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Introduction

Avant propos

Le groupe de tresses B,, introduit par Artin en 1926 ([1]), joue un rdle remarquable dans
plusieurs domaines des mathématiques, en particulier dans la théorie des nceuds.

Les Théorémes d’Alexander et de Markov établissent une correspondance entre nceuds (et
entrelacs) et tresses. Plus précisément deux entrelacs sont isotopes si et seulement si les tresses
qui les représentent sont reliées par une suite de mouvements élémentaires dans la tour Up>2 By, .
Cela implique que la recherche des invariants d’entrelacs correspond & la construction des traces
de Markov sur la tour de U,>2C[B,], c’est-a-dire, des familles de fonctionnelles linéaires qui
vérifient les conditions du théoréme de Markov. Cette construction resta longtemps purement
théorique, jusqu’aux années 80 et a la découverte du polynéome de Jones ([58]). La construction
algébrique de ce polynome est basée sur la définition (inductive) d’une trace de Markov sur
les algébres de Hecke ([23]), qui sont des quotients de dimension finie des algébres des groupes
de tresses.

Les travaux de Jones conduisent & la question naturelle suivante:

“Peut-on définir d’autres invariants d’entrelacs avec des constructions analogues au polynéme
de Jones (et son extension, le polynome HOMFLY-PT) 77

Le premier résultat de cette theése (dans I’ordre chronologique) est une réponse affirmative a
cette question. Plus précisément dans le chapitre 5 nous nous intéressons aux algébres de Hecke
cubiques, qui sont d’autres quotients des algébres des groupes de tresses. En suivant "approche
de Jones, nous construisons deux nouveaux invariants d’entrelacs dans R3. Ces invariants, dif-
férents des invariants HOMFLY-PT et de Kauffman, sont récursivement calculables et définis
univoquement par deux relations skein (figure 1).

L’autre sujet de cette thése est ’étude des tresses et, plus généralement, des tresses singuliéres
sur les surfaces. Etant donnée une surface F on peut définir le groupe de tresses B(n, F)) avec
une construction analogue a celle de By, ([42]). Ces groupes sont une généralisation naturelle
du groupe fondamental de la surface F et ils sont liés aux Mapping class groups et & la théorie
des espaces de configurations ([17]). Un sous-groupe remarquable de B(n, F') est le groupe de
tresses pures P(n, F'), qui est le noyau de la projection de B(n, F') dans le groupe symétrique
a n éléments.

Nous exhibons de nouvelles présentations, simples, pour les groupes de tresses et de tresses
pures sur les surfaces. Ces présentations sont des extensions de présentations usuelles de B, et
du groupe fondamental de la surface. Le nombre de générateurs et relations est inférieur aux
autres présentations connues et, & notre connaissance, le cas d’une surface a bord (de genre
g > 1) est nouveau dans la littérature.

L’intérét pour les groupes de tresses est également motivé par la recherche d’invariants d’entre-
lacs sur les 3-variétés. En effet, il existe une généralisation du théoréme de Markov pour les
3-variétés ([86]), qui relie les entrelacs de la variété M avec les tresses sur la surface F', ou
F est la surface associée a la décomposition a livre ouvert de M ([73]). Nous étendons aux



3-variétés la construction de Jones et nous obtenons un résultat partiel, en construisant une
trace de Markov sur un certain quotient de l'algebre de B(n, F).

Les tresses singuliéres sont des tresses ayant un nombre fini de points doubles. Les tresses
singuliéres & n brins sur le disque , avec la composition usuelle de chemins, forment le monoide
S By, appelé monoide de tresses singuliéres & n brins sur le disque. Le monoide SB(n, F') de
tresses singuliéres & n brins sur une surface F, a été introduit dans [48] afin de définir des
invariants de type fini ([4]) pour les tresses sur les surfaces. Nous obtenons qu’il se plonge dans
un groupe et que le probléme du mot est résoluble dans SB(n, F'). Ces résultats découlent de
la caractérisation des centralisateurs de ce monoide, que nous obtenons en généralisant des
techniques de Fenn, Rolfsen et Zhu pour SB,,.

Nous détaillons nos résultats dans les paragraphes suivants.

Tresses sur les surfaces

Dans le premier chapitre nous démontrons des nouvelles présentations pour les groupes de
tresses B(n, F).

Théoréme 1. (Théoréme 1.1.1)
Soit F une surface orientable de genre g > 1 et avec p composantes de bord. Le groupe B(n, F')
admet la présentation sutvante.

e Générateurs: o1,...,0n 1,01,...,0g,b1,...,bg,21,...,2p 1.
o Relations:
— Relations de tresses, 1i.e.

0i0i4+10; = 0i4100441;

oio; = o0j0; pourl|i—j| >2.

— Relations miztes:

(R1) apoi=o05a, (1<r<g;i#l);
bro; = oiby (1<r <g;i#1);
(R2) oy'aroi'ay = a0y a0t (1< 7 <g);
al_leal_le = b,«al_lb,«al_l (1<r<yg);
(R3) o7'asora, = a,07 asor (s <r);
aflbsalb,« = b,«al_lbsal (s <r);
afla,salb?n = bTaflasal (s <r);
aflbsalar = araflbsal (s <r);
(R4) aflaraflbr = braflaral (1<r<yg);
(R5) zjoy=o052; (1#n—-1j=1,...,p—1);
(R6) aflzialar:araflzial (1<r<g;i=1,....p—1 n>1);
al_lzialbr :braflzial 1<r<g;i=1,....p—1L n>1);
(R7) al_lzj-alzl = zlal_lzjal Gj=1,....p—1,5<1);
(R8) oy 'zjor 2 = zjor zjort (j=1,...,p—1).
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Les tresses géométriques correspondant aux générateurs sont les générateurs usuels du groupe
de tresses d’Artin et de 71 (F'). Nous renvoyons au chapitre 1 et au Théoréme 1.1.2 pour les
présentations correspondant aux surfaces fermées et aux Théorémes 1.5.2 and 1.5.3 pour le cas
de surfaces non orientables. La preuve est inspirée d’une preuve de Morita pour la présentation
d’Artin de B,, ([71]). Nous obtenons ensuite une présentation pour P(n, F'), dans le cas d’une
surface orientable. Cette présentation est une extension de la présentation classique du groupe
de tresses pures P, C By, ([17]).

Théoréme 2. (Théoréme 1.6.1)
Soit F' une surface orientable de genre g > 1 avec p > 0 composantes de bord. Le groupe
P(n, F) admet la présentation suivante:

o (Générateurs:
{Aij|1<i<2g+p+n—229+p<j<29+p+n—1,i<j}

e Relations:

(PR1) A jArAij=Ar, si(i<j<r<s)ou(r+1<i<j<s),
ou(i=r+1<j<sr<2g paire et r > 29);

(PR2) A7 AjsAij = AjsAjsAry si(i <j<s);

(PR3) A AisAij = AioAj Ai JA;TA] 5i(i <j<s);

(PR4) Aj [ ArsAij = AioAj AT AT L Ar AjAi JAT AT
si(i+l<r<j<s)ou
(i+1=r<j<s r<2g impaire etr > 2g);

(ERl) A;.&LjAr,sAr—l—l,j = Ar,sAr—I—l,sAj,sAr_iLs

sir < 29 paire;
(ER2) A;}L‘Ar,sArij = Arfl,sAj,sAil Ar,sAj,sArfl,sAjjslAil

Y] r—1,s r—1,s

st r < 2g impaire .

Le Théoréme 1.6.2 fournit un résultat analogue pour les surfaces orientables fermées.

Le groupe de tresses pures P, est un produit semi-direct de P, 1 et de F},, le groupe libre de
rang n, ou l'action induite de P,_1 sur ’abelianisé de F}, est triviale. On dit alors que P, est un
produit quasi-direct de P, et de F,. Par conséquent, N2 I(P,)? = {0} et I(P,)?/I(P,)%+!
est un Z-module libre pour tout d > 0, ot I¥ est la puissance k-iéme de I’idéal d’augmentation
de ZP,. Ce résultat est fondamental dans la théorie de Vassilev pour les entrelacs dans R?
(voir [74]).

Le groupe K,(F'), qui est la cloture normale de P, dans P(n, F), est étudié dans [48]. On
démontre que K, (F) est un produit quasi-direct iteré de groupes libres de rang infini et on
construit un invariant universel de type fini pour les tresses sur une surface fermeée.

Nous introduisons le groupe Y (n, F'), défini comme la cloture normale dans P(n, F') de P(n, E),
ou FE est la surface obtenue en enlevant les anses de F'. Nous obtenons que Y (n, F'), qui contient
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proprement K (n, F'), est un produit quasi-direct iteré de groupes libres (Proposition 1.6.3).
Par conséquent, N2o I(Y (n, F))? = {0} et I(Y (n, F))¢/I(Y (n, F))*™! est un Z-module libre
pour tout d > 0. D’autre part, lorsque F est une surface de genre g > 1 a bord, P(n, F') est un
produit semi-direct iteré de groupes libres de rang fini, mais il n’est pas quasi-direct, a cause
des relations (ER1) et (ER2) dans le Théoréme 2 (voir section 1.6.3).

Nous remarquons aussi que la relation (R4) dans le Théoréme 1 implique qu’il n’existe pas un
invariant universel multiplicatif de type fini pour les tresses sur les surfaces de genre > 1 ([7]).

Graphes et présentations de tresses

Dans le chapitre 2 nous poursuivons la recherche de présentations pour les groupes de tresses
sur les surfaces. Sergiescu ([84]) a démontré que 1’on peut associer a tout graphe a n sommets
sur le plan (connexe, sans boucles ni intersections) une présentation pour le groupe de tresses
B,,. Ce résultat a été ensuite généralisé pour des autres familles de graphes. Les présentations
ainsi obtenues sont en général trés redondantes mais elles permettent de relier les relations
des tresses & la géométrie du graphe. En particulier, les présentations par graphes ont été
utilisées dans le probléme de conjugaison pour B, ([18]) et dans le probléme de plongement
des monoides de tresses positives dans B, ([53]).

Nous allons donc considérer le cas des graphes sur une surface F' et des groupes de tresses
correspondant. Nous démontrons que 'on peut associer a tout graphe & n sommets sur la
spheére (connexe, sans boucles et intersections) une présentation pour le groupe de tresses
sur la sphére B(n,S?) (Théoréme 2.2.1) et nous déduisons quelques résultats sur les auto-
morphismes de B(n,S?) (Corollaire 2.3.1). Nous démontrons aussi que Out(B(n,S?)) est
isomorphe & Zgy @® Zso, pour n > 4 (Proposition 2.4.2). Les automorphismes ¢y, ¢ de B(n, S?)
définis par ¢1(0;) = aj_l pour j = 1,...,n — 1 et ¢2(0j) = o;U pour j =1,...,n —1, oi
U= (01 0,1)" est le générateur du centre de B(n,S?), sont des représentants pour les
générateurs de Out(B(n, S?)).

Tresses singuliéres sur les surfaces

Dans le chapitre 3, nous étudions le monoide de tresses singuliéres, SB(n, F'). Les générateurs
de B(n, F'), leur inverses, plus des générateurs singuliers 71, ... 7,—1, qui correspondent & des
tresses avec un point double, forment un ensemble de générateurs pour SB(n, F'). Nous dé-
montrons que les tresses sur les surfaces satisfont une propriété analogue aux tresses singuliéres
sur le disque ([40]).

Théoréme 3. (Théoréme 3.3.2)
Pour tout z € SB(n, F'), les propriétés suivantes sont équivalentes:

1. ojx = z0} ,
2. otz = zoy, pour quelques r € Z\ {0},
8. ojx =zoy, pour lout T € Z,

4. TjT = TTk ,
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5. Tjx =Ty, pour quelques r € Z\ {0}.

L’idée de la preuve est de considérer les tresses & n brins sur la surface F' comme des mapping
classes de la surface F'\ P, o P est un ensemble de n points distincts. En particulier, dans
les Théoremes 3.3.1 and 3.3.2 on traduit les relations du Théoréme 3 en termes d’action de
tresses sur les classes d’isotopies d’arcs (un arc est un plongement de l'intervalle unitaire avec
extremités dans P). Comme application du Théoréme 3 et d’une propriété de réduction pour
les tresses singuliéres (Lemme 3.4.2), on déduit des preuves simples pour les résultats suivants:

Théoréme 4. (Théoréme 3.4.1)
Le monoide SB(n, F) se plonge dans un groupe.

Théoréme 5. (Théoreme 3.5.2)
Le probleme du mot pour SB(n, F) est résoluble.

Algébres de Hecke sur les surfaces

Dans le chapitre 4 nous rappelons quelques définitions et constructions classiques (algebres de
Hecke, traces de Markov et construction algébrique du polynome d’HOMFLY-PT) qui nous
seront utiles dans le chapitre 5, et nous introduisons les algébres de Hecke sur la surface F
comme le quotient

Hn(an):C[B(n’F)]/(UJZ+(1_Q)Uj_qa jzla"'vn_l)a

ol 0; sont les générateurs usuels des groupes des tresses. Nous construison une trace de Markov
pour le cas ¢ = 1.

Théoréme 6. (Théoreme 4.1.1)
Soit 7 I’ensemble des classes de conjugaison de m (F) et 7° = 7 — {1}. Soit S(Cz%) I’algebre
tensorielle symétrique de C°. Pour tout z € C, il y a une (unique) famille T,, de fonctionnelles
linéaires
To : Ho(L, F) = S(C°)

telles que

o Tn(zy) = Tn(yz) Vaz,y € Hy(1, F);

o Toii(zoy) =2Th(x) Yo e Hy(1,F);

o Tnii(on - 01Acy - onz) = AT, (z) Va € Hy(1,F) VA € B(1,F);

o Tn(1) =1,
ot A dénote la classe de conjugaison de A € B(1,F) = mi(F).

Nous pensons que ce résultat s’étend aux algebres H, (g, F') (voir aussi [78]). Toutefois, les cal-
culs sont bien plus compliqués et 1'utilisation d’un ordinateur semble nécessaire. Nous remar-
quons que ces algébres ont été précédemment étudiées dans le cas particulier F = St x I ([66],
[77]). En suivant I’approche de Jones, une trace de Markov ainsi que 1" invariant d’entrelacs
correspondant ont été ainsi construits dans le cas du tore solide F' x I. Le module de skein
pour le tore solide avait été précédemment calculé par Turaev (|87], [88]).



Invariants d’entrelacs satisfaisants une relation skein cubique

Dans le chapitre 5 on considére une autre généralisation des algébres de Hecke et on définit
deux nouveaux invariants polynomiaux qui sont calculables récursivement et qui sont différents
de polynémes d’HOMFLY-PT et Kauffman. Nous rappelons que le polynome de Jones vérifie
la relation skein (d’écheveau) suivante :

() () )

En autres termes, on considére trois entrelacs avec le méme diagramme (méme projection sur le
plan) sauf au voisinage du croisement representé en figure. Etant donné un diagramme planaire
d’un noeud, on peut changer certains croisements pour obtenir un nouveau diagramme qui
représente le diagramme trivial. De cette maniére on peut utiliser la relation skein ci-dessus
pour un calcul récursif de V. En remplacant le facteur (t='/2 —¢'/2) par z on obtient l'invariant
HOMFLY-PT. On peut remarquer que la relation qui définit le polynéme de HOMFLY-PT est
quadratique. En effet, en rajoutant un croisement positif on obtient la relation skein suivante:

1% >< :xtv(\/\>+t2v ><

Le polynéme de Kauffman est ’autre extension connue du polynome de Jones et il est défini
par les relations skein suivantes sur les diagrammes non orientés.

"0 (A =0 0) 0 D)

A (w/) = A (———)

Quelques manipulations élémentaires montrent que A vérifie une relation skein cubique:

A g :(§+z)A<\)<)—<§+”A<\/\)+(%)A(> <>

On a récemment démontré que cette relation ne peut pas étre compléte, c’est-a-dire, elle
n’est pas suffisante pour un calcul récursif de A ([31]). La recherche d’un systéme complet de
relations skein dont une cubique, est particuliérement intéressante et difficile. En collaboration
avec L.Funar (|8]) nous avons obtenu deux nouveaux invariants cubiques.

Théoréme 7. (Théoréme 5.1.1)
Ils existent deuz invariants I, gy et I qui sont uniquement définis par les deux relations
skein en figure 1 ( et par leur valeur sur le noeud trivial qui est traditionellement 1). Ces
invariants prennent valeurs dans

Lo, B, (20 = 22, (o +28) 4/
(H(a,ﬁ)) ’
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Figure 1: Les relations skein.

et respectivement

Z[zie/Q, (Sie/?]
(P0)) 7
ot e —1 € {0,1} est le nombre de composantes mod 2 et
H, 5 = 8a8 — 8a°A% + 201 B + 36018 — 34038 + 170> + 8028 + 320282 —
—3608* + 38a3 4+ 88°% — 1783 + 8,
et respectivement
P = 523 4 185 951652 _ 1463 92960 1 2,760 + 6525 + 67,
Ici on denote par (Q) l'idéal engendré par l’élément Q@ dans l'algébre respective.

Les polynomes A, B, C, .., P correspondant a I(, g) sont donnés ci-dessous. Pour obtenir les

coefficients associés a 19 il suffit de faire le changement de variable w = (—z*/(dz))"/?,
a=—(2"462)/(2*6) et B = (6 — 2?)/2* dans le tableau 1.
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w = ((@? + 28)/(2a — 7)1 A= (F-a)
B=(a’—ap’ - p) C = (o - af?)
D= (1+2aB+a?B? —ad) E=(1+aB+a’8’ —ad)
F=(1+2a8-p3% G = (af® — 2a — 2a%p)
H = (af® - 2a — 2a°6 + B?) I=(a'-a’B% —20a%8 - 3a)
L = (2038 +3a® — o?B% — af?) M = (B* — 26 — 3ap% + o?)
N=(14+4aB+3c28%-a3 —ap*—p3) | 0= (1+3ap +3%6% — o — ap?)
P = (362 - B8° — 20 — 30?0 + 4af5?)

Tableau 1

La preuve du Théoréme est une extension de l'approche de Jones et elle est detaillée dans
les sections 1, 2 et 3 du chapitre 5. La premiére des relations skeins ci-dessus provient de
considérations sur les quotients cubiques des algébres de groupes de tresses C[B,,]. On définit
’algebre de Hecke cubique par analogie avec les algébres de Hecke classiques (voir [23]):

H(Q,n) =C[B,]/(Qoj); j=1,....,n— 1),
ot Q(o;) :a?—ozaj Boj—1, a, B €C.

Notre but est de construir des traces de Markov sur la tour d’algébres de Hecke cubiques, qui
définissent des invariants pour les entrelacs. La différence entre les algébres de Hecke usuelles
et celles cubiques est de la méme nature que celle entre les groupes de Coxeter sphériques (et
donc finis) et ceux hyperboliques (en général infinis). En effet, pour Q(0) # 0 on a (voir [28]):

2 _

e dim¢ H(Q,3) = 24, et H(Q, 3) est isomorphe a I'algébre du groupe tétraédral < 2,3,3 >
d’ordre 24 (i.e. SL(2,Z3)).

e dimc H(Q,4) = 648, et H(Q,4) est isomorphe a 'algébre du groupe Gos, selon la clas-
sification de Shepard-Todd ([85]).

e H(Q,5) est l’algebre de Hecke cyclotomique du groupe Gsz, qui est d’ordre 155520. Il est
conjecturé que cette algébre est libre de dimension finie, ce qui impliquerait, en utilisant
le théoréme de déformation de Tits, qu’elle est isomorphe & 'algébre de Gss.

e dim¢ H(Q,n) = oo pour n > 6.

En particulier la définition directe d'une trace sur H(Q,n), n > 6 se heurte au probléme de
la dimension infinie.
Pour rester justement dans un contexte de dimension finie on introduit les quotients K (a, ),
en rajoutant une relation de plus qui vit dans H(Q,3). La forme exacte de cette relation est:
o902 09+ A 02 020%+ B o030 + B o?oioy +C 00302+ D 0,02 01+ E oy 0903+

E ofoyo1+ F 0350% + F 0203+ G oy0i+ G oioy+ H 0501+ H 0105+ I 010201+
Losoi+ Lojyogt+ M o2+ M o3+ Noj+0os+P =0
ou A, B, ..., P sont les polynémes du tableau 1.

Remarque Les algébres K, («, ) sont de dimension finie pour tout n.

On donne une explication intuitive du choix de cette relation. L’algébre H(Q,3) est semi-
simple (pour @ générique) et se décompose comme C? @ MSGS @ Ms, ou M, est ’algébre des
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matrices m X m. Si on quotiente par le facteur C ¢ MZ@Q @ M; on obtient ’algébre de Hecke
usuelle H,(3). De méme l'algébre de Birman-Wenzl qui est liée au polynéme de Kauffman,
s’obtient en passant au quotient par C @ M2. Dans notre cas, on prend le quotient par C?.
Notre résultat principal est une conséquence immeédiate du résultat technique ci-dessous:

Théoréme 8. (Théoréme 5.1.2) Il y a exactement quatre valeurs de (z, Z) pour lesquelles
il existe une (unique) trace de Markov T sur la tour K.(«, B) avec les parametres (z, Z),
c’est-a-dire:

1. T(zy) = T (yx), pour tout T,y € K,(, B), et tout n.
2. T(xop—1) = 2T (x), pour tout x € K, (a, ), et tout n.
3. T(xo, ') = 2T (z), pour tout z € K, (a, B), et tout n.

Le premier couple (z, Z) est

2= (20— %)/ (aB +4), 2= —(a” +2B)/(af + 4),

et la trace associée est To, 5@ Kn(a, B) — Zla, B, 1/(af +4)]/(H(a, )

Les trois autres solutions ne sont pas des fonctions rationnelles et c’est plus convenable de
considérer a, 3 et Z comme fonctions de 2,6, ot 6 = z2(Bz + 1). Plus précisément on a une
trace de Markov

TED : Kla, §) > 25411/ (PO,
ot f= (6 —22)/2%, a=—(2"+§)/(z*)), Z = —2*/0.

Idée de la preuve.- D’abord tout élément de K,1(a, B) peut étre écrit comme combinaison
linéaire d’éléments du type ao]le, ou a,b € Kp(a, B) et n = {0,1,2}. Ceci implique que
une trace de Markov sur K, (a, ) s’étend d’une maniére unique a une trace de Markov sur
K, 1(a, B). La partie compliquée concerne donc 'existence d’une telle trace de Markov.

Notre méthode, fortement inspirée de [11], est une amélioration de celle utilisée dans [43].
On définit un graphe géant dont les sommets sont les éléments du semi-groupe abélien engendré
par le groupe libre & n — 1 générateurs. Les arétes correspondent aux éléments qui différent
par exactement une relation parmi les relations qui définissent K, (c, 3). One donne une
orientation sur les arétes, en choisissant un processus de réduction des mots, sauf pour les
arétes correspondant aux commutations: ac;o;b — acjo;b (| @ — j |> 1), qui restent non
orientées.

On prouve que, par rapport a I’ordre partiel ainsi défini, ils existent des éléments minimaux
(peut-étre plusieurs) dans chaque composante connexe du graphe. Ensuite on considére la
suite ascendante de graphes qui modélise les fonctionnelles sur la tour d’algebres K, («, )
satisfaisant les conditions 2.) et 3.) ci-dessus.L’unicité des éléments minimaux pour la réunion
de graphes est équivalente & un nombre fini d’obstructions.

Plus précisément on montre que toute fonctionnelle comme avant qui est bien définie sur
Ky(a, B) admet une extension a tous les K,(a, 8), n > 5. Si l'on rajoute maintenant la
condition de commutativité 1.) (pour en faire une trace de Markov) on montre & nouveau
qu’on peut se ramener a la commutativité dans K4(«, 3).

En particulier ces obstructions sont en nombre fini, ce qui nous a permis de les traiter &
I’aide d’un ordinateur. Les valeurs des paramétres se trouvent en utilisant la commutativité

X



sur K3(a, ) et ensuite les calculs explicits montrent que toutes les obstructions appartiennent
a l'idéal engendré par le polynome H(, gy (et respectivement P0)), O

Maintenant, étant donnée une trace de Markov 7 on définit un invariant pour les entrelacs a
I’aide de la formule standard:

n—1 e(x)

1w=(z) " (%) 1.

ol = € By, est une tresse dont la cloture est 'entrelacs L et e(x) est la somme des exposants de
z. On trouve ainsi les invariants I, gy et [ (#:0) du Théoreme 7. Des calculs explicites montrent
que:

e (Ces invariants distinguent les nceuds avec au plus 10 croisements, ayant le méme invariant

HOMFLY-PT.

® I(a,8) = I(—p,—a) Pour les nceuds amphichirals et I, ) détecte la chiralité de tous les
neeuds avec au plus 10 croisements, dont la chiralité n’est pas detectée par les polynémes
de Kauffman et HOMFLY-PT et le 2-cables de HOMFLY-PT.

e Tout comme HOMFLY-PT, Kauffman et leurs 2-cables, les invariants I, gy et I (2,9)
semblent ne pas distinguer les noceuds mutants.

Il est tres difficile, & 1’état actuel, de comprendre & quel point ces polyndémes différent des
polynémes usuelles de Kauffman et HOMFLY-PT. En particulier, on se pose la question si les
indéterminations engendrées par les polynémes H et P sont essentielles.

Conjecture. Il y a une trace de Markov sur H(Q,n) a valeurs dans une extension algébrique
de Z[a, B] qui releve la trace de Markov sous-jacente a I, gy.

Remarquons que les polyndémes H et P définissent des courbes algébriques planes non ra-
tionelles, donc on ne peut pas expliciter une variable. Dans I’Appendice du chapitre 5 on
donne un tableau avec les valeurs des polynomes I, )(K) et I(o g (K) pour tous les nceuds
avec au plus 8 croisements.
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Chapter 1

Braids on surfaces

1.1 Presentations for surface braid groups

Let F' be an orientable surface and let P = {Py,..., P,} be a set of n distinct points of F'. A
geometric braid on F based at P is an n-tuple ¥ = (41, ...,y) of paths 1; : [0,1] — F such
that

L4 Qbi((]):fji, i:1,...,n;
e Yi(l)eP,i=1,...,n;
e 1(t),...,Pn(t) are distinct points of F for all ¢ € [0, 1].

The usual product of paths defines a group structure on the set of braids up to homotopies
among braids. This group, denoted B(n, F'), does not depend on the choice of P and it is
called the braid group on n strings on F. On the other hand, let be F,FF = F™ \ A, where
A is the big diagonal, i.e. the n-tuples = (z1,...x,) for which z; = z; for some i # j.
There is a natural action of 3, on F,F by permuting coordinates. We call the orbit space
F,F = F,F/%, configuration space. Then the braid group B(n, F) is isomorphic to w1 (F, F).
We recall that the pure braid group P(n,F) on n strings on F' is the kernel of the natural
projection of B(n, F’) in the permutation group ¥,,. This group is isomorphic to w1 (F,, F'). The
first aim of this chapter is to give (new) presentations for braid groups on orientable surfaces.

A p-punctured surface of genus g > 1 is the surface obtained by deleting p points on a
closed surface of genus g > 1.

Theorem 1.1.1 Let F be an orientable p-punctured surface of genus g > 1, with p > 1. The
group B(n, F) admits the following presentation (see also Section 1.2.2):

o Generators: 01, ...,0p—1,01,-..,0g,01,...,0g,21,...,2p—1.
o Relations:

— Braid relations, i.e.

0i0i+10; = 041040441

oio; = ojo; forli—j|>2.



— Mized relations:

(R1) ayo; =050, (1<r<g;i#l);
broy = oiby (1<r<g;i#1);
(R2) aflaraflar = araflarafl (1<r<yg);
o oot = beoy b0t (1< <g);
(R3) aflasalar = araflasal (s <r);
aflbsalbr = braflbsal (s <r);
aflasalbr = bral_lasal (s <r);
UflbsalaT = araflbsal (s <r);
(R4) al_la,«al_le = bTal_la,«al (1<r<yg);
(R5) zjoy =025 (1#1,7=1,...,p—1);
(R6) o7'zoia, =aro7'zior (1<r<g;i=1,....,p—1; n>1);
oy zioby =bro o (1<r<g i=1,....,p—1; n>1);
(R7) aflzjalzl = zlaflzjal Gj=1,....p—1,5<1);

(R8) oy 'zjoy 'z =zjoy zjoy' (j=1,....p—1).

Theorem 1.1.2 Let F be a closed orientable surface of genus g > 1. The group B(n, F)
admits the following presentation:

e Generators: o1,...,0, 1,a1,...,aq, b1,... by
e Relations:

— Braid relations as in Theorem 1.1.1.

— Mized relations:

(R1)  ayo; =0iar (1<r<g;i#1);
broj =oiby (1<r<g;i#l);
(R2) UflaTUflar = araflaTUfl (1 <r< g) ;

oy o007, = booy ot (1< <g);
(R3) aflasalar = araflasal (s<71);
aflbsalbr = braflbsal (s<r);
aflasalbr = braflasal (s<71);
al_lbsalar = araflbsal (s<71);
(R4) al_laral_lbr = braflaral (1<r<g);

(TR) [ahbl_l]“‘ [Clg,bil] = 0’10'2...02

g ne1" 0201,

where [a,b] := aba b L.

We may assume that Theorem 1.1.1 provides also a presentation for B(n, F'), when F is
an orientable surface with p boundary components. We recall that the first presentations of



braid groups on closed surfaces were found by Scott ([82]), afterwards revised by Kulikov and
Shimada ([63]). Recently Gonzalez-Meneses reduced significantly the number of generators
(]46]). Our presentation has the same number of generators than Gonzalez-Meneses’one, but
it uses the standard generators of the fundamental group of the surface and the number of
relations is smaller. At our knowledge, the case of punctured surfaces is new in the literature.
Our proof is inspired by Morita’s combinatorial proof for the classical presentation of Artin’s
braid group ([71]). We will explain this approach while proving Theorem 1.1.1. After that we
will show how to make this technique fit for obtaining Theorem 1.1.2. We remark that our
argument is quite shorter than previous ones, since we do not need a presentation for surface
pure braid groups. In Section 1.5 we give presentations for braid groups on non orientable
surfaces.

1.2 Preliminaries

1.2.1 Fadell-Neuwirth fibrations

The main tool one uses is the Fadell-Neuwirth fibration, with its generalisation and correspond-
ing exact sequences. As observed in [34], if F' is a surface (closed or punctured, orientable or
not), the map 6 : F,F — F,_1 F defined by

O(x1y. ..y 2n) = (T1,. ., Tp_1)

is a fibration with fiber F'\ {z1,...,z,—1}. The exact homotopy sequence of the fibration gives
us the exact sequence

Wz(FnF) — Wz(anlF) — 7T1(F\{:L"1,... ,:L"nfl})

— P(n,F)— P(n—1,F) — 1.

Since a punctured surface (with at least one puncture) has the homotopy type of a one
dimensional complex, we deduce

Wk(FnF)gTrk(Fn_lF)gg?’rk(F), kZ?)

and
WQ(FnF) g 7T2(Fn,1F) g g 7T2(F) .

If F is an orientable surface and F' # S?, all higher homotopy groups are trivial. Thus, if F is
an orientable surface different from the sphere we can conclude that there is an exact sequence

(PBS) 1 —— m(F\{z1,...,0n1}) — P(n,F) —2 P(n — 1, F) — 1,

where 6 is the map that “forgets” the last path pointed at x,.

The problem of the existence of a section for (PBS) has been completely solved in [52]. It
is possible to show that 8 admits a section, when F' has punctures. On the other hand, when
F is a closed orientable surface of genus g > 2, (PBS) splits if and only if n = 2. An explicit
section is shown in [17] in the case of the torus.



1.2.2 Geometric interpretations of generators and relations

Let F' be an orientable surface. Let E(n,F) be the group with the presentation given in
Theorem 1.1.1 or Theorem 1.1.2 respectively. The geometric interpretation for generators of
B(n,F), when F is a closed surface of genus g > 1 is the same as in [46], except that we
represent F' as a polygon L of 4¢g sides with the standard identification of edges (see also
Section 1.5.3). We can consider braids as paths on L, which we draw with the usual “over
and under” information at the crossing points. Figure 1.1 presents the generators of ff(n,F)

realized as braids on L.

Figure 1.1: Generators as braids (for F' an orientable closed surface).

Note that in the braid a; (respectively b;) the only non trivial string is the first one, which
goes through the wall a; ( the wall 5;). Remark also that oy ...,0,_1 are the classical braid
generators on the disk.

Br r

Figure 1.2: Geometric interpretation for relation (R4) in Theorem 1.1.1; homotopy between
aflaraflbr (on the left) and braflaral (on the right).

It is easy to check that the relations above hold in B(n, F'). The non trivial strings of a,
and o; when i # 1, may be considered to be disjoint and then (R1) holds in B(n, F'). On the
other hand, aflarafl is the braid whose the only non trivial string is the second one, which
goes through the the wall «, and disjoint from the corresponding non trivial string of a,.
Then o, *a,0; ! and a, commute. Similarly we have that o, 'b,0; ' and b, commute and (R2)
is verified. The case of (R3) is similar. Figure 1.2 presents a sketch of a homotopy between
aflaraflbr and braflaral. Thus, (R4) holds in B(n, F).

Let s, (respectively t,.) be the first string of a, (respectively b,), for r = 1,...,2g, and
consider all the paths s1,%1,...,54,%5. We cut L along them and we glue the pieces along the
edges of L. We obtain a new fundamental domain (see Figure 1.3, for the case of a surface of

genus 2), called Ly, with vertex P;. On Ly it is clear that [aq, bl_l] -+ [ag, b;l] is equivalent to



N

Figure 1.4: Braid [a1,b7']- - [ay, b, 1.

the braid of Figure 1.4, equivalent to the braid ooy ...02_; ...09071 and then (TR) is verified
in B(n, F).

There is an analogous geometric interpretation of generators of E(n, F), for F' an orientable
p-punctured surface. The definition of generators o;, a;, b; is the same as above. We only have
to add generators z;, where the only non trivial string is the first one, which is a loop around
the i-th puncture (Figure 1.5). As above, relations can be easily checked on corresponding
paths (Figure 1.6).

Remark that a loop of the first string around the p-th puncture can be represented by the
geometric braid corresponding to the element

Therefore, one has natural morphisms ¢, : B(n, F) — B(n, F'). We prove that ¢, are actually
isomorphisms.

1.3 Outline of the proof of Theorem 1.1.1

1.3.1 The inductive assertion

We outline the ideas of the proof for F' a surface of genus g with one puncture. One applies
an induction on the number n of strands. For n = 1, B(1, F) = m (F) = B(1, F), then ¢, is
an isomorphism.

Consider the subgroup B%(n, F) = 7~ '(3,_1) and the map

9:B%n,F) — B(n—1,F)



Figure 1.5: Generators as braids (for F' an orientable surface with p punctures).

which “forgets” the last string. Now, let éo(n,F) be the subgroup of E(n,F) generated by

0,1,...,ag,bl,...,bg,al,...,Un_g, Tlyeery Tpn—1,Wi,y...,W2g, where
_ | -1 _ 2y,
Tj = On-1'""0j41050541° " 0p_ (Tn—1 =03_1);
-1 —1 )
Wy 1 = Op_ 1 0 GO1 -+ 0p1 T=1,...,9;
-1 —1
wor = 0,y 0y boy--rop_1 r=1,...,g9.

We construct the following diagram:

- 0 -
B%n,F) — B(n—1,F)

%\EO@,F) Pn—1
\J 9 !
B%(n,F) — B(n — 1, F)

The map 6 is defined as gb;ilﬁgbn‘ BO(n,F)- It 1s well defined, since ¢, is an isomorphism by
the inductive assumption, and it is onto. In fact, 6(a;) = a;,0(b;) = b; for i = 1,...,¢ and

O(o;) =ojforj=1,...,n—-2.

1.3.2 The existence of a section

The morphism 6 has got a natural section s : B(n — 1, F) — B%(n, F) defined as: s(oj) =
0j,8(a;) = a;,s(b;)) =bforj=1,...,n—-2andi=1,...,2g.

10



Figure 1.6: The braids o) 'zjo1 and oy 'zjo;'. The non trivial string of oy ‘201 can be
considered disjoint from the non trivial string of z;, for j < [. Similarly, the braid o] lzjal_ !
commutes with the braid z;.

Remark 1.3.1 Geometrically this section consists of adding a straight strand just to the left
of the puncture.

Given a group G and a subset G of elements of G we set (G) for the subgroup of G generated
by G and ((G)) for the subgroup of G normally generated by G. From now on, given a,b two
elements of a group G, we set a® = b~'ab and *a = bab™!.

Lemma 1.3.1 Let G = {71,...,Tp_1,wi,...,wag}. Then Ker(6) = (G).

-1

Proof: We set 8 = 74+ Tp_1 = Un_l“‘O'QO'%O'Q“‘O'n_l and v = 7B = a;_ll---UQ
0209+ 0p_1. By construction we have (G) C Ker(f). The existence of a section s implies
that Ker(f) = ((G)). In fact, suppose that there is such z € Ker(f) that 2 ¢ ((G)). Thus,
there is a word 2’ # 1 on generators ai,...,aq,b1,...,bg,01,...,0n_2, of Eo(n,F) such that
6(z') = 1, because all other generators of B%(n, F) are in (G). This is false, since 2’ = s(0(z)).
To prove that (G) is normal, we need to show that h¢, <k € (G) for all generators ¢ of B%(n, F)
and for all h € G.

i) Let ¢ be the classical braid generator o;, j = 1,...,n — 2. It is clear that Tfj and % T;
(t =1,...,n — 1) belong to (r,...,Th—1), since it is already true in classical braid groups
([71], [83]). On the other hand, w{’ = %w; = w; (i = 1,...,2g).

ii) Let ¢ = a, or ¢ = b, (r = 1,...,9). Commutativity relations imply 77 =
=2,...n — 1). Note that

Tj = Tj
(4

—1
ar _ Ty Bwar—1

—1
“rp =1y and ]

v for r=1,...,g;

-1 -1
brry =82 4 and T{)T:Tl Bwzen for r=1,...,9.

We show only the first equation (the other is similar). By iterated application of [a,, 016, 'o1] =
1 we obtain:

a —1 —1 -1 _-1 -1
T = 0Op—1-020,010, QrO01Q,. 0101 O9 0, 1 =
-1 —1 -1 _-1 -1
=0p—-1°'"020p01G, 011G, 01Qy01 Oy -0, 1 =

-1
=0p_1""" 0—20-10’;10-10—1&7’0—1_10-2_1 SN 0-;711 = Ber—lry .

11



Set a5 = al_lasal fors=1,...,

same way as above we find that:

(RC1)

(RC2)

Now, remark that relations (R3

(B3')

(B4)

Relations (RC1), (RC2), (R3'),

bTb

Qr
b2r

a _ 1 2
"bay = Ule,T[GQ,NUl]

br

br
0’277“

-2
Az r = A2,r04

(03)r =27 (02) (r=1,...,9);
(o) =" (03) (r=1,...,9);
“(03) = (0D (r=1,....9);
br(a%) = (02)1’2*’“”1 (r=1,...,9).

) and (R4) imply the following relations:

aralasafl = alasaflar (r<s);
bralasafl = alasaflbr (r<s);
aralbsafl = albsaflar (r<s);
bralbsafl = albsaflbr (r<s);
araflbrafl = albral_lar (1<r<yg);

(R4") combined with relations (R2), (R3), (R4) give:

(aQral a?r)bQT[Ul 7“27"] (1<r<g);
(1<r<g);
(1<r<yg);

agrbo,oiby, (1< <g).

12

g and respectively by ; = aflbsal fors=1,...,

g. In the



A consequence of these identities and relation (R1) is that w;", “ w;, wfr,brwi € (G), fori,r =
1,...,9. [l

Lemma 1.3.2 Set also {wi,...,wag,T1,...Ty—1} in BY(n, F) for {¢n(w1),..., ¢n(w2y), dn(r1),
o p(Tn—1)}. Then Ker(0) is freely generated by {w1,...,waq, T1,..., Tn_1}.

Proof: The diagram

P(n,F) —0>P(n—1,F)

0
B%(n,F) — B(n —1,F)

is commutative and the kernels of horizontal maps are the same. As stated in Section 1.2.1,
Ker(0) = m(F \ {P1,...,P,-1},P,). If the fundamental domain is changed as in Fig-
ure 1.7 and the non trivial strings of wj,7; are considered as loops of the fundamental
group of F\ {P,...,P, 1} based on P,, it is clear that 7 (F \ {P1,..., P, 1}, Py) =
<wl,...,(,U2g,7'1,...Tn_1|(Z)>. [l

Figure 1.7: Interpretation of wj, 7; as loops of the fundamental group.

Lemma 1.3.3 ¢ ) 15 an 1somorphism.

n|BO(n,F

Proof: From the previous Lemmas it follows that the map from Ker(f) to Ker() is an
isomorphism. The Five Lemma and the inductive assumption conclude the proof. O

1.3.3 End of the proof

In order to show that ¢p is an isomorphism, let us remark first that it is onto. In fact, from
Lemma 1.3.3 it follows that the image of B(n, F') contains P, and on the other hand B(n, F')
surjects on ¥,. Since the index of B%(n,F) in B(n,F) is n, it is sufficient to show that
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[B(n, F) : B%(n, F)] < n. Consider the elements pj = ;- 05,1 (We set p, = 1) in B(n, F).
We claim that |J; p;B°(n,F) = B(n,F). We only have to show that for any (positive or
negative) generator g of B(n, F) and ¢ = 1,...,n there exists j = 1,...,n and z € B%(n, F)
such that

9pi = pie .
If g is a classical braid, this result is well-known ([24]). Other cases come almost directly from
the definition of w;. Thus every element of B(n, F) can be written in the form p; B%(n, F).

Since p; 'p; ¢ B(n, F) for i # j we are done. O

The previous proof holds also for p > 1. This time éo(n,F) is the subgroup of ff(n,F)
generated by ai,...,ag,b1,...,b9,01,...,00n_2, T1,...,Tn—1, Wi,-..,w2g, C1,...,Cp—1 Where
7j, wy are defined as above and (; = 05}1 e 01_1 2j0 1 Op 1. O

1.4 Proof of Theorem 1.1.2

1.4.1 About the section

The steps of the proof are the same. We set again B%(n, F) = m }(%,_1). Let B%(n, F) be
the subgroup of B(n, F) generated by a1,...,a4,b1,...,bg, 01,...,0pn_2, T1,..., Tn_1, Wi,...,
wag, where 7;, w, are defined as above. Remark that 71 € (G) since from (TR) relation, the

following relation
_ —1 171 —1
T = [wi,w,y ]"'[w29*17w2g]7-n—1"'7—2 )

holds in Eo(n, F). When F is a closed surface the corresponding 6 has no section (see Section
1.2.1). Nevertheless, we are able to prove the analogous of Lemma 1.3.1 (see section 1.4.2).

Lemma 1.4.1 Let F be a closed surface. Then Ker(0) is generated by {wr,..., wag, T2,...,
Tn—l}-

The following Lemma is analogous to Lemma 1.3.2.

Lemma 1.4.2 Let F be a closed surface and set also {w1,...,wag,T2,...,Tn_1} in B%(n, F)

Jor {¢n(w1), ..., n(wag), dn(72),. .., In(Tn=1)}. Ker(0) is freely generated by {w1, ... ,waq, T2, ...
Tnfl}.

Let pj = 0j---0p—1 (where p, = 1). We may conclude by checking that for any generator
g of B(n, F) (or its inverse) and i = 1,...,n there exists j = 1,...,n and = € B%(n, F) such
that

which is a sub-case of previous situation. O

1.4.2 Proof of Lemma 1.4.1

To conclude the proof of Theorem 1.1.2, we give the demonstration of Lemma 1.4.1. Let us
begin with the following Lemma.
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Lemma 1.4.3 Let F be a closed surface and G = {12, ..., Ta—1,wi,...,wag}. The subgroup
(G) is normal in B%(n, F)

Proof: Tt suffices to consider relations in Lemma 1.3.1. Remark that from relations shown in
Lemma 1.3.1, it follows also that the set

{77j7_1|j =1,...n—1, vy word on {wlﬂ, ... ,wgigl}} ,
is a system of generators for ((71,...,7Tn_1)) = ({(Th—1))- a

In order to prove Lemma 1.4.1, let us consider the following diagram

~ ~0 0 -
Ker§ ——— B°(n,F) —— B(n — 1, F)
i

é/

tn qn

i
Kerd' 7 Eo(na F)/{{Tn-1))

In this diagram g, is the natural projection, 6" is defined by 0 o qn = 6 and t, is defined
by i’ ot, = ¢, oi. Since t, is well defined and onto we deduce that Ker(t,) = ({(1h—1))-
Now, #' has a natural section s : B(n — 1, F) — B%(n, F)/{{t,_1)) defined as s(a;) = la;],
s(b;) = [bj] and s(o;) = [o;], where [z] is a representative of z € B%(n, F)in BO(n, F)/{{Tn—1))-
Thus, using the same argument as in Lemma 1.3.1, we derive that Ker(0') = ((K)), where
K= {lwi],...,wyl,[12],-..[Tn-1]}. From Lemma 1.4.3 it follows that (K) = ((K)). Moreover,
since 7; € ((Tp_1)) fori = 1,...,n — 2, Ker(0") = ([w1],- - - , [wag])-
From the exact sequence

1= ((ta_1)) = Ker() — Ker(0') — 1

it follows that the set {wi,...,wz,} and a system of generators for ({r,—1)) form a sys-
tem of generators for Ker(f). From the remark in Lemma 1.4.3 it follows that Ker(f) =
<7'2,...,Tn,1,w1,...,w29>. O

1.5 Other presentations and remarks

1.5.1 Braids on p-punctured spheres

We recall that the exact sequence
1 —— m(F\{Py,...,Po_1},Py) — P(n,F) —— P(n—1,F) - 1

holds also when F' = S? ([35]). Thus, previous arguments may be repeated in the case of the
sphere, to obtain a new proof for the well-known presentation of braid groups on the sphere
as quotients of classical braid groups. When F' is a p-punctured sphere, our argument leads
to the following result.
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Theorem 1.5.1 Let F' be a p-punctured sphere. The group B(n, F) admits the following pre-
sentation:

o Generators: 01,...,0p—1,21,.--,%p—1 -
e Relations:

— Braid relations, i.e.

0i0i+10; = 041040441

005 = 0404 fOT’i—j’ZZ.

— Mized relations:

(R1) zjoy=o0iz; (i#1,j=1,....,p—1);
(RZ) al_lzjalzl:zlal_lzjal (jzl,...,p—l, j<l);

(R3) oy 'zjor 2 =zoy zjorw (G=1,...,p—1);

We remark that this presentation coincides with the presentation shown in [66].

1.5.2 Braids on non-orientable surfaces

Previous techniques can be used in the case of non-orientable surfaces to prove the following
Theorems.

Theorem 1.5.2 Let F' be a non-orientable p-punctured surface of genus g > 1, with p > 1.
The group B(n, F) admits the following presentation:

o Generators: 01,...,0, 1,01, .., Qg, 215+, 2p 1.
o Relations:

— Braid relations, i.e.

0i0i4+10; = 041030441 ;

oio; = ojo; forli—j|>2.

— Mized relations:

(R1) apoi =0ia, (L<7r<g;i+#l);

(R2) aflaraflar = araflaral (1<r<yg);

(123) Jl_lasalar = araflasal (s <r);

(R4) zjoy =025 (1#1,j=1,...,p—1);

(B5) of'zonar =a,07 ' mo1 (L7 <gii=1l....p—1in>1);
(R6) oy'zjorz =207 ' zjoy (F=1,....,p—1, j <l);

(R7)

1, 1, _ 1 -1 (;_
oy zjoy zj =zjo; zjo,  (j=1,...,p—1).
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Theorem 1.5.3 Let F' be a closed non-orientable surface of genus g > 2. The group B(n, F')
admits the following presentation:

e Generators: 01,...,0, 1,a1,...,0g.
o Relations:

— Braid relations as in Theorem 1.1.1.

— Mized relations:

—~~
o W
N =

> =

Ar04 = 00y (1§’/’Sg,27&1),

-1 -1 —1 )
01 a0y ar = a0y arop (1 <r <g);

R3 Uflasalar = araflasal (s<r);
2 2 2
(TR) al...ag:()'10'2...0'7171...0'20'1'

We give only a geometric interpretation for the generators. To represent a braid in F' we
consider the surface as a polygon of 2¢g sides as in Figure 1.8, and we make an additional cut:
define the path e as in the left hand of the Figure 1.8 and cut the polygon along it. We get F’
represented as in the right hand side of the same figure, where we can also see how we choose
the points P,..., P,. We show generators in Figure 1.9. Generators o; and z; are as above.
For all »r = 1,...,¢, the braid a, consists on the first string passing through the r-th wall,
while the other strings are trivial paths. Relations can be easily verified drawing corresponding
braids. The relation (TR) in Theorem 1.5.3 is shown in [46]. We remark that Theorem 1.5.3
provides also a presentation for braid groups on the projective plane (see also [90]).

Figure 1.8: Representation of a non-orientable surface F'.

1.5.3 Gonzalez-Meneses’ presentations

Let F be a closed orientable surface of genus g > 1. Using the same arguments outlined in
previous Sections we may provide an other presentation for B(n, F').

Theorem 1.5.4 Let F' be a closed orientable surface of genus g > 1. The group B(n,F)
admits the following presentation:

e Generators: o1,...,0,—-1,b1,...,by.
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1 1
! ! 1
1 1
1 1
1 P, P P
N = - -1 i n- -
1 Pl.--.q)«)l W '3‘¢O:0| Yu e oy
o = . P, =
\\\ ///e \.\‘\ ///e
e ~o -~ e ~o -7
s s

Figure 1.9: Generators as braids (for F' a non-orientable surface).

o Relations:

— Braid relations as in Theorem 1.1.1.

— Mized relations:

=

(R1) byo;=0b, (1<r<2gi#1);
(R2) bsafleal_l = aleal_lbs (1<s<r<2g);
(R3) b,«al_leal_l = al_lb,«al_lb,« (1<r<29);

(TR)  biby" .. bag—1by by b by, 1bog = 010900 1+ 0207 .

A closed orientable surface F' of genus g > 1 is represented as a polygon L of 4g sides,
where opposite edges are identified. Figure 1.10 gives a geometric interpretation of generators.
Relations can be eagily verified on corresponding braids.

Ve N
/ \

1 \
/ . . \
, Pi P \
t ° N . o
\ ~ /
\ 1
\ !
\ !

\ !

N -
~ 7
N 7z
N 7
Ne————

bi o

Figure 1.10: Generators as braids (for F' an orientable closed surface).

The presentation in Theorem 1.5.4 is close to Gonzélez-Meneses’ presentation.

Theorem 1.5.5 ([46]) Let F be a closed orientable surface of genus g > 1. The group B(n, F)
admits the following presentation:

e Generators: o1,...,0,_1,a1,...,024.
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o Relations:

004107 = 04+10704+1

oi0; =ojo; forli—j| > 2,
ar, Ao =1 (1<r,5<2g;r#s5),
lar,0i] =1 (1 <r<2g50#1),
[ai...ap, As,] :a% (1<r<2g),

—1 —1
a;l...a;anl ...0,2

2
g :0-10—2...0—71/—1...0-20-17

where Agy = o7 a1 ... ar—1a, ... aQ_gl)al_1

Remark that the geometric interpretation of b; corresponds to the braid generator a; when
j is odd and respectively to a;l, when 7 is even. Tedious computations show that relations
in Theorem 1.5.4 (after replacing generators b;’s with a;’s) imply relations in Theorem 1.5.5.
In the same way, Theorem 1.5.3 can be also verified directly, checking that the relations in
Theorem 1.5.3 imply all relations of the Gonzalez-Meneses’ presentation for braid groups on
non orientable closed surfaces in [46]. However, we remark that the presentation in Theorem
1.5.3 is simpler and with less relations than Gonzalez-Meneses’ one.

On the other hand, it seems difficult to give an algebraic proof of the equivalence between
presentation in Theorem 1.1.2 and presentation in Theorem 1.5.5.

1.5.4 Applications

We conclude this Section with some remarks. Let F' be a surface, possibly with boundary.
Consider a connected subsurface £ C F', such that every boundary component of E either is
a boundary component of F' or lies in the interior of F'. We suppose also that F contains P. It
is known (|75]) that the natural map ,, : B(n, E) — B(n, F') induced by the inclusion £ C F
is injective if and only if F'\ E does not contain a disk D?. We may provide an analogous
characterisation about surjection.

Proposition 1.5.1 Let F be a surface of genus g > 1 with p > 0 boundary components, and
let E be a subsurface of F. The natural map 1y, : B(n, E) — B(n, F) induced by the inclusion
E C F is surjective if and only if F'\ E is a disjoint union of disks.

Proof: When FE is obtained from F removing k disks, the natural map v, : B(n, E) — B(n, F)
is onto and Theorems 1.1.1, 1.1.2, 1.5.2 and 1.5.3 give a description of Ker(t,). Remark that
the natural morphism

1/11 : 7T1(E, Pl) — 7T1(F, Pl)
is a surjection if and only if F'\ F is a disjoint union of disks. Now consider a pure braid
p € P(n,F) as a n-tuple of paths (p1,...,p,) and let x : P(n,F) — w1 (F)" be the map
defined by x(p) = (p1,--.,pn). The following commutative diagram holds

P(n, B) —% s r(BE)"

(¥n) P, )

+ +

P(n, F) — % r (F)"
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Since x is surjective ([17]) we deduce that ()| p(n,E) is not surjective on P(n, F') when 1 is
not surjective. Thus, since 1, 1 (P(n, F)) belongs to P(n, E), it follows that 1, is not surjective
on B(n, F') when 1) is not surjective. O

Remark 1.5.1 The fact that the natural map v, : B(n,E) — B(n,F) is onto when E
is obtained from F removing k disks can also be obtained from the remark that B(n,E) is a
subgroup of B(n+k, F) and that the map 1, corresponds to the usual projection B(n+k, F) —
B(n, F). The existence of a braid combing in B(n + k,F) ([66]) implies the claim.

Proposition 1.5.2 Let F' be a orientable surface of genus g > 1, possibly with boundary. Let
N, (F) be the normal closure of By, in B(n,F). The quotient B(n, F')/Ny(F') is isomorphic to
Hy(F), the first homology group of the surface F.

Proof: 1t is sufficient to replace all o; with 1 in Theorems 1.1.1 and 1.1.2. O

1.6 Surface pure braid groups

Several presentations for surface braid groups are known, when F' is a closed surface or a holed
disk ([46], [52], [66], [82]). In Theorem 1.6.1 we provide a presentation for pure braid groups
on orientable surfaces with boundary. This presentation is close to the standard presentation
of the pure braid group P, on the disk. We provide also the analogous presentation for pure
braid groups on orientable closed surfaces.

1.6.1 Presentations for surface pure braid groups

Theorem 1.6.1 Let F' be an orientable surface of genus g > 1 with p > 0 boundary compo-
nents. P(n, F) admits the following presentation:

o (enerators:
{Aij | 1<i<2+p+n—22+p<j<29+p+n—1,i<j}

o Relations:

(PR1) AjjAnAij=Ars if (i<j<r<s)or(r+1<i<j<s),
or(i=r+1<j<sforevenr<2gorr>2g);

(PR2) A} Aj Aij = AisAj Ay if (i <j<s);

(PR3) A jAi Aij = AisAjAi s A S AL if (i <j < s);

(PR4) A ArsAij = AisAjs AT AT LAy o Aj s Ai s AT AT
fli+1<r<j<s)or
(i+1l=r<j<sforoddr<2gorr>2g);

(ER1) A;Ji17jAT7sAr+Lj = AT7SAT+L8AJ}SA;—|}1,5
if reven and r < 2g;

(ER2) A;,leAnsArfl,j = AT*17sAj7sA;_117sAr7sAj7sAr7LSAjislA;_ll,s

if rodd and r < 2g.
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Proof: The choice of the notation is motivated by the notation for standard generators of P,
from [15]. Let P(n — 1, F) be the group defined by above presentation. We give in Figure
1.11 a picture of corresponding braids on the surface. Let h = 29 + p — 1. In respect of the
presentation for B(n, F') given in Theorem 1.1.1, the elements A; ; are the following braids:

_ 2 -1 1 : _
® Aij=0j n Oit1-nO;_ Oy p 0  p, fori>29+p;

[ ] Ai7j = O’j N '012Z72g

oy teoply, for29 <i<2g+p;

_ -1 —1 -1 . )
o Agij= Oj 010510y 0 p, for1 <¢<g;

1

-1 — -1 .
L] AQi_l,j = Uj*h"'albg—i-&-lal ---Uj_h, for 1 S ] S g .

The relations (PR1), ... , (PR4) correspond to the classical relations for P,. The new relations
arise when we consider two generators Ag; ;, A1y, for 1 <4 < g and j # k. They corre-
spond to two loops based at two different points which go around the same handle. Relations
(ER1) and (ER2) can be verified by explicit pictures or using relations in Theorem 1.1.1. The

1 9 1 p-1

A A
29,2g+ 2g+1 29+p+1ﬂ
—/i@\ I 2 D

> =——-<

Aogepr1, 2g+prnt

A12g+p

Figure 1.11: Geometric interpretation of A;;. We mark again with A;; the only non trivial
string of the braid A; ;

technique to prove that (PR1),...,(ER2) is a complete system of relations for P(n, F') is well
known ([46], [52], [66], [82]). As shown in [57], given an exact sequence

l1-A—-B—=-C—=1,

and presentations (G 4, Ra) and (G¢, R¢), we can derive a presentation (G, Rg) for B, where
Gp is the set of generators G4 and coset representatives of G¢. The relations Rp are given by
the union of three sets. The first corresponds to relations R4, and the second one to writing
each relation in C' in terms of corresponding coset representatives as an element of A. The last
set corresponds to the fact that the action under conjugation of each coset representative of
generators of C' (and their inverses) on each generator of A is an element of A. We can apply this
result on (PBS) sequence. The presentation is correct for n = 1. By induction, suppose that for
n—1, ]5(n —1,F) = P(n —1,F). The set of elements A; 2g4np—1 (1 =1,...,29+n+p—2)
is a system of generators for m(F \ {Pi,...,Py_1}, Py). To show that (PR1),...,(ER2)
is a complete system of relations for P(n, F) it suffices to prove that relations Rp(, r) are a
consequence of relations (PR1),...,(ER2). Since m (F\{Pi,...,Pn_1}, P,) is a free group on
the given generators, we just have to check the second and the third set of relations. Consider
as coset representative for the generator A;; in P(n — 1, F) the generator A;; in P(n, F).
Relations lift directly to relations in P(n, F'). The action of A;jl on m (F\{P1,...,Py_1}, Py)
may be deduced from that of A; ;. In fact, relations (PR2) and (PR3) imply that

A A 2g4n4p—145 2g4n+p—1 = Ai 2gtntp—145 2g4n+p—145 5
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forall i < j <2g+mn+p—1, and from this relation and relations (PR2) we deduce that

—1 _ 4-1 ) ,
A@J‘A@?ﬁnﬂ)flAz‘?j - Aj72g+n+p71AZ,29+H+P*1AJ729+TL+P*1 )

forall i < j < 2g+mn+p—1). It follows that

—1
AS,in,2g+n+pflAs,j € <A1729+n+p717 e 7A2g+n+p7272g+n+p71> )

forall s <j<29+n+p—1.
Thus we have proved that (A1 2g+n+p—1s---5 A2gtn+p—2.2g+n+p—1) i a normal subgroup
and that also the third set of relations of Rp(, r is a consequence of (PR1),..., (ER2). O

In the same way we can prove the following Theorem.

Theorem 1.6.2 Let F be an orientable closed surface of genus g > 1. P(n, F) admits the
following presentation:

o Generators: {A;; |1 <i<29+n—-1,29g+1<j<29+n,i<j}

e Relations:

(PR1) A;;Ar,sAi,j =A ifi<j<r<s)or(r+l1<i<j<s),
or(i=r+1<j<s forevenr <2gorr>2);

(PR2) A} Aj Aij = AisAj A7) if (i <j<s);

(PR3) A; [ AiAij= AisAj oA s A LA if (1 <j < s);

(PR4) A A Aij = A; JAj ATV AT LA, (A A (AT AT
fli+1<r<j<s)or
(i+1l=r<j<sforodd r<2gorr>2);

(ER1) Ar_—l}l,jAT,SAT-ﬁ-Lj = Ar,sAr+1,sAj,sA;+11,s
if r even and r < 2g;

(ER2) Al A A1y =Ar1 A5 A (A gAj A1 sA LA

if rodd and r < 2g;

2g+k—1
—1 -1 —
(TR)  [AS, 0grk> A2g 12g1k] - [As5g i Ar2gin) = [ Arzgre X
l:2g+1
2g9+n
X H AQg—i—k,j k‘Zl,...,’fL.

Remark 1.6.1 Let E be a holed disk. Theorem 1.6.1 provides a presentation for P(n,E)
([66]). Let us recall that P(n, E) is a (proper) subgroup of Pk, where k is the number of
holes in E.

Remark 1.6.2 We recall that P, embeds in P(n, F) ([75]) and thus P, is isomorphic to the

subgroup
(Aijl12g+1<i<j<2g9+n),
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when F 1s a closed surface and P, is isomorphic to
Po=(Aij|29+p<i<j<29+p+n—1),

when F is o surface with p > 0 boundary components. Consider the sub-surface E obtained
removing g handles from F. The group P(n, E) embeds in P(n,F) ([75]) and it is isomorphic
to the subgroup

{Aijl29+1 < i <j < 2g+n}U{dgp 1y, Ayl Ayl (Aokg | 1<k <g,29+1 <1< 2g+n}),
when F is a closed surface and respectively to the subgroup
({Aijl120+1<i<29+p+n—-2,29+p<j<29+p+n—-1i<jlU
U Az 105 Ay A 1 Aski |1 <k <g,29+p<1<29+p+n—1}),
when F is a surface with p > 0 boundary components.

Remark 1.6.3 When F is a surface with genus, from relation (ER1) we deduce that gener-
ators A;j for 29 +p <1 < j <2g+n+p— 1, which generate a subgroup isomorphic to P,
are redundant. Then Theorem 1.6.1 provides a (homogeneous) presentation for P(n,F') with
(29 + p — 1)n generators.

1.6.2 Remarks on the normal closure of P, in P(n, F)

As corollary of previous presentations we give an easy proof of a well-known fact on K, (F),
the normal closure of classical pure braid group P, in P(n, F) (|45]).

Lemma 1.6.1 Let x : P(n,F) — 7 (F)™ be the map defined by x(p) = (p1,...,pn). Let F be
a closed orientable surface possibly with boundary. Let K, (F) be the normal closure of P, in
P(n,F). Then

Ker(x) = K,(F).

Proof: We outline the case of a surface F' with boundary. The inclusion K, (F) C Ker(x)

P(n,F ~
is obvious. The quotient group K(n(, F)) is isomorphic to the group P(n, F') with generators
n
{Aij11<i<29+p—-1,29+p<j<2g+p+n—1} and relations {[A;;, Ar;) = 1,5 #}.
The morphism x induces an isomorphism between P(n, F') and 71 (F)™. O

Proposition 1.6.1 Let F' be an orientable surface possibly with boundary. When F is a torus
[P(n,F),P(n,F)] = K,(F).

Otherwise the strict inclusion holds:
[P(n,F),P(n,F)] D K,(F).

Proof: The inclusion K, (F') C [P(n,F),P(n, F)] follows from relation (ER1). Suppose that

Pn,F
[P(n,F),P(n,F)] = K,(F) = Ker(x) for g > 1. It follows that %
er

false since 1 (F')™ is not abelian for g > 1. Let w € [P(n, F'), P(n, F')]. The sum of exponents
A;; in w must be zero. The projection of x(w) on any coordinate is the sub-word of w
consisting of the generators associated to corresponding strand. Since the sum of exponents
is zero, if F' is a torus this projection is trivial and the claim follows. [l

is abelian. This is
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1.6.3 Almost-direct products

Let us recall the following definition:

Definition 1.6.1 We say that a group G is residually a P-group if for each g € G, g # 1,
there exists a normal subgroup N of G such that g ¢ N and G/N has the property P.

The lower central series {G;}i>o of a group G is the series of groups G; defined by G = G,
Giy1 =[G, G;], where [G, G;] is the subgroup of G generated by all commutators hkh~'k~!,
for h € G and k € G;. Set G(;) = Gi/Gi+1. Magnus proved that free groups, as well as
fundamental groups of orientable surfaces, are residually torsion free nilpotents (see [6] for an
outline of the proof). We refer to [67] for more results on residual nilpotence. We recall just
that if G is residually torsion free nilpotent then G is biorderable ([81]). The group G is called
bi-orderable if there exists a total order < on G such that for all g, h, k in G the relation g < h
implies that kg < kh and gk < hk.

In this section we consider subgroups of surface braid groups having the following properties:

L N 1(G)" = {0}

2. I(@)¢/1(G)4"! is a free Z-module for all d > 0, where If, means the k-th power of the
augmentation ideal of the group ring of the group G.

Free groups have properties 1) and 2) (see [41]). We stress that (32, I(G)® = {0} implies that
G is residually nilpotent.

Definition 1.6.2 Let A,C' be two groups. If C acts on A and the induced action on the
abelianization of A is trivial, we say that A x C is an almost-direct product of A and C.

Proposition 1.6.2 ([36]) Let A, C be two groups. If C' acts on A and the induced action on
the abelianization of A is trivial, then

I(AxC)™ =Y T(AFeI1(C)™* forall m>0
k=0

and

The pure braid group P, is an almost-direct product of free groups ([37]). In particular P,
inherits the properties of free groups that we described above. These properties have been
used in [74] in order to construct an universal finite type invariant for braids.

The group K,,(F'), the normal closure of classical pure braid group P, in P(n, F'), is an almost-
direct product of (infinitely generated) free groups ([48]|). Moreover, it has been constructed
an universal finite type invariant for braids on surfaces, where the group K, (F') plays the role
of P,.

Let F' be a surface with boundary components. Consider the sub-surface F obtained removing
the handles of F. Let Y;,(F) be the normal closure of P(n, E) in P(n, F'). Using our presen-
tation for surface pure braid groups, we prove that the group Y, (F), which contains properly
K, (F), is an almost-direct product of free groups.

Proposition 1.6.3 The group Y, (F) is an almost-direct product of free groups.

24



Proof: We sketch a proof for F' orientable surface with one boundary component. Let 71 (F)™
be provided with presentation

(Ajogrk 7 =1,...,2g, k =1,...,n|[Aj g1k, Al 2g+q] = Lforall j,l =1,...,29, 1 < k#q<n),

where Aj o441 are the loops defined in Theorem 1.6.1. Let Fy,, be the group with presentation

(Ajogre 7=1,...,9, k=1,...,n|[Aj 291k, A12g+¢q] = 1forallj,l =1,...,9, 1 <k#qg<n).

Let JTa S| (F)n — Fg,n be the map defined by ,U,(AQZ'_LQg+k) = Ai,?g—l—k and [JJ(AQZ'729+]€) =1.
One can proceed as in Lemma 1.6.1 for showing that Ker(uox) = Y,(F). Thus the following
commutative diagram holds:

1 1 1
where Fy ; is the free group on g generators and G,, = Y, (F) N Ker(f) is a free group.

Lemma 1.6.2 The following set is a system of generators for G,,.
{ijygg+n771|29 <j<29+mn and 1 <j<2g,7 even }
where 7y is a word on {A;tkl_l’gg_i_n]l <k<g}.
Proof: Consider the vertical sequence
1 — G, — Ker(0) — Fy; — 1.

Recall that Ker(0) = m(F \ {P1,...,Po_1}, Pn). A set of free generators for this group is
given by {A; 25451 < j < 2g+n}. The map po x sends Ajog4, in 1 for 29 < j < 2g +n and
1 <j < 2g, j even. On the other hand, p o x(Agk—1,2g4n) = Ak2g+1 for k=1,...,g. O
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Recall that the existence of a section for # implies that Y, _1(F') acts by conjugation on
G, and thus on the abelianization G, /[Gy, Gy]. The following Lemma concludes the proof. O

Lemma 1.6.3 The action of Y,,—1(F) by conjugation on Gy /|Gy, Gy] is trivial.

Proof: Let t € {Ajr|29 < k <29+n,29g <j <k and 1 < j <29, jeven} and f €
{Aj2g44nl29 < j <2¢g+mn and 1 < j < 2¢g, jeven}. We need to verify that every ¢ acts
trivially on Gy, /[Gp, Gp]. Presentation in Theorem 1.6.1 shows that

(A) tftt=f (mod[Gy,Gh]),

for every t and f. Now consider the action of ¢ on Ags244n, for s = 1,...,9. We refer once
again to Theorem 1.6.1 for showing that for every ¢t € {A;x[2g < k < 29+ 1,29 < j <
k and 1 <j < 2g,j even },

(B) tA257172g+nt71 = hA2571,2g+n (]— <s< 9)7

where h € G,,. Let y be a word on {A3;! | ag+nll <k < g}. From (A) and (B) it follows that,
for every t € {429 <k <29+mn,29 <j <k and 1 < j <2g,j even}, tyfy 1t =
tyt~ltft= Myt = hytft7 Iy = hyfy thT! = 4 fy~ !, where h is an element of G,,.

O

Remark 1.6.4 We notice that classical techniques do not apply to the whole group P(n,F).
The main obstruction is that, even when the exact sequence (PBS) splits, the action of P(n, F)
on the abelianisation of m (F \ {z1,...,2n_1}) is not trivial, because of relations (ER1) and
(ER2). In particular, when F is a surface of genus g > 1, it is presently unknown whether the
graded group associated to the lower central series of P(n,F) is torsion free.

Remark 1.6.5 According to [51] and [5]], the mapping class group of a pointed surface (see
Definition 3.2.1) is residually finite. As P(n,F) is a (normal) subgroup of the mapping class
group of a pointed surface ([15]), it follows that P(n, F') is residually finite.

26



Chapter 2

Braid presentations via graphs

2.1 Introduction

To any planar, connected graph with n vertices, without loops or intersections, it can be
associated a presentation for the braid group By, (Sergiescu, [83] and [84]). To each edge e of
the graph we associate the braid . which is a clockwise half-twist along e (see Figure 2.1).

o \/

Figure 2.1: Edges and geometric braids.

Sergiescu provided a complete set of relations using this set of generators for B,,. Afterwards,
Birman, Ko and Lee ([18]) extended this result to inner-complete graphs in order to give a new
proof for the conjugation problem in B,,. Recently Han and Ko ([53]) showed that it is possible
to associate braid group presentations to a more general family of graphs (linearly spanned
graphs) containing above graphs. We recall also that these presentations turned out useful in
other related contexts (see for instance [13] and [14]). In this chapter we provide an analogous
result for sphere braids (Theorem 2.2.1) and we prove some results on automorphisms of
B(n, S?). In particular, we prove that the outer automorphisms group of B(n, S$?) is isomorphic
to Zio ® Zis.
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2.2 Sphere braid groups presentations via graphs

2.2.1 Definitions and Statement of the Main Theorem

Definition 2.2.1 Let I" be a graph on an orientable surface F'. The graph T is called normal
if I' is connected, finite and it has no loops or intersections.

Let T’ be a normal graph on F'. Let S(T') be the set of vertices of I'. We associate to the edges
of I' the corresponding geometric braids on F' (Figure 2.1) and we define B(I', F') the subgroup
of B(S(T"), F') generated by these braids. In the following we will use the same notation for
elements in the free group generated by the set Xr = {0 | o edge of I'} and corresponding
braids in B(T, F). It can be easily verified that B(I',F) = B(S(T'),F) if F = D? or S
Otherwise B(I', F') C Ngr)F, where NgqyF' is the normal closure of Bgry in B(S(T'), F).
Proposition 1.5.2 shows that the inclusion NgyF C B(S(T'), F) is proper.

From now on, I' is a normal graph on S2.

Suppose that T is not a tree. The set S? \ T is the disjoint union of a finite number of open
disks D1, ..., Dy, m > 1. The boundary of D, on §? is a subgraph I'(D;) of I'. We choose a
point O in the interior of I'(D;) and an edge o of I'(D;), with vertices v; and vy. We suppose
that the triangle O viv is anti clock-wise oriented. To the subgraph I'(D;) we associate a
polygon P; with p; edges as follows.

We suppose that the edges e1,...,ep, and the vertices z1,...,zp; of P are anti clock-wise
oriented. The edge e; is labelled with the edge o(e;) = o of I'(D;). The vertices z1, 2 of e;
are labelled with the vertices v(x1) = v1,v(z2) = v2. Each edge e;11 of P (we set ;.11 = e1)
is labelled with o(ej1) C ['(D;), the first edge on the left of o(e;) adjacent to v(z;41). The
vertex z;42 is labelled with the other vertex adjacent to o(e;y1). If v(z;41) is a uni-valent
vertex then o(e;11) = o(e;) and v(zi42) = v(z;).

Definition 2.2.2 The sequence o(e1)...o(ep;) defined below is the (anti clock-wise oriented)
pseudo-cycle associated to D;.

The pseudo-cycle o(e1) ... o(ep;) is uniquely defined up to cyclic permutation.

Definition 2.2.3 Let v = o(e1)...0(ep) be a pseudo-cycle of I'. If there exist a pair i,7,
1 <i,j <p such that o(e;) = o(ej), we say that

e o(e;) is the start edge of a reversing if j # i — 1 (we set eg = ep).
e o(e;) is the end edge of a reversing if j # 1+ 1 (we set epy1 = ey).

We set oy ... 0, for the pseudo-cycle o(er)...o(ep).

Let A be a maximal tree of I'. We start from x going through ¢ and at the vertex y we choose
the first edge on the left. We iterate this process until meeting an uni-valent vertex, say z,
where we go back through the edge corresponding to z and we start again the process. In this
way we come back to z after we passed two times through each edge of A.

Definition 2.2.4 Set 0, ,(A) for the word in Xt corresponding to the above circuit (Figure

The element 0, »(A) corresponds to a braid where the only non trivial string corresponds
to the vertex z. The projection of this string on the sphere is a simple (oriented) loop bounding
a disk containing all other vertices.
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Figure 2.2: §;.,(A) = ca?B%0y8%e2y (2.

Theorem 2.2.1 Let I' be a normal graph with n vertices. The braid group B(n,S?) admits
the presentation (Xr |Rr), where Xr = {o | o edge of T'} and Rr is the set of following
relations:

Remark 2.2.1 The pseudo-cycle o3040109 in Figure 2.4 (respectively the pseudo-cycle 04010203 )

Separate relations (SR): if 0;Noj =0 then 0,05 = 0j0; ;
Adjacency relations (AR): if 0;,0; have a common vertex, then o;0;0; = 00,05 ;

Nodal relations (NR): if {o1,02,03} have only one common vertex and they are clock-
wise ordered (Figure 2.3), then

01020301 = 02030102,

Pseudo-cycle relations (PR): if 01...0pm is a pseudo-cycle and o1 is not the start edge
or o, the end edge of a reversing (Definition 2.2.8 and Figure 2.4), then

Tree relations (TR): 04,4(A) = 1, for every mazimal tree A C T, every vertezx z € A
and every edge o € A adjacent to .

Figure 2.3: Nodal relation.

does not verify the hypothesis of the definition of the relation (PR). Spherical braids cor-
responding to the words 030401 and 03040102 (respectively the braids corresponding to the
words 04010903 and 010205 ) do not represent the same element in B(n, S?).

Definition 2.2.5 Let I' be a normal graph and let o1 ...0p, be a pseudo-cycle of . We set
Ry, .., for the set of (PR) relations satisfied, up to cyclic permutation, by the pseudo-cycle

o1 ..

-Op-
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%

Figure 2.4: Pseudo-cycle relation; on the left o109+ 0p—1 =090y = -+ = T+ - O—2.
On the right 010203 = 02032,04 = 030401 and 03040109 = 04010203.

Remark 2.2.2 The definition of pseudo-cycle extends naturally to a tree I'. In particular
0p,00 (I') is the word oy ---0p in the free group generated by the set Xr, where the sequence
o1 ...0p is the pseudo-cycle associated to S? \ T'. The set of (TR) relations of I' implies the
set of relations Ry, . o,

Remark 2.2.3 Let v C T be a star. For any clock-wise ordered subset {oy,,..., 05 |j > 2}
of edges of v the following relation holds in the group (Xr | Rr):

Tiy -+ 04,04y = 04,04y ... 0 .

2.2.2 Geometric interpretation of relations

The natural map ér : (X | Rp) — B(T, S§?) is an homomorphism. Tt is geometrically evident
that the relations (AR) and (SR) hold in B(T", $2). Let I contain a triangle o1, o2, T as in Figure
2.9. Corresponding spherical braids verify the relation 7 = o020 L and thus TO] = 0109
in B(I',8?). The relation o109 = 037 follows from the braid relation 01020f1 = 0510102.
Let o1,09,03 be arranged as in Figure 2.5. We add three edges 71, 72, 73. The nodal relation
follows from pseudo-cycle relations on triangles 710903, To0103 and 130109. In fact, 1090301 =
09T30301 = 09037301 = 02030102. All other pseudo-cycle relations follow from induction on
the length of the cycle.

Figure 2.5: Nodal relation holds in B(I', S2).

Let z,0,A C T'. The word §, »(A) corresponds to the geometric braid in B(T, $?), where
the only non vertical string is the string associated to the vertex = going around (with clock-

wise orientation) all other strings (Figure 2.6). This braid is isotopic to the trivial braid and
then d,,,(A) =1 in B(T, S?).
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Figure 2.6: The braid d, ,(A) associated to the tree A =1"\ 7.

2.3 Proof of Theorem 2.2.1

2.3.1 Preliminaries

The steps of the proof are similar to [84]. We need some preliminary Lemmas.

m1

Figure 2.7: Projection of the graph I' on the face bounded by o1, 09, ...

, Oy

Lemma 2.3.1 Let I" be o normal graph on the sphere and let o1 ...0y,, be a pseudo-cycle on

I'. Let (Xr | Rr) be the group defined in Theorem 2.2.1.
The groups (Xt | Rr) and (Xr | Rr \{Rs,..0,,}) are isomorphic.

Proof: We can represent the graph I' on the plane, projecting I' on the face bounded by the

pseudo-cycle oy ... oy, (Figure 2.7). We need to show that the relation
O'm...0'2 :O'm_l...o'l

holds in (X1 |Rr \ {Ro,..c.. } ).

Figure 2.8: The maximal trees A and A’.
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Consider two maximal trees A, A’ in I' such that the tree A contains o9, ...,0n,, the tree
A’ contains o01,...,0m—1, and AU {01} = A" U{opn}. The graph A\ {o2,...,0m} = A"\
{o1,...,0m_1} is a set of subtrees AN AP Al of ' (Figure 2.8). The (TR) relations
on A and A’ yield the following relation:

(A) Om* 2020209203 0n Q] =0pm—1'""01 010102 0Om—10np,

where a1, ..., a, are sub-words associated to corresponding sub-trees AW A@ A

Let oy = (1 Cuo1CnCns1 -~ G, Where (1 = (et G # (5, for 4,7 > n + 1. We apply the
(PR) relation on the pseudo-cycle (,(pi1- - (gora2 -+ omCi -+ (n—2Cn—1,

Cnlnat - Cgor@a - 0mCr - Coez = Gt - Cqonag - 0Cr -+ Cn2Cu1Cn s
and we derive

G G CnGat - G010 T Gy = 012+ 1 -+ CnaCnt -
We premultiply by o U and we apply (AR) relations in order to obtain

Calnt1 - Cor e GG s O Gra = g Ol GraCn -
It follows that

aroroy = (e Gnrog e omr e Cu2Gn1G e Gt g G G
From iterated applications of (AR) and (NR) relations it follows that
omC1 Cnm2n-1Gty G ot = GGy (T omG e Gam2 Gt

Then
1 -1

alalafl = Q909" ozmamo%1 S0y Oy
holds in (Xr | Rr \ {Ro,..0,, } ). The braids a; and o;,! - -- 05 'a; ' commute, and thus

909+~ Oy O] — 10109 + - = Oy,

From equation (A), it follows that

0

The Following Lemmas establish that for any graph I'' obtained removing or adding “tri-
angles” to T" the groups (X | Rpv) and (Xr | Rr) defined in Theorem 2.2.1 are isomorphic.

Lemma 2.3.2 Let 01,09 be two adjacent edges of I, which are not contained in any pseudo-
cycle. Let I = T'U T be the graph obtained adding an edge T to T to form an anti clock-wise
triangle To109 (Figure 2.9). If B(T, 8%) = (Xr | Rr) then B(T',S?) = (Xt | Rr).

Proof: By Tietze’s transformation we obtain that (X |Rp, 7 = 01020f1> is a presentation

for B(T, §?) = B(I",S?). Since {Rr, 7 = 01090, '} C Ry, (X1 | Rpv) is a presentation for
B(I',8?). O
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Figure 2.9: Adding or removing a triangle.

Lemma 2.3.3 Let 7 be an edge of I bounding only one pseudo-cycle, which is an anti clock-
wise triangle To109 (Figure 2.9). Let T =T\ 7. If (X1 | Rpv) is a presentation for B(I',5?)
then (Xt | Rr) is a presentation for B(L',S?).

Proof: We need to show that the set of relations Ry are verified in the group (X | Rp, 7 =
010907 ). Sergiescu showed ( Lemma 1.3 in [84]) that the relations (SR), (AR) and (NR) for
the graph I” are a consequence of the relations (SR), (AR) and (NR) for the graph I' and
the relation 7 = 010207 ! The edge 7 belongs to the pseudo-cycle To105. The corresponding
pseudo-cycle relations derive from 7 = 01090, Vand 10901 = 030109. We prove that the
relation ¢, ,(A) = 1, for any 6, z, 0, is a consequence of the set of relations { Rr, 7 = 010201_1}.
If 7 ¢ A the claim follows. Suppose that 7 € A. We have two cases (we refer to the Figure
2.10):

Figure 2.10: Tree relations for T/ = ' U T are generated by the set {Rpr U7 = oy0907 '}

L. 0z,4(A) = Boo1f17P2701 83, where (; are the sub-words obtained following the rest of
2. 6z,0(A) = agTajor009T a3, where o are the sub-words obtained following the rest of
A.

Replace 7 = 01020f1. In the first case, from (SR) it follows that 018 = fe01 and then

1 “1 1
Boo1Bio1o20 ~Paoioro) “0183 = Boo1fro1o20 Baoi02fs = Booi1fro102620283

One deduces that the relation d, »(A) = 1 holds in (X | Rr, T = 010207 '). In the second
case, let write oo = 03(303...0p(p0p, Where oy, for k = 1,...,p, corresponds to an edge of I'
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adjacent to o1 and o9 and (;, for kK =1,...,p, corresponds to a tree disjoint from o1 and os.
The elements o, (k= 1,...,p) and 01090, ' commute:

akalagafl = 02_101020;{; = alagaflak .
One derives that [aq, 010201_1] = 1. From o1a1 = a0, it follows that
-1 —1 _ —1 —1 _
Qp010201 (1020202010207 (3 = Q010200101 02002010201 O01(X3 =
aoalagalaflagalagafla201a3 = Q0102011020201 Q3 .

Therefore 6, ,(A) =1 holds in (X | Rr, 7 = 1090, '). We remark that 7 belongs also to the
pseudo-cycle P bounding the other connected component of S?\T'. According to Lemma 2.3.1
we can suppose that the set of pseudo-cycle relations Rp are redundant and thus (X | Rp)
is isomorphic to (Xp | Rp, 7 = 010201_1). O

2.3.2 Inductive steps

Definition 2.3.1 A node is a vertex of valence greater than two. We call the valence of T,
v(T'), the sum of valences of all nodes of T

In order to prove Theorem 2.2.1, we proceed by induction on the number of connected com-
ponents of S2\T.
i) Let T’ be a tree. We recall that the braid group on the sphere is a quotient of the braid
group on the disk.

Theorem 2.3.1 ([35]) The group B(n,S?) admits the following presentation
e (lenerators: o1,...,0n_1 -

e Relations:

0i0;110; = 04100341}
oio; = ojo; forli—j| >2;
0’10'2...0'%71...0'20'1 = 1.

Then, it follows that Theorem 2.2.1 holds when T' is a straight line and v(T") = 0. Suppose
that Theorem 2.2.1 holds for all trees with valence less than ¢ > 0 and let I be a tree such
that v(I') = q. Let vg be an uni-valent vertex of I'. As in Definition 2.2.4, we run on the tree I'
starting from vg and choosing to turn on the right at each node. Let v be the vertex preceding
the first node. Let v9 be the first uni-valent vertex after vy (see Figure 2.11).

We replace the edge 7 between v; and the first node with an edge 71 joining vy to the vertex
vy (see Figure 2.12). The graph I'; so obtained is such that v(I'1) < v(T"), and then Theorem
2.2.1 holds for I'y. From Lemma 2.3.2 it follows that Theorem 2.2.1 is verified for the graph
I’y obtained adding an edge 7o between v; and the other vertex adjacent to vy (see Figure
2.13). From Lemma 2.3.3 one deduces that Theorem 2.2.1 holds for the graph I's = T'o \ {71 }.
Iterating the process we derive that the result holds for the initial tree I'.

ii) Suppose that Theorem 2.2.1 holds when the number of connected components of S2\ T is
less than p > 1. Let I' be a normal graph such that S? \ I' has p connected components. We
remove an edge o1 which bounds two pseudo-cycles 61,09 ...,0, and o1, 72,..., 7y of I'. We
encounter two cases.
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Figure 2.11: We suppose I' embedded in the sphere.

Vo

M

Figure 2.12: Replacing the edge 7 withr.

1. o, is not the end edge of a reversing. From induction hypothesis and Tietze’s trans-

formation, we deduce that (Xp | Rr\{51}, 017 0p1 = 03... on) 18 a presentation for
B(T, §%). According to Lemma 2.3.1 we can suppose that pseudocycle relations for the
cycle og,...,0n, Tm, ..., 7o are redundant. Therefore Rr contains the set {RF\{Ul}, oy
Opn_1 = 03...0,} and we conclude that (Xr | Rr) is a presentation for B(T, S2).

. If 0y, is the end edge of a reversing, there exists [ < n such that o; = 074y, and 0; # 0}
for [ +1 <14 < j <n.lt follows that the relation

Ol410[42 """ 0p0102...0]—1 = 0[42 " 0p0102...0]_10]
holds in (Xt | Rr). Multiplying by o o7 - - ‘71112 and applying (AR) relations we obtain
11 —1 -
02...01-10] =01 Op -~ U[+20l+10l+2 e 0p0109...0]11 —
_ ~1 -1 -1
= 01410142 On010,, 01 501, 102...0 1,

what yields
_ -1 -1 -1 —1
Ul_o'n ...O—Z—|—10—2...0-l710-l0-l—1...0—2 0‘l+1...0'n.

Thus the above argument concludes the proof.
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V1
M2
Figure 2.13: Adding and removing triangulations.

Remark 2.3.1 In order to show Theorem 2.2.1, one can also consider a normal graph I' on
the disk and add to Sergiescu’s relations for B(T',D?) ([84]) all (TR) relations for T. Let
(Xr | Zr) be the group so obtained. Lemmas 2.3.2 and 2.3.3 as well as the inductive steps hold
true and then (Xt | Zr) is isomorphic to B(n, S?). Anyway, our approach allows to consider
I' as embedded on S? and to prove in an algebraic way the redundance of the pseudo-cycle
relations.

2.3.3 Automorphisms and isometries

The presentation of Theorem 2.2.1 is redundant however useful because we can read the
relations on the graph I'.

Definition 2.3.2 Let F be a sub-set of R? (S2). The symmetry group of F, X(F), is the
sel of congruent transformations of R? (S?) that leave F invariant. We denote S(F)* the

sub-group of X(F') generated by rotations. The symmetry group X(F') is discrete if the set
{¢(P)|p € X(F)} is discrete for any point P € F.

Corollary 2.3.1 Every finite group H of O(3) is isomorphic to a subgroup of Aut(B(n,S?)),
for some n.

Proof: Let I' be a normal graph on the sphere such that 3(I') = H. Since relations of B(T, $?)
hold by rotations we associate to every rotation p € H the corresponding automorphism p of
B(T, §%). To every reflection Y € H we associate the morphism ¥ that moves the generator o
of B(T', S?) in the braid x(c)~!. This map is an automorphism of B(T', S?). The subgroup K
of Aut(B(T,S?)) generated by the set {g|g generator of H} is isomorphic to H. O

We recall that B, is the inductive limit of the sequence By C By C .... Sergiescu showed
that it is possible to associate to every infinite graph on the plane, locally finite and without
loops or intersections, a presentation for By, ([84]). The following Corollary is the analogous
of Corollary 2.3.1

Corollary 2.3.2 Let F be a subset of R?. Let X(F) be discrete. Then X(F) is isomorphic to
a subgroup of Aut(Byo).

Proof: For every subset F C R? such that X(F) is discrete, there exists an infinite graph T
locally finite such that ¥X(F') = %(I') (see for instance [27]). O
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2.4 The outer automorphisms group of B(n, S?)

Let G be a group. Let Aut(G) be the automorphism group of G, Inn(G) the inner automor-
phism group of G' and Out(G) = Aut(G)/Inn(G) the outer automorphism group of G. We
conclude the Chapter with the computation of the outer automorphisms group of sphere braid
groups. We recall that Out(B,,) = Z2 and the morphism ¢ : B, — B,, defined by ¢(0;) = 0;1
for j =1,...,n —1is the generator of Out(By,) (|33]).

Definition 2.4.1 For an element x € B(n,S?), written in standard generators of Theorem
2.3.1 asz=1]; 03\; we denote by e(xz) = >; \j mod 2(n — 1), the exponent sum of x.

It follows from the presentation in Theorem 2.3.1 that the exponent sum is well-defined
(it is independent on the word chosen in the generators). Let ¢ in Out(B(n,S?)) and let
¢ € Aut(B(n,S?)) a co-representative of ¢. The exponent sum is invariant up to inner auto-
morphisms, and thus we can set e(¢(z)) for e(¢(z)), for € B(n, S5?).

Let ZB(n,S?) be the center of B(n,S?). Let M(n,S?) be the mapping class group of the
n-punctured sphere (see next chapter).

B(n, S?)

Proposition 2.4.1 The group Out(m
n’

BmsY) 2 2
ZB(n, 52) is isomorphic to M(n, S?) ([15]) and the group Out(M(n, S?))

is isomorphic to Zy for n > 4 ([56]). O

) is isomorphic to Zso, for n > 4.

Proof: The quotient

Proposition 2.4.2 The group Out(B(n,S?)) is isomorphic to Zio ® Tz, for n > 4.

Proof: The subgroup ZB(n,S?) is isomorphic to Zg and it is generated by the element U =
(o1~ 0n_1)" ([15]). Let id be the identity map in Aut(B(n,S?)) and let ¢; be the map defined
by ¢i(oj) = aj_l for 7 = 1,...,n — 1. Since the relations in Theorem 2.3.1 are symmetric,
¢1 € Aut(B(n,S?)).

Let ¢2 be the map defined by ¢2(0;) = o;U for j = 1,...,n — 1. By the definition of
¢2 and the fact that U has order two and it generates ZB(n,S?), we derive that ¢2(U) =
(U)rn=1+1 = U It follows that ¢ o ¢y = id, and thus ¢ € Aut(B(n,S?)). In the same
way, one can verify that the map ¢3, defined by ¢3(0;) = aj_lU forj =1,...,n—1,is an
automorphism of B(n, S?).

Any automorphism ¢ € Aut(B(n, S?)) induces an automorphism ¢’ of Aut(B(n,S?)/ZB(n,S?)).
Moreover, if ¢ € Inn(B(n,S?)), then ¢ € Inn(B(n,S?)/ZB(n,S?)). Therefore, we obtain a
map ¢ : Out(B(n, S?)) — Out(B(n,S?)/ZB(n,S?)). Let ¢1, ¢a, 3 be the images of ¢1, p2, 3
in Out(B(n, S?)). Since e(¢1(0;)) = —1 mod 2(n — 1), for all j = 1,...,n — 1, it follows that
$1 is a non trivial element of Out(B(n, S?)) for n > 3.

Since U has order two and it generates ZB(n,S?), we deduce that all automorphisms of
B(n, S2) leave invariant U. If an outer automorphism ¢ belongs to Ker (1)), then, up to inner
isomorphism, for j = 1,....,n — 1, 5(@-) = 0j or g(aj) = o;U. The relations 0;0;410; =
0i110;0;11 imply that either g(aj) =o; forall j =1,...,n —1, or g(aj) = o;U for all
j=1,...,n—1. Thus Ker(z) is generated by ¢y.

We prove that, for n > 4, ¢ is not an inner automorphism of B(n,S?), and thus Ker(y)
is isomorphic to Zs. Since Out(B(n,S?))/Ker(y)) is trivial or isomorphic to Zs (Proposition
2.4.1), it follows that Out(B(n,S?)) has order two or four.
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Consider the exact sequence

1 — P(n,S%) — B(n,8%) 2%, —1.

Remark that Z%,, = {1} and ZP(n, S?) = ZB(n, S?). On the other hand, the automorphism
$2 leaves invariant the group P(m,S?). Moreover, the restriction of ¢o on P(n,S?) is the
identity map (if z € P(n,S?) then e(z) is an even number). Let ¢o : %, — %, be the
automorphism induced by ¢o. This automorphism is the identity on X,. The automorphism
¢ is not the identity on B(n,S?), since U # 1.
Suppose that ¢ is an inner automorphism. Let o € B(n, S?) such that ¢2(8) = aBa~" for all
B € B(n,S2). Since ¢y = id, then p(e) € Z%, and thus p(a) = 1. It follows that a belongs
to ZP(n,S?). Since ZP(n,S?%) = ZB(n,S5?), we deduce that ¢, is the identity on B(n,S?),
which is false.
When n = 2k, k > 1, the automorphism ¢ of B(n,S?)/ZB(n,S?) defined by ¢(o;) = a]-_l for
4 =1,...,n—1 can be choosen as representative of the generator of Out(B(n, $?)/ZB(n, S?)).
Thus ¢ is onto and Out(B(n,S?)) is isomorphic to Zgy @ Zs.
When n = 2k + 1, we derive that e(¢2(0;)) = 2k + 1 mod 4k and e(¢3(o;)) = 2k — 1 mod 4k,
and then, for k > 1, the elements ¢, ¢2, ¢3 are distinct non trivial elements of Out(B(n, S?)).
It follows that Out(B(n, S?)) is generated by ¢1, $2, ¢3 and it is isomorphic to Zg @ Zo.

O

Remark 2.4.1 The group B(3,5%) has order 12 and il is isomorphic to the group T, the
semi-direct product of Z3 by Zy ([35]). It can be verified that Aut(B(3,5%)) = B(3,5%) and
Inn(B(3,5%)) = Zg and then Out(B(3,5%)) = Zsy. In this case, e(¢1(0;)) = e(d2(0;)) = 3
mod 4, and it is simple to verify that ¢1 = ¢o. We remark also that Out(B(2,S?)) is trivial.

Let F' be an orientable surface different from the sphere, and let M(n, F') be the mapping
class group of the surface F' with n-punctures (see Definition 3.2.1).

Remark 2.4.2 The characterisation of Out(M(n, F')) is completely solved (see [56] and [70]).
The braid group B(n,F) is a subgroup of M(n,F) ([15]), but no result is known about
Out(B(n, F)), except when F is the annulus ([30]).
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Chapter 3

Singular braids

3.1 Definitions and results

Singular braids have been introduced in [3] and [16] as an extension of classical braids on n
strings. String of singular braids are allowed to intersect in a finite number of double points
(singular crossing). The isotopy classes of these singular braids, with the analogous multiplica-
tion, form the monoid of singular braids on n strings on D?, denoted by SB,,. The generators
of the monoid are the usual generators o; of B,, and their inverses, plus new monoid gener-
ators 1q,...,7, 1, where 7; corresponds to the singular braid with a crossing point involving
the j-th string and the (j 4+ 1)-th one. Baez and Birman showed also a complete system of
relations for this monoid. To the usual braid relations (and the invertibility of o;) we need to
add following relations:

® T,050;=040;Tj f0r|z'—j|:1;
o 7,7j=T1;7; forli—j|>2;
o 1,05 =01 forl|i—j]>2;
o ,0i=o0;1; fori=1,...,n—1.

Singular braids are related to finite type invariants for knots. Several properties of singular
braids have been studied ([5], [26], [32], [39], [40] and [44]). In particular it has been shown
that SB, embeds in a group, that the word problem for SB,, is solvable and that it exists
a Markov Theorem for singular braids. An interesting conjecture for singular braids concerns
the embedding of the singular braid monoid SB, in the group ring of the braid group B,
(16], [40], [92]). On the other hand one can extend the surface braid group B(n, F') to the
singular braid monoid on n strings on F', SB(n, F'). This monoid has been introduced in [48],
in order to define finite type invariants for surface braids. A system of generators for SB(n, F')
is given by the generators of B(n, F'), their inverses and the singular generators 7y, ..., 7,1,
which correspond to the singular braid generators of SB,,. Gonzéilez-Meneses ([49]) provided
a presentation for SB(n, F'), when F' is an orientable closed surface. In the last section we
give a presentation for the monoid SB(n, F'), when F' is an orientable surface, possibly with
boundary. Fenn, Rolfsen and Zhu ([40]) gave a characterisation of those elements of the braid
group B, which commute with usual generators o;. They proved an analogous result for SB,.
In particular, it was established that the sub-monoids of those elements commuting with o; on
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one side or with singular generator 7; in the other side are the same. We extend these results
to surface braid groups B(n, F') (for an orientable surface F') and corresponding singular braid
monoids SB(n, F'):

Theorem 3.1.1 For all z € SB(n, F), the following properties are equivalent:
1. 0;T = X0,

r
2. o}
T

z = zoy},, for somer € Z\ {0},

oix = xoy, forallr e Z,

3.
4. T;T =TT},
5.

Tjx = x7), for somer € N\ {0}.

Let P ={P,...,P,} be aset of n distinct points of F. An arc is an embedding a : [0,1] — F
such that a(0),a(l) € P and a(x) ¢ P for all z € (0,1). As in [40] the main idea is to consider
braids as mapping classes of the surface F'\ P (Section 3.2.1) and to study the action of braids
on isotopy classes of arcs (Sections 3.2.2 and 3.2.3 ). In particular, in Theorem 3.3.1 and 3.3.2
we identify all solutions z of 0,2 = zoy, by a natural criterion involving braids as geometrical
objects having what Fenn, Rolfsen and Zhu called (j, k)-bands. As application of Theorem
3.1.1 and of a reduction property of singular braids (Lemma 3.4.2), we obtained simple proofs
for the following statements.

Theorem A (Theorem 3.4.1) SB(n,F) embeds in a group.

Theorem B (Theorem 3.5.2) The word problem for SB(n, F) is solvable.

Remark 3.1.1 Let M be a monoid, with presentation (G |R). The monoid M embeds in a
group if and only if it embeds in the group defined by the presentation (G |R).

3.2 Preliminaries

3.2.1 Mapping class groups

We recall some definitions about mapping class groups. The main references for this Section
are [15], [64] and [76]. From now on, let F' be a compact, connected, oriented surface and let
P ={P,...,P,} be aset of n distinct points in the interior of F'.

Definition 3.2.1 We denote H(F,P) the group of orientation-preserving homeomorphisms
h: F — F, such that h(P) = P. The punctured mapping class group of F relatively to P is
defined to be the group of isotopy classes of elements of H(F,P). The punctured mapping class
group does not depend on the choice of P. We denote this group M(n, F).

In the following we consider a simple closed curve in '\ P as an embedding ¢ : S' — F \ P
which does not intersect the boundary of F. By abuse of notation, we use the symbol ¢ to
denote the image of c¢. The simple closed curve ¢ is essential if it does not bound a disc in
F'\ P. The simple closed curve ¢ is generic, if it does not bound a disc in F' containing 0 or 1
point of P.

Two simple closed curves ¢, ¢’ are isotopic if there exists a continuous family hy € H(F,P),
t € [0,1] such that hg is the identity and hi(c) = ¢’. We denote ¢ ~ ¢'.
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Definition 3.2.2 Letc: S' — F\P be a simple closed curve. Choose an embedding A : [0, 1] x
St — F\ P such that A(1/2,2) = c(z) for all z € S', and we consider the homeomorphism
T € H(F,P) defined by

(T o A)(t,2) = A(t,e¥™2),t €[0,1],2 € S,

and T is the identity on the exterior of the image of A. The Dehn twist along c is defined to
be the element v € M(n, F) which represents T (figure 3.1).

We recall that the definition of « does not depend on the choice of A and that two isotopic
generic simple closed curves define the same Dehn twist.

Definition 3.2.3 An arc is an embedding a : [0,1] — F such that a(0),a(l) € P and a(z) ¢ P
for all z € (0,1). A (j,k)-arc is an arc such that a(0) = P; and a(1) = Py.

By abuse of notation, we use the symbol a to denote the image of a. Note that two (7, k)-arcs
are isotopic if and only if they can be connected by a continuous family of (7, k)-arcs. As above
the isotopy of the arcs a and b is denoted by a =~ b.

Definition 3.2.4 Let a:[0,1] — F be an arc. Choose an embedding A : D?> — F such that:
o a(t)=A(t—1/2) for all t € ]0,1],
e A(D?)NP = {a(0),a(1)},
and we consider the homeomorphism T € H(F, P) defined by
(T o A)(z) = A(t,e*™V*12), 2 € D?,

and T is the identity on the exterior of the image of A. The braid twist along a is defined to
be the element a € M(n, F') which represents T (figure 3.1).

Figure 3.1: The Dehn twist v and the braid twist a.

Note that the definition of « does not depend on the choice of A and that two isotopic arcs
define the same braid twist.

The Isotopy Extension Theorem defines a map from B(n, F') to M(n, F). It is well-known that
B(n, F) embeds in M(n, F') when g > 1. Thus we are allowed to consider braids as elements

of M(n, F).
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Figure 3.2: The fundamental domain of an orientable closed surface of genus 2.

We represent F' and we choose the points Py, ..., P, as in Chapter 1. We fix a segment [i,74 1]
with end points P; and Pjy; fori =1,...,n — 1 as in Figure 3.2.

Let 0;,a;,b;, 2 be the braid generators defined in Chapter 1. The braid generator o; corre-
sponds to the braid twist defined by the segment [4,i41]. On the other hand, let ¢; be the non
trivial string of a; (respectively b;). We consider two generic simple closed curves cg, ¢; on the
fundamental domain of F as in Figure 3.3 and we choose an embedding A4 : [0,1] x S — F\P
of the annulus such that

o A(3/4,8') = ¢y,
° A(1/4,Sl) = ¢,
o A(1/2,8%) = ;.

The braid a; (respectively b;) corresponds to the homeomorphism gy, ! where ; is the Dehn
twist along ¢; (Figure 3.3). This homeomorphism is the identity on the exterior of A. Similarly,
to the generator z; we associate an element of the punctured mapping class group defined by
two generic simple closed curves ¢, ¢ around the k-th boundary component.

Figure 3.3: The homeomorphism associated with a generator a;.

3.2.2 Braids and arcs

We adapt some definitions and propositions introduced in [40]. We can represent braids as
a collection ¥ = (¢1,...,1,) of n disjoint strings in F' x I such that ; runs monotically
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in ¢ € I from the point in P; X 0 to some point P, x 1 € P x 1. As above an isotopy is a
deformation through braids with fixed ends and two braids are considered equivalent if they
are isotopic. Similarly to the classical case, we notice that two equivalent braids are related
by an horizontal isotopy ([86]). The product of braids corresponds to composing of mapping
classes of F'. One can have a braid 8 acts on F' (up to isotopy in H(F,P)) on the left or on
the right respectively as follows, (3 : F' — F' corresponds to a mapping class F' x 0 — F x 1
and fx : F' — F corresponds to a mapping class F' x 1 — F x 0. In particular braids act on
the right and on the left on the set of arcs on F up to isotopy in H(F,P).

Definition 3.2.5 A ribbon is an embedding
R:[0,1] x[0,1] = F x [0,1],

such that R(s,t) € F'xt. Let B be a braid and let A be a (j — k)-arc in F x 0. Then the isotopy
corresponding to B moves A through a ribbon which is proper for 3, meaning that

e R(0,t) and R(1,t) trace out two strings of the braid, while the rest of the ribbon is disjoint
from B;

e R(s,0) = A and R(s,1) = A« [.

Proposition 3.2.1 ([40]) Let g € B(n,F) and let A and B be arcs. Then A x 3 = B if and
only if there is a proper ribbon for 8 connecting AC F x 0 to BC F x 1.

Definition 3.2.6 We say that 5 € B(n,F) has a (j,k)-band if there exists a ribbon proper
for B and connecting [4,7 + 1] x 0 to [k, k + 1] x 1.

Proposition 3.2.2 ([40]) Let 8 € B(n,F). The braid B has a (j,k)-band if and only if
(7,7 +1]* B =[k,k+1]. If B has a (j,k)-band then o;8 = Boy,.

Proposition 3.2.3 Let 8 € B(n, F). If 078 = Boy, for some integer r, then {j,j + 1} x 8 =
{k,k+1}.

Proof: The case r odd is trivial, since it suffices to consider the associated permutation. Thus,
let 7 be even. Then, Bo; 37" € P(n, F). Let x; j+1: P(n, F) — P(2, F) be the map that forgets
all strands except the j-th one and the (j 4+ 1)-th one. Suppose that {j} * 8 ¢ {k,k + 1}. It
follows

1= xj+1(BokB™") = xjj+1(0f) = of.

This is false, since P, embeds in P(n, F) ([75]) and P, = (0?) = Z. O

3.2.3 Isotopy invariants

Let a and b be two simple closed curves in F. Following [38] and [76], the index of intersection
of a and b is
I(a, b) = inf{|ld'N¥|; a" ~a, b ~0b}.

Adapting above definition to arcs, the index of intersection of the arcs a and b is

I(a, b) = inf{|int(a") Nint(d')|; o’ ~a, b’ ~b}.
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We note that I(a, b) = inf{|a’ Nb|; @’ ~a} and that if a ~ b then I(a, b) = 0.

Let a be an arc and let « the braid twist associated to a. The square of « is a Dehn twist. We
set a for a generic simple closed curve such that T = o? where T is the Dehn twist along a.
Each generic simple closed curves @ bounds a disk D(a@) in F' containing an arc a’ isotopic to
a.

Proposition 3.2.4 ([76]) Let a and b be two simple closed curves and n any integer Then
I(T;(b),b) = [n|L(a, b)?,
where T} 1s the n-th power of the Dehn twist along a.

Lemma 3.2.1 If A is a (I,k)-arc, with {k,1} N {j,j +1} = 0 such that A% o; = A, then
I(A,[7,7+1]) =0, i.e. A and [4,7 + 1] are disjoint up to isotopy.
Proof: The hypothesis A x 0; = A implies that A « oj = A and therefore Tl.j/\

—_(A) =
R R J+H]
A. It follows that I(T (A),A) = 0. From the formula in Proposition 3.2.4 we deduce

[7.5+1]
I(A,[j,7 + 1]) = 0, which implies I(4,[4,j + 1]) = 0. O

Lemma 3.2.2 If A is a (j,j +1)-arc, such that Ao} = A for some r, then A~[j,j +1].

Proof- Using the same argument as in Lemma 3.2.1 we can suppose that I(A, [jj—i-\l]) =0.
Let A’ ~ A such that |4’ N [j;?l” = (). The disks D(A"), D([jﬁl]) cannot be disjoint
(they contains P;). Thus, either D(A') C D([jﬁl]) or D([jﬁl]) C D(A"). We deduce
that A’ ~ [jg?l] and therefore [,7 + 1] and A are isotopic. O

The following corollary is the analogous for braid twists of the well-known result on Dehn
twists (see e.g. Theorem 7.5 in [55]).

Corollary 3.2.1 Let a be an (i,j)-arc in F' and let Ty, be the braid twist along a. Let b be a
(k,1)-arc, where {i,j}0{k,l} = 0. The braid twist T, and T, commute if and only if I(a,b) = 0.

Proof: Tt is evident that if a and b are disjoint (up to isotopy) Ty, and T, commute. Recall
that as in the case of Dehn twist T,T,T, ! = T, ). Commutation hypothesis implies that
Tr, ) = Ty Now, consider braids associated to Tr, ) and Tp. Thus, with the previous notation
b*Tr, ) = bxTp = b and Lemma 3.2.2 implies T, (b) isotopic to b, i.e. bx T, = b. From Lemma
3.2.1 we deduce that ¢ and b are disjoint (up to isotopy). O

3.3 Statements of Main Theorems

3.3.1 Centralisers of B(n, F)

Let us state the first Theorem on centralisers of B(n, F').

Theorem 3.3.1 For each B € B(n, F), the following properties are equivalent:
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1. 0;8 = Poy,

2. 0iB = Poy,, for any integer r,

3. 0jf = Poy,, for some nonzero integer r,
4. B has a (j, k)-band,

5 [, +1]%B=[kk+1].

Proof: From Proposition 3.2.2 it follows that (5) = (4) = (1), and it is obvious that (1) =
(2) = (3). It remains to show that (3) = (5). Suppose that for some r, 073 = fo}. By
Proposition 3.2.3 this equation is possible only if {j,j + 1} * 8 = {k,k + 1}. From the remark
that ﬁ_l(j;ﬁ = oy, and that o}, has a proper (k,k)-band, we conclude that there is a proper
ribbon R for 57107 8 from [k, k+1]x0 to [k, k+1] x 1. Define A = B[k, k+1] = [k, k+1]+5".
We may assume (up to isotopy) that R(-,1/3) = A x 1/3 and R(-,2/3) = A x (2/3). Then
there is a ribbon for o} connecting A to A. From Proposition 3.2.1 we deduce that A*oj = A.

j
By Lemma 3.2.2, A = [4,j + 1] and the claim is proved. O

Remark 3.3.1 Definitions 3.2.5 and 3.2.6 can be extended naturally to mapping class groups.
The Theorem 3.3.1 holds true for any f € M(n, F).

3.3.2 Singular ribbons

Theorem 3.3.1 can be extended to SB(n, F'). Two singular braids z1 and zo are equivalent if
there exists an isotopy H; of F' x [0,1] such that Hy = idp o) and Hi(z1) = z2. Let B be a
ball of radius e centered at the singularity p. Denote s; = Hy(x1), pr = Hi(p) and By = Hy(B).
We can suppose without loss of generality, that By is the ball of radius € centered at p; and
that B; N s; is as in Figure 3.4.

NV
Figure 3.4: The neighbourhood of the singularity p.

We stress that equivalent singular braids do not need to be related by a level preserving isotopy
H in F x [0,1].

Definition 3.3.1 A singular ribbon is @ map R : I x I — F x I such that R embeds I xt into
F x t, except for finitely many points t, for which the image is a single point in F x t. One
also assumes, at these singular points, that there is a tangent plane in F X t for the singular
ribbon.

As for braids, we say that a singular ribbon is proper for a singular braid if it sends {0,1} x I
along two of its strings and the image is disjoint from the other strings of the singular braid. An
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isotopy of a singular braid can be extended to an isotopy of any of its proper singular ribbons.
In contrast to the ordinary situation, it is not always possible to find a singular ribbon proper
for a given singular braid and a given arc A = R(I,0). Anyway, we have the following.

Proposition 3.3.1 ([40]) If a singular ribbon R is proper for the singular braid x and R(I,0)
and R(I,1) are isotopic as arcs to [§,5 +1] x 0 and [k, k + 1] x 1 respectively, then ojz = xoy,
in SB(n, F).

Definition 3.3.2 A singular braid has a (j, k)-band if it has a proper (singular) ribbon con-
necting (4,7 + 1] x 0 to [k, k + 1] x 1.

Remark 3.3.2 For a singular braid x, having o (4, k)-band is a sufficient condition for satis-
fying oz = zo}.

Lemma 3.3.1 Let 5 € B(n, F) andy € SB(n, F), such that both Bo;y and Py have (singular)
(7, k)-bands. Then Bty also has a (singular) (4, k)-band.

Proof: The proof is an immediate extension of Lemma 6.4 in [40]. Let A = [7,7 + 1] x . Since
By has a (j, k)-band, we have a proper ribbon R such that R(I,0) and R(I,1) are isotopic as
arcs to [4,7 4+ 1] x 0 and [k, k + 1] x 1. After an isotopy we may suppose R as the composition
of two ribbons R; and Ry for  and y, such that Ry(I,1) = Ry(I,0) = A. The hypothesis
that Bo;y has a (4, k)-band implies that Axo; = A. Considerations on associated permutation
show that either {j,7 +1}* 8 ={i,i+ 1} (case 1) or {j,7 + 1} xSN{i,i +1} =0 (case 2). In
the first case, A is an (¢,i + 1)-arc. Since A * 0; = A, Lemma 3.2.2 implies that A = [i,7 + 1]
and then § has a (j,7)-band. On the other hand Ry is a proper band connecting [i,7 + 1] X 0
to [k, k+ 1] x 1 and then y has a (4, k)-band. Combining these bands with the obvious singular
(i,7)-band for 7; provides a (j, k)-band for fr;y.

If {j,7 + 1} x5 and {4,5 + 1} are disjoint sets, A = Ri(I,1) = R2(I,0) is disjoint from
[i, + 1] (Lemma 3.2.1). Thus we may insert 7; between § and y so that the singular strands
are disjoint from the band, and we conclude that S7;y has a (j, k)-band.

[l

Similarly to singular braids, singular surface braids have the cancellation property.

Proposition 3.3.2 ([49]) Left and right cancellation hold in SB(n, F'), that is for all z,y,z €
SB(n,F) the equation xy = xz (respectively yx = zx) implies y = z.

3.3.3 Centralisers on SB(n, F)
The following Theorem is an extension of Theorem 3.3.1 to SB(n, F').
Theorem 3.3.2 For each x € SB(n, F), the following properties are equivalent:
1. ojz = zoy
2. ojx = zoy, for some nonzero integer r,
3. ojx = zoy, for anyr,

4. TjT = TTk ,
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9. Tjx =Ty, for some positive integer T,
6. = has a (possibly singular) (4, k)-band.
Proof: 1t is clear that (6) = (1) = (3) = (2) and (6) = (4) = (5).

e (4) = (6). Since the order of singularities on a string is an isotopy invariant, we deduce
that {j,j+1}*x = {k,k+1} and that the j-th and (j+1)-th strings are disjoint from the
other strings. Let po, ..., py, be the ordered set of singularities of 7;z on the j—th string.
Let 7o = 7,171, -+ BmTi,, Bm+1, Where 7 is the singular generator corresponding to
pq and Bg41 € SB(n, F). On the other hand we write 7, = 817,62 - - - BTl Bt 1 Tl sr -
The isotopy “increases” of one the index of all singular generators. The trivial singular
braid near 7, provides a (lg,lg11)-band for B 1. We combine these bands with the
obvious singular ([4,[,)-bands for 7;, in order to obtain a singular (j, k)-band for z. The
case (5) = (6) is analogous.

e (2) = (6). We outline the proof that is the same as in [40]. We proceed by induction on
the number of singular generators in . Assume z = f7;, where § is a surface braid. The
hypothesis implies that JJQ-’":L" = xa,%’" and then ﬁ_IJJQ-’BTiy = Tiya,%r. Since 5_10?Tﬁ is a
pure surface braid, the 7; in TiyO']%T corresponds under some homomorphism, to the 7; in
ﬁ_lajz’"ﬁny. Hence the image, under that homeomorphism, of the trivial singular band
near the first 7; provides a band for 6*10?.’"& Therefore, 7; commutes with ﬁflaf-rﬂ.
It follows that Tiﬁ_lajz’"ﬁy = Tiy(j,%’". By Proposition 3.3.2, we have ﬁ_la?fﬁy = ya,%r,
ie. afrﬁy = Byoi". We deduce that By has a (j,k)-band and from the existence of a
(i,1)-band for 6*10?’% we deduce ﬁflajz-’"ﬂaiy = o;yo2". It follows that also So;y has a
(4, k)-band. Lemma 3.3.1 concludes the proof.

0

3.4  The monoid SB(n, F) embeds in a group

3.4.1 Extended singular braids

From now on given a set F' we denote by (E)* the free monoid generated by E. Let Gy,
be the set of generators of B(n,F') and Gé%n F) the set of their inverses. Let T' be the set of
singular generators 7;. We can associate to SB(n, F') the group defined as follows:

e (lenerators: GB(nyF)’Gl;%n F),T and the additional set 7' of singular generators Tj,
for j=1,....,n—1:

e Isotopy relations (IR): the relations for SB(n, F') (see Section 3.6) and the additional
relations obtained by substituting 7; for 7; .

e Birth-death relations (BDR): TiTj = T;7; = 1.

We call this group the singular braid group on F, SG(n, F). Let ¢ be the natural homomor-

phism from SB(n, F') to SG(n,F'). The aim of this Section is to show that ¢ is injective.
There is a geometric interpretation for SG(n, F') analogous to the one proposed by Fenn,

Keyman and Rourke for the group SG,, associated to SB,, ([39]). Now, we have two types of
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singular points, that we label respectively with a black point, corresponding to 7; and with
an open blob, corresponding to 7;. We call these singular braids having two type of singular
crossing, extended singular braids.

. . +1
Given two words «, f in (GB(n’

F) UTH)*, we write o ¥ { if they are equivalent under
relations of type IR. In other words, there exists an isotopy from « to 5. We can suppose that
the isotopy preserves balls of radius e centered at the labeled singularities. Also we can give
a geometric interpretation of birth-death relations, that correspond to two extended singular
braids that coincide except an open set V where we allow the birth or the death of a pair of

singular crossings of different types. We can assume that V is disjoint from the other strings.

Lemma 3.4.1 Two words in (GE?%F) UT)* which represent the same element in SG(n, F')

have the same number of singular generators.

Proof: From the presentation of SG(n, F) it follows that there is a group homomorphism from
SG(n, F') to the integers which maps Gjl;%n ) in 0, 7;in 1 and 7j in —1. O

Lemma 3.4.2 Consider two words A = o1 7j, 02 . .. Tj,,, g1 and B = O T,y ozlmnmalmﬂ,
where «;,af € (GE%H’F))* and 7,7, € (T)*. If A = B in SG(n,F), then there exists
ke{l,...,m} such that

! ! ! / / !
105,09 ... AnTj, Qm41 = QT Qg .. . OpO4 Qg g e QU Ty, Qi 1

-1 o I ! ro ’
Oélo-jl ag ... Oémijam+1 — O,/lTZIOQ .. akazk Oék+1 .. .amTZm()&m+1

hold in SG(n, F'), where 7;, in A is replaced by oj, or aj_ll and ;, in B is replaced by o;, or
ai_kl respectively.

Proof: 1f the words A and B represent the same element of SG(n, F'), then there is a finite
sequence of isotopies and birth-deaths relations relaying A to B. Let pg be the singularity

point corresponding to 7;, in A. We encounter two cases.

1. Suppose that py during the sequence does not match a “death” and thus 7;, is sent in
some 7;, in B. The isotopies and birth-death relations can move the singularity po but
we can suppose that they do not modify the interior of a ball B(pg) of radius e centered
at po. Let us consider the singular braid A; obtained by modifying A only inside B(py),
where we substitute the singularity pg with the positive crossing o, . It follows that A;
is equivalent in SG(n, F') to the singular braid By, which corresponds to the singular
braid B except that 7;, is replaced by oy, .

2. Suppose that py matches a “death” at the step dy of the sequence. It follows that at a
step b1 < d, there is a birth 7,,,) 755,y (OF T55,)7s(b,)) on the j-th and the j+1-th string.
Restart from the step by and set p; and p} the opposite singularities corresponding to
Tsby) and Ty, ). We iterate the process following p; and so on. Since the sequence is
finite there exists a birth b, such that the corresponding singularity p, is sent by the
sequence in a singular point of B, corresponding to some singular generator 7;, . As above
consider the singular braid A; obtained by replacing 7;, with the positive crossing o,
and the singular braid B obtained by replacing 7;, with oy, . Define B(p;) and B(p})
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the balls of radius € centered at p; and p). During the sequence of isotopies and “birth-
deaths" from A to B we can suppose that except in steps of type d; or b; the balls
B(p;) and B(p}) remain balls of radius e centered at the corresponding singularities.
Replace A with A;. At each step b; we modify singular braids only inside a small open
set V' O B(p;) U B(p;) replacing p; with a positive crossing o,y and p} with a negative
crossing as_(})i). This corresponds to substitute the birth b; with an horizontal isotopy. It
follows that, at each step d; (recall that b; < d;) the subword 7,4,\Ts(a;) (0T To(a;)Ts(a;))
is replaced by as(di)a;((lji) (or as_(}ii)as(di)). Thus we substitute as(di)a;((lji) (or as_(}ii)as(di))
with the empty word, which corresponds to an horizontal isotopy. This procedure gives
a sequence of isotopy and birth-death relations from A; to Bj.

0

3.4.2 Singular braids embed in extended singular braids

Theorem 3.4.1 The monoid SB(n, F') embeds in a group.

Proof: Consider two words A, B in (Gfg1 ) UT)*. Let A= B in SG(n, F). We want to show

n7
that A = B in SB(n, F'). We proceed l()y induction on the number m of singular generators
in A and B. We set SB(n, F) =11,, SB(n, F)™, where SB(n, F)™ means the set of singular
braids with m singularities. If m = 0 the statement is true, because B(n,F) = SB(n, F)°
embeds in SG(n, F). In fact, there is a retraction morphism r : SG(n, F) — B(n, F'), which
sends each braid generator to itself and singular generators 7; to identity. The composition
@|B(n,ry © 7 is the identity on B(n, F). Now, suppose that the statement is true for m — 1

. ’ ’ ’ ’
singular generators, and set A = ay7j, ... T, Qi1 and B = a 700 ... 0Ty 0

where «;, o) are words in (ngén F))*. We can suppose a; to be the empty word. Lemma 3.4.2

implies that the equalities

! ! ! ’ ! ’
Oj102 ... Oy Tj, Q] = QT3 Qg v o QO Qg g v QT Q1

-1 7 ro_q ! r ’
Oj Q2. O Tj, Oyl = QT Qg - QO Oy oo O T Q1

hold in SG(n, F') for some k € {1,...,m}. Thus we derive

9 ! ’ ro ’ oo .
05,00 Tiy Qg+« . Oy = 01 Ty Oy . .. oy in SG(n, F)

and by induction on the number of singular generators this relation holds true also in SB(n, F').
From Theorem 3.3.2 it follows:

’ ’ ’ ’ ’ ’ .
Tj QT Qy . O = O T Oy ... Ty, in SB(n, F). (3.1)
and thus
’ ’ ror ’ ’ A
Q9Tjy 03 « . . Ty Q] = O Ty Oy« oo Qg Qg 1 -+ QT O 1 in SG(n, F)

which is also true in SB(n, F'), by induction. We deduce that

! ! ! / ! /
Tj102Tjy - - - O Ty, A1 = T QT Oy oo OpOlpe 1 v« Qo Ty, Q1
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holds in SB(n, F), and (3.1) implies

/ / / ! / /
Tj1 02Ty -« - O Ty, Q1 = QT Olg oo O Ty Qg g e - O Ty, Qg 1

in SB(n, F). O

Remark 3.4.1 Recently Gonzdlez-Meneses showed us another proof of Theorem 3.4.1, when
F is a closed orientable surface ([50]).

3.5 The word problem is solvable
Theorem 3.5.1 The word problem for B(n, F) is solvable.

Proof: 1t suffices to prove the word problem for the pure braid group P(n,F'). Let F be a
surface of genus g with p > 0 boundary components and let {A4;; |1 <i<2g+p+n—2,2g+
p<j<29+p+mn—11<j} be the set of generators of P(n,F) defined in Theorem 1.6.1.
The algorithm is similar to the classical braid combing. When F has boundary, the (PBS)
exact sequence splits (Section 1.2.1) and then

Pn,F)2m((F\{z1,...,zn-1},2n) X T (F\{z1,...,Zn-2}, Tn_1) X - X w1 (F, 1),

where the fundamental group 7 (F\{z1,...,2;_1}, ;) is freely generated by the set {A4; ; |i <
7}. We use relations in Theorem 1.6.1 to move all letters in {Aﬁ |7 < n} on the right hand
side to obtain a word X,,_10, equivalent to 3. Let g/, the reduced word obtained removing
all the subwords of the form zz ™! g, in B,. The algorithm will end in n — 1 steps
and we obtain a word 8" = @] .-, equivalent to 3, where 8 (j = 1,...,n) is a reduced
word on {A4;;|i < j}. Since {A; ;|7 < j} is a free system of generators for the free group
m(F\{z1,...,zj-1},2;), the word 8" is unique. The case of closed surfaces is similar ([46]).

O

or r—

Lemma 3.5.1 Consider two words A, B in (GE%H’F) UT)*. Let A= a17j,a2 ...0QnTj, Cmii

and B = &7,y ... ap,Ti oo, where a;, o € (GE%H’F))* and 1;, 75, € (T)*, for 1 <
i, < m+1. A and B represent the same element in SB(n, F) if and only if there exists
ke{l,...,m} such that

! ! ! ’ ’ !
Q10,02 . O Tj, Q] = QT Qg v o QO Qg g v e QT Qi 1

-1 . ! ! ! -1 !/ ! !
0410]-1 A9 ... 0T, Omi1 = Q1T 09 ... akaik Opa1--- O T, Oy 11

hold in SB(n, F), where T;, in A is replaced by oj, or 0]-_11 and T;, wn B is replaced by o, or
ai_kl respectively.

Proof: The “if” part follows from Lemma 3.4.2. Conversely, we suppose a1 to be the empty
word and we proceed as in Theorem 3.4.1. The equalities

! ! ! ’ ! ’
Oj1Q2 e QT O] = O Tjy Qg oo QO O g« O T Qg
! !

—1 _ i [ ’ ) ’
Ujl a9 ... amijam+1 — Olezlaz e akazk ak+1 “e amTZmOém+1 5
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in SB(n, F') imply that

0']2-10117'1‘1 012 . e O[k. — 0117—7:10[2 . e O[kO'ZQk

holds in SG(n, F') and, by Theorem 3.4.1, also in SB(n, F). From Theorem 3.3.2 we derive
that a;7;,ay ... oy has a (j1,ig)-band, and thus

Q... T, O] = QT Qg o QO g - Oy Ty Q1

Then we conclude as in Theorem 3.4.1. O

Theorem 3.5.2 The word problem for SB(n, F') is solvable.

Proof: Let A and B be two words in (G}E%n’ P Y T)*. We proceed by induction on the num-

ber m of singularities in A. For m = 0 we have SB(n,F)* = B(n,F) and for B(n,F)
the word problem is solvable (Theorem 3.5.1). Let A = on7j,00... T, Gy and B =

) (2) _ o' Set the words

T, a1 o Let (1 = og; and
173100 - v e O Ty X 4 - Xj =0y X; Fi

AP = oy

5 Q9 Oy T O B = a7, ... a;ng)a;ﬂ e oz’mnmo/mﬂ ,

for s=1,2 and r=1,...,m. Then all the Ags) and B,(;S) have m — 1 singular generators. By
the induction hypothesis there exists an algorithm deciding whether Ags) = B,gs) in SB(n, F)
or not. From Lemma 3.5.1, A = B in SB(n, F) if and only if there exists 7 = 1,..., m such

that A{Y = B! and A = B, 0

3.6 Monoid presentations

In following Theorems we provide presentations for singular braid monoids on orientable sur-
faces. Relations can easily verified on corresponding braids. To prove that it is a complete
system of relations one can repeat arguments in [49].

Theorem 3.6.1 Let F' be an orientable surface with p > 0 boundary components. The monoid
SB(n, F) admits the following presentation:

eS| +1 £l +1 £l +1 1 +1
o Generalors: oy ,...,0, 1,07 ..., Gg by ... byt 20 2 T Tt
e Relations:
— Group relations:
a;ai:0i0;1—1 (1<i<n-1);
-1 -1 -1 -1 X
a, ar =apa, =b b, =bb. =1 (1<r<yg);
-1 -1 _ .
zj zj=zz; =1 (1<j<p-1).

— Braid relations, i.e:

(R1) 040,410 = 054104041 ;
(RQ) 0,05 = 003 fOT ”L —j| > 2.
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— Mized relations:

(R3)

(R4)

(R5)

(R9)
(R10)

(1<r<g;i#l);
(1<r<g;i#l);

Gr0; = 0y

b.o; = o;by

— Singular relations:

(R11)
(R12)
(R13)
(R14)
(R15)

(R16)

(R17)
(R18)

-1

_ -1 -1
where a;, = 0,y -0y QpO| -

Zy01 " 05_-1.

o tao ey = aroytarot (1< <g);
aflbraflbr:braflbrafl (1<r<g);

oy tasora, = a0y tasor (1< s<r<g);

oy thsorby = broy thsor (1< s<r<g);

o1 ' aso1b, = boylagor (1< s <r<g);

o1 'bsora, = a,07 'byor (1< s <1 <g);
0'1_1617"0'1_1()7":()7"0'1_1@7"0'1 (1<r<g);

zjoy =0z (1#1,1<j<p—1);
aflzmla?n:a,«al_lzial (1<r<g;1<i<p—1;n>1);
aflzialb,«:b,«al_lzial (1<r<g;1<i<p—1;n>1);
aflzjalzl = zlaflzjal (1<ji<i<p-1);

oy zjoy 'z = zjoy 'zjor !t (1<j<p-1).

050 =0;0;7; forl|i—jl=1;

7,7, =17 forl|i—j| > 2;

05 =07 for|i—j|>2;

(1<i<n-1);

(@i r@ip1,)Ti = Ti(airai41,) (1<i<n—-1;1<r<g);

(b3 pbiv1,)Ti = Ti(bipbiz1,) (1<i<n—-1;1<r<yg);
(J#4,i+11<r<g);
(J#4,i+11<r<g);

(Zigzit1,0)Ti = TilZip2zig1y) (1<i<n—-1;1<r<p-1);
(j#4i+11<r<p-1),

T 0 =0T

TiQjr = GjrTy

Tibjr = bj,7;

TiZjr = 25,7 T

-1

1
015

-1 -1 —
bipg =050y broy -

—1 _ —1
0, and z;, = 0

-1

_1...0'1

Theorem 3.6.2 Let F' be a closed orientable surface of genus g > 1. The monoid SB(n, F')
admits the following presentation:

o Generators: afﬂ, R

o Relations:

— Group relations:

+1 £1 +1 p*l +1
On 1,47 ,...,ag ’bl ,...,bg 35 TlyeeeyTp—1-



— Braid relations, i.e.

(R1) 0i0i110; = 0i110i0;41;
(R2) o005 =0j0; forli—j|>2.

— Mized relations:

(R3) a0 =00, (1<r<g;i#l);
bpoj=0ib, (1<r<g;i#l);

(R4) o taro;tar = apoytaort (1
oy oo, = bpoy b0t (1<

(B5) o7 asorar = a0t asor (1< s <1 <g);
aflbsalbr = braflbsal (1
aflasalbr = bral_lasal (1
aflbsala,« = aTUflbsal (1

(R6) afla,«afle = bTal_laTal (

(TR) [al,bfl] s [ag,bg_l] = 0109 ** '072L—1 cr09.071 .

— Singular relations:

(R7) miojo;=0j0;1; forli—j|=1;
(R8) mimj=m7 forli—j[>2;
(R9) moj=o051 forli—j|>2;

(R10) moi=oir; (1<i<n-—1);
(R11)  (air@it1,)7 = Ti(aipair1,) (1<i<n—1;1<r<g);
(bipbis1,r)Ti = Ti(bipbipr,) (1<i<n-—1;1<r<g);
(R12)  Tmajr =aj,r (#41+1;1<r<g);
by =bi,mi (J A4+ 11 <r<yg),

where [a,b] := aba='b~" and a;r, bir are defined as in previous Theorem.
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Chapter 4

(Generalized Hecke Algebras

4.1 Introduction

Any braid z in B, yields an oriented link Z by closing up the strands of the braid as in
figure 4.1. The up to down orientation of braid strands induces an orientation for the closure.
Alexander was the first to observe that any oriented link can be identified with the closure of
a braid (|2]). On the other hand, Markov provided moves relating two braids with the same
closure.

Proposition 4.1.1 (Markov) Two closed braids T,y are equivalent links if and only if one
can relate the braids z,y in Uy>2By by a sequence of the following elementary moves:

e Conjugation: z € B, is replaced by czc™' € B, for some c € B,,.

e Stabilization (or its inverse, namely a destabilization): z € B, is replaced by zor' €
Bpyi.

To obtain invariants of links, we may proceed constructing suitable functionals on C[B,,], called
Markov Traces. This process is well-known for Hecke algebras, which are finite dimensional
quotients of C[B,,].

Definition 4.1.1 The Hecke algebra Hy,(q) (of type A) is the quotient

Hyu(q) = C[By]/(0] + (1= q)oj —q, j=1,...,n —1).

Figure 4.1: The closure of the braid f.
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Famous construction of Jones polynomial using Hecke algebras posed the problem of similar
constructions on other quotients of C[B,]. We would extend Jones’ approach to the case of
links in 3-manifolds. The first task is to define and verify the existence of Markov traces on
C[B(n, F')], or suitable quotients. We propose to consider the following quotient of C[B(n, F)].

Definition 4.1.2 Let F' be a surface with at least one boundary component. The surface Hecke
algebra Hy(q, F) is the quotient

Hn(qu) = C[B(H,F)]/(UJZ + (1 _Q)Uj - 4q, j: 15"'7’”_ 1)5
where o} is the classic generator of By,.

The Hecke algebra Hi(q, F') is the group algebra of B(1,F) 2 m(F) We remark that the
natural embedding B,, — B(n, F') induces an embedding of the usual Hecke algebra H,,(q) into
H,(q, F). On the other hand, when F' has boundary, B(n, F') embeds naturally in B(n+1, F),
and thus we can define the tower U,>1Hy, (g, F).

We succeeded finding a Markov trace on Up>1H, (g, F) for the specialization ¢ = 1. Let 7
be the set of conjugation classes of 71(F) and 7% = 7 — {1}. Let S(C7°) be the symmetric
algebra of the vector space Cz".

Theorem 4.1.1 For any z € C, there exists an unique family T, of linear functionals
T+ Hy(1, F) — S(C7°)
such that
1. Ta(ey) = Tulyx) Va,y € Ha(1,F);
2 Tuir(won) = 2Tn(s) Va € Hy(1,F);
3. Tns1(on - 01Acy - onz) = ATy (x) Vz € Hy(1,F) YA € B(1,F);
4 Ta(l) =1,
where A denotes the conjugation class of the element A € B(1,F) & 1y (F).

We notice that when M is a handlebody, i.e. M = F x I, where F' is a holed disk, it has been
proved that the 3rd skein module of links in M is isomorphic to S(Cz%) ([78]). A Markov trace
and corresponding link invariant have been constructed in the case of the solid torus ([65] and
[77])-

Quantum invariants for links in arbitrary 3-manifolds were defined by Reshetikhin and Turaev
in [80]. In the case when the manifold is S* one obtains the colored Jones polynomial at roots
of unity. In general is presently unknown whether these invariants come from a polynomial
evaluated at roots of unity.

4.2 Preliminaries

4.2.1 Markov traces

Let us recall some classic results. The natural embedding B, — Bjy1 induces the injection
C[B,] — C[By41]- Let T, : C[B,,] — C be a family of linear functionals fulfilling following
conditions.
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o Tn(zy) = Talyz), Vr,y € By;
o Toii(zoy) =2Th(x) Yz € By,
o Tusi(aoyl) = 2Tu(x) Va e B,

for some z, z € C*. Such a family is called a Markov trace, and usually one drops the subscript
n from 7. For an element € B,, written in terms of the standard generators as z = []; ai)‘i we
denote by e(x) the exponent sum of z. Since relations in B,, are homogeneous, the exponent
sum is well-defined.

Corollary 4.2.1 Let T be a Markov trace. The function F associating to the closed braid &
(for x € By,) the value

_e(@4n _e(z)—n
2

P S L

F(z) =2 z- 2z T(z),

15 a link invariant.

In order to find Markov traces we focus on Hecke algebras H,(q). We set again o; for the
image of 0; in H,(q). V. Jones and A. Ocneanu showed that:

Proposition 4.2.1 For any z € C there exists an unique Markov trace T on the Hecke
algebras Hy(q) verifying:

o To(zy) = Tn(yz), Vz,y € Hn(qg);
L4 7;L+1(x0n) = Z%(:E) V€ Hn(‘]);
e 7,(1) =1

The main idea in the proof is that every element in H,(q) can be written in terms of a linear
combination of words zo,y with z,y € Hy,(q) and words from H,(q). Moreover, every element
o of Hyp(q) can be written in terms of the standard basis of H,(q) ([58]):

(0i1 Tt 0-7:1*7"1)(0-’& Tt 01’2*1“2) t (Uip Tt Uipﬂ“p) )

where 1 <4y <ip <--- <ip <n—1andr; €{0,1,...,i; — 1}. The natural inclusion of B,
into Bp41 induces the inclusion on corresponding Hecke algebras. The above inductive basis
allows to construct a functional 7 on H := U2, H,(g) with values in C. One proves easily
that 7 is a trace. We remark that the definition of a Markov trace concerns also the behaviour
of the trace with respect to the other stabilization. The condition T (ac,) = 27 (a) and the
quadratic relation 0]2- = (¢ — 1)o; + q imply the relation T (ao, ') = 2T (a), where z = %.

4.2.2 Algebraic construction of HOMFLY-PT polynomial

A Markov trace gives rise to a link invariant and we derive the following corollary.

Corollary 4.2.2 Set \ = 1*;;2. Consider the link L presented as the closure of the braid
r € B,. Then
(1= Aq)

n—1 e(x) T
S AT,

XL(q7 >‘) = ( -

15 a link invariant.
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This is called HOMFLY-PT polynomial of L and it is common to change variables as follows:

t:\/x\/a7x:\/a_%v

and to denote it
Pr(t,z) = Xr.(q,\) -

Let Ly,L_, Ly be oriented link diagrams that are identical, except in one crossing as in the

figure below.
e NG ) [
+ \ p 0

Thus we can express HOMFLY-PT polynomial with the usual skein relation.

Theorem 4.2.1 Pp(t,z) is the unique Laurent polynomial in t and x verifying the skein

relation i (\/\) 4P (/\/> =P O O

and taking the value 1 for the unknot.

The Jones polynomial follows from the specialisation Pr,(v/—1/t,v/—1(v/t — (1/V/1))).

4.3 Proof of Theorem 4.1.1

First, we recall that the condition “F with boundary” implies that B(n, F') embeds naturally
in B(n + 1, F). Therefore, there is no ambiguity to consider an element of B(n,F) as an
element of B(m, F'), for m > n.

B(n, F)
((ajz,j: L,...,n—1))
sidered as the group algebra of 7 (F)™ x ,,, where ¥,, acts by permutation of the coordinates
in m (F)".

Let us denote B(n, F') the quotient . The algebra H, (1, F') can be con-

Proposition 4.3.1 The group é(n, F) is isomorphic to the semi-direct product m (F)™ X %2,,.

Proof: Let x : P(n,F) — 7 (F)" be the map which forgets about the braiding and keeps
only the fundamental group information of each strand (see also Lemma 1.6.1). The following
diagram holds:

™
l1— P(n,F) — B(n,F) — ¥, — 1

X P id
v v ~

1 — m(F)" — B(n,F) 5%, — 1,

where 7 : B(n, F) — %, is the canonic projection of B(n, F') onto the symmetric group %,
which induces a surjection 7@ of B(n, F) on ¥,. Set s; for the transposition (j,7 + 1) in %,.
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The morphism 7 is provided with the section s : X, — B (n, F') which sends each generator s;
in the equivalence class of o on B(n, F'). Thus the lower exact sequence splits and the claim
follows. O

Remark 4.3.1 We have proved that the map x induces an isomorphism X : E(n,F) —
1 (F)" x Xy, The inverse ¢ : m (F)" X X, — B(n, F) is defined as follows:

b ¢(p1715"' 51) = P1, where p1 € 7T1(F) & B(l,F)

b ¢(1a"'7lapi715"'71) = 0j—1"*:01P101 *** 0j—1, where pi € 7T1(F) = B(LF); fO’I"?; =
2,...,n—1.

e ¢(1,...,1,0) = s(o), where o0 € ¥,,.

We can suppose that s(o) is written in the normal form :

(sil T 3i1—¢1)(3i2 T 3@'2—7"2) T (Sip o Sip—v"p) )

where 1 <y <y < --- <ip <n—1andr; €{0,1,...,i; —1}. The word ¢ o x(B) is the
normal form for the element 8 € B(n, F).

We set again o for the image of o in H, (1, F). The algebra H;(1, F) is the group algebra of
B(1, F), the group freely generated by {ai,...,aq, b1,...,bg, 21,...,2p—1}.

Theorem 4.3.1 Every element xz € Hy,1(1, F') can be written as linear combination of words,
each of one of the following types:

1' wn—l;'
2. Wp—10pUn—1;
3. wp_10p - 01A0L - Op,

where wy,_1,v,—1 are some words in Hy(1, F) and A some word in Hy(1,F).

Proof: Since Hy(1, F) is the group algebra of B(n, F), it suffices to prove that each word z in

~

B(n + 1, F) can be written as a word of one of following types:
L. wp—y;
2. Wp_10,Vp-1;
3. wy_10p---01A0L - Op,

where w,_1,v,_1 are some elements of B(n, F) and A an element of B(1,F). We proceed
by induction on n. The claim is true for n = 1. Braid relations in Theorem 1.1.1 and the
relation O'JQ- = 1 imply Ao1Boy = 01Bo1 A, for all A, B in B(1, F). It yields that any element
of B(2,F) can be rewritten as a word Ao Bo™?, for A, B in B(1,F) and n1, 73 = {0,1}. Let
z€eB (n + 1, F). There exists a word z equivalent to x, where o,, appears at most twice. Let
ont'onz" oy, o', 2" € B(n, F) be a sub-word of z. We distinguish four cases
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L. 2 =yo, 1+ 01Ao1-0p 1,2" = Yop 1---01A'01--- 0,1, for some y,y' € E(n -
1,F), A, A' € B(1,F).
OnYon—1---01Aoy - op_10ny'on_1--o1Alor o0y =

! ! *
=Yon0p_1--01A0L - Op_10pY Op_1 O A0 o100, =

_ ! AI A 2
=YYyop—1°--"01A0]" " 0Op_10p0p—1*°°"01A0] " Op_10, = WORV,
where w, v € B(n, F).

Yop_1---01A0) - op_1,2" = y'on_1y’, for some y,y,y" € B(n—1,F), A €
JF).

—_

2
B(

A ' n oo
OnYOp—1-°-01A01* " 0pn-10pYy Op—1Y Op =

! " %
= YonOp—1 01 A0 - Op_100Y Op_1y Op =

_ ! " A 2 _
=YYy Oon-1Y OnOpn-1'-"01A01 " " 0Opn_10, = WORV,
where w, v € B(n, F).

3. 2" = yop_1y, 2" = y'on_y---01A0 - 0n_1, for some y,y',y" € B(n—1,F), A ¢

' *
OnYon—1Y OnOp—1 -+ o1Aoy - op_10, =

= 0p0pOn—1-+01A01 *++ Op_10pYon_1000n_1y = wWonv,
where w, v € B(n, F).
4. 7' = yop_1y, 2" = uop_1 for some y,y',u,u' € B(n — 1, F).
Unyan—lylanuan—lulan = yUn—10n0n—1y'U0n—10nU';
(a) if y'u = aoy_ob for some a,b € B(n — 2, F),

! / /
YOn10n0n 1Y UOp 10pU = YOp 1A0n0pn 10p 20n 105bu’ =

/
= YOp 1a0, 20n 1040, 10n 2bu’ = wo,v,

where w, v € B(n, F).
(b) if y'u = acp_g--- 01 Aoy - 0p_s for some a € B(n —2,F), A€ B(1,F),

' /
Yop-10n0p—1Y UOp-100U =

! %
= YOp—100,0y_10p—2 " - 01 A01 - Op_20,,_10,U =

where w € B(n, F), A € B(1, F).

Equivalences with =" are justified because [g, 0 --- 01401 -+~ 0x] = 1 for any g € B(k, F),
A€ B(1,F). Let x = wopuo,v, w,u,v € B(n, F). We proceed as in 4.

1. if u = aoy,—1b for some a,b € E(n —-1,F),
wao,op_10,bv = w'oyv'

where w', v’ € B(n, F).
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2. ifu=ao, 9---01A0y -0, o for some a € EAf(n -1,F), Ae B(1,F),
WaopOp_1 - 01ACL - Op_10pu = wop - 01 Aoy -+ 0y,
where w' € B(n, F).
3. if u = a for some a € EAf(n -1,F),
waor,o,v = w',

where w' € B(n — 1, F).

Let A€ B(1,F). Weset AW =¢;_1---01A0y---04_y, fori=1,...,n, (A1) = A).

Theorem 4.3.2 Ewvery element of Hy1(1, F') can be written uniquely as a linear combination
of words each of one of the following types:

1' wn—l;'
2. wy 10,05 forj=1,...,n—1;
8. wp_10p -0 AD fori=1,...,n,

where wy,—1 is a word in Hy(1,F) and A a word in Hy(1, F).

Proof: First, we prove that each word z € E(n + 1, F) can be written as a word of one of
following types:

L wp—1;
2. wy 10,0 forj=1,...,n—1;
3. w100 AD fori=1,....n,

where wy,_1 is an element of B(n, F) and A an element of B(1, F'). From previous Theorem it
suffices to show the claim for words of the type wy,_10,v,—1, where wy,_1,v,_1 are in B(n, F')
and A in B(1, F).
We reason by induction. We encounter three possibilities:
1. ifv,_q € E(n — 1, F) then = = wy,_1vp_10y = w,,_,0p, where w),_, € B(n, F);
2. if vp_1 = up—20p—1--- 0, where u,_o € E(n — 1, F), then
T = Wnp—-1Un—-20n0n—-1""'05 = wylmflo'n 0y,

where w!, | € B(n, F);

3. ifv, 1 =up 90, 1---01A01---0p_1, Where u, o € EAf(n —1,F) and A € B(1, F), then
T = Wp_1Up_20p0p_1- 01A01 -+ 0p_1 = w0, A™ where w! | € B(n, F).
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Actually the word w(z) can be rewritten as a word w(z) = Agl) e A,({L)J, where A;,..., A4, €
B(1, F) and o is an element of B(n, F') in the generators {07, ... o0y, }. We can suppose o written
in the normal form (see Remark 4.3.1). We reason by induction on n. We have to check only the
case w(z) = wp_10y - ;AW where w,_1 € B(n,F) Suppose that w,_ 1 = Agl) i A%n_)la,
where Aq,...,A,_1 belong to E(l, F) and o is an element of %,,, written in its normal form.
Thus,

w(z) = Agl) X "A,({L,)ladn g AD = Agl) ) ..Aflnjlaan 0 AV oo g =

= Agl) R A(n_*ll)A(”)O- Op-+ 05 = Agl) . A(nfl)A(n)O_, ’

n

where A%”) =AM and ¢’ = 60, - - 0; is an element of &,, written in its normal form.
The word w(z) is the normal form ¢ o x(x) of z (Remark 4.3.1). O

We can construct inductively the trace 7 on Up>1Hn(1, F) using Theorem 4.3.2. Let z be an
arbitrary word of B (n + 1, F). By Theorem 4.3.2, the element z is equivalent to a word in
B(n, F) or a word wo,v, with w,v € B(n, F) or a word ucy, - - - 0, Aoy - - - 0y, with u € B(n, F)
and A € B(1,F). Assume that the T is defined on H,(1, ) Define now T (z) = 2T (wv) if
z = wopv and T (z) = ﬁT(u) if £ =wuop---01A01 - 0,. The map T is well defined and it
extends by linearity to Hy,41(1, F).

In order to prove the existence of T, it remains to prove that 7 (xy) = T (yz), for all
T,y € Up>1Hy(1, F). Before continuing with proof, we note that the uniqueness of 7 fol-
lows immediately since for any z € Hy, (1, F'), T(z) can be computed inductively using rules
1), 2), 3), and 4) of Theorem 4.1.1.

We proceed with checking that T (zy) = T (yz), for all z,y € Un>1Hy(1, F'). We suppose that
the assumption holds for all z,y € B(n, F) and we prove that T (zy) = T (yz), for all z,y €
B(n+1 , F). We can suppose that y = wo,v, with w,v € B(n,F)ory=uoy,---01Acy - op,
with u € B(n, F) and A € B(1, F).

When z € B(n, F) the claim follows by the definition of 7.
For instance, let y = uoy, -+ - 01 Aoy - - - oy, with u € B(n, F) and A € B(1, F'). Then,

T (zy) = ﬁT(mu) = AT (uz) = T (yz) .

When z = aop, ---01A'01 -+ - 0y, with a € E(n,F) and A € B(1, F) we encounter two possi-
bilities:

1. fy =wuo, - 01401 -+ 0p, with u € B(n,F) and A € B(1, F), then
T(zy) = T(auoy, - 01 A' Aoy -+ 0,) = ATAT (au) =
= AAT (ua) = T(vac, - 01 AA oy -+ 0,) = T (yz) .
2. If y = wo,v, with w,v € E(n,F), then
T(xy) =T (awoy - 0140y - op_1v) = 2T (awoy_1 - - 01 Aoy -+ Op_1v) =

= 2T (wop_1---01A01 -+ op_1va) = T (wop—q1 -+ 01401 - - opva) = T (yz) .
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Finally suppose that = ag,b. Without loss of generality, we can suppose a and b to be the
empty word.
Let y = uoy, - - 01Aoy -+ - oy, for some u € B(n, F), A € B(1, F).

1. Suppose u=w'oy_1-- 01 A1 -+ 0n_1, for some 3y’ € B(n —1,F) and A’ € B(1, F).

T(owy) =T (Wopon_1-- 014’01+ 0p_1040p_1--- 01 A0y 0y)

! !
=TWop_1- 01401 - 0p_1070p-1-- 01 A 01+ - Op_10p0p) =

=2T(Woy 1+ 01AA 01 -0y 1) = zﬂ’T(u ).

T(yon) =T Wop_1--01A 01+ 0py_10p -+~ 01401 -+ - 0p0p

) =
=2T(Woy 1010y 0 10n 1+ 01A01 -+ 0p_1)
u

=T (Wop 101 A Aoy --0p1) = zZAAT (W) = zAA'T( ).

2. Suppose u = u'o,_1u”, for some v/, u” € B(n — 1, F).

T(yon) =T (W on 10" op -+ 01401 - - 00

)
= 2T (u'on 1u'op 1 -- 0140 - 0y 1)
")

= ZT(U Op—92-*" 01A01 cerOp—1U

= 22T (Wop_g--01Ao) - 0p_ou”);

T(ony) =T (Wonon 1u"oy - 01 Aoy -

Tn)
:ZT(uldn_1~“01A01 *O0p—10p—1U )

!
= ZZT(U Op—2°"" 01A01 e Op—2U ) .
Let y = woy,v, for some w,v € B(n, F).
1. Suppose w = w'op_1w"”, v = v'op_10" for some w',w",v',v" € B(n — 1, F).

T (yon) =T (w'op_1w"opv’'on 1v"0,) =

=T (wop_1w"v' op_10p0,_10") = 2'7'(w w"v'v") = T(ony) .

2. Suppose w = w'o, w",v=2v'0,,_1---01A01 -+ 01, for some w', W, v’ € fi(n— 1, F)
and A € B(L, F).
T (yon) = T(wlo'nflw”gnv’gnfl oy Aoy e op10) = zﬁT(w w”vl)
T(ony) =T (Wonon 1oqw"v'ey 1+ 01Acy -0y 1) =
= 2T (w'w'"v'o, 1+ 0140y -0 1) = 2AT (w'w"v').
3. Suppose w = w'oy_1---01A01 - op_1, v = v 0y,—10", for some v, v, W' € E’(n -1,F)
and A € B(1,F). As in previous point

T(yon) =T (Won 1+ 01401 0p 100" 05 10" 0p) = zﬁT(w'v'v”)

T(ony) = T(Wonon_1-+ 01401 - o100V op_10") = 2AT (w'v'").
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4. Suppose w = w'oy, 1+ 01Ao1 - 0op 1, v =v'0p 1014’01 -+ 0,1, for some v,w €

B(n—1,F),A A € B(1,F).
T(yon) = T(wop_1-- 01401 op_10p0' 0pn_1 -+ 01 A 01 -+~ 0p_100)
=T(wv'op 1 0140y 0y 10004 1 01 A'01 - 0p_10,) =

= A'A T (w'');

! ! !
T(ony) =T (onw oy 1+ 01A0y -0y 1030 0101 ATy 0 1)
11 !
=T(wv'opop_1--01A0y - 0p_10p0p—1---01A 01 - 0p_1) =

= AA T (w'v').
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Chapter 5

Cubic Hecke algebras and new
invariants for links

This chapter is a joint work with L.Funar ([8]).

5.1 Introduction

5.1.1 A short history

John Conway showed that the Alexander polynomial of a knot, when suitably normalized,
satisfies the following skein relation:

“(0)-<()--ee() |

Given a knot diagram one can always change some of the crossings such that the modified
diagram represents the unknot. Therefore one can use the skein relation for a recursive com-
putation of V, although this algorithm is rather time consuming (exponential).

In the mid eighties Jones discovered another invariant verifying a different but quite similar
skein relation, namely:

v () () e ()

which was further generalized to HOMFLY-PT invariant (Chapter 4) by replacing the factor
(t1/2 —¢~=1/2) with a new variable . The latter one was shown to specialize to both Alexander
and Jones polynomials. The Kauffman polynomial is another extension of Jones polynomial
which satisfies a skein relation in the realm of unoriented diagrams. Specifically the formulas

V008 =0 0) 0 D)

A (w/) = A (———)
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define a regular isotopy invariant of links, which can be renormalized (by using the writhe
of the oriented diagram) in order to become a link invariant. Remark that some elementary
manipulations show that A verifies a cubical skein relation:

() (8) g (A) e

It has been recently proved ([31], see also problem 1.59 [59]) that this relation alone is not
sufficient for a recursive computation of A (whenever this is possible the skein relations are
called complete).

These invariants were generalized to quantum invariants associated to Lie (super Lie, etc)
algebras and their representations. Turaev ([89]) identified the HOMFLY-PT and Kauffman
polynomials with the invariants obtained from the series A, and B,,C,, D, respectively.
Kuperberg ([61]) defined the G2 quantum invariant of knots by means of skein relations making
use of trivalent graphs diagrams and exploited further these ideas for spiders of rank 2 Lie
algebras. The skein relations satisfied by the quantum invariants coming from simple Lie
algebras were approached also via weight systems and the Kontsevich integral in ([68, 69]) for
the classical series and in (]9, 10]) for the case of gs.

Notice that any link invariant coming from some R-matrix R verifies a skein relation of
the type

"0
Zaj< )\ j twists > =0
5=0 \/
\
which can be derived from the polynomial equation satisfied by the matrix R.

Let us mention that the skein relations are somewhat related to the representation theory
of the Hopf algebra associated to R. In particular there are no other invariants whose skein
relations are completely known and one expects that the invariants obtained from other super
Lie algebras or by cabling the previous ones satisfy skein relations of degree at least 4 (as the
(2 invariant does).

This makes the search for an explicit set of complete skein relations, in which at least
one relation is cubical, particularly difficult and interesting. This problem was first considered
in [43] and solved in a particular case. In this chapter we complete the previous results by
constructing a deformation of the previously considered quotients (of the cubic Hecke algebras,
see Section 5.1.3) and of the Markov traces supported by these algebras. In particular the link

invariants obtained this way will be recursively computable and different from HOMFLY-PT,
Kauffman and the 2-cabling of HOMFLY-PT.

5.1.2 The main result

In this chapter we will define two link invariants by means of (a complete set of ) skein relations.
More precisely we will prove the following Theorem (see Section 5.5):

Theorem 5.1.1 (Main Theorem) There exist two link invariants I, gy and 19 which
are (uniquely) determined by the two skein relations shown in Figure 5.1 and their value for
the unknot (which, traditionally, is 1). These invariants take values in
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Figure 5.1: The skein relations

Zla, B, 2a — B2)E/2, (a? + 28)*¢/?]
(H(a,p)) ’

and respectively

Z[zzl:e/Q7 5:t5/2]
(Pem)

where € — 1 € {0,1} is the number of components mod 2 and

H, 5 = 8a8 — 8a°A% + 201 B + 36018 — 34038 + 170> + 8028 + 320282 —
—3608* + 38a3 4+ 88°% — 1783 + 8,
and respectively
Plad) = 28 4 185 90,1662 _ 1453 9,964 4 2,755 + 6525 + 67,
Here (Q) denotes the ideal generated by the element @ in the algebra under consideration.

The polynomials A, B,C..., P corresponding to (4, g) are given in the table below. In

order to obtain those corresponding to 1(39) it suffices to set w = (—z*/(62z))"/? and replace
a=—(2"46%)/(2*6) and B = (6§ — 22)/z% in the other entries of table 1.
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w= (@ + 28)/@a — ) =7 -

B= (o —af” - p) C = (o’ —ap?)

D = (1+2aB+a?8? — o) E=(1+ab+a’8’ —a’)
F=(1+2a8-p3% G = (af® — 2a — 2a%p)

H = (af® - 2a — 2a°6 + B?) I=(a"—a?B? - 2028 — 3a)

L = (2038 +3a® — o?B% — af?) M = (B* — 26 — 3ap% + o?)
N=(1+4aB+3c28% —a® —ap* - p3) | O = (1+3aB + 3a%6% — o — ap?)
P = (362 - B8° — 20 — 30?0 + 4af5?)

Table 1

5.1.3 Cubic Hecke algebras
Definition 5.1.1 The cubic Hecke algebra H(Q,n) is the quotient

H(Qvn) :C[Bn]/(Q(0])7 J=1...,n- 1)a

where Q(oj) = 05-’ - ozajz —Boj—1,a BeC

Our aim is to construct Markov traces on the tower of cubic Hecke algebras since Markov
traces define link invariants (Section 4.2.1). The cubic Hecke algebras are particular cases of
the (generic) cyclotomic Hecke algebras introduced by Broué and Malle (see [20]) and studied
in [21, 22] in connection with braid group representations. Let us stress that, for Q(0) # 0,
the following results are known (see also [28, 20, 21, 22| and [29] p.148-149):

e dim¢ H(Q,3) = 24, and H(Q,3) is isomorphic to the group algebra of the binary tetra-
hedral group < 2,3,3 > of order 24 (equivalently, SL(2,Zs3)).

e dimg H(Q,4) = 648, and H(Q,4) is the group algebra of Gg5 in the Shepard-Todd
classification (see [85]).

e dim¢ H(Q,5) is the cyclotomic Hecke algebra of group Gsz, whose order is 155520. It
is conjectured that this algebra is free of finite dimension which would imply (by using
the Tits deformation theorem) that it is isomorphic to the group algebra of Gss.

e dimc H(Q,n) = oo for n > 6.

Thus a direct definition of the trace on H(Q,n) for n > 6 is highly a nontrivial matter, in
particular it would involve the explicit solution of the conjugacy problem in these algebras
which seems out of reach.

In order to deal with finite dimensional algebras one introduces smaller quotients K, («, /)
by adding one more relation living in H(Q, 3). The exact form of this relation is

090} 03+A 02 0302+ B 0103 01+B 0} 0501 +C 0} 090+ D 0105 01+FE 010207+ E 0} o901+
F 0202 + F 0203+ G 0903+ G 0?09+ H 0301+ H 0103+ I 010901+ L 001+ L 01 09+
MU%—I—MU%—I—NUrI—OUQ—I—P:O

where A, B, ..., P are the polynomials from table 1.
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Remark 5.1.1 The algebras K,(a, ) are finite dimensional for any n.

Let us explain the heuristics behind that choice for the additional relation. The algebra
H(Q,3) is semisimple (for generic @) and decomposes as C* @ M2®3 @ M3, where My, is the
algebra of m x m matrices. As explained in Section 5.2 the usual quadratic Hecke algebra
H,(3) arises when the factor C @ My*? @ Mj is killed. Tt is known that Jones and HOMFLY-
PT polynomials can be derived by the unique Markov trace on the tower Hy(n). In a similar
way the Birman-Wenzl algebra, which yields the Kauffman polynomial ([43]) is obtained when
we quotient by C @ M2. In our situation the extra relation kills exactly the factor C3.

The geometric interpretation of these relations is now obvious: the first skein relation in
Figure 1 is the cubical relation corresponding to the quotients H(@,n) and the second skein
relation defines the algebras K, («, 3).

Our main theorem is a consequence of the more technical result below (see Sections
5.2,5.3,5.4).

Theorem 5.1.2 For ezactly four values of the (z, Z) there exists an unique Markov traces T
on Ky (a, B) with parameters (z, Z) i.e. verifying:

1. T(zy) =T (yz),
2. T(xop_1) = 2T (x),
3. T(zo,')) = 27 (x).
The first couple (z, Z) is
2= (20— %)/ (ap +4), 2= —(a® +26)/(af + 4),

and the corresponding trace is To, g : Kn(a, B) — Lla, B, 1/(af +4)]/(Ha, g))-
The other three solutions are not rational functions on the parameters and we prefer to give
o, B and Z as functions of 2,6 (0 = z?(Bz + 1)). More precisely we set

T Koo, B) = Z[z, 61 /(P5Y),
where

B=(6—-22)/2% a=—(z"+6%)/(z*) 2 = —2*/6.

5.1.4 Outline of the proof

As explained in Chapter 4, one can construct inductively a basis for the (quadratic) Hecke
algebra Hy,y1(q). We will prove by recurrence on n (Lemma 5.3.1) that there is a surjection
of (Kn(a, B), Kyn(a, 8))-bimodules

Kn(av /8) D Kn(aa /8) ®Kn,1(a,ﬁ) Kn(av 6) D Kn(av /8) ®Kn,1(a,ﬁ) Kn(&, 6) — Kn+1(04, 6)

given by 2@y @ 2@ u®@v — T + yopz + uov.

Since there is a system of generators for K1 (a, ) constructed out of one for K, («, 3), the
extension of a Markov trace on K, («, f3), if ever exists, it must be unique.

However the previous morphism is not injective and the most difficult step is to prove that the
canonical extension is a well-defined linear functional and it satisfies the trace commutativity.

69



Let A = Z]a, B, 2,2]/H, where H is an ideal of Z[a, 3, z,z]. Our approach is to consider a
rewriting system (we refer to [25] for a survey on the subject) for the tower of the ring algebra
A[F}] where F) is the free monoid in the generators {o1,...,0,-1}. The method of proof is
greatly inspired from [11].

First, one defines a graph which vertices are the elements of A[F;f] and which edges corre-
spond to elements differing by exactly one relation (from the set of relations defining K, (a, 3)).
One defines a reduction process for elements in A[F;] introducing the following orientations
on some edges. The arrows show the orientation, if exactly one monomial is changed using
one of the following rules

3 2
acjb = aaoib+ Baoc;b + ab,
ao;j{10j0j41b — acjoj104b,
an_HUZUj_Hb — aSjb,
2

aaj+1a-aj+1b — G,Cjb,

2 . .
aoj 10505416 — aDjb,

where Sj, Cj and Dj are of the form 3, P; o’ Jsﬁrla]?i, P; are polynomials in «, 8 and a;, b;, ¢; €
{0,1,2}. An element z is irreducible (or minimal) if there is not an element u such that z — w.
Several edges remain unoriented. They correspond to a change in a monomial of type

ao;ojb — ac;o;b whenever |4 —j |> 1.

The reason for introducing the extra relations (which obviously hold in H(Q,n)) is to insure
the existence of descending paths to some minimal points even if closed oriented loops may
be found in the graph. Our aim is to show that this rewriting system is confluent, i.e. every
connected component has at most one minimal element, up to unoriented equivalence (see
Section 5.3.1). The existence is proved in Lemma 5.3.4 and we check the uniqueness by means
of so-called Pentagon Lemma. Anyway, to show that the rewriting system is confluent, we shall
enlarge our graph to a tower of graphs modeling not one algebra K, («, ) but the functionals
on the whole tower US® o K, (v, ) satisfying a recurrence condition which permits to reduce
further the minimal elements. We will find that the Pentagon Lemma applies except a finite
number of configurations that lie in K4(«, ). Here the Colored Pentagon Lemma (see Section
5.3.2) can be applied and the problem is reduced to some algebraic computations. When we
wish to check the commutativity condition for the functional to be actually a Markov trace,
a constraint appears in K4(«, ) on the variables a, 3, z, Z. Then there are only two types of
obstructions to the existence of a Markov traces:

e CPC obstructions (Colored Pentagon Condition), defining an ideal H in Z[a, f3, 2, Z].
e commutativity obstructions, implying a constraint on «, 3, z, Z (Section 5.4).
These finitely many obstructions have been checked by using the computer and all of them lie

in the principal ideal generated by H(, gy (respectively pl29)),

5.1.5 Properties of the invariants

In the next Section we will compute these obstructions and derive the existence of the two
traces T(,,g) and 729 As explained in Chapter 4, given a Markov trace T, we get a link
invariant by setting:
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- (L) 6) o

where z € o, is a braid representative of the link L and e(z) is the exponent sum of z.
Therefore we find two invariants I(,, gy and I (2:9) We find that:

e they distinguish all knots with number crossing at most 10 that have the same HOMFLY-
PT polynomial (and then they are independent from HOMFLY-PT). However, like
HOMFLY-PT and Kauffman polynomials, they seem to not distinguish among mutants
knots (in particular they don’t separate Kinoshita-Terasaka and Conway knots).

® I(q,5) = I(_p,—q) for amphicheiral knots, and I(,, gy detects the chirality of all the knots
with number crossing at most 10, where HOMFLY-PT and Kauffman polynomials fail.

e The invariant /(,, gy is independent from the 2-cabling of HOMFLY-PT.

%9) have a cubical behaviour.

e I, p) and I
Let us explain briefly what we meant by cubical behaviour.

Definition 5.1.2 A Laurent polynomial 3 ;. cja’ is a (n,k)-polynomial (for n,k € N) if
c; =0 for j #hn+k, forall h € Z.

Remark 5.1.2 o The HOMFLY-PT polynomial can be written as ) ¢, Ry (l)mF and re-
spectively as e, Sk(m)l¥, where Ri(l) and Sg(m) are (2,k)-Laurent polynomials with
Rog41(l) = Sog1(m) = 0.

e The Kauffman polynomial can be written as ) ;. Ui (D)mF (respectively as D okes T, (m)1k),
where Uk (1) and Ty(m) are (2,k + 1)-Laurent polynomials.

In this respect the HOMFLY-PT and Kauffman polynomials have a quadratic behaviour.

Proposition 5.1.1 I, gy and I%9) have a cubical behaviour, i.e. for each link L there exists
some | € {0,1,2} so that

_ Zken Pe(B)F Ypen Mi(e) B
Sken Qr(B)ak  Ypeny Ni(a)Br’

where Py, Qg, My, Ny, are (3,k + [)-polynomials, and

1%0(L) = 3" Hi(9)2F = Y Gi(2)d",

keZ keZ

I(a,5)(L)

where Hy, Gy are (3, k)-Laurent polynomials.
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5.2 Markov traces on K,(«, ()

5.2.1 A base for the cubic Hecke algebra H(Q,3)

Usually cubic Hecke algebras are defined as the quotients

H(Q,n) = C[Bn]/(Qoj); j=1,...,n—1)

of the group algebra of the braid group by the ideal generated by (o), cubic polynomial

with parameters a and 83, i.e. Qo) = 0? —ao? — Boj — 7, «, B, v € C. One may consider

J j
74 = 1 in the cubic polynomial since H(Q,oo) and H(y~'Q,o00) (the towers of cubic Hecke

algebras) are isomorphic. In [43] it was shown that:

Proposition 5.2.1 For all cubic polynomials Q with Q(0) # 0 one has dimcH(Q,3) = 24.
A convenient base of the vector space H(Q,3) is

€1 = 1, €y = 01, €3 = U%, €4 = 09, €5 = U%, €g = 0109, €7 = 0201, €8 = 0%02, €g =
0'20'%, €190 — 0'10'%, €11 = O’%O’l, €192 = O’%O’%, €13 — O’%O’%, €14 = 010201, €15 = 0'%0'20'1, €16 —
01020%, €17 = 01030%, €18 — 0%020%, €19 = U%U%Ul, €20 = 010301, €21 = U%U%U%, €99 =
0'20'%0'2, €93 — 020’%0’20’1 = 0'10'20'%0'2, €94 = 020%020% = 010’20’%0’20’1 = 0'%0'20'%0'2.

We refer also to [43] for the following identities:
UJ+1020J+10] = UJUJ+1020J+1a
03,050,511 =0} ]Ha + a(oj 1030541 — 007 105) + B(030j41 — 0407 ,4),
0j 41070511 = 0505105 + a(0j11070511 — UJ 071105) + B(0j410F — 0F,1107).

5.2.2 The homogeneous quotient of rank 3

The quotient P(oo) of H(Q,o0) is homogeneous if any identity F'(o;, 0441, ...,0;) = 0, which
holds in P(co) remains valid under the translation of indices i.e. also F(0; 1, Oitkt1s s Ojik)
=0, for k € Z,k > 1 —i. One considers the Markov traces supported by the quotients
Ky(a, 8) = H(Q,n)/I,, where I, is the (two-sided) ideal generated by:

27 105+ (ﬁQ a)oi_050%_ 4 (a —af*— 5)03 10705 1+ (&2 —af?—p)oF 107 gj_1+(a?

B?)os 007 1+ (1+20f+a? B> —aP)o; 10505 1+(1+a5+a252—a )oj-1040; 1+(1+ozﬁ+
262—05) ]2 19505~ 1+(1+2(J46 /83)0]Uj 1+ (1+2(J46 /83) g ( /83 20— 2a 6)0—] —1+
(af?® —2a — 2a2,6) 10+ (af® —2a — 2028+ %)0? a] 1+(ozﬁ —2a—2a%B+ %o 10 +
(o' — ?p%— 2a25 - 3a)aj 105051 + (2013,6 + 3a% — a?B3 — af?)ojoj1+ (2038 + 3a
o’ — aﬁQ)aj 10+ (B = 28 = 3ap* + o®)o} |+ (ﬁ“ — 26 = 3af? + a*)oi+ (1 + 4af +
3a26% — a® —aBt — B3)oj_1 + (1 +3aB+3a26% — o —apt)o; +36% — f° — 20— 3?8+ 4af?,

where j =1,...,n — 1. Then K. («, ) is a homogeneous quotient of H(Q, o).

Remark 5.2.1 H(Q,3) is a semisimple algebra which decomposes generically as C3 ®M§e3 @
M3, where M, is the algebra of n x n matrices. The morphism into C® is obtained via the
abelianization map and that into My is part of the projection onto the quadratic Hecke algebra
defined by a divisor of Q (which is C> ® My). One identifies then K3(a, 8) = M$® © Ms.

In fact it suffices to show that the ideal I3 is a vector space of dimension 3. Let R be the span
of Ry, R1, Ro, where
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Ry := 090209 + (82 — a) 0?0302+ (a? — af? — B)o1030? + (o — aff? — B)o?o3oy +(a? —
aB?)oloaoi+ (1 + 208 + B2 — ad)or0301 + (1 + aff + &?B? — o®)or0207+ (1 + aB +
a?B? — o®)oiosor +(1 + 2a8 — B2)030? + (1 + 2a8 — B3)oiod+ (aB? — 2a — 2a%B)090?
+(af? —2a—202B)oios+ (aff® — 20— 20 B+ B?)o501 +(af? — 20— 202 B+ %) o105+ (ot —
?B% - 2028 —3a)o10901 + (202 B+ 302 —a? B3 — af?)or01+ (202 B+302 —a? B3 — af?) o109+
(B =26 —3aB% +a?)o? + (B* — 28 — 3aB? + a?)o3 +(1 + 4aB + 3a%5% — o — aBt — B3)oy
+(143aB + 30282 — a® — afft)og + 362 — B° — 200 — 302 + 433,

Ry := 01Ry = 01090309 — Boio3o? + (1 + aB)or030? + (1 + aB)o?o301 +(1 + aB)o?oq0?
(—a?B—2a)o10201+(—a?B—2a)01020+ (—a?B—2a)0i0301+ (B2 —a)o3o?+ (8% —a)oios+
(o — af?)oroi+ (o — af®)oior + (a® — af? — Bosoi+ (o — af? — foros+ (P8 + 5 +
3a?)o10901 + (1 + af + a?B? — a®)ogo1+ (1 + aff + &?B2 — &®)o109+ (1 + 2a8 — %) +
(14208 — 8%)03 + (af® — 20 — 2626 + F2)o1 +(af® — 20 — 202F)0s +5* — 26 — 306” + o2,

Ry := 01Ry = 0l090%09+ 02030? — ao030] — aoiolo) —aciooi+ a’oiodor + (o +

B)o10207 + (o + B)otosoi+ (—B)osot + (=B)otos + (1 + ap)oroi+ (1 + aB)oios + (1 +
af)odo+ (1 + aB)oioi+ (—aB — af + 1)or10301 + (—a?B — 2a)oz01+ (—a?B — 2a)o 00+
(8% — a)o? + (B2 — a)od + (—apf? + o — Blo1+ (—af? + a?)os + 1 + 2a8 — B3.

Lemma 5.2.1 As vector spaces R = I3 in H(Q,3).

Proof: Remark that

and after some messy computations (computer aided) we obtain that

From these relations we find that xRyy € R for all 2,y € H(Q,3), hence I3 C R. The other
inclusion is trivial. O

5.2.3 Uniqueness of Markov trace on K, («, 5)

From now on we will work with the group ring Z [, ] [Boo] instead of C[By].

Definition 5.2.1 Let z,z2 € C*, a, 8 € C, R be a Z |, 3, 2, Z] —module and H an ideal of R.
i) T is an admissible functional on Koo (v, B) (taking values in R/ H ) if the following conditions
are fulfilled:

T(xony) = 2T (zy) for any z,y € K,(a, B),

T(zo,'y) = 2T (zy) for any z,y € Kn(a, ).

i1) An admissible functional T is a Markov trace if

T (ab) = T (ba) for any a,b € Ky(«, B).
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Remark 5.2.2 Markov traces on the quadratic Hecke algebras (see [58]) have the following
multiplicative property: T (xoy) = T (z)T (0y), for x € H(Q,n), which implies that: T (xy) =
T(ZU)T(:I/), fO’]" T e H(Q7 n)? y e< 15 Ony Ontlyeens Ongk -

However we cannot expect that this property will extend to higher level algebras and Markov
traces on them.

Definition 5.2.2 The Markov trace T is multiplicative if T (zok) = T (z)T (oF) holds when
z € HQ,n),k €Z.

Remark 5.2.3 In the case of cubic Hecke algebras the Markov traces are multiplicative. In
fact using the identity 02 = ao, + B+ 0, we derive then the multiplicativity for k = 2,
and by recurrence for all k. In particular if T is a Markov trace it follows that T (ac2b) =
tT (ab) a,b € B, , where t = az + 3+ Z.

One can state now the unique extension property of Markov traces.

Proposition 5.2.2 For fized (z,t) € (C*)? there exists at most one Markov trace on K, (a, ()
with parameters (z,t).

Proof: Define recursively the modules L, by

L, = H(Q,2),

Ly = C < otodot; i,5,k € {0,1,2} >,

L,i1 =C<aoib|a,be basis of L,, € € {1,2} > &L,.
We need the following result

Lemma 5.2.2 Under the natural projection © on Ky (a, ), Ly, surjects onto K,(«, 3).

Proof: For n = 2 it is clear. For n = 3 we know that 090309, 01020202, 03030309 € T(L3).

Consider now w € Kpi1(a, B) represented by a word in the o;’s having only positive
exponents. We assume that the degree of the word in the variable o, is minimal among all
linear combinations of words (with positive exponents) representing w.

If the degree is less or equal to 1 there is nothing to prove.

If the degree is 2 then either w = uo2v, u,v € K,(«a, ) so using the induction hypothesis
we are done, or else w = uopzo,v, where u,z,v € K,(«, 3). Therefore z = zof,_,y where
z,y € K, 1(a, B) by the induction and € € {0,1,2}. If ¢ = 0 then w can be reduced to uzo2v.
If e =1 then w = uopro,_1YopV = ULOH_10,0,—1yv hence the degree of w can be lowered
by 1, which contradicts our assumption. If ¢ = 2 then w = uzo,02_,0,yv. One derives

002 o, € C< ol _jolok | i 5,ke€{0,1,2} >,
hence we reduced the problem to the case when w is a word of type u'c2v’.

If the degree of w is at least 3 we will contradict the minimality. In fact w contains either

b u € Ky(a, f) and a +b > 3, or else a subword w" = o uo,vo,,

[ — a
a subword w' = cluo,,

u,v € Ky(a, B).

In the first case using the induction we can write u = zo’,_,y, z,y € K,_a2(a, B).

If £ = 0 then w' = 0%t P2y = a0~ loy + o021y + 00032y, hence the degree of w
can be lowered by 1.

If e = 1 then w' = 0% zo,0, 100y0
can be reduced by one unit.

b—1 _ sa—1

o op xan,lanan,ly(jz—l, and again its degree
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If e = 2 then a or b equals 2. Set a = 2. We can write

w' = z0202_|0pyol Tt = z0n_10202_yol Tt + a(on02_0n — Op_1020,_1)yol 1+

+B(05 100 — on-107)yoy, .
still contradicting the minimality of the degree of w.

In the second case we can write also u = zo%, |y, v =10 ;s with z,y,7,s € K,_1(c, B).

If € or § equals 1 then, after some obvious commutation the word w” contains the subword
0n0n—10, which can be replaced by o,_10,0,—1 hence lowering its degree.

If e = 6§ = 2 then W' = wo,02_jo,yro2_,o,s. We use the homogeneity to replace
0n02 10, by a sum of elements of type o jolcf . Each term of the expression of w"
which comes from a factor having j < 2 has the degree less than it had before. The remaining

terms are o' o020k _yro?_.o,s, so they contains a subword o2uo,, whose degree we alread
n—1“n"n—1 n—1 ) y n Yy
know that it can be reduced as above. This proves our claim. O

Now the Markov traces 7 on H(Q,o00) are multiplicative hence T(zofy) = T (05)T (yz)
holds, and K, («a, ) it is an algebra hence yz € K, («, B) . Therefore the extension of T, by
recursion, from K, («, ) to K,11(a, B) if ever exists it is unique. This ends the proof of our
proposition. O

5.3 CPC Obstructions

5.3.1 The pentagonal condition

The following Lemma is also a consequence of the previous one:

Lemma 5.3.1 There is a surjection of (K, («, 8), K,(«, B))-bimodules

Kﬂ(av ﬁ)@Kn(Oé’ 5)®Kn_1(a7B)Kn(a7 B)EBKn(au 5)®Kn_1(o¢7ﬁ)Kn(a7 5) — Kn+1(a7 /6)
given by

x®y®z®u®U—>$+yanz+uagv.

In particular admissible functionals are unique up to the choice of 7(1) € R. Look now at the
algebra K, (a, 8). We wish to use the following transformations on the words (one way):

(CO)(j+1) ac}, b = aEji1b,

(C1)(j) aoj41040j4+1b = ao;0j4105D,

(C2)(j) CLO'j+1O']2~O'j+1b — aS;b,

(ClZ)(J) aaj+1020]2-+1b — aCjb,

(C21)(j) aa?Haj oj+1b = aD;b,
where Ej+1 = CMUJQ-_H +,80j+1+ 1, Sj = Uj+10j20j+1 —R(()’j , Cj = UJZUJZ_HU]' +04(Uj+102'0j+1 _
0j03,105)+B(0j1105 =03, ,05) and Dj = 0507, 07 + (0710507 1 —007,,05)+ (050441 —
0j0j+1)’ g =0,...,n — 2. Our aim is to reduce the degree of o, 1 as much as possible in
K, (a, B). According to the previous Lemma every word in K, («, 3) is equivalent to a sum
of words of type >_; z;jo;"_,y;. Unfortunately we are forced to use also the transformations

oioj <> ojo; for |i—j |>1,
which have to be used in both directions.
Assume this is the reduction process we want to carry out. We eventually obtain a sum
> ion 1y with z,y; € Kn_1(a, 8). Of course this normal form for the word we started
with is not unique since we may perform again permutations of its letters in each term. But if
any two such normal forms are equivalent under permutations of its letters (i.e. of the letters
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Figure 5.2: The pentagon condition

o0 with | i—j [> 1) then we will get an almost canonical description of the basis of K, (a, 3).
Indeed the last assumption is equivalent to say that the surjection of the previous Lemma is
an isomorphism. Unfortunately this is not the case. One can however obtain the obstructions
to the uniqueness of this almost canonical form as follows.

We return now to the module of admissible functionals. The last group of relations enables
us to make a further reduction, namely

aop_1b — z ab,

aop—1b — t ab.
This way we can reduce a word to a linear combination of words lying in K,,_1(«, ). Assume
that we are using a recurrence on n. This means that each element of K, _1(«,3) can be
uniquely reduced to an element of R (the value of the functional on the element). Thus it
suffices to check the obstructions directly on the values in order to obtain that the functional
is well-defined. One formalizes this at follows. Let I' be a semi-oriented graph. This means
that some of its edges are oriented and the remaining ones are unoriented. A path vivs...v, is
a semi-oriented path if either v; — v; 41 or else vjv;11 is unoriented, for all 5. If all edges of
the chain are unoriented we say that its endpoints are unoriented equivalents.

Definition 5.3.1 vyvs...v,, is an open pentagon configuration in T (0.p.c.) if va — v1, VoU3...0_1
18 an unoriented path and v, 1 — v,.

We state first the pentagon condition for semi-oriented graphs:

Definition 5.3.2 T wverifies the pentagon condition (PC) if for any open pentagon configura-
tion viva...v, there exist semi-oriented paths viT1x3..xme and v,y1Y2...ype having the same
endpoint (see Figure 5.2).

Set now x < y if there exists a semi-oriented path from y to z in I". Of course < is not always
a partial order relation. A necessary and sufficient condition is that no closed semi-oriented
loops exist in I'. One says that z is minimal if y < x implies that ¥y is unoriented equivalent
to .

Lemma 5.3.2 Suppose that the (PC) holds. If a connected component C of the graph I has
a minimal element me then it is unique up to unoriented equivalence.
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Figure 5.3: Proof of Pentagon Lemma

Proof: Consider two minimal elements z and y which lie in C. Then there exists some path
TLOX1...Tpy joining them. Since z is minimal the closest oriented edge (if ever exists ) is ingoing,
and the same is true for y. If this path is not unoriented again from minimality there are at
least two oriented edges. Therefore open pentagon configurations (i.e. those configurations
where (PC) applies) exist. We apply then (PC) iteratively whenever such configurations exist
or has appeared. When this process stops we find two semi-oriented xz122...2pe and yujus...use
having the same endpoint e. So e < x and e < y. Again from minimality these paths must be
unoriented so z and y are unoriented equivalent (see Figure 5.3). O

Remark 5.3.1 A priori one cannot say too much about the existence of such minimal ele-
ments. If < had been a partial order with descending chain condition then the existence of
minimal elements would be standard. However in the present case even if < is not a partial
order the existence of minimal elements can be established.

5.3.2 The colored pentagon condition: the definition of [,

Suppose now we have a sequence of disjoint graphs I'y,. In every '), there exists a distinguished
subset of vertices V,2 which are minimal elements in their connected components. Suppose that
each connected component admits at least one minimal element. Each such vertex from V?
has exactly one outgoing edge going to a vertex of I';,_1. We color these new edges in red. Set
'}, for the union of all I';, j < n and with the red edges added in each rank j.

Definition 5.3.3 I’} is coherent if any connected component of I', has an unique minimal
element (with respect to I'Y) in Ty up to unoriented equivalence.

We state now the colored version of the Pentagon Lemma for this type of graphs.

Definition 5.3.4 We say that I, verifies the colored pentagon condition (CPC) if for any
open pentagon configuration vivs...v, in I'y there exist bicoloured semi-oriented paths (in T'})
from vy and v, having the same endpoint. In addition if xy is an unoriented edge in I'), with
z,y € V.0 then there exist semi-oriented paths in T starting from x and y with red edges and
having the same endpoint (see the Figure 5.4).

7



V2 Vi1
Vl Vn
r
. ‘ VA
| | M1 w0
| i Vn—l
. ’
N VOO
L P
. ir O V 0
e 0

Figure 5.4: The colored Pentagon Condition

Lemma 5.3.3 Suppose that I} _, is coherent and the (CPC) condition is fulfilled. Then I'},
15 coherent.

Proof: The proof is similar to that of Pentagon Lemma. O

Now we are ready define our graph I',,. Its vertices are the elements of the ring algebra
Zla, B, z,Z)F}, where F} is the free monoid in the n letters {01, 09,...,0,}. The vertices of
I’y will be the elements of Z[a, 3, z, Z]. Two vertices v = >, ayz; and w = >, Biyi, i, B €
Zla, B,z,7] and z;, y; € F;f, are related by an oriented edge if exactly one monomial of v is
changed following one of the rules

(CO)(j) aaj’-’b — aEjb,

(Cl) J) a,aj+1ajaj+1b — aajaj+1ajb,

(C2)(j) CLO'j+1O']2~O'j+1b — aS;b,

(C12 (J) an_HUZUJQ-_Hb — G,Cjb,

(C21)(j) aa?Haj oj+1b = aD;b,
where Ej;, S;,C;, D; as above. An unoriented edge between v and w corresponds to a change
in a monomial of v of type

(P;j) aoijojb — aojo;b whenever |4 —j |> 1.
Remark that the use of (C12) and (C21) is somewhat ambiguous since we may always use (C2)
for a subword. Their role is to break in some sense the closed oriented loops in I',,. Consider
now the following sets of words in the o;’s:

WO = {1}7

Wh =WhU WnQn+IZn U WHU%JAZH.

Ty = {020021_1...0?_]0#1,1'2, wntp € {1,2},p =0,n—1}.
Let V0 be the set of vertices corresponding to elements of the Z[«, 3, z, Z]-module generated
by W,.

~—_ N N

Lemma 5.3.4 Each connected component of T'y, has a minimal element in V.0, not necessarily
UNLqUE.

Proof: We prove our claim by induction on n. For n = 0 it is obvious. Let now w be a word in
the 0;’s having only positive exponents. If its degree in oy, is zero or one we apply the induction
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hypothesis and we are done. If the degree is 2 and it contains the subword o2 we are able to
apply the induction hypothesis. One can also suppose that no exponents greater than 2 occur
by using (CO) several times. If the degree is 2 then w = zo,yo,z with z,y,z € F}_|. The
induction applied to y implies that w > zoy,a0;,_;bz with a,b € F;;_;. Then several transforms
of type (P,;) and (Ce) will do the job. Consider now that the degree is strictly greater than
2. So we have a subword of type

otzol with 3 <a+p<4
or else one of the type

OnLORYOon.
The second case reduce to the first one as above. Next say that z > ao;,_;b, a,b € F]_,.
Several applications of (Py;) leads us to consider the word 005 _,08. If e = 1 we apply two
times (C1) and we are done. Otherwise we shall apply (Caf) and then (C1) if & # f or both
(C12) and (C21) and then (C1) if @ = 8 = 2. This proves that every vertex descends to V2.
But these vertices have not outgoing edges as can be easily seen. When we use the unoriented
edges some new vertices have to be added. But it is easy to see that these also does not have
outgoing edges. Since any vertex has a semi-oriented path ending in V.0 we are done. O

Remark 5.3.2 The moves (C12) and (C21) are really necessary for the conclusion of the
previous Lemma to remain valid. For instance look at the case « = = 0. From O’j+1O'J2-O'J2-+1
only (C2) can be applied and in the linear combination we obtain the factor 0]2-+10]2-0j+1. If
we continue, then at each stage we shall find one of these two monomials. When all possible
reductions are performed at the second stage we recover the word O'j+10']2-0'j2'+1 so we have a
closed oriented loop in the graph. This connected component has no minimal element unless
we enlarge the graph by using the extra transformations (C12) and (C21). For general «,f3
a similar argument holds, and it can be checked by a computer program. If one does not use
(C12) or (C21) then the reduction process for O’j+1O'J2-O'J2-+1 yields at the sizth stage a sum of
words generating an oriented loop.

5.3.3 The bicoloured graph I} (H): the sub-module H

We are able now to define the bicoloured graph I'}(H). The red edges are defined as follows.
Each minimal vertex v =3, a(i,k)x(iyk)afly(i,k), where k = 0,1, 2, is joined by a red edge to
W= 32, O k) Wk T (i,k)Y(i,k), Which is a vertex of I'n_y, where we set up = 1,u; = z,uz = 1.
Finally T'yg(H) is the graph having the vertices corresponding to the module R and two vertices
are connected by an unoriented edge iff the corresponding elements lie in the same coset of
R/H, H being a certain submodule of R. The submodule H is necessary because going on
different descending paths we might obtain different elements. Then, we have to find whether
there exists H so that I'} (H) is coherent.

We will test the conditions of coherence of each I'} (H) by recurrence on n. Notice that for
n = 1,2 there are no conditions on H. Our strategy is to make use of the Colored Pentagon
Lemma in the following way. For those configurations that we cannot prove the (PC) holds
directly we shall check that the (CPC) (which is weaker since it concerns all the tower I'} (H))
is verified.

Consider an open pentagon configuration (abbreviated o.p.c. ) [wg, w1, ..., wy]. This means
that w; — wq, wy, ..., w,—1 are unoriented equivalent and wy,—1; — w,. We say that this o.p.c.
is irreducible if none of the vertices wy, ws, ..., w,_1 has an outgoing edge.
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Figure 5.5: The o.p.c. for AO']2~+10'J2-O'J‘+1B

Lemma 5.3.5 i) In order to verify (PC) it suffices to restrict to irreducible configurations.

i) It suffices to verify (PC) only for monomials from F.

ii1) Suppose w} = Aw;B, for j =0,...,n (so A, B are not touched by any transform) in
the o.p.c..

If (PC) holds for [wo, w1, ..., wy] it also holds for [wg,w!, ..., w]].

iv) Suppose that (PC) holds for [wg, w1, ..., wy] and for [yo, Y1, ..., Yym). Then for all A, B,C
the (PC) is valid also for

[AwoBle, AwlBle, ceay Awn_lBle, Awn_lBng, Awn_lBng,

vy Awp 1 BYy—1C, Awy, 1 By, C.

In fact when we fix the endpoints of the o.p.c. we can mix the unoriented edges of each
subjacent o.p.c. in any order we want. Let (ig,jx) € {0,1,...,n} x {0,1,....m},k = 1,p such
that i =0 <41 <i2 < .. <ip,Jp =M > Jp—1 > ... 20, and g1 — i + Jr11 — Jr = 1 for all
k. Then the o.p.c. [Aw,By;,C, Aw;, By;, C, ..., Aw;, By;,C] fulfills the (PC).

Proof: 1) We may always decompose a configuration into irreducible ones and iterate the
construction.

ii) The reduction transforms on different monomials commute with each other so we are
done.

iii) Obvious.

iv) The reductions of z,_1 and y; commute again with each other. O

Thus the top line of a o.p.c. corresponds to a word wy and a sequence of permutations of its
letters giving in order wa, ws, ..., wp—1. We may suppose that w = w; has no proper subwords
w) which fulfill the following two conditions:

i) Set w = Aw'B. Then each of the considered permutations acts only on the letters of A,
of B or w'. Thus the transform w” of w' is equivalent to w'.

ii) The reduction transforms performed at w; and wsy acts actually on w' and w”.

Now we can study the (PC) for irreducible configurations as in Lemma 5.3.5.

The first step is to check if the (PC) condition holds when the top line is trivial (n = 2) and
there are two or more outgoing edges. For instance, see Figure 5.5. A and B are subwords not
touched by reductions and on the subword 0]2 +1O"72'O'j+1 one can apply (Cij) or (C2). C; and
S; are as in Section 5.3.1.
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Lemma 5.3.6 If the top line is trivial then the (PC) holds.

Proof: By Lemma 5.3.5 we have a finite number of cases to test. These are the words of the
form abc, where ab and be are subwords belong to the set {05-’+1, 0410041, 0j+10]2-0j+1,
O'J2-+1O']2~O'j+1, O'j+1O'J2-O'J2~+1}, j = 1,...,n — 2. The number of cases to study can be easily
reduced, since

e If b is the identity, the (PC) trivially holds.
e By homogeneity of the reductions (C ¢)(j) it suffices to consider j = 1.

e For a word w = wy,...,w; its symmetric is the word w* = wy, ..., w;. If the (PC) holds
for abe, (PC) holds also for the symmetric word (abe)* (this result follows from the form
of reductions).

e Several cases, as a§‘+lajaj+1, can be easily tested at hand.

The non trivial cases appear when a (Cij)-move (and then a (C2)-move) can be applied.
Actually, we have to check only 0']2~+10'J2-O'j+1, since 0j+1a]2(j]2-+1 is its symmetric and the cases
ajﬁrla]za;il (e; = 2, 3) are consequences of these ones. Then, we start from the situation
depicted in Figure 5.5 (A, B are empty words). If we apply (Cij) whether is possible on
0j+185;, after a long and messy computation we find the same minimal element associated to

c;. 0

Remark 5.3.3 Using a computer program one can get the oriented graph associated to the
word U?+1U‘j2'0j+1 (Figure 5.6). The vertices are of the type Y cjw;, c; polynomials in o, f and
w; words in 0, ojy1. An oriented edge between an outgoing vertex a and an ingoing vertex
b indicates that the reduction procedure applied to a yields b. When there are no subwords
O'j2'+10']2-0'j+1 or 0j+1‘7]2"732'+1 the edges are spotted. As we already noticed in Remark 5.5.2, if we
apply siz times the procedure without (Cij) we find a loop.

Let us study the case when the top line is non trivial. By Lemma 5.3.6 we can suppose that
wy and w,_1 have each one exact one outgoing edge. In particular, when a (Cij)-move can be
applied, we choose always the edge (Cij) in the reduction process.
Now the top line is determined by the sequence of transpositions of the letters of w. Let [ be
the length of w. Otherwise this is the same to giving a permutation o € S; with a prescribed
decomposition into transpositions. Set T} for the transposition which interchanges the letters
on the positions 7 and j + 1. Notice that for a fixed w not all ¢ are suitable. In fact only a
subset of the group of permutations, which we call permitted, may work. Say P(w) is the set
of permitted permutations. If e, : {1,2,...,1} — {1,2,...,n — 1} is the evaluation map

ew(7) =index of the letter lying in position j on w
then Tjo is permitted (where o € P(w)) iff

| ea(w)(j) - etr(w)(j + 1) |> L
Say that two permitted permutations o and o’ are equivalent if for the o.p.c. corresponding
to o and o’ the (PC) is valid or not for both in same time.

Lemma 5.3.7 i) Suppose that 01T;Tio0 € P(w), | i —j |> 1. Then 01T;Tjor € P(w) and
these two permutations are equivalent.

81



2 42
0j+19) Oj+1

N
NI
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[

Figure 5.6: The graph underlying to ajz+10]2-aj+1

i1) Suppose that o1T; 1T Tiy109 € P(w). Then o1T;T;11Tio0 € P(w) and these two per-
mutations are equivalent. The converse is still true.
iii) If o1T?09 € P(w) then o109 is permitted and equivalent to the previous one.

Proof: The existence in the first case is equivalent to | €q,(w)(4) = €ry)(4 + 1) |> 1 and
| €x(w) () — o) (i + 1) [> 1, so it is symmetric. In the second case also it is equivalent to
| €os(w)(J + €1) = €gyqu)(J + €2) [> 1 for all g; € {0,1,2}, so it is again symmetric. The
equivalence is trivial. O

One uses a graphical representation for the decomposition of ¢ into transpositions similar
to the braid pictures (see Figure 5.7), where we specify on the top and bottom lines of the
diagram the values of the evaluation maps.

This figure encodes all information about the o.p.c. because the two words w and o(w) have
unique reduction. For the moment one draws only those trajectories of the six (to ten) ele-
ments which enter in the two blocks which reduces. Suppose for instance that the two reduction
moves are two (C0). So w = xiity and o(w) = z'jjj1y’. Say that i = j. The trajectories of the
i's may be disjointed since the transposition acting on the couple 7 is trivial in fact. So the
possible trajectories fit into 4 cases which may be seen in Figure 5.8.a,b,c,d.

Suppose now we have two trajectories of ¢ and j # ¢ which intersects. First of way we derive
that | ¢ — 7 |> 1. Orient all the arcs from the top to the bottom.

Lemma 5.3.8 i) Suppose that the arcs labeled i and j have algebraic intersection number 0.
Then we can replace the diagram by an equivalent one where the arcs are disjoint.
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Figure 5.7: The complete diagram associated to an o.p.c.

m i

N
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c Q] d

Figure 5.8: The essential trajectories for (C0)(i)-(C0)(i)

83



i i
5(%
i [ ]

Figure 5.9: Disjointing trajectories

2R

Figure 5.10: Non minimal biangle procedure

i) Suppose that the arcs labeled i and j have algebraic intersection number 1. Then we can
replace the diagram by an equivalent one where the arcs have exactly one intersection point.

Proof: We consider the diagram is that from Figure 5.9.

We can assume that the biangle in the middle is minimal, hence it does not contain any other
biangle. In fact we can apply repeatedly the disjointedness procedure only for minimal bian-
gles. Such biangle have two walls: one coming from ¢ and the other from j. From minimality
no other arc cross twice the same wall (see Figure 5.10).

Let consider the region L and R such that: the set of arcs labeled by something not commuting
with 7 is contained in L, and those labeled by some k not commuting with ¢ are contained in
R. Then the situation is that from Figure 5.11.

Thus all arcs which cross the biangle are labeled by some & which commutes with both ¢ and

j. The same commutation transforms may be performed whenever we make the arcs ¢ and j
disjoint. O

A similar reasoning permits to say that the diagrams from Figure 5.12 are equivalent.

Figure 5.11: The regions R and L
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Figure 5.12: Equivalent diagrams

]

Figure 5.13: The diagram for (C0)(i)-(C0)(j) when |7 —j |> 1

When the triangle in the middle is not touched by any arc then it is a simple consequence of
lemma 5.3.8 ii). If it is minimal, any arc which cross it is labeled by something which commutes
with j.

Remark now the similitude of Figures 5.9 and 5.12 with the Reidemester’s moves on link
diagrams. So we can actually isotopy our arcs leaving the endpoints fixed and keeping the
tangent (in a C'-approximation of arcs) away from the horizontal.

Now we can continue our discussion on the trajectories of i's and j's. If | i — j |= 1 the
trajectories are disjoint so there are as in Figure 5.13.

If 7 and j commute then there are essentially sixteen diagrams (up to isotopy) which can be
seen in Figure 5.14.

In order to represent graphically the possible diagrams for the (C1), (C2), (C12), (C21) moves
we shall figure the trajectories of a couple of neighbor points having the same label as a single
thicker trajectory. This may be done since every arc crossing the dashed region (see Figure
5.15) between the trajectories of the the two #’s has a label commuting with i. In addition the
trajectories of ¢ and ¢ 4+ 1 are disjoint.

Suppose we are in the case (C1)(i)-(CO0)(j). For j # ¢ — 1,4,4 + 1,7 + 2 the twelve diagrams
from above appear appropriately labeled. For j =i — 1,4, + 2 some diagrams are not realized
because the arcs labeled by ¢ — 1 and ¢ does not intersect, so several cases have to be left. For
j =1+ 1 another diagram have to be considered, that from Figure 5.16.

The same situation we encounter when we describe the possible trajectories for the couple of
reduction transforms (C2)-(C0), (C12)-(C0), (C21)-(C0). A simple analysis shows that in the

remaining cases the only new diagrams are those from Figure 5.17.

The other ones are obtained from the previous twelve using the suitable labeling, and taking
into account the constraints of disjointedness imposed by the labels. We say now that a
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Figure 5.14: The 16 diagrams for (C0)(i) -(C0)(j) in the commuting case

Figure 5.15: The graphical representation of the dashed region

i+11 i+1

\

i+1i+1i+1

Figure 5.16: The new diagram for (C1)(i)-(C0)(i+1)
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i+10 i+1] i i+l i+1 0 i+1 i i+l i+10 i+1

N

+1 0 i+l i+ +1 0 i+l i+ +110i+1

Figure 5.17: The new diagrams for (Cx)(i)-(Cy)(i) =,y # 0

Figure 5.18: The whole figure of a non-interactive diagram without crossings

diagram is interactive if there is some marked arc relating the top and bottom blocks where
the reduction transforms act. Our task will be to eliminate the non-interactive diagrams where
the (PC) trivially holds.

Lemma 5.3.9 The usual (PC) is valid in I'y, for non-interactive diagrams.

Proof: We consider first the case where no crossings of the essential arcs exist. The typical
case is that from Figure 5.13. We draw now all trajectories as in Figure 5.18. We have the
dashed regions U and V which are bounded by the ¢'s arcs and respectively j's arcs.

Everything crossing the regions U and V commutes with ¢ and j respectively. We claim first
that U and V are tangent to the end lines from left and right respectively. If not there exists
some arc labeled A lying to the left of U. Assume that this arc is the first from the left having
this property. In particular A commutes with every label o which stands to the left of A. Thus
we may perform these commutation transforms at any moment, to get A on the first position.
Since A does not cross U we may leave it on the the first position replacing the o.p.c. by an
equivalent one. Thus the new configuration corresponds to a word which is not minimal with
respect to the reduction procedure (see Lemma 5.3.5 and the subsequent comments).

Let now 3; be the convex hull of the three points labeled ¢ coming from essential arcs and
lying on the bottom line. Similarly set 3; for the convex hull of the j's on the top line. Every
arc which arrive on 3; must cross U hence is labeled by some k£ commuting with . We can
move these endpoints using the commutation rules from the left or the right according to the
following principle: if the start point of the arc labeled k is in the left of the block of i"’s on
the top line, then we move to the left. Otherwise we move to the right. The only problem
which we can have is in the following case: the start point of some k is in the left of the arc
labeled I, both arrive on 3J;, but this time the endpoint of [ is in the left of k. A topological
argument shows that these two arcs cross each other. Therefore k and [ are commuting and
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Figure 5.19: The simplification of a non-interactive diagram without crossings of essential arcs

i
Figure 5.20: The standard non-interactive diagram

we can perform our transforms as it was said (see Figure 5.19).

Finally we recover a diagram which this time has crossings but is equivalent to the standard
one of Figure 5.20.

Without loss of generality we can set « = = 0 in the reduction transforms in order to simplify
the notation. Suppose now that the reduction transforms AiitB — AB and Cj55D — CD
are also performed. We may use the simplification transforms (commutations which are still
valid even if the i or the j are collapsed) for above for each word: to AB in the part of j's
and to C'D in the part of #'s. Due to the particular form of the standard diagram we shall get
(see the Figure 5.18) the words Ujj;V and U'iiiV’ respectively, with UV = U'V’. So again
the use of a reduction transform will get the same word. Thus the (PC) is satisfied for these
configurations. It is almost the same reasoning for the other non-interactive diagrams without
crossings.
It remains the case when crossings of essential arcs appear. But the commutation transforms
may be also be performed in such way that the starting points of j's on the top line will be all
on the same part with respect to the #i¢ block. In other words we make X; and the block 44
disjoint. The same is true for the bottom line. The worst case is again when 444 is in the left
of ¥; on the top line and down the situation is reversed. But again ¢ and j commutes with
everything starts or arrives on the convex hulls of 425 U X; and jjj U 3;. So we can rearrange
them to obtain the same order in the top and bottom lines. This ends the proof of the Lemma.
O
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Figure 5.21: The normal forms of interactive configurations

So it remains to look at the interactive configurations. The same reasoning permits us to
restrict to the normal forms drawn in Figure 5.21.a-f.

Some of the trajectories may be thick trajectories. The cases a,b,c,d and f are trivially verified
because only the consistency of relations defining Ks3(a, ) is involved.

Let us check a subcase of d, corresponding to (Ce)-C(0). The monomial has the form w =
0it1050,4120% ;1 which is unoriented equivalent to w' = 0;4105z0? ;. Here  commutes with

oit1 and s0 we may suppose it lies in Fj" ;. Therefore z — 20} 07,...0{" ,, with zg € F}" ,.

So again we can restrict to the case zyp = 1. Consider the case ¢ = 2 (the others are trivial).

J2

Z_Q...agfp. We have the following situation

Set g = o

!
w —"uw

N

g1 2 . 2. 1
Sjoil 0714 oir10; Ejo;lq

where S;, F; as above. From Lemmas 3.5 and 3.6 it follows that (PC) holds for

2.3 5
Oi+10;091+19;-19

N

-2 J1 ] 21 _J1
Sjoi110;149 oiv10; Bjo; g

Since Sjagilaiz 119 is unoriented equivalent to Sjaz»2 +lagi1q we have done. All other cases but
e are similar.

In the case e the situation is different. Using the commutation rules, as above we must
preserve the term agil. So we must check the configurations

_ IS R R B B | J

w = x0f 0505, 10,0} JHIJiiQ...aifp,
where z € F; ;. At this point one cannot prove that the (PC) holds. In fact it does not
hold since the surjection of Lemma 5.3.1 has a nontrivial kernel in rank n = 3. Fortunately
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we proved that the configurations that don’t verify (CPC) come from a finite number of
obstructions. Therefore one can define H as the ideal containing all these obstructions, and
see whether it is nontrivial.

Lemma 5.3.10 [t suffices to consider x = 1,p = 1.

Proof: One observes that any admissible functional 7 on K (a, §) satisfies:

T (zuv) = T (u)T (zv) for z,v € H(Q,m) and v €< 1,0, Omi1, ey Otk >
In fact for & = 0 this is the multiplicativity of 7. For & > 0 then in the reduction process
one replaces u by aof, where T (u) = a7 (05,). When reducing again one derives 7 (zuv) =
aT (05,)T (zv).

Further the (CPC) is equivalent to the existence of an admissible functional. O

We have therefore to check the o.p.c. corresponding to following couples

agagalfaébagag and 0505050{030; & e, p,v,0,y=1o0r2

Then the only possible obstructions to the existence of Markov trace come out from these
couples. In Section 5.5 we study these obstructions and we find the ideal H in R containing
them.

5.4 The computation of obstructions

5.4.1 Commutativity obstructions

We are now concerned with the commutativity constraints:

T (ab) = T (ba) for all a, b.
At the first stage (i.e. K3(«, 8)) we obtain the identities

T (o2 0% 09) = T(J% 0%), T (o109 a% o9) =T (090109 0%).

Thus the following equations should be satisfied:

T(Ro) =T(R:)=0.
ie.
(=2 +3aB+4) 2+ (3% —Taf? 644284 t+ (38 —°—2a—302 B+4af?)+ (2083 + % —6a% 5 —
100) 2t + (=303 + 7?62 +9aB + 4 — % — 2a8Y) 2+ (3a3B+Ta? — a?B% — af? +2B8)22 = (5% —
20) 2+ (4+5a6—-283)t+ (B*—26—3ap%+a?)+(28+5a% —2082) 2t+ (5% +2a8% — 502 f— 6 ) 2+
(44?82 + aff —2a3)22 =0
These yield the following values for the parameters:

e cither
=B 4 2a _a?+28
- af+4 af+4’
e or else
20z — 22°
= MT;W, where z verifies (a8 + 1)23 + (a + 2)2? + 282 +1 = 0.
z

90



One checks then the commutativity constraints by induction on n. It suffices to consider
b€ {o1,...,0n} and a lying in a system of generators of K, i(«, ), let us say W, (Section
3.2). For b = 0y, i < n it is obvious. It remains to check whenever T (acy,) = T (o0pa). We have
three cases

i) a € Ky(a, ).

i) a =zony, x,y € Kp(a,B).

iii) @ = zo2y, 7,y € K, (a, B).

which will be discussed in combination with the six subcases
1) LS anl(aaﬂ)a and yE anl(aaﬂ)'

2) z € Kyp_1(a, B), and y = uop—1v, u,v € Ky_1(c, B).

3) z € Kn_1(a,p), and y = ua%—lvv u,v € Ky 1(a, B).

)
)
)
)
)

4) x =rop-18, 1,8 € Kp_1(, 8), y = uon—1v, u,v € Ky—1(c, ).
5) x =royu_18, 1,8 € Kp_1(a, B), y = uo2 v, u,v € Ky_1(a, B).
6) x =ro2_ys, 1,5 € Ky 1(a,8), y =uo2_jv, u,v € K, 1(a, B).

Now (*,i), (L,ii) and (1,iii) are trivial.

(2,i) T (opzopuoy—1v) = t2T (zuv) = T (zopuoy—1voy).

(2,iil) T (opzoluo, 1v) = (at + Bz + 1)T (vuc, 1v) = (at + Bz + 1)2T (zuv)

= T(zuoy_10p,02 1v) = T (x02u0,_100,,).

(3,ii) T (opzopuci_iv) = 2T (zuv) = T (0202 _ )T (zuv) = T (0n02_10,)T (vuv) =

= T (zuoyno2_jonv) = T (zopuo?_jvoy,).

(3,ii) T (onzoluc?_iv) = (at + Bz + 1)T (zuci_iv) = (at + Bz + 1)tT (zuv)

= T (zuv)T (6202 _10n) = T (z02uc?_ voy).
For the other cases, we need also to know the form of su. Set su = po;_,q with p,q €
K, —s(a, B) where £ = 0, 1 or 2. We can show by a direct computation that the equalities hold
also for (4,141), (4,1i1), (6,4¢), and (6,4i7). Using Maple we have found that in the cases (5, %)
and (5,4ii) for su = po2 ,q there are only two new equations, which are not consequences
of the identities T (Ry) = T (R1) = 0). Specifically we have three obstructions in each case,

namely the polynomial coefficients of T (rpo2 ,qu), T (rpon_oqu) and T (rpquv).
e from (5,47) we have

— the coefficient of T (rpo2_,qu) yields the equation I := 3a8* + 5a%8° — 223 + 2a*
B —T038% — 70?82~ aff” + o3+ (130382 — 1062 B* + 13028 — 608> — 20* + 3a +
2085)t4 (=603 —aB® —60 +3a%+502B3) 12+ (=160 B2 —5a % —2a% +30° +2a3°
—13a3B+11a3p* - 2a26%) 2+ (—2a8* + 15a* B+ 202 % — 1103 82 + 1503 + 6 B) 2t +
(=3a — a3B5 4+ 60283 — 30362 + 2026~ 90°B — 9028 — 10a*)2% = 0,

— the coefficient of T (rpo,_2qu) vanishes is equivalent to M := a—a*+6a25—2a°3—
2063 + 70283+ 1103 6% + apf — 70’ —5a36° +a?B7 + (2103 f—2a% % +208% +
14022 =130 8% — 7a? +1003 8% — 2a8° +20°)t + (=70 5% 46048 + 1003 + af* +
a?B% —5a383) 12+ (—3ab +2a2B% +5aB+11a2 B2 +16a° 5% +8a3 +25a1 8 —11a* 8
—4aBt 1002532 + (1102 5% —14a? f+1003 B2 —a+-4a > — 15a° . —27a* =203 85) 2t
+(4aB? - 402 B340 B54+190° —a3Br+40” —30B? 421038 —6a° B2 +9a53)2% = 0,
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— the coefficient of T (rpqu) from which one derives N := 12243 +a 8 — 60285 — 202
+3af8% + 11a3B* — 4% — 60132 —Ta3pB + (—216383 + TaB + 503 +10a*8 —
2087 — 208 —1702 52 4+ 12a26%)t +(—4a* + 10035 —3a+ B8 + 526 — 6a25% —
3aB3)t? +(3a + 3ap% + 20287 + 16032 — 2085 — Ta* — 13a°B +5a28 — 130337
+250483) 2 4 (a? —12a36 + 10a® + 1303 B* — o262 — 202 B8 + 208° — 24032
—5a6?) 2t 4 (5a® + 4083 4 140 % + 8a*B + 7?2 + 3% +5a8 — 2a%6° — 6a°
—7a*p) 2% = 0.

e from (5,4i4) one obtains the obstructions:
— the coefficient of T (rpo2_,qv) yields —aL = 0,

— the coefficient of T (rpo,_2qv) yields —aM = 0,
— the coefficient of T (rpqv) yields —aN = 0.

5.4.2 The CPC obstructions for n=4

As pointed out in Section 5.3 the coherence of '} (H) depends on the following couples:

agagafagaga; et agagaébafaga; &€, 10,0,y =1o0r2

Recall that for a word w = wy,...,w; its symmetric is the word w* = w,...,w;. Since
T (w) = T(w*) holds one can reduce ourselves to the study of 24 couples. The couples that
we must check are the following:

1.4

. : 0309 P;03 03 and 0309 P! 02 03,

[\)

e (2.4): 0309 P,0903 and o309 P! 0903,

i 2

: 0302 Pyoy03 and o303 P! oy 03,

w

1

N

C 2 g2 2 2 2 pl 2
: 0505 Pyoj 03 and o505 P; 0503,

7

ot

. : 0209 P03 02 and 02 09 P! 02 02,

7

(1.9)
(2-7)
(3.9)
(4.0)
(5-9)
(6.9)

6

. : 0203 P,oy03 and 03 03 Pl 04 03,

where Py = o103, Py = 0203, P3 = 0103, Py = 0202, P] = 0301, Py = 030%, P} =
o2y, P = 030}

From now on we denote the corresponding couples by the respective label (i,5). For gen-
eral «, f the computation is very long and and we needed a computer program. For more
information about the code, see Remark 5.6.2.

One finds 15 different obstructions from these CPC obstructions, and the following identi-
ties among the obstructions: (5.2) = —«(3.2), (6.2) = «(1.2), (1.4) = —«(1.2). Thus, we must
consider the couples (1,2), (2,4), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4), (5,3), (5,4),
(6,4).

The exact form of the obstructions will be given in the next Section.

92



5.5 The existence of Markov traces
5.5.1 Statements
Theorem 5.5.1 There exists an unique Markov trace

Zla, B, (4+ af)™']
(H(a, 5))

with parameters z = (200 — §2)/(af +4) and Z = —(a? + 28)/(af + 4), where Hy, gy :=
800 —8a®B2+201 B +360* f—3403 B3+ 170 +802 8%+ 3202 8% — 36031 +3803+835 —173° +8.

’T(a,B) : K*(Oz, /B) —

It is convenient now to put § = z?(f8z + 1), so that the obstructions below in the second case
become Laurent polynomials in z and 4.

Theorem 5.5.2 Set a = — (27 +02)/(2%0), B = (6 — 22)/2% and Z2 = —22/(Bz + 1) = —2/5.
There exists an unique Markov trace with parameters (z,z)

Z[Zil, 5i1]

(2,9) . O e
T : K(a,ﬁ) — (P(z"s))

where P& 0) = 223 1 4185 _9,1652 _ J1453 _ 9,951 4 9,755 4 §6,5 1 47,

5.5.2 Proof of Theorem 5.5.1

The parameters z, ¢ have to satisfy the condition

T(Ro) =T(R:1)=0
Consider first the simple solutions z = (2a — 32)/(aB+4) and t = (a? +28)/(aB +4). We set
T(a, p) for the admissible functional associated to these values of the parameters. Notice that
in this case 2 = —t. Set u := 1/(af +4), 20 := 2a — B2 and tg := o® + 23 =: —2.
The commutativity obstructions

The equations encountered above for (5,44) amount to
. UQ,BH(mB) =0,
o —u?(af +2)H(, 5 =0,
o (o — f*)H(q, 5 = 0.

CPC obstructions
1.2): —u3a(a — ,BZ)H(a 7/3)W,

(1.
o (24): ul(a—B?)(a?+ ﬁ)H(a /W,
e (32): w}(—a?B>+2+af+ad)H,, 5 W,
° (33) u3(046—|—2)H(a75)VV,
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o (3.4): wap(a—F*)He, pW,

o (41): —uP(a—B?)(? + B)H(a, 5)W,

o (4.2): uda(a® +2+ 208 — a?B% — B3)H, 5W,
o (43): wla(a® — a?B2 -2 - B3)H, 5 W,

o (4.4): trivial,

o (5.3): —ud(B?+2a+2a2B)H(, 5 W,

o (54): uwla(—adp?— B — 2B+ at)H, 5 W,

o (6.4): —uPa(f+20°)(a — F)H W,

where W = (o +2 — 8)(a? —2a + 4+ af + 26+ 2) = o + 8 — B3 + 6ap.

5.5.3 Proof of Theorem 5.5.2

There are three more solutions of 7(Ry) = T(R1) =0, given by t = %, where z verifies

(af +1)23 + (a4 %)2%2 + 282 4+ 1 = 0. In this case the obstructions are better expressed as
rational functions on z and f.

The commutativity obstructions
o —ZBi/(z"(28+ 1)) =0,
o —ZBy/("(28 +1)°) =0,

e ZB3/(2"(28+1)%) = 0.

The CPC obstructions

o (1.2): —ZByBsBs/(2"3(26 +1)8),
e (24): —ZB4BgB7/(2" (28 +1)%),
e (3.2): ZByBg/(2"(28+1)%),

e (3.3 —ZByBg/(z'' (28 +1)7),

e (3.4): ZByBsBefS/(23(28+1)¥),
e (4.1): ZByBgB;/(2'%(28 +1)?),
e (4.2): ZByBsBi/(z'7(28 + 1)'9),
e (4.3): ZB4BsB11/(z'"(28 + 1)19),
o (4.4): trivial,

e (5.3): —ZByBi2/(23 (28 +1)%),
e (5.4): —ZByBsB13/(2%(28 + 1)1,
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(6.4): —ZByBsBgBia/(2'7 (28 +1)'0),

where Z, By, ..., B4 are the following polynomials in z, :

Z=14728+21220%4 2%+ 352383 + 3522 % +212°8° + 72086 + 2757 + 2280 + 82885 +
23278 4 32206° + 232°8% + 8248 — 22° + 27 — 2783 — 52842 — 627,

By =322 + 28+ 1+ 28,
By =522 + 1028 + 62582 + 2583 + 420 + 2278 4+ 1 + 328 + 32282 + 2333,
B3 =+ 22082 + 4228 + 524 6% + 2263 + 228% — 225,

By=(2+228+14+2—22) (28 +14223) (2282 — 382 + 2262 + 1+ 228 — 2 — 2228 +
222 + 3238+ 23 + 2B + 24),

Bs =1+ 2% + 222 + 228,

Bs = 2382 + 1 + 228 + 22°5% + 23,

By = 14428 +6226% + 223 + 42363 + 248* + 2583 + 42582 + 5248 + 25),
Bg = 2283 + 8 +228% — 222 — 23,

By = 14 628 + 162262 + 323 + 252363 + 25248 4+ 162°8° + 62585 + 2787 4 3288 +
13278% + 242583 + 242582 + 13248+ 275 + 26 + 29,

Big = 1+ 628 + 162282 + 323 + 252363 + 252484 + 162°8° + 6258% + 2787 + 2°° +
72807 + 2027 B 4 312083 + 282° 8% + 14218 + 28 + 2% + 2983 4+ 22882 4 227,

Bi1 = 628 +16226% + 323 + 10282 + 52885 + 2787 + 2960 + 12278 + 12275 + 192532 +
202°6% + 12276 + 6256° 4+ 3296 + 520 + 2° + 1 4+ 2527 8% + 252" 8" + 16275,

Bio =204 42°8% — 225 4 224 6% + 8287 + 122283 — 222 + 82384 + 3242 — 2238 + 204,

Bis = 1+ 828 + 29222 + 63238 + 802°8% 4+ 292757 + 132785 + 17296% 4+ 91245* +
572582 + 23225 + 425 + 626 + 427 + 912°6° + 632085 + 39283° + 70278 + 302852 +
22276 4 212 4 2’9,39 _ Z12IB6 4 ZlOIB4 4 2Z1067 4 8Z868 _ 32’11,35 4 321162 4 7Z10,3,

By =24 828 + 122282 + 423 + 82383 + 22464 4+ 2083 + 62582 + 9245 + 225.

Notice that Z(z, ) = P*9(z,4).

5.5.4 Corollaries

Corollary 5.5.1 e There exists an unique Markov trace

Z

L K. (0, 2) ,
TR0, 20 = e e 1 )

with parameters z = —\>, t = X and 2 = — ),
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o respectively

Z[A]
(8X6 — 173 + 1)’

with parameters z = —\, t = A2 and 2 = —\2.

T : K.(=2), 0) >

We have a similar situation for the other three solutions. In fact for o = 0, we derive z =
—(t — B)?, where t satisfies (t> — 44t> + 58%t + 1 — 2%) = 0. In particular 23 — 22 +1 =0
because z =t — 5.

Corollary 5.5.2 e There exists an unique Markov trace
A4 ZIA*H
¢ K. (0 —
T K0, A2 ) (X9 —2X6 + X3 4+ 1)’
2X3 +1
with parameters z = —\2, 2=\ and t = )\;— ,

e and respectively

A3+ 1 ZI2H
K (————, )
TR 02 ey e
223 +1
with parameters z =\, 2= —X\> and t = — )\;_ .

5.6 The invariants

5.6.1 The definition of [, 3

As in Section 5.2 we set z = (2a — 82)/(af +4), t = (a? +28)/(aB +4), u == 1/(aB + 4),
20 = 2a — 82 and tg := o + 28 =: —Z; (notice that in this case Z = —t)

Definition 5.6.1 Let us set for an oriented link L

n—1 =N e(m) i€/2 /\:EE/Q
B i B) E 2 [ 167 ]
I, (L) = (z?) (z) Tap(@) € (Hm,ﬁ))

where x € By, is any braid whose closure is isotopic to L. Here e—1 is the number of components
mod 2.

Lemma 5.6.1 [, g) is well-defined.

Proof: Since ;! = 0]2- — aoj; — 3, we can suppose that z is a positive braid. All the elements
in Tg(H) associated to x are polynomials in the variables z, ¢ of degree at most n — 1. The
substitutions z = uzg and ¢ = utg imply that, if T, g)(z) and T(,, gy(z)" are representatives of

the trace of z, then T(o, 3)(%) —T(a, )(z) = u" LG (a, B)H(q, 5), where G(a, ) is a polynomial

in a, §. It follows
n—1
1 2 20 3~
Lo, p)(L) = (—A) (—0) T(a, (%),

2020

where
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5.6.2 The cubical behaviour
Proposition 5.6.1 For any link K there exists some | € {0, 1, 2} such that

_ TrenLe(B)o*  Fpen Mi(a)B*
Yken Qr(B)ak  Ypen Ni(a) Bk

where Py, Qg, My, Ny, are (3,k + [)-polynomials.

I(a, B) (K)

Proof: We will show that My, Ni are (3,k + [)-polynomials. The other case is analogous.
Suppose first that x € B,", where B, is the set of positive braids and n is such that z ¢ B;Ltl.
Then e(z) = |z| where |z| means the length of z. In the process computing the value of
the trace on the word x we make two types of reductions: either one uses the relations in
some Ky (a, f8), or else one replaces aojb by zab (respectively ac?b by tab), where a,b are
subwords, and this way one lowers the rank n. Using the relations the word y is replaced by
S o(Zken Dr,s(a) 8¥)ys where the y, are a finite number of words in B, and the coefficients
Dy, (o) are (3,k + e(x) — l5)-polynomials where [y = |ys|. In the second case the word w is
replaced by zw' 4 tw" where |w'| = |w| — 1 and |w"| = |w| — 2. When we introduce the z and
t as functions on « and S one finds that

Tio py () = D u*Vi(a) B,
keN

where 0 < s, <n — 1 and Vi(a) are (3,k + e(z))-polynomials. In particular

Tiap) (@) = 3w " Ve()B".
keN

Now u’ "t =5 Vi(a)BF where Yy () are (3, k)-polynomials. Thus it follows

Ta,8)(@) = D Li() B*,
keN
where Li(a) are (3,k + e(z))-polynomials.
The same is true for non necessarily positive x € By, by getting rid of the negative
exponents (using the cubic relation).
Taking into account the normalization factor in front of the trace we obtain the claim. [

Corollary 5.6.1 I, 0)(K) = > en az® and, respectively, T, 3)(K) = Yiez b3 33, where
a3;, bgi € Z[%]

5.6.3 Chirality and other properties of I, g

Lemma 5.6.2 Sel z* € By, for the word one obtains from x when each o5 is replaced by 0]-_5.
Then T, p)(x) = T(—,—a)(x*) holds true. Consequently for amphicheiral K, I, g)(K) =
I_g,_a)(K) is fulfilled.

Proof: Let Q(o;)* (respectively Rj) denotes the image of Q(o;) (respectively Ry) after the
substitutions « = —f3, § -+ —a and o — al_l forl =1,...,n — 1. It is easy to check that
Qoj)* = 0]7362(0]-) = 0. Using a computer we verified that R§ = Ry = 0. Since H,, g) =
H(_g, o) we are done. O

The following properties have been checked with a computer program:
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I(4,p) is independent from HOMFLY-PT and in particular it distinguishes knots that
have the same HOMFLY-PT polynomial. The knots 5.1 and 10.132 have the same
HOMFLY-PT polynomial but different I\, o) and I(g, gy invariants. This holds true for
the other three couples of prime knots with number crossing < 10 that HOMFLY-PT
fails to distinguish, i.e. (8.8, 10.129), (8.16, 10.156), (10.25, 10.56).

I(q,p) detects the chirality of those knots with crossing number at most 10, where
HOMFLY-PT fails i.e. the knots 9.42, 10.48, 10.71, 10.91, 10.104 and 10.125).

The Kauffman polynomial does not detect the chirality of 9.42 and 10.71 (see [79]).
Therefore I (4, ) is independent from the Kauffman polynomial.

The 2-cabling of HOMFLY-PT does not detect the chirality of 10.71 (this result was
kindly communicated by H. Morton). Therefore I, (a, ) 18 independent from the 2-cabling
of HOMFLY-PT.

I, 3) does not distinguish a well-known pair of mutant knots, the Conway knot (C') and
the Kinoshita-Terasaka knot (KT').

5.6.4 The definition of (9

Definition 5.6.2 Let us set for an oriented link L

n—1 e(x)

1\ /3\ 2 Z[zzl:e/Q 5:t5/2]
(2,8) _ (= s (2,90) S R |

where © € By, is any braid whose closure is isotopic to L and «, (3, t, Z as in Theorem 5.5.2.
Here € — 1 is the number of components mod 2, € € {1,2}.

Remark 5.6.1 This invariant doesn’t detect the amphicheirality of knots. Also I*9 does not
distinguish the Conway knot and the Kinoshita-Terasaka knot.

Proposition 5.6.2

1#0(K) =" Hy(6)2F = 3 Gi(2)d",

keZ keZ

where Hy, Gy are (3, k)-Laurent polynomials.

Proof: The proof is analogous to the proof of Proposition 5.6.1. O

Remark 5.6.2 For evaluating obstructions and traces of braids we used a Delphi code. The
input is a word (or a linear combinations) and we restricted to words representing 5-braids. One
transforms first the word to a sum of positive words, by using the cubic relations. Furthermore
the transformations C; and Cij are used in order to reduce the shape of the word as much
as possible. When it gets stalked one allows permutations of the letters. The final result is
the value of the trace on the braid element. The program is available on www-fourier.ujf-
grenoble.fr/~bellinge.html.
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5.6.5 Comments

As explained in Section 5.1.3, there are three essentially distinct link invariants which come
from Markov traces on the cubic Hecke algebras. For each quadratic factor P; of the cubic poly-
nomial @@ one has a Markov trace which factors through H(P;,n), yielding a reparameterized
HOMFLY-PT invariant. The two others are the Kauffman polynomial and I, g) (or 1(:9),
It would be very interesting to find whether there exists some relation among them. First of
way one expects there exists a lift of the invariant we described to a genuine two-parameter
invariant.

Conjecture 5.6.1 There exists a Markov trace on H(Q,n) taking values in an algebraic ex-
tension of Zl«, B lifting the Markov trace underlying I(o,p)- In other words the non-determinacy
Ha ) i Iio,g) can be removed.

Notice that the polynomials H and P define irreducible planar algebraic curves which are non-
rational. In particular one cannot express explicitly the invariants as one variable polynomial.
How far are these invariants from the usual Kauffman and HOMFLY-PT polynomials is hard
to determine in the present state. One might expect they give rise to some nice weight systems
for particular values of the parameters, which should be compared with those coming from
Lie algebras.

5.7 Appendix

The values of the polynomials for I, o)(K) and Ig 3)(K) are displayed below for all knots
with no more than 8 crossings. The second column is a braid representative for the knot. A
bold entry in the table is the coefficient of a® (respectively 3°). The other entries are the non
zero coefficients of a3 and B3 respectively, for k € Z. For example,

19 5 1 4

Ia(6.2) = [-5 = —~o” — 20, I5(6.2) = (16672 4 19 — 25°].

The entry “A" in the last column means that the knot is amphicheiral.
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3.1 | o} -1 —1/4 -8 2

4.1 |oyoy'or05 8 10 1 -8 10 -1
51 | o} 07/8 1/8 —24 4

5.2 |otos0, oy 2 17/8 1/4 -8 2

6.1 Uf1020;1030510302 -8 -16 —10 —1 1

6.2 | o) 090, 08 -5 —19/4 —1/2 —16 19 —2
6.3 | oy 0%o %09 -3 —1/2 -3 1/2

7.1 | o] 0 —5/8 —9/16 —1/16 | —56 8

7.2 | oy odonotoy oo -3 —11/2 —21/8 —1/4]|—64 —64 -6
7.3 | ofog0] o) -1 —7/4 —19/16 —1/8| —64 48 -4
7.4 | otoy030, togoy tay 0 —17/8 —9/4 —1/4 |—-64 +128 -78 8
7.5 | ofogo; o3 0 —9/8 —9/8 —1/8 -24 4

7.6 | 010, 0, 2030303 -4 —37/8 —1/2 -24 20 -2
7.7 | 0105 0905 to90, to905 ton -8 -20 —21/2 —1 -19 37/2 -2
8.1 |0y 09030, o) lotozo0y 16 43 37 12 1 —64 144 -88 9
8.2 |o; 030 oo 4 59/8 23/8 1/4 —24 36 —4
8.3 01_202_101020304_102_103 -8 -8 —1 8 -81

8.4 | o030, 05 %0105 " 8 8 3/4 8 -24 19 -2
8.5 |ojoy ofoyt 13 19/8 1/4 -24 36 —4
8.6 |0y 090, toy o303 5 21/2 21/4 1/2 1

8.7 |ofoy%o105] 3 9/4 1/4 16 -25 3

8.8 |0, og0toy 030, 3 17/4 1/2 16 -21 5/2
8.9 |0, 090,03 7 -9 —1 79 —1

8.10 | o 'od0 %03 12 1/4 8 -8 1

8.11 | oy o305 'ovo2oy Loy 8 21 147/8 6 1/2 —64 136 -79 8
8.12 | 010, ‘030 to30; foaoioy toy T |24 44 21 2 —24 44 —21 2
8.13 | 070903 'o90; To5 209 8§ 12 21/4 —1/2 8 -28 39/2 —2
8.14 | 0030y ‘o3 togoy Log 6 85/8 21/4 1/2 -8 18 -2
8.15 | 070, 'o1030503 0 —17/8 —9/4 —1/4 |64 —32 4
8.16 | 070, 'otoy toroy ! -3 3/2 1/4 -7 1

8.17 | 0, togo, Lo30, 20y 11 —19/2 -1 -11 19/2 -1
8.18 | 0105 010, o105 tor0y | -8 -16 —10 —1 8§ -16 10 —1
8.19 | 0109010201050 0 3/8 1/16 64 —64 1
8.20 | 03090, 0y 59/2 1/2 -8 0

8.21 | 0105 %0}03 1 -1 —1/8 80
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