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Introduction

A. Quantum electrical circuits

A.1 Decoherence of macroscopic systems

Although quantum mechanics was developed to explain the properties of microscopic systems
like electrons in atoms, its formalism treats all degrees of freedom, microscopic or macroscopic,
on the same footing. Hence, the pioneers of quantum mechanics were puzzled by the non ob-
servation of quantum phenomena at the macroscopic level. Why macroscopic objects, made of
atoms that behave quantum mechanically, never display quantum effects themselves? Answer-
ing this question requires to establish the connection between the quantum and the classical
descriptions. The Copenhagen interpretation of quantum mechanics actually circumvents this
problem since it treats quantum and classical systems differently. The projection postulate
states that when a quantum system interacts with a classical measurement apparatus, the
quantum system is projected onto a subspace determined by the result of the measurement.
Despite internal consistency and agreement with the experimental facts, this formalism is a
black box which explains neither the mechanisms involved in a measurement process, nor the
apparent irrelevancy of quantum mechanics at the macroscopic level. This slackness is best
captured by the famous Schrédinger’s cat paradox [1]. This thought experiment focuses on a
macroscopic system, namely a cat, with two types of states: ”"dead states” and "alive states”.
The cat’s state gets entangled with that of a radioactive atom, so that after some time it be-
comes a superposition of both the dead and the alive states. Why such strange states never
show up was fully justified only in the late seventies, when the theory of decoherence explained
within the framework of quantum mechanics that the cat is only in a statistical sense in a
superposition of the dead and the alive states [2]. Within very general hypotheses, this theory
proves that the reduced density matrix of a quantum system in interaction with the numerous
degrees of freedom of a measurement apparatus becomes diagonal after a usually very short
time. This coherence time is furthermore incredibly short for a quantum system with many

degrees of freedom itself, which explains why macroscopic objects behave classically.

15



16 INTRODUCTION

A.2 Macroscopic quantum electrical circuits

However, nothing forbids for a macroscopic system to behave quantum mechanically when its
numerous microscopic degrees of freedom are tied together to form a few collective ones. This
point was made particularly clear by A. J. Leggett who suggested at the beginning of the
eighties that macroscopic electrical circuits could behave quantum mechanically provided they
are sufficiently decoupled from the outside world. Together with O. Caldeira, they proved that
a quantum property like tunneling should be observable for a collective electrical variable of
a micron-sized junction between two superconductors [3]. Moreover, they predicted that the
tunneling rate would be affected only moderately by the other degrees of freedom of the circuit.
These predictions were found in excellent agreement with the tunneling rate measurements
conducted at Berkeley and at Saclay on current-biased Josephson junctions [4]. The direct
spectroscopy of quantum levels in various junction circuits further proved beyond any doubt

that electrical circuits can indeed behave quantum mechanically [4, 5].

A.3 The art of quantum computing

The general interest in quantum electrical circuits strongly increased in the nineties, when the
power of quantum mechanics for computing purposes was discovered. At first glance, using
quantum mechanics for processing information appears paradoxical because the underlying
uncertainty in quantum mechanics seems incompatible with exactness. However, Deutsch and
Joza exhibited a quantum algorithm solving a simple discrimination problem more efficiently
than any classical one [6]. This pioneering work demonstrated that quantum computers could
perform better than classical ones for some specific tasks. Shor’s discovery in 1994 of a quantum
algorithm able to factorize large numbers in polynomial time with the number size [7] came as
breaking news. It indeed proved that quantum computers could perform strategic tasks beyond
reach of usual computers whatever their speed gains in the future.

Quantum computing is based on the linearity of quantum mechanics combined with a clever
evolution of the quantum state of the machine [8, 9]. First, linearity ensures that any unitary
quantum processor treating a superposition of input states produces the corresponding super-
position of output states. However, this massive built-in parallelism is not directly useful : its
benefit is in general lost when the output state is measured since only one particular outcome
state is obtained. Quantum algorithms combine evolution and measurement steps in such a way
that the answer to the problem is necessarily the outcome of the final projective measurement.
Up to now only a handful of quantum algorithms have been discovered.

The issue of the robustness of quantum computers with respect to computational errors
was the next problem in line after the algorithms. Quantum error correcting codes based on
redundancy were invented in 1996 [10, 11]. They prove that a quantum processor does not

need to be perfect and can endure a small amount of decoherence'. As a rule of thumb, these

Tt is worth noticing that a significant fraction of the ressources of a conventional processor is dedicated to
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codes can be used in a quantum processor provided it is able to perform in average 10* logic

operations without error [12].
A.4 Physical implementations of quantum computers

. Controlled
Quantum bits  |nteractions  readout

|
e @

\ 4

. Single quantum

— bit operations
Environment P

Figure 1: A quantum processor consists of a collection of interacting quantum bits which can
be independently manipulated and measured. The coupling with the environment should be kept

low enough to maintain quantum coherence.

This series of theoretical breakthroughs triggered an intense search for physical systems in
which quantum algorithms could be implemented. An ideal quantum processor would consist
of a collection of two level systems called quantum bits, or qubits (Figure 1). These qubits
must be quantum coherent, independently addressable, measurable when necessary, and their
interactions must be controllable. These requirements are extremely difficult to conciliate, and
only a few systems, fulfilling at most some of these criteria, have been proposed.

The first ones were microscopic systems like atoms and ions because they are naturally
quantum coherent. Quantum gates have already been demonstrated using an assembly of a few
trapped ions [13]. However, addressing the optical levels and performing the readout for each
ion in larger systems remains a tremendous challenge. Presently, the most advanced system
consists of the nuclear spins of well-chosen organic molecules, manipulated and measured using
NMR techniques. Recently, Shor’s factorization algorithm has been implemented for the integer
15 using 7 spin-1/2 nuclei of a molecule [14]. However, this technique which makes use of a large

number of ancillas does not allow to address and measure the qubits independently. Due to the

error correction.
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randomness in the initial thermal population of the Zeeman states, the NMR signal arising from
multi qubit entanglement decreases exponentially with the number of qubits involved, which
sets an upper limit to the size of a processor.

At the opposite of microscopic systems, electronic circuits are not naturally quantum coher-
ent, but they are more easily scalable because they are fabricated using lithography techniques
[15]. They are furthermore simple to drive and to readout since they only require electrical
signals propagating on wires. At the time of this writing, about ten electronic qubit projects
are being developed [16], and many other ones have been proposed. This thesis describes some
strategies to implement a quantum bit in a particular type of superconducting circuit, the
so-called ” Cooper-pair box”.

B. Previous experiments on the Cooper pair box

The ”Cooper pair box”, a circuit based on the competition between the Josephson and single
Cooper pair charging effects, was first investigated at the beginning of the nineties [17]. Soon

after, it was shown to be a good candidate to implement a quantum bit [18, 19].

B.1 Energy levels

N e

24
g 2
sland 9 S -
' o \_/\_/\_/
Josephson__"5 d )
junction 0 05 1 15 2 25 3

ng:Cng/Ze

Figure 2: The Cooper pair box. Left panel: Electrical scheme showing the Josephson junction,
the superconducting island, the gate, and the gate source of the box. Right panel: Low energy
region of the energy spectrum calculated for E; = Ec = 1 kK and plotted as a function of the

gate voltage expressed in reduced units. The spectrum is 2e-periodic with the gate charge.

The basic Cooper pair box consists of a low capacitance superconducting electrode, the island,

connected to a superconducting reservoir by a Josephson junction with capacitance C'; and
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Josephson energy E;, and biased by a voltage source V, in series with a gate capacitance C
(Figure 2). In addition to E;, the box has a second energy scale, the Cooper pair Coulomb
energy Ec = (2¢)?/(2(C; + Cy)), where e is the charge of one electron. The electrostatic
Hamiltonian is diagonal in the charge state basis |n), where n is the number of extra Cooper
pairs in the island, whereas the Josephson Hamiltonian couples state |n) to states |m +1). As
a result of this competition, the eigenstates of the box are superpositions of several charge
states. The energy spectrum is anharmonic, and varies periodically with the reduced gate
charge n, = C,V,/2e. For a wide range of parameters, the ground and first excited states |0)
and |1) form an effective two level system which can be used as a qubit. The manipulation of
this qubit can be achieved by applying resonant microwave pulses on the gate. The qubit state
determination can be done through a measurement of the island charge, which depends on the
state of the box.

B.2 Determination of the energy of state |0)

E /E_=0.075

J C

oFcilthéory

— exberimeht |

N e > =t
o | | |
I < —t S
Vs ST
e N

i) S S S S S

-1/2 0 1/2 1 3/2

ng=CgVg/(2e)

Figure 3: Left panel: Electrical scheme of the experiment of V. Bouchiat et al [17]. The
average charge of the Cooper pair box island is measured with a single electron transistor based
electrometer, coupled capacitively to the island box. Right panel: Measured mean charge (0| 1 |0)
of the box in its ground state |0) as a function of the reduced gate charge, for E;/Ec = 0.075.
Due to this small ratio, the ground state |0) is almost an eigenstate of the charge operator,
except in the neighborhood of half integer values of n,, where it is a superposition of two charge

states differing by one Cooper pair.

V. Bouchiat et al. [17, 18] first determined the dependence of the ground state energy on the gate
voltage. In this experiment (Figure 3), the Cooper-pair box island is weakly coupled through
a small capacitor to a single electron transistor which measures the mean island voltage V, and

thus the mean average number of extra Cooper-pairs in the island, (0|1 |0) = eV/E.+n,. This
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measurement is equivalent to the determination of the ground state energy since 0E,/0n, =
2eV. When the gate charge is varied, the island charge displays a Coulomb staircase pattern

in good agreement with the predictions.

B.3 Preparation of coherent superpositions of states |0) and |1)

The next step was performed by Nakamura et al., from NEC, who succeeded in performing
the spectroscopy of a Cooper pair box and preparing coherent superpositions of the states |0)
and |1) [19]. In this experiment, the population of state |1) was inferred from the current I,
through an auxiliary ultrasmall Josephson junction connected to the island, and permanently
biased above the gap voltage by a constant voltage source V; (Figure 4). The spectroscopy
was carried out by applying a continuous microwave voltage to the gate, and by sweeping
the DC gate voltage (Figure 5). Resonant population of state |1) is revealed by a peak in the
measured current I; when the energy splitting matches the microwave frequency vgp, i.e. when
hvrp = hvg = (B — Ep).

The manipulation of the quantum state was performed through non adiabatic perturbation
of the Hamiltonian by applying to the gate square pulses with a very short rise time. The
average current /;, measured while repeating the gate pulses, oscillates with the pulse duration
7, revealing coherent Rabi oscillations between states |0) and |1). However, the coherence time
of this superposition never exceeded a few nanoseconds because of the decoherence induced
by the invasive readout device and/or by the charge noise generated by microscopic charges
randomly moving in the vicinity of the island and possibly in the junction oxide itself [20].
This charge noise exists in all charging devices, and has a 1/f power spectrum with a typical
amplitude 1077 €2 for metallic devices (probed up to f = 10 MHz).

B.4 Can the Cooper-pair box be used as a qubit?

Although this last experiment proved that the Cooper pair box is an appealing candidate for
implementing a qubit, its readout strategy, based on a permanent measurement of the quantum
state, does not allow to perform single measurements and to achieve long coherence times. An
ideal readout system should be switchable in order to allow for time-resolved single measure-
ments, induce negligible decoherence when it is off, and provide high-fidelity measurements
when it is on. In order to perform single measurements, we have investigated two types of
readout strategies, respectively based on charge and current measurements. These readout
strategies should also be designed so that the Cooper-pair box is as immune as possible to
the charge noise which has possibly limited the coherence time in the experiments we have
described.
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Figure 4: Coherent manipulation of the quantum state of a Cooper pair box, in the experiment
of Y. Nakamura et al. [19]. Left panel: Simplified electrical scheme of the experiment. A fast
voltage pulse is applied to the gate to bring the system at the charge degeneracy point ny= 1/2.
The sudden change of the hamiltonian induces Rabi oscillations between the |0) and |1) states
during the pulse duration 7. Right panel: Oscillations of the occupation probability of state |1)
are revealed by oscillations of the current probe I; with 7.

Figure 5: Spectroscopy of the Cooper pair box. The energy difference between states |0) and |1)
18 measured by applying to the gate continuous radiofrequency signals at different frequencies
and by sweeping the gate charge n,. Top panel: A resonant increase of the current I through
the probe junction (see text) is observed when n, is such that the energy difference matches
the applied frequency. Bottom panel: Energy diagram illustrating the excitation of the box by

radiofrequency irradiation. Solid lines represent eigenenergies of the box whereas dashed lines
show the electrostatic energy of charge states.
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C. Charge measurement of the Cooper pair box

We have developed new types of electrometers in order to discriminate qubit states from the
difference of their average island charges. The usual single electron transistor set-up is indeed
far too slow for time-resolved measurements because of the high impedance of the transistor.
The group at Chalmers University has developed a radiofrequency impedance measurement
technique which allows submicrosecond measurements [21]. However, the RF-SET induces
unwanted relaxation from state |1) to state |0). Our motivation for developing new electrometers
was thus to achieve time-resolved charge measurements while inducing as little relaxation as
possible. These new electrometers are based on the single Cooper pair transistor, which behaves

as a charge-controlled Josephson junction.

C.1 The single Cooper pair transistor

lo¥o ! E¢ =0.05, 0.4, 1 (bottom to top)

0.5

lo Ly /
1 P Ib
c, X
0.25

|9 20
@ |0|X| - , ,
0 0.25 0.5 0.75 10

7 n'g = C'gV'g/2e

Figure 6: The Cooper pair transistor or Bloch transistor. Left panel: Flectrical scheme. Two
Josephson junctions (with critical current 1y) and a gate capacitor delimit the transistor island.
The gate voltage V; determines the effective critical current of the transistor, which is biased by
a current source with impedance Z(w). Right panel: Predicted modulation of the critical current
]gf f of the transistor with the reduced gate charge n'g.

The Cooper pair transistor [22] consists of a Cooper pair box with its Josephson junction split
into two junctions connected to a biasing circuit (Figure 6). When maintained in its ground

state |0), the Cooper pair transistor behaves as a tunable Josephson junction with a critical

/
g

can thus be used as a sub-electron electrometer, that is an electrometer able to detect a charge

current Igf f (nj,) varying periodically with the gate charge nj. This superconducting device

smaller than 2e. Contrarily to the single electron transistor, in which the electrons entering and
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exiting the transistor island produce a back-action on the measured system with a shot noise
spectrum, the supercurrent through the single Cooper pair transistor produces a back-action
which follows the fluctuations of the phase across it, and thus has no shot-noise. The dynamics
of this phase is controlled by the embedding circuit, and the noise arises from the thermal
fluctuations in the dissipative elements. The mechanisms responsible for decoherence during the
measurements are thus very different from those acting in the single electron transistor, which
is a further reason for investigating this type of electrometer. Depending on the impedance

seen by the transistor, two types of measurement are possible, as discussed below.

C.2 Continuous charge measurement with a DC-shunted Cooper pair

transistor

We have measured the I — V' characteristic of a DC shunted transistor using a SQUID series
array developed at NIST [23]. We have first tested this SQUID-based technique by measuring
the I —V of a single small Josephson junction (experiment 1, reference [24]). Then, we have
fabricated the circuit described in Figure 7, in which a fraction of the current flowing through
the shunt resistor of the transistor is diverted in the input coil of the SQUID array amplifier
(experiment 2, reference [25]). We have measured the response of this electrometer to a gate
charge step Ang. The achieved sensitivity is 3.107% e/ v/Hz within a 1 MHz bandwidth, limited
by the SQUID array noise and cut-off frequency. Although the bandwidth compares to that of
the RF-SET, the sensitivity is worse by about two orders of magnitude, which could however be
greatly improved by optimizing the array characteristics for this specific application. We have
also found that heavy filtering was required in order to protect the circuit under measurement
from the noise produced by the Josephson oscillations in the array. Our conclusion is that this

electrometer is not presently suitable for the readout of the Cooper-pair box.
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Figure 7: Electrometer based on a DC shunted single Cooper pair transistor. Top panel: Elec-
trical scheme. Bottom left panel: Measured current voltage characteristic of the transistor for
n;] =0 and n;] =0.5. (I; and V; correspond to I; and V; averaged over the phase dynamics

of the transistor). Bottom right panel: Detection of a charge step of the input charge (1 MHz
bandwidth, averaged over 4000 traces).
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Figure 8: Superconducting electrometer based on an overdamped DC unshunted single Cooper
pair transistor. Top panel: FElectrical scheme showing the RC shunt in parallel with the current
source and the transistor. Bottom left panel: Single shot current voltage characteristic of the
transistor for a bias current ramping speed of 690 nA/s. The transistor jumps to a non-zero
voltage state at a value I of the bias current, called the switching current. When a square bias
current pulse is applied, the transistor switches with a probability that depends on the height of
the pulse and on the gate charge. Bottom right panel: Experimental switching probability of a

transistor as a function of the gate charge for 2 us long current pulses with amplitude 13.5 nA.
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C.3 Pulsed charge measurement with a DC-unshunted Cooper pair

transistor

The second strategy to measure the critical current of the Cooper pair transistor is to keep it
unshunted at DC (Figure 8), so that it switches to the voltage-state when the bias current I,
approaches the critical current [26]. The voltage which develops after this stochastic switching
can then be detected using a room temperature amplifier. We have measured the probability
of switching as a function of n, for square bias current pulses with duration 7 (experiment 3,
reference [27] and Figure 8). We have found that such an electrometer allows to detect a gate
charge variation An; as small as 2% of a Cooper pair in a measuring time 7 = 2 us with a
confidence level of 97%. This corresponds to an equivalent sensitivity of 2 1075 e/ VHz within
a 1 MHz bandwidth. Again, this sensitivity is not as good as that of the best RF-SET, but this
design allows better control of the back-action on the Cooper pair box. We have calculated in
detail this back-action, and found in particular that the decoherence due to the transistor can
be made negligible when the readout current is zero, and that the induced relaxation from state
|1) to state |0) can be made low enough during the measurement itself. We note however that
the superconducting electrometer does not reach the quantum limit in the sense that it would
induce full decoherence of the Cooper pair box before it has completed the measurement.

It is important to point out that the above mentioned sensitivity was obtained only over
short periods of time during which the gate charge was by-chance sufficiently stable. Indeed,
low frequency charge fluctuators with amplitudes larger than the 0.01 e accuracy required in

the gate tuning were often observed, thus preventing the proper operation of the device.

C.4 The drawback of charge measurements

Whatever the electrometer, the charge measurement strategy suffers from a severe drawback:
measuring the charge of the Cooper-pair box island indeed requires biasing the Cooper-pair
box at values of n, where both states |0) and |1) have different island charges, i.e. when
Ov;/Ong, # 0. But it is clearly more favorable to manipulate the quantum state at a value
of n, where dvg;/0n, = 0, since there charge fluctuations have no effect on the transition
frequency at first order. The charge readout of the Cooper-pair box thus requires to vary ng
just before measuring the qubit state. Furthermore, better immunity to charge noise is achieved
when Ov3, / 8n3 is small, which requires large ratios E;/Ec, i.e. a small difference between the
island charges in states |0) and |1). All this makes difficult to conciliate charge noise immunity

and high resolution charge measurements in the Cooper pair box.
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D. The quantronium: a quantum bit prototype
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In view of the weaknesses plaguing the charge readout strategy of the Cooper-pair box, we have

considered an alternative strategy based on the measurement of a current in a modified Cooper

pair box circuit.D.1 The split Cooper pair box

D.1 The split Cooper pair box
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Figure 9: The split Cooper pair box. Left panel: FElectrical scheme. The Josephson junction of a
Cooper pair box is split in two nominally identical junctions in order to form a superconducting
loop, which can sustain state-dependent persistent currents. The superconducting phase differ-
ence 0 across the series combination of the two junctions can be controlled by the magnetic flux
through the loop. Top right panel: Enerqgy of states |0) and |1) as a function of the gate charge
ng and of the phase difference §. Bottom right panel: Loop currents iy and iy of |0) and |1),

as a function of o for n, =1/2.
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In this circuit [28], shown in Figure 9, the junction is split into two junctions with energy
E;/2 forming a superconducting loop. The superconducting phase difference 0 across the series
combination of the two junctions, proportional to the flux through the loop, is a new external
parameter that controls the energy spectrum. Persistent mean loop currents iy = %%—Eﬁ and
1= %%l are present in the states |0) and |1) and provide a new readout port different from
the charge port used for state manipulation: instead of measuring a charge, the states can be
discriminated through the loop currents. A Cooper pair box with a larger E;/F¢ ratio can
thus be used, leading to a reduced sensitivity to charge noise. As explained below, protection
from charge and phase noise during state manipulation is achieved by biasing the circuit at the
working point (n, = 1/2, § = 0) where the transition frequency v, is stationary with respect

to both external parameters.

D.2 State readout
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Figure 10: The quantronium. Left panel: FElectrical scheme showing the different functional
blocks. The readout block biases and measures an additional Josephson junction used as a
current threshold detector. This junction switches to the non-zero voltage state when a read-
out current pulse is applied with different probabilities for the two states |0) and |1). Right
panel: Switching probabilities of the readout junction for state |0) (measured) and for state |1)
(calculated) for a 100 ns long readout pulse with variable height.

In order to measure the loop currents, we have inserted in the loop of the split box a third,
large Josephson junction with an energy £ > E; (Figure 10). The resulting circuit has been
nicknamed “quantronium”. When a bias current pulse with a suitable amplitude [, is applied
to the parallel combination of the large junction and of the two small junctions, the phase ¢
deviates from 0 and the loop current which develops adds to I, in the large junction. The large

junction can then be made to switch with a large probability for state |1) and a small one for
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state |0), so that the outcome of each single measurement is switching (no switching) with a
probability equal to the weight of state |1) (|0)) in the measured quantum state. The circuit
remains at the optimal working point during quantum state manipulation and the measure-
ment process can be triggered at will. In a preliminary experiment, we have characterized the
isolated detection junction, by measuring its switching probability as a function of the height
of bias current pulses (experiment 4, reference [28]). This experiment has shown that pulsed
measurements of the switching current of the junction are possible without degrading the cur-
rent resolution, despite the large bandwidth of the biasing circuit. We have then implemented

a complete device (experiment 5, reference [29, 30, 31, 32, 33]).

D.3 Spectroscopy of the quantronium

We have performed the spectroscopy of a quantronium sample as a function of § at n, = 1/2,
and as a function of ny at 6 = 0, by detecting the resonant increase of the switching probability
when a microwave voltage with a small amplitude is applied at the qubit transition frequency
before readout (Figure 12). As predicted, the linewidth gets sharper when the bias point gets
closer to the optimal point (n, = 0.5, 6 = 0) where the transition frequency is stationary with
respect to both control parameters. The best quality factor, obtained at this point, is 2 x 10*

(Figure 12, inset), which is sufficient to perform coherent manipulations of the quantum state.

20
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Figure 11: Calculated transition frequency vy as a function of ng and 6 for E; = 0.86 kK
and Ec = 0.68 kK.
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Figure 12: Measured vo; at 15 mK for n, = 0.5 (open symbols), and for 6 =0 (full symbols).
Solid lines have been calculated with E; = 0.86 kK and Ec = 0.68 kK. Inset: resonance
lineshape at the optimal working point ny, = 1/2 and 6 = 0. The corresponding quality factor
is 2.10%.

D.4 Coherent manipulation of the quantronium

The manipulation of the quantum state has been performed by applying microwave pulses
to the gate electrode, at frequencies vgp close to the transition frequency rg;. Starting from
state |0), such a pulse builds a superposition cos (6,,/2) |0) + sin (6,,/2) |1) of the eigenstates,
where the rotation angle 6, is proportional to the pulse amplitude Ugrr and to its duration 7.
After the pulse, the quantum state evolves ideally as cos (,,/2) |0) + sin (0,,/2) e*¥«® |1), with
©,(t) = 2mvgit. Any arbitrary quantum state can thus be prepared by combining a microwave

pulse and a free evolution.

Observation of Rabi oscillations

The evolution of the quantum state over multiple turn rotations, i.e. Rabi oscillations [34],
was observed by measuring the switching probability as a function of the pulse duration 7
(Figure 13). The frequency of these oscillations varies linearly with the amplitude Ugp of the
radiofrequency signal, as expected. That many turns can be piled up without significant decay of
the amplitude further demonstrates that the qubit state is manipulated without inducing much
decoherence. Note that Rabi oscillations have also been recently observed in other Josephson
qubit circuits [35, 36, 37].
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Figure 13: Observation of microwave driven Rabi oscillations between the |0) and |1) states of

the quantronium. Top panel: Experimental switching probability (dots) of the readout junction,

immediately after a resonant microwave pulse with duration 7. The line is a fit by an exponen-

tially damped sinusoid giving the Rabi frequency. Bottom panel: Measured Rabi frequency (dots)

as a function of the amplitude of the radiofrequency pulse. The observed linear dependence is

in agreement with theory.
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Probing decoherence during free evolution

In order to determine the coherence time of the quantronium during its free evolution, the
system was first driven from state |0) to the superposed state (|0) 4 1)) /v/2 by a first microwave
pulse. Then, it was left to evolve freely during a time At, during which uncontrolled degrees of
freedom of the whole circuit induce decoherence. A second pulse finally drives the quantronium
to a state having probability amplitudes on |0) and |1) that depend on the phase ¢, (At). The
resulting Ramsey-like oscillations of the switching probability [38] occur at the stroboscopic
frequency v rp—ro1, and decoherence is revealed by the decay of the amplitude of the oscillations
with At. The longest coherence time obtained is 75 = 0.5 us, which corresponds to a quality
factor Q = TvoiTh ~ 2.5 x 10%.
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Figure 14: Determination of the coherence time Ty during the free evolution of the quantronium.
A sequence of two phase-coherent microwave pulses separated by time At is applied to the gate.
This sequence prepares at time 0 a coherent superposition of states (10) + |1))/ V2 and analyses
it at time At. The amplitude of the observed Ramsey oscillations decays with the characteristic
time Ty. Dots: Measured switching probability of the readout junction after the pulse sequence.
Continuous line: Fit of the oscillatory pattern by an exponentially damped sinusoid with time
constant Ty = 0.5 us.
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E. Conclusion

Electrical circuits are in general so strongly coupled to their environment that they do not
behave quantum mechanically. Nevertheless, we have shown in this thesis work that, by an ap-
propriate design of a superconducting circuit, it is possible to reduce the coupling to a sufficient
extent so that the quantum state of the circuit can be manipulated over the coherence time
scale. Even if the goal of a high fidelity readout of the state was not reached, the measurement
scheme we have developed has the great advantage of being switchable, so that its effect during
manipulation of the state is weak. In these respects, the quantronium can be considered as
a qubit. The next step towards a quantum processor is to demonstrate quantum logic gate
operations with coupled quantronium circuits, which seems feasible given the level of quantum

coherence already achieved.
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The Josephson junction

A Josephson junction consists of two superconducting electrodes separated by a
thin insulating layer [39, 40]. It can be modeled by a capacitance C; in parallel
with a pure Josephson element with Josephson energy £;. The Josephson element
allows for the tunnelling of Cooper pairs. Its hamiltonian H J can be written on the
basis of charge eigenstates {|n) ,n € Z} associated to the number n of Cooper pairs
having crossed the junction:

Hy=-% ;Z(Im n+1[+n+1)(nf)n) , (1.1)
with n|n) =n|n).
The usual expression for H 7 is recovered using the fact that n and the

superconducting phase difference 3 across the junction are conjugated variables
(see Appendix 1-A):

~

Hy = —E;cos(d). (1.2)

The actual hamiltonian of the junction must also include the electrostatic

hamiltonian associated to its capacitance C';.

E3.CJ
Ej
4 N
[N L
Superconducting Insulating
Electrodes Barrier "
CJ

Left: Sketch of a Josephson junction. Top Right: Electrical symbol.

Bottom Right: Decomposition into a capacitor and a pure Josephson element.







Chapter 1
Cooper pair boxes and transistors

In this chapter, we describe the Cooper pair box (17, 41|, which is the simplest single Cooper

pair device, and two split-junction versions, namely the split Cooper pair box and the single
Cooper pair transistor [22, 42].

1.1 The basic Cooper pair box

Gate Gate Superconducting
Voltage Electrode reservoir

Source / z

Superconducting
Island

E;C
Cg J,~J

Figure 1.1: The Cooper pair box. Top: Schematic representation of the Cooper pair box and
of its biasing circuit, showing the Josephson junction with energy E; and capacitance Cy,
the superconducting island, the gate, and the gate voltage source V. Bottom: Corresponding

electrical scheme.

37
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1.1.1 The Cooper pair box circuit

The basic Cooper pair box [17, 41] consists of a low capacitance superconducting electrode,
called the island, connected to a superconducting reservoir by a Josephson junction with ca-
pacitance C; and Josephson energy E;, and biased by a voltage source V; in series with a gate
capacitance C, (Figure 1.1). In addition to £, the box has a second energy scale, the Cooper

Pair Coulomb energy:

~ (2e)?
EC - 2C2 ) (13)
where
Cy = Cg +Cy (14)

is the total capacitance of the island!.

1.1.2 Charge representation

Let n be the operator associated to the number of Cooper pairs in excess from neutrality in the
metallic island (more commonly called “the number of excess Cooper pairs”). The eigenstates
In) of n verify?:

-~

nn)=nln), ne?zZ.

At energies lower than the BCS gap, i.e. when no quasiparticles are present in the island, the
set {|n) ,n € Z} forms a complete basis for the states of the box. The total hamiltonian of the

box includes two different terms. First, the electrostatic hamiltonian of the circuit writes [43]:
]/—\Iel = Eo(n — ng)z ) (1.5)

where

c,V,

is the reduced gate charge. The hamiltonian of the box also includes the Josephson hamiltonian

(1.6)

which accounts for the tunneling of the Cooper pairs through the Josephson junction. Since n
identifies with the number of Cooper pairs having passed through the junction, the Josephson

term writes [see (1.1) p.35]:

'We have typically fabricated islands with an area of 1 ymx100 nm and aluminum Josephson junctions
with an area of 100 nmx100 nm. This results in C; of the order of 10 aF, Cj of the order of 1 fF, and
Ec ~ (2e)%/(2C}) of the order of 4 kK. E; is controlled independently with the oxydation of the junctions

and falls in the same range for the experiments we have performed.
2The index n €Z used in the charge state |n) is written in bold type in order to distinguish |n) from the

total energy eigenstates |k), k€N of the Cooper pair box, which are defined in next page. For instance, |0) is
the charge state with no extra Cooper pairs in the island whereas |0) is the ground state of the Cooper pair
box.
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ﬁJ:—%(Zm) (n+1)+|n+1) () . (1.7)

nez

This term couples consecutive charge states. In summary, the total hamiltonian of the box

writes in the charge representation:

H(ny) = ¥ [Ec(n—ny)* n) (n] — % (|In) (n + 1| = [n+ 1) (n])] . (1.8)

nez

The spectrum associated to this hamiltonian is discrete and 1-periodic on n, . Let us call |k)

the energy eigenstates and Ej their associated energies:

~

H(ng) [k) = Ey[k) (1.9)

with £ € N . The convention used in this thesis is to label the levels such that £ increases
with k, starting from k£ = 0 for the ground state. In order to determine the states |k) and the
energies E), one can diagonalize numerically the restriction of q (ng) to a subspace of a few
charge states. An example of energy spectrum obtained with this method is given in Figure 1.2.

Note that the Josephson coupling lifts the electrostatic energy degeneracies present at n, = 1/2
[mod 1] .

Figure 1.2: Full lines: FEigenenergies of a Cooper pair box with Ec = Ej, calculated by diag-
onalizing the hamiltonian H in the charge representation, in a subspace of 10 charge states.

Dotted lines: Electrostatic energies of the charge states. Note that the degeneracies between the

energies of neighbouring charge states occurring at ny, = % [mod 1] are lifted by the Josephson

coupling.
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1.1.3 Phase representation
Hamiltonian in the phase representation

The operator conjugated to n is the superconducting phase 8 of the island (Appendix 1-A),
with eigenstates |#) such that:

016) =016) . (1.10)

The phase space associated to 9 has a circular topology:
10) = |0+ 27) . (1.11)

The set {|0), 6 € [0,27[} forms a complete basis of the box states. In the phase representation,
the operator n writes [Appendix 1-A formula (1.77)]:

. 10
n=-——

T35 (1.12)

with i =v/—1 the unitary imaginary number. The effect of the operators exp(ig) and exp(—ig)
on the charge states is [Appendix 1-A formula (1.75)]:

exp(+if) |n) = n + 1) . (1.13)

Therefore, in the phase representation, the total hamiltonian H of the box is:

H(ng) = Ec(+2 —ny)?* — E;cos(f) . (1.14)

Analytical expressions of the eigenstates |k) and of their energies F}, can be obtained by solving

the Schrodinger equation associated to this hamiltonian.

Schrédinger equation in the phase representation

From (1.14), the wavefunction W, (0) = (0 |k) and its associated energy FE, satisfy the Schrodinger

equation:

EC(%% —1y)2 U (0) — Eycos(0)¥,(0) = E, U, (0) . (1.15)

Boundary condition

Since the phase space associated to 6 is circular, WUy (f) must satisfy the periodic boundary

condition:
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Solutions of the Schrédinger equation in terms of Mathieu functions

Since (see Appendix 1-A, formula 1.75):

-~ ~

exp(—ingﬁ)ﬁ](ng) exp(ingd) = f](n'g =0), (1.17)

the function
01 (0) = exp(—in,0)V(0)

is a solution of the equation:

o ou0) — By cos0)g(0) = Eug6) (118)
The equation (1.18) takes the form of a Mathieu equation:
TV agcos(22)y(z) = —ay(2) . = € ]—o0, +o0 . (119)
with
0 =2z, y(z) =¢,(22), ¢ = —2E;/Ec, a=4E;/E¢ . (1.20)

The solutions of this equation are analytically known [44]. The Mathieu functions® M¢(a,q,2)
and Mg(a,q,2), are the textbook solutions of (1.19) respectively even and odd in z . Note that
when ¢ = 0, these Mathieu functions are simply:

M (a, 0, 2) = cos(v/az)

(1.21)
Ms(a,0, z) = sin(y/az) .
According to Floquet’s theorem, the Mathieu functions can be recast in the form:
Mcl(a, q,z) = exp(irz) * me(z)
(1.22)

Ms(a,q,z) = exp(irz) * ms(z) ,

with r(a,q) a real parameter and mc(z) and ms(z) m-periodic on z . The Mathieu functions
Mc(a,q,2) and Mg(a,q,z) are periodic only if r is integer or rational. The eigenvalue a associ-
ated to a given Mathieu function can be expressed as a function of the parameters r and ¢ . For
instance, the eigenvalues a associated respectively to M¢(a,q,2) and Mg(a,q,z) are the text-
book functions a = M (r,q) and a = Mpg(r,q) . If r is not an integer, M (r,q) = Mpg(r,q) .
Therefore, for n, € ]0,1/2[, the functions ¥, can be written using the Mathieu functions:

B , AE, 2E; 6 , AE, 2E; 6
\Ijk:(?ﬂa Q7‘9) - Cl exp(mgﬁ)/\/lc( EC ) EC ) 2) + C2 exp(mg@)/\/ls( EC ) EC ) 2) : (123)

3The Mathieu functions are implemented in the software Mathematica 4 as:
My(a, q, z) = MathieuCharacteristicAla, q, 2]

Me(a,q,z) = MathieuCla, q, 2]

Ms(a, q,z) = MathieuS|a, q, 2]
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with
2F;

_E_C) .
One then just has to find the values r, C; and Cs associated to ¥y . The periodic boundary
condition (1.16) together with (1.20), (1.22) and (1.23) implies n, + § € Z . Therefore, for each

value of ng, only a discrete set of values of r, called 7, with & € N, are possible. Each value 74,

E
Ek = TCMA(T,

can be associated to an eigenfunction W, . The convention used in this thesis is to order the

values of r, such that E, increases with k& . This leads to:
rp =k +1— (k+1)[mod 2]+ 2n,(—1)" . (1.24)

Note that k even corresponds to ny + 2% > 0 and k odd to n, + & < 0 . These equations also
allow to find the coefficients C; and C, associated to each ¥y, . For n, € ]0,1/2[:

By = EcMa(k +1 — (k+1)[mod 2] + 2n,(-1)F, —%) (1.25)
(0 k) = 0i(0) = 2R Mo(E, — 52, §) + (-1 M (2, — 2 5)]
w0l T T e |,
N o~ | %7 ng-0.5 |
A é - %% 10.3
oL _ 405 € % / '
= EJ/Ec=0, 0.1, v % % 10.2
v 1,2.5,6,20 —1 Z% .
L
-7 0 Y

Figure 1.3: Left panel: Probability amplitude |Uo(0)|* in the ground state |0), for ng — 0.5
and E;j/Ec =0, 0.1 ;2.5 ;6 ,20. Right panel: Charge decomposition of |0) for E;/Ec = 6

and ng — 0.57.



1.1 THE BASIC COOPER PAIR BOX 43

These results can be used to plot the probability amplitude |¥o(0)[*> of # in the ground
state |0) (Figure 1.3, left panel). When E;/Ex = 0, the eigenstate |0) is just the charge state
|0) . Hence, in agreement with the Heisenberg uncertainty principle, the phase 6 is completely
undetermined and |W(8)|* is constant. When E;/FEc increases, the phase # becomes more
localized, because the number of charge states |n) contributing to |k) increases (Figure 1.3,

right panel).

We have checked that the diagonalisations of the hamiltonian in the charge and the phase
representations lead to identical results. The resolution in phase space is more convenient when

one needs to calculate the derivatives of the eigenenergies with respect to n, and ¢ .

1.1.4 Island potential

The potential of a superconducting electrode is related to its superconducting phase [ by the

generalized Josephson equation [39] {see Appendix 1-A, Formulas (1.70) and (1.85)}:

- do
V =p,— . 1.2
where
_n
Yo = 2e

is the reduced flux quantum. Since § and 1 are conjugated variables, Equation (1.26) can be
recast as [Appendix 1-A Formulas (1.79) and (1.81)]:

N 1 (OH
v:_[e,[{}:__ e I 1.2
2e 2e ( on ) (1.27)
Since H is a function of only (n, — 1), this relation transforms into:
~ 10H
V=——. 1.28
2e Ony (1.28)
By inserting the expression (1.5) of H in this formula, one recovers the textbook result:
. 9 i~
7 2o, —n) (1.29)

Cs
This expression implies that a measurement of the instantaneous potential of the island projects
the box on the charge states [n) . An electrometer weakly coupled the box rather projects the
box on one of the states |k) (see chapter 3) and measures the average potential <k “7‘ k:>
associated to it, which is, from (1.28),

<k: ‘\7‘ k> (ny) = L OExna) (1.30)

2 On,
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1.2 The split Cooper pair box

1.2.1 Physical structure

The split Cooper pair box is a Cooper pair box with a Josephson junction split into two
junctions with respective Josephson energies E;(1 + d)/2 and E;(1 — d)/2, where d € [0,1]
is an asymmetry coefficient (Figure 1.4). These two junctions form a superconducting loop
which can be biased by a magnetic flux ® = ¢, in order to impose a superconducting phase
difference ¢ across the two junctions in series. The loop is designed such that its inductance is

negligible compared to the junction inductance p3/E; .

B
Control  Superconducting 2
Voltage reservoirsy ——= R N
Source ’

77,
Gate Superconducting
Electrode Island (I)z“gb’o )
EJ(1+d)/2
<\ n
(o= g
C Zli
.7, 9 7

E(1-d)/2

Figure 1.4: The split Cooper pair box. Top: Schematic representation. The box is wvoltage
biased through its gate by a generator supplying the voltage V,, and flux biased through its loop
to impose the phase difference 0 across the series combination of the two Josephson junctions.

Bottom: Corresponding electrical scheme.
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1.2.2 Charge representation

The electrostatic hamiltonian of the split box is that of a basic box [see (1.5)] with total
capacitance Cy, = Cy+C 1 4 Cja, where Cj; and C, are the capacitances of the two junctions.
The Josephson hamiltonian of the split box is the sum of the Josephson terms of the two

junctions:

H,=-E, cos(01) — Ey cos(d2) , (1.31)

with 5A1 and 5A2 the phases across each junction, conjugated to the respective number ]/\7\1 and

]/V\g of Cooper pairs transferred through them. Trigonometric transformations lead to:

~ ~

-~ -~

H; = —E, cos(g)cos(e) +dE, sin(§)sin(9) : (1.32)

where:
B 01 — 09
2

is the operator associated to the superconducting phase of the island and:

)

~

=06, 4 0y

is the operator associated to the phase difference ¢ . In the following, the impedance across
the junctions is always lower than the resistance quantum Rj = h/e* . The phase ¢ can thus
be considered as a classical parameter § (see chapter 2). Since 6 is conjugated to 1, the charge

shift operators exp(+if) translate the charge n by +1 [Appendix 1-A formula (1.75)]. In the

basis of charge states {|n),n € Z}, the split box hamiltonian thus writes:

H(ny0) = ¥ [Ec(n— ny)* n) (n|

nez

— (Zrcos($) — idZ sin(2)) [n) (n + 1] (1.33)

— (%1 cos(g) + id% sin(%)) n+1) (nl] .

For d = 0, the split Cooper pair box has the same energy spectrum as a basic box with

effective Josephson energy:

Ey =E; cos(g) : (1.34)

A symmetric split box can thus be used as a basic Cooper pair box with a tunable Josephson
energy [17]. In the general case d # 0, the relation (1.34) is not valid, but in practice, it is
easy to reduce the asymmetry down to d < 0.1 . The effect of such an asymmetry is important
only at the points (n, = 1/2 [mod 1], = 7 [mod 27]), where it lifts the energy degeneracies
existing for d = 0 (Figure 1.5).
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Figure 1.5: The two lowest energy levels of the split Cooper pair box for E; = Ec, d =0 (left),
and d = 0.1 (right). When d # 0, the energy degeneracies present at n, = % mod 1] and
d =7 [mod 27| are lifted.

1.2.3 Phase representation

The phase description of the Cooper pair box can be generalised to the split box. Using (1.12)
and trigonometric transformations, the hamiltonian (1.33) of the split box can be recast in the
form [45]:
~ 10
H(ng,6) =Ec(v—=—n

i00

o)% — E5(d, 8) cos[f + Y (5)] (1.35)

where:

E%(d,0) = E J\/ L +(1—d) cos()

tanT(d,d) = —dtan($) .

(1.36)

Consequently, the expressions (1.25) of the eigenenergies and of the eigenstates of the box are

still valid provided we substitute E; and 6 according to:

EJ — Ej}(d, (S)

0 — 0+7(d,s) .
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1.2.4 Loop current

The operator associated to the current circulating around the loop of the split Cooper pair box
is: R
~ dK
I(ng, 6)=—2e—,
( g ) dt

where K = <J/\f\1 + ]/\f\2> /2 is the number of Cooper pairs having passed through the junctions.
Since 6 and K are conjugated variables, this leads to [Appendix 1-A, (1.79) and (1.80)]:
1 [~ =1 10H
RH|=—5% 1.37
Foa] = 5 (1.37)

Note that this relation between I and § is analogous to the relation (1.27) between V and

n . From (1.37), the average loop current i, in the state |k) follows the generalised Josephson

relation [39]: 1 OF( ng,5)
) = (4[] ) = L2 o

The current i, is 2m-periodic on ¢ and 1-periodic on n, . Examples of the average loop currents
ip and 4; in the states |0) and |1) are given in Figure 1.6. Note that for n, close to 1/2 and

E; < 3E., these currents have opposite signs.
E.=E,=1K d=2%
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Figure 1.6: Mean loop currents iy in the ground state (solid line), and iy in the first excited
state (dotted line), calculated for Ec = E; =1 kK, d =2%, n, =0 (left panel) and ny =1/2
(right panel).
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1.3 The Cooper pair box as a quantum bit

When the energy spectrum of a Cooper pair box is sufficiently anharmonic, its two lowest
energy eigenstates form an effective two level system. Within this subspace, the quantum state
of the box can be manipulated at will by applying suitable radiofrequency signals to the gate,
at a frequency close to the |0) < |1) transition frequency vp; . This two level system can be

used as a quantum bit when it is supplemented with an appropriate readout.

1.3.1 Bloch sphere description of the box

The description of a two level system by a fictitious spin 1/2, namely the Bloch sphere repre-
sentation, is useful to visualize the preparation and measurement of the state of a Cooper pair
box [46].

Restriction of the box hamiltonian to the two lowest energy states

The components of a spin 1/2 in an orthonormal basis R = (7,7, 2 ) are described by the

Pauli operators:

.= Gy 5= . (1.39)

Together with the identity matrix

~ 10
T=

01

these operators form a complete basis for the space of the operators acting on a two dimensional
Hilbert space. Within the subspace {|0),|1)}, the hamiltonian H can thus be written as that

of a fictitious spin 1/2 in a magnetic field hvg, 2'":

~ hvgp -~
i= —%az + (AT, (1.40)
where
E,—Ey Qp
- = _ 1.41
Vo1 h o ( )

is the transition frequency of the box and h is the Planck constant. The state |0) corresponds
to the spin state pointing along 2" (i.e. 7. |0) = |0)) and the state |1) to the spin state pointing
along — 7 (i.e. 5. |1) = —|1) ). The unit sphere on which this fictitious spin moves while the
system evolves is called the ” Bloch sphere”. Beware that in the general case, this representation

is correct only for ¢ and n, constant because the subspace {|0),|1)} varies with ¢ and n, .
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Representation of the quantum states

Up to a phase factor, any normalized coherent superposition |u) of |0) and |1) can be written

|u) = cos(#,/2) exp(—ig, /2)|0) + sin(0,/2) exp(ip,/2) [1) , (1.42)

where the angles 0, and ¢, can be interpreted as the polar coordinates of the representative

vector u of |u) (Figure 1.7):
W = 7 sind, cos ¢, + Y sinb,sinp, + 2 cosb, . (1.43)
The state |u) corresponds to the spin state pointing along ', that is:

Ou fu) = |u)

where

— — ~ ~ ~
Oy = U "0 = U0y +Uy0y + U0, , (1.44)

is the operator associated to the & component of the fictitious spin.

=<l
S

Figure 1.7: Bloch sphere representation of the Cooper pair box.

Representation of an operator

Any operator A can be written as:

A~ AN

A=—2T -3 +Tr(A)],

N =



50 CHAPTER 1 COOPER PAIR BOXES AND TRANSISTORS

where:
—_— — ~ ~ ~
a0 =0;0,; +ay0y+a,0,
. . . —_ . . . . .
is a symbolic notation. The vector «, which is unique, is called the representative vector of

A. Asan example, the representative vector of the hamiltonian H of the box is:
W =07 . (1.45)

Note that in the general case, the representative vector of the derivative of an operator

respectively to n, or ¢ is not the derivative of the representative vector of this operator since
— —

the subspace {|0) , 1)} varies with § and n, . In this thesis, the vectors Ds and D, will be the

representative vectors of respectively the restrictions of %—Ig and g—TZ to the subspace {|0),]1)} :

OH 1=

OH 1=

= - 2D, 7. 1.4
ong 9 7ne 7 (1.47)

Using the Bloch sphere representation

The Bloch sphere representation can be used to express any information concerning a two level
system. For instance, the Schrodinger equation describing the hamiltonian evolution of the two
level system can be replaced with the equation describing the precession of the spin @ at the
frequency g around the magnetic field g
du
dt

WA . (1.48)

St =

The average value of the operator A in the state lu) is:

(u| Alu) = —=@ - & +Tr(A) . (1.49)

N =

~ —
Let |By) and |Bj) be the eigenstates of a second operator B with representative vector b .
The matrix element ‘<Bl ‘A\ ‘ Bo>‘ verifies:

(7

For two states |u;) and |uy) with respective representative vectors u; and uy, it can be verified
that:

E‘ BO>‘ S (1.50)

1 — —
[(un |ug)|* = 5(1 +ui - uz) - (1.51)
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Two charge states restriction

A further simplification occurs when E; < E¢ and ny is close to 1/2 . In that case, the two
lowest energy eigenstates of the box belong to the subspace spanned by the subset {|0),[1)} of
—_—

N —
charge states. Let R’ = (2',7/,2") be an orthonormal basis with 2’ the charge axis, i.e.:

. 1~ e 1
n=—-o,
2 27
where:
~ 01 = 0 —i N 10
o',= , 0y= , ol ,= , (1.52)
10 i0 0 —1

and with ? parallel to the Josephson term for d = 0 . From (1.33), the hamiltonian of the box

is:

~ 1— — ~ o~
H = —§a’~ h +Tr(H)L, (1.53)
with (Figure 1.8):
- _ N7 SN T _ =
h (ng,0) = Eycos(5)x’ +dEysin(5)y’ + Ec(1 —2n,) 2", (1.54)
and
1 n’
Tr(H) = EC( +ny + 2).

On the opposite of the general case, it is here possible to use the Bloch sphere scheme when
ng and § vary because the subspace {|0),|1)} do not depend on n, and § . Therefore, the

representative vector of the loop current of a split box can be calculated using:

N
Tnge) =
which leads to: . B, §— dE, 5 o
i (ng,0) = 2—%sm(2)x + 2—%605(2)?/ : (1.55)

— — —
P

The basis R = (7,7, 2 ) previously defined can be related to R’ = (o', ,2") using (1.45) and

Z
(1.54). The angle 0 = < , > between z and z simply varies with n, and 9:

Ec(l — 277,9)

tan(f) = :
EJ\/COSQ(%) + d?sin®(2)
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Figure 1.9: Bloch representation of the radiofrequency excitation of a two level system. Left:
Representation in the static frame R = (7', 7y, Z). The motion of the fictitious spin U repre-
senting the state of the two level system is determined by the constant field W representing the
free hamiltonian of the box and the oscillating field 2 Cos(wt)?p representing the radiofrequency
excitation. The frame R, = (:?;, y_g, ?p) rotating at the frequency vrp around Z is represented
in dashed lines. Right: Representation of the same process in this rotating frame. Using the
rotating frame approximation, 2cos(wt)?p is represented in R, by a constant field ?p. The

— — N N —
vector h is represented by the constant field h,. The spin « thus precesses around € ,+ h .
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1.3.2 Quantum bit manipulation

We suppose that the state of the box initially belongs to the subspace* spanned by the subset
{]0),]1)} . The state of the box can be manipulated within this subspace using a technique
inspired from Nuclear Magnetic Resonance [48]. A radiofrequency voltage signal with amplitude
Urr and with frequency vgrp is applied to the gate. The voltage amplitude Ugrp corresponds
to a reduced gate voltage amplitude An, . The hamiltonian (1.5) has thus a time dependent
term:

Hpp = —2EcAng cos(2nvppt)n . (1.56)

The notations 1y and 6 will now refer to the DC values of the gate charge and superconducting
flux imposed to the box. The hamiltonian H of the box in the absence of radiofrequency
excitation will be called the free hamiltonian of the box. Supposing the amplitude An, of the
radiofrequency signal used is small, one can use the Bloch sphere representation associated to ng
and ¢ for describing the evolution of the box under the effect of the radiofrequency excitation.
In the referential R = (2',%,% ) of the Bloch sphere defined in the previous section, following
(1.49), the restriction of Hpp to {]0),]1)} writes:
App =277 .

2
In R, the representative vector u of the box state is submitted to the field ﬁ representing the
free hamiltonian H and to the field & representing Hpr (Figure 1.9, left). The transverse part
e | of € is:

¢ = 2cos(2mvgrt) €,

with ?p a vector perpendicular to z with modulus:
e, = 2EcAng (1| ]0)] .

When vpp is close to v, the effect of the longitudinal part @ — € | of € on the motion of
u can be neglected. The states |0) and |1) are simply coupled by the transverse field ¢ | . In
order to evaluate quantitatively the effect of € |, it is interesting to work in the rotating frame
R, = (?p,ﬁp,7p) precessing at the frequency +vgpr around 71) = 7 (Figure 1.9, right), with
S 7
T, = e_p )
Within the rotating wave approximation [48], the field ¢ | corresponds in R, to the constant

ﬁ A~
field ?p, and the representative vector h of the box free hamiltonian H corresponds to:

N
hp =h (V01 — VRF) 7;0 . (157)

4In the experiments described in this thesis, F¢ and E; are typically of the order of 1 K. Hence, at tempera-
tures of a few tens of mK, when the box is at rest, it relaxes to its ground state |0) by dissipating its excitation
energy in the electrical lines (see chapter 4). The condition of initially being in the subspace {|0),|1)} is thus
easily satisfied.
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— — '
In the frame R,, « precesses around ¢, + h, at the frequency:

Vp = \/(%)2 + (vo1 — ver)®

%
When vg; is very close to vgrp, €, dominates h, and the motion of u in R, is a precession

around ?p at the Rabi frequency [34]:

ep _ 2EcAng |(1[1]0)]
h h ‘
On the contrary, when the box evolves freely, w precesses around 71) = 7 at the Ramsey

VRabi — (158)

frequency [38]:

Y Ramsey = V01 — VRF - (1.59)
As a consequence, by combining a radiofrequency excitation with a free evolution stage, both
of adapted durations, @ can be brought to any point of the Bloch sphere.

Although the box state manipulation is possible for all the values of n, and J at which the
energy spectrum is anharmonic, the particular point (n, = 1/2, ¢ = 0) plays a special role. At
this point, the transition frequency is stationary with respect to small variations of n, and 9,
which suppresses at first order the decoherence induced by the noise in these control parameters
(see chapter 3). In the following, the energy spectrum, anharmonicity, resonance frequency vy,
and Rabi frequency vpga of the box are plotted® at this optimal point (n, =1/2, 6 =0) .
These plots can be used as abacus for optimizing the fabrication parameters E; and F¢ of the
box. In each plot, points corresponding to the experiments described in chapter 2 and 4 are

indicated.

Resonance frequency

The resonance frequency at the optimal point is plotted in Figure 1.10. Note that it is equal to
Ej/hatlow E;/Ec and to v/2E;Ec/h at large E;/Ec . In order to avoid the relaxation of the
state |1), the resonance frequency of the box must be different from the resonance frequencies
of all the other elements included in the circuit, like, for example, the Cooper pair transistor
used in the case of a charge readout (see chapter 2) or the auxiliary Josephson junction used

in the case of a current readout (see chapter 4).

Rabi frequency

The Rabi frequency vga (Formula 1.58, Figure 1.11) is proportional to the amplitude An, of
the radiofrequency signal used. The rotation angle of u around 7', due to a radiofrequency
pulse with duration 7 is A8, = Tvpguw . Note that at the optimal point (n, =1/2, § =0),
the Rabi frequency is equal to An,Ex/(2h) = Angvnm/2/(E;/Ec) at low E;/Eq and to
Ang\/mEc/h = Angyvy at large E;/Ec .

®These plots are made for the most general case of the split Cooper pair box. The irrelevant informations

for the unsplit box can be eliminated by setting § = 0 and d = 0.
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E,/Ec

Figure 1.10: Reduced resonance frequency of the box for n, =1/2, =0 and d = 0. The cross
corresponds to the split box of experiment 5 (see chapter 4). Note that this graph can also be
used as an abacus to evaluate the transition frequency of a Cooper pair transistor (see section
1.4), which exhibits the same gate and phase dependencies as that of a split box. The circles
correspond to the transistors of experiments 2 and 3 (see chapter 2).

>l ng=1/2 6=0 d=0 "
4NVeswi 3¢ -
EcAng
2.5} ]
2

EJ/Ec

Figure 1.11: Rabi frequency of the Cooper pair box for n, =1/2, 6 =0 and d = 0. The cross
corresponds to experiment 5.
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Anharmonicity

The intrinsic anharmonicity factor of the box can be defined as (Figure 1.12):

Viz2 — Vo1
A(ng,0) = 2———— |
(ng. ) Vi2 + Voi
where v15 = (Ey — E7) /h is the transition frequency between the states |1) and |2) . When

A(ng,0) is close to 0, the transition frequency vg; is not well separated from v15 .

Inducing selective transitions between the ground and first excited states of the

box

The box can be used as an effective two level system if the |0) <> |1) transition can be excited
selectively. This depends on the anharmonicity of the box but also on the characteristics of
the radiofrequency signal used. From the definition (3.94) of the power spectrum, a square
radiofrequency pulse with duration 7, with amplitude An, and with frequency vgr close to vy
has a spectral density which can be approximated with [46]:

An?
S, (W) = Tg (TZSiIlCZ((w + 21V RR) %) + 7%sinc® (w — 27vRr) %)) (1.60)
if

||w/27| — vrr| < VRF .

This spectral density presents two peaks with height AHZTZ /4 and width Aw = 47/, centered
at w = X2mvrp (Figure 1.13). These primary peaks are surrounded by secondary peaks with
height An272/727°, that is ~ 4.5% of the primary peaks. Thus, in a rough approximation, the
spectral density can be considered as negligible outside the primary peaks.

Such a radiofrequency pulse applied on the gate of the box will induce transitions between

the states |p) and |m) if the transition frequency:

_E,—E,

Vm
P h

falls inside the radiofrequency spectrum primary peak. In order to induce a precession of w

by an angle Af#, = TV Rq, around ?p without exciting the level |2), one must have:
VRF = Vo1

and
Aw
V12 — vor| > 5

This second condition can be recast in the form of a condition on the separation factor (Figure
1.14):

Vi2 — Vo1
B(ng,0) = U Rabi
aol
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Figure 1.12: Anharmonicity factor for ng = 1/2, § = 0 and d = 0. The cross corresponds to
experiment 5.

T Sng(w)

n E :

Tl | T
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Figure 1.13: The spectral density of a radiofrequency square pulse with frequency vrp = Qo1 /2,
with amplitude Ang, and with duration T presents two strong peaks with height T2An§ /4 and
with width 4w /7 at the pulsations + Qoy. The secondary peaks are negligible. Such a radiofre-
quency pulse applied on the gate of a box can excite selectively the transition between |0) and
|1) if the width 47 /T is smaller then the separation 5 — Q.
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which must be such that:
27

AN
In the experiment 5 performed on a split box (with E; = 0.86 k,K and E¢ = 0.68 k,K), the

radiofrequency pulses used have a maximum amplitude of Ugrr = 100 x4V, which corresponds

|B(ng,6)| > (1.61)

to An, = 5.107* and to a Rabi frequency vgu; ~ 50 MHz . At this frequency, the criterion to
avoid the excitation of |2) while performing a A6, = 7/10 pulse at the optimal point is easily
satisfied: B(n,,0)An, = 0.9 > 2rAny,/Af, = 0.01 .

Having E;/Ec > 2 is interesting in order to increase the immunity to charge noise. In
the domain E;/E¢ € [3,8], the Rabi frequency can reach 1% of the transition frequency, for a
population of level |2) at the % level after a pulse with Af, = .

ng=1/2 6=0 d=0

1 | | |
0 2 4 6 8 10

EJ/Ec

Figure 1.14: Separation factor B of the box times An, for ny =1/2,0 =0 and d = 0. The

cross corresponds to experiment 5.

1.3.3 Measurement of the box state

During this thesis work, two different measurement strategies have been explored for measuring
the state of a Cooper pair box. The first one consists in measuring the charge of the island of
a basic Cooper pair box. The second one consists in measuring the loop current of a split box.
The readout device used must be weakly coupled to the box in order to limit the back-action.
It is shown in chapter 3 that, due to the weakness of this coupling, during the measurement,
the readout devices we have implemented project the box on its energy eigenstates rather than
on its current or charge eigenstates. Hence, the value indicated by the readout device will be
the mean island charge (1.30) or the mean loop current (1.38) of the states |0) or |1) . At the
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optimal point, these quantities are zero and thus no measurement can be performed. Before
a mean charge measurement, n, must be taken away from 1/2, and similarly, before a mean
current measurement, o must be taken away from 0 . The charge and current output signals

are given in the following as a function of £;/E¢, n, and/or 0 .

Charge Output signal

When an electrometer is weakly coupled to a box, the signal measured by the electrometer is

proportional to:

Angy(ng) = (L[] 1) = (0[] 0)],, 5—04—0 - (1.62)

From (1.29), (1.30) and (1.41), Ang can be recast as:

. h 8910
2EC 87’Lg

Anm (Tlg) = .
ng,6=0

ng=0.11,0.4,0.475  E,/E=0.25,0.5,1, 2
I

1 «
A Ny
0.5 T —
0 . ] . ol .
0 (0] 0.25 0.5

1 2
EJ/ EC ng

Figure 1.15: Left panel: Variations of the charge output signal Angy of a basic Cooper pair box
with Ej/Ec for different values of ng. Right panel: Variation of Ang with ng for different
values of E;/Ec.

For symmetry reasons, Ang;(0) = Angi(0.5) = 0 . The signal Ang; presents a maximum
at an intermediate value of n, which depends on E;/E¢ (Figure 1.15, right panel). Note that
Ang; decreases with F;/Eqc (Figure 1.15, left panel). The ratio F;/Ec must be taken lower

than 1 in order to have a charge signal stronger than 0.5 .
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Current output signal

When a current meter is weakly coupled to a split box, the signal measured is proportional to
the difference:

Ai01(ng,5) = il - Zo|

between the average currents in the states |0) and |1) . Using (1.38) and (1.41), Aig; can be
recast in the form:

ng,0

, Q1o
Aig1(ng,d) = 2e
g o) g6
0=n/10, nl4, /2, 3n/4, 0.97 E;/Ec=0.1,1,5, 10
bottom to to (top to bottom)
1.0 p=== {botiom 1o top) YA I =0 1.0
B n =0.5 7,

0.8 9 """ ’d=0.05 /- T\{o.8
- /" Yos
- 0.4
— 40.2
| | | 0.0

0 nl4 nl2 3nl4 T

| | 0=0.997
05 0.075 0.1

0.0 '
0.00  0.025

0.
d

Figure 1.16: Difference Aig; between the loop currents iy and i1 of a split Cooper pair box tuned
at ng = 1/2, normalized to the average critical current Iy of a single junction [see (1.63)]. Top
left panel: Variations of Aigy /Iy with E;/E¢q in the perfectly symmetric case d =0 (solid line)
and the asymmetric case d = 0.05 (dotted line), for different values of . Top right: Variations
of Nigy/Io with 9, in the case d =0 (full line) and the case d = 0.05 (dotted line), for different
values of Ej/Ec. Bottom: Variations of Aigy/ly with d for Ej/Ec =1 and different values
of 6. The influence of d shows up at 6 ~ .
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In order to maximize the signal Aig(n, = 1/2,0), one should take a large E; (Figure 1.16,
top left panel). If d = 0 and § = 7, the bands Ey and E; form joining cusps and Aig; reaches
its maximum, which is, with a great accuracy (1% for E;/Ec < 20) (Figure 1.16, right top

panel):
1
Ai01(ng = 5,(5:7T,d:0) 2]0 s
where
Ey
Iy =—. 1.
’ 2¢ (1.63)

is the average critical current of one Josephson junction. When the asymmetry factor d is non
zero, Aigi(ng, = %, d = m,d = 0) is drastically reduced (Figure 1.16, bottom panel), so that the

maximum of Aig; is located at § < 7. This maximum remains close to Iy for d < 0.05 .

1.3.4 The optimal Cooper pair box

A trade-off must be found between the different parameters entering in the manipulation and
the measurement steps. The optimal fabrication parameters E; and Eo to choose for the

implementation of a quantum bit depend on the measurement strategy adopted.

e In the case of a charge readout, the value of F;/Es adopted must be smaller than 1 in
order to have a large readout signal. This is compatible with the requirements on the
separation factor, but it is antagonist with having a good immunity to charge noise, which

requires a high ratio E;/E¢x (see chapter 3). We advise to make the trade-off:

for a charge readout: E;/Ec ~1/2].

e In the case of a current readout, F; must be large in order to have a large signal. However,
the value of E;/E¢c adopted must correspond to a sufficient separation factor. In our first
operation of a split box (experiment 5), we had E;/FEqc ~ 1.3, which ensures a strong
separation factor, but is not optimal for decoherence and the signal amplitude. We made
this choice in order to keep a strong gate oscillation signal measurable directly with the
current, without resorting to spectroscopic techniques. For further experiments, we rather

advise to take

for a current readout: 3 < E;/Ec < 8 and E; as strong as possible| ,

which will increase the immunity to charge noise. Note that in this case, the Rabi fre-
quency can reach vg; /30 without any risk of exciting the level |2) . Beware that in practice,
the condition Fr < /2CxA, with A the BCS gap, must nevertheless be respected to

ensure the 2e-periodicity of the box.
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1.4 The Cooper pair transistor

Superconducting
Gate reservoirs\ =

Electrode

Vg ~\ /

e

Control Superconducting
Voltage Island
Source E j(1+d)/2
Z 5
ok
Cg
Ej(1-d)/2

Figure 1.17: The Cooper pair transistor. Top panel: Schematic representation. Bottom panel:

Corresponding electrical scheme.

The Cooper pair transistor [22, 42] can be seen as a split Cooper pair box whose Josephson
junctions do not form a superconducting loop but are rather connected to an outside circuit
(Figure 1.17). Therefore, in this thesis, the transistor is described with the same conventions
and notations as the split box. Instead of representing a mean loop current, ix(ny,0) simply
represents the average current through the series of the two junctions for a box in the state |k).

The specificity of the transistor is that the dynamics of § is imposed by the outside circuit.

Critical current of the transistor

In the ground state, the current iy(n,,0) passing through the transistor is 27-periodic on ¢ .

The transistor behaves as a tunable Josephson junction with a critical current:
Igff(ng) = mgix[io(ng, 9)] - (1.64)

This current is 1-periodic on the gate charge n,, with maxima at half integer values of n,
(Figure 1.18, left panel). Hence, the transistor is a charge-current transducer. An electrometer

is obtained when this transducer is embedded in a current measuring circuit.
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Figure 1.18: Left panel: Gate charge modulation of the reduced critical current ]gf f /Iy of the
transistor [see (1.63)], for different values of E;/Ec. Right panel: Variations of I /Iy with
E;/Ec for ng = 1/2 (top curve) and ny = 0 (bottom curve). The circles correspond to the
current through the transistors of the experiments 2 and 3. Note that this graph can also be
used as an abacus to evaluate the effective current IS (ngy,8) of a split box in state |0). The

cross corresponds to the split box of experiment 5.
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Figure 1.19: Variations of the transduction coefficient G of the Cooper pair transistor with
E;/Ec for different values of ny.
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Charge-current transduction coefficient

The transduction coefficient from the gate charge to the current of the transistor,

I (ny)
G - 20 \9 7 1.65
(ng) = =45 (1.65)

is plotted in Figure 1.19 for different values of n, . For E;/Ec < 1, the maximum value

of G is located near n, = 1. When E;/E( is increased, this maximum softens and shifts

5 -
towards n, = 1/4 . Although the largest transduction coeflicient is obtained at low E;/E¢,
the associated sharp gate charge dependence of G is inconvenient. In order to measure charges

with a Cooper pair transistor, we suggest to take a value F; = E as high as possible.

Sinusoidal approximation

The energy Ey(n,,0) of the ground state |0) of the Cooper pair transistor can be decomposed
into a Fourier series:
Ey(ng,6) = Zcp(ng) cos(pd) -
peN
When the anharmonicity coefficient:

2
1

2. ¢

p>1

F(ng) =1—

of the ground state is lower than 1% (Figure 1.20), we consider that the sinusoidal approxima-
tion:

Eo(ny,8) = —E5 (ny) cos(s) (1.66)
is valid. In this case, the supercurrent passing through the transistor is:
Z.0(77’97 5) = Igff(ng) sm(é) )

with: r

%o
The results valid for a single Josephson junction can thus be used to predict quantitatively the

15" (ny) = (1.67)

behaviour of the Cooper pair transistor, provided one replaces the Josephson energy F; and

the critical current Iy of the junction by E¢/ (n,) and I/ (n,) .

The optimal Cooper pair transistor for a quantum bit experiment

The sensitivity of the electrometer formed by a Cooper pair transistor embedded in a measuring
circuit depends on the transistor charge-current transduction coefficient and on the sensitivity
of the measuring circuit. This sensitivity is not the only important parameter when the elec-
trometer is used to measure a quantum system. It is also fundamental that the back-action of
the transistor on the quantum system be appropriate. The fulfillment of this last requirement

will be studied in chapter 3.
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Figure 1.20: When the ground state of a transistor has an anharmonicity coefficient F (top
panel) lower than 1% , its energy varies almost sinusoidally with the phase § (case A in the
bottom left panel). For the value n, = 0.5 corresponding to the maximum sensitivity of the
transistor, this approximation is incorrect (case B in the bottom right panel).






Appendix 1-A: Quantum description of

superconducting circuits

A superconducting circuit composed of capacitors, inductors and Josephson junctions can be
described with an hamiltonian formalism. The form of the hamiltonian depends on the choice

of the independent variables used to describe the circuit [49].

1-A-1 Case of continuous charge transport

We first consider a circuit which only includes capacitors and inductors. This circuit can be
decomposed into two terminal devices called branches, connected at points called "nodes”. Two
different types of variables are available, one related to the nodes of the circuits and one to the

branches.

Classical node variables

In order to define node variables, one has to set arbitrarily a reference potential, by choosing a
ground node where the voltage potential is zero. The classical description of a node at time ¢
is based on the potential V4 (t) of the node, and on the sum I,,,4 (%) of the currents arriving
on it from the different branches connected to it. If the circuit was at rest at ¢ = —oco with no
voltages and currents, the charge (),,,4. and the flux ®,,,4. of the node at time ¢ can be defined
as:

Qnode(t) - / Inode(T)dT )

—00

and

t
(I)node(t) = / Vnode(T)dT .

—00

In classical electrodynamics, ®,,,45. and Q),..q4c are conjugated variables as shown by the Poisson
bracket [50]:

{(I)nodea Qnode} =1. (168)

67
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Classical branch variables

The classical description of a branch at time ¢ is based on the current Iy.q,.,(t) through the
branch and the voltage Vi,anen(t) across it. If the circuit was at rest at t = —oo with no voltages

and currents, the charge Qpranen and flux ®y,4n0n of the branch can be defined as:

t
Qbranch = / ]branch(T)dT s (169)

and t
(I)branch - / %ranch (T)dT . (170)

Similarly to the node representation, ®y,..nen and Qpranch are conjugated variables as shown by
the Poisson bracket[49, 50]:

{(I)brancha Qbr(mch} =1. (171)

Quantum description

In the general case, we will note conjugate flux and charge variables ® and (), disregarding
their node or branch nature. The quantum description of ® and () can be made by associating
to them a couple of conjugate operators <</IS, @) . Following the correspondence principle, the
Poisson Brackets (1.68) and (1.71) become:

[@,@] —ih .

This conjugation relation causes that ® and @\ follow the same textbook relations as the position

and impulsion of a particle. In particular,

1
V2rh

Q) = / d@exp(%@@)@) & |0) = \/%/ dQexp(—%Q@l@ : (1.72)

1-A-2 Case of quantized charge transport

There are cases where the charge @ of a branch or a node is quantized in packets of 2e . It
is the case, for instance, for the charge through a Josephson junction. It is also the case for
the charge of the nodes which are connected exclusively to Josephson junctions and capacitors,
called in this manuscript ”metallic islands”. In these cases, the convention used in this thesis

is to work with the quantized number of Cooper pairs:
n=0Q/2 . (1.73)

associated to @ .



APPENDIX 1-A QUANTUM DESCRIPTION OF SUPERCONDUCTING CIRCUITS 69

Conjugate of a 2e-quantized charge

According to the BCS theory, the conjugate of the number N of Cooper pairs in an electrode is
the superconducting phase 6 of the electrode. The conjugate of the number N of Cooper pairs
having passed through a Josephson junction, is the superconducting phase difference 6 through

the junction. Let us note |#) the eigenstates of 0:
010y =010) .

with # € R . In the BCS theory, the discreteness of N causes that |6) and |0 + 27) have the
same physical meaning. As a consequence, in order to describe the states of the node or branch,
it is enough to work on the basis {|0) ,0 € [0, 2x[} .

Properties of conjugate variables

Because of the circular topology of the phase space associated to 5, physical expressions can
only contain # through trigonometric expressions. The analog of formulas (1.72) are the Fourier
transforms between the eigenstates {|n) ,n € Z} of n and the eigenstates {|0) ,0 € [0, 27} of 6
[51]:

1 _ 17 -
0) = Ner Zexp(m@) In) < |n) = \/—Q_W()/dﬁ exp(—inf) |0) . (1.74)

nez

This relation ensures the validity of some fundamental properties likes the translational rela-

tions:
exp(ipf) |n) = [n+p) (1.75)
and
exp(—ifon) [0) = |6 — o) , (1.76)
with p € N and 6y € R . It also infers that n can be expressed in the phase space as:
. 10
= -— 1.
" e (L.77)
and that 0 can be expressed in the charge space as:
~ 0
0=i—. 1.78
o (1.78)
Eventually, for any observable zzl\, R
~ 0A
[A, H] iho (1.79)
-~ 04
[A,n] = 1% : (1.80)
and: ~
o~ L0A
[A,H] - i (1.81)
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1-A-3 Eliminating variables

The different branch and node variables which can be defined for a given circuit are not inde-

pendent. There exists a certain number of topological relations between them.

Continuous charge case

The branch and node variables are linked by the quantum version of the Kirchhoff’s laws. At

a node n,

Cjjnode = Z @ branch » (182)

branch
connected to the node

and around a loop crossed by a magnetic flux ®,,,

¢, = Z EI\)brcmch . (183)

branch included
in the loop

There is also a topological relation between the flux of a branch b and the flux of the two nodes

node 1 and node 2 delimitating this branch:

(I)brcmch ==+ ((I)node 1 — q)node 2) . (184)

The arbitrary sign in this last relation determines the orientation of the branch.

Quantized charge case

In the case of a quantized number of charge n, the relations (1.82) must include the charge
@ = 2en . The relationship between the superconducting phase 9 conjugated to n and the flux
® included in the Equations (1.83) and (1.84) is:

6 =d/p, [mod 2m] . (1.85)

Choice of the description

In order to describe a quantum circuit, one must eliminate the redundant variables. This
procedure is not unique. The most convenient set of parameters will depend on what one wants

to calculate.



Chapter 2

The single Cooper pair transistor as an

electrometer

The gate charge modulation of the current ig(ny,0) passing through a Cooper pair transistor
in its ground state provides a charge-current transduction mechanism. This mechanism can be
used for electrometry by embedding the transistor in a suitable measuring circuit. We describe
i this chapter the two types of electrometers based on the single Cooper pair transistor that we

have developed for the purpose of measuring the island voltage of a Cooper pair box.

Since a single Cooper pair transistor in its ground state almost behaves as a tunable Joseph-

151 (n,), all the techniques for measuring Joseph-

son junction with an effective critical current
son junctions with a similar critical current can be used to develop electrometers. For optimized
electrometers, this critical current range is solely determined by the junction technology. In-
deed, the Josephson energy of the transistor junctions should be as large as possible in order
to achieve at first place a large critical current, while remaining smaller than or comparable
to the charging energy E¢ of the transistor in order to have a sharp modulation pattern. In
this regime, the transduction coefficient G(n,) = dI¢'! (n,)/0n, is maximum slightly below and
above n, = 1/2 (see chapter 1). In order to avoid the entry of quasiparticles in the transistor
island, which would suppress the modulation peak of Igf / (ng) at ny = 1/2, the charging energy
is constrained by the condition Fo < 4A, where A is the gap energy in the island [51, 52]. For

aluminum, these conditions impose a maximum critical current Iy in the 100 nA range.
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2.1 Measuring small critical current Josephson junctions

C
V, ><EJ — | 7(w) @|b

S

Figure 2.1: Electrical scheme of a Josephson junction shunted by an impedance Z(w) and biased
by a current source I,. The capacitive part 1/iwCey,, of Z(w) has been incorporated in the total

capacitance seen by the junction C' = Cj+ Cep,.

Although the Josephson effect has been extensively investigated over the years, the observation
of a supercurrent approaching the critical current was achieved only recently in the case of
Josephson junctions with a critical current smaller than 100 nA . Having a supercurrent close
to the critical current indeed requires to have a stable state § ~ /2 for the superconducting
phase difference ¢ across the junction. For that purpose, the dynamics of § must be strongly
damped by the embedding circuit [26, 53], so that § does not present strong fluctuations. In
this so-called overdamped regime, the phase across the junction is a classical variable which

obeys a first order Langevin equation.

2.1.1 The classical regime for the phase

The validity of the classical description can be estimated from the phase fluctuations. Let
us consider the general case of a current-biased Josephson junction with Josephson energy
E; = ¢yl and with capacitance C; , shunted by an impedance Z(w) (Figure 2.1). We consider
that the capacitive part 1/iwC.p, of Z(w) is included in the total capacitance seen by the
junction:

C=Cy+Copy . (2.1)

Assuming that phase fluctuations are indeed small, the quadratic average <(52> can be calculated

at zero bias current by treating the junction as an effective inductor L = ¢,/ . One finds [49]:

5\’ [P ReZes(w) hw  dw
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where:
Zepr(w) = (1/iwL + iwC + Z7H(w)) ™! (2.3)

is the impedance of the effective RLC' circuit.

2.1.2 The Resistively Shunted Junction model (RSJ model)

In the case when the impedance Z(w) is a pure resistor Z(w) = R, the average fluctuations
<(52> can be analytically calculated [49]. They are plotted in Figure 2.2 as a function of the

reduced temperature kgT'/hwy, where:

1
VLC,

is the plasma frequency, and for different values of the quality factor ) = R\/C/L .
When the thermal fluctuations dominate the quantum ones, it is valid to treat the phase as
a classical variable, as justified by the full calculation of H. Grabert and G.L. Ingold [54]. The

evolution equation for the phase is then obtained by inserting in the classical Kirchhoft’s laws

(2.4)

Wo —

of the circuit the Josephson relations [40, 55]:

do
= e 9.
VJ spodt ) ( 5)
and
]J = ]0 sin 5(t) 5 (26)

where V; and [; are the instantaneous voltage and currents across the junction. One then
obtains the following Langevin equation® [56]:

1 ,dd d%é . .

}—%903% = —C%W + 4 [Ty — Losin(6) + ir(t)] (2.7)
where ig(t) is the current noise produced by the thermal fluctuations in the resistor (Appendix

3-B), characterised by:
. . 2k T
(ir(t)ir(0)) = 7 op(t) , (2.8)

with () the Dirac function. The evolution of ¢ is analogous to that of a fictitious particle with

position § and mass Cp3, placed in the tilted washboard potential U (8) = —F; cos(d) — Iyp,d ,
submitted to a random force -ig(t)p, and to an instantaneous frictional force — (p3/R) dd/dt .
When the particle escapes out of a well under the effect of thermal fluctuations, two types of
dynamics can occur. Either the friction is small and the particle accelerates continuously, either
the friction is so large that the particle is retrapped in another well. This large friction regime,
for which the mass can be neglected, is characterised by () < 1 and is called the overdamped

regime. We now discuss the circuits which allow to implement this overdamped regime.

IThis equation is valid provided eV < 2A and k,T < 2A.
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Figure 2.2: Reduced phase fluctuations <52> as a function of the reduced temperature kT [hwy
for different values of the quality factor Q.

Static Regime  Diffusive Regime Running state

\

Figure 2.3: The phase of a current biased Josephson junction has the same dynamics as that
of a particle in a tilted potential whose average slope is controlled by the bias current. Different
dynamical states can exist, depending on mass, damping, and temperature. At low temperature,
the particle is trapped in one of the potential wells when the bias current is smaller than the
critical current. At finite temperature, the particle can either undergo a diffusive motion from
well to well when the damping is strong and the mass small enough, or a continuous motion
without being retrapped in a well when the potential energy gain is large enough to overcome
frictional losses.
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2.1.3 The overdamped RSJ model
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Figure 2.4: Left panel: Electrical scheme of a Josephson junction shunted by a resistor R and
biased with a current source I,. The notations I; and V; refer to the instantaneous values of
respectively the current through the junction and the voltage across it. Right panel: Predicted
I;— 1, and I; —V; characteristics of the circuit for different reduced temperatures ( I; and V;

correspond to the values of 1; and V; averaged over the phase dynamics).

The overdamped RSJ model [40] corresponds to the circuit of Figure 2.4. The Langevin equation
obeyed by d(t) reduces to:

2
g do . .
EO% = ©o [Ib — IO Sln(é) + ZR(t)] . (29)
Yu. M. Ivanchenko and L.A. ZiI’berman have solved the stationary Fokker-Planck equation

associated to this equation [57].
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Ivanchenko-Zil’berman solution

Let V; and I, be the values of the voltage V; across the junction and of the current [; passing
through it, averaged over the phase dynamics? being made over the so called "Josephson period"
of the oscillations of the phase § in the potential &/. The Ivanchenko-Zil’berman equation give
V; and I [40, 57, 58] as a function of Iy:

T)(Io. 1,, T) = Iy Tm[ =229 (2.10)

VJ(IO,I{;,T) = RIb - RI_J )

with
e — Ioipg :
kT
g =
kT

and with B,(b) the modified Bessel function with complex order a . The maximum predicted

supercurrent is close to Iy for n > 1 .

Phase dynamics

The I; — I, and V,— I, characteristics resulting from the Ivanchenko-Zil’berman relations
(Figure 2.4, right panel) can be explained qualitatively using the picture of the fictitious particle
(Figure 2.3) in the potential U . If I, < Iy and T' = 0, the particle, slowed down by the friction,
stops at a local minimum §, of the potential, so that I; = Iysin(dp) and V; = 0 . The particle
can be activated out of this metastable position under the influence of thermal fluctuations.
If I, < Iy and T # 0, the particle diffuses from well to well, which explains the apparition of
a finite voltage across the junction. For I, > I, the potential has no local minimum and the
particle goes down the potential whatever the temperature is. However, the friction provided by
the resistor prevents the fictitious particle from accelerating indefinitely: it reaches a stationary
regime when the energy lost by friction is balanced by the potential energy gain. In this regime,
do /dt is periodic, with a Josephson frequency:
oV

Qy =

_ 2t ) 2.11
Ty 2 ( )

The noise spectrum of V; present peaks at harmonics of 2, [55, 56].

2More precisely, V; and I; correspond to V; and I; averaged over the correlation time of the phase 6,
which depends on [},. Performing such an average is relevant because the Josephson oscillations have a too high
frequency to be observable experimentally in standard current and voltage measurements. (see (2.11)). The
quantities V; and I thus correspond to the signals measured in practice. Since this average is performed on a
short timescale, V; and I are time dependent signals. Time variations of V; and I, due to sudden switching
to a voltage state (see 2.2.2 and 2.3.2) or to fast variations of an external parameter can be observed within the
bandwidth of the measuring system, which is larger than 1 MHz in our setup.(Figure 2.10 of section 2.3.1).
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2.1.4 The (R+C)SJ model

The classical (R+C)SJ model corresponds to a Josephson junction shunted by an impedance
(Figure 2.5):

. 1 -
Z(w) = (1wC -+ m) .

The main difference with the RSJ model is the absence of damping at zero frequency: one
says that the junction is AC shunted, instead of being DC shunted. This model is important
because it corresponds to the usual set-up for measuring the current-voltage characteristic of
Josephson junctions. When the condition R,Cswo > 1 is fulfilled, the classicality conditions
for the phase are not changed [26]. In this regime, the phase ¢ and the voltage V; across the

capacitor Cy obey the set of Langevin equations:

1 ,do ,d%5 . Ve |
EQO()E = —C'QOO—dt2 + ¢©q Ib - [0 5111(5) + E + ZR(t) (212)
dv, . L d26
CSE = Ib - I() Sll’l((s) - CYQOOd—t2 y (213)

where ig(t) is the thermal current noise due to the resistor (Appendix 3-B), with:

2kyT
Ry

A\ R,
Nk ()
[ |

“Xe =

(ir(t)ir(0)) =

Sp(t) .

V

S

1l

S

2
]

Figure 2.5: Electrical scheme of the (R + C)SJ model.

Phase dynamics

The behaviour of the junction can again be explained qualitatively with the picture of the
fictitious particle. The particle with mass C'p?2, placed in the potential I, is now submitted to
a random force ix(t)p,, a friction force — (¢%/R;) (d§/dt) and an accelerating force ¢,Vs/Ry .
For I, < Iy, as long as V; is negligible, the phase slowly diffuses in the tilted potential like in
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the DC case. However, there is a finite probability that a thermal fluctuation, stronger than
the others, makes the particle accelerate significantly. From that moment, the acceleration
force p,Vs/Rs increases inexorably and is bound to beat the friction forces. Consequently, the
junction develops a high voltage and jumps to the quasiparticle branch. This event, called
"switching”, occurs at a rate I';(1,) which depends on the bias current I, . This is precisely this
effect which prevents to observe supercurrents close to the critical current for most AC shunted

set-ups [59].

2.1.5 The overdamped (R+C)SJ model

When the junction capacitance C' can be neglected, the characteristic evolution times for 6 and

for Vi predicted by Equations (2.12) and (2.13) are Ty = Ri(}o and Ty = R,Cs . When the

condition :

o, > 202 (2.14)
Iy

is satisfied, one has Ty > Ty . The dynamics of V is then much slower than that of ¢, and one
can use an adiabatic approximation for V; in order to solve the equations (2.12) and (2.13) [26].
In the infinite C limit, this theory predicts that the supercurrent branch of the current-voltage
characteristic is exactly the same as for the RSJ model till the maximum value is reached, at
which switching to the voltage-state occurs. A large supercurrent can thus be observed at low
temperature in this regime. When Cj is finite, this theory allows to calculate the switching
rate from the phase diffusion state to the voltage state. The switching process corresponds to
the activation above an effective dynamical barrier, whose height increases with damping. The
conclusion of this analysis is that a well developed supercurrent branch can be observed in the
overdamped regime, even when the escape probability out of a well is large on the time-scale of
the experiment, because retrapping in the neighboring wells prevents the particle to run-away.
Numerical simulations show that a large supercurrent can be observed even when the junction

capacitance C' cannot be fully neglected.

2.2 Implementation of the overdamped RSJ and (R+C)SJ

models

2.2.1 Case of the overdamped RSJ model (Experiment 1)

In practice, it is difficult to have a circuit implementing exactly the classical RSJ model with a
value of R constant at all frequencies. Let us first suppose that the junction is only connected
to an off-chip resistor R . The connections between the junction and R have an inductance L
of typically 1 nH.mm™! . At high frequencies, this inductance dominates the impedance seen
by the junction. One could imagine to avoid this effect by placing the resistor R on-chip, very

close to the junction. However, this is not possible because the dissipation would heat R .
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We have adopted a mixed strategy where the DC part of the impedance is off-chip and
the AC part on-chip (Figure 2.6). The behaviour of the circuit is probed with a SQUID array
amplifier [23, 60] developed by the NIST (Appendix 2-B-2). The interest of that amplifier, apart
from its large bandwidth, is its low input impedance, which makes possible the implementation
of the overdamped case.

At low frequencies, the effective impedance R seen by the Josephson junction is the sum:
R=Ry,+ R, + R.>~240Q,

where R. = 12.1 ) is the total resistance of the contacts between the electrical lines and
the sample and where R, and R, are discrete electronic components implemented off-chip.
The high frequency impedance of the junction is controlled by the (Rs+ Cj) series circuit
fabricated on-chip very close to the junction. The resistor Ry = 11.8 2 has been chosen so that

the impedance seen by the junction above 10 GHz still equals:
Ri+R.~24Q=R.

We have calculated the expected V;— I, characteristic using numerical simulations of the phase
dynamics for the exact circuit. This characteristic is very close to the one predicted by the
equation (2.9) with R = 24 2 . This environment thus closely implements the RSJ model.
The experimental I; — V; curves are presented in Figure (2.6). We have fitted them using
the equations (2.10), and the values Iy = 44.9 nA, and R =24 () .
Further details about this experiment can be found in Appendiz 2.B.4 and in the article [24]
which is reproduced at the end of this chapter.
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SQUID
array

Ty(nA)

Figure 2.6: Top panel: Circuit used for the measurement of the DC' shunted junction. The chip is
indicated by the dotted box. The components Ry = 11.8 Q) and Cy = 100 pF are implemented on-
chip. The elements R, = 10.1 Q, R,, = 1.6 Q and Ry = 10 Q are Surface Mounted Components
(SMC). The stray inductance of the connection between the on-chip and the off-chip circuitry
1s L ~ 4 nH. The contact resistance R. = 12.1 ) results from the junction fabrication process.
A 7.5 % fraction of the current passing through the junction is derived in the input coil of a
SQUID array. Middle panel: Large scale 1,—V; characteristic measured at T = 34 mK. Bottom
panel: The low scale I; —V; characteristics measured for different temperatures (symbols) can
be fit using equations (2.10), with Iy = 44.9 nA, and an effective bias resistance R = 24 €.
From top to bottom, T = 34, 157 and 440 mK respectively. The dashed line represents the
characteristic predicted for T = 0.
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2.2.2 Case of the overdamped (R+C)SJ model

The circuit of Figure 2.5 has been implemented by P. Joyez et al. [26] for R = 70  and
C = 150 pF . An I; — V; is shown in Figure 2.7. The junction switches to the voltage-state
when the bias current [, reaches the switching current I, . The values of I, are distributed
with an histogram whose shape is determined by the switching rate I's([,) and by the ramping
speed v; used to measure the I; — V; characteristic [61]. This histogram is in good agreement
with theory.

We now report the experimental implementations of the overdamped RSJ and (R+C)SJ

models for measuring single Cooper pair transistors.

60 - R=70 0 C=50 pF T=40 mK .

40 - I
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Figure 2.7: Large scale 1;—V; characteristic of a (R+C) shunted junction, taken at T = 40 mK
for R =70 Q and C, = 150 pF and a reduced bias current ramping speed v = d(Ip/Iy)/dt = 8.5
s~ (from reference [26]). The switching current I, is probabilistic and its values are distributed

on a histogram (inset).

2.3 Electrometers based on the Cooper pair transistor

Qualitatively, a Cooper pair transistor embedded in the two preceding circuits behaves as an
effective Josephson junction with an effective critical current Igf f (ng) . We discuss here the

sensitivity of the electrometers obtained with both methods.
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2.3.1 Resistively shunted Cooper Pair transistor (Experiment 2)
Principle and design of the experiment

The first electrometer circuit we have operated is represented in Figure 2.9. The main difference
with the circuit of experiment 1 is that we have placed the SQUID array in the resistor branch
and not in series with the transistor, hoping that it would lower the effect of the Josephson
oscillations of the SQUIDs on the transistor. We thought it would allow us to reduce the filtering
of the input line of the SQUID in order to have an electrometer with a larger bandwidth.

Experimental current-voltage characteristic and gate modulation curves

The I, — V; and Ng— I; curves measured at T = 40 mK are shown in Figure (2.9). We have
fitted them using equations (2.10), with [y = ]gff(ng), Ec=28kK, E; =22kK,d=0, an
effective impedance R = 38 () seen by the transistor instead of the expected value R = 24 €,
and 7' = 200 mK. The input line of the SQUID array being been less filtered than in experiment
1, this excess temperature can probably be attributed to SQUID array noise

Charge-current transduction coefficient

In the circuit of Figure (2.9), a variation An, of the gate charge n, placed on the transistor

causes a variation Al of current I; . The transduction coefficient:

g
which depends on [, can be calculated as:
al,
5 - g(ng)a_]() 5

where I;(I,,T) is given by the Ivanchenko-Zil’lberman relation (2.10), and where G(n,) =
BISf J (ny)/0On, has already been calculated in section 1.4. The transistor must be operated

at I, ~ I¢'7 in order to have the maximum value of 3 (Figure 2.8)

Electrometry performances

A Cooper pair transistor used as a charge-current transducer has a large intrinsic bandwidth.
Indeed, we have simulated numerically the response of the phase to a change An, of the gate
charge n, and found that the new permanent regime is reached in a time comparable to the
Josephson period T'; = QLJ . Consequently, the bandwidth of the charge detection is not limited
by the transistor but rather by the device used to measure the transistor current.

In experiment 2, we have detected the response of the transistor to a sudden variation

An, = 0.1 of its reduced gate charge n, (Figure 2.10). This response indicates that the
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electrometer has a bandwidth of 1 MHz, probably limited by the filtering of the input lines
feeding the SQUID array. The noise level corresponds to a sensitivity of 3.107% e/ VHz .

Further details about this experiment can be found in Appendiz 2.B.5 and in the article [25]
which is reproduced at the end of this chapter

I I | 1 _
EJ:EC ng:O.49 d=0

Figure 2.8: Calculated charge current tranduction coefficient B for the continuously driven
Cooper pair transistor as a function of the bias current Iy, at ny = 0.49. The dot corresponds
to experiment 2. We have not operated the transistor at the optimal point I, = ]gf T in order to

have a transduction coefficient 3 independent of temperature.
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0o 1 205 00 05
Vi) n

Figure 2.9: Top panel: Circuit used for the measurement of the DC shunted transistor. The chip
18 delimited by the dotted square. The elements R, = 10 Q, R, = 11.8 Q, 'y, = 100 pF, R,, =
10 2, and R; = 10 2 are Surface Mounted Components. The contact resistance R. = 10.75
Q results from the transistor fabrication process. The inductance L is that of the connections
between the on-chip and the off-chip circuitry. One third of the current passing through the shunt
resistor is derived in the input coil of a SQUID array. Bottom panel: Comparison between the
I;,—Vyand I; — ny characteristics measured at T' = 40 mK (symbols) and the calculated ones
(lines) using (2.10) with E; =2 kK, Ec =22 kK, d =0, R =38 Q and T = 200 mK.
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Figure 2.10: Detection of 10% of 2e in 1 us, with the DC shunted transistor tuned at I, = 39
nA, and n, just below 0.5. Top panel: Applied charge step at the gate of the transistor. Bottom
panel: Transistor response, averaged over 4000 curves and measured in a bandwidth of 10 MHz
(upper curve) and 1 MHz (lower curve). (curves offset for clarity).
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2.3.2 AC shunted Cooper pair transistor (Experiment 3)

Principle and design of the experiment

Cg CL V(1)
H | T kLon| D

0 200 400
Vi(uVv)

Figure 2.11: Top panel: Clircuit used for the measurement of the AC shunted transistor. The
chip is delimited by the dashed rectangle. The elements Ry = 400 Q and Cs = 180 pF are
Surface Mounted Components. The parasitic capacitance C;, = 0.75 pF and the inductance
L are due to the fact the the RC environment has been implemented off-chip. Bottom panel:
Single shot current voltage characteristic of the transistor for a bias current ramp with speed
vy = dl/dt = 690 nA/s. The transistor jumps to a non-zero voltage state at a switching current
I which varies randomly within a statistical distribution.

The second Cooper pair transistor circuit we have operated is represented in Figure 2.11. In
this circuit, the transistor switches to the voltage-state at a rate I's(1y,n,) [42, 26]. In contrast
with the circuit of Figure 2.5, all the electrical components are placed off-chip in order to have a
more flexible design. This makes larger the inductance L of the connection between the sample

and these components, and the capacitance C, of these connections to ground.
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For fast electrometry purposes, one has to optimise the value of the shunt. We have thus
performed numerical simulations of the transistor phase dynamics and determined that R, =
400 2, C's = 180 pF would allow a good trade-off between the sensitivity and the speed of the
measurement. Note that for these values, the zero junction capacitance approximation done by

P. Joyez et al. in [26] is not valid.

Gate modulation curves and switching probabilities

In order to study the switching dynamics of the circuit, bias current ”square” pulses with a
variable amplitude I, and with a duration 7 have been used. The switching probability during

the pulses is:

PS(IP7 T7ng) =1- eXP(_FS(Ipang)T) )

with I'(l,, ng) the switching rate at a bias current I, . The bias current pulses used in practice
(Figure 2.12) are not perfectly square, but the rate varies so sharply with 7, that the finite rising
time has no importance. The variations of the switching fraction with the different parameters
of the experiment have been measured. Figure 2.13 (left panel) shows the gate modulation of
the amplitude I, of the bias current pulses that give 50% switching events in 2 pus . In order
to analyse these data, we have performed numerical simulations of the dynamics of § and u
altogether, by taking into account the exact form of Igf f (ng) . We have fitted the data with
Ec =448 kKK, EF; =1.92 kK, d =0 and T = 50 mK, without taking into account the stray
capacitance C7, .

The experimental variations of P; with the amplitude [, are shown in Figure 2.13 (right
panel) for different values of n, . We have used these data to reconstruct the experimental
gate variation of P; with n, for a given pulse amplitude (Figure 2.14), which determines the
sensitivity of the electrometer. We have simulated the phase dynamics in order to explain the
slopes of these latter curves, which are less sharp than expected, and found necessary to take
into account the finite value C';, = 0.75 pF of the stray capacitance of the connections between
the sample and the SMC components. This does not change the fitting parameters Fc and E;

for the gate modulation curves.

Electrometry performances

The AC shunted Cooper pair transistor can be used to discriminate two charges 2en; and 2eng
coupled capacitively to the transistor island. Let’s consider that these charges induce variations
of the transistor gate charge sn; and »ng respectively, where s is a coupling constant. The
discriminating power of the readout, for a bias-current pulse with duration 7, can be defined

as:

a(1) = max|[Py(I,, 7,ny + 2n1) — Py(I,, 7,0y + 2n9)] . (2.15)

Ip,ng
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The optimal sensitivity of the electrometer is reached for I, = 13.6 nA (Figure 2.14). Supposing

ny — ng = 2e, and 2 = 2%, one obtains:
a(t =2 us) =0.95. (2.16)

A slow two level charge fluctuator of 4% of 2e was present on the sample during a part
of the run. In order to test the electrometer, we have applied a current ramp with speed
v = dl/dt = 2 nA.s™!, and determined the switching time T, = I, /v; at which the switching
occurred. The distribution histogram of T shows two peaks well separated, which proves that
this electrometer perfectly discriminates 4% of 2e in 2 us (Figure 2.15).

The capacitance C}, , which reduces the slope of the P;(l,,7,n,) curves with n,, reduces
the electrometry performances of the transistor. However, in a quantum bit experiment, this
capacitance becomes essential because it reduces the back-action of the transistor onto the box
at high frequency (see chapter 3).

Further details about this experiment can be found in Appendiz 2.B.6 and in the article [27]
which is reproduced at the end of this chapter.

V (V)

0 1 2 3 4 5 6 7
time (us)

Figure 2.12: Bias current pulse applied to the transistor, and voltage at the input of the amplifier

in case of switching (solid line) and in absence of switching (dotted line).
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Figure 2.13: Left panel: Gate modulation of a transistor with Ec = 4.48 kK, E; = 1.92 kK
and d = 0. The curves plotted correspond to the critical current ]gf f (top curve), to the experi-
mentally determined current I, such that Ps(I,, 7 = 0.5 ps,n,) = 0.5 (dots) and to numerical
simulations of I, (bottom curve). Right panel: Experimental variation of the switching fraction
Py(I,, 7 = 0.5 us,n,) with the amplitude I, of the current pulses for n, = 0.15, 0.56, 0.82, 0.91,
0.95 and 0.98 from bottom to top respectively. Fach point is averaged over 5000 pulses.



90 CHAPTER 2 THE SINGLE COOPER PAIR TRANSISTOR AS AN ELECTROMETER

10 — T T T g T 1,0
0 B Exp
4, Ip=1173nA e Ip=1356 nA
08 F Ho8
A °
A
06 A ® dos
— A °
g simu
© 11.73nA A
o L \ i
04 \ C2=075pF & ® 04
R °
\\
\\ A [ ]
02 F . 40,2
N °
AA O. 1
T~ A
0,0 L L e A, %, 0,0
086 08 09 092 09 09 098 1,00
ng

Figure 2.14: Symbols: Gate variation of Pi(I,,7 = 0.5 us, n,) with I, = 11.7 nA and
I, = 13.56 nA, reconstructed from the data of Figure 2.15. Lines: Theoretical predictions made
by simulating numerically the phase dynamics. The slope of P, is only explained when one
takes into account the stray capacitance Cp of the connections between the transistor and its
shunting components. The slight current shift between the experimental data and simulations

can be attributed to the inaccuracy of the experimental calibration.
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Figure 2.15: Double peaked switching histogram of the time of detection T due to a slow two
level charge fluctuator with amplitude 0.08e, measured with a bias current ramp rate vy = 2
nA/ ps. These data prove that the transistor of experiment 2 can fully discriminate 4% of 2e
m 2 us.
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2.3.3 Conclusion

Table 2.17 compares the sensitivity of the two electrometers we have operated with the sensi-
tivity of the best electrometer implemented so far, namely the RF-SET [21, 62].

Experiment 2 | Experiment 3 | RF-SET

Bandwidth 1 MHz 1 MHz 10 MHz (2.17)

Equivalent sensitivity | 3 107* e/v/Hz | 2107 e¢/v/Hz | 3 107% ¢/v/Hz

At the beginning of this thesis, the issue at stake was to find a readout device in order to
implement a quantum bit experiment with a Cooper pair box. A measurement apparatus used
to read a quantum bit must satisfy different requirements. First, it must be able to discriminate
the quantum states |0) and |1). Secondly the back-action of the measurement apparatus on
the quantum system must be low. Indeed, the measurement apparatus must not destroy the
coherence of the quantum system when no measurement is being performed. The quantum
information must also not be destroyed before the end of the measurement. The sensitivity and
the back-action of the measuring apparatus being antagonist, one has to find a trade-off. The
interest of the electrometers of experiments 2 and 3 for implementing a quantum bit depends on
their sensitivity but also on the back-action they would have on a Cooper pair box. Since these
electrometers are based on the modulation of a supercurrent, without shot noise, their back-
action is expected to be very different from that of a RF-SET. This back-action is estimated
in the next chapter.






Appendix 2-A: Fabrication techniques

We have seen in previous chapters that the physics of a Cooper pair box or transistor depends
on two energy scales, the charging energy Eo of the island and the Josephson energy E;
of the junctions, which set an upper limit for the operating temperature of the experiment.
Having E- and E; of the order of 1 kK requires to fabricate devices with a micron-size island
and submicron-size junctions. These circuits are fabricated using e-beam lithography (EBL)
techniques. We have typically fabricated Al/AlO,/Al Josephson junctions with a surface of
100 nmx100 nm and aluminum islands with a surface of 1 mx100 nm . This results in Cy of
the order of 10 aF and C; of the order of 1 fF . Hence E¢ ~ (2¢)?/(2C) is of the order of 1
kK . The Josephson energy E; is controlled independently with the oxidation of the junctions

and is of the same order as E¢ for the experiments we have performed.

2-A-1 Nanofabrication techniques for Cooper pair boxes

Electron beam lithography

Electron beam lithography (EBL) (Figure 2.16) makes use of a focused electron beam, emitted
by the gun of an electron microscope, to locally alter a polymer resist. The beam position
is controlled by a computer in such a way that a precise irradiation dose is delivered on the
sample inside the scanned pattern. In our laboratory, we use a 25 keV electron beam generated
by a commercial Philips SFEG scanning electron microscope. Between two area exposures,
the beam is shifted away from the sample by an electrostatic beam blanker. After exposure is
completed, the sample is removed from the microscope and placed in a specific solvent with a
great solubility difference between exposed and non-exposed areas. The resolution reached by
EBL is neither limited by the electron beam size nor by diffraction but by the backscattering of
electrons inside the resist and substrate, resulting in a partial exposure of the resist near the
exposed pattern. This broadening effect is important near large exposed areas. Small details
in their vicinity must consequently be underexposed according to a position-dependent dose
correction. This is the case for the island of a box, which is placed close to the much larger gate
electrodes. The exposed areas are removed by the solvent while the non-exposed ones remain
unaffected. Thin layers of material are then deposited through the mask. A final lift-off is
performed by dipping the chip in a solvent.

93
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Figure 2.16: The different steps of electron beam lithography: electronic exposure of the sample

covered with a polymer resist, development of the mask in a solvent bath, metallic thin film
deposition(s) and mask lift-off.
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The suspended shadow mask technique

Al deposition
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Figure 2.17: Fabrication of a Josephson junction with the suspended shadow mask technique.
The pattern of the junction corresponds to two separated slits. The first deposited metallic layer
is oxidized before the deposition of a second metallic layer. The angle of deposition of this
second evaporation is adjusted so that a metallic track of the second layer overlaps an oxidized

track of the first evaporated layer. The overlap zone corresponds to the Josephson junction.

The shadow mask technique [63, 64] used for the fabrication of Cooper pair boxes ensures a good
self-alignment of the electrodes for junction fabrication (Figure 2.17). It consists in exposing
a substrate previously covered with two different layers of polymer resist. Since the upper
layer is more soluble in the developer bath, the development creates a cavity below the mask,
thus allowing angle evaporations. If the evaporation angle is changed between different layer
depositions, the mask shadow is shifted: a single slit in the mask leads to separate projected
electrodes. The angles are adjusted in such a way that two deposited electrodes overlap over a
small area. A tunnel junction is obtained by oxidizing the first deposited layer of metal before
deposition of the counterelectrode. The junction capacitance and tunnel resistance can be
controlled independently by varying the overlap area and oxidation parameters respectively.

(For an example of shadow mask used in this thesis work, see Figure 4.31, left)

Fabrication of on-chip electromagnetic environments

The Josephson junctions, the Cooper pair boxes and Cooper pair transistors must be embedded

in an appropriate electrical circuit with the following elements:
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e Normal metal leads close to the superconducting Al reservoirs of the box to suppress
spurious out of equilibrium quasiparticles.

e Capacitors and resistors in order to control the high frequency environment of the device.

e Connection pads to connect the sample to the outside electrical lines (Figure 2.18).

Different strategies can be adopted to implement these elements. The first possibility is
to fabricate them together with the Josephson junction at the EBL stage. (example: contact
pads in experiment 3, represented in Figure 2.18). This method is time consuming because
electron beam lithography is a ”serial” fabrication technique, in which the beam scans all the
exposed zones. It is however possible to accelerate the fabrication of large elements using a
resist more sensitive to electrons than the commonly used PMMA resist, namely UV3, in order
to pattern several tens of chips on a single wafer (example: capacitor C,; of experiment 4 and
5, represented in Picture 2.19). Furthermore, whereas the box requires the best resolution
provided by e-beam lithography, the leads and connecting circuitry have less critical resolution
requirements. Hence, it is possible to fabricate the close electromagnetic environment of the
box using standard ultra-violet optical lithography which has the great advantage of processing
many samples on a single silicon wafer ”in parallel”. (Example: R; and C in experiments 1

and 2, see section 2-B-3).

Alignment of the box with the on-chip environment

When the electromagnetic environment of the circuit is fabricated first, the circuit must be
aligned on it with an accuracy of about 100 nm . Alignment marks (picture 2.20) are designed
on the sample during the fabrication of the environment to allow the alignment without exposing
the places where the circuit will be patterned. The alignment procedure can be automated with
the software ”Elphy Quantum” (by Raith) driving the Philips microscope.

Before the deposition of a Cooper pair box or transistor on a preexisting environment, it is
preferable to clean the metallic surface previously fabricated by Argon ion milling to ensure a

good contact between the two layers.



APPENDIX 2-A FABRICATION TECHNIQUES 97

WS W
K—)HIHI

7,577

5 mm

Figure 2.18: Example of contact pads. In order to conduct microwave signals without reflections,
it is mecessary to use coplanar wavequides with a constant impedance. A coplanar waveguide
consists of a center strip with width S, with 2 ground planes located parallel on the same substrate
at a distance of W from the center strip (left panel). The characteristic impedance of the central
strip is determined by the relative permittivity €, of the substrate and the ratio S/W [65]. In
order to have an impedance of 50 0 on the silicon substrate we use, and which has a relative
permittivity €, = 11, the width S of the center strip must be twice the gap W . In experiment

3, four coplanar waveguides with W/S = 2 were implemented on the same chip (right panel).
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Figure 2.19: Ezample of electrical component fabricated on

chip: one 0.25 pF section of the
capacitor Cp, of experiment 5.

Figure 2.20: Micrograph of the alignments marks used in experiment 3 to align the Cooper pair
transistor with the optically fabricated environment. In this experiment, the alignment procedure
had two steps, a first rough alignment on the big cross visible at top right of this picture, followed

by a second accurate alignment on the 4 smaller marks shown at the bottom left of this picture.
The transistor must be placed at the center of these 4 marks.
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Technical data for the EBL Bilayer process

These data are given here for the experiment 5.

Polymer resists:

Bottom layer : copolymer meta-acrylate acid/methyl-meta-acrylate (PMMA /MAA) diluted
at 8.5% in ethylactate.

Top layer : copolymer poly-methyl-meta-acrylate PMMA (molecular weight 950 K) diluted
at 3% in Anisole.

Resist deposition:
For the Quantronium, the PMMA top resist layer must be particularly thick because the
fabrication of the big Josephson junction requires to pattern a long PMMA /MAA bridge
Bottom layer:
Spin at 2200 tr.min~! during 60 s.
Dry at 165°C on a hot plate for 120 s, gives a 700 nm thickness.
Top layer:
Spin at 4800 tr.min~! during 60 s .
Dry at 170°C on a hot plate for 1800 s, gives a 95 nm thickness.

Electron beam exposure
Electrons accelerated by a voltage of 25 kV, standard dose 250 mC/cm?.

Development
Develop for typically 40 s at room temperature in a solution of MIBK (methyl-isobutyl-
ketone) diluted at 25% vol. in propanol-2

Rinse in propanol-2.

Deposition of metallic films
Deposition of 25 nm of aluminum, oxidation during 240 s under a pressure of 20 mb of a

mixture of Oy (25% mol.) and of Ar (75% mol.), deposition of 30 nm of aluminum.

Lift-off

Acetone heated at 50°, with ultrasonic bath when necessary.






Appendix 2-B: Electrical wirings of the

experiments

2-B-1 The different elements composing the electrical lines

In all experiments reported in this thesis, the sample is mounted in a copper sample holder
thermally anchored to the mixing chamber of a dilution refrigerator. The sample is connected
to room temperature electronics by electrical lines which have to be carefully engineered in
order to stop thermal and external electromagnetic fluctuations. This appendix presents the

different components appearing in the connection lines of experiments 1 to 5.

— Coaxial line (except on-chip)
Microcoaxial line
== Twisted pair
> 2 single lines/ coaxial line connection
—WWMW— Resistor

—]}— Capacitor

— "= (R,C) filter

|

MMM+ microfabricated (R,C) filter
- P__(+ Copper powder filter

é%* 10 Decibels attenuator

Figure 2.21: Legend of the symbols used in the electrical schemes of this thesis.

The electrical lines connected to the sample holder generally consist of coaxial lines, except

the measurement line, which is very often a twisted pair cable. Twisted pair cables have the

101
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interest of avoiding the pick up of parasitic magnetic fields. Different filters are used to stop
the noise at high frequencies: discrete (R,C) filters, home made microfabricated (R,C) filters
[66] and home made copper powder filters [67]. A microfabricated (R,C) filter consist of a
microlithographied meander line circulating on top of a ground plane, with a resistance of
about 1.5 k2 and a capacitance of about 70 pF. It provides more than 120 dB of attenuation
above 0.1 GHz. A copper powder filter consists of a manganin wire spiraling in a box filled
with copper powder, which provides skin depth losses. It has an attenuation better than 60
dB above 1 GHz. The microcoaxial lines used in experiments 4 and 5 also act as distributed
(R,C) filters. The resistors are special resistors adapted to low temperatures. Resistors and
capacitors which are inside the sample holder are surface mounted components (SMC) which

can be placed very close to the sample.

2-B-2 The DC SQUID array

The array of 100 DC SQUIDs used in experiment 1 and 2 has been fabricated at the NIST
laboratory in Boulder [23, 60] (Figure 2.23). A DC SQUID consists of a superconducting loop
enclosing two resistively shunted Josephson junctions with critical current I, threaded by a
magnetic flux ®,4,4 . Each SQUID behaves as a tunable Josephson junction with an effective
critical current I59? = 21y cos(2® quia/ o) (See [40, 51]). When the array is current biased, the
voltage Viyrqy across the series of SQUID is modulated by the flux ®4,,4 . Since there are 100
SQUIDs, the voltage Vg,rqy is large enough to be measured with room temperature amplifiers.
The measured Vgypqy-Psquia characteristic present irregularities due to phenomenons of mutual
inductance between the SQUIDs (Figure 2.22, bottom). Since the sensitivity dViray/dPsquia
depends on @44, on I, and on the number of flux quanta trapped in the SQUIDs, it is
preferable to operate the SQUID array in a feed-back mode using a feed back coil (Figure 2.22,
top). In practice, the SQUID array is placed in its own shielding sample holder, next to the

sample holder containing the measured device.
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Figure 2.22: Top panel: Scheme of the feed-back loop in which the array of DC SQUIDs is
embedded. The series of SQUIDs is biased by a current Isgiq. The voltage Vipray across the
array, which depends on the flur ®gquiq through the squids, is measured using an amplifier. In
the feed-back mode, this voltage is maintained at a fized value V,.;. Bottom panel: Measured
Varray-Psquia characteristic for 4 different values of Isquia. The irregularities in the character-
istic are due to mutual inductance phenomena between the SQUIDs. The feed-back amplifier
gain 1s tuned so that the flux sent by the feed-back coil maintains the SQUID array at a con-
stant working point like O. The output of the measurement is the output signal of the feed-back

amplifier.
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TFigure 2.23 |Figure 2.24
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2-B-3 On chip (R, + C;) environment used in experiments
1 and 2

The electromagnetic environment of the junction or transistor of the experiments 1 and 2 was
microfabricated by A. Steinbach at the NIST laboratory of Boulder using optical lithography.
The substrate is a silicon chip covered with 200 nm of thermally grown SiO5 . The 10 €2 resistor
R, indicated in Picture 2.24, 2 is made of AuPd. The marks A, B and C indicate Au pads used
to contact the junction or transistor fabricated afterwards with EBL. The capacitor C; = 100
pF surrounds this central area everywhere except on the right where the leads exit. The bottom
capacitor electrode is Nb grown using a Plasma Enhanced Chemical Vapor Deposition Process
(PECVD), and the top capacitor electrode is Au. The leads connected to A and B, used to
current bias the sample, go to large contact pads shown in top and bottom of Picture 2.24, 1.
The contact D is designed for the transistor gate of experiment 2. Contacts to the Nb capacitor

electrode and to the Au electrodes are established by via structures which are etched through
the PECVD SiO,

Previous page:

o Top: Figure 2.23. Global scheme of the SQUID array (picture a) and micrographs of a
group of 12 SQUID (picture b) and of a single SQUID (picture c).

e Bottom: Figure 2.24. Micrographs of the (Rs + Cs) environment of experiments 1 and
2. A and B are the connecting pads for the device. D is a gate pad. The red square in
picture 1 indicates the area zoomed in picture 2.
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2-B-4 Implementation of experiment 1

In experiment 1, the Josephson junction was fabricated with the EBL technique in the electro-
magnetic environment (R + C) previously described. Figure 2.25 presents a global schematics
of the electrical wiring of experiment 1, from the sample to the room temperature amplifiers.
The R, resistor is a contact resistor resulting from the transistor fabrication process. The R,
and R, resistors are SMC components connected to the chip with indium pads and isolated
from the sample holder by a Kapton film. The SQUID array used to probe the sample behav-
iour is described in 2-B-2. The input lines of the SQUID array are filtered with copper powder
filters and capacitors. All these elements, which are thermally anchored to the mixing chamber
of the dilution refrigerator, are grouped inside a lead shield in order to avoid the pick-up of
electromagnetic noise by the SQUID array. The bias current [, is delivered by a voltage source

V}, in series with a resistor R
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Figure 2.25: Global schematics of the electrical circuitry of experiment 1 (The symbols used are
defined in Figure 2.21).
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2-B-5 Implementation of experiment 2

In experiment 2, the Cooper pair transistor was fabricated with the EBL technique in the same
electromagnetic environment (R + Cs) as in the previous experiment (picture 2.26, 1). The
gold quasiparticle filters have been fabricated at the same time as the transistor during the
e-beam lithography stage (picture 2.26, 2). Figure 2.27 presents a global schematics of the
electrical wiring of experiment 2, from the sample to the room temperature amplifiers. The R,
resistor is a contact resistor resulting from the transistor fabrication process. The R;, R, and
R,, resistors are SMC components connected to the chip with indium pads and isolated from
the ground of the sample holder with a Kapton film. The SQUID array used is the same as

in experiment 1 (Appendix 2-B-2), but its input line is now only filtered with copper powder
filters.

Bphilier { o

junction —»

island —>

junction ——

qp 1'ill'cr\
500 nm

L 1

— )

Figure 2.26: Micrographs of the Cooper pair transistor (picture 2), embedded in an on-chip
electromagnetic environment (Rs + Cs) (picture 1). The red square in the left picture indicates

the area zoomed in the right picture.
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Figure 2.27: Global schematics of the wiring of experiment 2 (The symbols used are defined in
Figure 2.21).
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2-B-6 Implementation of experiment 3

In experiment 3, the on-chip gate and bias connection pads placed on-chip have a coplanar
waveguide geometry specially designed to avoid reflections of the microwave signals (Figure
2.18, right). Figure 2.30 presents a global schematics of the electrical wiring of experiment
3, from the sample to the room temperature amplifiers. No electrical components is placed
on-chip in order to improve the flexibility of the experiment. This results in a stray capacitance
Cr = 0.75 pF and a stray inductance L, due to the connection between the sample and the
electrical components, . In order to make these connections, we have used a miniature Printed
Circuit Board (PCB) which wears the SMC components R, Cs, Ry, and Ry (see Picture 2.28,
2 and Figure 2.29). The connecting pads of the PCB are contacted to the sample connecting
pads using gold wire bonding. The PCB is also connected through carefully filtered electrical
lines to the room temperature electronics. The sample current bias [, is implemented by a

voltage source V, in series with a resistor Ry.

Nezxt page:

o Top: Figure 2.28. Four micrographs of the Cooper pair transistor (Picture 4 and 3),
whose chip is placed at the center of a PCB (Picture 2) itself mounted in the sample
holder (Picture 1). The bright zones in pictures 3 and 4 correspond to the gold layer
evaporated on top of the aluminium layers. The green rectangles in picture 2 are the SMC
components. The chip includes 2 transistors, but only one of them was effectively used in
the experiment (Its connections can been seen at the left of Picture 2). The red rectangle

in a photograph indicates the zone zoomed in the next picture.

e Bottom:Figure 2.29. Sketch of the PCB chip (white and yellow) which allows to connect
the SMC' components Ry, Ry and Rs (in pink) and Cy (in blue) to the sample (in light
blue). The yellow areas are the gold tapes of the PCB and the gold bondings
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Appendix 2-C: Articles reporting the

experiments of chapter 2

The articles reproduced here are:

[24] A.H. Steinbach, P. Joyez, A. Cottet, D. Esteve, M.H. Devoret, M.E. Huber and J.M.
Martinis, Direct Measurement of the Josephson Supercurrent in an Ultrasmall Josephson Junc-
tion Phys. Rev. Lett. 87, 137003 (2001).

[25] A. Cottet, A.H. Steinbach, P. Joyez, D. Vion, H. Pothier, D. Esteve, and M.E. Hu-
ber, Superconducting FElectrometer for Measuring the Single Cooper pair box, in “Macroscopic
Quantum Coherence and Quantum Computing”, D.V. Averin , B. Ruggiero, and P. Silvestrini
eds., Kluwer Academic, Plenum Publishers, New York (2001), p111.

[27] A. Cottet, D. Vion, P. Joyez, D. Esteve, and M.H. Devoret, A Hysteretic Single Cooper
pair transistor for Single-Shot Reading of a Charge-Qubit, in “International Workshop on Su-
perconducting Nano-electronic Devices”, J. Pekola, B. Ruggiero, and P. Silvestrini eds., Kluwer
Academic, Plenum Publishers, New York (2002), p. 73.

Beware that in these articles, the definitions used for Ec and Ej are different from those
used in the body of the thesis.
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Direct Measurement of the Josephson Supercurrent in an Ultrasmall Josephson Junction
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We have measured the supercurrent flowing through a nonhysteretic, ultrasmall, voltage-biased Joseph-
son junction. In contrast with experiments performed so far on hysteretic Josephson junctions, we find
a supercurrent peak whose maximum /4« increases as the temperature 7' decreases. The asymptotic
T = 0 value of I;max agrees with the junction Ambegaokar-Baratoff critical current, as predicted by

theory.

DOI: 10.1103/PhysRevLett.87.137003

A Josephson tunnel junction between two superconduct-
ing electrodes is a basic quantum nonlinear system [1,2].
For excitation energies much smaller than the supercon-
ducting gap A, it can be modeled by the Josephson Hamil-
tonian H = —E; cosé where & is the gauge-invariant
phase-difference operator, a purely electrodynamic quan-
tity which is 2e/h times the space and time integral of
the electric field across the junction [2]. The Josephson
energy E; is a macroscopic parameter, which, for BCS
superconductors at temperatures T << A/kp and for
sufficiently opaque junctions, depends only on the junc-
tion tunnel resistance R, and A through E; = g A/R,
[3]. The supercurrent flowing through the junctlon is
given by the Josephson relation Is = (2¢/h)(dH/38) =
(2¢E; /) {sind), the average (- --) being performed on the
degrees of freedom of the electrodynamic environment
of the junction. Thus, the highest supercurrent that the
junction can sustain is given by the so-called Ambekaokar-
Baratoff critical current Iy = %A /R, corresponding to an
environment for which (sin3> = 1. This critical current is
easily observed for junctions with a small Coulomb energy
Ec = 2¢%?/Cy < Ej where Cy is the intrinsic capacitance
of the junction [4]. For these junctions, the phase behaves
as a good quantum number & which can be driven to
the critical value § = 7 /2. However, for the so-called
“ultrasmall” junctions characterized by Ec = E;, which
are considered for applications in quantum information
processing [5], the highest supercurrent has always been
found experimentally well below the expected value I
[6-9]. Several untested hypotheses have been formulated
to explain these results. The average (sind) may not reach
the value 1 because of uncontrolled quantum or thermal
fluctuations. Failure of the Josephson Hamiltonian model
for ultrasmall junctions could also explain the results,
even if it is not directly expected from theory. Note that,
experimentally, one cannot simply shunt the two leads
of the junction by a small superconducting inductance
to impose the phase difference, since it then becomes
impossible to check the junction parameters by measuring
its quasiparticle current.

137003-1 0031-9007/01/87(13)/137003(4)$15.00

PACS numbers: 74.50.+r, 73.23.-b, 73.40.Gk

The aim of the experiment reported in this Letter was to
test the validity of the Josephson Hamiltonian model and
the Josephson relation for an ultrasmall junction embedded
in a controlled environment which should suppress phase
fluctuations.

The principle of our experiment is shown schematically
in Fig. la: an ultrasmall Josephson junction with criti-
cal current /p and intrinsic capacitance Cy is biased by
a circuit equivalent to a capacitor Cg in parallel with an
ideal voltage source Vjp in series with a resistance Rp.
This bias circuit is also equivalent to a current source

= Vp/Rp in parallel with Rg and Cp (Thévenin theo-
rem). The average current / through the junction is mea-
sured by a current meter in series with the junction. The
impedance of the meter is made negligible in comparison
with the impedance of the bias circuit. The system is analo-
gous to a damped quantum particle with mass C(/i/2e)?,
where C = Cyp + Cp, placed in a tilted washboard poten-
tial U(8) = —E; cosé — Ig(li/2e)5. The damping due
to the resistance Rp, assumed to be in thermal equilib-
rium at temperature 7, manifests itself also as a fluctu-
ating force acting on the particle [2]. We consider only
the overdamped regime Rg < +/i/(2e¢Cly), for which the
particle mass can be neglected. In this regime, all quan-
tum fluctuations of the phase are suppressed, provided
that Rp << h/(2e)? [10]. Previous experiments have tried
to implement this idealized circuit and determine the su-
percurrent maximum Ig ., = max[/g(Vg)] which should
tend to Iy as T — 0. However, instead of the pure Rp
and Cp combination, all of them had a strongly frequency-
dependent and often ill-characterized impedance Z(w).
This difficulty arose because the measuring setups involved
high input impedance field-effect transistor amplifiers and
the dc value of Z had to be made large in order to re-
solve the contribution of the junction quasiparticle current
to the I(V) characteristics. In practice, the condition for
hysteresis Z(w = 0) > /li/(2eCyly) was inevitable. The
zero-voltage state, in which the supercurrent is measurable,
was therefore metastable and was switching to the nonzero
voltage state at Ip = lgw < Ismax [11]. This switching

© 2001 The American Physical Society 137003-1
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FIG. 1. (a) Idealized circuit for measurement of supercurrent
of Josephson junction. The junction consists of a Josephson
element (cross) in parallel with a capacitor. (b) On-chip high-
frequency circuitry contributing to electrodynamic damping of
Josephson junction. For clarity, metallic thin films only are
represented. (c) Measurement setup schematics including both
on-chip circuitry (box in dotted line) and off-chip circuitry. A
known fraction of the current through the junction is coupled to
a SQUID array (box in dashed line). The backaction noise of
the SQUID array is attenuated by filter F.

transition is affected by thermal and quantum fluctuations,
and I, is characterized by a probability distribution. The
average I,, obtained so far for ultrasmall junctions showed
various degrees of reduction compared to /o [6], ranging
from around 10731y to 0.65Ip, this largest value having
been obtained using an on-chip impedance [9].

In the present experiment, we have circumvented these
problems and measured the current through a junction in
the nonhysteretic regime using as the current meter a re-
cently developed SQUID series array with 100 dc SQUIDs
[12]. The impedance of the current-measuring circuit is
so low that we can afford to overdamp conservatively the
junction at all frequencies, thereby ensuring that the mea-
surement finds the junction in a fully stable state with
a controlled absence of quantum fluctuations. The total
impedance seen by the junction is equivalent to a pure re-
sistor Rg = 24 £ 1 () in parallel with a reactive element
which behaves as a capacitor Cp = 200 * 20 fF above a
few tens of MHz. In conventional measuring setups, such
heavy damping would make the junction current hardly dis-
tinguishable from the current through the shunt resistor.

137003-2

The actual measurement setup implementing the ideal-
ized Fig. la circuit is shown in Figs. 1b and lc. It has
been designed to minimize deviations of the environmental
impedance from the ideal limit Z(w)~' = Rz' + jCpw
while maintaining dissipative elements in thermal equilib-
rium at a controlled temperature 7', as well as imposing
an accurate bias current. In order to meet, in a fre-
quency range spanning 10 orders of magnitude, these con-
flicting requirements, we have engineered an environment
which consists of both microscopic on-chip (Fig. 1b) and
macroscopic off-chip components (see outside of dotted
line box in Fig. 1c). The on-chip components contribute
mainly to the high-frequency values of the environmen-
tal impedance, which include the junction bare plasma
frequency /2ely/(hCy) in the tens of GHz range, while
the off-chip components contribute mostly to the low-
frequency values, which includes possible Josephson reso-
nances in the hundreds of MHz range, as well as the
measurement frequencies below a few kHz. The on-chip
circuitry consists of a resistance Ry = 11.8 () in series
with a capacitance Cy = 100 pF, which were fabricated
using a five-layer optical lithography process. The resistor
Ry was made from 150 nm thick AuPd with a width and
length of approximately 5 um by 25 wm. This small re-
sistor was in good electrical contact with a large Au pad
that served as a thermal reservoir. A single Al-AlO,-Al
Josephson junction was fabricated by e-beam lithography
and double angle shadow mask evaporation [13]. We es-
timate the capacitance Co = 1 fF from the junction area.
The contact resistance resulting from the junction fabri-
cation process was Rc = 12.1 ). The off-chip compo-
nents Ry, = 1.67 Q,R; = 10 Q,and R;, = 10.1 Q were
surface mounted resistors for microwave circuits placed
within 5 mm of the junction to minimize the stray induc-
tance L = 4 nH of the connection between the off-chip
and on-chip circuitry. The role of Ry and the two R;’s is
to provide a current divider for minimizing the backaction
of the Josephson oscillations inside the SQUID array on
the measured junction. A microwave copper-powder filter
[14] placed in series with the R; resistors provides further
attenuation at high frequency. Only about 8% of the junc-
tion supercurrent was thus coupled to the SQUID array.
The biasing circuitry at high temperature was connected
to the resistor R, through coaxial lines filtered by a com-
bination of copper-powder filters and miniature cryogenic
filters [15], and its action is equivalent to a voltage source
Vg in series with R;. The sum of R;, Ry, and R, deter-
mines the dc value of the environmental impedance, while
the sum of Ry and R¢ determines its high-frequency value
(inductor L blocks high-frequency currents). The sample
and the low temperature bias circuitry were thermally an-
chored inside a copper box bolted to the mixing chamber
of a dilution refrigerator.

The junction I(V) characteristic is shown in Fig. 2a for
T = 34 mK. The superconducting gap is directly mea-
sured to be A =200 = 2 uV and the junction normal

137003-2
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FIG. 2. (a) Large-scale I(V) characteristic of the ultra-
small Josephson junction of Figs. 1b and 1lc at T = 34 mK.
(b) Josephson supercurrent peak shown on an expanded
voltage scale, at different temperatures. From top to bottom:
T = 34,98, 245,400,622 mK, respectively.

state resistance approaches the asymptotic value Ry =
6.99 k() at voltages many times 2A/e. The critical cur-
rent is then calculated to be I, = 44.9 £ 0.5 nA. On first
inspection, the (V) of Fig. 2a appears conventional, with
the Josephson current manifesting itself as a vertical line at
zero voltage. However, because of the low impedance of
our biasing circuit, there is no hysteresis and all points on
the 1(V) characteristic are stable, in contrast with the usual
current-bias ramp method giving access only to the posi-
tive differential conductance part of the I(V) in the best
cases. Thus, it is worth stressing that in our experiment,
a supercurrent peak, as opposed to a supercurrent branch,
is measured for the first time. The detailed structure of
the supercurrent peak is shown for several temperatures in
Fig. 2b. The higher temperature data show a finite slope
around zero bias which is due to phase diffusion in the
tilted washboard potential [16]. The full I(V) characteris-
tic in the pure Ohmic damping case was first calculated by
Ivanchenko and Zil’berman [17]:

Li-2igev,/rr,(BEJ) }
I -2igev,/ir,(BEs) 1’
where 1,(z) is the modified Bessel function, 8 = 1/kgT,
Vg = V + Rgl. The more general approach [18], devel-

oped to solve the steady-state Fokker-Planck equation for
the phase distribution in a tilted washboardlike potential,

1(Vp) = I Im[ (1)

137003-3

has been proved to yield equivalent results [19]. The ex-
pression (1) predicts a supercurrent peak with a maximum
which tends to Iy in the zero temperature limit. A de-
tailed comparison between the I(V) characteristics mea-
sured at three temperatures and the theoretical predictions
are shown in Fig. 3 with no adjustable parameters. The
close agreement between theory and experiment around the
peak maximum shows that the temperature of the electro-
magnetic environment which drives the phase dynamics is
indeed equal to the experimental refrigerator temperature.
The agreement over the whole voltage range, without any
spurious resonances, confirms that the impedance of the
junction environment is indeed almost constant over the
corresponding range of Josephson frequencies. As a check,
we have simulated the classical dynamics of a small junc-
tion for the exact circuit of Fig. 1b, including the effect of
thermal fluctuations. The theoretical I(V) curves so ob-
tained are negligibly different from those obtained with
expression (1) with Rg = 24 (), which indicates that our
experiment implements the ideal bias case satisfactorily.
As a further check of the influence of the off-chip bias
circuitry on the I(V), we have increased L to a value of
order 100 nH and observed that the (V) then developed
two metastable branches predicted by our numerical simu-
lations and corresponding to chaotic Josephson oscillations
in the hundreds of MHz range [20].

In Fig. 4, we compare the measured supercurrent peak
height /5 max With the values predicted from (1) over a large
temperature range [21]. The peak height /s max increases as
the temperature is lowered down to 26 mK, in agreement
with the classical theory. However, the agreement between
theory and experiment below 200 mK was attained only
after the filtering at the input of the SQUID array, as de-
scribed in Fig. 1c, had been installed. This indicates the
magnitude of the backaction noise produced by this type
of amplifier. We do not have a fully convincing explana-
tion for the deviations between experiment and theory at

T
|
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<
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0

FIG. 3.

Comparison between the (V) characteristics measured
at different temperatures (symbols) and the calculated ones (full
lines) using Eq. (1) and Iy = 44.9 nA and R = 24 (). From
top to bottom: 7 = 34, 157, and 400 mK, respectively. Dashed
line represents the I(V) predicted at T = 0.
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FIG. 4. Comparison between the measured temperature depen-
dence of the maximum supercurrent (open circles) and the pre-
dicted one (full line).

the highest temperatures, but the contribution of the quasi-
particle current to the damping of the junction, which we
neglect in our analysis, may play a role in this regime.

Our experiment thus provides strong experimental
evidence that the commonly observed reduction of the
maximum supercurrent in an ultrasmall junction is not an
intrinsic junction property, but is due to its electrodynamic
environment. When the environment is engineered to
place the junction in the overdamped regime in a con-
trolled manner, the Ambegaokar-Baratoff critical current
Iy can be reached at low temperature, thereby showing
the validity of the Josephson Hamiltonian for ultrasmall
junctions. A control of the environment impedance similar
to that of our experiment, but with higher resistances,
would allow the observation of the strong reduction of the
maximum supercurrent by quantum fluctuations, which
has been recently predicted by Ingold and Grabert [22] in
the case of a resistive environment with R ~ Rg.

Our work also provides ground for the application of
the single Cooper pair transistor (SCPT) [7] to electrome-
try. This device consists of two small Josephson junctions
in series. At low temperature, it is equivalent to a single
junction whose Josephson energy is modulated with a 2e
period by the gate charge coupled to the island formed be-
tween the two junctions. This modulation can be exploited
for low-noise-temperature electrometry [23], provided that
the device supercurrent is measured like in the present ex-
periment. The SCPT could operate at high frequencies
since intrinsic bandwidths up to 120 and 250 MHz have
been demonstrated for arrays with 100 and 30 SQUIDs,
respectively [24]. Further work is needed to know how
this new type of electrometer competes in fast electrome-
try with the recently developed RF-SET [25].

We gratefully acknowledge discussions with J. Imry,
G.-L. Ingold, and H. Grabert. This work was partly
supported by the European Union through Contract
No. IST-10673 SQUBIT and by the Bureau National de la
Métrologie.
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Abstract

We discuss for the single Cooper pair box the contributions to
relaxation and to decoherence of the electromagnetic environment, of
the offset charge noise, and of a measuring Single Electron Transistor.
We show that a single Cooper pair transistor can also be used for that
purpose. Experimentally, we have operated such a device by measuring
the variations of its critical supercurrent with the gate voltage using
a SQUID series array amplifier. We describe the characteristics of
this new electrometer and compare different schemes for measuring
the critical current.

0.1 Introduction

The giant leap that quantum mechanics could bring to computing science[l]
motivates an intense research of systems suitable for implementing quantum
bits (qubits) and quantum algorithms. The requirements are formidable: the
quantum states of the elementary qubits should be manipulable at will with-
out significant loss of coherence over times much longer than the duration



of elementary transformations, the couplings between qubits should be fully
controllable, and the state of a qubit should be readable reliably. Further-
more, the implementation of the error correcting codes necessary to fight the
unavoidable residual decoherence would require to perform measurements on
some qubits during the computation process in order to perform adequate
correction manipulations[2]. At the present time, quantum entanglement up
to four qubits[3] and operation of elementary quantum gates[4] have already
been demonstrated in quantum-optics based systems. Although less devel-
opped, microfabricated solid state systems are more appealing because they
could be integrated on a large scale far more easily. The most advanced re-
sults reported so far with solid state systems have been obtained on qubits
based on flux-states of small superconducting loops[5], and on charge states
of small superconducting islands[6, 7]. In particular, Rabi precession be-
tween the two states of a charge qubit has been demonstrated in the single
Cooper pair box over a few tens of oscillations[7], and longer coherence times
are expected. The understanding of all decoherence sources which limit the
duration of coherent oscillations in this system is thus an important issue.
In this work, we discuss the influence on the single Cooper pair box of the
residual dissipation in the box circuit, of the offset charge noise, and of the
measuring system. In order to reduce the back-action of the measuring appa-
ratus, we consider a new type of electrometer based on the superconducting
version of the single electron transistor[8]. Finally, we report the first elec-
trometry measurements performed with such an electrometer, and we discuss
the different possible measuring set-ups.

0.2 Description of the single Cooper pair box

The single Cooper pair box[6], described in Fig. 1, consists of a single super-
conducting island connected to a voltage source U through a small capaci-
tor C,; on one side and through a small Josephson junction[9], with capaci-
tance C'; and Josephson energy F;, on the other side. When the supercon-
ducting gap A in the junction electrodes is larger than the charging energy
E. = ¢e*/2Cx, (with Cy, = C; + C,), two charge states |n) and |n + 1) differ-
ing by one Cooper pair in the island form, close to their electrostatic energy
degeneracy point, a two-level-system well decoupled from other degrees of
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Figure 1: Top: schematic circuit of the single Cooper pair box. The dashed
line encloses the box island. Middle: realistic circuit with a residual series
impedance. Bottom: representation of the electromagnetic modes coupled
to the box.



freedom. The effective spin 1/2 hamiltonian of this two-level system writes:

Hy— —1B5 (1)
2

where & is a vector of Pauli operators, and B a fictitious field with compo-
nents {E;,0,4E.(1 —n,)}, with n, = C,U/e (see Fig. 2). The ground and
excited states of the above hamiltonian, |0 = 1) and |og = —1), are the two
states of the qubit. Their energy difference is h{2 = E;/sin 6 , where 0 is the
angle between B and the z axis. This description is however oversimplified,
and the qubit is coupled to other degrees of freedom, both at thermal equilib-
rium and out of thermal equilibrium. We will consider in this work the effect
of residual electromagnetic dissipation in the Cooper pair box circuit, the
effect of moving charges in the neighborhood of the box island, and the effect
of an electrometer measuring the state of the qubit from the electrostatic
potential of the box island.

4E C(1-n g)

Figure 2: Fictitious spin 1/2 representation of the Cooper pair box. The
_>
vector B is the effective field acting on the spin.

0.3 Relaxation and decoherence induced by the elec-
tromagnetic environment

The electromagnetic degrees of freedom of the box circuit can be modeled by
inserting a small series impedance z(w), as shown in Fig. 1. This impedance
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incorporates the effect of the voltage source and wiring impedances. Its
effect is to couple the box to a set of bosonic electromagnetic modes with
frequencies {w;} through the hamiltonian:

h = —\/EZth/ Rijj(,&(b] - b;r)gz ) (2)

where Z;, b; and b;r. are the impedance, the annihilation and creation opera-
tors of mode j, respectively, and Rx = h/e? is the resistance quantum. These
modes, which form the electromagnetic environment of the charge qubit, are
assumed at thermal equilibrium. Any summation }; f(w;)Z; over the set of
modes is performed in the following way[10]:

S )2 =2 [ fe)Rezw) 2. ®)

with, in the weak coupling regime x = C;/(C; + Cy) < 1 relevant for the
experiments, Re Z(w) = k*Rez(w) . The coupling hamiltonien (2) induces
transitions between the box and the modes of the environment. The stan-
dard second order perturbation theory yields for the downward and upward
transition rates I') and I'; between the excited state and the ground state of

the box: ( )2 2 S
27)* sin +(—
r = 4
10! T , (4)

where S(w) is the spectrum of the voltage fluctuations across the effective
impedance Z(w) :

v

S(w) = {coth( i

2kgT

- )+ 1} Re Z(w) . (5)

The total relaxation rate T¥"Y = T'| + 'y is the decay rate of the diagonal
part of qubit matrix density. In the low temperature regime T" < hQ/kp,
one has I'y ~ 0, and the total relaxation rate is simply:

PV ~ 47 sin® 0 k* Re 2(Q)/ Rk - (6)

Numerically, one gets 'YV = 50 kHz for the box parameters /27 = 10 GHz
(h2/kp ~ 0.5 K) , k =2.5%,Rez(Q2) =r=>5Q, and § = 7/4.
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We now discuss the decay of the coherence amplitude (X' | X'(¢)) of a
state prepared at t = 0 as | X') = 1/v/2(Jog = 1) 4 |o = —1)). Although
on-resonance modes exchanging energy with the box contribute to the decay
of coherence, out-of-resonance oscillators also contribute because they get
entangled with the box. The coherence amplitude (X’ | X'(t)) picks an extra
decay factor[11] :

A(t) = exp (4 cos® 0. Re[J (1)]) (7)

where J(t) is the phase correlation function which appears in the theory of
Coulomb blockade[12] :

B * dwReZ(w) exp(—iwt) —1
() = 2/0 w Rk 1—exp(—hw/kgT) 8)

In the simple case when z(w) = r, the function J(t) can be calculated
exactly. The long time behavior of Re J(t) is:

- At zero temperature: Re J(t) ~ =25 (y + In(t/krCy))

- At finite temperature: Re J(t) ~ —Z%U@Tt/h)

At zero temperature, A(t) follows a power-law with a small exponent,
and decoherence is weak. At temperatures 7" > 10 mK, the classical regime
is almost reached, and A(t) decays exponentially at a rate [YVV :

kgT

HZT 2
—_— 0 . 9
> R cos 9)

This result can be easily retrieved by performing the following semi-
classical average:

Alt) = <expi /0 (@) - 9) dt’> (10)

where €2(¢) is now the time dependent transition frequency modulated by the
thermal fluctuations of the voltage across the impedance z(w). In the classi-
cal regime, this entanglement is dominated by a random phase factor between
the two states of the coherent superposition. It is worth noticing that the
entanglement between the qubit and its environment is not an irreversible
process by itself, and that one could in principle recover to some extent the
loss of coherence due to low frequency modes using echo or even more sophis-
ticated pulse techniques, analogous to those developped in nuclear magnetic

6



resonance (NMR). If the impedance z(w) is frequency independent, the ra-
tio between the relaxation rate and the decoherence rate due to thermally
excited oscillators reduces to:

LENV _ h&)
LENV 2kpT
Since the experiments are performed in the low temperature regime kg1 <

hQ, one has TFNY /TENY > 1 in practice. In this case, the electromagnetic

environment of the qubit relaxes the whole qubit density matrix at the rate
PENY.

tan @ . (11)

0.4 Relaxation and decoherence induced by the offset
charge noise

It is well known that the island of a Single Electron Transistor (SET) [13]
is subject to an offset charge noise with a 1/f spectrum|[14]. This noise is
attributed to a set of charges randomly fluctuating between two positions
in the junction barriers and/or in the insulators close to the SET island.
Occasionnaly, slow two-level fluctuators (TLF) have been directly observed
over long times. The 1/f character of this TLF noise has been probed up
to about 10 MHz. Its typical intensity is S,(f) = ¢*B/f, with B ~ 1077,
Like the electromagnetic environment, the charge noise induces relaxation
and decoherence on the box quantum states. Although the spectral density
of the charge noise has only been measured at frequencies much smaller
than €, recent experiments on the single electron pump[15] have provided
experimental evidence that the charge noise extends up to 100 GHz, i.e.
well above €. Amazingly, the spectral density estimated from the measured
transition rate of otherwise forbidden transitions falls rather close to the
extrapolated value of the 1/f spectrum, with B’ ~ 10~®. This noise should
result in upward as well as downward transitions at a rate I'] “":

onB' (E.\" .
| 0 <€> sin?@ . (12)

The estimated value is about (1 X sin? 9) MHz, significantly larger than the
estimated contribution of the box circuit electromagnetic environment.



The decay rate of the coherence amplitude picks an extra contribution
from the low-frequency offset charge fluctuations. Because of divergences in-
herent to the 1/f spectrum, the experimental protocol has to be precisely
defined. When a measurement, performed during a short time 7, is averaged
over a time t,, > 7, the transition frequency has drifted away from its initial
value and one finds for the decay function:

A(1) ~ exp — [8Bcos?§ (E./h)* In(ta/T)] - (13)

The contributions of low frequency TLF to the decay of a coherence signal
can be suppressed using an echo pulse sequence similar to those used in NMR,
to compensate for inhomogeneous line-broadening. In this case, the decay
function does not depend on the averaging time and writes:
log(2

A'(1) ~ exp — |8Bcos*0 (E.r/h)’ % . (14)
The decay is still fast, and coherence is lost after a time ~ (20/ cosf) ns for
B =107", E. = 0.5 kgK. The 1/f noise is thus a serious limitation, and
its reduction to a level significantly smaller than commonly achieved is an
important issue.

0.5 Relaxation and decoherence induced by a measur-
ing SET electrometer

The state of the box can be measured either by measuring the electrosta-
tic potential of the island[6], or by connecting it to an extra small probing
tunnel junction which directly exchanges electrons with it[7]. Whereas this
latter method results in a destructive measurement of the qubit state, the
first one discussed here could in principle allow quantum non demolition
(QND) measurements. For that purpose, the measuring electrometer should
be able to distinguish both states of the qubit without inducing transitions
between them. Repeated measurements of the qubit state should then give
the same answer. An important characteristic of any measuring electrometer
is thus the amount of information it can provide before irreversible transi-
tions induced by the measuring system or by other relaxation mechanisms
occur. Figure 3 shows a measuring set-up with a SET electrometer capaci-
tively coupled through C. to the box island, a set-up which has been used
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to measure the island potential in the box ground state[6]. The measuring
process has been theoretically investigated in great detail for this set-up[16].
The back-action of the SET results from the fluctuations of the electrostatic

SET electrometer

(V)
W
c
[
c, & c,

Cooper pair box

Figure 3: Schematic circuit of a single Cooper pair box electrostatically cou-
pled to a measuring SET. The SET measures the potential of the box island.
The voltage fluctuations of its island produce a back-action noise on the box,
which induces relaxation and decoherence.

potential of its own island while the current is flowing. When one electron
enters or exits the island, the voltage varies by 6V = e¢/Cggr, where Cspr
is the capacitance of the SET island. Typically, 6V is a few hundreds of mi-
crovolts. At a practical working point, the correlation time of these voltage
fluctuations is 7. &~ 1/RgprCspr =~ e/I, where Rgpyp is the tunnel resistance
of the SET junctions, and [ is the average current. The spectrum is thus
lorentzian with a cut-off frequency 7. Its detailed form depends on the bi-
asing point, and is precisely known for SETs with junction resistances larger
than Ry [17]. Low frequency fluctuations result in decoherence, and a SET
at the threshold can reach the quantum limit in the sense that the qubit state
is decohered just on the time scale needed to measure it[16]. However, fluctu-
ations at the qubit transition frequency €2 induce transitions at a significant
rate when (27, < 1. In this regime, the induced relaxation rate follows from
Eq. (4) using the spectral density of the SET island voltage and the relevant
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coupling factor kgpp = C./C; < 1 between the box and the SET :

(2m)2sin% 0 k2pp (6V/2) 7.
hRk .

More precise estimates can be obtained to take into account the precise
working point of the SET and the effect of the rf drive in the case of an
rf-SET[18]. The question thus arises if a SET is able to measure the box
state before the induced relaxation has destroyed the qubit. A figure of
merit can be defined as f5%" = 1/ (I'7#".7,,), 7, being the minimum time
necessary to perform a measurement of the box state. Assuming that the
measurement accuracy is solely limited by the SET intrinsic noise and not by
the electronic amplifiers measuring the SET current, one finds f°F7 ~ cot? 6.
A usual SET can thus perform a single measurement of the qubit[16], but not
by a large margin. Note that a SET operated in the strong tunneling regime
could possibly achieve a better performance. From the experimental point of
view, the sensitivity of the best rf-SET is still presently limited by the noise
of the microwave amplifier at the carrier frequency but the intrinsic limit is
not beyond reach. In the following, we examine another type of electrometer
based on the superconducting version of the SET, the SSET.

SET .
™ ~

(15)

0.6 The superconducting SET electrometer

The SSET is almost equivalent to a single small Josephson junction whose
critical current I.(n,) is periodically modulated by the gate charge[8]. The
only difference with a single junction is that the current-phase is not strictly
sinusoidal, and that higher energy states can be excited. In the case when
the gate charge is modulated at frequencies smaller than the band gap, the
adiabatic approximation holds, and the SSET behaves as a tunable junction.
The modulation pattern is determined by the ratio E./E’;, where E, =
Igh/2e is the Josephson energy of each junction with critical current I.
For practical values E./E’, ~ 1, the maximum critical current of a SSET,
obtained for a reduced gate charge ny, = 1 [mod 2], is of the order of I,/2,
and the slope dI./dng is of the order of I, at practical working points. The
predicted critical current for a SSET is compared in Fig. 4 with the average
maximum supercurrent measured in a current-biased set-up[8]. In this case,
the current-voltage I — V characteristic is hysteretic and, upon ramping the
bias current, the junction switches out of the zero-voltage-state at a switching
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current Is. The values of Ig are distributed with an histogram whose average
value and width depend on the electromagnetic impedance as seen from the
SSET[19]. The average value is smaller than the critical current but almost
scales with the predicted variations for I.(n,). Depending on the biasing
circuitry impedance, the critical current of a SSET can be measured in two
different ways, which yields to two very different types of electrometers.

Straight line: predicted variations for the critical current of a SSET with
E. = 0.66 kgK and E’, = 0.50 kK. Dots: Measured average switching
current g for this SSET in a moderate damping circuit at 7" = 20 mK.
Dashed line: theoretical predictions.

Figure 4: Straight line: predicted variations for the critical current of a SSET
with E, = 0.66 kK and E’, = 0.50 kgK. Dots: Measured average switching
current Ig for this SSET in a moderate damping circuit at T = 20 mK.
Dashed line: theoretical predictions.

0.6.1 electrometry based on the switching of an ac-shunted SSET

The variations of the average switching current with the gate charge can be
used for electrometry. The obtention of narrow switching histograms suitable
for electrometry requires to damp the dynamics of the phase across the junc-
tion. Switching histograms with an average close to the critical current and
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a relative width smaller than 1073 have been obtained in the case of a sin-
gle junction using an RC' ac-shunting circuit[19]. However, the bias current
ramp-rate required for measuring a box is larger than used in the previous
experiment[19], and we have found that histograms get wider when the ramp
rate increases. Experimentally, we have measured switching histograms of
an RC-shunted SSET using ramping speeds up to 0.2 X Is/us. Preliminary
results show switching histograms narrow enough to discriminate the two
box states within a measuring time of 1 yus.

0.6.2 electrometry based on the dc-shunted SSET

When a Josephson junction is shunted by a small enough resistor, its [ — V'
characteristic is no longer hysteretic. However, its measurement is far more
difficult than in the unshunted case because the voltage across the junction
is too small to be measured using room temperature amplifiers. Recently,
our group has used the SQUID series array amplifiers developped at NIST-
Boulder[20] to measure the full I —V characteristic of a small Josephson junc-
tion. The array we have used consists of 100 de-SQUIDs in series, and delivers
a signal large enough to be amplified by room temperature amplifiers with-
out degradation[21]. Closed loop operation of the arrays is possible within
a few MHz bandwidth. The experimental results on single junctions[22], in
excellent agreement with the calculated I — V' characteristics[26], show that
the classical regime for the phase dynamics was indeed reached. This re-
sult made possible the design of an electrometer based on the measurement
of a shunted SSET|[23]. For that purpose, we have implemented the set-up
schematically described in Fig. 5, in order to measure the current Iz through
the shunting resistance R, of a SSET. More precisely, a fraction of this cur-
rent flows in the input coil of a SQUID array amplifier. In order to avoid any
high frequency resonance, an extra ac-shunt has been placed on-chip across
the SSET, but careful mounting of discrete components should however be
sufficient to obtain an adequate environment.

sensitivity and bandwidth The sensitivity of the electrometer is set by
the intrinsic SSET sensitivity dI./dn, =~ Iy, by the ratio dIg/dI. < 1 at
the bias point of the device, and by the noise of the SQUID array referred
to its input S; ~ 3 pA/ v/Hz. The intrinsic noise floor which results from

the thermal fluctuations of Iy is much smaller and will be considered later
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Figure 5: Schematic circuit of a SSET electrometer. The SSET is displayed as
a tunable junction. A fraction ~ 1/3 of the dc-current in the shunt resistance
passes in the input coil of a 100 SQUID series array. Ry and Cy form an
on-chip damping circuit, R, is a contact resistance, and R;, R, and Rj3 are
surface-mounted components. The low-pass filters F prevent the Josephson
oscillations in the SQUIDs from disturbing the SSET.
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on. The sensitivity, expressed in e/v/Hz, is thus s ~ S;/I, . Although a
larger critical current I should result in better sensitivity, too large values
of Iy result in a strong renormalisation of the island charging energy due to
virtual quasiparticle tunneling and correlatively to a strong reduction of the
modulation depth of the critical current. In practice, we have found that
the optimal value of [ is in the range 20 — 40 nA, which would result in a
sensitivity s ~ 10~%e/v/Hz for a maximal coupling between the SSET and the
array. This figure is significantly worse than the sensitivity s ~ 7 10 %¢/ VHz
already achieved with the rf-SET, but two-stage SQUID amplifiers might
allow to improve the present sensitivity by about one order of magnitude. In
this design, the SSET is connected to the input coil of a single de-SQUID,
which is itself in series with the input coil of a SQUID array. The bandwidth
is limited by the input circuit and by the electronics backing the array. As
seen from the array input coil, the SSET behaves as a source with a resistive
impedance which is of the order of the series resistance in the input coil
circuitry, 10 € in our case. For an input coil inductance of 200 nH, the
resulting bandwidth is about10 MHz, but can be made larger if needed.

experimental results We have fabricated SSET's using 3 angle deposition
through a shadow mask[24]. The two first aluminum layers form the junction
electrodes, and the third gold layer forms normal wires which help eliminating
spurious quasiparticles in the superconducting electrodes, and connect the
SSET to an on-chip RC damping circuit fabricated by optical lithography.
The SSET junction have an area of 80x130 nm? and a tunnel resistance
of 7.5 k2. The samples were mounted in a shielded box fitted with coaxial
connections to the SQUID series array box, and microfabricated RC filters[25]
were installed on the bias and gate lines of the electrometer. As shown
in Fig. 6 for a series of bias current values, the current through the shunt
resistor of the SSET is modulated by the gate voltage, with a measured
period corresponding to 2e. At larger bias currents, the modulation depth
decreases progressively. We have also determined the IV characteristic of the
SSET for different gate voltages. The extremal I'V's, obtained for n, = 0 and
ngy = 1, are shown in Fig. 7. The overall agreement between the experimental
results and the theoretical predictions[26] for a tunable Josephson junction is
satisfactory. The parameters are Fc = 0.55 kg K, and Iy = 40 nA which are in
good agreement with the values estimated from the area and tunnel resistance
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of the junctions, and from the superconducting gap A = 180 peV. This
corresponds to a ratio Ec/E’, = 0.55. The damping resistance as seen from
the SSET is R.sr = 38 €2, larger than the estimated value 25 €2 taking into
account all components in the circuit. The effective temperature of 200 mK
needed to fit the data is larger than the fridge temperature 40 mK because
filtering between the SQUID array and the SSET has been greatly reduced
compared to previous experiments on a single junction. This excess noise
temperature is however tolerable for electrometry applications, and can be
reduced if needed.We have also applied to the SSET gate a 0.2e step and

40 T T T

I, (nA)

Figure 6: Open symbols: variations of the current through the shunt re-
sistor Ir with the gate charge n, at 7" = 40 mK and for bias currents
I = 11,21,31,40 nA, from bottom to top. Full lines: theoretical predic-
tions at 7" = 200 mK based on the effective junction model.

recorded the response of the electrometer. In order to be sure that the
measured signal originates from the SSET and not from a direct coupling
to the SQUID electronics, we have substracted the traces with the SSET
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Figure 7: Open symbols: extremal / —V characteristics of the SSET obtained
for ng = 0 and ny = 1, at 7' = 40 mK. Full lines: theoretical predictions at
T = 200 mK.

on and off. The applied step is compared in Fig. 8 with the electrometer
response for two different output bandwidths, averaged over 4000 traces. The
results demonstrate that the overall system has a bandwidth of about 1 MHz,
probably limited by the extra filtering installed on the SQUID array lines.
The noise level corresponds to the estimated one of 3.10~%¢/v/Hz, taking
into account that only a fraction of the modulated current goes through the
array input coil, and numerical factors. Although a faster response would
be convenient, it would be of little use for measuring the state of a Cooper
pair box if the sensitivity is not improved. Indeed, with the achieved noise
level, one would need a typical time of a few us to perform a measurement
of the box state, assuming a coupling factor ksspr = 2.5%. Improving the
sensitivity is thus mandatory, and two stage SQUID amplifiers will be tested
in the future for that purpose.

back-action noise The fluctuations of the island voltage V' are very dif-
ferent from those in the SET because the SSET island is not sequentially
charged and discharged. Since the island voltage varies periodically with the
superconducting phase across the SSET, the island voltage fluctuations fol-
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Figure 8: From top to bottom: applied charge step at the gate of the SSET
electrometer; electrometer response averaged over 4000 steps and measured
within 10 MHz and 1 MHz bandwidths, respectively. Curves have been
offsetted for clarity.
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low the phase fluctuations. Assuming that the box transition frequency is
lower than the SSET band gap, the dynamics of the SSET can be calculated
using an adiabatic approximation, and we find for the relaxation rate I’y 57
due to the measuring SSET:

R,I? .
| Rk hQC Kegpp Sin 0. (16)
For the electrometer we have operated, this rate would be of the order of
1 MHz, assuming again ksspr = 2.5%. The charge sensitivity of the SSET
as an electrometer is limited by the thermal fluctuations of the voltage at

the working point[27, 23]. The intrinsic figure of merit of the shunted SSET
for the measurement of the box is:

1 h$)
SSET __ - 2
f = [P, T cot” 0, (17)

where 7, is again the minimum time needed to discriminate the two states
of the box. Although the factor A€)/kgT can be large, the practical figure
of merit of the present electrometer would be smaller than one because the
measuring time would be limited by the SQUID array and not by the intrinsic
noise of the shunted SSET.

The decoherence results from the low frequency fluctuations of the island
voltage. Although the spectrum of the phase fluctuations is known|[27], the
complicated relation between the phase across the SSET and the voltage in
the island does not allow to deduce the island voltage fluctuation spectrum
except in some limits. In the non-running state, the fluctuations of the phase
are small, and a perturbative calculation of around the average value leads
to:

4kpT K2emr Ri ( Ec\?
[SSET _ B SSgT 'K [ DO 2 29 1
; P (22 g eos?, (18)
where s 9(C v

I 2= 12 0 (axcsin (Tssur/1.))

is an increasing function of the dc current Igspr < I. with g (0) = 0. For our
electrometer biased at Isspr = I./2 , the decoherence rate of a box coupled
to it with kgspr = 2.5% would be of the order of a few MHz. This implies
that, for a SSET used in the switching mode, the bias current has to be
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reduced close to zero during box manipulations. When the ratio Ec/E’, is
larger than one, the variations of the island voltage are almost proportional
to cos(8), and the spectrum can be calculated numerically along the lines
of refs.[27] in all regimes. We find that the spectrum of the island voltage
fluctuations has a peak at the Josephson frequency, and that the induced
decoherence rate is the largest when the current through the electrometer
is close to its maximum value. Quantitatively, the SSET we have operated
would result in a decoherence rate I';°FT ~ 0.3 MHz at the working point
used for electrometry.

alternate high bandwidth set-up using a SQUID array In the shunted
SSET set-up, the bandwidth is ultimately limited by the time constant of
the RL circuit at the input of the array. This limitation is not mandatory,
and an alternate high bandwidth set-up is possible. For that purpose, a
SSET, directly connected in parallel with the input coil of a SQUID, is cur-
rent biased well below its critical current. Due to the residual resistance in
the coil wiring, the dc bias current flows through the SSET only, and the
phase difference accross the SSET adjusts to accomodate it. When the crit-
ical current of the SSET is ac-modulated, its effective inductance is varied
accordingly, and the distribution of the bias current between the SSET and
the SQUID input coil is modulated. In this set-up, the SSET behaves as a
charge to current transducer, and the sensitivity, bandwidth and back-action
are entirely determined by the current measuring stage.

0.7 Conclusions

We have evaluated in the single Cooper pair box the relaxation and decoher-
ence rates due to electromagnetic dissipation in the box circuit itself and to
external charges moving in the neighborhood of the box. The offset charge
noise is likely the dominant source of relaxation and of decoherence, which
rises an important problem. We have also evaluated the relaxation and de-
coherence rates due to a measuring electrometer coupled to the box island,
and discussed in particular set-ups based on unshunted or shunted SSETSs.
Experimentally, we have operated an electrometer based on the continuous
measurement of a shunted SSET with a SQUID series array. The sensitiv-
ity achieved by this system was about 3.107%¢/ VHz, limited by the SQUID
array noise, within a few MHz bandwidth. Such an electrometer would be
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useful in Cooper pair box experiments only if its sensitivity is significantly
improved. Other measuring strategies can however be used for that purpose.
In particular, the switching of an unshunted SSET is a simple one because
it does not require a cold amplifier and is well suited for pulsed operation.

Acknowledgments: We thank Michel Devoret for stimulating discussions

on quantum limited measurements.
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A HYSTERETIC SINGLE COOPER PAIR TRANSISTOR
FOR SINGLE SHOT READING OF A CHARGE-QUBIT

Audrey Cottet, Denis Vion, Philippe Joyez, Daniel Esteve, and Michel
H. Devoret

1. INTRODUCTION

Superconducting nano-electronic devices are appealing candidates for implementing
quantum-bits' (qubit) because they can be fabricated in parallel using lithography
techniques. At the present time, the most advanced qubits are the single Cooper pair box*
(CPB), which involves charge states of a small superconducting island, the RF-SQUID’
and the 3-junction SQUID". Recently, Nakamura® ef al. demonstrated temporal coherence
of quantum superpositions of qubit states in the CPB. The decay of Cooper pairs into
quasiparticles used in this experiment for measuring the CPB is far from providing a
single shot readout, and severely limits the coherence time of the superposition of states.
Achieving single shot determination of the qubit energy eigenstate while preserving the
coherence prior to measurement is a central issue. Recently, fast electrometers®’®’ have
been developed for measuring the charge of the CPB island, and the sensitivity necessary
for such single-shot readout has already been reached by an electrometer based on the
radio-frequency Single Electron Transistor. In this work, we present a new readout

scheme based on the single Cooper Pair Transistor'®'"'?

(CPT). In this superconducting
device, the supercurrent is modulated by the charge coupled to the transistor island. We
have measured the charge resolution of such an electrometer, and evaluated the back-

action it would have on a CPB.

" All authors, Service de Physique de I’Etat Condensé, CEA-Saclay, F91191 Gif-sur-Yvette, France
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2. PRINCIPLE OF THE READOUT

[ L E R | 1t
[ B TR
onm: =

Figure 1. The single Cooper pair box (a) is a charge qubit. A natural readout scheme is to couple it to an
electrometer through a capacitor C.. The electrometer (b) tested in this work is a Cooper pair transistor (CPT).
The transistor is current biased and damped only at AC frequencies.

2.1 The Cooper Pair Box as a Charge Qubit

The CPB? is schematically represented on Fig. la. It consists of a superconducting
island coupled to a voltage source U through a Josephson junction with capacitance
Cf}”'/” and Josephson energy E'}}“”’, and through a small capacitance C},’“”’. When the
superconducting gap is larger than the charging energy EX*" = ¢ /202", where C*
is the total capacitance of the island, the two lowest energy states of the CPB are

superpositions of charge states In), where n is an even number of electrons in the

box

bor = €YU /e is close to an odd integer n,

island. When the reduced gate charge n
and if E?"T / EY% is small, the system behaves at low energy like an effective two level
system. In the subspace spanned by (|n = n, — 1),|n = ny + 1)), the Hamiltonian is

that of a spin ' in an effective field:

H —=-

box ‘

Ba, ()

DN |

where & = [0,,0,,0, ] is the Pauli matrices vector, and B = [E}*",0,4E2" (1 — n’)].
The ground and excited eigenstates of this Hamiltonian are the two states |¢b0) and
|gbl) of the qubit, indexed by 0 and 1 in this paper. The energy difference is
R = EY" /sin6, and the charge difference obeys An, = (nx —<(nx = 2cosf,
where 6 is the angle between B and 7. Ideally, when the island charge of a generic
state «|gb0) + (3 |gbl) is measured, the state is projected on |gb0) or |gbl) with the
probabilities 1«2 and |5]*.
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2.2 The Single Cooper Pair Transistor as an Electrometer

A schematic representation of the CPT and of the bias circuitry we have
implemented in our experiment is shown in Fig. 1b. The CPT'*'*'? itself consists of a
superconducting island coupled to two superconducting reservoirs through two nominally
identical small Josephson junctions with capacitance C'; and Josephson energy F, and
coupled to a gate voltage source V, through a small capacitance C, . Its charging energy
is B, = ¢ /2C. , where Cg. is the total capacitance of its island. Nominally, the CPT
has two dimensionless control parameters: the gate charge n, = C,V, /e and the
superconducting phase difference ¢ = J vdt /¢, , where v is the voltage across the
transistor and ¢, = i /2e. The energy spectrum of the CPT is that of a CPB with
effective Josephson energy 2E |cos(¢/2)|. In the ground state with energy E(n,,9),
the electrical potential of the island with respect to ground (see Fig. 1) is

Vi(ng,¢) = (1/e)0E,/On,, and the supercurrent through the CPT is
I(n,,¢) = (1/¢,)0E,/d¢ . These quantities are both 2e periodic in n

periodic in ¢ .

, and 27

The CPT can be seen as an effective Josephson junction whose critical current
I.(ng) = Max_[I(n,,¢)] is periodically modulated by the gate charge, and whose
current-phase relation I = I.(n,)f(n,,) is not strictly sinusoidal. This charge-induced
variation of I is used for electrometry. It can be characterized by the dimensionless
"gains" g(n,,¢) = 0I(l)/On, and g,(n,)=0In(l.)/On,. These gains are
maximal close to n, = 1[mod2]. The optimal sensitivity is obtained when E, ~ E,
with a gate modulation of I, larger than 50% and g, ~ 2.

The CPT is a transducer obeying the reciprocity relation linking the phase

dependence of the island potential and the gate charge dependence of the current:

oV R
B = @
where R, = h /¢ is the resistance quantum.

In order to turn this transducer into an electrometer, it has to be embedded in a circuit
which will perform a measurement of the supercurrent / . In a previous experiment, the
CPT was voltage biased with a small shunt resistor, and the supercurrent measured with a
SQUID array amplifier®. For this scheme, the sensitivity was limited by the SQUID
amplifier to about 3. 10" e/Hz"? , within a 10 MHz bandwidth. In the present

experiment, we use a current-biasing scheme like in conventional measurement setups,
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for which the zero-voltage branch of the characteristics is metastable. The working
principle of our electrometer is to determine the gate dependent current required to
induce the switching transition out of the zero-voltage state, during a given measuring

time and with a given probability.

2.3 Switching of the CPT during a Current Pulse

Like in the case of a Josephson junction, the dynamics of the phase across a current-
biased CPT is that of a particle in a tilted washboard potential, and subject to friction due
to the impedance across the transistor. The mass of the particle and its velocity are
proportional to the capacitance and the voltage, respectively. At
s(n,) = I, / I.(n,) <1, the potential has metastable minima from which the particle
escapes by thermal activation. Note that here, an escape event does not always trigger the
switching to the voltage state. The key point is that dissipation, which governs whether
the particle will be retrapped in the next well or not, depends here strongly on the
velocity. Switching occurs when the particle reaches a critical velocity which is
determined by the difference between the actual tilt s(n,) and a critical tilt s, <1:

nl3

This process corresponds to an activation above a "dissipation barrier" ~ as the greater the
dissipation, the greater s, is. We introduce the switching rate F[s(ng),smax] which
depends on the impedance and temperature.

The measurement of I' at a given tilt is performed directly by applying a square
bias-current pulse with amplitude s(n,) and duration t,,,,. The probability that the
system switches to the voltage-state is p[s(7,),Smax, tmeas] = 1 — €XP[—L L0 . We

operate the device with I, and n, chosen such that p[s(n go),smx,tme,,s] =0.5. We

g
exploit the steepness of p with respect to n, : Depending whether 7, is above or below
n,q» the device will essentially switch or not. The CPT is thus here a threshold charge

detector.
2.4 Theoretical Sensitivity

The charge resolution defined as An(t,e05) = (dp/ dng);t is given by:
h b g

2 1 1
) s(ny,)0In(T) /9s

An tmeus =1 5 (3)
o ) In?2 go(ng()
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We estimate the associated error probability er = p(n,, — An, /2) to be 0.15.
Note that the resolution An, does not improve with the measurement time as /¢4 »
like in the case of linear amplifiers. Nevertheless, for the sake of comparison, one can
define an equivalent sensitivity as the input noise spectral density Sy, = 0.47 Ang? tyeqs
of a linear amplifier, which would result in the same error probability for the same
measuring time.

Optimizing the CPT sensitivity requires maximizing s(n,,)0In(I)/ds. In a
previous work'’, we have shown that both the reduced switching current s and the
logarithmic derivative OIn(I")/ds of a small effective Josephson junction can be
maximized by damping the dynamics of the phase at ac frequencies with an RC' circuit
in parallel with the junction, as shown in Fig. 2. The charge resolution can be as small as
desired by increasing the damping, but this gain is done at the expense of increased

measuring time and back-action.
2.5 Numerical Simulations

In the case of a small Josephson junction, the switching rate I' is analytically
calculable in some limit cases, and approximate expressions are available'>'*. In the case
of the CPT, one has to rely on numerical simulations of the system dynamics to
determine the sensitivity. The dynamics of the phase across the CPT is governed by the

system of Langevin equations':

p=u =u+au+n

. o\ C))
s — f(ng,¢) = a(u +€uL)

where u and u, are the voltages across ' and C; in units of R./., o = R2CI, /¢

L
and ¢ = C; /C; & denotes the derivative of 2 with respect to the reduced time

7 = RIt/y,, and 7 is the reduced Johnson voltage noise across resistor R, which
verifies (n(0)n(7)) = (2k,T /@,1.)0 7> . We have numerically integrated Eqgs. (4) for
bias-current linear ramps and square pulses. In the case of a linear ramp, s is increased

starting from a small value until « exceeds a threshold value wu,, , the last s defining the

th >
reduced switching current I, /I, . In the case of a pulse, s is kept constant and the

system is considered as having switched if u exceeds u, before the end of the pulse.

th
The result of these numerical experiments does not depend on the exact value chosen for
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u,, since the acceleration during the switching is very fast. The simulation determines
the average switching current (/, ) for linear ramps, or directly the switching probability

for bias-current pulses.

3. EXPERIMENT

3.1 Experimental Setup

We have fabricated a CPT on a thermally oxidized Si chip using 3-angle evaporation
through a shadow mask'. The two first layers form the aluminum CPT, and the third
layer forms the gold connecting leads. These non-superconducting leads provide dumps
for out-of-equilibrium quasiparticles present in the superconducting electrodes. The
leads, with estimated total parasitic capacitance to ground C; ~ 0.75pF , are wire-
bonded to a printed circuit board. Surface mounted components implementing the AC
shunt (R = 4002 and C = 180pF') of Fig.2 are fitted onto this PCB. The CPT
junctions have an area of 70x90 nm?, the asymmetry being smaller than 10%. The circuit
was mounted in a shielded box fitted with SMA coaxial connectors. The bias, gate and
measuring lines ending at these connectors were carefully filtered with copper powder
and microfabricated RC filters'®. The sample was current biased through a 100 kQ
resistor placed on the PCB, and its voltage was measured using a room temperature low
noise amplifier. The gap voltage of the aluminum electrodes A = 170 £ 5 eV, and the
total CPT tunnel resistance 2R, = 15.3 &= 0.1kQ2 were deduced from large-scale 1-V
characteristics. The Josephson energy E, = 0.82k,.K of each junction was calculated

from the Ambegaokar-Baratoff’s relation assuming no asymmetry between the junctions.
3.2 Input and Output Signals

An arbitrary waveform voltage source was connected to the bias-current line. The
frequency dependent transmission of the bias-current line was carefully calibrated, and
the pulses were adjusted so as to provide a shape of the bias-current pulse as close as
possible to a square wave. Figure 2 shows the bias-current pulses resulting from this
adjustment. Switching always occurs when the bias-current is within to 10% of the
maximum value [,, and we can take ?,,,, =1 — 2us. Figure 2 also shows the time

evolution of the voltage 1 for events where the CPT switches or does not. The observed
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voltage rise is well explained by the total capacitance of the measuring line including
filters (represented by F in Fig. 1b), which is about 0.8 nF. The threshold voltage (see
dashed line on Fig. 2) used to discriminate a switching event from a non-switching one
was chosen sufficiently larger than the voltage noise to avoid false switching events
while minimizing heating. The pulses were repeated with a frequency of 40 kHz, which

corresponds to a duty cycle of 2/25.

14 . . . . . . 14

12 L Cg Vg/e=0.90 112

10 10
~ 8 8 ~
2 s 6 3
—° 4 4 >

2« !\ = - 2

0 F T S T\ 0

-2 T S -2

0 1 2 3 4 5 6 7

time (us)

Figure 2. Bias-current pulse applied to the CPT, and voltage at the input of the amplifier for events where the
transistor switches (solid line) or does not (dotted line). The dashed line indicates the threshold voltage used to
discriminate the two types of events.

3.3 Gate Modulation

The gate modulation of the switching current was first measured by the standard
bias-current ramp technique'’. An experimental modulation pattern (I, )(n,) is shown in
Fig. 3, together with the predicted critical current /.(n,), and the corresponding
(I )(n,) curve determined by simulation. The single fitting parameter is
E, =112k, K , for which the experimental and simulated (/,) coincide at n, = 0(a
renormalization of the bare Josephson energy'® up to E; = 0.96k;K by charging
effects has been taken into account). The E, value agrees with the capacitance estimated
from scanning electron micrographs. The experimental and simulated modulation curves
agree quantitatively except in a narrow region around n, = 1, where the simulated
< I, > is 17 % lower than the experimental one. This discrepancy is not fully

understood yet.
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For measurements using the pulse technique, a digital feedback loop was used to
vary the peak value [, of the pulses to maintain the switching probability at 50%. The

resulting gate modulation /,(n,,p = 0.5) is also shown on Fig. 3.

Current (nA)

0 L L L L 1 L L L L 1 L L L L
0.0 05 1.0 1.5

n=CVl/e
g g g

Figure 3. Gate modulation of the supercurrent of a CPT with E=1.12 kgK and E;* = 0.96 kgK. Solid symbols:
average switching current measured at T = 45 mK by the ramp technique with dly/dt = 87 pA/us and 14000
events per data point; bottom curve: average switching current predicted from numerical simulations for the
same parameters. Open symbols: Current pulse height I, resulting at 20 mK in a 50% switching probability for
pulses with the same duration as that shown in Fig. 2, and 5000 events per point. Top curve: Theoretical critical
current I;.

3.4 Sensitivity

Experimental and simulated p(n,) curves obtained for different I, corresponding
to n , values close to 1, for which the sensitivity is maximal, are shown in Fig. 4. The
best experimental sensitivity was obtained at n, = 0.97 with [, = 13.5n4 (triangles
on Fig. 4). In these conditions, according to the definitions of section 2.3, An, = 0.021
and 5, 1/2 ~ 2.10™" ¢ /Hz'/*. Apart from a slight offset, the numerical simulation well
reproduces the experimental curve p(n,) at I, =11.7nA. This shows that the
sensitivity of the device is indeed limited by thermally activated switching and not by

noise. The achieved sensitivity is not the ultimate value, and can still be improved by
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increasing the damping. A gain in sensitivity by a factor 5 could be reached by
implementing the RC shunt directly on chip, so that the parasitic capacitance C; is
almost suppressed (simulation not shown). However, for the purpose of qubit readout,
sensitivity and back-action have to be optimized jointly. When back-action is taken into

account, the capacitor € is found necessary, as shown in the following section.

1.0 \\; T v--....-. T T T AAA T T T
\ . s

o 08 \ . A 7
E I \ . 1
2 o06F I = . ‘ .
'8 11.7 nA 11.7nA o 13.5nA 4

S .

g) 04 ~ . A -
.-E | [ ] A 4
L J A

= 02+ \Q e
2 \, . N

°
L \\\O % =R .
0.0 . . R B Co0,. 1 4a,,

1 1 1
086 088 090 092 094 09 098 1.00
n=CVl/e
¢] ¢] ¢]

Figure 4. Experimental (solid symbols) and numerically simulated (open symbols) gate variation of the
switching probability obtained with bias-current pulses as shown in Fig. 2. Peak currents are indicated for each
data set. Each point is the result of an average over 500 (simulation) or 5000 (experiment) pulses. The steepest
experimental gate variation (triangles) is obtained around ng=0.97 and leads to an experimental charge
sensitivity of 2.107 e/Hz"”.

In order to measure a CPB, the transistor island has to be connected to the box island
by a coupling capacitor C, (see Fig.1). The charge difference which has to be
discriminated corresponds to #; An, (), where x, = C./C, is the coupling factor
between the CPT and the CPB. The condition for a single shot readout, i.e. readout with
an error probability lower than our standard 15% (see above), is thus:
> = Angy(teqs)/2cos . 5)

K.

1 K/l min

For instance, a coupling x, of 2% would be enough to measure a CPB with

6 = w /4 with one 2us long pulse.
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4. Back-action onto a Charge Qubit

A readout amplifier induces decoherence of the measured qubit. In the case where an
explicit Hamiltonian of the system {qubit + readout} can be handled, this phenomenon
can be described by computing the time evolution of the density matrix'®. However, in
the case of a CPB coupled to an electrometer, it is possible to follow a simpler approach.
When the temperature is above 10 mK, it can be shown® that decoherence is dominated
only by dephasing induced by the thermal noise of its environment. Moreover, when the
qubit environment is at low temperature, relaxation of the qubit from its excited state is
much more probable than the opposite excitation®. The back-action of the readout is thus
characterized by only 4 characteristic times T,fF e T10F e T,YS)N , and T10N describing
dephasing and relaxation, in the OFF and ON states of the readout, respectively. These
times have to fulfill several requirements for qubit manipulation and readout. Both
Té) and Tlo should be long enough to allow coherent evolution prior to
measurement, and T10N should be longer than the measuring time ¢,,,,, so that the
information is not lost before the measurement is completed. The value of wa is less
important since quantum mechanics imposes anyway full decoherence in a projective
measurement. The comparison of T,fN with ¢,.,, provides nevertheless an estimate of

the readout ideality.
4.1 Dephasing due to Readout Back-action Noise

In the same way as the CPB island potential acts on the CPT supercurrent, the
electrical potential V,(n ,¢) of the CPT island reacts on the CPB as a perturbing gate
charge. Due to the Johnson noise in the resistor R, the phase ¢ across the CPT

fluctuates according to Eqs. (4), and the CPT converts this phase fluctuation into a

box
g

fluctuation 6V, of its island potential. The box gate charge fluctuates by én’** = k,év,,
where r, = C, /C¥" and 6v, = C,,6V, /e, inducing fluctuations of the CPB transition
frequency. A coherent superposition of qubit states would thus accumulate a random
phase at a rate dAy/dt = Adv,, with A = 4k,E"" cosf/h. If the fluctuating

voltage 6v, is gaussian, the coherence factor <677A'*"'(f’) > at time ¢ is given by:

<e7?A#9(f)> o <A¢:2(f)2> ’
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with (Ap(t)?) = A2 ¢ f S,, wosine? (wt/2)dw. (6)
0

Here, S, cw> is the spectral density” of the CPT island voltage fluctuations. The time
dependence of the coherence factor is exponential at long times only when the spectral
density is constant below some characteristic frequency w,. At times longer than w,*,

the dephasing time wa is given by:

2
A — 7
v 7TA257,I (w=0) @

When the readout is OFF (I, << I ), the phase ¢ fluctuates in the vicinity of one
of the minima of the washboard potential, located at ¢, = arcsin/, /I, [mod 2], and

Egs. (4) can be linearized around ¢, . Using Eq. (2), one obtains for the spectral density:

2( h gV kT 1
S, OFF (w) ~ 2| -9 8
Uy (w) 71—[4E(: l] R€21+ 1 ()

(RCw)?

where [ = 91n(f)/9¢ . Using Eq. (6), one gets:

<A99(t)2 >0FF ot 11— e t/RC ©)
2 - T OFF t/RC ~
where
A2
1 ES‘”’ g kBT
T,OFF T = [/i2 COSGE_ﬁf] R (10)

Since the spectral density is zero at zero frequency, decoherence stays finite. The

coherence factor thus saturates at a value <e7A'*"’<f>> = ¢ RO/

for times longer than
RC. For the parameters we consider, RC << TgF T Dephasing due to the CPT in the
OFF state is thus negligible.
When the readout is ON, the excursions of the phase ¢ are no longer bounded. The
spectral density S, (w> can be obtained from simulations, using the constitutive relation
V,(n,,¢). It is constant at low frequency, which leads to an exponential decay for the

coherence factor with a time constant 7.0V .

" We use here only "engineer" spectral densities corresponding to the power density at a
positive pulsation.
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Table 1 treats the case of a CPB with E}}”’ = Erov = 0.5k, K, coupled to the
readout with r, ~r; . /2 =1% and displays T,V and {,,, calculated from
Egs. (9)-(10). Since t,,.,, /wa ~ 20, the readout is far from reaching the ideal
quantum measurement limit. Although we have only considered here the contribution of
the CPT to dephasing, one should not forget that the dominant dephasing source in the
CPB is the offset charge noise, which is due to the random motion of charges at the

microscopic level.

Table 1. Estimated coherence time T, and relaxation time 7, of a CPB
(F =F =05k K) if it were coupled to the readout of our experiment with
K, =~ 1% . Decoherence sources other than the readout have not been considered.
Operating conditions are indicated on the first line. The measurement time ¢,,.,, is given

for comparison.

OFF State ON State
s=0 s =05 s=1,/1, =07
0=m/2 0=mn/4 0=mn/4

T, e%) non-exponential decay ~ 100 ns
T, ~ 500 ps (see text)
T o%) ~200 ms ~ 60 ps
tmeas - = <2 us

4.2 Relaxation

We now discuss the relaxation of the CPB from |gbl) towards |q¢b0) at low
temperature, accompanied by an energy transfer A2 into an electromagnetic mode 2 of
the circuit. We assume here that the bandgap of the CPT is sufficiently higher than
Q /27, so that it stays in its ground state, and can be treated adiabatically. Within this
framework, the CPT and its bias circuitry are equivalent to an effective impedance

Zeff(w) connected to the CPB island. This impedance is given by:
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-1

1 Ky

) N 1
7 _ _ o _ o
“ff(w) jC.w 2E,,

. - )
(9715 { 14 ngplof(w)

( ; an

where Y(w) is the admittance in parallel with the CPT. The relaxation rate is then

obtained from Z . (w) using Fermi’s golden rule:

Re(Z,, (Q)
= 47 Qsin’ O ;2 % (12)
k

I

At p=0,9g=0, Re{Zﬁff (Q)j = 0, and no relaxation occurs at the lowest order.
At ¢ =0, and for the external admittance Y(w) = iC,w + (iCw + R')"" we

consider, one has:

RelZ ,.(Q R g
2, Ry( 9 ] | )
Ry R | 4wl 0 2 0 2
BRRE
wr’,l wcl
ol/o ol/o
where w, = # and w, = Rﬂ are cutoff angular frequencies of the
' Yo 1 ’ %o

system.

These expressions give an instantaneous rate depending on ¢ and n, . They can be used
directly to obtain the relaxation time 7;(¢) = 1/I'; when the readout is OFF, when the
phase excursions are small. When the readout is ON, the system experiences a variable
relaxation rate as the phase ¢ turns but an average can be performed, assuming
equiprobability of ¢ . The resulting T,V is displayed in Table 1 and verifies
TN [ t,,c0s ~ 30, what is compatible with a non-destructive measurement of the CPB.
We have found that this relaxation time depends strongly on the external admittance. In
particular, the capacitor ', = 0.75pF provides a high frequency shunt that diminishes
relaxation by a factor of about 10°. An improved design of the microwave impedance
would probably allow a better sensitivity while keeping the relaxation time 7,9 longer

than tmeas M
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5. CONCLUSION

We have fabricated and operated a new threshold charge detector based on the

Cooper pair transistor. The best equivalent sensitivity we have obtained is 2.107 e/Hz'"?

in a 1MHz bandwidth. This detector, which is of the latching type and only requires
simple room temperature electronics, could provide an efficient readout for a charge
qubit. We have shown that, by proper engineering of the impedance in parallel with the
Cooper pair transistor, this system meets the criteria for qubit operation and readout:
dephasing and relaxation are negligible prior to readout, and relaxation during readout is

small enough to allow discrimination of qubit states with signal to noise ratio of order 1.
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Chapter 3
Decoherence in Cooper pair boxes

This chapter is devoted to the analysis of decoherence mechanisms in Cooper pair box devices.
We first consider a Cooper pair box embedded in an electromagnetic circuit at thermal equilib-
rium, a case which can be mapped on the spin-boson problem. Then, we consider the decoherence
due to the back-action of a measuring apparatus on the Cooper pair box, stressing the importance
of the absence of dephasing when the measuring apparatus is off, and the absence of relaxation
when the measuring apparatus is on. We also estimate the dephasing due to the charge-noise
acting on the box island, and show that this decoherence mechanism severely limits quantum
coherence in the Cooper pair box. We provide numerical estimates of the decoherence rate in

the Cooper pair box for the different setups considered in this thesis.

The quantum coherence of a Cooper pair box is limited by its interactions with the degrees
of freedom of its environment, including the measuring circuit [68, 69, 70]. Although these
interactions yield in principle to a complex entanglement between the box and the external
degrees of freedom, their effect on the box can be described in simple terms in the weak coupling

1. As described in Fig.3.1, interactions induce in this case dephasing, relaxation and

regime
excitation of the box [71]. Dephasing processes randomly modify the relative phase between the
components of a superposition of the box states |0) and |1), whereas relaxation and excitation,
which can be grouped under the more general term of depolarisation, describe respectively
downward and upward transitions of the box. As it will be shown, the dephasing, relaxation
and excitation rates depend on the generalised spectral density of the external field coupled to
the box.

The environment of the box includes different types of degrees of freedom. At the micro-
scopic level, the box is subject to the charge noise induced by randomly moving charges in the
insulating material close to the island [20]. This noise mainly induces dephasing because its

spectral density is peaked at low frequency. In the case of the split box, moving vortices in

'A more global calculation of decoherence, based on diagramatic techniques, has been performed by A.
Shnirman and G. Schén in the case of a Cooper pair box coupled to a single electron transistor [72].

155
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the superconducting films may also result in flux-noise which also induces dephasing. The de-
grees of freedom involved in these charge and flux noise sources cannot be assumed at thermal
equilibrium.

At the macroscopic level, the box is coupled to the electromagnetic degrees of freedom of
the biasing circuit, and to the measuring system. When the measuring system is turned off,
and if all lines are properly filtered down to the sample temperature, the whole external circuit
can be treated as a collection of electromagnetic modes in thermal equilibrium with the sample.
In this case, the generic model of a two-level system linearly coupled to a bosonic bath can be
used to describe the interaction between the box and these modes.

When the measuring system is turned on, its back-action induces dephasing, relaxation
and excitation. Whereas dephasing is needed for performing the measurement, relaxation and
excitation are detrimental effects which have to be kept at a low enough level. In this respect,
different measuring strategies can lead to very different decoherence processes. Those which
allow to control separately dephasing and depolarisation have a clear advantage.

In this chapter, we discuss the general case of a box linearly coupled to a source of deco-

herence, before evaluating decoherence in different possible setups.

3.1 Generic model of a Cooper pair box linearly coupled

to a noise source

H
In the absence of decoherence sources, the effective field h seen by a (split) Cooper pair box
is determined by the control parameters n, (and J), generically called here A. The "free”
hamiltonian of the box writes:

~

H=--3 -1\, (3.1)

1
2
with ﬁ the "free” field seen by box. When a noise source is coupled to the box, the parameter
A is shifted by a quantity A . In the linear coupling approximation, the coupling hamiltonian
between the box and the noise source writes:

A = —% (? : T)}) AN, (3.2)
where D A is the representative vector of the restriction of @H /9 to the subspace {]0),|1)} .
(Beware that D A can be obtained from the derivative of the vector T with respect to A only
in the case £; < E¢) . Dephasing can be attributed to the o, component of I/-jc . It can
be treated in two different ways, depending on whether the noise source can be considered as
classical or quantum. Depolarisation is due to the ¢, and 7, components of ﬁc, and must be
treated quantically.
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Coherent state

Excitation

-
> y
@ ’ N
11>
R
P \ 0,=n
Dephasing Relaxation
\%
7 \ Vi
10>

<¢py>=0 6,=0

Figure 3.1: For a two level system in the weak coupling regime, the decoherence of an initially
coherent state (top left) can be decomposed into three different processes, dephasing, relazation
and excitation. In the rotating Bloch sphere frame R, (see 1.3.2), dephasing corresponds to a
diffusion of the representative vector U of the two level system around the direction Z of its
free hamiltonian representative vector (bottom left). Relaxation corresponds to a transition to
7 (bottom right panel), and excitation to a transition to — 2 (top right).
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3.1.1 Dephasing due to a noise source treated classically

A first simple approach of dephasing consists in considering AN as a classical noise AN(t) [68].

Within this approximation, dephasing can be seen as the diffusion of the representative vector
ﬁ

2 of the box state due to the fluctuating field D A\ . Let us consider that at ¢ = 0, the box

is prepared in the pure initial state ¢:

lu(t = 0)) = cos (%) exp (—i%) 10) + sin (%) exp (l%) ) . (3.3)

The box state thus evolves as:
0! t 0 t
|u(t)) = cos (5“) exp (—igou2( )> |0) + sin (%) exp (190“T()> 1), (3.4)

P, (t) = @ + Qur t + A, (1) . (3.5)
The phase term 2y; ¢ arises from the free field F()\) . The random phase shift

where:

t

Dy. / AN | (3.6)

0

1

with
Dy.= D)7,
is due to the fluctuating field D AAX . One can introduce the dephasing factor
fo(t) = {cos [Ap, (1)]) (3.7)

where ( ) is a statistical ensemble average. It ranges from 1 when the box is perfectly coherent

to 0 when dephasing is complete. When A, (t) is close to a gaussian signal, f,(¢) can be

fo(t) = exp(— 20 (38)

where (A@?2(t)) is the variance of the random phase. This variance is related to the classical

recast in the form

noise power spectrum

2

S (w) = L /+00 dr (AX(t)AX(t + 7)) exp(—iwT)

—00

of the fluctuations of \(¢) (definition (3.94) of Appendix 3-B):

(ac0) = (22) [ o st (39

—00

Therefore, one has:

f(t) = exp {—g (%)2 722 dw SE(w) sinc?()] (3.10)
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\ S (W)
// ,’ \\ \

Arft

Figure 3.2: The two limits of broad band (black line) and low frequency (grey line) noises for
calculating at time t the dephasing induced by a classical noise source. The dotted curve is the

function sinc?(wt/2).

Two limit cases can be made explicit (see Figure 3.2). First, when S{/(w) is constant at

frequencies lower than 1/t, Formula (3.9) leads to the exponential decay law

f@(t) = eXp(_Fgot) (3.11)

at the rate

2
T, =r (D;f) S¥l(w = 0) . (3.12)

Secondly, when S{/(w) falls off on a range much smaller than 1/, the dephasing factor is

fo(t) = exp [—1 (%)2%5;‘”] , (3.13)

gaussian:

2 h

with Si = [7°° dw S§'(w) the total noise power.

3.1.2 Dephasing and depolarisation within the spin-boson model
Coupling hamiltonian

A more rigorous approach of decoherence in the Cooper pair box consists in using the generic
model of a two-level system coupled linearly to a bosonic bath, namely the spin-boson model

[68, 69]. Here, we only consider the weak coupling regime, for which a direct approach is readily
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implemented. One considers that the control parameter X is shifted by a quantity linear in the

bosonic operators:

AN = Z (13Gy + 1,6p) (3.14)

peN*
where ¢, and /c\; are the creation and annihilation operators associated to the bosonic mode p

with hamiltonian:

with

[/C\P’v/c\;] = Opy
and where N* = N— {0} is the space of the nonzero integers. In practice, the shift coefficient
tp, which characterises the coupling between the spin and the bosonic mode p, depends on

the physical system studied. The spin-boson model allows to evaluate both dephasing and

depolarization processes.

Dephasing

The o, component of f[c is:

~ 1 R
He,. = 2 [Z (I“p p +,upcp)] Dyz0 .
peN*
The evolution operators U and l/jp of the isolated spin and of the isolated oscillator p are

. Ht
0(r) = exp(-ir)
. Tyt
Oy(t) = exp(~i2)

In the interaction representation, ., becomes

(H 0 ) 0 (1) B0 () (H ﬁp(t)) _ —%&\z/fz@(t) , (3.15)

peEN*

with

ho(t) = Daz Y (18 exp(iwyt) + 1,0 exp(—iwpt)) (3.16)

peN*
The field ﬁw (t) induces a change A/g;u(t) of the phase ¢,

t

Apo(t) = —% / ha(t)dt (3.17)

0
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More explicitly,

— Dy . 1 —exp(iwyt) 1 —exp(—iw,t)
Ap,(t) = TA > (#%@i - 7 (, ’ )“pcp) ' (3.18)
p p

peN*

The phase shift A/gp\u(t) is now a quantum operator which describes the entanglement of the spin
with the oscillators. The dephasing factor f,(¢) can be calculated by replacing the classical
statistical average of formula (3.8) with a quantum statistical average on the state of the
oscillators. The Glauber formula at finite temperature [73] allows to calculate the average

value of any operator of the type exp |i [ (qpcp q;E;r)]:

(exp(i (g5 — qpCy) ) = exp {—— || coth(g, kT)} : (3.19)
One thus obtains:
D)\ z ?

fo(t) = exp h, Re J(t) (3.20)

where the function J(¢) is the following sum over the oscillators:

2

_Ne Il e B

J(t) = Z 2 COth(QkT) lexp(iw,yt) — 1] . (3.21)

This function is analogous to the function J(¢) introduced in the context of Coulomb blockade
of tunneling [75]. It can be related to a physical quantity, the generalised noise spectrum S)(w)
of A [see (3.101)]:

1 [t ~
$iw) = 5= / dr <A>\(t)A)\(t + T)> exp(—iwr) (3.22)
™ —0o0
From (3.14), for a bath of harmonic oscillators, the generalised correlation function of K)\(t)
writes [74]
X 2 . .
<A)\(t).A)\(O)> =3 || [exp (Hieopt) n, + exp (—iwpt) (1 +n,,)] (3.23)
peN*
where:

1 1 hew
w=—"F——==|[coth 1
" exp(ﬁ—“}) -1 2 (CO (2k:T) )

is the average quanta number in the mode w . Using the definition (3.22) of the generalised

noise spectrum, one obtains:

= i [(1 4 1) 8w — wp) + 1, 6w + )] (3.24)

peN*

The odd and even parts of the spectrum are respectively:

SSM(w) = Z @ coth(;i;d—;) [O(w —wp) + 0(w+wp)] (3.25)

peEN*
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and:

sp) = 3 oL 50— ) = B )] (3.26)

Using equations (3.21) and (3.25), the real part of J(¢) can be written in the following forms:

42 e even s 2 w_t _ _1 2 e i o2 w_t
ReJ(t)=—1t dw S5""(w) sinc?( 5 ) = 2t dw S)(w) sinc”( 5 ) . (3.27)
0 —

(e o]

The expression (3.20) can thus be written as

fo(t) = exp [—% (D*; t>2 / :° du Sy () sinc2<°‘§>] , (3.28)

which takes the same form as the semi-classical prediction (3.10), but with the full quan-
tum spectrum Sy(w) in place of the classical one. At long times, the integral entering in
Expression (3.27) is dominated by the spectral density Sy(w) at low frequencies, for which
the classical and quantum spectral densities are equal. In this regime, the quantum calcu-
lation and the semi-classical model thus predict the same decay, with an exponential tail
fo(t) = exp [—m (Dy./ h)? Sy(w = 0) t], and the entanglement between the spin and the en-
vironment can be figured as a random dephasing of the spin due to low frequency fluctuations
of its transition frequency. The quantum behavior only shows up in the zero temperature limit,
for which the semi-classical model predicts no decay. It can be pictured as arising from the

zero-point fluctuations of the oscillators.

Depolarisation

The o, and 7, terms of H, couple the states |1) and |0) of the spin. Relaxation and excitation
proceed by exchange of an energy h{)y; between the spin and the oscillator with pulsation
wp = Qo1 . From the Fermi golden rule, the relaxation and excitation rates I'r and I' of such

processes are

m ( Dy ?
I'p = 5 ( h’ > Sx(Q01), (3.29)
T (D 2
Tp == Z25) Si(— Qo) - (3.30)
2 h
where:
= —
D/\,J_ = HD/\ - DA,Z z H

These rates verify the detailed balance:

1
kyT'

'
B exp(

Tr )
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3.1.3 Case of a bosonic bath described by an impedance function

In the case where the bosonic bath coupled to a Cooper pair box consists of a dissipative
impedance Z(w), the expression (3.24) of the spectral density S)(w) can always be related to
the spectrum S,,(w) of the voltage fluctuations (3.102) across this impedance by a circuit-

dependent transfer function g(w) defined by the following relation :

Si(w) = g(w) Sy, (w) . (3.31)
The transfer function g(w) can also be found from the coupling coefficient ,,:
2 |, |
glwy) = . 3.32
() hw? Re (Z(wp)) ( )

Note that the function g(w) is even.

Dephasing

From the formula (3.102) of Appendix 3-B, the function Re J(¢) (3.27) can then be recast in
the form:

ReJ(t) = —% t2/_ oodw w g(w)Re [Z(w)] coth(%) sincZ(%t) : (3.33)

The time dependence of Re J(¢) is not universal except in the semi-classical regime at long times.

[e.9]

The cross-over between the quantum and semi-classical regimes can be determined when the

function Re Z(w)g(w) is a lorentzian :

R gq

VA N .34
ol Re Z(0) = e (3.34)
with ¢, a correlation time. The following approximation [76]
hRg, t t
ReJ(t) ~ — J (fy + — +ln(—)>
tr ta
with
by = (3.35)
T wk T '

yields to the result:

fo(t) = exp — [A (v + %)} (ti) - : (3.36)

where v ~ 0.577 is the Euler constant, and A an exponent equal to:
D/Z\,z R Ja
Th
When the factor A is small and the correlation time ¢, larger than the thermal time tr, the

A:

semi-classical regime applies at all times larger than ¢,. The decay of f,() is exponential with

a rate (3.12) proportional to temperature:

D)\z 2
Lo=hT (=) Ry (3.37)
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Depolarisation

Using (3.31) and (3.102), the expressions (3.29) and (3.30) can be written as:

2
D= 120 (250 Re [Z(Q01)] 9(Q0r) (1+ coth(324))

2 (3.38)
Ty = 20 (20) Re [7(201)] 9(0) (1 - coth(is)) .

The total depolarisation rate is

Iy

_ o1 ( Dy 1
2 h

> RGZ(Q(H) 9(901) .

3.1.4 Decoherence due to a measuring apparatus

Let us consider a measuring apparatus weakly coupled to the two level system and measuring
the variable X = 0H /OX . The measuring apparatus induces fluctuations of A with a spectral
density S\ meas(w) . These fluctuations cause dephasing, relaxation and excitation on the
measured two level system, with respective rates %/ .. (or T2 ...), S (0r T ns)s
o7 (or T'9,....) when the measuring apparatus is off (or on). In the exponential decay

limit, these rates, calculated along the same lines as in the semi-classical approach, are:

D 2 of f/on
Ll = [ﬂ ( g) S meas(w = o)] (3.39)
r qoff/on
ofifon _ |7 (Dar)”
1—\R meas | o A S/\ meas(w = +QOI) y (340)
i qoff/on
of f/on 7 (Do)’
1—‘E meas 5 A S)\ meas((fu — _001) s (341)
Let’s suppose that I'0", .. > T c0s = TRneas T L% meas - Since the measurement of the two

level system state requires a time t,,.,s in order to resolve the signal
AXSY = (1 ‘)A(‘ 1)o" — (0 ‘)A(‘ 0y = D", (3.42)

it can be reliably performed only if the following inequality holds:

tmeas <<
P(l)nmeas
The overall efficiency of the measurement is then given by the product 'Y, ., tmeas < 1, the

upper limit corresponding to a perfect measuring apparatus with minimal back-action. In this

case, full dephasing occurs in just the time needed for the measurement [69, 71].
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3.2 Decoherence in a basic Cooper pair box

3.2.1 Decoherence due to a series impedance

The general results of the previous section can be applied to the case a basic Cooper pair box
connected in series with an impedance Z(w) (Figure 3.3, left). The control parameter which

fluctuates is here A = n,.

Zeq

@ @ \Cim= FLq!

C ! :

Cg z - E : :
Zw)| & : ! :

J : '

T T

Figure 3.3: Left panel: Electrical scheme of a basic Cooper pair box coupled to an impedance.

Right panel: Model used for a quantum description of decoherence effects.

It is easier to work on the equivalent circuit of Figure 3.3, right, where the capacitance C; of

the Josephson junction is included in the equivalent impedance Z., seen by the pure Josephson

element F; :
1 K2Z(w)
Lo = u , 3.43
o) iCyw i 1 +1iky(1 — ky)CxwZ(w) (3:43)
with:
LG
g CZ] .

In this description, the equivalent Cooper pair box, formed by the series combination of a pure
Josephson element E'; and of the total capacitance Cf; of the real box, is biased by an equivalent
voltage source:

Ueq = igVy -

The transfer function g(w) which transforms voltage fluctuations across the impedance Z.,(w)

g(w) = (%)2 : (3.44)

into fluctuations of n, is simply
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The coupling hamiltonian between the box and the gate charge fluctuations is:

H, = S_Z Any(t)
with: R
2_5 — 9E.(f—n,) = —%? D, (ny) ,
Dy, -(ng) = —2E¢ Ang(ny) , (3.45)
Dy, =4Ec [(On]1)] (3.46)
and:
Anoi(ng) = (1|7 1) — (07| 0) . (3.47)

Note that in the limit F; < E¢, from (1.54), Bng takes the simple form:
— —
D, =—2Ec 2 . (3.48)

For the sake of completeness, the explicit coupling to the set of harmonic oscillators corre-
sponding to this model is detailed below. The impedance Z.,(w) can be modeled with a se-
ries of oscillators (L,,C,) [Figure 3.3, right panel, and Appendix 3-A]. The voltage difference

> C/QE /C, | across the series of oscillators is determined by the charges @\g of the capacitors
peN*

C), and shifts the parameter n, of the box by a quantity:

= _ G @
Ang—2e (ZC’)

peN* p

Using the bosonic operators E; and ¢, associated to the charge @E and the flux g/pg of each

oscillator [formulas (3.91)], one obtains for the coefficients s, of the coupling hamiltonian
(3.14):

ivr, | Z , L
thy = E—Ch F:wp with Z, = Ez. (3.49)
Dephasing
When the impedance Z(w) is a pure resistor R, Re[Z.,(w)] is lorentzian :
Cs\? K:R
Ze ~ (=] —L— .
g(w) Re[Zey(w)] ( 26) T+ oot (3.50)

where w. = [k,(1 — Kg)RCEJ_l is a cut-off frequency. The dephasing factor f,(¢) then follows

the law (3.36) with
D3 K2R g, R
== 9 - W‘% =8 Angy Ko—

A
Ry
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In the semi-classical regime, the exponential tail occurs at a rate I',, (3.37):

ksT 5, R
r,= SWAnngT H;R—K . (3.51)

In the limit £; < E¢, using Eq. (3.48), the expression (3.51) reduces to (Formula (9) of [25]):

kgT ., R
'y =8 cos? BT ;2

— . .52
n R (3.52)

Depolarisation

In qubit experiments, one has to reach the low temperature regime k, 7" < h ;. In this case,
the excitation rate due to an impedance at thermal equilibrium can be neglected (I'g < I'g >~
I'y). The relations (3.38) and (3.50) allow to calculate the relaxation rate I'r. The result can
be further simplified in the weak coupling limit x, < 1

Dn, 1\ Re[Z(Q01)]
I'r :m_g( R ) i Qo1 . (3.53)

In the limit (E; < E¢, T = 0), using (3.48), this expression reduces to (Formula (6) of [25]):

Re[Z(QOl)]

Qo . 3.54
el (354)

g = 4mk2sin®f

Conclusion

In all the above expressions of the rates, a /13 factor ensures that dephasing and relaxation
disappear when the gate capacitance vanishes. In Cooper pair box experiments, the gate
capacitance can be made quite small (k, < 1), so that dephasing and relaxation due to the
impedance of the gate charge bias-line are not a serious problem. Let’s suppose that A€y
~1kK,T ~10 mK, C; ~ 10 aF, x ~ 1% and Re[Z(w)] ~ 10 €. In this case, the cross-over
to the semiclassical regime of dephasing occurs at the thermal time tr = h/(7kpT) ~ 2 ns>
1/w, ~ 107! s. The corresponding exponential decay occurs at a rate I', ~ cos? /80 MHz.
Concerning relaxation, one finds I'r ~ cos? #/20 MHz. The excitation of the box is negligible:
' ~ 0. The situation is different when an active measuring apparatus is connected to the box
island. In this case, the back-action of the measuring apparatus on the box can be excitation

as well as relaxation or dephasing, as discussed in the next section.
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3.2.2 Decoherence due to a measuring Cooper pair transistor

Cg= Ce E{l Ib
Vg 1 Z(w)

X X

N NN

Figure 3.4: FElectrical scheme of a Cooper pair box capacitively coupled to a Cooper pair tran-
sistor. The impedance Z(w) placed in parallel with the transistor induces decoherence on the
boz.

The state of a basic Cooper pair box can be measured by using a Cooper pair transistor capac-
itively coupled to the box island (see chapter 2). This measurement requires the transistor to
be shunted with dissipative elements. These elements cause fluctuations of the transistor island
potential which induce decoherence. This back-action is present even when the transistor is not
measuring the box, i.e. when its bias current is zero. In order to compute the relaxation rates
r9/7/on the excitation rates %7/ and the dephasing rates T¥}/%% due to the off/on transis-
tor, one can generalize the previous approach by replacing the term S, (w) in the expression of
the rates by [C,C/ (2¢C;)]* ST/ (w), where S/ /%" (1) refers to the spectral density of the
noise in the transistor island voltage V. From (3.12) and (3.38), one finds

o on Dng7z C ? o on
Ptpff-:z/eas = 7Tﬁgcm ( 7 2_;]) Svjff/ (O) ) (3.55)
off/on ™ Dn L C ? 0 on
FRffr{eas = §R§(7PT (TQQ_;J) Svjff/ (+QOI) ) (356)
off/on m Dng,J_ C ? off/on
FEf{r{eas = §K§CPT (T?j) SVJ'Cf/ (_001) ) (357)
where c
Rscpr = C_j

is the coupling constant between the box and the transistor (and C'; is the capacitance of the
box junction).

Calculating the spectral density S\, foff (w) requires to know the dynamics of the measuring

circuit. When the transistor is off, the fluctuations of the phase difference across it are small.
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Assuming that a transition from the ground state band of the transistor to its first band cannot
occur, each band state of the transistor corresponds to an effective impedance for which the
previous results can be applied. Therefore, assuming kT < 1 Qo one finds 79/« F?%f L
When the transistor is on, the spectral density Sy (w) cannot be calculated analytically. The low
frequency part of SJ(w), which determines dephasing, is obtained from numerical simulations
of the transistor dynamics. Its high frequency part is estimated by averaging over the phase
dynamics the value calculated using an effective impedance model [27, 28]. For that purpose, the
transistor in its lowest band is treated as an inductor whose value varies with the phase across
the transistor. The relaxation and excitation rates are then calculated for the corresponding
effective impedance seen from the Cooper pair box, and averaged over the phase dynamics.
Care must be taken for the temperature of the effective impedance because of dissipation in

the transistor circuit.

3.3 Split Cooper pair box coupled to an impedance

Z
| eff
EJl | EJl/\ ______ —— ==

Cg Ca Cg Cu Eclrﬁl‘li
E | © i

Z(w) :

' & © &
Cy, Cy Cn Ln:
k& x&

Figure 3.5: Left panel: Electrical scheme of a split Cooper pair box whose loop is coupled to an

impedance. Right panel: Model used for a quantum description of decoherence effects in this

circuit.

In the case of a split box, decoherence is conveyed by two control variables: the gate charge
n, and the phase difference 6 . The decoherence due to an impedance in the gate circuit can
be calculated as indicated previously. This section focuses on the case of an impedance in the
box loop. The Figure 3.5 (left) represents a split box whose loop is loaded with a dissipative

impedance Z(w) placed in parallel with a superconducting inductor L . We assume here that?:

L< I, . (3.58)

2In the experiment 5 reported in chapter 4, the split box is shunted with a large Josephson junction with
energy E¢ which plays the role of this inductance.
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In the circuit of Figure 3.5, the total impedance seen by the series combination of the two

Josephson junctions of the box is:
Lort(wW) = ————
ff( ) 1 1

The electromagnetic fluctuations of Z.¢(w) induce fluctuations of the parameter ¢, which

plays the role of the parameter A\ used in the generic case:
A=90.

The transfer function g(w) associated to this circuit is :

1

- 3.59
©f w? (3.59)

g(w) =

The linear coupling term between the box and these fluctuations is:

OH —
H.=—A/,
a6
with: R
oH ~ 1 —
&y == D
a5~ 70 27 T
D(S,z = _SOOA201 Ng, 5) )
D = 20| (0] 1))
and
Aigi(ng, 6) = 11 — to,, 5 -
Note that in the limit E; < E¢, from (1.54),
E E
Ds = —7‘] sm(g) + d—J cos(g)? :

The impedance Z.;f(w) can again be modeled with a discrete series of harmonic oscillators
(L,,Cp) [Figure 3.5, right and Appendix 3-A]. The total phase difference § across the series

combination of the box Josephson junctions is shifted by the sum:

Ab =" b/ (3.60)

peEN*

where g/og is the phase across the inductances L, . Due to the hypothesis (3.58), the phase
fluctuations of ¢ are small and one can use the first order coupling theory. In order to describe
the oscillators, one can use the bosonic operators ¢, and ¢, associated to the charge operator
6/2;‘; and the flux operator g/pg of C, [formulas (3.91)]. In that picture, the shift coefficients

characterizing AJ are:

T2y
=2 3.61
thy T (3.61)
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Dephasing
When the impedance Z(w) is a pure resistor R, the product g(w) Re Z.;s(w) has the lorentzian
form:
() Re Zugy ()~ (362
T RE Lt ) = 2RI+ w2t2) '
with
L
L — R )
and f,(t) follows the law (3.36) with
A — A0 Ds - ’ @
871'2 E] R
where BL
Kp = —2 (3.63)
o

is a dimensionless coupling coefficient, analogous to the coupling factor x, entering in the
expression (3.51). From (3.58), the inductance L is small compared to the junction inductance

¢2/Ey, and rp, is small. In the exponential regime, the dephasing rate is :
I — ’i_% _¢0Ai01 i B kT
v & 1)) J R R ’

When the impedance Z(w) varies only slowly at low frequency, this dephasing rate can be

generalised as:

/432 (Y2 Aim 2 RK k’bT
r,=-£(=2 3.64
Note that in the limit F; < E¢, from (1.54), this expression becomes:
2
ki, Rk kT, .2 2 .2
= L UK T 2 2)] . .
¢~ 3222000 h sin® 6 [sin*(6/2) + d* cos®(6/2)] (3.65)

Depolarisation

In our experiments, one has kT < h g1, therefore 'y < I'g ~ I'; and the excitation due to
an impedance can be neglected. One can insert (3.59) in the general formula (3.38) in order to

obtain the relaxation rate due to an impedance:

Re[Zeff(Q(n)] 1

Iy =47 Dj : :
R = amls | Re 1200, (3.66)
In the limit (E; < E¢,T = 0), this rate becomes?:
E? Re[Z.;¢(Q d*E*
g mE) RelZess (o) cos’ 6 [sin*(6/2) + d? cos®(6/2)] + J (3.67)

- hZQ()l Rk h2Q(2)1

3Formula (3.67) was published in a slightly different form, for the case n, = 2 and § = 0, as formula (7) of

2
article [28] .
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For the sake of simplicity, let us consider that Z(w) = R, so that Z.;s(w) = R/ [1 + 1/ (w?t7)] .
Two limit cases are possible. When Qg1 < 1/t, Re[Zs(Q01)] ~ Q2,L?/ R is attenuated because
Qo1 falls in the low frequency cutoff provided by the inductance. The relaxation rate I'g has

thus a form analog to the dephasing rate (3.64):

2 2
_ b (Dan\" Bk
PR_ufsW(EJ) R o

On the contrary case, when Qg > 1/t,,

R 1

FR = 47TD§’LR_kh2—§201 s (368)

and one must choose a low value for R in order to limit relaxation.

Conclusion

In the experiments related in this thesis, one has typically E; ~ Fo ~ 1 kK, T" ~ 10 mK,
C, ~ 10 aF. Let’s also consider that Z(0) = 500 €2, d = 0.1 and L; ~ 1 nH. One has &y,
~ 1% , so that t;, ~ 0.2 us> ty. At # = 0, no dephasing is predicted at first order in the
fluctuations. At @ = 7 /4, for t > 0.2 ps, one finds that the semi-classical regime applies, with
a dephasing rate I', >~ 0.22 MHz. Considering in addition Re Z.;¢(€01) = 2 2, the relaxation
rate is I'r ~ 0.5 MHz. The introduction of a phase port thus opens a decoherence way due to
the loop impedance, but the decoherence rate can be controlled by a proper tailoring of the
impedance Z.¢(w) .The split Cooper pair box setup is discussed more in detail in the following

chapter.
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3.4 Effect of charge noise on a Cooper pair box

N

Figure 3.6: Symbolic representation of a Cooper pair box close to two level charge flutuators

The island of a box or a transistor is subject to the 1/f charge noise resulting from the random
motion of microscopic charges in its vicinity [20]. This noise, ubiquitous in charging devices,
has a spectral density of the form:

2

B
St w) = % for w € |— 00, +00] (3.69)

where B ~ 107 has been directly measured up to 10 MHz, which is larger than the fre-
quency range relevant for dephasing. The spectrum has not been directly measured at higher

frequencies.

3.4.1 Dephasing

In order to calculate the dephasing due to a 1/f noise, one can use a special procedure described
in Appendix 3-B-2, which consists in working in a discretised frequency space. According to

this procedure, the resonance pulsation 5; of the box, which fluctuates with time, can be

Qoi(t) = 2/0 \dw Sg (w) cos(wt + )

where Sg,, (w) is the noise spectrum of g, (), where ¢, is a random phase factor, and where

written as

dw Sq,, (w) is a symbolic notation defined in Appendix 3-B-2. The spectrum Sq,, (w) can

calculated as:

. N \? 1
S& (w) = (8n01>
g

which gives:

. A
59101 (w) = m
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D,,.\’B
(5T

Following the same procedure, the phase shift acquired between ¢ and t' is noted*:

Ap(t,t') = /ttl Qo1 (7)dT = 2(t' —t) /OOO \%sinc {@} cos {@ + gow} . (3.70)

where sinc[z| = sin[z]/x . Due to the 1/f structure of the noise, the resonance pulsation g,

with

can have sudden and strong time variations, and thus Ap(t,t") diverges. In order to perform
a measurement on this system in spite of the 1/f noise, a strict experimental protocol must
be defined. The temporal structure of this experimental protocol determine the statistical
properties of the results.

The protocol considered here can be divided into different steps with controlled durations.
The first stage is a preliminary evaluation of the average precession speed 1, from ¢ = —t; to
t = 0. This evaluation is made by leaving the box in the ground state |0) and by measuring the
mean charge or mean loop current of the box. experimentally, when the dependence of these
quantities with n, has been previously measured, this allows to determine the value of n, and
thus Qo . The box is then left at rest from t = 0 to t =ty —7/2 . At t = t, — 7/2, the box is
prepared in a superposition of |0) and |1) in a time considered as instantaneous compared to
the duration of the other steps of the experiment. The box is then left to evolve freely from
t =1ty —7/2tot=ty+ 7/2 and its state is measured at ¢t = t5 + 7/2 . In order to evaluate the
decoherence acquired during that time because of charge noise, one can define the phase shift
D¢ as the difference between the true phase shift due to 2o;(¢) and the phase shift that one

can expect knowing Qo;:

Dy = Ap(ts — %,tz + %) — Q0 . (3.71)
with:
Q_ A@(_t17 0)
01 —
151

We choose t; = 2ty = Y . This choice is arbitrary and allows to simplify the analytical

expression of Dy . From (3.70), one obtains for the variance (Dy?) of Dy a regular expression:

> A T T T
<DS02> = 72/ 2 [ sine? |2~ + sinc? [ﬂ] — 9sinc | “— | sinc [ﬂ] cos | 22| ) dw .
y w 2 2 2 2 2
(3.72)
A first order development of (D¢?) in 7/T then gives the dephasing factor:

fo(7) = exp {—<D2*02>] zexp{— [%T%? mé)} . (3.73)

4Note that the calculation made here does not take into account the exact microscopic structure of the charge
fluctuators causing the 1/f noise. A microscopic approach of decoherence due to charge noise in Josephson qubits
has been peformed by E.Paladino [47].
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In the case F; < E¢, one finds:

T

fw(T)zeXp{—%COSZ(H) [Eﬂ Bln(z)} . (3.74)

In a repeated experiment, the waiting time T is of the order of the total measuring time. The

averaging procedure thus degrades progressively when the data recording time increases.

3.4.2 Compensating the dephasing with echo techniques

In order to compensate the effect of charge noise, it is possible to perform echo experiments
[48]. The first stage consists in letting the qubit evolve freely around a given field T from
t = —71/2tot =0 . The second stage consists in applying to the box a radiofrequency pulse
with a duration much shorter than 7 in order to reverse the phase shift acquired previously.
The last stage consists in letting the box evolve from ¢ ~ 0 to ¢t = 7/2 . The total phase drift

Dy acquired at the end of the experiment is:
Dy = —Ap(—7/2,0) + Ap(0,7/2) .

Using (3.70) and the fact that [° dasin®(z)/(2? |z]) = log(2), the dephasing factor f,(7) can

be calculated exactly as:

fo(T) = exp {— [D’;i} 2 %2 ln(2)} . (3.75)

In the case E; < E¢, this gives:

fo(T) > exp {— cos?(0) lE;LT} Bln(2) } : (3.76)

2

The divergences due to the 1/f charge noise are suppressed by the echo technique and a pre-
liminary measurement of the precession speed is now useless. However, the coherence time is
not significantly enhanced. For F; < Ec = 0.5 kK, in an echo experiment, coherence is lost
after 7 = 20/cosf ns . The 1/f charge noise thus severely limits the coherence time, except
at the symmetry points where D, . = 0 . Considering that the gate charge n, cannot be
tuned perfectly at this point, one has to choose a ratio E;/E¢ as large as possible, so that the

sensitivity to charge noise around the points D, . = 0 is lowered, as discussed in chapter 2.

3.5 Searching for the best qubit setup

Using a Cooper pair box as a quantum bit is possible provided the box and the measurement
apparatus fulfill some criterions. First, the manipulation of the box state must not be perturbed
by the measuring apparatus:

Lo < 1/ tmanip
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and:
F(l)ff < 1/tmanip y

where t,,4nip is the duration of this manipulation. Then, when the measuring apparatus
is on, it should project the box on the states |0) or |1), and discriminate a physical quantity
related to these energy eigenstates before relaxation occurs. This second criterion requires to
fulfill the extra inequality:
" < 1/tmeas

where t,,..s is the time needed to perform a discriminating measurement. The pages 178-179
presents the evaluation of the dephasing and relaxation rates for three different qubit setups
which can be implemented with single Cooper pair devices. The results are given in terms of
the relaxation and dephasing times® 70/ ") = 1/1%7 ") ang 7277 ") — 1097 " For
the purpose of comparing the different circuits, when f,(¢) has not the exponential form, the
characteristic dephasing time Tf such as f@(Tf) = 1/e is indicated. Note that other setups
have been proposed and evaluated [78, 79].

3.5.1 Setup A: Box coupled to a DC shunted transistor

In setup A represented in p.178, the Cooper pair box island is connected to the island of
a Cooper pair transistor with a coupling capacitor C.. The sources of decoherence are the
resistance r of the box gate line, the 1/f charge noise, and the transistor together with its biasing
circuitry. The decoherence rates of this setup are estimated for the parameters indicated in
p.179. (For the transistor, these parameters are those of experiment 2; R,y is the effective
resistance seen by the transistor). In order to minimize dephasing during the manipulation of
the box state, the box gate charge n, must be tuned to n, ~ 1/2 and the bias current I, of
the transistor to [, = 0 . (For the calculations, we have assumed that we cannot tune n, with
an accuracy better than 0.01 ). For the measurement, n, must be taken away from 1/2 and I,
switched on to a value I, > Igf J (see Figure 2.8), so that the transistor current reveals the box
state.

The dephasing and relaxation rates due to r have been calculated using formulas (3.51) and
(3.53). The dephasing rate due to the charge noise has been estimated for an echo experiment
with formula (3.75). The relaxation and dephasing rates due to the transistor have been
calculated with formulas (3.55), (3.56) and (3.57), after a determination of the voltage spectrum
Syr(w) of the transistor island voltage V' (see section 3.2.2).When the readout is off, this
spectrum has a cutoff at low frequencies, which limits the decay of the dephasing factor. It
also falls off before (241, which makes relaxation negligible. When the readout is on, the phase
excursions are not bounded anymore. The spectrum obtained is constant at low frequency and

exhibits a peak at the Josephson frequency €);, but falls off below gy .

5Since the experiments are performed at kT < hvgy, we expect Tg ' (on) « T ") That is why the
excitation times are not indicated in p.179.
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Conclusion

This setup is too much perturbed by 1/f noise. Moreover, even if this 1/f noise was not
present, the readout device would not be sensitive enough to read the box state before it

relaxes (tmeqs > T7")

3.5.2 Setup B: Box coupled to an AC shunted transistor

In the setup B represented in p.178, the Cooper pair box island is still connected to the island
of a Cooper pair transistor with a capacitor C., but the Cooper pair transistor is now hysteretic
like in experiment 3. Decoherence is evaluated for the parameters indicated in p.179. For the
measurement, n, must be taken away from 1/2 and the amplitude of the bias pulse I}, tuned so
that the transistor switches if the box is in the state |1) but not in the state |0) .

The relaxation and dephasing rates due to the gate line resistance r, the 1/f noise and
the transistor have been estimated using the same methods as for setup A. The rates during

measurement have been calculated just before the switching of the transistor at I, ~ 0.76 Igf r,

Conclusion

Setup B is more efficient than setup A, but it is still quite sensitive to charge noise.

3.5.3 Setup C: Quantronium

For the sake of comparison, decoherence for the setup C that will be discussed in chapter 4 is
also indicated here. In setup C, an AC shunted Josephson junction is inserted in the loop of a
split Cooper pair box (Figure p. 178). In order to minimize dephasing during the manipulation
of the box state, the box gate charge must be tuned to n, = 1/2 and the superconducting
phase through the box to § = 0 . The readout is performed by applying a pulse of bias current
I, . In principle, it is possible to tune the amplitude of this pulse so that the readout junction
switches when the box is in the state |1) but not in the state |0) .

The expected sources of decoherence are the resistor  in the gate line, the 1/f noise and
the shunting impedance of the detection junction. We have calculated their effect for the
parameters indicated in p.179. The relaxation and dephasing rates due to the impedance of
the gate line and to the charge noise have been calculated using the same methods as for setup
A. A Cooper pair box with a E;/E¢ ratio larger than that of setup A and B can be used,
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Readout Oft Readout On

ng =049 (0 =nr/2), I, =0 ng = 0.325 (0 ~ n/4), I, = 2I¢/7
r readout | charge noise r readout | charge noise
T | 62 ps | oo unknown Ty | 107 ps | 1 ps unknown
T oo | o0 0.5 ps T" | 463 pus | <10 ns | 30 ns
tmeas = O timeas = 36 (s

parameters used: 7' = 50 mK, E. = 2E;, = 2 K,K, r =5 Q, £ = 2.2 kK, E:, =
2 ka, Reff - 38 Q, l‘fg - Cg/(Cg + CJ) - 1 %, KRscpr — CC/C(/] - 25 %

ng =049 (0 =7/2), I, =0 ng = 0.325 (§ ~ 7/4), I, = 0.761'7
r readout | charge noise r readout | charge noise
Tgf 7162 s | 0o unknown T7" | 107 ps | 60 ps unknown
Tgff 00 o0 0.5 pus 2" | 463 ps | < 100 ns | 30 ns
tmeas = OO tmeas = 2 S

parameters used: T'=50 mK, F. =2E; =2kK,r=50Q, E, = 2E:] =4 kK, Ry, =400 €2,
Cg - 180 pF, CL - 075 pf, K/g - Cg/(Cg + CJ) - 1 %, Rscpr = CC/CZI - 1 %

ng =049 (0 =7n/2), 6 =0 ny, =0.49, I, = 0.971§ (§ ~ 7/2)
noise source | r readout | c.n noise source | r readout | c.n
Tgf f 68 ps | 2.5 pus | unknown || T3" 100 ps | 2.5 ps | unknown
Tgff o0 00 1.3 ps " 00 30 ns 2.7 ps
tmeas = 00 tmeas = 0.1 s

parameters used: T = 50 mK, F; = 0.86 kK, Ec = 0.68 kK, K, d = 0.1, r = 5 €,
I¢ = 0.77T uAs B4 =183 kK= k4 = E;/E4 = 4.7 %, R, = 500 Q, C = C, + C; = 0.5 pf,
Cs=10ptr, =Cy/(Cy+Cy)=1%



180 CHAPTER 3 DECOHERENCE IN COOPER PAIR BOXES

leading to a reduced sensitivity to charge noise. In order to evaluate the decoherence due to
the readout line, we have considered that before the switching, the phase fluctuations through

the readout junction are small, so that it behaves as an effective inductance:

Ld — 90(2)
E%cos(6)
with
d ~ arcsin s .
and
5 — ©olb
EY

For instance, with the parameters of p.179, at § = 0, one has L% = 0.43 nH . From (3.64), the
dephasing time due to the readout line is:

R, h E%cos?(§
T, = 872 jeos’( >2 . (3.77)
Ry ky T 92 (i — i)

Note that when s = 0, one has L% = 0, so that the box is decoupled from the readout circuit and

there is no dephasing at first order. The time 7|, decreases with s (Figure 3.8), which enables
the full dephasing of the box state necessary when one increases s to perform a projective

measurement® on the states [0) and |1). From (3.66), the relaxation time is:
. h Rk hV01
167 Re[Ze s (2mvo1)] e ‘<O m 1>‘2 5

Tr (3.78)

where
1

L o~ : .
1) 1/Rs + 1/(iL%w) + iCw
is the effective impedance seen by the split box, where

C=C;+Cg

is the total capacitance seen by the readout junction. Note that the value of Re[Z.ss(201)],
which determines the relaxation time Ty, is difficult to control in practice because it varies
significantly with Cp, (See Figure 3.7). The time 7% is minimum for s = 0 (Figure 3.9) and
decreases strongly with d (Figure 3.10).

Conclusion

This setup seems more favorable for a quantum bit experiment, since it allows to use a larger
E;/E¢ ratio and thus enhances the immunity to charge noise’. Its implementation is detailed

in chapter 4.

0Note that the numerical estimate of (3.77) given in p.178 implies that in experiment 5, the quantronium is
fully dephased much before the switching of the readout junction.
"We have presented here numerical estimates for parameters close to those of experiment 4 and 5, in order

to allow a comparison with the experimental results. However, theoretically, larger values of E;/F¢ would lead
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d
Rg=500Q E;=18.3 kK 5=0
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Figure 3.7: Frequency dependence of Re[Z¢//(w)] for R, = 500 Q, F4 = 18.3 k,K (parameters
of experiment 5), and two different values of C. The dashed line corresponds to C = 1 pF,
value that we wanted to implement originally for experiment 5. The full line corresponds to
C = 0.5 pF, the value reached in practice in experiment 4. Note that Re[Z¢//(w)] presents a

peak at the plasma resonance of the readout junction.
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Figure 3.8: Variations of the dephasing time T,, of the quantronium with the reduced bias current

s, for different values of Rs. The parameters used here are those of experiment 5.

to an even larger immunity to charge noise. By choosing a ratio E;/FE¢c = 4 instead of the ratio E;/Ec = 1.3
used here, the value of T:;f f indicated in the bottom table of p.179 would be 230 times higher.
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Figure 3.9: Variations of the relaxation time Tgr of the quantronium with the reduced bias

current s, for different values of the asymmetry d of the split box.
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Figure 3.10: Variations of TrRe[Zess(Q01)] with the asymmetry d of the split box. The para-
meters E; and FEc used here are those of experiment 5 (See chapter 4)



Appendix 3-A: Quantum description of

dissipative dipoles

The true internal structure of a dissipative impedance Z(w) is not relevant to describe its
decoherence effects on a quantum circuit. It is enough to model Z(w) as an infinite series of
discrete resonant circuits {(L,,C,), p € N} . The present appendix describes the procedure

used to do so.

3-A-1 Impedance of a dipole

The voltage v(t) across a dipole can be expressed as a function of the current i(¢) flowing
through it and of a nucleus Z(#') :

“+00

o(t) = / dt' Z(¢)i(t — ') ,

0

where the kernel real function Z (t) is the voltage response of the dipole to a current pulse

i(t) = &(t). The response Z(t) is zero at negative times.

3.5.4 Impedance of a dissipative dipole
The impedance Z(w) is the Fourier transform of Z(t):

400
Z(w) = / dtZ () explivot) (3.79)

—00

In the case of a dissipative dipole, the response 7 (t) vanishes at long times, and the above

integral is convergent. Note that Re[Z(w)] is even, and Im[Z(w)] is odd.
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v(t) Re[Z(w)]
< 6D(CL) + (l)p) 5D(w - wp)
] |
+‘. p t—
i) - - Lo

Figure 3.11: Scheme of a (L,,C,) resonant dipole (left panel) and representation of the real
part of its impedance (right panel), which is a sum of two Dirac functions.

Upolw-wp) Op(w—w,)
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..... - Aw=>0
1/Aw -
/'|/ > W >W
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Figure 3.12: The square function Ua,(w) (left panel) tends towards the Dirac function ép(w)
(right panel) when Aw tends towards zero.
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Figure 3.13: Top: Decomposition of Re(Z(w)) into a staircase function with Aw wide steps.
Bottom: Modelisation of a dissipative element (left panel) by a discrete set of (L, C,) circuits
(right panel).
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Impedance of a non dissipative dipole

For non dissipative dipoles, the integral (3.79) does not converge and needs to be regularised:
+oo
Z(w) = lim Z(t) exp(iwt — et)dt . (3.80)

e—0t J_ o

Impedance of a resonant dipole

From (3.80), the impedance Z(w) of a resonant dipole consisting of a capacitor C, in parallel
with an inductor L, (Figure 3.11) is such that:

Re[Z(w)] = g w,0p(w — wy) + gzpwpaD(w +w,) (3.81)

where: .
Wy = (3.82)

LPCP
is the resonance pulsation of the dipole, and
L

Zy, ==L 3.83
p Cp ( )

is its characteristic impedance, and where p is the Dirac delta function.

Modeling a dissipative dipole

Any dissipative dipole can be decomposed into a series of resonant dipoles [3]. In order to
demonstrate this property, let us define the rectangular function Ua, (Figure 3.12, left) such
that:

1/Aw if |w| < 42

UAW(W) =
0 if jw| > 42
Note that:
Alimo Unw(w —wp) =dp(w) . (3.84)

The real part of an impedance Z(w) can be seen as the limit of a staircase function (Figure
3.13, top):

Re[Z(w)] = lim ZRe (wWp)|Aw [Upw(w — wp) + Upw(w +wp)] (3.85)

Aw—0

peN*

where Aw is a small pulsation interval, and for any p € N*, the frequency wy, is:

wp:Aw( —%) )

For each frequency w,, there exists a resonant dipole (L,,C,) such that:
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Re[Z(wy)]Aw = gprp : (3.86)
with w, and Z, defined in (3.82) and (3.83). Since Re[Z(w)] is even with w, the expression

(3.85) can be recast in the form:

Re[Z(w)] = 10120 Z ~ Zywp|Unw(w — wp) + Unw(w +w,)] - (3.87)
From the Kramers-Kronig relatlons, for a causal device, the real part of the impedance deter-
mines the whole impedance. Hence, in order to determine an equivalent model of Z(w), the
expression (3.87) of Re[Z(w)] is sufficient. From (3.81), (3.84) and (3.87), the impedance Z(w)
can be modeled by the ensemble of the resonant dipoles (L,,C),) connected in series (Figure
3.13, bottom). At the end of a calculation using this model, the arbitrary discretisation into
the (L,,C,) elements can be eliminated by setting Aw — 0. All the results which appear as a
sum of the values of a function f(w) taken at the oscillator frequencies, and weighted by their

impedance take a simple form in this limit:

+o00 w
lim GZ Zy f(wp) /0 Re[Z(w)]%dw . (3.88)

(Wp)

This expression can be derived by multiplying the two sides of (3.86) by and by summing

the resulting expressions.

3-A-2 Hamiltonian modeling a dissipative element

Hamiltonian of a resonant dipole

In order to make the quantum description of a resonant dipole (L,,C,), one can chose different
sets of variables. A possible choice is to work with the charge Q)5 through the capacitor C, and
its conjugate flux g/pg . Since the magnetic flux through the loop between L, and C, is arbitrary

and irrelevant, one can assert:
@S =l . (3.89)

where @l is the flux through L, . Consequently, the hamiltonian T, of the resonant circuit at
()Op g P y P

frequency w, writes as: ,
—_~ 2

Ep_ p +90p

2 (3.90)

The bosonic operators ¢, and /c\; related to Qg and gpg are:

~ 1 - . 2Zp/\C ~F 1 - . 2Zp/\c
@\ g, TN TR T Y T oz, T T e (3:91)
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with:
Ly = é—z, wp = LlpC'p’
and:
(610 ] = O -
so that:
Ep = ﬁwp(gg/c\p + %)

Quantum description of a dissipative dipole
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(3.92)

An hamiltonian treatment of the dissipative dipole is possible once this element is modeled it

with a discrete series of resonant circuits (L,,C,). Following (3.92), each resonant circuit p is

described by an hamiltonian ﬁp . The hamiltonian ﬁem, of the impedance is thus:

]/—\Iem) = Zﬁp .

peN

(3.93)

The infinite number of oscillator accounts for dissipation and leads to the irreversible destruction

of the coherent states coupled to the impedance. After the calculation, one must get rid of the

arbitrary discretisation into the (L,,C),) elements by using the formula (3.88).






Appendix 3-B: Spectral description of

noises

3-B-1 Classical definition of noise power

In this thesis, the classical noise power spectrum S (w) of the classical time varying signal A(t),
is defined for w € R, as:

S (w) = — / T (AAMAA( + 7)) expl(—iwr) (3.94)

T on

—00

where () is a statistical average and where
AA(L) = At) — (A)

refers to the fluctuations of A(t) away from its average value (A). Note that this power

spectrum obeys the Wiener-Kintchine theorem:
+oo

(AA(t+71)) = / dw S (w) exp(iwT) . (3.95)

—00

The Parseval theorem giving the total power of the noise is just (3.95) taken for 7 =0 :

(A%) = /_ oodejl(w). (3.96)

[e.9]

3-B-2 Reconstruction of the temporal signal from the spec-

trum

Since the classical noise spectrum S9(w) is even with w, A(t) can be approximated by the limit

of a Fourier series:
A(t) = (A) + Il\in% Ay cos(pAt +7y,0) (3.97)
- peN
where A is small frequency interval, and where v, is a random phase defined for each frequency

pA . From (3.97), the total noise power of A(t) writes, in this representation:

(A% =3 % - (3.98)

peN
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On the other hand, from (3.96), one has:
(A%) = "2A84(pA) (3.99)
peEN
where the factor two stems from the fact that one has to take into account both positive and

negative pulsations. Equations (3.98) and (3.99) imply that:
Aj = 4ASG(pA)

Therefore, this Fourier series representation can be written symbolically as:

At)” =7 2/0Oo \/ dw SG(w) cos(wt +7,,) - (3.100)

At the end of the calculation, the random phase v, must be eliminated by using a statistical
average over it. This trick allows to correctly obtain all physical quantities linear in the noise

spectrum.

3-B-1 Generalised definition of noise power

For a quantum variable A\(t), one can define the generalised noise power spectrum as:
1 Feo ~ L~ ~\ 2
Salw) = — / dr <A(t)A(t +r) - <A> >exp(—iw7) (3.101)

for any w € R.

3-B-3 Noise Spectrum of a dissipative impedance

The noise due to a dissipative impedance Z(w) can be taken into account by considering an
equivalent voltage noise source uz(t) in series with Z(w) or an equivalent current noise source
iz(t) in parallel with Z(w) (Figure 3.14). From the quantum fluctuation-dissipation theorem,

the generalised noise power (3.101) are, for uz(t) and iz(¢),

Suy (W) = % (coth(%) + 1) Re (Z(w)) (3.102)
Si, (W) = % (coth(%) + 1) Re (1/Z(w)) (3.103)

The low and high frequency limits of these expressions are:

w domain | S, (w) Si, (W)

|hw| < kT | kT Re[Z(w)]/7 | kT Re[l/Z(w)]/7

(3.104)
fw > kT | hwRe[Z(w)]|/7 | hwRe[l/Z(w)]/7

hw << —kKT | 0 0




APPENDIX 3-B SPECTRAL DESCRIPTION OF NOISES 191

—Z<w)~@7@— P

Figure 3.14: Impedance Z(w) in series with its equivalent voltage noise generator (top), or in

parallel with its equivalent Johnson noise sourve (bottom).

R SuR(w)
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Figure 3.15: Left panel: Pure resistor R in series with its equivalent voltage generator ug(t).

Right panel: reduced voltage spectral density S, (w) /Suy (0) of ug(t).
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As an example, the equivalent spectrum of voltage noise S, (w) of a resistor R is plotted
in Figure 3.15. This spectrum corresponds to a one dimensional black body, as expected from
the equivalence between a resistor R and an infinite length transmission line with characteristic
impedance R. For |hw| > kT, the asymmetry of S, reveals the asymmetry between sponta-
neous emission and absorption processes. The impedance can absorb energy at any frequency,

but its emitting power falls off at frequencies w > k,/7T'/h .



Chapter 4
The quantronium

The major source of decoherence in a Cooper pair box is the 1/f charge noise coupled to its
gate. In order to use the Cooper pair box as a quantum bit, one must choose a strateqy which
minimizes the influence of this noise. At the beginning of this thesis work, we intended to
develop electrometers as readout devices for a quantum bit based on the Cooper pair box. As
explained in chapters 1 and 2, this strategy requires a box with a ratio E;/Ec < 0.5 in order
to have a sufficiently large charge signal. We have shown in the previous chapters that such
an experiment would be too sensitive to the 1/f charge noise both in the Cooper pair box and
the electrometer. We have also shown that another readout strategy, based on the measurement
of the loop current in a split Cooper pair box, would allow to use larger values of E;/E¢c, and
thus would make the experiment more immune to the 1/f charge noise. The operation of the
quantronium circuit that we have developed by following this second strateqy is described in this

chapter.

4.1 Operating principle of the quantronium

4.1.1 The quantronium circuit

The quantronium consists of a split box which includes in its superconducting loop an extra
Josephson junction with energy E4 > E;, called the readout junction (Figure 4.1). When the
box loop is biased with a magnetic flux ¢,0,,, the superconducting phase difference across the

series combination of the two junctions of the box is:
0=0m+7,

where 7 is the phase difference across the readout junction. The readout junction is AC shunted,

so that it can switch to the voltage state when the bias current I, approaches its critical current

193
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I¢ = E%/p, . As discussed in chapter 3, when I, < I¢, the readout junction behaves below
its plasma frequency as a small inductance which provides a good decoupling of the Cooper
pair box from the readout circuit at low frequency. The immunity to 1/f noise is achieved by
choosing a large ratio E;/FE¢, which is compatible with measuring the loop current of the split

box, and by setting n, = 1/2 .

Next page: Figure 4.1, Principle of the quantronium experiment

e Top: Electrical scheme of the quantronium, showing the different functional blocks. The
circuit is based on a split box with Josephson energy E; and charging energy Ec. The
box state manipulation is achieved by applying radiofrequency pulses on the box gate with
the source Ugp. For the purpose of readout, the superconducting loop of the box includes
a readout Josephson junction with energy E%. This readout junction is AC shunted with
a capacitor C, connected in parallel with the series combination of a resistor Ry and of
a capacitor Cs. Therefore, the junction can switch to a high voltage state with a rate
Iw(Ip, ng, 6,) which depends on the bias current I, and on the state |u) of the box just
before the measurement. The control of the box transition frequency vo, is achieved with
the gate voltage source V, and with the magnetic phase 0., applied through the box loop.
The magnetic phase 6, shifts the superconducting phase § = v + d,, across the series

combination of the two box junctions from the phase v across the readout junction.

e Bottom: The signals involved in the quantronium manipulation and readout. Top: Ra-
diofrequency pulses are applied to the gate for state manipulation. Middle: A readout
current pulse I is applied to the parallel combination of the split box and of the detection
Junction a time tq after the last microwave pulse. Bottom: Voltage V (t) across the junc-
tion in the cases when the junction switches or not. Ideally, the probability to observe a
pulse is the weight of |1) in the quantum state |u) of the box just before the measurement.

A discriminator with threshold Vi, converts V (t) into a boolean 0/1.
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4.1.2 Manipulation and readout principle

The manipulation of the quantronium state can be achieved by applying to its gate radiofre-
quency pulses with frequency vgr ~ v and amplitude Ugp (see Figure 4.1, bottom and section

1.3.2). Ideally, after the pulse sequence, the quantronium is in a pure state:

|u) = cos(6,/2) exp(—ip,/2)|0) + sin(#,/2) exp(ip, /2) |1) .

The readout is triggered by a bias current pulse with amplitude I, and with duration 7 applied
to the parallel combination of the two small junctions, of the large junction and of its shunting
impedance. Under the influence of this pulse, the superconducting phase § = v + §,, is shifted
and the dephasing rate of the box strongly increases. As a consequence, the box state is

projected on the state |0) with a probability:
po = cos?(0,/2) ,

or on the state |1) with a probability p; = 1 — pg . The current passing through the readout
junction after the projection of the box on the state |k), with k € {0,1} is [, —ix(ny,0 = 7+0m),
where i, is the average loop current associated to the state |k) . If the box is in the state |u)

just before the measurement, the switching probability of the readout junction is thus:
P,(1y,7,1g,0m) = poPo(Ly, 7,19, 01) + p1Pr(Lp, T, g, 0n)
where the switching probability in the state |k) ,
Pi(1,,m,n4,6p) =1 —exp(—=T%(Lp, ng, 0m)7) ,

with k£ € {0,1}, depends on the switching rate I';(I,, ngy, d,,) in the state |k) . The readout is
optimal if I, can be tuned so that the readout junction switches with a large probability P; for
state |1) and a small probability P, for state |0) . A switching event then corresponds to the
detection of the state |1) .

4.2 Current discrimination using an AC shunted Joseph-

son junction

4.2.1 Principle
The dynamics of an underdamped AC shunted Josephson junction

Part 2.1.5 focuses on the dynamics of a hysteretic Josephson junction in the case when its
capacitance C; can be neglected (overdamped regime). The readout junction of the circuit of

Figure 4.2 can easily be placed in the opposite regime, namely the underdamped regime. This
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junction is connected to a capacitor C7, and to a dipole (Rs 4+ Cs) . The total impedance seen

by the pure Josephson element £ is then:

1 1

Z(w) = (iwC’ TR 1/(iwC’s)>_1 ’ (41)

where the total capacitance:

C=C;+Cy
seen by the junction is artificially increased by the capacitor C, . When the tilt coefficient
s = Ip/1y of U is close to 1, the frequency of the oscillations of the phase 7 at the bottom of
the wells is well approximated by:

“p o D09 gg)1/t (4.2)
27 T
with
wo _ [ 1o
2t \| p,C
The quality factor of these oscillations is:
O~ — S
 Re[l/Z(wp)]

The escape of the fictive particle representing the state of the readout junction (see chapter 2)
out of a potential well triggers its run-away down the washboard potential and the subsequent
development of a finite voltage across the junction. The escape rate describing this process

depends on the potential barrier height:

AU(L) = ﬂﬂ;( 52

In the underdamped regime () > 1, below the cross-over temperature defined by:

hw
kpTco = 2—7: ; (4.3)

quantum fluctuations of the phase dominate thermal fluctuations and the particle escapes by

quantum tunneling through the barrier at a rate [3]:

AU w AU
I'y(1 2 £ —72— | . 4.4
) =2y [0 S e (72 ) (4.4

At high temperature, the phase v is an almost classical variable and the switching occurs mainly

by thermal activation up to the top of the energy barrier AU, at a rate:

w AU
Iy(l) =a=2 -, 4.5
(1) = a2 exp (20 (45)
with a prefactor a ~ 1 [80, 81]. It is useful to define an effective escape temperature T,s. by the
relation: Al
w
r,=-2 — . 4.
or P ( kBTeSC> (4.6)

The theoretical predictions [82] for a junction in the regime @) > 1 are T,,. ~ T for T" above
Tco, and Tes. =~ hw,/7.2kg below.
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Figure 4.2: Top panel: Circuit used for the measurement of the AC shunted Josephson junction
i experiment 4. The capacitor Cp, ~ 1 pf is implemented on-chip. The capacitance Cy = 10 pf
18 that of the connection between the sample and the bias lign. The component Ry = 500 €2 is
a surface mounted component. Bottom panel: Large scale I, — V; characteristic of the circuit
measured at T' = 10 mK. The junction jumps to the high voltage state when the bias current
I, reaches a switching current I, distributed according to a switching histogram shown in the
inset (Note that this switching histogram was taken for dI,/dt = 12.8 nA/us, but the I, — V;

characteristic was taken at a slower bias current ramp rate).
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Phase dynamics of the full quantronium circuit

We consider again the case of the full quantronium circuit! (Figure 4.1, top). The switching
rate ['y(lp,ng,0m), k € {0,1} of the large junction now depends on the bias current I, on
the reduced bias flux ¢,, and on the state |k) on which the box has been projected at the
beginning of the measurement. An approximate calculation of the switching rate I'y(1y,0,,)
can be obtained within the framework of the Born-Oppenheimer hypothesis, assuming that the
dynamics of the phase v is slow compared to that of the Cooper pair box. This is justified when
the Cooper pair box transition frequency vg; is always much larger than the plasma frequency
of the readout junction. In this case, the dynamics of the readout junction is that of a junction

in a modified potential (see Figure 4.3):
Ur(Iys1ig,7) = Ex(ng, 6 = 0 +7) = EScosy — Lyygy -

For E4 > E;, one can consider that the switching angle of the readout junction is independent
from n, and d,, :

Y o~ arcsin s

Following this approximation, for §,, < |7/2|, the potential U is close to that calculated

assuming that the readout junction imposes the phase 6 = 9,,, + v to the split box:
Ui(Iy,ng,7) = = Egcos() — [l — ix(ng, 6 + 7)]70p -

The loop current-phase characteristic of the split box can thus be obtained by measuring the
bias current I, at constant 'y (I, ng, 0,,) -

In the experiment 5, at the moment of the switching, s is close to 1, so that one can
consider that the phase of the detection junction at the moment of the switching is v* ~ 7.
For 0,, = 7, the transistor frequency falls to zero in the phase range probed by the switching
:0° = 0, +7° ~ 5+ 5 = 7, so that the Born-Oppenheimer approximation is not valid anymore.
In this case, the calculation of the switching rate requires to treat the full system quantum

mechanically [83].

Discriminating power of the quantronium readout junction

The discriminating power of the readout for a bias-current pulse of duration 7 is defined at the

optimal point as:

T ™
75m = —5) — Po(Ip,T,ng = ;5m = —5)] . (47)

N —
N =

a(t) = mIaX[Pl(Ip, T, Mg =

'Note that our readout method could be used to measure the phase-current characteristic i(d) through any
dipole based on the tunneling of the Cooper pairs. (atomic contacts, small Josephson junction arrays...)
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Perfect single shot readout corresponds to o = 1 . The relations (4.4) and (4.5) show

that a is limited by thermal and quantum fluctuations, which decrease the derivative dI's/dI .

Assuming that the temperature is lower than T¢o, one can enhance significantly « by adding a

capacitor C, to the circuit in order to decrease artificially the readout junction plasma frequency

Wp-

Finally, the time resolution will be limited by the readout pulse duration, provided the

readout junction stays at thermal equilibrium in one of its metastable potential wells while the

bias current is raised. For that purpose, its () factor must not be too large. For the parameters:

Ey = Ec=08kK, d=0.1,8, = 0= Aig(n, = 1/2,6 = 1/2) = 10.68 nA
19 = 0.8 uA, C =1 pF = wy/27 = 7.8 GHz, min [T,,] = 60 mK .

the expected discriminating power is:

a(t =0.5 us) =0.95 .

Next page:

Top: Figure 4.3. Comparison between the exact escape potentials Uy and Uy seen by the
phase v of the readout junction in the cases where the box is in the state |0) (blue line)
and in the state |1) (red line), and the potentials Uy and U, that the readout junction
alone would see if its bias current I, was shifted by the box loop currents iy or iy (dashed
lines). These potentials are shown for increasing values of 9., from top to bottom. They
are furthermore offsetted in order to allow a comparison between them. When 0, < w/2,
the switching dynamics governed by these two models are equivalent. When §,, exceeds
7/2, the two potentials become very different and approzimating Uy with ﬁk 18 not valid

anymore.

Bottom: Figure 4.4. Experimental signals in a switching experiment. A trapezoidal bias
current pulse with amplitude I, and with duration T is applied (green trace). The junction
can either switch to the voltage state (red trace) or not (blue trace). When the junction
switches to the voltage state, the voltage pulse is detected with a threshold discriminator.
The data shown here have been taken in experiment & for pulses with duration ™ = 0.1

ps. In experiment 4 (data not shown), the duration of the pulses was rather 7 = 0.5 pus.
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4.2.2 Characterisation of the readout circuit alone (Experiment 4)
Switching experiment

We have first implemented the experiment with the split box disconnected on purpose, in
order to evaluate the discriminating power of the readout junction (see appendix 4-A and the
publication [28] for further details). The capacitor C, is implemented on-chip. The capacitance
Cs = 10 pf intervening in the impedance (4.1) is provided by the cable connecting the bias line to
the sample (see Figure 4.35). The resistor Ry = 500 €2 is a CMS component. Typical switching
and non switching signals are shown in Figure 4.4. In experiment 4, when the switching of
the junction occurs, the voltage on the measuring line with capacitance C'; ~ 1 nF rises at a
rate [c/Cy ~ 1 mV /us . The switching is detected by monitoring the voltage with a low-noise
amplifier with a sensitivity of 1.4 nV/v/Hz in a 1 MHz bandwidth.

Switching probabilities

We have measured the switching probability Py(I,,7) = 1 — exp(—Is(I,)7) of the readout
junction alone when a bias current pulse with duration 7 = 0.5 us and with adjustable height
I, is applied, at different temperatures (Figure 4.5). The maximum slope, obtained at the

lowest temperature, would correspond to a discriminating power:
a(t = 0.5 us) = 0.58

if this readout junction was used to measured a split box with Aig(n, = 1/2, 6 = 7/2) =
10.7 nA .

Switching rates and escape temperatures

We have deduced the switching rates I';(;) from the measured probabilities P;(1,,7) (Figure

4.6). The escape temperatures calculated from the fit of these rates with:
I.=1.17 uA

and
wo/2m =12 GHz

are plotted in Figure 4.7 (The fitting method is described in detail in [4]). The lowest escape
temperature found is about min [T,s.] = 90 mK ,which is stronger than the expected value of
60 mK . This discrepancy can be attributed to two effects. First the effective value of the
capacitor C' may be smaller than expected (wo/2m = 12 GHz corresponds to C' ~ 0.6 pF).
Secondly, due to the large bandwidth of the biasing lines (about 200 MHz), radiofrequency

noise could reach the device and heat the sample.
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Figure 4.5: Switching probability P of the readout junction when 0.5 us long trapezoidal pulses
with variable amplitude I, are applied, for T = 437, 320, 168 and 14 mK (from left to right).

The sharpest step, obtained at the lowest temperature, would correspond to a discriminating

power a(T = 0.5 us) = 0.58 for the readout of a quantronium with Aig; = 10.7 nA.
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Figure 4.6: Switching rate I's of the readout junction as a function of the bias current I, at

different temperatures, calculated from the switching probabilities of Figure 4.5.
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100,

Figure 4.7: FEscape temperature calculated from the experimental switching rates, for experiment
4 (solid dots) and by anticipation for experiment 5 (open dots), compared to the predicted
quantum escape temperature for experiment 4 (solid line), and experiment 5 (dashed line). The

black line represents the classical law T = T,,..

Conclusion

In summary, experiment 4 shows that the readout strategy based on the switching of an auxiliary
junction inserted in the split box loop can approach the current resolution necessary for single

shot readout.

4.3 Operation of a quantronium circuit (Experiment 5)

4.3.1 Switching probabilities in the ground state

In experiment 5, we have implemented the full circuit of Figure 4.1 (see Appendix 4-A and
the appended publications [28, 29] ). The different electrical components represented in this
scheme have been implemented in the same way as for experiment 4. We have increased C, in
order to reduce the escape temperature which was higher than expected in experiment 4. We

have determined from the experimental switching rates (see section 4.3.4):
I§ =0.77 uA & E4 = 18.4 kK

and
wo/2m = 8 GHz .
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which corresponds to:
C=0.9pF

The lowest escape temperature in the experiment 5 is min[7.,.] = 70 mK (see Figure 4.7).
The discriminating power of the readout junction of experiment 5 is thus better than that of
experiment 4. Indeed, for Aiyp; = 10.7 nA, we have reached the same discriminating power as

in experiment 4, but in a measurement time 5 times shorter (Figure 4.8):
a(t=0.1 us) =0.54 . (4.8)

I, (MA)

0.74 0.75 0.76 0.77
T T T T

1.0

p 05

—o
oo

0.0 ! ' : :
1.08 1.09 1.10 1.11

l, (MA)

Figure 4.8: Comparison between the switching probability Py(I, — io,7 = 0.1 us,n,

constant, d,, = 0) obtained in experiment 5 for the readout junction of the quantronium in
state |0) (top panel, data processing explained in Figure 4.22) and the switching probability
curve Ps(1,,7 = 0.5 us) of the isolated junction of experiment 4. Although the duration T is

different for the two experiments, the discriminating power reached is the same.

4.3.2 Current measurements

When the box is in the state |k) just before the measurement, the switching probability of
the readout junction is P, . According to the section 4.2.1, for |d,,| < 7/2, this switching
probability is related to the switching probability P, of the isolated readout junction:

Pk(]]n T,Ng, 5m) - PS(]J(]p7 Ng, 5m7 k)? 7—) ;
where the current passing through the junction is:

Ii(1y,ng, 0m, k) = I, —ix(ng, 0 = 0m +7°) ,
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and where +*® is the phase of the readout junction at the moment of the switching (7* can be
considered as constant). In practice, the critical current I¢ of the readout junction is modulated

by the flux ad,, which penetrates its barrier [40]:
18(0m) = I sinc(adn /)|

with @ < 1 . This modulation contributes to the variations of the bias current amplitude I}

giving a constant switching probability r, that is:
Pr(Iy,7,mg,0m) =1 .

The difference:
AL (ng, 6 = 6 +7°) = I (ng,6 = 6, +7°) = |1§(61m)]

identifies with ix(ng, 6 = d0,, +7°) for |6,,| < 7/2 . This allows to measure the phase dependence
of ig(ng,0) .

We have performed the measurement of [ 3'61 for k = 0 (quantronium at thermal equilibrium)
and 7 = 0.5 ps (Figure 4.9). We have determined the curve |]g(5m)| best matching the
experimental 1) in order to extract the experimental AI)%". For |d,,| < 7/2, the shape of the
variations of AID-! is close to that of the predicted ig (Figures 4.11 and 4.12, left). However,
the gate modulations disappear for d,, > 7/2 and the flux modulations have less amplitude
than expected.

In order to explain these data for any value of §,,, we have calculated Alg'ﬁl (Figure
4.12, right panel) defined as the current amplitude such that the wells of the exact potential
Uk(ng,7,1;%") have a constant depth, using E; = 0.8 kK,Ec = 0.68 kK (fitting parameters
taken from the spectroscopic measurements in section 4.3.3) and d = 0 . As shown in Figure
4.12, the variations of our calculated A]gm are close to that of iy for any ¢, thus this calcu-
lation does not explain the disappearance of the gate modulations in the experimental signal
for 7/2 < §,, < 3w/2 . This effect can rather be attributed to the breakdown of the Born-
Hoppenheimer approximation. Indeed, when the box levels |0) and |1) become degenerate,

Zener transitions might affect the escape rate [83].
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| (MA) so that P =0.61

Figure 4.9: The critical current 1¢(5,,) (line) of the readout junction is substracted from the
current 1) (squares) in order to get AI)S" (triangles) which should identify with the average
loop current of the box for |0,,| < m/2. Note that the flur is expressed here in terms of the
voltage Vi, used to feed the circuit of the flux coil. These data have been obtained using an
averaging on 50000 points. Beware that they have been obtained during a first run in which
the phase modulations of AIS'M were larger than the modulations measured in the second run,
due to the thermal cycling of the sample. All the data shown in the following are related to this
second run and are thus consistent with one another.
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20 & =0.86Tm _

0,0 ®e

Figure 4.10: FExperimental gate voltage modulations of the current AIS'Gl. The gate control

voltage periodicity is used to calibrate the gate capacitance Cy ~ 32 aF.

Nexzxt page:

Top: Figure 4.11. FEzxperimental gate and flux modulations of the current AII?‘GI when
the quantronium is not excited. The gate modulation amplitude for /2 < § < 37/2 is
smaller than for —m/2 < § < m/2.

Muddle: Figure 4.12. Left panel: Predicted variations of the loop current iy in the state
|0) for E; = 0.86 kK and Ec = 0.68 kK. Right panel: Predicted variations of the current
Alg'ﬁl corresponding to a switching probability of 61%, using the exact expression of the
potential U seen by the ensemble of the readout junction plus the split box.

Bottom: Figure 4.13. Calculated transition frequency vo1 as a function of ng and 0 for
E; =086 K, Ec = 0.68 K and d = 0. The spectroscopic data were recorded in the
following along n, = 1/2 (blue line) and along § = 0 (red line). The saddle point at the
intersection of these two lines is the optimal point where the quantronium is immune to

fluctuations of the control parameters at first order
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4.3.3 Spectroscopy of the quantronium
Determination of the split box parameters

In order to characterise precisely the quantronium, we have performed spectroscopic measure-
ments along the two lines n, = 1/2 and 6 = 0 (Figure 4.13). We have measured the resonant
increase of the switching probability when a continuous radiofrequency signal with a small
amplitude is applied at the resonance frequency vg; just before the readout. The fit of the
experimental results, obtained with s = 0.97, 7 = 0.1 us and t4 < 100 ns (Figures 4.14, 4.15,

and 4.16) gives the box parameters:

E; = 0.86 kK, Ec = 0.68 k,K (4.9)

It was not possible to determine d from these data because the spectroscopy could not be
performed close to = 7, the only domain where the asymmetry has a sizeable influence on

the transition frequency.

o/ 2m 0.1

/;l\ -
I
\o—:| 1 l 1 1 1 1 l 1 1 1
~° 16460 16465 7
Vge (MHZ)
0.6 0.7
n
9

Figure 4.14: Resonance frequency vo; measured at T = 15 mK (dots) for n, = 0.5 (left panel)
or 0 = 0 (right panel) and fit with E; = 0.86 K, Ec = 0.68 K, and d = 0 (line). Inset:

Resonance lineshape at the optimal point.
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Figure 4.15: Left panel: Resonance frequency vo; measured at T = 15

and different values of 6. Right panel: Lineshapes corresponding to
resonance gets sharper when & approaches 0.
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Figure 4.16: Left panel: Resonance frequency vo; measured at T = 15 mK (dots) for § = 0

and different values of ng. Right panel: Lineshapes corresponding to a few values of ng. The
resonance gets sharper when n, approaches 1/2.
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Resonance linewidth at the optimal point

As expected, the linewidth of the resonances gets sharper when the bias point gets closer to
the optimal point (n, = 0.5, § = 0) where the resonance frequency is stationary with respect to
both control parameters (Figures 4.15, 4.16). These resonances can be characterised by their

quality factor:
Vo1

Avg

where Avg,; is the full linewidth at half-maximum. At the optimal point (Figure 4.17), we have

(4.10)

measured the transition frequency:
Vo1 = 16463.5 MHz ,
with a width Avgy; = 0.80 MHz, which corresponds to a quality factor :

QP =20 10* .

w
(0]
T
1

w
»

w
N

switching probability Py(%)
w
D

w
o

16460 16462 16464 16466 16468
V.. (MHz)

Figure 4.17: Lineshape measured at the optimal working point § =0 and ny, = 1/2 (dots), and
Lorentzian fit with a full width at half maximum Avge = 0.8 MHz.

Amplitude of the noise seen by the quantronium

The lifetime ) ) )
— =4 — 4.11
T, 2T, T, (4.11)
of a coherent superposition of |0) and |1) can be related to the quality factor @ (4.10) of the

spectroscopic resonance:
Ty = — (4.12)
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At the optimal point, the quality factor Q°P* = 2.10* corresponds to:
TP ~ 0.4 ps . (4.13)

Although these resonance data do not allow to distinguish whether T, can be attributed to
relaxation or to dephasing, the dependence of the linewidth Avg; of the resonant peak with n,
and ¢ can provide informations about the noise sources which limit coherence (Figure 4.18).
As expected, Avg; increases when departing from the optimal point (n, =1/2,6 =0) . For
ng = 1/2 and 6/27 < 0.07, the dependency of Avy with § is linear, which indicates that the
phase noise inducing decoherence could be a low frequency noise (See 3.1.1). The lineshapes
obtained when n, is taken away from 1/2 at § = 0 are not reproducible, probably due to a
low frequency charge noise that produces slight shifts of the resonance frequency during the
measurement. The slope of the lines determining the lower bounds of Avg; are:

81/01

on,

~ 250 MHz / Cooper pair

and:

% ~ 310 MHz /tour .

In a rough approximation, these dependences correspond to r.m.s. deviations Ang ~ 0.004 and
AJ/2m =~ 0.002 during the time needed to record the resonance. The amplitude An, of charge
noise found here is in agreement with measurements of the 1/f charge noise usually reported in
the literature [20]. The amplitude of the phase noise is unusually large [84] and could possibly

be improved by protecting the sample with a magnetic shielding.

Figure 4.18: Full width at half maximum of the resonance measured at T = 15 mK (dots) as a

function of 6 for ny, = 0.5 (left panel) and as a function of ng for § =0 (right panel).
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4.3.4 Coherent manipulations of the quantronium state
Principle

The above spectroscopy data indicate that quantum coherence is sufficient to attempt time
domain experiments. In this section, the quantronium manipulations will be explained by using
the representation of the quantronium state as a spin in the rotating frame R, = (7', ¥ p, 2 p)

defined in section 1.3. Note that all the following measurements have been performed at:

s=1,/I7 =097 .

Rabi precession

We have first observed the Rabi precession of the quantronium, by applying a radiofrequency
pulse with amplitude Urp = 2eAn,/C,, with frequency vpr >~ vp; and with duration 7 on the
gate electrode. In the experiments we have performed, the box is supposed to be initially in
the state |0), so that its representative vector ¥ is initially along =", (Figure 4.19). Under the
influence of the radiofrequency pulse, the vector u precesses around 71, at the Rabi frequency

VRavi = €p/h . In the absence of decoherence, the azimuthal coordinate 6, of 7 thus becomes:
eu = 27TVRabi7- .

After the pulse, W precesses freely around 7]3 at the Ramsey frequency vramsey = Vo1 — VrF,
which leaves 6, unchanged. Just before the measurement and in the absence of decoherence,

the weight of the state |1) in the quantronium state is thus (see 1.42):
p1 = sin® (MW gapiT)

which oscillates with 7 .

Ideally, the switching probability P, in state u is equal to p; . The variations of P, with
7 measured at the optimal point are shown in Figure 4.19, bottom panel. The quantum bit
state is manipulated without inducing much decoherence since the decay of the oscillations
of P, is significant only after 1 us . Nevertheless, the maximum amplitude of the signal at
7 = 0 is only 0.15 and not 0.54 as expected from the estimated discriminating power (4.8).
This phenomenon, already observed in the direct current measurements, may be due a loss of
polarisation of the quantronium during the readout stage (see p.218).

We have verified that the frequency of the Rabi oscillations varies linearly with the amplitude

Urr of the radiofrequency signal (Figure 4.20). This allows to calibrate the amplitude Ugp .
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Figure 4.19: Observation of Rabi oscillations between the states |0) and |1) of the quantronium,
measured just after a resonant radiofrequency pulse with duration 7. Top panel: Representation
of the experiment on the Bloch sphere. A radiofrequency pulse with duration T is applied on
the gate just before the measurement. This pulse makes U precess around 7,,, at the frequency
VRabi With an angle 0, = 2nv gy T. Bottom panel: The experimental switching probability P,
(dots) of the readout junction oscillates with 7. The line is a fit with an exponentially damped
sinusoid. The data shown here have been taken at resonance (with a 0.1 MHz accuracy) with

the optimal point (n, = 0.5, § = 0) , with an average of 5.10* events per point.
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Figure 4.20: Rabi oscillations of the switching probability P, induced by radiofrequency pulses
with duration T and with nominal amplitude Upr = 122, 87, 61, 43 uV (dots, from top to
bottom in left panel). The Rabi frequency, extracted from the sinusoidal fits (continuous lines)
is plotted in the right panel as a function of the amplitude of the radiofrequency pulse. The
linear dependence is used to calibrate the microwave amplitude.

Measurement of the relaxation time

Ideally, starting from the state |0), it is possible to prepare the state |1) using a radiofrequency
pulse with a duration such that the spin rotates by an angle 6, = 7 around 7 . When varying
the delay t; between the end of the 7 pulse and the readout pulse, the resonance peak height
decays with a relaxation time Tk (Figure 4.21). At the optimal point, we have measured the
relaxation time:

T =1.84 ps .

Since T > T5* /2, the linewidth at the optimal point is not limited by relaxation but by
dephasing. The relaxation time is of the same order as the relaxation time estimated in chapter

3, indicating that relaxation can be attributed to the impedance of the embedding circuit.
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Figure 4.21: Decay AP, of the switching probability P, as a function of the delay time t,
between the m pulse and the readout pulse, measured at the optimal point. The solid line is an

exponential fit from which the relazation time T7 " = 1.84 us is obtained.
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Change in the switching probability after a m pulse
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Figure 4.22: Experimental switching probabilities P, of the quantronium (top panel) and their
derivatives dP,/dl, (bottom panel) after a bias current pulse with amplitude I, and with du-
ration T = 0.1 us. We have tried to fit the probability curves measured when the quantronium
is left unexcited (blue full line) and when it has been submitted to a w pulse (red full line) in
order to determine the probability curve in the pure state |0) (blue dotted line) and in the state
|1) (red dotted line). From these fits, one can infer that at rest, the probability to measure the
state |1) is less than 20%, and that after a ™ pulse, that probability increases up to 45%. This

low polarisation may be attributed to depolarisation phenomena during the readout.

In the above single pulse experiments, the quantronium is never detected in the pure states
|0) or |1) . In order to analyse this feature, we have compared the switching probability of
the large junction when the quantronium is left unexcited with the switching probability just
after a 7 pulse (Figure 4.22). These fits infer that when the quantronium is left unexcited, the
occupation of the level |1) is less than 20% and that after a 7w pulse, this occupation of |1) is
at best 45% .
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This loss of polarisation may be attributed to changes in the |0) — |1) transition frequency
and in the environment mode frequencies during the risetime of the readout pulse, due to the
large change in the phase difference across the readout junction. Any resonant coupling between
a mode in the environment and the |0) — |1) transition would induce a strong relaxation prior

to measurement.

Measurement of the coherence time

The spectroscopic measurements give an indirect access to the coherence time 75 through
the quality factor () of the spectroscopic resonances. In order to determine this time more
directly, one can perform a two pulse Ramsey-like experiment [38] which allows to observe
the free evolution of the circuit. The box state W is first driven from 2, to 7', by a /2
radiofrequency pulse. Then, it is left to precess freely around 71) during a time At . In the

absence of decoherence, the expected azimuthal angle of precession after At is:
A, = 27V Ramsey AL .
A second 7/2 pulse is used to convert Ay into a polar angle:
Al, =1 — Ay, ,

which results ideally in:

P = COSZ(WVRamseyAt) .

In reality, we have found out that, at the optimal point, the box suffers essentially from de-

phasing. Considering that the box state is dephased during the free evolution stage, one has:

P11 = COSZ(WVRamseyAt)fcp(t) ;

with f,(t) the dephasing factor introduced in chapter 3. The experimental switching probability
after a Ramsey sequence is presented in Figure 4.23. Oscillations at the frequency vy — vgpe
are observed. The transition frequency is stable enough to allow suppressing all oscillations at
resonance. (Figures 4.24 and 4.25). This can be used to determine the transition frequency r¢;
with accuracy.

Dephasing is revealed by the decay of the amplitude of the oscillations with At¢, which can

be fitted by an exponentially damped sinusoid, with a decay time:
TP = 0.5 ps .

This time is very close to the lifetime 75" " = 0.4 ps of a coherent superposition inferred by
the quality factor at the optimal point. As expected from the spectroscopy linewidths, the
coherence time decreases strongly when the Ramsey experiment is performed away from the

optimal point (Figure 4.26).
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Figure 4.23: Direct measurement of the coherence time Ty. Top panel: representation of the
experiment on the Bloch sphere. A first 7/2 pulse is applied to the gate in order to bring u
to the :E_; axis. The spin U then precesses freely around ?p during a time At. It thus acquires
an azimutal angle A, = 2TV Ramsey At. A second /2 pulse is used to convert this angle
into a polar angle A0, = /2 — Ayp,,. Bottom panel: the Ramsey oscillations of the switching
probability P, decays with a transverse relaxation time Ty. The data (dots) are given here for
the optimal point (n, = 0.5,6 = 0).They are fitted by an exponentially damped sinusoid with
time Ty = 0.5 us at the optimal point (continuous line). Note that similarly to what happens
in the Rabi experiment, the amplitude of the switching probability P, at T = 0 is lower then
expected.
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Figure 4.24: Observation of Ramsey oscillations at the optimal point ng = 1/2 and 6 = 0, for
two different values of vrp — vo1. When vgp is exactly tuned at vrrp = vo1 (top curves), the

oscillations disappear.
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Figure 4.25: Measured frequency of the Ramsey oscillations as a function of the microwave
frequency vrp. The line is a best fit Vramsey = |Vo1 — Vrr|, with vo = 16430.1 MHz. Note that
this value is slightly different from the value recorded a few days before during the spectroscopic

measurements.
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Figure 4.26: Comparison between the Ramsey oscillations of the switching probability P, at
the optimal point (n, = 0.5,0 = 0).(top panel) and at the point (n, = 0.52,6 = 0). These data
are fitted by an exponentially damped sinusoid with time Ty = 500 ns at the optimal point and
Ty = 30 ns when ny, is detuned by 0.02.
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Controlled rotations around the z axis

The Rabi precession allows controlled rotations of % around the 7 and 3 axis. In order
to implement arbitrary manipulations of the quantum state, controlled rotations of % around
the 7z axis are also required. This can be achieved by applying small amplitude bias current
pulses which change § and thus shift the transition frequency by dvg;(t) during a short time

The rotation angle is then:
a = /(5U01(t)dt .

We have measured this effect by inserting such a pulse between the two radiofrequency pulses

of a Ramsey sequence with vgp = v (see Figure 4.27).
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Figure 4.27: Controlled rotations around Z . Top panel: representation of the experiment on
the Bloch sphere. A sequence of two m/2 radiofrequency pulses with vy = vgrp separated by
At is applied to the gate. Between both pulses, a small adiabatic current pulse with variable
amplitude I, and duration T = 100 ns is applied to the readout out junction in order to shift the
resonance frequency and induce controlled rotations of W around = . Bottom panel: Switching

probability P, as a function of the calculated angle. The solid line is a sinusoidal fit.
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Echo experiments

The echo experiment is a modified Ramsey experiment in which the free evolution time At is
divided into two intervals At; and Aty separated by a 7 pulse with duration At, < Aty, Aty
(Figure 4.28). Due to dephasing, during At; and Ats, the quantronium acquires phase shifts
named respectively Ay, and Ap,.The 7 pulse is used to reverse the sign of the dephasing
acquired during the time At; :

Ap) — —Ap,

At the end of the radiofrequency sequence, the total dephasing acquired by the circuit is thus:
Ap = Apy — Ay, .

For n, = 0.52 and § = 0, we have measured the switching probability for fixed values of the
total duration:
At = Atl + Atg + Atﬂ ~ Atl + Atg

of the experiment as a function of At; (Figure 4.29). For At < 1.2 us, this probability oscillates

with At; — Aty and shows a maximum amplitude at the point where:

At
Atl - Atz — 7 .

The observation of such echoes at times much longer than the decay time of the Ramsey fringes
indicates that the decoherence due to charge fluctuations is essentially due to fluctuations at
frequencies lower than 1/At ~ 1 MHz, so that Agp, ~ Agp,. This is in agreement with the low
frequency spectrum expected for charge noise. No echo was seen in the experiments performed
at & # 0, suggesting that the phase noise inducing dephasing occurs above 1 MHz . This is in
contradiction with the indications given by the phase dependence of the resonance linewidth.
No echoes were either seen at the optimal point at times longer than the decay time of Ramsey

oscillations.
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Figure 4.28: Echo experiment. Top panel: Representation of the experiment on the Bloch sphere.
A first w/2 pulse brings U to the ?p axis. Follows a free precession during the time Aty. A
T pulse is used to bring W to the symmetric position with respect to the T, axis. Follows a
free evolution during the time Aty, and a second /2 pulse. Bottom panel: At n, = 0.52 and
0 = 0, the switching probability P, oscillates with At; — Aty and shows a maximum amplitude

H
when slow fluctuations of the field h, are best compensated, that is when At; = At,.
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Figure 4.29: Top panel: Ramsey oscillations at (ny = 0.52,6 = 0) . The dephasing time T,, = 30
ns is significantly shorter than at (n, =0.50,0 = 0). Bottom panel: Echo experiments at
(ng =0.52,8 = 0) for different values of At. The echo technique partially compensates dephas-
ing effects up to At = 1.2 us.
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4.4 Conclusion

Experiment 5 is the first operation of a quantronium. In this experiment, the coherence time
.7 * — 500 ns reached at the optimal point allows 8000 coherent oscillations of the box before a
1/e decay of their amplitude. We have succeeded in driving an arbitrary quantum evolution of
the quantronium state by applying radiofrequency pulses on the gate and bias-current pulses.
However, this first quantronium prototype needs to be improved on several points. First, it
suffers from a residual dephasing. Secondly, it is delicate to tune at the optimal point where
the best coherence times are obtained. Thirdly, the readout is imperfect: its sensitivity is not
optimal and it probably induces a loss of polarisation during the measurement. Improvements

of the quantronium are possible:

e A larger ratio E;/E¢c would reduce the sensitivity to charge noise.
e Implementing a magnetic shielding would possibly allow to reduce the phase noise.

e The readout line must be engineered more carefully in order to eliminate the problem of

the loss of polarisation at readout.
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Figure 4.30: Artist view of the Quantronium



Appendix 4-A: Physical

implementation of the quantronium

(In experiment 4, the Cooper pair box is disconnected, but the electrical lines are the same as

in experiment 5)

4-A-1 Sample description

We have first implemented the capacitor C';, on-chip as an interdigitated capacitor using electron
beam lithography (EBL) with a UV'3 resist. In fact, three capacitors were engineered on-chip
(Figure 4.32, picture 1) in order to tune C . The connection between these interdigitated
capacitor and the box is an EBL fabricated triangular interdigitated capacitor.(Figure 4.32,
2). The split Cooper pair box and micron size junction have been engineered in a second EBL
stage on a PMMA /MAA resist (The low scale part of the mask used and the device after
evaporation are shown is picture 4.31). The sample wears a true quantronium and two test
ones (Figure 4.32, 3). The box of the left quantronium and the readout junction of the right
quantronium are disconnected on purpose, in order to test the sample before cooling it down.
Figure 4.32, 4 shows the Cooper pair box and the readout junction of the middle quantronium.
Two gold quasiparticle traps are connected to the bias line in order to prevent quasiparticle
from tunneling into the island. The dimensions of the box junctions are 175 nmx175 nm and
those of the big junction 300 nmx3.3 pm (Figure 4.32, 5)

4-A-2 Printed circuit board

The sample is gold-wire bounded to a miniature PCB used to facilitate the connection between
the sample and the SMC components R, and R; (Figure 4.33). The PCB is placed inside
the sample holder (Figure 4.34) and connected to electrical lines which go up to the room

temperature bias sources and amplifiers.

231
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4-A-3 Electrical lines

Figure 4.35 presents a global schematics of the electrical lines of experiment 5, from the sample
to the room temperature amplifiers. The capacitance Cs = 10 pf is provided by the cable
connecting the bias line to the sample. All the lines are carefully filtered [66, 67] in order to
reach thermal equilibrium at the base temperature. Note that in experiments 4 and 5, the noise
filtering is not made with (R,C') microfabricated filters but with microcoaxial line which act as
(R,C) filters. The bandwidth of the current-biasing line is however kept large enough to pass

submicrosecond readout square pulses.

Next page:

o Top: Figure 4.31. Left panel: Low scale representation of the lithography mask used for
the fabrication of the quantronium. Right panel: Result of the two angles evaporation of
this mask. The first layer evaporated (in yellow) is oxidized before the evaporation of the
second layer (in transparent blue). The overlap zones, which appear in green include the

three Josephson junctions.

e Bottom: Figure 4.32. Micrographs of the quantronium sample at different scales. (The
zoom increases from left to right and top to bottom. The red square in a photograph

indicates the part zoomed in the next picture.
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PBC Ship

5mm

Figure 4.33

Figure 4.34
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Previous page:

e Top: Figure 4.33.. Sketch of the PCB ship (in white and yellow) which allows to connect
the SMC' components Ry and Ry (in pink) to the sample (in light blue). The PCB is put
on the sample holder (orange). The yellow areas are the gold tapes of the PCB and the
gold boundings. The grey rectangles are the coaxial cables connecting the sample holder

to the outside electrical lines. The bias coaxial line has a capacitance C'y = 10 pF.

e Bottom: Figure 4.34. Picture 1: Photograph of the sample holder closed and connected to
the dilution unit of the dilution fridge (the long cylinder is a copper powder filter). Picture
2: Photograph of the sample holder, showing the coaxial lines connected to the PCB chip.
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Figure 4.35: Global schematics of the wiring of experiment 4 (The symbols used are defined in
Figure 2.21).



Appendix 4-B: Articles reporting

experiments on the quantronium
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Devoret, Ramsey fringe measurement of decoherence in a novel superconducting quantum bit
circuit based on the Cooper pair box, Phys. Scripta T102,162-166 (2002).

[31] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, M.H. Devoret, D.
Esteve, Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit, Fortschritte
der Physik, 51, 462 (2003).

[32] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, M.H. Devoret, C. Urbina, D.
Esteve, Towards Quantum FElectrical Circuits, to be published in Physica E.

[33] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H.
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Implementation of a combined charge-phase quantum bit in a
superconducting circuit
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Abstract

We discuss a qubit circuit based on the single Cooper-pair transistor (which consists of two ultrasmall Josephson
junctions in series) connected in parallel with a large Josephson junction. The switching of this junction out of its zero-
voltage state is used to readout the qubit. We report measurements of the discriminating power of the readout process,
and we discuss its back-action on the qubit. © 2002 Elsevier Science B.V. All rights reserved.

PACS: 03.67.Lx; 73.23.Hk; 85.25.Na

Keywords.: Qubits; Quantum computing; Charging effects; Quantum coherence

1. Introduction

The recently proposed quantum computing
schemes are based on the controlled evolution of a
set of two-level systems, called qubits (see Ref. [1]
for a review). Suitable qubits should have a
quantum coherence time much longer than the
duration of an elementary operation, and be
measurable when necessary. Among the various
systems proposed for implementing qubits, nano-
fabricated solid-state circuits are particularly at-
tractive because they are more easily scalable. The
presently most investigated solid-state qubits are
the “‘single Cooper-pair box” [2], in which Rabi
precession of a coherent superposition of the qubit
states has been demonstrated [3], and the “flux
box” [4]. In the Cooper-pair box, the qubit states

*Corresponding author. Tel.: +33-016-908-5529; fax: +33-
016-908-7442.
E-mail address: esteve@drecam.saclay.cea.fr (D. Esteve).

are spanned by discrete charge states of a super-
conducting small metallic island, and are con-
trolled by the gate charge coupled to the island. In
the flux box, the qubit states are spanned by flux
states of a small superconducting loop, and are
controlled by the flux threading the loop. Whereas
some simple qubit manipulations have already
been realised in these systems, no readout of a
single qubit has yet been achieved. In the case of
the Cooper-pair box, the measurement of the
island potential either by means of a radio-fre-
quency single electron transistor [5] or of a single
Cooper-pair transistor [6], is nevertheless believed
to reach a sensitivity sufficient for such a “‘single-
shot” readout. In this paper, we discuss a qubit
circuit which is controlled both by a charge and by
a phase. In this combined charge-phase qubit,
qubit control is performed by acting on the gate
charge like in the Cooper-pair box, but the mea-
sured quantity is a supercurrent, like in the flux
box. The main interest of this QO—0 design is to
provide (i) a good immunity respectively to the

0921-4534/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0921-4534(01)01014-0
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offset charge noise, which is presently considered
as the major source of decoherence in charging
devices, (i) a good decoupling from the measuring
system when readout is not active, and (iii) a fast
pulsed readout. We explain below the operating
principle of this 0—0 qubit, and we report first
measurements of the readout system resolution.

2. Operating principle of a combined Q-0 qubit
based on the single Cooper-pair transistor

The qubit circuit we consider (see Fig. 1a) is
based on the single Cooper-pair transistor (SCPT)
[7], which consists of two nominally identical ul-
trasmall junctions in series. When a phase differ-
ence o is imposed across the transistor by means of

Fig. 1. (a) Schematic circuit of a O—0 qubit based on a super-
conducting SCPT in a flux-biased loop; (b) full circuit with a
readout Josephson junction, and a bias-current source with
admittance Y (). Readout is based on the dependence of the
critical current of the system on the qubit state. (c) Effective
admittance implemented in the present experiment. An on-chip
capacitor C ~ 1 pF is connected in parallel with an 500 Q-10
pF RC-series circuit made with surface mounted components.

a small superconducting loop threaded by an ap-
plied flux, this device is equivalent to a single
Cooper-pair box with an effective Josephson cou-
pling Ey = 2EY cos (§/2), where EY is the Josephson
energy of each junction with critical current ic =
EY/ @, (¢, = 1/2e). The hamiltonian of the tran-
sistor depends both on the phase 6 and on the gate
charge n, = C,U/2e, and can be written as:

H = —2E%cos (8/2) cos 0 + Ec(7i — ng)*. (1)

Here, the conjugated variables 0 and 7 are re-
spectively the difference between the phases across
each junction of the transistor, and the number of
excess Cooper pairs in this island; Ec = (2¢)°/
(2Cs) is the charging energy of the island with
total capacitance Cy, and n, the reduced gate
charge in units of 2e. This hamiltonian is easily
diagonalised in the eigenbasis of the charge oper-
ator 7. The eigenstates i), with energy E;(d,n,),
sustain a supercurrent /; = ¢, '(0E;/0d) and cor-
respond to an island voltage V; = (2¢)”' (OE;/0ny).
When E} is not much larger than Ec, and n, close
to 1/2, the two lowest energy states, labelled 0 and
1 are well separated from the other levels and can
be used to implement a qubit. In this circuit, the
qubit manipulation can be performed by applying
microwave pulses at the qubit transition frequency
Q/2n = (E, — Ey)/h on the gate electrode. When
EY is not large compared to Ec, the energies of the
qubit levels are well approximated by:

Ey = ¥\/(E? cos (0/2))* + (Ec(1 — an))z. (2)

Although the qubit states can be used over a wide
parameter range, some biasing points are more
attractive. In particular, at the electrostatic energy
degeneracy point n, = 1/2, one has 0F;/0n, = 0,
and, at 0 =0, OE;/06 = 0. At the biasing point
(ng =1/2, 6 = 0), the qubit frequency is set by the
Josephson energy of the junctions, and is only
affected in second order by fluctuations of the
control parameters. Dephasing of the qubit should
thus be minimized at this biasing point. In par-
ticular, the random offset charge noise [9] should
less affect this circuit than the Cooper-pair box [8].
In the proposed set-up, the qubit is maintained at
the biasing point (n, = 1/2, ¢ = 0) during its ma-
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nipulation, and the phase ¢ is varied only during
the readout.

The qubit circuit is shown in Fig. 1b: another
Josephson junction, with a Josephson energy
Ey = @ylc > EY, is inserted in the loop in order to
readout the qubit. The principle of the readout is
based on the dependence on the qubit state i of the
critical current Ic; of the parallel combination of
the transistor and of the large junction. This crit-
ical current is the maximum value of Ig(y) =
Icsiny + I(¢ + 7), where y is the phase across the
readout junction, and (¢ + y) the phase across the
SCPT. Because the large junction imposes to a
good approximation the phase across the transis-
tor, the critical current almost corresponds to
y = n/2. We demonstrate in the following that the
critical current can be determined with sufficient
accuracy to discriminate both qubit states.

3. Readout resolution

The determination of the critical current can be
performed by detecting the transition to a finite
voltage state when the bias-current approaches
it. This switching transition is easily detected
by monitoring the voltage across the system. The
switching out of the zero-voltage state of a cur-
rent-biased Josephson junction has been thor-
oughly investigated. The current-biased junction is
indeed a model system for the dynamics of a single
degree of freedom whose coupling to an environ-
ment can be controlled [10,11]. The dynamics of
the phase y is that of a particle with mass Co2,
placed in a tilted washboard potential U = —Ej x
(cosy + sy), with s = I /Ic, and subject to retarded
friction determined by the admittance Y(w) of
the circuit in parallel with the junction. Below
the critical value s = 1, the potential has metasta-
ble equilibrium positions. The phase dynamics is
characterised by the frequency wp/27 and the
quality factor Q of the oscillations at the bottom
of the wells. For s close to 1, the oscillation fre-
quency is

1/2
wp /27 ~ <@> (1—s)" (3)

In this expression, we have assumed that the ca-
pacitance Cgr includes the eventual contribution of
the environment. The quality factor is then Q =
Cwp/ReY (wp). For underdamped or moderately
damped junctions (Q > 1), escape out one of these
wells triggers the run-away of the phase down the
washboard potential, and a finite voltage develops.
At high temperature, the phase across the junction
is an almost classical variable and switching occurs
by thermal activation over the potential energy
barrier. The rate of this process follows Kramers’
law:

wp AU
Ty=a-" == 4
a=as eXp< kBT>, (4)

where AU ~ (4v/2/3)E;(1 —5)*?, and a is a pre-
factor of order 1 in the regime Q ~ 1. Below the
cross-over temperature defined by kpTco = fiwp/
27, escape occurs mainly by quantum tunneling
“through” the potential energy barrier [11]. For
Q = 1, the quantum rate does not depend on Q
and is:

AU wp AU
Iy=52y/—— -72—|. 5
q ha)p 2n xp < hCOP> ( )

It is useful to define the escape temperature T
through the relation:

»
Ir= 2—; exp(—AU [kpTese)- (6)

The theoretical predictions for a junction in the
0> 1 regime are T, ~ T above the cross-over
temperature Tco, and Tue =~ fiwp/7.2kg below.
Quantum corrections in the thermal activation
regime, and thermal corrections in the quantum
regime slightly increase the escape temperature
above these values.

When a bias-current pulse 7 is applied during a
time 7, the switching probability for each qubit
state i is Ps; = 1 — exp(—TI;7). If these probabilities
are different enough, switching provides a single-
shot measurement of the qubit. We define the
discriminating power of the readout system as o =
|Psi — Pso|- Single-shot readout is achieved when o
is close to 1. The relations (4) and (5) show that the
discriminating power is determined by thermal and
quantum fluctuations, which limit the slope dI"/dI.
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In order to increase this slope, one should decrease
the escape temperature till it reaches the temper-
ature of the experiment, and decrease /c. Since the
quantum escape temperature is set by the readout
junction plasma frequency, which is imposed if all
junctions are fabricated in the same pump-down,
the only way to decrease it significantly is to add
an extra capacitance to the readout junction ca-
pacitance. Decreasing the critical current /¢ is in
conflict with the requirement of a good phase bias
of the SCPT, and a compromise has to be found,
as discussed below. In the present design, the ratio
between the readout junction critical current
Ic = 1 pA and the SCPT supercurrent is about
100. Finally, the time resolution is limited by the
readout pulse duration, provided that the readout
junction stays at thermal equilibration in its po-
tential well when the bias-current is raised. For
that purpose, its Q factor should not be too large.

4. Back-action of the environment and of the
readout system on the qubit

In fine, the sensitivity of a readout system has to
be weighted by its back-action on the qubit during
manipulation and readout. As already discussed in
the case of the single Cooper-pair box measured by
an electrometer [5,12,13], different processes con-
tribute to this back-action. First, the qubit can
undergo a transition from the upper state to the
ground state by transferring the energy #Q to the
degrees of freedom it is coupled. This process de-
fines the relaxation time 7. The reverse excitation
process is also possible, and is characterised by an
excitation time 7g. Both 7T and 7g are expected to
differ when readout is off or on. In particular, 7§ is
expected to be much longer in the off state, when
no energy is available to excite the qubit, than in
the on state. When a coherent superposition of
qubit states is prepared, it is furthermore ran-
domly dephased by the low frequency fluctuations
of the qubit hamiltonian due to both the envi-
ronment and the measuring system. Dephasing is
expected to occur much faster when readout is on
because the qubit is no longer decoupled from
phase fluctuations.

We first discuss the back-action when readout
is off, i.e. at zero-bias-current. In this case,
phase fluctuations are small, and the whole circuit
connected to the SCPT can be treated as an ef-
fective impedance Z.g(w) = (Y(®) 4+ jCerw — jlc/
(pow)_l. Symmetry arguments show that the qubit
is not coupled to its environment when the SCPT
junctions are balanced, as already mentioned.
When SCPT junction asymmetry d = |E} — Ej |/
(E} +E}) is taken into account, the relaxation
time TR 1S:

4 Po
PR {— 7
R d2 Re[Zeff(Q)]iC ’ ( )

in which we have used Eq. (2). Excitation is neg-
ligible (7¢ > Tr), and no dephasing still occurs.
Taking into account practical limitations on the
junction asymmetry (d > 0.1), we estimate Tp >
20 s for the admittance shown in Fig. 1c, and for
the parameters EY =2Ec = 0.4kg K. Assuming
that the gate charge can be tuned at better than
0.02¢, we estimate that the phase coherence time is
limited by the offset charge noise [9] at T, > 1 ps.
Note that a duration of 1 us allows to perform
about 100 qubit manipulations.

When readout is on, the phase excursions are
not bounded, and only approximate expressions
have been obtained. The main result is that the
phase coherence time is extremely short T, ~ 50
ns. This simply means that the readout system
has dephased the qubit before the “pointer” has
moved. We find that 7% is still longer than 7z > 10
us, which we have calculated by averaging over the
phase dynamics, assuming that the readout junc-
tion plasma frequency is lower than the qubit
transition frequency. Circuit design thus results
from a trade-off between efficient readout, long
relaxation and dephasing times when readout is
off, and weak relaxation/excitation when readout
is on.

5. Sample fabrication and experimental set-up

Samples were fabricated by electron-beam li-
thography in a two-step process. First, an inter-
digitated 1.0 pF capacitor and small metallic
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islands, made out of gold, were deposited. The role
of the capacitor is to decrease the readout junction
resonance frequency in order to improve the dis-
criminating power, while that of the metallic is-
lands is to provide a normal metal sink for
spurious quasiparticles in the SCPT electrodes [7].
It is indeed essential to avoid a single quasiparticle
entering the SCPT island, which would destroy the
desired qubit states at n, = 1/2. In a second step,
the SCPT and the readout junction were fabricated
by depositing aluminum layers at two angles
through a suspended shadow-mask [14]. The first
layer was oxidized in order to grow the tunnel
junction barriers. Similar SCPT and readout
junction are fabricated together with the qubit
circuit for the sake of tunnel resistance control.
The sample was wire-bonded onto a miniature
circuit-board with surface mounted components.
The board was fitted in a shielded copper box
thermally anchored to the mixing chamber of a
dilution refrigerator. All lines were carefully fil-
tered [15] in order to reach thermal equilibrium at
the base temperature 14 mK. The bandwidth of
the current-biasing line was however kept large
enough to pass submicrosecond readout square
pulses. When switching occurs, the voltage on the
measuring line with capacitance Cy =~ 0.5 nF rises
at a rate Ic/Cy ~ 1 mV/ps. The switching was
detected by monitoring the voltage across the
readout junction using a low-noise amplifier with a
1 MHz bandwidth.

6. Experimental results

We report here switching experiments in a
sample with the SCPT disconnected on purpose.
We have measured the switching rate of the
readout junction alone as a function of bias-cur-
rent and temperature, using square pulses with
adjustable height, or linear ramps [16] for current-
biasing the readout junction. The variations of the
switching probability when the height of 0.5 pus
readout pulses is varied are shown in Fig. 2 for
different temperatures. The maximum slope, ob-
tained at the lowest temperature, would corre-
spond to a discriminating power of 0.6 for the
readout. Switching rates obtained using both
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Fig. 2. Switching probability Ps of the readout junction when
0.5 ps long bias-current square pulses with variable amplitude
are applied. The critical current is /c = 1.17 pA. The steepest
step, obtained at the lowest temperature, would correspond to a
discriminating power of 0.6 in a single shot readout of the
qubit.
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Fig. 3. Switching rate of the readout junction as a function of
bias-current /g = slc at different temperatures. Full symbols
correspond to 0.5 ps long bias-current square pulses, and open
symbols to linear bias-current ramps at d/g/ds = 0.84 pA/ms.

measurement techniques are shown in Fig. 3 as a
function of bias-current, for different tempera-
tures. The escape temperature defined by Eq. (6),
and determined following the procedure described
in Ref. [17], is plotted in Fig. 4. The lowest mea-
sured escape temperature is about 90 mK, which is
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Fig. 4. Escape temperature versus sample temperature. Full
symbols correspond to bias-current square pulses, and open
symbols to linear bias-current ramps. We attribute the differ-
ence found at low temperature between both methods to the
larger heating of the damping circuit when linear ramps are
used. The dashed line indicates the predicted escape tempera-
ture assuming that the on-chip capacitance fully adds to the
junction capacitance, and that no spurious heating occurs.

higher than the design value of 60 mK predicted
using Eq. (5), assuming that the on-chip capacitor
fully contributes to the capacitance C.r. We at-
tribute this discrepancy to two effects. First, the
SMC resistor in the bias-current line is slightly
heated by the bias-current, as indicated by the
increase observed when relatively slow bias-cur-
rent ramps are used instead of fast pulses. Second,
the on-chip added capacitance is not fully effective
because of the residual inductance of the con-
necting lines and of the capacitance itself. Quan-
titatively, we have calculated that the quantum
tunneling rate is the same as if about half of the on-
chip capacitance was effectively contributing [18].
These two effects explain well the value of the
minimum escape temperature, and of the resulting
discriminating power. These results, which already
allow interesting measurements on the qubit to be
performed, can be improved, and a discriminating
power of 0.95 with 200 ns long readout pulses
could be achieved if the predicted escape temper-
ature of 60 mK is reached.

7. Conclusions

We have discussed a new design for a combined
charge-phase qubit, based on a SCPT connected in
parallel with a large readout junction. Whereas the
qubit is addressed using the gate charge coupled
to the transistor island, the readout is performed
using the supercurrent driven by the phase dif-
ference across the transistor, which controls the
switching of the readout junction out of the zero-
voltage state. From measurements of the switching
probability of this junction when a square bias-
current pulse is applied, we have determined the
discriminating power of the readout. We conclude
that single-shot measurements should be possible
in this system. Experiments on a full qubit circuit
are in progress.
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to ~150 GPa, consistent with the modulus
values of large SWNT bundles (22). Al-
though an individual SWNT has an elastic
modulus of ~1 TPa, the value can decrease to
~100 GPa for nanotube bundles, owing to
the internanotube defects (for example, im-
perfect lattice of nanotube bundles owing to
different nanotube diameters) present along
the bundles.

The long nanotube strands created by our
direct synthesis technique are an alternative
to the fibers and filaments spun from nano-
tube slurries (4). The mechanical and electri-
cal properties of these strands are superior to
the latter fibers: The strands can be produced
in high yield and continuously, and the thick-
ness of the strands and their length may be
further optimized by tuning the processing
conditions to produce practically useful nano-
tube-based macroscale cables.
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Manipulating the Quantum
State of an Electrical Circuit

D. Vion,* A. Aassime, A. Cottet, P. Joyez, H. Pothier,
C. Urbina,t D. Esteve, M. H. Devoret}

We have designed and operated a superconducting tunnel junction circuit that
behaves as a two-level atom: the “quantronium.” An arbitrary evolution of its
quantum state can be programmed with a series of microwave pulses, and a
projective measurement of the state can be performed by a pulsed readout
subcircuit. The measured quality factor of quantum coherence Q_ = 25,000 is
sufficiently high that a solid-state quantum processor based on this type of

circuit can be envisioned.

Can we build machines that actively exploit
the fundamental properties of quantum me-
chanics, such as the superposition principle
or the existence of entangled states? Applica-
tions such as the transistor or the laser, often
quoted as developments based on quantum
mechanics, do not actually answer this ques-
tion. Quantum mechanics enters into these
devices only at the level of material proper-
ties, but their state variables such as voltages
and currents remain classical. Proposals for
true quantum machines emerged in the last
decades of the 20th century and are now
being actively explored: quantum computers
(1), quantum cryptography communication
systems (2), and detectors operating below
the standard quantum limit (3). The major
difficulty facing the engineer of a quantum
machine is decoherence (4). If a degree of
freedom needs to be manipulated externally,
as in the writing of information, its quantum
coherence usually becomes very fragile. Al-
though schemes that actively fight decoher-
ence have recently been proposed (3, 6), they
need very coherent quantum systems to start
with. The quality of coherence for a two-level
system can be quantitatively described by the
quality factor of quantum coherence O, =
vy, T, Where v, is its transition frequency
and T, is the coherence time of a superposi-
tion of the states. It is generally accepted that
for active decoherence compensation mecha-

nisms, Q_’s larger than 10* v, 7, are nec-
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essary, [, being the duration of an elemen-
tary operation (7).

Among all the practical realizations of
quantum machines, those involving integrat-
ed electrical circuits are particularly attrac-
tive. However, unlike the electric dipoles of
isolated atoms or ions, the state variables of a
circuit, like voltages and currents, usually
undergo rapid quantum decoherence because
they are strongly coupled to an environment
with a large number of uncontrolled degrees
of freedom (8). Nevertheless, superconduct-
ing tunnel junction circuits (9—13) have dis-
played O_’s up to several hundred (/4), and
temporal coherent evolution of the quantum
state has been observed on the nanosecond
time scale (/0, 15) in the case of the single
Cooper pair box (16). We report here a new
circuit built around the Cooper pair box with
0, in excess of 10%, whose main feature is
the separation of the write and readout ports
(17, 18). This circuit, which behaves as a
tunable artificial atom, has been nicknamed a
“quantronium.”

The basic Cooper pair box consists of a
low-capacitance superconducting electrode,
the “island,” connected to a superconducting
reservoir by a Josephson tunnel junction with
capacitance C; and Josephson energy £,. The
junction is biased by a voltage source U in
series with a gate capacitance C,,. In addition
to E,, the box has a second energy scale, the
Cooper pair Coulomb energy E., = (2¢)%/
2(C, + C;) . When the temperature 7 and the
superconducting gap A satisfy k7' << A/InN
and £, << A, where N is the total number of
paired electrons in the island, the number of
excess electrons is even (/9, 20). The Ham-

iltonian of the box is then
H=Ep(N—N)?>—Ejcosh (1)

where N, = C,U/2e is the dimensionless gate

3 MAY 2002 VOL 296 SCIENCE www.sciencemag.org



charge and 6 the phase of the superconduct-
ing order parameter in the island, conjugate to
the number N of excess Cooper pairs in it
(16).

In our experiment, £, = E_, and neither N
nor 6 is a good quantum number. The box
thus has discrete quantum states that are
quantum superpositions of several charge
states with different V. Because the system is
sufficiently nonharmonic, the ground 10) and
first excited 11) energy eigenstates form a
two-level system. This system corresponds to
an effective spin one-half 5, whose Zeeman
energy hv,, goes to a minimal value close to
E, when N, = 1/2. At this particular bias
point, both states 10) (s, = +1/2) and 11 ) (s,
= —1/2) have the same average charge (N) =
1/2, and consequently the system is immune
to first-order fluctuations of the gate charge.
Manipulation of the quantum state is per-
formed by applying microwave pulses u(?)
with frequency v = v, to the gate, and any
superposition W) = « 10) + B 11) can be
prepared.

A novel type of readout has been imple-
mented in this work. The single junction of
the basic Cooper pair box has been split into
two nominally identical junctions in order to
form a superconducting loop (Fig. 1). The
Josephson energy E; in Eq. 1 becomes E
c0s(8/2) (21), where § is an additional degree
of freedom: the superconducting phase differ-
ence across the series combination of the two
junctions (22). The two states are discrimi-
nated not through the charge (N) on the island
(10, 23), but through the supercurrent in the
loop {I) = (2e/h) (9H/98). This is achieved by
entangling 5§ with the phase ¥ of a large
Josephson junction with Josephson energy
E,, =~ 20 E| inserted in the loop (/7, 24). The
phases are related by § = § + ¢, where ¢ =
2ed/h, ® being the external flux imposed
through the loop. The junction is shunted by
a capacitor C to reduce phase fluctuations. A
trapezoidal readout pulse 7,(7), with a peak
value slightly below the critical current /;, =
2eE,/h, is applied to the parallel combina-
tion of the large junction and the small junc-
tions (Fig. 1C). When starting from (3) ~ 0,
the phases (3) and (8) grow during the current
pulse, and consequently an s-dependent su-
percurrent develops in the loop. This current
adds to the bias current in the large junction,
and by precisely adjusting the amplitude and
duration of the /,(¢) pulse, the large junction
switches during the pulse to a finite voltage
state with a large probability p, for state 1)
and with a small probability p, for state 10)
(17). This readout scheme is similar to the
spin readout of Ag atoms in a Stern and
Gerlach apparatus, in which the spin is en-
tangled with the atom position. For the pa-
rameters of the experiment, the efficiency of
this projective measurement should be n =
Py — Po = 0.95 for optimum readout condi-
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tions. The readout is also designed so as to
minimize the |1) — 10) relaxation rate using a
Wheatstone bridge—like symmetry. Large ra-
tios £,,/Ey and C/C; provide further protec-
tion from the environment. Just as the system
is immune to charge noise at N, = 1/2, it is
immune to flux and bias current noise at ¢ =
0 and /, = 0, where = 0. The preparation of
the quantum state and its manipulation are
therefore performed at this optimal working
point.

A quantronium sample is shown in Fig.
1B. It was fabricated with standard e-beam
lithography and aluminum evaporation. The
sample was cooled down to 15 mK in a
dilution refrigerator. The switching of the
large junction (25) to the finite voltage state
is detected by measuring the voltage across it
with a room-temperature preamplifier, fol-
lowed by a discriminator. By repeating the
experiment, the switching probability, and
hence the occupation probabilities of the 10)
and |1) states, can be determined.

The readout part of the circuit was tested

by measuring the switching probability p at
thermal equilibrium as a function of the pulse
height 7, for a readout pulse duration of 7, =
100 ns. The discrimination between the esti-
mated currents for the 10) and 1) states was
found to have an efficiency of n = 0.6, which
is lower than the expected n = 0.95. Mea-
surements of the switching probability as a
function of temperature and repetition rate
indicate that the discrepancy between the the-
oretical and experimental readout efficiency
could be due to an incomplete thermalization
of our last filtering stage in the bias current
line.

Spectroscopic measurements of v, were
performed by applying to the gate a weak
continuous microwave irradiation suppressed
just before the readout pulse. The variations
of the switching probability as a function of
the irradiation frequency display a resonance
whose center frequency evolves with dc gate
voltage and flux as the Hamiltonian predicts,
reaching v,, = 16.5 GHz at the optimal
working point (Fig. 2). The small discrepancy

junction
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Fig. 1. (A) Idealized circuit diagram of the quantronium, a quantum-coherent circuit with its tuning,
preparation, and readout blocks. The circuit consists of a Cooper pair box island (black node)
delimited by two small Josephson junctions (crossed boxes) in a superconducting loop. The loop
also includes a third, much larger Josephson junction shunted by a capacitance C. The Josephson
energies of the box and the large junction are £ and E . The Cooper pair number N and the phases
8 and vy are the degrees of freedom of the circuit. A dc voltage U applied to the gate capacitance
C, and a dc current /, applied to a coil producing a flux ® in the circuit loop tune the quantum
energy levels. Microwave pulses u(t ) applied to the gate prepare arbitrary quantum states of the
circuit. The states are read out by applying a current pulse /,(t) to the large junction and by
monitoring the voltage V(t) across it. (B) Scanning electron micrograph of a sample. (C) Signals
involved in quantum state manipulation and measurement. Top: Microwave voltage pulses u(t ) are
applied to the gate for state manipulation. Middle: A readout current pulse /,(t ) with amplitude /
is applied to the large junction t, after the last microwave pulse. Bottom: Voltage V(t) across the
junction. The occurrence of a pulse depends on the occupation probabilities of the energy
eigenstates. A discriminator with threshold V,,, converts V(t) into a boolean output for statistical

analysis.
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Fig. 2. (A) Calculated
transition frequency v,
as a function of ¢ and N
for £, = 0.865 kyK and
E/Ec, = 1.27. The saddle
point at the intersection
of the blue and red lines is
an ideal working point
where the transition fre-
quency is independent, to
first order, of the bias pa-
rameters. (B) Measured
center transition frequen-
cy (symbols) as a function
of reduced gate charge Ng
for reduced flux ¢ = 0
[right panel, blue line in
(A)] and as a function of ¢
for N, = 0.5 [left panel,
red line in (A)], at 15 mK.
Spectroscopy is  per-
formed by measuring the
switching probability p
(10° events) when a con-
tinuous microwave irradi-
ation of variable frequen-
cy is applied to the gate
before readout (t, < 100
ns). Continuous line: The-
oretical best fit leading to
E, and E|/E, values indi-
cated above. Inset: Line-
shape measured at the
optimal working point
) 0 and N, 0.5
(dots). Lorentzian fit with
a FWHM Av,, = 0.8 MHz
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Fig. 3. (A) Left: Rabi oscil-
lations of the switching
probability p (5 X 10%
events) measured just af-
ter a resonant microwave
pulse of duration 7. Data
were taken at 15 mK for a
nominal pulse amplitude
U, = 22 pV (joined
dots). The Rabi frequency
is extracted from an ex-
ponentially damped sinu-
soidal fit (continuous
line). Right: Measured
Rabi frequency (dots) var-
ies linearly with U, as
expected. (B) Ramsey
fringes of the switching
probability p (5 X 10%
events) after two phase-
coherent microwave puls-
es separated by At.
Joined dots: Data at 15
mK; the total acquisition
time was 5 mn. Continu-
ous line: Fit by exponen-
tially damped sinusoid
with time constant T =
0.50 ws. The oscillation
corresponds to the beat-
ing of the free evolution
of the spin with the exter-
nal microwave field. Its
period indeed coincides
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between theoretical and experimental values
of the transition frequency at nonzero mag-
netic flux is attributed to flux penetration in
the small junctions not taken into account in
the model. These spectroscopic data have
been used to precisely determine the relevant
circuit parameters, £, = 0.865 k;K and £/
E.p, = 1.27. At the optimal working point,
the linewidth was found to be minimal, with
a 0.8-MHz full width at half-maximum
(FWHM). When varying the delay between
the end of the irradiation and the readout
pulse, the resonance peak height decays with
a time constant 7, = 1.8 ws. Supposing that
the energy relaxation of the system is only
due to the bias circuitry, a calculation similar
to that in (26) predicts that 7, ~ 10 ps for a
crude discrete element model. This result
shows that no detrimental sources of dissipa-
tion have been seriously overlooked in our
circuit design.

Controlled rotations of 5 around an axis x
perpendicular to the quantization axis z have
been performed. Before readout, a single
pulse at the transition frequency with variable
amplitude U, and duration T was applied.
The resulting change in switching probability
is an oscillatory function of the product U, 7
(Fig. 3A), which is in agreement with the
theory of Rabi oscillations (27), proving that
the resonance indeed arises from a two-level
system. The proportionality ratio between the
Rabi period and U, 7 was used to calibrate
microwave pulses for the application of con-
trolled rotations of s.

Rabi oscillations correspond to a driven
coherent evolution but do not give direct
access to the intrinsic coherence time 7, dur-
ing a free evolution of 5. This 7, was ob-
tained by performing a Ramsey fringe exper-
iment (28), on which atomic clocks are based.
One applies to the gate two phase-coherent
microwave pulses, each corresponding to a
/2 rotation around x (29) and separated by a
delay Az, during which the spin precesses
freely around z. For a given detuning of the
microwave frequency, the observed decaying
oscillations of the switching probability as a
function of Ar (Fig. 3B) correspond to the
“beating” of the spin precession with the
external microwave field (30). The oscilla-
tion period agrees exactly with the inverse of
the detuning, allowing a measurement of the
transition frequency with a relative accuracy
of 6 X 107°. The envelope of the oscillations
yields the decoherence time 7, = 0.50 ps.
Given the transition period 1/v,, = 60 ps,
this means that § can perform on average
8000 coherent free precession turns.

In all the time domain experiments on the
quantronium, the oscillation period of the
switching probability agrees closely with the-
ory, which proves controlled manipulation of
5. However, the amplitude of the oscillations
is smaller than expected by a factor of 3 to 4.
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This loss of contrast is likely to be due to a
relaxation of the level population during the
measurement itself.

In order to understand what limits the
coherence time of the circuit, measurements
of the linewidth Av,,, of the resonant peak as
a function of U and ® have been performed.
The linewidth increases linearly when depart-
ing from the optimal point (N, = 1/2, ¢ = 0,
I, = 0). This dependence is well accounted
for by charge and phase noises with root
mean square deviations AN, = 0.004 and
A(®/21) = 0.002 during the time needed to
record the resonance. The residual linewidth
at the optimal working point is well explained
by the second-order contribution of these
noises. The amplitude of the charge noise is
in agreement with measurements of 1/f
charge noise (3/), and its effect could be
minimized by increasing the E/E., ratio.
The amplitude of the flux noise is unusually
large (32) and should be significantly reduced
by improved magnetic shielding. An im-
provement of Q_ by an order of magnitude
thus seems possible. Experiments on quan-
tum gates based on the controlled entangle-
ment of several capacitively coupled quantro-
nium circuits could already be performed
with the level of quantum coherence achieved
in the present experiment.
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Coherent Temporal Oscillations
of Macroscopic Quantum States

in a Josephson Junction
Yang Yu,! Siyuan Han,* Xi Chu,?7 Shih-1 Chu,? Zhen Wang?

We report the generation and observation of coherent temporal oscillations
between the macroscopic quantum states of a Josephson tunnel junction by
applying microwaves with frequencies close to the level separation. Coherent
temporal oscillations of excited state populations were observed by monitoring
the junction’s tunneling probability as a function of time. From the data, the
lower limit of phase decoherence time was estimated to be about 5 micro-

seconds.

The question of whether macroscopic vari-
ables obey quantum mechanics has stimulat-
ed extensive theoretical interests (/, 2). The
experimental search for macroscopic quan-
tum phenomena (MQP) did not start until the
early 1980s, when theory showed that the
experimental conditions for observing MQP
in Josephson junction—based devices were
achievable (3-5). Many MQP, such as mac-
roscopic quantum tunneling (MQT) (6-10),
energy level quantization (//, /2), quantum
incoherent relaxation (/3), resonant tunneling
and photon-assisted tunneling (/4), and pho-
to-induced transition and population inver-
sion between macroscopic quantum states
(15, 16), have since been observed. Recent
spectroscopy evidence of superposition of
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fluxoid states and persistent-current states
in superconducting quantum interference
devices has also been reported (17, I1§).
However, time domain coherent oscilla-
tions between macroscopic quantum states
(MQS), which is more direct evidence for
the superposition of MQS, has thus far
evaded experimental detection.

One of the methods proposed to create
coherent temporal oscillations between two
MQS is via Rabi oscillation, an effect that is
well established and understood in atomic
and molecular systems (/9). The principle of
Rabi oscillations is that by applying a mono-
chromatic electromagnetic (EM) field to a
quantum two-level system, which interacts
with the EM fields, the system will be in a
superposition of the two energy eigenstates
that results in oscillations between the lower
and upper levels with Rabi frequency (). The
amplitude of the population oscillations is at
a maximum when the frequency of the EM
wave o is in resonance with the level spacing
AE, ie., o = AE/h. Rabi oscillation is a
coherent quantum phenomenon that provides
the foundation to a wide variety of basic
research and applications, ranging from co-
herent excitation of atoms and molecules by
laser to quantum computation (20-22). Re-
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Index of Variables and Acronyms

This appendix recalls only the notations and acronyms which are used in several places of this

thesis.
— . —
a = |a| : modulus of the generic vector a
- = — . —
a, = a.z : zZ component of the generic vector a

— — — — . —
a| =a,x +ayy : component transverse to z , for the generic vector a

— — . —
a; =|a || : modulus of "a |, for the generic vector a

A quantum operator associated to a classical variable A

(A(t)) : statistical average value of A(t)
@ -7 : symbolic notation for the quantum operator a,0, + ayoy, + a0,

AC : Alternating Current

B : amplitude of charge noise [see (3.69)]

BCS: Bardeen Cooper Schriffer theory of superconductivity

C : space of complex numbers

Cy : gate capacitance of a Cooper pair box or transistor

Cj : generic name for the capacitance of a Josephson junction

E;,Ep : bosonic operators associated to the charge @\g and flux g/og of the capacitor C, in a
resonator (L,,C,), [see (3.91)]

Cy; : total capacitance of the island of a Cooper pair box or transistor

DC : Direct Current

d : asymmetry between the two junctions of a split Cooper pair box or transistor

B)\ . representative vector of the restriction of %—ij to the subspace {|0),|1)}, [see (1.46)]

e =1.6 10712 : charge of an electron

EBL: FElectron Beam Lithography

Ec = (2¢)?/2C% : charging energy of a Cooper pair box or transistor with an island with
total capacitance Cx,

E; . When the experiment deals with a single Josephson junction: Josephson energy of the
Junction (experiment 1 and experiment of reference [26]).

When the experiment deals with a Cooper pair box or transistor: total Josephson

energy of the junctions of the box or the transistor (see p.44 and

experiments 2,3,4,5)

251
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E% : Josephson energy of the readout junction in Experiments 4 and 5
ng U effective Josephson energy of a transistor [see (1.67)]
Ey : eigenenergy associated to the energy eigenstate |k) of a Cooper pair box or transistor
exp() : exponential function
fo(t) : dephasing factor [see (3.7)]
g(w) : transfer function characterising the coupling between a Cooper pair box and an
impedance [see(3.31)].
G(ngy) charge-current transduction coefficient of a Cooper pair transistor [see (1.65)]
g representative vector of the free hamiltonian H of a Cooper pair box or transistor in
the Bloch sphere scheme [see (1.45)]
‘ﬁ)‘ : modulus of . (The notation h is not used to avoid confusions with the Planck
constant h)
h=6.63 107** J.s~! : Planck constant
h=3=1.0510"* Js~': reduced Planck constant
H: free hamiltonian of the Cooper pair box (i.e. with no coupling to and outside
environment)
ﬁc . linear coupling hamiltonian between a Cooper pair box and an outside element
ﬁel . electrostatic hamiltonian of a Cooper pair box or transistor
H 7 . Josephson hamiltonian of a Cooper pair box or transistor
Ep : hamiltonian of a resonator (L,,C,) [see (3.90)]
i =v/—1 : unitary imaginary number
T representative vector of the current through a Cooper pair box or transistor in the Bloch
sphere scheme (see (1.55) in the two charge states approzimation)
iz @ equivalent current noise source for an impedance Z(w) (see section 3.B.3)
Iy, : bias current in all the experiments
I,, - amplitude of bias current square pulses in the experiments 3,4,5
Iy : Depending on the experiment considered, critical current of a single Josephson junction
(experiment 1 and experiment of reference [26]) or average critical
current of the junctions of a Cooper pair boz or transistor (see definition (1.63)
and experiments 2,3,4,5])
I; : Depending on the experiment considered, instantaneous current through a Josephson
Junction (experiment 1,4 and experiment of reference [26]) or through a
Cooper pair transistor (experiment 2,3)
I : for a Cooper pair transistor, value of I; averaged over the phase dynamics (see p.76)
IS effective critical current of a Cooper pair transistor [see (1.64)]
|k) : generic name for an energy eigenstate of a Cooper pair box or transistor (see p.39)
ky = 3.28 10~23 : Boltzmann constant
m?x[ f(9)] : mazimum of the function f(0) with respect to the variable 0

rr%in[ f(9)] : minimum of the function f(J) with respect to the variable 0
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[mod A] : modulo A

n : operator associated to the excess number of Cooper pairs on the island of a Cooper pair
box or transistor

In) : eigenstate of the operator n for the eigenvalue n

N : space of entire numbers

N* : space of nonzero integers

ng = CyV,/2e : reduced gate charge of a Cooper pair box or transistor

ny, = CyV/2e : reduced gate charge of a Cooper pair transistor when it is coupled to a
Cooper pair box (in this case, the notation n, is already used for the box)

qubit: quantum bit

@E, : charge of the capacitor C, in the resonator (L,,C))

Q : quality factor of a quantum bit [see (4.10) and (4.12)]

PCB: Printed Circuit Board

Py(1,,7,ny) : switching probability of the transistor of experiment 3 (left in its ground state)
when a bias current pulse with amplitude I, and duration T is applied to it and
that the reduced gate charge of the transistor is n,

Py(1,,T) : switching probability of the readout junction of experiments 4 and 5 when a bias
current pulse with amplitude I, and duration T is applied to it

P,(I,,T,n4,0p) : switching probability of the quantronium in state |u) when a bias current
pulse with amplitude I, and duration T is applied to it, that the reduced gate
charge of the transistor is ng, and that the reduced flux threading the
quantronium loop is O,

Po(1,,7,ng,0m) : switching probability of the quantronium in state |0) (see above)

Py (I,,7,n4,0m) : switching probability of the quantronium in state |1) (see above)

RF : radiofrequency

R =(7', 7y, ) : orthonormal referential of the Bloch sphere, with z = F/ ‘F‘
(see section 1.3.1)

R = (?, ?, 7) : orthonormal referential of the Bloch sphere, defined in the case
E; < E¢, with 2 the charge axis (see section 1.3.1)

Ry = (T, Yp, Zp): turning orthonormal referential of the Bloch sphere,
with 7z, = Z)/ ‘F‘ (see section 1.3.1)

Rr =h/e? ~ 259 kQ : resistance quantum

SMC: Surface Mounted Component

S (w) : classical noise spectrum of the time varying signal A(t) [see (3.94)]

Sy (w) : generalised noise spectrum of the quantum operator A(t) [see (3.101)]

sinc(z) = sin(x)/x : sinuscardinal function

SQUID : Superconducting Quantum Interference Device

t: time

tq @ delay time between the end of the radiofrequency sequence applied to the qubit and the
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beginning of the measurement of its state (see Figure 4.1)

timeas @ Measurement time needed for a measuring apparatus to discriminate the

states |0) and |1)

tr = h/mkyT : "thermal” time

T:

temperature

Tco : cross over temperature between the quantum and thermal escape regimes for a

TRI

TEZ

TQZ

Ty
[u)

—

S

Om -

Op
A

OA:

Josephson junction [see (4.3)]

when the

relazation time of a quantum two level system, sometimes noted TIO{f f (o)

readout device is on (or off ).

Tgf f (on)

excitation time of a quantum two level system, sometimes noted when the

readout device is on (or off).

T when the

: dephasing time of a quantum two level system, sometimes noted
readout device is on (or off ).
total lifetime of a coherent superposition of states in a quantum two level system,
when this system is left to evolve freely [see (4.11)]
=27/ : Josephson period of a Josephson junction

: generic name for a superposition of the states |0) and |1)

u @ representative vector of |u)

. equivalent voltage noise source for an impedance Z(w) (see section 3.B.3)

. operator associated to the island potential of a Cooper pair box or transistor

[see (1.28)]
. instantaneous voltage across a Cooper pair box, transistor or junction, depending on
the experiment considered
. for a Cooper pair transistor, value of V; averaged over the phase dynamics (see p.76)
: gate voltage of a Cooper pair box or transistor
. gate voltage of a Cooper pair transistor coupled to a Cooper pair box (In this case, the

notation V, is already used for the box)
= /L,/C, : characteristic impedance for a resonator (L,,C,)

. discriminating power of a threshold detector [see(2.15) and (4.7)]

. superconducting phase across a Cooper pair box, transistor or junction, depending on

the experiment considered
magnetic flux threading the quantronium loop
: Dirac function
: BCS superconducting gap of a metal. A ~180 ueV for aluminium
shift of the control parameter X of a Cooper pair box (A =ng, or §)

Ang, : difference between the mean charges of the states |0) and |1) [see (1.62)]

Anyg : amplitude of a radiofrequency excitation in terms of reduced gate charge [see (1.56)]

Ab,, : variation of the polar coordinate 0., of U during the manipulation of the quantronium

state
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Ay, : variation of the azimuthal coordinate p, of U during the manipulation of the
quantronium state
v = 0.577216 : Euler constant
A : generic name used for the control parameters n, and o
Ksepr = C./Cy : coupling constant between a basic Cooper pair box and a measuring
Cooper pair transistor (with C. the capacitor connecting the two islands and
C'y the capacitance of the box junction)
ka = E;/E% : coupling constant between the split Cooper pair box and the readout junction
of a quantronium circuit
kg = Cy/Cs 1 coupling constant between a Cooper pair box and the resistance of its
gate line
kr, = E;L/p3 : coupling constant between a split Cooper pair box and an inductance
L mounted in parallel
p,, © coupling coefficient between a Cooper pair box and a bosonic mode with
frequency w, [see (3.14)]
U (0) = (0 |k) : wavefunction associated to the state |k) in the phase space associated to 0
g/pg : operator associated to the phase difference across the capacitor C, of a
resonator (L,, C,)
gfpg : operator associated to the phase difference across the inductor L, of a
resonator (L, Cp)
¢, : azimuthal coordinate of U
0o = Nh/2e =3.28 1071 : reduced flux quantum
I's(Iy,ng) : switching rate of the transistor of experiment 3 and of that of reference [26]
(left in its ground state) for a bias current I, and a reduced gate charge n,
(1) = switching rate of the readout junction of experiments 4 and 5 for a bias
current I
Lw(Iy, ng, 6,,) © switching rate of the quantronium in state |u) when its bias current is Iy, its
reduced gate charge ng, and the reduced flux threading the quantronium loop 0.,
Lo(1,ng, 0m) = switching rate of the quantronium in state |0) (see above)
I'y(Ip,ng, 0m) = switching rate of the quantronium in state |1) (see above)
Lr = 1/Tg : relazation rate of a Cooper pair box, sometimes noted FORf T©m) when the off/on
state of the readout device is specified.
' =1/Tg : excitation rate of a Cooper pair box, sometimes noted FOEf FCm) when the off/on
state of the readout device is specified.
I', =1/T, : dephasing rate of a Cooper pair boz, sometimes noted ng 7©m) when the off/on
state of the readout device is specified.
wp = 1/1/L,C, : resonance pulsation of a resonator (L, C,)
Qo1 : resonance pulsation between the states |0) and |1) of a Cooper pair box [see (1.41)]

Qs =V;/p, : Josephson frequency of a Josephson junction
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vo1 = Qo1/h : resonance frequency between the states |0) and |1) [see (1.41)]

VRavi : Rabi frequency of a Cooper pair box [see (1.58)]

VRamsey © Ramsey frequency of a Cooper pair box [see (1.59)]

Vrr : frequency of the radiofrequency excitation sent on a Cooper pair box [see (1.56)]

O, Oy, Oy, : Pauli matrices (see [1.39])

Gy = 0. U = U0, +u,0,+u,0, : Pauli operator associated to the u component of a spin

-~

0 : operator associated to the superconducting phase of the island of a Cooper pair box
0, : polar coordinate of

|0) : ground state of a Cooper pair box or transistor

|1} : first excited state of a Cooper pair box or transistor



Bibliography

[1] E. Schrodinger, Naturwissenschaften, 23, 807,823, 844 (1935).

[2] W. H. Zurek, Physics Today 44, 36 (1991); W. H. Zurek and J. P. Paz, in Coherent
atomic matter waves, edited by R. Kaiser, C. Westbrook and F. David, (Springer-Verlag
Heidelberg 2000) [quant-ph/0010011].

[3] A. O. Caldeira and A.J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983).

[4] J. M. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. B. 35, 4682 (1987); J. M. Martinis,
M. H. Devoret and J. Clarke, Phys. Rev. Lett. 55, 1543 (1985); M. H. Devoret, D. Esteve,
C. Urbina, J. M. Martinis, A. Cleland, and J. Clarke, in Quantum Tunneling in Condensed
Media, edited by Yu. Kagan and A.J. Leggett (Elsevier, The Netherlands, 1992).

[5] Siyuan-Han, R. Rouse, J. E. Lukens, Phys. Rev. Lett. 84, 1300 (2000).

[6] D. Deutsch and R. Joza, ”Rapid Solution of Problems by Quantum Computation,” Proc.
R. Soc. Lond. A 439 553-558 (1992).

[7] P.W. Shor, in Proceedings of the symposium on the foundations of computer science (IEEE
Computer Society press, New York, 1994).

[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cam-
bridge University Press, Cambridge, 2000).

[9] A. Steane, Rep. Prog. Phys 61, 117, (1998).
[10] P.W.Shor, Phys. Rev. A 52, R2493 (1995).
[11] A.M. Steane Phys. Rev. Lett. 77, 793 (1996), Rep.Prog.Phys. 61, 117 (1998).
[12] J. Preskill, Proc. R. Soc. A. 454, 385 (1998).

[13] D. Kielpinski, A. Ben-Kish, J. Britton, V. Meyer, M.A. Rowe, C.A. Sackett, W.M. Itano,
C. Monroe, and D. J. Wineland,” Proceedings of the International Conference on Ex-
perimental Implementation of Quantum Computation (in press). LANL E-print archive#
quant-ph /0102086

257



258 BIBLIOGRAPHY

[14] L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang,
Nature, 414, 883-887 (2001).

[15] Caspar H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R.N. Schouten, C. J. P. M.
Harmans, T. P. Orlando, Seth Lloyd and J. E. Mooij, Science 290, 773 (2000).

[16] “Macroscopic Quantum Coherence and Quantum Computing”, J. Pekola , B. Ruggiero, and
P. Silvestrini (Kluwer Academic, Plenum Publishers, New York, 2001) and “International
Workshop on Superconducting Nano-electronic Devices”, B. Ruggiero, and P. Silvestrini
eds., (Kluwer Academic, Plenum Publishers; New York, 2002).

[17] V. Bouchiat, D. Vion, P. Joyez, D. Esteve and M.H. Devoret, Physica Scripta, 76, 165
(1998).

[18] V. Bouchiat, “Quantum Fluctuations of the Charge in Single FElectron and Sin-
gle Cooper Pair Devices”, Theése de doctorat, Université Paris VI, 1997. See www-

drecam.cea.fr /drecam /spec/Pres/Quantro/Index.htm.

[19] Y. Nakamura, Yu. A. Pashkin and J. S. Tsai, Nature 398, 786, (1999) and in “Macroscopic
Quantum Coherence and Quantum Computing”, eds. D.V. Averin , B. Ruggiero, and P.
Silvestrini (Kluwer Academic, Plenum Publishers, New York, 2001), pl7; Y. Nakamura
and J. S. Tsai, J. of Superconductivity, 12, 799 (1999), and J. Low. Temp. Phys. 118,765
(2000); Phys. Rev. Lett. 87, 246601 (2001); Y. Nakamura, Yu. A. Pashkin, T. Yamamoto,
and J. S. Tsai, Phys. Rev. Lett. 88, 47901 (2002).

[20] A. B. Zorin, F. J. Ahlers, J. Niemeyer, T. Weimann, H. Wolf, V. A. Krupenin, and S. V.
Lotkhov, Phys. Rev. B 53,13682 (1996); V. A. Krupenin, D. E. Presnov, M. N. Savva-
teev, H. Scherer, A. B. Zorin, and J. Niemeyer, Conference on Precision Electromagnetic
Measurements Digest, IEEE, 140 (1998). H. Wolf, F. J. Ahlers, J. Niemeyer, H. Scherer,
T. Weimann, A. B. Zorin, V. A. Krupenin, S. V. Lotkhov, D.E. Presnov IEEE Trans.
Instrum. Meas. 46, 303 (1997).

[21] A. Aassime, G. Johansson, G. Wendin, R. J. Schoelkopf, and P. Delsing, Phys. Rev. Lett.,
86, 3376 (2001).

[22] P. Joyez, P. Lafarge, A. Filipe, D. Esteve and M. H. Devoret, Phys. Rev. Lett. 72, 2548
(1994).

[23] R. P. Welty and J. M. Martinis, IEEE Trans. Mag. 27, 2924 (1991).

[24] A.H. Steinbach , P. Joyez , A. Cottet , D. Esteve , M.H. Devoret, M.E. Huber and J.M.
Martinis, Phys. Rev. Lett. 87, 137003 (2001).



BIBLIOGRAPHY 259

[25]

[31]

[32]

[41]

A. Cottet, A.H. Steinbach, P. Joyez, D. Vion, H. Pothier, D. Esteve, and M.E. Huber,
in “Macroscopic Quantum Coherence and Quantum Computing”, eds. D.V. Averin , B.

Ruggiero, and P. Silvestrini (Kluwer Academic, Plenum Publishers, New York, 2001),
plll.

P. Joyez, D. Vion, M. Gétz, M.H. Devoret, D. Esteve, J. of Supercond. 12, 757 (1999).

A. Cottet, D. Vion, P. Joyez, D. Esteve, and M.H. Devoret, Workshop on ”Macroscopic
Quantum Coherence and Computing”, Naples, Italy (2001).

A. Cottet, D. Vion, P. Joyez, P. Aassime, D. Esteve, M.H. Devoret, Physica C 367, 197
(2002).

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H.
Devoret, Science 296, 886 (2002).

D. Vion , A. Aassime, Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret
M.H., to be published in Fortschritte der Physik.

D. Vion , A. Aassime, Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret
M.H., to be published in Physica C.

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, M.H. Devoret, C. Urbina, D. Esteve,
to be published in Physica E.

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H.
Devoret, in ”Experimental Quantum Computation and Information”, F. De Martini and
C. Monroe eds., IOS Press 2002, pp. 475-491.

I. I. Rabi, Phys. Rev. 51, 652 (1937).

Siyuan-Han, Yang-Yu, Xi-Chu, Shih-I-Chu, Zhen-Wang, Science. 293, 1457 (2001).
J. M. Martinis, Sae woo Nan, J. Aumentado, and C. Urbina (to be published).

Y. Nakamura (private communication).

N. F. Ramsey, Phys. Rev. 78, 695 (1950).

Josephson B.D., Rev. Mod. Phys. 36, 216 (1964).

A. Barone and G. Paterno, Physics and applications of the Josephson effect (Wiley, New
York, 1982).

M. Biittiker, Phys. Rev. B 36, 3548 (1987).



260 BIBLIOGRAPHY

[42] P. Joyez, Le Transistor & une Paire de Cooper, thése de doctorat (Paris VI, 1995); See

www-drecam.cea.fr/drecam/spec/Pres/Quantro/Index.htm.

[43] Single Charge Tunneling, edited by H. Grabert and M. H. Devoret (Plenum Press, New
York, 1992).

[44] Ederlyi, Magnus, Oberhettinger and Tricomi (Bateman manuscrit) Higher transcendantal
functions, Vol 3, McGraw-Hill.

[45] A.B. Zorin, Phys. Rev. Lett. 76, 4408 (1996).

[46] Cohen-Tannoudji C., Diu B., Lalog F., Mécanique quantique T II, Hermann, Paris.
[47] E. Paladino, L. Faoro, G. Falci, and R. Fazio Phys. Rev. Lett. 88, 228304 (2002)
[48] A. Abragam, The Principles of Nuclear Magnetism (Clarenton press, Oxford, 1961).

[49] M.H Devoret, Quantum Fluctuations in Electrical circuits, in ” Fluctuations Quantiques’,
Elsevier Science, 1997.

[50] Landau D.L., Lifchitz E.M, Téoréticheskaia fizika v10 tomakh, Tom II Mékhanika, Naouka,
Moska.

[51] M. Tinkham Introduction to superconductivity, second edition, McGrawHill.
[52] P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M.H. Devoret, Nature 365, 422 (1993).

[53] D. Vion, M. Gotz, P. Joyez, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 77, 3435
(1996).

[54] G.L Ingold and H. Grabert, Phys. Rev. Lett. 83, 3721 (1999).

[55] K. Likharev Dynamics of Josephson junctions and circuits, Gordon and Breach science
publishers.

[56] Y.T. Coffey, Y.P. Kalmykov, J.T. Kalmikov, The Langevin equation World Scientific.

[57] Yu. M. Ivanchenko and L.A. ZiI’berman, Zh.Eksp. Teor. Fiz 55, 2395, (1968) [Sov. Phys.
JETP 28, 1272 (1969)].

[58] V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).

[59] M. Tinkham, chapter 4, in Single Charge Tunneling, edited by H. Grabert and M. H.
Devoret (Plenum Press, New York, 1992).

[60] M. E. Huber, A.M. Corey, K.L. Lumpkins, F.N. Nafe, J.O. Rantschler, G.C. Hilton, J.M.
Martinis, and A.H. Steinbach. Applied Superconductivity 5, 425 (1998).



BIBLIOGRAPHY 261

[61] T.A. Fulton and L.N. Dunkleberger, Phys. Rev. B, 9, 4760 (1974).
[62] R.J. Schoelkopf et al., Science, 280, 1238 (1998).

[63] G.J. Dolan and J.H. Dunsmuir, Physica B 152, 7 (1988), J. Romijn and E. Van der Drift,
Physica B 152, 14 (1988).

[64] T.A. Fulton and G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

[65] K.C. Gupta , Ramesh Garg , I.J. Bahl , Microstrip lines and slotlines, Artech (1979).
[66] D. Vion , P.F. Orfila , P. Joyez , D. Esteve and M.H. Devoret J.Appl.Phys. 77, 2519 (1995).
[67] J. M. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. B. 35, 4682 (1987)

[68] U. Weiss, Quantum dissipative systems, Volume 2 of Series in Modern Condensed Matter

Physics, World Scientific, Singapore.

[69] H.P. Breuer and F.Petruccione the theory of open quantum systems, Oxford university
press (2002).

[70] V. B. Braginsky and F. Ya. Khalili, Quantum Measurement (Cambridge University Press,
1992)

[71] Y. Makhlin, G. Schon, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
[72] A.Shnirman and G. Schon, Phys. Rev. B, Vol.57, 15400-15407 (1998).
[73] A. Messiah, Mecanique quantique T.I, Dunod.

[74] C.W. Gardiner and P. Zoller, Quantum noise, second edition, Springer-Verlag, Berlin
(2000).

[75] P. Joyez et D.Esteve, Phys. Rev. B, Vol.56, 1848-1853, 1997.

[76] G. Ingold and Yu. V. Nazarov, chapter 2 in Single Charge Tunneling, edited by H. Grabert
and M. H. Devoret (Plenum Press, New York, 1992).

[77] M.H. Devoret, R.J. Schoelkopf, Nature 406, 1039 (2000).
[78] A. B. Zorin, Physica C 368, 284 (2002).

[79] F. W. J. Hekking, O. Buisson, F. Balestro, and M. G. Vergniory, in Electronic Correlations:
from Meso- to Nanophysics, T. Martin, G. Montambaux and J. Tran Thanh Véan, eds.
(EDPSciences, 2001), p. 515.

[80] Kramers H., Physica (Utrech) 7, 284 (1940).



[81] M. H. Devoret, J. M. Martinis, D. Esteve and J. Clarke, Phys. Rev. Lett. 53, 1260 (1984).

[82] A. J. Leggett, Phys. Rev. B 30, 1208 (1984); D. Esteve, M. Devoret and J.M. Martinis,
Phys. Rev. B 34, 158 (1986)

[83] J. Ankerhold and H. Grabert, cond-mat/0304232 (2003)

[84] F.C. Wellstood, C. Urbina, J Clarke, Appl. Phys. Lett. 50,772 (1987).



