

Caractérisation
Biomécanique et
Modélisation 3D par
Imagerie X et IRM haute
résolution de l'os spongieux
humain : Evaluation du
risque fracturaire

Hélène Follet

irecteur de Thèse : Pr C. Rumelhart

- Ontexte des travaux

 Quelques chiffres

 Différents types d'os

 Etudes Cliniques
 Diectifs
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- aluation du risque acturaire
- onclusions et erspectives

- ⇒ Ostéoporose = Problème de santé majeur dans les pays industrialisés
- ⇒ Ostéoporose : Perte de masse osseuse, quantifiée par la mesure de la densité minérale (ou BMD)

Vieillissement de la population

- 50 % femmes + de 50 ans subiront une fracture
 20 % hommes également concernés
- Fractures des vertèbres et des os périphériques
- 1.7 millions de fractures de la hanche en 1990Prévision : 6.3 millions en 2020
- → 7 milliards de francs /an (≈ 1 milliard d 'euros/an)

Ontexte des travaux

Quelques chiffres

Différents types d'os

Etudes Cliniques

ojectifs

éthodologie

atériels et Méthodes

sultats

scussior

valuation du risque acturaire

onclusions e erspectives

⇒ BV/TV (%) : Volume Trabéculaire osseux (ou VTO)

⇒ Quantification de l'ostéoporose (Clinique) :

Ontexte des travaux

Quelques chiffres

Différents types d'os

Etudes Cliniques

Djectifs

éthodologie

atériels et Méthodes

esultats

scussior

raluation du risque acturaire

onclusions et erspectives

Sarkar et al. JBMR, Vol.17,n°1,2002

Ostéoporose:

BMD < 2.5 sd, (T-Score)

⇒ L'ostéodensitométrie à rayons X ou DXA (Dual X-Ray Absorptiometry)(Clinique)

⇒ L'ostéodensitométrie à ultrasons (US) (Clinique)

Imagerie Matricielle sur sujet in vivo en milieu sec:

Atténuation BUA (dB/MHz)

Vitesse SOS (m.s⁻¹)

« Beam Scanner >

⇒ Biopsies osseuses transfixiantes de crête iliaque (indication prioritaire : troubles de minéralisation osseuse)

coupe histologique d'une biopale osseuse coloration goldner, 1,6 X

os trabéculaire

perioste

perioste

os compact cortical

Biopsie osseuse

Coupe Histologique

Paramètres mesurés :

- Structure : BV/TV (%); Tb.N (mm⁻¹); Tb.Sp (μm); Tb.Th (μm)
- Résorption (Er/BS (%); OcS/BS (%); OcN/BS (mm⁻¹)
- Formation statique : OS/BS (%); Oth (µm) ; OV/BV (%)
- Formation dynamique : MAR; BFR/BS; Ac.f (yr⁻¹)

Dr Mh Lafage Proust.

St Etienne

⇒ Corrélations classiques entre la contrainte et la densité apparente (corrélée au BMD) ou entre contrainte et module d'élasticité global

Kopperdahl et al. 1998

Keaveny et al. 1994

⇒ QUESTION : Comment affiner ces résultats et améliorer la prédiction du risque fracturaire ?

- ontexte des travaux ojectifs

abarataira da Másaniaua das Calidas INICA da IVANI

- ⇒ Acquisition la + fidèle possible de l'architecture de l'os **Imagerie** spongieux de calcanéums humains Mécanique
- Relations MEF Prédiction
- ⇒ Caractérisation mécanique de l'os spongieux et des travées éthodologie sur échantillons atériels et Méthodes
- aluation du risque ⇒ Relations : Mécanique - Paramètres Structuraux & acturaire Architecturaux (2D-3D) onclusions et erspectives
 - ⇒ Méthode des Eléments Finis (MEF) et Simulation Numérique -> Propriétés Mécaniques du tissu trabéculaire
 - ⇒ Méthode d 'évaluation du risque fracturaire

ontexte des travaux ojectifs ⇒ Acquisition la + fidèle possible de l'architecture de l'os

abarataira da Másaniaua das Calidas INICA da IVANI

- spongieux de calcanéums humains
- ⇒ Caractérisation mécanique de l'os spongieux et des travées éthodologie sur échantillons atériels et Méthodes
- aluation du risque ⇒ Relations : Mécanique - Paramètres Structuraux & acturaire Architecturaux (2D-3D) onclusions et
 - ⇒ Méthode des Eléments Finis (MEF) et Simulation Numérique -> Propriétés Mécaniques du tissu trabéculaire
 - ⇒ Méthode d 'évaluation du risque fracturaire

- **Imagerie** Mécanique
- MEF
- Prédiction

- erspectives

- ontexte des travaux ojectifs

abarataira da Másaniaua das Calidas INICA da IVANI

- ⇒ Acquisition la + fidèle possible de l'architecture de l'os **Imagerie** spongieux de calcanéums humains Mécanique
- Relations
- Prédiction ⇒ Caractérisation mécanique de l'os spongieux et des travées éthodologie sur échantillons

- aluation du risque ⇒ Relations : Mécanique - Paramètres Structuraux & acturaire Architecturaux (2D-3D) onclusions et
 - ⇒ Méthode des Eléments Finis (MEF) et Simulation Numérique -> Propriétés Mécaniques du tissu trabéculaire
 - ⇒ Méthode d 'évaluation du risque fracturaire

- atériels et Méthodes

MEF

- erspectives

ontexte des travaux

ojectifs

- ⇒ Acquisition la + fidèle possible de l'architecture de l'os **Imagerie** spongieux de calcanéums humains Mécanique Relations
- MEF Prédiction
- ⇒ Caractérisation mécanique de l'os spongieux et des travées éthodologie sur échantillons atériels et Méthodes
- aluation du risque ⇒ Relations : Mécanique - Paramètres Structuraux & acturaire Architecturaux (2D-3D) onclusions et erspectives

abarataira da Másaniaua das Calidas INICA da IVANI

- ⇒ Méthode des Eléments Finis (MEF) et Simulation Numérique -> Propriétés Mécaniques du tissu trabéculaire
- ⇒ Méthode d 'évaluation du risque fracturaire

Utilisation Imagerie X et IRM

ontexte des travaux ojectifs

sur échantillons

abarataira da Másaniaua das Calidas INICA da IVANI

atériels et Méthodes

erspectives

- Imagerie
 ⇒ Acquisition la + fidèle possible de l'architecture de l'os

 Mécanique
 spongieux de calcanéums humains

 Relations
 Relations

raluation du risque
acturaire ⇒ Relations : Mécanique - Paramètres Structuraux &
Architecturaux (2D-3D)

- ⇒ Méthode des Eléments Finis (MEF) et Simulation
 Numérique → Propriétés Mécaniques du tissu trabéculaire
- ⇒ Méthode d 'évaluation du risque fracturaire

3 Niveaux d'étude sur Calcanéum

⇒ Calcanéum entier :

- ✓ DXA,
- ✓ US,
- ✓ Scan X ,
- ✓ IRM

⇒ Echantillons cubiques :

- ✓ IRM (Lyon 1) (78 µm)
- ✓ Tomographie μCT (ESRF) (10 μm)
- ✓ Essais Mécanique (LMSo, INSA) + ME

Hôpital

Edouard Herri

✓ Mesures densité physique

⇒ 1/2 pastilles + Travées :

- ✓ Tomographie (CNDRI, INSA), (20 µm)
- ✓ Essais Mécanique (LMSo, INSA) + ME
- ✓ Microradiographie (Hôp. E. Herriot)

Sur calcanéum entier

Hôpital Edouard Herriot

⇒ Scanner X

ensité Hounsfield HU

Avec P.L. Clouet

⇒ I RM Médical

Paramètres de type Histomorphométriques (TbTh, TbN,TbSp)

Avec O. Beuf

Sur calcanéum entier

Hôpital Edouard Herriot

⇒ DXA

Région	Surface	BMC	BMD
	cm ²	grammes	g/cm ²
L1	3.16	1.72	0.544

⇒ Ultrasons

Avec F. Duboeuf

Avec F. Duboeuf

Sur échantillons cubiques

Direction du réseau supérieur des travées

- Direction du réseau inférieur des travées
- Repérage du réseau supérieur des travées (radio X)

- ✓ IRM (résolution 78 µm)
- ✓ Tomographie (résolution 10 µm)
- ✓ Mesure de densités physiques
- ✓ Modélisation par éléments finis

LATERAL

✓ Analyse histomorphométrique (BV/TV, TbN, TbTh, TbSp)

MEDIAL

- \checkmark Compression ($E_{app'}$ σ_{app})
- ✓ Modélisation MEF

INTER MEDIAL-LATERAL

- ✓ Découpe des travées
- ✓ Micro-radiographie

Tomographie 10µm - IRM 78 µm

Tomographie à 10 µm

Calcanéum, Homme, 73 ans obtenue à l'ESRF

IRM à 78 µm

imayei

Calcanéum, Femme, 85 ans obtenue au labo de RMN à Lyon 1

vec F. Peyrin Avec O. Beut

imayei

Tomographie

⇒ I llustration d 'un échantillon cubique Tomographié

Tomographie 10µm - IRM 78 µm

- ⇒ Paramètres Architecturaux :
 - ✓ BV/TV (%)
 - ✓ TbTh (mm), TbN (mm⁻¹), TbSp (µm)

ппауы

- ⇒ Paramètre d'Anisotropie :
 - ✓ MIL (mm)

- ⇒ Paramètre de Connectivité :
 - ✓ Nb d 'Euler

- ⇒ Paramètre d'irrégularité
 - ✓ Dimension Fractale D

Microradiographie sur demi-pastille

⇒ Mesure du degré moyen de minéralisation

Avec G. Boiv

√ d (gramme minéral/cm³) (Nb d 'observation)

aborataire de Mécanique des Colides INCA de LVON

Sur travées

⇒Découpe et repérage de travées de calcanéum (travées humides)

- ✓ Respect de l'intégrité de la structure
- ✓ Encastrement de la travée sur le porte-échantillon par colle cyanoacrylate pour tomographie CNDRI et microflexion
- ✓ MEF

abarataira da Másanique dos Salidos INSA da LVAN

Travées osseuses obtenues au CNDRI (20 µm)

Avec G. Peix

imayei

Essai de compression

Conditions d'essais

- ✓ Air à température ambiante ou sérum physiologique à 37 °C
- ✓ Echantillons cubiques
- ✓ Précyclage (10 cycles)
- ⇒ Moyens de mesure
 - ✓ Capteur d'effort
 - ✓ Extensomètre à jauges
- ⇒ Paramètres principaux

Module d'Young dans les directions X, Y, Z

E (MPa) Module d'Young dans la direction Z

S_{max} (MPa) Contrainte maximale dans la

direction Z

Protection en plexiglas Echantillon

Arche latérale Cale amovible

Direction privilégiée des travées

Mecalliqu

aborataire de Mécapique des Calides INCA de LVON

Essai de compression

⇒ Courbe caractéristique d'un essai de compression

aborataire de Mécanique des Colides INCA de LVON

Essai de microflexion sur travées

⇒ Banc d 'essai

K. Bruyère, Thèse 2000

Essai de microflexion sur travées

⇒ Schéma de principe et courbe caractéristique

Corrélation d'images sur travées

- ⇒ Mesure du champ de déplacements et de déformations sur un objet déformé
 - ✓ logiciel Sifasoft
 - ✓ caméra numérique 1024*1024

Norme des déplacements

Avec F. Morest

Modélisation par éléments finis

- ⇒ Construction de modèles 3D de géométrie réelle à partir d'images 3D (IRM ou µTomographiques)
 - ✓ Elément brique à 8 nœuds ou élément poutre
 - ✓ Maillage ⇒ 1 élément = 1 voxel ou un groupement de voxels
 - ✓ Taille de voxels = taille des éléments briques = 78 ou 40 µm
 - ✓ Hypothèse : matériau homogène et isotrope
- ⇒ Simulation numérique
- Code Abaqus®
- Visualisation sous Ideas® ou Abaqus Viewer 6.1.1
- CINES Montpellier

100 000 éléments

Modèles 3D de géométrie réelle

⇒ Modèles issus d'images I RM

- ✓ Taille de voxels = taille des éléments briques = 78µm
- ✓ Volume Maillé = selon les images (\rightarrow 7,33 mm³)

Modèle I RM

⇒ Modèles issus d'images µTomographi

- ✓ Taille de voxels = taille des éléments briques = 40 μm
- ✓ Volume Maillé = selon le VTO $(\to 6,6^3 \text{ mm}^3)$

40μm

78μm

เพอนะแรนเ

Modèles 3D de géométrie réelle

⇒ Modèle brique et Modèle poutre

- Fort VTO (>12%):
 - Modèle Brique
- Faible VTO (<12%):
- Modèle Brique 9
- Modèle Poutre, basé sur TbT

Image tomographiée de l'échantillon 48M, 64*64*64

Image squelettisée de l'échantillon 48M, 64*64*64

Modèle poutres de l'échantillon 48M, 64*64*64

⇒ Simulation de la compression dans la direction privilégiée des travées

- \Rightarrow 0.5 % de déformation
- I mage I RM (78 μm) et Tomo (40 μm)
- Volumes max 6,6³ mm³
- Matériau homogène et isotrope
- E travée, initial = 8000 MPa

$$\frac{E_{Trav\acute{e}e}^{initial}}{E_{app}^{num}} = \frac{E_{Trav\acute{e}e}^{num}}{E_{app}^{exp}} = K$$

- ⇒ I dentification pour déterminer le Module d'Young du tissu trabéculaire
 - ✓ Ajustement de E_{travée} pour retrouver E_{apparent} expérimental

abarataira da Másaniqua dos Calidos INCA da IVAN

Méthode de caractérisation

⇒ Deux types de simulation :

- ✓ Elastique → E_{tissulaire}
- \checkmark Elasto-plastique \Rightarrow $E_{tissulaire}$ et $\sigma_{elastique}$

Loi Elastique

Modélisation du tissu trabéculaire

⇒ Modèles issus d'images Tomographiques (CNDRI)

- ✓ Taille de voxels = taille des éléments briques = 20 µm
- ✓ Volume Maillé = travées entières (h≈3 mm)
- ✓ Encastrement de la base
- ✓ Déplacement imposé par surface rigide cylindrique PIGE

Simulations essais flexion des travées

⇒ Caractérisation en Flexion

Jiiiiuiati

Essai Mécanique

aborataira da Mácanique dos Calidos INCA da IVAN

Caractérisation du tissu trabéculaire

⇒ Lois élastique et élasto-plastique

Jiiiiuiati

Identification avec Loi Elastique

Identification avec Loi Elasto-plastique

Enumérique Trabéculaire Raideur ->

Résultats

Acquisition Images 3D Haute définition

mayei

- ⇒ Tomographie (10 µm) : 44 échantillons cubiques (Médiaux et latéraux confondus)
- ⇒ IRM (78 μm): 34 échantillons cubiques (Médiaux et latéraux confondus)

Résultats sur Calcanéums entiers

 \Rightarrow Corrélation entre la contrainte maximale de compression σ et la densité Hounsfield HU

- Mécanique : sur cube médial
- Scanner X : sur calcanéum entier
- •IRM ex vivo : sur calcanéum entier

⇒ Corrélations paramètres Histo - IRM ex Vivo

Paramètres	Corrélations			
1 at affect es	n	r	p	
Densité volumique				
BV/TV (%)	7	0.70	0.04	
Structure				
TbTh (µm)	7	0.69	0.04	
TbN (mm ⁻¹)	7	0.68	0.05	
TbSp (μm)	7	0.87	0.005	

Coefficients de corrélation de Pearson (r) et probabilité associée.

ппауы

Résultats sur Calcanéums entiers

 \Rightarrow Corrélations entre le Module d 'Young, σ_{max} et le BMD mesuré par DXA :

- Mécanique : sur cube médial
- DXA : sur calcanéum entier

Résultats « Mécanique »

⇒ Corrélations entre la contrainte maximale, le Module d'Young et la densité apparente :

• Mécanique et densité apparente : sur cube médial

Résultats « Mécanique »

⇒ Corrélations entre les différents Modules d'Young et la densité apparente

⇒ Corrélations entre les paramètres mécaniques et le volume trabéculaire osseux calculé par histomorphométrie (BV/TV 2D)

- Mécanique : sur cube médial
- 3 Coupes Histomorphométriques sur cube latéral

Mécanique - Architecture

⇒ Corrélations entre les paramètres mécaniques et le BV/TV 2D et 3D (par Tomographie 10 μm)

Mécanique - Anisotropie

⇒ Corrélations entre les modules d'Young et l'anisotropie MI L selon les directions X, Y et Z (calculé par Tomographie 10 µm)

MIL:

Direction privilégiée des travées

Mécanique - Irrégularité

 \Rightarrow Corrélation entre la contrainte maximale σ_{max} et la dimension fractale D (calculée en 3D par I RM 78 µm)

Dimension Fractale D

Mécanique - Microradiographie

⇒ Corrélations entre paramètres Mécaniques mesurés sur échantillons cubiques et Microradiographie sur 1/2 pastille adjacente

- Mécanique : sur cube médial
- Microradiographie : sur 1/2 pastilles inter Medio-Latérale

phorataire de Mécapique des Calides INSA de LVON

Mécanique - MEF

⇒ Modèles Hexaèdriques (Brique) (Comportement élastique) :

✓ Tomographie : Latéraux (27 échantillons en 5.12 mm³, 15 échantillons en 6.6 mm³)

Médiaux (16 échantillons en 5.12 mm³, 13 échantillons en 6.6 mm³)

TOMOGRAPHIE (40 μm)					E	num trabéculaire	
Côté	n	Volume (mm ³)	$E_{app}^{ m exp}$ (MPa)	Moyenne (MPa)	Ecart type	Médiane	Plage
Latéral	27	(5.12^3)	390	94 000	142 000	37 000	[3 900, 680 000]
Latéral	15	(6.6^3)	221	126 000	164 000	66 000	[4 300, 524 000]
Médial	16	(5.12^3)	297	37 000	29 000	27 000	[2 860, 97 500]
Médial	13	(6.6^3)	218	31 700	23 500	25 000	[2 240, 87 200]

✓ IRM : Latéraux (11 échantillons) & Médiaux (10 échantillons)

IRM (78 μm)					E	num trabéculaire	
Côté	n	Volume max (mm ³)	$E_{app}^{ m exp}$ (MPa)	Moyenne (MPa)	Ecart type	Médiane	Plage
Latéral	11	(7.66^3)	460	26 500	23 350	15 600	[6 500, 72 200]
Médial	10	(7.3^3)	362	109 200	166 300	24 000	[3 000, 538 000]

Squelettes MEF

⇒ Modèles Poutres :

✓ Squelettes et modèles poutres : 8 échantillons suffisamment filaires pour être squeletisés et 7 modèles numériques basé sur les TbTh

⇒ Loi élastique parfaite :

Squelettes (40 µm)					H	num trabécula i e		
Côté	n	Volume max (mm ³)	E_{app}^{num} (MPa)	Moy (M	enne Pa)	Ecart type	Médiane	Plage
Médial	7	(6.6^3)	36	10 3	300	7 800	5 500	[4 400, 19 700]

⇒ Loi élasto-plastique avec léger « écrouissage » :

Squelettes (40 µm)					
(MPa)	n	Moyenne (MPa)	Ecart type	Médiane	Plage
E ^{num} trabéculai re	7	11 100	10 800	4 900	[6 100, 19 700]
S num etrabécula ire	7	243	210	132	[80, 330]

Travées MEF - Essai élastique

⇒ Valeurs des Modules d 'Young (Gpa) déterminées après simulation d 'un comportement élastique

Travées MEF - Essai à rupture

⇒ Valeurs des Modules d'Young et des limites élastiques déterminées après simulation d'un comportement élasto-plastique parfait par 1/2 pastilles

½ Pastille	Modules d'Young moyen (MPa)	Limite Elastique moyenne (MPa)
N°56	4454	53
N°57	2250	25
N°59	8803	47
N°61	1120	40
N°63	3247	27
N°64	4800	47

3 travées prélevées par 1/2 pastille

⇒ Exemple de corrélation d'image au cours d'un essai de microflexion - Comparaison au modèle éléments finis

Simulation par EF d'un essai de microflexion

Champ de Déformations par corrélation d'images

Sur Calcanéum entier :

- ⇒ <u>Mesures US :</u> Roi difficile à repérer, mesures et corrélations significatives
- ⇒ Mesures DXA : I dem à la Littérature et corrélations significatives avec E (0.78 < r < 0.85)
- ⇒ Scanner X : Densité HU pour n=10, pas de calcul de BMC
- ⇒ IRM in vivo : Corrélations significatives avec histo, mais n=8
- ⇒ Sur Echantillon cubique :
- ⇒ Histomorphométrie : Mesures sur cube latéral uniquement
 - Biais / Techniques employées sur échantillon médial, même si corrélations significatives entre Med-Lat, avec l'I RM 78 μm et la μTomographie 10 μm.
- ⇒ IRM : Influence de la moelle, Echantillons taillés pour limiter les effets de bords
 - ✓ Résolution proche des TbTh
 - ✓ Segmentation délicate
 - ✓ mais corrélations significatives entre paramètres méca et architecturaux

Sur Calcanéum entier :

- ⇒ <u>Mesures US</u>: Roi difficile à repérer, mesures et corrélations significatives
- ⇒ <u>Mesures DXA</u>: I dem à la Littérature et corrélations significatives avec E (0.78 < r < 0.85)
- ⇒ Scanner X : Densité HU pour n=10, pas de calcul de BMC
- ⇒ IRM in vivo: Corrélations significatives avec histo, mais n=8
- ⇒ Sur Echantillon cubique :
- ⇒ Histomorphométrie : Mesures sur cube latéral uniquement
 - Biais / Techniques employées sur échantillon médial, même si corrélations significatives entre Med-Lat, avec l'I RM 78 μm et la μTomographie 10 μm.
- ⇒ <u>IRM</u>: Influence de la moelle, Echantillons taillés pour limiter les effets de bords
 - ✓ Résolution proche des TbTh
 - ✓ Segmentation délicate
 - ✓ mais corrélations significatives entre paramètres méca et architecturaux

- ⇒ Sur Echantillon cubique :
- ⇒ MicroTomographie à 10 µm :
 - ✓ Différence de taille entre échantillons réels et volumes imagés
 - ✓ Différences significatives M / L mais corrélations significatives entre paramètres architecturaux
- ⇒ Essais Mécaniques :
 - ✓ Influence du prélèvement (repérage des directions trabéculaires par radio)
 - ✓ Paramètres méca en accord avec la littérature
 - ✓ Corrélations significatives avec paramètres structuraux et architecturaux
- ⇒ Sur Travées :
- ⇒ <u>Tomographie à 20 µm :</u>
 - ✓ Tomographie sur travée sèche
 - ✓ Méthode précise, bon contraste et seuillage.
 - ✓ 1 Travée imagée à 2 µm à l'ESRF → Analyse + fine de la structure
- ⇒ Essais Mécaniques :
 - ✓ Bonne reproductibilité dans le domaine élastique
 - ✓ anisotropie assez forte
 - ✓ Champ de déformations par corrélation → Quantification degré d 'endommagement

- ⇒ Sur Echantillon cubique :
- ⇒ MicroTomographie à 10 μm :
 - ✓ Différence de taille entre échantillons réels et volumes imagés
 - ✓ Différences significatives M / L mais corrélations significatives entre paramètres architecturaux
- ⇒ <u>Essais Mécaniques</u> :
 - ✓ Influence du prélèvement (repérage des directions trabéculaires par radio)
 - ✓ Paramètres méca en accord avec la littérature
 - ✓ Corrélations significatives avec paramètres structuraux et architecturaux
- ⇒ Sur Travées :
- ⇒ Tomographie à 20 µm :
 - ✓ Tomographie sur travée sèche
 - ✓ Méthode précise, bon contraste et seuillage
 - ✓ 1 Travée imagée à 2 µm à l'ESRF → Analyse + fine de la structure
- ⇒ Essais Mécaniques :
 - ✓ Bonne reproductibilité dans le domaine élastique
 - ✓ anisotropie assez forte
 - ✓ Champ de déformations par corrélation → Quantification degré d 'endommagement

⇒ Modélisation Eléments Finis :

- ✓ Limitation en terme de volume
- ✓ Limites du modèle Brique pour faible VTO (<12%)</p>
- ✓ Squelettisation et modèles poutre prometteur mais à améliorer
- ✓ Analyse des déformations locales possible
- ✓ Mais globalement propriétés intrinsèques du tissu trabéculaire à prendre en compte

⇒ Proposition d'un schéma de prédiction du risque fracturaire

- ✓ Campagne d'essais ciblée populations « normale » et « ostéoporotique » + Scanner X + DXA + paramètres de qualité osseuse
- ✓ IRM clinique ou expérimental pour estimer l'architecture +/- fine
- ✓ Construction d'un modèle Elément Finis (de type hybride)
 - \rightarrow Déduction d'un Module d'Young Tissulaire et/ou d'une contrainte élastique limite $\sigma_{\!_{\rm P}}$
- ✓ Recherche de corrélations entre paramètres Méca et Paramètres Structuraux -Architecturaux et de qualité osseuse (courbure, lamelles...)
- ✓ Evaluation du risque fracturaire

⇒ Modélisation Eléments Finis :

- ✓ Limitation en terme de volume
- ✓ Limites du modèle Brique pour faible VTO (<12%)</p>
- ✓ Squelettisation et modèles poutre prometteur mais à améliorer
- ✓ Analyse des déformations locales possible
- ✓ Mais globalement propriétés intrinsèques du tissu trabéculaire à prendre en compte

⇒ Proposition d'un schéma de prédiction du risque fracturaire

- ✓ Campagne d'essais ciblée populations « normale » et « ostéoporotique » + Scanner X + DXA + paramètres de qualité osseuse
- ✓ IRM clinique ou expérimental pour estimer l'architecture +/- fine
- ✓ Construction d 'un modèle Elément Finis (de type hybride)
 - \rightarrow Déduction d'un Module d'Young Tissulaire et/ou d'une contrainte élastique limite $\sigma_{_{\!\!\!P}}$
- ✓ Recherche de corrélations entre paramètres Méca et Paramètres Structuraux -Architecturaux et de qualité osseuse (courbure, lamelles...)
- ✓ Evaluation du risque fracturaire

Schéma prédictif

⇒ Phase 1

Paramètres mécaniques fonctions de paramètres cliniques

⇒ Phase 2

Courbe Expérimentale (Compression ou Microflexion)

Schéma prédictif

⇒ Phase 3

Paramètres mécaniques fonctions de paramètres structuraux, architecturaux ou de qualité osseuse

⇒ Phase 4

Réduction de l'intervalle de confiance pour une meilleur prédiction du risque

- ⇒ Etudes classiques sur une série conséquente de calcanéums (31)
 - ✓ Corrélations de paramètres

✓ Accord avec données de la littérature mais forte dispersion

- ⇒ Etudes Novatrices (n= 8 à 20) (Clinique)
 - ✓ Corrélations de paramètres
 - → Mécanique Scanner X (densité HU)

 IRM Clinique (« ex vivo ») (paramètres types histomorphométriques)

 Micro-radiographie (degré de minéralisation)

✓ Corrélations significatives mais séries relativement faibles

⇒ Etudes originales

- ✓ Apport des techniques d'imagerie haute résolution :
 - \rightarrow Corrélations (n=16 à 19)
 - Mécanique Tomographie (µCT)

 I RM « expérimental »
 - Corrélations simples significatives mais peu d'apport des paramètres 3D classiques ou directs dans l'estimation des propriétés mécaniques.
- ✓ MEF : (n=10 à 27)
 - → Modélisation fidèle de l'architecture 3D mais limitation du fait des capacités de calcul
 - → Intérêt de la méthode de squelettisation (simplicité, gain de temps de calcul)
 - → Evaluation assez correcte des propriétés mécaniques tissulaires

⇒ Etudes originales

- ✓ Travées (n=30)
 - ightarrow Estimation correcte des propriétés mécaniques ($E_{trabéculaire}$ et $\sigma_{etrabéculaire}$
 - → Etude des champs de déformations par corrélation d'image & à relier au d° d'endommagement du tissu
- ✓ Proposition d'une méthodologie d'évaluation du risque fracturaire personnalisée prenant en compte :
 - → la densité, l'élasticité et l'architecture de l'os spongieux, ainsi que la qualité du tissu trabéculaire (minéralisation, texture, irrégularité, facteurs du remodelage ...)
 - → Nécessité de compléter les séries d'essais en laboratoire en relation avec les données issues de la clinique (qualité du tissu osseux) et facteur de risque fracturaire.

rravee a 2 µm

voxel size = 1.8 μm **FOV = 1.8 mm**

H. Follet,

F. Peyrin

Caractérisation
Biomécanique et
Modélisation 3D par
Imagerie X et IRM haute
résolution de l'os spongieux
humain : Evaluation du
risque fracturaire

Hélène Follet

irecteur de Thèse : Pr C. Rumelhart