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Abstra
t

Due to the te
hnologi
al importan
e behind the possibility to dis
over novel 
lasses of
hard materials an enormous resear
h e�ort has been dire
ted during the last de
ades to-
wards the synthesis and 
hara
terisation of promising 
arbon-based 
ompounds su
h as

arbon nitrides and boron 
arbon nitrides. However, despite many attempts of synthesis
and the indisputable progresses made in the �eld, amorphous samples with un
lear 
rys-
tallographi
 data have been often obtained in many resear
h laboratories. In parti
ular,
several problems arise from the fa
t that most of the samples are of polymorphi
 nature,
thus leading to a diÆ
ult and un
ertain spe
tros
opi
 
hara
terisation.

A general understanding of the relations between 
omposition and the ele
troni

stru
ture properties has therefore been provided theoreti
ally in this Thesis to get further
insight into the 
hara
teristi
s of pure 
rystalline forms. As one might expe
t this work
has suddenly been turned out into a 
ompli
ate and 
hallenging task be
ause of the la
k
of reliable experimental 
rystal stru
tures to be used as referen
es for the 
omputational
inputs. Therefore it be
ame essential to propose hypotheti
al bi- and three-dimensional
model phases to obtain trends on the relative stability, ele
troni
 and me
hani
al prop-
erties of 
arbon- and boron 
arbon-nitrides. So far as that is 
on
erned, a systemati

study of pure 
rystalline CNx (where x=0.36 and 1.33) and BC2N systems has been
proposed as an important 
omplement to the experimental knowledge. Thanks to the
progress in modern 
omputer te
hnology it has also been possible to 
ompute su
h an
investigation via ab-initio (�rst-prin
iples) methods by testing and probing di�erent solid
state 
al
ulational approa
hes. In fa
t, one of the �rst obje
tives of this proje
t has been
the sear
h of a valid 
omputational density-fun
tional-based s
heme able to reprodu
e
and/or predi
t the hardness and stability of a wide variety of ultra-hard materials.

Cal
ulations of the 
ohesive properties and standard enthalpies of formation have
been 
arried out to address the thermodynami
 stability of di�erent isoele
troni
 
ompo-
sitions, namely C3N4, C11N4 and BC2N. The hardness has also been studied by means of
the analysis of the 
al
ulated elasti
 and bulk moduli. The investigation of the ele
troni

properties has been a
hieved with the 
al
ulation of the density of states, band stru
ture,
ele
tron density maps and 
rystal orbital overlap population analysis. For some of the
studied mole
ular 
lusters, the 13C NMR shifts have been evaluated to provide a spe
tro-
s
opi
 dis
rimination between systems with very similar stru
tural 
hara
teristi
s. This
is the 
ase of the hexagonal and orthorhombi
 models of the graphiti
-like C3N4 form.
Finally, the determination of the ele
tron-energy loss near edge stru
tures of C, B and
N K ionisation edges has been 
omputed in order to provide referen
e spe
tra of pure

rystalline materials, likely to allow a dis
rimination of polymorphi
 samples.

Results are presented to demonstrate that 
arbon nitrides are ultra-hard systems
with outstanding me
hani
al properties. In parti
ular, the 
arbon ri
h 
omposition,
C11N4, has shown larger 
ohesive energies and it is generally sti�er than the ele
troni
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analogue C3N4. However, the possibility to deposit single phase samples should be highly
hampered in both stoi
hiometries by their large positive enthalpies of formation.

The introdu
tion of boron atoms (boron 
arbon nitrides) has displayed a slight de-

reasing in the magnitudes of the elasti
 and bulk moduli, though the 
al
ulated values
are still higher than that of 
ubi
 boron nitride (i.e. the se
ond hardest known material).
Nevertheless, three-dimensional BC2N phases have also shown exothermi
 enthalpies of
formation whi
h point to an easier deposition of the \BCN" materials with respe
t to

arbon nitrides. Therefore, by 
onsidering the whole set of the investigated model phases,
sp3-bonded boron 
arbon nitrides result as the best 
andidates for novel ultra-hard ma-
terials whi
h 
ould, in prin
iple, be synthesised with the a
tual te
hniques. Very re
ent
experimental results seem to support this general tenden
y.



R�esum�e

Compte tenu des enjeux te
hnologiques qui sous-tendent la d�e
ouverte de nouvelles 
lasses

de mat�eriaux ultra-durs, des e�orts de re
her
he 
onsid�erables ont �et�e destin�es durant les

deux derni�eres d�e
ades �a la synth�ese et �a la 
ara
t�erisation de 
ompos�es l�egers prometteurs

tels que les nitrures et boronitrures de 
arbone.

Cependant, malgr�e de nombreuses tentatives de synth�ese et les progr�es indis
utables

r�ealis�es dans 
e domaine, seuls des �e
hantillons amorphes (mal 
ara
t�eris�es du point de la


ristallographie) ont pu être obtenus dans di��erents laboratoires de re
her
he. En parti
ulier,

plusieurs probl�emes sont soulev�es de par la nature polymorphe des �e
hantillons produits,


onduisant de 
e fait �a une 
ara
t�erisation spe
tros
opique peu pr�e
ise.

Par 
ons�equent l'�etablissement de relations entre 
omposition et propri�et�es de stru
ture

�ele
tronique est fourni sur une base th�eorique dans 
ette Th�ese a�n d'approfondir les 
a-

ra
t�eristiques des formes 
ristallines des mat�eriaux. Comme on pouvait s'y attendre 
ette

tâ
he 
omplexe est vite devenue un d�e� 
ompte tenu du manque de donn�ees exp�erimentales

pour les stru
tures 
ristallines sus
eptibles de servir de point de d�epart aux 
al
uls.

Il devint alors essentiel de proposer des phases mod�eles (hypoth�etiques) aux �e
helles bi-

et tri-dimensionnelles pour �etablir des tendan
es 
omparatives sur les stabilit�es, propri�et�es

�ele
troniques et m�e
aniques des nitrures et boronitrures de 
arbone. En parti
ulier, les �etudes

syst�ematiques des syst�emes 
ristallins binaires CNx (o�u x=0,36 et 1,33) d'une part et ternaires

BC2N d'autre part ont �et�e men�ees et pr�esent�ees 
omme une for
e de proposition vis �a vis des

exp�erimentateurs.

Grâ
e aux �enormes progr�es de la te
hnologie moderne des ordinateurs, il a �et�e possible

de mener 
es �etudes au moyen de m�ethodes ab initio (d�es le d�epart) en testant et sondant

di��erentes appro
hes de l'�etude du solide. En fait, l'un des premiers obje
tifs de mon travail de

Th�ese a �et�e de valider le meilleur s
h�ema 
al
ulationnel au sein de la th�eorie de la fon
tionnelle

densit�e, DFT, sus
eptible de reproduire et/ou de pr�edire la duret�e et la stabilit�e d'une grande

vari�et�e de mat�eriaux ultra-durs.

Les 
al
uls des propri�et�es de 
oh�esion et les enthalpies standard de formation ont �et�e

entreprises a�n d'expliquer la stabilit�e thermodynamique des di��erentes 
ompositions iso-

�ele
troniques, nomm�ement C3N4, C11N4 et BC2N. La duret�e a �et�e �egalement �etudi�ee au

moyen de l'analyse des modules d'�elasti
it�e et de 
ompressibilit�e. L'examen des propri�et�es

de stru
ture �ele
tronique a �et�e r�ealis�e par le 
al
ul des densit�es d'�etats, de la stru
ture de

bandes d'�energie, des 
artes de densit�e �ele
tronique et des populations de re
ouvrement.

L'�etude des d�epla
ements 
himiques par RMN du 13C de 
lusters mol�e
ulaires a permis de

fournir un moyen de dis
rimination entre syst�emes ayant des 
ara
t�eristiques stru
turales

tr�es voisines. C'est notamment le 
as des stru
tures hexagonale et orthorhombique de C3N4

graphitique. En�n, les seuils d'ionisation K de C, B et N ont �et�e 
al
ul�es (spe
tros
opie

�ele
tronique par perte d'�energie \EELS") pour les di��erentes stru
tures 
ristallines a�n de

fournir des spe
tres de r�ef�eren
e sus
eptibles d'aider �a la d�etermination des 
ompositions des

iv
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�e
hantillons polymorphes.

Les r�esultats d�emontrent que les nitrures de 
arbone �etudi�es sont des mat�eriaux ultra-durs

ayant des propri�et�es m�e
aniques ex
eptionnelles. En parti
ulier, les phases de la 
omposition

ri
he en 
arbone, C11N4, montrent des �energies de 
oh�esion sup�erieures et se pr�esentent


omme plus dures que l'analogue iso-�ele
tronique C3N4. N�eanmoins la possibilit�e de d�eposer

des stoe
hiom�etries monophasiques serait p�enalis�ee pour les deux 
ompositions 
ompte tenu

de leurs �energies de formation fortement positives.

L'introdu
tion d'atomes de bore (boronitrues de 
arbone) 
onduit �a une l�eg�ere diminution

des amplitudes des modules d'�elasti
it�e et de 
ompressibilit�e. Mais les valeurs 
al
ul�ees restent

sup�erieures �a 
elles de BN 
ubique, le se
ond meilleur mat�eriau ultra-dur 
onnu apr�es le

diamant. N�eanmoins les phases tri-dimensionnelles BC2N analys�ees pr�esentent des enthalpies

de formation nettement exothermiques, 
e qui est en faveur d'une pr�eparation (par d�epôt de


ou
hes min
es par exemple) plus ais�ee de phases \BCN" par rapport aux nitrures binaires

CNx pour lesquels�H0
f > 0. Par 
ons�equent en 
onsid�erant l'ensemble des syst�emes mod�eles,

les phases \BCN" �a liaisons hybrid�ees essentiellement sp3 (tri-dimensionnelles) se pr�esentent


omme les meilleurs 
andidats pour de nouveaux mat�eriaux ultra-durs �a base d'�el�ements

l�egers sus
eptibles d'être synth�etis�es par les moyens a
tuels. Ces observations sont appuy�ees

par des r�esultats exp�erimentaux r�e
emment obtenus.



Prefa
e

This Thesis illustrates the work that I 
arried out between 1998 and 2001 at the In-
stitut de Chimie de la Mati�ere Condens�ee de Bordeaux (ICMCB-CNRS), University of
Bordeaux I. The purpose of my resear
h within the European Training and Mobility of
Resear
hers (TMR) Network1 has been the 
hara
terisation of the properties of di�er-
ent 
arbon- and boron 
arbon-nitride 
ompounds by attested, highly a

urate ele
troni

stru
ture 
al
ulations. In parti
ular, the modelling of novel potential hard materials like
binary CNx and ternary BxCyNz have been addressed.

When I started my work in November 1998 there were already several published
s
ienti�
 papers (both theoreti
al and experimental) dealing with the distin
t features of
novel 
ompounds, quite often 
alled super- or ultra-hard materials, that 
ould in prin
iple

ompete with the hardness of the 
onventional diamond. However, one of the greatest
attra
tions of this subje
t that has always appeared important to me is the 
lose link
existing between hardness and phase stability on the one hand and the bonding and
stru
ture of the material on the other. The 
onne
tion between these two aspe
ts has
been to some degree proved in this Thesis to be one of the essential prin
iples on whi
h
the development of the next generation's hard materials should be based.

Although most of the investigations were performed at the solid state level, the study
of some mole
ular 
lusters has also been su

essfully integrated for the evaluation of the
13CNMR 
hemi
al shifts. The largest part of the 
al
ulations have been a
hieved by using
the 
omputational fa
ilities of the intensive 
entre of 
al
ulation \pôle Mod�elisation Mi-


ros
opique et M�esos
opique en Physique, dans l'Environnement et en Chimie" (M3PEC)
of the University of Bordeaux I. The results obtained have been well re
eived in an ex-

hange of information with the other partners of the European 
ommission.

The present manus
ript shows an introdu
tory part intended to explain some spe
i�


on
epts about hard materials and to 
over the basi
 ideas behind the employed theoret-
i
al methods. The se
ond part is spe
i�
ally dedi
ated to the thorough des
ription of the
results obtained during the study of 
arbon nitride and boron 
arbon nitride systems.

Bordeaux, September 2001

Maurizio Mattesini

1Synthesis, Stru
ture and Properties of New Carbon-Based Hard Materials, FMRX-CT97-0103.
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Nomen
lature

Frequently used abbreviations:

APW Augmented plane wave
ASA Atomi
 sphere approximation
ASW Augmented spheri
al wave
b

 Body 
entered 
ubi

COOP Crystal orbital overlap population
CVD Chemi
al vapor deposition
DFT Di�erent density fun
tional theory
DOS Density of states
EELS Ele
tron energy loss spe
tros
opy
EF Fermi energy
Eg Band gap
ELNES Energy loss near edge stru
ture
f

 Fa
e 
entered 
ubi

FFT Fast fouries transforms
FP-LAPW Full-potential linearized augmented plane wave
GGA Generalized gradient approximation
h
p Hexagonal 
lose pa
ked
ICOOP Integrated 
rystal orbital overlap population
KS orbitals Kohn-sham orbitals
LAPW Linearized augmented plane wave
LDA Lo
al density approximation
LMTO Linear muÆn tin orbital
NMR Nu
lear magneti
 resonan
e
PP Pseudo-potential
PVD Physi
al vapor deposition
Rmt MuÆn-tin radius
sp2, sp3 Ele
tron orbital hybridization
US-PP Ultra-soft pseudo-potential
�, � Bonding types
x
 Ex
hange-
orrelation fun
tional
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Chapter 1

Introdu
tion

1.1 The interest in novel ultra-hard materials

The possibility to synthesise new materials with hardness1 similar or even larger than
diamond has be
ome of fundamental and te
hnologi
al interest for 
hemists, physi
ists
and in parti
ular for the whole materials s
ientists 
ommunity. It was in the middle
of the last 
entury when most of the known ultra-hard materials (i.e. diamond and

ubi
 boron nitride) were synthesised and manufa
tured with high pressure and high
temperature pro
esses [1, 2, 3℄. The 
ontinue resear
h on the �eld has re
ently permitted
to synthesise or redis
over superhard 
ompounds su
h as SiO2-stishovite [4℄, 
ubi
-Si3N4

[5℄ and 
ubi
-BC2N [6℄. The 
onstant growing interest in this domain is also due to the
development (1980's) of new vapor deposition te
hniques (CVD, PVD and laser ablation),
whi
h allow the deposition of hard materials �lms at low temperature and pressures on
di�erent substrates [7, 8, 9, 10, 11℄.

Diamond exhibits ex
ellent me
hani
al, 
hemi
al and physi
al properties and nowa-
days remains the hardest known material. However, it is well known that it 
annot be
used in 
utting tools for steel owing to a 
ertain instability at high temperatures. As
a matter of fa
t, its stability drasti
ally de
reases in the presen
e of oxygen at even
moderate temperature (� 873 K). It is also not a very suitable abrasive for 
utting and
polishing ferrous alloys sin
e it tends to rea
t and form iron 
arbides. Furthermore, its
super abrasive performan
e is somehow limited. For these reasons and be
ause of the
need to substitute expensive diamond in many other appli
ations, new hard materials are
required. It is mostly the strong industrial demands of wear resistant 
oatings for 
utting
and forming tools whi
h has driven the sear
h of novel hard materials. Common hard

1
hard�ness (h�ard0n�is), n. [AS. heardness.℄ 1. The quality or state of being hard, literally or �gura-

tively. Sour
e: The Ameri
an Heritage Di
tionary of the English Language, Fourth Edition Copyright



 2000 by Houghton Mi�in Company (http://www.di
tionary.
om/). All rights reserved.
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solids are usually 
lassi�ed into 
ompounds with metalli
 (TiN or WC), ioni
 (Al2O3)
or 
ovalent bonding (diamond, Si3N4 et
..). Transition metal nitrides and 
arbides (TiN
and TiC) have been largely used as 
oatings for wear prote
tive appli
ations in the last
de
ades. However, 
arbon based materials su
h as arti�
ially grown diamond and hy-
drogenated 
arbon 
ompounds have be
ome a valid alternative. These materials possess
good prote
tive properties and low fri
tion 
oeÆ
ient, thus open the possibility to use
the 
oatings as solid lubri�
ants. Another important 
lass of materials is represented
by 
arbon nitrides 
ompounds with general formula CNx. The growing resear
h inter-
est arose from the theoreti
al work of A. Y. Liu and M. L. Cohen [12℄ whi
h predi
ted
for �-C3N4 a hardness 
omparable to that of diamond. Despite the synthesis of pure

rystalline and stoi
hiometri
 C3N4 has been found extremely diÆ
ult, some non stoi-

hiometri
 
arbon nitrides have eviden
ed interesting properties su
h as high hardness
and elasti
ity, and low fri
tion. These 
ompounds are thus promising 
andidates for the
next generation's wear prote
tive 
oating. However, the fundamental problem with su
h
materials remains the extreme diÆ
ulty found in growing pure 
rystalline nitrogen-ri
h
samples. Espe
ially with thin �lm te
hnology various deposition te
hniques and growth

onditions have been tested without great su

ess: non-
rystalline and nitrogen-de�
ient
�lms are always obtained.

The introdu
tion of boron atoms into 
arbon nitrides leads to the possibility to obtain
new hard materials with general formula BxCyNz. With su
h a boron-based 
ompound
the low oxidation resistan
e of diamond might be improved thus removing the problem of
using hard materials at high temperatures in air. The re
ent interest in boron 
arbon ni-
trides has been mostly fo
ussed on the BC2N stoi
hiometry, whi
h is a phase isoele
troni

with the well known C3N4. The �rst eviden
e of the graphiti
 BC2N dates ba
k to the
synthesis of Kouvetakis et al. [13, 14℄, where 
hemi
al vapor deposition method was used
with BCl3 and CH3CN as starting materials. Several e�orts have been made in order to
modify these graphiti
 BC2N systems into highly dense three-dimensional phases but un-
fortunately, despite the use of high-pressure and high-temperature methods, no 
ommon
results were found in the last de
ade. Some resear
hers found problems with a 
ertain
limited solubility [15, 16℄, while others 
laimed a segregation in a mixture of diamond
and 
ubi
 boron nitride (
-BN) [17, 18, 19℄. Nevertheless, early theoreti
al 
al
ulations
[20, 21, 22℄ have suggested that these 
ompounds should possess an intermediate hardness
between diamond and 
-BN .

1.2 Aims of the Thesis

It is 
ertain that despite the initial s
ienti�
 enthusiasm, the synthesis of 
arbon ni-
trides and boron 
arbon nitrides has suddenly turned out in a very diÆ
ult task. Many
synthesis routes were tested and important human e�orts are being made in order to
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hara
terise polymorphi
 samples. The sear
h of a pure 
rystalline material and its
subsequent spe
tros
opi
 
hara
terisation remains nowadays the main topi
 for all the
resear
hers working on CNx and BxCyNz 
ompounds.

Given the 
ost and the 
omplexity of the synthesis/
hara
terisation pro
edure, 
om-
puter modelling investigation has here been used to dis
over new possible 
rystalline
models and to predi
t their material properties in a faster and 
heaper way. The 
om-
putational methods have already been applied to diamond and 
ubi
 boron nitride (i.e.
the hardest known solids) with great su

ess, provoking a 
onsiderable interest in in-
vestigating other hypotheti
al materials. The �rst goal of my resear
h has been the
determination of an eÆ
ient 
omputational approa
h for simulating the relative stabil-
ity and the hardness of some potential phases that have re
ently been proposed for the
C3N4 stoi
hiometry. In parti
ular, several Density Fun
tional Theory (DFT) methods
have been tested, among the various simulation s
hemes available in our laboratory, in
order to inspe
t their pe
uliar reliability and usefulness. Subsequently, the most promis-
ing �rst-prin
iples methods have been employed in the rest of the Thesis to 
al
ulate the

ohesive properties, bulk and elasti
 moduli of di�erent kinds of 
arbon nitride and boron

arbon nitride model stru
tures. Ele
troni
 properties have also been studied by means of
density of states and band stru
ture analysis. In addition, the in
uen
e of hybridisation
on the 
hemi
al bonding and stability has been dis
ussed in terms of the site proje
ted
densities of states as well as the 
rystal orbital overlap population. Finally, sin
e the

hara
terisation of 
arbon nitrides and boron 
arbon nitrides is mostly restri
ted by the
problem of obtaining pure 
rystalline samples, the 
al
ulation of the theoreti
al energy
loss near edge stru
ture has been shown in order to provide referen
e spe
tra.

A large part of this work has also been oriented to the theoreti
al proposition and

hara
terisation of novel model systems isoele
troni
 with diamond and 
ubi
 boron
nitride. I have in my resear
h fo
used most of the attention on the 
rystal engineering

of the C-B-N networks by proposing various binary (C11N4) and ternary (BC2N) model

ompounds. Their ele
troni
, me
hani
al and spe
tros
opi
 
hara
terisation given in this
Thesis should provide a pre
ious tool for the interpretation of the experimental results.

1.3 Outline of the Thesis

The �rst Chapters are mostly 
on
erning a general introdu
tion to the domain of ultra-
hard materials (Chapters 2 and 3) and to the employed 
omputational methods. In
parti
ular, Chapter 4 resumes the basi
 ideas behind the DFT, while Chapters 5, 6 and 7

ontain a brief des
ription of the various method of 
al
ulations. In Chapter 8 a detailed
investigation of the CNx systems is presented by paying most of the attention to the
di�eren
es between the C3N4 and C11N4 stoi
hiometries. The study of boron 
arbon
nitrides is given in Chapter 9. The attention is here fo
used on the BC2N phases and
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in their me
hani
al and ele
troni
 properties. The 
on
lusions are drawn in Chapter 10
where a general dis
ussion is presented for ea
h of the investigated 
lass of 
ompounds.



Chapter 2

The Hardness and Covalen
y

2.1 First theoreti
al proposition of Carbon Nitrides as novel

hard materials

It was in 1985 that M. L. Cohen [23℄ proposed an empiri
al relation between the bulk
modulus, B (volumetri
 
ompressibility or bulk modulus), and the 
rystalline solids of
elements of the III, IV and V 
olumn of the periodi
 table. In the free-ele
tron gas model,
the 
ase of metals, the expression of the B modulus (GPa) s
ales as the Fermi energy,
EF , and the ele
tron 
on
entration, n,

B =
2

3
nEF : (2.1)

Starting from the model of Phillips-VanVe
hten [24℄ it is possible to extend the expression
of B to semi
ondu
tors. The bond geometry of 
ovalent bonds is roughly represented
with a 
ylindri
al shape with volumes � � (2aB)

2
d, where aB is the Bohr radius and d

(�A) the length of the 
ylinder. Using this approximation we obtain,

B = 45:6Ehd
�1 (2.2)

where Eh (eV) represents the homopolar 
ontribution of the opti
 gap, Eg (E2
g = E2

h +
E2
ioni
). Using the s
aling of Phillips (Eh / d�2:5) for the dependen
e of Eh on d for

tetrahedral 
ompounds sharing eight valen
e ele
trons per atom pair, we obtain

B = 1761d�3:5; (2.3)

where the nearest-neighbor d is again in �A and B in GPa. The introdu
tion of the ioni
ity
parameter, �, permits to 
onsider the ioni
 
hara
ter of the bonding:

B = (1971 � 220�) d�3:5: (2.4)

5
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This empiri
al relation results appropriate for the group-IV (� = 0), III-V (� = 1) and II-
VI (� = 2) semi
ondu
tors. Furthermore, in order to a

ount for a di�erent 
oordination
number (di�erent from 4 of the tetrahedral site), M. L. Cohen introdu
ed the variables
N
, whi
h represents the mean 
oordination number. The �nal version of the equation
takes the following form:

B =
N


4
(1971 � 220�) d�3:5: (2.5)

The above equation gives an a

urate B value for diamond and for semi
ondu
tors with a
zin
-blende stru
ture. The volumetri
 
ompressibility B in
reases with the lowering of d
and �. The hardest materials are thus those that show lower ioni
ity and stronger bonds.
Diamond responds to these 
hara
teristi
s; indeed it shows N
=4, �=0 and d=1.54 �A.
The bulk modulus 
al
ulated for diamond with the Eq. 2.5 is 435 GPa, whi
h is very

lose to the experimental one of 443 GPa. In the 
ase of 
arbon nitrides with formula
C3N4 the mean 
oordination number (N
) is

24
7

1 whi
h is lower than that of diamond, 4.
Taking into a

ount the small ele
tronegativity di�eren
e between 
arbon and nitrogen,
we assume the C-N bond to be slightly ioni
 with �=1

2
. From the values of the 
ovalent

radius (rC=0.77 �A and rN=0.75 �A) we de�ne a C-N bond length of 1.52 �A. The insertion
of these parameters in Eq. 2.5 provides a B value of 430 GPa. Therefore, 
arbon nitrides
with formula C3N4 should exhibit a bulk modulus 
omparable to that of diamond.

This was the �rst theoreti
al indi
ation of the possibility to �nd new promising 
lasses
of 
arbon based hard materials. In parti
ular, the large bulk modulus 
al
ulated from the
simple empiri
al relation of M. L. Cohen was suÆ
ient enough to provoke in the middle
of the 1980's an outstanding s
ienti�
 enthusiasm whi
h is, nowadays, still not vanished.

2.2 Ele
tron 
ount 
onsiderations

The de�nition of "ultra-hard" materials is usually employed to des
ribe all the 
ompounds
that have shown hardness values 
omparable to that of diamond. Generally speaking,
these materials are solids with an hardness in between 8-10 Mohs s
ale (Tab. 2.2). Sin
e
diamond, 
ubi
 boron nitride (
-BN) and boron 
arbides (B13C2-B12C3) are the hardest
materials known, it 
an reasonably be expe
ted that novel ultra-hard solids will be found
in the same B-C-N ternary 
omposition diagram (see Fig. 2.1). However, as one might
anti
ipate many 
ombination of C, B and N atoms are, in prin
iple, possible and an
huge amount of di�erent stoi
hiometries and stru
tures 
an rapidly be imagined for both
binary and ternary 
ompounds. Therefore, the proposition of novel hard phases has

1Carbon has four valen
e ele
trons ([He℄ 2s2 2p2) and 
an form one 
ovalent bond with four nitrogen

atoms, whereas nitrogen possesses �ve valen
e ele
trons ([He℄ 2s2 2p3) and 
an only have one 
ovalent

bond with three atoms of 
arbon. For this reason N
=
(3�4)+(3�4)

7
in the C3N4 stoi
hiometry.
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Minerals or Formula Mohs Knoop 100
Syntheti
 Materials (GPa)

Tal
um Mg3 [(OH)2 =Si4O10℄ 1
Hexagonal Boron Nitridey h�BN 0.15-0.30
Gypsum CaSO4 � 2H2O 2
Cal
ite CaCO3 3
Fluorite CaF2 4
Apatite Ca5 [(F;OH) = (PO4)℄ 5
Feldspar K [AlSi3O8℄ 6
Quartz SiO2 7
Topaz Al2 [F2=SiO4℄ 8
�-Sili
on Nitridey �-Si3N4 17
Corundumx-Titanium Nitridey Al2O3 � T iN 9 21
Sili
on Carbidey SiC 26
�-Sili
on Nitridey �-Si3N4 26-35
Titanium Crabidey T iC 28
Boron Carbidey-Titanium Diboridey B4C � T iB2 30
Boron suboxides BnO 30-59
Stishovitey SiO2 33
Cubi
 Boron Nitridey 
�BN 45
Diamondx C 10 75-100

[y℄ Syntheti
 material. [x℄ Syntheti
 material or natural mineral.

Table 2.1: Hardness of minerals and some syntheti
 
erami
s a

ording to F. Mohs. For
syntheti
 materials mi
ro-hardness values are given in units of Knoop s
ale. Values are
shown as 
ompiled by R. Riedel in Ref. [25℄.

generally been restri
ted in this Thesis by the adoption of the so-
alled ele
tron 
ounting

rule. A systemati
 investigation of the various stoi
hiometries be
omes thus possible
thanks to the limited number of allowed atomi
 
ombinations.

If we look, for example, at the building up of the two-dimensional 
arbon nitride

ompounds, one 
ould �rstly envisage a random repla
ement of C by N within the layers
of graphite. However, this results in an unstable ele
troni
 stru
ture 
on�guration. This
is due to the additional ele
trons of the nitrogen atoms whi
h have to be a

ommodated
in energeti
ally unfavourable ele
troni
 bands. But if 
ompounds are designed to be
isoele
troni
 to diamond and graphite the stability and the ele
troni
 stru
tures are

hanged. For instan
e graphiti
 C3N4 has 32 valen
e ele
trons per formula unit when the
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Figure 2.1: S
hemati
 ternary 
omposition diagram indi
ating di�erent "hard" stoi-

hiometries.

2s states are in
luded. Distributing the ele
trons on eight sites gives four ele
trons on
ea
h site whi
h is isoele
troni
 with diamond and graphite. The eighth site is a va
an
y
(C321N4) and the lone pairs of three of the nitrogen atoms are pointing toward this hole.
From this, graphiti
 C3N4 should have a similar band stru
ture at the Fermi level as
graphite, and C3N4 with a three-dimensional network is also expe
ted to have a band
gap similar to diamond. Consequently a series of di�erent 
ombinations of C, B and N

an be investigated for the sear
h of new hard 
ompounds, provided that the following
simple 
ondition is respe
ted:

p � ZV (B) +m � ZV (C) + l � ZV (N) = 4n (2.6)

The values p, m, l and n are integers and ZV (B), ZV (C) and ZV (N) are the atomi

valen
e states (2s and 2p) for boron, 
arbon and nitrogen, respe
tively. Examples are
represented by the systems C3N4, C11N4, BN, B4C, BC2N et
...

The attention has therefore been restri
ted only to those 
ompositions that are iso-
ele
troni
 to 
arbon, i.e., diamond. This parti
ular 
hoi
e also derives from the fa
t that
all the substan
es obeying this rule should likely posses the same attra
ting properties
of the existing hardest materials (e.g. 
ubi
 boron nitride and diamond).



Chapter 3

The 
on
ept of Hardness

3.1 Introdu
tion

From the me
hani
al point of view we usually de�ne the hardness as the resistan
e
of the material to deformations. This property strongly depends on many parameters
like pressure, temperature, porosity, impurities, dislo
ations and defe
ts. It is usually

orrelated to various other physi
al properties (ioni
ity, melting point, band gap, 
ohesive
energy, et
...) and 
an thus be studied indire
tly. The hardness for a given sample
is usually determined by empiri
al methods su
h as the s
rat
h test (Mohs s
ale) or
indentation by dropping a weight on the sample. The results are very useful but diÆ
ult
to interpret and they often dependent on the sample and its state of purity. In the
Vi
kers test the hardness is estimated by measuring the indentation left by a diamond
stylus under a �xed load. This test and the s
rat
h test (irreversible methods) are quite
often employed experimentally to 
lassify the hardness of the various 
ompounds.

Many theoreti
al predi
tions on the hard materials have been made in the last two
de
ades by looking at the magnitude of the bulk modulus, B, [26, 27, 23, 28, 12, 29℄.
However, in 1977 A. P. Gerk [30℄ has already suggested that the shear modulus, G, whi
h
de�nes the resistan
e to reversible deformation upon shape 
hange, might be a better
predi
tor of the hardness. More re
ently, D. M. Teter [22℄ showed that for a wide variety
of materials the shear modulus is really more 
orrelated to the Vi
kers hardness than
the bulk modulus (further details are given in Se
tion 8.2.4, p. 53). The hardness of

rystalline materials thus be
omes better de�ned by taking into a

ount the dislo
ation
theory, i.e., by measuring how readily a large number of dislo
ations are generated and
are able to move throughout the solid in response to the shear stresses.

In the following subse
tions we show how to des
ribe the hardness of solids with the

al
ulation of the bulk modulus, elasti
 
onstants and shear modulus.

9
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3.1.1 Measure of the resistan
e upon volume 
hange in solids

The bulk modulus measures the resistan
e to the volume 
hange in solids and provides
an estimation of the elasti
 response of the material to an external hydrostati
 pressure.
The B(V ) value is related to the 
urvature of E(V ),

B(V ) = �V �P

�V
= V

�2E

�V 2
(3.1)

where V is the volume of the unit 
ell, E(V ) is the energy per unit 
ell at volume V , and
P (V ) is the pressure required to keep the unit 
ell at volume V . Sin
e the 
al
ulations


an only provide a restri
ted set of energies E(Vi), the se
ond derivative, �2E
�V 2 , must be

approximated. The least squares �t of the 
urves E vs. V has been performed in this
Thesis by using the �rst three terms of the Bir
h equation [31℄:

E(V ) = E(Vo) +
9

8
VoB

"�
Vo

V

� 2
3

� 1

#2
+

9

16
B

�
B

0 � 4
�
Vo

"�
Vo

V

� 2
3

� 1

#3
+

NX
n=4


n

"�
Vo

V

� 2
3

� 1

#n
; (3.2)

where Eo, Vo, B and B
0

are the equilibrium energy, volume, bulk modulus and pressure
derivatives of the bulk modulus, respe
tively. In the above summation the 
n symbol
represents the total 
ontra
tion terms [32℄, whilst the maximum order of the �t is sym-
bolised by the N index. The Eq. 3.2 is normally employed by assuming the following
trend: the larger the value of B, the harder is the material. The magnitude of B0 is
generally utilised to des
ribe the variation of the hardness with respe
t to a given 
hange
of the pressure (�P).

Di�erent semiempiri
al relations su
h as �nite stress-strain have been proposed to
des
ribe the so-
alled Equation of State (EOS) (see Ref. [33℄ and Refs. therein). S
aling
experimental 
ompression data for measured isotherms of di�erent sorts of solids the
EOS is known. The above Bir
h type equation of state is a well tested �tting form
able to des
ribe the P , V , T data for a wide variety of solids. The main assumption
made in its utilisation is that no phase transition o

urs during the 
ompression of the
material. Despite the existen
e of di�erent varieties of EOS, the 
al
ulations of the bulk
modulus have mostly been performed in this Thesis by using the Bir
h type equation.
Sin
e su
h a �tting form provides good results for systems like diamond and 
-BN I
thought worthwhile to use the same equation for the investigation of new hypotheti
al
phases for whi
h the experimental data are not yet available. Furthermore, by doing this
a homogeneous analysis of the results be
omes possible with respe
t to the previously
a
hieved theoreti
al and experimental results.
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3.1.2 Resistan
e to reversible deformation upon shape 
hange

In the study of me
hani
al strength the elasti
ity of solids, i.e., the response of a material
to applied for
es, must be taken into a

ount. The for
es are des
ribed by tensors 
alled
stresses whi
h determine the dire
tion of the for
e and the plane to whi
h it is applied.
The responses in terms of relative 
hanges in dimensions or shape are 
alled strains and
they are also given by tensors. The ratio stress/strain is 
alled elasti
 modulus. For small
stresses the modulus is 
onstant and the material behaves elasti
ally so that it returns to
the original 
ondition when the stress is removed. For large stress the sample undergoes
a permanent or plasti
 deformation. When the for
e a
ts only in one dimension the stress
is 
alled 
ompressional, and when it a
ts in all dire
tions the stress is hydrostati
. In the
shearing stress, for
es a
t to move parallel planes of the solid so that at the mi
ros
opi

level these stresses 
ause the gliding of planes of atoms over ea
h other. This is the easiest
way for a solid to 
hange its shape and the for
e needed (hardness) depends very mu
h
on the presen
e of 
rystal defe
ts. Edge and s
rew dislo
ations are the most important
defe
ts for gliding motion. An applied shearing stress will 
ause the dislo
ations to move
throughout the 
rystal.

A

ording to the �nding of A. P. Gerk and D. M. Teter, the hardness of the solids
has mostly been investigated in this Thesis by 
omputing the value of the isotropi

shear modulus. This magnitude 
an be expressed as a linear 
ombination of a set of
elasti
 
onstants, 
ij , and is 
onsidered nowadays as the best hardness predi
tor for
solids. The 
ij 
onstants determine the response of the 
rystal to external for
es and
provides information about the bonding 
hara
teristi
s between adja
ent atomi
 planes,
anisotropi
 
hara
ter of the bonding and stru
tural stability. Ea
h of the elasti
 
onstants
is a measure of hardness for a parti
ular kind of unit 
ell deformation.

Cal
ulation of the elasti
 
onstants: 
ubi
 system as a simple example

The basi
 problem in 
al
ulating elasti
 
onstants from ab initio methods is not only the
demand of a

urate 
al
ulational s
hemes for evaluating the total energy of the solid but
also the massive and onerous 
omputations implied in the estimation of the entire set of
the inequivalent 
ij . For instan
e, when the symmetry of the system is de
reased, the
number of independent elasti
 
onstants expands and a larger number of distortions is
ne
essary to 
ompute the full set of 
ij [34℄. These 
onstants 
an be dedu
ed by applying
small strains to the equilibrium latti
e and then determining the resulting 
hange in the
total energy. In parti
ular we 
al
ulate the linear 
ombinations of the elasti
 
onstants
by straining the latti
e ve
tors R a

ording to the rule ~R = R � D. The matrix D
represents the symmetri
 distortion matrix whi
h 
ontains the strain 
omponents and ~R
is the matrix that 
ontains the 
omponents of the distorted latti
e ve
tors. In order to

onserve the elasti
 limit of the 
rystal, only small latti
e distortions must be applied
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(e.g. strains within �1.5 %).
In 
ubi
 materials there are only three inequivalent elasti
 
onstants: 
11, 
12 and 
44.

These values 
an be estimated by 
al
ulating the total energy of the system as a fun
tion
of the shears des
ribed below [35℄. For 
11 and 
12 the following shear, D1, is 
onsidered,

D1 =

0
B�

1 + Æ 0 0
0 1 + Æ 0
0 0 1

(1+Æ)2

1
CA (3.3)

where the z axis is modi�ed and the x and y axes are kept the same in a volume 
onserving
way. The variation of the strain energy density (U = Energy=V olume) as a fun
tion of
the shear Æ is des
ribed with the following equation,

U = 6C 0
Æ
2 +O(Æ3) (3.4)

with C 0 = 1
2
(
11 � 
12). From the 
al
ulation of C 0 and the bulk modulus, B =

1
3
(
11 + 2
12), one 
an evaluate the �rst two elasti
 
onstants. With the same pro
e-

dure, but 
onsidering the following shear,

D2 =

0
B�

1 Æ 0
Æ 1 0
0 0 1

(1�Æ2)

1
CA (3.5)

the 
44 
onstant 
an be 
al
ulated from the equation,

U = 2
44Æ
2 +O(Æ4): (3.6)

Isotropi
 shear modulus The isotropi
 shear modulus, GIso, was �rstly expressed
by A. Reuss as long ago as in 1929 [36℄. In the Voigt's approximation the equation takes
the following form:

GIso =
1

15
[(
11 + 
22 + 
33)� (
23 + 
31 + 
12) + 3(
44 + 
55 + 
66)℄ (3.7)

For the spe
ial 
ase of a 
ubi
 symmetry the above relation translates into the form of

G
 =
1

15
(3
11 � 3
12 + 9
44) : (3.8)

Therefore, after having a

omplished the 
al
ulation of the whole set of single 
rystal
elasti
 
onstants, it is possible to estimate (for all the materials) the elasti
 shear moduli
for a poly
rystalline1 solid by simply applying the above relation (Eq. 3.7). A

ording
to the �nding of A. P. Gerk [30℄ and D. M. Teter [22℄, the larger is the value of the

al
ulated G, the harder should be the material.

1In general, a single 
rystal is more diÆ
ult to prepare than a poly
rystalline material. As a matter

of fa
t, most of the available experimental elasti
 moduli refer to poly
rystalline samples.



Chapter 4

Density Fun
tional Theory

4.1 Introdu
tion

Condensed matter physi
s and materials s
ien
e are basi
ally related to the understand-
ing and exploiting the properties of systems of intera
ting ele
trons and atomi
 nu
lei. In
prin
iple, all the properties of materials 
an be addressed given suitable 
omputational
tools for solving this quantum me
hani
s problem. In fa
t, through the knowledge of the
ele
troni
 properties it is possible to obtain information on stru
tural, me
hani
al, ele
-
tri
al, vibrational, thermal and opti
 properties. However, the ele
trons and nu
lei that

ompose materials 
onstitute a strongly intera
ting many body system and unfortunately
this makes the dire
t solution of the S
hr�odinger's equation an impra
ti
al proposition.
As stated by Dira
 in the far 1929 [37℄, progress depends mostly on the elaboration of
suÆ
iently a

urate and approximate te
hniques.

The development of density fun
tional theory and the demonstration of the tra
tabil-
ity and a

ura
y of the Lo
al Density Approximation (LDA) represents an important
milestone in 
ondensed matter physi
s. The DFT of Hohenberg and Kohn [38℄ was
adopted by the LDA whi
h was �rstly developed and applied by Slater [39℄ and his 
o-
workers [40℄. First prin
iples quantum me
hani
al 
al
ulations based on the LDA have
be
ome one of the most frequently used theoreti
al tools in materials s
ien
e. Nonethe-
less, the great 
ontribution of the lo
al density approximation 
al
ulations remained
limited until the late 1970's when several works have demonstrated the a

ura
y of the
approa
h in determining properties of solids [41, 42, 43, 44℄. Even though it has been a
great deal to state why the LDA should or should not be adequate for 
al
ulating prop-
erties of materials, there is however no doubt that the most 
onvin
ing arguments have
been derived from the dire
t 
omparison of 
al
ulations with experiments. In parti
ular,
despite its simpli
ity the lo
al density approximation has been very su

essful in des
rib-
ing materials properties during the last de
ades. However, it is worth to note that there

13



14 Chapter 4: Density Fun
tional Theory

are also situations where the above approa
h do not lead to suÆ
iently a

urate results.
This 
an be the 
ase when the di�eren
es in the total energy, whi
h are usually relevant
in 
al
ulating stru
tural properties and binding, are to be estimated very a

urately. As
a matter of fa
t, small ina

ura
ies may have here a dramati
 e�e
ts. In general, LDA
su�er from more or less well-known failures and therefore there have during the last
de
ade been several attempts to go beyond this lo
al approximation by in
luding e�e
ts
depending on the variation of the ele
tron density.

Nowadays, improved theoreti
al s
hemes and the rapid growth in 
omputing fa
ilities
have 
aused many types of systems and properties to be studies su

essfully with density
fun
tional methods. In the next following Se
tions we brie
y resume the fundamental

on
epts whi
h are at the base of this important and fas
inating theory.

4.2 The basi
 prin
iples of the method

The theorem of Hohenberg and Kohn is at the base of the DFT and states that the total
energy, E, of a non-spin-polarised system of intera
ting ele
trons in an external potential
is given exa
tly as a fun
tional of the ground state ele
troni
 density, �.

E = E [�℄ (4.1)

They further showed that the true ground state density is the density that minimises
E [�℄ and that the other ground state properties are also fun
tionals of the ground state
density. The extension to spin-polarised systems is also possible where E and the other
ground state properties be
ome fun
tionals of both the up and down spin densities.

E = E [�"; �#℄ (4.2)

The Hohnenberg-Kohn theorem provides no guidan
e to the form of E [�℄, thus the utility
of DFT depends on the dis
overy of suÆ
iently a

urate approximations. In order to do
this, the unknown fun
tional E [�℄ is rewritten as the Hartree total energy plus another
smaller unknown fun
tional 
alled ex
hange-
orrelation (x
) fun
tional, Ex
 [�℄.

E [�℄ = Ts [�℄ +Eei [�℄ +EH [�℄ +Eii [�℄ +Ex
 [�℄ (4.3)

In Eq. 4.3 Ts [�℄ represents the single parti
le kineti
 energy while Eei [�℄ denotes the
Coulomb intera
tion energy between the ele
trons and the nu
lei. The term Eii [�℄ arises
from the intera
tion of the nu
lei with ea
h other and EH [�℄ is the Hartree 
omponent
of the ele
tron-ele
tron energy.

EH [�℄ =
e2

2

Z
d
3rd3r0

� (r) � (r0)

j r� r0 j (4.4)
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In the LDA, Ex
 [�℄ is written as

Ex
 [�℄ =

Z
d
3r� (r) "x
 (� (r)) (4.5)

where "x
 (�) is approximated by a lo
al fun
tion of the density, whi
h usually reprodu
es
the known energy of the uniform ele
tron gas. Re�nement of the LDA are the so-
alled
generalised gradient approximation (GGA) and the weighted approximation (WDA). An
expression similar to Eq. 4.5 is used in the GGA where the "x
 (�) is repla
ed by a
lo
al fun
tion of the density and the magnitude of its gradient, "x
 (�; j r� j). From
the in
orporation of the additional information 
ontained in the lo
al gradient a better
des
ription of the system is expe
ted [45, 46, 47℄. Several di�erent parameterisations of
the GGA fun
tional have been proposed [47℄ and tested on a wide variety of materials.
The GGA improve signi�
antly the ground state properties of light atoms, mole
ules
and solids and generally tends to produ
e larger equilibrium latti
e parameters and band
gaps with respe
t to the LDA.

A more sophisti
ated approa
h is the WDA that in
orporates true non-lo
al infor-
mation through Coulomb integrals of the density with model ex
hange 
orrelation holes
[48, 49, 50℄. It ameliorates greatly the energies of atoms and for the diamond stru
tures
of Si and Ge yields bulk properties that are mu
h improved as well. Nonetheless, the
WDA is more demanding 
omputationally than the LDA or GGA, and a

ordingly few
WDA studies have been reported for solids.

Following the Kohn and Sham indi
ations [51℄, the ele
tron density 
an be written
as a sum of single parti
le densities. Given the fun
tional Ex
 the ground state energy
and density 
an be obtained by the self-
onsistent solution of a set of single parti
le
S
hr�odinger-like equations, known as the Kohn-Sham equations with a density dependent
potential,

(T + Vei (r) + VH (r) + Vx
 (r))'i (r) = �i'i (r) (4.6)

where the density is given by a Fermi sum over the o

upied orbitals.

� (r) =
X
o



'
�

i (r)'i (r) (4.7)

The 'i are single parti
le orbitals, �i are the 
orresponding eigenvalues, T is the kineti

energy operator, Vei is the Coulomb potential due to the nu
lei, VH is the Hartree
potential and Vx
 is the ex
hange 
orrelation potential. VH and Vx
 depend on � as
follows:

VH (r) = e
2

Z
d
3
�
r0
� � (r)

jr� r0j (4.8)
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and

Vx
 (r) =
ÆEx
 [�℄

Æ� (r)
(4.9)

In this framework, a 
al
ulation requires the self-
onsistent solution of equations 4.6 and
4.7. This means that a 
ertain density has to be found su
h that it yields an e�e
tive
potential that, inserted into the S
hr�odinger-like equations, yields orbitals that 
an re-
produ
e it. For this reason, instead of fa
ing-up with the problem of solving a many-body
S
hr�odinger equation, using DFT we 
an now have the easier problem of determining the
self-
onsistent solution to a series of single parti
le equations. In solids, a further simpli-
�
ation that fa
ilitates DFT 
al
ulations is provided by the Bl�o
h's theorem, where the

harge density and the single parti
le KS Hamiltonian have the periodi
ity of the latti
e.
Thus KS orbitals with di�erent Bl�o
h momenta are 
oupled only indire
tly through the
density dependent potential. Therefore, in DFT based 
al
ulations, the single parti
le
KS equations may be solved separately on a grid of sampling points in the symmetry
irredu
ible wedge of the Brillouin zone and the resulting orbitals used to 
onstru
t the

harge density (this is not the 
ase, for example, in Hartree-Fo
k methods).

As already mentioned the great advantage of the density fun
tional approa
h is that
the resulting single-parti
le equations are 
omputationally simpler to solve then the equiv-
alent Hartree-Fo
k equations. This makes possible to 
onsider systems that are more

omplex (i.e. larger size or 
ompli
ate stru
ture) then those treated by the Hartree-Fo
k
derived methods.

4.3 Single parti
le Kohn-Sham equations

Depending on the representations that are used for density, potential and KS orbitals, dif-
ferent DFT based ele
troni
 stru
ture methods 
an be 
lassi�ed. Many di�erent 
hoi
es
are made in order to minimise the 
omputational and human 
osts of 
al
ulations, while
maintaining suÆ
ient a

ura
y. A brief summary of the many possibilities to solve the
S
hr�odinger's equation is given in Fig. 4.1. In this Thesis 
al
ulations have been mostly

on
erned with two parti
ular approa
hes namely, planewave Pseudo-Potential (PP) and
the Linearized Augmented Plane-Wave (LAPW). Other simpler and faster methods, su
h
as Augmented Spheri
al Wave (ASW) and the Linear MuÆn Tin Orbital (LMTO), have
also been employed in the study of 
arbon based hard materials. However, these 
ompu-
tational approa
hes are usually reliable only when applied to 
rystalline materials with
high symmetry and large 
ompa
tness.

The expli
it use of a basis 
an be avoided in 
onstru
ting the KS orbitals by nu-
meri
ally solving the di�erential equations on grids. However, it is important to note
that nearly all approa
hes that have been proposed for solids, in
luding the PP and the
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Figure 4.1: S
hemati
 representation of various DFT-based methods of 
al
ulation.

LAPW methods, do rely on a basis set expansion for the KS orbitals. Be
ause of this,
the dis
ussion is here 
on�ned to methods that do use a basis in whi
h the KS orbitals
are:

'i (r) =
X

Ci��� (r) (4.10)

where the �� (r) are the basis fun
tions and the Ci� are the expansion 
oeÆ
ients. Given
a 
hoi
e of basis, the 
oeÆ
ients are the only variables in the problem, sin
e the density
depends only on the KS orbitals. Sin
e the total energy in DFT is variational, the solution
of the self-
onsistent KS equations permits to determine the Ci� for the o

upied orbitals
that minimise the total energy. In order to eliminate the unknown fun
tional Ts [�℄ the
total energy 
an be rewritten using the single parti
le eigenvalues:

E [�℄ = Eii [�℄ +
X
o



�i +Ex
 [�℄�
Z
d
3r � (r)

�
Vx
 (r) +

1

2
VH (r)

�
(4.11)

where the sum is over the o

upied orbitals and �, VH and Vx
 are given by Eqs. 4.7,
4.8 and 4.9, respe
tively.

Density fun
tional 
al
ulations require the optimisation of the Ci� and the determi-
nation of the 
harge density (Fig. 4.2). This pro
edure is usually performed separately
and hierar
hi
ally. Using standard matrix te
hniques it is possible to repeatedly deter-
mine the Ci� that solve the single Eq. 4.6 for a �xed 
harge density. Hen
e, given the
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basis, the Hamiltonian and the overlap matri
es, H and S, 
an be 
onstru
ted and the
following matrix eigenvalue equation,

(H� �iS)Ci = 0 (4.12)

is solved at ea
h k-point in the irredu
ible wedge of the Brillouin zone. The optimised

Compute V(r)

Solve Single Particle

KS Equations

Determine EF

K point loop

K point loop

Calculate (r)ρout

Converged ?
Yes

Done
No

Mix ,ρ ρout in

ρin

Figure 4.2: Flow-
hart for self-
onsistent density fun
tional 
al
ulations.

Ci� will yield the exa
t self-
onsistent solution only if the true o

upied KS orbitals 
an
be expressed as a linear 
ombination of the basis fun
tions. In the 
ase where they 
annot
be expressed exa
tly in term of the basis, an approximate optimal solution (i.e the one
that gives the lowest possible total energy for the basis) will be found. Therefore, the
quality of a basis set 
an be measured by 
omparing how mu
h the total energy evaluated
with the orbitals of Eq. 4.10 di�ers from the true KS energy.
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4.3.1 The basis sets

With the general term eÆ
ien
y we usually refer to the number of basis fun
tions needed
to a
hieve a given level of 
onvergen
e, whereas with the bias we des
ribe whether or not
a basis 
ould favour 
ertain regions of spa
e over the others like, for example, being
more 
exible near the nu
lei than the interstitial regions. By looking at the diÆ
ulty
in estimating the matrix elements, the simpli
ity of the basis is also de�ned. The basis

ompleteness indi
ates whether the basis 
an be improved by in
reasing the number of
the fun
tions. Planewave sets are known to be ineÆ
ient in the above sense for a large
part of solids. However, this is not ne
essary a defe
t sin
e it only re
e
ts the fa
t that
they are unbiased. Moreover, planewaves form a simple and 
omplete basis. A

ura
y

an be rea
hed by in
reasing the number of planewaves in the basis and the 
onvergen
e
of a 
al
ulation 
an be monitored by 
hanging the planewave 
ut-o�. Furthermore, due
to the simpli
ity of this basis the implementation of the planewave 
odes is relatively easy
and the matrix elements of many operators 
an be rapidly estimated. Many operators

an be made diagonal sin
e the planewaves expanded wavefun
tions 
an be transformed
eÆ
iently from re
ipro
al spa
e, i.e. 
oeÆ
ients of the planewave expansion, to real
spa
e using Fast Fouries Transforms (FFT). In parti
ular, it is important to note that
the kineti
 energy and momentum operators are diagonal in re
ipro
al spa
e and the
operation of the lo
al potentials is diagonal in real spa
e. Looking at the equation 4.10 it
is evident that the most eÆ
ient basis set 
onsists of the KS orbitals themselves and an
exa
t 
al
ulation is thus a
hieved using a basis set size equal to the number of o

upied
orbitals. However, despite this possibility the KS orbitals are, in general, unknown at
the beginning of the 
al
ulation.

Atomi
 and MuÆn-tin orbitals are also 
ommon basis sets used in ele
troni
 stru
ture

al
ulations. Despite the fa
t that the 
rystal potentials are often di�erent from atomi

potentials (even 
lose to the nu
lei), a linear 
ombination of atomi
 orbitals (LCAO)
methods have been used su

essfully for large systems. With this method, problems of-
ten arise when attempts are made in order to add large numbers of basis fun
tions to get
highly 
onverged 
al
ulations. Atomi
 orbitals 
entred at a single site are already 
om-
plete, thus the LCAO's whi
h have as well orbitals 
entred at ea
h site are over-
omplete.
Owing to this problem the overlap matrix, S, in Eq. 4.12 be
omes ill-
onditioned for large
basis sets. MuÆn-tin orbitals derived basis sets are based on the solutions of the radial
S
hr�odinger's equation and usually a better approximation to the 
rystal potential is
provided in the vi
inity of the site with respe
t to that used in 
onstru
ting LCAOs.
This basis set has been dis
ussed in more details in the Se
tion 6.2.
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4.3.2 The Self Consistent Field in DFT

As shown by the theorem of Hohenberg-Kohn the total energy is variational and this
means that the true ground state density is that whi
h minimises the energy. When
the LDA approximation is introdu
ed to the Ex
 [�℄ the true variational prin
iple does
not exists anymore and there is no guarantee that the energy obtained by minimising
the energy fun
tional will be higher than the exa
t ground state energy. Consequently,
the true ground state 
harge density will in general not minimise the approximate en-
ergy fun
tional. However, 
al
ulations 
an be done by knowing that minimising a good
approximation to the energy fun
tional, a good energy and density should be obtained.
The pro
edure is thus exa
t only for the true energy fun
tional.

Sin
e we do not know the form of the single parti
le kineti
 energy, Ts [�℄, in Eq.
4.3, the minimisation pro
eeds through the KS equations, where the variation is with
respe
t to the orbitals, or in a basis set expansion to the 
oeÆ
ients Ci�. With a �xed
basis these are the only parameters that 
an be varied. The problem is to �nd the

oeÆ
ients that minimise the energy fun
tional (Eq. 4.11) paying attention on keeping
the orbitals orthonormal to ea
h other. The dire
t minimisation of the total energy with
respe
t to the Ci� was proposed by Bendt and Zunger in 1982 [52℄ and is the 
ore of
the Car-Parrinello (CP) method [53℄. In spite of the 
omputational advantages, this
approa
h has not yet be
ome popular for methods that use non-planewave basis sets.
This is due to the 
omplexity of the optimisation problem where typi
ally hundreds or
thousands of parameters are present even for small problems. Therefore, it is be
ause of
this 
ompli
ations that histori
ally the standard self-
onsisten
y 
y
le shown in Fig. 4.2
has been used to re�ne iteratively the density by alternately solving the Eqs. 4.6 and
4.7. For a given 
harge density the Eq. 4.12 is diagonalised (ensuring the orthonormal
orbitals) and an output 
harge density is 
onstru
ted from the eigenve
tors using Eq.
4.7. This 
harge density is then mixed with the input to yield a re�ned input for the
next iteration. The simplest mixing s
heme is represented by the straight mixing:

�
i+1
in = (1� �) �iin + ��

i
out (4.13)

The supers
ript refers to the iteration number and � is the mixing parameter. In order
to avoid the de
reasing of the radius of 
onvergen
e with the in
reasing, for example, of
the unit 
ell volume a more sophisti
ated mixing pro
edure whi
h takes into a

ount the
information from previous iterations is used. The 
onvergen
e is normally a

elerated by
using the Broyden's method [54℄.
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Planewave Pseudo-Potential

methods

5.1 Introdu
tion

The pseudo-potential (PP) approa
h employs a quantum me
hani
al des
ription of the
ele
troni
 intera
tions as spe
i�ed by the density fun
tional theory. This approa
h 
on-
sists basi
ally of a pseudo-potential and planewaves 
oupled with a Fourier transform
te
hnique. The above method appears extremely a

urate and reasonably fast for mate-
rial modelling and espe
ially it has shown good ability in predi
ting ground state stru
-
tures of ultra-hard materials [55℄. In parti
ular, two di�erent approa
hes, the lo
al density
approximation [56℄ and the generalized gradient approximation [57℄, have been widely
tested.

A general 
hara
teristi
, 
ommon to all the PP methods, is that on
e the des
ription
of the ele
troni
 intera
tions has been a
hieved, the for
es a
ting on atoms 
an be easily

al
ulated, thus giving the possibility to determine the minimum energy position for
atoms belonging the unit 
ell. Using this pro
ess, all the phases proposed in the next
following Chapters have been obtained by relaxing the initial 
rystalline stru
tures with
the planewave pseudo-potential approa
h. Su
h a pro
edure is at the moment 
onsidered
the state-of-the-art in the modelling of the 
arbon based materials.

In our investigations we used the Vienna ab-initio simulation pa
kage (VASP) [58℄ for
the determination of the optimised geometries, relative stability and elasti
 
onstants
of various 
arbon nitride and boron 
arbon nitride 
on�gurations. The 
al
ulations
have mostly been performed within the lo
al density approximation to the DFT [59℄
using the Ceperly-Alder [56℄ ex
hange 
orrelation fun
tional as parameterised by Perdew
and Zunger [60℄ and the pseudo-potential method des
ribed by Vanderbilt [61℄. Our
studies were exe
uted by using an energy 
ut-o� of 434.8 eV for the planewave basis

21
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set and 
onverged with respe
t to the k-point integration. The tetrahedron method
with Bl�o
hl 
orre
tions [62℄ was normally applied for both geometry relaxation and total
energy 
al
ulations. Brillouin-zone integrals were approximated using the spe
ial k-point
sampling of Monkhorst and Pa
k [63℄.

5.2 Bl�o
h's Theorem and Planewaves

The ions in a perfe
t 
rystal are arranged, at 0 ÆK, in a regular periodi
 way. Therefore
the external potential felt by the ele
trons will also be periodi
; the period being the
same as the length of the unit 
ell, `. That is, the external potential on an ele
tron at
r 
an be expressed as V (r) = V (r+ `). This is the requirement needed for the use of
Bl�o
h's theorem. By using this theorem it is possible to express, see Eq. 5.1, the single
parti
le wavefun
tion, �k, of the in�nite 
rystal in terms of wavefun
tions at re
ipro
al
spa
e ve
tors of a Bravais latti
e.

�k (r+RL) = e
ikRL�k (r) (5.1)

In the above equation, k represents the 
rystal momentum and RL the dire
t latti
e
ve
tor. The �rst term is the wave-like part, whereas the se
ond one is the 
ell peri-
odi
 part of the wavefun
tion. The last term 
an be expressed by expanding it into
a �nite number of planewaves whose wave ve
tors are re
ipro
al latti
e ve
tors of the

rystal. Hen
e, the Bl�o
h's theorem gives the boundary 
ondition for the single parti
le
wavefun
tions. The following equation represents the general solution that satis�es these
boundary 
onditions, where G are the re
ipro
al latti
e ve
tors.

�k (r) = e
ikr
X
G

CG (k) eiGr = e
ikr

w (k; r) (5.2)

By the use of Bl�o
h's theorem, the problem of the in�nite number of ele
trons has now
been mapped onto the problem of expressing the wavefun
tion in terms of an in�nite
number of re
ipro
al spa
e ve
tors within the �rst Brillouin zone of the periodi
 
ell, k.
This problem is dealt with the sampling the Brillouin zone at spe
ial sets of k-points.
The ele
troni
 wavefun
tions at ea
h k-point are now expressed in terms of a dis
rete
planewave basis set. In prin
iple, this Fourier series is in�nite. However, the 
oeÆ
ients

for the planewaves, CG (k), ea
h have a 
ertain kineti
 energy
�
�h2=2m

�
j k+G j2. The

planewaves with a smaller kineti
 energy typi
ally have a more important role than those
with a very high kineti
 energy. Therefore, the introdu
tion of a planewave energy 
ut-o�
redu
es the basis set to a �nite size. This kineti
 energy 
ut-o� will lead to an error in
the total energy of the system but in prin
iple it is possible to make this error arbitrarily
small by in
reasing the size of the basis set by allowing a larger energy 
ut-o�. The

ut-o� that is used in pra
ti
e depends on the system under investigation.
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5.3 General Approximations

In most of the systems, the 
ore ele
trons are strongly bound and do not respond to
the more rapid motions of the valen
e ele
trons: they are essentially �xed. This is the
so-
alled "frozen 
ore approximation". The pseudo-potential method is based on the
following approximations:

(1) We repla
e the strong 
ore potential by a pseudo-potential, whose ground state
wavefun
tion, �PS , reprodu
es the all ele
tron wavefun
tion outside a sele
ted 
ore
radius (see Fig. 5.1). By doing this we 
an now eliminate the 
ore states and the
orthogonalization in the valen
e wavefun
tions.

(2) The resulting pseudo-wavefun
tions �PS are usually smooth for many elements and

an be thus easily des
ribed using low G planewaves. The planewaves be
ome thus
a simple and eÆ
ient basis for the pseudo-wavefun
tions.

(3) We need to generate the pseudo-potential, and this is normally the more 
omplex
part of the method. This 
onstru
tion is usually more expensive then the 
al
ula-
tion itself.

5.4 Pseudo-Potentials

5.4.1 Norm 
onserving pseudo-potentials

A valid pseudo-potential should be soft, transferable and the pseudo-
harge density should
a

urately reprodu
e the valen
e 
harge density as mu
h as possible. With the term soft

it is meant that the expansion of the valen
e pseudo-wavefun
tions should be allowed
by using few planewaves. Thus, the pseudo-potential should be as soft as possible. The
transferability is related to how mu
h a pseudo-potential, generated for a given atomi


on�guration, 
an reprodu
e others a

urately. This is a quite important property for
solid state 
al
ulations, where the 
rystal and atomi
 potentials are di�erent. These

on
i
ting goals 
an be solved by using the 
on
ept of norm 
onservation [64, 65℄. In this
way the pseudo-wavefun
tions are made to be equal to the true valen
e wavefun
tions
outside a 
ertain 
ore radius, r
. For r < r
 the pseudo-wavefun
tions di�er from the true
wavefun
tions but the norm is for
ed to be the same, as shown in the following equation:

r
Z
0

dr r
2
�
PS� (r)�PS (r) =

r
Z
0

dr r
2
�
� (r)� (r) (5.3)

In the above equation the wavefun
tions refer to the atomi
 referen
e state, thus a spher-
i
al symmetry is imposed. The wavefun
tion and eigenvalue are di�erent for di�erent
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φps
(r)

φ(r)

rc r

V (r)
ps

V(r)

Figure 5.1: Illustration diagram of the repla
ement of the "all-ele
tron" wavefun
tion
and 
ore potential by a pseudo-wavefun
tion and pseudo-potential.

angular momenta, l, and this means that the pseudo-potential should also be l depen-
dent. These kind of pseudo-potentials are 
alled "semi-lo
al" sin
e a di�erent VPS (r) is
generated for ea
h l values.

5.4.2 Ultrasoft Pseudo-Potentials (US-PP)

In 1990 Vanderbilt [61℄ introdu
ed a new approa
h where the pseudo-wavefun
tions are
for
ed to be equal to the all ele
tron wavefun
tions outside the r
, as in the 
on
ept of
norm 
onservation, but inside they are allowed to be as soft as possible. In order to
ful�ll this last point, the norm 
onservation 
onstraint was removed. Therefore, large
values of r
 
an be used in this s
heme and 
onsequently the planewave 
ut-o� needed in
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al
ulations 
an be greatly redu
ed. However, the following drawba
ks have to be taken
into a

ount:

(1) The pseudo-wavefun
tions are not normalised, sin
e they are equal to the all-
ele
tron wavefun
tions in the interstitial part (they have the same norm), but do
not have the same norm inside r
. This introdu
es a non-diagonal overlap in the
se
ular equation.

(2) The pseudo-
harge density is not 
al
ulated by solving
P
��� as in norm 
onserving

method. An augmentation term has to be added in the 
ore region.

(3) By removing the norm 
onservation the resulting pseudo-potentials be
ame less
transferable.

However, the pseudo-potentials proposed by Vanderbilt were introdu
ed for use in large
s
ale 
al
ulations, for whi
h the 
ost of generating pseudo-potentials is nearly negligible
with respe
t to the 
ost of the 
al
ulations.

The total energy in the Vanderbilt's s
heme is expressed as following:

E =
X
o



h�j jT + V
NL j�ji+

Z
d
3r V L (r) � (r) +

1

2

Z
d
3r d3r0

� (r) � (r0)

jr� r0j +Ex
 [�℄ +Eii (5.4)

The T term is the kineti
 energy operator, VL is the lo
al 
omponent of the pseudo-
potential and the �j are the pseudo-wavefun
tions. For the VNL the following non lo
al
form is used

V
NL =

X
mn

D
0
nm j�ni h�mj ; (5.5)

where the pseudo-potential is 
hara
terised by the �m fun
tions, the 
oeÆ
ients D0
nm

and the lo
al 
omponent V L (r). For simpli
ity, in the above formula only one atom has
been 
onsidered. �m are expressed in an angular representation by spheri
al harmoni
s
times radial fun
tions, whi
h vanish outside r
.

The pseudo-
harge density � is given by the square of the pseudo-wavefun
tions and
the augmentation inside the spheres.

� (r) =
X
o



"
�
�

j (r)�j (r) +
X
mn

Qmn (r) h�jj�ni h�mj�ji
#

(5.6)
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In the above Eq. 5.6 the term Qmn (r) indi
ates the lo
al fun
tions determined during
the generation of the pseudo-potential.

Using the variational prin
iple to Eqs. 5.4, 5.5 and 5.6, the se
ular determinant is

H j�ji = "jS j�ji (5.7)

with

H = T + Vx
 (r) + VH (r) + V
L (r) +

X
mn

Dnm j�ni h�mj (5.8)

and

S = 1 +
X
mn

qnm j�ni h�mj (5.9)

where 1 indi
ates the identity operator and

qnm =

Z
�

d
3rQnm (r) (5.10)

with the integral over the sphere de�ned by r
. The Dnm are the D
(0)
nm with a s
reening

term.

Dnm = D
(0)
nm +

Z
�

V (r) Qnm (r) (5.11)

where V denotes the lo
al potential given by the lo
al pseudo-potential plus the ex
hange

orrelation and Hartree potentials.

5.4.3 Generation of the US-PP

The generation of the ultra-soft pseudo-potentials starts with all-ele
tron atomi
 
al
u-
lations in a 
ertain referen
e 
on�guration. A set of referen
e energies, Elj, is sele
ted
through the range over whi
h band states will be 
al
ulated. The regular solution of the
radial S
hr�odinger equation (�lmj (r) = ulj (r)Ylm (r)) is then solved within r
 at ea
h
Elj . A smooth pseudo-wavefun
tion, �PSlmj (r) = ulj (r)Ylm (r), is generated for ea
h lmj

set providing that it mat
hes to �lmj at r
. In the same way a smooth lo
al potential, VL,
that mat
hes the all-ele
tron potential outside r
 is determined. The following orbitals
are then 
onstru
ted:

j�lmji =
h
Elj � T � V

L (r)
i
j�lmji (5.12)
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If �PS and V L are equal to � and all-ele
tron potential respe
tively outside r
 and �

satis�es the S
hr�odinger's equation at Eij, � assumes the zero value outside r
. We 
an
now write down the Qnm (r) term knowing that it must a

ount for the di�eren
e between
the true 
harge density and ��PS�PS.

Qnm (r) = �
�

n (r)�m (r)� ��n (r) �m (r) (5.13)

The n and m indi
es run over the lmj set. Usually a smoothing is applied to Qnm in
order to fa
ilitate the representations of the 
harge density. The moments of the original
Qnm are preserved. In a similar way the j�ni are 
onstru
ted

j�ni =
X
m

�
B�1

�
mn

j�mi ; (5.14)

with Bnm = h�nj�mi. The rest of the 
omponents of the pseudo-potential, V L and Dnm

are determined by using the following identity,"
T + V +

X
nm

Dnm j�ni h�mj
#
j�ni = En

"
1 +

X
nm

qnm j�ni h�mj
#
j�ni (5.15)

with

Dnm = Bnm +Emqnm (5.16)

The D
(0)
nm are determined using Eq. 5.11 and the Hartree and ex
hange 
orrelation


ontributions are subtra
ted from V to obtain VL.

B C N

ARC 2s22p1 2s22p2 2s22p3

r
;s 1.8 1.6 1.8
r
;p 1.8 1.8 1.8
r
;d 1.8 1.8 1.8

Table 5.1: Parameters determining the ultra-soft pseudo-potential used in this Thesis.
ARC represents the atomi
 referen
e 
on�guration and r
;l (where l=s, p, d) the 
ut-o�
radii in atomi
 units.

During the self-
onsistent iterations, the 
ontribution of the augmenting 
harge inside
the sphere 
hanges with the wavefun
tions and 
ontributes to the potential used in the
Kohn-Sham equations. We 
an thus 
onsider the pseudo-potential as evolving during the

al
ulation. This e�e
t allows the use of very soft pseudo-potentials (large values of r
) in
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the Vanderbilt s
heme without a�e
ting the a

ura
y of the 
al
ulation. Extensive tests
of the a

ura
y, transferability and 
onvergen
e properties of ultra-soft pseudo-potential
for C, B and N were performed in Refs. [66, 67℄. In this Thesis, the parameters used for
the optimal pseudo-potential are given in Table 5.1.



Chapter 6

The Full Potential LAPW method

6.1 Introdu
tion

In this Thesis, investigation of the ele
troni
 properties (density of states, band stru
ture,
ele
tron density maps and EELS spe
tra) were 
arried out with the density fun
tional
theory Full-Potential Linearized Augmented PlaneWave (FP-LAPW) program pa
kage
WIEN97 [68℄. The LAPWmethod is a very a

urate 
al
ulational s
heme for the ele
troni

stru
ture investigation in 
rystals. It is 
hara
terised by the use of a basis set whi
h is
espe
ially adapted to the problem. This method is basi
ally derived from the augmented
planewave (APW) approa
h of Slater [69, 70℄ where the spa
e is divided into regions and
di�erent basis expansions are used in the various domains (Fig. 6.1). In parti
ular, radial
solutions of S
hr�odinger's equation are employed inside non overlapping atom 
entred
spheres and planewaves in the remaining interstitial zone. The introdu
tion of su
h a
basis set is due to the fa
t that 
lose to the nu
leus the potential and wavefun
tions are
very similar to those in an atom, while between the atoms are smoother.

' (r) =

8>>><
>>>:

1

1=2

P
GCG ei(G+k)r r 2 Interstitial

P
`mA`mu` (r)Y`m (r) r 2 Sphere

(6.1)

In the above relations ' is the wavefun
tion, 
 the 
ell volume and u` the regular solution
of Eq. 6.2. CG and A`m are expansion 
oeÆ
ients, E` is a parameter (set equal to the
band energy) and V the spheri
al 
omponent of the potential in the sphere."

� d2

dr2
+

` (`+ 1)

r2
+ V (r)�E`

#
ru` (r) = 0 (6.2)

The use of these fun
tions has been motivated by Slater by noting that planewaves are

29
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Sphere

Sphere

Interstitial

Interstitial

Figure 6.1: Adaptation of the basis set by dividing the unit 
ell into atomi
 spheres and
interstitial regions.

the solutions of the S
hr�odinger's equation in a 
onstant potential and radial fun
tions
are solutions in a spheri
al potential. This approximation to the potential is 
alled
"muÆn-tin" (MT) and results very good for 
lose pa
ked materials like f

 and h
p.

Sin
e the 
ontinuity on the spheres boundaries needs to be guaranteed on the dual
representation de�ned in Eq. 6.1, 
onstraint must be imposed. In the APW method this
is done by de�ning the A`m in terms of CG in the spheri
al harmoni
 expansion of the
planewaves.

A`m =
4�i`


1=2u` (R)

X
G

CG j` (j k+ g j R) Y �

`m (k+G) (6.3)

The 
oeÆ
ient of ea
h `m is mat
hed at the sphere boundary and the origin is taken
at the 
entre of the sphere (R is the sphere radius). The A`m are determined by the
planewave 
oeÆ
ients (CG) and the energy parameters E`, whi
h are the variational

oeÆ
ients in APW method. The fun
tions labelled G are the augmented planewaves
(APWs) and 
onsist of single planewaves in the interstitial zone whi
h are mat
hed to
the radial fun
tions in the spheres.

A more 
exible and a

urate band stru
ture 
al
ulational s
heme is the LAPW
method where the basis fun
tions and their derivatives are made 
ontinuous by mat
hing
to a radial fun
tion at �xed E` plus its derivative with respe
t to E`.
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6.2 The LAPW basis

The basis fun
tions inside the spheres are linear 
ombinations of a radial fun
tions
u` (r)Y`m (r) and their energy derivatives1. The u` are de�ned as in the APW method
(Eq. 6.2) and the energy derivative, _u` (r)Y`m (r), satis�es the following:

"
� d2

dr2
+

` (`+ 1)

r2
+ V (r)�E`

#
r _u` (r) = ru` (r) (6.4)

These fun
tions are mat
hed to the values and derivatives of the planewaves on the sphere
boundaries. Su
h augmented planewaves are the LAPW basis (LAPWs),

' (r) =

8>>><
>>>:

1

1=2

P
G CG ei(G+k)r r 2 Interstitial

P
`m [A`mu` (r) +B`m _u` (r)℄ Y`m (r) r 2 Sphere

(6.5)

where the B`m are 
oeÆ
ients for the energy derivative analogous to the A`m. The
LAPWs are planewaves in the interstitial zone of the unit 
ell whi
h mat
h the numeri
al
radial fun
tions inside the spheres with the requirement that the basis fun
tions and their
derivatives are 
ontinuous at the boundary. In this method no shape approximations are
made and 
onsequently su
h a pro
edure is often 
alled "full-potential LAPW" (FP-
LAPW). The mu
h older muÆn-tin approximation 
orresponds to retain only the L=0
and M=0 
omponent in Eq. 6.5. A spheri
al average inside the spheres and the volume
average in the interstitial region is thus taken.

Inside atomi
 sphere a linear 
ombination of radial fun
tions times spheri
al harmon-
i
s, Y`m (r), is used. The linear 
ombination of u` (r) and _u` (r) 
onstitute the so-
alled
"linearization" of the radial fun
tion. u` (r) and _u` (r) are obtained by numeri
al inte-
gration of the radial S
hr�odinger equation on a radial mesh inside the sphere.

The LAPWs have more variational freedom inside the spheres than APWs. This
greater 
exibility is due to the presen
e of two radial fun
tions instead of one; non-
spheri
al potentials inside spheres 
an be now treated with no diÆ
ulty. There is however,
a pri
e to be paid for the additional 
exibility of the LAPWs: the basis fun
tions must
have 
ontinuous derivatives and 
onsequently higher planewave 
ut-o�s are required to
a
hieve a given level of 
onvergen
e. Further, the asymptote problem2 found in the APW
method is now over
ome by the presen
e of the non-zero _u`m (R) value. The solution of

1u` (r)Y`m (r) and _u` (r)Y`m (r) are the augmenting fun
tions.
2u`m (R) appears in the denominator of expression (6.3) and if zero leads to a de
oupling between

planewaves and radial fun
tions. In the vi
inity of the asymptote the se
ular determinant is strongly

varying.
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the KS equations are expanded in this 
ombined basis a

ording to the linear variation
method:

 k =
X
n


n'kn (6.6)

and the 
oeÆ
ients 
n are determined bu the Rayleigh-Ritz variational prin
iple. In the
WIEN97 pa
kage the total energy is 
al
ulated a

ording to the Weinert s
heme [71℄. The

onvergen
e of the basis set is 
ontrolled by the 
ut-o� parameter RmtKmax (determining
the matrix-size of the system), whi
h usually assumes values in between 6 and 9. The
Rmt represents the smallest of all atomi
 sphere radii in the unit 
ell and Kmax

3 is the
magnitude of the largest K ve
tor (planewave 
ut-o�).

3K2
max represents the planewave 
ut-o� parameter in Ry used in pseudo-potential 
al
ulation.



Chapter 7

The ASW method

7.1 About linear methods

Among the prime methods for the 
omputation of the band stru
ture the augmented
planewave [72℄ in 1965 and KKR (Korringa Kohn Rostoker) [73℄ in 1954 were known at
the time of their derivation to be highly time 
onsuming. A solution to this 
ontextual
diÆ
ulty was brought by the so-
alled linear methods whose impa
t be
ame in
reasingly
dominant within the 
ommunity of physi
ists. Therefore, the analysis of more realisti

and 
omplex systems was made possible with the existing 
omputational means. The
augmented spheri
al wave, the linear muÆn tin orbital and the linearized augmented
planewave are among su
h linearized methods. This implies that the energy dependen
e
of the wave fun
tion is lifted by expressing it with a produ
t of energy dependent 
oef-
�
ients a(k), on whi
h the variational pro
edure is 
ondu
ted, and energy independent
radial fun
tions �(r).

7.1.1 ASW and LMTO methods

The ASW method was originally derived in 1979 by Williams et al. [74, 75℄. This

omputational approa
h shows very 
lose similarities with the LMTO method introdu
ed
earlier by Andersen [76℄, though the formalism is somehow di�erent. The muÆn-tin
approximation is employed in both 
ases and refers to non overlapping atomi
 spheres
whi
h well des
ribe 
ompa
t 
lose pa
ked solids su
h as the f

, b

 and h
p stru
tures
of metals and alloys. It is obvious that the remaining interstitial region is in these spe
ial

ases very small. Nevertheless, properties have to be 
omputed expli
itly beside the intra-
atomi
 region. This is a
tually done through planewaves as in the FP-LAPW method
[68℄ whi
h despite its high pre
ision remains very time 
onsuming even with the a
tual

omputers. The in
ontestable general advantages arising with the use of ASW or LMTO
methods are found in their simple interpretation and on the possibility to perform very

33
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fast 
al
ulations. In parti
ular, these methods are ex
ellent for a �rst general des
ription
of the ele
troni
 properties of solids. However, in spite of these great advantages, a

ertain limited pre
ision 
hara
terise these methods and often their use is 
ir
ums
ribed
to the des
ription of 
ompa
t systems (empty spheres are needed to des
ribe less 
ompa
t
stru
tures).

7.1.2 The ASA and its impli
ations

To a good approximation the interstitial region 
an be negle
ted if the MT spheres are
enlarged so that their volume be
omes identi
al to the unit 
ell volume. The MT spheres
be
ome then Wigner-Seitz spheres [77℄. This approximation is 
alled the Atomi
 Sphere
Approximation, ASA, and is used by both methods. The LMTO approa
h be
omes,
for example, the LMTO-ASA method in order to di�erentiate from the full potential
method, FP-LMTO, derived later by Savrasov et al. [78℄. The unit 
ell is thus divided
into atomi
 spheres in a way that their total volume equals the volume of the 
ell.

X
i


i :=
X
i

4

3
�S

3
i

!
= 

 (7.1)

where Si is the radius of the sphere i and 
i;
 the volume of the unit 
ell. Another
assumption is embedded within the ASA: the potential and the ele
tron density are
spheri
ally averaged. This 
an be a drawba
k when ele
tri
 �eld gradients or ele
tron
density plots are to be produ
ed.

7.1.3 Solution of the wave fun
tion

Both ASW and LMTO-ASA methods use envelop fun
tions 
antered on the atomi
 sites.
These are subje
ted to the Lapla
ien whi
h is almost the same for both methods:

(� + �0)�L(r) = 0 (7.2)

where L refers to the n and l quantum numbers and �0 is an energy parameter put to zero
in LMTO and to a small (�xed) negative value (�0 � -0.015 Ry) in ASW. It determines
the degree of lo
alisation of the envelop wave fun
tion given by spheri
al Hankel fun
tions
h
+
l (�r), � =

p
�0.

7.2 Further formalism with the ASW method

The ASW method provides an approximate solution to the single-parti
le S
hr�odinger
equation:

[�r2 + V (~r)� �℄	(~r; �) = 0 (7.3)
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The ele
troni
 stru
ture problem is solved within the DFT approa
h via a repetitive solu-
tion of the above equation (self-
onsistent pro
edure). The wavefun
tions 	(~r; �) is deter-
mined by developing an expansion in energy-dependent, Cn(�), and energy-independent,
Xn(~r) 
oeÆ
ients:

	(~r; �) =
X
n

Cn(�)Xn(~r) (7.4)

With the above expansion of 	(~r; �) in energy-independent base fun
tions, the solution
of the S
hr�odinger equation (Eq. 7.3) redu
es to a matrix eigenvalue problem for whi
h
eÆ
ient numeri
al pro
edure 
an be applied.

Another important feature of this approa
h involves the basis set Xn(~r). In parti
ular
the intra- and inter- atomi
 part of the 
al
ulation 
an be de
oupled and the orthogonal-
ization and 
ore-state readjustment 
an be done without the in
lusion of the 
ore states
in the basis set used to expand the states of the interatomi
 intera
tion. The removing
of the 
ore states from the interatomi
 basis set permits to in
rease the eÆ
ien
y of the

al
ulational s
heme. The augmented spheri
al wave (ASW's) are the sele
ted energy-
independent single-parti
le basis set. In the intra-atomi
 portion of a polyatomi
 system,
the strong potential 
auses 	(~r; �) to vary rapidly, whereas in the inter-atomi
 region a
slowly varying (weak potential) wavefun
tion is found. From this pi
ture the inter-atomi

region 
an be thus expanded in planewaves (APW method), however treating all portion
of the interstitial volume equally is a "luxury for whi
h the pri
e is relatively ineÆ
ien
y".
A less 
exible (and less a

urate) LCAO-like treatment of the inter-atomi
 region is made
by assuming the solutions of the S
hr�odinger's equation to be a linear 
ombination of
atomi
-orbital "tails" extending out of ea
h of the intra-atomi
 region.

	(~r; �) =
X
L�

CL�(�)HL(~r � ~R�) (7.5)

where ~R� are nu
lear position and CL�(�) are the energy-dependent expansion 
oeÆ
ients.
The atomi
-like fun
tions HL(~r) are spheri
al waves as follow,

HL(~r) � i
l
k
l+1

YL(r̂)h
+
l (kr) L = l;m (7.6)

with YL(r̂) representing the spheri
al harmoni
s and h+l (x) the outgoing spheri
al Hankel
fun
tion.

7.2.1 The augmentation pro
ess

Ea
h of the intra-atomi
 region is des
ribed by a very strong potential. The e�e
tive
potential 
an be thus approximated with a spheri
al symmetry and the basis fun
tions

onstru
ted by solving the radial S
hr�odinger's equation. A 
omparison between the
APW's and ASW's is shown in Fig. 7.1. The two bases are very similar, even though
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Figure 7.1: Comparison between the augmented plane (APW) and spheri
al (ASW)
waves. This Figure has been taken from the original work of A. R. Williams, J. K�ubler
and C. D. Jr. Gelatt [74℄.

a single ASW 
an be identi�ed with a parti
ular atom, like an atomi
 orbital. The
spheri
al wave HL(~r) is 
ontinued into the intra-atomi
 region due to the parti
ular
linear 
ombination of the S
hr�odinger's equation whi
h joins smoothly to HL(~r) at the
interfa
e of the intra- inter- atomi
 region. Therefore, for all r� less than the sphere
radius S� it is possible to repla
e HL(~r�) with its augmented 
ounterpart ~HL(~r�), where

~HL(~r�) = i
l
YL(r̂�)~hl(r�); (7.7)

and ~H(~r�) is the solution of the intra-atomi
 S
hr�odinger equation,

[�r2 + V (~r� + ~R�)� �
(H)
ln ℄ = 0: (7.8)

The aforementioned equation 
an be rewritten as 
� 1

r�

�2

�r2�
r� +

l(l + 1)

r2�
+ V (~r� + ~R�)� �

(H)
l�

!
~hl(r�) = 0; (7.9)

and V (~r� + ~R�) is assumed to depend only on r� for r� < S� . The 
ontinuity and
di�erentiability through the spheri
al surfa
e r� = S� is guaranteed by the possibility of


hoosing the ~hl(r�) and �
(H)
l� ,�

�

�r�

�n
[~hl(r�)� k

l+1
h
+
l (kr�)℄r�=S� = 0; n = 0; 1: (7.10)
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Sin
e the e�e
tive potential vary strongly on the intra-atomi
 region, the augmentation
of the fun
tion H(~r�) must be operated not only inside the sphere 
entred at R� but in
all other intra-atomi
 regions, R�0 , where � 0 6= �. Su
h an augmentation is 
omputed by
expanding with the Bessel fun
tions, JL(~r

0), 
entred at the R�0 site

HL(~r�) =
X
L0

J
0

L(~r
0

�)BL0L(~R�0 � ~R�); (7.11)

where
JL(~r) = i

l
k
�l
YL(r̂)jl(kr) (7.12)

and jl(kr) is the spheri
al Bessel fun
tion. BL0L(~R) are the stru
ture 
onstants developed
in the KKR method [73℄:

BLL0(~R) = 4�
X
L00

ILL0L00k
l+l0�l00

HL00(~R) (7.13)

and

ILL0L00 �
Z

dr̂YL(r̂)YL0(r̂)YL00(r̂): (7.14)

are the Gaunt's 
oeÆ
ients. The augmentation of the HL(~r � �) on the neighbours of
R�0(j~r � ~R�0 j � S�0) redu
es to the augmentation of the jl(kr�0),

~HL(~r � ~R�) =
X
L0

~J 0

L(~r � ~R
0

�)BL0L(~R�0 � ~R�); (7.15)

where
~JL(~r

0

�) � i
l
YL(r̂

0

�)~jl(r
0

�) (7.16)

and ~jl(r
0

�) is the solution of the radial S
hr�odinger equation relative to the sphere 
entered
at R0

� ,  
� 1

r0�

�2

�r2�0

r
0

� +
l(l + 1)

r02�
+ V (~r0� + ~R

0

�)� �
(J)
l�0

!
� ~jl(r

0

�) = 0; (7.17)

that joins smoothly the spheri
al Bessel fun
tion at r0� = S0

� .�
�

�r0�

�n

[~jl(r
0

�)� k
l
jl(kr

0

�)℄r0

�=S
0

�
= 0; n = 0; 1 (7.18)

Pro
eeding in the same way, as in the augmentation of h+l (kr), the above 
ontinuity


ondition spe
i�es the normalisation of ~jl(k�
0) and the energy �

(J)
l�0

. The augmented

spheri
al waves ~HL(~r � ~R) are now de�ned in all the regions and are 
ontinuous, energy
independent and 
ontinuously di�erentiable. With su
h a basis set fun
tions, it be
omes
possible to expand the solutions of the S
hr�odinger's equation.

	(~r; �) =
X
L;�

CL;�(�) ~HL(~R�) (7.19)
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7.2.2 The variational method of Rayleigh-Ritz

Starting from H	 = E	 the eigenenergy � and expansion 
oeÆ
ients CL�(�) (Eq. 7.19)
may be evaluated with the Rayleigh-Ritz variational method. The se
ular matrix from
the Rayleigh-Ritz pro
edure looks as follow:

X
L0;�0

(h� ~LjHj~L0
�
0i � �h� ~Lj~L0

�
0i)CL0�0(�) = 0 (7.20)

where H � �r2 + V (~r) and h� � � j � � �i is the integral extending over the whole spa
e:

h� ~Lj~L0
�
0i �

Z
d
3
r ~H�

L(~r � ~R�) ~HL0(~r � ~R�0) (7.21)

The approximation of the intra-atomi
 regions with atomi
 spheres (ASA) gives:

h� ~LjHj~L0
�
0i =

X
�00

h� ~LjHj~L0
�
0i�00 (7.22)

In order to improve the 
onvergen
e of the numeri
al 
al
ulation1 the above equation is
modi�ed as follow:

h� ~LjHj~L0
�
0i = h�LjH0jL0

�
0i+

X
�00

(h� ~LjHj~L0
�
0i�00 � h�LjH0jL0

�
0i�00) (7.23)

where H0 � �r2 denotes the free-parti
le Hamiltonian. The �nal thing that has to be
noted is that in all the integrals of the matrix elements the ASW is an eigenfun
tion of the
Hamiltonian. The integrals over the atomi
 spheres (Eq. 7.23) are of three types, one-

enter, two-
enter or three-
enter depending on the number of the two ASW's 
entered
in the sphere. Four di�erent 
ontributions are found:

� The �rst expression on the right side of the Eq. 7.23 and the se
ond member within
the parenthesis are relatively easy to solve sin
e the term is an eigenvalue of H0.

h�LjH0jL0
�
0i = k

2h�LjL0
�
0i (7.24)

The representation of the matrix elements requires an integral over all spa
e in-
volving unaugmented spheri
al waves, whi
h 
an be solved analyti
ally.

� The one-
enter 
ontributions are those in whi
h both ASW's are 
entred in the
sphere (� = � 0 = � 00). Only augmented Hankel fun
tions are 
onsidered:

h� ~LjHj~L0
�
0i� = �

(H)
l� h ~HLj ~HLi�ÆLL0 (7.25)

1The e�e
tive potential has been taken to be zero in the interstitial region so that the matrix element


an be written as in Eq. 7.23. For details see Ref. [74℄.
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� The two-
entres integrations (� = � 00 6= � 0 or � 6= � 00 = � 0), require the expansion
of one of the two ASW's. Therefore, both augmented Hankel and Bessel fun
tions
are taken:

h� 00 ~LjHj~L0
�
0i�00 = �

(J)
l�00
h ~HLj ~JLi�00BLL0(~R�00 � ~R�0) (7.26)

and
h� ~LjHj~L0

�
00i�00 = �

(H)
l0�00

h ~JL0 j ~HL0i�00B
y

LL0
(~R� � ~R�00) (7.27)

where
B

y

LL0
(~R� � ~R�0) � B

�

LL0(~R� � ~R�0): (7.28)

� Finally in the three-
enter 
ontributions (� 6= � 0 6= � 00), only the augmented Bessel
fun
tions are used. In this 
ase neither of the two ASW's involved in the ma-
trix element are 
entred in the intra-atomi
 region over whi
h the integration is
performed.

h� ~LjHj~L0
�
0i�00 =

X
L00

B
y

LL00
(~R� � ~R�00)�

(J)

l00�00
� h ~JL00 j ~JL00i�00BL00L0(~R�00 � ~R�0) (7.29)

The above individual integrals 
an be 
ombined to 
omplete the se
ular matrix. Integrals
involving augmented fun
tions need only one-dimensional numeri
al integration and those

ontaining unaugmented spheri
al Bessel fun
tions 
an be found in the work of Morse
and Feshba
h [79℄.



Chapter 8

Carbon Nitrides

8.1 Introdu
tion

Networks made of 
ovalently bonded 
arbon nitride are expe
ted to show remarkable
physi
al properties su
h as high hardness, wide band gap and high thermal 
ondu
tivity.
They 
an be used as a prote
tive 
oating on hard dis
s and re
order heads and are being
tested for several other tribologi
al appli
ations. Other utilisation areas 
an be found,
for example, in 
at-panel display industry. The possibility to synthesise nanotubes- [80℄
and nano�bers-like [81, 82, 83℄ CNx stru
tures in a solid �lm may open the possibility of
using su
h �lms for �eld emission ele
tron sour
e [84, 85, 86, 87℄. Carbon nitrides have
also been tested for the development of ossointegrated joint arthroplastie. The major
problem with these implants is the wear debris generation whi
h might provokes serious
tissue rea
tions. Amorphous CNx samples have been re
ently identi�ed as an interesting

oating for human implants [88℄. Be
ause of these great expe
tations they have rapidly
be
ome the fo
us of an enormous attention and nowadays they are widely investigated
both experimentally and theoreti
ally as potential 
andidates for new ultra-hard ma-
terials [89℄. The starting interest on 
arbon nitrides dates ba
k to the Liu et Cohen's
theoreti
al work of 1989 [12℄ where the properties of the �-C3N4 phase were proposed
to be similar or even superior to those of diamond. From this �nding many resear
hers
were positively stimulated to �nd an adequate way to synthesise pure 
rystalline C3N4

materials. The �rst attempt to make 
arbon nitride �lms refers to J. J. Cuomo et al. in
1979 [90℄, who grew para
yanogen-like thin �lms with N/C ratios equal to one. Mu
h
more re
ently, a wide variety of te
hniques su
h as ion implantation [91℄, rf sputtering
of 
arbon targets in a nitrogen atmosphere [92℄, plasma deposition of various hydro
ar-
bons [93℄, nitrogen ion implantation with simultaneous 
arbon vapour deposition [94℄, d

magnetron sputtering of a graphite target in a nitrogen ambient [95℄, sho
k wave 
om-
pression of 
arbon nitride pre
ursor [96℄, plasma-enhan
ed 
hemi
al vapour deposition

40
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[97℄, ion-assisted dynami
 mixing [98℄ and laser ablation of a 
arbon target in a stream of
atomi
 nitrogen [99℄, have been investigated. From these attempts we know that many

ompositions of 
arbon nitrides exist and more than a few are stable to at least 800 ÆC.
Beside this, the experimental eviden
e also seems to point out to the possible existen
e
of di�erent phases with a very similar stability: mixed-phase deposits are quite often
obtained. As a matter of fa
t, despite many e�orts, the synthesis of 
arbon nitride �lms
with stoi
hiometry C3N4 (57.14 % of nitrogen 
on
entration) is still restri
ted to the
produ
tion of amorphous samples with un
lear 
rystallographi
 data. It is be
ause of
the above problem that in the �rst part of this Chapter (Se
tion 8.2, p. 42) it has been
shown a 
ross-
he
king on the relative stability and hardness of di�erent hypotheti
al
C3N4 phases by using various DFT solid state 
al
ulational methods. This was also the
�rst o

asion to probe and test our 
odes in treating the ele
troni
 properties of a novel

lass of 
arbon-based hard materials.

Another 
ru
ial problem found during the synthesis of 
arbon nitrides is that of
nitrogen 
on
entration. From the deposition of CNx �lms, with 0 � x � 0:35, by rea
tive
magnetron sputtering1 in Ar/N2 dis
harges we know, for example, that the maximum
nitrogen 
on
entration obtainable in the �lm is strongly dependent on the formation of
stable mole
ules, like N2 and C2N2, that 
an with high probability desorb and leave
the growth surfa
e at even low substrate temperatures [100, 101, 102℄. Moreover, the
possible transition at � 200 ÆC from a \graphiti
-like" ! \fulleren-like" phase, re
ently
presented by N. Hellgren et al. [100℄, 
ould be imagined to take pla
e from a nitrogen-poor
CNx graphiti
 form. In fa
t, this transition is observed when the nitrogen 
on
entration
in
reases from 5 to 15 % and the fulleren-like stru
ture is found to be stable when the
nitrogen amount is between 10 and 25 %. These 
on
entrations are mu
h 
loser to the
C11N4 stoi
hiometry than the well-known C3N4. Furthermore, the 
arbon-nitrogen ratio
in CNx �lms (0:2 � x � 0:35) observed by H. Sj�ostrom et al. [103℄ for bu
kled turbostati

mi
rostru
tures formed at high temperatures is again 
lose to the 
omposition of the
C11N4. Su
h 
arbon-nitrogen systems have been found to be both hard and elasti
 from
nanoindentation experiments [103, 100℄.

Therefore, from the above eviden
es it be
omes of primarily importan
e to under-
stand, at least theoreti
ally, whether or not the C11N4 stoi
hiometry 
ould be in 
om-
petition or even favoured over the formation of the C3N4. It is also interesting to 
he
k
what would be the 
hanging in the me
hani
al and ele
troni
 properties if a pure 
rys-
talline 
arbon nitride sample would be synthesised in the C11N4 
omposition. This has
been investigated in the se
ond part of the present Chapter (Se
tion 8.3, p. 72). In par-
ti
ular, it has been stressed the importan
e of the use of theoreti
al methods and models
to obtain further 
hara
terisation and trends in the bonding 
on�gurations of the CNx

1This te
hnique implies the evaporation of 
arbon (
arbon atoms) and the intera
tion with a plasma

made of ionised nitrogen atoms. Permanent magnets behind the sputtering target are used to 
on�ne

most of the ele
trons in the region of the target surfa
e.
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stru
tures. The attention is mostly fo
alised on the study of the stability and the hard-
ness of two di�erent stoi
hiometries: C3N4 and C11N4. It should also be noted that the
analysed systems are isoele
troni
 to ea
h other and to diamond, although the nitrogen

on
entration on the latter phase (26.67 %) is mu
h lower than in the former one (57.14
%). In other words, the investigation is here restri
ted only to those 
ompounds that are
ele
troni
ally analogue2 to 
arbon [104, 105, 106℄. This parti
ular 
hoi
e derives from the
fa
t that all the substan
es satisfying this rule should likely show the same interesting
properties of the hardest known materials (e.g. 
ubi
 boron nitride and diamond).

8.2 Study of the C3N4 stoi
hiometry

By using an empiri
al formula (see Eq. 2.5 in p. 6) whi
h relates the bulk modulus
of tetrahedrally 
oordinated systems to the length and ioni
ity of their bonds, it was
predi
ted as early as in 1985 that a material made of 
arbon and nitrogen should exhibit
a bulk modulus higher than diamond [23℄. This possibility was addressed to the short
length and the high 
ovalen
y of the C-N bond. As a 
onsequen
e 
arbon nitrides have
been proposed as 
andidates for new ultra-hard materials. However, despite this great
expe
tation the synthesis of C3N4 is nowadays still restri
ted to the produ
tion of small
amounts of samples, whi
h are not suÆ
ient enough for a 
orre
t stru
tural 
hara
terisa-
tion. This restri
tion is possibly due to the te
hnologi
al diÆ
ulties to produ
e materials
with large amounts of nitrogen that is required to 
hemi
ally intera
t with 
arbon [100℄.
Experimentalists have observed 
arbon nitride materials in amorphous or disordered
phases [107, 108, 109℄ as well as 
rystalline aggregates dispersed in an amorphous matrix
[110, 111℄. Theoreti
al investigations on the subje
t have also been made to explain the
stability and me
hani
al properties of the synthesised samples and to predi
t the prop-
erties of some of the new hypotheti
al forms [22, 29, 112, 113, 114, 115, 116, 117, 118℄.
Re
ently, �rst prin
iples 
al
ulations, within the lo
al density approximation, on the 
u-
bi
 form of C3N4 have shown a bulk modulus ex
eeding that of diamond [29, 117, 119℄.
Su
h an important �nding has in part 
on�rmed the original intuition of M. L. Cohen
about the possibility for a three-dimensional CNx 
ompound to be ultra-hard. A 
om-
plete theoreti
al des
ription of the hardness and the stability of various hypotheti
al
C3N4 phases is reported in the following Se
tions.

8.2.1 Methods and 
omputational details

The main goal of this work is to employ a fast and reasonably a

urate 
al
ulational
s
heme in order to des
ribe the ele
troni
 stru
ture properties of 
arbon nitrides. For
this purpose the output of the usually very a

urate full potential approa
h has been

2The same four averaged number of valen
e ele
trons per atom is kept.
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ompared with those from methods based on the spheri
al shape approximation of the

rystal potential. The entire set of results have also been 
orrelated with the early PP

al
ulations. In this Se
tion the attention is �nalised on the simple C3N4 stoi
hiometry
and as a starting point the relative energy stabilities and hardness of �ve hypotheti-

al C3N4 model phases, namely graphiti
-like, �, �, 
ubi
 and pseudo-
ubi
, have been

he
ked. Three di�erent DFT based methods within the LDA have been tested: Aug-

mented Spheri
al Wave [74, 120℄, Linear MuÆn-tin Orbitals [76, 121℄ and Full-potential

Linearized Augmented Plane-Wave [68℄. For the ex
hange and 
orrelation e�e
ts the pa-
rameterisation s
heme of Van Barth, Hedin [122℄ and Janak [123℄ was used in the ASW
and LMTO methods, while in the FP-LAPW the Perdew and Wang 92 [47℄ fun
tional
was assumed.

For the C3N4 system total energies were evaluated within the LMTO and ASW

al
ulations using the tetrahedron method for the k-spa
e integration and a uniform
12�12�12 mesh a

ording to the Monkhorst-Pa
k [63℄ s
heme (energy 
onverging with
k-points, �E < 1 mRy). In both methods the atomi
 sphere approximation is used,
in whi
h ea
h atom is represented by a sphere. Inside the spheres the potential and

harge density are assumed to be spheri
ally symmetri
. Then the sum of all sphere
volumes is made to equal the volume of the unit 
ell. Within the ASA one usually has to
introdu
e pseudo-atoms (with atomi
 number Z=0) or empty spheres in order to ensure
a 
ontinuous ele
troni
 density in open stru
tures. In the present 
al
ulations we paid
parti
ular attention to an optimal 
hoi
e of the atomi
 radii as well as the number and
position of empty spheres used to meet the ASA 
riteria. For the diamond and 
-BN a
12�12�12 mesh was found to ensure the desired 
onvergen
e.

The full potential total energy 
al
ulations of the C3N4 phases were performed using
the same plane wave 
ut-o� (87 plane waves/atom) and k-point number (300 total k-
points), as they were optimised for the �-C3N4 stru
ture, a phase with the largest number
of atoms per unit 
ell (i.e. 28). For 
arbon and nitrogen atom types the same muÆn-tin
radius (Rmt=1.33 �A) was used and maintained �xed for all the investigated stru
tures.
By using di�erent basis set 
ut-o�s it has also been found that at the equilibrium volume
approximately 87 plane-wave per atom were suÆ
ient enough to predi
t the bulk modulus
of 
arbon nitride without any signi�
ant 
hange when in
reasing the number of basis
fun
tions used. For the 
-BN system the FP-LAPW 
al
ulations were performed by
employing the same parameter as Park, Terakura and Hamada [124℄.

8.2.2 Stru
tural models for the C3N4 stoi
hiometry

The 
rystal geometries of the C3N4 phases were taken from the theoreti
al work of D.
M. Teter et al. [29℄, in whi
h the equilibrium stru
tures were determined with a pseudo-
potential plane wave approa
h [55℄. The hexagonal beta phase (�-C3N4) 
ontains 14
atoms/unit 
ell (P3 spa
e group) and 
onsists of fourfold 
o-ordinated 
arbon and three
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fold 
o-ordinated nitrogen atoms (Fig. 8.1)3. This phase is a network of three-, four-
and six-fold rings of tetrahedra. The alpha phase (�-C3N4) has hexagonal symmetry
and 
ontains 28-atoms/unit 
ell (P31
 spa
e group). It 
an be viewed as a sequen
e
of A and B layers in an ABAB sta
king in whi
h A is the �-C3N4 unit 
ell and B
the mirror image of A. The 
ubi
 stru
ture (
ubi
-C3N4) is based on the high-pressure
willemite-II stru
ture of Zn2SiO4, where C substitutes Zn and Si and N substitutes
O. This phase 
ontains 28-atoms/unit 
ell and belongs to the spa
e group I43m. The
pseudo-
ubi
 stru
ture, usually 
alled defe
t-zin
 blende stru
ture (bl-C3N4), exhibits
P42m symmetry and 
ontains 7-atoms/unit 
ell. The graphiti
 form of C3N4 (graphiti
-
C3N4) is represented by a planar stru
ture with an ABA [29℄ sta
king mode (Fig. 8.2).
The hexagonal unit 
ell 
ontains 14 atoms and the symmetry is P6m2. Ea
h C atom is
three-fold 
oordinated, as is one of the four N atoms per 
ell. The other three N atoms are
two-fold 
oordinated (resonant bonds). This phase has been taken as a referen
e for the
graphite-based stru
ture in making 
omparison between the relative stabilities of di�erent

arbon nitride phases. For the graphiti
-like phase four other forms are predi
ted in the
earlier works. The �rst one (AAA sta
king mode [115℄) has 7 atoms�unit 
ell�1 and a
spa
e group P6m2. The se
ond phase (ABC sta
king mode [114℄) whi
h belongs to the
R3m spa
e group, shows 7 atoms in the unit 
ell and 
onsists of graphite-like sheets with
ABC rhombohedral sta
king order. The other two phases were re
ently suggested by I.
Alves et al. [125, 126℄. These authors 
laim to have su

eeded in the preparation of a

arbon nitride powder with C3N4 
omposition by using high pressure synthesis methods.
From the analysis of the X-ray di�ra
tion patterns a 
rystal stru
ture (P2mm spa
e
group) with an orthorhombi
 unit 
ell has been presented (Fig. 8.3). Both types of AAA
and ABA sta
king modes have been suggested. For these model phases a very di�erent
va
an
y ordering has been displayed inside ea
h of the graphiti
 planes with respe
t to
the hexagonal system introdu
ed by D. M. Teter and R. J. Hemley (P6m2).

8.2.3 Relative stability of variuos C3N4 phases

For the investigated systems the full potential method predi
ts the same energy trend as
found by D. M. Teter et al. [22℄ in their pseudo-potential plane-wave 
al
ulations (see
Fig. 8.4 and Tab. 8.1). While the graphiti
-like phase with ABA sta
king sequen
e is
the most stable from, the � system lies only marginally higher in energy by 0.036 eV.
The energy of the � phase has been found to be 0.615 eV above that of the � stru
ture.
Even though the 
al
ulated energy di�eren
e between graphiti
 and the � phases is of
the same order of magnitude as that 
al
ulated with PP method, i.e. 0.041 eV, the
energy di�eren
e between � and � has been estimated to be 0.615 eV instead of 0.266

3In Fig. 8.1 we show the stru
ture of the �-C3N4 phase as representative for a three-dimensional CNx

system. For the other stru
tures, the reader should refer to the original work of D. M. Teter and R. J.

Hemley in Ref. [29℄.
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Figure 8.1: �-C3N4 model system. Carbon and Nitrogen are depi
ted in grey and white,
respe
tively. This 
olor s
heme is kept throughout all the Thesis.

Figure 8.2: One layer of the hexagonal graphiti
-C3N4 model.
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Figure 8.3: One layer of the orthorhombi
 graphiti
-C3N4 phase.

Figure 8.4: Relative stability between di�erent C3N4 phases by using di�erent method
of 
al
ulations.
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graphiti
- �- �- 
ubi
- bl-

FP-LAPW 0 0.036 0.651 2.065 2.238
PP 0 0.041 0.307 1.322 1.485

� (g/
m3) 2.33 3.77 3.57 3.89 3.86

Table 8.1: Total energies and densities for di�erent C3N4 phases. Energy values are
expressed in eV/C3N4 unit and are s
aled with respe
t to the stable graphiti
-C3N4

form. Pseudo-potential 
al
ulations refer to the work of D. M. Teter and R. J. Hemley
[29℄.

eV. Finally, the 
ubi
 and pseudo-
ubi
 stru
ture (simple 
ubi
 and defe
t-zin
 blende
phases) are estimated to have the highest total energies. The simple 
ubi
 phase lies at
1.414 eV above the � phase, while the defe
t-zin
 blende lies at 1.587 eV higher. The
energy di�eren
e found for � $ 
ubi
 is 1.414 eV instead of 1.015 eV as 
al
ulated with
the pseudo-potential approa
h. In the same way the � $ pseudo-
ubi
 energy di�eren
e
is estimated to be 1.587 eV in pla
e of 1.178 eV. The use of Y. Liu et R. M. Wentz
ovit
h
geometries [114℄ for �-C3N4 and bl-C3N4 gives rise to only small di�eren
es in the values
of the total energies, 
on�rming thus the PP energy trend. In parti
ular, the � phase now
lies slightly higher in energy (+0.0215 eV) and the pseudo-
ubi
 slightly lower (-0.038
eV) with respe
t to the previous 
al
ulation (D. M. Teter's geometries).

By 
ontrast, the LMTO and ASW methods predi
t lower energies for 
ubi
 stru
tures
and a higher one for the graphite-like phase. The obtained energy trend follows exa
tly
the atomi
 densities, indi
ating that in less 
ompa
t stru
tures (i.e. graphite-like phases)
the ASA approximation is no longer a

eptable. As a matter of fa
t, the layered phase
is the least dense (�= 2.33 g/
m3) and it lies at high energy, while the 
ubi
 phase is
the most dense (�= 3.89 g/
m3) and 
onsequently is predi
ted to have the lowest energy.
Hen
e, the relative stability trends observed with LMTO and ASW are not 
omparable
with those dedu
ed from FP-LAPW and PP. This is due to the diÆ
ulty of getting
reliable results from the use of empty spheres in des
ribing phases with very di�erent
atomi
 pa
king. In fa
t, in the graphiti
 phase a large amount of empty spa
e must be
�lled in the unit 
ell whereas the reverse situation is true for the 
ubi
 stru
tures where
the ASA worked best. However, even if it is not possible to make a stri
t 
omparison
between the 
al
ulated relative stabilities, it is important to note that all the tested
DFT methods are in agreement in predi
ting equilibrium volumes, bulk moduli and their
pressure derivatives [117℄. Details are given in Se
tion 8.2.4 for the whole set of analysed
C3N4 phases.
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Thermodynami
 stability of the C3N4 stoi
hiometry

When 
onsidering the possibility to synthesise 
arbon nitrides, one has to a

ount for
their thermodynami
 stability with respe
t to the starting materials. The formation
rea
tion of a C3N4 
ompound is given below.

3C(
) + 2N2(g) ! C3N4(
) (8.1)

For simpli
ity it has been 
onsidered here the rea
tion between diamond, whi
h is slightly
less stable than graphite4 (�Gf=2.9 kJ/mol), and nitrogen to form 
arbon nitrides. An
important thing that has to be noted in Eq. 8.1 is that both diamond and mole
ular
nitrogen possess strong bonds (C-C � 350 kJ/mol and N-N � 956 kJ/mol) while the
rea
tion produ
t (C3N4) 
ontains only weaker C-N bonds (260-320 kJ/mol)5. It is thus
quite evident that 
arbon nitrides are likely to be thermodynami
ally unstable under
atmospheri
 pressure. Nonetheless, if a syntheti
 pro
ess 
an produ
e C3N4 a rather
large a
tivation energy would be needed to break the C-N bonds. Carbon nitrides 
ould
be thus result metastable at ambient 
onditions.

In order to get a quantitative insight into the stability of 
arbon nitrides with re-
spe
t to de
omposition to the elements, a

urate values of their 
ohesive energies, E
oh:

6,
are needed. Then, by knowing the experimental or theoreti
al values for the energy
required to disso
iate the nitrogen mole
ule and the 
ohesive energy of diamond, the en-
thalpy 
hange for the rea
tion 8.1 
an be evaluated. It is well known that the DFT-LDA
approa
h normally tends to overestimate the 
ohesive energies for stru
tures made of
elements of the se
ond row of the periodi
 table su
h as 
arbon and nitrogen [127, 128℄.
The 
ohesive energy of diamond is in fa
t signi�
antly overestimated by � 150 kJ/mol
(see Tab. 8.2 and Ref. [67℄) with respe
t to the experimental value [129℄. Nonetheless,
the general tenden
y of the LDA to overestimate the strength of C-C bond 
an be re-
du
ed by using the generalized gradient 
orre
tions [47℄, though the predi
tion of some
of the stru
tural properties, su
h as the interlayer distan
e in graphite, are sometimes
worse than in LDA [67℄. The 
omputed 
ohesive energies (with the a

urate FP-LAPW
method) are shown in Tab. 8.2 as a fun
tion of di�erent ex
hange-
orrelation potentials:
LDA [130℄, Perdew-Burke-Ernzerhof (PBE) [131℄ and Perdew-Wang 91 (PW91) [47℄.
Cal
ulations suggest that in spite of the general improving of the results obtained with
GGA fun
tionals, the availability of very a

urate 
ohesive energies 
an only be over
ome
with the use of Quantum Monte Carlo (QMC) method. However, at the moment QMC
energy values have not yet been published for 
arbon nitrides.

4Graphite is the most stable form of 
arbon, so that formally we should have taken it as rea
tant

instead of diamond.
5Bonds between elements from the se
ond row of the periodi
 table in whi
h one of the atoms 
ontain

lone pairs are usually weaker.
6Energy required to break apart a stru
ture into isolated atoms.



8.2 Study of the C3N4 stoi
hiometry 49

The investigated C3N4 phases
E
oh: N2 graphite diamond graphiti
- �- �- 
ubi
- bl-

LDA -11.35 -8.93 -8.93 -6.89 -6.88 -6.80 -6.60 -6.57
-11.34� -8.87y

PBE -10.28 -7.99 -7.85 -6.04 -6.03 -5.93 -5.73 -5.68
-7.72y

PW91 -10.27 -7.98 -7.84 -6.03 -6.02 -5.92 -5.72 -5.68
-7.72y

exp. -9.91x -7.37z -7.37z

Values as 
ompiled in Ref. (x)=[132℄, (z)=[133℄, (�)=[134℄ and (y)=[135℄.

Table 8.2: Cohesive energies (eV/atom) of di�erent C3N4 model systems. Values are

onfronted with those of the starting materials: diamond/graphite and N2. For the

al
ulations of the nitrogen dimer it has been used a simple 
ubi
 
ell (a=10 �A) with
atoms displa
ed along the diagonal dire
tion. It should be noted that an overbinding
of more than 1 eV/atom is not unusual in lo
al-density 
al
ulations for se
ond-period
elemental solids, as for example diamond [136, 137℄.

An elegant way to get out from the problem of having pre
ise 
ohesive energies was
given in 1997 by J. V. Badding [138℄. He proposed a simple 
hemi
al approa
h to the
thermodynami
 stability of C3N4 starting from the use of bond enthalpies derived from
mole
ular system. Covalently bonded systems su
h as diamond and 
arbon nitrides 
an
be though as \giant mole
ules", so that simple bond enthalpy te
hniques 
an be used
to estimate their stability. If we imagine, for example, to remove one 
arbon atom
from the diamond stru
ture, whi
h is 
hara
terised by 
arbon tetrahedral bonds, four
C-C 
onne
tions will be broken. Su
h pro
ess will leave four 
arbon atoms with one
dangling bond, whi
h is equivalent to the removal of a se
ond 
arbon. The whole 
ost of
removing two C atoms amounts to the breakage of four C-C single bonds, whi
h have in
a mole
ular system a bond energy of about 350 kJ/mol. The 
ohesive energy of diamond

an be thus estimated to be 350�2=700 kJ/mol, whi
h is in good agreement with the
experimental value of 711 kJ/mol [133℄. In this approa
h it has been assumed that the

ontributions of the 
hemi
al bonds to the 
ohesive energy are additives. This hypothesis
has been examined in details for solid state stru
tures by D. A. Johnson [139℄. For three-
dimensional (sp3 network) 
arbon nitrides the removal of one nitrogen atom has as a

onsequen
e the breakage of three C-N bonds. This will leave three 
arbon atoms ea
h
with one dangling bond, whi
h is equivalent to the removal of 3

4
of a 
arbon. Hen
e,

the breaking of three bonds amounts to removal of a fragment with C3=4N stoi
hiometry.
Using the tabulated bond energies for C-N (286-305 kJ/mol [139, 140℄), the 
ohesive
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energy for 
arbon nitrides should be in the range 858-915 kJ/mol of C3=4N fragment (or

490-522 kJ per mole of atoms, i.e 490=4
7
�858). The enthalpy for the formation rea
tion,

�Ho
f , as in Eq. 8.2 
an be thus 
al
ulated by knowing the experimental values of the

energy required to disso
iate a nitrogen mole
ule (956 kJ/mol [132℄) and the 
ohesive
energy of diamond (711 kJ/mol).

3

4
C(
) +

1

2
N2(g) ! C 3

4
N(
) (8.2)

�Ho
f =

3

4
(711 kJ=mol) +

1

2
(956 kJ=mol)�E
oh:(C 3

4
N) (8.3)

The �Ho
f ranges from 96 to 153 kJ/mol of C 3

4
N (or 384-612 kJ/mol of C3N4), depending

on the 
hoi
e of C-N bond enthalpy. Using the 
ohesive energies as 
al
ulated in Tab.
8.27 we obtain the standard molar enthalpy 
hange of formation at 0 K (�Ho

f;0) listed

in Tab. 8.3. Values were 
onverted in kJ/mol (1 eV= 10�19 J) and the 
ohesive energy
per C 3

4
N fragment, E
oh:(C 3

4
N), was obtained using the relation E
oh:(C 3

4
N) = 7

4
�

E
oh:(C3N4), where the term E
oh:(C3N4) represents the 
omputed energy per mole of
atoms of Tab. 8.2. The estimated �Ho

f;0 for the Eq. 8.3 are all positive and their

fun
tional �Ho
f;0 (graphiti
-C 3

4
N) �Ho

f;0 (bl-C 3
4
N)

LDA 30.3 84.4
PBE 44.1 104.9
PW91 44.6 103.7

Table 8.3: Cal
ulated enthalpy of formation, �Ho
f;0 (kJ/mol), for di�erent ex
hange-


orrelation fun
tionals. The above table shows only values representatives for the layered
graphiti
-C 3

4
N and the three-dimensional bl-C 3

4
N. The 
omplete list of enthalpies is given

in Tab. 8.18 of Se
tion 8.3, p. 72.

magnitudes agree quite well with the enthalpies of formation obtained with the Badding's
method. This is espe
ially true for the hard and three-dimensional phases, su
h as bl-
C3N4, for whi
h the above 
hemi
al approa
h has been hypothesised. However, sin
e
the GGA fun
tionals (PBE and PW91) have shown a better des
ription of the 
ohesive
energies of the end members it is thus likely that the �Ho

f;0 for the formation of graphiti
-
C3N4 and bl-C3N4 lays at about 177 and 417 kJ/mol, respe
tively. This large and positive

7These values have been obtained by taking the di�eren
e between the total energy of the solids

and the ground-state energies of the non spin-polarised atoms. No 
orre
tion for zero-point motion has

been made. All the 
ohesive energies listed in this Thesis have been 
omputed with the aforementioned

pro
edure.
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enthalpy of formation will be thus the most predominant 
ontribution to the free energy
of formation. However, this instability should not be very large to pre
lude the synthesis
of CNx 
ompounds. As matter of fa
t, metastable 
arbon-based mole
ules with large
and positive (endothermi
) enthalpies of formation su
h as a
etylene (226 kJ/mol) are
known [139℄. Using the shifts in the free energy des
ribed from the integration of the
equations of state (Eq. 8.4),

�Gp =

pZ
0

V dp (8.4)

J. V. Badding [138℄ determined the pressures to form thermodynami
ally stable C3N4


ompounds to be of the order of 50-150 GPa. Despite these very large values, su
h
pressures are nowadays attainable with 
urrent te
hnologies. Carbon nitrides 
ould be
thus synthesised in high pressure and high temperatures 
onditions.

8.2.4 Hardness

Isotropi
 
ompression

The main purpose is here the investigation of the hardness of 
arbon nitrides with di�er-
ent DFT methods by evaluating the 
ompressibility of the system. The resistan
e upon
the volume 
hange have also been investigated for diamond and 
ubi
 boron nitride in
order to allow a 
ross-
he
king between the theoreti
al and experimental results. Cal-

ulations were performed by using the three previously mentioned DFT-based methods
to evaluate the total energy as a fun
tion of di�erent unit 
ell volumes. That is, the
total energy has been 
omputed after the appli
ation of an isotropi
 
ompression to the
unit 
ell (by means of keeping 
onstant the 
/a ratio). The data sets E(Vi) were then
�tted with a third order Bir
h equation (Eq. 3.2 of Chapter 3, p. 9) to determine the
equilibrium volumes, bulk moduli and pressure derivatives. As shown in Tab. 8.4, all the

Latti
e 
onstants (aeq=
eq) �- �- 
ubi
- bl-

LMTO 12.274/8.936 12.100/4.538 10.302 6.562
ASW 12.225/8.904 12.117/4.545 10.368 6.492

FP-LAPW 12.211/8.894 12.102/4.539 10.201 6.484
PP 12.220/8.900 12.114/4.543 10.199 6.469

Table 8.4: Equilibrium latti
e 
onstants (ao) for the investigated model systems. The
energy vs. volume data were �tted with a third order Bir
h equation.

DFT methods employed for the predi
tion of the equilibrium latti
e 
onstants and hen
e
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Bulk modulus �- �- 
ubi
- bl- diamond

LMTO 438 (3.6) 455 (3.9) 468 (4.0) 441 (4.0) 453 (3.7)
ASW 414 (3.6) 431 (3.6) 452 (4.0) 427 (3.9) 440 (3.8)

FP-LAPW 431 (3.3) 460 (3.3) 518 (4.7) 445 (3.6) 466 (3.6)
PP 425 (3.1) 451 (3.3) 496 (3.4) 448 (3.4) 464 (3.7)

Table 8.5: Bulk modulus, B (GPa) and its pressure derivatives, B
0

(values in parenthesis)
for various C3N4 phases and diamond.

volumes, give values that are in good agreements with the early pseudo-potential 
al
u-
lations [29℄. The FP-LAPW method usually tends to estimate shorter a and 
 lengths,
though they are often very similar to those 
omputed with the pseudo-potential approa
h.
The 
al
ulated 
ompressibility of various 
arbon nitrides with 
omposition C3N4 is listed
in Tab. 8.5. Due to the short lengths found within the FP-LAPW method, the predi
ted
bulk modulus is usually higher than what is expe
ted. This is parti
ularly true for the

ubi
-C3N4 phase for whi
h a very large B (518 GPa) has been obtained (see Fig. 8.5).
This value is even larger than that 
al
ulated for diamond. Employing a basis set of
the same size, FP-LAPW 
al
ulations yield for diamond a bulk modulus of 466 GPa
(B

0

=3.60 and aeq=6.679 ao) to be 
ompared with an experimental value of 442 GPa.
While the predi
ted bulk moduli of the other hypotheti
al materials (�-C3N4, �-C3N4,
and bl-C3N4) approa
h that of diamond (� 430-460 GPa), the 
ubi
-C3N4 
learly ex
eeds
it. The 
ubi
 phase is estimated to be harder than diamond also from ASW (diamond:
B=440 GPa; 
ubi
-C3N4: B=452 GPa) and LMTO (diamond: B=453 GPa; 
ubi
-C3N4:
B=468 GPa) 
al
ulations. It is worth to note that all the DFT methods predi
t the 
ubi

phase to be hardest 
arbon nitride, with a bulk modulus larger than diamond, while the
alpha stru
ture is 
omputed to have the lowest B (highest 
ompressibility for a three-
dimensional C-N network)8. For the 
-BN system the bulk moduli are of the same order
of magnitude (BLMTO=352 GPa, BASW=345 GPa and BFP�LAPW=356 GPa) and 
lose to
the values given in the early theoreti
al works [142, 124, 143, 144℄. However, it should be
mentioned that all the three methods 
ompute bulk moduli that are at about 100 GPa
below the experimental value (456 GPa [145, 146℄). Sin
e the reverse tenden
y (B gener-
ally overestimated with respe
t to the experimental bulk modulus) is found for diamond,
it is only possible to 
on
lude that the hardness of the hypotheti
al 
ubi
-C3N4 should
be at least, if properly synthesised, of the same order of magnitude as that of diamond.
The 
al
ulated pressure derivatives of the bulk modulus (B

0

) for the C3N4 systems lies

8The layered graphiti
-C3N4 is in absolute the phase with the highest 
ompressibility with a bulk

modulus ranging between 198-253 GPa (
fr. Ref. [141℄). This is due to the graphiti
-like form whi
h is

generally soft upon 
ompression in the dire
tion perpendi
ular to the sheets.
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Figure 8.5: Energy dependen
e of the unit 
ell volume for 
ubi
-C3N4 as a fun
tion of
three di�erent 
al
ulational methods. Data point have been �tted with the Bir
h type
EOS.

between 3 and 4 as shown in Tab. 8.5. The FP-LAPW 
al
ulation usually gives a better
agreement with the PP results ex
ept in the 
ase of the 
ubi
 phase for whi
h a larger
value has been extrapolated.

Resistan
e to reversible deformation upon shape 
hange

Sin
e materials deform plasti
ally only when subje
ted to shear stress, it be
omes impor-
tant to apply external strains to the 
rystal to estimate its resistan
e against deformation.
The strength of an ideal 
rystalline material is proportional to its elasti
 shear modulus
[147, 148℄, while for a real solid, the strength is determined by latti
e defe
ts (dislo
ations
and or point defe
ts) and it is usually smaller than an ideal system. However, the shear
stress needed for dislo
ation motion (Peierls stress) and thus for plasti
 deformation is
also proportional to the elasti
 shear modulus of the deformed material. It was in 1998
when Teter argued that in many hardness tests one measures plasti
 deformation whi
h
is dire
tly 
onne
ted to the deformation of a shear 
hara
ter [22℄. In parti
ular he 
om-
pared the Vi
kers hardness data to the bulk and shear moduli from many hard solids and
found that the shear modulus of poly
rystalline materials is a better hardness predi
tor
than the bulk modulus (Fig. 8.6). Experimental bulk moduli 
an be obtained from the
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Figure 8.6: Figure from R. Riedel [149℄ showing the s
attering of the Vi
kers hardness
for hard materials when 
ompared with bulk and shear moduli.

measurements of the volumes as a fun
tion of the pressure [113℄, while the single 
rystal
elasti
 moduli 
an be estimated with Brillouin spe
tros
opy, inelasti
 neutron s
attering,
ultrasoni
 te
hniques or S
haefer-Bergmann method [150℄. On
e we know the 
omplete
set of the single 
rystal moduli, it is possible to derive the values of B and G of a poly-

rystalline material [151℄. As shown in Tab. 8.6 the 
al
ulated elasti
 moduli give the
possibility to express the hardness in form of isotropi
 shear modulus. As one may noti
e
the hardness trend has been 
ompletely 
hanged with respe
t to the one des
ribed in
Tab. 8.5. The highest G value has been 
omputed for the bl-C3N4 whereas the other
model systems show an isotropi
 shear moduli in between 300 and 326 GPa. The two-
dimensional phase (graphiti
-C3N4) exhibits the lowest hardness with a shear modulus
of 188 GPa. The major di�eren
e between the 
al
ulated bulk and shear moduli resides
mostly in the fa
t that while, the B values are generally approa
hing or even ex
eeding
that of diamond, the 
al
ulated G are at least 120 GPa lower. Therefore, it is very likely
that diamond will remain the hardest known material with high elasti
 
onstants and the
largest shear modulus [29℄, though various hypotheti
al C3N4 phases have shown very
interesting properties. As a matter of fa
t, the value of G for the bl-C3N4 has been 
al-

ulated to be quite 
lose to that of 
-BN (409 �6 GPa [22℄), whi
h is the se
ond hardest
known material.

The dependen
e of the elasti
 
onstants on the various di�erent ex
hange-
orrelation

hoi
es is shown in Tabs. 8.7 and 8.8 for the US-PP method. As expe
ted the LDA
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�- [152℄ �- [114℄ 
ubi
- [29℄ bl- [114℄ graphiti
- [114℄ diamond [153℄


11 576 834 863 840 870 1117 (1080)

33 700 1120 - - 57 -

44 279 305 348 452 14 604 (557)

12 -31 279 313 213 148 137 (137)

13 -17 138 - - -3 -

14 - - - - - -

15 -20 - - - - -

66 304 - - - -

46 20 - - - - -
G 300 326 319 397 188 559 (523, 535 [22℄)
� 3.77 3.57 3.89 3.79 2.56 3.52

Table 8.6: Cal
ulated elasti
 
onstants (
ij in GPa), atomi
 densities (� in g/
m3) and
isotropi
 shear moduli (G in GPa) for �ve di�erent C3N4 phases. Values in parenthesis
refer to experimental measurements [8℄.

predi
ts larger bulk moduli 
ompared to the tested GGA fun
tionals. In parti
ular, the
best agreement with the experimental diamond bulk modulus has been obtained by using
the PW91 and PB methods. However, in the 
ase of diamond the set of 
ij 
al
ulated
within the lo
al density approximation agree reasonably well with the experimental elasti


onstants and in parti
ular with values obtained from PW91 and PB 
al
ulations. It is
also important to note that the LDA provides a very good des
ription of the 
12 modulus

ompared to the others tested GGA fun
tionals. This 
on�rm the general tenden
y of
LDA to work well for sti�er materials. The estimated isotropi
 shear moduli result very
similar to ea
h other with G values 
on�ned within a di�eren
e of 16 GPa. For diamond,
the ion relaxation does not bring any signi�
ant improving to the des
ription of the elasti


onstants (
fr. values of the LDAfrozen and LDArelaxed in Tab. 8.7). On the other hands,
in the 
ase of the hard bl-C3N4 the relaxation of the internal degrees of freedom results

ru
ial for both bulk and elasti
 moduli. Generally, the relaxation of the internal atomi

positions be
omes ne
essary for those 
ases where the applied strain indu
es a signi�
ant
redu
tion of the symmetry or when the atomi
 positions are not 
ompletely �xed by the
spa
e group symmetry.

8.2.5 Hexagonal and Orthorhombi
 graphiti
-C3N4

The graphiti
 C3N4 stru
ture has been 
onsidered as one of the possible forms for the

arbon nitrides [115, 29, 154℄. It is 
ertain that su
h a model system is not likely to
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diamond exp. LDAfrozen LDArelaxed PW91 PB PW86 LM

B 443 463.7 463.1 449.6 444.9 429.6 463.1

11 1080 1116.6 1111.3 1112.8 1110.2 1106.5 1158.9

12 137 137.2 138.9 118.0 112.2 91.1 115.2

44 557 604.3 603.5 606.0 604.7 612.9 611.0
G 523 559 557 563 562 571 575

Table 8.7: Cal
ulated elasti
 
onstants (GPa) and bulk moduli (GPa) for diamond as
a fun
tion of di�erent ex
hange-
orrelation methods: Perdew-Wang 91 (PW91) [47℄,
Perdew-Be
ke (PB) [46℄, Perdew-Wang 86 (PW86) [57℄, Langreth-Mehl-Hu (LM) [45℄.
The subs
ript \relaxed" and \frozen" denotes values 
al
ulated with or without the re-
laxation of the atomi
 positions.

bl-C3N4 LDAfrozen LDArelaxed Ref.[114℄ PW91 PB PW86 LM

B 445.4 425.9 425 400.1 396.2 376.6 423.7

11 902.3 842.9 840 869.9 866.8 856.9 880.1

12 217.0 217.4 213 165.2 160.8 136.4 195.5

44 518.3 454.6 452 514.7 514.3 518.8 519.4
G 448 398 397 450 450 455 449

Table 8.8: Cal
ulated elasti
 
onstants (GPa) and bulk moduli (GPa) for bl-C3N4 as a
fun
tion of di�erent ex
hange-
orrelation fun
tionals.

show low 
ompressibility due to the presen
e of weak inter-layer bonding. Nonetheless,
its major interests arise from the possibility to represent a low energy model stru
ture.
In order to obtain the graphiti
 form of C3N4 two 
arbon atoms must be repla
ed with
a single nitrogen in graphite with a 
onsequent 
reation of a 
arbon va
an
y. In the �rst
model introdu
ed by D. M. Teter and R. J. Hemley the va
an
ies are ordered in su
h
a way that a hexagonal unit 
ell is found (Fig. 8.7). For this system di�erent sta
king
ordering types were proposed leading to hexagonal [115, 29℄ or rhombohedral latti
es
[114, 115℄. All these phases are based on the same order of the va
an
ies. However,
very re
ently, I. Alves et al. [125℄ have introdu
ed a new order of the 
arbon va
an
ies
whi
h leads to an orthorhombi
 unit 
ell (Fig. 8.8). This phase has been proposed after
having analysed the X-ray data relative to samples obtained from the poly
ondensation
of Melamine (Eq. 8.5) at 3 GPa and 800 ÆC.

C3N6H6 ! C3N4 + 2NH3 (8.5)

For su
h a model system a di�erent bonding 
onjugation is expe
ted due to the par-
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Figure 8.7: Ele
tron 
ir
ulation in the hexagonal graphiti
-C3N4 model.

Figure 8.8: Ele
tron 
ir
ulation in the orthorhombi
 graphiti
-C3N4 model.
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ti
ipation of the nitrogen N1 to the �-delo
alisation along the b-axis (see Fig. 8.8). In
parti
ular, the double 
oordination of the N1 atom allows the 
onne
tion between the
double bonds resonan
e lo
ated in the adja
ent C3N3 rings, o�ering thus the possibil-
ity to show an ele
tron delo
alisation along the graphiti
 layer. On the 
ontrary, the
hexagonal phase shows a three 
oordinated N1 atom whi
h hinders the expansion of the
ele
tron delo
alisation along the graphiti
 plane. In short, the hexagonal latti
e possess a
lo
alised ele
troni
 resonan
e 
on�ned in ea
h of the C3N3 rings while, the orthorhombi

phase guarantee an extended ele
tron delo
alisation along the b-axis.

The purpose of this Se
tion is to examine the stability and the ele
troni
 properties of
the orthorhombi
 latti
e with respe
t to the hexagonal one. The study is here �nalised
to the sear
h of new stable layered model systems for 
arbon nitrides. In parti
ular,
the possibility of looking at the orthorhombi
 phase as a novel model for the C3N4 sto-
i
hiometry, has been a

urately 
onsidered and theoreti
ally justi�ed in the following
subse
tions. By using the pseudo-potential and the FP-LAPW LDA methods, the di�er-
en
es in the stability and in the ele
troni
 properties have been highlighted between the
two latti
es. For simpli
ity, the AAA sta
king mode has been used for both latti
e types.
Further, the ASW method has been 
onsidered to des
ribe the hybridisation in
uen
e on
the 
hemi
al bonding inside the graphiti
 layer: the Crystal Orbital Overlap Population
(COOP) analysis is presented.

Computational details

The 
al
ulations were 
arried out in the same framework of the DFT with the VASP plane
wave pseudo-potential pa
kage [58℄. The intera
tions between the ions and the ele
trons
are des
ribed by using ultra-soft Vanderbilt pseudo-potential [61℄. The parameterisation
s
heme used for the LDA is the Ceperley-Alder ex
hange-
orrelation potential [56℄. A

omplete ions and volume relaxation was performed for the orthorhombi
 phase by using
the 
onjugate-gradient algorithm [155℄ and an energy 
ut-o� of 25.57 Ry for the plane
wave basis set. The Methfessel-Paxton smearing s
heme [156℄ was used for geometry
relaxation while the tetrahedron method with Bl�o
hl 
orre
tions [62℄ was implied for the
total energy 
al
ulations. All the energies were 
onverged with a k-point sampling using
a 10�10�10 Monkhorst-Pa
k grid [63℄. A

urates total energy 
al
ulations and ele
tron
density maps were also performed on the optimised stru
tures by using the FP-LAPW
method (WIEN97 pa
kage [68℄). The number of plane waves per atom used was 172 and
a total of 100 k-points were implied, with a 4�4�4 sampling. For 
arbon and nitrogen
atom types the same muÆn-tin radius was used (Rmt=1.33 �A).

A qualitative stabilisation feature was also assessed using the 
hemi
al bonding 
ri-
teria. The COOP were evaluated for the two graphiti
-like C3N4 systems by using the
ASW-LDA method [120, 74℄. Cal
ulations were performed by applying the tetrahedron
method for the k-spa
e integration and 217 irredu
ible k-points generated from a uni-
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form 12�12�12 mesh a

ording to the Monkhorst-Pa
k s
heme. It has to be noted that
the energy 
onvergen
e 
riterion of �E=10�8 Ry is in the ASW more pre
ise than in
FP-LAPW (�E=10�5 Ry) be
ause of the faster method in use.

Geometry optimisation

The geometry of the orthorhombi
 phase was taken from the original work of I. Alves and
for the sake of simpli
ity the AAA sta
king order was 
onsidered. This phase 
onsists of
7 atoms per unit 
ell and belongs to the P2mm spa
e group. The optimised geometry of
the hexagonal phase was taken from the early works [115, 29℄ and an AAA sta
king of
the layers was assumed. In both unit 
ells, ea
h C atom is three-fold 
oordinated as is
one of the four N atoms per 
ell, while the other three N atoms are two-fold 
oordinated.
As it 
an be seen from Figs. 8.7 and 8.8, a di�erent va
an
y ordering inside the graphiti

planes is found for the orthorhombi
 system with respe
t to the hexagonal one.

Starting from the geometry given by [125℄, the orthorhombi
 stru
ture was optimised
by using the US-PP method. Tab. 8.9 shows the stru
tural parameters relative to the
orthorhombi
 phase before and after the full geometry optimisation. The most striking

Starting geometry Optimised stru
ture (US-PP)

Spa
e group P2mm P2mm
Parameters (�A) a=4.1, b=4.7, 
=3.2 a=4.1197, b=4.7105, 
=3.1233
Atomi
 positions N1 (1a) (0.000 0.000 0.000) N1 (-0.021 0.000 0.000)

N2 (1
) (0.000 0.500 0.000) N2 (0.009 0.500 0.000)
N3 (2e) (0.500 0.250 0.000) N3 (0.505 0.258 0.000)
C1 (1
) (0.333 0.500 0.000) C1 (0.351 0.500 0.000)
C2 (2e) (0.833 0.750 0.000) C2 (0.824 0.757 0.000)

Table 8.9: Stru
tural parameters for the orthorhombi
 stru
ture with AAA sta
king
order.

modi�
ation found in the relaxed stru
ture is the 
hanging of the geometry relative to
the C3N3 hetero
y
le. These rings are now no more symmetri
 as they were before the
stru
tural relaxation. A shortening in the interlayer distan
e from 3.20 �A to 3.12 �A is
also found in the optimised system. A brief summary of the most important geometry

hanging in the orthorhombi
 phase is shown in Tabs. 8.10 and 8.11. The atomi
 labeling
s
heme is given in Fig. 8.8. It is important to note that the optimisation of the hexagonal
phase under the same 
onditions still leads to a symmetri
 geometry of the C3N3 rings.
The s
hemati
 di�eren
es between the two optimised stru
tures are drawn in Fig. 8.9.
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Starting geometry Optimised stru
ture (US-PP)

Bond lengths (�A) d(N1-C2)=1.359 d(N1-C2)=1.311
d(C2-N2)=1.359 d(C2-N2)=1.431
d(C2-N3)=1.365 d(C2-N3)=1.316
d(C1-N3)=1.359 d(C1-N3)=1.305
d(N2-C1)=1.365 d(N2-C1)=1.409

Table 8.10: Bond lengths before and after the optimisation of the orthorhombi
 stru
ture.

Starting geometry Optimised stru
ture (US-PP)

Angles (Æ) N1-C2-N3=120.23 N1-C2-N3=122.23
N1-C2-N2=119.54 N1-C2-N2=118.65
N3-C2-N2=120.23 N3-C2-N2=119.12
C2-N3-C1=120.23 C2-N3-C1=122.18
N3-C1-N3=119.54 C2-N3-C1=121.80
C2-N2-C2=119.54 C2-N2-C2=115.62
C2-N1-C

0

2=119.54 C2-N1-C
0

2=121.69
C2-N2-C

0

1=120.23 C2-N2-C
0

1=122.19

Table 8.11: Angles before and after the optimisation of the orthorhombi
 stru
ture. The
notation prime refers to atoms belonging the adia
ent unit 
ell.

Relative stability between the two graphiti
 forms

The FP-LAPW and US-PP methods agree quite well with ea
h other in predi
ting a

omparable stability between the orthorhombi
 and the hexagonal models. Tab. 8.12 list
all the 
al
ulated 
ohesive energies for the two stru
tures. Although the energy referen
e
is not the same for the two methods (
ore states are not in
luded in the pseudo-potential
method), the energy di�eren
e between the two forms show values of similar order of
magnitude, in favour of the orthorhombi
 variety. The very small di�eren
e in stability
let us 
on�rm the possibility of looking at the orthorhombi
 phase as a reasonable model
for des
ribing the graphiti
-C3N4.

The stabilisation features 
an be further assessed using 
hemi
al bonding 
riteria
based on the 
rystal orbital overlap populations [157℄ whi
h 
onsist of the expe
tation
values from operators of the non-diagonal elements of the overlap population matrix,



�

ni (k)Sij
nj (k) = 

�

ni (k) h�ki (r) j�kj (r)i 
nj (k) (8.6)

where Sij represents an element of the overlap matrix of the basis fun
tions and the
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Figure 8.9: The above �gure shows the general di�eren
es in the ring's geometry for the
orthorhombi
 and hexagonal unit 
ells.


nj (k) are the expansion 
oeÆ
ients entering the wave fun
tion of the nth band (Eq.
8.7).

 k (r) =
X
i


i (k)�ki (r) (8.7)

Partial COOP 
oeÆ
ients Cij(E) are then obtained by integrating the expression (8.6)
over the Brillion zone:

Cij(E) = Cji(E) =
1


BZ

X
n

Z

BZ

d
3kRe

�


�

ni (k)Sij

�

nj (k)
�
Æ (E � "nk) (8.8)
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FP-LAPW method
Stru
ture LDA PBE PW91 US-PP/LDA

Hexagonal -6.88990 -6.04012 -6.03002 -9.26143
Orthorhombi
 -6.89044 -6.04070 -6.03059 -9.26174

j�Ej 5.4�10�4 5.8�10�4 5.7�10�4 3.1�10�4

Table 8.12: FP-LAPW and US-PP 
ohesive energies (eV/atom) for the orthorhombi

and hexagonal latti
es.

(Dira
 fun
tion delta serving as a 
ounter of states) whi
h is often loosely designated as
the overlap-population-weighted-DOS. Starting from Eq. (8.8), the total COOP are then
evaluated as the sum over all non-diagonal elements,

C(E) =
X

ij;i6=j

Cji(E): (8.9)

The above 
al
ulational pro
edure has been spe
i�
ally implemented in the ASW method
by Dr. V. Eyert of the University of Augsburg to enable for pre
ise 
hemi
al bonding
determinations from self 
onsistent 
al
ulations. For a detailed des
ription and for sig-
ni�
ant examples the reader is referred to the following papers [120, 74, 118℄. The COOP

urves are positive when they des
ribe bonding states and negative (negative terms in
Eq. (8.8)) when they des
ribe anti-bonding states; non-bonding states should exhibit
very low intensity-COOP. In order to get more insight into the 
hemi
al stability, in
the following Se
tion, it has also been proposed the 
al
ulation of the integrated COOP
(ICOOP) whi
h is de�ned as follow,

C(E0) =

E0Z
�1

dEC(E): (8.10)

The total and integrated COOPs for the hexagonal and the orthorhombi
 phases are
shown in Fig. 8.10 and Fig. 8.11, respe
tively. The two phases nearly show the same
trend in the total COOP; in the lower energy region of the valen
e band the two 
urves are
mainly of bonding 
hara
ter, while at energies 
loser to the Fermi level the antibonding
states of the p-orbitals start to dominate. The antibonding 
ounterparts are found in
the 
ondu
tion band 
entred at 2 and 7 eV while a bonding behaviour appears at higher
energy. Due to the larger ele
tron delo
alisation present in the orthorhombi
 latti
e the
smearing out of the 
urve is somehow found with respe
t to the COOP of the hexagonal
system. The proje
tion of the total COOP onto the 
orresponding 
ontributions arising
from the di�erent atoms (Fig. 8.12) 
learly shows that in the lower region of the valen
e
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Figure 8.10: Total COOP for the hexagonal and the orthorhombi
 phases (ASW).

Figure 8.11: Integrated COOP for the hexagonal and the orthorhombi
 systems (ASW).
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band (VB) the intera
tion N3-C1 determines the positive 
ontribution to the COOP
even if all the other 
arbon-nitrogen intera
tions are showing a bonding 
hara
ter. At

Figure 8.12: Total COOP for the orthorhombi
 phase (ASW). For 
larity ea
h nitrogen-

arbon intera
tions have been shifted along the verti
al axis. The labels B and AB de�ne
the bonding and the antibonding region, respe
tively.

energy 
lose the EF the main bonding 
hara
ter is found for the intera
tions N3-C1 and
N1-C2 while N2-C2 and C2-N3 show a negative COOP. The des
ription of the bonding
within the layer seems to favour a sort of \snake-like" delo
alisation in as far as the N3-
C1 and the C2-N3 globally display a positive intera
tion throughout the valen
e region.
However, this shows the diÆ
ulty of 
arrying out this analysis to the point of making it
resemble to the pi
ture expe
ted by a 
hemist in his view of the resonant bonds. Su
h
restri
tion is mainly due to the fa
t that COOP analysis does not use dire
tional orbitals
view sin
e all 
ontributions from px, py and pz are in
luded. As shown in Fig. 8.10 the
orthorhombi
 phase is predi
ted to be slightly more stable than the hexagonal system.
This 
an be addressed to the lower intensity of the anti-bonding states 
lose to the Fermi
level. By 
ontrast, the integrated COOP of Fig. 8.11 has shown a sensible advantage for
the hexagonal model (
fr. bonding-states in the region between -5 and 0 eV). Therefore,
even though the investigation of the COOP represents an important step in predi
ting
the relative stability of di�erent phases, it has here been shown that the dis
rimination
of the two phases 
annot only be assessed qualitatively. Nonetheless, it is relevant to
stress that a

urate full potential 
al
ulations performed on the same systems have also
shown very small energy di�eren
es in favour of the orthorhombi
 phase (Tab. 8.12).
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Figure 8.13: Site proje
ted DOS plot for the AAA orthorhombi
 graphiti
 phase (ASW).
The energy referen
e along the x-axis is taken with respe
t to the Fermi level; the y-axis
gives the DOS per atom and unit energy.

In any 
ase, it 
an be 
on
luded that the orthorhombi
 system result stable enough to
be 
onsidered as one of the most reasonable models for the des
ription of the layered
graphiti
-C3N4.

Ele
troni
 properties

The DOS plot 
al
ulated with the ASW method for the orthorhombi
 phase (Fig. 8.13)

learly shows that a semi-metalli
 behaviour is present in this new graphiti
 C3N4 form.
The ele
troni
 levels are now 
rossing the Fermi energy and a more signi�
ant 
ontri-
bution of the ele
troni
 states from the N1 atom is found at the EF (
ompare with N1

peak in Fig. 8.14). In 
ontrast to the band gap of 0.938 eV 
al
ulated for the hexagonal
form, a semi metalli
-like behaviour is thus found in the orthorhombi
 phase. Moreover,
the nitrogen DOS in the orthorhombi
 stru
ture is broadened with respe
t to the DOS
of the hexagonal one (Fig. 8.14). This behaviour 
an be addressed to the strong role
played by the N1 atom in mediating in between neighbouring hetero
y
le rings. With
the help of the FP-LAPW method the 
hange in the ele
troni
 properties 
an also be
visualised by looking at the ele
tron density maps. The orthorhombi
 system shows a

lear delo
alisation of the 
harge density along the dire
tion of the b-axis with a sort of
snake-like shape (Fig. 8.15). Using the same method of 
al
ulation, the total density of
states shows, for the orthorhombi
 phase (Fig. 8.16), an in
reasing metalli
 behaviour.
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Figure 8.14: Site proje
ted DOS for the hexagonal graphiti
 model system (ASW).

In parti
ular, the ele
troni
 states of the nitrogen and the 
arbon atoms are 
rossing
the EF as already stressed in the total DOS 
al
ulated with the ASW approa
h. For
the hexagonal system the 
al
ulated ele
troni
 density map shows a 
on�ned ele
troni


ir
ulation inside the C3N3 rings [118℄. A band gap of 1.48 eV is found in the total DOS
analysis (Fig. 8.17). The two methods of 
al
ulation 
on�rm the previous hypothesis of
I. Alves et al. about a drasti
 modi�
ation on the ele
troni
 properties.

8.2.6 Cal
ulation of the 13C NMR 
hemi
al shifts

As already dis
ussed, a re
ent interpretation of the X-ray di�ra
tion pattern made on the
graphiti
-like sample prepared via bulk 
hemistry [125, 126℄ has suggested the existen
e
of a possible orthorhombi
 system. However, the investigation of the 
rystal stru
ture
is not yet 
on
luded and further e�orts are needed to state 
learly whether the unit 
ell

ould be hexagonal or orthorhombi
. Therefore, it be
omes of fundamental interest the
possibility to provide theoreti
al spe
tros
opi
 properties able to dis
riminate between
the two di�erent forms. The synthesis of 
arbon-13 enri
hed samples is a
tually un-
der investigation in di�erent laboratories to provide insight on the 13C NMR shielding.
Nevertheless, due to the high 
ost needed to prepare 
arbon enri
hed samples and to
the diÆ
ulty to obtain pure 
rystalline materials, the related 13C 
hemi
al shifts are
nowadays still unknown.

In this subse
tion the theoreti
al 
al
ulation of the magneti
 shielding tensor, Eq.
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Figure 8.15: Valen
e ele
tron density map for the orthorhombi
 graphiti
-C3N4 model
system (FP-LAPW).

8.11, has been 
omputed for both the hexagonal and the orthorhombi
 phases.

�uv(N) = (�2E=�Bu��Nv )B=0;�=0 (8.11)

Sin
e the 
hemi
al shift depends on the ele
tron density about a given nu
leus (i.e shield-
ing), it is thus expe
ted that the di�erent ele
troni
 
ir
ulation present in the two model
phases 
ould give rise to a sensible variation on the respe
tive NMR signals.

Method and 
omputational details

In this theoreti
al approa
h it has been employed the GAUSSIAN98 mole
ular 
al
ulation
pa
kage [158℄ with an implemented Gauge Independent Atomi
 Orbital (GIAO) method
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Figure 8.16: Total DOS for the orthorhombi
 phase (FP-LAPW). Noti
e the absen
e of
energy gap at the top of the VB.
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Figure 8.17: Total DOS for the hexagonal phase (FP-LAPW).
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Figure 8.18: Mole
ular 
luster relative to the hexagonal graphiti
-C3N4.

[159℄ for the ab initio self-
onsistent-�eld 
al
ulation of the nu
lear magneti
 resonan
e

hemi
al shifts. In parti
ular, the 6-311G* basis set has been used with the Perdew-Wang
(PW91) [160℄ fun
tional 9. The mole
ular input was 
reated for ea
h of the investigated
phases by using a well de�ned graphiti
-C3N4 
luster. The optimised solid state geometry
(US-PP method) has been 
ut into 2�2�0 
ells and the edges have been 
losed with
hydrogens to guarantee the ele
tron neutrality. The obtained 
lusters are shown in Figs.
8.18 and 8.19 for the hexagonal and the orthorhombi
 system, respe
tively. Hydrogens
have been relaxed and the amount of the residual for
es present on the atoms have also
been 
he
ked.

Comment of the results

The 
al
ulated isotropi
 shieldings are provided in Tab. 8.13 with respe
t to the standard
tetramethyl silane (TMS). The 
arbon 
hemi
al shift relative to the hexagonal phase has
been estimated by taking the mean values between atoms belonging the symmetri
 C3N3

ring (i.e. C(11), C(13) and C(25)) while in the orthorhombi
 phase we have averaged the

9Cal
ulations were performed in 
ollaboration with Prof. H. �Agren and Dr. B. S
himmelpfennig at

the Department of Theoreti
al Chemistry, Royal Institute of Te
hnology, Sto
kholm (Sweden).
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Figure 8.19: Mole
ular 
luster relative to the orthorhombi
 graphiti
-C3N4.

13C shifts of atoms along the two snake-like paths (C(06), C(10), C(18) and C(19). The

hemi
al shifts related to 
arbons whi
h have hydrogens in the se
ond nearest neighbour
positions (the edges of the 
luster) have been negle
ted (e.g. C(4), C(12), C(25), C(26),
C(24), C(27), C(2) and C(15)). That is, it has only been a

ounted for an averaged
13C 
hemi
al shift by weighting only the 
luster's atoms whi
h have a 
arbon-nitrogen
environment similar to the original periodi
 stru
ture. As shown in Tab. 8.13 a di�eren
e
of about 15 ppm has been found in the 
hemi
al shifts of the 
arbon atoms 
onstituting
the symmetri
 rings with respe
t to those belonging the snake-like ele
tron density path10.
Therefore, 
al
ulations suggest that the dis
rimination between the two phases should
be, a priori, feasible by measuring the 13C NMR 
hemi
al shift in graphiti
-like samples.

8.2.7 Con
lusions

Using three di�erent �rst-prin
iples te
hniques, it has been examined a series of hypothet-
i
al C3N4 phases to determine their stability and hardness. With the use of FP-LAPW
method the relative energy trend has been 
omputed to be in good agreement with the
former PP 
al
ulations. The graphiti
- and �-C3N4 phases are predi
ted to have the
lowest total energies and the highest 
ompressibilities, while the two 
ubi
 phases are
energeti
ally less stable but with larger bulk moduli. On the 
ontrary, the ASA based

10This result is in very good agreement with the latest measurements of the 13C NMR shifts for a

polymorphi
 graphiti
-like C3N4 samples (private 
ommuni
ation from Dr. M. M�en�etrier).
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Isotropi
 shielding (13C)
Atomi
 labelling hexagonal orthorhombi


C(11) 169.3 -
C(13) 169.3 -
C(25) 168.7 -
Mean value 169.1 -
C(06) - 154.0
C(10) - 154.1
C(18) - 154.4
C(19) - 154.2
Mean value - 154.2

Table 8.13: Cal
ulations of the 13C NMR 
hemi
al shift (ppm) for the two graphiti
-
like phases. For the referen
e TMS it has been estimated, with the same 
omputational
approa
h, a 
hemi
al shift of 184.4 ppm.

LMTO and ASW methods 
annot reprodu
e a reasonable energy trend due to the diÆ-

ulty of des
ribing phases with di�erent atomi
 densities. The ASA approximation �ts
quite well for the 
ubi
 stru
tures but it does not for less 
ompa
t systems su
h as that
of the graphiti
-like. However, even though it is not possible to 
ompare the relative
stabilities, LMTO and ASW te
hniques reprodu
e the latti
e 
onstants and the bulk
moduli in 
lose a

ordan
e with the FP-LAPW and PP methods. As a matter of fa
t,
all the three methods predi
t the highest B for the 
ubi
-C3N4 and the lowest one for the
�-C3N4. This demonstrates that all the employed DFT 
odes are suitable for simulating
the bulk modulus of 
arbon nitrides. However, a

ording to the �nding of D. M. Teter
a di�erent hardness trend has been 
al
ulated by using the magnitude of the isotropi

shear modulus as an indi
ator. The three-dimensional bl-C3N4 phase now shows the
highest G value, whereas the �-C3N4 has the lowest one. Following this more a

urate
approa
h, all the investigated C3N4 
rystals behave as hard and elasti
 materials, though
their me
hani
al properties are always predi
ted to be subordinated to those of diamond.

The enthalpy for the formation rea
tion, �Ho
f;0, has been 
al
ulated for the layered

C3N4 phase (the most stable form for 
arbon nitrides with C3N4 stoi
hiometry) to be of
the order of 177 kJ/mol. This result indi
ates that a thermodynami
ally stable graphiti
-
like C3N4 system 
ould in prin
iple be synthesised by using high temperature and high
pressure rea
tion. Moreover, sin
e an important a
tivation energy should be required to
break the C-N bonds, it is reasonable to believe that a substan
e with C3N4 
omposition

ould be isolated in a metastable form even at ambient 
onditions.

The optimisation of the orthorhombi
 phase with the US-PP method has led to
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an asymmetri
 equilibrium stru
ture for the \C3N3" rings of the graphiti
-C3N4. A
shortening of the 
arbon-nitrogen bonds has been found along the snake-like path owing
to the �-delo
alisation along the b-axis. The 
al
ulated FP-LAPW ele
tron density
map has also 
on�rmed the possibility for the orthorhombi
 phase to extend its ele
tron
delo
alisation to the adja
ent C3N3 rings. This behaviour is mainly due to the 
hanging of
the 
oordination number for the N1 atom whi
h goes from three in the hexagonal latti
e
to two in the orthorhombi
 phase. The DOS analysis performed with the FP-LAPW
and ASW methods has shown an in
reased semi-metalli
 behaviour for the orthorhombi

system: the ele
troni
 states are 
rossing the EF and the band gap disappears. Moreover,
the FP-LAPW and US-PP methods agree quite well ea
h other in predi
ting a small
energy di�eren
e between the hexagonal and the orthorhombi
 phases. Both latti
e
systems seem to be a reasonable proposal for the graphiti
-C3N4 model, though a 
lear

hanging in the ele
troni
 properties has been found for the orthorhombi
 stru
ture.
Finally, from mole
ular 
al
ulations the 13C NMR shifts have been evaluated for both
model systems. A high-�eld shifting of about 15 ppm was 
al
ulated for the orthorhombi

phase. Su
h an in
reased shielding is attributed to the very di�erent ele
tron density 
ows
present in the two graphiti
-like forms. These phases 
ould be thus likely dis
riminated
via NMR analysis at the experimental level.

However, despite the out
ome of this work we still need to meet furthermore the
experimental �ndings as to the low 
on
entrations of nitrogen found in the 
arbon ni-
tride �lms. These observations have led to the proposal of 
arbon nitrides with C11N4


omposition. Its thorough study within the same framework is shown in the next Se
tion.

8.3 The isoele
troni
 C11N4 model system

8.3.1 Introdu
tion

The 
hara
terisation of 
arbon nitride �lms with stoi
hiometry C3N4 is heavily restri
ted
by the problem of getting pure 
rystalline samples with the right C/N ratio. However,
thin �lms with lower nitrogen 
on
entration (5-25 %) have been found relatively easier
to deposit, for example, with rea
tive magnetron sputtering. It is also in this range of
nitrogen 
ontent that the re
ently dis
overed graphiti
-like ! fulleren-like transition has
been suggested to take pla
e. Therefore, in order to add more information to the above
experimental eviden
e, it is important to use theoreti
al tools to 
hara
terise 
arbon ni-
tride model stru
tures with an higher ratio of C/N, su
h as that of C11N4. It be
omes
thus relevant to investigate the role played by the nitrogen 
on
entration in determin-
ing the stability, hardness and ele
troni
 properties of the CNx 
ompounds. For the
sake of simpli
ity it has here been 
ompared the C3N4 and C11N4 systems, whi
h are
isoele
troni
 to ea
h other. For this purpose two C11N4 phases, namely � and �, have
been presented and investigated with density fun
tional theory methods within the lo
al
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density approximation. These phases 
ontain less than � 30 % of nitrogen than the well
known C3N4 stoi
hiometry and are formally derived from the so-
alled pseudo-
ubi
 form
of C3N4 (i.e. bl-C3N4). Cohesive properties, bulk and elasti
 moduli have been 
al
ulated
and a full detailed analysis of the DOS and Energy Loss Near Edge Stru
ture (ELNES)
is presented. Cal
ulations suggest that the lowering of the nitrogen 
on
entration does
not prevent the �nding of ultra-hard materials and indeed brings a signi�
ant in
rease
in the 
ohesive energy and hardness of 
arbon nitrides.

8.3.2 Methods and 
omputational details

Cal
ulations of the optimised geometries, relative stability and elasti
 
onstants were
performed ab initio within the lo
al density approximation to the density fun
tional
theory using the Ceperly-Alder [56℄ ex
hange 
orrelation fun
tional as parameterised by
Perdew and Zunger [60℄ and the US-PP method [61, 58℄. The 
al
ulations were 
omputed
by using an energy 
ut-o� of 434.8 eV for the planewave basis set and 
onverged with
respe
t to the k-point integration. The tetrahedron method with Bl�o
hl 
orre
tions
[62℄ was applied for both geometry relaxation and total energy 
al
ulations. Brillouin-
zone integrals were approximated using the spe
ial k-point sampling of Monkhorst and
Pa
k [63℄. The investigation of the density of states and of the Ele
tron Energy Loss
Spe
tros
opy (EELS) spe
tra were 
arried out with the density fun
tional theory FP-
LAPW program [68℄. The lo
al spin density approximation a

ording to Perdew and
Wang was employed [47℄. The planewave 
ut-o� was adjusted so that approximately 145
planewaves per atom were used for the phases with C11N4 stoi
hiometry. The di�eren
es
in total energies were 
onverged to below 0.001 eV with respe
t to k-points integration.
For 
arbon and nitrogen atom types the same muÆn-tin radius (Rmt=1.35 �A) was used
and maintained �xed for all the investigated stru
tures. Only for the graphiti
 C11N4

model a relatively smaller Rmt value of 1.24 �A was employed. For diamond, graphite
and the other isoele
troni
 C3N4 phases the amount of k-points and 
ut-o� parameter
were in a

ordan
e with our previous 
al
ulations (
fr. Se
tion 8.2 and Ref. [117℄).

8.3.3 The analysed 
rystalline stru
tures

In order to investigate the di�erent properties of the C3N4 and C11N4 stoi
hiometries it
has here been presented a 
ross-
he
king between two di�erent forms of 
arbon nitrides:
the stable two-dimensional graphiti
 phase and the hard three-dimensional pseudo-
ubi

system. First of all, the graphiti
 form has been 
hosen be
ause representative for a
stable layered CNx network whereas the pseudo-
ubi
 form stands for an hard three-
dimensional system. Se
ondly, sin
e many sp3-bonded C3N4 phases have been proposed
in the early works [29, 115, 114℄, as a starting point of our investigation we thought
worthwhile to fo
us the attention only on 
ertain phases for whi
h the generation of the
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analogous C11N4 stoi
hiometry 
an be easily �gured out, for example, by simply doubling
the length of one of the unit 
ell ve
tors. The pseudo-
ubi
 system results as a perfe
t
example of a three-dimensional C3N4 phase from whi
h the 
orresponding C11N4 
an be
readily generated without any drasti
 in
rease of the number of inequivalent atoms per
unit 
ell. Further details are given separately in the following subse
tions for ea
h of the
analysed CNx forms.

The graphiti
 and pseudo-
ubi
 C3N4

The graphiti
-like stru
ture (graphiti
-C3N4) has been theoreti
ally predi
ted to be the
most stable C3N4 phase [29, 117, 118, 115, 114℄. For simpli
ity, the same intra-layer
geometry as in the hexagonal stru
ture (ABA sta
king) introdu
ed by Teter et al. [29℄
has been assumed in our graphiti
-like model. Inside the layer ea
h of the C atoms
is three-fold 
oordinated as is one of the four N atoms per 
ell, while the other three
nitrogens show a two-fold 
oordination (see Fig. 8.2). The whole system was fully
relaxed with the pseudo-potential method assuming an AAA pa
king sequen
e between
the sheets. Su
h relaxation was required in order to adapt the intra-layer geometry to the
new sta
king order. Despite the fa
t that the AAA pa
king is not the most energeti
ally
stable form, it has been expli
itly 
hosen to sta
k the layers dire
tly on top of ea
h other
to enable an easier 
omparison of the results with the analogue graphiti
-like C11N4 form.
As a matter of fa
t, a graphiti
-like C11N4 system with a sta
king sequen
e ABA or ABC
would have led to a larger number of inequivalent atoms per unit 
ell, yielding thus to
an enormous in
reasing of the 
al
ulational time. Beside this, sin
e the total energy
intera
tion found in between the layers is weak (as in the 
ase of graphite) it has been
�nally de
ided to 
ompare the two graphiti
-like stoi
hiometries by assuming a 
ommon
AAA pa
king of the sheets.

The pseudo-
ubi
 stru
ture (bl-C3N4) shown in Fig. 8.20 is usually 
alled \defe
t zin
-
blende" and exhibits a P43m symmetry and 
ontains 7 atoms per unit 
ell [29, 114℄. This
phase has been previously predi
ted by A. Y. Liu et al. [114℄ by substituting 
arbon and
nitrogen in the pseudo-
ubi
 �-CdIn2Se4 [161℄. Sin
e the bl-C3N4 originally optimised
by A. Y. Liu in Ref. [114℄ has shown some residual for
es in our pseudo-potential 
ode,
it has been de
ided to fully relax again the system for better results. The new optimised
geometry is now shown in Table 8.14.

The graphiti
-, �- and �-C11N4 phases

The graphiti
-C11N4 depi
ted in Fig. 8.21 has been theoreti
ally introdu
ed in our In-
stitute by A. Snis et al. in 1999 [162, 163℄. This phase is isoele
troni
 with diamond
and C3N4 [117℄ and has been suggested as a possible hard material [104℄. The 
on�gu-
ration with layers in a sta
king sequen
e AAA has been fully geometry optimised with
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Figure 8.20: Ball and sti
k model of the bl-C3N4 stru
ture. Figure shows the proje
tion
of the atoms along the [001℄ plane.

N3

N3

N2

b

c
a

Figure 8.21: One layer of the graphiti
-C11N4 model phase.
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bl-C3N4 �-C11N4 �-C11N4

Cubi
 Orthorhombi
 Tetragonal
P43m (215) P222 (16) P42m (111)

7 15 15
C1(0.5000, 0.5000, 0.0000) C1(0.5000, 0.5000, 0.2559) C1(0.0000, 0.5000, 0.2575)
N1(0.2553, 0.2553, 0.2553) C2(0.0000, 0.5000, 0.5000) C2(0.0000, 0.0000, 0.0000)

C3(0.0000, 0.0000, 0.2793) C3(0.5000, 0.5000, 0.0000)
C4(0.2315, 0.2368, 0.1392) C4(0.2552, 0.2552, 0.1281)
C5(0.0000, 0.5000, 0.0000) C5(0.0000, 0.0000, 0.5000)
C6(0.0000, 0.0000, 0.0000) N1(0.2355, 0.2355, 0.6254)
N1(0.7568, 0.2680, 0.3803)

a=b=
=3.4087 a=3.4454 a=b=3.4944
b=3.5540

=7.2394 
=6.9004

90, 90, 90 90, 90, 90 90, 90, 90

Table 8.14: Optimised parameters for the bl-C3N4 and the �-, �-C11N4 phases. The
table shows 
rystal system, spa
e group, atoms�unit 
ell�1 and the atomi
 positions.
Cell 
onstants are expressed in unit of �A and the angles �, �, 
 in degrees.

the same ab initio pseudo-potential planewave program [58℄. The resulting geometry is
listed in Tab. 8.15. It is 
ertain that su
h a model system is not likely to show low

ompressibility due to the presen
e of weak inter-layer bonding. Nonetheless, its major
interests arise from the possibility to represent a low energy 
arbon ri
h model stru
ture.
The pseudo-
ubi
 C11N4 
on�guration has been obtained from the analogue pseudo-
ubi

C3N4 phase by simply doubling the unit 
ell along the a-latti
e ve
tor. In order to rea
h
the right stoi
hiometry one 
arbon has been added in the middle of the se
ond 
ell, while
the four nitrogen atoms, 
onstituting the \nitrogen-hole", have been substituted with
four 
arbons [164℄. This phase is here 
alled �-C11N4 (Fig. 8.22). Following the same
pro
edure but performing a slightly di�erent atomi
 substitution, another phase 
alled
�-C11N4 
an be obtained (Fig. 8.23). The relaxation of the three-dimensional phases
gives the �nal optimised geometries as shown in Table 8.14.

8.3.4 Relative stability and phase transitions

There is no doubt that one of the most important e�e
ts in determining the stability of

arbon nitrides is the role played by the non-bonded N-N repulsions. These unfavorable
ele
trostati
 intera
tions have already been demonstrated to be relevant in a

ounting
for the stability of some of the C3N4 phases [165, 138℄. In fa
t, an interesting attempt to
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c

b

Figure 8.22: Crystal stru
ture of the tetragonal � � C11N4. Proje
tion along the [100℄
plane exhibiting the \nitrogen-hole".

c

a

Figure 8.23: Proje
tion of the orthorhombi
 � �C11N4 
rystal stru
ture along the [010℄
plane.
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Property graphiti
-C11N4

Crystal System Orthorhombi

Spa
e Group Pmm2 (25)

Atoms/unit 
ell 15
Atom type Coordinates (x, y, z)

C1 (0.5000, 0.5000, 0.4425)
C2 (0.5000, 0.2600, 0.2050)
C3 (0.5000, 0.2490, 0.1875)
C4 (0.5000, 0.5000, 0.2735)
C5 (0.5000, 0.2450, 0.5265)
C6 (0.5000, 0.0000, 0.4375)
C7 (0.5000, 0.0000, 0.7575)
C8 (0.5000, 0.0000, 0.2715)
N1 (0.5000, 0.0000, 0.9305)
N2 (0.5000, 0.5000, 0.9495)
N3 (0.5000, 0.2360, 0.6835)

Cell 
onstants (�A) a=3.4125; b=4.9214; 
=8.5198
�, �, 
 (Æ) 90, 90, 90

Table 8.15: Optimised parameters for the graphiti
-C11N4 phase.

remove su
h intera
tions was made in 1995 by T. Hughbanks and Y. Tian [165℄, who pro-
posed the substitution of one N atom with one C to attenuate the 
riti
al N-N lone pair
repulsion in the �-C3N4 system. However, su
h a pro
edure imposes in most of the 
ases
the use of new 
arbon-ri
h models (e.g. C4N3) for whi
h the departure from the isoele
-
troni
 systems be
omes inevitable. In order to over
ome this problem, and keep working
on isoele
troni
 models, it has here been studied the C11N4 system within whi
h the ele
-
trostati
 
ontributions are kept similar to the analogue C3N4 models. One may noti
e
that, a mu
h more diÆ
ult and interesting task would have been the use of isoele
troni

model systems where the smothering of the N-N intera
tions is provided, for example,
by avoiding lone pairs pointing dire
tly one to ea
h other. Unfortunately, despite many
e�orts it has not been possible to provide su
h a model C11N4 phase. Nonetheless, fo-

using the attention only on the 
hanging of the C/N ratio, it has been found that the
intera
tions between sp2-hybridised nitrogens (e.g. atoms N3 and N2 of the 12-
enters

arbon-nitrogen rings of Fig. 8.21) is not the only e�e
t involved in a

ounting for the
stability of 
arbon nitrides. The larger 
ohesive energy revealed in the C11N4 stoi
hiome-
try is here assigned to the presen
e of an in
reased number of 
arbon-
arbon 
onne
tions
(see the ratio R(C�C=C�N) in Table 8.16), whi
h have large bonding energies. A

ording
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Stru
ture �EUS�PP �EFP�LAPW R(C�C=C�N)

graphiti
-C11N4 -9.6967 -7.9214 26/12
�-C11N4 +0.034 +0.028 16/12

graphiti
-C3N4 +0.435 +1.030 0/14
bl-C3N4 +0.581 +1.176 0/12
�-C11N4 +0.993 +1.588 16/12

Table 8.16: Cohesive energy, �E (eV/atom), for various CNx phases. Free energy values
are s
aled with respe
t to the stable graphiti
-C11N4 stru
ture. The ratio of the number
of 
hemi
al bonds per unit 
ell, R(C�C=C�N), is also shown.

to the bond 
ounting rule [166, 167, 20, 153℄, the most stable stru
ture maximises the
number of highly energeti
 bonds. It is well known that bonds between elements from the
2nd row of the periodi
 table in whi
h one or both elements possess lone pairs are weaker
than bonds in whi
h neither of the 
onstituents show lone pairs. As a matter of fa
t, the
C-N bonds (260-320 kJ/mol) are not as strong as C-C bonds (� 350 kJ/mol) [168, 169℄.
Therefore, it is mostly due to the presen
e of a large number of 
hains and/or rings,
made of highly energeti
 C-C bonds, that the C11N4 stoi
hiometry results energeti
ally
favoured over the C3N4 one. As shown in Fig. 8.24 and Table 8.16 this stoi
hiome-
try is predi
ted, from both US-PP and FP-LAPW methods, to have a 
ohesive energy
larger than that of C3N4. Its graphiti
 form is energeti
ally well below, 0.435 eV/atom
with US-PP, the 
orresponding graphiti
-C3N4 as is the three-dimensional � phase (0.401
eV/atom). In parti
ular, the layered C11N4 form results energeti
ally more stable than
the 
orresponding C3N4 model be
ause of the presen
e of an extended graphiti
-like
matrix around the 
arbon-nitrogen ring in the dire
tion of the 
-axis (Fig. 8.21). The
introdu
ed 
arbon system with thirteen C-C bonds per layer is here responsible of an
evident lowering of the energy of the system. Su
h a model phase results also as the
most stable C11N4 form not only be
ause of the highest fra
tion of C-C/C-N bonds but
also be
ause of the possibility to delo
alise the nitrogen's lone pair (atoms N2 and N3)
into the graphiti
-like matrix. Similarly, the same delo
alisation e�e
t is present in the
graphiti
-C3N4, where lone pairs 
an be dispersed into the �-ele
tron 
ir
ulation of the
C3N3 rings. It is be
ause of this pe
uliar 
hara
teristi
 that layered phases represent, in
both stoi
hiometries, the low energy stru
ture models [170℄. In three-dimensional phases
the above possibility is limited by the presen
e of a uniform framework with sp3 bonds.
However, the introdu
ed diamond-like matrix with sixteen strong C-C bonds per unit 
ell
(Tab. 8.16) limits in the � phase (Fig. 8.22) the propagation of the neighbouring 
arbon-
nitrogen holes to the b-axis. Compared to the bl-C3N4 analogue (Fig. 8.20), where ea
h
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Figure 8.24: Free energies (eV/atom) versus atomi
 volumes (�A3/atom) for various C3N4

and C11N4 phases (US-PP).

of the 
arbon-nitrogen rings is surrounded by four others (network of pure C-N bonds),
it has here been rea
hed a mixed C-C/C-N system using the same averaged number of
valen
e ele
trons. It is thus on the possibility to �t and weight the 
arbon-nitrogen ring
into a more stable three-dimensional 
arbon network that the �-C11N4 results energet-
i
ally favourable over the bl-C3N4. However, in spite of this general �nding a very low
stability has been predi
ted for the � phase, where the presen
e of a \
arbon-hole" (Fig.
8.25) drasti
ally destabilises the three-dimensional C11N4 arrangement. More pre
isely,
the poor stability 
an be here attributed to the presen
e of 
arbon atoms (i.e. C4, C5

and C6) with dangling bonds in the 
arbon 
avity. Owing to these 
onsiderations, in the
following se
tions, we will mostly fo
us our attention on the � model.

Only a modest pressure is needed to over
ome the energy barrier separating the
graphiti
- and the �-C11N4 phases and to indu
e a transition between them. Estimation of
this pressure from the slope at the 
ommon energy/volume interse
tion gives a hydrostati

transition pressure ne
essary for the transfer less than � 2 GPa (1.7 GPa). Again from
the slope at the 
ommon energy interse
tion it has been 
al
ulated that a pressure of
about 82 GPa is needed to go from the graphiti
- to the �-C11N4 phase.
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C6

C4

C1

Figure 8.25: Front view of the \
arbon-hole" in �-C11N4.

Some thermodynami
 
onsiderations

To get further insight into the di�erent stabilities of the CNx stoi
hiometries a theoreti
al
estimation of the standard molar enthalpy 
hange of formation at 0 K is here presented.
The �Ho

f;0 
omputed for the formation rea
tion given in Eq. 8.12 has been estimated
with the FP-LAPW to be positive and sensibly larger than that of the of C3N4 (
fr. Eq.
8.1 in Se
. 8.2.3, p. 48).

11C(
) + 2N2(g) ! C11N4(
) (8.12)

By using the 
al
ulated 
ohesive energies of Tab. 8.17 to estimate the formation en-
thalpies shown in Tab. 8.18 it may be predi
ted that a layered form of C11N4 
ould be,
\in the best 
ase", only in 
ompetition with the formation of a three-dimensional C3N4

phase (e.g. �-C3N4). In parti
ular, for the two graphiti
-like forms the di�eren
e in the
magnitudes of �Ho

f;0 has been 
omputed to be between 77 and 83 kJ/mol in favour of
the graphiti
-C3N4, depending on the applied fun
tional. When 
onsidering the synthesis
of 
arbon nitrides with an extended sp3-bonded network (the two � phases), the same
trend in the enthalpy of formation has been highlighted. Cal
ulations show again an
enthalpy di�eren
e between 69 and 96 kJ/mol in favour of the C3N4. A straightforward
explanation 
an be found in the energy balan
e proposed in Eq. 8.12. From the equa-
tion of the formation rea
tion it appears quite obvious that the energy required for the
breaking of the strong C-C bonds 
an be hardly 
ompensated with the 
ohesive energy

al
ulated for the C11N4 stoi
hiometry (� 1.0 eV/atom larger than that of C3N4 with
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LDA). Therefore, from a pure thermodynami
 point of view the C3N4 
omposition should
be generally favoured over the synthesis of the isoele
troni
 C11N4.

fun
tional graphiti
-C11N4 �-C11N4

LDA -7.92 -7.89
PBE -6.95 -6.91
PW91 -6.94 -6.90

Table 8.17: Cal
ulated FP-LAPW 
ohesive energies of graphiti
- and �-C11N4. Values
are given in eV/atom.

Standard enthalpy of formation in kJ/mol
CNx phase LDA PBE PW91

graphiti
-C3N4 (hex.) 121.65 (121.65) 176.51 (217.04) 178.50 (219.03)
graphiti
-C3N4 (orth.) 121.29 (121.29) 176.12 (216.64) 178.13 (218.65)

�-C3N4 128 183 185
�-C3N4 184 253 255

graphiti
-C11N4 197 (197) 257 (407) 259 (405)
�-C11N4 240 302 317


ubi
-C3N4 321 389 391
bl-C3N4 336 419 415

Table 8.18: Computed standard molar enthalpy of formation (�Ho
f;0) for the two CNx

stoi
hiometries (x=1.33 and 0.36) by using the 
ohesive energies seen in Tabs. 8.2, 8.12
and 8.17. Values in parenthesis 
orrespond to the use of graphite as a starting material.

At �rst sight, this result seems to be in 
ontrast with the experien
e a

umulated in
depositing 
arbon based 
ompounds with magnetron sputtering, whi
h is one of the most
dominating pro
esses for depositing hard materials. However, it is important to spe
ify
that this 
on
lusion has been drawn by 
omparing results 
oming from a limited number
of model systems, whi
h have been assumed to be representative for the layered and the
three-dimensional forms. Therefore, it 
annot be ex
luded that a further spanning of
the spa
e of the 
rystal stru
tures might lead to dis
over other stable phases with a very
di�erent trend in the enthalpy of formation. Further, the experimental results are mostly
relevant to amorphous samples with a graphiti
-/fulleren-like form for whi
h the analogy
with the presented 
rystalline models is somehow arbitrary. Finally, a full kineti
 study
should be introdu
ed for a 
omplete understanding of the problem. It is 
ru
ial to note
that the synthesis of 
arbon nitrides is usually performed at high temperatures where
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kineti
 fa
tors 
an play an important and predominating role. The stability of graphiti
-
C11N4, for example, 
annot only be inferred by a

ounting for its thermodynami
 but
also needs a deep kineti
 investigation to understand its real phase stability. As a matter
of fa
t, C11N4 
ompounds 
ould result thermodynami
ally unstable but at the same time
kineti
ally more favourable than C3N4.

8.3.5 Cal
ulations of the elasti
 and bulk moduli

In what follows we elu
idate how it has been dedu
ed the 
omplete set of elasti
 
onstants
for the presented 
rystalline materials. The elasti
 
onstants determine the response
of the 
rystal to an externally applied strain (sti�ness) and provide information about
the bonding 
hara
teristi
s between adja
ent atomi
 planes, anisotropi
 
hara
ter of the
bonding and stru
tural stability. The main problem in estimating elasti
 
onstants from
�rst-prin
iples is not only the requirement of a

urate methods for evaluating the total
energy but also the heavy 
omputations involved in their 
al
ulation. In parti
ular, if
the symmetry of the system is redu
ed, the number of independent moduli in
reases
and hen
e a larger number of distortions is required to 
al
ulate the full set of elasti


onstants [34℄. For an orthorhombi
 material (like �-C11N4) there are nine independent
elasti
 
onstants referred to as 
11, 
22, 
33, 
44, 
55, 
66, 
12, 
13 and 
23 [171℄. They 
an be
dedu
ed by applying small strains to the equilibrium latti
e and determine the resulting

hange in the total energy. The entire set of the elasti
 
onstants were determined by
straining the latti
e ve
tors a

ording to the rule,

~R = R(1 + Æ) (8.13)

where ~R and R are, respe
tively, the matrix that 
ontains the 
omponents of the distorted
and undistorted latti
e ve
tors, 1 is the unity matrix and Æ the symmetri
 distortion
matrix.

Æ =

0
B� Æ11 Æ12 Æ13

Æ21 Æ22 Æ23

Æ31 Æ32 Æ33

1
CA (8.14)

The internal energy of a distorted 
rystal E(V; Æ) 
an be Taylor expanded in powers of the

omponents of Æ with respe
t to the initial internal energy of the stati
 
rystal E(Vo; 0)
in the following way:

E(V; Æ) = E(Vo; 0) + Vo

nX
k=2

X
i1:::ik

1

k!

i1:::ikÆi1 :::Æik (8.15)

V and Vo denote the volume of the strained and unstrained 
rystal, respe
tively and

i1:::ik the kth-order elasti
 
onstants of the unstrained 
rystal in the Voigt notation. In
Eq. 8.15, the distortion 
omponents are de�ned a

ording to Æk = Æij for k = 1, 2, 3
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Strain Parameters (unlisted Æij=0) 2�E=
�
VoÆ

2
�

1 Æ11 = Æ 
11

2 Æ22 = Æ 
22

3 Æ33 = Æ 
33

4 Æ11 = Æ22 = Æ33 =
1

(1�Æ2)1=3
� 1; Æ23 = Æ32 =

Æ

(1�Æ2)1=3
� 1 4
44

5 Æ11 = Æ22 = Æ33 =
1

(1�Æ2)1=3
� 1; Æ13 = Æ31 =

Æ

(1�Æ2)1=3
� 1 4
55

6 Æ11 = Æ22 = Æ33 =
1

(1�Æ2)1=3
� 1; Æ12 = Æ21 =

Æ

(1�Æ2)1=3
� 1 4
66

7 Æ11 =
1+Æ

(1�Æ2)1=3
� 1; Æ22 =

1�Æ

(1�Æ2)1=3
� 1; Æ33 =

1

(1�Æ2)1=3
� 1 (
11 + 
22 � 2
12)

8 Æ11 =
1+Æ

(1�Æ2)1=3
� 1; Æ22 =

1

(1�Æ2)1=3
� 1; Æ33 =

1�Æ

(1�Æ2)1=3
� 1 (
11 + 
33 � 2
13)

9 Æ11 =
1

(1�Æ2)1=3
� 1; Æ22 =

1+Æ

(1+Æ2)1=3
� 1; Æ33 =

1�Æ

(1�Æ2)1=3
� 1 (
22 + 
33 � 2
23)

Table 8.19: Strains and elasti
 moduli for the orthorhombi
 phase.

and Æk = 2Æij for k = 4, 5 and 6. The quantity E(V; Æ) has been 
omputed by using the
�rst-prin
iples theory for di�erent strains of the system. The Taylor expansion limited
to the se
ond-order is here employed for the �tting of the numeri
al data. The elasti


onstants, Vo and Eo = E(Vo; 0) are the �tting parameters.

In parti
ular, the independent elasti
 
onstants for an orthorhombi
 material have
been found by 
onsidering nine di�erent matri
es Æ to whi
h 
orrespond nine di�erent
expressions of the total energy (see Table 8.19). The 
omponents of the distortion matrix
(Eq. 8.14) whi
h do not appear in the table are set equal to zero. For ea
h of the
applied strains, the total energy of the system has been 
omputed for seven di�erent small
distortions (Æ = �0:02n; n = 0 � 3). Relaxation of the internal degrees of freedom has
also been 
arried out for the entire set of deformations. Finally, the elasti
 
onstants have
been found by �tting the energies against the distortion parameter. A similar pro
edure
has been utilised to dedu
e the six distin
t, non-vanishing elasti
 
onstants (
11, 
12, 
13,

33, 
44 and 
66) [172℄ for a tetragonal solid (�-C11N4) and the three independent moduli
(
11, 
12 and 
44) [173℄ for a 
ubi
 
rystal system (bl-C3N4). The 
omplete list of the
applied strains is shown in Table 8.20 and 8.21 for the tetragonal and the 
ubi
 systems,
respe
tively.

After having 
ompleted the 
al
ulation of the whole set of elasti
 
onstants it is
possible to estimate, for ea
h of the investigated stru
tures, the shear moduli by simply
applying the following linear relations. A

ording to the �nding of A. P. Gerk and D. M.
Teter, it has been assumed that the larger is the value of G, the harder is the material.
The general formula of the isotropi
 shear modulus, GIso, was initially expressed as
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Strain Parameters (unlisted Æij=0) �E=Vo

1 Æ11 = Æ22 = Æ (
11 + 
12) Æ
2

2 Æ11 = Æ22 = Æ; Æ33 =
1

(1+Æ2)2
� 1 (
11 + 
12 + 2
33 � 4
13) Æ

2

3 Æ33 = Æ 1
2

33Æ

2

4 Æ11 =
h
(1+Æ)
(1�Æ)

i 1
2 � 1; Æ22 =

�Æ11
(1+Æ11)

(
11 � 
12) Æ
2

5 Æ31 = Æ32 = Æ13 = Æ23 =
1
2
Æ; Æ33 = Æ2=4 
44Æ

2

6 Æ12 = Æ21 =
1
2
Æ; Æ11 = Æ22 =

�
1 + Æ2

4

�1
2 � 1 1

2

66Æ

2

Table 8.20: Strains and elasti
 moduli for the tetragonal phase.

follows by A. Reuss in 1929 [36℄:

GIso =
1

15
[(
11 + 
22 + 
33)� (
23 + 
31 + 
12) + 3(
44 + 
55 + 
66)℄ (8.16)

Taking into a

ount the proper symmetry relations, this modulus modi�es as in the
following for an orthorhombi
, tetragonal and 
ubi
 system, respe
tively:

Go =
1

15
(
11 + 
22 + 
33 � 
12 � 
13 � 
23) +

1

5
(
44 + 
55 + 
66) (8.17)

Gt =
1

15
(2
11 + 
33 � 
12 � 2
13 + 6
44 + 3
66) (8.18)

G
 =
1

15
(3
11 � 3
12 + 9
44): (8.19)

Furthermore, for the 
al
ulation of the bulk modulus an isotropi
 strain has been applied
to the 
rystal 
ell. Then, the Bir
h type equation of state [31℄ has been used to adjust
the variation of the energy versus volume. This equation represents a well known and
tested �tting form able to des
ribe P, V, T data for a wide 
lass of solids. The main
assumption made is that no phase transition o

urs during 
ompression of the material.

Analysis of the results and dis
ussion

In this subse
tion we 
omment the results a
hieved with the US-PP method (Table 8.22)
by straining the 
rystals in a volume and shape 
hanging way. The 
al
ulated bulk
modulus for the �-C11N4 has been found to be 460.6 GPa. This value is larger than the
estimated moduli for the bl-C3N4 (425.9 GPa), 
ubi
 boron nitride (396.6 GPa) and 
lose
to those of 
ubi
 (463.7 GPa) and hexagonal (456.0 GPa) diamond [153℄. On the 
ontrary,
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Strain Parameters (unlisted Æij=0) Energy

1 Æ11 = Æ22 = Æ; Æ33 =
1

(1+Æ2)
� 1 �E=6VoC

0Æ2

2 Æ12 = Æ21 = Æ; Æ33 =
Æ2

1�Æ2
�E=2Vo
44Æ

2

Table 8.21: Strains and elasti
 moduli for a 
ubi
 system. By 
al
ulating the tetragonal
shear 
onstant, C 0 = 1

2
(
11 � 
12), and the bulk modulus,B = 1

3
(
11 + 2
12), it is possible

to extra
t 
11 and 
12.

for the � phase a mu
h lower B (367.2 GPa) has been 
al
ulated. However, its magnitude
approa
hes that of 
ubi
 boron nitride. As already dis
ussed, the di�eren
e in the bulk
moduli between � and � 
an be roughly related to the lower stability of �. Adjusting
the variation of the energy versus the unit 
ell volume for the layered C3N4 and C11N4

phases we found the following B numbers: 209.5 GPa and 226.0 GPa. These moduli are
quite 
lose to ea
h other indi
ating that the hardness of layered 
arbon nitrides remains
mostly invariant with respe
t to a signi�
ant lowering of the nitrogen 
on
entration.

The systemati
 investigation of the latti
e stability was originally done by M. Born
and K. Huang [174, 175℄, who showed that by expanding the internal 
rystal energy in
a power of series in the strain and by imposing the 
onvexity of the energy, it is possible
to obtain stability 
riteria in terms of a set of 
onditions on the elasti
 
onstants. The
requirement of me
hani
al stability in a 
ubi
 
rystal leads, for example, to the following
restri
tions on the three elasti
 
onstants [176℄

(
11 � 
12) > 0; 
11 > 0; 
44 > 0; (
11 + 2
12) > 0: (8.20)

For a tetragonal 
rystal, whi
h has six independent elasti
 
onstants, these 
onditions
are as follows [176℄

(
11 � 
12) > 0; (
11 + 
33 � 2
13) > 0;


11 > 0; 
33 > 0; 
44 > 0; 
66 > 0;

(2
11 + 
33 + 2
12 + 4
13) > 0: (8.21)

Finally, for orthorhombi
 
rystals with nine elasti
 
onstants, the me
hani
al stability
leads to the following restri
tions [176℄

(
11 + 
22 � 2
12) > 0; (
11 + 
33 � 2
13) > 0; (
22 + 
33 � 2
23) > 0;


11 > 0; 
22 > 0; 
33 > 0; 
44 > 0; 
55 > 0; 
66 > 0;

(
11 + 
22 + 
33 + 2
12 + 2
13 + 2
23) > 0: (8.22)

The 
omplete set of zero-pressure elasti
 
onstants are shown in Table 8.22 together with
the related isotropi
 shear moduli. The �rst thing to note is that the whole sets of 
ij
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Property bl-C3N4 �-C11N4 �-C11N4


11 842.9 (840) 959.4 728.5

12 217.4 (213) 151.7 206.9

13 - 261.0 205.6

22 - - 727.2

23 - - 209.1

33 - 889.0 616.2

44 454.6 (452) 617.8 252.8

55 - - 348.0

66 - 589.0 235.5
G 397.9 (397) 507.2 263.9
B 425.9 (425) [425.9℄ 460.6 [461.7℄ 367.2 [368.3℄

B
0

3.80 5.27 3.61
Vo 5.66 5.58 5.91
Eo -9.1162 -9.6610 -8.7033
� 3.86 3.71 3.52

Table 8.22: Theoreti
al values of the elasti
 
onstants (
ij in GPa), isotropi
 shear mod-
ulus (G in GPa), bulk modulus (B in GPa), its pressure derivative (B

0

), atomi
 volume
(Vo in �A3/atom), 
ohesive energy (Eo in eV/atom) and atomi
 densities (� in g/
m3) of
bl-C3N4 and �-, �-C11N4. Values in round bra
kets refer to the work of A. Y. Liu and
R. M. Wentz
ovit
h [114℄ whereas those in square bra
kets 
on
ern the bulk modulus

al
ulated by 
ombining the elasti
 
onstants.

satisfy all the above 
onditions, indi
ating a 
ertain me
hani
al stability for the � and
� phases. Therefore, even though they are not the most energeti
ally favored stru
tures
for the C11N4 stoi
hiometry, they 
ould be at least metastable materials. The 
al
ulated
shear moduli validate the same hardness trend as found with the estimated bulk moduli.
The isotropi
 G value for the � phase is at about 110 GPa higher than that of bl-C3N4,
indi
ating a 
lear hardening of the C11N4 stoi
hiometry over the C3N4 analogue. As
expe
ted, for the � phase the 
al
ulated modulus has been found well below the value of
the � stru
ture, 
on�rming thus the destabilising e�e
t of the 
arbon-holes with dangling
bonds.

It is 
ertain that the introdu
tion of arbitrary deformations of the unit 
ell followed
by the 
al
ulation of the total energy, whi
h is many orders of magnitude larger than
elasti
 energy, tends to de
rease the a

ura
y of the 
al
ulated moduli. Nonetheless, the
extrapolated isotropi
 shear moduli for diamond and 
ubi
 boron nitride have re
ently
been shown to be in good agreements with the experimental results [153℄. Consequently,
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the large and positive 
ij values found for the three-dimensional �-C11N4 model system

an be taken as a referen
e in a

ounting for its large hardness. It is also worth to note
that by augmenting the number of sp3 
arbon tetrahedra, the hardness of the material
gets 
loser to that of diamond (Gexp=535 GPa and Bexp=443 GPa [29℄; G
al=558.5
GPa and B
al=463.7 GPa [153℄). As a matter of fa
t, the resistan
e to deformation is
improved in the � phase by the presen
e of a large number of sp3 
arbons whi
h have
diÆ
ult a

ess to higher ele
troni
 states, namely d-states. From this pi
ture, the pro
ess
of rehybridisation, whi
h takes pla
e after deformation of the solid, results not favored
leading thus to less 
ompliant bonds. It is be
ause of this 
hara
teristi
 that diamond
will probably remain the hardest known material with high elasti
 
onstants values and
a large shear modulus [29, 177℄.

Poisson's ratio and Young's modulus For all the investigated 
rystal stru
tures,
the bulk modulus of a poly
rystalline material has also been estimated in the Voigt's
approximation from the following equation:

B =
1

9
(
11 + 
22 + 
33) +

2

9
(
12 + 
13 + 
23) (8.23)

The 
al
ulated values are given in the square bra
kets of Tab. 8.22. The bulk moduli

omputed from the elasti
 
onstants and from the �t to a Bir
h equation are almost the
same, giving thus a 
onsistent predi
tion of the 
ompressibility of the analysed phases.
Be
ause of the spe
ial signi�
an
e of the Young's modulus11 and Poisson's ratio for the
te
hnologi
al and engineering appli
ations, these quantities have also been 
al
ulated by

ombining together the bulk and shear moduli. In parti
ular, the elasti
 properties of
materials may be mainly 
hara
terised by the Poisson's ratio, whi
h gives a measure of
the stability of a 
rystal against shear. The Young's modulus, E, and Poisson's ratio, �
are given by

E =
9BG

3B +G
(8.24)

� =
3B � 2G

2(3B +G)
(8.25)

The 
al
ulated Poisson's ratios and Young's moduli are shown in Tab. 8.23. The smaller
value of the Poisson's ratio for the �-C11N4 indi
ates that this phase is relatively stable
against strain. The estimated Young's moduli support the same hardness trend as already
predi
ted with the use of B and G.

11The Young's modulus, E, (also known as the elasti
 modulus) is de�ned as the ratio between stress

and strain and indi
ates the sti�ness of the material.
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bl-C3N4 �-C11N4 �-C11N4 diamond

B/G 1.07 0.91 1.40 0.83 (0.83)
E 910 1114 639 1196 (1140)
� 0.144 0.098 0.211 0.070 (0.069)

Table 8.23: Table shows the 
al
ulated B/G ratio, Young's modulus (GPa) and Poisson's
ratio (dimensionless) of bl-C3N4 and �-, �-C11N4. Diamond has also been listed as a
referen
e material. Values in round bra
kets 
on
ern the properties of CVD diamond as

ompiled in Ref. [178℄.

Brittleness and du
tility In order to predi
t the brittle and du
tile behaviour of
materials, S. F. Pugh [179℄ introdu
ed in 1954 the quotient of bulk modulus to shear
modulus of poly
rystalline phases (B/G) by 
onsidering the shear modulus G representing
the resistan
e to plasti
 deformation and the bulk modulus B the resistan
e to fra
ture.
Therefore, with su
h an assumption a high (low) B/G value be
omes asso
iated with the
du
tility (brittleness) of a 
ertain solid. The 
riti
al number whi
h separates du
tile and
brittle materials has been �xed at about 1.75.

The 
al
ulated B/G ratio for the phase �-C11N4 is 0.91 (see Tab. 8.23) whereas for
the analogue bl-C3N4 1.07. These results suggest that both CNx stoi
hiometries provide
rather brittle materials, though their values are still slightly higher than that of diamond
(B/G=0.83).

8.3.6 Ele
troni
 stru
ture

Density of states of bl-C3N4

The 
al
ulated ele
troni
 density of states (DOS) of bl-C3N4 at the equilibrium stru
ture
is shown in Fig. 8.26. A band gap, Eg, of 2.86 eV has been 
omputed with the use of
LDA approximation. From the partial 
omponents of the DOS, it has been found that
the lower part of the valen
e band 
onsists mainly of 2s orbitals from nitrogen and 
arbon
atoms, whereas the middle portion (-15 eV � E � -5 eV) is dominated by the mixing
of the C and N 2p orbitals. The very sharp VB edge indi
ates the presen
e of highly
lo
alised N states with 2p 
hara
ter. These states 
an be attributed to the non-bonding
ele
trons belonging the so-
alled \nitrogen-hole". Finally, the portion of the 
ondu
tion
band in between 5 and 15 eV is mostly dominated by the states of 
arbon and nitrogen
2p.



90 Chapter 8: Carbon Nitrides

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

-20 -15 -10 -5 0 5 10 15 20

De
ns

ity
 o

f S
ta

te
s (

DO
S)

Energy [eV]

partial DOS: N tot

partial DOS: C1C2 tot

total DOS

Figure 8.26: The 
al
ulated DOS for the bl-C3N4 phase (FP-LAPW).



8.3 The isoele
troni
 C11N4 model system 91

Density of states of �- and �-C11N4

The total DOS for the � and the � phases are illustrated in Fig. 8.27. The �rst stru
ture
shows a band gap of 2.40 eV whereas in the latter no Eg has been found (
fr. the
two density of states in Fig. 8.27). The total DOS relative to � displays nearly the
same 2p states mixing as in the isoele
troni
 bl-C3N4. The peak lo
ated at the top
of the VB still 
onsists of nitrogen states with 2p 
hara
ter. Both the VB and CB
are sharper and indi
ative of a larger ele
tron density. As already mentioned, the �

phase does not show any band gap. This is mainly due to the presen
e of 
arbon states
lo
ated just above the Fermi energy. Their existen
e is assigned to the highly distorted
tetrahedral geometries of the atoms 
onstituting the \
arbon-hole". More pre
isely, the
most prominent 
ontributions have been found (partial DOS not shown here) from the
2p orbitals of the atoms C6 and C5, whi
h are 
omposing the 
arbon 
avity.

Cal
ulation of Energy Loss Near Edge Stru
ture

For light elements like 
arbon, boron and nitrogen, ele
tron energy loss spe
tros
opy
is a useful te
hnique be
ause of its ability to di�erentiate the types of bonding in a
polymorphi
 material. The 
hara
teristi
 �ne stru
ture in the �rst few eV beyond the
beginning of the 
ore loss ionisation edges supplies the so-
alled 
oordination �ngerprints,
whi
h 
an be used to distinguish di�erent phases in 
omplex systems. Sin
e in our 
ase
of theoreti
ally predi
ted CNx phases su
h referen
e spe
tra do not exist, it be
omes
worth having a theoreti
al approa
h to simulate the ELNES. The 
al
ulations of the
energy loss near edge stru
tures have been performed with the WIEN97 
ode a

ording
to the formalism of M. Nelhiebel et al. [180℄. In this part of the Chapter, we present
spe
tra due to the 
arbon and nitrogen K-shell ex
itation (n=1, l=0) of various CNx


ompounds. Parameter settings have been used to simulate poly
rystalline samples by
averaging over all possible in
ident-beam dire
tions (integral over 4�). Nonetheless, the
negle
ted anisotropy e�e
ts whi
h are mostly important for layered stru
tures should
only 
hange the intensity of the peaks but not their positions. The energy of the in
ident
ele
trons was �xed to 200 KeV and the energy loss of the �rst edge to 285 and 400 eV
for 
arbon and nitrogen, respe
tively.

In order to probe our 
al
ulational method, diamond and graphite have also been
investigated. Their relative C K ELNES spe
tra are depi
ted in Fig. 8.28 and the
positions of the most prominent peaks (labelled I to IV) are listed in Tab. 8.24. Peak
I in the C K edge of graphite 
orresponds to the ele
troni
 transitions 1s ! ��. This
feature usually identi�es sp2-hybridised materials and 
onsequently it does not appear in
the diamond spe
tra. The peaks II-V are related to 1s ! �� transitions. A reasonable

orresponden
e between our 
al
ulations and the experimental results has been found
in Tab. 8.24. Moreover, the 
omputed relative peak positions mat
h better with the
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Phase Edge I II III IV V

Diamond C K Thesis - 0 5.3 12.9 -
MS approa
hy - 0 4.4 12.0 -

exp.y - 0 5.5 12.9 -
Graphite C K Thesis -6.4 0 4.6 10.0 14.3

MS approa
hy -4.9 0 2.5 6.6 10.3
exp.y -6.8 0 4.4 11.2 14.7

Table 8.24: Positions of peaks I-V in the spe
tra of Fig. 8.28. All the positions are s
aled
with respe
t to the main �� peak II. Values are in units of eV. (y) Values as 
ompiled in
Ref. [181℄.

experimental �nding than the Multiple S
attering (MS) approa
h [181℄.
The 
al
ulated plain and broadened spe
tra for di�erent CNx materials are shown

in Fig. 8.29 and 8.30 for the C and N K edges, respe
tively. The spe
tra for graphiti
-
like C3N4 and C11N4 reveal mainly graphiti
 features (Fig. 8.29), whereas the three-
dimensional bl-C3N4 and �-C11N4 exhibit a 
loser similitude to the diamond spe
tra.
However, despite this general similarity the shape and the number of �� peaks relative to
the C11N4 edges di�er quite evidently from those 
al
ulated for the C3N4 stoi
hiometry.
Espe
ially in the region between 5 and 15 eV (in both edges) a di�erent 
hara
teristi

�ngerprint 
an be assigned to ea
h of the studied systems, opening thus the possibility of
identifying these model phases in thin-�lm samples via EELS te
hnique. The parti
ular
sharp �� peak found at the beginning of the N edge of the graphiti
-C11N4 (plain line
of Fig. 8.30) indi
ates the presen
e of a pronoun
ed sp2 bonding 
hara
ter. The main

ontributions to this feature are due to the N2 and N3 atoms 
onstituting the 12-
enters

arbon-nitrogen rings.

8.3.7 Con
luding remarks

The present investigation reports the study of the stability and hardness of two model

arbon nitride stoi
hiometries isoele
troni
 with diamond: CxN4, where x=3 and 11. In
the �rst part of this Se
tion it has been 
arried out the theoreti
al determination of the
equilibrium stru
tural parameters and 
ohesive energies of novel C11N4 phases. Cal
u-
lations have shown that the introdu
tion of an extended 
arbon system, whi
h 
an be
of graphiti
-like or diamond-like type, 
an represent an important way to in
rement the
phase stability of 
arbon nitrides. Both layered and three-dimensional C11N4 materials
have been predi
ted to have a 
ohesive energy larger than the 
orresponding isoele
troni

C3N4. This result has been a
hieved using two di�erent 
omputational methods within
the DFT: US-PP and FP-LAPW. However, in spite of the in
reased 
ohesive energy the
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Figure 8.28: Theoreti
al C K ELNES of diamond and graphite (FP-LAPW).
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Figure 8.29: Theoreti
al C K ELNES of various phases (FP-LAPW). The spe
tra for the
inequivalent atoms positions have been 
al
ulated separately and weighted in the present
Figure.
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standard enthalpy of formation has been 
al
ulated for all the investigated C11N4 phases
to be positive and generally larger than those of the analogues C3N4 forms. Therefore,
from a simple thermodynami
 approa
h the synthesis of 
rystalline 
arbon nitrides with
higher 
arbon 
ontent should be less feasible than the well-known C3N4 stoi
hiometry.
However, if a sample with C11N4 
omposition 
ould be realised by means of some type of
syntheti
 pro
ess, a 
onsiderable a
tivation energy would be required to break the large
number of strong C-C and C-N bonds, thus making this substan
e thermodynami
ally
metastable at ambient 
onditions. Furthermore, even though the 
al
ulated enthalpy
di�eren
e between the stable graphiti
-like forms of C3N4 and C11N4 seems to be large
enough (75-80 kJ/mol) to favour the synthesis of one stoi
hiometry over the other, amor-
phous samples will be probably often obtained upon trying to deposit any of the CNx


ompositions. This general 
on
lusion has been drawn by looking at the small energy
separations found in between the �Ho

f;0's 
al
ulated for the whole set of CNx phases. It
is thus expe
ted that a mixture of di�erent phases su
h as graphiti
-like and other three-
dimensional networks will be always obtained simultaneously. Therefore, di�erent C11N4

and C3N4 forms with a very 
lose energy stability 
ould exist and their dis
rimination
would be thus nearly impossible at the experimental level. The possibility to have few
stable stru
tures whi
h 
ould be in dynami
al equilibrium at room-temperature has also
been hypothesised in 2000 by �E. Sandr�e [182℄ for CNx (x=0.33) systems. So far as that is

on
erned, it would be worthwhile to investigate di�erent fulleren-like phases to 
he
k if
any larger in
rease in the stability 
ould be found. Unfortunately, due to the high 
ost of

omputational time needed for su
h an investigation we reserve this study for a possible
future proje
t.

A large part of this Se
tion has also been dire
ted to the 
al
ulation of the indepen-
dent, non-zero elasti
 
onstants from �rst-prin
iples. The analysis of the 
omplete set
of elasti
 moduli for the � phase shows that the C11N4 stoi
hiometry 
an lead to the
formation of very sti� materials. More generally, the in
reasing of the 
arbon 
on
en-
tration indu
es to a signi�
ant improvement of the hardness of 
arbon nitrides, provided
that the same isoele
troni
 stru
ture is kept in the model system. Furthermore, the
density of states have been analysed in order to gain insight into the 
hemi
al bonding
of phases with di�erent stoi
hiometries. A band gap of 2.4 eV has been 
al
ulated for
the three-dimensional � stru
ture. Finally, the 
hara
teristi
 ELNES 
oordination �n-
gerprints have been reported for various CNx forms. The proposed spe
tra may be used
as a pre
ious tool for the 
hara
terisation and the identi�
ation of novel 
arbon nitrides
phases in polymorphi
 samples.



Chapter 9

Boron Carbon Nitrides

9.1 Ternary BCN 
ompounds

The interest in the boron 
arbon nitrides with general 
omposition BxCyNz arose from
the diÆ
ulty to obtain new materials for abrasives, heat sinks and prote
tive 
oating ap-
pli
ations. Ternary systems with a diamond-like stru
ture in whi
h some of the 
arbon
atoms are repla
ed with nitrogen and boron are expe
ted to show the same interesting
properties found in diamond and 
ubi
 boron nitride, su
h as hardness, wide band gap
and high melting points. As a 
onsequen
e their potential appli
ations 
ould be found
in several me
hani
al and ele
troni
 devi
es [183, 17, 184℄. Moreover the low oxidation
resistan
e of diamond, whi
h is one of the most important drawba
ks for its appli
ations,
might be improved in the boron-based hard materials. As a matter of fa
t diamond 
an
only be used at around 600 ÆC in air, while 
ubi
 boron nitride avoids the oxidation
up to 1100 ÆC [145, 185℄. The �rst eviden
e of a graphiti
-like BCN 
ompound with
BC2N stoi
hiometry dates ba
k to the synthesis of Kouvetakis et al. [13, 14℄, where

hemi
al vapor deposition method was used with BCl3 and CH3CN as starting materi-
als. These layered stru
tures have been largely investigated both experimentally [13, 14℄
and theoreti
ally [166, 186, 187, 188, 189, 190℄. Further investigations 
on
erning highly
dense three-dimensional phases were 
arried out by Tateyama and Tsuneyuki [20℄ who
have shown the possibility to obtain ordered BC2N stru
tures dire
tly through 
ompres-
sion of the layered BC2N form. An elegant study of the ele
troni
 properties along the
C2-BN pseudo-binary jun
tion has also been presented by W. R. L. Lambre
ht and B.
Segall [191, 192℄. Early theoreti
al 
al
ulations of the bulk [20℄ and shear [21, 22℄ moduli
have suggested that these 
ompounds should possess an intermediate hardness between
diamond and 
ubi
 boron nitride. At the experimental level several e�orts have been
made in order to modify the graphiti
 BC2N systems into hard three-dimensional phases
[183, 17, 184, 193, 194, 18, 19℄. Despite the use of high-pressure and high-temperature

98
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methods no 
ommon results were found in the last de
ade. Some resear
hers had prob-
lems with a 
ertain limited solubility [15, 16℄, while others 
laimed an evident segregation
in a mixture of diamond and 
-BN [17, 18, 19℄. However, very re
ently a promising work
of L. Solozhenko et al. [6℄ has been published on the same subje
t. These authors have
shown results that seem to point out to a su

essful synthesis of a 
ubi
 BC2N phase with
a latti
e parameter of 3.642(2) �A at ambient 
onditions. Even though the interpretation
of the di�ra
tion patterns has led the authors to the 
on
lusion of a spa
e group between
Fd-3m and F-43m, the atomi
 stru
ture has not yet been properly de�ned. Therefore, it
is important to use three-dimensional BC2N models to provide insight on the un
ertain
experimental results. That is, to help the interpretation of the experimental �nding via
a detailed study of the 
hemi
al bonding implied in highly dense boron 
arbon nitrides.

In this Chapter the investigation has been fo
alised on the determination of the
stability and the hardness of novel hypotheti
al BC2N stru
tures obtained from the
relaxation of the substituted diamond. What is required is to �nd a system, like diamond,
where the sp3 bonds form strong and uniform three-dimensional frameworks. To dis
over
the existen
e of new ultra-hard phases the substitution of some of the 
arbon atoms
with boron and nitrogen has been performed in two di�erent diamond forms: 
ubi
 and
hexagonal. The number of substituted 
arbon was �xed in order to get isoele
troni

heterodiamond BC2N phases. After the 
arbon repla
ement a full geometry relaxation
was performed with a �rst-prin
iple pseudo-potential method to �nd the fundamental
ele
troni
 ground state. The obtained hypotheti
al 
ompounds are expe
ted to be more
thermally and 
hemi
ally (i.e. versus oxidation) stable than diamond and harder than

ubi
 boron nitride. This possibility makes them the most interesting 
lass of materials

apable to supersede the expensive diamond in various appli
ations.

The Chapter has been organised as follows: �rst of all we elu
idate the building
strategy adopted to 
reate novel three-dimensional BC2N models. Se
ondly, the relative
stability between di�erent phases is qualitatively dis
ussed from a 
hemi
al bonding
point of view and the me
hani
al properties are studied via bulk and elasti
 moduli. In
parti
ular, the hardness of the solid was analysed by measuring the resistan
e of the
material upon both volumetri
 (B) and shape (G) 
hanges. The major di�eren
e is in
the fa
t that B requires variations in bond distan
es only, while G depends mainly on
the 
hanges in bond angles. Density of states, band stru
tures and ele
tron-energy-loss-
spe
tros
opy spe
tra are also presented.
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9.2 Setting up novel three-dimensional BC2N phases

9.2.1 Cubi
 and hexagonal diamond

Cubi
 diamond and lonsdaleite1 (sometimes 
alled \hexagonal diamond") are both 
rys-
talline forms of pure 
arbon (Tab. 9.1), where all the atoms are tetrahedrally bonded
(sp3-type). Their unit 
ell stru
ture is shown in Fig. 9.1 and Fig. 9.2 for diamond and
lonsdaleite, respe
tively. These two stru
tures are related to ea
h other as the spha-

Figure 9.1: Unit 
ell of 
ubi
 diamond. This stru
ture was �rst determined in 1913 by
W. H. and W. L. Bragg [195℄. That was also the �rst time that the stru
ture of an
element was determined by the use of X-ray di�ra
tion [196℄.

lerite with the wurzite. The f111g planes on the diamond stru
ture and f001g planes in
lonsdaleite are identi
al; they are made of pu
kered hexagonal rings with a 
hair-form.

1It is a rare hexagonal polymorph of diamond, believed to have formed when meteori
 graphite falls to

earth. When this happened, great heat and stress transformed the graphite into diamond, but it retained

graphite's hexagonal 
rystal latti
e. Lonsdaleite is 
urrently found only in the famous Barringer Crater

(also known as meteor 
rater) in Arizona.
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Figure 9.2: Unit 
ell of lonsdaleite (hexagonal polymorph of diamond).

The di�eren
e between these two stru
tures is in the sta
king of these planes. Diamond
shows a staggered 
on�guration of the C-C se
ond-neighbour bonds with a 
hair-form

on�guration of the pu
kered hexagonal rings, while lonsdaleite shows an e
lipsed 
on-
�guration with a boat-form (see Ref. [8℄ for a detailed dis
ussion). The slightly higher
energy of these e
lipsed lonsdaleite 
arbons 
auses its stru
ture to be slightly less stable
than that of diamond.

The basi
 idea behind the theoreti
al work presented in this Chapter starts from the
fa
t that an introdu
tion of the B and N atoms in the above diamond stru
tures should,
in prin
iple, lead to the formation of new systems with large hardness and an in
reased
oxidation resistan
e. It is be
ause of this great expe
tation, that a major portion of the
work has been dire
ted to the understanding of the properties related to the BC2N model
phases. The following subse
tions show the 
riteria applied in repla
ing the 
arbon atoms
in both 
ubi
 and hexagonal diamond phases.

9.2.2 Carbon substitution

Starting from the 
ubi
 form of diamond we have repla
ed four of the eight 
arbon
positions with two nitrogen and two boron atoms. Two di�erent ways of repla
ing the

arbon atoms are shown in Tab. 9.2. Su

essively, the latti
e ve
tors and atom positions
were fully optimised with the US-PP/LDA method to obtain the BC2N ground state.
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Property Diamond Lonsdaleite

Crystal system 
ubi
 hexagonal
Spa
e group Fd3m (227) P63/mm
 (194)

Atoms per unit 
ell 8 4
Positions of atoms (0, 0, 0), (1

2
; 1
2
; 0) (0; 0; 0); (0; 0; 3

8
)

(0; 1
2
; 1
2
); (1

2
; 0; 1

2
) (1

3
; 2
3
; 1
2
); (1

3
; 2
3
; 7
8
)

(1
4
; 1
4
; 1
4
); (3

4
; 3
4
; 1
4
)

(1
4
; 3
4
; 3
4
); (3

4
; 1
4
; 3
4
)

Cell 
onstants a=3.57 a=2.52; 
=4.12

Table 9.1: Crystal stru
ture data for 
ubi
 and hexagonal diamond. Cell 
onstants values
are expressed in unit of �A.

Atom positions Diamond I-BC2N II-BC2N

(0, 0, 0) C C B
(1
2
, 1
2
, 0) C C B

(0, 1
2
, 1
2
) C N C

(1
2
, 0, 1

2
) C N C

(1
4
, 1
4
, 1
4
) C B C

(3
4
, 3
4
, 1
4
) C C C

(1
4
, 3
4
, 3
4
) C C N

(3
4
, 1
4
, 3
4
) C B N

Table 9.2: Substitution of the 
arbon atoms in the f

 diamond.

We have expli
itly 
hosen to start from a primitive diamond system with eight atomi

positions per unit 
ell so that no symmetry 
onditions are imposed and all the atoms in
the 
ell are free to optimise independently. In the above substitution pro
ess we have
applied the 
onsideration made in 1997 by Tateyama et al. [20℄. He dis
overed that the
bond 
ounting rule, i.e. maximum number of C-C and B-N bonds, found in the layered
stru
tures is also valid for heterodiamond BC2N. In parti
ular, it has been predi
ted that
the most stable BC2N stru
tures have no B-B or N-N bonds and maximise the number
of C-C and B-N 
onne
tions with C-B disfavoured. It has also been proposed that the
phase with alternate -C-C- and -B-N- 
hains or rings is the most stable one. Following
these suggestions it has been found that the 
arbon atom positions as substituted in Tab.
9.2 are the best 
hoi
e to avoid the formation of low energeti
 bonds. A dense three-
dimensional orthorhombi
 phase is proposed by substituting four 
arbon atoms with two



9.2 Setting up novel three-dimensional BC2N phases 103

Property I-BC2N II-BC2N III-BC2N

System orthorhombi
 orthorhombi
 trigonal
Spa
e group P2221 (17) Pmm2 (25) P3m1 (156)
Atoms/
ell 8 4 4

x,y,z N(0:258; 0:000; 0:000) N(0:500; 0:500; 0:380) N(0:000; 0:000; 0:571)
B(0:000; 0:748; 0:250) B(0:500; 0:000; 0:124) B(0:333; 0:667; 0:441)
C1(0:742; 0:500; 0:000) C1(0:000; 0:500; 0:631) C1(0:000; 0:000; 0:934)
C2(0:500; 0:255; 0:250) C2(0:000; 0:000; 0:866) C2(0:333; 0:667; 0:054)

Cell 
onst. a=3.5536 a=2.5280 a=b=2.4955
b=3.5986 b=2.5024

=3.5528 
=3.5871 
=4.1923

�, �, 
 90, 90, 90 90, 90, 90 90, 90, 120
dN�C 1.539 1.552 1.522
dN�B 1.565 1.549 1.540
dB�C 1.558 1.569 1.625
dC�C 1.519 1.509 1.525

Table 9.3: Optimised parameters for heterodiamond BC2N stru
tures. Cell 
onstants
and bond distan
es are given in unit of �A.

nitrogen at the positions (0, 1
2
, 1
2
) and (1

2
, 0, 1

2
) and two boron at (1

4
, 1
4
, 1
4
) and (3

4
, 1
4
,

3
4
). The optimisation of the latti
e parameters and the ions relaxation were performed

iteratively until the minimum on the total energy was met (see Tab. 9.3). This system
is here 
alled I-BC2N and 
onsists of an orthorhombi
 
rystal where 
arbon, nitrogen
and boron atoms are tetrahedrally 
oordinated (Fig. 9.3). The 
rystal motif is made of
C4NB, C3N2B, C3B2N and C2B2N2 rings with a 
hair form 
on�guration. Following
the same pro
edure another orthorhombi
 phase 
alled II-BC2N (see Fig. 9.4 and Tab.
9.3) was found starting from the 
ubi
 diamond. This stru
ture is obtained by repla
ing
the 
arbon atoms in positions (0, 0, 0) and (1

2
, 1

2
, 0) with boron and in (1

4
, 3

4
, 3

4
) and

(3
4
, 1

4
, 3

4
) with nitrogen. The phase II-BC2N is 
hara
terised by the same hexagonal

rings with a 
hair form 
on�guration as in I-BC2N but a di�erent atom type disposition
is used to build-up the rings. However, in both phases ea
h ele
tron ri
h nitrogen is
bonded with two ele
tron poor boron atoms and two 
arbons in order to rea
h the fourth

o-ordination. In the same way the boron atoms are 
onne
ted with two nitrogens and
two 
arbons. The stru
ture is then 
ompleted with 
arbon atoms tetra-
oordinated with
two nitrogen (or two borons) and two 
arbon atoms ea
h.

To individuate new ternary B-C-N phases, the same above pro
edure has been applied
to the lonsdaleite, where two of the four 
arbon positions have been substituted with one
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Figure 9.3: Crystal stru
ture of the orthorhombi
 I-BC2N. Carbon, nitrogen and boron
atoms are depi
ted in bla
k, white and grey, respe
tively.

boron and one nitrogen (Tab. 9.4). In parti
ular, a trigonal stru
ture 
alled III-BC2N
(Fig. 9.5) has been found when two 
arbon atoms in the positions (0, 0, 3

8
) and (1

3
, 2
3
, 1
2
)

were repla
ed with nitrogen and boron, respe
tively. Subsequent geometry optimisation
(Tab. 9.3) brings the phase in an energy minimum state where the boron atoms are
four 
o-ordinated with three nitrogens and one 
arbon. Nitrogen atoms show a fourth

o-ordination with three borons and one 
arbon while the 
arbon atoms are tetrahedrally
bonded to one boron and three other 
arbons. This phase is built-up with C6 and B3N3

rings 
onne
ted with ea
h other via C-B and C-N bonds. A

ording to the bond 
ounting
rule, this phase 
ontains C-C and B-N bonds and no B-B or N-N bonds are present.

Atom Positions Lonsdaleite III-BC2N

(0, 0, 0) C C
(0, 0, 3

8
) C N

(1
3
, 2
3
, 1
2
) C B

(1
3
, 2
3
, 7
8
) C C

Table 9.4: Substitution of the 
arbon atoms in the hexagonal diamond.
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Figure 9.4: Crystal stru
ture of the orthorhombi
 II-BC2N.

9.3 Computational details

Cal
ulations of the ground state geometries were 
arried out in the framework of density
fun
tional theory in its lo
al density approximation to the ele
tron ex
hange and 
or-
relation within the VASP pa
kage. The intera
tions between the ions and the ele
trons
are des
ribed by using ultra-soft Vanderbilt pseudo-potential and the ele
tron-ele
tron
intera
tion is treated within the LDA by the Ceperley-Alder ex
hange-
orrelation poten-
tial. In our 
omputational s
heme the 
onjugate-gradient algorithm was used to relax
the atom positions of the BC2N systems into their ground states. The stru
tural pa-
rameters were 
onsidered to be fully relaxed when for
es on the atoms were less than
0.02 eV/�A and all stress 
omponents were less than 0.003 eV/�A3. The 
al
ulations were
performed by using an energy 
ut-o� of 434.8 eV for the plane wave basis set. The tetra-
hedron method with Bl�o
hl 
orre
tions was applied for both geometry relaxation and
total energy 
al
ulations. Brillouin-zone integrals were approximated using the spe
ial
k-point sampling of Monkhorst and Pa
k. Density of states, band stru
tures and energy
loss near edge stru
ture spe
tra were performed on the optimised US-PP stru
tures by
using the a

urate full-potential linearized augmented plane wave method (WIEN97 pa
k-
age). For the ex
hange-
orrelation potential the LDA approximation has been used as
parameterised by Perdew and Wang [130℄. The maximum spheri
al harmoni
 l value of
partial waves inside the atomi
 spheres was set equal to 10. A lo
al s-orbital was added
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Figure 9.5: Crystal stru
ture of the trigonal III-BC2N phase.

to the LAPWs in order to avoid the presen
e of unphysi
al states (e.g. ghost bands) and
to improve the 
exibility of the basis set. FP-LAPW 
al
ulations were 
ompleted for
the I-BC2N at approximately 106 plane waves per atom (pws/atom) and 91 inequivalent
k-points with a 7�7�7 k-mesh in the BZ, whilst for the II-BC2N 119 pws/atom and 150
inequivalent k-points (8�8�6) were suÆ
ient enough to a
hieve the desired a

ura
y.
Finally, 101 pws/atom and 95 inequivalent k-points (9�9�5) were employed to des
ribe
the trigonal III-BC2N phase. For all the investigated model systems, the di�eren
e in
total energies were 
onverged to below 0.002 eV with respe
t to k-point integration and
kineti
 energy 
ut-o�. For 
arbon, nitrogen and boron the same muÆn-tin radius of 1.40
�A was kept in all the analysed stru
tures.

9.4 BC2N phases and their relative stability

From the performed 
al
ulations both methods, FP-LAPW and US-PP, predi
t for the
III-BC2N to be the most stable stru
ture (Tab. 9.5). With the use of the US-PP method
this phase is estimated to be around 0.24 eV/atom more stable than I and II and 
lose
to the energy of the layered BC2N. Cal
ulations 
omputed with the FP-LAPW tend to
emphasise the energy di�eren
es between the various BC2N stru
tures. Nevertheless, the
energy trend agrees quite well with the US-PP estimations (see Tab. 9.6). A

ording to
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Stru
ture Vo E
oh: B B
0


ubi
 diamond 5.488 -10.15800 463.68 3.68
(exp.)[8℄ (5.673) (443) (3.67)

hexagonal diamond 5.508 -10.12760 456.03 3.68
(exp.)[196℄ (5.61-5.67)


-BN 5.705 -9.74120 396.60 3.61
(exp.)[197℄ (5.930) (369-382) (4.0-4.5)

h-BN 8.853 -9.69480 248.76 3.94
(exp.)[198℄ (9.042)

graphiti
-BC2N 8.403 -9.69482 276.99 3.43
I-BC2N 5.679 -9.51096 459.41 2.11
II-BC2N 5.673 -9.51404 408.95 3.54
III-BC2N 5.653 -9.75195 420.13 3.40

Table 9.5: Stru
tural and 
ohesive properties of various phases: atomi
 volume Vo (�A
3),

bulk modulus B (GPa), pressure derivatives B
0

and 
ohesive energy E
oh: (eV/atom).
The latter values have been obtained by taking the di�eren
e between the total energy
of the solids and the ground-state energies of the spheri
al non spin-polarised atoms. No

orre
tion for zero-point motion has been made.

the bond 
ounting rule, phase III 
ontains a large number of C-C and B-N bonds and
no B-B or N-N 
onne
tions are present. The larger stability found for this phase 
an
be addressed to the presen
e of C6 and B3N3 rings 
onne
ted to ea
h other by C-B and
C-N bonds. As already predi
ted by Tateyama et al. [20℄, phases made up of alternate
-C-C- and -B-N- rings show a signi�
ant in
reasing of the stability. As a matter of fa
t
the lowering in the 
ohesive energy found for the phase I-BC2N 
an be attributed to the
fa
t that the pure -C-C- and -B-N- 
hains are repetitively broken by the presen
e of B
and C atoms (refer to the zig-zag ion 
hains going from left to right of Fig. 9.3). The
US-PP energy 
urves of the phases I, II and III are shown in Fig. 9.6 together with
some of the starting materials. All the presented systems have previously been optimised
with the same method of 
al
ulation. For simpli
ity, the graphiti
-BC2N phase has been
taken from the semi-
ondu
ting model (II) for a BC2N monolayer proposed by Liu,
Wentz
ovit
h and Cohen [166℄. Assuming the graphite-like sta
king AB of these sheets
(Fig. 9.7), an orthorhombi
 
rystal with an Ama2 (40) spa
e group has been found after
having performed the full geometry relaxation. The optimised stru
tural parameters have
been used to represent the graphiti
-BC2N model phase (Tab. 9.7). The h-BN refers to
the layered hexagonal BN stru
ture (graphite-like form) with four atoms in the unit 
ell
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BC2N stru
ture �EUS�PP �EFP�LAPW
graphiti
 0.0 0.0

I +0.184 +0.202
II +0.181 +0.197
III -0.057 -0.073

Table 9.6: Cal
ulated energy di�eren
e, �E (eV/atom), for various phases relative to
the graphiti
-BC2N form.

[198℄2. This system exhibits an AA
0

AA
0

... sta
king sequen
e with boron atoms in layer
A pla
ed dire
tly below the nitrogen atoms in layer A' (see Fig. 9.8). The diamond-like
form of BN (
-BN) has a zin
 blende stru
ture with spa
e group F43m (Fig. 9.9). This

ubi
 form shows two atoms�
ell�1 and a latti
e 
onstant of 3.615 �A [2℄3.

From the energy-volume 
urves it is 
lear that the phases I- and II-BC2N 
ould
only be metastable forms of the heterodiamond BC2N system while the III-BC2N is in
prin
iple expe
ted to be in 
ompetition with the formation of the graphiti
-like model.
Sin
e the energy 
urves of both I- and II-BC2N lay at about 0.65 and 0.23 eV/atom
(
fr. Tab. 9.5 and Fig. 9.6), respe
tively above the 
urves of diamond and 
-BN,
a segregation in a mixture of the starting materials is expe
ted during a hypotheti
al
attempt of preparation. Starting from the graphiti
-BC2N a transition pressure of � 65
GPa has been predi
ted in order to obtain the formation of the phases I- and II-BC2N
(Fig. 9.10). On the 
ontrary the energy 
urve minimum relative to the III-BC2N appears
very 
lose to that of the 
ubi
 and hexagonal BN. This phase is also slightly more stable
(0.057 eV/atom) than the layered BC2N form. Therefore, in all probability it 
ould
be synthesised over the phases I and II, and a 
ompetition with the formation of the
graphiti
-BC2N is also very probable to happen.

9.4.1 Enthalpy of formation

From the values of the 
ohesive energies it is possible to estimate the standard enthalpy for
the formation rea
tion of a three-dimensional BC2N phase as in Eq. 9.1. The energies
have been 
omputed with the a

urate FP-LAPW method as a fun
tion of di�erent
ex
hange-
orrelation fun
tionals (values are listed in Tabs. 9.8 and 8.2).

2C(
) +B(
) +
1

2
N2(g) ! BC2N(
) (9.1)

2Spa
e group: P6m2 (187). Optimised 
ell parameters: a=b=2.481 �A, 
=6.643 �A, �=�=90Æ and


=120Æ. Equilibrium atom positions: B1(0,0,
1

2
), B2(

1

3
, 2
3
,0), N1(0,0,0), N2(

1

3
, 2
3
, 1
2
)

3Atomi
 positions: B(0,0,0) and N( 1
4
, 1
4
, 1
4
). Optimised latti
e 
onstant: a=3.570 �A
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Figure 9.6: Cohesive energies (eV/atom) as a fun
tion of the atomi
 volume (�A3/atom)
for the starting materials and BC2N stru
tures. The 
urves were generated with the
US-PP/LDA method.

For the 
al
ulation of the �Ho
f it has been assumed that diamond4 and mole
ular nitrogen

are the most stable forms (at 25 ÆC and 1 atm) of 
arbon and nitrogen, respe
tively. For
Boron, the phase �12-boron (�12-B) has been used as referen
e material. In spite of
the many di�erent allotropes of solid boron [196℄, we 
onsider here only the simplest
form, the �-rhombohedral phase (metastable at ambient 
onditions), whi
h shows one
12-atom i
osahedron per primitive 
ell 5. The 
al
ulated standard molar enthalpy 
hange
of formation at 0 K (�Ho

f;0) ranges for the phase III between -208 (LDA) and -136/-
129 kJ/mol (PBE/PW91) depending on the employed ex
hange-
orrelation fun
tional

4As stated in Se
. 8.2.3 
al
ulations show small di�eren
es in the 
ohesive energies of diamond and

graphite. Therefore, using diamond as a starting material instead of graphite brings only a slight 
hanging

in the magnitude of the resulting enthalpy of formation.
5Details on the stru
tural data for �12-B are given in Ref. [196℄. The 
rystal is rhombohedral with

a=5.057 �A , �=58.06Æ and the boron atoms lo
ated at �(xxz),�(xzx) and �(zxx). For the six B(1)

atoms, x=0.0104 and z=-0.3427 while for the six B(2) atoms, x=0.2206 and z=-0.3677.
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Figure 9.7: Crystal stru
ture of the orthorhombi
 graphiti
-BC2N model phase.

(see Tab. 9.9). Using the 
ohesive energies of graphite and graphiti
-BC2N, 
al
ulation
suggest an enthalpy of formation of the order of -180, -82 and -83 kJ/mol for LDA, PBE
and PW91, respe
tively. The quality of these estimations has been veri�ed when trying
to reprodu
e the heat of formation of 
ubi
 boron nitride (Eq. 9.2).

B(
) +
1

2
N2(g) ! BN(
) (9.2)

Using the GGA approa
h it has been 
omputed a �Ho
f;0 of -240.3 (PBE) and -242.7

kJ/mol (PW91), whi
h 
ompares reasonably well with the experimental data: �Ho
f;298=-

254.4 [199℄ and -266.9�2.2 kJ/mol [200℄. On the other hand, the LDA 
al
ulation gives
an enthalpy of formation sensibly larger than the experimental value with a magnitude
of -315.0 kJ/mol.

Therefore, after having probed the employed 
al
ulational s
heme on 
-BN, it is possi-
ble to 
on
lude that results from PBE and PW91 should be a

urates enough to indi
ate
the phase III of BC2N as an ex
eedingly stable substan
e with a formation rea
tion largely
favoured (exothermi
) with respe
t to those of the C3N4 and C11N4 (
fr. with Se
. 8.2.3
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Property graphiti
-BC2N

Crystal system Orthorhombi

Spa
e group Ama2 (40)

Atoms/unit 
ell 16
Atom type Coordinates (x, y, z)

C1 (0.2500, 0.8333, 0.9378)
C2 (0.2500, 0.2500, 0.6875)
C3 (0.2500, 0.2500, 0.1875)
C4 (0.2500, 0.3335, 0.9380)
B1 (0.2500, 0.0000, 0.9375)
B2 (0.2500, 0.0000, 0.4375)
N1 (0.2500, 0.0833, 0.6878)
N2 (0.2500, 0.0835, 0.1880)

Cell 
onstants (�A) a=6.819; b=8.591; 
=4.860
�, �, 
 (Æ) 90, 90, 90

Table 9.7: Optimised parameters for the graphiti
-BC2N model phase.

in p. 48 and Se
. 8.3.4 in p. 81). The synthesis and 
hara
terisation of novel hard BC2N
materials seems to be thus more promising and feasible than CNx samples. As a matter
of fa
t, the re
ently announ
ed preparation of a stable and 
rystalline 
ubi
-BC2N phase
[6℄ 
ould be interpreted in terms of the above thermodynami
 out
ome.

Moreover, the estimation of the enthalpy for the formation rea
tion of a sp3-bonded
BC2N phase as in Eq. 9.3 suggests that a hypotheti
al synthesis route to form BC2N
from 
-BN and diamond would require the over
oming of a positive enthalpy of formation
of about 108 kJ/mol for the phase III within the lo
al density approximation (Tab. 9.10).


�BN(
) + 2C(
) ! BC2N(
) (9.3)

Looking at the magnitudes of the 
omputed �Hf;0's and negle
ting all the kineti
 
onsid-
erations, whi
h might however play an important rule in the synthesis of BCN materials,
the phase III of BC2N will be probably results metastable with respe
t to a segregation
into the end members (i.e. 
-BN and diamond).

9.4.2 Dis
ussion of the results

One might expe
t that 
ompounds between BN and C would have a stability lower than
diamond but at least 
lose to that of 
-BN. This is reasonably true when substitution
leads to systems within whi
h B-N bonds are maximised and favoured over the B-C and
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Figure 9.8: Crystal stru
ture of the h-BN.

N-C 
onne
tions. The presented orthorhombi
 BC2N 
rystals show N atoms 
oordinated
with two B and two C, whilst the B atoms are surrounded by two N and two C as
shown in Fig. 9.11. Su
h a kind of 
on�guration brings two N-C bonds around ea
h N
and two B-C bonds around ea
h B. Compared to the 
-BN phase we have here repla
ed
four strong B-N 
onne
tions with four weaker bonds (i.e. 2 N-C and 2 B-C)6. Even
though robust C-C intera
tions are introdu
ed in the system, they are not suÆ
ient
enough to 
ompensate the loss of two B-N bonds at ea
h N and B sites. Moreover, the
C-C intera
tions, whi
h usually have large bond energies (values are 
lose to that of
B-N from experimental standard formation enthalpy [202℄), are weakened with respe
t
to those found in diamond (pure 
ovalent system) be
ause of the presen
e of polarised

-
Æ+

C -
Æ�

C - bonds. The 
ovalent 
hara
ter is thus redu
ed due to the presen
e of ele
tron ri
h
(N) and ele
tron poor (B) neighbouring atoms. This e�e
t is 
learly shown in Fig. 9.12.

6There are six di�erent possible types of 
hemi
al bonds in BC2N and their bond energies 
an be

estimated from experimental standard formation enthalpy [202℄. The estimated bond energies of C-C,

B-C, N-C, B-N, B-B and N-N are 3.71, 2.59, 2.83, 4.00, 2.32 and 2.11 eV, respe
tively.
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Figure 9.9: Unit 
ell of the 
-BN.

The overall out
ome a

ounts for the de
reasing of the stability of the two orthorhombi

phases with respe
t to the 
-BN system. As a matter of fa
t, the 
al
ulated US-PP/LDA

ohesive energies relative to the two BC2N systems are smaller than that of 
-BN and
diamond. The same energy trend has also been obtained with the FP-LAPW/LDA

al
ulational s
heme. Another important thing that has to be noted is the fa
t that
the presented orthorhombi
 phases have shown a very similar energy stability. This is
not surprising sin
e the bonding 
on�guration around the B and N sites is equivalent
in both 
ases. Su
h tenden
y 
learly re
e
ts the above pi
ture where the lo
al 
hemi
al

onne
tions are assumed to play the most important role in a

ounting for the relative
stability of sp3-bonded boron 
arbon nitrides.

Nonetheless, it is worthwhile to stress that when performing 
arbon substitution in the
hexagonal diamond it be
omes possible to design BC2N materials, su
h as the trigonal
III-BC2N model system, with only one C atom at ea
h B and N sites. As one might
expe
t the phase stability 
an be here in
reased leading to a 
ohesive energy approa
hing
that of 
-BN. These phases represent the highest level of stability rea
hable with a three-
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Figure 9.10: Energy versus pressure for di�erent BC2N phases (US-PP).

dimensional model in the BC2N stoi
hiometry. This upper limit lies very 
lose to the

ohesive energy of 
-BN but it 
annot approa
h that of diamond due to the restri
tion
imposed by the bonding 
ounting rule.

9.5 Theoreti
al estimation of hardness

Prima fa
ie, we brie
y des
ribe the pro
edure used to 
al
ulate the 
omplete set of elasti


onstants for the investigated phases. In the orthorhombi
 BC2N models (I and II) there
are nine-independent elasti
 
onstants, namely 
11, 
22, 
33, 
44, 
55, 
66, 
12, 
13 and 
23

[171℄. The values of 
11, 
22, 
33, 
44, 
55 and 
66 
an be dire
tly dedu
ed from the �tting
of the energy vs. strain, while 
12, 
13 and 
23 are found by s
aling the �tting parameter
with the already 
al
ulated 
11, 
22 and 
33 (see Chapter 8, Se
. 8.3.5, p. 83). For the
trigonal phase (III-BC2N), the six-independent elasti
 
onstants, 
11, 
12, 
13, 
14, 
33 and

44 [34℄ 
an be evaluated by applying the strains listed in Tab. 9.11 to the equilibrium
latti
e and determine the resulting 
hange in the total energy. For both orthorhombi
 and
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Figure 9.11: Idealised 
hemi
al environment around the B/N site in 
-BN and various
BC2N phases. Part (a) of the s
heme refers to the orthorhombi
 phases (I and II) while,
part (b) 
on
erns the lo
al 
hemi
al bonding of the phase III.



116 Chapter 9: Boron Carbon Nitrides

E
oh: �12-B 
-BN h-BN I II III graphiti


LDA -7.20, -7.40 [137℄ -8.07 -7.99 -7.94 -7.95 -8.22 -8.15
PBE -6.43 -7.03 -6.93 -6.87 -6.88 -7.17 -7.10
PW91 -6.45 -7.05 -6.93 -6.88 -6.90 -7.15 -7.10
exp. -5.90 [201℄ -6.60 [67℄ - - - - -

Table 9.8: Cal
ulated 
ohesive energies (E
oh: in eV/atom) for various BC2N phases and
some of the starting materials as a fun
tion of di�erent ex
hange-
orrelation fun
tionals.

�Ho
f;0 (kJ/mol)

method I II III graphiti


LDA -99 -103 -208 -180 (-180)
PBE -20 -24 -136 -109 (-82)
PW91 -25 -32 -129 -110 (-83)

Table 9.9: Cal
ulated standard enthalpy of formation. Values in parenthesis 
orrespond
to the formation energy of graphiti
-BC2N when graphite is taken as a starting material.

trigonal symmetries, small strains have been applied (Æ = �0:02n; n = 0�3) to avoid the
in
uen
e of higher order terms on the 
al
ulated elasti
 
onstants. The isotropi
 shear
modulus is then 
al
ulated for the orthorhombi
 phases by using the relation 8.17 as
written in Chapter 8, Se
. 8.3.5, p. 83. For the trigonal BC2N, the value of the isotropi

G 
an be estimated from Eq. 3.7 (Chapter 3, Se
. 3.1.2, p. 12), knowing that 
11 = 
22,

23 = 
13, 
44 = 
55 and 
66 =

1
2
(
11 � 
12). The isotropi
 trigonal shear modulus 
an be

�Hf;0 (kJ/mol)
method I II III graphiti


LDA 214 212 108 137 (120)
PBE 220 216 104 131 (138)
PW91 218 210 114 133 (137)

Table 9.10: Cal
ulated enthalpy of formation for the rea
tion: 
-BN(
)+2C(
)!BC2N(
).
Values in parenthesis 
orrespond to the formation enthalpy of the graphiti
-BC2N when
the layered h-BN and graphite are used as rea
tants.
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Figure 9.12: Valen
e ele
tron density map showing the polarisation of the C-C bonds in
I-BC2N.

�nally expressed as in the following:

Gtrig: =
1

15
(
7

2

11 �

5

2

12 + 
33 � 2
13 + 6
44) (9.4)

The 
omplete set of elasti
 
onstants are shown in Tab. 9.12 together with the related
G values. The 
al
ulated isotropi
 shear moduli for the proposed BC2N phases are in
between the values of diamond and 
-BN. We estimate for the phases I, II and III values
of 482.0 GPa, 461.9 GPa and 471.5 GPa respe
tively, while for diamond and 
-BN 558.5
GPa and 425.9 GPa. By this it is implied that, in the substituted diamond a 
lear
hardening of the system is found with respe
t to the 
ubi
 boron nitride. The 
al
ulated
bulk moduli 
on�rm the same trend, where the magnitudes of B are found in between
those of the referen
e materials (Tab. 9.5). The only di�eren
e to be noted is that the
bulk modulus estimates the hardness of the BC2N 
rystals to be mu
h 
loser to that
of diamond than does the shear modulus. This general behaviour 
an be assigned to
the di�erent intrinsi
 
hara
teristi
s that are distinguishing one modulus from the other.
However, when 
onsidering the 
omputational s
heme used for the 
al
ulation of the

ij 
onstants, it is important to observe that errors 
an be easily a

umulated in the
evaluation of the total energies and in the �tting of the various energy 
urves. The
introdu
tion of arbitrary deformations of the unit 
ell followed by the 
al
ulation of the
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Strain Parameters �E=Vo

1 Æ11 = Æ22 = �1
2
Æ33 = Æ [1

4
(
11 + 
12)� 
13 +

1
2

33℄Æ

2

2 Æ11 = Æ22 = Æ33 = Æ (
11 + 
12 + 2
13 � 1
2

33)Æ

2

3 2Æ23 = Æ 1
2

44Æ

2

4 2Æ12 = Æ 1
2
(
11 � 
12)Æ

2

5 2Æ12 = 2Æ13 = Æ [
14 +
1
2

44 +

1
4
(
11 � 
12)℄Æ

2

6 Æ33 = Æ 1
2

33Æ

2

Table 9.11: Strains and elasti
 moduli for the trigonal phase. Unlisted Æij are set equal
to zero.

total energy, whi
h is many orders of magnitude larger than elasti
 energy, 
ould also
de
rease the a

ura
y of the 
omputed elasti
 moduli. However, despite the possibility
to pile up a large amount of errors, the extrapolated isotropi
 shear moduli result for
diamond and 
-BN in good agreement with the experimental values (Gexp:

diam:=535 GPa
[22℄, G
al:

diam:=558.5 GPa and Gexp:

�BN = 409 � 6 GPa [22℄, G
al:


�BN=425.9 GPa), proving
thus the quality of this 
al
ulational pro
edure. Therefore, the larger di�eren
e in the
shear moduli found in between the BC2N phases and diamond 
an be 
onsidered as an
index of an a

entuated sensibility of G in des
ribing the me
hani
al hardness of the
materials.

Nonetheless, by using the estimated bulk and shear moduli the ratio B/G has been

omputed for the phase I to be of the order of 0.92, while for both phases II and III a
value of 0.90 has been found (Tab. 9.13). Sin
e these numbers are very similar to the
one 
al
ulated for the �-C11N4 system (
fr. with data in Se
tion 8.3.5, p. 89), the two

lasses of materials should nearly display the same degree of brittleness. The 
omputed
Poisson's ratios are also very 
lose to the value of �-C11N4. The only di�eren
e has been
found in the 
al
ulated Young's moduli, for whi
h the BC2N phases have shown E values
that are in between bl-C3N4 and �-C11N4.

9.5.1 Me
hani
al stability

A ne
essary 
ondition for a 
rystal to be me
hani
ally stable is that the elasti
 
onstant
matrix, C, be positive de�nite (i.e. Born's 
riterion). For a trigonal symmetry the 
ij
matrix is represented in Eq. 9.5 and is positive de�nite if the determinants of the matri
es
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ij I-BC2N II-BC2N III-BC2N diamond lonsdaleite 
-BN


11 916.0 1003.0 925.3 1116.6 (1080)y 1448.0 824.6 (820)z


22 1064.2 1106.1 - - - -

33 939.0 938.1 942.8 - 1517.8 -

44 460.3 528.6 647.5 604.3 (557)y - 495.8 (480)z


55 524.0 496.5 - - 486.8 -

66 627.5 384.9 - - - -

12 120.2 27.1 320.3 137.2 (137)y -84.7 182.6 (190)z


13 199.6 153.4 95.6 - 1030.7 -

14 - - 25 - - -

23 205.3 168.5 - - - -
G 482.0 461.9 471.5 558.5 (535)x 510.5 425.9 (409�6)x

Values as 
ompiled in Ref. (y)=[8℄, (z)=[197℄ and (x)=[22℄.

Table 9.12: Independent elasti
 
onstants, 
ij , and isotropi
 shear moduli for BC2N,
diamond, lonsdaleite and 
-BN. Values are expressed in units of GPa.

of su

essive orders are all positive.

C =

0
BBBBBBB�


11 
12 
13 
14 0 0

12 
11 
13 �
14 0 0

13 
13 
33 0 0 0

14 �
14 0 
44 0 0
0 0 0 0 
44 
14

0 0 0 0 
14 
66

1
CCCCCCCA

(9.5)

These restri
tions translates into the following 
onditions:


11� j 
12 j> 0; (
11 + 
12) 
33 � 2
213 > 0; (
11 � 
12) 
44 � 2
214 > 0: (9.6)

The 
al
ulated elasti
 
onstants for the phase III-BC2N 
omply with the above relations
indi
ating the presen
e of a 
ertain me
hani
al stability for the trigonal model system.
In the same way the 
ij 
onstants 
al
ulated for the two orthorhombi
 models respe
t
the Born stability 
riteria for an orthorhombi
 symmetry (Eq. 8.22 in Chapter 8, Se
.
8.3.5, p. 85). Therefore, even though they are not the most energeti
ally favoured
forms for the BC2N stoi
hiometry, they 
ould be at least metastable materials. At the
moment it is important to highlight the fa
t that from an energeti
 point of view the
phase III appears as the most likely 
andidate for an heterodiamond BC2N system (see
Se
. 9.4.2), though both shear and bulk moduli have shown a marked hardening for
the model phase I. However, all the proposed three-dimensional BC2N stru
tures 
ould
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I-BC2N II-BC2N III-BC2N 
-BN diamond

By 441.0 416.1 424.0 396.6 463.7
B/G 0.92 0.90 0.90 0.93 (0.90-0.93) 0.83
E 1060 1011 1032 941 (850�150)z 1196
� 0.099 0.095 0.094 0.105 (0.095-0.105) 0.070

Table 9.13: The above table shows the 
al
ulated B/G ratio, Young's modulus (GPa)
and Poisson's ratio of the studied BC2N phases. Diamond and 
-BN have also been
listed as referen
e materials. Numbers given within bra
kets 
orrespond to the use of the
experimental B and G values of Tabs. 9.5 and 9.12. yBulk modulus from the 
ombination
of the various elasti
 
onstants. zMeasured elasti
 modulus from nanoindentations of
poly
rystalline 
-BN bulk samples [203℄.

likely behave, if properly synthesised, as hard materials 
apable to substitute diamond
and 
-BN in di�erent me
hani
al appli
ations. Compared to diamond, they should also
show an in
reased resistan
e towards oxidation at high temperatures due to the presen
e
of boron and nitrogen atoms.

9.6 Ele
troni
 density of states and band stru
ture

9.6.1 The orthorhombi
 phases (I and II)

The density of states of the phase I-BC2N (Fig. 9.13) shows a valen
e band mainly
dominated by the states of the atoms N, C1 and C2. From the partial 
omponents of
the DOS (not shown) it is found that the 2s orbitals of N dominate the bottom of the
VB. At energies between -10 and -5 eV the N 2p dominate the DOS, while the VB edge

onsists prin
ipally of 2p orbitals of the C1 atom. The bottom of the CB, just above
the Fermi level, is prin
ipally determined by the states of N and C2 (2p 
hara
ter) with
some admixture of B states. The higher portion of the CB 
onsists mostly of 2p orbitals
of C1 with some mixing of the B and N states. From the band stru
ture analysis (Fig.
9.14) a dire
t LDA band gap of 2.04 eV has been found at the � point. For the II-BC2N,
the 
ontribution of ea
h atom to the total DOS is shown in Fig. 9.15. The VB DOS 
an
be viewed as mainly 
omposed of 2p orbitals from N and C2 with some mixing of B and
C1 states, whilst the bottom of the CB is mostly derived from an admixture of the 2p
orbitals of N and C1. From the 
al
ulated band stru
ture (Fig. 9.16) we obtain a dire
t
Eg of 1.87 eV at � (at whi
h the larger band dispersion is observed) and an indire
t gap
of 1.69 eV with the top of the valen
e band being at the point � and the bottom of the

ondu
tion band at S. It is worth to be noted that the 
al
ulated Eg, whi
h results from
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the intera
tion of the 
ondu
tion ele
tron waves with the ion 
ores of the 
rystal, are
probably underestimated due to the use of the LDA approximation. The total density
of states for the phases I- and II-BC2N at the equilibrium geometries are shown in Fig.
9.17. In parti
ular, the 
al
ulated DOS for the two orthorhombi
 phases are 
onfronted
with those of the 
ubi
 boron nitride and diamond. Looking at the total density of states
it appears evident, from the 
hanging in the shape of the VB, the presen
e of a di�erent

ovalent 
hara
ter in the investigated BC2N phases. Diamond presents a 
ontinuous
valen
e band, pointing thus to the existen
e of a strong 
ovalent mixing between the

arbon states. On the other hand, 
-BN shows in the bottom of the VB a band gap of �
4 eV stating the presen
e of a ioni
 bonding 
ondition. In between these two limits lies
the BC2N system where the VB results largely indented but with no band gaps. Su
h an
intermediate situation is due to the various bonding types established between elements
of group-III, -IV and -V: C-C (�Z=0), C-N (�Z=+1), B-C (�Z=-1) and B-N (�Z=0).

Our previous 
al
ulations, obtained by the same 
omputational method, yielded a
band gap of diamond and 
-BN of 4.11 eV and 4.36 eV 7, respe
tively. As 
an be 
learly
seen the Eg values found for the two BC2N stru
tures are nearly half of those 
al
ulated
for diamond and 
-BN. If we roughly 
onsider the C2(BN) phase as made of diamond
doped with 50 % of BN one might expe
t a band gap larger than that of diamond, that
is Eg > 4.11 eV. On the 
ontrary a sort of \band gap bowing" has been found a

ording
to W. R. L. Lambre
ht [191, 192℄ upon alloying 
-BN into diamond or vi
e versa. This
e�e
t 
an be here assigned to the shift of the 
arbon states (atoms C1 and C2) to higher
energy in the VB and to an analogue lowering of the states in the CB. As a matter of
fa
t the VB and CB edges are determined by the 
arbon atoms in both the two BC2N
systems. The shifting of the energies of the 
arbon states and the 
onsequent redu
tion
of the band gap 
an be 
orrelated to a 
ertain weakening (i.e. polarization e�e
t) of
the 
arbon bonds in mixed diamond-
-BN 
rystals. The two heterodiamond phases are
predi
ted to have a band gap whi
h is at the boundary between the semi
ondu
tors and
the insulators. Nevertheless, in the phase I the size of the energy gap should be wide
enough to avoid large thermal 
ondu
tivity at room temperature. By 
onsidering the
fra
tion of ele
trons ex
ited a
ross the gap roughly of order e�Eg=2KbT and the value of
KbT at room temperature � 0.025 eV we 
an assume that essentially a small part of
ele
trons are ex
ited a
ross the gap (e�40:8 � 1:9 � 10�18). Wide band gap materials su
h
as diamond, gallium nitride, sili
on 
arbide, aluminum nitride, and 
ubi
 boron nitride
are of great interest as they have potential for appli
ations in the ele
troni
s, energy,
aerospa
e and defense industries.

7
fr. with the experimental values of Ediam:
g =5.5 eV and E
�BN

g =6.4 eV.
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9.6.2 The trigonal model stru
ture (III-BC2N)

In this phase the small peak lo
ated at the bottom of the VB is mainly derived from N
2s orbitals while at higher energy the N 2p states start to dominate the DOS (Fig. 9.18).
The VB edge is slightly less sharp than the one found in the orthorhombi
 phases and is
prin
ipally derived from the 2p orbitals of C2 with a 
ontribution of the N states with 2p

hara
ter. The mixing of the B 2p orbitals with the other 
arbon and nitrogen states is
basi
ally present only at the top of the VB. The lower region of the CB 
onsists mainly
of N and C1 2p orbitals, while in the upper region the N and C2 2p states dominate
the DOS. The two 
arbon atoms C1 and C2 are strongly 
ontributing to the edges of
the valen
e and 
ondu
tion bands as in the previously des
ribed orthorhombi
 models.
However, in phase III the smearing out of both VB and CB edges is somehow indi
ative
of a 
ertain lowering of the ele
tron and hole e�e
tive masses. An indire
t LDA energy
band gap of 1.79 eV in magnitude was 
al
ulated with the top of the valen
e band being
at the point � and the bottom of the 
ondu
tion band at the point of symmetry K (Fig.
9.19).

9.7 Theoreti
al ELNES for BC2N model systems

Ele
tron energy loss spe
tros
opy is a te
hnique widely used for the 
hara
terisation of
boron 
arbon nitride samples be
ause of its great ability to di�erentiate the types of bond-
ing in a polymorphi
 material. As already mentioned in Se
tion 8.3.6, the 
hara
teristi

�ne stru
ture at the beginning of the 
ore loss ionisation edges 
an provide important
information for light elements. The possibility to obtain pe
uliar �ngerprints for C, N
and B atoms opens to the opportunity to distinguish di�erent BC2N phases in 
omplex
systems. Sin
e the 
hara
terisation of dense BC2N materials with a three-dimensional
network is heavily restri
ted by the problem of getting pure 
rystalline samples, a theo-
reti
al approa
h to simulate ELNES be
omes important for providing referen
e spe
tra.

In this Se
tion we present the 
al
ulation of the energy loss near edge stru
tures by
using the formalism of M. Nelhiebel et al. [180℄ implemented within the FP-LAPW 
ode.
The spe
tra of 
arbon, nitrogen and boron K-shell ex
itation (n=1, l=0) are presented
for the proposed BC2N forms: I, II and III. Samples were simulated by averaging over
all possible in
ident-beam dire
tions sin
e the attention is here primarily 
on
entrated
on the peak positions. Anisotropy e�e
ts whi
h usually 
hange the intensity of the peaks
but do not shift their positions, are thus negle
ted. The energy of the in
ident ele
trons
was �xed to 200 KeV while the energy loss of the �rst edge was put to 190, 285 and 400
eV for boron, 
arbon and nitrogen, respe
tively. The spe
tra relative to the inequivalent
atom positions have been 
al
ulated separately and weighted to equal amounts in the
following Figures.

In order to test our 
al
ulational s
heme, diamond and 
-BN have also been inves-
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tigated as representative of the BC2N starting materials. Their relative C, N and B
K ELNES spe
tra are presented and 
ommented. The position of the most prominent
peaks (labelled A to E) are listed in Tab. 9.14. The 
al
ulated relative peak positions

Peak position relative to peak A
Phase Edge A B C C' D E

Diamond C K Thesis 0 5.3 13.6y;12.9z - - -
MS[181℄ 0 4.4 12.0 - - -
exp.[204℄ 0 5.5 12.9 - - -


-BN B K Thesis 0 8.1 14.9 - - -
MS[181℄ 0 5.5 14.2 - - -
exp.[205℄ 0 6.9 16.9 - - -

N K Thesis 0 7.8 14.6 - - -
MS[181℄ 0 6.1 15.2 - - -
exp.[205℄ 0 6.4 14.8 - - -

I-BC2N C K Thesis 0 6.2 11.7 15.9 - -
N K " 0 6.1 11.4 - 16.0 -
B K " 0 4.8 10.1 - 15.0 -

II-BC2N C K Thesis 0 5.5 11.1 15.1 - -
N K " 0 4.8 10.8 - 15.3 -
B K " 0 4.2 10.3 - 14.3 -

III-BC2N C K Thesis 0 3.7 9.5 - 15.3 19.2
N K " 0 8.5 11.3 - 15.3 19.3
B K " 0 3.7 7.8 - 19.2 0

yThe energy position refers to the maximum of the peak.
zThe energy position refers to the averaged values of the two peaks extremes.

Table 9.14: Positions of the peaks A-E relative to the spe
tra shown in Figs. 9.20, 9.21
and 9.22. All the positions are s
aled with respe
t to the main �� peak A and refer to
the broadened spe
tra. Values are expressed in units of eV with an estimated error of �
0.25 eV.

show a good mat
h with the experimental �nding and with the Multiple S
attering (MS)
approa
h [181℄. The largest error was found for the C peak in the 
al
ulation of the B
K ELNES of 
-BN. Both theoreti
al methods tend to underestimate its relative energy
position by more than 2 eV with respe
t to the experimental 
urve. Peaks A to C in the
C, N and B K edges of diamond and 
-BN 
orrespond to the ele
troni
 transitions 1s !
��. This feature usually identi�es sp3-hybridised materials. Low energy peaks related to
1s ! �� transitions are absent indi
ating the presen
e of a perfe
t tetrahedrally bonded
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system.

The 
al
ulated plain and broadened spe
tra for the proposed BC2N phases are shown
in Figs. 9.20, 9.21 and 9.22 for the C, N and B K edges, respe
tively. The same in-
strumental broadening, 
orresponding to a Gaussian fun
tion, has been utilised in all
the analysed spe
tra. In the C K ELNES the two orthorhombi
 phases show an evident
splitting of the diamond C peak into C and C', indi
ating the possibility of identifying
three-dimensional BC2N phases in the 
arbon edge. Furthermore, in the N and B K

ELNES the number of peaks vary with respe
t to the referen
e 
-BN. In parti
ular, in
the energy range between 5 and 15 eV two �� peaks were found instead of one of the

-BN. Their relative peak positions are shown in details in Tab. 9.14. These di�erent
features are expe
ted to be dis
overed in thin �lm samples for whi
h EELS results as an
important te
hnique for bonding type 
hara
terisation.

Phase III presents plain spe
tra whi
h are slightly more 
ompli
ated to interpret than
those of the two orthorhombi
 phases. Nonetheless, a 
hara
teristi
 feature, 
ommon
to all the three edges, 
an be individuated in the energy region between 5-17 eV. The
broadened spe
tra show three main �� peaks for the phase III of BC2N, whereas the other
phases possess only two. A very similar �� peak distribution should be thus exhibited in
all those BC2N samples for whi
h the same bonding type 
on�guration as in the phase
III is expe
ted.

9.7.1 The layered BC2N model system

Beside the systemati
 study des
ribed for the three-dimensional BC2N 
rystals, the band
stru
ture approa
h to ELNES is here used further to analyse the near-edge �ne stru
ture
of a layered BC2N system (graphiti
-BC2N). Owing to the absen
e of stru
turally well-

hara
terised graphiti
-like BC2N referen
e samples, the results of su
h an investigation

an serve as preliminary referen
e spe
tra for material 
hara
terisation until reliable
ELNES be
ome available. The 
al
ulated near-edge stru
ture of the K edges are displayed
in Figs. 9.23, 9.24 and 9.25. The estimated relative peak positions are shown in Tab.
9.15. All the three spe
tra exhibit a �� peak between 0-7 eV and a 
omplex �� feature
between 9 and 16 eV. The separation between the �� and �� features of graphiti
-BC2N
are listed in Tab. 9.16 together with some of the experimental EELS results. Peak
separations seem to mat
h better with the values of Kouvetakis, though the 
omparison
of the 
al
ulated values with those from experimental investigation is somehow aleatory.
As a matter of fa
t, most of the published values given in Tab. 9.16 refer to hybrid
boron-
arbon-nitrogen phases with a stoi
hiometry \approa
hing" that of BC2N.

Contrary to what has previously been found with MS 
al
ulations [181℄, the band
stru
ture method has shown some 
hara
teristi
 dissimilarities between K edges of h-
BN/graphite and layered BC2N whi
h would likely provide an unambiguous identi�
ation
of the graphiti
-BC2N phase. The 
al
ulated N K ELNES of BC2N exhibits two ��
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Peak position relative to peak B (eV)
Phase Edge A A' B C D E F G

Graphite C K Thesis -6.4 - 0 4.6 10.0 14.3 - -
MS[181℄ -4.9 - 0 2.5 6.6 10.3 - -
exp.[181℄ -6.8 - 0 4.4 11.2 14.7 - -

h-BN B K Thesis -6.3 - 0 4.3 8.5 15.5 - -
MS[181℄ -8.4 - 0 5.7 - 12.5 - -
exp.[181℄ -6.8 - 0 5.6 - 16.1 - -

N K Thesis -5.0 - 0 8.0 14.0 - - -
MS[181℄ -6.8 - 0 4.1 8.2 - - -
exp.[181℄ -6.1 - 0 7.2 17.6 - - -

graphiti
-BC2N C K Thesis -6.9 - 0 2.5 4.1 6.8 13.1 15.8
N K " -7.2 -3.8 0 1.9 4.4 6.7 12.6 15.9
B K " -6.6 -3.9 0 2.3 4.4 11.6 16.1 -

Table 9.15: Positions of the peaks A-G relative to the spe
tra shown in Figs. 9.23, 9.24
and 9.25. All the energies are s
aled with respe
t to the �rst �� peak B and refer to the
broadened spe
tra. The estimated error is � 0.25 eV.

features, namely ��1 and ��2 , separated by 3.4 eV. The same doublet of �� peaks, but
with a lower intensity, was found 
lose to the onset of the �� peaks in the B K edge.
Moreover, the marked 
hanging found in the �� transition region of the C, N and B K

ELNES might be utilised as a distin
tive �ngerprint in the identi�
ation of the graphiti
-
BC2N. Therefore, in spite of the usually very large broadening found in the experimental
EELS spe
tra (i.e. 
ompared to the 
al
ulated one), the above pe
uliar 
hara
teristi
s,
together with the 
hanging in the peak positions (
fr. Tab. 9.15 and Figs. 9.23, 9.24 and
9.25), should likely guarantee the spe
tros
opi
 dis
rimination of a pure and 
rystalline
layered BC2N sample over the K edges of h-BN and graphite.

9.8 Con
lusions

In the present study it has been performed the repla
ement of some of the 
arbon atoms
with boron and nitrogen on the hexagonal and 
ubi
 diamond in order to design new
hard and possibly stable BC2N 
rystals. The substituted diamond stru
tures have been
relaxed with the US-PP method to obtain their fundamental ground states. Three novel
heterodiamond phases have been presented, namely I-, II- and III-BC2N, for whi
h the
hardness and the relative stability have been 
omputed. Stru
tures, su
h as the trigonal
III-BC2N, that 
ontain alternate -C-C- and -B-N- rings and maximise the number of B-N
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��1 � ��1 Separation in eV
Author(s) Method Ref. B K C K N K

M. Mattesini et al. Band stru
ture Thesis 6.6 6.9 7.2
Wibbelt et al. MS 
al
ulations [181℄ 8.5 7.5 5.5
Kouvetakis et al. exp. [13℄ 7.0 6.5 6.0
Weng-Sieh et al. exp. [206℄ 8.0 7.0 6.0
Sasaki et al. exp. [207℄ 6.0 7.5 5.5

Table 9.16: Values of the separation between the �rst �� and �� peaks (� 0.5 eV) for
the K edges of graphiti
-BC2N.

bonds are predi
ted to behave as some of the most stable forms of the three-dimensional
BC2N system. From the total energy 
al
ulations this phase results also in 
ompetition
with the formation of the two-dimensional layered form. The standard molar enthalpy

hange of formation has been 
omputed for the phase III to be exothermi
 and with a
magnitude of -208 (LDA), -136 (PBE) or -129 (PW91) kJ/mol, depending on the type
of the 
hosen ex
hange-
orrelation fun
tional. This �nding indi
ates the possibility of
synthesising 
rystalline sp3-bonded BC2N samples at smoother temperature and pressure

onditions with respe
t to the deposition of 
arbon nitrides.

Furthermore, two model BC2N phases (I and II) formally derived by the 
arbon
substituted f

 diamond have been presented. A

ording to the bond 
ounting rule these
orthorhombi
 
rystals have been found to be metastable with respe
t to diamond and

ubi
 boron nitride. Total energy 
al
ulations predi
t for both stru
tures a 
ohesive
energy whi
h is slightly lower than that of 
-BN. This �nding has been interpreted by

onsidering the bonding 
on�guration around ea
h B and N sites (i.e. whi
h maximises
the B-N bonds) and the e�e
t of the C-C bond polarisation. In parti
ular, the latter
upshot is also believed to have been responsible for the shifting in the DOS of the 
arbon
states at higher and lower energies in the VB and CB, respe
tively. As a 
onsequen
e an
evident 
losing of the band gap has been found by going from diamond or 
-BN to the
isoele
troni
 BC2N stoi
hiometry. The 
al
ulated �Ho

f;0's for the model systems I and II
are still exothermi
, however their values are at about 100 kJ/mol smaller than that of the
phase III. Nonetheless, all the investigated BC2N models have shown a thermodynami

stability signi�
antly larger than the 
orresponding isoele
troni
 CNx 
ompounds.

The estimation of the hardness has been 
arried out by the 
al
ulation of the isotropi

shear modulus. A

ording to Gerk [30℄ and Teter [22℄, a better 
orrelation with the
hardness of solids is expe
ted from the 
ombination of the inequivalent elasti
 
onstants.
However, I have also 
al
ulated the bulk modulus whi
h has been 
onsidered for a long
time as the best predi
tor of hard materials. With the use of US-PP method, 
al
ulations
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suggest isotropi
 G values whi
h are about 13.2 (I-BC2N), 8.5 (II-BC2N) and 10.7 % (III-
BC2N) higher than that of 
-BN. That involves an obvious hardening of the system with
respe
t to the well known 
ubi
 boron nitride. The 
omputed bulk moduli 
on�rm the
same tenden
y: B values are in between those of the starting materials. A

ording to su
h
a theoreti
al �nding, these ternary 
ompounds are all predi
ted to be good 
andidates
for materials harder than 
-BN.

The density of states and band stru
ture analysis have led to a band gap of 2.04, 1.69
and 1.79 eV for the phases I, II and III, respe
tively. Sin
e it is well-known that the LDA
approximation generally underestimates the experimental band gaps by as mu
h as 30
% the phase I 
an be tentatively 
lassi�ed as insulator.

The study of the ele
tron energy loss near edge stru
tures of C , N and B K ionisation
edges have also been simulated for the presented phases. An evident splitting of the ��

peak at around 20-25 eV has been found in the C K ELNES of the two orthorhombi

BC2N 
rystals with respe
t to diamond. Furthermore, the 
hanging of the number of
peaks in the region between 5 and 15 eV and the variation of the �ngerprints in the N and
B K edges may be utilised as an important guide in the experimental 
hara
terisation
of the sp3-bonded BCN samples. For the trigonal system three �� peaks, 
ommon to all
the three edges, have been individuated in the region between 5-17 eV. Sin
e in the same
energy range the orthorhombi
 models have shown only a doublet, this feature 
an be
used to dis
riminate the phase III of BC2N from the others. Finally, referen
e spe
tra
have been 
al
ulated for the graphiti
-BC2N in all the three di�erent edges. A doublet
made of �� peaks has been displayed in the N and B K ionisation edges just before the
onset of the �� peak. Owing to the presen
e of only one �� signal in the edges of the
referen
e materials (graphite and h-BN), an evident dete
tion of the layered BC2N phase
it is thus highly expe
ted from the use of the EELS te
hnique.



Chapter 10

Summary and Outlook

10.1 Carbon Nitrides

Based on the results presented in Chapter 8 it has been suggested that pure 
rystalline
C3N4 systems are generally semi
ondu
tor materials with remarkable me
hani
al proper-
ties. However, very high temperature and high pressure rea
tions are likely to be required
for their preparation in order to over
ome the 
al
ulated positive standard enthalpy of
formation. Moreover, the possibility to synthesise a pure 
arbon nitride sample with
C3N4 
omposition should be generally hindered by the fa
t that di�erent model systems
have shown a very 
lose energy stability. Comparing, for example, the two graphiti
-like
phases (i.e. hexagonal and orthorhombi
) a small energy di�eren
e has been 
omputed
(� 5-6�10�4 eV/atom with FP-LAPW method), thus 
on�rming the diÆ
ulty found at
the experimental level in dis
riminating single 
rystalline sp2-bonded forms. Mole
ular

al
ulations suggest that polymorphi
 samples 
ontaining both types of layered stru
-
tures should possess two main 13C NMR signals spa
ed by approximately 15 ppm. This
result seems to be in very good agreement with the latest experimental �nding.

When 
onsidering the formation of substan
es with C11N4 stoi
hiometry (this is the
subje
t of the se
ond part of Chapter 8) 
al
ulations have shown that isoele
troni
 
arbon
ri
h model systems possess larger 
ohesive energies and they are usually sti�er than
the analogue C3N4 
ompounds. However, in spite of this general improvement of the
properties, the enthalpies for the formation rea
tions have been evaluated to be positive
and most frequently larger than the analogue 
arbon poor phases. Furthermore, a very
similar �Ho

f;0 (4 kJ/mol of di�eren
e) has been 
omputed for the layered C11N4 form and

the sp3-bonded �-C3N4 system. It 
an be thus strongly suggested that polyphasi
 samples
will be often obtained upon trying to deposit 
arbon ri
h 
ompounds. In parti
ular, it
is quite likely that a mixture of di�erent forms, belonging to di�erent stoi
hiometries,
will always be a
hieved simultaneously during the synthesis of 
arbon nitrides. However,

141
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su
h a 
on
lusion should be weighted with an a

urate kineti
 investigation of the studied
model phases (
fr. for example the 
ase of diamond and graphite).

The 
hara
teristi
 ELNES 
oordination �ngerprints have also been reported and anal-
ysed for the sele
ted C3N4 and C11N4 stru
tures. Theoreti
al spe
tra indi
ate the pos-
sibility to di�erentiate the various phases by looking at the 
hanging in the number and
position of peaks in both C and N K edges.

Despite many unsu

essful attempts to produ
e single phase CNx materials it is
however worth to note that amorphous samples 
an still �nd important appli
ations in
a wide range of interesting �elds. The main 
ommer
ial appli
ation of 
arbon nitrides
is nowadays as prote
tive 
oating on hard dis
s and re
order heads. However, 
oatings

an also have a large potential appli
ation on medi
al area. The re
overy of orthopaedi

substrates has in fa
t already been tested for joint arthroplasty in human implants. In
general, amorphous �lms 
an be used in all appli
ations where amorphous 
arbon �lms
are usually employed. Hen
e, despite the la
k of pure 
rystalline samples the importan
e
of produ
ing homogeneous and well 
hara
terised thin-�lms 
arbon-based hard materials
should not be negle
ted.

10.2 Boron Carbon Nitrides

In Chapter 9 it has been 
omputed the investigation of the isoele
troni
 BC2N 
lass of

ompounds. Carbon atoms have been repla
ed with boron and nitrogen in the hexagonal
and 
ubi
 diamond in order to design novel three-dimensional ultra-hard boron 
arbon
nitrides. The stru
ture 
alled III-BC2N has been predi
ted to be one of the most stable
forms of the three-dimensional BC2N system. In parti
ular, its large 
ohesive energy
has been addressed to the large number of B-N bonds and to the presen
e of alternate
-C-C- and -B-N- rings. Furthermore, a detailed study of the unit 
ell response upon
volume and shape 
hanging has shown an evident hardening of the BC2N phases with
respe
t to the well-known 
ubi
 boron nitride. Consequently, by looking at the relative
energy stability and at the 
omputed elasti
 and bulk moduli, the phase III of BC2N
results, among the presented model phases, as the best 
andidate for repla
ing 
-BN or
diamond in various me
hani
al appli
ations. The standard molar enthalpy 
hange of the
formation rea
tion has also been 
omputed for this phase to be largely exothermi
 (�
-133 kJ/mol1), thus pointing to the possibility of depositing BC2N 
rystalline forms at
relative low temperature and pressure 
onditions with respe
t to 
arbon nitrides.

Finally, referen
e ELNES spe
tra have been proposed for di�erent sp2- and sp3-
bonded model systems, providing the possibility to identify pure 
rystalline phases in
polymorphi
 samples.

1Averaged FP-LAPW/GGA values.
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10.3 Prospe
tive studies and \what's left"

In order to get a deeper insight into the subje
t of 
arbon nitrides, the general trend
found in the stability, ele
troni
 and me
hani
al properties should also be 
he
ked for
other isoele
troni
 
ompounds. Model 
rystals su
h as C5N4, C3N2, C7N4 (Fig. 10.1),
C9N4 et
... have to be proposed and investigated to address further trends in CNx

materials. As mentioned in Se
tion 8.3.7 the possibility to have a larger in
rement in the
stability must also be sear
hed in fulleren-like phases. In view of the latest experimental
out
omes, nanotubes and nano�bers should also be 
onsidered as important forms for
both 
arbon nitrides and boron 
arbon nitrides. However, the synthesis and study of
su
h nanotube-like 
ompounds should mostly 
on
ern the generation of novel 
lasses of
ele
tron �eld emitters rather than novel ultra-hard systems.

Figure 10.1: The three-dimensional C7N4 model system. Ongoing 
al
ulations seem to
indi
ate the same general tenden
y found for the C3N4 and C11N4 
ompositions.



Chapter 11

Con
lusions

11.1 Nitrures de Carbone

Les r�esultats pr�esent�es au Chapitre 8 permettent de proposer de nouveaux syst�emes 
ristal-

lins de formulation C3N4 ayant des propri�et�es de semi-
ondu
teurs et sus
eptibles de poss�eder

des 
ara
t�eristiques m�e
aniques ex
eptionnelles. Cependant des 
onditions de tr�es hautes

temp�erature et de pression seraient requises pour leur pr�eparation si l'on veut surmonter les

enthalpies de formation standard positives qui les 
ara
t�erisent.

De plus, la possibilit�e de synth�etiser un �e
hantillon pur de C3N4 serait diÆ
ile 
ompte

tenu des faibles di��eren
es d'�energies 
ara
t�erisant la stabilit�e des syst�emes mod�eles examin�es.

En e�et, la 
omparaison des deux phases graphitiques (i.e. hexagonale et orthorhombique)

montre une faible di��eren
e d'�energie de 
oh�esion, � 5-6�10�4 eV/atom (
al
uls pr�e
is ave


la m�ethode FP-LAPW), 
e qui 
on�rme la diÆ
ult�e �a l'�e
helle exp�erimentale de di��eren
ier

des phases �a hybridation sp2 dominante (stru
tures �a 
ara
t�ere bi-dimensionnelle (2D)).

Les 
al
uls de r�esonan
e magn�etique nu
l�eaire (RMN) du 13C men�ees sur des 
lusters

mol�e
ulaires permettent de sugg�erer que les �e
hantillons polymorphiques 
ontenant les deux

types de stru
tures �a 
ara
t�ere 2D dominant poss�edent deux signaux s�epar�es d'environ 15

ppm. Ce r�esultat semble être appuy�e par les derni�eres observations exp�erimentales.

Con
ernant la formation des phases de stoe
hiom�etrie plus ri
he en 
arbone, C11N4 (objet

de la deuxi�eme partie du Chapitre 8), les 
al
uls ont montr�e que les syst�emes mod�eles 
or-

respondants poss�edent de plus fortes �energies de 
oh�esion et se pr�esentent 
omme plus durs

que les analogues iso�ele
troniques C3N4. N�eanmoins, malgr�e 
ette am�elioration des propri�et�es

re
her
h�ees, les bilans des enthalpies des r�ea
tions �evalu�ees �a partir des solides et mol�e
ules

de r�ef�eren
e, sont positives et souvent sup�erieures �a 
elles des phases analogues moins ri
hes

en 
arbone.

De plus, une valeur similaire de �Ho
f;0 (4 kJ/mol de di��eren
e) a �et�e 
al
ul�ee pour la

stru
ture 2D de C11N4 et pour la stru
ture �-C3N4 
ara
t�eris�ee par des liaisons sp3, i.e.

144
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tri-dimensionnelle (3D). Ce r�esultat permet de sugg�erer que des �e
hantillons polyphasiques

seront fr�equemment obtenus lors du d�epôt de 
ompos�es ri
hes en 
arbone. En parti
ulier, il est

vraisemblable qu'un m�elange des di��erentes formes, appartenant �a di��erentes stoe
hiom�etries,

sera toujours pr�esent lors de la synth�ese des nitrures de 
arbone. Cependant 
ette 
on
lusion

devrait être modul�ee par un examen approfondi des aspe
ts 
in�etiques des phases mod�eles

�etudi�ees (
f. par ex. les 
as du diamant et du graphite).

Les signatures ELNES ont �egalement �et�e raport�ees pour les phases mod�eles des deux

stoe
hiom�etries C3N4 and C11N4. Les spe
tres th�eoriques indiquent la possibilit�e de distinguer

les di��erentes phases par l'examen du 
hangement du nombre et positions des pi
s pour les

seuils K de C et N.

Malgr�e plusieurs tentatives infru
tueuses de produire des mat�eriaux CNx monophasiques,

dans l'�etat a
tuel de l'art, il reste n�eanmoins pour les phases amorphes form�ees des ap-

pli
ations importantes dans di��erents domaines. L'utilisation 
ommer
iale prin
ipale des ni-

trures de 
arbone est aujourd'hui dans le domaine de l'enregistrement magn�etique (prote
tion

des têtes de le
ture et des disques durs pour la mi
ro-informatique). Cependant les enro-

bages prote
teurs sont �egalement utiles en m�ede
ine pour les implants humains en arthro-

plastie. G�en�eralement, des �lms amorphes peuvent être utilis�es dans toutes les appli
ations

o�u les enrobages ave
 des �lms min
es de 
arbone sont requis. Par 
ons�equent, malgr�e le

manque d'�e
hantillons de nitrure de 
arbone 
ristallins et purs, l'importan
e de produire des

�lms min
es homog�enes et bien 
ara
t�eris�es (m�e
aniquement et spe
tros
opiquement) de

mat�eriaux durs �a base de 
arbone ne devrait pas être n�eglig�ee.

11.2 Boronitrures de Carbone

Au Chapitre 9, nous avons entrepris l'�etude d�etaill�ee d'un 
lasse iso�ele
trique (du 
arbone)

de mat�eriaux dans le ternaire BCN : BC2N. Les atomes de 
arbone ont �et�e rempla
�es par

le bore et l'azote dans les stru
tures hexagonale (lonsdaleite) et 
ubique du diamant, ave



omme obje
tif, la mise en �eviden
e de nouveaux boronitrures de 
arbone tri-dimensionnels

sus
eptibles d'être ultra-durs.

La stru
ture tri-dimensionnelle, appel�ee III-BC2N, a pu ainsi être pr�edite 
omme une des

formes les plus stables des phases BC2N. En parti
ulier, sa grande �energie de 
oh�esion a

�et�e attribu�ee au grand nombre de liaisons B-N et �a la pr�esen
e de 
y
les altern�es : -C-C- et

-B-N-. De plus, une �etude d�etaill�ee de la r�eponse de la maille �el�ementaire aux 
hangements

de volume et de forme a montr�e un a

roissement de la duret�e des phases BC2N par rapport

au nitrure de bore 
ubique. Par 
ons�equent, en examinant les stabilit�es relatives et les valeurs


al
ul�ees des modules d'�elasti
it�e et de 
ompressibilit�e, la phase III de BC2N r�esulte, parmi les

phases mod�eles �etudi�ees, 
omme le meilleur 
andidat pour le rempla
ement de BN 
ubique

ou du diamant dans di��erentes appli
ations m�e
aniques. L'enthalpie molaire standard de la
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r�ea
tion de formation a �et�e �egalement �evalu�ee exothermique (� -133 kJ/mol1), 
e qui est

en faveur du d�epôt de BC2N sous forme 
ristalline dans des 
onditions de temp�erature et

pression relativement faibles par rapport aux nitrures de 
arbone.

En�n, les spe
tres de r�ef�eren
e ELNES ont �et�e propos�es pour di��erentes phases �a liaisons

types sp2 et sp3 -syst�emes mod�eles 2D et 3D respe
tivement-. De tels signatures seront

sus
eptibles d'identi�er les phases 
ristallines pures au sein d'�e
hantillons polymorphes.

11.3 Prospe
tives et \
e qui reste �a faire"

Dans l'obje
tif d'approfondir davantage le sujet des nitrures de 
arbone, la tendan
e

g�en�erale trouv�ee au niveau de la stabilit�e, des propri�et�es �ele
troniques et m�e
aniques devrait

�egalement être v�eri��ee pour les autres 
ompos�es iso�ele
troniques. Des stru
tures 
ristallines

mod�eles telles que les 
ompositions C5N4, C3N2, C7N4 (Fig. 10.1), C9N4 et
... pourraient

être propos�ees et �etudi�ees pour �etablir une syst�ematique des tendan
es dans les mat�eriaux

CNx.

Comme il a �et�e mentionn�e dans la Se
tion 8.3.7 la possibilit�e d'avoir une stablit�e a

rue

des CNx pourrait être re
her
h�ee dans les phases de type fuller�ene. Au vu des derniers r�esultats

exp�erimentaux, des syst�emes �a nanotubes et nano�bres devraient �egalement être pris en


ompte 
omme de nouvelles formes potentielles de nitrures ainsi que de boronitrures de


arbone. Cependant, la synth�ese et l'�etude de tels 
ompos�es 
on
ernerait plutôt que les

ultra-durs, les nouvelles g�en�erations d'�emetteurs �ele
troniques par e�et de 
hamp.

1Valeur moyenne obtenue �a partir de 
al
uls FP-LAPW dans la fon
tionnelle GGA.
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