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Abstract

Due to the technological importance behind the possibility to discover novel classes of
hard materials an enormous research effort has been directed during the last decades to-
wards the synthesis and characterisation of promising carbon-based compounds such as
carbon nitrides and boron carbon nitrides. However, despite many attempts of synthesis
and the indisputable progresses made in the field, amorphous samples with unclear crys-
tallographic data have been often obtained in many research laboratories. In particular,
several problems arise from the fact that most of the samples are of polymorphic nature,
thus leading to a difficult and uncertain spectroscopic characterisation.

A general understanding of the relations between composition and the electronic
structure properties has therefore been provided theoretically in this Thesis to get further
insight into the characteristics of pure crystalline forms. As one might expect this work
has suddenly been turned out into a complicate and challenging task because of the lack
of reliable experimental crystal structures to be used as references for the computational
inputs. Therefore it became essential to propose hypothetical bi- and three-dimensional
model phases to obtain trends on the relative stability, electronic and mechanical prop-
erties of carbon- and boron carbon-nitrides. So far as that is concerned, a systematic
study of pure crystalline CN, (where £=0.36 and 1.33) and BCsN systems has been
proposed as an important complement to the experimental knowledge. Thanks to the
progress in modern computer technology it has also been possible to compute such an
investigation via ab-initio (first-principles) methods by testing and probing different solid
state calculational approaches. In fact, one of the first objectives of this project has been
the search of a valid computational density-functional-based scheme able to reproduce
and/or predict the hardness and stability of a wide variety of ultra-hard materials.

Calculations of the cohesive properties and standard enthalpies of formation have
been carried out to address the thermodynamic stability of different isoelectronic compo-
sitions, namely C3Ny4, C11Ny4 and BCyN. The hardness has also been studied by means of
the analysis of the calculated elastic and bulk moduli. The investigation of the electronic
properties has been achieved with the calculation of the density of states, band structure,
electron density maps and crystal orbital overlap population analysis. For some of the
studied molecular clusters, the '*C NMR shifts have been evaluated to provide a spectro-
scopic discrimination between systems with very similar structural characteristics. This
is the case of the hexagonal and orthorhombic models of the graphitic-like C3Ny form.
Finally, the determination of the electron-energy loss near edge structures of C, B and
N K ionisation edges has been computed in order to provide reference spectra of pure
crystalline materials, likely to allow a discrimination of polymorphic samples.

Results are presented to demonstrate that carbon nitrides are ultra-hard systems
with outstanding mechanical properties. In particular, the carbon rich composition,
C11Ny, has shown larger cohesive energies and it is generally stiffer than the electronic
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analogue C3Ny. However, the possibility to deposit single phase samples should be highly
hampered in both stoichiometries by their large positive enthalpies of formation.

The introduction of boron atoms (boron carbon nitrides) has displayed a slight de-
creasing in the magnitudes of the elastic and bulk moduli, though the calculated values
are still higher than that of cubic boron nitride (i.e. the second hardest known material).
Nevertheless, three-dimensional BC3N phases have also shown exothermic enthalpies of
formation which point to an easier deposition of the “BCN” materials with respect to
carbon nitrides. Therefore, by considering the whole set of the investigated model phases,
sp3-bonded boron carbon nitrides result as the best candidates for novel ultra-hard ma-
terials which could, in principle, be synthesised with the actual techniques. Very recent
experimental results seem to support this general tendency.



Résumé

Compte tenu des enjeux technologiques qui sous-tendent la découverte de nouvelles classes
de matériaux ultra-durs, des efforts de recherche considérables ont été destinés durant les
deux derniéres décades a la synthése et a la caractérisation de composés [égers prometteurs
tels que les nitrures et boronitrures de carbone.

Cependant, malgré de nombreuses tentatives de synthése et les progrés indiscutables
réalisés dans ce domaine, seuls des échantillons amorphes (mal caractérisés du point de la
cristallographie) ont pu &tre obtenus dans différents laboratoires de recherche. En particulier,
plusieurs problémes sont soulevés de par la nature polymorphe des échantillons produits,
conduisant de ce fait a une caractérisation spectroscopique peu précise.

Par conséquent I'établissement de relations entre composition et propriétés de structure
électronique est fourni sur une base théorique dans cette These afin d'approfondir les ca-
ractéristiques des formes cristallines des matériaux. Comme on pouvait s’y attendre cette
tache complexe est vite devenue un défi compte tenu du manque de données expérimentales
pour les structures cristallines susceptibles de servir de point de départ aux calculs.

[l devint alors essentiel de proposer des phases modeles (hypothétiques) aux échelles bi-
et tri-dimensionnelles pour établir des tendances comparatives sur les stabilités, propriétés
électroniques et mécaniques des nitrures et boronitrures de carbone. En particulier, les études
systématiques des systemes cristallins binaires CN,, (ot 2=0,36 et 1,33) d’une part et ternaires
BCyN d'autre part ont été menées et présentées comme une force de proposition vis a vis des
expérimentateurs.

Grace aux énormes progrés de la technologie moderne des ordinateurs, il a été possible
de mener ces études au moyen de méthodes ab initio (dés le départ) en testant et sondant
différentes approches de I'étude du solide. En fait, I'un des premiers objectifs de mon travail de
These a été de valider le meilleur schéma calculationnel au sein de la théorie de |a fonctionnelle
densité, DFT, susceptible de reproduire et/ou de prédire la dureté et la stabilité d'une grande
variété de matériaux ultra-durs.

Les calculs des propriétés de cohésion et les enthalpies standard de formation ont été
entreprises afin d’expliquer la stabilité thermodynamique des différentes compositions iso-
électroniques, nommément C3Ny, Ci1Ng et BCoN. La dureté a été également étudiée au
moyen de I'analyse des modules d’élasticité et de compressibilité. L’'examen des propriétés
de structure électronique a été réalisé par le calcul des densités d'états, de la structure de
bandes d’énergie, des cartes de densité électronique et des populations de recouvrement.
L'étude des déplacements chimiques par RMN du '3C de clusters moléculaires a permis de
fournir un moyen de discrimination entre systémes ayant des caractéristiques structurales
trés voisines. C'est notamment le cas des structures hexagonale et orthorhombique de C3Ny4
graphitique. Enfin, les seuils d'ionisation K de C, B et N ont été calculés (spectroscopie
électronique par perte d'énergie “EELS”) pour les différentes structures cristallines afin de
fournir des spectres de référence susceptibles d’aider a la détermination des compositions des
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échantillons polymorphes.

Les résultats démontrent que les nitrures de carbone étudiés sont des matériaux ultra-durs
ayant des propriétés mécaniques exceptionnelles. En particulier, les phases de la composition
riche en carbone, C;;N4, montrent des énergies de cohésion supérieures et se présentent
comme plus dures que I'analogue iso-électronique C3N4. Néanmoins la possibilité de déposer
des stoechiométries monophasiques serait pénalisée pour les deux compositions compte tenu
de leurs énergies de formation fortement positives.

L'introduction d’atomes de bore (boronitrues de carbone) conduit a une légére diminution
des amplitudes des modules d’élasticité et de compressibilité. Mais les valeurs calculées restent
supérieures a celles de BN cubique, le second meilleur matériau ultra-dur connu apres le
diamant. Néanmoins les phases tri-dimensionnelles BCoN analysées présentent des enthalpies
de formation nettement exothermiques, ce qui est en faveur d'une préparation (par dépét de
couches minces par exemple) plus aisée de phases “BCN" par rapport aux nitrures binaires
CN,, pour lesquels AHJQ > (. Par conséquent en considérant I'ensemble des systéemes modéles,
les phases “BCN"” 3 liaisons hybridées essentiellement sp? (tri-dimensionnelles) se présentent
comme les meilleurs candidats pour de nouveaux matériaux ultra-durs a base d’éléments
|égers susceptibles d’étre synthétisés par les moyens actuels. Ces observations sont appuyées
par des résultats expérimentaux récemment obtenus.



Preface

This Thesis illustrates the work that I carried out between 1998 and 2001 at the In-
stitut de Chimie de la Matiére Condensée de Bordeaux (ICMCB-CNRS), University of
Bordeaux I. The purpose of my research within the European Training and Mobility of
Researchers (TMR) Network! has been the characterisation of the properties of differ-
ent carbon- and boron carbon-nitride compounds by attested, highly accurate electronic
structure calculations. In particular, the modelling of novel potential hard materials like
binary CN, and ternary B;C,N, have been addressed.

When I started my work in November 1998 there were already several published
scientific papers (both theoretical and experimental) dealing with the distinct features of
novel compounds, quite often called super- or ultra-hard materials, that could in principle
compete with the hardness of the conventional diamond. However, one of the greatest
attractions of this subject that has always appeared important to me is the close link
existing between hardness and phase stability on the one hand and the bonding and
structure of the material on the other. The connection between these two aspects has
been to some degree proved in this Thesis to be one of the essential principles on which
the development of the next generation’s hard materials should be based.

Although most of the investigations were performed at the solid state level, the study
of some molecular clusters has also been successfully integrated for the evaluation of the
13C NMR chemical shifts. The largest part of the calculations have been achieved by using
the computational facilities of the intensive centre of calculation “péle Modélisation Mi-
croscopique et Mésoscopique en Physique, dans I’Environnement et en Chimie” (M3PEC)
of the University of Bordeaux I. The results obtained have been well received in an ex-
change of information with the other partners of the European commission.

The present manuscript shows an introductory part intended to explain some specific
concepts about hard materials and to cover the basic ideas behind the employed theoret-
ical methods. The second part is specifically dedicated to the thorough description of the
results obtained during the study of carbon nitride and boron carbon nitride systems.

Bordeaux, September 2001

Maurizio Mattesini

! Synthesis, Structure and Properties of New Carbon-Based Hard Materials, FMRX-CT97-0103.
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APW
ASA
ASW
bee
CcooP
CVD
DFT
DOS
EELS
Er

E,
ELNES
fec
FFT
FP-LAPW
GGA
hep
ICOOP
KS orbitals
LAPW
LDA
LMTO
NMR
PP
PVD
Rmt
sp?, sp®
US-PP
o, T

xc

Nomenclature

Frequently used abbreviations:

Augmented plane wave

Atomic sphere approximation
Augmented spherical wave

Body centered cubic

Crystal orbital overlap population
Chemical vapor deposition
Different density functional theory
Density of states

Electron energy loss spectroscopy
Fermi energy

Band gap

Energy loss near edge structure
Face centered cubic

Fast fouries transforms
Full-potential linearized augmented plane wave
Generalized gradient approximation
Hexagonal close packed

Integrated crystal orbital overlap population
Kohn-sham orbitals

Linearized augmented plane wave
Local density approximation

Linear muffin tin orbital

Nuclear magnetic resonance
Pseudo-potential

Physical vapor deposition
Muffin-tin radius

Electron orbital hybridization
Ultra-soft pseudo-potential
Bonding types
Exchange-correlation functional
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Chapter 1

Introduction

1.1 The interest in novel ultra-hard materials

The possibility to synthesise new materials with hardness' similar or even larger than
diamond has become of fundamental and technological interest for chemists, physicists
and in particular for the whole materials scientists community. It was in the middle
of the last century when most of the known ultra-hard materials (i.e. diamond and
cubic boron nitride) were synthesised and manufactured with high pressure and high
temperature processes [1, 2, 3]. The continue research on the field has recently permitted
to synthesise or rediscover superhard compounds such as SiOg-stishovite [4], cubic-SigNy
[5] and cubic-BCyN [6]. The constant growing interest in this domain is also due to the
development (1980’s) of new vapor deposition techniques (CVD, PVD and laser ablation),
which allow the deposition of hard materials films at low temperature and pressures on
different substrates [7, 8, 9, 10, 11].

Diamond exhibits excellent mechanical, chemical and physical properties and nowa-
days remains the hardest known material. However, it is well known that it cannot be
used in cutting tools for steel owing to a certain instability at high temperatures. As
a matter of fact, its stability drastically decreases in the presence of oxygen at even
moderate temperature (~ 873 K). It is also not a very suitable abrasive for cutting and
polishing ferrous alloys since it tends to react and form iron carbides. Furthermore, its
super abrasive performance is somehow limited. For these reasons and because of the
need to substitute expensive diamond in many other applications, new hard materials are
required. It is mostly the strong industrial demands of wear resistant coatings for cutting
and forming tools which has driven the search of novel hard materials. Common hard

'hard-ness (hird'nis), n. [AS. heardness.] 1. The quality or state of being hard, literally or figura-
tively. Source: The American Heritage Dictionary of the English Language, Fourth Edition Copyright
© 2000 by Houghton Mifflin Company (http://www.dictionary.com/). All rights reserved.
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solids are usually classified into compounds with metallic (TiN or WC), ionic (AlsO3)
or covalent bonding (diamond, Si3Ny etc..). Transition metal nitrides and carbides (TiN
and TiC) have been largely used as coatings for wear protective applications in the last
decades. However, carbon based materials such as artificially grown diamond and hy-
drogenated carbon compounds have become a valid alternative. These materials possess
good protective properties and low friction coefficient, thus open the possibility to use
the coatings as solid lubrificants. Another important class of materials is represented
by carbon nitrides compounds with general formula CN,. The growing research inter-
est arose from the theoretical work of A. Y. Liu and M. L. Cohen [12] which predicted
for 8-C3Ny4 a hardness comparable to that of diamond. Despite the synthesis of pure
crystalline and stoichiometric C3N4 has been found extremely difficult, some non stoi-
chiometric carbon nitrides have evidenced interesting properties such as high hardness
and elasticity, and low friction. These compounds are thus promising candidates for the
next generation’s wear protective coating. However, the fundamental problem with such
materials remains the extreme difficulty found in growing pure crystalline nitrogen-rich
samples. Especially with thin film technology various deposition techniques and growth
conditions have been tested without great success: non-crystalline and nitrogen-deficient
films are always obtained.

The introduction of boron atoms into carbon nitrides leads to the possibility to obtain
new hard materials with general formula B,CyN,. With such a boron-based compound
the low oxidation resistance of diamond might be improved thus removing the problem of
using hard materials at high temperatures in air. The recent interest in boron carbon ni-
trides has been mostly focussed on the BCyN stoichiometry, which is a phase isoelectronic
with the well known C3Ny. The first evidence of the graphitic BCoN dates back to the
synthesis of Kouvetakis et al. [13, 14], where chemical vapor deposition method was used
with BCl3 and CH3CN as starting materials. Several efforts have been made in order to
modify these graphitic BC2N systems into highly dense three-dimensional phases but un-
fortunately, despite the use of high-pressure and high-temperature methods, no common
results were found in the last decade. Some researchers found problems with a certain
limited solubility [15, 16], while others claimed a segregation in a mixture of diamond
and cubic boron nitride (¢-BN) [17, 18, 19]. Nevertheless, early theoretical calculations
[20, 21, 22] have suggested that these compounds should possess an intermediate hardness
between diamond and ¢-BN .

1.2 Aims of the Thesis

It is certain that despite the initial scientific enthusiasm, the synthesis of carbon ni-
trides and boron carbon nitrides has suddenly turned out in a very difficult task. Many
synthesis routes were tested and important human efforts are being made in order to
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characterise polymorphic samples. The search of a pure crystalline material and its
subsequent spectroscopic characterisation remains nowadays the main topic for all the
researchers working on CN, and B;CyN, compounds.

Given the cost and the complexity of the synthesis/characterisation procedure, com-
puter modelling investigation has here been used to discover new possible crystalline
models and to predict their material properties in a faster and cheaper way. The com-
putational methods have already been applied to diamond and cubic boron nitride (i.e.
the hardest known solids) with great success, provoking a considerable interest in in-
vestigating other hypothetical materials. The first goal of my research has been the
determination of an efficient computational approach for simulating the relative stabil-
ity and the hardness of some potential phases that have recently been proposed for the
C3Ny stoichiometry. In particular, several Density Functional Theory (DFT) methods
have been tested, among the various simulation schemes available in our laboratory, in
order to inspect their peculiar reliability and usefulness. Subsequently, the most promis-
ing first-principles methods have been employed in the rest of the Thesis to calculate the
cohesive properties, bulk and elastic moduli of different kinds of carbon nitride and boron
carbon nitride model structures. Electronic properties have also been studied by means of
density of states and band structure analysis. In addition, the influence of hybridisation
on the chemical bonding and stability has been discussed in terms of the site projected
densities of states as well as the crystal orbital overlap population. Finally, since the
characterisation of carbon nitrides and boron carbon nitrides is mostly restricted by the
problem of obtaining pure crystalline samples, the calculation of the theoretical energy
loss near edge structure has been shown in order to provide reference spectra.

A large part of this work has also been oriented to the theoretical proposition and
characterisation of novel model systems isoelectronic with diamond and cubic boron
nitride. I have in my research focused most of the attention on the crystal engineering
of the C-B-N networks by proposing various binary (C11Ny4) and ternary (BC2N) model
compounds. Their electronic, mechanical and spectroscopic characterisation given in this
Thesis should provide a precious tool for the interpretation of the experimental results.

1.3 Outline of the Thesis

The first Chapters are mostly concerning a general introduction to the domain of ultra-
hard materials (Chapters 2 and 3) and to the employed computational methods. In
particular, Chapter 4 resumes the basic ideas behind the DFT, while Chapters 5, 6 and 7
contain a brief description of the various method of calculations. In Chapter 8 a detailed
investigation of the CN, systems is presented by paying most of the attention to the
differences between the C3N4 and C;1Ny4 stoichiometries. The study of boron carbon
nitrides is given in Chapter 9. The attention is here focused on the BC3N phases and
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in their mechanical and electronic properties. The conclusions are drawn in Chapter 10
where a general discussion is presented for each of the investigated class of compounds.



Chapter 2

The Hardness and Covalency

2.1 First theoretical proposition of Carbon Nitrides as novel
hard materials

It was in 1985 that M. L. Cohen [23] proposed an empirical relation between the bulk
modulus, B (volumetric compressibility or bulk modulus), and the crystalline solids of
elements of the I1I, IV and V column of the periodic table. In the free-electron gas model,
the case of metals, the expression of the B modulus (GPa) scales as the Fermi energy,
Er, and the electron concentration, n,

2
B = gnEF (2.1)
Starting from the model of Phillips-Van Vechten [24] it is possible to extend the expression
of B to semiconductors. The bond geometry of covalent bonds is roughly represented
with a cylindrical shape with volumes ~ 7 (2a B)2 d, where ap is the Bohr radius and d

(A) the length of the cylinder. Using this approximation we obtain,
B = 45.6E,d ! (2.2)

where Ej, (eV) represents the homopolar contribution of the optic gap, E, (Eg = E} +
E? Using the scaling of Phillips (E; o< d 2®) for the dependence of Ej, on d for

ionic)'
tetrahedral compounds sharing eight valence electrons per atom pair, we obtain

B =1761d73", (2.3)

where the nearest-neighbor d is again in A and B in GPa. The introduction of the ionicity
parameter, A, permits to consider the ionic character of the bonding:

B = (1971 — 220\) d—35. (2.4)
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This empirical relation results appropriate for the group-IV (A = 0), ITI-V (A = 1) and II-
VI (A = 2) semiconductors. Furthermore, in order to account for a different coordination
number (different from 4 of the tetrahedral site), M. L. Cohen introduced the variables
N,, which represents the mean coordination number. The final version of the equation
takes the following form:

B = % (1971 — 220\) d 3. (2.5)
The above equation gives an accurate B value for diamond and for semiconductors with a
zinc-blende structure. The volumetric compressibility B increases with the lowering of d
and A. The hardest materials are thus those that show lower ionicity and stronger bonds.
Diamond responds to these characteristics; indeed it shows N.=4, A=0 and d=1.54 A.
The bulk modulus calculated for diamond with the Eq. 2.5 is 435 GPa, which is very
close to the experimental one of 443 GPa. In the case of carbon nitrides with formula
C3Ny the mean coordination number (N,) is 2—74 ! which is lower than that of diamond, 4.
Taking into account the small electronegativity difference between carbon and nitrogen,
we assume the C-N bond to be slightly ionic with )\:%. From the values of the covalent
radius (r¢=0.77 A and ry=0.75 A) we define a C-N bond length of 1.52 A. The insertion
of these parameters in Eq. 2.5 provides a B value of 430 GPa. Therefore, carbon nitrides
with formula C3Ny4 should exhibit a bulk modulus comparable to that of diamond.

This was the first theoretical indication of the possibility to find new promising classes
of carbon based hard materials. In particular, the large bulk modulus calculated from the
simple empirical relation of M. L. Cohen was sufficient enough to provoke in the middle

of the 1980’s an outstanding scientific enthusiasm which is, nowadays, still not vanished.

2.2 Electron count considerations

The definition of ” ultra-hard” materials is usually employed to describe all the compounds
that have shown hardness values comparable to that of diamond. Generally speaking,
these materials are solids with an hardness in between 8-10 Mohs scale (Tab. 2.2). Since
diamond, cubic boron nitride (¢-BN) and boron carbides (B13C2-B12C3) are the hardest
materials known, it can reasonably be expected that novel ultra-hard solids will be found
in the same B-C-N ternary composition diagram (see Fig. 2.1). However, as one might
anticipate many combination of C, B and N atoms are, in principle, possible and an
huge amount of different stoichiometries and structures can rapidly be imagined for both
binary and ternary compounds. Therefore, the proposition of novel hard phases has

! Carbon has four valence electrons ([He] 2s” 2p?) and can form one covalent bond with four nitrogen

atoms, whereas nitrogen possesses five valence electrons ([He] 2s® 2p®) and can only have one covalent

(3-4)4(3-4)
7

bond with three atoms of carbon. For this reason N.= in the C3Ny stoichiometry.
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Minerals or Formula Mohs Knoop 100
Synthetic Materials (GPa)
Talcum Mgg [(OH)2 /Si4010] 1

Hexagonal Boron Nitride! h— BN 0.15-0.30
Gypsum CaS0O, - 2H,0 2

Calcite CaCO3 3

Fluorite CaFy 4

Apatite Cas [(F,OH) / (POy4)] 5

Feldspar K [AlSi304] 6

Quartz S109 7

Topaz Alg [FQ/S’LO4] 8

(-Silicon Nitridef B-Si3Ny 17
Corundum?-Titanium Nitride Al,O3 — TiN 9 21
Silicon Carbidef SiC 26
a-Silicon Nitride a-SizNy 26-35
Titanium Crabidef TiC 28
Boron Carbidef-Titanium Diboride! B4C — TiB, 30
Boron suboxides B, 0 30-59
Stishovitef Si09 33
Cubic Boron Nitridef c— BN 45
Diamond? C 10 75-100

[t] Synthetic material. [§] Synthetic material or natural mineral.

Table 2.1: Hardness of minerals and some synthetic ceramics according to F. Mohs. For
synthetic materials micro-hardness values are given in units of Knoop scale. Values are
shown as compiled by R. Riedel in Ref. [25].

generally been restricted in this Thesis by the adoption of the so-called electron counting
rule. A systematic investigation of the various stoichiometries becomes thus possible
thanks to the limited number of allowed atomic combinations.

If we look, for example, at the building up of the two-dimensional carbon nitride
compounds, one could firstly envisage a random replacement of C by N within the layers
of graphite. However, this results in an unstable electronic structure configuration. This
is due to the additional electrons of the nitrogen atoms which have to be accommodated
in energetically unfavourable electronic bands. But if compounds are designed to be
isoelectronic to diamond and graphite the stability and the electronic structures are
changed. For instance graphitic C3N,4 has 32 valence electrons per formula unit when the
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c | ! | } N

Figure 2.1: Schematic ternary composition diagram indicating different ”hard” stoi-
chiometries.

2s states are included. Distributing the electrons on eight sites gives four electrons on
each site which is isoelectronic with diamond and graphite. The eighth site is a vacancy
(C30;Ny) and the lone pairs of three of the nitrogen atoms are pointing toward this hole.
From this, graphitic C3N4 should have a similar band structure at the Fermi level as
graphite, and C3N4 with a three-dimensional network is also expected to have a band
gap similar to diamond. Consequently a series of different combinations of C, B and N
can be investigated for the search of new hard compounds, provided that the following
simple condition is respected:

p-Zy(B)+m-Zy (C)+1-Zy (N) = 4n (2.6)

The values p, m, | and n are integers and Zy (B), Zy(C) and Zy(N) are the atomic
valence states (2s and 2p) for boron, carbon and nitrogen, respectively. Examples are
represented by the systems C3Ny, C11Ny4, BN, B4C, BCoN etc...

The attention has therefore been restricted only to those compositions that are iso-
electronic to carbon, i.e., diamond. This particular choice also derives from the fact that
all the substances obeying this rule should likely posses the same attracting properties
of the existing hardest materials (e.g. cubic boron nitride and diamond).



Chapter 3

The concept of Hardness

3.1 Introduction

From the mechanical point of view we usually define the hardness as the resistance
of the material to deformations. This property strongly depends on many parameters
like pressure, temperature, porosity, impurities, dislocations and defects. It is usually
correlated to various other physical properties (ionicity, melting point, band gap, cohesive
energy, etc...) and can thus be studied indirectly. The hardness for a given sample
is usually determined by empirical methods such as the scratch test (Mohs scale) or
indentation by dropping a weight on the sample. The results are very useful but difficult
to interpret and they often dependent on the sample and its state of purity. In the
Vickers test the hardness is estimated by measuring the indentation left by a diamond
stylus under a fixed load. This test and the scratch test (irreversible methods) are quite
often employed experimentally to classify the hardness of the various compounds.

Many theoretical predictions on the hard materials have been made in the last two
decades by looking at the magnitude of the bulk modulus, B, [26, 27, 23, 28, 12, 29].
However, in 1977 A. P. Gerk [30] has already suggested that the shear modulus, G, which
defines the resistance to reversible deformation upon shape change, might be a better
predictor of the hardness. More recently, D. M. Teter [22] showed that for a wide variety
of materials the shear modulus is really more correlated to the Vickers hardness than
the bulk modulus (further details are given in Section 8.2.4, p. 53). The hardness of
crystalline materials thus becomes better defined by taking into account the dislocation
theory, i.e., by measuring how readily a large number of dislocations are generated and
are able to move throughout the solid in response to the shear stresses.

In the following subsections we show how to describe the hardness of solids with the
calculation of the bulk modulus, elastic constants and shear modulus.
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3.1.1 Measure of the resistance upon volume change in solids

The bulk modulus measures the resistance to the volume change in solids and provides
an estimation of the elastic response of the material to an external hydrostatic pressure.
The B(V') value is related to the curvature of E(V),

oP 0’E
B(V) = Vav = V8V2 (3.1)
where V' is the volume of the unit cell, E(V') is the energy per unit cell at volume V', and
P(V) is the pressure required to keep the unit cell at volume V. Since the calculations
can only provide a restricted set of energies F(V;), the second derivative, %, must be
approximated. The least squares fit of the curves E vs. V has been performed in this
Thesis by using the first three terms of the Birch equation [31]:

E(V) = E(V,) + 2V, B [(K> Y

8 Vv
%B(B’—AL)VO [(%)g_l

where E,, V,, B and B’ are the equilibrium energy, volume, bulk modulus and pressure
derivatives of the bulk modulus, respectively. In the above summation the 7y, symbol
represents the total contraction terms [32], whilst the maximum order of the fit is sym-
bolised by the N index. The Eq. 3.2 is normally employed by assuming the following
trend: the larger the value of B, the harder is the material. The magnitude of B’ is
generally utilised to describe the variation of the hardness with respect to a given change
of the pressure (AP).

Different semiempirical relations such as finite stress-strain have been proposed to
describe the so-called Equation of State (EOS) (see Ref. [33] and Refs. therein). Scaling
experimental compression data for measured isotherms of different sorts of solids the
EOS is known. The above Birch type equation of state is a well tested fitting form
able to describe the P, V, T data for a wide variety of solids. The main assumption
made in its utilisation is that no phase transition occurs during the compression of the
material. Despite the existence of different varieties of KOS, the calculations of the bulk
modulus have mostly been performed in this Thesis by using the Birch type equation.
Since such a fitting form provides good results for systems like diamond and ¢-BN I
thought worthwhile to use the same equation for the investigation of new hypothetical
phases for which the experimental data are not yet available. Furthermore, by doing this
a homogeneous analysis of the results becomes possible with respect to the previously
achieved theoretical and experimental results.

()] 52
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3.1.2 Resistance to reversible deformation upon shape change

In the study of mechanical strength the elasticity of solids, i.e., the response of a material
to applied forces, must be taken into account. The forces are described by tensors called
stresses which determine the direction of the force and the plane to which it is applied.
The responses in terms of relative changes in dimensions or shape are called strains and
they are also given by tensors. The ratio stress/strain is called elastic modulus. For small
stresses the modulus is constant and the material behaves elastically so that it returns to
the original condition when the stress is removed. For large stress the sample undergoes
a permanent or plastic deformation. When the force acts only in one dimension the stress
is called compressional, and when it acts in all directions the stress is hydrostatic. In the
shearing stress, forces act to move parallel planes of the solid so that at the microscopic
level these stresses cause the gliding of planes of atoms over each other. This is the easiest
way for a solid to change its shape and the force needed (hardness) depends very much
on the presence of crystal defects. Edge and screw dislocations are the most important
defects for gliding motion. An applied shearing stress will cause the dislocations to move
throughout the crystal.

According to the finding of A. P. Gerk and D. M. Teter, the hardness of the solids
has mostly been investigated in this Thesis by computing the value of the isotropic
shear modulus. This magnitude can be expressed as a linear combination of a set of
elastic constants, c;;, and is considered nowadays as the best hardness predictor for
solids. The c;; constants determine the response of the crystal to external forces and
provides information about the bonding characteristics between adjacent atomic planes,
anisotropic character of the bonding and structural stability. Each of the elastic constants
is a measure of hardness for a particular kind of unit cell deformation.

Calculation of the elastic constants: cubic system as a simple example

The basic problem in calculating elastic constants from ab initio methods is not only the
demand of accurate calculational schemes for evaluating the total energy of the solid but
also the massive and onerous computations implied in the estimation of the entire set of
the inequivalent c;;. For instance, when the symmetry of the system is decreased, the
number of independent elastic constants expands and a larger number of distortions is
necessary to compute the full set of ¢;; [34]. These constants can be deduced by applying
small strains to the equilibrium lattice and then determining the resulting change in the
total energy. In particular we calculate the linear combinations of the elastic constants
by straining the lattice vectors R according to the rule R = R - D. The matrix D
represents the symmetric distortion matrix which contains the strain components and R
is the matrix that contains the components of the distorted lattice vectors. In order to
conserve the elastic limit of the crystal, only small lattice distortions must be applied
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(e.g. strains within +1.5 %).

In cubic materials there are only three inequivalent elastic constants: c11, c192 and cy4.
These values can be estimated by calculating the total energy of the system as a function
of the shears described below [35]. For c1; and cqo the following shear, Dy, is considered,

1+6 0 0
D, = 0 1446 0 (3.3)
0 0 —
(1+6)

where the z axis is modified and the x and y axes are kept the same in a volume conserving
way. The variation of the strain energy density (U = Energy/Volume) as a function of
the shear § is described with the following equation,

U = 6C"0° + 0(6%) (3.4)

with C' = %(011 —c12). From the calculation of C’ and the bulk modulus, B =
%(011 + 2c12), one can evaluate the first two elastic constants. With the same proce-
dure, but considering the following shear,

1§ 0
Do=|6 1 0 (3.5)
1
00 5im

the cq44 constant can be calculated from the equation,

U = 2¢440% + O(6%). (3.6)

Isotropic shear modulus The isotropic shear modulus, Grg,, was firstly expressed
by A. Reuss as long ago as in 1929 [36]. In the Voigt’s approximation the equation takes
the following form:

1
Grso = R [(c11 + ca2 + c33) — (€23 + €31 + c12) + 3(cas + c55 + Co6)] (3.7)
For the special case of a cubic symmetry the above relation translates into the form of
1
G. = B (3011 —3c12 + 9044) . (38)

Therefore, after having accomplished the calculation of the whole set of single crystal
elastic constants, it is possible to estimate (for all the materials) the elastic shear moduli
for a polycrystalline! solid by simply applying the above relation (Eq. 3.7). According
to the finding of A. P. Gerk [30] and D. M. Teter [22], the larger is the value of the
calculated G, the harder should be the material.

'In general, a single crystal is more difficult to prepare than a polycrystalline material. As a matter
of fact, most of the available experimental elastic moduli refer to polycrystalline samples.
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Density Functional Theory

4.1 Introduction

Condensed matter physics and materials science are basically related to the understand-
ing and exploiting the properties of systems of interacting electrons and atomic nuclei. In
principle, all the properties of materials can be addressed given suitable computational
tools for solving this quantum mechanics problem. In fact, through the knowledge of the
electronic properties it is possible to obtain information on structural, mechanical, elec-
trical, vibrational, thermal and optic properties. However, the electrons and nuclei that
compose materials constitute a strongly interacting many body system and unfortunately
this makes the direct solution of the Schrodinger’s equation an impractical proposition.
As stated by Dirac in the far 1929 [37], progress depends mostly on the elaboration of
sufficiently accurate and approximate techniques.

The development of density functional theory and the demonstration of the tractabil-
ity and accuracy of the Local Density Approximation (LDA) represents an important
milestone in condensed matter physics. The DFT of Hohenberg and Kohn [38] was
adopted by the LDA which was firstly developed and applied by Slater [39] and his co-
workers [40]. First principles quantum mechanical calculations based on the LDA have
become one of the most frequently used theoretical tools in materials science. Nonethe-
less, the great contribution of the local density approximation calculations remained
limited until the late 1970’s when several works have demonstrated the accuracy of the
approach in determining properties of solids [41, 42, 43, 44]. Even though it has been a
great deal to state why the LDA should or should not be adequate for calculating prop-
erties of materials, there is however no doubt that the most convincing arguments have
been derived from the direct comparison of calculations with experiments. In particular,
despite its simplicity the local density approximation has been very successful in describ-
ing materials properties during the last decades. However, it is worth to note that there

13
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are also situations where the above approach do not lead to sufficiently accurate results.
This can be the case when the differences in the total energy, which are usually relevant
in calculating structural properties and binding, are to be estimated very accurately. As
a matter of fact, small inaccuracies may have here a dramatic effects. In general, LDA
suffer from more or less well-known failures and therefore there have during the last
decade been several attempts to go beyond this local approximation by including effects
depending on the variation of the electron density.

Nowadays, improved theoretical schemes and the rapid growth in computing facilities
have caused many types of systems and properties to be studies successfully with density
functional methods. In the next following Sections we briefly resume the fundamental
concepts which are at the base of this important and fascinating theory.

4.2 The basic principles of the method

The theorem of Hohenberg and Kohn is at the base of the DFT and states that the total
energy, B, of a non-spin-polarised system of interacting electrons in an external potential
is given exactly as a functional of the ground state electronic density, p.

E = E (4.1)

They further showed that the true ground state density is the density that minimises
E [p] and that the other ground state properties are also functionals of the ground state
density. The extension to spin-polarised systems is also possible where E and the other
ground state properties become functionals of both the up and down spin densities.

E = Elpyp] (4.2)

The Hohnenberg-Kohn theorem provides no guidance to the form of E [p], thus the utility
of DFT depends on the discovery of sufficiently accurate approximations. In order to do
this, the unknown functional F [p] is rewritten as the Hartree total energy plus another
smaller unknown functional called exchange-correlation (xc) functional, E,. [p].

Epl = Tslpl+ Eeilp] + En [p] + Eii [p] + Euc[p] (4.3)

In Eq. 4.3 Ts[p] represents the single particle kinetic energy while E; [p] denotes the
Coulomb interaction energy between the electrons and the nuclei. The term E;; [p] arises
from the interaction of the nuclei with each other and Eg [p] is the Hartree component
of the electron-electron energy.

Eulp) = 62—2 / d%d%’% (4.4)
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In the LDA, E;. [p] is written as

Eoll = [ drp(0)ae (p(x) (4.5)

where e, (p) is approximated by a local function of the density, which usually reproduces
the known energy of the uniform electron gas. Refinement of the LDA are the so-called
generalised gradient approximation (GGA) and the weighted approximation (WDA). An
expression similar to Eq. 4.5 is used in the GGA where the £,. (p) is replaced by a
local function of the density and the magnitude of its gradient, €. (p,| Vp]|). From
the incorporation of the additional information contained in the local gradient a better
description of the system is expected [45, 46, 47]. Several different parameterisations of
the GGA functional have been proposed [47] and tested on a wide variety of materials.
The GGA improve significantly the ground state properties of light atoms, molecules
and solids and generally tends to produce larger equilibrium lattice parameters and band
gaps with respect to the LDA.

A more sophisticated approach is the WDA that incorporates true non-local infor-
mation through Coulomb integrals of the density with model exchange correlation holes
[48, 49, 50]. It ameliorates greatly the energies of atoms and for the diamond structures
of Si and Ge yields bulk properties that are much improved as well. Nonetheless, the
WDA is more demanding computationally than the LDA or GGA, and accordingly few
WDA studies have been reported for solids.

Following the Kohn and Sham indications [51], the electron density can be written
as a sum of single particle densities. Given the functional E;. the ground state energy
and density can be obtained by the self-consistent solution of a set of single particle
Schrodinger-like equations, known as the Kohn-Sham equations with a density dependent
potential,

(T + Vei (r) + Vi (r) + Vie (1)) @i (r) = €i¢ps (r) (4.6)
where the density is given by a Fermi sum over the occupied orbitals.

p(r) =2 ¢ (r)pi(r) (4.7)

occ

The ¢; are single particle orbitals, ¢; are the corresponding eigenvalues, T is the kinetic
energy operator, V.; is the Coulomb potential due to the nuclei, Vg is the Hartree
potential and V. is the exchange correlation potential. Vg and V. depend on p as
follows:

Vi (r) = 62/d3 (r') p(r) (4.8)

v — |
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and

Vi (r) = ‘Sfp—([)”] (4.9)

In this framework, a calculation requires the self-consistent solution of equations 4.6 and
4.7. This means that a certain density has to be found such that it yields an effective
potential that, inserted into the Schrodinger-like equations, yields orbitals that can re-
produce it. For this reason, instead of facing-up with the problem of solving a many-body
Schrodinger equation, using DF'T we can now have the easier problem of determining the
self-consistent solution to a series of single particle equations. In solids, a further simpli-
fication that facilitates DFT calculations is provided by the Bloch’s theorem, where the
charge density and the single particle KS Hamiltonian have the periodicity of the lattice.
Thus KS orbitals with different Bloch momenta are coupled only indirectly through the
density dependent potential. Therefore, in DFT based calculations, the single particle
KS equations may be solved separately on a grid of sampling points in the symmetry
irreducible wedge of the Brillouin zone and the resulting orbitals used to construct the
charge density (this is not the case, for example, in Hartree-Fock methods).

As already mentioned the great advantage of the density functional approach is that
the resulting single-particle equations are computationally simpler to solve then the equiv-
alent Hartree-Fock equations. This makes possible to consider systems that are more
complex (i.e. larger size or complicate structure) then those treated by the Hartree-Fock
derived methods.

4.3 Single particle Kohn-Sham equations

Depending on the representations that are used for density, potential and KS orbitals, dif-
ferent DF'T based electronic structure methods can be classified. Many different choices
are made in order to minimise the computational and human costs of calculations, while
maintaining sufficient accuracy. A brief summary of the many possibilities to solve the
Schrodinger’s equation is given in Fig. 4.1. In this Thesis calculations have been mostly
concerned with two particular approaches namely, planewave Pseudo-Potential (PP) and
the Linearized Augmented Plane-Wave (LAPW). Other simpler and faster methods, such
as Augmented Spherical Wave (ASW) and the Linear Muffin Tin Orbital (LMTO), have
also been employed in the study of carbon based hard materials. However, these compu-
tational approaches are usually reliable only when applied to crystalline materials with
high symmetry and large compactness.

The explicit use of a basis can be avoided in constructing the KS orbitals by nu-
merically solving the differential equations on grids. However, it is important to note
that nearly all approaches that have been proposed for solids, including the PP and the
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Figure 4.1: Schematic representation of various DFT-based methods of calculation.

LAPW methods, do rely on a basis set expansion for the KS orbitals. Because of this,
the discussion is here confined to methods that do use a basis in which the KS orbitals
are:

i (r) = Ciaa (r) (4.10)

where the ¢, (r) are the basis functions and the Cj, are the expansion coefficients. Given
a choice of basis, the coefficients are the only variables in the problem, since the density
depends only on the KS orbitals. Since the total energy in DFT is variational, the solution
of the self-consistent KS equations permits to determine the Cj, for the occupied orbitals
that minimise the total energy. In order to eliminate the unknown functional T [p] the
total energy can be rewritten using the single particle eigenvalues:

Elpl = Bulol+ e+ Buclpl ~ [ @rp) (Voo + 3V () (211)

occ

where the sum is over the occupied orbitals and p, Vg and V.. are given by Eqgs. 4.7,
4.8 and 4.9, respectively.

Density functional calculations require the optimisation of the C;, and the determi-
nation of the charge density (Fig. 4.2). This procedure is usually performed separately
and hierarchically. Using standard matrix techniques it is possible to repeatedly deter-
mine the C;, that solve the single Eq. 4.6 for a fixed charge density. Hence, given the
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basis, the Hamiltonian and the overlap matrices, H and S, can be constructed and the
following matrix eigenvalue equation,

(H—¢S)C; =0 (4.12)

is solved at each k-point in the irreducible wedge of the Brillouin zone. The optimised

p
Compute V(1)
K point loop
Solve Single Particle
KS Equations
Determine E.
K point loop
Calculate p™ (1)
No Yes
Converged ? Done

Figure 4.2: Flow-chart for self-consistent density functional calculations.

Ciq will yield the exact self-consistent solution only if the true occupied KS orbitals can
be expressed as a linear combination of the basis functions. In the case where they cannot
be expressed exactly in term of the basis, an approximate optimal solution (i.e the one
that gives the lowest possible total energy for the basis) will be found. Therefore, the
quality of a basis set can be measured by comparing how much the total energy evaluated
with the orbitals of Eq. 4.10 differs from the true KS energy.
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4.3.1 The basis sets

With the general term efficiency we usually refer to the number of basis functions needed
to achieve a given level of convergence, whereas with the bias we describe whether or not
a basis could favour certain regions of space over the others like, for example, being
more flexible near the nuclei than the interstitial regions. By looking at the difficulty
in estimating the matrix elements, the simplicity of the basis is also defined. The basis
completeness indicates whether the basis can be improved by increasing the number of
the functions. Planewave sets are known to be inefficient in the above sense for a large
part of solids. However, this is not necessary a defect since it only reflects the fact that
they are unbiased. Moreover, planewaves form a simple and complete basis. Accuracy
can be reached by increasing the number of planewaves in the basis and the convergence
of a calculation can be monitored by changing the planewave cut-off. Furthermore, due
to the simplicity of this basis the implementation of the planewave codes is relatively easy
and the matrix elements of many operators can be rapidly estimated. Many operators
can be made diagonal since the planewaves expanded wavefunctions can be transformed
efficiently from reciprocal space, i.e. coefficients of the planewave expansion, to real
space using Fast Fouries Transforms (FFT). In particular, it is important to note that
the kinetic energy and momentum operators are diagonal in reciprocal space and the
operation of the local potentials is diagonal in real space. Looking at the equation 4.10 it
is evident that the most efficient basis set consists of the KS orbitals themselves and an
exact calculation is thus achieved using a basis set size equal to the number of occupied
orbitals. However, despite this possibility the KS orbitals are, in general, unknown at
the beginning of the calculation.

Atomic and Muffin-tin orbitals are also common basis sets used in electronic structure
calculations. Despite the fact that the crystal potentials are often different from atomic
potentials (even close to the nuclei), a linear combination of atomic orbitals (LCAO)
methods have been used successfully for large systems. With this method, problems of-
ten arise when attempts are made in order to add large numbers of basis functions to get
highly converged calculations. Atomic orbitals centred at a single site are already com-
plete, thus the LCAQ’s which have as well orbitals centred at each site are over-complete.
Owing to this problem the overlap matrix, S, in Eq. 4.12 becomes ill-conditioned for large
basis sets. Muffin-tin orbitals derived basis sets are based on the solutions of the radial
Schrodinger’s equation and usually a better approximation to the crystal potential is
provided in the vicinity of the site with respect to that used in constructing LCAOs.
This basis set has been discussed in more details in the Section 6.2.
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4.3.2 The Self Consistent Field in DFT

As shown by the theorem of Hohenberg-Kohn the total energy is variational and this
means that the true ground state density is that which minimises the energy. When
the LDA approximation is introduced to the E,. [p] the true variational principle does
not exists anymore and there is no guarantee that the energy obtained by minimising
the energy functional will be higher than the exact ground state energy. Consequently,
the true ground state charge density will in general not minimise the approximate en-
ergy functional. However, calculations can be done by knowing that minimising a good
approximation to the energy functional, a good energy and density should be obtained.
The procedure is thus exact only for the true energy functional.

Since we do not know the form of the single particle kinetic energy, Ts|[p], in Eq.
4.3, the minimisation proceeds through the KS equations, where the variation is with
respect to the orbitals, or in a basis set expansion to the coefficients C;,. With a fixed
basis these are the only parameters that can be varied. The problem is to find the
coefficients that minimise the energy functional (Eq. 4.11) paying attention on keeping
the orbitals orthonormal to each other. The direct minimisation of the total energy with
respect to the C;, was proposed by Bendt and Zunger in 1982 [52] and is the core of
the Car-Parrinello (CP) method [53]. In spite of the computational advantages, this
approach has not yet become popular for methods that use non-planewave basis sets.
This is due to the complexity of the optimisation problem where typically hundreds or
thousands of parameters are present even for small problems. Therefore, it is because of
this complications that historically the standard self-consistency cycle shown in Fig. 4.2
has been used to refine iteratively the density by alternately solving the Egs. 4.6 and
4.7. For a given charge density the Eq. 4.12 is diagonalised (ensuring the orthonormal
orbitals) and an output charge density is constructed from the eigenvectors using Eq.
4.7. This charge density is then mixed with the input to yield a refined input for the
next iteration. The simplest mixing scheme is represented by the straight mixing:

i1 _ i i
Pin = (1 - a) Pin T QP oy (413)
The superscript refers to the iteration number and « is the mixing parameter. In order
to avoid the decreasing of the radius of convergence with the increasing, for example, of
the unit cell volume a more sophisticated mixing procedure which takes into account the
information from previous iterations is used. The convergence is normally accelerated by
using the Broyden’s method [54].
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Planewave Pseudo-Potential
methods

5.1 Introduction

The pseudo-potential (PP) approach employs a quantum mechanical description of the
electronic interactions as specified by the density functional theory. This approach con-
sists basically of a pseudo-potential and planewaves coupled with a Fourier transform
technique. The above method appears extremely accurate and reasonably fast for mate-
rial modelling and especially it has shown good ability in predicting ground state struc-
tures of ultra-hard materials [55]. In particular, two different approaches, the local density
approximation [56] and the generalized gradient approximation [57], have been widely
tested.

A general characteristic, common to all the PP methods, is that once the description
of the electronic interactions has been achieved, the forces acting on atoms can be easily
calculated, thus giving the possibility to determine the minimum energy position for
atoms belonging the unit cell. Using this process, all the phases proposed in the next
following Chapters have been obtained by relaxing the initial crystalline structures with
the planewave pseudo-potential approach. Such a procedure is at the moment considered
the state-of-the-art in the modelling of the carbon based materials.

In our investigations we used the Vienna ab-initio simulation package (VASP) [58] for
the determination of the optimised geometries, relative stability and elastic constants
of various carbon nitride and boron carbon nitride configurations. The calculations
have mostly been performed within the local density approximation to the DFT [59]
using the Ceperly-Alder [56] exchange correlation functional as parameterised by Perdew
and Zunger [60] and the pseudo-potential method described by Vanderbilt [61]. Our
studies were executed by using an energy cut-off of 434.8 eV for the planewave basis

21
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set and converged with respect to the k-point integration. The tetrahedron method
with Blochl corrections [62] was normally applied for both geometry relaxation and total
energy calculations. Brillouin-zone integrals were approximated using the special k-point
sampling of Monkhorst and Pack [63].

5.2 Bloch’s Theorem and Planewaves

The ions in a perfect crystal are arranged, at 0 °K, in a regular periodic way. Therefore
the external potential felt by the electrons will also be periodic; the period being the
same as the length of the unit cell, £. That is, the external potential on an electron at
r can be expressed as V (r) = V (r+ /). This is the requirement needed for the use of
Bloch’s theorem. By using this theorem it is possible to express, see Eq. 5.1, the single
particle wavefunction, ¢, of the infinite crystal in terms of wavefunctions at reciprocal
space vectors of a Bravais lattice.

¢k (r + Rp) = B¢y (r) (5.1)

In the above equation, k represents the crystal momentum and Ry, the direct lattice
vector. The first term is the wave-like part, whereas the second one is the cell peri-
odic part of the wavefunction. The last term can be expressed by expanding it into
a finite number of planewaves whose wave vectors are reciprocal lattice vectors of the
crystal. Hence, the Bloch’s theorem gives the boundary condition for the single particle
wavefunctions. The following equation represents the general solution that satisfies these
boundary conditions, where G are the reciprocal lattice vectors.

oi (r) = e* Y Cg (k) 6" = e w (k, ) (5.2)
G

By the use of Bloch’s theorem, the problem of the infinite number of electrons has now
been mapped onto the problem of expressing the wavefunction in terms of an infinite
number of reciprocal space vectors within the first Brillouin zone of the periodic cell, k.
This problem is dealt with the sampling the Brillouin zone at special sets of k-points.
The electronic wavefunctions at each k-point are now expressed in terms of a discrete
planewave basis set. In principle, this Fourier series is infinite. However, the coefficients
for the planewaves, Cg (k), each have a certain kinetic energy (hZ/Qm) |k +G |?. The
planewaves with a smaller kinetic energy typically have a more important role than those
with a very high kinetic energy. Therefore, the introduction of a planewave energy cut-off
reduces the basis set to a finite size. This kinetic energy cut-off will lead to an error in
the total energy of the system but in principle it is possible to make this error arbitrarily
small by increasing the size of the basis set by allowing a larger energy cut-off. The
cut-off that is used in practice depends on the system under investigation.
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5.3 General Approximations

In most of the systems, the core electrons are strongly bound and do not respond to
the more rapid motions of the valence electrons: they are essentially fixed. This is the
so-called ” frozen core approzimation”. The pseudo-potential method is based on the
following approximations:

(1) We replace the strong core potential by a pseudo-potential, whose ground state
wavefunction, ¢, reproduces the all electron wavefunction outside a selected core
radius (see Fig. 5.1). By doing this we can now eliminate the core states and the
orthogonalization in the valence wavefunctions.

(2) The resulting pseudo-wavefunctions ¢p*° are usually smooth for many elements and
can be thus easily described using low G planewaves. The planewaves become thus

a simple and efficient basis for the pseudo-wavefunctions.

(3) We need to generate the pseudo-potential, and this is normally the more complex
part of the method. This construction is usually more expensive then the calcula-
tion itself.

5.4 Pseudo-Potentials

5.4.1 Norm conserving pseudo-potentials

A valid pseudo-potential should be soft, transferable and the pseudo-charge density should
accurately reproduce the valence charge density as much as possible. With the term soft
it is meant that the expansion of the valence pseudo-wavefunctions should be allowed
by using few planewaves. Thus, the pseudo-potential should be as soft as possible. The
transferability is related to how much a pseudo-potential, generated for a given atomic
configuration, can reproduce others accurately. This is a quite important property for
solid state calculations, where the crystal and atomic potentials are different. These
conflicting goals can be solved by using the concept of norm conservation [64, 65]. In this
way the pseudo-wavefunctions are made to be equal to the true valence wavefunctions
outside a certain core radius, r.. For r < r. the pseudo-wavefunctions differ from the true
wavefunctions but the norm is forced to be the same, as shown in the following equation:

/dr r2ptS* (r) o (r /drr b (r) (5.3)

In the above equation the wavefunctions refer to the atomic reference state, thus a spher-
ical symmetry is imposed. The wavefunction and eigenvalue are different for different
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Figure 5.1: Illustration diagram of the replacement of the ”all-electron” wavefunction
and core potential by a pseudo-wavefunction and pseudo-potential.

angular momenta, I, and this means that the pseudo-potential should also be I depen-
dent. These kind of pseudo-potentials are called ” semi-local” since a different V7 (r) is
generated for each I values.

5.4.2 Ultrasoft Pseudo-Potentials (US-PP)

In 1990 Vanderbilt [61] introduced a new approach where the pseudo-wavefunctions are
forced to be equal to the all electron wavefunctions outside the r., as in the concept of
norm conservation, but inside they are allowed to be as soft as possible. In order to
fulfill this last point, the norm conservation constraint was removed. Therefore, large
values of r. can be used in this scheme and consequently the planewave cut-off needed in
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calculations can be greatly reduced. However, the following drawbacks have to be taken
into account:

(1) The pseudo-wavefunctions are not normalised, since they are equal to the all-
electron wavefunctions in the interstitial part (they have the same norm), but do
not have the same norm inside r.. This introduces a non-diagonal overlap in the
secular equation.

(2) The pseudo-charge density is not calculated by solving > ¢*¢ as in norm conserving
method. An augmentation term has to be added in the core region.

(3) By removing the norm conservation the resulting pseudo-potentials became less
transferable.

However, the pseudo-potentials proposed by Vanderbilt were introduced for use in large
scale calculations, for which the cost of generating pseudo-potentials is nearly negligible
with respect to the cost of the calculations.

The total energy in the Vanderbilt’s scheme is expressed as following:

E=Y (6T +VVE|g;) +/d3rVL() (r) +

occ

1 r r
5 /d3r &r' % + Eye[p] + Es; (5.4)

The T term is the kinetic energy operator, V” is the local component of the pseudo-
potential and the ¢; are the pseudo-wavefunctions. For the VN the following non local
form is used

Z DY, 18n) (Bl (5.5)

where the pseudo-potential is characterised by the f,, functions, the coefficients DY
and the local component V¥ (r). For simplicity, in the above formula only one atom has
been considered. f,, are expressed in an angular representation by spherical harmonics
times radial functions, which vanish outside r,.

The pseudo-charge density p is given by the square of the pseudo-wavefunctions and
the augmentation inside the spheres.

pr) =3 |¢}(r +2an ($51Bn) (Bl ;) (5.6)

occ
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In the above Eq. 5.6 the term @, (r) indicates the local functions determined during
the generation of the pseudo-potential.

Using the variational principle to Eqs. 5.4, 5.5 and 5.6, the secular determinant is

Hlgj) = €;S|¢;) (5.7)

with
H =T+ Vg (r) + Vi (r) + V" (r) + ; Dim |5n) (Bl (5.8)

and
S=1+ %qnm [Bn) (Bin] (5.9)

where 1 indicates the identity operator and
Gnm = /d3r Qnm (r) (5.10)
«

with the integral over the sphere defined by r.. The D,,, are the D%O,)n with a screening

term.
Do = D3+ [ V (1) Qu (1) (5.11)

where V denotes the local potential given by the local pseudo-potential plus the exchange
correlation and Hartree potentials.

5.4.3 Generation of the US-PP

The generation of the ultra-soft pseudo-potentials starts with all-electron atomic calcu-
lations in a certain reference configuration. A set of reference energies, E;;, is selected
through the range over which band states will be calculated. The regular solution of the
radial Schrodinger equation (¢ (r) = wj (r) Yy, (r)) is then solved within r. at each
Eij. A smooth pseudo-wavefunction, qbﬁnsj (r) = w; (r) Yy, (r), is generated for each Imj
set providing that it matches to ¢;,; at r.. In the same way a smooth local potential, Ve,
that matches the all-electron potential outside r. is determined. The following orbitals

are then constructed:

IXimj) = [Ez]' -T-V* (r)] | @) (5.12)



5.4 Pseudo-Potentials 27

If 9 and VI are equal to ¢ and all-electron potential respectively outside r, and ¢
satisfies the Schrodinger’s equation at E;;, x assumes the zero value outside r.. We can
now write down the Q,, (r) term knowing that it must account for the difference between
the true charge density and ¢*F'S¢"S.

Qnm (r) = ¢;, (r) ¢m (r) — P, (r) Dy, (r) (5.13)

The n and m indices run over the Imj set. Usually a smoothing is applied to Qnn, in
order to facilitate the representations of the charge density. The moments of the original
Qnm are preserved. In a similar way the |3,) are constructed

B2) =X (B) [xm) (5.14)

m

with B, = (¢n|xm). The rest of the components of the pseudo-potential, V¥ and D,
are determined by using the following identity,

T+V + ZDnm |5n> (ﬁm|] |(I)n> = En

nm

L+ 3 qum 1) Bl 1@0)  (5.15)

with

Dy = Bum + Em@nm (5.16)
The DT(Z% are determined using Eq. 5.11 and the Hartree and exchange correlation
contributions are subtracted from V to obtain V%,

B C N
ARC 2s22p'  2s%2p? 2s%2p?
Te,s 1.8 1.6 1.8
r, 18 18 18
Ted 1.8 1.8 1.8

Table 5.1: Parameters determining the ultra-soft pseudo-potential used in this Thesis.
ARC represents the atomic reference configuration and r.; (where l=s, p, d) the cut-off
radii in atomic units.

During the self-consistent iterations, the contribution of the augmenting charge inside
the sphere changes with the wavefunctions and contributes to the potential used in the
Kohn-Sham equations. We can thus consider the pseudo-potential as evolving during the
calculation. This effect allows the use of very soft pseudo-potentials (large values of r.) in
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the Vanderbilt scheme without affecting the accuracy of the calculation. Extensive tests
of the accuracy, transferability and convergence properties of ultra-soft pseudo-potential
for C, B and N were performed in Refs. [66, 67]. In this Thesis, the parameters used for
the optimal pseudo-potential are given in Table 5.1.
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The Full Potential LAPW method

6.1 Introduction

In this Thesis, investigation of the electronic properties (density of states, band structure,
electron density maps and EELS spectra) were carried out with the density functional
theory Full-Potential Linearized Augmented PlaneWave (FP-LAPW) program package
WIEN97 [68]. The LAPW method is a very accurate calculational scheme for the electronic
structure investigation in crystals. It is characterised by the use of a basis set which is
especially adapted to the problem. This method is basically derived from the augmented
planewave (APW) approach of Slater [69, 70] where the space is divided into regions and
different basis expansions are used in the various domains (Fig. 6.1). In particular, radial
solutions of Schrodinger’s equation are employed inside non overlapping atom centred
spheres and planewaves in the remaining interstitial zone. The introduction of such a
basis set is due to the fact that close to the nucleus the potential and wavefunctions are
very similar to those in an atom, while between the atoms are smoother.

# Y Cg e'(GHr r € Interstitial
- 6.1
#(r) > em Aemuie (1) Yo (1) r € Sphere (6.1)

In the above relations ¢ is the wavefunction, {2 the cell volume and u, the regular solution
of Eq. 6.2. Cg and Ay, are expansion coefficients, E, is a parameter (set equal to the
band energy) and V the spherical component of the potential in the sphere.

2 L(+1)

3 = +V(r)—Eg| rug(r)=0 (6.2)

The use of these functions has been motivated by Slater by noting that planewaves are

29
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Interstitial

Interstitial

Figure 6.1: Adaptation of the basis set by dividing the unit cell into atomic spheres and
interstitial regions.

the solutions of the Schrodinger’s equation in a constant potential and radial functions
are solutions in a spherical potential. This approximation to the potential is called
"muffin-tin” (MT) and results very good for close packed materials like fcc and hep.

Since the continuity on the spheres boundaries needs to be guaranteed on the dual
representation defined in Eq. 6.1, constraint must be imposed. In the APW method this
is done by defining the Ay, in terms of Cg in the spherical harmonic expansion of the
planewaves.

4rrit

Apm > Caji(lk+g|R) Yy, (k+G) (6.3)
(R) G

- Q2

The coefficient of each ¢m is matched at the sphere boundary and the origin is taken
at the centre of the sphere (R is the sphere radius). The Ay, are determined by the
planewave coefficients (C) and the energy parameters Ey, which are the variational
coefficients in APW method. The functions labelled G are the augmented planewaves
(APWs) and consist of single planewaves in the interstitial zone which are matched to
the radial functions in the spheres.

A more flexible and accurate band structure calculational scheme is the LAPW
method where the basis functions and their derivatives are made continuous by matching
to a radial function at fixed E, plus its derivative with respect to Ey.
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6.2 The LAPW basis

The basis functions inside the spheres are linear combinations of a radial functions
g (1) Yom (r) and their energy derivatives!. The u, are defined as in the APW method
(Eq. 6.2) and the energy derivative, g (1) Yz, (1), satisfies the following:

?  (+1
T2 fee r_; )iy (r) = Ee| rig (r) = rue (1) (6.4)
These functions are matched to the values and derivatives of the planewaves on the sphere
boundaries. Such augmented planewaves are the LAPW basis (LAPWs),

# Y Cg e'(GHr r € Interstitial

o) = > em [Aemug (1) + Bentig (1)] Yo (v)  r € Sphere (6.5)

where the By, are coefficients for the energy derivative analogous to the Ay,. The
LAPWs are planewaves in the interstitial zone of the unit cell which match the numerical
radial functions inside the spheres with the requirement that the basis functions and their
derivatives are continuous at the boundary. In this method no shape approzimations are
made and consequently such a procedure is often called ”full-potential LAPW” (FP-
LAPW). The much older muffin-tin approximation corresponds to retain only the L=0
and M=0 component in Eq. 6.5. A spherical average inside the spheres and the volume
average in the interstitial region is thus taken.

Inside atomic sphere a linear combination of radial functions times spherical harmon-
ics, Yy, (r), is used. The linear combination of u, (r) and 4, (r) constitute the so-called
?linearization” of the radial function. uy (r) and 4y (r) are obtained by numerical inte-
gration of the radial Schrodinger equation on a radial mesh inside the sphere.

The LAPWSs have more variational freedom inside the spheres than APWs. This
greater flexibility is due to the presence of two radial functions instead of one; non-
spherical potentials inside spheres can be now treated with no difficulty. There is however,
a price to be paid for the additional flexibility of the LAPWs: the basis functions must
have continuous derivatives and consequently higher planewave cut-offs are required to
achieve a given level of convergence. Further, the asymptote problem? found in the APW
method is now overcome by the presence of the non-zero 4y, (R) value. The solution of

Y () Yem () and die (1) Yo (1) are the augmenting functions.

2ugm (R) appears in the denominator of expression (6.3) and if zero leads to a decoupling between
planewaves and radial functions. In the vicinity of the asymptote the secular determinant is strongly
varying.
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the KS equations are expanded in this combined basis according to the linear variation
method:

d)k = ch‘Pkn (66)

and the coefficients ¢,, are determined bu the Rayleigh-Ritz variational principle. In the
WIEN97 package the total energy is calculated according to the Weinert scheme [71]. The
convergence of the basis set is controlled by the cut-off parameter Ry,; K4, (determining
the matrix-size of the system), which usually assumes values in between 6 and 9. The
R, represents the smallest of all atomic sphere radii in the unit cell and K,,q.°> is the
magnitude of the largest K vector (planewave cut-off).

3K?2 .. represents the planewave cut-off parameter in Ry used in pseudo-potential calculation.
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The ASW method

7.1 About linear methods

Among the prime methods for the computation of the band structure the augmented
planewave [72] in 1965 and KKR (Korringa Kohn Rostoker) [73] in 1954 were known at
the time of their derivation to be highly time consuming. A solution to this contextual
difficulty was brought by the so-called linear methods whose impact became increasingly
dominant within the community of physicists. Therefore, the analysis of more realistic
and complex systems was made possible with the existing computational means. The
augmented spherical wave, the linear muffin tin orbital and the linearized augmented
planewave are among such linearized methods. This implies that the energy dependence
of the wave function is lifted by expressing it with a product of energy dependent coef-
ficients a(k), on which the variational procedure is conducted, and energy independent
radial functions x(r).

7.1.1 ASW and LMTO methods

The ASW method was originally derived in 1979 by Williams et al. [74, 75]. This
computational approach shows very close similarities with the LMTO method introduced
earlier by Andersen [76], though the formalism is somehow different. The muffin-tin
approximation is employed in both cases and refers to non overlapping atomic spheres
which well describe compact close packed solids such as the fec, bec and hep  structures
of metals and alloys. It is obvious that the remaining interstitial region is in these special
cases very small. Nevertheless, properties have to be computed explicitly beside the intra-
atomic region. This is actually done through planewaves as in the FP-LAPW method
[68] which despite its high precision remains very time consuming even with the actual
computers. The incontestable general advantages arising with the use of ASW or LMTO
methods are found in their simple interpretation and on the possibility to perform very

33
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fast calculations. In particular, these methods are excellent for a first general description
of the electronic properties of solids. However, in spite of these great advantages, a
certain limited precision characterise these methods and often their use is circumscribed
to the description of compact systems (empty spheres are needed to describe less compact
structures).

7.1.2 The ASA and its implications

To a good approximation the interstitial region can be neglected if the MT spheres are
enlarged so that their volume becomes identical to the unit cell volume. The MT spheres
become then Wigner-Seitz spheres [77]. This approximation is called the Atomic Sphere
Approximation, ASA, and is used by both methods. The LMTO approach becomes,
for example, the LMTO-ASA method in order to differentiate from the full potential
method, FP-LMTO, derived later by Savrasov et al. [78]. The unit cell is thus divided
into atomic spheres in a way that their total volume equals the volume of the cell.

Y= %755’? L0, (7.1)
7 7

where S; is the radius of the sphere 7 and ;. the volume of the unit cell. Another
assumption is embedded within the ASA: the potential and the electron density are
spherically averaged. This can be a drawback when electric field gradients or electron
density plots are to be produced.

7.1.3 Solution of the wave function

Both ASW and LMTO-ASA methods use envelop functions cantered on the atomic sites.
These are subjected to the Laplacien which is almost the same for both methods:

(A+€)xr(r) =0 (7.2)

where L refers to the n and | quantum numbers and ¢ is an energy parameter put to zero
in LMTO and to a small (fixed) negative value (¢y ~ -0.015 Ry) in ASW. It determines
the degree of localisation of the envelop wave function given by spherical Hankel functions

h?(lﬁ??”), k= \/EO'

7.2 Further formalism with the ASW method

The ASW method provides an approximate solution to the single-particle Schrédinger
equation:

[—V2 + V(7) — €]U(F,e) =0 (7.3)
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The electronic structure problem is solved within the DFT approach via a repetitive solu-
tion of the above equation (self-consistent procedure). The wavefunctions W(7, €) is deter-
mined by developing an expansion in energy-dependent, C),(¢€), and energy-independent,
X, (7) coefficients:

\Ij(Fv 6) = Z Cn(e)Xn('F) (74)

With the above expansion of W(7,€) in energy-independent base functions, the solution
of the Schrodinger equation (Eq. 7.3) reduces to a matrix eigenvalue problem for which
efficient numerical procedure can be applied.

Another important feature of this approach involves the basis set X, (7). In particular
the intra- and inter- atomic part of the calculation can be decoupled and the orthogonal-
ization and core-state readjustment can be done without the inclusion of the core states
in the basis set used to expand the states of the interatomic interaction. The removing
of the core states from the interatomic basis set permits to increase the efficiency of the
calculational scheme. The augmented spherical wave (ASW’s) are the selected energy-
independent single-particle basis set. In the intra-atomic portion of a polyatomic system,
the strong potential causes W(7, €) to vary rapidly, whereas in the inter-atomic region a
slowly varying (weak potential) wavefunction is found. From this picture the inter-atomic
region can be thus expanded in planewaves (APW method), however treating all portion
of the interstitial volume equally is a ” luzury for which the price is relatively inefficiency”.
A less flexible (and less accurate) LCAO-like treatment of the inter-atomic region is made
by assuming the solutions of the Schrodinger’s equation to be a linear combination of
atomic-orbital ”tails” extending out of each of the intra-atomic region.

-

V(7€) =Y Cr,(e)HL(7 — R,) (7.5)
Lv

where R, are nuclear position and C7,, (¢€) are the energy-dependent expansion coefficients.
The atomic-like functions Hy, () are spherical waves as follow,

Hi(F) = 'Y (7)h (kr)  L=1,m (7.6)

with Y7 (7) representing the spherical harmonics and h;" () the outgoing spherical Hankel
function.

7.2.1 The augmentation process

Each of the intra-atomic region is described by a very strong potential. The effective
potential can be thus approximated with a spherical symmetry and the basis functions
constructed by solving the radial Schrodinger’s equation. A comparison between the
APW’s and ASW’s is shown in Fig. 7.1. The two bases are very similar, even though
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Figure 7.1: Comparison between the augmented plane (APW) and spherical (ASW)
waves. This Figure has been taken from the original work of A. R. Williams, J. Kibler
and C. D. Jr. Gelatt [74].

a single ASW can be identified with a particular atom, like an atomic orbital. The
spherical wave Hp(7) is continued into the intra-atomic region due to the particular
linear combination of the Schrodinger’s equation which joins smoothly to Hp (7) at the
interface of the intra- inter- atomic region. Therefore, for all r, less than the sphere
radius S, it is possible to replace Hy (7,) with its augmented counterpart Hy (7, ), where

Hy (7)) = 'Y () (ry), (7.7)
and H(7,) is the solution of the intra-atomic Schrédinger equation,
[~V 4+ V(7 + R,) — D] =0, (7.8)
The aforementioned equation can be rewritten as

(_ 1 9? I(1+1)

ry Or2 r2

+V(F, +R,) - el(f)) hu(ry) = 0, (7.9)

and V (7, + E,,) is assumed to depend only on 7, for r, < S,. The continuity and
differentiability through the spherical surface r, = S, is guaranteed by the possibility of
choosing the h;(r,) and e

v »

< aa ) u(ry) — K (k) es, =0, n=0,1. (7.10)
Ty
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Since the effective potential vary strongly on the intra-atomic region, the augmentation
of the function H(7,) must be operated not only inside the sphere centred at R, but in
all other intra-atomic regions, R,/, where v/ # v. Such an augmentation is computed by
expanding with the Bessel functions, Jz(7), centred at the R, site

Hp(7,) ZJL )Brio(Ry — R), (7.11)
where
J(F) = i k=Y (7) 5y (kr) (7.12)

and j;(kr) is the spherical Bessel function. By p,(R) are the structure constants developed
in the KKR method [73]:

Bry/(R) =4n Y Inppnk™' V" Hpu(R) (7.13)
L//
and
Iy = / dFY7 (7)Y (7)Y (7). (7.14)

are the Gaunt’s coefficients. The augmentation of the H (7 — v) on the neighbours of
R, (|7 — R,/| < S,) reduces to the augmentation of the j;(kr,),

H(F—R ZJL 7—R)Bp (R, —R,), (7.15)

where .

Ji(7) = i'YL(7)5(r,) (7.16)
and jl( 1) is the solution of the radial Schrodinger equation relative to the sphere centered
at R,

16, Il+1)
Tk

+V(7 +R) - el(;/],)> x ji(r') =0, (7.17)
that joins smoothly the spherical Bessel function at 7|, = SJ,.

0 \" ~ .
(57) Gith) = Kihry s, =0, n=0,1 (7.18)

Proceeding in the same way, as in the augmentation of hl"'(kr), the above continuity
condition specifies the normalisation of j;(k') and the energy egj,). The augmented
spherical waves H (7 — ﬁ) are now defined in all the regions and are continuous, energy
independent and continuously differentiable. With such a basis set functions, it becomes

possible to expand the solutions of the Schrodinger’s equation.

U(Fe) = > Cro(e)Ho(R)) (7.19)
L,
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7.2.2 The variational method of Rayleigh-Ritz

Starting from H¥ = EU the eigenenergy e and expansion coefficients Cpv(e) (Eq. 7.19)
may be evaluated with the Rayleigh-Ritz variational method. The secular matrix from
the Rayleigh-Ritz procedure looks as follow:

Z ((VLIH|L'V') — e(vL|L'V"))Cpryi(€) = 0 (7.20)
L'

where H = —V2 + V(7) and (---|---) is the integral extending over the whole space:
(WE|EW) = / PrEE (7 — B Hy (7 — Boy) (7.21)

The approximation of the intra-atomic regions with atomic spheres (ASA) gives:

(VLIH|L'V') = Z(VI:J|’H|I:J'V'>V~ (7.22)

1/”

In order to improve the convergence of the numerical calculation! the above equation is
modified as follow:

(vLIH|L'V') = (L|Ho|L'V'y + > ((VLIH|L'V )y — (VL[ Ho|L'V),rr) (7.23)

V”

where Hog = —V? denotes the free-particle Hamiltonian. The final thing that has to be
noted is that in all the integrals of the matrix elements the ASW is an eigenfunction of the
Hamiltonian. The integrals over the atomic spheres (Eq. 7.23) are of three types, one-
center, two-center or three-center depending on the number of the two ASW’s centered
in the sphere. Four different contributions are found:

e The first expression on the right side of the Eq. 7.23 and the second member within
the parenthesis are relatively easy to solve since the term is an eigenvalue of H.

(VL|Ho|L'V'y = K*(vL|L'V') (7.24)

The representation of the matrix elements requires an integral over all space in-
volving unaugmented spherical waves, which can be solved analytically.

e The one-center contributions are those in which both ASW’s are centred in the
sphere (v = v/ = v"). Ouly augmented Hankel functions are considered:

(LML), = e/ (HL|HL), 011 (7.25)

!The effective potential has been taken to be zero in the interstitial region so that the matrix element
can be written as in Eq. 7.23. For details see Ref. [74].
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e The two-centres integrations (v = v # 1/ or v # " = /'), require the expansion
of one of the two ASW’s. Therefore, both augmented Hankel and Bessel functions

are taken:
W' LML Y = €N H L) By (Byr — Roy) (7.26)
and
LMLV = (T |\ H Y BL (B, — B (7.27)
where
B} (R, - Ry) = Bj (R, — R,). (7.28)

e Finally in the three-center contributions (v # v # /'), only the augmented Bessel
functions are used. In this case neither of the two ASW’s involved in the ma-
trix element are centred in the intra-atomic region over which the integration is
performed.

<VE|H|EIV,>VH = ZBI/L” (éy — EV”)EE’{Z” X <jL”|jL”>V”BL”L’(ﬁV” — RL/) (729)
L

The above individual integrals can be combined to complete the secular matrix. Integrals
involving augmented functions need only one-dimensional numerical integration and those
containing unaugmented spherical Bessel functions can be found in the work of Morse
and Feshbach [79].
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Carbon Nitrides

8.1 Introduction

Networks made of covalently bonded carbon nitride are expected to show remarkable
physical properties such as high hardness, wide band gap and high thermal conductivity.
They can be used as a protective coating on hard discs and recorder heads and are being
tested for several other tribological applications. Other utilisation areas can be found,
for example, in flat-panel display industry. The possibility to synthesise nanotubes- [80]
and nanofibers-like [81, 82, 83] CN, structures in a solid film may open the possibility of
using such films for field emission electron source [84, 85, 86, 87]. Carbon nitrides have
also been tested for the development of ossointegrated joint arthroplastie. The major
problem with these implants is the wear debris generation which might provokes serious
tissue reactions. Amorphous CN, samples have been recently identified as an interesting
coating for human implants [88]. Because of these great expectations they have rapidly
become the focus of an enormous attention and nowadays they are widely investigated
both experimentally and theoretically as potential candidates for new ultra-hard ma-
terials [89]. The starting interest on carbon nitrides dates back to the Liu et Cohen’s
theoretical work of 1989 [12] where the properties of the $-C3N4 phase were proposed
to be similar or even superior to those of diamond. From this finding many researchers
were positively stimulated to find an adequate way to synthesise pure crystalline C3Ny4
materials. The first attempt to make carbon nitride films refers to J. J. Cuomo et al. in
1979 [90], who grew paracyanogen-like thin films with N/C ratios equal to one. Much
more recently, a wide variety of techniques such as ion implantation [91], rf sputtering
of carbon targets in a nitrogen atmosphere [92], plasma deposition of various hydrocar-
bons [93], nitrogen ion implantation with simultaneous carbon vapour deposition [94], dc
magnetron sputtering of a graphite target in a nitrogen ambient [95], shock wave com-
pression of carbon nitride precursor [96], plasma-enhanced chemical vapour deposition

40
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[97], ion-assisted dynamic mixing [98] and laser ablation of a carbon target in a stream of
atomic nitrogen [99], have been investigated. From these attempts we know that many
compositions of carbon nitrides exist and more than a few are stable to at least 800 °C.
Beside this, the experimental evidence also seems to point out to the possible existence
of different phases with a very similar stability: mixed-phase deposits are quite often
obtained. As a matter of fact, despite many efforts, the synthesis of carbon nitride films
with stoichiometry C3Ny (57.14 % of nitrogen concentration) is still restricted to the
production of amorphous samples with unclear crystallographic data. It is because of
the above problem that in the first part of this Chapter (Section 8.2, p. 42) it has been
shown a cross-checking on the relative stability and hardness of different hypothetical
C3Ny phases by using various DFT solid state calculational methods. This was also the
first occasion to probe and test our codes in treating the electronic properties of a novel
class of carbon-based hard materials.

Another crucial problem found during the synthesis of carbon nitrides is that of
nitrogen concentration. From the deposition of CN, films, with 0 < z < 0.35, by reactive
magnetron sputtering! in Ar/Ny discharges we know, for example, that the maximum
nitrogen concentration obtainable in the film is strongly dependent on the formation of
stable molecules, like No and CoNs, that can with high probability desorb and leave
the growth surface at even low substrate temperatures [100, 101, 102]. Moreover, the
possible transition at ~ 200 °C from a “graphitic-like” — “fulleren-like” phase, recently
presented by N. Hellgren et al. [100], could be imagined to take place from a nitrogen-poor
CN, graphitic form. In fact, this transition is observed when the nitrogen concentration
increases from 5 to 15 % and the fulleren-like structure is found to be stable when the
nitrogen amount is between 10 and 25 %. These concentrations are much closer to the
C11Ny stoichiometry than the well-known C3N,4. Furthermore, the carbon-nitrogen ratio
in CN; films (0.2 < z < 0.35) observed by H. Sjostrom et al. [103] for buckled turbostatic
microstructures formed at high temperatures is again close to the composition of the
C11Ny4. Such carbon-nitrogen systems have been found to be both hard and elastic from
nanoindentation experiments [103, 100].

Therefore, from the above evidences it becomes of primarily importance to under-
stand, at least theoretically, whether or not the Cy1Ny stoichiometry could be in com-
petition or even favoured over the formation of the C3Ny. It is also interesting to check
what would be the changing in the mechanical and electronic properties if a pure crys-
talline carbon nitride sample would be synthesised in the C11N4 composition. This has
been investigated in the second part of the present Chapter (Section 8.3, p. 72). In par-
ticular, it has been stressed the importance of the use of theoretical methods and models
to obtain further characterisation and trends in the bonding configurations of the CN,

!This technique implies the evaporation of carbon (carbon atoms) and the interaction with a plasma
made of ionised nitrogen atoms. Permanent magnets behind the sputtering target are used to confine
most of the electrons in the region of the target surface.



42 Chapter 8: Carbon Nitrides

structures. The attention is mostly focalised on the study of the stability and the hard-
ness of two different stoichiometries: C3Ny4 and C11Ny. It should also be noted that the
analysed systems are isoelectronic to each other and to diamond, although the nitrogen
concentration on the latter phase (26.67 %) is much lower than in the former one (57.14
%). In other words, the investigation is here restricted only to those compounds that are
electronically analogue? to carbon [104, 105, 106]. This particular choice derives from the
fact that all the substances satisfying this rule should likely show the same interesting
properties of the hardest known materials (e.g. cubic boron nitride and diamond).

8.2 Study of the C3N4 stoichiometry

By using an empirical formula (see Eq. 2.5 in p. 6) which relates the bulk modulus
of tetrahedrally coordinated systems to the length and ionicity of their bonds, it was
predicted as early as in 1985 that a material made of carbon and nitrogen should exhibit
a bulk modulus higher than diamond [23]. This possibility was addressed to the short
length and the high covalency of the C-N bond. As a consequence carbon nitrides have
been proposed as candidates for new ultra-hard materials. However, despite this great
expectation the synthesis of C3Ny is nowadays still restricted to the production of small
amounts of samples, which are not sufficient enough for a correct structural characterisa-
tion. This restriction is possibly due to the technological difficulties to produce materials
with large amounts of nitrogen that is required to chemically interact with carbon [100].
Experimentalists have observed carbon nitride materials in amorphous or disordered
phases [107, 108, 109] as well as crystalline aggregates dispersed in an amorphous matrix
[110, 111]. Theoretical investigations on the subject have also been made to explain the
stability and mechanical properties of the synthesised samples and to predict the prop-
erties of some of the new hypothetical forms [22, 29, 112, 113, 114, 115, 116, 117, 118].
Recently, first principles calculations, within the local density approximation, on the cu-
bic form of C3Ny4 have shown a bulk modulus exceeding that of diamond [29, 117, 119].
Such an important finding has in part confirmed the original intuition of M. L. Cohen
about the possibility for a three-dimensional CN,, compound to be ultra-hard. A com-
plete theoretical description of the hardness and the stability of various hypothetical
C3Ny phases is reported in the following Sections.

8.2.1 Methods and computational details

The main goal of this work is to employ a fast and reasonably accurate calculational
scheme in order to describe the electronic structure properties of carbon nitrides. For
this purpose the output of the usually very accurate full potential approach has been

2The same four averaged number of valence electrons per atom is kept.
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compared with those from methods based on the spherical shape approximation of the
crystal potential. The entire set of results have also been correlated with the early PP
calculations. In this Section the attention is finalised on the simple C3Ny stoichiometry
and as a starting point the relative energy stabilities and hardness of five hypotheti-
cal C3N4 model phases, namely graphitic-like, o, 3, cubic and pseudo-cubic, have been
checked. Three different DFT based methods within the LDA have been tested: Aug-
mented Spherical Wave [74, 120], Linear Muffin-tin Orbitals [76, 121] and Full-potential
Linearized Augmented Plane-Wave [68]. For the exchange and correlation effects the pa-
rameterisation scheme of Van Barth, Hedin [122] and Janak [123] was used in the ASW
and LMTO methods, while in the FP-LAPW the Perdew and Wang 92 [47] functional
was assumed.

For the C3Ny4 system total energies were evaluated within the LMTO and ASW
calculations using the tetrahedron method for the k-space integration and a uniform
12x12x12 mesh according to the Monkhorst-Pack [63] scheme (energy converging with
k-points, AE < 1 mRy). In both methods the atomic sphere approximation is used,
in which each atom is represented by a sphere. Inside the spheres the potential and
charge density are assumed to be spherically symmetric. Then the sum of all sphere
volumes is made to equal the volume of the unit cell. Within the ASA one usually has to
introduce pseudo-atoms (with atomic number Z=0) or empty spheres in order to ensure
a continuous electronic density in open structures. In the present calculations we paid
particular attention to an optimal choice of the atomic radii as well as the number and
position of empty spheres used to meet the ASA criteria. For the diamond and ¢-BN a
12x12x12 mesh was found to ensure the desired convergence.

The full potential total energy calculations of the C3N4 phases were performed using
the same plane wave cut-off (87 plane waves/atom) and k-point number (300 total k-
points), as they were optimised for the a-C3Ny structure, a phase with the largest number
of atoms per unit cell (i.e. 28). For carbon and nitrogen atom types the same muffin-tin
radius (R,,;=1.33 A) was used and maintained fixed for all the investigated structures.
By using different basis set cut-offs it has also been found that at the equilibrium volume
approximately 87 plane-wave per atom were sufficient enough to predict the bulk modulus
of carbon nitride without any significant change when increasing the number of basis
functions used. For the ¢-BN system the FP-LAPW calculations were performed by
employing the same parameter as Park, Terakura and Hamada [124].

8.2.2 Structural models for the C3;N, stoichiometry

The crystal geometries of the C3N4 phases were taken from the theoretical work of D.
M. Teter et al. [29], in which the equilibrium structures were determined with a pseudo-
potential plane wave approach [55]. The hexagonal beta phase (5-C3Ny4) contains 14
atoms/unit cell (P3 space group) and consists of fourfold co-ordinated carbon and three
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fold co-ordinated nitrogen atoms (Fig. 8.1)3. This phase is a network of three-, four-
and six-fold rings of tetrahedra. The alpha phase (a-C3N4) has hexagonal symmetry
and contains 28-atoms/unit cell (P31c space group). It can be viewed as a sequence
of A and B layers in an ABAB stacking in which A is the $-C3N4 unit cell and B
the mirror image of A. The cubic structure (cubic-C3Ny) is based on the high-pressure
willemite-II structure of ZnySiO4, where C substitutes Zn and Si and N substitutes
O. This phase contains 28-atoms/unit cell and belongs to the space group 143m. The
pseudo-cubic structure, usually called defect-zinc blende structure (b-C3Ny), exhibits
P42m symmetry and contains 7-atoms/unit cell. The graphitic form of C3Ny (graphitic-
C3Ny) is represented by a planar structure with an ABA [29] stacking mode (Fig. 8.2).
The hexagonal unit cell contains 14 atoms and the symmetry is P6m2. Each C atom is
three-fold coordinated, as is one of the four N atoms per cell. The other three N atoms are
two-fold coordinated (resonant bonds). This phase has been taken as a reference for the
graphite-based structure in making comparison between the relative stabilities of different
carbon nitride phases. For the graphitic-like phase four other forms are predicted in the
earlier works. The first one (AAA stacking mode [115]) has 7 atoms-unit cell ! and a
space group P6m2. The second phase (ABC stacking mode [114]) which belongs to the
R3m space group, shows 7 atoms in the unit cell and consists of graphite-like sheets with
ABC rhombohedral stacking order. The other two phases were recently suggested by I.
Alves et al. [125, 126]. These authors claim to have succeeded in the preparation of a
carbon nitride powder with C3N4 composition by using high pressure synthesis methods.
From the analysis of the X-ray diffraction patterns a crystal structure (P2mm space
group) with an orthorhombic unit cell has been presented (Fig. 8.3). Both types of AAA
and ABA stacking modes have been suggested. For these model phases a very different
vacancy ordering has been displayed inside each of the graphitic planes with respect to
the hexagonal system introduced by D. M. Teter and R. J. Hemley (P6m2).

8.2.3 Relative stability of variuos C;N, phases

For the investigated systems the full potential method predicts the same energy trend as
found by D. M. Teter et al. [22] in their pseudo-potential plane-wave calculations (see
Fig. 8.4 and Tab. 8.1). While the graphitic-like phase with ABA stacking sequence is
the most stable from, the « system lies only marginally higher in energy by 0.036 eV.
The energy of the 5 phase has been found to be 0.615 eV above that of the « structure.
Even though the calculated energy difference between graphitic and the a phases is of
the same order of magnitude as that calculated with PP method, i.e. 0.041 eV, the
energy difference between a and [ has been estimated to be 0.615 eV instead of 0.266

3In Fig. 8.1 we show the structure of the 8-C3N4 phase as representative for a three-dimensional CN,
system. For the other structures, the reader should refer to the original work of D. M. Teter and R. J.
Hemley in Ref. [29].
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Figure 8.1: 8-C3N4 model system. Carbon and Nitrogen are depicted in grey and white,
respectively. This color scheme is kept throughout all the Thesis.

®)

Figure 8.2: One layer of the hexagonal graphitic-C3N4 model.



46 Chapter 8: Carbon Nitrides

Figure 8.3: One layer of the orthorhombic graphitic-C3N,4 phase.
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Figure 8.4: Relative stability between different C3N4 phases by using different method
of calculations.
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graphitic- Q- B- cubic- bl-
FP-LAPW 0 0.036 0.651 2.065 2.238
PP 0 0.041 0.307 1.322 1.485

p (g/cm®) 2.33 3.77 357 389  3.86

Table 8.1: Total energies and densities for different C3N4 phases. Energy values are
expressed in eV/C3Ny unit and are scaled with respect to the stable graphitic-C3Ny
form. Pseudo-potential calculations refer to the work of D. M. Teter and R. J. Hemley
[29].

eV. Finally, the cubic and pseudo-cubic structure (simple cubic and defect-zinc blende
phases) are estimated to have the highest total energies. The simple cubic phase lies at
1.414 eV above the 8 phase, while the defect-zinc blende lies at 1.587 eV higher. The
energy difference found for 8 <> cubic is 1.414 eV instead of 1.015 eV as calculated with
the pseudo-potential approach. In the same way the 8 <> pseudo-cubic energy difference
is estimated to be 1.587 eV in place of 1.178 eV. The use of Y. Liu et R. M. Wentzcovitch
geometries [114] for 5-C3Ny and bl-C3Ny gives rise to only small differences in the values
of the total energies, confirming thus the PP energy trend. In particular, the S phase now
lies slightly higher in energy (+0.0215 eV) and the pseudo-cubic slightly lower (-0.038
eV) with respect to the previous calculation (D. M. Teter’s geometries).

By contrast, the LMTO and ASW methods predict lower energies for cubic structures
and a higher one for the graphite-like phase. The obtained energy trend follows exactly
the atomic densities, indicating that in less compact structures (i.e. graphite-like phases)
the ASA approximation is no longer acceptable. As a matter of fact, the layered phase
is the least dense (p= 2.33 g/cm?) and it lies at high energy, while the cubic phase is
the most dense (p= 3.89 g/cm?) and consequently is predicted to have the lowest energy.
Hence, the relative stability trends observed with LMTO and ASW are not comparable
with those deduced from FP-LAPW and PP. This is due to the difficulty of getting
reliable results from the use of empty spheres in describing phases with very different
atomic packing. In fact, in the graphitic phase a large amount of empty space must be
filled in the unit cell whereas the reverse situation is true for the cubic structures where
the ASA worked best. However, even if it is not possible to make a strict comparison
between the calculated relative stabilities, it is important to note that all the tested
DFT methods are in agreement in predicting equilibrium volumes, bulk moduli and their
pressure derivatives [117]. Details are given in Section 8.2.4 for the whole set of analysed
C3Ny phases.
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Thermodynamic stability of the C3N, stoichiometry

When considering the possibility to synthesise carbon nitrides, one has to account for
their thermodynamic stability with respect to the starting materials. The formation
reaction of a C3Ny4 compound is given below.

3C(C) + 2N2(g) — 03N4(C) (8.1)

For simplicity it has been considered here the reaction between diamond, which is slightly
less stable than graphite! (AG;=2.9 kJ/mol), and nitrogen to form carbon nitrides. An
important thing that has to be noted in Eq. 8.1 is that both diamond and molecular
nitrogen possess strong bonds (C-C ~ 350 kJ/mol and N-N ~ 956 kJ/mol) while the
reaction product (C3N4) contains only weaker C-N bonds (260-320 kJ/mol)5. It is thus
quite evident that carbon nitrides are likely to be thermodynamically unstable under
atmospheric pressure. Nonetheless, if a synthetic process can produce C3Ny a rather
large activation energy would be needed to break the C-N bonds. Carbon nitrides could
be thus result metastable at ambient conditions.

In order to get a quantitative insight into the stability of carbon nitrides with re-
spect to decomposition to the elements, accurate values of their cohesive energies, E.op.°,
are needed. Then, by knowing the experimental or theoretical values for the energy
required to dissociate the nitrogen molecule and the cohesive energy of diamond, the en-
thalpy change for the reaction 8.1 can be evaluated. It is well known that the DFT-LDA
approach normally tends to overestimate the cohesive energies for structures made of
elements of the second row of the periodic table such as carbon and nitrogen [127, 128].
The cohesive energy of diamond is in fact significantly overestimated by ~ 150 kJ/mol
(see Tab. 8.2 and Ref. [67]) with respect to the experimental value [129]. Nonetheless,
the general tendency of the LDA to overestimate the strength of C-C bond can be re-
duced by using the generalized gradient corrections [47], though the prediction of some
of the structural properties, such as the interlayer distance in graphite, are sometimes
worse than in LDA [67]. The computed cohesive energies (with the accurate FP-LAPW
method) are shown in Tab. 8.2 as a function of different exchange-correlation potentials:
LDA [130], Perdew-Burke-Ernzerhof (PBE) [131] and Perdew-Wang 91 (PW91) [47].
Calculations suggest that in spite of the general improving of the results obtained with
GGA functionals, the availability of very accurate cohesive energies can only be overcome
with the use of Quantum Monte Carlo (QMC) method. However, at the moment QMC
energy values have not yet been published for carbon nitrides.

4Graphite is the most stable form of carbon, so that formally we should have taken it as reactant
instead of diamond.

5Bonds between elements from the second row of the periodic table in which one of the atoms contain
lone pairs are usually weaker.

®Energy required to break apart a structure into isolated atoms.
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The investigated C3Ny4 phases

Econ. No graphite diamond graphitic- «- 5- cubic- bl
LDA -11.35 -8.93 -8.93 -6.89 -6.88 -6.80 -6.60 -6.57
-11.34 -8.877
PBE -10.28 -7.99 -7.85 -6.04 -6.03 -5.93 -5.73 -5.68
7,721
PW91 -10.27 -7.98 -7.84 -6.03 -6.02 -5.92 -5.72 -5.68
7,721

exp. -9.91%  .7.37% -7.37%

Values as compiled in Ref. (§)=[132], (})=[133], (*)=[134] and (})=[135].

Table 8.2: Cohesive energies (eV/atom) of different C3N4 model systems. Values are
confronted with those of the starting materials: diamond/graphite and No. For the
calculations of the nitrogen dimer it has been used a simple cubic cell (a=10 A) with
atoms displaced along the diagonal direction. It should be noted that an overbinding
of more than 1 eV/atom is not unusual in local-density calculations for second-period
elemental solids, as for example diamond [136, 137].

An elegant way to get out from the problem of having precise cohesive energies was
given in 1997 by J. V. Badding [138]. He proposed a simple chemical approach to the
thermodynamic stability of C3Ny starting from the use of bond enthalpies derived from
molecular system. Covalently bonded systems such as diamond and carbon nitrides can
be though as “giant molecules’, so that simple bond enthalpy techniques can be used
to estimate their stability. If we imagine, for example, to remove one carbon atom
from the diamond structure, which is characterised by carbon tetrahedral bonds, four
C-C connections will be broken. Such process will leave four carbon atoms with one
dangling bond, which is equivalent to the removal of a second carbon. The whole cost of
removing two C atoms amounts to the breakage of four C-C single bonds, which have in
a molecular system a bond energy of about 350 kJ/mol. The cohesive energy of diamond
can be thus estimated to be 350x2=700 kJ/mol, which is in good agreement with the
experimental value of 711 kJ/mol [133]. In this approach it has been assumed that the
contributions of the chemical bonds to the cohesive energy are additives. This hypothesis
has been examined in details for solid state structures by D. A. Johnson [139]. For three-
dimensional (sp? network) carbon nitrides the removal of one nitrogen atom has as a
consequence the breakage of three C-N bonds. This will leave three carbon atoms each
with one dangling bond, which is equivalent to the removal of % of a carbon. Hence,
the breaking of three bonds amounts to removal of a fragment with C3 /4N stoichiometry.
Using the tabulated bond energies for C-N (286-305 kJ/mol [139, 140]), the cohesive
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energy for carbon nitrides should be in the range 858-915 kJ/mol of C;/,N fragment (or
490-522 kJ per mole of atoms, i.e 490:% x858). The enthalpy for the formation reaction,
AH}’, as in Eq. 8.2 can be thus calculated by knowing the experimental values of the
energy required to dissociate a nitrogen molecule (956 kJ/mol [132]) and the cohesive
energy of diamond (711 kJ/mol).

3 1
ZC(C) + §N2(g) — C%N(C) (8.2)
0o 9 1
AHf = 1(711 kJ/mol) + 5(956 kJ/mol) — Ecoh,(C%N) (8.3)

The AH$ ranges from 96 to 153 kJ/mol of C%N (or 384-612 kJ/mol of C3N,), depending
on the choice of C-N bond enthalpy. Using the cohesive energies as calculated in Tab.
8.27 we obtain the standard molar enthalpy change of formation at 0 K (AH]?’O) listed
in Tab. 8.3. Values were converted in kJ/mol (1 eV= 10717 J) and the cohesive energy
per C%N fragment, Ecoh.(C%N), was obtained using the relation Ecoh.(C%N) = g X
Eon.(C3Ny), where the term E,,, (C3Ny4) represents the computed energy per mole of
atoms of Tab. 8.2. The estimated AHJ?,O for the Eq. 8.3 are all positive and their

functional AHY (gmphitic—C%N) AHY, (bl—C%N)

LDA 30.3 84.4
PBE 44.1 104.9
PW91 44.6 103.7

Table 8.3: Calculated enthalpy of formation, AH% (kJ/mol), for different exchange-
correlation functionals. The above table shows only values representatives for the layered
gmphztzc—Cs N and the three-dimensional bl-C 8 N. The complete list of enthalpies is given

in Tab. 8. 18 of Section 8.3, p. 72.

magnitudes agree quite well with the enthalpies of formation obtained with the Badding’s
method. This is especially true for the hard and three-dimensional phases, such as bl-
C3Ny, for which the above chemical approach has been hypothesised. However, since
the GGA functionals (PBE and PW91) have shown a better description of the cohesive
energies of the end members it is thus likely that the AH? ; for the formation of graphitic-
C3Ny and bl-C3Ny lays at about 177 and 417 kJ /mol, respectlvely This large and positive

"These values have been obtained by taking the difference between the total energy of the solids
and the ground-state energies of the non spin-polarised atoms. No correction for zero-point motion has
been made. All the cohesive energies listed in this Thesis have been computed with the aforementioned
procedure.
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enthalpy of formation will be thus the most predominant contribution to the free energy
of formation. However, this instability should not be very large to preclude the synthesis
of CN, compounds. As matter of fact, metastable carbon-based molecules with large
and positive (endothermic) enthalpies of formation such as acetylene (226 kJ/mol) are
known [139]. Using the shifts in the free energy described from the integration of the
equations of state (Eq. 8.4),

p
AG, = / Vdp (8.4)
0

J. V. Badding [138] determined the pressures to form thermodynamically stable C3Ny
compounds to be of the order of 50-150 GPa. Despite these very large values, such
pressures are nowadays attainable with current technologies. Carbon nitrides could be
thus synthesised in high pressure and high temperatures conditions.

8.2.4 Hardness
Isotropic compression

The main purpose is here the investigation of the hardness of carbon nitrides with differ-
ent DFT methods by evaluating the compressibility of the system. The resistance upon
the volume change have also been investigated for diamond and cubic boron nitride in
order to allow a cross-checking between the theoretical and experimental results. Cal-
culations were performed by using the three previously mentioned DFT-based methods
to evaluate the total energy as a function of different unit cell volumes. That is, the
total energy has been computed after the application of an isotropic compression to the
unit cell (by means of keeping constant the c/a ratio). The data sets E(V;) were then
fitted with a third order Birch equation (Eq. 3.2 of Chapter 3, p. 9) to determine the
equilibrium volumes, bulk moduli and pressure derivatives. As shown in Tab. 8.4, all the

Lattice constants (@eq/ceq) a- B- cubic- bl
LMTO 12.274/8.936  12.100/4.538 10.302 6.562
ASW 12.225/8.904 12.117/4.545 10.368 6.492
FP-LAPW 12.211/8.894 12.102/4.539 10.201 6.484
PP 12.220/8.900 12.114/4.543 10.199 6.469

Table 8.4: Equilibrium lattice constants (a,) for the investigated model systems. The
energy vs. volume data were fitted with a third order Birch equation.

DFT methods employed for the prediction of the equilibrium lattice constants and hence
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Bulk modulus Q- B- cubic- bl- diamond
LMTO 438 (3.6) 455 (3.9) 468 (4.0) 441 (4.0) 453 (3.7)
ASW 414 (3.6) 431 (3.6) 452 (4.0) 427 (3.9) 440 (3.8)

FP-LAPW 431 (3.3) 460 (3.3) 518 (4.7) 445 (3.6) 466 (3.6)
PP 425 (3.1) 451 (3.3) 496 (3.4) 448 (3.4) 464 (3.7)

Table 8.5: Bulk modulus, B (GPa) and its pressure derivatives, B' (values in parenthesis)
for various C3N4 phases and diamond.

volumes, give values that are in good agreements with the early pseudo-potential calcu-
lations [29]. The FP-LAPW method usually tends to estimate shorter a and ¢ lengths,
though they are often very similar to those computed with the pseudo-potential approach.
The calculated compressibility of various carbon nitrides with composition C3Ny is listed
in Tab. 8.5. Due to the short lengths found within the FP-LAPW method, the predicted
bulk modulus is usually higher than what is expected. This is particularly true for the
cubic-C3Ny phase for which a very large B (518 GPa) has been obtained (see Fig. 8.5).
This value is even larger than that calculated for diamond. Employing a basis set of
the same size, FP-LAPW calculations yield for diamond a bulk modulus of 466 GPa
(B'=3.60 and a.,,=6.679 a,) to be compared with an experimental value of 442 GPa.
While the predicted bulk moduli of the other hypothetical materials (a-C3Ny, 8-C3Ny,
and bl-C3Ny) approach that of diamond (~ 430-460 GPa), the cubic-C3Ny clearly exceeds
it. The cubic phase is estimated to be harder than diamond also from ASW (diamond:
B=440 GPa; cubic-C3Ny: B=452 GPa) and LMTO (diamond: B=453 GPa; cubic-C3Ny:
B=468 GPa) calculations. It is worth to note that all the DF'T methods predict the cubic
phase to be hardest carbon nitride, with a bulk modulus larger than diamond, while the
alpha structure is computed to have the lowest B (highest compressibility for a three-
dimensional C-N network)®. For the ¢-BN system the bulk moduli are of the same order
of magnitude (Byr0=352 GPa, Basw=345 GPa and Brp_rapw=356 GPa) and close to
the values given in the early theoretical works [142, 124, 143, 144]. However, it should be
mentioned that all the three methods compute bulk moduli that are at about 100 GPa
below the experimental value (456 GPa [145, 146]). Since the reverse tendency (B gener-
ally overestimated with respect to the experimental bulk modulus) is found for diamond,
it is only possible to conclude that the hardness of the hypothetical cubic-C3N4 should
be at least, if properly synthesised, of the same order of magnitude as that of diamond.
The calculated pressure derivatives of the bulk modulus (B,) for the C3Ny systems lies

8The layered graphitic-C3Ny is in absolute the phase with the highest compressibility with a bulk
modulus ranging between 198-253 GPa (cfr. Ref. [141]). This is due to the graphitic-like form which is
generally soft upon compression in the direction perpendicular to the sheets.



8.2 Study of the C3Ny stoichiometry 53

-1322.6 T T T T T
LMTO  +

N ASW X
y FP-LAPW *
-1322.7 Y Data fitting (LMTO) -
Data fitting (ASW) —— =~
Data fitting (FP-LAPW) —-— -~
L
13228 | G 1
VX
LA
n
7 329F % i y
= FEA
5 |
c ¥ X
2 as:of L o
° Lok .
[} /
8 S e
o -1323.1 - (U "~ A
PR . g
NI X -
-1323.2 X _:& KX
SR * +
13233 | P R 1
> S T x X
S IO
-1323.4 . s .
900 1000 1100 1200 1300

Cell Volume/a,3

Figure 8.5: Energy dependence of the unit cell volume for cubic-C3N4 as a function of
three different calculational methods. Data point have been fitted with the Birch type
EOS.

between 3 and 4 as shown in Tab. 8.5. The FP-LAPW calculation usually gives a better
agreement with the PP results except in the case of the cubic phase for which a larger
value has been extrapolated.

Resistance to reversible deformation upon shape change

Since materials deform plastically only when subjected to shear stress, it becomes impor-
tant to apply external strains to the crystal to estimate its resistance against deformation.
The strength of an ideal crystalline material is proportional to its elastic shear modulus
[147, 148], while for a real solid, the strength is determined by lattice defects (dislocations
and or point defects) and it is usually smaller than an ideal system. However, the shear
stress needed for dislocation motion (Peierls stress) and thus for plastic deformation is
also proportional to the elastic shear modulus of the deformed material. It was in 1998
when Teter argued that in many hardness tests one measures plastic deformation which
is directly connected to the deformation of a shear character [22]. In particular he com-
pared the Vickers hardness data to the bulk and shear moduli from many hard solids and
found that the shear modulus of polycrystalline materials is a better hardness predictor
than the bulk modulus (Fig. 8.6). Experimental bulk moduli can be obtained from the
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Figure 8.6: Figure from R. Riedel [149] showing the scattering of the Vickers hardness
for hard materials when compared with bulk and shear moduli.

measurements of the volumes as a function of the pressure [113], while the single crystal
elastic moduli can be estimated with Brillouin spectroscopy, inelastic neutron scattering,
ultrasonic techniques or Schaefer-Bergmann method [150]. Once we know the complete
set of the single crystal moduli, it is possible to derive the values of B and G of a poly-
crystalline material [151]. As shown in Tab. 8.6 the calculated elastic moduli give the
possibility to express the hardness in form of isotropic shear modulus. As one may notice
the hardness trend has been completely changed with respect to the one described in
Tab. 8.5. The highest G value has been computed for the bl-C3N4 whereas the other
model systems show an isotropic shear moduli in between 300 and 326 GPa. The two-
dimensional phase (graphitic-C3Ny4) exhibits the lowest hardness with a shear modulus
of 188 GPa. The major difference between the calculated bulk and shear moduli resides
mostly in the fact that while, the B values are generally approaching or even exceeding
that of diamond, the calculated G are at least 120 GPa lower. Therefore, it is very likely
that diamond will remain the hardest known material with high elastic constants and the
largest shear modulus [29], though various hypothetical C3N4 phases have shown very
interesting properties. As a matter of fact, the value of G for the bl-C3Ny has been cal-
culated to be quite close to that of ¢-BN (409 £6 GPa [22]), which is the second hardest
known material.

The dependence of the elastic constants on the various different exchange-correlation
choices is shown in Tabs. 8.7 and 8.8 for the US-PP method. As expected the LDA
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a- [152] (- [114] cubic- [29] bF [114] graphitic- [114] diamond [153]

c11 576 834 863 840 870 1117 (1080)
€33 700 1120 - - 57 -

Cyq 279 305 348 452 14 604 (557)
c12  -31 279 313 213 148 137 (137)
C13 -17 138 - - -3 -

C14 - - - - - -

C15 -20 - - - - -

Ce6 304 - - - -

C46 20 - - - - -

G 300 326 319 397 188 559 (523, 535 [22])
p 3.77 3.57 3.89 3.79 2.56 3.52

Table 8.6: Calculated elastic constants (c;; in GPa), atomic densities (p in g/cm?) and
isotropic shear moduli (G in GPa) for five different C3N4 phases. Values in parenthesis
refer to experimental measurements [8].

predicts larger bulk moduli compared to the tested GGA functionals. In particular, the
best agreement with the experimental diamond bulk modulus has been obtained by using
the PW91 and PB methods. However, in the case of diamond the set of c;; calculated
within the local density approximation agree reasonably well with the experimental elastic
constants and in particular with values obtained from PW91 and PB calculations. It is
also important to note that the LDA provides a very good description of the ¢;2 modulus
compared to the others tested GGA functionals. This confirm the general tendency of
LDA to work well for stiffer materials. The estimated isotropic shear moduli result very
similar to each other with G values confined within a difference of 16 GPa. For diamond,
the ion relaxation does not bring any significant improving to the description of the elastic
constants (cfr. values of the LDA ¢,4,¢, and LDA,.¢j4z¢q in Tab. 8.7). On the other hands,
in the case of the hard bl-C3Ny the relaxation of the internal degrees of freedom results
crucial for both bulk and elastic moduli. Generally, the relaxation of the internal atomic
positions becomes necessary for those cases where the applied strain induces a significant
reduction of the symmetry or when the atomic positions are not completely fixed by the
space group symimetry.

8.2.5 Hexagonal and Orthorhombic graphitic-C3N,

The graphitic C3Ny structure has been considered as one of the possible forms for the
carbon nitrides [115, 29, 154]. It is certain that such a model system is not likely to



56 Chapter 8: Carbon Nitrides

diamond exp. LDAjf.en  LDAcigzed  PWOIL PB PW86 LM

B 443 463.7 463.1 449.6 4449  429.6  463.1
C11 1080 1116.6 1111.3 1112.8 1110.2 1106.5 1158.9
C12 137 137.2 138.9 118.0  112.2 91.1 115.2
Ca4 557 604.3 603.5 606.0 604.7 612.9  611.0
G 023 9959 o957 963 062 o7l 075

Table 8.7: Calculated elastic constants (GPa) and bulk moduli (GPa) for diamond as
a function of different exchange-correlation methods: Perdew-Wang 91 (PW91) [47],
Perdew-Becke (PB) [46], Perdew-Wang 86 (PW86) [57], Langreth-Mehl-Hu (LM) [45].
The subscript “relazed” and “frozen” denotes values calculated with or without the re-
laxation of the atomic positions.

bEC3Ny LDAfroen  LDArciaged Ref[114] PWOL PB  PW86 LM

B 445.4 425.9 425 400.1  396.2 376.6 423.7
C11 902.3 842.9 840 869.9 866.8 856.9 880.1
C12 217.0 2174 213 165.2 160.8 136.4 195.5
Ca4 018.3 454.6 452 514.7 514.3 518.8 5194
G 448 398 397 450 450 455 449

Table 8.8: Calculated elastic constants (GPa) and bulk moduli (GPa) for bl-C3Ny4 as a
function of different exchange-correlation functionals.

show low compressibility due to the presence of weak inter-layer bonding. Nonetheless,
its major interests arise from the possibility to represent a low energy model structure.
In order to obtain the graphitic form of C3N4 two carbon atoms must be replaced with
a single nitrogen in graphite with a consequent creation of a carbon vacancy. In the first
model introduced by D. M. Teter and R. J. Hemley the vacancies are ordered in such
a way that a hexagonal unit cell is found (Fig. 8.7). For this system different stacking
ordering types were proposed leading to hexagonal [115, 29] or rhombohedral lattices
[114, 115]. All these phases are based on the same order of the vacancies. However,
very recently, I. Alves et al. [125] have introduced a new order of the carbon vacancies
which leads to an orthorhombic unit cell (Fig. 8.8). This phase has been proposed after
having analysed the X-ray data relative to samples obtained from the polycondensation
of Melamine (Eq. 8.5) at 3 GPa and 800 °C.

C3NgHg — C3N, + 2N Hg (85)

For such a model system a different bonding conjugation is expected due to the par-



8.2 Study of the C3Ny stoichiometry

57

Figure 8.7: Electron circulation in the hexagonal graphitic-C3Ny4 model.

Figure 8.8: Electron circulation in the orthorhombic graphitic-C3N4 model.
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ticipation of the nitrogen N; to the m-delocalisation along the b-axis (see Fig. 8.8). In
particular, the double coordination of the Ny atom allows the connection between the
double bonds resonance located in the adjacent C3Nj rings, offering thus the possibil-
ity to show an electron delocalisation along the graphitic layer. On the contrary, the
hexagonal phase shows a three coordinated N; atom which hinders the expansion of the
electron delocalisation along the graphitic plane. In short, the hexagonal lattice possess a
localised electronic resonance confined in each of the C3Nj3 rings while, the orthorhombic
phase guarantee an extended electron delocalisation along the b-axis.

The purpose of this Section is to examine the stability and the electronic properties of
the orthorhombic lattice with respect to the hexagonal one. The study is here finalised
to the search of new stable layered model systems for carbon nitrides. In particular,
the possibility of looking at the orthorhombic phase as a novel model for the C3Ny sto-
ichiometry, has been accurately considered and theoretically justified in the following
subsections. By using the pseudo-potential and the FP-LAPW LDA methods, the differ-
ences in the stability and in the electronic properties have been highlighted between the
two lattices. For simplicity, the AAA stacking mode has been used for both lattice types.
Further, the ASW method has been considered to describe the hybridisation influence on
the chemical bonding inside the graphitic layer: the Crystal Orbital Overlap Population
(COOP) analysis is presented.

Computational details

The calculations were carried out in the same framework of the DFT with the VASP plane
wave pseudo-potential package [58]. The interactions between the ions and the electrons
are described by using ultra-soft Vanderbilt pseudo-potential [61]. The parameterisation
scheme used for the LDA is the Ceperley-Alder exchange-correlation potential [56]. A
complete ions and volume relaxation was performed for the orthorhombic phase by using
the conjugate-gradient algorithm [155] and an energy cut-off of 25.57 Ry for the plane
wave basis set. The Methfessel-Paxton smearing scheme [156] was used for geometry
relaxation while the tetrahedron method with Blochl corrections [62] was implied for the
total energy calculations. All the energies were converged with a k-point sampling using
a 10x10x10 Monkhorst-Pack grid [63]. Accurates total energy calculations and electron
density maps were also performed on the optimised structures by using the FP-LAPW
method (WIEN97 package [68]). The number of plane waves per atom used was 172 and
a total of 100 k-points were implied, with a 4x4x4 sampling. For carbon and nitrogen
atom types the same muffin-tin radius was used (R,,;=1.33 A).

A qualitative stabilisation feature was also assessed using the chemical bonding cri-
teria. The COOP were evaluated for the two graphitic-like C3N4 systems by using the
ASW-LDA method [120, 74]. Calculations were performed by applying the tetrahedron
method for the k-space integration and 217 irreducible k-points generated from a uni-
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form 12x12x12 mesh according to the Monkhorst-Pack scheme. It has to be noted that
the energy convergence criterion of AE=10"% Ry is in the ASW more precise than in
FP-LAPW (AE=10"° Ry) because of the faster method in use.

Geometry optimisation

The geometry of the orthorhombic phase was taken from the original work of I. Alves and
for the sake of simplicity the AAA stacking order was considered. This phase consists of
7 atoms per unit cell and belongs to the P2mm space group. The optimised geometry of
the hexagonal phase was taken from the early works [115, 29] and an AAA stacking of
the layers was assumed. In both unit cells, each C atom is three-fold coordinated as is
one of the four N atoms per cell, while the other three N atoms are two-fold coordinated.
As it can be seen from Figs. 8.7 and 8.8, a different vacancy ordering inside the graphitic
planes is found for the orthorhombic system with respect to the hexagonal one.
Starting from the geometry given by [125], the orthorhombic structure was optimised
by using the US-PP method. Tab. 8.9 shows the structural parameters relative to the
orthorhombic phase before and after the full geometry optimisation. The most striking

Starting geometry Optimised structure (US-PP)
Space group P2mm P2mm
Parameters (A) a=4.1, b=4.7, c=3.2 a=4.1197, b=4.7105, c=3.1233
Atomic positions Ny (la) (0 000 0.000 0.000) N1 (-0.021 0.000 0.000)
N2 (1c) (0.000 0.500 0.000) N5 (0.009 0.500 0.000)
N3 (2e) (0.500 0.250 0.000) N3 (0.505 0.258 0.000)
C; (1c) (0.333 0.500 0.000) C; (0.351 0.500 0.000)
Csy (2e) (0.833 0.750 0.000) Cs (0.824 0.757 0.000)

Table 8.9: Structural parameters for the orthorhombic structure with AAA stacking
order.

modification found in the relaxed structure is the changing of the geometry relative to
the C3N3 heterocycle. These rings are now no more symmetric as they were before the
structural relaxation. A shortening in the interlayer distance from 3.20 A to 3.12 A is
also found in the optimised system. A brief summary of the most important geometry
changing in the orthorhombic phase is shown in Tabs. 8.10 and 8.11. The atomic labeling
scheme is given in Fig. 8.8. It is important to note that the optimisation of the hexagonal
phase under the same conditions still leads to a symmetric geometry of the C3N3 rings.
The schematic differences between the two optimised structures are drawn in Fig. 8.9.
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Starting geometry Optimised structure (US-PP)
d(N;-C2)=1.359 d(N;-Cp)=1.311

Bond lengths (A)

d(Cy-Ny)=1.359 d(Cy-N3)=1.431
d(Cy-N3)=1.365 d(Cy-N3)=1.316
d(C1-N3)=1.359 d(C1-N3)=1.305
d(N3-C1)=1.365 d(N3-C1)=1.409

Table 8.10: Bond lengths before and after the optimisation of the orthorhombic structure.

Starting geometry Optimised structure (US-PP)

Angles (°)

N1-C2-N3=120.23
N1-Co-Np=119.54
N3-Cp-No=120.23
Cy-N3-C1=120.23
N3-C1-N3=119.54
Cy-Ny-Co=119.54
Co-N;-Ch=119.54
Cy-No-Ch=120.23

N1-Cy-N3=122.23
N1-Cy-Ny=118.65
N3-Cy-Ny=119.12
Cy-N3-C1=122.18
C9-N3-C;=121.80
Cy-Ny-Co=115.62
Co-N;-Ch=121.69
Cy-No-Ch=122.19

Table 8.11: Angles before and after the optimisation of the orthorhombic structure. The
notation prime refers to atoms belonging the adiacent unit cell.

Relative stability between the two graphitic forms

The FP-LAPW and US-PP methods agree quite well with each other in predicting a
comparable stability between the orthorhombic and the hexagonal models. Tab. 8.12 list
all the calculated cohesive energies for the two structures. Although the energy reference
is not the same for the two methods (core states are not included in the pseudo-potential
method), the energy difference between the two forms show values of similar order of
magnitude, in favour of the orthorhombic variety. The very small difference in stability
let us confirm the possibility of looking at the orthorhombic phase as a reasonable model
for describing the graphitic-C3Ny.

The stabilisation features can be further assessed using chemical bonding criteria
based on the crystal orbital overlap populations [157] which consist of the expectation
values from operators of the non-diagonal elements of the overlap population matrix,

Cni (K) Sijenj (k) = cpi (k) (xai (1) [Xaej (7)) €nj (K) (8.6)

where S;; represents an element of the overlap matrix of the basis functions and the
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Starting geometry (Hexagonal)  Starting geometry (Orthorhombic)
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Figure 8.9: The above figure shows the general differences in the ring’s geometry for the
orthorhombic and hexagonal unit cells.

cnj (k) are the expansion coefficients entering the wave function of the n®* band (Eq
8.7).

Z cz sz (87)

Partial COOP coefficients C;;(E) are then obtained by integrating the expression (8.6)
over the Brillion zone:

Cii(E) = Cyil QBZZ / *kRe (¢4 (K) Syjct; (1)) 8 (B — i) (88)
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FP-LAPW method
Structure LDA PBE PW91 | US-PP/LDA
Hexagonal  -6.88990 -6.04012 -6.03002 | -9.26143
Orthorhombic -6.89044 -6.04070 -6.03059 | -9.26174
|AE] 5.4-107* 5.8.107* 5.7.107* 3.1-107*

Table 8.12: FP-LAPW and US-PP cohesive energies (eV/atom) for the orthorhombic
and hexagonal lattices.

(Dirac function delta serving as a counter of states) which is often loosely designated as
the overlap-population-weighted-DOS. Starting from Eq. (8.8), the total COOP are then
evaluated as the sum over all non-diagonal elements,

C(E) = > Cj(E). (8.9)
ij,i#]

The above calculational procedure has been specifically implemented in the ASW method
by Dr. V. Eyert of the University of Augsburg to enable for precise chemical bonding
determinations from self consistent calculations. For a detailed description and for sig-
nificant examples the reader is referred to the following papers [120, 74, 118]. The COOP
curves are positive when they describe bonding states and negative (negative terms in
Eq. (8.8)) when they describe anti-bonding states; non-bonding states should exhibit
very low intensity-COOP. In order to get more insight into the chemical stability, in

the following Section, it has also been proposed the calculation of the integrated COOP
(ICOOP) which is defined as follow,

.
C(E) = / dEC(E). (8.10)

The total and integrated COOPs for the hexagonal and the orthorhombic phases are
shown in Fig. 8.10 and Fig. 8.11, respectively. The two phases nearly show the same
trend in the total COOP; in the lower energy region of the valence band the two curves are
mainly of bonding character, while at energies closer to the Fermi level the antibonding
states of the p-orbitals start to dominate. The antibonding counterparts are found in
the conduction band centred at 2 and 7 eV while a bonding behaviour appears at higher
energy. Due to the larger electron delocalisation present in the orthorhombic lattice the
smearing out of the curve is somehow found with respect to the COOP of the hexagonal
system. The projection of the total COOP onto the corresponding contributions arising
from the different atoms (Fig. 8.12) clearly shows that in the lower region of the valence
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Figure 8.10: Total COOP for the hexagonal and the orthorhombic phases (ASW).
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Figure 8.11: Integrated COOP for the hexagonal and the orthorhombic systems (ASW).
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band (VB) the interaction N3-C; determines the positive contribution to the COOP
even if all the other carbon-nitrogen interactions are showing a bonding character. At

N4-Co
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Figure 8.12: Total COOP for the orthorhombic phase (ASW). For clarity each nitrogen-
carbon interactions have been shifted along the vertical axis. The labels B and AB define
the bonding and the antibonding region, respectively.

energy close the Ep the main bonding character is found for the interactions N3-C; and
N;-Cs while N5-Cs and Co-N3 show a negative COOP. The description of the bonding
within the layer seems to favour a sort of “snake-like” delocalisation in as far as the N3-
C1 and the C»2-Nj globally display a positive interaction throughout the valence region.
However, this shows the difficulty of carrying out this analysis to the point of making it
resemble to the picture expected by a chemist in his view of the resonant bonds. Such
restriction is mainly due to the fact that COOP analysis does not use directional orbitals
view since all contributions from p,, p, and p, are included. As shown in Fig. 8.10 the
orthorhombic phase is predicted to be slightly more stable than the hexagonal system.
This can be addressed to the lower intensity of the anti-bonding states close to the Fermi
level. By contrast, the integrated COOP of Fig. 8.11 has shown a sensible advantage for
the hexagonal model (cfr. bonding-states in the region between -5 and 0 eV). Therefore,
even though the investigation of the COOP represents an important step in predicting
the relative stability of different phases, it has here been shown that the discrimination
of the two phases cannot only be assessed qualitatively. Nonetheless, it is relevant to
stress that accurate full potential calculations performed on the same systems have also
shown very small energy differences in favour of the orthorhombic phase (Tab. 8.12).
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Figure 8.13: Site projected DOS plot for the AAA orthorhombic graphitic phase (ASW).
The energy reference along the z-axis is taken with respect to the Fermi level; the y-axis
gives the DOS per atom and unit energy.

In any case, it can be concluded that the orthorhombic system result stable enough to
be considered as one of the most reasonable models for the description of the layered
graphitic-C3Ny.

Electronic properties

The DOS plot calculated with the ASW method for the orthorhombic phase (Fig. 8.13)
clearly shows that a semi-metallic behaviour is present in this new graphitic C3N4 form.
The electronic levels are now crossing the Fermi energy and a more significant contri-
bution of the electronic states from the Ny atom is found at the Ep (compare with Ny
peak in Fig. 8.14). In contrast to the band gap of 0.938 eV calculated for the hexagonal
form, a semi metallic-like behaviour is thus found in the orthorhombic phase. Moreover,
the nitrogen DOS in the orthorhombic structure is broadened with respect to the DOS
of the hexagonal one (Fig. 8.14). This behaviour can be addressed to the strong role
played by the N; atom in mediating in between neighbouring heterocycle rings. With
the help of the FP-LAPW method the change in the electronic properties can also be
visualised by looking at the electron density maps. The orthorhombic system shows a
clear delocalisation of the charge density along the direction of the b-axis with a sort of
snake-like shape (Fig. 8.15). Using the same method of calculation, the total density of
states shows, for the orthorhombic phase (Fig. 8.16), an increasing metallic behaviour.
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Figure 8.14: Site projected DOS for the hexagonal graphitic model system (ASW).

In particular, the electronic states of the nitrogen and the carbon atoms are crossing
the Ep as already stressed in the total DOS calculated with the ASW approach. For
the hexagonal system the calculated electronic density map shows a confined electronic
circulation inside the C3Nj rings [118]. A band gap of 1.48 eV is found in the total DOS
analysis (Fig. 8.17). The two methods of calculation confirm the previous hypothesis of
1. Alves et al. about a drastic modification on the electronic properties.

8.2.6 Calculation of the >*C NMR chemical shifts

As already discussed, a recent interpretation of the X-ray diffraction pattern made on the
graphitic-like sample prepared via bulk chemistry [125, 126] has suggested the existence
of a possible orthorhombic system. However, the investigation of the crystal structure
is not yet concluded and further efforts are needed to state clearly whether the unit cell
could be hexagonal or orthorhombic. Therefore, it becomes of fundamental interest the
possibility to provide theoretical spectroscopic properties able to discriminate between
the two different forms. The synthesis of carbon-13 enriched samples is actually un-
der investigation in different laboratories to provide insight on the *C NMR shielding.
Nevertheless, due to the high cost needed to prepare carbon enriched samples and to
the difficulty to obtain pure crystalline materials, the related '*C chemical shifts are
nowadays still unknown.

In this subsection the theoretical calculation of the magnetic shielding tensor, Eq.
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Figure 8.15: Valence electron density map for the orthorhombic graphitic-C3N4 model
system (FP-LAPW).

8.11, has been computed for both the hexagonal and the orthorhombic phases.
ouw(N) = (82E/aBu8uNU)B:O,u:O (8.11)

Since the chemical shift depends on the electron density about a given nucleus (i.e shield-
ing), it is thus expected that the different electronic circulation present in the two model
phases could give rise to a sensible variation on the respective NMR signals.

Method and computational details

In this theoretical approach it has been employed the GAUSSIAN98 molecular calculation
package [158] with an implemented Gauge Independent Atomic Orbital (GIAO) method
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Figure 8.16: Total DOS for the orthorhombic phase (FP-LAPW). Notice the absence of
energy gap at the top of the VB.
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Figure 8.17: Total DOS for the hexagonal phase (FP-LAPW).
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Figure 8.18: Molecular cluster relative to the hexagonal graphitic-C3Ny.

[159] for the ab initio self-consistent-field calculation of the nuclear magnetic resonance
chemical shifts. In particular, the 6-311G* basis set has been used with the Perdew-Wang
(PW91) [160] functional °. The molecular input was created for each of the investigated
phases by using a well defined graphitic-C3Ny cluster. The optimised solid state geometry
(US-PP method) has been cut into 2x2x0 cells and the edges have been closed with
hydrogens to guarantee the electron neutrality. The obtained clusters are shown in Figs.
8.18 and 8.19 for the hexagonal and the orthorhombic system, respectively. Hydrogens
have been relaxed and the amount of the residual forces present on the atoms have also
been checked.

Comment of the results

The calculated isotropic shieldings are provided in Tab. 8.13 with respect to the standard
tetramethyl silane (TMS). The carbon chemical shift relative to the hexagonal phase has
been estimated by taking the mean values between atoms belonging the symmetric C3Ng
ring (i.e. C(11), C(13) and C(25)) while in the orthorhombic phase we have averaged the

®Calculations were performed in collaboration with Prof. H. Agren and Dr. B. Schimmelpfennig at
the Department of Theoretical Chemistry, Royal Institute of Technology, Stockholm (Sweden).
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Figure 8.19: Molecular cluster relative to the orthorhombic graphitic-C3Ny.

13C shifts of atoms along the two snake-like paths (C(06), C(10), C(18) and C(19). The
chemical shifts related to carbons which have hydrogens in the second nearest neighbour
positions (the edges of the cluster) have been neglected (e.g. C(4), C(12), C(25), C(26),
C(24), C(27), C(2) and C(15)). That is, it has only been accounted for an averaged
13C chemical shift by weighting only the cluster’s atoms which have a carbon-nitrogen
environment similar to the original periodic structure. As shown in Tab. 8.13 a difference
of about 15 ppm has been found in the chemical shifts of the carbon atoms constituting
the symmetric rings with respect to those belonging the snake-like electron density path!®.
Therefore, calculations suggest that the discrimination between the two phases should
be, a priori, feasible by measuring the '>C NMR chemical shift in graphitic-like samples.

8.2.7 Conclusions

Using three different first-principles techniques, it has been examined a series of hypothet-
ical C3Ny4 phases to determine their stability and hardness. With the use of FP-LAPW
method the relative energy trend has been computed to be in good agreement with the
former PP calculations. The graphitic- and a-C3N4 phases are predicted to have the
lowest total energies and the highest compressibilities, while the two cubic phases are
energetically less stable but with larger bulk moduli. On the contrary, the ASA based

19This result is in very good agreement with the latest measurements of the **C NMR shifts for a
polymorphic graphitic-like C3Ny4 samples (private communication from Dr. M. Ménétrier).
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Isotropic shielding (13C)
Atomic labelling hexagonal orthorhombic

C(11) 169.3 -
C(13) 169.3 -
C(25) 168.7 -
Mean value 169.1 -
C(06) - 154.0
C(10) - 154.1
C(18) - 154.4
C(19) - 154.2
Mean value - 154.2

Table 8.13: Calculations of the '*C NMR chemical shift (ppm) for the two graphitic-
like phases. For the reference TMS it has been estimated, with the same computational
approach, a chemical shift of 184.4 ppm.

LMTO and ASW methods cannot reproduce a reasonable energy trend due to the diffi-
culty of describing phases with different atomic densities. The ASA approximation fits
quite well for the cubic structures but it does not for less compact systems such as that
of the graphitic-like. However, even though it is not possible to compare the relative
stabilities, LMTO and ASW techniques reproduce the lattice constants and the bulk
moduli in close accordance with the FP-LAPW and PP methods. As a matter of fact,
all the three methods predict the highest B for the cubic-C3Ny4 and the lowest one for the
«a-C3Ny. This demonstrates that all the employed DFT codes are suitable for simulating
the bulk modulus of carbon nitrides. However, according to the finding of D. M. Teter
a different hardness trend has been calculated by using the magnitude of the isotropic
shear modulus as an indicator. The three-dimensional bl-C3N4 phase now shows the
highest G value, whereas the a-C3Ny has the lowest one. Following this more accurate
approach, all the investigated C3Ny crystals behave as hard and elastic materials, though
their mechanical properties are always predicted to be subordinated to those of diamond.

The enthalpy for the formation reaction, AH})yo, has been calculated for the layered
C3Ny phase (the most stable form for carbon nitrides with C3Ny stoichiometry) to be of
the order of 177 kJ/mol. This result indicates that a thermodynamically stable graphitic-
like C3Ny4 system could in principle be synthesised by using high temperature and high
pressure reaction. Moreover, since an important activation energy should be required to
break the C-N bonds, it is reasonable to believe that a substance with C3Ny4 composition
could be isolated in a metastable form even at ambient conditions.

The optimisation of the orthorhombic phase with the US-PP method has led to
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an asymmetric equilibrium structure for the “C3N3” rings of the graphiticcC3Ny. A
shortening of the carbon-nitrogen bonds has been found along the snake-like path owing
to the m-delocalisation along the b-axis. The calculated FP-LAPW electron density
map has also confirmed the possibility for the orthorhombic phase to extend its electron
delocalisation to the adjacent C3Nj3 rings. This behaviour is mainly due to the changing of
the coordination number for the N; atom which goes from three in the hexagonal lattice
to two in the orthorhombic phase. The DOS analysis performed with the FP-LAPW
and ASW methods has shown an increased semi-metallic behaviour for the orthorhombic
system: the electronic states are crossing the Er and the band gap disappears. Moreover,
the FP-LAPW and US-PP methods agree quite well each other in predicting a small
energy difference between the hexagonal and the orthorhombic phases. Both lattice
systems seem to be a reasonable proposal for the graphitic-C3N4 model, though a clear
changing in the electronic properties has been found for the orthorhombic structure.
Finally, from molecular calculations the '3C NMR shifts have been evaluated for both
model systems. A high-field shifting of about 15 ppm was calculated for the orthorhombic
phase. Such an increased shielding is attributed to the very different electron density flows
present in the two graphitic-like forms. These phases could be thus likely discriminated
via NMR analysis at the experimental level.

However, despite the outcome of this work we still need to meet furthermore the
experimental findings as to the low concentrations of nitrogen found in the carbon ni-
tride films. These observations have led to the proposal of carbon nitrides with C11Ny
composition. Its thorough study within the same framework is shown in the next Section.

8.3 The isoelectronic C{1IN; model system

8.3.1 Introduction

The characterisation of carbon nitride films with stoichiometry C3Ny is heavily restricted
by the problem of getting pure crystalline samples with the right C/N ratio. However,
thin films with lower nitrogen concentration (5-25 %) have been found relatively easier
to deposit, for example, with reactive magnetron sputtering. It is also in this range of
nitrogen content that the recently discovered graphitic-like — fulleren-like transition has
been suggested to take place. Therefore, in order to add more information to the above
experimental evidence, it is important to use theoretical tools to characterise carbon ni-
tride model structures with an higher ratio of C/N, such as that of C;;Ny4. It becomes
thus relevant to investigate the role played by the nitrogen concentration in determin-
ing the stability, hardness and electronic properties of the CN, compounds. For the
sake of simplicity it has here been compared the C3Ny and Ci1Ny4 systems, which are
isoelectronic to each other. For this purpose two C;;N4 phases, namely « and 3, have
been presented and investigated with density functional theory methods within the local
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density approximation. These phases contain less than ~ 30 % of nitrogen than the well
known C3N4 stoichiometry and are formally derived from the so-called pseudo-cubic form
of C3Ny (i.e. bl-C3Ny). Cohesive properties, bulk and elastic moduli have been calculated
and a full detailed analysis of the DOS and Energy Loss Near Edge Structure (ELNES)
is presented. Calculations suggest that the lowering of the nitrogen concentration does
not prevent the finding of ultra-hard materials and indeed brings a significant increase
in the cohesive energy and hardness of carbon nitrides.

8.3.2 Methods and computational details

Calculations of the optimised geometries, relative stability and elastic constants were
performed ab initio within the local density approximation to the density functional
theory using the Ceperly-Alder [56] exchange correlation functional as parameterised by
Perdew and Zunger [60] and the US-PP method [61, 58]. The calculations were computed
by using an energy cut-off of 434.8 eV for the planewave basis set and converged with
respect to the k-point integration. The tetrahedron method with Blochl corrections
[62] was applied for both geometry relaxation and total energy calculations. Brillouin-
zone integrals were approximated using the special k-point sampling of Monkhorst and
Pack [63]. The investigation of the density of states and of the Electron Energy Loss
Spectroscopy (EELS) spectra were carried out with the density functional theory FP-
LAPW program [68]. The local spin density approximation according to Perdew and
Wang was employed [47]. The planewave cut-off was adjusted so that approximately 145
planewaves per atom were used for the phases with C11Ny stoichiometry. The differences
in total energies were converged to below 0.001 eV with respect to k-points integration.
For carbon and nitrogen atom types the same muffin-tin radius (R,,;=1.35 A) was used
and maintained fixed for all the investigated structures. Only for the graphitic C;1Ny4
model a relatively smaller R,,; value of 1.24 A was employed. For diamond, graphite
and the other isoelectronic C3N4 phases the amount of k-points and cut-off parameter
were in accordance with our previous calculations (cfr. Section 8.2 and Ref. [117]).

8.3.3 The analysed crystalline structures

In order to investigate the different properties of the C3N4 and C;;Ny stoichiometries it
has here been presented a cross-checking between two different forms of carbon nitrides:
the stable two-dimensional graphitic phase and the hard three-dimensional pseudo-cubic
system. First of all, the graphitic form has been chosen because representative for a
stable layered CN, network whereas the pseudo-cubic form stands for an hard three-
dimensional system. Secondly, since many sp3-bonded C3N4 phases have been proposed
in the early works [29, 115, 114], as a starting point of our investigation we thought
worthwhile to focus the attention only on certain phases for which the generation of the
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analogous C11Ny stoichiometry can be easily figured out, for example, by simply doubling
the length of one of the unit cell vectors. The pseudo-cubic system results as a perfect
example of a three-dimensional C3N4 phase from which the corresponding C11Ny4 can be
readily generated without any drastic increase of the number of inequivalent atoms per
unit cell. Further details are given separately in the following subsections for each of the
analysed CN, forms.

The graphitic and pseudo-cubic C3Ny

The graphitic-like structure (graphitic-C3Ny4) has been theoretically predicted to be the
most stable C3Ny4 phase [29, 117, 118, 115, 114]. For simplicity, the same intra-layer
geometry as in the hexagonal structure (ABA stacking) introduced by Teter et al. [29]
has been assumed in our graphitic-like model. Inside the layer each of the C atoms
is three-fold coordinated as is one of the four N atoms per cell, while the other three
nitrogens show a two-fold coordination (see Fig. 8.2). The whole system was fully
relaxed with the pseudo-potential method assuming an AAA packing sequence between
the sheets. Such relaxation was required in order to adapt the intra-layer geometry to the
new stacking order. Despite the fact that the AAA packing is not the most energetically
stable form, it has been explicitly chosen to stack the layers directly on top of each other
to enable an easier comparison of the results with the analogue graphitic-like C11Ny4 form.
As a matter of fact, a graphitic-like C11N4 system with a stacking sequence ABA or ABC
would have led to a larger number of inequivalent atoms per unit cell, yielding thus to
an enormous increasing of the calculational time. Beside this, since the total energy
interaction found in between the layers is weak (as in the case of graphite) it has been
finally decided to compare the two graphitic-like stoichiometries by assuming a common
AAA packing of the sheets.

The pseudo-cubic structure (bl-C3Ny4) shown in Fig. 8.20 is usually called “defect zinc-
blende” and exhibits a P43m symmetry and contains 7 atoms per unit cell [29, 114]. This
phase has been previously predicted by A. Y. Liu et al. [114] by substituting carbon and
nitrogen in the pseudo-cubic a-CdIngSey [161]. Since the bl-C3Ny4 originally optimised
by A. Y. Liu in Ref. [114] has shown some residual forces in our pseudo-potential code,
it has been decided to fully relax again the system for better results. The new optimised
geometry is now shown in Table 8.14.

The graphitic-, - and p-C11N, phases

The graphitic-C11Ny4 depicted in Fig. 8.21 has been theoretically introduced in our In-
stitute by A. Snis et al. in 1999 [162, 163]. This phase is isoelectronic with diamond
and C3Ny [117] and has been suggested as a possible hard material [104]. The configu-
ration with layers in a stacking sequence AAA has been fully geometry optimised with
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Figure 8.20: Ball and stick model of the bl-C3Ny4 structure. Figure shows the projection
of the atoms along the [001] plane.

Figure 8.21: One layer of the graphitic-C11N4 model phase.
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bl-C3Ny p-C11Ny a-C 1Ny
Cubic Orthorhombic Tetragonal
P23m (215) P222 (16) P12m (111)
7 15 15

C1(0.5000, 0.5000, 0.0000)  C;(0.5000, 0.5000, 0.2559
N1(0.2553, 0.2553, 0.2553)  C2(0.0000, 0.5000, 0.5000) Cs
C3(0.0000, 0.0000, 0.2793) Cf

( ) Cy
( )

( )
C4(0.2315, 0.2368, 0.1392) C4
( )

( )

( )

0.0000, 0.5000, 0.2575)
0.0000, 0.0000, 0.0000)
0.5000, 0.5000, 0.0000)
0.2552, 0.2552, 0.1281)
C5(0.0000, 0.5000, 0.0000) C's )
Cs(0.0000, 0.0000, 0.0000) Ny )

N1(0.7568, 0.2680, 0.3803

0.0000, 0.0000, 0.5000
0.2355, 0.2355, 0.6254

A~ TN N N N N

a=b=c=3.4087 a=3.4454 a=b=3.4944
bh=3.5540
c=7.2394 c=6.9004
90, 90, 90 90, 90, 90 90, 90, 90

Table 8.14: Optimised parameters for the bl-C3N; and the a-, 8-C11N4 phases. The
table shows crystal system, space group, atoms-unit cell™! and the atomic positions.
Cell constants are expressed in unit of A and the angles a, 3, v in degrees.

the same ab initio pseudo-potential planewave program [58]. The resulting geometry is
listed in Tab. 8.15. It is certain that such a model system is not likely to show low
compressibility due to the presence of weak inter-layer bonding. Nonetheless, its major
interests arise from the possibility to represent a low energy carbon rich model structure.
The pseudo-cubic C11 Ny configuration has been obtained from the analogue pseudo-cubic
C3Ny phase by simply doubling the unit cell along the a-lattice vector. In order to reach
the right stoichiometry one carbon has been added in the middle of the second cell, while
the four nitrogen atoms, constituting the “nitrogen-hole”, have been substituted with
four carbons [164]. This phase is here called a-C;1Ny (Fig. 8.22). Following the same
procedure but performing a slightly different atomic substitution, another phase called
B-C11Ny can be obtained (Fig. 8.23). The relaxation of the three-dimensional phases
gives the final optimised geometries as shown in Table 8.14.

8.3.4 Relative stability and phase transitions

There is no doubt that one of the most important effects in determining the stability of
carbon nitrides is the role played by the non-bonded N-N repulsions. These unfavorable
electrostatic interactions have already been demonstrated to be relevant in accounting
for the stability of some of the C3Ny phases [165, 138]. In fact, an interesting attempt to
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Figure 8.22: Crystal structure of the tetragonal a — C11Ny. Projection along the [100]
plane exhibiting the “nitrogen-hole”.

Figure 8.23: Projection of the orthorhombic g — C11 N4 crystal structure along the [010]
plane.
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Property graphitic-C11 Ny
Crystal System Orthorhombic
Space Group Pmm2 (25)
Atoms/unit cell 15
Atom type Coordinates (x, y, z)
4 (0.5000, 0.5000, 0.4425)
Co (0.5000, 0.2600, 0.2050)
Cs (0.5000, 0.2490, 0.1875)
Cy (0.5000, 0.5000, 0.2735)
Cs (0.5000, 0.2450, 0.5265)
Cs (0.5000, 0.0000, 0.4375)
Cr (0.5000, 0.0000, 0.7575)
Cs (0.5000, 0.0000, 0.2715)
Ny (0.5000, 0.0000, 0.9305)
N, (0.5000, 0.5000, 0.9495)
(

N3 0.5000, 0.2360, 0.6835)
Cell constants (A) a=3.4125; b=4.9214; c=8.5198
a, B,y () 90, 90, 90

Table 8.15: Optimised parameters for the graphitic-C11 N4 phase.

remove such interactions was made in 1995 by T. Hughbanks and Y. Tian [165], who pro-
posed the substitution of one N atom with one C to attenuate the critical N-N lone pair
repulsion in the 5-C3Ny system. However, such a procedure imposes in most of the cases
the use of new carbon-rich models (e.g. C4N3) for which the departure from the isoelec-
tronic systems becomes inevitable. In order to overcome this problem, and keep working
on isoelectronic models, it has here been studied the C11Ny4 system within which the elec-
trostatic contributions are kept similar to the analogue C3N4 models. One may notice
that, a much more difficult and interesting task would have been the use of isoelectronic
model systems where the smothering of the N-N interactions is provided, for example,
by avoiding lone pairs pointing directly one to each other. Unfortunately, despite many
efforts it has not been possible to provide such a model C;;N4 phase. Nonetheless, fo-
cusing the attention only on the changing of the C/N ratio, it has been found that the
interactions between sp2-hybridised nitrogens (e.g. atoms N3 and Ny of the 12-centers
carbon-nitrogen rings of Fig. 8.21) is not the only effect involved in accounting for the
stability of carbon nitrides. The larger cohesive energy revealed in the Cy1Ny4 stoichiome-
try is here assigned to the presence of an increased number of carbon-carbon connections
(see the ratio R(c_c/c—n) in Table 8.16), which have large bonding energies. According
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Structure AEys pp AEpp rpapw  Ric_cio—n)
graphitic-C11 Ny -9.6967 -7.9214 26/12
a-C11Ny +0.034 +0.028 16/12
graphitic-C3Ny +0.435 +1.030 0/14
bl-C3Ny +0.581 +1.176 0/12
B-C11Ny +0.993 +1.588 16/12

Table 8.16: Cohesive energy, AE (eV/atom), for various CN, phases. Free energy values
are scaled with respect to the stable graphitic-C11Ny4 structure. The ratio of the number
of chemical bonds per unit cell, Ric_c/c- Ny, is also shown.

to the bond counting rule [166, 167, 20, 153], the most stable structure maximises the
number of highly energetic bonds. It is well known that bonds between elements from the
27? row of the periodic table in which one or both elements possess lone pairs are weaker
than bonds in which neither of the constituents show lone pairs. As a matter of fact, the
C-N bonds (260-320 kJ/mol) are not as strong as C-C bonds (~ 350 kJ/mol) [168, 169].
Therefore, it is mostly due to the presence of a large number of chains and/or rings,
made of highly energetic C-C bonds, that the Ci1Ny4 stoichiometry results energetically
favoured over the C3N4 one. As shown in Fig. 8.24 and Table 8.16 this stoichiome-
try is predicted, from both US-PP and FP-LAPW methods, to have a cohesive energy
larger than that of C3Ny. Its graphitic form is energetically well below, 0.435 eV /atom
with US-PP, the corresponding graphitic-C3Ny as is the three-dimensional o phase (0.401
eV/atom). In particular, the layered C11N4 form results energetically more stable than
the corresponding C3N4 model because of the presence of an extended graphitic-like
matrix around the carbon-nitrogen ring in the direction of the c-axis (Fig. 8.21). The
introduced carbon system with thirteen C-C bonds per layer is here responsible of an
evident lowering of the energy of the system. Such a model phase results also as the
most stable C11Ny form not only because of the highest fraction of C-C/C-N bonds but
also because of the possibility to delocalise the nitrogen’s lone pair (atoms Ny and Nj)
into the graphitic-like matrix. Similarly, the same delocalisation effect is present in the
graphitic-C3Ny, where lone pairs can be dispersed into the m-electron circulation of the
C3Nj rings. It is because of this peculiar characteristic that layered phases represent, in
both stoichiometries, the low energy structure models [170]. In three-dimensional phases
the above possibility is limited by the presence of a uniform framework with sp? bonds.
However, the introduced diamond-like matrix with sixteen strong C-C bonds per unit cell
(Tab. 8.16) limits in the « phase (Fig. 8.22) the propagation of the neighbouring carbon-
nitrogen holes to the b-axis. Compared to the bl-C3Ny analogue (Fig. 8.20), where each
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Figure 8.24: Free energies (eV/atom) versus atomic volumes (A3 /atom) for various C3Ny
and C11N4 phases (US-PP).

of the carbon-nitrogen rings is surrounded by four others (network of pure C-N bonds),
it has here been reached a mixed C-C/C-N system using the same averaged number of
valence electrons. It is thus on the possibility to fit and weight the carbon-nitrogen ring
into a more stable three-dimensional carbon network that the a-Cq1Ny results energet-
ically favourable over the bl-C3N4. However, in spite of this general finding a very low
stability has been predicted for the 3 phase, where the presence of a “carbon-hole” (Fig.
8.25) drastically destabilises the three-dimensional C11N4 arrangement. More precisely,
the poor stability can be here attributed to the presence of carbon atoms (i.e. Cy, Cs
and Cg) with dangling bonds in the carbon cavity. Owing to these considerations, in the
following sections, we will mostly focus our attention on the a model.

Only a modest pressure is needed to overcome the energy barrier separating the
graphitic- and the a-Cq1 Ny phases and to induce a transition between them. Estimation of
this pressure from the slope at the common energy/volume intersection gives a hydrostatic
transition pressure necessary for the transfer less than ~ 2 GPa (1.7 GPa). Again from
the slope at the common energy intersection it has been calculated that a pressure of
about 82 GPa is needed to go from the graphitic- to the S-C11Ny phase.
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Figure 8.25: Front view of the “carbon-hole” in $-Ci1Ny.

Some thermodynamic considerations

To get further insight into the different stabilities of the CN, stoichiometries a theoretical
estimation of the standard molar enthalpy change of formation at 0 K is here presented.
The AH]‘{O computed for the formation reaction given in Eq. 8.12 has been estimated
with the FP-LAPW to be positive and sensibly larger than that of the of C3Ny (cfr. Eq.
8.1 in Sec. 8.2.3, p. 48).

11C(e) + 2Ny(g) = CrulNyo) (8.12)

By using the calculated cohesive energies of Tab. 8.17 to estimate the formation en-
thalpies shown in Tab. 8.18 it may be predicted that a layered form of C11N4 could be,
“in the best case”, only in competition with the formation of a three-dimensional C3Ny
phase (e.g. 8-C3Ny). In particular, for the two graphitic-like forms the difference in the
magnitudes of AH$, has been computed to be between 77 and 83 kJ/mol in favour of
the graphitic-C3Ny, depending on the applied functional. When considering the synthesis
of carbon nitrides with an extended sp3-bonded network (the two o phases), the same
trend in the enthalpy of formation has been highlighted. Calculations show again an
enthalpy difference between 69 and 96 kJ/mol in favour of the C3Ny4. A straightforward
explanation can be found in the energy balance proposed in Eq. 8.12. From the equa-
tion of the formation reaction it appears quite obvious that the energy required for the
breaking of the strong C-C bonds can be hardly compensated with the cohesive energy
calculated for the C11Ny stoichiometry (~ 1.0 eV/atom larger than that of C3N4 with
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LDA). Therefore, from a pure thermodynamic point of view the C3N, composition should
be generally favoured over the synthesis of the isoelectronic C;1Ny.

functional graphitic-C11Ngy  «a-C11Ny

LDA -7.92 -7.89
PBE -6.95 -6.91
PW91 -6.94 -6.90

Table 8.17: Calculated FP-LAPW cohesive energies of graphitic- and a-C11N4. Values
are given in eV /atom.

Standard enthalpy of formation in kJ/mol

CN, phase LDA PBE PWI1
graphitic-C3N, (hex.) 121.65 (121.65) 176.51 (217.04) 178.50 (219.03)
graphitic-C3Ny (orth.) 121.29 (121.29) 176.12 (216.64) 178.13 (218.65)

a-C3N, 128 183 185
B-C3Ny 184 253 255

graphitic-C1y Ny 197 (197) 257 (407) 259 (405)
a-C11Ny 240 302 317
cubic-C3Ny 321 389 391
b-CsNy 336 419 415

Table 8.18: Computed standard molar enthalpy of formation (AH]?’O) for the two CN,
stoichiometries (x=1.33 and 0.36) by using the cohesive energies seen in Tabs. 8.2, 8.12
and 8.17. Values in parenthesis correspond to the use of graphite as a starting material.

At first sight, this result seems to be in contrast with the experience accumulated in
depositing carbon based compounds with magnetron sputtering, which is one of the most
dominating processes for depositing hard materials. However, it is important to specify
that this conclusion has been drawn by comparing results coming from a limited number
of model systems, which have been assumed to be representative for the layered and the
three-dimensional forms. Therefore, it cannot be excluded that a further spanning of
the space of the crystal structures might lead to discover other stable phases with a very
different trend in the enthalpy of formation. Further, the experimental results are mostly
relevant to amorphous samples with a graphitic-/fulleren-like form for which the analogy
with the presented crystalline models is somehow arbitrary. Finally, a full kinetic study
should be introduced for a complete understanding of the problem. It is crucial to note
that the synthesis of carbon nitrides is usually performed at high temperatures where
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kinetic factors can play an important and predominating role. The stability of graphitic-
C11Ny, for example, cannot only be inferred by accounting for its thermodynamic but
also needs a deep kinetic investigation to understand its real phase stability. As a matter
of fact, C11N4 compounds could result thermodynamically unstable but at the same time
kinetically more favourable than C3Ny.

8.3.5 Calculations of the elastic and bulk moduli

In what follows we elucidate how it has been deduced the complete set of elastic constants
for the presented crystalline materials. The elastic constants determine the response
of the crystal to an externally applied strain (stiffness) and provide information about
the bonding characteristics between adjacent atomic planes, anisotropic character of the
bonding and structural stability. The main problem in estimating elastic constants from
first-principles is not only the requirement of accurate methods for evaluating the total
energy but also the heavy computations involved in their calculation. In particular, if
the symmetry of the system is reduced, the number of independent moduli increases
and hence a larger number of distortions is required to calculate the full set of elastic
constants [34]. For an orthorhombic material (like 8-C1;Ny) there are nine independent
elastic constants referred to as c11, ¢22, €33, a4, 55, Co6, C12, €13 and co3 [171]. They can be
deduced by applying small strains to the equilibrium lattice and determine the resulting
change in the total energy. The entire set of the elastic constants were determined by
straining the lattice vectors according to the rule,

R = R(1 +96) (8.13)

where R and R are, respectively, the matrix that contains the components of the distorted
and undistorted lattice vectors, 1 is the unity matrix and ¢ the symmetric distortion
matrix.

511 512 513
0= (521 522 523 (814)

031 032 033
The internal energy of a distorted crystal E(V, d) can be Taylor expanded in powers of the

components of § with respect to the initial internal energy of the static crystal E(V,,0)
in the following way:

E(V,8) = E(V,,0) +V, Z Z c“ iy Oy iy (8.15)

k=21;.. zk

V and V, denote the volume of the strained and unstrained crystal, respectively and
Ciy..i the kth-order elastic constants of the unstrained crystal in the Voigt notation. In
Eq. 8.15, the distortion components are defined according to d; = 0;; for k = 1, 2, 3
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Strain Parameters (unlisted 6;;=0) 2AE/ (V,0?)
1 011 =90 C11
2 090 =0 C22
3 033 =10 €33
_ — 1 1. _ _ d
4 611 = 022 = 033 = (17512)1/3 1; 093 = 032 = (175;)1/3 1 deyy
5 011 = 022 = 033 = W —1; 013 =031 = (1_552)1/3 —1 4dess
6 011 = 022 = 033 = o 1; 012 = 021 = 27 1 4dcge
7 511 = 1 1(;;()51/3 — 1; 522 = ﬁ — 1; 533 = (17512)1/3 —1 (611 + Ccoo — 2012)
8 o = (1_1;;()51/3 1; 692 = W —1; d33 1—15_()51/3 —1 (c11 +e33 —2c13)
9 o (1—512)1/3 1; 092 = ﬁ —1; 633 = ﬁ —1 (ca2+c33 —2¢93)

Table 8.19: Strains and elastic moduli for the orthorhombic phase.

and J; = 20;; for k = 4, 5 and 6. The quantity F(V,d) has been computed by using the
first-principles theory for different strains of the system. The Taylor expansion limited
to the second-order is here employed for the fitting of the numerical data. The elastic
constants, V, and E, = E(V,,0) are the fitting parameters.

In particular, the independent elastic constants for an orthorhombic material have
been found by considering nine different matrices ¢ to which correspond nine different
expressions of the total energy (see Table 8.19). The components of the distortion matrix
(Eq. 8.14) which do not appear in the table are set equal to zero. For each of the
applied strains, the total energy of the system has been computed for seven different small
distortions (6 = +0.02n,n = 0 — 3). Relaxation of the internal degrees of freedom has
also been carried out for the entire set of deformations. Finally, the elastic constants have
been found by fitting the energies against the distortion parameter. A similar procedure
has been utilised to deduce the six distinct, non-vanishing elastic constants (c11, ¢12, ¢13,
33, cq4 and cgg) [172] for a tetragonal solid (a-C11Ny4) and the three independent moduli
(c11, c12 and cqq) [173] for a cubic crystal system (b-C3Ny). The complete list of the
applied strains is shown in Table 8.20 and 8.21 for the tetragonal and the cubic systems,
respectively.

After having completed the calculation of the whole set of elastic constants it is
possible to estimate, for each of the investigated structures, the shear moduli by simply
applying the following linear relations. According to the finding of A. P. Gerk and D. M.
Teter, it has been assumed that the larger is the value of GG, the harder is the material.
The general formula of the isotropic shear modulus, Gy, was initially expressed as
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Strain Parameters (unlisted d,;=0) AE/]V,
1 (511 = 522 = 5 (011 + 012) 52
2 011 = 022 = 0; 033 = m -1 (c11 + c12 + 2¢33 — 4erz) 02
3 533 =4 %633(52
4 on = [ >] — 15 Oy = 20 (c11 — c12) 62
(1-9) 22 (1+611) 11 12
5 J31 = O30 = 13 = o3 = 30; b33 = 62/4 c146?
1
6 (512—521—%(5 (51—(522:(14-%)2—1 %06662

Table 8.20: Strains and elastic moduli for the tetragonal phase.

follows by A. Reuss in 1929 [36]:

1
G[so = B [(011 + C22 + 633) — (623 + C31 + 612) + 3(044 + Cs5 + 066)] (816)

Taking into account the proper symmetry relations, this modulus modifies as in the
following for an orthorhombic, tetragonal and cubic system, respectively:

1 1
GO 15 (011 + C22 + C33 — C12 — C13 — 023) + 5(644 + C55 + 066) (817)
1
Gy = B —(2¢11 + ¢33 — ¢12 — 2¢13 + 6¢44 + 3c66) (8.18)
1
G, = 5 (3011 —3c12 + 9044) (8.19)

Furthermore, for the calculation of the bulk modulus an isotropic strain has been applied
to the crystal cell. Then, the Birch type equation of state [31] has been used to adjust
the variation of the energy versus volume. This equation represents a well known and
tested fitting form able to describe P, V, T data for a wide class of solids. The main
assumption made is that no phase transition occurs during compression of the material.

Analysis of the results and discussion

In this subsection we comment the results achieved with the US-PP method (Table 8.22)
by straining the crystals in a volume and shape changing way. The calculated bulk
modulus for the a-C;1N4 has been found to be 460.6 GPa. This value is larger than the
estimated moduli for the bl-C3Ny (425.9 GPa), cubic boron nitride (396.6 GPa) and close
to those of cubic (463.7 GPa) and hexagonal (456.0 GPa) diamond [153]. On the contrary,
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Strain ~ Parameters (unlisted 6;;=0) Energy
1 (511 = 522 = 5; 533 = (1—1—1622 -1 AEZGVOC,52
2 012 = 621 = 0; 033 = 1o AE=2V,440?

Table 8.21: Strains and elastic moduli for a cubic system. By calculating the tetragonal
shear constant, C' = % (c11 — ¢12), and the bulk modulus, B = % (€11 + 2¢19), it is possible
to extract ci; and cio.

for the 8 phase a much lower B (367.2 GPa) has been calculated. However, its magnitude
approaches that of cubic boron nitride. As already discussed, the difference in the bulk
moduli between « and B can be roughly related to the lower stability of 5. Adjusting
the variation of the energy versus the unit cell volume for the layered C3N4 and C;1Ny
phases we found the following B numbers: 209.5 GPa and 226.0 GPa. These moduli are
quite close to each other indicating that the hardness of layered carbon nitrides remains
mostly invariant with respect to a significant lowering of the nitrogen concentration.

The systematic investigation of the lattice stability was originally done by M. Born
and K. Huang [174, 175], who showed that by expanding the internal crystal energy in
a power of series in the strain and by imposing the convexity of the energy, it is possible
to obtain stability criteria in terms of a set of conditions on the elastic constants. The
requirement of mechanical stability in a cubic crystal leads, for example, to the following
restrictions on the three elastic constants [176]

(011 — 012) >0, c11 >0, cqq >0, (011 + 2012) > 0. (8.20)

For a tetragonal crystal, which has six independent elastic constants, these conditions
are as follows [176]

(011 — 012) > 0, (011 + C33 — 2013) > 0,
c11 >0, ¢33 >0, ¢g9 > 0, cg6 > 0,
(2¢11 + ¢33 + 2¢12 + 4cq3) > 0. (8.21)

Finally, for orthorhombic crystals with nine elastic constants, the mechanical stability
leads to the following restrictions [176]

(011 + co9 — 2012) > 0, (011 + c33 — 2013) > 0, (022 + c33 — 2623) > 0,
c11 >0, ca2 >0, ¢33 >0, cqq > 0,¢55 > 0,66 > 0,
(CH + c9o + ¢33 + 2¢12 + 2¢13 + 2023) > 0. (8.22)

The complete set of zero-pressure elastic constants are shown in Table 8.22 together with
the related isotropic shear moduli. The first thing to note is that the whole sets of c;;
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Property bl-C3Ny a-C11Ny B-C11Ny
c11 842.9 (840) 959.4 728.5
Ci2 217.4 (213) 151.7 206.9
C13 - 261.0 205.6
C22 - - 727.2
C23 - - 209.1
C33 - 889.0 616.2
C44 454.6 (452) 617.8 252.8
Cs5 - - 348.0
Co6 - 589.0 235.5
G 397.9 (397) 507.2 263.9
B 425.9 (425) [425.9] 460.6 [461.7] 367.2 [368.3]
B’ 3.80 5.27 3.61
V, 5.66 5.58 5.91
E, -9.1162 -9.6610 -8.7033
o) 3.86 3.71 3.52

Table 8.22: Theoretical values of the elastic constants (c;; in GPa), isotropic shear mod-
ulus (G in GPa), bulk modulus (B in GPa), its pressure derivative (B'), atomic volume
(V, in A%/atom), cohesive energy (E, in eV /atom) and atomic densities (p in g/cm?) of
bl-C3N, and a-, $-C11N4. Values in round brackets refer to the work of A. Y. Liu and
R. M. Wentzcovitch [114] whereas those in square brackets concern the bulk modulus
calculated by combining the elastic constants.

satisfy all the above conditions, indicating a certain mechanical stability for the a and
B phases. Therefore, even though they are not the most energetically favored structures
for the C11Ny stoichiometry, they could be at least metastable materials. The calculated
shear moduli validate the same hardness trend as found with the estimated bulk moduli.
The isotropic G value for the « phase is at about 110 GPa higher than that of bl-C3Ny,
indicating a clear hardening of the C11Ny4 stoichiometry over the C3Ny analogue. As
expected, for the 5 phase the calculated modulus has been found well below the value of
the a structure, confirming thus the destabilising effect of the carbon-holes with dangling
bonds.

It is certain that the introduction of arbitrary deformations of the unit cell followed
by the calculation of the total energy, which is many orders of magnitude larger than
elastic energy, tends to decrease the accuracy of the calculated moduli. Nonetheless, the
extrapolated isotropic shear moduli for diamond and cubic boron nitride have recently
been shown to be in good agreements with the experimental results [153]. Consequently,
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the large and positive c;; values found for the three-dimensional o-C11N4 model system
can be taken as a reference in accounting for its large hardness. It is also worth to note
that by augmenting the number of sp? carbon tetrahedra, the hardness of the material
gets closer to that of diamond (Gyp=535 GPa and Be;,=443 GPa [29]; G =558.5
GPa and B,,;=463.7 GPa [153]). As a matter of fact, the resistance to deformation is
improved in the « phase by the presence of a large number of sp? carbons which have
difficult access to higher electronic states, namely d-states. From this picture, the process
of rehybridisation, which takes place after deformation of the solid, results not favored
leading thus to less compliant bonds. It is because of this characteristic that diamond
will probably remain the hardest known material with high elastic constants values and
a large shear modulus [29, 177].

Poisson’s ratio and Young’s modulus For all the investigated crystal structures,
the bulk modulus of a polycrystalline material has also been estimated in the Voigt’s
approximation from the following equation:

B = % (011 + c99 + 033) + % (012 +ci13 + 023) (823)
The calculated values are given in the square brackets of Tab. 8.22. The bulk moduli
computed from the elastic constants and from the fit to a Birch equation are almost the
same, giving thus a consistent prediction of the compressibility of the analysed phases.
Because of the special significance of the Young’s modulus'' and Poisson’s ratio for the
technological and engineering applications, these quantities have also been calculated by
combining together the bulk and shear moduli. In particular, the elastic properties of
materials may be mainly characterised by the Poisson’s ratio, which gives a measure of
the stability of a crystal against shear. The Young’s modulus, E, and Poisson’s ratio, v
are given by

9BG
E=s5+¢ (8:24)
3B — 2G
= — 2
Y= 3BB+0) (8:25)

The calculated Poisson’s ratios and Young’s moduli are shown in Tab. 8.23. The smaller
value of the Poisson’s ratio for the a-C11Ny indicates that this phase is relatively stable
against strain. The estimated Young’s moduli support the same hardness trend as already
predicted with the use of B and G.

" The Young’s modulus, E, (also known as the elastic modulus) is defined as the ratio between stress
and strain and indicates the stiffness of the material.
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bl—CgN4 CM-CHN4 ,6-011N4 diamond

B/G  1.07 0.91 1.40 0.83 (0.83)
E 910 1114 639 1196 (1140)
v 0144  0.098 0.211  0.070 (0.069)

Table 8.23: Table shows the calculated B/G ratio, Young’s modulus (GPa) and Poisson’s
ratio (dimensionless) of bl-C3Ny and a-, 5-C11N4. Diamond has also been listed as a
reference material. Values in round brackets concern the properties of CVD diamond as
compiled in Ref. [178].

Brittleness and ductility In order to predict the brittle and ductile behaviour of
materials, S. F. Pugh [179] introduced in 1954 the quotient of bulk modulus to shear
modulus of polycrystalline phases (B/G) by considering the shear modulus G representing
the resistance to plastic deformation and the bulk modulus B the resistance to fracture.
Therefore, with such an assumption a high (low) B/G value becomes associated with the
ductility (brittleness) of a certain solid. The critical number which separates ductile and
brittle materials has been fixed at about 1.75.

The calculated B/G ratio for the phase a-C11Ny is 0.91 (see Tab. 8.23) whereas for
the analogue bFC3Ny 1.07. These results suggest that both CN, stoichiometries provide
rather brittle materials, though their values are still slightly higher than that of diamond
(B/G=0.83).

8.3.6 Electronic structure
Density of states of bF-C3Ny

The calculated electronic density of states (DOS) of bl-C3Ny4 at the equilibrium structure
is shown in Fig. 8.26. A band gap, E4, of 2.86 eV has been computed with the use of
LDA approximation. From the partial components of the DOS, it has been found that
the lower part of the valence band consists mainly of 2s orbitals from nitrogen and carbon
atoms, whereas the middle portion (-15 eV < E < -5 eV) is dominated by the mixing
of the C and N 2p orbitals. The very sharp VB edge indicates the presence of highly
localised N states with 2p character. These states can be attributed to the non-bonding
electrons belonging the so-called “nitrogen-hole”. Finally, the portion of the conduction
band in between 5 and 15 eV is mostly dominated by the states of carbon and nitrogen

2p.
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Figure 8.26: The calculated DOS for the bl-C3N, phase (FP-LAPW).



8.8 The isoelectronic C11 Ny model system 91

Density of states of a- and §-C;1Ny

The total DOS for the a and the 8 phases are illustrated in Fig. 8.27. The first structure
shows a band gap of 2.40 eV whereas in the latter no E, has been found (cfr. the
two density of states in Fig. 8.27). The total DOS relative to « displays nearly the
same 2p states mixing as in the isoelectronic bl-C3Ny. The peak located at the top
of the VB still consists of nitrogen states with 2p character. Both the VB and CB
are sharper and indicative of a larger electron density. As already mentioned, the
phase does not show any band gap. This is mainly due to the presence of carbon states
located just above the Fermi energy. Their existence is assigned to the highly distorted
tetrahedral geometries of the atoms constituting the “carbon-hole”. More precisely, the
most prominent contributions have been found (partial DOS not shown here) from the
2p orbitals of the atoms Cg and Cs, which are composing the carbon cavity.

Calculation of Energy Loss Near Edge Structure

For light elements like carbon, boron and nitrogen, electron energy loss spectroscopy
is a useful technique because of its ability to differentiate the types of bonding in a
polymorphic material. The characteristic fine structure in the first few eV beyond the
beginning of the core loss ionisation edges supplies the so-called coordination fingerprints,
which can be used to distinguish different phases in complex systems. Since in our case
of theoretically predicted CN, phases such reference spectra do not exist, it becomes
worth having a theoretical approach to simulate the ELNES. The calculations of the
energy loss near edge structures have been performed with the WIEN97 code according
to the formalism of M. Nelhiebel et al. [180]. In this part of the Chapter, we present
spectra due to the carbon and nitrogen K-shell excitation (n=1, [=0) of various CN,
compounds. Parameter settings have been used to simulate polycrystalline samples by
averaging over all possible incident-beam directions (integral over 4m). Nonetheless, the
neglected anisotropy effects which are mostly important for layered structures should
only change the intensity of the peaks but not their positions. The energy of the incident
electrons was fixed to 200 KeV and the energy loss of the first edge to 285 and 400 eV
for carbon and nitrogen, respectively.

In order to probe our calculational method, diamond and graphite have also been
investigated. Their relative C K ELNES spectra are depicted in Fig. 8.28 and the
positions of the most prominent peaks (labelled I to IV) are listed in Tab. 8.24. Peak
I in the C K edge of graphite corresponds to the electronic transitions 1s — 7*. This
feature usually identifies sp-hybridised materials and consequently it does not appear in
the diamond spectra. The peaks II-V are related to 1s — o* transitions. A reasonable
correspondence between our calculations and the experimental results has been found
in Tab. 8.24. Moreover, the computed relative peak positions match better with the
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Phase Edge I II III IV A%
Diamond C K Thesis - 0 53 129 -
MS approacht - 0 44 120 -
exp.T - 0 55 129 -
Graphite C K Thesis -6.4 0 4.6 10.0 14.3
MS approacht -49 0 25 6.6 10.3
exp.t -6.8 0 44 11.2 147

Table 8.24: Positions of peaks I-V in the spectra of Fig. 8.28. All the positions are scaled
with respect to the main o* peak II. Values are in units of eV. () Values as compiled in
Ref. [181].

experimental finding than the Multiple Scattering (MS) approach [181].

The calculated plain and broadened spectra for different CN, materials are shown
in Fig. 8.29 and 8.30 for the C and N K edges, respectively. The spectra for graphitic-
like C3Ny and C;1Ny reveal mainly graphitic features (Fig. 8.29), whereas the three-
dimensional bl-C3N, and a-C11N4 exhibit a closer similitude to the diamond spectra.
However, despite this general similarity the shape and the number of ¢* peaks relative to
the C11N4 edges differ quite evidently from those calculated for the C3Ny stoichiometry.
Especially in the region between 5 and 15 eV (in both edges) a different characteristic
fingerprint can be assigned to each of the studied systems, opening thus the possibility of
identifying these model phases in thin-film samples via EELS technique. The particular
sharp 7* peak found at the beginning of the N edge of the graphitic-C11N4 (plain line
of Fig. 8.30) indicates the presence of a pronounced sp? bonding character. The main
contributions to this feature are due to the No and N3 atoms constituting the 12-centers
carbon-nitrogen rings.

8.3.7 Concluding remarks

The present investigation reports the study of the stability and hardness of two model
carbon nitride stoichiometries isoelectronic with diamond: C;Ny4, where =3 and 11. In
the first part of this Section it has been carried out the theoretical determination of the
equilibrium structural parameters and cohesive energies of novel C1;Ny phases. Calcu-
lations have shown that the introduction of an extended carbon system, which can be
of graphitic-like or diamond-like type, can represent an important way to increment the
phase stability of carbon nitrides. Both layered and three-dimensional C;;N4 materials
have been predicted to have a cohesive energy larger than the corresponding isoelectronic
C3Ny. This result has been achieved using two different computational methods within
the DFT: US-PP and FP-LAPW. However, in spite of the increased cohesive energy the
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standard enthalpy of formation has been calculated for all the investigated C11N4 phases
to be positive and generally larger than those of the analogues C3Ny forms. Therefore,
from a simple thermodynamic approach the synthesis of crystalline carbon nitrides with
higher carbon content should be less feasible than the well-known C3Ny4 stoichiometry.
However, if a sample with C11N4 composition could be realised by means of some type of
synthetic process, a considerable activation energy would be required to break the large
number of strong C-C and C-N bonds, thus making this substance thermodynamically
metastable at ambient conditions. Furthermore, even though the calculated enthalpy
difference between the stable graphitic-like forms of C3Ny4 and C;;Ny4 seems to be large
enough (75-80 kJ/mol) to favour the synthesis of one stoichiometry over the other, amor-
phous samples will be probably often obtained upon trying to deposit any of the CN,
compositions. This general conclusion has been drawn by looking at the small energy
separations found in between the AH ;’,U’S calculated for the whole set of CN, phases. It
is thus expected that a mixture of different phases such as graphitic-like and other three-
dimensional networks will be always obtained simultaneously. Therefore, different C;1Ny4
and C3Ny forms with a very close energy stability could exist and their discrimination
would be thus nearly impossible at the experimental level. The possibility to have few
stable structures which could be in dynamical equilibrium at room-temperature has also
been hypothesised in 2000 by E. Sandré [182] for CN, (#=0.33) systems. So far as that is
concerned, it would be worthwhile to investigate different fulleren-like phases to check if
any larger increase in the stability could be found. Unfortunately, due to the high cost of
computational time needed for such an investigation we reserve this study for a possible
future project.

A large part of this Section has also been directed to the calculation of the indepen-
dent, non-zero elastic constants from first-principles. The analysis of the complete set
of elastic moduli for the o phase shows that the Cy;Ny stoichiometry can lead to the
formation of very stiff materials. More generally, the increasing of the carbon concen-
tration induces to a significant improvement of the hardness of carbon nitrides, provided
that the same isoelectronic structure is kept in the model system. Furthermore, the
density of states have been analysed in order to gain insight into the chemical bonding
of phases with different stoichiometries. A band gap of 2.4 eV has been calculated for
the three-dimensional « structure. Finally, the characteristic ELNES coordination fin-
gerprints have been reported for various CN, forms. The proposed spectra may be used
as a precious tool for the characterisation and the identification of novel carbon nitrides
phases in polymorphic samples.
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Boron Carbon Nitrides

9.1 Ternary BCN compounds

The interest in the boron carbon nitrides with general composition B, C,N, arose from
the difficulty to obtain new materials for abrasives, heat sinks and protective coating ap-
plications. Ternary systems with a diamond-like structure in which some of the carbon
atoms are replaced with nitrogen and boron are expected to show the same interesting
properties found in diamond and cubic boron nitride, such as hardness, wide band gap
and high melting points. As a consequence their potential applications could be found
in several mechanical and electronic devices [183, 17, 184]. Moreover the low oxidation
resistance of diamond, which is one of the most important drawbacks for its applications,
might be improved in the boron-based hard materials. As a matter of fact diamond can
only be used at around 600 °C in air, while cubic boron nitride avoids the oxidation
up to 1100 °C [145, 185]. The first evidence of a graphitic-like BCN compound with
BC:3N stoichiometry dates back to the synthesis of Kouvetakis et al. [13, 14], where
chemical vapor deposition method was used with BCl3 and CH3CN as starting materi-
als. These layered structures have been largely investigated both experimentally [13, 14]
and theoretically [166, 186, 187, 188, 189, 190]. Further investigations concerning highly
dense three-dimensional phases were carried out by Tateyama and Tsuneyuki [20] who
have shown the possibility to obtain ordered BC2N structures directly through compres-
sion of the layered BCyN form. An elegant study of the electronic properties along the
C9-BN pseudo-binary junction has also been presented by W. R. L. Lambrecht and B.
Segall [191, 192]. Early theoretical calculations of the bulk [20] and shear [21, 22] moduli
have suggested that these compounds should possess an intermediate hardness between
diamond and cubic boron nitride. At the experimental level several efforts have been
made in order to modify the graphitic BCaN systems into hard three-dimensional phases
[183, 17, 184, 193, 194, 18, 19]. Despite the use of high-pressure and high-temperature

98
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methods no common results were found in the last decade. Some researchers had prob-
lems with a certain limited solubility [15, 16], while others claimed an evident segregation
in a mixture of diamond and ¢-BN [17, 18, 19]. However, very recently a promising work
of L. Solozhenko et al. [6] has been published on the same subject. These authors have
shown results that seem to point out to a successful synthesis of a cubic BC3N phase with
a lattice parameter of 3.642(2) A at ambient conditions. Even though the interpretation
of the diffraction patterns has led the authors to the conclusion of a space group between
Fd-3m and F-43m, the atomic structure has not yet been properly defined. Therefore, it
is important to use three-dimensional BC3N models to provide insight on the uncertain
experimental results. That is, to help the interpretation of the experimental finding via
a detailed study of the chemical bonding implied in highly dense boron carbon nitrides.

In this Chapter the investigation has been focalised on the determination of the
stability and the hardness of novel hypothetical BCyN structures obtained from the
relaxation of the substituted diamond. What is required is to find a system, like diamond,
where the sp? bonds form strong and uniform three-dimensional frameworks. To discover
the existence of new ultra-hard phases the substitution of some of the carbon atoms
with boron and nitrogen has been performed in two different diamond forms: cubic and
hexagonal. The number of substituted carbon was fixed in order to get isoelectronic
heterodiamond BCyN phases. After the carbon replacement a full geometry relaxation
was performed with a first-principle pseudo-potential method to find the fundamental
electronic ground state. The obtained hypothetical compounds are expected to be more
thermally and chemically (i.e. versus oxidation) stable than diamond and harder than
cubic boron nitride. This possibility makes them the most interesting class of materials
capable to supersede the expensive diamond in various applications.

The Chapter has been organised as follows: first of all we elucidate the building
strategy adopted to create novel three-dimensional BCsN models. Secondly, the relative
stability between different phases is qualitatively discussed from a chemical bonding
point of view and the mechanical properties are studied via bulk and elastic moduli. In
particular, the hardness of the solid was analysed by measuring the resistance of the
material upon both volumetric (B) and shape (G) changes. The major difference is in
the fact that B requires variations in bond distances only, while G depends mainly on
the changes in bond angles. Density of states, band structures and electron-energy-loss-
spectroscopy spectra are also presented.



100 Chapter 9: Boron Carbon Nitrides

9.2 Setting up novel three-dimensional BC,;N phases

9.2.1 Cubic and hexagonal diamond

Cubic diamond and lonsdaleite! (sometimes called “hezagonal diamond”) are both crys-
talline forms of pure carbon (Tab. 9.1), where all the atoms are tetrahedrally bonded
(sp>-type). Their unit cell structure is shown in Fig. 9.1 and Fig. 9.2 for diamond and
lonsdaleite, respectively. These two structures are related to each other as the spha-

Figure 9.1: Unit cell of cubic diamond. This structure was first determined in 1913 by
W. H. and W. L. Bragg [195]. That was also the first time that the structure of an
element was determined by the use of X-ray diffraction [196].

lerite with the wurzite. The {111} planes on the diamond structure and {001} planes in
lonsdaleite are identical; they are made of puckered hexagonal rings with a chair-form.

1t is a rare hexagonal polymorph of diamond, believed to have formed when meteoric graphite falls to
earth. When this happened, great heat and stress transformed the graphite into diamond, but it retained
graphite’s hexagonal crystal lattice. Lonsdaleite is currently found only in the famous Barringer Crater
(also known as meteor crater) in Arizona.



9.2 Setting up novel three-dimensional BCoN phases 101

Figure 9.2: Unit cell of lonsdaleite (hexagonal polymorph of diamond).

The difference between these two structures is in the stacking of these planes. Diamond
shows a staggered configuration of the C-C second-neighbour bonds with a chair-form
configuration of the puckered hexagonal rings, while lonsdaleite shows an eclipsed con-
figuration with a boat-form (see Ref. [8] for a detailed discussion). The slightly higher
energy of these eclipsed lonsdaleite carbons causes its structure to be slightly less stable
than that of diamond.

The basic idea behind the theoretical work presented in this Chapter starts from the
fact that an introduction of the B and N atoms in the above diamond structures should,
in principle, lead to the formation of new systems with large hardness and an increased
oxidation resistance. It is because of this great expectation, that a major portion of the
work has been directed to the understanding of the properties related to the BC2N model
phases. The following subsections show the criteria applied in replacing the carbon atoms
in both cubic and hexagonal diamond phases.

9.2.2 Carbon substitution

Starting from the cubic form of diamond we have replaced four of the eight carbon
positions with two nitrogen and two boron atoms. Two different ways of replacing the
carbon atoms are shown in Tab. 9.2. Successively, the lattice vectors and atom positions
were fully optimised with the US-PP/LDA method to obtain the BC3N ground state.
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Property Diamond Lonsdaleite
Crystal system cubic hexagonal
Space group Fd3m (227) P63/mmc (194)
Atoms per unit cell 8 4
Positions of atoms (0, 0, 0), (%, %, 0) (0,0,0),(0,0, %)
(?7%7%)7(%727 %1) (%’%’%)7(%’§’%)
R
(.51, (55 1)
Cell constants a=3.5 a=2.52; ¢=4.12

Table 9.1: Crystal structure data for cubic and hexagonal diamond. Cell constants values
are expressed in unit of A.
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Table 9.2: Substitution of the carbon atoms in the fcc diamond.

We have explicitly chosen to start from a primitive diamond system with eight atomic
positions per unit cell so that no symmetry conditions are imposed and all the atoms in
the cell are free to optimise independently. In the above substitution process we have
applied the consideration made in 1997 by Tateyama et al. [20]. He discovered that the
bond counting rule, i.e. maximum number of C-C and B-N bonds, found in the layered
structures is also valid for heterodiamond BCsN. In particular, it has been predicted that
the most stable BCyN structures have no B-B or N-N bonds and maximise the number
of C-C and B-N connections with C-B disfavoured. It has also been proposed that the
phase with alternate -C-C- and -B-N- chains or rings is the most stable one. Following
these suggestions it has been found that the carbon atom positions as substituted in Tab.
9.2 are the best choice to avoid the formation of low energetic bonds. A dense three-
dimensional orthorhombic phase is proposed by substituting four carbon atoms with two
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Property [-BC3N II-BCyN ITI-BC2N
System orthorhombic orthorhombic trigonal
Space group P2221 (17) Pmm?2 (25) P3ml (156)
Atoms/cell 8 4 4
X,Y,7% N(0.258,0.000,0.000) N (0.500,0.500,0.380) N (0.000,0.000,0.571)
B(0.000,0.748,0.250)  B(0.500,0.000,0.124)  B(0.333,0.667,0.441)
C1(0.742,0.500,0.000)  C1(0.000,0.500,0.631) C1(0.000,0.000,0.934)
C2(0.500,0.255,0.250)  C2(0.000,0.000,0.866) C2(0.333,0.667,0.054)
Cell const. a=3.5536 a=2.5280 a=b=2.4955
b=3.5986 b=2.5024
c=3.5528 c=3.5871 c=4.1923
a, B,y 90, 90, 90 90, 90, 90 90, 90, 120
dy-c 1.539 1.552 1.522
dy-_p 1.565 1.549 1.540
dp_c 1.558 1.569 1.625
de—c 1.519 1.509 1.525

Table 9.3: Optimised parameters for heterodiamond BCyN structures. Cell constants
and bond distances are given in unit of A.

nitrogen at the positions (0, %, %) and (%, 0, %) and two boron at (i, i, i) and (%, i,
%). The optimisation of the lattice parameters and the ions relaxation were performed
iteratively until the minimum on the total energy was met (see Tab. 9.3). This system
is here called I-BCaN and consists of an orthorhombic crystal where carbon, nitrogen
and boron atoms are tetrahedrally coordinated (Fig. 9.3). The crystal motif is made of
C4NB, C3N3B, C3B2N and C9BsNy rings with a chair form configuration. Following
the same procedure another orthorhombic phase called II-BCsN (see Fig. 9.4 and Tab.
9.3) was found starting from the cubic diamond. This structure is obtained by replacing
the carbon atoms in positions (0, 0, 0) and (%, %, 0) with boron and in (i, %, %) and
(%, i, %) with nitrogen. The phase II-BCyN is characterised by the same hexagonal
rings with a chair form configuration as in I-BCyN but a different atom type disposition
is used to build-up the rings. However, in both phases each electron rich nitrogen is
bonded with two electron poor boron atoms and two carbons in order to reach the fourth
co-ordination. In the same way the boron atoms are connected with two nitrogens and
two carbons. The structure is then completed with carbon atoms tetra-coordinated with

two nitrogen (or two borons) and two carbon atoms each.

To individuate new ternary B-C-N phases, the same above procedure has been applied
to the lonsdaleite, where two of the four carbon positions have been substituted with one
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Figure 9.3: Crystal structure of the orthorhombic I-BCyN. Carbon, nitrogen and boron
atoms are depicted in black, white and grey, respectively.

boron and one nitrogen (Tab. 9.4). In particular, a trigonal structure called III-BCaN
(Fig. 9.5) has been found when two carbon atoms in the positions (0, 0, 2) and (3, 2, 3)
were replaced with nitrogen and boron, respectively. Subsequent geometry optimisation
(Tab. 9.3) brings the phase in an energy minimum state where the boron atoms are
four co-ordinated with three nitrogens and one carbon. Nitrogen atoms show a fourth
co-ordination with three borons and one carbon while the carbon atoms are tetrahedrally
bonded to one boron and three other carbons. This phase is built-up with Cg and B3Nj3
rings connected with each other via C-B and C-N bonds. According to the bond counting

rule, this phase contains C-C and B-N bonds and no B-B or N-N bonds are present.

Atom Positions Lonsdaleite III-BCyN
( )

o=
=
=

?

N N~
wol—=wl—= O
wlnowolo O
[0~ |0l
— N

QaaaQ
QW =zZzAa

Table 9.4: Substitution of the carbon atoms in the hexagonal diamond.
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Figure 9.4: Crystal structure of the orthorhombic IT-BCsN.

9.3 Computational details

Calculations of the ground state geometries were carried out in the framework of density
functional theory in its local density approximation to the electron exchange and cor-
relation within the VASP package. The interactions between the ions and the electrons
are described by using ultra-soft Vanderbilt pseudo-potential and the electron-electron
interaction is treated within the LDA by the Ceperley-Alder exchange-correlation poten-
tial. In our computational scheme the conjugate-gradient algorithm was used to relax
the atom positions of the BCoN systems into their ground states. The structural pa-
rameters were considered to be fully relaxed when forces on the atoms were less than
0.02 eV/A and all stress components were less than 0.003 eV /A3, The calculations were
performed by using an energy cut-off of 434.8 eV for the plane wave basis set. The tetra-
hedron method with Blochl corrections was applied for both geometry relaxation and
total energy calculations. Brillouin-zone integrals were approximated using the special
k-point sampling of Monkhorst and Pack. Density of states, band structures and energy
loss near edge structure spectra were performed on the optimised US-PP structures by
using the accurate full-potential linearized augmented plane wave method (WIEN97 pack-
age). For the exchange-correlation potential the LDA approximation has been used as
parameterised by Perdew and Wang [130]. The maximum spherical harmonic [ value of
partial waves inside the atomic spheres was set equal to 10. A local s-orbital was added
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Figure 9.5: Crystal structure of the trigonal III-BC3N phase.

to the LAPWs in order to avoid the presence of unphysical states (e.g. ghost bands) and
to improve the flexibility of the basis set. FP-LAPW calculations were completed for
the I-BC,N at approximately 106 plane waves per atom (pws/atom) and 91 inequivalent
k-points with a 7x7x7 k-mesh in the BZ, whilst for the II-BCyN 119 pws/atom and 150
inequivalent k-points (8x8x6) were sufficient enough to achieve the desired accuracy.
Finally, 101 pws/atom and 95 inequivalent k-points (9x9x5) were employed to describe
the trigonal ITI-BCyoN phase. For all the investigated model systems, the difference in
total energies were converged to below 0.002 eV with respect to k-point integration and
kinetic energy cut-off. For carbon, nitrogen and boron the same muffin-tin radius of 1.40
A was kept in all the analysed structures.

9.4 BOC;,;N phases and their relative stability

From the performed calculations both methods, FP-LAPW and US-PP, predict for the
ITI-BC4N to be the most stable structure (Tab. 9.5). With the use of the US-PP method
this phase is estimated to be around 0.24 eV /atom more stable than I and II and close
to the energy of the layered BCsN. Calculations computed with the FP-LAPW tend to
emphasise the energy differences between the various BCoN structures. Nevertheless, the
energy trend agrees quite well with the US-PP estimations (see Tab. 9.6). According to
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7

Structure V, Econ. B B
cubic diamond 5.488 -10.15800 463.68 3.68
(exp.)[8] (5.673) (443) (3.67)
hexagonal diamond 5.508 -10.12760 456.03 3.68
(exp.)[196] (5.61-5.67)
c-BN 5.705 -9.74120 396.60 3.61
(exp.)[197] (5.930) (369-382)  (4.0-4.5)
h-BN 8.853 -9.69480 248.76 3.94
(exp.)[198] (9.042)
graphitic-BCoN 8.403 -9.69482 276.99 3.43
I-BC,N 5.679 -9.51096 459.41 2.11
I1I-BCoN 5.673 -9.51404 408.95 3.54
ITI-BCyN 5.653 -9.75195 420.13 3.40

Table 9.5: Structural and cohesive properties of various phases: atomic volume V, (A3),
bulk modulus B (GPa), pressure derivatives B and cohesive energy Eon. (eV/atom).
The latter values have been obtained by taking the difference between the total energy
of the solids and the ground-state energies of the spherical non spin-polarised atoms. No
correction for zero-point motion has been made.

the bond counting rule, phase III contains a large number of C-C and B-N bonds and
no B-B or N-N connections are present. The larger stability found for this phase can
be addressed to the presence of Cg and B3Nj3 rings connected to each other by C-B and
C-N bonds. As already predicted by Tateyama et al. [20], phases made up of alternate
-C-C- and -B-N- rings show a significant increasing of the stability. As a matter of fact
the lowering in the cohesive energy found for the phase I-BC3N can be attributed to the
fact that the pure -C-C- and -B-N- chains are repetitively broken by the presence of B
and C atoms (refer to the zig-zag ion chains going from left to right of Fig. 9.3). The
US-PP energy curves of the phases I, IT and III are shown in Fig. 9.6 together with
some of the starting materials. All the presented systems have previously been optimised
with the same method of calculation. For simplicity, the graphitic-BCsN phase has been
taken from the semi-conducting model (II) for a BC3;N monolayer proposed by Liu,
Wentzcovitch and Cohen [166]. Assuming the graphite-like stacking AB of these sheets
(Fig. 9.7), an orthorhombic crystal with an Ama2 (40) space group has been found after
having performed the full geometry relaxation. The optimised structural parameters have
been used to represent the graphiticcBCyN model phase (Tab. 9.7). The A-BN refers to
the layered hexagonal BN structure (graphite-like form) with four atoms in the unit cell
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BCsyN structure AFEps_pp AEpp_papw

graphitic 0.0 0.0
I +0.184 +0.202
IT +0.181 +0.197
111 -0.057 -0.073

Table 9.6: Calculated energy difference, AE (eV/atom), for various phases relative to
the graphiticcBCoN form.

[198]?. This system exhibits an AA"AA’... stacking sequence with boron atoms in layer
A placed directly below the nitrogen atoms in layer A’ (see Fig. 9.8). The diamond-like
form of BN (¢-BN) has a zinc blende structure with space group F43m (Fig. 9.9). This
cubic form shows two atoms-cell™! and a lattice constant of 3.615 A [2]3.

From the energy-volume curves it is clear that the phases I- and II-BC3N could
only be metastable forms of the heterodiamond BCyN system while the III-BCsN is in
principle expected to be in competition with the formation of the graphitic-like model.
Since the energy curves of both I- and II-BC3N lay at about 0.65 and 0.23 eV /atom
(cfr. Tab. 9.5 and Fig. 9.6), respectively above the curves of diamond and c¢-BN,
a segregation in a mixture of the starting materials is expected during a hypothetical
attempt of preparation. Starting from the graphitic-BCoN a transition pressure of ~ 65
GPa has been predicted in order to obtain the formation of the phases I- and II-BCyN
(Fig. 9.10). On the contrary the energy curve minimum relative to the ITI-BCsN appears
very close to that of the cubic and hexagonal BN. This phase is also slightly more stable
(0.057 eV/atom) than the layered BCyN form. Therefore, in all probability it could
be synthesised over the phases I and II, and a competition with the formation of the
graphiticcBCoN is also very probable to happen.

9.4.1 Enthalpy of formation

From the values of the cohesive energies it is possible to estimate the standard enthalpy for
the formation reaction of a three-dimensional BCoN phase as in Eq. 9.1. The energies
have been computed with the accurate FP-LAPW method as a function of different
exchange-correlation functionals (values are listed in Tabs. 9.8 and 8.2).

1
2C() + B(e) + ENQ(g) — BC2 Ny (9.1)

2Space group: P6m2 (187). Optimised cell parameters: a=b=2.481 A, ¢=6.643 A, a=3=90° and
v=120°. Equilibrium atom positions: B1(0,0,%), B2(3,3,0), N1(0,0,0), N2(3,3,3)

® Atomic positions: B(0,0,0) and N(2,1 1), Optimised lattice constant: a=3.570 A
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Figure 9.6: Cohesive energies (eV/atom) as a function of the atomic volume (A?/atom)
for the starting materials and BC3N structures. The curves were generated with the
US-PP/LDA method.

For the calculation of the AH 7 it has been assumed that diamond* and molecular nitrogen
are the most stable forms (at 25 °C and 1 atm) of carbon and nitrogen, respectively. For
Boron, the phase ajs-boron (ag2-B) has been used as reference material. In spite of
the many different allotropes of solid boron [196], we consider here only the simplest
form, the a-rhombohedral phase (metastable at ambient conditions), which shows one
12-atom icosahedron per primitive cell . The calculated standard molar enthalpy change
of formation at 0 K (AHY ;) ranges for the phase IIT between -208 (LDA) and -136/-
129 kJ/mol (PBE/PW91) depending on the employed exchange-correlation functional

*As stated in Sec. 8.2.3 calculations show small differences in the cohesive energies of diamond and
graphite. Therefore, using diamond as a starting material instead of graphite brings only a slight changing
in the magnitude of the resulting enthalpy of formation.

5Details on the structural data for ai»-B are given in Ref. [196]. The crystal is rhombohedral with
a=>5.057 A , @=58.06° and the boron atoms located at +(xxz),+(xzx) and +(zxx). For the six B(1)
atoms, x=0.0104 and z=-0.3427 while for the six B(2) atoms, x=0.2206 and z=-0.3677.
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Figure 9.7: Crystal structure of the orthorhombic graphiticcBCaN model phase.

(see Tab. 9.9). Using the cohesive energies of graphite and graphitic-BC3N, calculation
suggest an enthalpy of formation of the order of -180, -82 and -83 kJ/mol for LDA, PBE
and PWO1, respectively. The quality of these estimations has been verified when trying
to reproduce the heat of formation of cubic boron nitride (Eq. 9.2).

1
By + §N2(g) — BN( (9.2)

Using the GGA approach it has been computed a AH}?’O of -240.3 (PBE) and -242.7
kJ/mol (PW91), which compares reasonably well with the experimental data: AH £ 208="
254.4 [199] and -266.9+2.2 kJ/mol [200]. On the other hand, the LDA calculation gives
an enthalpy of formation sensibly larger than the experimental value with a magnitude
of -315.0 kJ/mol.

Therefore, after having probed the employed calculational scheme on ¢-BN, it is possi-
ble to conclude that results from PBE and PW91 should be accurates enough to indicate
the phase I1I of BCyN as an exceedingly stable substance with a formation reaction largely
favoured (exothermic) with respect to those of the C3N, and C11Ny (cfr. with Sec. 8.2.3
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Property graphitic-BCoN
Crystal system Orthorhombic
Space group Ama2 (40)
Atoms/unit cell 16
Atom type Coordinates (x, y, z)
C1 (0.2500, 0.8333, 0.9378)
Co (0.2500, 0.2500, 0.6875)
Cs (0.2500, 0.2500, 0.1875)
Cy (0.2500, 0.3335, 0.9380)
B (0.2500, 0.0000, 0.9375)
By (0.2500, 0.0000, 0.4375)
Ny (0.2500, 0.0833, 0.6878)
Ny (0.2500, 0.0835, 0.1880)
Cell constants (A) a=6.819; b=8.591; c=4.860
a, B,y (°) 90, 90, 90

Table 9.7: Optimised parameters for the graphitic-BCoN model phase.

in p. 48 and Sec. 8.3.4 in p. 81). The synthesis and characterisation of novel hard BCyN
materials seems to be thus more promising and feasible than CN, samples. As a matter
of fact, the recently announced preparation of a stable and crystalline cubic-BCyN phase
[6] could be interpreted in terms of the above thermodynamic outcome.

Moreover, the estimation of the enthalpy for the formation reaction of a sp3-bonded
BC:2N phase as in Eq. 9.3 suggests that a hypothetical synthesis route to form BCoN
from ¢-BN and diamond would require the overcoming of a positive enthalpy of formation
of about 108 kJ/mol for the phase IIT within the local density approximation (Tab. 9.10).

c— BN(C) + 20(0) — BCZN(C) (93)

Looking at the magnitudes of the computed AH y’s and neglecting all the kinetic consid-
erations, which might however play an important rule in the synthesis of BCN materials,
the phase IIT of BC2N will be probably results metastable with respect to a segregation
into the end members (i.e. ¢-BN and diamond).

9.4.2 Discussion of the results

One might expect that compounds between BN and C would have a stability lower than
diamond but at least close to that of ¢-BN. This is reasonably true when substitution
leads to systems within which B-N bonds are maximised and favoured over the B-C and
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Figure 9.8: Crystal structure of the h-BN.

N-C connections. The presented orthorhombic BCoN crystals show N atoms coordinated
with two B and two C, whilst the B atoms are surrounded by two N and two C as
shown in Fig. 9.11. Such a kind of configuration brings two N-C bonds around each N
and two B-C bonds around each B. Compared to the ¢-BN phase we have here replaced
four strong B-N connections with four weaker bonds (i.e. 2 N-C and 2 B-C)5. Even
though robust C-C interactions are introduced in the system, they are not sufficient
enough to compensate the loss of two B-N bonds at each N and B sites. Moreover, the
C-C interactions, which usually have large bond energies (values are close to that of
B-N from experimental standard formation enthalpy [202]), are weakened with respect
to those found in diamond (pure covalent system) because of the presence of polarised

655@: bonds. The covalent character is thus reduced due to the presence of electron rich
(N) and electron poor (B) neighbouring atoms. This effect is clearly shown in Fig. 9.12.

SThere are six different possible types of chemical bonds in BC2N and their bond energies can be
estimated from experimental standard formation enthalpy [202]. The estimated bond energies of C-C,
B-C, N-C, B-N, B-B and N-N are 3.71, 2.59, 2.83, 4.00, 2.32 and 2.11 eV, respectively.
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Figure 9.9: Unit cell of the ¢-BN.

The overall outcome accounts for the decreasing of the stability of the two orthorhombic
phases with respect to the ¢-BN system. As a matter of fact, the calculated US-PP/LDA
cohesive energies relative to the two BCoN systems are smaller than that of ¢-BN and
diamond. The same energy trend has also been obtained with the FP-LAPW/LDA
calculational scheme. Another important thing that has to be noted is the fact that
the presented orthorhombic phases have shown a very similar energy stability. This is
not surprising since the bonding configuration around the B and N sites is equivalent
in both cases. Such tendency clearly reflects the above picture where the local chemical
connections are assumed to play the most important role in accounting for the relative
stability of sp3-bonded boron carbon nitrides.

Nonetheless, it is worthwhile to stress that when performing carbon substitution in the
hexagonal diamond it becomes possible to design BCoN materials, such as the trigonal
I[II-BC3N model system, with only one C atom at each B and N sites. As one might
expect the phase stability can be here increased leading to a cohesive energy approaching
that of ¢-BN. These phases represent the highest level of stability reachable with a three-
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Figure 9.10: Energy versus pressure for different BC2N phases (US-PP).

dimensional model in the BCyN stoichiometry. This upper limit lies very close to the
cohesive energy of ¢-BN but it cannot approach that of diamond due to the restriction
imposed by the bonding counting rule.

9.5 Theoretical estimation of hardness

Prima facie, we briefly describe the procedure used to calculate the complete set of elastic
constants for the investigated phases. In the orthorhombic BC3;N models (I and II) there
are nine-independent elastic constants, namely c¢11, c22, 33, C44, C55, Cgs, C12, €13 and ca3
[171]. The values of ¢11, co2, €33, €44, C55 and cgg can be directly deduced from the fitting
of the energy wvs. strain, while cq9, c13 and co3 are found by scaling the fitting parameter
with the already calculated ¢11, c22 and c33 (see Chapter 8, Sec. 8.3.5, p. 83). For the
trigonal phase (ITI-BC,N), the six-independent elastic constants, ¢11, ¢12, ¢13, €14, ¢33 and
cqq4 [34] can be evaluated by applying the strains listed in Tab. 9.11 to the equilibrium
lattice and determine the resulting change in the total energy. For both orthorhombic and
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Figure 9.11: Idealised chemical environment around the B/N site in ¢-BN and various
BC;,N phases. Part (a) of the scheme refers to the orthorhombic phases (I and II) while,
part (b) concerns the local chemical bonding of the phase III.
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Econ. a12-B c-BN h-BN I 1I IIT  graphitic
LDA  -7.20, -7.40 [137] -8.07 -7.99 -7.94 -7.95 -8.22 -8.15
PBE -6.43 -7.03 -6.93 -6.87 -6.88 -7.17 -7.10
PW91 -6.45 -7.05 -6.93 -6.88 -6.90 -7.15 -7.10
exp. -5.90 [201] -6.60 [67] - - - - -

Table 9.8: Calculated cohesive energies (E..p. in eV /atom) for various BC3N phases and
some of the starting materials as a function of different exchange-correlation functionals.

AHZ, (kJ/mol)
method 1 II 111 graphitic
LDA  -99 -103 -208 -180 (-180)
PBE -20 -24 -136 -109 (-82)
PW91 -25 -32 -129 -110 (-83)

Table 9.9: Calculated standard enthalpy of formation. Values in parenthesis correspond
to the formation energy of graphitic-BCyN when graphite is taken as a starting material.

trigonal symmetries, small strains have been applied (§ = +0.02n,n = 0—3) to avoid the
influence of higher order terms on the calculated elastic constants. The isotropic shear
modulus is then calculated for the orthorhombic phases by using the relation 8.17 as
written in Chapter 8, Sec. 8.3.5, p. 83. For the trigonal BC3N, the value of the isotropic
G can be estimated from Eq. 3.7 (Chapter 3, Sec. 3.1.2, p. 12), knowing that c1; = ca9,
C23 = €13, C44 = C55 and cgg = %(011 — ¢12). The isotropic trigonal shear modulus can be

AHj (kJ/mol)
method I II  III  graphitic
LDA 214 212 108 137 (120)
PBE 220 216 104 131 (138)
PW91 218 210 114 133 (137)

Table 9.10: Calculated enthalpy of formation for the reaction: ¢-BN(.)+2C)—BCaN(,).
Values in parenthesis correspond to the formation enthalpy of the graphiticcBCoN when
the layered A-BN and graphite are used as reactants.
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Figure 9.12: Valence electron density map showing the polarisation of the C-C bonds in
I-BC,N.

finally expressed as in the following:

Girig. = %(;Cn - 2012 + ¢33 — 213 + 6c44) (9.4)
The complete set of elastic constants are shown in Tab. 9.12 together with the related
G values. The calculated isotropic shear moduli for the proposed BC2N phases are in
between the values of diamond and ¢-BN. We estimate for the phases I, II and III values
of 482.0 GPa, 461.9 GPa and 471.5 GPa respectively, while for diamond and ¢-BN 558.5
GPa and 425.9 GPa. By this it is implied that, in the substituted diamond a clear
hardening of the system is found with respect to the cubic boron nitride. The calculated
bulk moduli confirm the same trend, where the magnitudes of B are found in between
those of the reference materials (Tab. 9.5). The only difference to be noted is that the
bulk modulus estimates the hardness of the BCyN crystals to be much closer to that
of diamond than does the shear modulus. This general behaviour can be assigned to
the different intrinsic characteristics that are distinguishing one modulus from the other.
However, when considering the computational scheme used for the calculation of the
cij constants, it is important to observe that errors can be easily accumulated in the
evaluation of the total energies and in the fitting of the various energy curves. The
introduction of arbitrary deformations of the unit cell followed by the calculation of the
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Strain Parameters AE/]V,
1 011 = O22 = —%533 =9 [i (c11 +c12) —c13 + %033]52
2 011 = 022 =033 = 0 (c11 + c12 + 2c13 — 3e33)0°
3 2523 =4 %644(52
4 2512 =4 %(011 - 012)(52
5 2019 = 2013 =6 [014 + %644 + i(cll — 012)]52
6 533 =0 %033(52

Table 9.11: Strains and elastic moduli for the trigonal phase. Unlisted 4;; are set equal
to zero.

total energy, which is many orders of magnitude larger than elastic energy, could also
decrease the accuracy of the computed elastic moduli. However, despite the possibility
to pile up a large amount of errors, the extrapolated isotropic shear moduli result for
diamond and ¢-BN in good agreement with the experimental values (G;?" =535 GPa

[22], G¢&- =558.5 GPa and G5\ = 409 + 6 GPa [22], Gl =425.9 GPa), proving
thus the quality of this calculational procedure. Therefore, the larger difference in the
shear moduli found in between the BCoN phases and diamond can be considered as an
index of an accentuated sensibility of G in describing the mechanical hardness of the

materials.

Nonetheless, by using the estimated bulk and shear moduli the ratio B/G has been
computed for the phase I to be of the order of 0.92, while for both phases II and IIT a
value of 0.90 has been found (Tab. 9.13). Since these numbers are very similar to the
one calculated for the a-C;1Ny system (cfr. with data in Section 8.3.5, p. 89), the two
classes of materials should nearly display the same degree of brittleness. The computed
Poisson’s ratios are also very close to the value of a-C11Ny. The only difference has been
found in the calculated Young’s moduli, for which the BCyN phases have shown E values
that are in between b-C3Ny4 and a-C;1Ny.

9.5.1 Mechanical stability

A necessary condition for a crystal to be mechanically stable is that the elastic constant
matrix, C, be positive definite (i.e. Born’s criterion). For a trigonal symmetry the c;;
matrix is represented in Eq. 9.5 and is positive definite if the determinants of the matrices
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cij [-BCoN II-BCyN  III-BCoN diamond lonsdaleite c-BN

c11 916.0 1003.0 925.3 1116.6 (1080)T 1448.0 824.6 (820)i
coo  1064.2 1106.1 - - -
cs3  939.0 938.1 942.8 - 1517.8 -

caqs  460.3 528.6 647.5 604.3 (557)f - 495.8 (480)*
css  H524.0 496.5 - - 486.8 -

ces  627.5 384.9 - - - -

crp  120.2 27.1 320.3 137.2 (137)f -84.7 182.6 (190)%
ciz  199.6 153.4 95.6 - 1030.7 -

C14 - - 25 - - -

co3  205.3 168.5 - - - -

G 4820 461.9 471.5 558.5 (535)8 510.5 425.9 (409+6)8

Values as compiled in Ref. (f)=[8], (})=[197] and (§)=[22].

Table 9.12: Independent elastic constants, c;;, and isotropic shear moduli for BCoN,
diamond, lonsdaleite and ¢-BN. Values are expressed in units of GPa.

of successive orders are all positive.

ci1 c2 c3 cyg 0 0

ci2 ci1 c3 —cia 0 0

o C13 C13 C33 0 0 0
¢= Cla —C14 0 C44 0 0 (95)

0 0 0 0 cau cig

0 0 0 0 Cl14 Cg6

These restrictions translates into the following conditions:

C11— | Cc12 |> 0, (611 + 012) C33 — 26%3 > 0, (011 — 612) Cq4 — 20%4 > 0. (96)

The calculated elastic constants for the phase III-BC3N comply with the above relations
indicating the presence of a certain mechanical stability for the trigonal model system.
In the same way the c;; constants calculated for the two orthorhombic models respect
the Born stability criteria for an orthorhombic symmetry (Eq. 8.22 in Chapter 8, Sec.
8.3.5, p. 85). Therefore, even though they are not the most energetically favoured
forms for the BCyN stoichiometry, they could be at least metastable materials. At the
moment it is important to highlight the fact that from an energetic point of view the
phase III appears as the most likely candidate for an heterodiamond BCsN system (see
Sec. 9.4.2), though both shear and bulk moduli have shown a marked hardening for
the model phase I. However, all the proposed three-dimensional BCoN structures could
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IBC,N II-BC,N IIL-BC,N BN diamond
Bf 4410  416.1 424.0 396.6 463.7
B/G  0.92 0.90 0.90 0.93 (0.90-0.93) 0.83
E 1060 1011 1032 941 (850+150)* 1196
v 0099  0.095 0.094  0.105 (0.095-0.105)  0.070

Table 9.13: The above table shows the calculated B/G ratio, Young’s modulus (GPa)
and Poisson’s ratio of the studied BCoN phases. Diamond and ¢-BN have also been
listed as reference materials. Numbers given within brackets correspond to the use of the
experimental B and G values of Tabs. 9.5 and 9.12. Bulk modulus from the combination
of the various elastic constants. Measured elastic modulus from nanoindentations of
polycrystalline ¢-BN bulk samples [203].

likely behave, if properly synthesised, as hard materials capable to substitute diamond
and ¢-BN in different mechanical applications. Compared to diamond, they should also
show an increased resistance towards oxidation at high temperatures due to the presence
of boron and nitrogen atoms.

9.6 Electronic density of states and band structure

9.6.1 The orthorhombic phases (I and II)

The density of states of the phase I-BCyN (Fig. 9.13) shows a valence band mainly
dominated by the states of the atoms N, C; and Cy. From the partial components of
the DOS (not shown) it is found that the 2s orbitals of N dominate the bottom of the
VB. At energies between -10 and -5 eV the N 2p dominate the DOS, while the VB edge
consists principally of 2p orbitals of the C; atom. The bottom of the CB, just above
the Fermi level, is principally determined by the states of N and Cs (2p character) with
some admixture of B states. The higher portion of the CB consists mostly of 2p orbitals
of C; with some mixing of the B and N states. From the band structure analysis (Fig.
9.14) a direct LDA band gap of 2.04 eV has been found at the I" point. For the II-BC3N,
the contribution of each atom to the total DOS is shown in Fig. 9.15. The VB DOS can
be viewed as mainly composed of 2p orbitals from N and Cs with some mixing of B and
C; states, whilst the bottom of the CB is mostly derived from an admixture of the 2p
orbitals of N and C;. From the calculated band structure (Fig. 9.16) we obtain a direct
Eg of 1.87 eV at I" (at which the larger band dispersion is observed) and an indirect gap
of 1.69 eV with the top of the valence band being at the point I' and the bottom of the
conduction band at S. It is worth to be noted that the calculated E4, which results from
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Figure 9.14: Band structure of - BC3N along the symmetry lines of the orthorhombic
Brillouin zone: X=(040) — I'=(000) — Z=(003) — U=(033) — R=(333) — S=(310)
— Y=(300) — I'=(000).
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the interaction of the conduction electron waves with the ion cores of the crystal, are
probably underestimated due to the use of the LDA approximation. The total density
of states for the phases I- and II-BCsN at the equilibrium geometries are shown in Fig.
9.17. In particular, the calculated DOS for the two orthorhombic phases are confronted
with those of the cubic boron nitride and diamond. Looking at the total density of states
it appears evident, from the changing in the shape of the VB, the presence of a different
covalent character in the investigated BCoN phases. Diamond presents a continuous
valence band, pointing thus to the existence of a strong covalent mixing between the
carbon states. On the other hand, ¢-BN shows in the bottom of the VB a band gap of ~
4 eV stating the presence of a ionic bonding condition. In between these two limits lies
the BCoN system where the VB results largely indented but with no band gaps. Such an
intermediate situation is due to the various bonding types established between elements
of group-III, -IV and -V: C-C (AZ=0), C-N (AZ=+1), B-C (AZ=-1) and B-N (AZ=0).

Our previous calculations, obtained by the same computational method, yielded a
band gap of diamond and ¢-BN of 4.11 eV and 4.36 eV 7, respectively. As can be clearly
seen the E, values found for the two BCoN structures are nearly half of those calculated
for diamond and ¢-BN. If we roughly consider the Cy(BN) phase as made of diamond
doped with 50 % of BN one might expect a band gap larger than that of diamond, that
is E; > 4.11 eV. On the contrary a sort of “band gap bowing” has been found according
to W. R. L. Lambrecht [191, 192] upon alloying ¢-BN into diamond or vice versa. This
effect can be here assigned to the shift of the carbon states (atoms C; and Cs) to higher
energy in the VB and to an analogue lowering of the states in the CB. As a matter of
fact the VB and CB edges are determined by the carbon atoms in both the two BCyN
systems. The shifting of the energies of the carbon states and the consequent reduction
of the band gap can be correlated to a certain weakening (i.e. polarization effect) of
the carbon bonds in mixed diamond-c¢-BN crystals. The two heterodiamond phases are
predicted to have a band gap which is at the boundary between the semiconductors and
the insulators. Nevertheless, in the phase I the size of the energy gap should be wide
enough to avoid large thermal conductivity at room temperature. By considering the
fraction of electrons excited across the gap roughly of order e s/2KvT anq the value of
KT at room temperature =~ 0.025 eV we can assume that essentially a small part of
electrons are excited across the gap (e 408 ~ 1.9-107'8). Wide band gap materials such
as diamond, gallium nitride, silicon carbide, aluminum nitride, and cubic boron nitride
are of great interest as they have potential for applications in the electronics, energy,
aerospace and defense industries.

Tcfr. with the experimental values of Egi“m':5.5 eV and E;‘BN:6.4 eV.
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Figure 9.15: The calculated partial density of states of II-BCaN.
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Figure 9.16: Band structure of II-BC3N along the symmetry lines of the orthorhombic
Brillouin zone: X=(040) — I'=(000) — Z=(003) — U=(033) — R=(333) — S=(310)
— Y=(300) — I'=(000).
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Figure 9.17: Total DOS for the orthorhombic phases I and II in arbitrary units.
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9.6.2 The trigonal model structure (III-BC,;N)

In this phase the small peak located at the bottom of the VB is mainly derived from N
2s orbitals while at higher energy the N 2p states start to dominate the DOS (Fig. 9.18).
The VB edge is slightly less sharp than the one found in the orthorhombic phases and is
principally derived from the 2p orbitals of Cy with a contribution of the N states with 2p
character. The mixing of the B 2p orbitals with the other carbon and nitrogen states is
basically present only at the top of the VB. The lower region of the CB consists mainly
of N and C; 2p orbitals, while in the upper region the N and Cy 2p states dominate
the DOS. The two carbon atoms C; and Cy are strongly contributing to the edges of
the valence and conduction bands as in the previously described orthorhombic models.
However, in phase 1II the smearing out of both VB and CB edges is somehow indicative
of a certain lowering of the electron and hole effective masses. An indirect LDA energy
band gap of 1.79 eV in magnitude was calculated with the top of the valence band being
at the point I' and the bottom of the conduction band at the point of symmetry K (Fig.
9.19).

9.7 Theoretical ELNES for BCsN model systems

Electron energy loss spectroscopy is a technique widely used for the characterisation of
boron carbon nitride samples because of its great ability to differentiate the types of bond-
ing in a polymorphic material. As already mentioned in Section 8.3.6, the characteristic
fine structure at the beginning of the core loss ionisation edges can provide important
information for light elements. The possibility to obtain peculiar fingerprints for C, N
and B atoms opens to the opportunity to distinguish different BCoN phases in complex
systems. Since the characterisation of dense BCoN materials with a three-dimensional
network is heavily restricted by the problem of getting pure crystalline samples, a theo-
retical approach to simulate ELNES becomes important for providing reference spectra.

In this Section we present the calculation of the energy loss near edge structures by
using the formalism of M. Nelhiebel et al. [180] implemented within the FP-LAPW code.
The spectra of carbon, nitrogen and boron K-shell excitation (n=1, [=0) are presented
for the proposed BCyN forms: I, IT and III. Samples were simulated by averaging over
all possible incident-beam directions since the attention is here primarily concentrated
on the peak positions. Anisotropy effects which usually change the intensity of the peaks
but do not shift their positions, are thus neglected. The energy of the incident electrons
was fixed to 200 KeV while the energy loss of the first edge was put to 190, 285 and 400
eV for boron, carbon and nitrogen, respectively. The spectra relative to the inequivalent
atom positions have been calculated separately and weighted to equal amounts in the
following Figures.

In order to test our calculational scheme, diamond and ¢-BN have also been inves-
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Figure 9.18: The calculated partial density of states of III-BCyN.
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tigated as representative of the BCyN starting materials. Their relative C, N and B
K ELNES spectra are presented and commented. The position of the most prominent
peaks (labelled A to E) are listed in Tab. 9.14. The calculated relative peak positions

Peak position relative to peak A

Phase Edge A B C C D E
Diamond C K  Thesis 0 5.3 13.67;12.9% - - -
MS[181] 0 44 12.0 - - -
exp.[204] 0 5.5 12.9 - - -
c-BN B K  Thesis 0 8.1 14.9 - - -
MS[181] 0 5.5 14.2 - - -
exp.[205] 0 6.9 16.9 - - -
N K  Thesis 0 7.8 14.6 - - -
MS[181] 0 6.1 15.2 - - -
exp.[205] 0 64 14.8 - - -
I-BC3N CK  Thesis 0 6.2 11.7 15.9 - -
N K 7 0 6.1 114 - 16.0 -
B K 7 0 4.8 10.1 - 15.0 -
II-BCoaN  C K Thesis 0 5.5 11.1 15.1 - -
N K 7 0 4.8 10.8 - 15.3 -
B K 7 0 4.2 10.3 - 14.3 -
IMI-BCaN  C K Thesis 0 3.7 9.5 - 15.3 19.2
N K 7 0 85 11.3 - 15.3 19.3
B K 7 0 3.7 7.8 - 19.2 0

fThe energy position refers to the maximum of the peak.
IThe energy position refers to the averaged values of the two peaks extremes.

Table 9.14: Positions of the peaks A-E relative to the spectra shown in Figs. 9.20, 9.21
and 9.22. All the positions are scaled with respect to the main o* peak A and refer to

the broadened spectra. Values are expressed in units of eV with an estimated error of +
0.25 eV.

show a good match with the experimental finding and with the Multiple Scattering (MS)
approach [181]. The largest error was found for the C peak in the calculation of the B
K ELNES of ¢-BN. Both theoretical methods tend to underestimate its relative energy
position by more than 2 eV with respect to the experimental curve. Peaks A to C in the
C, N and B K edges of diamond and ¢-BN correspond to the electronic transitions 1s —
o*. This feature usually identifies sp3-hybridised materials. Low energy peaks related to
1s — «* transitions are absent indicating the presence of a perfect tetrahedrally bonded
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system.

The calculated plain and broadened spectra for the proposed BCoN phases are shown
in Figs. 9.20, 9.21 and 9.22 for the C, N and B K edges, respectively. The same in-
strumental broadening, corresponding to a Gaussian function, has been utilised in all
the analysed spectra. In the C K ELNES the two orthorhombic phases show an evident
splitting of the diamond C peak into C and C’, indicating the possibility of identifying
three-dimensional BC3N phases in the carbon edge. Furthermore, in the N and B K
ELNES the number of peaks vary with respect to the reference ¢-BN. In particular, in
the energy range between 5 and 15 eV two o* peaks were found instead of one of the
¢-BN. Their relative peak positions are shown in details in Tab. 9.14. These different
features are expected to be discovered in thin film samples for which EELS results as an
important technique for bonding type characterisation.

Phase III presents plain spectra which are slightly more complicated to interpret than
those of the two orthorhombic phases. Nonetheless, a characteristic feature, common
to all the three edges, can be individuated in the energy region between 5-17 eV. The
broadened spectra show three main ¢* peaks for the phase IIT of BCyN, whereas the other
phases possess only two. A very similar ¢* peak distribution should be thus exhibited in
all those BCyN samples for which the same bonding type configuration as in the phase
IIT is expected.

9.7.1 The layered BC;N model system

Beside the systematic study described for the three-dimensional BCoN crystals, the band
structure approach to ELNES is here used further to analyse the near-edge fine structure
of a layered BCyN system (graphitic-BCyN). Owing to the absence of structurally well-
characterised graphitic-like BC2N reference samples, the results of such an investigation
can serve as preliminary reference spectra for material characterisation until reliable
ELNES become available. The calculated near-edge structure of the K edges are displayed
in Figs. 9.23, 9.24 and 9.25. The estimated relative peak positions are shown in Tab.
9.15. All the three spectra exhibit a 7* peak between 0-7 eV and a complex o* feature
between 9 and 16 eV. The separation between the 7* and o* features of graphitic-BCoN
are listed in Tab. 9.16 together with some of the experimental EELS results. Peak
separations seem to match better with the values of Kouvetakis, though the comparison
of the calculated values with those from experimental investigation is somehow aleatory.
As a matter of fact, most of the published values given in Tab. 9.16 refer to hybrid
boron-carbon-nitrogen phases with a stoichiometry “approaching” that of BCyN.
Contrary to what has previously been found with MS calculations [181], the band
structure method has shown some characteristic dissimilarities between K edges of h-
BN/graphite and layered BC2N which would likely provide an unambiguous identification
of the graphitic-BCaN phase. The calculated N K ELNES of BCyN exhibits two 7*
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Figure 9.20: Theoretical C K ELNES of various phases (FP-LAPW). The experimental
CVD diamond spectra [204] has been shifted by 4+1.05 eV along the energy axis in order
to align its first o* peak with the one of the theoretical curve.



9.7 Theoretical ELNES for BCoN model systems 133

Intensity in arbitrary units

Experimental --------

-5 o 15

Energy [eV]

Figure 9.21: Theoretical N K ELNES of various phases (FP-LAPW). The spectra of the
high pressure synthesised ¢-BN [205] has been moved by +2.05 eV to match the first
theoretical o* peak.
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Figure 9.22: Theoretical B K ELNES of various phases (FP-LAPW). The high pressure
synthesised ¢-BN spectra [205] has been shifted by +3.15 eV in order to align the first
o* peak with the theoretical curve.
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Peak position relative to peak B (eV)

Phase Edge A A B C D E F G
Graphite CK  Thesis -64 - 0 46 10.0 14.3 - -
MS[181] -4.9 - 0 25 66 103 - -
exp.[181] -68 - 0 44 112 147 - -
h-BN B K  Thesis -6.3 - 0 43 85 155 - -
MS[181] -84 - 0 57 - 125 - -
exp.[181] -6.8 - 0 56 - 16.1 - -
N K  Thesis -5.0 - 0 80 140 - - -
MS[181] -6.8 - 0 4.1 8.2 - - -
exp.[181] -6.1 - 0 72 176 - - -
graphiticBCoN  C K Thesis  -6.9 - 0 25 41 6.8 13.1 1538
N K 7 -72 -38 0 19 44 6.7 126 159
BK ” -66 -39 0 23 44 116 16.1 -

Table 9.15: Positions of the peaks A-G relative to the spectra shown in Figs. 9.23, 9.24
and 9.25. All the energies are scaled with respect to the first o* peak B and refer to the
broadened spectra. The estimated error is + 0.25 eV.

features, namely 7] and 73, separated by 3.4 eV. The same doublet of 7* peaks, but
with a lower intensity, was found close to the onset of the o* peaks in the B K edge.
Moreover, the marked changing found in the o* transition region of the C, N and B K
ELNES might be utilised as a distinctive fingerprint in the identification of the graphitic-
BC32N. Therefore, in spite of the usually very large broadening found in the experimental
EELS spectra (i.e. compared to the calculated one), the above peculiar characteristics,
together with the changing in the peak positions (cfr. Tab. 9.15 and Figs. 9.23, 9.24 and
9.25), should likely guarantee the spectroscopic discrimination of a pure and crystalline
layered BCoN sample over the K edges of h-BN and graphite.

9.8 Conclusions

In the present study it has been performed the replacement of some of the carbon atoms
with boron and nitrogen on the hexagonal and cubic diamond in order to design new
hard and possibly stable BCyN crystals. The substituted diamond structures have been
relaxed with the US-PP method to obtain their fundamental ground states. Three novel
heterodiamond phases have been presented, namely I-, II- and ITI-BCyN, for which the
hardness and the relative stability have been computed. Structures, such as the trigonal
ITI-BC;3N, that contain alternate -C-C- and -B-N- rings and maximise the number of B-N
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m] — o] Separation in eV

Author(s) Method Ref. BK CK N K
M. Mattesini et al. Band structure Thesis 6.6 6.9 7.2
Wibbelt et al. MS calculations  [181] 8.5 7.5 5.5
Kouvetakis et al. exp. [13] 7.0 6.5 6.0
Weng-Sieh et al. exp. [206] 8.0 7.0 6.0
Sasaki et al. exp. [207] 6.0 7.5 5.5

Table 9.16: Values of the separation between the first 7* and o* peaks (£ 0.5 eV) for
the K edges of graphitic-BCyN.

bonds are predicted to behave as some of the most stable forms of the three-dimensional
BC:2N system. From the total energy calculations this phase results also in competition
with the formation of the two-dimensional layered form. The standard molar enthalpy
change of formation has been computed for the phase III to be exothermic and with a
magnitude of -208 (LDA), -136 (PBE) or -129 (PW91) kJ/mol, depending on the type
of the chosen exchange-correlation functional. This finding indicates the possibility of
synthesising crystalline sp3-bonded BCyN samples at smoother temperature and pressure
conditions with respect to the deposition of carbon nitrides.

Furthermore, two model BCyN phases (I and II) formally derived by the carbon
substituted fcc diamond have been presented. According to the bond counting rule these
orthorhombic crystals have been found to be metastable with respect to diamond and
cubic boron nitride. Total energy calculations predict for both structures a cohesive
energy which is slightly lower than that of ¢-BN. This finding has been interpreted by
considering the bonding configuration around each B and N sites (i.e. which maximises
the B-N bonds) and the effect of the C-C bond polarisation. In particular, the latter
upshot is also believed to have been responsible for the shifting in the DOS of the carbon
states at higher and lower energies in the VB and CB, respectively. As a consequence an
evident closing of the band gap has been found by going from diamond or ¢-BN to the
isoelectronic BCoN stoichiometry. The calculated AH J?,O’S for the model systems I and II
are still exothermic, however their values are at about 100 kJ/mol smaller than that of the
phase III. Nonetheless, all the investigated BCoN models have shown a thermodynamic
stability significantly larger than the corresponding isoelectronic CN, compounds.

The estimation of the hardness has been carried out by the calculation of the isotropic
shear modulus. According to Gerk [30] and Teter [22], a better correlation with the
hardness of solids is expected from the combination of the inequivalent elastic constants.
However, I have also calculated the bulk modulus which has been considered for a long
time as the best predictor of hard materials. With the use of US-PP method, calculations
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Figure 9.23: Theoretical C K ELNES of graphiticcBC3N in comparison to Graphite.
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Figure 9.24: Theoretical N K ELNES of graphitic-BC2N in comparison to h-BN.
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suggest isotropic G values which are about 13.2 (I-BC2N), 8.5 (II-BCyN) and 10.7 % (I11-
BC3N) higher than that of ¢-BN. That involves an obvious hardening of the system with
respect to the well known cubic boron nitride. The computed bulk moduli confirm the
same tendency: B values are in between those of the starting materials. According to such
a theoretical finding, these ternary compounds are all predicted to be good candidates
for materials harder than ¢-BN.

The density of states and band structure analysis have led to a band gap of 2.04, 1.69
and 1.79 eV for the phases I, IT and ITI, respectively. Since it is well-known that the LDA
approximation generally underestimates the experimental band gaps by as much as 30
% the phase T can be tentatively classified as insulator.

The study of the electron energy loss near edge structures of C , N and B K ionisation
edges have also been simulated for the presented phases. An evident splitting of the o*
peak at around 20-25 eV has been found in the C K ELNES of the two orthorhombic
BC;,N crystals with respect to diamond. Furthermore, the changing of the number of
peaks in the region between 5 and 15 eV and the variation of the fingerprints in the N and
B K edges may be utilised as an important guide in the experimental characterisation
of the sp3-bonded BCN samples. For the trigonal system three o* peaks, common to all
the three edges, have been individuated in the region between 5-17 eV. Since in the same
energy range the orthorhombic models have shown only a doublet, this feature can be
used to discriminate the phase III of BC3N from the others. Finally, reference spectra
have been calculated for the graphiticcBCyN in all the three different edges. A doublet
made of 7* peaks has been displayed in the N and B K ionisation edges just before the
onset of the o* peak. Owing to the presence of only one 7* signal in the edges of the
reference materials (graphite and h-BN), an evident detection of the layered BC2N phase
it is thus highly expected from the use of the EELS technique.



Chapter 10

Summary and Outlook

10.1 Carbon Nitrides

Based on the results presented in Chapter 8 it has been suggested that pure crystalline
C3Ny systems are generally semiconductor materials with remarkable mechanical proper-
ties. However, very high temperature and high pressure reactions are likely to be required
for their preparation in order to overcome the calculated positive standard enthalpy of
formation. Moreover, the possibility to synthesise a pure carbon nitride sample with
C3Ny composition should be generally hindered by the fact that different model systems
have shown a very close energy stability. Comparing, for example, the two graphitic-like
phases (i.e. hexagonal and orthorhombic) a small energy difference has been computed
(~ 5-6:10~* eV /atom with FP-LAPW method), thus confirming the difficulty found at
the experimental level in discriminating single crystalline sp?-bonded forms. Molecular
calculations suggest that polymorphic samples containing both types of layered struc-
tures should possess two main "*C NMR signals spaced by approximately 15 ppm. This
result seems to be in very good agreement with the latest experimental finding.

When considering the formation of substances with C1;Ny stoichiometry (this is the
subject of the second part of Chapter 8) calculations have shown that isoelectronic carbon
rich model systems possess larger cohesive energies and they are usually stiffer than
the analogue C3N4 compounds. However, in spite of this general improvement of the
properties, the enthalpies for the formation reactions have been evaluated to be positive
and most frequently larger than the analogue carbon poor phases. Furthermore, a very
similar AH? ; (4 kJ/mol of difference) has been computed for the layered C11 N4 form and
the sp>-bonded 3-C3Ny system. It can be thus strongly suggested that polyphasic samples
will be often obtained upon trying to deposit carbon rich compounds. In particular, it
is quite likely that a mixture of different forms, belonging to different stoichiometries,
will always be achieved simultaneously during the synthesis of carbon nitrides. However,
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such a conclusion should be weighted with an accurate kinetic investigation of the studied
model phases (cfr. for example the case of diamond and graphite).

The characteristic ELNES coordination fingerprints have also been reported and anal-
ysed for the selected C3N4 and Cy1Ny structures. Theoretical spectra indicate the pos-
sibility to differentiate the various phases by looking at the changing in the number and
position of peaks in both C and N K edges.

Despite many unsuccessful attempts to produce single phase CN, materials it is
however worth to note that amorphous samples can still find important applications in
a wide range of interesting fields. The main commercial application of carbon nitrides
is nowadays as protective coating on hard discs and recorder heads. However, coatings
can also have a large potential application on medical area. The recovery of orthopaedic
substrates has in fact already been tested for joint arthroplasty in human implants. In
general, amorphous films can be used in all applications where amorphous carbon films
are usually employed. Hence, despite the lack of pure crystalline samples the importance
of producing homogeneous and well characterised thin-films carbon-based hard materials
should not be neglected.

10.2 Boron Carbon Nitrides

In Chapter 9 it has been computed the investigation of the isoelectronic BC2N class of
compounds. Carbon atoms have been replaced with boron and nitrogen in the hexagonal
and cubic diamond in order to design novel three-dimensional ultra-hard boron carbon
nitrides. The structure called ITI-BCsN has been predicted to be one of the most stable
forms of the three-dimensional BCoN system. In particular, its large cohesive energy
has been addressed to the large number of B-N bonds and to the presence of alternate
-C-C- and -B-N- rings. Furthermore, a detailed study of the unit cell response upon
volume and shape changing has shown an evident hardening of the BCoN phases with
respect to the well-known cubic boron nitride. Consequently, by looking at the relative
energy stability and at the computed elastic and bulk moduli, the phase III of BCyN
results, among the presented model phases, as the best candidate for replacing ¢-BN or
diamond in various mechanical applications. The standard molar enthalpy change of the
formation reaction has also been computed for this phase to be largely exothermic (~
-133 kJ/mol'), thus pointing to the possibility of depositing BCoN crystalline forms at
relative low temperature and pressure conditions with respect to carbon nitrides.

Finally, reference ELNES spectra have been proposed for different sp?- and sp3-
bonded model systems, providing the possibility to identify pure crystalline phases in
polymorphic samples.

! Averaged FP-LAPW/GGA values.
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10.3 Prospective studies and “what’s left”

In order to get a deeper insight into the subject of carbon nitrides, the general trend
found in the stability, electronic and mechanical properties should also be checked for
other isoelectronic compounds. Model crystals such as C5Ny, C3No, C;Ny (Fig. 10.1),
CgNy ete... have to be proposed and investigated to address further trends in CN,
materials. As mentioned in Section 8.3.7 the possibility to have a larger increment in the
stability must also be searched in fulleren-like phases. In view of the latest experimental
outcomes, nanotubes and nanofibers should also be considered as important forms for
both carbon nitrides and boron carbon nitrides. However, the synthesis and study of
such nanotube-like compounds should mostly concern the generation of novel classes of
electron field emitters rather than novel ultra-hard systems.

Figure 10.1: The three-dimensional C;N4 model system. Ongoing calculations seem to
indicate the same general tendency found for the C3N4 and C11N4 compositions.



Chapter 11

Conclusions

11.1 Nitrures de Carbone

Les résultats présentés au Chapitre 8 permettent de proposer de nouveaux systémes cristal-
lins de formulation C3N,4 ayant des propriétés de semi-conducteurs et susceptibles de posséder
des caractéristiques mécaniques exceptionnelles. Cependant des conditions de trés hautes
température et de pression seraient requises pour leur préparation si I'on veut surmonter les
enthalpies de formation standard positives qui les caractérisent.

De plus, la possibilité de synthétiser un échantillon pur de C3Ny4 serait difficile compte
tenu des faibles différences d'énergies caractérisant la stabilité des systemes modeéles examinés.
En effet, la comparaison des deux phases graphitiques (i.e. hexagonale et orthorhombique)
montre une faible différence d’'énergie de cohésion, ~ 5-6-10~% eV /atom (calculs précis avec
la méthode FP-LAPW), ce qui confirme la difficulté a I'échelle expérimentale de différencier
des phases & hybridation sp? dominante (structures a caractére bi-dimensionnelle (2D)).

Les calculs de résonance magnétique nucléaire (RMN) du '3C menées sur des clusters
moléculaires permettent de suggérer que les échantillons polymorphiques contenant les deux
types de structures a caractére 2D dominant possédent deux signaux séparés d’environ 15
ppm. Ce résultat semble étre appuyé par les derniéres observations expérimentales.

Concernant la formation des phases de stoechiométrie plus riche en carbone, C;1Ny (objet
de la deuxiéme partie du Chapitre 8), les calculs ont montré que les systémes modeles cor-
respondants possédent de plus fortes énergies de cohésion et se présentent comme plus durs
que les analogues isoélectroniques C3N4. Néanmoins, malgré cette amélioration des propriétés
recherchées, les bilans des enthalpies des réactions évaluées a partir des solides et molécules
de référence, sont positives et souvent supérieures a celles des phases analogues moins riches
en carbone.

De plus, une valeur similaire de AH?, (4 kJ/mol de différence) a été calculée pour la
structure 2D de C;;Ny4 et pour la structure 3-C3N4 caractérisée par des liaisons sp3, i.e.
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tri-dimensionnelle (3D). Ce résultat permet de suggérer que des échantillons polyphasiques
seront fréguemment obtenus lors du dépot de composés riches en carbone. En particulier, il est
vraisemblable qu'un mélange des différentes formes, appartenant a différentes stoechiométries,
sera toujours présent lors de la synthése des nitrures de carbone. Cependant cette conclusion
devrait étre modulée par un examen approfondi des aspects cinétiques des phases modeles
étudiées (cf. par ex. les cas du diamant et du graphite).

Les signatures ELNES ont également été raportées pour les phases modeles des deux
stoechiométries C3Ny and C;1Ny. Les spectres théoriques indiquent la possibilité de distinguer
les différentes phases par I'examen du changement du nombre et positions des pics pour les
seuils K de C et N.

Malgré plusieurs tentatives infructueuses de produire des matériaux CN, monophasiques,
dans I'état actuel de l'art, il reste néanmoins pour les phases amorphes formées des ap-
plications importantes dans différents domaines. L'utilisation commerciale principale des ni-
trures de carbone est aujourd’hui dans le domaine de I'enregistrement magnétique (protection
des tétes de lecture et des disques durs pour la micro-informatique). Cependant les enro-
bages protecteurs sont également utiles en médecine pour les implants humains en arthro-
plastie. Généralement, des films amorphes peuvent étre utilisés dans toutes les applications
ou les enrobages avec des films minces de carbone sont requis. Par conséquent, malgré le
manque d’échantillons de nitrure de carbone cristallins et purs, I'importance de produire des
films minces homogeénes et bien caractérisés (mécaniquement et spectroscopiquement) de
matériaux durs a base de carbone ne devrait pas étre négligée.

11.2 Boronitrures de Carbone

Au Chapitre 9, nous avons entrepris I'étude détaillée d'un classe isoélectrique (du carbone)
de matériaux dans le ternaire BCN : BCoN. Les atomes de carbone ont été remplacés par
le bore et I'azote dans les structures hexagonale (lonsdaleite) et cubique du diamant, avec
comme objectif, la mise en évidence de nouveaux boronitrures de carbone tri-dimensionnels
susceptibles d’étre ultra-durs.

La structure tri-dimensionnelle, appelée 11I-BCyN, a pu ainsi étre prédite comme une des
formes les plus stables des phases BCoN. En particulier, sa grande énergie de cohésion a
été attribuée au grand nombre de liaisons B-N et a la présence de cycles alternés : -C-C- et
-B-N-. De plus, une étude détaillée de la réponse de la maille élémentaire aux changements
de volume et de forme a montré un accroissement de la dureté des phases BCyN par rapport
au nitrure de bore cubique. Par conséquent, en examinant les stabilités relatives et les valeurs
calculées des modules d’élasticité et de compressibilité, la phase Il de BCoN résulte, parmi les
phases modeles étudiées, comme le meilleur candidat pour le remplacement de BN cubique
ou du diamant dans différentes applications mécaniques. L’enthalpie molaire standard de la
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réaction de formation a été également évaluée exothermique (~ -133 kJ/mol'), ce qui est
en faveur du dépot de BCyN sous forme cristalline dans des conditions de température et
pression relativement faibles par rapport aux nitrures de carbone.

Enfin, les spectres de référence ELNES ont été proposés pour différentes phases a liaisons
types sp? et sp? -systtmes modeles 2D et 3D respectivement-. De tels signatures seront
susceptibles d’identifier les phases cristallines pures au sein d’échantillons polymorphes.

11.3 Prospectives et “ce qui reste a faire”

Dans I'objectif d'approfondir davantage le sujet des nitrures de carbone, la tendance
générale trouvée au niveau de la stabilité, des propriétés électroniques et mécaniques devrait
également Etre vérifiée pour les autres composés isoélectroniques. Des structures cristallines
modeles telles que les compositions C5N4, C3Ny, C;Ny4 (Fig. 10.1), CoNy etc... pourraient
étre proposées et étudiées pour établir une systématique des tendances dans les matériaux
CN,.

Comme il a été mentionné dans la Section 8.3.7 la possibilité d'avoir une stablité accrue
des CN,, pourrait étre recherchée dans les phases de type fulleréne. Au vu des derniers résultats
expérimentaux, des systémes 3 nanotubes et nanofibres devraient également &tre pris en
compte comme de nouvelles formes potentielles de nitrures ainsi que de boronitrures de
carbone. Cependant, la synthese et I'étude de tels composés concernerait plutdt que les
ultra-durs, les nouvelles générations d’émetteurs électroniques par effet de champ.

!Valeur moyenne obtenue & partir de calculs FP-LAPW dans la fonctionnelle GGA.
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