Anthony MICHEL - LATP Marseille

Thèse de Doctorat de l'Université de Provence

Spécialité : Mathématiques

"Convergence de schémas volumes finis pour des problèmes de convection diffusion non linéaires dégénérés"

Directeurs de recherche :

Robert Eymard et Raphaèle Herbin.

1

<u>Plan du mémoire de thèse :</u>

• 1. Convergence de méthodes volumes finis pour les équations paraboliques hyperboliques dégénérées

 $u_t + \operatorname{div}(F(t, x, u)) - \Delta\varphi(u) = 0$

- 1.1. Neumann homogène faiblement dégénéré + $F = \mathbf{q}f(u)$ avec $\mathbf{q} \cdot \mathbf{n} = 0$.
- 1.2. Dirichlet non homogène + $F = \mathbf{q}f(u)$ avec $\mathbf{q} \cdot \mathbf{n} = 0$.
- 1.3. Dirichlet non homogène avec conditions générales sur le flux .
- 2. Analyse numérique d'un modèle simplifié d'écoulement diphasique en milieu poreux
 - 2.1 Convergence du schéma VF des "mathématiciens".
 - 2.2 Convergence d'un schéma VF décentré amont phase par phase.

Plan de l'exposé :

- 1. Présentation du problème
- 2. Quelques repères
- 3. Formulation faible et entropique
- 4. Principal résultat
- 5. Preuve du théorème de comparaison
- 6. Applications numériques

Présentation du problème :

 $Q = \Omega \times (0, T), \Sigma = \partial \Omega \times (0, T),$

$$u_t + \operatorname{div}(F(t, x, u)) - \Delta \varphi(u) = 0$$
, pour $(x, t) \in Q$

Condition aux bord non homogène :

$$u(x,t) = \bar{u}(x,t), \text{ pour } (x,t) \in Q$$
(2)

(1)

Condition initiale en t = 0:

$$u(x,0) = u_0(x), \text{ pour } x \in \Omega$$
(3)

Hypothèses :

- (H1) $\operatorname{div}_x(F(t, x, s)) = 0.$
- (H2) φ est Lipschitzienne , croissante au sens large.
- (H3) $\bar{u} \in \mathcal{C}^0(\Sigma)$ + conditions techniques.

Exemple de graphe pour φ :

2. Quelques repères

- 1970 S.N. Kruzkov, First order quasilinear equations with several independent variables, Mat. Sb.(N.S.).
- 1979 C.Bardos, A.Y.Le Roux, J.C. Nedelec, First order quasilinear equations with boundary conditions, Comm. Part. Diff. Eq.
- 1985 R.J. DiPerna Measure valued solutions to conservations laws, Arch. Rational Mech .Anal.
- 1996 F.Otto, Initial boundary value problem for a scalar conservation law, C.R. Acad. Sci. Paris.
- 1999 J.Carillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal.

- 2001 J.Vovelle, Convergence of finite volume monotone scheme for scalar conservation law on bounded domain, Num. Math.
- 2001 R.Eymard, T.Gallouet, R.Herbin, A. Michel, Convergence of finite volume scheme for parabolic degenerate problems, Num. Math.

3. Formulation faible et entropique

Définition 1 (Solution faible) On dit que u est solution faible du problème (1)-(3) si

$$u \in L^{\infty}(\Omega \times (0,T)),$$
$$\varphi(u) - \varphi(\bar{u}) \in L^{2}(0,T; H^{1}_{0}(\Omega)),$$

et pour toute fonction $\theta \in \mathcal{C}_c^{\infty}(\mathbb{R}^d \times [0,T)),$

$$\iint_{Q} \left[u(x,t) \,\theta_t(x,t) + \left(F(t,x,u(x,t)) - \nabla(\varphi(u)(x,t)) \right) \cdot \nabla\theta(x,t) \right] dx \, dt \\ + \int_{\Omega} u_0(x) \,\theta(x,0) \, dx = 0 \, .$$

Définition 2 (Couples entropie flux) Soit $\eta : \mathbb{R} \to \mathbb{R}$ une fonction convexe et $\Phi : Q \times \mathbb{R} \to \mathbb{R}^d$, on dit (η, Φ) est un couple entropie-flux associé à F si

$$\Phi'(t, x, s) = \eta'(s)F'(t, x, s)$$

Exemple

ple :
$$\begin{cases} \eta_{\kappa}^{+}(s) = s \top \kappa - \kappa = (s - \kappa)^{+}, \\ \Phi_{\kappa}^{+}(t, x, s) = F(t, x, s \top \kappa) - F(t, x, \kappa) \end{cases}$$

Notations :

$$\mathcal{G}_x(t, x, u, \kappa) = F(t, x, u \top \kappa) - F(t, x, s, u \perp \kappa) - \nabla |\varphi(u) - \varphi(\kappa)|$$
$$\mathcal{F}_\varphi(t, x, u, \kappa, w) = \mathcal{G}_x(t, x, u, \kappa) + \mathcal{G}_x(t, x, u, w) - \mathcal{G}_x(t, x, \kappa, w).$$

Définition 3 (Solution faible entropique) On dit que u est une solution faible entropique du problème (1)-(3), si c'est une solution faible qui vérifie les inégalités suivantes :

1. $\forall \kappa \in \mathbb{R}$, pour toute fonction $\psi \in \mathcal{C}_c^{\infty}(\mathbb{R}^d \times [0,T))$ telle que $\psi \ge 0$ et $\operatorname{sgn}^+(\bar{u}-\kappa)\psi = 0$ sur Σ ,

$$\iint_{Q} \left(\eta_{\kappa}^{+}(u(x,t))\psi_{t}(x,t) + \Phi_{\kappa}^{+}(t,x,u(x,t)) \cdot \nabla\psi(x,t) \right) dx dt - \iint_{Q} \nabla \left(\varphi(u)(x,t) - \varphi(\kappa) \right)^{+} \cdot \nabla\psi(x,t) dx dt + \int_{\Omega} \eta_{\kappa}^{+}(u_{0}) \varphi(x,0) dx \ge 0$$

$$(4)$$

2. $\forall \kappa \in \mathbb{R}$, pour toute fonction $\psi \in \mathcal{C}_c^{\infty}(\mathbb{R}^d \times [0,T))$ telle que $\psi \ge 0$ et $\operatorname{sgn}^+(\bar{u}-\kappa)\psi = 0$ sur Σ ,

... l'analogue de l'inégalité (4) avec sgn^+ au lieu de sgn^- .

4. Principal résultat

Théorème 1 (Théorème de comparaison) Soit u et v deux solutions processus entropiques du problème (1)-(3), alors pour toute fonction $\psi \in \mathcal{D}([0,T), \mathbb{R}^d)$,

 $\int_0^1 \int_0^1 \int_Q \left(|u(x,t,\alpha) - v(x,t,\beta)| \psi_t + \mathcal{G}_x(t,x,u(x,t,\alpha),v(x,t,\beta)) \cdot \nabla \psi \right) dx \, dt \, d\alpha \, d\beta \le 0$

Corollaire 1 (Unicité) Soit $u, v \in L^{\infty}(Q \times (0, 1))$ deux solutions processus entropique au problème (1)-(3), alors il existe une fonction $w \in L^{\infty}(Q)$, telle que

$$u(x,t,\alpha) = w(x,t) = v(x,t,\beta) , p.p. (x,t,\alpha,\beta) \in Q \times (0,1)^2$$

Corollaire 2 (Convergence forte du schéma) Si le schéma "converge à une sous suite près" vers une solution processus entropique au sens des mesures d'Young, alors la convergence est forte et le schéma converge vers une solution faible entropique.

 $\limsup_{\varepsilon \to 0} \int_{Q} \mathcal{F}_{\varphi}(t, x, u(x, t, \alpha), \kappa, \bar{u}_{\Sigma}(x, t)) \cdot \nabla \omega_{\varepsilon}(x) \, \psi(x, t) \, \lambda(x) \, dx \, dt \leq 0$

• Etape 2 : Comparaison de 2 solutions u et v à l'intérieur

$$\int_{0}^{1} \int_{0}^{1} \int_{Q} \int_{Q} \left[\begin{array}{c} |u(x,t,\alpha) - v(y,s)|(\xi_{t} + \xi_{s}) \\ + \mathcal{G}_{x}(t,x,u(x,t,\alpha),v(y,s)) \cdot \nabla_{x}\xi \\ + \mathcal{G}_{y}(s,y,v(y,s),u(x,t,\alpha)) \cdot \nabla_{y}\xi \\ - \nabla_{x}|\varphi(u)(x,t) - \varphi(v)(y,s)| \cdot \nabla_{y}\xi \\ - \nabla_{y}|\varphi(u)(x,t) - \varphi(v)(y,s)| \cdot \nabla_{x}\xi \end{array} \right] dx \, dt \, dy \, ds \, d\alpha \, d\beta$$

$$+ \int_{0}^{1} \int_{Q}^{1} \int_{\Omega}^{1} |u_{0}(x) - v(y, s, \beta)| \xi(0, x, s, y) dx dy ds d\beta$$
$$+ \int_{0}^{1} \int_{Q}^{1} \int_{\Omega}^{1} |u_{0}(y) - u(x, t, \alpha)| \xi(t, x, 0, y) dx dt dy d\alpha \ge 0$$

• Etape 3 : dédoublement de la variable t :

ξ(x, t, s, y) = ρ_n(t - s)ζ(t, x, y) dans l'inégalité obtenue à l'étape 2.
 κ = u₀(x) et ψ(s, y) = R_n(s)ζ(0, x, y) dans l'inégalité d'entropie pour v.

• Etape 4. dédoublement de la variable x :

- 1) On prend $\xi(t, x, s, y) = \psi(x, t) \rho_m(\overline{x} \overline{y}) \rho_n(x_d y_d),$
- 2) Localisation de ξ dans B et annulation au bord de Ω :

 $\zeta(t, x, y) = \omega_{\varepsilon}(x)\xi(t, x, y)\lambda(x)$

Finalement, on obtient

$$\int_0^1 \int_0^1 \int_Q |u - v|(\psi\lambda)_t + \mathcal{G}_x(t, x, u, v) \cdot \nabla(\psi\lambda) \, dx \, dt \, d\alpha \, d\beta \ge A(u, v)$$

où

$$A(u,v) = \limsup_{\varepsilon \to 0} \int_{Q} \mathcal{G}_{x}(t,x,u,\bar{u}) \cdot \nabla \omega_{\varepsilon}(x) \psi \lambda dx \, dt \, d\alpha$$
$$-\limsup_{\varepsilon \to 0} \int_{Q} \mathcal{G}_{x}(t,x,v,\bar{u}) \cdot \nabla \omega_{\varepsilon}(x) \psi \lambda dx \, dt \, d\alpha$$

On peut conclure car sous des hypothèses convenables sur \bar{u}

$$-\infty < \limsup_{\varepsilon \to 0} \int_{Q} \mathcal{G}_{x}(t, x, u, \bar{u}) \cdot \nabla \omega_{\varepsilon}(x) \psi \lambda dx \, dt \, d\alpha \leq 0$$

(5)

6. Applications numériques :

[Partie 2]

Etude mathématique d'un schéma industriel pour un modèle d'écoulement diphasique en milieu poreux

Plan de l'exposé :

- 1. Présentation du problème
- 2. Hypothèses
- 3. Formulation faible
- 4. Méthode de discrétisation en volumes finis
- 5. Principal résultat
- 6. Etapes de la preuve du théorème de convergence
- 7. Détail des estimations a priori

1. Présentation du problème :

$$u_t - \operatorname{div}(k_1(u)\nabla p) = f(c)\,\overline{s} - f(u)\,\underline{s}$$
$$(1-u)_t - \operatorname{div}(k_2(u)\nabla q) = h(c)\,\overline{s} - h(u)\,\underline{s}$$
$$q = p + p_c(u)$$

avec
$$f(x) = \frac{k_1(x)}{k_1(x) + k_2(x)}, \ h(x) = \frac{k_2(x)}{k_1(x) + k_2(x)}$$

Conditions aux limites sur $\partial \Omega$:

$$\nabla p \cdot \mathbf{n} = 0, \ \nabla q \cdot \mathbf{n} = 0$$
 (7)

(6)

Condition initiale :

$$u(x,0) = u_0(x)$$
 (8)

Condition d'homogénéité :

$$\int_{\Omega} p(x,t)dx = 0, \text{ pour tout } t \in (0,T)$$
(9)

2. Hypothèses :

- (H1) $u_0 \in L^{\infty}(\Omega)$ et $0 \le u_0(x) \le 1$
- (H2) $c \in L^{\infty}(Q), 0 \le c \le 1$

• (H3)
$$\overline{s}, \underline{s} \in L^2(Q), \overline{s} \ge 0, \underline{s} \ge 0 \text{ et } \int_{\Omega} \overline{s} - \underline{s} = 0.$$

• (H4) $\begin{cases} k_1, k_2 \in \mathcal{C}^1([0,1], \mathbb{R}), k_1' \ge 0, k_2' \le 0, k_1(0) = 0, k_2(1) = 0\\ \frac{1}{\alpha} \ge k_1'(s) \ge \alpha \text{ et } \frac{1}{\alpha} \ge -k_2'(s) \ge \alpha, \text{ avec } \alpha > 0, \text{ pour tout } s \in [0,1] \end{cases}$

20

• (H5) $p_c \in \mathcal{C}^0([0,1],\mathbb{R}) \cap \mathcal{C}^1((0,1),\mathbb{R})$ et il existe $(\beta_1,\beta_2) \in \mathbb{R}^2$, avec $\beta_1 < 1$ et $\beta_2 < 1$ tels que

$$\frac{1}{\alpha s^{\beta_1} (1-s)^{\beta_2}} \ge -p_c'(s) \ge \frac{\alpha}{s^{\beta_1} (1-s)^{\beta_2}},$$

pour tout $s \in (0, 1)$.

Notations :

• Pression globale :

$$p_g(s) = \int_0^s \frac{k_2(a)}{k_1(a) + k_2(a)} p_c'(a) da$$
$$q_g(s) = \int_0^s \frac{k_1(a)}{k_1(a) + k_2(a)} p_c'(a) da$$

Conséquences des hypothèses :

• (C1) $p_g, q_g \in \mathcal{C}^0([0,1],\mathbb{R}) \cap \mathcal{C}^1((0,1),\mathbb{R})$, p_g est $(1-\beta_2)$ Hölder en 0 est $(1-\beta_1)$ Hölder en 1.

• Fonction g :

$$g(s) = -\int_0^s \frac{k_1(a)k_2(a)}{k_1(a) + k_2(a)} p_c'(a)da.$$

Conséquences des hypothèses :

- (C2) $g \in \mathcal{C}^1([0,1],\mathbb{R}), g'(0) = 0, g'(1) = 0$ et g'(s) > 0 pour tout $s \in (0,1)$.
- (C3) Il existe $C(\alpha, \beta_1, \beta_2)$ tel que, quel que soit $(a, b) \in [0, 1]^2$,

$$(b-a)(p_g(b) - p_g(a)) \le C |g(b) - g(a)|,$$

$$(b-a)(q_g(b) - q_g(a)) \le C |g(b) - g(a)|.$$

3. Formulation faible

Définition 4 (solution faible) Sous les hypothèses (H1)-(H8), on dit que (u,p) est une solution faible du problème (6)-(9), si

$$u \in L^{\infty}(\Omega \times (0,T)), 0 \leq u(x,t) \leq 1 \ et \ g(u) \in L^{2}(0,T;H^{1}(\Omega))$$
$$p \in L^{2}(\Omega \times (0,T)), p + p_{g}(u) \in L^{2}(0,T;H^{1}(\Omega))$$

et pour tout $\varphi \in \mathcal{D}(\Omega \times (0,T))$, on a :

$$(Eq1) \qquad \int_0^T \int_{\Omega} u(x,t)\varphi_t(x,t) - k_1(u(x,t))\nabla p(x,t) \cdot \nabla \varphi(x,t)dxdt + \\ \int_0^T \int_{\Omega} [f(c(x,t))\overline{s}(x,t) - f(u(x,t))\underline{s}(x,t)]\varphi(x,t)dxdt + \\ \int_{\Omega} u_0(x)\varphi(x,0)dx = 0$$

$$\begin{array}{l} \textbf{(Eq2)} \quad \int_0^T \int_\Omega [(1-u(x,t))\varphi_t(x,t) - k_2(u(x,t)\nabla(p+p_c(u))(x,t)\cdot\nabla\varphi(x,t)]dxdt + \\ \quad \int_0^T \int_\Omega [h(c(x,t))\,\overline{s}(x,t) - h(u(x,t))\,\underline{s}(x,t)]\varphi(x,t)dxdt + \\ \quad \int_\Omega (1-u_0(x))\varphi(x,0)dx = 0 \end{array}$$

 $Et \ p \ v\'erifie \ l'\'equation \ d'homog\'en\'eit\'e \ suivante \ :$

(Eq3)
$$\int_{\Omega} p(x,t)dx = 0 \ pp \ t \in (0,T)$$

4. Méthode de discrétisation en volumes finis

- Ω polygonal borné, \mathcal{T} maillage admissible (VF), $\mathcal{E} = \{(K, L), (K, L) \in \mathcal{T}^2\}, \{x_K\}_{K \in \mathcal{T}}$ centres des volumes de contrôle.
- $[0 = t^0 \le t^1 \dots \le t^n \le t^{n+1} = T]$ subdivision de (0, T).

Notations :

$$d_{K|L} = d(x_K, x_L), \ T_{K|L} = \frac{m(K|L)}{d_{K|L}}, \ \mathcal{N}_K = \{L \in \mathcal{E}, m(K|L) > 0$$
$$\begin{cases} u_D(x, t) = U_K^{n+1} \\ p_D(x, t) = P_K^{n+1} \end{cases}, \ \text{pour tout } (x, t) \in K \times (t^n, t^{n+1}). \end{cases}$$

• Dérivée en temps

$$\int_{K} u_t \rightsquigarrow \left| \frac{U_K^{n+1} - U_K^n}{\delta t^n} |K| \right|$$

• Condition initiale

$$u(x,0) = u_0(x) \rightsquigarrow \left| U_K^0 = \frac{1}{|K|} \int_K u_0(x) dx \right|, \text{ pour tout } K \in \mathcal{T}$$

• Condition d'homogénéité sur la pression

$$\int_{\Omega} P = 0 \rightsquigarrow \sum_{L \in \mathcal{N}_K} P_K^{n+1} = 0 \quad , \text{ pour tout } n \in [[0, N]]$$

• Termes sources

$$\int_{K} f(c) \,\overline{s} - f(u) \,\underline{s} \rightsquigarrow \left[|K| (f(c_{K}^{n+1}) \,\overline{s}_{K}^{n+1} - f(U_{K}^{n+1}) \,\underline{s}_{K}^{n+1}) \right]$$
$$\int_{K} h(c) \,\overline{s} - h(u) \,\underline{s} \rightsquigarrow \left[|K| (h(c_{K}^{n+1}) \,\overline{s}_{K}^{n+1} - h(U_{K}^{n+1}) \,\underline{s}_{K}^{n+1}) \right]$$

• Décentrage du flux relatif à la phase 1 :

$$\int_{K} \operatorname{div}(k_{1}(u)\nabla p) = \sum_{L\in\mathcal{N}_{K}} \int_{K|L} k_{1}(u)\nabla p \cdot \mathbf{n}_{K,L} \rightsquigarrow \left[\sum_{L\in\mathcal{N}_{K}} T_{K|L} k_{1,K|L}^{n+1} (P_{L}^{n+1} - P_{K}^{n+1})\right]$$

On décentre le flux de convection par rapport au gradient discret de p. La fonction k_1 étant croissante, $(-k_1)$ est décroisssante donc

$$k_{1,K|L}^{n+1} = k_1(U_{1,K|L}^{n+1})$$

avec

$$U_{1,K|L}^{n+1} = \begin{cases} U_K^{n+1} & \text{si } P_L^{n+1} - P_K^{n+1} < 0\\ U_L^{n+1} & \text{sinon} \end{cases}$$
(10)

• Décentrage du flux relatif à la phase 2 :

$$\int_{K} \operatorname{div}(k_{2}(u)\nabla q) \rightsquigarrow \sum_{L \in \mathcal{N}_{K}} T_{K|L} k_{2,K|L}^{n+1} (Q_{L}^{n+1} - Q_{K}^{n+1})$$

où $Q_K^{n+1} = P_K^{n+1} + p_c(U_K^{n+1}).$

De la même façon, comme la fonction k_2 est décroissante, on définit

$$k_{2,K|L}^{n+1} = k_2(U_{2,K|L}^{n+1})$$

avec

$$U_{2,K|L}^{n+1} = \begin{cases} U_K^{n+1} \text{ si } Q_L^{n+1} - Q_K^{n+1} < 0\\ U_L^{n+1} \text{ sinon} \end{cases}$$
(11)

5. Principal résultat :

Théorème 2 (Théorème de convergence) Sous les hypothèses (H1)-(H8), soit $\{D_m\}_{m\in\mathbb{N}}$ une suite de discrétisations de $\Omega \times (0,T)$, uniformémént régulières, telles que $\lim_{n\to\infty} size(D_m) = 0$. Soit (u_{D_m}, p_{D_m}) une solution discrète du schéma VF décentré phase par phase attaché à D_m .

Alors, à une sous suite près, (u_{D_m}, p_{D_m}) converge vers une solution faible (u, p) du problème (6)-(9), au sens de la Définition 4.

7. Détail des estimations a priori

Soit (U_D, P_D) une solution discrète ...

Proposition 1 (Principe du maximum)

$$0 \le U_K^n \le 1, \qquad \forall K \in \mathcal{T}, \forall n \in \llbracket 0, N+1 \rrbracket.$$
(12)

Preuve ...

Proposition 2 (Estimations sur la pression)

$$\sum_{n=0}^{N} \delta t^{n} \sum_{K \in \mathcal{T}} \sum_{L \in \mathcal{N}_{K}} T_{K|L} k_{1,K|L}^{n+1} (\delta_{K,L}^{n+1}(P))^{2} \le C$$
(13)

$$\sum_{n=0}^{N} \delta t^{n} \sum_{K \in \mathcal{T}} \sum_{L \in \mathcal{N}_{K}} T_{K|L} k_{2,K|L}^{n+1} (\delta_{K,L}^{n+1}(Q))^{2} \leq C$$
(14)

et

$$\sum_{n=0}^{N} \delta t^{n} \sum_{K \in \mathcal{T}} \sum_{L \in \mathcal{N}_{K}} T_{K|L} (\delta_{K,L}^{n+1}(P) + \delta_{K,L}^{n+1}(p_{g}(U)))^{2} \leq C$$
(15)

Preuve ...

Proposition 3

$$\sum_{n=0}^{N} \delta t^n \sum_{K \in \mathcal{T}} \sum_{L \in \mathcal{N}_K} T_{K|L} \delta_{K,L}^{n+1}(g(U)) \ \delta_{K,L}^{n+1}(f(U)) \le C$$
(16)

Corollaire 3

$$\sum_{n=0}^{N} \delta t^n \sum_{K \in \mathcal{T}} \sum_{L \in \mathcal{N}_K} T_{K|L} |\delta_{K,L}^{n+1}(\zeta(u))|^2 \le C$$
(17)

Merci