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ABSTRACT OF THE DISSERTATION

Linear and semilinear elliptic equations with a singular

potential

by Louis Dupaigne

Dissertation Director: H. Brezis

This dissertation is concerned with simple elliptic partial differential equations of the

form 
−∆u = F (x, u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where Ω is a smooth bounded domain of Rn and F can depend nonsmoothly on the

variable x. In this setting, uniqueness, existence and regularity results of the standard

theory may fail, even in the linear case. An educating example is the so-called inverse-

square potential with a power nonlinearity, i.e., when

F (x, u) =
c

|x|2
u+ up + λ,

where c, λ > 0 and p > 1. We show that existence of solutions depends highly on the

values of the parameters. Optimal regularity, uniqueness and stability results are also

considered. For the general case, we first look at linear right-hand sides

F (x, u) = a(x)u+ b(x)

and obtain important comparison principles, which enable us in the general case to

obtain a sharp criterion of existence for a wide class of nonlinear F .
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Preface

This dissertation is a compilation of the research papers written by the author during

the course of the Ph. D. As a result, each chapter contains one paper and its own

references. Part of the material has been written in collaboration (with J. Davila for

chapters 3 and 5 and with G. Nedev for chapter 4). Some of the papers have already

appeared in specialized journals, while others have been submitted for publication.

Minor changes were made from the original papers.
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Chapter 1

Introduction

1.1 Overview

This work studies the interaction between singular coefficients and nonlinear terms in

some simple partial differential equations of the form
−∆u = F (x, u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain of Rn, ∆ the usual Laplacian and F a function

which is a priori nonsmooth in the variable x.

Brézis and Vazquez have observed that this type of problem seemed to contradict

the inverse function theorem. Numerous other apparent contradictions can thus appear

: loss of maximum principle for coercive elliptic operators, lack of Green’s function,

blow-up in finite time for linear evolution equations, etc.

From the viewpoint of application, particularily the Gelfand problem or standard

combustion models, some complete blow-up phenomena (in the stationnary case) and

instantaneous complete blow-up (for parabolic equations) can be obtained.

Starting from a simple example (including a one-point singularity, via the inverse-

square potential 1/|x|2, coupled with a power nonlinearity up), we show the existence

of a critical exponent beyond which such phenomena appear.

We then obtain a more general result, allowing one to consider “fatter” singular sets

and more complicated nonlinearities. The question of blow-up in the nonlinear case can

then be reduced to the study of a linear problem.
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1.2 Linear theory

Even when the right-hand side of (1.1) is linear, i.e.

F (x, u) = a(x)u+ b(x), (1.2)

new phenomena appear as soon as a(x) is singular. A striking example is given by the

inverse-square potential :

a(x) =
c

|x|2
,where 0 < c ≤ (n− 2)2

4
and n ≥ 3. (1.3)

By Hardy’s inequality, the operator −∆− c/|x|2 is (formally) coercive. But (assuming

of course that 0 ∈ Ω), one loses the maximum principle. Existence and uniqueness of

weak solutions (belonging to L1(Ω)) can also fail.

At the same time, the usual elliptic regularity theorems no longer hold. More

precisely, the Lp theory remains true only in an interval 1 < p1 < p < p2 <∞. Finally,

it is known that all nontrivial solutions of (1.1)-(1.2)-(1.3) are singular at the origin.

For all these results, see chapter 2.

One can better understand these anomalies by going back to the (more) general case

where a(x) ∈ L1
loc(Ω), a(x) ≥ 0. In an appropriate functional setting (H1

0 (Ω) suffices

in the generic case) and under the natural coercivity assumption, one easily recovers

the maximum principle for the operator L = −∆ − a(x). Under a slightly stronger

condition, we obtain the following comparison principle : if ζ0 solves −∆ζ0 − a(x)ζ0 = 1 in Ω

ζ0 = 0 on ∂Ω,
(1.4)

and φ1 > 0 is an eigenfunction associated to the first eigenvalue of L, then there exists

a constant C > 0 such that

C−1ζ0 ≤ φ1 ≤ Cζ0. (1.5)

Thus ζ0 and φ1 have the same singularities and we can take ζ0 as a reference function.

Inequality (1.5) is obtained by combining a technique of reduction to the case of a

bounded potential and the Moser iteration method. This procedure has the advantage

of being general and flexible : one can thus obtain fine maximum principles and treat

evolution problems as well.
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It is nevertheless useful to work in the general setting of L1(Ω)-weak solutions. One

can then characterize b(x) for which problem (1.1)-(1.2) has at least one solution, and

either recover the maximum principle, provided a priori regularity of the considered

solution is assumed, or use a concept of minimal solution of (1.1) (by means of the

maximum principle for the Laplacian) and thus construct a monotone inverse of L:

G = L−1 = (−∆− a(x))−1. (1.6)

1.3 Semilinear equations

First consider equation (1.1) with

F (x, u) =
c

|x|2
u+ up + λ, (1.7)

where p > 1, λ > 0 and c is chosen as in (1.3).

There exists a critical exponent p0 = p0(c, n) such that problem (1.1)-(1.7) has no

solution given any pair (p, λ) when p ≥ p0, whereas solutions exist for p < p0 (and λ

small).

In the first case (supercritical), we also have a result of complete blow-up for solu-

tions of the regularized problem.

In the second case, we recover a certain number of phenomena that are well-known

when a(x) ≡ 0 : for each p < p0, there exists an extremal parameter λ∗ > 0 such that

(1.1)-(1.7) has a solution u if and only if λ ≤ λ∗. When λ < λ∗, this solution has on

the one hand optimal regularity, i.e.

C−1ζ0 ≤ u ≤ Cζ0, (1.8)

where C > 0 and ζ0 solves (1.4)-(1.3). On the other hand, u is stable (in a linearized

sense) and is the unique stable solution of (1.1)-(1.7) belonging tho H1
0 (Ω). In the

extremal case λ = λ∗, the solution is unique and can in certain cases satisfy (1.8) and

be unstable, and in other cases show stronger singular behaviour at the origin while

remaining stable.

Nonexistence in the supercritical case can be demonstrated in two different ways.

In the first approach, one first obtains an a priori regularity result, allowing one to
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use the maximum principle. Arguing by contradiction, one then constructs more and

more singular subsolutions, eventually reaching a contradiction (see chapter 2). In the

second approach, one starts from a solution of the nonlinear problem to construct a

supersolution of a linear problem. Comparing the latter with the minimal solution of

the linear problem, we then obtain a restriction on p.

Using this method, we can treet the more general case where

F (x, u) = a(x)u+ c(x)f(u) + λb(x), (1.9)

where c(x) ≥ 0, c(x) ∈ L1
loc(Ω) and where f ≥ 0 is a convex superlinear function.

One can then classify nonlinearities in two categories : existence (for small λ > 0) or

nonexistence. More precisely, problem (1.1)-(1.9) has solutions if and only if there exist

ε, C > 0 such that

G(c(x)f(εζ0)) ≤ Cζ0, (1.10)

where ζ0 solves (1.4), G is the inverse evoked in (1.6) and where we supposed b(x) ∈

L∞(Ω) to simplify the exposition. Observe that (1.10) states that the solutions of two

linear problems are comparable.

This criterium can be conveniently applied. For example, if

F (x, u) =
c

d(x,Σ)2
u+ up + λ (1.11)

where Σ is a (compact imbedded) submanifold of codimension k 6= 2 (and c > 0

small enough), we obtain a new critical exponent p0 = p0(c, n, k), which somewhat

surprisingly decreases with k. In particular, if Σ = ∂Ω, one can take p0 = ∞.

An important step towards this result consists in obtaining the coercivity of the

corresponding linear operator L, which we refer to as a generalized Hardy inequality

and demonstrate in full generality in chapter 4.

1.4 Perspectives

Singular potentials lead to a number of interesting questions. Let us cite three of them.

The parabolic analogue of problem (1.1) is a natural extension of the above work.

One major open question is to determine whether condition (1.10) is sufficient to
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guarantee the well-posedness of the Cauchy problem. We have obtained partial

results on this matter and believe that full generality can be reached provided

sharp pointwise upper bounds on the corresponding heat kernel are known.

Another direction of investigation consists in considering potentials a(x) that change

sign and more importantly in stating problem (1.1) without a sign condition on

u : can nonexistence results still be obtained ?

The study of the Yamabe problem in the supercritical case can be attacked from the

viewpoint of singular potentials. Consider for example the equation −∆u = u2 in

dimension 7 or higher. It is easy to derive a solution of this equation (in Rn \{0})

of the form u0 = cn|x|−2 and we can then look for solutions

u = u0 + v

to obtain the equation

−∆v =
2cn
|x|2

v + v2.

The main problem here is that 2cn > (n− 2)2/4 and th operator −∆− 2cn/|x|2

is no longer coercive. Can nontrivial solutions still be obtained ?
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Chapter 2

A nonlinear elliptic PDE with the inverse square potential

2.1 Introduction

2.1.1 Statement of the problem

This section is concerned with the following equation :
−∆u− c

|x|2
u = up + tf in Ω

u > 0 in Ω

u = 0 on ∂Ω

(Pt,p)

Here, Ω is a smooth bounded open set of Rn (n ≥ 3) containing the origin, c > 0, p > 1,

t > 0 are constants and f 6≡ 0 is a smooth, bounded, nonnegative function.

We assume from now on that

0 < c ≤ c0 :=
(n− 2)2

4
(0.1)

The relevance of the constant c0 will appear after we clarify the notion of a solution of

(Pt,p).

Three types of solution are defined thereafter : weak solutions, which provide a good

setting for non-existence proofs (see Theorem 1 and Proposition 2.1), H1
0 (Ω) solutions,

for which uniqueness results can be established (see Theorem 2) and strong solutions,

which set the optimal regularity one can hope for (see Theorem 1 and Lemma 1.5.)

We shall say that u ∈ L1(Ω) is a weak solution of (Pt,p) if u ≥ 0 a.e. and if it

satisfies the two following conditions :
∫
Ω

(
u

|x|2
+ up

)
dist(x, ∂Ω) dx <∞∫

Ω u
(
−∆φ− c

|x|2φ
)

=
∫
Ω(up + tf)φ for φ ∈ C2(Ω̄) , φ|∂Ω = 0
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Observe that the first condition merely ensures that the integrals in the second

equation make sense.

An H1
0(Ω) solution is a function u ∈ H1

0 (Ω) such that u ≥ 0 a.e., up ∈ L
2n

n+2 (Ω)

and ∫
Ω
∇u∇φ−

∫
Ω

c

|x|2
uφ =

∫
Ω

(up + tf)φ for all φ ∈ H1
0 (Ω)

All integrals are well defined because of Sobolev’s and Hardy’s inequalities (see (0.3)

for the latter.)

Finally, a strong solution u is a C2(Ω̄ \ {0}) function satisfying the system of

equations (Pt,p) everywhere except possibly at the origin, such that for some C > 0,

0 ≤ u ≤ C |x|−a

where

a :=
n− 2−

√
(n− 2)2 − 4c
2

> 0 (0.2)

Observe that −a is the larger root of P (X) = X(X − 1) + (n − 1)X + c = 0. Also

define a′ by

−a′ is the smaller root of P(X) (0.2’)

• Why are definitions (0.1), (0.2) important ?

The constant c0 defined in (0.1) is the best constant in Hardy’s inequality :

∫
Ω
|∇u|2 ≥ c0

∫
Ω

u2

|x|2
for all u ∈ H1

0 (Ω) (0.3)

Consequently, when c < c0, the operator −∆ − c
|x|2 is coercive in H1

0 (Ω). This

turns out to be crucial since Theorem 2.2 in [BG] implies that if c > c0, there is no

nonnegative u, u 6≡ 0 such that −∆u− c
|x|2u ≥ 0 and hence no solution of (Pt,p), even

in the weak sense. We arrive at the same conclusion if c > 0 is arbitrary and the space

dimension n is 1 or 2, as can be deduced from the first lines of the proof of Theorem

1.2 in [BC]. We therefore restrict to n ≥ 3.

The constant a defined in (0.2) plays a central role, even in the linear theory. Indeed,

if f 6≡ 0 is say, a smooth nonnegative bounded function on Ω and u ∈ H1
0 (Ω) is the

unique solution of
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
−∆u− c

|x|2
u = f in Ω

u = 0 on ∂Ω
(0.4)

then u(x) ≥ C|x|−a near the origin, for some C > 0 (see Lemma 1.5 .) In particular,

strong solutions are the nicest one can hope for. In addition, ψ := |x|−a solves −∆ψ −
c
|x|2ψ = 0 in Rn \ {0}.

We introduce a third constant, the exponent

p0 := 1 +
n− 2 +

√
(n− 2)2 − 4c
c

(0.5)

which satisfies

a+ 2 = p0 a

Roughly speaking, if u behaves like |x|−a, then −∆u − c
|x|2u ∼ |x|−(a+2) and up ∼

|x|−ap. Hence, p0 sets the threshold beyond which the nonlinear term produces a

stronger singularity at the origin than the differential operator. In fact, we will show

that for p ≥ p0, (Pt,p) has no solution, no matter how small t > 0 is. See Theorem 1

for details.

This fact is somewhat surprising : one would expect that working with the map

F (u) := −∆u− c
|x|2u− up, which is such that F ′(0) = −∆ − c

|x|2 is formally bijective

and F (0) = 0, the inverse function theorem would yield solutions for t > 0 sufficiently

small. Such an argument fails because there is no functional setting in which it may be

applied. See section 7 of [BV] or the introduction of [BC] for a similar situation.

Another interesting property of p0 is its variation as c decreases from c = c0 to c = 0

: when c = c0, p0 =
n+ 2
n− 2

is the Sobolev exponent whereas when c→ 0, p0 →∞. This

is natural in view of the case c = 0, for which p > 1 can be chosen arbitrarily (see e.g.

[D],[BCMR],[CR].)

• How do strong, H1
0(Ω) and weak solutions relate ?

Proposition 0.1. Suppose (0.1) holds and recall (0.2), (0.5). Suppose also that 1 <

p < p0.
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• If u is a strong solution of (Pt,p), then u is an H1
0 (Ω) solution of (Pt,p).

• If u is an H1
0 (Ω) solution of (Pt,p), then u is a weak solution of (Pt,p).

• If u is a weak solution of (Pt,p) and 0 ≤ u ≤ C |x|−a then u is an H1
0 (Ω) solution

of (Pt,p).

• If u is an H1
0 (Ω) solution of (Pt,p) and 0 ≤ u ≤ C |x|−a then u is a strong solution

of (Pt,p).

This will be proved in Section 1.

Remark 0.1. In section 5, we provide examples of both strong and H1
0 (Ω) solutions.

We do not know however if there exist weak solutions that are not H1
0 (Ω).

With these definitions in mind, we investigate the existence, uniqueness and regu-

larity of solutions of (Pt,p) :

2.1.2 Main results

Theorem 1. Suppose (0.1) holds and recall (0.5).

• If 1 < p < p0, there exists t0 > 0 depending on n, c, p, f such that

– if t < t0 then (Pt,p) has a minimal strong solution,

– if t = t0 then (Pt,p) has a minimal weak solution,

– if t > t0 then (Pt,p) has no solution, even in the weak sense and there

is complete blow-up.

• If p ≥ p0 then, for any t > 0,

– (Pt,p) has no solution, even in the weak sense, and there is complete

blow-up.

This result requires the following definition :
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Definition 0.1. Let {an(x)} and {gn(u)} be increasing sequences of bounded smooth

functions converging pointwise respectively to
c

|x|2
and u→ up and let un be the minimal

nonnegative solution of


−∆un − anun = gn(un) + tf in Ω

un = 0 on ∂Ω
(Pn)

We say that there is complete blow-up in (Pt,p) if, given any such {an(x)},

{gn(u)} and {un},

un(x)
δ(x)

→ +∞ uniformly on Ω,

where δ(x) := dist(x, ∂Ω).

Theorem 2. Suppose (0.1) holds and 1 < p < p0, 0 < t < t0. Then if ut denotes the

minimal strong solution of (Pt,p),

• ut is stable

• ut is the only stable H1
0 (Ω) solution of (Pt,p)

If ut0 denotes the minimal weak solution of (Pt0,p) and 0 < c < c0 and

if ut0 solves the problem in the strong sense then λ1(ut0) = 0

Stability is defined as follows :

Definition 0.2. We say that u is stable if the generalized first eigenvalue λ1(u) of the

linearized operator of equation (Pt,p) is positive, i.e., if

λ1(u) := inf{J(φ) : φ ∈ C∞
c (Ω) \ {0}} > 0

where

J(φ) =

∫
Ω |∇φ|

2 −
∫
Ω

c

|x|2
φ2 −

∫
Ω pu

p−1φ2∫
Ω φ

2
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The proof of Theorem 1 is presented in sections 2 and 3, whereas Theorem 2 is

proved in section 4.

In section 5, we study the extremal case t = t0 and provide examples of two distinct

behaviors of the extremal solution of (Pt0,p).

Finally, in section 6, proofs of all previously announced results pertaining to the

case c = c0 are given.

2.1.3 Notation and further definitions

Dealing with linear equations of the form (0.4) with f ∈ L1(Ω, dist(x, ∂Ω) dx), a weak

solution u is one that satisfies the equation
∫
Ω u
(
−∆φ− c

|x|2φ
)

=
∫
Ω fφ with the

integrability condition
∫
Ω

|u|
|x|2 < ∞. Strong solutions are defined as in the nonlinear

case.

Of course, Proposition 0.1 need not be true in this setting.

Sometimes we shall refer to inequalities holding in the weak sense or talk about

(weak) supersolutions. This means that we integrate the equation with nonnegative

test functions.

For example, −∆u− c
|x|2u ≥ f holds in the weak sense,

given f ∈ L1(Ω, dist(x, ∂Ω) dx), if
u

|x|2
∈ L1(Ω) and if

∫
Ω
u

(
−∆φ− c

|x|2
φ

)
≥
∫

Ω
fφ for all φ ∈ C2(Ω̄) with φ ≥ 0 and φ|∂Ω = 0

The following Lq weighted spaces will be used in the sequel :

Lq
δ = Lq(Ω, δ(x) dx),

Lq
m = Lq(Ω, |x|m dx),

Lq
m,δ = Lq(Ω, |x|m δ(x) dx) and

L
∞
m = {u : u · |x|−m ∈ L

∞
(Ω)}

where 1 ≤ q <∞, δ(x) = dist(x, ∂Ω) and m ∈ R.

Also, for ρ > 0, Bρ denotes the open ball of radius ρ centered at the origin. The

letter C denotes a generic positive constant.
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2.2 Preliminary : linear theory

We construct here a few basic tools to be used later on and start out with the L2 theory.

Lemma 1.1. Suppose 0 < c < c0 and let f ∈ H−1(Ω). There exists a unique u ∈

H1
0 (Ω), weak solution of 

−∆u− c

|x|2
u = f in Ω

u = 0 on ∂Ω
(1.1)

Furthermore,

‖u‖H1
0 (Ω) ≤ C‖f‖H−1 (1.2)

f ≥ 0 in the sense of distributions ⇒ u ≥ 0 a.e. (1.3)

Proof. Hardy’s inequality (0.3) implies that −∆ − c
|x|2 is coercive in H1

0 (Ω). (1.2)

follows from Lax-Milgram’s lemma. Observe that, using approximation in H1
0 (Ω) by

smooth functions and integration by parts in Ω̄ \ Bε with ε → 0, our definition of a

weak solution and that of Lax-Milgram’s lemma coincide in this setting.

For u ∈ H1
0 (Ω), it is well known that u− ∈ H1

0 (Ω). Testing the variational formula-

tion of (1.1) against u− yields (1.3). �

Next, we consider the Lq theory and restrict ourselves to the radial case.

Lemma 1.2. Suppose 0 < c < c0 (with c0 defined in (0.1)) and recall (0.2). Let

q ∈
(

n

n− a
,

n

2 + a

)
, E = W 2,q(B1) ∩W 1,q

0 (B1) ∩ {u : u
|x|2 ∈ Lq(B1)}. For any radial

f ∈ Lq(B1), there exists a unique radial weak solution u ∈ E of
−∆u− c

|x|2
u = f in B1

u = 0 on ∂B1

(1.4)

Furthermore,

‖u‖E ≤ C‖f‖Lq (1.5)

f ≥ 0 a.e. ⇒ u ≥ 0 a.e. (1.5’)

Remark 1.2. Observe that
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• It can be shown that u ∈ W 2,q ∩W 1,q
0 ⇒ u

|x|2 ∈ Lq for 1 < q < n/2, so that the

definition of E can be slightly simplified.

• The interval
(

n

n− a
,

n

2 + a

)
is nonempty if and only if c < c0.

• The restrictions on the range of q are optimal. If q ≤ n
n−a , uniqueness is lost

(see Remark 1.4), whereas if the lemma were to hold for some q ≥ n
2+a , one could

construct solutions of (Pt,p) for some p, p ≥ p0 by means of the inverse function

theorem, contradicting Theorem 1 (see the methods of Proposition 4.1 .)

• It would be natural to extend Lemma 1.2 to the nonradial case. The problem

remains open.

Proof. Uniqueness will follow from the maximum principle (Lemma 1.4) proved in this

section, provided we can show that E ⊂ L1
−a−2 .

If u ∈ E, u
|x|2 ∈ L

q and using Hölder’s inequality, u ∈ L1
−a−2 if |x|−a ∈ L

q
q−1 , which

is equivalent to asking q >
n

n− a
.

For existence, we suppose (without loss of generality in view of estimate 1.5) that

f ∈ C∞
c (0, 1), f ≥ 0 and define

u(r) := Φ(f)(r) =
r−a

α

∫ 1

0
f(s) · s

n+α
2 [max(s, r)−α − 1] ds

where α =
√

(n− 2)2 − 4c, r ∈ (0, 1).

(1.5’) follows from the definition of u.

Since f is supported away from the origin, it is quite clear that
u

r−a
is smooth every-

where on [0, 1] so that |u| ≤ Cr−a and |u′| ≤ Cr−a−1. Also, u(1) = 0. Differentiating

u, we get

−u′′ − n− 1
r

u′ − c

r2
u = f (1.6)

This equality holds for every r 6= 0 and also in the weak sense, using integration by

parts in B1 \Bε with ε→ 0 and the above estimate on u and u′.

So, we just have to prove (1.5), which we shall do using Hardy-inequality-type

arguments.
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Using the definition of u, we see that

0 ≤ C
u

r2
≤ r−(1+n+α

2
)

∫ r

0
f(s) · s

n+α
2 ds+ r−(1+n/2)+α/2

∫ 1

r
f(s)s

n−α
2 ds

≡ A +B

Letting g(s) = f(s)s
n+α

2 for 0 ≤ s ≤ 1 and G(r) =
∫ r
0 g(s) ds for 0 ≤ r ≤ 1, integration

by parts yields

I :=
∫ 1

0
r−(1+n+α

2
)qGq(r)rn−1 dr =

1
n− (1 + n+α

2 )q
Gq(1)− q

n− (1 + n+α
2 )q

∫ 1

0
rn−(1+n+α

2
)qGq−1(r)g(r) dr

≤ C

∫ 1

0
rn−(1+n+α

2
)qGq−1(r)g(r) dr

The last inequality results from the fact that when q > n
n−a , 1

n−(1+n+α
2

)q
< 0.

Applying Hölder,

I ≤ I
q−1

q

(∫ 1

0
rγgq(r) dr

)1/q

where γ = q(n− (1 + n+α
2 )). But rγgq(r) = rq(n−1)f q(r) ≤ r(n−1)f q(r) so

(∫
B1

Aq

)1/q

= C · I1/q ≤ C‖f‖Lq (1.7)

To bound B, we introduce similarily h(s) = s
n−α

2 f(s) and H(r) =
∫ 1
r h(s) ds. Then,

since H(1) = 0 and (−a− 2)q + n > 0, integration by parts yields

∫ 1

0
r−(a+2)qHq(r)rn−1 dr ≤ C

∫ 1

0
r−(a+2)q+nHq−1(r)h(r) dr

≤ C

(∫ 1

0
r−(a+2)q+n−1Hq(r) dr

) q−1
q
(∫ 1

0
rγhq(r) dr

) 1
q

where γ = n− 1− q(n+ α)/2. Now, rγhq(r) = rn−1f q(r) and it follows that

(∫
B1

Bq

)1/q

≤ C‖f‖Lq (1.8)

Combining (1.7) and (1.8) gives ‖u/r2‖Lq ≤ C‖f‖Lq .
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To get (1.5), using equation (1.6), it suffices to show that u′/r ∈ Lq. From the

definition of u = Φ(f), we see that

u′/r = −a · u/r2 − αA

and the estimate follows from our previous analysis. �

Existence or uniqueness hold in other functional spaces, as the following two lemmas

show :

Lemma 1.3. Recall (0.1), (0.2), (0.2’). Let f be such that
∫
Ω |f |·|x|

−adist(x, ∂Ω) dx <

∞. There exists at least one weak solution u with u · |x|−2 ∈ L1(Ω), of
−∆u− c

|x|2
u = f in Ω

u = 0 on ∂Ω
(1.9)

Furthermore,

‖u‖L1
−2
≤ C‖f‖L1

−a,δ
(1.10)

‖u‖L
∞
−a
≤ C‖f‖L∞ (1.11)

‖u‖L
∞
−b
≤ C‖f‖L

∞
−b−2

for a < b < a′ (1.11’)

Proof. (Case 0 < c < c0)

We assume, without loss of generality, that f ≥ 0 (for the general case, apply the

result to the positive and negative parts of f).

Let fk = min(f, k) for k ∈ N. Then, fk ↗ f in L1
−a,δ .

By Lemma 1.1, there exists uk, unique solution in H1
0 (Ω) of (1.9) with fk in place

of f . Clearly, {uk} is monotone increasing.

Let ζ0 be the H1
0 (Ω) solution of

−∆ζ0 −
c

|x|2
ζ0 = 1 in Ω

ζ0 = 0 on ∂Ω
(1.12)

When Ω = B1, ζ0 = ζ1
0 := C(|x|−a − |x|2), for some C > 0. Otherwise, Ω ⊂ BR for

some R > 0 and C · ζ1
0 (x/R) is a supersolution of problem (1.12), for some C > 0. So,

0 ≤ ζ0 ≤ C|x|−a δ(x) in Ω (1.13)
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Since uk and ζ0 ∈ H1
0 (Ω), they are valid test functions in their respective equations and∫

Ω
∇uk∇ζ0 −

∫
Ω

c

|x|2
ukζ0 =

∫
Ω
uk =

∫
Ω
fkζ0

Since f ≥ 0, so are fk and uk and

‖uk‖L1 =
∫

Ω
fkζ0 ≤ C‖fk‖L1

−a,δ
(1.14)

Let ζ1 be the smooth solution of 
−∆ζ1 = 1 in Ω

ζ1 = 0 on ∂Ω
(1.15)

and integrate in the equation satisfied by uk :∫
Ω
uk −

∫
Ω

c

|x|2
ukζ1 =

∫
Ω
fkζ1 (1.16)

Using (1.14) and (1.16) and the inequality mδ(x) ≤ ζ1 ≤Mδ(x), where m, M are some

positive constants, we get

‖uk‖L1
−2
≤ C‖fk‖L1

−a,δ

It is then easy to construct by monotonicity a solution of (1.9) satisfying (1.10). For

estimate (1.11), one should just check that if f ∈ L
∞

, ‖f‖L∞ ζ0 is a supersolution of

(1.9) and apply the maximum principle (see e.g. Lemma 1.4). Hence,

u ≤ ‖f‖L
∞ ζ0

Applying this estimate to −u yields (1.11).

For estimate (1.11’), ‖f‖L
∞
−b−2

ζ2 provides a supersolution of (1.9) where
−∆ζ2 −

c

|x|2
ζ2 = |x|−b−2 in Ω

ζ2 = 0 on ∂Ω
(1.17)

Observe that in the radial case ζ2 = C(|x|−b−|x|−a) so that in general 0 ≤ ζ2 ≤ C|x|−b

and that Lemma 1.4 may be applied because a < b < a′. �

Remark 1.3. .
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• In view of Lemma 1.5, for equation (1.9) to have a solution with f ∈ L1
δ, it may

be necessary that f ∈ L1
−a,δ.

• In the case 0 < c < c0, if
∫
Ω |f | · |x|

−a · | ln(x)| · δ(x) dx <∞, that is, if we ask a

little more regularity on f , then u ∈ L1
−a−2 and is therefore unique (using Lemma

1.4 .) For a proof, use the methods of the lemma with ζ2 solving
−∆ζ3 −

c

|x|2
ζ3 = |x|−a−2 in Ω

ζ3 = 0 on ∂Ω

When Ω = B1, ζ3 = C|x|−a ln(1/|x|).

Proof of Proposition 0.1 (case 0 < c < c0).

Suppose first that u is a strong solution of (Pt,p). Let ζn ∈ C∞
c (Ω \ {0}) be such

that 0 ≤ ζn ≤ 1, |∇ζn| ≤ Cn, |∆ζn| ≤ Cn2 and

ζn =


0 if |x| ≤ 1/n and δ(x) < 1/n

1 if |x| ≥ 2/n and δ(x) > 2/n

Multiplying (Pt,p) by uζn and integrating by parts, it follows that∫
Ω

(
c

|x|2
u+ up + tf

)
uζn = −

∫
Ω

∆uuζn =
∫

Ω
|∇u|2 ζn +

∫
Ω
u∇u∇ζn

Since u ≤ C|x|−a and p < p0, up ≤ C|x|−a−2. Hence, on the one hand,up ∈ L
2n

n+2 (Ω)

and on the other hand, the left-hand-side integral in the above equation is bounded by

C
∫
Ω |x|

−2a−2 ≤ C, whereas
∣∣∫

Ω u∇u∇ζn
∣∣ =

∣∣∣∣12 ∫Ω u2∆ζn

∣∣∣∣ ≤ Cn2
∫
1/n<|x|<2/n |x|

−2a →

0 as n → ∞. Hence
∫
Ω |∇u|

2 ζn ≤ C and u ∈ H1
0 (Ω). Multiplying (Pt,p) by φζn for

φ ∈ C∞
c (Ω) yields∫

Ω

(
c

|x|2
u+ up + tf

)
φζn = −

∫
Ω

∆uφζn =
∫

Ω
ζn∇u∇φ+

∫
Ω
φ∇u∇ζn

The last term in the right-hand-side can be rewritten as∫
Ω
φ∇u∇ζn =

∫
Ω
∇(uφ)∇ζn −

∫
Ω
u∇φ∇ζn = −

∫
Ω
uφ∆ζn −

∫
Ω
u∇φ∇ζn

and converges to zero as in the previous case when n→∞. It follows that u is an H1
0 (Ω)

solution of (Pt,p). Approximating u ∈ H1
0 (Ω) by smooth functions and integrating by

parts implies that H1
0 (Ω) solutions are weak solutions.
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Suppose now that u is a weak solution satisfying the estimate u ≤ C|x|−a. Then as

before, up ≤ C|x|−a−2 ∈ L
2n

n+2 (Ω) ⊂ H−1(Ω).

Letting g = up + tf , it follows from Lemma 1.1 that there exists a weak solution

v ∈ H1
0 (Ω) of (1.9) with g in place of f . u is also a weak solution of (1.9) and by

Remark 1.3, we must have u = v ∈ H1
0 (Ω). Hence, u is an H1

0 (Ω) solution.

Finally if u is an H1
0 (Ω) solution satisfying the estimate u ≤ C|x|−a, using local

elliptic regularity theorems in Ω \ Bε for an arbitrary ε > 0, we may conclude that

u ∈ C∞(Ω̄ \ {0}) and satisfies (Pt,p) in the strong sense.

Lemma 1.4 (Maximum Principle). If
∫
Ω |u| · |x|

−a−2 <∞ and if

−∆u− c

|x|2
u ≥ 0 in the weak sense. (1.16)

then

u ≥ 0 a.e. (2.1)

Proof (case 0 < c < c0). It is enough to show that
∫
Ω uφ ≥ 0 for φ ∈ C

∞
c (Ω \ {0}),

φ ≥ 0.

For such a φ and ε > 0, construct vε ∈ C
2
(Ω̄), vε ≥ 0, solving

−∆vε −
c

|x|2 + ε
vε = φ in Ω

vε = 0 on ∂Ω

Also let v ∈ H1
0 (Ω) be the solution of

−∆v − c

|x|2
v = φ in Ω

v = 0 on ∂Ω

Using Lemma 1.1, since −∆(vε − v)− c
|x|2 (vε − v) ≤ 0,

0 ≤ vε ≤ v a.e. in Ω (1.17)

Applying (1.11) in Lemma 1.3 to v,

0 ≤ v ≤ C|x|−a a.e. in Ω (1.18)
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Combining (1.17) and (1.18),

0 ≤ vε ≤ C|x|−a a.e. in Ω (1.19)

Applying (1.16) with φ = vε, ∫
Ω
u

(
−∆vε −

c

|x|2
vε

)
≥ 0

Since −∆vε − c
|x|2 vε = φ− c

{
1
|x|2

− 1
|x|2 + ε

}
,

∫
Ω
uφ ≥

∫
Ω
c

{
1
|x|2

− 1
|x|2 + ε

}
u vε.

Clearly, {vε} is monotone increasing and converges pointwise to a finite value a.e. in Ω

by (1.19).

So the integrand in the right hand side of the previous equation converges a.e. to 0.

Using (1.19) and u ∈ L1
−a−2, this integrand is dominated by an L1 function.

By Lebesgue’s theorem, we conclude that∫
Ω
uφ ≥ 0.

�

Remark 1.4. This maximum principle is sharp in the following sense :

if q > −a then there exists u ∈ L1
q−2 such that −∆u− c

|x|2u = 0 yet u 6≡ 0.

Just take Ω = B1 and u := |x|−a′ − |x|−a, with −a′ and −a defined in (0.2), (0.2’).

We conclude this section with a lemma giving necessary conditions for the existence

of a solution to the linear problem.

Lemma 1.5. Suppose f ≥ 0 a.e. , f 6≡ 0,
∫
Ω f(x) dist(x, ∂Ω) dx < ∞. If u is a

nonnegative weak solution of 
−∆u− c

|x|2
u = f in Ω

u = 0 on ∂Ω
(1.20)

Then there exists a constant C > 0 depending only on Ω such that

u ≥ C

(∫
Ω
fζ0

)
ζ0 a.e. in Ω
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with ζ0 defined by (1.12). In particular, for some m > 0

u ≥ m|x|−a a.e. near the origin

Furthermore, for any ε > 0, if u denotes the minimal solution of (1.20) then∫
Ω
u · |x|−a−2+εdx ≤ Cε

∫
Ω
f · |x|−adist(x, ∂Ω) dx <∞

Most of the results of this lemma are a direct consequence of a more general theorem

on the associated evolution equation, established by Baras and J. Goldstein (see [BG]

Th 2.2 page 124.) We give here a simpler proof for convenience of the reader.

Proof (case 0 < c < c0).

Step 1. u ≥ m|x|−a near the origin.

Let f1 = min(f, k) with k > 0 such that f1 6≡ 0 and u1 ≥ 0 be the minimal solution

of 
−∆u1 −

c

|x|2
u1 = f1 in Ω

u1 = 0 on ∂Ω

Since u is a supersolution of the above problem, u1 is well defined and 0 ≤ u1 ≤ u so it

suffices to prove the result for u1.

Since f1 ∈ L∞(Ω), on the one hand 0 ≤ u1 ≤ C|x|−a by (1.11) and on the other

hand the equation has a solution v ∈ H1
0 (Ω). By Lemma 1.4, we must have u1 = v.

Now, since u1 6≡ 0, u1 ≥ 0 and −∆u1 ≥ 0 in the connected set Ω, we have for some

ε > 0 and η > 0,

u1 ≥ ε a.e. in B2η

Choose C > 0 so that ε ≥ Cr−a for r ≥ η and let z = (u1 − C|x|−a)−. Observe that

z ∈ H1
0 (Bη).

Next, we multiply u1 − C|x|−a by z and integrate by parts :

0 ≥ −
∫

Ω
|∇z|2 +

∫
Ω

c

|x|2
z2 =

∫
Ω
∇(u1 − C|x|−a)∇z −

∫
Ω

c

|x|2
(u1 − C|x|−a)z

=
∫

Ω
fz − C

(∫
Bη

∇|x|−a∇z −
∫

Bη

c

|x|2
|x|−az

)

≥ −C
∫

∂Bη

z∂ν |x|−a ≥ 0
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And hence z ≡ 0 in Bη.

Step 2. u ≥ C(K,Ω)
∫
Ω fζ0 in K ⊂⊂ Ω when f ∈ L∞(Ω)

The proof is an adaptation of Lemma 3.2 in [BC]. Observe that up to replacing u

by the minimal nonnegative solution of the problem, we may assume u to be an H1
0 (Ω)

solution satisfting 0 ≤ u ≤ C|x|−a.

Let ρ = dist(K, ∂Ω)/2 and take m balls of radius ρ such that

K ⊂ Bρ(x1) ∪ · · · ∪Bρ(xm) ⊂ Ω

Let ζ1, . . . , ζm be the solutions (given, say, by Lemma 1.1) of
−∆ζi −

c

|x|2
ζi = χBρ(xi) in Ω

ζi = 0 on ∂Ω

where χA denotes the characteristic function of A. There is a constant C > 0 such that

ζi(x) ≥ Cζ0(x) in Ω for 1 ≤ i ≤ m

Indeed, by Step 1, this inequality must hold near the origin and by Hopf’s boundary

lemma, we also have ζi ≥ cδ ≥ Cζ0 away from the origin.

Let now x ∈ K, and take a ball Bρ(xi) containing x. Then Bρ(xi) ⊂ B2ρ(x) ⊂ Ω

and, since −∆u ≥ 0 in Ω, we conclude

u(x) ≥
∫
−

B2ρ(x)
u = C

∫
B2ρ(x)

u ≥ C

∫
Bρ(xi)

u

= C

∫
Ω
u

(
−∆ζi −

c

|x|2
ζi

)
= C

∫
Ω
fζi

≥ C

∫
Ω
fζ0

Step 3. u ≥ C(Ω)
(∫

Ω fζ0
)
ζ0 in Ω when f ∈ L∞(Ω)

Suppose without loss of generality that B1 ⊂ Ω and let K = B̄1 \B1/2. By Step 2,

it suffices to prove the inequality in Ω \K. Let w be the solution of
−∆w − c

|x|2
w = 0 in Ω \B1

w = 0 on ∂Ω

w = 1 on ∂B1
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and extend w by w := (2|x|)−a in B1/2, so that the above equation still holds in Ω \K

with w|∂K ≡ 1. By Hopf’s boundary Lemma applied in Ω \B1, we conclude that

w ≥ Cζ0 in Ω \K

u is assumed to be dominated by C|x|−a so we can apply the maximum principle

(Lemma 1.4) in Ω \K to conclude that

u ≥ C

(∫
Ω
fζ0

)
w ≥ C

(∫
Ω
fζ0

)
ζ0 in Ω \K

Step 4.
∫
Ω |x|

−afδ(x) <∞.

We assume for now that f ∈ L∞(Ω) and that u ≥ 0 is the minimal solution of

(1.20).

We let {φn} be a sequence of smooth, nonnegative and bounded functions converging

pointwise and monotonically to c|x|−a−2 and construct vn as the (smooth) solution of
−∆vn = φn in Ω

vn = 0 on ∂Ω

Testing vn in (1.20) yields∫
Ω
fvn =

∫
Ω
u

(
−∆vn −

c

|x|2
vn

)
=
∫

Ω
u

(
φn −

c

|x|2
vn

)
(1.21)

Now φn ↗ c|x|−a−2 pointwise and in L1, so, by Lemma 2.1, vn ↗ |x|−a − w pointwise

and in L1, where w solves 
−∆w = 0 in Ω

w = |x|−a on ∂Ω

Since u is minimal, 0 ≤ u ≤ C|x|−a by (1.11) and we can safely pass to the limit in

(1.21) to obtain∫
Ω
(|x|−a − w)f =

∫
Ω
u

(
c|x|−a−2 − c

|x|2
(|x|−a − w)

)
= c

∫
Ω

u

|x|2
w

Observe that w is bounded and that |x|−a − w ≥ C|x|−aδ(x), hence∫
Ω
|x|−afδ(x) ≤ C

∫
Ω
|x|−2u
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This estimate holds when f ∈ L∞ and u is minimal but also in the general case, as

approximation of f by fn = min(n, f) shows.

Step 5. u ≥ C(Ω)
(∫

Ω fζ0
)
ζ0 in Ω when f ∈ L1

−a,δ

Let k > 0 be so large that fk = min(f, k) 6≡ 0. Then u is a supersolution of (1.20)

with fk in place of f and by Step 3, we have

u ≥ C(Ω)
(∫

Ω
fkζ0

)
ζ0

Letting k →∞, Lebesgue’s theorem yields the desired result.

Step 6.
∫
Ω |x|

−a−2+εu <∞.

We proceed as in Step 4, only this time we let φn ↗ −P (−a + ε)|x|−a−2+ε, where

P (X) = X(X − 1) + (n− 1)X + c and construct vn solving
−∆vn −

c

|x|2 + 1/n
vn = φn in Ω

vn = 0 on ∂Ω

Hence, ∫
Ω
fvn =

∫
Ω
uφn +

∫
Ω

(
c

|x|2 + 1/n
− c

|x|2

)
vnu (1.22)

If ζ solves 
−∆ζ − c

|x|2
ζ = −P (−a+ ε)|x|−a−2+ε in Ω

ζ = 0 on ∂Ω

then we have 0 ≤ vn ≤ ζ ≤ C|x|−a. Indeed, if Ω = B1, then ζ = ζ1 := C(|x|−a −

|x|−a+ε). Otherwise, Ω ⊂ BR for some R > 0 and C ζ1(x/R) is a supersolution of the

problem, for some C > 0.

By Step 4,
∫
Ω fvn ≤

∫
Ω fζ < ∞. Assuming first that f is bounded (whence u ≤

C|x|−a) and then working by approximation, it follows from Lebesgue’s theorem and

from (1.22) that ∫
Ω
|x|−a−2+εu ≤ Cε

∫
Ω
fζ <∞

�

Remark. More results about the linear theory of our operator, with c ∈ R arbitrary

have been detailed by F. Pacard in unpublished work (see [P].)
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2.3 Existence vs. complete blow-up

In this section, we will prove existence or nonexistence of weak solutions of (Pt,p), using

the tools we have just constructed and monotonicity arguments.

2.3.1 Case p < p0, c < c0 : existence for small t > 0

p0 has been defined so that p0a = a + 2. So, for p < p0, ap < a + 2 and for some

b ∈ (a, a′), the inequality bp < b + 2 still holds. We fix such a b and prove that for an

appropriate choice of A > 0 and for t > 0 small,

w := A|x|−b ∈ H1(Ω) is a supersolution of (Pt,p).

Observe that w ∈ H1(Ω) as long as b is close enough to a, which may be assumed. We

have

−∆w − c

|x|2
w = −AP (−b)|x|−b−2 where P (X) = X(X − 1) + (n− 1)X + c

Observe that P (−b) < 0 since b ∈ (a, a′) and a′ and a are the roots of P (X).

We would like to have −AP (−b)|x|−b−2 ≥ Ap|x|−pb + tf in Ω. This will be true as

soon as 
−1

2
AP (−b)|x|−b−2 ≥ Ap|x|−pb and

−1
2
AP (−b)|x|−b−2 ≥ tf

The first inequality amounts to

A ≤
[
−1

2
P (−b)|x|pb−b−2

] 1
p−1

which will be satisfied, taking R > 0 such that Ω ⊂ BR, if

A ≤
[
−1

2
P (−b)Rpb−b−2

] 1
p−1

since pb− b− 2 < 0.

With such a choice of A, pick any t > 0 such that

−1
2
AP (−b)R−b−2 ≥ t‖f‖L

∞
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We have just constructed w ∈ H1(Ω) such that
−∆w − c

|x|2
w ≥ wp + tf in Ω

w ≥ 0 on ∂Ω

Finally we construct an H1
0 (Ω) supersolution of (Pt,p). We let w1 be a smooth extension

inside Ω of w|∂Ω which is also supported away from the origin. Then g = ∆w1 +
c

|x|2
w1

is smooth and bounded and using Lemma 1.1, there is a unique strong solution z of
−∆z − c

|x|2
z = g in Ω

z = 0 on ∂Ω
(2.1)

Letting w2 = z + w1, it follows that
−∆w2 −

c

|x|2
w2 = 0 in Ω

w2 = w on ∂Ω
(2.2)

Multiplying by w−2 , it follows that w2 ≥ 0 a.e. in Ω. It is now clear that w̃ = w−w2 is

an H1
0 (Ω) supersolution of (Pt,p). For convenience, we drop the superscript ˜ thereafter.

Construction of a minimal solution u of (Pt,p) is now just a matter of monotone

iteration. For this purpose we recall the following lemma, proved in [BCMR] :

Lemma 2.1. Suppose
∫
Ω |f(x)| dist(x, ∂Ω) <∞. Then there exists a unique v ∈ L1(Ω)

which is a weak solution of


−∆v = f in Ω

v = 0 on ∂Ω

Moreover,

‖v‖L1 ≤ C‖f‖L1
δ

Moreover if v ∈ L1(Ω) and −∆v ≥ 0 weakly, i.e. if∫
Ω

(−∆φ) v ≥ 0 for all φ ∈ C2(Ω̄), φ|∂Ω ≡ 0, φ ≥ 0 in Ω

then

v ≥ 0 a.e. in Ω
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Define {uk} by induction to be the L1 weak solutions of
−∆u0 = tf in Ω

u0 = 0 on ∂Ω
for k = 0


−∆uk =

c

|x|2
uk−1 + up

k−1 + tf in Ω

uk = 0 on ∂Ω
for k ≥ 1

We now check that this definition makes sense and that (uk) is monotone and satisfies

0 ≤ uk ≤ w a.e. in Ω.

For u0 there is nothing to prove. Suppose the result true up to order k − 1. Then

0 ≤ c

|x|2
uk−1 + up

k−1 + tf ≤ c

|x|2
w + wp + tf

≤ C|x|−a−2 ∈ L1(Ω)

So uk is well defined using the previous lemma, uk ≥ 0 a.e. and since

−∆(uk − uk−1) =
c

|x|2
(uk−1 − uk−2) + up

k−1 − up
k−2 ≥ 0 by induction hypothesis

and similarly −∆(w − uk) ≥ 0, we conclude using Lemma 2.1 that

0 ≤ uk−1 ≤ uk ≤ w a.e. in Ω

By a standard monotone convergence argument, {uk} converges to a weak solution of

(Pt,p).

2.3.2 Pushing t to t0

We let t0 = sup{t : (Pt,p) has a weak solution.} and adapt the methods of [BCMR].

If φ1 is a positive eigenvector of −∆ (with zero Dirichlet condition) associated to

its first eigenvalue λ1, in other words if φ1 > 0 in Ω and, for some λ1 > 0,


−∆φ1 = λ1 φ1 in Ω

φ1 = 0 on ∂Ω

and if u is a weak solution of (Pt,p), testing against φ1 yields
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∫
Ω

c

|x|2
uφ1 +

∫
Ω
upφ1 + t

∫
Ω
f φ1 = λ1

∫
Ω
uφ1

and, by Young’s inequality,

λ1

∫
Ω
uφ1 ≤

1
2

∫
Ω
upφ1 + C

∫
Ω
φ1.

Thus,

t

∫
Ω
f φ1 +

∫
Ω

c

|x|2
uφ1 +

∫
Ω
upφ1 ≤ C (2.3)

which implies t0 <∞. In particular, there are no weak solutions of (Pt,p) for t > t0.

This implies complete blow-up (see Definition 0.1), as the following proposition shows.

Proposition 2.1. Suppose (0.1) holds, p > 1 and t > 0. If (Pt,p) has no weak solution

then there is complete blow-up.

Proof. The proof is an easy adaptation of Theorem 3.1 in [BC].

Suppose indeed that (Pt,p) has no weak solution and by contradiction that
∫
Ω gn(un) δ+∫

Ω anun δ ≤ C, where {an}, {gn}, {un}, are given in Definition 0.1 .

Then, multiplying (Pn) by ζ1, solution of (1.15) we get∫
Ω un(−∆ζ1)−

∫
Ω anunζ1 =

∫
Ω gn(un)ζ1 +

∫
Ω tf ζ1.

Hence,
∫
Ω un ≤ C and there exists a u such that un ↗ u in L1(Ω), by monotone

convergence.

Since {an} and {gn} converge monotonically, we can pass to the limit in (Pn), using

monotone convergence again and obtain a solution u of (Pt,p), which is a contradiction.

We have just proved that
∫
Ω gn(un) δ+

∫
Ω anun δ →∞. Now, using (Pn) and Lemma

3.2 in [BC], it follows that

un(x)
δ(x)

≥ C(Ω)
(∫

Ω
gn(un) δ +

∫
Ω
anun δ

)
→∞

�

Next, we want to prove that if (Pτ,p) has a solution then so does (Pt,p) for 0 < t ≤ τ .

This is true because uτ is a supersolution of (Pt,p) in the sense that, weakly,
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−∆uτ ≥
c

|x|2
uτ + up

τ + tf

and with the help of Lemma 2.1, we may construct a solution of (Pt,p) by monotone

iteration.

Finally, we prove that (Pt0,p) has a weak solution. Choose a nondecreasing sequence

{tn} converging to t0 and for each n ∈ N, let un be a (weak) solution of (Ptn,p). Since

φ1 ≥ mδ(x) for some m > 0, equation (2.3) implies that

∫
Ω

c

|x|2
un δ(x) +

∫
Ω
up

nδ(x) ≤ C

Multiplying by ζ1, solution of (1.15) then implies boundedness of {un} in L1 and

hence monotone convergence to a solution of (Pt0,p) as tn → t0.

2.3.3 Case 0 < c < c0, p ≥ p0 : blow-up for all t > 0

By Proposition 2.1, we just need to prove that there are no weak solutions of (Pt,p)

for p ≥ p0. Assume by contradiction there exists one and call it u. If we apply Lemma

1.5 with up + tf in place of f , it follows that

∫
Ω
up|x|−a δ(x) <∞ and u ≥ m|x|−a a.e. near the origin.

Using Hölder’s inequality,∫
Ω u|x|

−a−2 δ(x) ≤
(∫

Ω u
p|x|−a δ(x)

)1/p ·
(∫

Ω |x|
−a−2 p

p−1

) p−1
p .

If p ≥ p0 and c < c0 then −a− 2
p

p− 1
> −n, hence, since u ∈ L1(Ω),

∫
Ω
u |x|−a−2 <∞ (2.4)

Suppose without loss of generality, that Ω ⊂ B1 and define w = A|x|−a ln( 1
|x|) for

some A > 0.

Then −∆w − c
|x|2w = A

√
(n− 2)2 − 4c |x|−a−2 . Also,
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−∆u− c

|x|2
u ≥ up ≥ m|x|−ap ≥ m|x|−a−2 in Bη, for a fixed small η > 0.

Let A = m(
√

(n− 2)2 − 4c+ c ln 1
η )−1 and C = Aη−a ln 1

η .

Finally define z = u+ C − w. Using (2.4), z ∈ L1(Bη, |x|−a−2dx). Furthermore,

−∆z − c

|x|2
z ≥ up − cC

|x|2
−A

√
(n− 2)2 − 4c |x|−a−2

≥ m|x|−ap − cC|x|−2 −A
√

(n− 2)2 − 4c |x|−a−2

≥ |x|−2
[
m|x|−a − cC −A

√
(n− 2)2 − 4c |x|−a

]
≥ |x|−2

[
(m−A

√
(n− 2)2 − 4c) η−a − cC

]
≥ 0

All these inequalities hold in the weak sense in Bη (since our choice of constants

implies z|∂Bη ≥ C − w|∂Bη ≥ 0.)

Applying Lemma 1.4, we conclude

u ≥ A|x|−a ln
1
|x|

− C a.e. in Bη

Choosing A and η smaller, we may assume that

u ≥ A|x|−a ln
1
|x|

≥ 1 a.e. in Bη

The next step is to consider the function Φ ∈ C1(R) defined by

Φ(x) =


lnx if x ≥ 1

x− 1 otherwise.

and apply Lemma 1.7 in [BC] to conclude that in Bη

−∆(lnu) ≥ −∆u
u

≥ up−1 ≥ Ap−1|x|−a(p−1)

(
ln

1
|x|

)p−1

≥ Ap−1|x|−2

(
ln

1
|x|

)p−1

Now if v =
(

ln
1
|x|

)p

, a computation yields
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−∆v ≤ C|x|−2

(
ln

1
|x|

)p−1

And by the L1 maximum principle (Lemma 2.1),

lnu ≥ d

(
ln

1
|x|

)p

− C for some d > 0 and C > 0

This clearly violates u ∈ L1
loc(Ω).

2.4 Regularity

We start out with a result in the spirit of Lemma 5.3 in [BC] :

Lemma 3.1. Let f ∈ L1
−a,δ and v = |x|−a. Then if u ∈ L1

−2 is the solution given by

Lemma 1.3 of 
−∆u− c

|x|2
u = f in Ω

u = 0 on ∂Ω

and if Φ ∈ C1(R) is concave, Φ′ ∈ L∞ and Φ(1) = 0, then vΦ
(u
v

)
∈ L1

−2 and

−∆
(
vΦ
(u
v

))
− c

|x|2
(
vΦ
(u
v

))
≥ Φ′

(u
v

)
f in the weak sense.

Proof (case 0 < c < c0). Suppose first u, v ∈ C2(Ω̄), v > 0 in Ω and Φ ∈ C2(R) and

write L = −∆− a(x) where a(x) is a smooth bounded function. Applying Lemma 5.3

in [BC], it follows that a.e. in Ω,

Lw ≥Φ′(u/v)(−∆u) +
[
Φ(u/v)− Φ′(u/v)u/v

]
(−∆v)− a(x)Φ(u/v)v

≥Φ′(u/v)Lu+
[
Φ(u/v)− Φ′(u/v)u/v

]
Lv

≥Φ′(u/v)(Lu− Lv) +
[
Φ(u/v)− Φ′(u/v)u/v + Φ′(u/v)

]
(Lv)

Since Φ is concave,

Φ(s) + (1− s)Φ′(s) ≥ Φ(1) for all s ∈ R

Hence, if w = vΦ(u/v),

Lw ≥ Φ′(u/v) (Lu− Lv) a.e. in Ω (3.1)
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Since Φ′ is bounded, we see, as in [BC], that

|vΦ(u/v)| = |v (Φ(u/v)− Φ(0)) + Φ(0)v| ≤ C(u+ v) (3.2)

Hence, w vanishes on ∂Ω and integrating by parts, (3.1) holds in the weak sense. By

approximation of Φ, we can also say that (3.1) holds even when Φ is only C1.

In the general case, let an = c/(|x| + 1/n)2 and fn be a smooth bounded function

increasing pointwise and respectively to c/|x|2,f . Let un solve the equation Lnun = f

(with zero boundary condition), where Ln = −∆−an(x). Also write wn = vnΦ(un/vn)

where vn = (|x|+ 1/n)−a. We can then apply (3.1) to obtain

−∆wn − an(x)wn ≥ Φ′(un/vn)fn weakly

Clearly, vΦ(u/v) is well defined a.e. Moreover, it is clear that un ↗ u in L1 and that

an(x)un(x) ↗ c

|x|2
u(x) in L1

δ and similarly for v. So that, using the above equation

and Lebesgue’s theorem

wn → w in L1 and an(x)wn →
c

|x|2
w in L1

δ

Since Φ′ is bounded, we can also easily pass to the limit in the right-hand side and

obtain the desired result. �

Lemma 3.2. Let u be the minimal weak solution of (Pt,p) for t < t0 (and p < p0).

Then u is a strong solution of (Pt,p)

Remark 3.2. .

• By Proposition 0.1, we only need to show that 0 < u ≤ C|x|−a

• By Lemma 1.5, we also have the lower bound u ≥ m|x|−a dist(x, ∂Ω).

Proof. Recall that ζ0 solving, for f as in the definition of (Pt,p),
−∆ζ0 −

c

|x|2
ζ0 = f in Ω

ζ0 = 0 on ∂Ω

satisfies 0 < ζ0 ≤ C|x|−a. For u ∈ R+, let

g(u) = (u+ t0‖ζ0/v‖L∞ )p and g̃(u) = (u+ t‖ζ0/v‖L∞ )p
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and construct Φ ∈ C1(R) with Φ(0) = 0 and

Φ′(u) =
g̃(Φ(u))
g(u)

(3.3)

as in Lemma 4 of [BCMR].

Next, if u0 is the minimal solution of (Pt0,p) then z := u0 − t0ζ0 is the minimal

solution of 
−∆z − c

|x|2
z = (z + t0ζ0)p in Ω

z = 0 on ∂Ω

Applying Lemma 3.1 to z with the above function Φ and v = |x|−a,

−∆
(
vΦ
(z
v

))
− c

|x|2
(
vΦ
(z
v

))
≥ Φ′

(z
v

)
(z + t0ζ0)p ≥Φ

(z
v

)
+ t‖ζ0/v‖L∞

z

v
+ t0‖ζ0/v‖L∞

p

(z + t0ζ0)p

We need the following easy lemma :

Lemma 3.3. Let A,B > 0 such that A ≤ t

t0
B. Then

F (C) :=
A+ tC

B + t0C
is increasing with C.

Observe that, since Φ is concave and Φ′ is defined by (3.3), Φ′(u) ≤ Φ′(0) =
(
t

t0

)p

<

t

t0
for u ∈ R+. Hence, since Φ(0) = 0, Φ(u) ≤ t

t0
u for u ∈ R+. Applying Lemma 3.3

with A = Φ(
z

v
) and B =

z

v
, we get

Φ
(z
v

)
+ t

ζ0
v

z

v
+ t0

ζ0
v

≤
Φ
(z
v

)
+ t‖ζ0

v
‖L∞

z

v
+ t0‖

ζ0
v
‖L∞

and

−∆
(
vΦ
(z
v

))
− c

|x|2
(
vΦ
(z
v

))
≥

Φ
(z
v

)
+ tζ0/v

z

v
+ t0ζ0/v

p

(z + t0ζ0)p

≥
(
vΦ
(z
v

)
+ tζ0

)p

We finally define w = vΦ
(z
v

)
+ tζ0, which satisfies
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
−∆w − c

|x|2
w ≥ wp + tf in Ω

w = 0 on ∂Ω

We have just constructed a supersolution of problem (Pt,p) satisfying 0 < w ≤

C|x|−a (since Φ(∞) < ∞ by Lemma 4 in [BCMR]) and, of course, the same estimate

holds for u, the minimal solution of (Pt,p).

This completes the proof of Theorem 1 (in the case 0 < c < c0.) �

2.5 Stability

We show first that λ1(ut) > −∞ (recall Definition 0.2) and study the corresponding

eigenfunction φ1.

Indeed, if ut is the minimal solution of (Pt,p) with t < t0, then 0 ≤ ut ≤ C|x|−a and∫
Ω
up−1

t φ2 ≤ C

∫
Ω
|x|−a(p−1)φ2 ≤ C

(∫
Ω
|x|−2φ2

)a(p−1)
2

·
(∫

Ω
φ2

)1−a(p−1)
2

≤ C‖φ‖a(p−1)

H1
0 (Ω)

‖φ‖2−a(p−1)
L2

So λ1 > −∞ and if {φn} is a minimizing sequence of J (see Definition 0.2), {φn} is

bounded in H1
0 (Ω) and converges (weakly and up to a subsequence) to φ1 ∈ H1

0 (Ω)

solving 
−∆φ1 −

c

|x|2
φ1 = pup−1

t φ1 + λ1φ1 in Ω

φ1 = 0 on ∂Ω
(4.1)

Claim. 0 ≤ φ1 ≤ C|x|−a

Testing equation (4.1) against φ+
1 , it follows that∫

Ω
|∇φ+

1 |
2 −

∫
Ω

c

|x|2
φ+

1
2 −

∫
Ω
pup−1φ+

1
2 = λ1

∫
Ω
φ+

1
2

Hence φ+
1 is also a minimizer of J and up to replacing φ1 by φ+

1 , we may assume that

φ1 ≥ 0.

Next, using local elliptic regularity, φ1 ∈ C∞(Ω̄ \ {0}). Also, pick c̃ ∈ (c, c0) and

η > 0 so small that
c̃− c

|x|2
≥ pup−1

t + λ1 a.e. in Bη.
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Let z = φ1−M |x|−ã andM = ‖φ1‖L∞(∂Bη) η
ã (−ã being the greater root of P (X) = X(X − 1) + (n− 1)X + c̃ =

0). Then, 
−∆z − c̃

|x|2
z ≤ 0 in Bη

z ≤ 0 on ∂Bη

(4.3)

Testing (4.3) against z+ (which is permitted since z+ ∈ H1
0 (Bη)),

φ1 ≤M · |x|−ã a.e. in Bη.

With c̃ close enough to c, it follows that pup−1
t φ1 + λ1φ1 ≤ C|x|−a−2+ε, for some ε > 0.

Let ζ ∈ H1
0 (Ω) be the solution of

−∆ζ − c

|x|2
ζ = |x|−a−2+ε in Ω

ζ = 0 on ∂Ω
(4.4)

As in the proof of Lemma 1.5,

0 ≤ φ1 ≤ Cζ ≤ C|x|−a a.e. in Ω (4.5)

Next, we prove that there exists 0 < t1 ≤ t0 such that ut is stable for t < t1.

Fix b ∈ (a, a′) such that pb < b+2 and b+a(p−1) < a+2, and define F : X×R → Y ,

by

• X is the space of functions v ∈ C(Ω̄ \ {0}) such that there exist a constant C > 0

and a function g ∈ C(Ω̄ \ {0}) satisfying |v| ≤ C|x|−b, |g| ≤ C|x|−b−2 and
−∆v − c

|x|2
v = g in Ω

v = 0 on ∂Ω

in the weak sense. X is a Banach space for the norm ‖v‖X = ‖ |x|bv‖L∞ +

‖ |x|b+2g‖L∞

• Y = {f ∈ C(Ω̄ \ {0}) : |x|b+2f ∈ L∞(Ω)}, ‖f‖Y = ‖ |x|b+2f‖L∞

• F (v, t) = −∆v − c
|x|2 v − |v|

p − tf
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Observe that F is well defined with our choice of b, that F ∈ C1 and that F (ut, t) = 0.

Also L := Fu(0, 0) is an isomorphism between X and Y . Indeed L is injective by

Lemma 1.4 and surjective with continuous inverse by Lemma 1.3. These facts and

a global form of the implicit function theorem (see e.g. Cor. 3 in [BN]) imply the

existence of a maximal t1 > 0 such that t → ut is a C1 map from (0, t1) to X and

Fu(ut, t) ∈ Iso(X,Y ).

In particular, since φ1 ∈ X, λ1(ut) 6= 0 for t < t1. It can also be shown that

t → λ1(ut) is continuous : if τn → τ < t1 and λn
1 and φn

1 are the corresponding

eigenvalues and eigenfunctions with ‖φn
1‖L2 = 1, looking carefully at the previous claim,

we obtain that φn
1 is bounded in H1

0 (Ω) and that

0 ≤ φn
1 ≤ C|x|−a

Passing to a subsequence, it is then easy to show that λn
1 → λ1(uτ ) and therefore

that λ1 is continuous.

Hence, since λ1(0) > 0 and λ1 cannot vanish, we have λ1 > 0 for t < t1.

We now prove that t1 = t0. If not, we would have for t1 < t < t0,

−∆ (ut − ut1)−
c

|x|2
(ut − ut1)− pup−1

t1
(ut − ut1) =

up
t − up

t1
− pup−1

t1
(ut − ut1) + (t− t1)f ≥ (t− t1)f

And testing against φ1, solution of (4.1) with t1 in place of t, we would obtain

0 ≥ (t− t1)
∫

Ω
fφ1

which is impossible. Hence, t1 = t0.

Next, we prove that if v is another stable H1
0 (Ω) solution then it must coincide with

ut.

Suppose indeed v is another H1
0 (Ω) solution such that λ1(v) ≥ 0.Then v ≥ ut and∫

Ω
pvp−1(v − ut)2 ≤

∫
Ω
|∇(v − ut)|2 −

∫
Ω

c

|x|2
(v − ut)2

≤
∫

Ω
(vp + tf − up

t − tf)(v − ut)
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So that, ∫
Ω
(v − ut)(vp − up

t − pvp−1(v − ut)) ≥ 0

Since u→ up is strictly convex and v ≥ ut, we must have v = ut.

Finally, stability of strong extremal solutions is determined through the following

proposition :

Proposition 4.1. Suppose that 0 < c < c0 and 1 < p < p0. If u, the minimal solution

of (Pt0,p), solves the problem in the strong sense then

λ1(u) = 0

Proof. Arguing by contradiction, our general strategy is to use the implicit function

theorem to extend the curve t→ ut of minimal solutions of (Pt,p) beyond t0 if λ1(u) > 0.

More precisely assume that λ1(u) > 0 and define F : X × R → Y as before. If

we can prove that Fu(u, t0) ∈ Iso(X,Y ), the implicit function theorem will yield the

desired contradiction.

We first claim that Fu(u, t0) is injective. If not, there would be a weak solution

φ1 ∈ X of 
−∆φ1 −

c

|x|2
φ1 = pup−1 φ1 in Ω

φ1 = 0 on ∂Ω

Since b + a(p − 1) < a + 2, up−1φ1 ∈ L
2n

n+2 (Ω) and, using the methods of Proposition

0.1, φ1 is an H1
0 (Ω) solution. Testing the above equation against φ1 would then imply

J(φ1) = 0, which contradicts λ1(u) > 0. Thus Fu(u, t0) is injective.

Next we prove that Fu(u, t0) is surjective.

First observe that L := Fu(0, 0) is an isomorphism between X and Y . Indeed L is

injective by Lemma 1.4 and surjective with continuous inverse by Lemma 1.3.

Let Z := {f : |x|−a(p−1)f ∈ Y } and define K ∈ L(Z) by

K :


Z → Y → Z

φ 7→pup−1φ 7→ L−1(pup−1φ)

K is compact in Z. Indeed if {φn} is a bounded sequence in Z then un := Kφn is

bounded in X, by continuity of L−1. It follows from standard elliptic theory that up to
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a subsequence, un → u uniformly on compacts of Ω̄ \ {0} for some u ∈ X. Also, letting

γ = 2− a(p− 1) > 0, we have for ε > 0 small

‖un − u‖Z ≤ C‖un − u‖L∞(Ω\Bε) + εγ‖un − u‖L∞−b
≤ C(‖un − u‖L∞(Ω\Bε) + εγ)

so that

lim sup
n→∞

‖un − u‖Z ≤ Cεγ

Letting ε→ 0, we obtain that K is compact in Z.

With these notations, our problem reduces to showing that Id−K is surjective. By

Fredholm’s alternative, we just need to prove that Id−K is injective. Now if for some

φ ∈ Z,φ = Kφ then φ ∈ X by definition of K, and Fu(u, t0)φ = 0. But we just showed

that Fu(u, t0) is injective so φ ≡ 0. �

2.6 What happens in the extremal case t = t0 ?

In this section, we look at two specific sets of conditions on c, p, f and Ω.

In one case, the minimal solution u of (Pt0,p) solves the problem in the strong sense.

It then follows from Proposition 5.1 that λ1(u) = 0.

In the other case, the minimal solution u is not a strong one and its singularity at

the origin is worse than |x|−a. Moreover, u is stable, i.e., λ1(u) > 0.

Situation 1. Suppose Ω = B1, c < c0 close to c0, f radial and p > 1 close to 1. Then

u, the minimal solution of (Pt0,p), solves the problem in the strong sense and λ1(u) = 0.

Furthemore, u = u(r) is radial and

u = r−aw where w ∈ C[0, 1] ∩ C∞(0, 1]

w′ ∼ mr−a(p−1)+1 for some m < 0 as r → 0

w′ < 0 in (0, 1)

Proof. We suppose for simplicity that f ≡ 1.

First, we note that for any rotation of the space A ∈ SO(n,R), u ◦ A is a solution

of (Pt0,p) and since u is minimal, we must have u ≤ u ◦A. This inequality holds almost

everywhere in B1, hence for almost all y = A−1x with x ∈ Rn so that u must be radial.
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Next, define α :=
√

(n− 2)2 − 4c and for r ∈ (0, 1),

Φ(u)(r) :=
r−a

α

∫ 1

0
s1+α+aup(s)[max(s, r)−α − 1] ds+

t0
2n+ c

[r−a − r2] (5.1)

In view of Lemma 1.5, Φ(u)(r) is well defined for r 6= 0 and it follows from Lebesgue’s

theorem that w := ra Φ(u) ∈ C(0, 1].

Using Lebesgue’s theorem again, it is also true that w ∈ C1(0, 1] and that for

r ∈ (0, 1],

w′(r) = −r−1−α

(∫ r

0
s1+α+aup(s) ds

)
− (2 + a)

t0
2n+ c

r1+a

Using the fundamental theorem of calculus, w is twice differentiable a.e. in (0, 1) and

w′′(r) = −raup(r)− (1 + α)
1
r

[
w′(r) + (2 + a)

t0
2n+ c

r1+a

]
− (2 + a)(1 + a)

t0
2n+ c

ra

So that

−(w′′ + (1 + α)
1
r
w′) = raup(r) + t0 r

a a.e. in (0, 1) (5.2)

Using the fundamental theorem of calculus again, this equation also holds in the sense

of distributions in (0, 1). Furthermore, since u is a weak solution of (Pt0,p), it is not

hard to see that w̃ := ra u solves (5.2) in D′(0, 1).

So if z = w̃′ − w′, it follows from (5.2) and this last remark that

z′ + (1 + α)
1
r
z = 0 in D′(0, 1).

And by a straightforward computation, we see that

[
r1+α z

]′ = 0 in D′(0, 1).

Hence z = Ar−(1+α) for some A ∈ R and, for some B ∈ R,

w̃ = w +
A

α
r−α +B (5.3)

Since w is C1 away from r = 0 (and hence, so must be w̃), we must have, on the one

hand, using the boundary condition of (Pt0,p) and equation (5.1), that w(1) = w̃(1) = 0

and B = 0 and on the other hand that u is C1 away from the origin. Bootstrapping

this result with the help of (5.1) and (5.3), it follows that w, w̃ ∈ C∞(0, 1].
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Let us now prove that A = 0. Suppose by contradiction that A > 0 and let

u1(x) := |x|−aw(|x|) for x ∈ B1. Then,

−∆u1 −
c

|x|2
u1 = up + t0 =

[
u1 +

A

α
(|x|−a′ − |x|−a)

]p

+ t0

≥ up
1 + t0

This equation holds at every x 6= 0 and also in the weak sense, as integration by parts

on B1 \ Bε with ε → 0 shows. But then u1 would be a nonnegative supersolution of

problem (Pt0,p), contradicting minimality of u.

We have just shown that A ≤ 0. We now prove that A = 0. Recall that

w̃′(r) = −r−1−α

∫ r

0
s1+α−aup(s) ds− (2− a)

t0
2n+ c

r1+a −Ar−1−α (5.4)

By Hopf’s boundary lemma, u′(1) = w̃′(1) < 0. We claim that

w̃′(r) < 0 for all r ∈ (0, 1]

Suppose not and let r0 = sup{r ∈ (0, 1) : w̃′(r) = 0}. Then w̃′ < 0 on (r0, 1] and (5.2)

implies that

w̃′′(r0) = −(1 + α)
1
r0
w̃′(r0)− (ra

0u
p(r0) + t0 r

a
0) < 0

So w̃ has a local maximum at r0. Suppose by contradiction that w̃ has another critical

point and let r1 < r0 so that

w̃′(r1) = 0 and w̃′(r) > 0 for r ∈ (r1, r0)

From (5.2), it follows as before that w̃′′(r1) < 0 and r1 would be a local maximum of

w̃, contradicting w̃′ > 0 on (r1, r0).

Hence w̃ has an absolute maximum at r0 and must therefore be bounded, which

forces A = 0.

But then, using (5.4), w̃′(r) < 0 in (0, 1], contradicting w̃′(r0) = 0.

So, we have proved that w̃′ < 0 in (0, 1].

From (5.4), it follows that if A < 0, w̃′(r) = −Ar−1−α(1 + o(1)) as r → 0 and we

cannot have at the same time w̃′ < 0 and A < 0. Hence A = 0.
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So far we know that :

w̃ = w (2.2)

w′ < 0 in (0, 1] (2.3)

We now prove that u ≤ Cr−a. From equation (5.1), we already know that u = Φ(u) ≤

Cr−a−α. Plugging this result into (5.1) again, we only need to show that the right-

hand-side integral is bounded as r → 0, which holds as soon as

1− a(p− 1)− αp > −1

This last condition is satisfied for αp small and in particular when c is close to c0 and

p close to 1. This result, combined with (5.4) yields the asymptotic behaviour of w′ at

the origin.

Finally, by Proposition 4.1, we have that λ1(u) = 0. �When p is

chosen close to the critical exponent p0, the minimal solution u of (Pt0,p) may become

more singular than when t < t0, in such a way that up−1 has a singularity at the origin

of same order as 1
|x|2 :

Situation 2. Suppose 0 < c < c0 and p close to p0. Then there exists a smooth

nonnegative nonzero data f such that u, the minimal solution of (Pt0,p), is stable and

such that, near the origin,

u = m |x|−γ ,where m > 0 and γ =
2

p− 1
> a > 0

Proof. We adapt a proof given in [D].

Let v = |P (−γ)|
1

p−1 |x|−γ , where P (X) = X(X − 1) + (n− 1)X + c.

Then, −∆v− c
|x|2 v = vp in Rn and, since when p→ p0, γ → a, we may assume that

v ∈ H1.

Lemma 5 in [D] constructs a function ψ ∈ C∞(Ω̄) with the following properties:

• ψ ≥ 0 in Ω̄

• ∆ψ +
c

|x|2
ψ ≥ 0 in Ω
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• ψ ≡ 0 in a neighbourhood of 0, and

• ψ = v on ∂Ω

We then let u = v − ψ and see that

−∆u− c

|x|2
u = −∆v − c

|x|2
v + ∆ψ +

c

|x|2
ψ

= vp + ∆ψ +
c

|x|2
ψ

≥ 0

and u = 0 on ∂Ω, so, by Lemma 1.1 say, u ≥ 0.

Taking f = ∆ψ +
c

|x|2
ψ + vp − up, we then have

−∆u− c

|x|2
u = up + f.

Observe that f ≥ 0 and is smooth since u ≤ v and u ≡ v near the origin.

Next, we prove that λ1(u) > 0. Given φ ∈ H1
0 (Ω),∫

Ω
pup−1φ2 ≤

∫
Ω
pvp−1φ2

= p|P (−γ)|
∫

Ω

φ2

|x|2

≤
∫

Ω
|∇φ|2 −

∫
Ω

c

|x|2
φ2 − ε

∫
Ω
φ2

The last inequality holds, using Hardy’s inequality (0.3), provided c + p|P (−γ)| < c0

and ε > 0 small. This condition is readily satisfied since as p → p0, γ → a and

P (−γ) → P (−a) = 0. Hence, we get that λ1(u) ≥ ε > 0.

We still need to prove that, for our choice of f , t0 = 1 and u is the minimal solution

of (Pt0,p).

If u1 denotes the minimal solution of (P1,p), it is clear that 0 ≤ u1 ≤ u, hence

up
1 ≤

C

|x|2
and using this inequality and (P1,p), u1 ∈ H1

0 (Ω).

Since λ1(u) ≥ 0, it follows that∫
Ω
pup−1(u− u1)2 ≤

∫
Ω
|∇(u− u1)|2 −

∫
Ω

c

|x|2
(u− u1)2

≤
∫

Ω
(up + f − up

1 − f)(u− u1)
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So that, ∫
Ω
(u− u1)(up − up

1 − pup−1(u− u1)) ≥ 0

Since u→ up is strictly convex and u ≥ u1, we must have u = u1. And since u is not a

strong solution of (P1,p), we must have 1 = t0. �

2.7 The case c = c0

When c = c0, the operator −∆ − c
|x|2 is no longer coercive in H1

0 (Ω). However, one

can still make use of the improved Hardy inequality (see [BV] or [VZ])∫
Ω
|∇u|2 − c0

∫
Ω

u2

|x|2
≥ C(Ω)

∫
Ω
u2 for all u ∈ C∞

c (Ω) (6.1)

to define a new Hilbert space H in which the operator is coercive, even when c = c0.

Definition. H is the space obtained by completing C∞
c (Ω) with respect to the norm

‖u‖2
H :=

∫
Ω
|∇u|2 − c0

∫
Ω

u2

|x|2

By analogy with the case c < c0, an H solution u will be one such that up ∈ H∗ and

such that the equation holds in the sense of Lax-Milgrams lemma in H.

We now list the modifications needed to prove Theorem 1 when c = c0. When no

proof is given, just replace H1
0 (Ω) by H in the original demonstration.

Lemma 1.1’. Lemma 1.1 still holds if c = c0, H1
0 (Ω) is replaced by H and H−1 by

H∗, the dual of H.

Proof. Only the proof of (1.3) needs to be clarified in this setting.

Let f ∈ H∗, f ≥ 0 and u ∈ H be the corresponding solution of (1.1).

By definition of H, there exists a sequence {un} in C∞
c (Ω) converging to u in H.

Letting fn = −∆un − c
|x|2un, it follows that fn ∈ H−1(Ω) and fn → f in H∗.

Now, un ∈ H1
0 (Ω) ⇒ u−n ∈ H1

0 (Ω) and integrating the equation satisfied by un

against u−n yields

−‖u−n ‖2
H = 〈fn, u

−
n 〉H∗,H



43

To pass to the limit in this last equation, we just need to prove that {u−n } remains

bounded in H. But

‖u−n ‖2
H =

∫
Ω
|∇u−n |2 − c0

∫
Ω

(u−n )2

|x|2

=
∫

Ω
|∇u−n |2 − c0

∫
Ω

u2
n

|x|2
+
∫

Ω

c0
|x|2

(u+
n )2

≤
∫

Ω
|∇u−n |2 − c0

∫
Ω

u2
n

|x|2
+
∫

Ω
|∇u+

n |2 =
∫

Ω
|∇un|2 − c0

∫
Ω

u2
n

|x|2

= ‖un‖2
H

(6.2)

where we’ve used (0.3) in the inequality. �

Proposition 0.1’. Proposition 0.1 still holds when c = c0 and H1
0 (Ω) solutions are

replaced by H solutions.

Proof. Suppose first that u is a strong solution of (Pt,p).

Let ζn ∈ C∞
c (Ω \ {0}) be such that 0 ≤ ζn ≤ 1, |∆ζn| ≤ Cn2 and

ζn =


0 if |x| ≤ 1/n and δ(x) ≤ 1/n

1 if |x| ≥ 2/n and δ(x) ≥ 2/n

Multiplying (Pt,p) by uζn and integrating by parts, it follows that∫
Ω

(up + tf)uζn = −
∫

Ω
∆uuζn −

∫
Ω

c

|x|2
u2ζn

=
∫

Ω
|∇u|2 ζn −

∫
Ω

c

|x|2
u2ζn +

∫
Ω
u∇u∇ζn

Since u ≤ C|x|−a and p < p0, up ≤ C|x|−a−2+ε, for some ε > 0, so that the first integral

in the above equation is bounded by C
∫
Ω |x|

−2a−2+ε ≤ C whereas
∣∣∫

Ω u∇u∇ζn
∣∣ =∣∣∣∣12 ∫Ω u2∆ζn

∣∣∣∣ ≤ Cn2
∫
1/n<|x|<2/n |x|

−2a ≤ C as n→∞.

Hence
∫
Ω |∇u|

2 ζn −
∫
Ω

c

|x|2
u2ζn ≤ C and u ∈ H. Approximating u ∈ H by smooth

functions and integrating by parts in Ω \ Bε with ε → 0, it follows that u is a weak

solution of (Pt,p). For u to be an H solution, we only need to prove the following :

Claim. Suppose u is a weak solution satisfying the estimate u ≤ C|x|−a. Then

up ∈ H∗
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For φ ∈ C∞
c (Ω), 1 < q < 2, it follows from Hölder’s inequality that∣∣∣∣∫

Ω
|x|−apφ

∣∣∣∣ ≤ (∫
Ω
|x|−(ap−1) q

q−1

) q−1
q
∥∥∥∥ φ|x|

∥∥∥∥
Lq

On the one hand, since p < p0, the integral in the right hand side will be finite if q is

chosen close enough to 2.

On the other hand, using Hardy’s inequality in Lq and the inclusion H ↪→W 1,q
0 (see

section 4 of [VZ]), ∥∥∥∥ φ|x|
∥∥∥∥

Lq

≤ C‖φ‖
W 1,q

0
≤ C‖φ‖H

and up ∈ H∗.

Hence, strong solutions are also H solutions.

Showing that H solutions are weak solutions is similar to the case c < c0, whereas,

starting from a weak solution u, we observe as above that up ∈ H∗ and define un ≥ 0

to be the minimal weak solution of
−∆un −

c− 1/n
|x|2

un = up
n + tf in Ω

un = 0 on ∂Ω

u is a supersolution of this equation so un is well defined and 0 ≤ un ≤ u ≤ C|x|−a.

By Proposition 0.1 (case c < c0), it follows that un ∈ H1
0 (Ω) and testing in the above

equation against un,

‖un‖2
H ≤ (‖up

n‖H∗ + C)‖un‖H

Letting n → ∞, we get u ∈ H. Since H ↪→ W 1,q
0 for 1 ≤ q < 2, elliptic regularity can

be applied to complete the proof. �

Lemma 1.3’. Lemma 1.3 still holds when c = c0

Lemma 1.4’. Lemma 1.4 still holds when c = c0

Lemma 1.5’. Lemma 1.5 still holds when c = c0

Proof. We assume first that u is the minimal (weak) solution of (1.20) and can therefore

be written as the pointwise limit of an increasing sequence {uε}, where uε solves (1.20)
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with c−ε in place of c. Since Lemma 1.5 can be applied to uε, an argument of monotone

convergence yields the result.

If u isn’t minimal, the above discussion yields all the results up to the conclusion

of Step 6 in the original proof. That step can be applied -as is- in our context, which

finishes the proof. �

2.1’ : Existence of a solution of (Pt,p) for 1 < p < p0, small t > 0.

For simplicity, we assume without loss of generality that Ω ⊂ B 1
2
. Consider w =

A|x|−a
(
ln 1

|x|

) 1
4p , withA > 0 to be fixed later. Then−∆w− c

|x|2w = 4p−1
16p2 A |x|−a−2

(
ln 1

|x|

) 1
4p
−2

and w will be a supersolution of (Pt,p) as soon as
4p− 1
32p2

A|x|−a−2

(
ln

1
|x|

) 1
4p
−2

≥ Ap|x|−ap

(
ln

1
|x|

)p/4

4p− 1
32p2

A|x|−a−2

(
ln

1
|x|

) 1
4p
−2

≥ tf

The first inequality amounts to

A ≤ C min
r∈(0,1/2]

{
r−a−2+pa

(
ln

1
r

) 1
4p
−2−p/4

} 1
p−1

and the second to

t ≤ C ·A min
r∈(0,1/2]

{
r−a−2

(
ln

1
r

) 1
4p
−2
}

Under these conditions, w is a supersolution of (Pt,p). We now just have to construct a

supersolution in H. Let w1 be a smooth extension inside Ω of w|∂Ω such that w1 = w

in Ω \ B1/4 and w1 = 0 in B1/8. Next, we let g = ∆w1 +
c

|x|2
w1 and construct z ∈ H

solving (2.1) and w2 = z + w1 solving (2.2).

We would like to show that w2 ≥ 0 and remark that w−2 ∈ H. Indeed, let φk ∈

C∞
c (Ω) → z in H. Then (φk + w1)− ∈ H1

0 (Ω) ⊂ H and

‖(φk + w1)−‖2
H =

∫
{φk+w1<0}

(
|∇(φk + w1)|2 −

c

|x|2
(φk + w1)2

)
≤ ‖φk‖2

H + C + 2
∫
{φk+w1<0}

(
∇φk · ∇w1 −

c

|x|2
φkw1

)
≤ ‖φk‖2

H + C +
1
2
‖(φk + w1)−‖2

H
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Hence ‖(φk + w1)−‖H ≤ C and passing to the limit (in the weak topology and for a

subsequence), it follows that w−2 ∈ H.

Letting ψk ∈ C∞
c (Ω) → w−2 in H, integration by parts then yields

(w2|ψk)H =
∫

Ω

(
∇z∇ψk −

c

|x|2
zψk

)
+
∫

Ω

(
∇w1∇ψk −

c

|x|2
w1ψk

)
=
∫

∂Ω
ψk∂νw

and letting k →∞ in H,

‖w−2 ‖
2
H = (w2|w−2 )H =

∫
∂Ω
∂νww

− = 0

Hence w2 ≥ 0.

Finally, letting w̃ = w − w2 = w − z − w1, we only need to prove that w̃ ∈ H and

the rest of the proof will remain unchanged. Since z ∈ H, it is enough to show that

w − w1 ∈ H.

If H(ω) denotes the space H relative to the open set ω of Rn, it has been shown in

[VZ] (see 5.2) that f defined for 0 < r < r0 < 1 by

f(r) = r−a(ln(1/r))α

and continued smoothly up to the boundary of the ball B1, where f = 0, belongs

to H(B1) as long as α < 1/2.

(w − w1)|B1/4
precisely satisfies these conditions, hence belongs to H(B1/4). Since

w − w1 ≡ 0 in Ω \B1/4, it follows that w − w1 ∈ H(Ω).

2.3’ : Case p ≥ p0 : blow-up.

By Proposition 2.1, we just need to prove that (Pt,p) has no weak solution if p ≥ p0.

Assume by contradiction there exists one and call it u. If we apply Lemma 1.5 with

up + tf in place of f , it follows that∫
Ω
up|x|−a δ(x) <∞ and u ≥ m|x|−a a.e. near the origin.

This is impossible since near the origin,

|x|−aup ≥ m|x|−a(p+1) ≥ m|x|−n



47

Lemma 3.1’. Lemma 3.1 still holds when c = c0

Lemma 3.2’. Lemma 3.2 still holds when c = c0 and t < t0

Theorem 2’. Theorem 2 still holds when c = c0 with H1
0 (Ω) solutions replaced by H

solutions.

Proof. For t < t0, ut the strong minimal solution of (Pt,p) can be written as the

monotone limit of un, where un is the strong minimal solution of the same problem

with c replaced by cn = c − 1/n.By our analysis in the case c < c0, we know that

λ1(un) > 0. Passing to the limit, we easily get that λ1(ut) ≥ 0.

To obtain a strict inequality, it is enough to show that t → λ1(ut) is a strictly de-

creasing function. It should be clear from its definition that t→ λ1(ut) is nonincreasing.

Suppose that λ1(ut) = λ1(us) for some s ≤ t. Call φt
1 and φs

1 the corresponding

eigenfunctions, which can be constructed as in the case c < c0. Then,

λ1(ut) =
∫

Ω
|∇φt

1|2 −
∫

Ω

c

|x|2
φt

1
2 −

∫
Ω
pup−1

t φt
1
2

≤
∫

Ω
|∇φs

1|2 −
∫

Ω

c

|x|2
φs

1
2 −

∫
Ω
pup−1

t φs
1
2

≤
∫

Ω
|∇φs

1|2 −
∫

Ω

c

|x|2
φs

1
2 −

∫
Ω
pup−1

s φs
1
2

= λ1(us)

Hence,∫
Ω
|∇φs

1|2 −
∫

Ω

c

|x|2
φs

1
2 −

∫
Ω
pup−1

t φs
1
2 = ∫

Ω
|∇φs

1|2 −
∫

Ω

c

|x|2
φs

1
2 −

∫
Ω
pup−1

s φs
1
2

and

ut = us ,which implies t = s .

Hence ut is a stable solution of (Pt,p).

To prove that ut is the only stable H solution, we can argue exactly as in the case

c < c0. �

The results of section 5 extend in the following way (we skip the proof) :
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Situation 1’. Suppose c = c0, Ω = B1, f radial and 1 < p < p0. Then u, the minimal

solution of (Pt0,p), solves the problem in the strong sense.
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Chapter 3

Comparison results for PDE’s with a singular potential

3.1 Introduction

Here we consider comparison results for linear elliptic and parabolic equations with

singular potentials. Let Ω ⊂ Rn be a smooth and bounded domain, and let a ∈ L1
loc(Ω),

a ≥ 0. To motivate the discussion assume initially that a is smooth and bounded, and

suppose that

λ1 = inf
ϕ∈C1

c (Ω)

∫
Ω

(
|∇ϕ|2 − a(x)ϕ2

)∫
Ω ϕ

2
> 0 (3.1)

i.e., the first eigenvalue for the problem −∆ϕ1 − a(x)ϕ1 = λ1ϕ1 in Ω

ϕ1 = 0 on ∂Ω
(3.2)

is positive. We call ϕ1 the first eigenfunction and we take it to be positive. Since a is

smooth, it is well known that

C−1ζ0 ≤ ϕ1 ≤ Cζ0 (3.3)

for some positive constant C, where ζ0 is the solution of −∆ζ0 − a(x)ζ0 = 1 in Ω

ζ0 = 0 on ∂Ω.
(3.4)

Note that this problem is well posed and that ζ0 > 0, since λ1 > 0.

We can formulate condition (3.1) without any assumption on the smoothness of a.

An interesting example is the so-called inverse-square potential

a(x) =
c

|x|2
, (3.5)

where n ≥ 3 and 0 < c ≤ (n−2)2

4 . An improved version of Hardy’s inequality (see

Brezis and Vázquez [BV] or Vázquez and Zuazua [3]) shows that it satisfies (3.1). On
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the other hand, it just fails to belong to Ln/2(Ω) if 0 ∈ Ω, and therefore the standard

elliptic regularity theory is not sufficient to conclude an estimate like (3.3). In fact,

for this potential, there exists a constant α > 0 (more precisely α = (n − 2)/2 −√
(n− 2)2/4− c ) such that ζ0 and ϕ1 behave like |x|−α near the origin (see Dupaigne

[D]), so that (3.3) can be interpreted as : “ϕ1 cannot have worse singularities than ζ0”.

In this note we prove (3.3) under a slightly stronger condition than (3.1).

We also want to extend the following version of the strong maximum principle for

the heat equation (see e.g. Brezis and Cazenave [4] or Martel [14]) : let T > 0 and

u = u(x, t) ≥ 0 be a solution of ut −∆u = 0 in Ω× (0, T )

u = 0 on ∂Ω× (0, T ).

Then either u ≡ 0 or

u(x, t) ≥ c(t)δ(x), (3.6)

where c is a positive function of t ∈ (0, T ) and δ(x) = dist(x, ∂Ω).

Using Hopf’s boundary lemma on one hand, and elliptic regularity on the other,

observe that for some C > 0,

C−1δ ≤ ζ̃0 ≤ Cδ

where ζ̃0 is the solution of  −∆ζ̃0 = 1 in Ω

ζ̃0 = 0 on ∂Ω.

Thus (3.6) is equivalent to

u(x, t) ≥ c(t)ζ̃0(x). (3.7)

We would like to extend (3.7) to the case where ζ0 solves (3.4) and u > 0 solves ut −∆u− a(x)u = 0 in Ω× (0, T )

u = 0 on ∂Ω× (0, T ).
(3.8)

Inequality (3.7) was already proven for the inverse-square potential in Baras and Gold-

stein [BG] and the authors mentioned (see Remark 7.1 in [BG]) that their methods

apply to potentials of the form a(x) = −∆φ/φ where φ satisfies a certain weighted
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Sobolev inequality. In our proof, we derive such an inequality (see (3.34)) under an

almost optimal assumption on the potential a: see (3.9). As in [BG], we also make use

of Moser iteration type arguments, but our approach is, we believe, simpler.

The comparison results obtained in this note are motivated by and apply to some

semilinear parabolic equations studied in Dupaigne and Nedev [12]. As we shall see,

they also generalize to problems involving other boundary conditions and complement

the results obtained in Dupaigne [D].

3.2 Main results

The assumption on the potential a is the following: there exists r > 2 such that

γ(a) := inf
ϕ∈C1

c (Ω)

∫
Ω |∇ϕ|

2 −
∫
Ω a(x)ϕ

2( ∫
Ω |ϕ|r

)2/r
> 0. (3.9)

Remark. Observe that if a satisfies (3.1) then for any small ε > 0, aε := (1 − ε)a

satisfies (3.9) with r = 2∗ = 2n/(n−2) (when n = 2, pick any r ∈ (2,∞)), by Sobolev’s

embedding. In particular, (3.1) can be seen as a limiting case of (3.9).

We also observe that if n ≥ 3 the inverse square potential (3.5) satisfies (3.9), with

r = 2∗ if 0 ≤ c < (n−2)2

4 and with any 2 < r < 2∗ for c = (n−2)2

4 (see [BV, 3]).

Before stating our results we clarify in what sense we consider the solutions to (3.2)

and (3.4). This is necessary because in the context of weak solutions, or solutions in

the sense of distributions, uniqueness may not hold in general, and (3.3) can fail. For

example, in the case of the inverse square potential (3.5), when Ω is the unit ball B1(0)

and 0 < c < (n−2)2

4 , n ≥ 3 there is a positive solution u to −∆u− c
|x|2u = f in Ω

u = 0 on ∂Ω
(3.10)

which is smooth except at the origin and belongs to W 1,1(Ω). This shows that unique-

ness in general doesn’t hold.

Furthermore, there exists a solution ζ0 of (3.4), smooth in Ω \ {0}, behaving like

|x|−α′ near the origin, where α′ = (n − 2)/2 +
√

(n− 2)2/4− c, and a solution ϕ1 of
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(3.2) which behaves like |x|−α where α = (n− 2)/2−
√

(n− 2)2/4− c < α′. But then

(3.3) would fail. For details, see L. Dupaigne [D].

Hence we only consider solutions that belong to the Hilbert space H, defined as the

completion of C∞
c (Ω) with respect to the norm

‖u‖2
H =

∫
Ω
|∇u|2 −

∫
Ω
a(x)u2. (3.11)

This norm comes from an inner product (·|·)H in H, and with some abuse of notation

we can write

(u|v)H =
∫

Ω
∇u · ∇v −

∫
Ω
a(x)uv.

We denote by H∗ the dual of H. Observe that H1
0 (Ω) ⊂ H ⊂ L2(Ω) and therefore

L2(Ω) ⊂ H∗ ⊂ H−1(Ω).

Definition 3.1. If f ∈ H∗ we say that u ∈ H is an H-solution of −∆u− a(x)u = f in Ω

u = 0 on ∂Ω
(3.12)

if

(u|v)H = 〈f, v〉H∗,H

for all v ∈ H. With the obvious abuse of notation, this is equivalent to∫
Ω
∇u · ∇v −

∫
Ω
a(x)uv =

∫
Ω
fv for all v ∈ H.

From now on, we only deal with solutions in this sense, i.e. H-solutions.

Lemma 3.2. Suppose (3.1) holds and let f ∈ H∗. Then there exists a unique H

solution u of (3.10). Furthermore,

‖u‖H = ‖f‖H∗

and if f ≥ 0 in the sense of distributions then u ≥ 0 a.e.

See a proof in [12].

We also have to precise how to obtain a first eigenfunction for the operator −∆−a(x)

with zero Dirichlet boundary data.
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Lemma 3.3. Suppose a(x) ≥ 0 satisfies (3.9). Then H embeds compactly in L2(Ω).

In particular the operator L := −∆ − a(x) : D(L) ⊂ L2(Ω) → L2(Ω) where D(L) =

{u ∈ H(Ω) | −∆u− a(x)u ∈ L2(Ω) } has a positive first eigenvalue

λ1 = inf
ϕ∈H\{0}

∫
Ω |∇ϕ|

2 −
∫
Ω a(x)ϕ

2∫
Ω ϕ

2
.

This infimum is attained at a positive ϕ1 ∈ H that satisfies (3.2). Moreover λ1 is a

simple eigenvalue for −∆− a(x), and, if ϕ is a non-negative, non-trivial H-solution of −∆ϕ− a(x)ϕ = λϕ in Ω

ϕ = 0 on ∂Ω

for some λ ∈ R, then λ = λ1.

Similarly, we can define H-solutions of the evolution equation (3.8) with initial

condition u(0) = u0 ∈ L2(Ω) :

Definition 3.4. The operator L defined in Lemma 3.3 is a bounded below self-adjoint

operator with dense domain and generates an analytic semigroup (S(t))t≥0 in L2.

Hence for u0 ∈ L2(Ω), there exists a unique

u := S(t)u0 ∈ C([0,∞), L2) ∩ C1((0,∞), L2) ∩ C((0,∞),H)

solving  ut + Lu = 0 for t > 0

u(0) = u0

which we call the H-solution (or simply the solution) of (3.8) with initial condition

u(0) = u0 ∈ L2(Ω).

The main results in this paper are the following.

Theorem 3.5. Assume a : Ω → [0,∞) satisfies (3.9). Let ϕ1 > 0 denote the first

eigenfunction for the operator −∆− a(x) with zero Dirichlet boundary condition, nor-

malized by ‖ϕ1‖L2(Ω) = 1 and ζ0 denote the solution of (3.4). Then there exists

C = C(Ω, γ(a), r) > 0 such that

C−1ζ0 ≤ ϕ1 ≤ Cζ0.
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Theorem 3.6. Assume that a : Ω → [0,∞) satisfies (3.9). Let u0 ∈ L2(Ω), u0 ≥ 0,

u0 6≡ 0, and let u denote the solution of (3.8) with initial condition u0. Let ζ0 denote

again the solution of (3.4). Then

u(t) ≥ c(t)ζ0

for some c(t) > 0 depending on u0, Ω, γ(a), r and t.

Corollary 3.7. Under the same assumptions as in Theorem 3.6, we have more precisely

u(t) ≥ c(t)
(∫

Ω
u0ζ0

)
ζ0,

where one can choose c(t) = e−K(t+1/t) for some K = K(Ω, γ(a), r) > 0.

Corollary 3.8. Assume a : Ω → [0,∞) satisfies (3.9) and let u solve (3.12) for some

f ≥ 0, then

u ≥ c

(∫
Ω
fζ0

)
ζ0,

where c = c(Ω, γ(a), r).

Remarks. 1) All the results apply also for a potential a(x) that changes sign in Ω,

under the following additional hypothesis: a(x) = a+(x)− a−(x) a+, a− ≥ 0

a+ ∈ L1
loc(Ω) and a−(x) ∈ L∞(Ω).

(3.13)

In this case the constants also depend on ‖a−‖L∞(Ω).

2) Theorem 3.6 and Corollary 3.7 also hold under the following less restrictive hy-

pothesis: suppose that

γ(a)
(∫

Ω
|ϕ|r

)2/r
≤
∫

Ω

(
|∇ϕ|2 − a(x)ϕ2 +Mϕ2

)
(3.14)

for all ϕ ∈ C∞
c (Ω), for some M(a) > 0, γ(a) > 0 and r > 2. In this case we define H

as the completion of C∞
c (Ω) under the norm

‖u‖2
H =

∫
Ω

(
|∇u|2 − a(x)u2 +Mu2

)
.
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Theorem 3.9. Suppose that a(x) satisfies (3.13) and (3.14). Let u0 ∈ L2(Ω), u0 ≥ 0,

u0 6≡ 0, and let u denote the H-solution of (3.8) with initial condition u0. Then

u(t) ≥ c(t)
(∫

Ω
u0ϕ1

)
ϕ1,

where one can choose c(t) = e−K(t+1/t) for some K depending on Ω, γ(a), r and M , and

where 0 < ϕ1 ∈ H is the first eigenfunction for −∆− a(x) normalized by ‖ϕ1‖L2 = 1.

In Section 3.7 we mention some examples of potentials satisfying (3.14) for which

the stronger condition (3.9) may fail.

Observe that condition (3.14) implies the more standard inequality

inf
ϕ∈C∞c (Ω)

∫
Ω |∇ϕ|

2 − a(x)ϕ2∫
Ω ϕ

2
> −∞,

which is a necessary condition for the existence of global nonnegative solutions with

exponential growth to the linear parabolic equation (3.8) (see Cabré and Martel [CM]).

3) The method presented here for the parabolic problem also applies to equations

with mixed boundary condition, extending a result of [10] to the parabolic case. Let

Γ1,Γ2 be a partition of ∂Ω, with Γ1 6= ∅. For simplicity we can assume that Γ1, Γ2 are

smooth, but this is not important.

In this context, let ζ̄0 denote the solution of
−∆ζ̄0 = 1 in Ω

ζ̄0 = 0 on Γ1

∂ζ̄0
∂ν = 0 on Γ2,

where ν denotes the unit outward normal vector to ∂Ω.

Theorem 3.10. Let u0 ∈ L2(Ω), u0 ≥ 0 and let u denote the solution to

ut −∆u = 0 in Ω× (0,∞)

u = 0 on Γ1 × (0,∞)

∂u
∂ν = 0 on Γ2 × (0,∞)

u(0) = u0 in Ω

Then

u(t) ≥ c(t)
(∫

Ω
u0ζ0

)
ζ0

where c(t) = e−K(t+1/t) for some K = K(Ω,Γ1,Γ2).
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We omit its proof, which is a slight modification of the one given for Theorem 3.6.

3.3 Some preliminaries

We start this section with some preliminary results on the linear equation −∆u− a(x)u = f in Ω

u = 0 on ∂Ω,
(3.15)

when the potential a(x) satisfies (3.9). As mentioned before all solutions to (3.15) are

assumed to be in H.

The last two lemmas in this section allow to reduce the proofs of the main results

of this paper to the case of a bounded potential.

Lemma 3.11. Assume a(x) satisfies (3.9), and that f ∈ L2(Ω). Then the solution u

to (3.15) satisfies ∫
Ω
u(−∆ζ) =

∫
Ω
a(x)uζ + fζ (3.16)

for all ζ ∈ C2(Ω), ζ = 0 on ∂Ω, and all in the integrals in (3.16) exist and are finite.

In particular, by taking ζ to be the solution of −∆ζ̃0 = 1 in Ω

ζ̃0 = 0 on ∂Ω
(3.17)

we conclude that a(x)u+ f ∈ L1
loc(Ω).

Proof. By working with f+, f− we can assume that f ≥ 0. Let

ak(x) = min(a(x), k), k > 0

and uk be the solution to (3.15) with the potential a(x) replaced by the potential ak(x).

Then it is easy to check that uk is nondecreasing in k, and converges to u in L2(Ω).

Now take ζ ∈ C2(Ω), ζ = 0 on ∂Ω. Then∫
Ω
uk(−∆ζ) =

∫
Ω
ak(x)ukζ + fζ, (3.18)

and note that here all the integrals are finite. By taking in particular ζ = ζ̃0 (where ζ̃0

is the solution of (3.17)), and using Fatou’s lemma, we see that
∫
Ω a(x)uζ̃0 exists and
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is finite. Given any ζ ∈ C2(Ω), ζ = 0 on ∂Ω, we can find C > 0 so that |ζ| ≤ Cζ̃0. It

follows that we can pass now to the limit in (3.18) and conclude that (3.16) holds. �

Lemma 3.12. Assume that a(x) satisfies (3.9). Let T : L2(Ω) → L2(Ω) be the operator

defined by Tf = u, where u is the solution to (3.15) (i.e. L = T−1 where L was defined

in Lemma 3.3). Then T is compact.

Proof. Let (fj) be a a bounded sequence in L(Ω), and uj = Tfj . Then uj is

bounded in Lr(Ω) by (3.9). Let ζ̃0 be the solution to (3.17). Then, by (3.16) we have∫
Ω
a(x)uj ζ̃0 ≤ ‖ζ̃0‖L∞

∫
Ω
|fj |+ ‖ζ̃0‖C2

∫
Ω
|uj |.

Therefore −∆uj = a(x)uj + fj is bounded in L1
loc(Ω) and by the Gagliardo-Nirenberg

inequality uj is bounded in W 1,1
loc (Ω). We conclude that for a subsequence (denoted the

same), uj → u in Lq
loc(Ω) for some fixed 1 ≤ q < n

n−1 , and a.e. To conclude that uj

converges strongly in L2(Ω), let ε > 0 be given. Then by Egorov’s theorem there exists

E ⊂ Ω measurable with |E| ≤ ε so that uj → u uniformly in Ω \ E. Hence

lim sup
∫

Ω
|uj − u|2 ≤ lim sup

∫
Ω\E

|uj − u|2 + lim sup
∫

E
|uj − u|2

≤ ‖uj − u‖2
Lr |E|1−2/r

≤ Cε1−2/r

by the uniform bound of uj in Lr(Ω). �

To prove that the embedding H ⊂ L2(Ω) is compact we use the following result

combined with the previous lemma.

Lemma 3.13. Let H, V be real Hilbert spaces and J : H → V a bounded, linear map.

Then J is compact if and only if JJ∗ is compact.

Proof. Clearly if J is compact then JJ∗ is compact.

Let ε > 0. Then the map Sε := JJ∗ + εI : V → V is selfadjoint and coercive, in the

sense that ‖Sεy‖V ≥ ε‖y‖V . It follows that Sε is invertible. Therefore, given x ∈ H

there is y ∈ V so that

JJ∗y + εy = Jx. (3.19)
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But

(J∗y, x)H ≤ 1
2‖x‖

2
H + 1

2‖J
∗y‖2

H

and so

(J∗y, x− J∗y)H ≤ 1
2‖x‖

2
H − 1

2‖J
∗y‖2

H ≤ 1
2‖x‖

2
H .

In combination with (3.19) this yields

‖JJ∗y − Jx‖2
V ≤ ε

2
‖x‖2

H . (3.20)

Now assume that JJ∗ is compact and let xj be a bounded sequence in H. Let M =

supj ‖xj‖H , and set εk = 2−2k for k = 1, 2, . . .. We start by taking k = 1 and letting

yj = S−1
ε1

(Jxj). Then yj is a bounded sequence and since JJ∗ is compact there is a

subsequence (denoted the same) and some z1 ∈ V , so that JJ∗yj → z1. Therefore,

using (3.20) we see that there is some j1 so that

‖Jxj1 − z1‖V ≤ ‖Jxj1 − JJ∗yj1‖V + ‖JJ∗yj1 − z1‖V

≤
√
ε1
2
M + +‖JJ∗yj1 − z1‖V = 2M

√
ε1.

Using a diagonal argument one can find a subsequence jk and zk ∈ V so that ‖Jxjl
−

zk‖V ≤ 2−k+1M for all l ≥ k. This implies that ‖zk+1 − zk‖V ≤ 2−k+2 and therefore

zk is a Cauchy sequence in V . Thus zk converges, and so Jxjk
is also convergent. �

We are now in a position to prove Lemma 3.3. Proof. of Lemma 3.3 Taking

V = L2(Ω), “H = H”, and denoting by J : H → L2(Ω) the usual injection, we see that

T = JJ∗, where Tf = u, and u is the H-solution to (3.15). By Lemma 3.12 T = JJ∗

is compact and hence by Lemma 3.13 J is compact.

Since T is selfadjoint and compact, L = T−1 has a smallest eigenvalue

λ1 = inf
ϕ∈H\{0}

∫
Ω |∇ϕ|

2 − a(x)ϕ2∫
Ω ϕ

2
> 0, (3.21)

and the infimum is attained by a positive eigenfunction associated to λ1, which we

denote by ϕ1. λ1 is simple, and this can be proved in the same way as for smooth

elliptic operators. In fact, let ϕ denote another eigenfunction for λ1. Then for any

µ ∈ R we have that ψ = ϕ1 − µϕ satisfies the equation −∆ψ − a(x)ψ = λ1ψ in Ω

ψ = 0 on ∂Ω.
(3.22)
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Now, because ψ satisfies (3.22), if ψ 6≡ 0 then it minimizes (3.21). Then also |ψ|

minimizes (3.27) and therefore satisfies the equation (3.22). Since −∆|ψ| = a(x)|ψ|+ λ1|ψ| ≥ 0 in Ω

|ψ| = 0 on ∂Ω

by the strong maximum principle we conclude that if ψ 6≡ 0 then |ψ| > cδ a.e. in Ω,

where c > 0 and δ(x) = dist(x, ∂Ω) (see e.g. Brezis and Cabré [BC]). This combined

with the fact that ψ ∈W 1,1
loc (Ω) (by Lemma 3.1) shows that either ψ > 0 or ψ < 0 in Ω

(assuming Ω connected, see for example Chabi and Haraux [9]). That is, for any µ ∈ R

either ϕ ≥ µϕ1 or ϕ ≤ µϕ1. Setting µ0 = sup{µ : ϕ ≥ µϕ1} we see that ϕ = µ0ϕ1. �

Define

ak = min(a, k), k > 0. (3.23)

We denote by λk
1, ϕ

k
1, ζ

k
0 the first eigenvalue, first eigenfunction and solution of (3.4)

associated with the potential ak, which are all defined in the usual sense, since ak is

bounded. Let ζ0 be the solution to (3.4) in the sense of Lemma 2.1. Since a(x) satisfies

(3.9) (hence (3.1)), it is easy to check that ζk
0 → ζ0 in L2(Ω).

Lemma 3.14. Normalize ϕk
1 by ‖ϕk

1‖L2(Ω) = 1. Then

λk
1 → λ1 and ϕk

1 → ϕ1 in H

as k → ∞, where λ1 is given by (3.1) and ϕ1 is given by Lemma 3.3, normalized so

that ‖ϕ1‖L2(Ω) = 1.

Proof. Observe that

λk
1 = inf

ϕ∈C∞c (Ω)

∫
Ω |∇ϕ|

2 −
∫
Ω ak(x)ϕ2∫

Ω ϕ
2

(3.24)

is non-increasing as k increases. Therefore the limit limk→∞ λk
1 exists. We claim that

lim
k→∞

λk
1 = λ1.

Indeed, note that λ1 ≤ λk
1 for all k, and also that for any ϕ ∈ C∞

c (Ω)∫
Ω
ak(x)ϕ2 →

∫
Ω
a(x)ϕ2 (3.25)
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by monotone convergence. Take now ϕ ∈ C∞
c (Ω) with ‖ϕ‖L2 = 1. Then

λk
1 ≤

∫
Ω
|∇ϕ|2 − ak(x)ϕ2,

and using (3.25) we see that

lim supλk
1 ≤

∫
Ω
|∇ϕ|2 − a(x)ϕ2.

Taking the infimum over ϕ we obtain

lim supλk
1 ≤ λ1.

Recall that we normalize ϕk
1 by ‖ϕk

1‖L2 = 1 and so

‖ϕk
1‖2

H ≤
∫

Ω
|∇ϕk

1|2 −
∫

Ω
ak(x)|ϕk

1|
2

= λk
1 → λ1 as k →∞. (3.26)

In particular ϕk
1 is bounded in H and by Lemma 3.3 we can find a subsequence such

that ϕk
1 → ϕ1 in L2(Ω). We observe that ϕ1 ≥ 0 and ‖ϕ1‖L2 = 1.

Claim. ϕ1 minimizes

λ1 = inf
ϕ∈H\{0}

∫
Ω |∇ϕ|

2 −
∫
Ω a(x)ϕ

2∫
Ω ϕ

2
. (3.27)

Indeed, testing the equation of ϕk
1 with ϕ ∈ C∞

c (Ω), ϕ ≥ 0 we find∫
Ω
∇ϕk

1 · ∇ϕ−
∫

Ω
ak(x)ϕk

1ϕ = λk
1

∫
Ω
ϕk

1ϕ

and therefore ∫
Ω
∇ϕk

1 · ∇ϕ−
∫

Ω
a(x)ϕk

1ϕ ≤ λk
1

∫
Ω
ϕk

1ϕ.

Taking limits on both sides, we find∫
Ω
∇ϕ1 · ∇ϕ−

∫
Ω
a(x)ϕ1ϕ ≤ λ1

∫
Ω
ϕ1ϕ.

By density this is true for all ϕ ∈ H, ϕ ≥ 0 and taking ϕ = ϕ1 we find that∫
Ω |∇ϕ1|2 −

∫
Ω a(x)ϕ

2
1∫

Ω ϕ
2
1

≤ λ1

and the claim is proved.
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Then the standard arguments of the calculus of variations show that ϕ1 satisfies

(3.2), and hence ϕ1 is indeed the first eigenfunction of −∆− a(x). The strong conver-

gence ϕk
1 → ϕ1 in H, is a consequence of

‖ϕ‖H = λ1 ≤ ‖ϕk
1‖H ≤ λk

1,

which implies that ‖ϕk
1‖H → ‖ϕ‖H . �

Lemma 3.15. It suffices to prove Theorems 3.5 and 3.6 and Corollaries 3.7 and 3.8

in the case where the potential a(x) is bounded.

Proof. We only give the argument for Theorem 3.5, which can be easily carried

out for the other results. Let a(x) ≥ 0 be any potential satisfying (3.9) and ak its

truncation defined by (3.23). Observe that

inf
ϕ∈C1

c (Ω)

∫
Ω |∇ϕ|

2 −
∫
Ω ak(x)ϕ2( ∫

Ω |ϕ|r
)2/r

≥ γ(a).

So if Theorem 3.5 holds for bounded potentials, we must have

C−1ζk
0 ≤ ϕk

1 ≤ Cζk
0 , (3.28)

where ζk
0 , ϕk

1 were defined at the beginning of this section and C = C(Ω, γ(a), r) > 0 is

independent of k. Since ζk
0 → ζ0 in L2 and Lemma 3.14 holds, we can pass to the limit

in (3.28). �

3.4 Proof of Theorem 3.5

By Lemma 3.15 in the previous section it is enough to establish the result in the case

that a(x) is bounded.

The main idea is to consider the function

w =
ϕ1

ζ0

and notice that it satisfies (formally) an elliptic equation −∇ · (ζ2
0∇w) = λ1ϕ1ζ0 − ϕ1 in Ω

ζ2
0∇w · ν = 0 on ∂Ω,

(3.29)
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where ν denotes the outer unit normal to the boundary ∂Ω. Then we will use Moser’s

iteration argument, combined with a Sobolev inequality to prove that w is bounded.

Step 1. Formal derivation of an iteration formula: there exists q > 2 and C > 0

such that for all j ≥ 1 (∫
Ω
ζ2
0w

qj
)2/q

≤ Cj

∫
Ω
ζ2
0w

2j . (3.30)

Multiplying (3.29) by w2j−1 where j ≥ 1, and integrating by parts we obtain:

2j − 1
j2

∫
Ω
ζ2
0 |∇wj |2 =

∫
Ω
(λ1ϕ1ζ0 − ϕ1)w2j−1 ≤ λ1

∫
Ω
ζ2
0w

2j . (3.31)

Now we use the next lemma, which is a kind of Sobolev inequality.

Lemma 3.16. Assume u satisfies −∆u− a(x)u = c(x)u+ f in Ω

u = 0 on ∂Ω,
(3.32)

where c, f ∈ L∞(Ω), f ≥ 0, f 6≡ 0. Assume also that a satisfies (3.9). Then for

any 2 ≤ q ≤ r there is a constant C depending only Ω, r, γ(a), ‖c‖L∞, ‖f‖L∞ and( ∫
Ω fδ

)−1 such that (∫
Ω
us|ϕ|q

)2/q
≤ C

∫
Ω
u2
(
|∇ϕ|2 + ϕ2

)
for all ϕ ∈ C1(Ω), where s is given by the relation

s

r
=
q − 2
r − 2

. (3.33)

(A proof of this lemma is given in Step 4.)

Proof. of Step 1 continued Taking u = ζ0, f ≡ 1, c ≡ 0 and s = 2, by Lemma 3.16

there is q = 4 r−1
r > 2 and C > 0 such that(∫

Ω
ζ2
0 |ϕ|q

)2/q
≤ C

∫
Ω
ζ2
0 (|∇ϕ|2 + ϕ2) (3.34)

for all ϕ ∈ C1(Ω). This applied to ϕ = wj and combined with (3.31) yields (3.30).

Step 2. We derive now the estimate

ϕ1 ≤ Cζ0. (3.35)
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Proof. We iterate (3.30): define µ = q/2 > 1 and jk = 2µk, for k = 0, 1, . . .. Let

θk =
(∫

Ω
ζ2
0w

jk

)1/jk

.

Then (3.30) can be rewritten as

θk+1 ≤
(
Cµk

)1/µk

θk.

Using this recursively yields

θk ≤ Cθ0 = C
(∫

Ω
ζ2
0

)1/2
<∞

for all k = 0, 1, 2, . . . with C independent of k. But

lim
k→∞

θk = sup
Ω
w

(because ζ0 > 0 in Ω) and this shows that w ≤ C.

Step 3. Justification of Step 1. To be rigorous, we need to justify the derivation of

(3.30), which has been formal only. One possible approach is the following. Proof. of

(3.30) Consider the family of smooth domains

Ωε =
{
x ∈ Rn | dist(x,Ω) < ε

}
,

where ε > 0 is small. Let ζε
0 be the solution to −∆ζε

0 − a(x)ζε
0 = 1 in Ωε

ζε
0 = 0 on ∂Ωε,

(3.36)

where a is extended by 0 outside Ω. Then ζε
0 ↘ ζ0 as ε→ uniformly in Ω (because we

are in the case a(x) ∈ L∞ and therefore we have a uniform bound for ζε
0 in C1,α(Ω).)

Furthermore, ζε
0 ≥ cε > 0 in Ω, by the strong maximum principle. Letting

wε =
ϕ1

ζε
0

,

it follows that wε ∈ C1,α(Ω), wε = 0 on ∂Ω, and all the formal computations done with

w apply rigorously to wε so that (3.30) holds for wε in place of w and ζε
0 in place of ζ0.

It is then easy to pass to the limit as ε→ 0, using e.g. monotone convergence.
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Step 4. Proof. of Lemma 3.16 First observe that u ≥ cδ for some c > 0 (see Brezis

and Cabré [BC] for example), and recall Hardy’s inequality∫
Ω

ψ2

δ2
≤ C

∫
Ω
|∇ψ|2 for all ψ ∈ C1

c (Ω)

where δ(x) = dist(x, ∂Ω). Using this with ψ = δϕ Using this with ψ = δϕ as in [10] it

is easy to check that ∫
Ω
ϕ2 ≤ C

∫
Ω
δ2(|∇ϕ|2 + ϕ2) (3.37)

for all ϕ ∈ C1(Ω). This shows that∫
Ω
ϕ2 ≤ C

∫
Ω
u2
(
|∇ϕ|2 + ϕ2

)
. (3.38)

The next step consists in proving

(∫
Ω
|uϕ|r

)2/r
≤ C

∫
Ω
u2
(
|∇ϕ|2 + ϕ2

)
for all ϕ ∈ C1(Ω). (3.39)

To achieve this, note that by (3.9) we have

(∫
Ω
|uϕ|r

)2/r
≤ C

∫
Ω
|∇(uϕ)|2 −

∫
Ω
a(x)(uϕ)2. (3.40)

But ∫
Ω
|∇(uϕ)|2 =

∫
Ω
u2|∇ϕ|2 +

∫
Ω
∇u∇(uϕ2) (3.41)

and, multiplying (3.32) by uϕ2 and integrating we get∫
Ω
∇u∇(uϕ2)−

∫
Ω
a(x)(uϕ)2 =

∫
Ω
c(x)u2ϕ2 +

∫
Ω
fuϕ2. (3.42)

Combining (3.40), (3.41) and (3.42) we find

(∫
Ω
|uϕ|r

)2/r
≤ C

∫
Ω
u2|∇ϕ|2 +

∫
Ω
c(x)u2ϕ2 +

∫
Ω
fuϕ2.

The last two terms in the right hand side can be estimated by∫
Ω
c(x)u2ϕ2 +

∫
Ω
fuϕ2 ≤ ‖c‖L∞

∫
Ω
u2ϕ2 + ‖f‖L∞

(∫
Ω
u2ϕ2

)1/2(∫
Ω
ϕ2
)1/2

≤ C

∫
Ω
u2
(
|∇ϕ|2 + ϕ2

)
by (3.38). This proves (3.39).
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Finally, we interpolate (3.38) and (3.39): by Hölder’s inequality∫
Ω
us|ϕ|q ≤

(∫
Ω
ur|ϕ|r

)λ(∫
Ω
ϕ2
)1−λ

if λ and s are chosen so that

s = λr and rλ+ 2(1− λ) = q.

This gives the relation (3.33) and proves the lemma. �

Step 5. We claim that

ζ0 ≤ Cϕ1.

Proof. This time we consider the quotient

w =
ζ0
ϕ1

which satisfies:  −∇ · (ϕ2
1∇w) = ϕ1 − λ1ϕ1ζ0 in Ω

ϕ2
1∇w · ν = 0 on ∂Ω.

Again we multiply this equation by ϕ = w2j−1 to find

2j − 1
j2

∫
Ω
ϕ2

1|∇wj |2 =
∫

Ω
(ϕ1 − λ1ϕ1ζ0)w2j−1

≤
∫

Ω
ϕ1w

2j−1.

Here we use (3.35) to conclude that

ϕ1w
2j−1 ≤ Cζ0w

2j−1 = Cϕ1w
2j

so we find ∫
Ω
ϕ2

1|∇wj |2 ≤ Cj

∫
Ω
ϕ1w

2j . (3.43)

Letting ϕ = wj and using consecutively Hölder’s inequality and Lemma 4.1 (with

u = ϕ1, f ≡ 0, c = λ1, s = 0 and q = 2), it follows from (3.43) that∫
Ω
ϕ2

1|∇ϕ|2 ≤ Cj

(∫
Ω
ϕ2

1ϕ
2

)1/2(∫
Ω
ϕ2

)1/2

≤ Cj

(∫
Ω
ϕ2

1ϕ
2

)1/2(∫
Ω
ϕ2

1

(
ϕ2 + |∇ϕ|2

))1/2

.
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And by Young’s inequality,∫
Ω
ϕ2

1|∇ϕ|2 ≤ Cj2
∫

Ω
ϕ2

1ϕ
2 + 1/2

(∫
Ω
ϕ2

1

(
ϕ2 + |∇ϕ|2

))
so that ∫

Ω
ϕ2

1|∇ϕ|2 ≤ Cj2
∫

Ω
ϕ2

1ϕ
2. (3.44)

Using Lemma 3.16 with u = ϕ1, f ≡ 0, c = λ1 and s = 2, we obtain a constant

q = 4 r−1
r > 2 and C > 0 so that(∫

Ω
ϕ2

1w
qj
)2/q

≤ C

∫
Ω
ϕ2

1

(
|∇wj |2 + w2j

)
and combining with (3.44) we arrive at(∫

Ω
ϕ2

1w
qj
)2/q

≤ Cj2
∫

Ω
ϕ2

1w
2j . (3.45)

An iteration argument as in Step 2 then shows that

sup
Ω
w ≤ C.

As in Step 3, we need to justify the derivation of (3.45) by an approximation argument.

This time however, it is more convenient to consider

Ωε :=
{
x ∈ Ω | dist(x, ∂Ω) > ε

}
,

let ζε
0 solve (3.36) and do all of the above computations in Ωε in place of Ω. We omit

the details. �

3.5 Proof of Theorem 3.6

As in the elliptic case, using Lemma 3.15, it is enough to establish the result for bounded

a(x).

Let u be the solution of (3.8) and ζ0 be the solution of (3.4). We note that u(t) ≥

c(t)δ for some positive function c(t) (see [4]). We will replace u(t) with u(t− τ) where

τ > 0 is fixed, and so we can assume

u(t) ≥ cδ for t ∈ [0, T ],
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where T > 0 is fixed and c > 0 is independent of t for t ∈ [0, T ]. By (3.37) we have

then ∫
Ω
ϕ2 ≤ C

∫
Ω
u(t)2

(
|∇ϕ|2 + ϕ2

)
(3.46)

for t ∈ [0, T ], with C independent of t. Since by Theorem 3.5

ζ0 ≤ Cϕ1,

where ϕ1 denotes the first eigenfunction for −∆ − a(x), it is enough to show that for

some constant C we have

ϕ1 ≤ Cu(t).

We will work with

v = e−λ1tϕ1

which satisfies  ∂tv −∆v − a(x)v = 0 in Ω× (0,∞)

v = 0 on ∂Ω× (0,∞).

Set

w =
v

u

and note that it satisfies (formally) u2wt −∇ ·
(
u2∇w

)
= 0 in Ω× (0, T )

u2∇w · ν = 0 on ∂Ω× (0, T ).
(3.47)

We claim that

w(t) ≤ Ct−β for t ∈ [0, T ],

where β,C > 0 are independent of t.

To accomplish this, we follow the idea in the paper by Brezis and Cazenave [5],

which is inspired by a work of Fabes and Stroock [13]. To simplify the exposition, we

first work formally with (3.47).

First, for j ≥ 1 and t ∈ [0, T ] we define the quantity

θj(t) =
∫

Ω
u(t)2w(t)j .
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We also use the notation

ϕ = wj .

Our first step is to derive

Claim 1.

θ′2j(t) + 2‖uϕ‖2
H + 2

j − 1
j

∫
Ω
u2|∇ϕ|2 = 0, (3.48)

where ‖ · ‖H was defined in (3.11). Proof. of (3.48) Multiplying (3.47) by w2j−1 we

find
1
2j

∫
Ω
u2
(
w2j
)
t
+

2j − 1
j2

∫
Ω
u2|∇wj |2 = 0. (3.49)

Then writing ϕ = wj , observe that

d

dt
θ2j(t) = θ2j(t)′ = 2

∫
Ω
uutϕ

2 +
∫

Ω
u2
(
ϕ2
)
t
. (3.50)

Hence by (3.49) and using (3.50) we obtain

1
2j

(
θ′2j − 2

∫
Ω
uutϕ

2
)

+
2j − 1
j2

∫
Ω
u2|∇wj |2 = 0. (3.51)

Now we multiply (3.8) by uϕ2 and integrate on Ω. This gives the relation∫
Ω
uutϕ

2 +
∫

Ω
∇u∇(uϕ2)−

∫
Ω
au2ϕ2 = 0.

Therefore ∫
Ω
uutϕ

2 =
∫

Ω
au2ϕ2 −

∫
Ω
∇u∇(uϕ2)

=
∫

Ω
au2ϕ2 −

∫
Ω
|∇(uϕ)|2 +

∫
Ω
u2|∇ϕ|2.

Substituting the expression
∫
uutϕ

2 from the previous equation in (3.51) yields (3.48).

Claim 2. From (3.48) immediately follows that θ′2j(t) ≤ 0 and therefore

θj(t) ≤ θj(0) for all t ∈ [0, T ] and j ≥ 2. (3.52)

Claim 3. There is constant C such that

θ′2j(t) +
1
C

θ2j(t)1+m

θj(0)2m
≤ θ2j(t) for t ∈ [0, T ], (3.53)
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where m = 3r−4
2r−2 − 1 > 0. Proof. By Hölder’s inequality

θ2j(t) =
∫

Ω
u2ϕ2 ≤

(∫
Ω
(uϕ)r

) 2
3r−4

(∫
Ω
ϕ2
) r−2

3r−4
(∫

Ω
u2ϕ

) 2r−4
3r−4

.

Now we use assumption (3.9) and (3.46) to get

θ2j(t) ≤ C ‖uϕ‖
r

3r−4

H

(∫
Ω
u2
(
|∇ϕ|2 + ϕ2

)) r−2
3r−4

(∫
Ω
u2ϕ

) 2r−4
3r−4

= C‖uϕ‖
r

3r−4

H

(∫
Ω
u2|∇ϕ|2 + θ2j(t)

) r−2
3r−4

θj(t)
2r−4
3r−4 .

And by Young’s inequality,

θ2j(t) ≤ C
(
‖uϕ‖2

H +
∫

Ω
u2|∇ϕ|2 + θ2j(t)

) 2r−2
3r−4

θj(t)
2r−4
3r−4 . (3.54)

Let

m =
3r − 4
2r − 2

− 1 > 0

so that by (3.54) and (3.52)

θ2j(t)1+m ≤ C
(
‖uϕ‖2

H +
∫

Ω
u2|∇ϕ|2 + θ2j(t)

)
θj(0)2m. (3.55)

Rearranging (3.55) yields

1
C

θ2j(t)1+m

θj(0)2m
− θ2j(t) ≤ ‖uϕ‖2

H +
∫

Ω
u2|∇ϕ|2

and combining the last expression with (3.48) we obtain (3.53).

Claim 4. Using (3.53) we have

θ2j(t) ≤ Ct−1/mθj(0)2 t ∈ [0, T ]. (3.56)

The derivation of this estimate has been formal only but, as in Step 3 of Section 4, we

can make it rigorous using the same approximation argument on Ω.

Claim 5. Iterating (3.56) we find

‖w(t)‖L∞ ≤ Ct−1/2m for t ∈ [0, T ].

Indeed, for k = 1, 2, . . . set tk = t(1 − 2−k+1) and jk = 2k. Then tk+1 − tk = 2−kt. So

from (3.56) we have

θjk+1
(tk+1) = θ2jk

(tk + 2−kt)

≤ C2k/m t−1/mθjk
(tk)2.

(3.57)
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But recall that

θj(t) =
∫

Ω
u(t)2w(t)j

so from (3.57) we have

(∫
Ω
u(tk+1)2w(tk+1)2

k+1
)1/2k+1

≤
(
C2k/m t−1/m

)1/2k+1
(∫

Ω
u(tk)2w(tk)2

k
)1/2k

≤ C ′t−
1
m

∑k+1
j=2 2−j

(∫
Ω
u(0)2w(0)2

)1/2
.

Letting k →∞ we find

sup
Ω
w ≤ C ′t−1/2m‖ϕ1‖L2 .

�

3.6 Proof of Corollaries 3.7 and 3.8 and Theorem 3.9

Again, it is enough to reduce to the case where a(x) is bounded. Proof. of Corollary 3.7

Step 1. A first estimate involving δ(x) = dist(x, ∂Ω). (S(t) denotes the semigroup

generated by −∆− a(x) in L2(Ω), where a(x) is now a bounded potential).

Using a fine version of the maximum principle for the heat equation (see [4] for

the time dependence of the constant and Martel [14] for the dependence on the initial

condition), we have that

u(t) ≥ e−K/t

(∫
Ω
u0δ

)
δ(x) for t ∈ [0, T ],

where K = K(Ω, T ) > 0. Let µ1 > 0 and ψ1 > 0 be the first eigenvalue and eigenfunc-

tion of the Laplace operator (with zero boundary condition). Possibly increasing the

constant K, it follows that

u(t) ≥ e−K/t

(∫
Ω
u0δ

)
ψ1(x) for t ∈ [0, 1],

where K = K(Ω). Now let v(t) = eµ1−K
(∫

Ω u0δ
)
e−µ1tψ1(x). Then vt −∆v = 0

v(1) ≤ u(1).
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So by the maximum principle u(t) ≥ v(t) for t ∈ (1,∞) and we finally obtain

u(t) ≥ e−K(t+1/t)

(∫
Ω
u0δ

)
δ(x) for t ∈ [0,∞), (3.58)

where K = K(Ω).

Step 2. An estimate for ux0 = S(t)δx0.

First, looking carefully at the previous section, we see that if u ≥ 0 solves (3.8) and

u(t) ≥ δ(x) for t ∈ [0, T ]

then

u(t) ≥ Ctβe−λ1tζ0 for t ∈ [0, T ], (3.59)

where C and β depend only on Ω and γ(a).

Next, fix a ball B ⊂⊂ Ω and for x0 ∈ B, let δx0 denote the Dirac mass supported by

{x0} and ux0 the solution of (3.8) with initial condition u0 = δx0 . Given t0 > 0, we

have by (3.58),

ux0(t0) ≥ δ(x0)e−K(t0+1/t0)δ(x) ≥ e−K′(t0+1/t0)δ(x),

where K ′ depends only on Ω. Hence, for t ∈ [0, T ]

ux0(t+ t0) ≥ e−K′(t0+1/t0)S(t)δ(x) ≥ ce−K′(t0+1/t0)S(t)ψ1(x)

≥ ce−K′(t0+1/t0)e−µ1tψ1(x) ≥ ce−K(t0+1/t0+T )δ(x),

where K = K(Ω). Using (3.59), we obtain for t ∈ [0, T ]

ux0(t+ t0) ≥ Ctβe−λ1te−K(t0+1/t0+T )ζ0

so that, choosing t = T = t0

ux0(2t0) ≥ e−K′′(t0+1/t0)ζ0,

where K ′′ depends solely on Ω and γ(a). Since t0 > 0 was chosen arbitrarily, we finally

obtain for all t > 0

ux0(t) ≥ e−K′′(t+1/t)ζ0. (3.60)
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Step 3. Let uB be the solution of (3.8) with initial condition u0 = χB. Proceeding as

in the previous step, we can show that

uB ≥ e−K(t+1/t)ζ0. (3.61)

Now, let u be the solution of (3.8) with arbitrary initial condition u0 ≥ 0. Using (3.60),

we then have for x ∈ B

u(t, x) = 〈δx, S(t)u0〉 =
∫

Ω
u0u

x ≥ e−K′′(t+1/t)

∫
Ω
u0ζ0.

In other words,

u(t) ≥ e−K′′(t+1/t)

(∫
Ω
u0ζ0

)
χB.

Hence, using (3.61), it follows that

u(2t) ≥ e−K(t+1/t)

(∫
Ω
u0ζ0

)
ζ0

with K = K(Ω, γ(a), r), which completes the proof of Corollary 3.7. �

Proof. of Corollary 3.8 One just needs to apply Corollary 3.7 and Duhamel’s

principle: if u solves (3.12) then

u = S(1)u+
∫ 1

0
S(1− s)fds ≥

(∫ 1

0
e−K(s+1/s)ds

)(∫
Ω
fζ0

)
ζ0.

Proof. of Theorem 3.9 Recall that we assume here that a(x) satisfies (3.13) and

(3.14). First we remark that, as for the case when a(x) ≥ 0, one can reduce the proof

to the case of a bounded potential by considering ak(x) = min(a(x), k), k > 0, similarly

to Lemma 3.15. Let u0 ∈ L2(Ω), u0 ≥ 0 and u be the solution to ∂tu−∆u− a(x)u = 0 in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞).

Let M be the constant from condition (3.14) and set v = e−Mtu. Then v satisfies

vt −∆v − (a(x)−M)v = 0 in Ω× (0,∞).

Observe that the potential ã(x) = a(x)−M satisfies (3.13) and (3.9). Applying Corol-

lary 3.7 combined with Theorem 3.5 to v and the potential ã(x) we conclude that

v(t) ≥ e−K(t+1/t)
(∫

Ω
v(0)ϕ1

)
ϕ1.
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(The first eigenfunctions for −∆ − a(x) and −∆ − ã(x) are the same). Then the

conclusion for u follows easily. �

3.7 Further results and open problems

In this section, we question the optimality of our assumption (3.9) on the potential

a(x). As we shall see, potentials of the form a(x) = c/d(x)2 where

d(x) = dist(x,Σ)

is the distance function to an embedded manifold Σ ⊂ Rn, do not necessarily satisfy

our assumption (3.9) but a weaker version of it. We conjecture that some comparison

result can still be obtained.

Finally, open questions on the Green’s function of the operator −∆− a(x).

We state the following generalized Hardy inequalities :

Theorem 3.17. Let Σ be a smooth manifold of codimension k 6= 2 embedded in Rn

and d(x) = dist(x,Σ). Then we have the following results:

1) If Σ is compact then for any ε > 0 and 2 < r < 2n/(n − 2), there exist C > 0,

γ > 0 depending on Ω, Σ, r and ε, such that

γ
(∫

Ω
|ϕ|r

)2/r
≤
∫

Ω
|∇ϕ|2 − (k − 2− ε)2

4

∫
Ω

ϕ2

d2
+ C

∫
Ω
ϕ2

for all ϕ ∈ C∞
c (Ω \ Σ).

2) If Σ is oriented then for some r > 2, there exist C, γ > 0 such that

γ
(∫

Ω
|ϕ|r

)2/r
≤
∫

Ω
|∇ϕ|2 − (k − 2)2

4

∫
Ω

ϕ2

d2
+ C

∫
Ω
ϕ2

for all ϕ ∈ C∞
c (Ω \ Σ).

3) If Σ is such that ∆dk−2 ≤ 0 in D′(Ω \ Σ), then for any 2 < r < 2n/(n− 2) there

exists γ > 0 such that

γ
(∫

Ω
|ϕ|r

)2/r
≤
∫

Ω
|∇ϕ|2 − (k − 2)2

4

∫
Ω

ϕ2

d2

for all ϕ ∈ C∞
c (Ω \ Σ).
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4) In particular if Σ = ∂Ω and Ω is convex then for any 2 < r < 2n/(n − 2) there

exists γ > 0 such that

γ
(∫

Ω
|ϕ|r

)2/r
≤
∫

Ω
|∇ϕ|2 − 1

4

∫
Ω

ϕ2

d2

for all ϕ ∈ C∞
c (Ω).

The fourth inequality was discovered with γ = 0 by Marcus, Mizel and Pinchover

[15], and Matskevich and Sobolevskii [16]. It was then improved by Brezis and Marcus

[2] to the case γ > 0 and n = 2. The general case for the third and fourth inequalities is

due to Barbatis, Filippas and Tertikas [1]. We will prove the two others in a forthcoming

publication.

Suppose that a : Ω → [0,∞) is such that for some constants C(a), γ(a) > 0 and

r > 2,

γ(a)
(∫

Ω
|ϕ|r

)2/r
≤
∫

Ω
|∇ϕ|2 −

∫
Ω
a(x)ϕ2 + C(a)

∫
Ω
ϕ2

for all ϕ ∈ C∞
c (Ω). Observe that the first two inequalities in Theorem 3.17 provide

examples of such potentials.

We can then define H to be the completion of C∞
c (Ω) with respect to the norm

‖u‖2
H =

∫
Ω
|∇u|2 − a(x)u2 + C(a)u2.

Assume now that u ∈ H solves for some f ∈ L∞(Ω), −∆u− a(x)u = f in Ω

u = 0 on ∂Ω.

Is it true that

|u| ≤ C (‖f‖L∞ + ‖u‖L2)ϕ1

where C = C(Ω, C(a), γ(a), r) and ϕ1 ∈ H is the positive normalized eigenfunction of

the operator −∆− a(x) with respect to its first eigenvalue ?

The Green’s function

Another direction interesting to pursue concerns the Green’s function for the op-

erator −∆ − a(x). We assume here that a(x) satisfies (3.9). Let Gk be the Green’s
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function for the operator −∆− ak(x) where ak(x) = min(a(x), k), that is −∆yGk(x, ·)− ak(y)Gk(x, ·) = δx in Ω

Gk(x, ·) = 0 on ∂Ω

where δx denotes the Dirac measure at some x ∈ Ω. Then one can prove the following

Lemma 3.18. We have Gk ≥ 0 and the sequence Gk is non-decreasing and bounded

in L1(Ω× Ω). Therefore it converges to a function G ∈ L1(Ω× Ω). Moreover, for any

f ∈ L∞(Ω) the solution u to −∆u− a(x)u = f in Ω

u = 0 on ∂Ω

can be represented as

u(x) =
∫

Ω
G(x, y)f(y) dy a.e. in Ω.

Then, as a consequence of the comparison result in Corollary 3.8 we have the fol-

lowing

Corollary 3.19. There exists a constant c > 0 depending on Ω, r, γ(a) such that

G(x, y) ≥ cζ0(x)ζ0(y) a.e. in Ω× Ω.

We have not investigated the possibility of establishing pointwise upper bounds for

G. For the special case of the inverse square potential a(x) = c/|x|2, in dimension n ≥ 3

and with 0 < c < (n − 2)2/4, Milman and Semenov [17] established upper and lower

bounds for the heat kernel associated to the operator −∆ − a(x) in Rn, from which

upper bounds for the Green’s function can be derived.
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Chapter 4

Semilinear elliptic PDE’s with a singular potential

4.1 Introduction

4.1.1 Statement of the problem

This section focusses on the following equation :
−∆u− c

|x|2
u = f(u) + λb(x) in Ω

u > 0 in Ω

u = 0 on ∂Ω

(Pλ)

Here, Ω is a smooth bounded domain of Rn, λ > 0 is a (small) constant and a, b, f

are non-negative functions, satisfying a number of conditions listed later on. At this

point, we would like to look at an example treated in [D], which motivates the study

of (Pλ) and clarifies the issues at stake : take a(x) = c/|x|2 where c ∈ (0, (n − 2)2/4),

f(u) = up, with p > 1 and b(x) ≡ 1. (Pλ) becomes :
−∆u− c

|x|2
u = up + λ in Ω

u > 0 in Ω

u = 0 on ∂Ω

It turns out that if 0 ∈ Ω and n ≥ 3, there exists a critical exponent p0 = p0(c, n) such

that the above equation has no solution for any pair (p, λ) satisfying p ≥ p0 and λ > 0,

whereas solutions exist for p < p0, provided λ > 0 is chosen small enough (while no

solution exist if p < p0 and λ is large). It should be noted that whenever they exist,

the solutions are always singular at the origin. In this work, we show that this result

can be extended to a greater class of potentials, examples of which can be taken to
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have singularities on curves or higher dimensional submanifolds of Ω (see Section 6) :

if a(x) = c/dist(x,Σ)2, where Σ is a submanifold of codimension k ≥ 3 of Ω, there is

again a critical exponent p0 = p0(c, n, k), which somewhat surprisingly decreases with

k.

Roughly speaking, there is a better chance that (Pλ) has a solution when the poten-

tial is singular on a ’larger’ set. In fact, when Σ = ∂Ω, any power (or any nonlinearity

f) is allowed. Also, this critical exponent phenomenon is just a specific case of a di-

chotomy between nonlinearities f that allow for existence of solutions and those that

don’t. We derive for this matter a sharp abstract criterium on f , in the spirit of [KV]

and [BC], which is nevertheless easy to check in applications.

Even in the case of the inverse-square potential a(x) = c/|x|2, this will lead us to

new results complementing those of [D].

We now turn back to (Pλ) and to make all of our statements precise, list the assumptions

on our data :

• a ∈ L1
loc(Ω), a(x) ≥ 0 a.e. and, for some > 0,∫

Ω
|∇u|2 −

∫
Ω
a(x)u2 ≥

∫
Ω
u2 for all u ∈ C∞

c (Ω) (0.1)

(0.1) states that the first eigenvalue of the operator L = −∆ − c
|x|2 is positive. When

c ≤ c0 := (n − 2)2/4, n ≥ 3 and a(x) = c/|x|2, (0.1) is just the celebrated Hardy

inequality (see [BV] for its proof). However, if c > c0 (and 0 ∈ Ω), (0.1) fails and in

fact there are no nonnegative u 6≡ 0 such that −∆u − c
|x|2u ≥ 0, hence no solution of

(Pλ) (see [BG] or [CM]). Hence (0.1) is crucial.

It also follows from (0.1) that

‖u‖2
H :=

∫
Ω
|∇u|2 −

∫
Ω
a(x)u2

is (the square of) a norm on C∞
c (Ω). Completing C∞

c (Ω) with respect to this norm, we

obtain a Hilbert space H. Using Lax-Milgram lemma, we then define a unique ζ0 ∈ H

solving 
−∆ζ0 −

c

|x|2
ζ0 = 1 in Ω

ζ0 = 0 on ∂Ω
(0.2)
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in the sense that

(ζ0|φ)H = 〈1, φ〉H∗,H for all φ ∈ H. (0.3)

Observe that given any ε > 0, if a satisfies (0.1) then the space H associated with aε :=

(1− ε)a coincides with H1
0 (Ω). So that in the generic case, our definition of ζ0 reduces

to the standard one. However, it was proved in [VZ] that if a(x) = (n − 2)2/(4|x|2)

(this potential corresponds to the limiting case of the Hardy inequality), the associated

space H contains H1
0 (Ω) as a proper subset.

• b ∈ L1
δ(Ω) := L1(Ω, dist(x, ∂Ω)dx), b 6≡ 0, b(x) ≥ 0 a.e. and∫

Ω
bζ0 <∞ (0.4)

where 0 ≤ ζ0 ∈ H is the solution of (0.3). For simplicity, the reader may think of b as

a smooth and bounded function. As we shall see (in Lemma 1.2), what (0.4) ensures is

that there exists ζ1 ≥ 0 solving (in a certain sense to be defined later on)
−∆ζ1 −

c

|x|2
ζ1 = b in Ω

ζ1 = 0 on ∂Ω
(0.5)

which is a minimum requirement, if one wants to solve (Pλ).

The following set of conditions on f , though technical, is satisfied by a wide class

of nonlinearities.

• f : R+ → R+ is a C1, convex function with f(0) = f ′(0) = 0 satisfying the

two following growth conditions :

lim
t→+∞

f(t)
t

= +∞ (0.6)

∫ ∞

1
g(s)ds <∞ and sg(s) < 1 for s > 1 (0.7)

where we set, for s ≥ 1,

g(s) = sup
t>0

f(t)/f(st) (0.8)

Clearly, g is a decreasing, nonnegative function. Moreover, s→ sg(s) is nonincreasing

since, by convexity, t→ f(t)/t is increasing and f(0) = 0.
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We may also assume that g is continuous. If not, since g is used in our proofs solely

for comparison arguments, it suffices to replace g with a continuous function g̃ ≥ g,

satisfying (0.7), such that t→ tg̃(t) is nonincreasing and∫ ∞

1
g̃(s)ds−

∫ ∞

1
g(s)ds is arbitrarily small

We construct such a function in Lemma 2.3.

We also observe that since g(s) ≥ f(1)/f(s), (0.7) implies the following weaker condi-

tion, which often appears in the litterature :∫ ∞ 1
f(s)

ds <∞.

In particular, our proofs yield no result for functions like f(t) = t(ln t)β
+, β > 0 for

which g(s) = 1/s.

Examples of nonlinearities f which do satisfy our assumptions are : f(u) = up for

p > 1, f(u) = eu − u − 1, f(u) = u2 − 1 + cos(u) ,... Next, we clarify the notion of

solution used in this section. We need to do so because even linear problems of the form

(0.5) may not be well posed in the usual distributional or Sobolev space settings. This

is shown in [D] for the potential a(x) = c/|x|2. • Following [BCMR], we shall say that

u ∈ L1(Ω) is a weak solution of (Pλ) if u ≥ 0 a.e. and if it satisfies the two following

conditions :
∫
Ω (a(x)u+ f(u)) δ(x) <∞ where δ(x) = dist(x, ∂Ω)∫
Ω u
(
−∆φ− c

|x|2φ
)

=
∫
Ω(f(u) + λb)φ for φ ∈ C2(Ω̄) , φ|∂Ω = 0

Observe that the first condition merely ensures that the integrals in the second equation

make sense. Similarily, a weak solution u ∈ L1(Ω) of (0.5) with b ∈ L1
δ := L1(Ω, δ(x)dx),

is one that satisfies the equation
∫
Ω u
(
−∆φ− c

|x|2φ
)

=
∫
Ω bφ (for all φ ∈ C2(Ω̄),

φ|∂Ω = 0) with the integrability condition
∫
Ω(a(x) + 1)|u|δ(x) <∞. We will also refer

to inequalities holding in the weak sense or talk about (weak) supersolutions. This

means that we integrate the equation with nonnegative test functions. For example,

−∆u− c
|x|2u ≥ f holds in the weak sense, given f ∈ L1

δ , if u ∈ L1(Ω), a(x)u ∈ L1
δ(Ω)
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and if∫
Ω
u

(
−∆φ− c

|x|2
φ

)
≥
∫

Ω
fφ for all φ ∈ C2(Ω̄) with φ ≥ 0 and φ|∂Ω = 0

These definitions are motivated by the following lemma (proved in [BCMR]) :

Lemma 0.1. Let f ∈ L1
δ(Ω) := L1(Ω, δ(x)dx). There exists a unique (weak) solution

u ∈ L1(Ω) of 
−∆u = f in Ω

u = 0 on ∂Ω

in the sense that∫
Ω
u (−∆φ) =

∫
Ω
fφ for all φ ∈ C2(Ω̄) , φ|∂Ω = 0

Furthermore, there exists a constant C = C(Ω) > 0 such that

‖u‖L1(Ω) ≤ C‖f‖L1
δ(Ω)

and

f ≥ 0 a.e. =⇒ u ≥ 0 a.e.

Lemma 0.2. Let a(x) ∈ L1
loc(Ω), b ∈ L1

δ(Ω) and f ∈ C(R+,R+) be nonnegative

functions. Let λ > 0. Suppose there exists a (weak) supersolution w ≥ 0 of (Pλ)

(respectively (0.2),(0.5)). Then there exists a unique weak solution u ≥ 0 of (Pλ)

(respectively (0.2),(0.5)) such that

0 ≤ u ≤ w̃

for any (weak) supersolution w̃ ≥ 0 of (Pλ) (respectively (0.2),(0.5)).

u is then called the minimal nonnegative weak solution of (Pλ) (respectively (0.2),(0.5)).

Remark. The function ζ0 ∈ H solving (0.3) also solves (0.2) in the weak sense. In

fact, it is the minimal nonnegative weak solution of (0.2), so that no confusion may

arise (see the remark following Lemma 1.1).

Proof. The proof is identical for all three equations (Pλ),(0.2),(0.5) so we restrict to

the case where w is a supersolution of (Pλ). First if u1 ≥ 0 and u2 ≥ 0 are two weak

solutions such that

0 ≤ ui ≤ w̃ i = 1, 2



82

for all supersolutions w̃ ≥ 0, then we must have u1 ≤ u2 and u2 ≤ u1, hence u1 = u2

so that the minimal solution – if it exists – is unique. Next, let w ≥ 0 be a weak

supersolution of (Pλ) and let u0 ∈ L1(Ω) be the unique solution of
−∆u0 = λb in Ω

u0 = 0 on ∂Ω

in the sense of Lemma 0.1. It follows easily from Lemma 0.1 that 0 ≤ u0 ≤ w. Next,

we show by induction that there exists a unique un ∈ L1(Ω) for n = 1, 2, .. solving
−∆un = a(x)un−1 + f(un−1) + λb in Ω

un = 0 on ∂Ω

in the sense of Lemma 0.1, and such that 0 ≤ un ≤ w. Indeed, since 0 ≤ u0 ≤ w and

w is a weak supersolution,

0 ≤ a(x)u0 + f(u0) ≤ a(x)w + f(w) ∈ L1
δ(Ω).

So that u1 is well defined (by Lemma 0.1) and 0 ≤ u0 ≤ u1 ≤ w (applying Lemma 0.1

again). The same argument can be applied inductively to show that un is well defined

(provided 0 ≤ un−1 ≤ w) and that

0 ≤ un−1 ≤ un ≤ w.

Hence {un}n is a nondecreasing sequence of nonnegative functions dominated by w. By

monotone convergence, its (pointwise) limit u solves (Pλ).

Now if w̃ ≥ 0 is another supersolution, it follows easily from Lemma 0.1 that u0 ≤ w̃

and un ≤ w̃ for all n = 1, 2, ... Passing to the limit, it follows that u ≤ w̃.

�

With these definitions in mind, we investigate the existence, uniqueness and regularity

of solutions of (Pλ) :

4.1.2 Main results

Theorem 1 (existence and optimal regularity). Assume (0.1),(0.4),(0.6),(0.7)

hold and let ζ0 = G(1) solve (0.2), ζ1 = G(b) solve (0.5) with G =
(
−∆− c

|x|2

)−1

defined in Lemma 1.2.
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• Either there exist constants ε > 0, C > 0 such that∫
Ω
f(εζ1)ζ0 <∞ and G(f(εζ1)) ≤ Cζ1 a.e. (0.8)

Then there exists λ∗ > 0 depending on n, a(x), f , b(x) such that

• if λ < λ∗ then (Pλ) has a minimal weak solution u.

Furthermore, for some constant C > 0 independent of x ∈ Ω, we have

ζ1 ≤ u ≤ Cζ1 a.e. in Ω

• if λ = λ∗ then (Pλ) has a minimal weak solution,

• if λ > λ∗ then (Pλ) has no solution, even in the weak sense and there is

complete blow-up.

• Or (0.8) holds for no ε > 0, C > 0. Then, given any λ > 0, (Pλ) has no solution,

even in the weak sense, and there is complete blow-up.

This result requires the following definitions :

Definition 0.1. Let {an(x)}, {bn(x)} and {fn} be increasing sequences of bounded

smooth functions converging pointwise respectively to a(x), b(x) and f and let un be the

minimal nonnegative solution of
−∆un − anun = fn(un) + λbn in Ω

un = 0 on ∂Ω
(Pn)

We say that there is complete blow-up in (Pλ) if, given any such {an(x)}, {bn(x)},

{fn} and {un},
un(x)
δ(x)

→ +∞ uniformly on Ω,

where δ(x) := dist(x, ∂Ω).

Definition 0.2. The parameter λ∗ is called the extremal parameter of the family of

equations {(Pλ)}λ and the corresponding solution uλ∗ is called the extremal solution.
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Theorem 2 (uniqueness of stable solutions). Make the same assumptions as in

Theorem 1. If it exists, let uλ denote the minimal nonnegative (weak) solution of (Pλ).

If 0 < λ < λ∗,

• uλ is stable

• Assume that f(ζ1) + λb ∈ H∗. Then uλ ∈ H and uλ is the only stable (weak)

solution of (Pλ) belonging to H.

If λ = λ∗,

• uλ∗ is stable

• Assume b ∈ Lp for some p > n. Then uλ∗ is the only weak solution of (Pλ∗).

Stability is defined as follows :

Definition 0.4. We say that u is stable if the generalized first eigenvalue λ1(u) of the

linearized operator of equation (Pλ) is nonnegative, i.e., if

λ1(u) := inf{J(φ) : φ ∈ C∞
c (Ω) \ {0}} ≥ 0

where

J(φ) =

∫
Ω |∇φ|

2 −
∫
Ω a(x)φ

2 −
∫
Ω f

′(u)φ2∫
Ω φ

2

The proof of Theorem 1 is presented in section 2 , whereas Theorem 2 is proved in

section 3. Applications can be found in the remaining sections 4, 5 and 6.

4.2 Preliminary : linear theory

We construct here a few basic tools to be used later on and start out with the L2 theory.

Lemma 1.1. Suppose (0.1) holds and let b ∈ H∗ ∩ L1
δ(Ω).

There exists a unique u ∈ H, weak solution of
−∆u− a(x)u = b in Ω

u = 0 on ∂Ω
(1.1)
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Furthermore,

‖u‖H = ‖b‖H∗ (1.2)

b ≥ 0 in the sense of distributions ⇒ u ≥ 0 a.e. (1.3)

Proof. By working with b+, b− we can assume that b ≥ 0. It follows from Lax-Milgram

lemma that there exists a unique u ∈ H such that

(u|φ)H = 〈b, φ〉H∗,H for all φ ∈ H.

Furthermore, (1.2) holds. We now show that u solves (1.1) in the weak sense : Let

ak(x) = min(a(x), k), k > 0

and uk be the solution to (1.1) with the potential a(x) replaced by the potential ak(x).

Then it is easy to check that uk is nondecreasing in k, and converges to u in L2(Ω).

Now take φ ∈ C2(Ω), φ = 0 on ∂Ω. Then∫
Ω
uk(−∆φ) =

∫
Ω
ak(x)ukφ+ bφ,

and note that here all the integrals are finite. By taking in particular φ = φ0 to be the

solution of 
−∆φ0 = 1 in Ω

φ0 = 0 on ∂Ω

, and using Fatou’s lemma, we see that
∫
Ω a(x)uφ0 exists and is finite. Given any

φ ∈ C2(Ω), φ = 0 on ∂Ω, we can find C > 0 so that |φ| ≤ Cφ0. It follows that we can

pass to the limit in the equation satisfied by uk and conclude that u solves (1.1) in the

weak sense.

Next we show that if ũ ∈ H is another weak solution of (1.1) then ũ = u. By

definition of H, there exits un ∈ C∞
c (Ω) such that un → ũ in H (and a fortiori in

L1(Ω)). Hence for φ ∈ C∞
c (Ω),

(ũ|φ)H = lim
n→∞

(un|φ)H



86

Using integration by parts and the fact that un → ũ in L1(Ω),

(un|φ)H =
∫

Ω
un

(
−∆φ− c

|x|2
φ

)
→
∫

Ω
ũ

(
−∆φ− c

|x|2
φ

)
= 〈b, φ〉H∗,H

So that

(ũ|φ)H = 〈b, φ〉H∗,H for all φ ∈ C∞
c (Ω).

By density, the equality holds for all φ ∈ H and ũ = u by Lax-Milgram lemma.

Finally we show (1.3). Let b ∈ H∗, b ≥ 0 (in the sense of distributions) and u ∈ H

be the corresponding solution of (1.1).

By definition of H, there exists a sequence {un} in C∞
c (Ω) converging to u in H.

Letting bn = −∆un − c
|x|2un, it follows that bn ∈ H∗ and bn → b in H∗.

Now, un ∈ H1
0 (Ω) ⇒ u−n ∈ H1

0 (Ω) and integrating the equation satisfied by un

against u−n yields

−‖u−n ‖2
H = 〈bn, u−n 〉H∗,H

To pass to the limit in this last equation, we just need to prove that {u−n } remains

bounded in H.

‖u−n ‖2
H =

∫
Ω
|∇u−n |2 −

∫
Ω
a(x)(u−n )2

=
∫

Ω
|∇u−n |2 −

∫
Ω
a(x)u2

n +
∫

Ω
a(x)(u+

n )2

≤
∫

Ω
|∇u−n |2 −

∫
Ω
a(x)u2

n +
∫

Ω
|∇u+

n |2 =
∫

Ω
|∇un|2 −

∫
Ω
a(x)u2

n

= ‖un‖2
H

(1.4)

where we’ve used (0.1) in the inequality.

�

Remark. Observe in passing that ζ0 solving (0.3) is the minimal nonnegative weak

solution of (0.2) : by the previous lemma (and its proof), ζ0 is indeed a weak solution of

(0.2). If u denotes the minimal nonnegative weak solution of (0.2), and uk the solution
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of (0.2) when a is replaced by ak = min(a, k), it can be shown as above that uk → u in

L1(Ω) and that {uk}k remains bounded in H so that u ∈ H and u = ζ0.

Lemma 1.2. Let b ∈ L1(Ω, δ(x)dx) with b ≥ 0 a.e. and b 6≡ 0. The equation
−∆u− c

|x|2
u = b in Ω

u = 0 on ∂Ω
(1.5)

has a nonnegative weak solution u ∈ L1(Ω) (which may not be unique) if and only if∫
Ω
b(x)ζ0dx <∞ (1.6)

where ζ0 denotes the solution of (0.3). We then denote the minimal nonnegative weak

solution u of (1.5) by

u = G(b)

Proof.

Suppose first that
∫
Ω b(x)ζ0dx <∞ and let bn = min(n, b) for n ∈ N.

By Lemma 1.1, there exists a unique vn ∈ H, vn ≥ 0, solving (1.5) with bn in place

of b and, testing with ζ0 in (1.5) and with vn in (0.3), we obtain∫
Ω
bnζ0 = (vn|ζ0)H =

∫
Ω
vn

Hence,

‖vn‖L1 ≤
∫

Ω
bζ0

Testing with z, solving 
−∆z = 1 in Ω

z = 0 on ∂Ω
(1.7)

we get

(vn|z)H =
∫

Ω
bnz =

∫
Ω
vn −

∫
Ω
a(x)vnz

So that ∫
Ω
a(x)vnδ ≤ C

∫
Ω
bζ0

Observe that Lemma 1.1 implies that vn is nondecreasing and using a standard mono-

tone convergence argument, it follows that v = lim vn (weakly) solves (1.5). By Lemma
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0.2, we can then construct the minimal nonnegative weak solution u = G(b). Conversely,

suppose v ≥ 0 is a weak solution of (1.5) and assume for now that b ∈ L∞ and that v is

minimal. ‖b‖L∞ ζ0 is then a supersolution of (1.5), hence v ≤ Cζ0. Also, as in the proof

of Lemma 1.1, we can show that v is an H solution. Next, take a sequence of bounded

functions Φn increasing pointwise to a(x)ζ0 and let vn be the solution of
−∆vn = Φn in Ω

vn = 0 on ∂Ω
(1.8)

Testing with vn, we obtain∫
Ω
bvn = (v|vn)H =

∫
Ω
v(Φn − a(x)vn) (1.9)

Since a(x)ζ0 ∈ L1
δ , φn ↗ a(x)ζ0 in L1

δ and, by Lemma 0.1, vn ↗ v := ζ0− z in L1, with

z solving (1.7).

Now, Φn ≤ a(x)ζ0 and vn ≤ v ≤ ζ0, hence

|v(Φn − a(x)vn)| ≤ 2a(x)ζ2
0

Suppose in addition that
∫
Ω a(x)ζ

2
0 <∞ so that we can apply Lebesgue’s theorem and

pass to the limit in (1.9) :∫
Ω
b(ζ0 − z) =

∫
Ω
v[a(x)ζ0 − a(x)(ζ0 − z)] =

∫
Ω
a(x)vz

Hence, ∫
Ω
bζ0 ≤ ‖z‖C1

(∫
Ω
bδ +

∫
Ω
a(x)vδ

)
(1.10)

We made two auxiliary assumptions to arrive to this result. First, we assumed that

b ∈ L
∞

. If this is not true, we can replace b by bn = min(b, n), apply (1.10) to

bn and let n → ∞. We also assumed that
∫
Ω a(x)ζ

2
0 < ∞. If not, replace a(x) by

aε(x) := (1 − ε)a(x) and ζ0 by ζε the solution of (0.3) with aε in place of a. Multiply

(0.1) by (1− ε) to obtain∫
Ω
|∇u|2 −

∫
Ω
aε(x)u2 ≥ ε

∫
Ω
|∇u|2 for all u ∈ C∞

c (Ω)
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The space H corresponding to the potential aε is therefore good old H1
0 (Ω) and, by

construction, ζε ∈ H1
0 (Ω). Using the above inequality, it follows that∫

Ω
aεζ

2
ε <∞

We can therefore apply (1.10) with ζε in place of ζ0 and let ε→ 0. �

4.3 Existence vs. complete blow-up

In this section, we will prove existence or nonexistence of weak solutions of (Pλ), using

the tools we have just constructed and monotonicity arguments.

The following result, due to [BC], for which a proof in our context can be taken from

[D], proves the blow-up results of Theorem 1 provided nonexistence of weak solutions

is established :

Lemma 2.0. Fix λ > 0 Suppose (Pλ) has no weak solution. Then there is complete

blow-up in (Pλ)

Next, we extend a technical result of [BC] :

Lemma 2.1. Let Φ : R → R be a C1, concave function such that for some C > 0,

0 ≤ Φ′ ≤ C

Let h, k ∈ L1
loc(Ω), h, k ≥ 0, k 6≡ 0, satisfy (1.6) so that u = G(h) and v = G(k) are

well-defined. Then, letting w = vΦ(u/v),

w ∈ L1(Ω) , a(x)w ∈ L1
δ and

−∆w − c

|x|2
w ≥ Φ′(u/v)(h− k) + Φ(1)k in the weak sense (2.1)

Proof. Suppose first u, v ∈ C2(Ω̄), v > 0 in Ω and Φ ∈ C2(R). Applying Lemma 5.3 in

[BC], it follows that a.e. in Ω,

−∆w − c

|x|2
w ≥Φ′(u/v)(−∆u) +

[
Φ(u/v)− Φ′(u/v)u/v

]
(−∆v)− a(x)Φ(u/v)v

≥Φ′(u/v)h+
[
Φ(u/v)− Φ′(u/v)u/v

]
k

≥Φ′(u/v)(h− k) +
[
Φ(u/v)− Φ′(u/v)u/v + Φ′(u/v)

]
k
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Since Φ is concave,

Φ(s) + (1− s)Φ′(s) ≥ Φ(1) for all s ∈ R

Hence,

−∆w − c

|x|2
w ≥ Φ′(u/v)(h− k) + Φ(1)k a.e. in Ω (2.2)

Since Φ′ is bounded, we see, as in [BC], that

|vΦ(u/v)| = |v (Φ(u/v)− Φ(0)) + Φ(0)v| ≤ C(u+ v) (2.3)

Hence, w vanishes on ∂Ω and integrating by parts, (2.2) holds in the weak sense. By

approximation of Φ, we can also say that (2.2) holds even when Φ is only C1. Finally

observe that all of the above computations still hold if u,v are merely C1,α(Ω̄). In the

general case, let an,hn,kn be bounded functions increasing pointwise to a,h,k and un,

vn be the solutions of the associated equations. Also write wn = vnΦ(un/vn). For n

large enough, kn 6≡ 0 since k 6≡ 0 and by the strong maximum principle, vn > 0 in Ω.

We can then apply (2.2) to obtain

−∆wn − an(x)wn ≥ Φ′(un/vn)(hn − kn) + Φ(1)kn weakly (2.4)

Since −∆v ≥ 0 in the sense of distributions and v ≥ 0, it follows from the mean value

formula that v > 0 a.e. in Ω, so that vΦ(u/v) is well defined a.e. Moreover, it is clear

that un ↗ u in L1 and that an(x)un(x) ↗ a(x)u(x) in L1
δ and similarly for v. So that,

using (2.3) and Lebesgue’s theorem

wn → w in L1 and an(x)wn → a(x)w in L1
δ

Since Φ′ is bounded, we can also easily pass to the limit in the right-hand side of (2.4)

and obtain (2.1).

�

The next lemma contains the heart of the proof.
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Lemma 2.2. Assume that b ∈ L1
loc(Ω), b ≥ 0 satisfies (0.4) and let ζ1 = G(b). Suppose

u is a weak solution of (P1). Then∫
Ω
f(ζ1)ζ0 <∞ and G(f(ζ1)) ≤ Cζ1 where C =

∫ ∞

1
g(s)ds

Conversely, if ∫
Ω
f(2ζ1)ζ0 <∞ and G(f(2ζ1)) ≤ ζ1

then (P1) admits a weak solution u.

Proof. Suppose first that u is a weak solution of (P1) and, recalling (0.6), define for

t ≥ 1

Φ(t) =
∫ t

1
g(s)ds

and let w = Φ(u/ζ1)ζ1. Observe that u is a supersolution of the equation satisfied

by ζ1, so by minimality of ζ1, u ≥ ζ1 and one can easily check that Lemma 2.1 applies

with our choice of Φ, so that

−∆w − c

|x|2
w ≥ g(u/ζ1)f(u) ≥ f(ζ1)

Since w ≤ Cζ1, G(f(ζ1)) can be constructed e.g. by monotone iteration , hence∫
Ω f(ζ1)ζ0 <∞ and we have

Cζ1 ≥ w ≥ G(f(ζ1))

Conversely, suppose that G(f(2ζ1)) ≤ ζ1 and let w = G(f(2ζ1)) + ζ1. Then w ≤ 2ζ1

and

−∆w − c

|x|2
w = f(2ζ1) + b ≥ f(w) + b

So w is a supersolution of (P1) and one can construct a weak solution, using a standard

argument of monotone iteration.

�

The following two lemmas are technical.

Lemma 2.3. Fix ε ∈ (0, 1) and for t ∈ R set g̃(s) = supt≥1 gt(s)

where
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gt(s) =


g(s) if s ≤ t

g(t)− 1
ε
(s− t) if s > t

Then g̃(s) is Lipschitz continuous, satisfies (0.6), s→ sg̃(s) is nonincreasing and∫ ∞

1
g̃(s)ds−

∫ ∞

1
g(s)ds ≤ ε/2

Proof. We first check the continuity of g̃(t). Fix 1 ≤ s < t. We have

g̃(s)− g̃(t) = sup
r>1

gr(s)− g̃(t).

Fix any r > 1. Then

gr(s)− g̃(t) < gr(s)− gmin{r,s}(t).

For r < s the right hand side is equal to gr(s) − gr(t) = (t − s)/ε and for r ≥ s it is

equal to g(s)− gs(t) = (t− s)/ε by the definition ot gs(t). So, for any r > 1

gr(s)− g̃(t) ≤ (t− s)/ε,

hence 0 ≤ g̃(s)− g̃(t) ≤ (t− s)/ε, which proves the continuity of g̃(t).

Now we show that

∫ ∞

1
g̃(s)ds−

∫ ∞

1
g(s)ds ≤ ε/2.

Indeed, if g(t) is a step function, the answer is geometrically clear : g̃ is then a

piecewise linear map and the difference between the integrals is given by

∑ ε

2
[g]2(t) ≤ ε

2
g(1)

∑
[g](t) =

ε

2
.

where the sums are taken over all points t of discontinuity of g and where [g](t) denotes

the jump of g at t.

If g isn’t a step function, since g is monotonous, we may approximate it with an

increasing sequence of step functions {gn(t)} and denote gn,s(t) and g̃n(t) the corre-

sponding functions, defined as for g(t). On the one hand,

∫ ∞

1
g̃n(s)ds−

∫ ∞

1
gn(s)ds ≤ ε/2
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for any n ∈ N and on the other hand gn,s(t) ↗ gs(t), g̃n(t) ↗ g̃(t), so the desired

estimate is also true for g(t).

It remains to prove the monotonicity of sg̃(s). It suffices to show that for every

t > 1 the function sgt(s) is nonincreasing. Since it is the case for sg(s) we only have to

check that tgt(t) > sgt(s) for s > t > 1. In fact

sgt(s) = tg(t)− (s− t)(g(t)− s/ε) < tg(t) = tgt(t)

since ε < 1 and s > 1. �

Lemma 2.4. Let µ ∈ (0, 1). There exists a C1, concave, bounded solution Ψ of
Ψ′(t) = g(t/Ψ(t)) for t ≥ 1

Ψ(1) = µ

Proof.

By the preceeding lemma, up to replacing g by g̃, we may assume g Lipschitz

continuous. By Cauchy’s theorem, there exists a unique C1 solution Ψ, which will be

globally defined if we show that it is bounded.

Setting ϕ(t) = t/Ψ(t), γ = ϕ(1) = µ−1 we obtain

ϕ′

ϕ− ϕ2g(ϕ)
=

1
t
, i.e.

∫ ϕ

γ

ds

s− s2g(s)
= log t.

To show that ϕ ≥ t/c for some c > 0 it suffices to see that∫ ϕ

γ

ds

s− s2g(s)
≤ logϕ+ C for ϕ > γ.

The above is equivalent to ∫ ϕ

γ
ds(

1
s− s2g(s)

− 1
s
) ≤ C or

∫ ϕ

γ
ds

g(s)
1− sg(s)

≤ C for some C > 0.

Since tg(t) is nonincreasing, by (0.6) we get for β = 1− γg(γ) > 0∫ ϕ

γ
ds

g(s)
1− sg(s)

≤
∫ ϕ

γ
ds
g(s)
β

<∞.



94

Hence Ψ is bounded.

Finally, since g is nonincreasing, it follows from the equation that Ψ is concave if

t/Ψ(t) is nondecreasing, which holds true, as

(
t

Ψ

)′
=

Ψ− tΨ′

Ψ2
≥ 0

since by (0.6), Ψ(t)/t ≥ g(t/Ψ) = Ψ′(t). �

This last lemma shows the estimate u ≤ C(λ)ζ1 when 0 < λ < λ∗.

Lemma 2.5. Suppose there exists λ∗ > 0 such that (Pλ∗) has a weak solution.

Then for all 0 < λ < λ∗, (Pλ) has a solution u satisfying for some C > 0 (depending

on λ) and for a.e. x ∈ Ω the following estimate

ζ1 ≤ u ≤ Cζ1.

Proof. We let µ = λ/λ∗, define Ψ as in Lemma 2.4. and let u∗ denote a weak solution

of (Pλ∗), v∗ = λ∗ζ1 and w = v∗Ψ(u∗/v∗). Observe that u∗ ≥ v∗ by minimality of ζ1

and apply Lemma 2.1 :

−∆w − c

|x|2
w ≥Ψ′(u∗/v∗)f(u∗) + µλ∗b

≥g
(

u∗/v∗

Ψ(u∗/v∗)

)
f(u∗) + λb

≥f(w) + λb

So the minimal solution u of (Pλ) is bounded by w and since Ψ is bounded, u ≤

Cv∗ ≤ C ′ζ1.

�

We are now in a position to prove Theorem 1.

• Suppose first that (0.8) holds. We show that (Pλ) has a weak solution for λ > 0

small. It is then standard (see e.g. [D]) to show the existence of a finite λ∗ > 0 such

that (Pλ) has a weak solution if and only if λ ≤ λ∗ and by Lemmas 2.0 and 2.5, we will

have proven the first part of Theorem 1.
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By Lemma 2.2, (Pλ) has a solution as soon as G(f(2λζ1)) exists and

G(f(2λζ1)) ≤ λζ1 (2.5)

By definition of g,

f(2λζ1) ≤ g
( ε

2λ

)
f(εζ1)

By (0.8), G(f(2λζ1)) exists and, by minimality of G(f(2λζ1)),

G(f(2λζ1)) ≤ g
( ε

2λ

)
G(f(εζ1)) ≤ Cg

( ε

2λ

)
ζ1

To prove that (2.5) holds for λ small, it is therefore enough to show that

1
λ
g
( ε

2λ

)
→ 0 as λ→ 0

or that

lim
M→∞

Mg(M) = 0

Since M → Mg(M) is nonincreasing, the above limit is well-defined. But if we had

limM→∞Mg(M) = C > 0 then g(M) ∼ C/M near ∞ , contradicting
∫∞
1 g(s)ds <∞.

This completes the proof of the first part of Theorem 1.

• We now prove the second part of Theorem 1 : we assume that for some λ > 0,

(Pλ) has a weak solution uλ and show that (0.8) must hold for some C, ε > 0. By

Lemma 2.2,

∫
Ω
f(λζ1)ζ0 <∞ and G(f(λζ1)) ≤ Cλζ1

So choosing ε = λ and C ′ = Cλ, Theorem 1 is proved.

4.4 Proof of Theorem 2

Step 1. We first prove that uλ is stable for λ ∈ [0, λ∗]. Consider for n ∈ N the minimal

solution un of


−∆un − an(x)un = f(un) + λbn in Ω

un = 0 on ∂Ω
(3.1)
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where an(x) = min(a(x), n) and bn = min(b, n).

On the one hand, it is known that λ1(−∆− an(x)− f ′(un)) ≥ 0. We briefly recall

the proof of this fact : fix p > n and consider the functional F : R×W 2,p(Ω) → Lp(Ω)

defined by

F (λ, u) = −∆u− an(x)u− f(u)− λbn

It follows easily from (0.1) and the implicit function theorem that there exists a unique

maximal curve λ ∈ [0, λ#) → u(λ) such that

F (λ, u(λ)) = 0 and Fu(λ, u(λ)) ∈ Iso(W 2,p, Lp).

If 0 < λ < λ#, since un is the minimal solution of (3.1), un ≤ u(λ) and it follows by

elliptic regularity that un is in the domain of F , so that un = u(λ).

If 0 < λ < λ∗, un is bounded (and hence in the domain of F ) so that we must have

λ# = λ∗ (otherwise we could extend the curve u(λ) beyond λ#, contradicting its

maximality).

So λ1(Fu(λ, un)) never vanishes for λ < λ∗ and since by (0.1), λ1(Fu(0, 0)) > 0,

we conclude that λ1(−∆ − an(x) − f ′(un)) ≥ 0, for 0 ≤ λ ≤ λ∗. On the other hand

un increases with n to a solution of (Pλ), and since un ≤ uλ, the limit is the minimal

solution uλ. Now by monotone convergence we conclude

λ1(−∆− a(x)− f ′(uλ)) ≥ 0.

Step 2. We now show that if f(ζ1)+λb ∈ H∗ and λ < λ∗ then the minimal solution

uλ of (Pλ) belongs to H. We know by Theorem 1, that uλ ≤ Cζ1 so that

0 ≤ f(uλ) ≤ f(Cζ1) ≤ g(1/C)f(ζ1)

Hence, for φ ∈ C∞
c (Ω),∣∣∣∣∫

Ω
(f(uλ) + λb)φ

∣∣∣∣ ≤ ∫
Ω
(Cf(ζ1) + λb)|φ| ≤ C‖φ‖H

So that, G := f(uλ) + λb ∈ H∗. Letting an(x) = min(a(x), n) and un denote the

solution of 
−∆un − an(x)un = G in Ω

un = 0 on ∂Ω
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We have

‖un‖2
H =

∫
Ω
Gun + (an − a)un ≤

∫
Ω
Gun ≤ C‖un‖H

Hence un is bounded in H and uλ ∈ H.

Step 3. Next, following Brezis and Vazquez [BV], we prove that for 0 < λ < λ∗

there is at most one stable solution belonging to H. Arguing by contradiction, let

u1, u2 ∈ H be two distinct stable solutions of (Pλ). We may suppose that u1 = uλ – the

minimal solution. Then by the maximum principle u2 − u1 > Cδ(x) for some C > 0.

The stability for u2 writes λ1(L− f ′(u2)) ≥ 0. We test this inequality against u2 − u1

(Note that we can do it, as u1,2 ∈ H). We obtain

∫
Ω
|∇(u2 − u1)|2 − a(x)(u2 − u1)2 ≥

∫
Ω
f ′(u2))(u2 − u1)2.

Since u1 and u2 are solutions, we also have∫
Ω
|∇(u2 − u1)|2 − a(x)(u2 − u1)2 =

∫
Ω
(f(u2)− f(u1))(u2 − u1).

Hence ∫
Ω
(f(u2)− f(u1))(u2 − u1) ≥

∫
Ω
f ′(u2)(u2 − u1)2

As f is convex f(u2)− f(u1) ≤ f ′(u2)(u2−u1) and since u2−u1 > 0 on Ω we arrive at

f(u2)− f(u1) = f ′(u2)(u2 − u1) a.e. in Ω (3.2)

We claim that

f(t) = 0 for t ∈ [0, ess sup u2]. (3.3)

and give two proofs for it. The first one is elementary but assumes additional regularity

on f whereas the second one achieves full generality at the expense of simplicity. Note

that once (3.3) is proven, we obtain a contradiction with Lemma 1.1, since u1 and u2

would both solve 
−∆u− a(x)u = b in Ω

u = 0 on ∂Ω

• Proof of (3.3) when f ′ is Lipschitz.
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By convexity of f we conclude from (3.2) that f is affine between u1(x) and u2(x)

for almost every x ∈ Ω. Setting for ε ∈ (0, 1), v = εu1 + (1 − ε)u2, the above implies

that f ′′(v(x)) exists for a.e. x ∈ Ω and f ′′(v(x)) = 0 a.e. in Ω.

Using Gagliardo-Nirenberg inequalities, it is clear that v ∈ W 1,1
loc (Ω) since ∆v ∈

L1
δ(Ω). So that after multiplying f ′′(v(x)) by ∇v, we may apply the chain rule and

obtain ∇(f ′(v)) = 0 a.e. in Ω, yielding

f ′(v) = C a.e. in Ω

Repeating this procedure, we obtain

f(v) = Cv +D a.e. in Ω

By convexity of f , this implies in turn that

f(t) = Ct+D for t ∈ [ess inf v, ess sup v].

By Lemma 3.2, ess inf v = 0. Since f(0) = f ′(0) = 0, it follows that f ≡ 0 between

0 and ess sup v. Since ε ∈ (0, 1) is arbitrary, f(t) = 0 for t ∈ [0, ess sup u2]. Remark.

This proof works only when f ′ is Lipschitz. Indeed, one can construct a nonconstant,

monotone and continuous function g such that g′ = 0 a.e. (see e.g. [R] p. 144-145) and

choose f ′ = g.

• Proof of (3.3) without assuming that f ′ is Lipschitz.

Recall that we have also u2(x) − u1(x) ≥ Cδ(x) for a.e. x ∈ Ω. Hence, by (3.2),

we can fix representatives of u1 and u2 such that for every x ∈ Ω either f is affine in

(u1(x), u2(x)) and u2(x)− u1(x) ≥ Cδ(x), or u1(x) = u2(x) = 0. Setting

A =
⋃
x∈Ω

(u1(x), u2(x))

we claim that A ⊇ (ess inf u1, ess sup u2). For this we need the following lemma:

Lemma 3.1. Let v ∈ W 1,1
loc (Ω), where Ω is a connected domain. Then, for any repre-

sentative of v, v(Ω) is dense in [ess inf v, ess sup v]
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Proof. Recall Stampacchia’s theorem (see e.g. [GT]) asserting that if w ∈W 1,1
loc (Ω) then

∇w = 0 a.e. on any set where w is a constant. In particular, if w ∈ W 1,1
loc (Ω; {0, 1}),

w is constant. Suppose by contradiction that there exists a non-void open interval

I ⊂ [ess inf v, ess sup v] such that v(Ω) ∩ I = ∅.

Consider a function s : R \ I → {0, 1} defined by s(x) = 0 for x ≤ inf I, s(x) = 1

elsewhere. Then s(x) is regular and s ◦ v ∈W 1,1
loc (Ω, {0, 1}). We obtain a contradiction

since s ◦ v is not a.e. constant due to

ess inf v ≤ inf I < sup I ≤ ess sup v.

�

Now we prove that A ⊇ (ess inf u1, ess sup u2). Using Gagliardo-Nirenberg inequal-

ities, we know that ∇u1 ∈ L1
loc(Ω) (since ∆u1 ∈ L1

δ). Choose a sequence {Ωn} of

connected subdomains of Ω such that Ωn ⊆ Ωn+1, Ωn ⊂ Ω and ∪Ωn = Ω. Set

An =
⋃

x∈Ωn

(u1(x), u2(x)),

it suffices to show that

An ⊇ In = (ess inf Ωnu1, ess sup Ωn
u2).

Let cn > 0 be such that u2 − u1 > cn on Ωn (note that such a constant exists, since

dist(Ωn, ∂Ω) > 0).) It is clear that An ∩ In 6= ∅.

Choose a connected component (i.e. an interval) A′ of An such that A′∩In 6= ∅. We

show that A′ ⊇ In. Indeed, if inf A′ > inf In then by Lemma 3.1 there exists x ∈ Ω such

that u1(x) ∈ (inf In, inf A′) and inf A′−u1(x) < cn. Then (u1(x), u2(x)) intersects, but

is not contained in A′, which contradicts the maximality of the connected component

A′. Hence, going back we find that f is affine in (ess inf u1, ess sup u2).

Assume temporarily that ess inf u1 = 0. Since f(0) = f ′(0) = 0, f ≡ 0 between 0

and ess sup u2, which completes the proof of (3.3). So it only remains to prove that

ess inf u1 = 0. We prove this in the following lemma.

Lemma 3.2. If h ∈ L1
δ, u ∈ L1(Ω), u ≥ 0 and for all φ ∈ C2(Ω̄), φ|∂Ω = 0,∫

Ω
u(−∆φ) =

∫
Ω
hφ (3.4)



100

then ess inf u = 0.

Proof. Assume by contradiction that u ≥ ε > 0 a.e. in Ω. Let ρn be a standard mollifier

and, extending u and h by 0 in Rn \ Ω, let un = u ∗ ρn and hn = h ∗ ρn. On the one

hand, there exists α > 0 such that for n large enough

un ≥ αε everywhere in Ω

Indeed, since Ω is smooth, there exists α > 0 such that for x ∈ Ω,

un(x) ≥ ε

∫
Ω∩B1/n(x)

ρn(x− y)dy ≥ αε

∫
B1/n(x)

ρn(x− y)dy = αε.

On the other hand, since −∆u = h in D′(Ω), given ω ⊂⊂ Ω, we have for n large enough

−∆un = hn everywhere in ω

Let φ solve 
−∆φ = 1 in ω

φ = 0 on ∂ω
(*)

and integrate by parts to obtain∫
ω
hnφ−

∫
ω
un =

∫
∂ω
un∂νφ ≤ αε

∫
∂ω
∂νφ = −αε|ω|

Now, un → u in L1 and hn → h in L1
δ so that∫

ω
hφ−

∫
ω
u ≤ −αε|ω|

Choosing ω = ωk := {x ∈ Ω : dist(x, ∂Ω) > 1/k} with k → ∞, and writing φk the

corresponding solution of (*), it is clear that φk ↗ φ, where φ solves
−∆φ = 1 in Ω

φ = 0 on ∂Ω

Passing to the limit and using (3.4) we obtain

0 ≤ −αε|Ω|

and we have obtained the desired contradiction.

�
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Step 4. Finally we prove uniqueness of the solution of (Pλ∗). For the sake of

contradiction, let u1 and u2 be two distinct solutions of (Pλ∗), u1 being the minimal

solution. By the maximum principle u2−u1 > Cδ(x) for some C > 0. Set v =
u1 + u2

2
.

Then

−∆v − c

|x|2
v =

f(u1) + f(u2)
2

+ λ∗b ≥ f

(
u1 + u2

2

)
+ λ∗b = f(v) + λ∗b

by convexity of f . Hence v is a supersolution of (Pλ∗) and by Lemma 3.3, it is a solution.

Consequently, we have equality in the above expression and by convexity of f , we

conclude that for almost every x ∈ Ω, f is linear on [u1(x), u2(x)]. Arguing as before,

we obtain the desired contradiction. Following the proof of Martel [M], in the next

lemma we prove nonexistence of strict supersolutions for (Pλ∗).

Lemma 3.3. Suppose that b ∈ Lp for some p > N and let v be a supersolution of

(Pλ∗). Then v is a solution of (Pλ∗).

Proof. Let µ ∈ D′(Ω) defined by

〈µ, φ〉 =
∫

Ω
v

(
−∆φ− c

|x|2
φ

)
− (f(v) + λb)φ for φ ∈ C∞

c (Ω).

Since v is a supersolution, µ is a nonnegative Radon measure. Arguing by contradiction,

suppose now that v is not a solution. This means that µ 6≡ 0. Since a(x)v+f(v)+λb ∈

L1
δ(Ω), we can construct (using Lemma 0.1) the solution ξ ∈ L1(Ω) of

−∆ξ = µ in Ω

ξ = 0 on ∂Ω

By the weak maximum principle ξ > εδ(x) for some ε > 0. On the other hand b ∈ Lp

for some p > N implies η = (−∆)−1(b) ∈ C1,α, hence η < Cδ(x) in Ω for some C <∞.

Set

w = v + εC−1η − ξ

Then w < v and

−∆w = av + f(v) + (λ∗ + εC−1)b > aw + f(w) + (λ∗ + εC−1)b,

hence w is a supersolution to (Pλ∗+εC−1) which contradicts the extremality of λ∗.

�
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4.5 Application 1 : a(x) = c/|x|2, g(u) = up

This equation was extensively studied in [D] and we showed there that, in a domain

Ω containing the origin, (Pλ) has a weak solution (for small λ > 0) if and only if

c ≤ c0 := (n− 2)2/4 and

1 < p < p0 where p0 = 1 + 2/a and a =
n− 2−

√
(n− 2)2 − 4c
2

> 0

In [D] we showed that for b ∈ L
∞

, |x|aζ1 ∈ L
∞

. So when p < p0, ζ
p
1 ∼ |x|−a−2+ε for

some ε > 0 and G(ζp
1 ) ∼ |x|−a so that (0.8) is satisfied.

When p ≥ p0 however, ζp
1 is at least of the order of |x|−a−2 near 0 so that G(ζp

1 ) is

at least of the order of |x|−a ln(1/|x|) and (0.8) never holds. We give the details of a

similar argument to prove the following new result :

Proposition 4.1. Fix 0 < c ≤ (n − 2)2/4, 1 < p < p0, and b ∈ L
∞

. Let λ∗p be the

corresponding extremal parameter and ε = a(p0 − p).Also define θ =
√

(n− 2)2 − 4c.

There exists a constant C, depending only on Ω, n, b such that

C−1{ε(ε+ θ)}
1

p−1 ≤ λ∗p ≤ C{ε(ε+ θ)}
1

p−1

Remark.

• The proposition strengthens the result of [D] by saying that solutions exist

only for λ belonging to a shrinking interval (0, λ∗p] that eventually becomes empty when

p = p0.

• Though the transition is continuous, the rate of convergence of (λ∗p)
p−1 to zero,

jumps from ε when c < c0 to ε2 when c = c0.

Proof.

To simplify notations, we write λ instead of λ∗p and C for any constant depending

only on Ω, n, b and call these constants universal. By Lemma 2.2 we have, for C =∫∞
1 s−pds (which is bounded by a universal constant since p0 ≥ n+2

n−2),

G((λζ1)p) ≤ Cλζ1
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Hence,

λp−1 ≤ C lim
x→0

(ζ1/G(ζp
1 )) (x) (4.1)

Restrict to the case Ω = B1, the unit ball centered at the origin and b ≡ 1. It is then

easy to check that

ζ1 = ζ0 :=
1

2n+ c

(
|x|−a − |x|2

)
(4.2)

and

ζp
0 =

1
(2n+ c)p

|x|−ap
(
1− |x|a+2

)p ≥ 1
(2n+ c)p

(
|x|−ap − p|x|2+a−ap

)
≥ 1

(2n+ c)p

(
|x|−ap − |x|ε

)
=: k

(4.3)

A computation then yields

(2n+ c)pG(k) =
(

1
ε(ε+ θ)

− p

(a+ ε)(a+ ε+ θ)

)
|x|−a

− 1
ε(ε+ θ)

|x|−a+ε +
p

(a+ ε)(a+ ε+ θ)
|x|2+ε (4.4)

Combining (4.1), (4.2), (4.3) and (4.4), it follows that

λp−1 ≤ C(2n+ c)p−1

[
1

ε(ε+ θ)
− p

(a+ ε)(a+ ε+ θ)

]−1

≤ Cε(ε+ θ)

Conversely, applying Lemma 2.2, (Pλ) has a solution as soon as

G((2λζ0)p) ≤ ζ0

Hence, (
λ∗p
)p−1 ≥ 2−p inf

B1

ζ0/G(ζp
0 )

Now,

ζp
0 = ζp−1

0 ζ0 ≤ C|x|−a(p−1)ζ0 ≤ Ck

Hence, we just need to estimate inf ζ0/G(k). Starting from (4.2) and (4.4), and letting

A = (ε(ε+ θ))−1 and r = |x|, it follows that

G(k)/ζ0 ≤ C
A(1− rε)
1− r2+a

≤ C ·A

This inequality provides the desired lower bound on ζ0/G(k) and hence on λ∗p. When
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b ∈ L∞ is arbitrary, we have, using Lemma 1.5 in [D],

C(Ω)
(∫

Ω
bζ0

)
ζ0 ≤ ζ1 ≤ ‖b‖L∞ ζ0

so that all of the above estimates still hold (with new constants.) For a general domain

Ω, let r,R > 0 be such that Br ⊂ Ω ⊂ BR and (extending b by 0 in BR \ Ω) observe

that

λ∗(BR) ≤ λ∗(Ω) ≤ λ∗(Br)

This follows from the fact that if u solves (Pλ) in Ω for some λ > 0, then u is a

supersolution of (Pλ) in Br, so that a solution of (Pλ) in Br may be constructed.

�

4.6 Application 2 : a(x) = c/δ(x)2, Ω = B1

Hardy’s inequality (0.1) holds for 0 < c ≤ 1/4. We show that ζ0 ∈ L
∞

, so that, for

any perturbation b ∈ L∞ and any nonlinearity f satisfying our assumptions (0.5)..(0.7),

(Pλ) has solutions for λ > 0 small.

Proposition 5.1. Let Ω = B1, b ∈ L
∞

(B1), 0 < c ≤ 1/4 and a(x) = c/δ(x)2 =

c/(1− |x|)2. Then

ζ1 = G(b) ∈ L∞(B1)

Proof. Without loss of generality, we restrict to the case b ≡ 1 and c = 1/4. By elliptic

regularity, ζ1 ∈ C∞(B1) and y(r) := ζ1(x) (where r = |x|) solves

y′′ +
n− 1
r

y′ +
1

4(1− r)2
y = −1

r = 1 is a regular singular point and the indicial equation reads :

s(s− 1) + 1/4 = 0

The only root of this equation is s = 1/2 so by a theorem of Frobenius (see e.g.

[T]), there exists a fundamental system of solutions to the homogeneous equation of

the form
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y1 =
√

1− rA(r) y2 =
√

1− r ln(1− r)B(r)

where A and B are analytic in a neighbourhood of r = 1. It follows from the

Wronskian method that

y = C1y1 + C2y2 + y1

∫ 1

r

y2

W
+ y2

∫ 1

r

y1

W

where C1, C2 are constants and W = y′2y1−y′1y2 is the associated Wronskian. From

the expression of y1, y2, it follows that y is bounded.

�

4.7 Application 3 : a(x) = c/dist(x, Σ)2, g(u) = up

In this section, we let Σ be a smooth manifold of codimension k ∈ {3, .., n} (with the

convention that Σ is a point if k = n) contained in a compact subset of Ω. The letter

d denotes the function

d(x) = dist(x,Σ).

For simplicity, we also let b ≡ 1.Finally we define

a = (k − 2)/2− 1
2

√
(k − 2)2 − 4c (6.1)

and

p0 = 1 + 2/a (6.2)

We will show that Hardy’s inequality holds for the potential a(x) = c/d(x)2 provided

c > 0 is chosen small enough and k ≥ 3. As mentioned in the introduction, we obtain

the following critical exponent result :

Proposition 6.1. If 1 < p < p0, condition (0.8) holds If p > p0, condition (0.8) fails

Remark. The case p = p0 remains open.
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Proof. The proof is organized as follows : we start out by constructing a system of

coordinates that transforms Σ into a hyperplane and preserves d(x) = dist(x,Σ). In

that respect, since the case where Σ reduces to a single point was already treated in

[D], we may assume that k < n.

Next, we divide the proof into several lemmas : we first prove Hardy’s inequality and

then compute successively ∆d, ζ0 and G(ζp
0 ). With these estimates, we can then easily

prove Proposition 6.1. Since Σ is smooth, for β > 0 sufficiently small, say β ≤ β0,

each x ∈ Ωβ has a unique projection π(x) ∈ Σ such that d(x) = |x − π(x)|. Let

N1, .., Nk be an orthonormal family of vector fields which are orthogonal to the surface

Σ (they are, at least locally, well defined). Then for each x ∈ Ωβ there exists a unique

α = (α1(x), .., αk(x)) ∈ Rk such that

x = π(x) +
k∑

i=1

αi(x)Ni(π(x))

and letting | · | denote the Euclidean norm in Rk,

d(x) = |α| (6.3)

Now fix a point σ0 ∈ Σ and suppose for simplicity that σ0 = 0. Let

σ :


W → Σ ⊂ Rn

y 7→ σ(y)

be a parametrization of Σ near σ0 = 0, where W is a neighbourhood of 0 in Rn−k.

We may choose σ so that
{

∂σ
∂y1
|σ=0, ..,

∂σ
∂yn−k

|σ=0, N1|σ=0, .., Nk|σ=0

}
be a family of or-

thonormal vectors, which up to a rotation of Rn we may assume to be the canonical

basis.

It follows from the above discussion that there exist β0 > 0,V a neighbourhood of

σ0 = 0 in Ω (which may be assumed to be balanced, i.e. λV ⊂ V for all |λ| < 1), W a

neighbourhood of 0 in Rn−k and a diffeomorphism

J :


V →W ×Bk

β0

x 7→ (y, α)
(6.4)

where Bk
β0

is the ball of radius β0 in Rk centered at the origin and (6.1) holds.
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Observe that J(0) = 0. We claim that J ′(0) = Id. Indeed if H = J−1,

H(y, α) = σ(y) +
k∑

i=1

αiNi(σ(y))

and

H ′(0) =
(
∂σ

∂y1
|σ=0, ..,

∂σ

∂yn−k
|σ=0, N1|σ=0, .., Nk|σ=0

)
= Id

Finally define

l :


Rn → R+

(x1, .., xn) 7→

(
n∑

i=n−k+1

x2
i

)1/2 (6.5)

With these notations (6.3) reads

d(x) = |α| = l(J(x)) (6.6)

Lemma 6.1. Hardy’s inequality. (0.1) holds for a(x) = c/d(x)2 provided c > 0 is

chosen small enough.

Proof. Consider first a function φ ∈ C∞
c (V ) with V as in (6.4) and let ψ = φ ◦ J . By

the standard Hardy inequality, we have∫
Rk

|∇αψ(y, .)|2dα ≥ (k − 2)2

4

∫
Rk

ψ2(y, .)
|α|2

dα

Integrating with respect to y, we obtain∫
Rn

|∇ψ|2 ≥ (k − 2)2

4

∫
Rn

ψ2

l2

Changing coordinates, using (6.2) and the fact that DJ ∼ Id in V , we obtain∫
Rn

|∇φ|2 ≥ c

∫
Rn

φ2

d2

where c can be chosen arbitrarily close to (k − 2)2/4 by shrinking V .

In the general case where φ ∈ C∞
c (Ω), one just needs to use a partition of unity adapted

to a coverage of Σ by neighbourhoods V where the above computation holds. Outside

of this covering, d is bounded below and we therefore have for c > 0 sufficiently small∫
Ω
|∇φ|2 ≥ c

∫
Ω

φ2

d2
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Taking c > 0 even smaller, we then obtain (0.1). Also observe that the above estimates

yield the following inequality, in the spirit of [BM] : for all ε > 0 there exists λ ∈ R

such that ∫
Ω
|∇φ|2 + λ

∫
Ω
φ2 ≥

(
(k − 2)2

4
− ε

)∫
Ω

φ2

d2

The interested reader will find refined versions of the Hardy inequality in [FT] and its

references. Some geometric assumptions on Ω and Σ are however required. �

Lemma 6.2. Let Ωβ = {x ∈ Ω : d(x) < β}. Then

∆d =
k − 1
d

(1 + η) in Ωβ

where η = η(x;β) → 0 uniformly in x ∈ Ωβ as β → 0.

Proof. Use the notations of (6.4) and scale the coordinates, i.e. for ε = β/β0 > 0,

x ∈ V let

x̃ = εx.

Since J(0) = 0 and J ′(0) = Id,

J(x̃) = x̃+ h(x̃) (6.7)

where

h(x̃) =
∫ 1

0
(1− t)(J ′′(tx̃) · x̃ | x̃)dt = ε2o(1) uniformly in x̃ ∈ εV . (6.8)

Using (6.6) and (6.7), we obtain

∂d

∂x̃i
=

∂l

∂zj

(
δij +

∂hj

∂x̃i

)
and

∂2d

∂x̃2
i

=
∂2l

∂z2
j

(
δij +

∂hj

∂x̃i

)2

+
∂2hj

∂x̃2
i

∂l

∂zj

With (6.8), one can show that ∇h = εo(1) and that ∇2h = o(1). It’s also easy to check

from (6.5) that ∇l ∈ L∞ and l∇2l ∈ L∞ so that we finally obtain

∆d = ∆l · (1 + εo(1)) uniformly in εV (6.9)
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Now by a straightforward computation, we have that

∆l =
k − 1
l

(6.10)

Finally,

d(x̃) = l(J(x̃)) = l(x̃)(1 + g(x̃)) (6.11)

where

g(x̃) =
1
l(x̃)

∫ 1

0
∇l(x̃+ th(x̃)) · h(x̃)dt = εo(1) uniformly in x̃ ∈ εV ,

as follows from (6.8) and the fact that ∇l ∈ L
∞

. Collecting (6.9),(6.10) and (6.11),

we obtain the desired result in εV , which remains true in a neighbourhood Ωβ of Σ by

using a finite covering of Σ for which the above computations hold. �

Lemma 6.3. For all ε > 0, there exists C > 0 such that

C−1d−a+εδ ≤ ζ0 ≤ Cd−a−ε

Proof. First observe that we just need to prove the estimates in a neighbourhood of Σ

and apply elliptic regularity elsewhere. Define now

P (X) = X(X − 1) + (k − 1)X + c

and observe that −a (defined in (6.1)) is the larger root of P . Next, fix ε > 0 and define

w = Cd−a−ε

for some constant C to be chosen later on. A simple computation and Lemma 6.2 yield

−∆w − c

d2
w = −CP (−a− ε)d−a−ε−2(1 + η)

By choosing β > 0 small and C large enough, it follows that
−∆w − c

d2
w ≥ 1 in Ωβ

w ≥ ζ0 on ∂Ωβ

and by the maximum principle (apply e.g. Lemma 1.1 to (w − ζ0)−) we obtain the

desired upper bound. The lower bound is obtained in the exact same manner. �
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Lemma 6.4. For all ε > 0 there exists C > 0 such that

G(d−a−2+ε) ≤ Cζ0 and G(d−a−2−2ε) ≥ Cd−a−εδ

. The proof is analogous to that of the previous lemma and we skip it. �Proof of

Proposition 6.1 continued. Recall (6.2) and given p < p0, fix ε > 0 so small that

p(a+ ε) < a+ 2− ε. By Lemma 6.3,

ζp
0 ≤ Cd−a−2+ε

And by Lemma 6.4,

G(ζp
0 ) ≤ Cζ0

Conversely if p > p0, let ε0 > 0 be such that p(a− ε0) > a+ 2 + 2ε0. By Lemma 6.3,

ζp
0 ≥ Cd−a−2−2ε0δp

And by Lemma 6.4,

G(ζp
0 ) ≥ Cd−a−ε0δ

Applying Lemma 6.3 with ε < ε0, we obtain that (0.8) can never hold. �
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équations de la chaleur linéaires avec potentiel singulier. C. R. Acad. Sci. Paris
Sr. I Math. 329 (1999), 973–978.

[D] L. Dupaigne, A nonlinear elliptic PDE with the inverse square potential, Preprint
(2001).

[FT] S. Filippas and A. Tertikas Optimizing Improved Hardy Inequalities Preprint
downloadable at ”http://www.math.uoc.gr/ tertikas/” (2001).

[GT] D. Gilbarg and N.S. Trudinger Elliptic partial differential equations of second
order Second edition, Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences], Springer-Verlag 224 (1983)

[KV] N.J. Kalton and I.E. Verbitsky Nonlinear equations and weighted normed inequal-
ities Trans. Amer. Math. Soc. 9351 (1999)3441–3497

[M] Y. Martel Uniqueness of weak extremal solutions for nonlinear elliptic problems
Houston J. Math. 23 1997 161–168

[R] W. Rudin Real and complex analysis McGraw-Hill Book Co., 3rd International
(1987)

[T] G. Teschl Ordinary differential equations and dynamical systems download at
www.mat.univie.ac.at/˜gerald/ftp/book-ode

[1] J.L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behavior
of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000),
103–153.



112

Chapter 5

Hardy-type inequalities

5.1 Introduction

The well-known Hardy inequality states that for any given domain Ω ⊂ Rn, n ≥ 3 and

any u ∈ C∞
c (Ω),

K2

∫
Ω

u2

|x|2
≤
∫

Ω
|∇u|2, (5.1)

where K = (n− 2)/2.

In particular, for c < K2, the operator L0 := −∆ − c/|x|2 has a positive first

eigenvalue (and this fact is still true when c = K2, using a refined version of (5.1) due

to Brezis and Vazquez).

In this section, we first consider operators of the form L = −∆−a(x), where a(x) =

c/d(x,Σ)2, d being the distance function and Σ a submanifold of Ω of codimension k 6= 2.

As announced in [DD], such potentials a(x) provide an example of a limiting case where

some maximum principles for the associated parabolic operator P = ∂t−∆− a(x) still

hold : roughly speaking, any positive solution of Pu ≥ 0 can be bounded below by the

first eigenfunction φ1 of L, i.e. for some c(t) > 0,

u ≥ c(t)φ1. (5.2)

For c ≤ H2, where H = (k−2)/2, we prove indeed that the first eigenvalue of L remains

finite. In fact, we provide a refinement of the analogous of inequality (5.1), so that the

theory developped in [DD] still applies (see Theorem 1).



113

5.2 Hardy inequalities

Theorem 1. Let Ω ⊂ Rn be an open bounded set and Σ ⊂ Ω be a compact smooth

manifold without boundary of codimension k 6= 2. Let H = k−2
2 . Then there exists

p > 2 and C > 0, γ > 0 independent of u such that for any u ∈ C∞
0 (Ω \ Σ)

γ
(∫

Ω
|u|p
)2/p

+H2

∫
Ω

u2

d2
≤
∫

Ω
|∇u|2 + C

∫
Ω
u2, (5.3)

where d(x) = dist(x,Σ).

Lemma 1. Let k 6= 2 and H = (k − 2)/2. There exists a constant C > 0 depending

only on k such that∫ 1
2

0

[(
du

dr

)2

−H2u
2

r2

]
rk−1 dr + C

∫ 1
2

0
u2rk−1 dr ≥

∫ 1
2

0

[(
du

dr

)2

+H2u
2

r2

]
rk dr +

1
4

∫ 1
2

0
r

(
dv

dr

)2

dr (5.4)

for all u ∈ C∞
c (0, 1

2), and where v(r) = rHu(r).

Proof. Let u ∈ C∞
c (0, 1

2) and v(r) = rHu(r). A standard computation yields[(
du

dr

)2

−H2u
2

r2

]
rk−1 = r

(
dv

dr

)2

−H
d
(
v2
)

dr
. (5.5)

Integrating, it follows that

A :=
∫ 1

2

0

[(
du

dr

)2

−H2u
2

r2

]
rk−1 dr =

∫ 1
2

0
r

(
dv

dr

)2

dr. (5.6)

Similarly, using (5.5) and an integration by parts,

B :=
∫ 1

2

0

[(
du

dr

)2

+H2u
2

r2

]
rk dr

=
∫ 1

2

0
r2
(
dv

dr

)2

dr + 2H2

∫ 1
2

0

u2

r2
rk dr −H

∫ 1
2

0
r

[
d
(
v2
)

dr

]
dr

=
∫ 1

2

0
r2
(
dv

dr

)2

dr +
(
2H2 +H

) ∫ 1
2

0
v2 dr. (5.7)

Using integration by parts again, it follows that for given ε > 0, there exists C > 0 such

that ∫ 1
2

0
v2 dr = −2

∫ 1
2

0
rv
dv

dr
dr ≤ C

∫ 1
2

0
v2r dr + ε

∫ 1
2

0

(
dv

dr

)2

r dr

= C

∫ 1
2

0
u2rk−1 dr + ε

∫ 1
2

0

(
dv

dr

)2

r dr. (5.8)
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Collecting (5.6),(5.7) and (5.8), we obtain for ε small enough

A−B ≥
∫ 1

2

0
r(1−r−Cε)

(
dv

dr

)2

dr−C
∫ 1

2

0
u2rk−1 dr ≥ 1

4

∫ 1
2

0
r

(
dv

dr

)2

dr−C
∫ 1

2

0
u2rk−1 dr.

Lemma 2. Let k 6= 2, H = (k − 2)/2 and c > c̄ > 0. There exists constants C, τ > 0

depending only on k and c̄ such that∫ 1
2

0

[(
du

dr

)2

− (H2 − c)
u2

r2

]
rk−1 dr + C

∫ 1
2

0
u2rk−1 dr ≥

∫ 1
2

0

[(
du

dr

)2

+ (H2 + c)
u2

r2

]
rk dr + τ

∫ 1
2

0

[(
du

dr

)2

+ c
u2

r2

]
rk−1 dr (5.9)

for all u ∈ C∞
c (0, 1

2).

Proof. It follows from (5.4) that if

D :=
∫ 1

2

0

[(
du

dr

)2

− (H2 − c)
u2

r2

]
rk−1 dr + C

∫ 1
2

0
u2rk−1 dr (5.10)

and

E :=
∫ 1

2

0

[(
du

dr

)2

+ (H2 + c)
u2

r2

]
rk dr (5.11)

then

D − E ≥ c

∫ 1
2

0

u2

r2
(1− r)rk−1 dr +

1
4

∫ 1
2

0
r

(
dv

dr

)2

dr

≥ c

2

∫ 1
2

0

u2

r2
rk−1 dr +

1
4

∫ 1
2

0
r

(
dv

dr

)2

dr. (5.12)

We can also rewrite (5.5) as

rk−1

(
du

dr

)2

= H2u
2

r2
rk−1 + r

(
dv

dr

)2

−H
d
(
v2
)

dr

so that if τ = min( c̄
4H2 ,

1
4),

τ

∫ 1
2

0
rk−1

(
du

dr

)2

dr ≤ c̄

4

∫ 1
2

0

u2

r2
rk−1 dr +

1
4

∫ 1
2

0
r

(
dv

dr

)2

dr. (5.13)

It then follows from (5.12) and (5.13) that

D − E ≥ τ

∫ 1
2

0
rk−1

(
du

dr

)2

dr +
c

4

∫ 1
2

0

u2

r2
rk−1 dr. (5.14)

Hence (5.9) holds.
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Lemma 3. Let k 6= 2, H = (k− 2)/2 and β > 0. Let Bk
β denote the ball of Rk centered

at the origin and of radius β. There exist positive constants C = C(β, k), τ = τ(k) and

α = α(β, k) such that ∫
Bk

β

(
|∇u|2 −H2 u

2

|y|2

)
dy + C

∫
Bk

β

u2dy ≥

1
2β

∫
Bk

β

|y|
(
|∇u|2 +H2 u

2

|y|2

)
dy + τ

∫
Bk

β

|∇(u− u0)|2 dy + α

∫ β

0
r

(
dv0
dr

)2

dr (5.15)

for all u ∈ C∞
c (Bk

β \ {0}) and where u0(r) = u0(|y|) = −
∫
∂Bk

r
udσ and v0(r) = rHu0(r).

Proof. Let {fi}∞i=0 be an orthonormal basis of L2(Sk−1), composed of eigenvectors

of the Laplace-Beltrami operator ∆|Sk−1 . The corresponding eigenvalues are given by

cni = ni(k+ni− 2), where ni = 0, 1, .., 1, 2, .., 2, 3, .. ranges over the integers, according

to multiplicity of each eigenvalue (see e.g. ??).

Any u ∈ C∞
c (Bk

1
2

\ {0}) can then be written as

u(x) =
∞∑
i=0

ui(r)fi(θ)

where 1
2 > r > 0, θ ∈ Sk−1 and x = rθ.

Furthermore, for g ∈ C(R+,R),∫
Bk

1
2

|∇u|2 g(|y|)dy =
∫ 1

2

0
rk−1g(r) dr

∫
Sk−1

[(
∂u

∂r

)2

+
1
r2
|∇θu|2

]
dθ

=
∞∑
i=0

∫ 1
2

0
rk−1g(r)

[(
dui

dr

)2

+
cni

r2
u2

i

]
dr. (5.16)

For i = 0, it follows from (5.4) that if v0(r) = rHu0(r),∫ 1
2

0

[(
du0

dr

)2

−H2u
2
0

r2

]
rk−1 dr + C

∫ 1
2

0
u2

0r
k−1 dr ≥

∫ 1
2

0

[(
du0

dr

)2

+H2u
2
0

r2

]
rk dr +

1
4

∫ 1
2

0
r

(
dv0
dr

)2

dr, (5.17)

while (5.9) implies that for i ≥ 1,∫ 1
2

0

[(
dui

dr

)2

− (H2 − cni)
u2

i

r2

]
rk−1 dr + C

∫ 1
2

0
u2

i r
k−1 dr ≥

∫ 1
2

0

[(
dui

dr

)2

+ (H2 + cni)
u2

i

r2

]
rk dr + τ

∫ 1
2

0

[(
dui

dr

)2

+ cni

u2
i

r2

]
rk−1 dr. (5.18)
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Using (5.17),(5.18) and (5.16) with g(r) ≡ 1 for terms involving rk−1 and g(r) = r for

terms in rk, (5.15) follows for β = 1
2 . The general case is obtained by scaling.

For the proof of Theorem 1 we will introduce some notation. Define

Ωβ = {x | dist(x,Σ) < β }.

We will work only with β small enough so that the projection π : Ωβ → Σ given by

|π(x)− x| = dist(x,Σ) is well defined and smooth.

Let {Vi}i=1,...,m be a family of open disjoint subsets of Σ such that

Σ =
m⋃

i=1

V i, and |V i ∩ V j | = 0 ∀i 6= j.

We can also assume that:

a) ∀i = 1, . . . ,m there exists a smooth diffeomorphism

pi : Bn−k
1 → Ui

where Ui ⊂ Σ is open and V i ⊂ Ui;

b) p−1
i (Vi), which is an open set in Rn−k, has a Lipschitz boundary; and

c) there is a smooth choice of unit vectors N i
1(σ), . . . , N i

k(σ) ∀σ ∈ Ui which form an

orthonormal frame for Σ on Ui ⊂ Rn , i.e. ∀σ ∈ Ui

N i
j(σ) ∈ Rn, N i

j(σ) ·N i
k(σ) = δjk, and N i

j(σ) · v = 0 ∀v ∈ TσΣ.

Let Wi = p−1
i (Vi). For z ∈ Wi we will also write (abusing the notation) N i

j(z) =

N i
j(pi(z)). Let

Fi(y, z) = pi(z) +
k∑

j=1

yjN
i
j(z),

where y = (y1, .., yk) ∈ Bk
β and z ∈Wi, so that Fi is a smooth diffeomorphism between

Bk
β ×Wi and T i

β, where

T i
β = π−1(Vi) ∩ Ωβ . (5.19)

It follows from the condition |V i∩V j | = 0 ∀i 6= j that |T i
β ∩T

j
β| = 0 ∀i 6= j, and hence,

for any f ∈ L1(Ωβ) we have:∫
Ωβ

f =
m∑

i=1

∫
T i

β

f

=
m∑

i=1

∫
Wi×Bk

β

f ◦ Fi(y, z) JFi(y, z) dy dz,
(5.20)
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where JFi(y, z) stands for the Jacobian of Fi at (y, z). We claim that

JFi(y, z) = Hi(z)(1 +O(|y|)), (5.21)

where O(|y|) denotes a quantity bounded by |y| (uniformly for z ∈ Wi) and Hi(z) a

smooth function, which is bounded away from zero. More precisely

Hi(z) = Jpi(z) =
√(

Dpi(z)
)∗
Dpi(z).

To prove (5.21) is suffices to observe that JFi(y, z) is smooth and to compute it at

y = 0:

JFi(0, z)2 = det (DFi(0, z)∗DFi(0, z))

= det
([
Dzpi|N i

1, . . . , N
i
k

]∗ [
Dzpi|N i

1, . . . , N
i
k

])
= det

 (Dzpi)∗Dzpi 0

0 I


Proof of Theorem 1. First, observe that it is sufficient to prove the theorem for u with

support near Σ. Indeed, (the following trick is taken from Vázquez and Zuazua): let

η ∈ C∞
0 (Rn) so that η ≡ 1 in Ωβ/2 and supp(η) ⊂ Ωβ . Let u ∈ C∞

0 (Ω \ Σ) and write

u = u1 + u2 where u1 = ηu, u2 = (1 − η)u. Assume then that the conclusion of the

theorem holds for u1. Then∫
Ω
|∇u|2 −H2u

2

d2
=

∫
Ω
|∇u1|2 −H2u

2
1

d2
+
∫

Ω
|∇u2|2 −H2u

2
2

d2

+2
∫

Ω
∇u1 · ∇u2 −H2u1u2

d2
. (5.22)

Since 1
d is bounded away from Σ we have∫

Ω

u2
2

d2
+
u1u2

d2
≤ C

∫
Ω
u2.

Also note that∫
Ω
∇u1 · ∇u2 =

∫
Ω
η(1− η)|∇u|2 − |∇η|2u2 + u∇u · ∇η(1− 2η)

=
∫

Ω
η(1− η)|∇u|2 − |∇η|2u2 − 1

2

∫
Ωβ\Ωβ/2

u2∇ ·
(
∇η(1− 2η)

)
≥ −C

∫
Ω
u2. (5.23)
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It follows from (5.22), (5.23) that∫
Ω
|∇u|2 −H2u

2

d2
≥
∫

Ω
|∇u1|2 −H2u

2
1

d2
+
∫

Ω
|∇u2|2 − C

∫
Ω
u2.

Using (5.3) with u1 we thus conclude that∫
Ω
|∇u|2 −H2u

2

d2
+ C

∫
Ω
u2 ≥ γ

(∫
Ω
|u1|p

)2/p
+
∫

Ω
|∇u2|2,

for some γ > 0 independent of u. From here the conclusion of the theorem for u follows

easily.

Let Ii denote the quantity

Ii =
∫

T i
β

|∇u|2 −H2u
2

d2
+ u2,

where T i
β was defined in (5.19). In what follows we will fix i and show that there is

p > 2 and C > 0 independent of u such that

(∫
T i

β

|u|p
)2/p

≤ CIi.

For simplicity, and since i is fixed, we will drop the index i from all the notation that

follows.

Let us introduce some additional notation:

ũ(y, z) = u(F (y, z))

ũ0(r, z) = −
∫

∂Br

ũ(y, z) ds(y)

v0(r, z) = rH ũ0(r, z).

Let us write

∇u = ∇N u+∇T u

where ∇N u is the gradient of u is the normal direction and ∇T u is orthogonal to ∇N u.

More precisely, for a point x = F (y, z)

∇N u(x) =
k∑

j=1

∇u(x) ·Nj(z)Nj(z).
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Step 1. There exists C > 0 independent of u such that

CI ≥
∫

W×Bk
β

|∇yũ|2|y| dy dz +
∫

W×Bk
β

∣∣∇y

(
ũ(y, z)− ũ0(y, z)

)∣∣2 dy dz
+
∫

W

∫ β

0

(∂v0
∂r

)2
r dr dz +

∫
W×Bk

β

|(∇T u) ◦ F |2 dy dz.
(5.24)

First note that by (5.20), there is a constant C > 0 such that

I ≥
∫

W×Bk
β

(
|∇N u(F (y, z))|2 −H2 ũ

2

|y|2

)
H(z) dy dz

−C
∫

W×Bk
β

(
|∇N u(F (y, z))|2 +H2 ũ

2

|y|2

)
H(z)|y| dy dz (5.25)

+
∫

W×Bk
β

(
|∇T u(F (y, z))|2 + ũ2

)
(1− C|y|)H(z) dy dz.

For fixed z we can apply Lemma 3 to the function ũ(·, z). Observe that

∂ũ(y, z)
∂yj

= ∇u(F (y, z)) ·Nj(z)

and thus

|∇yũ(y, z)|2 = |∇N u(F (y, z))|.

Lemma 3 then yields∫
Bk

β

(
|∇N u(F (y, z))|2 −H2 u

2

|y|2

)
dy + C

∫
Bk

β

ũ2 dy ≥

1
2β

∫
Bk

β

|y|
(
|∇N u(F (y, z))|2 +H2 ũ

2

|y|2

)
dy + τ

∫
Bk

β

|∇y(ũ− ũ0)|2 dy + α

∫ β

0
r

(
dv0
dr

)2

dr.

(5.26)

We choose (and fix once and for all) β > 0 small enough so that 1/(2β) ≥ C + 1. Then

multiplying (5.26) by H(z), integrating over W and combining the result with (5.25)

we conclude that (5.24) holds.

Step 2.

‖∇v0‖2
L2(W×B2

β) ≤ CI. (5.27)

By (5.24) the partial derivative ∂v0
∂r is bounded in L2(W ×B2

β) by CI. We just have to

control the derivatives ∂v0
∂zi

, i = 1, . . . , n− k. But

∂v0
∂zi

(r, z) = rH−
∫

∂Br

∂ũ

∂zi
(y, z) ds(y)
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and
∂ũ

∂zi
(y, z) = ∇u(F (y, z)) ·

 ∂p
∂zi

+
k∑

j=1

yj
∂Nj

∂zi

 .
But note that ∂p

∂zi
is a tangent vector, hence

|∇zũ(y, z)| ≤ |∇T u(F (y, z))|+ |y||∇N u(F (y, z))|.

Integrating over W ×Bk
β we have∫

W×Bk
β

|∇zũ(y, z)|2 dy dz ≤ CI, (5.28)

for some C independent of u by (5.24). It follows that∫
W×Bk

β

|∇zv0|2 dy dz =
∫

W

∫ β

0
r2H+1

∣∣∣∣−∫
∂Br

∇zũ(y, z) ds(y)
∣∣∣∣2 dr dz

≤
∫

W

∫ β

0
rk−1−

∫
∂Br

|∇zũ(y, z)|2 ds(y) dr dz

≤ C

∫
W×Bk

β

|∇zũ(y, z)|2 dy dz

≤ CI

by (5.28).

Step 3. There is p > 2 such that

‖ũ0‖2
Lp(W×Bk

β)
≤ CI. (5.29)

More precisely, for k ≥ 3 one can take any 2 < p < pk where pk is given by

1
pk

=
1
2
− 2
k(n− k + 2)

,

and for k = 1 one can take 2 < p ≤ p1 where p1 is given by

1
p1

=
1
2
− 1
n+ 1

.

Using Sobolev’s inequality (on W ×B2
β) combined with (5.27) we obtain∫

W

∫ β

0
|v0|qr dr dz ≤ CIq/2,

with q given by 1
q = 1

2 −
1

n−k+2 . That is, in terms of ũ0 we have∫
W

∫ β

0
|ũ0|qrqH+1 dr dz ≤ CIq/2. (5.30)
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We want an estimate for
∫
|ũ0|prk−1 dr dz for some suitable 2 < p < q and for this we

use Hölder’s inequality, distinguishing two cases:

Case : k ≥ 3. We have∫
W

∫ β

0
|ũ0|prk−1 dr dz =

∫
W

∫ β

0
|ũ0|prαrk−2−αr dr dz

≤ C

(∫
W

∫ β

0
|ũ0|q rαq/p+1 dr, dz

)p/q (∫ β

0
r

k−2−α
1−p/q

+1
dr

)1−p/q

.

(5.31)

We then choose α so that
α

p
= H =

k − 2
2

.

In order to have the second factor on the right hand side of (5.31) finite we need to

impose
k − 2− α

1− p/q
> −2

which is equivalent to the condition

α <
k

1 + 4
q(k−2)

.

Thus we need p = α/H < pk where pk is given by

pk =
2k

(k − 2)
(
1 + 4

q(k−2)

)
i.e.

1
pk

=
1
2
− 2
k(n− k + 2)

.

Observe that pk > 2. Combining then (5.30) and (5.31) finishes this case.

Case: k = 1. In this case q is given by 1
q = 1

2 −
1

n+1 , and we can choose p = q:∫
W

∫ β

0
|ũ0|qrk−1 dr dz =

∫
W

∫ β

0
|ũ0|q dr dz

≤
∫

W

∫ β

0
|ũ0|qr−q/2+1 dr dz

=
∫

W

∫ β

0
|ũ0|qrHq+1 dr dz

because −q/2 + 1 < 0.
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Step 4.

‖ũ− ũ0‖2
L2∗ (W×Bk

β)
≤ CI. (5.32)

This is a consequence of Sobolev’s inequality applied to the function ũ − ũ0 on the

domain W ×Bk
β . (5.24) already provides a bound in L2(W ×Bk

β) for ∇y(ũ− ũ0). Hence

we only need to obtain a bound for the derivative with respect to z. For the function ũ

we have it already in (5.28). For ũ0 it is derived by a computation very similar to that

at then end of Step 2.

Conclusion. By (5.29) and (5.32) we see that

‖ũ‖2
Lp(W×Bk

β)
≤ CI

for some C independent of u. Changing variables and reintroducing the index i we have

‖u‖2
Lp(T i

β) ≤ C

∫
T i

β

|∇u|2 −H2u
2

d2
+ u2.

Adding these inequalities over i proves the statement of the theorem.
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