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Abstract

The Hamliton-Jacobi equation in optimal control: duality and geodesics

Abstract. The main object of this thesis is the application of new methods from non-
smooth analysis and which use the Hamilton-Jacobi equation for the study of certain
problems in control theory. There are three parts in our work:

e In the first part we develop a new duality result in control theory. This result generalizes,
in a number of ways, the Vinter’s duality (1993) and gives a new characterization of the
minimal time function.

e The second part is devoted to the study of the Hamilton-Jacobi equation of minimal
time, but in a domain which contains the origin. We prove the existence of (minimal)
solutions of this equation and we show that these solutions are closely linked to global
geodesics trajectories.

e In the third part, we study the existence of minimal loop trajectories for a control system.
We give a necessary and sufficient conditions for the existence of this type of trajectories
at a given point.

Key words. optimal control, nonsmooth analysis, Hamilton-Jacobi equation, duality,
minimal time function, optimal trajectories.

L’équation de Hamlilton-Jacobi en contréle optimal : dualité et géodésiques

Résumé. L’objet principal de cette these est l'application de méthodes nouvelles
inspirées de ’analyse non-lisse et impliquant 1’équation Hamilton-Jacobi pour 1’étude de
certains problémes en théorie du controle. Notre travail se compose de trois parties :

e La premiere partie est consacrée & la généralisation d’un résultat célebre de R. Vinter
(1993) qui porte sur la dualité non-convexe en controle optimal. Entre autre, ceci meéne &
une nouvelle caractérisation de la fonction temps minimal.

e Dans la deuxieme partie, nous étudions 1’équation classique d’Hamilton-Jacobi de la
fonction temps minimal mais dans un domaine contenant 'origine. Nous démontrons
Pexistence de solutions et méme d’une solution minimale de cette équation, et établissons
des liens avec les trajectoires géodésiques.

e La derniere partie de cette these est consacrée a 1’étude des boucles minimales pour
les systemes de contréle. Nous donnons des conditions nécessaires et suffisantes pour
Pexistence de ces boucles en un point donné.

Mots-clés. controle optimal, analyse non-lisse, équations de Hamilton-Jacobi, du-
alité, fonction temps minimal, trajectoires optimales.






Introduction

L’analyse non-lisse concerne la description locale des fonctions non
différentiables et des ensembles avec frontieres non différentiables, en termes
de généralisations des concepts classiques de dérivés, de normales et de
tangentes. Depuis son apparition au début des années 70, il y a une relation
cruciale entre ’analyse non-lisse et la théorie de la commande optimale.
L’objet principal de cette these est l'application de méthodes nouvelles
inspirées de 1’analyse non-lisse et impliquant 1’équation Hamilton-Jacobi
pour l'études de certains probléemes d’optimalités en théorie du controle.
Nous présentons dans cette introduction nos principaux résultats mais nous
commencons tout d’abord a introduire quelques outils d’analyse non-lisse.

Soit f : R® — IR U {+o0} une fonction semi-continue inférieurement et
soit z € dom f := {2’ : f(2') < 400}. On dit que £ est un sous-gradient
proximal de f en z si et seulement si (noté ssi) il existe o > 0 tel que

fly) = f@) +olly = ol* > &y — ),

pour tout y dans un voisinage de z.
L’ensemble de tous ces & est noté par dp f (), sous-différentiel proximal de f
en z. On peut définir encore le sous-différentiel limite de f en x par

orf(z) = {C : il existe z; g, x, (; — ( tel que ¢; € Op f(x;) pour tout i},

ot z; L5z signifie que z; — z et f(z;) — f(x).

Nous pouvons de maniére équivalente, lorsque f : R* — IR U {—o0}
est semi-continue supérieurement, définir son sur-différentiel proximal.
En effet —f est une fonction semi-continue inférieurement, on peut alors
définir le sur-différentiel proximal (noté par 0° f(z)) tout simplement par

0" f(z) = =0p(—f)(x).
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Passons maintenant a la présentation de nos résultats.

Dualité lisse et non-lisse en contrdole optimal

En 1993, Vinter a considéré dans son papier [66] le probléme de com-
mande optimale suivant :

( Minimiser ¢(T, z(T)),

T € [0,1],

i(t) € F(t,z(t)) p.p.-t €[0,T],
(Q) )\ $(0) = Xy,

(t,xz(t)) € AC[0,1] x R™ Vt € [0,T],
| (T,z(T)) € C C [0,1] x R™,

ou la fonction £ : R x IR® — R U {+o0}, le point zg, la multifonction F,
les ensembles A et C' de IR x IR™ sont les données du probleme (Q). Vinter
a démontré en utilisant I’analyse convexe (dualité conveze) et le concept
de “generalized flow” que le minimum de (Q)) peut étre représenté comme
I’enveloppe supérieure des sous-solutions lisses de 1’équation d’Hamilton-
Jacobi (c’est ce qu’on appelle dualité lisse). Ceci lui a permis de trouver une
condition nécessaire et suffisante d’optimalité pour le probleme (Q). Cette
méthode appelée “convex duality” a été introduite pour la premiere fois par
Vinter et Lewis dans [68] et [69].

Nous remarquons que le probleme (@) est un probléeme en temps libre
mais avec horizon fini (7" € [0,1]). De plus, Vinter affirme dans [67] que
ses méthodes ne s’appliquent pas pour les problemes en temps libre avec
horizon infini (7" € [0,+00[) et n’aboutissent pas & une caractérisation
du minimum comme ’enveloppe supérieure des sous-solutions lisses d’une
équation d’Hamilton-Jacobi autonome. Une question importante se
pose : peut-on trouver des méthodes directes pour retrouver le résultat de
Vinter et puis I’étendre pour les problémes en temps libre avec horizon infini ?

Dans le Chapitre 1, nous considérons le probleme de commande opti-

4
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male suivant :

( Minimiser 4(T, z(T)),

T € [0, +oo],

i(t) € F(z(t)) p.p.t €0, +00],
(P) 4 z(0) = zo,
x()EA VtE[O T]

z(T) € C.

\

Nous remarquons tout d’abord que les problemes en temps fixe et en temps
libre (avec horizon fini ou bien infini) sont tous des cas spéciaux de notre
probléme (P). Par exemple, pour que (P) soit un probléme en temps fixe, il
suffit de prendre 4(T, z) égale & +oo tant que T differe de ’horizon donné Tj.
Pour les hypothéses de (P), nous supposons que la fonction £ : IR x R* —
IR U {400} est semi-continue inférieurement et qu’elle satisfait la condition
de croissance suivante :

lim inf/(t,z) = +o0.

t—+oc0

Pour la multifonction F', nous supposons qu’elle prend des valeurs convexes,
compactes et non vides, qu’elle est semi-continue supérieurement et qu’elle
vérifie la condition de croissance linéaire suivante : 3y,c > 0 tels que pour
tout x € IR" on a

v € F(z) = [lv]| < vzl + ¢

Finalement, nous supposons que A et C sont respectivement fermé et
compact et que le probleéme (P) est non-trivial, c’est a dire qu’il existe au
moins une trajectoire admissible pour (P).

Notons maintenant par A [I'Hamiltonien inférieur associé a F

(h(z,p) = mFi(n)(v,p), pour tout (z,p) € IR™ x IR"), alors le résultat
velb(z

principal démontré dans le Chapitre 1 est le théoréme suivant :

Théoréme (Dualité non-lisse)

min(P) = Zlég (0, o),

ou U est I’ensemble des fonctions 1 : IR x R* — R qui vérifient :

!Lorsqu’une multifonction F' satisfait ces hypotheses alors on dit que F satisfait les
hypothéses standard.
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e ) est localement Lipschitzienne.
o h(z,00%(t,7)) >0 V(t,r) € R x A.
o Y(t,z) < L(t,z) Y(t,x) e R x C.

La démonstration de ce théoreme repose sur des techniques d’analyse non-
lisse (analyse proximale, inf-convolution....) et sur la théorie de monotonicité
des trajectoires. Les détails sont donnés dans la Section 1.2 du Chapitre 1.

Ce théoreme unifie et étend d’un certain nombre de manieres, plusieurs
résultats dans la littérature, qui traitent dans la plupart des cas de problémes
en temps fixe, (voir par exemple [6], [9], [22, Chapter 4|, [36], [37], [57],
[58] et [71]). Il est encore nouveau par ses hypotheses qui sont tres faibles,
en effet il n’est pas nécessaire que F' et £ soient continues. Le fait que des
fonctions localement Lipschitziennes figurent dans notre dualité ainsi que
'utilisation du sous-gradient limite, nous permet de retrouver le résultat de
Vinter et méme de 1’étendre aux problémes en temps libre (horizon infini)
en obtenant dans ce cas une caractérisation en terme de sous-solutions lisses
d’une équation d’Hamilton-Jacobi autonome. Une conséquence importante
de cette dualité lisse est la démonstration d’une nouvelle caractérisation de
la fonction temps minimal. Pour plus des détails, voir la Section 1.3 du
Chapitre 1.

L’équation Hamilton-Jacobi de la fonction temps minimal

Soit F' une multifonction de IR™ dans IR™ qui satisfait les hypotheses
standard et qui de plus est localement Lipschitzienne. Nous définissons la
fonction temps minimal 7°(-, 0) associée a ’origine par :

Inf T >0,
T(a,0) := ¢ z(t) € F(z(t)) p-p- t € [0,T],
z(0) =a et z(T) =0,

pour tout o dans IR™. Si l'origine n’est pas accessible par « alors T'(a,0)
prend la valeur +o0.

Le probleme de temps minimal est I'un des problemes les plus célebres en

6
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commande optimale et il a été largement étudié dans la littérature. L’une des
propriétés les plus importantes de la fonction 7'(-,0) est sa caractérisation
comme solution non-lisse de I’équation d’Hamilton-Jacobi. Nous trouvons
dans la littérature plusieurs types de solutions non-lisses : solutions de
viscosité [30], solutions minimax [61], solutions généralisées [28] et solutions
proximales [21]. Nous nous intéressons ici a la solution proximale. II est
facile de démontrer en utilisant la monotonicité des trajectoires (voir [22] et
[71]) que T'(-,0) est la solution de 1’équation d’Hamilton-Jacobi suivante :

1+ h(z,0pp(z)) =0 Vo € R"\ {0}, ¢(0)=0,

ou h est ’'Hamiltonien inférieur associé a F'. Nous remarquons que la fonction
T(-,0) n’est pas une solution de ’équation précédente dans un domaine qui
contient l'origine. En effet, on a 0 € 9pT'(-,0)(0) et h(0,0) = 0. Le but du
Chapitre 3 est d’étudier cette équation dans un domaine contenant 1’origine.
Une nouvelle fonction va jouer un role tres important dans cette étude. Cette
fonction appelée la fonction bilatérale de temps minimal et notée par T'(-,-)
est définie par :

IntT >0,
T(a,B) = @(t) € F(z(t)) p.p. t € 0,7,
z(0) =« et z(T) = B,

pour tout («, 5) € R* x R". S’il n’y a pas de trajectoires entre « et [ alors
T(c, ) prend la valeur +oo. Le Chapitre 2 de cette theése est consacré a
I'étude de la fonction 7T'(-,-). Nous commencons tout d’abord par étudier
la régularité de cette fonction. Nous démontrons qu’elle est continue (resp.
localement Lipschitzienne) dans son domaine de définition R ssi elle est
continue (resp. localement Lipschitzienne) en chaque point de la diagonale
D = {(a,a) : @« € R"}. D’autres conditions nécessaires et suffisantes sont
encore données pour ces mémes propriétés. Dans le cas ou la dynamique est
linéraire nous démontrons que 7'(+,-) est semi-convexe. Pour plus de détails,
voir la Section 2.4 du Chapitre 2. A la fin de cette section nous calculons le
sous-différentiel proximal de 7T'(-,-), puis nous déduisons une caractérisation
de cette fonction comme sous-solution proximale d’un systeme d’équations
d’Hamilton-Jacobi partielles.

Passons maintenant a la présentation des résultats du Chapitre 3.
Nous considérons dans ce chapitre I’équation d’Hamilton-Jacobi suivante :

1+ h(z,0pp(z)) =0 Yz € RS, ©(0)=0  (x)

7
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oit RY = {a : T(0,0) < +oo} est 'ensemble des points accessibles par
Iorigine. Une solution de 1’équation (x) désigne une fonction semi-continue
inférieurement ¢ : R — IR U {+oo} telle que ¢(0) = 0 et pour tout
z € RS, pour tout ¢ € dpp(z) (81l existe) on a h(z, () +1 = 0. Comme nous
I'avons déja mentionné, la fonction 7'(-,0) n’est pas solution de I’équation
() car 0 € ’R&. Alors plusieurs questions se posent : cette équation possede
t-elle des solutions ? Possede t-elle une solution minimale ou bien maximale?
Quelle est la relation entre une solution de cette équation et la fonction
temps minimal 7

Nous démontrons dans le Chapitre 3 ’existence des solutions et méme
d’une solution minimale pour I’équation (x) qui sont liées aux trajectoires
géodésiques. Notre principale hypothese est que la dynamique —F est
0-STLC (small-time locally controllable), c’est a dire que la fonction 7(0, -)
est continue en 0. Sous cette hypotheése nous aurons que :

e RY est ouvert.
e T'(0,-) est continue dans RY..
e Pour chaque o € ORY. on a

lim 7(0,a) = +oo.

a—roQ

Nous entrons maintenant dans les détails. Notons par G I’ensemble suivant
{I' c RY : il existe une suite 3; € I telle que T'(0, 5;) — +o0}.

Il est clair que sous nos hypotheses, cet ensemble n’est pas vide. Pour chaque
I' € G nous définissons la fonction ¢r : RS — IR U {—o00, +00} par :

¢r(a) = liminf [T(a/,5) - T(0,5)].
T(0,8)—= 400

Alors nous avons le théoréme suivant :

Théoréme Pour chaque I' € G, la fonction pr est une solution de (). De
plus si @q est la fonction pr qui correspond au choix R& de T, alors ¢q est
la solution minimale de ().
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La démonstration de ce théoréme repose sur la monotonicité des trajectoires.
Les détails sont présentés dans la Section 3.3 du Chapitre 3. Plusieurs
exemples sont encore donnés a la fin de cette section dans lesquels nous
démontrons que Iequation (*) ne posséde pas nécessairement de solution
maximale.

Nous disons qu’une trajectoire z : [0, +oo[— R™ (resp. z :] — oo, +

IR") de F est une semi-géodésique (resp. géodésique) ssi T'(z(s),z(t)) =t—s
pour tout s < t € [0,400[ (resp. pour tout s < t €] — 00, +00]).
proposition suivante présente la relation entre une solution de () et les
semi-géodésiques.

Proposition Soit ¢ une solution de (x) et soit a € domp. Alors il eziste
une semi-géodésique x qui part de o (c’est a dire £(0) = ) telle que

o)) +t=¢(a), VE=0.

Nous remarquons que dans la plupart des exemples, la fonction ¢, coincide
avec la fonction —7(0,-). De plus nous pouvons méme montrer (voir Section
3.4) que dans le cas linéaire, g est exactement la fonction —7°(0,-). Alors
une question importante se pose : est-ce que (g coincide toujours avec
—T(0,-) ? Sinon, existe t-il un exemple dans lequel ¢ est différente de
-7(0,-) 7

Avant de répondre a ces questions nous démontrons dans la Section
3.5 le théoreme suivant :

Théoréme Soit o € RQL. Alors les assertions suivantes sont équivalentes:
1. 1l existe une semi-géodésique qui part de l’origine et qui passe par o.
2. ¢o(a) = =T(0, ).

En utilisant ce théoréme, nous réussissons a construire un exemple (voir
Example 3.5.8) dans lequel ¢, prend des valeurs strictements positives et
est donc différente de —7°(0, -).

D’une facon naturelle nous définissons dans la Section 3.6 une
équation duale pour (x) (nous remplacons dp par 90 et RY par

R’ = {a € R* : T(a,0) < +00}). L’étude de cette équation avec

9
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I’équation (*) nous permet de trouver des conditions nécessaires et suff-
isantes pour 'existence de géodésiques passant par ’origine.

A la fin du Chapitre 3, nous étudions le cas ou S n’est pas nécessairement
un singleton. En imposant quelques hypotheses sur S, nous généralisons les
résultats de la Section 3.4 (le cas linéaire) et quelques résultats de la Section
3.5. Nous démontrons encore que cette généralisation ne s’étend pas pour
les résultats de la Section 3.3 (existence des solutions). La généralisation de
ces résultats reste une question ouverte.

Les boucles minimales en théorie du controle

Soit F' une multifonction de IR dans IR™ localement Lipschitzienne et
qui satisfait les hypotheses standard. Apres avoir étudié dans le Chapitre 3
I’existence des semi-géodésiques et des géodésiques d’un systeme dynamique,
nous étudions dans le Chapitre 4 ’existence d’un autre type de trajectoire,
les boucles minimales (“minimal loop trajectories”). Une boucle est une
trajectoire x de F' qui commence en un point « et se termine en temps
strictement positif 7' en ce méme point «. Nous disons qu’elle est minimale
ssi elle est minimale entre z(s) et x(t) (T(x(s),z(t)) = t — s) pour tout
s <t e€[0,T[ et pour tout s < ¢t €]0,T]. Ce type de trajectoire est utilisé
dans [33] pour démontrer 'existence de sous-solutions lisses de I’équation
d’Hamilton-Jacobi

H(z,u'(x)) > [0],
ott [0] est la valeur critique de Mané.?

Avant de commencer & donner des conditions nécessaires et suffisantes
pour I’existence des boucles minimales en un point donné «, nous définissons

2Soit H : R* x R® — IR un Hamiltonien donné et soit L le Lagrangien correspondant.
Alors la valeur critique de Mafié est définie par

1 T
0] = —inf{T/O L@(t), i) dt 1w € X, T >0, 2(0) = o(T)},

ol X est ’ensemble des fonctions absolument continues z : [0, +oo[— IR".

10
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une nouvelle fonction L(-) par :

Inf 7T > 0,
L(a):= ¢ i(t) € F(z(t)) p.p. t € [0,T],
z(0) = z(T) = «,

pour tout a € IR". S’il n’existe pas de boucles en « alors L(a) prend la
valeur +o00. Cette fonction qu’on appelle “minimal loop function” va jouer
un role important dans la suite, et ¢’est pourquoi nous consacrons la Section
4.3 a son étude.

Il est clair que l’existence d’une boucle minimale en un point « im-
plique que les fonctions T(-, ), T(«,-) et T(-,-) sont respectivement
discontinue en «, « et (o, ). De plus nous avons la proposition suivante
qui donne une condition nécessaire et suffisante a l’existence d’une boucle
minimale en un point o mais qui n’est pas un point d’équilibre (0 ¢ F(«)).

Proposition Soit o € IR® tel que 0 & F(«). Alors les assertions suivantes
sont équivalentes :

1. 1l existe une boucle minimale en .
2. liminf [T(o, B) +T(5, )] < +00.
Jliminf [T(a, 6) +T(8,0)
Dans le cas ol a est un point d’équilibre, un simple exemple montre que

la condition liminf [T'(«, ) + T(B,a)] < +oc n’est pas une condition
B#a f—ra

suffisante pour l'existence d’une boucle minimale en a. Nous démontrons
dans la Proposition 4.4.4 qu’en ajoutant une autre hypothese, cette condition
devient suffisante. On peut trouver encore dans la Section 4.4 du Chapitre
4 d’ autres conditions nécessaires et suffisantes a 1’existence des boucles
minimales.

Nous finissons la Section 4.4 par un théoreme qui montre que sous
certaines hypotheses chaque point @ € IR" vérifie au moins une des
propriétés suivantes :

e 0€ Fla).

e [l existe une semi-géodésique qui part de a.

11
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e ]l existe une boucle minimale en «.

A la fin du Chapitre 4 nous donnons quelques exemples qui aident a la
compréhension de nos résultats.

Notons a la fin de cette introduction que nous présentons dans le pre-
mier chapitre (Chapitre 0) des outils et des résultats d’analyse non-lisse
et de théorie des inclusions différentielles, indispensables a la bonne
compréhension de cette these.

12



Chapter 0O

Preliminaries

0.1 Introduction

Nonsmooth analysis concerns the local description of nondifferentiable func-
tions and sets lacking smooth boundaries, in terms of generalizations of clas-
sical concepts of derivatives, normals and tangents. An important branch
of nonsmooth analysis is prorimal analysis. Proximal analysis refers to the
calculus associated to proximal normals and subgradients (see below for the
definitions). It offers the most natural and also the most powerful way to de-
velop nonsmooth analysis in a Hilbert space setting. The infinite-dimensional
theory is an important branch of proximal analysis but for the purposes of
our work we limit attention to IR®. We present in this chapter some tools and
results from proximal analysis which play an important role in this thesis,
see Section 0.2. We also define other basic constructs of nonsmooth anal-
ysis (limiting subgradient, generalized gradient...) and then we explore the
relationships between them. We end Section 0.2 by studying some useful
classes of functions: convex, semiconvex and regular functions. At the end of
this chapter and since all our control systems in our work are governed by a
differential inclusion, we give a short background on the differential inclusion
theory, see Section 0.3.

Our general reference in this chapter is the book of Clarke et al. “Nons-
mooth Analysis and Control Theory” [22] which gives a fuller development of
nonsmooth analysis based on the proximal concepts. See also [2], [14], [19],
[31], [53] and [65].

13
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0.2 Nonsmooth analysis

0.2.1 Proximal analysis
Proximal normal cone

Let S be a nonempty closed subset of IR". The distance function dg : R" —
IR associated to S is defined by

ds(z) == ?elg |z —s|| Yz € R".

It is easy to verify that the function dg(-) is 1-Lipschitz on IR". Now let
x € IR". Since S is nonempty and closed, it is easy to verify that there exists
at least one point s € S such that

ds(z) = [|lz = s]|.

This point s is called closest point or projection of x onto S. The set of all
closest points is denoted by projs(z). For s € projs(z), the vector x — s de-
termines what we call a proximal normal direction to S at s; any nonnegative
multiple ( = t(x —s), t > 0, of such a vector will be called a proximal normal
to S at s. The set of all { obtainable in this manner is termed the prozimal
normal cone to S at s, and is denoted by NZ(s). Suppose that s € S such
that s & projs(x) for all  not in S (which is certainly the case if s lies in
int S). Then N¥(s) = {0}. It is easy to prove that for all s € S we have

NZ(s) = {¢: 3t > 0o that ds(s + t¢) = t||C||}.

The following proposition gives an important characterization of proximal
normals. The proof is left to the reader, (see [22]).

Proposition 0.2.1 Let S be a nonempty closed set of R™ and let s € S.
Then for all ¢ € IR™, the following assertions are equivalent:

1. ¢ € NL(s).

2. There erists t > 0 such that projs(s +t¢) = {s}.

3. There exists t > 0 such that for all ' € S we have t||C]| < ||s+t¢—¢'|.
4. There exists o > 0 such that for all s' € S we have

(¢,8" —s) < olls = s|*. (1)

14



0.2. NONSMOOTH ANALYSIS

Figure 1: Proximal normal cone

The inequality (1) is called the prozimal normal inequality. Using this in-
equality, it is clear that NZ'(s) is a convex cone; however, it need be neither
open nor closed. We can easily remark that the structure of the proximal
cone NZ(s) depends only of the form of S in a neighborhood of s and then
we have the following proposition.

Proposition 0.2.2 Let S be a nonempty closed set of R™ and let s € S.
Then for any given § > 0, we have ¢ € NL'(s) iff there exists o = o (¢, s) > 0
such that

(¢,s' —s) < o|ls —s||* Vs' € SN B(s;6).

We note that N¥(s) can be trivial (reduce to {0}) even when s lies in 9S.
For example if we consider in IR? the following set

S :={(z,y) e R" : y > —|z|},

then we can easily prove that N (0,0) = {0}. The special case in which S is
convex in an important one.

Proposition 0.2.3 Assume that S is convex and let s € S. Then

1. ¢ € NE(s) off
(¢, —s)y <0 Vs es.

2. If s € S then NE(s) # {0}.

The statement 1) of the preceding proposition follows immediately from the
proximal normal inequality. The statement 2) follows by 1) and using the
fact that the set {s € projs(z) : z € R*\ S} is dense in 9S.

15



0. PRELIMINARIES

Proximal subgradients

Let U be an open set of IR®. We denote by F(U) the class of all functions
f:IR* — IR U {400} which are lower semicontinuous on U and such that

dom fNU # 0,
where dom f is the effective domain of f defined by
dom f :={z: f(z) < +oc}.

If U = R", then we simply write F for F(IR").

Now let f € F and let x € dom f. A vector & € IR" is a prorimal sub-
gradient of f at x provided (§,—1) € Nel;i(f) (z, f(z)), where epi(f) denotes
the epigraph {(z,t) € R* x R : f(z) < t} of f, which is a closed subset
of R™"! since f is lower semicontinuous. The set (which could be empty)
of all proximal subgradients of f at z is denoted by Opf(z) and is referred
to as the proximal subdifferential. The following analytic description of the
proximal subgradient is often useful.

Proposition 0.2.4 Let f € F and let x € dom f. Then & € Opf(x) iff there
exist positive numbers o and v such that

fy) = f@)+olly —z||> > (&, y — z) Vy € B(z;v). (2)

The inequality (2) is called the prozimal subgradient inequality and its proof
(we omit the details) relies on Proposition 0.2.1, (see [22]). Using this in-
equality we can develop several important characterizations for the proxi-
mal subgradient and particularly the links with the classical differentiability.
Then we have the following proposition.

Proposition 0.2.5 Let f € F and let x € dom f. Then
1. If f has a local minimum at x, then 0 € Op f(z).
2. If f is Gateauz differentiable at z, then Opf(x) C {f&(z)}.
3. If f € C*(U) where U is an open set of R". Then

Opf(x) ={f(z)} VzeU.
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epi f

N

Figure 2: Proximal subdifferential

As mentioned above the proximal subdifferential could be an empty set, for
example the function f : R — IR defined by f(z) = —|z| is a simple
example of a continuous function having dp f(0) = @). The following theorem
is called The Density Theorem. This important theorem proves that the set
dom(0pf) of points in dom f at which at least one proximal subgradient
exists is dense in dom f. Since the proof is very technical and long, we don’t
give here the details. We invite the reader to see [22] for the proof.

Theorem 0.2.6 Let f € F and let x € dom f. Then for all ¢ > 0, there
erists a point y € B(xg;€) satisfying Opf(y) # 0 and

f(mo) —e < f(y) < flzo)
In particular, dom (0pf) is dense in dom f.

The statement 1) of Proposition 0.2.5 is the equivalent form of the Fermat’s
Rule in the nonsmooth case. In fact, we can find in [22] several important
extensions of the (classical) differential calculus for the proximal subgradi-
ent. For example, in [22] Clarke et al. give a proximal version of the mean
value theorem and then a sum rule and a chain rule for the proximal subgra-
dient (we don’t give the details here). An application of this (nonsmooth)
differential calculus is the following proposition.

Proposition 0.2.7 Let U C IR™ be an open and conver set and let f €
F(U). Then f is K-Lipschitz on U iff

I¢]| < K V¢ € dpf(x), Vzel.

17
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For an upper semicontinuous function f : IR* — R U {—o00}, we can de-
fine the prozimal superdifferential OF f(x) simply as —9p(—f)(z). As for the
proximal subdifferential we can prove an analogous results for the proximal
superdifferential but we replace “sub” by “super”, “<” by “>” and “mini-
mum” by “maximum”. Moreover, using Proposition 0.2.4 we can easily prove
the following proposition.

Proposition 0.2.8 Suppose U C R" is open, x € U, f : U — R is

continuous on U and both Opf(x) and ¥ f(z) are nonempty. Then f is
differentiable at x, and we have 0p f(z) = 0° f(z) = {f'(z)}.

Limiting subdifferential

Certain results in proximal analysis are conveniently expressed in limiting
terms, and the following constructs are convenient. Let S C IR™ be a
nonempty closed set and let s € S. We define the limiting normal cone
N§(s) by

N&(s) == {C : there exists s; 4 s, ¢; —>  such that ¢; € N{ (s;) for all i},

where s; S signifies that s; — s and that s; € S for all 7. A similar
procedure defines the limiting subdifferential (f € F and z € dom f) by:

Opf(z) ={C : (¢, —1) € Naip(, f(2))}-

A vector ¢ in Op f(z) is called a limiting subgradient of f at x. Clearly we
have:

Orf(z) = {¢ : there exists z; s a, ¢; — ( such that (; € Op f(x;) for all i},
where z; —L z signifies that z; — z and f(x;) — f(x).

Using the results presented in the preceding subsection for the proximal sub-
gradient, we can show the following proposition which gives some properties

for 0. f.
Proposition 0.2.9 Let f € F and let x € dom f. Then

1. If f is Lipschitz near x then Orf(x) # 0.

18



0.2. NONSMOOTH ANALYSIS

2. If f is differentiable at x then f'(x) € O f(x).

3. If f is locally Lipschitz on an open set U C R", then f is C' on U iff
O f(y) reduces to a singleton for every y € U.

4. Assume that f is Lipschitz near x and let x; be a sequence converging
to x. If §; is a sequence which converges to (, where (; € Orf(x;) for
each i, then ¢ € O f(x).

0.2.2 Inf-convolution

The inf-convolution of f and g is another function A defined as follows:

h(z) := inf {f(y) + g(z —y)}.

yER®

Our interest here involves only such inf-convolutions formed between a func-
tion f and the quadratic function k||z||?, where k € IN*. Given an bounded
below function f € F and k € IN*, we define f; : R® — R by

fi(@) = inf {f(y) + kllz — y|I"}. (3)

yelR}l
The sequence ( fx) is called the quadratic inf-convolution sequence associated

to f. The following proposition shows that this sequence has surprisingly far-
reaching properties.

Proposition 0.2.10 Suppose f € F such that [ is bounded below by some
constant w. Then for all k € IN*:

1. fi(-) < f(-) and the set of minimizing points y in (3) is nonempty.
2. fr s locally Lipschitz and bounded below by w.

3. For all z € R",
lim fi(z) = f(2).

k—r+o0
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0.2.3 Some regularity properties

In this subsection we present some regularity properties for a function f. We
begin by some definitions and notations.

Let f: R" — IR U {+0oc} be an extended real-valued function and let z €
dom f. The directional derivative of f at x in the direction v € IR" is defined

by
F(z0) = lim L&) = /(@)

t—0 t

I

when the limits exists. For f Lipschitz near z and given v € IR", one defines
the generalized directional derivative of f at x in the direction v as

f°(z;v) ;== limsup fly+tv) - f(y)

y—a t
10

The generalized gradient of f at x (f still assumed Lipschitz near ), is the
following (nonempty) set

Of(z) :={£ € R": f°(z;v) > (&, v) Vv € R"}.

For more information about the preceding definitions see [19], [22] and [65].

Convex functions

Let U C IR™ be an open convex set. A function f: R* — R U {+oc} is
said to be convex on U provided

fltz+ 1 —-t)y) <tf(z)+(1-t)f(y) Vz,ye U, 0 <t < 1.

A function f which is convex on IR" is simply said to be convex. Note that
dom f is necessarily a convex set if f is convex. Clearly a function f is convex
on IR" iff epif is a convex set of IR" x IR. The following proposition follows
from Propositions 0.2.3 and 0.2.4.

Proposition 0.2.11 Let f € F and let x € dom f. Then
1. If f is convez, then ¢ € Opf(z) iff

fly) = f(@) +(C,y — =) VyeR"
2. If f is convex, then Opf(x) = O f(x) = Of(x).

3. If f is convex and 0 € Opf(x), then z is a global minimum of f.
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Semiconvex functions

Let U C IR™ be an open set and let f : U — IR be a continuous function.
We say that f is semiconvex if for all zq € U there exist §, C' > 0 such that

r+y

o) — (@) = f(y) < Cllz —yll” Vo, y € B(xo;9).°

2/(

Clearly when f is a continuous convex function then it is semiconvex. More-
over, it is easy to see that when f is semiconvex on U then for all zq € U,
the function

v f(@)+ el

is convex on B(zg;0) (C and § is as in the definition of the semiconvexity).
This remark with Proposition 0.2.11 imply the following.

Proposition 0.2.12 Let U C IR" be an open set and let f : U — IR be a
semiconvez function on U. Then f is locally Lipschitz and

Opf(x) =0rf(x) =0f(x) Vx € U.

When f : U — R is in C?(U) then we can easily prove that f is semiconvex.
Moreover, we have the following (see [14] for the proof).

Proposition 0.2.13 Let U C IR" be an open set and let f : U — IR be a
continuous function. If f is the upper envelope of C? functions which have
second derivatives uniformly bounded, then f is semiconver.

We can also define the semiconcavity property. We say that a continuous
function f : U — IR is semiconcave if the function — f is semiconvex. Then
f is semiconcave if for all zo € U there exist §, C' > 0 such that

Tr+y

$(@) + 1) - 205

) < C|lz —y||* Vz,y € B(xo;9).

Clearly we can adopt an analogue version of the preceding propositions for
the semiconcave case.

3There are several names for this type of functions. The first name “fonctions sous-
linéarisables” is given by Janin [43]. We also say “weak convexity”, “convexity up to a

square”, “lower C? functions”, and so on.
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Regular functions

Let f: IR® — IR U {400} be an extended real-valued function and let z €
dom f. We say that f is regular at x if it is Lipschitz near x and admits
directional derivatives f'(x;v) at z for all v, with f'(z;v) = f°(x;v). If
U C IR" is an open, then we say that f is regular in U if it is regular at z
for all z € U. The following is proven in [22].

Proposition 0.2.14 Let f : R® — IR U {+00} be an ertended real-valued
function and let x € dom f. Then

1. If f is reqular at x then we have Or f(x) = 0f ().
2. Assume that one of the following conditions holds:

(a) f is convex and finite near x.
(b) f is semiconver near .

(c) f is continuously differentiable near x.

Then f is reqular at x.

0.3 Differential inclusions

We are given a multifunction (we also say multivalued function) F' mapping
IR" to the subsets of IR", and a time interval [a, b]. Associated with F' is the
differential inclusion

#(t) € F(z(t)) ae.t€ [a,b]. (4)

A solution z(-) of (4) is taken to mean an absolutely continuous function
z : [a,b] — IR™ which, together with &, its derivative with respect to t,
satisfies (4). For brevity, we will refer to any absolutely continuous function
z from [a, b] to R™ as an arc on [a,b]. We also refer to an arc z satisfying
(4) as a trajectory of F.

The concept of differential inclusion subsumes that of a standard control

system
£(t) = f(z(t), u(t)), (5)

where f : IR" x R™ — IR", and where the control function u takes values in
some prescribed subset U of R™; simply consider F'(z) := f(z,U). Filippov’s
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Lemma (see [22, Chapter 3]) implies that under mild hypotheses on f, an
arc z satisfies (4) iff there is measurable function u(-) with values in U such
that (5) holds.
The lower Hamiltonian h : R® x R* — IR (resp. upper Hamiltonian
H :IR" x R* — R) corresponding to F' is defined by follows

h ‘= mi . H = ,U)).

(z,p) = min (p,v) (resp. H(z,p):= max(p,v))

We assume in this section that the multifunction F' satisfies the following
standing hypotheses:

(a) For every x € IR", F(z) is a nonempty compact convex set.

(b) The linear growth condition: For some positive constants -y and c,
and for all z € IR",

ve Fz) = vl <Allzll +

(c) F is upper semicontinuous; that is, for every z € IR", given any
€ > 0, there exists § > 0 such that

|z’ — z|| < § = F(2') C F(z) +¢B.

We note that in the presence of hypotheses (a) and (b), property (c) is
equivalent to the graph of F' (gr F := {(z,v) € R®* x R" : v € F(z)}) being
closed. The role of the linear growth condition in the classical theory of
differential equations is predicated on the a priori bounds on solutions to
which it gives rise. We will benefit from it in precisely the same way. The
following is known as Gronwall's Lemma. For the proof see [22] and [3].

Lemma 0.3.1 Let z(-) be a trajectory of F' on [a,b] then:

lz(t) = z(a)]| < (" = 1)([lz(a)l| + ¢/)-

Under our hypotheses on F', any trajectory can be extend indefinitely both
forward and backward, so all trajectories can be considered as being defined
on |—o0, +0o[. We recall that a multifunction F' is said to be locally Lipschitz
if every x € IR™ admits a neighborhood U = U(z) and a positive constant
K = K(z) such that

T1,T9 € U => F(x3) C F(z1) + K|z, — x5||B.
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The following important proposition asserts that upper semicontinuous mul-
tifunctions can be approximated “from above” by Lipschitz one. The proof
follows using a special covering of IR® and then the existence of a locally
Lipschitz partition of unity for this covering. For details, see [22].

Proposition 0.3.2 There exists a sequence of locally Lipschitz multifunc-
tions {Fr} also satisfying the hypotheses of F' such that:

e For each k € IN, for every x € R",
F(z) C Fyy1(z) C Fy(z) Ceo F(z +3 %' B).

® Ni>1 Fr(z) = F(z) Vo € R™.

0.3.1 Compactness of trajectories

The following result is fundamental to differential inclusion theory and is
referred to as “the compactness of trajectories” theorem. See ([22] and [19])
for the proof.

Theorem 0.3.3 Let x; be a sequence of arcs on [a,b] such that the set
{z;(a)} is bounded, and satisfying:

z;(t) € F(zi(t) + yi(t)) + ri(t)B a.e.,

where y; and r; are sequences of measurable functions on |a,b], such that
y; converges to 0 in L? and r; > 0 converge to 0 in L2. Then there is a
subsequence of x; which converges uniformly to an arc x which is a trajectory
of F', and whose derivatives converge weakly to .

Corollary 0.3.4 We have the following:

1. Let x; be a sequence of trajectories of F' on |a;, b;|, where a; — a,
b; — b, a < b, and where the sequence x;(a;) is bounded. Let the x;
be continued to | — 0o, +oo[. Then there exists a subsequence T, of T
such that for some trajectory T of F' on [a,b], x;, converges uniformly
to T on [a,b.

2. Let z; be a sequence of trajectories of F on [a,+oo[ such that the set
{z;(a)} is bounded. Then there exists a trajectory T of F on |a,+00[,
and there 1s a subsequence x;; of x; such that for allT > 0, z;; converges
uniformly to T on [a,T).
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0.3.2 Dependence on initial conditions

Let to € IR and let xy € IR®. The attainable set A(to, zo; T'), for T' > 1y, is the
set of all points of the form z(7"), where x is a trajectory for F' on [tq, +00[
satisfying z(ty) = zo. The theorem by which the solution of a differential
equation depends regularly on initial conditions is a well-known and useful
result. The following theorem gives its counterpart for differential inclusions.
The proof relies on the prozimal aiming technique introduced in [22].

Theorem 0.3.5 Let F' be locally Lipschitz and let (ty,z0) € IR x R". Then
for any fized T € IR, the multifunction (ty, o) — A(to, xo; T') is locally Lips-
chitz on | — oo, T] x IR™.

0.3.3 Monotonicity of trajectories

Let 2 be an open subset of IR® and let ¢ € F(Q2). We say that (¢, F) is
strongly increasing on Q if for any trajectory = on an interval [a, b] for which
z([a, b]) C Q, we have

o(x(s)) < @(x(t)) Vs,t € [a,b],s <t

The system (@, F') is said to be weakly decreasing on € if for every a € €
there is a trajectory z on a nontrivial interval [a, b] satisfying

z(a) = a, p(x(t)) < p(a) Vi € [a,b];

by reducing b if necessary we may also arrange to have z([a, b]) C €. In each
case, one obtains an equivalent definition by requiring the inequality to hold
on [a,T[, where T €]a, +oc] is the exit time of the trajectory x from Q: the
supremum of all 7 > 0 having the property that z([a, T]) C Q. The following
proposition is proven in [22].

Proposition 0.3.6 Let F be locally Lipschitz and let o € F(Q). Then the
system (@, F') is strongly increasing on S iff

h(xaanp(x)) Z 0 Vze Q,
and weakly decreasing on ) iff
h(z,0pp(x)) <0 Ve Q.

The proof of the preceding proposition also relies on the proximal aiming
technique for trajectory construction developed in [22].
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Chapter 1

Nonconvex duality in optimal
control”®

1.1 Introduction

We consider in this chapter the following optimal control problem in Mayer
form:

( Minimize (T, z(T)),
T € [0, +oc],
(P) ! -TE )) F(x(t) ae.t€[0,+00],
z(t) G_AO’Vt € (0,77,

z(T) € C,

where the given data is a point x, the extended-valued function £ : R xIR™ —
IR U {400}, the multivalued function F' : IR® — IR", and the sets A and C.
We assume along this chapter that the set A is closed, that C' is compact, and
that ¢ is lower semicontinuous and satisfies the following growth condition

(GC):

\

lim inf 4(t,z) = +o0.

t—+o0 T
As for the multivalued function F', we assume that it takes nonempty compact
convex values, has closed graph, and satisfies a linear growth condition: for
some positive constants v and ¢, and for all x € R",

ve Fz) = vl <Allzll + ¢

*This chapter is based on joint work [25] with F. H. Clarke.
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Finally, we assume that (P) is nontrivial in the sense that there is at least
one admissible trajectory for which the cost is finite.

We recall that the lower Hamiltonian associated to F'is denoted by h. There
is a well-known relationship between the value of the problem (P) on the one
hand and certain solutions of a Hamilton-Jacobi inequality in terms of A on
the other; let us recall it now. Let (¢, x) be a smooth function satisfying

Ui(t, ) + h(z, ¥ (t,2)) >0 V(t,z), ¥(t,z) <L(tz)ifzeC.

Then it follows from the Hamiltonian inequality that for any trajectory z(-)
of the differential inclusion, the function t +— (¢, z(t)) is nondecreasing.
Accordingly, for any 7" > 0 we have (T, xz(T)) > (0,2(0)). If we now
restrict the trajectories to those that are admissible for (P), we deduce

UT, z(T)) = ¥(0, zo).
There results a lower bound for the value of (P):
inf(P) > sup (0, xp),
where the supremum is taken over all functions v as described above.

The term ‘nonconvex duality’ has been applied in optimal control to sit-
uations in which equality holds in this last relation. The basic idea is at the
heart of Carathéodory’s method in the calculus of variations, which is also
known as that of ‘verification functions’. It is also related to the ‘generalized
flows’ of L.C. Young, as observed by Vinter et al. ([66], [68] and [69]) who
have extended this duality to the setting of optimal control.

In addition to equality above, it is natural to ask under what conditions
the supremum on the right is attained. Since this fails in general for smooth
functions v, this question led Clarke et al. to introduce a generalized solution
concept for nonsmooth solutions of the Hamilton-Jacobi equation ([17], [28],
[40] and [50]); these have turned out to be what is now known as viscosity
semisolutions. The method of verification functions extended in this way has
been used to solve explicitly a number of problems in optimal control; we
refer to Clarke [18] for a thorough discussion of the method, and for examples.
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The issue of generalized solutions inevitably involves nonsmooth analysis, and
here we employ the tools of proximal analysis. We remark that one can use
the proximal subdifferential to define generalized solutions of the Hamilton-
Jacobi equation, and the resulting solutions coincide (in the present context)
with the viscosity solutions of Crandall and Lions and the minimax solutions
of Subbotin (see for example [21] and [22]). Let the extended Hamiltonian h
be the function given by

hz,0,¢) := 0 + h(z, ().

We define ¥ to be the set of all locally Lipschitz functions ¢) on IR x IR" that
satisfy the limiting Hamilton-Jacobi inequality

h(z,0p(t, 7)) >0 V(t,z) ER x A
as well as the boundary condition
Y(t,z) < L(t,z) V(t,z) e R x C.
The following is the main result.

Theorem 1.1.1

min(P) = 21618 (0, o).

This result unifies, and extends in a number of ways, the ones in the literature,
which treat for the most part the fixed-horizon case (see for example [6], [9],
[22, Chapter 4], [36], [37], [57], [58] and [71]). We remark that the fixed-
horizon case is obtained by taking ¢(T, z) equal to +o0o whenever T differs
from the given horizon 7}; see Section 1.3 below for a discussion of this and
other special cases. Our theorem, whose proof is self-contained modulo some
basic facts from proximal analysis, is also new with respect to its very mild
regularity hypotheses on F' (which need not even be continuous), as well as
the presence of a unilateral state constraint. The fact that locally Lipschitz
functions figure in our duality also gives easy access to smooth duality of the
type found by Vinter [66]. Furthermore, we extend his result by obtaining
in the case of the minimal time problem a duality in which feature only
smooth solutions of an autonomous Hamilton-Jacobi inequality. Section 1.3
is devoted to specializations such as these, while the next section gives the
proof of the theorem.
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1. NONCONVEX DUALITY IN OPTIMAL CONTROL

1.2 Proof of Theorem 1.1.1

First we note that under our hypotheses on F', any trajectory can be extend
indefinitely both forward and backward, so all trajectories can be considered
as being defined on | — oo, +oo[. Using (GC) and since C' is compact, we
show that ¢ is bounded below over [0, +0o[xC then we can assume that £ is
bounded below over IR x IR" by a constant w.

We begin by proving that the problem (P) admits a solution. Let (7}, z;())
be a minimizing sequence for the problem (P) then there exists a positive
sequence €; — 0 such that

UT;, z;(T;)) = inf(P) + &;.

By (GC) we can assume, by passing to subsequence, that there exists b > 0
such that T; € [0,b] and T; — T. Using the compactness property of
trajectories, there exists a trajectory z of I on [0, +00[ which satisfies Z(0) =
To, and there is a subsequence z;; of z; such that T;; converge uniformly to
Z on [0,b]. Then

UT,z(T)) < (r,y)lgl(lfl}sfm) L(r,y) < }IE,E;EE(T@’% (T;;)) = inf(P).
But (T,z(-)) is an admissible trajectory for the problem (P), then (T, Z(-))
is a solution for this problem.
Now we use the Proposition 0.3.2 which asserts that upper semicontinuous
multifunctions can be approximated “from above” by Lipschitz one. By this
proposition there exists a sequence of locally Lipschitz multifunctions {F}}
also satisfying the hypotheses of F' such that:

e For each k£ € IN, for every z € R",

F(z) C Fy1(z) C Fy(z) Cco F(z + 37%B).

® Ni>1 Fr(z) = F(z) Vo € R,

A well known method of approximating the terminally constrained problem
(P) by a problem free of such constraints involves the imposition of a penalty
term. To use this technique, the inf-convolution technique and the preced-
ing approximation we consider for all £ > 1 the following optimal control
problems:
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1.2. PROOF OF THEOREM 1.1.1

Minimize £(T, z(T)) + kde(x(T)) + k [ da(z(t)) dt,
T > 0,

z(t) € Fy(z(t)) a.e.t € [0,+o0],

z(0) = zo,

(Pr)

where (¢)x is the quadratic inf-convolution sequence of the function ¢, see
Proposition 0.2.10.

Lemma 1.2.1 There exists a sequence A\, strictly increasing in IN* such that:

ngrgoo min(P,, ) = min(P)

Proof. We denote by (T,Z(-)) a solution of the problem (P), and by
(T, Y (-)) a solution of the problem (Fy), (the existence of the solutions is
easy to check). For all k£ € IN* we have

min(F) = £(Te, 5e(Te)) + ho(@e(T) + & [ da(a(0) d

and

min(P) = (T, z(T)).
Since F C Fy, (T, Z(-)) is admissible for the problem (P;) then we have:

min(F) = G(Th pu(T3) + Kdo(uu(Th) + [ da(aul0) de
< UT,z(T))
= min(P)
hence
and
kde (7 (Ty)) + k/o * da(ye(t)) < 6T, 2(T)) - w. (1.2)
By Proposition 0.2.10 there exists (sg, z¢) € IR x IR® such that
(T, G (Ti)) = £(sk, 26) + Kl (38, 26) — (Th, T (Ti)) | (1.3)
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1. NONCONVEX DUALITY IN OPTIMAL CONTROL

hence
Kl (s 2) = (T, Tk (Te))|I* < (T, 2(T)) —w < AT, Z(T)) —w.  (1.4)

We claim that
lim Ty # +oc.
k—+o0

Indeed, by (1.4) we have that there exists a sequence a, strictly increasing
in IN* such that
lim (sq, —7,,)=0

n—-+oo
then if
lim 7T, = +oc
n—-+0o00
we get

lim s, = 4ooc.
n—>-+oo

Since /¢ satisfies (GC) we have

ngIEoo E(Sa"’ Za") = too

hence by (1.3)
lim Ean (Tan ) gan (Tan )) = +OO

n—-+oo
but this contradicts (1.1). Then we can assume that there exists b > 0 such
that Ty € [0, b].
Now we use the following lemma (compactness of trajectories). For the proof
see [3] and [31].

Lemma 1.2.2 Let §; be a sequence such that 9; — 0, and let x; be a se-
quence of uniformly bounded arcs on [a,b] such that

then there is a subsequence of x; which converges uniformly to an arc x which
is a trajectory of F on [a,b).

Using the preceding lemma and since F(-) C 0 F(- + 3751 B), there exists
a trajectory g(-) of F' on [0,+oc[ which satisfies §(0) = zy, and there is
a subsequence g, of gy such that g, converge uniformly to g(-) on |0, b].
Moreover, since Ty, € [0, b], there exists a subsequence of T}, which converge
to a point in [0, b]. These considerations with (1.1), (1.2) and (1.4) give that
there exists a sequence ), strictly increasing in IN* such that:

32



1.2. PROOF OF THEOREM 1.1.1

The sequence Ty, converges to a Ty € [0, b].

The sequence 7, converges uniformly on [0, ] to the trajectory g(-).

The sequence \,||(sa,, 2xn,) — (T, , Ua, (Th,))]|* is convergent.

The sequence Audc (I, (Th,)) + An Jo ™ da(3, ()) is convergent.

The sequence £y, (Ty,, 9x,(Th,)) is convergent.

Since the sequence ), is strictly increasing in IN* we get

lim =z, = y(Tp)

n—-—+oo

and
nﬂg—loo Sn = To
hence by the convergence of the sequence Andc (9, (Th, )+ An Ja ™ da (G, (1))
and using Lebesgue’s theorem we have
y(To) e C
and )
g(t) € A, Vvt €[0,Tp).
Then (Tp, §(-)) is admissible for the problem (P). Hence

min(P) T, z(T))

ngnloo min(Py,)

lim 6y, (T, Ua. (Th,))

n—-+

n—-+

liminf  4(s,2")
(s',2")—(To,5(T0))

0Ty, 5(To))
min(P).

AVARRAVS

v

v v

Then
min(P) = lim min(Py,) = £(Tp, y(Tp))

n—-+oo
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1. NONCONVEX DUALITY IN OPTIMAL CONTROL

which completes the proof of the lemma. d
We continue the proof and we remark that the problem (P,,) is exactly the
following problem:

Minimize £y, (T, z(T)),

T >0,

3(t) € Fy, (2(t) ae.t €0, +o0],
2(0) = (0, z),

where F \, 1s an augmented locally Lipschitz multifunction defined as fol-
lows V(y,2) € R x R", F) (y,2) = {M\da(z)} x Fy, (z), and 7, is the
locally Lipschitz function defined by 4y, (¢, y,z) = £y, (¢, %) + Mde(z) + |yl
V(t,y,z) € R x R x R".

Let V3, : R x R x R® — IR be the value function of the problem (P}, );
that is, for every (7, 8,2) € R x R x IR*, V. (7, 8, @) is the minimum of the
following problem:

Minimize ¢, (T, z(T)),

T2>T,

#(t) € Fy (2(t)) ae.t € [, +00],
z(t) = (B, ).

Now we show the following lemma which is a slightly strengthened version
of Theorem 0.3.5. We use this lemma to show that V), is locally Lipschitz.

Lemma 1.2.3 Assume that F is locally Lipschitz. Then Vb € R, Ya < b,
Va € R", 3 p = p(a, b, ) such that:

A(ri, en;¢) C A(Ta, a5¢) + pl| (11 = T2y 01 — )| B
Ve €la, b], Y(11, 1), (T2, a0) € [a,c] X B(a;1).

Proof. Let b € R, a < b, ¢ € ]a,b] and o € IR*. By the proof of
Theorem 0.3.5, there exists o = 2ke®X®~) such that:

A(ry, a1;5¢) € A1, s ¢) + al|(11 — T2, 01 — aw)|| B (1.5)
V(7m, 1), (12, 2) € [a,c] x B(a;1), where & > 1 is a common Lipschitz

constant for all trajectories of F' on [a,c] with initial-value in B(«;1), and
K is a Lipschitz constant for F' on an appropriately large ball (the radius
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1.2. PROOF OF THEOREM 1.1.1

of the ball is independent of ¢). Let p := 2k X% where k; > 1 is a
common Lipschitz constant for all trajectories of F on [a, b] with initial-value
in B(a; 1), then by (1.5)

A(1y, 015¢) C A(1g, a5¢) + pl| (T — 7,01 — )| B
V(71, 1), (12, a2) € [a,¢] x B(a;1). The result follows. O
Lemma 1.2.4 The value function V,\n 18 locally Lipschitz on IR x IR x IR™.

Proof. First, it is easy to show that the function &n satisfies like £ the
growth condition (GC). We define the augmented multifunction F), which
satisfies the same hypotheses as Fy, by: F), (2% ) = {1} x Fy, (z). We
remark that for all (7, 8,a) € R x R x IR®, V) (7, 3, @) is the minimum of
the following problem:

Minimize ¢ z, (T, w(T)),
_ T >0,
(P)\n (7—’ B, a)) w(t) c F’)\n (w(t)) a.e.t € [0, +OO[;
w(O) = (7_7 6: CV),

Let (1,8,) € R x R x R", by (GC) there exists ni; 5, > 0 and 0 <
T(r,8,0) < 1 such that for every v € B((7, 8, @); 7(r,,0)) and for every trajec-
tory (T, w(-)) solution for the problem (Pj, (7)), we have T, € [0,n(r8,4)]-
By Lemma 0.3.1 there exists 1(;5q) > 0 such that w(t) € B(0;¥(r,,0)),
Vt € [0,n(rp,0) VY € B((T,6,0);7(+p4)), ¥V w(:) a trajectory of F), on
[0, +oo[ which satisfies w(0) = 7.

By Lemma 1.2.3 (b = n(;5,4),a = 0 and applied for F),), there exists p such
that:

A(0, (11, B1,01); T) C

A(07 (T27 B2a a2); T) + p“(Tl: 517 O51) - (7-27 ﬁ?a a2)||B (16)
v(7—17 ﬁla al)a (TQ, BQv 012) € B((T7 B’ a)’ T(”':ﬂaa))7 VT € [0’ n(T,ﬁ_,a)]'
Let K, be a Lipschitz constant of £, on the closed ball B(0;v(rg,q)). We

claim that f/)\n is Kop-Lipschitz on the ball B((7, 3, ®);(r8,0)). Indeed, let
(71, B1, 1) and (7o, Bi, o) in B((7, B, a); T(r,8,0)) and let (T, w:(-)) be a solu-
tion of the problem (P, (71, f1, a1)), we have T1 < n; 5 4) then by (1.6) there
exists a trajectory wsq(-) of F), on [0, +oo] which satisfies wy(0) = (72, f2, a2)
and such that:

|1 (T1) — wa(T1)|] < pll(71, Br, 01) — (72, B2, ) |
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1. NONCONVEX DUALITY IN OPTIMAL CONTROL

then

[y, (w1 (TY)) = by, (wa(Th))| < Kopl|(11, B1, i) — (72, B, o) |

hence

V/\n(ﬁ,ﬁlam) > V)\n(TQaﬁQaaQ) - KOP||(7'1,ﬁ1,041) - (72,ﬁ2; C¥2)||

using the same techniques as above, we show that

V)\n(TQ?/BQaaQ) > VAn(Thﬁl,al) - Kop||(7'1,ﬁ1,041) - (72,,82, 042)”

therefore

[V, (T2, By ai2) — Vi, (71, Br, en) || < Kopl|(71, Bry ) = (72, B, o) |

and this completes the proof of the lemma. a
Moreover, we have

~

Vi () < 0\, () (1.7)

and
V)\H(T,ﬁ,&) = V)\H(T,O,OZ)-F/B V(T,ﬁ, CY) € R x [O,+W[XRH. (18)

Using the logic known as the principle of optimality the system (Vy,, F),) is
strongly increasing. Then by Proposition 0.3.6 we have

0 + A\nda(z)€ + by, (2,¢) > 0,2 (1.9)

V(0,€,¢) € 0pVh, (t,y, ), V(t,y,z) € R x R x IR".

If we consider ), : R x IR*® — IR defined by oy, (t,z) = Vi, (t0,z),
V(t,z) € R x IR", then since Vy, is locally Lipschitz and by (1.7), (1.8) and
(1.9) we have:

1. 1, is locally Lipschitz on R x IR",

2. 9y, (0,20) = Vi, (0,0,20) = min(Py,),

3. 0+ \yda(z) + hy, (2,0) >0,V(0,() € Opthy, (t,2), V(t,z) € R x R"
4. Py, (t,x) < Uy, (t,z), V(t,z) € RxC.

2h,, is the lower Hamiltonian corresponding to F},, .
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Lemma 1.2.5 ¢, € V.

Proof. By the preceding 1) we have v, is locally Lipschitz on IR x R®
and by 4) and since £y (-) < £(-) we get that ¥y, (¢t,z) < £y, (t,x), V(t,z) €
IRxC. Now we show that 1, satisfies the limiting Hamilton-Jacobi equation.
Let (t,z) € RxA and let (0, ¢) € 0L, (t, z), then there exists two sequences
(ti,z;) € R x IR™ such that (t;,z;) — (¢,z) and (6;,() — (0,(). By 3) we
have

0i + Anda(zi) + ha, (73, G) > 0
then
0 + Aullz — zil| + ho, (23, G) > 0.

Taking ©+ — 400 we find that
0+ h’An('/L‘i C) > 0)

the result follows. a
Since 1, (0, z9) = min(P,,) and using the preceding lemma we get

Zggw(O, 7o) > ¥, (0, 7¢) = min(Py,)

then
min(P) = lim min(Py, ) < su 0, zg).
(P) pota (Px) _%87/’( 0)

Now we show the reverse inequality. We make the temporary hypothesis that
F ' is locally Lipschitz. Let ¢y € ¥ then we have the following lemma.

Lemma 1.2.6 For all open and bounded subset S C IR™!, for all e > 0,
there exists a neighborhood U of A such that

0+ h(z,C) > —e,
Y(0,¢) € 0pyp(t, ), Y(t,z) € SN{RxU}.

Proof. We reason by the absurd. We assume that there exist a open
and bounded subset S C IR*"! and a & > 0 such that for all neighborhood
U of A, there exist (t,z) € SN{IRxU} and (6,() € 9p1(t, z) such that

0+ h(z,() < —e.
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1. NONCONVEX DUALITY IN OPTIMAL CONTROL

Then there exist two sequences (t,,z,) € S and (6,, (,) such that
(tn, xn) — (to,x0) € R x A4,

(ena Cn) € 8P¢(tna xn)’

and
O + h(Tn, Co) < —¢. (1.10)

Since v is locally Lipschitz and S is bounded, the sequence (6, (,,) is bounded
and then we can assume that it converges to a point (6y, (p). By the definition
of 0, we get that (6y,(o) € OL¥(to,z0). By (1.10) and since F' is locally
Lipschitz we find that

00 + h(.??o, Co) S —&

and this gives a contradiction since ¢ € W. a

Now let (T, Z(+)) be a solution of the problem (P) then by Lemma 0.3.1 there
exists p > 0 such that z(t) € B(0;p), V¢t € [0,T]. We apply the preceding
lemma for S =] — 1,T + 1[xB(0; p) and for € > 0, we get that there exists a
neighborhood U, of A such that

0+ h(z,() > —¢

V(0,¢) € 0pt(t,x),V(t,z) € SN {IRxU,}. ) )
But SN{IRxU.} =] —1,T+1[x{B(0; p) NU,} then since [0,7] C]—1,7 +1],
Z(t) € B(0;p) NU, Vt € [0,T] and by Proposition 0.3.6 we get that

¥(0, 1) < eT + (T, z(T))
moreover Y(T,z(T)) < ¢(T,z(T)) = min(P) then
(0, z0) < min(P) + T
hence by taking e — 0 we get
(0, z9) < min(P)
therefore

min(P) > sup (0, zo).
pew

To remove the need for the locally Lipschitz hypothesis on F' we use the
sequence Fy. First we have the following lemma.
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Lemma 1.2.7 For all n € IN there exists k, > n such that

1
0+ hy, (z,() > ——,
n

Y(0,¢) € 0py(t,x),V(t,z) € — 1,T + 1[x{AN B(0;p)}.

Proof. We also reason by the absurd. Assume that there exists no € IN
such that for all k& > ng there exists (¢, zx) €] — 1,7+ 1[x{AN B(0; p)} and
(Ox, Ck) € Op(tk, k) such that

0k+hk($k,€k) < —i. (1.11)
L)

Since the sequence (g, z) is bounded, we assume that it converges to a point
(to,z9) € IR x A. In the other hand, the sequence (6, () is also bounded
since 1 is locally Lipschitz, then we can assume that it converges to a point
(6o, (o). Using Proposition 0.2.9 we have (6o, (o) € Orv(to, zo). Now let
€ > 0, then since F' is upper semicontinuous we have that for k£ sufficiently
large F(xy +3 %1 B) C F(x¢) +¢B. Hence Fy(xy) C F(x0) +¢B. Using the
definition of the lower Hamiltonian, we get that hg(zg, (k) > h(zo, G) —€l|Cell-
Then by (1.11), we have

1
O + h(zo, Ck) — &[Gkl < ——.
No

But h is continuous in the second variable, then if we take K — 400 in the
preceding inequality we get

1
0o + h(z, Co) —&llCol] < ——.
No
Since ¢ is arbitrary we find that

1
0o + h(z,Go) < ——
Ny
and this gives a contradiction with ¢ € W. a0
By the preceding lemma there exist a subsequence Fy, of Fj, and a sequence
g; > 0 such that ¢, — 0 and

0 + hy, (z,¢) > —¢;,
V(0,¢) € Or(t,x),V(t,x) €] — 1,T + 1[x{AN B(0; p)}.

We continue as in the Lipschitz case and we find the result. d
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1. NONCONVEX DUALITY IN OPTIMAL CONTROL

Remark 1.2.8 If we suppose in the definition of U that the functions i are
continuous and satisfies the proximal Hamilton-Jacobi equation (Op instead
of 01,) then the inequality

min(P) < sup (0, zo)
eV

remains true and the equality remains true if we assume in addition that
A =1R" and F is locally Lipschitz.

1.3 Consequences and special cases

In this section we present some applications of our main result. In the next
subsection we give necessary and sufficient optimality conditions. In Sub-
section 1.3.2, we treat several types of optimal control problems (fixed time
problem and free time problem with finite and infinite horizon). Vinter’s
smooth duality is studied in Subsection 1.3.3.

1.3.1 Characterization of optimality

Theorem 1.1.1 leads directly to the following optimality conditions.

Corollary 1.3.1 Let (T,z(-)) be an admissible trajectory for the problem
(P). Then (T,z(-)) is a minimizer for the problem (P) iff there exists a
sequence of functions {1;} in ¥ such that

(T))-

_ Proof. Let (T,Z(-)) be an admissible trajectory for (P) and assume that
(T, z(-)) is a minimizer for (P). Then by Theorem 1.1.1 we have

T, 2(T)) = sup (0, zo)-

Ppew

lim_ 4;(0, z0) = £(T,

i—+0o0

Kl

Then the necessary condition follows by taking a maximizing sequence {;}
for the supremum sup (0, o).
e

For the sufficient condition, let (T, z(+)) be an admissible trajectory for (P)
and suppose that there exists a sequence of functions {¢;} in ¥ such that

lim (0, z0) = £(T, z(T)).

1—+o0
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Since v; € ¥ and by Theorem 1.1.1 we have

lim (0, z0) < min(P).

i—+00
But (T, Z(-)) is an admissible trajectory for (P), then

min(P) > lim ;(0, ) = (T, z(T)) > min(P),

i—+o0

then

T, %(T)) = min(P),

z
which completes the proof. |

1.3.2 Special cases

1. Fized time problem: If we take (t,z) = Iiryxc(t, x) + £o(x) where
Ty > 0 is fixed and ¢ : R — R U {400} is a lower semicontinuous
function, then we can treat the fixed time case and obtain the following
duality:

min(P) = 21618 (0, o)

where W is the set of all functions 9 : IR x IR® — IR which satisfy:

e 1) is locally Lipschitz on IR x IR",
o h((z,0p¥(t,x)) > 0,V(t,r) € R x A, Vv € F(z),
o Y(Ty,z) < by(z) Vx € C.

If we assume that A = IR™ and F is locally Lipschitz, then we can
consider in the preceding duality continuous functions ¢ and we can
replace J; by Op, and this gives a slightly strengthened version of [22,
Theorem 4.7.7)3.

2. Free time problem with finite horizon: Problems in which T varies in
a compact interval (as is the case in Vinter’s work) can be treated by
taking (for example) ((t,x) = Ijp1)xc(t, ) + Lo(x) where {5 : R* —

3In [22, Theorem 4.7.7], £ is continuous and the functions ¢ are defined on ] — oo, Ty] x
R".
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1. NONCONVEX DUALITY IN OPTIMAL CONTROL

IR U {+00c} is a lower semicontinuous function and Ijy;jxc denotes the
indicator function of [0, 1] x C. Then we find using our main result the
following duality:

min(P) = sup (0, zo)

where W is the set of all functions 9 : IR x IR® — IR which satisfy:

e ¢ is locally Lipschitz on IR x R",

o h(x,0p(t, 7)) >0, V(t,z) € R x A, Vv € F(x),

o Y(t,x) < by(x) V(t,z) €]0,1] x C.

. Free time problem with infinite horizon: We now consider the free time
problem in its most familiar form, where 7T is completely unrestricted.
We suppose that in (P) we have £(t,z) =t + {y(z) V(t,z) € R x R"

where ¢y : R* — IR U {400} is a lower semicontinuous function
bounded below. In this case and by Theorem 1.1.1 we have that

min(P) = sup (o)

where U is the set of all functions ¢ : IR" — IR which satisfy:

e ¢ is locally Lipschitz on IR",

o1+ h(z,0Ly(x)) >0,Ve € A, Vv € F(x),

o Y(x) < ly(z) Vz € C.
We remark that in this result, only autonomous functions v contribute
to the upper envelope. This follows since in this case we can take in

the proof of Theorem 1.1.1, £}, := t + £& where ¢% is the quadratic inf-
convolution of £y and then we get that the function V}, (-, -, -) satisfies

V,\n(T,,B,a) =7+ VAn(O,O,a) +p8 VY(r,B,a) € R x [0, +oo[xIR".

1.3.3 Smooth duality

Another important application of our main result is the smooth duality stud-
ied by Vinter in [66]. In this paper, Vinter considers the following optimal
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control problem:

( Minimize ¢(T, z(T)),
T € 0,1],
Q) 4 xgg)) E_F(t,x(t)) a.e.t € [0,T],
(t.2(t) € A C [0.1] x R* Vt € [0, 7],
| (T,2(T)) € C C[0,1] x R™.

He formulated a problem (W), associated with (@), of convex optimization,
namely, the minimization of a linear functional under linear constraints of
equality type on the set W of generalized flows, a weak*-convex compact
set of a space of Radon measures also associated with problem (). Based
on the apparatus of convex analysis and, in particular, on convex duality,
he established a very close interconnection between problems (@) and (W).
He proved that the set W is the convex closure of the set of admissible
arcs of the original problem (@), and also that both problems are solvable
and that, moreover, their values coincide. This makes it possible to prove a
necessary and sufficient condition for optimality for problem (@) related to
well-known sufficient conditions, referred to as verification theorems, in dy-
namic optimization, see [22] and [28]. Simultaneously the value of problem
(Q) is represented in terms of the upper envelope of smooth subsolutions of
the Hamilton-Jacobi equation. This so-called “convex duality” method was
first introduced by Vinter and Lewis [68], [69]. For more information about
the possibility of approaching control problems via duality theory in abstract
spaces, see ([34], [35], [39], [44], [66], [68] and [69]).

We remark that the problem (Q) treated by Vinter is an optimal control
problem with finite horizon (7" € [0,1]). Moreover, Vinter affirms in [67]
that his methods (generalized flows approach) do not extend to free time
problems with infinite horizon (7" € [0, +oc[) and do not lead an upper en-
velope characterization of the minimum cost, in term of smooth solutions of
autonomous Hamilton-Jacobi inequality. In this subsection we present how
we can using our main result prove and extend the Vinter’s smooth duality
for fixed and free time problems with infinite horizon. For this, we need the
following technical extension of Theorem 1.1.1:

Corollary 1.3.2 There ezists 05, > 0 such that

min(P) = sup (0, zo)
ped

43



1. NONCONVEX DUALITY IN OPTIMAL CONTROL

where ® is the set of all functions ¢ : IR x IR* — IR which satisfy:
e p € CHIR*! ),
o ¢i(t,x) + (ps(t,z),v) >0, V(t,z) € RxA, Vv € F(z),
o p(t,z) < L(t,z) Y(t,x) € [0, 6] xC.
Proof. We fix a constant d,, such that for any trajectory (7', z(+)) solving

the problem (P) we have T < §,, (the existence of &, follows from (GC)).
Now let ¢ € ®. Since ¢ is a C! function on IR**!, we have

aLQD(tv m) = {@I(tv x)}

for all (t,z) € R x R". Then we have ¢ € ¥*. By Theorem 1.1.1 we get

min(P) = sup (0, zg) > sup (0, zo).
Pew ped

For the reverse inequality, let ¢/ € U. Then we have the following lemma.

Lemma 1.3.3 Let (1,a) € RxA such that ¢ is differentiable at (7).
Then

(7, @) + (P (1, 0),v) > 0, Vv € F(a).

The preceding lemma follows from the fact that if ¢ is differentiable at (7, @)
then ¢'(7, ) € ALY (7, @).

Since 1 is locally Lipschitz and by Rademacher’s theorem we have that v is
differentiable a.e (7,a) € IR x IR". Now we make the temporary hypothesis
that F'is Lipschitz and A = IR". Then by Lemma 1.3.3 and using a standard
mollification technique (convolution with mollifier sequence) there exist a
sequence §; € IR and a sequence 9" such that

1. 61 — 0,
2. Y € CI(RH—H,R),
3. it z) + (Yi(t,x),v) > 6;, V(t,z) € RxA, Yv € F(z),

4. *(t,x) — (¢, z) uniformly on compact sets.

“We can replace in Theorem 1.1.1 the condition v (t,z) < £(t,x) Y(t,z) € RxC by
Y(t,x) <Lt x) V(t,z) € [0,0,]xC

44



1.3. CONSEQUENCES AND SPECIAL CASES

Let £ > 0, then there exists 7g € IN such that for ¢ > iy we have

1. (0, 70) > (0, 70) —

2. 9/(t,3) S U(t0) + 5 < Uta) + 5 foral (12) € [0,0,] x C.

If we consider the sequence 1! defined by ! (t,z) = ¢*(t,z) —t6; — % — O |04
then for 7 > 7, we have

L 20, 30) = (0, 70) — 5 — 8y 6] 2 (0, m0) — & — 8y 3,

2. ¢t € CHIR*L,R),

3. (W)t ) + ((Wh)s(t,x),v) > 0, V(t,z) € RxA, Yv € F(x),

4. YLt w) < L(t,m) — t6; — 65,|6;| < L(t,x) for all (¢, z) € [0,d,,] X C.
Hence for 7 > 1,

L. 92(0,m0) > (0, 20) — € — o |6,

2. YL €D,

Therefore for all 7 > iy we have
SUE@(O,%) > L0, g) > (0, 20) — € — g0
pE

taking ¢ — 400 we get that

sup (0, o) > (0, z0) — €
pED
and this is true for all 1 € ¥ and for all ¢ > 0.
Hence

min(P) = sup (0, ) < sup (0, o).
Pevw ped

To remove the need for the Lipschitz hypothesis on F' and the assumption
A = IR", it is sufficient to use the sequence Fj and the penalization term
k [§ da(x(t)) dt as in the proof of Theorem 1.1.1. For details, see Appendix
Al a

It is clear that Corollary 1.3.2 leads to a version of the necessary and sufficient
conditions of Corollary 1.3.1 in which only smooth semisolutions are used.
Let us now examine more closely this type of ‘smooth duality’ in the three
special cases of Subsection 1.3.2.
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1. Fized time problem: We take {(t,x) = It yxc(t, ) +£€o(x) where Ty > 0
is fixed and ¢y : IR® — IRU{+o0} is a lower semicontinuous function,
then by Corollary 1.3.2 (6, = Tp) we obtain the following smooth
duality:

min(P) = sup ¢(0, zo)
ped

where & is the set of all functions ¢ : IR x IR® — IR which satisfy:

° c CI(IRH—H,IR),
o ot ) + (pu(t,x),v) >0, V(t,x) € RxA, Vv € F(x),
o o(Tp,z) < ly(z) Vo € C.
2. Free time problem with finite horizon: We take £(t,x) = Ijo1xc(t, x) +

lo(x) where £y : R® — IRU{+0o0} is a lower semicontinuous function.
By Corollary 1.3.2 (d,, = 1) we obtain

min(P) = sup ¢(0, zo)
ped

where ® is the set of all functions ¢ : IR x IR® — IR which satisfy:

e v € CHR",R),
e ou(t,2) + (pul(t,2),0) 2 0, V(t,2) € RxA, Vo € Fl(z),
o o(t,) < to() ¥(t,2) € [0, 1]xC.

We remark that we obtain the autonomous version of Vinter’s duality
(F and /4, are independent of t). There is a well-known route for getting
the nonautonomous results from the autonomous case. This technique
is called state augmentation, [22, Chapter 4]. For details, see Appendix
A2

3. Free time problem with infinite horizon: We take £(t,z) = t + {y(z)
V(t,z) € R x IR® where ¢, : R® — R U {400} is a lower semi-
continuous function bounded below. This is the most familiar case of
the minimal time problem, and Vinter has remarked [67] that his gen-
eralized flows approach does not appear to yield a duality involving

46



1.3. CONSEQUENCES AND SPECIAL CASES

solutions of the autonomous Hamilton-Jacobi inequality (as one would
hope). However, we obtain the following?:

min(P) = sup p(zo)
ped

where @ is the set of all functions ¢ : IR"® — IR which satisfy:

e o € C'(R", R),
o1+ (¢(z),v) >0,V € A, Vv € F(z),
o p(z) < ly(z) Vz € C.
A well-known and more special case of the present framework involves

the minimal time function associated to the target C' and under the
state constraint A:

inf7T" > 0,

z(t) € F(z(t)) a.e. t €[0,T]
Ta(e, C) :=1< z(0) = «,

z(t) € A Vt € [0,T],

z(T) € C.

We then obtain the following characterization of T4 (-, C'), which appear
to be new at a technical level:

Corollary 1.3.4

Ta(a,C) = sup p(a)
pED

where ® is the set of all functions ¢ : R™ — IR which satisfy:
e v € C*(R", R),
o1+ (¢ (x),v) >0, Vz € AVv € F(x),
e p(z) <0VzeC.

5This smooth duality follows using our nonsmooth duality presented in Subsection 3.2
for the free time with infinite horizon case, and using the same techniques as in Corollary
1.3.2. For details, see Appendix A.3.
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1.4 Appendix A

Appendix A.1 Here we present how we can prove in Corollary 1.3.2
the inequality

min(P) < sup (0, 7o),
ped

when F' is upper semicontinuous and in the presence of the state constraint
A. First, we consider for all £ € IN the following optimal control problem:

Minimize (T, z(T)) + k f; da(z(t)) dt,
T >0,

(Py) xgé)) € Fi(z(t)) a.e.te€[0,+o0],
2(T) € C.

Then as Lemma 1.2.1 we have the following.

Lemma 1.4.1 There exists a sequence \, strictly increasing in IN* such that:
ngnloo min(Py,) = min(P)

Moreover, we can show (see the proof of Lemma 1.2.1) that there exists a
sequence (7T),,xy,(-)) of solution of (P,,) such that

o T)\n —)T

e 1, — T uniformly on compact interval.

e (T,Z(-)) is a solution of (P).

Then we can assume that Ty, < 6y, for all n € IN. We take M,, > 0 such
that z(t) € B(0; M,,) for all ¢t € [0, J,,] and for all z(+) a trajectory of F' with
x(0) = zo. It is easy to verify that (P,,) is exactly the following problem:

Minimize £(T, z(T)),
T >0,

3(t) € Fy, (2(t) a.e.t €0, +o0],
2(0) = (0, o),
Z(T) € [0, M,\n] X C,
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where F. )\, 15 an augmented locally Lipschitz multifunction defined as follows
V(y,z) € R x R, Fy\ (y,2) = {\da(z)} X Fy, (z), { is the lower semicon-
tinuous function defined by 4(t,y,z) = £(t,x) + y, V(t,y,x) € R x R x IR
and M), := A0, sup da(a). Hence we have

€ B(0; M)

min(Py,) = sup (0,0, z)°
pEPy,

where ® is the set of all functions ¢ :R xR x R* — R which satisfy:
e pc C'R xR x R, IR)

o 0.t y, z) + Ada(z)py(t,y,x) + {pa(t,y, z),v) > 0, Y(t,y,z) € R x
R x R*, Vv € F(z),

o o(t,y,z) < L(t,x)+y, V(t,y,x) €[0,0] % [0,M,,] x C.

Now let ¢ € ®,,. We consider the function ¢ : IR x IR® — IR defined by
&(t, ) = ¢(t,0,2). Then clearly we have

e 0(0,z9) = ¢(0,0,xg).
o pcd.
Then for all n € IN we have

sup (0,0, o) < sup (0, xo),
pEDy, pe®

hence

min(P) = lim min(Py,) = lim sup ¢(0,0,z0) < sup (0, x),

n—-+oo n—-+o0o pED),, pED
which completes the proof.

Appendix A.2 We present in this appendix how we can get the (nonau-
tonomous) duality presented in [66] using our autonomous smooth duality.

6This follows since ﬁ‘,\n is Lipschitz and we don’t have a state constraint in (Py ), see
the proof of Corollary 1.3.2 when we make the temporary hypotheses F' is Lipschitz and
A=1R".
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We recall that if we take £(t,z) = Ij1jxc + £o(), in our problem (P) then
our smooth duality give that

min(P) = sup ©(0, z9)
¢

where @ is the set of all functions ¢ : R x IR® — IR which satisfy:
e v € CY(R* R),
o pi(t,x) + (pu(t,x),v) >0, V(t,z) € RxA, Vv € F(x),
o o(t,x) < by(z) V(t,z) € [0,1]xC.

Now we consider the nonautonomous problem (@) in which F' and £ depend
on t as well as on . We proceed to define an augmented multifunction F
which satisfies the same hypotheses as F' :

F(z)=F(° 2) = {1} x F(2°, 2).

Then if Z(-) = (2°(-), z(+)) is a trajectory for F, with Z(a) = Zo = (2, o), it
follows that z is a trajectory for F with x(a) = gy, and that z°(¢) = 23+t —a.
Conversely, if z is a trajectory for F', we augment it to trajectory Z for F' by
setting 2°(t) = z) + ¢t — a (for any choice of zj). Tt is easy to see that (Q) is
exactly the following autonomous problem:

Minimize 0(z(T)),

z(t) € F(z(t)) a.e t € [0, 400],
(O) = Zo,

(t) e A Vt €0, T],

(T) eC.

K8 8 8

Then by our smooth duality we have

min(Q) = min(Q) = sup ¢(0, 0, o) (1.12)

ped
where ® is the set of all functions ¢ : IR x IR™!' — IR which satisfy:
e v € C'(IR x R"™' IR)

e u(t,7) + (px(t,3),0) > 0, Y(t,7) € RxA, Vo € F(3),
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o p(t,z) < L(Z),V(t,z) € [0,1] x C.

For any ¢ € @, if we consider ¢ : R xIR® — IR such that ¢(t,z) = ¢(t,t, z),
Y(t,z) € R x IR®, then we get:

e o b,
e $(0,0) = (0,0, z9),
where @ is the set of all functions ¢ : IR x IR® — IR which satisfy:
e pc C'(R xR",R),
o pu(t,x) + (pi(t,x),v) > 0,V(t,z) € A, Yv € F(t,x),
o o(t,x) <U(t,x),V(t,z) e C.
Therefore

sup (0,0, zq) < sup (0, xo) (1.13)
peD ped

by (1.12) and (1.13) we get that

min(Q) < sup ¢(0, zo).
wED

For the reverse inequality, let ¢ € ®. As above, we consider ¢ : IR x R**t —
IR such that ¢(¢,7) = ¢(z), V(t,z) € R x R*"'. Then we have:

e pcd,
b @(0: Oa .’L'()) = QO(Oa 330).
Hence
sup (0,0, zq) > sup (0, xo) (1.14)
<p€‘i> ped

by (1.12) and (1.14) we get that

min(Q) < sup (0, o).
ped

The nonautonomous case follows.

Appendix A.3 Here we give the complete proof of our smooth du-
ality for the free time problem with infinite horizon case. We recall that in

51



1. NONCONVEX DUALITY IN OPTIMAL CONTROL

this case we have £(t,x) =t + {y(z) V(¢,z) € R x R* and our nonsmooth
duality gives that

min(P) = sup (x)
Yew
where W is the set of all functions ¢ : IR®™ — IR which satisfy:
e ¢ is locally Lipschitz on IR",
o 1+ h(z,0ry(x)) >0,Ve € A, Vv € F(z),
o Y(x) < by(z) Yz € C.

Our goal is to show that

min(P) = sup ¢(zo)
peD

where @ is the set of all functions ¢ : R"™ — IR which satisfy:
* v € C'(R", R),
o1+ (Y (x),v) >0,Vx € A, Vv € F(x),
o p(r) < fy(z) Vx € C.

First we note that the inequality

min(P) > sup p(zo)
ped

follows exactly as in the proof of Corollary 1.3.2.

For the reverse inequality, we take ¢ € W. We proceed as in the proof of
Corollary 1.3.2 and then we get that there exist a sequence J; € IR and a
sequence v such that

1. 9 — 0,

2. ¢; € C*(R", R),

3. 14+ () (x),v) > & > |6, Yz € A, Vo € F(z),
4. *(z) — 9 (x) uniformly on compact sets.

Now let € > 0, then there exists ig € IN such that for i > iy we have
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€

L. ¢ (z0) > (o) — >

2. ¥i(z) < »(z) + % for all 7 € C.

We consider the sequence 1! defined by

iy W) M| i
%(35) - 14+ ‘(SZ| 1+ ‘(51| 2(1+ ‘5l|)’

where M := max —1(x). Then for i > iy we have

_Ylwe) MGl e lm) MG e
T+ (6] 1416 20+1[6G) ~ 1416 1+6 1+[6)

2. ui € CHR", R),

3. 1+ () (x),v) >0,Vx € A, Vv € F(z),

. P(z) M6 Y(@)[0i]  M|6|
4. < - = - -
rzeC.

() < fy(x) for all

Hence for 7 > 1,
Y(zo) M| e

1. Yl (z) > - ’
Velmo) 2 TS T TH e T e
2. Yl € D.
Therefore for all 7 > ¢, we have
; Y(20) M|é;| €
S > > - - ’
(plég e(x0) > Pe(z0) > L4106 1416 1+]|6]

taking ¢ — 400 we get that

sup ¢(zo) > ¥(xo) — €
ped

and this is true for all ¢ € ¥ and for all ¢ > 0.
Hence

min(P) = sup (zy) < sup ¢(xp).
PEV ped

The proof is achieved.
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Chapter 2

The bilateral minimal time
function

2.1 Introduction

Let F' be a multifunction mapping points z in IR® to subsets F(z) of R"
and let S be a nonempty subset of IR". The minimal time control problem
associated to the target set S is a problem in which the goal is to steer an
initial point a to S along a trajectory of the system F'in minimal time. The
minimal time value is denoted by T'(«, S), which could be +oc if no trajec-
tory from « can reach S.

The minimal time control problem is one of the most classical problems
in control theory. It appears already in Carathéodory’s book [15] and it has
a large literature. The function 7'(-,S) is well studied and the property of
small time controllability plays an important role in this study. Indeed, this
property is equivalent to the continuity of 7'(-,S). There is a considerable
literature devoted to local controllability, see [63]. The Lipschitz continuity
of T(-,S) is first studied in [51] for S = {0}. In this paper Petrov defined
the Petrov condition and showed the equivalence between this condition and
the Lipschitz continuity of 7°(-,S). This result was extended to arbitrarily
closed subsets by Soravia in [56]. In [64], Veliov gives a general result for the
Lipschitz continuity of 7'(-,S), allowing the multifunction F' to be nonau-
tonomous and depend measurably on . On the other hand, simple examples
show that T'(-, S) fails to be everywhere differentiable, in general. Differentia-

95



2. THE BILATERAL MINIMAL TIME FUNCTION

bility results for T'(-, S) have been proved for linear systems if 05 is smooth,
see [11] and [38]. In [13], Cannarsa and Sinestrari study the semiconcavity of
this function in analogy with the distance function dg(-). We also find in this
paper a semiconvexity result for the case where S is convex and the control
system is linear. For a thorough history of such results, we invite the reader
to see [6, Chapter 4].

Another important result for the minimal time function is the characteri-
zation as a solution of a Hamilton-Jacobi equation. Solving the Hamilton-
Jacobi equation in some nonclassical sense has developed into an active re-
search area with several different schools of thought participating. In this
chapter, we are interested in prorimal solutions. This concept of solution
appeared in Clarke and Ledyaev [21], where the various concepts were also
unified. We can find in the literature many results concerning the characteri-
zation of T'(-, S) as a solution of a Hamilton-Jacobi equation. The first result
in this direction was found by Bardi in [5] using the viscosity methods. In
[67], Soravia extended these results to allow for noncontrollability and more
general boundary conditions. Other related results are proved in [71]. In
this paper Wolenski and Zhuang show using an invariance-based approach
and without controllability assumptions that 7'(-, ) is the unique proximal
solution of the Hamilton-Jacobi equation that satisfies certain boundary con-
ditions, see [71, Theorem 3.2]. For more information about the possibility
of characterizing 7'(-, S) as a solution of a Hamilton-Jacobi equation, see [6],
[7], [8], [16] and [32].

In this chapter, we study the minimal time function as a function of two
variables. This bilateral minimal time function, denoted by T'(-,-), is defined
as follows. For (a, 8) € R" x R", T'(«v, B) is the minimum time taken by a
trajectory to go from « to 8 (when no such trajectory exists, T'(«, ) is taken
to be +00). The (unilateral) minimal time function associated to S := {53}
is T'(-, 8). The purpose of this chapter is to study the properties of T'(-,-).
We give a necessary and sufficient conditions for the continuity and the Lip-
schitz continuity, and we show a semiconvexity result in the linear case. We
calculate the proximal subgradient of this function and then we give a char-
acterization as a proximal solution of a system of partial Hamilton-Jacobi
equations. In the next chapters, we use this new function for the construc-
tion of solutions of Hamilton-Jacobi equations and to study the existence of
semigeodesic and minimal loop trajectories at a given point a.
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In the next section we give some definitions and establish some notation.
We present some known results for the minimal time function in Section 2.3.
Section 2.4 is devoted to the bilateral minimal time function 7°(, -).

2.2 Definitions and notations

Let F' be a multifunction mapping IR" to the subsets of IR". We assume that
F satisfies the following hypotheses:

e For every z € R, F(x) is a nonempty compact convex set.

e The linear growth condition: For some positive constants v and ¢, and
for all z € IR,
v € F(z) = [jv|| < vlz]| +c.

e [ is locally Lipschitz; that is, every z € IR™ admits a neighborhood
U = U(z) and a positive constant K = K (x) such that

21,79 € U => F(x2) C F(z1) + K||z1 — z2| B.

The bilateral minimal time function 7°(-,-) : R" x R* — [0, +00] is defined

as follows:
Inf T > 0,

T(a,B) := $ @(t) € F(z(t)) a.e. t €[0,T7,
z(0) =« and z(T) = 0.

If no trajectory between « and § exists, then T'(a, f) = +oo. Clearly we
have T'(«, @) = 0 for all « € R™. We define

RE() :={aeR" : T(B,0) <t}, t>0,

the set of points reachable from (3 in time less than t.
Similarly, we introduce

o R} :=UsoRi(t) ={aeR" : T(B,a) < +oo},
e RP(t):={aecR" : T(a,8) < t}, t>0,
e R? =U-yRE(t) ={aeR* : T(a,f) < +ox},
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e R(t) ={(a, ) e R" xR" : T(a,) <t}, t>0,
e R:=UpoR(t) ={(a, 5) e R* xR" : T(«, ) < +o0}.

It is easy to see that we have
1. T(-,-) and T'(-, B) are lower semicontinuous.
2. If T(«, 8) < 400 then the minimum defining T'(cv, B) is attained.

3. For all (o, 8,7) we have the following triangle inequality:

T(a, ) < T(e,7) +T(,5)-

Now we give some definitions which will play an important role in what
follows. We characterize these properties in the next section.

Definition 2.2.1 We say that F':
e is 3-LC (B-locally controllable), if B € it RP.

e is 3-STLC (B-small-time locally controllable), if B € intRP (t)yvt>0;
that is, V.t >0 3 6 > 0 such that T (-, 5) <t on B(B;0).

e satisfies the “positive basis condition” at B, if h(8,7) < 0 for any unit
vector 1.

2.3 The (unilateral) minimal time function

In this section, we give some known results about the minimal time function
T(-,B). Our principal reference is [6, Chapter 4], see also [22] and [71]. We
begin by the following proposition.

Proposition 2.3.1 Let g € R". Then
1. F is B-LC iff R? is open.
2. F is B-STLC = h(B,v) < 0 for any unit vector v <= 0 € F(p).

3. The following statements are equivalent:
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(a) F satisfies the positive basis condition on (.

(b) There exist > 0 and 6 > 0 such that for any ' € B(B;r) and
for any unit vector v we have h(f',7vy) < —0.

(¢) 0 € intF(p).
Proof. 1) Clearly we have: R? is open = F'is 3-LC. For the converse,
let @ € R”. Then there exists a trajectory z : [0, +oo[— IR of F such that

Z(0) = a and Z(T(a, B)) = B (z is the minimal trajectory between « and f3).
By Lemma 1.2.3 there exists p > 0 such that

A0, T(v, B)) € A0, 05T, B)) + plla — o'|| B (2.1)

for all o € B(a;1). Since F' is 8-LC, there exists ¢ > 0 such that B(8;¢) C

RP . Then for 0 < § < min{1, 2i} and by (2.1) we get that for all o € B(;0)
p

there exists a trajectory y : [0, +oo[—> IR™ of F' such that y(0) = o' and
y(T(«, 8)) € B(B;¢). The result follows.

2) It easy to show that: [h(8,7) < 0 for any unit vector 7] <= 0 € F(f).
Now we show the first implication. We reason by the absurd. Let § € IR"
and assume that there exist a unit vector y and € > 0 such that h(3,7y) > e.

We consider the sequence «,, := 3 + 7 There exist a sequence z, : [0, +00]
n
of trajectories of F' and T,, > 0 such that z,(0) = a,, z,(T,) = § and

1
T(an, B8) <T, <T(ay, )+ - We have

Y, —B=— /OT“ i (1) dt. (2.2)

n

In the other hand, using Lemma 0.3.1 and since F' is f-STLC (T (a, 8) —
0) there exists a constant M > 0 such that

lea(®) = 81l < =+ MT, 2.3

for all ¢ € [0,7,]. Moreover, since F is locally Lipschitz, there exists K > 0
such that

in(t) € F(B) + Kllz(t) - Bl B, (2.4)
for all ¢ € [0,7,,]. Then by (2.2), (2.3), (2.4) and using the fact that h(3,~) >
€ we get

1 1
S < T, (K(=+ MT,) —
STy (K( + MT,) —e)
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2. THE BILATERAL MINIMAL TIME FUNCTION

but 7,, — 0, hence the right-hand side can be made negative for n suffi-
ciently large, a contradiction.

3) (a)<=>(b): Follows by a simple continuity argument.

(a)=(c): We reason by the absurd. Assume that 0 ¢ int F'(3). Then
there exists a sequence v, € R" such that v, — 0 and v, ¢ F(8). Since
F(p) is a compact and convex set, there exists a sequence p, € IR” such that
lpnll = 1 and A(B,pn) > (Pn,vn), see [22, Exercise 4.1.15]. We can assume
that p, — p such that ||p]| = 1. Hence 0 > h(S,p) > 0, contradiction.

(c)=>(a): Let v be a unit vector in IR". Since 0 € int F'(3), there exist
r > 0 such that B(0;r) C F(B) and then —yr € F(8). Hence, h(83,7) <
(—7r,7) = —r < 0. The result follows. 0O

Proposition 2.3.2 Let § € R™ and suppose that 0 € int F(3). Then there
exist 1 > 0 and 0 > 0 such that T(a, B) < M for all o € B(B;7).

Proof. Let § € IR and suppose that 0 € int F'(5). Then by Proposition

2.3.1 there exist 7 > 0 and § > 0 such that for any 8’ € B(f;r) and for any

1
unit vector v we have h(5’,v) < —0. We set V(-) = 5|| - —f||. Then we have

h(a, 0pV () < —1foralla € B(B;7)\{8}. Hence the system (¢t+V, {1} x F)
is weakly decreasing on R x B(8;r) \ {#}. Now let « € B(8;r) \ {B}, by
the weak decrease property, there exists a trajectory z : [0, 4+o0[— R"
of F' having the property that for any interval [0, 7] for which z([0,7]) C

B(B;7) \ {8}, we have
V(a) >t+V(x(t)) Vt € [0,T).

Let T :=inf{t > 0: z(t) € comp {B(B;7) \ {8}}}. We claim that T < +oo.
Indeed, if not then for all ¢ > 0 we have z(t) € B(8;r) \ {5}. Hence

V(a) >t+V(x(t))

for all + > 0, which gives a contradiction. Therefore T' < +o00. Moreover we
have :

o T #0.
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o z(T) € comp {B(B;7) \ {B}}.
e For all T < T we have z(T) € B(B;7) \ {8}

Hence
V(a) > T+ V(z(T)). (2.5)

We claim that z(T) = (. Indeed, if not then || — z(T)|| > r. By (2.5) we
have , ,
5> V() >T+ V() >T+ 5
which gives a contradiction. Therefore z(T) = 3. Using again (2.5) we get
that

V(e) >T+V(z(T) =T > T(a, B)
which completes the proof. 0
Proposition 2.3.3 Let 5 € IR". Then

0€intF(B) = F is B-STLC = F is 5-LC.

Proof. 1t is clear that: F'is B-STLC = F'is B-LC. The first implication
follows from Proposition 2.3.2. |

Remark 2.3.4 We note that 0 € F(3) is not a necessary condition for (-
LC. See Example 4.5.2.

The following proposition gives a necessary and sufficient condition for the
continuity of T'(-, 5).

Proposition 2.3.5 Let § € IR". Then the following statements are equiva-
lent:

(i) F is B-STLC.
(i) T(-, B) is continuous at f3.

(iii) RP is open, T(-,B) is continuous in R’ and for any oy € OR?
we have
lim T(a, ) = +o0.

a—rQQ
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Proof. Clearly we have (i) <= (ii) and (i74) = (4i). Let us show that
(i1) = (i3i). We have that R” is open since (i) <= (i1). Let o € R® \ {B}.
We will show that T'(-,3) is continuous at «. By Lemma 1.2.3 (a = 0,
b=T(a,B)) there exists p > 0 such that for all ay, as € B(c; 1) we have

A0, 05T (e, B)) C A0, a3 T, B)) + pllo — | B. (2.6)

Let «, be a sequence such that o, — «. By (2.6) (¢ = T(«, 3)) and for
n sufficiently large, there exists a trajectory z, of F' on [0, +oc[ such that
2,(0) = o, and

16 = zn(T(e, B))|| < pllom — al.

We set 3, = z,(T (e, B)) then for n sufficiently large, we have

T(an, Bn) < T(e, B). (2.7)

By the triangle inequality and using (2.7) we have

T (on, B) < T(0m, Bn) + T (Bn, B) < T(ev, B) + T(Bn, B). (2.8)

For € > 0 and since T(+, ) is lower semicontinuous in IR" and continuous at
[ and using (2.8) we get that

_6+T(Oz75) < T(O{n,ﬂ) < T(anﬁ) +e.

The continuity follows.
Now let ag € OR? and suppose that there exist a constant M and a se-

1
quence o, € R’ such that |Jan — a0l < = and T(an,8) < M. We con-
n

sider the minimal trajectory x, between o, and 3. We have z,(0) = o, and
Zn(T (o, B)) = B. By the compactness of trajectories, there exist a trajectory
Z of F and a subsequence (we do not relabel) of z,, having the property that
xp, converges uniformly to Z on any interval [0, b]. Since 0 < T'(av,,3) < M
we can assume that T'(«ay,, 8) — T € [0, M]. Then we have Z(0) = o, and
Z(T) = S and hence oy € R” which gives a contradiction since R” is an
open subset. 0

For the Lipschitz continuity, we have the following proposition.

Proposition 2.3.6 Let § € IR", then the following statements are equiva-
lent:
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(i) R? is open and T(-,B) is locally Lipschitz in RE.
(i) T(-, B) is Lipschitz near (5.
(iii) 0 € int F(B).

Proof. Clearly we have (i)=-(ii).

(ii)==(iii): We proceed as in the proof of 2) of Proposition 2.3.1. But here
we have that h(3,v) > 0 and since T'(+, 8) is Lipschitz near (3, there exists

1
C > 0 such that T,, < (C + 1). Then we find that

< ni(c+1) (14+ M(C+1))

S|

and then .
1< E(C’—i—l)K(l—i—M(C—i—l))

which gives the required contradiction.

(iii)==(i): Since 0 € int F(8) and by Proposition 2.3.3, R” is open. By
Proposition 2.3.2 there exist 7 > 0 and 6 > 0 such that T'(«, 5) < llo = Al ﬁ”

all @ € B(8;r). Now let & € R?. By Lemma 1.2.3 (a = —1,b = (a,ﬁ)-l—l),
there exist p such that for all ¢ €] —1,T (e, 8) +1] and for all oy, oy € B(a; 1)
we have

A0, a1;¢) € A0, g ¢) + pllay — a|| B. (2.9)

Since T'(-, 8) is continuous at o, there exists y > 0 such that on B(a; u) € R?
we have T'(-, ) < T(a, B) + 1.

Let v := min{4i,,u, 1}, and let a4, ay € B(a;v) then by 2.9 (¢ = T'(aq, B)),
p
there exists a trajectory x of F such that z(0) = ay and
-
18 = 2(T(ar, )| < pllos = ael < 5. (2.10)
Then we have

T(OéQ, B)

IA

T(ay, B) + T (2(T (e, §)), B)

T(on, B) + ||w(T(a1,5 B)) — Bl

< Tlon, B) + £llos - ]|

IN
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By interchanging the role of oy and «w, we get that T'(-, 3) is g—Lipschitz on
B(a;v). The result follows. 0

Remark 2.3.7 Here we give a new proof of (iii)=>(ii) of the preceding
proposition using our Corollary 1.3.4. Let f € IR™ and assume that 0 €
int F(B). Then by Proposition 2.3.3, R? is open. By Corollary 1.3.4, we
have that for all o € RP:

T (o, B) = sup o(a)

where ® is the set of all functions ¢ : R™ — IR which satisfy:
e v € C'(R",R),
o1+ (¢ (x),v) >0,Vr e R" Vv € F(x),

e p(8) <0,

Then it is sufficient to show that there exist p > 0 and C > 0 such that for

all ¢ € ® we have:
l¢'(@)[| < C Vz € B(B;p).

Since 0 € it F(B), F is locally Lipschitz and since RP s open, there exist
r, K > 0 such that B
B(0;r) c R?

and
F(B8) C F(a)+ K|la— B||B Ya € B(0;r).

Let o € B(0;7) and let p € . We assume that ¢'(a) # 0, then
—¢'(a) .
re F(B)+ Klla—5||B.
e (@)
Hence there exist v € F(B) and w € B such that
—¢'(a)
' (@]

but 1+ (¢'(x),v) > 0 then we get that

r=v+ Kl|la - f||lw

1= l¢' (@)l + Kllellll¢' ()| = 0. (2.11)
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1
We take p > 0 such that p < min{r, E} then by (2.11) we find that for all
a € B(0; p) we have

/
<
¢ @ < 7=,

which completes the proof since p depends only by F and 5.

2.4 The bilateral minimal time function

In this section, we give some properties of the function 7°(+,-). First we study
the regularity of this function. We show that if 7'(-,-) is continuous (resp.
locally Lipschitz) at every point of the diagonal D := {(o,«) : « € R"},
then it is continuous (resp. locally Lipschitz) everywhere in R. We also
give a semiconvexity result in the linear case. We calculate the proximal
subgradient and then we characterize this function as a proximal solution of
a system of partial Hamilton-Jacobi equations at the end of this section.

2.4.1 Regularity

We begin by the following proposition which gives a necessary and sufficient
condition for R to be an open set.

Proposition 2.4.1 We have the following statements:
(i) For (o, ) € R:

F and —F are respectively a-LC and B-LC = («, ) € intR.

(#) The following statements are equivalent:

1. R is open.
2. D C intR.
3. F and —F are a-LC, for all o € IR".

Proof. (i) Let (o, 8) € R and assume that F' and —F are o-LC and
B-LC respectively. Then by Proposition 2.3.5 we have R* and R’f’r are open.

Then using the fact that (o, 8) € R we get that (a,8) € R* x RS C R.
The result follows.
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(ii) Clearly we have 1)==2).

2)==3): Assume that D C int R and let & € R™. Then (o, ) € int R and
this gives the existence of r > 0 such that (o, @) € B(a;7) X B(a;7) C R.
Hence o € B(a;r) C RS and o € B(a;r) C R*. Therefore F' and —F are
a-LC.

3)=>1): Follows from (i). 0

Proposition 2.4.2 Let (o, ) € R® x R™. Then we have:
(i) T(-,-) is continuous at (o,«) <= F and —F are a-STLC.
(i) Assume that one of the following conditions holds:

1. (a,p) € R, F is «-STLC and —F s B-STLC.
2. F and —F are a-STLC and 3 € RY.
3. F and —F are -STLC and o € RP.

Then T(-,-) is continuous at («, 3).
Proof. (i) Let o € IR", by Proposition 2.3.5 we have
T(c,-) and T'(-, @) are continuous in o <= F and —F are a-STLC.
But using the triangle inequality we also have
T(c,-) and T(-, ) are continuous at oo <= T'(-,-) is continuous at («, ).

The result follows.

(ii) 1) Let (o, 8) € R and suppose that F' and —F are respectively a-STLC
and S-STLC. By (i) of Proposition 2.4.1, we have that («, ) € int R. Now
let (o, B,) be a sequence such that (ay, ,) — («, ). By the triangle
inequality we have

T(an, Bn) < T(om, @) +T(, B) + T(B, Bn)- (2.12)

Then by the continuity of 7T'(-,«) and T(f,-) we get that T'(-,-) is upper
semicontinuous and hence continuous.
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2) Clearly we have (o, ) € intR since (o, f) € R* x R} C R. Now
let (aun, 8,) be a sequence such that (ay,[,) — («, ). By the triangle
inequality we have

T(n, Bn) < T(am, @) +T(a, Bp)-

Since T'(-, ) and T'(cx,-) are continuous in R® and RS respectively, the re-
sult follows as above.

3) We proceed as in 2) and we find the result. 0
Now we give a necessary and sufficient condition for 7'(-,-) to be continuous
in R.

Proposition 2.4.3 The following statements are equivalent:

(i) R is open, T(-,-) is continuous in R and for any (ap, By) € OR we
have

lim T(a, B) = +00.
(a7ﬂ)—)(a0’/30) ( /6)

(i) T(-,-) is continuous at (o, «) for all o € R™.
(i5i) F and —F are 8-STLC for all B € R".

Proof. Clearly we have (i)=(ii).
(ii)=(iii): Follows from (i) of Proposition 2.4.2.

(ili))==(i): The first part (R is open and 7T(-,-) is continuous in R) fol-
lows from (ii) of Proposition 2.4.2.

Now we show the second part. Let («p, 8y) € OR. Suppose that there exist a
sequence (ay, 3,) € R and a constant K such that (ay, 8,) — (@0, 5o) and
T, :=T(an, B,) < K. Since 0 < T,, < K we can assume that 7}, converges
to T € [0, K]. Now let z,, be a trajectory of F' on [0,+oo[ which satisfies
z,(0) = a,, and z,(7,,) = 5,. By the compactness property of trajectories,
there exists a subsequence of z,, (we do not relabel) which converges uni-
formly on [0,7] to a trajectory Z of F. Hence Z(0) = ap and Z(T) = fo.
Therefore (g, 5y) € R and this contradicts the fact that R is open. 0
We proceed to study the Lipschitz continuity of T'(-,-). We begin by the
following (local) proposition.
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Proposition 2.4.4 Let (o, §) € R® x R*. Then we have:
1. If (o, B) € R then

[0€ intF(a) and 0 € int F(B) | = T(-,") is Lipschitz near (c, B),
2. 0€ intF(a) < T(-,) is Lipschitz near (o, @),

Proof. 1) Let (o, 5) € R and assume that 0 € int F'(«) and 0 € int F'(3).
By Proposition 2.4.1 we have (o, §) € int R and by Proposition 2.3.1 there
exist r,0 > 0 such that

h(z,v) < —0

for x € B(a;r)U B(B;7), ||| = 1.
1 1
Let W(-) := 5|| - —al| and V() := S“ - —f|| then by Proposition 2.3.2 we
have that T'(-,a) < W(-) on B(a;7r) and T'(-, 3) < V(-) on B(S;r).
Moreover we have by the same argument that T'(«,-) < W(-) on B(a;r)
and T(8,-) < V(:) on B(B;r). Now we assume that r < 1. Let M :=
r + T(a, 8), k > 1 a common Lipschitz constant for all trajectories of F'
on [0, M] with initial-values in B(a;1), K a Lipschitz constant for F' on an
appropriately large ball and ' := Lke_K M We claim that T'(-, ) is Lipschitz
on B((a, B);r"). Indeed, let (¢, '), (&",8") € B((«, B);7") and let z(-) be
a minimal trajectory between o' and ', that is, z(-) is a trajectory of F' on
[0, +oo[ which satisfies 2(0) = o' and z(T'(c/, ")) = 5. By Theorem 0.3.5
(dependence on initial conditions) and since
T, p) < T(,a)+T(a, ) +T(8,5)

W (') + T(a, B) + V(8)

L +7(a,0)

M,

IN

IN

there exists a trajectory y(-) of F on [0, +oo[ which satisfies y(0) = o and
ly(T(e/, 87) = B'll < 2ke" M lo” — "
but ||/ — o”|| < 27" then

y(T(o/, 8)) € B(8';3). (2.13)
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Since [|8' =8| < ' < 5 We have that h(z,v) < =0 for z € B(8',r), ||7]| = 1.

|| i} ;ﬁI” and T(ﬂ’, ) < || ) ;ﬁI” on

Then as above we get that T(-,5') <
r

B(8'; 5)-

Hence by (2.13) and since ||3' — 8"|| < % we have

(T, 8),8) < +Iy(T(a, 8) - B

and .
T(ﬁl,,B”) S g”ﬁl_,B”H
Moreover T'(o", ") < T'(y(T(/, 8")), 8") + T(/, B') then

T(", 8 ~T(,8) < T(T(,5)),5)
< T, B),8) + T(8, 5"
B W
- o 0
kKM
< B o ol + 518 - ]
< Ko - o, - )

By interchanging the roles of (o/, '), (&, 5"), the proof is completed.

2) The necessary condition follows from 1) and the sufficient condition follows
from the fact that if T°(-, -) is Lipschitz near (o, ) then T'(-, ) is Lipschitz
near o and using Proposition 2.3.6. |

The following proposition gives a necessary and sufficient conditions for 7°(-, -)
to be locally Lipschitz in R.

Proposition 2.4.5 The following statements are equivalent:
(i) R is open and T(-,-) is locally Lipschitz in R.
(i) T(-,-) is Lipschitz near (o, c) for all o € IR™.

(#i) 0 € int F'(B) for all 5 € R™.
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Proof . Clearly we have (i)==-(ii).
(ii)==(iii): Follows from Proposition 2.4.4.

(ili)=(i): By Proposition 2.4.3 we have R is open, and by Proposition
2.4.4, T(-,-) is locally Lipschitz in R. O

It is well-known that in the linear case and under some hypotheses, the (uni-
lateral) minimal time function 7T'(-, 5) is semiconvex, see [13]. In the following
theorem, we show an analogous result for the bilateral minimal time function.

Theorem 2.4.6 Let F' admit a representation of the form
Fz)={Az+u : ue U},

where A is an n X n matriz and U is a conver and compact set. Assume that
T(-,-) is locally Lipschitz in an open set Q C R. Then T(-,-) is semiconvez
wn €.

Proof. Let Q C R in which T'(-, -) is locally Lipschitz and let («, ) € 2.
Then there exists r, k1 > 0 such that T(-,-) is ki-Lipschitz on B((«, 8);7) C
QCR. Let 0 < 7' < rand let (aq, 1), (o, B2) € B((a, B);7"). We suppose
for instance that T'(ay, 1) < T(ay, 32) and T(ay, B2) # 0'. We consider y(-)
a trajectory which realizes the minimum time between a, and (5. We set
z(+) = (y(-), B2) and w(-) the solution of the following differential equation:

o +ay B+ B
2 ’ 2

w(t) = (4,0)w(t) + (u(2t),0), w(0)=( );

where u(-) is the optimal control which realizes the minimum time between
oo and f[y. We define

o (a3, 3) = 2(T (02, B2) — T(ev1, B1)),

. (, B ;' 52) _ w(T(OJQ,@) ;T(a’laﬁl)).

I T(as, B2) = 0 then T(ay, f1) = T(2: ;'042’ P ;ﬂz

follows immediately.

) = 0, and the desired inequality
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Then by the principle of optimality we have that

T(as, o) = T(a1, 1), (2.14)
and
T(Ch + 042, p1+ ﬁz) < T(au, B+ 52) i T(as, B2) — T(au, 51). (2.15)
2 2 2 2
Moreover,
_l’_
12600, 22— (e, 50) = (e, )]
Hepeim tie ) . T(az,82)—T(a1,81)
- ||2/0 w(t) dt -/0 2(t) dt]|
T(az,B2)—T(1,61) t
=/ (4,0)(w(3) = (y(2), 5)) at
< (T(ag, B2) — T(au, B))AllIM,
where M = max ||x(£) — y(t)|| with z(-) the solution of the

t€[0,T(az2,82)—T(a1,81)] 2
following differential equation:

#(t) = Ax(t) + u(2t), z(0) = 2 ‘2* @

Since T'(+,-) is kq-Lipschitz on B((a, 8);r) and Z(-), y(-) are bounded on
[0, T(ag, B2) — T(c, B1)], there exists a ko > 0 (depends only by r, k; and
(e, B)) such that

M < ks|(a1 — oz, B1 — Ba)]|-

Hence

B1+ Ba

5 ) — (a1, B1) — (as, Bo)|| < krka|Alll[ (01 — aa, B1 — o) 1.

12(cxs,

Br+Be, a1 +as B+ B
), (o Bl

are in the ball B((«a, 8); ) and then since T'(-, -) is k;-Lipschitz on B((«, 5);7)
we get that:

51+ﬁ2) <T(041+Oé3 B+ Bo
2 - 2 ’ 2

Choosing ' very small, we can assume that (o,

T (au, )+ K|[(a1 — a2, 81 — B2)||?,  (2.16)
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where K :=
show that

kiky|| A
. 22” “ By (2.14) and using the convexity of U we can easily

as_;—ala Bl ;—ﬁ2) S T(alaﬁl)2' (217)
Then by (2.15), (2.16) and (2.17) we find that

T(ay, 1) + T(, Bo)
2

T(

o+ B+ B

T
( 2 72

+ K||(a1 — ag, B — Bo)|%.

) <

Then T'(-, ) is semiconvex near («, 3) which completes the proof. a

We have proved in Proposition 2.4.4, that if 0 € int F'(«) (resp. 0 € int F'(«)
and 0 € int F'(B)) then T'(-,-) is Lipschitz near (o, «) (resp. near (a,f)).
The following corollary shows that in the linear case we obtain that T°(-,-) is
semiconvex near (o, ) (resp. near (o, 3)).

Corollary 2.4.7 Let F' admit a representation of the form
F)={Az+u : ue U},

where A is an n X n matriz and U is a conver and compact set. Let (o, 5) €
IR" x IR". Then we have the following statements:

1. If (o, B) € R then

[ —Aa, —AfB € intU | = T(-,-) is semiconvex near (o, f),
2. —Aa € mtU <= T(-,-) is semiconvez near (o, ),
Proof. Follows from Proposition 2.4.4 and Theorem 2.4.6. 0

Example 2.4.8 Forn =1, let F(x) = —x + [—1,1]. It is easy to prove that
R = Ri1 URy where

e Ri={(z,y) e R*xR": —1<y<uz, y#1, z#1}U{(1,1)},
e Ro={(z,y) e R°xR": 2 <y<1, y#—-1, z#-1}U{(-1,-1)}.

2We take 1 (-) (resp. z1(-)) a minimal trajectory between az and B2 (resp. a; and

B1). We define z3(-) = M By the convexity of U, z3(-) is a trajectory of F.

2
Moreover, 25(0) = 159 and 2,(T(an, 41)) = 21522

5 . The result follows.
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2.4. THE BILATERAL MINIMAL TIME FUNCTION

We calculate T(-,-) in | — 1,1[x] — 1,1 and we find that:

1
ln(lix) if-l<y<z<l,
ln(1 ) if-l<z<y<Ll
)

We remark that

1+2x l1—=x

T(_/L"y) = max{ln(1 T y)’ln(l —y

)}7

for all (z,y) €] — 1,1[x] — 1,1[. Hence T(-,-) is the mazimum of two C*
functions and then it is semiconver on | — 1,1[x]| — 1,1[, see Proposition
0.2.13. We can easily deduce this from Corollary 2.4.7 since for all x €]—1,1]
we have x € int([—1,1]). We note that this example shows that T(-,-) is not
necessarily conver under our hypotheses.

2.4.2 Proximal subgradients

In [71], Wolenski and Zhuang calculate the proximal subgradients of the
(unilateral) minimal time function. In the following proposition we give an
analogous result for the bilateral minimal function 7'(-,-). This result will
play an important role in the characterization of 7'(-,-) as the solution of a
system of partial Hamilton-Jacobi inequations.
Theorem 2.4.9 We have:

1. For all « € R*, we have

opT(a, ) = {(&, =€) e R" x R": h(w, &) > —1}.

2. For all (a, B) € R with o # B, we have
0pT (a, B) = Ny (e, HIN{(€,0) € R*XR" : h(a,€) = h(B,—0) = —1},

where r :=T(c, B) and A(r) :== {(z,y) € R* x R* : T(z,y) <r}.
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2. THE BILATERAL MINIMAL TIME FUNCTION

Proof. 1) Suppose o € R* and (£,0) € 0pT(a, ). Then there exist
o > 0 and v > 0 such that

T(al’ﬂl) > _U||(al - Q, 51 - O4)”2 + <(§’ 9)’ (al - &, BI - Ot)>,
for all (¢, f') € B((«, ); ). We take o/ = ' and we get that
0> _U“(O/ - Q, o — a)“Z + <(£: 0): (O/ - Q, o — Of)),

for all o € B(a;v). Let v € R* and o, = a+ Y for all n € IN*. There exists
n
no such that for n > ng we have

0> 2w 0)[* + (&, ). (v,0))

hence
((€,0),(v,0)) <0

and this is true for all v € IR", then 8 = —¢£.
It is well-known that for { € 0pT(-,a)() we have h(a,() > —1 ((t +
T(-,«),{1} x F) is strongly increasing on |0, +oo[xIR™). But

aP,T(aa O!) C aPT(-,Ck)(CY) X aPT(aa -)(CE),?’
hence h(a, &) > —1. Therefore
0pT (o, ) C {(§,—€) e R* xR": h(«, &) > —1}.

For the opposite inclusion, suppose now that (o, &) € R* x R® and h(a, &) >
—1. We will show that (§,—&) € 0pT(a, ). Suppose the contrary, then
there exists a sequence (o, 8,) € IR® x IR™ such that

(o, Bn) # (@, @),

(an7 ﬁn) — (av a’)

and

Tn = T(a’n,ﬁn) < _n”(an —Q, ﬁn_a)”2+<(§a _5)’ (an_anﬁn_a» (2'18)

3See [22, Exercise 1.2.9].
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2.4. THE BILATERAL MINIMAL TIME FUNCTION

for all n € IN*.
Then we have
0 < T, <2||¢|l[(an — a, Bn — @)||- (2.19)

Since T,, < +oo there exists a trajectory z, of F on [0,+oo[ such that
z,(0) = o, and z,(T,,) = B,. Therefore

B — n = /0 ™ () dt. (2.20)

Let pp(t) := projr)(in(t)), then since h(c, §) > —1 we have

OTn<§,pn(t)> dt > —T,. (2.21)

By Lemma 0.3.1 and since 7, is bounded there exists M > 0 such that Vn,
Vt € [0,T,] we have

[ (t) = ol < [[(an = @, B = @)l + MT, (2.22)

moreover

€ [ nlt) - palt), @t > KNl [ lea) ~allar (223)

where K is a Lipschitz constant for ' on an appropriately large ball.
Using (2.19), (2.22) and (2.23) there exists K’ > 0 such that

& [ a0 - pal0), d) 2 ~Kl0n—afu— o). (229)
By (2.20) and (2.21) we get that
T, ~ (6 0= fu) 2 =K (0 = o, B = @)

and this contradicts (2.18) since ((§, —&), (an — @, B — @)) = (&, ay — By)
and this finishes the proof.

2) Let (o, 8) € R* xR with a # B and r = T'(av, ). Let (§,0) € 0pT (v, B).
Then there exists o > 0 and v > 0 such that

T(a',f) 21 —oll(a —a, 8" = B +((&0), (¢ —a, 8 = B)),
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2. THE BILATERAL MINIMAL TIME FUNCTION

for all (o, 8') € B((«, B);v). If we take (o/, ') € A(r) U B((«, 8); V) we get

0> —oll(e/ =, 8" = B)I* +((&,0), (& — o, B = B)),

hence (§,0) € Nj,(a, ). It is well-known that for ¢ € 0pT(-, 8)(a) with
a # B we have h(a, () = —1 ((t+T(-, ), {1} x F) is strongly increasing and
weakly decreasing on |0, +oo[xIR™ \ {a}). But

OpT (a, B) € OpT(+, B)(c) X OpT (a, -)(B),

then h(a, &) = h(5,—0) = —1.
The proof of the opposite inclusion is similar to that of 1). ad

Remark 2.4.10 In this remark we give a simple proof of 1)of Proposition
2.4.4, using the preceding result.

Let (o, B) € R and suppose that 0 € int F(«) and 0 € int F(3). Then by
Proposition 2.3.1 there exists r > 0 and 6 > 0 such that for any (o/,5') €
B(asr) x B(B;r) and for any unit vector v we have h(a,vy) < —6 and
h(B,v) < —d. Hence, for (!, ') € B(asr) x B(B;r) and by Theorem 2.4.9
we have

1 3

< h ’,_
el =" el

)< =4

and

-1 6
T A S h /BI’ ) < _5
TRGATIL

for all (£,0) € 0pT (o, B') with € # 0 and 6 # 0. Then 0pT(-,-) is bounded
on B(a;r) x B(B;1). By Proposition 0.2.7, T(-,-) is Lipschitz on B(a;r) X
B(B;r).

2.4.3 The Hamilton-Jacobi equation

The following theorem gives a characterization of 7'(-,-) as the solution of a
system of partial Hamilton-Jacobi equations.

Theorem 2.4.11 T(-,-) is the unique lower semicontinuous function bounded
below on IR™ x IR™ and satisfying the following:

1. Va e R*, T(a, ) = 0.
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2.4. THE BILATERAL MINIMAL TIME FUNCTION

2. Va# B € R", V(¢ 0) € 0pT (v, B)
h(a, &) = h(B,—0) = —1.
3. Ya € R™, V(&,0) € 0pT (o, ) we have

0 =—¢ and h(o, &) > —1.

Proof. For all o € R", T(a,«) = 0 and by Proposition 2.4.9, T'(-,-)
satisfies 2) and 3).
To prove uniqueness, let ¢ : IR" x R* — IR U{+o00} a lower semicontinuous
function bounded below and satisfies 1), 2) and 3) and let («, 3) € R® x R".
Then for all (§,0) € 0pt(a, B) we have

1+ h(a, &) > 0.

This gives that the system (¢ + 1, {1} x F' x {0}) is strongly increasing on
IR x IR?". Hence for (c,3) € R and for z(-) a trajectory which realizes the
minimal time from « to 8 we have

0+ 9(2(0)) < T(a, B) + ¢ (2((T'(a, 8))) (2.25)

where z(-) is the trajectory of F' x {0} on [0,7(«a, )] defined by z(t) =
(z(t), B). By (2.25) we get that (e, ) < T(«, ). Therefore ¢(-,-) < T(-,-)
on R and then on R" x IR".

Now we show the reverse inequality. Let (o, 5) € IR* x R™ \ D. Then for all
(&,0) € 0ptp(«, B) we have

1+ h(a, &) <0.

Hence the system (t+1, {1} x F x {0}) is weakly decreasing on IR x IR?"\ D.
Then for =(a, 8) € IR® x R™ with a@ # [ there exists a trajectory z(-) of
F x {0} on [0, +o0[ such that z(0) = («, ) and

t+9(2(t) <0+ 9(e, 8) Vie[0,0]

where [0, b] is any subinterval of [0, +oo[ upon which z(t) ¢ D, Vt € |0, b].
There are two cases to consider.

Case 1: z(t) & D,Vt €]0, +o0.

Then (o, 8) > t + ¥(z(t)),Vt > 0. Since 1 is bounded below we get that
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¥(, B) = oo hence (e, §) > T(a, ).
Case 2: There exists a €]0,+o00[ such that z(a) € D.

Let @ := inf{a € |0, +oc[: z(a) € D}. Since z(0) = (a, B) &€ D we have a # 0.
Then Vt € [0,a[, t+ ¢¥(2(t)) < (e, ). Therefore
¥(a, B) > lim inf? + Y(z(t)) > a>T(a, B)

hence
T(a, B) < ¥(a, B)
which completes the proof since ¢(-,-) =T(-,-) =0onD. 0O

Remark 2.4.12 We remark (using the preceding proof ) that we can replace
the conditions 2) and 3) in Theorem 2.4.11 by

e Va# B € R, V(E,0) € pT(a, B)
h(O{, 6) =-1
e Ya € R, V(¢,0) € 0pT (o, ) we have
h(aa 6) Z _1a
or by
e Va# g €R", V(,0) € 0pT (v, B)
h(B,—0) = —1.
e Ya € R, V(¢,0) € 0pT (o, ) we have
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Chapter 3

The Hamilton-Jacobi equation
of minimal time control®

3.1 Introduction

Let F' be a multifunction mapping IR™ to the subsets of IR™ and let h be the
lower Hamiltonian corresponding to F'. This chapter focuses on the following
problem for the Hamilton-Jacobi equation:

1+ h(z,0pp(z)) =0 Yz € RS, 0(0)=0 (¥

where RS is defined as in Chapter 2. A solution of (*) means a lower semi-
continuous function ¢ : RS — IRU{+oco} such that ¢(0) = 0 and for every
z € RY, for every ¢ € Opp(x) (if any), we have h(z,{) +1 = 0. This is
equivalent to the statement that ¢ is a viscosity solution (see [30]) of the
following Hamilton-Jacobi equation:

H(z,—¢'(z)) —1=0 Vz € RY, ¢(0) =0,

see [21] and [22] for the proof of the equivalence. When F' admits a standard
control representation F'(z) = f(z,U), then this assumes the form

max{(f(z,u),—¢'(z)) : ue U} —-1=0,

a familiar object of study in connection with the dynamic programming ap-
proach to optimal control, see for example [6].

*This chapter is based on joint work [26] with F. H. Clarke.
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When (x) is modified by deleting the origin from the domain of the problem,
there results a well-studied problem. Essentially one finds that the solution
is the familiar (unilateral) minimum time function 7°(-,0). However, T'(-,0)
is never a solution on a set containing the origin, since necessarily we have
0 € 0pT(-,0)(0), and since h(0,0) = 0. We refer the reader to [6], [14] and
[71] for discussions of this case.

In this chapter we explore (apparently for the first time) the consequence
of including the origin in the domain. Our goal is to identify a framework
in which such global solutions can be usefully studied. In contrast to the
classical case, it turns out to be the bilateral minimal time function that
plays a central role in determining the solutions of (x) which, as we shall see,
are closely linked to global geodesic trajectories.

The chapter is organized as follows. In the next section we present our
hypotheses. In Section 3.3, we show the existence of (minimal) solutions of
(). We study the regularity of solutions and the linear case in Section 3.4.
The relation between semigeodesic trajectories and solutions is examined in
Section 3.5. In Section 3.6, we define a dual equation for (x) and we give
a necessary and sufficient conditions for the existence of a geodesic passing
through the origin. The Section 3.7 is devoted to the generalization for a
target set.

3.2 Hypotheses

In this chapter we use the same notations as in Chapter 2 and we assume
that the multifunction F satisfies the following hypotheses:

e For every z € R, F(z) is a nonempty compact convex set.

e The linear growth condition: For some positive constants v and ¢, and
for all z € IR,
v € F(z) = [[v]| < 7llzf| +c.

e F'is locally Lipschitz; that is, every x € IR" admits a neighborhood
U = U(z) and a positive constant K = K (z) such that

T1,29 € U= F(x3) C F(21) + K||z1 — 22| B.
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3.3. EXISTENCE OF SOLUTIONS

e —Fis 0-STLC.
We note that under these hypotheses and by Proposition 2.3.5 we have:
e RY is open.
e T'(0,-) is continuous in RY.
e For any o € ORY we have

lim 7'(0,«) = +oo.

a—roQ

3.3 Existence of solutions

Let ¢ be a solution of (x). Applying the monotonicity theory to the function
¢ +t and the multifunction F(z) x {1} (and Q := R% x IR), we deduce that
the system (¢ + ¢, F' x {1}) is both weakly and strongly increasing. Because
of the nature of the ¢-dependence here, the latter property (for example)
amounts to saying that for any trajectory x of F' on an interval [0, 7] such
that z([0,77) C R (this being equivalent to z(0) € RY), we have

o(x(s)) +s < @(z(t)) +t Vs,t €[0,T],s < 1.

The following proposition gives some important properties of a solution of

().

Proposition 3.3.1 Let ¢ a solution of (x). Then we have:
1. T(e, B) + 0(B) > p(e), for all o, B € RY.
2. T(,0) > (o) > =T(0, ), for all « € RY..
3. RY ﬂ’Ri{ C dom .

4. For every a € domp there exists a trajectory x of F' such that z(0) = «
and

p(z(t) +1=¢(e), Vi=0.
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Proof. The statements 2) and 3) follow immediately from 1). For the
proof of 1), let ¢ a solution of (x) and let o, € R%. We can assume
that (o, 8) € R, then let T : [0, +00[—> IR™ be a trajectory which realizes
the (finite) minimal time from « to 3, that is, Z(0) = « and Z(T(a, B)) =
B. Because the system (¢ + t, F' x {1}) is strongly increasing in the sense
explained above, we get that

p(a) = ¢(x(0)) < T(a, B) + p(z(T(, B))) = T(cv, B) + 9(B)-

The statement 1) follows.

Now we give the proof of 4). We consider & € dom¢. Since the system
(t+ ¢, {1} x F) is strongly increasing and weakly decreasing and using the
fact that every trajectory which begins at « remains in R, there exists a
trajectory « : [0, +oo[— R™ of F in RS such that 2(0) = o and

p(a(t) +t=¢(e), Vi=0.

This completes the proof. a

Now we define the following set:

G :={T' C RY : there exists a sequence j3; € I' such that 7'(0, 5;) — +o0},
which is nonempty since for any o € RS we have

lim T(0,a) = +00.2
a—rQ
The following theorem implies that the set of solutions of (*) is nonempty.
We use the set G and the function 7°(-,-) for the construction of solutions.

Theorem 3.3.2 Let I' € G and let or : RS — R U {—o0,+00} be the
function defined as follows:

(,OF(CY) = ,hm iIlfF [T(ala ﬁ) - T(Oa IB)]
;(&E))Lﬂfoo

Then ¢r is a solution of ().
Proof. By the triangle inequality we have that for all o/, 8 € RS
T(ala ﬁ) - T(Ov B) > _T(07 Oé,), (31)

then using the continuity of 7'(0,-) we get that

’If RY is unbounded then we have  lim  T(0,a) = +oo.
lloll—+o00
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e or(a) > —oo for all @ € RY,
e or(0) > 0.

But clearly we have ¢r(0) < 0, then ¢r(0) = 0. The function ¢r is lower
semicontinuous by the definition. Let us show that this function satisfies the
Hamilton-Jacobi equation. It is sufficient to show that the function ¢ + ¢r is
strongly increasing and weakly decreasing. We begin by weakly decreasing.
Let o € dom . Then there exist two sequences «; and §; in Rﬂ’r such that
a; — «, T(0, 8;) — +oo and
or(a) = Z.AIEOO[T(O% Bi) = T(0, Bi)]-

Then T(ay, 5;) — +oo and for i sufficiently large there exists a trajectory
x; of F on [0,400] such that z;(0) = «o; and z;(T (o, 8;)) = B (; realizes
the minimum time between «; and ;). Then for 7 sufficiently we have

T(zi(t), Bi) = T(ow, Bi) — t, Vt€[0,1]
and then
T(xz(t)a 61) - T(07 ﬁl) = T(Oji, /Bz) - T(O, /BZ) -1, Vt € [0, 1] (32)

By the compactness of trajectories we can assume that there exists a tra-
jectory Z of F' on [0,4o00[ such that z; converges uniformly to z on [0, 1].
Then

2(0) = ng—rl—loo 7i(0) = ng—IFloo i =

Moreover, taking i — +oo in (3.2) we get that

(1)) +t < or(a), Vtel0,1].

K

or(

The weak decrease follows.
To prove strong increase, we consider an interval [a,b] C] — 0o, 4+00[ and a
trajectory = of F' such that z([a,b]) C RY. It is sufficient to show that

er(z(b) +b = gr(x(t)) +1, Vi€ [a,b].

We set @ = x(b) and we consider the sequence «; and f; as above. Let
t € [a,b], then by Lemma 1.2.3 (applied for —F') there exists a sequence z;
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of trajectories of I on [t,b] such that z;(b) = o; and lim z;(¢) = z(t). By

1—>+00
the triangle inequality we have

T(z;i(t), ;) <b—t+T(ay,B)

then
T(zi(t), 8;) —T(0,8) +t < T(ew, Bi) —T(0, B;) + b.

Taking 1 — +00 we get
or(z(t)) +1 < er(z(b) +b.

The strong increase follows. 0
We denote by ¢y the function ¢r corresponding to the choice RS of T

Theorem 3.3.3 The function ¢y defined above is the minimal solution of

(%)

Proof. By Theorem 3.3.2, g is a solution of (x). For the minimality,
let ¢ be a solution of (x) and let o € dom ¢ (we can take o € dom ¢ since
we need to show that po(a) < (). By Proposition 3.3.1, there exists a
trajectory z : [0, +oo[— R™ of F' in RY such that z(0) = o and

Hence
T(0,2(t)) =2 —p(z(t)) =t - p(e), VE 20,
and then
tgr—ri—loo T(0,z(t)) = +o0
Therefore

po(a) < Tim [T(a,(t)) = T(0,z()] < lim [t —1+¢(a)] = ¢(a),

— t—>+o0 t—>+o00

which completes the proof. a0

Now we give some examples. We show in the first that the Hamilton-Jacobi
equation (x) does not necessarily admit a maximal solution.
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Example 3.3.4 Forn € IN*, let F(z) := C, for all x € R", where C C R"
is a nonempty, conver and compact set with 0 € intC. In this case h(z,() =
hc(€), V(z, () € R™ x R™, where h¢c is the lower support function of C':

he(€) := min{{(,c) : c€ C}.

The bilateral minimal time function is defined on R™ X IR™ by

T(aa /8) = gC(ﬁ - a)a
for all (o, B) € R™ x R", where g¢ is the Minkowski gauge of C':

x

gc(z) :==min{A >0 : 3

e C}.

Then RS = IR™ and the Hamilton-Jacobi equation (x) becomes the “eikonal
equation” :
1+ he(Opp(z)) =0, Vz € IR", ¢(0) = 0.

For every 0 € IR™ \ {0}, the function

is evidently a solution of (x). The upper envelope of all such solutions is seen
to be the function x — gc(—x) = T(x,0). In view of Proposition 3.3.1, this
coincides with the upper envelope of all solutions of (x). It follows that no
mazimal solution to () erists.

The lower envelope of all solutions exhibited above is given by

¢o(-) = —gc(-) = =T(0,-).

This is a concave function nondifferentiable at 0, so that Oppy(x) # 0 implies
x # 0 and Oppo(z) = {py(z)}. But it is known from convex duality that vy (x)
satisfies

1+ ho(=py(z)) =0,

so that g is a solution of (x). Since g is a lower bound on all solutions of
(%), it is revealed as the minimal solution.
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Example 3.3.5 Forn =1 we consider F(z) := [—|x — 1|,+|x — 1|]. In this
case RY. = {a € R : a < 1} and h(z,{) = —[¢||z — 1|, V(z,{) € R x RR.
For o € RY. we calculate

_In(l—a)—In(1-08) ifB>«
T(a’ﬂ)_{ln(l—ﬂ)—ln(l—a) ifB<a

Then for T'y = [0, 1] (resp. T'y =] — 00, 0]) the corresponding solution of (),
obtained as in Theorem 3.8.2, is:

v1(z) =In(l — z) (resp. @a(x) = —In(1 — x)),

and the minimal solution g is calculated to be —|In(1 — x)|.

3.4 Regularity of solutions and the linear case

In this section we study the regularity of a solution of (x) using the regular-
ity results obtained in the preceding chapter for the bilateral minimal time
function. We begin by the following proposition which gives a sufficient con-
dition for the continuity and the Lipschitz continuity of a solution ¢ of (x)
at a point o € dom o.

Proposition 3.4.1 Let ¢ be a solution of (x) and let « € domp. Then we
have:

1. F is a-STLC = ¢ is continuous at c.
2. 0 € int F(a) = @ 1is Lipschitz near a.

Proof. 1) Since RY. is open and F is a-STLC there exists p > 0 such
that
B(a;p) C RY and B(a;p) C R,

Then for § € B(w; p) and by Proposition 3.3.1 we have
p(B) < p(a) + T(B, @) < +oo, (3-3)

hence ¢ is finite on B(a;p). Now let «; be a sequence such that a; — «
and let € > 0. By the lower semicontinuity of ¢ it is sufficient to prove that
for ¢ sufficiently large we have

p(ai) < pla) +e,
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but this follows immediately from (3.3) since T'(-, ) is continuous in R*.

2) Since 0 € int F(«) and by Proposition 2.4.4 we have that 7T'(-,-) is Lip-
schitz near (o, «). Hence there exist p > 0 and K > 0 such that 7°(-,-) is
K-Lipschitz on B(a;p) x B(a;p). By 1) and since [0 € int F(a) = F is
a-STLC], we can assume that B(q; p) C R and that ¢ is finite on B(q; p).
We claim that ¢ is K-Lipschitz on B(a; p). Indeed, let a4, as € B(q; p). By
Proposition 3.3.1 we have

—T'(a1, a2) < plan) — p(az) < T(az, o),
but since T'(-,-) is K-Lipschitz on B(a;p) X B(a; p) we have
T (0, cu)| = [T(az, 1) = T(an, u)| < Kflar — e,
and
T (e, an)| = [T, 0) — T(cu, )| < Kllew — as|.

Then
—K|lar — as|| < p(a1) — p(ae) < K|lar — as]|,

the Lipschitz continuity follows. 0

Proposition 3.4.2 We have the following statements:

1. Assume that F is B-STLC for all § € R%. NRY. Then all solutions of
() are continuous in the open set RS NRY.

2. Assume that 0 € int F'(B) for all § € RS NRY. Then all solutions of
() are locally Lipschitz in the open set RS NRY.

Proof. Since 0 € RS NRY, we have that F is 0-STLC in 1) and 2).
Then R is open and hence RS N'RY is open. By Proposition 3.3.1 we have
R NRY C dom ¢ for all ¢ a solution of (). Then by Proposition 3.4.1 we
find the two statements. d
We proceed to introduce a property that will play an important role. A
continuous function ¢ is said to be muldly regular at a point x if it satisfies

" ¢(z) C dpp(x).

The following proposition gives sufficient conditions for a continuous function
to be mildly regular at a point x.
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Proposition 3.4.3 Let ¢ be continuous in a neighborhood of a point x. Then
if one of the following conditions holds:

1. @ is regular at x,
2. ¢ 1s differentiable at x,
3. Opp(z) is nonempty,

then ¢ s mildly regular at x.

Proof. 1) If ¢ is regular at = then we have
0" p(z) = —0p(—p)(z) C —o(—¢)(x) = dcp(z) = drp(z),

so ¢ is mildly regular at .

2) If ¢ is differentiable at x, then by Propositions 0.2.5 and 0.2.9 we have
that 0% ¢(z) C {¢'(z)} and ¢'(z) € Orp(x). Then d¥¢(x) C drp(x) and
this gives that ¢ is mildly regular at x.

3) Suppose that Opp(z) is nonempty. Then there are two cases. First,
if 0Pp(z) is empty, then ¢ is mildly regular at z. Second, if 9" p(x) is
nonempty, then 8”p(z) and dpy(x) are simultaneously nonempty, which
implies that ¢ is differentiable at z. By 2), ¢ is mildly regular at . O
We remark that the property of mild regularity, like the stronger ones of
regularity or semiconvexity, can be thought of intuitively as one which rules
out “concave corners”. Its first use here is in the following theorem which
gives an important characterization for the function (.

Theorem 3.4.4 Suppose that the function T(0,-) is mildly regular on RS, \
{0}. Then ¢q coincides with —T(0,-).

Proof. By Proposition 3.3.1 we have that ¢y > —T(0,-) then by the
minimality of g it is sufficient to prove that —7(0,-) is a solution of (x).
First we have that —7°(0,0) = 0. Let us show that —7'(0,-) satisfies the
Hamilton-Jacobi equation of (x). Let o € RS, then there are two cases:
Case 1: o # 0.

Let ¢ € 9p(=T(0,-))(c). Then —¢ € 9°T(0,-)(a) C ILT(0,-)(cx), since
T(0, -) is mildly regular at . But it is well-known that we have

1+ h_p(e, pT(0, ) (@) = 0,

3This is a well-known characterization of the minimal time function but here applied
for the dynamic —F. We note that h_p is the lower Hamiltonian corresponding to —F'.
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Hence since h_p is continuous and Jy, is constructed from Jp by a limiting
process we get that
1+ h_F(a, —C) == 0,
and then
1+ h(e,¢) =0.
Case 2: o = 0.

We claim that 9p(—T(0,-))(0) = @. Indeed, if not then °T(0,-)(0) # 0.
Hence since 0 € 9pT(0,-)(0) we get that 7'(0, -) is differentiable at 0 and we

have
opT(0,-)(0) = {0},

and this gives a contradiction since 0 € int dpT'(0,-)(0)*. O
The following corollary shows that in the linear case, ¢y coincides with

-T7(0,-).
Corollary 3.4.5 Let F' admit a representation of the form
F(z)={Az+u : ue U},

where A is an n X n matriz and U is a conver and compact set such that 0 €
intU. Then g is semiconcave on RS and coincides with —T(0,-). Moreover,
if we assume that OU is of class C* then ¢y € C'(RY. \ {0}).

Proof. Clearly F satisfies our hypotheses (—F is 0-STLC since 0 €
int F(0)) and when F has the stated form, it is known that the function
T(0,-) is semiconvex on RS, see [13, Theorem 4.1]. Then T'(0,) is mildly
regular on RY and by Theorem 3.4.4 we find the result. When 9U is of class
C!itis known that 7(0,-) € C*(RS \ {0}) (see [13, Corollary 5.10])° then
po) = =T(0,-) € C'(RI\ {0}). O
It is known that if OU is not of class C! in the preceding theorem then T'(0, -)
(and thus ¢y) fails in general to be in C*(RY. \ {0}). The following simple
example shows this fact.

Example 3.4.6 For n = 2, we consider the multifunction F defined as fol-
lows
F(z,y)=1]-1,1] x [-1,1],

for all (z,y) € R% This is a special case of Example 3.3.4 (C = [-1,1] x
[—1,1]). Then we have

40pT(0,-)(0) = {¢ € R® : h(0,¢) > —1}, see [71, Theorem 5.1].
5This result was first conjectured in [38] and then proved in [11].
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° ’Ri =1R?.
d <P0(0la B) = _T((an)’ (aaﬁ)) = min{_‘a|’ _‘5|}

Clearly the function @o(-) is not differentiable at the points (o, 8) with |a| =
|B1.

Remark 3.4.7 Let us return to Example 3.3.4 and FExample 3.3.5. We re-
mark that in this two examples we have @y(-) = =T(0,-). This follows from
the fact that in these erxamples the function T(0,-) is mildly regular. In
the next section we give an example in which o(-) does not coincide with
—T(0,-), see Example 3.5.8.

3.5 Semigeodesics

Let o € IR". A trajectory z : [0, +oo[—> IR™ of F is a semigeodesic from «
iff z(0) = « and T'(x(s),z(t)) =t — s for all s <t € [0, +oo[. In this section
we present the relationship between the solutions of (x) and semigeodesic
trajectories. The following proposition affirms that for a given solution ¢ of
(%) (there exist such solutions by Theorem 3.3.2), there exists a semigeodesic
from every point o € dom .

Proposition 3.5.1 Let ¢ be a solution of (x). Then for every a € domp
there exists a semigeodesic x from « such that

p(z(t) +t=¢(e), Vi=0.

Proof. Let ¢ be a solution of (x) and let & € dom . By Proposition
3.3.1, there exists a trajectory z : [0,+oco[— IR" of F' in R} such that
z(0) = o and

o(z(t))+t=0, Vt>D0. (3.4)

We claim that z is a semigeodesic from «. Indeed, let s <t € [0, 4+00], then
by (3.4) and Proposition 3.3.1 we have

T(x(s), x(t)) = p(x(s)) — p(z(t)) =1 = s,

but
T(z(s),z(t)) <t—s,

therefore T'(z(s),z(t)) =t — s. a
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Remark 3.5.2 The preceding proposition implies that under our hypotheses,
there exists at least one semigeodesic from the origin. This can be deduced
directly as follows. We consider a sequence o, in R such that T(0, o) —
+oo (this sequence exists since —F is 0-STLC). Let x, be the trajectory of
F' which realizes the minimum time between 0 and o,,. By the compacitness
property of trajectories, there exists a trajectory x of F on [0,+o0[ such
that (0) = 0 and xz, converges uniformly to x on compact interval. We
claim that © is a semigeodesic from 0. Indeed, let t € [0,+o0[, then since
T(0, ) —> 400 there exists ny such that for n > ny we have

T(0,z,(t)) = t.
Using the continuity of T(0,-) we get that

T0,z(t)) = lim T(0,z,(t)) = lim t=t,

n—-+o0o n—-+o0o

and this shows that x is a semigeodesic from 0.

Remark 3.5.3 Using Proposition 3.5.1, we can show that under our hy-
potheses the Hamilton-Jacobi equation (x) does not necessarily admit a solu-
tion on R™ (if we consider lower semicontinuous functions and exclude the
value —o0). Let us give an example. We consider the same data of Example
2.4.8; that is, for n = 1 we consider F(z) = —x + [—1,1] for allz € R. In
this example, we have 'Rﬂ =] —1,1[ and

| -In(l—2z) f0<z<]l,
T(O’x)_{—ln(1+x) if —1<x<0.

There exist only two semigeodesics from the origin, namely
ez(t)=1—-¢et t>0.
e y(t)=e't—1,t>0.

Now assume that there exists a lower semicontinuous function ¢ : IR —
IR U {+oo} which is a solution of (x) on R, we shall derive a contradiction.
By Proposition 3.5.1, there exists a semigeodesic z from the origin such that

o(z(t))+t=0 Vt>0.
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We assume that z = z (the case z = y follows using the same argument).
Then we have
p(l—e™)=—t Vt>0.

Hence if t — +o00 then
o(1—e") — —o0,

and this gives a contradiction since (1 —e ™) — 1 and ¢ is lower semicon-
tinuous on IR.

The following theorem proves that semigeodesics from 0 are closely related
to the minimal solution g of (x).

Theorem 3.5.4 Let = : [0, +oo[—> IR™ be a trajectory of F' from 0. Then
the following statements are equivalent:

1. The trajectory x is a semigeodesic from 0.
2. For allt >0, we have po(z(t)) +t = 0.

Proof. 2)=—1): Follows immediately by Proposition 3.3.1 (as in the
proof of the preceding proposition).

1)==2): Since T'(0,z(t)) = t and by the definition of ¢ we have that for all
s>0
pola(s)) < lim inf[T(a(s), 2(t)) - T(0,2(1)] = liminfl¢ — s — #] = —s,

then
wo(z(s)) +s<0.

The reverse inequality follows by the strong increase property. a
In the following proposition, we present the relationship between an arbitrary
solution of () and a solution of the type ¢r.

Proposition 3.5.5 Let ¢ be any solution of (x). Then there exists a solution
or of (x) of the type provided by Theorem 3.3.2 such that or > ¢ > g, and
a semigeodesic from 0 along which ¢, pr and @q all coincide.
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Proof. Let ¢ be any solution of (x), then by Proposition 3.5.1 there
exists a semigeodesic x from 0 such that

o(x(t) +t=0, Vt>D0.

Let ' := {x(t) : t > 0}, then since T'(0, z(t)) =t we have I" € G. We consider
the solution ¢r of (x) corresponding to I'. Then we have:

or(@) = liminf[T (¢!, 2(t)) = T(0, (1),

But using Proposition 3.3.1 and since T(0,z(t)) =t and ¢(z(t)) +t = 0 we
get that

T(d,2(t)) = T(0,2(t) = (o) — p(x(t)) — t = p(d).

Then ¢r(a) > ¢(a) since ¢ is lower semicontinuous.
3.5.

By Theorem 3.5.4, ¢ and ¢, agree along z(-). But for any 7 > 0, we have
pr(e(r)) < Tminf(T(a(r), 2(t)) — T(0,2(2)
lim inf[t — 7 — ¢]
t—+o00
= -7
p(x(7)) < or(z(r)),
which establishes that ¢ and ¢r agree along z(-). a

In Corollary 3.4.5, we have proved that in the linear case the function ¢,
coincides with —T(0, -). For & € RY, the following theorem gives a necessary
and sufficient conditions for ¢g(a) to be equal to —7'(0, ) at a given point
Q.

Theorem 3.5.6 Let o € ’Ri{. Then the following statements are equivalent:
1. The point o lies on a semigeodesic from 0.
2. @o(a) = =T(0, ).

Proof. 1)==2): Let o € RY and assume that there exists a semi-
geodesic z from 0 and ¢ > 0 such that z(¢) = a. By Theorem 3.5.4, we have
wo(z(t)) +t=0. But T(0, ) = ¢, then ¢y(a) = —T(0, ).
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2)=1): Let o € RY and assume that py(a) = —T(0,e). We can as-
sume that o # 0. Since @g(«) is finite and by Proposition 3.5.1 there exists
a semigeodesic y from « such that

wo(y(t)) +t = go(a) = =T(0,a), Vt>0. (3.5)

Let z : [0,7(0, )] — IR™ be the minimal trajectory between 0 and « and
let z be the trajectory of F' on [0, 4o00] obtained by concatenating z and y.
We claim that z is the required semigeodesic from 0. Indeed, by Theorem
3.5.4 it is sufficient to prove that

¢o(2(t)) +=0.

We note that z is defined as follows, z(t) = z(t) for ¢t € [0,7(0, )] and
2(t) =y(t—T(0,)) for t > T(0,). Then by (3.5) we have

(pO(Z(t)) +1= Oa Vit > T(O: a)'
For ¢t € [0,7(0, «)[ and by Proposition 3.3.1, we have
po(z(t)) =2 =T(0,2(t)) = =T(0,z(t)) = —,

hence
wo(z(t)) +t>0= o+ T(0,).

The reverse inequality follows by the strong increase property.
This completes the proof. a

Corollary 3.5.7 Let F' admit a representation of the form
Fz)={Az+u : ue U},

where A is an n x n matriz and U is a convexr and compact set such that 0 €
intU. Then every point in RY. lies on a semigeodesic from 0.

Proof. By Corollary 3.4.5 we have that ¢o(a) = —7'(0, ), for all a €
RY. Then by Theorem 3.5.6, every point in RY lies on a semigeodesic from
0. a
In the following example, we show that ¢g(-) does not always coincide with
—T(0,-). We also prove that ¢y(-) can take positive values.
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Example 3.5.8 We take n = 2 and we define the following two multifunc-
tions:

1.
> —y?  2ay '
Fl(l‘;y)—{ {($2+y2’x2+y2)} ify#0

2. Fy(z,y) = B for all (z,y) € IR2.

Now we consider the multifunction F defined by the following:
o F(z,y) = Fy(z,y) for all (x,y) such that ||(z,y)| < 1.
o I(z,y) = Fi(z,y) for all (x,y) such that ||(z,y)| > 2.

o F(z,y) ={(2—r)va+ (r — vy : v1 € Fi(z,y) and v € Fy(z,y)} for
all (z,y) such that 1 < ||(z,y)|| :=7r < 2.

Clearly F satisfies our hypotheses. We note that for all (z,y) € R*\{(«,0) :
a € R}, Fi(z,y) is the unit tangent vector at (x,y) (pointing clockwise if
y < 0 and counterclockwise if y > 0) to the unique circle centered on the
y-axis and passing through both (x,y) and the origin. This implies that in
the region ||(x,y)|| > 2, the trajectories of F move along such circles.

Claim 1: R} = R?\] — o0, —2] x {0}.
Proof. It can be seen without much difficulity that we have
R*\] — o0, —1[x{0} € RE € R?*\] — o, —2] x {0}.

Let us prove that the points of the form (—a,0) where 1 < a < 2 are in Rg.
We fiz € €]0, 1[7and we consider the multifunction F, defined exactly like F
but we replace B by (1 —€)B. We can easily verify that we have:

° FE() C F()
o There exist w > 0 and v > 0 such that
F.(z,y) +vB C F(z,y) Y(z,y) € B((—a,0);w),

and B((—a,0);w) C {(o, B) : 1 <a?+ B <4},
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Now let K > 1 be the Lipschitz constant of F. on B((—a,0);w) and let u > 0

vow
h that p < {—, =1}.
We consider a point (z,y) and an arc z(-) which verify:

e |(z.y) — (=a,0)[| = g, x < —a andy > 0.

e 2:[0,+00[— IR? and satisfies the following differential inclusion:

z(t) € Fi(2(t)) a.e.t €[0,400[, 2(0) = (z,v).

We take T > 0 and (2',y') € R? such that (2',y') = 2(T) € {(-a,B) : B >
0}. Clearly we have T > ||(z,y) — (2',9")|| and 2z(t) € B((—a,0); g) for all
t € [0,T]. Then by the definition of F., the arc z(-) is a trajectory of F.
and taking (z,vy) sufficiently near (—a — g,()) (see Figure 3.1 (2) ) we can
assume that

(=" y') = (=a,0)[] _ [I(«",y) = (=a,0)]| _ ¥
T S ey @l 2 >
Now we define the arc w(-) by
wt) = 2(t) + C2D @Yy 0.,

T
Then for all t € [0,T] we have

lw(t) = (=a,0)[| < [|2(t) = (=a,0)[| + [[(=a,0) = (", )| < p+p < w,
hence
w(t) € B((—a,0);w) Vt € [ty, T].
Using the fact that F, is K-Lipschitz on B((—a,0);w) we get that for all
te0,T]
Fo(2(t)) C Fe(w(t)) + Kl|2(t) — w(t)||B
C F.(w(t)+ KuB

c EW@D+%3

This gives that

RMM+%BCEW@HWBCFW@)WEWI} (3.7)
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2 K 1 2(t)=(t0) 2] = (~a,0)
;\

Figure 3.1: Example 3.5.8

In the other hand, we have

(0.0 = @LY) e [0, 7).

w(t) = A(t) + -

Then by (3.6) and (3.7), we get that a.e. t € [0,T] we have

_ ,0 _ I, ! _
w@=dﬂ+(a)T@y)eﬂmm+chFW@L
and this shows that w(-) is a trajectory of F on [0,T]. By the definition of
w(-) we have w(0) = (x,y) and w(T) = (—a,0), whence (—a,0) € ’Rf’y).
Since (z,y) € RS we get that (—a,0) € RS, and this completes the proof of
the claim. a

Claim 2: The trajectory z(t) = (t,0), t € [0+ oo is the unique semigeodesic
from the origin.

Proof. Clearly the trajectory z(t) = (t,0), t € [0+ 00| is a semigeodesic
from the origin since all velocities are bounded by 1 in norm, and no arc
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between two points is shorter than a straight line. To prove the unique-
ness, first we remark that there exists —2 < b < —1 such that the set
S = {(a,B) : a®> + B? < 4 and -2 < a < b} satisfies the following: for
all (z,y) € S and for all v = (v1,v2) € F(x,y) we have v; > 0. Using this
fact, the continuity of T(0,-) and the fact that if z is a semigeodesic from 0
then T(0, 2(t)) — 400, we can easily establish our claim (details are omit-
ted). QO

Claim 3: ¢, does not coincide with —7T((0,0),-)

Proof. Since z(t) = (t,0), t € [0+ oo[ is the unique semigeodesic from
the origin and by Theorem 3.5.6 we get that @y agrees with —T((0,0),-) at
points of the form (z,0) (x > 0), and is strictly greater otherwise. 0

Claim 4: q(-) takes a positive value.

1
Proof. We consider the point (—5,0), and we remark that as for the

origin, there exists only one semigeodesic from this point, namely the trajec-
1 1

tory w(t) = (t — 5,0), t € [0+00|[. Then since (—5, 0) € RENRY C domg

and by Proposition 3.5.1 we have

eo(—3,0) =t + polw(®),

1 1 1 1
hence fort = 5 we get that <p0(—§,0) =35 + ¢0(0,0) = 5 > 0. a

3.6 Geodesics and the dual problem
A trajectory x :] — oo, +oo[— IR™ of F' is a geodesic iff
T(z(s),z(t)) =t —s,

for all s < t €] — co,+00[. We have proved in the preceding section that
the solutions of (x) are closely linked to semigeodesic trajectories. A naturel
question concerns the relationship between solutions of (x) and geodesic tra-
jectories.

We remark that in each of the three examples above (3.3.4, 3.3.5 et 3.5.8),
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there is in fact a geodesic through the origin®. We now give an example to
show that such a geodesic need not exist in general.

Example 3.6.1 We take n = 2 and we define the following two multifunc-
tions:

(@y) . -2
' /$2+y2 /x2+y2
if (z,y) # (0,0) and the set {(0,0)} if (v,y) = (0,0).

2. Fy(z,y) = B for all (z,y) € IR2.

1. Fi(z,y) is the closed segment between the points
f (.Y

Now we consider the multifunction F defined by the following:
o F(z,y) = Fy(z,y) for all (x,y) such that ||(z,y)| < 1.
o I(z,y) = Fi(z,y) for all (x,y) such that ||(z,y)| > 2.
o F(

z,y) ={(2—r)va+ (r — Vvy 1 vy € Fi(z,y) and va € Fy(z,y)} for
all (z,y) such that 1 < ||(z,y)|| :=r < 2.

Clearly F' satisfies our hypotheses and it is easily seen that we have
RY =R? R’ =2B.

Now assume that there ezists (z(t), y(t)) a geodesic passing through the origin
at t = 0; we shall derive a contradiction. Since points in the complement of
2B cannot be steered to (0,0) we have that

I(z(t), y()|| < 2, V¢ < 0.

Since (0,0) € int F(0,0) and by Proposition 2.3.6 we have T((0,0),-) is
continuous on IR? and then bounded above on 2B. Then there exists a first
b > 0 such that ||(x(b),y(b))|| = 2. But for all (u,v) € 2B we have

T((u,v), (x(b),y(b)) < T((u,v),(u',v") +T((u',0), (x(b),y(b)

<
< 244,

where (u',v") is as in Figure 3.2.
It follows that T ((x(t),y(t)), (x(b),y(b))) = b —t is bounded for t < 0 and
this qives the desired contradiction.

6See Remark 3.6.7 for the proof of the existence of a geodesic through the origin for
these examples.
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(u',v")

(u,v)

(@(®), (b))

Figure 3.2: Example 3.6.1

We refer to the following as the dual equation to (x):
1+ h(z,0"%(x)) =0, Ve € R®, ©(0)=0,  (x—).

A solution of (x—) refers to an upper semicontinuous function. It is easy
to see that ¢ satisfies (x—) iff ¢ = —1 is a solution of the version of (x)
obtained by replacing F' by —F'. Since the trajectories of —F' correspond to
trajectories of F in reversed time, our previous results, applied to (x—), give
rise to consequences for F' with respect to past (rather than future) time.
For this purpose, the following hypothesis is relevant:

“Fis 0-STLC”

To illustrate the use of the dual problem, suppose that v is a solution of
(¥—), and that F' is 0-STLC. Then we deduce the existence of a trajectory
z of F on | — 00, 0] such that 2(0) = 0 and

(z(t)) +t=0, Vt <0.

In the following theorem we use the dual problem to show the existence of a
geodesic passing through the origin.
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Theorem 3.6.2 Assume that the following hypotheses hold:
1. F isis 0-STLC.
2. R. C RY.

3. There exist solutions ¢ and ¥ of () and (x—) respectively such that
o> onRY.

Then there exists a geodesic passing through 0.

Proof. There exists a trajectory x with £(0) = 0 such that
o(x(t)) +t =0, Vt >0,
and a trajectory y with y(0) = 0 such that
Y(y(t))+t=0, Vt <O0.

We have then
o(y(t))+t >0, Vt <0,

but the opposite inequality holds by strong increase. Then the trajectory z
defined on | — 0o, +0c] by concatenating y and x satisfies

o(z(t)) +t =0, Vt € R.
This gives using Proposition 3.3.1 that z is a geodesic. |

Remark 3.6.3 We can replace the second and third hypotheses of the pre-
ceding theorem by the following hypotheses and we find the same result:

1. R CRY.

2. There exist a solutions ¢ and v of (x) and (x—) respectively such that
¢ <1 onRY.

Remark 3.6.4 In Ezample 3.6.1 we have that F and —F are 0-STLC (0 €
int F(0)) and RY C RY, but there is no geodesic passing through 0. This
shows the necessity of the third hypothesis in Theorem 3.6.2.

Corollary 3.6.5 Assume that the following hypotheses hold:
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1. F isis 0-STLC.
2. R® C RY.

3. There exists a continuous solution ¢ of (*) which is mildly reqular on
RY.

Then there exists a geodesic passing through 0.

Proof. The function ¢ satisfies
14 h(z, 09 (z)) =0, Vz € R, ¢(0) =0,

since h is continuous, and since 0y, is constructed from dp by a limiting pro-
cess. Then since ¢ is mildly regular on ’R0+, we get that ¢ is a solution of
(¥*—). The result follows from Theorem 3.6.2. O

The pointwise upper envelope E(-) of all solutions of (x) defines a lower semi-
continuous function on RY that is bounded above by T'(-,0). This function
will play an important role to give a necessary and sufficient condition for
the existence of a geodesic passing through the origin.

Theorem 3.6.6 Assume that the following hypotheses hold:
1. R C RY.
2. F and —F are B-STLC for all 3 € R".
Then the following statements are equivalent:
(i) There exists a geodesic passing through 0.

(i1) limsup [E(a)—T(«,0)]=0.
aer9
T(a,Oe)——_H—oo

Proof. First we show that under our hypotheses we have that T'(-,-) is
continuous on R x RY. Let (o, 8) € R® x RS, then we have:

e F and —F are a-STLC.
e B€RL.
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Hence by Proposition 2.4.2, T(-,-) is continuous at (a, 8).”

(i)==(ii): Let x be a geodesic passing through the origin. Set I" := {z(¢) :
t > 0}, and consider the solution ¢r of (x). Set a; = x(—i). Then for any
a € RY. and for ¢ > 0 we have

T(a,z(t)) = T(0,2(t)) = T(au,z(t))—T(0,z(t)) + T (e, z(t)) — T(cv, z(t))
> T(,0) — T(ay, ).

Using the definition of ¢r and since T'(-, ) is continuous at (a;, ;) € RY X
RY, we get that
or(es) > T (0, 0).

Then E(o;) = T(,0). Since T'(y,0) — +oo and a; € RY, the result
follows.

(i)=>(i): Let a; be a sequence in R° such that T(e;,0) — +oco and
E(a;) —T(c,0) — 0. Then for each i there exists a solution ¢; of (x) such
that

pi(a;) > T(,0) — &,

where ¢; is a positive sequence converging to 0. Set 7; = T'(¢;, 0), and let z; be
an optimal trajectory on the interval [—7;, 0] joining «; to 0. By Proposition
3.5.1 we can extend z; to [0, +oo[ by a trajectory satisfying

@i(x;(t)) +t=0,Vt>0.

Since z;(-) € R® C RY and by the strong increasing property, we have that
for any t € [r;, 0],

0=0(x;(0)+0 > @i(z;i(t)) +1
> pi(ri(—m)) — 7
= ¢i(ai) = T(,0)
2 —&;

We deduce that

—&; < QOZ(.fZ(t)) +t<0,Vte [—TZ', +OO[

"Under hypothesis 1), the hypothesis 2) is equivalent to the continuity of T(-,-) on
RY x RY.
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By Proposition 3.3.1, we get that for any two points s < ¢t € [—7;, +00[ we
have
t—s>T(xi(s),xi(t) >t —s—¢;. (3.8)

By the compactness property of trajectories, we can assume that the sequence
x; converges uniformly on bounded intervals to a trajectory x. We claim
that = is a geodesic. Indeed, let s €] — 00,0] and let ¢ € [0, +oc]. We have
z(s) € RY and z(t) € RY. Then by the continuity of T'(-,-) in R? x RS and
by (3.8) we get that

T(x(s),z(t)) =t — s,

which completes the proof. a0

Remark 3.6.7 In this remark, we show how to prove the existence of a
geodesic passing through the origin for the examples 3.5.4, 3.3.5 and 3.5.8.

1. Example 3.3.4 In this example we have that:
e RY =R’ =R"™
o T(-,-) is continuous in R = IR? x IR2.
e E()=T(-0).

Then by Theorem 3.6.6 there exists a geodesic passing through the ori-
gin.

2. Example 3.3.5 In this example we have that:

e Fis0-STLC (0 € int F(0)).
e RE =R’ ={aeR:a<l}
e The function ¢(-) = In(1 — ) is a solution of (x) which is mildly

regular on RY,.

Then by Corollary 3.6.5 there exists a geodesic passing through the ori-
gin.

3. Example 3.5.8 In this example, clearly the trajectory z(t) = (t,0) is
a geodesic passing through the origin.
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3.7 Generalization for a target set

In this section the multifunction F' satisfies all our hypotheses except the
hypothesis —F" is 0-STLC. We consider a target set S C IR® and the minimal
time function 7°(-, S) associated to S. This well-known function is defined as

follows:
infT >0,

z(t) € F(x(t)) a.e. t €[0,T]
z(0) = «,
z(T) € S.

Like in the case S = {0}, this function is a solution on IR*\S of the following
Hamilton-Jacobi equation:

T(a,S):=

1+ h(z,0pp(z)) =0, ¢(S) = 0.

An important question follows, can we extend the preceding results for the
following Hamilton-Jacobi equation:

1+ h(z,0pp(2)) = 0, Vo € RY, 9(S) =0,  (+%)

where RY is defined like RS but replacing 0 by S.

In this section we generalize the results of Section 3.4 (the linear case) and
some results of Section 3.5. We also give an example (see Example 3.7.9) in
which we show that this generalization does not extend to the results of Sec-
tion 3.3 (existence of solutions). The generalization of these results remains
an open question.

In the next subsection we present our hypotheses on S and the generalization
is presented in Subsection 3.6.2.

3.7.1 Hypotheses

The minimal time function associated to S for the dynamic —F' is denoted
by T(S,-). As in Section 2.2 we define the sets: R (¢), RS, RS (t) and RS.
As mentioned in the beginning of this section the multifunction F' satisfies
all the hypotheses presented in Section 3.2 but we replace the hypothesis
—F'is 0-STLC by the following one: “—F'is S-STLC”, that is, for all ¢ > 0,
we have S C int R{(t). Under this hypothesis, RY is open and T'(S,-) is
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continuous on Ri. Moreover, we assume that the target S satisfies the
following hypotheses:

1. S is compact.

2. int S = 0.

Remark 3.7.1 We note that we must assume that intS = () since if not
then a solution ¢ of (x*) vanishes on intS and then 0 € Opp(x) for all x €
intS which gives a contradiction since h(-,0) = 0.

3.7.2 Generalization

We begin this subection by the following proposition which gives some prop-
erties of a solution of (**). The proof follows excatly like that of Proposition
3.3.1.

Proposition 3.7.2 Let ¢ a solution of (xx). Then we have:

1. T(a, B) + ¢(B) > p(a), for all a, B € RS.
2. T(a, S) > p(a) > =T(S, ), for all € RY.

3. For every a € dom there exists a trajectory x of F' such that £(0) = «
and o(z(t)) +t = ¢(a) Vt > 0.

Using the preceding proposition, clearly we have that if —7'(S, -) is a solution
of (x*) then it is minimal. The following theorem gives a necessary condition
for —T'(S,-) to be the minimal solution of (xx). This is a generalization of
Theorem 3.4.4.

Theorem 3.7.3 Assume that the function T(S,-) is mildly regular on R \
S. Assume further that dom N¥ = 0S (dom N := {s € S : NI (s) # {0}}).
Then —T(S,-) is the minimal solution of (xx).

Proof. By the definition, we have —T'(S,z) = 0 for all z € S. Let
us show that —7°(S,-) satisfies the Hamilton-Jacobi equation of (xx). Let
a € ’Ri, then there exist two cases.

Case 1: a & S.
Then using the same technique as in the proof of Theorem 3.4.4 we find that
—T'(S, -) satisfies the Hamilton-Jacobi equation of (xx) at a.
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Case 2: a € S.

We claim that dp(=T'(S, -))(a) = 0. Indeed, if not then since 0 € dpT'(S, ) ()
we get that T'(S, -) is differentiable at « and 0pT'(S, -)(«) = {0}. But by [71,
Theorem 5.1] we have 9pT'(S,-)(a) = NL(a)N{¢ € R" : h(z,() > — 1},
then since NI («) # {0} we find a contradiction. 0

Remark 3.7.4 A sufficient condition for the condition dom N¥ = 0S is the
convexity of S, see Proposition 0.2.3. We note that the condition intS = ()
does not necessarily implies that dom NE = 0S. Indeed, for

S={0}u{-1/n : ne N*}U{l/n : n € N*},
we have that int S = 0 but N (0) = {0}.
Corollary 3.7.5 Let F' admit a representation of the form
F(z)={Az+u : ue U},

where A is an n X n matriz and U is a compact and convex set. Assume
further that we have the following hypotheses:

(i) S is a compact and conver set.
(ii) intS = 0.

(%) Yr > 0 3y, 00 > 0 such that
Vz € (S,, \ S)NB(0;r) Jv € F(x):

z — p() 3
e a7

for some p(x) € S such that ||z — p(z)|| = ds(z).®

Then —T(S,-) is semiconcave and it is the minimal solution of (x%).

88, = {x € R" : ds(z) < o,}. This condition reduces to 0 € int F(a) if S = {a}.
For more informations about this hypothesis see [13].
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Proof. First we verify that all the hypotheses of Theorem 3.7.3 are
satisfied. By hypothesis (iii) we have that F is S-STLC, see [13, Proposition
2.2]. Since S is convex, we have that dom NI = 0S. Moreover, by [13,
Theorem 4.1], the function T'(S,-) is semiconvex on RY and then mildly
regular on Ri Hence we can apply Theorem 3.7.3 and find that —7°(S, )
(which is semiconcave) is the minimal solution of (xx). 0O
A semigeodesic z : [0, +0o[— IR" of F' is a semigeodesic from S if and only
if (0) € S. Like Proposition 3.5.1, the following proposition presents the
relationship between a solution of (*x) and semigeodesic trajectories.

Proposition 3.7.6 Let ¢ be a solution of (xx). Then for every a € domp
there exists a semigeodesic x from « such that

p(z(t)) +t = ¢(a), Vt > 0.
Moreover, if o € S then we have T(S,z(t)) =t, Vt > 0.

The following theorem gives a necessary an sufficient condition for —7°(S, -)
to be the minimal solution of (xx). This theorem generalizes the Theorem
3.5.6.

Theorem 3.7.7 The following statements are equivalent:
1. =T(S,-) is the minimal solution of (xx).

2. Every point of ’Ri lies on a semigeodesic x : [0, +oo[— IR™ from S
which satisfies: T(S,z(t)) =t, Vt > 0.
Proof. (1) = (2): Let a € R, then by Proposition 3.7.6 there exists
a trajectory z : [0, +0o[—> R™ of F such that z(0) = « and
T(S,z(t)) —t=T(S,a) Vt € [0, +00].

Since T(S, ) < +00, there exists a trajectory y : [0, +oo[— IR" of F such
that y(0) = a € S and y(T'(S, a)) = « (this is the minimal trajectory between
S and «). Clearly we have

T(S,y(t)) =t Vte[0,T(S,a)]

We consider the trajectory z : [0, +00[—> IR" of F' defined by z(t) = y(t) for
allt € [0,7(S, )], and 2(t) = z(t — T(S,a)) for all t € [T(S, ), +00[. Then
we have

T(S,2(t)) =t Vit € [0, +o0.
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Let s <t € [0,+0c[. Then
T(S,z(t))=t, T(S,z2(s))=s and T(z(s),2(t)) <t-—s.
But for b € S we have by the triangle inequality that
T(S, z(t)) < T(b,z(t)) <T(b,2(s)) + T(z(s), 2(1)),
then
T(S,2(t)) < Ii)ggT(b, 2(s)) + T(2(s), 2(t)) =T(S, 2(s)) + T(2(s), 2(t))

hence
T(z(s),z(t)) > T(S,z(t)) —T(S,z(s)) =t — s.

Therefore
T(2(s),2(t)) =t —s,

and this shows that z(-) is the desired semigeodesic.

(2) = (1): Tt is sufficient to show that —7'(.S, -) is a solution of (*x); that is,
the system (t —T(S,-), {1} x F) is strongly increasing and weakly decreasing
in IR x ’Ri The strong increase property follows immediately from the
definition of T'(S, -). For the weak decrease, let & € R. Then there exists a
semigeodesic z : [0, +00o[— IR" from S which satisfies: T'(S,z(t) =t, Vt >
0. We consider the trajectory y : [0, +oo[—> IR™ of F defined by 2(t) =
z(t+T(S,a)) for all t € [0,400]. Clearly we have: y(0) = « and y remains
in R5. Now let ¢ € [0, +oo[, then

T(S,yt) =T(S,zt+T(S,a)) =t +T(S, ),

and hence
0—T(S,y(0)) =t = T(S, y(t)).

The weak decrease follows. a

Remark 3.7.8 Unsing the preceding theorem we can add in Theorem 3.7.3
and Corollary 3.7.5 that every point ofRfL lies on a semigeodesic x : [0, +oo[—>
IR™ from S which satisfies: T(S,z(t) =t, YVt > 0.

We proceed to treat the following question: can we generalize under our
hypotheses the results of Section 3.3 ? In the following example we show
that we can not do this. Indeed, we prove that a solution of the Hamilton-
Jacobi equation (#x), need not exist in general.
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Example 3.7.9 We consider the same data of Example 3.5.8. Let g be the
1
minimal solution of (x) and let S := [—5, 0] x {0}. Clearly F and S satisfies

all our hypotheses. Now we assume that the Hamilton-Jacobi equation (xx)
admits a solution ¢, we shall derive a contradiction. Since RS = RY and
(0,0) € S we have that ¢ is a solution of (). Then ¢o(-) < ¢(-) and hence

1 1 1 1 1
cpo(—§,0) < cp(—§,0). But we have @0(—5,0) =g then @(—5,0) > 5> 0.
This gives a contradiction since gp(—§, 0) =0.
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Chapter 4

Minimal loop trajectories in
control theory

4.1 Introduction

Let F' be a multifunction mapping IR" to the subsets of IR" and let oo € IR".
We have studied in Chapter 3 the existence of a semigeodesic at « and proved
that the existence of this special trajectory is closely linked to the existence of
a solution of certain Hamilton-Jacobi equation. Our principal hypothesis in
Chapter 3 is that —F is a-STLC and then 0 € F(«) and T'(«, -) is continuous
in her domain of definition. The question now is, what type of trajectories
can we find at a point « if we suppose for example that the functions T'(e, -)
or/and T'(-, ) are not continuous at a?

In this chapter we study the existence of a new type of trajectories, the
minimal loop trajectory. A loop trajectory! at « is a trajectory x of F' which
begin from o and terminates at « in a finite and strictly positive time 7', and
it is minimal if it is minimal between z(s) and x(t) (T'(z(s),z(t)) =t —s) for
all s <t € [0, 7] and for all s < ¢ €]0,T]. This type of trajectories is used
in [33] to show the existence of a C' subsolutions of the Hamilton-Jacobi
equation

H(z,u'(x)) > [0],

'We also say “closed trajectory”.
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where c[0] is the Mafié critical value.?

We show that the existence of such trajectories at « is closely linked to
the discontinuous of the functions T'(«,-), T(-,«) and T(,-) and then we
give a necessary and sufficient conditions for the existence. To do this we de-
fine a new function L(-), the minimal loop function. This function is defined
as follows, L(«) is the minimal time in which we go along a trajectory of F'
from « to a, see Section 4.3.

This chapter is an introduction for the study of this type of trajectories
and we think that much research in this area remains to be done.

The layout of this chapter is as follows. We give some definitions and nota-
tions in the next section. In Section 4.3, we define and study some properties
of the minimal loop function. Necessary end sufficient conditions for the ex-
istence of semigeodesics and loop trajectories is given in Section 4.4. We give
some examples in Section 4.5.

4.2 Definitions and notations

In this chapter we use the same notations as in Chapter 2 and we assume
that the multifunction F' satisfies the following hypotheses:

e For every z € R, F(z) is a nonempty compact convex set.

e The linear growth condition: For some positive constants v and ¢, and
for all z € IR,
v € Fz) = |v]| < vllz] +c.

e [ is locally Lipschitz; that is, every z € IR™ admits a neighborhood
U = U(z) and a positive constant K = K (z) such that

21,29 € U = F(x2) C F(z1) + K||z1 — 2| B.

2Let H : R* x R" — TR be a given Hamiltonian and let L be the corresponding
Lagrangian. Then the Mafié critical value ¢[0] is defined by

1 T
o[0] = —inf{T/ Liz(t),8(t) dt: 2 € X, T >0, 2(0) = 2(T)},
0
where X denotes the class of absolutely continuous functions z : [0, +oo[— R".
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Figure 4.1: Simple and general closed curves

Definition 4.2.1 Let z(-) : [0,7] — RR" be a trajectory of F. We say
that x is a loop trajectory iff x(0) = z(T). It is a loop trajectory at o iff
z(0) =2(T) = a.

A trivial loop trajectory at « is a trajectory z(-) : [0,7] — IR™ such that
z(t) = afor all t € [0,T]. By the definition it is easy to see that, there exists
a trivial loop trajectory at a iff 0 € F(«).

Definition 4.2.2 Let z(-) : [0,7] — IR™ be a loop trajectory at o € IR™.
We say that x s a minimal loop trajectory at o iff it satisfies:

1. T(z(s),z(t)) =t —s for all s <t €[0,T],
2. T(x(s),z(t) =t —s for all s <t €]0,T].

A loop trajectory may occur as a simple closed curve or as a complicated
configuration (closed curves with self-intersections), see Figure 4.1. By the
definition of a minimal loop trajectory, clearly this type of trajectories is a
simple closed curve.

Remark 4.2.3 It is easy to see that we have:
1. Let z(+) : [0,T] — IR™ be a loop trajectory (resp. minimal loop trajec-
tory) at « € R for the dynamic F, then the trajectory y(-) : [0,T] —
IR™ defined by y(t) = (T —t) for allt € [0,T] is a loop trajectory (resp.
minimal loop trajectory) at o € R for the dynamic —F.

2. There ezxists a trivial loop trajectory at o iff 0 € F ().
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3. R*NRE ={a}U{B € R" : there erists a loop trajectory at a passing
through (}.
4. There exists a nontrivial loop trajectory at o iff R* N RS # {a}.

5. Assume that F' and —F are a—LC. Then R* N'RE is open and hence,
there exists a nontrivial loop trajectory at .

6. Let z(-) : [0,T7] — IR™ be a loop trajectory at o € R™. Then z(-) is
minimal iff T(c, z(t)) + T(x(t),a) =T for all t €]0,T].

4.3 Minimal loop function
We consider the following optimal control problem:
Minimize 17" > 0,
P(a)  z(t) € F(z(t)) a.e. t € [0,T],
z(0) =z(T) = .

We denote by L(-) : R* — [0,+400] the value function of P(«), that is,
L(c) = inf P(c) if there exists a loop trajectories at a and L(a) = +00
otherwise. L is the minimal loop function for the dynamic F'. We denote by
L the dom L. By Remark 4.2.3 we have that

L={aecR" : 0€ F(a) or RZNRY # {a}}.

By Remark 4.2.3 we have also that the dynamics F' and —F' have the same
minimal loop function. Now we give some important properties for the min-
imal loop function. We begin by the following proposition.

Proposition 4.3.1 Let o € IR", then we have:
1. 0€ F(a) <= L(a) = 0.

2. If L(a) €]0, +00[ then there ezists a solution Z(-) for the problem P(«)
and Z(-) is a minimal loop trajectory at .

Proof. 1) Clearly we have 0 € F(a) = L(a) = 0. Let us show the
necessary condition. Assume that L(a) = 0 then there exists a sequence
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Zn(+) 1 [0,T,,] — IR™ of loop trajectories at « such that lim 7, = 0.

n——+4o0o
We have

zn(Th) —2,(0) 1 [T |
0= T =7 /0 Gn(t) dt, (4.1)
where #,(t) € F(z,(t)), 0 < t < T,. Now for any given p > 0, for all n
sufficiently large, the set {z,(¢) : 0 < t < T,} lies in B(«;p). Further,
given ¢ > 0, taking p small enough will ensure that z € B(q;p) implies
F(z) € F(a) +eB. The upshot of all this, in view of (4.1), is that for all 4
large enough we have

2o (Ty) — 2,(0)
T,

€ F(a) +¢B.

Thus 0 € F(«) + eB. Since ¢ is arbitrary, 0 € F(«) as required.

2) Let a € L such that L(a) # 0, then there exists a sequence of loop
trajectories z,, : [0,7,] — IR™ at o and a sequence &, — 0 such that

L(a) <T, = L(a) + &,.

We extend the trajectory z, on [0, +oc[ and then by the compactness prop-
erty of trajectories there exists a trajectory Z : [0, +oo[— IR™ and a sub-
sequence (we eschew relabeling) x,, having the property that for any b > 0,
x,, converges uniformly to Z on [0,b]. The trajectory Z : [0, L(a)] — R"

is a loop trajectory at « since Z(0) = LHE z,(0) = « and Z(L(a)) =

E}I& 2n(Ty) = a. Then Z is a solution of P(«). Using the minimality of Z,

it is clear that this trajectory is a minimal loop trajectory at a. a0

Remark 4.3.2 When L(«) €]0, 00|, we have proved in the preceding propo-
sition that there erists a solution for the problem P(«) which is a minimal
loop trajectory at a. We show in Example 4.5.2 that this solution is not nec-
essarily unique and then we can find more than one minimal loop trajectory
at a point .

In the following proposition we show that L(-) is lower semicontinuous and
we give another characterizations for this function.

Proposition 4.3.3 We have the following statements:
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1. L is lower semicontinuous in IR".
2. If T(-,-) is continuous at (a, ) then L(-) is continuous at .

Jiminf [T(a, 5) +T(6,)).

4. For all « € R™ we have h(a,dpL(a)) < 0 and H(«, dpL(a)) > 0.

3. If L(«) €]0,4o00[ then L(a) =

Proof. 1) It is sufficient to show that epiL := {(a,7) € L xR :
r > L(a)} is closed. Let (ay, r,) be a sequence of epi L such that (a,,r,) —
(cr, 7). There are two cases:
Case 1: There exists a subsequence of «,, (we eschew relabeling) such that
L(a,) =0.
Then 0 € F(w,) for all n and this easily gives that 0 € F'(a). Therefore
r= lim r,> lim L(a,) =0=L(a).

n—-+oo n—-+oo

Case 2: There exists a subsequence of «;, (we do not relabel) such that
L(cn) #0.

Then there exists a sequence of minimal loop trajectories x, : [0, L(cy,)] —
IR" such that z,(0) = z,(L(ay,)) = a,. Since 1, > L(ay,) and r, — 7, we
can assume that the sequence L(qy,) converges. There are two cases:

Case 2.1: L(oy,) — 0.
Then using the same technique as in 1) of Proposition 4.3.1, we show that
0€ F(0) and then L(o) =0= lim L(oy,) < lim 7, =r7.

n—-+oo n—-+4oo

Case 2.2: L(ay,) — T > 0.
As above and by the compactness property of trajectories there exists a
loop trajectory z : [0,7] — IR™ such that z(0) = z(T) = «. Hence
L) <T= lim L(a,) < lim r,=r.

n—+0o0 n—+o0o

The result follows.

2) Let @ € IR™ and assume that 7T'(-,-) is continuous at («,«). By Propo-
sition 2.4.2, F' and —F are a-STLC, then R¢ NR® is open and L(a) = 0
(0 € F(a) since F is a-STLC). But R NR® C L then o €int £. Now, let
o, € L be a sequence such that o, —> «. There are two cases:

Case 1: There exits a subsequence o, such that L(a,, ) = 0 for all k.
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Then \ lilil L(oy,) = L(a) = 0.
—+00
Case 2: There exits a subsequence «y,, such that L(a,,) # 0 for all k.

By Proposition 4.3.1 there exists Z,,, a solution for the problem P(«,, ) which
is a minimal loop trajectory at «a,,. We take t,, €]0,L(a,,)| such that

| Zn, () — an, || < - Since Z,, is a minimal loop trajectory we have

L(ank) - T(ank’l‘nk( )) + T(xnk( nk) ank)’
then by the continuity of 7'(-,-) at (a, &) we get that

lim L(oy,,) =0=L(a).

k—+o00

In the two cases, we show that there exists a subsequence «,, of o, such
that lim L(ay,,) = L(a). The result follows.
k—r+o0

3) Let a € L such that L(«) # 0. It is easy to verify that for all g € IR™ we
have L(o) < T(ev, 8) + TS, ). Then L(a) < ﬂiimﬂinf [T(o, B) + T (B, )]
a —rQx

Since L(a) # 0, there exists a minimal loop trajectory Z : [0, L(a)] — IR™
at a. We take 5. = Z(T' —¢), then T (v, B:) + T (Be, ) = L(a) —e+e = L(w).
Therefore L(a) > ﬂ}éimﬂinf [T(a, B) + T (B, c)]. The result follows.

(&7 —rQ

4) By Proposition 0.3.6 it is sufficient to show that the systems (L, F) and
(L,—F) are weakly decreasing on IR". We begin showing that (L, F) is
weakly decreasing. Let o € £,® there exists two cases:

Case 1: L(a) = 0.

Then we consider the constant trajectory z(t) = « for all ¢ € [0, +oo[ * and
we get that L(z(t)) < L(«), for all ¢ € [0, +00].

Case 2: L(a) > 0.

Then we consider the solution Z : [0, L(«)] — IR™ of the problem P(«a) and
clearly we have L(z(t)) < L().

Therefore the system (L, F') is weakly decreasing and then by 1) the system
(L, —F) is also weakly decreasing. O

3The case o € L follows immediately.
4There exists a such trajectory since 0 € F(a).
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4. MINIMAL LOOP TRAJECTORIES IN CONTROL THEORY

4.4 Necessary and sufficient conditions

In this section we give a necessary and sufficient conditions for the existence
of minimal loop trajectories at a given point . We begin by the following
proposition which gives a necessary condition.

Proposition 4.4.1 Assume that there exists a minimal loop trajectory at
a € IR™ then there exist a constant M > 0 and two sequences o, and [3, such
that
o, — o, B, — a, (4.2)
and
M < T(a,ap) < +oo, M <T(B,,a) < +oo Vn. (4.3)

(This gives that T (o, -) and T(-, ) are not continuous at o).

Proof. Let a € IR" and assume that there exists a minimal loop tra-

1 1
jectory x : [0,7] — IR™ at a. We take for n > T On = z(T — ;) and

1
Bn = x(—). Hence
n

1
T(a,an) =T(Bn,) =T — e
2 T
Then for n > T and M = 3 we find the result. d

The following proposition gives a necessary and sufficient condition for the
existence of minimal loop trajectory at a point o which satisfies the condition

0¢ F(a).

Proposition 4.4.2 Let o € R* and assume that 0 ¢ F(«). Then the fol-
lowing statements are equivalent.

1. There exists a minimal loop trajectory at c.
2. liminf [T(a,B)+T(8,®)] < +o0.
Jiminf [T(a, 5)+T(5,0)

Proof. Follows from Propositions 4.3.1 and 4.3.3. 0
Clearly the discontinuity of functions T'(«, ) and 7'(-, @) at « is not a suffi-
cient condition for the existence of a minimal loop trajectories. A sufficient
condition for the existence of a constant M > 0 and sequences «,, and 3,
which satisfy (4.2) and (4.3) is the follows: 0 ¢ F(«) and F and —F are
a-LC. The following proposition shows that this condition is sufficient for
the existence of a minimal loop trajectory.
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4.4. NECESSARY AND SUFFICIENT CONDITIONS

Figure 4.2: Nontrivial loop trajectories vanishing at «

Proposition 4.4.3 Let o € R™ and assume that 0 & F(a). Assume further
that F' and —F are a-LC. Then there exists a minimal loop trajectory at .

Proof. Since F and —F are o-LC and by Remark 4.2.3 there exists a
nontrivial loop trajectory at a. Then ﬁiimﬁinf T(e, B) + T(B,a)] < +00.
o —rQ

The result follows form Proposition 4.4.2. d
We note that the condition

/B;gnﬂlgfm[T(a, B)+T(B,a)] < +oo, (4.4)

remains a necessary condition for the existence of a minimal loop trajectory
if we have 0 € F(«), but fails to be a sufficient condition, see the case
3) of Example 4.5.1. In Proposition 4.4.4 we show that if we add another
assumption for the condition (4.4) then we can affirm the existence of a
minimal loop trajectory at a point « which satisfies 0 € F(«).
Let z; : [0,7;] — IR™ be a sequence of nontrivial loop trajectories at a point
a and assume that the sequence 7T; converges to a 7' > 0. We extend x; to
a periodic trajectory on [0, +oo[ (period T;). If there exists a trajectory z of
F on [0,400[ such that x; converges uniformly to z on bounded interval and
z(t) = a for all t € [0, +oo[, then we say that the sequence x; vanishes at a,
see Figure 4.2.

Proposition 4.4.4 Let o« € R™ and assume that 0 € F(a). Assume further
that the following two hypotheses hold:

1. There 1s not a sequence of nontrivial loop trajectories at o which van-
ishes at o.
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4. MINIMAL LOOP TRAJECTORIES IN CONTROL THEORY

2. liminf [T(«,B)+T(8,a)] < +oc.
Jiminf [T(a,6) +T(5,0)
Then there exists a minimal loop trajectories at c.
Proof. For all § € IR™ we consider the following optimal control problem:

Minimize T > 0,

Q(B) { z(t) € F(z(t)) a.e. t € [0,T],
x(0) = 2(T) = and z(-) is nontrivial.

It is easy to prove that we have:

inf = liminf [T(B,8)+T(3,5),

inf Q(B) =, liminf [T'(5,5)+T(5,8)]

for all B € R®. Then we have that inf Q(a) < +oo. Hence there exists a
sequence z; : [0,7;] of nontrivial loop trajectory at o and a sequence &; > 0
such that ¢, — 0 and

inf Q(a) < T; < inf Q(a) + &;.

We extend z; to a periodic trajectory on [0,4o00| (period T;). Since T; is
bounded and by the compactness property of trajectories we can assume
that 7; — T > 0 and there exists a trajectory x of F' on [0, 4+o00[ such
that z; converges uniformly to x on bounded interval. Using our hypothesis
1), we have T > 0 and the trajectory z : [0,7] — IR™ is a nontrivial loop
trajectory at «. Since T' = inf Q(«) we get that z(-) is a solution of the
problem @Q(«). By the minimality of z(-), this trajectory is a minimal loop
trajectory at a. d

We recall that a trajectory z : [0, +00[—> IR™ is a semigeodesic from « iff
2(0) = o and T(z(s),z(t)) =t — s for all s <t € [0,+0o0[. In the following
theorem, we show that under some hypotheses, there exists a semigeodesic
or a minimal loop trajectory at a point «.

Theorem 4.4.5 Let a € IR™ and assume that we have the following hypothe-
ses:

1. There exist a constant M > 0 and a sequence o, such that o, — «
and M < T(a, o) < +00 Vn.

2. V(B,7) e RN(RE xR\ D, V(Bi,vi) € RN(RE x RY) \ D we have

[(Bisvi) — (B, = [T (Bi,vi) — T(8,7)]-
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Then one of the following statements is true:
1. 0 € F(a).
2. There exists a semigeodesic from a.

3. There exists a minimal loop trajectory at o

Proof. We consider the sequence z, : [0,7,] — IR™ such that z, is
the minimal trajectory between a and «, where T,, = T(a, o). We have
M < T,. There exist two cases:

Case 1: lim T, = +oo.

n—-+0o0o
As above there exist a trajectory T : [0, +oo[— IR™ and a subsequence of

Zn (we do not relabel) such that for every b > 0, x,, converges uniformly to
Z on [0, b]. There exist tow cases:

Case 1.1: There exists s €]0, +o00[ such that Z(s) = .
We claim that Z(t) = « for all ¢ € [0,4+00[. Indeed, assume that Z(t) # « for
t €]0, +oc[. There are two cases to consider:

Case 1.1.1:t < s.
Since T,, — +o00, there exists a ny such that t < s < T}, for n > ny. Then
T(z,(t), an) = T(xn(t), 2,(T,)) = T,, — t and since the sequence (z,(t), ay)
and (z(t),a) arein RN (R X RE)\ D (2(0) =, z(s) = and 0 < t < )
we get that

T(Z(t),a) = lim T(z,(t),,) = lim T, —t= +oc.

n—-+4o0o n—-+o0o

This gives a contradiction, since (Z(t),a) € R.

Case 1.1.2:t > s.
Since 1, — +o0, there exists a ng such that ¢ < s < T, for n > ny.
Then T(«, 2,(t)) = T(2,(0), 2,(t)) = t. In the other hand T'(z,(s), z,(t)) =
t — s. Since the sequences (o, z,(t)) and (z,(s),x,(t)), and (o, Z(t)) are in
RN (RE x RY) \ D we get that
T(a,Z(t)) = nﬂ)rgrle(a,xn(t)) =t
and
T(a,Z(t)) = lim T(x,(s),z,(t)) =t — s.

n—-+00
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And this gives a contradiction.
Then Z(t) = « for all ¢ € [0, +oo[. Therefore 0 € F(«).

Case 1.2: For all s €]0, +o0], z(s) # .

We show that Z is a semigeodesic form «. First, we claim that Z(s) # Z(t)
for all s <t €]0,+o00[. Indeed, assume that there exists s <t €]0, +00| such
that Z(s) = z(t). Since T,, — +o00, there exists a ng such that s <t < T,
for n > ng. Then T(a,z,(s)) = T(2,(0),z,(s)) = s and T(a, z,(t)) =
T(z,(0),z,(t)) = t. By our hypothesis 2) we find that s = t. Now let
s <t € [0,400[. Since T,, —> 400, there exists a ng such that s <t < T,
for n > ng. Then T (z,(s), x,(t)) = t—s and since the sequence (x,(s), z,(t))
and (z(s),z(t)) are in RN (RS x RY) \ D we get that

T(z(s),z(t)) = ngrgoo T(zn(s),xz,(t)) =t — s.
Then Z is a semigeodesic form a.
Case 2: lim T, # +oo0.
n—-+oo

Then there exits a subsequence (we do not relabel) of 7, such that 7,, —
T > M > 0. There exist a trajectory Z : [0, +00[— IR" and a subsequence
of z,, (we do not relabel) such that for every b > 0, z,, converges uniformly
to Z on [0,b]. First we have that Z : [0,7] — IR" is a loop trajectory at «

since Z(0) = o and Z(T') = grgrl zn(Th) = grg o, = a. There exist tow
n o n o0
cases:

Case 2.1: There exists s €]0, 7 such that z(s) = a.
Then we show as in Case 1.1 that Z(t) = aforall¢ € [0, 7] and then 0 € F(«).

Case 2.2: For all s €]0,T[ we have Z(s) # a.
Then we show as in Case 1.2 that T'(«, Z(t)) + T(Z(t), ) = T. This gives
using Remark 4.2.3 that z is a minimal loop trajectory at «. |

Remark 4.4.6

e In the preceding theorem, we can replace the function T(a,-) by T(-, «) but
in this case we obtain a semigeodesic from a for the dynamic —F.

o If we assume in Theorem 4.4.5 that the sequence T'(«, o) is bounded above
by some constant N > 0, then the conclusion of the theorem becomes: 0 €
F(«) or there exists a minimal loop trajectory at o.
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A sufficient condition for the existence of a constant M > 0 an a sequence
ay, such that a, — o and M < T'(a, o) < +o0 is the following: 0 ¢ F(«)
and —F' is a-LC. Then we have the following corollary.

Corollary 4.4.7 Let a € IR* and assume that we have the following hy-
potheses:

1. 0¢ F(a) and —F is a-LC.
2. V(B,7) e RN(RT xR\ D, V(Bi,vi) € RN(RYE xRE)\ D we have

[(Bis7i) — (B,7)] = [T(Bi,vi) — T(B,7)]-

Then one of the following statements is true:
1. There exists a semigeodesic from .

2. There exists a minimal loop trajectory at cr.

Remark 4.4.8 If we assume in the preceding corollary that T (v, -) is bounded
above near a then the conclusion of this corollary becomes that there exists a
minimal loop trajectory at c.

4.5 Examples
In this section we give some examples. We begin by the following example.
Example 4.5.1 For n = 2, we define F(z,y) := {(y,—z)u : v € U C R}

and we consider these three cases:

1
1. U = [5, 1]. Then for (a,b) € IR?\ {(0,0)} it is easy to see that every

tragectory from (a,b) is in the circle centered at 0 and passes through

(a,b). We have:

(a) ’Rgf’b) =R = {(z,y) : 22+ y* = a*+b*} and 'RS?’O) =R =
{(0,0)}.

b)) R= |J R xR

(a,b)eIR?
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For all (a,b) € R?\ {(0,0)}, all the hypotheses of Theorem 4.4.5 are
satisfied. Moreover (0,0) & F'(a,b) then by Remark 4.4.6 there exists a
minimal loop trajectory at (a,b). This trajectory is

(z(t),y(t)) = (acost + bsint, —asint + bcost), t € [0,2x]. (4.5)

The functions T((0,0),-) and T'(-, (0,0)) are discontinuous at (0,0) but
we can not find a minimal loop trajectory at (0,0). We calculate L(-)
and we find that £ = IR? and

2mif (a,0) # (0,0),
L(a,b) = { 0 if(a,b) =(0,0),

T

and then L(-) is discontinuous at (0,0). We remark that for (a,b) #
(0,0) there exists only one solution for P(«, ) which is the minimal
loop tragectory (4.5).

2. U =10,1]. In this case RS?”’), R and R remain as above but we find
that L(-) = 0 since 0 € F(-). For all (a,b) # (0,0) and by Proposition
4.4.4 there exists a minimal loop trajectory which is exactly (4.5).

3. U = [-1,1]. In this case, the sets ’Rgf’b), R and R remain as in
case 1). The function L(-) = 0 since 0 € F(-) but using Proposition
4.4.1 we can not find any minimal loop trajectory.

Example 4.5.2 We take n = 2 and we define the following two multifunc-
tions:

1. Fi(z,y) = B for all (z,y) € R
2. Fy(z,y) = {(1,0)} for all (z,y) € R

Now we consider the multifunction F defined by the following:

(,y)

o F(z,y) = Fi(z,y) for all (x,y) such that ||(z,y)| > 2.
(,9)
!

z,y) ={(2—=r)va+ (r = 1)v1 : v1 € Fi(z,y) and vy € Fy(x,y)} for
(x,y) such that 1 < ||(z,y)|| :==7r < 2.

It is easy to verify that we have:
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Figure 4.3: Example 4.5.2

o 0€ F(z,y) iff |(z,y)]| >

NNV

3
o 0 & mntF(z,y) ff Iz, y)l > 5.

Hence by Propositions 2.5.5, 4.53.1 and 4.4.1 we get that:

3

o L(z,y) =0 iff ||(z,y)]| > 5

e We can not find a minimal loop trajectory at a point (a,b) € R? which

3
satisfies ||(a,b)|| > 5

. . 3 . .
It is easily seen that for ||(a,b)| < 2 there exists a loop trajectory at (a,b),
see Figure 4.3. Then £ = IR? and by Proposition 4.5.1 there exists a minimal
3
loop trajectory at every point (a,b) which satisfies ||(a,b)|| < 7" For a point

(a,b) which satisfies ||(a,b)|| = =, there exist a several cases; for example we

can show using Proposition 4.4.4 that there exists a minimal loop trajectory
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3 3 3
at (5, 0) but no minimal loop trajectories at (0, 5) since F is (0, 5)—STLC.
3
The function L(-) is continuous on IR*\ {(z,y) : ||(z,v)| = 5} and have

3
a discontinuous points in the set {(z,y) : ||(z,y)|| = 5} For a point (a,0)

where a € [—1, 1], we can find two solutions for the problem P(a,0) and then
two minimal loop trajectories.
We note that for all (a,b) € R? we have:

o R =R =R?p
¢ R=IR?xIR?

and we can find a relation between L(-) and T(-,-). For example, for all
l(a,b)|| <1 we have:

L(a,b) =2v1 =024+ T((V1-102b),(—V1—0b%D)),

and this shows that L(-) does not depend on the variable a if ||(a,b)|| < 1.

5This gives that 0 € F(a) is not a necessary condition for a-LC.
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