Recherche de matière noire Galactique par détection de microlentilles gravitationnelles en photométrie différentielle Laurent Le Guillou

Collaboration EROS

Soutenance de Thèse - 24/09/2003

Plan de l'exposé

- La matière noire galactique
- L'effet de microlentille gravitationnelle
- La soustraction d'images
- Réduction des images du SMC
- Recherche de microlentilles
- Recherche de nuages de gaz opaques
- Conclusion

Plan de l'exposé

La matière noire galactique

- L'effet de microlentille gravitationnelle
- La soustraction d'images
- Réduction des images du SMC
- Recherche de microlentilles
- Recherche de nuages de gaz opaques
- Conclusion

Courbe de rotation des galaxies

Courbe de rotation des galaxies spirales NGC2403 et NGC2841

Nécessité d'un halo (sombre) autour des galaxies spirales

Plan de l'exposé

- La matière noire galactique
- L'effet de microlentille gravitationnelle
- La soustraction d'images
- Réduction des images du SMC
- Recherche de microlentilles
- Recherche de nuages de gaz opaques
- Conclusion

Géométrie du phénomène

 $\alpha = 4GM/rc^2$ rayon d'Einstein $r_{\rm E}$ I_{-} $r_{\rm E} = \sqrt{\frac{4GM}{c^2} \frac{D_l (D_s - D_l)}{D_s}}$ α А S L b r_+ θ \mathbf{I}_{+} θ_s α_{+} θ_{+} A_{\perp} B \mathbf{O} Amplification totale A $A = A_{+} + A_{-} = \frac{u^{2} + 2}{u\sqrt{u^{2} + 4}} > 1$ D_{s} $D_s - D_l$ $u = b/r_{\rm E}$ D_l

Effet de microlentille : dynamique

déflecteur et source en mouvement relatif

$$u(t) = \sqrt{u_0^2 + \frac{v_t(t - t_0)^2}{r_{\rm E}^2}} \quad t_{\rm E} = \frac{r_{\rm E}}{v_t}$$

Amplification transitoire de l'étoile source

Vers le SMC : $t_{\rm E} \sim 80 \,\text{jours} \times \sqrt{M/M_{\odot}}$ ($D_s \simeq 60 \,\text{kpc}$) Signal symétrique et indépendant de la longueur d'onde.

Un nouvel outil d'observation

- Sonder le contenu en *objets compacts*, éventuellement invisibles, d'une région de l'espace
- Nombre d'événements attendus

$$N_{evnt} = N_* \tau \frac{2}{\pi} \frac{T_{\rm obs}}{t_{\rm E}}$$

- B. Paczyński (1986) : Sonder le halo galactique en visant les Nuages de Magellan ($\tau_{\text{SMC}} \sim 6 \times 10^{-7}$)
- Champs très encombrés : *blending*

Champs encombrés

Champs encombrés

Recherches vers les Nuages de Magellan

- EROS
 - 5 candidats vers le Grand Nuage $t_{\rm E} \sim 30$ jours
 - 1 candidat vers le Petit Nuage $t_{\rm E} \sim 120$ jours
- MACHO
 - ♦ 13 17 candidats vers le Grand Nuage $t_{\rm E} \sim 30$ jours
 - 2 candidats vers le Petit Nuage, probablement dus à des déflecteurs du SMC.

Les candidats sont-ils bien tous des microlentilles ?
Les déflecteurs appartiennent-ils au halo ?

Recherches vers les Nuages de Magellan

Interprétation : fraction du halo ($4 \times 10^{11} \, M_{\odot}$ dans 50 kpc)

Plan de l'exposé

- La matière noire galactique
- L'effet de microlentille gravitationnelle
- La soustraction d'images
- Réduction des images du SMC
- Recherche de microlentilles
- Recherche de nuages de gaz opaques
- Conclusion

Photométrie différentielle

Motivations

- Augmenter la sensibilité de détection : détection possible d'événements sur des étoiles non résolues
- S'affranchir de l'effet de confusion dû à l'encombrement des champs (*blending*)
- Améliorer la précision photométrique

Principe

- Soustraire deux images
- Mesurer les variations de flux sur la différence

Principe de l'algorithme

- Variation de PSF, du fond de ciel : soustraire deux clichés n'est pas trivial
- Principe : ramener l'image de meilleur seeing à la PSF de l'autre image.

Détermination du noyau

Minimiser [Alard and Lupton, 1998]

$$\chi^2 = \sum_{x,y} \frac{\left[I(x,y) - (R \otimes K)(x,y) - \Delta B(x,y)\right]^2}{\sigma^2(x,y)}$$

Développer le noyau sur une base de fonctions bien choisies

$$K(u, v) = \sum_{n=0}^{n=N-1} a_n K_n(u, v)$$

Base de fonctions testées : gaussiennes, Dirac, combinaisons

Détermination du noyau

Calcul limité à un sousensemble de *vignettes*

- centrées sur des étoiles brillantes non saturées
- réjection itérative des étoiles variables

Exemple de soustraction

Référence R

I (1998-11-07)

Exemple de soustraction

 $D = I - (R \otimes K + \Delta B)$

D (détail)

Plan de l'exposé

- La matière noire galactique
- L'effet de microlentille gravitationnelle
- La soustraction d'images
- Réduction des images du SMC
- Recherche de microlentilles
- Recherche de nuages de gaz opaques
- Conclusion

Données 1996-2001 vers le SMC

Données 1996-2001 vers le SMC

Réduction sans catalogue d'étoiles pré-établi

- Soustraction des images
- Détection des variations de flux sur les images différences
- Fusion des détections : liste d'objets variables
- Photométrie sur les images D (PSF tabulée)

Traitement au CC-IN2P3 — Test grandeur nature du HPSS

Fusion des détections

Fusion des détections

■ 600000 détections : dont artefacts, étoiles saturées

Photométrie par ajustement de PSF tabulée

- Peu d'étoiles sur une image soustraite
- Modèle de PSF tabulée construite sur l'image courante *I*

 Ajustement sur l'image différence, à position fixée (x*, y*), en utilisant une image de poids

$$\chi^2 = \sum_{x,y} \frac{[D(x,y) - \Delta F \times \mathsf{PSF}(I)(x - x_\star, y - y_\star)]}{\sigma_D^2(x,y)}$$

Plan de l'exposé

- La matière noire galactique
- L'effet de microlentille gravitationnelle
- La soustraction d'images
- Réduction des images du SMC
- Recherche de microlentilles
- Recherche de nuages de gaz opaques
- Conclusion

Analyse : recherche de microlentilles

Analyse des courbes de lumière obtenues : critères

Coupure		étoiles restantes	fraction données	fraction simulation
		574865	100.00 %	100.00 %
1	(1 fluctuation)	552958	96.18 %	89.63 %
2	(recouvrement R/B)	70652	12.29 %	60.31 %
3	(fluctuation > 0)	25137	4.37 %	53.10 %
4a	(10 pts in.)	23274	4.04 %	51.04 %
4b	(20 pts out.)	23203	4.03 %	51.04 %
5	(signification relative)	1476	0.25 %	43.69 %
6	(amélioration $\Delta\chi^2$)	62	0.01 %	43.67 %
7a	$(F_0 > 0)$	60	0.01 %	43.53 %
7b	$(t_0 \in I_{obs})$	44	0.0077%	39.26 %
7c	$(t_{1/2} < T_{obs}/3)$	22	0.0038%	33.61 %

Critères pour les étoiles résolues

Critères pour les étoiles résolues

Candidats

_

Candidat	t_0	$t_{ m E}$	$t_{1/2}$	u_0	$\Delta \chi^2$	d_{ass}	R _{EROS}	B _{EROS}
sm001_0a-924	1862.64	80.24	310.82	2.71	19.39	0.21	17.20	17.21
sm005_48-543	458.68	136.98	126.26	0.38	55.78	0.29	17.64	17.67
sm005_6e-389	1818.41	77.12	206.68	1.70	18.53	N.R.		
sm005_7a-262	1944.85	34.65	113.61	2.21	14.64	0.16	16.67	
sm010_1b-758	1734.75	158.18	221.41	0.67	118.65	0.24	16.50	16.36
sm010_3e-254	1903.34	81.56	256.08	2.09	16.72	0.02	16.97	17.02
sm010_46-721	1040.71	24.51	73.32	1.96	15.90	N.R.		
sm010_46-1012	1890.64	71.79	0.03	0.00	12.14	N.R.		

$sm005_{48-543} = EROS-1997-SMC-1$

$sm010_{1b}-758$

$sm001_0a-924$

sm005_6e-389 (non-résolu)

sm005_6e-389 (non-résolu)

Augmentation de la sensibilité

- Méthode de détection sensible aux variations d'étoiles non-résolues
- Sensibilité à des microlentilles de forte amplification sur des étoiles très faibles
- Estimation du nombre d'étoiles surveillées effectif :

 $N_*^{\text{effectif}} \sim 7 \times 10^6$ contre 5.7×10^6 étoiles résolues

- Simulation complète nécessaire
 - génération d'images synthétiques réalistes
 - ajout d'effets de microlentilles simulés
 - réduction par soustraction d'images
 - en cours...

Plan de l'exposé

- La matière noire galactique
- L'effet de microlentille gravitationnelle
- La soustraction d'images
- Réduction des images du SMC
- Recherche de microlentilles
- Recherche de nuages de gaz opaques
- Conclusion

Eclipses par des Nuages de gaz

- Recherche de microlentilles sensible aux objets *compacts*
- Candidat matière noire galactique : du gaz (H₂ par ex.)
- Du gaz sous forme de nuages opaques (poussière) occulte les étoiles en arrière-plan
- Recherche de signal en absorption, signature des transits.
- Modèle [Kerins et al., 2002] : nuages typiques de 7 UA, transit de 60 jours pour des nuages du halo.
- Analyse des courbes de lumière SMC

Signal Recherché

Critères de sélection

Coupure		étoiles restantes	fraction données		fraction simulation	
		575623	100.00	%	100.00	%
1	(1 fluctuation)	553702	96.19	%	86.06	%
2	(recouvrement R/B)	70730	12.28	%	40.76	%
3	(fluctuation < 0)	27723	4.81	%	38.98	%
4a	(10 pts in.)	25681	4.46	%	38.49	%
4b	(20 pts out.)	25511	4.43	%	38.49	%
5	(signif. relative)	1551	0.26	%	34.91	%
6	(profondeur/RMS)	127	0.02	%	25.01	%

- 127 candidats dont 70 résolus
- 15 après coupures sur le diagramme couleur-magnitude
- Simulation effectuée avec des images synthétiques (sensibilité)

Critères pour les étoiles résolues

Sensibilité – Résultat

Sensibilité de 25% pour la détection d'éclipses totales de 30 à 900 jours, sur des étoiles de magnitude $R_{EROS} \lesssim 21$.

Nombre d'étoiles suivies

$$N_*(\mathbf{R}_{\mathrm{EROS}} \lesssim 21) \sim 3.8 \times 10^6$$

Taux d'occultation prévu par [Kerins et al., 2002],

 $\Gamma_{\rm SMC}(50 \, {\rm jours} < \Delta t < 500 \, {\rm jours}) \sim 2 \times 10^{-3} / {\rm an}$

Nombre d'événements attendus :

$$N_{\text{éclipses}} = N_* \times T_{obs} \times \Gamma \times \epsilon \sim 10^4$$

L'hypothèse d'un halo constitué de nuages de gaz opaques est exclue (en accord avec [Drake and Cook, 2003]). On peut cependant envisager des nuages transparents.

Plan de l'exposé

- La matière noire galactique
- L'effet de microlentille gravitationnelle
- La soustraction d'images
- Réduction des images du SMC
- Recherche de microlentilles
- Recherche de nuages de gaz opaques
- Conclusion

Conclusion : fin des MACHOs ?

References

- [Alard and Lupton, 1998] Alard, C. and Lupton, R. H. (1998). A Method for Optimal Image Subtraction. ApJ, 503:325–+.
- [Drake and Cook, 2003] Drake, A. J. and Cook, K. H. (2003). A Search for Stellar Obscuration Events Due to Dark Clouds. ApJ, 589:281–288.
- [Kerins et al., 2002] Kerins, E., Binney, J., and Silk, J. (2002). Observable consequences of cold clouds as dark matter. MNRAS, 332:L29–L33.