from our human perception viewpoint) in the corresponding
iterated image list. Our desired aim is that the resulting artefacts in the result images are
representative of the different methods. The automatic decision of a stopping iteration is
indeed a very hard problem. It should imply the knowledge of some human-based criterion
of image coherence.
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(a) Noisy color image (b) Color TV regularization (2.23)

(c) Vector φ-function (2.25) with φ(s) =
√

1 + s2 (d) Coherence enhancing diffusion (2.27)

(e) Beltrami Flow (2.30) (f) Vector Iξξ (2.31)

Figure 2.14: Comparison of classical vector-valued regularization PDE’s (II).
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Analysis of the results : The two comparative figures Fig.2.13 and Fig.2.14 illustrate the exper-
imental behaviors of the studied vector-valued regularization equations. They can be interpreted
as follows :

• Color total variation [31] :

Due to the almost uncorrelated diffusion, some noisy vector edges are not well recovered
since colors are blended (different diffusion in each color channel). This is particularly
noticeable in the synthetic image Fig.2.13b for the edges of the yellow circle and the bottom
part of the grey object.

The non-isotropic diffusion on flat regions should have created texture effects therein.
Fortunately, isophote directions ξi are very different in these regions and the decoupled
anisotropic diffusion that blends colors, creates an isotropic-like effect, allowing to retrieve
the homogeneous regions quite well.

The staircasing effect, inherent to total variation methods is also noticeable in almost flat
regions in the real photograph Fig.2.14b (look precisely at the shoulders and the back of the
woman).

• Vector φ-function [25, 140, 154, 155, 161, 168] :

The φ-function used here is φ(s) =
√

1 + s2 corresponding to the hyper-surface formu-
lation of the scalar case [45]. The retrieved result is very good for the synthetic image
(Fig.2.13c). Actually, this vector φ-functional acts almost like its scalar counterpart, and
performs an isotropic smoothing in flat regions, while anisotropically denoising the image
contours. Nevertheless, this formulation well adapted to retrieve piecewise-constant regions
(which is the configuration of the original synthetic image) gives sometimes a synthetic as-
pect to restored real photographs (look at the constant intensity patches appearing in the
background of Fig.2.14c).

• Coherence enhancing diffusion [184, 186, 188] :

This equation was initially designed to take into account coherent image structures, in order
to drive the diffusion. It is particularly done thanks to the convolution of the structure tensor
G by a Gaussian kernel Gσ .

When dealing with noisy images, the variance σ ofGσ should be low, since trying to find co-
herent structures in noisy flat regions would create fiber effects (as illustrated in Fig.2.13d).
(remind that the author proposed the equation (2.27) in [184, 186, 188] to enhance the
“impressionism” style of color images).

On the other hand, using a low variance σ for the Gaussian kernel Gσ disables the detection
of large structures. We used σ = 0.8 to restore the photograph in Fig.2.14. In this case, the
PDE (2.27) behaves almost as a φ-functional one (Fig.2.14), even if some texture appears
in the image background (since σ is not zero at all).
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• Beltrami flow [104, 164] :

Experimentally, this PDE is one of the formulation that better conserves the edges during
the regularization flow. This is mainly due to the factor 1/

√

det(Id + G) in the PDE
(2.30), that quickly decreases the amount of diffusion near image contours.

This is perceptible for images with high noise : some vector contours may preserve a sharp
and discontinuous aspect (Fig.2.13e). When used on a less noisy image Fig.2.14e, the
obtained result is well restored. Note how the background is isotropically smoothed in
Fig.2.14e. However, the smoothing has sometimes a tendency to stop on high variations
(look for instance the interior of the woman’s hair).

• Vector Iξξ [157] :

This unidirectional smoothing process suffers from high noise, since texture effects quickly
appear in noisy flat regions (Fig.2.13f) : The diffusion is always driven by a single direction
and isotropic smoothing is unfortunately never performed. As for the edges, they are well
preserved while being denoised, thanks to this explicit diffusion along the direction θ−,
which is indeed the right orientation of the vector edges.

This comparative figure underlines the fact that equations proposed for vector-valued image reg-
ularization, based on a vector-valued geometry, should naturally respect the following regulariza-
tion properties (they are actually the same as the ones defined for the φ-function framework in
section 2.1.3) :

• Isotropic smoothing in homogeneous regions, allowing to remove the noise efficiently
therein, and avoiding the apparition of undesired image structures.

• Diffusion of the intensities along the vector edges θ− on regions of high vector variations,
in order to preserve the vector edges while removing the noise.

• Decreased diffusion on sharp corners (very high variation regions), in order to prevent the
corner erosion.

These properties will be further considered as basic principles, when we will design our new
vector-valued diffusion PDE, in chapter 3.
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2.3 Regularization PDE’s and constraints

More recently, the problem of regularizing multivalued constrained datasets has opened new the-
oretical and practical problems. Indeed, a PDE flow acting on multivalued constrained data is
not a straightforward generalization of its unconstrained counterpart : we have to consider the
fact that the vector data lie on a constrained and generally non-flat manifold. This yields sig-
nificant modifications of the corresponding regularization equations, by adding coupling terms
that allow the constraints to be preserved during the PDE flow. In the following, we review
some of the recent related works, particularly the ones dealing with the unitary norm constraint
[25, 39, 107, 142, 167, 182].

2.3.1 Direction diffusion

Let us consider an image of unit vectors :

I : Ω→ R
n such as ∀x ∈ Ω, ‖I(x)‖ = 1 (2.32)

This unitary norm constraint (2.32) means that each point I(x) of the image belongs to the specific
manifold Sn−1 ⊂ R

n, also named unit sphere.
For instance, the following figure Fig.2.15 illustrates two interesting examples of such fields.

(a) Example of a field Ω → S1 (b) Example of a field Ω → S2 (visualized with (R,G,B)

colors)

Figure 2.15: Unit vector fields representing directions and chromaticity part of color images.

As described in section 2.2.8, the unit vectors ~i corresponding to the directions of color vectors
(R,G,B),

~i =
1√

R2 +G2 +B2







R

G

B
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are typical features of the color chromaticity of the color pixels, without the brightness infor-
mation (Fig.2.15b). It is a field of 3D vectors and has been represented using the (R,G,B)

color space in Fig.2.15b. Note how this image only represent the basic colors of the initial image
(Fig.2.14).
It is interesting to anisotropically smooth such unit vector images I while preserving the unitary
norm constraint. By doing this we are able to regularize directions fields, as well as chromaticity
noise in color images.

A first approach consists in using classical unconstrained regularization PDE’s on I, then re-
project each vector I(x) into the unit sphere Sn−1 at the end of the regularization process, or after
each PDE iteration. This method is computationally expensive, as well as imprecise : nothing
prevents some direction vectors to vanish numerically during the PDE evolution (especially if one
re-projects after several PDE iterations). Thus, the re-projection on Sn−1 will necessarily loose
the direction information of the considered (null) vectors. To avoid this re-projection trick, we
have to formally follow the unit sphere manifold Sn−1 during the regularizing flow.

For this purpose, several approaches have been already proposed in the literature. Actually, the
main starting proposal has been suggested by Perona [142]. He restricted to an image of 2D
directions (n = 2) and proposed to compute the field of the polar angles θ corresponding to the
direction field I. Then, this scalar image can be regularized by a classical heat flow :















θ(t=0) = θnoisy

∂θ

∂t
= ∆θ

(2.33)

The polar characteristic of θ implies that we have to take care of the 2Π-periodicity of the angles
during the regularization flow. Thus, Perona proposed then a special numerical scheme, that
handles this problem :

∂θk
∂t

= λ ( sin(θk+1 − θk) + sin(θk−1 − θk) )

Despite the good results obtained by this scheme, some points are limiting the method :

• The Laplacian operator forces the diffusion process to be isotropic, blurring then the dis-
continuities in the direction field θ.

• Polar angles are well adapted for 2D direction vectors, but the number of required angles
increases when considering higher dimension vectors (n > 2). In this case, the coupling
between these orientation angles should be taken into account, in a way that is not defined
by the Perona formulation.

In order to outperform these limitations, anisotropic methods acting directly on the direction field
I have been proposed for instance in [39, 43, 106, 168, 182]. The idea is to find regularization
PDE flows that naturally preserve the norm constraint (2.32).
Different formal solutions have been proposed in the literature, leading to very similar equations :
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• Tang-Sapiro-Caselles in [168] proposed to minimize the following functional, coming from
the theory of harmonic maps in liquid crystals :

min
I : Ω→Sn−1

E(I) =

∫

Ω
‖∇I‖r dΩ where r > 0 (2.34)

The norm ‖∇I‖ = N+ =
√

λ+ + λ− is the one defined in (2.21) (section 2.2.2).

Note that this minimization is constrained since we look for ∀x ∈ Ω, I(x) ∈ Sn−1.

According to the authors, the corresponding Euler-Lagrange equations of (2.34) end up
with















I(t=0) = Inoisy

∂Ii
∂t

= div
(

‖∇I‖r−2∇Ii
)

+ Ii‖∇I‖r (i = 1..n)

(2.35)

• Chan-Kang-Shen in [43] started the idea of denoising color bases whose certain components
describe orientations ( this is the case for instance with the Hue in the (H,S, V ) color space
). They end up with a particular case of (2.35) with p = 1 (total variation formulation).

• Other variants of the norm constrained equation (2.35) have been also proposed, for instance
in [27, 106, 182], fitting the Beltrami Framework (defined in section 2.2.6) or improving
numerical schemes.

An example of direction field regularization is illustrated in Fig.2.16, using the flow (2.35) (with
r = 1). Note how the additional term Ii‖∇Ii‖r in the PDE allows to preserve the unit norm
constraint (Fig.2.16c), while the corresponding unconstrained regularization decreases the length
of the vectors (especially along the contour of the circle structure, in Fig.2.16b).
We will go back on the direction diffusion case in chapter 5, with a generalization of orientation
diffusion techniques for specific fields of orientation data, and the proposal of adapted numerical
schemes to implement these kinds of algorithms. Experimental results and real applications of
direction field regularization can be also found in chapter 6.
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(a) Noisy 2D unit vectors field
(b) Unconstrained anisotropic vector-
valued regularization (after 100 it.)

(c) Norm-constrained anisotropic
vector-valued regularization (after
100 it.)

(d) Zoom of (a) (e) Zoom of (b) (f) Zoom of (c)

Figure 2.16: Regularization of unit vector fields.

2.3.2 Other constrained problems

We cannot conclude this survey on constrained regularization methods without referencing these
following PDE based approaches, preserving other constraint types :

• In [27], the images are constrained to lie on specific manifolds, defined by implicit surfaces
via level-set functions. The constraints here do not concern the image features themselves,
but the definition domain Ω of the images. This new and innovative approach allows to
regularize features measured on surfaces (this is the case for instance when dealing with
MEG-EEG datasets, as described in [55, 72]).

Fig.2.17 illustrates the restoration of a noisy image defined on a torus. 1

More particularly, this method is useful when no simple continuous mappings between R
2

and the implicit surface are known.

• in [140], the authors proposed to deal with probability vectors, i.e where the sum of the
vector components is constrained to be 1. Actually, this constraint is linear and is intrin-

1This figure has been kindly provided by L. Lopez Perez / ODYSSEE, INRIA-Sophia Antipolis.
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(a) Noisy image data defined on a torus (b) Restored data

Figure 2.17: Regularization of data defined on non-flat surfaces.

sically preserved by the proposed unconstrained anisotropic diffusion PDE. The equations
are then applied to improve image segmentation techniques based on Bayesian approaches.

• in [51, 52, 53, 54], the author theoretically studies several PDE-flows acting on matrix fields
and preserving some particular spectral constraints. Our constrained regularization frame-
work and its development, proposed in chapter 5 will cross some of the ideas raised in these
papers. Moreover, we will illustrate possible concrete applications of these constrained
equations (chapter 6).
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2.4 Open questions on PDE-based regularization methods

In this section, we close our general survey on regularization PDE’s and raise the important ques-
tions investigated in the next chapters of this document.

2.4.1 On the unconstrained regularization

As we noticed, three different levels of design have been generally considered so far in the litera-
ture, for the problem of image regularization :

1. Variational formulations :

The regularization is seen as the minimization of a functional E(I) measuring global image
variations. These variations are expressed as the integral of functions depending on a local
variation norm N (I), which can be for instance :

• Scalar values : N = ‖∇I‖.
• Vector values : N =

√

λ+, or N =
√

λ+ + λ−, or N =
√

λ+ − λ−, as defined in
section 2.2.2.

The regularizing functional has then the following form for multivalued images :

min
I : Ω→ �

n
E(I) =

∫

Ω
φ(N (I)) dΩ

The function φ parameterizes the regularization behavior and the corresponding PDE evo-
lution is found thanks to the Euler-Lagrange equations of E(I).

Question : How to choose a well adapted φ-function to deal with specific applications ?
Understanding the exact local regularization behavior performed by the gradient descent of
a φ-functional by looking only at the φ-function form is not trivial, especially for the case
of vector-valued regularization.

2. Divergence formulations :

The regularization is seen as the chemical diffusion of image pixels following a gradient
flux, defined by a diffusion tensor D.

∂I

∂t
= div (D∇I) (2.36)

Here, the 2× 2 matrix D parameterizes the regularization behavior of the PDE (2.36), and
is often constructed by choosing its eigenvalues λ1, λ2, and its corresponding eigenvectors
u and v :

D = λ1uuT + λ2vvT

It is commonly assumed that the shape of the diffusion tensor D gives the local smoothing
geometry of the regularization process. The eigenvalues λ1, λ2 corresponding to the amount
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of diffusion in the corresponding eigenvectors directions u and v. Thus, they are naturally
designed as functions of the local geometry of the considered images (scalar or vector-
valued).

Question : Some fields of pointwise isotropic diffusion tensors D may lead to anisotropic
diffusion. The usual example of the scalar φ-functional framework, described in section
2.1.3 illustrates this point :

min
I : Ω→ �

∫

Ω
φ(‖∇I‖) dΩ =⇒ ∂I

∂t
= div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇I

)

(2.37)

This scalar regularization PDE (2.37) corresponds to the divergence-based equation (2.36),
by considering the field of the following tensors D :

D =
φ

′
(‖∇I‖)
‖∇I‖ Id (2.38)

Each tensor of the field D is isotropic and can be represented by a cercle of radius
φ

′
(‖∇I‖)/‖∇I‖. However, the φ-functionals do not behave as isotropic filters (compare

the different results obtained in sections 2.1.1 and 2.1.3 for instance). The reason is simply
that :

div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇I

)

6= φ
′
(‖∇I‖)
‖∇I‖ ∆I

It means that the shape of the diffusion tensor D in the equation (2.36) cannot be directly
interpreted to be the local diffusion geometry of the regularization process.

This can be better understood if we also remark that two different matrices D lead exactly
to the same φ-functional based PDE (2.37), for the case of scalar images :

D1 =
φ

′
(‖∇I‖)
‖∇I‖ Id and D2 =

φ
′
(‖∇I‖)
‖∇I‖3 ∇I∇IT

Indeed, since ∇I is an eigenvector of ∇I∇IT :
(

∇I∇IT
)

∇I = ‖∇I‖2 ∇I
then

D1∇I = D2∇I =
φ

′
(‖∇I‖)
‖∇I‖ ∇I

Thus, the following flows are equivalent :

∂I

∂t
= div (D1∇I)
= div (D2∇I)

= div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇I

)

In this case, D1 is isotropic and D2 is anisotropic but both perform the same anisotropic
diffusion. Then, we cannot be sure of the exact diffusion geometry of the flow (2.36) by
looking only at the diffusion tensor shape.
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3. Second-derivatives formulations :

Here, the regularization process is seen as two 1D oriented heat flows Iuu and Ivv in
orthogonal directions u and v, with respective weights c1 and c2 :

∂I

∂t
= c1Iuu + c2Ivv with u⊥v

As we noticed in the end of the section 2.1.5, this kind of equation can be written with a
diffusion tensor T :

∂I

∂t
= trace (TH) where T = c1 uuT + c2 vvT (2.39)

and H is the Hessian of the image I (see section 1.2.2).

Indeed, we have

trace (T H) = trace
(

(c1 uuT + c2 vvT ) H
)

= c1 trace
(

uuTH
)

+ c2 trace
(

vvTH
)

= c1 (uTHu) + c2 (vTHv)

= c1 Iuu + c2 Ivv

�

The matrix T is a diffusion tensor whose eigenvalues are c1, c2 and corresponding (orthog-
onal) eigenvectors are u and v. Thus, it is well adapted to describe the geometry of the
regularization processes based on oriented 1D Laplacian.

Question : Are both tensors D and T equivalent in the formulations

∂I

∂t
= div (D∇I) and

∂I

∂t
= trace (TH) ?

The answer is negative. Indeed, if we consider again the φ-functional regularization frame-
work for the scalar case, we get the following equivalent expressions for the gradient de-
scent (see section 2.1.3) :

∂I

∂t
= div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇I

)

=
φ

′
(‖∇I‖)
‖∇I‖ Iξξ + φ

′′
(‖∇I‖) Iηη

= trace

([

φ
′
(‖∇I‖)
‖∇I‖ ξξT + φ

′′
(‖∇I‖) ηηT

]

H

)

In this case, the two diffusion tensors D and T corresponding to the same φ-functional
regularization equation are :

div (D∇I) = trace (TH) with























D =
φ

′
(‖∇I‖)
‖∇I‖ Id

T =
φ

′
(‖∇I‖)
‖∇I‖ ξξT + φ

′′
(‖∇I‖) ηηT
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This is illustrated on Fig.2.18, where we represented the behaviors of two scalar regulariza-
tion processes :

∂Ii
∂t

= trace (DHi) and
∂Ii
∂t

= div (D∇Ii) (i = 1..n)

where
D =

1

‖∇I‖ Id

One uses the trace formulation (Fig.2.18b), while the other is written with a divergence
operator (Fig.2.18c). They are based on the same field D of isotropic diffusion tensors.
Note how the result based on the divergence equation seems to be anisotropically restored,
despite the isotropic form of the diffusion tensor D (Fig.2.18c). It is not the case for the
trace-based equation (Fig.2.18b).

(a) Noisy scalar image (b)
∂I

∂t
= trace � 1

‖∇I‖H � (c)
∂I

∂t
= div � 1

‖∇I‖∇I �
Figure 2.18: Differences between divergence-based and trace-based regularization.

The link between T and D is known for scalar schemes, but not in the general case of
multivalued image regularization. What is the correspondence between these two tensors
D and T ?

In chapter 3 we contribute to answer to these questions about unconstrained PDE regularization
behaviors. We will particularly want to underline the fact that the local geometric interpretation is
better given by the tensor shape of the trace-based PDE (2.39), rather than the divergence-based
one (2.36). This will be particularly applied in chapter 4, where we will design regularization
PDE’s adapted to specific problems, related to color image restoration.
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2.4.2 On the constrained regularization

Concerning the problem of regularizing constrained features, we have focused our study on orien-
tation features, as the unitary norm constraint allows to deal with. Two complementary questions
follow naturally our review of direction diffusion methods :

1. How to deal, within a common framework, with the regularization of orientation data that
are more complex than unit vectors ? One may particularly think of rotation matrices, or
diffusion tensors, that symbolize multi-dimensional orientation features.

2. How can we find accurate numerical schemes, avoiding the necessary re-projection step
on the corresponding constrained manifolds ? The recent report [182] is the only one that
proposed an alternative solution to this reprojection problem for the unitary norm constraint.

These two questions will be tackled in chapter 5, leading to the formalization of a unifying frame-
work used to regularize fields of unit vectors or rotation matrices, via the orthonormal vector set
constraint. Moreover, the physical interpretation of the resulting equations will help to construct
a natural and fast numerical scheme to implement these PDE evolutions, and applications will be
finally illustrated in chapter 6.

Bon, ta thèse ne s’écrit pas très vite mais c’est pas plus mal, ca
va te mettre la pression pour le mois de septembre.

R. Deriche.



Chapter 3

From Variational to Local Formulations

In this part, we propose a new approach to unify with a common diffusion equation, the
range of vector-valued regularization PDE’s described earlier. This is done by developing each
of the three formulations (variational methods, divergence forms and oriented Laplacians)
into a generic form, based on diffusion tensors and the trace operator. This formalism is
an important step to better understand the local behaviors of regularization PDE’s, thanks
to a partial geometric interpretation of the developed equation. It helps as well to design a
new and efficient vector-valued PDE, respecting natural regularization properties. Finally, it
induces interesting numerical schemes for the implementation of these various regularization
algorithms.

3.1 From functionals to divergence forms

In this section, we consider the regularization of 2D multivalued images I : Ω → R
n, as a

variational problem. We propose to minimize a generic regularization functional depending of
the Di Zenzo’s variation indicators λ+ and λ− (eigenvalues of the structure tensor G), measuring
the vector-valued image variations. We show that the corresponding Euler-Lagrange derivation
leads to a specific case of a divergence-based equation ∂Ii

∂t = div (D∇Ii) where the diffusion
tensor field D is simply expressed from the spectral elements of G.

3.1.1 A generic functional for vector-valued regularization

Image regularization based on variational methods consists in the minimization of energy func-
tionals that measure image variations. The idea is that minimizing this kind of functional will
flatten the variations, then remove the noise.
In the case of scalar images I : Ω → R, this is usually done through the use of φ-functionals,
depending on the gradient norm ‖∇I‖ :

min
I:Ω→ � E(I) =

∫

Ω
φ(‖∇I‖) dΩ (3.1)
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where φ : R → R is an increasing function penalizing high variations for the minimization
process.
In the case of vector-valued images I : Ω→ R

n, the local vector variations are defined by the two
eigenvalues λ+ and λ− of the structure tensor G :

G =

(

g11 g12
g12 g22

)

with



























g11 =
∑n

k=1 I
2
kx

g12 =
∑n

k=1 Ikx
Iky

g22 =
∑n

k=1 I
2
ky

(3.2)

A way of adapting variational methods to multivalued-images is then to define a vector-valued
normN (λ+, λ−) that has the same role as the scalar gradient norm ‖∇I‖. Then one minimizes a
regularizing φ-functional depending on this norm :

min
I:Ω→�

n
E(I) =

∫

Ω
φ(N ) dΩ (3.3)

In the literature, the vector variation indicator N is usually chosen to be one of these three expres-
sions :

N1 =
√

λ+ or N2 =
√

λ+ − λ− or N3 =
√

λ+ + λ−

Actually, the a-priori choice for a variation norm limits the complexity of the regularizing func-
tional, for the multivalued case. Since the vector variations are given by two parameters λ+ and
λ−, we should rather consider the more general problem of minimizing this ψ-functional :

min
I:Ω→ �

n
E(I) =

∫

Ω
ψ(λ+, λ−) dΩ (3.4)

where ψ : R
2 → R is a function that should penalizes high variations. It is a natural extension of

the scalar φ-functions for vector-valued images. The approach (3.3) is obviously a particular case
of the minimization (3.4), with the following choices for ψ :

ψ1(λ+, λ−) = φ(
√

λ+)

or ψ2(λ+, λ−) = φ(
√

λ+ − λ−)

or ψ3(λ+, λ−) = φ(
√

λ+ + λ−)

Note also that for the particular case of scalar image regularization (n = 1), the ψ-functional (3.4)
naturally reduces to a classical φ-functional formulation (3.1), since then λ− = 0.
Usually, the regularizing minimizations are performed with a gradient descent, coming from the
Euler-Lagrange expression of the considered functionals. Let us compute the one related to the
functional (3.4)
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3.1.2 Computing the gradient descent

The Euler-Lagrange equations corresponding to the functional (3.4) are :

∂Ii
∂t

= div













∂ψ

∂Iix

∂ψ

∂Iiy













(i = 1..n) (3.5)

Actually, the vector ( ∂ψ
∂Iix

, ∂ψ
∂Iiy

)T can be written in a more comprehensive form.
From the chain-rule property of the derivation, we have :













∂ψ

∂Iix

∂ψ

∂Iiy
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∂λ+

∂Iix

∂λ−
∂Iix

∂λ+

∂Iiy

∂λ−
∂Iiy

























∂ψ

∂λ+

∂ψ

∂λ−













(3.6)

We know formally the expressions ∂ψ
∂λ±

since the function ψ is directly defined from the λ±.

Finding the ∂λ±
∂Iix

and ∂λ±
∂Iiy

is more tricky. Here is a simple way to proceed :

As the λ± are the eigenvalues of the structure tensor G = (gkl), we may decompose its derivatives
(with respect to Iix and Iiy ), in terms of derivatives with respect to the gkl :

∂λ±
∂Iix

=
∑

k,l

∂λ±
∂gkl

∂gkl
∂Iix

and
∂λ±
∂Iiy

=
∑

k,l

∂λ±
∂gkl

∂gkl
∂Iiy

(3.7)

Considering formula (3.2), the expressions ∂gkl

∂Iix
and ∂gkl

∂Iiy
are particularly simple :























∂g11
∂Iix

= 2Iix

∂g11
∂Iiy

= 0

and























∂g12
∂Iix

= Iiy

∂g12
∂Iiy

= Iix

and























∂g22
∂Iix

= 0

∂g22
∂Iiy

= 2Iiy

i.e (3.7) can be written as :












∂λ±
∂Iix

∂λ±
∂Iiy













=











2
∂λ±
∂g11

∂λ±
∂g12

∂λ±
∂g12

2
∂λ±
∂g22











∇Ii (3.8)

Thus, one last obstacle remains to be crossed, that is finding the formal expressions of ∂λ±
∂gkl

.
Remind that the λ± and θ± are the eigenvalues and eigenvectors of the structure tensor G :

G = λ+ θ+θ
T
+ + λ− θ−θT−



76 Chapter 3: From Variational to Local Formulations

The derivation of this tensor, with respect to one of its coefficient gkl is :

∂G

∂gkl
=

∂λ+

∂gkl
θ+θ

T
+ +

∂λ−
∂gkl

θ−θT− (3.9)

+ λ+
∂θ+
∂gkl

θT+ + λ−
∂θ−
∂gkl

θT−

+ λ+ θ+
∂θT+
∂gkl

+ λ− θ−
∂θT−
∂gkl

Moreover, as the θ± are unitary and orthogonal eigenvectors, we have :











θT+θ+ = θT−θ− = 1

θT+θ− = θT−θ+ = 0

and























∂θT+
∂gkl

θ+ = θT+
∂θ+
∂gkl

= 0

∂θT−
∂gkl

θ− = θT−
∂θ−
∂gkl

= 0

(3.10)

We first multiply the equation (3.9) by θT± at the left, by θ± at the right, then use the properties
(3.10). It allows high simplifications, and leads to these two relations :

∂λ+

∂gkl
= θT+

∂G

∂gkl
θ+ and

∂λ−
∂gkl

= θT−
∂G

∂gkl
θ− (3.11)

Equations (3.11) formally tell us how eigenvalues of a diffusion tensor G vary with respect to a
particular coefficient gkl of G. Actually, this interesting property can be proved for any symmetric
matrix. For instance, authors of [132] proposed a similar demonstration in a purely matrix form,
leading to the same result. They used it to deal with general covariance matrices.

Moreover in our case, the matrices ∂G
∂gkl

are very simple :

∂G

∂g11
=

(

1 0

0 0

)

,
∂G

∂g12
=

(

0 1

1 0

)

and
∂G

∂g22
=

(

0 0

0 1

)

With all these elements, we can express (3.8) as :












∂λ+

∂Iix

∂λ+

∂Iiy













= 2 θ+θ
T
+∇Ii and













∂λ−
∂Iix

∂λ−
∂Iiy













= 2 θ−θT−∇Ii (3.12)

Finally, replacing (3.12) in the Euler-Lagrange equations (3.6) and (3.5), gives the vector-valued
gradient descent of the functional (3.4) :

min
I:Ω→�

n

∫

Ω
ψ(λ+, λ−) dΩ =⇒ ∂Ii

∂t
= 2 div

([

∂ψ

∂λ+
θ+θ

T
+ +

∂ψ

∂λ−
θ−θ

T
−

]

∇Ii
)

(3.13)

(for i = 1..n) �
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Note that (3.13) is a divergence-based equation such that :

∂Ii
∂t

= div (D∇Ii) where D = 2
∂ψ

∂λ+
θ+θ

T
+ + 2

∂ψ

∂λ−
θ−θT−

D ∈ P(2) is then a 2× 2 diffusion tensor, whose eigenvalues are :

λ1 = 2
∂ψ

∂λ+
and λ2 = 2

∂ψ

∂λ−

associated to these corresponding orthonormal eigenvectors :

u1 = θ+ and u2 = θ−

They are directly linked with the spectral elements of the structure tensor G, and the partial
derivatives of the function ψ. We have to mention that λ1 or λ2 may be negative, if the function
ψ is not chosen to be strictly increasing, leading to negative-definite diffusion tensors.
In this chapter, we will often use the concept of diffusion tensor in order to designate real sym-
metric matrices, without considering the semi-positive constraint, i.e tensors that may represent
inverse diffusion.

With the demonstration (3.13), we extend the very recent work in [192], where the authors reached
a particular case of diffusion tensors D, using a variational formulation :

min
I:Ω→ �

n

∫

Ω
trace

(

φ(λ+)θ+θ
T
+ + φ(λ−)θ+θ

T
−
)

dΩ =⇒ ∂Ii
∂t

= div (D∇Ii)

where
D = φ

′
(λ+) θ+θ

T
+ + φ

′
(λ−) θ−θT−

Here, the same function φ
′

: R→ R appeared for each eigenvalue of the obtained tensor D.

With our equation (3.13) we clearly separate the two eigenvalues of the diffusion tensor D, as two
different functions of λ+ and λ−, expressed with the partial derivatives of the ψ-function of the
minimizing functional (3.4). Going back from a generic divergence expression ∂Ii

∂t = div (T∇Ii),
to the corresponding variational formulation may be done by finding a potential ψ(λ+, λ−) whose
gradient ( ∂ψ

∂λ+
, ∂ψ
∂λ−

)T corresponds to the two eigenvalues of the tensor T inside the divergence
operator. The related minimizing functional would then be (3.4)
Note that like the scalar φ-functional case, the ψ-function in (3.4) defines the regularization be-
havior of the resulting PDE.

It is also worth to mention that computing this gradient descent is done exactly in the same way,
when dealing with image domains Ω defined in higher dimensional spaces (Ω ⊂ R

p where p > 2)
More particularly, the case of 3D volume regularization (p = 3) can be written as :

min
I:Ω→�

n

∫

Ω
ψ(λ1, λ2, λ3) dΩ =⇒ ∂Ii

∂t
= 2 div

([

∂ψ

∂λ1
θ1θ

T
1 +

∂ψ

∂λ2
θ2θ

T
2 +

∂ψ

∂λ3
θ3θ

T
3

]

∇Ii
)

In this case, the λ1,2,3 are the three eigenvalues of the 3× 3 structure tensor G, and θ1,2,3 are the
corresponding orthonormal eigenvectors.
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3.1.3 Link with previous multivalued regularization approaches

We illustrate there how previously proposed vector-valued regularization PDE’s may be inter-
preted within our generic divergence-based equation (3.13).

1. Vector φ-functionals [25, 140, 154, 155, 161, 168] :

The vector φ-functional formalism is

min
I:Ω→ �

n

∫

Ω
φ(‖∇I‖) dΩ =⇒ ∂Ii

∂t
= div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇Ii

)

(3.14)

where φ : R→ R and ‖∇I‖2 = N+ =
∑n

i=1 ‖∇Ii‖2 =
√

λ+ + λ−.

Using our expression (3.13), it can be viewed as the diffusion process :

∂Ii
∂t

= div (D∇Ii) with D =
φ

′
(
√

λ+ + λ−)
√

λ+ + λ−
θ+θ

T
+ +

φ
′
(
√

λ+ + λ−)
√

λ+ + λ−
θ−θT−

i.e D is the isotropic diffusion tensor, with equal eigenvalues φ
′
(‖∇I‖)
‖∇I‖ .

If we want to going back to a ψ-functional formulation (3.4), we have to find a function
ψ : R

2 → R that verifies :

2
∂ψ

∂λ+
= 2

∂ψ

∂λ−
=
φ

′
(
√

λ+ + λ−)
√

λ+ + λ−

This is indeed verified by the expected function :

ψ(λ+, λ−) = φ(
√

λ+ + λ−)

Then, we find again the minimizing functional (3.14).

Notice that using functionals depending only on the norm ‖∇I‖ will necessarily leads to
isotropic diffusion tensors D in the resulting divergence based PDE’s (3.13). It emphasizes
again the fact that isotropic diffusion tensor may lead to anisotropic regularization. The
tensor shape is not interpretable if one wants to predict the regularization behavior of the
PDE flow (3.13).

2. Coherence enhancing diffusion [184, 186, 188] :

The coherence enhancing diffusion formalism is :

∂Ii
∂t

= div (D∇Ii) where D = α θ+θ
T
+ +

(

α+ (1− α)e
� − C

(λ+−λ−)2
� )

θ−θT−

(3.15)
In the initial method, the spectral elements λ± and θ± were computed from a smoothed
version Gσ = G ∗Gσ of the structure tensor field G (where Gσ is a normalized Gaussian
kernel). Here, we limit our analogy for a non-smoothed version of G (i.e σ → 0).
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This approach has been proposed in a direct divergence-based form, without any knowledge
of the corresponding minimizing functional. Actually, if the variational problem exists, one
should look for a function ψ(λ+, λ−) such that :

∂ψ

∂λ+
= α and

∂ψ

∂λ−
= α+ (1− α)exp

(

− C

(λ+ − λ−)2

)

Let us consider the 2D vector field F : R
2 → R

2 defined by :

F(λ+, λ−) =









α

α+ (1− α)exp

(

− C

(λ+ − λ−)2

)









It means that F should be the gradient of a two dimensional potential ψ(λ+, λ−). This is
possible iff its curl is null. The actual curl of the field F is computed as :

curl (F) =
∂F2

∂λ+
− ∂F1

∂λ−

=
2C(1− α)

(λ+ − λ−)3
exp

(

− C

(λ+ − λ−)2

)

6= 0

since α 6= 1 and C 6= 0.

Unfortunately, the coherence enhancing diffusion cannot be expressed as the gradient
descent of a ψ-minimizing functional as (3.4). It particularly shows that a direct and local
designing of divergence-based PDE’s offers more freedom to create different regularization
behaviors that couldn’t be reached with variational formulations.

3. Beltrami flow [104, 164] :

The Beltrami flow formalism for 2D vector image regularization is :

min
I:Ω→ �

n

∫

Ω

√

(1 + λ+)(1 + λ−) dΩ =⇒ ∂Ii
∂t

=
1

√

(1 + λ+)(1 + λ−)
div (D∇Ii)

(3.16)
where the diffusion tensor D can be expressed as (see section 2.2.6) :

D =

√

1 + λ−
1 + λ+

θ+θ
T
+ +

√

1 + λ+

1 + λ−
θ−θ

T
−

Note that the factor 1/
√

(1 + λ+)(1 + λ−) is only appearing because the gradient descent
is computed with respect to the metric of the image surface, rather than the classical Eu-
clidean metric.
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If we are only starting from the divergence form and we are looking to find the correspond-
ing variational ψ-functional formulation (3.4), we should look for a function ψ(λ+, λ−)

that verifies :

2
∂ψ

∂λ+
=

√

1 + λ−
1 + λ+

and 2
∂ψ

∂λ−
=

√

1 + λ+

1 + λ−

One can easily verify that the ψ-function verifying these properties is indeed

ψ(λ+, λ−) =
√

(1 + λ+)(1 + λ−)

�

We addressed the problem of linking the diffusion tensors D appearing in divergence-based reg-
ularization PDE’s, with a corresponding ψ-functional minimization. We show how previously
proposed variational methods for multivalued image regularization may be expressed within this
framework, with particular choices of ψ-functions. But one step left has to be done : how can
we link these generic divergence equations to regularization formulations based on oriented 1D
Laplacians, as described in 2.4.1 ? This is the matter of the following part.
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3.2 From divergence forms to oriented Laplacians

As we noticed in section 2.4, there is a close link between oriented 1D Laplacians (i.e directional
second derivatives) and the trace-based equations :

∂I

∂t
= c1 Iuu + c2 Ivv ⇐⇒ ∂Ii

∂t
= trace (THi) (i = 1..n) (3.17)

where Hi is the Hessian of the image I and T is the diffusion tensor whose eigenvalues are c1, c2
and corresponding orthogonal eigenvectors are u,v :

T = c1 uuT + c2 vvT

In the followings, we first show the intuition behind oriented Laplacians and trace-based PDE’s
(3.17), in terms of local geometric smoothing. Then, we will develop PDE’s expressed with diver-
gence forms, into a unifying trace-based equation that gathers previously proposed multivalued
regularization methods. Our believe is that the tensor shapes in trace-based equations give the
real local geometry of the diffusion process, contrary to the ones in divergence-based PDE’s.

3.2.1 Geometric interpretation of oriented Laplacians

In section 2.1.1, we reminded the work of Koenderink [108] who noticed that the well know 2D
heat equation acting on scalar images I : Ω→ R may be seen as a convolution process. It can be
naturally extended for multivalued images I : Ω → R

n, using a channel by channel convolution.
The following equation















I(t=0) = I0

∂Ii
∂t

= ∆Ii (i = 1..n)

(3.18)

has a simple analytic solution at time t :

Ii(t) = Ii0 ∗Gt (i = 1..n)

where Gt is a 2D normalized Gaussian kernel whose expression is :

Gt(x, y) =
1

4πt
exp

(

−x
2 + y2

4t

)

This simple diffusion process is isotropic, since it smooths the image with the same weight in all
directions. Note that

∆Ii = trace (IdHi)

i.e, (3.18) can be seen as a trace-based equation as (3.17) where the diffusion tensor T in the trace
operator is the identity matrix Id, i.e an isotropic tensor.
Actually, we can prove the same kind of result for the larger class of anisotropic smoothing
processes, similar to (3.18) but with a generic diffusion tensor T in the trace operator, instead of
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the identity matrix Id :














I(t=0) = I0

∂Ii
∂t

= trace (THi) (i = 1..n)

(3.19)

where T is a constant diffusion tensor over the domain Ω.

Similarly to the heat equation, the solution of (3.19) is the convolution of the multivalued image
I (channel by channel) by a particular 2D oriented Gaussian kernel G(T,t) :

Ii(t) = Ii0 ∗G(T,t) (i = 1..n)

where G(T,t) is defined as :

G(T,t)(x) =
1

4πt
exp

(

−xTT−1x

4t

)

where x =

(

x

y

)

(3.20)

This normalized Gaussian function is oriented by the two eigenvectors of the diffusion tensor T,
and has corresponding variances depending both of the eigenvalues of T and the diffusion time t.

Proof : From the expression (3.20), we can compute the temporal and spatial derivatives of
G(T,t) :

∂G(T,t)

∂t
= − 1

4πt2
exp

(

−xTT−1x

4t

)(

1− xTT−1x

4t

)

and






















∇G(T,t) = − 1

8πt2
exp

(

−xTT−1x

4t

)

T−1x

HG(T,t) = − 1

8πt2
exp

(

−xTT−1x

4t

)

T−1

(

Id− xxTT−1

2t

)

where ∇G(T,t) and HG(T,t) are respectively the gradient and the Hessian of G(T,t).
It means that

trace (T HG(T,t)) = − 1

8πt2
exp

(

−xTT−1x

4t

)

trace

(

Id− xxTT−1

2t

)

= − 1

8πt2
exp

(

−xTT−1x

4t

)(

2− xTT−1x

2t

)

=
∂G(T,t)

∂t

And as the convolution is a linear operation, we have

∂(Ii0 ∗G(T,t))

∂t
= Ii0 ∗

∂G(T,t)

∂t
= Ii0 ∗ trace (T HG(T,t))

= trace
(

T HIi0∗G(T,t)

)
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as well as
lim
t→0

(Ii(t) ∗G(T,t)) = Ii0

since the Gaussian function G(T,t) is normalized. �

It is very interesting, since it makes the link between a certain class of anisotropic diffusion PDE’s
and classical filtering techniques :

∂Ii
∂t

= trace (THi) ⇐⇒ Ii(t) = Ii(t=0)
∗G(T,t) (3.21)

with

G(T,t)(x) =
1

4πt
exp

(

−xTT−1x

4t

)

This is illustrated on Fig.3.1, for different tensors T. In the figure captions, we denoted by λ1, λ2

the eigenvalues of T, and by θ ∈ R the polar angle of the eigenvector u1 associated with λ1 :

u1 =

(

cos θ

sin θ

)

and u2 =

(

− sin θ

cos θ

)

⊥u1 i.e T = λ1u1u
T
1 +λ2u2u

T
2

Actually, we may notice that the Gaussian kernel images are exactly the ellipsoids that would be
used to represent the diffusion tensor T (see section 1.2).
Note that the shape of the tensor T = c1uuT + c2vvT can be easily understood from the oriented
laplacian version of the trace-based equation (3.17) :

∂I

∂t
= c1 Iuu + c2 Ivv where u⊥v

This equation can be seen as two coexistent smoothing processes in orthogonal directions u and
v, weighted respectively by c1 and c2. It means that the corresponding gaussian kernel G(T,t)

used for the convolution, is naturally stretched in the direction u if c1 > c2, and the direction v if
c1 < c2, leading to clearly anisotropic smoothing effect.
Note also that the extension of (3.21) for images defined in higher dimension domains Ω ⊂ R

p

(where p > 2) is easy and leads to the same equation : T is then a p × p tensor, and the corre-
sponding convolution mask is a p-dimensional oriented Gaussian function.

Suppose now that T is not constant but models a general field of diffusion tensors. Then, the
trace equation (3.21) becomes nonlinear, and doesn’t correspond anymore to the convolution of
the image I by a Gaussian kernel.
Nevertheless, the fact is that we can see this nonlinear process as the application of very local
convolutions at each image point. This is a way of applying temporally and spatially varying
masks over the image. This can be assimilated to local filtering methods, as proposed in [20, 171]
(concept of Bilateral Filtering), and [163] (Filters and Short Time Kernels for the Beltrami flow).

Two examples of the trace-based equation ∂Ii
∂t = trace (THi) with spatially varying tensor fields

T are illustrated on Fig.3.2. The PDE has been applied on a color image (n = 3).
Note how the form of the tensor field T gives precisely the geometry of the local smoothing that
is applied on the image. With the trace-based PDE (3.21), it is then very easy to predict the result
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(a1) Gaussian kernel G(T1,t) with t = 1,
λ1 = λ2 = 1 and θ ∈ �

.
(a2) Corresponding PDE flow ∂Ii

∂t
= trace (T1Hi), at t = 1
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(b1) Gaussian kernel G(T2,t) with t = 1,
λ1 = 1, λ2 = 0.05 and θ = −π

4
. (b2) Corresponding PDE flow ∂Ii

∂t
= trace (T2Hi), at t = 1
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(c1) Gaussian kernel G(T3,t) with t = 1,
λ1 = 1, λ2 = 0.002 and θ = 0.

(c2) Corresponding PDE flow ∂Ii

∂t
= trace (T3Hi), at t = 1

Figure 3.1: The link between diffusion tensors and oriented Gaussian kernels.
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of such regularization processes, only by looking at the field of diffusion tensors T, used in the
trace operator.
Thus, one may design specific diffusion tensor fields T, in order to adapt the regularization to
the local geometry of the considered image, or even take into account some geometric features
coming from additional datasets, allowing to introduce regularization priors.

In the next section, we will show that the generic multivalued regularization PDE’s as
∂Ii
∂t = div (D∇Ii) which gathers a lot of proposed multivalued approaches, can be written in

an extended trace-based equation, using diffusion tensors.
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(a) Tensor field T1 : Ω → P(2) (b) Smoothed image with ∂Ii

∂t
= trace (T1Hi)

(c) Direction field T2 : Ω → P(2) (d) Smoothed image with ∂Ii

∂t
= trace (T2Hi)

(c) Direction field T3 : Ω → P(2) (d) Smoothed image with ∂Ii

∂t
= trace (T3Hi)

Figure 3.2: Example of the PDE flow
∂Ii
∂t

= trace (THi), with non-constant tensor fields T.
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3.2.2 Difference with divergence-based equations

To understand the link between divergence based equations ∂Ii
∂t = div (D∇Ii), and nonlinear

trace-based regularizations ∂Ii
∂t = trace (DHi), let us denote the field of diffusion tensor D by :

D =

(

a b

b c

)

Note that a, b, c are functions Ω→ R. We have then :

∂Ii
∂t

= div (D∇Ii)

= div

(

a Iix + b Iiy
b Iix + c Iiy

)

=
∂

∂x

(

a Iix + b Iiy
)

+
∂

∂y

(

b Iix + c Iiy
)

= a Iixx + 2b Iixy + c Iiyy + Iix

(

∂a

∂x
+
∂b

∂y

)

+ Iiy

(

∂b

∂x
+
∂c

∂y

)

= trace (DHi) +∇ITi ~div (D) (3.22)

where we defined ~div () as the divergence operator acting on matrix fields, returning variation
vectors :

~div

(

a b

c d

)

=

















div

(

a

b

)

div

(

c

d

)

















=

(

ax + by
cx + dy

)

• If D is a field of constant diffusion tensors, we have ~div (D) = ~0 and (3.22) simplifies to :

∂Ii
∂t

= trace (DHi)

In this case, the two diffusion processes (3.22) and (3.19) are equivalent, and the diffusion tensor
D if really related to the local smoothing behavior of the divergence equation ∂Ii

∂t = div (D∇Ii).

• In the more general case when D spatially varies, an additional term ∇I Ti ~div (D) depending
on the variations of D differentiates the two diffusion methods expressed with the trace operator
(3.19) and with the divergence-based operator :

div (D∇Ii) = trace (DHi) +∇I �� ~div (D)

This additional term may not be negligible in regard to the trace term trace (DHi) that smoothes
locally the image with respect to the shape of D, as we noticed in the previous section 3.2.1

Actually, it is possible to develop ∇ITi ~div (D) in order to express it also with a trace operator.
This additional trace-based term perturbs then the initial smoothing given by trace (DHi).
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In the next section, we show that the resulting trace-based equation will not be driven only by the
tensor D, but will depend also on different diffusion tensors Qij that may change the diffusion
directions.

Moreover, it will be used to unify trace-based and divergence-based equations, in a common
formalism.

3.2.3 Development of the divergence form

Most divergence-based regularization PDE’s acting on multivalued images have the following
form :

∂Ii
∂t

= div (D∇Ii) (i = 1..n) (3.23)

where D is a diffusion tensor based only on first order operators. The fact is that D is often
computed from the structure tensor G =

∑n
j=1∇Ij∇ITj and depends mainly on the spatial

derivatives Iix and Iiy . Intuitively, as the divergence div () = ∂
∂x + ∂

∂y is itself a first order
derivative operator, we should be able to write (3.23) only with first and second spatial derivatives
Iix , Iiy , Iixx , Iixy and Iiyy . Thus, it could be expressed with oriented Laplacians in each image
channel Ii as well, i.e an expression based on the trace operator, such as (3.19).

We want to make the link between the two different diffusion tensors D and T in the divergence-
based and trace-based regularization PDE’s, in the case when D is not constant :

∂Ii
∂t

= div (D∇Ii) and
∂Ii
∂t

= trace (THi)

As we noticed in the previous section, these two formulations are almost equivalent, up to an
additional term depending on the variation of the tensor field D :

div (D∇Ii) = trace (DHIi) +∇ITi ~div (D) (3.24)

where ~div () is the matrix divergence.
A natural idea is then to decompose the additional term ∇ITi ~div (D) into oriented Laplacians,
expressed with additional diffusion tensors Q in the trace operator.

For this purpose, we will consider that the divergence tensor D is defined at each point x ∈ Ω by

D = f1(λ+, λ−) θ+θ
T
+ + f2(λ+, λ−) θ−θ

T
− with f1/2 : R

2 → R (3.25)

It means that D is only expressed from the eigenvalues λ± and the eigenvectors θ± of the structure
tensor G :

G = λ+ θ+θ
T
+ + λ− θ−θT−

This is indeed a very generic hypothesis that is verified by the majority of the proposed vector-
valued regularization methods. For instance, this is the case for our generic ψ-functional regular-
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ization PDE in section 3.1, where

∂Ii
∂t

= div (D∇Ii) with (3.25) and























f1(λ+, λ−) = 2
∂ψ

∂λ+

f2(λ+, λ−) = 2
∂ψ

∂λ−

In order to develop the additional diffusion term ∇ITi ~div (D) in the equation (3.24), we propose
to write D as a linear combination of G and Id :

D = α(λ+, λ−)G + β(λ+, λ−)Id (3.26)

i.e we separate the isotropic and anisotropic parts of D, with

α =
f1(λ+, λ−)− f2(λ+, λ−)

λ+ − λ−
and β =

λ+f2(λ+, λ−)− λ−f1(λ+, λ−)

λ+ − λ−
(3.27)

Indeed, we have

αG + βId =
f1 − f2

λ+ − λ−
(λ+ θ+θ

T
+ + λ− θ−θT−) +

λ+f2 − λ−f1

λ+ − λ−
(θ+θ

T
+ + θ−θT−)

=
1

λ+ − λ−
[

θ+θ
T
+ (λ+f1 − λ−f1) + θ−θT− (λ+f2 − λ−f2)

]

= f1 θ+θ
T
+ + f2 θ−θT−

= D �

Here we assumed that λ+ 6= λ− (i.e the structure tensor G is anisotropic). Anyway, if G is
isotropic, one generally chooses an isotropic diffusion tensor D too, in the divergence operator of
(3.24), i.e f1(λ+, λ−) = f2(λ+, λ−). In this case, we choose α = 0 and β = f1(λ+, λ−).

This decomposition is useful to rewrite the matrix divergence ~div (D) into :

~div (D) = α ~div (G) + G∇α+∇β (3.28)

and the additional term of the equation (3.24) would be computed as :

∇IT ~div (D) = trace
(

~div (D)∇ITi
)

= αtrace
(

~div (G)∇ITi
)

(3.29)

+ trace
(

G∇α∇ITi
)

(3.30)

+ trace
(

∇β∇ITi
)

(3.31)

In the following, we propose to find formal expressions of (3.29), (3.30) and (3.31).

• First, remember that the structure tensor G is defined as :

G =

n
∑

j=1

∇Ij∇IjT
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We have then :

~div (G) =
n
∑

j=1

~div

(

I2
jx IjxIjy

IjxIjy I2
jy

)

=

n
∑

j=1

(

2 IjxIjxx + IjxIjyy + IjyIjxy

IjxIjxy + IjyIjxx + 2 IjyIjyy

)

=

n
∑

j=1

(

Ijx(Ijxx + Ijyy)

Ijy(Ijxx + Ijyy)

)

+

(

IjxIjxx + IjyIjxy

IjxIjxy + IjyIjyy

)

=

n
∑

j=1

∆Ij∇Ij + Hj∇Ij

where ∆Ij and Hj are respectively the Laplacian and the Hessian of the image component Ij .
Then, we can write the expression 3.29 as :

αtrace
(

~div (G)∇IiT
)

=

n
∑

j=1

αtrace
(

Hj

[

∇IiT∇IjId +∇Ij∇IiT
])

(3.32)

�

• We finally have to compute ∇α and ∇β, in the expression (3.30) and (3.31). This can be done
by the decomposition :

∇α =
∂α

∂λ+
∇λ+ +

∂α

∂λ−
∇λ− and ∇β =

∂β

∂λ+
∇λ+ +

∂β

∂λ−
∇λ− (3.33)

and as the λ±, eigenvalues of the structure tensor G, depends on the Ijx and Ijy :

∇λ± =

(

λ±x

λ±y

)

=

n
∑

j=1

( ∂λ±
∂Ijx

Ijxx + ∂λ±
∂Ijy

Ijxy

∂λ±
∂Ijx

Ijxy + ∂λ±
∂Ijy

Ijyy

)

=
n
∑

j=1

HIj





∂λ±
∂Ixj
∂λ±
∂Iyj





In section 3.1, we derivated eigenvalues of a structure tensor G, with respect to the spatial image
derivatives. We ended up with the following relation :





∂λ±
∂Ixj
∂λ±
∂Iyj



 = 2θ±θ
T
±∇Ij

Then,

∇λ± =

n
∑

j=1

2Hjθ±θ
T
±∇Ij (3.34)
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We can replace (3.34) into the expressions of (3.33), in order to find the spatial gradients of α and
β :































∇α =

n
∑

j=1

2Hj

(

∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ+θ

T
+

)

∇Ij

∇β =
n
∑

j=1

2Hj

(

∂β

∂λ+
θ+θ

T
+ +

∂β

∂λ−
θ+θ

T
+

)

∇Ij

(3.35)

Using (3.35), we finally compute the two missing parts (3.30) and (3.31) of the additional term
∇ITi ~div (D) :































trace
(

G∇α∇ITi
)

=
n
∑

j=1

trace

(

2 GHj

(

∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θT−

)

∇Ij∇ITi
)

trace
(

∇β∇ITi
)

=

n
∑

j=1

trace

(

2 Hj

(

∂β

∂λ+
θ+θ

T
+ +

∂β

∂λ−
θ−θ

T
−

)

∇Ij∇ITi
)

(3.36)

�

• The final step consists in putting together the equations (3.32) and (3.36), in order to express
the additional term ∇ITi ~div (D) in the PDE (3.24).

∇ITi ~div (D) =

n
∑

j=1

trace
(

HjP
ij
)

(3.37)

where the Pij are the following 2× 2 matrices :

Pij = α ∇ITi ∇IjId

+ 2

(

∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θ

T
−

)

∇Ij∇ITi G

+ 2

(

(α+
∂β

∂λ+
)θ+θ

T
+ + (α+

∂β

∂λ−
)θ−θ

T
−

)

∇Ij∇ITi (3.38)

Note that the indices i, j in the notation Pij do not designate the coefficients of a matrix P, but
the parameters of the family consisting of n2 matrices Pij (each of them is a 2× 2 matrix).
The matrices Pii are symmetric, but generally not the Pij (where i 6= j), since the gradients ∇Ii
and ∇Ij are not aligned in the general case.
Yet, we want to express the equation (3.37) only with symmetric matrices, in order to interpret it
as a sum of local smoothing processes oriented by diffusion tensors (as described in section 3.2).
Fortunately, the trace operator has this simple property :

trace (AH) = trace

(

A + AT

2
H

)
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where (A + AT )/2 is a 2× 2 symmetric matrix (the symmetric part of A).

Thus, we define the symmetric matrices Qij , corresponding to the symmetric parts of the Pij :

Qij =
Pij + PijT

2
(3.39)

and we have :

∇ITi ~div (D) =
n
∑

j=1

trace
(

HjQ
ij
)

Finally, the divergence-based PDE (3.24) can be written as :

div (D∇Ii) =
n
∑

j=1

trace
(

(δijD + Qij)Hj

)

(3.40)

where δij is the Kronecker’s symbol :

δij =

{

0 if i 6= j

1 if i = j

�

The regularization PDE (3.40) is equivalent to the divergence-based equation ∂Ii
∂t = div (D∇Ii),

but with a trace-based formulation.

It clearly shows that the local smoothing behavior of a divergence-based PDE as
∂Ii
∂t = div (D∇Ii) is generally not given by the single diffusion tensor D, but results from a

sum of several diffusion contributions of each channel Ij in each channel Ii (with i, j = 1...n),
involving additional tensors Qij .

The local geometric interpretation of (3.40) is not as simple as the single trace equation
∂Ii
∂t = trace (THi), but it gives an idea of the coupling between vector components (through the

matrices Qij , with i 6= j), as well as the basic smoothing directions in each channel Ii (through
the matrices Qii).

Actually, the fact is that (3.40) is purely pointwise defined, and is then more locally significant
than the corresponding divergence form, which implicitly introduces the notion of diffusion ten-
sor variations, through the differential divergence operator. It is an interesting stage that makes
the link between the formalism of classical nonlinear regularization PDE’s and the approach of
bilateral filtering, as proposed in [20, 171, 163].
Moreover, the equation (3.40) gives a general form of vector-valued regularization PDE’s, as it
will be detailed now.
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3.3 A unified expression for multivalued regularization PDE’s

3.3.1 The general formula

In previous sections, we first derivated regularizing functionals into specific divergence-based
equations. Then, we developed general divergence-based PDE’s into specific trace-based equa-
tions. At each development step, we get into more local interpretations. Reaching the level of
trace-based equations, we can now define a general form that unifies the three different levels of
regularization approaches.

We define the following generic multivalued regularization PDE as :

∂Ii
∂t

=
n
∑

j=1

trace
(

AijHi

)

(i = 1..n) (3.41)

where the Aij forms a family of 2× 2 symmetric matrices.
Actually, this expression can be written with a slight abuse of notations, in a super-matrix form
1 :

∂I

∂t
= ~trace (AH) (3.42)

where A is a matrix of diffusion tensors Aij (and is itself considered as symmetric) :

A =







A11 . . . A1n

...
. . .

...
A1n . . . Ann







and H is a vector of Hessian matrices Hj :

H =







H1
...

Hn







�

The matrix product AH is seen sub-matrix per sub-matrix there, and the operator ~trace () returns
the vector in R

n, corresponding to the trace of each sub-matrix in the resulting vector of matrices.

3.3.2 The link with other approaches

The equation (3.42) is actually a natural extension of the studied trace-based PDE
∂I
∂t = trace (THi). Its form follows readily the decomposition of divergence-based equations,
and unifies all the previously proposed multivalued regularization PDE’s :

1This notation has been introduced by N. Sochen, after fruitful discussions.
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• Variational formulations and divergence-based expression :

The equation (3.42) can be used to express regularization PDE’s based on variational for-
mulations and divergence-based approaches (see section 3.2.3). Indeed, we can define the
whole range of vector-valued divergence-based equations with trace operators :

∂Ii
∂t

= div (D∇Ii) ⇐⇒ ∂I

∂t
= ~trace (AH)

with the following definitions for the Aij :

Aij = δijD + Qij

where the Qij are the symmetric parts of the matrices Pij , defined as :

Pij = α ∇ITi ∇IjId

+ 2

(

∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θ

T
−

)

∇Ij∇ITi G

+ 2

(

(α+
∂β

∂λ+
)θ+θ

T
+ + (α+

∂β

∂λ−
)θ−θT−

)

∇Ij∇ITi (3.43)

This includes more particularly, the different formulations handled by the ψ-functional
framework (section 3.1), such as the Beltrami flow and the Vector φ-functionals, but also
formulations directly based on divergence forms, such as the Weickert coherence enhancing
PDE’s [188].

Note that in general, the Aij (where i 6= j) are non-null, which means that divergence
based equations offers a complex diffusion coupling between image channels Ii. This kind
of coupling may not be desired for regularization purposes.

• Multivalued oriented 1D Laplacians :

The equation (3.42) can be also used to represent regularization PDE’s based on oriented
1D Laplacians, as described in section 2.4 :

∂Ii
∂t

= trace (THi) ⇐⇒ ∂I

∂t
= ~trace (AH)

with the following definitions for the Aij :

Aij = δijT

It means that the matrixA is diagonal. In this case, the Aij (i 6= j) are null and no diffusion
transfers between the different image channels occurs.

This particular case includes for instance the work of Sapiro-Ringach [157] and Kornprobst-
Deriche [112].

Clearly, the matrix A in (3.42) gives important informations about the exact regularization be-
haviors of the PDE flow. It can be seen as an extension of the diffusion tensor T in trace-based
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equations like ∂Ii
∂t = trace (DHi), where the sub-matrices Aii of A correspond to the diffusion

performed in the current channel Ii, while the Aij (i 6= j) are representative of a kind of diffusion
energy transfer between the vector components Ii and Ij .

A is then a kind of super diffusion tensor, characterizing the regularization process (3.42). Just
like classical diffusion tensors, a natural idea would be then to diagonalize it, in a bloc-matrix
form. This is an interesting new problem that opens perspectives in the study of regularization
PDE’s. In this thesis, we didn’t go deeper into this “spectral decomposition” of the matrix A.

• Illustration for the scalar case :
Anyway, we illustrate that the classical case of scalar image regularization (n = 1), based on
φ-functions, illustrates the important role of A in order to understand the regularization behavior
of equation (3.42). Indeed, the PDE reduces then to :

∂I

∂t
= trace

(

A11H
)

= trace
([

D + Q11
]

H
)

and Q11 can be computed from (3.38) :

Q11 = ‖∇I‖2
[ (

3α + 2‖∇I‖2 ∂α
∂λ+

+ 2
∂β

∂λ+

)

ηηT + α ξξT
]

Considering the φ-function framework, we have D = φ
′
(‖∇I‖)
‖∇I‖ . Following the notations (3.27),

we get :

α = 0 and β =
φ

′
(‖∇I‖)
‖∇I‖ =

φ
′
(
√

λ+)
√

λ+

and Q11 is in this case :

Q11 =

[

φ
′′
(‖∇I‖) − 1

‖∇I‖φ
′
(‖∇I‖)

]

ηηT

and the diffusion tensor A11 is written as :

A11 =
φ

′
(‖∇I‖)
‖∇I‖ ξξT + φ

′′
(‖∇I‖) ηηT

This tensor A11 gives the exact local geometry of the φ-functional diffusion process. It is very
different from the initial tensor D, present in the divergence term.

∂I

∂t
= div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇I

)

= trace

([

φ
′
(‖∇I‖)
‖∇I‖ ξξT + φ

′′
(‖∇I‖) ηηT

]

H

)

=
φ

′
(‖∇I‖)
‖∇I‖ Iξξ + φ

′′
(‖∇I‖) Iηη
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Using a more general viewpoint, we find again the divergence decomposition into oriented Lapla-
cians that explains the anisotropic behavior of φ-function based regularizing PDE’s.
Our approach is more global since it can decompose multivalued regularization PDE’s into trace-
based equations.

Using the generic form of regularizing PDE’s (3.42), we propose now to construct a new and effi-
cient multivalued regularization process, designed on some important local geometric constraints.
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3.4 Defining a new multivalued regularization/enhancement process

Following our previous study on the multivalued regularization PDE’s, we propose now to de-
fine a new diffusion PDE, based on desired local geometric properties that are desirable for a
regularization process. These geometric behaviors will be naturally expressed through specific
constraints on the subtensors of A, in (3.42)

3.4.1 Vector geometry-adapting regularization

Our approach is based on the fact that we can define the exact smoothing behavior of a multivalued
regularization process like the one defined in (3.42) :

∂I

∂t
= ~trace (AH) (3.44)

We want to design locally the corresponding matrix A, in order to adapt the smoothing to the
local vector geometry of the image. The list of desired geometric properties is as follows :

1. We don’t want to mix diffusion terms between different image channels. It corresponds to
avoid diffusion transfer between the vector components. Then, we wish that :

∀i, j | i 6= j, Aij = 0 (the null matrix)

It means that the super-matrix A is diagonal, and that we are only defining n matrices
Aii. Actually, it allows us to remove the vector coupling between image components, i.e
we assume that we chose an initial vector basis that is adapted to the regularization process
(note that choosing the right initial vector basis is another difficult topic and is not discussed
in this thesis).

2. Vector components should evolve with the same different behaviors, since they have a-priori
the same importance. It particularly means that the tensors Aii have to be equal to a single
tensor A. We define its eigenvalues by f+ : Ω → R and f− : Ω → R, and its associated
orthonormal eigenvectors by u+ and v+ :

A = f+ u+uT+ + f− u−uT−

3. The diffusion geometry has to be vector-valued, i.e computed from the spectral ele-
ments λ± and θ± of the structure tensor G. We will especially use the variation norm
N+ =

√

λ+ + λ− in order to discriminate the different types of image regions (for reason
explained in section 2.2.2).

Following the idea of Weickert’s method [184, 186, 188], we also compute the eigenvalues
λ± and the eigenvectors θ± from a smoothed version Gσ of the structure tensor field G :

Gσ = G ∗Gσ where Gσ =
1

4πt
exp

(

−x
2 + y2

4t

)

We denote by λ∗± and θ∗± the spectral elements of Gσ .

Choosing these smoothed spectral elements in order to design A improves the regulariza-
tion process thanks to the use of a more coherent diffusion geometry.
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4. On homogeneous zones (low vector variations regions), we would like to perform an
isotropic smoothing therein, in order to clear the noise efficiently :

∂Ii
∂t
' ∆Ii = trace (Hi) i.e lim

N ∗
+→0

A = Id

which also means that

lim
N ∗

+→0
f+(N ∗

+) = lim
N ∗

+→0
f−(N ∗

+) = 1

5. On vector edges (high variation regions), we would like to perform an anisotropic smooth-
ing along the vector edges, in order to preserve them while removing the noise. Thus, the
diffusion tensor A should be mainly directed by the vector edge orientation θ∗−, in these
regions :

∂Ii
∂t
' f−(N ∗

+) θ−θ
T
− = trace

(

f−(N ∗
+)θ−θ

T
−Hi

)

i.e

lim
N ∗

+→+∞
f−(N ∗

+)

f+(N ∗
+)

= 0

f− : R → R is then a function decreasing for very high vector variations (as f+), in order
to preserve sharp corners.

The following multivalued regularization PDE follows all these local geometric properties :















I(t=0) = Inoisy

∂Ii
∂t

= trace
([

f+

(√

λ∗+ + λ∗−
)

θ∗−θ
∗
−
T + f−

(√

λ∗+ + λ∗−
)

θ∗+θ
∗
+
T
]

Hi

)

(3.45)

(i = 1..n).

The λ∗± and θ∗± are the eigenvalues and eigenvectors of the smoothed structure tensor
Gσ :

Gσ =





n
∑

j=1

∇Ij∇ITj



 ∗Gσ

and the f± : Ω → R are two functions that weight the smoothing process in the correspond-
ing directions θ∗±. We propose for instance these two functions, inspired from the hypersurface
formulation of the scalar case (see chapter 2) :



















f−(s) =
1√

1 + s2

f+(s) =
1

1 + s2

(3.46)
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�

This is of course one possible choice that verifies the above geometric properties, relying on
pratical experience. The point is that we can easily adapt f− and f+ to obtain regularization
behaviors for specific problems.
This new multivalued regularization equation (3.45) smoothes locally the image, using a coher-
ent vector-geometry directions and preserves well the edges, while avoiding undesired coupling
between vector components. It can be also written in an oriented Laplacian style :

∂I

∂t
= f− Iθ∗−θ∗− + f+ Iθ∗+θ∗+

With this expression, it is clear that the regularization process consists in two oriented vector-
valued heat flows, along the directions θ∗+ and θ∗−, with corresponding weights f+ and f−.
Its form has steadily followed the local analysis of classical multivalued regularization algorithms.
Its main interest is the knowledge of the exact smoothing directions.
Applying this new regularizing PDE (3.45) on the images with artificial noise presented on the
comparative figures Fig.2.13 and Fig.2.14 in chapter 2 can be found below (Fig.3.3)

3.4.2 Vector-valued edge enhancement

Reducing the blurred edges can be a part of an image restoration process. We propose to add an
additional vector edge enhancement term to our multivalued regularization PDE (3.45), based on
the well-known shock filter formalism [9, 131].

The scalar shock filter method has been designed to enhance blurred edges in gray-valued images
without any knowledge of convolution masks that caused the blur (Fig. 3.4).
It operates by raising the signal in the gradient direction η = ∇I

‖∇I‖ :

∂I

∂t
= −sign (Iηη) ‖∇I‖

= −sign
(

ηTHη
)

‖∇I‖

When dealing with vector-valued images, we would like naturally that the shock filter raises
each vector channel Ii in a common direction θ∗+ of the vector discontinuities (θ∗+ is the main
eigenvector of the smoothed structure tensor Gσ).
We also add a weighting function that adapts the intensity of the shock filter process, allowing to
enhance vector edges, while keeping homogeneous regions unchanged.
This leads to the following vector shock filter equation :

∂Ii
∂t

= −
(

1− g
(√

λ∗+ + λ∗−
))

sign
(

θ∗
T

+ Hi θ
∗
+

)

|Iiθ∗+ | (3.47)

where g : R→ [0, 1] is a decreasing function.

�
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(a) Noisy synthetic color image (b) Restored image, using the PDE (3.45)

(c) Noisy color photograph (d) Restored image, using the PDE (3.45)

Figure 3.3: Using our vector-valued regularization PDE to regularize noisy color images.

We illustrate on Fig.3.5 the application of the vector shock filters (3.47) on a blurred color image.

Notice that shock filters cannot create new image structures, but only acts as an edge sharpener.
Processed images with shock filters often look like cartoon images, since the PDE (3.47) tends to
create piecewise constant solutions.

Combining the regularization term (3.45) with the vector-valued shock filter term (3.47) allows to
denoise and enhance vector edges in a common PDE process. In Fig.3.6, we applied this method
to restore and enhance a noisy and blurred color image. Using only regularization PDE’s removes
well the noise (Fig.3.6b), but the resulting image is still blurred. The coupled regularization+shock
equation allows to retrieve a denoised image with sharper contours (Fig.3.6c).
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I(x,y)

Figure 3.4: Principle of shock filters.

(a) Blurred color image (b) Enhanced image, with vector shock filters

Figure 3.5: Vector-valued shock filters applied on a color image.

3.5 Numerical schemes for multivalued regularization

We propose two working numerical schemes, which can be used to implement the general multi-
valued equation (3.44), proposed in section 3.41 :

∂I

∂t
= ~trace (AH) i.e

∂Ii
∂t

=

n
∑

j=1

trace
(

AijHj

)

(i = 1..n) (3.48)

More particularly, these schemes have been used to implement our new regularization equation
(application results can be found in chapter 4) :

∂Ii
∂t

= trace (THi) where T is defined as (3.45) (3.49)

Please note that these schemes are given as they are. The exhaustive mathematical study (unique-
ness, convergence, etc.) has not been done in this thesis and could be envisaged for future works.
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(a) Noisy and blurred color image (b) Restored with regularization PDE (3.45)
(c) Restored with regularization PDE
(3.45) + shock term (3.47)

Figure 3.6: Mixing regularization terms and vector-valued shock filters.

3.5.1 Elementary iterative loop

For both methods, a common iterative computation loop based on classical explicit schemes for
PDE implementation is used :
Considering a vector-valued image Ik at a particular PDE iteration of (3.48), we compute the
iterated image Ik+1 by following these ordered steps :

1. Compute the fields of the first spatial derivatives Ikx and Iky . This is done by a simple
centered scheme, based on finite differences :

{

Ikix(x, y) = 0.5×
(

Iki (x+ 1, y)− Iki (x− 1, y)
)

Ikiy(x, y) = 0.5×
(

Iki (x, y + 1)− Iki (x, y − 1)
)

Indeed, more complex first derivative estimations could be used here, as for instance the
methods proposed in [63, 120, 158].

2. Compute the structure tensor field Gk, computed as :

Gk =

(

gk11 gk12
gk12 gk22

)

with











































gk11 =

n
∑

j=1

Ikix
2

gk12 =
n
∑

j=1

IkixI
k
iy

gk22 =

n
∑

j=1

Ikiy
2

3. Compute the smoothed structure tensor field

Gk
σ = Gk ∗Gσ where Gσ is a normalized 2D Gaussian kernel,

as well as the corresponding fields of the eigenvalues λ∗
± and eigenvectors θ∗± of Gσ . For

this purpose, we can profitably replace the convolution by the application of a recursive
implementation of a Gaussian filter, as described in [65].



3.5 Numerical schemes for multivalued regularization 103

4. Compute the matrix A : for the general case (3.48), it consists in several sub-diffusion
tensors Aij . For the simpler case (3.49), only a single diffusion tensor T is needed. Note
that A depends only on the spectral elements of Gσ , which have been already computed.

5. Compute the PDE velocity
β = ~trace (AH)

This is done by estimating each sub-term such as trace
(

AijHj

)

, using one of the two
different methods proposed in the sections 3.5.2 and 3.5.3. Note that for the PDE (3.49),
only one trace term is needed.

6. Finally, the new iterated image Ik+1 is estimated with a classical explicit scheme :

Ik+1 = Ik + dt β

Particularly, we propose to choose the time-step dt in an adapting way. More precisely, it
is computed in order to limit the amount of pixel variations at each PDE iteration :

dt =
βmax

max
x∈Ω

‖β(x)‖

The parameter βmax is the maximum variation allowed for the points of the regularizing
image, during one iteration. It can be fixed by hand, or computed at each iteration as a fixed
percentage of the maximum intensity variation in the processing image. On one hand, it
limits discontinuous variations of the image (vector) intensities, during the PDE flow. On
the other hand, it speeds up the process by ensuring that at least one image point is evolving
with a speed βmax.

Note that this adapting time-step technique can be generally used for the implementation of
other various PDE flows.

This computation loop is then repeated for a fixed number of iterations.

3.5.2 Using a spatial discretization of the Hessian

This is the most simple and fast solution, based on a direct discretization of the vector H, whose
elements are the Hessian matrices Hj of the different image channels Ij . As for first derivatives,
those Hessians are estimated with classical finite (centered) difference schemes :

Hi =

(

Ikixx
Ikixy

Ikixy
Ikiyy

)

with



















Ikixx
= Iki (x+ 1, y) + Iki (x− 1, y)− 2 Iki (x, y)

Ikiyy
= Iki (x, y + 1) + Iki (x, y − 1)− 2 Iki (x, y)

Ikixy
= 0.25 × ( Iki (x+ 1, y + 1) + Iki (x− 1, y − 1)

−Iki (x− 1, y + 1)− Iki (x+ 1, y − 1) )

Then, we can easily compute the term ~trace (AH) of the different diffusion contributions in the
PDE velocity β, using simple matrix multiplications.

Experimentally, we noticed that this scheme gives very similar results as the classical 0.5 centered
schemes for divergence discretization, as proposed in [5, 12].
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3.5.3 Using local filtering considerations

Another method to estimate a term such as trace (THi) at a certain time t, is to follow the
geometric interpretation in term of local filtering, as described in section (3.2.1). We quickly
remind the idea. If T is a constant diffusion tensor, we have :

∂Ii
∂t

= trace (THi) ⇐⇒ Ii(t) = Ii(t=0)
∗G(T,t)

σ with G(T,t)(x) =
1

4πt
exp

(

−xTT−1x

4t

)

If T is spatially varying (which is obviously the case for (3.48) and (3.49)), one may consider
the regularization process as the application of local convolution masks over the image, leading
to schemes similar to local and Bilateral filtering [20, 163, 171].

Estimating a term as trace (THi) can then be done as follows. For each point x = (x, y) ∈ Ω :

• We first compute the local convolution mask G(T,dt), defining the local geometry of the
smoothing that must be performed at the point x. Its form follows the corresponding diffu-
sion tensor T(x), inside the trace operator.

Then, the term trace (THi) is estimated as the local application of this mask G(T,dt), in
the local neighborhood of x (illustrated below with a 3× 3 mask G = G(T,Hi)) :

i(x,y−1) i(x+1,y)

i(x−1,y) i(x,y) i(x+1,y)

i(x−1,y+1) i(x,y+1) i(x+1,y+1)

*
i(x−1,y−1) G(−1,−1) G(0,−1) G(1,−1)

G(−1,0) G(0,0) G(1,0)

G(1,1)G(0,1)G(−1,1)

(0,0)[Trace(TH) ](x,y) = 

• This local filtering is repeated for each trace
(

AijHj

)

in the vector ~trace (AH), in order
to estimate all these subsequent terms.

The size of the convolution mask is an important factor of the computational time of the algorithm.
For our experiments, we used 3× 3 masks.

A noticeable point is that this scheme naturally preserves the maximum principle for the PDE
(3.49) (containing only one diffusion tensor). In this case, it is equivalent to apply locally a
normalized smoothing mask directly on the image I, then the pixel values cannot step out of the
value range of the initial image I(t=0).

3.5.4 Comparative figure

We applied our vector-valued regularization PDE (3.45) on a noisy color image, with the two
different numerical schemes, in order to illustrate the advantages and drawbacks of each proposed
schemes (Fig.3.7).
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(a) Noisy color image
(b) Restored with the Hessian spatial dis-
cretization scheme

(c) Restored with the local filtering
scheme, with 3 × 3 masks.

Figure 3.7: Comparison of the two proposed numerical schemes.

The size of the considered images is 180 × 180, and the color base used for the restoration is
(R,G,B). For both schemes, the regularizing flow (3.45) has been carried out after 130 iterations.
The two obtained results are well restored : noise is removed, while important image structures
are preserved.

Anyway, we notice that we lose more quickly details with the classical scheme, based on the
Hessian discretization (3.5.2). As for our new local filtering-based scheme (3.5.3), very thin
details are preserved over the time, as for instance the one pixel wide edge of the glasses.
On the other hand, the computation time is in favor of the first scheme. Restoration times for this
image are indeed 13.64 s for the first scheme, and 1m56.45 s for the second scheme.

In this chapter, we proposed a new framework that can handle a lot of previously pro-
posed vector-valued regularization methods, using PDE’s. We also proposed a new equation,
based on geometric priors we want to follow, as well as new numerical schemes. Let us illustrate
now, how we can apply it for various image processing problems.

C’est bien d’avoir une logique abstraite, mais il faudrait que ca
te serve dans la vie courante, mon garçon.

Maman.
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Chapter 4

Applications of Unconstrained PDE’s

We illustrate how our generic multi-valued regularization framework (proposed in the
previous chapter) can be successfully exploited in order to tackle different problems of interest.
First, we use it to restore degraded color images : this is indeed the most natural application of
vector-valued diffusion PDE’s. But we also propose similar PDE-based methods to handle the
problem of color image inpainting, magnification and interpolation, as well as the visualization
of flows. Experimental results are commented and illustrated throughout this chapter.

4.1 Color image restoration

Image restoration has been one of the first concrete application since the apparition of scalar reg-
ularization PDE’s for image processing. Let us consider an image Inoisy, corrupted by noise.
The application of an anisotropic diffusion PDE on Inoisy consists in simplifying the data little
by little, such that the low variations disappear first while the sharp discontinuities are preserved
(scale-space principle). As a result, the noise is removed in the image, while the important struc-
tures (edges, corners) are maintained.
The recent extension of these algorithms to vector-valued data has particularly opened the right
way to restore degraded color images. Despite the growing quality of analogical and digital
cameras, noisy color images are still encountered in a lot of situations :

• Old color photographs/videos :

The appearance of color photographs dates from 1861, with the ”color separation” method
of the Scottish physicist James Clerk-Maxwell. It has been generalized afterwards with
the first commercial color film, the Autochrome plates, manufactured by Lumiere brothers
in France. As for color televisions, they have been marketed since 1951. This means
that many historic color documents with noise exists (due to the old and rudimentary used
technologies, or to the bad storage conditions), and may be in their interests to be scanned
into a digital representation, then automatically restored.
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• Digital color photographs :

The recent apparition of scanners and digital cameras has permitted to obtain high-quality
snapshots and to store them directly on computers. One may think that the image quality
has reached its highest level and that image restoration won’t be necessary anymore. This
is wrong. We illustrate in Fig.4.1a the detail of a real digital color image, obtained with
an (expensive) digital camera. The noise here has not been artificially added, but results
from the very-low luminosity conditions of the scene during the snapshot : unfortunately,
the camera flash has not been released here.

In this case, a color restoration process is interesting. Fig.4.1b shows how the application of
a well-designed vector-valued regularization scheme can be helpful to restore such degraded
digital images. We used the following regularization equation (proposed in chapter 3 :















I(t=0) = Inoisy

∂Ii
∂t

= trace (DHi) (i = 1, 2, 3)

(4.1)

where Hi is the Hessian of the color channel Ii (R,G or B) and D is the following 2 × 2

diffusion tensor :

D =
1

√

1 + λ∗+ + λ∗−
θ∗−θ

∗T

− +
1

1 + λ∗+ + λ∗−
θ∗+θ

∗T

+

Remember that λ∗± and θ∗± are the eigenvalues and the corresponding eigenvectors of the
smoothed structure tensor Gσ = (

∑n
i=1∇Ii∇ITi )∗Gσ , which is representative of a coher-

ent local vector geometry in the image I (see chapters 2 and 3 for details).

The size of the initial noisy picture (Fig.4.1a) is 293 × 306 pixels. The restored image
(Fig.4.1b) has been obtained with the application of the PDE flow (4.1) during 26 iterations
with an adaptive time-step. Note how the restored image is naturally denoised without
losing important image informations.

• Lossy compressed images :

Another modern application of color image regularization techniques can be found when
dealing with compression algorithms. Digital images, due to their big memory size, are
often stored in a more compact form obtained with lossy compression algorithms (JPEG
being the most popular [99]). These kinds of compression algorithms save a lot of memory
space but introduce more or less visible image artefacts. For instance, color images com-
pressed with the JPEG method often display visible bloc effects, as illustrated on Fig.4.2a.
The used image here is a 376× 297 pixels color image, compressed in JPEG format with a
quality ratio of 10%.

As illustrated on Fig.4.2b, the use of our regularization PDE flow (4.1) improves the quality
of this blocky image by reinforcing the image structures at the expense of the undesired bloc
artefacts.
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(a) Digital color image with real noise (b) Restored image with our regularization method (4.1)

(c) Detail of the noisy image (a) (d) Detail of the restored image (b)

Figure 4.1: Restoration of a real noisy digital photograph.



110 Chapter 4: Applications of Unconstrained PDE’s

(a) Compressed JPEG image (10% quality)

(b) Improved image with the PDE flow (4.1)

(c) Detail of compressed (left) and improved (right) images.

Figure 4.2: Improvement of a lossy compressed color image.
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In both cases, the used numerical scheme is the one proposed in chapter 3, using local convo-
lutions with geometry-adapting kernels. Actually, this scheme is well designed to preserve thin
structures (such as the two pixels wide contour of the glasses in Fig.4.1, or the hair of the gnome
in Fig.4.2), despite its expensive computation time (8 to 9 times slower than a classical Hessian
discretization).

4.2 Color image inpainting

Diffusion PDE’s are not limited to noise suppression. Recently, a new interesting application of
regularization schemes named image inpainting, has been proposed in [26, 38, 40, 41, 44]. It
consists in filling undesired holes in an image I : Ω→ R

n, by interpolating the data located at the
neighborhood of the holes. The user has only to define a binary mask M : Ω → {0, 1}, locating
the desired regions to fill in the image I. Then, a PDE-based algorithm is used to interpolate
the data in a way that the image structures are coherently completed and fill the holes. This is
obviously a non-trivial inverse problem that raises a lot of subjacent questions and a whole thesis
could be not enough to answer them.

As for us, we will limit ourselves to the simple application of an adapted regularization PDE,
specially designed to find a working and acceptable solution :
In chapter 3, we proposed PDE’s that have the desired property of diffusing the image intensities in
local neighborhoods, directed by some prior directions. Color image inpainting can then be done
by applying these kind of vector-valued PDE only on points or areas defined in the inpainting
mask M , while keeping the other image regions unchanged :



































I(t=0) = Ioriginal

∀(x, y) ∈ Ω,∀i = 1, 2, 3,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂Ii
∂t

= trace (DHi) if M(x, y) = 1

∂Ii
∂t

= 0 if M(x, y) = 0

(4.2)

with the following diffusion tensor

D =
1

√

1 + λ∗+ + λ∗−
θ∗−θ

∗T

−

As above, λ∗±, θ
∗
± are the eigenvalues and the corresponding eigenvectors of the smoothed struc-

ture tensor Gσ = (
∑n

i=1∇Ii∇ITi ) ∗ Gσ . This indicates the use of a real local vector geometry
for the inpainting process, leading to coherent colors completions in the inpainted holes.

Contrary to the equation (4.1) used to restore color images (previous section), we don’t allow
isotropic smoothing here, even on flat regions (the diffusion is always done along a single direction
θ∗−). Indeed, we want only to fill-in the holes by linking existing structures together. Isotropic
smoothing is well adapted to remove quickly the noise but has to be avoided when diffusing image
structures (there would be a risk of structure blurring).
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The parameter σ depends on the size of the region to fill in : Blurring the structure tensor field G

emphasizes the important image structures within a larger local neighborhood and helps for the
PDE interpolation. Structures that have been split by large holes may be recovered with a large
variance σ.

Inpainting methods have a wide range of applications. We applied our equation (4.2) in order to
tackle the following problems :

• Removing text and advertisements from color images :

Our algorithm can remove text or ads present in a color image. This is illustrated on
Fig.4.3a, with a real photograph containing undesired text (size 640×480 pixels). Here the
inpainting mask is obviously the same as the region covered by the green text.

The result of the inpainting process is shown on Fig.4.3b (needed 100 PDE iterations, with
an adaptive time-step). We finally retrieve a quite realistic image. Nevertheless, interpolat-
ing image colors cannot create artificial structures that have been hidden by the inpainting
mask. It is for instance visible with the eyes of the foreground woman, which have not been
recovered (actually, this would be hardly possible).

• Removing real objects :

With the same reasoning, we can create an inpainting mask on purpose, hiding a whole
object present in the image in order to make it disappear. It may have several applications
for visual effects in the domain of movies and advertising. An example is illustrated in
Fig.4.5 : we especially designed the inpainting mask to remove the glasses of the elegant
man. The removal needed 300 iterations of (4.2), with an adaptive time-step.

• Image reconstruction from incomplete data :

With this example, we want to illustrate the high potential of non-linear inpainting algo-
rithms, for partial image reconstruction. We defined the inpainting mask as a checkerboard
with small cases (4 pixels wide), allowing to retrieve only 50% of the initial image infor-
mations (Fig.4.6a,b).

The result of our inpainting flow (4.2) is illustrated on Fig.4.6d. The color image is very
well reconstructed. Notice how the image structures have been correctly interpolated (par-
ticularly the woman’s hair).

We have also compared our non-linear scheme with a classical linear method, consisting
in reconstructing the missing part of the images with linear interpolations (Fig.4.6c). Em-
barrassing jagging effects appear and spoil the general aspect of the “restored” image. The
non-linear anisotropic diffusion done by our PDE method (4.2) results in a higher quality
reconstruction.

Here, 70 iterations were needed to obtained the final result. Despite the high power of recent
processors, it still takes few seconds on recent computers. Nevertheless, one can imagine
that it could be done in real time with dedicated hardware and used as a part of a video
decompression algorithm (see also [22, 88] for interesting video compression methods).
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(a) Original degraded color image

(b) Result of the color inpainting algorithm (4.2)

Figure 4.3: Color image inpainting.
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(a) Original degraded color image (b) Result of the color inpainting algorithm (4.2)

Figure 4.4: Color image inpainting (detail).

Inpainting methods could be also applied for the restoration of old images and videos that have
been badly stored and that contain scratches and stains. For reference articles about other specific
inpainting formulations, please refer to [26, 38, 40, 41, 44].

4.3 Color image magnification

Image magnification consists in computing a large image from a smaller one, with interpolation
methods. Moreover, one wishes that the magnified images seem to be quite realistic. In this sense,
the problem is similar to image inpainting, where the inpainting mask is the boolean inverse of a
regular grid :
Indeed, let us consider the small color image Ismall : ω = [h × l] → R

3. Magnifying the
image Ismall by a factor k with a PDE-based method is equivalently done by inpainting the image
I : Ω = [kh× kl]→ R

3 by an inpainting mask M : Ω→ {0, 1} defined by :

∀(x, y) ∈ Ω, M(x, y) =

{

0 if (x mod k) ∧ (y mod k)
1 else

and I(x, y) = Ismall

(x

k
,
y

k

)

where Ismall(x/y, y/k) is computed through a classical interpolation operator. For our experi-
ments, we considered a linear interpolation.
Then, the magnification is done by applying the inpainting PDE (4.2) on the image I. Note that
high magnification scales require higher structure tensor smoothing (i.e high variance σ).

We applied our magnification method on two different images :

1. The first one is a synthetic (96 × 97 pixels) cartoon image, magnified by a factor ×3. It
clearly shows how the classical jagging effect obtained with simple interpolation schemes
disappears with the non-linear PDE-based magnification method (Fig.4.7).
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(a) Original color image (b) Image + Inpainting mask (c) Inpainted color image

(a) Original color image (zoom) (b) Inpainted color image (zoom)

Figure 4.5: Color image inpainting, used to remove real objects in photographs.

2. The second one is a detail (242 × 244 pixels) of a real digital photograph and has been
magnified by a factor ×4 (Fig.4.8).

The picture Fig.4.8c is the result of a direct magnification of factor×4, using the PDE (4.2).
The picture Fig.4.8d is the result of a two step magnification of factors ×2, using the PDE
(4.2). Actually, both results are quite similar.

Note that like inpainting methods, PDE-based magnification is not able to create new image struc-
tures but succeeds in linking the existing ones in a realistic way.

4.4 Flow visualization

As a last example of the application of unconstrained diffusion PDE’s, we propose to deal with
flow visualization. Considering a 2D vector field F : Ω → R

2, we have several ways to visual-
ize it :
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(a) Original color image (b) Removing 50% of the image informations

(c) Interpolation of (b) with linear operators (d) Interpolation of (b) with non-linear PDE flow (4.2)

Figure 4.6: Color image inpainting, used to reconstruct partially coded images.
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1. Using vectors : This is illustrated on Fig.4.9a. It is a basic representation of the flow, where
we represent each vector F(x) with a graphic line. This simple representation has some
drawbacks :

• One has often to subsample the vector field F in order to represent it. The vectorial
representation size is not well adapted for displaying large fields F . For instance,
the figure Fig.4.9a is a sub-sampling of an original field F by a factor 2 (original
size 128 × 128).

• The perception of thin flow structures is not easy with dense vectorial graphics.

2. Using anisotropic diffusion PDE’s : These problems are solved with the use of regular-
ization PDE’s. Starting from a purely noisy (color) image, the idea is to diffuse it in flow
direction, in order to make the flow structures appear :

∂Ii
∂t

= trace (DHi) where D =
1

‖F‖ FF
T (4.3)

With this equation (4.3), we perform the image intensity diffusion only in the unit vector
F/‖F‖, with a weight ‖F‖. It is equivalently written as :

∂I

∂t
= ‖F‖ I F

‖F‖
F

‖F‖
= ‖F‖ ∂2I

∂( F
‖F‖ )

2

which is an 1D heat equation, oriented by the flow F .

Whereas the evolution time t of the PDE goes by, the thin flow structures are disappearing
while the big ones are preserved. Thus, this constructs a multi-scale visualization of the
considered flow F (Fig.4.9b and Fig.4.10).

Here, our used regularization equation (4.3) ensures that the smoothing of the pixels is done
exactly in the flow direction F . Similar interesting methods have been proposed in [24, 33, 69],
using a divergence-based expression to diffuse the random images, as well as a transport term.
As described in chapter 3, the use of a diffusion tensor such as D in (4.3), with a divergence
based equation ∂Ii

∂t = div (D∇Ii) may not be adapted to smooth the noisy image exactly in the
specified directions of the flow F . With our regularization PDE (4.3), we ensure that at each
image point x = (x, y) ∈ Ω, the smoothing of the image is exactly done in the direction of
F(x, y). This is important, since using divergence-based expressions would introduce smoothing
in false directions.

4.5 Other applications and extensions

In this chapter, we illustrated the high number of possible applications of vector-valued regular-
ization PDE’s. We particularly showed how to adapt the diffusion tensors used in the trace-based
equation, in order to deal with specific problems. We focused on color images, but these ac-
curately designed diffusion PDE’s have interest in many other domains : multi-spectral radar
imagery, optical flow regularization, etc.
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We defined all our regularization schemes in a way that they behave coherently with the underly-
ing vector geometry of the considered images. Note that no constraints on the type of vector data
we regularize, are taken into account. For all the presented applications here, this is sufficient
since color pixels are a-priori unconstrained data.
But sometimes, we have some a-priori knowledge about the image point features : they can be for
instance unit vectors, rotation matrices or diffusion tensors (see the survey in section.2.3). Using
directly unconstrained regularization PDE’s as we defined above may be not well suited to this
particular class of problems.

Now, we will introduce a mathematical framework (chapter 5) that can handle a useful type of
(orientation) constraints. This complementary part will permit to deal with constrained schemes
that have the same regularization properties as the unconstrained ones, while preserving the inher-
ent form of the image points. We will finally use it to tackle interesting applications, as illustrated
in chapter 6.

Je sais pas ce que t’en pense, mais je trouve que toutes
ces méthodes EDP, ca donne des résultats qui ont l’air trop
synthétique, t’es pas d’accord ?

J. Bride.
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(a) Color image at original size (96 × 97) (b) Bloc magnification

(c) Linear magnification (d) PDE-based magnification

Figure 4.7: Magnification of a color cartoon image (×3).
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(a) Bloc magnification (b) Linear magnification

(c) Using a single-step PDE magnification ×4 (d) Using a two-step PDE magnification ×2 × 2

Figure 4.8: Magnification of a real color photograph (×4).



4.5 Other applications and extensions 121

(a) Original flow, represented with graphic vectors

(b) Visualization using regularization PDE (after respectively 5 and 10 iterations)

Figure 4.9: Flow visualization.
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Figure 4.10: Scale-space visualization of a flow.



Chapter 5

Constrained PDE’s and the Framework
of Orthonormal Vector Sets

In this chapter, we propose to take into account some prior constraints on the data we
regularize. More particularly, we are interested in regularizing fields of orthonormal vector
sets, where each point is defined as multiple orthogonal and unit vectors. It can indeed repre-
sent a lot of interesting orientation features. The derivation of a specific ψ-functional frame-
work leads to a multivalued regularization PDE preserving these orthonormal constraints and
extending naturally the recent works on direction diffusion. Then, we study some particular
cases of direction features that can be handled by this new formalism : unit vectors, orthogo-
nal matrices and diffusion tensor orientations. Specific numerical schemes are finally proposed,
allowing to implement all these constrained PDE’s and proposing an elegant solution to the
classical reprojection problem.

5.1 Interest of orthonormal vector sets

In the previous parts of this document, we studied anisotropic diffusion PDE’s acting on uncon-
strained multi-valued data, i.e whose vector components are not linked together. Such methods
have proven their efficiencies for regularization of a large variety of images, including color pic-
tures, optical flows, etc.
Some of these diffusion PDE’s were recently extended within various frameworks, in order to
deal with fields of unit vectors, taking the unitary norm constraints into account.

∀x ∈ Ω, ‖I(x)‖ = 1

This is an important new domain that has been addressed for the regularization of direction fields
and color images expressed in the chromaticity-brightness or HSV spaces. Proposed methods
were based on the decomposition into polar angles [142], the harmonic maps theory [167, 168],
the total variation framework [39] or the geometric Beltrami operator [106, 107] (see section 2.3
for a state of the art with more references).
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The derivation of the corresponding norm constrained regularizing flows is a challenging problem,
which is quite different than the unconstrained case, in the sense that the data features are known
to be constrained to the specific unit sphere manifold Sn−1 ⊂ R

n. It usually leads to sets of
vector PDE’s where the preservation of the norm constraint (that involves a link between vector
components Ii) appears as an additive coupling term.

In this chapter, we go one step further and study the constrained regularization of more complex
orientation features modeled by orthonormal vector sets, and its application on fields of unit
vectors, rotation matrices and diffusion tensors.
We first develop a variational approach of the regularization, and detail the derivation of the
corresponding constrained equations, thanks to the use of Lagrange multipliers. Then we study
each interesting particular case of this formalism. Finally, a physical interpretation of the proposed
constrained regularization process will be used to design accurate numerical schemes, avoiding
the classical reprojection step problem.

5.1.1 Preliminary notations

Let us consider m vector-valued images

I[k] : Ω→ R
n ( 1 ≤ k ≤ m , n ∈ N

+ and Ω ⊂ R
p )

As in previous chapters, we use the notation I [k]
i to designate the ith channel of the multivalued

image I[k] :

∀x ∈ Ω, I[k](x) =













I
[k]
1 (x)

I
[k]
2 (x)

...
I
[k]
n (x)













We are particularly interested in the set

B =
{

I[k] | 1 ≤ k ≤ m
}

of the m vector-valued images I[k]. It can be seen itself as a field, where each point is a vector
set :

∀x ∈ Ω , B(x) =
{

I[1](x) , I[2](x) , . . . , I[m](x)
}

Suppose now that the following orthonormal constraints between the vectors I [k] are also verified :

∀x ∈ Ω, I[k](x) . I[l](x) = δkl =

{

1 if k = l

0 if k 6= l
(5.1)

where I[k](x) . I[l](x) =
∑n

i=1 I
[k]
i (x) I

[l]
i (x) is the usual dot product in R

n.

Then, ∀x ∈ Ω, B(x) is an orthonormal vector set composed of m orthogonal and unit vectors
of dimension n.
Note that a particularly interesting case is reached when m = n, since B is then an orthonormal
vector basis in R

n.
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5.1.2 Orthonormal vector sets and direction features

In the following, we will propose a general approach to regularize any datasets that can be ex-
pressed as a field B of orthonormal vector sets, using coupled anisotropic diffusion PDE’s. This
idea is motivated by the fact that orthonormal vector sets can indeed represent various direction
features, including :

• Unitary vectors : When the set B is restricted to a single vector image B = {I} (i.e
m = 1), the orthonormal constraints (5.1) reduce to

∀x ∈ Ω, ‖I(x)‖2 = 1

which is the unitary norm constraint characterizing fields of direction vectors (Fig.5.1a).

• Orthogonal matrices : The columns of an orthogonal matrix R ∈ O(n) are unit vectors
that form an orthonormal vector basis. Then, R can be equivalently represented by an
orthonormal vector set B with m = n (the matrix dimension), as illustrated on Fig.5.1b.

Roughly speaking, we can see O(n) as a kind of bi-dimensional extension of Sn−1. Both
manifolds have the same non-flat structure, due to orthonormal constraints.

More particularly, we will use such orthonormal vector bases to deal with rotation matrices
R ∈ SO(n) ⊂ O(n).

(a) 2D Field of 2D direction vectors (m = 1, n = 2). (b) 2D Field of 3D orthogonal matrices (m = 3, n = 3).

Figure 5.1: Fields of orthonormal vector sets.

These particular cases will be detailed further, respectively in sections 5.3.1 and 5.3.2. First of all,
let us develop a variational formulation that addresses the regularization of general orthonormal
vector sets (m,n ∈ N

+).
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5.2 Regularizing fields of orthonormal vector sets

We consider an initial “noisy” image B0 of orthonormal vector sets, verifying the constraints
(5.1).

∀x ∈ Ω, B0(x) =
{

I
[1]
0 (x) , I

[2]
0 (x) , . . . , I

[m]
0 (x)

}

The idea is to regularize B0, using a variational flow that preserves the orthonormal structure of
the vector sets (Fig.5.2).

Adding noise
→
←

Restoration ?

Figure 5.2: How to regularize a field B of orthonormal vector sets ?

5.2.1 Unconstrained regularization

We propose to find B as the solution of an energy minimization, following our idea of ψ-function
diffusion, used to restore unconstrained multivalued images (see chapter 3). We quickly remind
the idea.
Each noisy vector-valued image I

[k]
0 of the set B0 can be anisotropically restored (denoising with

preservation of discontinuities), by minimizing the following ψ-functional :

min
I[k]:Ω→�

n
E(I[k]) =

∫

Ω

(α

2
‖I[k] − I

[k]
0 ‖2 + ψ(λ

[k]
+ , λ

[k]
− )
)

dΩ (5.2)

where λ[k]
+ , λ

[k]
− are the eigenvalues of the structure tensor G[k] =

∑n
j=1∇I

[k]
j ∇I

[k]
j

T
, and mea-

sure the local vector variations both in norms and orientations, in the multivalued image I [k].

Contrary to chapters 2 and 3, we are not only interested by the behavior of a regularization term,
but we would like to find a steady-state regular solution which is not constant. This is the reason
why we also consider a data attachment term through the fixed parameter α ∈ R, in the functional
(5.2). It prevents the final solution from being too different from the initial given field I

[k]
0 .

The function ψ : R
2 → R is a diffusion function, which controls the regularization behavior. It

is a natural extension of the φ-functional framework, already proposed in the literature related
to scalar image restoration. Choosing the right ψ-function depends on the desired regularization
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behavior and we refer the reader to chapters 2 and 3 for more informations about ψ-functionals.

One way of minimizing the functional E(I[k]), is to compute the corresponding vector Lagrangian
L

[k] ∈ R
n which is in this case (using a component by component writing style) :

L[k]
i = α (I

[k]
i − I

[k]
i0

)− div

([

∂ψ

∂λ
[k]
+

θ
[k]
+ θ

[k]
+

T
+

∂ψ

∂λ
[k]
−
θ
[k]
− θ

[k]
−
T

]

∇I [k]
i

)

where the θ[k]
± are the eigenvectors of the structure tensor G[k].

Then, one uses m vector gradient descents until steady state : ∂I[k]

∂t = −L
[k], i.e the m × n

following PDE’s :






















I
[k]
(t=0) = I

[k]
0

∂I
[k]
i

∂t
= α (I

[k]
i0
− I [k]

i ) + div

([

∂ψ

∂λ
[k]
+

θ
[k]
+ θ

[k]
+

T
+

∂ψ

∂λ
[k]
−
θ
[k]
− θ

[k]
−
T

]

∇I [k]
i

) (5.3)

(1 ≤ i ≤ n and 1 ≤ k ≤ m).

For our purpose of orthonormal vector set regularization, one could naively apply such diffusion
PDE’s (5.3) on each vector I

[k]
0 of the orthonormal vector set B0, then reconstruct the regularized

vector set image B with the resulting smoothed vectors.
A result of this method is illustrated on Fig.5.3. Two regularizing PDE’s (5.3) were applied on
each component of a 2D orthonormal vector base field B = {I[1] , I[2]}, which has been chosen to
be a mixture of direct and indirect bases. For illustration purposes, we chose a simple Tikhonov-
like ψ-function ψ(λ+, λ−) = λ+ + λ− , leading to an isotropic smoothing.

Unfortunately, this decoupled regularization method breaks the orthonormal properties : vector
norms and orthogonal angles are not intrinsically preserved by an unconstrained regularization
PDE as (5.3). Thus, we have to explicitly introduce orthonormal constraints, in the minimization
process.
Note that conversely to regularization methods acting on Sn−1 that led to PDE’s with coupling
terms between vector components, our problem is more general since the equations must also
consider an additional orthogonal coupling between the different vectors themselves.

5.2.2 A way of preserving the orthonormal constraints

In order to regularize the field of orthonormal vector set B0 while preserving the orthonormal
properties (5.1), we propose a constrained minimization of the following functional :

min� E(B) =

m
∑

k=1

E(I[k])

which can also be written :

E(B) =

∫

Ω

m
∑

k=1

(α

2
‖I[k] − I

[k]
0 ‖2 + ψ(λ

[k]
+ , λ

[k]
− )
)

dΩ (5.4)
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a) Original test field
�

0 b) ”Regularized” field
�

with (5.3)

Figure 5.3: Decoupled regularization of orthonormal vector sets.

with respect to the m vector images I[k], subject to the orthonormal constraints :

∀x ∈ Ω, I[p](x) . I[q](x) = δpq =

{

1 if p = q

0 if p 6= q
(5.1)

Note that the m Lagrangian vectors L
[k] of the energy E(B) are obviously the same as in section

5.2.1, i.e

L[k]
i = α (I

[k]
i − I

[k]
i0

)− div

([

∂ψ

∂λ
[k]
+

θ
[k]
+ θ

[k]
+

T
+

∂ψ

∂λ
[k]
−
θ
[k]
− θ

[k]
−
T

]

∇I [k]
i

)

It is then equivalent to associate at each vector I[k] an energy functional E(I[k]) as defined in (5.2).
The orthonormal constraints are then introduced by adding m2 Lagrange multipliers λpq : Ω→ R

(where p, q ∈ [1,m]) to the functional E(B), where each λpq is associated with the constraint :

∀x ∈ Ω, I[p](x) . I[q](x) = δpq

It leads to the unconstrained minimization of the following functional, with respect to the I [k] and
λpq :

E∗(B, λ) = E(B) +

∫

Ω

∑

(p,q)∈[1,m]

λpq (I[p] . I[q] − δpq) dΩ

In fact, as the dot product and the δpq are symmetric, the constraints I[p] . I[q] = δpq and
I[q] . I[p] = δqp are the same, and the two corresponding Lagrange multipliers λpq and λqp are

then equal.
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When the constrained minimum is reached, the Euler-Lagrange equations corresponding to
E∗(B, λ) with respect to I[k] are : ∀k ∈ [1,m],

0 = L[k] +
∑

(p,q)

λpq
∂I[p]

∂I[k]
. I[q] +

∑

(p,q)

λqp
∂I[q]

∂I[k]
. I[p]

= L[k] +

m
∑

q=1

λkqI
[q] +

m
∑

p=1

λpkI
[p]

= L[k] + 2

m
∑

l=1

λklI
[l]

and the final set of Euler-Lagrange equations of E∗(B, λ) with respect to I[k] and λpq is written :


















L
[k] + 2

m
∑

l=1

λkl I
[l] = 0 (a)

I[p] . I[q] = δpq (k, p, q ∈ [1,m]) (b)

(5.5)

Thanks to the quadratic form of the orthonormal constraints, we can find formally the λkl reached
at the minimum : we take the dot product of the lth equation of (5.5a) with the vector I[k] :

L
[l] . I[k] + 2

m
∑

p=1

λpl I
[p] . I[k] = 0

then simplify it using the orthonormal relations (5.5b) :

λkl = −L
[l] . I[k]

2

Finally, replacing the λkl in (5.5a) gives a closed form of the vector gradient descent that
minimizes (5.4) while preserving the orthonormal constraints (5.1) :

∂I[k]

∂t
= −L

[k] +

m
∑

l=1

(

L
[l] . I[k]

)

I[l] (5.6)

where

L[k]
i = α (I

[k]
i − I

[k]
i0

)− div

([

∂ψ

∂λ
[k]
+

θ
[k]
+ θ

[k]
+

T
+

∂ψ

∂λ
[k]
−

θ
[k]
− θ

[k]
−
T

]

∇I [k]
i

)

(5.7)

(with i = 1..n).

�

The obtained equation (5.6) is a set of m coupled vector PDE’s, i.e m × n scalar regularization
equations where the coupling between vectors and vector components is clearly present. It allows
to regularize any field of orthonormal vector sets, preserving the orthonormal structure of the
vectors during the PDE evolution.
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Note :The kth Lagrangian vector L
[k] of the unconstrained functional E(B), defined as (5.7) can

be seen as a pure diffusion force, acting on the vector I[k]. A physical interpretation of these single
forces will be provided in section 5.3.3.

Actually, one can note the clear separation in the PDE (5.6) between the unconstrained La-
grangians L

[k] which are responsible for the regularization behavior, and the coupling term
∑m

l=1

(

L
[l] . I[k]

)

I[l] which allows the orthonormal constraints to be preserved.

This opens interesting possibilities.
We may for instance replace the ψ-function based Lagrangian term (5.7) by other regularization
terms more adapted to certain problems, even if it doesn’t come from variational principles. For
instance, we can use our trace-based equation proposed in chapter 3, but also classical multivalued
regularization as those described in chapter 2. On can also think to use this general equation
(5.6) to solve other problems involving orthonormal constraints, such as image matching or edge
enhancement.

The figure Fig.5.4 illustrates the role of the orthonormal constraint preservation during the PDE
flow (5.6), as well as its anisotropic regularizing behavior. We applied the PDE (5.6) on two
different kind of orthonormal vector sets :

• a 2D field of 2D orthonormal bases (Fig.5.4a,b,c) : The image is initially clear, but we
illustrate how the unconstrained anisotropic regularization change the image anyway. As
expected, the unconstrained regularization equation reduces the vector norm and doesn’t
preserve the orthogonal angles. Using an orthonormal-constrained PDE (5.6) allows to
retrieve an orthonormal-preserved result.

• a 2D field of 3D orthonormal bases (Fig.5.4d,e,f) : The field illustrated here contains a
noisy triple-junction, which is a structure that is usually quite hard to restore. Anyway, the
use of an anisotropic regularization term (5.7) allows to retrieve these discontinuities very
well, while preserving the orthonormal constraints.

Note that this kind of field may interestingly represent a field of rotation matrices, as it will
be discussed in detail in section 5.3.2.

From now on, we will study some particular cases of orthonormal vector sets, and the correspond-
ing constrained regularization equations (5.6). We will also link our approach with related works
previously proposed in the literature.
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(a) Synthetic field of 2D orthonormal bases
(b) Regularization with an unconstrained
PDE

(c) Regularization with our orthonormal
constrained PDE (5.6)

(d) Synthetic field of 3D orthonormal bases (e) With orientation noise (σ = 30o)
(f) Regularization with our orthonormal-
constrained PDE (5.6)

Figure 5.4: Anisotropy and constraint-preserving property of the orthonormal-constrained regu-
larization.

5.3 Regularization of Directions and Rotations

5.3.1 Unit vector regularization

Vector direction diffusion has already been studied in [27, 39, 142, 168, 174, 182]. It consists
in regularizing fields I of unit vectors I(x) ∈ Sn−1. Actually, this problem can be seen as a
particular case of our orthonormal vector set framework, where the vector sets B(x) are restricted
to a single vector B(x) = { I(x) }.
Considering the general orthonormal vector set evolution (5.6) and reducing it to the norm con-
straint, we find the following unit norm regularization PDE flow :

∂I

∂t
= −L + (L . I) I (5.8)

where

L[k]
i = α (I

[k]
i − I

[k]
i0

)− div

([

∂ψ

∂λ
[k]
+

θ
[k]
+ θ

[k]
+

T
+

∂ψ

∂λ
[k]
−
θ
[k]
− θ

[k]
−
T

]

∇I [k]
i

)

(i = 1..n)

�
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This PDE (5.8) is an interesting particular case of our proposed variational framework based on
the preservation of orthonormal vector sets constraints. It can be used to regularize any field of
direction vectors with unit norms, with a very generic anisotropic term L.

• Geometric interpretation :

Starting from an initial image of direction vectors I0, we want that each unit norm is preserved
during the PDE evolution, i.e :

∀x ∈ Ω,∀t, ‖I(x)‖2 = 1 =⇒ 2 I(x) .
∂I(x)

∂t
= 0

It means that the PDE velocity vector ∂I(x)
∂t must be always orthogonal to the vector I(x), in order

to preserve its norm, i.e that I(x) performs a pure rotation. Suppose then we have a general
unconstrained vector PDE, that doesn’t preserve the unit norms of the I(x) :

∂I

∂t
= v where v ∈ R

n

Adding the norm constraint can be naturally done by projecting the velocity v to the hyperplane,
orthogonal to I, which is formally :

P⊥
I (v) = (Id− I IT ) v

= v− (v . I) I

δ /δI t

M

I

v

( .I)Ιv

Figure 5.5: The geometric intuition behind the norm constraint.

This new velocity is obviously orthogonal to the vector I and then, the following PDE ensures the
preservation of the unit norm during the flow :

∂I

∂t
= v − (v . I) I (5.9)
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This local geometric viewpoint is another way to find exactly the norm-constrained flow (5.8),
coming from the orthonormal vector set formalism. The figure Fig.5.5 illustrates this simple
geometric intuition : during the PDE evolution, I(x) does a pure rotation and preserves then its
norm.

• The φ-function case :

A link with the previous works on direction diffusion can be made, if we consider the particular
case of the φ-functional framework, i.e the following unconstrained Lagrangian term L :

ψ(λ+, λ−) = φ(
√

λ+ + λ−) =⇒ Li = div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇Ii

)

(i = 1..n)

From the spatial derivations of ‖I(x)‖2 = 1, we find :

∀a ∈ [1, p], I .
∂I

∂xa
= 0 and ∆I . I = −‖∇I‖2 (5.10)

Developing the divergence in each Li :

div (A ∇Ii) = A ∆Ii +∇A . ∇Ii

where A = φ
′
(‖∇I‖)
‖∇I‖ . If we note by d the vector defined by di = div (A∇Ii) , with i = 1...n :

d . I = A ∆I . I +
n
∑

i=1

p
∑

a=1

∂A

∂xa

∂Ii
∂xa

Ii

= A ∆I . I +

p
∑

a=1

∂A

∂xa

∂I

∂xa
. I

The equations (5.10) allow the simplification :

d . I = −φ′
(‖∇I‖) ‖∇I‖

Then, the diffusion PDE (5.8) becomes in the particular case of the φ-functionals :

∂Ii
∂t

= div

(

φ
′
(‖∇I‖)
‖∇I‖ ∇Ii

)

+ φ
′
(‖∇I‖) ‖∇I‖ Ii

+ α (Ii0 − (I0 . I) Ii)

(5.11)

�

Direction diffusion PDE’s already proposed in the literature [27, 39, 168] are a restriction of (5.11)
to

α = 0 and φ(s) = sr (r = 1, 2)

Actually, our proposed method (5.8) is more general since we can choose a more complex uncon-
strained Lagrangian vector L, adapted to the regularization problem of the problems we consider.
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5.3.2 Orthogonal 3× 3 matrices

We are now interested in another particular case of orthonormal vector sets : 3D orthonormal
vector bases. We consider then orthonormal vector bases fields B with m = n = 3 and for
simplicity reasons, we denote the three basis vectors by :

I = I[1] , J = I[2] and K = I[3] then B = { I,J,K }
Such datasets can represent fields of orthogonal matrices R ∈ O(3), since the columns of such
matrices form an orthonormal vector basis B.

K(x)

x
I(x)

J(x)

Figure 5.6: Fields of 3D orthonormal vector bases.

Note that the sign of the determinant det(R) is an information that can be retrieved from the
configuration of the orthonormal vector basis B, which is direct (then det(R) = +1) or indirect
(then det(R) = −1). More particularly, it means that we are able to discriminate rotations
(det(R) = +1 and R ∈ SO(n)), and rotoinversions (det(R) = −1 and R ∈ O(n) \ SO(n))
when modeling orthogonal matrices with orthonormal vector sets B.

In order to regularize B while preserving possible discontinuities, we minimize the functional
(5.4), with m = n = 3 :

E(B) =

∫

Ω

α
2 (‖I − I0‖2 + ‖J− J0‖2 + ‖K−K0‖2 )

+ψ(λI
+, λ

I
−) + ψ(λJ

+, λ
J
−) + ψ(λK

+ , λ
K
− ) dΩ

where the λI
± are the two eigenvalues of the associated structure tensor GI =

∑n
j=1∇Ii∇ITi , as

described in chapter 3.
Using the general solution (5.6), we can write the corresponding constrained set of 3D vector
diffusion PDE’s :











It = L
I − (LI.I) I− (LJ.I) J− (LK.I) K

Jt = L
J − (LI.J) I− (LJ.J) J− (LK.J) K

Kt = L
K − (LI.K) I− (LJ.K) J− (LK.K) K

(5.12)

where L
I, LJ, LK are the unconstrained functional Lagrangian vectors, associated to each vector

I,J,K and defined by (5.7). Note that this equation can be equivalently written with a matrix PDE
flow :
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∂R

∂t
= −L + R LT R (5.13)

where the matrices R and L are defined column by column :

R = ( I | J |K ) and L =
(

L
I | LJ | LK

)

�

The equation (5.13) corresponds then to an orthogonal matrix-preserving regularizing PDE. Note
that its extension to higher matrix dimensions O(n) is also valid. Developing (5.13) with

R =
(

I[1] | . . . | I[n]
)

and L =
(

L
[1] | . . . | L[n]

)

gives the expression of the general orthonormal vector sets evolution (5.6) for m = n (see also
[48] for interesting developments on other matrix-valued flows).

• Comparison with other approaches for rotation regularization :

When dealing with rotation matrices, a natural idea is to decompose these matrices into more
simple data that are easy to regularize (usually Euler angles, unit quaternions or rotation vectors),
then reconstruct the final rotation field from smoothed versions of these data (Fig.5.7).

Simple data restoration

Rotation decomposition
(Euler angles/Quaternions)

Rotation reconstruction

Figure 5.7: Decomposition method for rotation field regularization.

However this method has some drawbacks :

1. The conversions often induce numerical imprecisions.

2. The rotation decomposition is not unique. It would introduce annoying discontinuities in
the decomposed data, even if the initial rotation field is perfectly smooth. These disconti-
nuities are coming from :

- The 2π-periodicity ambiguity in the Euler angles or in the rotation vector norms.

- The double representation of a single rotation by two equivalent quaternions q and−q.
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In both cases, these new created discontinuities have a large influence on the anisotropic
regularization behavior and perturb the diffusion process.

Actually, using the orthogonal-matrix preserving flow (5.13) coming from the framework of or-
thonormal vector sets, solves this problem : we apply directly the PDE (5.13) on the rotation
matrices sequence in order to regularize it. No rotation decompositions are needed anymore, and
there are no false discontinuities since we works directly on the matrix coefficients which form a
unique representation of a rotation R (Fig.5.8).

Orthonormal constrained
regularization PDE’s

Figure 5.8: Rotation field regularization using orthonormal preserving PDE’s.

5.3.3 A physical interpretation for 3D orthonormal vectors

The orthonormal vector set equation (5.6) has an intuitive physical interpretation for the case of
3D orthonormal bases, which is as follows :

The orthonormal vector sets B(x) = { I(x),J(x),K(x) } can be seen as solid objects composed
of three orthogonal rigid stems of unit length, fixed at the same point x, and submitted to forces
f I, fJ and fK respectively (Fig.5.9).
A rotation around x is obviously the only motion that B can perform.
From a mechanical viewpoint, each force f I, fJ and fK induces a mechanic momentum on this
object :

ωI = I× f I , ωJ = J× fJ , and ωK = K× fK

Where × designates the usual cross product in R
3. Then, the total momentum ω applied to the

object B is given by :

ω = ωI + ωJ + ωK (5.14)

i.e

ω =
(

I× f I
)

+
(

J× fJ
)

+
(

K× fK
)

(5.15)

If we suppose that B has an unit moment of inertia, we can express the velocities vI, vJ and vK
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f

f

f

I

K

J

J(x)

x

I(x)

K(x)

Figure 5.9: A solid object B, submitted to physical forces.

at each free extremity of the stems, corresponding to the constrained motion of the solid :










vI = ω × I

vJ = ω × J

vK = ω ×K

Developing these expressions, using the double vector product formula

u× (v ×w) = (u.w) v − (u.v) w

and the orthogonal properties I[k] . I[l] = δkl , leads to :










vI = f I − (f I.I) I− (fJ.I) J− (fK.I) K

vJ = fJ − (f I.J) I− (fJ.J) J− (fK.J) K

vK = fK − (f I.K) I− (fJ.K) J− (fK.K) K

A velocity is an infinitesimal variation of a vector during the time ∂t :

∂I

∂t
= vI ,

∂J

∂t
= vJ ,

∂K

∂t
= vK

If we choose the forces f I, fJ, fK to be defined by (5.7), we find then the expected regularization
PDE (5.6) that preserves the orthogonal constraints : the functional (5.4) can then be seen as a me-
chanic energy associated to a rigid object B, submitted to three pure diffusion forces f I, fJ, fK.
The obtained PDE’s are expressions of the instant rotations applied to B in order to minimize this
energy.

In this section (5.3), we studied two particular cases (unit vectors and orthogonal matrices) that can
be directly handled by the orthonormal vector set regularization framework (5.6). Applications of
the regularization for these two type of fields will be illustrated in chapter 6.
Let us now consider the regularization of a more complex and interesting orientation feature :
diffusion tensors.
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5.4 Diffusion tensor regularization

We are now interested in regularizing noisy diffusion tensor fields T defined on a continuous
domain Ω of R

p (usually p = 1, 2, 3). Diffusion tensors are complex orientation features (see
section 1.2.4) encountered in a lot of different datasets. This work has been motivated by the
restoration of 3D DT-MRI medical images of the brain (as described in [115, 145] and illustrated
on chapter 6), but can be used without restriction to general symmetric and semi-positive definite
n× n matrices, as for instance covariance matrices or structure tensors [187, 77, 118]. Diffusion
tensors are also encountered in fields of statistical parameters in Doppler spectral analysis [21] 1.
The problem of diffusion tensor regularization has been already considered in [61, 181], with
quite different approaches.

5.4.1 Direct approach for tensor regularization

A first and naive approach would be to consider a tensor field T : Ω → P(n), as a multi-valued
image where each point of the field has n2 components. Due to the symmetric property of the
matrices T, we can even reduce the vector dimension to n(n+ 1)/2.
Then, a natural idea would be to evolve the tensor components Ti,j with classic vector-valued
diffusion PDE’s, as for instance the scheme proposed in chapter 3 :

∂Ti,j
∂t

= trace

([

1
√

λ∗+ + λ∗−
θ∗−θ

∗T

− +
1

λ∗+ + λ∗−
θ∗+θ

∗T

+

]

Hi,j

)

(5.16)

where Hi,j is the Hessian of the matrix component Ti,j , and λ∗±, θ∗± are the spectral element of a
smoothed structure tensor G =

∑

i,j ∇Ti,j∇T Ti,j .
It is also worth to mention that the PDE (5.16) intrinsically preserves the matrix symmetry and
can then be applied only on the upper triangular part of T.

As expected, the semi-positive definite constraint needs more attention. Note that as the corre-
sponding constrained space P(n) is a cone, any linear combination of elements of P(n) is itself
positive-definite. This is often the case for classical regularization PDE’s. Anyway, we propose
here a simple method allowing to deal with general PDE’s, as well as ensuring the numerical
preservation of the positive constraint during a PDE flow.
Indeed, a simple way to numerically preserve it is to reproject after each PDE iteration, the regu-
larizing matrices T into the semi-positive space. This is done as follows.

Considering the spectral decomposition of a symmetric matrix T :

T = UΓUT

where U ∈ SO(n) is a rotation and Γ is a diagonal matrix with supposed negative eigenvalues (T
has stepped out from the positive-matrix space), we can compute the projection P(T) of T into
the constrained space of semi-positive matrices, (with respect to the Frobenius norm) as :

P(T) = U diag(λ̃1, ..., λ̃n) UT

1We thank F. Barbaresco who recently brought this problem to our attention.
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where










λ̃l = λl if λl ≥ 0

λ̃l = 0 if λl < 0

Proof : Let A = UΓUT be a symmetric matrix (U is orthogonal and Γ = diag(λl)).
We are looking for the semi-positive definite matrix B that minimizes the Frobenius norm :

‖A−B‖2F = ‖U Γ UT −B‖2F = ‖Γ−UTBU‖2F

(the norm is independent of the basis).
UTBU is symmetric. Let us call Γ′ the matrix of its diagonal elements and S its lower triangular
matrix such as :

UTBU = Γ′ + S + ST

Then, we have :
‖A−B‖2F = ‖Γ− Γ′‖2F + 2 ‖S‖2F

The minimum is reached when

S = 0, i.e B = UΓ′UT

and then

‖A−B‖2F = ‖Γ− Γ′‖2F =

n
∑

i=1

(λl − µi)2

where µ1, . . . , µn are the positive eigenvalues of B. Finally,

‖A−B‖2F is minimum ⇐⇒
{

µi = λl (if λl ≥ 0)

µi = 0 (if λl < 0)

�

This reprojection step numerically ensures the semi-positive property of the tensors T during the
PDE flow (5.16). It can be used for general regularization PDE evolutions. Note that, as de-
scribed in [191], a wide variety of regularizing flows actually preserves intrinsically this positive-
constraint.

However, this technique has some drawbacks :

• When needed, the reprojection requires a spectral decomposition of the matrix field T, in
order to get the eigenvalues λl. This is a very time consuming procedure.

• We do not have a direct control on the spectral elements of the tensors, which are the es-
sential features of interest that characterizes T : they decompose the tensor informations
(orientations U and diffusivity Γ) and are relevant data for designing an adapted regular-
ization process.
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a) Synthetic 3D tensor field T b) With noisy orientations.

c) Direct matrix diffusion (eq.(5.16)) d) Spectral regularization (eq.(5.12))

Figure 5.10: Comparison of tensor regularization methods.

One consequence of this direct diffusion matrix method is illustrated in the Fig.5.10.
A noisy synthetic tensor field T has been regularized using a direct matrix diffusion (5.16)
(Fig.5.10c). Note that for illustration purposes, the noise has been mainly added to the tensor
directions U.
Clearly, there is an eigenvalue swelling effect, due to the fact that the diffusion PDE (5.16) reg-
ularizes tensor orientations and diffusivities in a coupled way, that is not desirable in the general
case. As an effect, neighboring tensors with near orthogonal directions are not aligning them-
selves, but swell. A high risk of losing the tensor orientations is encountered : the tensors are
indeed converging to identity matrices in those cases.
In Fig.5.10d, we rather used a spectral regularization method that will be described in the next
section 5.4.2. It allows to retrieve more coherent diffusion tensors, thanks to the separation be-
tween tensor orientations and diffusivities for the regularization process.
Fig.5.10 illustrates this problem : the black lines represented behind the tensors, are the lines
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following the main eigenvector λ1 of each T(x).
An analogy can be made with chromaticity denoising in color images. The direct regularization
of color vectors (R,G,B) regularizes in a coupled way the orientation and the brightness features
of the colors. A separate regularization can be useful to retrieve more detailed images (as it will
be illustrated on chapter 6).
This is particularly true for our application of interest : the regularization of DT-MRI images. One
of the aims is indeed to retrieve the fiber networks, by following the main directions of tensors
T defined on a volume Ω ⊂ R

3. Using a direct regularization, as (5.16) would lose some fiber
directions, which is an undesired property.

5.4.2 Spectral regularization approach

In order to avoid the undesired swelling eigenvalue effect due to direct tensor regularization, we
rather propose to work directly on the spectral decomposition of the noisy tensor field T, while
preserving the tensor constraints in the spectral space.
This is justified by the fact that spectral elements of diffusion tensors T = UΓUT are the impor-
tant data that provide significant structural informations :

• For DT-MRI images, the diagonal matrix Γ = diag(λ1, λ2, λ3) measures the water
molecule velocity in the brain fibers, while the tensor orientation U provides important
clues to the structure and geometric organization of these fibers.

Significant physiological values can also be computed from Γ [115] :

– Mean diffusivity : Tr = λ1 + λ2 + λ3,

– Partial anisotropy : FA =
√

(λ1−λ2)2+(λ1−λ3)2+(λ2−λ3)2

2(λ2
1+λ2

2+λ2
3)

,

– Volume ratio : V R = 27 λ1λ2λ3/(λ1 + λ2 + λ3).

• For structure tensors of color images [187], Γ and U measure the color variations and their
corresponding directions.

• For covariance matrices, Γ represents the standard deviations of the data dispersion along
the main axes given by U.

These few examples clearly illustrate how the spectral decomposition of a tensor is directly re-
lated to a better understanding of its structure. Moreover, the tensor constraints (semi-positive
definiteness and symmetry) can be easily expressed in the spectral domain :











Semi-positivity : ∀l λl ≥ 0

Orthogonality : ∀k, l, u[k].u[l] = δk,l

(5.17)

The matrix Γ is then directly linked to the tensor semi-positivity while the orthogonal property of
the matrix U is related to the symmetry of the corresponding tensor T.

Our spectral method is based on two constrained and coupled regularizations acting on Γ and U :
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• Regularization of the tensor diffusivities :

Different anisotropic PDE’s can be used to regularize the tensor diffusivities D = diag(λ l), de-
pending on the considered application. For instance,the following diffusion schemes could be
considered for analysis :

- Process each eigenvalue λl separately, with classical scalar regularization schemes (see
chapter 2).

- Process the vector λ = (λl) using vector-valued diffusion PDE’s (as those proposed in
chapter 3).

- Include a-priori spectral informations inside the diffusion equation, in order to drive the
diffusion process. For instance, it could be done like this, for DT-MRI regularization pur-
poses :

∂λl
∂t

= div (D(λi, FA, V R, ...) ∇λl)

where D is a diffusion tensor that drives the regularization process.

Working on the spectral domain allows much more freedom in the choice of the diffusion terms
acting on the tensor diffusivities λi of T, than a direct matrix restoration.
Note that the semi-positivity constraint of the eigenvalues can be imposed simply by using a
discretized scheme that satisfies the maximum and minimum principle [23]. Starting from an
initial semi-positive tensor field T0, the tensor eigenvalues will always be positive.

• Regularization of the tensor orientations :

The difficult part of our spectral regularization method would come from the preservation of the
orthogonality of U during the regularizing flow. Indeed, using unconstrained vector diffusion
PDE’s on each eigenvector u[l] (the columns of U) is not suitable here, since it doesn’t preserve
intrinsically the orthonormal constraints of U.

Following the idea of our orthonormal-preserving PDE (section 5.3.2, we can directly provide a
simple and efficient way to restore the field of tensor orientation U :

∂U

∂t
= −L + U LT U (5.18)

where L is the matrix corresponding to an unconstrained Lagrangian describing the regularization
process. For instance, we can choose :

Lij = trace (DHij)

as described in chapter 3.
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• A local alignment method :

When dealing with diffusion tensors, one has to take care of the non-uniqueness of the spectral
decomposition :

T =
n
∑

k=1

λk u[k] u[k]T

Flipping one eigenvector direction while keeping its orientation (i.e considering −u [l] instead of
u[l]) gives the same tensor T : 2n configurations actually can represent its orientation U.
This means that a constant tensor field may be decomposed into highly discontinuous orientation
fields U, disturbing the anisotropic regularization process with false discontinuity detections.
To overcome this problem, a local eigenvector alignment process can be made before applying
the PDE on each tensor of the field T. The idea is to align the neighboring eigenvector directions
with the current one. This is done by minimizing the angles between them, constraining the dot
product to be positive by flipping the neighboring eigenvectors if necessary :

∀N ∈ V(M), ũ[i](N) = sign
(

u[i](N).u[i](M)
)

u[i](N)

where V(M) is a neighborhood of x (Fig.5.11), and the u[i] are the eigenvectors of T, i.e. the
columns of the orthogonal matrix U.

This local operation allows to act on the vector orientations while ignoring the direction informa-
tion. Then, we can apply the orthogonal constrained diffusion PDE eq.(5.18). The importance of
this procedure will be shown in chapter 6, with real DT-MRI datasets regularization. Moreover,
an alternative solution avoiding this pre-alignment step will be proposed for the case of diffusion
tensor regularization, thanks to the consideration of isospectral flows.

neighbooring
Swapping

vectors

Figure 5.11: Local vector alignment procedure for tensor regularization.
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5.5 Numerical schemes for orthonormal vector set regularization

All the generic PDE flows (5.6), (5.11), (5.13) acting on orthonormal vector sets have this partic-
ular form :

∂I[k]

∂t
= β[k] with

{

β[k] ⊥ I[k]

‖I[k]‖ = 1

Indeed, if we use the general expression (5.6) of orthonormal vector sets evolution for β [k] :

β[ � ] . I[k] =

(

−L
[k] +

m
∑

l=1

(

L
[l] . I[k]

)

I[l]

)

. I[k]

= −L
[k] . I[k] + L[k] . I[k]

= 0

The PDE velocity β[k] is then anytime orthogonal to the current vector I[k] (It is generally the
case for vector PDE’s acting on orientation features, as in [39, 106, 142, 168, 174, 182]).
This means that the vector I[k](x) should theoretically perform a rotation motion around x, pre-
serving its norm. But using classic explicit schemes as

I
[k]
(t+dt) = I

[k]
(t) + dt β[ � ] where 0 < dt� 1

leads to numerical errors since the underlying manifold is non-flat and the unit vectors I [k] will
step out from the corresponding constrained non-flat manifold (Fig.5.12).

I
(t+1)

(t)I

(t)Idt
dI x dt

dt
dI x dt

Error, on the norm

M

= +

Figure 5.12: Numerical errors with classical explicit schemes.
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In [27, 168] for direction vector diffusion purposes, this problem is avoided thanks to a re-
normalization step of the vector I[k] after few PDE iterations (see also recent developments in
[182] for an interesting alternative solution). Anyway, this method cannot be applied when deal-
ing with orthonormal vector sets, because the orthogonal angles between vectors may not be
preserved by this way.
The mechanical interpretation of the 3D case (section 5.3.3) provides us a simple and accurate
solution to this re-normalization problem : we apply at each time step the instant rotation cor-
responding to the evolution equation (5.13) on the orthonormal 3D basis B. This rotation is the
same for all the vectors I, J, K (section 5.3.3) and is given by the rotation vector ω, defined by
the mechanic momentum :

ω =
(

I×LI
)

+
(

J×LJ
)

+
(

K×LK
)

where the L are defined by (5.7) and are discretized with classic finite-difference schemes [113]
(their discretizations will be independent of the constraint preservation). The infinitesimal rotation
matrix Γ corresponding to the instant rotation ω is computed thanks to the Rodriguez’ formula
[71] :

Γ = eHdt = I +
sin ‖ωdt‖
‖ωdt‖ Hdt +

1− cos ‖ωdt‖
‖ωdt‖2 H2dt2

where dt > 0 is the time step and H is the skew-symmetric matrix associated to the rotation
vector omega :

H =







0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0







Then, the evolution scheme for the matrix-valued PDE (5.13) in the 3D case is simply :

R(t+dt) = Γ R(t)

where
R = ( I | J |K )

It provides a numerical way to preserve the unitary norm, as well as the orthogonal angles (the
column vectors I, J, K of R perform the same infinitesimal rotation Γ at each time step t). The
numerical error, due to (dt 6= 0), is only present in the rotation angle ‖ω‖, but doesn’t affect the
orthonormal vector bases configuration.
Note also that this scheme naturally preserves the determinants of the corresponding orthogonal
matrices R, during the flow. Indeed,

det
(

R(t+dt)

)

= det
(

Γ R(t)

)

= det (Γ) det
(

R(t)

)

= det
(

R(t)

)

(5.19)

since by construction Γ ∈ SO(3) and then det(Γ) = +1. More particularly, it means that a
rotation R ∈ SO(3) cannot be transformed to a rotoinversion during the orthogonal PDE flow
(5.13).
It validates then our proposed method for rotation field regularization.
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5.6 Extension to general matrix-constrained flows

Preliminary note : The main theory presented here has been mainly developed by Christophe
Chefd’hotel / ODYSSEE, INRIA Sophia-Antipolis. Working on matrix-valued flows, he crossed
some of the general issues presented in this thesis. We naturally started a collaboration leading
to the improvement of our initial diffusion tensor regularization method, described in section 5.4.
We will illustrate the general ideas of this interesting framework, and the reader is requested to
refer to [48] and to the outgoing thesis of Christophe for more informations about the calculus
leading to the presented equations.

5.6.1 Matrix constraints and exponential maps

The topic of this work is finding matrix-valued PDE flows (and more particularly regularization
PDE’s), that preserve some nonlinear constraints, as for instance orthogonal, positive-definite or
spectral constraints.
Let us consider the manifoldM = F(Ω,N ) embedded in an infinite dimensional function space
F(Ω,Rn×n). Each point X of M is a mapping X : Ω → N , defined on an open subset Ω of
the Euclidean space, which takes values in a constrained matrix manifold N . The constraints are
considered as nonlinear, which means thatM is a non-flat manifold.

In order to find a constraint-preserving matrix flow, we naturally want to find a PDE velocity that
is anywhere tangent to the manifoldM (Fig.5.13) 2.

M

p(0)

p(t)

T    M
p(0)

T    Mp(t)

Figure 5.13: Matrix-constrained flow, seen as a tangent flow to a non-flat manifoldM.

This tangent space follows readily from the expression of the tangent space of N .
Actually, Christophe Chefd’hotel noticed in [48] that a wide range of orthogonal and spectral
constraints on matrices define Lie Groups and homogeneous spaces, which are submanifolds of

2This figure has been kindly provided by C. Chefd’hotel/ODYSSEE - INRIA Sophia-Antipolis.
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R
n×n that present nice algebraic properties. In particular, the tangent space at any given point can

be formally found.

Moreover, the geodesics in such manifolds can be computed using exponential maps. It con-
tributes to design explicit numerical schemes that numerically preserve the matrix constraints,
with a discretization expression based on matrix exponentials. Note that a classical explicit Euler
method, such as :

∂M

∂t
= βM =⇒ M(t+dt) = M(t) + dt βM

is not suitable for non-flat manifolds, since there is a risk of stepping out fromM for each (non
infinitesimal) displacement (Fig.5.12). A first idea would be to project after each step the point
M(t+dt) on the underlying constrained manifold. But this post-processing can be avoided, us-
ing a geometric integration step relying on exponential maps, following directly a geodesic path
between each iteration (Fig.5.14) 3.

T  Mp

T  Mp

M

V(p  )
p

p

p  = exppV(p   )
t+dt

t+2.dt

t+dt

t
t

t

t
dtV(p  )

tdt

dt

t+dt

Figure 5.14: Using exponential maps to numerically preserve constraints.

In general, the equation of a geodesic satisfies a second order differential equation. But the fact
is that for simple matrix manifolds, closed form solutions are often available (and thus the expo-
nential map).

5.6.2 Three different matrix-valued flows for tensor regularization

In the followings, different choices of manifold N are considered, leading to different matrix
constraints. For each case, the corresponding constraint-preserving flow is given, as well as the
adapted numerical scheme, using matrix exponential. We will also show how these different
constraints can be considered, in order to deal with the regularization of diffusion tensor field T.

3This figure has been kindly provided by C. Chefd’hotel/ODYSSEE - INRIA Sophia-Antipolis.



148 Chapter 5: Constrained PDE’s and the Framework of Orthonormal Vector Sets

• Positive-definite flow :

We first consider the manifold N = P(n), of the symmetric and positive-definite matrices.

The corresponding constraint-preserving flow is then :

−∂T
∂t

= −
((

L + L
T
)

T2 + T2
(

L + L
T
))

. (5.20)

where L corresponds to an unconstrained regularization term, such as the ones proposed in
chapter 3. Note that the PDE (5.20) allows to evolve directly the matrix coefficients while
preserving the symmetric positive definiteness, and evolving the matrices with respect to
the natural metric of N .

The corresponding numerical scheme is

T(t+dt) = exp(−T(t)(L + L
T ) dt)T T(t) exp(−T(t)(L + L

T ) dt), (5.21)

where

exp(T) =
∞
∑

i=0

Mi

i!

denotes the matrix exponential, numerically implemented using a Padé approximation, as
described in [86].

The interest behind this positive-definite PDE (5.20) mainly comes from the fact that the
natural metric of the space P(n) is taken into account for the design of the regularizing
equation (see [48] for more details)

• Orthogonal-preserving flow :

As we noticed in section 5.4.2, eigenvalue over-smoothing can be avoided by regularizing
the orientation part U and the diffusivity part Γ of a diffusion tensor field T, with different
coupled equations.

By considering the specific constrained manifold N = O(n), in order to regularize the
tensor orientation U, it ends up with the equation

∂T

∂t
= T L

T T−L, (5.22)

We find again, with another formalism, the equation (5.13) already used to regularize or-
thogonal matrices, in section 5.3.2. Besides, an interesting numerical scheme extension
comes naturally from the use of exponential maps :

T(t+dt) = T(t)exp
(

−dt
{

T(t),L
})

. (5.23)
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Note that for the case of 3 × 3 orthogonal matrices, we find again the proposed scheme in
5.5, since (5.23) reduces then to the well known Rodriguez’ formula.

The problem of local orientation alignment also occurs here (Fig.5.11) and is solved in the
same way as in section 5.4.2.

• Isospectral flow :

To avoid the eigenvector alignment step needed by the previous method (5.22), a more
simple method consists in considering the constrained manifold N of the matrices with
given sets of eigenvalues. The resulting constrained equation consists then in applying an
isospectral flow on the initial tensor field, i.e. a regularizing flow that preserves the tensor
diffusivities, while regularizing the tensor orientations :

∂T

∂t
=
[

T,
[

T,−(L + L
T )
]]

. (5.24)

One can also obtain a suitable integration scheme for eq. (5.24), derived from the expression
of the exponential map on the orthogonal group, and such that

∀ x ∈ Ω, T(t+dt)(x) = A(t)(x)
TT(t)(x)A(t)(x), with

A(t)(x) = e−dt[ 	 T (x)+ 	 (x),T(t)(x)]. (5.25)

The results are similar to the ones obtained with the decomposition and the orthogonal
constraints. However, the computation cost is significantly reduced (no local alignment
steps are needed anymore for regularizing tensor orientations). The PDE (5.24) applies
directly on the original matrix coefficients Ti,j .

• Implementation considerations :

The implementation is simple and follows strictly the proposed numerical schemes (5.21),
(5.23) and (5.25). Besides, we have to mention that the vector-valued regularization term L,
corresponding to the unconstrained part of the equation is indeed spatially discretized using
the techniques proposed in section 3.5. As for the exponential maps, they are numerically
computed using a Padé approximation, as proposed in [85].

5.6.3 Comparative figures

We illustrate in Fig.5.15, the different behavior of our proposed diffusion tensor regularizing
flows. The equations have been applied on a synthetic 2D image of noisy 3× 3 diffusion tensors
T.
Some interesting remarks can be made on these different regularization methods :

• The semi-positive preserving method (Fig.5.15c) is not well suitable to handle diffusion
tensor field, since no real control on the regularization of the spectral elements is possible.
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(a) Original synthetic tensor field (b) With orientation and diffusivity noise (c) Positive-definite PDE (5.20)

(d) Orthogonal-preserving PDE (5.22),
without local alignment steps

(e) Orthogonal-preserving PDE (5.22),
with local alignment steps (f) Isospectral PDE (5.24)

Figure 5.15: Comparison of different approaches for diffusion tensor regularization.

• The orthogonal-preserving flow (Fig.5.15d,e) leads to good denoising results, but it needs
a spectral decomposition of the tensor field, as well as computationally expensive re-
alignment processes.

• The isospectral flow (Fig.5.15f) gives similar results, but without any spectral decomposi-
tion of the tensor field T. The high interest of this equation is that it works directly on the
tensor coefficients, and doesn’t need any realignment process.

In this chapter, we investigated a new and original variational framework that can be used to deal
with a large range of constrained data representing orientations : unit vectors, rotation matrices
and diffusion tensors. At the same time, we designed efficient numerical schemes, avoiding the
classical re-projection problem, inherent to the previously proposed constrained regularization
methods. We propose now to apply all these equations, in order to deal with applications of
interest.

Si le temps est continu, il y a un paradoxe de la raison.

G. Hermosillo.



Chapter 6

Applications of Constrained PDE’s

This chapter illustrates how the orthonormal vector sets framework may deal with var-
ious orientation and direction regularization problems. We first handle the problem of unit
vector diffusion and propose examples of direction field regularization, as well as chromaticity
denoising in color images. Then, we go one step further by applying an orthogonal matrix-
preserving flow for two different applications : The regularization of estimated camera mo-
tions, allowing smooth reprojections of 3D virtual objects into real movies, and the restoration
of noisy Diffusion Tensor MRI images, in order to retrieve more coherent fiber bundles in the
white matter of the brain.

6.1 Direction field regularization

Regularization of unit vectors field, also called direction regularization, consists in anisotropically
smoothing fields I : Ω→ Sn−1 of unit vectors belonging to the unit sphere Sn−1 ⊂ R

n, such that
the orientation noise disappears first while the important discontinuities of the field are preserved.
As we noticed in chapter 5, the direction diffusion is a simple and particular case of our general
framework of orthonormal vector sets regularization. Considering an orthonormal set reduced to
a single vector leads to a regularization equation preserving the unit norm constraint :

∀x = (x, y) ∈ Ω, ‖I(x)‖ = 1 (6.1)

In this section, we illustrate some regularization results obtained with our proposed norm con-
strained multi-valued diffusion PDE :















I(t=0) = Inoisy

∂I

∂t
= L− (L . I) I

(6.2)
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where we chose L to be the unconstrained vector regularization term, proposed in chapter 3 :

∀i = 1...n, Li = trace

([

1
√

λ∗+ + λ∗−
θ∗−θ

∗T

− +
1

λ∗+ + λ∗−
θ∗+θ

∗T

+

]

Hi

)

We applied the norm constrained flow (6.2), in order to deal with two different cases :

• Direction fields :

Starting from noisy fields Inoisy of unit vectors representing directions, we can retrieve more
smooth and coherent direction informations. The clear separation between the unit norm
constraint (6.1) and the regularization term in the PDE (6.2) allows especially to adapt
the regularization behavior to the considered problem (as we did in chapter 4 for image
restoration, inpainting, etc.).

First, we illustrate in Fig.6.1, the importance of the norm constraint preservation when deal-
ing with direction fields : The field Fig.6.1b has been obtained from the application of an
unconstrained regularization PDE such as (4.1), while the Fig.6.1c results from the norm-
constrained regularization PDE (6.2). These two anisotropic regularization schemes have
of course similar comportments and have been carried out with the same set of parameters,
starting from a 256× 256 direction field and evolving it during 200 PDE iterations.

Note how the vector norms in the unconstrained result are decreasing, and even vanish
when the vectors are located on discontinuities. As for the constrained result, the directions
are anisotropically denoised without losing the important direction structures or the unitary
norm.

We also used the interesting “scale-space” property of our regularizing flows, in order to
construct orientation scale-spaces of direction fields. This is illustrated on Fig.6.2, with an
initially noisy field (size 128× 128), where different levels of structure details are obtained
with a norm-preserving PDE such as (6.2). The different field structures are smoothly dis-
appearing as the PDE evolution time goes by. Note that contrary to our flow visualization
method proposed in chapter 4, we act here directly on the direction field, not in its repre-
sentation.

• Chromaticity denoising in color images :

As described in the section 2.3, many authors proposed to use norm constrained regularizing
flows, in order to deal with chromaticity denoising in color images [25, 39, 107, 142, 167,
182]. We quickly remind the principle : Each color vector I = (R,G,B) of a color image
can be split into its norm ‖I‖ and its unit direction vector~i (such that I = ‖I‖~i).
It is a common way to separate the chromaticity feature and the brightness feature of a color
pixel (see Fig.2.15b).

Acting separately on these two different color characteristics allows to adapt the algorithms
to several types of noise, in a more precise way than unconstrained schemes. This is il-
lustrated on Fig.6.3 : the two presented noisy images (respective size are 210 × 196 and
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(a) Noisy flow Ω → S1 (b) Result of an unconstrained regularization PDE (4.1)

(c) Result of a constrained regularization PDE (6.2)

Figure 6.1: Constrained vs. unconstrained PDE’s for direction regularization.
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(a) Noisy field (b) Norm-constrained regularization after 20 it.

(c) Norm-constrained regularization after 80 it. (d) Norm-constrained regularization after 150 it.

Figure 6.2: Constructing a scale-space of a direction field.



6.1 Direction field regularization 155

(a) Color images with pure chromaticity noise

(b) Regularized images, with unconstrained PDE’s (4.1)

(c) Regularized images, with norm constrained PDE’s (6.2)

Figure 6.3: Norm constrained regularization for chromaticity denoising in color images.
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372 × 240) have been obtained by adding pure chromaticity noise on initially clear im-
ages, i.e we added Gaussian noise to the corresponding color direction field ~i. We show
on Fig.6.3b, the images obtained with unconstrained vector-valued regularization PDE’s
(4.1), and in Fig.6.3c, the regularized images using the norm-constrained regularization
PDE (6.2). Despite the good results obtained by the unconstrained method, we are able to
retrieve more detailed images if we act only on the chromaticity part of the color image,
with norm constrained PDE’s. This is perceptible for instance in the center of the orange
and the flower in Fig.6.3 This is not surprising, since the unitary norm constraint is very
well adapted to chromaticity noise.

More generally, if we have a prior knowledge about the type of noise that degraded the color
image, we can add constraints to the regularization PDE’s such that it adapts to the model of
noise and performs better image restoration.

6.2 Regularization of estimated camera motions

In the computer vision field, a large number of structure from motion methods have been proposed
in order to estimate video camera motions from real movies [71, 73]. More and more general
market products now integrates these kind of algorithms [150].
The idea consists basically in locating correspondence points between video frames, then using
them to autocalibrate and estimate the real motion of the video camera.
The output data can be decomposed into two different sequences :

• A temporal sequence T(s) : [0, nb] → R
3 of translation vectors, corresponding to the

translation motion of the camera, i.e the change of the viewpoint during the video sequence.
nb is the total frames number of the input video sequence.

• A temporal sequence R(s) : [0, nb] → SO(3) of rotation matrices, corresponding to the
rotation motion of the camera, i.e the change of the view angle during the video sequence.

Estimating correspondence points is a very sensitive process which often reacts to image noise,
and the resulting estimated temporal sequences T and R may be noisy. Defining a regularization
algorithm adapted to these noisy data could be then sometimes needed.
For instance, this is the case if one wants to reproject 3D virtual objects on real movies, using
the estimated camera motion information (this new technique attracts a growing interest in the
domain of special effects for movies and advertising). Reprojecting a 3D object using a noisy
estimated camera motion will result in non-realistic shaking effects.
Here, we propose to define a simple regularization scheme that solves this problem (Fig.6.4) :

• The translation part T of this camera motion can be easily restored, since it is equivalent to
a classical unconstrained vector-valued 1D image, which can be regularized with adapted
PDE’s, as defined in chapter 3

∂Ti
∂t

= trace

([

1
√

λ∗+ + λ∗−
θ∗−θ

∗T

− +
1

λ∗+ + λ∗−
θ∗+θ

∗T

+

]

Hi

)
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Figure 6.4: Principle of our camera motion regularization.

where Hi is the Hessian matrix of the vector channel Ti, while λ∗± and θ∗±
are respectively the eigenvectors and eigenvalues of the smoothed structure tensor
Gσ =

(

∑n
j=1∇Ti∇T Ti

)

∗Gσ .

Note that we use an anisotropic regularization here, since the translation motion of the
camera may contains discontinuities.

• The rotation part R is handled by our orthogonal-matrix preserving PDE, defined in chap-
ter 5 :

∂R

∂t
= L−R LT R (6.3)

where L ∈ R
3×3 is an unconstrained regularizing matrix term. We chose :

Lij = trace (Id Hij) = ∆Rij

(the Hij are the different Hessians of the scalar images Rij).

Note that we perform isotropic regularization here, since the rotation part of the camera
should not contain discontinuities to be preserved (unlike the translation part).

We illustrate this two-step regularization scheme with the reprojection of a 3D virtual teapot in
the scene of a synthetic movie (Fig.6.5). This movie has been generated in a way that the original
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camera motion is quite soft : of course, the smoothness hypothesis about the real camera motion
is a necessary prerequisite for the algorithm.

The figure is ordered as follows : the second column Fig.6.5b,d,f represents one of the three Euler
angles of the estimated and regularizing motions. Note that we didn’t regularize the Euler-angles
themselves, but acted only on the coefficients of the rotation matrices R(s), for reasons explained
in section 5.3.2. The first column Fig.6.5a,c,e respectively illustrates : (a) a frame of the original
movie, (c) a frame with a teapot inserted therein, and finally (e) a superposition of the teapots
corresponding to the estimated and regularized motion.

This figure 6.5 can hardly illustrate the difference between the 3D motions of the inserted virtual
3D object, in the two obtained video sequences (using the original and the restored camera motion
estimation). Nevertheless, there is a clear shaking effect on the virtual teapot, when using the
original estimation. This undesired effect is removed when using the regularized motion. Please
see the presentation containing the corresponding MPEG files at :

http : //www − sop.inria.fr/robotvis/personnel/David.T schumperle
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(a) Synthetic movie with noisy frames (b) Euler angle X of the estimated rotation motion R

60 80 100 120 140 160
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

(c) Insertion of a virtual 3D teapot (d) Euler angle X after motion regularization (10 it. of (6.3))
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(e) Projections difference between regularized and original motion (f) Euler angle X after motion regularization (20 it. of (6.3))

Figure 6.5: Regularization of video camera motions for 3D virtual object insertion.
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6.3 DT-MRI image regularization

DT-MRI (Diffusion tensor magnetic resonance imaging) is a recent and non-invasive 3D med-
ical image modality consisting in measuring the water molecule motions in the white matter
tissues,using magnetic resonance techniques. We note x = (x, y, z). Each voxel T(x) of the
acquired image T.

T : Ω→ P(3)

is a symmetric and positive definite 3×3 matrix that defines the local fiber structure of the tissues,
as described in [89, 115, 145, 181] and section 1.2.4.
Here, we propose some results illustrating the high interest of DT-MRI regularization schemes, in
order to compute fiber bundles in the white matter of the brain.
In the figure presented below, the representation of the DT-MRI tensors fields is done as follows :

• The left part of the images represents the diffusion tensors as ellipsoids, whose orientations
and radiuses are respectively given by the eigenvectors and eigenvalues of the correspond-
ing matrices T(x).

• The right part represents the estimated fibers, computed at each voxel of the volume T as
the lines following the main eigenvector of the tensor T(x). Actually, it corresponds to a
representation of the main fiber structures in the white matter of the brain.

The used regularization algorithms are the ones presented in the previous chapter 5, allowing to
construct a scale-space of the brain fibers. It consists in a two-step algorithm :

• Regularization of the eigenvalues (tensor diffusivities), with classical unconstrained vector-
valued diffusion PDE’s, such as :

∂λi
∂t

= trace (D Hi)

where D is an anisotropic diffusion tensor, conducting the regularization, as defined in
chapter 3, and Hi is the Hessian of the eigenvalue λi.

• Regularization of the tensor orientations (an orthogonal matrix), with our rotation-
constrained diffusion PDE :

∂R

∂t
= L−RLTR

or, using the proposed isospectral flow directly on the tensor field T :

∂T

∂t
=
[

T,
[

T,−(L + L
T )
]]

.

Please refer to the section 5.6 for the definition of the regularization term L.

Fig.6.6 and Fig.6.7 show the application of our different diffusion tensor regularization scheme,
for constructing smooth tissues fiber map in the white matter of the brain. We regularize a real
128 × 128 × 56 DT-MRI dataset (courtesy of CEA-SHFJ [36]) 1 Then, we follow at each voxel

1We would like to thank J.-F. Mangin and J.-B. Poline (SHFJ-CEA) for providing us with the DT-MRI data (this
work was partially supported by ARC MC2). We also thank R. Fournier for his visualization tool “TensView”.
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of the volume the main tensor directions which are representative of the fibers structures. Two
regularization steps are shown (Fig.6.6.d,e). For each sub-figure, the tensor field is represented by
ellipsoids on the left part of the image, and by the computed streamlines on the right. Note how
the computed fibers are smoothed along the PDE flow (5.13). Here, the gradient functional may
depend on physiological attributes, as for instance functions proposed in [60, 61].
The computations have been carried out with a Pentium 1Ghz processor, 1Gigabyte RAM, and
the corresponding computation times are given for the presented sub-volume restoration process
in the captions of Fig.6.7.

We noticed that the geodesic step approach allows time steps to be relatively high, and very few
iterations are needed in practice. The results we obtained clearly illustrates the behavior of the
different methods:

• The symmetric positive definite flow (5.20) tends to swell eigenvalues.

• The orthogonal constrained flow (5.22) works well with a local alignment step (Fig. 6.7e),
but fails otherwise (Fig. 6.7d).

• The isospectral flow (5.24) has a quite similar behavior, but is more computationally effi-
cient.

Even if the physiological validation of these results remains to be done, our methods seem to
correct most artifacts (due to the image acquisition process) and retrieve the main global structures
of the fiber network. It opens new perspectives to construct an accurate fiber map model of the
brain.

Other interesting works on the particular problem of DT-MRI regularization have been proposed
in the literature.
We can particularly mention the work of Coulon-etal [60, 61], who use a norm constrained PDE
to regularize the principal direction u1 of the tensors, then compute the corresponding regularized
tensors by projection the two other directions u2 and u3 into the orthogonal plane to the regular-
ized u1. This is indeed a particular case of our rotation-preserving regularization : we can easily
minimize a functional depending only on the main direction u1 when regularizing the orientation
part of the tensor (rotation matrices). Anyway, our method doesn’t require any reprojection step,
thank to the use of specific numerical schemes.
Another interesting approach can be found in [181]. Here, the regularization is performed on the
initial raw DT-MRI data, instead of doing it on the computed diffusion tensors. This obviously
removes the problem of constrained regularization, but one has to define properly the coupling
between all these raw images for the regularization process.
Other works of interest on this emerging issue can be found in [48, 146, 175].

Pas mal !

N.
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(a) Eigenvalues of an original DT-MRI volume (b) Regularized eigenvalues with eq.(4.1)

(c) Initial tensors/fibers of a part of (a) (d) Tensors/fibers after 10 it. of (5.13)

(e) Tensors/fibers after 30 it. of (5.13)

Figure 6.6: Constructing a structure preserving scale-space of the white matter fibers.
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(a) Slice of a DT-MRI of the brain (mean diffusivity) (b) Local tensors/streamlines of a part of (a) (white square)

(c) Regularized with SPD constrained flow eq. (5.20) (24.760
s)

(d) Regularized with orthogonal flow eq. (5.22) (without local
alignment) (53.160s)

(e) Regularized with orthogonal flow eq. (5.22) (with local
alignment) (1m21.360s)

(f) Regularized with isospectral flow eq.(5.24) (25.160s)

Figure 6.7: Comparison of 3 different methods for DT-MRI dataset regularization.
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Appendix : How to implement
vector-valued regularization PDE’s ?

In this appendix, we detail some of the important part of the source code (using the C
language) used to implement our proposed theoretical framework of unconstrained diffusion
PDE’s. This should help the interested reader to perform such vector-valued regularization
flows in its own image processing algorithms. At first glance, diffusion PDE’s and variational
methods are often based on complex mathematical theories and seem hard to implement under
a discrete form. Here, we want to underline simple numerical schemes and code tricks that
eases the implementation step, speeds up the computation time and improves the quality of the
obtained results.

This section is related to the particular topic of unconstrained PDE’s, tackled in chapter 3.
Here, we propose to analyze the simple implementation (in C) of the following vector-valued
regularization equation :

∀i = 1..n,
∂Ii
∂t

= trace

([

1
√

1 + λ∗+ + λ∗−
θ∗−θ

∗T

− +
1

1 + λ∗+ + λ∗−
θ∗+θ

∗T

+

]

Hi

)

(6.4)

Actually, its implementation is very simple. The PDE (6.4) is the one that has been used to obtain
all the regularization results in chapter 4. In the proposed source code, we implement two different
numerical schemes, as described in section 3.5 :

1. Using the spatial discretization of the Hessian. This is the faster method, equivalent to
classical PDE discretization schemes using finite differences.

2. Using local convolutions. This is the slower but precise method we proposed in chapter 3.
It consists in applying a spatially-adapting convolution kernel into the image, reulting in a
highly non-linear image filtering.

Before all, we assume that the reader has at one’s disposal libraries containing basic structures
and corresponding processing functions allowing to manage these two different kind of objects :
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1. Images, as 2D or 3D vector fields Ω → R
n. Related library functions are image loading,

gaussian blurring, etc. In our source code, we named this library CImg and the library
function names are prefixed by the string ’cimg ’.

2. Matrices. In our source code, a matrice n × n is represented with a simple 1D array
matrix[n*n], where the coefficients are stored columns by columns (with a Matlab
style). The related library function names are prefixed by ’m2x2 ’ or ’m5x5 ’.

Here is the exact source code, used for our color image regularization experiments, using uncon-
strained vector-valued regularization PDE’s (chapter 4). We insert comments when necessary,
after the concerned source lines.

/*-----------------------------------------------------------------------------------------------------

mydiff :

Implementation of the multivalued diffusion PDE’s

dI_i/dt = Trace(DH_i) (i=1..n)

with two different numerical schemes.

(1) Using Hessian discretization or
(2) Using local convolutions

---------------------------------------------------------------------------------------------------*/

#include "CImg.h" // Image library with basic functions
#include "mlib.h" // Matrix library with basic functions

float dt; // time step used for the PDE evolution
float zero; // value of minimal eigenvalue
int msize; // size of the convolution mask

/*------------------------------------------------------------------------------------------------
Compute the gaussian kernel corresponding to a tensor D
----------------------------------------------------------------------------------------------*/

void get_gauss_mask(float D[4],float mask[25]) {
static float S[2],V[4],u,v,n,s1,s2;
static int i,j;
t2x2_eigen(D,S,V); // spectral decomposition of the tensor D
if (S[0]<zero) S[0]=zero;
if (S[1]<zero) S[1]=zero;
u = V[0];
v = V[1];
n = 0;
mkxl_zero(mask,5,5);
for (j=-msize/2; j<=msize/2; j++)

for (i=-msize/2; i<=msize/2; i++) {
s1 = u*i+v*j;
s2 = -v*i+u*j;
s1*=s1;
s2*=s2;
n+=(mask[5*(i+2)+(j+2)] = 1.0/(2*M_PI*dt)*exp( -( s1/S[0] + s2/S[1] )/(4*dt) ));

}
if (n>cimg_zero) for (i=0; i<25; i++) mask[i]/=n; // normalization of the convolution mask

}

The function get gauss mask computes an oriented 2D Gaussian kernel 3 × 3 or 5 × 5 (de-
pending of the value of msize). This mask is oriented by a 2×2 diffusion tensor D=D[4] given
as an input parameter. Actually, the D corresponds to the tensors inside the trace operator in
the equation (6.4). Computing this mask is the main time-consuming procedure of the numerical
scheme based on local filtering, since it evaluates a lot of exponential functions. When using the
other numerical scheme, this function is not used.

/*--------------------------------------------------------------------
Main procedure
------------------------------------------------------------------*/
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int main(int argc,char **argv) {
CImg itmp,src,dest,velocity,structure,diffusion;
CImgl hessian,gradient,visu;
CImgDisplay disp;
CImgStats stats;
float xdt=0,lambda_1,lambda_2,ix,iy,G[4],H[4],eig_values[2],eig_vectors[4],I[25],kernel[25];
int iteration,x,y,k,px,py,nx,ny,ax,ay,bx,by;

// Read and check command line parameters
cimg_usage("Implementation of Vector Diffusion PDE such as dI_i/dt = Trace(DH_i)");
char *file_i = cimg_hparam ("-i",NULL,"Input image");
char *file_o = cimg_hparam ("-o",NULL,"Output image");
float noise = cimg_hparam_float("-noise",0,"Add gaussian noise");
float smooth = cimg_hparam_float("-smooth",0.7,"Smooth diffusion tensors D and J");
int nb_iter = cimg_hparam_int ("-iter",16000000,"Number of iterations");
int save_iter = cimg_hparam_int ("-save",0,"Iteration sequence saving step");
char statflag = cimg_hparam_bool ("-stats",0,"Display image statistics");
int scheme = cimg_hparam_int ("-scheme",0,"Used numerical scheme (0=classic, 1=convolutions)");
switch(scheme) {
case 0:

dt = cimg_hparam_float("-dt",15,"Adaptative time step ratio");
break;

default:
dt = cimg_hparam_float("-dt",3,"Adaptative time step ratio");
zero = cimg_hparam_float("-zero",0.01,"Zero eigenvalue");
msize = cimg_hparam_int("-msize",5,"Size of the convolution mask (3 or 5)");
xdt = dt;
break;

}
cimg_err(!file_i, "Option -file_i is not specified");
cimg_err(noise<0, "Option -noise = %g < 0",noise);
cimg_err(smooth<0, "Option -smoothing = %g <0",smooth);
cimg_err(nb_iter<0, "Option -nb_iter = %d <0",nb_iter);
cimg_err(save_iter<0,"Option -save = %d <0",save_iter);
if (!save_iter) save_iter = nb_iter;

// Data initialisation
src = cimg_load(file_i); // define the source image I_0
if (noise>0) cimg_add_gauss_noise(src,noise); // add synthetic gaussian noise if required
dest = cimg_copy(src); // define the iterated image I(t)
velocity = cimg_same(src); // define the PDE velocity
structure = cimg_new(src->width,src->height,4); // define the structure tensor field G
diffusion = cimg_new(src->width,src->height,3); // define the diffusion tensor field D
hessian = cimgl_new_all(3,src->width,src->height,src->dim); // define the hessians H_i (i=1..n)
gradient = cimgl_new_all(2,src->width,src->height,src->dim); // define the gradient nabla I_i (i=1..n)

if (cimg_max(src->width,src->height)<400) visu = cimgl_new_from(4,src,dest,structure,velocity);
else visu = cimgl_new_from(1,dest);
disp = cimgl_new_display(visu,cimg_fbasename(argv[0]),1);
cimg_stats(src,"Original image");

In the above lines, we read the input (noisy) image src and the variance parameter σ=smooth
for the smoothing of the structure tensor field Gσ = G∗Gσ . We also initialize the needed images
for the PDE flow computation : gradient image gradient, Hessian image hessian, iterated
image dest, PDE velocity field velocity, structure tensor image structure, and diffusion
tensor image diffusion. We can now start the main PDE iteration loop :

//--------------------
// PDE Iteration loop
//--------------------
for (iteration=1; iteration<=nb_iter; iteration++) {

printf("\rIt. %d : dt = %g ",iteration,xdt); fflush(stdout);

// Compute the Gradient and Hessian of each image channel I_i
cimg_mapV(dest,k) cimg_m3x3map(dest,x,y,0,k,I) {

cimg_pix(gradient->pos[0],x,y,k) = 0.5*(I[7]-I[1]);
cimg_pix(gradient->pos[1],x,y,k) = 0.5*(I[5]-I[3]);
cimg_pix(hessian->pos[0],x,y,k) = I[7]+I[1]-2*I[4];
cimg_pix(hessian->pos[1],x,y,k) = 0.25*(I[0]+I[8]-I[6]-I[2]);
cimg_pix(hessian->pos[2],x,y,k) = I[5]+I[3]-2*I[4];

}

The gradients and the hessians of the images Ii = dest(x,y,i) are computed with classical
central finite differences. The trick here comes from the particular spatial loop cimg m3x3map

that makes a 3 × 3 mask I[9] (a matrix) cover the image dest with the indices x and y. For
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each (x, y), the mask I[9] always corresponds to the 3 × 3 local neighborhood of the current
image point dest(x,y) (Fig.6.8). Note that the code of cimg m3x3map is written in the CImg
library as an optimized macro.

i(x−1,y−1) i(x,y−1) i(x+1,y)

i(x−1,y) i(x,y) i(x+1,y)

i(x−1,y+1) i(x,y+1) i(x+1,y+1)

I[0] I[3] I[6]

I[1] I[4] I[7]

I[2] I[5] I[8]

Figure 6.8: Principle of the loop cimg m3x3map.

Knowing these gradients ∇Ii, we are now able to compute the field of the smoothed structure
tensors Gσ :

// Compute the smoothed structure Tensor G_sigma
cimg_mapXY(dest,x,y) { // compute the coefficients of each matrix G

m2x2_zero(G);
cimg_mapV(dest,k) {

ix = cimg_pix(gradient->pos[0],x,y,k);
iy = cimg_pix(gradient->pos[1],x,y,k);
G[0]+= ix*ix;
G[1]+= ix*iy;
G[3]+= iy*iy;

}
cimg_3set(structure,x,y,0,G[0],G[1],G[3]);

}
if (smooth>cimg_zero) { // smooth the tensor field G by a gaussian kernel

itmp = cimg_deriche_blur(structure,smooth,1);
cimg_swap(itmp,structure);
cimg_free(itmp);
visu->pos[2]=structure;

}

Note that the structure tensor field G = structure(x,y) is smoothed with a Canny-Deriche
filter [62, 63, 64], in order to retrieve a more coherent local vector geometry of the structures in
the processed image.

// Compute the spectral elements of G_sigma, and the diffusion tensor D
cimg_mapXY(dest,x,y) {

cimg_3get(structure,x,y,0,G[0],G[1],G[3]); G[2] = G[1];
t2x2_eigen(G,eig_values,eig_vectors);
if (eig_values[0]<0) eig_values[0]=0; // positive constraints needed due to numerical
if (eig_values[1]<0) eig_values[1]=0; // errors during eigenvalue decomposition
cimg_4set(structure,x,y,0,eig_values[0],eig_values[1],eig_vectors[0],eig_vectors[1]);

// define the diffusion tensor D, from its eigenvectors/eigenvalues
lambda_1 = 1.0/sqrt(eig_values[0]+eig_values[1]+1); // eigenvalue of D, in the direction theta_- = eig_vectors[0]
lambda_2 = 1.0/(eig_values[0]+eig_values[1]+1); // eigenvalue of D, in the direction theta_+ = eig_vectors[1]
cimg_3set(diffusion,x,y,0,

lambda_1*eig_vectors[0]*eig_vectors[0] + lambda_2*eig_vectors[1]*eig_vectors[1],
(lambda_1 - lambda_2)*eig_vectors[0]*eig_vectors[1],
lambda_1*eig_vectors[1]*eig_vectors[1] + lambda_2*eig_vectors[0]*eig_vectors[0]
);

}

This part computes the diffusion tensor field D used in the trace operator of the PDE flow (6.4),
from the eigenvalues and eigenvectors of the smoothed structure tensor Gσ .
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// Compute the PDE velocity (with 2 possible numerical schemes)
switch(scheme) {
case 0: // Using the discretization of the Hessian

cimg_mapXY(dest,x,y) {
cimg_3get(diffusion,x,y,0,G[0],G[1],G[3]); G[2]=G[1];
cimg_mapV(dest,k) { // compute Trace(DH_i) for each image channel I_i

H[0] = cimg_pix(hessian->pos[0],x,y,k);
H[1] = H[2] = cimg_pix(hessian->pos[1],x,y,k);
H[3] = cimg_pix(hessian->pos[2],x,y,k);
m2x2_mul(G,H);
cimg_pix(velocity,x,y,k) = m2x2_trace(H);

}
}
stats = cimg_get_stats(velocity,0); // Compute the adaptative time step
if (stats.max == stats.min) xdt = 0; else xdt = dt/cimg_max(fabs(stats.max),fabs(stats.min));
cimg_mapXYV(dest,x,y,k) cimg_pix(dest,x,y,k) += xdt*cimg_pix(velocity,x,y,k);
break;

This describes the first possible numerical scheme, using the spatial discretization of the Hessian.
As you may notice, the scheme is very direct and simple to implement. Moreover, we use an
adaptative time step xdt allowing a maximum intensity variation dt of the image pixel values
(usually dt ∈ [10, 20]). xdt is then used to update the iterated image dest.

default: // Using the local convolutions by oriented 2D gaussian kernels
cimg_5mapXY(dest,x,y) {

cimg_3get(diffusion,x,y,0,G[0],G[1],G[3]); G[2]=G[1];
get_gauss_mask(G,kernel);
cimg_mapV(dest,k) { // do the convolution for each image channel I_i

cimg_m5x5get(dest,x,y,0,k,I);
cimg_pix(dest,x,y,k) = cimg_m5x5dot(I,kernel);
cimg_pix(velocity,x,y,k) = cimg_pix(dest,x,y,k)-I[12];

}
}
break;

}

This is the second possible numerical scheme, using spatially-adapting local convolutions. Here,
the convolutions are facilitated thanks to the special loop cimg m5x5map, allowing an imme-
diate access to the local neighborhood of the current pixel. This is basically the same macro as
cimg m3x3map (Fig.6.8), for a 5× 5 local neighborhood.

// Prepare next iteration
if (file_o && !(iteration%save_iter)) {

char tmpstring[1024];
if (save_iter!=nb_iter) cimg_fnumber(file_o,iteration,5,tmpstring); else strcpy(tmpstring,file_o);
cimg_save(dest,tmpstring);

}
if (statflag) cimg_stats(dest,"Image");
cimgl_refresh_display(visu,disp);

}

printf("> Done !\n");
exit(0);
return 0;

}

The iterations are saved during the PDE flow, in order to construct the entire scale-space of the
image. The algorithm stops after a user-defined finite number of iterations.

Note that this source code is the one used for color image restoration experiments. We also
point out that some adaptations are needed to deal with image inpainting, magnification and flow
visualization, but they are quite simple and won’t be detailled here. Nevertheless, this appendix
pointed out the relative easiness of the proposed unconstrained algorithm.

�
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Conclusion & Perspectives

Contributions :

In this document, we studied multivalued image regularization, which is a low-level process used
in many image processing algorithms. We focused on variational and PDE-based approaches,
acknowledged for many years as very efficient methods.

First of all, this thesis presented the present state of the art of this large domain, by comparing and
analysing equations already proposed in the literature, through a local geometric viewpoint. Then,
we extended these methods by proposing more general and unifying frameworks. On one hand,
it gathered previous existing schemes. On the other hand, it allowed to design new regularization
PDE’s, more adapted to the local geometry of considered images.
Our main contributions take place in these two complementary fields :

• Unconstrained multivalued image regularization : We proposed a new formalism allow-
ing to express previous approaches on unconstrained multivalued regularization within a
common expression. This formulation is more adapted to the local understanding of the
smoothing performed by these diffusion PDE’s. Moreover, we defined a new regularization
equation, based on the respect of a coherent vector image geometry, as well as numerical
schemes adapted for the implementation of the whole range of multivalued regularization
equations. The application to several problems related to color images illustrated the effi-
ciency of our methods to deal with concrete cases.

• Constrained multivalued image regularization : We proposed a new constrained regular-
ization approach, allowing to deal with a wide variety of direction and orientation features.
This has been done by considering the preservation of specific orthonormal constraints dur-
ing PDE regularizing flows. Thus, this new formalism naturally extended previous works on
the diffusion of unit vector fields. But it also opened new ways of regularizing more com-
plex orientation features, such as rotation matrices and diffusion tensors. It significantly
enlarged the possible application field handled by constrained regularization algorithms.
We illustrated it with two different problems of interest : estimated camera motion regu-
larization, allowing realistic 3D virtual object insertions in real video sequences. Then, the
reconstruction of more coherent fiber networks in the white matter of the brain, via DT-
MRI images. We also proposed numerical schemes, well adapted to the preservation of
orthonormal constraints.
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Throughout this document, we tried hard to follow this scientific reasoning :

• First, the study and the implementation of existing methods.

• The local geometric understanding of these methods.

• The generalization in a common framework, leading to a formalization of new and more
efficient equations.

• The design of specific numerical schemes, adapted for this kind of equations.

• The application to concrete problems, in order to illustrate the practical issues of our ap-
proaches.

Perspectives :

This thesis opened new questions that could be envisaged for future works. First, the aspects of
convergence and uniqueness of our proposed schemes : our new unifying expressions could be
adapted to study these important theoretical aspects.
We also want to validate the results obtained with DT-MRI image regularization, with the help
of specialists. For instance, this may define physiological priors that could be easily incorporated
into our regularization PDE’s, leading to physiologically plausible models of white matter fibers.
Finally, our new regularization equation could be integrated into other classical computer vision
problems expressed with variational methods, such as optical flow, segmentation, etc. This could
improve these algorithms thanks to the use of a specific local geometry adapted to the considered
problem.
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Contributions :

Dans ce document, nous avons étudié la régularisation d’images multivaluées, qui est un proces-
sus de base utilisé dans de nombreux algorithmes de traitement d’images. Nous nous sommes fo-
calisés sur les formulations variationnelles et EDP, qui sont depuis plusieurs années des méthodes
reconnues pour leur efficacité.

Cette thèse a d’abord présenté un état de l’art du domaine, en comparant et analysant par une
approche géométrique locale, les équations déjà proposées dans la littérature. Puis nous avons
étendu ces méthodes en proposant à chaque fois, un cadre plus général permettant à la fois
d’unifier les approches précédentes, mais aussi de considérer de nouvelles équations adaptées
à la géometrie locale des problèmes considérés.
Nos contributions principales se situent dans les deux domaines suivants :

• Régularisation non-contrainte d’images multivaluées : Nous avons proposé une nouvelle
équation qui a permis d’exprimer sous une forme unificatrice, les précédents travaux portant
sur la régularisation d’images multivaluées non contraintes. Cette formulation est mieux
adaptée à la compréhension locale des processus de lissage effectués par les EDP de diffu-
sion multivaluées. De plus, nous avons défini une nouvelle méthode de régularisation, basée
sur le respect de propriétés géométriques intéressantes, ainsi que des schémas numériques
adaptés pour implémenter toutes ces équations. L’application à plusieurs problèmes liés
aux images couleurs a montré l’efficacité de nos méthodes de régularisation pour traiter des
cas concrets.

• Régularisation contrainte d’images multivaluées : Nous avons proposés, une nouvelle ap-
proche de régularisation contrainte, qui permet de traiter une large variété de données de
directions et d’orientations. Ceci a été possible en considérant la préservation de contraintes
orthonormales dans l’évolution des EDP de régularisation. Ainsi, ce nouveau formalisme
permet d’étendre les précédents travaux sur la régularisation de vecteurs unitaires, mais
aussi de traiter des données d’orientations plus complexes, comme les matrices de rotation,
ou les tenseurs de diffusion. Ceci a ouvert de façon significative le champ d’application
possible de la régularisation d’orientations, et nous l’avons illustré avec deux problèmes
concrets importants : la régularisation de mouvements estimés de caméra pour l’insertion
réaliste d’objets virtuels 3D dans des séquences vidéos, et la reconstruction de réseaux de
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fibres plus cohérents dans la matière blanche du cerveau via l’imagerie IRMd. Nous avons
également proposé des schémas numériques bien adaptés à la préservation des contraintes
orthonormales.

Tout au long de ce document, nous nous sommes donc efforcés de suivre la démarche scientifique
suivante :

• D’abord l’étude, la comparaison, et l’implémentation des méthodes existantes.

• La compréhension géometrique locale de ces méthodes.

• La généralisation dans un cadre commun, amenant à la formalisation de nouvelles
équations plus performantes.

• La construction de schémas numériques adaptés pour ces équations.

• L’application à des problèmes concrets, afin d’illustrer l’intérêt pratique de ces approches.

Perspectives :

De nouvelles voies d’études des EDP de régularisation ont été ouvertes par cette thèse, et pour-
raient être envisagées comme futurs axes de recherche. D’abord, les questions théoriques d’unicité
et de convergence des algorithmes proposés : Nos nouvelles équations unificatrices pourraient être
mieux adaptées pour étudier ces aspects théoriques importants.
Nous souhaitons ensuite faire valider par des spécialistes, les résultats obtenus sur la régularisation
d’images IRMd. Cela permettrait en particulier de définir des à-priori physiologiques qui pour-
raient être facilement incorporées dans nos EDP de régularisation. Ceci, afin d’obtenir des
modèles de réseaux de fibres de la matière blanche plausible d’un point de vue physiologique.
Finalement, notre nouvelle méthode de régularisation d’images vectorielles pourraient être
intégrée dans des processus autres, comme par exemple le calcul de flot optiques ou les algo-
rithmes de segmentation d’images, les rendant possiblement plus efficace grâce à la prise en
compte des géometrie locales inhérent à ces problèmes.
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• D. Tschumperlé and R. Deriche.
Restauration d’images vectorielles par EDP.
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[16] G. Aubert, L. Blanc-Féraud, M. Barlaud, and P. Charbonnier. A deterministic
algorithm for edge-preserving computed imaging using Legendre transform. In
Proceedings of the International Conference on Pattern Recognition, volume III,
pages 188–191, Jerusalem, Israel, October 1994. Computer Society Press.

[17] G. Aubert, R. Deriche, and P. Kornprobst. Computing optical flow via variational
techniques. SIAM Journal of Applied Mathematics, 60(1):156–182, 1999.

[18] G. Aubert and P. Kornprobst. A mathematical study of the relaxed optical flow
problem in the space BV. SIAM Journal on Mathematical Analysis, 30(6):1282–
1308, 1999.

[19] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing: Par-
tial Differential Equations and the Calculus of Variations, volume 147 of Applied
Mathematical Sciences. Springer-Verlag, January 2002.

[20] D. Barash. Bilateral filtering and anisotropic diffusion : Towards a unified view-
point. Technical report, HP Laboratories Israel, 2000.

[21] F. Barbaresco. Spatial denoising of statistical parameters estimation by beltrami
diffusion on embedding siegel space. Submitted to PSIP 2003 (Physics in Signal
and Image Processing ), 2002.

[22] M. Barlaud and C. Labit. Compression et codage des images et des vidéos. Ou-
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Résumé

Nous nous intéressons aux approches par EDP pour la régularisation d’images multivaluées, et
leurs applications à une large classe de problèmes d’intérêts. L’étude et la comparaison des
méthodes existantes nous permet à la fois de proposer un cadre mathématique commun mieux
adapté aux interprétations géométriques locales de ces EDP, mais aussi de concevoir des schémas
numériques efficaces pour leur mise en oeuvre. Nous développons de cette façon une nouvelle
approche de régularisation multivaluée vérifiant certaines propriétés géométriques locales impor-
tantes, qui peut être utilisée dans de nombreuses applications différentes. Nous abordons ensuite
le problème lié à la régularisation de données multivaluées contraintes. Un formalisme varia-
tionel est proposé afin de traiter dans un cadre unifié, des données de direction comme les champs
de vecteurs unitaires, de matrices de rotation, de tenseurs de diffusion etc. Les solutions ap-
portées sont analysées et utilisées avec succès pour résoudre de nombreux problèmes, notamment
la régularisation et l’interpolation d’images couleurs, la visualisation de flots, la régularisation de
mouvements rigides estimés à partir de séquences vidéos, et l’aide à la reconstruction de réseaux
cohérents de fibres dans la matière blanche du cerveau, à partir de la régularisation d’images
d’IRM de diffusion.

Abstract

We are interested in PDE-based approaches for vector-valued image regularization, and its ap-
plications for a wide class of interesting image processing problems. The comparative study
of existing methods allows us to propose a common mathematical framework, better adapted
to understand the underlying diffusion geometry of the regularization processes, as well as de-
sign corresponding numerical schemes. Thus we develop a new multivalued image regulariza-
tion approach that verifies important geometric properties. It can be used in a large range of
regularization-related applications. We also tackle the problem of constrained regularization and
propose a specific variational formalism unifying in a common framework, the equations acting
on direction features : unit vectors, rotation matrices, diffusion tensors, etc. Proposed solutions
are analyzed and used with success to solve applications of interest, such as color image reg-
ularization and interpolation, flow visualization, regularization of rigid motions estimated from
video sequences, and aided reconstruction of coherent fibers network models in the white matter
of the brain, using DT-MRI imaging.


