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Curriculum vitae

CARMINATI Rémi

Né le 17 février 1971 a Thonon (Haute-Savoie)
Nationalité francaise

Marié

Adresse personnelle : Adresse professionnelle :

24, rue Marceau Laboratoire EM2C

92130 Issy les Moulineaux Ecole Centrale Paris, 92295 Chatenay-Malabry Cedex
Téléphone: 01 46 38 21 91 Téléphone: 01 41 13 10 66

E-mail : remi@em2c.ecp.fr

Situation actuelle

Maitre de Conférences a I’Ecole Centrale Paris (depuis le 01/09/1997).
Disciplines d’enseignement : Physique et Energétique.
Activités de recherche: chercheur dans ’équipe “Optique électromagnétique et rayonnement

thermique” du Laboratoire d’Energétique Moléculaire et Macroscopique; Combustion (EM2C),
UPR 288 du CNRS.

Formation et titres universitaires francgais
— Diplome de I’Ecole Centrale Paris obtenu en 1993.

— DEA Physique des Transferts et Combustion (Ecole Centrale Paris) obtenu en 1993.
Mention bien.

— Doctorat de I’Ecole Centrale Paris, these soutenue le 9 septembre 1996.
Sujet: “Analyse de la formation des images en optique de champ proche”.
Mention tres honorable avec félicitations.

Directeur de these: Jean-Jacques Greffet, Professeur a ’'ECP.

— Séjour post-doctoral au Département de Théorie de la Matiere Condensée (groupe du Prof.
M. Nieto-Vesperinas) de I'Institut de Sciences des Matériaux de Madrid (CSIC) d’octobre
1996 & septembre 1997. Financement dans le cadre d’un réseau Européen.

Activités d’enseignement (effectuées avant juin 2002)
FEnseignement a [’Ecole Centrale Paris

— Cours (en 2001-2002) et Travaux Dirigés (depuis 1994-1995) d’Electromagnétisme, 2éme
année.

— Cours de Rayonnement et Propriétés des Surfaces (depuis 2001-2002), 3éme année, option
“Mécanique-Aéronautique-Energie” (MAE).
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— Cours optionnel (Module Thématique) de Pratique de la Modélisation en Physique (depuis
2000-2001), 2éme année.

— Cours optionnel (Module Thématique) d’Optique de Fourier (de 1997-1998 a 1999-2000),
lére année.

— Travaux Dirigés de Transferts Thermiques (depuis 1997-1998), 2éme année.
— Travaux Dirigés de Physique Statistique (de 1997-1998 & 2000-2001), lére année.

— Séances de Méthodologie-Dimensionnement en Transferts Thermiques (depuis 1997-1998),
3eme année, option MAE.

— Responsabilité de la branche “Energie-Propulsion” de I’option MAE (depuis 2001-2002, 19
éleves en 20001-2002).

FEnseignement a [’Ecole Supérieure d’Optique

— Travaux Dirigés d’Electromagnétisme (de 1994-1995 a 1997-1998), lére année.

FEnseignements de DEA

— Cours de Microscopies de Champ Proche (depuis 1999-2000), DEA d’Optique et Photonique
et Module de These de I’Ecole Doctorale Ondes et Matiere d’Orsay.

— Cours de Rayonnement et Propriétés des Surfaces (depuis 2001-2002), DEA Physique des
Transferts et Combustion, Ecole Centrale Paris (cours commun avec I'option MAE de
3eme année).

Encadrement de travaux de recherche
Stages de DFA et de fin d’études

— Mars-juillet 1998: co-encadrement (80%) du stage de fin d’Etudes (et équivalent DEA)
de Rachid ELALOUFI. Modélisation de la microscopie optique de champ proche en mode
illumination.

— Janvier-juillet 2001: co-encadrement (80%) du stage de DEA de Marjorie THOMAS.
FEmission dipolaire au voisinage d’un nano-objet métallique.

Théses

— Octobre 1996 - janvier 1999: participation a I’encadrement (15%) de la thése de Jean-
Baptiste THIBAUT. Propagation de la lumiére en milieu aléatoire. Fondements et limites
de la description radiométrique. Application a [’imagerie.

— Depuis octobre 1999 : co-encadrement (70%) de la these de Rachid ELALOUFI. Propagation
et transfert diffusif du rayonnement en milieu fortement diffusant. Application a ’imagerie.

— Depuis janvier 2000: participation a I’encadrement (15%) de la thése de Jean-Philippe
MULET. Emission thermique et transferts radiatifs et conductifs aux courtes échelles de
longueur.



— Depuis octobre 2001 : co-encadrement (70%) de la these de Marjorie THOMAS. Emission
dipolaire en géométrie confinée et diffusion résonante par un systéme de particules.

— Depuis octobre 2001 : participation a ’encadrement (15%) de la thése de Frangois MARQUIER.
Ftude expérimentale et théorique de I’émission thermique cohérente par des surfaces
microstructurées.

Langues étrangéres

Anglais (courant), Espagnol (lu, parlé), Allemand (lu, parlé).

Séminaires invités
R. Carminati, “Theory and modelling of apertureless near-field optical microscopy”, Département

de Physique, Groupe de Nano-Optique et Optique Quantique, Université de Constance, Allemagne,
février 2000.
R. Carminati, K. Joulain, J.-P. Mulet, J.-J. Greffet, “Emission thermique en champ proche : vers

le STM photonique?”, Laboratoire de Physique, Université de Bourgogne, Dijon, 19/01/2001.

R. Carminati, “Principes et modélisation de la microscopie optique de champ proche”, Laboratoire
de Physico-Chimie des Matériaux Luminescents, Université Claude Bernard Lyon I, 12/06/2001.

R. Carminati, K. Joulain, J.-P. Mulet, J.-J. Greffet, “Transfert radiatif & échelle mésoscopique:
de l’'optique de champ proche au rayonnement thermique”, Laboratoire d’Optique Physique,
ESPCI, Paris, 4/10/2001.

R. Carminati, “Théoreme de réciprocité et ondes évanescentes”, Laboratoire Ondes et Acoustique,

ESPCI, Paris, 7/03/2002.

R. Carminati, “Transferts radiatifs aux courtes échelles spatiales : limite des concepts classiques”,
Journée de la Société Francaise de Thermique, Paris, 19/06/2002.

Divers

Rapporteur de revues de physique (Physical Review, Physical Review Letters, Journal of Applied
Physics, Applied Physics Letters, European Physical Journal) et d’optique (Journal of the Optical
Society of America, Optics Letters, Optics Communications, Journal of Optics A).

Séjour invité de deux mois en mai-juin 1999 & I’Université Autonome et a I'Institut de Sciences
des Matériaux de Madrid (Prof. M. Nieto-Vesperinas et Prof. J.J. Sdenz).

Séjour invité d’une semaine en février 2000 a I’Université de Constance, Allemagne (Groupe de
Nano-optique, Dr V. Sandoghdar).
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3/ E.R. Méndez, J.-J. Greffet and R. Carminati, “On the equivalence between the illumination
and collection modes of the scanning near-field optical microscope”, Opt. Comm. 142, 7-13

(1997).

4/ J.-J. Greffet and R. Carminati, “Image formation in near-field optics”, Prog. Surf. Science
56, 133-237 (1997).

5/ A. Madrazo, R. Carminati, M. Nieto-Vesperinas and J.-J. Greffet, “Polarization effects in the
optical interaction between a nanoparticle and a corrugated surface : implications for apertureless
near-field microscopy”, J. Opt. Soc. Am. A 15, 109-119 (1998).

6/ P.J. Valle, R. Carminati and J.-J. Greffet, “Contrast mechanisms in illumination-mode
SNOM?”, Ultramicroscopy 71, 39-48 (1998).
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waves”, .J. Opt. Soc. Am. A 15, 706-712 (1998).
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Phys. Rev. Lett. 82, 1660-1663 (1999).

9/ J. Ripoll, M. Nieto-Vesperinas and R. Carminati, “Spatial resolution of diffuse photon-density
waves”, J. Opt. Soc. Am. A 16, 1466-1476 (1999).

10/ P.J. Valle, J.-J. Greffet and R. Carminati, “Optical contrast, topographic contrast and
artifacts in illumination-mode scanning near-field optical microscopy”, J. Appl. Phys. 86, 648—

656 (1999).

11/ L. Aigouy, F.X. Andréani, A.C. Boccara, J.C. Rivoal, J.A. Porto, R. Carminati, J.-J. Greffet,
V. Mathet and P. Beauvillain, “Near-field optical spectroscopy using an incoherent light source”,
Appl. Phys. Lett. 76, 397-399 (2000).

12/ S. Gémez-Monivas, J.J. Sdenz, R. Carminati and J.-J. Greffet, “Theory of electrostatic
probe microscopy : a simple perturbative approach”, Appl. Phys. Lett. 76, 2955-2957 (2000).

13/ R. Carminati and J.J. Sdenz, “Scattering theory of Bardeen’s formalism for tunneling : new
approach to near-field microscopy”, Phys. Rev. Lett. 84, 5156-5159 (2000).

14/ J.B. Thibaud, R. Carminati and J.-J. Greffet, “Scattering of a diffusive wave by a subsurface
object”, J. Appl. Phys. 87, 7638-7646 (2000).

15/ R. Carminati, J.J. Sdenz, J.-J. Greffet and M. Nieto-Vesperinas, “Reciprocity, unitarity and
time-reversal symmetry of the S-matrix of fields containing evanescent components”, Phys. Rev.
A 62, 12712 (2000).
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17/ A.V. Shchegrov, K. Joulain, R. Carminati and J.-J. Greffet, “Near-field spectral effects due
to electromagnetic surface excitations”, Phys. Rev. Lett. 85, 1548-1551 (2000).

18/ J.A. Porto, R. Carminati and J.-J. Greffet, “Theory of electromagnetic field imaging and
spectroscopy in scanning near-field optical microscopy”, J. Appl. Phys. 88, 4845-4850 (2000).

19/ C. Henkel, K. Joulain, R. Carminati and J.-J. Greffet, “Spatial coherence of thermal near
fields”, Opt. Comm. 186 5767 (2000).

20/ J.P. Mulet, K. Joulain, R. Carminati and J.-J. Greffet, Comment on “Radiative transfer
over small distances from a heated metal”, Opt. Lett. 26, 480-481 (2001).

21/ J.N. Walford, J.A. Porto, R. Carminati, J.-J. Greffet, P.M. Adam, S. Hudlet, J.-L. Bijeon, A.
Stashkevich and P. Royer, “Influence of tip modulation on image formation in scanning near-field
optical microscopy”, J. Appl. Phys. 89, 5159-5169 (2001).

22/ J.P. Mulet, K. Joulain, R. Carminati and J.-J. Greffet, “Nanoscale radiative heat transfer
between a small particle and a plane surface”, Appl. Phys. Lett. 78, 2931-2933 (2001).

23/ J. Ripoll, V. Ntziachristos, R. Carminati and M. Nieto-Vesperinas, “Kirchhoff approximation
for diffusive waves”, Phys. Rev. F 64, 51917 (2001).

24/ S. Gémez-Moiivas, L.S. Froufe, R. Carminati, J.-J. Greffet and J.J. Sdenz, “Tip-shape
effects on electrostatic force microscopy resolution”, Nanotechnology 12, 496-499 (2001).

25/ J.-J. Greffet, R. Carminati, K. Joulain, J.P. Mulet, S. Mainguy and Y. Chen, “Coherent
emission of light by thermal sources”, Nature 416, 61-64 (2002).

26/ J.N. Walford, J.A. Porto, R. Carminati and J.-J. Greffet, “Theory of near-field magneto-
optical imaging”, J. Opt. Soc. Am. A 19 572-583 (2002).

27/ R. Elaloufi, R. Carminati and J.-J. Greffet, “Pulse propagation through scattering media :
from radiative transfer to diffusion”, J. Optics A: Pure and Applied Optics 4, S103-S108 (2002).

28/ R. Elaloufi, R. Carminati and J.-J. Greffet, “Definition of the diffusion coefficient in scatttering
and absorbing media”, soumis a J. Opt. Soc. Am. A (2002).

Contribution & des ouvrages

“Modélisation de la microscopie optique de champ proche”, chapitre 2 du livre Le Champ Proche
Optique : Théorie et Applications, édité par D. Courjon and C. Bainier (Springer Verlag, Paris,
2001).

Actes de congreés internationaux

R. Carminati, J.-J. Greffet and A. Sentenac, “A model for the radiative properties of opaque
rough surface”, in Heat Transfer 1998, Proceedings of 11th THTC, J.S. Lee ed. (Korean Soc.
Mech. Eng., Kyongju, 1998), vol. 7, p. 427.

J.-J. Greffet and R. Carminati, “Radiative transfer at a nanometric scale : are the usual concepts
still valid? 7, in Microscale Heat Transfer, Proceedings of Eurotherm Seminar N.57 (Poitiers,
France, 1998), pp. 241-248.

K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet and A.V. Shchegrov, “Modification of the



thermal emission spectrum at short distances”, in Heat Transfer and Transport Phenomena in
Microsystems, edited by G.P. Celata (Begell House, New York, 2000), p. 347-351.

J.-P. Mulet, K. Joulain, R. Carminati and J.-J. Greffet, “Enhanced radiative heat transfer at
nanometric distances”, in Heat Transfer and Transport Phenomena in Microsystems, edited by
G.P. Celata (Begell House, New York, 2000), p. 352-357.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet and C. Henkel, “Coherence properties of
thermal near fields: implications for nanometer-scale radiative transfer”, Proceedings of the
International School of Physics Enrico Fermi, Course CXLIV, edited by M. Allegrini, N. Garcia
and O. Marti (I0S Press, Amsterdam, 2001), pp. 375-392.

Communications invitées dans des conférences internationales

Pour les communications orales, le nom de "auteur ayant présenté le travail est souligné.
Les autres communications correspondent a des posters.

R. Carminati, K. Joulain, J.-P. Mulet and J.-J. Greffet, “The basic concepts of radiative heat
transfer revisited at nanometric scale”, Gordon Research Conference on Photoacoustic and
Photothermal Phenomena, Oxford (UK), august 2001.

R. Carminati, K. Joulain, J.-P. Mulet and J.-J. Greffet, “Thermal emission of light and radiative
transfer at mesoscopic scale”, Trends in Nanotechnology 2001, Segovia (Spain), september 2001.

R. Carminati and J.-J. Greffet, “Radiative transfer at mesoscopic scale: the basic concepts
revisited”, Keynote Lecture, Micro/Nanoscale Energy Conversion and Transport, ICHMT
Conference, Antalya (Turquie), April 2002.

Communications présentées dans des congrés sans actes

A. Madrazo, M. Nieto-Vesperinas, R. Carminati and J.-J. Greffet, “Numerical simulation of
apertureless near-field optical microscopy”, Fourth International Conference on Near Field Optics

(NFO/), Jerusalem (Israel), 1997.

R. Carminati, J.-J. Greffet, A. Madrazo and M. Nieto-Vesperinas, “Comparison between three
operating modes of the SNOM”, Fourth International Conference on Near Field Optics (NFO/),
Jerusalem (Israel), 1997.

R. Carminati, P.J. Valle and J.-J. Greffet, “Dielectric and topographic contrast in illumination-
mode SNOM”, Fourth International Conference on Near Field Optics (NFO/), Jerusalem (Israel),
1997.

J.-J. Greffet, P.J. Valle and R. Carminati, “Analysis of the near field scattered by small particles
on a metallic film”, PIERS 97, Cambridge, Massachusetts (USA), July 1997.

A. Madrazo, R. Carminati and M. Nieto-Vesperinas, “Electromagnetic scattering from a particle
in front of a conducting interface : influence of the cylinder-interface plasmon resonances”, PIERS

97, Cambridge, Massachusetts (USA), July 1997.

R. Carminati, “On the concept of phase in near-field optics”, PIERS 98, Nantes (France), July
1998.

J.-J. Greffet and R. Carminati, “Can a thermal source be spatially coherent?”, PIERS 98, Nantes
(France), July 1998.
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E.R. Méndez, J.-J. Greffet and R. Carminati, “Are the illumination and collection modes of the
scanning near-field optical microscope fundamentally different?”, PIERS 98, Nantes (France),
July 1998.

J.-J. Greffet and R. Carminati, “What is the signal measured by a scanning near-field optical
microscope?”, PIERS 98, Nantes (France), July 1998.

J.-J. Greffet and R. Carminati, “Spatially-coherent thermal emission : effect of surface waves”,
EOS Topical Meeting on Electromagnetic Optics, Hyeres (France), September 1998.

R. Carminati, M. Nieto-Vesperinas and J.-J. Greffet, “ Reciprocity of evanescent electromagnetic
waves”, EOS Topical Meeting on Electromagnetic Optics, Hyeres (France), September 1998.

R. Carminati, and J.-J. Greffet, “ Near-field effects in thermal emission of light: theory for
spatial coherence and suggestion of experiment”, Fifth International Conference on Near Field
Optics (NFO5), Shirahama (Japan), december 1998.

R. Carminati, “ Phase imaging in near-field optics: polarization, confinement and filtering
effects”, Fifth International Conference on Near Field Optics (NFO5), Shirahama (Japan),
december 1998.

P.J. Valle, R. Elaloufi, R. Carminati and J.-J. Greffet, “ Optical contrast, topographic contrast
and artifacts in illumination-mode SNOM”, Fifth International Conference on Near Field Optics
(NFO5), Shirahama (Japan), december 1998.

J.-J. Greffet and R. Carminati, “ What is the signal measured by a scanning near-field optical
microscope ?”, Fifth International Conference on Near Field Optics (NFO5), Shirahama (Japan),
december 1998.

J.-J. Greffet and R. Carminati, “ Reciprocity of evanescent electromagnetic waves”, Fifth
International Conference on Near Field Optics (NFO5), Shirahama (Japan), december 1998.

J.-J. Greffet and R. Carminati, “Near-field effects in spatial coherence of thermal sources of
light : short-range and long range correlations”, 18th Congress of the International Commission

for Optics (ICO), San Francisco (USA), june 1999.

R. Carminati, K. Joulain and J.-J. Greffet, “Near-field correlations of thermal light emitted
by planar sources”, Propagation and imaging in complex media, Fcole de Physique de Cargese
(France), august 1999.

J.B. Thibaud, R. Carminati and J.-J. Greffet, “Scattering of a thermal wave by a subsurface
object”, Propagation and imaging in complex media, Ecole de Physique de Cargese (France),
august 1999.

J.A. Porto, R. Carminati and J.-J. Greffet, “Modelling of the image formation of electromagnetic
fields in scanning near-field optical microscopy”, Congres Horizons de I’Optique/Coloq’6, Bordeaux
(France), september 1999.

K. Joulain, R. Carminati and J.-J. Greffet, “Near-field correlations of thermal light emitted by
planar sources”, Congreés Horizons de I’Optique/Coloq’6, Bordeaux (France), september 1999.

R. Carminati, K. Joulain et J.-J. Greffet, “Influence du champ proche sur la cohérence spatiale
des sources thermiques”, Journées Thématiques du Cercle Francais des Microscopies de Champ
Proche, Troyes (IFrance) september 1999.

J.A. Porto, R. Carminati et J.-J. Greffet, “Modélisation de la formation des images de champs

11



électromagnétiques en microscopie de champ proche”, Journées Thématiques du Cercle Francais
des Microscopies de Champ Proche, Troyes (France) september 1999.

K. Joulain, R. Carminati, J.-J. Greffet and A.V. Shchegrov, “Near-field spectroscopy of surface
excitations”, CLEO/QELS 2000, Optical Society of America, San Francisco (USA), may 2000.

J.-J. Greffet, R. Carminati, S. Mainguy, Y. Chen and P.J. Valle, “Anisotropic coherent thermal
emission by a SiC grating supporting a surface-phonon polariton : experimental and theoretical
study”, PIERS 2000, Cambridge, Massachusetts, USA, July 2000.

L. Aigouy, A.C. Boccara, J.C. Rivoal, J.A. Porto, R. Carminati and J.-J. Greffet, “Near-field
optical spectroscopy using a broadband light source”, Sizth International Conference on Near
Field Optics (NFOG6), Twente (the Netherlands), august 2000.

J.N. Walford, J.A. Porto, R. Carminati and J.-J. Greffet, “Theory of near-field magneto-optical
image formation” Sizth International Conference on Near Field Optics (NFO6), Twente (the
Netherlands), august 2000.

J.A. Porto, R. Carminati and J.-J. Greffet, “Theory of apertureless near-field optical microscopy
with application to spectroscopy” Sizth International Conference on Near Field Optics (NFO6),
Twente (the Netherlands), august 2000.

J.-J. Greffet, K. Joulain and R. Carminati, “Near-field spectroscopy of surface excitations” Sizth
International Conference on Near Field Optics (NFOG6), Twente (the Netherlands), august 2000.

R. Carminati and J.-J. Sdenz, “Scattering theory of Bardeen’s formalism for tunneling: a new
approach to near-field microscopy”, Fuerzas y Tinel 2000, Santiago de Compostella (Spain),
september 2000.

S. Gomez-Monivas, J.J. Sdenz, R. Carminati and J.-J. Greffet, “Theory of electrostatic force
microscopy : a simple perturbative approach”, Fuerzas y Tunel 2000, Santiago de Compostella
(Spain), september 2000.

S. Gémez-Monivas, J.J. Sdenz, R. Carminati and J.-J. Greffet, “A simple perturbative approach
to Scanning Probe Microscopy”, Trends on Nanotechnology 2000, Toledo (Spain), october 2000.
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Introduction

A la suite de la soutenance de ma these de Doctorat en septembre 1996, j’ai effectué un stage
post-doctoral & I’Institut de Sciences des Matériaux de Madrid durant I’année universitaire 1996-
1997. J’ai travaillé au Département de Théorie de la Matiere Condensée, sous la reponsabilité du
Professeur M. Nieto-Vesperinas. Depuis septembre 1997, je suis Maitre de Conférences a I’Ecole
Centrale Paris et chercheur au Laboratoire EM2C (Energétique Moléculaire et Macroscopique,
Combustion, UPR 288 du CNRS). Mon travail de recherche s’insére dans les activités de I’équipe
“Optique Electromagnétique et Rayonnement Thermique” (responsable Jean-Jacques Greffet,
Professeur a I’Ecole Centrale Paris).

Ce document présente une synthese de mes activités de recherche et d’encadrement durant les
six années de la période octobre 1996 - septembre 2002. Il constitue un texte autonome, dont
I’objectif est de donner une vision d’ensemble du travail effectué. Des annexes regroupent les
principales publications qui en résultent. Le lecteur pourra s’y reporter pour trouver un exposé
plus détaillé de chacun des sujets abordés.

Mes activités de recherche se sont articulées autour de trois themes:

— Optique de champ proche
— Propagation et imagerie en milieu diffusant

— Rayonnement thermique aux courtes échelles.

Bien que différents par leurs domaines d’applications, ces trois themes font appel a un grand
nombre de concepts et de méthodes communs. A titre d’exemple, la modélisation de I’émission
thermique de rayonnement aux courtes échelles de longueur passe par le calcul du rayonnement
électromagnétique émis a des distance sub-longueur d’onde des sources, ce qui est aussi a la base
de la théorie de I'optique de champ proche. La propagation d’ondes en milieu aléatoire implique
I'utilisation d’une approche statistique similaire a celle de la théorie de la cohérence optique,
utilisée pour traiter du rayonnement thermique. La théorie de 'optique de champ proche était
ma spécialité de these. Dés mon stage post-doctoral, j’ai pii m’ouvrir progressivement vers les
deux autres themes, et mon activité de recherche actuelle s’équilibre entre les trois themes.

Dans cette synthese, je m’attacherai & montrer ma contribution scientifique a chacun des themes,
en soulignant les principaux résultats, et ma participation croissante a l’animation et a I’encadrement
de la recherche.
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Chapitre 1

Optique de champ proche

Articles se rapportant au théme et reproduits dans ’annexe 1':

— R. Carminati, A. Madrazo, M. Nieto-Vesperinas and J.-J. Greffet, Optical content and
resolution of near-field optical images: influence of the operating mode, J. Appl. Phys 82,
501-509 (1997).

— J.-J. Greffet and R. Carminati, Image formation in near-field optics, Prog. Surf. Science
56, 133-237 (1997), section 7.

— J.A. Porto, R. Carminati and J.-J. Greffet, Theory of electromagnetic field imaging and
spectroscopy in scanning near-field optical microscopy, J. Appl. Phys. 88, 4845-4850 (2000).

— J.N. Walford, J.A. Porto, R. Carminati and J.-J. Greffet, Theory of near-field magneto-
optical imaging, J. Opt. Soc. Am. A 19, 572-583 (2002).

— R. Carminati, Phase properties of the optical near field, Phys. Rev. E 55, R4901-R4904
(1997).

— R. Carminati, M. Nieto-Vesperinas and J.-J. Greffet, Reciprocity of evanescent electromagnetic
waves, J. Opt. Soc. Am. A 15, 706-712 (1998).

— R. Carminati, J.J. Sdenz, J.-J. Greffet and M. Nieto-Vesperinas, Reciprocity, unitarity and

~

time-reversal symmetry of the S matriz of fields containing evanescent components, Phys.

Rev. A 62, 12712 (2000).

— R. Carminati and J.J. Sdenz, Scattering theory of Bardeen’s formalism for tunneling: new
approach to near-field microscopy, Phys. Rev. Lett. 84, 5156-5159 (2000).

— S. Gémez-Monivas, J.J. Sdenz, R. Carminati and J.-J. Greffet, Theory of electrostatic probe
microscopy: a simple perturbative approach, Appl. Phys. Lett. 76, 2055-2957 (2000).

1. Ces articles sont également indiqués en caractéres gras dans la bibliographie a la fin de la troisieme partie.
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Datant d’une quinzaine d’années, les techniques d’optique de champ proche permettent d’obtenir
des images de structures surfaciques avec une résolution sub-longueur d’onde (de I'ordre de
la dizaine & la centaine de nanométres actuellement), d’induire des modifications locales de
propriétés d’échantillons (lithographie, stockage magnéto-optique) et de mesurer des champs
électromagnétiques confinés (plasmons de surface, émission de molécules isolées, modes guidés
dans des composants optoélectroniques). Pour une revue sur ces techniques, voir par exemple
les réfs.[1]. Dans la suite, on utilisera parfois I’acronyme SNOM (Scaning Near-field Optical
Microscopy) pour désigner I’ensemble de ces techniques.

L’interprétation des images obtenues dans ces techniques et ’optimisation des montages posent
un probléeme de modélisation complexe, qui a été abordé au début des années 1990 [2, 3]. La
difficulté vient du fait qu’il faut traiter 'interaction électromagnétique en champ proche entre
des objets comportant des structures pouvant atteindre le nanometre, et dont I’un au-moins est
macroscopique (la pointe utilisée pour détecter le champ confiné ou pour éclairer localement
avec une source sub-longueur d’onde).

La modélisation de 'optique de champ proche était le sujet de ma these de Doctorat. Durant
mon stage post-doctoral, j’ai dans un premier temps prolongé le travail de these par ’étude des
couplages entre information optique et topographique (liés au balayage de la pointe en suivant
le profil de I’échantillon). Ce probleme était la sources d’artefacts qui posaient des problemes
d’interprétation des résultats expérimentaux [4]. Par une étude théorique et numérique, nous
avons expliqué les conditions d’apparition de ces artefacts et illustré les différents cas par
des simulations [5]. Ce travail a été complété lors du stage post-doctoral de Pedro Valle au
Laboratoire EM2C en 1997 (encadré par Jean-Jacques Greffet) [6] et du stage de fin d’études
(et équivalent DEA) de Rachid Elaloufi que j’ai encadré de mars a juillet 1998 [7].

En parallele, mon travail sur ’optique de champ proche a pris des orientations nouvelles que je
vais présenter plus précisément dans ce qui suit.

1.1 Un modele général et adaptable pour le SNOM

Jean-Jacques Greffet et moi-méme avons développé a partir de 1997 un modele donnant une
expression exacte du signal mesuré par un microscope optique de champ proche [8]. Ce modele,
fondé sur le théoreéme de réciprocité de I’électromagnétisme, a permis d’établir pour la premiere
fois un lien explicite entre le signal mesuré et les propriétés optiques de I’échantillon (variations
de constante diélectrique par exemple). Nous I’avons ensuite étendu au cas de la détection
de champs électromagnétiques confinés [9], qui est un domaine d’application privilégié des
techniques d’optique de champ proche (par exemple pour la spectroscopie locale). Ce modele
permet de prendre en compte le role de la pointe (géométrie, composition) et de toute I'optique de
détection /illumination dans la formation du signal. Toute I'information est codée dans un champ
appelé “champ réciproque”, qui est le champ électrique créé a I’emplacement de I’échantillon,
dans une situation fictive ou I’échantillon est absent et le sytéme est éclairé par une source
ponctuelle positionnée en lieu et place du détecteur. Si ce champ peut-étre évalué (par exemple
a l'aide d’approximations justifiées ou d’un calcul numérique), alors il est possible de calculer
le signal au détecteur de maniere exacte. Ce modele prédit alors le role de la polarisation, de la
fréquence, de la cohérence, etc.

Deux chercheurs post-doctorants (Juan-Antonio Porto et Julian Walford) ont travaillé avec nous,
dans l'intervalle 1999-2001, dans le cadre du réseau européen TMR, “Nano-SNOM?”, permettant
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d’appliquer ce modeéle a des problemes concrets. Suite a des mesures effectuées par Lionel Aigouy
dans le groupe d’optique de champ proche du Laboratoire d’Optique Physique de I’'ESPCI,
nous avons pu expliquer la réponse spectrale d’un microscope utilisant des pointes métalliques
sans ouverture (technique dite “apertureless SNOM”) [10]. Nous avons également étudié I'effet
magnéto-optique en champ proche et comparé le potentiel de deux techniques de SNOM [11].
L’application visée par les études de |’effet magnéto-optique en champ proche est le stockage
haute-densité. En effet, les techniques d’écriture/lecture optiques traditionnelles utilisent un
spot lumineux dont la taille est limitée par la diffraction (de 'ordre du pm). En utilisant une
technique d’optique de champ proche, on peut réduire la taille du spot et augmenter ainsi le
capacité de stockage du support (avec un spot de 10 nm, le gain serait de 10%). Aprés les premiéres
études expérimentales montrant la faisabilité du processus d’écriture/lecture [12], le potentiel
(en termes de résolution) des techniques “apertureless” a semblé prometteur et des images de
domaines magnéto-optiques (utilisant la rotation Kerr ou Faraday, ou le dichroisme circulaire)
ont été obtenues par les groupes de 'ESPCI et de I’Université de Troyes [13, 14]. Cependant,
il est apparu que la résolution des techniques “apertureless”, utilisant une pointe métallique,
n’attaignait pas en imagerie magnéto-optique celle obtenue en imagerie classique avec les mémes
instruments. Les techniques en mode illumination utilisant des fibres optiques métallisées avec
ouverture ne semblent pas souffrir de la méme limitation (la résolution est la méme dans les deux
cas, mais de I'ordre de 100 nm) [12]. Notre étude a confirmé sur des bases théoriques rigoureuses
ces observations expérimentales. En particulier, elle a permis d’expliquer I'origine de la perte de
résolution des techniques “apertureless” dans le cas de I'imagerie magnéto-optique [11].

Enfin, en collaboration avec le Laboratoire de Nanotechnologies et d’Instrumentation Optique
(LNIO) de I’Université de Technologies de Troyes, nous avons étudié I'influence de la vibration
verticale de la pointe utilisée dans les techniques “apertureless SNOM” [15]. Cette vibration est
nécessaire a I'obtention d’un rapport signal/bruit suffisant par détection synchrone. Cependant,
son influence sur la formation de I'image n’avait pratiquement jamais été abordée.

Ce modele a donc déja montréson potentiel en termes pratiques. Notons qu’il permet d’introduire,
sous certaines hypotheses, le concept de réponse impulsionnelle d’un microscope optique en
champ proche [8, 9]. Ce concept est tres utile car il permet une approche simple du mécanisme
de formation des images, adaptée a un grand nombre de situations pratiques.

1.2 Des aspects fondamentaux éclaircis

En parallele du développement du modele général et de ses applications, différents aspects
fondamentaux liés a "optique de champ proche ont été étudiés et éclaircis.

— Phase en champ proche :

L’utilisation de la phase en optique de champ proche a été mise en évidence dans des
montages interférométriques, dans I’étude de la conjugaison de phase et dans la démonstration
de la faisabilité de I’holographie en champ proche [16]. J’ai proposé en 1997 le premier
modele décrivant le comportement de la phase en optique de champ proche [17]. En
particulier, ce travail a montré que la phase du champ pouvait présenter des confinements
sub-longueur d’onde, similaires a ceux observés pour "amplitude (ou Iintensité). Cette
propriété de la phase a été utilisée récemment dans une expérience montrant qu’une mesure
de phase locale portait une signature claire de la nature de I’échantillon a échelle sub-
longueur d’onde [18].
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Fic. 1.1 — Comparaison entre une mesure de la réponse spectrale d’un microscope “apertureless”

(figures de gauche) et la prédiction du modéle général (figure de droite). Le modéle prédit une
dépendence en M=% o1 0 < v < 1 est un paramétre dépendant de l'angle d’ouverture de la
pointe. L’accord entre théorie et expérience est quantitatif. D’aprés [10].

— Théoréme de réciprocité :
Le théoreme de réciprocité nous a permis (en plus du développement du modele général qui
a déja été mentionné) de démontrer I’égalité des performances potentielles des montages
de SNOM utilisant la pointe en détection ou en illumination [19]. Une conséquence de ce
travail est la preuve que les différences observées (notamment en termes de résolution) sont
dues a des différences d’instrumentation (par exemple concernant les pointes utilisées), et
non a des différences fondamentales entre les deux types de montages.

La validité du théoréme de réciprocité en présence d’ondes évanescentes (ce qui est le cas
en optique de champ proche) était cependant une question ouverte (conduisant méme a
une polémique). Nous avons démontré ce théoréme pour les ondes évanescentes, scalaires
et électromagnétiques [20, 21]. Ce travail a également permis de clarifier le lien entre
réciprocité et renversement du temps, qui n’est pas toujours clair dans la littérature. Il a
alors trouvé une application dans un domaine autre que 'optique de champ proche, qui
est celui du retournement temporel d’ondes acoustiques [22]. Notre travail a confirmé la
possibilité d’effectuer du retrournement temporel au-dela de la limite de diffraction.

— Formule de Bardeen généralisée :

En 1961, Bardeen a établi une formule donnant la probabilité de transition électronique a
travers une barriere tunnel [23]. Cette formule a été tres utilisée depuis dans la modélisation
du microscope a effet tunnel électronique (STM). En collaboration avec J.J. Sdenz, Professeur
a ’Université Autonome de Madrid, nous avons montré que la formule de Bardeen peut
étre généralisée pour décrire la transmission d’ondes électromagnétiques a travers un
systéeme quelconque, en présence ou non d’effet tunnel [24]. Ce résultat permet d’unifier
formellement le SNOM et le STM, avec comme conséquence la possibilité d’étendre au
SNOM les modeles connus et validés en STM.

— Vers la microscopie a force électrostatique :
La collaboration avec J.J. Sdenz (soutenue en 1999-2000 par le programme franco-espagnol
Picasso) a permis d’étendre en partie le champ d’application de notre travail sur le SNOM
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a une microscopie voisine qui est la microscopie a force électrostatique. Nous avons montré
qu’un modele fondé sur une théorie perturbative et développé a 'origine pour le SNOM |[8]
pouvait s’appliquer également a cette technique et donner des résultats utiles [25, 26].

Etudier le rapprochement, d’un point de vue théorique, entre les différentes microscopies
a sonde locale nous semble tres intéressant et porteur d’idées nouvelles. Nous verrons
notamment qu’il est possible d’ouvrir le sujet vers la microscopie thermique a sonde locale,
et de rejoindre ainsi une partie des problématiques rencontrées dans I’étude des transferts
thermiques aux courtes échelles. Nous y reviendrons dans le chapitre 3.

1.3 Recherches actuelles et perspectives

Une part croissante des recherches en optique de champ proche s’oriente vers I’étude de I’émission
par des molécules uniques [27, 28]. L’intérét est fondamental, pour la compréhension de I'interaction
d’une source élémentaire avec un environnement nanostructuré [29], et pratique, pour la fabrication
de sources ayant des propriétés d’émission contrélées (spectrales, directionnelles, amplifiées ou
atténuées). Les progres des techniques expérimentales dans ce domaine ont été tres impressionnants
ces dernieres années, et le développement d’une “nano-optique” est bien réel. Par exemple, la
possibilité d’effectuer une image optique d’un échantillon en utilisant comme source une molécule
fluorescente unique a été démontrée [30].

Avec le stage de DEA de Marjorie Thomas que j’ai encadré de janvier a juillet 2001, nous
avons débuté une activité théorique et numérique visant a comprendre I’émission dipolaire d’une
molécule (ou d’un atome) au voisinage d’un environnement comportant des nanostructures, en
présence éventuellement de résonances (par exemple plasmons dans des particules métalliques).
Un premier modele simple a été étudié dans le cadre du stage, et des simulations numériques
2D, a partir d’une méthode intégrale de surface, ont été développées. Dans le cadre du stage,
nous nous sommes restreints a I’étude de I’interaction avec un objet métallique bon conducteur
(parfaitement conducteur ou modélisé en utilisant une condition d’impédance de surface).

Les méthodes intégrales de surface ont été utilisées en optique des les années 1980 pour étudier
la diffraction par des réseaux [31], puis pour étudier la diffusion par des surfaces rugueuses [32].
Associées & une méthode des moments pour la résolution numérique [33], les formulations
intégrales de surface semblent bien adaptées a I’étude de la diffusion du rayonnement émis
par un dipole source ponctuel par une structure localisée.

La travail se prolonge actuellement dans le cadre de la these de Marjorie Thomas, que je co-
encadre (a raison de 70%) avec Jean-Jacques Greffet, et qui a débuté en octobre 2001. L’objectif
est double :

(1) Proposer une modélisation simple de |’émission dipolaire au voisinage d’un nano-objet,
permettant notamment de distinguer (dans 'interaction radiative) les effets d’absorption, de
diffusion et Iinfluence des résonances. A terme, nous souhaitons prendre en compte I'influence
des fluctuations thermiques du milieu (présentes dés qu’il y a de I’absorption) qui pourraient
créer de nouveaux canaux de désexcitation. Notons que ce dernier point recoupe les travaux
actuels sur la définition de la densité d’état du champ électromagnétique (et la quantification
du champ) en milieu absorbant.

(2) Développer un outil numérique 3D permettant de traiter divers problemes (émission dipolaire
au voisinage de nanostructures métalliques ou diélectriques, diffusion par un systéme de particules
en interaction, recherche de configurations permettant de controler les propriétés d’émission).
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Le travail déja effectué concerne la simulation 2D, qui a été complété afin de pouvoir traiter
'interaction de I’atome ou de la molécule (dipdle ponctuel) avec une structure de forme et de
composition quelconque. Le calcul effectué permet de séparer la contribution a la modificiation
de durée de vie due a ’absorption de celle due a la diffusion. Les résultats tendent & montrer
que prés d’un objet métallique, il existe une distance critique a partir de laquelle ’absorption
domine toujours la chute de la durée de vie [34].
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F1G. 1.2 — Durée de vie normalisée d’un émetteur dipolaire (atome ou molécule) au voisinage
d’une petite particule d’argent, en fonction de la distance a la particule. EFmission a A = 612nm.
Figure de gauche : moment dipolaire orienté perpendiculairement a la direction dipole-particule.
Figure de droite : moment dipolaire pointant vers la particule. En trait pointillé, la modification
de durée de vie due uniquement a l’absorption. A courte distance, [’absorption est le phénoméne
prépondérant.
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Chapitre 2

Propagation et imagerie en milieu
diffusant

Articles se rapportant au théme et reproduits dans ’annexe 2:

— J. Ripoll, M. Nieto-Vesperinas and R. Carminati, Spatial resolution of diffuse photon
density waves, J. Opt. Soc. Am. A 16, 1466-1476 (1999).

— J.B. Thibaud, R. Carminati and J.-J. Greffet, Scattering of a diffusive wave by a subsurface
object, J. Appl. Phys. 87, 7638-7646 (2000).

— J. Ripoll, V. Ntziachristos, R. Carminati and M. Nieto-Vesperinas, Kirchhoff approzimation
for diffusive waves, Phys. Rev. E 64, 51917 (2001).

— R. Elaloufi, R. Carminati and J.-J. Greffet, Time-dependent transport through scattering
media : from radiative transfer to diffusion, J. Optics A: Pure and Applied Optics 4, S103—
S108 (2002).

— R. Elaloufi, R. Carminati and J.-J. Greffet, Definition of the diffusion coefficient in scatttering
and absorbing media, soumis a J. Opt. Soc. Am. A (2002).
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La propagation du rayonnement en milieu diffusant suscite un grand intérét, principalement par
son application & I'imagerie médicale [35]. En effet, les tissus vivants sont peu absorbants dans
le rouge et le proche infrarouge sur des épaisseurs de quelques centimetres. Il est donc possible
de développer des techniques d’imagerie médicale non intrusives et peu coiiteuses, utilisant
ces rayonnements. Cependant, les tissus vivants sont des milieux tres diffusants, ce qui rend
complexe la compréhension du transport radiatif et de la formation des images [36]. Notons que
ce sujet est d’une portée treés vaste, allant bien au-dela de I'imagerie optique. Citons, comme
exemples d’autres domaines d’application, la prédiction des propriétés de réflexion et d’émission
infrarouge de milieux chargés de particules (peintures), le transport d’ondes sismiques dans des
milieux désordonnés comme la croiite terrestre, ou encore la propagation d’ondes thermiques ou
acoustiques dans des solides comportant des imperfections [37].

Mon implication dans ce théeme a débuté dés mon stage post-doctoral a Madrid, par une
collaboration avec Jorge Ripoll, alors en thése sur ce sujet avec M. Nieto-Vesperinas. A mon
retour, je me suis progressivement impliqué dans des recherches sur ce theme que Jean-Jacques
Greffet menait déja. J’ai participé partiellement (15%) a I’encadrement de la these de Jean-
Baptiste Thibaut durant I’anné 1998-1999. Afin de me familiariser plus avec ce nouveau sujet,
j’ai participé a deux Ecoles de Physique aux Houches en 1998 et a Cargese en 1999. Nous avons
ensuite proposé un sujet de these que je co-encadre (a raison de 70%) avec Jean-Jacques Greffet.
Rachid Elaloufi a démarré le travail sur cette thése en octobre 1999.

2.1 Diffraction d’une onde diffusive par un objet

Mon premier travail, mené avec Jorge Ripoll et M. Nieto-Vesperinas a Madrid a consisté en une
étude théorique et numérique de la résolution spatiale en imagerie en milieu fortement diffusant.
Dans de tels milieux, la densité d’énergie lumineuse U(r,t) obéit & une équation de diffusion
de la forme U/t — DV?U = 0 ou D est le coefficient de diffusion [38]. Lorsqu’on utilise
un éclairement modulé en intensité a une fréquence w, la densité d’énergie en régime établi
Ul(r,w) vérifie VU + k?U = 0, qui est ’équation de Helmholtz avec un vecteur d’onde complexe
k?* = iw/D. Les solutions constituent des ondes de diffusion, appelées “ondes diffusives” (diffuse
photon-density waves en anglais). Ce phénomene est en tout point analogue & celui conduisant
aux ondes thermiques de conduction obtenues en modulant I’échauffement dans un solide. En
introduisant un développement en ondes planes pour les ondes diffusives, nous avons discuté la
question de la résolution spatiale obtenue avec de telles ondes [39]. En particulier, ces ondes étant
toujours évanescentes (le vecteur d’onde k étant toujours complexe), nous avons montré que les
limitations & la résolution (notamment I'influence de la distance de détection) sont similaires
a celles rencontrées en optique de champ proche. Les résultats ont été illustrés par des calculs
numériques effectués par Jorge Ripoll, et montrant la répartition de densité d’énergie diffractée
par deux objets enfouis dans un milieu diffusant, et séparés d’une distance d variable [39].

Apres mon séjour & Madrid, je me suis impliqué dans le travail de these de Jean-Baptiste
Thibaud. Nous avons développé une méthode numérique permettant de calculer la diffraction
d’une onde diffusive (onde de diffusion de photons ou onde thermique) par un objet situé
sous une interface [40]. Les applications visées étaient a la fois I'imagerie optique (médicale)
en milieu diffusant et la détection par ondes thermiques de défauts dans des solides opaques, les
formulations des deux problémes étant identiques. La méthode utilisée repose sur une formulation
intégrale de la diffraction par un objet, trés utilisée pour la diffraction d’ondes électromagnétiques [33].
Nous avons utilisé deux formulations différentes. L’une d’elles fait intervenir uniquement des
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intégrales de surface, et est propice au calcul numérique. [’autre fait intervenir une intégrale de
surface et une intégrale de volume, et est plus adaptée a ’analyse physique et au développement
de modeles simplifiés (a partir par exemple de "approximation de Born). Pour limiter les temps
de calcul, la méthode numérique a été programmeée en géométrie 2. Elle nous a servi notamment
de référence pour une étude de la validité de ’approximation de Born pour les ondes diffusives.
Cette approximation, utilisée par de nombreux auteurs, permet une formulation trés simple du
probléme inverse, le réduisant a une déconvolution. Ce travail a constitué un chapitre de la these
de Jean-Baptiste Thibaud, soutenue en mai 2000.

Finalement, je mentionnerai dans cette section un travail qui a été effectué au cours de ’année
2000 par Jorge Ripoll, suite & une idée que je lui avais suggérée a la fin de mon stage post-
doctoral. 1l s’agit de I'utilisation de I"approximation de Kirchhoff pour traiter de la diffraction
d’une onde diffusive par un objet de grande taille. Nous avons écrit ensemble la formulation
du probleme. Jorge Ripoll I’a ensuite programmée, et comparée avec une résolution numérique
exacte en géométrie 2D [41]. Les résultats montrent que dans une géométrie réaliste (échelles
de longueur typiques rencontrées dans le cerveau humain), I"approximation fonctionne avec
une précision de 10-15%, avec des temps de calculs beaucoup plus courts que ceux d’une
résolution exacte. Il semble que ce type de calcul ait un intérét pratique dans l'interprétation des
images expérimentales, par exemple pour une premiere approche avant la résolution complete
du probleme inverse.

2.2 Transfert instationnaire a travers un milieu diffusant.
Transition entre régimes

Certaines techniques d’imagerie en milieu diffusant utilisent la transmission ou la réflexion
d’impulsions lumineuses, ayant des durées allant de quelques dizaines de femtosecondes a quelques
dizaines de picosecondes [42]. L’approximation de la diffusion étant tres utilisée dans ce contexte
pour interpréter les résultats, le probleme de sa validité aux temps courts et/ou aux courtes
échelles de longueur (systémes optiquement fins) a été posé et étudié expérimentalement [43, 44,
45]. Des résultats parfois contradictoires ont été publiés, et plusieurs points ressortent, qui ont
motivé notre travail : (1) Une étude précise des limites de ’approximation de diffusion aux temps
courts et échelles spatiales courtes semble nécessaire. (2) L’utilisation de 1’équation de transfert
radiatif (ETR) comme outil permettant de traiter simplement la transmission et réflexion d’une
impulsion par un milieu diffusant reste marginale dans ce domaine alors qu’elle semble appropriée
lorsque 'on sort du domaine de I’approximation de diffusion. (3) L’ETR devrait permettre une
étude précise des transitions entre régimes (du régime ballistique au régime diffusif), aussi bien
en fonction des échelles spatiales que des échelles temporelles. Ces transitions ont été mises en
évidence tres précisément par des mesures [45, 46, 47]. 1l manque cependant un modele simple,
fondé par exemple sur une théorie de transport de type ETR, permettant de les expliquer.

Un autre probleme posé, et ouvert, était la définition du coefficient de diffusion en milieu diffusant
et absorbant. Des expériences et des études théoriques publiés au cours des cinq dernieres années
ont créé une polémique sur ce sujet. En effet, certains résultats tendent a montrer que le
coefficient de diffusion est indépendant de absorption [48], alors que d’autres affirment une
dépendance, qui varie selon I'approche choisie pour établir ’approximation de diffusion [49, 50].
La référence [50] présente d’ailleurs un bon résumé du probléme et une preuve convaincante de
la dépendance du coefficient de diffusion avec ’absorption.
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Ces observations ont motivé le travail effectué dans le cadre de la thése de Rachid Elaloufi, devant
étre soutenue au dernier trimestre 2002. Le premier travail a été I’écriture d’un programme
numérique permettant de calculer la réflexion et la transmission d’une impulsion lumineuse par
une couche plane (slaben anglais) contenant un milieu diffusant, en résolvant 'ETR instationnaire.
La méthode choisie est une méthode d’ordonnées discretes standard, utilisée pour résoudre des
problemes statiques [51, 52]. Le principe de notre méthode est d’introduire la transformée de
Fourier de ’'ETR, par rapport au temps. L’ETR instationnaire devient alors une ETR statique
équivalente, avec une luminance et un coefficient d’extinction complexes [53]. Utilisant cette
méthode, nous avons pu comparer la réflexion et la transmission a travers une couche obtenues
en résolvant 'ETR (méthode de référence) et en résolvant I’équation de diffusion. Les résultats
ont confirmé que 'approximation de la diffusion n’est valable qu’aux échelles spatiales grandes
(devant les libres parcours moyens de diffusion /. et de transport /;.) et aux temps longs (devant
lsc/v et ly. /v, v étant la vitesse de I’énergie dans le milieu) [53].
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Fiac. 2.1 — Transmission diffuse d’une couche de milieu diffusant d’épaisseur L éclairée par
une impulsion (de durée négligeable) en incidence normale. Comparaison entre la solution de
UETR et la prédiction de Uapprozimation de la diffusion. Différentes expressions du coefficient
de diffusion ont été utilisées: Dpy = 1/[3(ps(1 — g) + pa)], Dst = vls,/3, Das = vo/la (théorie
asymptotique). L = 20pm, ly, = 0.95um. (a): albedo a = 0.995, parameétre d’anisotropie g = 0.4.
(b): a =0.85, g =0. D’apres [53].

Un deuxiéme travail effectué dans le cadre de la these de Rachid Elaloufi a été de proposer une
nouvelle définition du coefficient de diffusion photonique dans un milieu diffusant et absorbant.
A partir de PETR statique en géométrie 1D (couche éclairée en incidence normale), il est
possible d’introduire les modes propres du systéme de la forme é,,(z, u) = gE (1) exp(£kn2),
ol ¢, (z, 1) est la luminance a une distance z de I’entrée de la couche et p décrit la direction
de propagation. ¢, (p) et k,, apparaissent comme les vecteurs propres et valeurs propres d’un
opérateur donné [52, 54]. Pour z grand, on a asymptotiquement dans le milieu L(z,pu) ~
g (1) exp(—koz) + g5 (1) exp(+koz) ot kg est la plus petite valeur propre. A partir de cette
expression, nous avons montré que le flux d’énergie s’écrit sous la forme d’une loi de Fick, de
laquelle le coefficient de diffusion peut étre extrait [55]. Les résultats importants de notre travail
sont: (1) le coefficient de diffusion dépend de I’absorption, d’une maniere différente de celle
prédite par Iapproximation Py, trés souvent utilisée [38], (2) I'approximation de la diffusion
peut étre introduite méme lorsque la luminancce du mode fondamental (associé a la valeur
propre ko) n’est pas quasi-isotrope, (3) le résultat obtenu pour I'expression du coefficient de
diffusion est équivalent & celui obtenu par une autre approche dans les refs. [50, 54].
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I'1G. 2.2 - Dépendence en fonction de l'absorption [(a) and (b)] et de anisotropie de la
diffusion[(c) and (d)] des différentes expression du coefficient de diffusion: Dpy = 1/[3(p,+pa)],
Ds: = 1/(3u}), Das (résultat de notre étude). (a): 1y, = 1/ply = 0.95um, g = 0. (b): l;, = 0.95um,
g=0.5. (¢c): lsea =1/ pts = lum, a = 0.995. (d): lsco = 1lppm, a = 0.85. D’apreés [55].

Finalement, nous avons étudié le probléme de la transition entre régimes a partir de deux types
de résultats expérimentaux publiés dans les cinq dernieres années. Dans un premier temps, nous
avons étudié le probleme de la réduction du coefficient de diffusion effectif d’une couche en
fonction de son épaisseur, sur la base des résultats de la réf. [45]. Ce coefficient est défini & partir
de la décroissancce exponentielle du flux transmis aux temps longs. Les expériences de la réf. [45]
ont montré une réduction effective du coefficient de diffusion de moitié lorsque I’épaisseur L de
la couche diminue, et entre dans le domaine L < [y.. Nous avons montré que la résolution de
IPETR, prenant en compte correctement les conditions aux limites aux frontieres de la couche,
permet de rendre compte de cet effet. Celui-ci n’est donc pas la conséquence d’effets de diffusion
dépendante, ou d’effets cohérents, comme le suggere la conclusion de la réf. [45].

Dans un second temps, nous nous sommes intéressés au calcul des fonctions de corrélations
temporelles du champ g1 (7) et de 'intensité g (7) qui sont les grandeurs usuelles de la spectroscopie
par ondes diffusives (DWS pour Diffusive Wave Spectroscopy) [56]. Des expériences récentes,
utilisant des montages de tomographie par cohérence optique (OCT pour Optical Coherence
Tomography) ont montré que la largeur € des densités spectrales de puissances associées a g1(7)
et ¢g2(7) dépendait de la distance s parcourue par les photons dans le milieu diffusant [46,
47]. L’évolution de cette largeur en fonction de s montre différents régimes, allant du régime
ballistique au régime diffusif. Des modeles permettent de prédire la forme de €(s) dans ces
deux cas extrémes, mais pas la transition. Or, comprendre cette transition et savoir la modéliser
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serait un pas important vers des techniques d’imagerie dans le régime de diffusion intermédiaire.
Partant de la théorie de la DWS, nous I'avons étendue au cas ot le transport des photons, bien
qu’en diffusion multiple, n’est pas diffusif. Un outil central de la théorie DWS est la probabilité
P(s) qu’un photon ait parcouru une longueur s donnée dans le milieu. A partir d’une résolution
de ’ETR instationnaire en géométrie plane, nous sommes capables de calculer P(s) exactement,
en prenant en compte la géométrie du systéeme (conditions aux limites aux frontiéres) et les
parametres physiques du milieu (fonction de phase, coefficient d’absorption). Introduit dans
un modele similaire a celui utilisé en DWS, ce calcul de P(s) nous a permis de reproduire
les résultats expérimentaux de la réf.[47], concernant des mesures de g1(7). On y reproduit la
transition entre le régime ballistique et le régime diffusif, qui est retrouvé pour s grand. Le travail
sur les résultats expérimentaux concernant g;(7), et publiés dans la réf.[46] sont en cours.

2.3 Perspectives

A court terme, nous souhaitons compléter le travail sur la propagation et I'imagerie optique en
milieu diffusant sur deux aspects:

— étude de la propagation de la fonction de cohérence du champ a travers un milieu aléatoire

a 'aide de ’ETR

— étude de la dépendance en fréquence (dispersion) du coefficient de diffusion en milieu
diffusant et absorbant.

Sur le premier point, l'idée est d’utiliser 'ETR stationnaire comme équation de transport
de la fonction de corrélation spatiale du champ & fréquence fixée. Plus précisément, on peut
montrer que la transformée de Wigner du champ (i.e. la transormée de Fourier de la fonction de
corrélation spatiale) est I’équivalent de la luminance du rayonnement, grandeur radiométrique et
phénoménologique, et qu’elle vérifie 'ETR [57]. Cette approche permet de donner un fondement
ondulatoire a la théorie des transferts radiatifs. Elle offre aussi un outil pratique pour étudier
la modification du degré de cohérence spatiale du champ au cours de la propagation a travers
un milieu diffusant aléatoire [58]. Le travail envisagé consisterait en I’étude, a partir d’un calcul
numérique simple (résolution de I’'ETR stationnaire en géométrie plane), de ’évolution du degré
de cohérence spatiale au cours de la propagation. En particulier, un des objectifs serait de
montrer comment des champs incidents avec différents degrés de cohérence sont affectés par la
traversée d’un milieu aléatoire (comme par exemple une atmospheére turbulente ou un tissus
biologique).

Concernant le second point, il s’agit de poursuivre I’étude sur la définition du coefficient de
diffusion en milieu absorbant. La publication d’un article récent [59] intitulé “Diffusion coefficient
depends on time, not on absorption” montre que le sujet n’est pas clos. Nous souhaitons étudier
cette notion de dépendence en temps (ou dispersion) du coefficient de diffusion. Il semble en
effet naturel que lors de I’étude de phénomenes aux temps courts, on aboutisse 4 une relation
non locale dans le temps entre le flux et le gradient de densité d’énergie. Dans le domaine
fréquentiel, ceci revient a obtenir une loi de Fick, mais avec un coefficient de diffusion dépendant
de la fréquence. Une premiere étude d’ordres de grandeur montre qu’un tel régime existe pour
I’imagerie biomédicale utilisant des impulsions lumineuses de I'ordre de 100 femtosecondes. Il
semble donc utile d’essayer de clarifier ce point.
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A moyen terme, notre travail sur la propagation optique en milieu diffusant nous servira dans
I’étude de la conduction thermique dans des systémes micro et nano-structurés. Une approche
possible dans ce domaine est ['utilisation de I’équation de Boltzmann pour le transport de
phonons. Actuellement, il n’existe pas de modele général pour décrire la diffusion des phonons
a l’aide d’une fonction de phase, et les approches habituelles utilisent un modele de temps de
relaxation (terme de collision de la forme (f — f%)/7 olt f(r,v,w) est la fonction de distribution
et fO une fonction de distribution d’équilibre). L.’étude des transitions entre régimes (du régime
ballistique au régime diffusif correspondant a la loi de Fourier) est importante dans ce domaine, et
de nombreuses questions sont analogues a celles rencontrées en optique (par exemple, la définition
de la conductivité, ou de la conductance, d’un systéme mésoscopique). Ce sujet rejoint celui des
transferts thermiques exposé dans la partie suivante, et sur lequel nous allons concentrer une
partie de nos efforts dans les prochaines années.
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Chapitre 3

Rayonnement thermique aux courtes
échelles

Articles se rapportant au théme et reproduits dans ’annexe 3:

— R. Carminati and J.-J. Greffet, Near-field effects in spatial coherence of thermal sources,
Phys. Rev. Lett. 82, 1660-1663 (1999).

— A.V. Shchegrov, K. Joulain, R. Carminati and J.-J. Greffet, Near-field spectral effects due
to electromagnetic surface excitations, Phys. Rev. Lett. 85, 1548-1551 (2000).

— J.-J. Greffet, R. Carminati, K. Joulain, J.P. Mulet, S. Mainguy and Y. Chen, Coherent
emission of light by thermal sources, Nature 416, 61-64 (2002).

— J.P. Mulet, K. Joulain, R. Carminati and J.-J. Greffet, Nanoscale radiative heat transfer
between a small particle and a plane surface, Appl. Phys. Lett. 78, 2931-2933 (2001).

— K. Joulain, R. Carminati, J.P. Mulet and J.-J. Greffet, Near-field thermal-emission spectroscopy,
manuscrit en préparation (2002).

31



L’étude théorique et expérimentale des propriétés radiatives des surfaces est un theme présent
depuis de nombreuses années au laboratoire EM2C. Avec I’émergence des nanotechnologies,
le probleme des transferts d’énergie (notamment par conduction et rayonnement) dans les
microcomposants et les systemes nanostructurés électroniques et optoélectroniques a été posé.
Le controle des échauffements locaux est crucial dans la conception des composants. De plus,
des techniques d’imagerie et de stockage haute-densité utilisant la mesure d’un flux thermique
local ou le chauffage par une sonde locale ont été développées, posant 1a aussi le probleme du
transfert d’énergie entre une pointe et un objet pouvant présenter des structures nanométriques.

Profitant de ’expérience du laboratoire EM2C en transferts radiatifs et des compétences acquises
en optique de champ proche (qui traite de problémes de rayonnement électromagnétique a des
échelles sub-longueur d’onde), il paraissait naturel de développer un théeme nouveau traitant de
I’émission thermique de rayonnement et des transferts radiatifs aux courtes échelles (spatiales
et temporelles). Sous 'impulsion de Jean-Jacques Greffet, j’ai débuté mon travail sur ce théme
dés mon retour de stage post-doctoral en septembre 1997.

3.1 Cohérence du champ thermique émis en champ proche

Notre premier travail a concerné I’étude théorique de I’émission thermique de rayonnement
électromagnétique en champ proche par des sources planes (i.e. a des distances de la source
tres inférieures aux longueurs d’onde mises en jeu). Ce travail faisait suite a des résultats
expérimentaux obtenus par deux équipes différentes et qui montraient que I’émission thermique
de matériaux présentant des résonances de type phonon-polaritons (cristaux) ou plasmon-polaritons
(métaux ou semi-conducteurs dopés) était, dans une certaine mesure, cohérente [60, 61]. L.’émission
pouvait présenter une certaine directivité (cohérence spatiale) et/ou une largeur spectrale étroite
par rapport a la fonction de Planck (cohérence temporelle).

Nous nous sommes intéressés dans un premier temps a la cohérence spatiale. Nous avons
utilisé une méthode de calcul du rayonnement thermique développée par Rytov dans les années
1950 [62]. Dans cette approche, le champ de rayonnement thermique est produit par des courants
électriques fluctuants dans la matiére, du fait de ’agitation thermique. A partir de ces courants,
le calcul du champ rayonné se rameéne a un calcul classique de rayonnement électromagnétique
(comme celui du rayonnement d’une antenne). Cependant, les courants fluctuants ne sont pas
connus précisément. Néanmoins, les grandeurs mesurables du rayonnement thermique étant en
général des grandeurs quadratiques moyennées (flux ou fonctions de corrélation d’ordre deux),
seule la fonction de corrélation spatiale (& fréquence fixée) de la densité de courant est nécessaire.
Si on suppose la matiere a I’équilibre thermodynamique local, celle-ci est donnée par le théoreme
fluctuation-dissipation [62].

Avec cette approche, nous avons calculé la fonction de corrélation spatiale, a fréquence fixée,
du champ électrique émis par une source plane en champ proche [63]. Notre premier résultat a
été de montrer que la longueur de cohérence spatiale du champ, & une longueur d’onde A fixée,
au voisinage d’un matériau présentant des ondes de surfaces résonantes (phonon ou plasmon
polaritons) pouvait étre tres supérieure a A/2, qui est la longueur de cohérence du rayonnement
de corps noir [63]. Cette étude théorique a montré et expliqué pour la premieére fois ’apparition
d’une cohérence spatiale conséquente sur des sources thermiques (qui sont souvent présentées
comme des exemples types de sources incohérentes). De plus, nous avons montré que pour des
matériaux ne présentant pas de résonances (par exemple le tungsténe dans le visible), la longueur
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de cohérence pouvait étre, en champ proche, tres inférieure a A/2. En d’autres termes, nous
avons montré qu’une source thermique en champ proche pouvait étre “plus incohérente qu’un
corps noir”. Ces deux résultats, obtenus par des calculs numériques sans approximation, ont été
retrouvés par une étude asymptotique, menée I’année suivante en collaboration avec C. Henkel
de I'Université de Potsdam en Allemagne [64]. Cette seconde étude a permis de mettre en
évidence les échelles caractéristiques influant sur la longueur de cohérence. En particulier, pour
les matériaux présentant des ondes de surface, la longueur de cohérence spatiale est donnée
par la longueur de propagation de 'onde de surface, qui peut étre de plusieurs dizaines de
longueurs d’onde. Pour les matériaux ne présentant pas d’ondes de surface a la longueur d’onde
considérée, la longueur de cohérence est de I'ordre de la distance a la surface a la source (ce
résultat n’étant valable qu’a une distance d’au moins quelques nanometres pour que I’hypothese
de milieu continu et local, utilisée dans notre tavail, reste valable).

— glass (2,=0.01A)
-~ W (2,=0.01N)
——- W (z,=0.17)

W, (1,1, w)

-0.5 .
0.0 0.2 04 06 0.8 10
p/A

- 4 — W (620 nm) (@) 1
3 L_X, AU (620 Nm)
= ——- Ag (620 nm)
s R N DN T .
§§ N N
- -
3&. — SiC (9.1 um) (b) |
e ——- SIC (11.36 um)
= RN o~ L~ -~
;i </ </ No N_

20 30 40 50
p/A

F1G. 3.1 — Fonction de corrélation spatiale Wy, (r1,r2,w) du champ électrique (composante x)
a fréquence (ou longueur d’onde) fizée, dans un plan z = zy au-dessus d’une source plane, en
fonction de p = |ry — ra|. A = 500nm. Figure du haut : cas d’un verre absorbant (zg = 0.01)\) et
du tungsténe (zg = 0.01X et zg = 0.1X). On constate que le verre se comporte d cette distance
globalement comme un corps noir (longueur de cohérence ~ \/2), et que le tungsténe a une
longueur de cohérence prés de la surface trés inférieure a /2. Figures du bas : cas de métauz (a)
et d’une surface de SiC (b). Les métaur comme ['or ou largent présentant des plasmon-
polaritons dans le visible ont un champ thermique émis présentant une longueur de cohérence
trés supérieure a la longueur d’onde. A A = 11.36um, Dexcitation d’un phonon-polariton sur la
surface de SiC engendre également une cohérence spatiale longue portée. D’aprés [63].
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Suite a ce travail, en collaboration avec A. Shchegrov (& I’époque chercheur a I'Institute of Optics
de Rochester, USA), nous avons étudié les propriétés spectrales du rayonnement thermique émis
par le méme type de sources en champ proche [65]. Ceci revient & étudier la cohérence temporelle
de ces sources, le temps de cohérence temporelle étant I'inverse de la largeur spectrale. La-aussi
nous avons mis en évidence des effets tres surprenants. Un résultat important est que le spectre
d’émission thermique (dans l'infrarouge) au voisinage d’une source présentant une résonance
de type phonon-polariton est quasi-monochromatique. Ce comportement, que nous avons mis
en évidence d’abord par le calcul, a été expliqué par une divergence de la densité de modes
électromagnétiques a la fréquence wqg correspondant a ’excitation résonante du phonon-polariton
de surface (et donnée par Re[e(wp)] = —1 ol €(w) est la constante diélectrique du matériau) [65].
Un autre résultat important est que la densité d’énergie est amplifiée (par rapport a sa valeur en
champ lointain) de plusieurs ordres de grandeur. Ces deux comportements ont des conséquences
importantes sur les transferts d’énergie par rayonnement en champ proche, comme nous le
verrons un peu plus loin. De plus, ils laissent entrevoir la possibilité de concevoir des sources
infrarouges en champ proche ayant des propriétes remarquables.

3.2 Emission directionnelle et monochromatique par des réseaux

Cette cohérence (spatiale et temporelle) amplifiée en champ proche a des conséquences mesurables
sur les propriétés d’émission thermique en champ lointain de surfaces microstructurées. Par
exemple, en gravant un réseau lamellaire sur une surface de SiC (qui présente une résonance
phonon-polariton au voisinage de A = 11pm, voir les réfs.[63, 65]), on peut créer une source
émettant de maniere directionnelle et monochromatique. Nous avons ainsi concu un réseau de SiC
par un calcul numérique, afin qu’il présente un pic d’émission trés directionnel & A = 11, 36um.
Ce réseau a ensuite été réalisé au Laboratoire de Photonique et Nanostructures par Yong Chen,
puis son émissivité a été mesurée au CEA-CESTA de Bordeaux. Les résultats sont spectaculaires,
et montrent une source thermique émettant avec des lobes directionnels, comme une antenne
infrarouge. Un excellent accord entre prédiction théorique et expérience a été obtenu [66]. Les
premiers calculs numériques de réseaux ont été effectués par Jean-Philippe Mulet dans le cadre
de sa these, débutée en janvier 2000. La suite du travail sur ce théme, visant & exploiter le
phénomene pour concevoir et réaliser de nouvelles sources infrarouges, fait partie de la these de
Frangois Marquier débutée en octobre 2001. Ces deux theses sont co-dirigées par Jean-Jacques
Greffet et Karl Joulain, et je participe personnellement a I’encadrement de ces théses a une
hauteur d’environ 10-15%.

3.3 Transferts radiatifs en champ proche

Les résultats sur I’émission thermique en champ proche ont ouvert la voie & des travaux sur les
transferts radiatifs entre objets a distance sub-longueur d’onde (nanométrique). Ces travaux se
sont inscrits dans le cadre de la these de Jean-Philippe Mulet. Le premier systeme étudié consiste
en deux milieux semi-infinis, séparés par un gap de largeur L (rempli d’un milieu transparent).
Nous avons montré que pour des matériaux présentant des ondes de surface, le transfert radiatif
est amplifié de plusieurs ordres de grandeur par rapport a sa valeur classique (obtenue pour
des surfaces en champ lointain 'une de ’autre) [67, 68]. De plus, le transfert radiatif est quasi-
monochromatique, ce qui n’est pas habituel en transfert thermiques entre deux corps chauffés.
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Emissivity

Fic. 3.2 — Diagramme polaire de ’émissivité d’un réseau lamellaire de SiC a A = 11.36um, et
pour une émission polarisée p. Comparaison entre la courbe mesurée et la théorie. Le décalage
vient du fait que la mesure est effectuée a T = TT3K alors que le calcul utilise une valeur de
constante diélectrique du matériau a T = 300K . On observe deuz lobes d’émission similaires a
ceuzx produits par une antenne. D’aprés [66].

Ces deux effets s’observent lorsque la distance L est tres inférieure & la longueur d’onde du
maximum de la fonction de Planck & la température considérée (typiquement, pour L < 100nm
lorsque 7' ~ 300K). Ce résultat laisse entrevoir des applications intéressantes pour le production
d’électricité par effet thermo-photovoltaique (voir la section suivante “Perspectives”).

Un autre systeme étudié consiste en une pointe (dans notre modele une petite sphéere) échangeant
de I’énergie par rayonnement avec un substrat plan. Une application visée par ce genre d’étude
est le chauffage local d’un substrat par une pointe, en vue du stockage d’information haute-
densité. Une autre application est la compréhension du mécanisme de formation du contraste en
microscopie thermique & sonde locale (technique ot la pointe mesure le flux thermique échangé
avec I’échantillon par conduction et/ou rayonnement afin d’en déduire les propriétés locales).
Dans les deux situations ou la pointe chauffe un substrat froid, et ou la pointe froide absorbe
I’énergie radiative émise par le substrat chauffé, nous avons montré que pour les matériaux
présentant des ondes de surface résonantes, le transfert est la-aussi fortement amplifié a courte
distance et quasi-monochromatique [69]. L’amplification est importante lorsque la courbe de
résonance (en fonction de la fréquence) du substrat et de la pointe (sphere) se recouvrent.

3.4 Perspectives

Les applications de ces travaux sont nombreuses, allant du controle des transferts radiatifs a la
conception de nouvelles sources infrarouges. Il s’agit d’un théme trés soutenu et porteur, dans
lequel notre implication devrait croitre ces prochaines années. Plus précisément, mon implication
personnelle dans ce sujet a court et moyen terme concerne:

— L[’étude d’une nouvelle structure pour la production d’électricité thermo-photovoltaique.

— La modélisation de la microscopie thermique a sonde locale (et notamment son rapprochement
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avec les techniques d’optique de champ proche utilisant du rayonnement infrarouge).

Ces deux themes entreront dans le cadre de la these de Marine Laroche (financement DGA), qui
débutera en décembre 2002, et que je co-encadrerais avec Jean-Jacques Greffet & raison de 80%.
La premiere application consiste & exploiter le fait qu’une source thermique en champ proche
peut produire un rayonnement amplifié et quasi-monochromatique. L’éclairement d’une jonction
a semi-conducteurs bien dimensionnée et accordée sur la fréquence d’émission pourrait permettre
de concevoir de nouveaux types de cellules thermo-photovoltaiques ayant des rendements supérieurs
aux cellules actuelles. Notons que I'idée d’utiliser du rayonnement en champ proche pour de tels
systémes existe déja [70], mais que 'utilisation de matériaux présentant des résonances du type
de celles que nous avons démontrées n’a jamais été proposée. Scientifiquement, ce projet est
intéressant car il nécessite ’étude des couplages entre rayonnement et conduction thermiques
dans des systémes microstructurés (voire nanostructurés). En effet, la conduction interviendrait
par exemple dans l'isolation de la source par rapport a la jonction qui doit rester a basse
température pour ne pas faire chuter le rendement. Il nécessite également des compétences en
physique des matériaux pour le photovoltaique que nous ne possédons pas. Nous nous sommes
donc associés au projet NOMACO-PV [71], coordonné par D. Mencaraglia (Supélec), et chargé de
proposer des solutions pour les cellules photovoltaiques dites de 3eme génération. Une demande
de soutien au programme Energie du CNRS a été faite, ainsi qu’une proposition d’intention pour
un futur Réseau d’Excellence dans le cadre du 6eme PCRD de I’Union Europénne.

Concernant la seconde perspective, le travail a déja partiellement démarré. Utilisant un modele
développé pour le SNOM [9, 24], nous avons montré qu’un microscope optique en champ proche
mesurant le rayonnement thermique émis par un corps chauffé est en fait I’analogue optique
du microscope électronique a effet tunnel [72]. De plus, nous avons montré qu’un microscope
fonctionnant dans l'infrarouge (autour de A = 10pm) et utilisant une pointe métallique sans
ouverture (technique dite “apertureless”) devrait pouvoir mesurer un signal thermique émis
par un substrat de SiC a T ~ 300K. Un premiere tentative expérimentale est en cours, au
Laboratoire d’Optique Physique de I’'ESPCI (équipe de Claude Boccara). Nous avons également
montré que ce type de mesure pourrait permettre de remonter a la constante diélectrique
locale de I’échantillon mesuré, permettant ainsi d’effectuer une spectroscopie locale d’émission
thermique [72]. Ce premier travail montre I'analogie qu’il peut y avoir entre le SNOM, le STM
et un microscope thermique fonctionnant sous vide (et ne mesurant ainsi qu’un flux radiatif).
Nous souhaitons pousser plus loin I’étude de la microscopie thermique traditionnelle, utilisant
un transfert conductif et/ou radiatif, en utilisant notament nos acquis sur la modélisation de
la microscopie optique de champ proche. L’objectif est de mieux comprendre les mécanismes
conduisant aux contrastes observés sur les images et de mieux percevoir les applications potentielles
de ces techniques (et notamment leur complémentarité par rapport aux autres microscopies a
sonde locale).
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Annexe 1

Optique de champ proche

Liste des articles reproduits :

— R. Carminati, A. Madrazo, M. Nieto-Vesperinas and J.-J. Greffet, Optical content and
resolution of near-field optical images: influence of the operating mode, J. Appl. Phys 82,
501-509 (1997).

— J.-J. Greffet and R. Carminati, Image formation in near-field optics, Prog. Surf. Science
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Recent experimental work has shown that the contrast of near-field optical images depends on the
path followed by the tip during the scan. This artifact may misguide the interpretation of the images
and the estimation of the optical resolution. We provide a rigorous theoretical study of this effect
based on three-dimensional perturbation theory and two-dimensional exact numerical calculations.
We guantitatively study the dependence of the artifact on the illumination/detection conditions and
on the scattering potential of the sample. This study should provide guidelines for future
experimental work. ©1997 American Institute of Physid$S0021-897€07)06813-§

I. INTRODUCTION PSTM/STOM? (3) In the constant-distance modehe tip is
) . S forced to follow a surface=f(x,y) by an auxiliary non-

Optical resolution beyond the Rayleigh limit has beengptical distance-control mechanism. The optical signal that is
demonstrated in the past ten years in scanning near-field opacorded is/Tx,y,f(x,y)]. The distance-control mechanism
tical microscopy(SNOM).1? Among the various techniques can use a scanning tunneling microscof®TM),>° an
that have been proposed, two categories can be distingomic force microscopdAFM),” or the lateral friction
guished: illumination-mode and collection-mode SNOM. In{5ces between the tip and the samfsbear forces®n
illumination-mode SNOM, a tignanosourcelocally illumi- g these cases, the tip follows more or less the topography of
nates the sample and one collects the field scattered into thge sample, andl(x,y) is the convolution of the sample pro-
far zone>* Examples of nanosources are a tapered metalfjje by a function which describes the probe geometry.
coated optical fiber with an aperture at the tip apex,the A comparative study of mode4) and(2) was presented
tetrahedral tip introduced recenfly.n collection-mode iy Ref. 12. It was shown that the two modes are equivalent,
SNOM, the sample is illuminated by an extended field, as inn the sense that a constant-intensity imageh(x,y) and
classical microscopy, and the scattered near field is collectege constant-height image’(x,y,zo), with zo=(h(x,y)),

by a local probe. This probe can be the tip of an opticalare proportional. The brackets denote the background value
fiber? or a scattering tip as that used in aperturelessy 5 function of &,y).

photon scanning tunneling microscoSTM or STOM in py 4 non-optical distance regulation mechanism, can couple
which the sample is illuminated by an evanescent wave prog, the purely optical information of the imade? This cre-
duced by total internal reflectich. ates an artifact that may lead to a wrong interpretation of the
Let.”(x,y,z) be the optical signal that is detected whenjmages. It was demonstrated experimentally in Ref. 4 that the
the tip is located at the pointx(y,z). The z direction is  SNOM image may contain two different contributions: a
chosen to be normal to the mean plane of the sample Surfacgurely optical one and one reproducing the motion of the tip.
In order to get sub-wavelength resolution, part of the signaRecently, a systematic experimental study of this artifact was
must come from the conversion of evanescent waves i”tBresented? and showed thanany experimental images pre-
propagating waves. This holds whatever the technique. Thugjoysly reported might be dominated by non-optical contrast

the tip (either illuminating or detectinghas to be kept at  mechanismsThe origin of the artifact was discussed with a
subwavelength distance from the sample during the scarjmple approach which we summarize hi&é*

Three different operating modes have been used so far to | the constant-distance mode, we shall write the path
regulate the tip-sample distandd) In the constant-height  folowed by the tip az=z,+ 5f(x,y) wherezy=(f(x,y)).
mode the tip is moved in a plane=z,, and one records An expansion of the optical signal” to first order in
Z(X.¥,20). (2) In the constant-intensity modethe optical st sugsf(x,y)| leads to:

signal.””is kept constant with a feedback system, forcing the

tip to follow a surfacez=h(x,y). This surface does not in -IX,y,z=f(X,y)]=(7(2)) + 87(X,y,20)

general reproduce the topography of the sample. Recording o

the motion of the tidi.e., the surface=h(x,y)] produces + %(X,y,zo)gf(xly)_ (1)

the image. This mode has been used extensively in 9z

The first term in Eq(1) is the background value of the im-
dElectronic mail: rcarmina@icmm.csic.es age, the second one gives a purely optical contrast and the
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third one reflects the coupling between the optical informa-
tion and thez motion of the tip. Due to this last term, the
optical image will depend on the path followed by the tip
5f(x,y), leading to the presence of the artifact discussed in
Ref. 13. Note that this problem does not occur in constant-
height mode becaus# (x,y) =0 and the last term in Eq1)
always vanishes.

As an illustration, let us consider a worst case scenario.
Suppose, for example, that the third term dominates the
right-hand side in Eq(l) and that?.¥7dz is a slowly varying
function of (x,y). Then, the detected signal’ given by the

NN W

z=500Y) £p(X.y:2)
- - P -~ X
€s

o

left-hand side of Eq(1) is proportional to the motion of the FiG. 1. Section of the three-dimensional geometry used in the perturbation

tip 6f(x,y). The resulting image is mainlgn optical read-
out of the motion of the tjpas that obtained with a conven-
tional AFM. This image does not contain any information on
the optical properties of the sample. Moreover, the resolution
of such an image does not result from optical mechanisms,
but only from the interaction used to control the tip-sample
distance.
The presence or not of this artifact, and its relative

weight compared to the purely optical information, depend(2)

on both the experimental parametdis the illumination
conditiong and on the sample under study. As pointed out in
Ref. 13, this makes the interpretation of constant-distance
images a very difficult task. A precise study is hecessary and
constitutes the scope of the present work. Our purpose is to
analyze rigorously the origin of the artifact and to identify
the cases in which it may dominate the image contrast. The
paper is organized as follows: In Sec. Il, we consider the
case of weak scattering samples, as that often used in
SNOM. We use the three-dimensional perturbation theory to
study analytically the origin of the artifact and to discuss the
influence of both the experimental parameters and the
sample. In Sec. lll, we illustrate the discussion of Sec. IIm
with exact two-dimensional numerical simulations based on
a resolution of a volume integrdlLippmann—Schwinger
equation for the electric field. The samples studied in Sec. Il
consist of localized particle&ielectric or metalli¢ depos-
ited on a flat dielectric substrate. In Sec. IV we study what

ay depend onz.
p-polarized illumination, when the tip is very close to the
Fample(a precise study will be reported elsewher€his z
dependence may induce another kind of artifact. This artifact
is not studied here because our model does not describe the

theory.

generality of our study. Reciprocity can be used to ex-
tend all the results to the illumination-mode configura-
tions. It has been shown that there exists an equivalent
collection-mode setup for any illumination-mode
setup®®

We assume that the probe is a passive point-like detec-
tor. This means that the signalf(x,y,z) is proportional

to the local near-field intensity, defined as the squared
modulus of the electric fieldE(x,y,z)|2. The passive
probe assumption has been studied recently on a rigor-
ous basig®*® It was also demonstrated that the probe
may be passive even if its presence modifies the near-
field distribution around the sampt&?° On this basis,

we do not take into account the presence of the tip. In
what follows, we shall consider the structure of the near-
field evaluated without the presence of the detectorg
illuminating) tip.

We point out that the coupling efficiency of the probe
This occurs, for example, under

happens when the sample is a very rough extended surfac((:a(.)l“'pIIng with the probe.

In this case the scattered field cannot be described with pe#. Perturbative expression for the intensity

turbation theory. This discussion gives a complete picture of

We consider a three-dimensional sample with variations

the scattering mechanism responsible for the presence of trﬂﬁ

artifact. Sec. V summarizes our conclusions.

IIl. PERTURBATIVE MODEL FOR WEAKLY
SCATTERING SAMPLES

In this section we analyze in detail the origin of the

artifact presented in the introduction. We define this artifactf

as the presence in the detected signal of a cross term betwe,
the light scattered by the sample and theotion of the tip.
We will describe analytically the properties of the SNOM
images in three dimensions, in the following context:

both topography and dielectric constaiitig. 1). This
sample is a layer of profile=S(x,y) and inhomogeneous
isotropic dielectric constanky(x,y,z), deposited upon a
semi-infinite homogeneous isotropic substrate of dielectric
constant e, (half space z<0). The upper medium
[z>S(x,y)] is assumed to be a vacuum or air. The system is
illuminated in transmission or reflection by a monochromatic
ield of wavelength\. This field is either a plane waJgo-
Rerent illumination or a set of uncorrelated plane waves
(spatially incoherent illumination In both cases, the inten-
sity of the incident field depends only an

Let us write the total near fielE=E©+E® where

(1) We focus the discussion on a collection-mode configuE© is the field reflected or transmitted by the flat interface

ration in which the sample is illuminated by an extended
field either in reflection or in transmission. After interac-

z=0 andEW@ is the field scattered by the inhomogeneous
layer. In many cases of practical interest in near-field optics

tion with the sample, the near field is detected by a tip(NFO), the object is weakly scattering so that the condition

(see Fig. 1 This choice is in no way a limitation of the
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this condition is not satisfied will be examined in Sec. IV. Proceeding as in Ref. 13, we introduce the following
When the tip is moved along a surface of equationparameter:

z=1(x,y), the detected intensity to first-order mis: 1 41

Xy, 2=y ]1=1 O F ) 1+ TV Fxy)], - (@) I = Ty zo) az % @

wherel ©=|E©)? andI™)=2 REEP*.EM], Re denoting  which measures the optical content of the image-0 cor-
the real part and the complex conjugate. A first-order ex- responds to a purely optical image. A large value|Bf

pansion of Eq(2) aroundz,=(f(x,y)) leads to: corresponds to a low optical content of the image, and a
dio domination of the contrast by the artifact. In any relevant
Tx.y,z=f(x,y)]=119(20) + —=(20) 8 (x.) NFO image|T’| should be minimized.
The value ofl” depends on both the operating conditions
+1D(x,y,70). (3)  and the properties of the sample under study. This makes the

prediction of the presence of this artifact very difficult. We
ﬁhall address separately the cases corresponding to an illumi-
nation in transmission with propagating waves, in transmis-
sion with evanescent waves, and in reflection.

In order to determine the domain of validity of the preceding
equation, we proceed as in Ref. 12. We introduce the lengt
scales Lo and L; of 1 and IM), respectively, and
of = sugof(x,y)|. Equation (3) is valid if §f<L; and
of ~nLo. Note ‘h?t these conditions involye only the struo— 1. lllumination in transmission with propagating
ture of the near field, whatever the physical system which, o oo
produces this near field. Thus, E(B) applies to a large i ) L i i
variety of problems. In the case of a sample with a linear, €t us first consider the situation in which the sample is
inhomogeneous dielectric permittivity and an arbitrary sur-lluminated in transmission from the lower mediuffig. 1)
face profile, the conditions of validity of E43) are equiva- with a field composed of one monochromatic plane wave

lent to those of first-order perturbation theory in the nea coherent illuminatiop or a set of uncorrelated plane waves
fielq 12:21.22 (incoherent illuminatiojy at an angle of incidence smaller

(than the critical onef,=arcsiri(\/es) *]. The illuminating

. . . . i (0) i i i-
image. The first term is independent ony) and contributes  11€1d E* confcalnso)only homogeneous waves,(g\)nd the illumi
to the background of the image. The two other terms ard@ting Intensity () does not depend oam (dI®/dz=0).

responsible for the contrast of the image, and two origins forl "US; I'=0 and no artifact is encounterédl Equation (3)

this contrast are clearly identified. The second term is proShoWs that the image in this case is identical to a constant-
portional to the path followed by the detecting B(x,y). ho|ght image, taken at the heightz,. This is rather sur-
The constant of proportionality depends only on the illumi-Prising because one can hawg< sugS(x,y)|. In true
nation conditions. Thus this term does not contain any infor-COnSt"’mt'he'’-3lht mode, one a'WaYS ha§>_ SUHS(X’,V)L
mation on the sample, and is ordy optical readout of the z Thus, we expect thahe_ constant—dlsj[ance image will IO_Ok
motion of the tip In the best case, i.e., when the tip follows I'ke, a oonstant-helght image, but W!th a .better. resolution.
the topography of the sample, this term produces a signé'l-h's will be confirmed by the numerical simulation of Sec.
proportional to the topography of the sample, and does ndt!- ) .

produce any additional information to the shear force, STM, _ 1he previous remarks apply to collection-mode SNOM
or AFM signal. In contrast, the third terhf)(x,y, zo) carries with an |IIum|not|on_|n t_ransmlssmn W|th_only_ homogeneous
purely optical information on the sample propertigielec- ~ Waves. By reciprocit}’ it also holds for illumination-mode
tric constant and topographyits relationship to the topog- SNOM in which the light is detected in transmission at
raphy and the dielectric constant variations of the sample i&ndles smaller than the critical ortg (“allowed light” in

in general not simple. It can be described with the conceptgef' 29.

of impulse response and equivalent surface profil€his
point will be useful in the following discussion.

Equation(3) reveals the content of the near-field optica

2. lllumination in transmission with evanescent
waves

The situation in which some or all the plane waves of the
incident field have an angle of incidence greater than the
critical one is different. The corresponding zero-order trans-

The right-hand side in E3) shows that the most gen- mitted waves are evanescent. ThES) contains inhomoge-
eral image is a superposition of a purely optical sigtilsfd  neous waves creatingzadependence ith®). In the case of a
term) and a term proportional to the path followed by the tip single plane wave, the transmitted zero-order field is of the
(second term Hence, Eq.(3) gives a rigorous theoretical form Eqexp(k{™.rj+i%"z), with y"=(k§—k"?)*2 and
basis to the experimental observations put forward in Refs. &,=w/c. We have used the notation = (x,y). An inci-
and 13. The relative weight of these two terms determineglence in total internal reflection corresponds| k' > ko .
the optical content of the near-field optical image. If the secThus (" is imaginary, with the determination
ond term dominates, the use of NFO does not add any inforim(,"° >0, Im denoting the imaginary part. It follows that:
mation to the AFM, STM, or shear force images. NFO is of —2 Im(5"™)

B. Optical content of the image

interest only in _the S|tua_t|ons in which the contrast is domi- - — o |Eq|2ex —2 Im(™)z,]. (5)
nated by the third term in Ed3). I'*(x,Y,20)
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It is worth noting that the numerator &F (i.e., d1(9/d2) is 6
negative in this case. Hence the artifact appears as a super- 7 \q
position to the purely optical image of a signal proportional

to the path followed by the tip imverse contrastThis point

will be illustrated by numerical simulation in Sec. IIl. d dielh POt REw T |ze
The present discussion applies to collection-mode tech- Ty e ' Ep| -

nigues in which the sample is illuminated in transmission 1 X

with part of (or all) the light being totally internally reflected, /4 &

as in PSTM/STOM. By reciprocit}, it also applies to the 6

illumination-mode configurations in which the light is de-

tected in transmission at angles greater than the critical one , _ _ ,
“forbidden light” in Ref. 24). The presence of the artifact FIG. 2. Geometry of the two-dimensional sample used in the exact numeri-
.( . ; g. . : T p ) cal calculations. Solid line: path followed in the constant-height calcula-
in “forbidden light” images in illumination mode, and the tons. Dashed line: path followed in the constant-distance calculations.
fact that the non-optical signal represents the path followed

by the tip in contrast reversal was demonstrated experimen-

tally in Ref. 13. Our model explains this observation.

1 S(ry)
Seq(ru)sz [ep(ry,2)—1]dz 8)
3. lllumination in reflection s 0

Note that in the case of a homogeneous sample=(;),
the upper mediuntFig. 1). The illuminating intensity (@ is  Sed(T) reduces to the true topographic profsr). H is an

an interference pattern between the incident field and thiMPulSe response and is independent on the sample. Its exis-
field reflected by the flat interface. Therefdf@ exhibits a  [€NC€ IS not postulated but comes out from the analysis
z modulation which may lead to an artifact. This modulation tNfough first-order perturbation theortd. is known analyti-

will depend on the value of the reflection factor at the inter-Cally in Fourier space, its expression being given in Ref. 19.

facez=0. Keeping the same notations, in the case of a sing| depends on the illumination conditioripolarization, di-
incident plane wave, one obtains: rection of incidence, cohereng®n the dielectric constant of

the substrate and on the detection distaneg. Therefore,

H contains the dependence I8} on the experimental con-
ditions, while S;; contains the properties of the sample.
These concepts of impulse response and equivalent surface
profile describe all the scattering process by weakly scatter-
ing samples and are very useful in the description of NFO

Let us consider now an illumination in reflection from

inc

a I(l)(xay!ZO)

whereT is a matrix of Fresnel reflection factors at the inter-
face z=0. Here "¢ is real. Equation(6) shows that the
artifact may become important for large values of the reﬂecimaginglg

tion factors. Moreover, the sign of the numeratorlofde- Equation(7) shows that the value df? depends on the

pends on the value of those factors, and may change fro%lative variations of the functionsi(r,) and Sefr,). Any

one sample t9 another. Thus the artifact may appear as & ation may be encountered. At fixed experimental condi-
signal proportional to the path followed by the tip either in tions (both H and d1©)/dz fixed), a sample may create a

reaI_IE)r: n |nversed(_:ontra§t. i lecti g strong scattered intensityV), thus a smallT'|, and another
_ The present discussion applies to collection-mode techg, e 4 Jow scattered intensitf?) and a largel’|. The
niques in reflection. By reciprocity it also applies to the

Hluminai d hni in reflectid®in both same problem arises for a given sample by varying the illu-
lllumination-mode techniques in reflectionin both cases, nination conditions. The conclusion is that it is not possible

';Ihe gr_tlfa?/tvwnl _:Jlgnlmportanr:_lf th? sgbsstratel ITaS a high "o give a universal rule governing the presence of the artifact
ectivity. We will illustrate this point in Sec. lll. in the image. Nevertheless, it is possible to study a typical
sample in order to gain insight. This will be done in the next

IM[E} .Y Eq exp(2i y"2z0)], (6)

section.
4. Influence of the sample

The parametel’ defined in Eq(4) depends on the value
of the purely optical contributiom™). The aim of this sec-
tion is to analyze the dependencel 8¢ on the sample prop- |iI. NUMERICAL RESULTS
erties.

I is a complicated function of both the experimental In this section we study the near-field scattered by one or
conditions and the sample properties. The analysis througtwo particles deposited on a flat semi-infinite substrate. The
perturbation theory leads to the following expression: scattering geometry is depicted in Fig. 2. This system is il-

luminated in transmission or in reflection by a monochro-
|(1)(rH aZo):j H(r,—r/ ,k|i|nc,fstO)Seq(r|\,)dr|\, . (7) matic plane wave of wavelength=633 nm, with an angle

of incidence#, . We provide exact numerical calculations of
Seq IS an equivalent surface profile connecting the topograthe total near-field intensity either at a constant height or at a
phy and the dielectric constant variations of the sample: constant distance from the sample.
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A. Numerical method transmission, 6,=0°, s polar.

The numerical scheme is based on a volume integral

. i ) 04t oo 1
formulation of the electric field derived from Maxwell equa- 14T e=225 (@)
tions. At any pointr=(x,y,z), the electric field is given ool =225
by:?® TRl T

E(r)=E<°>(r)+kgfﬂ[ep(r’)—1]6(r,r’)E(r’)dr’,
9)

whereG is the Green dyadic of the reference system consist-
ing of a flat interface az=0 separating the substratealf
spacez<0, dielectric constant;) from vacuum(half space
z>0). E© is the field in the reference system and the inte-
gral gives an exact expression of the scattered field. It is
restricted to the domaif2 occupied by the particles, having
a position-dependent dielectric constan(r’). In general
Eq. (9) can only be solved numericalj, and several 110 05 0.0 05 1.0
schemes have been proposed, in two-dimensi6nahd X/
three-dimensional geometri&s.Here we will consider a
two-dimensional geometry, for both andp-polarized light,  FIG. 3. Near-field intensity above the sample in Fig. 2 with only one surface
and solve Eq(9) by a moment methotP In this method the particle.s polarization; illumination in transmissior;=0°; particle size:
volume Q is discretized in a mesh of rectangular cells of /=01, h=0015. Solid line: constant-height calculations with
. . . . . 2,=0.0225.. Dashed line: constant-distance calculations with
dimensionsdx anddy' The field and the dielectric constant d=0.0075.. Two values of the particle dielectric constantare used. The
are assumed to be constant in each cell. Equ&gpis trans-  dielectric constant of the substratg=2.25 is fixed.
formed into a linear system involving the integral of the
Green dyadic over each cell. Note that this integration regu-
larized the Green dyadic, which possesses a non-integrable In both polarizations and for the two particles, the
singularity at the origin irp polarization?’ In all the calcu-  constant-height and constant-distance curves are similar.
lations presented here, the size of the cells isThis confirms the discussion of Sec. Il. At normal incidence
dx=dy=0.005\. in transmission,d1(®/dz vanishes. ThusI'=0 and the
constant-distance image is purely optical. Reotion arti-
fact is to be expected and the constant-height and constant-
B. Images of one localized particle with different distance images are similar. Yet the constant-distant curves
scattering potentials exhibit a slightly better resolution than the constant-height
We first consider the sample in Fig. 2 with one Sing|ecurye§. This is seen in Figs. 3and 4 yvhere the dashgd curves
particle. Its width isw=0.1, its heighth=0.015\ and its exhibit faster variations than the solid curves. As discussed

IEP

dielectric constant,, assumed homogeneous, is a variable
parameter. We compare the near-field intensity calculated

along a line at a constant heiglsblid line in Fig. 2 and the transmission, 6=0°, p polar.
intensity calculated at a constant distance from the surface sk ' " " ]
profile (dashed line in Fig. 2 Our goal is to check the pres- €,=2.25 (a)

-
N
T
————
1

ence of the artifact due to the motion of the tip in the
constant-distance mode, in light of the discussion of Sec. Il.

IEP

| =225 J ]
1.0

1. lllumination in transmission

The results in the case of an illumination in transmission
at §;=0" are displayed in Fig. 39 polarization and Fig. 4
(p polarizatior). We have used two different particles having
the same dimensions but a different dielectric const@t:
€p,=2.25(glasy, (b) e,=—9+1i (gold). Varying ¢, is a way
to vary the scattering potential of the sample, and thus the
level of the scattered intensity®) [see Eqs(7)—(8)]. The
substrate is glass{=2.25). The solid curves correspond to
constant-height calculations along the solid line in Fig. 2
with z;=0.0225. (14 nm). The dashed curves correspond to

constant-distance calculations along the dashed line in Fig. 2 X

with d=0.0075. (5 nm). The location of the patrticle is in-

dicated at the bottom of the figures. FIG. 4. Same as Fig. 3 fqu polarization.
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TIR, 6=60°, s polar. TIR, 8=60°, p polar.

1.10 T T T T T T
1.05 | (a) A
|
1.00 \/\/\/T\ o
i by o
- € =225 ! =
095 [ ! . _ V!
' i 095 I &=225 Y :‘." _
! v
090 | £=225 o . 080 | £=2.25 E .
iy ! s
0.85 : ! : 0.85 : . .
v 12 T T T
1.10 10k i
. (b
8F €=-9+ 7
0.90 o ’
i i w 6 h
! ! w
\ €=2.25 f
0.70 M a1 - J
£=2.25 \ s | ]
050 - N : 0 : :
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X/A X/
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(6,=60°).

in Sec. Il, the constant-distant curve is a constant-heigh?ffeCt is particulgrly str?king inp_polarization [Fig. &(b)]
curve taken at the heiglif(x,y)) which is smaller than the vyhere the_metalllc particle creates a very stro_ng scattered
heightz, of the constant-height curve. This explains the bet-f'_el_d‘ In this case the presence of the artifact is no longer
ter resolution. visible.

It is also worth noting the very high level of signal in the
case of a metallic particle ip polanzat.lon[l.:lg._ 4(b)]. This 3 Wlumination in reflection
is due to an enhancement of the field inside the particle,
which creates a very strong scattered field. Even in this case We now consider an illumination in reflection from the
there is no appreciable difference between the two kinds ofipper medium(see Fig. 2 We have shown in Sec. Il that
images. I does not vanish in this case. Its expression, given in Eq.
(6), shows that its strength should increase with the reflec-
tivity of the substrate. We thus present the calculations for

We show in Figs. 5 and 6 the same calculations as ironly one kind of particle é,=2.25), but for two values of
Figs. 3 and 4, but for an incidence in total internal reflectiones: () e,=2.25 and(b) e;=16. The result is displayed in
(6,=60). As seen in Sec. I’ does not vanish in this case, Fig. 7 (s polarization). With the values ofes used here, the
its value being given in Eq5). Moreover,d1(9/dzis nega-  Fresnel reflection factors appearing in the mattrir Eq. (6)
tive, and one expects a contribution in the intensity of a termare negative. Thus the numeratorlofd1(®)/dz) is positive
proportional to the path followed by the tip in inverse con-and thez-motion artifact should appear as a superposition to
trast[second term in Eq(3)]. This is clearly seen in Figs. the purely optical image of a signal proportional to the path
5(@) and Ga). Here the constant-heightsolid line) and  followed by the tip(no contrast reversalin Fig. 7@ (low
constant-distancédashed ling curves look different. A su- reflective substraje the constant-heightsolid line), and
perposition of a purely optical signaflooking like a  constant-distancéashed ling curves are only slightly dif-
constant-height signabnd a signal proportional to the path ferent. The contribution of the artifact in the constant-
followed by the tip in contrast revers@rtifact) can be easily distance curve is lower than that of the purely optical term.
identified in the constant-distance curves. The scattering pdzonversely, in Fig. @) (high reflective substratethe arti-
tential of the particle being smalk(=2.25), the purely op- fact appears clearly through the addition in the constant-
tical contributionl () does not dominate the contrast of thesedistance intensity of a signal proportional to the path fol-
curves. Thus they are strongly dominated by theotion lowed by the tip. This calculation confirms that in reflection

2. lllumination in total internal reflection

artifact. the artifact is more important when the substrate has a high
When the scattering potential increagé€sgs. §b) and  reflectivity.
6(b)], the contribution of the optical tert{®) increases. For Although we do not display the results for the sake of

a gold particlg[Figs. 5b) and b)], the purely optical con- brevity, we have observed the same effecpipolarization.
tribution is so important that the presence of the artifact isMoreover, increasing the scattering potential of the particle
strongly attenuated. This means that the contrast is nouncreases the contribution of the optical term in the detected
dominated by the third term in E¢3). The constant-height signal. As in the case of TIR examined previously, this re-
and constant-distance curves are practically identical. Thiduces the weight of the artifact in the image.
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FIG. 7. Near-field intensity above the sample in Fig. 2 with only one surfaceFIG. 8. Near-field intensity above the sample in Fig. 2 with two particles
particle; s polarization. lllumination in reflection from the upper medium, separated by a distan¢e=0.075.. The dielectric constants; and €, are
6;=0°. The particle dielectric constagt=2.25 is fixed. Two values of the  fixed. (@: 6;=0°; (b): 6,=60°. Other parameters as in Fig. 3.

substrate dielectric constagf are used. Other parameters as in Fig. 3.

ity with a “forbidden light” detection in illumination-mode
SNOM). In conclusion, the resolution in the constant-
distance image does not have its origin in an optical interac-
In the previous Section we have shown how the pureltion with the sample, but in an optical readout of theno-
optical information of the image could be hidden by the ar-tion of the tip.
tifact induced by thez motion of the probe. We shall now The same behavior is seen in Fig. 9 which is identical to
discuss the resolution issue. Fig. 8 but forp polarization. Note that the separation be-
It was pointed out in Ref. 13 that the artifact may lead totween the two particles is clearly resolved in Fig. 9, even in
a wrong interpretation of the purely optical resolution. Wethe constant-height images. This is consistent with previous
illustrate this important point with exact numerical calcula- studies that showed that on dielectric substrates the light lo-

tions of the field scattered by two particles,2.25) de-  calization around the object was better n than in s
posited on a flat glass substrate€ 2.25) and separated by

a distancd =0.075\. (47 nm). The geometry is displayed in
Fig. 2. The illumination is done in transmission.

Figures 8a) and 8b) show the constant-heighsolid two particles, p polar.
line) and constant-distandglashed ling curves forg,=0° ¥ T T
and 6;=60°, respectively. The wave i polarized. In Fig.

8(a) the presence of the artifact is not visible. As shown
previously (see Fig. 3, at normal incidence the constant- 21 o005 ' ﬂ
height and constant-distance curves are almost identical. The '
constant-distance curve exhibits a slightly better resolution,
as seen in Fig. @). In contrast, in total internal reflection
[Fig. 8b)], the two images are clearly different. In the
constant-height curve, the intensity distribution does not re-
produce the surface profile. Even the presence of the two
particles is not clear in thigpurely optical image. In con-
trast, the constant-distance curve exhibits strong variations at

C. Artifact and resolution

13 £=225 l

S

2
IEI
N
N

T

the precise location of the particles, with an extremely high w 095 r =225 ! J“»\/ 8=60" |
resolution. But, these strong variations of the signal have i"ﬂ '

. L . . . 085 | g=2725 1 e
their origin in the second term in E@3), which is respon- 8
sible for the artifact. In fact, a signal proportional to the path 075 | 1 T

followed by the tip in inverse contrast can be easily recog- -1.0 -05 0.0 0.5 1.0
nized in the intensity at constant distance. This is the signa-
ture of thez-motion artifact with an illumination in total

internal reflection in collection-mode SNOdr by reciproc- FIG. 9. Same as Fig. 8 fqv polarization.
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polarization?>?® Note that this polarization effect may be
different with metallic substrates supporting polaritéhsn

Fig. Ab), due to the presence of the artifact, the constant-
distance image appears in contrast reversal. But once again,
this contrast reversal is a pure effect of the artifact, and does
not reveal any particular optical property of the sample. L

S(x)

IV. CASE OF A STRONGLY SCATTERING EXTENDED
SURFACE

The analysis in Sec. Il, based on perturbation theory,
shows that the origin of the-motion artifact is thez varia-
tion of the illuminating intensityd1(®/dz. This term com-
petes with the first-order scattered intendity) to produce
the contrast of the image. In the perturbative analysis of Sec.
Il, the z variation of 1Y) was neglected because it was a ‘
second-order contribution. We have seen that this model pre- 2|
dicts the behavior of the images of small localized patrticles, g t
dielectric or metallic, as that studied numerically in Sec. Ill. WVWWW
This study is relevant for NFO applications. | ‘ |
Nevertheless, in order to get a complete picture of the 1 ‘

IE|?

ol | (Y
| | [
Lot i I [
. . . . . . Oy [N .
scattering process responsible for thenotion artifact, in Mo g Yy "y M ,«{‘
. . . Iy [ I | ! [ t
this section we shall analyze the behavior of a strongly scat- PR T I R
1 2

tering extended non-flat surface. Note that, with constant- -2 -1 0

distance regulation, it is possible to study such highly corru-

gated samples with NFO microscop®sin this case the

scattered intensity is no longer weak compared to the illumifiG. 10. Near-field intensity above a homogeneous surface of profile

nating intensity, and it may even dominate the total intensityS(x)=h cos(2rx/p), with p=0.5\. Dielectric constant of the surface

Hence, presently, the perturbative development used in Se€= 2.25. Solid [ine: cons'tan.t—height calculation. Dashed line: constant-
. . L . . distance calculatiors polarization:9;=0°. (a): h=0.01\; (b): h=0.15\.

Il is not meaningful. This is a well-known fact in scattering

from rough surfaces: when the roughness increases, the

amount of energy in the specular directiéire., |?) de- ¢ @ |, fact, the mechanism is the following. The total
creases, the energy being transferred to the scattered part Qfctric field can be writtel = E@+E_. In this decompo-

the field. In this case we may expect that theariation of  jiion E_ denotes the scattered field. The total intensity is
the scatteredintensity may induce a new-motion artifact.

In order to check this hypothesis, we have calculated the
near-field scattered by a one-dimensional grating of profile  1(1)=1(r)+2 REE®*(r).E¢(r)]+1(r), (10
z=3(x) with S(x) =hcos(2mx/p). The profile is represented \yherel = |E(2. The high-roughness grating creates a strong
on the top in Fig. 10. The upper medium is a vacuum, whilescattered fieldE, and the last two terms in E¢LO) contrib-
the lower medium is assumed to be glags<(2.25). The e to the scattered intensity. The last one is not negligible,
period isp=0.5\. The sample is illuminated in transmission ang may even dominate. Moreover, becaligeontains both
from the lower medium with a monochromatic plane waveprgpagating and evanescent waves, the scattered intensity
(A =633 nm at normal incidence. _ depends strongly on, and induces the-motion artifact pro-

We show in Fig. 108 the calculations when portional to thez derivative of the scattered intensity. Calcu-
h=0.01A, in s polarization. The solid curve corresponds to a|ations of the total intensity versusclose to the surfacgnot
constant-height calculation, the dashed line to a constankjsplayed hereshow that the derivative of the intensity is
distance calculation. As expected, with this smooth gratingsoyr times greater in the case in Fig.(bDthan that in Fig.
the conclusion of Secs. Il and IIl remains valid. At normal 1(ya). This explains the visibility of &-motion artifact in
incidence in transmission, the two curves are almost identicatig 1q(p).
and noz-motion artifact may be detected in the constant- ~ 5o, not shown for the sake of brevity, the same results
distance curve. It is so because the small grating heightaye peen obtained ip polarization.
makes it a smooth scattering sample, for which the first-order
perturbation theory is valid. Thus, E@) correctly describes
the behavior of the near-field intensity and thevariation
of the scattered intensity is a negligible second-order For weakly scattering samples, the scattering process
correction. does not induce any artifact in collection-mode SNOM when

We show in Fig. 1(b) the same calculation with the sample is illuminated in transmission with propagating
h=0.15\. The result is completely different. Even at normal waves. This also holds for illumination-mode SNOM with a
incidence in transmission, the two curves are not identical. Adetection in transmission at angles smaller than the critical
z-motion artifact appears, but its origin is not th@ariation  one. In collection-mode SNOM with some of the waves be-

V. CONCLUSION
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IMAGE FORMATION IN NEAR-FIELD OPTICS
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Abstract

An overview is presented of the iinage formation theory in near-field optical microscopy. The
emphasis is placed on the basic concepts and the understanding of the images. We briefly recall the
general principles used in near-field optics to break the resolution limit. Since some of the concepts
widely used in optics become meaningless in near field, a brief critical review of basic concepts is
given. A theory of scattering of electromagnetic waves by inhomogeneous surfaces is then presented.
For objects much smaller than the wavelength, a closed-form expression of the scattered field is derived,
which provides a link between the -near field and the structure of the sample. The different set-ups
and their imaging capabilities are analysed. A general relationship between the signal and the induced
currents in the sample is derived by means of the reciprocity theorem. The set-ups are compared and
an equivalence between illumination and collection mode is proven. It is shown that, when multiple
scattering between the sample and the rest of the system can be neglected, an impulse response can be
defined for the three different types of set-ups : illumination mode, collection mode and apertureless.
The importance of coherence in the near field is studied. Finally, the influence of the different control
modes (constant height, constant intensity, constant tip-sample distance) is analysed and the existence

of artifacts is discussed.
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we have seen that the reciprocal set-up must use an incoherent source. In addition, the sym-
metry of the reciprocal source must be the same as the symmetry of the detector. In contrast,
the typical PSTM/STOM uses a higly directional and coherent illumination, which explains
why the images in illumination-mode SNOM ressemble more closely the actual structure of
the sarnple than those obtained in PSTM/STOM. It has been shown both experimentally
[144] and theoretically [145] that, under partially coherent and symmetric illumination, the

PSTM/STOM also produces images that closely resemble the sample structure [144, 143].

E. Conclusion

Using the reciprocity theorem of electromagnetism, we have demonstrated that the illumination
and collection modes of the SNOM are equivalent, which means that they have the same
potential imaging capabilities and resolution. We have given a general rule to construct the
equivalent collection-mode set-up to any illumination-mode set-up.

This result demonstrates that the differences that have been observed between the two
modes are only due to differences in instrumentation and operating conditions. For example,
the images in one case may present a better resolution, because of the use of coated fibers
instead of uncoated ones, because the operating modes allows a smaller tip-sample distance, or
because the degree of coherence of the illumination/detection scheme is not the same. But these
differerices are not fundamental. The same operating mode can be used in illumination and in
detection mode. The same probes can also be used in both modes. Moreover, the coherence of

the PSTM/STOM, for example, can be reduced |144, 146, 112, 147].

7. Image Formation

We now address the problem of the image formation with near-field optical microscopes.
How the image is related to the optical properties and the topography of the sample has
remained (to a large extent) an open question for the last decade. In this section, we derive a
closed-form expression of the link between the detected signal and the structure of the sample.

Starting with the reciprocity theorem of electromagnetism, we obtain an ezact expression

for the signal, where all multiple interactions between the tip and the sample are taken into
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account. We show that the signal is related to the induced current density in the sample,
or to the induced polarization for non-magnetic materials. We give an explicit expression of
the signal for the three main families of near-field optical set-ups, namely, collection-mode,
illumination-mode and apertureless SNOM.

Finally, we address the problem of the existence of an impulse response (in direct space)
or a transfer function (in Fourier space) in the image formation process in near-field optics. A
number of authors have introduced different impulse responses or transfer functions [148, 136,
98, 149, 150, 151, 152, 153]. One of the major interest of the concept of impulse response is that
it enables the inverse problem to be solved [98, 99, 145, 152, 153]. The existence of transfer
functions in near-field optics is not trivial. One may define a transfer function between the signal
and the near field (either a component or the square modulus of the electric field, for instance).
It may also be possible to define a transfer function between the signal and the sample profile.
The problem is more involved, if there is both topography and dielectric contrast. In that case,
the concept of equivalent surface profile may be useful |99]. The necessary requirements for
the existence of such a transfer function are linearity and translational invariance. The first
requirement is satisfied in linear optics. The second implies that the effect of the tip is the same
at any point of the sample. In other words, multiple scattering between the tip and the sample
should be negligible. We will show that the concept of transfer function arises naturally, when

using the reciprocity theorem and a single-scattering approximation (first Born approximation).

A. Collection mode

In collection-mode SNOM, the sample is usually illuminated by a laser focussed onto a part
of the sample. An optical fiber (waveguide) with a sharp tip is scanned along the sample,
at subwavelength distance, and the signal delivered by an optical detector at the end of the
fiber is recorded. The scan can be performed at a constant distance from the mean surface
(constant-height mode), or following the topography (constant-distance mode). An alternative
procedure is to keep the optical signal constant by varying the distance between the tip and the
sample, and to record the tip position (constant-intensity mode). It will be shown in §9 that
the constant-height and constant-intensity modes are equivalent, provided that the maximum

height of the sample surface is much smaller than the wavelength [154]. Moreover, we will see
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that the constant-distance mode may induce topographical artifacts in the signal, due to the
z-motion of the probe [155, 156, 157]. For these reasons, we will assume here that the scan is
performed in the constant-height mode.

The basic question addressed here is : “what is measured by a near-field microscope in
the collection mode ?” This involves two problems, namely, how the electromagnetic field
is coupled to the guide through the tip and how the near-field is related to the structure of
the sample. It has been often assumed that the signal is related to the square modulus of
the electric field above the sample (see e.g. ref. [50]). Yet, there is no reason to believe that
the different components of the field will have the same coupling efficiency. Van Labeke and
Barchiesi [135] have proposed a heuristic model that predicts different coupling factors for
different polarizations. The present work confirms the need for accounting for polarization
and explicitly shows how to do it. Moreover, it gives an expression of the signal, showing its

dependence on the sample structure.

(i) Basic expression of the signal

We establish the relationship between the signal delivered by a collection-mode SNOM and
the current distribution inside the sample. To this aim, we use the reciprocity theorem of
electromagnetism, and some standard relationships on guided waves, following the notation
of ref.[80]. All the fields considered here are monochromatic, with frequency w. A temporal
dependence exp(—iwt) is assumed and omitted everywhere.

Inside an infinitely long waveguide with axis Oz, the field can be decomposed into modes
EE\H propagating towards z > 0, and modes Eg_) propagating towards z < 0. Thus, in a general
situation, the field is :

E=Y AVEP + S AE, (7.1)
x y

where A&i) is the amplitude of the mode Ef\i). If a current distribution, described by the
current density j(r), is present in the guide and excites several modes, the mode E&H has an
amplitude A(;H given by [80]

—2nZ
+ 2
A& )= —

/ i) B (r)dr (7.2)

where the integral is performed over the volume of the current distribution. Equation (7.2) is
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valid for a waveguide of arbitrary section, with perfectly conducting walls, and filled with a
homogeneous material with dielectric constant ¢, and relative permeability p,. The impedance
Zy is defined by Z) = cky/e,w for TM polarization and Zy = pyw/cky for TE polarization,
ky being the wave vector of the mode A along the z-axis. In what follows, we will consider
a SNOM probe, i.e., a finite waveguide with a sharp tip at one extremity. For simplicity, we
will assume that far from the tip, the guiding part of the probe is a waveguide with perfectly
conducting walls. Thus, far from the tip, the field expansion (7.1), together with (7.2), is valid

to describe the field reaching the detector.

(a) (b) (©
.jl T e l 0
5,

Z
/l Et}'tl;] ‘ iz J sample

I
substrate \\ T /
®i
Ao

Fig. 13: Sketch of the system. (a) The current j; emits a field E;2 in the presence of the flat substrate,

tip
(b) A current distribution js excites a field propagating into the waveguide, (c) A general situation

where jo is splitted into a source with an externally driven current density js and a sample with an

induced current density j.

Let us assume that the probe is placed in front of a flat substrate, with the tip apex, or
the probe aperture, located at a point ry, (Fig. 13). This system (probe + flat substrate)
is our reference system. In order to derive a general relationship between the amplitudes of
the modes and the induced sources inside the sample, we apply the reciprocity theorem. To
this aim, we consider two different configurations 1 and 2, involving the reference system with
different sources [Figs. 13 (a) and (b)]. First, we assume that a suiteble current distribution j,
placed inside the guide and far from the tip excites a single mode propagating towards z > 0,

with label Ao, and amplitude ASY = 1 [Fig. 13(a)]. Using (7.2), this implies that :

/Vljl(r) EfP(r)dr = 0
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=) ¢

/vlh(r).Ek ()dr = 3, (7.3)

where V] is the volume of the current distribution ji, and dxy, = 1if A = Ao, dang = 0 if A # Ao
Part of the mode is transmitted at the tip and produces a field denoted by E,A,-‘;,(r — Tiip)-

In a second configuration, we consider a current distribution jo(r, re;), of finite volume V5,
placed outside of the probe in the reference system, e.g., between the tip and the substrate
[Fig. 13(b)}. This current distribution radiates a field Ey(r,rs;,). Both j, and E, depend on

ryp because the tip is a scatterer that modifies the field and reacts on the source {multiple

scattering). The reciprocity theorem states that (see Appendix D) :

/v’1 Ji(r) Eo(r,ryp) dr = ‘/szz(r,r,ip) ~E;\1-‘;,(r — Iyp)dr . (7.4)

The field E; in the left-hand side in (7.4) is evaluated inside the volume Vi, i.e., inside the
guide and far from the tip, so that expansion (7.1) can be used. Moreover, the dot product of

J1 with each mode of *he expansion can be evaluated using {7.3). This leads 1o -

- 2w 7y, .
A (vwy) = ad /V Ja(r rep) - B (r — 1) dr (7.5)
2

.
Equation (7.5) is a rigorous expression of the amplitude of the mode E&:) excited by an arbitrary
current distribution j,. The only restriction to the validity of this result is that the media should
satisfy reciprocity [141] (see also Appendix D). Let us recall that E?,‘;, is the field emitted by
the tip used in illumination mode, when only the mode E(\? is excited. Note that, in general,
J2 excites several modes and that (7.5) gives the amplitude of each mode. In (7.5), j» is the
current density in the presence of the tip and the substrate. At this step, we have not neglected
multiple interactions between the tip, the substrate, and the current distribution j,. Let us
remark that the general expression of the amplitude (7.5) does not involve the near field at the

tip position. It establishes a direct relationship between the amplitude of the mode and the

current distribution J,.

(i) Case of a point dipole

Let us examine the coupling of a radiating point dipole p, with the probe/substrate system.

This corresponds to a current density jo(r) = —iwps 6(r — ry), where r; is the position of the
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dipole. Equation (7.5) reduces to :
_ . W .
AE\O) = 27rZ,\07 p2 - E;\fp(rg — Tiip) - (7.6)

Equation (7.6) is an exact expression of the amplitude of the mode excited by a point dipole, in
near-field coupling with the probe. Note that all multiple interactions are taken into account in
this expression, namely, p; is the dipole moment in the presence of the probe and the substrate.
This result could be useful, for instance, in the analysis of the fluorescence signal emitted by
a single molecule, where the radiating dipole model is a good approximation. In particular,
(7.6) involves a dot product, thus showing the sensitivity of the signal to the orientation of
the molecule, as observed experimentally [38]. The dependence of the signal on the dipole
orientation is also crucial when one uses the molecule lifetime as a source of contrast, this lifetime

being strongly affected by the dipole orientation with respect to the surrounding objects [158].

(i1i) Case of a mesoscopic sample

The current density j; in (7.5) can be splitted into the current density j, of the sources illumi-
nating the system and the current density j of the sample under investigation, assumed to be
deposited on the flat substrate [Fig. 13(c)]. In an experiment, j, is the ezternally driven current
density of the sources, placed in the far field of the sample. In particular, j, is assumed to be
unaffected by the presence of the sample. For the most general sample, the current density j,

which depends on the tip position, is :
Jr,ry,) = —iwP(r,ry,) + V x M(r,ry,) (7.7

where P and M are the (position- and frequency-dependent) polarization and magnetization
densities in the sample, respectively. For a local and linear material, they can be related to
the electric and magnetic fields, E and H, by the local constitutive relations P = cn((g -1E
and M = (ﬁ —1)H, where ¥ and % are the dielectric and magnetic tensors of the sample,
respectively. As usual in optics, Cisa generalized dielectric tensor, that accounts for both the
free and bound charges of the material. Thus, {7.5) can describe the dielectric, metallic and
magnetic response of the sample, which may be anisotropic.

For the sake of simplicity, we limit the following discussion to a non-magnetic, isotropic

sample. In this case, the polarization density is P = eg(e — 1)E, where ¢ is the position-
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and frequency-dependent dielectric constant of the sample. Dropping the upperscript (—) for

brevity, (7.5) can be cast in the form :

Ax(reip) = Af\go + A5 (reip) (7.8)
where :
—2nZ .
A';i = Ao /vs'ls(l-) . E,A,"},(I‘ — Tyip) dr (7.9)

is the background component of the signal (V, denotes the volume of the external sources) and

2y, . ,
it(rtip) = ﬂ-c 2 Wweg /‘[5([') — 1 E(r,rep) - E;\,»‘;,(r — Typ)dr . (7.10)

is the contribution of the sample (V' is the volume of the sample).

The first term (7.9) does not depend on the sample properties. When the tip scans the
sample at a constant height, this term contributes to the background of the mode amplitude
only. Nevertheless, if the tip is forced to move along the z direction, for instance by the
tip-sample distance regulation mechanism, this term may vary and induce a variation in the
mode amplitude, this variation being independent on the sample. This z-motion artifact will
be studied in details in §9 (see also refs.[155, 156, 157]).

The second term (7.10) describes the purely optical contribution. Assuming that the scan
is performed at a constant height, this term is the only dynamic part of the mode amplitude.
It relates the mode amplitude to the dielectric contrast in the sample. Let us stress that the
dielectric contrast, as written in (7.10), shows the dependence on both the optical properties
(dielectric constant) and the topography of the sample. Indeed, the function [¢(r) — 1] vanishes

out of the sample domain.

(iv) What is measured ?

In optics, one detects the time-averaged intensity rather than the amplitude of the field. Thus,
the detected signal is the energy flux in the guide. For simplicity, we consider a monomode
guide, so that the signal is proportional to |A,,|*. Accounting for the difference of magnitude

between the two terms A&iac}c) and A&‘fﬁ”’. the signal can be written to first order :

[Ax|? = |AY|* + 2Re{AY" AL}, (7.11)
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where Re denotes the real part of a complex number. Only the second term S = 2Re{A§? 2}

varies when the tip is scanned at a constant height. Inserting (7.10) into (7.11), we obtain :

S = —dreg—Im {ZAA';;Z* /V[e(r) —E(r,r) - B (r — 1) dr} . (7.12)
c
Note that the signal S has the structure of an interference term between the field E?}; and

the field E in the sample. The major consequence of this remark is that both the phase and
the amplitude of the near field are recorded, as was pointed out earlier [97, 100] (see also §5),
and it was recognized that the output is essentially a hologram of the sample. Yet, note that
this conclusion was derived from the heuristic assumption that the signal is proportional to the
near-field intensity, an assumption that turns out to coincide with the exact result (7.12) only
when the vectorial nature of the field disappears. In fact, (7.12) accounts for the polarization

effect in the detection process. The signal produced by the mode )\(U_) propagating towards the

detector is related to the projection of the near field on the direction of the field E;\,;‘;,, emitted
through the tip by the mode Af)+), in the absence of the sample. 1t is clear that Et\z‘; is the

fundamental quantity to measure in order to interpret the image. Note that several methods
have been proposed to characterize the field emitted by a SNOM probe [159, 38].

Finally, (7.12) shows explicitely the dependence of the signal on the sample structure (di-
electric constant and topography). The result could be easily extended to a magnetic material,
as mentionned previously. This expression is exact in the sense that all mutliple interactions
are taken into account. Indeed, the field E(r,ry,) in (7.12) is the self-consistent field inside the

sample. In particular, it depends on the tip position.

(v) Existence of an impulse response

Equation (7.12) provides a linear relationship between the signal and the dielectric contrast
in the sample. Nevertheless, the dependence of the field E on the tip position breaks the
translational invariance, so that it is a priori not possible to introduce an impulse response
(or a transfer function). Nevertheless, we demonsirate that a single scattering approximation,
which is accurate in NFO for a broad class of samples [112, 115, 153, 160, 151], allows to
introduce naturally an impulse response describing the imaging system. This result gives a

rigorous theroretical basis to the concepts of impulse response and transfer functions introduced
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previously in NFO, either heuristically or numerically [148, 136, 98, 149, 150, 152, 153, 95].
Assuming that only single scattering takes place inside the sample, the first Born approxi-
mation can be used in (7.12). It amounts to approximating the field E(r,ry,) by the field E®
illuminating the sample, i.e., the field radiated by the sources j, in the reference system (tip -+
substrate), in the absence of the sample. Due to the extended illumination used in collection-
mode SNOM (the sources are in the far field, and the incident field is uniform accross the
scanning area), the illuminating field has the form E®)(r — r,,). Note that E( is in general
non uniform, because of the interaction of the tip with the substrate. For example, a local en-
hancement may be observed. In other words, the tip may interact strongly with the substrate,
but we assume a weak interaction with the sample. An example of such a situation would be
a dielectric agregate deposited on a metallic substrate. The remarkable consequence of this
approximation is that an impulse response H(r — ry;,) exists between the dielectric contrast
and the signal :
S = j‘ H{r ruple(r) - i]dr, (7.13)

where the impulse response is given by :
w * o N
H(r —ry,) = —471’60? Im{Z,\ AI/’\‘[{” EO(r - ry,) - E;\;;,(r N r,,»,,)} . (7.14)
Let us use this result to draw some conclusions on the imaging capabilities of the technique :

1. Obviously, the contribution to the signal comes from regions where the field EZ\,‘;) takes

significant values. In this respect, the field EE\:;, is a weighting factor. Yet, this condition

Ao

is not sufficient, since the illuminating field E®) may be perpendicular to E;,, so that

the contribution would be zero.

2. The nice feature that appears is that one may select, as a weighting factor, any cartesian

Ao
tip

component of E;?, by illuminating with a linearly polarized field E(®). This can be used

tu enhance the resolution.

3. An important consequence of the existence of this impulse response is that the inverse

problem can be solved, in principle, by a deconvolution [98, 99, 145].

4. Finally, (7.14) shows that multiple scattering (i.e., strong interactions) between the tip and

the sample is not necessary to obtain good resolution. The achievable resolution is given
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by the width of the impulse response. A sufficient condition, to achieve high resolution, is
to have a high confinement of at least one component of Et\,‘;, Moreover, the illuminating

field E© may also be confined, due to the interaction of the tip and the flat substrate.

Several experiments have been done by both illuminating and detecting with the same
tip, which is known as the reflection mode [161, 162, 163]. In that case, the fields E7, and
E© coincide and the overlapping integral is maximal. An interesting property is that this
configuration yields an improvement of the resolution very similar to what happens in confocal

microscopy. Let us suppose, for the sake of illustration, that the field E;\,‘; is Gaussian with a

Ao

width ¢. Then the product Eg) - E(© is a Gaussian with width @ for a plane-wave illumination

Ag
tip*

and a Gaussian with width a/v/2 for an illumination by E Note that, in this particular
case, the transfer function does not depend on the polarization. A slightly different set-up has
been used by Boghevolnyi et al.[163]. They detected the cross-polarized light, which amounts
to using, as an impulse response. the product E,\l‘; -E"%2,, where E'? is the field emitted by the
tip, when the polarization has changed by Y0°. It is clear that the depolarizing properties of
the tip are involved in this particular case.

Equation (7.14) is the explicit expression of the impulse response relating the signal to the
dielectric contrast in the sample. Nevertheless, some attempts to define an impulse response
(or a transfer function) between the signal and the near-field intensity illuminating the tip were
reported in the literature [136, 151, 152, 95]. In the present framework, it is possible to derive
an explicit expression of this transfer function. The derivation is reported in Appendix F. In
particular, it shows that 1) such a transfer function exists under the same conditions as the

impulse response defined in (7.14), and 2) the transfer function does not, in general, relates the

signal to the square modulus of the electric field, due to polarization effects.

B. Illumination mode

The illumination-mode SNOM closely follows the original idea of Synge [51]. The nanosource,
achieved for instance by illuminating through a metal-coated optical fiber tip [33], is scanned
along the surface and the scattered field is recorded by a detector in the far field, either in
transmission or reflection. The link between the signal and the properties of the sample can be

established along similar lines : we use the reciprocity theorem to derive an exact relationship
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between the induced current in the sample and the field at the detector position. Then, we
show that a single scattering approximation leads to the introduction of an impulse response

to describe the imaging properties of the microscope.

(i) Basic equation

To proceed, we consider two different situations, as depicted in Figs. 14 (a) and (b). The
reference geometry involves a flat substrate and the probe at subwavelength distance. We use

the same notations as in the previous paragraph.

(@ (b) ()

E; L YA i sample

e
N\
¥

Fig. 14: Sketch of the system. (a) The current j, (assumed ponctual) produces a field Ey in the
reference system, (b) A current distribution j; produces a field Eq in the same system, (c) A general
situation where j; is splitted into a source with an externally driven current density j; and a sample

with an induced current density j.

In the first configuration [Fig. 14(a)], a current density ji, placed in the far field (i.e. at
the location of the detector), produces a field E,. This field is a function of r — r;, because
the source current density is placed in the far field, so that the incident field on the system is
assumed to be uniform. Thus, the system is translationaly invariant. In practice, this condition
is fulfilled on the scanning area. For simplicity, we assume that the detector in the experiment
is a poinl detector placed in the far field (i.e., a small detector in the focal plane of a lens),
and we can use a current density ji(r) = j;6(r — r;). Note that we could also introduce the

dipole moment p;, such that j; = —iwp,. But in order to emphasize the similiraty with the



Images in Near-Field Optics 183

study of the collection-mode set-up, it is preferable to work with the current j;. In the second
configuration [Fig. 14(b)], a current distribution jy(r,r;,), placed for instance between the tip
and the substrate, produces a field E,(r,r;;,). The reciprocity theorem yields (see Appendix
D):

i Ba(ru, o) = [ Jalr, i) - Bh (e = ) dr (7.15)
We use the notation Ejl1 for the field E; to keep in mind that this field depends on the choice
of the current j; (especially on its orientation which controls the polarizxation of E’l‘) This
notation is similar to that used for the collection-mode set-up, E;\'-‘;,, where the mode Xy was
chosen. Splitting the current density j, into the contribution of the sources j, located inside

the guide and far from the tip (illumination mode) and the contribution of the sample j =

—iweple(r) — 1] E(r, ry;,) [see Fig. 14(c)], one obtains :
Ay (rip) = AT+ AR (r) (7.16)

where A;, = p; - Ey(ry, ry) is proportional to the component of the field at the detector position
along the direction of j;. It contains a background contribution Aflg, independent on the sample,
and which does not vary with ry, when the scan is performed at a constant height, and a

dynamic contribution A}, which contains the information on the sample :

Il

Al A jo(r) - Ed (r — ryy) dr (7.17)

s

Al (rup) = —weo /V[f(r) — 1| E(r,ry,) - Ejl‘ (r —ryp)dr . (7.18)

Equations (7.17) and (7.18) give the field at the detector position, produced in the illumination-
mode configuration in Fig. 14(c). The second term (7.18) gives the optical information on the
sample, and depends on both its dielectric constant and topography. Note that (7.17) and
(7.18) do not give the expression of the field E,, but of its projection on the direction of p;.
This describes the polarization effect in the imaging process in illumination-mode SNOM. For
example, to determine the z-component of E,, one needs to know the field E¥ produced when
the reference system (probe + substrate) is illuminated by a point current j; of unit amplitude,

polarized along Oz, and located at the detector position.
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(i) What is measured ?

The dynamic part S of the signal produced by the component of E, along the direction of j; is
S = ‘)Re{A;’f"A'i““}, assuming that [A3*] < |A§f}. Using (7.17) and (7.18), we obtain :

S = 2weg Im {A?lg* /V[e(r) — 1] E(r, ) - BV (r — rtip)dr} . (7.19)

Equation (7.19) gives an exact expression of the signal in illumination-mode SNOM, when
a point detector is used, and when only one component of the field is measured (polarized
detection). Let us stress that all multiple interactions between the sample and the reference
system are taken into account in this expression. In particular, E(r, 1) is the field inside the

sample, which depends on the tip position ry,.

(iii) Impulse response

As for the collection-mode cornfiguration, an imnulse response appears naturally when the first
Born approximation is used to describe the field in the sample. In this particular case, this
approximation amounts to replacing E(r. ry;,) in (7.19) by the field produced by the tip in the
reference system. Assuming for simplicity that only one mode, denoted by Ay, is excited, this

field is E?,‘;)(r — Typ) [see Fig. 13(a)]. One obtains :

S = /V H(r — ) [e(r) — 1] dr (7.20)
where
H(r — r4,) = 2wep Im {A_?f* E;S(r —rup) - El'(r — rtip)dr} . (7.21)

(iv) Similarity with the impulse response in collection-mode SNOM

Except for a constant factor, (7.21) is identical to (7.14), obtained for collection-mode SNOM.
In fact, A;’lg, and Ejl1 in (7.21) are exactly 4[;% and E(® in (7.14). This result is not surprising be-
cause in §6, we have demonstrated that the collection-mode and illumination-mode instruments
are equivalent. Since the two modes are equivalent, their impulse response (when they exist)
are identical, as expected. Note that some precise equivalence rules (involving the coherence
and polarization properties of the illumination/detection scheme) are given in §6, in order to

obtain the same signals in both modes. As a consequence of this equivalence, all the conclusions
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we obtained from the structure of the impulse reponse in collection-mode SNOM (localization

of the field emitted by the probe and resolution, polarization effect, inverse problem and role

of multiple scattering) are valid in illumination-mode SNOM.

C. Apertureless set-up

A number of groups have built near-field optical microscopes by using the apertureless tech-
nique, where detection is performed in the far field. In order to send light to the detector, a
tip is brought into the vicinity of the sample. It is mechanically excited and vibrates in the
z-direction at a well-controlled frequency. The amplitude of the scattered light is related to the
amplitude of the near-field that locally illuminates the tip. Differences in the set-ups are due
to the nature of the tip (AFM or STM tips [76, 110, 74, 77, 90], levitating particles[73, 164]),
operating mode (constant-height or constant-distance mode), illumination, coherence of the
illumination, polarization control. etc

Since the first papers were published. the understanding of the mechanism has considerably
changed. Basically, the tip may play two roles. On one hand, it acts as a nanodetector, as
depicted in Fig. 15(a). On the other hand, it acts as a nanosource, as shown in Fig. 15(b).
Further interactions (multiple scattering) between the tip and the substrate may appear, if
there is a strong coupling (e.g., a metallic particle above a metallic surface supporting surface
plasmons polaritons). It has been argued very often that such multiple scattering is necessary to
obtain good resolution [90]. Indeed, excellent resolutions have been demonstrated for metallic
surfaces[71, 72]. Yet, as for the collection and illumination modes, we will see that strong
interaction is not necessary. The present goal is to analyse the imaging capabilities of this type
of set-up. We have shown that, for collection and illumination-mode SNOM, the signal can be
related to the dielectric contrast of the sample. In this section, we outline a similar analysis,
which is also based on the reciprocity theorem. We first establish an exact expression for the
signal, and relate it to the sample properties. Then, we show that an impulse response can
be introduced, when multiple scattering betwecen the sample and the reference system (tip +

substrate) can be neglected.
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Fig. 15: Sketch of the apertureless set-up. (a) Nanodetector mechanism. (b) Nanosource mechanism.

(1) Exact expression for the signal
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Fig. 16: Sketch of the system. (a) A current j, at the location of the detector produces a field E,
in the presence of the tip and the flat substrate. (b) A current density j, produces a field E;. (c) A

general experimental situation with a source current density js and a sample.

Consider a tip placed at subwavelength distance from a flat substrate, at a position rs;,. The tip
may be either an AFM tip [76] or an STM tip [72, 77, 74, 110]. In a first situation [Fig. 16 (a)],
a point dipole p; is placed in the far field, at the location of the detector (assumed to be
point-like for simplicity). As for the illumination-mode SNOM, we work with the point current
density j; = —twpy, rather than with the dipole moment p, itself. We denote by E‘;‘(r — Ttip)
the field produced in this situation. The field Ejl“ can be highly confined, because of the tip
effect. 'This type of tip effect can be described in the electrostatic approximation, and some
analytical expressions of the field behavior close to the tip can be found, e.g., in ref. [165). In
a second situation [Fig. 16 (b)], a current density j,, placed in the near field, produces a field

Ey(r,ry;). Using the reciprocity theorem, and splitting the current distribution j, into a source
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distribution j, and the current density in the sample, we obtain an expression for the signal

which is formally the same as (7.19), derived for the illumination-mode SNOM :
S=2mﬂm{ﬂ?£ﬁ@)—UEumwaﬂr—an%. (7.22)

The only differences between (7.22) and (7.19) are (1) in apertureless SNOM, the source dis-
tribution does not excite a mode in an optical fiber, used to produce a localized illumination of
the sample, but the source directly illuminates the sample from the far field, as in conventional
microscopy, and (2) the fields E!' are very different in both situations. Let us recall that in
(7.22), S is the dynamic part of the signal produced at the detector position by the component
of the electric field polarized along the direction of j;.

ii) Impulse response
p

As for the illumination-mode configuration, an impulse response appears naturally when the
first Born approximation 1s used to describe the field in the sample. Within this approximation,
we replace the field E(r,ry,) in (7.22) by the field EE?;(I‘ — Iryip) illuminating the sample. This
field is the field radiated by the sources j; in the reference system (tip + flat substrate).
Note that, due to the near field interaction between the subwavelength tip and the substrate

and the tip effect, this field may exhibit subwavelength lateral variations, as well as a local

enhancement [166]. We finally obtain :

szﬁHumwpm—ua, (7.23)
where
H(r,rip) = 2weo Im { A EQ(r — 14,) - BV (r — 1y
(I', rtm) wep im 11 tlp(r rtlp) 1 (I‘ r“P) . (724)

Let us emphasize that (7.24) accounts for the two roles of the tip, namely, nanosource and
nanodetector (see Fig. 15). Note that in Fig. 15, only single scattering takes place inside the
sample, thus the existence of an impulse response is not in contradiction with the presence

of the two mechanisms. We see that the resolution depends on both the confinement of the
(0)

tip and of the field EJ;“ As for the other modes, multiple scattering in the

illuminating field E
sample is not necessary to achieve high resolution. Note that a confocal type set-up can be used

to run such an experiment, where the illuminating field E©) coincides with the field E,, so that
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the impulse response is even more localized, as discussed for the collection-mode set-up. In this
particular arrangement, the enhancemeni, due to the singularity close to the tip, is squared.
Such an experiment has been reported in the literature [110, 74].

Finally, we note that (7.24) accounts for the polarization properties of the imaging process
in apertureless SNOM. The signal S is produced by a measurement of the field at the detector
position, projected on a direction u,. This signal is proportional to the projection of the illumi-
nating field E(®) on the field E;, produced in the reference system by a dipole p, oriented along
u;, and placed at a detector position. The importance of polarization effects in apertureless
SNOM was pointed out by several authors [84, 83]. The role of the polarization of the incident
field and of the detector position was particularly emphasized. We hope that this model will

be helpful in understanding the basic mechanisms leading to these observations.

(ii1) Nanosource or nanodetector ?

Recently, numerical calculations have been performed to investigate the importance of multiple
scattering between the tip and the sample, and also to compare the relative importance of the
two mechanisms : nanosource and nanodetector (see Fig. 15) [83]. The system studied was a
small gold cylinder levitating above a one-dimensional dielectric rough surface, illuminated by

a p-polarized plane wave (see Fig. 17).

Fig. 17: Sketch of the system, where a small cylinder is placed above the surface.

The detector detects the flux of the Poynting vector in the far field for different observation
angles. In a numerical simulation, it is possible to evaluate separately the field radiated by the

tip (nanodetector mechanism) and the field radiated by the currents induced on the sample
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(nanosource mechanism). If the field radiated by the sample shows high-resolution structures, it
means that the cylinder has locally illuminated the sample, acting as a nanosource. The results
displayed in Fig. 18(a) show that for a tip sample distance of 0.017A, the intensity scattered
by the surface does not display any resolution. Thus, the small cylinder is not a nanosource.
By contrast, for the same tip-sample distance, the signal scattered by the tip reproduces the
surface profile (see Fig. 18), as shown in ref.[83]. Thus, in this case, the tip mainly acts as a

nanodetector.
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Fig. 18: Intensity scattered in the far field by the sample (nanosource mechanism) (a), (c), (e) and by
the tip (nanodetector mechanism)(b), (d), (f) for different scattering angles when the tip is scanned
at constant height zy = 0.017X along the surface. The index of the substrate is 1.5. The dielectric
constant of the tip is —9.89 +41.05, its radius is A/100. The topographical bumps are Gaussian, with
height A/200 and width A\/100. The incident field is p-polarized and 8y = 50°. Left column, 8, = 0°,

central column 8 = 50°, right column 8, = 90°. From A. Madrazo et al., ref.[83]
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The results in ref.[83] shows that, even with a metallic tip, the nanosource mechanism
appears only for very small tip-sample distance, with a highly reflective substrate. Nevertheless,
the calculations were carried out with a cylinder (i.e., the 2D equivalent of a sphere). With a
sharp tip, a stronger local enhancement of the field could be obtained, due to the singularity of

the field at the tip [165]. In this case, the nanosource mechanism may become more important.

D. Conclusion

We have shown that the image formation in the different families of near-field optical micro-
scopes can be described in the same framework. In each case, the signal can be related to the
polarization density in the sample. The explicit form of the relationship has the structure of
an overlapping integral of the dot product of the polarization density with a reference field E;.
This reference field is always the field produced in the reference system (tip +substrate, without
sample). when the detector of the experiment is replaced hy a source. We emphasize that, in
the derivation of this result, the only assumption is that the reciprocity theorem holds (see
Appendix D). We also emphasize that the reference field E, depends on the polarization of the
detection. By changing the polarization, the reference field is changed. The field E; plays a
central role in the analysis. It is therefore important to be able to measure it experimentally. A
possible solution is to have a point dipole acting as a local sensor of the field. The experiments
described by Betzig et al. [38] are essentially this type of measurement. Another method was
proposed recently to measured the near field emitted by a probe [159]. Note that producing an
interference with a linearly polarized plane wave might allow to record separately the diferent
components of the field E;.

At the cost of an approximation, the concept of impulse response can be introduced nat-
urally. The only assumption is that multiple scattering between the sample and the rest of
the systemn is negligible. For instance, consider a molecule placed between a coated optical
fiber and a metallic substrate. There is obviously a strong interaction between the tip and the
substrate, but multiple scattering between the molecule and the rest of the system can often
be neglected, because the scattering cross-section is small. This condition is generally satisfied
if the samples are small compared to the wavelength and if their dielectric contrast is low. The

genera] form of the impulse response is then the product of the illuminating field E° (i.e., the
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field produced in the reference system by the real sources of the experiment set-up) with the

reference field E; :

H(r - riy) = K Im{K'E; - E%(r — ry;,)} (7.25)

where K and K’ are constants that depend on the set-up. This formalism should be useful
in designing and evaluating the performances of near-field experiments. A number of features
can be studied with this approach, such as the role of polarization, illumination or detection
scheme, etc. Moreover, the concept of impulse response provides a quantitative tool to compare

the potential capabilities of different SNOM set-ups.

8. Influence of Coherence

Coherence theory allows to discuss the statistical properties of random fields {167]. For our
purpose. we distinguish two main classes of random fields. On one hand, thermally produced
fields are random in nature. Indeed, they are produced by the uncorrelated radiative desex-
citation of a large number of excited states. On the other hand, a fully coherent beam can
acquire a random nature after being scattered by a random system (e.g., a particle suspension
or a rough surface). The coherence of a field is measured by the degree of correlation of the
field with itself at different points and/or different times. We can distinguish between spatial
coherence and temporal coherence. Spatial coherence is fully characterized by the correlation
function <Ea(r, tyER(r', t)> whereas temporal coherence is described by the correlation function
at the same point and different times <Ea (r,t)E3(r, t’)>, where the brackets denote an ensem-
ble average. In what follows, we are mostly concerned by the spatial coherence of the light.
In the first subsection, we study the structure of the near field above a slightly rough surface,
illuminated by a plane wave. We show that the near-field intensity acquires a wavy structure
that has been observed experimentally [168, 169, 146, 112}, and which is in fact closely related
to the statistical properties of the surface itself. In the second subsection, we analyse the role
of spatial coherence in the image formation process, when using a microscope operating in
the collection mode. We show that the best illumination conditions are obtained when using
a partially spatially incoherent symmetric beam, as has been first observed experimentally by

Chabrier et al. [144]. This discussion is intimately connected to the discussion in §6.D.
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We derive a general expression for the signal in scanning near-field optical microscopy. This
expression, based on the reciprocity theorem of electromagnetism, is an overlapping integral
between the local electric field and a function that characterizes the tip. In particular, it includes the
dependence on wavelength, illumination conditions, and polarization. To illustrate the potentiality
of this theory, we discuss the polarization behavior and the spectral response of the apertureless
setup. ©2000 American Institute of Physids§0021-897@0)02821-§

I. INTRODUCTION In this article we introduce an exact and general expres-
sion for the signal as a function of both the local electromag-
Scanning near-field optical microscopgNOM) has at-  netic field and the tip properties. This expressiorreveals
tracted considerable attention in the past fifteen years aswhich physical quantity is detected in a SNOM experiment
technique to obtain optical images of surfaces with subwaveand(ii) provides a useful tool to analyze experimental results
length resolutiort:? In addition to surface-structure imaging, and to calculate the SNOM signal. To illustrate the potenti-
SNOM has proven its ability to generate and image confinedlity of this approach, we concentrate on the apertureless
electromagnetic fields such as surface plasniawsdetect setup®® We describe the polarization behavior and the spec-
single molecule fluorescenée,to perform near-field tral response, in agreement with recent experimental
spectroscopy’ or to observe light localization on disordered results®*6 In view of these results, the approach looks par-
surfaces. In addition, SNOM is a good tool to control light ticularly suitable to the description of near-field optical spec-
propagation in guiding microstructufeand optoelectronic  troscopy.
components. In these applications, where the main interest
is in the detection of the electromagnetic field itself rather; THeQRY
than in imaging a surface structure, SNOM appears as a ) _
privileged technique compared to other scanning probe mif- General expressions of the SNOM signal
croscopies. In order to obtain an expression for the signal, we use
Several theoretical studies about SNOM have been prehe reciprocity theorem of electromagnetishihis theorem
sented in the last ten years, based on numericayas the basis of a SNOM model derived previously for im-
simulations®~*?or analytical model$>** Concerning imag-  aging of surface structurédand of a model for light emis-
ing of confined electromagnetic fields, a first description ission in scanning tunneling microscop.The reciprocity
obtained by assuming that the signal is proportional to theheorem involves two different situations.
square modulus of the electric field at the tip locati6rf: The first one, called experimental situation, is a generic
Another point of view is to describe the tip by a pointlike experimental SNOM setup, as illustrated in Figa)lIn this
scatterer that scatters the near field towards a far-fieléxperimental situation, a physical system described by a
detector.”** Although these approaches are well suited formonochromatic current densify{) radiates the field to be
some particular cases, they do not tackle important aspectgbserved. This physical system is either a primary source
such as the tip shape effects and the nonlocality of the dee.g., a molecule or an emitting optoelectronic deyvicea
tection process. Hence, how the signal depends on the locgkcondary source excited by a primary point source with cur-
electromagnetic field and on the tip in a real situation rerent densityj., () placed in the far fielde.g., a plasmon
mains an open issue. Another important point, which retesonance on a metal surface or a guided mode in a micro-
mains unstudied, is the influence of the near-field detectiostructure excited by an incident laser beaifhe field radi-
and the tip properties on the spectral response of the SNOMted by the physical system is probed by a local tip and the
setup. This issue is essential in order to understand the spesignal is recorded in the far field by a point detector. The
troscopic experiments. There is absolutely no reason to asegion between the tip and the physical system is assumed to
sume that a SNOM setup has a flat spectral response. Thuse homogeneous and free of sourégap region.
normalizing a near-field spectrum by a far-field spectrum  |n the second situation, called reciprocal situation and
does not suppress all the instrument spectral properties.  represented in Fig.(i), the collecting systerttip+detection
opticy is illuminated by a hypothetical monochromatic point

aAuthor to whom correspondence should be addressed; electronic maifOUICej re_c(w) placed at the det_ector posiFion, in absenpe of
remi@em2c.ecp.fr the physical system and the primary soujgg(w). The di-
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(a) plitude denoted b)e;p(K), while e,,(K) corresponds to
waves which propagate or decay towamtsQ. A similar
Detector Source angular spectrum can be written for the magnetic field
X > 3
Edet /.-] sou Hexp(R,Z)=j hexd(K)exp(iK-R+iyz)dK
Collecting ) _ _
system +f ey K)exp(iK-R—iyz)dK, 3)
\ /‘ """"""" with, as a consequence bfaxwell's equations
Eexp Hexp kixegxp(K)szOhgxp(K), 4
wherek™ = (K,* ) and u, is the magnetic permeability of

vacuum.

Similar expressions can be used for the fielltls. and
H,ec In the reciprocal situatioiisee Appendix A However,
the angular spectra of these fields only contain waves which
propagate or decay towards<O, because there are no
sources below the probe in the reciprocal situatjsee
Fig. 1(b)]. Inserting the angular spectra of all fields into the
TZ v integral in Eq.(1) and collecting terms, we obtain the fol-

lowing expression for the field at the detector positisee

______________________________ Appendix A for details:
s7TAYN

Edetrec= Ered I'sol) *J sou

E rec Hrec 872

f Y(K)€red —K) €5, K)dK, ®)

FIG. 1. Schematic views of the two situations considered for the application Wlo

of the_remproqty theorem(a): sketch (_)f the e>'<per|menta_l S|tuat|or_1,wherea where the integral is extended over<¢}<|<+oc and de-
generic experimental SNOM setup is consider@. reciprocal situation,

where the collecting system is illuminated by a point source located at théCribes the detection Of_ both pr_opagating and _evanescem
detector position. components of the experimental fmé@D(K). An equivalent

expression is obtained by transforming E&) into real
space(see Appendix A

rection ofj,.. corresponds to that of an analyzer placed be- Eqetirec= Eved T eol)]

fore the detector in the experimental situation. The applica- detJrec™ Erecl'sou)Jsou

tion of the reciprocity theoreM leads to the following 2i IE ec N

expression for the electric fielly; at the detector position: - wu, s 9z (R,2)EefR,2)dR, ®)

E et rec= Erec(rsou)'jsoﬁf (EexpX Hree— ErecX Hexp) - S, where the integral in the second term is now evaluated in a
s °F plane at a constant heightin the gap regior(surfaceS in

1) Fig. 1. E;p denotes the experimental field containing waves
whereEe,p (e @ndHexppec are, respectively, the electric and that propagate or decay towards 0, whose angular spec-
magnetic fields in the experimentéleciproca) situation, trum is given by the first integral in Eq2).
dS=dSZz, where?Z is the unit vector of the axis, andrg,is
the position of the source. In the gap region, the electromag-
netic fields in both situations can be expressed in terms of ag_ piscussion
angular spectrum of plane wavEsFor instance, at a point

r=(R,2) in the gap regionE,, can be written in the form Both Egs.(5) and(6) are exact expressions of the com-
ponent of the electric field along the directipg. of an ana-
_ . . lyzer at the detector position in the experimental situation.
EodR,2)= | e (K K-R+iyz)dK ] o
exd R.2) f arpl K EXRI 1v2) They rely on the validity of the reciprocity theorem, namely,

the collecting systentip + detection opticshas to be made
+f e;xp(K)exp(iK-R—iyz)dK, 2 of linear materials with symmetric constitutive tensérs
This restriction applies to the bodies entering the reciprocal
where y(K) = (k*—K?)¥2, with k=w/c (o being the fre- situation in Fig. 1b). In particular, it does not apply to the
qguency andc being the speed of light in vacugnand the  physical system, which may contain, for example, magnetic
determination Re>0 and Imy>0. The integrals in Eq(2)  materials. We also put forward that both expressions take
are extended to €|K|<+o, so that they contain both into account multiple scattering between the physical system
propagating [K|<k) and evanescent|K|>k) waves. and the tip. IndeecE.,,is the field illuminating the tip in the
Waves which propagate or decay towardsO have an am- presence of the tip.
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The first termE,{rso0) jisou IN the right-hand side of Equations(6) and (7) are two equivalent expressions of the
Egs.(5) and(6) describes direct radiation of the illuminating same quantity. The former connects the signal at the detector
source(e.g., a lasgrtowards the detector. It does not carry to the electric field illuminating the tiIE;p, whereas the
any information on the physical system. Moreover, it van-latter relates the signal to the magnetic field illuminating the
ishes in experimental situations in which the physical systentip H;Xp. In this case, the response function which character-
is itself the primary sourcée.g., a fluorescent molecule or an izes the detection process is proportional #d¢)H,... The
emitting optoelectronic devige Both expressions can be fact that the signal may be expressed as a function of either

useful to describe a given experiment: the electric or the magnetic field is not surprising because

« Expression(5) (Fourier space describes how each both are linked by Maxwell’s equations. Nevertheless, de-
spatial frequencK of the experimental field is detected. The Pending on the shape of the response fU”C“?mO Erecand
coupling factor is proportional te.{ —K). Hence, a given (9/92)Hrec, the signal may resembig,,, or He,, Note that
frequencyK is efficiently detected if it is present in the spec- the shape of the response function depends only on the tip
trum of E,., the field produced by the collecting system anq the'collectmg optics. In the case of the experiment de-
(especially the tipwhen it is illuminated from the detector. Scribed in Ref. 23, the dielectric tip may produce a response
In other words, a tip is able to detect high spatial frequenciefinction (9/9z) Erec which is highly localized and symmetric,

. _ . 2 . B
if it itself creates high spatial frequencies when illuminatedS© that the signal=|Eqerjred closely follows the distribu-
from the far field. tion of the electric field. Conversely, the gold coated fiber tip

« Expression(6) (real spack shows that the detected MaY produce a highly localized and symmetric response

field is given by an overlapping integral between the experifunction (9/9z)Hec, so that the signal closely follows the

mental field and a term proportional to the derivative of thedistribution of the magnetic field.
reciprocal field ¢/9z)E,... The latter is a response function

of the instrument, describing the spatial localization of the

detection process, the polarization effects, and the spectrgl. APPLICATION: APERTURELESS SNOM
response.

Equation (6), or equivalently Eq.(5), can be used to
analyze experimental results in SNOM. The key quantity,
which characterizes the tip and the collecting system, is the
reciprocal fieldE,... Different models are available, that al-
Oow an approximate and practical description of this field.

Finally, we note that an expression of the SNOM signal
exhibiting the same structure as E) was derived
recentlf’ as a generalization oBardeen’s formul&??
originally developed for electron tunneling between two

VSVEIEEljkll\)I/ ;r?(zllvlpslsgnrﬁlrfciﬁgﬁzinTh:zic:(e)Zlégﬁ&?‘?lf/l) s:;r\l/vgeth or instance, for an aperture SNOM, the Bethe—Bouwkamp
9 g modef* could be used®?® For an apertureless SNGfius-

handled using the same formalism. There are two differences

between Eq(6) and the result in Ref. 20i) The latter was ing a conieal metallic tipEre; can be mod_eled ggé;he'field
derived under the assumption of weak tip—sample couplin pear the tip apex of a perfectly conducting cone’. With

whereas Eq(6) is exact.(il) The result in Ref. 20 was for- %uch models, the approach presented in this article provides a

. . . versatile and useful tool to analyze experimental results and
mally put in the symmetrized form of a current operator as in

Bardeen’s original article. o identify the key parameters.

A. Tip model

In order to illustrate the potentiality of the theory, from
C. Electric or magnetic field? now on we focus on the apertureless SNOM. As mentioned
?bove, the fieldE,¢. can be modeled in this case by the field

Before closing this section, we address the question o . : ’ .
whether a SNOM detects preferentially the electric field o c&f the tip apex of a perfectly conducting cone illuminated
y an electric dipole placed at the position of the detector

the magnetic field. This question was raised recently in light.” ~. ) . .
of experiments using a photon scanning tunneling micro, S N the far f'%%'g; At short distance from the tip apex
scope (PSTM) with either dielectric or metal-coated (kr=<1), one ha
probes?® Dielectric probes seem to detect a signal propor- "y
tional to|Eg,J* whereas gold coated fiber tips seem to detect E=k(kr)"""sinp

a signal proportional tdjﬂgxdz. We shall see that the preced- ] ) o
ing analysis allows to discuss this issue. wherea is a function of the angle of incidenag , the angle

Starting from Eq.(1) and using Eqs(2)—(4), it is pos- of observationd, and the semiangle of aperture of the cone
sible to derive an expression of the electric field at the de«- The other parameters are the wave vekterw/c and the

tector in terms of magnetic fields only. One obtains in thisa"gle of polarizations of the incident wave(8=0 for an
case illumination in s or TE polarization,3= /2 for an illumi-

nation inp or TM polarization. u, andu, are the unit vec-
E . —E i i tors in spherical coordinates.is a positive number smaller
def]rec= Ered 'sou o0 we, than 1 which depends on the cone arf§léote that al-
though Eq.(8) is an asymptotic expression, it is not an elec-
Xj aHrec(R,z)-H;Xp(R,z)dR. @) trostatic approximation. Therefore, it includes retardation ef-
Jz fects. Remarkably, the field given by E@8) is highly

Uy
U+ — —
" v 96

a(b,,0,a), (8)
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enhanced near the tip apex, and its spatial distribution doedipole being, in this case, placed at the position of the detec-
not depend on the illumination conditions. This model fortor. The experimental fieIclE;Xp contains several contribu-
the tip was introduced in near-field optics by Cayal?’  tions, e.g., the field reflected by the flat mirravithout in-

We will show that, together with E@6), it allows to explain  teraction with the tipand the enhanced field at the tip apex,
the polarization dependence and the spectral response meaflected by the surface. The latter is given by the product of

sured on an apertureless setup using a metallic tip. Eq. (8) and a reflection factor which does not depend on the
frequency. In the case of a confocal detection, as in Ref. 6,
B. Polarization dependence the signall is given by the interference between these two

o . contributions. Therefore, it is proportional to the integral
The polarization effect in apertureless SNOM has beeqerm in Eq.(6), in which bothE,., andE_;
. l rec

are described b
recently studied experimentall§.In that work, the sample e y

- AP Eq.(8). Finally, we end up with «w?”~ 1. For different tip
was a flat silicon surface, probed by a tungsten tip, illumi-y 105 the signal predicted by this model versus the incident

nated at a wavelength=647nm. The dependence of the .\ alength is shown in Fig. 2 in Ref. 6. An excellent agree-

signal on the polarization of the incident wave was Mea1ant with the experiment is found

sured. The polarization state of the incident wave is de- Finally, we note that if the tip apex were modeled by a

scribed by the angles. The signal versug, measured in g a1 ginole sphefd, the spectral dependence expected for
reflection in the direction normal to the surface, is shown iny, . signal would ba?, in disagreement with the experimen-

Fig. 2 in Ref. 16. The result can be explained using @) 5| reguits. Therefore, modeling a conical metallic tip by a
t_ogether W'th, th% tip model E,qs,)' The s_|gnall IS Propor- gyl dipole in apertureless SNOM leads to wrong predic-
t'onal_t°|Edeﬂ red '_Th'_s quantity is described by the mtegrgl tions, at least for spectroscopic applications. In view of this
term in Eq.(6), which involves the enhanced field at the tip g1t we believe that the approach in the present article

apex(the first term in the right-hand side in E(f) gives @ g4 find broad applications in near-field spectroscopy.
negligible contribution in this setypWhen the tip is at a few

nanometers from the surface, the fiﬁélxp illuminating the
tip is mainly the enhanced field reflected by the surfacelV. CONCLUSIONS
Therefore,E,jXp is proportional to the field given by E¢8),
and thus to sifB. Finally, the signal ig «sir? 8. This predic-
tion is in agreement with the experimental reqske Fig. 2
in Ref. 16. Thus, Eq.(6), together with Eq.8) correctly
describes the polarization behavior of an apertureless SNO
using a metallic tip.

In conclusion, by means of the reciprocity theorem of
electromagnetism, we have derived an exact and general ex-
pression for the signal in SNOM. This expression connects
the field at the detector position to the local field illuminating

e tip. It is valid in the presence of multiple scattering and
can be applied to any type of SNOM probe. We have illus-
trated the potentiality of this approach by analyzing the ap-
C. Spectral response ertureless setup. We have described the polarization effect

We now turn to the study of the spectral response. It hagnd found a result in agreement with experiméfitt/e have
been found experimentally very recently that the spectral re@lso studied the spectral response which was measured ex-
sponse of an apertureless SNOM using a metallic tip is noperimentally very recentfyand we have shown that its de-
flat, and that it depends on the tip sh&pBhis unexpected pendence on the tip shape was fully described by our ap-
behavior is of great importance in near-field optical spectrosProach. Besides, it turns out that a dipole model for the tip
copy, where the recorded spectra have, in principle, to béoes not account for the spectral response observed experi-
corrected by the response function of the instrument. Ifmentally. Therefore, we believe that the general expression
Ref. 6, a confocal geometry was used. The sample was dar the SNOM signal introduced in this article should be
aluminum mirror(flat spectral response in the visible, with a helpful for quantitative analysis of future experimental re-
reflectivity R=0.9). The signal was measured versus the in-Sults.
cident wavelength, and normalized by the far-field spectrum
rgcordgd under the same conditions. The resuljts fo_r two t.'pﬁCKNOWLEDGMENTS
with different angles of aperture are shown in Fig. 3 in
Ref. 6. We shall show that Ed6), together with the tip The authors thank L. Aigouy, J. C. Rivoal, and A. C.
model Eq.(8), quantitatively describes this behavior. First, Boccara for many helpful discussions. We acknowledge fi-
we note that although an electrostatic model can correctlypancial support from the TMR program Near-Field Optics
describe the spatial structure of the field near the tip &pex, for Nanotechnology under Contract No. ERBFMRXCT98-
it cannot account for a spectral dependence due to geomet®242 from the European Union.
cal effects. Therefore, the use of a tip model including retar-

dation effects is of great importance for spectroscopic appli-
cations. APPENDIX A: DERIVATION OF EXPRESSIONS (5)

The field near the apex of a perfectly conducting cond P ©)

iluminated by a point source placed in the far field has a  Using the vector identity

frequency dependendex w”, wherev only depends on the _ _

angle of aperture of the tipsee Eq.(8)]. This model cor- a(bxc)=b-(cxa)=c-(axb), (A1)
rectly describes the reciprocal fiel, the illuminating one can cast Eq1) in the form
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Edetlrec™ Ered I'sov) “Jsou
(a)
Detector Source

(A2) Edzt ‘,//.J sou

The experimental fields have angular spectra given by

+ fS[ Eexp'( HyecX 2)— Hexp'(2>< Erec)]dR-

Egs.(2) and(3), related by the Maxwell Eq4). The angular Z Collecting
spectrum representations of the reciprocal fields read system
Ere&R,z)=J el K)expiK-R—iyz)dK, (A3) S/\ /Eepoe
Xp
HreC(R,z)=f hedK)expiK-R—ivyz)dK. (A4) Substrate
They are related by the Maxwell equation
KX €ed K) = wptohied K). (A5) ®) j..
Inserting Eqs(2), (3), (A3) and(A4) into Eq.(A2) leads to o
Eq. (5) after little algebra without any approximation. During \\\\
this manipulation, some simplifications occur due to the
transversality of the fields in the gap region, which yields, in V4
terms of angular spectra
k* e K) =0, Sj/w\ ------------
K*hef K) =0, Erec Hrec
kK™ eedK)=0,
¢ Substrate
k™ -hed K)=0. (AB)

_ In order to obtain the real-space expres_sﬂﬁ)‘,l one ha_s FIG. 2. Schematic views of the two situations considered for the application
to invert the angular-spectrum representation of both fieldsf the reciprocity theorem when the presence of the substrate is explicitly
E;Xp andE,... From Eq.(2), one obtains accounted for(a): sketch of the experimental situatiafh): reciprocal situ-

ation, where the collecting system is illuminated by a point source located at
the detector position in the presence of the substrate.

egxp(K)exqiyz)=%zf EexR.2)exp(—iK-R)dR,

A7
) (A7) containing waves that propagate or decay toward® and
and from Eq.(A3), one obtains z>0. EquationgA3) and (A4) have to be changed into
—iyeed —K)exp(—iyz)
Erec(R,z):j erd K)expiK-R+iyz)dK
_ 1t f&Er“R iK-R)dR A8
=122 | 5, (ROexpiK-R)dR. (A8)

Inserting Eqs(A7) and (A8) into Eq. (5) leads to Eq(6). +f €red K)XHIK-R =1 yZ)dK, (B1)

Hrec(R,z)zf hed K)exp(iK-R+iyz)dK
APPENDIX B: INCLUSION OF A FLAT SUBSTRATE IN
THE GEOMETRY

In many experimental situations, the real sample is de- +J Mred K)BXAIK-R=T72) K. B2)
posited on(or included in a substrate. It may be useful in the 1o angular spectra of both fields are related by
description of such experiments to clearly separate the influ- . .
ence of the two. The purpose of this appendix is to show how K™ X &ed K) = uohied K). (B3)
the presence of the substrate can be accounted for in ﬂ?\ﬂoreover, both fields are transverse, so that
model.

The experimental geometry we consider is depicted in k*-€edK)=0,

Fig. 2(a). It is identical to that in Fig. (a), except that the KE-ho(K)=0 (B4)
substrate is now separated from the real sample described by re '
the current density,,,. The reciprocal situation, represented Following the same procedure as in Appendix A, one
in Fig. 2(b), includes the substrate as well. In these condi-obtains the following expression for the electric field at the
tions, the reciprocal fieldg,.. andH . have angular spectra detector position:
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. . ﬂ-z
Edetrec= Ered I'sod I sou™ w_luo
X [ A0 i ~K) ey K) e —K) il K K. (85

This expression is an extension of Ef) to the case where (e.g., plasmon coupling The main difference is that
the substrate is included in the reciprocal geometryin this representation, botﬁ;'Xp and E,,, enter the relation-
This means that its presence is completely described bghip.

the reciprocal fielde,... In particular, this field may account The expression in real space is obtained, as in Appendix
for a strong interaction between the tip and the substraté, by inverting Egs.(2) and (B1)

Eqetlrec=Ered Tsod Jsoi™ ™
etJrec re SO sou wMO
- +

aErec + d rec
XL 7 (R,2)EgfR,2) + 5z

(R,2)*Eq,R,2) |dR. (B6)

As we discussed previously, it is also possible to derive an expression of the signal in terms of magnetic fields only. We
obtain in this case

) ) 2i
Edetlrec™ Ered I'sod) “Jsou™ w_eo
aHrT:-zc + (9 I:'(;C —
st W(R,Z)'Hexp(R,Z)‘l'T(R,Z)'HEXP(R,Z) dRrR. (B?)
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Scanning near-field optical microscopy has been recently applied to the imaging of magnetic samples.

It was

shown experimentally that an apertureless microscope suffers a substantial loss of resolution when used for
magneto-optical imaging compared with that for conventional imaging. No such change is observed for aper-

ture microscopes.
rates the response of the probe.

We explain this observation by developing a model for the imaging process that incorpo-
We calculate real observable properties such as the rotation of polarization at

the detector or the circular dichroism signal and thus simulate magneto-optical images of a domain structure
in cobalt for both aperture and apertureless microscopes. © 2002 Optical Society of America
OCIS codes: 180.5810, 350.5730, 260.1960, 260.2110, 210.3820.

1. INTRODUCTION

Scanning near-field optical microscopy (SNOM) is a tech-
nique that has enabled the diffraction resolution limit in
optical microscopy to be beaten through the use of
subwavelength-sized probes scanned in close proximity to
a sample.!™® The optical nature of the technique has led
to applications in a wide range of areas, including fluores-
cence microscopy,® local spectroscopy,® plasmons,®? and
magneto-optical imaging.®?

SNOM seems to be an ideally suited tool for magneto-
optical imaging for two reasons. Unlike magnetic force
microscopy, magneto-optical SNOM (MO-SNOM) imaging
allows passive measurement of the sample field without
introduction of an external magnetic field. MO-SNOM
should also be able to provide a resolution superior to that
of far-field optical techniques. Nevertheless, the imaging
process is not completely understood.

Magneto-optical contrast is due to the rotation of polar-
ization of the illuminating field caused by the magnetiza-
tion in a sample. The magneto-optical signal can be dis-
tinguished from the conventional optical signal by
measurement of the Faraday or Kerr rotation through po-
larization analysis at source and detector®'® or by mea-
surement of circular dichroism induced by the sample
magnetization.'®7'® In the latter, the illumination is
modulated between left and right circular polarizations,
and lock-in detection is used to measure a difference in
absorption between the two polarization states. In the
most commonly used geometry, the sample is locally illu-
minated by an aperture probe, and a signal is detected in
the far field, through an analyzer oriented differently to
the illumination polarization.®10-12

Complete control of the polarization is difficult. No
matter how well polarized is the light coupled into the fi-
ber, the light emerging from the small aperture at its tip
typically has an extinction ratio of the order of 1:20.1%!
This is a limiting factor in the accuracy to which the angle
of rotation can be measured.!? Substantially better po-
larization control is achievable in an apertureless experi-
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ment, in which the probe and the sample are illuminated
by an external focused laser beam.”

While spatial resolutions as good as 10 nm have been
obtained in conventional optical experiments with aper-
tureless SNOM, apertureless MO-SNOM experiments
have not demonstrated resolutions better than a few hun-
dred nanometers.'®1"1° This gross disparity in the
achievable resolution is even observed when the same ap-
paratus is used for both conventional optical and
magneto-optical imaging.!” On the other hand, aperture
microscopes seem to obtain a similar resolution in optical
and magneto-optical experiments, this being as good as
30-50 nm.® Understanding the response of the probe is
clearly important if this problem is to be explained, since
different results are obtained in aperture and aperture-
less experiments. A number of theoretical studies of
near-field magneto-optical imaging have been performed
previously.2*24  Usually, the electric field distribution in
the near field of a sample has been calculated, and a
magneto-optical signal is determined based the angle of
rotation of polarization or the absorption of different cir-
cular polarization states. However, none of these models
studies the response of the probe, and therefore none of
them can explain the observed loss of resolution.

The objective of this paper is to develop a model for the
magneto-optical imaging process that takes into account
the probe response, making it possible to answer some of
the open topics regarding MO-SNOM, particularly that of
understanding the loss of resolution of MO-SNOM for ap-
ertureless probes. The formalism will be applied to both
aperture and apertureless experiments, and a response
function to the sample magnetization will be developed
for both cases.

2. DEVELOPMENT OF A GENERAL
EXPRESSION FOR THE SIGNAL

In previous papers, Greffet and Carminati®® and Porto
et al.?® have used the electromagnetic theorem of reci-

© 2002 Optical Society of America
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source
Tyer rdet

Fig. 1. (a) Scheme of a general SNOM setup and (b) fictitious
reciprocal situation.

procity to develop an expression for the response of a
near-field microscope. A key feature of this approach is
that it yields an exact expression for the signal that ac-
counts for the properties of the tip. The theorem of reci-
procity relates the electric and magnetic fields created by
two different current distributions in the presence of a
scattering object with linear and symmetric constitutive
tensors.2>2728  In this paper, the magnetically induced
currents in the sample are treated as an external source
term, and the probe and the substrate are treated as the
scattering object. The probe and the substrate, being
nonmagnetic, have symmetric constitutive tensors, and
thus the requirements of the reciprocity theorem are sat-
isfied.

Let us consider a general SNOM setup, as depicted in
Fig. 1(a). An inhomogeneous sample is deposited on (or
embedded in) a flat homogeneous substrate. It is illumi-
nated either through the tip (illumination-mode SNOM)
or with an external beam (collection-mode and aperture-
less SNOM). The signal is recorded by a point detector
placed in the far field at a position rg,,. We assume that
an analyzer is placed in front of the detector, with a po-
larization direction defined by the wunit vector p.
Through application of the reciprocity theorem, the com-
ponent A of the electric field at the detector along the di-
rection of the analyzer has been shown to be%

1
A= Eexp(rdet) ' 13 = _f Erec : Jexp dr. (D
Lw JVv

In this expression, J.y, and E,(r.) are the current den-
sity in the sample and the electric field at the detector po-
sition, respectively, in the experimental situation corre-
sponding to Fig. 1(a). E,. is the electric field that would
be produced by a dipole source of amplitude P placed at
the detector position rg, in the absence of the sample.
This fictitious reciprocal situation is represented in Fig.
1(b). Note that the reciprocal situation contains the tip
and all of the illumination—detection system (only the
sample is removed). Therefore the reciprocal field E, is
the key quantity that contains all the information about
the response of the setup to the excitation of a current
Jexp in a given sample.
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3. RESPONSE FUNCTIONS FOR A
MAGNETIC SAMPLE

The current density induced in a magnetic sample is

J(r, 0) = —iweg[F(r, ) — 1] - Eg(r, 0),  (2)

where £(r, w) is the frequency-dependent dielectric ten-
sor. It can be written as a sum of nonmagnetic and mag-
netically induced terms:

J=d,+ dy = —iwsl(e1 — DEeyp + ifM& X Egy),
(3)

where M = Mé is the magnetization in the sample, € is a
unit vector, and f'is a constant of proportionality. The de-
pendence on the magnetization is entirely within the sec-
ond term, which is antisymmetric. If the magnetization
is directed along the z axis, Eq. (3) corresponds to a dielec-
tric tensor

e, 0 0 0 —ifM 0
g=10 e O|+|ifrM 0 0|, (@
0 0 & 0 0 o0

We will consider the magnetization to be in an arbitrary
direction & in the following.

Isolating the component of the field at the detector that
has a dependence on the magnetization, we obtain the fol-
lowing from Eqgs. (1) and (3):

A = _ifaoj M(é X Eoyp) - By dr, 5)
v
which can be rearranged to give
Aag = _ifsof Mé - (Eeyp X Epp)dr. (6)
v

Note that both E,., and E., depend implicitly on the
position of the tip, ry,. If we define a constant-height
amplitude response for the magnetization in the sample
plane 2z (probe at height 2zy,), Hpag(x — x4,y
— Ytips> ?>» Ztip)’ by

Amag( I'tip) = fVHmag(R - Rtip » % Ztip)M(r) dI’, (7

with R = (x, y), then this response function is
Hmag « @ - (Eexp X Erec)7 (8)

to within a constant factor. Similarly, a response func-
tion H,_ for the variation of ¢; in a nonmagnetic sample,
defined by

A pr=0)(Tyip) = JHE(R — Ryp, 2, 2gp)e1(r)dr,  (9)
v

can be shown to be proportional to
Hs & (Eexp ° Erec)’ (10)

from Egs. (1) and (3).

In the following sections, the response functions H,,,
and H, will be the key concepts. They will be evaluated
for both apertureless and aperture microscopes, making it
possible to discuss the magneto-optical imaging proper-
ties of these two experimental setups.
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4. OBSERVABLE MAGNETO-OPTICAL
SIGNALS: ROTATION OF POLARIZATION
AND CIRCULAR DICHROISM

The quantity A that we have associated with a signal up
to here is the amplitude of the field at the position of the
detector, projected along the axis of an analyzer. Of
course, this is not what is actually measured in the course
of a SNOM experiment. In conventional SNOM, it is the
intensity of the field, either alone or with a coherent back-
ground. In a magneto-optical experiment, often the mea-
surable quantity is the angle of rotation of polarization by
the magnetic sample, or the dichroic signal as the inci-
dent polarization is modulated between left and right.

In this section, we will show how this theory makes it
possible to completely determine the complex vectorial
electric field at the detector, from which all measurable
quantities can be determined. We demonstrate the exis-
tence of a response for such measurements as field polar-
ization direction and circular dichroism signals. An ex-
pression for the ellipticity is given in Appendix A.

Equation (1) gives the component of the electric field at
the detector directed along a unit vector p. We can thus
determine the components of the field along two orthogo-
nal axes (@i and ¥) in a transverse plane at the detector.
These two field components are labeled E 4o1, and E ey -
The full electric field at the detector is given by

Edet = Ewdet,u‘:\l + Edet,v{’~ (11)

Given the amplitudes of the two vector components and
their relative phase 6, one can calculate the direction of
polarization of the field, an angle 6 relative to the @ axis,
by using®®

2 ‘Edet,u| |Edet,v|

tan26 = cos J. 12)
|Edet,u|2 - |Edet,v|2

The circular dichroism signal can be approximated as
the difference between the intensities measured when the
experiment is illuminated with right and left circular po-
larizations, |[EF)? and |EE)?. The dichroic signal can
also be expressed in terms of the fields at the detector
with s- and p-polarized illumination:

Idichroic = |E((;11§t)|2 - |Efilét)|2 =2 Re[lEEfe)t : Eégt)*]. (13)
13

A fuller development of these expressions is given in
Appendix A.

5. APPLICATION TO APERTURELESS
SCANNING NEAR-FIELD OPTICAL
MICROSCOPY

Magneto-optical apertureless SNOM experiments have
been performed in both reflection and transmission
modes.'>!"  We will discuss the reflection-mode experi-
ment in this paper, but the same arguments are appli-
cable to a transmission-mode experiment. A simplified
illustration of a reflection-mode experiment is given in
Fig. 1(a). In apertureless SNOM, both the illumination
and the detection are external, and the tip acts as a local
scatterer (no coupling with guided modes in a fiber). We
use the Born approximation for the experimental field,
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which is justified by the weak levels of magnetically in-
duced fields (2 orders of magnitude smaller than the con-
ventional optical fields induced in cobalt, for example,
with e; = —12.3 + {18.4 and if M = —0.4 — 0.1 at 633
nm). In this approximation, the experimental field is
simply the field scattered by the probe and the substrate
when illuminated by the experimental source in the ab-
sence of the magnetic sample, labeled Eifr‘z,‘{))e.

The reciprocal situation is depicted in Fig. 1(b). To de-
termine the reciprocal field, we placed a dipole source at
the detector position and removed the sample (i.e., M is
put to zero). The reciprocal field E,.. is the field dif-
fracted by the probe and the substrate with illumination
from the detector position, labeled ng,ge. Thus the field
response function to magnetization for an apertureless
experiment, from expression (8), with r and ry;, dependen-
cies suppressed for clarity, is

Hpog = & - [ESow x EW . (14)

probe probe
The field response function for the linear component of
the dielectric tensor from expression (10) is

H, o [ESo, - Bl . (15)

To explore the consequences of this result, we will use a
specific model for the probe, that of a perfectly conducting
cone.?®3!  This has been experimentally validated? and
is a good model for apertureless SNOM performed by us-
ing metallic tips.?*3® One of the main features of this
model is the existence of a singularity of the electric field
at the cone tip. The field enhancement and confinement
that this produces are responsible for the good signal and
resolution normally obtained with this type of probe.
The full field under the tip consists of a number of modes,
of which only one contains the singularity. The other
modes are much lower in amplitude, are less well con-
fined near the probe tip, and do not provide a significant
contribution to the imaging properties of the probe in con-
ventional imaging.

Before we continue, it is worth briefly reviewing the
origin of the magneto-optical signal. The theorem of reci-
procity shows that the components of the field at the de-
tector are given by the expression [Eq. (1)]

1
A= — f E(eh, - Jexpdr. (16)
Lw Jv

The reciprocal field represents the response of the
probe to sample currents. In the Born approximation,
the induced current density in the sample, J,, is given
by [Eq. (3)]

J Iy

&

(g1 — 1EEY + ifMé x ESY

probe probe ] *

a7

Jexp = ( _iw)SO

The magnetically induced current density J,, is always
orthogonal to the field that induces it, E;fr”oﬁ, because of
the cross product. In the following sections, we shall
demonstrate that the reciprocal and experimental fields
[E;‘iﬁ,?e and E;)Sr’f)‘&] associated with the singularity are al-
ways parallel to each other, no matter what direction and

polarization of detection or illumination are used. The
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magnetically induced current density produced by the
probe singularity (J;,) is thus orthogonal to the reciprocal
field [Eg},ﬁ{,)e] everywhere. As a result, the field at the de-
tector due to current density J;; [Eqs. (16) and (17)] is
identically zero.

The immediate conclusion that is to be drawn from this
is that the probe singularity alone does not¢ contribute to
the magneto-optical signal. This is not to say that it is
impossible to record a magneto-optical image by using a
metallic apertureless probe. The experimental
evidence'®!” clearly contradicts this false conclusion.
The magneto-optical signal that is recorded is due to non-
singular components of the probe fields; these being less
well confined, the attainable resolution is poorer.

This result is true no matter what detection technique
is used: a measurement either of the polarization of the
outgoing beam or of the dichroism in the sample. The
field at the detector due to the singularity alone (which
normally provides the good resolution) is completely in-
sensitive to variations in magnetization in the sample.

To demonstrate this conclusion, we first discuss the
mathematical origin of the singularity and look in some
detail at the form of the electric field scattered from the
probe. The consequences for imaging resolution are then
illustrated in Subsection 5.C.

A. Cone Model for the Probe

We give a brief outline of some of the relevant mathemati-
cal features of the electric field scattered by an infinite
perfectly conducting cone,?! a model that has given re-
sults in quantitative agreement with experiment.®? In
particular, the presence of a field singularity and the form
of the field associated with it will be developed. We con-
sider a cone illuminated by a plane-wave source, incident
from an angle 6, to the positive vertical axis, forming an
angle ¢, with the x—z plane, and polarized at an angle 8
with the normal to the plane of incidence (8 = 7/2 corre-
sponds to p polarization, 8 = 0 corresponds to s polariza-
tion). This geometry is depicted in Fig. 2. For this situ-
ation, the total field is calculated from Debye potentials u
and v, in polar coordinates, by using

Fig. 2. Cone and illumination geometry: definitions of vari-
ables for calculation of Debye potentials for a cone.
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52
E,=|— + k%|(ru),
(r?r2 (rz)
1 (?2 lk Mo 1/2(711
Ey= ———(ru) + —|—| —,
r drdé sin 0\ g d
1 52 o\ V2 av
6= — (ru) — ik| —| —. (18)
rsin 6 drd¢ €9 a6

The Debye potentials for a cone illuminated by a plane
wave can be written as

LL(T', 0’ d)) = E f(r5 0’ 01’m5p)
m,p

P}’,f”(cos 0o)

X | (m sinm ¢ cos B)

sin 6,

J
+ (cos m ¢ sin B) — P (cos 6;)
96,

>

U(r7 0’¢) = 2 g(r’ 67 Hl,m?p)

m, p

X

d
(cos m ¢ cos B) (9—00Pl',”(c0s 0o)

P;”(cos 0o)

— (m sinm ¢ sin B) (19)

sin 6,

The field created by a transverse (no  component) unit
dipole source at distance r, (kry > 1) is the same but is
multiplied by a factor %2 exp(ikry)/(4megry). Further de-
tails are given in Appendix B and in Ref. 31.

The potentials, and consequently the fields, are a sum
over a number of modes. Several of these are shown in
Fig. 3 for increasing values of a mode index m. Two clear
characteristics can be seen. First, the m index governs
the azimuthal dependence of the field, with higher modes
having higher orders of rotational symmetry. The field
has a mixed cosm¢ and sin m¢ dependence on the azi-
muthal angle ¢. Second, the higher the mode number,
the less well confined the field. For small r (i.e., close to
the probe tip), the field depends on r like (kr)? 1, where p
is a second index that is always greater than m.

In fact, the first mode (m = 0) is divergent at the probe
tip. For a cone of interior half-angle 30°, the first value
of p is approximately 0.346, giving a leading-order field
dependence of (£r) %654 The two dominant components
of the electric field (£, and E,) consequently diverge at
the probe tip. This is the case for any cone. It can be
seen in Fig. 3(a) that while the m = 0 field is very large
immediately beneath the probe tip, it falls to zero very
rapidly. The presence of a singularity in the response
function leads to strong signal levels and good resolution
in the image.

The dielectric response function H,, as defined above,
is shown in Fig. 4(a). The component of this response
due to the nondivergent modes is shown in Fig. 4(b). The
dominance of the singular component can be clearly seen.
This term has also been shown to be responsible for the
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Fig. 3. Azimuthal field behavior for different values of m: intensity of the field components shown in a horizontal plane 1 nm below the
probe. The m index determines the azimuthal symmetry of the field, and for increasing m the field is less well confined.
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Fig. 4. Dielectric response function: field response to variation in the permittivity of a nonmagnetic material, evaluated for a plane 1
nm below the probe. (a) Component due to the singularity alone and (b) nonsingular component.
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spectroscopic response of a metallic apertureless probe.??
In conventional optical imaging, all the physics comes
from the singularity at the probe tip.

B. Null Magnetic Response Due to the Field Singularity
The magnetic response function, as we have seen [rela-
tion (14)], is proportional to

Hpoe > & - [ESY X Ele0], (20)

cone cone

where EE% is the field below the cone when illuminated

by the experimental source in the absence of sample and
E!%Y is the field below the cone when illuminated by the
reciprocal source placed at the detector.

The singular electric field terms from Egs. (18) and (19)

are

rf(r5 0’ 01,0,171)

0,,2
Er = [(—2 + k2
ar

J
X (sin B) (9_00P2(cos 0o),

1 42

r drdf

E,=

rf(rv 0’ 01,0,171)

J
X (sin,B)—Pg(cos o), 21
0,

with the angle 6, equal to the angle of incidence from the
experimental source or detector and the polarization B
equal to the source polarization or direction of polariza-
tion at the detector for E., and E,., respectively. A
first-order expression for these fields is given in Appendix
B.

The spatial distribution of the field is determined en-
tirely by the function f(r, 6, 6;, 0,p), which is indepen-
dent of the illumination direction (6,, ¢y) and polariza-
tion (B). Changing the illumination conditions changes
only the amplitude of the field. E and E%Y are iden-
tical except for an amplitude factor. The magneto-optical
response in relation (20) due to the singularity alone is
thus zero! This is contrary to the case of conventional
optical imaging [relation (15)], where it is almost exclu-
sively the field singularity that produces the image.

Any detectable magneto-optical signal is due to the full
spectrum of nondivergent field modes below the probe.
The higher-order modes being less well confined, it will be
seen that the best attainable resolution (determined by
the width of the response function) is much poorer for the
magnetic signal than for the conventional optical signal.
Subsection 5.D shows calculations of this response func-
tion for a few experimental situations.

C. Magnetic Response Functions

We calculate the magnetic response functions for imaging
of a magnetic sample with a magnetization aligned verti-
cally, out of the sample plane. The response functions
are evaluated for a horizontal plane 1 nm below the
probe. The first two geometries considered here are
shown in Fig. 5. Both are with p-polarized illumination
from the right-hand side. The first response function is
calculated for detection from the opposite side of the
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probe from the illumination, with crossed polarization (s).
Figure 6 shows the response function for this situation.
The sharp peak due to the overlap of the singularity with
the higher-order modes can be seen in the response func-
tion, but it is not significantly stronger than the broad
field around it. The width of the function is of the order
of a few hundred nanometers for the probe—sample sepa-
ration.

The second geometry uses the same illumination
source, but with detection in a perpendicular direction,
where the field component is polarized vertically, as illus-
trated in Fig. 5. Although not shown for the sake of brev-
ity, the response function is of a similar width to that ob-
tained in the first case.

These response functions for two different geometries
show the same qualitative features: a broad function
with a width of several hundred nanometers and no
strong central peak. To illustrate their use, we have
simulated magneto-optical images of an artificial cobalt
sample, with &; = —12.3 + {184 and ifM = —0.4
— 10.1. For simplicity, we take a sample with no lower
surface, i.e., a semi-infinite slab. The sample geometry is
depicted in Fig. 7. It has been magnetically modified to
contain three stripe domains with vertical magnetiza-
tions, of widths 180, 140, and 180 nm, respectively. Else-
where, the magnetization is taken to be zero. The do-

“Detection 2
\ !

Detection &,
. Illumination

Fig. 5. Illumination and detection geometries for which
magneto-optical impulse response functions have been calcu-
lated.

Amplitude (A.U.)

Fig. 6. Response function H,,, for detection and illumination
on opposite sides of the probe, with crossed polarizations.
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Fig. 7. Magnetic domain structure imaged in Figs. 8 and 9.
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Fig. 8. Calculated image of the magnetic domain structure
shown in Fig. 7, as measured through the rotation angle of the
field at the detector relative to its direction in the absence of
magnetization.
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Fig. 9. Calculated image of the magnetic domain structure
shown in Fig. 7, as measured by using circular dichroism as the
imaging mechanism. The difference between intensities at the
detector when using right and left circularly polarized illumina-
tion is given. These intensities have been calculated in the ab-
sence of a background at the detector.

mains lie at the surface and extend to a depth of 10 nm.
This is a simplified representation of a thin magnetic film.
We calculate rotation of the electric field at the detector as
a function of probe position for a distance of 5 nm between

Walford et al.

the probe and the upper surface of the sample. The re-
sulting image is shown in Fig. 8.

This image has been calculated for p-polarized illumi-
nation from within the plane of the scan, at an angle of
7i/4 to the vertical probe axis, and for detection from the
symmetrically opposite position. The plot shows the
angle of rotation of the electric field at the detector as a
function of probe position during a constant-height scan
across the domains. The rotation angle has been calcu-
lated from the complex field amplitude at the detector by
using Eq. (12). Two comments can be made: First, that
the shape of the structure seen in the rotation of the field
bears little resemblance to the actual domain structure in
the sample, and second, that the resolution in the image
is very poor, of the order of a few hundred nanometers.
The central domain, with a weaker magnetization, is not
seen.

An image has also been calculated for the same sample
by using circular dichroism as the imaging mechanism.
Here the intensity at the detector has been calculated for
both left and right circularly polarized illumination, and
the difference in intensities is given as the signal, as
shown in Eq. (A14). The result is shown in Fig. 9. Itis
of interest to note that the form of the measured profile is
qualitatively similar to that obtained by measuring the
field rotation at the detector but that there are nonethe-
less clear differences between the two signals. This un-
derlines the fact that it is important to take not only the
probe, but also the mode of detection, into account when
calculating a SNOM image.

These results show that even if a sample does contain a
nanometric domain wall or domain structure, it will be
unresolvable with an apertureless near-field optical mi-
croscope and a metallic probe. The smallest resolvable
structure in the image will be of the order of several hun-
dred nanometers in width. This is a problem intrinsic to
the response of the probe and will be the case for any
magnetic sample.

Let us now look at the signal that will be recorded in an
aperture experiment.

6. APPLICATION TO APERTURE
SCANNING NEAR-FIELD OPTICAL
MICROSCOPY

In this section, the formalism of Section 2 will be applied
to aperture SNOM magneto-optical experiments. The
example of an illumination-mode experiment will be
given, as this is probably the more commonly used geom-
etry, but the results are easily generalized to collection-
mode or illumination-collection-mode experiments. An
illustration of the experiment is given in Fig. 10(a). A
source (depicted as being within the probe fiber) produces
a field that is emitted from the probe aperture. This field
excites currents in the sample, which in their turn pro-
duce an electric field, and the whole radiates toward a de-
tector in the far field.

As in the apertureless case, we will use the first Born
approximation to determine the field in the sample. This
will be the field that would be present in the absence of
the sample, the field from the source diffracted by the ap-

(sow) . = _ g(sou)
erture, Eprobe’ 1e., Eexp - Eprobe’
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The reciprocal situation is shown in Fig. 10(b). The
sample is removed, and the sample and the probe are il-
luminated by a source placed at the actual position of the
detector. The reciprocal field is the field produced by this
dipole source; if the detector is in the far field (usually the
case), then the reciprocal field can be approximated by a
plane wave; i.e., E ., = [%2 exp(ikr)/r1p.

If we take the reciprocal field to be a y-polarized plane
wave (this corresponds to an analyzer oriented in the y di-
rection), then the magnetic response function is simply
reduced to the x component of the probe field:

Hmag x Z- [Ei)srg;lla)e X Erec] = E;Sr?)ub)e X (22)

The nonmagnetic response function H, for this system
is simply a function proportional to the y component of
the probe field:

Ha o E;)S;:)lll))e : Erec = Ei)sr(:)‘{))e ! S’ (23)

No matter what model we use to represent the probe,
the response to the magnetization M will be the same as
the response to the permittivity ¢; that would be obtained
by detection through an analyzer aligned with the illumi-
nation polarization. The magneto-optical response of an
aperture probe will be the same as its response in a non-
magnetic experiment. This is in sharp contrast to the
apertureless case, where the probe properties were dras-
tically different for conventional and magneto-optical
SNOM imaging.

The expression in Eq. (22) with Eq. (7) makes it pos-
sible to determine an image directly from the distribution
of magnetization in the sample, with knowledge only of a
component of the electric field distribution emitted by the
probe.

Probe X
Detection

system

» Wik x

Source >

Probe

1 e

Source

(b)

Fig. 10. (a) Experimental geometry of an illumination-mode
MO-SNOM and (b) geometry of the reciprocal illumination-mode
experiment.
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Fig. 11. Calculated image of the magnetic domain structure
shown in Fig. 7, recorded with an aperture SNOM of aperture di-
ameter 100 nm.

A. Model for the Probe

To give an example of the application, we will use the
Bethe—Bouwkamp model to simulate the field emitted by
the probe, although it is clear that Eqs. (22) and (23) are
easily applicable to any probe, provided that it is possible
to calculate the emitted field. The Bethe—Bouwkamp
model gives the electric field distribution produced by a
small circular hole in an infinite conducting screen in the
z = 0 plane when illuminated by a polarized plane wave
from above.?® In the case of x-polarized, normally inci-
dent illumination, the field within an aperture of radius a
is

2a2 — x2 — 2y? xy

y (a2 I y2)1/2'
(24)

E,.= )
x (a2 _ x2 _ y2)1/2

The z component of the field is zero in the aperture, and
the x and y components are zero outside the aperture.

B. Response Functions

The response functions H,,, and H, for x-polarized illu-
mination and detection along the y axis have been calcu-
lated for an aperture radius of 50 nm and at a distance of
5 nm from the aperture plane. Although not shown here,
both functions have approximately the same width as the
probe: in this case, 100 nm.

In this paper, we present for comparison a simulated
image of the magnetic sample discussed in Subsection
5.C, using the response function calculated above. The
rotation of the field at the detector as a function of probe
position is shown in Fig. 11. Contrary to the image ob-
tained with the apertureless microscope, all the domains
are now clearly visible in the recorded image. The do-
main walls are also clearly localized and appear with
much greater resolution in the image.

C. Other Probe Models

The Bethe-Bouwkamp model for aperture near-field
probes is a simplified one, which makes it possible to ob-
tain a number of relatively straightforward results ana-
Iytically. However, in reality, the field emitted by near-
field aperture probes may vary from this model. For
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example, small defects in the coating of a probe or in the
shape of its aperture may lead to significant changes in
the distribution of the emitted field.

Interactions between the probe and the substrate can
also lead to depolarization of the emitted field,"3” which
is a serious problem for magneto-optical imaging. These
problems have not been dealt with in this paper. We
have restricted ourselves to the fundamental demonstra-
tion that the significant resolution loss seen in aperture-
less imaging is not predicted for aperture MO-SNOM.

However, the procedure that has been presented is per-
fectly well suited to determining the imaging response in
any of these more complicated situations. As the sample
magnetization is handled as an external current source,
the only requirement is to be able to calculate the field
that would be present in the absence of magnetization.

The problem of simulating the field emitted by an ap-
erture probe in three dimensions, has been rarely tackled
in the past; most work has concentrated on two-
dimensional simulations. Novotny et al. have calculated
the field emitted by probes in both two and three dimen-
sions by using the multiple multipole method.384
These calculations account for the presence of a substrate
below the probe and show that the Bethe—Bouwkamp
model is no longer a good approximation for this situa-
tion. The finite-difference time-domain method has been
applied to the study of the emission of an aperture probe
above a surface*!™3 and is another technique for deter-
mining the field distribution below a probe in the pres-
ence of a substrate, even metallic.

With use of the results from models such as these, it is
straightforward to calculate the magneto-optical signal as
given by Eq. (22). With little additional calculation, the
response function for a number of experimental geom-
etries can be easily determined.

7. CONCLUSION

This paper has used the electromagnetic theorem of reci-
procity to develop field response functions for both the di-
electric constant and the magnetization in a sample. The
magnetic sample is treated as an external current source
rather than a scattering object, and thus the asymmetry
of its permittivity tensor does not contradict the funda-
mental requirements of the theorem of reciprocity. This
manner of treating the problem makes it possible to de-
termine a linear response to the magnetization, even
when dealing with metallic samples.

The field response functions are related to a reciprocal
field, the field that would be present in the absence of
magnetization with illumination from the detector. The
response of the probe is thus directly taken into account,
as is the experimental geometry. In the example of an
apertureless magneto-optical experiment, the properties
of this field, determined by scattering from the probe, are
such that magneto-optical images differ greatly from
their conventional optical counterpart.

Because of the existence of a response function for the
complete electric field at the detector, it is possible to
simulate images that would be obtained with a number of
detection techniques. It is possible, for example, to cal-
culate the rotation of the polarization of the field at the
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detector for an arbitrary geometry of illumination,
sample, and probe. A response function for the field ob-
tained with circularly polarized illumination has also
been illustrated. Images of a magnetic sample have been
shown by using rotation of polarization at the detector for
aperture and apertureless probes and using circular di-
chroism for an apertureless microscope.

The theory predicts that the best resolution attainable
with an apertureless microscope with a metallic probe is 2
orders of magnitude worse in a magneto-optical experi-
ment than in a conventional optical experiment. This is
due both to the probe properties and to the asymmetric
nature of the permittivity tensor. No such difference is
predicted for aperture probe experiments. These predic-
tions are in accordance with experimental observations.
If this theory were combined with a numerical technique
to evaluate the field below an aperture probe above a sub-
strate, it would be possible to realistically simulate
magneto-optical imaging, taking into account multiple
scattering between probe and substrate and thus the de-
polarization effects that occur.

Finally, let us stress that these results indicate that it
is essential to consider the properties of the probe when
calculating the signal in a SNOM experiment and that a
simple calculation of the electric field above the sample is
inadequate for determining the signal that will be mea-
sured. The framework developed in this paper is easily
applicable to any experimental geometry and makes pos-
sible a real characterization of the imaging properties of
the system.

APPENDIX A: EXPRESSIONS FOR THE
FULL VECTORIAL FIELD AT THE DETECTOR
AND OBSERVABLE SIGNALS

Equations (1), (7), and (9) give the projection of the field at
the detector along an arbitrary direction p. Let us con-
sider this direction to be in a transverse plane at the de-
tector; this corresponds to detection of a field polarized
within this plane.

We determine the polarization state of the field propa-
gating toward the detector, Ege; = Eyy(1get), for a fixed in-
cident polarization. For uniformity of notation, we define
two mutually orthogonal axes that are also orthogonal to
the direction of propagation to the detector: @ and V.
These directions could correspond to (s) and (p) polariza-
tions with respect to the plane of detection, or the X and ¥
directions. We can calculate the projection of the field at
the detector along either of these directions by using Eqgs.
(1), (7), and (9).

The complex field E4.;, projected along each of these
vector directions, is found by using the reciprocal fields
E®™ and E created by a unit dipole oriented, respec-

rec rec

tively, along @1 and ¥:

1
Egtu = - f EY - J.,dV, (A1)

1
Edet,v = I,_a)f Ei«gg : Jexp dV: (A2)
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where Egy = Eget - @ and Egey = Eg; - V. We can
now specify the total electric field Eg.;. It is
Edet = ﬁEdet,u + <\IEdet,v’ (AS)

or
1
Ey = - f [GEY + VEY)] - ., dV. (A4)
w

The term in brackets is a tensor, not a scalar product.
The entire expression could be written more concisely:

1 =
Edet = _J Ei":CV) : Jexp dv. (A5)
1X0]

The tensor E" is the response function that relates the
field Eg4e; to the current density J, and is defined by
EY = (QEg) + VEQ). (A6)

rec

With both field components, E 4, and E 4., it is pos-
sible to completely characterize the state of polarization
of the field at the detector.

1. Rotation of Polarization, Ellipticity
The complex field at the detector,

Eg4t = ati + b exp(id)V, (A7)

with exp(—iwt) time dependence, traces out an ellipse
during each cycle of the wave. By knowing the ampli-
tude of each component, & = |E g and b = |E |, and
their relative phase &, we can determine the orientation of
the major axis of the ellipse (the direction of
polarization).?? It is at an angle # with respect to the ¥
axis, where 6 is defined by

2ab

bZ*(ZZ

tan260 = cos d. (A8)

The ellipticity, defined as the ratio of minor axis to ma-
jor axis of the ellipse,
7 = min|E|/max|E|, (A9)

is given by
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The field at the detector with circularly polarized illu-
mination can be viewed as a superposition of the fields ob-
tained with two orthogonal linearly polarized illumina-
tion states.

If we define the currents Jffx)p and J(ijl)) as the currents
induced in the sample with s- and p-polarized illumina-
tion, respectively, then the electric field at the detector

due to each of these is

L[
E, = — | B . g8 dv,

io rec exp
L[,
E) = - E . Jip)av. (Al1)

For a geometry where the unit vectors (8§, p, l:xinc) form
a right-handed coordinate system, the circularly polarized
basis is given by

1
R=—G6-ip), L=-—=E+ip. (A12
J2

The currents induced by right and left circularly polar-
ized illumination are, respectively,

JE) = L[J(S) + iJ(p)].

exp exp exp
V2

1
T = E[Jgt)p — il

(A13)

These currents produce fields Ef, = [ES), — iEE/V2
and EE) = [ES), + iEE))/V2 at the detector.

In the absence of a background, the measured intensi-
ties are |EE)?? and |[EE)?. The dichroic signal can be ap-
proximately represented as

Idichroic = |E£lle%t)|2 - |E£l€t)|2 =2 Re[iEEISe)tEglgt)*]'
(A14)

a’ + b% — (a® - b?)[1 + (4a®b? cos® 5)/(a® — b?)*]"?
a® + b% + (a® = b)[1 + (4a®b® cos® §)/(a® — b*)*]"?

7 = (A10)

ifa > b. The numerator and the denominator are inter-
changed for b < a.

2. Circular Dichroism Signal

When circular dichroism is used as a measurement tech-
nique, the incident polarization is modulated between left
and right circular, while the variation in the signal is de-
tected with a lock-in detector. The formalism presented
here makes it possible to calculate the signal obtained
with any state of incident polarization. We will write ex-
plicit statements for the signal with left and right circu-
larly polarized illumination. As a first approximation,
the difference between these signals gives the dichroic
signal.

APPENDIX B: FULL EXPRESSION OF THE
FIELD AT THE CONE APEX

The expressions given here are to be found in Ref. 31.
The cone and illumination geometry is illustrated in
Fig. 2.

The dependence on cone geometry (6;) and coordinates
(r, 6) has been separated from the dependence on illumi-
nation conditions (6,, ¢y, B) and azimuthal coordinate
(¢) in Egs. (19). For notational simplicity, the ¢, term is
also suppressed in this equation; this amounts to defining
the coordinate system so that the source of illumination is
above the positive x axis. The functions f and g are given

by
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The singular electric field in Eqs. (21), to lowest order,
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Phase properties of the optical near field
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This paper presents a theoretical and numerical study of the phase properties of the optical near field. A
model based on the first Rytov approximation for three-dimensional electromagnetic vector fields describes the
relationship between the phase variations and both the topographic and optical properties of the scatterer. It is
shown that strong polarization effects can lead to subwavelength phase variations around nanometric struc-
tures. The conclusions of the model are illustrated by exact numerical calculations. This study should find
broad experimental applications in near-field optical interferometric phase measurements.
[S1063-651%97)51705-3
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Optical resolution beyond the Rayleidlor diffraction) lent profile connects the topographic and dielectric properties
limit can be achieved by detecting the electromagnetic fieldf the scatterer. Subwavelength phase variati6fphase
at subwavelength distance from the obj¢t&]. This has confinement’) and polarization effects will be demonstrated
opened new perspectives for light microscopy with the dein order to put forward the power and the limitations of near-
Ve|0pment of scanning near-field optica| microscopyfie|d phase imaging. The conclusions of our model will be
(SNOM) [2]. In SNOM, a tip of subwavelength dimension illustrated by exact numerical calculations of the near field
(either illuminating or detectingis placed at subwavelength scattered by two-dimensional structures.
distance from the object. The scattering process transfers part Let us consider a three-dimensional sample consisting of
of the light energy from the near zone to the far zone. Rea flat interface separating a vacuye>0) from a homoge-
cording the far-field energy versus the relative tip-sampléeous substrate d¢frequency dependentlielectric constant
position provides the image. The key point in this techniquees (z<0). An inhomogeneous object described by its topo-
is the conversion of evanescent waves into propagatingraphic profilez=S(x,y) and its(frequency-dependenti-
waves, which allows one to overcome the diffraction limit. electric constank(x,y,z) is deposited on the interface. An
In order to understand the properties of the optical near fieldgxample of such a sample is shown in Fig. 1. When this
a lot of work has been concentrated on the description of theystem is illuminated by an incident monochromatic field of
light intensity (often assumed to be the square modulus ofvavelength A, the total field for z>S(x,y) obeys the
the electric field in close proximity of scatterers of arbitrary Lippmann-Schwinger equatidi 3] (a temporal dependence
shape and compositidi3]. Light confinement and polariza- exp(—iwt) is assumed for all fields
tion effects around nanometric structures have been de-
scribed by different theoretical approacHes-6] and ob-
served with a photon scanning tunneling microscpbfle E(r)=E<°>(r)+k§f [e(r')— 1]§(r||_er 2,2 )E(r")d3r".

Recently, interferometric measurements have provided a
way to record the phase of the near field, in the microwave (1)
regime[8], and with visible lighf9,10]. These new kinds of

near-field optical measurements are promising, since a nang is the Green dyadic for the system with flat interface at
metric resolution was obtained with the set up of R&l.  7=0, E( s the field that would exist in this systefne.,
The first theoretical study of the phase properties in SNOMyjithout the object The integral describes the scattered field
was presented in Reffl1]. A scalar model showed that such
a resolution was strongly dependent on the sample properties
(refractive index and topographyMoreover, this model put 7
forward that the phase of the scattered near field should
closely follow the surface profilén the case of a homoge- =
neous sample It was stated that phase measurements could h
represent a breakthrough in SNQI1].
In this paper, we will study the near-field phase properties X
with a model based on the Rytov approximation for three- 1
dimensional vector fieldg12]. It will be shown that, under 0;
certain conditions that are strongly dependent on the polar-
ization of the incident field, the phase of the scattered field
closely follows an “equivalent surfagerofile.” This equiva- FIG. 1. Example of scattering system. The theoretical model
applies to three-dimensional geometries. The system represented
here is the one used in the two-dimensional numerical simulations,
*Electronic address: rcarmina@icmm.csic.es and is invariant in the direction.
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and is extended to the volume of the object. The notations
r=(x,y,2), rj=(x,y), andko=w/c=2mx/\ are used.

When the object has a smooth profile
[h=sudS(x,y)|[<\] and a low dielectric contrast
Ae=€(r)—1 (this is expected to be the case with most of
the sample studied in SNOMthe first Rytov approximation
can be used to describe the scattered figd] . We write the
a component of theotal field in the form

Im(G,,)

Eo(N=EQ(Nexd ¢.(N]1=EX(N[1+ ¢ ()] (2)

Note that Eq(2) implies that each component of the electric 10l o
field is scattered independently. This means that no energy is i (b)
transferred from one component to another during the scat- 05 1
tering process. This hypothesis is consistent with the weak 3 [

) . . . s 00 -t =
scattering assumption, and will be confirmed below by the o) I
numerical simulations. Equatiori$) and (2) lead to(in the E o5} J
first Rytov approximation[14]:

-1.0 | -
(1) kg ’ ’ ’ -15 | 1 . 1
¢ (r)= E<T(r)f [e(r")=1]Galry—r1|,2,2") 202 -0.1 0.0 0.1 0.2

XA
XEQ(r"d3. 3)
FIG. 2. Imaginary part of the components of the Green dyadic
The integral in Eq(3) corresponds to the first Born approxi- versusx. y=0 andz,=6 nm.(a) §,=0°. (b) §,=50° (total internal
mation for thea component in Eq(1). To proceed further, reflection.
we expand this integral to first order l'\. This leads to
(see Ref[15] for more details

2
(1) =9 (e-1
2 $a (1120 expl(ikozo) (es=1)

kg ,
¢21)(r)=%(63_ l)J Gaalr =1} 2.0 Xf Gaal 1|~ T 120,0)Seq(r| ) dr ©

XEQ(r],0)Seq(r|)d?r], (4 where we have assumed that the phase was measured in a
planez=z,. The relationship between the phase difference
where the integral is now a surface integral extended to thém(¢{) and the object propertieS,, is governed by the
entirex-y plane.S,4 is an equivalent surface profile connect- imaginary part of the componen,, of the Green dyadic.
ing the dielectric constant variation and the topography offhey are plotted in Fig. 2, versus for y=0 andz,=6 nm.
the object[15] : According to Eq.(6), the convolution of ImG,,) by the
equivalent surface profil&,, gives the phase variation. At
sy normal incidence[Fig. Z(aﬁ, Im(G,,) is sharply peaked
Seq(r”)z(es—l)*lf [e(r),2)—1]dz (5) aroundx=0 (and symmetrii; so that the phase In;bél))
0 will closely follow the equivalent surface profile. Subwave-
length phase variation&'phase confinement’) will be ob-
In the case of a homogeneous sample €), Seq reduces to  served around the inhomogeneities of the object. On the con-
the true topographic profile. trary, Im(G,,) has a width of about one wavelength,
Equation(4) is our starting point for a discussion of the eliminating the possibility of subwavelength resolution with
phase properties in the near field. i) (Im denoting the  phase imaging. The case 8, is not worth being discussed
imaginary partis the phase difference between #iecom-  because at normal incidence, thecomponent of the scat-
ponent of thetotal field and thea component of the illumi-  tered field is so weak that a measurementﬁ&ﬂ would not
nating fieldE(®). Equation(4) describes how this phase dif- be appropriate. For an illumination in total internal reflection
ference is connected to the properties of the olfbet latter  [Fig. 2(b)], Im(G,,) and Im(G,,) are peaked aroung=0,
being described b.). The resemblanceor lack of it) be-  |m(G,,) being almost symmetric but in contrast reversal.
tween Im@") andS, strongly depends on the illuminating Moreover, as for normal incidence, I@(,) only exhibits
field and the direction of thee component of the field with suprawavelength variations, with a very low contrast. In
respect to théeventual privileged directions of the equiva- summary, Eq(6) and Fig. 2 demonstrate a very strong po-
lent surface profile. This leads phasepolarization and con- larization effect in near-field phase imaging. They also indi-
finement effects, as those observed in the intenis, cate the circumstances under which the phase variations will
|E|?) [4-7]. Let us consider the simple case in which thefollow the equivalentsurface profile of the object.
illuminating field is a transmitted plane wave at normal inci- In order to check and illustrate the conclusions of the
dence E(©)(r) =Eyexp(k,2). Equation(4) becomes above model, we present exact numerial simulations of the
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0.9 T o p (total) il i 1.1 J

— p (Ex X g Moo i
0.8 | P (EX) ' . 1.0 R Q||| TR
0.7 L L L 0.9
0.06 -- s -

— p () Ae=1.25 (b)

— p(0) Ae=2.5 ,,’ \\
0.03

Im(¢)

0.00

P P T RS _0.3----I-. 1
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FIG. 3. Numerical calculation of the field along the line FIG. 4. same as Fig. 3 with;=50° (total internal reflection
Z,=40 nm above the sample in Fig. w=1=h=30 nm.#,=0°.  |E,|?> and Imp{") are also displayed ip polarization.
(a) |Ey|? in s polarization(dashed ling |E|? (line with circleg and

|E,|? (solid ling) in p polarization.(b) ¢y in s polarization(dashed . . . 4
line), ¢, in p polarization with Ae=1.25 (bold solid fing and geneous sample with dielectric contrasi=e¢—1 increased

Ae=2.5 (thin solid ling. _by a factor of 2(e=3.5, 63=2_.25),_ th_e phasg v_ari_ation also
increases by a factor of @&olid thin line. This is in agree-
ment with Eq.(6), which shows that the phase variation is

field scattered by the sample in Fig. 1. The numerical SCheeroportionaI to theequivalentsurface profile.

consists of solving Eq(1) using a moment method, without ~ We show in Fig. 4 the results for an illumination in total

any approximation. This scheme is described in R&6].  internal reflection. The illuminating fiel&® is in this case

For the sake of computer time and memory space, the geomm evanescent wave, as in photon scanning tunneling micros-

etry is two-dimensionali.e., invariant alongy). All quanti-  copy[7,10]. The results for the intensity are plotted in Fig.

ties are calculated along a line at a constant heaghi,. 4(a). In s polarization, the situation is unchanged in compari-
We show in Fig. 8) the intensity {E|?) calculated for  son to the illumination in transmission. mpolarization, the
2y=40 nm, in boths (TE) and p (TM) polarizations. The incident field has two nonvanishing componerits and
structure is homogeneouse< es=2.25), with w=h=I  E_ and so has the total field. The square modulus of the
=30 nm. Itis illuminated at normal incidence with a mono- electric vector field follows more or less the structure, with-
chromatic plane wave of wavelengi=633 nm. The light out any contrast reversal. Moreover, the variationgtf?
intensity is more confined around the structurepifin con-  and|E,|? clearly demonstrate that this effect mainly stems
trast reversalthan ins polarization, in agreement with cal- from thez component. This was explained theoretically and
culations previously reportel@]. Moreover, the intensity of demonstrated experimentall$,7]. What is striking is that

the total vector field and that of thecomponent alone are the same confinement occurs for the phase, as shown in Fig.

practically identical inp polarization. This confirms the hy- 4(b). The phase of the component of the field ip polar-

pothesis of weak cross-polarization scattering that was madgation follows the lateral variations of the structuie con-

in our model[see Eq.(2)]. At normal incidence, the incident trast reversal, according to Fig) @ith an excellent resolu-

field is polarized in thex direction, and the total field re- tion. Note that the resemblance between the phase variations

mains(in a very good approximatigrpolarized in the same and the equivalent surface profile is perturbed by the phase
direction. of the illuminating field E(¥), which is nonzero at non-
Figure 3b) represents the phase Igf(")) in s polariza-  normal incidencesee Eq.(4)]. In addition, the phase is

tion (dashed curjeand Im(@{") in p polarization(solid  polarization does not exhibit any subwavelength variation.

bold curve. According to the model presented previously, In conclusion, we have demonstrated that the near-field

the phase follows the object structure [ polarization phase exhibits polarization and confinement effects, similar

[G, is implied; see Eq(6) and Fig. 2a)], and does not to those already known for the intensity. An important result

follow the structure ins polarization(G,, is implied). In is that, for an illumination at normal incidence, the phase of

fact, the phase irs polarization does not exhibit any sub- the parallel component of the total field follows the equiva-
wavelength variation. Moreover, in the case of an inhomodent surface profile with an excellent resolution. For an inci-
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dence in total internal reflection, the phase of the normal
component of the total field follows the equivalent surface eFOO’ large object
profile in inverse contrast. We have presented a model, based — . . . . —
on the Rytov approximation for electromagnetic vector
fields, which contains the essential physics of the phase be-
havior in the near-field zone. It describes the polarization 0.3
effects. It also explains how the topographic and dielectric
constant variations of the object influence the phase of the
near field. This is a very important point in SNOM, where 0.1
the purely optical properties of the sample are of great inter- 0.0
est. The conclusions of our model have been illustrated by L
exact numeﬁcal simulations of the near figld sqattered by By r— 30 50 70 90
two-dimensional structures of nanometric dimensions. X/,

Finally, we would like to show that the observed polar-
ization and confinement effects are pure near-field effects
that are encountered in the scattering by nanometric struc- FIG. 5. ¢, in s polarization andg, in p polarization for the
tures only. Figure 5 shows the phasedffY and Imp{? in ~ sample in Fig. 1 withw=633 nm,h=63 nm, |=2.5 um, and
s and p polarization, respectiveljas in Fig. 3b)], for the =~ Z=175nm.6;=0°.
sample in Fig. 1 witth=63 nm,w=633 nm, and =2.5 um. ) _ _ ) o
It can be seen that the phasesiandp polarizations are very '€aching the domain of physical optics, the polarization-
similar, both of them following the sample structure. This is 9€Pendent phase confinement effect disappears.
precisely the result that is predicted by a scalar description of | would like to thank the EC for financial support. Helpful
the field, as in physical optidd 7]. Thus, with increasing the discussions with N. Garaj J.-J. Greffet, A. Sentenac, and
structure lateral size up to one wavelength or more, i.e., byyl. Nieto-Vesperinas are also appreciated.
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1. INTRODUCTION

Reciprocity is a well-known property of wave propagation
and scattering, whose first formulation is often attributed
to Helmholtz.! In modern scattering theory, this prop-
erty is expressed by the symmetry of the scattering (or S)
matrix. The S matrix was introduced to relate the far-
field amplitudes of the incoming and outgoing states in
quantum potential scattering®® and in acoustic! and
electromagnetic® scattering. In the S-matrix formalism,
reciprocity appears as an asymptotic property of wave
fields.2® It is also well known that the Green function of
the wave equation in the presence of a scatterer satisfies
reciprocity.” This property holds whatever the distance
between the scatterer and the observation points. Nev-
ertheless, the role of the evanescent waves does not come
out in a simple manner from this formalism. The main
reason is that the Green function connects a field distri-
bution to a source distribution, and not two field distribu-
tions as the S matrix does.

More recently, the angular spectrum representation of
scalar wave fields led to the introduction of a partitioned
S matrix, whose elements have the meaning of general-
ized transmission and reflection coefficients.®® In this
representation one chooses an arbitrary z direction and
separates the entire space into two half-spaces .72~
(z < 0) and 2" (z > L), the scatterer being included in
the strip 0 < z < L (see Fig. 1). In general, the fields in
2~ and in .2" have an angular spectrum containing both
homogeneous and evanescent waves. Nevertheless, reci-
procity relations were obtained for the generalized trans-
mission and reflection coefficients corresponding to homo-
geneous waves only.81% The reason is the following:
The derivations of reciprocity relations in electromagnetic
scattering, either for the S matrix,> for plane-wave
scattering,® or for the generalized transmission and re-
flection coefficients,®'% have in common the use of an in-
tegral theorem that is due to Lorentz.' In Refs. 9 and
10, Lorentz’s theorem was applied without sources at fi-
nite distance from the scatterer. This implies dealing

0740-3232/98/030706-07$10.00

with source-free fields,'? namely, fields without evanes-
cent components. Hence, whether or not the evanescent
waves obey reciprocity is still an open issue.

In recent years the question of reciprocity of the eva-
nescent components has acquired a renewed interest in
optics. For example, reciprocity is implied in the surface-
plasmon polariton mechanism, which leads to enhanced
backscattering on weakly corrugated metallic rough
surfaces,!® and in the conversion of evanescent waves into
propagating waves in the illumination and detection pro-
cesses in near-field optical microscopy.'*

To answer this question, we propose to follow the pro-
cedure of Ref. 10 but with a different starting point. We
shall use Lorentz’s reciprocity theorem with sources at fi-
nite distance from the scatterer. The derivation of this
theorem can be found in Ref. 15. For reasons of compre-
hensiveness, and because the two forms of the theorem
(with and without sources) are not clearly related in the
literature, the derivation is reproduced in Appendix A of
the present paper. With this procedure we shall demon-
strate that reciprocity of the generalized transmission
and reflection coefficients also holds for the evanescent
components of the angular spectrum. Moreover, we shall
consider vector fields, for which the generalized reflection
and transmission coefficients are tensor operators. In
view of this result, we shall also discuss the relationship
between reciprocity and time reversibility, often ad-
dressed in the literature (see, e.g., Ref. 16).

2. GENERALIZED TRANSMISSION AND
REFLECTION TENSOR COEFFICIENTS

In this section we define the generalized transmission
and reflection tensor coefficients. These were introduced
for scalar fields in Ref. 8.

Let us consider a scatterer of arbitrary shape and com-
position, made up of one or several bodies. Its properties
are assumed to be linear and local. They are defined by
the (frequency- and position-dependent) complex constitu-

© 1998 Optical Society of America
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tive tensors e(r, o) and u(r, w). € is a generalized di-
electric tensor containing both the dielectric and the me-
tallic response of the material. & is the magnetic
permeability tensor. The only restriction that we impose
on € and 4 is their symmetry, which is a necessary condi-
tion for reciprocity (see Appendix A). To analyze the con-
tribution of the evanescent waves in the reciprocity rela-
tions, we introduce the angular spectrum of the fields and
thus choose an arbitrary z direction (see Fig. 1). We as-
sume that the scatterer is situated within the strip
0<z<L, and we call .2~ and .2 the half-spaces
z < 0 and z > L, respectively.

In a first situation, let E: be a monochromatic field of
frequency w propagating toward z > 0 in %2~. We as-
sume that this field is emitted by sources situated in the
region z < z; at finite distance from the scatterer (see
situation 1 in Fig. 1). At any point r = (R, z) with z;
< z2<0, one can write? [a temporal dependence
exp(—iwt) is assumed for all fields]

Ei(r) = feil(K)exp(iK- R + iyz)d?K

for z;, <z2<0, (1)

where e’ (K) is the angular spectrum of E!(r) and

y(K) = Vk? - [K?

for |K| < & (homogeneous components), (2)

y(K) = iV|K]? - k2

for |K| > £ (evanescent components), (3)

with 2 = w/c, ¢ being the speed of light in vacuum. All
integrals in this paper are extended to —oo < K, < +o
and —» <K, < +», and we use the notation d’K
= dK,dK,. e€}(K) in Eq. (1) is assumed to decay as [K|
increases, in such a way that the integral converges. We
shall see below that this is the case when the incident

situation 1

R R
scattere'
z
7 0 L
situation 2
R +

scatterer
: : z
0 L Z,

Fig. 1. Scattering geometry and definition of the half-spaces .72~
and .2".
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field is created by a dipole source. The angular spectrum
€’ (K) is proportional to exp(—iyz,), ensuring the conver-
gence of the integral.

Upon interaction with the scatterer, a transmitted field
E’ and a reflected field E] are created in .%2" and .%2", re-
spectively. They can be represented by their angular
spectrum:

Ei(r) = f e/ (K)exp(iK - R + iyz)d’K for z > L,
4)
(1) = fe;(K)exp(iK. R - iyz)d’K

for 2, <z <0. (5

Because the scatterer is linear, the angular spectra e
and e are related to e} by®1°

e\(K) = f'f(K, K') - e/ (K)d’K’, (6)
e (K) = fF(K, K') - €(K)d’K’, (7

where t and ¥ are the generalized transmission and re-
flection tensor coefficients, respectively, for an incident
field in .72".

In a second situation, let Ej be a monochromatic field of
frequency o propagating toward z < 0 in .2". We as-
sume that this field is emitted by sources situated in the
region z < z, at finite distance from the scatterer (see
situation 2 in Fig. 1). At any point r = (R, z) with
L <z < z,, one can write

Ey(r) = f e5(K)exp(iK - R — iyz)d’K

for L <z <zy. (8

As in the previous situation, eé(K) in Eq. (8) is assumed
to decay as |K| increases, to ensure the convergence of the
integral. We shall see below that when the incident field
is created by a dipole source, eil(K) is proportional to
exp(iyzy).

Let us call E; and E} the transmitted and reflected
fields created in .22~ and .%2", respectively. One can write

Ei(r) = fe;(K)exp(iK- R-iyz)d?K for z <0,
9

o(r) = jeg(K)exp(iK R+ iyz)d®’K

for L <z <zy. (10)

Similarly, one has

e\(K) = f?(K, K') - ey(K')d’K/, (11)

e3(K) = jB(K, K') - e)(K)d°K', (12)

where 7 and p are the generalized transmission and re-
flection tensor coefficients, respectively, for an incident
field in .22".
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Note that the fields evaluated in vacuum satisfy V - E
= 0, so that their angular spectrum is transverse, i.e.,
e(K) - k = 0 with k = (K, y). Thus e(K) has only two
independent components, and the four generalized tensor
coefficients have only four independent components.

We shall now derive reciprocity relations for the four
generalized tensor coefficients, starting from Lorentz’s
reciprocity theorem with sources at finite distance from
the scatterer. These relations are valid for both homoge-
neous and evanescent components of the field angular
spectrum.

3. RECIPROCITY RELATIONS

A. Transmission

To illustrate our arguments, let us consider a dipole p;
situated at a point r; in .22~ (situation 1 in Fig. 2). For
z1 < z < 0 this point source radiates a field propagating
toward z > 0 (incident field),!” given by Eq. (1), with the
angular spectrum?!®

i/.Low2

7(K) - py exp(—iK - Ry — iyzy),
(13)

e (K) = S
Ty

where y = y(K).
The operator .7 is the projection on the direction trans-
verse to the k vector:

- - kok
J(K)=1- T

(14)

where ® is a dyadic product, namely, (k® k);; = k;k;,

and T denotes the unit tensor. Note that when .7 acts on

situation 1

n r
[
- , ! +
R | scatterer | R
| § Z
} ‘ }
Z, 0 L Z,
situation 2
° P,
0 \
o)
— H v | +
R i scatterer § R
i | Z
} - ‘ |
Z, 0 L Z,

Fig. 2. Geometry considered in the demonstration of the reci-
procity of the generalized transmission coefficient. Situation 1:
The dipole source p; is in .27, and the scattered (transmitted)
field is evaluated in .%2*. Situation 2: The dipole source p is
in %", and the scattered (transmitted) field is evaluated in .72".
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a transverse field (i.e., a field perpendicular to k), 7 be-
comes the unit tensor.” This property will be useful be-
low.

Introducing Eq. (13) into Eq. (6), and the resulting
equation into Eq. (4), leads to the expression of the trans-
mitted field in .72" in the presence of the scatterer:

i,LLsz

Ei(r) = 2

f ’K exp(iK - R + iyz)

X jd2K’ K K) 7K) —

!

X exp(—iK' - Ry — iy'zy), (15)

where y' = y(K’).

Let us now consider a dipole p, situated at a point r, in
#* (situation 2 in Fig. 2). For L < z < z, this point
source radiates a field propagating toward z < 0 (inci-
dent field), given by Eq. (8), with the angular spectrum

i ow?

?(K) - poexp(—iK - Ry + iyzy).
(16)

According to Eqgs. (9), (11), and (16), the transmitted
field in .22~ in the presence of the scatterer is given by

eg(K) B 8y

iMOwZ

By = ——

f d’K exp(iK - R — iyz)

o - P2
X szK’r(K, K) 7K') - —
Y

X exp(—iK' - Ry + iy'zy). am

The application of Lorentz’s reciprocity theorem with
sources leads to [see Eq. (A11) of Appendix Al

p1 - E(ry) = py - Ej(ry). (18)

Introducing Eqgs. (15) and (17) into Eq. (18) yields, after a
little algebra,

Y[7(-K', -K) - 7(-K)]" = y¥(K, K') - 7/(K'),
(19)
where the superscript T denotes the transposed tensor.
The generalized tensor coefficients T and 7 are defined
by their action on angular spectra e that are transverse
fields. For such fields the operator .7 is thg unit tensor.
Thus one always has XK, K') 7(K') - e(K’l
= K, K') - e(K'). This means that the tensors t - .7
and t coincide. The same result holds for 7. Thus Eq.
(19) may be rewritten in the form

y[7(-K', -K)1T = y#(K, K'), (20)

which is the reciprocity relation for the generalized trans-
mission tensor coefficient.

It should be remarked that the presence of the factors y
and vy’ in Eq. (20) is a consequence of the definition of the
angular spectra by integration over K. For |K| < & and
|K'| <k, y and y' are only directional cosines. Note
that with a definition of the angular spectra using angu-
lar variables, corresponding to spherical coordinates for
the k vector, these factors y and y’ disappear from the
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reciprocity relations.®? One performs in this case an in-

tegration over the solid angle Q, with dQ = d?K/y. Nev-
ertheless, when the angular spectra contain evanescent
waves, this representation involves complex angles.
Hence a representation in K looks more convenient.

B. Reflection

Reciprocity relations for the generalized reflection tensor
coefficients can be derived along similar lines. In the
first situation, the dipole p; is situated at a point r; in .72~
(situation 1 in Fig. 3). The field created by this point
source (incident field) is given by

Ei'(r) = f e (K)exp(iK - R + iyz)d’K
for z;, <z <0, (21)
with the angular spectrum
; 2
. Lpow™ o
;' (K) = —— 7(K) - p; exp(—iK - Ry — iyzy),

87y

(22)

or by

E (r) = f e (K)exp(iK - R — iyz)d’K for z < zq,

(23)
with the angular spectrum

. 2

i Lo o . .
€] (K) = —— 7(K) - p; exp(—iK - Ry + iyzy).
87y
(24)

/ P, situation 1
h

o

r
R- scatterer | R
| ' | | z
Z, 17, 0 L
situation 2
[ J
I,
1 sz
r, ,
R scatterer ‘Rt

72, 17, 0 L

Fig. 3. Geometry considered in the demonstration of the reci-
procity of the generalized reflection coefficient. Situation 1:
The dipole source p; is in .%27, and the scattered (reflected) field
is evaluated in.22”. Situation 2: The dipole source py isin.”%Z",
and the scattered (reflected) field is evaluated in .7%2".
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According to Eqgs. (5), (7), and (22), in the presence of
the scatterer, the reflected field in .27, for z # z,, is
given by

i/.LOa)2
872

i(r) = J d’K exp(iK - R — iyz)

’

PN pad P1
X fd2K’ ¥K K) 7K).  —
Y

X exp(—iK' - Ry — iy'zy). (25)

In another situation a dipole p, is situated at a point r,
in .72~ (situation 2 in Fig. 3). The field created by this
point source (incident field) is given by

E, (r) = J'e?(K)eXp(iK- R+ iyz)d?’K
for zo <z <0, (26)

with the angular spectrum

ipow? < . .
7(K) - py exp(—iK - Ry — iyzy),

(27

e, (K) = By

or by

E, (r) = f e, (K)exp(iK - R — iyz)d’K for z < z,,

(28)
with the angular spectrum
. 2
_ Lho®™ o . .
e, (K) = 5— 7(K) - pg exp(—iK - Ry + iyzy).
87y
(29)
The reflected field in .27, for z # z,, is given by
i pow?
E5(r) = 5 f d’K exp(iK - R — iyz)
’7T
X Jd2K' ¥K, K- AK') - —
X exp(—iK' - Ry — iy'z,). (30)

Without any loss of generality, we suppose that z;
< z5. Lorentz’s reciprocity theorem with sources reads
in this case [see Eq. (A11) of Appendix A] as

p1 - [ES (ry) + Ej(r)] = py - [Eif(ry) + E;<r2>].(31)

Note that the incident field also satisfies the reciprocity
theorem

p1 - By (r) = py - Ef'(ry), (32)
and thus, from Eq. (31), one finally has
p: - Ei(r)) = po - Ei(ry). (33)

Introducing Eqs. (25) and (30) into Eq. (33) leads, after
a little algebra, to

YIF-K', -K) - 7(-K)]" = y¥(K, K) - 7K.
(34)
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Using the same argument as that in Subsection 3.A,
one shows that the tensors ¥ - .7 and ¥ coincide, so that
Eq. (34) can be rewritten in the form

Y [¥(-K', -K)]" = y¥(K, K). (35)

Proceeding in a similar way with an incident field
propagating toward z < 0 in.2*, one can derive

Y'[p(-K', -K)]" = yp(K, K'). (36)

Equations (35) and (36) are the reciprocity relations for
the generalized reflection tensor coefficients.

C. Discussion
Relations (20), (35), and (36) express the reciprocity rela-
tions that are valid for any value of |[K|. They include
reciprocity between homogeneous waves (K| < k2 and
|K’| < k), between evanescent waves (|K| > £ and |K'|
> k), and between one homogeneous wave and one eva-
nescent wave (|[K| < £ and |K'| > k). We have thus ex-
tended to evanescent waves and to vector fields the reci-
procity relations of the partitioned S matrix introduced in
Ref. 8.

This work also brings together two usual formulations
of the reciprocity theorem:

1. The symmetry of the S matrix,>™ or of the general-
ized transmission and reflection coefficients correspond-
ing to homogeneous waves only.871® Both of these formu-
lations involved field amplitudes evaluated either at
infinity or far from sources. Lorentz’s reciprocity theo-
rem without sources at finite distance from the scatterer
was the basis of these formulations.

2. Relation (A11), which involves the global field (and
not its angular spectrum), without any restriction on the
distance between the scatterer and both the source and
the observation point. This formulation is the one used,
for instance, in antenna theory.'®2° It is a consequence
of Lorentz’s reciprocity theorem applied with sources at
finite distance from the scatterer.!?

Our approach enlarges the generality of both formula-
tions. It shows that each plane wave of the angular spec-
trum obeys reciprocity (and not only the global field), and
this occurs whatever the distance from the source and the
observation point to the scatterer. This is a more general
statement than the one given by Eq. (A11) in formulation
2, which applies to the global field. This is also an exten-
sion of formulation 1 to vector fields containing evanes-
cent components.

4. RECIPROCITY AND TIME
REVERSIBILITY

When studying time reversibility of a scattering process
in wave optics, one has to take care of the behavior of both
homogeneous and evanescent waves. For example, in
the domain of phase conjugation, the link between time
reversal and phase conjugation was discussed a few years
ago.2b?2 It was shown that homogeneous and evanescent
waves are transformed differently under phase conjuga-
tion, and this was presented as a proof of the nonequiva-
lence between phase conjugation and time reversal.??
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Concerning the reciprocity theorem, a scrutiny of the
literature shows that its relationship with time reversibil-
ity has been the subject of many discussions.

In quantum elastic scattering, the symmetry of the S
matrix can be obtained as a consequence of time-reversal
invariance of the process.?> For instance, in a textbook,?
it is stated: “In other words, time-reversal invariance
implies that the S matrix is symmetric. The symmetry
condition is also called reciprocity.” In this case the
probability waves undergo no absorption, and the S ma-
trix is also unitary. When a complex potential is used to
describe inelastic scattering, the unitarity condition is
lost. Because the probability waves undergo absorption,
time reversibility is also lost. Nevertheless, the S matrix
remains symmetric, indicating that reciprocity still
holds.?3

Similarly, in electromagnetism, reciprocity and time re-
versibility are equivalent when only lossless media are
involved.?* In the optics of transparent media, one
speaks of optical reversibility rather than reciprocity.
Nevertheless, with Lorentz’s theorem, reciprocity rela-
tions can be derived even for a scatterer with losses (i.e.,
with complex constitutive tensors).>%%102425  QOpce
again, reciprocity is conserved, even for a time-
irreversible process.

The fact that reciprocity relations hold in irreversible
processes is a consequence of general microscopic rela-
tions obtained from a statistical approach by Onsager.?
A discussion of these relations and an application to the
derivation of symmetry relations in heat conduction or
electronic network theory can be found in papers by
Casimir?” and also in Ref. 24. As an example, reciprocity
of the resistance tensor of four-poles was obtained.?*2”

In conclusion, reciprocity and time reversibility in elec-
tromagnetic scattering are not equivalent. Nevertheless,
as demonstrated in this paper, both homogeneous and
evanescent waves satisfy the same reciprocity relations.

APPENDIX A: LORENTZ’S RECIPROCITY
THEOREM WITH SOURCES

We recall in this appendix the derivation of Lorentz’s reci-
procity theorem with sources at finite distance from the
scatterer.'®

In a first situation, let V; be a source volume with a
current density J(r) radiating at a frequency w. Let us
call E;(r) and H;(r) the fields created by this source in
the presence of a scatterer described by its constitutive
tensors €(r, w) and u(r, w). In a second situation, let
V5 be a source volume with a current density Jy(r) radi-
ating at the same frequency w. Let us call Ey(r) and
H,(r) the fields created by this source in the presence of
the same scatterer (see Fig. 4).

The fields in each situation satisfy Maxwell’s equa-
tions, that is, with 2 = 1, 2,

together with the constitutive relations
Dk(r) = fog(r, (l)) : Ek(r)’

By (r) = pou(r, ©) - Hy(r). (A2)
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From Egs. (A1) one easily obtains for each point r the fol-
lowing equality:

(Hy - VXE; - E;-VXHy)
+(Ey, - VXH; —H; - VXE)
=iw(B; - Hy — H; - By)
—iw(D; - E; —E;-Dy) +dJ;-Ey —dJy - E;.
(A3)

The left-hand side of Eq. (A3) can be rewritten in the form
V.- (E; XHy — E; X Hy). With the use of Egs. (A2),
one shows that the first two terms on the right-hand side
vanish, provided that € and /i are symmetric tensors:

é(r) = [e(n)]", w(r) = [p(r)]" (A4)
Finally, one obtains for each point r the following:

V. (E,xH,-E,xH,) =dJ, -E,— J, - E,.
(A5)

Equation (A5) with J; = Jy = 0 gives the usual form of
Lorentz’s reciprocity theorem.!! Thus Eq. (A5) is a gen-
eralization of Lorentz’s theorem to the case where sources
are present, and we shall refer to it as Lorentz’s reciproc-
ity theorem with sources.

By integrating Eq. (A5) over all space, we transform
the left-hand side into a surface integral over a sphere
whose radius tends to infinity. The asymptotic expres-
sions of the fields for 2r — o0 in a direction defined by the
vector k = (K, ) are!'®

) exp(ikr)

Ey(kr — ) = 2i7y(K)e,(K) — (A6)
) exp(itkr)

H,(kr — ©) = 2i7y(K)h,(K) — (A7)

with, as a consequence of Maxwell’s equations,
ouohy(K) = k X e,(K). (A8)

By making use of Egs. (A6)—(A8), one shows that E;
X Hy — Ey X H; vanishes identically in the far field, so

situation 1

sources

scatterer

situation 2 sources

scattere

Fig. 4. Geometry considered in the derivation of Lorentz’s reci-
procity theorem with sources.
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that its integral over a sphere of infinite radius disap-
pears. Finally, one is left with

f Jy(r) - Ey(r)d®r = f Jy(r) - E{(r)d®r, (A9)
Vi Vs

which constitutes a reciprocity theorem with sources.!?

In the case of dipole sources, the current densities are
given by

Ji(r) = —lop,d(r — 1), (A10)
which gives, after introduction into Eq. (A9),
P1 - Ex(r)) = p2 - Ei(ry). (A11)

This last equation constitutes a customary statement of
the reciprocity theorem, namely, the component of the
electric field in the direction of polarization of the source
is unchanged when the positions of source and detector
are interchanged. This form of the reciprocity theorem is
well known, for example, in antenna theory.!?° Equa-
tions (18) and (31) of the present paper are a direct appli-
cation of Eq. (A11).
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We derive general relationships of tBamatrix of fields containing evanescent components. Our formalism
covers time-independent quantum scattering as well as scattering of classical scalar waves. We show that
reciprocity, energyor probabilityy conservation, and time-reversal symmetry in the presence of evanescent
waves lead to relationships that extend the well-known relations previously derived in asymptotic scattering.
On this basis, we discuss the link between reciprocity and time-reversal symmetry. We also address the
experimental feasibility of time reversal of a field containing evanescent components.

PACS numbeis): 03.65.Nk, 03.50-z, 42.25.Fx, 11.55:m

[. INTRODUCTION niques developed that involve scattering and/or direct mea-
surement of evanescent wavésear fields. For example,
The scattering matrix § matrix) was introduced by evanescent-wave scattering is involved in the emission pro-
Heisenberg to describe a scattering process without any asess of an atom or a molecule close to a surfad&or in the
sumption about the details of the interactidd. In this for-  surface-plasmon-polarito(SPP mechanism which leads to
malism, the process is thought of as a transformation of athe enhanced backscattering of light on slightly rough metal
incoming statel’;, into an outgoing stat&’,,;, which de-  surfaced14]. It is also the basic principle of near-field scan-
scribe the system far away from the interaction potentialning probe microscopies, using either electfd®] or photon
Hence, theS matrix describes the scattering procesymp- [16] tunneling. Modeling the image formation in scanning
totically. The mathematical transcription of this transforma-near-field optical micoscop{SNOM) requires a precise de-
tion is an operator relationshi,,;=S¥;,, where S is  scription of a mechanism involving scattering of evanescent
called theS matrix [2,3]. It is well known that theS matrix ~ waves[17]. The advent of SNOM has also allowed a direct
exhibits some properties that are independent of the specifiexperimental study of SPP excitation and scattefi&} and
problem under study. In particular, it is unitary and symmet-Anderson localization of surface excitatiofi®] and stimu-
ric, these two properties reflecting probabilitgr energy  lated theoretical works on SPP scattering by surface rough-
conservation in elastic scattering and reciprocity, respecness or localized objecf&0]. In all these fields, the descrip-
tively [3]. The general aim being to get maximum informa- tion of the coupling between an incident evanescent wave
tion about theS matrix with minimum knowledge about the and a scattered propagating or evanescent wave is of funda-
interaction itself, other properties may be derived, based, fomental interest. Ars-matrix formalism, with a definition in-
example, on dispersion relations and causality condifidhs cluding the near-field components, should be very useful in
The existence of such general properties of $heatrix is  this context. TheS matrix also provides a useful formalism
the reason why it has become a fundamental tool in mosdo discuss time reversal of wave fields, and especially its link
areas of theoretical physics, e.g., in quantum scatt¢@f8,  with reciprocity (symmetry of theS matrix) and probability
in particle physicg5], in field theory, and in statistical phys- or energy conservatiofunitarity). In particular, the question
ics [6]. Its definition and its use have also been extended tof time reversal of fields containing evanescent components
scattering of classicalacoustic and electromagnetiwaves has recently received increasing attention, with the demon-
[7,8]. For example, thés matrix has become a fundamental stration of phase conjugation of optical near field4] and
tool (as well as a practical ohéo compute scattered fields in of time reversal of acoustic wavég2]. In this last case, the
physical optics[9]. This formalism has also found a wide S matrix formalism was used to discuss the properties of a
range of applications with the development of random-time-reversal acoustic cavity, without taking into account the
matrix theory[10], which has recently acquired renewed in- role of evanescent wav¢&3]. Nevertheless, the question of
terest through its use in quantum- and classical-wave transubwavelength focusing of a field by time reversal was
port in random medif11,17. raised. This is an important issue, whose discussion requires
The S matrix was originally defined as an operator actingthe use of a formalism including the evanescent components
on asymptoticstates. In scattering by a time-independent po-of the field.
tential (we shall restrict our discussion to this cgsthis Finding general properties of th® matrix, extended to
means that th& matrix relates the far-field amplitudes of the evanescent waves, is of major importance in understanding
incoming and outgoing field§2,7,8]. Nevertheless, in the and modeling all phenomena and devices involving near-
last ten years, new effects have been observed and new tedfeld scattering. To our knowledge, this problem has received
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R sumed confined within the strip<z<z,, and independent
N of the field (linear scattering The regionsz<<0 andz>L
P DK contain sources, the presence of which, at finite distance
N / from the scattering region, is necessary to ensure the exis-
\

-y
Solitc ' I tence of incident evanescent waves in b@&h and R .
e Deeyreers - The evanescent waves explicitly appear when the angular-
b (K) | ifggﬁ:g{g a(KJ spectrum representatiofor plane-wave expansiprof the
i i field is used. In this representation, the fieldls in R — and
i | y/ ¥*inR™ are written[9]
7=0 7=71 1=7, Z=L

=+ — * : H 2
FIG. 1. Scattering geometry and notation. v (r)_f a”(K)exp(iK-R+iyz)d*K

I|ttl.e attention until now, except in eI_ect_romagngtm wave- +f b* (K)expiK -R—iyz)d?K, 2
guide theory where reciprocity and unitarity relations for the

S matrix in the presence of evanescent modes have been i 9 L2
briefly discussed24]. In this work, we concentrate on reci- wherey(K) = Vk“—K* for K*<k” (homogeneous or propa-

procity, unitarity, and time-reversal symmetry in the frame-9ating componentsand y(K) =i yK*—k* for K2>k? (inho-

work of scattering from a localized potential, in the presencd0geneous or evanescent componeite use the notations

of evanescent waves in both the incoming and outgoing?= (X:¥) andK=|K|. Except when the integration domain

fields. The formalism we use covers time-independent quarl$ SPecified, all integrals in this paper are extended-to

tum scattering as well as scattering of classical scalar waves: (Kx.Ky)<+2. Note that Eq(2) is a representation of the

In Sec. I, we define th& matrix based on the angular rep- field valid in regionsk ~ andR " where|z| remains finite,

resentation of the field, sometimes called thetitioned S SO that there is no divergence of evanescent waves \atien

matrix in the literaturd9,25]. In Sec. I, we give a general NCreases. -

derivation of theS matrix reciprocity for scalafquantum and In the angular-spectrum representatiay the partitioned

classical fields, in the presence of evanescent waves. In Se® Mmatrix  relates the outgoing  vector W°U{(K)

IV, we show that energyor probability conservation in =[b (K) a"(K)] to the incoming vector ¥'"(K)

scattering of fields containing evanescent components leadgs[a (K) b™(K)] by the relation(9,25]

to generalized unitarity relations of tt®matrix. These rela-

tions extend those previously derived for source-free fields WOUt(K):f SK,KHPN(K")d?K’, 3)

(i.e., fields without evanescent componeng25], and those

obtained in electromagnetic waveguide thef@g]. In Sec.  \\hereSis a 2x 2 matrix, sometimes called the partitionsd

V, we _address th(_a .problem of time-reversal symmetry ofp,5trix [9,25], which can be written in the form

wave fields containing evanescent components. We show

that the time-reversal invariance condition leads to a differ-

ent relationship for th& matrix. On this basis, the link be- S(K,K") =

tween reciprocity, unitarity, and time-reversal invariance is

discussed. This problem is of fundamental and practical imThe four elements,t,p,r have the meaning of generalized

portance, due, for example, to its potential application toreflection and transmission coefficieni825]. Their defini-

time reversal of acoustic wavé®2]. Finally, we give a sum- tion can easily be extended to vector fields, as in electromag-

mary and a general conclusion in Sec. VI. netic scattering. In this case, the four coefficients become
tensor operatorg26].

r(k,K")y 7(K,K")

t(K,K') p(K,KN]| @

Il. DEFINITION OF THE S MATRIX
lll. RECIPROCITY RELATION
Let us consider the scattering problem depicted in Fig. 1. . _ . . _
The regions &<z<z, and z,<z<L, denoted byR ~ and For incoming and outgoing fields without evanescent

R *, respectively, are assumed to be of constant potential, sgPmponentgsource-free fields reciprocity and unitarity re-
that the wave field in these regions obeys the timeJations for the partitionedS matrix are well established

independent wave equation [9,25]. They were derived as a consequence of the symmetry
and unitarity of the asymptotitfar-field) S matrix. Extend-
V2 (r)+k>¥(r)=0, (1) ing these relations to general wave fields with evanescent

components requires a different procedure. Note that reci-
where r=(x,y,z). In Eq. (1), ¥(r) is either the time- procity of evanescent waves was derived previously in spe-
independent wave function of a state of ener§y[k® cific cases, such as electromagnetic waveguide thigdfy
=2m/#%(E—V), whereV is the potential andnthe mass of  electromagnetiqvector field scattering[26], and elastic-
the particld, or a monochromatic classical wave of fre- wave scattering at a solid-solid interfaf27]. In these ex-
quency w (k=w/c, wherec is the phase velocity in the amples, a suitable formulation of the reciprocity theorem was
medium). The wave numbek? is real, but can be negative, used for each particular case. In this paper, we give a proof
e.g., in a tunneling barrier. The scattering potential is aseof reciprocity of theS matrix for scattering of both homoge-
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neous and evanescent scalar waves from a localized poten-
tial, starting from a general formulation of reciprocity valid
for any kind of scalar wave.

Let ¥, and ¥, be two fields that are solutions of the

scattering problem depicted in Fig. 1. With reference to Fig.
2, let us consider the volumé delimited by the closed sur-
face 3 composed of two planez=z~ andz=z' and a
sphere of radiuRR centered at the center of the potential
region. The application osreen’s second identity leads to

v, oV,
fv(qIZA\I,l_\I}lA\IIZ)dV: J'E \IIZW_\I}]'W dS, i E
© £ BN’
whered/dn=n-V andn is the outward normal on the sur- /
faceX. Both ¥, and ¥, satisfy Eq.(1) in R~ andR ¥, so =1~ gzt

that the integrand in the left-hand side in E§) vanishes.
Moreover, in the far-field asymptotic limjk|r — o, one has
W /ar=ikr ¥, so thatW,d¥,/dn—W¥,0¥,/on van-
ishes identically on the sphere surface when its radRus FIG. 2. Closed volume used for the application of Green’s iden-
tends to infinity. Finally, Eq(5) leads to the following equal- tity and the energyor probability balance.

ity:

IV. EXTENDED UNITARITY RELATIONS

f (quﬂ _wlﬁ) d?r The second basic property of tBenatrix is unitarity. It is
2=z Iz 9z satisfied by theS matrix of a lossless systefelastic scatter-
o, av, ing). It is often assumed that the unitarity condition involves
= L Z+(\P2W_\P1¥>d2R' (6) only propagating waves. This belief is, in fact, based on the

use of asymptotic fields in the derivation. Indeed, unitarity
has been studied extensively in far-fiédsymptotig scatter-
ing [2] or scattering of source-free fields in the angular-
spectrum representati¢f,25]. Conversely, the extension of
unitarity relations to wave fields containing evanescent com-
ponents has received little attention until now, except in the
context of electromagnetic waveguide thef2¢]. Neverthe-
less, as discussed in the Introduction of the present paper,
extended unitarity relations could be helpful in various re-
j f [a; (K) bf(K)]{y(K)S(K,K’) cent applications, such as time-reversed acoustics, near-field
optics, or propagation through random media from the view-
point of random-matrix theory. In this section, we show how
d?K d?K’ =0, (7) such relations may be derived in the framework of free-space
scattering from a localized potential.

In eitherR ~ or R *, the current density associated with
where the superscripk denotes the transposed matrix. Be-the field isJ(r)=AIm{W*(r)V¥(r)}, whereA is a con-
cause Eq.(7) must be satisfied for any incoming vectors stant, Im denotes the imaginary part, and the asterisk is the
[a; (K) by (K)] in situation 1 anda, (K) b, (K)]in  complex conjugate. With reference to Fig. 2, enefgy

Equation(6) is a scalar version of Lorentz’s reciprocity theo-
rem, originally derived for the electromagnetic fi¢RB]. In
order to obtain a reciprocity theorem for tigematrix, we
introduce the angular-spectrum representation(Bgof the
fields ¥, and¥, into Eq. (6). After some algebra, one ob-
tains the following expression:

a; (K")

_7(K,)ST(_K,!_K)} b+(K/)
2

situation 2, one finally obtains probability) conservation states that the total flus
) ot ) = [J-ndSflowing outside the volum¥ vanishes. When the
Y(K)S(K,K")=y(K")S' (=K', —K). (8 radiusR of the sphere tends to infinity, the contribution of

_ _ _ ) the flux through the portions of the sphere surface between
Equation(8) is valid for 0<|K|<+e and 0<|K’|<+%,  the two planez=z" andz=z" vanishes. Finally, energy
i.e., for propagating and evanescent waves. Note that thgy probability conservation reads
presence of the factorg in Eq. (8) is a consequence of the
definition of the angular spectrum of the fidlEq. (2)] by b= 9)

. . . z z™
integration over the parallel wave vectdr When using an
integration over the solid angl@, with k dQ = d?K/y, these
. : . . where
factors disappear from the reciprocity relations. Neverthe-
less, the presence of evanescent waves would involve com-
plex angles in th&) representation, so that thé represen- b t:f J(R,z%)-n d?R. (10)
tation looks more appropriate. z z=7" '
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Using the angular-spectrum representation &g the cur-  the generalized Stokes relations to evanescent fields. Such
rent ¢,= accross a plang=z* in R = can be cast in the relations may be useful, e.g., in the context of surfaces, thin

following form: films, and multilayers optics. The generalized Stokes rela-
tionships and their extension to fields containing evanescent
* * components are given in the Appendix.
pe=h] e )P ()Pl P 9 PP

V. TIME-REVERSAL INVARIANCE

+A a*(K)b™* (K)—a™*(K)b*(K)]d’K.
fK2>k2y[ (K) (K) (K)b=(K)] In this section we discuss time-reversal invariance for

(12) classical scalar wavesve exclude from the discussion the
question of time reversal in quantum mechanics which is

This expression for the current deserves some comment. difficult to separate from the measurement problem
explicitly shows two separated contributions, one stemming
from propagating wavesk(®<k?), and the other stemming A. Time reversal in angular-spectrum representation
from evanescent waves onliK{>k?). Note that the latter is ) i i _
a crossed term between counterdecaying evanescent waves L€t ¥ (r,t) be a classical scalar fieid the time domain
For a givenK such thatk?>k?, if either a(K) or b(K) and ‘P(r,w_) its _frequency spectrum. Becausl_e(_r,t) is a
vanishes, then the associated current also vanishes. For tF@I*funCt'O”' its frequency spectrum satisfids(r, w)
aim pursued in this section, it is precisely the existence of ¥~ (f,— ). From this condition, it is straightforward to
this contribution to the current that leads to the extendedow that the time-reversed fiell(r,—t) has a frequency
unitarity relations of thes matrix. Introducing Eq(11) into ~ SPectrum W*(r,»). Hence time reversal of¥(r.t) is
Eq. (9), and using the definition of th& matrix (3), one equivalent to complex conjuga'qon @f(r,g) throughout all
obtains the three following relations, involving scattering be-SPace. Note that time reversal is not equivalent to phase con-
tween two propagating waves, between two evanescedidation in only one plang29]. We shall come back to this
waves, and between one evanescent and one propagatiRgint later.

wave: Let us see what time reversal means in terms of the an-
gular spectrum of the monochromatic field(r) (the vari-
(K" able w is omitted in the following. From complex conjuga-
f , ——8(K,K")S"(K",K")d*K’ tion of Eq. (2) and the change of variablk ——K, one
K<k y(K') obtains
=8(K—-K"U for K=<k,K"=Kk, (12
‘If*(r)=f a*(—K)exp(iK-R—iy*z)d?K

=S(K,K") for Ksk,K">Kk, (13

=S(K,K")—S*(—K,—K") +f b*(—K)exp(iK-R+iy*z)d’K. (15)
for K>k,K">Kk, (14

The symbolst have been omitted in E4L5) because we do
whereU is the 2< 2 unit matrix. The superscript T denotes not need to specify at this stage whether the field propagates
the conjugated and transposed matrix. in R* orin R ~. We see that, in terms of angular spectrum,

Equation(12) is the well-known unitarity condition of the time reversal is equivalent to the transformation
S matrix restricted to the homogeneous components of thg(K)exp(yz)—a*(—K)exp(—iy*z) and b(K)exp(—iy2)
fields, which was obtained previous[,3,23. Using the  _.p*(—K)exp(y*2) for all values of zin eitherR * or R ~.
partitioned form of theSmatrix Eq.(4), this condition can be  Note that Eq(15) is valid in regions of space for whidz|
developed in terms of the generalized reflection and transemains finite, so that there is no divergence of time-reversed
mission coefficients. The resulting four expressions are th@vanescent waves whérj increases.
generalized Stokes relations of surface optics, which were
derived in[25]. Equations(13) and (14) express, in theS
matrix formalism, probability(or energy conservation in a
scattering process in which the incoming and/or the outgoing In order to study the implication of time-reversal invari-
fields contain evanescent components. Hence, they can l@@ce for theS matrix, let us consider a monochromatic field
considered as extended unitarity conditions for 8watrix W 1(r) which is a solution of the scattering problem depicted
of fields containing evanescent components. Becaus&the in Fig. 1, the scattering potential being described by $he
matrix formalism is used in many fields of theoretical phys-matrix S. Let ¥,(r) be the time reversal of the fieMf(r).
ics, and because there has been increasing interest in phe-terms of the angular spectrum, this means that
nomena involving direct use and measurement of evanescent N ) N i
fields, we believe that this result may have important conse- @z (K)exp(iyz) + b, (K)exp(—iyz)
guences and applications. For example, the development of . - x -
Egs. (13) and (14) in terms of generalized reflection and =a; " (= K)exp(—iy*2) +by " (—K)exnliy*z)
transmission coefficients leads to relationships that extend (16

B. Time-reversal invariance: consequence for th& matrix
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for all values ofzin R * and the reciprocity condition Eq:8). Moreover, a scattering sys-
tem may be reciprocal, without being conservafitzg. (8) is
a, (K)expiyz)+ b, (K)exp —iyz) satisfied, but not Eqg12)—(14)]. In this case, the system is

- . s . not invariant under time reversHEgs. (12)—(14) cannot be
=a, " (—K)exp(—iy*2)+b; " (—K)expiy*2) satisfied. These conclusions hold for fields with or without
(17  evanescent components.

for all values ofzin R ~. The scattering problem is invariant D. Experimental feasibility of time reversal
under time reversal if, and only i »,(r) is also a solution of

the scattering problem, described the same Snatrix S. i An |mportia_nt pro_kt)lerp IS _the elzx_perlmental a('ith |e_vem|ent of
This means that the outgoing vectorsPeU(K) ime reversal in a situation involving wave scattering. In op-

- ¥ Uty Ly e ¥ tics, the development of phase conjugating mirrors provides
=1by (K) “a; (K)] and W3 (K)=[b, (K) a,(K)] are a practical tool to produce fields that are conjugates of each
otherin a given plane Nevertheless, it has been shown that
this type of phase conjugation is not equivalent to time re-
versal when the fields involved contain evanescent compo-
nents[29]. The subject of time reversal of fields containing
evanescent components is of particular interest in the context

connected to the incoming  vectors ¥1'(K)
=[a; (K) by (K)] and W(K)=[a, (K) bj(K)], re-
spectively, by relatior{3). Introducing these conditions into
Eqgs.(16) and(17) leads to the following relations:

S(K,K")S* (=K', K")d?K’ of time-reversed acousti¢22]. In this technique, the acous-
K’<k tic field in a direct situation is recorded on a given surface
=S(K+K"U for K=k,K'<Kk, (1g  after scattering by an arbitrary object. In the reversed situa-
tion, the time-reversed field is emitted from the surfagen
= _S(K,—K") for K=k,K">k, (19 the presence of the same scattering object. In the frequency

domain, the fields in the two situations are complex conju-
_ Y Y gates of each other an. Thus, this experiment is equivalent
=S (=K,K") = S(K,=K") to achieving acoustic phase conjugation on the surfack
for K>k,K">k, (20) _both_optics[Zl] and acoustic22], the possibility of achiev-
ing time reversal of both the homogeneous and evanescent

where the asterisk denotes the conjugated matrix. These réomponents of the field by phase conjugation may be ques-
lations express the condition of time-reversal invariance irflon€d- o _
terms of theS matrix of fields containing evanescent compo- 1€ first part of the answer is given by showing that phase
nents. conjugation on the surface of a closed cayiy equivalently
The set of Eqs(18)—(20) is very similar to the set of Eqs. 2/0ng two planeg=z, andz=2,) is equivalent to time re-
(12)—(14), which describes energy conservation. In fact, it isversal at all pointsnside the cavity (or in the stripz, <z
easy to see that these two sets of equations are equivaleritZz)- This assertion is a consequence of the following re-
provided that the reciprocity relatioi8) is satisfied. Indeed, Sult: two fields defined inside the strip <z<z, that are
Egs.(18)—(20) are transformed into Eq$12)—(14) by using complex conjugates in the two pIa_ne_s Z; and_z=zz are
Eq. (8) and changing<”— —K”. The result we have ob- complex conjugates a_t all points within the stﬂp<z<22_.
tained can be summarized as follows: the condition of time-Therefore, they are time reversed from each other in the
reversal invariance is equivalent to both energy conservatiof@vity. This result holds for fields containing evanescent
(extended unitarity conditionand reciprocity(symmetry of ~components. It can be derived by extending the discussion in
the S matrix). Although this result was already known for Ref. [29] to a situation involving phase conjugation along
source-free field§23], we have demonstrated that it holds tWo planesz=z; andz=z,. Consequently, phase conjuga-

for fields containing evanescent components. tion on aclosedsurface(or along two plangsmay be a
practical way to achieve complete time reversal of a field.

The second part of the answer must take into account the
presence of sources inside the cavity in the direct experi-

The results in this paper also provide a basis to discuss thment. In theory, reversing time leads automatically to the
link between time-reversal symmetry and reciprocity, whichtransformation of all primary sources into sinks. Therefore,
is sometimes confusing in the literatur®] (see also a dis- to achieve time reversal experimentally, the field on the sur-
cussion of this point in Ref26]). For a scattering system in face of the cavity has to be time reversead the sources
which energy is conservddqs.(12)—(14) are satisfiefl the  have to be transformed into sinks. This is probably the great-
conditions of time-reversal invarian¢&qgs. (18)—(20)] and  est experimental challenge. This is also the necessary condi-
reciprocity[Eq. (8)] are equivalent. This is probably the rea- tion to obtain complete time reverséle., with evanescent
son why time-reversal symmetry and reciprocity are oftenwaves includegland achieve, for example, time-reversed fo-
mistaken. In particular, reciprocity is often presented as ausing below the diffraction limit. The necessity of replacing
consequence of time-reversal invariai@g This is in gen-  sources by sinks in the time-reversed situation can be under-
eral incorrect. For example, we have seen that imposingtood as follows. In the direct situation, a subwavelength
time-reversal invariance leads to Eq$8)—(20) and not to  source radiates a localized field whose angular spectrum con-

C. Time-reversal invariance and reciprocity
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tains evanescent waves. In the reversed situation, the sink i ¥
equivalent to a source with opposite phase. This Iocalize(j d?K'[r (K, KOt (K" K"+ 7(K,K")p* (K" K")]—
source also radiates evanescent waves which allow the timetK'<k Y
reversed field to focus below the diffraction limit. 0 (Ad)

VI. CONCLUSION
2. Relations involving conversion of homogeneous

In_ summary, we ha_lv_e derived general properties ofShe to evanescent waves
matrix of fields containing evanescent components. In par- ) ] ,
ticular, we have shown that energgr probability conser- Relations valid folK<k andK">k:

vation leads to relationships that extend the well-known uni-

tarity condition of the asymptoticS matrix. Using the 2101 Nk KT ek (K KT
partitionedS matrix, we have shown that these relationships fK'gkd K Lp(K, KT 72 (KT KT+ (K KoK, K )]7,

lead to extended Stokes relations. We have also obtained

different relationships as a consequence of time-reversal in-  =t(K,K"), (A5)
variance. On this basis, we have discussed the link between

unitarity, time-reversal symmetry, and reciprocity. With the "

increasing interest in techniques based on measurement anﬁ de'[p(K,K')p*(K",K')-I—t(K,K')t*(K”,K’)]y—
control of evanescent waves, we think that this work should/K’<k v

find broad applications. In particular, we have briefly dis-

cussed its implications in time reversal of scattered fields by
phase conjugation.

1"

=p(K,K"), (A6)
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fK,<kd K’[r(K,K’)t*(K”,K’)+r(K,K’)p*(K”,K’)]7

APPENDIX: GENERALIZED STOKES RELATIONS

FOR FIELDS CONTAINING EVANESCENT WAVES =7(K,K"). (A8)
In this Appendix, we summarize the relations that are o . _
obtained by inserting the coefficients of the partitiored 3. Relations involving conversion of evanescent
matrix Eqg. (4) into relations(12)—(14). The first four rela- to evanescent waves

tions are the generalized Stokes relationships obtained in Rejations valid fork >k and K”>k:
Ref. [25]. The other relations are extensions of the Stokes

relationships to fields containing evanescent components. y'
We use the notationg’ = y(K") and y"= y(K"). J kd2K’[p(K,K’)7-*(K”,K’)+t(K,K’)r*(K”,K’)]—
K'=s 'y’
1. Relations involving homogeneous waves only =t(K,K")—t*(=K,—K"), (A9)

Relations valid foK<k andK”<k:

yll

¢ d?K'[p(K,K")p* (K", K")+t(K,K)t* (K" K')]—

J de’[p(K,K')T*(K",K')+t(K,K')I’*(K”,K')]y— fK'sk Lot )P )+ T )]‘y'
K’'=<k fy'

-0, (A1) =p(K,K")=p*(=K,=K"), (A10)

! ! AYE " ! ' * " ’ 7,,
fK,gkde’[p(K,K’)p*(K”,K’)H(K,K’)t*(K",K')]% JK,gkde [r(K,K)r<(K",K")+r(K,K")r* (K"K )]7
=8(K—K"), (A2) =r(K,K")—r*(—=K,—K"), (A11)

f 92K [r (KK ) (K7, K )+ (K, K ) 7 (K7 K ) J 42K 'Tr (K, K )t (K K) + 7(K K ) p* (K K )]
K'=k v' K'<k y'
= 8(K—K"), (A3) =7(K,K") =7 (—K,=K"). (A12)
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We propose a new theoretical approach to near-field microscopy, which allows one to deal with scan-
ning tunneling microscopy and scanning near-field optical microscopy with a unified formalism. Under
the approximation of weak tip-sample coupling, we show that Bardeen'’s perturbation formula, originally
derived for electron tunneling, can be derived from a scattering formalism which extends its validity
to electromagnetic vector fields. This result should find broad applications in near-field imaging and
spectroscopy.

PACS numbers: 61.16.Ch, 03.65.Nk, 07.79.Cz, 73.40.Gk

The development of scanning tunneling microscopy(PSTM) were introduced by analogy between optical and
(STM) in the early eighties [1] opened the way to real-electron tunneling [17]. Nevertheless, there is no unified
space surface study at the atomic scale. Since thefprmalism and theoretical proof of a clear and general anal-
various techniques of scanning probe microscopy (SPMdgy. (ii) An explicit SNOM theory was developed some
have been proposed [2,3], based on local interactiogears ago [15], which gave an interpretation of the signal
between a sharp tip and the sample under study. Scannitagd clarified the role of spatial filtering and polarization
near-field optical microscopy (SNOM) [4] is one of these effects. Nevertheless, a general formalism allowing to in-
techniques, which uses optical interaction in the visible otroduce in a natural way an appropriate tip model seems to
near-infrared range. SNOM has proven its ability to imagebe missing [18].
optical fields and surface structure at a subwavelength In this Letter, we propose a new approach to near-field
scale [5]. In the field of microscopy, spectroscopy, andmicroscopy which deals with both STM and SNOM with
surface modification on the nanometer scale with visiblea unified formalism. We first derive an expression of
or infrared light [6], SNOM looks complementary to other the current in the gap [19] which is valid for STM and
SPM techniques. SNOM. This expression allows an original discussion of

In the context of STM, some theories were developedhe tunneling contribution to the SNOM signal. Then,
shortly after the first experimental demonstrations, basednder the approximation of weak tip-sample coupling,
on self-consistent methods and numerical calculationgve derive a general expression of the signal in SNOM,
[7,8] or on analytical models [9-12]. Many of these which generalizes Bardeen’s formula to scattering of vec-
theories [8—10] have in common the use of Bardeen’sor electromagnetic fields. This generalization allows one
perturbation formula, originally derived for electron to deal with SNOM using the standard formalism of STM
tunneling between two weakly coupled electrodes [13]modeling.

In particular, the approach of Tersoff and Hamann [9] Let us consider the general SNOM setup depicted in
remains an explicit and practical description of the STM.Fig. 1(a), and the general STM setup in Fig. 1(b). In the
An important result in this approach was the directSNOM situation, the tip-sample system is illuminated by
interpretation of the STM signal as a measurement of tha light source of arbitrary size and state of coherence, and
local electron density of state of the sample. Althoughpart of the scattered energy is collected by a detector of
this result is valid under weak tip-sample coupling, it wasarbitrary shape. The gap region (between the sample and
a breakthrough in understanding the STM images [2]. the tip) is assumed to be vacuum or air. At this stage of

Similarly, in the context of SNOM, several theoretical the discussion, we concentrate on the tunneling current in
methods and numerical simulations [14], as well as anaboth STM and SNOM, and we do not take polarization ef-
lytical models [15,16], have been developed, in order tdects into account. In the STM situation, we assume that
improve the capability of the technique and to understandhe central part (with respect to thedirection) of the gap
the measured signals. Although the underlying physics beegion is of constant potentidf. The state of the elec-
hind SNOM is understood to a certain extent, an overlookromagnetic field at a given frequeney, or a stationary
at the current state of SNOM leads to the two followingstate of the electron of enerdy, are both represented by
remarks. (i) The analogy between STM and SNOM is of-a scalar wave functio®’(r). We assume that the tip re-
ten qualitatively put forward. In particular, some SNOM mains situated above the highest point of the surface to-
setups such as the photon scanning tunneling microscogmgraphy (although the path followed during the scan may

5156 0031-900700/84(22)/5156(4)$15.00 © 2000 The American Physical Society



VOLUME 84, NUMBER 22 PHYSICAL REVIEW LETTERS 29 My 2000

optical detector
opical P = [ _ HMaOP - bOPIK
detector K=k
electron \%;(%
. Tcurrent e + A[ yla(K)b*(K) — a*(K)b(K)]d’K .
K?>k?
)
__?_(E)__T___.F_(_{(_)__ _3(_!9_»?»__»&9(}9__ __{{(E)_»?_‘__F_(E)__ Although Eq. (2) simply expresses the total current flow-
ing through the gap region, it was never used before, to
S D @D our knowledge, in the context of near-field microscopy. In
9;/ STM, except for a constant factos; is exactly the tun-
neling current which is measured in the experiment. In
source source SNOM, ¢ is proportional to theotal energy flux, includ-
(a) (b) (©) ing the flux flowing through channels that do not end up

_ _ at the detector. In many SNOM experiments, only part of
FIG. 1. (a) Scheme of a SNOM setup. Light coming from this flux is actually collected and contributes to the signal.
the source is scattered towards the detector through near-fie - . oo
coupling between the tip and the sample. (b) Scheme of a STMP Would be an exact expression of the signal in situa-
setup. The current is created by tunneling electrons betweefions in which a hemispherical detector is used to col-
the tip and the sample. (c) SNOM setup with hemisphericalect all the flux traveling in a half space, as shown in
detection. Fig. 1(c). An example of such a configuration is the tun-
neling near-field optical microscope [21] when complete
be arbitrary). In the gap region, the wave field can be writhemispherical detection is performed, and its reciprocal
ten in the form of an angular spectrum of plane waves [20]8€tup, namely, a PSTM using hemispherical incoherent il-
lumination [22,23].
Two separate contributions are clearly identified in
W(r) = fa(K) expliK - R + iyz) d’K Eqg. (2). The first integral des.cribes the corjtribution of
waves that are homogeneous in the gap region. It simply
expresses the balance between two currents flowing in
) . ) opposite directions through propagating channels. The
+ / b(K)exp(iK - R —iyz)d°K, (1)  second integral describes a current flowing through
evanescent (or tunneling) channels. In the case of STM,
this is the only contribution to the current. This term
where y(K) = vk? — K2 for K* = k* (homogeneous simply reflects the net flux traveling through the tunneling
or propagating components) andK) = i~K? — k2 for  channelK, and vanishes it:(K) = b(K). Note that, if
K? > k? (inhomogeneous or evanescent components). Weither a(K) or »(K) vanishes, then the contribution of

use the notations = (x,y,z), R = (x,y), andK = |K|.  this tunneling channel also vanishes. This reflects the
For the electromagnetic fiel#, = w/c, c being the speed fact that tunneling is essentially a consequence of the
of light in vacuum. For the electron wave functidit, =  presence of two interfaces at close proximity (e.g.,

2m/h*(E — V), wherem is the electron mass anilis  the sample and the tip). Equation (2) also demonstrates
Planck’s constant. The integrals are extende@l t0 K <  the existence of an optical tunneling contribution in any
+o, Note that, in the case of electron tunneling in STMSNOM configuration. Moreover, it shows that the SNOM
(E < V andk? < 0), the wave function in the gap region current travels through both propagating and tunneling
contains evanescent waves only. channels in the gap, whereas in STM the current flows
The current density associated with the wave functioronly through tunneling channels. This is a fundamental
T is J(r) = AIm[P*(r)V¥(r)], where Im denotes the difference between SNOM and STM.
imaginary part ané the complex conjugate. This formula  In practice, computing the SNOM or STM signal from
represents either the momentum density of the electrd=q. (2) requires the knowledge of the angular spectra
magnetic field in the scalar representation or the probaa(K) and »(K) of the wave function in the gap region.
bility current in quantum mechanics [20]. The constantThese are solutions of a difficult scattering problem in a
A may be determined by identifying the current flux at confined geometry, which can, in general, be solved only
the detector with either the energy flux of the electromagnumerically. Nevertheless, under the approximation of
netic field (in the case of SNOM) or the electronic cur-weak tip-sample coupling, it is known in STM modeling
rent (in the case of STM). Using Eqg. (1), the total currentthat Bardeen’s formula can be used to describe the tunnel
¢ = [J.(r)d’R across a plane at a constarin the gap  ing current [2,8—10]. We shall now give a new derivation
region (dashed line in Fig. 1) can be cast in the followingof this formula, based on a scattering formalism. This
form: approach generalizes Bardeen’s original formula, by
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showing that (i) it describes both the tunneling current and Kq Ky
the current flowing through propagating channels, and \ \
that (ii) it also applies to vector electromagnetic fields. 7
Let us consider the general SNOM setup depicted in v tq W(r) v Ltd
Fig. 2(a). The illumination is done by a plane wave with T >
a wave vectorK;, a unit amplitude, and a state of po- T l @ /

larization described by the complex unit vectgr. The

signal is recorded by a detector placed in the far field, in /
a direction defined by the wave vecti,. We assume
that the detection is performed with a polarizer (analyzer)
whose polarization direction is defined by the unit vector (a) (b) (©

a,. Note that this represents the most general configu-

ration, because an extended and/or unpolarized source pIG. 2. (a) General SNOM setup with directional illumination
detector can be described by adding the contributions aind detection. (b) lllustration of the meaning of the sample
a set of incoming or outgoing plane waves. Dependingvave functionW;. (c) lllustration of the meaning of the tip
on the experimental setup, the summation should be dorédve functionW,.

with a properly defined degree of coherence and/or polar-

ization [23]. Without loss of generality, we have chosenthe signal can be calculated from the transmission coeffi-
the transmission geometry shown in Fig. 2(a), but the argjents of the sample and the tip, considered as independent
gument can be easily extended to any SNOM setup. Usingystems. We will now transform Eq. (4) into an expression
a scattering formalism, we describe the sample, the tign direct space, involving two wave fields that are solutions
and the entire setup by their generalized transmission c@f the two scattering problems in Figs. 2(b) and 2(c). This
efficients 7, (K, K;), 74(Kq,K), and 7 (K4, K;). These  will lead to a generalization of Bardeen’s formula to scat-
coefficients are elements of the scattering matrix of eackering of electromagnetic vector fields. L¥t,(r) be the
system in a plane-wave basis [24]. The sigfals the  (vector) electric field, in the gap region, that results from
flux of the Poynting vector (current density) at the detec-scattering of the illuminating plane wave (wave vedqr,
tor position (i.e., in the far field). The far-field asymptotic polarization state,) by the sample, in the absence of the
expression of the electromagnetic field in the direcion  tip. Let W,(r) be the (vector) electric field, in the gap re-
can be obtained by the stationary-phase technique [20]. Igion, that results from scattering by the tip of a plane wave
this condition, the expression of the signal is of amplitude unity coming from the direction of the detec-
- tor (wave vector-K,, polarization stata,). The explicit
S =2meocy’(Ka)lag - T(K4,Ky) - asl>.  (3)  expressions of these wave fields are

This result shows that the basic quantity to compute is

My = a, - T(Ky,K,) - a,, which is analogous to the W(r) = [ T(K,K,) - a;expliK - R + iyz) d°K,
elastic tunneling matrix element in Bardeen’s formalism (5)
[13]. We now assume that the coupling between the tip and

the sample is weak. In the scattering picture, this means

that the current in the gap results from fields that have beeny ,(r) = f Tu(K, —Ky) - agexpiK - R — iyz)d’K,
scattered once at the tip or at the sample. In this case, the

transmission coefficient of the system is (6)

T(K,. K,) = f UK, K) - TWK,K,)d’K, (4 Where 7, is related to7; by the reciprocity theorem
' ' y(Ka) 7a(K4, K) = y(K)T/ (—K, —K,), the super-
where the integral is extended to both propagating and turcript 7 denoting the transposed tensor [24]. From

neling channels. We see that, in the case of weak coupling;ds. (4)—(6), one obtains the following expression for the
| matrix elementM ;:

1 (")\Fs aq’d i| 2
My, = ————>—~ v c——(r) — W(r) - — d°R, 7
o= e | [ - 5w - - S @
where the integral is performed along a plane at a consfant
z in the gap region. that the complex conjugation of the tip wave functidy

Equation (7) is the main result of this Letter. It is simi- does not appear in Eq. (7). This point is not fundamental.
lar to Bardeen’s formula for the elastic tunneling matrix Bardeen’s formula is exactly retrieved when using a tip
elementM,,, between a stat#, of the probe and a state wave functionW, = W¥;, namely, thetime reversedof
V¥, of the sample [see, e.g., Eq. (3) in Ref. [9]]. Notethe wave function®, introduced in Eq. (6). When the
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A theoretical approach to electrostatic scanning probe microscopy is presented. We show that a
simple perturbation formula, originally derived in the context of scattering theory of electromagnetic
waves, can be used to obtain the capacitance and the electrostatic force between a metallic tip and
an inhomogeneous dielectric sample. For inhomogeneous thin dielectric films, the scanning probe
signal is shown to be proportional to the convolution between an effective surface profile and a
response function of the microscope. This provides a rigorous framework to address the resolution
issue and the inverse problem. @00 American Institute of Physid$S0003-695(00)04820-§

Since the development of scanning tunnelingtive analytical approach is checked by comparison with exact
microscopy and atomic force microscopyn the early eight- numerical calculations. In the important case of imaging of
ies various techniques of scanning probe microsd@B8M)  thin dielectric films deposited on metallic substrates, we
have been proposédbased on different local interactions show that the forcéor capacitandesignal closely follows an
between a sharp tip and the sample under study. The longquivalent surface profileThis equivalent surface profile
range nature of electrostatic interactions makes them spe&onnects the film topography with the dielectric inhomoge-
cially suitable to perform noncontact SPM imaging of both neities, providing a simple physical picture of the contrast
conducting and insulating materials. By applying a voltagemechanism in EFM.
between a force microscope tip and a sample, electro- We consider a three-dimensional sample with both topo-
static force microscopyEFM) has been used to study graphic and dielectric constant inhomogeneitiese Fig. 1
capacitancé, surface potentid, charge or dopant dis- This sample is a finite layer of profil&(x,y)=2(r,) and
tribution® topography and dielectric properties of metallic dielectric constant(r) on top of a reference sample. For
and insulating’ surfaces and to deposit and image localizedsimplicity, we will take a semi-infinite homogeneoug (
charges on insulatofsin analogy with the magnetic force >0) substrate of dielectric constart as the reference
microscop€, EFM has been used to image the domain strucSample. Our approach would equally apply to any reference
ture of ferroelectric crystal¥. Polarization forces have also sample surface with known dielectric response, however.
been used to imaging weakly bound materials and lidéids ~ Under a constant tip-sample bi¥s the electrostatic en-
and to perform electrostatic spectroscdpy. ergy of the reference systefie., in the homogeneous case

As in other SPM techniques, the interpretation of theiS given by:

EFM images is not always evident. Since EFM is a nonlocal

_techniq_ue due to th_e long range na_lture c_)f the electrostatic UO:EJ’ €oE2d%r = ECOVZ, (1)
interaction, the detailed shape and dimensions of the tip must 2 2

then be taken into account for a precise calculation of both ) o ) _

force and capacitancd. Most of the theoretical work on whereE, is the electric field andC is the capacitance. The
EFM has been focused on a better understanding of tip shajsaectrostatic forcénormal to the sample surfacgo, can be
effects on the electric field, force, and capacitalidd.Al-  Written as the energy gradient:

though the influence of the tip shape is now more or less well

understood for flat and homogeneous samples, there is no g, —— iuoz_ EVZECO. 2
simple way to directly relate the electrostatic image with the Iz 2 oz

dielectric and topographic properties of the sample. In this

letter, we propose a theoretical approach to electrostatic v

probe microscopy that represents a first step to fill this gap. . z(1y)
In analogy with previous theoretical work on scanning near- & N\
field optical microscopy(SNOM),*> we will show that the “

EFM image is related to both the topography and dielectric :

inhomogeneities of the sample through a response function

[}

which describes all the instrument properties. Our perturba- | €.t

€
¥Electronic mail: juanjo.saenz@uam.es FIG. 1. Schematic configuration of an EFM.
0003-6951/2000/76(20)/2955/3/$17.00 2955 © 2000 American Institute of Physics
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The presence of surface or volume inhomogeneities in-
duces a change in the electrostatic endrgyh respect to the
reference samp)g®

Side View
V4 100 nm

200 nm

1
Au=——f P-Eyd°r, ®)
2 )y

whereE, is the reference field and= ¢q[ e(r) —1]E, being

E the total field. In practice, computing the electrostatic en-
ergy (i.e., the force or/and the capacitapdem Eg. (3) re-
quires the knowledge of the total self-consistent field in the
gap region. These are solutions of a difficult Laplace prob-
lem in an open geometry, which can only be solved numeri-
cally. In order to handle this problem we will make use of a
simple perturbative approach which was shown to be useful
in scattering from rough surfacés.

Following a simple Born-like approach one could re-
place the total fieldE in Eq. (3) by the nonperturbed fiel,.
However, this simple approach is known to give wrong re-
sults in scattering from rough surfac€sOne way to im-
prove this approximation is to take into account the discon-
tinuity of the normal component of the field at the

boundarie¥’ . . .

FIG. 2. (top) Geometry of a typical testing sample. Numeri¢alxact”
results can be found in Ref. 18ottom) Calculated EFM image at two
different constant heights. The force signal is normalized to the force of the

2
3
d°r. (4) reference surface.

0z 2
EG) +Ep

1
AU=—§eofVl[e(r)—1]

The force signal(or the capacitangeis directly obtained pared with a typical field gradient length scale, iEg,(ry

from AU throughAF =9AU/dz, (or AC=V?AU/2). Equa- —T,Zt—2)~Eg,(ry—ry,2), the energy will take the simple

tion (4) is the main result of our letter. This is an important form of

result since the signdimage is related to the topography 1

and dielectric properties of the sample through a response AU%Eeof {Zei(r)) - E5,(ry— 1,20 }d?r), 5)

function which depends only on the tip shape and the geom- o

etry of the reference sample. Although, in general, it is onlyywhere

a perturbative result, it is worth noticing that this equation

gives the exact result for a parallel plate capacitor. Ze(rp) = f
In order to check the validity of our perturbative ap-

proach we have compared our results with an extensive s an equivalent surface profifé connecting the dielectric

merlcgl ca.IcuIatlorJr.. In this case, the reference systgm 'S @:onstant variation and the topography of the sample. The
spherical tip of radiuR=50 nm and a flat substrate with the signal AF=dAU/dz, (or AC=V?AU/2) will then be a
= : =

geometry depicted in Fig. Rop). We have calculated the simple two-dimensional convolution between the equivalent

field Ey in this reference system using the image-charg ! : I
method. The force is then computed from E4j.and a deri- Surface profileZ.+ and theresponse function of the micro

vation with respect ta;. The calculated EFM images at two
different constant heightg are shown in Fig. 2. Forces are
normalized to the force on the reference sample. Figure 3 4
shows scans alongr at X=100nm (i.e., across two

maxima. These results can be compared directly with nu-
merical results obtained by using a self-consistent integral
equation formalism(see Figs. 8 and 9 in Ref. 18Taking

into account the simplicity of our model, the agreement be-

Z(r) e(r)—1

Wdz (6)

45

— Z=170nm
——=- Z=200 nm

w
w o

Normalized Signal
[\*]
3,

tween the perturbative approach and the exact numerical re- 2t
sults is remarkable. 15|
In order to get a deeper understanding on the nature of
the image contrast, let us consider a common experimental 1
situation in which a dielectric soft sample is on a substrate 5 . . ‘ . .
with metallic charactefi.e., e.—.) In this case, the electric -600 -400 -200 0 200 400 600

field parallel to the substrate surface will be close to zero and Lateral Scanning Position (nm)

the main contribution to the signal will come from the nor- fig. 3. Force scans corresponding to the images in Fig. 2, afoagX

mal electric field. If the dielectric thickness is small com- =100 nm(i.e., across two maxima
Downloaded 03 Oct 2001 to 128.151.240.143. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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On comparison with the usual propagating scalar waves, the attenuation of diffuse photon density waves gives
rise to important differences in structural information, such as higher spatial resolution in detection at short
distances from objects and deviation from the Rayleigh limit at larger distances. This damping also estab-
lishes a minimum spatial resolution threshold for diffusive waves, which occurs by illumination in continuous
mode, and demonstrates that in most cases spatial resolution is not improved by increasing the modulation
frequency. Assessments of this formulation with numerical simulations of scattering and wave-front recon-
struction in the presence of noise are given. © 1999 Optical Society of America [S0740-3232(99)01706-8]

OCIS codes: 170.5270, 290.1990, 170.7050, 100.6640.

1. INTRODUCTION

The study of light transport through strongly scattering
media has recently received increasing attention because
of its application to medical diagnosis.> In particular,
much research is motivated by the ability of optical radia-
tion to diagnose human breast cancer. In many practical
situations the diffusion approximation is sufficiently ac-
curate to describe visible or near-infrared light transport
within turbid media such as human tissues.!™® Several
imaging methods have been analyzed.* %3 The
frequency-domain methods use a light source modulated
at a frequency w. In this case the average intensity
U(r, t) = U(r)exp(—iwt) within the turbid medium obeys
the Helmholtz equation with the wave number,

ko = (—pg!/D + iwnl/cD)"?, 1)

where u, is the absorption coefficient, ¢ is the speed of
light in vacuum, n is the index of refraction, and D
= 1/3(u, + w.) is the diffusion coefficient. u, is the re-
duced scattering coefficient, defined as (1 — g)u,, where
g is the average cosine of the scattering angle and u, is
the scattering coefficient. The solutions U(r) of the
Helmholtz equation are called diffuse photon density
waves (DPDW’s). Their wave number «, = «, + ik; is
complex, with «, = 27/\, and «; = 27/, , Ay being their
wavelength and [, their decay length. In practice, with
typical modulation frequencies and human tissues, \ is a
few centimeters, whereas the attenuation takes place
within distances shorter than a wavelength. Therefore
DPDW’s are strongly damped waves, and their detection
is performed at subwavelength distances from the sources
or the hidden objects, i.e., in the near field. This point is
of great importance as far as the potential spatial resolu-
tion of the technique is concerned. In fact, it is well
known that near-field imaging allows spatial resolution
beyond the Rayleigh limit of Ao/2. The problem of spatial

0740-3232/99/061466-11$15.00

resolution with DPDW’s has been addressed in both ex-
perimental and theoretical works.* 1125 Nevertheless, to
our knowledge, no rigorous and general discussion of this
topic can be found in the literature.

In this paper we present a rigorous theoretical analysis
of the spatial resolution in imaging with DPDW’s, and we
illustrate the results by exact numerical simulation of the
scattering of DPDW’s by two objects hidden in a turbid
medium. We address spatial resolution in its standard
meaning (see Ref. 24), that is, as the ability to separate
two object points, or fine details, on measurement at a
certain distance from the scattering object. As will be
shown, this spatial resolution depends only on the me-
dium in which the wave propagates and on the detection-
plane distance to the scattering object. The limits of re-
covery of the object’s optical parameters by inverse
scattering constitute a related subject that should not be
confused with the term spatial resolution. Even so, a
simple backpropagation scheme is presented to demon-
strate the effects of this fundamental limit of spatial reso-
lution. We find an analytical expression for the resolu-
tion limit of DPDW’s, and we compare it with that known
for the usual propagating scalar waves (PSW’s). This
concept can be applied for estimating the expected reso-
lution in object reconstruction in any particular diffusive
medium. As a consequence, we find that for DPDW’s in a
very few realistic cases, one obtains greater resolution by
increasing the frequency of the incident wave, and in
most practical cases illumination in the dc regime yields
the same resolution as in the ac regime. On the other
hand, if the main goal is to estimate the optical properties
of the object, then ac or time-resolved measurements
must be performed.?2® The issue of the effects of noise in
both the resolution and the contrast is also studied, and
exact numerical results are shown. In Section 2 we use
the angular-spectrum representation of the wave field

© 1999 Optical Society of America
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U(r) to derive a resolution criterion for DPDW’s. In par-
ticular, we contrast the behavior of DPDW’s with that of
PSW’s. Then we discuss the transition toward the elec-
trostatic limit, defined as the region where the retarded
effects are neglected, i.e., the dc regime for DPDW’s. Fol-
lowing Rayleigh’s resolution criterion, we find the analyti-
cal expressions for the full width at half-maximum
(FWHM) of both the propagation transfer function and of
its Fourier transform in real space, namely, the propaga-
tion impulse response. Hence these FWHM’s give us di-
rectly the estimation of the spatial resolution limit either
in frequency (FWHM of the transfer function) or in real
space (FWHM of the impulse response).

The electrostatic limit can be found as one approaches
the limit of infinite wavelength (Aj — «) in the expres-
sions for the two FWHM’s. Section 2 also shows a com-
parison of our results with experimental results previ-
ously presented by other authors. As an illustration of
the discussion in Section 2, we present results of scatter-
ing numerical simulations in Section 3. The FWHM ana-
lytical expressions are verified with numerical examples.
We also examine the effect of noise on the spatial resolu-
tion limit and illustrate it with numerical results with ad-
ditive numerical noise, thus demonstrating how the na-
ture of DPDW’s allows a filtering of the image that
substantially eliminates the noise contribution without
much distortion of this image, and therefore reinforcing
the use of the resolution limit put forward here. The ef-
fect of this filtering on the backpropagation of the scat-
tered wave front is discussed in Subsection 3.C. Finally,
in Section 4 we summarize the main conclusions.

2. THEORETICAL ANALYSIS

A. Angular Spectrum for Diffuse Photon Density Waves
Let us consider a homogeneous multiple-scattering me-
dium separated into two half-spaces z < 0 and z > 0 (see
Fig. 1). It is assumed that the domain z < 0 contains
sources and scatterers (hidden objects), whereas the do-
main z > 0 is source free. At any plane z = constant,
with z > 0, we can express the scattered wave U(r) by its
angular-spectrum representation of plane waves. That
is, by a superposition of such waves of amplitude A (K)
and wave vector k = (K, q), |k| = x, (Refs. 27-29):

Z=0 Z=constant

\ S

U(R,z=0) UR,z)
Fig. 1. Geometry used for the angular-spectrum representation.
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Fig. 2. Values of (a) g, and (b) q;, normalized to «,: solid
circles, PSW’s; open circles, DPDW’s.

+o0

UR,z) = f A(K)exp[iK - R + ig(K)z]dK, (2)

where R = (x,y), |K|%2 + ¢% = «,?, ie, K= (K,,K,) is
a real vector and ¢(K) = (ko2 — |K|®)Y2. For DPDW’s,
since k, is a complex number, ¢(K) = ¢, + iq; is always
complex; that is, q,,q; # 0. In Eq. (2) we choose g,
> 0 and q; > 0 so that the field propagates toward z
> 0 and satisfies the radiation condition at infinity.
Note that for PSW’s in the same geometry (the back-
ground turbid medium is replaced by a transparent di-
electric), ko = «, would be real. In this case, ¢(K) = g,
= (ko® — |K|)Y? for |K| < x, (homogeneous compo-
nents), and ¢(K) = iq; = i(|K|?2 — «,?)¥? for |K| > k,
(evanescent components). This difference is important
for spatial resolution. For PSW’s in a transparent me-
dium, high spatial frequencies |K| are exponentially at-
tenuated, whereas low spatial frequencies always propa-
gate. The cutoff frequency «, is well defined and
underlines the diffraction limit of resolution in optical im-
aging. On the other hand, for DPDW’s in a multiple-
scattering medium, even without absorption there are al-
ways both propagation and attenuation at any spatial
frequency. This difference is illustrated in Fig. 2, in
which we plot g, [Fig. 2(a)] and q; [Fig. 2(b)] versus [K| for
both DPDW’s and PSW’s. The values taken for «, and k;
correspond to breast tissue illuminated with light at a
wavelength of 780 nm! and a modulation frequency o
= 200 MHz (where a 27 factor is assumed), with param-
eters \q = 7.53cm, I, = 0.066cm, u, = 0.035cm™%, wu!
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= 15cm ™!, and n = 1.333. Figure 2 shows that for
PSW’s the regions of propagation (|]K| < «,) and attenu-
ation (|K| > «,) regimes are clearly separated; however,
for DPDWS’, ¢, and q; are of the same order of magnitude
for |K| = «,, so that there is no sharp transition between
these two regimes. Nevertheless, as shown by these fig-
ures, DPDW’s behave asymptotically like PSW’s for |K]|
> K.

B. Transfer Function and Impulse Response
From Eq. (2) one obtains

1 +eo
A(K)exp[iq(K)z] = mf, U(R, z)exp(—iK - R)dR.
3)

Equation (3) shows that A (K)exp[iq(K)z] is the two-
dimensional Fourier transform of the wave field U(R, z)
in the plane z = constant. The spatial-frequency filter
F(K, z) = exp[iq(K)z] constitutes the propagation trans-
fer function.

The amplitude and the phase of F(K, z) are repre-
sented in Fig. 3 for a two-dimensional geometry, namely,
K= (K,0), and for several propagation distances z.
Both transfer functions for PSW’s (left column) and DP-
DW’s (right column) are shown. For DPDW’s the values
of k, and «; correspond to the breast tissues’ parameters
as in Fig. 2.

Amplitude F(K,z)
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For PSW’s the propagating and attenuation regions are
clearly visible. For |K| < «, the transfer function is only
a phase factor, whereas for |K| > «,, it is a real low-pass
filter. For large |K|, one has ¢(K) = |K|, so that the
transfer function is exp(—|K|z), and high spatial frequen-
cies are exponentially attenuated. Thus for PSW’s a
given spatial frequency K has a decay length 1//K|, and
the cutoff frequency in the plane z = constant is 1/z.
These properties are well known in near-field optics.?°

However, for DPDW’s, the behavior of the transfer
function is substantially different from that of PSW’s. As
we already noticed in Fig. 2, now there are no longer two
separated propagation and attenuation regions. For a
given observation distance z, the amplitude has its maxi-
mum at K = 0 and decreases for |K| > 0. The peak
value tends monotonically to zero as z increases, owing to
the factor exp[—gq;(K)z], whereas its width broadens.
The phase varies less abruptly than in the case of PSW’s.

A description in direct space is also useful for discuss-
ing the spatial resolution conveyed in DPDW’s. We in-
troduce the impulse response H(R, z), namely, the Fou-
rier transform with respect to K of F(K) = exp[iq(K)z]:

+oo

HR,z) = f F(K, z)exp(iK - R)dK. 4

In terms of this impulse response, from Eq. (3) with z
= 0 and from Eq. (2), the wave function can be written as
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Fig. 3. Amplitude [(a) PSW’s and (b) DPDW’s] and phase [(c) PSW’s and (d) DPDW’s] of F(K, z) for different values of z: solid circles,

z = \; open circles, z = 0.5\; stars, z = 0.1\; squares, z = 0.05\.
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Amplitude H(x,z)
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Fig. 4. Amplitude of H(R, z) for (a) PSW’s and (b) DPDW’s for different values of z: solid circles, z = \; open circles, z = 0.5\; stars,

z = 0.1\; squares, z = 0.05\.

UR,z) = f OOH(R -R,2)UR',z = 0)dR'. (5)

The FWHM of the amplitude of the impulse response
yields the limit of spatial resolution in the wave field
U(R, z) on the plane z = constant. As an illustration,
the amplitude of H(R, z) for a two-dimensional configu-
ration [R = (x, 0)] is shown in Fig. 4, at different values
of z, for both DPDW’s and PSW’s. As z tends to zero, H
tends to a delta function. It is also important that, at a
given z, the width of this function is smaller for DPDW’s
than for PSW’s. The consequences of this fact are dis-
cussed next.

The features of Figs. 3 and 4 can be further quantified
in the following way. The FWHM of both the transfer
function and the impulse response can be evaluated ana-
lytically. In the case of PSW’s, the FWHM of the transfer
function is obtained from the condition

|F(K, z)| = exp[—(|K|]® = ko’2)"?] = 12,  (6)
which, by taking logarithms on both sides, gives us
|K|? — ko% = (In2/z)2. (7

It follows that the FWHM of F (denoted by A|K|) and
that of H (denoted by Ad) are, respectively,

A|K| = 2[ko? + (In 2/z)%]"2, (8)
Ad/ng = 1/2{1 + [(In2/2mz/\¢)]1%} 712, 9)

where we used the relationship between the FWHM of a
function (H in our case) and that of its Fourier transform
(F): Ad = 27/A|K].

Ad/\y is the spatial resolution limit in units of the
wavelength. When z increases, we see in Eq. (9) that the
spatial resolution limit tends to A /2, that is, we retrieve
the well-known Rayleigh limit, for z > A, of optical im-
aging. In frequency space, Eq. (8) shows that as z in-
creases, A|K| tends to 2.

In the case of DPDW’s, the value of K that brings the
normalized transfer function to its half-maximum is given
by

|F(K, z)|

1
FK=0.2)| = exp{—[q,(K) — k;]z} = 3 (10)
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Fig. 5. Spatial resolution limit Ad in centimeters as z increases,
for the following cases: DPDW’s in breast tissue (u,
= 0.035cm™}, pe =15 em™1):  solid curve, w = 0 [dc]; dotted
curve, o = 100MHz (A, = 13.38cm); dashed curve, o
= 200 MHz (Ng = 7.53 cm); dotted-dashed  curve, [0}
= 300 MHz (Aq = 5.60cm). PSW’s: squares, dc; solid circles,
Ao = 13.38 cm; open circles, N\ = 7.53cm. In all cases n
= 1.333.

so that, proceeding as with the PSW’s, the FWHM of F
and H are, respectively,

In2\2 212 12
A‘K| =2 K; + — + Kr2 — Ki2 - ,
z (k; + In2/z)
(11
Ad 1 (}\0 In2 )2 ()\0 2
— ===+ — - |=] +1
No 21\, 2mz/\g l,
Ing \ 2112
- (1 + . (12)
27z/l,

As z increases, z > Ay, we see in Eq. (11) that A|K|
tends to zero. Also, Eq. (12) shows that Ad/\( has no up-
per limit and tends to infinity as z increases, monotoni-
cally worsening the resolution. Hence, in contrast to the
case of PSW’s, all components of spatial frequencies K al-
ways propagate into z > 0, even though attenuation of
the signal exists in the whole K range owing to diffusion.

The spatial resolution limit is seen in Fig. 5, which
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shows the values of the spatial resolution limit both for
DPDW’s and PSW’s versus the observation distance z.
However, since in practical cases the values of z are small
(of the order of a few centimeters), we find in Fig. 5 that in
many cases the loss of resolution as z increases is less
critical for DPDW’s than for PSW’s (compare in Fig. 5 the
cases with N = 7.53 cm for PSW’s and DPDW’s in the in-
terval [0, 3 cm], for example).

C. Electrostatic Limit

Since DPDW’s are damped waves, the detection of the
wave field U(R, z) is usually done in the near field, i.e., at
subwavelength distance from the source object (consid-
ered either as a primary source or as a scattering object).
In this range, if all distances involved are much smaller
than the wavelength, retardation effects can be neglected.
This property is well known, for example, in near-field
optics.3® When retardation effects are neglected, one is
in the domain of the electrostatic limit.

At a given frequency o, this electrostatic limit is ob-
tained when Ay — . Then, for PSW’s, the limit of reso-
lution within the electrostatic limit can be obtained from
Eq. (9):

Ad = (m/ln2)z. (13)

Whereas for DPDW’s, we find from Eq. (12) that the reso-
lution limit in the electrostatic limit is

( 1 In2 ) 2 ( 1 )2
J— + —_— — J—
l, 27z l,

It is interesting to note from Eqs. (13) and (14) that, in
the electrostatic limit, resolution does not depend on the
background medium for PSW’s, whereas in the case of
DPDW?’s, resolution still depends on the background me-
dium, through the decay length /,. In the limiting case,
in which the absorption coefficient is negligible (i.e., u,
= (), the expression Ad for DPDW’s does not depend on
the background medium, and we then obtain Ad ~ z, as

-1/2

Ad = — (14)
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45 t =4
4.0 | ===
3.5 == Pt
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1:;; 25 | 7 - -
2.0 | e - .
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Fig. 6. DPDW’s spatial resolution limit Ad in centimeters as we
increment z, in dc regime (o = 0), for the following cases: solid
curve, breast parameters u, = 0.035cm ™!, u; = 15 cm™!; dotted
curve, abdomen parameters u, = 0.09cm !, u! =95cm ™}
short-dashed curve, back parameters u, = 0.09cm ™!, u!
= 10.5cm™!; long-dashed curve, white matter u, = 0.22cm™?,
4, =91cm™l; dotted-dashed curve, grey matter u,

= 0.27cem !, u) = 20.6cm L. In all cases n = 1.333.
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previously found by Ref. 25 in the time domain. The
transition to the electrostatic limit when z decreases can
be clearly seen in Fig. 5, for both DPDW’s and PSW’s. As
seen, at low z, one does no longer increase the resolution
by lowering the incident wavelength, so that the behavior
is similar to that observed with constant illumination,
i.e., dc regime (w = 0). However, it is important to note
that, in the case of DPDW’s, the electrostatic region ex-
tends to higher values of z and therefore is a good ap-
proximation even at modulation frequencies of the order
of w = 100 MHz. We also observe that, for modulation
frequencies lower than 100 MHz, no increase in spatial
resolution is obtained in ac, and therefore it is cheaper,
and experimentally simpler, to perform measurements in
dc if one is interested only in the location of the objects,
that is, in obtaining an image. For modulation frequen-
cies higher than 100 MHz we find that, even though the
spatial resolution limit increases very quickly for such
frequencies, the decay length [/, is considerably smaller
and therefore the attenuation is much stronger, thus
making detection at practical distances difficult.

The analysis presented here can be used to discuss ex-
perimental data, as those reported in Ref. 8. In Fig. 2 of
Ref. 8, the authors characterize two diffusive objects with
a relative diameter of =0.1\,, 3.26 cm apart, embedded
in a 0.75% Intralipid solution, illuminated by a modu-
lated source of @ = 100 MHz (in this case Ay = 15.12cm
and/, = 7.7cm). Ifwe take a look at our Fig. 5, approxi-
mating the diffusive parameters of the Intralipid solution
to those of breast tissues, we see that two objects 3.26 cm
apart can be resolved as long as we are measuring at dis-
tances z < 2 cm. This resolution is what is observed in
Fig. 2 of Ref. 8, in which the measurements are performed
at a distance of 2 cm and are therefore within the limit of
spatial resolution discussed above.

An important consequence of the existence of this elec-
trostatic limit is that measurements in dc (i.e., at o = 0),
performed within the domain of validity of this limit, give
the same spatial resolution as measurements in ac. To
illustrate this point, we show in Fig. 6 the values of the
spatial resolution limit Ad as z increases in several hu-
man tissues, corresponding to a dc illumination. These
curves give the spatial resolution that can be reached at a
given observation distance z, in each situation. If we
once again refer to the situation depicted in Fig. 2 of Ref.
8, we see that at a distance of 2 cm, it is possible to re-
solve two objects 3.26 cm apart by measuring in dc (see
the solid curve in Fig. 6). Thus we infer that in the case
of Ref. 8, measurements in dc would have led to the same
spatial resolution.

3. SCATTERING NUMERICAL RESULTS

To illustrate the discussion of Section 2 and to check the
resolution criteria derived above, we now present rigorous
numerical results on scattering of DPDW’s. The geom-
etry under consideration is two dimensional and depicted
in Fig. 7. It consists in two diffusive infinite cylinders
(the hidden objects), with axis along OY, both with radius
R and separated by a distance d. The cylinders are em-
bedded in an infinite, homogeneous, diffusive medium.
Constant index of refraction n = 1.333 is supposed
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throughout all the media. A point source with modula-
tion frequency w is located at ry,,.., and the detection is
performed in a plane z = zgget- In this geometry we
solve the diffusion equation without any approximation.
The method uses a surface-integral formalism, which is
an extension to diffusive media of the surface-integral
method used in electromagnetic scattering from arbitrary
interfaces.?132 The procedure is described in Ref. 34 in
the case of diffusive scatterers in diffusive media and in
Ref. 35 when index-mismatched interfaces are dealt with.
This method consists basically in applying Green’s theo-
rem to the diffusion equation for the average intensity
and to the corresponding equation for the Green function,

lz
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-
bay o D

w e

wsl

d

Fig. 7. Scattering geometry.
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thus obtaining a closed set of coupled surface-integral
equations. These integral equations are numerically
solved without approximations, the numerical scheme be-
ing reduced to the solution of a linear system of equa-
tions. This method allows us to deal with multiple-
scattering objects in interaction, and also with index-
mismatch domains, although this case is not considered
now (for a discussion on boundary conditions of DPDW’s
see Refs. 35 and 36, for example). In the following, we
shall be interested in the amplitude of the scattered
DPDW, defined by |US®| = |U — UT)|, where U repre-
sents the total DPDW on interaction with the objects and
U™ corresponds to the incident DPDW, namely, that
created by the point source in the absence of the two ob-
jects.

A. Diffuse-Wave Images of Two Hidden Objects

Following experimental procedures (see, for example,
Refs. 37 and 38), we have considered a point source emit-
ting light at a wavelength of 780 nm, with a modulation
frequency w = 200 MHz. The parameters chosen for the
background medium correspond to breast tissue, with
e = 0.035cm™! and u, = 15ecm™L.  For the cylinders,
we have used the parameters of a breast tumor, u,
= 0.24cm 'and u. = 10cm™1. In all cases, the refrac-
tive index in the media isn = 1.333. To reach numerical

convergence, owing to the small sizes of the cylinders un-

U®?| (a.u.)
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Fig. 8.
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Scattered amplitude corresponding to two diffuse cylinders of R = 0.1 cm with breast tumor parameters u, = 0.24cm™!, u/

= 10 cm™!, embedded in breast tissue (u, = 0.035cm™!, u! = 15 cm™?), with the source located at r e = (0, 2.0 cm) with modulation
frequency o = 200 MHz, separated by distances (a)d = 1cm, (b)d = 1.5¢m, (¢)d = 2.0cm, (d) d = 2.5 cm for the following Z detector

distances:
= 0.8 cm; dotted-dashed curve, z gepee; = 1.0 cm.

solid curve, zggeet = 0.2 cm; dotted curve, zgeer = 0.4 cm; short-dashed curve, z gt = 0.6 cm; long-dashed curve, zgqgect
In all cases n = 1.333.
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Fig. 9. Values of the noise-free contrast C,;(%) as we vary the
detector-plane distance z gt in the case of two cylinders of ra-
dius R = 0.1cm, with breast tumor parameters pu,
= 0.24cm™ !, u! =10cm™!, embedded in breast tissue (u,
= 0.035cm™ !, u, = 15em™Y), with the source located at Treuce
= (0,2.0cm) with modulation frequency w = 200 MHz, sepa-
rated by the following distances: solid curve, d = 1 cm; dotted
curve, d = 1.5 cm; short-dashed curve, d = 2.0 cm; long-dashed
curve,d = 2.5cm. In all cases n = 1.333.

der study, we have used a discretization ds = 0.004 cm
for the surface of the cylinders.

Figure 8 shows the amplitude of the scattered DPDW,
|USO)|, at different detection planes and for different cyl-
inder distances, when the two diffusive cylinders have a
radius R = 0.1cm. As expected, the farther apart the
cylinders are from each other, the better they are re-
solved, and as we locate the detection plane farther away,
this resolution power diminishes. To compare these re-
sults with the conclusions of the previous section, we refer
again to Fig. 5, for breast tissue illuminated with a modu-
lation frequency = 200 MHz (dashed curve). In the
range of cylinder distances represented in Fig. 8, i.e., for d
from 1 cm to 2.5 cm, Fig. 5 indicates that, to be within the
spatial resolution limit, we must place the detection plane
between 0.5 cm and 1.5 cm. This is precisely what is ob-
served in Fig. 8. If we look at Fig. 8(a) for the case of
Zgetect = 1 ¢cm, we find that for a separation distance d
= 1 cm, the objects are not spatially resolved. In this
ideal noiseless situation, the cylinders start being re-
solved at a detector-plane distance z 4ot = 0.4 cm [dotted
curve in Fig. 8(a)].

Once data are above the spatial resolution limit, it is
convenient to define another quantity that allows us to
discriminate the image signal from a certain noise level
present in the data, i.e., the contrast. It is also useful, in
order to compare with previous definitions of contrast, to
introduce first a noise-free contrast (nf), which we ex-
press in percentage (%) as

|UmaX(SC)| - ‘Umin(SC)|
|Umax(SC)| + |Umin(SC)|

Cne(%) = X 100. (15)
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In Eq. (15) |US®)| is the noise-free scattered amplitude,
and |U ;S| is the minimum value of |[US®)| between
maxima |U,,,5®|. In Fig. 9 we plot this noise-free con-
trast C,¢ for two cylinders, in the same situation as in Fig.
8, versus the detection distance zgge:- The modulation
frequency is 200 MHz. Results for different separation
distances d of the two cylinders are shown. These curves
give us the basis to deal with more realistic data, that is,
with noise. Calculations for noise-free scattering data
from cylinders with smaller radii R are not presented
here because the resulting contrast curves are similar to
those of Fig. 9. This similarity occurs because, to the ex-
tent that noise is not taken into consideration, the main
effect of reducing the size of the scattering object is a de-
crease in the amplitude of the scattered wave, but the re-
duction has no effect in the resolution limit. An exten-
sive study on the issue of noise can be found in Ref. 39.
However, to derive useful consequences when Fig. 9 is ap-
plied to actual (noisy) experimental data, a contrast
threshold must be introduced into Eq. (15) and, thus into
the curves of this figure, below which no signal can be dis-
criminated from the noise background. The effect of
noise, and the threshold that it produces, is next ad-
dressed.
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Fig. 10. Values of (a) UpyelK,z = 1cm), (b) USO(K,z
= 1lem), (¢) Ugy(K,z = 1em) = USO(K,z = 1 em)N(K) for a
detector-plane distance z geieo; = 1 cm in the case of two cylinders
of radius R = 0.1cm, with breast tumor parameters u,
= 0.24cm !, u! =10cm !, embedded in breast tissue (pu,
= 0.035cm™!, u, = 15em™!), with the source located at ryy.e
= (0,2.0cm) with modulation frequency » = 200 MHz, sepa-
rated by a distance of d = 2.5cm. A(K) is a Hanning filter
with K., = 15«,. Noise parameters: 7 = 10% and o, = 10°.
In all cases n = 1.333.
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Fig. 11. Normalized scattered amplitude in the case of two cylinders of radius R = 0.1 cm, with breast tumor parameters u,
= 0.24cm™!, u! = 10cm™!, embedded in breast tissue (u, = 0.035ecm™!, .= 15cm™!), with the source located at Ty
= (0,2.0 cm) with modulation frequency w = 200 MHz, separated by a distance d = 2.5 cm in the following cases. (a) Measured at a
plane-detection distance of z jeteet = 1 cm with noise parameters 7 = 10% and o, = 10°. (b) Measured at a plane-detection distance of
Zgetect = 1.5 cm with noise parameters 7 = 30% and o, = 10°. (c) Solid curve, after filtering by a Hanning filter with K, = 15«,, the
image obtained in (a); dotted curve, direct measurement without noise at z4qr = 1 cm; solid circle, after filtering by a Hanning filter
with K = 15«,, an image with noise parameters 7 = 30% and o, = 10°. (d) Solid curve, after filtering by a Hanning filter with
K. = 15k,, an image with noise parameters » = 10% and o; = 10°; dotted curve, direct measurement without noise at zgetect

= 1.5 cm; solid circle, after filtering by a Hanning filter with K, = 15k,, the image obtained in (b). In all cases n = 1.333.

B. Effects of Noise on Resolution

Let U, be an image containing additive noise in ampli-
tude N and in phase & We express it in terms of the
DPDW scattered by the object US® as

Upoise(R, 2) = [[USY(R, 2)| + N(R)]

X exp{i[¢(R,z) + &R)]},  (16)

where ¢ is the phase of the scattered DPDW. The ran-
dom variables N(R) and £é(R) are Gaussian distributed
with correlation length 7' = 0 (i.e., white noise) and root
mean square oy and o, respectively. The noise-to-
signal ratio 7(%) of this image, in percentage, is intro-
duced as

77(%) = G-N/|Umax(SC)| X 100, amn

|U 1max5C| being the signal peak amplitude. Then we de-
fine the contrast C (%) in the presence of noise as

C(%) = Cot(%) — n(%). (18)

With this definition of contrast, 7is the aforementioned
contrast threshold, as shown in Fig. 9. That is, resolving
two objects requires placing the detector at such a dis-
tance z that the contrast remains above 7. Once the larg-
est detection distance z that yields a given resolution

limit Ad has been derived from Fig. 5, the maximum data
uncertainty » that allows observation of signal contrast,
and hence details with this resolution Ad, can be found
from Fig. 9.

To estimate the scattered signal from the noisy data
Upoise» the signal’s high-frequency components are fil-
tered out:

+K,

Ug(R, 2) = f U oo K, 2)N (K)exp(iK - R)AK,
_Kcu
' (19)

where Uy is the filtered image and U, (K, z) is the
K-Fourier transform of U,.(R,z). K. is the cut-off
frequency. N denotes a low-pass filter. In our computer
simulations, this is a Hanning filter, which we define as

1 1 K, 1 1 K,
N(EK) =|— + ECOS T — 4+ —cos T

>

2 K 2 2 K

cut, cuty

(20)

bearing in mind that in the case of a two-dimensional con-
figuration K = (K, 0), K, = (Ko, 0).

Owing to high damping and low reflectivity, DPDW’s
are not subjected to strong interference processes as
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PSW’s are. Therefore the scattering and diffraction pat-
terns of DPDW’s do not present high-frequency interfer-
ence fringes, which means that the Fourier spectrum of
DPDW’s is mostly concentrated at frequencies K < K ;
thus the filtering neither substantially alters the image
nor appreciably reduces resolution. Then, after filtering,
one can estimate that Cq (%) = C,¢(%), Cgy; being the con-
trast of |Ug,®®|. This can be seen in Fig. 10 in which we
plot the values of U,,..(K), UK, z), and Ugi(K, 2),
where Ugy(K, 2) = UpoiolK, 2)N(K) for z = 1cm and
K. = 15k,. These quantities are computed for data
from two diffusive cylinders with the same parameters as
in Fig. 8, radius R = 0.1cm, separated a distance d
= 2.5 cm, with the detection plane at z4et = 1.0cm. A
numerical noise has been added to the scattered field, as
described by Eq. (16). The noise amplitude N(R) has a
ratio 7 = 10%, and the phase noise has o, = 10°. A
comparison of Figs. 10(b) and 10(c) confirms that this fil-
tering does not appreciably remove information in the
spectrum, as we believe should be the case in most prac-
tical situations with DPDW’s. The corresponding scat-
tering amplitudes in real space, both before and after fil-
tering, are shown in Fig. 11.

From z=1.0cm
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As regards the simulation of Fig. 11, notice that, ac-
cording to Fig. 9, the contrast that we can expect in data
taken at z = 1 cm [Fig. 11(a)] and z = 1.5 cm [Fig. 11(b)],
for a cylinder separation distance d = 2.5 cm, is approxi-
mately 20% and 10%, respectively. In Fig. 11(a) we have
n = 10%, and therefore we still have 10% of signal con-
trast above the threshold for z = 1 cm. However, in Fig.
11(b) we have considered a rather extreme situation in
which 7 = 30%, which in the z = 1.5 cm case places the
contrast under the threshold. Even so, once the image is
filtered, we find that in the z = 1 cm case [Fig. 11(c)],
which is above the threshold, the filtered image is very
close to the noise-free image. Surprisingly, this outcome
occurs also for the case z = 1.5 cm [Fig. 11(d)], which is
under the threshold for both values of 7, i.e., » = 10%
and 7 = 30%. That is, even in very unfavorable signal
detections, we find no effective threshold for the filtered
image amplitude.

C. Backpropagation

Let us now see the effect of the characteristics of the de-
tected signal discussed so far, on the wave field close to
the scattering objects. To reconstruct this wave front, we

From z=1.5cm

- (a)

L (b) ]

Scattered Amplitude (a.u.)

X detector pos. (cm)

2 2
-6.0 -4.0 -2.0 00 20 40 6.0 -6.0 -40 -20 00 20 4.0 6.0

X detector pos. (cm)

Fig. 12. Normalized scattered amplitude backpropagated onto z = 0.2 cm in the case of two cylinders of radius R = 0.1 cm, with breast
tumor parameters (u, = 0.24cm ™!, u! = 10 cm™!), embedded in breast tissue (1, = 0.035cm™}, u, = 15 cm™ 1), with the source located
at ryuee = (0, 2.0 cm) with modulation frequency w = 200 MHz, separated by a distance d = 2.5 cm, for the following. (a) Solid line,
noise-free image taken at z et = 1.0 cm backpropagated with K., = 10«,; dotted curve, direct measurement at z et = 0.2cm. (b)
Solid curve, noise-free image taken at z g = 1.5 cm backpropagated with K ; = 10«,; dotted-curve, direct measurement at z geect
= 0.2cm. (c) Solid curve, image taken at zgee = 1.0 cm with noise parameters o, = 10°, 7 = 10% backpropagated with K
= 10«,; dotted curve, image taken at 24ty = 1.0 cm with noise parameters o, = 10°, 7 = 30% backpropagated with K, = 8«,. (d)
Solid curve, image taken at zgee, = 1.5 cm with noise parameters o, = 10°, = 10% backpropagated with K, = 7«,; dotted curve,
image taken at zgeey = 1.5 cm with noise parameters o, = 10°, » = 30% backpropagated with K, = 6«,. In all cases n = 1.333.
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now backpropagate the image from the detection plane,
which is done by means of Egs. (2) and (3). A detailed
description of this procedure can be found in Ref. 7. To
carry out the backpropagation, we have filtered the back-
propagated image in K space once again, by means of a
Hanning filter.

In Fig. 12 we show the backpropagated amplitudes
from the detection planes z = 1 ¢cm and z = 1.5 cm, onto
the plane z = 0.2cm. This backpropagation is per-
formed for all cases shown in Fig. 11, i.e., noise-free and
filtered images. As stated above, the noise parameters
for data shown in Figs. 12(c) and 12(d) are o, = 10°, 7
= 10% and o, = 10°, 7 = 30%, respectively. As shown
in Fig. 12, and as already mentioned before, since the dif-
fraction patterns from the scattered waves at z = 1 cm
and z = 1.5cm do not present appreciable interference
fringes, the backpropagation in these cases basically con-
stitutes an increase in contrast. Once again, we can see
in Fig. 12 that the backpropagated filtered images corre-
sponding to 7 = 30% are approximately the same as
those corresponding to 7 = 10%. Also, since the image
taken directly at z = 0.2cm does not have a high-
frequency contribution, the backpropagated image is a
very good approximation to this image [see Figs. 11(a)
and 11(b)]. The reason for this is that the frequency cut
for the filter does not have to be very high for retrieving
information from the reconstructed wave. The asymme-
try of the backpropagated noisy images with respect to x
= 0 is due to residual noise in the filtered images at the
detection z plane [cf. Figs. 11(c) and 11(d)]. We wish to
emphasize that we have not undertaken any additional
processing of these data to filter out this effect. In prac-
tice, however, an averaging over several image record-
ings, together with any standard apodization procedure
on these images before the backpropagation operation,
can still considerably improve the results shown in Figs.
12(c) and 12(d). We do not pursue these aspects any fur-
ther, since these are accessory to the main purpose of the
present work.

4. CONCLUSION

In this paper we have addressed the variation of the
transfer function and the impulse response on propaga-
tion of DPDW’s and have compared it with the known
case of PSW’s. We have put forward an analytical ex-
pression for the spatial limit of resolution of DPDW'’s,
which is given by the FWHM of the impulse response.
This spatial resolution has been studied versus the propa-
gation distance from the scattering object, and its electro-
static limit has been discussed for DPDW’s on the basis of
near-field optics considerations. To illustrate the use of
this limit of spatial resolution, we have presented an ex-
act numerical computation, within the diffusion approxi-
mation, of the scattering of DPDW’s from two cylinders
with breast tumor parameters embedded in breast tissue.
The effect of noise on the resolution contained in these
data has been included.

The issue of whether it is more convenient to measure
DPDW’s in ac or in dc has been discussed as regards this
spatial resolution limit. We demonstrate that in many
practical cases, measuring in ac does not increase spatial
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resolution, and therefore with spatial resolution (i.e., ob-
taining an image) one can take advantage of the cheaper
and experimentally simpler measurements in de. Once
again we must state that if the main concern is to extract
the diffusive properties of the objects, then ac or time-
resolved measurements must be performed, as shown in
Ref. 26. Detection of DPDW’s is performed in the near
field, and we show that in the majority of cases the con-
tribution of the electrostatic limit dominates. On the ba-
sis of these results, we recommend the employment of
this resolution-limit expression as a guide before under-
taking experimental measurements. When measuring in
dc, we obtain a lower value of the noise-to-signal ratio.
This value increases as the modulation frequency grows.
Therefore we conclude that, in most cases, measuring in
dc not only does not reduce the spatial resolution but di-
minishes the noise-to-signal ratio, thus making detection
of smaller objects more feasible.

The theory presented here constitutes a rigorous math-
ematical formulation that makes possible the under-
standing of the information content on propagation of DP-
DWs and  underlines the interpretation of
backpropagation results such as, for example, those of
Ref. 7. Specifically, we have found that, owing to the
high-damping property of DPDW'’s, their spectra is con-
centrated in the low-spatial-frequency range. Therefore
considerably high noise levels can be filtered out with
minimum loss of information, that is, of resolving power.
We have shown that this is true even when the detected
image contrast is under the threshold imposed by noise.
That is, after filtering, we find no effective contrast
threshold for the DPDW data.
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We present a theoretical and numerical study of the scattering of a diffusive wave by an object
embedded in a semi-infinite substrate. We derive exact integral equations for the scattered wave,
usingGreen'’s theorem and appropriate Green'’s functions. We show that two methods can be used,
leading either to a purely surface-integral formalism or to a formalism involving a volume integral
and a surface term. In the first case, we derive an extinction theorem for diffusive waves and present
an efficient numerical procedure to solve exactly the scattering problem. In the second formalism,
physically more explicit, we apply an improved Born approximation, and study its range of validity
by comparison with rigorous numerical results. Our approach also suggests a simple way to
determine the depth of the object. In this article, we focus on thermal waves. Yet the formalism can
be applied to photon-density waves. ZD0O0 American Institute of Physics.

[S0021-897€00)08811-3

I. INTRODUCTION posed yet. In the bustling field of DPDW, the direct problem
has been addressed with various methods like finite
Thermal wave scattering has received a lot of attentiorelement&! and Green'’s theoreff. The extinction theorem
in the past 20 years as a tool for noninvasive detection anfkads to a surface integral formalism worth noting, which is
imaging of defects buried in the bulk of an opaque matérial. suitable for the exact numerical solution of the direct
It has applications in numerous fields, such as microelectrorproblem’ Green’s techniques in the frequency domain have
ics, material process control, or environmental monitofing. also been applied to thermal wave scatteffy'*More re-
Thermal waves are usually generated by irradiating the sureently, integral equations have been used to derive perturba-
face of an absorbing material with a light beam of harmoni-tive solutions based on the Born approximattdrthis ap-
cally modulated intensity. The absorption of light in a thin proximation is valid when the scattered field is a small
layer at the surface generates a local temperature fluctuatiaforrection to the incident field and leads to a simple inver-
that diffuses into the bulk. Imaging techniques rely on measion scheme by deconvolutidf.However, because of the
surements of the surface temperature field to detect subsudiscontinuity of the gradient of the temperature field on the
face heterogeneities. For the modulated part of the temper&oundary of the object, a difficulty arises in properly ap-
ture field, the heat diffusion equation takes the form of theproximating the normal derivative of the temperature field.
Helmholtz equation with a complex wave numBefrom a The present article is devoted to the presentation of an
theoretical point of view, thermal waves are very analogougfficient, exact numerical solution of the heat-diffusion equa-
to diffuse photon-density wave®PDW) in turbid media tion in the frequency domain. Surface integrals are solved by
that have received increasing attention in the past few yearsa moment method inherited from electromagnéfiesd pro-
In the frequency domain and under the diffusion approximavide an exact solution of thermal wave scattering by an ar-
tion, the photon-density transport in such media is also govbitrary object. The article is organized as follows: Secs. I
erned by the Helmholtz equation with a complex waveand Ill are devoted to the derivation of surface-integral equa-
vector>® Although the present work refers to thermal waves tions for the temperature field and to the description of the
its formalism can easily be extended to DPD\8tudies of  numerical procedure. For numerical reasons, we have de-
thermal waves and DPDW have the same goal of detectingcribed and implemented this procedure in a two-
and imaging objects hidden in an opaque or turbid environdimensional(2D) geometry, but we provide equations to
ment. Solving the direct problem is essential in this contextsolve the three-dimensionéD) problem as well. An alter-
either for direct imaging or for inverse scattering, since anynative formulation involving both volume and surface inte-
inversion method is based on a particular formulation of theyrals is outlined in Sec. IV. Although less convenient for
direct problenf~1° exact numerical solution, this formulation allows us to dif-
Apart from the case of one-dimensiorfdD) structures ferentiate the role of thermal conductivity variations from
where an analytical solution can be derived, the direct probthat of heat capacity variations in the scattering process and
lem for thermal wave scattering has to be solved numericallys well suited for the Born approximation. Special care is
and no exact solution for arbitrary scatterers has been praiiven to correctly evaluate the dominant term in the field
normal derivative. Numerical simulations in Sec. V are used
Author to whom correspondence should be addressed; electronic maif® Validate the exact solution and to check the range of va-
remi@em2c.ecp.fr lidity of the Born approximation. Simplistic analytical crite-
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P(w)

V x

V y A FIG. 2. Notations and surfaces used for the application of Green’s theorem.

FIG. 1. Geometry of the system. The substratiejec) has a thermal con-
ductivity k1 (k) and a thermal diffusivityp, (D,). The interfacez=0 is
heated by a plane wave with intensBymodulated at a frequenay. T1(|r|—>oc) =0. (5)

The heat flux is also continuous at the interfaee0, and we

ia of validity of thi . . | idered. W. assume thail) the radiative and convective losses at
ria of validity of this approximation are also considered. We _ - 44 (2) the conductive flux az=0" are negligible

finally obtain a simple inversion scheme to estimate thecompared to the laser flux. This additional condition is
depth of buried objects.

written
JTq
Il. STATEMENT OF THE PROBLEM —; (Xy,z=0)=0. (6)
We consider a flat interface separating a vacuune- Using Green’s theorem and appropriate Green’s func-

dium z<0) from a semi-infinite substraténediumz>0)  tions, we will now transform Eq(2), together with the
with uniform thermal conductivity; and diffusivity D ; (see boundary conditions Eq$3)_(6) into a set of integra| equa-
Fig. 1). An object of arbitrary shape, with uniform thermal tions, involving either surface integra{Sec. Ill), or a sur-
CondUCtiVitsz and dlfoSIVlty D,, is embedded in the sub- face integra| and a volume integréﬁec_ |\/) We will see
strate (subsurface objekt This system is heated by a laser that the first formulation is suitable for numerical calcula-
beam illuminating the interface=0, the beam intensit  tions, whereas the second approach is helpful for a physical
being modulated at a frequenay. The total temperature analysis of the scattering problem. We note that the problem
field at a given point =(Xx,y,z) with z>0 can be written  defined by Eqs(2)—(6) is very similar to the problem of
T 1) =To+ R T(r)exp —iwt)], (1)  Pphoton-density waves. It suffices to replace the temperature
_ ) _ T by the density of photons; the thermal conductivitk by
whereT, is a uniform background and(r) is the complex  the inverse of the transport length and the thermal diffu-

modulated heating of the surface. of light.

In the half-space>0, the temperature field@(r) obeys

the partial differential equation
Ill. SURFACE INTEGRAL FORMALISM: EXTINCTION
V2T(r)+ KT, (1) = — @' (27 THEOREM FOR THERMAL WAVES
K A. Green'’s theorem

wherek]?:iw/Dj, j=(1,2), andT; denotes the temperature
field evaluated at a point inside the substrgte {) or inside
the object {=2). Q is the volume heat source produced by
the absorption of the laser beam.

Solving Eq.(2) for j =(1,2) requires the specification of 5 > 3 ) )
four boundary conditions. The temperature field and the heat fv(uV v=-oViu)d r—f d°r,

flux are continuous at the surfake of the buried object. For )
rons, where the normat is chosen to beutwardfrom the volume

V.
Ti(r)=Tx(r), ) With reference to Fig. 2, we denote B and>, the
T, T, volume and the surface of the object, respectively. The

(r)y= Kzﬁ(r), (4) complementary volume, enclosed by the plared (denoted

by 3,), the surfaces, and an hemispher& ., of infinite
whered/dn=n-V, n being the outward or inward normal to radius is denoted by,;. We will apply Green’s theorem in
the surface. Moreover, the temperature field is unperturbed; andV, successively, using two different Green’s func-
for |r|—c inside the medium tions G, andG,. Let us first choos&, obeying

Let u(r) anduv(r) be arbitrary scalar fields defined in a
volume V bounded by a closed surfad Green’'s second
identity states that

)

*17n
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Gy(r,r")=—6(r—r") 8
and satisfying the boundary conditions Ed5) and (6),
namely,Gy(|r—r'|—=)=0 and 4G, /dz(x,y,z=0)=0. In
a 3D geometry, thi$sreen’s function is given by
expliker—r'])  expikqr—ri,])
4mlr—r’| Aarlr—rl

V2G4 (r,r')+k3

Gy(r,r')= , 9

wherer’=(x’,y’,z") andr;,=(x",y’,—2’). In a 2D geom-
etry (translational invariance along tlyeaxis), it is given by

i i
Ga(r,r)= ZHE (kelr =1+ ZHE (kilr =), (10)

where H{" is the Hankel function of first kind and order

Zero.

We now apply Eq(7) in V4 with u=T; andv=Gy. In

Thibaud, Carminati, and Greffet

exp(iky|r—r’])
Z(r r ) 47T|I'—r | ’ (16)
whereas in a 2D geometry, it is given by
Ga(r,r)= 7 HE (k| —1"]). (17

Applying Eq. (7) with u=T, andv=G,, and making
use of Egs(15) and(2) with j=2, we obtain
Q)
Ga(r,r') — —

Va

d3r’—f To(r")8(r—r")d3’
Vo

:fz [Tz( )M—Gz(r,r )ﬁT;(r ) d2r

(18

the following, the normah’ is outward with respect to the In the case of a plane-wave illumination, if we denote by
object(see Fig. 2 The left-hand side can be simplified using P(w) the power densityper unit areaof the laser beam, the

Egs.(8) and(2) with j=1, and we obtain

fGl(r,r’)wd?’r’—f To(r")8(r—r")d3’
Vq K1 \Z1

_J aGl(r r') aTl(r )
- NV

Ty(r") —Gy(r,r') ——— d?r’

(11)

wheredV,=3,U>,U%. . Due to the boundary conditions

satisfied byT, andG;, the integrals or®,, andX ., vanish.

Depending on whether the observation painis inside or

outsideVy, we obtain a pair of integral equations.
ForreV,

Tl(r>=Tref<r>+f2 [n(r )ﬁ

an
—Gy(r,r") (91(, )}dz ' (12
and forre V,,
Tref(f)+Lz[T1(r )&n”)
—Gl(r,r’)%}dzr’:& (13
where
Tn)= [ Gurey St 14

volume source term is

exp( z/1 )

Q(r)=a,P(w) (19

wherea,, is the absorptivity of the surface at the frequency
of the laser, and, is the absorption lengtfi.e., the inverse
of the absorption coefficient In a typical metal,l,~10
—100 nm. Equation(19) shows thatQ vanishes inside the
volumeV,, provided that the distance from the object to the
boundaryz=0 is much larger than the absorption length

in the substrate at the frequeneyof the laser light. We
assume that this condition is fulfilled in the following. Fi-
nally, we obtain a second pair of integral equations.

ForreV,
T2<r)=—fz{T2< )P gy AT )}dz'
2 (20
and forr eV,
, 9Go(r,r") 2( N
LZ[Tz(r )T—Gz(f,r ) }dz
(21

Equations(12) and(20) enable us to obtain the temperature
field at any point with z>0, provided that the source func-
tions T4, Ty, dT,/dn’ anddT,/dn’ are known on the ob-
ject surface>,. The integral in Eq(12) represents the scat-
tered field in the substrate. Equati@itB) expresses how the
reference field is cancelled inside the object by this scattered
field. This constitutes the equivalent of the extinction theo-
rem in electromagnetic scatteriff.

is the field produced in the semi-infinite medium without the
presence of the objec(teferencg f|eI;t_i The expression of _B. Equations for the source functions
T,ef in the case of a plane-wave illumination of the surface is
given in Appendix A. We now apply Green’s theorem\in
using the Green’s functio®, obeying

V2G,(r,r")+k3Gy(r,r')=—8(r—r")

Using Eq.(4), let us define two unknown source func-
tions T(r) and®(r) for r on the surface, of the object

T(r)=Ty(r)=Ty(r), (22

JaT oT
<I><r>=2—;—l< =2,

(15

and satisfyingG,(|r—r’|—=)=0. In a 3D geometry, it is

given by @3
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A pair of coupled integral equations farand® is obtained V=[TL,T?, ... TN®L @2 ... &N,
from Egs.(12) and(13) and(20) and(21) by lettingr tend to A N
a point on the surfac®,. In this operation, much care hasto ~ Vrer=[ Tren Trer - - - 1 Trer, 0,0, . ., 0], (28

G; and their normal derivativegG;/Jn’ atr=r’. In par-

ticular, the singularity of9G;/dn’ is nonintegrable, and its Vlref:MijVj- (29

extraction is performed following Refs. 17 or 19. In the limit The 2Nx 2N matrix M of the linear system has the form
r—>,, Egs.(12) and(13) lead to the same integral equation

i ; A B
involving T and ® M = c ol (30
T(r) L 9G(r,r") 5,
2 :Tref(r)“LPVLZT(r )4 where A, B, C and D are NXN matrices whose explicit
expressions are
K P .
—K—Zf Gy(r,r)®(r')d2r, (24) 1/2 if =]
b}
L L L UR (3D
where PV stands for the principal value of the integral. Simi- - TAE it i#],
larly, Egs.(20) and (21) lead to a second integral equation !
involving T and® forre K o
J == 2| Gyrndr i i
T(r IG,(r,r’ 1 Jcelli
(T):—Pvf T(r’)za(T)dzr’ Bij= « (32
*2 “2Gy(r;, 1A if i#],
K1
+LZG2(r,r’)CI>(r’)d2r’. (25) 1/2 it i=]
Once the source functions and ® are calculated from the Cij=1 9Ga(ri.r)) AS i i#], (33
system of Eqs(24) and(25), we can obtain the temperature an;
field at any point in the substrate or in the object by intro-
ducingT and® into Egs.(12) and(20), respectively. —f Gy(ri,r)d?r if i=]
Except in very particular geometries, the system of Egs. Dij= celli (34)
(24) and(25) has to be solved numerically. The details of the —Gy(ri,r)AX if i#].

numerical procedure that we have used are given in the fo

lowing section. I'I'he evaluation of the diagonal elements of the matriBes

andD has to be performed with care, due to the singularity
C. Numerical procedure of the Green functions at the origin. The integral on the cell
domain is performed analytically, in the limit where the cell
size tends to zero. For the 2D case, the evaluation of the
diagonal elements is performed in Appendix B of Ref. 20.
of them having coordinates=(x ,z;) and being the center Note th_at the procedu_re used to convert the integral equation
b into a linear system is known as the moment method. The

of a cell with sizeA2;. The two unknown functions' and reader is refered to Ref. 17 for more details on this method.

& are assumed to be slowly varying functions at the scale o&nce the linear systef@9) is solved by standard procedures,

the cell size. When the object is regular enough, it is pos&bk?he source functior and< are known on each point of the
to choose equally spaced points, so that the cells have th

same sizeAX. We will assume this condition to be fulfilled oeo]ect surfaceX,. We can then calculate the temperature

. . . ; field at any point in the substrate or in the object by using
in the following. Equation$24) and (25) are then rewritten Egs. (12) and (20).

To solve Egs.(24) and (25), we convert them into a
matrix equation, which is then solved numerically. We do
this by introducing a set dfl points on the surfac®,, each

as
T [ 9Ga(ri.n)
5—2 T f o dr IV. VOLUME INTEGRAL FORMALISM
j#i cellj j
« . Another formulation of the scattering problem may be
+Z dl —zf Gy(r ,r)d'ﬂ =T et (26)  obtained by using only the Green functi@, and applying
) K1 Jcell Green’s theorem successively\y andV,. This procedure
i _ leads to an expression of the temperature field involving a
T . Gy(ri,r) X !
> + E T o well-known volume integral and a previously unreported sur-
17 cell N face term. We will first derive the exact integral equation for

the total field, and then show how the Born approximation
f Ga(r; ,f)dzf} =0. (27)  can be used to obtain an explicit expression of the scattered

cell field. We will also derive analytically some criteria of valid-
We have used the notatio$=T(r;) and®'=®(r;). If we ity of this approximation, and compare the approximate re-
introduce the two following vectors of lengthi\2 sults to exact numerical calculations in Sec. V.

_2 Pl

]
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A. Alternative formulation simply makes the approximatiofy(r')=T(r’). The sur-
The use ofGreen’s theorem iV, with the Green func- face integral has to be handled with care becaldsg dn’ is
tion G, leads to Eqs(12) and(13) derived in Sec. Ill. Letus discontinuous across the boundaBy,. Thus, replacing

now apply Green’s theorem M, with u=T, andv=G,.  ¢T2/dn’ by dT,e/dn" would be incorrect. A careful analysis
Making use of Eqs(8) and(2) with j=2, we obtain: shows that JT,(r')/dn"=agdT(r')/on’ with ag
forreV, =20k /[ (29—1)k1+ k5] Where =2 for a 2D problem
and =3 for a 3D problem(see Appendix B for detailsIn
Tz(f)=(k§—ki)f Gy (r,r)To(r")d3’ the Born approximation, Eq37) yields
2
Gy t) 2( N T(r) =Tref(r) + (k3 —k >f Ga(r.r) Teedr)dr’
—f To(r') — = Ga(r.r') }dz'
B +agl1- 2 f T 1 AL RIS
(35) ag k1) s, IR an’ .
and forr eV, Some criteria of validity of Eq(38) may be obtained by
L dGy(r,r") 2( ) 5, requiring that the scattered field remains a first-order correc-
J; To(r )—an’ —Go(r,r') — ——|(dr tion to the reference field on the integration domain, namely,
2 that
)f 1(r,r)To(r)d3r . (36) T(r)—Tredr)
SUp ey, |———+1<1. 39
Heve ™ Teln) 39

In Egs.(35) and(36), the normaln’ is outward with respect
to the objecisee Fig. 2. As in the previous section, we have
assumed that the source tefnis zero inside the object, so
that the integrals oveY, involving Q in the integrand van-

A rough estimation of the two integrals in E(8) leads to
sufficient conditions of validitysee Appendix C for details
For a 3D geometry, these conditions are

ish. Substracting E435) from Eq.(13) (forr e V,), and Eq. B, =K~ K| V, <1 (40)
(36) from Eq.(12) (for r € V;), and using the boundary con- v ih2 Mlond ~
ditions Eq.(4), one obtains
6|k~ K| Tolkyl
B.= <1, (42)

T<r>=Tref<r>+<k§—ki>fv Gy(r,r)Ta(r)d3’ Skt ik 2md
2

whereas for a 2D geometry, they are

4 1—Qf Gyriry 20 o (37) Vs,
ki Js, BT an ' B,=[k5—ki| —[lIn(d/6y)| +exp(—d/ &) ] <1, (42)

Equation(37) is an exact expression of the temperature field,
valid at any point =(x,y,z) with z>0. Itinvolves a volume B =
integral, extended to the volume of the object, and a surface
integral, extended to its boundary. Where(51=[lm(k1)]‘1 is the thermal diffusion length in me-
This formulation of the problem has the advantage ofdium 1,V, is the volume of the objecE,, the surface of its
clearly presenting the diffusivity variation and the conductiv-boundary, andi its diameter. The preceding conditions give
ity variation as the origin of scattering. Moreover, the two a rough estimate of the range of validity of the first Born
contributions are separated: the diffusivity variation yields agpproximation for thermal-wave scattering and in particular

volume effect and the conductivity variation yields a surfacethe influence of each physical parameter on this approxima-
effect. The existence of two such contributions to the scattion.

tered field has been discussed in the case of DPBW.

4|K1 K2|| 1|

3 r, [|In d/6,)|+exp(—d/5;)]<1, (43

B. Born approximation V. NUMERICAL SIMULATION

Although numerical procedures can be used to solve thé - Definition of the complex contrast

scattering problem exactlee Sec. Y, explicit approximate In a typical photothermal imaging experiment, the
solutions are also useful to get insight into the physics of anodulated temperature field at the surface of the sample is
given system and/or to get a fast evaluation of the temperascanned at different times using radiometric, optical or other
ture field. Such a solution can be obtained by performing theneasurement method$?! Frequency filtering allows us to
first Born approximation in Eq(37). This approximation compute the phase and amplitude of the signal at each point.
also leads to a natural solution to the inverse problem, byrhe absolute value of the temperature does not matter in
deconvolution procedures. detecting objects, but rather the departure of the temperature

The first Born approximation amounts to approximatefrom the unperturbed reference field. Therefore, the quantity
the field inside the scattering object by the reference fieldf interest at the interface=0 is the complex temperature
T In the case of the volume integral in E(7), one  contrast
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T(r)—Tredr 0.3 ' ' ' '
= T~ Trer) (44) analytical solution

Tredr) 0.2 » surface integral 5,/3
When the scattered field is a small correction to the reference :’_::::g: ::::9:3: gﬂg
field, we may use the approximation I

T(r) )
Tref(r) .

Equation(45) shows that the real part of the contrast repre-
sents the logarithm of the amplitude of the temperature field,
whereas the imaginary part represents its phase difference -0.2 . . . .
with the reference field. 0.1 : : : :

C(r)

Im(C)

C(r):ln( (45)

B. Numerical tests

We present in this section numerical results, based on
the resolution of Egs(24) and (25 by a moment method,
without approximation. We will also compare the results
with those obtained within the first Born approximation,
namely, by a direct calculation of the integrals in E88).
Note that apart from the expression of the reference field—
see Eg.(A3)—thermal conductivities appear only through
the ratio x,/k4 in all the equations of the problem. Since
T,ef(z=0) is a scaling parameter for all the temperature
fields, the conductivity ratioc,/«; is the relevant physical ri. 3. complex contrast along a line of constamoing through the center
parameter to determine the contrast. In the following, all ob-of an elongated rectangular objegsee inset We compare the surface in-

jects are centered at=0. tegral calculation with the analytical solution for an infinitely wide object.

. . . The numerical solution is shown for several mesh-siz&%/6;
In order to validate our numerical results, we compare in_ 1/3:1/10: 1/45. Parameters of the calculation= 20 mm, L ,—0.5 mm,

Fig. 3 the numerical calculation for a rectangular object such 1 5 mm, 5,=0.98 mm, 5,=1.13 mm, x5 / ;= 3.

that its widthL, is much larger thars; with the analytical

solution for a layered mediurfi.e., an object withL,— oo,

see Appendix D The object in the numerical simulation is a

rectangle centered at depth=1.5 mm with dimension&,  clearly in a worse agreement with the converged result. We
=20mm, L,=0.5mm, and a diffusivityD,=40mnfs *.  conclude that this factor significantly improves the accuracy
The modulation frequency i$=w/2m=10Hz. The sub- of the Born approximation when this approximation is valid.
strate has a diffusivityp,; =30 mn?s 1. We see that the nu- In Fig. 4b), the diameter is doubled.&0.2 mm) and
merical solution tends towards the analytical result when thehe conductivity ratio is increased te,/«x;=50. In these
mesh size decreases, thus proving the good convergence of

the method. Figure 3 also shows that the numerical result

diverges near the boundaries of the object, where the normal

Re(C)

00 05 10 15 20
Z (mm)

derivative of the temperature has a discontinuity. This diver- (@ (b)
gence appears numerically at a distance of the order of the 44 W [ 'é ' 0.0
mesh size. . . 60 1{-01
We show in Fig. 4 the real and imaginary parts of the & -eo1§o6 ° _x 1f @ {-0.2
complex temperature contrast along the interfaeed for & ' _ L & 103
two different objects. The substrate and the objects have ¢ *%[* « surface intearal 550 | |® + race intearal 550 | 04
diffusivity D;=D,=30mnts ! (conductivity variation 002l Osurface integral 5500 | & 025,1222 !2&3?2. 54500 1 o5
only). The modulation frequency of the laser beamfis + surface integral 5,/3000 + surface integral 5,/3000
=10Hz. The 2D object is a small disk. In Fig(a}, the . 32:2232:_"&’,‘:3,‘;‘1’;8 | | T Bormapproximation |,
diameter isL=0.1mm and the conductivity ratia,/«, = . N\
=2. The calculation is plotted for different mesh sizes. We%c_’— E\o fs e0®® 00
see that convergence is ensured when the mesh size is muc  *®[ © ¢ . %Q?e"’ o1
smaller than the attenuation distance. Another interesting et fet '
point is that the Born approximation coincides with the con-  -oe1 ¢ LR . s 50 . s 3 02
verged calculation, showing that with these parameters, the X (mm) x (mm)

Born approximation gives accurate results. To illustrate the _ o _

relevance of the factow. introduced in E (38) we also FIG. 4. Complex contrast on the surface in the case of a conductivity varia-
B ] . a ’ . tion. The 2D object is a small disk with diameter The numerical solution

show the result of a Born approximation whef€,/Jn’ is is shown for several mesh-siza%.. () k,/k;=2, L=0.1mm. (b) k,/k;

approximated bydT,/dn’. This second Born result is =50, L=0.2mm. Other parameters;=0.3 mm, 5, = 5,=0.98 mm.
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(b) T T T T
0.00 . .
0.01 E
_ =001t
Q
.
o 002t 0.00
. . = surface integral 3, —
Y = surface integral 5/50] | o syrface integral 5,/10 J —0.01 [$)
o surface integral 8,/500 ____ Born approximation = =0.01} 1
002 — Bomna imation ] £
pproximation £
] 0.00
__ oot} 002
2} N .02 | J
E 0.01
0.00 } 002
-0.03 } ZCI81=0 g
-0.01 . -0.03
1 2 3 ! L Il L
X {mm) X (mm) -0.01 000 001 002 003 004

Re(C)

FIG. 5. Complex contrast on the surface in the case of a diffusivity varia-
tion: §;,=0.98 mm, 5,=0.40 mm. The 2D object is a square box with size
L. The numerical solution is shown for several mesh-siAg&s (a) L
=0.1mm,z,=0.3mm.(b) L=1 mm, z.=2 mm.

FIG. 6. Polar representation of the complex contrast as a function of the
depth of the object in the monodimensional calsg/5,=0.089, 5 /x4
=0.3, 6;=3.1mm, §,=1.13 mm,f=1 Hz. Symbols &) are separated by

a 0.5 increment of./6; .

conditions, the Born approximation loses its accuracy, as
predicted by the increase of the facit from 0.4 (a) to 2.6

(b).

k,/k1=0.3 in a substrate with diffusivitpp; =30 mnfs L.

The same calculation is presented in Fig. 5, for two ob-The behavior of the contrast in this case can help to under-
jects with no conductivity variations,/x;=1), diffusivity ~ Stand why the better way to image an object can be to mea-
D,=5mnfs ! in a substrate with diffusivity D,  Sure either the amplitude or the phase of the temperature
=30 mn?s L. We see that convergence is ensured when théuctuation at the surface. Indeedepending on z the
mesh size is much smaller than the attenuation distance f#ominant part ofC is real(see, for examplez;/6,=0.4) or
both media(with the above parameter$;=0.98 mm and imaginary ¢./6;=1).
8,=0.40mm). In Fig. %a), the object is a square of size  ConsideringC as a function of the frequendy we see
L,=L,=0.1mm(see the inset in Fig.)5The Born approxi- thatz. may be obtained fronC by the slope of the curves
mation yields a good result in this case. In Figh)5 the 1 7
object size is increased to 1 mm. The Born approximation is  In|C(f )|— Eln f= —2§°+Cte, 47
not accurate in that case, as predicted by the increase of the !
factor B, from 0.2 (a) to 4 (b).

We have proven the convergence and validity of our
numerical method through comparison with an analytical re- ) . ) .
sult. We have used it as a reference method to check thgor an object of arbitrary shape, using &4j7) or Eq.(48) in
validity of the Born approximation in several cases, thusorder to determinate its de.pth Ieads to reasonaply accurate
validating simple coefficients that allow us to infer whether"eSults that may be useful in practice. We show in Fig. 7 a
the Born approximation should be valid in a particular casenumerical example of depth determination for a mineral in-
In the Born approximation, we have proven that the normaflusion in a steel plate. The modulation _frequency varies
derivative of the field is better approximated when using dom f=0.1tof=1.5Hz. We plot the logarithm dfC| and
corrective factor that takes into account the discontinuity ofth® phase o€ vs 13, =Im(k,), the latter being proportional
the thermal conductivity at the boundary of the object. to \/f. From the slope of the curves, the estimated depth is
28=2.52mm with the amplitude anzf=2.93 mm with the
phase, whereas the exact valugds- 3.0 mm. Note that the
size of the object does not strictly satisfy the condition of
In the case of a layered medium, the complex contrast oRajidity of Eq. (46) since|k,L,| varies between 0.5 and 2 in

z. 3w
—+— (48

Im{In[C(f)]}=2 5+ 7.

C. Determination of the object depth

the interfacez=0 has the forn(see Appendix D this range of frequency_
. 1 .
C(f )=|k2LZ(F—r)exp(2|klzC), 48\ CONCLUSION
wherer =(«,/x,)yD,/D4. L, andz, are the width and the We have presented a method to solve exactly the heat
depth of the layer, respectively. This expression is obtainediffusion equation in the frequency domain within a homo-
in the limit of small width|k,L,|<[2r/(1+T)?]. geneous substrate containing an arbitrary object. We have

Figure 6 shows the complex contrast as a function of thelerived an extinction theorem for thermal waves which is
depthz. of the object. The object is a layer of thickndss  analogous to that used in electromagnetic scattering. This
=0.1 mm with diffusivityD,=4 mn?s !, conductivity ratio  formulation leads to surface-integral equations which are
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3.0 T T T T -3.0 We now make use of the plane-wave representatio pf
(or Weyl expansioff)
© [ .
<= Gi(r,r')==—= | exdiK-(R—R’
NN - ° (1) =52 | ik (R-R")]
o {402 expliy|z—2z'|) +expiy|z+ 2’
5 o2 5 L EXRiylz—2']) +expliy] I)de,
- & - Y
° & o
8 M i (A2)
§ 69,},/0/ 2 whereR=(x,y), y=(ki—K*™ with Re()>0 and Im¢)
éo‘ig:’ 7 -5-03 >0. Introducing Eq(A2) into Eq.(Al) leads to
rd
il . ia,P(w) (=
ref(r)_m . [expiy|z—2'])
. . . . 5.0 +expliy|z+2Z'|)]exp(—2'/1,)dZ . (A3)
%0 0.20 030  0.40 0.50 0.60

Equation(A3) is an exact expression of the reference tem-
perature field when the interface=0 is illuminated by a
FIG. 7. Example of inversion of the complex contrast for the depth of theplane wave.
heterogeneity. The frequendyvaries from 0.1 to 1.5 Hz. The estimated When the absorption in the substrate is high-¢0), we
depth is 2.52 mm with the amplitudel) and 2.93 mm with the phas€)  can see that the laser beam is absorbed within an infinitely
o m:?h:’l, %(?So.g ?r']l;;f_s,'f’ icjzozglr& 1gt2e;hep§£?er2teit:i::3ea_ thin layer atz=0. In this case, one can derive a simplified
angular box with dimensiong:,=1.0 mm, L,=0.5 mm. expression foff . The integral in Eq(A3) can be split into
two contributions: that of 0, z], and that of{ z,2]. In the
limit 1,—0, one can easily show that the first integral equals
well suited for an efficient numerical solution. Although we 21, exp(k;2), whereas the second integral tends to zero. Fi-
have presented only 2D numerical results, the implementaRally, we end up with the expression ff in the surface-
tion of our numerical procedure in 3D is easily feasible.absorption model
Also, whereas we have only presented results for a single ia,P(w)
object, generalization to multiple domains is straightforward.  T,.(r)= ek
Second, we have derived a mixed surface and volume K1¥a
integral formulation and have applied the Born approxima-This expression oT  is valid whenz>1, .
tion. We have shown that a corrective factor arising from the
discontinuity of the thermal conductivity at the boundary OfAPPENDIX B
the defect must be taken into account to approximate the
normal derivative of the field. Exact solutions of the direct In this Appendix, we derive the correct form of the Born
problem allow us to check and validate approximations thaapproximation in the surface-integral term appearing in Eq.
are often used to solve the inverse problem. Especially, th€38). Taking the gradient of Eq37) leads to
Born approximation is valid for small defects and small
variations of the thermal conductivity and diffusivity. We VT(r)=VTref(r)+(k§—k§)f V,Gy(r,r)To(r")d3r’
have expressed simplistic analytical criteria of validity that V2
correctly predict the influence of each physical parameter on
the accuracy of the Born approximation. +
Third, the analytical solution for the temperature contrast
at the surface of a multilayered medium suggests a way t@ecause of the nonintegrable singularity\afG,(r,r’) atr
estimate the depth of an object with multiple frequency mea=r" in the surface integral, we cannot simply state that the
surements. We have performed computations showing thaeroth order approximation foVT is VT,y. Instead, we
such a method gives a precision that can reach a few percemieed to extract this singularity in a similar fashion as in
deriving Egs.(24) and(25). Because this is a slightly differ-
ent situation from that in Ref. 19, we detail this derivation
hereafter. We consider a poinon %, and a half spher¥/,
In this Appendix, we give the explicit expressions of the (half disk in 2D insideV, centered om with infinitely small
reference fieldT ¢ appearing in Eqs(2) and (14). We as- radiuse. 3. is the boundary oW, (see Fig. 8 The surface
sume that the heating laser beam is a plane wave, incident antegral in Eq.(B1) is split into the contribution of,/3,

1/8, (mm)

exp(ik,2). (A4)

aTy(r")
an’

d’r’. (B1)

K2
1-— f V,Gy(r,r')
35

K1

APPENDIX A

the surfacez=0 at normal incidencésee Fig. 1 and that ofX .. The singularity is evaluated by taking the
Introducing Eq.(19) into Eq.(14), we obtain limit at vanishinge of
a,P(o)
Tref(r)=TJ Gy(r,rexp(—z'/1,)d3’. (A1) IE=J N-V,Gy(r,r')n"-VTy(r")d?r’. (B2)
vl Vi 3.
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FIG. 8. Geometry for the extraction of the singularityNpG,(r,r’).

SinceT, is analytical insideV,, we may introduce the fol-
lowing Taylor expansion into EqB2):

VT,(r")=VTy(r)+|r—r'|F(r,r'),

where|F| is finite. Using the asymptotic term

(B3)

r'—r
2(p—L)a |r'—r|™
where»=2 in 2D andz=3 in 3D, we obtain

ViGy(r,r')~ (B4)

1
lim IEZVTz(r)~Zn. (B5)

e—0
Finally, the zeroth order solution of EB1) is

T, IT et
on > (2p—1)k;+ Ky dn

(1 2nKq

(r). (B6)

APPENDIX C

We give in this Appendix the detailed derivation of con-
ditions (40)—(43) for the validity of the first Born approxi-
mation.

A sufficient condition for Eq(39) to be satisfied is that
forr in V,

‘(kg—ki)f G(r,r ) Tre(r A3 |[<T 1), (C1
Vo

K2 , ﬁTref(r,) ,
‘(1—K—l) LzGl(r'r )Ter <T,(r). (C2

From Egs.(9) and(10), we can estimate the modulus of the
Green function. For a 3D geometry, we obtali@,(r,r’)|
<(2md)~ !, whered is a typical distance between two

Thibaud, Carminati, and Greffet

T](Z):A] qulkJZ)'f‘BJ eXF(_lkJZ) (Dl)

with ks=k;. The boundary conditions of the problem are

9T )=y ¥l ) (D2)
K17qz WK Ty; '

[ dTs

im0 "

and the continuity of the temperature field and of the normal
flux at z=z.+L,/2, that yield four additional relations. By
substituting the expressiofD1) into the boundary condi-
tions, six linear relations between the unknows A,, A,

B, B,, B3 are obtained. After some algebra, one gets

C(0)= 2Rc%(b?—1) 04
1-b?R2-Rc3(b%-1)’
where b=exp(k,L,), c=exp(k{z.—LJ/2]), and R=(1

—r)/(1+r) with r=(x,/x,)yD,/D;. Expression(46) is
obtained by approximating the denominator of H94) by
(1—R?) under the conditiofb?—1|<1—R?2.
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Quantitative measurements of diffuse media, in spectroscopic or imaging mode, rely on the generation of
appropriate forward solutions, independently of the inversion scheme employed. For complex boundaries, the
use of numerical methods is generally preferred due to implementation simplicity, but usually results in great
computational needs, especially in three dimensions. Analytical expressions are available, but are limited to
simple geometries such as a diffusive slab, a sphere or a cylinder. An analytical approximation, the Kirchhoff
approximation, also called the tangent-plane method is presented for the case of diffuse light. Using this
approximation, analytical solutions of the diffusion equation for arbitrary boundaries and volumes can be
derived. Also, computation time is minimized since no matrix inversion is involved. The accuracy of this
approximation is evaluated on comparison with results from a rigorous numerical technique calculated for an
arbitrary geometry. Performance of the approximation as a function of the optical properties and the size of the
medium is examined and it is demonstrated that the computation time of the direct scattering model is reduced
at least by two orders of magnitude.

DOI: 10.1103/PhysRevE.64.051917 PACS nuner87.10+e, 42.25.Fx, 42.30.Wb, 42.62.Be

[. INTRODUCTION computationally costly. A fast method that can be applied to
arbitrary geometries is needed for real time diagnostics. A
The study of light transport through highly scattering me-good candidate is the Kirchhoff approximatiokA), also
dia, such as tissue, has been the focus of recent researchlled the tangent-plane methf®2b,26]. This approximation
geared towards medical diagnostics-9]. This has been is a linear method that does not involve matrix inversion
motivated by the fact that light offers unique contrast mechawhile solving the forward problem. The KA can be used to
nisms while probing structural and functional tissue characgenerate the sensitivity functioiter weights of the system,
teristics. Furthermore, the associated technology employso that inversion schemes such as algebraic reconstruction
nonionizing radiation and is generally low cost. Imagingtechniques(ART) [11], amongst others, may be applied.
through tissues using light in the near infraf@R) spectral ~ Also, since it generates the complete Green function for any
region offers penetration capability of several centimetershree-dimensional3D) geometry, it is possible to apply it to
due to the low absorption by tissue in the 700—850 nm spedmprove the already existing reconstruction methods that use
tral region. Lately, rigorous mathematical modeling of light the Born or Rytov approximatior{$—9,11—15.
propagation in tissuésee Ref[10] for a review, combined The KA is a well-known approximation in physical optics
with technological advancements in photon sources and dehat has been under study for over 30 years, and, in particu-
tection techniques, has made possible the application of tdar, extensively employed in studies of scattering from rough
mographic principleg11] for NIR three-dimensional imag- surfaces(see Ref.[26] and references therginin these
ing of the internal optical contrast of tissue, using acases, the validity of the KA has been usually studied versus
technique generally termed diffuse optical tomographythe angle of incidence. We here study the performance of the
(DOT) [5-22. KA for a point source in an arbitrary diffusive medium in
At the moment, powerful numerical methods are availableorder to demonstrate the potential of the KA in diffuse opti-
for accurately solving the direct scattering problemcal tomography. We would like to state that a more rigorous
[17,18,23 for arbitrary geometries, but these methods arestudy of the limits of validity of the KA would imply calcu-
lating the error for each frequency component of the incident
wave, but this is out of the scope of the present paper.
*Email address: jripoll@iesl.forth.gr In this work, we present the theory of the Kirchhoff ap-
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plicity. If the incident light impinging on the medium is
modulated at a frequency, the average intensityJ(r,t)
=U(r)exd —iwt] detected ar represents a diffuse photon
density wavgDPDW) [1] and obeys the Helmholtz equation
with a wave numbek=(— u,/D+iwv/cD)'? wherec is

the speed of light in vacuum, andis the refractive index of
the medium. In an infinite homogeneous medium, the Green
function g satisfies

V2g(klrs—ra)) + K2g(k[rs—ro)) = —4ma(rs—ry), (1)

whererg and ry represent the source and detector points,
respectively. In 3D it is well known to be

exdik|rs—rql]
|rs_rd|

g(K|rs_rd|): 2

In terms of thecompleteGreen functionG(rg,rq) that cor-
responds to the full geometry in Fig. 1 with boundaries, the
expression of the average intensity at a paintnside the
medium is

FIG. 1. Scattering geometry.

S(r')
D

proximation in the diffusion equation context, and study its U(rg) = Ef G(r',rgdr’, rgqeV, (3)
limits of validity. In Sec. Il we present the exact expression v

for the Green function for arbitrary diffusive volumes. In

Sec. IIl we introduce the KA specifics and derive the expresWhereS(r’) represents the source distribution avids the

sion for the approximate Green function for an arbitrary ge-volume occupied by the diffusive medium. Of course, for a
ometry from the exact expression. The limits of validity of source in infinite spac(rs,rq)=g(«|rs—rql).

the KA are studied in Sec. IV as a function of tiredium’s The complete Green function inside the diffusive medium
size and optical properties. We demonstrate that these limit@an be expressed in terms of its surface integral by means of
are independent of the geometry and depend mainly on thgreen’s Theorenisee Refs[23, 27 for a detailed deriva-
size of the system in diffusion length units. KA is applied to tion) as

an arbitrary geometry, and compared with results obtained

when employing an accurate numerical method and the infi- ) ag(klr' —rg))

nite homogeneous Green function. We investigate the accu-C(F's:"a) =9(x|rs—Ta)) = — L[G(rs,r ey

racy of the KA and compare the computational times of both

methods, demonstrating that the KA is more than two orders aG(rg,r’)

of magnitude faster than accurate numerical methods and, _g(K|r’_rd|)T ds’, 4

therefore, could be a very useful tool for DOT. Finally, we

conclude in Sec. V. wheren’ is the surface unit outward normal pointing into the

nondiffusive mediunsee Fig. 1, andd/on’=n’-V,,. The
Il. THEORY: EXACT EXPRESSION FOR THE GREEN boundary condition between the diffusive and nondiffusive
FUNCTION medium in the diffusion approximation is obtained by as-
) . _ . suming that all the flux traversing the interface is outwards

Let us consider the geometry shown in Fig. 1, consistingn«, the nondiffusive mediuntsee Ref[28] for a detailed
of a diffusive volumeV bounded by surfac& which sepa-  gerivation. This is always true as long as no sources are
rates it from an outer nondiffusive medium of refractive in- |5cated outside the diffusive medium. In terms of the Green

dex voy. This diffusive medium is characterized by its ab- ,nction this boundary condition is expressed 2830
sorption coefficientu,, the diffusion coefficienD =3 (.

+au,) (Whereu! is the reduced scattering coefficigrand IG(ror’)
the refractive indew;, . In the expression fob, the factora G(rg,r')|s=—CpD ﬁ—s, , r'es, (5)
does not have a closed-form expression and has values that n s

range froma=0 to =1 depending on the approximation

used(see Ref[24] and references therein for more insight on where the coefficienC, takes into account the refractive
the subjedt Even so, since we have not found significantindex mismatch between both medi28]. In the case of
differences in the results presented here when introducing thedex matched media, i.eyo,= vin, Chg=2. Introducing
dependence dD on absorption, we shall use=0 for sim-  Eq. (5) into Eq. (4), we obtain
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ag(klr'—rq)

1
G(rsyrd):g(’(|rs_rd|)+Efs[cndD an

dG(rg,r’
¥d8’.
an

+9(K|f'—rd|)} (6)

A rigorous solution toG(rg,ry) in Eqg. (6) is found by
determining the boundary valugs/dn’ by discretizing the , _
surfaceSinto a number of surface elements and inverting the_ F'C- 2. (8 Detail of the local tangent plane used in the KA)
resulting matrix(see Ref[23] and references thergirSimi- Representation in the coordinates of the tangent plane.
larly to Ref.[23], Eq. (6) makes an indirect use of the ex-
tinction theorem in order to solve the system; hereon we wil
refer to this method as thextinction theorem{ET) method. KA _ _

The ET method gives a rigorous numerical solution to the G*(rs.1p) =g(k|rs=rp ) *[1+Ryp(rp)], (7)
forward problem, but is time consuming since it involves,yherex denotes convolution, arfdyg, is the reflection coef-
matrix inversion, and, therefore, is also limited to surfacescient for diffusive waves in real space, which in Fourier

that can be segmented to a moderate number of discretisatigpace has the expression for each plane wave compongnt of
points. For example, solving for more than 5000 surface[31]

points is generally excessive while considering the inverse

Ipoint. In terms of the Green function this is expressed as

problem, requiring _about 1 h for one fprward calculation on iC.D [2—K2+1
a Pentium Il running at 650 MHz with 256 Mb memory. Runp(K) = - . (8)
Even so, it must be understood that the computation times iIChaD VK +K =1

considered in this paper correspond to E§), which has
only one unknown variable. In the case of a diffusive volume
within a diffusive medium, the existence of two unknown 9GKA(re.r)  ag(klre—r)
variables(the average intensity and its derivativiacreases A L S P
the number of unknown variables by a factor of two. Hence, INp Ny
assuming that in order for the ET to give accurate results, theh

minimum distance between two discretization points must pdhe minus sign takes Into gonS|derat|on the different propa-
gation directions of the incident and reflected wave with re-

in the order of the transport mean free phfk 1/n, , the ET . )
method would become inappropriate to solve the invers<§pect to th? local .plane. Equatioi and (9) are directly
expressed in Fourier space as

problem for diffusive/nondiffusive surface areas in the order
of 50 cn, or 25 cnf in the case of diffusive/diffusive pro- - - -
files. This fact limits the applicability of exact methods in GKA(rS,rp)zf [1+Ryp(K)JO(K,2)exd iK - R]dK,
large geometries, such as the adult head. Anyhow, the use of -

exact methods such as the ET is fundamental in order to

In a similar manner, the gradient of the Green function is

*[1-Rnp(rp)l, (9

+

validate approximate methogsee Sec. 5 of Ref23], where  9G"A(r4 1)) +o0 7(K,Z) -

a brief discussion of the need for exact methods in opticalfzf [1-Rnp(K)] ———exdiK-R]dK.
tomography is presentgdConversely, the computing time 9Ny o 9z

required is practically independent of the number of detector (10)

points since Eq(6) provides for a direct solution of detector
readings along the boundary simultaneously. This is gener

I‘I order to numerically perform the Fourier transforms in Eq.
for all surface-value dependent methods. ?

0), a typical number of values fd is 512 for each di-
mension, with|dK|~0.123 cm?, which corresponds to a
spatial discretization value ¢éiR|=0.1 cm. The need for a

IIl. THE KIRCHHOFF APPROXIMATION low number ofK values is due to the fact thBtPDW's are

When many forward solution calculations are required,Nighly damped and do not contain high spatial frequencies.
such as in most tomographic schentescept those reported 256 values foK were also tested, f.|nd|n_g differences smaller
in Ref. [16]), an approximation to Eq(6) that can handle than 1%. In all cases presented in this work 3 &alues
arbitrary 3D geometries in a linear fashion is needed, towere employed. In Eq(10) (R,Z) are the coordinates of
reduce computing time and memory requirements. One sudfis—I'p| With respect to the plane defined hyr,) as shown
approximation is the KA, also known as the physical-opticsin Fig. 2, namely,
or the tangent-plane meth¢#é5], which is well known and

used in both optics and acoustics. This approximation as- f=(rs—rp)-[—ﬁ(rp)],
sumes that the surface is replaced at each point by its tangent o (11
plane. This means that the value of the total intenkitpat =Z—(rs—rp).

any pointr, of the surfaceS is given by the sum of the
incident field U™ and the wave reflected from tHecal In Eq. (10) the Fourier transforr(K,z) of the 3D homoge-
plane defined by the surface normalr,) at that surface neous Green functiog(K|rs—rp|) is given by[20,21,31,32
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Ak Z)_l_ exdiVik?—K?|Z|]
S N el Line|Source R
AK.2Z) 1 k), —>

7 ;exp{i (12

Therefore, if we discretise the surfaBén Eq. (6) into N area
elementsAS, we can write the complete Green function
given by Eq.(6) inside the volumeV/ in terms of the KA as

N

AS ag(k|rp—r4|) .
KA _ _ -~ P —t
G A(rs,rg)=9(k|rs rd|)+477p2l [CndD an, h /ﬁ N
é’GKA(rSvrp) M _— —
Fg(lrp=rg) | = (13
p

e

Equation(13) is an explicit expression of the Green func-
tion where the computation time will increase only linearly
with the system size. Also, one of the main advantages of
Eqg. (13) is that the values 0bG"*/dn, given by Eq.(10)
need only to be calculated once for all possible source-plane

distanceZ andR values present in the geometry, recalling
or interpolating its value each time the source and plane po-
sitionsrg andr, hold Eq.(11). This considerably increases
the computation speed by reducing the number of Fourier
transforms, especially in the cases in which many different FIG. 3. Geometry used for the study of the limits of validity of
source positions need to be generated, such as in DOT. Whke KA.

would like to state that an analogous expression to([E8).

can be easily _found fo_r diffusive/diff_usive interface_s py function in 2D, 9(K|Fs—fd|):WiHél)(K|fs—fd|), where
means of the diffusive/diffusive reflection and transmission,
coefficients[33].

H(Y is the zero-order Hankel function of the first kind.

In all cases, the KA results will be generated for a cylin-
der of heighth=10 cm and no lids, consisting &§=9191

IV. NUMERICAL RESULTS surface discretisation points. The valuehofias such that no

In order to study the limits of validity of the KA, we Variation in the results was found by increasing its value. The
compare the performance of the exact solution, based on EfgSults generated with the ET in 2D consistedNof 360
(6), with the approximate solution, based on Et@), using  POINts. In these cases, a lookup table consisting of 257 values
the geometry shown in Fig. 3. The cylinder has a radtus for R and a maximum value faZ of R was generated, with
lengthh, and is illuminated by an infinite longitudinal light a distance of 0.1 cm between values. We performed the study
source running parallel to the cylinder ®(=R—1, #=0), in the continuous illumination mod&€W), since in this mo-
wherel,=1/u. is the transport mean free path. The refrac-dality light suffers less attenuation. For higher attenuation
tive indices inside and outside the diffusive volume are thavalues the multiple reflections between the surface boundary
of water, i.e.,v;,= 1.333, and of airp, = 1, respectively. An decays, and, therefore, the limits of validity here found will
angular scan is performed @&4=R—1,,, z=0). In order to apply to all frequency modulation values. A similar study

quantify the accuracy of the approximation, we shall defingvas performed for different modulation frequencies, finding
the error in percentage as the error in amplitude in the order or smaller than in its

corresponding CW case, and a difference in phase in the
B KA T order of 1 to 5 degrees.
(Error)=100X L |1-U™(Ry,0)/U='(Ry,0)[d0, In Fig. 4 we show the error committed by the KA for
" (14) different values ofR, absorption, and scattering coefficients
as compared to the ET solution. The results shown here are
where UET is the exact solution obtained from the EZ3]  representative of biologically relevant optical properties. On
using 2D Green functiongcorresponding to an infinitely the whole, the approximation works wel<5% errop for
long cylinde, andU*” is the solution obtained from the KA R>3Ly, whereLy= D/ pu, is the diffusion length in CW
using a 3D geometrycorresponding to a cylinder of length (@w=0). That is, to maintain an error below 5% f&
h). In order to solve for the ET by means of E@) for a  =1.5cm,Lq should be larger than 0.5 cm fpr, =5 cm *,
cylinder and a line source, we used the corresponding Greemhich gives u.>0.13cm! (see Fig. 4 When diffusive/
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20 T 20 T T T T
15 {15} 1
3 (b)
& — u’=5cm” FIG. 4. (a) Error in percentage committed for
g 10 1er —ep =10cm’ 1 different values ofu, and cylinder radiR. In all
i o—op’=20cm casesu.,=10 cm L. (b) Same aga) but for dif-
5 1 sl | ferent values ofug for R=1 cm.

0 1 I 3 hd b 0 ' 1 !
0.02 0.06 0.1 B 0.14 0.18 0.02 0.06 0.1 » 014 0.18
u, (em) u, (em™)

diffusive interfaces are considered the approximation workénclude a geometry-dependent constant that will assign a
much better, and is valid for>3L4 because lower reflec- zero value to those surface points not visible from the source
tivity is attained in this casésimilar results where obtained position. Such a geometry factor was included and the results
in Ref. [31]). presented in Fig. 5 repeated, finding no important improve-
In order to establish the effect of the surface topographyment. Another way of improving the KA is to include second
we have studied the same configuration as in Fig. 4, but havgrder reflections, but this would render the method time con-
added a sine profile of amplitude 0.5 cm and perigd to  suming and thus would loose its potential as a fast analytical
the surface. In this case, a lookup table consisting of 25¢50|.
values forR and 76 values foiZ was generated, with a In Fig. 5 we also see that the approximation yields errors
distance of 0.1 cm between values. The error between the Eif the order of 5-10% close to the boundaries, where the
and the KA, is now depicted in Fig. 5 for two cases of sourceGreen function has low values due to the boundary condi-
position (Fig. 5 top row Rg=2.3cm, bottom rowR; tions that force the average intensity to zero at approximately
=1.5cm. In addition, we have also represented this errorone extrapolated distancg,f from the interfacé28]. When
when, instead of the KA, we simply use the homogeneoushe error obtained from the KA is compared with that ob-
Green function, Eqg(2), to calculate the source radiation us- tained by using a mere homogeneous Green fundtee
ing Eq. (3). Generally, the KA approximation calculates the Fig. 5(b) and Fig. %d)], we see that the KA is more accurate
average intensity with errors that are less than[S&e Fig. by one order of magnitude. Similar figures to those repre-
5(a) and Fig. %c)], except in the shadow regions of the cor- sented in Fig. 5 were generated for a modulation frequency
rugations. Thisshadowing effecappears when certain sur- of =200 MHz. In this case we found that the error distri-
face areas are blocked from the source by the geometry dfution in amplitude was very similar to the cases presented
the interface. Since these shadow areas are not taken into Fig. 5, with slightly smaller values, and thus results are
account in the KA, the KA predicts higher values of the not shown. This is expected due to the lower reflectivity of
intensity. A first approximation to this problem would be to the boundaries. The maximum phase difference found for the

20
18

100
90
80
70
60
50

16
14

FIG. 5. Error committed in percentage when
using the KA[(a) and (c)] and when using the
homogeneous Green functidtb) and (d)] for a
cylinder of R=2.5 cm with a sine profile on the

100 boundary of amplitude 0.5 cm, and periaod4.
90 The following source locations are considered:
20 (Rg=2.3cm, 6=0) [(a and (b)]; (Rg=1.5cm,
70 6=0) [(c) and (d)]. In all casesu.=10 cm'?,
60 ua=0.lcmh
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FIG. 6. Error committed in percentage for the scattered Green 20
function [see Eq.(15)] when using the KA for a cylinder oR
=2.5 cm with a sine profile in the boundary of amplitude 0.5 cm,
and period @/4. Source locations(Rg=1.5cm, 6=0), ui 0 S P SR
=10cm?, p,=0.1cmt. 0 3000 6000 9000 12000 15000 18000
Number of Surface Points

KA Was_2 deg at the shadow regions .and 1 deg near .the FIG. 7. Computation times for one source-detector pair versus
boundaries. When qompared to the infinite Gregn functionne number of surface poink$[see Eq(13)] for the ET represented
we found 60 deg difference at the shadow regions and & minutegsolid line] and for the KA represented in seconds for the
minimum phase difference of 10 deg. cases: cylinder of radiuR=2 cm, with its height increased from

~ Ingeneral terms of the KA, it is expected that lower spa-0_15 cm[open circleg and a cylinder with its radius increased
tial frequencieX (or angles of incidence close to the normal from R=0.5-4 cm and its height ds=2R [full circles]. Results

in the electromagnetic ca$25,26]) will yield more accurate  obtained from a Pentium Il running at 650 MHz with 256 Mb
solutions than high spatial frequenci@s grazing angles of memory.

incidence in the electromagnetic cd®5,26]). This may be

translated to diffusive waves in the following manner. In thePentium 11l running at 650 MHz, with 256 Mb memory.
cases in which the point source is close to the interface, higithese computation times include the generation of the
spatial frequencies play an important role. It is in these casegokup table for R,Z) [see Eq(11)] aforementioned in Sec.

in which the KA is expected to fail for diffusive waves, since || That is, the computation times presented make use of no
then multiple reflections are predominant. On the other hand, priori calculations. In all cases shown here, the lookup

when the source is fgmore than one diffusion lengttirom i -
the interface, due to high damping the high frequencies comt—alble for R®,2) is generated by finding the range of values

ponents of the incident wave do not contribute significantlyl MR}, maxR}] and[min{Z},maxZ}] present in the geom-
to the incident wave at the interface, reducing the multiple8try, and generating all the corresponding values of(E@),
reflections. This effect is shown in Fig. 6, where we repre-With an increase of one transport mean free patf) be-
sent the error when considering the perturbation caused byveen R,Z) values. This discretisation value can be under-

the interface, i.e., the scattered waSeg. [see Eq(13)]: stood since the diffusion equation in itself has no meaning
when considering distances smaller thanOnce the lookup
Ggé(fs,fd)=GKA(fs,fd)—g(K|fs—rd|)- (15)  table for Eq.(10) is built, the different values present in Eq.
(13) are found by interpolation. As mentioned in Sec. lll, in

As seen in Fig. 6, the error obtained from the KA at |Ongorder to numerically perform _the Fc_)_urier transforms _EKLZ
distances from the source where only low valuekofon- ~ values were used for each dimensio®., 512<512), with
tribute to the incident field is very low<5%). On the other ~|dK|~0.123. The computation times are represented in Fig.
hand, values of the scattered wave in the regions where thé Versus the number of discretisation poiht§see Eqs(6)
source is near the interface present larger erf@@4), due and(13)], which in the ET are independent on the d|m_en3|0n
to the higher contribution of large values kit and shape of the geometry. In the case of tHe_KA, since the

We have tested other values of the period and the amplicomputing time is dependent on the numbB;4) values,
tude of the sine profile, reaching the same conclusion: outwe present two cases: a case in which we have a cylinder of
side the shadow regions, and fer>3L, the error is con- radiusR=2 cm, and increase its height from 0—15 ¢open
sistently less than 5%. This also holds true for calculationsircles in Fig. ; and a cylinder that is increased in radRs
performed for a rough surface plane, such as in RR3. from 0.5—4 cm and its height ds=2R (full circles in Fig.

As mentioned before, besides its ability to handle arbi-7). In all the KA cases the discretized areas are kept to be
trary geometries the KA is attractive due to its computationd S=0.1x 0.1 cnf. Due to the fact that both the KA and the
efficiency. In Fig. 7 we present a comparison of the compuET perform equivalently for any number of source-detector
tation times obtained by using the ET and the KA with apairs once the surface values are found, the computation
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times presented in Fig. 7 correspond to the forward problenproximation being very fast compared to the rigorous solu-
for one source-detector pair. When considering the compution, and increasing linearly with the size of the system. The
tational times for the ET in Fig. 7, we see that there is animplications of this approximation are several: In the first
approximately quadratic increase with respechitthote the place, these KA Green functions can be employed in more
difference in scale between the KA and the)EDn the other complex numerical schemes such as the [B3], so as to
hand, when considering the KA, we see that the increase ieduce the number of discretization points needed to solve
approximately linear for both cases, the difference in slopehe forward problem. As an example, the problem of an ob-
due to the dependence on the number%fi) values gen- jeCt embedded in an arbitrary volume would be reduced to an
erated. As a practical example, the number of discretizatio®bject on its own by using the KA Green function. In a
points for a Sphere of radius 2 cm needed in order to mainsimilar manner, it can be used to impl’ove the reconstruction
tain a 1, distance between points is in the order of 5000. IfSchemes based on Rytov or Born approximations, such as
we compare the speed of the KA and the ET in this case walgebraic reconstruction techniqu&RT) and simultaneous
obtain 70 s and 50 min, respectively, yielding the KA asiterative reconstructive techniqu&IRT) [11-15. Second,
approximately 40 times faster. A more realistic surface suci§ince the computation times and the memory requirements
as the adult head, would imply an equivalent radius of aincrease linearly with the size of the system, the KA may be
least 4 cm, and thus~ 20 000. In this case, the KA takes in used to describe light propagation in large volumes such the
the order of 90 s, whereas the ET takes in the order of 45 Rdult head, the calf, etc. It is in these large volumes where
for one only forward solution. In this more realistic case thefigorous numerical methods have problems due to the great

KA is 1800 times faster. amount of memory required for matrix inversion, and the
need of extremely large computational times to solve the
V. CONCLUSIONS inverse problem. We believe that this approximation will aid

to the development of real time diagnostics with diffuse light
We have presented an approximate method that solves tlie the presence of complex boundaries.

3D diffusion equation in geometries of arbitrary shape and
size in a linear fashion. This approximation has been com-
pared to the ET solution of the diffusion equatif23], a
boundary-value dependent numerical method that has been J.R. acknowledges a European TMR grant under Project
extensively used in physical optics due to its high degree oNo. FMRX-CT96-. V.N. acknowledges support in part from
accuracy{25]. We have found that when the average radiusDRG-1638 of the Cancer Research Fund of the Damon
of the geometry considered R>3(D/u,)? the method Runyon—Walter Winchell Foundation and the U.S. Army
performs with an error less than 5%. Therefore, with the KA(CDMRP BC99536R V.N. and M.N-V. also acknowledge a
we can generate general Green functions that take into ad-MR contract from the EU. This work has received partial
count complex geometries, the computation times of this apsupport from the Spanish DGICYT.
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Abstract

We study the propagation of light pulses through scattering media using the
time-dependent radiative transfer equation. A standard discrete-ordinate
method is used to solve this equation in the space-frequency domain. We
present calculations of diffuse transmission through scattering slabs, in the
presence of absorption and anisotropic scattering. We show that the
diffusive regime is attained at long times only for thick slabs. Comparisons
with diffusion theory show that the proper choice of the diffusion constant is

an important issue for time-dependent transport.

Keywords: Light diffusion, radiative transfer equation, scattering media,

biomedical imaging, diffusion coefficient

1. Introduction

Radiative transfer through scattering media has attracted
considerable interest recently, particularly for imaging
applications through turbid media [1]. Several techniques have
been developed in order to determine the location of objects
in strongly scattering biological tissues, using visible or near-
infrared light [2, 3]. Pulse transmission measurements on short
timescales and optical coherence tomography give promising
results [4-7]. In several other areas, diffusion waves—such
as thermal, acoustic or elastic waves—form the basis of
imaging and measurement techniques [8]. With the rapid
development of micro- and nano-technologies, understanding
the propagation of such waves at short (time and length) scales
has become a key issue. Heat conduction at short scales in
solids is also handled on the basis of a Boltzman transport
equation for phonons, which undergo scattering, emission and
absorption [9, 10]. Transport theories in all these topics have
in common the use of a Boltzman-like transport equation for
the wave intensity which describes scattering, absorption and
emission by the medium. This equation is usually referred to
as the radiative transfer equation (RTE), whose formalism was
first developed for astrophysics [11] and neutron transport [12].

Solving the RTE in complex geometries and in the
presence of scattering remains a challenging issue. For time-
dependent light transport, some methods have been developed

1464-4258/02/050103+06$30.00 © 2002 IOP Publishing Ltd Printed in the UK

recently, see e.g. [13—15]. The diffusion approximation [16]
offers a great simplification of the problem and a practical
tool to describe the diffuse part of the radiation intensity.
This approximation is widely used, for example, in optical
imaging for biomedical applications [2, 3]. Yet, the use of the
diffusion approximation to handle short time and length scales
is questionable, and its domain of validity has to be studied
carefully. Moreover, although the diffusion approximation
may be derived starting from different approaches, the proper
definition of the diffusion coefficient is still an open issue.
In particular, its dependence on absorption was questioned
recently [17].

In this work, we study radiative transfer of visible or near-
infrared light through strongly scattering slabs, in the presence
of absorption. We first describe a method to solve the time-
dependent RTE, based on a discrete-ordinate method [11] in
the space-frequency domain. We show that this approach is
well suited to the study of pulse transmission and reflection
through scattering slabs of arbitrary optical thicknesses. Then,
we study the validity of the diffusion approximation for time-
dependent transport. We show that the diffusive regime is
recovered for the long-time behaviour of transmitted pulses
and for thick slabs. We compare the results obtained for
different expressions of the diffusion coefficient. We show
that the use of the proper expression is a crucial issue for time-
dependent transport, especially in the presence of absorption
and anisotropic scattering.
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2. The radiative transfer equation

The basic quantity of radiative transfer theory is the specific
intensity I, (r, u, t), from which the power radiated at point
r, through a surface element dS, of unit normal n, at time ¢,
in the frequency interval [v, v + dv] and in a solid angle d€2
around the direction u writes

dP =1,(r,u,)u -ndSdQdv. (1)

The specific intensity obeys a transport equation, the RTE,
which describes its variations due to absorption, scattering and
emission [11, 18]. In this work, we study the propagation
of visible and near-infrared light in absorbing and scattering
media, such as those encountered, for example, in optical
imaging through biological tissues. At room temperature,
thermal emission is negligible at these wavelengths, so
that only absorption and scattering has to be considered.
Note that the validity of the RTE to study light transport
through scattering slabs was recently studied numerically by
comparison with exact electromagnetic simulations [19]. It
was shown that, except for coherent effects such as back-
scattering enhancement, the RTE gives very accurate results
even for a system whose geometric thickness is of the order of
one wavelength.

2.1. Radiative transfer equation in a slab geometry

The geometry we consider is depicted in figure 1. A slab
of width L containing a scattering and absorbing medium is
illuminated at normal incidence by a plane-wave pulse. The
absorption and diffusion coefficients of the medium are pu,
and pu, respectively. The associated absorption and scattering
mean-free paths are [, = M;I and [, = M;'. The real part
of its effective index, accounting both for a homogeneous
background medium and scattering particles, is denoted by
ny. The half-spaces z < 0 and z > L are filled with
homogeneous and transparent materials of refractive indices
ny and n3, respectively. For this geometry, the RTE gives

L ol (T, u, 1) ol,(t, i, 1)
Bv ot ot

= -1, (7, u,1)

a +1 ! / !
+§/ PO, WL (r, W 1) dp )
—1

where v is the transport velocity, © = cos 6, B = g + s 18
the extinction coefficient, « = p,/f is the albedo and t = Bz
is the optical depth. p'® is the phase function integrated over
the azimuthal angle:

2
POy = o [ ptusuds )
T Jo
where u and u’ are unit vectors corresponding to directions
@, ¢) and (0, ¢'), respectively. A useful parameter is the
averaged scattering angle (or anisotropy factor) g defined
by ¢ = (4m)”" [(u - uw)p(u - u')dQ. Strongly forward-
scattering corresponds to g = 1, and isotropic scattering to
g = 0. In order to solve the RTE in the space-frequency
domain, we introduce the time-domain Fourier transform of

the specific intensity:

I,(t,pu,t) = / ” I, (1, n, o) exp(—iot) do. 4)

—0o0
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Figure 1. The geometry of the system. The scattering slab is
illuminated from the left by a plane-wave pulse, at normal
incidence.

Note that the hypothesis of a quasi-monochromatic pulse
is apparent in equation (4). The subscript v refers to the
central frequency of the pulse, and the variable w describes the
frequency analysis of the temporal pulse shape. We assume
non-dispersive materials within the pulse bandwidth, so that
the optical properties of the medium are evaluated at the central
frequency v. In the following, we omit the subscript v in order
to simplify the notations. Introducing equation (4) into (2)
leads to

e _ (o
MT_ (1 1ﬂv>1(f,u,w)

a +1 ) ) /
+§/ PO, It 1, w)dp. (5)
—1

This equation has the same structure as the static RTE, with a
complex specific intensity and a complex extinction coefficient
a(w) = 1 —iw/(Bv). It can be solved by standard methods
developed for the static RTE for each frequency w. An inverse
Fourier transform allows one to recover afterwards the time-
dependent solution. A similar approach was used in [20] in
the case of a strongly forward-scattering medium, and more
recently in [21] in the case of polarized light transfer through
a scattering slab.

Assuming an illumination by a plane wave (representing,
for example, a collimated laser beam) it is useful to separate the
collimated and the diffuse components of the specific intensity
inside the medium. One writes

I(t, u, w) = I, (T, 0)8(u — 1)

+1 (T, 0)8(u+1)+ Ii(T, 1, w) (6)
where § (x) is the Dirac distribution. For the sake of clarity, the
two components of the collimated beam, propagating towards

z > 0 and z < 0, have been separated. Inserting equation (6)
into (5) leads to

+
dizyy (z, @) = —a(w)I*
Ci

dr 01[(7’ ) @)

for the collimated components and to

(T, 1, .
MMZ— 1% Li(z, 11, @)
at pv

a +1 ! / /
+§/ PO, ) (T, ) ) dp + S(T, ) (8)
-1
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for the diffuse component, where S(z, i, @) is a source term
which describes the transfer of energy from the collimated to
the diffuse component by scattering. Equations (7) and (8)
are the RTE for the collimated and diffuse components of the
specific intensity, respectively.

2.2. The source term and boundary conditions

Taking into account the internal reflections at the boundary of
the slab, the expressions of the collimated components are

I%,(t, ) = Tia (i = DIp(@) expl—a(@)7]T ©)
LT, ) =Tin(u = Dip(w)

xexp[—a(@)2BL — T)|Ry3(n = DI’ (10)
where T' = [1 — Ria (i = 1) Ros (i = 1) exp(—2a(@)BL)] ",
and R;j(u) and T;;(u) are the Fresnel reflection and
transmission factors in energy, at the interface between two
media of refractive indices n; and n ;. Their expression is given
in the appendix. Iy(w) is the time-domain Fourier transform
of the incident pulse, at the boundary z = 0.

The source term in equation (8) is given by

a
S(t, i, ) = §P<O)(M, DI, (T, )

a _
+ §p<°><u, —DI,(t,w). (11)

For the diffuse components of the specific intensity, the
boundary conditions at the slab boundaries are

Li(t =0, 0, 0) = Ryy()la(t =0, —p,w) for p>0
(12)
li(t = BL, n, w) = Ros(lJuDla(z = BL, —u, o)
for p <O. (13)

2.3. Numerical calculation

In order to solve equation (8), we have used a discrete-
ordinate method. The first step in this method is to replace the
integral involving the phase function by a quadrature [11]. The
integro-differential equation (8) is thus replaced by a system
of linear differential equations, one equation for each direction
w; used in the quadrature. To solve this system of differential
equations, we have used the matrix eigenproblem approach
described in [24].
In our case, the entire procedure is as follows:

(i) Calculate the Fourier transform of the incident pulse,
which appears in the source term in equation (8);
(ii) Solve equation (8) for all relevant frequencies, using the
discrete-ordinate method;
(iii) Perform an inverse Fourier transform to recover the time-
domain evolution of the specific intensity at each boundary
of the slab.

2.4. Observable quantities

In an experiment, the observable quantities are the transmitted
and reflected fluxes, either directional or integrated over a half-
space. The transmitted and reflected collimated fluxes are
defined by

Teou(t) = Tos(n = DI, (t = BL, 1) (14)

Reon(t) = Ria( = DIo () + T (e = D1y (t = 0,1) (15)

where /() is the incident pulse shape at the boundary z = 0.
In the following, we will concentrate on the diffuse transmitted
and reflected fluxes. They are defined by

2 1
Ty(1) = %/0 Wl (W)l = BL. i/, ydp  (16)
2

n2 0 ) )
Ry(t) = n—;/ uTn(w'Dla(t =0, ', 1) dpe a7
2 J—1

where ;1 = [1 + (n3/n3)(u* — 1)]"/? in equation (16) and
W = —[1+®3/n3)(w* — 1)]'/? in equation (17).

3. Diffusion approximation

The diffusion approximation is usually obtained from transport
theory in the limit of smooth space and time variations
of the specific intensity, compared to the scattering mean-
free path [; and the microscopic timescale (I;/v) [16].
In this approximation, the energy density U(r,t) =
v [ I(r, u,1)dQ obeys the diffusion equation

oU(r, 1)

P DV2U(r, 1) + v U(r, 1) = q(r, 1)

(18)
where D is the diffusion coefficient and ¢ (r, t) a source term.

In the diffusion approximation, the diffuse transmission
through a scattering slab can be evaluated analytically using the
method of images and extrapolated boundary conditions [22].
For a source term of the form ¢ (r, t) = 8(z)8(¢), one obtains

H(I)D O Tm . awmlL
T(r) = exp(—Hqvt) — Sln(—)
d ; d d

< nzszt>
x exp| ————
pE

where H (t) is the Heavyside step function, d = L +2z¢, z0 =
0.711,, being the extrapolation distance and /,, = I;/(1 — g)
the transport mean-free path. The result in equation (19) is
the transmission Green function (or impulse response) of the
diffusion equation in a slab geometry.

The diffusion approximation is very robust, in the sense
that it can be derived from any transport theory as the limit of
smooth spatial and time variations [12, 16, 18, 23]. However,
all derivations do not necessarily lead to the same expression
for the diffusion coefficient D. In particular, the dependence on
absorption may change from one expression to the other [17].
Using numerical results, we will show in the following that the
correct definition of the diffusion coefficient is a crucial issue
for time-dependent transport.

(19)

4. Numerical calculations of impulse responses

In this section, we present numerical calculations of
diffuse transmission, and compare them to the results of
diffusion theory. In all cases, the calculated quantities
are impulse responses, namely, the incident pulse is a
delta function in time. The validity of diffusion theory
for time-dependent light transport through scattering media
has been studied previously, either by comparison to RTE
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calculations [25] or to experiments [26]. Nevertheless, it seems
that the interplay between space scales and timescales on the
validity of diffusion results is still an open issue. On the one
hand, experiments reported in [27] seem to show that diffusion
theory gives an accurate prediction for the long-time decay of
transmitted pulses for both thin (optical depth < 10) and thick
systems, whereas it fails for the short-time behaviour. On the
other hand, experiments reported in [28] show that diffusion
theory fails for thin systems (optical depth < 8), even for the
long-time behaviour. In this paper we address this issue by
means of numerical examples. We study the short- and long-
time behaviour of transmitted pulses, for both thin and thick
slabs. In particular, we address the issue of the definition of
the diffusion coefficient and its relevance for time-dependent
transport.

4.1. The influence of the diffusion coefficient

We show in figure 2 the normalized diffuse impulse response
for a slab of thickness L = 20 pm, and for a transport mean-
free path /,, = 0.95 um. For such thick slabs, the diffusion
approximation is expected to give correct results, at least for
the long-time behaviour of the transmitted flux. As briefly
discussed in the previous section, several expressions for the
diffusion coefficient have been proposed in the literature.
Its correct dependence on absorption and on the scattering
properties of the medium has been the subject of a controversy
in the domain of optical imaging through turbid media [17],
and the problem does not seem to be completely solved. In
figure 2, we compare the results obtained with three commonly
used expressions of the diffusion coefficient: Dp; = [3(us(1—
g)+a)]7 " is the result of the standard P; approximation to the
RTE [16], Dy, = vl;,/3 is the result obtained from a statistical
approach (and usually in a non-absorbing medium) [23] and
D, is the result obtained from an asymptotic analysis of the
RTE, based on an eigenmode expansion [12, 17]. In this
last approach, each eigenmode has a spatial decay exp(—vz),
where v is the associated eigenvalue. The diffusion coefficient
is defined by D,; = p,v/ vg, where vy is the smallest
eigenvalue.

We see in figure 2(a) that for a weakly absorbing medium
(a = 0.995) and for anisotropic scattering (g = 0.4), the
diffusion approximation correctly describes the transmitted
pulse, no matter which diffusion coefficient is used. The
same result was observed for isotropic scattering. When
absorption increases (see figures 2(b) and (c), for a = 0.85)
some discrepancies appear between the different diffusion
results and the RTE solution. At short time, none of the
diffusion results are able to predict the correct arrival of the
transmitted pulse. This was expected because the diffusion
theory itself fails at short time. Note that diffusion theory
always underestimates the arrival time of the first part of the
pulse. This is a consequence of the instantaneous (and non-
causal) response predicted by diffusion theory, which does not
describe the propagation of energy at finite velocity.

A more surprising result is found for the long-time
behaviour of the pulse. Diffusion theory gives a correct result
only when D, is used. This is particularly true in the presence
of both absorption and anisotropic scattering (figure 2(c)). We
thus conclude that even in a domain where diffusion theory
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Figure 2. Diffuse transmission normalized by its peak value.
Comparison between RTE and diffusion theory. Different
expressions of the diffusion coefficient are used:

Dpy = 1/[3(us(1 = &) + o), Dy = vlyr /3, Doy = Ma”/‘/‘g
(asymptotic theory). L = 20 um, /,, = 0.95 um. (a) a = 0.995,
g=04.(b)a=0.85g¢g=0.(c)a=0.85 g =0.4. Phase
function: Henyey Greenstein. Effective index n, =~ 1.

is expected to give accurate results (long-time transmission
through a thick slab) the proper diffusion coefficient has to
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Figure 3. Diffuse transmission normalized by its peak value. Comparison between RTE and diffusion theory, with the diffusion coefficient
from asymptotic theory. (@) L = 6 um, a = 0.995, g = 0.4. (b) The same as (a) witha = 0.85. (¢) L = 15 um, a = 0.995, g = 0.4.
(d) The same as (c) with a = 0.85. The transport mean-free path is fixed /,, = 0.95 um. Phase function: Henyey Greenstein. Effective

index n, >~ 1.

be used. In view of our numerical results, it seems that D,
provides the more accurate results.

These results clearly put forward the dependence of
the diffusion coefficient on absorption and show that this
dependence is more complicated than that predicted by the
P, approximation. The asymptotic definition of the diffusion
coefficient correctly describes the dependence on absorption,
this dependence being implicit and hidden in the determination
of the eigenvalue vy. In the following, we shall use D, in all
calculations based on diffusion theory.

4.2. Short-time and long-time behaviour

In this section we compare diffusion theory and RTE
calculations, for both thin and thick slabs, and for both weakly
and strongly absorbing media. We plot, in figure 3, the
normalized diffuse impulse response, obtained form the RTE
and from diffusion theory (equation (19)) with the diffusion
coefficient D,;. Figures 3(a) and (b) correspond to a thin
slab (L = 6 pum, [;, = 0.95 um) and figures 3(c) and (d)
to a thick slab (L = 20 um, [, = 0.95 um). Cases 3(a)

and (c) correspond to a weakly absorbing medium (@ = 0.995),
and cases 3(b) and (d) to strong absorption (¢ = 0.85). The
calculations are performed for anisotropic scattering (g = 0.4)
but all the conclusions remain valid for isotropic scattering.
For thin slabs (figures 3(a) and (b)), we clearly see that
diffusion theory fails to describe both the short-time and the
long-time parts of the transmitted pulse. This is to be expected
from the derivation of the diffusion approximation itself (which
clearly assumes large scales for both space and time). This
result is in accordance with the experimental results of [28]
and contradicts the assertion made in [27], which seemed
to show that diffusion theory was able to predict the long-
time behaviour of the transmitted pulses for thin slabs. When
absorption increases (figure 3(b)) the difference between the
RTE result and the diffusion approximation increases at short
time. It is also clear that diffusion theory underestimates the
arrival time of the early part of the pulse, and overestimates the
arrival time of the maximum as well as the long-time decay.
For thick slabs (figures 3(c) and (d)) the situation is
substantially different. Although the same result as for thin
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slabs is observed at short time, the long-time exponential decay
is well predicted by diffusion theory, even in the case of large
absorption (figure 3(d)) and anisotropic scattering. This result
is also in accordance with the experiments reported in [28].
In both cases, diffusion theory is found to be valid for the
prediction of the long-time diffuse transmission for slabs with
optical thicknesses L/[;. > 8.

5. Conclusion

We have presented a simple and efficient procedure to solve
the time-dependent RTE in a slab geometry, based on a time-
domain Fourier transform and a standard discrete-ordinate
method. This procedure is well suited to study the transmission
and reflection of short (picosecond) light pulses through
scattering and absorbing media. The method could be extended
to dispersive media, in order to deal with ultrashort (wide-band)
pulses.

Using the numerical solutions of the RTE as a reference,
we have studied the transition towards the diffusion regime, for
different slab thicknesses, and for different levels of absorption
and anisotropy in the scattering properties. We have shown
that the various expressions of the diffusion coefficient lead
to substantial differences in the results obtained by diffusion
theory in the presence of absorption. The diffusion coefficient
defined from the eigenmode asymptotic approach of neutron
diffusion theory seems to give the most accurate results.

We have also shown that diffusion theory always fails for
short slabs (optical depth < 8), even for the prediction of the
long-time behaviour of transmitted pulses. For thick slabs, the
long-time behaviour is correctly described by diffusion theory,
even in the case of strong absorption and anisotropy, when the
diffusion coefficient defined from the eigenmode asymptotic
approach is used.

Appendix

The expressions of the amplitude Fresnel reflection and
transmission factors at a flat boundary between two media of
refractive indices n; and n; are

n; cosf; —n;coso;

il
7(cos0;) = Al
7ij (cos i) n;cos 6; +n;jcosb; @1
I n;cosb; —n;coso,;
r;j(cos 6;) = (A2)
n;cost; +n;cost;
2n; cos 6;
17 (cos 6,) = N COS T (A3)

n;cosb; +n;cosd;
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2n; cos 6;

t),(cos ;) = (A.4)

n;cosb; +n;cos0;

where L and || stand for the TE and TM polarizations,
respectively. 6; is the incidence angle. Note that Snell’s law
gives cos0; = [1 — (1 — cos”6;)n}/n?]"/?, so that the each
factor is a function of cos6; only. For unpolarized light, the
reflection and transmission factors in energy are

I
|ri; (cos 6;) 7 + |ry; (cos 6;)[

R,‘j (COS 9,) = ) (AS)
cos @, |t (cos6;) 2 + |t (cos ;)2
Tij(cos ;) = 20 2 J (A.6)
n; cos 6; 2
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We revisit the definition of the diffusion coefficient for light transport in scattering
and absorbing media. From an asymptotic analysis of the transport equation, we
present a novel derivation of the diffusion coefficient, which is restricted neither to
low absorption nor to a situation in which the specific intensity is quasi-isotropic.
Our expression agrees with previous in the appropriate limit. Using numerical
simulations, we discuss the implications of the proper choice of the diffusion
coefficient for time-dependent transport. (¢) 2002 Optical Society of America

OCIS codes: 290.1990, 290.7050, 290.4210, 170.5280, 170.3660

1. Introduction

Light transport through scattering media has attracted considerable interest for imaging applica-
tions, especially through biological tissues.!™ The standard transport theory for such a problem
is based on a Boltzman-like transport equation for the specific intensity, usually refered to as the
Radiative Transfer Equation (RTE), whose formalism was first developed for astrophysics® and
neutron transport.® Because solving the RTE in complex geometries remains a challenging issue,
the diffusion approximation” offers a great simplification of the problem and is widely used.!™ In
the presence of both anisotropic scattering and absorption, which is the case for biological tissues,
the definition of the diffusion coefficient is a non-trivial problem. Indeed, depending on the way the
diffusion equation is derived from transport theory, one obtains different expressions for this coef-
ficient. In particular, its dependence on absorption, has been the subject of a controversy.® After
some claims that the diffusion coefficient should be independent on absorption,” !
cal works have given convincing arguments proving that D definitely depends on absorption.
Based on an asymptotic analysis of the time-independent RTE® 3 or on the telegrapher’s equa-
tion,'% one arrives at expressions of the form® 12 1/[3(au, + p4)], or of the form®® 1/[3(u, + But)],
where p1, is the absorption coefficient and p} = (1 — g)us is the reduced scattering coefficient, with
ps the scattering coefficient and g the anisotropy factor (average cosine of the scattering angle).
Although numerical values for & and 3 can be given in some particular cases,® 1213 such expressions
of D are only partially satisfactory because the correction factors @ and  depend strongly on both

recent theoreti-
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ttq and the phase function.

In this paper, we present a novel derivation of the correct expression of the diffusion coefficient
in an medium with absorption and anisotropic scattering. Although we make use of the asymptotic
analysis of the RTE developed in the context of neutron transport theory,® our approach is different
from that in refs.® '3 In these approaches, the diffusion coefficient is defined by comparison of the
spatial decay of the intensity at large scales given by the RTE with that given by diffusion theory. In
our approach, starting from the RTE and the asymptotic analysis, we directly derive the radiative
flux in the form of a Fick law from which the diffusion coefficient is identified. The details of
the derivation are given in section 2, and the resulting expression is discussed qualitatively in
section 3. In section 4, we illustrate the dependence of the diffusion coefficient on absorption (u,)
and scattering anisotropy (g). In section 5, we show by numerical calculations that the correct
definition of the diffusion coefficient is an important issue for time-dependent transport through
scattering and absorbing media. Finally, we summarize our conclusions in section 6.

2. Derivation of the expression of the diffusion coefficient

For simplicity, we consider a slab geometry, with the z-axis taken normal to the slab boundaries.
We assume the slab to be illuminated by a monochromatic plane wave propagating towards z > 0,
at normal incidence. The specific intensity I(z,u) inside the medium obeys the stationary RTE:®

ol (z, s [t
7 % = —(pta + ps) I(z, 1) + % . POy ') 1(z, ') dpt! (1)

where y = cos @ with 8 the angle between the propagation direction and the z-axis, p(®) is the phase
function integrated over the azimutal angle p(©)(u, y') = = 2T p(u-u')de, u and u’ being unit
vectors corresponding to directions (6, ¢) and (#', ¢'), respectively. The RTE results from an energy
balance in a given direction® (specified only by the directional cosine g in our slab geometry).
Energy is taken from this direction due to absorption and scattering (first term in the right-hand
side in Eq. (1)). Energy is also added to this direction due to scattering: Energy propagating in a
direction p’ is scattered into the direction u (second term in the right-hand side in Eq. (1)), the
probability for this mechanism to occur being given by the phase function.

In order to find the diffusion coefficient, we compute the radiative flux accross a plane normal
to the z-axis. By definition, it is given by® ¢, = 27 fjll,ul(z,,u) dp. Starting from Eq. (1), one
can establish another general (and rigorous) expression of the radiative flux (see Appendix A for
details):

-2r 0 [*t1,
()= O I(zp)d 2
q:(2) ua+ugaz/_1“ (2, 1) dp (2)

We now introduce an approximation. When the thickness L of the slab is much larger than the
transport mean-free path /. = 1/u’, the specific intensity inside the medium takes the asymptotic

form:®

I(z, 1) = f g5 (1) exp(—koz) + ¢5 95 (1) exp(koz) (3)

where kg is the smallest eigenvalue and goi (p) the associated eigenfunctions of the eigenvalue prob-
lem obtained when seeking solutions of the RTE of the form I(z, u) = g% () exp(dkz) (see Ref.!
for a practical numerical solution of the eigenvalue problem for arbitrary absorption and phase
function). For the eigenfunctions, the normalization condition f_+11 g5 (1) dp = 1 is used. The con-
stants CS—L depend on the boundary conditions at the slab boundaries, and do not influence the
subsequent derivation. It is known that the (degenerate) mode associated with the smallest eigen-
value kg determines the diffusion behavior.® This is the only mode that survives at large depths.



In the following, we shall refer to it as the fundamental mode. Inserting (3) into (2), one obtains:

2
T

¢-() ko | {go) exp(—koz) — 5 (g0} exp(ko?) | (4)

where (go) is given by
+1

(go)= | 1’95 () du, (5)
the integral taking the same value for g (1) and g5 (). The factor (go) is a measure of the anisotropy
of the fundamental mode gS—L. For an isotropic mode, one has groi (1) = 1/2 for all values of p, which
leads to (go) = 1/3. A deviation from this value is a signature of the anisotropy of the fundamental
mode, which may be due the anisotropy of the phase function (scattering) and/or to absorption.
We shall come back to this point and show some examples in section 3.

In order to transform Eq. (4) into a Fick law from which a diffusion coefficient can be deduced,
we introduce the energy density U(z) defined by U(z) = 27 /v {1 I(z, ) duu where v is the energy
velocity. Inserting the asymptotic expression of I(z, i), Eq. (3), into this relation, one obtains the
following expression for the energy density:

_ 27

Ul(z) — {cg exp(—koz) + cg exp(koz)} (6)

Calculating the first derivative of U(z) from Eq. (6) and comparing the result with the right-hand
side of Eq. (4) leads to the following relation between the energy flux and the gradient of the energy

density:
oU(z
<90> v ( ) (7)
fa +pfy 0z
Equation (7) takes the form of a Fick law, from which the diffusion coefficient can be identified.
At this stage, a remark has to be done concerning the units used to define the diffusion coefficient

for light transport. By writing ¢, = — D" dU/dz, we naturally end up with a diffusion coefficient
having the unit m2.s™!, and given by

:(2) = -

v

D = .
(907 Pa +

(8)

This diffusion coeflicient is consistent with a diffusion equation written in the form 8U/8t—D'V2U+
pavlU = 0, as, for example, in ref.'! Nevertheless, in optics, a diffusion coefficient D in unit of length
(m) is often used, as for example in refs.,®'® and is consistent with a diffusion equation written in

the form (1/v) dU/dt — DV2U + pu,U = 0. In this case, the Fick law writes ¢, = —D v dU/dz, and

our approach leads to a diffusion coefficient given by

_ <!]0>
fa + pf

(9)

The advantage of this second definition of the diffusion coefficient is to remove any dependence of D
on the energy velocity. This is particularly relevant in the case of a stationary situation, for which
the energy velocity disappears from the diffusion equation. In this work, we shall study mainly the
dependence of D on absorption and on the scattering properties of the medium. We will use the
the expression D’ only in section 5, when we study a time-dependent situation.

Equation (9) is the main result of this paper. Provided that the specific intensity can be repre-
sented using only the fundamental mode as in Eq. (3), the derivation of Eq. (9) follows immediately.



The validity of Eq. (3) is the crucial issue in our derivation, and may be considered carefully. It
relies on the fact that the medium is thick enough so that the fundamental mode dominates. This
occurs under two conditions: (i) the second mode with eigenvalue k; (k1 > ko) should be such that
ky L >> 1, with L the size of the medium, and (7i) k1 should not be too close from kg. Whether the
second condition is valid is not obvious. We have verified numerically that the difference between
the values of kg and ky is always large enough for the asymptotic expression to be valid. Some
numerical values of the first eigenvalues kg, k1 and kg for realistic parameters in biomedical optics
are given in Table 1 and illustrate this conclusion. It is also interesting to note that the value of kg
decreases when increasing the anisotropy factor g. For ¢ > 0, forward scattering is stronger than
for g = 0, so that the fundamental mode has a larger decay lenghth 1/kq.

3. Physical analysis of the expression of D

Before elaborating on the significance of Eq. (9), we shall show that it is equivalent to that obtained
by the usual procedure based on the asymptotic approach.®®13 To do so, we first recall that energy
conservation, for a stationary situation, writes:

0q.(2)/0z = —p, vU(2) (10)

This relation can be established by integrating Eq. (1) over u and using the definition of both the
radiative flux ¢, and the energy density U(z) previously given in the text. Inserting Eq. (7) into
(10) leads to:
-1 0*U ()
= —p, U 11
() T = U () 1)

Using (6) to replace both the energy flux and its second derivative, one obtains (go) = pq(fta +
pt)/k2. The introduction of this result into Eq. (9) leads to D = p,/k3, which is the form of D
obtained by Case et al.%13

Equation (9) shows that the diffusion coefficient is determined by the second moment (go)
of the angular distribution of the fundamental mode. The derivation presented here has several
advantages. (1) It is a direct derivation in the sense that the diffusion behavior for the radiative
flux is directly obtained from the asymptotic expression of the specific intensity. We do not have
to use the solution of the diffusion equation to extract D by comparison of the spatial decay of
the intensity as is usually done in the asymptotic approach.5® 13 (2) The expression of D takes a
form similar to that obtained in the Pl-approximation,” with (go) appearing as a correction factor.
The Pl-approximation assumes a quasi-isotropy of the specific intensity inside the medium. For an
isotropic fundamental mode, one has g (1) = 1/2 and thus (go) = 1/3. One recovers in this case
the result of the Pl-approximation. (3) The derivation is not restricted to low absorption media.
(4) Last but not least, the derivation shows that the diffusion regime is valid even for a specific
intensity which is far from the quasi-isotropy assumed in the Pl-approximation.

To clarify the last point, let us discuss the interplay between losses and isotropy. A simple
picture can be obtained using a random walk model. If the absorption length is shorter than the
transport mean-free path, the light cannot reach the quasi-isotropic regime because photons are
absorbed before undergoing a sufficient number of scattering events. In this case, the fundamental
mode is not isotropic. Yet, the flux can still be cast in the form of a Fick law as shown above.
To illustrate this qualitative discussion, the angular behavior of gf (u) has been calculated by
numerically solving the RTE, using the eigenvalue matrix formulation of ref.! It is represented
in Fig. 1(a), for an anisotropically scattering medium (Henyey-Greenstein phase function with
g = 0.5) and for different levels of absorption. We see that for low absorption (dashed curve), the
fundamental mode is quasi-isotropic. A weak anisotropy is necessary to provide a non-vanishing net




flux, which for the mode g is directed from left to right. For increasing absorption, the fundamental
mode becomes more and more anisotropic (solid and dotted curves). The Pl-approximation is no
longer valid but we can still introduce a diffusion coefficient using Eq. (9). This is due to the fact
that only the fundamental mode of the RTE contributes to the specific intensity.

Finally, let us discuss the limit of a non-absorbing medium, with arbitrary scattering properties.
In this case, the result D = 1/(3u}) is known to be the exact one,® 1% 13
defined in Eq. (9) has to give this value. In other words, in the limit of a vanishing absorption,
the factor (go) has to be 1/3, whatever the scattering properties of the medium. We have verified
numerically that this is the case. We show in Fig. 1(b) the variation of (go) versus absorption for
two different media, with either isotropic scattering (¢ = 0) or anisotropic scattering (g = 0.5). We
see that for a vanishing absorption (wg = 1), (go) takes the value 1/3 in both cases. Although only
two curves are represented for the sake of clarity, we have verified that this result holds for any

and the diffusion coefficient

value of g and different phase functions.

4. Dependence of the diffusion coefficient on absorption and on the scattering prop-
erties

In order to illustrate the strong dependence of D on absorption and scattering anisotropy, we plot
in Fig. 2 the behavior of D versus the albedo wg = ps/(ita + pts) for a fixed value of ¢ and the
transport mean-free path /;, = 1/p’, [Figs. 2(a) and 2(b)], and versus ¢ for a fixed value of the
absorption and transport mean-free paths [, = 1/p, and [y [Figs. 2(c) and 2(d)]. The result
obtained with D given by Eq. (9) is denoted by D, (solid line). It is obtained by calculating
numerically the fundamental mode of the RTE, following the eigenvalue matrix formulation of
ref.!* A Henyey-Greenstein phase function is used in the calculation. For comparison, we show the
dependence predicted by other expressions of the diffusion coefficient: Dpy = 1/[3(pta + p})] is the
result of the (widely-used) Pl-approximation” and Ds; = 1/(3u’) is the expression obtained from a
(microscopic) statistical approach in an non-absorbing medium.'® Note that this last expression is
the exact value for a non-absorbing medium. It was put forward by some authors as the exact one
even in the presence of absorption,” ! a result which was shown to be incorrect by recent theoretical
considerations.® 1213 In Fig. 2(a), we also represent the result given by DY) = 1/[3(0.2u4 + 25)], @
first-order approximation of expression (9) valid for isotropic scattering and low absorption.® For
isotropic scattering [Fig. 2(a)], the dependence on absorption predicted by the Pl-approximation
and the asymptotic approach are clearly different. The Pl-approximation strongly overestimates
the dependence on absorption. Note that the approximate expression D,f? is valid for an albedo
wo > 0.8, and gives accurate results in this case. When the scattering anisotropy increases [Fig. 2(b)],
the dependence on absorption becomes more important. For exemple, between wg = 1 and wq = 0.5,
the value of D, decreases by a factor of two. The Pl-approximation predicts a division by three on
the same interval. These results prove the strong dependence of D on absorption, and the failure of
Dpy and Dy to predict the correct dependence. The Pl-approximation always overestimates the
dependence on absorption, while (obviously), the coefficient Dy underestimates it. This behavior
was reported previously for isotropic scattering using a different approach.!® It is also consistent
with the result in ref.® which shows that an approximate expression of the form 1/[3(au, + p4)],
with 0.2 < a < 0.8, could be used. This expression gives a dependence on absorption which is
smaller than that given by the Pl-approximation (which would correspond to @ = 1) and larger
than that predicted by Dy (which would correspond to a = 0).

The influence of the anisotropy factor g, for a fixed value of the absorption and transport
mean-free paths l,ps = 1/, and Iy, = 1/p), is shown in Fig. 2(c). Both Dpy and Dy, which only
depend on p, and p’, are constant in this case. The expression D, predicts a slight dependence



on g, even for a fixed value of /;, = 1/p%. This dependence is given by the factor (go) in Eq. (9).
This is an interesting property of the new approach, although in practice this dependence might
be negligible as seen by the numerical values in Fig. 2(c).

In Fig. 2(d), we show the influence of the anisotropy factor g, for a fixed value of the absorption
and scattering lengths [ 55 = 1/, and [5., = 1/ps. In this case, changing ¢ amounts to change both
lyy = 1/p and the factor (go). With a high level of absorption (wy = 0.85), the three expressions
of D give different results. Compared to the dependence given by D,,, the Pl-approximation
overestimates the dependence on g, leading to an error on the order of 40% for ¢ = 0.8. The
diffusion coefficient Dy, independent on absorption, underestimates the dependence on ¢ in an
absorbing medium, the error being on the order of 25% for g = 0.8. These results demonstrate that
the expressions Dp; and Dy are unable to predict the dependence of the diffusion coefficient on
the scattering properties of the medium in the presence of absorption.

5. Implications for time-dependent transport

We shall now demonstrate the relevance of the definition of the diffusion coefficient for time-
dependent transport. This is an important issue for time-resolved techniques in biomedical imaging
using diffusing light, which seem to give promising results.!™*1671? To do so, we compare calculations
of the diffuse transmission through scattering slabs obtained by solving the RTE (reference solution)
and by solving the diffusion equation. The time dependent RTE for a slab geometry writes:

101(z,m1) . 01(z, p,t)

+1
SO D () 1+ B [ O 1 e (12)

Assuming an illumination of the slab from the left by a plane-wave pulse at normal incidence, we
have solved this equation using a space-frequency domain discrete-ordinate method, which is de-
scribed in ref.20 This provides the reference solution. In order to compute a quantity which can be
directly compared with diffusion theory, we compute the impulse response for diffuse transmission,
by using an incident pulse of the form I;,,.(z,t) = 6(z)d(t) and calculating the total diffuse trans-
mission accross the slab. In the diffusion approximation, this impulse response can be evaluated
analytically using the method of images and extrapolated boundary conditions.?! One obtains:

H(t)D' = mm . wmlL m?m?D't
T(t) = J exp(—pqvt) Z rE sin( 7 ) exp(—T) (13)
m=1

where H (t) is the Heaviside step function, d = L + 2z, L being the width of the slab and z the
extrapolation distance. This distance may be determined from the Milne problem with isotropic
scattering and no absorption,® which leads to the value zg = 0.71/s,.. In the presence of absorption,
this distance may change, especially for slabs with internal reflection at the boundaries.?? Note that
the diffusion coefficient entering Eq. (13) is D’ = Dv, and that the energy velocity also enters the
exponential factor exp(—p,vt). In the present work, we do not address the issue of the expression
of v, which is by itself a whole subject of investigation.!® 2?3726 In the subsequent calculations, we
have assumed a constant velocity v, with a value given by the speed of light in vacuum (we have
assumed that the effective index of refraction of the system was close to one).

The results of the comparison are shown in Fig. 3, for a medium with absorption and transport
mean-free paths l,s = 5.4um and Il = 0.95um and for both isotropic [¢ = 0, Fig. 3(a)] and
anisotropic [g = 0.5, Fig. 3(b)] scattering. The optical width of the slab (on the order of 15)
is chosen so that the diffusion approximation should be valid at long times.?®:27 The results of
the diffusion approximation are calculated using Eq. (13), with three different expressions of the
diffusion coefficient (D,s, Dp1 and Dy, with the same notations as in Fig. 2). The medium is



assumed to have an optical index n = 1, so that there are no internal reflections at the boundaries.
We have used the value zg = 0.71/;. for the extrapolation distance, which is approximate in the
presence of absorption. We have verified that modifying this value does not change significantly the
long-time behavior of the transmitted pulse predicted by diffusion theory.

We see in Fig. 3(a) and 3(b) that the diffusion approximation does not accurately predict
the short-time behavior of the transmitted pulse. This is an expected result, because the diffusion
equation is not expected to be valid at short time.?%:2939 In the present work, we shall concentrate
on the prediction of the long-time behavior. In the case of isotropic scattering [Fig. 3(a)], the long-
time (exponential) decay of the pulse is correctly predicted by the diffusion approximation, except
when the expression of Dp; is used. This shows that in this case, the coefficient Dg; gives better
results (compared to the rigorously defined coefficient D,,) than the widely-used coefficient Dpy,
even in the presence of absorption. For anisotropic scattering [Fig. 3(b)], the long-time decay is
correctly described by diffusion theory only when D, is used. The result using Dg; underestimates
the slope, while the result with Dpy overestimates it. This result demonstrates the relevance of the
definition of D for time-dependent transport through absorbing media with anisotropic scattering.
None of the standard coefficients Dp; and Dy give correct results for the long-time transmission
through thick slabs, for which the diffusion approximation is supposed to be valid.?%:27

6. Conclusion

In summary, we have presented a novel derivation of the rigorous expression of the diffusion co-
efficient D for light transport in a scattering and absorbing medium. The result shows that the
dependence of D on absorption and on phase function is described by the second moment of the
angular behavior of the fundamental mode. This provides a new physical interpretation of the diffu-
sion coefficient and confirms on a rigorous basis its strong dependence on absorption. It also yields
a simple way to derive its correct form. Using a numerical solution of the usteady RTE in a slab
geometry as a reference, we have shown that the use of the correct expression of D in solutions
based on the diffusion approximation is a crucial issue for time-dependent transport.
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Appendix A

In this appendix, we give the explicit derivation of the general expression of the radiative flux
Eq. (2). Multiplying Eq. (1) by p and integrating over yu, one obtains:

+1 9z, +1 . +1
/_1 p? %duz —(ua+us)/_1 pl (2, ) dp+ %/ g pp O (g, 1) Iz, ) dp'dpe (A1)

We now make use of the relationship fj'll 1 p© (p, ') dpp = 2’ which can be found, for exemple, in
ref.,> and whose derivation is reproduced in Appendix B. Equation (A1) can be transformed into:

9 [t 2 i i / ’ /
5/ 1 I(Z,u)duz—(ua+us)/_ uf(z,u)dquusg/ Pz, ) dp (A2)

-1 1 -1



In this last equation, the integrals in the right-hand can be replaced by the radiative flux ¢, accross
the slab, thanks to the relationship ¢, = 27 fj‘ll pl(z, 1) dp. One finally obtains:

(z)———/ 1 I(z,pu)d (A3)
q- - ) 5(1 ) ) | I M) At
which is Eq. (2).

Appendix B

In this appendix, we give the derivation of formula _—|—11 1 p© (p, ') dp = 2gp’ which was used in
Appendix A. The phase function p(u-u’) can be expanded on a basis of Legendre polynomials:®

+oo
p(u-u) = Z: a, Py(u-u') (B1)

with ag = 1 and a1 = 3¢g, g = (47)~"' [ p(u-u’) dQ being the average cosine of the scattering angle.
The addition theorem of spherical harmonics® allows to express the Legendre polynomial versus
the directional cosines (u, ') and the azimuthal angles (¢, ¢'):

" (n—m)!
Pale ) = P Palp) +2 3 S P ) (1) cos( - &) (B2
— (n+m)!
where PI" are associated Legendre functions. Using Eqs. (B1) and (B2), the phase function p(®)
integrated over ¢ and ¢’ can be written:

+oo
PO, 1) = 3~ an Pul(p) Pa(i) (B3)

From Eq. (B3), we can calculate the following integral:

+1 +1

+ oo
pp () dp = 3 an Pa(w') | Pa(p) dp
n=0

e 1
= Y a, Pu(i) /_ +1 P () Po(p)dp (B4)

where we have introduced Py(u) = 1 in the last line. The last integral vanishes, except when n = 1,
where it takes the value 2/3 (see for example ref.?®). We finally end-up with :

+1 2
Oy dp = S a )
_ a0y (85)

where we have used Py(u') = p/. This is the expected relationship.
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Fig. 1. (a): Angular behavior (polar diagram with 6 in degrees) of the fundamental mode
g (u = cos 8), for different values of the albedo wyq. I, = 0.95um and g = 0.5. (b): variation
of (go) versus absorption, for two values of the anisotropy factor g. l;cq = lpm. Phase
function: Henyey-Greenstein.

Fig. 2. Dependence on absorption [(a) and (b)] and scattering anisotropy [(c) and (d)] of
the diffusion coefficients obtained from three different approaches: P1- approximation Dp,
random-walk in a non-absorbing medium D;; and asymptotic approach Dy . foi) in Fig. 2(a)
is a first-order approximation of D, valid for isotropic scattering and low absorption. (a):
Ly, = 0.95um, g = 0. (b): Iy, = 0.95um, g = 0.5. (¢): Lty = 0.95um, lgps = 0.1mm. (d):
lsca = 1pm, wo = 0.85. Phase function: Henyey-Greenstein.

Fig. 3. Diffuse-transmission impulse response through a slab of width L = 15um, with
lyy = 0.95um and lgps = 5.4um. (a): ¢ = 0. (b): g = 0.5. Phase function: Henyey-Greenstein.
The energy velocity is assumed to be a constant: v = 3.108m.s~!. The long-time decay is
correctly predicted by diffusion theory only when the difusion coefficient given by Eq. (9) is
used.

Table 1. Numerical values of the three first eigenvalues kg, k1 and ks obtained when seeking
solutions of Eq. (1) of the form I(z, u) = g% (u) exp(xkz). Four different cases are shown.
The scattering length is fixed: l5.4 = 0.95um. Phase function: Henyey-Greenstein.
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wg = 0.988

wg = 0.840

g=0|g=0.343

g=0 |g=10.343

ko (um=") | 0.1989 | 0.1616

0.8100 | 0.6800

ky (pm™1) | 1.0662 | 1.0661

1.2539 1.2539

ke (wm~1) | 1.0700 | 1.0697

1.2585 1.2582

Table 1, R. Elaloufi et al.
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Near-Field Effects in Spatial Coherence of Thermal Sources
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We present an exact calculation of the cross-spectral density tensor of the near field thermally emitted
into free space by an opaque planar surface. The approach, based on fluctuational electrodynamics and
the fluctuation-dissipation theorem, yields novel near-field correlation properties. We show that the
spatial coherence length of the field close to the surface at a given wavelemgdly be much smaller
than the well-knowni/2 of blackbody radiation. We also show that a long-range correlation may
exist, when resonant surface waves, such as surface-plasmon or surface-phonon polaritons, are excited.
These results should have important consequences in the study of coherence in thermal emission and in
the modeling of nanometer scale radiative transfer. [S0031-9007(99)08515-4]

PACS numbers: 42.25.Kb, 05.40.-a, 71.36.+c, 78.20.Ci

Thermal emission of radiation from opaque materialsthermal fluctuations of the current density at a paint
is often regarded as an incoherent phenomenon. Indeef;, y, z) inside the body are described by a random process
thermal light is chiefly generated by the uncorrelatedj(r,7), which is stationary in time [7,8]. The field radi-
process of spontaneous emission. Nevertheless, sineged into the half space > 0, i.e., the thermally emitted
the development of optical coherence theory, it has beefield, is itself a fluctuating quantity described by a time-
known that the field emitted by thermal sources may exstationary random proce¥Xr, ¢). In this Letter, we focus
hibit a certain degree of temporal and spatial coherencen the spatial coherence of the emitted field at a given fre-
For example, it was shown that light across a planar quasguencyw. The basic quantity of second-order coherence
homogeneous Lambertian source, at a given wavelengtiheory of vector fields in the space-frequency domain is
A, is spatially correlated over a distance on the ordethe electric-field cross-spectral density ten8gy defined
of A/2 [1]. This result was found to be in agreementby [9]
\rlg(tjr:alf[irl)onvv[g]s.patlal correlation properties of free blackbody (E; (1, @)EL (2, @) = Wie(rr, 10, 0)8( — @), (1)

In deriving this result, the nonradiating near-field part ofyyhere E(r, w) is the time-domain Fourier transform of
the emitted light was ignored [1], because it plays no rolghe electric fieldE(r,7) and the superscript denotes
in the far-field properties of emission from planar sourcesthe complex conjugate. The brackets denote a statistical
Nevertheless, recent interest in microscale and nanoscai@semble average. The tend®r, is a measure of the
radiative transfers [3], together with the development ofspatial correlation of the electric field at a given frequency
local-probe thermal microscopy [4] and the observation of,, and at two different points; andr,. Note that the
coherent thermal emission from doped silicon and silicomyresence of the delta function in Eq. (1) is a consequence
carbide (SIC) gratings [5,6], has raised new challenges. 1gfthe stationarity of the field in the time domain. Recently,
fact, all these topics have in common the substantial rolea|culation of the cross-spectral density tendoy, was
of the nonradiating (evanescent) thermal fields. reported for an infinite blackbody surface in the far field or

In this Letter, we concentrate on the role of the nonradifor a finite planar surface in the radiometric limit [10]. In
ating field in the coherence properties of thermal sourceshis Letter, we address near-field effects—in some cases
with particular emphasis on the spatial coherence. Wender resonant conditions—so that we do not use any
revisit this concept by studying the spatial correlation ofapproximation in our calculation. The only assumptions
the vector thermal field at close proximity of an emitting are the local thermal equilibrium of the body and the use of
body. Our calculation is based on macroscopic fluctuamacroscopic electrodynamics. To proceed, we introduce
tional electrodynamics and the fluctuation-dissipation thethe time-domain Fourier transforijir, ») of the random
orem [7,8]. Novel properties are obtained, showing thagyrrent densityj(r, 7). The electric field at a given point
near-field effects may dramatically modify the spatial co-r jn the half space > 0 is given by
herence of thermal sources. -

Let us consider a homogeneous opaque material fill- E(r, w) = i/_Loa)f Gr,r' w) - j' wdr, (2
ing the half space < 0, in local thermodynamic equi- v
librium at a uniform temperaturg. The electrodynamic where the integration is performed on the voluiieof
properties of the material, assumed to be isotropic anthe body. G (r,r’, w) is the Green dyadic of the vector
nonmagnetic, are macroscopically described by its comHelmholtz equation in the considered geometry, namely,
plex frequency-dependent dielectric constafi). The a flat interface separating a semi-infinite homogeneous

1660 0031-900799/82(8)/1660(4)$15.00 © 1999 The American Physical Society
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medium with dielectric constanté(w) (mediumz < 0)  2.25 + 0.001; and that of tungsten is = 4.35 + 18.05i.

from a vacuum (medium > 0) [11]. The calculation is performed in a plane= z, above the

In order to calculate the cross-spectral density tensosurface of the emitting material. Boih andr; are along
Wi, we need to know the spatial correlation function ofthex axis, and the result is plotted versps= |r; — r|.
the thermal current fluctuations in the frequency domainin the very near fieldzo = 0.011), the curve correspond-

It is given by the fluctuation-dissipation theorem [7,8]:  ing to glass (solid line) drops to negligible values after
p = A/2, showing that the correlation length of theom-
ponent of the field is\/2. In fact, a semi-infinite medium

3) of lossy glass is a good approximation of a planar black-
body radiator, and the solid curve in Fig. 1 strongly re-

wheres,,, is the Kronecker symbo® (w,T) = iw/2 +  sembles the sitr)/kr shape of the cross-spectral density

Lo /[exphw/kT) — 1]is the mean energy of the quantum in the source plane of a Lambertian source, previously ob-

harmonic oscillator in thermal equilibrium at temperaturetained in the scalar approximation [1]. Note that, although

T, and2# /i is Planck’s constant.€’(w) is the imaginary not shown here for brevity, we have observed this behav-

part of the dielectric constart ). ior for the three diagonal elemerits; of the cross-spectral

Inserting Eq. (2) into Eq. (1) and using Eq. (3), we ob-density tensor. In comparison, the case of tungsten (dotted
tain the following expression for the cross-spectral tensogurve) is completely different.The correlation length is
of the electric field in the half space> 0: much smaller tham /2, on the order 00.06A. This dis-
tance is comparable to the skin degth= [k Im(\/€)]™!
of tungsten at this wavelength. This is actually not surpris-
ing becauseé is, in addition to the wavelength, the relevant
length scale for the propagation of electromagnetic waves
inside the material. Therefore, it is physically sound that
the induced currents, and thus the field close to the surface,
be correlated over a distance which is the smallestafid
A. Thisresult, which, to our knowledge, was never pointed
out before, has important consequences in the modeling of
radiative transfer at small scales [3,4]. Moreover, it al-
lows us to revisit the concept of emissivity at subwave-
length scale, useful in the study of the radiative properties
of rough surfaces [12]. Indeed, this macroscopic concept
can be defined on a length scale larger than the field cor-
relation length.

Finally, we show that this subwavelength correlation
length is a pure near-field effect, due to nonradiative
evanescent fields. Ata distange= 0.1, we see that the
correlation length for tungsten (dashed curve in Fig. 1) is
much larger (on the order 6t4 1) than that obtained with

(m(r, @), (r', ") =

2 " (@)0(w,T)8(r — )80 — o),
a

Wik(ri,r, ) =

3
w—,t/,ﬁeae”@(w,T)[ Gim(r1, v, )Gy (r2, ¥, ) &1’
T %

(4)

The expression of the Green dya‘(ﬁ’c{r, r’, w) connect-
ing a source current inside the body (medigrx 0) to the
electric field in vacuum (medium > 0) is [11]

ﬁ(r,r',w) =

i

[ L Gus + pitpp) exiliK - (R - RY)]
8 Y2

X expliyiz — iyz)) d°K, (5)
wherer = (R,z), § = K X 2, p; = (IKIz2 + v,K)/k;,
the symbol” denoting a unit vectork; = k = o/c,
ky = Jek, andy; = (k; — K?)'/2, with the determina-
tion Rey;) > 0 and Im(y;) > 0. 1,(K) and¢,(K) are
the Fresnel transmission factors foand p polarizations,
respectively [11].

Equation (4), together with Eq. (5), gives an exact ex-

pression of the electric cross-spectral density teiggr T T T T
This expression is valid for any position of the two ob-
servation points; andr,, especially at close proximity

from the surface (near-field zone). Inserting (5) into (4), —

tedious but straightforward algebra allows us to expres S
aY)

0.5

— glass (z,=0.014)

W (2,=0.01%)
——- W (z,=0.13)

the elementdV;.(r, ry, w) of the cross-spectral tensor in =
terms of a single integral over the wave ved| which =
is evaluated numerically. X 0.0
Let us first compare the spatial correlation of the fieId; RV
emitted by lossy glass and tungsten, the latter being a met I
which does not exhibit surface-polariton resonances in th ~05 . . . .
visible part of the spectrum. We plot in Fig. 1 the diago- 0.0
nal elementW,,(r;,r;, w) of the cross-spectral density
tensor, at a wavelength= 27 /k = 500 nm and normal-
ized by its value ap = 0. Note that this normalization i i~ .
amounts to plotting the componept,, (r;,r;, w) of the g“rlé gér?sr;g;?e%rzeégst;%:g; ':’\0.015/(\))0 grr]ré tIr\?gjstrgr?(t;”iIS

(tensor) spectral degree of spatial coherence [9]. At thi§ 011 and z, = 0.14). All curves are normalized by their
wavelength, the dielectric constant of a lossy glassis ~ maximum value ap = 0.

1.0

FIG. 1. W,/(r;,r;, w) in the planez = zy versusp = |r; —
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zo = 0.011 (dotted curve). Thus, during the transition plasmons, or of the crystal for phonons (lattice vibrations),
from the near to the far zone, the correlation lengthtransmits its spatial coherence to the electromagnetic field.
increases because evanescent waves vanish. The valudn order to demonstrate more precisely the role of
A/2 of blackbody radiation is reached when= 0.1A.  the surface wave on the long-range correlation, we show
Note that this increase in spatial cohereisceot described in Fig. 3 the three diagonal elemeni, of the cross-
by the far-field form of the van Cittert—Zernike theoremspectral density tensor, for gold, in the same conditions
[9,13], which describes an increase of spatial coherencas in Fig. 2(a). It is well known that a surface polariton
due to propagation. propagating along the axis is polarized in the-z plane

We now turn to the study of spatial coherence in[14]. Thus, when looking at the correlation between two
light emission from materials supporting resonant surfaceointsr; andr, that are along tha axis, we expect to
waves, such as surface-plasmon or surface-phonon polasee a surface-wave induced correlation for thand z
tons [14]. In the formalism used here, the existence of poeomponents of the field only. This is exactly what is
laritons is taken into account in the Green dyaHiwvhich observed in Fig. 3. The element¥,, and W, exhibit
describes all the electrodynamic properties of the interfacdong-range correlation due to the surface wave, whereas
In fact, it is well known that thep-polarized Fresnel trans- W,, exhibits the same behavior as that of a metal without
mission factor,(K) appearing in Eq. (5) possesses a polesurface-wave resonance. This is a clear signature of the
when|K| approaches the valug,, = k[e/(e + 1)]'/2of  role of the surface polariton in increasing the spatial
the wave vector of the polariton along the interface [14].coherence. Although not shown here for brevity, the same
The thermal excitation of a surface polariton induces someesult is obtained for SiC with surface-phonon excitation.
spatial correlation in the field close to the surface, and we Another signature of the surface-wave excitation is the
may expect a large increase of the correlation length.  z dependence of the electric energy densityz, w) =

We illustrate in Fig. 2 the effect of surface-plasmon) Wy (r,r,w). Note that at a given frequenay, u, is
[Fig. 2(a)] and surface-phonon [Fig. 2(b)] polaritons ona function ofz only due to the translational invariance
the spatial coherence of the thermal near field. We plobf the geometry in ther-y plane. The energy density
in Fig. 2(a) the elemeni,, of the cross-spectral density u., normalized by its far-field value, is plotted in Fig. 4
tensor at the wavelength = 620 nm, and in the plane versusz. For materials without surface-wave resonances,
zo = 0.05A, for three different metals. Atthis wavelength, such as glass and tungsten, the energy density increases
their dielectric constants aee= 4.6 + i20.5 for tungsten, at short distancéz < 0.1A). In fact, it is known thaiu,
€ = —826 + il1.12 for gold, ande = —15.04 + i1.02  behaves likd /z? in the very near field, due to nonradiating
for silver. Both gold and silver exhibit surface-plasmonfields [8]. This result is retrieved in our calculation.
resonances at this wavelength. We clearly see that whereas
the spatial correlation length for tungsten is a fraction of
the wavelength (as in Fig. 1), the correlation length for
gold and silver is much larger. In fact, although Fig. 2 is 0r — W(20mm) (a)
limited to p < 5A for the sake of visibility, the correlation — Au (620 nm)

extends on a distance given by the attenuation length ’37_ ---- ——- Ag (620 nm)
. . = 05
of the surface-plasmon polariton. For gold and silver, =

the attenuation lengths arebA and 65A, respectively. =

The same effect is seen in Fig. 2(b) for a SiC crystal, % 0.0
which exhibits a surface-phonon polariton resonance at =

the wavelengthh = 11.36 um (e = —7.56 + i0.41) and

no resonance akt = 9.1 um (e = 1.80 + i4.07). The -05 L . 1 L
emission of SiC gratings and the effect of surface-phonon
waves were studied experimentally and numerically in
Ref. [6]. The difference of behavior of this material at ___
the two different wavelengths is striking in Fig. 2(b). The 2 0.5
correlation length is much higher in the presence of the =
resonant surface wave (dashed line) than in the case Wher(‘:l;
no surface wave is excited (solid line). The propagation <~ 0.0
distance of the surface-phonon polariton in this case is

36A. In summary, we have shown how the delocalized
electromagnetic surface mode, either coupled to a plasmon -0.5
or a phonon in the material, correlates the near field on :
distances on the order of its propagation length, which p/A

easily reaches several tenths of wavelengths in the visible,s 5 same as Fig. 1, withy = 0.05\. (a) The case of
part of the spectrum. Physically, one could say that thenree metals (tungsten, gold, and silver)= 620 nm. (b) The
collective resonance of the free electrons in the metals fatase of SiC withh = 9.1 um andA = 11.36 um.
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surface:A = 620 nm. (A = 620 nm). All curves are normalized by their far-field

value atz = 10A.

Also note that the existence of these nonradiating fields
at short distanceg is responsible for the small peak
observed ap = 0 for glass in Fig. 1 (solid line). This is

a striking difference between free blackbody radiation an

terials that support resonant surface waves exhibit long-
Jange spatial correlations, (iii) the spectral electric density
the radiation produced at short distance by a blackbodOf energy is strqngly _enhanced .close foan interf_ace when

¥1 surface wave is excited, and (iv) an interface with a shal-

radiator, which contains evanescent waves. The nov : : .
. ) : Ow grating supporting a surface wave is a natural thermal

property is that for a material supporting a surface-plasmon o L

; N ; source whose spectrum depends on the emission direction.
polariton, such as gold in Fig. 4, the energy density starts
to increase as soon as< A. This is so because the
decay length of the surface wave in thedirection is
on the order ofA. The near-field enhancement is up to
100_ times hlglhﬁr th?]n that gbservhed Wlthour;[ surface-wave (1975): E. Wolf, J. Opt. Soc. A68, 6 (1978).
excitation. Alt oug not shown here, we ave observgd[z] Inverse Source Problemsdited by H. P. Baltes (Springer-
the same effect with a surface-phonon polariton on a SiC" * verjag, Berlin, 1978), p. 123.
surface. This behavior of the electric energy density shows[3] c.L. Tien and G. Chen, J. Heat Transfet4, 799 (1994).
that evanescent waves play a crucial role in radiative heaf4] C.C. Wiliams and H.K. Wickramasinghe, Appl. Phys.
transfer at subwavelength scale when surface waves are Lett. 49, 1587 (1986).
excited. [5] P.J. Heskethet al., Nature (London)324, 549 (1986);

We have shown that the thermal excitation of an elec-  Phys. Rev. B37, 10803 (1988).
tromagnetic surface mode dramatically changes the spatial] J- Le Gallet al., Phys. Rev. B55, 10105 (1997).
correlation of the emitted field close to the surface. By [/l L- Dl' 'F-)‘:]‘”d,a“’ F')E-M- L|fsh||t32, and (')--fp- ;'ti‘g‘é%k‘sgags' g
using a grating as a coupler, the surface wave can be con- tcal Physics(Pergamon Press, Oxford, ), 3rd ed.,
verted into propagating waves. This give risehighl Part 1, Chap. Xil and Part 2, Chap. VIl
) . propag g . T 9 9 y. [8] S.M. Rytov, Yu.A. Kravtsov, and V.. TatarskiRrinci-

directional thermal emissioat a given wavelength. This

. > ' ples of Statistical Radiophysid$pringer-Verlag, Berlin,
is a very unusual behavior for thermal sources. Since such  19g9), vol. 3, Chap. 3.

a source emits light in particular directions and at particu- [9] L. Mandel and E. Wolf Optical Coherence and Quantum
lar frequenciesthe spectrum of the emitted light strongly Optics (Cambridge University Press, Cambridge, England,
depends on the direction of observatiofhus, such a ma- 1995).

terial is an example of aatural thermal source for which [10] D.C. Bertilone, J. Mod. Op#3, 207 (1996); J. Opt. Soc.
the field correlation in the source plane does not obey the ~Am. A 14, 693 (1997).

scaling law established by Wolf [15]. Note that temporall11] J-E. Sipe, J. Opt. Soc. Am. & 481 (1987).

and spatial coherence in thermal emission by silicon an§t2] R Carminatiet al.,in Heat Transfer 1998edited by J. S.
SiC gratings has already been observed [5,6]. The analy- Lee, Proceedings of the 11th International Heat Transfer

. . . . . L Conference (Korean Society of Mechanical Engineering,
sis presented in this Letter explains the physical origin of Kyongju, 1998), Vol. 7, p. 427,
this phenomenon.

. . [13] J.W. Goodman,Statistical Optics(Wiley, New York,
To summarize, we have found novel correlation prop- ~ 19g5) p. 206.

erties of fields produced by thermal sources in the negn4] Surface Polaritonsedited by V.M. Agranovich and D.L.
field: (i) Materials that do not support surface waves may  Mills (North-Holland, Amsterdam, 1982).

display coherence lengths much shorter thdp, (i) ma-  [15] E. Wolf, Phys. Rev. Lett56, 1370 (1986).

[1] W.H. Carter and E. Wolf, J. Opt. Soc. AnG5, 1067
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We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can
display remarkable differences in the near and the far zones. The spectral changes occur due to the loss
of evanescent modes and are especially pronounced for systems which support surface waves.

PACS numbers: 78.20.—e, 05.40.—a, 44.40.+a, 87.64.Xx

Spectroscopy of electromagnetic radiation is perhaps
the most powerful exploration tool employed in natural
sciences: astronomy, atomic and molecular physics and
chemistry, materials science, biology, etc. The central
question considered in this paper—whether the spectral
content of the radiation emitted by an object can change on
propagation to the observer—usually does not arise, since
it seems natural that nothing can happen to waves travel-
ing through empty space. Surprisingly similar failure of
common sense was put forward by the recent progress of
near-field optical microscopy [1,2], which achieves sub-
wavelength resolution exactly because evanescent modes
carrying subwavelength spatial information do not propa-
gate far away from the object. However, a great deal of
work devoted to such an irreversible change of spatial in-
formation on propagation has been accompanied with sig-
nificantly lesser interest in the possibility of the change of
spectral information.

The subject of spectral changes on propagation has,
however, been addressed. In the 1980’s, Wolf [3] predicted
that the spectrum of light can be changed on propagation
from the source to the observer, even through empty space.
This effect, whose origin lies in the fluctuating nature of
the source, has been intensively studied in a variety of sys-
tems [4,5]. Typically, the Wolf effect is manifested in small
spectral shifts and can be viewed as a redistribution of the
weights of different spectral components.

In this Letter, we demonstrate spectral changes, whose
physical origin is very different from that of Wolf spectral
shifts and lies in the presence of the evanescent compo-
nent in the emitted field. We show that the near-field and
far-field spectra of emitted electric fields can display dras-
tic differences. For a broadband emission, such as thermal
emission which is considered in detail in this paper, the
near-field spectrum dominated by evanescent modes can
be entirely different from the far-field spectrum of propa-
gating modes. These spectral changes occur not due to the
statistical nature of the source (as in the Wolf effect) but
due to the loss of evanescent components on propagation.
We analyze how such spectral changes can be enhanced

1548 0031-9007/00/85(7)/1548(4)$15.00

by electromagnetic surface waves (SW) near the interface.
These SW are known to play an important role in the en-
hancement of interaction between nanoparticles near the
surface [6], in localization effects on random surfaces [7],
in surface-enhanced Raman scattering [8], in extraordinary
transmission of light through subwavelength holes [9], etc.
In this Letter, we show that SW provide the leading con-
tribution to the density of energy in the near-field zone of
electromagnetic emission.

We now proceed with analyzing near-field effects in the
spectra of thermal emission, which provides an easy way
to excite both propagating and evanescent electromagnetic
modes in a wide range of frequencies (at least, in the
infrared [10—12]). Thermal emission is frequently asso-
ciated with the textbook example of equilibrium black-
body radiation. The Planck spectrum Izg(w) of such
radiation is obtained by multiplying the thermal energy
0(w,T) = how/[exp(fiw/kgT) — 1] of a quantum oscil-
lator by the density of oscillations (modes) per unit vol-
ume N(w)dw = w’dw/(7?c?) in the frequency interval
(w,w + dw), and dividing the result by de [13],

w3

m2c3 exp(fiw/kgT) — 1°
(1)

Here T is the body temperature, kg is Boltzmann’s con-
stants, 7 is Planck’s constant divided by 27, and c is the
speed of light in vacuum. A well-known representation of
blackbody radiation is the equilibrium radiation in a closed
cavity with lossy walls when only propagating modes of
the field are taken into account.

To demonstrate the importance of near-field effects, we
consider a somewhat more sophisticated example of ther-
mal emission from a semi-infinite (z < 0) slab of homoge-
neous, nonmagnetic material held in local thermodynamic
equilibrium at a uniform temperature 7, into the empty half-
space z > 0. We will describe the macroscopic dielec-
tric properties of the material by a frequency-dependent,
complex dielectric function e(w) = &'(w) + ie’(w). The

Ipp(w) = 6(w,T)N(w) =

© 2000 The American Physical Society
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Fourier component E(r, w) of the electric field E(r,t)
at a point r = (x,y,z) in the empty half space z > 0 is
generated by thermal currents with density j(r’, w), which
is nonzero only for z/ < 0. It can be computed following
the procedure outlined in Refs. [12,14],

E,(r,w)=iuow Z

[V B Gaple,t, 0)jp(, ),
B=x.y,z

(2)

where V is the volume of the hot body which occupies
the half-space z’ < 0, and G, 4(r,r’, w) is the electromag-
netic Green tensor for the system of two homogeneous ma-
terials separated by a planar interface z = 0. According to
the fluctuation-dissipation theorem [14], the fluctuations of
thermal currents are described by the correlation function

w0 (w,T)

(Ja(r, w)jpr’, ) = £0e"(0)8,p8(r — 1)

X 8w — o), 3)

where the angle brackets denote the statistical ensemble
average. The Kronecker symbol 8,4 and the spatial &
function in this formula follow from the assumption that
the dielectric function is isotropic, homogeneous, and
local [14].

The energy density /(r, @) of the emitted electric field
at the point r is defined by the formula

> %(EZ(r,w)Ea(r,w’» = I(r,0)8(w — o).

a=x,y,z

4
Using Egs. (2) and (3) into (4), we obtain, for I(r, w),
w3 0
I(r,w) = 87° — 0(w,T)e"(w) Z f d7’
¢ a,B=x,y,z Y %
d2k||
X a k ’ 9 ! 2,
f o) lgap k|, @ | z,2") (5)

where g.(K|, w | z,z’) is the analytically known [12] 2D
spatial Fourier transform (in x and y) of the Green’s tensor
Gop(r,r’, w). Note that I(r, w) in Eq. (5) is independent
of x and y, due to the translational invariance of the system
in x and y directions.

We now assume that the interface z = 0 between the
material and a vacuum can support electromagnetic SW.
The dispersion relation between the wave number k| =
|kl and frequency w of SW is

kY (0)F = (0?/Pe(w)/[e(w) + 1].  (6)

Such waves exist for materials having &'(w) < —1 in one
or several frequency ranges [10]. We consider SiC, which
supports SW known as surface phonon polaritons and
which has been used in previous experimental [11] and
theoretical [12] investigations of thermal emission. The di-
electric function of this material is given by the expression
e(w) = ex(w; — @? — iyw)/(wF — ©* — iyw) with

gx =67, wp=1827 X 10”57,  wr=149.5 X
102 57! and v = 0.9 X 10'? s7! [11]. By substituting
e(w) into Eq. (5) and performing a straightforward evalua-
tion of integrals (only the integral over the magnitude of
k|| has to be calculated numerically, the other two integrals
can be evaluated analytically), we obtain the spectra of
thermal emission for SiC at different heights z above the
surface. We plot the results in Fig. 1 in the frequency
range 0 < w < 400 X 10'> s™! for T = 300 K at three
different heights.

Although one could expect to find differences of the SiC
spectra with the blackbody spectrum (1), it is striking that
near-field and far-field spectra of the same SiC sample are
so dramatically different, as seen in Fig. 1. An observer
doing a traditional far-zone spectroscopic measurement
(Fig. 1a) would detect the spectrum with a rather wide
dip in the range 150 X 102 s7! < @ < 180 X 10'2 57!
due to the low emissivity of SiC in that range [11]. Note
that the sample effectively acts as a nonradiating source
in this frequency range. However, when the probe moves
within a subwavelength distance from the material (typi-
cal thermal emission wavelengths at 7 = 300 K are of the
order of 10 wm), the spectrum starts to change rapidly. In
Fig. 1b, showing the emission spectrum at 2 pwm above
the surface, this change is seen as a peak emerging at
o = 178.7 X 10'> s, At very close distances (Fig. 1c),
the peak becomes so strong that an observer would sur-
prisingly see almost monochromatic emission with photon
energies not represented in the far zone.
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FIG. 1. Spectra of thermal emission of a semi-infinite sample

of SiC at T = 300 K and three different heights above the sur-
face: (a) z, = 1000 um, (b) z;, =2 pm, (¢) z. = 0.1 pum.
The insets magnify the spectra plotted on a semilog scale in
the range of strong contribution from evanescent surface modes.
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Thus, we find that the spectrum changes qualitatively
on propagation. The occurrence of such striking spec-
tral changes is related to SW existing in the region 150 X
102 57! < w < 180 X 10" s7!. We shall now clarify
the mechanism of the formation of spectra I(r, ) at dif-
ferent distances from the surface.

We note that the spectrum of the elctric field (5) has a
similar structure as that of blackbody radiation (1),

I(z,w) = 8(w, T)N(z, w). @)

In Eq. (1), N(r, ) does not depend on r, while in Eq. (5)
it depends on z. Egquation (7) is a pivotal point of our
paper since it accounts for the evolution of the spectrum
on propagation by relating it to the local density of elec-
tromagnetic modes N(r, ). Note that N(r, w) includes
only relevant modes excited in the material (z < 0) and
emitted into vacuum (z > 0). The correct counting of
modes is done automatically in the integral in Eq. (5),
which has a typical structure that relates the density of
modes to the Green’s tensor of the system. The function
lgap(Kj, @ | z,2)|* in Eq. (5) represents a mode that is
excited in the plane z’ with a 2D wave vector k| and po-
larization B and arrives at the plane z with the same 2D
wave vector (due to translational invariance in x and y) and
polarization «. The sum over 8 and the integrals over K|
and z/ < 0 take into account all possible modes that are
initially excited.

The origin of a sharp peak seen in the near-field emission
spectrum (Fig. 1c) becomes clear when we analyze the dis-
persion relation (6) for SW (Fig. 2). Near the frequency
®max defined by the condition &'(wmax) = —1, there ex-
ists a large number of surface modes with different wave
numbers but with frequencies that are very close to each
other. Therefore, the density of surface modes will neces-
sarily display a strong peak at @ = wp,.x. However, since
SW decay exponentially away from the surface, this peak
is not seen in the far zone (Fig. 1a).

To achieve a detailed understanding of the z dependence
of the emission spectrum, we calculate an approximate
expression for the density of modes N(z, ) from Eqgs. (5)
and (7) for small distances z and in the limit of large k|

180 T T T T
T, 170 b 8
aQ
o
—
= 160
5 F J
3
150 1 1 1 1
0.5 0.6 0.7 0.8 0.9 1

ky, 10* em’”’

FIG. 2. Dispersion curve for SW on the vacuum-SiC planar
interface. Re(wgpp) is calculated for a given real kj.
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(according to Fig. 2, the modes with large k| define the
behavior near the peak):

e'(w) 1
1 + e(w)]? 1672w73 "

This 1/z> contribution can be recognized as a well-known
quasistatic behavior exhibited near the surfaces of all mate-
rials [12,14]. Note that if &” is not very large at ® = @max
then the density of modes exhibits a resonance at that fre-
quency. This is the origin of the peak in the near-field
spectrum of SiC at @ = 178.7 X 10'? s™!. The presence
of a resonance in the density of modes N(z, w) is, how-
ever, not required for observing spectral changes caused
by the loss of evanescent modes. Indeed, in the short dis-
tance regime, the spectrum is given by Eq. (8), whereas,
in the far field, the spectrum is given by Eq. (1) multiplied
by the emissivity of the surface. Thus, even in the absence
of resonant SW, the near-field spectrum is different from
the far-field spectrum, but the changes are less dramatic.

The result (8) is valid only in the limit of distances much
smaller than the wavelength. We show in Fig. 3 the varia-
tion of the spectral density /(w, z) with the distance z from
the surface. We consider two different frequencies none of
which is very close to the resonance at wny,x. In agreement
with Eq. (8), we observe that the spectral density increases
sharply for z < 1 um, i.e., when the distance to the sur-
face is much smaller than the wavelength. However, the
decay behavior of the two curves for larger values of z ex-
hibits an essential difference. The exponential decay seen
in the solid curve for the values of z between 1 and 5 um
is a signature of the presence of a SW whose energy de-
cays exponentially with z. This SW is a surface phonon
polariton that exists at @ = 166 X 10'2 s™! (solid curve)
but not at @ = 210 X 10'? s™! (dashed curve). The dif-
ferent z dependence of the I(w, z) for different values of
o causes the spectrum to change on propagation of emit-
ted radiation from the surface to the far zone.

This analysis allows us to conclude that the spectral
changes in thermal emission should be observable in a
wide variety of solid-state systems supporting evanescent

N(z,w) = (8)

£

—_
(e}

I (w, z) [arb. units]
5I\)

0 5 10 15 20
z, um

FIG. 3. The variation of the spectral density of the thermal
emission for SiC at 7 = 300 K with the distance z from ob-
server to the surface. Solid line: w = 166 X 10'2 57! (A =
11.4 um), dashed line: @ = 210 X 102 s7! (A = 9.0 wm).
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surface waves or guided waves (in layered structures [5]).
Resonant features in the near-field spectra (such as in
Fig. 1c) correspond to resonances in the local density of
surface modes N(z, w) and appear when the dispersion
curve for SW has a flat portion (as in Fig. 2). In addition
to our example of SiC, such resonances N(z, w) are dis-
played by metals (supporting surface plasmon polaritons),
semiconductors (supporting surface exciton polaritons @),
and several other materials. Yet, a peak in the emission
intensity I(z, w) will be observable only if 8(w, T) is not
too small. For example, the near-field spectrum of thermal
emission from amorphous glass near-field spectrum has a
sharp peak for @ = 9.24 X 10" s7' (A = 20.4 um) vis-
ible at room temperature. All of the III-V and II-VI semi-
conductors can support surface waves in the midinfrared.
However, although the number of modes (8) has a reso-
nance in the case of silver at about @ = 5.57 X 105 57!
(A = 0.339 wm), no sharp peak is seen if the temperature
silver sample is lower than 4000 K.

Equations (7) and (8) also suggest a new application
for near-field spectroscopy. As a near-field spectrum at a
given distance to the interface gives access to &”(w)/|1 +
e(w)|?, one can hope to retrieve the material dielectric
constant, similar to the method usually used to obtain &
from reflectivity measurements [15]. With the rapid de-
velopment of near-field optical microscopy, such near-field
spectra can be measured. This could open the way to a new
technique of local solid-state spectroscopy. Finally, we an-
ticipate that the effects reported in this paper should sig-
nificantly improve our understanding of the radiative heat
transfer at nanometric scale with particular applications in
the field of near-field microscopies. This might have ap-
plications for high density storage where the local control
of temperature is essential in the writing process. Also,
note that the effect of near-field thermal fluctuations was
measured recently using the induced brownian motion on
an atomic force microscope tip [16].

To summarize, we have demonstrated that the spec-
trum of thermal emission can undergo significant, qualita-
tive changes on propagation due to the loss of evanescent
modes. Such novel spectral changes are caused by the
change in the local density of emitted electromagnetic
modes, and are especially pronounced in the systems sup-
porting surface waves.
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because the actual masses of massive protostars are poorly deter-
mined. Our approach is to predict the properties of some well
studied massive protostars in terms of their bolometric luminos-
ities. The bolometric luminosity L, has contributions from main-
sequence nuclear burning L, deuterium burning Ly, and accretion
L,c. The accretion luminosity L,.. = f,..Gm,#1/r,, where f,. is a
factor of order unity accounting for energy radiated by an accretion
disk, advected into the star or converted into kinetic energy of
outflows, and where the stellar radius r, may depend sensitively on
the accretion rate r1,. Massive stars join the main sequence during
their accretion phase at a mass that also depends on the accretion
rate”. To treat accelerating accretion rates, we have developed a
simple model for protostellar evolution based on that of refs 6 and
24. The model accounts for the total energy of the protostar as it
accretes and dissociates matter and, if the central temperature
T.= 10°K, burns deuterium. We have modified this model to
include additional processes, such as deuterium shell burning,
and we have calibrated these modifications against the more
detailed calculations of refs 23 and 25.

Our model allows us to make predictions for the masses and
accretion rates of embedded protostars that are thought to power
hot molecular cores (C.EM. and J.C.T., manuscript in preparation).
Figure 2 compares our theoretical tracks with the observed bolo-
metric luminosities of several sources. We find that uncertainties in
the value of the pressure create only small uncertainties in 1, for Ly
in excess of a few times 10* solar luminosities.

The infrared and submillimetre spectra of accreting protostars
and their surrounding envelopes have been modelled in ref. 5,
modelling the same sources shown in Fig. 2. We note that uncer-
tainties in the structure of the gas envelope and the possible
contributions from additional surrounding gas cores or diffuse
gas will affect the observed spectrum. Comparing results, our
inferred stellar masses are similar, but our accretion rates are
systematically smaller by factors of ~2-5. The modelled® high
accretion rates of ~107° Mg yr’1 for stars with m, = 10M, would
be difficult to achieve unless the pressure was increased substan-
tially; for example, if the stars are destined to reach m.,; = 30M,
pressure increases of a factor ~40 are required. O
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A thermal light-emitting source, such as a black body or the
incandescent filament of a light bulb, is often presented as a
typical example of an incoherent source and is in marked contrast
to a laser. Whereas a laser is highly monochromatic and very
directional, a thermal source has a broad spectrum and is usually
quasi-isotropic. However, as is the case with many systems,
different behaviour can be expected on a microscopic scale. It
has been shown recently’” that the field emitted by a thermal
source made of a polar material is enhanced by more than four
orders of magnitude and is partially coherent at a distance of the
order of 10 to 100 nm. Here we demonstrate that by introducing a
periodic microstructure into such a polar material (SiC) a thermal
infrared source can be fabricated that is coherent over large
distances (many wavelengths) and radiates in well defined direc-
tions. Narrow angular emission lobes similar to antenna lobes are
observed and the emission spectra of the source depends on the
observation angle—the so-called Wolf effect**. The origin of
the coherent emission lies in the diffraction of surface-phonon
polaritons by the grating.

It is usually taken for granted that light spontaneously emitted by
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Figure 1 Image of the grating obtained by atomic force microscopy. Its period d = 0.55\
(N = 11.36 um) was chosen so that a surface wave propagating along the interface
could be coupled to a propagating wave in the range of frequencies of interest. The depth
h = N40 was optimized so that the peak emissivity is 1 at X = 11.36 pm. It was
fabricated on SiC by standard optical lithography and reactive ion-etching techniques.

different points of a thermal source cannot interfere. In contrast,
different points of an antenna emit waves that interfere construc-
tively in particular directions producing well defined angular lobes.
The intensity emitted by a thermal source is the sum of the
intensities emitted by different points so that it cannot be direc-
tional. However, it has been shown'? recently that some planar
sources may have a spectral coherence length in the plane much
larger than a wavelength and can be quasi-monochromatic in the
near-field. This paves the way for the construction of a thermal
source that could radiate light within narrow angular lobes as an
antenna instead of having the usual quasi-lambertian angular
behaviour.

Here we report experimental measurements demonstrating that
it is possible to build an infrared antenna by properly designing
a periodic microstructure on a polar material. Such an antenna
radiates infrared light in a narrow solid angle when it is heated.
Another unusual property of this source is that its emission
spectrum depends on the observation direction. This property
was first predicted by Wolf as a consequence of spatial correlations

90° 90°

Emissivity

Figure 2 Polar plot of the emissivity of the grating depicted in Fig. 1 at A = 11.36 wm
and for p-polarization. Red, experimental data; green, theoretical calculation. The
measurements were taken by detecting the intensity emitted by the sample in the far field
as a function of the emission angle. A HgCdTe detector placed at the focal length of a ZnSe
lens was used. The sample was mounted on a rotation stage. The theoretical result was
obtained by computing the reflectivity of the sample and using Kirchhoff’s law

(e = o =1 — R). Tofit the data, we took into account the spectral resolution (0.22 jum)
and the angular resolution (3°) of the measurements. The disagreement is due to the fact
that for the calculation, the index at room temperature is used whereas emission data
were taken with a sample in a local thermal equilibrium situation at a temperature of
773 K. Comparison between the two curves illustrates the validity of Kirchhoff’s law for
polarized monochromatic directional quantities. The surrounding medium was at 300 K
and the background signal was subtracted. The emissivity for s-polarization (not shown)
does not show any peak and is very close to its value for a flat surface. Note that most of
the emitted light is emitted in the narrow lobe (that is, coherently).
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for random sources™. This effect has been demonstrated experi-
mentally for artificial secondary sources*® but has never been
observed for direct thermal emission. In addition, the emissivity
of the source is enhanced by a factor of 20 compared to the
emissivity of a flat surface.

Using theories developed recently® to interpret the emission data
by gratings, we have designed and optimized a periodic surface
profile that produces a strong peak of the emissivity around a
wavelength N = 11.36 pwm. The grating (see Fig. 1) has been ruled
on a SiC substrate. A similar grating of doped silicon with very deep
depths has been investigated’. The authors attributed the particular
properties observed to organ pipe modes in the microstructure’.
However, the role of coherence induced by surface waves and the
exact mechanism were not understood at that time**.

The measurements of the thermal emission in a plane perpen-
dicular to the lines of the grating are shown in Fig. 2. Emission is
highly directional and looks very similar to the angular pattern of an
antenna. We have also plotted (see Fig. 2) the calculated emission
pattern. The qualitative discussion of the introduction suggests that
the small angular width of the emission pattern is a signature of the
local spatial coherence of the source. A proof of this stems from the
fact that the source has a width L = 5mm and a spectral coherence
length [ < L and that its temperature is uniform. Hence, we can
assume that the source is a quasi-homogeneous source®. With this
assumption, it is known that the radiant intensity and the spectral
degree of coherence in the plane of the source are related by a
Fourier transform relationship®. Therefore, the angular width 6 of
the lobe emission varies qualitatively with N/I for this locally
coherent source instead of with A/L, as for a globally coherent
source. Thus a small angular aperture of the far-field radiation is the
signature of a spectral coherence length in the source much larger
than the wavelength. To overcome the experimental resolution limit
of our direct emissivity measurement, we measured the reflectivity
R. From Kirchhoff’s law’, we know that the polarized directional
spectral emissivity € is given by e = & =1 — R where « is the
absorptivity and R is the reflectivity of the grating. Results
are plotted in Fig. 3. There is a remarkable quantitative agreement
between the data taken at room temperature and theoretical
calculations. We note that the peak at 60° has an angular width 6
as narrow as 1° so that the corresponding spectral coherence length
is as large as M@ =~ 60\ = 0.6 mm. This suggests that a thermal
source with a size L on the order of the spectral coherence length /,
namely a globally coherent thermal source, could be achieved.

90° 90°

Emissivity

Figure 3 Emissivity of a SiC grating in p-polarization. Blue, A = 11.04 wm; red,

A = 11.36 wm; green, N = 11.86 wm. The emissivity was deduced from measure-
ments of the specular reflectivity R using Kirchhoff's law. The data have been taken at
ambient temperature using a Fourier transform infrared (FTIR) spectrometer as a source
and a detector mounted on a rotating arm. The angular acceptance of the spectrometer
was reduced to a value lower than the angular width of the dip. The experimental data are
indicated by circles; the lines show the theoretical results. An excellent agreement is
obtained when the data are taken at ambient temperature, which supports our interpretation
of the slight disagreement in Fig. 1 being due to the variation of index with temperature.
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A surprising property of the emissivity patterns of Fig. 3 is that
they depend strongly on the wavelength. This suggests that the
emission spectra depend on the emission direction. This would be a
manifestation of the Wolf effect>’. To observe this effect, we have
taken several spectra of the reflectivity of the surface at different
angles. Fig. 4 shows experimental and theoretical spectra for
different observation angles. The position of the peaks of emissivity
(dips of reflectivity) depends strongly on the observation angle. It is
important to emphasize that this property is not merely a scattering
effect but is a consequence of the partial spatial coherence of the
source. The value of the reflectivity is also remarkable. By ruling a
grating onto a material which is essentially a mirror, we were able to
produce a perfect absorber. This behaviour has already been
observed for metallic gratings and attributed to the resonant
excitation of surface plasmons. This is the first time, to our knowl-
edge, that total absorption in the infrared owing to excitation of
surface-phonon polaritons has been reported.

In order to prove experimentally the role of the surface wave, we
have done spectral measurements of the emissivity for s- and p-
polarization. The peaks are never observed for s-polarization nor for
p-polarization in the spectral region where surface waves cannot
exist. In order to characterize quantitatively the role of the surface
waves, we have obtained the dispersion relation from reflectivity
measurements®. The results are displayed in Fig. 5 and compared
with theory. We note that the interaction of the surface wave with
the grating produces the aperture of a gap close to the band edge.
Figure 5 shows that our experiment allows us to directly see surface-
phonon polaritons. It also yields additional insight into the Wolf-
effect”* mechanism. Emission of infrared light has already been used
to study surface excitations, but using prisms to couple the surface
waves to propagating modes".

We now discuss the physical origin of coherent thermal emission.
We wish to understand how random thermal motion can generate a
coherent current along the interface. The key lies in the coherent
properties of surface waves (either surface-plasmon polaritons or
surface-phonon polaritons) demonstrated in refs 1 and 2. Both are
mechanical delocalized collective excitations involving charges.
Surface-phonon polaritons are phonons in a polar material,
whereas surface-plasmon polaritons are acoustical-type waves in
an electron gas. In both cases, these waves have the following two

1 T T T T T

— 0 = 45° (experiment)
- == 0 =45° (theory)

— 6 =30° (experiment)
- == 6=30° (theory)

0.9
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Figure 4 Comparison between measured and calculated spectral reflectivities of a SiC
grating at room temperature. The incident light is p-polarized. The dip observed at 45°
and N = 11.36 pm coincides with the emission peak observed in Figs 2 and 3. The
figure shows clearly that the reflectivity spectra depend on the observation angle. Using
Kirchhoff’s law, it follows that the emission spectra depend on the observation angle. This
is a manifestation of the Wolf effect>*.
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properties: (1) they are mechanical modes of the system that can
be resonantly excited; (2) they are charge-density waves, that is,
they generate electromagnetic fields. Because these excitations are
delocalized, so are the corresponding electromagnetic fields.

From a classical point of view, each volume element of the
thermal source can be modelled by a random point-like source
that excites an extended mode: the surface wave. This is similar to
some extent to the emission of sound by a string of a piano. The
source is a hammer that strikes the string at a particular point. Then
the modes of the string are excited producing a vibration along the
full length of the string. At that point of the analogy, as anyone can
hear the vibrations of a piano string, we may wonder why the
coherent electromagnetic surface waves are not usually observed.
The reason is that surface modes have a wavevector larger than 27/
so that they are evanescent. Their effect is not seen in the far-field.

However, by ruling a grating on the interface, we are able to
couple these surface modes to propagating modes. The relationship
between the emission angle f and the wavelength X is simply given
by the usual grating law

2w
A

where p is an integer and kj is the wavevector of the surface wave.
Thus, by modifying the characteristics of the surface profile, it is
possible to modify the direction and the value of the emissivity of
the surface at a given wavelength. It is also possible to modify the
emission spectrum in a given direction. Such gratings can be used to
design infrared sources with specific properties.

This may also have interesting applications such as modifying the
radiative heat transfer for a given material. Indeed, we have
demonstrated that a reflectivity of 94% can be reduced to almost
zero in the infrared for SiC. This could also be done for glass, which

sin0 = kH +p27’n-

1,000 ; ; ; ; ; ; ;
& =3 L= 3 L= =} - EECCTEET—
O — o =.
o 0 n = - S~ -
900t = 1
£
s
g 8s50f 1
Q
>
o
o
* 800} ]
/
750 !
50| ;o
/
700 . . . . . . /,
0 100 200 300 400 500 600 700 800
ky (cm™")

Figure 5 Dispersion relation wavevector, w(ky), of surface-phonon polaritons. Data
points, experimental dispersion relation. Solid green curve, theoretical dispersion relation
for the grating. Dotted red curve, theoretical dispersion relation for the flat surface. This
figure explains the mechanism of the Wolf effect®* for this particular source. The spatial
coherence in the plane of the source is due to the presence of a surface wave. For a fixed
frequency w, it can be seen that there is only one possible wavevector kj(w). Thus the
spectral degree of coherence at w oscillates? with a particular wavelength 2a/kj(w). When
observing in the far field at an angle 6 such that ck;(w)/w = sinf there is a strong
contribution of the surface wave at frequency w. By varying the observation angle, the
frequency varies according to the dispersion relation of the surface wave. It is seen that
the strong Wolf effect produced by this source is due to (1) the thermal excitation of
surface waves which produce the spatial coherence and (2) the propagation in vacuum
which selects one particular wavevector.
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is a polar material that has a large reflectivity in the infrared owing
to the presence of resonances. This would allow us to increase the
radiative cooling of the material if the emission is enhanced in a
region where absorption is low, because the atmosphere does not
emit. Another promising application of our results is the possibility
of modifying the heat transfer in the near-field. Materials that are
separated by distances smaller than the typical wavelength exchange
radiative energy through evanescent waves. When surface waves are
resonantly excited, they provide the leading contribution''. Thus,
the heat transfer is almost monochromatic. This may be used to
enhance the efficiency of infrared photovoltaic cells". O
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Ceramics are often prepared with surface layers of different
composition from the bulk’, in order to impart a specific
functionality to the surface or to act as a protective layer for the
bulk material®*. Here we describe a general process by which
functional surface layers with a nanometre-scale compositional
gradient can be readily formed during the production of bulk
ceramic components. The basis of our approach is to incorporate
selected low-molecular-mass additives into either the precursor
polymer from which the ceramic forms, or the binder polymer
used to prepare bulk components from ceramic powders. Thermal
treatment of the resulting bodies leads to controlled phase separa-
tion (‘bleed out’) of the additives, analogous to the normally
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undesirable outward loss of low-molecular-mass components
from some plastics’®; subsequent calcination stabilizes the com-
positionally changed surface region, generating a functional sur-
face layer. This approach is applicable to a wide range of materials
and morphologies, and should find use in catalysts, composites
and environmental barrier coatings.

To avoid the concentration of thermomechanical stress at the
interface between the surface layer and the bulk material, many
materials have been developed that have gradually varying proper-
ties as the distance into the material increases'. Such materials can
contain gradients in morphology or in composition. Gradients in
morphology can, for example, result in materials that have a graded
distribution of pore sizes on a monolith of silica aerogel, and a type
of integral plastic. These materials have been created by strictly
controlling the vaporization of the volatile during the production
process'"'*, Gradients in chemical composition have been achieved,
for example: (1) chemical vapour deposition'**, (2) powder meth-
ods such as slip cast or dry processing®, (3) various coating
methods'®, and (4) thermal chemical reaction®”. Of these, (1) and
(4) are relatively expensive, complicated and result in damage to
bulk substrates. (2) and (3) produce stepped gradient structures,
and it is difficult to control the thickness of each layer to less than
100 nm. Furthermore, most of these processes are not easily adapted
to coating samples in the form of fibre bundles, fine powders or
other materials with complicated shapes.

We have addressed the issue of establishing an inexpensive and
widely applicable process for creating a material with a composi-
tional gradient and excellent functionality. A schematic representa-
tive of our new in situ formation process for functional surface
layers, which have a gradient-like structure towards the surface, is
shown in Fig. 1. The important feature of our method is that the
surface layer of the ceramic is not deposited on the substrate, but is
formed during the production of the bulk ceramic. We confirmed
that our process is applicable to any type of system as long as, in the
green-body (that is, not-calcined) state, the system contains a resin
and a low-molecular-mass additive that can be converted into a
functional ceramic at high temperatures. Here, the resin is a type of
precursor polymer (polycarbosilane, polycarbosilazane, polysila-
styrene, methylchloropolysilane, and so on) or binder polymer used
for preparing green bodies from ceramic powders™. Although the
former case (using precursor polymers) is explained in detail in this
Letter, the latter case using binder polymers was also confirmed by
treating a Si;N, body with a TiN surface layer. Si;N, can exhibit
excellent thermal stability and wear resistance in the high-speed
machining of cast iron, but shows poor chemical wear resistance in
the machining of steel”. In order to avoid this problem, TiN
coating, by means of expensive chemical vapour deposition, has
often been performed on previously prepared Si;N, substrates. But
if our process is appropriately applied, formation of the TiN surface
layer could be achieved during the sintering process of the Si;N,
green body. In this case, titanium(1v) butoxide and polystyrene are
used as the low-molecular-mass additive and binder polymer,
respectively. By a combination of sufficient maturation (in air at
100°C) and subsequent sintering (in NH3;+H,+N, at 1,200 °C),
SisN, covered with TiN is successfully produced. This technology
would be very useful for producing ceramic materials with compli-
cated shapes and various coating layers. Moreover, our process is
advantageous for preparing precursor ceramics (particularly fine
particles, thin fibrous ceramics and films). The systems to which our
concept is applicable are shown in Fig. 1.

Here we give a detailed account of the results for the pre-
cursor ceramic obtained using polycarbosilane. Polycarbosilane
(-SiH(CH;)—-CH,-),, is a representative pre-ceramic polymer for
preparing SiC ceramics—for example, Hi-Nicalon fibre® and
Tyranno SA fibre”'. Furthermore, oxide or nitride can also be
produced from the polycarbosilane by firing in air or ammonia,
respectively. Our new technology makes full use of the bleed-out
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We study the radiative heat transfer between a small dielectric particle, considered as a point-like
dipole, and a surface. In the framework of electrodynamics and using the fluctuation-dissipation
theorem, we can evaluate the energy exchange in the near field, which is dominated by the
contribution of tunneling waves. The transfer is enhanced by several orders of magnitude if the
surface or the particle can support resonant surface waves. An application to local heating is
discussed. ©€2001 American Institute of Physic§DOI: 10.1063/1.1370118

Questions about radiative heat transfRHT) at nano- field that illuminates the particle. An elementary fluctuating
scales have been raised by recent developments aurrentj;(r’,w) at frequencyw, radiates at point inside the
nanotechnology. Design of micro- and nanostructures re- particle, an incident electric fiell,(r,») given by
quires a thorough understanding of physical phenomena in-
volved in radiative energy exchange, when their sizes be- Einc(rvw):(inO)J B(rr',w)j(r',w)d3r", 1)
come comparable to the thermal mean free path or the B
thermal radiation wavelengtt® Modeling RHT between two
semi-infinite bodie%” or between a tip and a substfate a
challenging problem for all near-field microscofgesanning

tuneling microscope, atomic force microsc for scan- . .
9 P bjpe z=0 or eg(w) if z<0. Let us now assume th&t,(r,w) is

ning thermal microscope€sOur work deals with the problem . B . : .
of RHT between a small particle—considered as a point_"k(_:‘unn‘orm inside the particle. This amounts to use a dipolar

dipole—and a very close plane interface. This particle Coukgpprox!matior;i&whosg validity iq the near fi_e Id has. already
be a single molecule, a dust particle, or a model for the tip o een discusset.Provided that this condition is satisfied, the

a microscope probe. Using an electromagnetic approach, pmall particle behaves as a point-like dip@ig(rp,©) in-

the dipolar approximation, we have derived the expression o(fulgfed dbby Fh_e E?Clde)ni flel&(m§ :EP ’(E)r)' Tr;es\,l\e/:hc;l:: ntltilse\:,hzre
the radiative heat power exchanged between the particle an DYPind\lp, @)= Eoa(@)Eincl'p, ), WHET€&( IS T
lelectric permittivity of vacuum ande(w) is the particle

the semi-infinite medium. We show that the transfer in- N . . . .
. &9 arizability. For a spherical particle of dielectric constant

creases at small distances and can be enhanced by sever ) . .

. ) : . ep(w), we used the Clausius—Mossotti polarizabitity
orders of magnitudén comparison with the transfer at large
distancegif the particle or the bulk support resonant surface
waves. Results of numerical simulations are presented and an a(w)=4ma’
application to local heating is discussed.

In this part, we focus on the derivation of the radiative A more precise modéf taking into account the interac-
power exchanged between a small parti¢té spherical tion between the dipole and its image through the interface,
shapg¢ and a semi-infinite medium. The geometry of theleads to the introduction of an effective polarizability. We
problem is presented in Fig. 1: the upper medigm0 is  have verified that, when the distandeis larger than the
vacuum g£=1). A particle (P) of radiusa and dielectric particle radiusa, the correction to Eq2) is negligible. Since
constant(frequency dependentp(w)=ep(w)+icp(w) is

where u, is the magnetic permeability of vacuum agdis
the Green tensdt of a system constituted by two semi-
infinite media whose dielectric constants are either 1 if

ep(w)—1
ep(w)+2

: @

held at temperatur€p . The lower mediunz<O0, is filled by P(T, &, )
a homogeneous, isotropic mater{allk) of dielectric con- z r
stanteg(w)=ep(w)+ieg(w) and held at temperaturEg . E(r,0)
The center of the particle is at a distandeabove the

interface. d

We first calculate the mean powE,;"(w) radiated by
the bulk at a given frequenay and absorbed by the particle.
We assume that the bulk is in local thermodynamic equilib- x
rium at uniform temperaturéz# 0, so that there are fluctu-

. L X <0
ating currents inside the bulk due to thermal fluctuations.
These currents inside the bulk radiate an electromagnetic B(T,.2,) jf(r’,m/)(
¥Electronic mail: jpmulet@em2c.ecp.fr FIG. 1. Geometry of the system.
0003-6951/2001/78(19)/2931/3/$18.00 2931 © 2001 American Institute of Physics
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we did our calculation for a distanaklarger than 2, we 103 -
will consider that Eq.(2) is a good approximation for the . O 0, N "
polarizability in our problem. & 107 =107
We now evaluate the mean radiative pow."(w) = S10°0F¢
dissipated inside the particle. Since the scattered power is g 107 8 s
NI . . . . pB-P = 2z 10”107 10" 10
negligible;” this quantity is given by: Py (w) A 2  inrads
=Re{{(—iwping(rp,w) - Ej(rp, o))}, where the brackets de- - 1072
note a statistical ensemble average over the fluctuations of o= ]0_30/0
the currents inside the bulk. The components -
(|Eingi(rp,®)|? (i=x,y,z) depend only on the distanae L5 2.0 2.5
and are given by:1>16 10" @inrad.s

FIG. 2. Mean power radiated by the bulit Tz=300 K) and absorbed by
Im[SB(w)]G)(w Ts) the particle (of radius a=5nm) vs frequency:(a@) d=20nm; (b) d
=50 nm; (c) d=100 nm. The insetlog—log scalg¢ shows the spectrum of
the absorbed power between'd@nd 13°rad s'; (e) d=20 nm; and(f)
d=1mm.

<|E|nC| (re, w)|2> 2

X E |G|](rPr w)|2d3
i=xy.z

3) held at temperatur&ég=300 K. We note that the figure dis-
plays two remarkable peaks at frequenay,;~175.6
where® (o, Tg) =f w/[expliw/ksTg)—1] is the mean energy  x 102rads! and w,~178.7x10%rads®. These two
of a quantum oscillator in thermal equilibrium at temperaturepeaks are related to the resonant surface waves: the first cor-
Tg, 2mh is Planck’s constant, ankls is Boltzmann's con-  responds to the resonance of the particle which presents a
stant. Finally, we find the expression of the mean powelarger absorption at this frequency; the second is due to a
radiated by the bulk and absorbed by the particle at frehuge increase of electromagnetic energy density close to the

quencyw surface, demonstrated recentfyAn asymptotic expansion
2 Wt of Eq. (4) for small distanced yields the radiative power
Pome (TP, @)= — —zIm[eg(w)]Im{a(w)]O(w,Tg)  spectrum
243 PE—Fig ~;
XI |G|](rp,r w)| d°r (4) abs ( ,(1)) A7 d3
J=XY,2
We now consider the fluctuating currents inside the par- ) dma® 3¢"(w) g"(w) 0(w.T,)
ticle at temperaturdp that illuminate the bulk. Using the le(w)+2]° |e(w)+1]° B
same formalism, we can calculate the podagally dissi- . - R
pated per unit volume, at a pointinside the bulk, by the particle bulk (7)
following relation: PL. B(r,®) = Re{(jing(r, ®) - EX (1, ®))}.
It reads At this point, we must emphasize that, whereas those
2 Wt surface waves are evanescent waves, an energy exchange
;;B(r w)= iy Imeg(w)]IMa(w)]O(w,Tp) between the bulk and the particle takes place because the
particle lies in the regiorfup to many micrometeyswvhere
) the evanescent field is large, so that there is an efficient cou-
X Gij(r.rp, @)% (5 pling between them. The inset of the figure shdimslog—

i,j=xy,z
log scalé the spectrum of the absorbed power betweelt 10

In this part, we present some numerical results obtainednd 13°rad s* at two different distanced=20nm andd
with a particle and a surface of silicon carbif®C). The =1 mm. It is seen that the RHT is almost monochromatic

optical properties of this material can be described using aand is larger in the near field. If the particle and the bulk
oscillator mode’

2 2
e5(0)=ep(w)=s(w)=¢. 1+%) ©) 10"}
wi—w —ilw =
£ 107
with €,=6.7, 0, =969cm?, w;=793cm?, and I =
=4.76s. The bulk can support resonant surface waves, ;v 1074
called surface phonon polaritons, that produce a peak in the 2,
density of states at frequeneyg wheree(wg) satisfies the el 107 i
relation ¢’ (wg) = — 1. The spherical particle supports vol- Far field value
ume phonon polaritons aép wheree(wp) satisfies the re- 10" : = > — )
lation &’(wp)=—2. Using Eq.(6), we find: wg=178.7 100 10 10° 10° 107
X 10%rads ! and wp=175.6< 10%rad s *. dinm

. B—P . .
.|n Fig. 2, we plthabs (w) for a spherical particle of g, 3. Total power radiated by the bullat Tg=300 K) and absorbed by
radiusa=5 nm at different distanced above the surface, the particle(of radiusa=5 nm) vs distance.
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different points in the sample. Figure 4 displays a map, in log
scale, of the dissipation rate in the case of a 10 nm diameter
sphere of SiC affp=300K situated at 100 nm above a

g L5 sample of SiC. It is seen that the energy is dissipated on a
=1 4 . . L. .
£ _4.5/ scale comparable to the tip—sample distance. The dissipation
S -400- / per unit volume decreases very fdas 1f°) with the dis-
§ 35/ s tancer between the source and the point of the sample where
-600F / 25 the dissipation is considergthe isocontour labeled with a
3 / “6"” corresponds to the points where the dissipation per unit
800 LT volume is 16 Wm™3). The amount of energy locally depos-
0 200 400 600 800 ited is as large as 100 MW .

Lateral distance in nm

In this letter, we have shown that nanoscale RHT be-

tween a sample and a small particle is almost monochromatic
%nd can be enhanced by several orders of magnitude when
the materials involved support resonant surface waves. When
illuminated by the particle, the distribution of power inside
were constituted by two different materials, the RHT specthe sample extends over distances of the same order as the
trum would feature two separate sharp peaks at two differeniarticle-sample separation. These results should have broad
resonance frequencies. applications in near-field microscopy, in design of nanostruc-

Figure 3 shows the integrated power absorbed by th,res and in high density storage processes by local heating.
same patrticle versus distanddthe substrate is still held at
temperatureTg=300K). The near-field RHT increases as
3 . .
1/d anq is larger at smgll distances by several ordersipn r. abramson and C. L. Tien, Microscale Thermophys. EBg229
of magnitude than the far-field one. Indeed, tb#10nm, (1999.
Pape=2.6X107°W and for d=10um, P,,¢8.9x10 18 2G. Chen, Microscale Thermophys. Erig.215(1997.
- P 3J. B. Pendry, J. Mod. Op#5, 2389(1998.
W. This enhancement comes from the contribution of 8Va-4E ¢ Gravalho, C. L. Tien. and R. P. Caren, J. Heat Trar@%e351
nescent waves to the energy exchange. Therefore, this contjgg?. ' ' ’
tribution cannot be neglected in a near-field calculation. ThisZc. M. Hargreaves, Phys. Rev. LeB0A, 491 (1969.
phenomenon occurs when the materials can support resonap?-LP °L'der and '\g' X a? |’4\|on¢, F;,hhys' quev'%ﬁ?éig@é%
. . . L. m n . J. I . . .
surface waves like 1l1-V or 1I-VI semiconductors and be- g, Draﬁgfeiz 2ndJ Xu Ja ;\jlicros)/tlsBZ 83\'5 (1588
cause the resonant frequencies take place in the far IR regiofc. c. williams and H. K. Wickramasinghe, Appl. Phys. Lete, 1587
(up to 10 um) where the characteristic wavelength of ther- lo(1986. o
mal emission aff ~300K is 10um. A lot of materials, like ~,R- Carminati and J. J. Greffet, Phys. Rev. L&#, 1660(1999.
. - P. C. Chaumet, A. Rahmani, F. de Fornel, and J. P. Dufour, Phys. Rev. B
oxides or glass, can also support resonant surface waves irkg 2310(1998.

the IR or the visible region. 123, D. Jackson(Classical Electrodynami¢s2nd Ed.(Wiley, New York,
Reciprocity requires that the same enhanced RHT apl-3197~‘?, Sec. 4.4.

pears when the particle illuminates the surface. This situation (Fl'g';'gcem'”' A. Sentenac, and J. J. Greffet, J. Opt. Soc. AMLA117

may help us in understanding the radiative heat exchangeg 1 praine, Astrophys. B33 848 (1988.

between a nanotifike those used in near-field microscopy 15S. M. Rytov, Yu. A. Kravtsov, and V. I. TatarskiPrinciples of Statistical

and a sample. It is interesting to study how the energy radi- RadiophysicgSpringer, Berlin, 1989

e s . -16A V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, Phys. Rev.
ated by the tip is dissipated in the sample. To answer this Lett. 85, 1548(2000.

question, we Ca|CU|ated—U5ir_19 _H@—the tOta_' powel(in- E. W. Palik, Handbook of Optical Constants of Solidacademic, San
tegrated over the frequencjadissipated per unit volume for  Diego, CA, 1985.

FIG. 4. Deposited power per unit volume inside the bulk. The particle has
radiusa=5 nm and is held at temperatufg =300 K.
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We propose a new method to perform local emission spectroscopy of surfaces
with a subwavelength resolution, based on the measurement of the thermally
emitted electromagnetic field with a scanning near-field optical microscope. The
feasibility of the method is studied using a rigorous theory of scanning near-field
optical microscopy and electromagnetic calculations of the near field thermally
emitted from a plane surface. We show that near-field optical techniques using
sharp metallic tips should provide a signal above the detection treshold. From
the near-field spectrum, it is possible to recover the local dielectric constant of
the material at subwavelength scale. Finally, we show that a near-field optical
microscope detecting thermally emitted fields is the optical analog of the electron
scanning tunneling microscope. The measurement of the local density of states
of the electromagnetic field by such an instrument is discussed. (¢)2002 Optical
Society of America

1. Introduction

With the development of nanotechnologies, there is an increasing interest in the determination of
the properties of materials at small length scales. This is a crucial issue, for example, in microelec-
tronics and optoelectronics, where the features of the components and their beahvior have to be
certified at a sub-micronic scale. Optical spectroscopy, using visible or infrared light, is a widespread
and powerful tool to investigate the properties of matter. Among the various techniques, emission
spectroscopy is a natural way of studying solid surfaces. Recent studies have shown that the elec-
tromagnetic field thermally emitted by a heated surface exhibits surprising coherence properties
at distances much smaller than the typical wavelengths of the emission spectrum [1, 2, 3]. It was
shown recently that this near-field coherence substantially modify the far-field emission properties
of microstructured surfaces [4]. Concerning the spectral behavior, two major properties of the near-
field thermal emission spectrum close to flat surfaces separating a solid body from a vacuum were
established [2]. (1) The energy density in the near field is enhanced by several orders of magnitude
compare to its far-field value. (2) The energy spectrum exhibits a sharp peak at a given frequency,
so that the near-field thermal emission is quasi-monochromatic. This behavior is observed close
to all materials supporting resonant surface electromagnetic modes in the infrared domain of the
spectrum. Examples of such materials are polar materials, such as glass, SiC, or II-VI and III-V
semi-conductors which support surface-phonon polaritons, or doped silicon which supports surface-
plasmon polaritons. Surface polaritons result from the coupling between the electromagnetic field
and either a phonon or a plasmon resonance in the solid. The electromagnetic wave associated to a
polariton is an evanescent wave, propagating along the interface between the medium and vacuum
(surface wave). Thus, the spectral and enhancement effects associated with the excitation of surface
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Fig. 1. Scheme of a scanning near-field optical microscope measuring a thermally emitted
field. (a): experimental situation. (b): reciprocal (fictitious) situation.

polaritons are confined in the near field of the surface [1, 2].

The development of Scanning Near-field Optical Microscopy (SNOM) has made possible the
measurement of confined optical near fields with a resolution reaching a few tens of nanometers [5].
SNOM techniques have been used to perform different kinds of emission spectroscopy, e.g., lumi-
nescence [6], Raman spectroscopy [7] or two-photon fluorescence [8]. For detection of infrared light,
apertureless techniques [9] have shown their reliability for imaging [10] as well as for vibrational
spectroscopy on molecules [11]. In this paper, we use rigorous theoretical arguments to show that
the measurement of a near-field thermal-emission spectrum is possible with an apertureless SNOM
using a sharp metallic tip. The predicted level of signal is above the sensitivity of usual infrared
detectors. We propose such a technique to recover the dielectric constant of solid surfaces at a sub-
wavelength scale. Finally, we show that an apertureless SNOM detecting thermally-emitted light
is the exact optical analog of an electron scanning tunneling microscope (STM). In particular, we
discuss the ability of such an instrument to measure the local density of states (LDOS) of the
electromgnetic field close to a surface.

2. Theory of near-field detection of thermal light

We consider a scanning near-field optical microscope (SNOM) working in the detection mode,
and detecting the electromagnetic field thermally emitted by a sample held at a tempereature 7.
The system is depicted in Fig. 1. The microscope tip is scanned at close proximity of the interface
separating the solid body from a vacuum. The signal is measured in the far field, by a point detector
sensitive to the energy flux carried by the electromagnetic field. We assume that a analyzer is placed



in front of the detector (polarized detection). The direction of polarization of the analyzer is along
the direction of the vector j,... If the solid angle d€2 under which the detector is seen from the tip
is small (a condition we assume for simplicity), the signal § at the detector, at a given frequency
w, writes
€gC 2 92

(Sw)) = 5 [Ea(w)|"r d (1)
where ¢ is the speed of light in vacuuum, r is the distance between the tip and the detector, and Ey
is the electric field at the position of the detector. Let us denote by E.;, (experimental field) the
thermal field, emitted by the sample, in the gap region between the tip and the sample. This field
can be, in principle, calculated following the approach recently used in refs.[1, 2]. For simplicity,
and because this seems realistic in practice, we shall neglect the thermal emission from the tip itself
(which is assumed to be cold) compared to that of the heated sample. But we do not need, at this
stage, to assume a weak coupling between the tip and the sample. In particular, in the expressions
derived in this section, the experimental field E.;, is the field emitted by the sample alone, in the
presence of the detecting tip. Following the approach of ref.[12], based on the reciprocity theorem
of electromagnetism [13], an exact relationship between the signal (S(w)) and the experimental
field E.;, can be established. To proceed, one considers a fictitious situation in which the sample is
removed, and a point source, represented by a monochromatic current j,... oscillating at frequency
w, is placed at the position of the detector (see Fig. 1(b)). The orientation of this reciprocal source
is chosen along the direction of polarization of the analyzer used in the experimental sitution. The
field created around the tip in this reciprocal situation is denoted by E,... Using the reciprocity
theorem, the field at the detector can be written [12]:

. - OE,..(R, z,w
Ed(w) *Jrec = / ( )
tow Js 0z

‘Eepp(R, 2,w)dR (2)

where the integration is performed in a plane z = cte between the tip and the sample and R = (z,y)

are the coordinates along this plane. Equation (2) connects the field above the surface E.;, to the

field in the detector E4 along the direction of the analyzer. Note that the reciprocal field E,..

encodes all the informations about the detection system (tip and collection optics). Reporting the

expression of the field at the detector (2) in (1), one finds the expression for the measured signal:
€gC

(S(w)) = 8?// Hi;(R, R, 2,0)W;;(R, R, z,w)dRdR’ . 3)
SJS

Equation (3) is the main result of this paper. It establishes a linear relationship between the
signal and The cross-spectral density tensor W;; of the electric field defined by
<E6$p7i(R7 2y w) ;;p,j(R" 2 Wl)) = Wij (Rv Rlv 2, w) 5(“ - wl) : (4)

The response function H;; only depends on the detection system (in particular the tip gepometry
and composition), and is given by

aErec,i(R7 Z, w) 8Erec,j (Rl7 2, w) (5)
0z 0z '

The cross-spectral density tensor W;; describes the electric-field spatial correlation at a given
frequency w. For the thermal emission situation considered here, it depends only on the dielectric
constant, on the geometry and on the temperature of the sample. The linear relationship described
in Eq. (3) suggested that the optical properties of the sample (ferequency-dependent dielectric
constant) might be recovered from the SNOM signal. Furthermore, the behavior of W;; has been

Hi;(R, R/, w) =




studied recently in the near field of flat surfaces supporting resonant surface electromagnetic modes,
such as SPP [1, 2]. It has been shown that at nanometric distances, W;;(R,R’, z,w) is quasi-
monochromatic and is enhanced by several orders of magnitude compare to its far field value. Near
such materials, we shall see below show that the signal detected by an apertureless SNOM using
a sharp metallic tip should be above the detection treshold, and have a spectral shape allowing to
determine the dielectric constant of the material.

3. Principle of the method of near-field spectroscopy

The principle of the method can be established by considering a model sample made of a semi-
infinite homogenous material filling the half-space z < 0, with a flat surface in the plane z = 0. For
this geometry, the cross-spectral density tensor can be expanded asymptotically for small distances
z between the observation point and the surface [2, 3, 14]. The result may be written as the product
of a frequency-dependent function and a function which depends only on the observation point:

h Imle(w)] 1
An2¢q |e(w) + 1|2 exp(hw/kBT) — 1

Wi (R, R, z,w) &~ w;; (R, R, 2) (6)
Here A is the reduced Planck constant, kg is the Boltzmann constant, 7" is the temperature of the
sample and w;;(z, R, R’) is a known function of the spatial coordinates which does not need to be
explicitely given here. As shown in refs.[2, 3], W;;(z, R, R’,w) exhibits a peak when varying the
frequency for a given position in the near field above materials supporting surface waves, such as
SPP. Indeed, the quantity I'm[e(w)]/|e(w) + 1]? is proportional to the density of electromagnetic
modes close to the interface, which is enhanced at the frequency corresponding to the resonance of
the material. This resonance occurs where Re(¢) = —1. An analysis of the peak of the function W;;
peak could lead to the measurement of the dielectric constant. More precisely, recording a spectrum
of Wi;(z, R, R’,w) for a given position allows, in principle, to retrieve the quantity I'm(e)/|e+1|* =
Im[(e—1)/(e+1)]/2. (¢ —1)/(e+ 1) being a causal quantity, Re[(¢ — 1)/(e+ 1)] can be calculated
from I'm[(¢ — 1)/(¢+ 1)] using the Kramers-Kronig relations. Once [¢(w) — 1]/[¢(w) + 1] is known,
¢(w)] is known. Note that because the spectrum of I'm(e)/|e + 1|? is sharply peaked on materials
supproting SPP, one do not need a wide-band spectral measurement to accurately use the Kramers-
Kronig relations. A narrow-band spectrum around the peak frequency should be sufficient to ensure
a precise computation of Re[(¢ — 1)/(e+ 1)].

This procedure assumes that in practice, the cross-spectral density tensor W;; can be deduced
from the SNOM signal. This is the case if the response function H;; appearing in Eq. (3) is known.
We shall see in the next section that an accurate model for H;; can be developed for apertureless
SNOM techniques using conical metallic tips. This model allows a quantitative estimation of the
signal level, thus showing on a rigorous basis the feasibility of the method.

4. Results for apertureless near-field optical microscopy

As shown in equation (3), the signal at the detector is determined by the value of the two-point
function H;;(R, R/, z,w) W;;(R, R/, z,w) in a plane z = cte between the sample and the tip. We now
restrict the discussion to apertureless SNOM techniques [9], using a metallic tip of (approximately)
conical shape. A model for such tips has been introduced [15], based on an asymptotic expression
of the field close to the apex of a perfectly-conducting cone [16]. This model has been used recently,
together with the expression (2), to describe the spectral response of an apertureless set-up [12].
The model allows to calculate the reciprocal field E,.., which exhibits a frequency dependence in
w”, where v is a real number which depends only on the cone angle. From this dependence and
Eq. (2), the complete frequency dependence of the signal has been calculated, in excellent agreement



with experiments [17]. In the case of the present study, the frequency dependence of the response
function H;; can be determined along the same lines.

Let us take the tip apex at the origin of the coordinates. A detailed study of the function
H;;(R,R',z,w) in a plane z = cte shows that it takes significant values only if |R|and|R'| are
smaller than the distance between this plane and the tip apex. We can thus infer that in the plane
of integration z = cte, the function H;;(R, R/, z,w) W;;(R, R/, z,w) will take large values only on
a zone situated just below the tip which lateral size is on the order of the tip-sample distance. In
other words, the signal (S(w)) at the detector corresponds to the near-field detection of the thermal
field on a zone whose lateral size is on the ordre of the tip-sample distance.

Let us now turn to the spectral dependence. The use of the perfectly-conducting cone model
to evaluate the response function H;; leads to:

I'm[e(w)] w?

(@) = (o) 12 explhoo/hpT) 1

1(d) (7)

where d is the distance between the tip and the sample. I(d) is a function which depends on the set-
up geometry, but not on frequency. We have evaluated /(d) numerically by calculating the integral
in Eq. (3). It scales approximately as 1/d>. We see also in Eq. (7) that the signal at the detector
has a strong spectral dependence. When the tip is in the near field of a material supporting surface
waves, the density of electromagnetic modes is resonant near the frequency where Re[e(w)] = —1.
The signal at the detector exhibits a sharp peak around this frequency, and the signal integrated
over all frequencies is also strongly enhanced. We have evaluated the signal at the detector in the
case of a silicon carbide (SiC) surface, which is known to produce a strong enhancement of the
thermaly emitted near field [1, 2] due to the excitation of surface-phonon polaritons. In the case
of a tip situated at 10 nm above a SiC sample heated at T = 500 K, the signal at the detector
is greater than 107"W.sr~! which is above the detection treshold of usual infrared detectors used
in SNOM [18]. Equation (7) show also that if the function /(d) is known, and if we are able to
record a spectrum of the signal (S(w)), one should be able to retrieve the dielectric constant ¢(w)
following the method described in section 3. Moreover, the measurement could be done with a
lateral resoution on the order of the tip-sample distance, which is below 10nm in apertureless

SNOM.

5. Measurement of local density of states and analogy with STM

With the development of near-field optics, the direct measurement of the local density of states
(LDOS) of the electromagnetic field close to a surface seems to be possible [19, 20, 21]. The LDOS
is a basic quantity allowing to compute radiative lifetimes of atoms or molecules, as well as thermal
fields energy and forces. Shaping the LDOS by structuring a surface would allow, for example, to
control the emission of elementary sources. This is a key issue for nanooptics. In this section, we
show that measuring thermally emitted fields with a SNOM is a natural way to map the LDOS of
the electromagnetic field. This results also demonstrates that a SNOM measuring thermal fields is
the optical analog of an electron STM.

A. Local density of states

The cross-spectral density defined in Eq. (4) allows to compute the electric energy density U(r,w)
at a given point r = (R, z) by
Ur,w) = %OWkk(r, r,w) (8)



For light thermally emitted into a vacuum by a homogeneous medium, one can write

3
Wik (r,1,0) = 222 () O, 7)Y / |G (v, 7, ) |2 (9)
e v

where V is the volume of the emitting media, ¢/ the imaginary part of its dielectric constant and
Grm the Green dyadic accounting for the geometry of the medium. For a semi-infinite medium
separated from vacuum by a flat interface, its expression is given in ref.[1]. Note that Eq. (9) is
valid for any geometry, provided that the Green dyadic for this geometry is used. For complicated
geometries with low symmetris, this dyadic can be calculated numerically, following for example
the method described in refs.[22].

In order to introduce the LDOS of the electromagnetic field, we rewrite the energy density in
the form

hw
exp(hw/kgT) — 1
For a thermal equilibrium situation, this equation is a standard result of statistical physics which
tells us that the energy density at a given point r and a given frequency w is the product of the
photon energy, the mean number of photons per states (given here by the Bose-Einstein statistics)
and the local density of states p(r,w). For the non-equilibrium situation considered here (the thermal
emission by a sample in a vacuum assumed to be at 7' = 0K), we can use Eq. (10) as a definition

of the LDOS. Using Eqgs. (8) and (9), this yields

Ur,w) = p(r,w) (10)

wB

PEe) = 5 ) 2 ], 1G] d (11)

This expression deserves a comment. The LDOS defined in Eq. (11) is not given by the imaginary
part of the trace of the Green dyadic, and therefore differs from the definition often used for the
electromagnetic field LDOS [19, 20, 21]. The reason is that Eq. (11) describes a non-equilibrium
thermal-emission problem, for which all the modes of the electromagnetic field cannot be excited.
Indeed, the LDOS defined here only accounts for the modes which can be occupied in a vacuum
corresponding to the half-space z > 0, after thermal emission by a medium occupying the half-space
z < 0. Note that, as we shall see below, this LDOS is the relevant quantity that could be measure
by a near-field optical microscope.

B. Detection of the LDOS by an ideal probe

In this setion, we discuss the measurement of the LDOS defined above by a near-field optical
microscope working in the detection mode. Equation (3) gives an exact expression of the signal
measured by such an instrument. The general relationship between the signal and the cross-spectral
density tensor is non-local and strongly polarization dependent. This shows that one do not measure
in general a quantity which is proportional to Wy (r, r,w), and thus to the LDOS.

Let us see what would be measured by an ideal probe consisting of a single electric dipole
described by a polarizability a(w). Note that such a probe was proposed as a model for the uncoated
dielectric probe sometimes used in photon scanning tunneling microscopy (PSTM), and gives good
qualitative prediction [23]. We assume that the thermally emitting medium occupies the half-space
z < 0, and that the probe is placed at a point r;. As in section 2, the detector placed in the far field
measures the field intensity at a given point rg, through an analyser whose polarization direction
is along the vector j,... In this case, Eq. (2) simplifies to write

w? exp(iklrg— ). &

Jree ' Eq = a(w) Jree - h(ua) - Ecgp(rs, ) (12)

4me? |rg — 1y
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where k = w/ec, uqg = (rg—r¢)/|ra—r¢| is the unit vector pointing from the probe towards the detector
and ﬁ(ud) = I — uquy is the dyadic operator which projects a vector on the direction transverse
to uy, ? being the unit dyadic operator. The dyadic ﬁ(ud) being symmetric, the scalar product
in the right-hand side in Eq. (12) can be transformed using the equality j,.. - (ﬁ(ud) “Eepp(re,w) =
E..p(rs,w) - ﬁ(ud) - Jree- Finally, the signal at the detector writes

4
Y w *
(9) = la(@)|*—7 dQ D A ATWij(xs, 71, ) (13)
27]
where A = <}_1}(ud) - jree 18 a vector depending only on the detection conditions (direction and

polarization). Note that if j,.. is transverse with respect to the direction ug, which is approximately
the case in many experimental set-ups, then one simply has A = j,...

Equation (13) shows that with an ideal probe consisting of a signal dipole (with an isotropic
polarizability a(w), one locally measures the cross-spectral density tensor at the position r; of the
tip. Nevertheless, polarization properties of the detection still exists so that the energy density (i.e.
the trace of W;;), and therefore the LDOS, is not directly measured. A possibility of measuring the
trace would be to measure a signal (S) in the direction normal to the surface with an unpolarized
detection, and a signal (S3) in the direction parallel to the surface, with an analyzer in the vertical
direction. (S1) would be a sum of the two signals obtained with j,.. along the z-direction and along
the y-direction. (S3) would correpond to the signal measured with j,.. along the z-direction. Using
Eq. (13), we see that the signal (S) = (S1) + (S2) will be proportional to the trace Wy (ry, re,w),
and thus to the LDOS p(r;,w).

C. Analogy with scanning (electron) tunneling microscopy

The result in this section shows that a SNOM measuring the thermally emitted field with a dipole
probe (for example a sphere much smaller than the existing wavelengths) measures the electromag-
netic LDOS of the sample. As disussed above, the measured LDOS is that of the modes which can
be excited in the thermal emission process in a cold vacuum. This result was obtained from Eq. (2)
assumming a weak tip-sample coupling, i.e., the experimental field is assumed to be the same with
or without the tip.

The same result could be obtained starting from the generalized Bardeen formula derived in
ref.[24]. Using this formalism for a dipole probe, one also ends up with Eq. (13), which explicitely
shows the linear relationship between the signal and the LDOS. This derivation of is exactly the
same as that used in the Tersoff and Haman theory of the STM [25]. This theory showed, in
the weak tip-sample coupling limit, that the electron-tunneling current measured in STM was
proportional to the electronic LDOS of the sample, at the tip position, and at the Fermi energy.
This result, although obtained under some approximations, was a breakthrough in understanding
the STM signal. In the case of near-field optics, the present discussion, together with the use of the
generalized Bardeen formula [24], shows that under similar approximations, a SNOM using an ideal
dipole probe and measuring the field thermally emitted by the sample is the real optical analog
to the electron STM. We believe that this situation provides for SNOM a great potential for local
solid-surface spectroscopy, along the directions opened by STM.

6. Conclusion

We have shown that a near-field thermal emission spectrum is theoretically measurable by an
apertureless SNOM above a surface separating a vacuum from a material exhibiting resonant surface
waves. The signal level and its frequency dependence have been determined using a rigorous theory.



A novel method to perform a local spectroscopy of a solid surface has been proposed, based on a
measurement of the thermally emitted electromagnetic near field. The analogy between a SNOM
measuring thermal fields and the electron STM has been established and discussed. This shows that
the proposed method should have the same potential, in infrared spectroscopy, has the spectroscopic
techniques developed in STM.
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