Thèse de Doctorat 18 Décembre 2002

Caractérisation Biomécanique et Modélisation 3D par Imagerie X et IRM haute résolution de l'os spongieux humain : Evaluation du risque fracturaire

Hélène Follet

irecteur de Thèse : Pr C. Rumelhart

abarataira da Mácapiqua das Salidas INSA da IVAN

ontexte des travaux

- **Quelques chiffres**
- Différents types d 'os
- Etudes Cliniques
- ojectifs
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- aluation du risque acturaire
- onclusions et erspectives

Ostéoporose = Problème de santé majeur dans les pays industrialisés

- Ostéoporose : Perte de masse osseuse, quantifiée par la mesure de la densité minérale (ou BMD)
 - Vieillissement de la population
 - 50 % femmes + de 50 ans subiront une fracture
 20 % hommes également concernés
 - Fractures des vertèbres et des os périphériques
 - 1.7 millions de fractures de la hanche en 1990 Prévision : 6.3 millions en 2020
 - 7 milliards de francs /an (≈ 1 milliard d 'euros/an)

 \rightarrow

 \rightarrow

 \rightarrow

ontexte des travaux

- **Quelques chiffres**
- Différents types d 'os
- Etudes Cliniques
- ojectifs
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- aluation du risque acturaire
- onclusions et erspectives

Epaisseur moyenne de l'ostéon

Alternance lamelle claire, lamelle sombre

Os Ostéoporotique

Ligne cémentante (limite de l'ancienne lacune de résorption)

⇒ BV/TV (%) : Volume Trabéculaire osseux (ou VTO)

⇒ Quantification de l'ostéoporose (Clinique) :

(T-Score)

- **Quelques chiffres**
- Différents types d 'os
- **Etudes Cliniques**
- ojectifs
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- valuation du risque acturaire
- onclusions et
- erspectives

Densité minérale osseuse: expression des résultats par rapport à des données d'une population de même sexe

Region	BMD	T(30	T(30.0)		
N/A	- 50 - 11 - 11 - 1 2				
LZ	8.956	-0.65	93%	-8.18	99%
L3	1.038	-8.41	96%	+0.17	182%
L4	1.071	-0.41	96×	+0.19	182%
L2-L4	1.827	-8.47	95%	+8.18	101%
Résul (dens	itats en g/cm2 ité surfacique		Zsee	par rapport sulation de r	s exprins à une nême âge
	T see	ore: résultats ort au pic de l teint en fin de	exprimés masse oss croissan	euse ce	

Sarkar et al. JBMR, Vol.17,n°1,2002

abarataira da Mácapiqua das Salidas INSA da LVAN

|BMD| < 2.5 sd,

⇒ L'ostéodensitométrie à rayons X ou DXA (Dual X-Ray Absorptiometry)

(Clinique)

abarataira da Mácapiqua das Salidas INSA da IVON

⇒ L'ostéodensitométrie à ultrasons (US) (Clinique)

Imagerie Matricielle sur sujet *in vivo* en milieu sec:

Atténuation BUA (dB/MHz)

Vitesse SOS (m.s⁻¹)

« Beam Scanner >

abarataira da Máaapigua dae Salidae INSA da IVON

⇒ Biopsies osseuses transfixiantes de crête iliaque (indication prioritaire : troubles de minéralisation osseuse)

Biopsie osseuse

coloration goldner, 1,6X os trabéculaire périoste périoste os compact cortical

coupe histologique d'une biopsie osseuse

Coupe Histologique

Paramètres mesurés :

- Structure : BV/TV (%); Tb.N (mm⁻¹); Tb.Sp (μm); Tb.Th (μm)
- Résorption (Er/BS (%); OcS/BS (%); OcN/BS (mm⁻¹)
- Formation statique : OS/BS (%); Oth (μ m) ; OV/BV (%)
- Formation dynamique : MAR; BFR/BS; Ac.f (yr⁻¹)

Dr Mh Lafage Proust.

St Etienne

abarataira da Másanique das Salidas INSA da LVON

⇒ Corrélations classiques entre la contrainte et la densité apparente (corrélée au BMD) ou entre contrainte et module d 'élasticité global

Kopperdahl et al. 1998

Keaveny et al. 1994

⇒ QUESTION : Comment affiner ces résultats et améliorer la prédiction du risque fracturaire ?

abarataira da Mácapiqua das Salidas INSA da IVAN

ontexte des travaux

- ojectifs
- Imagerie
- Mécanique
- Relations
- MEF
- Prédiction
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- aluation du risque
- onclusions et erspectives

Acquisition la + fidèle possible de l'architecture de l'os spongieux de calcanéums humains

Caractérisation mécanique de l'os spongieux et des travées sur échantillons

⇒ Relations : Mécanique - Paramètres Structuraux & Architecturaux (2D-3D)

⇒ Méthode des Eléments Finis (MEF) et Simulation
 Numérique → Propriétés Mécaniques du tissu trabéculaire

⇒ Méthode d 'évaluation du risque fracturaire

ontexte des travaux

ojectifs

- Imagerie
- Mécanique
- Relations
- MEF
- Prédiction
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- aluation du risque
- onclusions et erspectives

Acquisition la + fidèle possible de l'architecture de l'os spongieux de calcanéums humains

Caractérisation mécanique de l'os spongieux et des travées sur échantillons

⇒ Relations : Mécanique - Paramètres Structuraux & Architecturaux (2D-3D)

⇒ Méthode des Eléments Finis (MEF) et Simulation
 Numérique → Propriétés Mécaniques du tissu trabéculaire

➡ Méthode d 'évaluation du risque fracturaire

ontexte des travaux

ojectifs

- Imagerie
- Mécanique
- Relations
- MEF
- Prédiction
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- aluation du risque acturaire
- onclusions et erspectives

Acquisition la + fidèle possible de l'architecture de l'os spongieux de calcanéums humains

⇒ Caractérisation mécanique de l'os spongieux et des travées sur échantillons

⇒ Relations : Mécanique - Paramètres Structuraux & Architecturaux (2D-3D)

Méthode des Eléments Finis (MEF) et Simulation
 Numérique -> Propriétés Mécaniques du tissu trabéculaire

➡ Méthode d 'évaluation du risque fracturaire

ontexte des travaux

ojectifs

- Imagerie
- Mécanique
- Relations
- MEF
- Prédiction
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- aluation du risque acturaire
- onclusions et erspectives

Acquisition la + fidèle possible de l'architecture de l'os spongieux de calcanéums humains

Caractérisation mécanique de l'os spongieux et des travées sur échantillons

⇒ Relations : Mécanique - Paramètres Structuraux & Architecturaux (2D-3D)

⇒ Méthode des Eléments Finis (MEF) et Simulation
 Numérique → Propriétés Mécaniques du tissu trabéculaire

⇒ Méthode d 'évaluation du risque fracturaire

abarataira da Mácapiqua das Salidas INSA da IVAN

ontexte des travaux

ojectifs

- Imagerie
- Mécanique
- Relations
- MEF
- Prédiction
- éthodologie
- atériels et Méthodes
- ésultats
- scussion
- aluation du risque acturaire
- onclusions et erspectives

Acquisition la + fidèle possible de l'architecture de l'os spongieux de calcanéums humains

Caractérisation mécanique de l'os spongieux et des travées sur échantillons

⇒ Relations : Mécanique - Paramètres Structuraux & Architecturaux (2D-3D)

Méthode des Eléments Finis (MEF) et Simulation
 Numérique -> Propriétés Mécaniques du tissu trabéculaire

⇒ Méthode d 'évaluation du risque fracturaire

abarataira da Mácapiqua das Salidas INSA da IVON

aboratoire de Mécanique es Solides (LMSo), INSA on,

Laboratoire histodynamique osseuse. r P.J. Meunier),

ervice de rhumatologie et pathologie osseuse (Pav (Pr P.J. Meunier & P.D. elmas)

ervice de radiologie (**Pay** (Pr P.L. Clouet)

Tableau Synoptique

•Laboratoire

CNDRI.

INS

abarataira da Méanairua das Calidas INCA da IVAN

3 Niveaux d'étude sur Calcanéum

⇒ Calcanéum entier :

- ✓ Radio standard,
- ✓ DXA,
- ✓ US,
- ✓ Scan X ,
- ✓ IRM

Hôpital Edouard Herri

⇒ Echantillons cubiques :

- ✓ I RM (Lyon 1) (78 µm)
- ✓ Tomographie µCT (ESRF) (10 µm)
- ✓ Essais Mécanique (LMSo, INSA) + ME
- ✓ Mesures densité physique

⇒ 1/2 pastilles + Travées :

- Tomographie(CNDRI, INSA), (20 μm)
- ✓ Essais Mécanique (LMSo, INSA) + ME
- ✓ Microradiographie
 - (Hôp. E. Herriot)

abarataira da Mácapiqua das Salidas INSA da LVAN

N/ átle a dala a

Sur calcanéum entier

Hôpital Edouard Herriot

⇒ Scanner X

ensité Hounsfield HU

⇒ I RM Médical

Paramètres de type Histomorphométriques (TbTh, TbN, TbSp)

Avec O. Beuf

aboratoira da Mácapiqua das Salidas INSA da IVON

Matérial O Méthad

Sur calcanéum entier

Hôpital Edouard Herriot

Densit

⇒ DXA

Région	Surface	BMC	BMD
	cm^2	grammes	g/cm ²
L1	3.16	1.72	0.544

Avec F. Duboeuf

⇒ Ultrasons

Avec F. Duboeuf

abarataira da Másapiqua das Salidas INSA da LVAN

Matánial O Máthaad

Sur échantillons cubiques

Direction du réseau supérieur des travées

- ✓ IRM (résolution 78 µm)
- ✓ Tomographie (résolution 10 µm)
- ✓ Mesure de densités physiques
- ✓ Modélisation par éléments finis

LATERAL

 Analyse histomorphométrique (BV/TV, TbN, TbTh, TbSp)

MEDIAL

✓ Cor ✓ <u>Mo</u>

✓ Compression (E_{app}, σ_{app})
 ✓ Modélisation MEF

INTER MEDIAL-LATERAL

✓ Découpe des travées✓ Micro-radiographie

phoratoire de Mécapique des Salides INSA de LVON

Matériel et méthode

Direction du réseau inférieur des travées

Repérage du réseau supérieur des travées (radio X)

Decou

Tomographie 10µm - IRM 78 µm

Tomographie à 10 µm

IRM à 78 μ m

Calcanéum, Homme, 73 ans obtenue à l'ESRF

Calcanéum, Femme, 85 ans obtenue au labo de RMN à Lyon 1

vec F. Peyrin

Avec O. Beut

abarataira da Mácapiqua das Salidas INSA da IVAN

امحفائك معناه المأسكة الما

Tomographie

⇒ Illustration d'un échantillon cubique Tomographié

abarataira da Mácapiqua das Salidas INSA da IVAN

Matánial at maáthagal

Tomographie 10µm - IRM 78 µm

⇒ Paramètres Architecturaux :

- ✓ BV/TV (%)
 ✓ ThTh (mm) ThN (mm-1) ThSn
- ✓ TbTh (mm), TbN (mm⁻¹), TbSp (µm)

⇒ Paramètre d 'Anisotropie :

✓ MIL (mm)

⇒ Paramètre de Connectivité : ✓ Nb d 'Euler

⇒ Paramètre d 'irrégularité
 ✓ Dimension Fractale D

ппадсі

Microradiographie sur demi-pastille

⇒ Mesure du degré moyen de minéralisation

✓ d (gramme minéral/cm³) (Nb d 'observation)

Avec G. Boivi

abarataira da Mázapiqua das Salidas INSA da IVAN

Matérial at maéthaal

Sur travées

⇒Découpe et repérage de travées de calcanéum (travées humides)

- ✓ Respect de l'intégrité de la structure
- ✓ Encastrement de la travée sur le porte-échantillon par colle cyanoacrylate pour tomographie CNDRI et microflexion

✓ MEF

2-3 mm

abarataira da Másapiqua das Salidas INSA da IVAN

Matérial O Méthad

Images tomographiques de travées

Travées osseuses obtenues au CNDRI (20 µm)

Avec G. Peix

abarataira da Másapiqua das Salidas INSA da IVAN

Matánial O Máthadala

Essai de compression

⇒ Conditions d'essais

- ✓ Air à température ambiante ou sérum physiologique à 37 °C
- ✓ Echantillons cubiques
- ✓ Précyclage (10 cycles)

⇒ Moyens de mesure

- ✓ Capteur d'effort
- ✓ Extensomètre à jauges

⇒ Paramètres principaux

Е _{х,ү, z} (МРа)	Module d'Young dans les directions X, Y, Z
E (MPa)	Module d'Young dans la direction Z
s _{max} (MPa)	Contrainte maximale dans la direction Z

Essai de compression

⇒ Courbe caractéristique d 'un essai de compression

Effort = f (déplacement)

abarataira da Mácapiqua das Salidas INSA da LVAN

Matérial O Méthad

mecaniq

Essai de microflexion sur travées

⇒ Banc d 'essai

abarataira da Mácanique das Salidas INSA da LVAN

Matérial O Méthead

mecaniq

Essai de microflexion sur travées

⇒ Schéma de principe et courbe caractéristique

Corrélation d'images sur travées

Mesure du champ de déplacements et de déformations sur un objet déformé

✓ logiciel Sifasoft

✓ caméra numérique 1024*1024

Norme des déplacements

Avec F. Morest

abarataira da Mácanique das Salidas INSA da LVON

اممطخم مطلخة معراما المأمخة الما

Modélisation par éléments finis

⇒ Construction de modèles 3D de géométrie réelle à partir d'images 3D (IRM ou µTomographiques)

✓ Elément brique à 8 nœuds ou élément poutre

- ✓ Maillage \Rightarrow 1 élément = 1 voxel ou un groupement de voxels
- \checkmark Taille de voxels = taille des éléments briques =78 ou 40 μ m
- ✓ Hypothèse : matériau homogène et isotrope

⇒ Simulation numérique

- Code Abaqus $\ensuremath{\mathbb{R}}$
- Visualisation sous Ideas® ou Abaqus Viewer 6.1.1
- CINES Montpellier

abarataira da Mácapiqua das Salidas INSA da LVAN

Natánial O Niáthaad

Modèles 3D de géométrie réelle

➡ Modèles issus d'images I RM ➡ Modèles issus d'images µTomographi \checkmark Taille de voxels = taille des \checkmark Taille de voxels = taille des éléments briques = 78µm éléments briques = 40 µm ✓ Volume Maillé = selon les ✓ Volume Maillé = selon le VTO images (\rightarrow 7,3³ mm³) $(\rightarrow 6, 6^3 \text{ mm}^3)$ Modèle I RM Modèle µTOMO 40µm 78µm

abarataira da Másapique das Salidas INSA da IVAN

Modèles 3D de géométrie réelle

⇒ Modèle brique et Modèle poutre

Image tomographiée de l'échantillon 48M, 64*64<u>*64</u>

Image squelettisée de l'échantillon 48M, 64*64*64

Modèle poutres de l'échantillon 48M, 64*64*64

abarataira da Másapiqua das Salidas INSA da IVAN

Méthode de caractérisation

⇒ Simulation de la compression dans la direction privilégiée des travées

 \Rightarrow 0.5 % de déformation

- I mage I RM (78 $\mu m)$ et Tomo (40 $\mu m)$
- Volumes max 6,6³ mm³
- Matériau homogène et isotrope
- E travée, initial = 8000 MPa

$E_{\it Trav{\acute e}}^{\it initial}$	$_E_{Trav{\acute{e}e}}^{num}$	-K
$E^{\it num}_{\it app}$	$E^{ m exp}_{app}$	- N

⇒ I dentification pour déterminer le Module d 'Young du tissu trabéculaire
 ✓ Ajustement de E_{travée} pour retrouver E_{apparent} expérimental

Méthode de caractérisation

\Rightarrow Deux types de simulation :

- ✓ Elastique → $E_{tissulaire}$
- ✓ Elasto-plastique → $E_{tissulaire}$ et $\sigma_{elastique}$

sharataira da Mácaniqua das Salidas INSA da IVON

Modélisation du tissu trabéculaire

- ⇒ Modèles issus d'images Tomographiques (CNDRI)
 - ✓ Taille de voxels = taille des éléments briques = 20 µm
 - ✓ Volume Maillé = travées entières (h≈3 mm)
 - ✓ Encastrement de la base
 - ✓ Déplacement imposé par surface rigide cylindrique

abarataira da Mácapiqua das Salidas INSA da IVAN

Matérial at maéthagal

Jinulatio

Simulations essais flexion des travées

⇒ Caractérisation en Flexion

abarataira da Mácapiqua das Salidas INSA da IVAN

Matérial at maéthagal

1.4

1.6

Caractérisation du tissu trabéculaire

⇒ Lois élastique et élasto-plastique

abarataira da Mácapiqua das Salidas INSA da IVAN

Matérial at maéthagal

Résultats

abarataira da Mácanique dos Salidos INSA da IVON

Acquisition Images 3D Haute définition

⇒ Tomographie (10 µm) : 44 échantillons cubiques (Médiaux et latéraux confondus)
 ⇒ I RM (78 µm) : 34 échantillons cubiques (Médiaux et latéraux confondus)

M47- F 86 ans

M59 - H 79 ans

M60 - F 65 ans

M61 - F 65 ans

abarataira da Másapiqua das Salidas INSA da IVAN

Résultats sur Calcanéums entiers

 \Rightarrow Corrélation entre la contrainte maximale de compression σ et la densité Hounsfield HU

- Mécanique : sur cube médial
- Scanner X : sur calcanéum entier
- •IRM ex vivo : sur calcanéum entier

⇒ Corrélations paramètres Histo - IRM ex Vivo

Daramàtras		Corrélations	;
	n	r	р
Densité volumique			
BV/TV (%)	7	0.70	0.04
Structure			
TbTh (µm)	7	0.69	0.04
TbN (mm^{-1})	7	0.68	0.05
TbSp (µm)	7	0.87	0.005

Coefficients de corrélation de Pearson (r) et probabilité associée.

abarataira da Mácapiqua das Salidas INSA da LVON

Décultata calcomérumo ambia

Résultats sur Calcanéums entiers

 \Rightarrow Corrélations entre le Module d 'Young, σ_{max} et le BMD mesuré par DXA :

• DXA : sur calcanéum entier

abarataira da Mácapiqua das Salidas INSA da IVON

Décultata calaque évuesa autia

Résultats « Mécanique »

Corrélations entre la contrainte maximale, le Module d 'Young et la densité apparente :

• Mécanique et densité apparente : sur cube médial

abarataira da Mácapiqua das Salidas INSA da IVAN

Dégultata gulaga mé

Résultats « Mécanique »

⇒ Corrélations entre les différents Modules d 'Young et la densité apparente

abarataira da Mácapiqua das Salidas INSA da IVAN

Décultate aulace mé

Mécanique - Structure

⇒ Corrélations entre les paramètres mécaniques et le volume trabéculaire osseux calculé par histomorphométrie (BV/TV 2D)

- Mécanique : sur cube médial
- 3 Coupes Histomorphométriques sur cube latéral

Mécanique - Architecture

⇒ Corrélations entre les paramètres mécaniques et le BV/TV 2D et 3D (par Tomographie 10 µm)

phorataira da Mácaniqua das Salidas INISA da LVON

Mécanique - Anisotropie

⇒ Corrélations entre les modules d 'Young et l'anisotropie MIL selon les directions X, Y et Z (calculé par Tomographie 10 µm)

MIL :

Direction privilégiée des travées

TEALU

Mécanique - Irrégularité

⇒ Corrélation entre la contrainte maximale σ_{max} et la dimension fractale D (calculée en 3D par I RM 78 µm)

TEALU

Mécanique - Microradiographie

⇒ Corrélations entre paramètres Mécaniques mesurés sur échantillons cubiques et Microradiographie sur 1/2 pastille adjacente

- Mécanique : sur cube médial
- Microradiographie : sur 1/2 pastilles inter Medio-Latérale

INDUCIC

Mécanique - MEF

⇒ Modèles Hexaèdriques (Brique) (Comportement élastique) :

✓ Tomographie : Latéraux (27 échantillons en 5.12 mm³, 15 échantillons en 6.6 mm³)

Médiaux (16 échantillons en 5.12 mm³, 13 échantillons en 6.6 mm³)

TOMOGRAPHIE (40 µm)					E	num trabéculaire	
Côté	n	Volume (mm ³)	E_{app}^{exp} (MPa)	Moyenne (MPa)	Ecart type	Médiane	Plage
Latéral	27	(5.12^3)	390	94 000	142 000	37 000	[3 900, 680 000]
Latéral	15	(6.6^3)	221	126 000	164 000	66 000	[4 300, 524 000]
Médial	16	(5.12^3)	297	37 000	29 000	27 000	[2 860, 97 500]
Médial	13	(6.6^3)	218	31 700	23 500	25 000	[2 240, 87 200]

✓ IRM : Latéraux (11 échantillons) & Médiaux (10 échantillons)

IRM (78	μm)				E	num trabéculaire	
Côté	n	Volume max (mm ³)	E_{app}^{exp} (MPa)	Moyenne (MPa)	Ecart type	Médiane	Plage
Latéral	11	(7.66^3)	460	26 500	23 350	15 600	[6 500, 72 200]
Médial	10	(7.3^3)	362	109 200	166 300	24 000	[3 000, 538 000]

pharataira da Mácapiqua das Salidas INSA da IVAN

Dágultata Culaga MI

Squelettes MEF

⇒ Modèles Poutres :

 Squelettes et modèles poutres : 8 échantillons suffisamment filaires pour être squeletisés et 7 modèles numériques basé sur les TbTh

⇒ Loi élastique parfaite :

Squelettes (40 μm)				/	E	num trabécula i e		
Côté	n	Volume max (mm ³)	E_{app}^{num} (MPa)	Moye (MIF	enne Pa)	Ecart type	Médiane	Plage
Médial	7	(6.6^3)	36	103	500	7 800	5 500	[4 400, 19 700]

⇒ Loi élasto-plastique avec léger « écrouissage » :

Squelettes (40 µm)					
(MPa)	n	Moyenne (MPa)	Ecart type	Médiane	Plage
E ^{num} trabéculai re	7	11 100	10 800	4 900	[6 100, 19 700]
S ^{num} etrabécula ire	7	243	210	132	[80, 330]

Travées MEF - Essai élastique

Valeurs des Modules d 'Young (Gpa) déterminées après simulation d 'un comportement élastique

Travées MEF - Essai à rupture

⇒ Valeurs des Modules d 'Young et des limites élastiques déterminées après simulation d 'un comportement élasto-plastique parfait par 1/2 pastilles

¹ / ₂ Pastille	Modules d'Young moyen (MPa)	Limite Elastique moyenne (MPa)
N°56	4454	53
N°57	2250	25
N°59	8803	47
N°61	1120	40
N°63	3247	27
N°64	4800	47

3 travées prélevées par 1/2 pastille

abarataira da Mácapiqua das Calidas INCA da LVAN

Jágy Itata travá

Travées MEF - Corrélation d'images

⇒ Exemple de corrélation d 'image au cours d 'un essai de microflexion -Comparaison au modèle éléments finis

Simulation par EF d 'un essai de microflexion

Champ de Déformations par corrélation d'images

abarataira da Mácapiqua das Salidas INSA da LVAN

Jágultata travá

abarataira da Mázapiqua das Salidas INSA da LVON

Sur Calcanéum entier :

- ⇒ Mesures US : Roi difficile à repérer, mesures et corrélations significatives
- ⇒ <u>Mesures DXA</u>: I dem à la Littérature et corrélations significatives avec E (0.78 < r < 0.85)</p>
- ⇒ <u>Scanner X :</u> Densité HU pour n=10, pas de calcul de BMC
- ⇒ <u>IRM *in vivo*</u>: Corrélations significatives avec histo, mais n=8
- ⇒ Sur Echantillon cubique :
- ⇒ <u>Histomorphométrie</u>: Mesures sur cube latéral uniquement.
 - Biais / Techniques employées sur échantillon médial, même si corrélations significatives entre Med-Lat, avec l'I RM 78 μm et la μTomographie 10 μm.
- \Rightarrow <u>IRM</u> : Influence de la moelle, Echantillons taillés pour limiter les effets de bords
 - Résolution proche des TbTh
 - Segmentation délicate
 - mais corrélations significatives entre paramètres méca et architecturaux

Sur Calcanéum entier :

⇒ Mesures US : Roi difficile à repérer, mesures et corrélations significatives

⇒ <u>Mesures DXA</u>: I dem à la Littérature et corrélations significatives avec E (0.78 < r < 0.85)</p>

- ⇒ <u>Scanner X :</u> Densité HU pour n=10, pas de calcul de BMC
- ⇒ <u>IRM in vivo</u>: Corrélations significatives avec histo, mais n=8.
- ⇒ <u>Sur Echantillon cubique :</u>
- ⇒ <u>Histomorphométrie</u> : Mesures sur cube latéral uniquement
 - Biais / Techniques employées sur échantillon médial, même si corrélations significatives entre Med-Lat, avec l'I RM 78 μm et la μTomographie 10 μm.
- ⇒ <u>IRM</u> : Influence de la moelle, Echantillons taillés pour limiter les effets de bords
 - ✓ Résolution proche des TbTh
 - ✓ Segmentation délicate
 - ✓ mais corrélations significatives entre paramètres méca et architecturaux

⇒ Sur Echantillon cubique

⇒ MicroTomographie à 10 µm :

- ✓ Différence de taille entre échantillons réels et volumes imagés
- Différences significatives M / L mais corrélations significatives entre paramètres architecturaux
- ⇒ Essais Mécaniques :
 - ✓ Influence du prélèvement (repérage des directions trabéculaires par radio)
 - ✓ Paramètres méca en accord avec la littérature
 - ✓ Corrélations significatives avec paramètres structuraux et architecturaux

⇒ Sur Travées :

⇒ Tomographie à 20 µm :

- Tomographie sur travée sèche
- Méthode précise, bon contraste et seuillage
- ✓ 1 Travée imagée à 2 µm à l'ESRF → Analyse + fine de la structure

⇒ Essais Mécaniques :

- ✓ Bonne reproductibilité dans le domaine élastique
- ✓ anisotropie assez forte
- Champ de déformations par corrélation
 Quantification degré d'endommagement

- ⇒ Sur Echantillon cubique :
- ⇒ MicroTomographie à 10 µm :
 - ✓ Différence de taille entre échantillons réels et volumes imagés
 - Différences significatives M / L mais corrélations significatives entre paramètres architecturaux
- ⇒ Essais Mécaniques :
 - Influence du prélèvement (repérage des directions trabéculaires par radio)
 - Paramètres méca en accord avec la littérature
 - Corrélations significatives avec paramètres structuraux et architecturaux.
- ⇒ Sur Travées :
- ⇒ Tomographie à 20 µm :
 - ✓ Tomographie sur travée sèche
 - ✓ Méthode précise, bon contraste et seuillage
 - ✓ 1 Travée imagée à 2 µm à l 'ESRF → Analyse + fine de la structure
- ⇒ Essais Mécaniques :
 - ✓ Bonne reproductibilité dans le domaine élastique
 - ✓ anisotropie assez forte
 - ✓ Champ de déformations par corrélation → Quantification degré d'endommagement

abarataira da Mácapiqua das Salidas INSA da IVON

Curthèse Dissussi

⇒ Modélisation Eléments Finis :

- ✓ Limitation en terme de volume
- ✓ Limites du modèle Brique pour faible VTO (<12%)
- ✓ Squelettisation et modèles poutre prometteur mais à améliorer
- ✓ Analyse des déformations locales possible
- Mais globalement propriétés intrinsèques du tissu trabéculaire à prendre en compte

Proposition d'un schéma de prédiction du risque fracturaire

- Campagne d'essais ciblée populations « normale » et « ostéoporotique » + Scanner X + DXA + paramètres de qualité osseuse
- IRM clinique ou expérimental pour estimer l'architecture +/- fine
- Construction d'un modèle Elément Finis (de type hybride)
 - $\rightarrow\,$ Déduction d 'un Module d 'Young Tissulaire et/ou d 'une contrainte élastique limite σ_e
- Recherche de corrélations entre paramètres Méca et Paramètres Structuraux -Architecturaux et de qualité osseuse (courbure, lamelles...)
- ✓ Evaluation du risque fracturaire

➡ Modélisation Eléments Finis :

- ✓ Limitation en terme de volume
- ✓ Limites du modèle Brique pour faible VTO (<12%)</p>
- Squelettisation et modèles poutre prometteur mais à améliorer
- ✓ Analyse des déformations locales possible
- Mais globalement propriétés intrinsèques du tissu trabéculaire à prendre en compte

⇒ Proposition d 'un schéma de prédiction du risque fracturaire

- Campagne d 'essais ciblée populations « normale » et « ostéoporotique » + Scanner X + DXA + paramètres de qualité osseuse
- I RM clinique ou expérimental pour estimer l'architecture +/- fine
- ✓ Construction d 'un modèle Elément Finis (de type hybride)
 - $\rightarrow\,$ Déduction d 'un Module d 'Young Tissulaire et/ou d 'une contrainte élastique limite σ_e
- Recherche de corrélations entre paramètres Méca et Paramètres Structuraux -Architecturaux et de qualité osseuse (courbure, lamelles...)
- ✓ Evaluation du risque fracturaire

Schéma prédictif

⇒ Phase 1

Paramètres mécaniques fonctions de paramètres cliniques

⇒ Phase 2

Courbe Expérimentale (Compression ou Microflexion)

abarataira da Másapiqua das Salidas INSA da IVAN

Culthèse Dissussi

Schéma prédictif

⇒ Phase 3

Paramètres structuraux & architecturaux

Paramètres mécaniques fonctions de paramètres structuraux, architecturaux ou de qualité osseuse ⇒ Phase 4

Réduction de l'intervalle de confiance pour une meilleur prédiction du risque

abarataira da Mácapiqua das Salidas INSA da IVAN

Curthèses Dissussi

abarataira da Mácanique das Salidas INSA da IVON

 \Rightarrow Etudes classiques sur une série conséquente de calcanéums (31)

✓ Corrélations de paramètres

Histomorphométrie \rightarrow Mécanique \leq

 $(\mathbf{E}_{app}, \mathbf{s}_{rupture})$

DXA

✓ Accord avec données de la littérature mais forte dispersion

⇒ Etudes Novatrices (n= 8 à 20) (Clinique)

✓ Corrélations de paramètres

 \rightarrow Mécanique ------Scanner X (densité HU)

> IRM Clinique (« ex vivo ») (paramètres types histomorphométriques)

Micro-radiographie (degré de minéralisation)

✓ Corrélations significatives mais séries relativement faibles

⇒ Etudes originales

✓ Apport des techniques d 'imagerie haute résolution :

- \rightarrow Corrélations (n=16 à 19)
 - Mécanique Tomographie (µCT)
 - Corrélations simples significatives mais peu d'apport des paramètres 3D classiques ou directs dans l'estimation des propriétés mécaniques.
- ✓ MEF : (n=10 à 27)
 - → Modélisation fidèle de l'architecture 3D mais limitation du fait des capacités de calcul
 - → Intérêt de la méthode de squelettisation (simplicité, gain de temps de calcul)
 - → Evaluation assez correcte des propriétés mécaniques tissulaires

- ⇒ Etudes originales
 - ✓ Travées (n=30)
 - \rightarrow Estimation correcte des propriétés mécaniques (E $_{trabéculaire}$ et $\sigma_{etrabéculaire}$
 - → Etude des champs de déformations par corrélation d 'image & à relier au d° d 'endommagement du tissu
 - Proposition d'une méthodologie d'évaluation du risque fracturaire personnalisée prenant en compte :
 - → la densité, l'élasticité et l'architecture de l'os spongieux, ainsi que la qualité du tissu trabéculaire (minéralisation, texture, irrégularité, facteurs du remodelage ...)
 - → Nécessité de compléter les séries d'essais en laboratoire en relation avec les données issues de la clinique (qualité du tissu osseux) et facteur de risque fracturaire.

Travee a 2 µm

abarataira da Mácanique das Salidas INSA da IVON

Thèse de Doctorat 18 Décembre 2002

Caractérisation Biomécanique et Modélisation 3D par Imagerie X et IRM haute résolution de l'os spongieux humain : Evaluation du risque fracturaire

Hélène Follet

irecteur de Thèse : Pr C. Rumelhart

abarataira da Mácapiqua das Salidas INSA da IVAN