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Introduction

L’objet de cette thése consiste en 1’étude de divers systémes dynamiques dissipa-
tifs d’ordre un et deux en temps régis par des gradients de fonctions ou par des sous-
différentiels de fonctions convexes. Etant donnée une fonction f : H — R U {400} avec
H espace de Hilbert et C' C H un convexe fermé, une des motivations majeures réside
dans la résolution de problemes d’optimisation du type :

(P) lgf f
ou encore trouver Z tel que :
(P')  Vf(&)+ Nc(#) >0,

ou N¢ désigne le cone normal a C' en z.
La premiere partie de la these est consacrée a 1’étude des systemes de types gradients
de la forme :

(1) () + Ay V(@) =0, z(0) €1iC, t >0

ou A: C x H — H est destiné a contenir les trajectoires de (1) dans l'intérieur relatif
de C, tout en préservant l'information géométrique fournie par V f. Outre leur intéréet
en optimisation, nous verrons que certaines généralisations de (1) en termes d’inclusions
différentielles sont étroitement liées a certaines équations d’évolution en thermodyna-
mique, offrant ainsi de nouvelles perspectives d’enrichissement mutuel.

Dans une seconde partie nous étudions une famille de systémes inertiels - d’ordre deux
en temps - de la forme :

2) @) + ad(t) + BVEF(()i(t) + VF(z(t) =0, 2(0) € H, t >0

ou «, 3,7 sont des parametres positifs. Contrairement aux systemes de types gradients
du premier ordre, (2) n’est pas une méthode de descente, ce qui lui confere un intérét
certain quant a 'exploration globale des minima locaux de f. A l'instar de (1), le systéme
dynamique (2) fournit un modele convaincant de certains phenomenes en mécanique uni-
latérale (chocs inélastiques).
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PARTIE I. LES METHODES DE TYPE GRADIENTS.

En guise d’idée directrice, nous dressons tout d’abord un parallélle entre la méthode
proximale quadratique et les équations d’évolutions régies par un opérateur maximal
monotone. Etant donné A : H3 H un opérateur maximal monotone considérons I’équation
d’évolution

(SD),  u(t) + Au(t) 30, ppt>0, u(0) € dom A.

Si 'on prend pour A le sous-différentiel de f supposée convexe, on obtient selon la termi-
nologie de I'optimisation la méthode continue de la plus grande pente :

(SD) u(t) + 0f (u(t)) 20, ppt>0, u(0) € dom df.

L’existence et 1'unicité d’une solution de l'inclusion différentielle (SD), ainsi que de nom-
breux autres points ont fait l'objet de quantité de travaux [37, 32, 67, 24, 40]. C’est
dans [40] que I'analyse asymptotique de (SD), fut effectuée, le résultat essentiel étant
la convergence faible de u(t), ¢ — +oo vers un équilibre & de A, c’est-a-dire tel que
Au > 0. Contrairement a certaines idées recues, les techniques développées sont loin
d’étre étrangeres a celles utilisées en optimisation, et de ce point de vue la dynamique de
(SD) se rapproche davantage de la méthode prorimale quadratique introduite en 1970 par
Martinet [101] :

1
(Prox) ¥+ € argmin{ f(u) + ﬂ\u —z"? ue H}, up >0
k

que de la méthode de la plus grande pente discréte
"€ af — o f (2F), e > 0.

Le lien étroit entre (Prozx) et (SD) se constate aussi bien en temps fini - voir par
exemple [32] pour des aspects théoriques, que dans I’analyse asymptotique [89, 40]. Cer-
tains auteurs proposent méme d’étudier conjointement les systemes du type (SD) et leurs
versions proximales.

Suite aux travaux fondamentaux de Bregman [36] et de Czisar [50] concernant ce que
I’on appelle communément les quasi-distances, le principe variationnel qui est au coeur
de la méthode proximale quadratique, a ouvert la voie a de nombreux algorithmes en
mimimisation convexe. Etant donnée d : C x C' — IR, convexe, et dans la plupart des cas
intéressants de Legendre par rapport a sa premiere variable, cela conduit a 1’étude de :

1
¥+ € argmin{ f(u) + z—d(u,xk) yu€ HY, py >0,
Mk

avec dans les meilleurs des cas ¥ € 1i C, k € N.

Les nombreuses similitudes entre (Proz) et (SD) sont une source majeure d’inspiration
de ce qui suit. Etant donné un algorithme de minimisation, I’idée essentielle consiste a
proposer, au travers d’une équation différentielle et par le jeu des discrétisations (implicites
ou explicites), une ou des versions continues de cet algorithme. Ce faisant, nous verrons que
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certaines de ces dynamiques sont étroitement liées a certains phénomenes issus de divers
domaines comme ceux de la dynamique des populations, ou de la thermodynamique.

Chapitre 1 : Opérateurs-barrieres et méthodes de descentes associées.

Ici 'on suppose H = IR", C' d’intérieur non vide et f continuement différentiable. En
vue de 'usage de dynamiques de type (1) en optimisation, nous introduisons pour les
applications de type A : C x IR" — IR" le concept d’opérateurs barrieres elliptiques pour
lequel nous montrons que (1) est une méthode intérieure de descente.

A Taide de noyaux généraux de type d: R" x C — R, U {400}, nous proposons une
facon systématique de construire des opérateurs-barrieres. A cet effet, et moyennant des
hypotheéses minimales sur d, nous introduisons la classe suivante :

Aty = z — argmin{{u,v) + d(u, ) |u € R"}
= z—0d*(-,z)(—v),

ou pour z dans C, d*(-, z) est la conjuguée de Legendre-Fenchel de d(-, ).

Cette approche permet d’unifier ’étude de nombreuses méthodes continues de gra-
dients : plus grande pente, gradient-projeté continu, méthodes riemanniennes, méthode
de Newton continue... Soulignons aussi que, dans la perspective d’une étude conjointe des
méthodes discrétes et continues, le systéme (1) peut se reformuler sous la forme :

ad(i(t) + (), z(t)) + Vf(z(t)) 30, t > 0.

Donnons quelques exemples explicites :
— Avec d(u,z) = L|u—z|>+dc(u), on obtient la méthode continue de gradient-projeté
10]
(CGP)  @(t) +a(t) — Pelz(t) — Vf(z(t))) =0, t > 0.

— Pour C =RY, dy(u,z) = Y1, 22¢p(z; "u;) (voir [22])
ol p(s) = 3(s—1)?+ (—logs+s—1), s >0, il vient :

, 10f 1.0f )
i i 5 =4/ 7 4z(t)* = 0.
(0 + 20 + 5 o2 @(0) [0 @) + 422 =0
— Sans contraintes, pour f fortement convexe et en prenant
d(u,z) = 3(V2f(z)(u — z),u — z), on obtient la méthode de Newton [8] :

() + VAf(z(t)) 'V ((t) = 0.

Plus généralement, et grace a des quasi-distances de types quadratiques I’approche développée
permet aussi de recouvrir les méthodes riemanniennes. Nous y reviendrons plus en détail
dans les chapitres suivants.

Les problemes de convergence globale dans le cas d’un critére f convexe sont traités
a l’aide d’un résultat général concernant l’existence d’une famille-type de fonctionnelles
de Lyapounov. Le résultat est ensuite appliqué a plusieurs classes d’exemples couvrant
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de nombreuses méthodes, comme celles décrites ci-dessus. Les trajectoires z(t), t — 400
des systemes étudiés convergent alors vers une solution de (P).

Diverses précisions et améliorations sont aussi proposées, avec en particulier des résultats
de localisation du point limite.

Chapitre 2 : Sur la méthode continue de gradient-projection.

La méthode de gradient-projection déja envisagée au chapitre précédent fait ici I’objet
de diverses extensions et d’une étude fine.

Tout d’abord dans le cadre de la dimension finie et pour une condition initiale choisie
dans C supposé cette fois-ci fermé, nous donnons un sens a la dynamique (CGP) pour
une fonction convexe f continue, le résultat essentiel étant 1’existence d’une solution
z € W2(0, +00; IR™) & l'inclusion différentielle :

loc

(CGP),  &(t)+a(t) — Pola(t) — 0f ((t))] 3 0, ¢ > 0,

avec 2(0) € C. La difficulté réside ici principalement dans la non-monotonie et la non-
convexité de l'opérateur multivoque = 2 Pglx — 0f(x)]. Elle est surmontée a 1'aide de
systemes dynamiques approchés obtenus par une régularisation de type Moreau-Yosida.
La solution obtenue résout le probleme (P) au sens ou f(z(t)) — inf f, et la trajectoire
converge vers une solution si (P) en admet au moins une.

Ensuite, dans le cas ou H est un espace de Hilbert nous montrons cette fois-ci que
les trajectoires convergent faiblement vers un minimum, le résultat demeurant valable
pour toute condition initiale hors de [’ensemble des contraintes (figure 2.1 page 44.) Des
conclusions analogues sont obtenues en relation avec (P’) pour des critéres quasi-convexes.

En vue a la fois de contraindre les orbites a la convergence forte, et d’obtenir une des-
cription de I'ensemble des solutions, un terme de controle de type viscosité est introduit :

(t) + 2(t) — Po[z(t) — VF(z(t)) — e(t)x(t)] 3 0, ¢ > 0.

Supposant € : R, — IR, , décroissante et telle que f]RJr € = +00, la convergence de z(t)
devient forte et la limite obtenue est la solution de (P) de norme minimale. Ce genre de

résultat concernant le controle asymptotique de systémes dynamiques est inspiré par les
travaux [15, 17, 41].

Chapitre 3 : Champs de gradients et métriques induites par les fonctions de
Legendre

Les résultats et I’étude proposés s’inscrivent toujours dans 1’esprit des opérateurs-
barrieres, mais cette fois-ci dans un cadre résolument riemannien : les applications A,, x €
C' sont supposées linéaires auto-adjointes positives, faisant de C' 5 = — A,V f(z) un
gradient riemannien. Nous supposons par la suite que H = IR", avec f C! et nous étudions
pour des métriques adéquates les trajectoires de gradient riemannien de fonctions.

Le premier résultat abstrait a pour point de départ la considération suivante : étant
donnée une métrique différentiable g sur C' supposé ouvert, nous avons, dans le cas ou f
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est convexe, la caractérisation variationnelle suivante :
% est une solution de (P) < ¢(V,f(z),z —2); >0, Vz € C,

ou V, f(-) désigne le gradient de f dans la métrique g.
Si I'on se rappelle qu'une fonction V' : C' — R est dite de Lyapounov pour —V,f
quand
9(Vyf(z),VgV)e 20,

pour tout z dans C), il est tentant de se demander pour quelles métriques les champs de
vecteurs V2 : z — z — 2 sont des gradients.

De telles métriques sont complétement identifiées comme celles données par les hessiens
de fonctions convexes. Si I'on prend pour g, g, = (V2h(x)-,-) avec h : C' — IR strictement
convexe, les champs V% sont obtenus comme des gradients par rapport 3 la deuxiéme
variable de la D-fonction de h :

Dy (Z,z) = h(2) — h(z) — (Vh(x),2 — ), T,z € C.

Pour obtenir des méthodes efficaces en optimisation il est alors nécessaire de choisir un
noyau h qui ne puisse pas étre prolongé en une fonction convexe hors de C : les métriques
étudiées seront donc engendrées par des fonctions de Legendre. Par la suite, étant donnée
h une fonction de Legendre, on désigne par V, f le gradient de f.

En restreignant les métriques obtenues aux ensembles C' N A, avec A espace affine
(contraintes d’égalités), nous étudions alors :

(H-SD)  &(t)+ V[, (x(t) =0, 2(0) € C'N A

Apres avoir donné des résultats d’existence globale non triviaux, nous montrons sans plus
d’hypotheses que, dans le cas d’une fonction convexe, f(z(t)) — infena f, t = +oo. En
supposant h de Bregman et f quasi-convexe nous prouvons la convergence des trajectoires
vers une solution de (P').

Dans le cas ot C = R} et aprés avoir identifié une trajectoire duale associée a {z(t)},
des résultats de convergence duale sont proposés. Le point limite est solution du probléeme
dual associé a (P) et peut se caractériser comme solution unique d’un systéme hierarchique
de problemes d’optimisation. Signalons, par ailleurs, que ce résultat ne présume pas de la
convergence de la trajectoire primale {x(t)}.

Un changement de coordonnées, appelé transformation de Legendre, ouvre de nouvelles
perspectives en programmation linéaire. Il est en effet prouvé que, dans ces nouvelles co-
ordonnées, les trajectoires de (H-SD) sont des lignes droites tracées dans un cone positif.
Par ailleurs diverses caractérisations de ces trajectoires sont proposées : géodésiques pour
des métriques appropriées, chemins optimaux pour certaines barrieres, lieux dans les-
quels les algorithmes proximaux de type Bregman produisent leurs itérés, ¢ trajectoires
de Lagrangiens... Jouant sur la souplesse d’une telle méthode, nous proposons en guise
d’application des estimations de la vitesse de convergence dans le cas d’un programme
linéaire, et nous obtenons alors des résultats équivalents pour les dynamiques précitées.
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Chapitre 4 : Sur des équations paraboliques régies par des fonctions de Le-
gendre.

Dans ce qui suit f : H — IR U {400} est une fonction convexe propre fermée définie
sur un espace de Hilbert H. L’objet essentiel de cette partie consiste en I’obtention d’une
solution réguliere de I'inclusion différentielle suivante :

%Vh(x(t)) +0f(x(t)) 20, t>0,z(0) € int dom hNdom f.

Les équations de ce type sont étroitement liées a des problemes d’évolution en thermo-
dynamique : probléme de Stefan, flux dans les milieux poreux ainsi que divers problemes
issus de I'industrie [52, 83, 31].

En usant de la récente théorie des fonctions de Legendre dans les espaces de Ba-
nach réflexifs [29], nous prouvons lexistence d’une solution pour une fonctionnelle f
a sous-niveaux compacts. La difficulté essentielle réside dans le traitement du compor-
tement des solutions a I’approche de la frontiere de dom h. La solution obtenue = €
W20, T*; H), T* > 0 évolue dans ["intérieur du domaine de h et satisfait & 1’alternative
suivante :

T = 400
ou
f(2(T)) = infgmy .
Les hypothéses de compacité concernant f s’averent inutiles en dimension finie, et la
dynamique obtenue correspond alors a une généralisation des méthodes riemanniennes
proposées au chapitre précédent.

Le comportement asymptotique des orbites est abordé dans un cadre identique a celui

des conditions d’existence, il est alors montré que :

f(z(t)) — inf f lorsque t — T*.
dom h

De nombreuses illustrations sont proposées. Pour H = L%(Q2) et g € H, les dynamiques
etudiées permettent par exemple d’aborder des problémes d’évolution du type :

0

e (u+ln/u) — Au— g+ Ne(u) 20, sur (0,7%) x Q
Q

avec ug € C' N Hy(Q), [, uo > 0.

Signalons que dans des perspectives de type optimisation, la trajectoire du systéme ci-

dessus converge fortement dans L?(2) vers la solution de

min{1/|Vu|2—/gu|u€CﬂHé(Q),/uZO}.
2 Ja Q Q
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PARTIE 11 . SYSTEMES DE TYPE GRADIENT DU SECOND ORDRE EN TEMPS AVEC
FROTTEMENTS DE TYPE HESSIEN.

Plusieurs motivations président a 1’étude de systémes du type (2). En optimisation
I’aspect inertiel présente tout d’abord l'interét de donner lieu a des trajectoires capables
de s’affranchir de zones “pieges” correspondant a des minima locaux, tout en ouvrant la
voie a une exploration globale de ces derniers.

Le systéme (2) correspond par ailleurs & une généralisation de dynamiques de type
boule pesante avec frottements :

(HBF)  i(t) +ai(t) + Vf(z(t) =0, t >0

introduite indépendamment dans [111] et [18] et étudié selon divers point de vue dans
[4, 10, 6]. Si f est supposée convexe non lisse, on aboutit formellement &

#(t) + ai(t) + Of (x(£)) 30, ¢ > 0,

signifiante en mécanique et dans le domaine des équations aux dérivées partielles [115,
120].

De fagon surprenante, I'introduction d’un terme de type hessien s’avere pertinente
dans les deux domaines : en optimisation il agit en stabilisant les orbites et en mécanique,
il donne, par sa souplesse, la possibilité de modéliser les chocs inélastiques.

Toujours dans cette double perspective, un fait majeur concernant (2) est l’existence
d’un changement de variable permettant d’éviter tout recours au hessien ; cela permet a
la fois de donner un sens a des équations d’ordre deux en temps réputées difficiles, et de
fournir un cadre raisonnable aux méthodes inertielles en optimisation.

Chapitre 5 : Un systéme dynamique inertiel avec frottements de type hessien.

Un premier aspect important de (2) en optimisation consiste en son lien avec la méthode
continue de Newton :

V2 f(y()9(t) + VFy(t) =0, ¢ > 0.

Désignant par z. la solution de (2) avec o = 0,7 = ¢, = 1, nous prouvons, sous des
hypotheses locales de forte convexité sur f, le résultat suivant :

sup |z.(t) — y(t)| < Ce, ou C est une constante positive.

>0
Cette estimation et quelques expériences numériques (figure 5.1 page 113) montrent qu’'un
choix judicieux des parametres de (2) permet d’éviter les phénomenes d’oscillations trans-
versales inhérents au systeme (HBF).

D’un point de vue numérique, la prise en compte du hessien peut paraitre cotiteuse et

délicate. Pour s’affranchir de telles difficultés, nous montrons qu’a I’aide d’un changement
de coordonnées adéquat, le systeme (2) peut s’écrire :

(2-2) T+ pVf(z) +ax+by =0
& Y +azxr+by =0
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outa=a-— % et b = % La solution de (2) n’est autre que la premiére composante du
systeme ci-dessus, i.e. t — x(t).

L’analyse de (2) s’avere fructueuse aussi bien dans le cas d’un critére convexe que
dans le cas réel analytique. Pour f convexe les résultats de [4] sont généralisés : il est en
effet prouvé que les trajectoires convergent faiblement vers une solution de (P). Diverses
hypotheses géométriques, telle que la parité de f, ou méme topologiques, permettent par
ailleurs, d’obtenir la convergence forte.

En dimension finie, I'inégalité de Lojasiewicz reliant une fonction analytique et son
gradient autour d’un point critique est 1'outil-clé de la convergence des orbites bornées.
Ce résultat s’inscrit dans la lignée des travaux [116, 72, 80].

Pour illustrer la flexibilité de la méthode étudiée, deux applications sont proposées :
en mécanique tout d’abord, puis en optimisation sous contraintes.

S’appuyant sur les travaux de Paoli-Schatzmann [107] concernant I’approximation des
inclusions différentielles du type :

E(t) + Ne(z(1) > g(t, x(t), £(2))
(HBF), { T(tt) = —ein(t7) g+ Z7(t™) pour tout ¢ tel que z(¢) € bd C

nous montrons au travers de diverses expériences numériques, l'interét de (2) en mécanique
unilatérale.
Si l’on approche des équations du type (HBF'), par des systemes du type :

Ea(t) + aza(t) + 0NV f(2a(1)a(t) + Val2a(t) = 0, A = 0,

avec 0 : R, — IR, et ou f) est la régularisée Moreau-Yosida de f, on obtient a la limite
des trajectoires de billards dans C' qui satisfont des lois de chocs inélastiques variées,
conditionnées par @ (figure 5.3 page 137).

Enfin, en vue d’optimiser une fonction sous des contraintes C', nous introduisons la
méthode suivante de gradient projeté :

{:b(t) +3(t) — Pelz(t) — BV f(z(t) — az(t) — by(t)] = 0
y(t) +az(t) + by(t) =0

avec z(0) € C, et y(0) € H. En dimension finie, les valeurs d’adhérences éventuelles de x
satisfont la condition (P'), et, dans le cas ou f est convexe, cette fois sans restriction de
dimension, on obtient convergence faible de x vers une solution de (P).

Chapitre 6 : Propriétés minimisantes d’un systéeme inertiel en optimisation.
Liens avec la méthode proximale.
La fonction f : H — IR est supposée convexe propre et semi-continue inférieurement.

Le point de départ du travail consiste & remarquer que si v = 1, a5 > 1, alors (2)
peut s’interpréter comme une méthode de gradient pour la fonctionnelle

1
Fusl,y) = (@) + 5oz + byl
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Outre le fait de donner un sens a (2) dans un cadre non lisse, cette approche permet de
mettre en rapport divers aspects en optimisation : méthodes proximales et de relaxation,
régularisations de systémes mal posés, méthodes inertielles pour un critere non lisse.

Dans I'esprit des méthodes proximales et afin de tenir compte d’éventuelles contraintes,
on introduit pour H = R" et C' = R} des fonctionnelles du type :

f@(xay) = f(x) +d—<ﬁ(xay)'

ou d, est la régularisée semi-continue inférieure d’un noyau dit de type ¢-divergence,

S vy m) si(z,y) € (R )%
dip(xa y) =
+00 ailleurs.

La biconvexité de la quasi-distance d, permet alors de donner un sens a la méthode
inertielle sous contrainte suivante :

&(t) + 0f (z(t)) + 0zdy(z(t),y(t)) 2 0 p.p. sur (0, +00),
y(t) + 0yd,(z(t),y(t)) =0, Vt >0

avec 1o € dom fNIRY et yo € R
Pour conclure nous montrons que les deux composantes (x,y) de la solution de ce systeme
résolvent asymptotiquement le probleme (P).
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Barrier operators and associated gradient-like
dynamical systems for constrained minimization

problems.!

JEROME BOLTE AND MARC TEBOULLE?

Abstract. We study some continuous dynamical systems associated with constrained optimization
problems. For that purpose, we introduce the concept of elliptic barrier operators and develop a unified
framework to derive and analyze the associated class of gradient-like dynamical systems, called A-Driven
Descent Method (A-DM). Prominent methods belonging to this class include several continuous descent
methods studied earlier in the literature such as steepest descent method, continuous gradient projection
methods, Newton type methods as well as continuous interior descent methods such as Lotka-Volterra
type differential equations, and Riemannian gradient methods. Related discrete iterative methods such
as proximal interior point algorithms based on Bregman functions and second order homogeneous kernels
can also be recovered within our framework and allow for deriving some new and interesting dynamics.
We prove global existence and strong viability results of the corresponding trajectories of (A-DM) for a
smooth objective function. When the objective function is convex, we analyze the asymptotic behavior
at infinity of the trajectory produced by the proposed class of dynamical systems (A-DM). In particular,
we derive a general criterion ensuring the global convergence of the trajectory of (A-DM) to a minimizer
of a convex function over a closed convex set. This result is then applied to several dynamics built upon
specific elliptic barrier operators. Throughout the paper, our results are illustrated with many examples.

Key words : Dynamical systems, continuous gradient-like systems, elliptic barrier opera-
tors, Lotka-Volterra differential equations, asymptotic analysis, viability, Lyapunov func-
tionals, explicit and implicit discrete schemes, interior proximal algorithms, global conver-
gence, constrained convex minimization.

1.1 Introduction

This paper proposes to study some continuous dynamical systems in relation with the
constrained optimization problem

(P) inf{f(z): = € C},

where C' is a nonempty open convex subset of R", n > 1, f : R" — R is a convex function
and C denotes the closure of C.

Our first aim is to give a unified framework to smooth continuous interior descent methods
studied earlier in the literature : steepest descent method, Lotka-Volterra type equations,
continuous Newton method, continuous gradient projection method. Another goal of this
study is to enlighten the geometrical aspects of some discrete dynamics related to (P)
(particularly proximal type algorithms), via the study of some continuous models.

! Article soumis & SIAM J. of Control and Optimization.
2School of Mathematical Sciences,Tel-Aviv University, Ramat-Aviv 69978, Israel
email : teboulle@post.tau.ac.il
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This has led us to introduce the following class of gradient-like dynamical systems

() + Ay V F(2(t)) = 0,¥¢ > 0,
(A= DM) { 2(0) €O

A CxR" — R"
| (z,v) = Agv.

with
(1.1.1)

The notation (A — DM) stands for A-driven descent method. To make (A — DM) an
interior descent method, we introduce a class of mappings of the type (1.1.1) called elliptic
barrier operators. This is an alternative approach to the classical barrier methods, see
for instance Auslender-Cominetti-Haddou [23], since the penalization does not act on
the objective function f but on its gradient. Roughly speaking this implies two major
requirements on the map A :

e the mapping z € C — A,V f(z) must preserve the local optimality information
given by Vf(-),

e the operator A has to vanish on { (z,—v),r € C, v € Ng(z)}, where Ng(z) is the
normal cone to C at x € C.

In the next section, a formal definition and the basic properties of elliptic barrier operators
are given. The relevance of this notion is first illustrated by the general properties of
(A — DM) systems. We prove existence and viability results. If Vf is locally Lipschitz
continuous, then the trajectories of (A — DM) are defined for all ¢ > 0, and remain in C.
Let us emphasize the fact that, unlike in Nagumo-type theorems used in viability theory
(Aubin-Cellina [21]), the trajectories never encounter the boundary of C, and thus making
(A — DM) an interior method.

In Section 1.3, we propose a general and unifying framework to generate in a systematic
way elliptic barrier operators. This is achieved by developing an abstract setting, with the
help of proximal-like maps involving appropriately defined distance-like functions. Given
a convenient distance-like function d : R" x C' +— IR U {+oc} closed, proper, and convex
with respect of its first variable, we introduce the following class of mappings

Ay = ¢ — argmin {({u,v) + d(u,z) |u € R"}, (x,v) € C x R" (1.1.2)

where (-,-) stands for the Euclidean inner product of R". Besides the fact that slight
assumptions on d allow to make A% an elliptic barrier operator, the associated A%driven
descent method can be seen as another step towards a unified approach to both conti-
nuous and discrete gradient-like dynamics. Indeed, one of the main fact underlying the
introduction of d operator is that (A¢— DM) systems can be reformulated as the following
differential inclusion

01d(i(t) + 2(t), 2(t)) + VF(z(t)) 30, t > 0 (1.1.3)

where for each ¢ > 0, 01d(-, z(t)) denotes the subdifferential of d(-, z(?)).
This structure is at the heart of the so called proximal-like methods, (see the examples
below),

Od(x* T 2*) + V(") 30, 2° € C, k> 0. (1.1.4)
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For instance, with d(u,z) = 27'|u — z|?, where | - | denotes the Euclidean norm, the
inclusion (1.1.4) reduces to the proximal minimization algorithm, see e.g., Martinet [100],
Lemaire [90], and references therein. Then, according to the classical idea that consists in
interpreting an iterative scheme as some discretization of a continuous dynamical system,
the differential inclusion (1.1.3), i.e. (A% — DM), can be proposed as a continuous model
for the proximal method (1.1.4). This opens new perspectives of crossed investigations
and from that viewpoint it is important to realize that the interplay between discrete
and continuous dynamical systems goes far beyond the fruitful finite-time approximation
aspects. For instance in Alvarez-Attouch [5], Antipin [10] crucial features of the asymptotic
analysis appear also as closely related matters.

To give the reader a concrete idea on the type of operators A that will emerge in this
study, we outline below some specific models.

(‘a) The gradient projection operator
The first natural example is given by

Ap_{CX]R,n — IR"

(z,v) — z— Pz(z—v), (1.1.5)

where Pz is the orthogonal projection on C. (A” — DM) is the continuous gradient
projection method as introduced in [10],

() + 2(t) — Pala(t) — VF(z(t)] = 0, 2(0) € C, Vt > 0. (1.1.6)

The operator A ruling (1.1.6) can be recovered thanks to (1.1.2) with a distance-like
function of the type d : R" x C' 3 (u, ) — 3|u — z|* + 5(u) where 05 is the indicator
function of C. Let us emphasize the fact that the trajectory of the continuous system
(1.1.6) is interior, which is not the case for the following well known explicit discretization

" = Pylak — iy, V£ ()], 2° € O, pyp > 0

see e.g., [91], [57].

(b) The Bregman operators

The Bregman proximal method (BPM) is obtained by replacing the quadratic kernel
in the proximal minimization algorithm by a distance-like based on a Bregman function
h : C — R. Defining

it leads to the scheme
(BPM) 2**! € argmin { f(z) + cxDu(z, 21)|z € C}, ¢ > 0, 2° € C.

(BPM) has been studied and generalized from many viewpoints, see for instance Censor-
Zenios [44], Chen-Teboulle [45], Eckstein [59], Kiwiel [84], Teboulle [119]. One of the
corresponding continuous model that is proposed here is given by barrier operators A%
of the type

. [ CXR o R
| (z,v) = V2h(z)lo,
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where V?h(z) is the Hessian of some convenient Bregman function with zone C' and with
an(u,z) = (V2h(z)(u — z),u — ), (u,z) € R" x C. The A%-driven descent method
—actually a Riemannian gradient method- is then given by

(A% — DM)  (t) + V2h(z(t)) "'V f(2(t)) = 0, z(0) € C.

Besides its links with (BPM) developed in Section 4, the latter system allows to recover
several dynamics. With hy(z) = $[z[*+ 8, yzilogzi, 0, 6 >00n C =RY, :={z €
R", z; > 0}, we obtain the regularized Lotka-Volterra equation recently proposed, from

a completely different viewpoint, in Attouch-Teboulle [20] :

(A% — DM) (1) + m ox;

(@) =0,Vi=1...,n, z(0) € R",, (1.1.8)

where f is to be optimized on IR’}

If h(z) = ¢|z|> and C = R", (A% — DM) is the classical continuous steepest descent
method #(t) + Vf(z(t)) =0, t > 0, see Brézis [37].

For h(z) = f(z) and C = IR", we obtain the continuous Newton descent method, studied
in Alvarez-Pérez [8], see also [21]

(A% —DM)  @(t)+ V2f(x(t) "'V (z(t) = 0. (1.1.9)

Another surprising fact of this dynamics is to be physically meaningful in infinite-dimensional
spaces. Naturally those problems are out of the scope of the present paper, but the reader
interested by thermodynamical evolution equations of the form (A% — DM) is referred
to Kenmochi-Pawlow [83] and references therein.

(c) Barrier operators based on interior methods for the positive orthant
Another line of research pursued by Auslender, Teboulle, and Ben Tiba [22] concerning
proximal interior methods is based on the distance-like function

V(z.y) € (R, dy(ay) = Do vl ), (1.1.10)

where ¢ : IR, ; — IR is some relevant convex function.

The associated iterative proximal interior method is given by
(RIPM) 2" € argmin { f(z) + cxdy(z, zp)|z € R}, ¢ >0, 2° € R,

where (RIPM) stands for regularized interior proximal method. Like (BPM) this algo-
rithm can be applied to a minimize a general closed convex function. However, it enjoys
stronger convergence properties, particularly when applied to a dual problem of a convex
program, see [22], for further details and results.

Our continuous approach to (RIPM) is obtained by considering barrier operators of the
form . . .
Ads RY, xR" —» R B
@) o (o)),
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where ¢* is the Legendre-Fenchel conjuguate of the function ¢ used in (RIPM).

All these continuous models are derived and analyzed in Section 1.4. Section 1.5 of this
paper is devoted to the asymptotic analysis of (A — DM) in the convex case. We derive
a general criterion ensuring the global convergence of the trajectories of (A — DM) to a
minimizer of f over C. We then apply this general result to the dynamics built upon A*,
A% and A% . The proof relies on the existence of Lyapounov functionals measuring a sort
of distance between the state variable and the set of equilibria. This approach is inspired at
the same time by Opial’s lemma [105] and the techniques used in monotone optimization
algorithms. We also prove a general localisation result for the limit point of the trajectories
produced by (A — DM), which extends results of the same type obtained recently in [20],
and in [90] for the classical continuous gradient descent scheme. Throughout this paper
we give many examples exhibiting some explicit and new systems of the type (A — DM).
For instance with C = IR, one obtains the systems,

2.’1?1' (t)3/2 Bf
()32 + 1 Ox;

(A% — DM) @t + (@(t) =0, 2:(0) >0, Vie{l,...,n}.

or

. 10f 10f
A% — DM i(t) +zi(t) + = t)) — 4/ =2 (2(t)? + z;(t)? = 0,
( ) w0+ 0+ 3 2 ww) 12 ey mr =0
with ¢ € {1,...,n}, ¢ > 0 and z(0) € R" . The first equation is given by the Bregman
function h(s) = s?/4 — 2y/s, s > 0 while the second one corresponds to a continuous
model of the logarithmic-quadratic method [22], obtained with the choice ¢(s) = 1/2(s —
1)2 —logs+s—1, s> 0.

NOTATIONS. Our notations are fairly standard. The Euclidean space IR" is equipped
with the scalar product (-,-); the related norm is denoted | - |. Ng(z) and Te(z) de-
note respectively the normal cone and the tangent cone of C at € C. We recall that
Ng(z) = {v € R" (v,z—1z) <0, Vz € C} = {veER"Vu € Tx(z), (v,u) <0}. If
¢ IRP - RU{+o0}, p > 1 is a closed proper convex function, its domain is defined
by dom ¢ = {z € RP|¢(x) < +oo} and its Legendre-Fenchel conjuguate, y € RP —
sup {(y, z) — ¢(x)|x € RP}, is denoted ¢*. If S is a closed convex subset of IR" , the set
of minimizers of ¢ on S is denoted arg min g ¢. The indicator function of C is denoted by
dz. Other notations and definitions not explicitly stated here can be found in the classical
book of Rockafellar [112].

1.2 Elliptic barrier operators and viability results

In this section, the definition and the first properties of elliptic barrier operators are
introduced. Then, in view of constrained minimization, we study the corresponding A-
driven descent methods, proving in particular that the obtained trajectories {z(t)} are
interior and defined for any ¢ € [0, +00).
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1.2.1 Elliptic barrier operators : Definition and Properties

Definition 1.2.1 A: C x R" — IR" is an elliptic barrier operator on C if it satisfies :

(rl) A is Lipschitz continuous on every compact subset of C x IR".

(r2) There exists a > 0, such that for every (z,v) € C x R", (Azv,v) > alAv]>

(r3) For allx € C, Ayv =0 implies v = 0.

(v) Vb € bd C, Vv € Ng(b), VM >0, 3¢, K > 0 such that |z —b| <e, 2 € C, [v]| < M
implies

(—Agv,v) < K{b—z,v). (1.2.1)

This definition is motivated by the study of (A — DM) systems. The regularity assump-
tion (r1) naturally meets the conditions of the Cauchy-Lipschitz theorem. The ellipticity
condition (r2) and the non degeneracy assumption (r3) allow to obtain a proper descent
method. An important consequence of (r2) is that the term 1/« can be seen as an upper
bound for the gradient stepsize in (A — DM). Indeed, it follows readily from (r2) that
|Azv| < atv|, and therefore a trajectory z(-) of (A — DM) satisfies

2(t)] < a MV f(z(t)],

whenever z(t) is defined and belongs to C.

The normal boundary property (v) is required to control the outwards normal impulses
near the boundary of C, making the trajectories of (A — DM) strongly viable, i.e., z(t) €
C, t > 0. The choice of the term (b— z,v) in (1.2.1) has also a regularizing effect. Indeed,
as it will be proved in Theorem 1.2.4 below (see also Remark 1.2.1 (b)), it contributes to
the fact that the trajectories of (A — DM) are defined on [0, +00).

Remark 1.2.1 (a) A natural extension of Definition 1.2.1 is obtained by replacing as-
sumptions (r2) and (r3) respectively by

(r2) For every (z,v) € C x R", v # 0 (A,v,v) > 0,
(r3)" For all x € C, v =0 implies Azv = 0.

Observing that (r2)" and (r3)" imply (r3) it follows that an elliptic barrier operator satisfies
this new definition. This widened concept opens new perspectives but also raises some
difficulties in the study of (A— DM) : finite-time solutions, loss of regularity (see Theorem
2.1 in the elliptic case), no upper bound for the gradient step-sizes, etc... The study of
such a class of mappings will not be carried out in the present paper, but this is certainly
a matter for future research.

(b) If the left term in (1.2.1) is replaced for instance by (b — z,v)'=%, 6 € (0,1) the well-
posedness of (A — DM) may fail : take for instance A : (z,v) € Ry x R — 2! %0 |
6 € (0,1), f(zr) = z + 1 and observe that the maximal solutions of (A — DM) are not
defined on [0, +00).

In what follows it is of interest to strengthen (r1) by assuming the additional hypothesis,

(r4) A is continuous on C x R™.

The following result shows that an elliptic barrier operator on C' can be continuously

extended to
CxR"U{(z,v)|lzr €bdC, ve —-Ng(z)},
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by setting A,v =0, if z € bd C, v € —Ng(z).

Proposition 1.2.1 Let A : C x R" — IR" be an elliptic barrier operator. Assume that
(z*,v¥), k € N is a sequence in C x R" such that ¥ — z € C and v* — v € —Nz(z) as
k — +o0o. Then

(i) Agrkv® — 0 as k — +oo.

(i) In addition, if A satisfies (r4) then for all x € C one has,

AZN({0}) D —Ng(a). (1.2.2)

Proof. If z € C the conclusion follows from (r1) and (r3). Else € bd C. (r2) and the
Cauchy Schwarz inequality yield | A xv*|.[vF| > a|Agv*|?, for all kK € N and some a > 0.
Since the sequence v*, k € N is bounded so is A,xv*, k € N . From (v) it follows that for
k large enough (—Axv* —v) < K(z — z*, —v) and therefore

lim sup(A4,v*, v) < 0. (1.2.3)

k—400

On the other hand we have
(Agev® v) = (Ao v — oF) + (Agev®, vF), VE € N,
and since A_xv*, k € N is bounded we obtain

lim inf(Agxv*, v) = lim inf(AxvF v*) > 0. (1.2.4)
k—400 k——+o00
From (1.2.3) and (1.2.4), we deduce that limy_,; o {Azxv*, v) = liminfy_, | oo (Agev*, vF) =
0, and thus by (r2), limg_,, o |Azcv 2 =0. B

Remark 1.2.2 For simplicity, assume that f is convex, with argmin & f # () and that
A satisfies (r4). Subdifferential calculus, (see e.g., [112]) allows to associate to (P) the
following variational characterization

z* solves (P) iff Vf(z*) + Ng(z*) = 0.

Using (1.2.2), we know that the solutions of (P) are contained in the set of zeros of the
gradient-like map z € C' — A,V f(z). This is only a necessary condition for optimality
and it can be written,

if 2" solves (P) then A« Vf(z*) =0. (1.2.5)

The important point here, is to realize that our approach to optimization is given throu-
ghout (A — DM) dynamics and thus z* is obtained as a limit point of some descent
method. Indeed, as we shall see, most of the systems and examples of Section 1.4 satisfy
(1.2.2) with a strict inclusion, yet their orbits converge to a minimizer of f on C, see
Section 1.5.

We conclude these introductory notions by stating a useful criterion implying assumption
(v) of Definition 1.2.1.
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Lemma 1.2.3 Let A: C xR" - R", m >0, and k : C x R" — [m, +00) be such that
r — k(z,v)Aw € C, VY(z,v) € C x R".

Then A satisfies (v).

Proof. It relies on the fact that © — k(z,v)Av — b € Tg(b) for every (z,v) in C x R"
and for every b € C. By definition we have for all v € Ng(b), (x — k(z,v)Azv — b,v) <0,

and therefore .

(—Agv,v) < R 0)

b—z,v) < —(b—2z,v).H

1
m
1.2.2 Global existence and viability results.

From now on, the function f : R® — IR is C! and satisfies
(H1) Vf is Lipschitz continuous on bounded sets,
(7‘[2) infa f > —00.
Observe that for the moment the function f is not supposed to be convex.

Theorem 1.2.4 Let A be an elliptic barrier operator. Then,

(1) The system (A — DM) admits a unique C* solution x defined on [0, +00).
Moreover,

(1)) YVt > 0, z(t) € C.

(111) The functiont € [0,4+00) — f(z(t)) is nonincreasing and has a limit as t — 400,

(iv) & € L*(0, +o0; R™).

(v) If A satisfies (r4) and z(-) is bounded then ©(t) — 0 as t — +oo, and all limit
point ©* of x(-) satisfies the weak optimality condition

ApV(z*) = 0.

Proof. Fix T > 0 and consider the assertion E(T) :

“There exists a solution of (A — DM) defined on [0,7], and such that z(t) € C for all
tel0,T].”
Set Thnar := sup{T | E(T) is satisfied}. From (r1), (#H;) and the fact that z(0) € C, it
follows by Cauchy-Lipschtiz Theorem that T,,, > 0 and that the solution of (A — DM)
defined on [0, T}, is unique.
Let us derive some a priori estimates. Let T € (0, Tjnqz), by the (A — DM) system we
have for all ¢ € [0, 7]

(@(t), Vf(2(0)) + {Aay V[ (2(2)), Vf(2(2)) ) = O,
and thus by (r2) and (A — DM) again,

9 Ja(t) + ali () <0. (1.2.6)

Integrating over some interval (0,t), with ¢ < T this gives

f(2(t)) - £(@(0) + / 42 <. (1.2.7)
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Note that if 7},,4, = +00, (4i7) and (iv) follow from (1.2.6), (1.2.7) and (Hs). Let us argue
by contradiction and assume that 7;,,, < 4o00.

Using Cauchy Schwarz inequality and the fact that & € L?(0, T}e; IR™), we obtain that
x is a Cauchy net at 7,,;. Therefore x can be continuously extended by an application
still denoted by x. Set z(Tjnez) :=b € C.

By definition of 7,4, b necessarily belongs to bdC'. The function ¢ € [0, T}42] = V f(2(2))
is bounded by a positive constant M. Owing to the continuity of x and (v), there exists
to € (0, Tnaz), € > 0, K > 0 and v € Ng(b), v # 0, such that for all ¢ € (to, Trnaz)

(— Aui V£ (5(0), v) < K (b — 2(t),v). (125)
Let us project (A — DM) on Rv := {7v |7 € R}, this gives for all ¢t € (¢o, Tnaz)
d
2 (a(0), =) + (A T (@(2)). =) = 0.
and using (1.2.8) we obtain
d

T (b —z(t),v) + Kb —a(t),v) > 0.

Multiplying the above inequality by exp Kt and integrating over (tg, Tmaz) it follows that
(b — x(Trnaz), V) > exp|K (Trmaz — t0)]{b — z(ty), v).

Observe that by definition, b = 2(7},4), hence to draw a contradiction from the latter we
just have to prove that the second term of the inequality is positive. Indeed, z(t;) € C
which is open convex and 0 # v € Ng(b), thus there exists 7 > 0 such that z(ty) +nv € C,
and a fortiori z(tg) + nv — b € Tx(b). This implies (x(ty) + nv — b, v) < 0 or equivalently,
(b—z(to),v) > nlv|? > 0, and (4) is proved.

Let us prove the last statement (v). From the boundedness property of z, along with (r4)
and (), it follows that & is bounded and therefore = is a Lipschitz continuous map.
The properties (r4), (H;) imply that ¢ > 0 — Ay V f(x(t)) is uniformly continuous
and therefore so is #(-). Combining this fact with (iv), it follows by a classical argument
that £(t) — 0 as t — +o0o. Using (r4), it ensues that a cluster point z* of x satisfies
ApVi(z*) =01

1.3 A general abstract framework for dynamical sys-
tems with elliptic barrier operators

In this section, we propose with the help of proximal maps, a systematic and unifying
way to generate elliptic barrier operators. We start with an informal motivation. Given
a convenient distance-like function d : R"™ x C — R U {400}, the idea is to realize the
descent direction —A,V f(z), z € C as a vector based on z and pointing on some proximal
point u(z, V f(z)).

Indeed, assume that d is convex with respect to its first variable, and for x € C define

formally
ul(z, Vf(z)) € argmin {{u, Vf(z)) + d(u,z)|u € R"}. (1.3.1)
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In this definition the objective function has been replaced by its first order approximation
at the point z, the constraints are supposed to be naturally taken into account by d(-,-)
and the descent direction obtained is —A4V f(z) := u%(z, V f(z)) — z. It is of interest to
notice that this approach is akin to the following well known fixed point reformulation of
the optimization problem (P) :

z* solves (P) iff 2* € argmin {(u, Vf(z*)) | u € C}, (1.3.2)

whenever f is convex. From that viewpoint, the formal definition (1.3.1), may appear
as a proximal regularization of some possibly ill-posed problem. On the other hand, the
corresponding A%-driven descent method can be written as a fixed point like dynamics

#(t) + 2(t) = ulfz(t), Vf(z(t))], 2(0) € C, Vt > 0. (1.3.3)

The solution of (1.3.3) is then expected to provide asymptotically a solution of z* =
ud(x*, Vf(z*)), and when it makes sense, this last problem corresponds to another for-
mulation of (1.3.2).

As a first example, consider d(u,z) = 1/2|u —z[*+ 65(u), (v, z) € R" x C. The definition
of u¢ writes
V(@) +u'(z,Vf () =z + Nelu(z, Vf(2))] 3 0,

which in turns is equivalent to
u'(z, Vf(x)) € (I + Ng)™'(z — Vf(z)).

Recalling that (I+Ng)~! = Pg, the proximal point is thus given by u%(z, V f(z)) = Pg(z—
V f(z)). This gives rise to the descent direction —A%V f(z) = Pg(z — V f(x)) — z, and the
projected-gradient dynamics (1.1.6) is recovered. As mentioned in the above discussion
note that the reformulation of (1.3.2) throughout d(-, -), that is z* = u?(z*, V f(z*)), leads
to the fixed point problem z* = Pg(z* — V f(z*)).

Let us now develop an abstract setting that shall be illustrated in the next section with
various useful kernels d(-, -).

Let dp : R" x C'+— R4 U {400} be such that

(P1) dyis C* on C x C,

(P2) Vido(u,u) =0 for all u € C,

(P3) For every x € C, the mapping u € R" — dy(u, z) is a closed convex function.

In (P1), Vidy(-, u) is the gradient of d(-, u) ; (more generally its subdifferential is denoted
by 01dy(-,u)). Note that, since C' is nonempty, (P1) ensures that u € R" — dy(u,z) is
also proper.
Denote by D the set of mappings d : R" x C — R, U {400} that can be written

d(u,z) = %|u—x|2+d0(u, z), (1.3.4)

with @ > 0 and with dj satisfying (P1), (P2) and (P3).
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Definition 1.3.1 Let d be in D. For all (z,v) € C x R" set
u®(z,v) € argmin {(u,v) + d(u, r)|lu € R"} (1.3.5)

and define A4 by
Ay = 2 —u(z,v). (1.3.6)

The following proposition justifies the second part (1.3.6) of this definition (u? could be
multivalued), and describes some of the properties of the operator A%

Proposition 1.3.1 Let d € D.

t) foreachx € U, the map v € = ut(x,v) 18 a single vatued o~ —Lipscnitz contitnuous
(i) F h C, th R" Az, v) i ingle valued o' ~Lipschit ti
map.

i satisfies (r2), (r3), and for each x € C, v € — A% 1s Lipschitz continuous.
i) A4 satisfi 2 3 d f h C R" — A%y is Lipschit 73

(#ii) Moreover if d satifies the property

(p) Vz e€C, dom d(-,z) CcC

then A? satisfies (v) of Definition 1.2.1.

Proof. Let (z,v) € C x R". From (P3) and the fact that o > 0 it follows that u €
R" — (u,v) + d(u, x) is strongly convex and has a nonempty bounded lower level set.
This implies that u(x,v) exists and is unique. Using (P1) and (P3), allows to write the
optimality condition in (1.3.5) as

v+ ovd(-, ) (u®(x,v)) 30,

and therefore by uniqueness of u?(z,v), (recalling (cf. [112]) that for any closed proper
convex function F', one has (0F)~! = 0F™*), it follows that

u(x,v) = od* (-, z)(—v). (1.3.7)

Denoting by I the identity map of IR", we observe using the definition of d € D that
0,d* (-, x) can also be written

(al + 01dp(-,x) — ax)™*
or equivalently as the composition,
(I+a '0ido(-,2) —x) toa™'I.

By (P3), the operator a '0:dy(- ,¥) — x is maximal monotone and therefore by [37,
Proposition 2.2, (I + L01dy(-,x) — )" is a contraction defined on IR". Recalling that
ul(z,v) = ([ + a 0ido(-, ) —x) Loa I and Av = 2 — u®(x,v), the above arguments
prove (i) and the second part of statement (i7).

Assume that d complies with the property (p). By definition of u?, this implies that
ul(z,v) = x — A% € C and therefore (iii) is a consequence of Lemma 2.1. It remains
to prove the first two assertions of (i7). Let us prove that A? satisfies (r3). Let (z,v) €
C x IR", be such that A,v = 0. Then by (1.3.7), x = d1d*(-, z)(—v), which implies that
01d(z,z) = Vid(z,x) = —v. Therefore, by (P2) one has v = 0. Now to prove that (r2) is
also satisfied, we use the following
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Lemma 1.3.1 (Baillon-Haddad [26])
Let H, {, ) be a Hilbert space whose norm is denoted | .|, ¢ : H — R a C' conver function
and L > 0. The following statements are equivalent,

(i) ¥(z,y) € H?, |Vo(x) — Vé(y)| < Llz — y|
(i) V(x,y) € H?, (Vé(x) — Vo(y),z —y) > 1|Ve(x) — Vo(y)[*.

In view of (1.3.7) and (4), this result can be applied to ¢ := d*(-,x). Hence, for z fixed in
C, and for all (vy,v2) € R™ x R" it gives

(O1d" (-, 2)(v1) = 0ud* (-, @) (v2), v1 — ) > a|Oid" (-, ) (v1) — O1d* (-, ) (v2) [*.
Now, letting v; = 0, and v, = —v in the latter yields
(‘T o Ud(.’lf,’l)),’l)> > a|$ o ud($7v)|27

which, according to (1.3.6), is exactly (r2). B

1.4 Elliptic barrier operators and continuous models
for proximal algorithms : Examples and Proper-
ties

In this section we show that for various minimization algorithms one can derive an
elliptic barrier operator and construct the associated (A — DM)-dynamical system. It
is worthwhile mentioning that many of the examples to follow will generate convergent

trajectories to the minimizer of a convex function f over the closed convex set C. From

now on « will always denote the positive parameter involved in the definition of the class
D, cf. (1.3.4).

1.4.1 Projection-like methods

Let ho : R" — IR be a C! convex function whose gradient is Lipschitz continuous on
bounded sets, and set

. (R"XC — R,U{+oc}
Dh'{ (w,7) > Da(u,z) + Sulu).

with h(u) = 2|ul? + ho(u), v € IR" and where D, is given by (cf. (1.1.7)) :
2
V(z,y) € R" X C, Dp(z,y) = h(z) — h(y) — (Vh(y),z — y). (1.4.1)

Proposition 1.4.1 Let Dy, as defined above. Then ADr s an elliptic barrier operator that
satisfies (r4). Moreover, we have for all (z,v) € C x R",

APry = 3 — (Vh + Ng)"Y(Vh(z) — v). (1.4.2)
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Proof. An easy computation gives Dy (u,z) = £|u — 2|2 + Dpy(u,7) + 5z(u). Letting
do(u, ) = Dpy(u, x)+(u), we obtain that dy satisfies (P1) and (P3). For (u,z) € C'xC,
we have Vido(u,z) = Vho(u) — Vho(z), and as a consequence (P2) is satisfied as well.
Therefore Dy, is in D, and clearly verifies (p). Now applying Proposition 1.3.1, it follows
that AP+ satisfies (r2),(r3) and (v). The explicit formula of AP+ follows from (1.3.7).
To obtain (r1) and (r4), we just have to observe that (Vh + Ng)™! and Vhy are locally
Lipschitz continuous on IR". ®

The terminology of projection relies on the fact that (1.4.2) can be seen as some twisted
projection in the Bregman sense. Indeed, defining the projection of z € IR" on C' by

P(z) := argmin {Dy(u, 2) | u € C},

we obtain that PA(z) = (Vh + Ng)~'(Vh(z)) (recall that a > 0) and therefore since
Vh* = (Vh)™!, one can write

ADny = & — PL(VH* (Vh(z) — v)), V(z,v) € C x R™.

It is worthwhile noticing that in the framework of convex minimization, the gradient-like
map x — APV f(z) enjoys remarkable properties. As a matter of fact, assume that the
objective function f is convex, and observe that the following characterization holds

z* solves (P) iff Agf‘ Vf(z*) =0.
The associated AP#-driven descent method leads to the following differential equation

#(t) + 2(t) — PL(VA [VA(z(t) — Vf(z(1)]) = 0, 2(0) € C, V¢ > 0. (1.4.3)

Note that with Ay = 0 and a = 1, the corresponding dynamical system (Af’h — DM)
(with corresponding operator A”) is nothing else but the continuous gradient projection
method (1.1.6), that is

#(t) + 2(t) — Polz(t) — V£(z(t))] = 0, 2(0) € C, Vt > 0.

We remark that if 2(0) ¢ C we still obtain convergent trajectories (with f convex), see
[10] or Bolte [34], but the dynamical system is neither a descent, nor an interior method.

1.4.2 Continuous models for Bregman proximal minimization
algorithms.

In this section, we give two quite different continuous models associated with proximal
methods based on Bregman distances.

Continuous model I : A Riemannian gradient method

Our model appears as a particular case of Riemannian gradient methods on the smooth
manifold C. Let us make precise the setting. Denote by S;'"(IR) the cone of real definite
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positive symmetric matrices and let 7,C' be the tangent space to C' at x € C. In the
sequel we make the usual identification 7,C ~ IR" for all z € C. If g is some differentiable
metric on C, there exists a unique differentiable application A : C' — S} (IR) such that
for all (z,u,v) € C x R" x R"

9z(u, v) = (Mx)u, v).

The gradient of a smooth function ¢ with respect to the metric g, is then given by the
formula V,é(z) = A(z)"'Vé(z), Vo € C, and the corresponding gradient method is

{ igé))zg?qs(x(t)) =0, (1.4.4)

For C = R", and ¢ real analytic, a deep result of Lojasiewicz [92] allows to prove that all
bounded trajectories are converging to a critical point of ¢.

Readers interested in the use of geometric tools in optimization are referred to Bayer-
Lagarias [30] in the context of Linear Programming and for more general results to the
recent monograph of Helmke-Moore [73] and references therein.

We focus here on the special choice of the application A : C — ST (IR) defined by
A = V2h where h is some C? Bregman function with zone C, see Definition 1.4.1, below.
The idea is to penalize the Euclidean scalar product, rather than the objective function,
and to study the corresponding Riemannian gradient method

#(t) + V2h(z(t)) "'V f(z(t)) = 0, (1.4.5)
or equivalently
%Vh(m(t)) V() = 0. (1.4.6)

When the objective function is linear this differential equation has been considered in
Tusem-Svaiter-Da Cruz [78], however their approach to the asymptotic behaviour strongly
relies on the linear properties of f, see Remark 1.5.7 (b) for an insight. Observe that this
dynamics has, in its first form (1.4.5), the structure of A-driven descent methods. We
shall see actually that most of classical Bregman functions can generate a barrier opera-
tor. Moreover, as shown below, the general framework developed in Section 1.3 allows to
recover those methods by considering families of quadratic forms.

For the moment, let us compare (1.4.6) with (BPM) as given in the introduction. By an
Euler implicit discretization we formally obtain

1

A7 [Vh(z"t) — Vh(2F)] + Vf (") = 0, At > 0. (1.4.7)
k

Now observe that (BPM) has exactly the form of (1.4.7), provided that the iterates
remain in C [44, 45, 59|.

Before going further, we need to recall some of the basic facts concerning Bregman func-
tions. Their definition relies mainly on their D function, as specified in (1.1.7),
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Definition 1.4.1 A function h : C — R is called a Bregman function with zone C if it
satisfies the following :

(i) h is C' on C.

(ii) h is continuous and strictly convex on C.

(i1i) For every r € R, the partial level subset Ly(xo,7) = {y € C|Dy(zo,y) < r} is
bounded for every z, € C.

(iv) Let (y*,k € N) be a sequence in C and x € C. If y* — x as k — +oo, then
Dy (z,y*) — 0 as k — +oo0.

This definition weakens the usual definition of Bregman function proposed by Censor and
Lent in [43], and is actually inspired by the more general notion of B function introduced
by Kiwiel in [85]. Because of (iv) and the smoothness property of h, we have kept the
terminology of Bregman function.

For the asymptotic analysis of (1.4.6) which will be developed in Section 1.5, we already
record here the following useful lemma due to Kiwiel ([85, Lemma 2.16]).

Lemma 1.4.1 Let h be a Bregman function with zone C and x € C. If y*, k € N is a
bounded sequence in C such that Dy(x,y*) — 0as k — +oo then y* — x ask — +oo.

In relation with the barrier operators to follow, let us define now a subclass of Bregman
functions with zone C.
For h : C — R, we consider the following assumptions :
(r,) There exist a > 0 and a C® Bregman function with zone C' denoted by hg, such
that for all z € C o
h(z) = §|3:|2 + ho().

(vp) For every b € bd C and every v € Ng(b) there exists K, e > 0 such that for every
zel,|r—>b <e,
\V2h(z)'v| < K{b— z,v).

The set of such functions is denoted by B¢, and for each h € Bs we define a family of
quadratic forms by

,{Rnxc -~ R"
DN (w,z) = (V2h(z)(u— 2),u — ).

Proposition 1.4.2 For every h € Bg, A% is an elliptic barrier operator on C. Moreover,
for all (x,v) € C x R" the following formula holds

A%y = V?h(z) 0. (1.4.8)
Proof. To prove that ¢, € D, it suffices to notice that by (r,),
an(u, z) = a/2lu — z|* + (V?ho(z) (u — z),u — ),
where (V2hg(z)(u —1),u — z) satisfies (P1),(P2),(P3). This implies by Proposition 1.3.1,

that the operator A% satisfies (r2), (r3). Note that g, never satisfies the property (p),
which precludes the use of Proposition 1.3.1 (3ii).
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Applying Definition 1.3.1, formula (1.4.8) can be derived easily from,
V2h(x)[ut (z,v) — 2] +v =0, ¥(z,v) € C x R™

Since the mapping M € S (R) — M~ is C*°, we obtain by (r) that A% satisfies (r1).
Let us prove that A% complies with (v) of Definition 1.2.1. Take b € bdC and v in Ng(b),
and let us apply (v,). There exist K, e > 0 such that for every v € R", z € C, |z —b| < ¢,

(=AM, v) = —(V2h(z) tv,v) = —(v, V?h(x) V) < K|v|(b— =,v).

Therefore, if v is bounded, the latter exactly amounts to (v). B

The next lemma gives a practical means to prove that a Bregman function is in the class
Be.
Fora <bin R, ¢ : (a,b) — R a C? Bregman function with zone (a,b), consider the
assumptions,
(v) If @ is finite, there exist a neighborhood U of ¢ in IR and a positive constant K|
such that
Vu e UN(a,b) ¢"(u) > K;/(u—a),

(vy) If b is finite, there exist a neighborhood V' of b in IR and a positive constant K,
such that
YueVn(ab) ¢"(u)>K./(b—u).

Lemma 1.4.2 Let ¢, ..., @, be some C? Bregman functions on IR with zones (ay,cy),
ooy (s ), a; < ¢, a4, € R, Vi € {1...,n}. Assume that ¢1,. .., @, satisfy (v;), (vy)
on their respective zones, and for a > 0 set,

hlz) = Flal” + 3 il

Then h belongs to By, where K = [[;_,(ai.¢;), and A™ is an elliptic barrier operator that
satisfies (r4).

Proof. The fact that h is a C® Bregman function with zone K follows from [85, Lemma
2.8,(d)], and therefore (r,) is satisfied.

To simplify the notations, let us assume that for all i € {1,...,n}, ¢; = 0 and ¢; = +o0
(which implies K = R"}). For b = (by,...,b,) € bd R"}, set I(b) = {i € {1,...,n}[b; =
0} # 0 and J(b) = {i € {1,...,n}|b; # 0}. For each i € I1(b), (v;) yields the existence of
a neighborhood U; of 0 in R and K; > 0 such that

Vu € U; N (0,+00) ¢"(u) > K;/u. (1.4.9)

Set U; = R" for each ¢ € J(b), and U = R, N[],_, , Ui. Let v € Ng(b), and observe
that v; = 0 for all 4 € J(b) and that v; < 0 for all 4 € I(b). Therefore, for x € R"™ an easy
computation gives

Vh(z) v < )

2 Ta+ o)
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Now if z € U, (1.4.9) implies that

1
|V2h($)_ll/| < Z —fl/zﬂ')z
i€I(b) '

1
< sup — (b—xz,v).
icl(b) Kz’< )

A direct computation gives for all z € K, i,j € {1,...,n},

S

(Vh(z)™"), = —L—,
g

where J;; = 1 if i = j, and §;; = 0 otherwise. Applying again (v;), we see that A% can be

continuously extended on K. Hence A% satisfies (r4).H

Example 1.4.1 Bregman-based Barrier operators and their dynamics.

The list of examples below shows thanks to Lemma 4.2 that many classical Bregman
functions can be used to provide an elliptic barrier operator. In what follows « is the
positive regularizing term as defined in (vy,), and g is a positive parameter. For a Bregman
function h with zone I C R, set h,(z) = > h(z;) for all z € I™.

(a) For @ € (0,1) consider h(s) = 2s? — %,s € Ry. Then h € BR, , hn € B and

2
the corresponding (A%» — DM) system is

B0+ s S () =0,

z;(0) >0, Vi € {1,...,n}. (1.4.10)

(b) h(s) = $s* + Bslogs on IRy is in BR,,» hn € B]RL and the associated system is

azx;(t) + B 0x;

Fi(t) + (@(t) =0, z:(0)>0,Vie{l,... nh

This system is exactly the regularized Lotka-Volterra equation (1.1.8) recently proposed in
[20]. However, it is worthwhile noticing, that (1.1.8) was introduced there as a continuous
model not based on (BPM), but on the proximal-like method,

g"*! € argmin { f(z) + cxdy(z, 2%) |z € RL}, ¢ > 0,

where ¢(s) = s —logs — 1 and dy,(z,y) = 4|z — y> + B> 1, vip(y; 'z;) for all z,y
in IR"} . For more results and applications on classical Lotka-Volterra systems see, e.g.,
Hofbauer-Sigmund [76].

(c) h(s) = §s* — fV1 —s? on [—1,1] is in B(_1,1), hn € B(—1,1y» and the corresponding
system 1is

(1-z;(0)0)**  of
a(1—a;(t)2)** + B Oz

&) + (@(t) =0, :(0) € (~1,1), Vi € {1,...,n}.
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d) h(s) = 2s% — B4/s(1 —s) on [0,1] is in By, h, € B 1)» and the corresponding
| 2 (0,1) (0,1)
system 1s

4z, ()% (1 — z;(1))%?  Of
daz; ()32 (1 — z;(t))%? + B Oz,

&) + (@(t) =0, ;(0) € (0,1), Vi€ {1,...,n}.

Remark 1.4.3 For ¢,7 > 0, and f € C*(R",R) set h.,(z) = £|z|* + 7 f(z), Vo € R".
Then we have h., € Bg», under one of the following assumptions :

(%) f is strongly convex, i.e., V2f — AI is positive semi-definite, with A\ > 0.

(x) f is convex and € > 0

(x) y=10,€e>0.

Letting € = 0, v = 1 in the first case yields the continuous Newton descent method (1.1.9).
The second version can be seen, for € small, as a regularized Newton method

(A% = DM)  a(t) + [el + V()] VF(a(t) = 0.

The last point with v = 0, € > 0 gives rise to the classical steepest descent method.

In the examples just described, the A%<~ are elliptic barrier operators on R" so that the
feasible set C is the whole space IR”, and (v); holds vacuously. It actually raises another
intereresting aspect of barrier operators : they can be used also as a geometrical means to
improve convergence rate as well as well-posedness properties. This suggests, for instance,
to go further in the study of the following Newton-Barrier methods

&(t) + AV2h(z(t) + uV2 f(z(@)] 'V f(z(t) =0,t >0

with A, 4 > 0 and where h is a C® Bregman function.
Continuous Model II

The Bregman distances appearing in the definition of projection methods (Section 1.4.1),
can be used in a quite different way in order to provide some other continuous model of
(BPM). Indeed, replacing the kernel hg defined on the whole space IR™ by some essentially
smooth convex function (see definition below) allows to get rid of the normal cone and to
reformulate (1.4.3) as

Vh(z(t) +x(t)) — Vh(z(t)) + Vf(z(t)) =0, Vt > 0.
This can be discretized as follows
Vh(xg1) — Vh(ze) + Vf(xes1) =0, Vk € N,
and (BPM) is recovered with a sequence of stepsizes satisfying ¢, = 1, Vk € N.

This model will be derived from our general framework developed in Section 1.3. First,
we recall now the definition of essentially smooth convex functions, see [112].
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Definition 1.4.2 A proper convex function ¢ : R" — IR U {400} is essentially smooth
if it satisfies

(i) the interior of dom ¢ is nonempty, i.e., int dom ¢ # ().

(i1) ¢ is differentiable on int dom ¢.

(i5i) For all b in the boundary of int dom ¢, and all sequence xy, k € N in int dom ¢
such that xx — b as k — +o00, we have |Vo(zg)| = +00 as k — +o0.

As in subsection 1.4.1 we study now operators of the form AP» (cf (1.4.1)) for some rele-
vant kernels A.

Let hy : R" = R U {400} be a closed proper convex function such that,

(1)no ho is essentially smooth with in addition int dom hy = C,

(79)n, Vhyg is Lipschitz continuous on compact subsets of C.

For such a function hg, we set h(u) = a/2|u|* + ho(u), Yu € R™. In the following propo-
sition, it is important to recall that Dy, is an extended real function defined on the whole
of R" x C.

Proposition 1.4.3 Let h be as above. Then AP+ is an elliptic barrier operator on C, and
for all (z,v) € C x R"™ we have
APry = 2 — Vh*(Vh(z) — v). (1.4.11)

Proof. From (i), it ensues that D, € D. Using the fact that h is essentially smooth

with int dom h = C we deduce that (p) is satisfied. By Proposition 1.3.1, we see that
APr verifies (r2), (r3), and (v). The formula (1.4.11), follows from (1.3.6), and (r1) from

(ii)ho .a

The associated AP»-driven descent method is thus given by
z(t) + z(t) — VR*[Vh(z(t)) — Vf(z(t))] =0, z(0) € C, Vt > 0, (1.4.12)
or using Vh* = (Vh)~! equivalently as
Vh(z(t) + 2(t)) — Vh(z(t)) + Vf(z(t)) =0, 2(0) € C, Vt > 0.

Example 1.4.2 Consider the regularized Burg’s entropy obtained with, g(s) = (a/2)s%—
Blogs, s > 0, where § is a positive parameter. For 2 € R"} | set h(z) = >_" | g(z;). The
function A satisfies the requirements of Proposition 1.4.3. A direct computation shows
that

_u+y/u?+4af
N 2c

(97)'(w)

Substituting in (1.4.12), the following descent method is derived. For alli =1,... n,

, Vu € R.

bat) (1) /2+(20) (ﬁ/xi(t) + 2 o) = flawatt) - 8720~ 2wty + 4a/5> -0,

for all t > 0 and with z;(0) > 0, Vi € {1,...,n}.
It is interesting to notice that as a — 0 we do not recover here the Lotka-Volterra system ;
compare with the system given in Example 1.4.1 (b).
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1.4.3 A continuous model for proximal algorithms with second
order kernels

The class of operators A% defined in this section are built upon the kernels ¢ used to
realize the (RIPM) method introduced in [22], and which we now recall . Let ¢ : R —
IR U {+o0} be a closed proper function whose domain dom ¢ is a subset of [0, +00).
Consider the following assumptions on ¢

(i), ¢ is finite and C? on (0, +00),

(1), ¢ is strictly convex on (0, 4+00),

(Z ) hIns>0 5—0 P ( ) = —00,

(i), p(1) = ¢'(1) = 0 and ¢"(1) > 0,

(v), forall s >0, ¢"(1)(1 = 1) < ¢'(s) < ¢"(1)(s = 1).

Now for «, 5 > 0 set N
p(s) = (s = 1)° + Bepo(s), (1.4.13)

where ¢, satisfies (i), — (v),, and denote by ® the class of such functions. For ¢ € ®, set
V(u,z) e R" x R, dy(u,z) = Zx?g@(x;lui). (1.4.14)

It is proved in [22], that the associated proximal method,
(RIPM) 2" € argmin {f(z) + cxdy(z, zi)|z € R}, ¢ > 0,

generates a positive sequence {xk} provided that 2° € IR}, . As a consequence an equiva-
lent formulation of (RIPM) is

cedid, ("1, 2%) + V f(2*1) =0, VEk > 1. (1.4.15)
Under the additional assumptions that arg min R f#0, Z;:;’Ol ¢, = oo and

o> Bel(D), (1.4.16)

it is proved in [22] that the sequence x*, k € N converges to a minimizer of f.

Following the general framework developed in Section 1.3, we generate the elliptic barrier
operator and dynamical system associated with (RIPM).

Proposition 1.4.4 Let ¢ € ®. Then A% is an elliptic barrier operator, and one has for
all (z,v) € R} | x R",
(Ai*"v)z. =z; — zi(0") (=27 ), Vi=1,. (1.4.17)

Proof. For all (u,z) € R} x R}, we have dy(u,z) = a/2|u — z|* + Bdy,(u, ), and
therefore to prove that d, € D, we need to show that 8d,, satisfies (P1), (P2), and (P3).
(P1) follows from (%), while (P3) is a consequence of the definition of ¢y. Using (iv),,
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we see by a direct computation that (P2) is satisfied and thus that d, € D.
Using Definition 1.3.1 with d := d, € D the optimality conditions for (1.3.5) yields

vi + 20 (ugz; ) =0, Vi=1,...,n

from which formula (1.4.17) follows easily using (¢*)" = (¢’)~'. Since dom ¢ C R, we
have for all z € R"} ,, dom d,(.,z) C R} and therefore by Proposition 1.3.1 A% satisfies
(r2), (r3), and (v).

It remains to prove that (r1) holds. Using formula (1.4.17), and since z € R, , it thus
suffices to show that (¢*)" is Lipschitz continuous. But since here ¢ is a smooth a—strongly
convex function, one has

(t=s)(¢'(t) = ¢'(s) > alt —5)°, Vt,5>0,

and thus recalling that (¢*)' = (¢’)™!, one easily deduces the required Lipschitz property
for (¢*)" and (r1) follows. m

Remark 1.4.4 (a) Requirement (v),, allows acute controls on d,, in the asymptotic ana-
lysis of (RIPM) and (A% — DM), (see, Section 1.5, Theorem 1.5.4), and is actually not
needed for the above result. Technically those controls are the reason why our operator is
based on ¢ and not on ¢*.

(b) The assumption (i), reduces the computation of (¢*)" to the inversion of ¢/ , ).
(c) Note also that A% does not satisfy (r4) in general, but as we shall see in the next
section it has no consequence on the asymptotic study of (A% — DM) when f is convex.

The corresponding (A% — DM) system is thus given by

Fat) + () — xi(t)(@*)l(_l‘i(t)_laa—:'i(zv(t))) _0, V>0,
or equivalently as
m(ﬂ@'(%) + gi (z(t)) =0, t > 0.

To recover (RIPM) by some discretization of (A% — DM), the latter can be reformulated
in the following way

Ovdy (x(t) +2(t), z(t)) + Vf(z(t)) =0, z(0) € R, Vt > 0. (1.4.18)
Now, if we perform an implicit discretization of (1.4.18), it yields
Ody (251, 2%) + Vf(2*) =0, ,2° = 2(0), k € N.

which is exactly (1.4.15), with ¢, = 1.
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Example 1.4.3 It is a delicate matter to build a function in ® whose Fenchel conjuguate
is easily computable. As in [22] we focus on the important special choice given by a
logarithmic-quadratic kernel,

o(s) = %(s— 1)>+ B(—logs+s—1), s >0,

which admits (see [22, p.665]) an explicit conjugate ¢* € C*°(IR), and with

(¢")'(s) = %[a —B+s++/(a—B+5)?+4af8], Vs € R.

The corresponding (A¥ — DM) system is then given by

1 0f(z(t)) 1 of(z(t))
% om \/ 1ozl(@ = Bzi(t) + R —

a+p

z;(t) +

;(t) +

12+ 4apx;(t)? =0,
2a

(1.4.19)
with ¢ € {1,...,n}, t > 0 and z(0) € R"},. An interesting fact to notice is that (1.4.19)
has a sense for any x(0) € IR™; this suggests like in [34] a study of its properties for non
feastble initial data.

1.5 Asymptotic analysis for a convex objective func-
tion
In the sequel f satisfies the additional assumptions

n ) [ is convex,
(H) - { argmin g f # 0.

This section proposes a criterion concerning elliptic barrier operators to obtain the
convergence of the trajectories of (A— DM). It is based on Lyapounov functionals and to
their (theoretical) decreasing rate. This natural approach is inspired by the classical result
of Bruck [40] on the generalized steepest descent method, and by the notions of Fejer or
quasi-Fejer sequences which go back to the work of Ermoliev [60] and arise in monotone
and generalized gradient optimization algorithms. Such techniques have also been applied
succesfully to second order in time systems by Alvarez [4], and Alvarez-Attouch [5]. Before
stating the main result of this section, let us describe the typical properties of those
Lyapunov functionals, sometimes called relative entropy, when working on systems in the
nonnegative orthant, see e.g., [76]. In what follows S should be understood as the set of
equilibria of some convex function.

We suggest the following general definition for viable Lyapunov functionals.

Definition 1.5.1 Let S C C be a nonempty set. A family of functions {e,,a € S} is
Lyapunov viable if it satisfies

(1) Foralla€ S, e, : C — R is C.

(i1)e The functions e, are nonnegative for all a € S.

(ii1)e For all a € S, e, is inf bounded. That is for every r € R, the set {y € Cle,(y) <
r} is bounded.
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(iv), Let x*,k € N be a sequence in C. Then for all a € S,
ea(z®) = 0 as k= +o0o <= ¥ = a as k = +oo.

The next result is a key lemma that can be used to establish convergence of trajectories
of (A— DM). First, we recall the following classical result (see e.g., [4, Lemma 2.2]) which
will be useful to us.

Lemma 1.5.1 Let h: R — R*' a C! function. If (k)" := max(0, /') is in L(0, +oc; R)
then 1imy_, o h(t) exists.

Let us set S := argmin 5 f.

Lemma 1.5.2 Let A be an elliptic barrier operator on C and f a function satisfying
(H1), (Ha), (H'). Assume that there exists A > 0, p € R and a family of functions
{€q, a € S} that is Lyapunov viable (i.e., satisfying (i) — (iv)e). Suppose in addition that
forallx € C,

(—AV (1), Ve(2)) + MV f(z),z — a) < ulAVf(x)] (1.5.1)

If z(t) is the solution of (A — DM), then
(i) f(z(t)) = infs f ast — +oo, with the estimation

f(z(t) —inf f < Mt~ for some M >0,
c

(i1) ©(t) = 0 as t — +oo.
(11i) There ezists x* € S such that x(t) — z* as t — +oo.

Proof. Let a € S, by (1.5.1) and (A — DM) we obtain

%ea(x(t)) + MV f(z(t)),2(t) — a) < pla(t), t > 0. (1.5.2)

From the convex inequality it follows that for all y € C,

0> f(a)— fly) > (VF(y),a—y). (1.5.3)

Combining (iz) of Theorem 1.2.4, (1.5.3), and (1.5.2) yields [%e,(z(¢))]" < pl#(t)[% ¢t > 0.
From (ii), and Lemma 1.5.1, we deduce that e,(z(t)) converges as ¢ — +o00. Hence, by
(14i)e, x(-) is bounded.

Coming back to (1.5.2), we obtain for all T > 0,

A / (VF (1)), 2(t) — aydt < / (1) 2dt + ea(2(0)) — ea(x(T)),

and since A > 0,
(Vf(x(-),z(-) —a) € L'(0,00;R). (1.5.4)

From (1.5.4), (#1), and the boundedness property of # we obtain that there exist z* € C,
and a nondecreasing sequence tg, k € N such that (V f(z(tx)), z(tx) —a) — 0 and z(tx) —
z* as k — 4o00. Using (1.5.3) it ensues f(z*) < f(a) and thus z* € S.
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By Theorem 1.2.4, (4ii) and the continuity of f, we see that the latter argument implies
f(z(t)) = infs f as t — 400 and that all limit points of x are in S.
To prove the second part of (i), we first deduce from (1.5.2) and (1.5.3) that

d .

Tea(@(t) + A(f(2(1)) = f(a) < pl@), ¢ > 0.

By integration it follows from Theorem 1.2.4 (ii7) that for ¢ > 0, tA[f(z(t)) — infg f] <
eq((0)) — eq(z(t)) + ,ufot |z|2. Using (744), we obtain for all ¢ > 0

A (a(t)) = inf 7] < lealx(0) + 1 / 2], (1.5.5)

The estimate announced in (z) is then a consequence of Theorem 1.2.4 (iv).
Let x% and z3 be two cluster points of z(-) and t, 7, k € N increasing sequences in R™,
such that z(tx) — 27, z(7) — 25 as k — +o0. From (iv)., we deduce ey (z(tx)) — 0
as k — +oo. But since the function e, (z(-)) has a limit as t — +oo, we also have
ez (7(7)) — 0 as k — +o00, and by applying (iv). again we obtain z7 = z3.

Let z* be the limit point of z(-), it verifies the classical relation V f(z*) € —Ng(z*),
and therefore (#;) implies that (z(¢), V f(z(¢))) has its limit point in {z*} x —Ng(z*).
Applying Proposition 2.1, it follows that &(¢f) — 0 as t — +oc. B

Remark 1.5.3 (a) If 4 < 0, we have by (1.5.5)

£(o(0) —inf ] < %ea(aﬁ((])), Vi >0

(b) Note that Lemma 1.5.2 allows to handle the case > 0 in (1.5.1), which corresponds
to quasi-Fejer convergence.

(c) The property (r3) has not been used, but it is implicitly contained in (1.5.1).

(d) Note also that the above result holds for an elliptic barrier operator which is possibly
undefined on bd C x R".

Let us apply this result to some of the operators defined in Section 1.4. In what follows it
is implicitly assumed that C = R | when dealing with operators of the type Ade o e ®,
while A" is the gradient projection operator (cf. subsection 1.4.1).

Theorem 1.5.4 Let ¢ € ® such that a > (1), h € Be, and assume that f satisfies
(H1), (Hz), (H'). Then the trajectories of (A¥ — DM), (A% — DM), and (A% — DM)
converge to some minimizer of f on C. Moreover, for all trajectories x the following
properties hold :

(i) f(z(t)) = infgs f ast — +oo, with the estimation

f(z() —inf f < Mt~ where M > 0.
c

(i1) £(t) = 0 as t — +o0.
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Proof. By Propositions 1.4.1, 1.4.2, and 1.4.4, we know that A", A% and A% are elliptic
barrier operators. For every a € S and for all z € C set

e, (v) = f(z) — f(a) + 3lz — af?,
el(z) = Dy(a,z) = |z — a|? + Dy, (a, z),
ef(z) = f(z) — f(a) + 0|z — af?,

where 6 = (a + ¢j(1))/2. Naturally the idea is to apply Lemma 1.5.2 to the operators
AP A% and A% . Let a € S. The functions e?, e?, ef’ satisfy clearly ()., (ii).. To obtain
(m)e, just notice that in the three cases, the structure of the functions has the following
form

&) = Klz = a2 + pa(x), Vz € C,

with p, > 0, k > 0. By definition of a Bregman function and by Lemma 1.4.1, e? verifies
(iv). . To prove that el and e? satisfy (iv)., we just have to combine (), and the fact
that @ is a minimizer of f on C. Let us prove that the property (1.5.1) holds for the
couples (ef, AT), (el, A%), and (e, A%).

e The continuous gradient projection method has already been studied from different
viewpoints in [34], but for the sake of completeness we recall the argument. Let z € C
and a € S. The optimality property of the orthogonal projection operator gives for all
£Ee€eC,(z—Vf(x)— Ps(x — Vf(z)), — Ps(z — Vf(x))) < 0. Therefore if £ = a, we
obtain

(~Vf(z) + ALV f(x),a — 2+ ALV f(z)) <0,
or equivalently (— APV f(z),z —a+ Vf(z))+|ALV f(2)|> + (Vf(z),z —a) < 0, which is
(1.5.1) with g = —1.

e Now, let us consider A% where h is Bregman function that belongs to B¢. Let us

compute the gradient of e/ for all a € S. For all z € C, we have

Veq(z) = Vh(a) —h() = (VA(),a - )](z)
= V2h(z)(z — a).
And therefore (=A% V f(z), Veg(z)) = —(V?h(z) "'V f(2), V2h(z)(z—a)) = —(Vf(z), 2~
a), which verifies (1.5.1) with p =0 and A = 1.

e Finally, let us deal with e’ A%. Our approach relies on the following key lemma
proven in [22, Lemma 3.4]

Lemma 1.5.5 For every y; € R"} and for every (y1,v2) € R}, x RY _, we have

(1 — Y2, 01y (Y2, y3)) < 0 (|Z/1 — sl = |y — 312|2) .

Note that it is here that the property (v),, is needed. Indeed, the proof of this lemma is
based on that assumption, together with the condition o > B¢ (1).

For alli € {1...,n} and all z € R, set (vy); = — (Ag“’Vf(x))i. The Ad¢-driven
descent method can be rewritten as, '

Ovdy, (2(t) + vy, 2) + Vf(z) =0, Vo € RY . (1.5.6)
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Observe that x € R} | implies z + v, € IR’ . Now for a € argmin R f and for all
x € R" ., let us multiply (1.5.6) by a — 2 — v, , this gives

(@ — (vg + ), 01dy(z +vg,2) ) + (Vf(x),a — 2 — vy =0,
and therefore by Lemma 1.5.5
0 (Ja—z|* —|a— 2 —v,|*) +(Vf(z),a —z —vg) > 0.
After direct algebra this reduces to
(v3,20(x — a) + V f(2)) + (Vf(2),z — a) + |v,|* <0, Vz € R} ,.

Recalling that v, = —A% V f(z), we easily see that (1.5.1) is satisfied. m

Remark 1.5.6 The convergence of the orbits generated by the other operators proposed
in Section 1.4 remains an open question.

Localization of the limit point

Let A be an elliptic barrier operator, and e, be a family of viable Lyapounov functionals
satisfying (1.5.1) with u < 0. We assume moreover that for all a in S C C, there exist a
nonnegative convex function p, : C' — IR and k£ > 0 such that

ea(z) = klz — a* + po(), Vx € C. (1.5.7)
As in Lemaire [89], and inspired by the recent non Euclidean extension given in [20], the
limit point of the trajectory produced by (A — DM) can be localized.
Proposition 1.5.1 Let A be an elliptic barrier operator on C, and let {e,,a € S} be

as defined in (1.5.7). Then the trajectory of (A — DM), with z(0) € C, converges to a
minimizer oo of f on C, with the following estimation

2o — 2(0)[2 < inf{4]2(0) — af? + %pa(x(ﬂ)) g€ S}

Proof. The convergence result of the trajectory z(t) to o € S = argming f is a direct
consequence of Lemma 1.5.2. To prove the estimation, let us come back to the inequality
(1.5.2), proven in Lemma 1.5.2 :

%ea(fﬂ(t)) + MV f(z(t), 2(t) — a) < pla(@)], t > 0.

The convexity property of f, and the fact that y < 0 imply that R, > ¢ — e,(x(t)) is

nonincreasing. Therefore, for all a € S we have e,(z(t)) < e,(x(0)), where ¢ > 0. Since
Pa > 0, by letting t — 400, (1.5.7) yields

k2o — al* < k|2(0) — al® + pa(x(0)). (1.5.8)
Now for all a € S, we have

|Zoo — x(0)[ [T — al 4 |a — z(0)[]?
2|Too — al®* + 2|la — z(0)|?

4|z(0) — af” + Zpa(2(0))
where the third inequality is a consequence of (1.5.8). The desired result is then obtained

by taking the infimum overall a € S. ®
As a consequence, we then have

INININA
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Corollary 1.5.1 Under the assumptions of Theorem 1.5.4, we have
1
2o — 2(0)]* < 4inf{|z(0) — af* + aDhl(a,x(O)) |la € S},

if A=A h() = a/2[- " + ().
Defining s : R" — R as s(y) := inf{ly — a|? | a € S}, then we also have

200 — 2(0)? < 4 (s<x<o>> + f(2(0)) ~ int f)

if A= AP, and
2 .
= a(O)f < 45(0(0) + 5  F(s(0)) - nf )
c
if A= Ads.
Proof. The families {e", e” e?, a € S} introduced in the beginning of the proof of

Theorem 1.5.4 satisfy the assumptions of Proposition 1.5.1, and thus the claimed results
follow easily. ®

Remark 1.5.7 (a) The estimations given in Corollary 1.5.1 for A = A% allow to recover
the results obtained in [20, 89].
(b) Assume that f is a linear function, that is f(x) = (¢, z), Vo € IR" where ¢ € R". Take
h as in Theorem 5.1. A straightforward integration of (A% — DM) in its form given in
(1.4.6) yields

Vh(z(t)) — Vh(z(0)) + tc =0, Vt > 0. (1.5.9)

As already noticed in [78], the trajectory of (A% — DM) can be viewed as an optimal path
relatively to the barrier function Dj. Indeed since for all (y,z) € C x C, ViDy(y, z) =
Vh(y) — Vh(z), (1.5.9) can be reformulated as

z(t) € argmin {{c,u) + %Dh(u,x(())) |ue R"}, t>0.

The convergence techniques developed in [78], but also the viscosity methods studied in
Attouch [13], allow then to fully characterize the limit point as

Too € argmin {Dp(a, z(0)) | a € S}.
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On the continuous gradient projection method in
Hilbert spaces.!

JEROME BOLTE

Abstract. This paper is concerned with the asymptotic analysis of the trajectories of some dynamical
systems built upon the gradient projection method in Hilbert spaces. For a convex function with locally
Lipschitz gradient, it is proved that the orbits weakly converge to a constrained minimizer (whenever it
exists). This result remains valid even if the initial contidion is chosen out of the feasible set, and can be
extended in some sense to quasi-convex functions. An asymptotic control result involving a Tykhonov-like
regularization, shows that the orbits can be forced to strongly converge towards a well-specified mini-
mizer. In the finite-dimensional framework, we study the differential inclusion obtained by replacing the
classical gradient by the subdifferential of a continuous convex function. We prove the existence of a
solution whose asymptotic properties are the same as in the smooth case.

Keywords. Gradient projection method, dynamical systems in optimization, viability,
differential inclusion, asymptotic control, Lyapounov functions.
AMS classification. 37199, 37N40, 34D05, 34H05.

2.1 Introduction

Let H be a real Hilbert space endowed with scalar product (, ) and its related
norm | . |. If C' is a closed, nonempty convex set in H, we denote by P the corresponding
orthogonal projection, and by N¢g(x) the normal cone to C at z.

Our main purpose being to minimize a convex function ¢ : H — IR on C, we study
systems of the type

(CGP) { ig)))ii(j)e_cp clz(t) — pVe(x(t)] =0,Vt >0

where (CGP) stands for continuous gradient projection method.

Many primal continuous methods to perform this kind of optimization problem consist
in adding some barrier or penalty functions to ¢, and then to study the new potential with
a classical procedure like steepest descent. From a theoretical viewpoint those approaches
can be seen as smooth approximations of the following problem

inf(¢ + dc), (2.1.1)

where 6c : H — IR U {+o0} denotes the indicator function of C, ie, the real extended
function with value 0 on C and +oo elsewhere.
When combining such a formulation with the steepest descent method we are led to
study
&(t) + Vo(z(t)) + Ne(z(t)) 2 0, (2.1.2)

! Article accepté dans J.O.T.A.
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or equivalently, see Brézis [37],

E(t") = Pro(y[—Vo(x(t))],

where T (x) is the tangent cone to C at z.

If ¢ is a proper lower semicontinuous convex function, Bruck [40] has proved that
trajectories of (2.1.2) converge to a minimizer of ¢ + dc whenever it exists. But, this
solving procedure has a major drawback : the dynamics ignores the constraints until the
orbit encounters the boundary of C.

This can be improved by a careful examination of the optimality condition associated
to (2.1.1), indeed the two following conditions are equivalent

(0) Vé(z) + No(z) 3 0,
(O) FIu>0,r=Ps(xr—pVe(z)).

This reformulation of O is well known in discrete optimization, it has led to study
algorithms of the type

(2.1.3)

Try1 € Pc(l‘k - M8¢($k)) , Tog € C (214)

where 0¢ is the subdifferential of ¢.

For theoretical study in Hilbert spaces see Polyak [111], Mac Cormick-Tapia [97], Mar-
tinet [100], Phelps [109]; in Phelps [110] some extensions to Banach spaces are proposed.
If ¢ is only assumed proper lower semicontinuous and convex the convergence of the se-
quence (2.1.4) is, as far as we know, an open question. In a recent work [3], Alber, Tusem,
and Solodov have obtained the weak convergence of the orbits under a local boundedness
assumption on O¢.

As a continuous dynamical system (CGP) enjoys much stronger properties than its
corresponding explicit discretizations, and we will see actually, that it can be considered
as an ideal version of (2.1.4). (CGP) has been introduced by Antipin [10] in the finite-
dimensional case with a gradient Lipschtiz continuous on the whole space H. For a second
order version of (CGP), interesting results have been obtained in Alvarez- Attouch [5]
and [10], but under the same strong assumptions on the gradient.

In this paper, the results obtained in [10] for the smooth case has been considerably
extended. In our framework H is an Hilbert space, ¢ is a C' function non necessarily
convex and its gradient is only supposed Lipschtiz continuous on bounded sets. Moreover,
no restriction is imposed on the stepsize p. In section 2.2, it is proved that (CGP) is a
descent method generating viable trajectories, ie Vt > 0, z(t) € C.

The asymptotic behaviour of the orbits when ¢ is convex or quasi-convex is a delicate
matter. In Baillon [24] one can find an example in which the trajectories of (2.1.2) do not
strongly converge to an equilibrium. A key tool in the study of the convergence of the
steepest descent method is the association of Fejer monotonocity with Opial lemma [105]
(see also section 2.3). To be more precise, the quadratic functionals y € H — 1/2|y — z*|?
where z* is some stationary point of the potential, are Lyapounov functionals for the
system (2.1.2), allowing via Opial lemma to obtain weak convergence. Due to the lack
of monotonocity of the operator y — —y + Pc(y — uVé(y)), we propose an alternative
approach to the asymptotic behaviour, showing that the distance-like functions y —
wlod(y) — o(x*)] + 1/2|y — x*|? are decreasing along (CGP) trajectories. This allows to
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derive the weak convergence of the solution of (CGP) to a minimizer of ¢ on C (see
section 2.3 and figure 2.1 below).

As noticed in [10], (CGP) conserves its optimizing properties even if the initial condi-
tion is out of C', this result is extended to infinite-dimensional spaces by use of an Opial-like
lemma concerning a class of Lyapounov functionals. The figure 2.1 below gives an illustra-
tion of those results, with ¢(z1, z2) = (21 —22—5)*+ (221 +25—4)* and C = Ry xR,
Five initial conditions have been chosen in and out of C, and three different values of u
have been used for the computations (the dashed lines delimit the lower level subsets of

P).

pu=0.05 n=0.55 p=1.05

F1G. 2.1 — Some trajectories of (CGP).

This phenomenon of “nonquadratic” monotonicity appears to be relatively less studied
in the framework of continuous dynamical systems devoted to optimization. In Attouch-
Teboulle [20], inspired by entropic proximal methods, the authors study the following

system
o+ Bxi(t) Ox;

where i € {1,..,n}, o, > 0 and ¢ : R" — R is to be optimized on the positive
orthant IR’. As in numerous algorithms based on proximal methods, see for instance
Auslender-Teboulle-Ben-Tiba [22], Kiwiel [84], the trajectories are interior and, in some
sense monotone with respect to some distance-like functionals. Those similarities with
(CGP) - viability, intrinsic penalty, nonquadratic monotonicity- open new perspectives
and seem to suggest the existence of a whole class of new descent methods.

In section 2.5 an asymptotic control result is obtained by considering the nonautono-
mous system

(CGP). { zgé)) 1”;(?6—01.30[33(0 — uVe(x(t) - e(t)a(t)] = 0

Fi(t) + (2(t)) = 0,2:(0) > 0,Vt > 0,

where ¢ : R, — R satisfies f0+°° g(s)ds = +o0.
The Tykhonov term ¢ — £(¢)z(t) is used to force the orbits to attain a particular
equilibrium for the strong topology. This work is inspired by Attouch-Cominetti [15],
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Attouch-Czarnecki [17] where the authors are concerned by steepest descent, and heavy
ball with friction systems.
Section 2.6 is devoted to the following nonsmooth version of (CGP),

(cGP), { 20+ ol) - Peltt) — u09(a(0)] 20

where ¢ is a convex continuous function on a finite-dimensional space. Note that the
multivalued vector field ruling this equation has neither the convexity, nor the regularity
properties usually required in differential inclusion theory (Aubin-Cellina [21]). In order
to prove the existence of a global solution, we define approximate differential systems
by using Moreau-Yosida regularization ; then, obtaining estimations on the approximate
trajectories, we derive by compacity arguments that (CGP), actually admits a solution.
This is a classical approach to solve a nonsmooth differential inclusion see, for instance,
[37] and Schatzman [115] for second order in time systems. The asymptotic properties of
(CGP), are the same as in the smooth case.

2.2 Global existence results for feasible initial data

In what follows, ¢ is a function from H into IR. For a given closed, nonempty convex
subset C' of H, we consider the following set of hypotheses

¢ is continuously differentiable,
(H) V¢ is Lipschitz continuous on bounded sets,
¢ is bounded from below on C.

The continuous gradient projection method is given by

(CGP) { ;EQ) t 9;(5) — Pe[n(t) — uVo(x(t))] =0

where p > 0 is a positive parameter.

Theorem 2.2.1 Let us assume that ¢ satisfies (H). Then, the following properties hold
(1) For all zo € C, there exists a unique solution x of (CGP) such that x € C*([0, +oo[; H).
(17) The trajectory satisfies the following viability condition ¥Vt > 0, x(t) € C.
(11i) (CGP) is a descent method, more precisely we have 4¢(z(t)) < —ﬁ | z(t) | .
As a consequence & € L*(0,+o0; H).
(iv) If t — x(t) is bounded, then (t) — 0 as t — +oo.

Proof. Since Pg is a Lipschitz continuous operator, the Cauchy-Lipschitz Theorem yields
the existence of a unique solution of (CGP) defined on some interval [0,7] with 7" > 0.
Let us show that for all ¢ € [0,7], z(t) € C. (CGP) can be rewritten &(t) + z(t) = f(¢),
where f(.) = Pelz(.) — uV(x(.)) ] is a continuous function with values in C.
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A simple integration procedure gives z(t) = exp(—t)zo + exp(— fo ) exp(s)ds. Set
My = e;;a()s,)llﬁo,t]ds; then ([0, +oc[) =1 and

x(t) = exp(—t)zo + (1 — exp(— / f(s)dp. (2.2.5)

Since f(s) € C, Vs € [0,¢], it is easy to check that fo s)du; € C and thus (2.2.5)
shows that for all ¢ in [0,7], =z(t) € C.

Let us now deal with (i3i). For all ¢ € [0,T], set £(t) = z(t) — uVé(x(t)). Using (i)
and the optimality property of Pc(£(t)) we have (z(t) — Po(£(t)),£(t) — Po(€(t))) < 0,
and thus by (CGP), (=2(t), —pVe(z(t)) — 2(t)) < 0. Whence, for all t in [0, 7]

u%q&(af;(t))Jr | #(t) I’< 0. (2.2.6)

It is now possible, arguing by contradiction, to prove that the trajectories are defined
on the whole of R,. Let us assume that the maximal solution of (CGP) is defined on
some [O T oz Wlth Trnas < +00. By 1ntegrat1ng (2. 2 6) on [0, t] where t < 7,4, We obtain
pe(x(t)) + fo | @(s) * ds < p(zo). Hence f) | (s) |? ds < pe(xo) — pinfo ¢ and i €
L%(0, Tmaw, H). Classu:ally, this implies by Cauchy- Schwarz inequality that limy .7 z(t)
exists. Since C is closed this limit belongs to C, and to obtain a contradiction we just
have to use Cauchy Lipschitz Theorem at t = T,,,;.

In order to prove (iv), observe that if z is bounded then, with (CGP) and (H),
& € L*(0,4+00; H). This shows that z is also a Lipschitz continuous map and using
(CGP) again that & is a Lipschitz mapping by composition. Combining the fact that & €
L?(0, +o00; H) with its Lipschitz property, it is easy to check out that lim; . Z(t) = 0.
|

2.3 Convex minimization

Asymptotic behaviour

This section is devoted to the study of (CGP) with a convex ¢. Using new Lyapounov
functionals it is proved that the trajectories enjoy nice asymptotic properties, which are
very similar to those obtained for the steepest descent method. We set S := argmin, ¢ =
{z € C| ¢(x) = inf¢ ¢}.

Theorem 2.3.1 ¢ is supposed to be convexr and to satisfy (H). As before we assume
xg € C. Then the following properties hold

(1) imy 4 oo ¢(2(t)) = infe .

Assume moreover S # (), then
(17) there exists M > 0 such that ¢(z(t)) —infc ¢ < M/(t+ 1), ¢t >0,
(731) x(t) weakly converges to some minimizer of ¢ on C ast — +oo.

The first part (i) of this Theorem is inspired by Lemaire’s work on the steepest descent
method [89], in which it is proved that it is not necessary to suppose S # () to obtain a
proper optimizing method. As in [40], Alvarez [4] the asymptotic analysis relies on the
following
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Lemma 2.3.2 (Opial)
Let H be a Hilbert space and z : [0, +oo[— H an application such that there exists a
nonempty set S C H which satisfies
(1) All weak cluster points of x are contained in S.
() Va* € & limy 00 | 2(t) — * | exists.
Then z(t) weakly converges as t — +oo towards an element of S.
Proof of Theorem 2.3.1. Let us first prove (). Let z be an arbitrary element of C.
From the convex inequality it follows that ¢(z) > ¢(x(t)) + (Vo(x(t)), z —z(t)), t > 0. In
order to use (CGP), this inequality can be reexpressed in the following form

¢(x(t)) — ¢(2) <(V(x(t), &(t) + z(t) — 2) — (Vo(z(?),2(£)) VE=0.  (23.7)

But C is a convex set, thus
(z(t) = pVo(z(t)) — Pelz(t) — uVe(z(t))], 2 — Polz(t) — uVe(z(t))]) < 0

From (CGP) we deduce that (z(t) — uVo(z(t)) — (t) — z(t), 2z — ©(t) — z(t)) < 0 and
therefore

(uV o (x(t)) + (1), 2(t) + z(t) — 2) < 0. (2.3.8)
Coming back to the inequality (2.3.7) we obtain

¢(z(t)) — o(2) < —%(i(t),if(t) +2(t) — 2) = (Vo(z(t)), &(t)), t = 0.
Hence for t > 0,
% L 2(t) |2 +1(@t), z(t) — 2) + (Vé(x(t)), 2(t) + ¢(x(t)) — ¢(2) < 0, from which we

) I
derive

% (55 1900 =2 2 o)) + 0@) - 9() + 1 130 P<0. (239

Integrating (2.3.9) over [0, ¢], we obtain

1 t 1
oy |2t =2 * + (a(t)) +/ (9(e(s) = 9(2))ds < 7 [ 70 — 2 [+ ¢(xo).  (2.3.10)
0
By (#7i) of Theorem 2.2.1, we know that ¢ox is a nonincreasing function, thus (2.3.10)
gives

1

% [ 2(t) = 2 |7 + ¢(x(1) + t(d(2(t)) — 6(2)) < i | 20 — 2 [ + (x0)-

Hence

$alt) < o) + 1 (i 20— 2 [2 + d(z0) — igqu) . (2.3.11)

To obtain (7), just notice that (2.3.11) is valid for all z in C. As a consequence
lim; o ¢(2(t)) = infe @.
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Assume now that S # (). The proof of (ii7) is based on the fact that ¢ — E(x(t),z*)
i | z(t) — z* | + ¢(x(t)) — ¢(z*) is nonincreasing for all z* fixed in S. Indeed, (2.3.9)
gives, for all z =z* in S, £E(z(t),2*) < (infc ¢ — ¢(x(t))) — i | (1) |>< 0.

Combining the latter result with the fact that ¢ is bounded from below, implies that
t — E(z(t),z*) converges as t — 400. Since ¢(z(t)) has a limit, it follows that, for all z*
in S, | z(t) — z* | converges as t — +00.

Now, in order to apply Opial lemma, we need to examine the cluster points of z. Recall
that = is bounded in C. Let z* € C and t,, — 400 such that w — limy,_, ;o z(t,) = z*.

Since ¢ is convex and continuous for the strong topology, it is lower semicontinuous
for the weak topology, and ¢(z*) < liminf,,_, ;o ¢(z(t,)).

Using (i7) it follows that ¢(z*) < infe ¢ and since, by (weak) closedness of C, z* € C,
we obtain z* € S. The conclusion is now given by Opial lemma which yields w —
limy o0 (1) = Too With 2, €5. 0

Trajectories starting outside the set of constraints

Our purpose in this section, is to study the trajectories of (CGP) under the following
hypothesis

) { zo € H,

¢ convex.

Since xo can possibly be chosen out of C, the difficult point of the following result
is to cope with a dynamics which is no more a descent method. As shown on figure 2.1
the trajectory may have all its values out of C, and the general results given by Theorem
2.2.1 do not apply any longer.

Theorem 2.3.3 Assume that ¢ and xy satisfy (H) and (H').
Let us suppose moreover that argming ¢ # (0. Then
(1) The trajectory of (CGP) is defined on R.. For all z* € argming ¢, set
* 1 * * * *
E(t,a") = 5 [a(t) — o " + n[b(x(t) — o) = (Vo(2"), 2(t) — )],

then t — E(t,x*) is a nonincreasing function and

Et, 1) = — | i(t) |2 —u(Vo(z(t)) — V(z*), 2(t) — z*), t > 0. (2.3.12)

(17) The trajectory weakly converges towards an element x* in argming ¢ and ¢(x(t))
converges to infg ¢ as t — +o00.

Proof. As in Theorem 2.2.1, let us start by proving that the considered system is dissi-
pative. Let [0, Tyqz[ be the interval corresponding to the maximal solution of (CGP).
Let z* € argmin ¢, by convexity of ¢ the optimality condition gives

VzeC (z—2x",V¢(z")) > 0. (2.3.13)
On the other hand, the convexity of C and (CGP) yield (see (2.3.8))
Vze C (uVo(x(t)) + 2(t), 2 — z(t) — z(t)) > 0. (2.3.14)
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Take z = z* in (2.3.14), and z = z(t) + &(¢) in (2.3.13). It follows that

(u[Vo(z(t) — Vé(a)] + 2(t), 2" — z(t) — 2(¢)) > 0.
Thus for all ¢ in [0, Thes|

i (G lat) —a* P+ plo(a(t) — 6(27) — (Vo(z*),2(t) — 2)])
< = [a(t) P —p(Ve(x(t)) — Vé(ar), x(t) — 27)
which is precisely (2.3.12).
The standard arguments developed in Theorem 2.2.1 can be applied to obtain that
o ¢t — x(t) is defined on [0, +o0],
e i€ L?(0,+00; H).
Since ¢(x(t)) — ¢(z*) — (Vo(z*),z(t) — z*) > 0, for all ¢ > 0, we have moreover
e 1 is bounded,
o limy o %(t) = 0.
Let us now deal with (¢7). First notice that the inequality (2.3.9) remains valid and
thus

VeeC o(a(t) — é(z) + % () 2 +%<¢(t),x(t) )+ (i(8), V(1)) < 0. (2.3.15)

Since t — z(t) is bounded and lim; , . £(t) = 0, we infer from (2.3.15) that Vz €
C, Timsup, , o 3(2(1)) — 6(2) < 0
thus
lim sup @(z(t)) < inf ¢. (2.3.16)

t—+o00

Let t, be an increasing sequence such that ¢(x(t,)) — liminf, , o ¢(x(t)). Since z(t,)
is a bounded sequence, it is weakly relatively compact in H. Therefore there exists ¢, —
+00 and z; in H such that w —limg_, o 2(%,,) = x1. Noticing that w —limy_, o (¢, ) =
w— My 400 Z(ty, ) + 2(t,) = w —limg_ oo Po(2(ts, ) — uVo(2(ts,)), we see that z; can
be obtained as a limit of a sequence in C' and thus z; € C.

Using the weak lower semicontinuity of ¢ we obtain liminf; ,, o ¢(2(t)) = limg_ 400 P(x(tn,)) >
¢(z1) > infe ¢ and by (2.3.16), it ensues that limy_, o, ¢(z(t)) = infc ¢.

Let us prove the weak convergence of the orbit x. Let z; and x5 be two weak cluster
points of z, and denote by (t,)nen and (7,)nen some corresponding real valued subse-
quences, t, — 00, T, — 00 as n — +00.

By direct algebra

E(t,x1) — E(t,x2) = 2(x(t), 12 — 21)+ | 21 2 — | 32 |* —2u({V (1) — Vo (22), 2(2)).
(2.3.17)
The property (i) implies that £(t,x21) — £(t,x2) converges as t — +o00. Replacing ¢,
successively by ¢, and 7, and passing to the limit we obtain the equality

— [ @1 =z P =2p(V (1) = V(22), 21) =| 21 — 22 | =2u(V (1) — V(22), 22).

Equivalently, 2 | 71 — x5 | +2u(Vd(z1) — VP(32), 11 — 22) = 0.
By monotonicity of V¢, both terms of the previous equality are nonnegative, and thus
r1 =29 .11
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2.4 Convergence of the trajectories for a quasi-convex
function

From now on, the initial data ¢ is supposed to be in C.
Let us recall that a function ¢ : H — R is said to be quasi-convex if its lower level sets
are convex. More precisely, if we set, for all v in IR

levyp :={x € H | ¢(z) < v},

then the lower level set lev,¢ is convex.
If ¢ is continuously differentiable then, for all x € H, the following property holds

Vz € levgmy, (Vo(z),z—x) <0. (2.4.18)
For a study of dissipative systems with a quasi-convex potential, see for instance Goudou
[68], Kiwiel-Murty [86].

Theorem 2.4.1 Assume that ¢ is quasi-convez, satisfies (H), and infc ¢ is attained.
Then the solution of (CGP) converges weakly in H.

Let x, be the limit point of the trajectory and assume in addition that H is finite-
dimensional. Then x, satisfies the following optimality condition

Vé(To) € =Ne(Too)- (2.4.19)

Proof. If H is finite-dimensional and lim; , (t) = T, we deduce from Theorem 2.2.1
that Zeo — Po(Zeo — #V@(2s)) = 0. The inclusion (2.4.19) follows from the formula
Po = (I + N¢)™ !, where I denotes the identity map of H.

To obtain the weak convergence in the general case, let us prove, as for the convex
case, that t — E(x(t),z*) = i | z(t) — z* |> + ¢(x(t)) — ¢(z*) is a Lyapounov function
for some well chosen z*.

Set m = limy_, o, #(z(t)), and S,,, = lev,,» N C. Note that S,, is nonempty since infe ¢
is attained on C. For z* € S,,, let us study ¢ — E(z(t),2*) and its first derivative

Ba(t), 2) = i““)’ uV(x(t)) + x(t) — 2°).

Like in Theorem 2.3.1 (uVo(z(t)) + 2(t), z(t) + z(t) — z*) < 0.
Hence
(uV(x(t)) + x(t) — 2", &(t)) < — | 2(t) | +u{V(a()), 2" — (t)). (2.4.20)

On the other hand, from the fact that for all ¢ > 0, ¢(x(t)) > m, and from the
quasi-convexity of ¢ we infer

(Vo(x(t), 2" — 2(t)) < 0.
Combining (2.4.20), (2.4.21) gives, for all t > 0, E(z(t),z*) < —i | z(t) %
Whence we deduce that for all z* € S,,, i | z(t) — x* |? converges as t — oo. Observe
that ¢ is lower semicontinuous for the weak topology and thus for every cluster point z.,,
?(Too) < liminfy ;o ¢(x(t)) = m. The conclusion follows again from Opial lemma. ®

(2.4.21)
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2.5 Asymptotic control

This section proposes an asymptotic control result involving a Tykhonov-like regula-
rization. Consider the following dynamical system,

(cGP). { ﬁfé)) (0~ Pela(l) = w9 o(e(0) = e(te(0] =

where ¢ : IR, — IR, is a nonincreasing function converging to zero.

The use of Tykhonov regularization as a controling means for differential inclusions has
been introduced in [15] for the steepest descent method. Under reasonable assumptions,
it allows both to select a particular equilibrium, and to obtain strong convergence of
solutions.

In the mechanical framework, the regularizing term ex can be seen as a vanishing
force, attracting the orbit towards zero. Actually, if € goes slowly enough to zero, we shall
see that all trajectories are constrained to converge strongly to the minimal norm solution
of the problem ming ¢.

This physical interpretation finds its mathematical justification in the following,

Theorem 2.5.1 Assume that ¢ is conver, satisfies (H) and that S = argming ¢ # (.
Lete : Ry — Ry be a C' nonincreasing function such that f0+°° e(s)ds = +oo, € is
bounded and converges to zero.
Then (CGP). admits a unique solution on [0,+00), that strongly converges towards
the element of minimal norm of S. In other words

s — lim z(t) = p,

t—00

where p = Ps(0).

Proof. The arguments concerning the existence and the uniqueness of a solution are very
similar to Theorem 2.2.1, we only give the main lines of the proof. As before we easily
obtain that the solution = has its values in C'. From this we deduce, as in Theorem 2.2.1,
that
& (B(0) < ~l#)P +
dt g —
where E.(t) = pp(x(t)) + M
Adapting former arguments it follows from (H) and (2.5.22), that the solution is
defined on [0, 4+o00), with velocity in L?(0,+oo; H). Moreover, if x is supposed to be
bounded, it ensues that &(t) — 0 and ¢(z(t)) converges as ¢ — oco. This can be summed
up in

%|x(t)\2 (2.5.22)

{ i € L?(0, +oo; H), (2.5.23)

xz bounded = limy; o ©(t) = 0,lim;,, o, #(x(¢)) exists.

Let us focus on the proof of the strong convergence of the trajectory x. The nonau-
tonomous nature of (CGP). gives rise to oscillating trajectories that prevents us from
exhibiting a proper Lyapounov function. However an acute study of the following func-
tion allows to overcome this difficulty.
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For all £ > 0, set
1
F(t) = Ec(t) + 5 |=(t) - pI. (2.5.24)

By convexity of C : (x — uVé(x) —ex —x — &,p — v — &) < 0, thus after computation

2
%F(t) +2]* + u(Vo(x),r — p) — é% +e(z,x —p) < 0. (2.5.25)

The lack of monotonicity of F' is due to the term (z,z — p), this leads to examine two
cases. But before going further, we need a lemma.

Lemma 2.5.2 Under assumption of Theorem 2.5.1, and if the solution x is bounded,
then all the weak limit points of x are minimizers of ¢|c.

Proof of Lemma 5.2. z is bounded, hence #(t) — 0 as t — +oo and V¢(z(.)) is
2

bounded. Thus £ F(t) = (i(t), Vo(x(t))) + (t)(@(t), z(t)) + () 22" + (@(t), 2(t) — p)

tends to zero, which combined to inequality (2.5.25) gives

lim sup u(Vo(x(t)), z(t) — p) < 0. (2.5.26)

t——+o00

This last quantity being nonnegative, it follows that lim;, (Vo (z(t)), z(t) — p) = 0.

Let z* be a weak limit point of x relatively to an increasing sequence of positive real
numbers 7,. Using the convexity of @, we obtain @¢(p) > é(z(7,)) +(Vd(x (7)), p — z(70))-
Passing to the inf-limit and according to the lower semicontinuity of ¢, one obtains ¢(p) >
¢(x*), which exactly means that z* € S. m

Case 1. In that part we assume that there exists t, € IR such that (z(t), z(t) —p) >
0, Vt > ty. For simplicity we assume that ty = 0. F' becomes in that case a nonincreasing
function, and since E. is bounded, so is F' (see (2.5.24)). Hence, applying (2.5.22) it follows
that the functions F' and |z — p| have a limit as t — +o0.

Let us argue by contradiction and assume that |z(tf) —p| =1 > 0 as t — +o0.

First we notice that liminf, , | (p,z(t) — p) > 0. Indeed, if ¢, is a sequence of real
numbers realizing this inf limit, by boundedness of x and Lemma 2.5.2 there exists a
subsequence t,, of t,, such that z(¢,,) — z* € S. Therefore

lim inf(p, z(t) — p) = (p,2" — p) = —(0 — Ps(0),2" — P5(0)) > 0.

t—+4o00

Since (z,z — p) = |v — p|* + (p,x — p), we can assume that there exists some T > 0
such that ¢ > T implies (z(t),z(t) — p) > . From (2.5.25) it ensues

%F(t) +e(t)(x(t), 2(t) = p) < 0

for all t in R,. Integrating over (7,t), t > T the above inequality becomes
t

F(t)—F(T)Jré/ngo.

But we know that F' converges whereas f]R+ € = 4o00. This yields a contradiction.
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Case 2. In that part, the function (z,z — p) is allowed to reach real negative value
as time elapses, which naturally leads to examine the set B = {y € H|(y,y — p) < 0}.
Observing that (y,y —p) = (y —p/2+p/2,y —p/2 — p/2) = |y — p/2]* — |p/2[*, we see
that B is the |p/2| radius closed ball centered at point p/2.

Set

I = {teR,|z(t) € B},
J = {teRylz(t) ¢ B},

and assume that I is unbounded.

I, J are respectively closed and open in IR, hence there exists a nondecreasing sequence
of real numbers t; such that I = | |,y [tor, tort1] and J = | |, c y]tort1, tors2[. Note that
we have implicitely assume that xy € B, which is not restrictive in our study.

In order to tackle the most difficult problem first, we assume J to be unbounded.
Before examining the asymptotic behaviour of the orbit x on I and J, let us prove that
x is bounded.

If t € I, then, by definition of I, z(t) € B which implies that z; is bounded.

For ¢ in J, there exists k(¢) := k in N such that ¢ belongs to |toxy1, togre[- Coming
back to (2.5.25), we deduce that F,, ., t,..,, and thus Fjy,, .. +. .1 are nonincreasing
functions. Since F(t) < F(tog+1) and z(toxy1) € B, it follows that F'(t) < F(tgy1) =
E.(togs1) + |z (tors1) — p|* < E.(0) + maxyep 5|y — p|>. But since E; is bounded, so is
ZT\g-

| Let us focus on the limit points of z /() when ¢ — 400, t € I. Observe that BN S =
{p}, thus, by Lemma 5.2, z;(t) has to weakly converge to its unique limit point p as
t — 400, t € I. To obtain the strong convergence one just has to notice that y € B
implies |y| < |p|, and thus limsup,_, . |z1(t)[> < |p|*.

Now we prove an equivalent result for z);. If ¢ € J, let k(¢) be as above, and set
Ty = tog()+1- Observe that 7; belongs to I and therefore x(7) strongly converges to p as
t — +o00, t € J. Besides we know that F(t) < F(r), and thus

e@x(@®)f 1 e(y)|z(m)

1
po(a(t) + SO Dnte) — o < pota(m)) + LI D) — pp
Passing to the sup-limit, (2.5.23) yields
: : 1 2 .
— — < . 0.
L m o(a(t) + tginog’gepJ 5let) —pl < lim  d(a(n)) (2.5.27)

We finally deduce from (2.5.27), that x(¢), ¢ € J strongly converges to p as t — +oc.
The case for which J is bounded can be solved with similar ideas. ®m

2.6 The gradient projection method for a continuous
convex criterion.

In the sequel, H is supposed to be finite-dimensional, and ¢ to be convex continuous
on H. Classically, the subdifferential of ¢ at yy € H is the convex subset d¢(yo) of H
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characterized by the following property

z € 0d(yo) & Vy € H, ¢(y) > ¢(yo) + {2,y — o). (2.6.28)

We propose to establish the existence of an absolutely continuous solution to the
following differential inclusion

(CGP), { %))1 Z(;)E—lec[w(t) — udd(x(t))] 20 aein (0, +00),

Defining A : H> — H by A,(v) = 2 — Po(z — pw) for all (z,v) in H?, it is easy to see
that, if « is fixed, then A, : H — H is a maximal monotone operator. Therefore (CGP),
can be reexpressed in the following form

A (@(1) + 0(x(1) 3 0, ae in (0, +00).
This formulation is akin to doubly nonlinear problems arising in PDE, see Colli- Visintin
[46], Kenmochi-Pawlow [83] and references therein. As in [46], where Bz (t)+0¢(z(t)) 3 0,
B maximal monotone, is considered, we have not been able to prove the uniqueness of
the solution and as far as we know, it is still an open question.

To obtain a solution of (CGP),, let us define for any positive A, the approximate
problems

(CGP), { Z\Eg))ii/\o(/\t)e—cf’c[%\(t) — uVor(za(t))] =0 (2.6.29)

where xg) is a sequence in C' such that limy_,ozgy = xg, and ¢, is the Moreau-Yosida
approximation of ¢.

The general results concerning the Moreau-Yosida approximate can be found in [37],
or in Rockafellar-Wets [114]. Let us recall that, for any positive A, ¢, is defined as the
episum of ¢ and of the quadratic kernel y € H — 5;|y[?, that is

Vy € H aly) = inf{9(z) + oIy — =)

¢ is a C! function from H into IR, whose gradient V¢, is Lipschitz continuous.
Moreover, for any y in H

sup ¢ (y) = lim éa(y) = 6(y)- (2.6.30)

A>0

Set 0¢°(y) = inf,cap(y) |2| Where y € dom 04, then

IVér(y)| < 08°(y). (2.6.31)

Let us state the central result of this section

Theorem 2.6.1 Assume that ¢ is conver, continuous on H, and bounded from below.
Then there exists an absolutely continuous solution t € [0, +00) — x(t) € H satisfying
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(cap), { igé)) —L:ZC(;)E—CPC[QJ(t) — pop(x(t))] 20 aein (0,+00) . (2.6.32)

Moreover,
(1) Vt >0, z(t) € C.
(it) The function t € [0, +00) — ¢(z(t)) is absolutely continuous with

%qg(x(t)) < —|&(t)[2 ae in (0, +o0).

Therefore & € L*(0,+oc; H).

(#43) limy_y o0 ¢(2(t)) = infe 6.

(iv) If argming ¢ # (), then z(t) converges to some element of argming ¢, as t — +00.
Besides, there exists a nonnegative constant M such that [¢(z(t))—infc ¢] < M/t+1,Vt >
0.

Fix T > 0, and denote by D(]0, T'[) the set of C* real functions with compact support
in ]0, 7[. We shall need the following useful lemmas.

Lemma 2.6.2 If ¢ is a continuous convex function on a finite-dimensional space H, then
0¢ is bounded on bounded sets. More precisely if B is bounded in H, then there exists some
M > 0 such that

Vye B Vzedp(y) |z| <M. (2.6.33)

Proof. Recall that H is finite-dimensional and see for instance Rockafellar [112], (th.
24.7, p237). m

Lemma 2.6.3 Let t € [0,+00) — u(t) € H be an absolutely continuous function, and
assume that t € [0,4+00) — ¢(u(t)) is also absolutely continuous.

Let D be the subset of Ry on which t — ¢(u(t)) and t — u(t) are derivable. Then, dt
being the Lebesgue measure on IR, dt(R4\D) =0 and

Ve D Vzedo(u(t) %qs(u(t)) — (i(t), 2).

Proof. The fact that an absolute continuous function is derivable almost everywhere is a
classical result, and as a consequence dt(IRy\D) = 0.
Fix t in D. We have, for convenient positive €

du(t +¢)) = d(u(t)) = (u(t+¢) — u(t), 2),

where z € 0p(u ( )) # 0 (recall that ¢ is continuous). Divide by € and let & — 0, this
gives at the limit 2¢(u(t)) > (u(t), z). Replacing € by —¢, yields the converse inequality.
|

Proof of Theorem 2.6.1. First, some uniform estimations relying on the solutions of
(CGP), are established on a bounded time interval [0,7]. Then arguing by compacity,
we pass to the limit to obtain (2.6.32) on [0,7]. When no confusion can occur, the time
variable ¢ will be dropped down. For the sake of legibility, all subsequences of x,Z... are
still denoted x,, T...
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Estimations
e Owing to Theorem 2.2.1, the solution z, of the approximation scheme (CGP)y
satisfies for all ¢ in [0, T

Or(@2 (1)) — b () + / INEY) (2.6.34)

By (2.6.30) and the fact that ¢ is bounded from below, we obtain that &, is a boun-
ded sequence in L?*(0,7; H). Thus one can extract from iy a subsequence that weakly
converges in L?(0,T; H) to some functlon v:(0,T) — H.

e From the formula z,(t) — z\(7 f %y, we deduce that for all ¢ > 7 in [0,7]

lzA(t) — zA(T)] < \/t—n/f \x)\|2

It ensues that x, is an equicontinuous bounded sequence in C([0, T, H) equipped with
the supremum norm, and therefore Ascoli Theorem yields the existence of a cluster point
z € C([0,T],H) to the sequence x). Moreover by Theorem 2.2.1, 2,([0,7]) € C and
therefore, C' being closed,

vVt €[0,7T], z(t) € C. (2.6.35)

e The preceding two points yield the existence of a subsequence x, such that

zx — xin C([0,T], H), (2.6.36)
ty — wvinw— L*(0,T; H). (2.6.37)

Whence, we have &), — & and &, — v in the sense of distributions in ]0,7’[. Identi-
fying both limits, we see that & belongs to L?(0,T; H) which implies that z is absolutely
continuous.

e By (2.6.31), we have for all ¢ in [0,7], |Vor(zA(t))| < |0¢°(z(t))|. Now Lemma
2.6.2, and the continuity property of = implies that V¢, (z,(.)) is a bounded sequence
in L>*(0, +o00, H). In particular, it is relatively compact in w — L?(0,T; H), with at least
some cluster point, say g € L?(0,T; H). Therefore, after extraction,

Vox(ra()) = g in w— L*0,T; H). (2.6.38)
e Let us study the sequence ¢, (zx(.)). For all £ > 7 in [0, T]

162 (22 (1)) — da(2(7))] g/ < Vn(ma), dy > [ds < MVE— 7 / a2 (2.6.39)

where M is a bound of |V¢,(z(.))| on [0, T]. This shows by Ascoli Theorem that a
subsequence of ¢,(z,(.)) converges uniformly on [0, 7] to an element ¢ of C([0,T], H).
Let us prove that, for all ¢ € [0,7T], ¥(t) = ¢(z(t)). Take t in [0,T]. If Ay > X > 0,
it follows from (2.6.30) that ¢y, (zA(t)) < ér(zA(t)), and letting A — 0, (2.6.36) yields
®xo (x(t)) < 9(t). Using (2.6.30) again, it ensues ¢(x(t)) < ¥(¢).
Let M > 0 be a bound of V¢, (z,(.)). The convex inequality gives

oAz (1)) = da(za(t)) — Ml (t) — z(2)]. (2.6.40)
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From (2.6.30), and (2.6.36), we finally deduce ¢(z(t)) > #(t), and thus

dr(zA(t)) = o(x(t)) in C([0,T], H). (2.6.41)

Besides, ) and V¢, (zx(.)) being respectively bounded sequences in L?(0,T; H) and
L>(0,T; H), it follows that %¢,(zx(.)) is bounded in L*(0,7; H). This implies that the
first derivative in the sense of distributions of ¢ € (0,T) — ¢(x(t)) is in L?*(0,T; H), and
in particular that ¢(x(.)) is absolutely continuous.

e Let us identify g. Fix # > 0 in D(]0, T'[). Integrating the convex inequality, we obtain
forally e H

/0 0(1)[oA(y) — da(za(t)) — (Vo (2a(h)), y — 2a(2))]dt > 0. (2.6.42)

From (2.6.36), (2.6.38), (2.6.30) and (2.6.41), we obtain

/OT 0(t)[o(y) — ¢(z(t)) — (9(t), y — (t))]dt > 0.
The latter being true for all 6 > 0 in D(]0, TY), it follows that
é(y) = d(z(t)) + (9(t), y — 2(t)) ae in [0,7].
This implies by definition of the subdifferential, that
g(t) € 0 (x(t)) aein [0,T]. (2.6.43)

All the above results are gathered in the following statement

zx — xin C([0,T], H), (2.6.44)

ity — Zinw— L*0,T; H), (2.6.45)
(nat) = $(@()) in C0,T], H), (2.6.46)
Vor(za()) — g(t) € 0¢(x(t)) in w — L*(0,T; H). (2.6.47)

Passing to the limit
The (sub)sequence x, verifies

{ 2A(t) + za(t) — Polza(t) — uVéa(za(1))] =0,
Vt € [0,T],22(0) = zoa,

which is equivalent to

{ (=uVor(x(t) — 2a(t), & — 2A(t) — 2a(1)) <0,
Vi € [0,T],VE € C.2r(0) = on.

This is also equivalent to

{ fo —pVor(2A(t)) — (1), — 2a(t) — 2 (2))0(t)dt < 0,
V0 > 0 € D(]0,T), V€ € C,z(0) = zon,
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and thus to

{ Jo BV (@) +dr, 20 = E)0+ [ uhgda(22) + [y 8220 <0,
W >0e D(]O,T[),Vf € C, .73,\(0) = Tox-

Now, in order to take the inf-limit of each term in the previous inequality fix 6 > 0,
and £ in C.
By (weak) lower semicontinuity of the semi-norm [ | . [0(s)ds on L?(0,T; H) and

(2.6.45),
T T
/\;j:\?aghminf/ |5 |%6.

By combining (2.6.44), (2.6.45), and (2.6.47) one obtains that

T T
lim [ 0{uVoar(zr) +Lx, 22 — &) :/ 0{ug + 2, — &).

A—=0 /o 0

From Lemma 2.6.3 and the fact that ¢ — ¢(z(¢)) is absolutely continuous it follows that
the first derivative almost everywhere, and the derivative in the sense of distributions
on |0,7[ of t — ¢(x(t)) are both equal to ¢t — (&(t),g(t)). From (2.6.46) we deduce
Lor(@a(.)) = Lp(z(.)) in the sense of distributions on |0, T'[, and thus

T

lim m@%¢gm@»mwzl m@%¢@@»@:iA 0(i, g).

Combining the last three results yields

{ Jy \ng + &2 = 0+ [ ulg, @) + [y P8 <0,
V8 >0 e D(0,T]),Y¢ € C,z(0) = x,

and after rearranging terms

fT9<x—Mg—$—i3,£—x—a'c)§0,
{%eDWIm%eadm:%. (2.6.48)

In order to use the variational characterization of Po(z(.) — ug(.)) in (2.6.48), let us
prove that #(t) + z(t) € C ae on [0,T]. Consider the following subset of L?(0,T; H),
C = {f € L*0,T;H)|f(t) € C ae on (0,T)}. Clearly C is closed in L?(0,T; H) for the
strong topology, and since C is convex, it is also closed for the weak topology. By (CGP),,
we have &) +1z) € C. Whence, from (2.6.44), (2.6.45), and the weak closedness property of
C, it follows that £+x € C. Using (2.6.48) we obtain that &(¢)+xz(t) — Po[z(t) — ug(t)] = 0
ae on (0,7), and thus by (2.6.43), it follows that

z(t) + x(t) — Polz(t) — poo(z(t))] 3 0 aein (0,7), (2.6.49)

with
z(0) = z. (2.6.50)
To obtain a solution of (CGP), defined on [0, +oc|, let us observe that (2.6.30) and
(2.6.34) imply that the sequence Z is actually bounded in L2(0, +o0o; H). Combining this
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fact with those obtained above yields the existence of a global solution x satisfying the
claimed properties. Indeed we deduce from (2.6.49), (2.6.50) that z satisfies (2.6.32). The
viability property (i) of x, is guaranteed by (2.6.35).

The proofs of (i7),(4i7), an (iv) rely on the absolute continuity of z and ¢(z(.)). This
allows by use of Lemma 2.6.3, to reproduce the arguments of Theorems 2.2.1-2.3.1 with
nearly no change. m

Remarks (a) Denote by ri C the relative interior of C. By adapting the argument of
Theorem 2.2.1 (i7) it follows easily that

2o €riC =Vt >0, z(t) € ri C.

In other words (CGP), is an interior method as soon as the initial value is strictly feasible.
(b) On the implementation of the method.
Given some sequences ju;, Aty > 0, an explicit discretization of (CGP), gives

W +a — Polzy — u0¢(xx)] 2 0, k € N,
k

which can be reformulated as
Tr41 € (1 - Atk).’ﬂk + Atkpc[(l}k — Nka¢($k)], ke N. (2.6.51)

This approach for solving approximatively dynamical systems is well-known, and of course,
for py, = p and At, = 1 the usual gradient-projected method (2.1.4) is recovered. By the
above remark (a) we know that (CGP), is an interior method whenever z, belongs to
ri C'; this suggests that a “good” discrete approximation should also enjoy this property.
Very simple examples show that it is not the case of (2.1.4), however if we assume that
the steptime parameters of (2.6.51) satisfy Aty < 1, an easy induction implies that the
sequences xy, k € N complying with (2.6.51) also verify

ro€riC=VkeN, x, €riC.

Besides, much like as in convex feasibility problems (see Censor-Eggermont-Gordon [42]
and references therein), the form of (2.6.51) suggests to interpret Aty, k € N as a sequence
of relaxation parameters and to study (2.6.51) within that perspective. Such a study is
out of the scope of the present paper, but it is certainly a matter for future research.
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Gradient flows associated with Hessian Riemannian
structures induced by Legendre functions in

constrained optimization

FELIPE ALVAREZ! , JEROME BoLTE? , OLIVIER BRAHIC.?

Abstract. Motivated by a class of constrained minimization problems, we study the gradient flows
with respect to Hessian Riemannian metrics induced by convex functions of Legendre type. The first
result characterizes Hessian Riemannian structures on convex sets as those metrics that have a specific
integration property with respect to variational inequalities, giving a new motivation for the introduction
of Bregman-type distances. Then, the general evolution problem is introduced and a differential inclusion
reformulation is given. Some explicit examples of these gradient flows are discussed. A general existence
result is proved and global convergence is established under quasi-convexity conditions, with interesting
refinements in the case of convex minimization. Dual trajectories are identified and sufficient conditions
for dual convergence are examined for a convex program with positivity and equality constraints. Some
convergence rate results are established. In the case of a linear objective function, several optimality
characterizations of the orbits are given : optimal path of viscosity methods, continuous-time model of
Bregman-type proximal algorithms, geodesics for some adequate metrics and projections of ¢-trajectories
of some Lagrange equations and completely integrable Hamiltonian systems. These results are based on a
change of coordinates which is called Legendre transform coordinates and is studied in a general setting.
Some of these results unify and generalize several previous works.

Keywords. Gradient flow, Hessian Riemannian metric, Legendre type convex function,
existence, global convergence, Bregman distance, Liapounov functional, quasi-convex mi-
nimization, convex and linear programming, Legendre transform coordinates, geodesics,
Lagrange and Hamilton equations.

3.1 Introduction

The aim of this paper is to study the existence, global convergence and geometric
properties of gradient flows with respect to a specific class of Hessian Riemannian metrics
on convex sets. Our work is indeed deeply related to the constrained minimization problem

(P) min{f(z) | z € C, Az = b},

where C is the closure of a nonempty, open and convex subset C of R", Aisam < n
real matrix with m < n, b € R™ and f € C'(IR"). A strategy to solve (P) consists in
endowing C with a Riemannian structure (-,-)f, to restrict it to the relative interior of
the feasible set F := C' N {z | Az = b}, and then to consider the trajectories generated
by the steepest descent vector field —V, f|,.. This leads to the initial value problem

(H-SD)  i(t)+ V, fi.(z(t) =0, (0) € F,

!Departamento de Ingenieria Matemdtica and Centro de Modelamiento Matematico (CNRS UMR
2071), Universidad de Chile, Blanco Encalada 2120, Santiago, Chile. Email : falvarez@dim.uchile.cl. Fax :
(56-2) 688 3821. Partially supported by FONDAP in Applied Mathematics and FONDECYT 1020610.

2Partially supported by ECOS-CONICYT CO0EO05.

3GTA, UMR 5040, Département de Mathématiques, case 51, Université Montpellier II.
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where (H-SD) stands for H-steepest descent. We focus on those metrics that are induced
by the Hessian H = V?h of a Legendre type convex function h defined on C (cf. Def.
3.3.1).

The use of Riemannian methods in optimization has increased recently : in relation
with Karmarkar algorithm and linear programming see Karmarkar [82], Bayer-Lagarias
[30] ; for continuous-time models of proximal type algorithms and related topics see Tusem-
Svaiter-Da Cruz [78], Bolte-Teboulle [35]. For a systematic dynamical system approach to
constrained optimization based on double bracket flows, see Brockett [38, 39|, the mono-
graph of Helmke-Moore [73] and the references therein. On the other hand, the structure
of (H-SD) is also at the heart of some important problems in applied mathematics. For
connections with population dynamics and game theory see Hofbauer-Sygmund [76], Akin
[2], Attouch-Teboulle [20]. We will see that (H-SD) can be reformulated as the differential
inclusion $Vh(z(t)) + V f(z(t)) € Im A”, z(t) € F, which is formally similar to some
evolution problems in infinite dimensional spaces arising in thermodynamical systems, see
for instance Kenmochi-Pawlow [83] and Blanchard-Francfort [33].

A classical approach in the asymptotic analysis of dynamical systems consists in ex-
hibiting attractors of the orbits by using Liapounov functionals. Our choice of Hessian
Riemannian metrics is based on this idea. In fact, we consider first the important case
where f is convex, a condition that permits us to reformulate (P) as a variational inequa-
lity problem : find @ € F such that (V,, fi-(z),z —a)¥ > 0 for all z in F. In order to
identify a suitable Liapounov functional, this variational problem is met through the follo-
wing integration problem :find the metrics (-,-)? for which the vector fields V* : F — R",
a € F, defined by V*(z) = x — a, are (-,-)¥-gradient vector fields. Our first result (cf.
Theorem 3.3.1) establishes that such metrics are given by the Hessian of strictly convex
functions, and in that case the vector fields V® appear as gradients with respect to the
second variable of some distance-like functions that are called D-functions. Indeed, if
(-,-) is induced by the Hessian H = V?h of h : F — IR, we have for all g,z in F :
V.Dyp(a,.)(x) = z — a, where Dy(a,z) = h(a) — h(z) — dh(z)(x — a). For another cha-
racterization of Hessian metrics, see Duistermaat [56].

Motivated by the previous result and with the aim of solving (P), we are then naturally
led to consider Hessian Riemannian metrics that cannot be smoothly extended out of F.
Such a requirement is fulfilled by the Hessian of a Legendre type convex function A, whose
definition is recalled in section 3.3. We give then a differential inclusion reformulation of
(H-SD), which permits to show that in the case of a linear objective function f, the flow
of =V, fi, stands at the crossroad of many optimization methods. In fact, following [78],
we prove that viscosity methods and Bregman proximal algorithms produce their paths
or iterates in the orbit of (H-SD). The D-function of h plays an essential role for this.
In section 3.3.4 it is given a systematic method to construct Legendre functions based on
barrier functions for convex inequality problems, which is illustrated with some examples ;
relations to other works are discussed.

Section 3.4 deals with global existence and convergence properties. After having given
a non trivial well-posedness result (cf. Theorem 3.4.1), we prove in section 3.4.2 that
f(z(t)) — infz f as t — +o0o whenever f is convex. A natural problem that arises is
the trajectory convergence to a critical point. Since one expects the limit to be a (local)
solution to (P), which may belong to the boundary of C, the notion of critical point must



3.2 Preliminaries 63

be understood in the sense of the optimality condition for a local minimizer a of f over
F -
(0) Vf(a)+ Nz(a) 0, a € F,

where Ni(a) is the normal cone to F at a, and Vf is the Euclidean gradient of f. This
involves an asymptotic singular behavior that is rather unusual in the classical theory of
dynamical systems, where the critical points are typically supposed to be in the manifold.
In section 3.4.3 we assume that the Legendre type function A is a Bregman function with
zone C' and prove that under a quasi-convexity assumption on f, the trajectory converges
to some point a satisfying (O). When f is convex, the preceding result amounts to the
convergence of x(t) toward a global minimizer of f over F. We also give a variational cha-
racterization of the limit and establish an abstract result on the rate of convergence under
uniqueness of the solution. We consider in section 3.4.4 the case of linear programming,
for which asymptotic convergence as well as a variational characterization are proved wi-
thout the Bregman-type condition. Within this framework, we also give some estimates
on the convergence rate that are valid for the specific Legendre functions commonly used
in practice. In section 3.4.5, we consider the interesting case of positivity and equality
constraints, introducing a dual trajectory A(¢) that, under some appropriate conditions,
converges to a solution to the dual problem of (P) whenever f is convex, even if primal
convergence is not ensured.

Finally, inspired by the seminal work [30], we define in section 3.5 a change of coor-
dinates called Legendre transform coordinates, which permits to show that the orbits of
(H-SD) may be seen as straight lines in a positive cone. This leads to additional geometric
interpretations of the flow of =V f/ .. On the one hand, the orbits are geodesics with res-
pect to an appropriate metric and, on the other hand, they may be seen as ¢-trajectories
of some Lagrangian, with consequences in terms of integrable Hamiltonians.

Notations. Ker A = { € R" | Az = 0}. The orthogonal complement of A, is denoted
by Ag, and (-,-) is the standard Euclidean scalar product of R™. Let us denote by S™
the cone of real symmetric definite positive matrices. Let 2 C IR™ be an open set. If
f € — IR is differentiable then V f stands for the Euclidean gradient of f. If A : Q — R
is twice differentiable then its Euclidean Hessian at z € Q is denoted by VZh(x) and is
defined as the endomorphism of IR"™ whose matrix in canonical coordinates is given by

[a2h(w)]i,j6{1,..,n}' Thus, Vz € €, th(fU) = <V2h($) )

O0x;0x;

3.2 Preliminaries

3.2.1 The minimization problem and optimality conditions

Given a positive integer m < n, a full rank matrix A € R™"™ and b € Im A, let us
define
A={z e R"| Az = b}. (3.2.1)
Set Ay = A— A = Ker A. Of course, Ay = Im A" where A’ is the transpose of A. Let C
be a nonempty, open and convex subset of R", and f : R"” — IR a C' function. Consider
the constrained minimization problem

(P) inf{f(z) |z € C, Az = b}.
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The set of optimal solutions of (P) is denoted by S(P). We call f the objective function
of (P). The feasible set of (P) is given by F = {z € R" |z € C, Az =b} = CN A, and
F stands for the relative interior of F, that is

F=1iF={ze€R"|z€C, Az=b}=CnA. (3.2.2)

Throughout this article, we assume that
F # 0 and inf{f(z) |z € F} > —o0. (3.2.3)
It is well known that a necessary condition for a to be locally minimal for f over F is

(0): =V f(a) € Nx(a), where Nx(z) = {v € R" |Vy € F, (y — x,v) < 0} is the normal

cone to F at € F (N#(x) = () when = ¢ F); see for instance [114 Theorem 6.12]. By

[112, Corollary 23.8.1], Nx(z) = Ngny(2) = Ng(x) + Na(z) = Ng(z) + Ag, for all z € F.
Therefore, the necessary optimality condition for a € F is
—Vf(a) € Ng(a) + Ap. (3.2.4)

If f is convex then this condition is also sufficient for a € F to be in S(P).

3.2.2 Riemannian gradient flows on the relative interior of the
feasible set

Let M be a smooth manifold. The tangent space to M at r € M is denoted by
T,M.If f: M — IR is a C' function then df(z) denotes its differential or tangent map
df (z) : T,M — R at x € M. A C*¥ metric on M, k > 0, is a family of scalar products (-, -),
on each T,M, x € M, such that (-,-), depends in a C* way on x. The couple M, (-,-), is
called a C* Riemannian manifold. This structure permits one to define a gradient vector
field of f in M, which is denoted by Vi, f and is uniquely determined by the following
conditions :

(g1) Tangency condition : for all z € M, V| f(z) € T, M.

(g2) Compatibility condition : for all z € M v € T, M, df(z)(v) = (V. f(7),v)s-
If N is a submanifold of M then T,N C T, M for all x € N and the metric (-, ), on M
induces a metric on N by restriction. We refer the reader to [54, 88] for further details.

Let us return to the minimization problem (P). Since C' is open, we can take M = C,
which is a smooth submanifold of IR"™ with the usual identification 7,C ~ IR" for every
x € C. Given a continuous mapping H : C' — S'}, the scalar product defined by

Vz € C, Yu,v € R", (u,v)? = (H(z)u,v), (3.2.5)

endows C with a C° Riemannian structure. The corresponding Riemannian gradient vector
field of the objective function f restricted to C', which we denote by V, f., is given by

Vafio(@) = H(z) 'V f(2). (3.2.6)

Next, take N = F = CN.A, which is a smooth submanifold of C' with T, F ~ A, for each
x € F. Definition (3.2.5) induces a metric on F for which the gradient of the restriction
i is denoted by V,, f,.. Conditions (g:) and (go) imply that for all z € F

V. fr(x)=PH(z)"'Vf(z), (3.2.7)
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where, given z € C, P, : R" — Ay is the orthogonal projection onto the linear subspace
Ay with respect to the scalar product (-,-)Z. Since A has full rank, it is easy to see that

P,=1-H(z) "AT(AH(z)'AT) !4, (3.2.8)
and we conclude that for all x € F
V., fir(z) = H(m)_l[l — AT(AH(x)_lAT)_lAH(a;)_l]Vf(:c). (3.2.9)

It is usual to say that a € F is a critical point of f|, when V, f,(a) = 0. Remark that
V. fir(a) =01 Vf(a) € Ay, where the latter is exactly the optimality condition (3.2.4)
when a belongs to F (recall that Ng(z) = {0} when = € C because C is open).

Given z € F, the vector =V, f|,(z) can be interpreted as that direction in .4, such
that f decreases the most steeply at x with respect to the metric (-,-). The steepest
descent method for the (local) minimization of f on the Riemannian manifold F, (-,-)Z

T
consists in finding the solution trajectory x(¢) of the vector field —V,, fi. with initial

condition z° € F :
T+ V,fi-(x) =0,
{ 2(0) = gjjfé }- (3-2.10)
0

When 2° is a critical point of f,, the solution to (3.2.10) is stationary, i.e. z(¢) = 2.
Otherwise, it is natural to expect z(t) to approach the set of local minima of f on F. Ge-
neral results and interesting examples concerning the existence and asymptotic behavior
of solutions to Riemannian gradient flows can be found in [73].

3.3 Legendre gradient flows in constrained optimiza-
tion

3.3.1 Liapounov functionals, variational inequalities and Hes-
sian metrics.

This section is intended to motivate the particular class of Riemannian metrics that
is studied in this paper in view of the asymptotic convergence of the solution to (3.2.10).

Let us consider the minimization problem (P) and assume that C is endowed with
some Riemannian metric (-,-)¥ as defined in (3.2.5). We say that V : F — R is a
Liapounov functional for the vector field -V f . if Vo € F, (=V, fi-(2), V, V()T <o0.
If z(t) is a solution to (3.2.10) in some interval (a,b) and V is a Liapounov functional for
—V 4y fi» then the mapping (a,b) > ¢ — V(x(t)) is non-increasing. Although f|, is indeed
a Liapounov functional for —Vy f|,., this does not ensure the convergence of z(t). Even
in the Euclidean case (-,-)¥ = (-,-), the convergence of x(t) may fail without additional
geometrical or topological assumptions on f ; see for instance the counterexample of Palis-
De Melo [106].

Suppose that the objective function f is convex. For simplicity, we also assume that
A =0 so that F = (. In the framework of convex minimization, the set of minimizers of

f over C, denoted by argmin & f, is characterized in variational terms as follows :

a € argming f & VreC, (Vf(z),z—a)>0 (3.3.11)
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In the Euclidean case, we define g,(z) = 5|z — a|* and observe that Vg,(z) = z — a. By
(3.3.11), for every a € argming f, ¢, is a Liapounov functional for —V f. This key property
allows one to establish the asymptotic convergence as ¢ — +o0o of the corresponding
steepest descent trajectories ; see [40] for more details in a very general non-smooth setting.
To use the same kind of arguments in a non Euclidean context, observe that by (3.2.6)
together with the continuity of V f, the following variational Riemannian characterization
holds

a €argming f & Vzel, (Vyf(z),z—a) >0. (3.3.12)

We are thus naturally led to the problem of finding the Riemannian metrics on C for
which the mappings C > x — x —y € R", y € C, are gradient vector fields.

The next result gives a complete answer to this question. For simplicity, we restrict
our attention here to those metrics that are differentiable. In the sequel, the set of metrics
complying with the previous requirements is denoted by M, that is, (-, ) e M & H €
CH(C;8%) and Yy € C, Jp, € CH(C;R), V,py(z) =z —y.

Theorem 3.3.1 If (-,-)2 € M then there exists a strictly convex function h € C*(C)
such that Vo € C, H(z) = V?h(x). Besides, defining Dy, : C x C — R by

Di(y,z) = h(y) — h(z) = (Vh(z),2 - y), (3.3.13)

we obtain Vg Dp(y, ) (x) =2 —y.

Proof. Let (21, ..,2,) denote the canonical coordinates of R" and write >, ; H;;(z)dz;dx;
for (+,)F. By (3.2.6), the mappings z — z—y, y € C, define a family of (-, ) gradients iff
ky:xzw— H(z)(x—y),y € C,is afamily of Euclidean gradients. Setting o () = (k,(z), -),
x,y € C, the problem amounts to find necessary (and sufficient) conditions under which
the 1-forms oY are all exact. Let y € C. Since C is convex, the Poincaré lemma [88,
Theorem V.4.1] states that o¥ is exact iff it is closed. In canonical coordinates we have
od(z) = >, O, Hik(z)(xg — yi)) dui, x € C and therefore o is exact iff for all 4,5 €
{1,..,n} we have a%j > Hiw(x) (zr — yk) 8z >« Hjk(x)(xr — yi), which is equivalent to
2k 5o Hir(@) (@ — yx) + Hij(7) = 324 5, awz k(@) (2x — yx) + Hji(x). Since Hyj(x) = Hji(x),
this gives the following condition : 3°, -2 pr Hy(z) (@ —yr) = Dy a?c Hip(z)(xr—yk), Vi, j €
{1,.,n}. If we set V, = (3= -Ha(z), -, 6iH ()" and W, = (32-Hj1(), -, 52 Hjn(2))",
the latter can be rewritten (V; W,z —y) = 0, which must hold for all (z,y) € C x C.
Fix x € C. Let ¢, > 0 be such that the open ball of center x with radius ¢, is contained
in C. For every v such that |v| = 1, take y = = + ¢, /2v to obtain that (V, — W,,v) = 0.
Consequently, V,, = W, for all z € C. Therefore, (-,-)% € M iff

0 0
? J

Ve e C, Vi, j, ke {l,..,n
Lemma 3.3.2 If H : C — S% is a differentiable mapping satisfying (3.3.14), then there
exists h € C3(C) such that Vo € C, H(z) = V?h(z). In particular, h is strictly convex.

Proof of Lemma 3.3.2. Foralli € {1, ..,n}, set 8* =Y, Hyxdxzy. By (3.3.14), B is closed
and therefore exact. Let ¢; : C'+— IR be such that d¢; = % on C, and set w = Y, ¢ydzy.
We have that %qﬁi(x) = H;j(z) = Hji(z) = a%iqﬁj(m), Vz € C. This proves that w is
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closed, and therefore there exists h € C?(C,R) such that dh = w. To conclude we just
have to notice that a%ih(x) = ¢;, and thus afjgwi () = Hji(z),Vz e C. m

To finish the proof, remark that taking ¢, = Dj(y, -) with D, being defined by (3.3.13),
we obtain Vo, (z) = V?h(z)(z — y), and therefore Vo, (z) = z — y in virtue of (3.2.6).

Remark 3.3.3 (a) In the theory of Bregman proximal methods for convex optimization,
the distance-like function D), defined by (3.3.13) is called the D-function of h. Theorem
3.3.1 is a new motivation for the introduction of D}, in relation with variational inequality
problems.

(b) For a theoretical approach to Hessian Riemannian structures the reader is referred to
the recent work of Duistermaat [56].

Theorem 3.3.1 suggests to endow C with a Riemannian structure associated with
the Hessian H = V?2h of a strictly convex function h : C + IR. As we will see under
some additional conditions, the D-function of A is essential to establish the asymptotic
convergence of the trajectory. On the other hand, if it is possible to replace h by a
sufficiently smooth strictly convex function A’ : C" — IR with ¢ 2> C and A, = h, then
the gradient flows for A and A’ are the same on C but the steepest descent trajectories
associated with the latter may leave the feasible set of (P) and in general they will not
converge to a solution of (P). We shall see that to avoid this drawback it is sufficient to
require that |Vh(2?)| — +oo for all sequences (z7) in C converging to a boundary point
of C. This may be interpreted as a sort of penalty technique, a classical strategy to enforce
feasibility in optimization theory.

3.3.2 Legendre type functions and the (H-SD) dynamical system

In the sequel, we adopt the standard notations of convex analysis theory; see [112].
Given a closed convex subset S of IR", we say that an extended-real-valued function
g : S — R U{+oo} belongs to the class I'q(S) when g is lower semicontinuous, proper
(9 # +o0) and convex. For such a function g € I'¢(S), its effective domain is defined by
domg={z € S| g(z) < +oo}. When g € T'o(R") its Legendre-Fenchel conjugate is given
by ¢*(y) = sup{{z,y) — g(x) | € R™}, and its subdifferential is the set-valued mapping
Jdg : R" — P(IR") given by dg(z) = {y € R" | Vz € R", f(z) + (y,z —x) < f(z)}. We
set dom dg = {zx € R" | dg(z) # 0}.

Definition 3.3.1 [112, Chapter 26] A function h € To(IR") is called :

(i) essentially smooth, if h is differentiable on int dom h, with moreover |Vh(z?)| — +o0
for every sequence (z7) C intdom h converging to a boundary point of domh as j — 400 ;
(ii) of Legendre type if h is essentially smooth and strictly convex on int dom h.

Remark that by [112, Theorem 26.1], A € T'((IR") is essentially smooth iff Oh(z) =
{Vh(z)} if z € int dom h and dh(z) = 0 otherwise; in particular, dom dh = int dom h.

Consider the minimization problem (P). Motivated by the results of section 3.3.1, we
define a Riemannian structure on C' by introducing a function h € T'y(IR") such that :

(i) his of Legendre type with int dom h = C.
(Hyp) (ii) Ay, € C*(C;R) and Vz € C, V*h(z) € S7.
(iii) The mapping C > z +— V?h(z) is locally Lipschitz continuous.
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Here and subsequently, we take H = V2h with h satisfying (H,). The Hessian mapping
C > z — H(z) endows C with the (locally Lipschitz continuous) Riemannian metric

Vo € C, Yu,v € R, (u,v)¥ = (H(z)u,v) = (V?h(x)u,v), (3.3.15)

and we say that (-,-) is the Legendre metric on C induced by the Legendre type function
h, which also defines a metric on F = C'N A by restriction. In addition to f € C*(IR"),
we suppose that the objective function satisfies

V f is locally Lipschitz continuous on IR". (3.3.16)

The corresponding steepest descent method in the manifold F, (-,-)¥  which we refer to
as (H-SD) for short, is then the following continuous dynamical system

T(t)+V,fie(x() =0, t € (TnTu),
(H-5D) { z(0) = 2° €| F,

where V, f is given by (3.2.9) with H = V?h and T,,, < 0 < Ty define the interval
corresponding to the unique mazimal solution of (H-SD).

Definition 3.3.2 Given an initial condition 1° € F, we say that (H-SD) is well-posed
when its mazximal solution satisfies Ty = +00.

In section 3.4.1 we will give some sufficient conditions ensuring the well-posedness of
(H-SD).

3.3.3 Differential inclusion formulation of (H-SD) and some conse-
quences

It is easily seen that the solution z(t) of (H-SD) satisfies :

%Vh(g;(t)) +VF(x(t) € AL on (T, Tu),
z(t) € F on (T, Tu), (3:3.17)
x(()) = 20e¢ F.

This differential inclusion problem makes sense even when z € I/Vllocl (T, Tar; R™), the
inclusions being satisfied almost everywhere on (7, Ths). Actually, the following result

establishes that (H-SD) and (3.3.17) describe the same trajectory.
Proposition 3.3.1 Let z € VVll’l(Tm,TM;]R"). Then, x is a solution of (3.3.17) iff = is

the solution of (H-SD). In particular, (3.3.17) admits a unique solution of class C'.
Proof. Assume that z is a solution of (3.3.17), and let I’ be the subset of (T,,Tw) on
which ¢ — (z(t), Vh(z(t)) is derivable. We may assume that z(¢) € F and % Vh(z(t)) +
Vf(z(t)) € Ag, Vt € I'. Since z is absolutely continuous, #(t) + H(z(t)) 'V f((z(t)) €
H(z(t))"'Af and i(t) € Ay, Vt € I'. But the orthogonal complement of Ay with respect
to the inner product (H(z)-,-) is exactly H(z) ' Ay when z € F. It follows that % +
P.H(z)"'V f(x) =0 on I'. This implies that z is the C! solution of (H-SD). =
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Suppose that f is convex. On account of Proposition 3.3.1, (H-SD) can be interpreted as a
continuous-time model for a well-known class of iterative minimization algorithms. In fact,
an implicit discretization of (3.3.17) yields the following iterative scheme : VA(z**!) —
Vh(z®) + upV f(2*¥) € Im AT, AzFt! = b, where p; > 0 is a step-size parameter and
2° € F. This is the optimality condition for

z**! € argmin { f(z) + 1/ Dp(z, 2%) | Az = b}, (3.3.18)
where D), is given by
Dy (z,y) = h(z) — h(y) — (Vh(y),z —y), € dom h, y € dom 0h = C. (3.3.19)

When C = R" and h(z) = §|z|%, (3.3.18) corresponds to the prozimal point algorithm
introduced by Martinet in [101]. With the aim of incorporating constraints, the Euclidean
distance is replaced by the D-function of a Bregman function (see Definition 3.4.1), and in
that case, (3.3.18) is referred to as the Bregman prozimal minimization method. For more
details on this method, see for instance [44, 45, 77, 84]. When applied to dual problems,
(3.3.18) may be viewed as an augmented Lagrangian multiplier algorithm ; see [59, 119].

Next, assume that f(z) = (¢, z) for some ¢ € R". As already noticed in [30, 64, 96] for the
log-metric and in [78] for a fairly general h, in this case the (H-SD) gradient trajectory
can be viewed as a central optimal path. Indeed, integrating (3.3.17) over [0, ¢] we obtain

Vh(z(t)) — Vh(z°) + tc € Ag. Since z(t) € A, it follows that
z(t) € argmin {(c, z) + 1/tDy(z,2°) | Az = b}, (3.3.20)

which corresponds to the so-called viscosity method relative to g(z) = Dy (z, z°). Generally
speaking, the viscosity method for solving (P) is based on the introduction of a strictly
convex function g € I'g(IR") such that dom g = C, then solve

z(e) € argmin {f(z) +eg(x)|Az = b}, € > 0,

and finally let ¢ — 0. When dom g = C, general conditions ensure that Z(g) converges to
the unique z* € S(P) that minimizes g on S(P); see [13, 16, 78] and Corollary 3.4.1. This
result can be extended to some specific cases where domg = C'; see [16, Theorem 3.4], [78,
Theorem 2| and Proposition 3.4.3. Remark that for a linear objective function, (3.3.18)
and (3.3.20) are essentially the same : the sequence generated by the former belongs to
the optimal path defined by the latter. Indeed, setting to = 0 and t;; = tx + u for all
k >0 (1o = 0) and integrating (3.3.17) over [tx, tx11], we obtain that x(¢xy1) satisfies the
optimality condition for (3.3.18). The following result summarizes the previous discussion.

Proposition 3.3.2 Assume that f is linear and that the corresponding (H-SD) dynami-
cal system is well-posed. Then, the viscosity optimal path T (&) relative to g(x) = Dy(x, z°)
and the sequence (z¥) generated by (3.3.18) exist and are unique, with in addition T(g) =
z(1/e), Ve > 0, and 2% = x(Z;:Ol w), ¥ k> 1, where x(t) is the solution of (H-SD).

Remark 3.3.4 In order to ensure asymptotic convergence for proximal-type algorithms,
it is usually required that the step-size parameters satisfy > py = 400 . By Proposition
3.3.2, this is necessary for the convergence of (3.3.18) in the sense that when (H-SD) is
well-posed, if z¥F converges to some z* € S(P) then either z° = z* or _ yy, = +o0.
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We finish this section with another interesting consequence of (3.3.17). Recall that, by
[112, Theorem 26.5], h is of Legendre type iff its Fenchel conjugate h* is of Legendre type.
Moreover, the gradient mapping VA : int dom h — int dom A* is one-to-one with

(VRh) ' = Vh*. (3.3.21)
When Ay = R", we obtain the following differential equation for y = Vh(z) :
y+Vf(VRh*(y)) =0. (3.3.22)

In general, this equation does not appear to be simpler to study than the original one.
Nevertheless, in the specific case of f(z) = (¢, z), it reduces (H-SD) to the trivial equation
Yy + ¢ = 0; see section 3.3.4 for some examples. Section 3.5 is devoted to the general case
for which the change of coordinates is given by y = II4,Vh(x), where

My, =1—AT(AAT) A (3.3.23)

is the Euclidean orthogonal projection onto Ay.

3.3.4 Examples : interior point flows in convex programming

Let p > 1 be an integer and set I = {1,...,p}. Let us assume that to each i € I there
corresponds a C? concave function g; : R" — IR. We also assume that

32° € R, Vi € I, g;(z°) > 0. (3.3.24)
Suppose that the open convex set C'is given by
C={zeR"|gl(z)>0,iel}. (3.3.25)

By (3.3.24) we have that C # () and C = {x € R" | g;(x) > 0,7 € I}. Let us introduce a
class of convex functions of Legendre type 0 € I'y(IR) satisfying

i) (0,00) C dom 6 C [0, 00).

ii) # € C3(0,00) and lim,_,¢+ 0'(s) = —cc.

iii) Vs > 0, 6"(s) > 0.

iv) Either 6 is non-increasing or Vi € I, g; is an affine function.

(
() E
(

Proposition 3.3.3 Under (3.3.24) and (H,), the function h € T'o(IR") defined by

h(z) = Z 0(gi(z)). (3.3.26)

is essentially smooth with int dom h = C and h € C*(C), where C is given by (3.3.25). If
we assume in addition the following non-degeneracy condition :

Vz € C, span{Vg;(z)|i € I} =R", (3.3.27)

then H = V2h is positive definite on C, and consequently h satisfies (Hy).
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Proof. Define h; € I'y(R") by h;(z) = 6(g:(z)). We have that Vi € I, C' C dom h;. Hence
intdomh = (,.; intdomh; O C # 0, and by [112, Theorem 23.8], we conclude that Oh(z) =
Y icr Ohi(z) for all z € R™. But 0h;(x) = 6'(gi(x))Vgi(z) if gi(x) > 0 and Oh,(z) = 0 if
gi(z) < 0; see [75, Theorem 1X.3.6.1]. Therefore Oh(z) = > .., 0'(gi(x))Vgi(x) if x € C,
and Oh(z) = () otherwise. Since Oh is a single-valued mapping, it follows from [112,
Theorem 26.1] that h is essentially smooth and int dom A = dom 0h = C. Clearly, h
is of class C® on C. Assume now that (3.3.27) holds. For x € C, we have V2h(z) =
Y i 0" (9:(2))Vai(2)Vai(z)" + 3¢, 0'(9:(2)) V2gi(x). By (Hi)(iv), it follows that for any
v € R", Y., 0(gi(2)(V2gi(z)v,v) > 0. Let v € R™ be such that (V*h(z)v,v) = 0,
which yields 3, ;6" (gi(x))(v, Vgi(z))* = 0. According to (H;)(iii), the latter implies
that v € span{Vg;(z)|i € I}+ = {0}. Hence V?h(z) € S and the proof is complete. B

If h is defined by (3.3.26) with 0 € T'y(IR) satisfying (H;), we say that € is the Legendre
kernel of h. Such kernels can be divided into two classes. The first one corresponds to
those kernels 6 for which dom 6 = (0,00) so that #(0) = +oc, and are associated with
intertor barrier methods in optimization. Examples :

e Log barrier : #;(s) = —1In(s), s > 0.

e Inverse barrier : f,(s) = 1/s, s > 0.

The kernels § belonging to the second class satisfy (0) < 400, and are connected with the
notion of Bregman function in proximal algorithms theory (see Section 3.4.3). Examples :
¢ Boltzmann-Shannon entropy [36] : 05(s) = sln(s) — s, s > 0 (with 0In0 = 0).

e Kiwiel [85] : 04(s) = —}137 with v € (0,1), s > 0.
e Teboulle [119] : 05(s) = (ys — s7)/(1 — ) with v € (0,1), s > 0.
e The “xlogx” entropy : fg(s) = slns, s > 0.

In order to illustrate the type of dynamical systems given by (H-SD), consider the
case of positivity constraints where p = n and g;(z) = z;, 4 € I. Thus C' = R, and
C = R". Let us assume that 32° € R",, Az = b. The corresponding minimization
problem is

min{ f(z) |z > 0, Az = b}. (3.3.28)
Take first the kernel 3 from above. The associated Legendre function (3.3.26) is given by
h(z) = Zx, Inz; —z;, v € RY, (3.3.29)

i=1

thus H(z) = diag(1/z1,...,1/z,) € R™", z € R’ |, the induced Riemannian metric is

Vz € R, Yu,v € R", (u,v) = (X""u,v), (3.3.30)
where
X = diag(z1, ..., Tn), (3.3.31)
and the differential equation in (H-SD) is given by
i+ [ - XAT(AXAT)TAIXV f(x) = 0. (3.3.32)
If f(x) = (c,z) for some ¢ € IR" and in absence of linear equality constraints, then

(3.3.32) is £ + Xc¢ = 0. The change of coordinates y = Vh(z) = (lnzy,...,Inz,) gives
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y+ ¢ = 0. Hence, z(t) = (ze @, ..., 2le "), t € R, where 2° = (29,...,20) € R} . If
c € R} then infwe]Rszr (c,z) = 0 and z(t) converges to a minimizer of f = (c,-) on R ;
if ¢;, < 0 for some iy, then infxe]Ri(C’ z) = —oo and z;,(t) — 400 as t = +00. Next,
take A = (1,...,1) € R and b = 1 so that the feasible set of (3.3.28) is given by
F=Ap1={z€eR"|z2>0, )" z; =1}, that is the (n — 1)-dimensional simplex. In
this case, (3.3.32) corresponds to & + [X — z2zT|V f(z) = 0, or componentwise

. af <~ _af\ . .
xi+xi(a—$i—;x]%j)—0, i=1,...,n. (3.3.33)

For suitable choices of f, this is a Lotka-Volterra type equation that naturally arises
in population dynamics theory and, in that context, (3.3.30) is usually referred to as the
Shahshahani metric ; see [2, 76] and the references therein. The figure 3.1 gives a numerical
illustration of system (3.3.33) for n = 3 and with f(z) = x5 — x.

x3

130 X(0)=(1/4,1/4,1/2)
0.65

0.00
0.00

F1a. 3.1 — A trajectory of (3.3.33).

Karmarkar studied (3.3.33) in [82] for a quadratic objective function as a continuous
model of the interior point algorithm introduced by him in [81]. Equation (3.3.32) is stu-
died by Faybusovich in [61, 62, 63] when (3.3.28) is a linear program, establishing connec-
tions with completely integrable Hamiltonian systems and exponential convergence rate,
and by Herzel et al. in [74], who prove quadratic convergence for an explicit discretization.
See [73] for more general linear inequality constraints and for connections with the double
Lie bracket flow introduced by Brockett in [38, 39].

Take now the log barrier kernel #; and h(z) = — > | Inz;. Since V?h(z) = X 2 with
X defined by (3.3.31), the associated differential equation is

i+ [ — X2PAT(AX?AT) T AIX?V f(x) = 0. (3.3.34)

This equation was considered by Bayer and Lagarias in [30] for a linear program. In the
particular case f(z) = (¢, z) and without linear equality constraints, (3.3.34) amounts to
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T+ X%c=0,orgy+c=0fory=Vh(z) = —X tewithe=(1,---,1) € R", which gives
z(t) = (1/(1/29 + e1t), ..., 1/(1/22 + ent)), T < t < Tay, with T, = max{—1/20¢; | ¢; >
0} and Ty = min{—1/29¢; | ¢; < 0} (see [30, pag. 515]). To study the associated trajecto-
ries for a general linear program, it is introduced in [30] the Legendre transform coordinates
y =14, Vh(z) =[I — AT(AAT) 1 A]X e, which still linearizes (3.3.34) when f is linear
(see section 3.5 for an extension of this result), and permits to establish some remarkable
analytic and geometric properties of the trajectories. A similar system was considered in
[64, 96] as a continuous log-barrier method for nonlinear inequality constraints and with
Ay =R".

New systems may be derived by choosing other kernels. For instance, taking h(z) =
—1/43°"  x) with v € (0,1), A=(1,...,1) € R"™" and b = 1, we obtain

=1 "1

2—y n 2_7
iy 4 i (6f_z % 8f):o, i=1,...,n. (3.3.35)

11—~ \dz; Pl DY zy 7 0x;

Different Legendre kernels may be combined by taking h(z) = Y7, hi(gi(x)). The case

of box constraints L; < z; < U; may be handled with a term of the form h;(x;) =
0(z; — L;) + 0(U; — z;) ; taking for instance the z logz-entropy and 0 < z; < 1, we obtain
the Fermi-Dirac entropy h;(x;) = z;Inz; + (1 — z;) In(1 — ).

3.4 Global existence and asymptotic analysis

3.4.1 Well-posedness of (H-SD)

In this section we establish the well-posedness of (H-SD) (see Definition 3.3.2) under
three different conditions. In order to avoid any confusion, we say that a set £ C IR" is
bounded when it is so for the usual Euclidean norm |y| = 1/(y, y). First, we propose the
condition :

(WP) The lower level set {y € F | f(y) < f(z°)} is bounded.

Notice that (W P;) is weaker than the classical assumption imposing f to have bounded
lower level sets in the H metric sense. Next, let D}, be the D-function of A that is defined
by (3.3.19) and consider the following condition :
(WP,) _ -
(i) domh=C and Va € C, Vy € R, {y € F |Dp(a,y) <~} is bounded.
{ (ii) S(P) # 0 and f is quasi-convex (i.e. the lower level sets of f are convex).

When F is unbounded (W P,) and (W P,) involve some a priori properties on f. This is
actually not necessary for the well-posedness of (H-SD). Consider :

(W Py) 3K >0, L € Rsuch that Vz € C, ||H(z) !|| < K|z| + L.

This property is satisfied by relevant Legendre type functions; take for instance (3.3.29).

Theorem 3.4.1 Assume that (3.2.3), (3.3.16) and (Hy) hold and additionally that either
(WPy), (WP,) or (WD) is satisfied. Then the dynamical system (H-SD) is well-posed.
Consequently, the mapping t — f(x(t)) is non-increasing and convergent as t — +00.



74 Partie I Chapitre 3

Proof. When no confusion may occur, we drop the dependence on the time variable ¢.
By definition, T3 = sup{7 > 0|3! solution z of (H-SD) on [0,T) s.t. z([0,T)) C F}. We
have that Ty, > 0. The definition (3.2.8) of P, implies that for all y € Ay, (H(z) 'V f(z)+
i,y +2)2 =0 on [0,Ty) and therefore

(Vf(z)+ H(x)&,y + &) =0 on [0,Thy). (3.4.36)
Letting y = 0 in (3.4.36), yields
% f(zx) + (H(z)&, &) = 0. (3.4.37)
By (3.2.3)(ii), f(z(t)) is convergent as t — T,. Moreover
(H(2()&(), 2(-)) € L0, Ta; R). (3.4.38)

Suppose that Ty, < +00. To obtain a contradiction, we begin by proving that x is bounded.
If (W P;) holds then z is bounded because f(x(t)) is non-increasing so that z(t) € {y €
F|f(y) < f(@®)}, Vt € [0,Tw). Assume now that f and h comply with (W P,), and let
a € F. For each t € [0,Ty) take y = z(t) — a in (3.4.36) to obtain (V f(z) + £Vh(z),z —
a+ &) = 0. By (3.4.37), this gives (4 Vh(z),z —a) + (V f(z),z —a) = 0, which we rewrite
as

%Dh(a,x(t)) F(Vf(z(t), z(t) —a) = 0, ¥t € [0, Tar)- (3.4.39)

Now, let a € F be a minimizer of f on F. From the quasi-convexity property of f,
it follows that Vt € [0,7n), (Vf(x(t)),z(t) — a) > 0. Therefore, Dy(a,z(t)) is non-
increasing and (W P,)(ii) implies that z is bounded. Next, suppose that (W P;) holds and
fix ¢ € [0, Tur), we have [z(t) — 9] < [ [#(s)|ds < Ji ||y/H{@(s) | [v/H () i (s)lds <
(Jo [H ((s)) " |ds)V2( [y (H (2(5))#(s), (s))ds) /2. The third inequality is a consequence
of the Cauchy-Schwartz inequality and the fact that ||H (z)||? is the biggest eigenvalue of
H(z). Hence, |z(t) — 2°| < 1/2[f0t \|H(z(s))||ds + fJ(H(x(s))j:(s),j:(r))ds]. Combining
(WP;3) and (3.4.38), Gronwall’s lemma yields the boundedness of z.

Let w(z) be the set of limit points of z, and set K = ([0, Ty)) U w(x?). Since z is
bounded, w(z®) # @ and K is compact. If K C C then the compactness of K implies
that = can be extended beyond T};, which contradicts the maximality of Tj,. Let us
prove K C C. We argue again by contradiction. Assume that z(¢;) — z*, with ¢; < Ty,
t; — Tar as j — +oc and 2* € bd C = C \ C. Since h is of Legendre type, we have
|\Vh(z(t;))| — +oo, and we may assume that Vh(z(t;))/|Vh(z(t;))] — v € R™ with
lv| = 1.

Lemma 3.4.2 If (27) C C is a sequence such that 7 — z* € bdC and Vh(z?)/|Vh(z?))| —
v € R", h being a function of Legendre type with C = int dom h, then v € Ng(z*).

Proof of Lemma 3.4.2. By convexity of h, (Vh(z?) — Vh(y),2? —y) > 0 forall y € C.
Dividing by |Vh(2?)| and letting j — 400, we get (v,y — x*) < 0 for all y € C, which
holds also for y € C. Hence, v € Ng(z*). ®

Therefore, v € Ng(x*). Let vy = II4,v be the Euclidean orthogonal projection of v onto
Ay, and take y = vy in (3.4.36). Using (3.4.37), integration gives

(Vh(x(t;)), v0) = (Vh(2") — /j V f(z(s))ds, vp). (3.4.40)

0
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By (Hp) and the boundedness property of z, the right-hand side of (3.4.40) is bounded
under the assumption T, < +o00. Hence, to draw a contradiction from (3.4.40) it suffices
to prove (Vh(z(t;)),v0) — +oo. Since (Vh(z(t;))/|Vh(z(t;))|, ) — |vo|?, the proof of
the result is complete if we check that vy # 0. This is a direct consequence of the following

Lemma 3.4.3 Let C be a nonempty open convex subset of R" and A an affine subspace

of R"™ such that CNA # 0. If z* € (bdC)NA then Ng(x*) N Ay = {0} with Ay = A— A.

Proof of Lemma 3.4.3. Let us argue by contradiction and suppose that we can pick
some v # 0 in Ay N Ng(z*). For yo € C N A we have (v,z* — yo) = 0. For r > 0,
z € R", let B(z,r) denote the ball with center z and radius 7. There exists € > 0,
such that B(yp,e) C C. Take w in B(0,€) such that (v, w) < 0, then yy +w € C, yet
(v,2* — (yo + w)) = (v, w) < 0. This contradicts the fact that v is in Ng(z*). ®

Remark 3.4.4 We have proved that under either (W P;) or (W P,), z(t) is bounded, and
if (W P,) holds then for each a € S(P), Dy(a,z(t)) is a Liapounov functional for (H-SD).

3.4.2 Value convergence for a convex objective function

As a first result concerning the asymptotic behavior of (H-SD), we have the following :

Proposition 3.4.1 If (H-SD) is well-posed and f is convex thenVa € F, Vt > 0, f(z(t))
f(a) + 1 Dy(a, z°), where D, is defined by (3.3.19), and therefore tlgn f(z(t)) = inf5 f.

Proof. We begin by noticing that f(z(t)) converges as t — +o0o (see Theorem 3.4.1). Fix
a € F. By (3.4.39), we have that the solution z(t) of (H-SD) satisfies %Dy (a,z(t)) +
(Vf(z(t)),z(t)—a) =0, Vt > 0. The convex inequality f (z) +(V f(z),z —a) < f(a) yields
Dy (a, :C(t))—{—f(f[f(:c(s))—f(a)]ds < Dy(a, x°). Using that Dy > 0 and since f(x(t)) is non-
increasing, we get the estimate. Letting t — 400, it follows that lim; , 1o, f(z(t)) < f(a).
Since a € F was arbitrary chosen, the proof is complete. B

Under the assumptions of Proposition 3.4.1 together with (W P;) or (W P,), z(t) is boun-
ded (see Remark 3.4.4) and its cluster points belong to S(P). However, the convergence
of z(t) as t — 400 is more delicate and we will require additional conditions on A or (P).

3.4.3 Bregman metrics and trajectory convergence

In this section we establish the convergence of z(t) under some additional properties
on the D-function of h. Let us begin with a definition.

Definition 3.4.1 A function h € T'y(IR") is called Bregman function with zone C' when
the following conditions are satisfied :

(i) dom h = C, h is continuous and strictly convez on C and h, € C'(C;R).

(ii) Va € C, Vy € R, {y € C|Dp(a,y) < v} is bounded, where Dy, is defined by (3.3.19).
(iii) Vy € C, Vy/ — y with i’ € C, Dp(y,y’) — 0.

Observe that this notion slightly weakens the usual definition of Bregman function that
was proposed by Censor and Lent in [43]; see also [36]. Actually, a Bregman function in
the sense of Definition 3.4.1 belongs to the class of B-functions introduced by Kiwiel (see
(85, Definition 2.4]). Recall the following important asymptotic separation property :

IN
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Lemma 3.4.5 [85, Lemma 2.16] If h is a Bregman function with zone C then Vy € C,
V(y?) C C such that Dy(y,y’) — 0, we have y/ — y.

In relation with the examples given in section 3.3.4, the Legendre kernels 6;, i = 3, ..., 6,
are all Bregman functions with zone IR, . For i = 3,6 we obtain the so called Kullback-
Liebler divergence : Dy, (r,s) = rln(r/s) +s—r,r >0 and s > 0, while for i = 4,5 with
v = 1/2 we have Dy, (r,s) = (r'/2 — s'/2)/s'/2, r > 0 and s > 0. Concerning the induced
Legendre function (3.3.26), we have the following elementary result :

Lemma 3.4.6 Let C be as in (3.3.25) and 0 € T'o(IR) satisfy (Hy) with 6 being a Bregman
function with zone R. Under (3.3.27), the corresponding Legendre function h defined by
(3.3.26) is indeed a Bregman function with zone C.

Theorem 3.4.7 Suppose that (Hy) holds with h being a Bregman function with zone C.
If f is quasi-convex satisfying (3.2.3), (3.3.16) and S(P) # 0 then (H-SD) is well-posed
and its solution z(t) converges ast — +oo to some x* € F with —V f(z*) € Ng(z*) +Ap .
If in addition f is convex then z(t) converges to a solution of (P).

Proof. Notice first that (W P,) is satisfied. By Theorem 3.4.1, (H-SD) is well-posed, z(t)
is bounded and for each a € S(P), Dy(a, z(t)) is non-increasing and hence convergent (see
Remark 3.4.4). Set fo, = lim;_, o, f(2(t)) and define L = {y € F | f(y) < foo}. The set L
is nonempty and closed. Since f is supposed to be quasi-convex, L is convex, and similar ar-
guments as in the proof of Theorem 3.4.1 under (W P,) show that Dj(a, z(t)) is convergent
for all @ € L. Let * € L denote a cluster point of z(¢) and take ¢; — 400 such that
z(t;) — x*. Then, by (iii) in Definition 3.4.1, lim, Dy, (z*, z(t)) = lim; Dy(z*, z(¢;)) = 0.
Therefore, z(t) — z* thanks to Lemma 3.4.5. Let us prove that x* satisfies the optimality
condition —V f(z*) € Ng(z*) + Ay. Fix z € Ay, and for each ¢ > 0 take y = —i(t) + z in
(3.4.36) to obtain (L Vh(z(t)) + Vf(z(t)), z) = 0. This gives

¢
L [ st = 0.2 (3.4.41)
where s(t) = [Vh(2z%)—=Vh(z(t))]/t. If 2* € F then Vh(x(t)) — Vh(z*), hence (V f(z*), z) =
limy s oo 7 fOt(Vf(:E(s)), z)ds = limy_,; (s(t), z) = 0. Thus, 114,V f(z*) = 0. But Nz(z*) =
Ay when z* € F, which proves our claim in this case. Assume now that z* ¢ F, which
implies that z* € dC N A. By (3.4.41), we have that (s(t),z) converges to (V f(z*), 2)
as t — +oo for all z € Ay, and therefore II4,s(t) — 4, Vf(z*) as t — +o0. On
the other hand, by Lemma 3.4.2, we have that there exists v € —Ng(z*) with |v| = 1
such that Vh(z(t;))/|Vh(z(t;))| — v for some t; — +oco. Since Ng(z*) is positively
homogeneous, we deduce that 3 7 € —Ng(z*) such that I14,Vf(z*) = II4,7. Thus,
—Vf(z*) € =147 + Ay C Nz(z*) + Ag, which proves the theorem. m

Following [78], we remark that when f is linear, the limit point can be characterized as
a sort of “Dp-projection” of the initial condition onto the optimal set S(P). In fact, we
have :

Corollary 3.4.1 Under the assumptions of Theorem 3.4.7, if f is linear then the solution
z(t) of (H-SD) converges ast — +oo to the unique optimal solution x* of

in D 0, 3.4.42
min, Di(w,27) (3.4.42)
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Proof. Let z* € S(P) be such that z(t) — z* as t — +oo. Let T € S(P). Since
z(t) € F, the optimality of Z yields f(z(t)) > f(Z), and it follows from (3.3.20) that
Dp(x(t),2°) < Dy(z,2°). Letting ¢ — +o0 in the last inequality, we deduce that z* solves
(3.4.42). Noticing that Dy (-, 2°) is strictly convex due to Definition 3.4.1(i), we conclude
the result. m

We finish this section with an abstract result concerning the rate of convergence under
uniqueness of the optimal solution. We will apply this result in the next section. Suppose
that f is convex and satisfies (3.2.3) and (3.3.16), with in addition S(P) = {a}. Given a
Bregman function A complying with (Hy), consider the following growth condition :

(GC) f(z) = f(a) > aDy(a,2)?, V2 € U, N C,

where U, is a neighborhood of @ and with o > 0, 8 > 1. infinity. The next abstract result
gives an

Proposition 3.4.2 Assume that f and h satisfy the above conditions an let x : [0, +00) —
F be the solution of (H-SD). Then we have the following estimations :
e If B =1 then there exists K > 0 such that Dy(a,z(t)) < Ke™*, Vt > 0.

e If B> 1 then there exists K' > 0 such that Dp(a,z(t)) < K'/tﬁ, Vit > 0.

Proof. The assumptions of Theorem 3.4.7 are satisfied, this yields the well-posedness of
(H-SD) and the convergence of z(t) to a as t — +oo. Besides, from (3.4.39) it follows
that for all ¢ > 0, 4Dy (a,z(t)) + (Vf(z(t)),z(t) — a) = 0. By convexity of f, we have
2 Di(a,z(t)) + f(z(t)) — f(a) < 0. Since z(t) — a, there exists ¢, such that V¢ > t,

z(t) € U, N F. Therefore by combining (GC') and the last inequality it follows that

%Dh(a,x(t)) + aDy(a, z(t)? <0, Vt > 1. (3.4.43)

In order to integrate this differential inequality, let us first observe that we have the
following equivalence : Dy(a,z(t)) > 0, V¢t > 0 iff 2° # a. Indeed, if a € F \ F then
the equivalence follows from z(¢t) € F together with Lemma 3.4.5; if ¢ € F then the
optimality condition that is satisfied by a is 14,V f(a) = 0, and the equivalence is a
consequence of the uniqueness of the solution z(t) of (H-SD). Hence, we can assume that
1% # a and divide (3.4.43) by Dy(a, z(t))? for all t > ;. A simple integration procedure
then yields the result. m

3.4.4 Linear programming

Let us consider the specific case of a linear program

(LP) m]%?n{(c, x) | Bx > d, Az = b},

(S

where A and b are as in section 3.2.1, ¢ € R", B is a p x n full rank real matrix with
p >n and d € RP. We assume that the optimal set satisfies

S(LP) is nonempty and bounded, (3.4.44)
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and there exists a Slater point 2° € R", Bz® > d and Az° = b. Take the Legendre function
h(z) = 0(gi(z)), gi(z) = (Bi,z) — di, (3.4.45)
i=1

where B; € R" is the ith-row of B and the Legendre kernel 6 satisfies (H;). By (3.4.44),
(WP,) holds and therefore (H-SD) is well-posed due to Theorem 3.4.1. Moreover, z(t)
is bounded (see Remark 3.4.4) and all its cluster points belong to S(LP) by Proposi-
tion 3.4.1. The variational property (3.3.20) ensures the convergence of z(t) and gives a
variational characterization of the limit as well. Indeed, we have the following result :

Proposition 3.4.3 Let h be given by (3.4.45) with 0 satisfying (Hy). Under (3.4.44),
(H-SD) is well-posed and z(t) converges as t — 400 to the unique solution z* of

min > Dy(gil), gi(a”)), (3.4.46)
i¢lo

zeS(LP

where Iy = {i € I | g;(x) =0 for all x € S(LP)}.

Proof. Assume that S(LP) is not a singleton, otherwise there is nothing to prove. The
relative interior ri S(LP) is nonempty and moreover ri S(LP) = {z € R" | gi(z) =
0 for i € Iy, g;(x) > 0 for i € Iy, Ax = b}. By compactness of S(LP) and strict convexity
of 6 o g;, there exists a unique solution z* of (3.4.46). Indeed, it is easy to see that
z* € r1i (LP). Let z € S(LP) and t; — +o0o be such that z(¢;) — z. It suffices to
prove that £ = z*. When #(0) < +oo, the latter follows by the same arguments as in
Corollary 3.4.1. When #(0) = +oo, the proof of [16, Theorem 3.1] can be adapted to
our setting (see also [78, Theorem 2]). Set z*(t) = z(t) — T + z*. Since Az*(t) = b and

Dy(z,2°) = 31" Do(gi(z), g:(2°)), (3.3.20) gives
(e, 0() + 1 3 Dolai(a(0), 9:%) < e, (0) + 3 Dalasla” (), 5(a)). (3:447)

But (¢, z(t)) = {c,z*(t)) and Vi € Iy, g;(x*(t)) = g:(x(t)) > 0. Since z* € ri S(LP), for all
i ¢ Iy and j large enough, g;(z*(¢;)) > 0. Thus, the right-hand side of (3.4.47) is finite at
t;, and it follows that > Dy(g;(z), g:(z°)) < > Dy(gi(z*), gi(2°)). Hence, z = z*. ®
i@é[o i¢10

We turn now to the case where there is no equality constraint so that the linear program
is

min {(c,z) | Bx > d}. (3.4.48)

zeR"
We assume that (3.4.48) admits a unique solution a and we study the rate of convergence
when 6 is a Bregman function with zone IR, . To apply Proposition 3.4.2, we need :

Lemma 3.4.8 Set C = {z € R"|Bx > d}. If (3.4.48) admits a unique solution a € R"
then Iko > 0, Yy € C, (¢,y — a) > koN (y — a), where N'(z) = Y_,, [(B;, )| is a norm
on R".
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Proof. Set Iy = {i € I | (B;,a) = d;}. The optimality conditions for a imply the existence
of a multiplier vector A € RY, such that \[d; — (B;,a)] =0,Vie I,and c =), A\

Let y € C. We deduce that (c,y —a) = N(y — a) where N(z) = > ;. Ail(Bi, 7). By
uniqueness of the optimal solution, it is easy to see that span{B; | i € Iy} = IR", hence
N is a norm on IR". Since N (z) = Y, ; [(B;, z)| is also a norm on IR" (recall that B is a
full rank matrix), we deduce that 3k such that N(z) > keN(z). B

The following lemma is a sharper version of Proposition 3.4.2 in the linear context.

Lemma 3.4.9 Under the assumptions of Proposition 3.4.3, assume in addition that 6 is
a Bregman function with zone IR_ and that there exist o > 0, 8 > 1 and € > 0 such that

Vs € (0,¢), aDy(0,5)° < s. (3.4.49)

Then there exists positive constants K, L, M such that for all t > 0 the trajectory of
(H-SD) satisfies Dy(a,z(t)) < Ke " if 8 =1, and Dy(a,z(t)) < M/tFT if B > 1.
Proof. By Lemma 3.4.8, there exists kq such that for all £ > 0,

(c,x(t) —a) > kol(Bi, 2(t)) — (Bi,a)l. (3.4.50)

iel
Now, if we prove that 3\ > 0 such that
[(Bi, z(t)) = (Bi, a)| = ADg((Bi, a) — di, (Bi, 2(t)) — d;) (3.4.51)

for all i € I and for ¢ large enough, then from (3.4.50) it follows that f(-) = (c, -) satisfies
the assumptions of Proposition 3.4.2 and the conclusion follows easily. Since z(t) — a,
to prove (3.4.51) it suffices to show that Vry > 0, In, p > 0 such that Vs, |s — r¢| < 7,
puDg(rg,8)? < |rg — s|. The case Where ro = 0 is a direct consequence of (3.4.49). Let
ro > 0. An easy computation y1elds Dg(T(), $)|s=ro = 0"(r0), and by Taylor’s expansion
formula

0"(7‘0)

2
with 0"(rg) > 0 due to (H;)(iii). Let n be such that Vs, [s — ro| < n, s > 0, Dy(ro,s) <
0" (ro)(s — ro)? and Dy(ry, s) < 1; since 3 > 1, De(To,S)ﬂ < Dy(ro,8) < 0"(ro)|s — ro|- m

To obtain Euclidean estimates, the functions s — Dy(r9, s), 7o € IR, have to be locally
compared to s — |rg—s|. By (3.4.52) and the fact that 8” > 0, for each ry > 0 there exists
K,n > 0 such that |ro — s| < K+/Dy(r¢,s), Vs, |ro — s| < n. This shows that, in practice,
the Euclidean estimate depends only on a property of the type (3.4.49). Examples :

e The Boltzmann-Shannon entropy 65(s) = sln(s) —s and 4(s) = sln s satisfy Dy, (0, s) =
s, s > 0; hence for some K, L > 0, |z(t) —a| < Ke Lt Vt > 0.

e With either 64(s) = —s7/v or 05(s) = (ys —s7) /(1 — ), v € (0,1), we have Dy, (0, s) =
(14+1/7)s?, s> 0; hence |z(t) —a| < K/tﬁ, vt > 0.

Dy(ro, s) = (s —10)® +o(s — 10)? (3.4.52)

3.4.5 Dual convergence

In this section we focus on the case C'= 1R’} , so that the minimization problem is

(P) min{ f(z) | x > 0, Az = b}.
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We assume
f is convex and S(P) # 0, (3.4.53)

together with the Slater condition

2% € R", 2° > 0, Az® =b. (3.4.54)
In convex optimization theory, it is usual to associate with (P) the dual problem given by
(D) min{p(}) | A > 0},

where p(A\) = sup{(\,z) — f(z) | Az = b}. For many applications, dual solutions are as
important as primal ones. In the particular case of a linear program where f(z) = (e, z) for
some ¢ € R", writing A = ¢+ ATy with y € IR™ the linear dual problem may equivalently
be expressed as min{(b,y) | ATy + ¢ > 0}. Thus, A is interpreted as a vector of slack
variables for the dual inequality constraints. In the general case, S(D) is nonempty and
bounded under (3.4.53) and (3.4.54), and moreover S(D) = {A € R" | A > 0, X €
Vf(z*) + Im AT, (\,z*) = 0}, where z* is any solution of (P); see for instance [75,
Theorems VII.2.3.2 and VII.4.5.1].

Let us introduce a Legendre kernel 6 satisfying (H;) and define

h(z) = Zﬁ(xi). (3.4.55)

Suppose that (H-SD) is well-posed. Integrating the differential inclusion (3.3.17), we
obtain
A(t) € c(t) + ImAT, (3.4.56)

where c(t) = 1 fot V f(z(7))dr and A(t) is the dual trajectory defined by

() = %[Vh(a:o) _Vh((®). (3.4.57)

Assume that z(t) is bounded. From (3.4.53), it follows that V f is constant on S(P), and
then it is easy to see that Vf(z(t)) — Vf(z*) as t = +oc for any z* € S(P). Conse-
quently, c(t) — V f(z*). By (3.4.57) together with (3.3.21), we have z(t) = VA*(Vh(z°) —
tA(t)), where the Fenchel conjugate h* is given by A*(A) = Y | 0*()\;). Take any solution
T of AZ =b. Since Az(t) = b, we have 7 — Vh*(Vh(z°) — tA(t)) € Ker A. On account of
(3.4.56), A(t) is the unique optimal solution of

A(t) € argmin {(E, A) + % EH: 0 (0 (z9) —t\) | A € e(t) + ImAT} . (3.4.58)

By (H,)(iii), ¢ is increasing in R . Set n = lim,,,, 6'(s) € (—o0,+00]. Since 6* is a
Legendre type function, int dom §* = dom 96* = Im 80 = (—oo,n). From (%) = (¢')7*,
it follows that lim,_,_oo(0*) (u) = 0 and lim,_,,- (6*)'(u) = +o00. Consequently, (3.4.58)
can be interpreted as a penalty approzimation scheme of the dual problem (D), where the
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dual positivity constraints are penalized by a separable strictly convex function. Similar
schemes have been treated in [16, 48, 77]. Consider the additional condition

Either 0(0) < 0o, or S(P) is bounded, or f is linear. (3.4.59)

As a direct consequence of [77, Propositions 10 and 11], we obtain that under (3.4.53),
(3.4.54), (3.4.59) and (H,), {\(t) | t = +oo} is bounded and its cluster points belong to
S(D). The convergence of A(¢) is more difficult to establish. In fact, under some additional
conditions on 6* (see [48, Conditions (Hy)-(H1)] or [77, Conditions (A7) and (A8)]) it is
possible to show that A(t) converges to a particular element of the dual optimal set
(the “6*-center” in the sense of [48, Definition 5.1] or the Dy (-, 2°)-center as defined in
[77, pag. 616]), which is characterized as the unique solution of a nested hierarchy of
optimization problems on the dual optimal set. We will not develop this point here. Let
us only mention that for all the examples of section 3.3.4, 6 satisfies such additional
conditions and consequently :

Proposition 3.4.4 Under (3.4.53), (3.4.54) and (3.4.59), for each of the explicit Legendre
kernels given in section 3.3.4, \(t) given by (3.4.55) converges to a particular dual solution.

3.5 Legendre transform coordinates

3.5.1 Legendre functions on affine subspaces

The first objective of this section is to slightly generalize the notion of Legendre type
function to the case of functions whose domains are contained in an affine subspace of
IR™. We begin by noticing that the Legendre type property does not depend on canonical
coordinates.

Lemma 3.5.1 Let g € To(R"), r > 1, and T : R" — R" an affine invertible mapping.
Then g is of Legendre type iff g o T 1is of Legendre type.

Proof. The proof is elementary and is left to the reader. m
From now on, A is the affine subspace defined by (3.2.1), whose dimension is r = n — m.

Definition 3.5.1 A function g € I'g(.A) is said to be of Legendre type if there exists an

affine invertible mapping T : A — IR such that g o T~ is a Legendre type function in
Fo(IR7).

By Lemma 3.5.1, the previous definition is consistent.

Proposition 3.5.1 Let h € T'o(IR") be a function of Legendre type with C = int dom h.
If F=CnNA#0 then the restriction h, of h to A is of Legendre type and moreover
int gdom h|, = F (int4B stands for the interior of B in A as a topological subspace of
R").

Proof. From the inclusions F C dom hj, C F =CnN A and since ri F = F, we conclude
that intqydom h|, = F # 0. Let T : R" — A be an invertible transformation with
Tz = Lz + x° for all z € R", where 2° € A and L : R" — A, is a nonsingular linear
mapping. Define k¥ = h|, o T. Clearly, £ € ['((IR"). Let us prove that & is essentially
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smooth. We have dom k& = T 'dom k|, and therefore int dom k¥ = T 'F. Since h is
differentiable on C, we conclude that k is differentiable on int dom k. Now, let (27) €
int dom k be a sequence that converges to a boundary point z € bd dom k. Then, 727 €
int 4dom h|, and Tz — Tz € bd dom h, C bd dom h. Since h is essentially smooth,
|Vh(TZ7)| — +o00. Thus, to prove that |Vk(z7)| — +oo it suffices to show that there
exists A > 0 such that |Vk(27)| > A|Vh(T2?)| for all j large enough. Note that Vk(z7) =
Vih, o T)(2?) = L*Vh (Tz) = L*I14Vh(T2’), where L* : Ay — R’ is defined by
(z,L*z) = (Lz,7),V¥(2,2) € R"x Ap. Of course, L* is linear with Ker L* = {0}. Therefore
% = L*I1 Ao%' Let w denote the nonempty and compact set of cluster points
of the normalized sequence Vh(T2?)/|Vh(TZ%)|, j € N. By Lemma 3.4.2, we have that
w C {v € Ng(Tz) | |v| = 1}, and consequently Lemma 3.4.3 yields II4w N {0} = 0.
By compactness of w, we obtain liminf;_, o |14, VA(T27)|/|Vh(T2?)| > 0, which proves
our claim. Finally, the strict convexity of & on dom 0k = int dom k = T'F is a direct
consequence of the strict convexity of A in F. B

3.5.2 Legendre transform coordinates

As we have already recalled in section 3.3.2, the prominent fact of Legendre functions
theory is that h € ['o(IR") is of Legendre type iff its Fenchel conjugate h* is of Legendre
type, and VA : intdomh — intdomA* is onto with (Vh) ™! = Vh*. In the case of Legendre
functions on affine subspaces, we have the following generalization :

Proposition 3.5.2 If g € T'4(A) is of Legendre type in the sense of Definition 3.5.1,
then Vg(int gdom g) is a nonempty, open and conver subset of Aq. In addition, Vg is a
one-to-one continuous mapping from int gdom g onto its image.

Proof. Let Tx = Lz + zy with L : Ay — IR" being a linear invertible mapping and
2o € RP. Set k = goT ! € T4(IR"), which is of Legendre type. We have dom k =
Tdom g. Define L* : R" — Ay by (L*z,x) = (z, Lz), V(z,2) € R" x Ag. We have that
Vyg(z) = V][k o T|(x) = L*Vk(Tz) for all x € int4dom g. Therefore Vg(int4dom g) =
L*Vk(Tint y4dom g) = L*Vk(int[grdom k) = L*intg-dom k*. Since intgrdom k* is a
nonempty, open and convex subset of IR" and L* is an invertible linear mapping, then
L*intjp-dom £* is an open and nonempty subset of Ay. Moreover, by [112, Theorem 6.6],
we have L*intgrdom &* = ri L*dom k*. Consequently, Vg(int4dom g) = ri L*dom k* =
int 4,L*dom k* # {). Finally, since Vk : intgrdom k& — intjzrdom k* is one-to-one and
continuous, the same result holds for Vg = L* o Vk o T on int g4dom g. ®

In the sequel, we assume that h satisfies the basic condition (Hy) and F = CN.A # 0.
The Legendre transform coordinate mapping on F associated with h is defined by

on: F = F=n(F)

r — ¢p(z) =V(h,) =114 Vh(z). (3.5.60)

This definition retrieves the Legendre transform coordinates introduced by Bayer and
Lagarias in [30] for the particular case of the log-barrier on a polyhedral set.

Theorem 3.5.2 Under the above definitions and assumptions, F* is a convez, (relatively)
open and nonempty subset of Ay, ¢ is a C* diffeomorphism from F to F*, and for
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al x € F, dop(z) = Mg H(z) and doy(z VH H\/—Ao‘/ (x)~1, where
H(z) = V?h(z).

Proof. By Propositions 3.5.1 and 3.5.2, F* is a convex, open and nonempty subset of Ay
and ¢y, is a continuous bijection. By (Hy)(ii), ¢y, is of class C' on F and we have for all
z € F,dop(z) = T4, V2h(z) = 4, H(z). Let v € Ay be such that d¢y(x)v = 0. It follows
that H(z)v € Ay and in particular (H(z)v,v) = 0. Hence, v = 0 thanks to (H,)(iii).
The implicit function theorem implies then that ¢, is a C* diffeomorphism. The formula
concerning dep(x)~! is a direct consequence of the next lemma.

Lemma 3.5.3 Define the linear operators L; : R" — R" by Ly = 4, H(z) and Ly, =
W/ H(x) I Ao‘/ . Then LyLiv = v for all v € Ay.

This follows by the same method as in [30], pag. 545 ; we leave the proof to the reader. m

Similarly to the classical Legendre type functions theory, the inverse of ¢, can be
expressed in terms of Fenchel conjugates. For that purpose, we notice that inverting ¢y
is a minimization problem. Indeed, given y € A, the problem of finding = € F such that
y = I14,Vh(z) is equivalent to z = argmin{h(z) — (y, z)|z € A}, or equivalently

x = argmin{(h + 64)(z) — (y, 2} }, (3.5.61)

where § 4 is the indicator of A, i.e. 04(z) = 0 if z € A and +oo otherwise. Let us recall
the definition of epigraphical sum of two functions g1, g, € [o(IR"), which is given by
(91Mg2) (y) = inf{gi(u) + g2(v)|u + v =y}, Vy € R". We have g,Mg, € I'((R") and if g,
and g, satisfy ridom g; N ridom go # () then (g1 + go)* = gimg; (see [112]).
Proposition 3.5.3 We have that ¢, : F* — F is given by ¢;'(y) = V'm0 +
(-,2))](y), for any T € A, and moreover F* = II 4,int dom h*.

Proof. The optimality condition for (3.5.61) yields y € d(h + 04)(z). Thus, z € d(h +
54)*(y)- From F # (), we conclude that the function g € T'y(IR™) defined by g = (h+ d4)*
satisfies g = h*Wy = h*M(0 41 + (-, 7)) with z € A. Moreover, by [112, Corollary 26.3.2], g
is essentially smooth and we deduce that indeed z = Vg(y). Since g is essentially smooth,
dom Jg = int dom g. By definition of epigraphical sum, g(y) = inf{h*(u) + d44(v) +
(v,Z)|u +v =y}, and consequently we have that y € dom g iff y € dom h* + Af. Hence,
int dom g = int dom h* + A7 (see for instance [112, Corollary 6.6.2]). Recalling that F* is
a relatively open subset of Ay, we deduce that F* = I 4,dom 0g = Il 4,int dom h*. m

Motivated by [30, 118], we finish this section with the following definition.
Definition 3.5.2 A point x, € F is called the h-center of F when ¢y (x;) = 0.

Remark that, when the hA-center exists, xj is the minimizer of A on F.

3.5.3 Polyhedral sets in Legendre transform coordinates

In this section, we take C' = {x € R"|Bz > d} with B a p x n full rank matrix with
p = n.
Proposition 3.5.4 Suppose that h is of the form (3.4.45) with 0 satisfying (H,), and let
n=lims o 0'(s) € (—00,+00]. If n < +00 thendom h* = {y e R" | y+ BTA =0, \; >
—n}, and dom h* = IR™ when n = +oc.
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Proof. By [114, Theorem 11.5], dom h* = {y € R" | (y,d) < h*°(d) for alld € R"},
where h™ is the recession function, also known as horizon function, of h. The recession
function is defined by h*(d) = limy, o $[2(Z + td) — h(z)], d € R", where € dom h;
this limit does not depend of z and eventually h*(d) = +oo (see also [112]). In this
case, it is easy to verify that h*(d) = >°7 | 6°°((B;, d)). Clearly, §=°(—1) = +oo and
0°(1) = lims_, 1o 0'(s) = 1. In particular, if n = 400 then dom h* = R". If n < 400 then
y € dom h* iff for all d € R such that Bd > 0, (y,d) < h*°(d) = Y ¥_ n(B;,d), that is
(y—nBTe,d) < 0with e = (1,---,1). Thus, by the Farkas lemma, y € dom h* iff 3y > 0,
y—nBTe+BTu=0.m

Corollary 3.5.1 Under the assumptions of Proposition 3.5.4, if n = 0 then F* is a
positive convex cone and if n = +oo then F* = Aj.

Proof. This is a direct consequence of Propositions 3.5.3 and 3.5.4.

3.5.4 (H-SD)-trajectories in Legendre transform coordinates

The push forward vector field of V , f|,. by ¢y, is defined for every y € F* by [(¢n).V , fi,](y) =
don (o, (Y)Y, fix (0, (). In the sequel, we assume that f(z) = (c,z) for some c € R".

Proposition 3.5.5 For ally € F*, [(¢4)«V , f,] (y) = H4,c.

Proof. Let y € F*. Setting z = ¢, (y), by Theorem 3.5.2 we get [(¢4).V, fi,] (y) =
don(2)V, £ (x) = Ta H (2) H () 7' [I = AT(AH ()T AT) " AH () ']e = T4, — T4 A" 7,
where z = [(AH (z)"'AT) ' AH (z)']c. Since Im AT = Ag, the conclusion follows. m

We will give two optimality characterizations of the orbits of (H-SD), extending thus to
the general case the results of [30] for the log-metric.

Geodesic curves. First, we claim that the orbits of (H-SD) can be regarded as geodesics
curves with respect to some appropriate metric on F. To this end, we endow F* = ¢, (F)
with the Euclidean metric, which allows us to define on F the metric

('7 ')H2 = ((bh)* <" ')a (3562)

that is, V(z, u,v) € FxR"xR", (u,v)"* = (dén()u, dop(z)v) = 14 H(z)u, T4, H(z)v).
For each initial condition 2° € F, and for every ¢ € IR™ we set

v = dop () T 4yc = /H(20) I H(zO)AO\/H(CUO)*lnAOC. (3.5.63)

Theorem 3.5.4 Let (2°,¢) € F x R", set f(z) = {(¢c,z), Vo € C and define v as in
(3.5.63). If F is endowed with the metric (-,-)*" given by (3.5.62), then the solution (t)
of (H-SD) is the unique geodesic passing through x° with velocity v.

Proof. Since F, (-,)% * is isometric to the Euclidean Riemannian manifold F*, the geo-
desic joining two points of F exists and is unique. Let us denote by v: J C R — F
the geodesic passing through x° with velocity v. By definition of (-, -)H2, on(7) is a geo-
desic in F*. Whence ¢p(v(t)) = ¢n(2°) + tddp(x°)v, where ¢t € J. In view of (3.5.63),
this can be rewritten ¢(v(t)) = ép(z°) + tI4,c. By Proposition 3.5.5 we know that
(¢n), Vi fir = la,c, and therefore ¢, " (¢x(7)) = 7 is exactly the solution of (H-SD).m
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Remark 3.5.5 A Riemannian manifold is called geodesically complete if the maximal
interval of definition of every geodesic is R. When Il 4,c # 0 and F* is not an affine
subspace of IR", the Riemannian manifold F, (-,-)# * is not complete in this sense.

Lagrange equations. Following the ideas of [30], we describe the orbits of (H-SD) as
orthogonal projections on A of ¢—trajectories of a specific Lagrangian system. Recall that
given a real-valued mapping £(q, ) called the Lagrangian, where ¢ = (q1,...,¢,) and
G=(¢,---,qn), the associated Lagrange equations of motion are the following

4oL _oL  d
Their solutions are C'—piecewise paths vy : t — (q(¢),4(t)), deﬁned for t E J C R,
that satisfy (3.5.64), and appear as extremals of the functional £ =[,C 7 ))dt.
Notice that in general, the solutions are not unique, in the sense that they do not only

depend on the initial condition (0). Let us introduce the Lagrangian £ : R" x C — R
defined by

¢ =¢q, Vi=1l...n. (3.5.64)

L(q,q) = (ILayc, q) — h(I14g), (3.5.65)
where IT4 is the orthogonal projection onto A, i.e. Iq4z =7 + 1 4,(z — 7) for any = € A.

Theorem 3.5.6 For any solution v(t) = (q(t), (t)) of the Lagrangian dynamical system
(3.5.64) with Lagrangian given by (3.5.65), the projection z(t) = I144(t) is the solution of
(H-SD) with initial condition x° = T14¢(0).

Proof. It is easy to verify that V(h o II4)(z) = 114, Vh(II4z) for any z € R". Given
a solution v(¢t) = (q(t),q(t)) of (3.5.65) defined on J, we set p(t) = (p1(t),...,pu(t)) =
(2£(1(8), -, 2£((1))). We have p(t) = V(hoTLu)(d(t)) = Tty VA(TTad()) = 6n(TLad(1)):
Equations of motion become $p(t) = I14,¢, that is, %¢,(I144(t)) = [Layc. Since ¢y, : F —
F* is a diffeomorphism, the latter means, according to Proposition 3.5.5, that II44(t) is

a trajectory for the vector field Vy f|,.. Notice that C' being convex, as soon as ¢(0) € C,
[M44(0) € C N A= F, and what precedes forces I144(t) to stay in F for any t € J. ®

Completely integrable Hamiltonian systems. In the sequel, all mappings are sup-

posed to be at least of class C?. Let us first recall the notion of Hamiltonian system.

Given an integer r > 1 and a real-valued mapping H(g,p) on IR”" with coordinates

(g,p) = (q1,- -, Gr D1, - -,Dr), the Hamiltonian vector field X4 associated with H is defi-
ned by

Z OH 0 OH 0

Opi 0g;  q; Op;’

The trajectories of the dynamical system induced by Xy are the solutions to

{pz(t)— g Ha(t),pt), i=1,....m,

C]z()_—H(() p(t),i=1,...,r (3.5.66)

Following a standard procedure, Lagrangian functions £(q, §) are associated with Hamil-
tonian systems by means of the so-called Legendre transform
o IRQT — IRZT
(@) — (¢, % 9)
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In fact, when ® is a diffeomorphism, the Hamiltonian function A associated with the
Lagrangian £ is defined on ®(IR*") by

H(p, q) = Zpidi — L(g,9) = (p, ¥ (g, p)) — L(q,% (¢, D)),

where (q,v '(q,p)) := ® '(g,p). With these definitions, ® sends the trajectories of the
corresponding Lagrangian system on the trajectories of the Hamiltonian system (3.5.66).

In general, the Lagrangian (3.5.65) does not lead to an invertible ® on IR*". However,
we are only interested in the projections Il 4¢ of the trajectories, which, according to
Theorem 3.5.6, take their values in F. Moreover, notice that for any differentiable path ¢ —
q*(t) lying in Az, t — (q(t), ¢(t)) is a solution of (3.5.64) iff t — (q(t) +q*(t), ¢(¢) +4+(t))
is. This legitimates the idea of restricting £ to Ay x I 4,F. Hence and from now on, £
denotes the function :

r. { Ay x g F — R
' (¢,9)  — L(g:9)

Taking (¢i,--.,¢,;), with 7 = n — m, a linear system of coordinates induced by an Eucli-
dean orthonormal basis for Ay, we easily see that this “new” Lagrangian has trajectories
(q(t),4(t)) lying in Ay x II 4,F, whose projections II44(t) are exactly the (H-SD) trajec-
tories. Moreover, an easy computation yields

oc, . . .
9\ 0) =Tt VA([Layq) = [fn 0 TLAl(9),
which is a diffeomorphism by Proposition 3.5.2. The Legendre transform is then given by

(I).{onnAof—)on:F*
. (qa Q) — (Q: [¢hOH¢4](Q))a

and therefore, £ is converted into the Hamiltonian system associated with

AU - { A() xF* — R
L (o) = (pgno L (p)) — L(g; [¢n o 1147 ().

Let us now introduce the concept of completely integrable Hamiltonian system. The Pois-
son bracket of two real valued functions fi, f, on IR*" is given by

_N~00f _0f0f
{fla f2} - Z Op; 0¢; 0q; api.

i=1

Notice that, from the definitions, we have {fi, fo} = X, (f2) and Xyp, ) = [ X5, Xpl,
where [-, -] is the standard bracket product of vector fields [88]. Now, the system (3.5.66)
is called completely integrable if there exist n functions fi,..., f, with f; = H, satisfying

{flafj}:(): Vi7j:17"':’r'
dfi(x),...,df.(z) are linearly independent at any = € R*".

(3.5.67)

As a motivation for completely integrable systems, we will just point out the following :
the functions f; are called integrals of motions because Xy(f;) = {h, fi} = 0, which
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means that any trajectory of X4 lies on the level sets of each f; (the same holds for all
Xy,). Also, the trajectory passing through (go, po) lies in the set (),_; _, 7 ( fi(g0,p0) })-
Besides, [X},, Xf,] = 0 implies that we can find, at least locally, coordinates (z1,...,2,)

on this set such that Xy = -2 Xy, = Xy = 2 that is, in these coordinates,

the trajectories of Xy, are straight lines.

dra "

Theorem 3.5.7 Suppose [14,c # 0. The Lagrangian system on Ay x 4, F associated
with

_ { Ay x T4, F — R

\ (g,9) — L(g,q)

gives rise, by the Legendre transform, to a completely integrable Hamiltonian system on
Ao x F* with Hamiltonian

2 - { Ao x F* — R
(¢:0) — (D, [¢n o T4 7' () — L(q, [n 0 4]~ (p))-

Proof. There only remains to prove the complete integrability of the system. To this
end, we adapt the proof of [30, Theorem I1.12.2] to our abstract framework. Take the
integrals of motion to be f; = H, fi(¢,p) = {(¢i,p), i = 2,...,r where r = n — m and
{II4,¢, Ca, ..., ¢} is chosen as to be an orthonormal basis of Ay. For any 4,5 € {2,...,7},
{fi, f;} is zero since f; and f; only depend on p. Let qb,:j(q,p) (resp. (IL4,c);) stand
for the I-th component of ¢;'(q,p) (resp. the I-th component of II4,c) and take some
ke {1,...,r}. Since

M (gp) = OizaPidi) (a,p) - BLo2T) (4,p)
og, O ’ O ’
Y oL, ., N YN
= ;pz 94 (P q) 9, (¢ ¢, (¢, p)) lz_; 9 (¢ ¢, (a,p)) 94 (¢, p)
= _(HAOC)IC
we deduce that for alli € {2,...,7}, {#H, fi} =Y, —gg}i g_qu = ([I4,¢, ¢;) = 0. The second
condition for complete integrability is satisfied too, as the r X 2r matrix
H.Ao CT *
<[afz- ofi ofi  Of ]) B T
Par’ g I e ) e 0 ...
cr

is full rank. m
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On doubly nonlinear evolution equations with
Legendre type functions in a Hilbert space.

JEROME BOLTE

Abstract. Given two closed proper convex functions f,h on a Hilbert space, we study the existence
and the properties of the solutions of the following differential inclusion

%Vh(:c(t)) +0f(x(t)) 20, t>0.

The function h is assumed to be of Legendre type, and typically its domain is different from the whole
space. An existence result provides a solution satisfying a selection law and enjoying strong asymptotic
properties.

This kind of dynamical system is closely connected with some thermodynamical evolution processes and

with constrained convex minimization problems : several examples are given.

Keywords. Legendre functions, nonlinear parabolic equations, convex minimization in
Hilbert spaces, Riemannian subdifferential flow.

4.1 Introduction

The Legendre function theory in finite-dimensional spaces has had many applications
in optimization from both a theoretical and a practical viewpoint : barrier methods,
proximal algorithms, proximal regularization, projection methods [112, 84, 28, 44, 119]...
Recently Bauschke-Borwein-Combettes [29] have extended this notion to reflexive Banach
spaces, opening the road to new applications and perspectives in optimization and in
functional analysis.

Given H, (-,-) a real Hilbert space, and f,h : H — R U {+o0} two closed proper
convex functions, with h of Legendre type (see Definition 4.2.1), this paper is concerned
with the following type of differential inclusions

CTh((1) +0f(a(1) 0, £ > 0, (4.1.1)

with z(0) := z¢ € int dom h N dom f.

Evolution equations of the type (4.1.1) have been tackled by many authors, most
of time in relation with some thermodynamical problems : multiphase Stefan equation,
flows in porous media, and more generally problems arising from industry. For instance in
Kenmochi-Pawlow [83] the authors consider time-dependent equations of the type (4.1.1)
in relation with flows in porous media. From a technical viewpoint, their approach strongly
relies on the fact that the operator Vh is Lipschitz continuous and defined on the whole
of H, which, as we will see, is not required for our main results.

In relation with the Stefan problem, Damlamian-Kenmochi [52] study the following
problem

d
%5(@ —Au=0on (0,7) x
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where [ is a maximal monotone graph in IR x IR, and € is an open domain of R", n > 1.
Their results allow to consider the previous equation with dom 8 # IR, as an abstract
evolution equation governed by a subdifferential operator in the dual space of H'(f2). This
is an improvement of [51] where some growth conditions concerning 3! were needed,
implying in particular that dom 8 = IR. For other approaches to this type of equations
and some extensions, the reader is referred to Bénilan [31], Blanchard-Francfort [33] in
reflexive Banach spaces.

Even if they involve some regularity assumptions on A, the results proposed here are
different and new ; in particular they allow to handle the case where dom h # . For a f
with compact lower level sets, and without any growth condition, we prove the existence
of a solution z € W12(0,T*;H) satisfying (4.1.1) almost everywhere on (0,7*), with in
addition

Vt € [0,T"), z(t) € int dom h,
f(@(T™)) = inf fif T" < oo.
dom h
It is worthwhile pointing out that those results hold in finite-dimensional spaces for a
general closed proper convex function. This allows to extend most of the results given in
Chapter 3, with clear applications to convex minimization.

Another interesting aspect we develop consists in interpreting the differential inclu-
sion (4.1.1) as a Riemannian subdifferential method. By setting H(z) := V?h(z) for all
x € int dom h, the smooth manifold int dom A is naturally endowed with a Riemannian
structure (-,-), = (H(x)-,-). Through an adequate definition of the subdifferential of f in
int dom h, (-,-), the system can be then reformulated as

z(t)+ 0, f(z(t))20,t>0

with 8, f(z) = H(z)~'df(z) for all z € intdomhNdomdf. The relevance of this viewpoint
is confirmed by the proof of a selection law generalizing the well-known “lazy” aspects of
usual subdifferential equations.

Concerning the asymptotic behaviour of the orbits of (4.1.1), several results are given ;
the most important is that

f(z(t)) — inf fast— T
dom h

In the final section some examples of Legendre functions and of specific dynamical systems
of the type (4.1.1) are given. For instance,

u+# —Au—g=0, on (0, 7) x Q

ot 1 _fQUQ

with g € L*(Q),uo € Hy(Q), [, ug < 1, generates a trajectory satisfying [, u*(t) < 1,Vt €
[0,7%), and solves asymptotically

1
min{—/|Vu\2—/gu|u€H§(Q), /u2§1}.
2 Ja Q Q
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Notations. They are rather standard. The norm in # is denoted by |- |; the interior, the
closure and the boundary of a subset S of H are respectively denoted by int.S, S and bd S.
The set of closed proper convex functions on H is denoted by I'o(H). For g € T'o(H) its
domain, its Legendre-Fenchel conjugate and its subdifferential are respectively denoted
by dom g, ¢g*, dg. The domain of the set valued mapping dg is denoted by dom dg, and
we have dom dg = {z € H |0g(x) # 0}. If S is a subset of H, its indicator function is
denoted ds and defined by

0ifz €S,
+00 elsewhere.

ds(z) = {

4.2 Legendre functions and Legendre type metrics

Following the lines of [29], let us recall the notion of essential smoothness, essential
strict convexity and the definition of Legendre function in a Hilbert space.

Definition 4.2.1 Let h be in To(H). The function h is called
(i) essentially smooth, if Oh is both single valued and locally bounded on its domain.
(ii) essentially strictly conver, if Oh™" is locally bounded on its domain and h is strictly

convex on every conver subset of dom Oh.
(i1i) Legendre, if it satisfies both (i) and (ii).

By [29, Theorem 5.4], the notions introduced in (7), (i7) are dual to each other, i.e. h
is essentially smooth if and only if h* is essentially strictly convex; and therefore

h is of Legendre type if and only if A* is of Legendre type.

A first important result is given by
Theorem 4.2.1 Assume that h € To(H) is Legendre. Then

Vh :int dom A — int dom A*

is bijective with inverse Vh™! = Vh* : int dom h* — int dom h.

Proof. Again one is referred to [29, Theorem 5.10]. =

An important feature of essentially smooth functions is their “blow-up” property near
the boundary of their domain. Indeed as in finite-dimensional spaces we have

Proposition 4.2.1 Let h be in U'o(H). h is essentially smooth if and only if intdomh # (),
h is Frechet differentiable on int dom h, with |Vh(z,)| — +oo for each sequence x, in
int dom h converging to a boundary point of dom h.

Proof. See [29, Theorem 5.6], . ®

This fact and some of its consequences are crucial to our approach of the differential
inclusion (4.1.1). For an insight of the interest of such a property in various domains
of optimization, one is referred to [119], [44]. To give the reader a concrete idea of its
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importance in our context, let us now prove a result involving Proposition 4.2.1 for a
smooth version of (4.1.1).

Let h € T'o(H) be a Legendre function and consider the assumptions
(L1) h is C? on int dom h,
(L2) The mapping = € int dom h — H(zx) := V?h(z) € L(H) is Lipschitz continuous on
the bounded subsets of H whose closures are contained in int dom A,
(L3) There exists a positive constant « such that

Vz € int dom h, Vu € H, (H(z)u,u) > aful®.

As a direct consequence we have

Proposition 4.2.2 Assume that h € T'y(H) satisfies (L1), (L2) and (L3). For any x in
int dom h, H(x) : H — H is a self-adjoint linear isomorphism.

Proof. Take z in int dom h. (L3) clearly implies that H(x) is one-to-one, and if we set
Hy(z) = H(z) — %Id,

H,(z) is readily seen to be maximal monotone. According to a classical result H(z) =
$1d+ Hy(x) is onto. Since by definition H(z) is self-adjoint the proof is complete. m

Let f : H — IR be a differentiable function whose gradient is Lipschitz continuous on
bounded subsets of H, and for xy € int dom A consider the following dynamical system

@(t) + H(z(t)) "'V f(z(t) =0, t > 0,
(4.2.2)
z(0) = xo.

Proposition 4.2.3 The system (4.2.2) has a unique solution z defined on [0, +oc0) that
satisfies :

(i) YVt > 0, z(t) € int dom h

(11) The function f(z(t)) is nonincreasing.

Proof. The arguments are very close to those of Theorem 3.4.1, Chapter 3, and we only
sketch the main lines. The existence of a solution defined on some [0, 7},,4;) and satisfying

z(t) € int dom h for all t in [0, T}ez), follows from (L2), and Proposition 4.2.2. Using
(4.2.2), we deduce that

%f((ﬂﬁ(t)) + (H(x(t)2(1), 2(t)) = 0, Vt € [0, Tinaa)

and therefore by (L3), 2(-) € L?(0, Traz; H)-

If Thae < +00 then z is Cauchy net at t = T,,,, for the norm topology. Let us argue
by contradiction and assume that z(7},.;) € bd dom h.

Integrating (4.2.2) over (0,t), t < Tinan gives

Vh(z(t)) — Vh(z(0)) + / V f(2(s))ds = 0,

0



94 Partie I Chapitre 4

and thus by Proposition 4.2.1 we have |Vh(z(t))| — +o0 ast — Ty,q, while fOt{Vf(ac(s))ds}
remains bounded. Necessarily x(7,,q;) € int dom A, so that the solution can be extended
beyond T;q,. W

Let us recall now the notion of D-function or Bregman distance. Given h € I'y(H) of
Legendre type, we define the D-function of A by

H xintdomh — R
(z,y) = Dp(z,y) =h(z) — h(y) = (Vh(y),z —y)

The above functions have a great interest in many fields of convex minimization, see
Bregman [36] for his seminal works on convex feasibility problems, Kiwiel [84] for proximal
methods of Bregman type, and also Chapter 3.

Here are some of the elementary properties of Dj,.
Proposition 4.2.4 (i) Dy, > 0
(i1) For all (x,y) € int dom h X int dom h, Dp(z,y) =0 iff x = y.
(111) For all (x,y) € int dom h X int dom h, Dy (z,y) = Dp-(Vf(y), Vf(2)).
(iv) For each sequence y, in int dom h converging to a point in int dom h, we have
Dy (y,yn) — 0 as n — +o0.
(v) D(-,y) is coercive for all y € int dom h, i.e.

Dhl

lim Dp(z,y) = +00
|z| =400
Proof. See [29, Lemma 7.3].
The following Lemma will be very useful in the study of (H-SD),.

Lemma 4.2.2 Let y, € intdom h be a sequence converging to a boundary point of dom h
and z € int dom h. Then Dy(z,y,) — +00 as n — +o0.

Proof. By Theorem 4.2.1 and Proposition 4.2.4 (iii) we have respectively Vh(z) €
int dom h* and Dy (z,y,) = Dp(Vh(y,), Vh(z)). Since h is a Legendre function, so is h*.
From Proposition 4.2.4 (v) it ensues that Dy« (-, Vh(x)) is coercive. Since h is of Legendre
type we have |Vh(y,)| — +oo as n — 400 and thus the coerciveness of Dy (-, Vh(z))
yields the desired result.m

Legendre Metrics. H is assumed to be finite-dimensional. Let h be a Legendre function
that satisfies (L1) — (L3), and set S := int dom h. As in Chapter 3, the smooth manifold
S can be endowed with the metric induced by the hessian of h. For all z € int dom A, set

Vu,v € T,8 ~H, (u,v), = (H(x)u,v),

where T,.S denotes the tangent space to S at x. The gradient of a smooth function f in
the Riemannian manifold S, (-,-) is then given by

V, f(x) = H(z) 'V f(z) for any z in S.

The metric (-,-) is called the Legendre metric induced by h. Following the ideas of
the preceding chapter, the dynamical system (4.2.2) can be rewritten as a Riemannian
gradient method
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{ igé))izgf(x(t)) =0,1>0, (4.2.3)

The section to follow will show that under a minimal qualification assumption, the dyna-
mical system (4.1.1) can also be reformulated as Riemannian subdifferential method.

4.3 The dynamical system (H-SD),

From now on, h denotes a Legendre function that satisfies the requirements (L1), (L2)
and (L3).

Let f € T'y(H) be such that
(f1) dom f Nint dom h # 0,

(f2) Either f has compact lower levels
or H is finite-dimensional with inf{f(z) |z € dom h} > —cc.

Observe that if f has compact lower levels we also have
inf{f(z) |z € dom h} > —o0.
For zy € int dom A N dom f we are concerned by the following evolution equation
(H-SD),  &(t)+ H(z(t)'Vf(x(t) 30,t >0

with initial condition z(0) = zo and where (H-SD), stands for generalized H-steepest
descent.
x is said to be a solution of (H-SD), if there exists T such that

oz c WU (0,T*H)
e 2(0) =z

oVt €[0,7%), z(t) € int dom h

e The equation (H-SD), is satisfied almost everywhere on (0, 7).

Before giving the main result of this paper, let us give an interpretation of (H-SD),
in term of a Riemannian subdifferential method. Let g € T'g(#). Consider the restriction
of g to int dom h and define the multivalued operator

0,9 intdomh =

by
Vz € int dom h,
u € 0,9(x) < Yy € intdom h, g(y) > g(z) + (u,y — x),

and its domain by dom 9, g = {z € int dom h|9, g(z) # 0}.

Note that this definition does not imply any a priori information on g out of the
interior of domh. As for the smooth case in finite-dimensional spaces 0,, ¢ and its domain
can be expressed thanks to the usual subdifferential of convex analysis. For this we need
the following useful Lemma
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Lemma 4.3.1 For g : H — R U {+oc} proper and convez, let us denote by g its lower
semicontinuous reqularized. If g satisfies (@) : dom g Nint dom h # () then

g+ Oint dom h = g+5m

Proof. Classically, we have (g 4 dint domn)™ = g + Oint dom n- FOr two given real extended
valued functions g1, ¢s : H — R U {+0o0}, we recall that their epigraphical sum is defined
by (g1 +e 92) (z) = inf{gi(2) + g2(x — 2) |z € H}. Combining (@) together with the
continuity property of diut qomp ON int dom A, a well-known result implies that

(g + 5int dom h)* = g* +e (5int dom h)*-

The conclusion follows from the classical duality relation

(9* +e (5int dom h)*)* = g** + (5int dom h)** =g + 5domh' u

We can now state the following
Proposition 4.3.1 Let g € T'y(H) such that dom g Nint dom h # (. Then

dom 0, g = dom dg N int dom A,

and for all x € dom 0, g, we have
0,9(z) = H(z) ' 0g(x).

Proof. Let z € dom 0,9 and u € 9, g(z). By definition, we have for all y in int dom h,
9(y) > g(x) + (u,y — x),. Using Lemma 4.3.1 it follows that the last inequality holds for

any y in dom A ; in other words

9 + daomnl (V) 2 19 + Faomnl () + (H(2)u,y — z), Vy € H

Hence
H(z)u € 0(9+ dgomp)(2)

= 99(z) + Niomn(z)
= 0g(x)

where the second inequality is a consequence of the qualification assumption dom g N
int dom A # (). The end of the proof follows easily. ®

This viewpoint allows to reformulate (H-SD), as
(H-SD),  #(t)+0,f(z(t)>20,t>0
with initial condition z(0) = zo € int dom A N dom f.

Beyond the fact that the usual subdifferential evolution equation is generalized, the
interest of defining a subdifferential with respect to some “metric” allows technically to
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give a variational characterization of the multivalued operator governing our differential
inclusion which could be of interest in further studies. On the other hand, we shall see
that the regular solutions of (H-SD), are subject to a specific selection law which admits
a very simple formulation in terms of the metric (-, ).

Let us now state the main result of this paper

Theorem 4.3.2 The function f is assumed to satisfy (f1), (f2) and the Legendre func-
tion h is chosen to verify (L1)—(L3). The differential inclusion (H-SD), admits a solution
x such that

(1) x € WH2(0, T H),

(11) The function t > [0,T*) — f(z(t)) is absolutely continuous and nonincreasing,

(111) If T* < +oo then x(T*) € bd dom h with

f(z(T*)) = inf f. (4.3.4)

dom h

Remark 4.3.3 Let x be the solution obtained above. Using the regularity properties of
h and z the dynamical system (H-SD), can be rewritten

%Vh(m(t)) +0f(z(t)) 30, ae on (0,T7).

The uniqueness of the solution is as far as we know an open question, however the
solutions of (H-SD), have a specific property which corresponds to a non Euclidean
version of the well-known selection law [37]

#(tT) +0f°(z(t) =0, Vt>0

where 9f°(z) = lyp()(0) and with Iys,) being the (-, -)-orthogonal projection onto the
closed subset df(z).

Observing that for z fixed in dom 9, f, 0, f(z) is also a nonempty closed convex
subset (cf Proposition 4.3.1) and that (-,-), is some inner product on H, we can define
the (-, -);-orthogonal projection onto 9, f(z), namely Py _ (). Let us set

0, [ (%) = Po,, 1) (0).
We have
Proposition 4.3.2 Let = be a solution of (H-SD), on (0,T%), T* > 0 that satisfies
x € W20, T*,H), then

(i)t € [0,T] — f(x(t)), is absolutely continuous for all 0 <T < T*.
(ii) The following selection law holds

i(t) + 0, O (x(t)) = 0, ae on (0,T%).
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4.4 Existence of a solution. Main proofs.

In order to obtain some smooth approximations of (H-SD),, let us recall the definition
and the basic properties of the Moreau-Yosida approximate.
For each A > 0, define for all x € H

fa(e) = int{fy) + le — yP |y € H).

The proximal mapping of index ) is defined by Jy\ := (I + Adf)~!. J, is a contraction
defined on the whole of %, and we have moreover fy(z) = f(Jyz) + 55|z — Jhz|*.
The sequence of functions f, has the following properties

(MY1) fy is C* and convex,

(MY2) Vf, is Lipschitz continuous,

(MY3)Vz € H, fa(z) — f(z), and for all 4 > A, fr < f,.

(MY4) For all closed subset C' of H, we have inf¢ f\ — infc f as A — 0.

For the first three classical results see for instance [12, 37], for the last one is referred for
instance to [12]. The approximate dynamical systems are then given by

Zx(t) + H(zx(t)) "V r(za(t)) =0, >0,

(H-SD) { 22(0) = 2.

By Lemma 4.3.1 these approximate equations can also be rewritten

I.)\(t) + VHf)\(.’L‘)\(t)) = 0, 1 2 O,
(H SD))\ { .T)\(O) = 2.
The fact that the solution of (H-SD), is defined for all ¢ > 0 is a consequence of Propo-
sition 4.2.3. Following a standard procedure, we derive from (H-SD), several estimates,
and then using compactness arguments we prove the existence of a solution to (H-SD),.
For simplicity the subsequences of x,, x)... are still denoted z,, 2... When no confu-
sion can occur, the time variable ¢ is dropped out. We set C' := dom h.

Proof of Theorem 4.3.2

Estimates on the sequence z,
From (H-SD), it ensues that

% Fa(@2) + (&, 2)ay = 0. (4.4.5)

By using (L3), we obtain successively

/0 G2 < 1alfx(ze) — frl@a®)
< 1/l fa(m) — iréff,\), Vi >0
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Hence by (MY4) there exists a constant M; such that

+o0
sup/ [Z5? < M. (4.4.6)
0

A>0

On the other hand, infc f) < fa(za) < fa(xo), VE > 0, and thus by (MY4) again

supsup | fa(za(t))] < +o0. (4.4.7)
A>0 >0
From (4.4.5) we deduce that there exists a constant M, such that f(;Loo(:L",\,x'A),cA < M,

and therefore sup,., f0+°° | L fr(2))] < 400. Combining the last inequality with (4.4.7) we
obtain that
falxa(+)) is bounded in W1(0,T), VT > 0. (4.4.8)

Using the Cauchy-Swarz inequality and (4.4.6), it follows that

Vi>s>0, |zA(t) — za(8)| < VE—s M, (4.4.9)
and thus
xy is bounded in L*°(0,T;H), VT > 0. (4.4.10)

Let us now examine the properties of the sequence Jyz,. Since .Jy is a contraction on H,
we deduce from (4.4.9) that Jyz, is equicontinuous on [0, 7], VT > 0. On the other hand,
and according to (4.4.7) there exists M such that

1
f,\(.@)\) = f(J)\.T)\) —+ —|$)\ — J)\x)\|2 S Mg. (4.4.11)
2\

By (f2), f has compact lower levels so that (4.4.11) implies that for all £ > 0, Jyz,(t) is
relatively compact in H. Resorting to Ascoli Theorem it follows that for all 7" > 0

Jyzy is relatively compact in C'([0,T]; H) equipped with the supremum norm. (4.4.12)

Relative compactness properties of the sequence z,.
From (4.4.6) and (4.4.10), we deduce the existence of x and v in L?*(0, +o00;H) such
that

Ty — 2 inw — L*(0,T;H), VT > 0 (4.4.13)
Zy — vinw— L*(0,T;H), VT > 0 (4.4.14)

with v = 2 in the distributional derivative sense.

Fix T > 0. Let us prove that x, converges strongly in C([0,T];H) to x. The property
(4.4.12) yields the existence of a Cauchy subsequence of Jyz, in C([0,T]; H), still denoted
Jazy. On the other hand, it follows from (4.4.11) and (MY'4) that for all ¢t > 0,

zA(t) = Haa(®)? < A (Ms — fa(za(1)))
< A (M3 — inf fA) < AM, (4.4.15)
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where M, is a positive constant. Therefore for all A, u > 0, ¢ > 0 we have

[2A(t) —2u ()] < Jea(t) = Taza(®)] + [aza(t) = Juzu ()] + [Juzu(t) — 2,(2)]

< (VA VIV M+ | L) = Juzu()]

Recalling that Jyz, is a Cauchy sequence in C([0,T]; M), the above inequality entails
zy — xin C([0,T];H), VI > 0. (4.4.16)

Consequently z is absolutely continuous and v = & ae on (0, +00).
The sequence fy(x,) is bounded in variation on [0, 7], cf (4.4.8) ; applying Helly’s first
Theorem (cf [104] p.222), we may assert the existence of ¢ € BV,.(0,T) such that

fa(za(t)) = ¥(t) pointwise on [0, 7. (4.4.17)

To identify v let us first notice that, according to the epiconvergence properties of the
Moreau-Yosida approximate, see [12], (4.4.17) and (4.4.16) imply that

$(t) = Timinf f3(2x(1)) > F(2(1)), ¥t € [0, 7]

Now, take \g > 0, we have by (MY3) f),(z ( ) < faza(t)), VA < Ao and letting A — 0,
(4.4.17) and (MYl) give fy,(z(t)) < ¥(t). By (MY3) we have f(z(t)) < ¢(t) which
finally yields

fa(za(t)) = f(x(t)) pointwise on [0,7], VT > 0. (4.4.18)

The boundary time
x is a continuous function from [0, +00) to H, with in addition z(0) = zy € int dom h.
Set
T* = sup{t > 0|z(t) € int dom h}.

For all 0 < ¢ < T* we have z(t) € int dom h, and if T* is finite we have
z(T") € bd dom h. (4.4.19)

Equation satisfied by the limit
From (H-SD), and (4.4.14) we deduce that

V. fiaza(t)) = —2(t) in w — L*(0,T; H), VT > 0. (4.4.20)

Fix T € [0,7*) and y € H. Let us prove that —z(t) € 9, f(x(t)) ae on (0,7"). By convexity
of f\ we have

@) = fa(@a@) + (Vi ia(@a®), y — 2a(t)) sy, VE € [0, T

Therefore for all # > 0 in D(0,7T) - the set of C* functions with compact support in
(0,T)- it ensues that

/0 0(s) [A (1) — Fr(@a(s)) + (V, Fr(@a(s), H(zx(s))[y — za(s)] Y ]ds > 0. (4.4.21)



4.4 Existence of a solution. Main proofs. 101

Set K = Uxs zA([0,7]) Uz([0,T]), by using (4.4.16), Proposition 4.2.3, and the fact that
T < T, we see that K is a compact set contained in int dom h. In view of (L2), H, is
Lipschitz continuous and thus,

H(z)(-)(y — zA(-)) = H(z(-))(y — z(+)) strongly in C([0,T]; H) (4.4.22)

Using the Lebesgue dominated convergence theorem together with (4.4.18), we deduce
from (4.4.21), (MY'3), (4.4.20) and (4.4.22) that

T
[ 66) [10) = Fal) + (6(6),y = 2(6))| ds > 0. (4.42)
0
Since @ and y have been arbitrarily chosen, it follows that
—i(t) € 0, f(x(t)) ae on (0,77).

The case for which 7% < +oc.
We must prove that necessarily f(z(7*)) = infc f where C' = dom h. Let us argue by
contradiction and assume that there exists a € C such that

fla) < f(z(T")) < 4o0. (4.4.24)

Note first that by Lemma 4.3.1 we can assume that a € intdom h, with (4.4.24) being still
satisfied. By (4.4.18) and (MY 3), we know that f(z,(T™*)) — f(z(T™)) and fi(a) — f(a).
Therefore (4.4.24) implies that there exists Ay such that

fala) < f(a) < fA(z(T™)), YA < . (4.4.25)

Since the fy are convex, the convex inequality together with (4.4.25) and Lemma 4.2.3
(i) yields

(VIa(2A(®), 2A(t) = a) = fa(2a(t)) — fala) = fa(z(T7)) = fala) > 0, Vi €[0,T7]
Now, let us notice that since H(y), y € int dom h is self-adjoint, (H-SD), and (4.4.25)
imply

iDh(aax(t)) = (2x(t), H(2a(1)) (2a(t) — a))

dt
= —(Vfa(za(t)), zr(t) —a) <0, YVt €[0,T7]
and in particular
0 < Dp(a,z\(T*)) < Dp(a,z(0)) = Dp(a, o). (4.4.26)

Recalling that x,(7*) is a sequence in int dom A converging to a boundary point of dom h
(cf (4.4.16) and (4.4.19)), we have by Lemma 4.2.2, Dy (a,z(T*)) — 400 as A — 0. This
contradicts (4.4.26) and therefore x(7*) is a minimizer of f.
Regularity property of f(z(-))

We recall the following Lemma ([37, Proposition 3.3]) :
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Lemma 4.4.1 Let g € To(H), T > 0 and y € WH2(0, T; H) with
y(t) € dom dg ae on (0, 7).

Assume that there ezists v € L*(0,T;H) such that v(t) € dg(t) ae on (0,T). Then t
g(x(t)) is absolutely continuous with

L o((0) = (i0), ), Vh € dy(y(0)) ac on (0.7).

In order to use this result, we notice that by Proposition 4.3.1, 2(t) € —0,, f(x(t)) ae on (0,7%)
can be rewritten H(z(t))z(t) € —0f(z(t)) ae on (0,77*). Fix T in [0,7*). Since z([0,T])

is compact and contained in int dom A, the continuous function |H|, , ., attains its upper
bound B > 0. Therefore, recalling that © € L?*(0,T;H), it ensues that H(z(t))z(t) €
L*(0,T;H), and the previous Lemma yields (7). m

Proof of Proposition 4.3.2

As in the proof just above, the fact that € L*(0,T*) implies that f(x(-)) is absolutely
continuous and () is proved.

Resorting to Lemma 4.4.1, we have for almost all ¢ in (0,77)

(@(t), ) = (@(t),72), V71,72 € 0f(2(t))- (4.4.27)
Let us set for all such ¢ in [0, 7*)
—&(t) = gu(t)
with gy (t) € 0, f(x(t)). The equation (4.4.27) can be then rewritten
(91 (1); M)atty = (91 (8); )y, Y71, 72 € Oy f(2(1))

and we have in particular

(9u(t), 9u(t) =7 )aw <0, Vo' € 0, f(z(2))-

The last inequality entirely characterizes d,, f° (z(t)), so that (iz) is proved. m

4.5 On the asymptotic behaviour

The convergence of the trajectories towards an equilibrium of f over the closed convex
subset dom h is as far as we know an open question, however we have the following general
result :

Theorem 4.5.1 The assumptions are those of Theorem 4.3.2 Assume that T* = 400,
then

f(z(t)) = inf f ast — +o0
dom h
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Proof. Let a € int dom A N dom f.
The function ¢ € [0,+00) — Dy(a,z(t)) is absolutely continuous and we have for
almost all ¢t > 0

%Dh(a z(t)) = (H(z(1))[(z()) — a], £(2))- (4.5.28)

By (H-SD),, there exists g(t) € 9f(z(t)) ae on (0, +00) such that z(t) = —H (x(t)) ' ¢(?).
Using (4.5.28), the fact that H(z) is self-adjoint, and the convex inequality for f, we obtain
successively

%Dh(a z(t) = (H(z(t)[(x(t) - al, —H(2(t) " g(1))
= —(@(t) = a,9(1))
< f(a) — f(z(t)) ae on(0, +00).

Integrating over (0,t), ¢t > 0, one obtains Dy (a, z(t)) + fo [f(z(s)) — f(a)]lds < Dy(a,zo)
and since f(x(-)) is nonincreasing we have by Proposmon 4.2.4 (i)

tf(z(t)) = fla)] < Dn(a, o)
f(z(#)) < <Dala,zo) + f(a). (4.5.29)

o~ | =

Finally lim; o f(2(t)) < f(a), for all a € int dom A Ndom f, and the conclusion follows
from Lemma 4.3.1. B

Corollary 4.5.1 Assume that H is infinite-dimensional with f as specified in (f2). The
weak cluster points of {z(¢)} are contained in argmin g f. If f has a unique minimizer
a over dom A then

x(t) weakly converges to a as t — 400

Corollary 4.5.2 If h is finite at the boundary and if inf 55 f is attained, the following
estimate holds

F@() — inf f < SDy(a,10), (4.5.30)
dom h t

where ¢ is a minimizer of f over dom h.

Proofs. For the 4.5.1 claim, we just recall that f has compact lower levels, which implies
by Theorem 4.3.2 (ii) that z(¢) is bounded and has at least one weak cluster point. If z* is
such a point, let t,, - +00, n — +o0 be such that z(¢,) — z* weakly in H as t,, = +o0.
Since f € I'y(H), we have f(z*) < liminf, , f(z(¢,)) and the conclusion follows from
Theorem 4.5.1. To prove Corollary 4.5.2, we notice that since f has compact lower level,
the infimum over dom A is attained. Using (4.5.29), we obtain the desired estimate.

Remark 4.5.2 When A is finite-dimensional with h being a Bregman function, one can
prove that the trajectories of (H-SD), converge to a minimizer of f over dom A. This is
an adaptation of the results of Theorem 3.4.7, Chapter 3.
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4.6 Examples of Legendre functions and of (H-SD),
dynamical systems

We first propose several types of Legendre functions complying with the requirements
(L1), (L2) and (L3), and then give some examples of associated (H-SD), dynamical sys-
tems.

Examples of Legendre functions
Take «, 8 > 0.

Example 1.

Az? = By/1—|z|?if 2] < 1
hi(x) =

+00 otherwise.

Denote respectively by B and B the unit open ball of H and its closure. We have
dom h; = B, int dom h; = dom 0h; = B,

and

Vhi(z) =az+ , Vx € int dom h;.

x
V1= |z|?
The fact that hy is essentially smooth follows for instance of Proposition 4.2.1. To prove
that h, is essentially strictly convex the most difficult point is to prove that 9k is locally
bounded on its domain. For that, we notice that Oh; ' = [add + A]™" with A maximal
monotone, so that Oh! = Oh; ' is defined and Lipschitz continuous on #. The fact that
hy is Legendre is now obvious. To see that (L2) is satisfied it suffices to use the fact that
the hessian of h is C'° and locally Lipschitz continuous as a composition of Lipschitz
mappings. The property (L3) is clearly satisfied.

Example 2.

hg(.’]ﬁ) =

+o00 otherwise.

We have

dom Ay = int dom hy = dom 0hy = B,
and

Vhy(z) = ax — ﬂi Vz € int dom h
e (1—z[?)?’ .

To see that h is a Legendre function which satisfies (L1), (L2) and (L3), the arguments
are of the same type as above.

Example 3. Let 6 : R — IRU{+00} be a Legendre function such that (0,+00) C dom#é C
0, +00).
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For * # 0 in H, define
W () = Slaf? + B0((x,2°)).

If #(0) = +oo then dom h?*" is the closed half plane P := {y € H |(y,z*) > 0}. Else
dom h%*" =P = {y € H |(y,x*) > 0}. For all z € P we have

VK" (1) = ax + B0 ((z,2%))z*.

To see that h?*" is essentially smooth just apply Proposition 4.2.1 together with the
Legendre property of 6. The essential strict convexity, (L1), (L2) and (L3) follows as in
Example 1.

Example 4. Assume that # is finite-dimensional and denote by z1,..,z, the canonical
coordinates of H = IR", n > 1. For # as in the example above, we set

_ sy
hale) = 1ol + 300z
As in Chapter 3, hy is of Legendre type with
int dom hy = R"} | := {z € R" |[z; > 0, Vi € {1,..n}}.

Some associated (H-SD), dynamical systems

When #H is infinite-dimensional, the state variable is classically denoted by u and for
simplicity the dynamics are written in the following form :

%Vh(u(t)) +0f(u(t)) 30, ae on (0,7%)

with 4(0) = ug € int dom A N dom f.
Let Q be a nonempty bounded open subset of R", n > 1 with a regular boundary and
set H := L*(Q). Given g € L*(Q)), f is defined as the Dirichlet integral, that is,
f:L*(Q) = RU{+o0}
with . .
5 Jo IVul® = [ gu if u € Hy(Q),
flu) =
+00 otherwise.

Let us recall that domdf = H*(Q)NHy (), with 8f(u) = —Au—g whenever u € domdf.

1. With the kernel h; we obtain

—Au—g=0, on (0,7%) x Q
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with ug € Hj(Q), [, u§ < 1. This evolution equation solves asymptotically the following

problem
1
min{—/|Vu\2—/gu|u€H§(Q), /u2§1}.
2 Ja Q Q

2. With the kernel hy we obtain

0 203
- Au—qg= T) x Q
: (au a fgz“2)2) u—g=0, on (0,7%) x

with ug € Hg(Q), [, ug < 1.
3. To give an example with a Legendre function of the type h%*", we take 6(s) = slns, s >

0, +00 otherwise and with the convention 0ln0 = 0. The linear form z* is given by the
constant function, 1g, i.e. 1o(y) = 1, Yy € Q. This gives

2(ozu—i—ﬁln/u) —Au—g=0, on (0,7") x Q
ot Q

Let us finish this section by giving an example in finite-dimensional space. The function
6 is chosen as above, and taking a kernel of the type hy (cf Example 4), we obtain the
following dynamical system

Z;
,B + ax;
with Vi € {1,..,n}, (zo); > 0. For a smooth criterion f, this equation was already proposed

in [20]. Using Theorem 4.3.2 and Theorem 4.5.1, we see that the above dynamical system
solves asymptotically the following convex minimization problem

©(t) + diag [ } 0f(z(t)) >0, aeon (0,7%)

inf{f(z) |z € R"}.
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A second-order gradient-like dissipative dynamical

system with hessian driven damping.

Application to Optimization and Mechanics.!

F. ALVAREZ ? , H. ATTOUCH 2, J. BOLTE 2 anp P. REDONT. 3

Résumeé. Nous étudions le systeme dynamique
(DIN) E(t) + az(t) + BV2®(x(t))E(t) + VO (2(t)) =0

ot ® : H — R est une fonctionnelle de classe C2, H un espace de Hilbert réel, et a, 3 des parametres
> 0. Le terme inertiel #(t) peut étre vu comme une perturbation singuliére mais aussi une régularisation
de la méthode de Newton continue V2®(z(t))i(t) + V®(z(t)) = 0.

Le systeme (DIN) est bien posé. La dissipativité confere aux trajectoires des propriétés intéressantes
pour 'optimisation de ®. Par exemple, si ® est convexe et argmin® # (), toute trajectoire converge
faiblement vers un minimum de ®. En dimension finie, si ® est analytique, toute trajectoire converge vers
un point critique de ®.

De fagon remarquable, (DIN) est équivalent & un systéme du premier ordre ou le hessien V2® ne
figure pas

{ &(t) + cVe®(z(t)) + ax(t) + by(t) =0
y(t) +az(t) + by(t) =0

Il est donc possible de donner un sens & (DIN) losque @ est de classe C!, ou méme soumise & des
contraintes. Nous en donnons deux illustrations : 1) un systéme dynamique de type gradient projeté
avec des trajectoires inertielles viables et des propriétés de minimisation; 2) une approche du rebond

inélastique en mécanique.

Abstract. Given H a real Hilbert space and ® : H — R a smooth C? function, we study the dynamical
system
(DIN) E(t) + ai(t) + BV2®(x(t)2(t) + VE(x(t)) =0

where « and 3 are positive parameters. The inertial term #(t) acts as a singular perturbation and, in fact,
regularization of the possibly degenerate classical Newton continuous dynamical system V2®(z(t))%(t) +
V&(z(t)) = 0.

We show that (DIN) is a well-posed dynamical system. Due to their dissipative aspect, trajectories of
(DIN) enjoy remarkable optimization properties. For example, when ® is convex and argmin ® # (), then
each trajectory of (DIN) weakly converges to a minimizer of ®. If ® is real analytic, then each trajectory
converges to a critical point of ®.

A remarkable feature of (DIN) is that one can produce an equivalent system which is first-order in
time and with no occurrence of the Hessian, namely

{ &(t) + cV®(x(t)) + ax(t) + by(t) =0
y(t) +ax(t) +by(t) =0

where a, b, ¢ are parameters which can be explicitly expressed in terms of @ and f. This allows to consider
(DIN) when @ is C! only, or more generally, non-smooth or subject to constraints. This is first illustrated
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by a gradient projection dynamical system exhibiting both viable trajectories, inertial aspects, optimiza-
tion properties, and secondly by a mechanical system with impact.

Keywords : continuous Newton method, dissipative dynamical systems, asymptotic be-
haviour, gradient-like dynamical systems, optimal control, second-order in time dynamical
system, shocks in mechanics, gradient-projection methods.

AMS classification : 37Bxx, 37Cxx, 37Lxx, 37N40, 47HO06.

5.1 Introduction

Let H be a real Hilbert space and ¢ : H — IR a smooth function whose gradient and
Hessian are respectively denoted by V® and V2®. Our purpose is to study the following
dynamical system

(DIN) () + ai(t) + BV2B(x(t))E(t) + VB(x(t)) = 0,

where o and (8 are positive parameters. We use the following notations : ¢ is the time
variable, x € H is the state variable, trajectories in H are functions ¢ — z(¢) whose first
and second time derivatives are respectively denoted by &(t) and Z(?).

The above dynamical system will be referred to as the Dynamical Inertial Newton-like
system, or (DIN) for short. This evolution problem comes naturally into play in various
domains like optimization (minimization of ®), mechanics (non-elastic shocks), control
theory (asymptotic stabilization of oscillators) and PDE theory (damped wave equation).
The terminology reflects the fact that (DIN) is a second order in time dynamical system,
the acceleration Z(t) being associated with inertial effects, while Newton’s dynamics refers
to the action of the Hessian operator V?®(z(t)) on the velocity vector z(t) (see (CN)
below).

This paper focuses on the study of (DIN) as a dissipative dynamical system ; accor-
dingly, the investigation relies on Lyapounov methods (for facts on dissipative systems
see [69, 71, 120]). The convergence of the trajectories of (DIN), as the time ¢ goes to +o0,
is established under various assumptions on ® : ® analytic (Theorem 5.4.1), ® convex
(Theorem 5.5.1). Indeed, by following the trajectories of (DIN) as ¢ goes to 400, one ex-
pects to reach local minima of ® (global minima when & is convex), with clear applications
to optimization and mechanics.

Let us discuss some motivations for the introduction of the (DIN) system.

In recent years, numerous papers have been devoted to the study of dynamical systems
that overcome some of the drawbacks of the classical steepest descent method

(SD) z(t) + V@ (z(t)) = 0.
For instance, Alvarez and Pérez study in [8] the Continuous Newton method

(CN) V20(z(t))i(t) + VO(2(t)) =0
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as a tool in optimization and show how to combine this dynamics with an approximation
of ® by smooth functions ®,, when ® is nonsmooth. On the other hand, Attouch, Goudou
and Redont study in [18] the heavy ball with friction dynamical system

(HBF) () + ai(t) + VO(x(t) =0,

where o > 0 can be interpreted as a viscous friction parameter. This dissipative dynamical
system, which was first introduced by Polyak [111] and Antipin [10] enjoys remarkable
optimization properties. For example, when ® is convex, the trajectories of (HBF) weakly
converge in H as t — 400 to minimizers of ®. This result, proved by Alvarez in [4], may
be seen as an extension of the celebrated Bruck Theorem for (SD) [40] to a second-order
in time differential dynamical system ; see also [5] for an implicit discrete proximal version
of their result.

There is a drastic difference between (SD) and (HBF). By contrast with (SD), (HBF)
is no more a descent method : the function ®(z(t)) does not decrease along the trajectories
in general ; it is the energy E(t) := 3|4(¢)|* + ®(z(t)) that is decreasing. This confers to
this system interesting properties for the exploration of local minima of ®, see [18] for
more details.

Both the Newton and the heavy ball with friction methods can be seen as second order
extensions of (SD), the latter in time (with & in addition to &) and the former in space
(with V2@ in addition to V®). Each one improves (SD) in some respects, but they also
raise some new difficulties. In (CN), V2®(z(t)) may be degenerate and (CN) is no more
defined as a dynamical system, moreover V2®(z(¢)) may be complicated to compute. In
(HBF), the trajectories may exhibit oscillations which are not desirable for a numerical
optimization purpose.

If one combines the continuous Newton dynamical system with the heavy ball with
friction system, the system so obtained,

(DIN) &+ ok + fV2O(x)i + VO(z) = 0,

inherits most of the advantages of the two preceding systems and corrects both of the
above-mentioned drawbacks : the term V?®(x(t))z(¢) is a clever geometric damping term,
while the acceleration term Z(¢) makes (DIN) a well-posed dynamical system, even if
V2®(z(t)) is degenerate ; see Attouch and Redont [19] for a first study of this question.

The relative roles of the damping terms o and 3V?®(x)i are illustrated below on
Rosenbrock’s function, ®(x1,z2) = 100(ze — 23)? + (1 — z1)?, which possesses a global
minimum at point (1, 1) at the bottom of a flat long winding valley ; see figure 5.1. When
the geometric damping is low (8 = 1073) the trajectory is prone to large oscillations,
transversal to the valley axis, and is quite similar to a (HBF) trajectory (8 = 0, see [18]).
When the geometric damping is effective (5 = 1), but with a low viscous damping (o =
1073), the trajectory is forced to the bottom of the valley. While transversal oscillations are
suppressed, longitudinal oscillations remain important, due to the Hessian being nearly
zero in the direction of the valley. As can be seen in the lower plot, a combination of
viscous and geometric damping (o = 1, § = 1) puts down any oscillations and produces
a trajectory converging regularly to the minimum.
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a=1, p=10"° a=10"3, p=1

a=1, B=1

F1G. 5.1 — Versatility of (DIN).

We stress the fact that (DIN) is a second order system both in time (because of the
acceleration term #(¢)) and in space (V2®(z(t)) is the Hessian). The central point of this
paper is that, surprisingly, one can “integrate” in some sense this system, and exhibit
an equivalent first order system in time and space in H x H which involves no Hessian
(section 5.6.3, Theorem 5.6.2)

{ :c(t) +cVO®(x(t)) + ax(t) + by(t) =0

y(t) + az(t) + by(t) :E

This result opens new interesting perspectives : it allows to consider (DIN) for nons-
mooth functions, possibly only lower semicontinuous or involving constraints, with clear
applications to mechanics and PDE’s (wave equations, shocks). For example, when taking
H = L?(Q2) and ® being equal to the Dirichlet integral with domain H}(f2), the system
(DIN) provides the following wave equation with higher order damping, which has been
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considered by Aassila in [1].

0%u ou A ou

ﬁ‘FO&E— (E)_AUZO mn QX]0,+OO[

u=0 on 90x]0, +oo]
(0) = us, 22(0) = in ©
u = Uy, ot = U m 3.

Another interesting situation corresponds to the case where ® is proportional to the square
of the distance function to a convex set K : ®(z) = Ug 5(z) = 5;dist*(z, K), A > 0 (which
is also the Moreau-Yosida approximation of the indicator function of K). In that case,

(DIN), written under the form
iy 4 26VAV2U g\ (2)iy 4+ VU kA (2) = —ady,

is closely related to a dynamical system introduced by Paoli and Schatzman [107] to model
non-elastic shocks in mechanics.

Let us finally mention that the formulation of (DIN) as a first-order dynamical system
which only involves the gradient of ®, naturally suggests a way to define the second-order
subdifferential 92® of non-smooth functions ®. It is certainly worthwile comparing this
new aproach to 0?® wvia dynamical systems, with the recent studies of R. T. Rockafellar
[114], Mordukhovich-Outrata [102] and Kummer [87].

Clearly, a precise study of these quite involved questions is out of the scope of the

present article. We just mention them in order to stress the importance and the versatility
of the (DIN) system.

The paper is organized as follows. Section 5.2 gives the existence and the basic pro-
perties of the solution to (DIN). In section 5.3, we justify the terminology Dynamical
Inertial Newton method by showing that (DIN) may be considered as a perturbation of
the continuous Newton method. The next two sections deal with the asymptotic beha-
viour of the (DIN) trajectories : convergence to a critical point is proved for an analytic
function @ (section 5.4), and convergence to a minimizer is proved for a convex function
(section 5.5). Section 5.6 presents a first-order in time and space system that is equivalent
to (DIN). In section 5.7, constraints are introduced in that new system, which gives rise
to a continuous gradient-projection system ; the trajectories are shown to be viable and
to enjoy optimizing properties. Section 5.8 concludes the paper with an illustration in
impact dynamics.

5.2 Global existence

Throughout this paper, H is a real Hilbert space with scalar product and norm denoted
by (-,-) and | - | respectively. Let ® : H — IR be a mapping satisfying :

® is bounded from below on H,
(H) { @ is twice continuously differentiable on H,
the Hessian V2® is Lipschitz continuous on the bounded subsets of H.
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Given two parameters o > 0 and 8 > 0 consider the following second order in time system
in H

(DIN) &+ ad + BV ®(x)d + V(x) = 0.
Along every trajectory of (DIN), and for A > 0 define

Ex(t) = MB(x(t)) + 5i(0) + BV(a(0)]” (5.2.1)

In particular, we will write for short

B(t) = Bapor (1) = (0B + DO((t)) + 5[#(0) + AYREW)E.  (5:22)

Theorem 5.2.1 Let ® satisfy (H). Then the following properties hold for (DIN), provided
a>0andp >0:
(i) For each (zo,%0) € H x H, there ezists a unique global solution x(t) of (DIN)
satisfying the initial conditions x(0) = xo and (0) = o, with x € C*([0, +oc[; H).
(ii) For every trajectory x(t) of (DIN) and X\ € [(1 — VafB)?, (1 + VapB)?], the scalar
function E) defined by (5.2.1) is bounded from below and decreasing on [0,+o0],
hence it converges as t — +00. Moreover
e & and V®(x) belong to L*(0,+o0; H),
o limy , o ®(z(t)) exists,
o limy , o (&(t) + SVOzx(t)) = 0.
(iii) Assuming moreover that x € L*(0,4o0; H), we have
o i, &, V®(z) and V?®(x) are bounded on [0, +o0],
o limy , o VO(x(t)) = limy oo ©(¢) = limy, oo Z(t) = 0.
Proof. (i) For any choice of initial conditions (x¢,%¢) € H x H, the existence and uni-
queness of a classic local solution to (DIN) follow from the Cauchy-Lipschitz Theorem
applied to the equivalent first order in time system in the phase space Hx H, Y = F (Y),

with
vo=(50 ) w0 = spatn v )

Let z denote the maximal solution defined on some interval [0, Tpnaz| With 0 < Th0r < +o00.
The regularity assumptions on ® imply that x € C?([0, T,z [; H). Suppose, contrary to our
claim, that T}, < +00. Differentiating F(t) (see (5.2.2)) and using (DIN), we successively
obtain

E(t) = (af+1)(Ve(x(t)),(t)) + (E(t) + BV (x(t))2(t), &(t) + BVP(x(t)))
= (af+1)(VE(x(t)), &(t)) — (ai(t) + VO(z(1)), 2(t) + BV P(z(1)))
= —ali(t)* — BIVe(z(t))|*. (5.2.3)

Hence E(t) is a Lyapounov function for the trajectory z. Further, for all ¢ € [0, Tpnaz]

(08 + V)®(x(t)) + 5i(0) + BVP(a |2+a/ B (r 2d7+ﬁ/ VO(2(r)) 2dr = E(0).
(5.2.4)
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Since ® is bounded from below and a,3 > 0, we obtain that £ and V®(z) belong to
L?(0, Tynaw; H). Therefore, for all 0 < s <t < Tras

t t
2(t) — a(s)| < / a(r)ldr < VI~ s / E(r)2dr < VI3 | & llzstmniy

which shows that lim;,7, . x(t) exists. As a consequence, z is bounded on [0, T},..[ and so
is V2®(z) in view of the Lipschitz continuity of V2®. Thus Z = —az+V?®(z)1 — V(z)
belongs to L?(0, Tyyaz; H), and we have for all 0 < s <t < Tryaz

t
& (t) — i (s)]| < / E(T)ldr < Vit =5 || & llL2(0,Tmaei)

so that lim; 7, . @(t) exists. Applying the Cauchy-Lipschitz local existence Theorem to
(DIN) with initial data at T4, given by (limy_,7 . x(t),lim;,7 . 2(t)), we can extend
the maximal solution to an interval strictly larger than [0, 7},.[, which contradicts the
maximality of the solution. Consequently, 7},,, = +00.

(ii) The point here is to realize that there is a whole family of Lyapounov functions
for the trajectory z. Indeed, setting for short (recall (5.2.1))

Ei(t) = Eipyap = (1£/0f)’@ & (t) + BV (z())?,

we obtain
B (t) = —|Vai(t) F /BYS(z(t))

Hence £, and E_ are two Lyapounov functions for z, as well as any convex combination
of them. As a result, for any X in [(1 — /afB)?, (1 + vaB)?], E, is decreasing on [0, +oo],
(e.9. E = Enpy1 = 3(ET + E7)). Further we have

(1 VaB)"0(a(t) + 5160) + VO~ B=(0) = - [ 1Was(r) T VEVO(alr))ar

Since ® is bounded from below, we obtain that both |\/ai — /8V®(z)| and |\/az +
VBV ®(z)| belong to L?(0, +00) and hence & and V®(z) are in L?(0, +o00; H). Now, since
E, and E_ are decreasing and bounded from below, lim; , ., F.(t) and lim;_,, ., F_(t)
exist. Therefore, ®(z(t)) = 4\/_(EJF( ) — E_(t)) admits a limit as ¢ — 4o00. As a
consequence, |z(t) + BV®(z(t))| has a limit as ¢ — 400, which is zero because |z(t) +
BV ®(z(t))] € L*(0, +0c0).

(iii) We now assume that z is in L*°(0,+oo; H). Then, by (H), V2®(z) and V®(z)
are bounded on [0,+oo[; and so are # = (¢ + fV®(z)) — fV®(z) and & = —ad +
BV2®(z)i — V®(z). Set h(t) = $|V®(z(t))|* and note that h € L'(0,+oc) and h =
(V20 ()1, V®(z)) € L*®(0,+00) ; then, by a standard argument, lim;_, , o, h(¢) = 0. Like-
wise, if we set k(t) = 1|@(t)|? then limy, ;o k(t) = 0. It follows that &(t) — 0 as ¢ — +oo.
|
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Corollary 5.2.1 Assume that ® : H — IR satisfies (H) and is coercive, i.e. limg_, o ®(z) =
+00. Then the solution x of (DIN) is in L*°(0, 4+o00; H). In particular, the properties in
Theorem 5.2.1(iii) hold.

Proof. It suffices to observe that (5.2.4) gives (af+1)®(z(t)) < E(0). This estimate and
the coerciveness of ® imply that the trajectory x remains bounded. m

5.3 (DIN) as a singular perturbation of Newton’s
method

In this section we assume that ® belongs to C2(H), with a Hessian Lipschitz continuous
on bounded subsets, and that ® is coercive with V& strongly monotone on bounded
subsets of H. More precisely, it is required that VR > 0, 98z > 0 such that Vx,y € H

max{|z|, [y|} < R = (V®(z) — VO(y),z — y) > Brlz — y|*. (5.3.5)

In particular, ® is strictly convex and for all x € H the Hessian operator V2®(z) is
positive definite. Indeed, (5.3.5) yields VR > 0, 36gr > 0 : Vx € H, if |z| < R then
Vh € H, (V?®(x)h,h) > Bg|h|>. On the other hand, when H = R" and V?®(z) is
positive definite for every z € R", (5.3.5) holds with Sg being a positive lower bound for
the eigenvalues of V2®(zx) over the ball B(0, R).

For simplicity, take « = 0 and 8 = 1 and, for each € > 0, consider a solution z. €
C*([0, co[; H) to the initial value problem (z. does exist, see [19])

{ ei. + V2®(x.)i. + V®(z.) =0, t >0,

(e-DIN) 2.(0) = 70, 3.(0) = o,

where xg,79 € H are given. We are interested in the asymptotic behaviour of x. as
e — 0. Observe that (-DIN) may be considered as a singular perturbation of the following
evolution equation

(CN) { Z(z?(j)f: Vo(z) =0, t>0,

This is the Continuous Newton method for the minimization of ®, which is a continuous
version of the well-known Newton iteration

V20(2%) (2! — %) + VO (2*) = 0.
The unique solution z € C?([0, 0c[; H) of (CN) satisfies
d
5 Ve((t)] = —Ve(z(t),
which yields the following remarkable property of Newton’s trajectories
Vo(z(t)) = e 'V (z0). (5.3.6)

Moreover, since ® is coercive, it follows from (5.3.5) and (5.3.6) that for an appropriate
Br > 0, |z(t) — 2| < %—:\VCI)(J:O)L where 7 is the unique minimizer of ®. We refer the
reader to [8, 21] for fuller treatments of the continuous Newton method.
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Proposition 5.3.1 There ezists a constant C' > 0 such that Vt > 0, |x.(t)—z(t)| < Cy/e.
Therefore, x. — x uniformly on [0, +o0|.
Proof. Let us introduce the e-energy

Ua(t) = Slae(6)” + (. (1),
which satisfies _
U.() = =(V*® (e (1)) (1), &.(1)) < 0.

Hence e
U.(t) < U.(0) = 5|a;~0|2 + ® (o), (5.3.7)

and consequently

L.
sup sup ®(z.(t)) < =|io|® + @(20) =: .
0<e<1 >0 2

Since ® is coercive, the sublevel set I',(®) := {z € H : ®(x) < a} is bounded and then
SUPg<e<1 SUPssq | (t)| < R for a suitable constant R > 0. Similarly, we obtain that the
solution z(t) of (CN) satisfies {z(t) : t > 0} C Tg(zy)(®) C La(®), so that we may assume
that sup,s, |z(t)| < R. By (5.3.5), we have

1
V>0, foe(t) —2()] < 5-[VO(ze(t)) — VO(a(t)] (5.3.8)
R
Notice that the differential equation in (¢-DIN) may be rewritten
d
pm [ed.(t) + V(. (t))] + VO(z.(t)) = 0.

Setting w(t) := ez (t) + V& (z.(t)), we obtain the nonhomogeneous initial value problem

o+ we = e (b), 1> 0,
we(0) = edg + VP(xp),

whose solution is given by
t
we(t) = e t(edo + VO(x0)) + 5/ e i (7)dr.
0

Thus
VO(z(t)) = e *(eio + VO(x0)) — e (t) + 8/0 e i (7)dr.

By (5.3.6) together with (5.3.8), we have
1 t
|z:(t) — z(t)] < i (8|j20| + €|z (2)| +/0 e_(t_7)5|:'c5(7)|dr) .

On the other hand, from the energy estimate (5.3.7), it follows that supy..<; Sup;>q €[2c(t)| <

v/2¢(a — inf ®). Consequently,
() — 2(t)] < — (5\¢O| +2¢/2e(a — inf@)) < Ve (\:'co\ +2¢/2(a - inf@)) ,
Br Br

which completes the proof. B
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5.4 Convergence of the trajectories : & analytic

Since limy_, 10 V®(z(t)) = 0, it is natural to expect that for a sufficiently smooth ®,
trajectories will converge towards a critical point of that function. Actually we show, in
the finite-dimensional case, that if ® is real analytic, x will finally converge to x.,, € H,
with V®(z,) = 0. The proof of this convergence result relies on an inequality due to
Lojasiewicz [94], linking ® and V@ in a neighbourhood of critical points. Lojasiewicz
applied it in [93] to study the asymptotic behaviour of a gradient-like system. More
recently, Haraux and Jendoubi [72] showed that bounded trajectories of HBF with an
analytic potential converge towards critical points. This analyticity hypothesis is also
useful for infinite dimensional systems with analytic nonlinearities, see Simon’s work [116]
for the heat equation and Haraux [70] and Jendoubi [80] for the damped wave equation.

Let us recall the definition of a real analytic function.

Definition 5.4.1 Let Q be an open subset of RN. A function ® : Q — R is real analytic

(in Q2), if for every point & = (&1,...,&N) in S there exist a neighbourhood U C Q of £
and real coefficients (Cu,,...ux)(wr,...ux)eNn Such that

z=(z1,...,2xy) €U = &)= Z Cotpy (T1 = &) - (Tn = EN)Y.

V1, )ENN

Lemma 5.4.1 (Lojasiewicz) Let ® : RN — R be a function which is supposed to be
analytic in a neighbourhood of a critical point a. Then, there exist o > 0 and 0 €]0, %[
such that *

2z —a| < o= |®(z) - &) < |VE()|.

The next corollary extends the Lemma to a compact connected set of critical points.

Corollary 5.4.1 Let ® : Q CR" — R be a function which is supposed to be analytic in
the open set Q). Let A be a nonempty subset of Q such that V®(a) =0 for all a in A

1. If A is connected then ® assumes a constant value on A, say ® 4.

2. If A is connected and compact, then there exist o > 0 and 0 €]0, %[ such that

dist(z, A) < 0 = |®(z) — D4|'70 < |VO(z)].
Proof. 1. Pick some a in A. After the Lemma there exist ¢ > 0 and 6 €]0, 5[ such that
2z —a| < o= |®(z) - &) < |VE(x)|.

Hence if = belongs to AN B(a, o) where B(a, o) is the open ball with center a and radius
o, then |®(z) — ®(a)| = 0. As a consequence the set {x € A/P(z) = ®(a)} is open in A;
as it is obviously closed in A and non-void it is equal to A.

2. Without restriction we may assume that ® vanishes on A. According to Lojasiewicz’s
Lemma and owing to the compactness of A, there exists a finite family (a;, 0y, 0;)icq1,....n}
with a; € A, 0, > 0, 6; €]0, 1[ such that

4Originally ([94, p. 92]), the Lemma states that 6 lies in ]0, 1[; but it is harmless to suppose that o
satisfies |z — a| < 0 = |®(z) — ®(a)| < 1, which, together with 0 < 8 < 1, entails |®(z) — ®(a)|*~?/2 <
|®(x) — ®(a)|'?; this justifies the assertion 6 €]0, 1[.
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- the balls B(a;, 0;), build a finite open cover of A,

-z € lr — a5 <oy = |®(x)|F 0 < |[VO(2)].

Resorting once more to the compactness of A, and to the continuity of ®, we assert
the existence of some o > 0 such that

dist(z,A) <o =z € Qu € UB(ai,Ji), [®(z)] < 1.

=1

If we set # = min#;, then any z complying with dist(z, A) < o verifies x € Q and
r € B(a;,0;) for some i € {1,...,n}; hence |®(x)|'70 < |®(z)|*~% < |VD(x)|. =

Theorem 5.4.1 Let = be a bounded solution of (DIN) and assume that ® : RY — R is
analytic. Then & belongs to L'(0,+o00; H) and z(t) converges towards a critical point of
P ast — o0.

Proof. Let w(z) denote the w-limit set of x. Classically ([71] e. g.), w(z) is a compact
connected set which consists of critical points of ®. Moreover from Theorem 5.2.1(ii), ® as-
sumes a constant value on w(z), which we may suppose to be 0. Further, dist(z(t),w(z)) —
0ast— oo.

After the corollary 5.4.1, there exist some T > 0 and some 6 €]0, £[ such that

t>T = |0(z(t)]° < [VO(x(t))|. (5.4.9)

The proof of the convergence of x relies on the equality

d : 4
—%E(t)a = —F({t)E(t)’

and on lower bounds for —FE(t) and E(t)’~" involving |&(t)| ; recall that the energy F is
defined by (5.2.2).
First, we have (recall (5.2.3))

—B(t) > %min(a, B{Iz(6)] + [V (=(1)[}>. (5.4.10)
Further, for C = max(af + 1, 8%), we have (recall (5.2.2))
E(t) < C{|@(x()] + [2(1)]* + [VO(x(t)) "}
Hence (using the inequality (r 4 s)'=% < r!1=% 4 s1=9)
B! <C|@(x®)0 + 5P + [V (x(t) PV}
Using (5.4.9), we have for ¢t > T
E@)'" < CVa(a(t)| + [2(6) 0 + [V (x(1) P07

Since |V®(z(t))| and |#(¢)| tend to zero as ¢ — oo and since 2(1 — #) > 1, the quanti-
ties |[V®(x(¢))[?=9 and |(¢)[?1=% are negligible with respect to |V®(x(t))| and |&(t)|.
Therefore, there is some constant D > 0 such that for ¢t > T

E®)'? < D{|V®(z(1))| + |2(t)]}. (5.4.11)



5.5 Convergence of the trajectories : ¢ convex 121

If [V®(x(t))| + |2(t)| happens to vanish at some time ¢; > T, then owing to the unicity
of the solution to (DIN), z(¢) is equal to z(¢;) for ¢ > ¢;, and the Theorem is proved.
Else from (5.4.10) and (5.4.11) we obtain for ¢t > T

d 6 1 . -

__ > )

L) > o min(a, B){VR(a(0)] + (1)}

Since limy;_,o, E(t) exists, || belongs to L!([0, +oc[) and consequently lim;_,, z(t) exists.
|

5.5 Convergence of the trajectories : ¢ convex

5.5.1 Weak convergence in the general convex case.

The proof of the asymptotic convergence in the convex case relies on the following
Lemma, which is essentially due to Opial [105].

Lemma 5.5.1 (Opial) Let H be a Hilbert space and x : [0, +oo[— H a function such that
there exists a nonempty set S C H werifying :

(a) if (t,) — T weakly in H for some t, — 400 then T € S,

(b)Vz € S, limy_,, o0 |2(t) — 2| exists.
Then, x(t) weakly converges as t — +o0c to an element of S.

Theorem 5.5.1 Let ® be a convex function satisfying (H) and assume that argmin & #
0. Let x be a solution of (DIN). Then for all z € argmin ®, limy_, o |2(t) — 2| ezists, and
x(t) weakly converges to a minimum point of ® as t — +oo.

Proof. Write S = argmin & and pick some z in S. In order to prove the existence of
limg 4o |2(t) — 2|, we introduce an auxiliary energy

E.(t)=E(t) + e(% | 2(t) — 2 2 +{5(t) + BVD(2(t)), 2(t) — 2)) (5.5.12)

where E is the energy defined by (5.2.2) and ¢ is a positive parameter. Let us show that,
by choosing € small enough, E. is a Lyapounov function for (DIN). Thanks to (DIN) and
(5.2.3), we have

E.(t)=—(a—e) | i(t) P =8| VO(z(t) [ —e(VE(2(1), 2(t) — 2) + (BVD(x(t)), (t)).

Using the Young inequality for the last term, we obtain

. . ep
E.(t) < —(a= ) |2() [P =p(1 = ) | V() " —e(Ve(z(t), 2(t) — 2). (5.5.13)
Take € so small that each term in the previous expression is nonpositive (for the last term,
use the fact that V& is monotone and z € S); then E. is nonincreasing and we readily
obtain

(@(t) + BVR(z(t)), x(t) — 2) + % |2(t) — 2 < - (E:(0) = E(1)).
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Since E(t) is bounded from below, because so is @, there exists some constant M such
that o
(@(t) + BVE(x(t)),z(t) — 2) + ) | z(t) — 2 |°< M.

As 4V ®(x) is bounded by Theorem 5.2.1(ii), | (¢)—z | is bounded. Hence E.(t), which
is bounded from below and decreasing, admits a limit as ¢ — +00. Moreover, Theorem
5.2.1(ii-iii) asserts the following : lim;_,, o, E'(t) exists and limy_, o ©(t) = limy_, 1 o VO (x(t) =
0; hence, after (5.5.12), lim;_, o |2(t) — 2| exists.

In order to apply the Opial Lemma we need to prove that the weak cluster points of
the trajectory x are in S. Let Z € H and t,, — +o0o be such that z(¢,) — Z. Thanks to

the convexity inequality, we have for any z € S
O(2) =min® > O(z(t,)) + (VO(2(tn)), 2 — z(t,))-
Since V®(z(t,)) — 0 and ® is lower semicontinuous, we obtain

min ® > liminf ®(x(t,)) > ®(2),

n—-+00

which means that z € S. The Opial Lemma then applies, ensuring the weak convergence
of z, and we also deduce that ®(z(t)) - min® ast — co. &

5.5.2 Strong convergence under int(argmin ®) # (.

A counterexample due to Baillon [24] for the steepest descent equation #+ V®(z) = 0
suggests that, likely, convexity alone is not sufficient for the trajectories of (DIN) to
converge strongly in H. Nevertheless, a result of Brézis [37, Theorem 3.13] shows that
the steepest descent trajectories do strongly converge under the additional hypothesis
int(argmin ®) # (). This property also holds for (DIN) trajectories.

Proposition 5.5.1 Under the hypotheses of Theorem 5.5.1, if moreover int(argmin ®) #
() then every trajectory of (DIN) converges to a minimizer of ® with respect to the strong
topology of H.

Proof. Fix z € int(argmin ®) so that there exists p > 0 such that for every 2’ € H with
|2 — z| < p then 2’ € int(argmin ®) and consequently V®(z') = 0. By monotonicity of
V&, we have

(VO(y),y —2) = (VE(y), 2 —2)

for all y € H and 2’ € H with V®(2') = 0. Thus, for every y € H
(Ve(y),y —2) > p|Ve(y)!.
Specialize y to z(t) to obtain for all £ > 0 and all z € int(argmin ®)
(VO(x(t)),z(t) — z) > p|VO(x(t))]- (5.5.14)
Now, for £ > 0 small enough, the inequality (5.5.13) may be simplified to

0 < e(VO(@(t),2(t) — 2) < —E.();
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integrating the latter yields

0< 5/0 (VO(x(s)), 2(5) — 2)ds < E.(0) — B.(1).

Since limy_, | o, E.(t) exists, after the proof of Theorem 5.5.1, we deduce that (V®(x), x—z)
belongs to L'(0, +00), and so does |V®(z)| in view of (5.5.14). If we now integrate (DIN)

&(t) + az(t) + VO (z(t)) + /Ot Vo(x(s))ds = g + azy + BVD(xy),

we see that lim;_, . x(t) exists in H, since limy_, ;o £(¢) = limy, o, VO(2(t)) = 0, after
Theorem 5.2.1(iii). m

5.5.3 Strong convergence under the symmetry property ®(y) =
®(—y)-

Bruck [40] has shown that the convexity of ® together with the symmetry assumption

®(y) = ®(—y) entails the strong convergence of the steepest descent trajectories. This

result has been extended by Alvarez [4] to (HBF) trajectories and we extend it now to
(DIN) trajectories.

Proposition 5.5.2 Under the hypotheses of Theorem 5.5.1, if moreover ® is supposed
to be even, i.e. Yy € H,®(y) = ®(—y), then every trajectory of (DIN) converges to a
manimazer of ® with respect to the strong topology of H.

Proof. Let us successively consider the case af < 1 and the case af > 1.
1. Case aff < 1. Fix ty > 0 and define g4, : [0,%5] — R by

910 (t) = =) = |z (ko) [* - %\x(t) — z(to)[.

We ILave i (t) = (E(t), 2(t) + 2(to)) and i, (t) = (E(t), z(t) + z(to)) + |&(t)|%. From this
we obtain

Gt (1) + gy (1) = (=BV*(a( Vo(z(t)), 2(t) + z(to)) + |2(t)[?

- t
() z(to)) + (BV(2(2)), £(t))

t) + x(to)) + (1) |*
—pVO(x(1)), 2(t) + z(to)) + (2(t) + BV (2(1)), £ (1))
t)). Since £ and V®(x) are in L?*(0, +oo; H), f belongs

= 67% ie%
Set f(t) = (@(t) + BV ®(x(t)), 2
to L(0, +00). We have

d

d
= ela=1/B)t —
dt [6 gtO (t)] dt

=BV (a(t)), 2(t) + z(to)) + €' f(2)

and so, for every ¢ €]0, #o]

t
at — .. (0) = (a=1/B)T s/B s=rd ar d
€ g0 (1) — iy (0) / 2 [Be P (5] +/ f(r)dr
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with wy,(s) = (=V®(z(s)), z(s) + z(tp)). An integration by parts yields

t
/ (a—1/8)m & [ﬂes/ﬂwto( Ns=rdT = Be®wy, (t) — Bwi, (0) + (1 — aB) / e* wy, (T)dr.
o 0

We conclude that
¢
G (1) = (G0 + BV ®(x0), To + (t0)) e + Buwy, (t) + / efo‘(t”)[(l —af)wy, (1) + f(7)]dT
0

Set F(t) = %|#(t)[>+ ®(x(t)), which is nonincreasing because ® is convex (in fact, F(t) =
—a|z(t)]* = B(V2®(z(t))(t), z(t)) < 0). Then, for all ¢ € [0, t,]

F(1) > Fto) = 3 |i(to) P + ®(a(t0)) = 5l#(t0)/” + 2~ (1))
By convexity of ®
B(~(t0)) > B(a(t)) + (VR(a(1), ~3(to) — 2(1)
and consequently
au(t) = (=F (1), 2(0) + () < (1)

Therefore

B

t
1o (t) < (@0 + BV ®(z0), To + z(to))e ™™ + §|5U(t)|2 + / e = h(r)dr,
0

where h(t) = =22 |i(t)|? + | £(t)| € L'(0, 00). Hence, for all t € [0, 2]

to
Gto(to) =31 (1) < é(io-i‘ﬁv(b(ﬂﬁo),$0+$(t0)>(€_at—€_at°)+§/t |z ( 2d7’+/ / 7)dTdf

which gives

3l (t0)=a(0)” < [o(8) P~ la(t0) P+ £ (o 8 B(an) 7o (o) (e —e~) - [ p(O)as.

where p € L'(0, 00). We know that z(t) — T, ast — oo where 1, € argmin®. Moreover,
for all z € argmin® there exists some [, € R such that |z(t) — z|> = [,, as t = 0o (see
Theorem 5.5.1). Since @ is even, 0 is a minimizer of ® so that there is some l; € R such
that limy .o |2(t)|? = lp. From the inequality above it follows that {z(¢) : ¢ — oo} is a
Cauchy net in H, hence z(t) — 2 strongly in H.
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2. Case aff > 1. The conclusion follows in this case from a well-known result of Bruck
[40] applied to an equivalent gradient-type first order system defined on H x H (see section
5.6.3). m

Remark. If ®(z) = ;(Az,z) where A : H — H is a positive self-adjoint and bounded
linear operator, then argmin® = KerA = {z € H : Az = 0} and z(¢) strongly converges
in H to the projection of zy + éjzo on KerA. Indeed, for every z € KerA and ¢ > 0 we
have

((t) + ax(t) — To — awg,2) = fot ﬁV2<I>( (T))&(7) = VO((7)), 2)dT
= ﬁAm — Ax(7), z)dr
= [ — z(7), Az)dT = 0.

Since &(t) — 0 and z(t) = o € KerA strongly, we deduce that (zo — 2o — 2, 2) = 0
for all z € KerA, which proves our claim.

5.6 (DIN) as a first order in time gradient-like sys-
tem

This part is devoted to establishing two remarkable properties of (DIN) :

- actually (DIN) proves to be equivalent to a system of first order in time with no
occurrence of the Hessian of @,

- further, if the positive parameters o and [ satisfy a8 > 1, then (DIN) is a gradient
system.

5.6.1 (DIN) as a system of first order in time and with no oc-
currence of the Hessian of ®

In this section, the requirements on the constants «, 8 and on the function ® in (DIN)
may be relaxed to 8 # 0 and ® € C*(H) only.

Let z be a solution of (DIN), and define the function y by

i+ BVO(z) + (o — %)x + %y =0. (5.6.15)
Differentiate (5.6.15) to obtain
Bli + V20 (2)i + (o — %)5&] +y=0,
which, in view of (DIN), yields
Bl-Vd(z) — %55] +g=o. (5.6.16)
Adding (5.6.15) and (5.6.16) gives
(a— %)x+y+ %y —0. (5.6.17)
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Collecting (5.6.15) and (5.6.17) gives the first-order system

T+ BVP(z) +(a — l)96 + ly =0
g b (5.6.18)

Yy +(a—5)x+gy=0

Conversely, let (x,y) be a solution of (5.6.18). Combining the two lines of (5.6.18) yields
=1+ Ve(x)
while differentiating the first equation yields

i+ BV20(2)d + (0 — L)+~ = 0.
B B
Substituting the value of § in the above equation gives (DIN) again. Thus (DIN) is
equivalent to (5.6.18).
It is natural now to introduce the following first-order sytem (where ¢ stands for
generalized)

T+ VO(z) +ax +by =0
(g-DIN) { Y +ar +by=0
which is a slight generalization of (5.6.18) ; indeed (g-DIN) is (5.6.18) if we set
1 1
a=a——-, b=-— 5.6.19
3 3 (5.6.19)

The following Theorem summarizes the above computation, and emphasizes the equiva-
lence of (DIN), which is of second order in time and involves the Hessian of ®, with a
system which is of first order in time and with no occurrence of the Hessian.

Theorem 5.6.1 Suppose ® € C*(H), and let the constants o, B, a, b satisfy B # 0 and
(5.6.19). The systems (DIN) and (g-DIN) are equivalent in the sense that x is a solution
of (DIN) if and only if there exists y € C*([0,+oc[, H) such that (x,y) is a solution of
(¢-DIN).

5.6.2 Existence and asymptotic behaviour of the solutions of
(&-DIN)

Beyond being of first order in time, the system (g-DIN) is interesting because it does
not involve the Hessian of ®. As a first consequence, the numerical solution of (DIN) is
highly simplified, since it may be performed on (g-DIN) and only requires approximating
the gradient of ®. As a second consequence, (g-DIN) allows to give a sense to (DIN)
when @ is of class C' only, or when ® is nonsmooth or involves constraints, provided
that a notion of generalized gradient is available (e.g. the subdifferential set for a convex
function ®). But that remark would be of little utility if (g-DIN) did not have good
existence and convergence properties under the sole assumption ® € C'(H); recall that
(DIN), as studied in the previous sections, requires ® € C%(H). Actually (g-DIN) enjoys
the same properties as (DIN) does, at least if ® € CY'(H), and Theorems similar to
Theorems 5.2.1 and 5.5.1 can be stated about (g-DIN).
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Theorem 5.6.2 Assume that ® : H — R is bounded from below, differentiable with V®
Lipschitz continuous on the bounded subsets of H ; assume further 3 > 0,b>0,b+a >0
in (g-DIN). Then the following properties hold :

(i) For each (xo,y0) in H x H, there ezists a unique solution (z,y) of (g-DIN) defi-
ned on the whole interval [0, +o0[, which belongs to C*(0,00; H) x C*(0,00; H) and
satisfies the initial conditions x(0) = zo and y(0) = yo.

(ii) For any X € [B(va+b— Vb)?, B(Va + b+ Vb)?] the function Fy : (z,y) € H x
H — \0(z) + %|aac + by|? is a Lyapounov function of (g-DIN); for every solution
(z,y) the energy F\(z(t),y(t)) is decreasing on [0,+o00|, bounded from below and
hence it converges to some real value as t — +00. Moreover
e & and V®(x) belong to L2(0,+o0; H),

o limy , o ®(z(t)) exists,
o limy , o (2(t) + VOz(t)) = 0.

(iii) Assuming moreover that x is in L*°(0,+o00; H), then we have
e i, VO&(z) are bounded on [0, +o0],

o lim; oo VO(x(t)) = limy 00 & () = 0.

Theorem 5.6.3 In addition to the hypotheses of Theorem 5.6.2, assume that ® is conver,
and that argmin®, the set of minimizers of ® on H, is nonempty. Then for any solution
(z,y)) of (g-DIN), z(t) weakly converges to a minimizer of ® on H ast goes to infinity.

The proof follows the lines of Theorems 5.2.1 and 5.5.1 and will not be given. Besides,
a more general situation will be examinated in section 5.7 (cf. Theorems 5.7.1 and 5.7.2).

Theorem 5.2.1 is a mere corollary of Theorems 5.6.1 and 5.6.2. Indeed suppose that ®
and «, § meet the assumptions of Theorem 5.2.1 : ® satisfies (H) and o > 0, 5 > 0. Then
V@ is Lipschitz continuous on the bounded subsets of H, and the constants ¢ = a —1/f
and b = 1/f satisfy a+b > 0, b > 0. So the assumptions of Theorem 5.6.2 are met ; in view
of the equivalence between (DIN) and (g-DIN) given by Theorem 5.6.1, the conclusions
of Theorem 5.6.2 apply to (DIN).

Further if ® € C?(H) meets the assumptions of Theorem 5.6.2, the system (DIN) makes
sense but Theorem 5.2.1 does not apply since V?® need not be Lipschitz continuous.
Yet we can resort to Theorems 5.6.1 and 5.6.2 to assert the existence of a solution to
(DIN) enjoying the properties stated in Theorem 5.6.2. Consequently the assumptions of
Theorem 5.2.1 may be weakened, while its conclusions remain valid, as far as & and V2®
are not, concerned.

Likewise Theorem 5.5.1 is a corollary of Theorems 5.6.1 and 5.6.3 and its hypotheses
may be weakened.

5.6.3 (DIN) as a gradient system if a5 > 1

Suppose ® € C'(H) and a > 0, b > 0 in (g-DIN). Rescaling the variable y by y = /%2
transforms (g-DIN) into the equivalent system

(5.6.20)

&+ BV®(z) +azx + Vabz = 0
Z +Vabz +bz =0
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We note that (5.6.20) is exactly the gradient system
X +VEX)=0 (5.6.21)

where X = (z,2) and £ : H x H — R is defined by
1
E(X) = () + 5 |vaz + Vbz|.

Suppose now that ® belongs to C?(H) and let us turn to (DIN) which we know is
equivalent to (g-DIN) with a = a — 1/8, b = 1/8. I «, 3 satisfy af > 1 in addition to
a >0, 8> 0, then a, b satisfy a > 0, b > 0. As a consequence (DIN) is equivalent to the
gradient system (5.6.20) ; using the parameters «, 3 the expression of £ is

EX)=E(x,2) = +—|\/a5 1z + 2|2 (5.6.22)

We state as a Proposition that remarkable property of (DIN).

Proposition 5.6.1 Suppose ® € C*(H), a > 0, > 0 and a8 > 1. The system (DIN) is
equivalent to the gradient system (5.6.21) with € given by (5.6.22).

Since the functional £ equals S® plus a positive quadratic form, it inherits most of
the eventual properties of ® : boundedness from below, coercivity, regularity, analyticity,
convexity. . .Moreover if (Z, z) is a critical (or minimum) point of £ then Z is a critical (or
minimum) point of ®. Thus the equivalence of (DIN) with the gradient system (5.6.21)
allows properties of gradient systems to pass to (DIN).

For example, if @ is analytic then so is £. Further, if z is a bounded solution of (DIN)
then 1 is bounded (Theorem 5.2.1(iii)) and (z, z) is a bounded solution of (5.6.21) which
is known to converge to a critical point of £ [116, 93]. Hence x converges to a critical
point of ®.

Likewise, in the convex case, Theorem 5.5.1, and Propositions 5.5.1 and 5.5.2 are
consequences of Theorems of Bruck [40] and Brezis [37]; that remark completes the proof
of Proposition 5.5.2 where the case a8 > 1 was pending.

5.6.4 Remarks

1. Structure of (DIN) when a8 < 1. Suppose ® € C'(H) and a < 0, b > 0 in

(g-DIN). Rescaling the variable y by y = 4/3%z transforms (g-DIN) into the equivalent
system

{j:-l—ﬁV(I)(x) +ax +V—abz =0 (5.6.23)

z —V—abzx +bz=0

Set X = (z,z) and define the functional F : H x H — R by F(X) = f®(z) + (a|z|* +
bz|?), and the linear operator J : H x H — H x H by J(X) = vV/—ab(z, —z). Then
(5.6.23) can be written

X+VFX)+J(X)=0 (5.6.24)



5.6 (DIN) as a first order in time gradient-like system 129

which appears as a gradient system perturbed by the monotone operator .J. Unfortunately,
properties such as convexity or boundedness from below do not pass from ® to F since
the quadratic form 3 (alz|? + b|z|?) is not positive.

As to (DIN), if we suppose ® € C*(H), a > 0, 8 > 0 and o < 1, then the equivalent
(g-DIN) system verifies a < 0, b > 0, and (DIN) turns to be equivalent to (5.6.24) too.

The system (g-DIN) can be given another equivalent form if we suppose a < 0 and
a+b> 0°. Indeed make the change of variable y = ;(v/—a(a + b)z — az) ; then (g-DIN)

becomes
T + fVe(z) +v—ala+b)z=0

;- B a;“bw(x) +(@+bz =0

Introduce the function G(X) = G(z, z) = fP(z) + 3|2|* and the linear monotone operator
J(z,2) = 4/ 5 (2, —), then (5.6.25) becomes
X+ 1+ J)VG(X)=0. (5.6.26)

Turning back to (DIN), if we suppose ® € C*(H), a > 0, 3> 0 and o < 1, then we
have a < 0 and a+b > 0 in the system (g-DIN) associated via (5.6.19), and hence (DIN)
is equivalent to (5.6.26).

(5.6.25)

Unfortunately, systems (5.6.24) and (5.6.26) are not easy to deal with, and when
aff < 1in (DIN) (or @ < 0 in (g-DIN)) the only results remain those given in sections
5.2, 5.4, 5.5 (or by Theorems 5.6.2, 5.6.3).

2. The change of coordinates in (5.6.15), which allows to transform (DIN) into the first
order system (g-DIN), may appear as a trick. Yet, when investigating the minimum (or
critical) points of @, there often appears a function of the form ¥(z,y) = ®(z)+ 3 |az+by|?
(x, y in H and a, b real) the decrease of which lies at the root of the analysis. One
recognizes in ¥ the energy functional of (DIN) or (HBF), and perhaps more subtly the
function (z,y) — ®(z) + 55|z —y|? (A > 0) which occurs in the minimization of ® by the
proximal algorithm [75]

1
Tpi1 = argming. , {®(z) + ﬁ|$ — z,[*}.

Applying the continuous steepest descent method to ¥ is then tempting; it yields a first
order system such as (g-DIN), and eliminating y gives (DIN). Performing the computations
backward, and generalizing them, leads to the developments of sections 5.6.1 and 5.6.2.

3. (DIN) can be written as an integro-differential equation

t
z(t) + BV®(z(t)) = (B8 — 1) / Vo (z(s))exp (a(s —t))ds + (2o + SV P(20)) exp(—at).
0
Thus, if a8 = 1, one obtains the non autonomous first order gradient system
z(t) + BV ®(x(t)) = (4o + BV P(20)) exp(—at).

5We are indebted to our colleague X. Goudou for pointing out this fact to us.
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5.7 Application to constrained optimization.

The equivalence between (DIN) and (g-DIN) suggests a method to solve constrained
optimization problems with the help of a dynamical system like (g-DIN); that is the
subject of this section.

Fix C' a non empty closed convex set of H. In the following we suppose that ® is C*
with V@ Lipschitz continuous on bounded sets and we consider the following problem

(P) néf .

When we want to solve (P) with a second order in time dynamical system, we have to
face a major difficulty : how can we both force the orbits starting in C' to lie in C' and to
keep their inertial aspects 7 In many practical cases such a viability property is of interest.
Those problems of viability are easier to handle when we deal with first order systems. If
we consider, for example, the following system initiated by Antipin [9, 10]

z(t) + z(t) — Pelz(t) — uVe(z(t))] =0
(S1) { z(0) = xg EMC

where P is the projection on C and p > 0, then the viability property is obvious since the
corresponding vector field enters the set of constraints. This dynamics provides moreover
orbits that enjoy nice asymptotic properties : if we suppose ® to be convex then trajec-
tories weakly converge towards a minimum of ® on C, even if we only assume zy € C.
This system has also been studied in its second order in time form, namely

(1) + ai(t) + 2(t) — Pola(t) — pVB(())] = 0
(52) { o(0) =20 € O, £(0) = iy € H

but in that case the viability property is no longer maintained. This naturally leads to
strong hypotheses on the potential ® to obtain a proper optimizing system, see for example
[10, 11, 6.

We propose in the following Theorem to combine (g-DIN) and (S1) to solve (P). More
precisely, given real parameters 3, a and b such that 8 > 0,a# 0,6 > 0 and b+ a > 0,
we consider the first order system in H x H

&(t) +a(t) — Pole(t) — BV @(x(t) — ax(t) — by(t)] = 0
t

(-DIN) {y(t) +ax(t) + by(t =0

with initial conditions
z(0) =20 € C, y(0)=1yo € H. (5.7.27)

Of course, (c-DIN) reduces to (g-DIN) if C' = H. The functional ® is required to satisfy
the following hypotheses

® is defined and C! on an open neighbourhood of the closed convex set C
(H-c) ¢ @ is bounded from below on C
the gradient V& is Lipschitz continuous on the bounded subsets of C.
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If (z,y) is a solution to (c-DIN), and for A > 0, let us define
1
E\(t) = A®(x(t)) + §\ax(t) + by (t) [ (5.7.28)

A Theorem similar to Theorem 5.2.1 can be stated and proved for (c-DIN).

Theorem 5.7.1 Let ® satisfy the hypotheses (H-c) and assume 3 >0, a # 0, b > 0 and
b+ a > 0. Then the following properties hold :

(i) For each (xg,y0) € C x H, there exists a unique solution (z(t),y(t)) of (c-DIN)
defined on the whole interval [0, +o00| which satisfies the initial conditions z(0) =
70,9(0) = o ; (z,y) belongs to C(0,+oc; H) x C%(0,+o00; H) and x is viable, that
is z(t) lies in C for all t > 0.

(ii) For every trajectory (x(t),y(t)) of (c-DIN) and for A € [B(vVb— Vb + a)?, B(vVb+
Vb + a)?], the energy E\ is decreasing on [0, +00[, bounded from below and hence
converges to some real value as t — +00. Moreover
e & and y belong to L*(0,+o0; H),

o limy o, ®(z(t)) exists,
o limy ,, o y(t) =0.

(iii) Assuming in addition that x is in L>(0,+o00; H), we have

e VO(z), y, © are bounded on [0, +oc],

o lim,_, o0 3(t) = 0.
The proof essentially goes along the same lines as in Theorem 5.2.1. The nonlinearity
caused by the projection P is compensated by the characteristic inequality (v — Pou, u —
Pcou) <0 for all (u,v) in H x C. The natural quantities upon which the calculations rely
are £ and y (rather than & and V®(z) in the proof of Theorem 5.2.1).

Proof of Theorem 5.7.1.

(i) Since the projection P¢ is a Lipschitz continuous operator, the local existence
and the uniqueness of a solution to (¢-DIN) with initial conditions (5.7.27) follow from
the Cauchy-Lipschitz Theorem. Let (z,y) denote the maximal solution defined on some
interval [0, Tpnar| with 0 < T < 400.

First let us show that z is viable for ¢ € [0, T},,4.[- Define p : [0, Tyaz[— C by p(t) =
Pgz(t)— BV ®(z(t))—ax(t)—by(t)] and integrate the equation £+z = pon [0,t] C [0, Tinas|

t
z(t) = / e 9p(s)ds + e ap.
0

Observe that £(t) = Ot e~ (te_st) s)ds belongs to C, as the weight function s r—) _(te_st) is

(
positive and its integral over [0,¢] is 1. Now writing z(t) = (1 — e™)&(t) + e 'z shows
that z(t) belongs to C.

Next, the viability of x and the convexity of (' are used to derive the following inequa-
lity on [0, Thnaz|

(x — Po(x — BV®(x) + 9),x — BV®(z) +y — Po(x — BVS(x) +9)) <0,
which, in view of (c-DIN), successively reduces to

(—z,—1 — pVO(x) +9) <0,
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BlE, Vo(z)) < —|2]*+ (&, 7). (5.7.29)

Further, in order to apply classical energy arguments, we show that E), defined by
(5.7.28), is decreasing along the trajectory (z,y), at least for some value of A. Indeed we
have (using the second equation in (c-DIN))

E\ = Mi, Ve(x)) = blg|* — ali, ).

Taking (5.7.29) into account, we obtain

By < —%W bl + (% )i, ). (5.7.30)

In particular, if we choose A = [3(a + 2b) (this last quantity is positive), we have
Eparary < —(a+b)|z|> — blé — 9| (5.7.31)

Integrating this inequality over [0,%] C [0, T},q.[ We obtain

Bla + 20)B(x(t)) + %m(t) +by(t)2 + (a+b) /0 () [2dr + b/o (r) — §(r)2dr
< Bla+ 2b)®(xo) + %\axo + byo(3-7.32)

Finally, to prove that (x,y) is defined over [0, +o00][, we suppose that T},,, < +0c and
argue by contradiction. Since z is viable and & is bounded from below, (5.7.32) shows that
¢y = —(ax + by) is bounded on [0, Tynez[; hence lim; 1, y(t) exists. As a consequence y
and z = —%(y + by) are bounded, and so is V®(z) in view of (H-c). Then (c-DIN) shows
that 2 is bounded too. Hence lim;_, 1, 2(t) exists. This classically yields a contradiction,
and T,,,, must be equal to 4o0.

The last assertion, (z,y) € C'(0,+oo0; H) x C?(0,+o0; H), immediately follows from
(c-DIN).

(ii) Set Q()‘) = _%‘$|2 - b|y‘2 + (% o a)(-i:ay)a Amin = 6(\/5 —Vb+ 0)2, and Aoz =
B(Vb+ Vb + a)?. The inequality (5.7.30) yields

By, < qAmin) = —|(Vb— Vb + )i + Vb
Brnee < q0unaz) = (VD + Vb + a)i — Vby?

Since ¢ is an affine function of A, for every A € [Anin, Amaz)s F, lies between q(Amin)
and ¢(Apnez) and hence is nonpositive. The energy E) is then decreasing on [0, +00[ and
converges since ® is bounded from below on C.

The inequality (5.7.32) shows that Z and ¢ belong to L?*(0, +o0; H).

Now, considering two different values A, X' in [Ain, Amas] shows that ®(z) = 5 (Ex —
E,) admits a limit as t — +o0.

Hence |9|* = |az + by|? = 2(E) — A®(xz)) also admits a limit which necessarily is zero
since |y| belongs to L?(0,+o0; H).
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(iii) If 2 is bounded, then V®(z) is bounded (after (X — ¢)), and y = —;(az + )
is bounded (recall § — 0,t — +o00). Further i is bounded in view of (c-DIN). Since &
and ¢ are bounded, x and y are Lipschitz continuous, which shows, in view of (c-DIN),
that & itself is Lipschitz continuous. But i belongs to L?(0, +o0; H), hence, according to
a classical argument, (t) — 0 as t — +o0. B

Theorem 5.7.2 In addition to the hypotheses of Theorem 5.7.1, assume that ® is conver,
and that argmin-®, the set of minimizers of ® on C, is nonempty. Then for any solution
(x(t),y(t)) of (c-DIN), z(t) weakly converges to a minimizer of ® on C ast goes to infinity.

Proof. First, let us establish some useful inequalities. Let z* be a minimizer of ® on C.
Use the characteristic inequality for P to write (it is implicit that the time variable ¢
varies in [0, +oo] in the following)

(z" — Po(x — fVO(z) + 9), & — BV R(x) +§ — Po(z — fVO(z) + 9)) < 0.
In view of (c-DIN) we derive
(2" =z — i, —3 — BVD() + ) < 0,

(% — 2,9 — i) + B{i, VO(x)) < (z* — x, V(1)) — 7| (5.7.33)

But (z* —x, V®(z*) — V®(x)) is nonnegative since & is convex; and (z* —z, —V®(z*)) is
nonnegative because z* is a minimizer of ® on C. Hence (z* —z, —V®(z)) is nonnegative
and (5.7.33) entails

(z* — 2,y — @)+ B2, VO(2)) < —|i|° (5.7.34)

Our aim now is to introduce an energy functional involving the term |z* — x|. Set
1
F(t) = (" — z(t), ax(t) + by(t)) + §(b +a)|z* — z(t)]® + bBP(2(t)).

We have .
F=b({(z" —x,9— 1)+ (z,8VP(x))) + (£, 7).

And in view of (5.7.34) we obtain
- 1
F < (ig) —ba2 < —(b— g)w + 5l = P (5.7.35)

In view of (5.7.31) and (5.7.35) we may fix some £ > 0 so small that the function £ : R —
H defined by

3

1
E=E, 0+cF = (a+2b+ebB)®(x) + §\ax+by|2+6(x* —z,ar+by) + 5

(a+0b)|z* —z|?
is decreasing and hence bounded above. Since ®(z) is bounded from below on C, the
quantity —|az + by||z* — z| + 3 (b+ a)|z — z*|?, which is less than (z* —z,az + by) + (b +
a)|z* — z|?, is bounded from above; hence |z* — x| is bounded because § = ax + by is
bounded (Theorem (5.7.1)(ii)). From that we deduce that £ is bounded below and admits
a limit as ¢ — +00. Now in the expression of £ the first three terms are known to have a
limit, as t — +00, hence |z* — x| has a limit.
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In order to apply Opial’s Lemma, we now show that any weak limit point z., of x
belongs to argmin,®. Let 2* be an element of argmin®. Invoking the convexity of ® and
inequality (5.7.33) we have

®(z7) 2 ®(2(t)) + (2" — 2, VO(z))

1 1
Q(z™) > ®(x(t)) + B<$* —z,y— &)+ B<I,I + BV (z)).
Since |z| + |y| — 0 as ¢ = +o00, and since (z* — ) and (2 + SV®(z)) are bounded we
have

(" —z,9— %) + (2,2 + fVS(x)) = 0, t = Fo0.

So, if ¢, is a sequence going to infinity such that z(t,) weakly converges to z,, we have
O(z*) > liminf ®(z(t,)) > P(ry). Hence x4 is a minimizer of ® on C, and Opial’s
Lemma entails that z(¢) weakly converges to z,. B

The inertial aspect and the effect of the constraints in (c-DIN) are illustrated by a
two—dimg,nsional example (fig. 5.2) : ®(z1,22) = ${(z1 + 22 + 1)? + 4(z1 — zo — 1)?},
C =R*".

- the trajectories of (¢-DIN) (continuous lines) converge to point (3/5,0), the minimum
of ® on C,

- in the absence of constraints, the trajectories (dashed lines) converge to (0, —1), the
minimum of ® on R”.
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Fia. 5.2 — A few trajectories of (c-DIN).
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5.8 Application to impact dynamics

In [107], Paoli and Schatzman have studied the system

B(t) + 0W g (z(t)) 3 f(t, x(t), i(t))
{i(ﬁ) = —etn(t") + 27 (t7) for any ¢ such that z(t) € 0K (5.8.36)

where K is a closed convex subset of a finite-dimensional Hilbert space H, and 0V is
the subgradient set of the indicator function Vg (Vg (z) =0if z € K and Vg (z) = +o00
elsewhere). The first equation models the evolution of a mechanical system under the
action of the force f, with state z(¢) subject to remain in K. The second equation models
the instantaneous change in the system whenever its representative point x(t) hits the
boundary of K : the tangential velocity is conserved, while the normal velocity is reversed
and multiplied by the restitution coefficient e €]0,1]; this rule accounts for a possible loss
of energy at the impact.

Owing to ¥k being a definitely non-smooth function, Paoli and Schatzman have to
define a notion of solution to (5.8.36), and in order to prove the existence they introduce
a regularized version obtained by a penalty method

. 2e . _ .
.T)\(t) + WG(V‘I;K,)\(.T)\(t)),.T)\(t)) + V‘IIK,)\(.’E)\(t)) = f(t, .T)\(t),l')\(t)). (5837)

The function Ug y(z) = 5xdist®(z, K) is the usual Moreau-Yosida regularization of Uy
with parameter A > 0, and the operator G : H x H — H is defined by G(w,0) = 0
and G(w,v) =< w,p; > p if v # 0. The constant ¢ € [0, +oo[ is related to e by

log¢ _ Passing to the limit A — 0 in (5.8.37) then yields a solution to (5.8.36).

T

We propose below a slightly different, and hopefully simpler, approach to (5.8.36). If
K is a whole half-space, then it is not difficult to realize that +G(V ¥k (), v) is exactly
the Hessian V?W ,(z) applied to v, except if z belongs to 0K in which case V2W g (z) is
not defined. When K is arbitrary, a formal, and bold, linearization of the boundary of K
leads to replace G(VU g \(zA(t)), 2(t)) in (5.8.37) by AV2Wk (A (t))Z(t), which gives

.’.I:‘)\(t) + 28\/XV2\I’K,,\($)\(15))3.7)\(15) =+ V\I’K’,\(I)\(t)) = f(t, x,\(t),x'x(t)).

For simplicity, assume henceforth that the exterior force reduces to a viscous friction :
ft,zx(t),22(t)) = —azx(t), a > 0. The preceding equation becomes

i)\ + CKL.E)\ + 28\/XV2\I/K’)\(.T)S.E)\ + V‘IIK,)\(.T) =0.

This is (DIN) with 8 = 2ev/A. But this equation has to be given a sense since Wy is
not twice differentiable everywhere. The cure is to write it in the form (g-DIN) which is
of first order in time and space (recall 8 = 2ev/)\)

. 1 1
x+ BVYEA(TA) +(a— =)za+ Sya =0

g b (5.8.38)

U +(a — B)x,\+5y,\:0
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This system is numerically solvable as it stands. A few numerical experiments are repor-
ted in figure 5.3 : K is the unit disk, & = 0, A = 10~*, the system representative point
starts from position (0.5, 0) with velocity (0, 0.1) ; the coefficient § = 2ev/A runs through
{0.02, 0.01, 0.008, 0.006, 0.004, 0.002, 0.001, 0.0001, 10"}, and correspondingly the res-
titution coefficient e runs through {0, 0.16, 0.25, 0.37, 0.53, 0.73, 0.85, 0.98, 0.99998}.
The experiments display the whole range of possible shocks :
- completely anelastic shocks for 8 = 0.02 : after the first shock the trajectory follows the
boundary,
- nearly perfectly elastic shocks for 3 = 107 (the theoretical trajectory in the disk -
without penalization - is an equilateral triangle),
- shocks with partial restitution of energy for intermediate values of £.
The purpose of these experiments is to illustrate the behaviour of the solutions of
(5.8.38) and to suggest the latter as a theoretical regularization of (5.8.36). The numerical
solution of (5.8.38) is prone to stiffness as A\ becomes smaller (see [108] in this respect).
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Fic. 5.3 — Impacts in a disk.






Chapitre 6

Propriétés minimisantes d’un
systeme inertiel en optimisation.
Liens avec la méthode proximale.

139



140 Partie II Chapitre 6

Optimizing Properties of an Inertial Dynamical System with

Geometric Damping.
Link with Proximal Methods'

H. ArtoucH 2, J. BOLTE? AND P. REDONT 2

Abstract. The second-order dynamical system # + az+ SV2®(z)i + V®(z) =0, a > 0, 8 > 0, where
the Hessian V2®(z) acts as a geometric damping, is introduced, mainly in view of the minimization of
®. Minimizing ® is a problem equivalent to the minimization of the functional ¥, s(z,y) = b%@(a:) +
%|am+ by|?, a > 0, b > 0. The latter naturally appears in the proximal regularization of ® ; it may also be
viewed as an energy. The continuous steepest descent method applied to ¥, ; yields a first-order system,
which proves to be equivalent to the above-mentioned second-order system, when @ is of class C2.
Keywords. Dynamical systems in optimization, proximal regularization method, steepest
descent method, entropic methods in optimization.

AMS classification : 37N40, 90Cxx, 65Kxx.

6.1 Introduction

Let H be a real Hilbert space and ® : H — IRU{+00} a proper, lower semicontinuous,
convex function. Consider the convex minimization problem

(P) inf{®(z) :z € H}

and let S := argmin ® denote the solution set of (P).

In relation with (P), we wish to introduce a new dynamical system, called (DIN),
which naturally arises and enjoys remarkable properties in convex optimization (its range
of applications is much wider indeed). When ® is a smooth C? function, (DIN) assumes
the following form

(DIN) F(t) + ai(t) + BV2®(x(t))i(t) + VO(x(t)) = 0

where V2® is the Hessian of ® and where o and 3 are positive parameters.

This dynamical system can be viewed from different perspectives.

The second derivative Z(¢) (which induces inertial effects) may be considered as a singu-
lar perturbation, and in fact regularization, of the possibly degenerate classical continuous
Newton dynamical system

V2®(z(t))i(t) + VO(x(t)) = 0.

That is the origin of the terminology : (DIN) stands in short for Dynamical Inertial
Newton-like system.

! Article accepté dans Control and Cybernetics.

2ACSIOM-CNRS FRE 2311, Département de Mathématiques, case 51, Université Montpellier II, Place
Fugene Bataillon,
34095 Montpellier cedex 5, France
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The system (DIN) also naturally derives from the Heavy Ball with Friction dynamical
system (see Poliak [111], Antipin [10], Attouch-Goudou-Redont [18])

(HBF) () + ai(t) + VO(x(t) = 0.

The damping term az(t) confers optimizing properties on (HBF), but it acts isotropically
and ignores the geometry of ®. Adding a geometric damping term like SV2®(z(t))z(t)
puts down the possible oscillations of the trajectories and gives rise to (DIN).

Lastly, the system (DIN) is closely related to the minimization of the function

(z,y) € H X H = ¢(z,y) = ®(z) + —|z — y[

2\

where ) is some fixed positive parameter. Indeed the Continuous Steepest Descent method

applied to 1 yields
{ 2(t) + VO (2(t) + 3 (x(t) — y(t))
y(t) +3(y(t) —2(t) =
N)

Eliminating y, we obtain the following (DI

0

system

() + ;:t(t) +V20(2(1))i () + %V(I)(x(t)) ~0.
Introducing the function % is no contrived idea, since it naturally appears in two circum-
stances at least.

First, the proximal regularization method applied to (P) (see Moreau [103], Martinet
[99], Rockafellar [113]) is nothing else than the iterated minimization of ¢ alternatively
with respect to the r and y variable. This point of view is set out in section

In many situations of practical importance, the minimization problem (P) is not well-
posed, see for example Dontchev and Zolezzi [55] for a thorough exposition of the notions
of well-posedness and the presentation of various situations occurring in mathematical
programming, calculus of variations, statistics, control theory, inverse problems, where
well-posedness fails to be satisfied.

To regularize the problem (P), a fruitful idea is to add a positive definite quadratic
term, typically |z|?, to ®(x). This leads to various methods, like Tikhonov approximation
method, but in that case the conditioning becomes worse and worse as the approximation
parameter € goes to zero. By contrast, proximal regularization methods allow to preserve
the conditioning away from zero.

The basic idea which lies behind the proximal methods is the following : take some
x* € § = argmin ® and some A > 0. Then consider the minimization problem

1
r—a*?:z € H}.

(P.)  min{®(z) + 55|

Clearly, (P,) is a well-posed convex minimization problem with z* as unique solution
and inf(P) = inf(P,). Unfortunately this method is not constructive, since it makes use
of some x* € S, which is unknown. Nevertheless, from a theoretical point of view, this
method has proved to be quite fruitful. It was used by Barbu [27] in the optimal control
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of variational inequalities, then J.-L. Lions [95] made a systematic use of it in the study
of singular distributed control problems, in order to obtain optimality conditions.

The proximal method which has been developed for numerical purposes consists in
solving (P,) not as a minimization problem (which is impossible, z* is unknown) but as
a fized point problem. Indeed, for any y € H let us introduce the minimization problem

1
(Py) min{®(z) + ﬁ|x —y?:z e H}.
whose unique solution is denoted by Jy (y). Clearly, z* is a solution of (P) if and only if
JY(z*) = x*. Taking advantage of Jy (y) being a contraction (indeed a firmly nonexpan-
sive mapping), the proximal method consists in solving this fixed point problem by the
successive approximation method. One obtains the following classical algorithm

T given
(Pr) o — tp41 = argmin{®(z) + 5[z — 24 1 2 € H}.

This method, first introduced by Martinet [99] in convex optimization, has been developed
in a general framework by Rockafellar [113] (see Lemaire [90] for a thorough exposition
and further references). When writing the optimality condition for (P;) one obtains

)\;1(.’13]64_1 — .’Ek) + 8<I>(3:k+1) 50

which can be interpreted as the implicit discretization of the generalized continuous stee-
pest descent method
z(t) + 0®(x(t)) > 0.

Note that, in this continuous-discrete interaction, the property sz Ar = 400 corres-
ponds to t — +oo (since x(tx) = xk, and Ay = txy1 — tx)- It is a remarkable property
that both systems (discrete and continuous) enjoy a very similar asymptotical behaviour.
In both cases, with Opial Lemma one can prove that the trajectories converge weakly in
H to an optimal solution. In the continuous case, this result has been obtained by Bruck
[40].

Let us notice too that the continuous dynamical system allows to treat parabolic
PDEs, like (nonlinear) heat equations, see H. Brézis [37].

Let us now come to the original aspect of our approach. To that end, let us give a
different formulation of the proximal regularization method. We are going to interpret
it as a relaxation method applied to an energy-like function. Indeed, as we have already
observed, the function of two variables

Y:HxH — RU{4o00}
(z,y) = Y(z,y) = 0(z) + (2A) "z — y[*
plays a central role in the above results. In order to get some flexibility we introduce two
other parameters :
Definition 6.1.1 Let a,b € R be two real parameters, with b # 0. We define

VYap : H X H = R U {+00}
(z,y) = Yap(z,y)
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by the following formula
1
Yupl@, ) = (z) + laz + byl

It is called the energy function attached to the conver minimization problem (P), (with
parameters a and b). The energy minimization problem (P,p) is defined by

(Pay)  inH{®(z) + laz + by (z,) € H}.

Let us notice that we are not in the classical perturbation theory for convex problems
since ¥,5(z, 0) = ®(z) + 1|az|? is not equal to the original function ® (unless a = 0). Let
us make precise the connection between (P,;) and (P).

Proposition 6.1.1 For any values of a,b € R, b # 0 the following equalities hold :

i) inf{®(z) : x € H} = inf{¢,p(z,y) : (z,y) € H x H}.

ii) If 2* is an optimal solution of (P), then (z*,—5x*) is an optimal solution of (P,p).
iii) Conversely, if (x*,y*) € H x H is an optimal solution of (P,3), then y* = —$2*, and

*

x* is an optimal solution of (P).

Proof. The statements are easy consequences of the following facts

V(z,y) € Hx H,®(z) < Yap(z,y),
O(z) = Yap(z,y) S y=—4z. W

As a consequence, solving (P) is equivalent to solving (P, ;). Note that (P,;) is only
partially well-conditioned. It is not globally well-conditioned because of the direction
y = —j along which the quadratic form is degenerate.

Indeed, the strategy of the proximal method consists in minimizing v,; by using a
relaxation method making only use of directions where (P, ;) is well-conditioned, namely
the z- and y-subspaces. Let us make this precise in the following statement

Proposition 6.1.2 The prorimal method is the relaxation minimization method applied

t0 Y, —q, for a = \%\ More precisely

(e, Yo = 2) = (Th+1, Yot1) © Thar = argmin{e,—o(, yr) 1@ € H}
Yk+1 = argmin{lba,fa(xk—f—l: y) ‘Y € H}

Proof. By definition of the proximal method, by taking a? = %

Tpe1 = argmin{®(z) + 5|z — x| 1z € H}
= argmin{vy, (2, yx) : x € H}

since yr = xk. Next, when considering y.1 as

2
) a
Ypr1 = argmin{P(xp,q) + 3|xk+1 —y|?:y € H}

one clearly gets yx11 = Tx11. And so on. B
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From a numerical point of view it is tempting to minimize v, using better descent
directions than those a priori given by the z and y directions. A natural candidate is
the steepest descent method. Let us decribe it when it is applied to 1,5. Indeed it is
convenient to consider the function

1 1 9
Vap(z,y) = 75®(2) + 5laz + by|
b? 2
in order to obtain a quite simple formulation (note that replacing ® by b%(ID does not
change anything to the minimization problem (P) and, like 9,4, ¥, may be called an
energy associated to ®).

Theorem 6.1.1 Let ® : H — R U {+o0} be a convex, lower semicontinuous, proper
function. Let a, b be real constants with b # 0.
a) The generalized continuous steepest descent method when applied to

1 1
op(z,y) = b—Q‘I’(x) + 5\“3«" + by?
provides the following system (energetical steepest descent)

i(t) + 502 (x(t)) + alaz(t) + by(t)] 30 (ESDI)
(ESD) { B ) 4 baa(®) + by(®)] = 0 (ESD2)

b) When ® is a smooth C* function, and a # 0, the above system (ESD) can equivalently
be written (by eliminating the variable y)

1

i(t) + (a® + b)) a(t) + 5

V20 (z(t))i(t) + VO (z(t)) = 0. (6.1.1)

c.1) For any initial condition xy € dom ® and yo € H, there ezists a unique solution
(xz,y) of (ESD) in the following sense

.z : [0,40c0[—~ H is a continuous function, with z(t) € dom® Vt > 0, Lipschitz
continuous on [0, +oo[ for every 6 > 0,

.y :[0,+o0o[— H is a C' function, with a Lipschitz continuous derivative on [, +oo[
for every § > 0,

. (ESD1) is satisfied almost everywhere on |0, 400/,

. (ESD2) is satisfied for every t €]0, +o0],

. 2(0) = zg and y(0) = yo.
c.2) Ast — +oo, ®(x(t)) converges to inf &, whether the latter be finite or not.
c.3) If S = argmin ® # 0, then x and y weakly converge ast — +oo : x(t) Y e €S
and y(t) vl _ag

b
c.4) If in addition ® is even, then x and y converge strongly as t — +oo.

Proof. a) The generalized continuous steepest descent (see Brézis [37]) applied to U,
reads

(@(t),y(t)) + O¥up(z(t),y(t)) 2 0. (6.1.2)
Making the inclusion above explicit yields (ESD).
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b) Let (z,y) be a solution of (ESD). Since @ is C? we have

) 1
T+ b—ZVCI)(I) +alax +by] =0 (6.1.3)
¥ + blax + by] = 0. (6.1.4)
Differentiate (6.1.3) to get
1
i+ a’i + b—2V2¢(x):b+aby =0. (6.1.5)

Perform a linear combination of (6.1.3), (6.1.4), (6.1.5) with b%, —ab, 1 as coefficients to
obtain (6.1.1).

Conversely, let = satisfy (6.1.1); define y by (6.1.3), which is legal since ab # 0.
Differentiating (6.1.3) yields (6.1.5) as above. Perform a linear combination of (6.1.1),
(6.1.3), (6.1.5) with —1, b, 1 as coefficients to obtain aby + ab’[ax + by] = 0, which is
equation (6.1.4).

c.1) The function ¥, is proper, lower semicontinuous and convex; the point (zo,yo)
belongs to dom ® x H = dom W,;. A Theorem of Brézis [37, th. 3.2] then asserts
the existence and uniqueness of a continuous function (z,y) : [0,4+oo[— H x H, with
(x(t),y(t)) € dom ¥, for any ¢, 2(0) = x¢, y(0) = yp, which is Lipschitz continuous on
[0, +o0[ for every 6 > 0, and which satisfies (6.1.2) almost everywhere. This result readily
entails the assertions.

c.2) After [90, cor. 2.1] we have : W, ,(z(t),y(t)) — inf ¥, 4, as t — +o00. The inequalities
inf 5@ = inf ¥, < 5P(x(t)) < Wau(z(t),y(t)) then entail the asserted convergence
result.

c.3) If argmin ® # () then argmin ¥, # 0. It is now a Theorem of Bruck [40] which
asserts the weak convergence of (z,y) towards a minimum point (Zeo, Yoo) = (Zoos —5%Tc0)
of ¥,p as t — +o00.

c.4) If ® is even, then so is ¥, ;. Resorting once more to a Theorem of [40] yields the
strong convergence. W

To keep with clarity, let us briefly sum up how (DIN) has been derived.

By analogy with the proximal regularization method, the minimization of the convex
function ® is replaced by the minimization of the convex function Wo4(z,y) = ®(z) +
slaz + by|%.

To that end, the continuous steepest descent method is applied to ¥, ;, which gives
rise to system (ESD). Any solution (z,y) of the latter is such that z(¢) weakly converges
to a minimum point of ® as ¢t — +o0.

If ® is C?, then (ESD) is equivalent to a (DIN) system with a8 > 1 (a = a® + b* and
B = b%, indeed).

6.2 Optimizing properties of (DIN) in general
In this part, the optimizing properties of (DIN) are examined with more generality

than before, i.e. ® need not be convex and a8 > 1 need not hold. Facts are stated without
proofs, which may be found in [7].
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Let o, 8, A, B, C be real constants, arbitrary for the moment. The system (DIN),
which we recall

(DIN) F(t) + ai(t) + BV2®(x(t))i(t) + VO(z(t)) = 0
bears a strait relation with the following first order system

t+CVe®(z) +Az+ By =0
(g-DIN) { Y +Azx+ By =0

as the next proposition shows. In spite of their resemblance, (g-DIN) is not a gradient
system (except if A = B) while (ESD) is. But the equivalence between (DIN) and (g-DIN)
is more general than the equivalence between (DIN) and (ESD) which requires af > 1.

Proposition 6.2.1 Suppose ® € C%(H), and let the constants o, B, A, B, C satisfy

1 1

/B#O,A:CM——,B:—

B B

The systems (DIN) and (g-DIN) are equivalent in the sense that x is a solution of (DIN)
if and only if there exists y € C*([0,+oc[, H) such that (z,y) is a solution of (g-DIN).

Beyond being of first order in time, the system (g-DIN) is interesting because it does
not involve the Hessian of ®. As a first consequence, the numerical solution of (DIN) is
highly simplified, since it may be performed on (g-DIN) and only requires approximating
the gradient of ®. As a second consequence, (g-DIN) allows to give a sense to (DIN)
when @ is of class C! only, or when ® is nonsmooth or involves constraints, provided
that a notion of generalized gradient is available (e.g. the subdifferential set for a convex
function ®). But that remark would be of little utility if (g-DIN) did not have good
existence and asymptotic convergence properties as ¢ — +00, under the sole assumption
® € C}(H). Actually (g-DIN) retains some of the optimizing properties of (DIN), at least
if ® € CH(H).

Theorem 6.2.1 (optimizing properties of (g-DIN))

Assume that ® : H — IR is bounded from below, differentiable with V® Lipschitz
continuous on the bounded subsets of H ; assume further C >0, B >0, B+ A > 0 in
(g-DIN). Then the following properties hold :

(i) For each (zo,y0) in H x H, there erists a unique solution (z,y) of (g-DIN) defi-
ned on the whole interval [0, +oo[, which belongs to C'(0,00; H) x C%(0,00; H) and
satisfies the initial conditions x(0) = xo and y(0) = yo.

(ii) e & and V®(z) belong to L*(0,+oo; H),

o limy , o ®(z(t)) exists,
o limy o (&(t) + CVP(x(t)) = 0.

(iii) Assuming moreover that x is in L*(0,+o00; H), then we have
e i, VO&(z) are bounded on [0, +o0],

o limy o VO(z(t)) = limy, 1 2(t) = 0.
In view of proposition 6.2.1, when ® belongs to C?*(H), the conditions C > 0, B > 0,
B+ A > 0 for (g-DIN) are easily seen to be equivalent to o > 0, § > 0 for (DIN). This
readily implies the following corollary of Theorem 6.2.1.

,C =8
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Corollary 6.2.1 (optimizing properties of (DIN))

Assume that ® : H — TR is bounded from below, twice differentiable with V2® Lipschitz
continuous on the bounded subsets of H ; assume further o > 0, 8 > 0 in (DIN). Then
the following properties hold :

(i) For each (xo,Z0) in H x H, there exists a unique solution x of (DIN) defined
on the whole interval [0, +oo|, which belongs to C*(0,00; H) and satisfies the initial
conditions z(0) = zy and £(0) = .

(ii) e = and V®(x) belong to L*(0,+o0; H),

o limy ,, o, ®(2(t)) exists,
o lim; , o (&(t) + fVOx(t)) = 0.

(iii) Assuming moreover that x is in L>®(0,4+o00; H), then we have
e i, V®(z) are bounded on [0, +o0],

o lim; o VO(x(t)) = limy 00 &(t) = 0.

Let us finally state two convergence results ([7]).

Theorem 6.2.2 In addition to the hypotheses of Theorem 6.2.1, assume that ® is conver,
and that argmin®, the set of minimizers of ® on H, is nonempty. Then for any solution
(z,y) of (g-DIN), z(t) weakly converges to a minimizer of ® on H ast goes to infinity.

Theorem 6.2.3 Assume that ® : RY — R is analytic, and let x be a bounded solution
of (DIN)with o > 0, 8 > 0. Then & belongs to L*(0,+o00; H) and x(t) converges towards
a critical point of ® ast — oo.

6.3 An entropy-like version of the system (ESD)

From now on, H is assumed to be finite-dimensional, that is H = RY, N > 1.

A common feature in constrained optimization consists in replacing the quadratic
kernel in the proximal point algorithm by a distance-like functional that forces, in good
cases, the iterates to remain in the interior of the feasible set. If C' is a non empty closed
convex subset of RY, this leads to dynamics of the type

2"t € argmin {®(z) + \pd(z,2%) : 2 € C}, A > 0,

where d : C x C — R U {400} is strictly convex with respect to its first variable.
Let us mention, for instance, the comprehensive survey of Kiwiel [84] on generalized
Bregman distances, the entropy-like algorithm using (-divergences proposed in Iusem-
Svaiter-Teboulle [79], and also the recent logarithmic quadratic method of Auslender-Ben
Tiba-Teboulle [22].

Inspired by those fruitful ideas, and motivated by the properties of (DIN), we devote
this section to the construction of an inertial method of the type (ESD), but with a ¢
divergence kernel - see formula (6.3.7) below- instead of the quadratic term (z,y) —
slaz + by|*.

The choice of this particular kernel is suggested by its remarkable jointly convex pro-
perty, which naturally fits our energy-like descent method approach.

Let us now specify the setting. Consider the problem

(Py) inf{®(z):z e RY},
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where the objective function ® : RY — R U {+o0} is assumed to be lower semiconti-
nuous and convex with

dom ®NRY, #0, RY, = {z € R"|z; >0, Vi € {1.N}}. (6.3.6)

¢ divergences are generated by the functions ¢ : IRy, — IR satisfying the following
properties

(¢), ¢ is continuous and nonnegative on R,
(H), (1), ¢ is strictly convex,
(¢12), (1) = 0.

Define the ¢ divergence d, : RY x RY — R U {+o0} as

N 1.y N \2
_ vie(y, x)if (z,y) € (R ,
ol.v) = { %ooz_lezl/sgglz}jlere.) ) € () (6.3.7)

EXAMPLE. As in [79], where many other examples are given, a particularly interesting
example is provided by
wo(s) =slogs—s+1,s>0,

with the convention Olog0 = 0. The associated ¢, divergence is the Kullback-Liebler
entropy, that is

dyo (T,7) Zx,log +y, x;, Y(z,y) € ]Rf X ]RL.

It is worthwile pointing out that d,, can also be viewed as the D function of the
Bregman function RY > z — Y°,_, yxilogz;. This has relevant consequences in the
asymptotic analysis of the proximal-like dynamics associated to d,, [79, 20].

The ¢ divergence d, need not be lower semicontinuous. In order to meet the classical
assumptions in minimization problems, we introduce the lower semicontinuous regulari-
zation of dy,, denoted by d_w. It is characterized by the following properties

(a) For all (z,y) € RY x RY, and for all sequences satisfying (z*,y*) — (z,%) as
k — 400,

liminfd ( y*) > dy(z,y),

k——+o00

(b) For all (z,y) € RY x RY, there exists a sequence satisfying (z*,y*) — (z,y) as
k — 400, such that

lim sup d,, (2%, y*) < d,(z,9).

k—+o0
We have the following

Lemma 6.3.1 Let ¢ and d, satisfy (H), and (6.3.7). Then

(i) @ 1S a proper, lower semicontinuous, conver function,

(ii) dy > 0,

(iii) For all (z,y) € RY, x RY,, d,(z,vy) = d,(z,y), B

(iv) For all (z,y) € RN x RY, the following separation property holds, d,(z,y) = 0 <
rT=y,x € ]Rf.
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Proof. The convexity of d,, and therefore (i), comes from (4i),, and the following fact :
g: R,; — Ris convex if and only if (r,s) € (R, ;)* — sg(s 'r) is convex.

One recognizes in (r,s) € (Ry;)? — sg(s~!r) Hérmander’s perspective function of ¢; for
a reference and further developments on the topic, see Maréchal [98]. The property (i7)
follows from the fact that d, > 0, while (4i¢) is a consequence of (7).

To deal with (iv), let us examine the values of dy. If (z,y) ¢ (RY)? then, obviously,
dy(z,y) = +oo and by (iii) dy(z,y) = dy(z,y) as soon as (z,y) € (R}, )2

To cope with the case (z,y) € bd (R} )2, where bd (RY)? denotes the boundary of
(RY)?, let us first notice that the definition of d,,, allows to restrict the requirement
(a) to nonnegative sequences. Besides, in order to compute lim inf;_,  « d,,(2¥, y¥), where
(z*,y*) is a nonnegative sequence, observe that the structure of d,, permits to argue on
each coordinates, and thus it can be assumed, without restriction, that N = 1.

For (z,y) € bd ]Ri = {(z,y) € ]Ri|my = 0}, let (z*,y*) z*,y* > 0 be a sequence
converging to (z,y) as k — 400. Three cases are distinguished,

ez = 0,y # 0. From (4),, (4), and (iii), it ensues that ¢ is non increasing on
(0,1) and achieves its minimum at s = 1. Therefore d,(z*, y*) — ylim, ,o+ ¢(s) > 0, as
k — +oo.

e x # 0 and y = 0. Fix so > 1, and let us apply the convex inequality to ¢, this gives
for all s € IR, and for all g € dp(sp)

o(8) > p(so) + g-(s — s0) > g.(s — s0)- (6.3.8)

Observe that (4),, (i), and (#4i), imply that all subgradients contained in d¢(sy) are
positive. Hence (6.3.8) yields

Bl

T
do (2, y*) = yF (=) > g2* — gy¥s,

<

where g € 9¢(sq), g > 0, and thus lim infy_, , o dy, (2%, y*) > gz > 0.

e z =y = 0. Just notice that d,(, ) =0 for all k£ > 1.
Applying the above results together with the properties (i),, (i),, we easily deduce

(iv). ®

Take d,, as above and define for all (z,y) € RY x RY
Wo(5,y) = B(z) + dy(a,y). (6.9

By Lemma 6.3.1 and (6.3.6) this gives rise to a proper lower semicontinuous convex
function. The optimality properties of ¥, and ® are linked in the following way :

Lemma 6.3.2 Let ¢, d, and U, satisfy (H,), (6.3.7) and (6.3.9). Then
argmin {¥,(z,y) : (z,y) e RY x RV} = {(a:,:r) D& € argmingpw CIJ} :
+
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Proof. It relies on Lemma 6.3.1, and on the relations

U,(z,2) =®(x) Ve ]Rf,
U,(z,y) > ®(z) V(z,y) € ]Rf xRY. m

For each 2,y € RY let us set X = (z,y) € RY x IRY. Following the lines of Section
6.2, let us define the dynamical system

X (¢ + 0V, (X(t)) 20 a.e. on |0, +00
s, { K10+ 7800 0.-+oc]

where Xy = (29, ¥) € dom ¥, and X(.) is the unique continuous solution ([37]). The
properties (6.3.6) and (¢i) of Lemma 6.3.1 allow to apply to ¥, a classical Theorem
concerning the subdifferential of a sum ([58, th. 5.6]). Hence (ESD),, can be rewritten

&(t) + 0P (x(t)) + 0zdy(x(t), y(t)) 2 0 a.e. on [0, +00],
(BSD), { 30) 1 By (w0, y()) = 0, V2 > 0,

with 2o € dom ® N ]Rf and gy € ]Rf.
The dynamical system (ESD), presents the advantage of taking the constraints ]Rf
into account without penalizing ®, more precisely we have the following

Theorem 6.3.1 Let d, be a ¢ divergence, and ¥, as in (6.3.9). Let t — X(t) =
(z(t),y(t)) be a solution of (ESD), then

(i) ®(x(t)) — inf {®(z)]z € RY} as t — +oc.

(it) If moreover S = argmin {®(z)|z € RY} is non empty, then there ewists z* € Sy
such that (x(t),y(t)) — (z*,z*) as t = +oo.

Proof. It is a consequence of the previous Lemma and of the results proved in [90] for
(1), and in [37, 40] for (7). m

Remarks. 1. Parallelizing the derivation of (ESD) and (ESD), from ¥,, and ¥, res-
pectively, via the continuous gradient method, we could also derive a nonautonomous
version of (ESD) by considering the following family of functions : ¥;(z,y) = %@(m) +
2la(t)z+b(t)y[?, where a and b are positive functions of ¢. This would lead to the following
differential inclusion : (&(t), y(t)) + 0% (z(t), y(t)) > 0 (see [25, 67] for facts about this
type of problems).

2. It would be interesting to know if (ESD), is a dynamical interior point method.
Indeed its numerical treatment may be delicate if a trajectory happens to touch the
boundary of (]Rf +)?, since le is liable to singularity there; choosing numerically good
functions Jgo is not so easy. Yet we presume that, under fairly general assumptions on
® and ¢, each trajectory starting from (z9,%) € (dom ® NIRY,) x RY, remains in the

interior of the constraints. Certainly this question deserves further study.
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Résumé.

L’étude et I'introduction de nouveaux systemes dynamiques de type gradient sont 1’objet
central de cette these. Le caractere dissipatif de telles dynamiques est au coeur de nom-
breux domaines en mathématiques : optimisation, mécanique, équations d’évolutions en
dimension infinie.

Dans une premiére partie, les champs de gradients (ou de sous-différentiels de fonc-
tion convexe) sont contrdlés a 'aide d’opérateurs-barriéres. La motivation essentielle est
d’obtenir des méthodes intérieures de descente en vue d’optimiser une fonction sous des
contraintes convexes. Le cadre d’étude proposé permet d’unifier dans un méme formalisme
de nombreuses méthodes continues. Toujours dans cette perspective, les fonctions de Le-
gendre jouent un role crucial : elles permettent d’une part de donner lieu a des structures
riemanniennes possédant de nombreuses propriétés, et d’autre part, elles fournissent en
dimension infinie un cadre intéressant pour 1I’étude de certaines équations d’évolution de
type parabolique.

La deuxiéme partie est consacrée a ’étude de systemes dynamiques du second ordre en
temps avec une dissipation géométrique de type hessien. Outre leur intérét en optimisation
et leurs liens avec les méthodes de type Newton, ces systémes sont d’une grande souplesse
et permettent d’approcher certains phénomeénes non-lisses en mécanique unilatérale.

L’une des préoccupations majeures de cette these est la question de la convergence
des orbites des sytemes étudiés. Dans le cadre de la minimisation convexe, quasi-convexe,
ou analytique, de nombreux résultats sont proposés.

Mots-clés : systeme dynamique dissipatif, systeme de type gradient, analyse asympto-
tique, méthode de Newton continue, minimisation convexe, chocs inélastiques, gradient-
projeté, fonctions de Legendre, opérateurs barrieres, équations paraboliques, métriques
hessiennes, fonctions de Lyapounov, méthodes proximales.
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