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Decoherence mechanisms in mesoscopic conductors

In mesoscopic electronic systems, quantum coherence is not chaeaicbsra unique
parameter such as a length scale, but depends on the physical pitogdeityconcerned, on
the energy range which is probed, and often on other circuit dependentefeasantor
instance, the conductance of a nanostructure in which electrons behave as indepemelsnt ¢
is affected by quantum interference effects up to a length #wtie@lepends on temperature
and on the applied voltage. In some systems, this length scale canoveveome the circuit
size, as demonstrated by recent interference experimentsuttigoath circuit carved in a 2D
electron gas [1]. Understanding the limitations to quantum coherenttes imdependent
electron transport regime is presently a fundamental issue, wdigth has practical
implications since the loss of quantum coherence hinders the development of quantum devices
fully exploiting quantum interference effects. The issue of quanthmrence becomes more
complex in presence of interactions between electrons, becauserthieliguid can adopt a
many-body quantum state. Other phenomena than those limiting the intiesiconic
guantum coherence come then into play. The goal of this thesis warkprelie quantum
coherence in diffusive metallic conductors both in the independent eleegone and in
presence of pairing interactions, which induce superconducting order. phansents are

based on tunnel spectroscopy, a technique described in the inset.



Tunnel Spectroscopy of Mesoscopic Systems

Tunneling of electrons between metallic electrodes gives speapicsnformation on
the density and filling of the states in the electrodes [2]. Bttigsis, the focus is on metall

wires, and the generic sample geometry that we have used is shown below:
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The metallic wire under investigation is connected to large padsit @an be current biased

or driven out-of-equilibrium by a voltage. A probe electrode forms a tyanetion with the

wire. Assuming that the density of states and the filling factdrthe probe electrode at

known, the density or filling of the states in the wire at the osibf the junction can be

inferred from the differential conductan dI/dV(V) of the tunnel junction.

The physical quantity that is probed is given below as a function ofatuee of the probe

electrode and of the wire (superconducting (S), normal (N), or any (X)).
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In the following, a short overview of the main results of this thesis is given.

1.1 Electron-electron interaction and Kondo effect

In metals, electron energy levels in the conduction band are asslowifih extended
wave functions. In the normal state, electrons fill these statewding to the Pauli exclusion
principle, up to the Fermi energy. Coulomb interaction modifies tmplsi independent
electron picture of a Fermi liquid, but the electronic excitatemesstill almost independent
fermionic particles as proven by Landau [3] and are thus called fxputisies”. The issue of
guantum coherence of these quasiparticles has been a main concernthdutasy twenty
years. In the case of thin films, electronic waves are sedtt®y structural defects and by film
boundaries, and Landau quasiparticles undergo a diffusion-like motion. In thisive
regime, a quasiparticle is predicted to remain coherent ovegthlscale that depends on its
energy and on the energy distribution functions of all the quasipartiete a quasiparticle at
the Fermi level, in absence of other limiting mechanisms than Cobulateraction, this
length scale is predicted to grow indefinitely as temperaaméstto zero. Yet a controversy
stands about the explanation of the commonly observed saturation of thencehlength at
low temperature [4]. It was even claimed that this saturatiommvarsal feature due to “zero
point fluctuations” [5]. This assessment was later ruled out by conataes: the saturation
of 7, is not systematic in samples with similar electrical gedmetrical parameters [6]. The
saturation was also attributed to the presence in the samplegpétic impurities with small
Kondo temperature. Indeed, the scattering rate from magnetic irapuiiicreases when
temperature is lowered, till the Kondo temperature is reacheaninast, the scattering rate
due to Coulomb interactions decreases. These two scattering methaais thus result in a
plateau in the temperature dependence of the phase coherence timetrebd<¢endo
temperature. If the Kondo temperature is at the edge of the exprgperature range, this

plateau looks like a saturation.

Prior to this thesis work, energy exchange in mesoscopic wirebdeatd measured in the

Quantronics group in order to precisely understand the inelastiersmgtimechanisms
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limiting phase coherence. In these experiments, the rates ofyesmarijange were found
higher than predicted by the theory of Coulomb electron-electron itieersic with
furthermore an unexpected energy dependence, and sample to samplensd6dt In the
meanwhile, Kaminski and Glazmann [7] proposed that magnetic impucibielsl also be
responsible for this abnormal energy exchange. Indeed, even if their spin stategearerate,
scattering from magnetic impurities can mediate energy egehletween electrons at second
and higher orders in the coupling between electrons and magnetic iegp(sée Figure 1).
Due to Kondo effect, the coupling constant between electrons and maigmetidties is
renormalized and reaches a maximum at the Kondo temperature. Kondaynvfeaiated
(KIM in the following) interaction between electrons can then dorai@atulomb interaction.
It was calculated that the crossover to a KIM interaction doeuhetgime takes place at a

very small amount of magnetic impurities, of the order of a part per million (ppm).

E -o . E e . E—

— | EvE - TErE —@

— 4 T ¥ | E€de- -
E -e P — A g—

Initial state Virtual state Final state

Figure 1: Two-step inelastic scattering procesoliing two electrons (black disks) and a single n&tig
impurity (double arrow). In each panel, the lefidar represents the electrons energy spectrumgiiyedisks
and lines represent the non-involved electrons states. The isolated state on the right side reptesthe
energy level of the degenerate spin states of thgnatic impurity. In a first step, an electron okmy E’
interacts with the magnetic impurity, gaining ae®y £ and making the impurity spin flip. In a secondpsten
electron of energ E interacts with the magnetic impurity, loosing #mgergy £ and making the impurity spin
flip back to its initial state. In this second ordeocess, two electrons have exchanged the enegyia a
magnetic impurity.

To test if magnetic impurities are responsible for the saburaf the phase coherence length
at low temperature and play a role in energy exchange, we peddmo complementary sets
of experiments. First, we measured the phase coherence tim@mpiesan which a known

concentration of magnetic impurities was implanted [8]. Second, irplsandisplaying
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anomalous energy exchange, we measured energy exchange betwteenseile presence of

a magnetic field [9], which is expected to modify the KIM interaction rate.

1.1.1 Limitation of phase coherence by spin-flip scattering from magnetic
impurities

In this first experiment, we measured the temperature dependengénofiires made
of silver, in which manganese impurities at controlled concentrati@me implanted. The

Kondo temperature of manganese in silvef,is- 40 mK [10].

The phase coherence time was deduced from the weak localizati@ttioms to the
magnetoresistance of long wires. The temperature dependence ofeth®né& phase
coherence time for four different samples is shown in Figure 2fifldteone, called Ag6N,
was made from a 99.9999 % purity source. The second one, called Ag5N, deasroma a
99.999 % purity source. The third and the fourth ones, called Agbdand Ag5Nwn1, were
co-evaporated with Ag5N, then implanted with 0.3 ppm and 1 ppm of Mn. The me®sis
down to 40 mK were performed at Michigan State University by F. PierreNar@. Birge. It
was found that the purer the sample, the higher the phase cohereneg liow temperature.
The temperature dependence nf is fit with a function taking into account Coulomb
electron-electron interaction, electron-phonon interaction and spin-flgittesag. The
concentration of magnetic impurities was a fit parameter arsdfeeand in close agreement

with the nominal purity of sources and the concentrations of implanted Mn atoms.

1.1.2 Energy exchange mediated by magnetic impurities

In order to investigate KIM interaction, we measured energy egehdetween
electrons in a metallic wire in presence of a magnetid figlthat splits the Zeeman energy
levels of magnetic impurities. If the magnetic field is éamnough, the magnetic impurities
are frozen in their ground state and a drastic reduction of thefr&i®l energy exchange is
expected. To access the energy exchange between electronspare preout-of-equilibrium

situation by placing the wire between two metal contacts biaseéifferent potentials. Since
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T, (ns)

T (K)

Figure 2:Phase coherence time as function of temperatuseviaral silver wires. Sample Ag6N is made of the
purest (6N) source. Samples Ag5N, AgbNs and Ag5Nwn: were co-evaporated using a 5N silver source.
Afterward, 0.3 ppm and 1 ppm of manganese was adiyetbn implantation in samples AgSio.s and
Ag5Ncun1, respectively. Continuous lines are fits DJ(T) taking into account the contributions of electron-
electron interaction and electron-phonon interacfaashed line), and spin-flip collisions using toacentration

¢, of magnetic impurities as a fit parameter (dotle@ is for ¢, =1 ppm). Best fits are obtained using

mp imp

¢ =0.13, 0.39and 0.96 pprespectively for samples AgSN, Agaio.s and Ag5Nmni-

energy exchange between electrons tends to establish a locadrequijlthe electron energy
distribution function along the wire is therefore sensitive to intemas if the time an electron
spends in the wire is of the same order as the typical intaraaine. To obtain the energy
distribution function at zero magnetic field, we use the non-lineaftyhe differential
conductance of a superconducting-normal tunnel junction, as in previous expsrimée
group. To access the energy distribution function in presence of a toafigld, we take
advantage of the Coulomb blockade of tunneling through a tunnel junction is sathea
resistance (the superconducting probe was designed long and narrow gopthaéents a
resistance of the order ofKQ in its normal state) [11]. The differential conductance of such
a junction presents a broad single dip when electron interactionstrarey and lead to
electronic thermalization, and a double dip when only little intemaciccurs while electrons

travel through the wire (see Figure 3).
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Figure 3: Left: Schematic of the circuit: A normaire is connected to large reservoirs biased derdit
potentials. A normal resistive probe electrode forantunnel junction with the wire in its middle.gRt: At
equilibrium (U =0), the energy distribution function in the wire @ Fermi function and the differential
conductanctd! / dV (V') of the junction displays a dip at zero bias, du€tmlomb blockade of tunneling (left).
When the electrons of the wire are driven out-afilgrium by a finite voltageU (right), their energy
distribution function /(E) depends on the interaction rate between electionthe absence of interactions,
f(E) is a two-step function ardl/dV (V) presents two dips (solid lines). With strong iatgions, /' (E) is
rounded, andl /dV (V') presents a broad dip (dashed lines).

We performed measurements on two samples made from the same sb6id- and 5N-
silver as the samples used to determine the phase coherendepemelence on temperature.
The results are presented in Figure 4.Ag,, |20, made from the 6N-silver source, sharp
distributions are found aB =0, and no magnetic field effect on the differential conductance
is found. In contrast, i\g,, V20, made from the 5N-silver source, rounded distributions are
found at low magnetic field. A® is increased, the single dip in the differential conductance
splits into two dips at a field value that scales WithHence extra interactions, present in this
sample atB =0, are suppressed by the magnetic field, in agreement with thetedpe
behavior of KIM interaction. The effect of KIM interaction wadcaéated using a recent
theoretical work that takes into account Kondo effect [12], the contentraf magnetic
impurities ¢,,, being a fit parameter. Data &fg,,[V20 are fit with ¢, =17 ppm, a value

two orders of magnitude larger than the one deduced from the phasencehéme

measurement on the sample obtained from the same silver source.
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Figure 4:a) and b) Symbols: Distribution functioryé(E) at zero magnetic field antf =0.15mV in two silver
wires with same electronic diffusion time. The disition functions were obtained by deconvolutidntioe
differential conductancel//dV (V') of a tunnel junction formed between the middleti# wires and probe
electrodes in the superconducting state [6]. c) didTop panels: Calculated Coulomb blockade signal
dildv (V) at the junction ends using the measuréf£) at B=0. Other panels: Symbols: Measured
dilav (V) at U =0.15mV, with B=0.3T and 1.2 T, the probe electrode being in the iesisttate. Solid
lines: Fits with theory based on Kondo effect.

Such a comparison between phase coherence time and energy exchasgemnts [13]
was also performed on copper wires, in which the phase coherences tmeays found to
saturate belowl00mK. The concentration of magnetic impurities deduced fropm

measurements was abdu8 ppm Energy exchange measurements on a copper wire showed
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a magnetic field dependence, and the concentration of magnetic iegpdetiuced from the
fit was 4.8 pprr. Therefore a large discrepancy between both fit concentratiomsgears
for copper, suggesting that the description of scattering from magmepurities is

inadequate or that pollution arises during the fabrication processnyflesa for energy

exchange measurements.

The implantation of magnetic impurities at a known concentrationvaryapure sample like
Ag,, 120 would be a quantitative test of this theory. Experimentally, th@amation cannot
be performed after fabrication because ion implantation destroysrthel junction. Another

fabrication process is being developed in order to circumvent this difficulty.

1.1.3 Conclusion

This set of experiments sheds light on low temperature decohdrgsb®wing that a
minute concentration of magnetic impurities can result in an alooostant phase coherence
time on a broad temperature range, and in a sizeable increasergy exchange. Since the
nominal purity of commercial sources is warranted to one ppm atsbeshute concentration
of magnetic impurities cannot be excluded. Moreover, pollution of the saes level can
never be absolutely excluded. Unfortunatelyosteriori analysis measurements on our thin
films are not sensitive enough to detect impurities at the pprh lew®uld even be argued
that the phase coherence time measurements are probably thecnosteamethod to detect

so small concentrations of lo#i: magnetic impurities, particularly in thin metallic films.

1.2 Mesoscopic superconductivity

In presence of attractive interactions between quasiparticlesheanguantum
coherence phenomenon, namely superconductivity, sets in at low enough terapeinat
Fermi liquid adopts a many-body quantum state with pair correlatindsaraorder parameter

characterized by a phase. A fundamental characteristic of thecsngecting state is that a
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supercurrenti.e. a current at zero voltage, can flow. Although the superconductingistate
rather robust against decoherence in the underlying Fermi liquid oipgttades, specific
depairing mechanisms tend to weaken and eventually suppress the palangThis is the
case when a magnetic field is applied or a current flows thrdwggbuperconductor, as shown
in the first experiment presented in this part. Conversely, in amitgxeffect situation, in
which a superconductor and a normal electrode are placed in contaekt¢hsion of the
induced pairing order in the normal part depends on the coherence lengttividuial
quasiparticles. In diffusive conductors at equilibrium, both the depamirgsuperconductor
and the propagation of pair correlations in a normal metal can bebeeswith the Usadel
equations, derived from the formalism of non-equilibrium superconductivity. [THis
formalism can also describe out-of-equilibrium proximity effetiagions as long as the
superconductors are all at the same potential. In the second expggrnesented in this part,
we address a situation beyond this limit: a normal wire conneotégad superconductors

biased at different potentials.

1.2.1 Density of states in a superconductor carrying a supercurrent

We have carried out an experiment to test the predicted equivalktive depairing
induced by a magnetic field or by a supercurrent in a superconductegl\wj. Indeed both
effects enter as a single “depairing energy” in the Usagiehteons. To deal with a simple
case, the superconductor was chosen wire-shaped with thickness andnwalign ghan the
London length, so that the current flow was homogeneous and the maggidtigefetrated
completely. Moreover, the width and thickness were of the same orderah#rence length
L, = JAD/A so that pair correlations did not vary in the transverse directidasneasured
the single particle density of states, which is a good markgaietorrelations, in presence of
a supercurrent, or of a magnetic field. The density of statesnfeased from the differential
conductance,l[/dV(V) of a tunnel junction formed between the superconducting wire and a
probe electrode made of normal metal. In absence of magneticafidldupercurrent, the

conductance displays a g&y and a sharp peak in agreement with the predictions of the BCS
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theory. In Figure 5, measured differential conductance curves aren@ésfor different

values of supercurrent and magnetic field. In both cases, good agregfoemd with theory

using the concept of depairing energy.

RROBO OB 0000000000000

Figure 5: Open Symbols: Normalized differential doctance of a tunnel junction of resistanke between a
normal probe and a superconducting wire when the siistains a supercurreht (left panel) or is exposed to a
magnetic field B (right panel). To a good approximation, the défatial conductance is proportional to the
density of states in the superconducting wire.dsemce of supercurrent and magnetic field, theitjeostates
is zero below the gap enerdy,. Solid lines: Fits using non-equilibrium supercoativity theory using only the

depairing energy as a fit parameter.

1.2.2 Out-of-equilibrium proximity effect

We investigated proximity effect in a normal (N) diffusiveveil wire connected to
two aluminum superconducting (S) contacts biased at different potentials [1&inT loé this
experiment was to probe proximity effect in a simple out-of-equilibrium situati
The equilibrium transport properties in such a set-up have been previouetyigated by
Dubos et al. [17]. The observed supercurrent was quantitatively explained by Usadel
equations. When superconductors are biased at different potentialsphthee difference
depends on time, and this theory cannot be directly used. Yet, in ournegperit appears

that some out-of-equilibrium properties can be accounted for by a f&uppicture of
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proximity effect, which neglects the modifications of the denseitystates but takes into
account the Andreev reflections at the NS contacts, which are réspdos the conversion
of the quasiparticle current in the normal conductor into a supercuimethe normal wire,
the current is exclusively carried by electrons and holes. Inufperasonductor, the current is
carried by the pairs in the superconducting condensate, and singlée padtitations are not
possible below the gap enerdy. At an NS interface, an electron in the normal metal with
energy smaller thad is reflected into a hole while a Cooper pair enters the superconduct
In an SNS configuration, these Andreev reflections manifest theessdirectly in the shape
of the energy distribution of electrons in the normal wire. Indeedhewn in Figure 6, low
energy electrons and holes bounce back and forth between the supercondaatorg, g
energy at each traversal until they can enter a superconductarcdwsequence, the energy

distribution function in the wire presents multiple steps.

In the experiments, the out-of-equilibrium distribution functions wereirsdddaby numerical
deconvolution of the differential conductance of a tunnel junction formed éetiie normal
wire and a superconducting probe [2]. The position of the steps in thenewasstribution
functions is well accounted for by the picture of Andreev reflectmewurring at the NS
interfaces (see Figure 6). Yet, these steps are rounded, reveakustribution of energy
among the electrons. To account for this rounding, electron-electroaciber and electron-
phonon interaction need to be included in the calculation, within the fralkesfothe
stationary Boltzmann equation [6], Andreev reflections at the NSfaote entering as
boundary conditions. As shown in Figure 7, this approach leads to a presusptdm of the

measured distribution functions in wires that are long enough.

Even if this simple approach accounts successfully for the enestg¥pdiion functions in the
normal wire, it fails in explaining the current-voltage chandstie of the SNS system, which
presents a structure that was also observed by éags [18]. In contrast, the Boltzmann
equation approach predicts a linear current-voltage characteltistigpears hence that the
modification of the density of states near the NS interfacestaypeoximity effect, which
leads to a renormalization of the diffusion coefficient, cannot besciegl to understand the

current-voltage characteristic. It is only because the length so which the density of states
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is modified is small compared to the wire length that thisceffeuld be neglected in the

calculation of the distribution functions.

E(meV)

Figure 6: Left: Layout of the experiment: A voltageis applied between two superconductors (S) coedect
through a normal wire (N) of length. A superconducting probe, represented by an arfouns a tunnel
junction with the central part of the wire. Rigiiop: Representation in the energy (horizontal aais) position
(vertical axis) space of the quasiparticle patispoasible for the current transport. The excitatipactra of the
top and bottom superconductors have a 2A) centered on their electrochemical potentiz; and y,
(u, -, =eU), with electron states occupied at negative emsr@ilark areas) and empty at positive energies
(light gray areas). Quasiparticle paths consistle€trons (dark disk) and holes (light gray disl)ectories at
symmetric energies abo i, and y, , connected by Andreev reflection. The area ofdis& is proportional to
the occupation factor of the quasiparticle stata@ctvvaries linearly along the path fr¢lnto 0. The bottom plot
shows the energy distribution measured at the ceafta 5-um long silver wire connected to two aloum
superconducting pads (symbols), and the predictsmiid line) of the theory without interactions Wween
quasiparticles.

Hence, we find that even if some manifestations of out-of-equilibproximity effect can be
understood bywd-hoc adaptations of existing theories, a theory that includes intenacti

between electrons and that treats non-stationary cases is missing.
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f(E)

Figure 7: Symbols: Distribution functions measuegdwo positions in a 5 pm-long silver wire, coneecat
both ends £ =0and x =1) to superconducting electrodes biased at the pateh and 700 pV. Solid lines:
Solution of the Boltzmann equation accounting fer Andreev reflections at the reservoirs and edeesiectron

interactions within the wire.
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PART 1

EXPERIMENTAL TECHNIQUES






Chapter 2 Tunnel spectroscopy of mesoscopic
systems

Tunneling of electrons between metallic electrodes provides spaaptrosnformation
on the densities and filling of the states of the electrodes {jndl spectroscopy is thus a
powerful technique to probe mesoscopic effects, and has been used elytemsius thesis.

In the following, the principles of tunnel spectroscopy are described.

2.1 Tunnel junctions

2.1.1 Description

A tunnel junction consists of two conductors separated by a thin insulayeig(see

Figure 1).
2nmw
(=2
meta meta
Insulating
layel
Capacitor Tunneling Tunnel junction

Figure 1: Top: Tunnel junction between metalliccéledes. The thin insulating layer is a barriett t@nducting
electrons cannot cross according to classical physiowever, if the insulating layer is thin enougbhantum
tunneling of electrons through the barrier leada toeasurable conductance. Bottom: Model of a fjyanetion:
The junction is decomposed into a tunnel elememngsiStance R, in parallel with a capacitan(C .
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Although electrons cannot propagate in the insulator, the barriernisettaugh to allow
electron transfer by quantum tunneling, which leads to a measurable tomgud tunnel
junction is decomposed into the parallel combination of a tunnel elemesgisfancer, and
a capacitance’, which accounts for the possible charging of the metallic electrodéoth

sides of the insulating layer.
2.1.2 Current through an N-X tunnel junction

The expression of the current through a tunnel junction with at leastlecteode in
the normal state (N), embedded in an electromagnetic environment, mé/eistribution
functions (f, andf,) and the density of states (DOS) of both electrodesa(d n, in units of
the density of states at the Fermi lewel of the considered metal), and the probability
P(s,T) that a parte of the available energy is released to the electromagmetimement
of the junction when a tunnel event occurs [2]:

1(V)=—2("dEn, (E)[ de P(e.7) (£, (E)n (E-eV —€)(1-fi (E ~eV ¢))
- (1)
~( 41, (E))ng (E =V +£) £, (E —eV +£)),

wheree is the absolute value of the electronic charge (see Figure 2).

Left E Right
electrode electrod:

[

(£) mo(E)

Figure 2: Tunneling process through a junction wthenjunction is voltage biaseel = i, -, . The current
through the junction depends on the density ofestan the electroden, and r, the filling of these states
f, andf,, and the probabilitjP(g,T) that the energ ¢ is released to the electromagnetic environment.
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When the tunnel junction is formed between a superconducting electrode & r@ormal

metal N with negligible resistance, Eq. (1) simplifies considerably:
1+
1(v) :EI_W dE ng(E=eV)(f, (E) —O(E -eV)), (2)

with the function®(£) =1 if £<0 and®(£)=0if E=0.

2.2 Principle of tunnel spectroscopy

To perform tunnel spectroscopy, we take advantage of simple confugsatith
normal and superconducting electrodes, embedded or not in a resistive eawirofon
which the current-voltage characteristic is non-linear. Then, if oné/quantity in Eq. (1) is
unknown, spectroscopic information on the density or filling of the ss&@stained from the
measurement of the differential conductandé/dl of the junction. The different

configurations used in this thesis are presented in Figure 3.

- An NS tunnel junction allows to perform the tunnel spectroscopy of the density ofistates
the superconducting part (case 1), or of the energy distribution funettbe normal part

(case 2).

- When an NN junction is embedded in a resistive environment, the quasgpariergy
distribution in one of the normal electrodes can be inferred from tfieresitial
conductance of the tunnel junction. This set-up allows to measure thpajtiel® energy

distribution in presence of a magnetic field.

In set-ups aiming at the measurement of the energy distributiquasiparticlesf(E), the
differential conductance is not directly proportional £¢£) but to a convolution off (E)
with a known function that depends on the physical process involved. The promedies

f(E) from the differential conductance is detailed in the following.
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dav

>

RO —

dV_ _[IIG=

F(E)?

ar .
R SS(1)=1+g* f(eV)

Figure 3: 1), 2) and 3): Top: A tunnel junctiorfasmed between a probe electrode (left) in whidh dlensity of
states and the filling factor are well known andetectrode (right) in which either the density tftesn(E), or
the filling factor f/(E) are to be probed. Bottom: Representation of thetelnic states and their filling for both
electrodes. In each case, the unknown quantityhénright electrode, and its relation with the diietial

conductance of the junction are given.
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2.3 Tunnel spectroscopy of the quasiparticle energy distribution
function in a normal metal

2.3.1 Relation between the tunnel junction differential conductance and
the distribution function

When performing the tunnel spectroscopy of the distribution function, trexehtfal
conductance can be written in the generic form:

dl
RTW(V) =1+q Of (eV), 3)

Whereq(E) is a function dependent on the junction and on the environment characteristics.

2.3.1.1 Case of a superconducting-normal junction

When the probe electrode is superconducti;‘(@) is the derivative of the density of
statesn, in the superconducting electrode. In our experiments, this densitptes 8f is

well described by the BCS function:

ns(E):%- (4)

2.3.1.2 Case of a normal-normal junction: dynamical Coulomb blockade of tunneling

When both electrodes are normak. n,(E)=n,(E)=1, but in presence of a
resistive environment for the junction, a convolution product is also foundrasul of
Coulomb blockade. The current through the junction can be written from Eq. (1):

_ 1 +00 +00
() _ZI_W di [ de P(eT) (f,(E)(1-fi(E +eV -¢))

©))
~( 41, (E)) £ (£ +eV +£))

The differential conductance can be written as (using the normalizﬁ?i”m‘EP(s,T) =1):

O(fr (E+eV +eg — [y (E +eV —¢)) E @
E

)=2
dV R,

§+ [de p(er)[ " dE £,(E)
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which can be recast in the form (3) with:

O(fu(E+e)=fu(E =€)
0E

q(E)=[ de P(e.T)

The determination oP(e,T) is based on the Coulomb blockade theory (see Appendix). The
function q(E) depends then on the impedance of the environment, the capacitance of the
junction and the electronic temperature in the probe electrode.daligctthe quasiparticle
energy distribution function in the normal probe electrofleis assumed to be a Fermi

function at a temperature close to the fridge temperature.
2.3.2 Experimental procedure

To characterize the functiorq(E) entering in the expression of the differential
conductance (Eg. (3)), the differential conductan’iédV(V) is first measured with both
electrodes at equilibrium. The distribution functions are in thiststud&ermi functions at a
temperature close to the refrigerator temperature. The charactesistie probe electrode are
then determined from a fit ofi//dV (V) with Eg. (3). When the probe electrode is
superconducting, the parameters to be determined are the tunnahoessit the junctiorr,
and the gapd of the BCS density of states (Eq. (4)). When the probe electrodensl, the
parameters to be determined are the tunnel resistance of thenuRgt the resistancer,
and the temperatur& of the probe electrode, and the capacitance of the junction

Examples of fits are shown in the top of Figure 4 for both cases.

After this calibration step, the differential conductance obtaindu av'modifiedf(E) in the
wire is measured (see Figure 4). When the probe electrode ic@oghecting, the data are
deconvolved using Eqg. (3) to obtain the correspondﬁ‘(g?) [3] (see Chapter 7). The
deconvolution procedure uses a steepest descent method [4]. When the pnbdeels
normal, the deconvolution procedure could not be applied in our experiments.asba e
that the Coulomb singularity is not as sharp as the BCS singwarihat the signal to noise
ratio is too small to avoid additional numerical noise during the decorvolpitocedure. We

have then chosen to fit the measured differential conductance witB)Hggiig the function
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¢(E) as determined in the calibration step and a funcfi¢&t) calculated with a model in

which few fit parameters enter (see Chapter 7).

(V) (uS)

= diidv

~

di/dV(V) (uS)

R =48 kQ
A=0.240 meV
T=45 mK

0.5

00 %5 e oM, 0p o mm

2 oof o Gooon.

V(mV)

di/dV(V) (uS)

di/dV (V) (uS)

R,=185 kQ
C=0.9fF

R =2.0 kQ
T=40 mK

Figure 4: Top: a) Symbols: Measured differentiahaactance of an NS junction. Line: Fit using E@. With

R, =48 kQ, A=0.240meV, and a distribution functior /(£) equal to a Fermi function £45 mK.

b) Symbols: Differential conductance of a normatmal tunnel junction, embedded in a resistive envinent.
Solid line: Fit using Eqg. (6) with the paramete R, =185 kQ, C =0.9fF, R, =2 kQ and T =40 mK. Bottom:

a) and b) Open symbols: Same curves as in top .p&udll symbols: Example of measured differential
conductance when the quasiparticle energy distabdtinction is modified in the normal electrodeb probed.
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Appendix: Dynamical Coulomb blockade

A review on dynamical Coulomb blockade can be found in [2]. In this appendix, we
just present the equations used to calculate the funq(iEr) to be convolved with the energy

distribution function in the case of a normal resistive probe electrode (see Section.2.3.1.2)

When a tunnel junction is embedded in an electromagnetic environment, ottebipty
P(E,T) that a parte of the available energy in a tunnel event is released to theemant
is determined by the environment impedadde) [2]:

P(&,7T) :Ij:% exp(J(t T) +iet /h)

- e _ (7)
s(0r)= [ 4zre Rl
Tw 0RO e

with R, =h/e® =25.813 K) the resistance quantum.

In the case of a resistive environment, the circuit can be modeled as shown in Figure 5.

Figure 5: Electrical circuit representing a tunpliction in a resistive environment: the junctiogtieen the
wire and the probe is decomposed into a tunnel eiérof resistanci R, in parallel with a capacitancC,
whereas the probe electrode is represented asstareeg R, . The environment impedan Z (w) is the parallel
combination o'R, and C .

The environmental impedancg(w) consists of the parallel combination of the junction

capacitance” with the probe resistanc, :
Z(w)=R,I(1+iR,Ca).

For this impedance/ (1) has an analytical expression from whielie,7’) can be calculated

[5]:
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L (8)

where w, =2m k, 7 /h are the Matsubara frequencies angzll(RpC) is the cutoff

frequency on(w) . The probabilityP(e,T) is represented in Figure 6 in a case similar to the

experiments C =0.9 fF, R, =2.0 kQ and7 =40 mK).

P(e) (meV™)

0.5

300+ C=009fF ]

R,=2.0 kQ

T=40 mK
200+ .
100 F E

0 .
0.0
e (meV)

P(e) (meV™)

100

=
o

0.1

\ T=40 mK
AY

- .
'\ a=2R_/R,=0.155
Ve,=hl (R,C)=0.4 meV

Figure 6: Left: Probabilit P(&) that a par € of the energy is released to the electromagnetiz@ment when
a tunnel event occurs, calculatecT =40 mK for a junction with capacitanc0.9fF, embedded in a resistive
environment ot R, =2.0 kQ . Right: Log-log plot of (&) in the same conditions fcs >0 (solid line) and of
the asymptotic limit a7 =0 (dashed lines). For low energicP(e)=ale,(s/€,)’ " and for large energies,
P(e)=a & le® with a=2R, /R, and & =h/(R,C). The effect of temperature is to incre:P(g) and to
allow the environment to emit energy, resultinghie non-zero value (P(e) at negative energies.
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Chapter 3 Sample processing

3.1 Sample fabrication

In the following, we describe the different steps of sample falbwitaiihe samples are
made using electron-beam lithography and standard deposition techniquesf thaesh are
fabricated in a single pump-down, using deposition at several angegytha suspended

shadow mask.

A typical fabrication scheme is outlined in Figure 1.

a) bilayer b) standard dose exposition

PMAA —
\ I:I 1
MAA ballast — /j / \

oxidized silicon —2#%Z

c) additionnal low dose exposition d) development
suspended mask

: y

A 7Y [\

.
¢) metal deposition ) lift-off
P
///7>///[\/ A, ALY,

Figure 1: Typical fabrication scheme: a) Substcatated with a bilayer of resists; b) and c) e-beaposure; d)
suspended mask after development; e) metal depoghirough the suspended mask. f) structure aftefibal
lift-off step.
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3.1.1 Wafer preparation

3.1.1.1 Monolayer coating

This process is used for the lithography of large numbers of samaplesce. An
oxidized silicon wafer is coated with UVIf [1], a highly electrosensitive polymer (12
uClcnf). After having spun a primer at 2000 rpm/min for 1 min, UWIis spun at 2000
rpm/min for 2 min and prebaked at 135 °C on a hot plate for about 1 min; theeabt

thickness is 500 nm.

3.1.1.2 Bilayer coating

This process is used when a suspended mask over a ballast lagguiied. The
process begins with the coating of an oxidized silicon wafer witb tayers of
electrosensitive polymers. The ballast layer sustains the sémyerd which constitutes the
mask. The bottom layer is a copolymer whose chains are morg leadien by exposure to
the electron beam than those of the top polymer, so that an undercutireedbiVe have

used the following coating procedure:

Bottom layer: Copolymer polymethyl-meta-acrylate/meta-ateyl acid (PMMA/MAA)
diluted in mass at 1% in ethyl-lactate. The molecular mass of the MAA is 8.5 K. Sgun a
4000 rpm/min for about 60 s and baked on a hot plate at 180 °C for 10 min, theghitkne

about 500 nm.

Top layer: PMMA of molecular mass 950 K diluted at 3 % in anisgpein at 8000 rpm/min
for about 60 s and baked on a hot plate at 180 °C for 30 min, the obtained thiskalesst
100 nm.

The coated wafer is then cut inox 6 mnt chips, which are processed individually.
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3.1.2 Sample processing

3.1.2.1 Wafer processing

3.1.2.1.1 Electron beam exposure

The patterning is done by steering the beam of a Philips XL30 SFEG scatettrgn
microscope. The exposure pattern, dose and blanking of the beam areembbirdiie Elphy-
guantum software from Raith. We currently use a beam accelenatitage of 25 kV. The
sample holder is shifted between each pattern.

3.1.2.1.2 Development

Monolayers of UVIII™ resist are post-baked on a hot plate at°C4€r 1 min,

developed in MEGAPOSFTMF CD-26 for 60 s and rinsed in pure water.

3.1.2.2 Single chip processing

3.1.2.2.1 Exposure to electron beam

The patterning of each chip is done with the beam of a JEOL 840A sgagiectron
microscope. The exposure pattern, dose and blanking of the beam areembbirdiie Proxy-
writer software from Raith. We use a beam acceleration wltdg35 kV, for which the

standard exposure dose for PMMA is about 200 p€&/cm

3.1.2.2.2 Development
Bilayers are developed in a solution of MIBK diluted in isopropanol $4IB IPA: 3)

while being sonicated for 45 s, then rinsed in IPA. A suspended mask is then obtained.

3.1.3 Metal deposition and oxidation

Metal deposition and tunnel junction fabrication proceed in an electron gun
evaporator. The sample is positioned on a tiltable sample holder. Jurizioreen different

materials are obtained by deposition through several slits in tperslesd mask, as shown in
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Figure 2. The first image of one slit overlaps with a part ofirtrege of another slit. Tunnel
barriers are formed by oxidizing aluminum with an oxygen-argonum@x{20-80 %). After
deposition, the mask and resist are lifted off in acetone aE6Fhe fine details on UVIIM

wafers are lifted off in ethanol at room temperature, with a few seconds samiggthe end.

(MDA (@ oxidation (3)

LIS LIIIILIII LY,

Figure 2: Fabrication of a superconducting/nornuainel junction in a two-angle deposition processoulr
experiments, the superconductor is aluminum, tealating layer is aluminum oxide, and the normatahés
silver, copper or gold.

3.2 Example: Sample used for energy exchange measurements in
presence of an applied magnetic field

As explained in Chapter 2, information on energy relaxation in a rhadredd was
inferred from the differential conductance of a tunnel junction forméddass a wire and a
resistive probe. The wire itself was connected to two much thicker pads$ played the role
of reservoirs. Two different fabrication processes have been developtgt first one, we
processed chip by chip: the whole design was defined in a single lithographfpbteved by
a three-angle evaporation. In the second one, two lithography stepasedrahe first one to
form the wire and its reservoirs, the second one to form the probeodk This more
complex process allows the implantation of magnetic impuritiesré&gdinction fabrications,

which avoids the destruction of the barrier by the ion beam.
3.2.1 One-step processing

A typical mask used is shown in Figure 3. The zones defining the theeeservoirs

and the shifted long probe finger are exposed with the nominal dosereBharaund the long
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probe finger is exposed with a low dose so that an undercut isccieeltav the PMMA
mask. Therefore, the image of the probe at an angle falls on theaseilasd below the wire.
The additional low dose exposure in other regions just helps the fomwdtithis undercut.
The probe finger is obtained by depositing 17 nm of aluminum at°+&bgle, oxidized
afterwards; the wire is obtained by depositing 45 nm of metate(silcopper, gold or
aluminum) at 0° angle, and the reservoirs are obtained by depositing 480 goid (or

aluminum) at —50 °. Since there is no undercut around the wire, itsafjeiies on the side
of the ballast and is removed by the lift-off. The unwanted aluminunegiron of the wire,

which would have been connected in parallel with the tested wireyssavoided. The gold

images of the fine wires in the third step are avoided becausétthdefining the wires clog

before the end of evaporation.

DETAIL OF e-BEAM
EXPOSURE PATTERN

Q d evap

7 3
@ (Au)
@ 2nd evap
(Ag)

/ K\ 1st evap
(A))

additional low-dose exposure

SAMPLE AFTER METAL
DEPOSITION THROUGH
MASK, AND LIFT-OFF

Figure 3: One-step fabrication of a sample for émergy exchange measurement in a magnetic fielg: To
exposure pattern of the center of the chip, witsedencoded in levels of gray. The arrows indiceltematically
the order and angle of deposition of the differaptals. Bottom: Actual sample, seen at an angle.
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3.2.2 Two-step processing

This process is used to perform experiments with controlled improrngentrations,
obtained by ion implantation. The previous process cannot be used becausentle t
junctions are too fragile: in a few hours they evolve from a few kiloohms regst@at open
circuit. Moreover, the tunnel barriers turn to short-circuit during mplantation. These
difficulties are circumvented with the two-step process. In & 8tep, a complete wafer,
coated with UVIIMM, is e-beam exposed, defining 64 patterns (see Figure 4). Thesaatte
consist of 120 nm-wide wires of different length (5, 10, 20, and 40) connectea farge
pads, together with a third pad used in the second step (see Figume 8)5-um long wires
to allow weak localization measurements. Then, 45 nm and 100 nm ofasivdeposited at
angles 0 and 50°, respectively. After lift-off, the wafer is split in tyarts so that part of the
wires can be implanted with manganese ions. Afterwards, the vgaterated with MAA-
PMMA' to realize the second lithography step. The coated wafer is tihéma@ small chips,
which are processed individually. In the second step, we pattern tisena@aobe, realigned
on the first pattern of silver. To obtain good quality junctions, thersitveleaned by ion
milling before deposition (in Tbmb of Ar, ¥ =500 V, 1 =5 mA for 5 s). Afterwards 3 nm
of aluminum is deposited at 30° angle and oxidized at 1 torr for 10 nforrtothe tunnel
junction. Finally, 12 nm of aluminum is deposited at 30° to form the mesiptobe in a

magnetic field.

Figure 4: Part of the wafer processed to be ionamted. In the middle, eight samples are dedictdedeak
localization measurements. The other ones are ggedandividually in a second lithography step.

! The bilayer of MAA-PMMA is only baked at 140 instead of 180°C. We prefer to heat our samgéelittle as
possible because the silver films deposited imsa $itep degrade with temperature.
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@ 1st evap
(Ag)
/ \ 2nd evap

O\ (Ag)

first step

g evap (Al)

second step

Figure 5 Two-step fabrication of a sample for the energyhexge measurement in a magnetic field. Exposure
pattern of the center of the chip for both stepke Brrows indicate schematically the order and earal
deposition of the different metals. Right: Optizahge of the center of the final chip.

3.3 Implantation of magnetic impurities in thin films

The implantation of manganese in silver wires, for the experimemt&lectron-
electron interaction, was realized at the CSNSM at Orsayelsity by O. Kaitasov, S.

Gautrot, and J. Chaumont in the medium energy implantor IRMA [2]. A Mexdtirce is first
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vaporized in vacuum1(810° ml). A plasma is formed by electronic arc discharge to obtain
charged manganese iofidMin*. These ions are first accelerated at 40 keV and separated
electromagnetically from other isotopes and elements obtainedtfrermpurities (mainly
FeCl) in the source. They are once again accelerated at 30 kaWieacalculated to obtain a
Gaussian impurity concentration in the thickness of the silver Tilme. ion beam is focused
thanks to an electrostatic quadripolar triplet lensing system. The ion beartjarf een?, is
swept on the sample holder so that the dose is homogeneous. During timatigoigrocess,
the current flowing from the sample holder to ground is monitored toatdhé& total amount

of ions received. Secondary electrons are repelled towards theedayrmplnegative polarized
grid. Typically, the measured current was1éf nA on a surface 066.5 cni. In 195 s, a

1 ppm concentration of Mn impurities is implanted 045 un thick silver films. This

corresponds to 5300 ions in the volume @.@45< 0.% 20 uri wire.

References of chapter 3

[1] UVII™ is a positive resist from Shipley supplier with organic compoundgedilin
ethyllactate.

[2] J. Chaumont, F. Lalu, M. Salomé, and A.M. Lamoise, Nucl. Instr. and NIg$h.193
(1981).
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Chapter 4 Measurements at low temperature

Once processed, the chip is glued with silver paint on a sample litledrwith
connectors. The circuit pads are bonded to the pins of the connector witn-8&meter
aluminum wires. The sample holder is thermally anchored to the nukemgber of a dilution

refrigerator through a copper braid (see Figure 1).

Electrical connections to the sample are made through filteredatdiaes (see Figure 2).
Microfabricated distributed RC filters shaped as meander litlearg used as well as lossy
coaxial cables. The voltage drop across the sample is measwedes with the last filter
stage, using a twisted-pair connection and a low-noise, battery-gbw@rm-temperature
pre-amplifier (NF LI-75A). The current in the sample is producedplying a voltage to a
bias line consisting of a voltage divider in series with a tast®. The current is calculated
from the input voltage, the measured voltage across the sample amsigtence values of
filters and lines. To measure differential conductance curvesak A@ modulation is added
to the DC voltage and a lock-in detection is performed. The bias and aalpages are

recorded on a computer through IEEE connections.

It is possible to measure in a single cool-down several ciraifitsa single bias line and a
single twisted pair thanks to a 12-position rotary switch connectetetbias and measuring
lines at the output of the last filter. Six resistors of known \&loennected in-between, mark
the positions. Positions are switched by a motor thermally anchotkd still of the dilution

refrigerator.
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microwave filter

thermometers

rotary switch

coaxial cables

copper braid

samples

Figure 1: : Photographs of the insert in the dilutiefrigerator and details of the sample holder.
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polarization data acquisition

Uy)
i ] — 300K

10-100 kQ |:
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60 pF7;|/;/7 F F F F

Figure 2: Schematic of the electrical wiring in tddution refrigerator for the experiment measurititg
distribution function in a normal wire connectedstgqperconducting pads. Current is injected to #mepde by the
source V, through the biasing line. Voltage across the sanmplseries with a filter F is measured with an
amplifier at room temperature connected by a shiklwisted pair.
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PART 2

MAGNETIC IMPURITIES IN METALS






Chapter 5 Introduction to Kondo effect

Kondo effect arises from the interaction between single maga&tims and the
electrons of a metal. It results in the renormalization of thegling between electrons and
magnetic atoms and an enhanced scattering of electrons from ivagoets, observed in the

temperature dependence of the resistivity.

It was proposed that Kondo effect explains previous energy exchangehasel coherence
time measurements in metals that were not accounted for biabey tof electron-electron
interaction. In this chapter, we describe the consequences of Kondp ieftee limit of non-

interacting magnetic impurities, on resistance, phase coherence and enkbagpgexc

5.1 Kondo effect and low temperature resistance

The theory of Kondo effect was first developed to account for the tatope
dependence of the resistivity of metals containing magnetic ingsurln such materials, it
was found that the resistivity presents a minimum at finitepégatiure, with a logarithmic
increase when the temperature is lowered further, instead ofadegyeas predicted from

theories of electron-electron and electron-phonon interactions.

The electrical resistance is determined by the amount of batferseg of electrons from
phonons, defects, or impurities that hinders the electronic motion througirytel. The
coupling between a magnetic impurity of sginand electrons was described by Kondo with

the Hamiltonian:

H, :JOZ((C;CH —cle, ST e, ST e e, S7), (1)
wherec, andc, are respectively the annihilation and creation operators of afmogleof
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momentumék and spin upS®, S andS~ are the magnetic impurity spin operators, afds
the coupling constant between electrons and magnetic impurities. In 186do Kound out
that when calculating the scattering of electrons by magmapeairities using perturbation
theory, the second order term is of the same order as the fisstterm [1]. Afterwards, it
was calculated that the series of perturbations with this ktanah diverges for energies
equal to the Kondo temperature, defined /gg, =De™*™ with k, the Boltzmann
constant,D the energy bandwidth of conduction electrons in the host metaly anfeir
density of states at the Fermi level (see appendix). The dne¥garises from the non-
commutation of spin operators. For scalar interactions like Coulombactitn, the
perturbation theory is still valid. For temperature larger tfian the resistance is found

proportional to—c,,, In(k,7/ D), wherec,

mp 1S the impurity concentration.

In 1974, Wilson solved the Kondo problem within the renormalization theory aed oult

the zero-temperature divergence of the resistance [2]. Physiedlltemperatures much
smaller than the Kondo temperature, the spin of the magnetic immutayally screened by
the conduction electrons. For conducting electrons, the screened immoégra then as a

potential scattering center.

5.2 Kondo effect and phase coherence time

Scattering from magnetic impurities results in spin-flip flecerons. Within the Suhl-
Nagaoka approximation for the Kondo effect, the temperature-dependeffiipsgattering

rate is approximated by [3]:

1 _ G S (S +1)
17 mhv, IS(S+1)+In*(TIT,)’

)

with S the spin, and” the Kondo temperature of the magnetic impurities. This formula was
first derived to determine the spin-flip scattering rate in sgretuctors [4]. The phase
decoherence rate due to spin-flip scattering can be identified spifhdlip scattering rate in
a superconductor only fof >T7,. Yet, in previous experiments of phase coherence time

measurements using electronic weak localization, it was foundhisatormula describes
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correctly experimental results downTp [4,5].

The relation between the spin-flip scattering rate” and the decoherence rale!r;f
depends on the comparison between the spin-flip scattering time of dondelectronsr?
and the spin relaxation time& (Korringa time) of the magnetic impurity [6]. Due to
dynamical effect, the decoherence rate can be enhanced. The decoherence ratagiuetito m
impurity is written:

1 L
i
i if 7 >r,

4
3
1 — . Sf ()
=— if ¥ <r,.

sf sf
T(p T

In practice,7¥ >7, as long as

T < cimp

In gold, silver, or copper, this criterion readls< 40mKxc, [ppm], in which ¢, is now

imp imp

given in parts per million atoms (ppm).

5.3 Kondo effect and energy exchange between electrons

In the past, theories of Kondo effect focused on the renormalizatidre aicattering
rate of electrons from magnetic impurities and, as far assoepic physics is concerned, on
the corresponding spin-flip rate. When considering the scatteringiofke electron from a
magnetic impurity (processes presented in the appendix), theoalectergy is conserved as
long as the spin states of the impurities are degenétatat zero magnetic field. In contrast,
processes involving two electrons only conserve the sum of the erendiemergy exchange
is possible even at zero magnetic field (see Figure 1). Tachamism of energy exchange
between electrons mediated by magnetic impurities has been propogedeamitly by
Kaminsky and Glazman [7]. We call this type of interaction Kondo-lmpitediated

interaction (KIM interaction).
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Figure 1: Scattering process involving two elecsramd a single magnetic impurity, at lowest ordiereach
panel, the left ladder represents the energy speodf the electrons and the line on the right sefgresent the
energy level of the degenerate spin-up and spimdufwthe magnetic impurity.

At second order in perturbation, the scattering of two electrons &ogiven magnetic
impurity is equivalent to an effective electron-electron intéwactvith a matrix element
M(s) proportional to the inverse of the exchanged energiccording to the Fermi Golden
Rule, the exchange of energyby the KIM interactions leads to the raméE, 5) of change

of the population of an electronic state at enetfggnd of occupation numbg?(E):
y(E.€)=K(e) (f(E+e) (1-f E) -1 E) (1=f € =€) [dE F E) Q-1 (E +8),(4)

with

K(e)O|M ()= n-’-sl;S(sr 1)@: K 1€,

imp—e
F

where J is the renormalized coupling constant between electrons and magmaiiities by
Kondo effect. This result obtained by Kaminski and Glazman is ineagmet with the
phenomenological resuk 0 1/&* inferred from previous experiments [8,5], which was not
accounted for by theory of electron-electron interaction. The renaatiah of the coupling
constant must be performed using processes involving two electrons samgleamagnetic
impurity which were neglected in the calculation of the resistance becausntbewnt second
order. Examples of diagrams to be included in the calculation arensbawFigure 2.
However as pointed out by Kaminski and Glazman, Kondo effect is erptectaodify the

coupling constant in a way depending en 7, and f(E) A complication arises in the

54



renormalization calculation when the electronic energy distributiomction is out-of-
equilibrium and when the spin-states of magnetic impurities areone degenerated. Yet the
complete calculation has been performed using poor-man scaling, by Gépgen [9] and

will be presented in the Chapter 7 of this thesis.

Figure 2 : “First” and “second” order inelastic pesses involving two electrons and one magnetiaiitypand
equivalent diagram with a bubble to summarize ifferént coupling.
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Appendix: Perturbative approach of the Kondo effect

The Kondo HamiltoniarH, describing the coupling between a magnetic impurity of

spin S and electrons is written in the second quantification formalism:

H, =J, c,c.—c c, )ST+c ¢, ST+c ¢, ST), (5)
Z((lm k' ki kx) kR E R )

where ¢, (¢, ) annihilates (creates) an electron of momentémand spin up and

S*, §* andS™ are the magnetic impurity spin operators. In the Kondo model, magnetic
impurities are assumed to be so diluted that they are independeRKkhe model does not
apply here [10].

The calculation presented here aims at showing how the minimum rediséance was first
explained by Kondo (for more details, see [11]). For simplicity, we ltlosenS =1/2. As

a convention in the following, only the electronic states of intdiest are occupied are
specified in the notation of the initial and final states. When comsgléhe elastic processes
that let the spins of electrons down and the magnetic impurity sp{segpFigure 3), the
electron energye, =%k’ /(2m) =hk’% (2m) being conserved, one finds for the first order

process:

t={k1,0|H,

ki3 JE (6)

As shown on Figure 3, four terms, numbered from 1) to 4) are included calthdation of

the second order term in perturbation.

t2:2<kw,m H |kt 0 )(k, 0 [HYE, )
2 &~ &
(k, 1.0|HJkL 0 ) (kDL H g, )
2 Ek—é‘z (7)
. (k"4 0H |6 0 )(k,0 [HYE, )
2 &~ &
(k, LOH U0 ) (kD H kg, )
2 Ek—é‘z .
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This leads to:

c.c, c ¢ |kl><D

k'L Tkt Tkt TR

>

JZ
{, = <k !
? gzsk—ez

+z °<k’lcccc >

kot kL kY kg

Le ¢
kJ22 ®)
+Z£k_°$2<k’l c,”c,mc,”ckl > |S[|]
.]2
+ 0 <k'lc €, ¢ C kl>DS
ng_gz k1 kL |

Using the anticommutation rules for the fermion operators and knowihé[ﬂﬂﬁ‘S*'ﬁl% 0,

:<k,l

+0

Eq. (8) becomes:

_ng’]_gg .. C, (1 cchk )‘kl><D|S+S_']>
& 2

+<k’l —ng_gg c..c, (1 c,”ckT )‘kl><D|Sf']> ©)
&£ “r 2
+<k’1 _Z‘S.ng Cp GG G, l><D |S2[|] >

To take into account the many-body case, one can simply state;that f (52), with

7 (&,) the occupation factor of the state. Equation (9) is written:

:<k’1 - SJ_gg . Co (1—f( )kl><D >
+<k'¢ _ZEJ_O e, kl><D |s20). (10)

Besides, sinc«éD|Sf']§ 1/4, Eq. (9) can be written:

__5Jv, 1 2 /(&)
- J . 11
& 4 ZEZ £, —E, obr ZEZ & —&, (1)

The first term inz, leads to small correction to the scattering rate, whereastomd one due

to the introduction of a cut-off in energy kﬁ(ez) leads to the logarithmic contribution:
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J(vaIOD de, _r =Jv,In g :

k 2

where D is the bandwidth of the conduction electrons amdtheir density of states at the

) this second order term is

Fermi level per unit of volume. For energies sucheasDe
larger than the first order one. Note that if we chose the magmgturity spin-down, the
second term in Eg. (8) would have lead to the logarithmic correctioreadéehe first one
would have been zero. The logarithmic correction arises from the nomdaivity of the
spin-operatorsS” andS".

Starting from other spin configurations leads to the same resuienV\adding all the

processes, one finds an effective coupling constant for electrons of energy

Jg (&)=, + v, Ing+...

J, (12)

B D
1_‘]0VF Inz

the last equality following from a summation using the renornmaizaroup technique [12].

One finds

1
J =
(%) veIn(e/Ty)

1U(Jovr)

For the characteristic energy,=k,7, =De , corresponding to the Kondo temperature,

J ,diverges. All the electronic transport properties are determined by this ecatgy

Starting from an independent electron model, the conductivity is deesinby an average of

the scattering times(s) , Which are inferred from the values 9f near Fermi energy:

2 a—
o= (1;73 vV, ds%r(s) =1+ ZJOVF(In(D/kBT) +constan). (13)

The resistivity varies logarithmically with temperature abdye
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Figure 3: First and second order elastic processasving one electron and one magnetic impurityairtase
where initial and final electron spin states aemtital.
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Chapter 6 Phase coherence time and Kondo
effect

In this chapter, the focus is on phase coherence at low temperatuegtallic wires.
There is currently an experimental and theoretical controversyeoong the very low
temperature behavior of the phase coherence time. The standard thetegt@in-electron
scattering predicts that the phase coherence time increaagsoaser law as the temperature
goes to zero. Yet, many experiments show a saturation of the pitemerce time at sub-
kelvin temperatures. Do those experimental observations reveal a ®emagmntrinsic

decoherence mechanism, or an extrinsic, sample-dependent source of decoherence?

The aim of the experiments presented in this chapter was td tesery dilute amount of
magnetic impurities with a rather small Kondo temperature c@udecan apparent saturation

of the electronic phase coherence time.

6.1 Magnetoresistance and phase coherence time

The phase coherence tinmg is one of the few parameters that determine the weak
localization correction to the magnetoresistance of a wire, dadhe only one that depends
on temperature. This is why measurements of the magnetoresigéasas temperature allow

determination ofr, over a large range of magnitude.
6.1.1 Quantum coherence and transport properties

In diffusive thin films, electrons undergo a large amount of saagtevents from

sample boundaries, phonons, lattice defects, impurities and other ele&tbmmsigh the
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mean free path between collisiond jss10 nm, quantum coherence effects persist on a much
larger scale thar, (typically of the order of a micrometer) because scattegnmainly
elastic. Elastic scattering can be pictured as resulting Btatic potential, on which the
diffusive-like electronic quantum states are built, and determihes ldw-temperature
resistivity. The phase coherence of the states leads to a @nattion to the resistivity,
which depends on the magnetic field. This so-called weak localizadiwection results from
quantum interferences between electronic paths. The probabilibygo from an initial point

P to a final point?,, is the modulus squared of the sum of the probability amplitugeer

all the paths connecting these two points:

Y4
=Sl +3 44

The first term in EqQ. (1) is the sum of classical probabildilesg the different paths, whereas

2

P=

(1)

the second term accounts for quantum interferences.

Figure 1: The weak localization corrections to teaductance of a diffusive metal result from thestouctive
(destructive if the spin-orbit coupling is strorigjerference between the paths (+) and (-) follgsihe same
loop in opposite directions.

For arbitrary pathsy and S, the interference term has a random phase, and the average
contribution of such paths t8 is zero. Yet, ifa encloses a loop an@ differs froma only
by the direction in which the electrons travel on the loop (see Figuee and S interfere

constructively (destructively if spin-orbit coupling is strong):
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)

This results inP in an increased (decreased) weight of the paths enclosing loopsoikle
propagation along such paths is in average slower than on other pathsoAsequence, the

electron mobility, thus the metal conductivity, decrease (increase) due to quantuemcehe

The amplitude of this effect, called weak (anti-)localization, ddpeon the electronic phase
coherence timer, because only loops of size smaller than the phase coherence length
L,=,/Dr, contribute to the weak localization correction to the conductance. Intheed,
addition of the amplitudes of pathe and S only makes sense if electron coherence is

maintained while traveling around the loop.
6.1.2 Magnetic field effect

When a magnetic field is applied, time-reversal symmetoydken. The two paths (+)

and (-) of Figure 1 are then dephased by:

5=2% 3)
@

where g, is the magnetic flux enclosed in the loop, age 7/ e the flux quantum.

As a consequence, the magnetic field suppresses significantieétkelocalization correction
in a metallic wire of widthw when d=,/Dr,w/ L, with L, =,/ /B the magnetic length
(w is assumed to be smaller thap)'. The weak localization correction to the resistaice

of a metallic wire of length. reads [1,2]:

-1/2

BR gy _ 2F H301 . 4 10wBCD _% 1 Dwal
aR )7

r Rngﬁf a2 38q b > 4f ﬁ g’ “

where R, = h/¢? is the resistance quantum ang is the spin-orbit diffusion length related to

—1/2

the intensity of the spin-orbit coupling, characteristic of a givetamExpression (4) holds
for metallic wires in the diffusive regime, far from the alahsulator transition, and in the

quasi one-dimensional regimg:< w,r and., L, < L with ¢ the sample thickness. Typical

! This expression o8 holds when the magnetic fielfl is applied perpendicularly to the wire.
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calculated magnetoresistances using Eq. (4) are shown on Figurea2gieen spin-orbit

length L,,, and twoZ, valuesL,=6L,, (solid line) orZ, = L, (dashed line).

0 !

AR/R

Figure 2: Generic magnetoresistance curves cadziilaith Eq. (4). The amplitudes and characterfigids are
given by the spin-orbit lengt L, and the phase coherence lenZ,1 Solid line: L, =6L_, dashed line: Same
L,and,=1L,.

6.1.3 Finite length effect

The magnetoresistance was measured on wires long compared ¢onnected to
large reservoirs at their ends. We evaluate here the effdutitef length. At zero magnetic
field, in the strong spin-orbit coupling limit relevant to our expentaethe amplitude of the
weak localization correction is proportional to the number of loops entbBinZ,. The ratio

AR/ R is therefore proportional t@,:

__2RL,
(0= (5)

N

Due to finite length of the wires, the loops starting from a poiat tige reservoir are cut
because as soon as an electron enters in a reservoir, its prplbabéiurn in the wire is very

small. As a consequence, the number of loops participating to the oazdikdtion signal is
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reduced. To evaluate this correction, we first write the clalspimbability P(x,t) for an
electron to be at positiom at timer in a wire of lengthZ , knowing that it was at positios,
atr=0:

_prtt,
DWH (6)

nit]
P(x,1) ZSInB_XOHS”@ :
where D is the diffusion coefficient. Here, the absorption in the reservsitaken into
account in the boundary conditiong(0,/) = P(L,r) = 0. The return probability at position

x, in atime shorter thanq, is then:

0

Dnmj2

(x4 = X, DJ’dte ZSlnH—stn@nnD e (7)

For the whole wire, the amouX of loops of size smaller than, = /Dt is for L, < L

proportional to:

L-L L
S LT S e G T ®
4L¢ 0O LQO
Therefore, Eq. (5) must be replaced by
AR 2R L, 0 L,O
— (0)=-—Fd—n (9)
R « L0 L

Fits with Eq. (9) instead of Eq. (5) result in significant inceeafSthe larger values aof, at
the lowest temperature in samples in whichbecomes comparable tb. This finite size
effect is illustrated on Figure 3, in the most spectacular tas®ur experiments. The
measurements are o200 um-lonc silver sample Ag(6N)c where the finite size effect is

rather large becausk, reaches20 um at the lowest temperature.
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Figure 3: Phase coherence ti 7, :versus temperature in the sample Ag(6N)c (seergagdew). Open symbols

Phase coherence time obtained by fitting the magesistance data with Eq. (5). Full symbols: Pluadesrence
time obtained when taking into account effect @&f finite length of the wire using Eq.(9).

6.2 Dephasing of electrons in mesoscopic metal wires

We reproduce here our article published in Phys. R&#8,B85413 (2003). The silver
samples were obtained with the same 6N- and 5N- sources as thesezhéo make the

samples for energy exchange measurements (see Chapter 7 and Chapter 8).
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Dephasing of electrons in mesoscopic metal wires
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We have extracted the phase coherence tipef electronic quasiparticles from the lofield magnetore-
sistance of weakly disordered wires made of silver, copper, and gold. In samples fabricated using our purest
silver and gold sources,, increases a$ 2 when the temperaturBis reduced, as predicted by the theory of
electron—electron interactions in diffusive wires. In contrast, samples made of a silver source material of lesser
purity or of copper exhibit an apparent saturationQf starting between 0.1 and 1 K down to our base
temperature of 40 mK. By implanting manganese impurities in silver wires, we show that even a minute
concentration of magnetic impurities having a small Kondo temperature can lead to a quasisaturagjon of
over a broad temperature range, while the resistance increase expected from the Kondo effect remains hidden
by a large background. We also measured the conductance of Aharonov—Bohm rings fabricated using a very
pure copper source and found that the amplitude ofhifeeconductance oscillations increases strongly with
magnetic field. This set of experiments suggests that the frequently observed “saturatioyirofveakly
disordered metallic thin films can be attributed to spin—flip scattering from extremely dilute magnetic impu-
rities, at a level undetectable by other means.

DOI: 10.1103/PhysRevB.68.085413 PACS nunider73.23—b, 73.50—h, 71.10.Ay, 72.706tm

I. MOTIVATIONS power law 7, T~ 2?3 was first observed in 1986 by Wind
et al.’ betwea 2 K and 5 K inaluminum and silver wires
The time 7, during which the quantum coherence of anand then by Echternacét al.’ down to 100 mK in a gold
electron is maintained is of fundamental importance in mewire. However, in 1997, Mohanty, Jariwala, and Wéphb-
soscopic physics. The observability of many phenomena spdished a series of measurementsrgfon gold wires with a
cific to this field relies on a long enough phase coherencéroad range of diffusion coefficients. They observed that the
time.! Amongst these are the weak localization correction taphase coherence time tends to saturate at low temperature,
the conductancéWL), the universal conductance fluctua- typically below 0.5 K, in apparent contradiction with theo-
tions (UCF), the Aharonov-BohniAB) effect, persistent cur- retical predictions. That same year, measurements of the en-
rents in rings, the proximity effect near the interface betweerergy exchange rate between electrons in copper Hrivese
a superconductor and a normal metal, and others. Hence it feund to be at odds, both qualitatively and quantitatively,
crucial to find out what mechanisms limit the quantum co-with the prediction for electron—electron interactions. Both
herence of electrons. experiments suggested that electrons in mesoscopic metallic
In metallic thin films, at low temperature, electrons expe-wires interact with each other differently and more strongly
rience mostly elastic collisions from sample boundaries, dethan predicted by theory.
fects of the ion lattice and static impurities in the metal. To shed some light on this issue we present here several
These collisions do not destroy the quantum coherence afets of experiments probing the phase coherence time at low
electrons. Instead they can be pictured as resulting from temperature in mesoscopic metal wirésle summarize our
static potential on which the diffusivelike electronic quantummost important conclusions here. First, we measurgd)
states are built. down to 40 mK in several wires made of copper, silver, and
What limits the quantum coherence of electrons are ingold and fabricated from source materials of various purities.
elastic collisions. These are collisions with other electrondVe found in the four very pure silver wires and in the very
through the screened Coulomb interaction, with phononspure gold wire thatr,(T) does not saturate in the investi-
and also with extrinsic sources such as magnetic impuritiegated temperature range, but continues to increase as the
or two level systems in the metal. Whereas above about 1 Kemperature is lowered in agreement with the theoretical pre-
electron—phonon interactions are known to be the dominardiction. Since these samples have comparable resistances
source of decoherenéeglectron—electron interactions are and geometries as some measured in Ref. 7, this observation
expected to be the leading inelastic process at lower temperaasts doubt on the assertloat saturation ofr, is a uni-
tures in samples without extrinsic sources of decohergnce.versal feature of weakly-disordered metals. Second, we
The theory of electron—electron interactions in the diffu-tested the impact of very dilute magnetic impurities with a
sive regime was worked out in the early 198&fts a review, small Kondo temperature on the temperature dependence of
see Ref. 4 It predicts a power law divergence of, when  7,. We found that even at concentrations lower than one part
the temperaturd goes to zero. Effects of quantum interfer- per million (1 ppm), such impurities can causey(T) to
ence are therefore expected to grow significantly upon cooldisplay a plateau over a large temperature range. This could
ing down the electrons. In mesoscopic wires, the predicte@éxplain why saturation of , at low temperature is frequently

0163-1829/2003/68)/08541315)/$20.00 68 085413-1 ©2003 The American Physical Society
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TABLE |. Geometrical and electrical characteristics of the mea-
sured samplegRef. 14. The diffusion coefficientD is obtained
using Einstein’s relation p~ vge?D with the density of states in
copper, silver and gold respectively:=1.56x 10*7, 1.03x 10%,
and 1.14&10* 3 *m~3, and the resistivityp extracted from the
"""""""""""" resistanceR, thicknesst, lengthL, and widthw of the long wire.
Length and width were measured with a scanning electron micro-
scope(SEM). The thickness of most samples was measured with an
1 atomic force microscop€AFM); for others the value given by a
calibrated thickness monitor in the evaporator was used. A rectan-
gular cross section is assumed.

1

1

1

' Sample Made L t w R D
I

Lm s e e e e e at (um) (m (hm (kQ) (cn?/s)
Lock-In

Ag(6N)a Saclay 135 45 65 1.44 115
Ag(6N)b Saclay 270 45 100 3.30 70
Ag(6N)c Saclay 400 55 105 1.44 185
Ag(6N)d MSU 285 35 90 1.99 165
Ag(5N)a Saclay 135 65 108 0.68 105
Ag(5N)b Saclay 270 65 90 1.31 135

Ag(5N)Gyos Saclay 135 65 110 0.47 150
Ag(5N)dyn1 Saclay 270 65 95 1.22 135

Au(6N) MSU 175 45 90 1.08 135
Cu(6N)a MSU 285 45 155 0.70 145
Cu(6N)b MSU 285 20 70 7.98 60
Cu(6N)c MSU 285 35 75 4.37 65

FIG. 1. Photograph of a silver sample taken with a scannin
electron microscope, and schematic of measurement circuit. Th u6N)d MSU 285 20 80 8.50 o0
wire resistance is obtained by a four-lead measurement in a bridgg4oN)a Saclay 270 45 110 1.68 70
configuration: the current is injected by two arms through the bia<CUGN)b Saclay 270 45 100 095 160
resistor and the voltage is measured across two other arms in ordet

to probe only the wire resistance; a ratio transformer is used to o .
enhance sensitivity to small variations of the sample resistance. Placed inside a carbon liner, whereas copper and gold were
put directly in the buckets of the e-gun system. Metal evapo-

ration took place at a base pressure of about®Ifbar with
gn evaporation rate of 0.2, 0.5, and 1 nm/s for silver, gold,
and copper, respectiveligee Ref. 11

observed. Finally, we probed the magndield dependence
of the phase coherence time by measuring the magnetores

tance of copper Aharonov-Bohm rings showing a P _
temperature-independen, at low temperature. The ampli- Samples made at Michigan State Universi§SU) were

tude of the Aharonov-Bohm conductance oscillations in-€VaPorated on a Si substrate with only the native oxide in a
creased strongly on a field scale proportional to the temperdh€rmal evaporator used only for silver, aluminum, gold,
ture, indicating that the phase coherence time at zero fielgoPPer and titanium. The source material and boat were re-

was limited by spin-flip scattering from magnetic impurities. Placed before each evaporation and manipulated using plas-
tic tweezers. The pressure during evaporation was about

10" ® mbar and the evaporation rate ranged between 0.2 and
1. EXPERIMENTAL TECHNIQUES 0.5 nm/st?
A. Sample fabrication We meas_ured the low figld magn_etoresistance of copper,
gold, and silver wires fabricated using source materials of
Figure 1 displays the photograph of a typical sample topyrity 99.999%(5N) and 99.9999%6N). Electrical and geo-
gether with a schematic of the measurement setup. metrical characteristics of the samples are summarized in
All samples were fabricated using standard e-beam lithogTaple |.
raphy techniques. A bilayer resist, consisting of a copolymer
P(MMA/MAA ) bottom layer and a PMMA top layer, was
first spun onto an oxidized Si substrate wafer. This bilayer
was then patterned by e-beam lithography to tailor a mask. The samples were immersed in the mixing chamber of a
The metal—gold, copper, or silver—was deposited directlytop loading dilution refrigerator. Electrical lines to the
through this mask in evaporators used only for nonmagnetisample were filtered by commercial “pi” filters at the top of
metals'® the cryostat and by discrete RC filters in the mixing chamber.
Samples made at Saclay used a Si substrate thermalfyesistance measurements were performed using a standard
oxidized over 500 nm, and metal evaporation was performedc four-terminal technique with a room temperature preamp-
in an electron gun evaporator. The silver source material wakifier of input voltage noise 1.5 n\/Hz and a lock-in am-

B. Experimental setup

085413-2
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AR/R

FIG. 2. Magnetoresistance ddsymbols and
fits to Eq. (1) (solid lines. Top panels are mea-
surements of two silver samples made of source
materials of nominal purity 6N99.9999%, top
left pane) and 5N (99.999%, top right pangl
Bottom panels display data measured on gold
(bottom left panel and copper(bottom right
pane) samples made of 6N nominal purity source
materials. The curves are offset vertically for
clarity.

AR/R

plifier operated at frequencies between 100 and 30Qsde in the magnetoresistance of samples(@d)c and AY6N)

Fig. 1). To avoid significant heating of electrons we used acdbecomes deeper and narrower upon cooling down to base
voltagesV,. across the samples such tlest,<kgT. Thisis  temperature whereas it stops changing at low temperature in
particularly important at temperatures below 100 mK forsamples AGN)b and CU6N)d.

which the length scale for electron—phonon interactions, re- The magnetoresistandeR=R(B) — R(x) is fit with the
sponsible for cooling down the electronic fluid, can be asquasi-1D expression for the weak localization correction,
large as several millimetefsee Appendix A A bridge cir-

cuit with a ratio transformer on one arm was used to enhance AR 2R (31 4 1 271-1/2
the measurement sensitivity to small changes in sample re- S Sl eI (i
sistance. A magnetic field was applied perpendicular to the R Reb[2[L7 3L, 3\Lj

plane of the sample using a superconducting coil.
1

1 N 1{ w 271-1/2 .
I1l. LOW FIELD MAGNETORESISTANCE 2[L7 3\L3 ’ W
MEASUREMENTS

The most accurate way to extrax;l; at low magnetic field whereR is the resistance of a wire of |engthand W|dthW,
in metallic thin films is to measure the magnetoresistanc&x=h/€” is the resistance quantuin,= D, is the phase
and to fit it using weak localization theotyBoth the ampli- ~ coherence lengttD is the diffusion coefficient of electrons,
tude and width of the weak localization peddtip when Ly=+7%/eB is the magnetic lengthB is the magnetic field
spin—orbit coupling is strongn the resistance are sensitive applied perpendicularly to the sample plane, ahg,
to the phase coherence length. = /D 74, is the spin—orbit length that characterizes the inten-
Figure 2 displays the low field magnetoresistance ofsity of spin—orbit coupling. Expressidi) holds for metallic
samples AgN)c, Ag(5N)b, Au(6N), and CU6N)d at several wires in the diffusive regime, far from the metal—insulator
temperatures. The positive magnetoresistance indicates th@aansition, and in the quasi-1D regime].<w,t
spin—orbit scattering is stronger than inelastic scattering<Ly,L,,Ls<L, with t the sample thickness arid the
(7s0<74). Raw magnetoresistance measurements already refastic mean free path of electrosee Refs. 15,16 and Ap-
veal a qualitative difference between these samples: the dipendix B.
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TABLE Il. Fit parameters of the magnetoresistance data to weak T T T T T —
localization theory: maximum phase coherence tizrjjj@‘, obtained
at the lowest temperature of40 mK; spin—orbit length_, and
effective widthw,,, . We also recall the widtlw obtained from
SEM pictures. The upwards arrow" indicates thatr, keeps in-
creasing down to 40 mK. In the other samplegjs nearly constant
at low temperature.
Sample 7He Leo Wy (W) @

(ns (um) (nm) =

Ag(6N)a 9/ 0.65 57(65) -
Ag(6N)b iy 0.35 85(100
Ag(6N)c 2,/ 1.0 90(105
Ag(6N)d iy 0.82 75(90)
Ag(5N)a 2.9 0.65 108108
Ag(5N)b 35 0.75 8290
Au(6N) 117 0.085 85(90)
Cu(6N)a 0.45 0.67 155155
Cu(6N)b 0.95 0.4 7070 T T L
Cu(6N)c 0.2 0.35 7575) 0.1 1
Cu(6N)d 0.35 0.33 8080) T(K)
CusN)a 1.8 0.52 110110 FIG. 3. Phase coherence timg versus temperature in wires
Cu(5N)b 0.9 0.67 1001100

made of copper G6N)b (M), gold Au6N) (*), and silver Ag6N)c
(@) and Ag5N)b (O). The phase coherence time increases con-
tinuously with decreasing temperature in wires fabricated using our
In the fit procedure, we use the measured sample resigpurest(6N) silver and gold sources as illustrated respectively with
tance and length given in Table 1. Our experimental setupamples A@N)c and AUEN). Continuous lines are fits of the mea-
being designed to measure resistance changes with an highted phase coherence time including inelastic collisions with elec-
accuracy than absolute valuesR is known only up to a trons and phononEEq. (4)1. The dashed line is the prediction of
small additive constant that we adjusted to fit each magneqlectron—electron interactions orilq. (3)] for sample AEN)c. In

toresistance curve. The width was fixed at a v iy contrast, the phase coherence time increases much more slowly in
: alyg g samples made of coppéndependently of the source material pu-

ing the best overall fits for the complete set of data at vari0u§ity) and in samples made of silver using our source of o0&
temperatures. The difference between the widtmeasured  ominal purity.

from scanning electron microscope images and the best fit
valuewy,_ (see Table Il was found to be always less than |v. COMPARISON WITH THEORETICAL PREDICTIONS
15%217 The spin—orbit length_, was obtained from fits of AND DISCUSSION
the magnetoresistance measured at the highest temperature.
These parameters being determinkg,remains as the only _ _ _ o
fit parameter for each magnetoresistance curve. Examples of Theory predicts that, in samples without extrinsic sources
fits are displayed as solid lines in Fig. 2. of decoherencer,(T) is limited by the contributio_ns of

In order to getr, from L, the diffusion coefficienD electron—electrom,. and electron—phonon,, interactions.
was determined using the measured geometrical and elect!f? Principle, decoherence by electron—electron scattering is
cal sample characteristics given in Table I. Figure 3 show&0t Purely an exponential process, hence the decoherence
74 as a function of temperature for samples (Blg)c, rates from electron—electron and electron—phonon scattering

Ag(5N)b, Au(6N), and Cu6N)b. This confirms quantita- do not simply add. In pract!c(asee A.pp.en('j|x' B t.he exact
. ) . formula for the magnetoresistance is indistinguishable from
tively the differences between samples already mentione

from the raw magnetoresistance data. On the one hand, theq' (1) with a total decoherence rate,

A. Purest silver and gold samples

samples AgGN)c and AUEN), fabricated using our purest 1 1 1
(6N) silver and gold sources, present a large phase coherence ™ = ™ + ik (2
time that keeps increasing at low temperature. On the other T Tee Tph

hand, the copper sample GIN)b and the sample A§N)b,
fabricated using a silver source of smaller nominal purity
(5N), present a much smaller phase coherence time and e
hibit a plateau inr4(T), in contradiction with the theoretical

For our wires, whose width and thickness are smaller than
L,, the quasi-1D prediction for electron—electron interac-
fions applie&®

prediction for electron—electron interactions. This trend, il- 13
lustrated in Fig. 3, has been confirmed by the measurements Teo= (4/m) (R /R) v SL = 1 ' 3
of several samples, as summarized in Table 1. (kgT)? Ay T3

085413-4



DEPHASING OF ELECTRONS IN MESOSCOPIC METAL WIRES PHYSICAL REVIEW@B, 085413 (2003

cess. Nevertheless, if the exponenfldk left as a fit param-
eter, better fits are obtained with smaller exponents ranging
from 0.59 for samples A@N)d and AUEN) up to 0.64 for
sample Ag6N)c. This issue will be discussed in Sec. VB.
The dashed line in Fig. 3 and Fig. 4 is the quantitative pre-
diction of Eq. (3) for electron—electron interactions in
sample Ag6N)c. The dephasing times are close, though al-
ways slightly smaller, to the theoretical prediction of E8).
Table 11l lists the best fit parametefs B, together with the
predictionAy,, of Eq. (3).

This data set casts doubt on the claim by Mohanty, Jari-
wala, and Webb(MJW) that saturation ofr, is a universal
phenomenon in mesoscopic wires. One can always argue that
the saturation temperature for our silver samples is below 40
mK, hence unobservable in our experiments. However, the
resistivity and dimensions of sample @&iN)a are similar to
those of sample Au-3 in the MJW pagewhich exhibits
saturation ofr, starting at about 100 mK, and has a maxi-
mum value of73™=2 ns. In contrasty, reaches 9 ns in
Ag(6N)a.

FIG. 4. Phase coherence time vs temperature in samples
Ag(6N)a (M), Ag(6N)b (¥), Ag(6N)c (®), Ag(6N)d (A), and
Au(6N) (*), all made of 6N sources. Continuous lines are fits of the B. Silver 5N and copper samples
data to Eq.(4). For clarity, the graph has been split in two part, In silver samples made from a 5N purity source, the phase
shifted vertically one with respect to the other. The quantitativecoherence time is systematically shorter than predicted by
predictiorj of Eq.(3) for electron_—electron interactions in sample Eq. (3) and displays an unexpectedly flat temperature depen-
Ag(6Nc is shown as a dashed line. dence below 400 mK. The same is true for all the copper

. . . samples we measured, independently of source pfrity.
wherevg is the density of states per unit volume at the Fermitpase trends are illustrated for samples (Rgb and
energy, andSis the cross section of the wire. é:u(6N)b in Fig. 3.

In order to test the theoretical predictions, the measured \ynat can be responsible for this anomalous behavior?

74(T) curves werdit with the functional form, There have been several theoretical suggestions regarding
1 3 3 sources of extra dephasing. Some of these, such as the pres-
Ty =ATTH BT, 4 ence of a parasitic high frequency electromagnetic

. _radiation'® can be ruled out purely on experimental grounds.
where the second term describes electron—phonon scatterlrmdeed some samples do show a saturationrof while

dominant at higher temperaturéSits are shown as continu- others of similar resistance and geometry, measured in the

ous lines in Fig. Athe fit parameters minimize the distance same cryostat, do not. This indicates that, in our experiments

between the data points and the fit curve in a log—log)plot at least, the observed excess dephasing is not an artifact of

Equation (4) describes accurately the temperature depen, . : :
dence of 7,(T) for samples AgN)a, b, ¢ and, with a the measurement. The main suggestions to explain the

; T anomalous behavior af, are dephasing by very dilute mag-
slightly reduced fidelity, for samples A8N)d and sample . 11,20 g ) .
Au(6N). In all these samples, fabricated using 6N sourcenetlc impurities;**° dephasing by two-level systems associ

materials of silver and golds,(T) follows very closely, be ated with lattice defects, and dephasing by electron-
) ’ - H H H H
low about 1 K, the T dependence expected when theelectron interactions through high energy electromagnetic

. A \ . . modes?®

electron—electron interaction is the dominant inelastic pro- The correlation between source material purity and excess
dephasing amongst silver samples fabricated using the exact
same process but with either our 5N or 6N source material
suggests that impurities are responsible for the anomalous
temperature dependence nf. The fact that, among all the

6N silver samplest,(T) deviates the most from the predic-
tion of electron—electron interactions in &iN)d, fabricated

in MSU (see Fig. 4 would mean that the 6N silver source

TABLE IIl. Theoretical predictions of Eq.3) and fit parameters
for 74(T) in the purest silver and gold samples using the functional
form given by Eq.(4).

Sample Atny A B
(ns1K~2R (ns"1K™2R (nsTtK™3)

Ag(6N)a 0.55 0.73 0.045 material used at MSU contains more “dangerous” impurities
Ag(6N)b 0.51 0.59 0.05 than the one at Saclay.

Ag(6N)c 0.31 0.37 0.047 The phase coherence time in the copper samples is always
Ag(6N)d 0.47 0.56 0.044 almost independent of temperature below about 200 mK
Au(6N) 0.40 0.67 0.069 down to our base temperature of 40 rnfg€e Refs. 11,24,25

However, as opposed to silver samples, this unexpected be-
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TABLE IV. Kondo temperaturely (K) of common, lowTy,
magnetic impurities in Ag, Au, and Citaken from Ref. 2).

Impurit
Host\ purty Cr Fe Mn
Ag ~0.02 ~3 0.04
Au ~0.01 0.3 <0.01
Cu 1.0 25 0.01

havior is not correlated with the source material pufB
or 6N). A likely explanation is provided by early measure-

PHYSICAL REVIEW B 68, 085413 (2003

hanty, Jariwala, and Webb studied the effect of intentionally
doping their gold wires with iron impurities. They found that
74 in those samples did not truly saturate, but rather reached
a plateau around 1 K and increased again below about 0.3 K.
In addition, the presence of the iron impurities could be de-
tected by a logarithmic contribution to the temperature de-
pendence of the resistanRéT), known as the Kondo effect.
They concluded from those data that magnetic impurities
were not the cause of the saturationmgf they observed in
their nominally pure gold samples. However, it is well
known that the spin-flip scattering rate peaks near the Kondo
temperaturel , then decreases at lower temperature. While
MJW showed convincingly that “saturation” of,, in gold

ments showing that the surface oxide of copper can causeould not be caused by iron impurities witly ~0.3 K, their

dephasing®

V. INFLUENCE ON 7, OF VERY DILUTE MAGNETIC
IMPURITIES

Dephasing of conduction electrons by paramagnetic im-

purities has been known since 198Mhence it may come as

data do not exclude an effect of impurities with a lower
Kondo temperature, such as manganese or chronfaea
Table V).

A. Can dilute magnetic impurities account for a plateau

a surprise that this issue is still under debate today. In their To answer this question experimentally, we fabricated si-

Letter on the “saturation” ofr, at low temperaturé,Mo-

T T T T L L LB |
LN
e
@
10 \.\
r £
e
~N
AN J
B S e
= ~0
[ O \."_,,
O
T .
TN, ]
o ]
M | 1
1 0.1 1
T T(K)

FIG. 5. Phase coherence time as function of temperature in sev-

eral silver wires. Sample AGN)c (®) is made of the purest silver
source. Samples ABN)b (O), Ag(5N)guosz (O), and

multaneously three silver samples @&d§l)b, AG(5N)Guno.3
and Ag(5N)d;,1, and very dilute manganese atoms were
introduced by ion implantatidfiin two of them. Manganese
atoms form Kondo impurities in silver with a Kondo tem-
peratureT =40 mK.

The phase coherence times extracted from WL corrections
are shown as symbols in Fig. 5. Sampleg&)c, evapo-
rated separately, is shown as a reference. At the time of this
experiment only the 5N purity silver source was available.
Sample Ag5N)b, in which no manganese atoms were im-
planted, already shows very little temperature dependence of
74~3.5 ns below 0.3 K. Nevertheless, introducing more
manganese reduces further the phase coherence time as illus-
trated with samples Ag(5N)goz and Ag(5N)qs,; in
which, respectively, 0.3 and 1 ppm of manganese were im-
planted. For instance, by adding 1 ppm of manganege,
was reduced by a factor of 6 while leaving, still nearly
independent of temperature.

The effect of manganese ar), is now compared with the
existing theory of spin—flip scattering in the Kondo regime.

B. Comparison with the theory of spin—flip scattering

In the presence of spin—flip scattering the phase coher-

Ag(5N)dyn; (©) were evaporated simultaneously using our 5N €nce time reads
silver source. Afterward, 0.3 ppm and 1 ppm of manganese was

added by ion implantation respectively in samples Ag(5N)&

and Ag(5N)q..- The presence of very dilute manganese atoms, a

magnetic impurity of Kondo temperatuiig =40 mK, reducesr,,

1 1 1 1
—= =
T¢ Tee Tph Tsf

(5

leading to an apparent “saturation” at low temperature. Continuousyhere 1f; is the spin—flip rate of electrons. This expression

lines arefits of 74(T) taking into account the contributions of
electron—electron and electron—phonon interacti@eshed ling
and spin—flip collisions using the concentratiog,y of magnetic
impurity as a fit parametédotted line isr for .= 1 ppm). Best
fits are obtained using,,4=0.13, 0.39, and 0.96 ppm, respectively,
for samples A@GN)b, Ag(5N)Gunoz, and Ag(5N)gy,q, in close

agreement with the concentrations implanted and consistent with

the source material purity used.

is valid when the spin—flip scattering time of the conduction
electrons is longer than the spin relaxation timg for Ko-
rringa time of the magnetic impurities themselves, i.ey

> 7 .2% This holds if

T= Cmag
VFkB,

(6)
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TABLE V. Fit parameters forr,(T) in silver and gold samples
made of our 6N sources, taking into account, on top of the contri-
butions of electron—electron and electron—phonon interactions, the
additional contribution of dilute Kondo impurities of spin-1/2 as
described by Eq95) and(8). The corresponding fits are displayed
as continuous lines in Fig. 6.

Sample A (Atny) B Crmag Tk
(nstK™#)  (nsT'K™%)  (ppm) (K)
Ag(6N)a 0.68(0.55 0.051 0.009 0.04
11 Ag(6N)b 0.54(0.51) 0.05 0.011 0.04
Ag(6N)c 0.35(0.3) 0.051 0.0024 0.04
Ag(6N)d 0.50(0.47 0.054 0.012 0.04
Au(BN) 0.59(0.40 0.08 0.02 0.01

s s Continuous lines in Fig. 5 arfits of the measured ,(T)
0.1 T(K) 1 to Eq. (5) using Eq.(8), with magnetic impurities of Kondo
temperaturel =40 mK as expected for manganese atoms.
FIG. 6. Phase coherence time vs temperature measured obhe parameteré& and B in Eq. (4) could not be extracted
samples AGN)a (H), Ag(EN)b (V), Ag(6N)c (®), Ag(6N)d  independently for samples &A&&N)b, Gun03, and qy,. TO
(A), and AUBN) (*). For clarity the graph has been split in two avoid increasing unnecessarily the number of fit parameters,
parts shifted vertically, as was done in Fig. 4. In contrast to Fig. 4the values ofA and B deduced from the fit of sample
continuous lines are fits of the data to E¢S) and (8), with the Ag(6N)c (dashed lingwere used. Sample AGN)c was cho-
concentration of magnetic impurities as an additional fit parameteka 45 a reference because its predicted electron—electron
(see Table V. The quantitative prediction of E@3) for electron— : :
electron interactions in samples @iN)b (top par} and Ag6N)d scattering rate is close to that Of Samples (#GD,
: AdJ(5N)Gyno 3, and Ag(5N)g,,;. Following this procedure,
(bottom part are shown as dashed lines.
the measurements could be reproduced accurately3h

wherec,4is the concentration per unit volume of magnetic = 1/2 andcpag=0.13, 0.39, and 0.96 ppm, respectively, for
impurities. In silver, gold, and copper this criterion reads ~Samples AGN)b, Gung 3, and Gyny, in close agreement with
implanted concentrations of manganese and compatible with

T=40 mKXCmad ppm), (7)  the nominal purity of the Saclay 5N silver source. This con-
firms that the effect onry of the implantation of magnetic

in which ¢, ppm) is now written in parts per million atoms . . . .
(ppm). In the opposite limit f4< 7¢), the impact of spin flip impurities with a low Kondo temperature is well understood,

scattering onr,, depends on the physical effect probed. ForbOth quglitatively and quantitatively.
weak localization corrections with strong spin—orbit cou- L00King back at ther, data for samples AGN)a, b, ¢, d
pling, spin—flip scattering enters then as2in Eq. (5).202° and AU6N) shown in Fig. 4, we note that the fits to those

As long asT=Ty, 7 is well described by the Nagaoka- data would also improve with the addition of a very small

Suhl formul&°3t quantity of magnetic impurities. We performed new fits to
those data using Eq&5) and(8), with c,,,gas an additional
1 Crag m?S(S+1) adjustable parameter. For the silver samples we Kegpt

= 2 2 ' ® =40 mK as for manganese impurity atoms, whereas for the
Tst  Thvp 72S(S+1)+In3(T/Ty) gold sample A(6N) we choseT, =10 mK as for chromium
with SandTy, respectively, the spin and Kondo temperatureimpurity atoms. The values afy,,q from the fits are 0.009,
of the magnetic impurities. 0.011, 0.0024, 0.012, and 0.02 ppm, respectively, for samples
Upon cooling down;r decreases wheh approached Ag(6N)a, b, c, d, and A(BN). The new fits are shown as
(dotted line in Fig. 3, whereas the electron—electron scatter-continuous lines in Fig. 6 and the fit parameters are given in
ing time 7, increases. The combination of both contribu- Table V. Note that these concentrations are about 100 times
tions can result in a nearly constant phase coherence timgnaller than the nominal total impurity concentrations of the
aboveTy, as shown by the solid lines in Fig. 5. sources. As a striking example to show how small these
A quick way to estimate the concentration of magnetichymbers are, 0.01 ppm of impurities in sample@d)d cor-
impurities corresponding to a plateau in the phase coherenggsponds to about 3 impurity atoms every micrometer in the
time is to comparer,***at the plateau to the prediction of wire. Such small concentrations of Kondo impurities are es-
Nagaoka-Suhl aT =Ty . In samples made of copper, gold sentially undetectable by any means other than measuring

and silver this gives the phase coherence time, especially in thin films. Moreover,
latea._ no commercial provider can guarantee such a high purity for
Ty =0.6 NSEmad ppm. (9 the source material.

085413-7



F. PIERREet al. PHYSICAL REVIEW B 68, 085413 (2003

12 —— — 4 10 : : : : :
Ag(5N)dnn1 Cu(BN)d !
13 - :
0.8l R S S QSf ]
£ e | %&Oa Eb oA
[ {2 > 1 C,D.0"0B
5 X w2 X iy
< 04} 8 oal we "3 oF _
{1 e ! X w5
]
B=30 mT B=50 mT |
0.0 1 i i ! L L 1 1 0 0.01 1 1 1 1 1
0o 1 2 3 4 0 1 2 3 4 5 0.1 1 10 100 1000 10000 100000
T2 (K2 max /+GZ
(K™ To /TG

FIG. 7. Resistance of sample Ag(5N)d (¢ ) and Cy6N)d
(O) plotted as function of 3/T. Continuous lines are fits using the
functional formAR(T)/R=C/\/T, with C=2.4x10"* (left pane)

FIG. 8. Comparison between the predictive powers of the con-
ventional theory of electron—electron interactidiRef. 3, and of
the theory of Golubev and Zaiki(Refs. 23,35 The X coordinate

and 7.6<10™* K2 (right pane), close to the predictions of E(LO) . . ;
_ s . D the ratio of the phase coherence time measured at the lowest
Cyy=1.8X10"% and 7.2¢10~* K2 respectively. The logarithmic  9'V¢S )
thy pectively garithmi temperaturer’}™, to 757, calculated from Eq(11) with b=1. The

contribution toR(T) from the Kondo effect is invisible in both ) / .
(M) Y coordinate is the ratio of ™ to 7ee(Tmin), the value calculated

samples, as it is masked by the much larger contribution from ;
P y 9 sing the conventional theoffEq. (3)] at the lowest temperature

electron—electron interactions in the wires. From the comparison o o bol dat ints f hich the oh h
Figs. 5 and 7, it appears clearly that the phase coherence time is_d"n" pen symbols are data points for which the phase coherence

much more sensitive probe of very dilute magnetic impurities tharﬂmﬁa congnlues t&lncrezsi at thet Iofwesthr_nﬁatf]urerr?ent tenr:perature.
the temperature dependence of the resistance. Uil Symbols andk< are data points for which the phase coherence

time is nearly constant at low temperature. The conventional theory

predicts that all data points lie on the horizontal dotted line if no

extrinsic degrees of freedom, such as magnetic impurities, limit the

phase coherence time. The GZ theory predicts that all data points lie
The temperature dependence of the resistaR¢€), is  on a vertical line if the phase coherence time already saturates, and

often used as a probe of magnetic impurities, because of the the left of that line ifr, still increases at low temperatur@he

well-known Kondo effect. Nevertheless, in thin wires, wheredashed line corresponds to the casel in the GZ theory.

the resistance also varies due to electron—electron interac-

tions, it must be pointed out tha®(T) is not sensitive VI. OTHER EXPLANATIONS OF ANOMALOUS

enough to detect small amounts of magnetic impurities. The DEPHASING

contribution of electron—electron interactiols,

C. Extremely dilute magnetic impurities and temperature
dependence of the resistance

The evidence presented in the previous section shows that
very dilute magnetic impurities could explain the anomalous
AR(T) _ R I-T= % (10) dephasing frequently observed at low temperature. But are

B there other viable explanations?

R 3126 T T

with L+= V2 D/kgT the thermal length, is much stronger and A. Dephasing by high energy electromagnetic modes
varies much more rapidly with temperature than the Kondo

term, determined byA pxong=— Bk IN(T),*> where B - ) . !
~0.2 2 cm/ppm® In ouIFOQ/v?res wﬁere the resistivityK is ture dephasing by high energy electromagnetic modes is re-

aboutp~3 10 cm, the corresponding relative variation of sponsible for the frequently observed saturatior pfn me-

the resistance is about 19 per decade of temperature for 1 taIIic' thin films. This theory, Whif:h is_controversfd,
ppm of Kondo impurities. This is more than an order ofpredlcts that the phase coherence time saturates at low tem-

GZ 5
magnitude smaller than the typical contribution of electron—Perature atp™ given by’
electron interactions between 100 mK and 1 K.

Golubev and ZaikifGZz) propose&®*°that zero tempera-

This is illustrated in the left panel of Fig. 7 with sample 1 V2p b 3 11
Ag(5N)dy,1 in which we implanted 1 ppm of manganese. 7.OGZ_ 3RK’7T\/B Te

The resistances are measured in a magnéeid B
~20-50 mT, large enough to suppress the WL correctionsvhere b is a constant numerical factor expected to be of
but small enough to avoid freezing out the spin—flip scatterorder 1. It is interesting to point out that for a given material
ing of conduction electrons by magnetic impurities. We 75% is proportional toD® and is insensitive to the actual
checked on several samples showing anomalous dephasiggometry of the sample.
thatR(T) is independent of the applied magnetic field. Using this prediction, GZ were able to account for a sub-
A striking conclusion is that the phase coherence time is &et of the experimental results published in Refs. 24,37 using
much more sensitive probe of very dilute magnetic impuri-the overall prefactor of the dephasing rate as an adjustable
ties than the temperature dependence of the resistance, whiplramete?® Note that, as explained by GZ in their latest
is dominated by electron—electron interactions at low temarticle® the comparison with MJW data performed in Ref.
perature. 38 should be ignored because it was done using an expres-
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sion for ng that does not apply to the experiment, but isgime where the Kondo temperature is larger than the tunnel-

. ; ; d 4142 ; . .
valid only when the elastic mean free path exceeds the tran§2d level splitting.~"“ From the experimental point of view,

verse dimensions of the wires. measurements af, from the weak localization contribution
Since the exact prefactor is unknown, it is not possible td0 the magnetoresistance cannot discriminate between mag-
rule out this theory by comparison with a single experimentnetic impurities and TLS.
Instead, we propose here to compare the predictive power of
the GZ theory with the conventional theory of electron—vi|. TEST OF THE MAGNETIC IMPURITY HYPOTHESIS:
electron interactions for many samples. This is done in Fig. PROBING 7,4(B)
8. Thisfigure includes all gold, silver and gold—palladium _ o )
samples for which it has not been shown that magnetic im- A definitive test of the role of spin-flip scattering for the
purities are the main source of decoherence at low temper&aturation ofz, at low temperature is to probe how the
ture, plus sample GEN)a which was used by GZ for com- dephasing time depends on magnetic field. It is expected that
parison of their theory with experimerits(We do not show SPIn—flip scattering is suppressed when the dynamics of
other copper samples or samples made from our 5N silvéiagnetic impurities is frozen by application of a sufficiently
source, because they clearly contain magnetic impurities. Sdar9e magnetic field. Indeed, if the Zeeman splitting is
Sec. VIl and Ref. 39.The X coordinate in Fig. 8 gives the Much larger tharkgT, magnetic impurities stay in their
ratio of the phase coherence time measured at the lowe§found state. As a result spin—flip collisions vanish and
temperaturesy®, to 7%, calculated from Eq(11) with b 5|h°“|d climb up to (tjhe vzlue eépeclted fromh electlron—
=1. TheY coordinate is the ratio of ™ 0 7ee(Tpn), the electron mt_eractlongn ependent oB as long as the cyclo-
value calculated using the conventional thepBg. (3)] at tron radius is much !arger t.han th? elastic mean ”?e)th
the lowest temperaturg,,,. Open symbols are samples for the presence of s_pln—1/2 impurities, and neglectmg_ Kondo
which 7, continues to increase at the lowest measuremer] ffect,.the spin—flip scattering rate of electrons vanishes at
temperature; upon cooling they move to the right. Full sym- arge field asisee Appendix C and Ref. 43
bols are samples for which, is nearly constant at low tem- -~
perature; they move dow:%vard when the temperature is re- s(B=0) = guBlKsT
duced. As for theory, GZ predict that all full symbols should 7s(B)  sinh(guB/kgT)’
SZ—p%2 whereas open

be aligned on a vertical line’,* 7, . . _
whereg is the renormalized gyromagnetic factor of the mag-
symbols would be located af;™/ 75%<b32. In contrast, the netic ir%purities. 9y g g

conventional theory predicts that all data points should be o possible method to detect a variatiorrjwith mag-

aligned on the horizontal liney™/ 7e(Tmin) =1. ON this  netic field is to measure the average amplitud® cr of
plot the data scatter in both directions. The most salient feagnjyersal conductance fluctuations in a metallic wire as a
ture of the plot, however, is that the scatter in the horizontatnction of magnetic field. This method has two drawbacks.

direction extends over more than five orders of magnitUdeFirstAGUC,:oc T(lf)/4 depends only weakly on the phase coher-

whereas the scatter in the vertical direction extends OV€Lnce time. Second the large correlation fiekBcr

slightly more than one decade. The horizontal scatter indi—_ h/(ewLy) of conductance fluctuations in mesoscopic

cates that GZ theory does not reproduce the dependence \mres makes it difficult to obtain accurate estimates of the

74 On sample parameters. In particularf the_ GZ pre‘_jif:tiorhveragedAGUCF(B) at low temperature in the field range
depends _much too strongly on the. diffusion Coeﬁ'c'em’below the relevant magnetic field scag@B~kgT. For ex-
which varies considerably in MJW's six gold samples. ample, in CiN)b, AB_ce=25 mT at 40 mK, whereas the

'Wh|le no thegry explains all of .the experimental datacharacteristic field needed to freeze the magnetic impurities
without any additional parameters, it appears that the CONs 45 low askgT/2u=55 mT

ventional theory does a better job than the GZ theory to
predict the low temperature value of, .

12

We have chosen instead to probe the magnetic field de-
pendence of, by measuring the Aharonov-Boh(AB) os-

cillations in the magnetoresistance of ring-shaped samples.
B. Dephasing by two level systems For this purpose, we have fabricated two copper rings of

Two approaches to electron dephasing by two-level tuntadiusr =0.5 and 0.75um, respectively, on the same chip as
neling systemgTLS) have been proposed. The first, by Imry, samples C(6N)c and C¢6N)d. The ring perimeters are cho-
Fukuyama, and Schwéﬂ),requires a nonstandard distribu- Sen to be larger than or similar to the phase coherence length
tion of TLS parameters. It was shown later that such a disat B~0 in order to increase the sensitivity to variations of
tribution would lead to large anomalies in the low- 74. The averagedi/e AB oscillations amplitudeAGg is
temperature specific heat, and in acoustic attenuation at vefglated to the phase coherence time thrdtigh
low temperaturd® The second approach describes the cou-
pling between the conduction electrons and the TLS via the e’ Lt Ly F{ wr}

L, (13

two-channel Kondo effec In this model, the effect of TLS AGag=Crr —\ 7 &X
is very similar to that of magnetic impurities in the Kondo

regime, at least at=T, . The main criticism raised against whereC is a geometrical factor of order 1. The short period
this explanation is that, starting from any realistic model of aof AB oscillations with B(5.5 and 2.5 mT for =0.5 and
TLS, it may be impossible to reach the strong coupling re-0.75um, respectively allows to estimate accurately the
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0.1 T T T - T The impurity g-factors obtained from these fits, 1.08 and
0.90, are small, like the valug=1.36 found for electrons by
neutron scattering in bulk Cufs.

This set of experiments confirms that spin—flip collisions

= are responsible for the apparent low temperature saturation
Né of 7, we observe in copper samples.
2
(g VIII. COMPARISON WITH ENERGY EXCHANGE
MEASUREMENTS
0.01

Parallel to this work, a systematic correlation was found
between dephasing and energy exchange between electrons:
all samples made of the same source material, using the same
deposition system, either followed the theory of electron—

L L L : L electron interactions for both energy exchange and phase co-

20 -10 0 10 20 herence, or displayed anomalous behaviors for both
2uB/k T phenomend>?+°%*1This correlation suggests that magnetic

impurities could also be responsible for anomalous energy

FIG. 9. Symbols: mean amplitude of the ABe oscillations  exchange. Such a possibility had not been considered until
(AGyye) across the ring in sample @GN)d atT=40 (A) and 100  recently because, all spin states being degenerate at zero
mK (M), plotted in units ofe’/h as a function of the reduced magnetic field, magnetic impurities do not contribute to en-
ma_lgnetic field 2ugB/kgT. So_lid lines: fits t(_) the two data sets ergy exchange in first order. However, Kaminsky and
using Egs(5), (12), and(13) with C andg as fit parameters. At 40 |azman have pointed out that energy exchange in the pres-
mK, the ABloscHIatlons are unmeasurably small.a-tB; the fit to ence of magnetic impurities may take place with an appre-
those data includes the noise floor of the experiment. ciable efficiency by a second-order procé%é’.he experi-
magnetidfield dependence af G g on the much larger field Mental proof that excess energy exchange observed in
scale needed to freeze the magnetic impurities. samples made of the 5N silver and copper sources results

This experiment was performed on copper samples befom dilute paramagnetic spins was obtained recently by
cause it is the material in which the presence of magnetiéheasuring the dependence of energy exchange upon mag-
impurity was most questionable: no correlations were foundetic field>® Similarly to what was observed on the dephas-
betweenr,, and the copper source material purity; moreover,ing rate, the application of a large magnetic field on these
whereas in some samples saturates at values as small assamples reduces the rate of energy exchange. Note however
0.2 ns[3 times smaller than in Ag(5N)g,] we observed that the amount of magnetic impurities needed to account for

neither a nonmonotonic temperature dependence,(T), the measured energy exchange rates seems to be significantly
as in Ag(5N)gh,: (see Fig. 5, nor a Kondo contribution to larger than the estimations from,(T); in the case of cop-
R(T). per, the obtained-factor g=2.3 is also different. More ex-

Our experimental procedure and data analysis are detailegeriments are needed to clarify these issues.
in Ref. 25. Figure 9 shows the amplitude of AB oscillations
measured across the ring in sample(@N)d at T=40 and
100 mK (symbols as a function of reduced magnetic field
2uB/kgT. The data in Fig. 9 show that the amplitude of AB By measuring the phase coherence time as a function of
oscillations increases with magnetic field by a factor 8 at 10@emperature on wires made of silver, gold, and copper, from
mK and a factor 7 at 40 mK5 on a characteristic field scale source materials of different purities, we have found that
proportional toT. anomalous dephasing is correlated to source material purity

The solid lines in Fig. 9 are fits to the simple model rep-in silver and gold samples, and systematic in copper samples.
resented by Eq$12) and(13), explained in Appendix C. We We showed experimentally that the presence of very dilute
assumed thatr, at large B is limited only by electron— magnetic impurities with a low Kondo temperature in the
electron interactions and used the values given by theoreticlost material can result in a broad plateaurj(T) while
prediction[Eq. (3)]: 7,=5.4 and 9.9 ns at 100 and 40 mK, being undetected in the temperature dependence of the resis-
respectively. The two remaining parameters, namely the gytance. Measurement of the magnetic field dependence of
romagnetic factog and the geometrical const&hC, were  Aharonov-Bohm oscillations on relatively large copper rings
adjusted to reproduce accurately our data. The best fit irevealed that the phase coherence time increaseBuitha
obtained withg=1.08 andC=0.17. Note that a more rigor- field scale proportional to the temperature. This confirms that
ous approach to the magnetic-field dependence of AB oscilan apparent “saturation” of, can be attributed to very di-
lation amplitude has been published recently by Vavilov andute magnetic impurities®
Glazmart'’ Using their predictiofEgs.(62) and(63) in Ref. In the silver and gold samples discussed in this paper, we
47) with a magnetic impurity spfff S=1/2 andg=0.90, we  impute the presence of magnetic impurities to the purity of
obtain a fit indistinguishable from the solid lines calculatedthe material sources. We found that large coherence times at
with the simple model. 40 mK could be obtained in samples fabricated with the

IX. CONCLUSION
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silver sources of the highest purity commercially available
(6N). However, it is verydifficult to rule out a small con-
tamination during the evaporation process and eventually
sample preparation. In the case of copper, the Kondo impu- 45 |
rities probably originate from the copper oxide at the
surface?® e ;
11 F 4

ACKNOWLEDGMENTS

This work was supported by NSF Grants Nos. DMR- 19
9801841 and 0104178, and by the Keck Microfabrication
Facility supported by NSF DMR-9809688. We acknowledge
the assistance of S. Gautrot, O. Kaitasov, and J. Chaumont at FIG. 10. Electrons heating in a typical silver wifgee text of
the CSNSM in Orsay University, who performed the ion im- length L=0.2 mm, biased with a dc voltagé such thateV/kgT
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Vavilov, and A.D. Zaikin for interesting discussions. position X/L in the wire, taking into account electron—phonon in-
teractions[see EQ.(A2)]. Dotted lines: electron temperature as

function of position neglecting phonofisee Eq(A1)]. Dashed line
in the right panel: electron temperature neglecting electronic heat
transport(in the left panel this line would stand &t /T=1.87).

Joule heating is a concern when transport measurements
are performed at low temperatures. Any current results in theonductance measurement is needed to get a signal to noise
production of heat, which can be either transferred directly taatio of 10. In fact, this estimation is often too pessimistic
the phonons in the wire, or to the electrons in the contacbecause cooling by phonons does play a role for long
pads, assumed to be much larger than the wire. At subwires>* In order to evaluate this effect precisely, one has to
Kelvin temperatures, the first process becomes very ineffisolve the complete heat equation, which can be written in
cient. The reason is that the phonon emission rate for areduced unitstg(x)=T(X)/T, v=eV/kgT),
electron with an excess energikgT goes liké!

APPENDIX A: ELECTRON COOLING IN TRANSPORT
MEASUREMENTSAT LOW TEMPERATURES

~5kpn(kgT)?, with xp=10 ns *meV 3. The distance it , md T\® . B
will travel before losing its extra energy is theyfD/y v +€&te(x)— Teo (tex)=1)=0,  (A2)

=18 umX (T/1 K) %2 for a typical diffusion coefficient
D=100 cnf/s. At T=40 mK, VD/y=2.2 mm, a very mac- in which the first term describes Joule heating, the second the
roscopic distance! Therefore one must take care that the elethermal conductivity of electrons, assuming Wiedemann-
tron’s energy never gets so large at low temperature. TakeRranz law, and the last one the coupling to phondrigwe
alone, the cooling by the contact pads through electronic hedtave defined a crossover temperature

transport results in a temperature profile in the wire

Teo=(SpL2(elkg)?) %, (A3)
To(x)= \/T2+ ix(l—x)(ﬂ)z (A1) with L the length of the wire,p its resistivity, 3 the
¢ 2 kg/ ' electron—phonon  coupling  const#ht (typically 3

_ _ ~1-10 nWjum3/K® in metallic thin films on Si substrate
with T, the electron temperature in the contacts placed at thg¢p resulting temperature profile is shown in Fig. 10 for
ends of the wire, assumed to be equal to the temperature %tpical values: we consider a silver wire 3(
the phononsx the relative position along the wire, antthe 5 nW/um3/KS from Table Il)) with D=100 cn?/s, L
voltage across the wire. Far=0, the maximum temperature _q o mm, aff =100 and 200 mK, foeV/kgT=3. The dot-
is (\3/2m)(eV/kg)~3.2 KXV/(1 mV). By limiting the  teq line indicates the solution without phonons, the dashed
voltage across the samplee@¥'=kgT, the maximal electron |ine the solution without electronic heat transport. For this
temperature i§ y1+(3/47°)=1.04T. With such alow ap- set of parameters, the crossover temperature Tig
plied voltage, the phase coherence time, supposed to increase} 20 mK. Hence, at 200 mK phonons reduce significantly
as T, ?® at low temperature, varies through the sample bythe maximum electron temperature, which does not exceed
1-1.042P=29%, which is sufficiently small for most pur- the bath temperature by more than 16%. At 100 mK, cooling
poses. However, at very low temperature, a measurement @ phonon emission is inefficient, and the maximum electron
a voltage of ordekgT/e might become very time consuming temperature is 27% abovie
if one considers that the input voltage noise for the best The analysis of the exact solutions of this equation allows
room-temperature commercial amplifiers is about 1 yWZ  to distinguish two opposite regimes: far<T,,, electrons
and that the weak localization correction to the conductancare decoupled from phonorisooling by phonons will be-
is about 103 of the total signal. For example at 10 mK, come active only if the applied voltage is so high that the
10 3kgT/e=1 nV, and an integration time of 100 s for each maximal temperature is aboilg,), and temperature is given
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20 APPENDIX B: DEPHASING BY ELECTRON—-ELECTRON

INTERACTIONS

Assuming that we can restrict ourself to two body inter-
actions, the dephasing rate, or inverse lifetime;,LE, T) of
an electron at energy coupled only to the electronic fluid at
temperaturdl results from all collision processes allowed by
the Pauli exclusion principle,

Lo (#m)

Tigl(E,T):f| | de K(e)(1—fH(E—¢))h(e,T),
& zﬁlrd)

(B1)
wheref;(E) is the Fermi function at temperatufe K(¢e) is
the interaction “Kernel” of the screened Coulomb interac-

002 '0'.1 ! T T o7 tion, proportional to the modulus square of the interaction
matrix element for an exchanged energyand
T, Tcalc (K)

FIG. 11. Full symbols: phase coherence length measured on a h(S’T):J dE'f(E")(1—f1(E' +¢))

6N silver sample as a function of the electronic temperaliyg o

calculated using EqA2) for a cryostat temperaturE represented

by the attached open symbc/)l. The continuous line represents the € 82
theoretical predictior ;< T~ of electron—electron interactions =1 — .

(data taken at Saclay ’ 1=exp(—e/kgT)

The low energy cut-offe|=#/74 in Eq. (B1) is intro-
by the electronic conductivity alone, see Ef1). Thisisthe duced because fluctuations on time scales longer than the
difficult regime, where the maximal voltage is of the order ofelectron’s lifetime can be considered as stétic.
kgT/e. In the opposite situatioli>T,, heat transfer to the The interaction kerneK(e) depends only ors since the
contacts can be neglected, and cooling by phonons rules tlenergies of interacting electrons are close to the Fermi en-
game. The temperature of the electrons is then nearly hom@rgy Er and e<kgT<Eg. Our samples are quasi-1D be-
geneous, Wwith To/T~(1+(T,/T)%?)Y> and for cause the width and thickness of the wires are smaller than
(Teo/T)%v2<1 the temperature does not exceBdexces- the lengthL,=\%D/e for the probed energy exchanged. For
sively: Te~T+ [ T3,(eV/kg)%T*]. One should thus fabri- quasi-1D samples the interaction kernel reads
cate wires as long as possible, in order to have a small cross-

over temperatureT,, which allows to work at larger K(e)=«kle| 7%, (B3)
voltages. with
In order to test the validity of this calculation, we per-
formed a control experiment in which electrons were inten- =
tionally heated by applying ac currents. The sample, similar =t/ Z X (B4)

to the others presented in this review, consists of a 1.79-mm-
long, 150-nm-wide, and 45-nm-thick wire made out of a 6N . ) ) o
purity silver source. The diffusion coefficientD The dephasing rate.ﬂe{e_(T) is the inverse lifetime aver-
—139 cnf/s results in a crossover temperaturE,, ~2aded over thermal excitations
=30 mK. We extracted the phase coherence lehgtfirom
the magnetoresistance. For each magnetoresistance trace we 1. (T):f dEfT(E)(l_fT(E)) +YET). (B5

. . ee n ’ "
show in Fig. 11 two symbols, one open and one full, at a kgT
Y-coordinate given by the corresponding value_gf. Open o . .
symbols are at th&-coordinate given by the cryostat tem-  Injecting Eqs.(B1) and (B3) into Eq. (B5) we obtair®
perature T at which the measurement was performed,
whereas full symbols are at thécoordinate given by the * ke expelkgT)
calculated electron temperatufe,.. Since the magnetore- Uree(T)= Jﬁ/T de KeT (1—exp(e/kgT))?
sistance is given by 4« T~ T . was calculated from the e B
time- and position-average Eﬁgl’s, using temperature pro- This expression shows that the effect of electron—electron
files obtained with Eq(A2). For example, the pair of data interactions on quantum coherence in mesoscopic wires is
points at L ,=10.4um corresponds toT=40 mK, V,. dominated by processes with a small exchanged energy
=0.86 mVrms, leading td ;=245 mK. The data points ~7/7,. Itis interesting to point out that this implies that a
with large heating T, T) as well as those with little heat- sample is quasi-1D with respect to decoherence as long as
ing (T.q=T) fall close to a single Iind=.¢ocT‘1/3, indicating  the phase coherence lendth= D7, is large compared to
that the electron temperature is correctly modeled. its transverse dimensions and small compared to its length.

(B6)
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This is not true for energy exchange, for which the dimen- AR 2R \/T
sionality is determined by the length associated with the larg- ?(B,T)— ReL N 12rg+ Tmy (B11)
est exchanged energy.
In order to obtain an analytical expression fQe(T) we A comparison with Eq(1) (neglecting spin—orbit coupling
make the following approximation: allows us to extract the phase coherence time when it is
limited by electron—electron interactions,

expe/kgT) 1 67) y
(1—exp(e/kgT))?  (elkgT)? S (4/m)(Re /R) veSL
2
This approximation igustified since the integral is domi- (kgT)
nated by small energy exchanges. This leads to —on (B12)
=27y.
B (7/16) (R /R) veSL v This expression of the phase coherence tirgeis larger by
Tee™ (kgT)? : (B8) 3 factor 4%3=1.9 than the cut-off-dependent estimation in

Eq. (B8).
where we used EqB4) for the interaction kernel.
The calculation ofr, described above makes use of a low
energy cut-off, therefore the prefactor in E&8) is not re- APPENDIX C: MAGNETIC FIELD DEPENDENCE
liable. To solve this technical difficulty, Altshuler, Aronov, OF SPIN-FLIP SCATTERING
and Khmelnitsky calculated the effect of electron—electron

interactions through the interaction of one electron with theS ;2'”5 iggﬁggg r;rrsr?er?:aanseltri?:pilr?] i?:ﬁg'saggna ?L];neclt?(;:r:rg?
fluctuating electromagnetic field resulting from other elec- P b g 9 P

trons at thermal equilibrium. Within this approach it is pos-]‘:’ilfs[t)l'grdd;]ai‘r?nseti'ﬁ_f]'cﬁkBS'C;?tgrﬁ]alcﬁlgt'%lt;ﬁ C?rrgego%t)itf_
sible to calculate directly the conductivity taking into ac- P P 9. ney 9

count electron—electron interactions. The dephasing rate @Ct' Moreover we consider here, for simplicity, magnetic
mpurities of spin-1/2.

then obtained without reference to the energy decay raté’ ) 1 .
Neglecting spin—orbit coupling, this calculation yieldls The spin—flip raters;"(E,B) of an electron at energ is

9 9sp ping y obtained from the Fermi Golden Rule,
AR _ 2R \/DTN Ai(TN/TH)

- 2 (E.B)=Cah P (1= F(E-guB)
REVTRTT Wiymy Y f g '

+P(1-f(E+guB))}, (CD

with
wherec,,4is the concentration of magnetic impuritiesjis
13 proportional to the modulus square of the interaction poten-

WW=h|—————| , tial electron-magnetic impurity, ané.. is the probability to
2m(kgT)? have the magnetic impurity in the ug-( or down (—) state
relative to the magnetic field directioB. In absence of
_3ve’RS[ ¢y |2 Kondo effect\ is approximated as independent of energy
=T 27wB/ and magnetic field.

Since at thermal equilibriur®.. = f+(=guB), we obtain
where ¢o=h/e=4.1x10®Tm? is the flux quantum, a £~ T(=0uB)

Ai(x) is the Airy function and A’i(x) its derivative. The time

7y IS often called Nyquist time in reference to the
fluctuation-dissipation theorem used to evaluate the electro-
magnetic fluctuations for the calculation of weak localization  The spin—flip raters_fl(B) is averaged over electronic ex-

Cragh (1+EXp(E/KgT))/2

-1 _
7 (B.B)= cosiE/kgT)+cosiguB/kgT)

(C2

corrections. citations
Since expressiofB9) includes electron—electron interac-
tions, it should be possible to deduce the contributignof . e f(E)1-fH(E) _,
the screened Coulomb interaction on the phase coherence  7sf (B):f_w dE T 7t (E.B),
time. This can be done by pointing out that .
which gives
Al 1 s B10
Al ’ (X) \/1/2—+X( E(X)), ( ) Tsf(B—o) . g,LLB/kBT (C3)

7s(B) sinh(guB/kgT) "
where|e(x)|<0.04 forx>0. In practice, the experimental
resolution is not sufficient to distinguish a relative discrep- This result, also given in Ref. 43, is a finite-temperature
ancy smaller than 4% of the amplitude of weak localizationgeneralization of the expression used by Beravial.>° A
corrections, which are themselves smaller than 1% of th&igorous theoretical calculation of the Aharonov-Bohm oscil-
measured signal. Hence we can write lation amplitudeA Gy, in presence of magnetic impurities
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under a large externally applied magndtild was first pre-  published recently by Vavilov and Glazm&hAs discussed
sented by Fal'kd® A complete derivation of the magnetic in Sec. VII, the Vavilov-Glazman crossover function f8r
field dependence oA Gy, from first principles was finally =1/2 is nearly indistinguishable from ours.
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6.3 Complement: Why are interactions between magnetic
impurities negligible ?

Vavilov, Glazman and Larkin [3] have calculated the effect on thetretec
properties of the RKKY interactions between magnetic impur[dés RKKY interactions
lead to a transition of the spin system to a spin glass statéemperaturd,, dependent on
the impurity concentration and on Kondo temperature. As far as eleam®m®ncerned, the
prediction is that the interplay between the Kondo effect and theYRKt€raction may result
in a non trivial temperature dependence of the resistivity and the pbhsrence time. These
effects have been investigated in [5] for gold samples in whicm#gmetic impurities, iron,
were estimated to be present at concentrations larged&ppn. In our silver samples with
an impurity concentration smaller thahppm, the spin-glass transition temperature is
predicted to be belodmK. We are thus in the limit of small concentratidfjs< 7, . In the
temperature rangé€ > 7, , the RKKY interactions between magnetic impurities have noteffec

on the resistivity and phase coherence time in our samples.

6.4 Conclusion

For the samples presented in this chapter, electronic decoherémweemnperature is
essentially due to electron-electron and electron-magnetic iyp@aoattering. In the “pure”
samples, the concentration of magnetic impurities found from fitomspatible with the
nominal purity of the source. In the implanted samples, this concentratiin close
agreement with the amount of magnetic impurities implanted. Sunce a small amount of
magnetic impurities is almost impossible to rule out in any samgtattering from
undetermined magnetic impurities likely explains the saturation nadsein many

experiments.
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Chapter 7 Energy exchange and Kondo effect:
Kondo-Impurity-Mediated
interaction

Before the beginning of this thesis, energy exchange between qtiel@pawas
investigated in the Quantronics group in order to precisely understangc#itering
mechanisms that limit the phase coherence. Energy exchangevemgesound higher than
predicted by the theory of Coulomb electron-electron interaction, witthermore an
unexpected energy dependence, and sample to sample variations [1].nThef #ie
experiments presented in this chapter was to determine if tlthamem proposed by
Kaminski and Glazman [2] to explain these results, based on magmgticities, was
relevant. By convenience, this interaction mechanism, in which Konda efBes a major

role, will be nicknamed “KIM interaction” for Kondo-Impurity-Mediated-Interant

Even if at zero-magnetic field the spin states of magnetic impmudte degenerated, magnetic
impurities can mediate energy exchange by a process at seconthdlgecoupling between
electrons and magnetic impurities (see Figure 1, top). Accordik@nanski and Glazman
[2], the rate y(E) at which an electronic state of enerdgy and filling factor f(E) is

populated due to the coupling of electrons with magnetic impurity caindeorder can be

written as:
y(E)=[de (f(E+e)(1-1(E)) -/ (E)(1-1 (E -¢))) W (e E)
with
W(e.E)=w(g)=K(e) [dEf(E) L-rf(E+e)),
and
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K(e)=r o g5y LedL o, W

)

where ¢, is the concentration of magnetic impurities, S their spin. Indaisulation, the
coupling constant between electrons of spinsand a magnetic impurity of spiS is
described by a hamiltoniarH, =J 5.5. The kernel functionK (&) contains all the
information on the energy exchange mechanism (intensity and enepgndésce). The
energy dependenc& (S)D £? is different from the one calculated for pure Coulomb
interaction in diffusive wireskK (5) 0 &2, Such as™-dependence of energy exchange was
first inferred by Pothieer al. [3] from measurements in copper wires and later on in wires

made of gold [1]. KIM interaction is therefore a candidate to éxpihis large set of

experimental results.

To find out if KIM interaction is relevant in mesoscopic wires, lnave measured energy
exchange in presence of an applied magnetic fieloecause it is expected that the rate of the
KIM interaction depends o . Indeed, in a magnetic field, scattering of an electron on a
magnetic impurity can be already inelastic at first ordeth &@n energy transfetgu, B (see
Figure 1, bottom), wheregr is the gyromagnetic factor of the impurity apg the Bohr
magneton. Magnetic impurities then behave as two-level systemsthanchte of KIM
interaction is expected to be higher than at zero magneticaseldng asgu, B is not too
large. When g, B becomes larger than the width of the electronic energy distibuti
function, given byeU in our experiment, magnetic impurities cannot be excited by the
electronic bath. Then the rate of first order processes vanishesat€hef the second order
process (see Figure 1, top) proportional(tso—g,uBB)_2 becomes also so small wheh
increases, that the KIM interaction rate decreases. Sindeathieconstraint imposes that the
energiese that can be exchanged by this process are suehxad/, the magnetic field at

which KIM interaction is suppressed is predicted to scale With
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In the above presentation, Kondo physics is embedded in the coupling comstést
explained in Chapter 5, Kondo effect leads to a renormalization dfatieecoupling constant
J, between electrons and magnetic impurities due to the collective effectted ahriduction
electrons. In an out-of-equilibrium situation, the renormalization depentigedacal electron
energy distribution function. The complete calculation was developed by Géppe [4]

and is presented in Section 7.1.3.3.

Electron-electron interaction mediated by a magnetic impurity (second order process)

E —e— . E —O— . E —O—
—— ... B —— N B —o— B
ws gusb @ _, ; gus \ dus
—O7 Y/ . Ete —6— RANE ;. Ete—e— Ay
E-e —— . Ee—@—. . Et —e—
—— : —o—F § —o—
—— | —o | ——
E —&— " —e— E —O—
initial state virtual state final state

Direct interaction between an electron and a magnetic impurity (first order process)

—o— ——
—O0— : —O0—
— A ! K
E .’\‘_-- RN —f( gusB E E —0 Y gusB
—OF T : —O0— 2
E-gugB —@— E-gusB —@—
—— —o—
—— ——
initial state final state

Figure 1: Description of the processes of energlstabution between quasiparticles mediated by meég
impurities. In each panel, the left ladder représéme energy spectrum of the electrons, and thestates on the
right side represents the energy levels of the sg@ites of a magnetic impurity. Top: The secon&opocess
implies two electrons and a magnetic impurity. Bott The first order process directly exchanigu,B
between an electron and a magnetic impurity.

7.1 Energy exchange and quasiparticle energy distribution
function

We first present how the energy exchange rate can be infeomdttie quasiparticle

energy distribution function.
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7.1.1 Energy distribution function of quasiparticles in a voltage-biased
wire

To access the energy exchange mechanisms between electrgmspare an out-of-
equilibrium stationary situation by placing a diffusive metallicewbetween two metal
contacts biased at different potentials (see Figure 2). Enexgyarege, which tends to
establish a local equilibrium between electrons, and diffusion, whmatslthe dwell time of

electrons in the wire, control the energy distribution of electrons.

f(E)A f(E)4
_ Z|| 71 ﬁ1
; 7 E £
V4
/- a4
0 _[’ 0 E -yo E
X &
Tp=L?/D To<Tint Tp>Tint

Figure 2: Schematic of the experiment: A wire ofgéh L and electron diffusion coefficiel D is connected to
two reservoirs. A potential differencU is applied between the two reservoirs. The distidm functions of
electrons in the reservoirs are Fermi functiondteshiin energy by the electrochemical potentiafedénce
eU > k,T . Distribution functions /' (x,E) are plotted for different positions along the wirethe limit of
independent electrons (middlir, <<r,,), and in the limit of strong electron-electron eirgtction (right:

TD >> Z—int )

7.1.1.1 Independent electrons regime: 7, <7,

If the typical timer, an electron spends in the diffusive wire is much smaller than the
typical time of interactions between electroms, no inelastic scattering occurs while
electrons travel through the wire, and the total energy of eactnagles conserved during its
motion. The energy distribution functioﬁ(x,E), which reflects the probability to find an

electron of energyE at position x =x/L, obeys the stationary quasiclassical Boltzmann

equation [5]:
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azf(x,E)
——1=0. 2

P (2)
The distribution function thus interpolates linearly between the boundatyibdtion

functions and reads:
f(x,E)=(1-x) £, (E) +x f;, (E +eU), 3)

where f, (E) :(1+e’5”‘BT)_l is the Fermi function at the temperature of the reser¥oitf
k,T < eU , the distribution function has a stepﬁ(x,E) =x for —eU <E <0, as shown in

Figure 2.

7.1.1.2 Thermalized electrons regime: 7,>T7,

If the typical timer, an electron spends in the diffusive wire is much larger than the
typical time of interactions between electrans, numerous inelastic scattering events occur,
and electrons thermalize locally (see Figure 2, right panel@adh position in the wire, the
energy distribution function is a Fermi function, with a temperat@féx) and an

electrochemical potenti@Ux that depends on the position:
f(x,E):fTe(x)(E—eUx). 4)
The temperaturd, (x) obeys the heat equation [6,7,8]

L 9? (k,T.)°

s o t(ev) =0, 5)

with the boundary conditions at the reservdi[$0) =7, (1) =7". The temperature along the

wire is:

Te(x):\/T2+x(1—x)U2/[L, (6)
wherelL = (77°/3)(k, le)’ = 2.4 \* K* is the Lorenz number.

7.1.1.3 Intermediate regime: 7, =7,

In the intermediate regime, wherg =1, the energy distribution functions in the

int ?

wire are rounded due to energy exchange between electrons. Ydtpnsleare not

thermalized, f (x, £) is not a Fermi function, and the rate of energy exchange can bednferre
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from the shape off (x,E) and its dependence on the voltage In our experiments, this

intermediate regime is found for wire lengths of the order of 10 pm.

7.1.2 Calculation of the electron energy distribution function in presence
of energy exchange

7.1.2.1 Boltzmann equation in the diffusive regime

Following Nagaev [9] and Kozub and Rudin [10], we use the Boltzmann equation t
determine the electron energy distributigi{x, £) in the wire. This equation readsin a

stationary regime:

10°f(x,E
E%"—Imn(xifji{f}):o’ (7)

where 1, is the diffusion time of an electron in the wire andhe position in reduced units
x =x/ L, with L the wire length. The first term describes elastic coIIisions]@p(ix,E,{ f})

accounts for the inelastic collisions.

The boundary conditions are imposed by the reservoirs:

£(0.)= 1, (£)
F(LE)= 1, (E +ev),

where f, (E) is the Fermi function at the temperatdref the electrodes.

7.1.2.2 Inelastic collisions responsible for energy exchange

The collision term can be written as the difference of two gean in-collision term,

the rate at which particles are scattered in the state of efieagyd an out-collision term:
Lo (5 E{SY) = L (5 E L SY) = 1 (5 E { 1}) (®)
with
1 (x. E{f}) :J'dsf(x,E +e) (1-£(x .E)) W(x £ E),

and
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1% (v E{1}) = [de f (x.E) (1= 1 (x E =€) W (x £ E ¢).

The function W(x,e,E) describes the transition between two electron states withieserg
E+¢ and E at the positionx . This transition is due to the Coulomb interaction with other

electrons, coupling to phonons, or coupling to magnetic impurities [2].

7.1.2.3 Numerical solution

To calculate the electronic energy distribution functi6fw, £), Frederic Pierre has
developed a C++ code based on a relaxation method. Starting from iahdisiribution

f(x,E,r=0), it is let to evolve according to the non-stationary diffusive Baitzm

equation:
010%f(x,E.t O
f(x E.+3t)=f(x,E ) +A%TZ% +1, (x.E{f} f)% 9)

where A\ is a parameter optimized at each iteration to accelemateergence. When the
energy distribution function does not evolve any more, the obtained functlmsslution of
the stationary Boltzmann equation (7). In the collision term, inelgstcesses, such as
electron-electron interaction, electron-phonon interaction, electron-m@agmapurities

interaction are included.
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Figure 3: Graphic interface of the C++ code thdtuates the distribution function of electro /(E) in a
metallic wire connected at both ends to electradade of normal or superconducting metal. The catimn
takes into account electron-electron interactiolecteon-phonon interaction and coupling with magnet
impurities. We have added a routine to convc /' (E) with any function to be able to compare calculatidth
measurements of the differential conductance afnadl junction formed between the out-of-equilibtiwvire
and a probe electrode.

7.1.3 Inelastic scattering mechanisms

In this part, we describe the theoretical predictions for thestelaollision term of
the Boltzmann equation associated with Coulomb electron-electron ctidaraelectron-
phonon interaction and electron-magnetic impurity (KIM) interaction.fireetwo rates have
been described in the thesis of S. Guéron [11] and F. Pierre [1]. Fptetimm, we derive

them again here, together with the KIM interaction rate.
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7.1.3.1 Coulomb interaction between electrons

Altshuleret al. have calculated the energy exchange rate between electroosi&ss
with Coulomb interaction [12]. They consider quasiparticles with aiglifé motion, which
interact by Coulomb interaction screened by an effective mediumitcoedtby all the

electrons of the metal.
This leads to

W(x.e.E)=W(g) =K(e) [dEf(x,E") (L= f(x.E+E)), (10)

where the kernel of the electron-electron interactof) is, according to the Fermi Golden

Rule:

27 v 0O 2
K(e)=2L F%a <M£> , 11
( ) h H? H | ( )| disorder ( )
wherell],..... is the average on the scatterers positiththe sample volumey- the density
of states at the Fermi level arW ((c:)|2 the average square of the matrix element for the
interaction between electrons with energy trans{see Figure 4).

i e k

Figure 4: Diagram representing the exchange ohangy £ between two quasiparticles.

The matrix element writes:

M () = <|M,~,k,|2>EJ,_Ei=_£ ,

B -F =¢
with
M, :Idrdr'LP,.(r)LP?(r)Ug,h (r —r') W, (r') LI-’,](r')

(r =) 0, () W (1) )

+ J'drdr'q-’,. (r)w)(r)U

eln

where theW(r) are the electronic wave functions in real space. Sign (+¢gmonds to the
antisymmetric spin state of the initial two-electron syst&ign (-) to the symmetric spin state

(The spin state of the final two-electron system remains dhee sas the initial one). The
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potential U,,, (r—r") is the temporal Fourier transform of the microscopic interaction

potential between electrons.

The squared of the matrix eIem#M(&)|2 has two types of contributions (see Figure 5). The
first type (left of Figure 5), for whick’=j, ;'=i, k’=1[, and/’ =k always contributes. The
second type (right of Figure 5), for which=j, j'=k, k’=1[, and/’=i and for which a
phase associated with the scatterers position remains, contrimitesfor short range

interaction and is neglected in the followirfig3].

b)

Figure 5: Diagrams that should contribute to theluhas squared of the disorder-averaged matrix alenTédne
cross term b), which contributes for short randerarction is neglected in the following.

Therefore,
271
K (8) - 7 v, Q J'drdr'dr"dr”'Ug,h (l‘ r ) U—g/h (I’" —I‘"')
(13)
(@)W ) R ) ) B R )
175k =€ [ disorder

In the diffusive regime, far from the metal-insulator transitibrve disorder-averaged of

(W, (r)W(r) W (r") W (r)), , . does not depend on the statesid; but on their energy
difference and is equal to (see appendix 1):

" " _¢ dk % Dk’® —
<<LP‘ (r) (), () 1+ )>EJE>d,d _I(Zn)a ZhN(g )* 1 DA+ slh)zek |
F

with N(E,)=v,Q, and D the electronic diffusion coefficient. It follows from (13):

! This term gives rise to an enhancement of thea@yeof the squared matrix element with a prefadémendent
on the screening of the interaction. This prefactdrich depends on the nature of the material, rfeasbeen
calculated for the one-dimension case.
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K(e)=

U Dg?
4nAh3 qu| Ug/h | 2q4 N (flh)zﬁ . (14)

The screened Coulomb interactidi,,,(q) is expressed in terms of the bare Coulomb

interactionU (¢) and of the polarizability1(g, &) of the electronic fluid:

U
U, (q) _1+ ﬂ(q,s/‘f‘i)Uo (q),

(15)

with

Dq*
Mg, elh)=v,—————.

(a.6/7) " Dq* —iclh
In a metal, the density of statesy, is of the order of 10" J* n® and
N(q,e/7)U,(q) ~V,S.e’1g,~10° > 1 (S, is the wire cross-section) so that the screened
Coulomb potential simplifies to:

1

U, (q)ZW.

It follows:

dq
Kle)= .
(8) 472.4VFh3J-D2q4 + (flh)z

(16)

In a metallic wire of widthw and thickness for energiese smaller thanzD/ max@?’ ),

only the uniform modes in the transverse dimensions contribu(e(tc), leading to:
K(e)=(v2D mn* v, 5.} £, (17)

where S, = wt is the wire cross-section.

For a reason that we could not trace out, this derivation givesaciaefor K (5) smaller by
a factor 2 than the result of Kamenev and Andreev [14]. In the following, we veiflteetheir

result:

K(e)=(VDI2 mi*® v, s,)" £, (18)
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7.1.3.2 Electron-phonon interaction

The theoretical assumptions [1] made to calculate the electron-phaeoaction are

the following:

(1) the phonon temperatui® is small compared to the Debye tempera@@eThen only
the acoustic branch of the phonons has to be taken into account and theodispersi
relation between the energy and the wave vectifra phonon is, =sq, wheres is

the sound velocity;

(i) the electronic wave functions are plane wave ones and not the diffwsive
functions used in the calculation of electron-electron interaction. agpsoximation
is justified by the fact that phonons only play a role for largergee® which
correspond, through the dispersion relation, to lengths of the same orsimalber

than the electronic mean free path in the considered wire.

(i)  finite size effects for phonons are neglected because the phonons wir¢hare

coupled to phonons of the substrate, leading to a continuous energy spectrum.

(iv)  coupling between electrons and phonons is described by a scalar defiormati
potential. Thus, only the longitudinal phonon mode is coupled to electrons and the
square of the matrix element for the electron-phonon interaction is
M (q)| =|M,| ¢/ Q, where |M,|" does not depend on the geometry [15]. This
approximation is valid when the Fermi surface is spherical, whscla igood

approximation in copper, silver and gold.

According to the Fermi Golden Rule, the transition faje between two electronic states of

wave vectok andk’ is:

L k=K’
_ 27”|M | L I{(;(Ek ~Eove )11 (B + ) (50

+0(E, ~E, _‘S\k—k'\)(l_f (£ _‘?k—k'\))(”ph(‘?k—k\) +3} :

M
(19)

wheren,, (e) is the Bose energy distribution function of the phonons.

To obtain the raté™, (¢) at which an electron with a wave vectoemits (€ >0) or absorbs
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(£ < 0) a phonon of energy, the previous equation has to be summed over the gtateth

¢ fixed. This leads to:

2

" (8)= ey Ml (L7 (=) (n, () +6(2)). (20)

where (&) is the Heaviside function.

The electron-phonon interaction rate is then written:
W(x,e,E)=W(€) =k, £ (nph (le]) +¢9(s)), (21)

where «, =|MO|2/ (2nh5s3vF) is a constant that can be estimated from the temperature
dependence of the phase coherence time. In our experimental conditioreffettieof
electron-phonon coupling is a small correction to the distribution functdoulated with

direct interaction between electrons.

7.1.3.3 KIM interaction

In order to properly describe the collision term due to coupling otretex with
magnetic impurities, it is necessary to go beyond the perturbdimoryt given in the
introduction. The complication arises from the fact that the ren@atian of the coupling
between electrons and magnetic impurities depends on the non-equilitecirorec energy
distribution function. The calculation developed in [16], presented below, it ei#ther at
equilibrium well above Kondo temperature, or out-of-equilibrium for seffity smeared

distribution functions, in presence or not of a magnetic field.

We now present briefly this calculation, which gives the collisimiegral for spinS=7:
impurities. Magnetic impurities are assumed to have a deggjtgmall enough so that they
do not interact one with another, and so that an electron is only couped impurity at a

time.

The explicit form of (x,&,E) is the following:

2
F

where J(x,s,E) is the renormalized coupling constant between electrons and a magnet
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impurity, v, is the metal density of state, anib(x,e,E) is the Fourier transform of a spin-

spin correlation function, which can be split as

C(xi)= C, (x,1)+C_(x,1)

+C, (x,t), (23)

where

The averages are performed on the electron spin-states and €nezgjbted with the non-

equilibrium distribution function determined self-consistently.
If the coupling between electrons and magnetic impurity is weage th@relators only result
from the spin relaxation and are equal to:
C.(£)=2mP. o &7 E,)
C.(e)=n3( 912,
where P, is the occupation probability for impurity spin-up or spin-down states fani$ the

Zeeman splitting between these two states. These probabiléiedetermined by a master

equation:
I - rp+r.p
dt ST (24)
P +P =1

+

whererl . are the inverse life times of the spin-up and spin-down states.

If the coupling between electrons and magnetic impurity is strbegtime evolution of’(?)

is governed by the Hamiltonian of the electrons-magnetic impuysyes, which reads
H=H,+H, where H, = Zs,mc,;cka —-E,S* describes free electrons and an independent
magnetic impurity. Here, Uoperator@;g and ¢, respectively creates and annihilates an
electron in a given staté, with spin o. The energy of this state i . The second term
—-E.S® describes a spin Y2 impurity with Zeeman splittiAg = gu,B, where g is the
gyromagnetic factor of the magnetic impurity guag= eh/(2me) =0.058 meV T is the Bohr

magneton s, is the electron weight). The interaction  Hamiltonian
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H, = Z((ch,;ck,T —Jic ¢, )ST+J ¢/ ¢, ST +J¢ ¢, S7) couples electrons to the impurity
systerh with renormalized coupling constarifs J*, J* or J~ that are different for all spin-
components. The renormalization takes into account the distribution functions in the wire:
‘]0

\/‘1—(77VFJ0)2S(S +1)/4-v,J,g (x ET Ey)

Ji(x, €)=

2

+(y0,) S (S +3

J*(x,6) = Jo : (25)
(100 (5 +3) 14-v,0, (2 (x.6) +2 (x £ 2E,)) 14 +(my0,)' (5 +3

f(x€)-05

: o,
Wlthg(x,s):J'_DdS pprIy 2

where D is here the bandwidth of the conduction electrons.

The spin-spin correlators must be calculated using the renormadizestant and the

projectors:
Vv, (x,w
C, (x.) :1#)2
207 +v,(x, )
(26)
2Py, (x,w)
C, (x,a)) =

(v, wFE,) +v,(x, )"

wherev, , are the Korringa widths, e. the inverse lifetimes of the spin states, equal to

U, (1) = (P 6 (5, @ E,) 1. 6(v. @ E, )
T > @7
Vt(x,w):ZVF {Cz(xa“)-_FEH)+ G (x, (‘)/Pt} ’

with

¢ (v, w) =Id£‘(Jf (x, &) J: (x, €+ +J2 (&) (€+ Q) xf (x, &)(1-f(x, £+ @)

(28)
G (x) = [d e (v, &) T (x, £+ I =/ (x, &)1/ (x. £+ &),

and

. [de f(x.&)(1- 1 (x.€ -E,))
o [de f(x8) (11 (x.8 ~Ey ) x[de f £ 1S (x £ +E,)) (29)
P =1-P,

the probabilities for spin-up or spin-down states calculated neglecting the Komtitha
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7.2 Experimental realization

7.2.1 Accessing the energy distribution functions with a tunnel probe
electrode

As explained in Chapter 2, tunnel spectroscopy allows to obtain theoalemergy
distribution function. We have designed a long and narrow superconducting profwertisa
a tunnel junction with the wire (see Figure 6). At zero magfietd, we use the non-linearity
of the differential conductance of the normal-superconducting tunnel juntdiarbtain
f(E) In a magnetic field larger thad.1T, the probe electrode is no more superconducting
but presents a resistance of abbkf), and we then take advantage of the Coulomb blockade

of tunneling through the junction in series with this resistance.

Figure 6: Left: Schematic of the circuit. A diffusi wire of length L is connected to two reservoirs biased at
different potentialO0 and U . A long and narrow superconducting probe electfodeas a tunnel junction with
the wire in its middle. Right: Micrograph of a sdmgeen at an angle with arrows related to theesponding
elements on the schematic.

In both cases, the differential conductamﬁédV(V) of the tunnel junction can be written:

dl
RTW(V) =1+q Of (eV), (30)

with R,, the resistance of the tunnel junction a;(df) a function dependent on the junction
and environment characteristics (see Chapter 2 for details on the determinaryi()ﬂ)()f

When the probe electrode is superconductjf(@) =0n, /0E with n, the reduced density of

states in the superconducting probe, and the energy distribution futf((tlbhis obtained by
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numerical deconvolution afz’I/dV(V) using Eq. (30). When the probe electrode is normal,
q(E):J'_:QdE P(s,T)(a(fR(E +&) - fo(E —£))/6E) with P (&) a function that depends
only on the tunnel junction environment a.r)fgl(E) the Fermi distribution at the refrigerator
temperature. In this case, the deconvolution procedure could not be applieda3deis that

the Coulomb singularity is not as sharp as the BCS singularttyasdhe signal to noise ratio

in dl/dV(V) is too small to avoid additional numerical noise during deconvolution. We have
then chosen to fit directly the measured differential conductantte Eg. (30) using the
function ¢(E) as determined in a calibration step and functjof) calculated from a
model. The differential conductance of such a junction shows a broad siipghen
electron interactions are strong and lead to electronic theatahz and a double dip when

only little interaction occurs while electrons travel through the wire (sped=i7).

U=0.2 mV
TD<<Tim TD>>Tint
1‘ T T
m
0
10
>
B
=
-
o
0.8
-0.5 0.0 05 -05 0.0 0.5
V(mV) V(mV)

Figure 7: Top: Calculated distribution functionsthre middle of an out-of-equilibrium wire in twoteeme

cases: T, <T,, (left) and 7,>T,, (right). Bottom: Corresponding calculated diffeieh conductance
dl I/ dV of a tunnel junction formed between the wire aneésistive probe. The cundl/dV shows a double
dip when only little interaction occurs while elemsts travel through the wire, and a broad singfe wihen

electrons thermalize.
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7.2.2 Geometrical and electrical characteristics of the measured samples

The fabrication process of the samples is detailed in Chapteredukéenents of energy
exchange in a magnetic field have been performed on differentlimetédes made of
aluminum, silver, copper or gold. The electrical and geometricabcteaistics of the main
samples measured during this thesis are summarized in Table lioAaldiesults on other

silver samples are presented in Appendix 3.

Sample | Source L(pm) | w (nm) | ¢ (nm) | R (Q) | D (cn? ') | 4 (nm) | 7, (ng)
Al5 AI5SN 5.05 110 45 28.6 64.8 9.5 3.9
Ag,, 120 | Ag6N 21.7 100 45 84.9 215 46.5 21.9
Ag,, V20 | Ag5SN 20.0 108 45 79.6 196 42.5 204
Aub Au4N 5.1 85 45 42 109 23.5 24

Cu5 Cu5N 5.0 105 45 29.5 91 17 2.8

Table 1: Geometrical and electrical characteristitshe measured samples. The length is writfenthe
width w , the thickness , the wire resistance , the diffusion coefficientD , the electronic elastic mean free
path/ and the diffusion time, =1/ D .

The diffusion coefficient is obtained from Einstein’ s relatioav,e’D whereo = L/(Rwt)

is the wire conductivity. The electronic elastic mean free pgitlen as an indication, is

obtained fromD =1/3v./, with v, the Fermi velocity. The value of, and v, used for

aluminum, silver, copper, and gold are summarized in Table 2 [17].

Ve (J'1 m'3) Ve (m s‘l)
silver 1.03x 10" 1.39x10°
copper 1.56¢ 10" 1.57x10°

gold 1.14x 10" 1.39x10°
aluminum 2.15% 10" 2.03x10°

Table 2: Density of states at the Fermi lewgland Fermi velocityv,. in silver, copper, gold, and aluminum

[17].
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7.3 Measurements of energy exchange and comparison with
theoretical predictions

7.3.1 Energy exchange in silver, copper and gold wires

Measurements of energy exchange were performed in silver, copdegoll wires,
which are known to behave differently [1]. Part of the results obtdmethe silver wires
were published in Phys. Rev. Le2l, 076806 (2003). This article is reproduced in Appendix
2. The sample named Sample 1 in the article correspondgyfgvV20 and Sample 2 to

Ag,,120. The results obtained for the copper wire were partly published in [18].

7.3.1.1 Energy exchange at zero magnetic field

7.3.1.1.1 Silver samples

The energy distribution functions measured at the middle of the twan28Hyver
wires are shown in Figure 8 fdy =0.1, 0.2 and 0.3 m. The two samples were obtained
from silver sources with different purityAg,,120: 99.9999%-pure;Ag.,IV20: 99.999%-
pure). Though the diffusion times are very similar in both sampleseribagy distribution
functions differ strongly: inAg,, 120, the energy distribution functions display double steps,
indicating that little interaction occurs; on the contraryAg,, V20, the energy distribution
functions are rounded, indicating that interactions are strong. Theaafa with Eq. (7),
taking into account for the collision term electron-electron inteEmacwith the kernel
K (&)=«,,/£>* (see Eq. (18)), and electron-phonon interaction with the kernel described by
Eq. (21). For the whole dataset of each sample, the single fit p@maisx,, , k,, =8 ns’
being obtained from the phase coherence time measurements [1]. @heeleask,,, are
found to be0.1 ns" meV¥? for Ag, 120 and 2.0 ns* meV* for Ag,IV20. The calculated
theoretical values using the geometrical and electrical deaistcs of the samples (Table 1)
are respectively0.08 n§ meV” and 0.075ns8 meV?. Whereas the intensity of the
interaction inAg,, 120 is in close agreement with the predictions for Coulomb interaction, it is

in Ag,,IV20 much larger, indicating that extra interactions occur in tmgpsa The fact that
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these extra interactions can be accounted for by a Kernel proporntmridle® is not

significant because the data are so close to Fermi functiongedbatly good fits could be

performed with other energy dependences.

Ag,, IV 20

E(meV) E(meV)

Figure 8: Symbols: Distribution functions measuinedhe middle of silver wires made from a 99.999pute
source (left panel) and from a 99.999%-pure soyright panel) for the applied voltag¢U =0.1, 0.2 and
0.3mV. Solid lines: Calculated distribution functions thvian interaction kerneK (&)= k™% with

K,,=0.1ns meV” for Ag, 120 andk,,, =2 ns' meV*? for Ag,,IV20 .

The results obtained on other wires from the three different Stwerces we have used are

presented in Appendix 3.

7.3.1.1.2 Gold and copper samples

The energy distribution functions in the middle of the 5-pum-long coppergald
wires are shown in Figure 9. These distribution functions are veilasi Like for the silver
wires, we tried fits with Eq. (7) and witk (¢) = «,,,/£**. The fit parametek,, is chosen to
account for the measurementstat 0.1 mV. We obtaink,, =2.7 n§ meV* for Cu5 and
K,,=3.5ns meV*? for Au5. When comparing with the experimental data the energy
distribution functions calculated &t = 0.2 and 0.3 m\ using these values &f,,,, it is found
that the discrepancy increases with the applied voltage. Moreoveralthdated theoretical

values using the geometrical and electrical characterisfidhe samples are respectively

0.115 n§ meV? and0.075 n8 meV~?.
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From these data, it is therefore possible to conclude not only thahtdmesity of energy
exchange is larger than predicted for Coulomb interaction, but algo thbaenergy

dependence of the interaction kernel is not the one of Coulomb electron-electron anteracti

f(E)

E(meV) E(meV)

Figure 9: Symbols: Distribution functions measuirethe middle of a copper wire (left panel) andaajold wire
(right panel) for the applied voltagU =0.1, 0.z and 0.3 mV. Solid lines: Calculated distribution functions
with an interaction kerneK (&) = «,,,£ *'* where the parametk,,, is chosen to account for the measurements
at U =0.1 mV. The discrepancy between the measured and cadutlistribution functions increases with the

applied voltage.

7.3.1.1.3 Conclusion on the zero-magnetic-field measurements

Like in [1], we find that the intensity and energy dependence of atitena vary from
sample to sample. The presence of magnetic impurities is thedreidate to explain extra
interactions. Indeed, the zero-magnetic field data can be fit thengpllision term calculated
in section 7.1.3.3. Yet, the set of fit parameters is not single. thus not a proof that
magnetic impurities are really responsible for the extraraot®ns. In order to perform a

more stringent test, we have measured energy exchange insallsdumples as a function of

magnetic field.
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7.3.1.2 Energy exchange in presence of magnetic field

7.3.1.2.1 Qualitative behavior

As explained before, energy exchange in a magnetic field saftbet differential
conductanced]/dV(V) of the tunnel junction formed between the wire and the resistive
probe electrode. The measurdtl/ dV (V) in Ag,,l20 and Ag,,IV20 for different magnetic
field B, and for the applied voltagé =0.1 mV are shown in Figure 10. The behavior of
both samples is once again different: Ag, 120, d//dV does not depend on the applied
magnetic field, proving that the shape ﬁI(E) is not dependent on KIM interaction. In
Ag.,IV20, the broad peak at low magnetic fielddh/ dV" is progressively split in two peaks

as the magnetic field increases, as expected from KIM interaction.
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Figure 10: Measured differential conductardl/dV for different applied magnetic fiellB in samples
Ag,, 120 and Ag,,IV20 for U =0.1 mV. In Ag, 120, dI/dV does not depend on the magnetic field, proving
the absence of KIM interaction. Ag.IV20, the broad peak at low magnetic field dI /dV is split in two
peaks, proving that KIM interaction is reduced. Eheves are offset vertically for clarity.

The same measurements were performedCad and Au5. The measuredi]/dV(V) in

Cu5 and Au5 as a function of the magnetic fieRl for U =0.2 mV are shown in Figure 11.
Because of the shorter diffusion tirng in these samples, a double dip is always found at low
field (at B=0, f(E) also presents sharp steps).@u5, this double dip is first slightly

smeared out, then gets more pronounced as the magnetic field iacfBaisevariation is
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predicted for KIM interaction: the rate of KIM energy excharfiget increases when first
order processes become inelastic before being reduced when theytogatkler with higher
order processes. IAU5, the double dip i/ / dV becomes slightly more pronounced as the

magnetic field increases, indicating that KIM interaction is also of impceta

R, di/dV

V(mV)

Figure 11: Measured differential conductaidl / dV for different applied magnetic fiel B in samplesCu5
and Au5 for U =0.2 mV. In Cu5, the double dip irdl/dV is first slightly smeared out, then gets more
pronounced as the magnetic field increases, refipahe non-monotonous evolution of KIM interactidn
Au5, the double dip itdl / dV becomes slightly more pronounced as the magnetit ihcreases, proving that
KIM interaction plays a role. The curves are offgettically for clarity.

The extra-interactions observed at zero magnetic fieldhgg V20, Cu5 and Au5 can
therefore be attributed to Kondo impurities. The most probable low-Konduetetnre
magnetic impurity miscible in silver is manganesg £ 40 mK). In copper, magnetic
impurities are not well identified but there is experimentadlewce that copper oxide, which
develops at the surface, contributes [19]. In gold, magnetic impucbesd be iron

(7, =300 mK), chromium (, =10 mK), or manganes€/| <10 mK).

7.3.1.2.2 Quantitative comparison

In Ag,, |20, the differential conductancé/ / 4V does not depend on magnetic field. It
can be compared with the differential conductance calculated by coowobftithe energy
distribution function measured in absence of magnetic field with-faaction deduced from

the dI / dV at equilibrium (see Eq. (30) and Chapter 2). This comparison is shagure
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12. There appears a discrepancy between the measured curve andulaedabne at the
position of the dips, which increases with the voltage. Since thisegestcy does not depend
on magnetic field, we attribute it to a heating of the electainthe probe electrode (see
discussion in Section 7.4.3.3). This heating associated with the cumemdlthrough the

probe electrode depends on the ratio between the probe electrodecesigtand the tunnel

resistanceR,. When the probe electrode is superconducting, this effect is noticagiif
because its superconducting properties are not affected by tempersitiang as it remains

much smaller than the critical temperatufe € 1 K).

Measurements of the differential conductance at finite magfietat suggest that KIM
interaction occurs inAg,,IV20, Cu5 and Au5. We can now compare the data with the
theoretical predictions of Section 7.1.2, by including for the calculatioﬁ(dj“) using Eq.
(7) the collision term due to Coulomb electron-electron interactioa¢treh-phonon

interaction and electron-magnetic impurity interaction.

The intensity of the Coulomb interactiaq,, is obtained from the best fit of the large field
B, low U data, where theB -dependent interaction has essentially vanished. For silver
samples, which are the longest, a term of lesser importaacklesl to account for electron-
phonon interaction. The intensity,, of this interaction is fixed tB ns' meV’, a value
deduced from the phase coherence time measurements. The remainingf paergy
exchange was fit with the KIM interaction. In the theory of Kikteraction, several
parameters enter: the Kondo temperatiife the bare coupling constant between electrons
and magnetic impurities/,, the gyromagnetic factor of magnetic impuritigs and the

concentration of impurities, . Yet, some of these parameters are known. The Kondo

mp *
temperatures were fixed at the values deduced from the fit ofe pbaiserence time
measurements (see Chapter 6). These valueg, axrd0 mK for Ag,,IV20 (corresponding to
manganese) anfl, =300 mK for Au5 (corresponding to iron). For copper, equally good fits
can be found for phase coherence time measurements foeetween 0.1 [1] and 0.3 K with

¢,, from 0.1 to 0.2 ppm. We have found that the best fits of the energy erchang

imp

measurements were obtained =300 mK. The problem of a fine determination of the

Kondo temperature of impurities in copper arises because the nataegoétic impurities is
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di/dV (uS)

Figure 12: Symbols: Measured differential conductaim Ag,, 120 at B=0.6 T for applied voltage U =0.1,
0.2 and 0.3mV. Solid line: Calculated differential conductancg @onvolving the measured distribution
function at B=0 with the function ¢ deduced from the Coulomb blockade signal at duiiin. The
discrepancy between the measured curve and thelat®id one at the position of the dips increasdh thie
voltage and is attributed to a heating of the preleetrode (see discussion in Section 7.4.3.3).

unknown. The coupling constant between electrons and magnetic impuritgstesl to the
Kondo temperature by, 7, =De™™ whereD ~1 eV is the characteristic bandwidth of the
conduction electrons and is fixed. Therefore only two fit parameteed c,,, remain for
KIM interaction.

The results of this procedure féy,,IV20 and Cu5 are presented on Figure 13 and Figure
14. For both samples, the whole voltage and magnetic field dependencedesmtriged with
three significant fits parameters (summarized in Table 3). @teesponding energy
distribution functions are also shown.

For Au5 the agreement on the whole voltage and magnetic field dependemaesis good
(see Figure 15 ). This might be due to the fact that magnepierines are correlated due to

the tendency of clustering of iron in gold [20].
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Figure 13: Top: Symbols: Measured differential asctdnce inAg,, V20 for different applied magnetic field
for the applied voltage/ =0.1, 0.2, 0.3 m\. The curves have been vertically offset by step$.633, for
clarity. Solid lines: Fits with theory includingegltron-electron interaction, electron-phonon irdéosm and KIM
interaction. The fit parameters arg,, = 0.5 ns' meVV?, ¢, =17 ppm and g =2.9. Other parameters were
fixed: 7, =40 mK, v,J,=0.08, «x, =8 ns' meV and 7, =40 mK. Bottom: Symbols: Measured energy
distribution functions atB =0. Solid lines: Calculated energy distribution fuons with the parameters listed
above. The curves have been vertically offset bgssof 0.2, for clarity.
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Figure 14: Top: Symbols: Measured differential asetdnce ir Cu5 for different applied magnetic field for the
applied voltageU =0.1, 0.2, 0.3 m\. The curves have been vertically offset by step8.@33, for clarity. The
curves are not symmetric because the probe electpodition is slightly different fronx =1/2: x =0.485.
Solid lines: Fits with theory including electroreetron interaction, electron-phonon interaction dQi
interaction. The fit parameters ak,,, =0.4 ns' meV¥?, ¢, =4.8 ppm and g =2.3. Other parameters were
fixed: 7, =300 mK andv,J, =0.1. Bottom: Symbols: Measured energy distributioncfions at 3 =0. Solid
lines: Calculated energy distribution functionshntihe parameters listed above. The curves have \ménally
offset by steps of 0.2, for clarity.
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Figure 15: Top: Symbols: Measured differential aactdnce ir Au5 for different applied magnetic field for the
applied voltageU = 0.1, 0.2 mVv. The curves have been vertically offset by step8.833, for clarity. Solid
lines: Fits with theory including electron-electriomeraction, electron-phonon interaction and Kliieraction.
The fit parameters artk,,, =0.4 nsg meV*?, ¢, =8 ppm and g=3.4. Other parameters were fixed:
T =300 mK andv,J, =0.1. Bottom: Symbols: Measured energy distributionctions at B=0. Solid lines:
Calculated energy distribution functions with tterameters listed above. The curves have been algrtaffset
by steps of 0.2, for clarity
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7.3.1.2.3 Discussion
The fit parameters used to account for the data are summariZetle 3 as well as

the predicted intensity of Coulomb interactigfj, .

e-e interaction e-ph KIM interactions
Ky (NS mev??) interaction

Sample | p (sz 5-1) S, (x103pmz) Ko, K, Ka(ns') | T (mK) | vid | ¢, (ppm) | &
Al5 64.8 4.95 0.06 | 0.06%0.02 4 - - - -
Ag,, 120 215 45 0.08 | 0.1£0.02 8 - - - -
Ag,, IV20 196 4.86 0.075 | 0.5+0.1 8 40 0.08 17 2.9
Au5 109 3.825 0.12 0.4+0.2 - 300 0.1 8 3.4
Cu5 91 4.725 0.075 | 0.4%0.2 - 300 0.1 4.8 2.3

Table 3: Parameters and fit parametérdd characters) used to account for the measured edegipution functions and
differential conductance when electron-electroacgbn—phonon and KIM interactions are included.

Coulomb electron-electron interaction

th

In Ag,l20, «,,, is close tok;,. In contrast in the three other samplgg, is larger than
predicted, even if the uncertainty ag, in these samples displaying KIM interaction is larger
because fits are made only on low-voltage high magnetic field ufllee accessible
magnetic field was not high enough to reach the Coulomb-interaction-denhiregime at

large voltage.

KIM interaction
Increased interactions at intermediate fields

InAg,, V20, the measurement is not sensitive to the expected increasekdMheteraction

rate for intermediate fields becauﬁéE) is already close to a Fermi functionat=0.
Renormalization effect

In order to evaluate the renormalization effectnwe have calculated the collision term in
Eq. (1) K (&)= k,/€?) with the parameters,,, and J, found to fit the data ofg,,IV20,
assumingS =1/2: «, =0.004 ns. The result for/(£) is shown forU =0.1 mV together
with the calculated distribution function using renormalization and dhee sparameters on

Figure 16. One clearly sees that the bare interaction leadsidh less rounding than the
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renormalized one.

1 ._§L~\ T T T ]
Ag,, IV 20

f(E)

Figure 16: Solid line: Calculated energy distribatifunction taking only into account the secondeorth
coupling between electrons and magnetic impuritigls the parameters of Table 3 using Eq. (1). Dddhe:
Calculated distribution function iAg,, V20 for U =0.2 mV taking into account the renormalization of the

coupling between electrons and magnetic impuritieis. seen that the renormalization of the couplionstant
by Kondo effect considerably enhances the intevasti

Concentrations of magnetic impurities

Source Cimp (ppm) CT«: (ppm)
Ag6N <0.1 0.0024
Ag5N 17 0.13
Cu5N 4.8 0.15

Table 4: Fit concentrations deduced from energy@xge measurements, and from phase coherence time
measurements, on samples made of the same source. For sourckgs and CuSN, the concentration

¢, Is found larger tharr,w, suggesting that either pollution arises in theritation process of energy
exchange samples, or the theory for KIM interacisonot sufficient.

The fit concentrations;,,, must be compared with, , the concentrations obtained from the
fits of the measurements of the phase coherence time in long faimecated with the same
source materials. The values are summarized in Table 4. The caticent,,, is found

systematically larger tham, by at least one order of magnitude, suggesting that either
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pollution arises in the fabrication process of energy exchange esmpl the effect of
magnetic impurities is not well described by theory. In order twesdhis problem,

experiments in whick,,, can be controlled are essential.

Effect of the spin value of the magnetic impurities

The concentration,,, is not correctly evaluated in the fits because the magnepiarity spin
is assumed to be Y2, which might be incorrect. According to Ref. [2,16] the produdic,,
enters as a prefactor for the rate. However, this result doeskeinto account the spin
dependence of the renormalized constant. The complete calculationreaspd recently in
[21] and the authors conclude that increasing the value of theS spithe calculation does

not lead to an increased rate.
Sensitivity to the Kondo temperature

The sensitivity of the calculated/ / 4V curves on the Kondo temperature is exemplified on
Figure 17 for parameters fitting Cu%;,, /(v,h)=5, g=2.3 and D=1eV and for two
Kondo temperatures?, =100 mK and 7, =300 mK. The U =0.1 mV curves are nearly
insensitive to7, . At higher voltages, slight differences can be seen, but the resléarly

not very sensitive td@, .

R_dl/dv

T

V(mV) V(mV) V(mV)

Figure 17: Calculated differential conductard//dV for different applied magnetic field with the fike
parameters for KIM interactiorc,, /(v,h) =5, ¢=2.3 and D =1 eV and the different couple of parameters

(T, ,v,J,) =(100 mK,0.08 for the solid lines ani(7,,v,J,) =(300 mK,0.] for the dashed lines. The curves
have been vertically offset for clarity.
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Gyromagnetic factor of magnetic impurities
The value of the gyromagnetic factor of magnetic impurities depmmdsany parameters: the
spin-orbit coupling, the crystalline field [22] ... For diluted mangamegirities in different
matrices, it is however predicted that~ 2. Yet, the magnetic field at the position of the
samples is not measured but calculated from the characteoisties superconducting coil. A
10 % error on the value oB due to the evaluation of the exact position of the sample cannot
be excluded, and corresponds to a 10% error og-thetor. This does not account for the

whole discrepancy.

In parallel with this work, F. Pierre and N.O. Birge have meastivedAharonov-Bohm
oscillations in copper rings as a function of the magnetic field. [2Bjaronov-Bohm
oscillations are recovered at large magnetic field demomgjréttet magnetic impurities are
also present, and that electronic coherence increases when magpatites are polarized.
To account for their data they need to introduce the gyromagnetioe tdicche impurity: it is
found equal to 0.9. The impurities are also believed to be associdtedopper oxide, but
the discrepancy in thefactor between this experiment and energy exchange measuresnents

not understood.

7.3.2 Energy exchange in an aluminum wire

Measurements of energy exchange in an aluminum wire in its natatal should
provide information on the electron-phonon coupling, which we naively expectes l&mge
since it is responsible for the phase transition to a supercondutditee Such energy
exchange measurements had never been performed before becauseehpegwiaisly based
on superconductivity in aluminum. In our new set-up using Coulomb blockade whierdadot
probe electrode and the wire are in the normal states, measwemmeatuminum can be
performed. Information on electron-phonon interaction was already inferretlminum
from analysis of the resistivity and electron dephasing rateeinemperature range 1-300 K
[24]. The theoretical predictions for electron-phonon interaction in alumiemenperformed

like for other metals [25] (see section 7.1.3.2).
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The sampleAl5 consists of a 5-um long aluminum wire (see parameters inslrable 6).
Measurements of the conductance of the probe junction as a function ofolsge and
magnetic field are shown in Figure 18. The differential conductance riiiedepend on the
magnetic field, proving that KIM interaction is not relevant in tkasnple. This is indeed
expected because the Kondo temperatéesf magnetic impurities in aluminum are higher
than in silver, copper or gold;, varies exponentially witlv, which is roughly twice as large
in aluminum as in other metals. For the energies probed in thisirepér nothing is

therefore magnetic.

4 B=2T

B=1T

B=0.6T

R, di/dV

Figure 18: Symbols: Differential conductard//dV of a tunnel junction between a resistive probetedele
and an aluminum wire as a function of the biasag# U across the wire and the applied magnetic 1B dThe
curves have been vertically offset for clarity. étthe voltagesd/ / dV does not depend on the magnetic field,
proving the absence of KIM interaction. Solid Bn&it with the parameters of Table 3, which a shme for
all values of the magnetic field.

To test electron-phonon interaction, the bias voltageof the wire was increased to large
values for which the electron-phonon interaction contributes significamtyergy exchange

(see Figure 19). The results are shown on Figure 20.
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Figure 19: Influence of the electron-phonon intéoacon the differential conductancdl / dV  of the tunnel
junction of the sampleAl5 for different wire bias voltageU . Solid lines: «x,, =0. Dashed lines:
K, =0.4ns' meV’. Dotted lines: k,, =0.8ns" meV (see other parameters in Table 3). Electron-phonon
interaction has a non-negligible effect only foe thrger wire bias voltage.

The data are perfectly fit using for the electron-phonon interaatioimelastic collision term

of the form of section 7.1.3.2. The amplitude of this term is found t& pe 4 ns" meV’.

The value in aluminum can be compared with the one deduced from phasencehene
measurements. The dephasing rate due to electron-phonon interactidtteis B&F° where
B=6&(3)k ,k; with &(3)=1.2, the Rieman zeta function (see Chapter 6). In [26], it was
found B, =0.9ns K’, leading to x,, =2 ns’ meV’, which is of the same order of
magnitude as our experimental value. Surprisingly, the amplitude & thim,
K, =4 ns' meV, is in fact smaller than the one found in silver wirg, (=8 ns' meV’).
B

According to [24] the value oB in silver is such a8 This non-intuitive result

aluminum silver*

provides from the difference between the sound velocity, the densitiatek sand solid

density of both metals.
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di/dV (uS)

Figure 20: Symbols: Measured bias voltiU >dependence of the differential conductance ofnaeljunction
between a normal resistive tunnel junction andlamimum wire in an applied magnetic fie B=2 T. The data
have been vertically offset at/ normalized tcU for clarity. Lines: Fits with the parameters sumized in

Table 3.

7.4 Experimental control

7.4.1 Reservoir heating

When a voltageU is applied between the reservoirs, the powerU?/2R is
dissipated in each reservoir. Although these reservoirs are thrknbmize heating, heating
effects are observed when the wire resistance is small [27]. Btiadheffects were evaluated

by F. Pierre in [1]. The reservoir temperature can be written:

T, =\1; +(BU)",

with 7, the base temperature atl a coefficient dependent on the wire resistance, on the
geometry of the reservoirs and on the nature of the metal. Typioalbur experiments, it is
found that 8°R ~10Q K> mV?. The coefficients were fit parameters for experimental

data but their influence is mostly visible in short wires on the sharpesifjiag large voltage
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curves. The values off used for the different samples are summarized in Table 5. The

geometry of the two reservoirs being slightly different, twoedéht values are used, for

the ground reservoir ang, for the other one.

Sample B, (Kmv™) B, (KmV™?)
Al5 0.13 0.16

Ag, 120 |0 0

Ag,, V20 |0 0

Au5 0.5 0.5

Cu5 0.5 0.5

Table 5: Heating coefficient due to the injectevpr in the ground reservojf, and the biased reservoir
B, for all the measured samples. The less residtizavire, the larger the injected power and the drigh.
For some samples, < B, because of the small difference in the resenggametry.

The effect of reservoirs heating is exemplified on Figure 2itHersample Cu5. Heating

effects are visible at the dips of the differential conductancees, which correspond to the

step positions of the distribution functions.

V(mV)

R, difdv

E(meV) E(meV) E(meV)

Figure 21: Calculated differential conductand//dV and energy distribution function f(E) with the
parameters found to account for the data of Cub {&&ble 3) taking into account heating of the nesies

(dashed line) or neglecting it (solid lines).
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7.4.2 Measurements with a superconducting probe

Measurements with superconducting probes have been performed for adesnry
the Quantronics group. The deconvolution procedur& ¢/}’ and experimental controls are
described in [11] and [1].

Here, a complication arises from the fact that the probe etkctwas designed long and
narrow and presents a non-negligible impedance, even in its supercongtatingompared

to the resistance quantumR,. This results in corrections tad//dV due to dynamical
Coulomb blockade of tunneling. At frequencies smaller tl2&v%, an aluminum wire
behaves like a pure inductor. Its kinetic inductance is equﬁa‘?,tb(m) , WhereR, is the wire
resistance per unit length in the normal state. At frequencies &#oie, Cooper pairs can
be broken into two quasiparticles and the aluminum probe electrode bedigsipative. The
admittanceY(a)) per unit length of a diffusive superconducting wire has been caldulate
within the framework of the BCS theory [28]. At zero temperature,real and imaginary

parts ofY (w) are given by:
1 AN P\
Yl(w):R_p%H_ E(k(w) —%E(k( a))% forh w=2A, (31)

1 A L, ag

Y,(w)=—F— +—E(k(w) -1 - Kk’ 32
(= Bl ey e

wherek(w):|(2A—ha))/(2A+h a)| k’(w):(l—k(a))z)llz, E and K are complete elliptic

integrals, andR, is the superconducting wire resistance in its normal statehen t

superconducting state, the environment impedance of the junction of capacitateen:

75 ()= !

Y (w)+iY, (@) +iCw

(33)

At zero temperature, the differential conductanﬂgw/dV(V) of the tunnel junction in
presence of an electromagnetic environment is just the convolution ofliffieeential
conductanced]/dV(V) of the tunnel junction without any environment with the probability
P(E) that a part of the energy is released to the environment of impedg, [29,30] (see
also appendix of Chapter 2).
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The functionP(E) presents two parts: a delta function at zero energy corresponding to elastic
tunneling, and an inelastic part for energies larger tan The weight of the zero energy

peak, which isL00 % in absence of Coulomb blockade, is in this case:

+o00 Re ZS D
Re(Z,, () dcuﬁ (3
w

The inelastic contribution to the differential conductance is non zeyofani/oltages larger

W, = expﬁ-q’

K

than3A /e since the inelastic part dT(E/e) is non-zero only for voltages larger thaa /e,
and sinced]/dV(V) of the normal-superconducting tunnel junction is non-zero only for

voltages larger than /e . Therefore, fo” <3A/e, di,, /dV(V) is simply renormalized:

dl,, 1dv(v)=w,dllav(V), (35)

an effect that can be interpreted as a renormalization of theltaonductance. As an
example,d]enV/dV(V) of the sample Cu5 is presented in Figure 22. A rounded step appears
in the curve atV =3A/e. Without any environment,d]/dV(V) is predicted to be
proportional to the convolution of the BCS density of states in the superctmigdelectrode
with the derivative of the Fermi function at the fridge tempeeaigee Chapter 2). The
proportionality factor is the tunnel conductance of the junction. The curesv beltage
3A /e is perfectly fit using a BCS function with =240uV and a tunnel conductance of
20.8 u<. At voltage larger thar8A /e, the tunnel conductance is found to B8 3uS. The
ratio of conductances corresponds to a fadtpr0.89. Conversely, the resistandg of the
probe electrode and the junction capacitaGcean be inferred from the Coulomb blockade
signal in a magnetic field, when the probe electrode is in itsalstate (see Chapter 2). The
weight of the elastic peal, can then be calculated with Egs. (34) usingZ9r Egs (31),
(32), and (33) and is found to b&,6 =0.89, in agreement with the weight deduced from

experiments a3 =0.

A practical drawback of Coulomb blockade effect is that we cannmgsacthe energy
distribution functions forlU| > 2A. The reason is that the structure in i @’ resulting
from the convolution off(E) with a double step, of widtkU , with the BCS density of

states, of width2A , extends down to voltages smaller thaBA/e. The effect of Coulomb
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blockade for these voltages is no more trivial. In practice, we thesenvolvedd! / dv (V)

within the voltage rangf’| <3A.

100

_ 1AV (V)

dl

Figure 22: Symbols: Differential conductandl,, /dV (V) of a normal-superconducting tunnel junction

env

embedded in a superconducting environment. DueQoulomb blockade of tunneling of quasiparticles, a
rounded step appears at the volta+3A/e. Between these voltages, the curve is fit usi®C& density of
states in the superconducting probe (dashed liite)awrenormalized tunnel conductance (solid line).

7.4.3 Measurement with a normal resistive probe

7.4.3.1 Determination of the g-function

For each sample, we have checked that the differential conductartbe afnnel
junction when the wire is at equilibriun/(=0) does not depend on magnetic field (see
Figure 23). The environmental characteristics were deduced frorfit tbk this signal to
Coulomb blockade (see Chapter 2). The parameters for the effectivenenent impedances

are summarized in Table 6.
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Sample | R (kQ) | T (mK) | C (fF) | R, (kQ) | A (peV) w,

Al5 2.06 40 0.92 185 - -
Ag,, 120 1.65 35 0.9 102 237 0.89
Ag, V20 | 1.34 31 0.8 167 240 0.88
Au5 1.68 48 0.95 704 245 0.88
Cu5 1.08 68 0.8 43 240 0.89

Table 6: Environmental characteristics of the tuijmection in the measured samples. The resistafitke
probe electrode is writte®, , its electronic temperaturg, the capacitance of the tunnel junctich, its

tunnel resistanceR,, and the gap and the resulting reduction factoerwthe probe electrode is in its
superconducting staté and i .

6 T T 5]
Ag, V20 | %

)
=
3 8
= 4 o 03T _
° A 06T
o 09T
v 12T
0.01 0.1 1

Figure 23: Symbols: Measured Coulomb blockade §igima the sampleAg,, V20 when the wire is at
equilibrium for different applied magnetic fieldSolid line: Fit of the data using Coulomb blockdbeory and
the parameters summarized in Table 6. The magiieltichas no visible effect.

7.4.3.2 Modelisation of the environment

The critical point in the calibration process of the junction and theéraament
characteristic is the choice of a model for the environment. plaieed in Chapter 2, we just

model the environment as the parallel combination of the probe elecasid&ance and the
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junction capacitance. To check the validity of this model, we haveumshshe Coulomb
blockade singularity when the wire is at equilibrium as a functiorthef refrigerator
temperature,,... The results are shown on Figure 24 for a tunnel junction of resistance
R, =167 kKQ between a 5-um long silver wire and a resistive probe electkpded.67 kQ
(sampleAg,, |15 in appendix 3). The data are perfectly fit just by changing the tempecdtur
the probe electrodg,, . The fit temperaturé’,, differs from the fridge temperaturg,,,. only

at the lowest temperature. This is attributed to spurious electromagnetic noise

1.0F ' ' :
Ifridge Ifit (mK)
o 20 53
o 110 110
A 370 370
>
2 o009t .
© Ag_ IlI5
- Oo gSN
o °  R,=167 ke
Lo R =0.67 kQ
C=1.4 fF
0.8F .
1E-3 0.01 0.1 1
V (mV)

Figure 24: Symbols: Normalized differential condute of a tunnel junction between a normal wire at
equilibrium and a normal resistive probe electradea function of the fridge temperature. Soliddin€it using
the Coulomb blockade theory. The environment ofjthestion is modeled by the parallel combinationitsf
capacitanceC and of the resistance of the probe electr R, When the refrigerator temperatu?,,,,
increases the electronic temperatures in the wideirmthe probe electro(7,, follow. At the lowest temperature,
the discrepancy betwe(7,,. and T, is attributed to spurious electromagnetic noise.

7.4.3.3 Heating of the probe electrode

The electronic temperature in the probe electrode enters in khdatian of the
Coulomb blockade signal, and of the functipr(see Chapter 2). When electrons of the probe
electrode in its resistive state are heated up, coupling to the phanas efficient to
thermalize them at the refrigerator temperature becauseriigss is scarce and the probe

electrode volume small. Assuming that the electrons in the resatvibie end of the probe
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electrode are at the fridge temperatufe (see Figure 25), one obtains the electronic

temperature at the position of the tunnel junction by solving a heati@gwath a source

[, R
T(V)= 7;2+R%’V2/[L, (36)
T

where L is the Lorenz numberR, the probe electrode resistance aRg the tunnel

term:

resistance.

For example, forAg, 120, where R, =1.65 k2 and R, =102 kKQ, the temperaturd” at the

junction position dependence on the applied voltage shown on Figure 25.

0.0 0j1 0.2
V (mV)

Figure 25: Left: Schematic of the circuit measurein&lectrons of the probe electrode are heatethyuthe
measurement current only by their diffusive flowth® contact a7, . Right: Electronic temperatui7 in the
probe electrode at the junction position dependemcethe voltage) for the SampleAg, |20 where
R,=1.65kKQ and R, =103 k2.

When the wire is biased out-of-equilibrium by an applied voltegethe energy distribution
function presents a double step and the differential conductére#” of the tunnel junction
two dips atl’ =-U /2 andV =U /2 (see Figure 2 and Figure 7). At these voltagésdl is
very sharp and is therefore very sensitive to the temperaturé/ E@.1, 0.2 and 0.3 m, the
respective electronic temperatures in the probe electrode poshmon of the tunnel junction
are 7'=75,100 and 135 ml. We have then calculated the functignusing these different

temperatures and convolved them with the measured distribution functioBs @t The
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results are shown on Figure 26 together with the measured dif&érentiductance at
B=0.6 T. The discrepancies observed on Figure 12 are suppressed, proving tinanielec
heating of the probe electrode was responsible for the differences.

For the other samples, in whieli / dV is not as sharp, the heating of the probe electrode has

a negligible effect.

di/dV (uS)

Figure 26: Symbols: Measured differential conductaim Ag,, 120 at B=0.6 T for applied voltage U =0.1,
0.2 and 0.3mV. Solid line: Calculated differential conductancg &onvolving the measured distribution
function at B=0 with a functiong calculated with an electronic temperati72dependent oiU and the
parametersR,, C deduced from the fit of the Coulomb blockade aigat equilibrium. The electronic
temperatures were respective7 = 75,100 and 135 m/for U =0.1, 0.2 and 0.3 m' In contrast to Figure 12,
the experimental and calculated curves coincidalffapplied voltages.
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Appendix 1: Derivation of the kernel K(€) of Coulomb electron-
electron interaction from fluctuation-dissipation theorem

In the following, another derivation of the Kernel of interactions betwaectrons is
developed using the fluctuation-dissipation theorem. A mesoscopic visaied as a system
of fermions weakly coupled to a reservoir of bosons (the electrodysamicdes

corresponding to currents and voltages propagating along the wire).
A fermionic system S and a bosonic reservoir R weakly coupled by a locaktidarin space
are considered. The Hamiltonian of this system in second quantification is then:

H=H +H,+H,

Hs = Z gl a;al

H,= z ha, bb, (37)

H, = ef p(x)v(x)ek,

= J'qf ()P (x)dx

whereW(x) = Z W (x) g, andV § ):sz k)b, +V & )b,.

The fermionic operatorg,” anda, respectively creates and annihilates an electron in a given
statel. The energy of this state & The bosonic operatods, andb, respectively creates and
annihilates a photon in a given stateThe energy of this state gy, . The field V(x) is the

local voltage in the fermionic system with a gauge suchAhao.
By application of the Fermi Golden Rule, the rate at which fermiatates/ and p,

respectively occupied and empty decays ihtindp being empty and occupied while the

bosonic environment decays from stat® Q is:

2

Cpr o™ 782 Z ZPR

= sV 1Y ¢ .00, €W, €W 6, 0),

J'w,(x)w;(x)<R|V(x)|Q>dx‘25(g,p +E, ~E,)
(38)

where p, is the probability for the environment to be in the sfate/ denotes an occupied

state,/ the same state but empty, and=¢, -¢,.
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Since the fermionic states taken into account are near the Feurface,
W,(x)W, (x)W,(»)W,(») only depends ore, and x,y and is calledM (x,y.s,). The
average quantity)’(x,7)V (y,0)) only depends onc—y and ¢ and is calledS, (x~y,t).
Then,

2
e

r fz S, (—k, "’)M(k £,)- (39)

FRIpQ

The rate per unit of volume at which electrons lose the enesgytaking into account the

spin conservation between respectively statesid 7, and/ and! , is

N(E)

p(w) = _[dk Sy(hha)Mkha [dEfE) Q-1 € ~h &), (40)

WhereN(EF) is the number of states per unit of energy at the Fermi level.

When a stationary voltage wavd(x,7) =V, cosy ) cosk,x is applied, its spectral density

is VP [&Xk-k)+ Jk+k)[ § @ @) + 6 &+ Q). The electromagnetic field associated to
this voltage iskE (x,1) = k,V, cowy) sir(kx) and the current density in a complex notation:
j(x.t)=0E (x,t)/(1+ik.D Ie,) whereo is the dc-conductivity. The total absorbed power

by electrons in the wire of sectiaf) per unit length is then:

1 oS, k¢
P= <2Re(] E)> T (41)

where( ) denotes the average an

By identification with P =[-p(aw)) + p(—&)] 7 @S, knowing that:

[dE(E) U= f (E ~hay))= m 1

one finds:

V, Dk?
2hN (E,. V1T Dk*+ o

M(k,w) = (42)

wherev, = N(E,)/Q is the density of states per unit of energy and of volume atetrei F
level. This result forM (k,w) is also available fon/ (k,w) and was used in this chapter for

the precedent derivation of the Kernel of electron-electron interaction.

If only Johnson-Nyquist noise is assumed to take place in the wir¢hebyluctuation-
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dissipation theorem, one finds that:

20 how _ 2p

S, (k,w)= =
(k@) Sk 1-e™° Sk*

J'dE f(E) A-f(E+hd). (43)

Then, by substitution in (40) and by identification with:
p(@) =hv,K(Q[dE" f(E) A~ f(E'+h Q) [dEAE) A -f(E-hq), (44)
one obtains
K(€)= (2D mi"? v, S,)* £¥2, (45)

This calculation gives the same results as our first derivatidimen comparing to the
experiment, we nevertheless use a factor twice as largecahasponds to the result of

Kamenev and Andreev [14].
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Appendix 2: Article reporting measurements on the silver wires

We reproduce here the paper published in Phys. Rev9hefi76806 (2003).
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Magnetic-Field-Dependent Quasiparticle Energy Relaxation in Mesoscopic Wires

A. Anthore, FE Pierre, H. Pothier, and D. Esteve

Service de Physique de I’Etat Condensé, Direction des Sciences de la Matiere, CEA-Saclay, 91191 Gif-sur-Yvette, France
(Received 5 August 2002; published 20 February 2003)

In order to find out if magnetic impurities can mediate interactions between quasiparticles in metals,
we have measured the effect of a magnetic field B on the energy distribution function f(E) of
quasiparticles in two silver wires driven out of equilibrium by a bias voltage U. In a sample showing
sharp distributions at B = 0, no magnetic field effect is found, whereas, in the other sample, rounded
distributions at low magnetic field get sharper as B is increased, with a characteristic field proportional
to U. Comparison is made with recent calculations of the effect of magnetic-impurities-mediated

interactions taking into account Kondo physics.

DOI: 10.1103/PhysRevLett.90.076806

The understanding of the phenomena which, at low
temperature, limit the extent of quantum coherence in
electronic transport and allow the quasiparticles to ex-
change energy is presently an important issue in meso-
scopic physics. There is indeed a discrepancy between the
theory [1], which predicts that Coulomb interactions pro-
vide the dominant mechanism for decoherence and for
energy exchange, and measurements of the coherence
time [2,3] or of energy exchange rates [4—7] in numerous
metallic samples. This discrepancy has been attributed
either to a flaw in the theory [2], or to the presence in
these samples of other mechanisms involving the scatter-
ing of electrons by undetected two-level systems or mag-
netic impurities. It has been indeed recently predicted
that even a minute concentration of such scatterers would
result in sizable energy exchange if the Kondo effect
occurs [8-10]. Whereas the limitation of quantum
coherence by the Kondo effect is widely known [11], its
efficiency for mediating energy exchange between quasi-
particles had not been anticipated. In the case of magnetic
impurities, a significant weakening of this effective
electron-electron interaction is furthermore predicted
when a large magnetic field is applied [12]. In order to
test these new predictions and more generally to under-
stand inelastic processes in mesoscopic conductors, we
have investigated the magnetic field dependence of the
energy exchange rate in mesoscopic wires.

The samples are wires connected to reservoirs biased at
potentials 0 and U (see Fig. 1). The energy distribution
function in the middle of the wire, f(E), depends on the
ratio of the typical interaction time 7;, and the diffusion
time of quasiparticles 7, = L?/D. If 7, > 7, interac-
tions can be neglected and f(E) is the average of the
Fermi functions in both reservoirs, which have electro-
chemical potentials shifted by eU. In the experimental
situation where kzT < eU, f(E) is then a two-step func-
tion. In the opposite limit 7;,; < 7p, local equilibrium is
achieved at each coordinate along the wire, and f(E) is a
Fermi function at a temperature given by the balance
between Joule heating and electronic heat conductivity

076806-1 0031-9007/03/90(7)/076806(4)$20.00

PACS numbers: 73.23.—b, 71.10.Ay, 72.10.—d, 72.15.Qm

to the reservoirs: This is the “‘hot-electron” regime [13].
The intermediate regime is of interest for experiments
because the precise shape of f(E) and its dependence on U
are characteristic of the interaction rate and of its energy
dependence [4].

Wl
—>
Py
<

04 00 04
V(mV)

04 00 04
V(mV)

FIG. 1. Top: Layout of the experiment: Awire is connected to
two large electrodes biased at potentials 0 and U. A resistive
probe electrode (in grey) forms a tunnel junction with the wire.
At equilibrium (U = 0), the differential conductance dI/dV (V)
of this junction displays a dip at zero bias, due to Coulomb
blockade of tunneling (left). When the quasiparticles of the
wire are driven out of equilibrium by a finite voltage U (right),
their energy distribution function f(E) depends on the inter-
action rate between quasiparticles. In the absence of interac-
tions, f(E) is a two-step function and dI/dV(V) presents two
dips (solid lines). With strong interactions, f(E) is rounded, and
dl/dV(V) presents a broad dip (dashed lines).

© 2003 The American Physical Society 076806-1
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At zero magnetic field, the distribution function f(F)
can be inferred from the differential conductance
dI/dV(V) of a tunnel junction between the central part
of the wire and a superconducting (aluminum) probe
electrode biased at potential V [4]. In magnetic fields
larger than the critical field B. ~ 0.1 T of the supercon-
ducting electrode, another method is required. Here, we
have taken advantage of the nonlinearity of the current-
voltage characteristic of a tunnel junction placed in series
with a resistance R. When both electrodes of the junction
are in the normal state and at thermal equilibrium, the
differential conductance dI/dV(V) displays a dip at
V =0 (see Fig. 1), due to the Coulomb blockade of
tunneling [14]. Assuming that the two electrodes have
different distribution functions f and f,., the differential
conductance reads

dl 1
W(V) = R—deEf(E)fdsP(S)

X %[fref(E +eV + 8) - fref(E + eV — 8)],
(1)

where Ry is the tunnel resistance of the junction, and
P(e) = [ ¢/W+iet/h the probability for an electron to
tunnel through the barrier while releasing to the environ-
ment an energy &, J(1) = [42({2Re[Z(w)]}/Ri)[(e™ /" —
1)/(1 — e~ m@/kT)] with Z(w) = 1/(1/R + jCw), C the
junction capacitance, Rx = h/e* = 25.8 k() the resis-
tance quantum, and 7 the environment temperature. In
the case where the distribution function f(E) presents two
steps, as in Fig. 1, and f; is a Fermi function at tem-
perature 7, one obtains, by linearity, two dips in
dI/dV(V)atV =0 and V = —U. In contrast, in the hot
electron regime, dI/dV(V) displays a broad dip centered
at V= —U/2 (see Fig. 1). In the experiments, a large
series impedance at the relevant frequencies (up to about
50 GHz) was obtained by designing the probe electrode
as a long, narrow, and thin aluminum electrode
(25 pm X 150 nm X 12 nm), which presents a resistance
R ~ 1.5 kQ in the normal state.

We present here the results obtained on two silver
samples in which the distribution functions found at
B =0 were extremely different. The samples were ob-
tained from nominally five-nines purity (99.999%,
sample No. 1) and six-nines purity (99.9999%, sample
No. 2) source material. For both wires, the length and
cross-section area are L = 20 pm, S = 100 nm X 48 nm.
The diffusion constants D = 196 and 215 cm?/s, respec-
tively, were deduced from the low temperature resistance.
The tunnel resistances Ry (167 and 102 k()) and the
capacitances C (0.8 and 0.9 fF) of the junctions, as well
as the environment resistances R (1.34 and 1.65 k{()), were
obtained from fits with Eq. (1) of dI/dV(V) measured at
B = 0.3 Tand U = 0. We have checked that these curves
do not change with B when B > B,.
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At low magnetic field and low temperature, the probe
electrode is superconducting. Its impedance is purely
imaginary at frequencies lower than 2A /A [15]. It results
that for eV € [-3A + U, 3A] Coulomb blockade leads
only to a reduction of the differential conductance, which
is multiplied by a factor exp(— [{ %‘"{2 Re[Z(w)]/
Rg}) ~ 0.9. Numerical deconvolution of dI/dV(V) is
therefore possible, and the distribution functions ob-
tained at U = 0.15 mV are presented in the top of Fig. 2
for both samples. Whereas f(E) is close to a double-step
function in sample No. 2, it is much more rounded in
sample No. 1, indicating that the energy exchange rate is
much larger in the latter, since the diffusion times are
very similar (7, = L?>/D =~20ns). In the bottom of
Fig. 2, we plot the calculated RydI/dV (V) using formula
(1) with f(E) the distribution function measured at B = 0
(dashed curves), and present the measured curves for B =
0.3 T and B = 1.2 T (symbols) [16]. In sample No. 2, the
magnetic field has no visible effect. Note, however, that
the distribution functions are so close to a double step that
the experiment is not sensitive enough to detect a possible
slight reduction of the energy exchange rate with B. In
contrast, in sample No. 1, the rounded dip at zero field is
replaced at 1.2 T by a double dip, showing that the energy
exchange rate has been reduced. Figure 3 shows the
evolution of dI/dV(V) with magnetic field, from 0.3 to
1.5 T by steps of 0.3 T, for U = 0.1, 0.2, and 0.3 mV. A
similar behavior is observed at all values of U: The low-
field broad conductance dip at B = 0.3 T tends to be

Sample #1 Sample #2
a) - - - -
w
—0.I15 0.60 ) —0.I15 0.60
E (meV) E (meV)
b) AN ’ \ ’
0.90f N S oT [N e S 00
Tme--T cale.)r ‘.7 ~/ {085
> 0.85} . 4 ) X L
2 &
= I & | . 10.90
T 09 03T
o 0.85} I 10-8%
0.90+ 112T I 10.90
0.85¢ . [ % #1088
-0.15 0.00 -0.15 0.00
V (mV) V (mV)
FIG. 2. (a) Symbols: Distribution functions f(E) at U =

0.15 mV and zero magnetic field in samples No. 1 and No. 2,
obtained by deconvolution of dI/dV(V) with the probe elec-
trode in the superconducting state. Solid lines: Fits with theory
including the effect of Kondo impurities (see text). (b) Dashed
line: Calculated Coulomb blockade signal dI/dV (V) using the
measured f(E) at B = 0. Symbols: Measured dI/dV(V) at U =
0.15 mV, with B = 0.3 and 1.2 T, the probe electrode being in
the resistive state. Solid line: Fits with theory.
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U=0.1 mV
15T

/

U=0.2 mV U=0.3 mV

/

03T .

-0.1 0.0 -0.2 0.0 -0.3 0.0
V (mV) V (mV) V (mV)

FIG. 3. Magnetic field effect in sample No. 1: differential
conductance dI/dV(V) at U = 0.1, 0.2 and 0.3 mV, for B
ranging (from bottom to top) from 0.3 to 1.5 T by steps of
0.3 T. Successive curves have been vertically offset by steps of
0.033, for clarity.

replaced at large fields by a double-dip structure. In
particular, the crossover field at which dI/dV (V) is nearly
constant over a broad voltage range is 0.6 T at U =
0.1 mV,09 Tat U = 0.15 mV (not shown), 1.2 Tat U =
0.2mV, and 1.5 T at U = 0.25 mV (not shown), hence,
presenting a linear increase with U. The comparison of
the raw data on sample No. 1 and sample No. 2 in Fig. 2
already allows one to conclude that sample No. 1 presents
an extra interaction which can be strongly reduced by
applying a magnetic field.

We now compare the experimental data with theoreti-
cal predictions. The distribution function is calculated by
solving the stationary Boltzmann equation in the diffu-
sive regime [18,19]:

1 &fE) _
Tp 8x2

- Ii;noll (X, E’ {f}) + Igg[t] (xr E! {.f})’ (2)

where I and IO are the rates at which quasiparticles
are scattered in and out of a state at energy E by inelastic
processes. Assuming that the dominant inelastic process
is a two-quasiparticle interaction which is local on the
scale of variations of the distribution function,

Iy = [ dedE K31~ FFR0  F5) @)

where the shorthand f% stands for f(x, E). The out-
collision term J2y, has a similar form. The kernel func-
tion K(g) is proportional to the averaged squared
interaction between two quasiparticles exchanging an
energy €. Coulomb interactions lead, in diffusive wires,
to K(g) = k/&%? [1], where « = (m/D/21*?vpS)™!
with v the density of states at the Fermi level [20].
The B = 0 data for sample No. 2 can be well fit using
this term with k = 0.12 ns~! meV~!/2, of the same order
of magnitude as the theoretical value 0.07 ns~! meV~!/2
[21], and a term of lesser importance describing phonon
emission [22]. The B = 0 data for sample No. 1 can be fit
similarly, with k = 2.4 ns~' meV~!/2; however, the re-
duction of the energy exchange rate with B indicates that
an extra process is present at B = (0. We have in the
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following fixed « to the best fit value obtained for the
large field, low U data, where the B dependent interaction
has essentially vanished: k = 0.5 ns~' meV~'/2 [21]. The
remaining part of the energy exchange rate was fit with
the theory of Goppert et al. [12,23], which accounts for
the effective interaction in the presence of a concentration
c of spin—% impurities, with Kondo temperature T, gyro-
magnetic factor g, and coupling constant J between qua-
siparticles and magnetic impurities. The Kondo effect is
included in this calculation, under the assumption that the
distribution functions are not too sharp, leading to a
renormalization of J depending on the distribution func-
tion itself. The corresponding inelastic integral can also
be written in the form of Eq. (3), but with a K(&) function
depending on the energies E and E' and on f. At zero
magnetic field, the effect of this term on f(E) is similar to
that of a phenomenological kernel K(g) o« 1/&? as found
in [4]. For compatibility with phase-coherence time mea-
surements (see below), the Kondo temperature was fixed
at Tx = 40 mK, which is the Kondo temperature of Mn in
Ag. As shown by solid lines in Figs. 2 and 3, the data can
be accurately reproduced using ¢ = 17 ppm, g = 2.9, and
vJ = 0.08 [24]. Note, however, that according to material
analysis of the silver batch used to fabricate sample No. 1,
no magnetic impurity was present in the source at the
level of 1 ppm. Since in some samples made out of the
same batch the intensity of the energy exchange rate
measured at B = 0 was found to be up to 4 times smaller,
pollution of the sample during fabrication might, at least
partly, explain this large impurity concentration.

The impurity concentration deduced from the fits of
f(E) must be further compared with the one obtained
from the analysis of measurements of the phase-
coherence time in long wires fabricated previously with
the same source materials. We have extracted the phase-
coherence time 7, from the magnetoresistance of wires
much longer than the phase-coherence length, using the
weak localization theory. In samples made of 6N purity
Ag, 7,(T) = A~'T~2/3 from 1 K down to 40 mK, with
A =0.36ns"' K23, in reasonable agreement with the
theory of Coulomb interactions in disordered wires
(Atpeory = 0.31 ns ' K™23). At T =40 mK, 7, = 21 ns.
In samples made of 5N silver, T¢(T) does not vary be-
tween T = 200 mK and 40 mK, where we find 7, =
3.5 ns. This behavior can be attributed to the presence
of magnetic impurities, with concentration c, spin s, and
Kondo temperature Tk, which lead to a spin-flip rate
described by [11,25] 1y, (1) = (c/mwhv)m*s(s + 1)/
[7%s(s + 1) 4+ In?>(T/Tk)]. The resulting phase-coherence
time 7,(T) = 1/[AT*? + v,7(T)] shows very little varia-
tion between 40 and 200 mK and describes precisely
the experimental data for ¢ = 0.13 ppm, T = 40 mK,
s =1/2 and A = Apeory = 0.4 ns™! K3, This value of
¢, compatible with the nominal source purity, is smaller
by 2 orders of magnitude than the value obtained from the
fits of energy exchange data on sample No. 1. A similar
set of results was also obtained with Cu samples, a
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material in which the oxide at the surface of the films was
found to cause dephasing at low temperature [26]. Data on
energy exchange [17] could also be fit with the theory of
Goppert et al [12], using Tx = 300 mK, ¢ = 4.8 ppm,
g =23, vJ=0.1, on top of a Coulombic term with
intensity « = 0.5 ns~! meV~!/2 [23]. This result gives
evidence that the anomalous interactions observed in
many Cu wires at B = 0 [4,7] are also due to magnetic
impurities. Here also, measurements of the phase-
coherence time [7] are explained by significantly smaller
impurity concentrations ( ~ 0.3 ppm). This repeated dis-
crepancy on the concentrations deduced from the two
types of measurements remains an open problem. From
an experimental point of view, a more quantitative test of
theory could be obtained in samples with added, identi-
fied magnetic impurities at a known concentration [27].

In conclusion, we have found that anomalous energy
exchange rates between quasiparticles were strongly re-
duced by the application of a magnetic field. Moreover,
the energy and magnetic field dependence of the exchange
rate can be accurately accounted for by the presence of a
small concentration of Kondo magnetic impurities [12]. It
is worthwhile to compare this result with recent mea-
surements on Aharonov-Bohm rings, which show that the
small phase-coherence times found at B = 0 were in-
creased in a finite magnetic field [28]. All these measure-
ments indicate that the presence of very dilute magnetic
impurities is a very plausible candidate to explain both
extra dephasing and extra energy exchange observed in
many mesoscopic samples.

We acknowledge the technical help of P. Orfila, fruit-
ful discussions and correspondence with G. Goppert,
H. Grabert, and N. Birge, and permanent input from
M. Devoret, P. Joyez, C. Urbina, and D. Vion.
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Appendix 3: Measurements on other silver wires

During this thesis, we have measured other silver samples m&ddiftdrent sources
(5N, 6N and 6N’ ). The two samples presented in the main body of thisrohapt obtained

from the source 5N and 6N.

The electrical and geometrical characteristics of the other samelesramarized in Table 7.

Sample | Source L(um) | w (nm) | 7 (nm) | R (Q) | D (en? §') | 7, (n9)
Ag.l5 | Ag5N | 5.45 117 45 17 230 13
Ag,, l15 Ag5N 5.15 101 45 24 178 1.5
Ag, 1S Ag5N 5.27 120 45 20 184 1.5
Ag,, 110 | Ag6N’ 9.55 124 45 30.7 210 4.3
Ag,, 1140 | Ag6N’ 38.4 185 45 - ~200 ~80

Table 7: Geometrical and electrical characteristichhe measured samples. The lengthl isthe width w,
the thickness , the wire resistance , the diffusion coefficientD , and the diffusion time from one end to
the otherr,, .

To label the samples, we used the notation described in Figure 27ampkesAg,, 110 and

Ag,, /1140 were the only ones made using the two-step process (see Chapter 3).

Ag5 I

/_ N S\\A; Wire length (um)

Material Source purity  Sample label
Figure 27: System used to label the samples.

The measured distribution functions and fits to the theory taking intuatelectron-phonon
interaction and electron-electron interaction are presented ineFafurThe electron-phonon

interaction is included withx, =8ns' meV’ and T, =40 mK. The single fit parameter is

ph

the intensity of electron-electron interactian,,. We have measured the interaction in a

magnetic field to know whether KIM interaction occurs in these samples.
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Ag,, 110 Ag,, 1140

f(E)

1,=4.3ns

03 0.0 03 0.0
E(meV) E(meV)

[N

Ag,, !5

Ag, l15 Ag,, 5

f(E)

1, =15ns

03 0.0 03 0.0 03 0.0
E(meV) E(meV) E(meV)

Figure 28: Symbols: Energy distribution functioms U =0.1, 0.2 and 0.3 m' in five silver wires of different
diffusion time 7,,. Top: The samples made using a 6N-pure silverceocan be fit using the Kernel of Coulomb
interaction only (Solid lines: Fits wit k,,, =0.09 ns meV” for Ag,ll10 and «,,,=0.17 n§ meV* for
Ag,, 11140 ). Bottom: Samples made using a 5N-pure source;clihees are fit using Coulomb interaction kernel
(Solid lines: Predictions with «,,, =0.6 ns* meV¥?, «,,=0.3ns' meV’ and k,,=0.6ns meV*

for Ag,,I5, Ag,l15 and Ag,III5 respectively).

The results forAg, /110 and Ag., |5 are presented on Figure 29. For all the samples, the
differential conductance of the tunnel junction does not depend on the mdggtefiand is
close to the one inferred from thB =0 measurements (heating effects as described in
Section 7.4.3.3 are included). The small effectBobbserved at the lowest bias voltage for

Ag.I5 is not significant compared to the measurement precision.

The results for the samples made of the 5N-source are in shargstovith the results found
for Ag,,IV20: in this sample, energy exchange was dominated by KIM interaap to large
magnetic field, and the fit impurity concentration was 17 ppm. We blageked that in the
samples presented in this appendix, we would have been able to detattyiconcentration
larger than 2 ppm. These results suggest that the impuritiesgigV20 come from a

pollution during the fabrication process.
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Ag,, 1110

di/dV (uS)
e

[N
o
T

0
©
T

o didV (1S)

o
T

V(mV) V(mV) V(mV)

Figure 29: Symbols: Measured Coulomb blockade sigma Ag, 110 and AgPl for U =0.1,
0.2, and 0.3 m\and three different applied magnetic fiell B =0.45, 0.7, and 0.9 for Ag.Il10 and
B=0.15, 0.6 and 1.2 " for Ag5B3I). The curves do not depend on the magnetic filidVl interaction are
negligible in these samples compared to electreat@n interaction. Solid lines: Calculated Coulobhckade
signal using the samples characteristics and tlesuned energy distribution function B =0.
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Chapter 8 Summary: Inelastic scattering
mechanisms in diffusive metallic
wires

The results of the phase coherence time and energy exchangeemeasspresented
in Chapter 6 and 7 bring evidence that at low temperature, two mechanisms damelaste
scattering: Coulomb electron-electron interaction and electron-magngurities (KIM)

interaction.

In energy exchange measurements, the presence of magnetic ieaparisuggested by an
anomalous energy dependence of the interaction at zero-magneticafidl revealed by the
magnetic field dependence of the electron energy distribution functiomhase coherence
time (r,) measurements, the signature of magnetic impurities is &terasion” of 7. In the
following, we compare quantitatively the theoretical predictions amxgerenental

observations for both inelastic scattering mechanisms in the two types of exsrim

8.1 Coulomb electron-electron interaction

8.1.1 Coulomb electron-electron interaction and energy exchange

The predicted kernel for Coulomb electron-electron interactionsittemwin diffusive

wires [1]:

K (f) = 3/2° (1)

3/2

with «. —(\/DIZ T v, g)'l [2]. The parametek,,, was the main fit parameter for the
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samples in which energy exchange does not change with magnkticFoe the samples

displaying a magnetic field dependengg, was determined by fitting the low-voltage high-

magnetic field curves for which the Coulomb interaction dominateshlsutiétermination is

less accurate. The experimental valuek 9f are summarized in Table 1 (samples measured

during this thesis) and Table 2 (samples measured by F. Piéjre [3]

Sample | L w D 7, K, K, B Comp
(um) | (nm) (cm2 s‘l) (ns) | (ns* meVv*) | (ns' mev*?) -dependent (ppm)
Ag,, 120 21.7 100 215 21.9 0.1:0.02 0.08 No <0.1
Ag,l110 | 9.55 124 210 4.3 0.09:.01 0.06 No <0.5
Ag, 140 | 38.4 185 200 80 0.17:0.02 0.05 ? ?
Ag. 5 | 5.45 | 117 230 1.3 048.1 0.06 No <2
Ag,,l15 5.15 101 178 15 0:3.05 0.085 No <2
Ag. 5 | 527 | 120 184 15 04.1 0.07 No <2
Ag,, V20 | 20.0 108 196 204 0.5:0.1 0.075 Yes 17
Al5 5.05 110 64.8 3.9 0.09.02 0.06 No <0.1
Au5 51 85 109 2.5 040.2 0.12 Yes 8
Cub 5.0 105 91 2.8 0.2 0.075 Yes 4.8

Table 1: Summary of sample characteristics and @whilinteraction intensity,,, deduced from energy

th

exchange measurements in this thesis. The exptetecetical valuec;,, is also indicated.

Sample L w D T Ky, Ky,
(um) | (nm) (cm2 5‘1) (ns) | (ns* mev*?) | (ns' mev*?)
Agl5 5.0 90 115 2.2 1.20.2 0.13
Agll5 5.2 65 150 1.8 0.480.2 0.15
Agll10 10.3 65 165 6.4 0.58.15 0.15
Aglll20 19.6 160 230 16.7 04.05 0.05
AglV20a | 19.7 95 205 19.0 040.05 0.09
AglV20p3 19.9 100 185 21.0 0.1 0.09

Table 2: Summary of sample characteristics and @il interaction intensity deduced from energy
exchange measurements in the silver samples, mautettie 6N source (same &g, 120), measured by F.
Pierre [3] previous to this work. No test of KIMtémaction was performed, but fits with Coulomb ratgtion

only were excellen

The experimental valug,,, is always found larger (from 1 to 10 times) than the theoretical

! The process to measure energy exchange in prestageagnetic field has only been developed dufiisy
thesis work, this is why the B-dependence of enesghange in samples of Table 2 was not tested.
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one k', . Variations from sample to sample are not correlated withaimple characteristics:

3/2*

width, length, thickness, or diffusion coefficient. The dispersion of tpereaxental values of

K,,, is illustrated in Figure 1 on whick,, is plotted as a function of;,, .

T % T 1
1r b
o | A u
‘_|' ~~~ o o
£ ; X
o IUJ
2 S
~— 01 C 7
. <
(2]
X
' e 0.1
0.1 1 0.1 1
k" (ns™ mev™?) A" (ns™ K??

3/2

Figure 1: Left Panel: Symbols: Experimental valfighe intensity of Coulomb interactiok,,, deduced from fits

of energy exchange measurements as a functioreofalue 3, calculated from samples characteristics. Right

panel: Symbols: Experimental value of the intensityCoulomb interaction4 deduced from fits of phase
coherence time measurements as a function of the v4, calculated from samples characteristics. In both
panels, the disagreement with theory is the distéam¢he solid line of slope 1.

8.1.2 Electron-electron interaction and electronic phase coherence

From phase coherence time measurements, the intensity and engeggeatee of
Coulomb interactions can also be inferred. It is predicted thatiebanic decoherence rate
dependence on temperature due to Coulomb interaction is written [4,5]:

Z.(;l =AT2/3, (2)

-2/
with A=(2\/2D n* Ik, v, §) " The dependence ifi**is consistent with the kernel (1)

dependence ire*?. The parameterst and k,,, depend on the same combination of the
-2/3
sample characteristics and one can identify (4/71 Jn /(kB /(3,2)) :

Measurements of phase coherence time dependence on temperaturpesi@med on

samples made from the same sources (Ag6N, Ag6N’ , Ag5N, and Cubie)ssmnples used
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to measure energy exchange. In the samples displaying no saturaiexperimental value
of 4 was the only fit parameter at low temperature. In the sand@ptaying saturation, the
Coulomb interaction was never dominant on KIM interaction on the expleragerature
range and the determination df was less accurate, or even not possible. The experimental
values are summarized in Table 3 (samples measured at Michtgen University by F.

Pierre and N.O. Birge) and Table 4 (samples that we have measured).

The experimental values of are of the same order of magnitude as the predicted #alue
In silver the difference between the two values is at worse 29 . dispersion of4

illustrated in Figure 1 is smaller than the dispersior.of.

Sample L ! w D A A, saturation| ¢
m) | (nm) | (nm) | (en? s) | (ns' KP) | (st K*) (PpM)
Ag(6N)a 135 45 65 115 0.68 0.55 No 0.009
Ag(6N)b | 270 45 100 70 0.54 0.51 No 0.011
Ag(6N)c 400 55 105 185 0.35 0.31 No 0.0024
Ag(5N)a 135 65 108 105 0.41 0.33 Yes 0.17
Ag(5N)b 270 65 90 135 0.35 0.31 Yes 0.13
Cu(5N)a 270 45 110 70 0.55 0.35 Yes 0.15
Cu(5N)b 270 45 100 160 - 0.29 Yes 0.75

Table 3: Summary of sample characteristics and @wololinteraction intensity deduced from phase coteere

time measurements in samples made from our 6N-5BhRslources. These measurements were performed by
F. Pierre and N.O. Birge at Michigan State Uniugrsi

Sample L ! w D A A, saturation| ¢
m) | (nm) | (nm) | (enr s) | (ns' K*) | (nst K*) (ppm)

Ag(6N’") 1790 45 150 139 0.38 0.30 No 0.05

Ag(5N)c 895 45 150 280 0.51 0.24 Yes 0.12

Table 4: Summary of sample characteristics and @wololinteraction intensity deduced from phase coteere
time measurements in silver samples, made fron6itie source (same a8g,,120) and 5N-source (the
sample Ag(5N)c was made after the sample of enexglfange measuremeAg,, I\V20 ). The measurements
were performed at Saclay.

8.1.3 Conclusion on electron-electron interaction

Although theoretical predictions for energy exchange and decoherdecedua to

electron-electron Coulomb interactions are performed using the sameisonretperimental
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consistency with theoretical predictions differs strongly betwdlea two types of

measurements.
Ag(6N)c Ag,,I120 Ag IS
T 1 - I T ] 1 oo g
v €~ 0.03 eV
1ol £< 25 peV| £< 25 pe'
= €~ 0.16 peV u / ) /
= £<75peV
£<75 peV
1l e~06peV —u |
1 1 0 L 1 1 . 0 L 1 1
0.1 1 03 0.0 03 0.0
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Figure 2: Scale of energies probed in phase coberiime measurements (exemplified for (Ag6N)c) andrgy
exchange measurements (exemplified Ag,, 120 and Ag,llI5 ). Top: Measured curves and fits to Coulomb
interaction theory. The probed energy liretis indicated . Bottom: Log-log representation lo¢ tCoulomb
interaction Kernel usinik;,, (solid lines), anck,,, (dashed lines) The bold lines indicate the ranfgerobed

energies.

The major difference between the two manifestations of Coulomtaatien is the probed
energy range. Quasi-elastic scattering dominates decoherenceasvpeocesses at energies
between 0 and roughlyU / 4 determine the shape of the energy distribution funcyfcﬁﬂ)
(see Figure 2). In term of interaction time, this means thaept@®erence time is sensitive to
long-time interaction, whereas energy exchange is sensitiieotttane interaction. In our
experiments, the diffusion coefficient is inferred from resistameasurement which is also
sensitive to long-time dynamics. If in the experiments, the relectlynamics was not
diffusive at all scales with the same diffusion coefficient,eik@ample because of the granular
structure or surface-dominated scattering (see Figure 3), tHeakoa of D from the

resistance would only be valid for phase coherence time measuresnentst for energy
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exchange measurements. This would explain the large discrepan@ebdahe experimental
values ofk,,, compared to the theoretical values and also the samples to saamuéisns,

since the grain structure is different for each sample.

By
_ B

Figure 3: Top: Model of a wire and diffusive elextrtrajectory: the dispersion of times between ¢etlisions is
small. Bottom: Model of a wire and pseudo-diffustvgjectory: two typical times between collisiondse The
shorter one is probed in energy exchange measuteraad the longer one in resistivity and phase eotoe
time measurements.

8.2 KIM interaction

We have demonstrated with our energy exchange measurements thevenal
samples KIM interaction dominates Coulomb interaction on a larggeraf temperature, as
recently predicted [6]. KIM interaction manifests itself on phasgherence time
measurements for all the samples made of 5N-copper and 5N-sildesnaenergy exchange
measurements for one of the samples made of 5N-silver and foarimesmade of 5N-

copper. Yet, a large discrepancy remains between the fit cortcamgrafor both

measurements (see Table 5).

Source Coms (ppm) c, (ppm)

Ag6N <0.1 0.0024, 0.009, 0.011
Ag5N <2,17 0.13, 0.17
Ag6N’ <05 0.05

Cu5N 4.8 0.15, 0.75

Table 5: Fit concentrations of energy exchange ureasentsc,,, and phase coherence time measurements
¢,, on samples made of the same source. For sourcagsN and CuSN, the concentratior,, is found
larger thanc,w, suggesting that either pollution arises in tHarifation process of energy exchange samples,
or that the theory for KIM interaction is not seféint

Measurements on 5N-silver indicate that the discrepancy can hegititbuted to pollution
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during fabrication:Ag,, V20 is the single 5N-silver sample to present more than 2 ppm of
impurities whereas the sample Ag(5N)c made later from thee source only displays 0.1
ppm of impurities, according to weak localization measurements.fiYegncentrations on
copper wires display also a discrepancy between phase cohereaa@ntnenergy exchange
measurements. A quantitative test of the theory of KIM intemastimust be done by
measuring energy exchange in samples made with very pure mnetahich controlled
concentrations of magnetic impurities are implanted. A quantitééstewas made on silver
samples for phase coherence time measurements and proved thatctdmedntrations are
well estimated in this type of measurements [7]. To definiseliyle out the concentration
problem, a new fabrication process is presently being developed to rakasurements of

phase coherence time and energy exchange on co-evaporated and co-implanted samples.
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MESOSCOPIC SUPERCONDUCTIVITY






Chapter 9 Theoretical description of
non-equilibrium superconductivity
and proximity effect

The BCS theory of superconductivity [1] deals with equilibrium thermadycel
properties of superconductors. To predict out-of-equilibrium propertiesthasy has been
reformulated using Green functions in the Keldish formalism [2], leadirfietgeneral theory
of non-equilibrium superconductivity. This formalism applies to situatiamswhich
superconducting properties are not homogeneous, it is therefore very pawettal with
proximity effect, a phenomenon which occurs when normal (non-superconductidg) a
superconducting metals are in contact. In this chapter, the getrataigs points of non-
equilibrium superconductivity and the derivation of Usadel equations asenpeel. Usadel
equations are at the basis of the description of diffusive sydileensurs. Starting from the
Dyson equation, two usual approximations are made: quasiclassical iagirox and
diffusive limit [3]. For practical purposes, the Green functionspam@ameterized with two

complex numbers, corresponding to a pairing angle and a superconducting phase.

9.1 Derivation of the Usadel equations

9.1.1 Out-of-equilibrium Green functions: Keldish formalism

9.1.1.1 Generality

Thanks to Green functions, the description of a complex electroniensysin be

achieved starting from the description of a simpler one, for exafrggeand independent
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electrons, on which an Hamiltonian describing impurity scatteringelectron-electron
interaction, or coupling with phonons, is adiabatically branched between tlser timeo and

t=0.
The exact Green function of the system can be expressed wiblysloa equation from the

free Green functiorG, :

G=——, 1)

where Z is the self-energy. The self-energy is a summation of amitefnumber of distinct
diagrams describing interactions [4]. Green functions are only ugebale can perform a
perturbative development and approximates the self-energy by the londes terms in the

series.

Starting from a fundamental state describing the systemrateo, each perturbation term
consists of the mean value of operators that act one after anotherei The state of the
system at = +oo has then to be known. At equilibrium, the final state is identical, medul
phase, to the fundamental one. Out-of-equilibrium, the final state is unkkKealhsh’ s trick

is to make time return to the pastrat —o, by ordering time in the complex plan (see Figure

1).

Figure 1 : Keldish contour in the complex plan. Bnews indicate the ordering of time.

The out-of-equilibrium formalism uses therefore the Green functioegualibrium. Time has
a positive or negative imaginary part and Green function2 a2 matrices expressed in term

of G*, G* and G*, the retarded, advanced and Keldish Green’ s functions as:

il -
D 6o
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where

G* =it —r’)<{¢/ (ro). @ (0 )}>
G =i0(-){w () (. r}) 3)
G* = —i<@ll(r,t),(,ll+ (r; t’)§>,

with ¢~ (r,t) the creation operator of a particle at the positioat time«. Here{ } stands
for anticommutators,[ ]stands for commutators an@} stands for an average on the
dynamic state of the system. The functi@® and G* describe the equilibrium states of the

system and>* describes the occupation of these states.

9.1.1.2 Application to superconductivity

The Green functions formalism, adapted to superconductivity, describestesn of
interacting electrons in terms of correlation functiGhsandG~, defined as the matrices:
G (erxn)= - <DcT (x)e (v.t) ¢ (xt)e (¥.r) D>
E‘Cj (xt)e' (x,t) ¢ (xt)e (¥,t)
Ce! (v, t)e, (x,t) ¢ (x.t)c (xt)O
@c: (x.t)c (xt) —c ()] (x,t)ﬁ>,

(4)
G* (x,t,x’,t’):i<

where the fermionic operators, andc, , respectively create and annihilate an electron of
spin up or down ancﬁ > stands for an average on the dynamic state of the systencfor ea
matrix element. This theory, which contains the “anomalous” componenistc, (x'.t) and
cf(x, t)cf(x',t'), corresponding to the annihilation and creation of an electronic paits thee
normal-like and superconducting-like correlations all at once. Thedeetaadvanced and

Keldish Green’ s functions a2e 2 matrix, notedG*, G* and G, with
G* = 9(1—[’)(é< —é>)
G'=-0(-1)(G*-G") (5)
G* =G +G”.

The correlation functions obey the Dyson equation:

[ dr (Gere 2 1)=Z( v wi))Gly e 1 )=I18(x-x)3(-1),  (6)

153



where

and
_Z*zfO
D sy
the generalized self-energy, dependent on the Hamiltonian of tleensystluding the pairing
hamiltonian of the BCS theory [1], electron-phonon scattering and celssattering on

impurities. The functiorG, is the free-electron Green’s function, which reads:

G (x.t,x'1) Hhra 21 x) +U)T, BJ t-1")
m

where the covariant spatial derivative and the Pauli matrices are defined as:

ix —f) -7, l'eAh(x)’

f:D:,. ODf:E]. 00

T oig C HooH

;.0 O, 00-0 010
""H H"H B H o

with ®(x), A(x) andu respectively the scalar, vector and chemical potential, witgabge
conventiond A (x)=0.

When substracting the Dyson equation to its conjugate, Eq. (6) leads to:
[ dx’dt Hot(xvn 2 1) =Z(% v w o) Gy rnx ¢ )BD.

This equation is the Gorkov equation [5]. The expression of the selfyemdigoe given

below.
9.1.2 Quasiclassical approximation

The quasiclassical approximation consists of a perturbative developiméet Dyson

equation using a small parameter. In the case of superconductistpattaimeter is the ratio
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NEr, with A the superconducting gap ati the energy at the Fermi level. In typical
superconductorA/ E, =10°. The perturbative development aims at integrating out all
physical quantities on scales smaller th&n the characteristic size of Cooper pairs.
Physically, Cooper pairs are large enough compared to the Fewih l® be considered as
having a quasiclassical motion. Since Cooper pairs are correlafibne electrons, knowing
the phase of the two-electron wave function is sufficient in mastscal his wave function
only depends on the center of mass coordinate and it is possible toatmtegt the
dependence on the relative coordinate in the Gorkov equation.

A Fourier transform to the momentum energy space leads then tualseclassical Green

function

_ - " (x.1,p.€) &5 (x.t,p.€)0 _
dhpE)=0 . O=—{[ d,G(x1.p.€),
g(x p ) |:| O gA(x,[,ﬁ,S)D ]TJ- P (x P )

where p is a vector on the unit sphere afigd= pl2m—-u.

The quasiclassical Green function obeys the equation
BB (xitbe)—0(xp ), & (x 1 b £)F=0, (7)
with
g (x.1,p.e)=hr,0, €T, +hv,p.0_,

whereve is the Fermi velocity and with
O—(X,f,ﬁ,f):D S D!

the full quasiclassical self-energy. This equation, called tHenlegrger equation for

superconductivity [6], is the central equation of the quasiclassical theory.

g also obeys a normalization conditiog?: (x,, p,) = 7,.
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9.1.3 Diffusive limit: Usadel equations

9.1.3.1 Diffusive limit

In superconductivity, the diffusive limit applies when the mean frek i{gashorter
than the superconductivity coherence lengjl+ v, /A with v, the velocity at the Fermi
level and A the superconducting gap. In this limit, scattering on non-magnetic itrapur
lattice defects or sample boundaries occur frequently on a tajedtlength,, and the full
quasiclassical self-energy, associated to elastic sc@ftedan be written in the Born
approximation:

S b= (@ (xnee))

Where<...> is the average value on the angles, justified because of thdirtagton memory
loss of electrons, antl/ 2r = 2rTn,v, <|U|2> The concentration of impurities g, v, is the
density of states at the Fermi level aridis the Fourier transform of the impurities scattering
potential. When the number of scatterers is large enough, thisneelfy term dominates and
the Green function is almost isotropic. Then, an expansion in sphericabrias keeping
only the s- and p- wave parts is performed:

g(xtp.€)= g (x..6)+ g, (x4 .6)

O(x.t,p.€)=05(x.1,6)+ p.0,(x1.6),
where p.g, < g; andp.o, < 0
Splitting Eg. (7) into an even and odd part with respegt yaelds to:

g, =18 {..&H

o , (8)
E;ZDngI;' x_g;; _lJS’gSE:O’

where D =1/3v,/ is the diffusion constanty, the quasiclassical self-energy in which the

elastic collision termo,, has been removed, ad; =47,0, —ieT, .

Eq. (8) are called Usadel equations [7]. They are the generahgtpoint to calculate non-

equilibrium effects in diffusive superconductors.
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9.1.3.2 Usadel equations

In BCS theory, superconductivity is due to electron-phonon interaction. Mgair

potential is then included in the self energy:

A

o0 . ™ AD
air :D O D’
% ﬁ) A ﬁ @ 00
whereA is the superconducting order parameter:
V.V,

- I-Z de 1r (£, -if,) &F), 9)

A=

with V. the pairing interaction strength amd, the Debye pulsation as defined in the BCS

theory of superconductivity [1].

The spin-flip scattering rate/7,, contributiong,, to the self energy is:

Usingo’y =o*.” +0,, yields in Eqg. (7) to equation:

pair

a - h o O
@DngQ +zH -—1,g,,,8,0=0, (10)
B 21, g
H od . iAJ
with , H, = AC -
. —er

Equation (10) is equivalent for the advanced, retarded and Keldish Green function to:

S ~ ~ |

D0_gt +ifl, ——' 7 3% 3" 0=0

B 21, B

S ~ |

D0 g, +ifl, - 2 g7, §/0=0

B 2 B (11)

hD(@ig@ S B 28)

+iH£10’ E_ZT (fgf —85T.85T, .87 .85 — &51.85T ) 0.

Equations (11) are the detailed Usadel equations. The projection onwheesof g obeys

the same normalization condition gs g:(x,¢&) =17,,
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which is equivalent to

8585 =1,, &85 =1,

8585 +85 85 =0.
Eq. (8) is equivalent to the conservation of the current. The spectrsitydef current is
defined as:

J(&,x)=0(x)g,0,8;,

whereo(x) is the normal-state conductivity. This leads to the current density:
o ARD Ak ARS A
J () =~ [deTr {.(g5.&5 +80 808
The density of quasiparticle states is given by :

N(x,¢) :%Re(Tr(gR (x,s)fz)).

9.2 Parameterization of the Usadel equations

9.2.1 Definition of the pairing angle and of the complex phase

The normalized conditiong{gf =7,, and the fact that7r(gs)=0, allows to
parameterizez; with two complex paramete@(x,e) and ¢ (x,):
gs =cosf T +sird cop 7, - sl ST,
[tosh sid '] (12)

_%Sinﬁ e’  -cof E

The advanced and retarded componenggfare related by the equation:

~ /\/\R+/\

A
gS __ngS z-z'
Hence,

., U-cost sig ‘&0

= . (13)
& @ine* g’ coé
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The last renormalization condition allows to wrgé as

= gsh=hg;. (14)
The distribution matrix: (also called filling matrix) can be chosen as diagonal anelased
to the distribution functions for electronsand holesf, :

- d0-27 0 O

B oz d o)

where the energy is measured from the chemical potential of the superconductor.

For conveniencek is also written

~

h=fuf, + L, (16)

with f,, and f, respectively odd and even functions of energy, related to the physical

distribution functions of electrons through the expression:
fxe)=(1= £y (x8) = £, (x.8)) 1 2. (17)

For example, in a reservoir at potential V and at thermal equilibfjum

% E+el 0 E
e 0, (18)

%) ta ﬁ+eVD

H 2,7

and

O

fu=2rtanh el y =

20 2k, T 2T [
(19)

l

=2

2k,T 2%,T [

The odd and even functions are represented in Figure 2.
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-eV 0 eV

Figure 2: Odd and even part of the energy distidoutfunction used in the theory of non-equilibrium
superconductivity, in the case where the systearréservoir at a potential V.

9.2.2 Equations for the pairing angle 0 and the phase ¢

The parameterization i and ¢ of the Usadel equations leads to the following

equations.

9.2.2.1 Order parameter equation
In the general case, with the previous definition, the order parameter reads:
_ VFVeﬁ" hep . W _ il it ) _ . i¢ : s
A(x)_TI-h%dgfod (sm@e sind” e ) fev( side” + sird e ) (20)

At equilibrium, for a bulk superconductap,is real, f, =0 and f,, =tanh(s/2« 1), leading

to

A(x) :VFVeﬁrijb de tanthLT Im( sirg)e” .

9.2.2.2 Equilibrium Usadel equations

The part of equation concerning the advanced and retarded Green functiors def
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equilibrium equations:

—D29+ E{—+—% ¢—?A§2§coseﬁsm9+

m(x)e-'¢+A (x)e* ﬁcos@ 0 21)

7 isin@ » o ]
% ¢——A eH_ (e =B (x)e?).
For a bulk superconductor, whepes real, Egs. (21) have simpler expressions:
529+ﬁ ﬁf +—% P ——A(x)H Ecoséﬁsm@ +A Y™ cod = |
% ¢——A( )Hsm HH—

In a normal metal, the order parameter is zero and the equatiamiidgsa normal metal

(22)

with only spin-flip scattering are found takig=0 in Eq. (21).
9.2.2.3 Density of states

The density of quasiparticle states is related to the pairing angle by:

N(&,x)=v, Re(cod . (23)

In bulk superconductors obeying BCS theory, the order parametey, ¢ is constant and

Eq. (21) simply reduces to

tang = ; e (24)
£
or
Ores (€) =74} arctanh—— ife] < Dges
2 ABCS (25)
=i arctanhfs | > D5
£

The energy dependence of the pairing angle in bulk superconductor is represented in Figure 3.

From the definition (23), the density of states is found as
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=V, ifle > Ay
£ =Dy
in agreement with the BCS result.
E=A
A -~
MmO g [/ \
y 4
Y 4
E=w E=0_
0 T2 Re O BCS

Figure 3: Energy dependence of the pairing ang&ehnmogeneous superconductor in the complex plane.

9.2.2.4 Out-of equilibrium Usadel equations

The equation on the Keldish Green function allows to calculate timg fiactors. In

the limit whenr,, - « and 4 =0, the following two equations are obtained:
D{(1+|cos€|2 | sirgf" cosh @)1 1., -| @ sifhed) £, + 2 &8 9) fw} =

hD D{(1+|c039|2 +| sirg" cosf @)D] £+ sél’ sifhgd) £, + 2(m & ¢)f0d} (26)
=2/, Re( sind (A(x)e™ - & (x)e*)) - 2, RE sift (A(x)e™ +4 (x)e*)) |

whereg@; and¢, denote the real, and imaginary parts of the complex phasspectively.
For a bulk superconductor, whepas real, Egs. (26) read:

D{cos @ 1, + Im(sif@ ¢)1.}=0

(27)
D{cosit @) £, + In( sifB ¢) 1} =- 2/, RE sif])

where 6, and & denote the real and imaginary parts of the pairing afiglespectively and
o= Re(A(x)e"¢). Equations (27) generalize Boltzmann equations to situations where
superconducting correlations are present. The “source” term indbedsequation, related to

the order parameter, is in a bulk superconductor proportional to
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A .
ﬁ if| €] < Dy

=0 if |&| > A

BCS*

Re( sing, ) =

This term represents the Andreev reflections of electrons inte hellew the gap. It is of

importance for the following to note that inelastic processes are not included in Egs. (26)

9.2.2.5 Current density

The current density is related to the pairing angle and the complex phase by:
J(x) ———I def,, ImBsm 7 ﬁ]qﬁ——A

_Z_eI:de(wa(H cod| +| sifl’ co(h@))ﬂfOA it Siﬁmg) (28)
=J,(x)+J,(x).

The first term corresponds to a supercurrent, proportional to the phadeng At

equilibrium, whenf, =0,

J(x ——I datanh— Im S|ﬁ9 ﬁ]qﬁ——Aﬁ (29)

The second term corresponds to a current of quasiparticles due adi@ngof occupation

factors. When the phase is red), is equal to

Jy(x)= % [, decostt 6,7, (30)

9.3 Proximity effect and boundary conditions

At an interface between a superconductor and a normal metal, theoteting
correlations are delocalized. The decay of the correlations camat@ed with Usadel
equations, the normal metal being described With0. The boundary conditions determine
the properties inside the electrodes. In the next section, the lgboaralary conditions at

interfaces for Green functions are presented as well asetipgivalences in term of pairing
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angle and complex phase.

9.3.1 Continuity of Green functions and reservoirs

At a transparent interface, the advanced, retarded and Keldish forezions are
continuous. With the parameterization chosen in the previous sectiors dojgivalent to the
continuity of 8, ¢, f, andf,. These values are well defined in reservoirs of bulk

superconductor and normal metal and are listed below.

In a bulk superconductor, the phages real, and the order parameter is equak toA, ",

leading to
Ores (€)= 7—2T +i arctanhAi ife] < Dy
BCS (31)
=i arctanRZs | > Dy
£

In a bulk normal metal, Eq. (21) leads@p=0 and the phasg is not defined.

In a normal reservoir at potential V, the distribution functions are given by:

O —evld
de :l[tanl E+el + tanlé‘ eV
2 N 2k,T 26T
- - (32)
fev :lljanl E+el _ tamé‘—eV
20 2k, T 2k,T [

9.3.2 Spectral current conservation

In the quasiclassical approximation, the information on length sollé® order of
Fermi wavelength has been integrated out. Consequently, effects otigdobarriers or
interfaces can not be accounted for on this level. It turns out friuth study of theory that
these effects are equivalent to effective boundary conditions foguasiclassical Green
functions. These boundary conditions couple the classically transmittédredlected

trajectories and are equivalent to the conservation of the spectral current:

164



080,58 =08 ,2 = g; [2.2.]. (33)

where g,,g, and g, are respectively the Green functions of left and right partsttaad

conductance of the interfaceg, ando, are the conductivity of left and right parts.
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Chapter 10  Density of states in a superconductor
carrying a supercurrent and exposed
to a magnetic field

The superconducting order is based on pairing electronic statesatisiotm into one
another by time reversal. Superconducting order is modified by physhemlomena that
break time reversal symmetry, such as a magnetic field, bhthder the pairing of time-
reversed electronic states, such as a supercurrent. In thes&mghs of the theory of
superconductivity, it was predicted that in diffusive superconductors, ichvihe electron
mean free path is short compared to the BCS coherence léngténd in homogeneous
situations, the effect of all depairing mechanisms can be desdiba single parameter, the
depairing energy [1]. Later on, the theory of out-of-equilibrium supercondyc(see
Chapter 9) extended this equivalence in the diffusive limit to inhomogerstuations where

the order parameter may vary in space.

Experimentally, measurements of the density of states (DO&}hin superconductor placed
in an in-plane magnetic field were well accounted for by the cordegepairing energy [2].
On the other hand, the effect of a supercurrent was probed in aepgiément, focused on

the reduction of the superconducting gap close to the critical temperature [3].

In order to test the predicted fundamental equivalence between ¢kt @fa magnetic field
and a supercurrent in a diffusive superconductor, we have measured theinD®S
superconducting wire carrying a supercurrent or exposed to a mafyeleticsee Figure 1).
The width and thickness of the wire were chosen smaller than the Léendyih so that the
current flow is homogeneous and the magnetic field penetrates unyifdinng situation is the

simplest that allows to test quantitatively the theoretical predictions.
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In this chapter, the theoretical predictions for the dependence of @ &hd of the
superconducting order parameter on the depairing energy are fiestedletThen, the

experimental realization is described. At the end, the obtainedsremel compared with

theory.

Figure 1: Layout of the experiment: A wire of widiéind thickness smaller than the London length
A, =175 nmcan be current biased and exposed to a magnétc fie

10.1 Theoretical predictions for the density of states and order
parameter in the wire

10.1.1 Usadel equations and superfluid velocity

We calculate the DOS in a superconducting wire in presence @beacsirrent or a
magnetic field using the equilibrium Usadel equations. The superconductdey is

parameterized with the complex pairing anglex, €) and phasep (x,) (see Chapter 9):
hD O On  n 0 O .
—0%0+ge- +—V, (x) Bcosfdsind + A }™ codd = |, (1)
2 ﬁ Eerf 2D * E ﬁ
O(¥; (x)sin’8) = 0; )

the order parameter equation (see Chapter 9):

A(x) =V, 7, IZ“” de tanhﬁ Im( sirg) ¢* 3)
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and the current phase relation (see Chapter 9):

js(x):%‘[:dstanhﬁ Im( sirf 6 7 (x)), (4)

whereV is the superfluid velocity:
2
Vs (x)= D19 (x) -2 A ()5 ©)

The supercurrent and the magnetic field induce respectively a ghadient (¢ and a
vector potential4(x) that appear in the combinatidfy (x)/ D =0¢(x)—(2e/h)A(x) in
the Usadel equations.

In the following, the set of self-consistent equations ((1)-(5))fiest solved for the simple
situations where there are no magnetic field or supercurrent, amdtisuperfluid velocity
is uniform in space. Then, the effects of the magnetic field arttieobupercurrent in the

experimental situation are described.
10.1.2 Density of states in absence of magnetic field and supercurrent

We focus first on the simple case without magnetic field or supent. In the
absence of magnetic field and supercurréfit=0 and the superconducting wire remains
invariant by translation. No spatial dependence remains in Eq. (1), EEpd&g. (3), which
simplify to the two following equations:

cosd

£+iycosf=iA-—", (6)
sin@
= " h—— Im( sirg
A_VFV;ﬂ"Io de tan o Im( sirg), (7)

with y =1/ 1, the spin-flip rate.

In aluminum, the spin-flip rate is negligible and Eq. (6) leads to:

which is the BCS result, while Eq. (7) gives the BCS gap equation in the bulk:
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A, =v. YV,

J’ ? de tanh Re

R

In the following the spin-flip rate will be neglected.
10.1.3 Density of states in the case of an uniform superfluid velocity

When V; is uniform in space, Eq. (1) and Eq. (2) also simplify to Eq. (6) with
y=hl(2D) V{.

Equation (6) has a non-trivial analytical solution jo¥ O:

Npra, 1| g 33 )
cosie v )= 2V 2 Jey\” 2 p+q(y2 v ©

with  p=2y2-&-202, g=(a’+r)Ir, r =(a3 ~28% +28/a* +[;2)“°, and
a=N0N-y*-g* B=3/3cyA.
Eq. (8) is solved self-consistently with Eq. (7) to calculate tB&n the wire and the order

parameter whery £ 0.

The natural energy scale is the gap energy, which is the modulbie ofder parametek,

when y =0. In Figure 2, the DOS, (£) = Re{ co4(£))) is plotted versug /A, for several
values ofy/A,. When y increases, the smearing of the peak gets more pronounced and the
gap in the DOS is reduced. Increasing the superfluid velocity wedkersiperconductivity

by inducing more depairing in the wire. The previous resolution provesd#patiring is
accounted for in Usadel equations by a single quantity, denoteere, corresponding to an

energy. The energy is called the depairing energy in the following.

In Figure 3, the reduction of the order parameter and the reductionsgebtal gaf), (y) ,
i.e. the gap observed in the DOS, are plotted versus the depairing energytWinesiantities

are related by:
|:| 2/3 D3/2

%00=80 58 | ¥

From Eq. (9), a superconductor is gapless, which means that the Ispagtia zero, when
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y/A(y) =1. This corresponds to values of depairing energy suc.4&\, < y. Above a

depairing energy 00.57,, superconductivity is suppresse!bl( y) =0.

60

40t

20

y /A,=0.0002 y /8,=0.0125

0.99 1.00 1.01 0 1
e/ A, € /A0

Figure 2: Theoretical predictions for the DOS isugerconductor versus reduced energy for sevelsvaf the
depairing energyy . Left panel:y= 0 and 0.0002. Right panel: from right to left= 0.0125, and 0.05 to 0.5 by
steps of 0.05 in units A&, the order parameter whgn=0.

The function A(y) should depend on the superconductor nature since the pairing
potential V. and the Debye pulsation), are material dependent. However, it was found
numerically that this reduction is similar within 5 parts in thadsgr niobium, aluminum,

and lead using the parameters given in Table 1 [4].

Superconductor A, (meV) haw, (meV)
Aluminum 0.18 36.2
Lead 1.1 8.3
Niobium 1.4 23.8

Table 1: Bulk order parameter and Debye energiedifferent superconductors.

In the following, we focus on the case of the experiment, wheanaverse magnetic field is
applied and the wire is current biased. The corresponding vector potartiphase gradient

have then to be determined to calculate the superfluid velocity, vdughriori dependent on
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the position in the wire, the corresponding depairing energy and DOS.

'gapless superconductivity:

—— order parameter A(y)

- - - spectral gap Qg (;/)

Al A

0.0 0.2 04 06
Y/ A

Figure 3: Order parametiA(y) and spectral gaQ, (y) in units of the order parametA, at B=0 and
I, =0 versus depairing energy. Whe0.4%\ <y< 0.8\, gapless superconductivity occurs. When
y=0.54,, superconductivity is suppressed.

10.1.4 Depairing induced by a magnetic field

The width and thickness of the wire are smaller than the London length
A, ;/h/(,uoﬂvo) =175nm, where o is the conductivity of the wire in its normal state,
U, =4m.10" H.mand A, is the gap of the bulk superconductor; it is then predicted that the

magnetic field applied perpendicularly to the wire penetrates uniformly [®]Figere 4).

B
- 5 .
A(y)=Byu, %

SV’tZ; |
I .

Figure 4: Sketch of a superconducting wire in ama#ig field B.

AP

o

The vector potential in the wire corresponding to the applied magdredticin the London
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gauge can be written:
A(y) = Byi, (10)

whereu, is the unitary vector in the direction of the wire. The induced eudensity by the
magnetic field is:

. __20 ® £ .
js(v)= . A, (y)J’0 datanhﬁ Im( sirf 6) (11)

These currents tend to screen the magnetic field. According taviseof electromagnetism,
these currents give rise to a magnetic figldwith: curl(é) = U, jsii, . The maximum value of
J’:dstanh(s | 2%,T) In( sif 0) is A1/ 2, a value reached when the density of states in the
wire is a pure BCS one. Induced currents result then in a negligibtesction
factor=1-1/60(w /A,)" = 0.9¢ for the magnetic field in the middle of the wire, justifying the

assumption of uniform penetration 8f in the wire.

The variations of the pairing angle along the transverse directithre twire were numerically
calculated using equilibrium Usadel equations and the boundary condifiénsO. The
densities of states in the middle and on the side of the wirenf@agaetic field of30 mT are
plotted in Figure 5 for two situationsy = ¢, (experimental situation) and=2¢,. It is
found that, despite the transverse variatiordofé is homogeneous fow = &, : the “rigidity
length” of the order parameter, given E(y:m, is such that only an average effect of

A is seen. In contrast, fow=2 ¢,, variations of & occur in the transverse y-direction,
following the variation of4 . For the experimental situation, we can thus use one-dimensional
Usadel equations. The effect of the magnetic field is included;.irf@} by averagingd® over

the width of the Wire<A2>y = B’w?/12. The resulting depairing energy is then:

y(B) ZG—Z;Zeszwz. (12)

The superfluid velocity’; is constant, and the equations to calculate the DOS in presence of a

magnetic field are the Egs. (6) and (7) like in Section 10.1.3.
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Figure 5: Density of states at two transverse jmostin a wire of width w. The lengié, = /hD/ 4, is the
coherence length in the superconducting wire. Tdteed line represents the DOS in the middle ofvtire, the
dashed line the DOS on the side of the wire. Theegmental situation corresponds w=¢,, where the
differences between the two DOS are small.

10.1.5 Depairing induced by a supercurrent

The large reservoirs at the end of the wire are bulk superconductira real phase
independent of energy. The difference in their phases is determiried bias current. As a
consequence, the phase gradient in the wire is also energy indepeaddat, the current

density can be written as:

o @ £ .
o =—0 de tanh—— Im( sirf 9), 13
js == 04, oo m(sie) (13)
leading to:
eR 1
O] L E—
" TU)
with:

Uy = [ detanh—— Im( siri 6).
0 2k, T

Since ¢ is constant, the superfluid velocity is uniform in space. The calculation of the

DOS in presence of the supercurrent is then carried out using Eqad(§¥) like in Section
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10.1.3.

The depairing energy due to the supercurrent is equal to:

0 o
v(1,) =2 ﬁ‘ﬁﬁ o (14)
A complication in the determination of the depairing energy afiges its self-consistent
definition through Eq. (6), (7) and (13): the supercurrent density depends, onnonenhile
depairing energy, and on the other hand on the density of states inrghemwich itself
depends on the depairing energy. An approximate expression for thdngesUI;(y)/Ao,

valid at k,7 << A, for y/A, < 0.3 was found numerically (see Figure 6):

U, (y)1D, = m2-1.8 yIn, - 1.0 yib,)’. (15)

Figure 6: Symbols: Numerical calculation of thermaiergyU. in units of A, versus the depairing energy. Solid
lines: Approximate expressicUy (y)/ 8, = 7112-1.8 yIA, - 1.0 y/B,)" .

A by-product of the Usadel equations is a calculation of the driticaent. According to Egs.
(11) and (13), the supercurrent density in the wire can be writtarpesduct of a density of
charge in the superconducting state=ev, U, and of the superfluid velocity, . The density
of charge in the superconducting state decreases with the depemengy whereas the

superfluid velocity increases. In zero magnetic field, the superduuersus the depairing
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energy reaches a maximum corresponding to the critical cutrgnt/g = 0.23€, leading to
1. =0.754, /(eR(&,)) (see Figure 7.) Note that when the critical current is redithsuch a

wire, the density of states still presents a gap spyfak, <0.45.

F O

S

p/evA)

V. /[DE,

0

1.0+

|_eRE)/A

00 0.2 0.4
v/ AO

Figure 7: The normalized supercurrent (bottom pahebugh a wire is proportional to a density oaale in the
superconducting sta p, (upper panel) times the superfluid velocV;' (middle panel). The supercurrent versus
the depairing energy reaches a maximum correspgnidirthe critical current ay/A, =0.238, leading to

1. =0.754, [eR(&,)) -

This result has been obtained for a one-dimensional wire whgm@nd therefore the current

176



density is homogeneous over the width of the wire. Such a simpbicagisults from the
negligible effect of the magnetic field created by the supercurréhéiaxperimental situation
w<A, . This can be checked by calculating the vector potential creattt lyomogeneous

current/; . Assuming a cylindrical wire, the potential vector in the wire dug tis:

A(r) =25 (16)

r being the distance from the center of the wire. The depairingyedee to this field is then
on average:

_ "Dyl

= , 17
}/md 4 Oh 7T2 ( )

whereas the direct depairing energy due to the supercurrent is equal to:

2
_mberC O 1, O

Vir =5 HLE %T(V)E : (18)

The ratio of the depairing energy due to the induced field and due tsupeecurrent is
=(S/4,)°/90=3.10° (we have used the fact thét; =A,). The effect of the induced
magnetic field is thus negligible compared to the effect ofstngercurrent for a wire of

smaller width thar, .

For wider wires, the density of current is non-homogeneous and the supetcandalocity
can be locally larger than the critical velocity [6]. The probleesomes non-local and non-
linear. In this case, the critical current is equal to the outhat results in the critical field on

the side of the wire.
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10.2 Experimental realization

10.2.1 Characteristics of the sample

Figure 8: SEM micrograph of the sample viewed at amgle of 40°. The 120 nm-wide, 10 pm-long
superconducting wire is connected to large supelectimg thick pads. Two normal probes form tunnel
junctions with the wire in order to measure thedityrof states in the superconducting wire.

A SEM micrograph of the measured sample is shown in Figure 8. Hséydef states in the
wire was probed by two tunnel junctions. In chapter 2, we have shown thdifférential
conductancedl/dV(V) of a Normal-Superconducting tunnel junction is7at 0 directly
proportional to the DOS in the superconducting wire neglecting chagjfegts. In the

following, the contribution of charging and finite temperature effects are esdluat

10.2.2 Contribution of the Coulomb blockade

In our experiment, it was found out that charging effects had aunadwe effect. This
is seen in Figure 9, which shows the differential conductance olutimeltjunction when
superconductivity is suppressed by an applied magnetic Siel®.1 mT. The conductance at

zero voltage is reduced by8%.
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Since this correction is small, a perturbative calculation innipedance of the environment
of the tunnel junction is sufficient (see Appendix of Chapter 2 and Thjs impedance is
modeled by the parallel combination of a resistaie with a capacitanceC,,. In the
perturbative theory, the probability to transfer a parof the available energy in the tunnel
event to the environment(e,7) does not depend on the temperatfifes, 7') = P(¢,0), and

is equal at low energy to:

O
for O<e <<g,, (29)

7%

Ple)== g

T

0

wherea =2R, /R, , and g, = eZ/(ﬂaCeﬂ). The parameterg and ¢, are deduced from the
differential conductance when a magnetic field larger than tltecatr field of the
superconductor is applied. The DOS in the wire is then constant and fiaeential

conductance is given by:

a

dd forel <<g,. (20)

&

dl(V)_ 1

av TR,

In Figure 9, a fit of the differential conductance of the tunnel janchy the perturbative
theory of Coulomb blockade is presented. The fit parameters for theomment are

R, =250Q andC, =8 fF.

1.00

0.95

GIG,

0.90

1E-3 0.01 0.1

Figure 9: Differential conductance of the tunneigtion between the side probe electrode and the imiiits
normal state, normalized to the conductaG,2at large voltage. Due to Coulomb blockade, thedootance
presents a dip at low voltage. The line is a fingsCoulomb blockade theory (Egs. (19) and (20)thven
electromagnetic environment that consists of thralfgd combination o R, =250Q and C,, = 8fF.
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Using this expression Q?(S,T) , the differential conductance reads (see Chapter 2):

dl 1 e +oo B [0fy B ofy H
W(V)_EIO dE(, de ng(E E)P(E,T)Ba—E(eV E)+6E (ev +E)H (21)

wheren, is the density of states in the superconducting wire gritle quasiparticles energy
distribution according to a Fermi function.

In Figure 10, the corrections due to Coulomb blockade are exemplifieditgfadata with
and without taking into account Coulomb blockade. The peak valdé/id) is just reduced

by a few percent when Coulomb blockade is included.

Figure 10: Symbol: Measured differential conductarad the tunnel junction between the normal slightl
resistive probe electrode and the superconductirgexposed to a magnetic field 23 mT. Dashed line: fit of
the data without taking into account charging dffetthe junctions. Solid line: Fit of the datekitag into
account Coulomb blockade of tunneling with an etaobgnetic environment that consists of the pdralle
combination cR, =250Q and C,, =8fF.

The finite temperature of the normal probe is now to be taken into accogipt in

10.2.3 Finite temperature effects

In the experiment, the temperature of the probe electrodeshsi\sligpendent o’

due to their geometry. Indeed, Joule heating is a concern at lowrsgorpe Any current
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results in production of heat (thermic energy), which can be traedfetirectly to the
phonons in the wire or to electrons in the large pads. At sub-Kelvipetatures, the first
process is very inefficient because the phonon emission rate gee§k’q',,,(kBTp,,)3 with

K,, =10 ns" meV’[8]. Moreover, in our experiment, the normal probe electrode is thgrmall
isolated from the larger contact pad by superconducting connections thue fabrication
process, limiting the efficiency of the second process. Therefoag,tfasport only takes
place through electron-phonon coupling in the probe electrode and electronngitimediuigh
the junction. Since the volume, in which the coupling to phonons can take okoall, this
thermalization mechanism is all the more inefficient: an inputgpaw the fW range can
significantly rise the temperature. At bias voltages lathan the superconducting gap,
heating of the normal part by the tunnel current has a sizeabt# eff electron temperature.
In contrast, at bias voltages slightly smaller than the gapgel@anly quasiparticles with a
large energy can tunnel from the normal part (see Figure 1uijtimgsn an effective cooling

of the normal part. The electronic temperati@rds found by solving the heat equation [9]
(see Equation (22)) taking into account the heat transfer to the phonaat betiperaturd’,

ph

and the heat transfer through the junction:

5Q(7° -73) + [dE——n, (E +eV (1, (E,T)) =P, =0, (22)
w)* 7R

with % the electron-phonon coupling constaf, the volume of the isolated normal probe

7/, occupied states

Figure 11: Principle of electron cooling effectamormal superconducting tunnel junction. Whenjtimetion is
biased just below the gap of the superconductimy paly hot quasiparticles from the normal pan ¢annel,
resulting in an effective cooling of the normaltpar
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and whereP, accounts for additional uncontrolled heat flow, which can be attributed to
spurious electromagnetic noise. The electron-phonon coupling constant depemelsratat

and is related ta,, by £ =247 (5« ,k; with ¢ (5)=1.04. In copper,Z =2 nW pnv K°.

In the experiment, the differential conductance of the probe tunnelqonatiB =0 and

I, =0 was fit usingQ and P as fit parameters in Eq. (22) and including Eqg. (21) with a
BCS DOS forn,, a Fermi function at an effective temperature dependemt dor / . The
volume of the normal part is also a fit parameter because gqiotbrdy defined geometry of
the electrode. Coulomb blockade of tunneling was taken into account withathmeters
determined above. The phonons were assumed to be thermalized at iheratefr
temperaturef’,, =25 mK. In Figure 12, the differential conductance calculated using the fit

parametersQ =0.08 uni and P, =185 aW is compared to the data. The corresponding

Normal probe

g FermiatT . (V)
—————— Fermi at T=30 mK

0.18 0.20 0.22 0.24
V(mV)

Figure 12: Bottom panel: Symbols: Measured diffaetmonductance of the tunnel junction betweenrthenal,
thermally isolated, probe and the superconductirige.wSolid line is a fit using a BCS density in the
superconducting part and assuming an energy disisibaccording to a Fermi function 7, (V) plotted in the
top panel. Dashed line is the calculadl/dV using a BCS density in the superconducting pagtassuming
an energy distribution according to a Fermi functéd 7 =30 mK (corresponding to the dashed line in the top
panel).
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electronic temperature dependence on the bias voltages also plotted. The order of
magnitude ofQ is in agreement with the geometry. The valuePpfleads, for bias voltages

smaller than the gap, to an effective temperature of 65 mK.

10.3 Measurement of the density of states in a superconductor
carrying a supercurrent or exposed to a magnetic field

10.3.1 DOS in the superconducting wire: experiment versus theory

The results of our paper published in Phys. Rev. L19f. 127001 (2003) are
reproduced here. In Figure 13, the solid lines are fits taking into account Golblookade of

tunneling and temperature corrections.

R dl/dV

eV/A0

Figure 13: Normalized differential conductancehs probe tunnel junction: Left: B =0, as a function of the
supercurren /. Right: at/, =0, as a function of the magnetic fie B . The solid lines are the best fits of the
data.

As predicted by theory, the gapless regime obtainedOfdbA, <y < 0.5A, cannot be
reached with a supercurrent, because the wire switches to i$teseelsranch for a depairing

energy equal t®.24A,. The critical current was estimated to he=106 pA. The values of
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the fit parametersy are given in Figure 14. By fitting/(IS,B)/AO with the equation,

deduced from Usadel equations:

y _ 0 A, SD2

& 50018 *Eﬁ “
and Eq. (15) , we find, =240 uA and B, =105 mT. The theoretical values assuming that
the “electrical dimensions” of the wire are the geometricaines are
I, =\20¢7&* (LI R) =310 pA and B, =h/6(&ew)” =105 mT. The depairing induced by
the current is then larger than the predicted one. Knowinglﬂﬁt{gl and B, [J (wfo)_l, the
experimental values of, and B, can be used to extract effective valugg, =162 nm
(instead of125 nm) and w,. =93 nm (instead of120 nmr). This corresponds in turn to an
increased value of the diffusive coefficiem=81 cnfs' and, through the expression of the
resistance, to an effective thicknesg =31 nm(instead of 40 nm). Reduced effective
dimensions could be partly attributed to the surface oxidation of alumimdnch was
exposed to air before measurement, and to surface roughness. Yigiidhlethickness of the
oxide layer is abou® nm and surface roughness is usually estimated at &bout. It can be
argued that it is not enough to account for the reduced dimensions. Angitzeration might
be that the diffusion coefficienD is misestimated from the DC conductivity through the

Einstein relationo =v,e’D .

0.4

v/ 4,

0.2

g
0.00 b—==" : : 0.0
0

40 80 0 3‘0 66
I, (HA) B (mT)

Figure 14: Depairing ener¢y (in units of the gajA, at B=0 and I, =0) for different currents and magnetic
fields, deduced from the fits of ttdi/dV . Solid lines are fits with theory leading to depaj current and
magnetic field/, =240 pA and B, =105 mT. Dashed lines: Theoretical predictions with theadeng current
and magnetic fiel(/, =310 pA and B, =105 mT calculated from the electrical and geometricalrabiristics
of the wire.
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10.3.2 DOS at two different positions in the wire

In the paper, only the results obtained for the side junction are prdserhe
reduction of the gap and the smearing of the peaks when the magnetic field or thersargerc
increase are also observed at the position of the middle junctiorth¥ddOS in the wire at
the two positions for a fixed supercurrent or a fixed magneld fwere different (see Figure
15). When comparing the DOS at the side position to the middle positgvera magnetic
field induces more depairing, whereas a given supercurrent inducesldpairing. This
difference is attributed to a difference in the wire widthat the two junction positions. The
depairing energy scales ag in the case of a magnetic field andlds+* in the case of a
supercurrent. The difference estimated from the depairing enargy w, / w, =1.2, where
w, andw, are the width of the wire at the side and middle positions, respgc(This ratio

is in good agreement with the estimated one from SEM observation.

10+

2 :
3 S °r
S o
h o L . o
v 59 [ ] s@ejuqctlon Sx ™ side junction
0 S o mlddle]unctlon_ o @; o middlejunctiot
0.0 0.2 0.0 0.2
v(mV) V(mV)

Figure 15: Comparison of differential conductancéthe two probe tunnel junctions B=69mT and /, =0
(left panel) ancB=0 and I, =86uA (right panel). At the position of the side junctidhe magnetic field
induces more depairing whereas supercurrent indesssdepairing than at the middle junction. Thietence
is explained by the different widths of the wiretla¢ two junctions. At the position of the sidegtian, the wire
is wider.
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10.4 Conclusion

The effect on the superconducting order of a supercuiteand of a magnetic field
B has been probed by tunneling spectroscopy. As predicted by the theornsadgcopc
superconductivity in diffusive conductors, the overall effect solely depends single
parameter, the depairing energy. For our narrow wire, the Usaddiosgulead to a simple
expression for this depairing energy as a function,oand B, which compares with the
experimental determination of the depairing energy. Yet, the empetal values of the
characteristics depairing currefjt and magnetic field3, correspond to effective dimensions
of the wire smaller than the geometrical dimensions measuredS&iMamicrograph. This
discrepancy, also observed on another sample, is partly attributedacestoughness and

surface oxidation but is not totally understood.
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Appendix: Article reproducing results on the depairing in a
superconductor

We reproduce here the article published in Phys. Rev.90et127001 (2003).
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We have measured the tunneling density of states (DOS) in a superconductor carrying a supercurrent
or exposed to an external magnetic field. The pair correlations are weakened by the supercurrent,
leading to a modification of the DOS and to a reduction of the gap. As predicted by the theory of
superconductivity in diffusive metals, we find that this effect is similar to that of an external magnetic

field.

DOI: 10.1103/PhysRevLett.90.127001

How is the superconducting order modified by a super-
current? The superconducting order is based on pairing
electronic states which transform into one another by
time reversal. The ground-state wave function corre-
sponds to a coherent superposition of doubly empty and
doubly occupied time-reversed states, in an energy range
around the Fermi level given by the BCS gap energy.
When an external magnetic field B = curlA is applied,
time-reversed states are dephased differently, resulting in
a weakening of superconductivity. In the presence of a
supercurrent, the superconducting order no longer corre-
sponds to the pairing of time-reversed states, which re-
sults in a kinetic energy cost, and again in a weakening of
superconductivity. In the early stages of the theory of
superconductivity, it was found that, in diffusive super-
conductors (in which the electron mean-free-path is short
compared to the BCS coherence length) and in homoge-
neous situations, the modification of the superconducting
order by a magnetic field, by a current, and by paramag-
netic impurities can be described by a single parameter,
the depairing energy I' [1]. Later on, the reformulation of
the theory by Usadel [2,3] in the diffusive limit extended
this equivalence to inhomogeneous situations, where the
modulus of the order parameter may vary in space. In
the Usadel equations, all physical quantities involve only
the intrinsic combination V¢ — (2¢/h)A, where the gra-
dient V¢ in the phase of the superconducting order
parameter is associated with the supercurrent, revealing
the equivalence of a supercurrent and of an applied mag-
netic field. The Usadel equations are now at the basis of
the understanding of mesoscopic superconductivity in
diffusive conductors [4,5]. Experimentally, measure-
ments of the density of states (DOS) in a thin super-
conductor placed in an in-plane magnetic field were
well accounted for by the concept of depairing energy
[6]. In contrast, the effect of a supercurrent has been
partly addressed in a single experiment, focused on the
reduction of the superconducting gap close to the critical
temperature [7]. A complication of the experiments with a
supercurrent is that, if the sample width exceeds the
London penetration length A;, the current distribution
given by the nonlocal equations of electrodynamics [8] is

127001-1 0031-9007/03/90(12)/127001(4)$20.00

PACS numbers: 74.78.Na, 74.20.Fg, 74.25.Sv

not homogeneous. In the experiment reported here, the
superconductor is wire shaped, with thickness and width
smaller than A;, so that the current flow is homogeneous
and the magnetic field penetrates completely. Moreover,
the effect of the magnetic field induced by the super-
current is then negligible. This simple geometry allows
one to test the fundamental equivalence between the
effect of a magnetic field and of a supercurrent in a
diffusive superconductor and to compare precisely with
the predictions of the Usadel equations.

Our experiment was performed on a current-biased
superconducting wire made of aluminum, placed in a
perpendicular magnetic field B (see Fig. 1). The density
of states in the wire was inferred from the differential
conductance dI/dV(V) of a tunnel junction formed

di/dV (uS)

FIG. 1. Inset: layout of the experiment: a 10-um-long, 120-
nm-wide, and 40-nm-thick superconducting (aluminum) wire
can be current biased at I or exposed to a magnetic field B. A
normal probe electrode forms a tunnel junction (dashed area)
with the wire. Main panel: measured dI/dV(V) for different
combinations of the bias current and magnetic field: dashed
line: Ig = 0 and B = 0; solid lines: Iy = 70 wA and B = 0, and
I = 0 and B = 23 mT. To a good approximation (see text), the
differential conductance of the junction dI/dV(V) is propor-
tional to the DOS in the superconductor.

© 2003 The American Physical Society 127001-1



VOLUME 90, NUMBER 12

PHYSICAL REVIEW

week ending

LETTERS 28 MARCH 2003

between a small section of the wire and a normal probe
electrode made of copper. Disregarding Coulomb block-
ade and temperature effects (see below), dI/dV(V) is
proportional to the DOS n(eV). The sample was fabri-
cated in an electron-beam evaporator in a single pump-
down, using the three-angle shadow-mask technique
through a PMMA suspended mask patterned using
e-beam lithography [9]. The substrate was thermally
oxidized silicon. The 10-pm-long aluminum wire, with
width w = 120 nm and thickness t = 40 nm was super-
ficially oxidized in order to form a tunnel barrier with the
copper probe electrode overlapping it on an area 150 X
60 nm?. The sample was mounted in a copper box ther-
mally anchored to the mixing chamber of a dilution
refrigerator. Measurements were performed at 25 mK.
From the low-temperature, high-magnetic-field wire re-
sistance in the normal state, R = 77 (), the conductivity
o =27 Q' pum™!is inferred assuming that the electri-
cal cross section of the wire is § = wt. The diffusion
coefficient D =49 cm?s™! is then deduced using
Einstein’s relation o = N(0)e?D, where N(0) =
2.15 X 10*7 J-'m™3 is the density of states at the Fermi
level of aluminum and e is the electronic charge. The
superconducting gap A, = 205 peV was deduced from
the differential conductance-voltage characteristic
dl/dV(V) measured at B =0, I =0 (dashed line in
Fig. 1). Using these parameters, we obtain the supercon-
ducting coherence length &, = \/AiD/A, =~ 125 nm and
the London length A; = \/i/(uomoAy) = 175 nm.
Since A, > w/2, the current density is homogeneous
when the wire is current biased, and a magnetic field
penetrates uniformly in the wire. The measured critical
current of the wire at B = 0 was I, = 106 pA.

In Fig. 1, two dI/dV (V) curves are shown, respectively,
measured at I, = 70 pA, zero field, and at zero current,
B = 23 mT. The reduction of the gap and the smearing of
the peak near the gap energy are similar in the two
situations, bringing already evidence of the equivalent
effect of Iy and B. Note that the magnetic field created
by the supercurrent has a negligible effect: for I, =
70 WA in the wire (see Fig. 1), uol,/Q27@w) ~ 0.15 mT
whereas the resulting DOS is recovered at Iy = 0 with
B = 23 mT. A complete set of data is presented in Fig. 2,
with dI/dV(V) measured for I = 17, 51, and 85 pA at
B =0, and for B = 11.5 to 69 mT by steps of 11.5 mT, at
I = 0. Note that when the wire is current biased, the
superconducting state is metastable. In practice, for bias
currents larger than 85 wA, the system switches to
the resistive state during the recording of the dI/dV (V)
curve. The measured curve is then similar to that
obtained in the normal state. In order to account quanti-
tatively for the data, we use the Usadel theory [2,3].
In this theory, correlations between electrons of oppo-
site spins and momenta are described by a complex
function 6(7, E), the pairing angle, which depends on
both space and energy, and a local complex phase

127001-2

eV/A0

FIG. 2. Normalized differential conductance dI/dV (V) of the
probe tunnel junction: Top: at B =0, as a function of the
supercurrent /g (from right to left: I¢ = 17, 51, and 85 pA).
Bottom: at Iy = 0, as a function of the magnetic field B (from
11.5 to 69 mT by steps of 11.5 mT). Solid lines are best fits with
dI/dV(V) calculated with an electronic temperature dependent
on V (see text); dashed lines are the best fits with dI/dV(V)
calculated with a constant electronic temperature. Insets: de-
pairing energy I' (in units of the gap Ay at B =0 and Iy = 0)
for different currents and magnetic fields, deduced from the fits
of dI/dV (V). In the top inset, square symbols correspond to the
data in the main panel (B = 0), whereas triangles and disks
were obtained from data taken at B = 10.2 mT and B =
27 mT, respectively. Solid lines: fits with theory, leading to
depairing current and magnetic field I+ = 240 nA and By =
105 mT.

¢(7, E). The local density of states is given by n(7, E) =
N(0)Re{cos[6(F, E)|}. The pairing angle and the complex
phase obey the Usadel equations:

hD h
— V20 + [iE - —V2 cosH}sinH + Acosd =0, (1)
2 2D
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V(¥,sin26) = 0, )

where we have introduced the superfluid velocity v,
D[Vgo (2e/H)A]. A term describing spin-flip scattermg,
which is found negligible in our experiment, has been
omitted here. The pairing potential A(7) is determined
self-consistently by

A7) = NO)V.; L e dEtanh(%)Im(sin@), 3)

where V. is the pairing interaction strength, wp, is the

Debye pulsation, 8 = (kzT)~!, kg is the Boltzmann con-

stant, and T is the temperature of the superconductor.
The supercurrent density j is given by

j(7) = ifoo dE tanh(% )Im(sinzﬁ)i’rs. 4)
eD 0 2

In a situation such as ours where the system consists
entirely of a single superconductor, V ¢ does not depend
on energy, and j can be written as a product of the den-
sity of charge in the superconductm% state pg(F) =
eN(0)Us(F), with Ug(F) = [§ dEtanh('B )Im(sinZ0).

We have first checked numerically that the dependence
of 6 on the directions transverse to the wire could be
neglected because the width and thickness are smaller
than the superconducting coherence length &, which is
the characteristic length scale for the variations of . As a
consequence, all the quantities can be replaced by their
values averaged on the transverse directions. In the
London gauge, the effect of the magnetic field is de-
scribed by a vector potential parallel to the wire axis x,
with an amplitude A, = By, sothat (A,) = 0 and \/{A2) =
Bw/(2+/3) [10]. The constant phase gradient d¢/dx is
given by the supercurrent Iy = jS = UgL/(eR)(d¢/dx).
Since 8%¢/dx*> = 0, Eq. (2) reduces to d(sin’6)/dx = 0.
No spatial dependence remains in Eq. (1), and one recov-
ers the generic equation given in Ref. [1]:

cosf

E + il'cosf = iA —, ®))
sind’

r=n = ?[(M>2+(2;)2<A%>} ©)

is the depairing energy, which contains the effect of both
a phase gradient and a magnetic field. Note that since
I'/Ag = 3 (&0d@/0x)* + ¢[£owB/(li/e)]* the relevant pa-
rameters are the phase difference between two points of
the wire distant by &, and the number of flux quanta in an
area w&,. The depairing energy is related to the external
parameters /, and B by the equation

o
A Us(I') Iy Br)’

where we have introduced the characteristic depairing

where
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current and magnetic field It = +2Ao/[eR(&,)], with
R(&p) = R&,/L the resistance of the wire on a length
&0, and Bp = \/6(li/e)/(wé&,). Since the transverse di-
mensions of the wire are smaller than the London length
A, the depairing energy due to the induced field is
negligible (smaller by a factor ~107* [11]) compared
to the one due to the supercurrent. The DOS for a
given depairing energy I' is obtained from the self-
consistent solution of Eqgs. (3) and (5). For practical
purposes, we give the approximate expressions for the
resulting A(I')/Ay and U,(I")/ Ay, valid, at kzT << A, for
I'/A, = 0.3:

A _ r . (ry
y =075y 054<A0>
Ul _ r /Iy
Sy =Ty 10<A0> ®)

The differential conductance measured in the experi-
ments is not exactly proportional to the density of states
n(E) in the superconducting wire. Two effects must be
taken into account in order to calculate dI/dV (V) from
n(E): Coulomb blockade and the temperature of the probe
electrode. Coulomb blockade results from the finite im-
pedance of the electromagnetic environment of the tunnel
junction [4]. The characteristics of the environment are
found from the dI/dV (V) characteristic of the circuit in
the normal state, reached at B > 0.1 T, which presents a
10% logarithmic dip at zero voltage. The environment can
be modeled by a capacitance C = 8 fF in parallel with a
resistance R = 250 (). Coulomb blockade results in a
convolution of the density of states with a function
P(E), the probability for the electromagnetic environ-
ment of the tunnel junction to absorb an energy E [12]:

—(V)—— [ dEn(E)P(eV — E). ©)

Here, P(E) = a/Ey(E/Ey)* " for E smaller than E, =
e?/maC, with a = 2R/(h/e?). The tunnel resistance of
the junction was R, = 140 k(). As a result of this correc-
tion, the peak value of n(E) is reduced by a few percent in
dl/dV(V). Finite temperature in the normal probe results
in a further convolution with the derivative of a Fermi
function. In our experimental setup, this temperature is
slightly voltage dependent, because the probe electrode is
thermally isolated from the larger contact pads by super-
conducting connections. Heat transport occurs only by
electron-phonon coupling and by electron tunneling
through the junction. Since both mechanisms are very
inefficient, even an input power P;, in the fW range can
induce a significant temperature increase. At bias voltages
large compared to the superconducting gap, heating by
the tunneling current has a sizable effect. In contrast, at
bias voltages V slightly below A /e, only quasiparticles at
energies larger than A — eV can tunnel, resulting in
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evaporative cooling [13]. The effective electron tempera-
ture T is obtained by solving the heat equation

SOUT° - T5) — P+

]dE L E+en)(—fE)=0.  (10)
e“Ry

The first term describes heat transfer to the phonon bath,
with 2 =2 nWum 3K for Cu [9], Q =0.08 um? is
the volume of the normal region of the probe electrode,
and T}, = 25 mK is the phonon temperature. The second
term accounts for additional uncontrolled heat flow, which
we attribute to spurious electromagnetic noise. The third
term accounts for heat transfer through the junction, with
f(E) the Fermi function at temperature T. From the fit of
the data at B=0 and I, = 0, we find P;, = 185 aW,
corresponding to 7 = 65 mK at ¢V << Aj. The maxi-
mum cooling effect is reached at eV /A, = 0.99, where
T = 30 mK; heating dominates for eV /A, > 1.02, with
T =210 mK at eV/A, = 1.5.

In Fig. 2, we present the best fits of the data by solid
lines, taking into account both Coulomb blockade and
temperature corrections. The values of the fit parameter I'
for each curve are given in the insets. For a comparison,
fits with a constant electron temperature (7 = 60 mK)
are shown by dashed lines. The V-dependent temperature
correction matters only for the sharpest curves. In turn,
by fitting I'(1,, B)/ A, with Egs. (7) and (8), we find It =
240 wA and Br = 105 mT. The theoretical values, as-
suming that the electrical dimensions of the wire are
identical to the geometrical ones, are It = 310 wA and
Br = 105 mT. Conversely, the experimental values of
Ir o &5V and Br = (w&;)~! can be used to extract effec-
tive values &g = 162 nm (instead of 125 nm) and
Wwerr = 93 nm (instead of 120 nm). This corresponds in
turn to an increased value of the diffusive coefficient:
D = 81 cm?s™! and, through the resistance, to an effec-
tive thickness 7, = 31 nm (instead of 40 nm). Reduced
effective dimensions for electrical transport could be
attributed partly to the surface oxidation of the alumi-
num, which was exposed to air at atmospheric pressure
before measurement, and to surface roughness.

A by-product of the Usadel equations is a straightfor-
ward calculation of the critical current. According to
Eq. 4), Ig < U,(INd¢/dx. Since Uy (") decreases with
I', I, presents a maximum as a function of d¢/dx, which
is the thermodynamic critical current. At B =0 and
kgT < Ay, the maximum occurs at &yd¢/dx = 0.69
and corresponds, in agreement with [14], to [, =
0.75SAY%/N(0)o/k = 0.53Iy = 125 WA (using the ex-
perimental determination of /). The difference with the
measured /. = 106 wA might be due to the uncontrolled
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environment of the wire and to inhomogeneities in the
wire cross section.

In conclusion, we have measured by tunneling spec-
troscopy on a superconducting wire the effect on the
superconducting order of a supercurrent /¢ and of an
external magnetic field B. As predicted by the theory of
superconductivity in diffusive conductors, the overall
effect solely depends on a single parameter, the depairing
energy I'. For our narrow wire, the Usadel equations lead
to a simple expression for this depairing energy as a
function of Iy and B, which compares well with the
experimental determination of I'.
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Chapter 11  Proximity effect in an SNS structure

The modification of the properties of a normal metal electrode close to @toaritaa
superconducting one, a phenomenon called proximity effect, has been highlighte
experiments on mesoscopic devices [1]. Properties of proximitgt effieictures can be well
understood using the concept of Andreev reflection: an Andreev refledimsists of the
reflection of a quasielectron into a quasihole (or vice versagdiitside of an NS interface, a
process that transfers a Cooper pair into the superconductor. The pdé& of the
quasielectron and reflected quasihole is called Andreev pair. Iniddfagstems, the Usadel
equations allow the calculation of electronic properties such adethgties and filling of
states, directly taking into account Andreev reflections. For exanplmetallic proximity
structures, equilibrium properties such as the density of states fRe conductivity [3] are
well explained. In a diffusive short normal wire connected to supercanduptds, a
supercurrent was measured [4]. A quantitative agreement was fotimdhei predictions
using Usadel equations. In [4], the focus was on the low voltage regifes, where
& =hD/I? is the Thouless energy, the length of the normal part and the diffusion
coefficient. In this regime close to equilibrium, the Andreev p@nsain coherent along the
wire and carry the supercurrent. In the experiment presented ircltager, the set-up,
described in the first part, is similar: a normal diffusive ewis connected to two
superconducting pads. A supercurrent and signatures of the minigap, wipiedisted to
open in the wire density of states when a supercurrent flows,olkssrved. Comparison of
these observations and theoretical predictions are performed inctived ggart. We focus in
the third part of this chapter on the large voltage regime whees, if Andreev pairs of large
energy loose their coherence along the wire, signatures of Andiéestions are still visible

in the quasiparticles energy distribution function in the normal anckin the current-voltage
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characteristic.

11.1 Superconducting-Normal-Superconducting structure

11.1.1 Experimental realization

Two samples were fabricated. The SEM Micrographs of these samplessanetg@dan
Figure 1. In the first one, a 5-pm-long, 45-nm-thick silver wireredeat both ends into large
contact pads, which are covered by a 300-nm-thick layer of aluminume3éoirs are thus
made of an Ag/Al bilayer and have a gap reduced by proximitytetfeorder to obtain a
larger superconducting gap, a second sample in which the reservoirsohaweerlying silver
layer on an area 0800x 50C nnt just at the ends of the wire was made. The scale of
500 nmris typically the distance on which proximity effect extendslum@num, so that at the
ends of the wire the superconducting layer is expected to have mtatebulk property.
Transport was probed by measuring current-voltage characteristieoer, in both samples,
two superconducting probe electrodes form tunnel junctions with the wire 8.5 (middle

junction) and atx =0.25 (side junction) wherex is expressed in reduced units of the wire

(N Silver
Aluminum
Sample 1 Sample 2 BY Silver+Aluminum

Figure 1: SEM micrographs of the samples usedvesitigate proximity effect. A normal 5-um-long sitwvire

is connected to aluminum superconducting pads. Sugerconducting probe electrodes form tunnel jonsti
with the wire. The quasiparticle energy distribatifunction in the wire is inferred from the diffetél

conductance of the tunnel junctions. Left, the wseconnected to pads made of a bilayer silver-adum,

leading to weakened superconductivity. Middle, tbgion of the pads where the wire is connectedlg made
of aluminum. Right: Schematic of the contact betw® wire and the superconducting pads for sagple
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length L. As shown in Chapter 2, these electrodes allow the tunnel spectrosicoipy
quasiparticle energy distribution function in the wire if the modifan of the density of
states in the normal wire can be neglected. The geometrical and elebiieaiteristics of the

samples are summarized in Table 1.

Sample| w(nm)| t(nm) L(um)| RQ)| D(cnt.s") | & (HeV) | A(ueV) | R (kQ) | R (kQ)

1 80 45 5.15 38 140 0.35 115 132 46
2 70 45 5.6 58 116 0.25 130 192 247

Table 1: Geometrical and electrical characteristitshe measured samples: width, thicknesst, length L,
resistancer , diffusion coefficientD , Thouless energy, =D/ I?, gap energy in the superconducting reservoirs

A, tunnel resistance of the side juncti@, and of the middle on&)" .

11.1.2 Model

The model of the system is presented in Figure 2. The diffusive hatineaof length
L =5 um is connected to two superconductors. The modulus of the parameter otider in
superconductors is notefl. In the calculation, the wire is considered as one-dimensional
since its width 80 nm) and thickness 45nm) are smaller than the coherence length
¢, =/AD/ A =300nm. The contacts between the superconducting pads and the normal wire
are assumed to be perfectly transparent. The theoretical ppadicire made for the

experimental conditions of sample 1 at temperafurel4 mK:

A 330,
&r

kT 3.5
&r

In the equilibrium regime, detailed calculations were performedP.bZharlat [5,6] and
Dubos [4,7] using the Usadel equations derived from the theory of non-eguilibri

superconductivity (see Chapter 9).
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Figure 2: Layout of the experiment. The normal visreonnected to two superconductors. When the alonine
sustains a supercurrent, it is current biased. r@tke the wire is voltage biased. The positionshie wire are
given in reduced unitx = X / L, with L the wire length.

11.2 Equilibrium regime

11.2.1 Theoretical predictions

We consider first the situation where the system is curreséthjaassuming a static
phase differencej.e. with no voltage across the wire. The phase gradient between the

superconducting reservoirsp and the supercurrent are related by:

. g - £ :
Js (x) :;J’O dgtanhﬁ Im( siri @ D¢) : (1)

The determination of the phase gradient from the supercurrent depertus @airing angle
6(x,€) in the wire. This leads, like in Chapter 10, to the self-consistent solution of thel Usade
equations.

In order to discuss the density of states in the normal wire, thee mhherencey, between

the superconducting reservoirs is taken as a parameter. This pifi@snck resulting from

the supercurrent does not depend on energy. The equilibrium Usadel equations are then:

Do B mpmed O
Y +ﬁ$ 277 Hox 1 coseﬁ sing = (

9109 i eﬁz 0,

Ox [10x

)

with the boundary conditions for the superconducting reservoirs:
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The modification of the pairing angle in the superconducting reserdagsto proximity

effect is neglected. We recall here the results obtained from these equaiijrenid [4]:

- A minigap appears in the density of states of the normal Wire value of this gap does not
depend on the position in the wire but just on the phase differgpceetween the two
superconductors (see Figure 3). Its valle is of the order of the Thouless energy and is

much smaller than the gap in the superconducting reservoirs.

Eg /&,

(W8]

[S]

0
0 2T

I
X(’)

Figure 3: Energy gajE, in units of the Thouless energy versus the phaf$erehce x, between the two
superconducting contacts (from [5]). The inset shtive linear dependence £, near y, = 7.

The densities of states at various positions along the wire are preseliguare4 for y, = 0.
In Figure 5, the average DOS on the sample length for differenévalf x, is presented

(from [6]).
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0 100 200
o 1 ele,

Figure 4. Density of states along a normal wirensmted to two superconducting pads at the samespldas
minigap appears in the DOS. Its value does notrepe position.

- The maximum supercurrent that the wire can sustain was @iy Dubos et al [4]. This

critical supercurrent,, is predicted to be:

I.=a =, 3)
¢ eR,

where R, is the wire resistance in its normal state ané numerical constant dependent on

Aleg, andk, T/ &, . In the experimental conditions of samplerls 5.

0.4

0 '
0.99

Figure 5: From [6]. Square power of the averagesitienf states on the wire length versus reducedg ¢/ E,
near the gap edge. Curves labeled 0, 1, 2, 3,&,@hd 7 are fix, =0, 77/2, 37/4, 7rr /8,157 /16
31r/32, 637 /64, andr The insert shows the full density of states curves
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11.2.2 Supercurrent

The small-scale current-voltage characteristic of sampéeptesented in Figure 6. A
supercurrent branch is observed. Switching to a resistive statend at /=39 nA, a value
slightly smaller than the predicted critical currdpt=45 nA from Eq. (3). This discrepancy
could be due to thermal fluctuations that induce switching befores reached or to the
presence of vortices in the superconductors. This last hypothesisnisraed by the
observation of a hysteretic magnetic field dependendg ofiith the maximum/; =39 nA at

B=50G (at B=0, I, =15 nA).

I(nA)

—1I.0 OjO le
V(uV)

Figure 6: Current voltage characteristic of saniple

In sample 2, no supercurrent was found. The predicted critical currastlivnA.
Anticipating on distribution function measurements, the absence of supatcisr attributed
to a finite contact resistance between the wire and the superdogdoatls: as explained in

Figure 1, the two samples strongly differ in the geometry of this contact.
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11.2.3 Signatures of a minigap in the density of states in presence of a
supercurrent

When the wire sustains a supercurrent, a phase difference appesesenbéhe
superconductors, leading to a change in the D(()B) of the normal wire and in a change of
the minigap energy, . This effect would be best probed with a tunnel junction to a normal
electrode. In the experiment, the probe electrodes were superconcaetengse the main
goal of the experiment was to probe the quasiparticles energipulisin function in the
normal wire (see 11.3). Yet, signatures of the minigap in the desfs#tfates of the normal
wire could be observed in the differential conductance cueigs/V’ (V) of the tunnel
junctions. In Figure 7, we present an example/lofdV (V') for the side junction of sample 1

when the wire sustains a supercurren® ofA .

50 T T T

di/dV (uS)
N
(6)]

-0.2 0.0 ' 0.2
V (mV)

Figure 7: Differential conductancdl/dV of the side tunnel junction when the normal wingstains a
supercurren I, =9nA. Additional structures appear near the gap opto@e electrod A, =200uV.

Singularities are visible near’ =+0.2 mV. At zero temperature, it is known that the
differential conductance of a tunnel junction between two electrodbsgapsA and A’
presents a gap at the valde+r A" [9] (see Figure 8). Here a second peak appeafs—ak
becauseA” corresponds to the Thouless energy, which is the typical energy scale of the
minigap in the wire density of states, and which is of the samer as the electronic

temperature in the normal wire [10]. This situation corresponds twadee2) of Figure 8. The

200



analysis of this singularity allows to gain information on the minigap.

11.2.3.1 What does the superconducting electrode probe in the wire?

In the conditions of these measurements, the quasiparticle endrgyutien function
f(E) in the wire is a Fermi function at a temperature close tdridige temperature and the
density of statesn(E) in the wire is unknown. The differential conductance of the probe

junction between the superconducting probe and the normal wire is written:

J'dE

This expression is not a simple convolution and the DE()E) cannot be easily extracted

O (£ - eV)n(E E)4f’ dEana(E) (E =eV). (4)

from dI/dv (V). Therefore, we compare directly the predictéd dV (V') curves using a

calculatedn(E) with the experimental measurementsidf v (V).

di/dv

A+AY k

<Y

k,T <<A <A

2) di/dv

A+A* ]

<Y

A-A"

A <k, T <A

Figure 8: Differential conductancdl/dV of a tunnel junction between a superconductor oSBiensity of
states with a gaA and a modified superconductor with an unknown itemé states with a gaA” . The left
part represents the occupied states (Gray) aneértimied states in both electrodes of the tunnedtion. 1)
When the modified gap is much larger than tempegaA” >>k, T, dI /dV presents a gap A+A". 2) When
the modified gap is smaller than temperattA’ <k,7 <A, dI/dV presents a gap at abcA+A" and a
characteristic structure A—A’.
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11.2.3.2 Minigap revealed by the tunnel junctions differential conductance

The results discussed here were obtained on sample 1 (the singlebpeesents a

supercurrent).

11.2.3.2.1 Temperature dependence

We have investigated the temperature dependenc# /m‘V(V) at a fixed value of
the supercurrentq(nA). If the modification of the superconducting properties of the bulk
pads with temperature can be neglected, only the filling facttirea$tates in the normal wire
is modified. Figure 9 presents a comparison between the theoratidalexperimental
evolutions ofdl / dV with temperature aroundd = -0.2 mV (data around” =+0.2 mV are
identical). If the overall shape of the curves is correctly desdrby theory, the peak at
—-0.22 mV is found sharper in the experiment whereas the one-ed® mV is found more
rounded. This discrepancy arises possibly from the wrong evaluation of they dé¢issittes in

the normal wire, which neglects the effect of electron-electron interaction.

Experiment Theory
150
%) %)
2 2
> >
z z
o o
0.20 0.15

Figure 9: Measured and calculated differential cmtance of the side tunnel junction as a functiérihe
temperature when a supercurrent9 nA flows in the wire. Assuming that the superconchgtpads are not
modified, only the filling of the states in the nmal wire is modified. When the temperature increatiee same
evolution is found qualitatively.
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11.2.3.2.2 Supercurrent dependence

The minigap and the density of states depend theoretically on the giffasence
between the two superconductors (see Section 11.2.1), which is determined by ¢herbids
(Eq. (1)). Experimentally, we observe an evolution of JﬂiédV(V) of the tunnel junction
with the supercurrent, as shown in Figure 10 (the data were takeh=#&, where
I, =15 nA). To predict the density of states in the normal wire versusupercurrent, Eqg.
(1) must be solved self-consistently with Eqg. (2). Qualitativgly,is expected to evolve in a
nearly sinusoidal way [7] fron® to 77/2 when goes fromO to /.. The minigap energy is
therefore expected to decreaseOtdor increasing values of . The minigap can be directly
inferred from thed]/dV(V) curves: as exemplified on Figure B, /e is equal to half the
distance in voltagel,, —=V,, between the two peaks. Af, =0, (Vpl—sz)/2:2.4 9AY,
instead of the theoretical valug, = 3.1¢, = 1.0 pV. Instead of decreasing with, 1, -V,
increases (see Figure 10). We assume that this evolution is duoetites in the pads that

move with the current, as for the critical current dependence on magnetic field.

300} I_(n—'A) J Ar

0
3 o -

G 200 a
3 N - -
= 7 a
2 T2 7
-~ o
5 >

100 9

V(mV) I (nA)

Figure 10: Left panel: Differential conductancetloé side tunnel junction when the wire carries pescurrent.

A minigap opens in the wire density of states, ilegqdo the peak near the gap edge of the superctindu
electrode. Right panel: Difference between thetmos V,, -V, of the peaks in the differential conductance
versus the supercurrent.

11.2.3.2.3 Position dependence

All the data shown till here correspond to the side junction. For an giase

difference, theory predicts that the density of states in the wireswaith position (see Figure
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4) but that the minigap is constant. In the experiment (see Fig)yehe density of states in
the middle of the wire appears to be much rounded thar& 25, an effect not predicted by

theory. We attribute this discrepancy to the effect of electi®etren interaction in the

normal wire.
Experiment side junction Theor
P middle junction y
IS=0 nA 1;=0 nA
10+ g 10+ g
> >
S ]
o o
n:" 51 i n:" 5L i
ok m\\’__"\'\ (0}
-0.25 -0.20 -0.15 -0.25 . -0.20 . -0.15
V(mV) V(mV)

Figure 11: Left: Normalized differential conductenaf the two tunnel junctions when the phase difiee x,

between the two superconducting pads is zero. Rifintoretical predictions using the DOS calculaited
Section 11.2.1.

11.2.3.3 Conclusions on the minigap observation

This set of measurements brings evidence for the existencmiofgap in the density
of states of a normal wire connected to two superconductors. The obdepesttience of the
DOS on the supercurrent and on position does not correspond to theory. Phe of t
discrepancy can be attributed to vortices in the superconductors. Thihdhave neglect
electron-electron interaction in theory is also probably anotheomeddore information
would be gained in a dedicated experiment in which the probe electmdd e normal

instead of superconducting.
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11.3 Out-of-equilibrium regime

11.3.1 Quasiparticle energy distribution function in the out-of-equilibrium
regime

In this section, our results published in Phys. Rev. B6it1078 (2001) are described

and completed.

11.3.1.1 Theoretical predictions

The quasiparticle energy distribution function in the normal wire lwansimply
accounted for by the picture of Andreev reflections: at an NS aueerfa quasielectron of
energye smaller than the gap of the superconductor cannot enter the supercorahcisr,
reflected into a quasihole with energy , while a Cooper pair enters the superconductor (see

Figure 12). The energy reference is the chemical potential of the superconductor.

0
N t% )E
S, by

2A

Figure 12: Left: A normal wire is connected to gpetconductor. Middle: Representation in the energy
(horizontal axis) and position (vertical axis) spaxf an Andreev reflection responsible for the entitransport

at an NS interface. The excitation spectrum of shperconductor has a gi2A centered on its chemical
electropotentia y, , with quasielectrons states occupied at negatieggies (dark area) and empty at positive
energies (light gray area). A quasielectron frore thormal part (dark disk) of energy smaller thame th
superconducting gap can not enter the supercondaistbis reflected in a quasihole (light gray disk)

Due to proximity effect, the density of states in the normakmstmodified near the NS
interface. The distance over which the normal metal is affelgpdnds on energy. In absence
of spin-flip scattering, this distance is predicted to be infigiteenergy equal to the
electrochemical potential of the S electrode. In experimentsdisiance is limited by all

decoherence phenomena in the normal wire, and is much smaller thamethength. To a
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first approximation, this modification is neglected and the SN&®&sysan be modeled like in
Figure 13. Electrons with a small energy bounce back and forth betieertwo

superconducting reservoirs before exiting the wire. Within the dvuapproximation, the
occupation factors of the quasiparticles states vary lineanlyeletO and1 along the paths
between the reservoirs. The path length depends on bias voltage gsee E3). This

representation allows to predict the energy distribution functioneatrehs anywhere in the

wire.
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Figure 13: Left: Layout of the experiment: A voleayy is applied between two superconductors (S) ected
through a normal wire (N) of length L. A supercoating probe, represented by an arrow, forms a tunne
junction with the central part of the wire. Top tEmand top right: Representation in the energyifbatal axis)
and position (vertical axis) space of the quasiglarpaths responsible for the current transpahne €xcitation
spectrum of the top and bottom superconductorsahgep 2A centered on their electrochemical potent z 3
and y, (u —u, =eU), with quasielectron states occupied at negativergies (dark areas) and empty at
positive energies (light gray areas). Quasiparfieths consist of quasielectrons (dark disk) arabsitpoles (light
gray disk) trajectories at symmetric energies al i, Jand L, , connected by Andreev reflection. The area of the
disk is proportional to the occupation factor of tfuasiparticle state, which varies linearly altregpath froml

to 0. The bottom plots are the energy distribution mted at the center of the wire, eU >2A (center) and
A<eU <2A (right).

11.3.1.2 Bias-voltage dependence

The energy distribution functions obtained by deconvolution of the differential
conductance of the middle junction in sample 1 as a functidh afe presented in Figure 6.

The predictions of the simplified model taking into account only Andrefiections are also
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presented: the energy gap in the superconducting aluminum resenafisparameter equal
to 115peV, which is smaller than the gap of bulk aluminug0Q peV), as expected for an
NS bilayer. For the two larger bias voltages the position and itfid wf the steps are well
accounted for by this theory. Yet, the measured steps are rounded. kaveheoltage, the

predicted steps are washed out by the rounding.

1 mmi sample #1 -

Figure 14: Energy distribution functions in the diig of the wire of sample 1, when the reservoies iarthe
superconducting states and voltage biaseU atSymbols are experimental data; solid lines aeeetkpectation
of a simplified theory taking only into account tiplle Andreev reflections.

The rounding of the steps is due to energy exchange between qudsgantithe normal
wire. The longer the quasiparticles stay in the wire, the mueg interact, and the more
rounded is the distribution function [11]. This effect is visible on thevecumken at
U =595V, where the plateau centered(ab corresponding to quasiparticles going through
the wire once has a smaller slope than the one8.2& and 0.75, which correspond to
quasiparticles going through the wire twice.

To evaluate the rate of energy exchange in the normal wire, weeadpplied a magnetic field
that turns the reservoirs normal, but keeps the probe electrode superncgndodeed, the
bilayered Al-Ag reservoirs are less robust to magnetic fielas then possible to measure

the out-of-equilibrium energy distribution function of quasielectrons irkg11] and to
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deduce the rate and energy dependence of energy exchange (sedBjigifeerwards, the
deduced rate was included in a calculation fffE), (see [11] and Chapter 7 for more
details):

2
p%l 4

ax 2 coll

(f)=0. (5)

Andreev reflections at the NS interfaces enter in the boundary conditio||h'$¢dt:

f(u+E)=1-f(u-E) (6)
of -,
a(/1+E)_ ax(u E). 7)

The condition (6) accounts for the equality of the occupancy of quasiele@nd quasiholes

states at symmetric energies about the electrochemical pbtentif the superconductor. The

condition (7) is the conservation of the quasiparticle current.

sample #1

f(E)

SKaacaal

Figure 15: Energy distribution function in the migldf the wire of sample 1, when the reservoirs iaréhe

normal state and voltage biase(U =597 pV.

The data in Figure 14 are well accounted for with a calculatidadimg in 7_, (f) electron-

electron interaction and electron-phonon interaction (see Figure 16).intéwmsity of

interactions were found to be,,=0.75ns meV* and k,, =8 ns' meV*. The predicted
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electron-electron interaction intensity4$, =0.12 n§ meV*(see Chapter 7).

2 T T T T T T T T T

sample #1

Figure 16: Energy distribution function in the migldf the wire of sample 1, when the reservoirs iaréhe
superconducting state and voltage biaseU atSymbols are experimental data; solid lines agestilution of the
Boltzmann equation taking into account multiple Aewl reflections and energy exchange.

11.3.1.3 Position dependence

In sample 1, at the position of the side junction, whatever the biagepttee energy
distribution functions display strange features (see Figure 17 fo0 andU =595uV). The
reason is that at this position, the density of states in the naineais modified by proximity
effect. The length over which this modification extends depends on the energy retatihel
electrochemical potentiajy of the superconducting reservoir. At, this modification
typically extends in the normal part ovéy at the electronic temperatui. In our out-of-
equilibrium situation,7, must be replaced with the width of the energy distribution function
U+2A: At U =595 pV, for example,7, =9K and L, =1.5um for 6N-silver (see Chapter
6). As a consequence, like in Section 11.2.3() is modified at the position of the side
junction, which is1.25 pumr away from the left superconductor and the deconvolution of the
differential conductance of the tunnel junction does not gf\(eE) The observation on
Figure 17 that some extra peaks on the deconvolved data are at ay emeat to the

chemical potentiajs, of the nearest superconducting reservoir whereas nothing is observed at
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the other chemical potential, buttresses the previous explanation.

sample #1

0 U=595pv

0.5+

“H(E)"

-0.5 0.0 0.5
K My

E(meV)

Figure 17: Symbols: Apparent energy distributiomciions " 7 (E)" obtained by deconvolution <dl/dV
measured ax=1/4 for U =0 and U =595uV. Bottom: Solid line is the calculated energy disition
function at x =1/4 with the fit parameters that account for energritiution functions in the middle of the wire

(see Figure 16).

In sample 2, the measured distribution functions at two different @asitlong the wire are
well accounted for by the simplified theory (see Figure 18), ifagseimes that the positions
of the junctions arex =0.58 (instead 0f0.5) and x =0.35 (instead 0f0.25). This shift is
attributed to a significant contact resistance at the ressriwothis sample, equivalent to an
extra length of the wire. The effective positions of the probe jmstcorrespond to an
effective lengthening of the left side of the wire by ab8850nm. The existence of such a
contact resistance was also inferred from the absence of supatcand prevents from a
modification of the density of states by proximity effect at plsition of the side junction
like in sample 1. This explains why the strange features ofd-ijurare absent on Figure 18.

The widths of the side steps give slightly different gaps at both #8631V and140 pV.
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Figure 18: Distribution functions in sample 2 asaswed by the middle and side junctions U =700 pV.
Symbols: Experiment. Solid line: Solution of thelBmann equation accounting for the Andreev reitect at
the reservoirs and electron-electron interactiahiwithe wire forx = X /L =0.58 andx = X /L =0.35.

11.3.2 Current-voltage characteristic of the SNS structure

11.3.2.1 Experimental observation

For both samples, even if the current voltage characteristic lowes lat first glance,
a subgap structure is revealed by differential conductance measusgigee Figure 19). Such
a subgap structure, which was already observed by tags [12] is not expected in the
simplified picture of Andreev reflections. In order to describe tbdification of the density
of states near the NS interface, we have performed a cadculaging the theory of non-

equilibrium superconductivity.

211



1.2

sample 1
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Figure 19: Left panel: Measured differential cortdnce dI/dV of the normal wire in sample 1. The
conductance of the wire shows a step-like behaa®ra function of the voltage. Right panel: Diffdiain
conductance, normalized to the conductance at lastiegel/ R , versus voltage, normalized to the gap voltage
of the superconducting pa A, for sample 1 (black line) and 2 (gray line).

11.3.2.2 Theoretical predictions

To calculate the current voltage characteristic of the SM&tste, we use the
equilibrium and out-of-equilibrium Usadel equations. The current is derik@d the

guasiparticle energy distribution function in the wire.

11.3.2.2.1Energy distribution function in the middle of the wire

In the finite voltage regime, proximity effect has two consequernte modification of the
density of states in the normal wire near the NS interfacehendhodification of the filling
factors of the quasiparticles states in the normal wire ahdae. In presence of a finite
voltage, the phase difference between the two superconducting pads depéinas. dine
theory of non-equilibrium superconductivity does not apply to such a non-stgtoass. In
order to circumvent this difficulty, we assume that the wiréomg enough so that, in the
middle, the wire is normal and the pairing angle equal to zero. Tdi#epr can then be
solved by separating the wire into two systems made of a norineat@nnected at one end to
a single superconducting reservoir: A first one between0 and x=1/2, with a

superconducting reservoir at=0, a second one between=1/2 and x=1, with a
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superconducting reservoir at=1. The equilibrium and out-of-equilibrium Usadel equations
can then be used (see Chapter 9). Afterwards, both solutions are dn&gether by
continuity. This model is solved in details in Appendix 1. An exampleltisns is shown
in Figure 20. This approach fails to account for the smoothing of th@yedestribution
function because electron-electron interaction is not included in khdatgon. The positions
of the steps are the same as those found with the approach of Arefteetions. The sharp
features, at energies equal to the electrochemical potentia¢ gfuperconducting reservoirs,
in the middle of the plateaus, are sighatures of proximity effect. Note thatpidiien of the
side junction of sample 1, the apparent energy distribution functions oreFlg present
sharp feature at energy equal to the electrochemical potentia¢ ofearest superconducting
reservoir but for a different reason, as seen from their shaptinbgling one obtains a

contribution of the density of states as explained before.

1.0 ---- ---- U=151 pV T
v fv o u=595 v

0.0r

Figure 20: Calculated quasielectron energy distidinufunctions in the middle of a normal wire cootesl to two
superconducting pads, of giA =115 pV, voltage biased ¢U =151 uV and 595uV. The calculations are
based on the Usadel equations. The modificationthef pairing angle in the normal wire and in the
superconducting pads near the NS interface dueoxirpity effect is taken into account and is resgble for
the sharp feature on the steps at energies eqtla ®lectrochemical potential of the supercondgcteservoirs.
The rounding o f(E) is absent because electron-electron interactiantitncluded in the calculation.
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11.3.2.2.2 Current-voltage characteristic
From the distribution function in the middle of the wire, the currentgelt

characteristic is obtained by integrating out the following equation (see CBapter

0f of,, O
_—J’ “de Efos2 8,2 + coshg, ol (8)

Ox

with o the conductivity in the normal metal. This formula gives the nowmira resistance
when € =0. Since the current is conserved along the wire, it can be caldulathe middle
where the wire is assumed to be norng(1/2,e) = 6,(1/2,) = (, so that Eq. (8) simplifies
to:

=2y ngafo fwﬁ (9)

The differential conductance obtained from this calculation is pes$entFigure 21. Peaks

appear in the differential conductance at energies equal to submultiple of twispe/ 7 .

1.10 T T " T . . . .

>
T 1.05
S
o
1.00
0.0 0.5 1.0 1.5 2.0
eV/A

Figure 21: Predicted differential conductance afoamal wire connected to two superconducting reses\of
gap A. The length of the normal wire 9L, = o9JaD IA with D the diffusion constant of the normal wire.
Peaks appear in the differential conductance ag@awequal to submultiple of twice the gap.

Even if the experimental results show some similarities thith curve, they are much more
rounded. Moreover, the order of magnitude of the predicted effect idesntlaan the

experimental one, proving that this model fails to capture the essential physics.
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11.4 Conclusion

Two theoretical descriptions of proximity effect have been usedotopare with
experiments. The first one, based on Usadel equations, neglectsfabie off Coulomb
electron-electron interaction, but describes the propagation of paglatmmn. We have
adapted it to out-of-equilibrium situations in which two superconductorsbased at
different potentials. The second theoretical framework is based oBaoltmmann equation
and treats Coulomb interaction in details. Proximity effectnisoduced as a boundary
condition, which is an oversimplification. All the properties spec¢dipair correlation cannot
be found from this second formalism: the supercurrent, the DOS, theyerolégpendent
resistance are only expected from Usadel equations. It is hofeewet that the agreement
with this theory based on Usadel equations is rather poor, suggesti@pthamb interaction
does play an important role, too. A term that accounts for electectrash interaction should
be added in the earlier steps of the mesoscopic superconductivity thetbrey self-energy
expression (see Chapter 9 and [13]). For the energy distribution fund¢hieradapted Usadel
equations only predict slight modification ¢T(E) whereas the most salient modifications of

f(E) are due to Coulomb interaction. Boltzmann equation gives then the best description.

More experiments are needed in this field: for shorter wires, froations off(E) by pair

correlations should become measurable, and interactions should be pestamtn The
simplest geometry would be a wire with one contact superconductingtitbe one normal
(SNN). Both normal and superconducting probe electrodes would allow for nosge

measurements of the density of states and energy distribution functions.
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Appendix 1: Calculation with the Usadel equations of the energy
distribution function in the middle of an SNS structure

E
© A
S N_|eur
N 10
S S @ -eUs2 | S
N
t > t >
0 1 X 0 1 X

Figure 22: Left: Layout of the experiment. A nornwdle is connected to two large superconductingags-
biased electrodes. Right: To perform the calcutatibthe energy distribution function in the middiethe wire
with Usadel equations, the density of states imtfdlle of the wire is assumed to be normal sottiawire can
be modeled by two SN systems with different refeeeenergies.

To calculate the energy distribution function in the middle of the rowira, the
system is modeled by two half systems made of a normal wineected to only one
superconducting reservoir (see Figure 22). The energies are exbnessits ofA, the gap
of the superconductor pads. The pairing an8leand the filling factorsf,, and f,, are

introduced.

Density of states in a normal wire connected at one end to a superconductor

The modifications of the density of states near the NS intediscéaken into account
on both side of the contact. When neglecting the spin-flip scatterimgg §8l¢= O, the

equilibrium Usadel equations can be simplified to:

2
A
g+2i$sin9+ 2ﬂ cog = |
Ox A

whereA(x) =0 in the normal part and (x) = A far from the interface in the superconductor.

The out-of-equilibrium equations in the normal wire can be written:

Of{cos @ £} =0
O{costid) .} = 0
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The density of states at the end of the wire is assumed to be normal, so that:

6(1/2,£) = 0.
By symmetry, one also has:
06
—(1/2¢)=0.
*(L2¢)

When integrating twice the equilibrium Usadel equation, one obtains>¥d:

8(x, €)= sarctam) il 8) e o
o 4 0

Far inside the superconducting reservoir, bulk BCS properties are medowe practice,
superconductivity is modified on a distance from the contadkD/ A < L, so that we take:

0(-1,£) = G, (&)

%(-1,5) =0.

Ox

When integrating once the equilibrium Usadel equation, one obtains<or.
Eg—eg —4iccosf+ 4sid= 4 & .
X

The contact between the superconductor and the normal wire is assurhedperfectly
transparent, so that by continuiin(6(0,)) =ie +v/1-¢* .
For the out-of-equilibrium equations, the superconductor is assumed te@bereoir at zero

temperature so that:

7., (0,)=0
f.(0,6)=-1 if <0
f.(0,6)=1 ife>0

One obtains then:
_ G
Joa (x,g) = Joa (O,g) +a(£)IO cog Gl(X ,E)

fev(x"‘:):b(g)]:cosﬁcéf()( £)

with a(g) =0 for £ <1.
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Energy distribution function in the middle of the wire

A voltage U is applied between the two superconducting reservoirs. The energy

reference is taken in the middle of the wire (see Figure 22).

Then the distribution function can be written for the left and right part:

) ) o dX
1 (5 E)= 1 (O E +eU 12) +a(E +eU 13 - oaprn
X dX

°cosi 6,(X g)

f;,(x,E):b(E+eU/2)I

. ) _ P S
1o (2 E)= 1 0. F ~eU12) va(E =V 12)[ e oty
¥ ax

ocostt g, (X £)

f;,(x’,E):b(E—eU/z)J'

Writing that the energy distribution function and the spectral curae@tcontinuous at

x =1/2, the following equation is obtained:

F(E)-f(E+eU) +f(E) ~f(E —eU)

0=

i,(E+eU/2) i,(E-eUl2)
[0 ifE+eU /|2 A

+Ef(E)+f(E +eU) =2sign(E +eU /2
0 ; if [E+eU /12> A
0 i, (E+eUl2)
[0 if [E-eU/3<A
O .

+07 (E)+ f(E-eU) -2sign(E —eU /2 f|E—et 17> A
g i(E-eU12) ’

with
. w2 ax
ll( ) Io co§91(X ,é‘)

L2 ax
i\ E)= _ .
=(E)= [, Gostia, (v #)
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Appendix 2: Article reporting results on the energy distribution
functions in an SNS structure

We reproduce here the paper published in Phys. Rev8bet078 (2001).
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Multiple Andreev Reflections Revealed by the Energy Distribution of Quasiparticles
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We have performed the tunnel spectroscopy of the energy distribution function of quasiparticles in
5-um-long silver wires connected to superconducting reservoirs biased at different potentials. The dis-
tribution function f(E) presents several steps, which are manifestations of multiple Andreev reflections
at the NS interfaces. The rounding of the steps is well explained by electron-electron interactions.

DOI: 10.1103/PhysRevLett.86.1078

The modification of the properties of a normal (i.e., non-
superconducting) metallic electrode when it is connected
to a superconducting one, a phenomenon called “proximity
effect,” has been highlighted by experiments on meso-
scopic devices [1]. In metallic nanostructures, equilibrium
properties, such as the density of states [2], the conduc-
tivity [3], or the supercurrent [4], are now well explained.
The propagation of the correlations between time-reversed
states from a superconductor (S) into a diffusive normal
metal (N) is described by the Usadel equations [5], which
apply to situations where all superconductors are at the
same potential. In this Letter, we address an out-of-
equilibrium situation, in which two superconductors con-
nected through a long (I = 5 um), diffusive normal wire
are biased at different potentials (see Fig. 1). We have
measured the energy distribution function of quasipar-
ticles in the middle of the wire, which is expected to be
strongly modified by the presence of superconductors at
the ends, since quasiparticles can escape the wire only
if their energy exceeds the energy gap A of the super-
conductor. Therefore, in the presence of a finite voltage
across the wire, the quasiparticles in the wire are expected
to be “heated” up to the gap energy [6]. A quantitative
description follows from the concept of multiple Andreev
reflections, which recently has been shown to describe
in great detail the current-voltage characteristics [7], the
noise [8], and the supercurrent [9] in atomic point contacts
between superconductors. An Andreev reflection consists
of the reflection of a quasielectron into a quasihole (or
vice versa) at the N side of an NS interface, a process
which transfers a Cooper pair into the superconductor.
The energies of the two quasiparticles involved are sym-
metrical with regard to the electrochemical potential of the
superconductor. When two superconductors are present,
successive Andreev reflections at both superconductors
lead to a progressive rise of the quasiparticle energies, till
the superconducting gap is exceeded. At zero voltage,
multiple Andreev reflections lead to the formation of
bound states which carry the supercurrent [10]; at finite
voltage, they result in nonlinearities in the current voltage
characteristics [6,7]. Here, we focus on the fingerprint of
multiple Andreev reflections in the shape of the energy
distribution function f(E) of the quasiparticles.

1078 0031-9007/01/86(6)/1078(4)$15.00

PACS numbers: 74.50.+r, 72.10.—d, 73.23.-b

For simplicity, we first make the following assumptions:
(i) electron-electron and electron-phonon interactions are
neglected; (ii) the renormalization of the diffusion con-
stant in the normal wire by proximity effect is neglected;
(iii) the probability of Andreev reflection is taken equal
to 1 for quasiparticle energies within the gap, and to 0
elsewhere. Under assumptions (i) and (ii), the distribution
function varies linearly with the position X along the wire
[11]. Because of Andreev reflection, the occupation factor
for quasielectrons and quasiholes at symmetrical energies
about the electrochemical potential w of the superconduc-
tor is equal at the NS interfaces, as well as their gradients.

St 2A 2A

«—>
eU

FIG. 1. Left: layout of the experiment: a voltage U is applied
between two superconductors (S) connected through a normal
wire (N) of length L. A superconducting probe electrode, rep-
resented by an arrow, forms a tunnel junction with the central
part of the wire. Top center and top right: representation in
the energy (horizontal axis) and position (vertical axis) space of
the quasiparticle paths responsible for the current through the
normal wire. The excitation spectrum of the top and bottom
superconductors has a gap 2A centered on their electrochemi-
cal potentials u, and w, (u;, — up = eU), with quasielectron
states occupied at negative energies (dark areas) and empty (light
gray areas) at positive energies. Quasiparticle paths consist of
quasielectron (dark disks) and quasihole (light gray disks) tra-
jectories at symmetric energies about @, or u;,, connected by
Andreev reflection. The area of the disks is proportional to the
occupation factor of the quasiparticle state, which varies linearly
along the path from 1 to 0. The bottom plots are the energy dis-
tribution functions at the center of the wire, at eU > 2A (center)
and A < eU < 2A (right).

© 2001 The American Physical Society
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One can therefore define quasiparticle paths in the
energy-position space between occupied and empty quasi-
particle states in the superconductors, along which both
the nature of the quasiparticle and its energy change at
each NS interface. The occupancy f of the quasiparticle
state on this diffusive path varies continuously from 1 to
0 along the trajectory, with a gradient given by the inverse
of the length of the trajectory. Hence, f is simply, at a
given point of a trajectory, the remaining fraction of the
path. The distribution function f(E), which is defined
for quasielectrons, is then equal to f at a point where the
quasiparticle on the considered trajectory is a quasielec-
tron, and to 1 — f where it is a quasihole. This allows one
to determine the distribution function as a function of en-
ergy and position in the wire. Two examples are illustrated
in Fig. 1. In the first one, the voltage U = (u, — up)/e
is larger than 2A /e (with u, and u, the electrochemical
potentials of the two superconductors). The leftmost
quasiparticle path in Fig. 1, labeled a, is emitted from
a filled quasielectron state in the top superconductor
at an energy E between u, — A and w, + A, This
quasielectron is then reflected as a quasihole at the bottom
NS interface, at an energy symmetrical about w;. It is
then absorbed in the top superconductor where quasihole
states are unoccupied at the corresponding energy (since
quasielectron states are filled), and the quasiparticle
path has a total length 2L. At the energy of the initial
quasielectron, the position X = L/2 is reached when 3/4
of the total path remains; therefore, f(E) = 3/4. The
second path in Fig. 1, labeled b, has length L: quasi-
electrons from the top superconductor with an energy
between u;, + A and w, — A are absorbed in the bottom
superconductor after one traversal of the wire. Therefore
f(E) =1/2 at X = L/2. The third path, labeled c,
resembles path a, with an inversion of quasiholes and
quasielectrons. One obtains thus f(E) =1 — 3/4 = 1/4
at the middle of the wire. Altogether, the energy dis-
tribution function at X = L/2 presents three steps, at
3/4 (width 2A), 1/2 (width eU — 2A), and 1/4 (width
2A). The right diagram of Fig. 1 deals with the case
A < eU < 2A. The steps of f(E) at 3/4 and 1/4 are
still present, since the paths of length 2L of the former
diagram (not reproduced here) are still relevant for the
energy intervals [u, + A — eU;up — A + eU] and
[ + A — eU; u; — A + eU]. In addition, a new type
of path appears, labeled d, with length 3L. One obtains
then three extra steps in f(E), at 5/6, 1/2, and 1/6. More
generally, multiple Andreev reflections lead to the appear-
ance of steps in f(E) at energies between w, — A and
M: + A. The number of steps is 2 X int(%) + 3, and the
sum of the widths of two successive steps is eU. In the
limit U — 0, f(E) varies linearly from 1 at £ = —A
to 0 at E = A. To conclude, this simple model predicts a
staircase pattern in the energy distribution function, which
directly reveals multiple Andreev reflections.

We report results obtained on two samples, fabricated
by shadow mask evaporation in order to obtain the com-

plete structure schematically described in Fig. 1. The nor-
mal metal 45-nm-thick wires are made of 99.9999% pu-
rity silver, as samples in which phase coherence lengths
beyond 10 um were found [12]. The wire length of
sample No. 1 (sample No. 2) is L = 5.15 yum (5.6 pum),
the width w = 80 nm (70 nm), and the normal state resis-
tance, measured at large voltage, R = 38 () (58 ()). The
length is chosen short enough for the energy redistribution
among quasiparticles to be small [13], but long enough for
the density of states at the middle of the wire to be almost
energy independent [2]. In sample No. 1, the wire extends
at both ends into large contact pads which are covered by a
300-nm-thick aluminum layer. The reservoirs are therefore
bilayers of Ag and Al and have thus a reduced supercon-
ducting gap. In sample No. 2, the contact pads have no
underlying silver layer on a rectangle of 300 X 500 nm?
just at the ends of the wire, in order to obtain a larger
superconducting gap. A tunnel junction is formed at the
middle of the wire (and, on sample No. 2, also at 1.25 um
from the top electrode), with a 100-nm-wide aluminum
probe electrode. The samples were mounted in a shield-
ing copper box on a sample holder thermally anchored to
the mixing chamber of a dilution refrigerator. All connect-
ing lines to the samples are filtered at 4.2 K and at the
sample temperature. The experiment consists of measur-
ing the differential conductance dI/dV (V) of the probe
junction when a voltage U is applied across the wire. Un-
der the assumptions that the density of states of the normal
wire is constant at the position of the probe junction and
that the temperature of the probe electrode remains negli-
gible compared to the critical temperature of aluminum,
the differential conductance of the junction is simply a con-
volution product of the derivative of the density of states
of the superconductor and of the distribution function in
the wire [11,14]. We deconvolve the data numerically,
after determining the junction resistance and gap energy
at equilibrium (U = 0) where f(E) is expected to be a
Fermi function. In Fig. 2, we present with open sym-
bols the distribution functions measured on sample No. 1
at U = 151 pV, 310 pV, and 595 uV, and in Fig. 3 on
sample No. 2 at U = 700 wV, for both positions. The en-
ergy reference was taken at the potential of the center of the
wire (u; = eU/2, up = —elU/2). As expected from the
simplified description of multiple Andreev reflections pre-
sented above, the distribution function for sample No. 1
presents, at large voltages (310 and 595 wV in Fig. 2),
three steps near %, 1, and J—L (dashed lines). The distance
between the center of the side steps is well given by eU.
Their width gives the value of the gap in the reservoirs:
A = 115 weV, which is as expected smaller than the gap
of aluminum (200 weV). In contrast with the simplified
model, the steps are not flat, and the slope of the side steps
near 3/4 and 1/4 is larger than the slope at 1/2. More-
over, the model predicts five steps in f(E) when U is be-
tween A/e and 2A /e (see Fig. 1), whereas the data taken
at U = 155 pV display only slight inflections of f(E)
around the predicted values. At voltages below 100 w'V,
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sample #1

1

SNS
ok,

04 02 00 02 04
E (meV)

FIG. 2. Distribution functions at the middle of the wire of
sample No. 1, when the reservoirs are in the superconducting
state or in the normal state (inset), for different values of the
bias voltage U. Symbols are experimental data, dotted lines are
the expectations of the simplified theory with multiple Andreev
reflections alone as in Fig. 1, and solid lines correspond to the
solution of the Boltzmann equation with the Coulomb inter-
action term.

no structure can be seen in the distribution function, and ir-
regularities appear in the deconvolved data, resulting from
our neglection of the modification of the density of states
in the wire at the scale of the Thouless energy /iD/L?
[15] (data not shown). In sample No. 2, the evolution of
the distribution function with position agrees qualitatively
with the model. However, the exact position of the steps
is slightly shifted from the expected values. We attribute

1 & '
sample #
U=700uV
\ x=0.58
f(E)
0 C n 1 " 1 " 1 1 ) -
-0.8 -0.4 0.0 0.4 0.8
E (meV)
FIG. 3. Distribution functions on sample No. 2, at two

positions (x = X/L = 0.58 and x = 0.35), for U = 700 uV.
Symbols: experiment. Solid lines: solution of the Boltzmann
equation accounting for the Andreev reflections at the reservoirs
and electron-electron interactions within the wire.
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this shift to the small size of the top NS contact, which
introduces a significant contact resistance, accounted for
by an extra length of the wire. The relative position of
the probe junctions needed to explain the position of the
steps in f(E) turns out to be X/L = 0.58 (instead of 0.5)
and X/L = 0.35 (instead of 0.25), which corresponds to
an effective lengthening of the top end of the wire by about
850 nm. The widths of the side steps give slightly differ-
ent gaps at both ends: 120 and 140 weV.

In order to account for the rounding of the steps, we
now include in the analysis the effect of energy relaxation
of quasiparticles, due to Coulomb electron-electron [13]
and electron-phonon [16] interactions. These interactions
contribute to the stationary Boltzmann equation which de-
termines the variations of f(E):

*fE
0X?

e-ph

D + I5°(fE) + Iin

(fe)=0

through the interaction collision integrals [11,13]

1) = [ dedE'K(e)
XA fefe—efeferve — fEfE—efEfE+o)
Iien_ph(fE) = fdaKph(s)fEE,

where K,(g) = k. /%2, Kpn(e) = kpne? [17], f£ stands
for f(E), and fr stands for 1 — f(E). In order to
determine the Coulomb interaction parameter k., we have
taken advantage in sample No. 1 of the weaker supercon-
ductivity in the reservoirs than in the probe finger, which
allows one to turn just the reservoirs normal in a moderate
magnetic field (H = 16 mT, applied perpendicular to the
sample plane), while keeping the probe superconduct-
ing. The distribution function with normal reservoirs at
U = 595 wuV is displayed in the inset in Fig. 2, and has,
as expected [11], only one step near 1/2. From the fit
of a set of such curves at different values of U, we have
confirmed the & dependence of K(g) and obtained [13]
ke = 0.75meV~"2ns™!.  The coupling constant Kpp
between electrons and phonons was extracted from the
temperature dependence of the phase coherence time
on similarly fabricated silver samples [12]: kpyh =
8 meV 3ns~!. When the reservoirs are superconduct-
ing, the same Boltzmann equation also allows one to
compute numerically f(E), with the following boundary
conditions for |[E| < A: (a) f(u + E) =1 — f(u — E)
accounts for the equality of the occupancy of quasielec-
tron and quasihole states at symmetric energies about the
electrochemical potential w of the superconductor and
(b) %(,u +E)= —g—i(u — E) is the conservation of
the quasiparticle current. The results for f(E), using the
value of «, and kpp given above, are plotted with solid
lines in Fig. 2. Note that the inclusion of the phonon term

Iien_ph( f) changes only slightly f(E). The side steps at %
and % are more rounded than the step at % as observed.
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Indeed, they correspond to quasiparticles staying in the
wire 4 times longer on average (path length 2L), which
are thus more likely to interact with other quasiparticles.
The distribution function at U = 151 wV is very rounded
by interactions, as expected for quasiparticle paths with
lengths 2L and 3L. The overall agreement with the mea-
surements indicates that this simple picture of multiple
Andreev reflections [i.e., with assumptions (ii) and (iii)]
together with Coulomb interactions captures the essential
phenomena. In sample No. 2, a good fit of the data is
found with «, = 0.35 meV~"/2ns™! at both measuring
positions (see solid curves in Fig. 3).

We now discuss the influence of a more precise descrip-
tion of Andreev reflection, i.e., when relaxing assumptions
(i1) and (ii1). This can be achieved using the Usadel equa-
tions [5], assuming that the wire is long enough so that
the superconducting correlations are completely lost in the
middle of the wire [18], and neglecting electron-electron
interactions. Qualitatively, in the example of trajectory a
in Fig. 1, the time spent near the bottom NS interface is
shortened by the renormalization of the diffusion constant
at energies close to the electrochemical potential of the
superconductors [3], which results in a shorter remaining
length when X = L/2 and thus to a value for f(E) smaller
than 3/4. However, in our experiment, where the length
of the wire is 1 order of magnitude larger than the super-
conducting coherence length /D /A, this effect on f(E)
turns out to be negligible.

To conclude, our measurements display clear signa-
tures of multiple Andreev reflections in SNS junctions and
demonstrate the importance for the proximity effect of
electron-electron interactions, a contribution which is not
taken into account in the standard Usadel formalism.
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