
HAL Id: tel-00003985
https://theses.hal.science/tel-00003985v1

Submitted on 16 Dec 2003

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement Learning Using Neural Networks, with
Applications to Motor Control

Rémi Coulom

To cite this version:
Rémi Coulom. Reinforcement Learning Using Neural Networks, with Applications to Motor Control.
Other [cs.OH]. Institut National Polytechnique de Grenoble - INPG, 2002. English. �NNT : �. �tel-
00003985�

https://theses.hal.science/tel-00003985v1
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE
Noattribué par la bibliothèque

THÈSE

pour obtenir le grade de

DOCTEUR DE L’INPG

Spécialité : Sciences Cognitives

préparée au Laboratoire Leibniz-IMAG
dans le cadre de l’Ecole Doctorale Ingénierie pour le Vivant : Santé,

Cognition, Environnement

présentée et soutenue publiquement

par

M. Rémi Coulom

le 19 juin 2002

Titre :

Apprentissage par renforcement utilisant des réseaux
de neurones, avec des applications au contrôle moteur

Directeur de Thèse : M. Philippe Jorrand

JURY
M. Jean Della Dora Président
M. Kenji Doya Rapporteur
M. Manuel Samuelides Rapporteur
M. Stéphane Canu Rapporteur
M. Philippe Jorrand Directeur de thèse
Mme. Mirta B. Gordon Examinateur

Remerciements

Je remercie Monsieur Philippe Jorrand pour avoir été mon directeur de
thèse. Je remercie les membres du jury, Mme Mirta Gordon, Messieurs Kenji
Doya, Manuel Samuelides, Stéphane Canu et Jean Della Dora pour avoir
accepté d’évaluer mon travail, et pour leurs remarques pertinentes qui ont
permis d’améliorer ce texte. Je remercie les chercheurs du laboratoire Leibniz
pour leur accueil, en particulier son directeur, Monsieur Nicolas Balacheff, et
les membres des équipes “Apprentissage et Cognition” et “Réseaux de Neuro-
nes”, Messieurs Gilles Bisson, Daniel Memmi et Bernard Amy, ainsi que tous
les étudiants avec lesquels j’ai travaillé. Je remercie enfin le responsable de la
Formation Doctorale en Sciences Cognitives, Monsieur Pierre Escudier, pour
ses conseils.

Table des matières

Résumé (Summary in French) 9
Introduction . 9

Contexte . 9
Apprentissage par renforcement et réseaux de neurones 11
Résumé et contributions . 12
Plan de la thèse . 13

Théorie . 14
Expériences . 15
Conclusion . 17

Introduction 27

Introduction 27
Background . 27
Reinforcement Learning using Neural Networks 28
Summary and Contributions . 30
Outline . 31

I Theory 33

1 Dynamic Programming 35
1.1 Discrete Problems . 35

1.1.1 Finite Discrete Deterministic Decision Processes 35
1.1.2 Example . 37
1.1.3 Value Iteration . 37
1.1.4 Policy Evaluation . 41
1.1.5 Policy Iteration . 41

1.2 Continuous Problems . 42
1.2.1 Problem Definition . 42

5

TABLE DES MATIÈRES

1.2.2 Example . 43
1.2.3 Problem Discretization 45
1.2.4 Pendulum Swing-Up 50
1.2.5 The Curse of Dimensionality 51

2 Artificial Neural Networks 53
2.1 Function Approximators . 53

2.1.1 Definition . 53
2.1.2 Generalization . 54
2.1.3 Learning . 55

2.2 Gradient Descent . 56
2.2.1 Steepest Descent . 56
2.2.2 Efficient Algorithms 57
2.2.3 Batch vs. Incremental Learning 59

2.3 Some Approximation Schemes 62
2.3.1 Linear Function Approximators 62
2.3.2 Feedforward Neural Networks 64

3 Continuous Neuro-Dynamic Programming 67
3.1 Value Iteration . 67

3.1.1 Value-Gradient Algorithms 67
3.1.2 Residual-Gradient Algorithms 69
3.1.3 Continuous Residual-Gradient Algorithms 69

3.2 Temporal Difference Methods 72
3.2.1 Discrete TD(λ) . 72
3.2.2 TD(λ) with Function Approximators 75
3.2.3 Continuous TD(λ) . 76
3.2.4 Back to Grid-Based Estimators 78

3.3 Summary . 81

4 Continuous TD(λ) in Practice 83
4.1 Finding the Greedy Control 83
4.2 Numerical Integration Method 85

4.2.1 Dealing with Discontinuous Control 85
4.2.2 Integrating Variables Separately 91
4.2.3 State Discontinuities 91
4.2.4 Summary . 93

4.3 Efficient Gradient Descent . 93
4.3.1 Principle . 94
4.3.2 Algorithm . 95
4.3.3 Results . 95

6

TABLE DES MATIÈRES

4.3.4 Comparison with Second-Order Methods 96
4.3.5 Summary . 96

II Experiments 97

5 Classical Problems 99
5.1 Pendulum Swing-up . 99
5.2 Cart-Pole Swing-up . 102
5.3 Acrobot . 105
5.4 Summary . 106

6 Robot Auto Racing Simulator 109
6.1 Problem Description . 109

6.1.1 Model . 109
6.1.2 Techniques Used by Existing Drivers 110

6.2 Direct Application of TD(λ) 111
6.3 Using Features to Improve Learning 114
6.4 Conclusion . 115

7 Swimmers 117
7.1 Problem Description . 117
7.2 Experiment Results . 118
7.3 Summary . 118

Conclusion 127

Conclusion 127

Appendices 131

A Backpropagation 131
A.1 Notations . 131

A.1.1 Feedforward Neural Networks 131
A.1.2 The ∂∗ Notation . 132

A.2 Computing ∂E/∂∗ ~w . 133
A.3 Computing ∂~y/∂∗~x . 133
A.4 Differential Backpropagation 134

7

TABLE DES MATIÈRES

B Optimal-Control Problems 137
B.1 Pendulum . 137

B.1.1 Variables and Parameters 137
B.1.2 System Dynamics . 138
B.1.3 Reward . 138
B.1.4 Numerical Values . 138

B.2 Acrobot . 138
B.2.1 Variables and Parameters 138
B.2.2 System Dynamics . 139
B.2.3 Reward . 140
B.2.4 Numerical Values . 140

B.3 Cart-Pole . 140
B.3.1 Variables and Parameters 140
B.3.2 System Dynamics . 141
B.3.3 Reward . 143
B.3.4 Numerical Values . 143

B.4 Swimmer . 143
B.4.1 Variables and Parameters 143
B.4.2 Model of Viscous Friction 144
B.4.3 System Dynamics . 145
B.4.4 Reward . 145
B.4.5 Numerical Values . 145

C The K1999 Path-Optimization Algorithm 147
C.1 Basic Principle . 147

C.1.1 Path . 147
C.1.2 Speed Profile . 148

C.2 Some Refinements . 149
C.2.1 Converging Faster . 149
C.2.2 Security Margins . 149
C.2.3 Non-linear Variation of Curvature 150
C.2.4 Inflections . 150
C.2.5 Further Improvements by Gradient Descent 150

C.3 Improvements Made in the 2001 Season 152
C.3.1 Better Variation of Curvature 152
C.3.2 Better Gradient Descent Algorithm 155
C.3.3 Other Improvements 158

8

Résumé (Summary in French)

Ce résumé est composé d’une traduction de l’introduction et de la conclu-
sion de la thèse, ainsi que d’une synthèse des résultats présentés dans le dé-
veloppement. La traduction est assez grossière, et les lecteurs anglophones
sont vivement encouragés à lire la version originale.

Introduction

Construire des contrôleurs automatiques pour des robots ou des méca-
nismes de toutes sortes a toujours représenté un grand défi pour les scienti-
fiques et les ingénieurs. Les performances des animaux dans les tâches mo-
trices les plus simples, telles que la marche ou la natation, s’avèrent extrêment
difficiles à reproduire dans des systèmes artificiels, qu’ils soient simulés ou
réels. Cette thèse explore comment des techniques inspirées par la Nature, les
réseaux de neurones artificiels et l’apprentissage par renforcement, peuvent
aider à résoudre de tels problèmes.

Contexte

Trouver des actions optimales pour contrôler le comportement d’un sys-
tème dynamique est crucial dans de nombreuses applications, telles que la
robotique, les procédés industriels, ou le pilotage de véhicules spatiaux. Des
efforts de recherche de grande ampleur ont été produits pour traiter les ques-
tions théoriques soulevées par ces problèmes, et pour fournir des méthodes
pratiques permettant de construire des contrôleurs efficaces.

L’approche classique de la commande optimale numérique consiste à cal-
culer une trajectoire optimale en premier. Ensuite, un contrôleur peut être
construit pour suivre cette trajectoire. Ce type de méthode est souvent uti-
lisé dans l’astronautique, ou pour l’animation de personnages artificiels dans
des films. Les algorithmes modernes peuvent résoudre des problèmes très
complexes, tels que la démarche simulée optimale de Hardt et al [30].

9

RÉSUMÉ (SUMMARY IN FRENCH)

Bien que ces méthodes peuvent traiter avec précision des systèmes très
complexes, ils ont des limitations. En particulier, calculer une trajectoire
optimale est souvent trop coûteux pour être fait en ligne. Ce n’est pas un
problème pour les sondes spatiales ou l’animation, car connaître une seule
trajectoire optimale en avance suffit. Dans d’autres situations, cependant, la
dynamique du système peut ne pas être complètement prévisible et il peut
être nécessaire de trouver de nouvelles actions optimales rapidement. Par
exemple, si un robot marcheur trébuche sur un obstacle imprévu, il doit
réagir rapidement pour retrouver son équilibre.

Pour traiter ce problème, d’autres méthodes ont été mises au point. Elles
permettent de construire des contrôleurs qui produisent des actions optimales
quelle que soit la situation, pas seulement dans le voisinage d’une trajectoire
pré-calculée. Bien sûr, c’est une tâche beaucoup plus difficile que trouver une
seule trajectoire optimale, et donc, ces techniques ont des performances qui,
en général, sont inférieures à celles des méthodes classiques de la commande
optimale lorsqu’elles sont appliquées à des problèmes où les deux peuvent
être utilisées.

Une première possibilité consiste à utiliser un réseau de neurones (ou
n’importe quel type d’approximateur de fonctions) avec un algorithme d’ap-
prentissage supervisé pour généraliser la commande à partir d’un ensemble
de trajectoires. Ces trajectoires peuvent être obtenues en enregistrant les ac-
tions d’experts humains, ou en les générant avec des méthodes de commande
optimale numérique. Cette dernière technique est utilisée dans l’algorithme
d’évitement d’obstacles mobiles de Lachner et al. [35], par exemple.

Une autre solution consiste à chercher directement dans un ensemble de
contrôleurs avec un algorithme d’optimization. Van de Panne [50] a combiné
une recherche stochastique avec une descente de gradient pour optimiser des
contrôleurs. Les algorithmes génétiques sont aussi bien adaptés pour effec-
tuer cette optimisation, car l’espace des contrôleurs a une structure complexe.
Sims [63, 62] a utilisé cette technique pour faire évoluer des créatures vir-
tuelles très spectaculaires qui marchent, combattent ou suivent des sources
de lumière. De nombreux autres travaux de recherche ont obtenus des contrô-
leurs grâce aux algorithmes génétiques, comme, par exemple ceux de Meyer
et al. [38].

Enfin, une large famille de techniques pour construire de tels contrôleurs
est basée sur les principes de la programmation dynamique, qui ont été in-
troduits par Bellman dans les premiers jours de la théorie du contrôle [13].
En particulier, la théorie de l’apprentissage par renforcement (ou program-
mation neuro-dynamique, qui est souvent considéré comme un synonyme) a
été appliquée avec succès à un grande variété de problèmes de commande.
C’est cette approche qui sera développée dans cette thèse.

10

INTRODUCTION

Apprentissage par renforcement et réseaux de neurones

L’apprentissage par renforcement, c’est apprendre à agir par essai et er-
reur. Dans ce paradigme, un agent peut percevoir sont état et effectuer des
actions. Après chaque action, une récompense numérique est donnée. Le but
de l’agent est de maximiser la récompense totale qu’il reçoit au cours du
temps.

Une grande variété d’algorithmes ont été proposés, qui selectionnent les
actions de façon à explorer l’environnement et à graduellement construire
une stratégie qui tend à obtenir une récompense cumulée maximale [67, 33].
Ces algorithmes ont été appliqués avec succès à des problèmes complexes,
tels que les jeux de plateau [69], l’ordonnancement de tâches [80], le contrôle
d’ascenceurs [20] et, bien sûr, des tâches de contrôle moteur, simulées [66, 24]
ou réelles [41, 5].

Model-based et model-free

Ces algorithmes d’apprentissage par renforcement peuvent être divisés
en deux catégories : les algorithmes dits model-based (ou indirects), qui uti-
lisent une estimation de la dynamique du système, et les algorithmes dits
model-free (ou directs), qui n’en utilisent pas. La supériorité d’une approche
sur l’autre n’est pas claire, et dépend beaucoup du problème particulier à ré-
soudre. Les avantages principaux apportés par un modèle est que l’expérience
réelle peut être complémentée par de l’expérience simulée («imaginaire»), et
que connaître la valeur des états suffit pour trouver le contrôle optimal. Les
inconvénients les plus importants des algorithmes model-based est qu’ils sont
plus complexes (car il faut mettre en œuvre un mécanisme pour estimer le
modèle), et que l’expérience simulée produite par le modèle peut ne pas être
fidèle à la réalité (ce qui peut induire en erreur le processus d’apprentissage).

Bien que la supériorité d’une approche sur l’autre ne soit pas complè-
tement évidente, certains résultats de la recherche tendent à indiquer que
l’apprentissage par renforcement model-based peut résoudre des problèmes
de contrôle moteur de manière plus efficace. Cela a été montré dans des simu-
lations [5, 24] et aussi dans des expériences avec des robots réels. Morimoto
et Doya [42] ont combiné l’expérience simulée avec l’expérience réelle pour
apprendre à un robot à se mettre debout avec l’algorithme du Q-learning.
Schaal et Atkeson ont aussi utilisé avec succès l’apprentissage par renforce-
ment model-base dans leurs expériences de robot jongleur [59].

11

RÉSUMÉ (SUMMARY IN FRENCH)

Réseaux de neurones

Quasiment tous les algorithmes d’apprentissage par renforcement font
appel à l’estimation de «fonctions valeur» qui indiquent à quel point il est
bon d’être dans un état donné (en termes de récompense totale attendue dans
le long terme), ou à quel point il est bon d’effectuer une action donnée dans
un état donné. La façon la plus élémentaire de construire cette fonction valeur
consiste à mettre à jour une table qui contient une valeur pour chaque état
(ou chaque paire état-action), mais cette approche ne peut pas fonctionner
pour des problèmes à grande échelle. Pour pouvoir traiter des tâches qui ont
un très grand nombre d’états, il est nécessaire de faire appel aux capacités
de généralisation d’approximateurs de fonctions.

Les réseaux de neurones feedforward sont un cas particulier de tels ap-
proximateurs de fonctions, qui peuvent être utilisés en combinaison avec l’ap-
prentissage par renforcement. Le succès le plus spectaculaire de cette tech-
nique est probablement le joueur de backgammon de Tesauro [69], qui a réussi
à atteindre le niveau des maîtres humains après des mois de jeu contre lui-
même. Dans le jeu de backgammon, le nombre estimé de positions possibles
est de l’ordre de 1020. Il est évident qu’il est impossible de stocker une table
de valeurs sur un tel nombre d’états possibles.

Résumé et contributions

Le problème

L’objectif des travaux présentés dans cette thèse est de trouver des mé-
thodes efficaces pour construire des contrôleurs pour des tâches de contrôle
moteur simulées. Le fait de travailler sur des simulations implique qu’un mo-
dèle exact du système à contrôler est connu. De façon à ne pas imposer des
contraintes artificielles, on supposera que les algorithmes d’apprentissage ont
accès à ce modèle. Bien sûr, cette supposition est une limitation importante,
mais elle laisse malgré tout de nombreux problèmes difficiles à résoudre, et
les progrès effectués dans ce cadre limité peuvent être transposés dans le cas
général où un modèle doit être appris.

L’approche

La technique employée pour aborder ce problème est l’algorithme TD(λ)
continu de Doya [23]. Il s’agit d’une formulation continue du TD(λ) classique
de Sutton [65] qui est bien adaptée aux problèmes de contrôle moteur. Son
efficacité a été démontrée par l’apprentissage du balancement d’une tige en
rotation montée sur un chariot mobile [24].

12

INTRODUCTION

Dans de nombreux travaux d’apprentissage par renforcement appliqué au
contrôle moteur, c’est un approximateur de fonctions linéaire qui est uti-
lisé pour approximer la fonction valeur. Cette technique d’approximation a
de nombreuses propriétés intéressantes, mais sa capacité à traiter un grand
nombre de variables d’état indépendantes est assez limitée.

L’originalité principale de l’approche suivie dans cette thèse est que la
fonction valeur est estimée avec des réseaux de neurones feedforward au lieu
d’approximateurs de fonction linéaires. La non-linéarité de ces réseaux de
neurones les rend difficiles à maîtriser, mais leurs excellentes capacités de
généralisation dans des espaces d’entrée en dimension élevée leur permet de
résoudre des problèmes dont la complexité est supérieure de plusieurs ordres
de grandeur à ce que peut traiter un approximateur de fonctions linéaire.

Contributions

Ce travail explore les problèmes numériques qui doivent être résolus de
façon à améliorer l’efficacité de l’algorithme TD(λ) continu lorsqu’il est utilisé
en association avec des réseaux de neurones feedforward. Les contributions
principales qu’il apporte sont :

– Une méthode pour traiter les discontinuités de la commande. Dans de
nombreux problèmes, la commande est discontinue, ce qui rend diffi-
cile l’application de méthodes efficaces d’intégration numérique. Nous
montrons que la commande de Filippov peut être obtenue en utilisant
des informations de second ordre sur la fonction valeur.

– Une méthode pour traiter les discontinuités de l’état. Elle est nécessaire
pour pouvoir appliquer l’algorithme TD(λ) continu à des problèmes
avec des chocs ou des capteurs discontinus.

– L’algorithme Vario-η [47] est proposé comme une méthode efficace pour
effectuer la descente de gradient dans l’apprentissage par renforcement.

– De nombreux résultats expérimentaux indiquent clairement le poten-
tiel énorme de l’utilisation de réseaux de neurones feedforward dans
les algorithmes d’apprentissage par renforcement appliqués au contrôle
moteur. En particulier, un nageur articulé complexe, possédant 12 va-
riables d’état indépendantes et 4 variables de contrôle a appris à nager
grâce aux réseaux de neurones feedforward.

Plan de la thèse

– Partie I : Théorie
– Chapitre 1 : La Programmation dynamique
– Chapitre 2 : Les réseaux de neurones

13

RÉSUMÉ (SUMMARY IN FRENCH)

V

+1

−1

θ

−π

+π

θ̇

+10

−10

Fig. 1 – Fonction valeur pour le problème du pendule obtenue par program-
mation dynamique sur une grille de 1600× 1600.

– Chapitre 3 : La Programmation neuro-dynamique
– Chapitre 4 : Le TD(λ) en pratique

– Partie II : Expériences
– Chapitre 5 : Les Problèmes classiques
– Chapitre 6 : Robot Auto Racing Simulator
– Chapitre 7 : Les Nageurs

Théorie

Programmation dynamique

La programmation dynamique a été introduite par Bellman dans les an-
nées 50 [13] et est la base théorique des algorithmes d’apprentissage par ren-
forcement. La grosse limitation de la programmation dynamique est qu’elle
requiert une discrétisation de l’espace d’état, ce qui n’est pas raisonablement
envisageable pour des problèmes en dimension supérieure à 6, du fait du coût
exponentiel de la discrétisation avec la dimension de l’espace d’état. La fi-
gure 1 montre la fonction valeur obtenue par programmation dynamique sur
le problème du pendule simple (voir Appendice B).

14

EXPÉRIENCES

Réseaux de neurones

Les réseaux de neurones sont des approximateurs de fonctions dont les
capacités de généralisation vont permettre de résoudre les problèmes d’ex-
plosion combinatoire.

Programmation neuro-dynamique

La programmation neuro-dynamique consiste à combiner les techniques
de réseaux de neurones avec la programmation dynamique. Les algorithmes
de différences temporelles, et en particulier, le TD(λ) continu inventé par
Doya [24] sont particulièrement bien adaptés à la résolution de problèmes de
contrôle moteur.

Le TD(λ) dans la pratique

Dans ce chapitre sont présentées des techniques pour permettre une uti-
lisation efficace de l’algorithme TD(λ) avec des réseaux de neurones. Il s’agit
des contributions théoriques les plus importantes de ce travail.

Expériences

Problèmes classiques

Dans ce chapitre sont présentées des expériences sur les problèmes clas-
siques (pendule simple, tige-chariot et acrobot). Les figures 2 et 3 montrent
les résultats obtenus avec un approximateur de fonctions linéaire et un réseau
de neurones feedforward. Bien qu’il possède moins de paramètres, le réseau
feedforward permet d’obtenir une approximation de la fonction valeur qui
est beaucoup plus précise.

Robot Auto Racing Simulator

Le Robot Auto Racing Simulator est un simulateur de voiture de course
où l’objectif est de construire un contrôleur pour conduire une voiture. La
figure 4 montre les résultats obtenus sur un petit circuit.

Les Nageurs

Les nageurs sont formés de segments articulés, et plongés dans un liquide
visqueux. L’objectif est de trouver une loi de commande leur permettant de
nager dans une direction donnée. C’est un problème dont la dimensionalité

15

RÉSUMÉ (SUMMARY IN FRENCH)

V

+1

−1

θ

−π

+π

θ̇

+10

−10

Fig. 2 – Fonction valeur obtenue avec un réseau gaussien normalisé (similaire
à ceux utilisés dans les expériences de Doya [24])

V

+1

−1

θ

−π

+π

θ̇

+10

−10

Fig. 3 – Fonction valeur apprise par un réseau à 12 neurones

16

CONCLUSION

b b b b b b b b b
b

b
b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

bbb
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b
b

b

b

b

b

b

b
b

b

Fig. 4 – Une trajectoire obtenue par la voiture de course avec un réseaux de
neurones à 30 neurones.

dépasse largement celle des problèmes classiquement traités dans la littéra-
ture sur l’apprentissage par renforcement. Les figures 5, 6, 7 and 8 montrent
les résultats obtenus pour des nageurs à 3, 4 et 5 segements

Conclusion

Dans cette thèse, nous avons présenté une étude de l’apprentissage par
renforcement utilisant des réseaux de neurones. Les techniques classiques de
la programmation dynamique, des réseaux de neurones et de la programma-
tion neuro-dynamique continue ont été présentées, et des perfectionnements
de ces méthodes ont été proposées. Enfin, ces algorithmes ont été appliqués
avec succès à des problèmes difficiles de contrôle moteur.

De nombreux résultats originaux ont été présentés dans ce mémore : la
notation ∂∗ et l’algorithme de rétropropagation différentielle (Appendice A),
l’algorithme d’optimization de trajectoires K1999 (Appendice C), et l’équa-
tion du second ordre pour les méthodes aux différences finies (1.2.6). En plus
de ces résultats, les contributions originales principales de ce travail sont les
méthodes d’intégration numérique pour gérer les discontinuités des états et
des actions dans le TD(λ), une technique de descente de gradient simple
et efficace pour les réseaux de neurones feedforward, et de nombreux résul-

17

RÉSUMÉ (SUMMARY IN FRENCH)

Fig. 5 – Un nageur à 3 segments qui utilise un réseau à 30 neurones. Dans
les 4 premières lignes de cette animation, la direction cible est vers la droite.
Dans les 8 dernières, elle est inversée vers la gauche. Le nageur est dessiné
toutes les 0.1 secondes.

18

CONCLUSION

Fig. 6 – Un nageur à 4 segments qui utilise un réseau à 30 neurones. Dans
les 7 premières lignes de cette animation, la direction cible est vers la droite.
Dans les 3 dernières, elle est inversée vers la gauche. Le nageur est dessiné
toutes les 0.2 secondes.

19

RÉSUMÉ (SUMMARY IN FRENCH)

Fig. 7 – Un nageur à 4 segments qui utilise un réseau à 60 neurones. Dans
les 4 premières lignes de cette animation, la direction cible est vers la droite.
Dans les 4 dernières, elle est inversée vers la gauche. Le nageur est dessiné
toutes les 0.1 secondes.

20

CONCLUSION

Fig. 8 – Un nageur à 5 segments qui utilise un réseau à 60 neurones. Dans
les 4 premières lignes de cette animation, la direction cible est vers la droite.
Dans les 8 dernières, elle est inversée vers la gauche. Le nageur est dessiné
toutes les 0.1 secondes.

21

RÉSUMÉ (SUMMARY IN FRENCH)

tats expérimentaux originaux sur une grand variété de tâches motrices. La
contribution la plus significative est probablement le succès des expériences
avec les nageurs (Chapitre 7), qui montre que combiner l’apprentissage par
renforcement continu basé sur un modèle avec des réseaux de neurones feed-
forward peut traiter des problèmes de contrôle moteur qui sont beaucoup plus
complexes que ceux habituellement résolus avec des méthodes similaires.

Chacune de ces contributions ouvre aussi des questions et des directions
pour des travaux futurs :

– La méthode d’intégration numérique pourrait certainement être amé-
liorée de manière significative. En particulier, l’idée d’utiliser l’infor-
mation du second ordre sur la fonction valeur pour estimer le contrôle
de Filippov pourrait être étendue aux espaces de contrôle à plus d’une
dimension.

– Il faudrait comparer la méthode de descente de gradient efficace utilisée
dans cette thèse aux méthodes classiques du second ordre dans des
tâches d’apprentissage supervisé ou par renforcement.

– De nombreuses expériences nouvelles pourraient être réalisées avec les
nageurs. En particulier, il faudrait étudier les raisons des instabilités
observées, et des nageurs plus gros pourraient apprendre à nager. Au-
delà des nageurs, la méthode utilisée pourrait aussi servir à construire
des contrôleurs pour des problèmes beaucoup plus complexes.

En plus de ces extensions directes, une autres question très importante à
explorer est la possibilité d’appliquer les réseaux de neurones feedforward hors
du cadre restreint du contrôle moteur simulé basé sur la connaissance d’un
modèle. En particulier, les expériences indiquent que les réseaux de neurones
feedforward demandent beaucoup plus d’épisodes que les approximateurs de
fonction linéaires. Cette demande pourrait être un obstacle majeur dans des
situations où les données d’apprentissage sont coûteuses à obtenir, ce qui est
le cas quand les expériences ont lieu en temps réel (comme dans les expé-
riences de robotique), où quand la sélection des actions implique beaucoup
de calculs (comme dans le jeu d’échecs [12]). Ce n’était pas le cas dans les
expériences des nageurs, ou avec le joueur de Backgammon de Tesauro, car il
était possible de produire, sans coût, autant de données d’apprentissage que
nécessaire.

Le problème clé, ici, est la localité. Très souvent, les approximateurs de
fonction linéaires sont préférés, parce que leur bonne localité leur permet
de faire de l’apprentissage incrémental efficacement, alors que les réseaux
de neurones feedforward ont tendance à désapprendre l’expérience passée
quand de nouvelles données d’apprentissage sont traitées. Cependant, Les
performances des nageurs obtenues dans cette thèse indiquent clairement que
les réseaux de neurones feedforward peuvent résoudre des problèmes qui sont

22

CONCLUSION

plus complexes que ce que les approximateurs de fonctions linéaires peuvent
traiter. Il serait donc naturel d’essayer de combiner les qualités de ces deux
schémas d’approximation.

Créer un approximateur de fonction qui aurait à la fois la localité des
approximateurs de fonctions linéaires, et les capacités de généralisation des
réseaux de neurones feedforward semble très difficile. Weaver et al. [77] ont
proposé un algorithme d’apprentissage spécial qui permet d’éviter le désap-
prentissage. Son efficacité dans l’apprentissage par renforcement en dimen-
sion élevée reste à démontrer, mais cela pourrait être une direction de re-
cherche intéressante.

Une autre possibilité pour faire un meilleur usage de données d’appren-
tissage peu abondantes consisterait à utiliser, en complément de l’algorithme
d’apprentissage par renforcement, une forme de mémoire à long terme qui
stocke ces données. Après un certain temps, l’algorithme d’apprentissage
pourrait rappeler ces données stockées pour vérifier qu’elles n’ont pas été
oubliées par le réseau de neurones feedforward. Une difficulté majeure de
cette approche est qu’elle demanderait un sorte de TD(λ) hors-stratégie, car
l’algorithme d’apprentissage observerait des trajectoires qui ont été générées
avec une fonction valeur différente.

23

Introduction

25

Introduction

Building automatic controllers for robots or mechanisms of all kinds has been
a great challenge for scientists and engineers, ever since the early days of the
computer era. The performance of animals in the simplest motor tasks, such
as walking or swimming, turns out to be extremely difficult to reproduce in
artificial mechanical devices, simulated or real. This thesis is an investigation
of how some techniques inspired by Nature—artificial neural networks and
reinforcement learning—can help to solve such problems.

Background

Finding optimal actions to control the behavior of a dynamical system is cru-
cial in many important applications, such as robotics, industrial processes,
or spacecraft flying. Some major research efforts have been conducted to ad-
dress the theoretical issues raised by these problems, and to provide practical
methods to build efficient controllers.

The classical approach of numerical optimal control consists in comput-
ing an optimal trajectory first. Then, a controller can be built to track this
trajectory. This kind of method is often used in astronautics, or for the
animation of artificial movie characters. Modern algorithms can solve com-
plex problems such as, for instance, Hardt et al.’s optimal simulated human
gait [30].

Although these methods can deal accurately with very complex systems,
they have some limitations. In particular, computing an optimal trajectory
is often too costly to be performed online. This is not a problem for space
probes or animation, because knowing one single optimal trajectory in ad-
vance is enough. In some other situations, however, the dynamics of the
system might not be completely predictable, and it might be necessary to
find new optimal actions quickly. For instance, if a walking robot stumbles
over an unforeseen obstacle, it must react rapidly to recover its balance.

In order to deal with this problem, some other methods have been de-
signed. They allow to build controllers that produce optimal actions in any

27

INTRODUCTION

situation, not only in the neighborhood of a pre-computed optimal trajectory.
Of course, this is a much more difficult task than finding one single path, so
these techniques usually do not perform as well as classical numerical optimal
control on applications where both can be used.

A first possibility consists in using a neural network (or any kind of
function approximator) with a supervised learning algorithm to generalize
controls from a set of trajectories. These trajectories can be obtained by
recording actions of human “experts” or by generating them with methods of
numerical optimal control. The latter technique is used by Lachner et al.’s
collision-avoidance algorithm [35], for instance.

Another solution consists in directly searching a set of controllers with
an optimization algorithm. Van de Panne [50] combined stochastic search
and gradient descent to optimize controllers. Genetic algorithms are also
well suited to perform this optimization, because the space that is searched
often has a complex structure. Sims [63, 62] used this technique to evolve
very spectacular virtual creatures that can walk, swim, fight or follow a light
source. Many other research works produced controllers thanks to genetic
algorithms, such as, for instance Meyer et al ’s [38].

Lastly, a wide family of techniques to build such controllers is based on the
principles of dynamic programming, which were introduced by Bellman in the
early days of control theory [13]. In particular, the theory of reinforcement
learning (or neuro-dynamic programming, which is often considered as a
synonym) has been successfully applied to a large variety of control problems.
It is this approach that will be developed in this thesis.

Reinforcement Learning using Neural Networks

Reinforcement learning is learning to act by trial and error. In this paradigm,
an agent can perceive its state and perform actions. After each action, a
numerical reward is given. The goal of the agent is to maximize the total
reward it receives over time.

A large variety of algorithms have been proposed that select actions in
order to explore the environment, and gradually build a strategy that tends to
obtain a maximum reward [67, 33]. These algorithms have been successfully
applied to complex problems such as board games [69], job-shop scheduling
[80], elevator dispatching [20], and, of course, motor control tasks, either
simulated [66, 24], or real [41, 59].

28

REINFORCEMENT LEARNING USING NEURAL NETWORKS

Model-Based versus Model-Free

These reinforcement learning algorithms can be divided into two categories:
model-based (or indirect) algorithms, which use an estimation of the system’s
dynamics, and model-free (or direct) algorithms, which do not. Whether one
approach is better than the other is not clear, and depends a lot on the spe-
cific problem to be solved. The main advantages provided by a model is that
actual experience can be complemented by simulated (“imaginary”) experi-
ence, and that the knowledge of state values is enough to find the optimal
control. The main drawbacks of model-based algorithms are that they are
more complex (because a mechanism to estimate the model is required), and
simulated experience produced by the model might not be accurate (which
may mislead the learning process).

Although it is not obvious which is the best approach, some research
results tend to indicate that model-based reinforcement learning can solve
motor-control problems more efficiently. This has been shown in simulations
[5, 24] and also in experiments with real robots. Morimoto and Doya com-
bined simulated experience with real experience to teach a robot to stand
up [42]. Schaal and Atkeson also used model-based reinforcement learning
in their robot-juggling experiments [59].

Neural Networks

Almost all reinforcement learning algorithms involve estimating value func-
tions that indicate how good it is to be in a given state (in terms of total
expected reward in the long term), or how good it is to perform a given action
in a given state. The most basic way to build this value function consists in
updating a table that contains a value for each state (or each state-action
pair), but this approach is not practical for large scale problems. In order to
deal with tasks that have a very large number of states, it is necessary to use
the generalization capabilities of function approximators.

Feedforward neural networks are a particular case of such function ap-
proximators that can be used in combination with reinforcement learning.
The most spectacular success of this technique is probably Tesauro’s back-
gammon player [69], which managed to reach the level of human masters
after months of self-play. In backgammon, the estimated number of possible
positions is about 1020. Of course, a value function over such a number of
states cannot be stored in a lookup-table.

29

INTRODUCTION

Summary and Contributions

Problem

The aim of the research reported in this dissertation is to find efficient meth-
ods to build controllers for simulated motor control tasks. Simulation means
that an exact model of the system to be controlled is available. In order
to avoid imposing artificial constraints, learning algorithms will be supposed
to have access to this model. Of course, this assumption is an important
limitation, but it still provides a lot of challenges, and progress made within
this limited framework can be transposed to the more general case where a
model has to be learnt.

Approach

The technique used to tackle this problem is Doya’s continuous TD(λ) rein-
forcement learning algorithm [23]. It is a continuous formulation of Sutton’s
classical discrete TD(λ) [65] that is well adapted to motor control problems.
Its efficiency was demonstrated by successfully learning to swing up a rotat-
ing pole mounted on a moving cart [24].

In many of the reinforcement learning experiments in the domain of motor
control, a linear function approximator has been used to approximate the
value function. This approximation scheme has many interesting properties,
but its ability to deal with a large number of independent state variables is
not very good.

The main originality of the approach followed in this thesis is that the
value function is estimated with feedforward neural networks instead of linear
function approximators. The nonlinearity of these neural networks makes
them difficult to harness, but their excellent ability to generalize in high-
dimensional input spaces might allow them to solve problems that are orders
of magnitude more complex than what linear function approximators can
handle.

Contributions

This work explores the numerical issues that have to be solved in order to
improve the efficiency of the continuous TD(λ) algorithm with feedforward
neural networks. Some of its main contributions are:

• A method to deal with discontinuous control. In many problems, the
optimal control is discontinuous, which makes it difficult to apply effi-
cient numerical integration algorithms. We show how Filippov control

30

OUTLINE

can be obtained by using second order information about the value
function.

• Amethod to deal with discontinuous states, that is to say hybrid control
problems. This is necessary to apply continuous TD(λ) to problems
with shocks or discontinuous inputs.

• The Vario-η algorithm [47] is proposed as practical method to perform
gradient descent in reinforcement learning.

• Many experimental results that clearly indicate the huge potential of
feedforward neural networks in reinforcement learning applied to motor
control. In particular, a complex articulated swimmer with 12 inde-
pendent state variables and 4 control variables learnt to swim thanks
to feedforward neural networks.

Outline

• Part I: Theory

– Chapter 1: Dynamic Programming

– Chapter 2: Neural Networks

– Chapter 3: Neuro-Dynamic Programming

– Chapter 4: TD(λ) in Practice

• Part II: Experiments

– Chapter 5: Classical Problems

– Chapter 6: Robot Auto Racing Simulator

– Chapter 7: Swimmers

31

Part I

Theory

33

Chapter 1

Dynamic Programming

Dynamic programming is a fundamental tool in the theory of optimal control,
which was developed by Bellman in the fifties [13, 14]. The basic principles
of this method are presented in this chapter, in both the discrete and the
continuous case.

1.1 Discrete Problems

The most basic category of problems that dynamic programming can solve
are problems where the system to be controlled can only be in a finite number
of states. Motor control problems do not belong to this category, because
a mechanical system can be in a continuous infinity of states. Still, it is
interesting to study discrete problems, since they are much simpler to ana-
lyze, and some concepts introduced in this analysis can be extended to the
continuous case.

1.1.1 Finite Discrete Deterministic Decision Processes

A finite discrete deterministic decision process (or control problem) is form-
ally defined by

• a finite set of states S.

• for each state x, a finite set of actions U(x).

• a transition function ν that maps state-action pairs to states. ν(x, u)
is the state into which the system jumps when action u is performed
in state x.

35

CHAPTER 1. DYNAMIC PROGRAMMING

• a reward function r that maps state-action pairs to real numbers.
r(x, u) is the reward obtained for performing action u in state x. The
goal of the control problem is to maximize the total reward obtained
over a sequence of actions.

A strategy or policy is a function π : S 7→ U that maps states to actions.
Applying a policy from a starting state x0 produces a sequence of states
x0, x1, x2, . . . that is called a trajectory and is defined by

∀i ∈ N xi+1 = ν
(

xi, π(xi)
)

.

Cumulative reward obtained over such a trajectory depends only on π and x0.
The function of x0 that returns this total reward is called the value function
of π. It is denoted V π and is defined by

V π(x0) =
∞
∑

i=0

r
(

xi, π(xi)
)

.

A problem with this sum is that it may diverge. V π(x0) converges only
when a limit cycle with zero reward is reached. In order to get rid of these
convergence issues, a discounted reward is generally introduced, where each
term of the sum is weighted by an exponentially decaying coefficient:

V π(x0) =
∞
∑

i=0

γir
(

xi, π(xi)
)

.

γ is a constant (γ ∈ [0, 1[) called the discount factor. The effect of γ is
to introduce a time horizon to the value function: the smaller γ, the more
short-sighted V π.

The goal is to find a policy that maximizes the total amount of reward
over time, whatever the starting state x0. More formally, the optimal control
problem consists in finding π∗ so that

∀x0 ∈ S V π∗(x0) = max
π:S 7→U

V π(x0).

It is easy to prove that such a policy exists. It might not be unique, however,
since it is possible that two different policies lead to the same cumulative
reward from a given state. V π∗ does not depend on π∗ and is denoted V ∗. It
is called the optimal value function.

36

1.1. DISCRETE PROBLEMS

x1 x2 x3 x4 x5

G x7 x8 x9 x10

x11 x12 x13 x14 x15

Figure 1.1: Example of a discrete deterministic control problem: from any
starting state x, move in the maze to reach the goal state G, without crossing
the heavy lines, which represent walls

1.1.2 Example

Figure 1.1 shows a simple discrete deterministic control problem. The goal
of this control problem is to move in a maze and reach a goal state G as fast
as possible. This can fit into the formalism defined previously:

• S is the set of the 15 squares that make up the maze.

• Possible actions in a specific state are a subset of {Up, Down, Left,
Right, NoMove}. The exact value of U(x) depends on the walls that
surround state x. For instance, U(x5) = {Down, NoMove}.

• The transition function is defined by the map of the maze. For instance,
ν(x8, Down) = x13, ν(x9, NoMove) = x9.

The reward function has to be chosen so that maximizing the reward is
equivalent to minimizing the number of steps necessary to reach the goal. A
possible choice for r is −1 everywhere, except at the goal:

∀x 6= G ∀u ∈ U(x) r(x, u) = −1,

∀u ∈ U(G) r(G, u) = 0.

This way, the optimal value function is equal to the opposite of the number
of steps needed to reach the goal.

1.1.3 Value Iteration

Solving a discrete deterministic decision process is an optimization problem
over the set of policies. One big difficulty with this problem is that the
number of policies can be huge. For instance, if |U | does not depend on
current state, then there are |U ||S| policies. So, exploring this set directly to
find the optimal one can be very costly. In order to avoid this difficulty, the

37

CHAPTER 1. DYNAMIC PROGRAMMING

x

ν(x, u1)

ν(x, u2)

ν(x, u3)

u1

u2

u3

V ∗(x) = max
u∈{u1,u2,u3}

(

r(x, u) + V ∗
(

ν(x, u)
)

)

Figure 1.2: Bellman’s equation. Possible actions in state x are u1, u2, and
u3. If the optimal value is known for the corresponding successor states, then
this formula gives the optimal value of state x.

basic idea of dynamic programming consists in evaluating the optimal value
function V ∗ first. Once V ∗ has been computed, it is possible to obtain an
optimal policy by taking a greedy action with respect to V ∗, that is to say

π∗(x) = arg max
u∈U(x)

(

r(x, u) + γV ∗
(

ν(x, u)
)

)

.

So, the problem is reduced to estimating the optimal value function V ∗.
This can be done thanks to Bellman’s equation (Figure 1.2), which gives the
value of a state x as a function of the values of possible successor states
ν(x, u):

V ∗(x) = max
u∈U(x)

(

r(x, u) + V ∗
(

ν(x, u)
)

)

.

When using discounted reward, this equation becomes

V ∗(x) = max
u∈U(x)

(

r(x, u) + γV ∗
(

ν(x, u)
)

)

. (1.1.1)

So, using ~V to denote the vector of unknown values:

~V =
(

V (x1) V (x2) . . . V (xn)
)t
,

then the optimal value function is a solution of an equation of the type

~V = g(~V).

That is to say it is a fixed point of g. A solution of this equation can be
obtained by an algorithm that iteratively applies g to an estimation of the
value function:

38

1.1. DISCRETE PROBLEMS

~V ← ~0
repeat
~V ← g(~V)

until convergence.
Algorithm 1.1 explicitly shows the details of this algorithm called value

iteration for discrete deterministic control problems. Figures 1.3 and 1.4
illustrate its application to the maze problem1.

Algorithm 1.1 Value Iteration
for all x ∈ S do
V0(x)← 0

end for
i← 0
repeat
i← i+ 1
for all x ∈ S do
Vi(x)← maxu∈U(x)

(

r(x, u) + γVi−1

(

ν(x, u)
)

)

end for
until V has converged

When discounted reward is used (γ < 1), it is rather easy to prove that
value iteration always converges. The proof is based on the fact that g is a
contraction with a factor equal to γ: for two estimations of the value function,
~V1 and ~V2,

∥

∥g(~V1)− g(~V2)
∥

∥

∞ ≤ γ
∥

∥~V1 − ~V2

∥

∥

∞.

Convergence of the value-iteration algorithm can be proved easily thanks to
this property.

When reward is not discounted, however, convergence is a little more
difficult to prove. Value iteration can actually diverge in this case, since the
sum of rewards may be infinite. For instance, this could happen in the maze
problem if some states were in a “closed room”. There would be no path to
reach the goal and the value function would diverge to −∞ at these states.
Nevertheless, when the optimal value is well-defined, it is possible to prove
that value iteration does converge to the optimal value function. Notice that
it is important that ~V be initialized to ~0 in this case (this was not necessary
in the discounted case, since the contraction property ensures convergence
from any initial value of ~V .)

1Other algorithms (such as Dijkstra’s) work better than value iteration for this kind of
maze problems. Unfortunately, they do not work in the general case, so they will not be
explained in details here.

39

CHAPTER 1. DYNAMIC PROGRAMMING

V1
-1 -1 -1 -1 -1

0 -1 -1 -1 -1

-1 -1 -1 -1 -1

V2
-2 -2 -2 -2 -2

0 -2 -2 -2 -2

-1 -2 -2 -2 -2

V3
-3 -3 -3 -3 -3

0 -3 -3 -3 -3

-1 -2 -3 -3 -3

V4
-4 -4 -4 -4 -4

0 -4 -4 -4 -4

-1 -2 -3 -4 -4

V5
-5 -5 -5 -5 -5

0 -5 -4 -5 -5

-1 -2 -3 -5 -5

V6
-6 -6 -5 -6 -6

0 -5 -4 -5 -6

-1 -2 -3 -6 -6

V7
-7 -6 -5 -6 -7

0 -5 -4 -5 -6

-1 -2 -3 -7 -7

V8
-7 -6 -5 -6 -7

0 -5 -4 -5 -6

-1 -2 -3 -8 -7

Figure 1.3: Application of value iteration: the value function is initialized
with null values (V0), and Bellman’s equation is applied iteratively until
convergence (see Algorithm 1.1).

-3

-5

-5

-5

Figure 1.4: Optimal control can be found by a local observation of the value
function.

40

1.1. DISCRETE PROBLEMS

Value iteration can be proved to have a computational cost polynomial in
|U | and |S|. Although this might still be very costly for huge state or action
spaces, value iteration usually takes much less time than exploring the whole
set of policies.

1.1.4 Policy Evaluation

Another task of interest in finite deterministic decision processes is the one
of evaluating a fixed policy π. It is possible to deal with this problem in a
way that is very similar to value iteration, with the only difference that the
set of equations to be solved is, for all states x,

V π(x) = r
(

x, π(x)
)

+ γV π
(

ν
(

x, π(x)
)

)

.

The same kind of fixed point algorithm can be used, which leads to Al-
gorithm 1.2. Convergence of this algorithm can be proved thanks to the
contraction property when γ < 1. It also converges when γ = 1 and all
values are well-defined.

Algorithm 1.2 Policy Evaluation
for all x ∈ S do
V0(x)← 0

end for
i← 0
repeat
i← i+ 1
for all x ∈ S do
Vi(x)← r

(

x, π(x)
)

+ γVi−1

(

ν
(

x, π(x)
)

)

end for
until V has converged

1.1.5 Policy Iteration

Policy Iteration is another very important approach to dynamic program-
ming. It is attributed to Howard [31], and consists in using the policy-
evaluation algorithm defined previously to obtain successive improved policies.
Algorithm 1.3 shows the details of this algorithm. It is rather easy to prove
that, for each x, Vi(x) is bounded and monotonic, which proves that this
algorithm converges when γ < 1 or when γ = 1 and π0 is a proper strategy
(that is to say, a strategy with a well-defined value function).

41

CHAPTER 1. DYNAMIC PROGRAMMING

Algorithm 1.3 Policy Iteration
π0 ← an arbitrary policy
i← 0
repeat
Vi ← evaluation of policy πi
πi+1 ← a greedy policy on Vi
i← i+ 1

until V has converged or π has converged

1.2 Continuous Problems

The formalism defined previously in the discrete case can be extended to con-
tinuous problems. This extension is not straightforward because the number
of states is infinite (so, the value function can not be stored as a table of
numerical values), and time is continuous (so, there is no such thing as a
“next state” or a “previous state”). As a consequence, discrete algorithms
cannot be applied directly and have to be adapted.

1.2.1 Problem Definition

The first element that has to be adapted to the continuous case is the defin-
ition of the problem. A continuous deterministic decision process is defined
by:

• A state space S ⊂ Rp. This means that the state of the system is
defined by a vector ~x of p real valued variables. In the case of mechan-
ical systems, these will typically be angles, velocities or positions.

• A control space U ⊂ Rq. The controller can influence the behavior of
the system via a vector ~u of q real valued variables. These will typically
be torques, forces or engine throttle. U may depend on the state ~x. ~u
is also called the action.

• System dynamics f : S × U 7→ Rp. This function maps states and
actions to derivatives of the state with respect to time. That is to say
~̇x = f(~x, ~u). This is analogous to the ν(x, u) function, except that a
derivative is used in order to deal with time continuity.

• A reward function r : S×U 7→ R. The problem consists in maximizing
the cumulative reward as detailed below.

42

1.2. CONTINUOUS PROBLEMS

Dangerous areaGoal Goal
xmin xmax x

Figure 1.5: A simple optimal control problem in one dimension: get the robot
out of the dangerous area as fast as possible

• A shortness factor sγ ≥ 0. This factor measures the short-sightedness
of the optimization. sγ plays a role that is very similar to the discount
factor γ in the discrete case. These values can be related to each other
by γ = e−sγδt, where δt is a time step. If sγ = 0, then the problem
is said to be non-discounted. If sγ > 0 the problem is discounted and
1/sγ is the typical time horizon.

A strategy or policy is a function π : S 7→ U that maps states to actions.
Applying a policy from a starting state ~x0 at time t0 produces a trajectory
~x(t) defined by the ordinary differential equation

∀t ≥ t0 ~̇x = f
(

~x, π(~x)
)

,

~x(t0) = ~x0.

The value function of π is defined by

V π(~x0) =

∫ ∞

t=t0

e−sγ(t−t0)r
(

~x(t), π
(

~x(t)
)

)

dt. (1.2.1)

The goal is to find a policy that maximizes the total amount of reward over
time, whatever the starting state ~x0. More formally, the optimal control
problem consists in finding π∗ so that

∀~x0 ∈ S V π∗(~x0) = max
π:S 7→U

V π(~x0).

Like in the discrete case, V π∗ does not depend on π∗. It is denoted V ∗ and
is called the optimal value function.

1.2.2 Example

Figure 1.5 shows a very simple problem that can fit in this general formalism.
It consists in finding a time-optimal control for a robot to move out of a
dangerous area. The robot is controlled by a command that sets its velocity.

43

CHAPTER 1. DYNAMIC PROGRAMMING

• The state space is the set of positions the robot can take. It is equal to
the S = [xmin;xmax] segment. Of course, the robot can have a position
that is outside this interval, but this case is of little interest, as the
problem of finding an optimal control only makes sense in the dangerous
area. Any control is acceptable outside of it. The dimensionality of the
state space is 1 (p = 1).

• The control space is the set of possible velocity commands. We will
suppose it is the interval U = [vmin; vmax]. This means that the dimen-
sionality of the control space is also 1 (q = 1).

• The time derivative of the robot’s position is the velocity command. So,
the dynamics is defined by f(x, u) = u. In order to prevent the robot
from getting out of its state space, boundary states are absorbing, that
is to say f(xmin, u) = 0 and f(xmax, u) = 0.

The previous elements of the optimal control problem have been taken dir-
ectly from the mechanical specifications of the system to be controlled, but
we are left with the choice of the shortness factor and the reward function.
There is actually an infinite number of possible values of these parameters
that can be used to find the time-optimal path for the robot. It is often
important to make the choice that will be easiest to handle by the method
used to solve the control problem. Here, they are chosen to be similar to the
maze problem described in section 1.1.2:

• The goal of the present optimal control problem is to reach the bound-
ary of the state space as fast as possible. To achieve this, a constant
negative reward r(x, u) = −1 can be used inside the state space, and
a null reward at boundary states (r(xmin, u) = 0) and r(xmax, u) = 0).
Thus, maximizing the total reward is equivalent to minimizing the time
spent in the state space.

• sγ = 0. This choice will make calculations easier. Any other value of
sγ would have worked too.

If t0 is the starting time of a trial, and tb the time when the robot reaches
the boundary, then

V π
(

~x(t0)
)

=

∫ tb

t=t0

(−1)dt+

∫ ∞

t=tb

0dt = t0 − tb.

This means that the value function is equal to the opposite of the time
spent in the dangerous area. Figure 1.6 shows some value functions for three

44

1.2. CONTINUOUS PROBLEMS

π(x) = 1
x

V π

−1 1

−2

π(x) =

{

+1
2

if x ≥ 0

−1
2

if x < 0

x

V π

−1 1

−2

π(x) =

{

+1 if x ≥ 0

−1 if x < 0

x

V π

−1 1

−1

Figure 1.6: Examples of value functions for different policies π

different policies (numerical values are2 xmin = −1, xmax = +1, vmin = −1,
and vmax = +1.) It is intuitively obvious that the third policy is optimal. It
consists in going at maximum speed to the right if the robot is on the right
side of the dangerous area and at maximum speed to the left if the robot is
on its left side.

1.2.3 Problem Discretization

The optimal policy was very easy to guess for this simple problem, but such
an intuitive solution cannot be found in general. In order to find a method
that works with all problems, it is possible to apply some form of discret-
ization to the continuous problem so that techniques presented in the first
section of this chapter can be applied.

Discretization of the Robot Problem

Let us try to apply this idea to the one-dimensional robot problem. In order
to avoid confusion, discrete S, U and r will be denoted Sd, Ud and rd. It is

2All physical quantities are expressed in SI units

45

CHAPTER 1. DYNAMIC PROGRAMMING

possible to define an “equivalent” discrete problem this way:

• Sd = {−9
8
, −7

8
, −5

8
, −3

8
, −1

8
, +1

8
, +3

8
, +5

8
, +7

8
, +9

8
}, as shown on Figure 1.7.

• Ud = {−1, 0,+1}

• In order to define the ν function, a fixed time step δt = 1
4
can be used.

This way, ν(1
8
,+1) = 3

8
. More generally, ν(x, u) = x + uδt, except at

boundaries (ν(−9
8
,−1) = −9

8
and ν(9

8
,+1) = 9

8
).

• rd(x, u) = −δt except at boundaries, where rd(x, u) = 0. This way, the
total reward is still equal to the opposite of the total time spent in the
dangerous area.

• γ = 1

Figure 1.8 shows the approximate value function obtained by value iteration
for such a discretization. It is very close to the V shape of the optimal value
function.

General Case

In the general case, a finite number of sample states and actions have to be
chosen to make up the state and action sets: Sd ⊂ S and Ud ⊂ U . These
sample elements should be chosen to be representative of the infinite set they
are taken from.

Once this has been done, it is necessary to define state transitions. It
was rather easy with the robot problem because it was possible to choose a
constant time step so that performing an action during this time step lets the
system jump from one discrete state right into another one. Unfortunately,
this can not be done in the general case (see Figure 1.9), so it is not always
possible to transform a continuous problem to make it fit into the discrete
deterministic formalism.

Although there is no hope to define discrete deterministic state transitions
for a continuous problem, it is still possible to apply dynamic programming
algorithms to a state discretization. The key issue is to find an equivalent to
the discrete Bellman equation. So, let us consider a time step of length δt.
It is possible to split the sum that defines the value function (1.2.1) into two
parts:

V π(~x0) =

∫ t0+δt

t=t0

e−s(t−t0)r
(

~x(t), π
(

~x(t)
)

)

dt+ e−sδtV π
(

~x(t0 + δt)
)

. (1.2.2)

46

1.2. CONTINUOUS PROBLEMS

Dangerous areaGoal Goal
x

−9
8
−7
8
−5
8
−3
8
−1
8

1
8

3
8

5
8

7
8

9
8

Figure 1.7: Discretization of the robot’s state space

x
−9
8
−7
8
−5
8
−3
8
−1
8

1
8

3
8

5
8

7
8

9
80

4
−1
4
−2
4
−3
4
−4
4

b

b

b

b

b b

b

b

b

b

Figure 1.8: Value function obtained by value iteration

b b b b b

b b b b b

b b b b b

b b b b b

b b b b bS

~x0

Figure 1.9: Dots represent the set of discrete states (Sd). In general, perform-
ing an action in a discrete state ~x0 cannot jump right into another nearby
discrete state, whatever the time step.

47

CHAPTER 1. DYNAMIC PROGRAMMING

When δt is small, this can be approximated by

V π(~x0) ≈ r
(

~x0, π(~x0)
)

δt+ e−sδtV π(~x0 + δ~x), (1.2.3)

with
δ~x = f

(

~x0, π(~x0)
)

δt.

Thanks to this discretization of time, it is possible to obtain a semi-continuous
Bellman equation that is very similar to the discrete one (1.1.1):

V ∗(~x) ≈ max
~u∈Ud

(

r(~x, ~u)δt+ e−sδtV ∗(~x+ δ~x)
)

. (1.2.4)

In order to solve equation (1.2.4), one might like to try to replace it by
an assignment. This would allow to iteratively update V (~x) for states ~x in
Sd, similarly to the discrete value iteration algorithm. One major obstacle
to this approach, however, is that ~x+ δ~x is not likely to be in Sd. In order to
overcome this difficulty, it is necessary to use some form of interpolation to
estimate V (~x+ δ~x) from the values of discrete states that are close to ~x+ δ~x.
Algorithm 1.4 shows this general algorithm for value iteration.

Algorithm 1.4 Semi-Continuous Value Iteration
for all ~x ∈ Sd do
V0(~x)← 0

end for
i← 0
repeat
i← i+ 1
for all ~x ∈ Sd do
Vi(~x)← max

~u∈Ud

(

r(~x, ~u)δt+ e−sγδt Vi−1

(

~x+ f(~x, ~u)δt
)

︸ ︷︷ ︸

estimated by interpolation

)

end for
until V has converged

Finite Difference Method

Algorithm 1.4 provides a general framework for continuous value iteration,
but a lot of its elements are not defined accurately: how to choose Sd, Ud,
δt? how to interpolate between sample states? Many methods have been
designed to make these choices so that value iteration works efficiently. One
of the simplest is the finite difference method.

48

1.2. CONTINUOUS PROBLEMS

b b b

b b b

b b b

~x0 ~x1

~x2

0.7

0.3

V (~x0 + δ~x) ≈ 0.7V (~x1) + 0.3V (~x2)

Figure 1.10: Finite Difference Method

This method consists in using a rectangular grid for Sd. The time step δt
is chosen so that applying action ~u during a time interval of length δt moves
the state to an hyperplane that contains nearby states (Figure 1.10). The
value function is estimated at ~x + δ~x by linear interpolation between these
nearby states.

A problem with this method is that the time it takes to move to nearby
states may be very long when ‖f(~x, ~u)‖ is small. In this case, the finite
difference method does not converge to the right value function because the
small-time-step approximation (1.2.3) is not valid anymore. Fortunately,
when δ~x is small and δt is not, it is possible to obtain a more accurate
Bellman equation. It simply consists in approximating (1.2.2) by supposing
that r is almost constant in the integral sum:

V π(~x) ≈ r
(

~x, π(~x)
)1− e−sγδt

sγ
+ e−sγδtV π(~x+ δ~x), (1.2.5)

which is a good approximation, even if δt is large. This equation can be
simplified into

V π(~x) ≈
r
(

~x, π(~x)
)

δt+ (1− sγδt/2)V π(~x+ δ~x)

1 + sγδt/2
, (1.2.6)

which keeps a second order accuracy in δt. Thanks to this equation, finite
difference methods converge even for problems that have stationary states.
Besides, (1.2.6) is not only more accurate than (1.2.3), but it is also more
computationally efficient since there is no costly exponential to evaluate.

49

CHAPTER 1. DYNAMIC PROGRAMMING

bc

θ

mg

Figure 1.11: The pendulum swing-up problem

Convergence

When an averaging interpolation is used, it is easy to prove that this al-
gorithm converges. Similarly to the discrete case, this result is based on a
contraction property, with a factor equal to e−sγδt (or

∣

∣
1−sγδt/2
1+sγδt/2

∣

∣ when (1.2.6)
is used).

This convergence result, however, does not give any indication about how
close to the exact value function it converges (that is to say, how close to
the value of the continuous problem). In particular, (1.2.3) can give a signi-
ficantly different result from what (1.2.6) gives. Although this discretization
technique has been known since the early days of dynamic programming, it is
only very recently that Munos [43][44] proved that finite difference methods
converge to the value function of the continuous problem, when the step size
of the discretization goes to zero.

1.2.4 Pendulum Swing-Up

The pendulum-swing-up task [4][23] is a simple control problem that can be
used to test this general algorithm. The system to be controlled consists of
a simple pendulum actuated by a bounded torque (Figure 1.11). The goal
is to reach the vertical upright position. Since the torque available is not
sufficient to reach the goal position directly, the controller has to swing the
pendulum back and forth to accumulate energy. It has then to decelerate it
early enough so that it does not fall over. In order to reach this goal, the
reward used is cos(θ). Detailed specifications of the problem are given in
Appendix B.

Figure 1.12 shows an accurate estimation of the value function obtained
with a 1600 × 1600 discretization of the state space. The minimum value
is at (θ = ±π, θ̇ = 0), that is to say the steady balance position (when
the pendulum is down). The maximum is at (θ = 0, θ̇ = 0), that is to say

50

1.2. CONTINUOUS PROBLEMS

V

+1

−1

θ

−π

+π

θ̇

+10

−10

Figure 1.12: Value function obtained by value iteration on a 1600×1600 grid
for the pendulum swing-up task.

the upright position. A striking feature of this value function is a diagonal
ridge from positive θ and negative θ̇ to negative θ and positive θ̇, limited by
vertical cliffs. As shown on Figure 1.13, optimal trajectories follow this ridge
toward the goal position.

1.2.5 The Curse of Dimensionality

Dynamic programming is very simple and applicable to a wide variety of
problems, but it suffers from a major difficulty that Bellman called the curse
of dimensionality : the cost of discretizing the state space is exponential with
the state dimension, which makes value iteration computationally intractable
when the dimension is high. For instance, if we suppose that each state
variable is discretized with 100 samples, then a one-dimensional problem
would have 100 states, which is very easy to handle. A 2-dimensional problem
would have 10 000 states, which becomes a little hard to process. A problem
with a 4-dimensional state space would have 100 million states, which reaches
the limit of what modern microcomputers can handle.

One way to deal with this problem consists in using a discretization that
is more clever than a uniform grid [46][51]. By using a coarser discretization
in areas where little accuracy is needed (because the value function is almost

51

CHAPTER 1. DYNAMIC PROGRAMMING

θ̇

−10

10

θ−π 2π

Figure 1.13: Trajectory obtained for the pendulum, starting from the down-
ward position. Lines of constant estimated V ∗ are plotted every 0.1, from
−0.4 to 0.9. Control is −umax in the gray area and +umax in the white area.

linear, for instance), it is possible to solve large problems efficiently. Accord-
ing to Munos, this kind of method can handle problems up to dimension 6.

Although Munos results pushed the complexity limit imposed by the curse
of dimensionality, many problems are still out of reach of this kind of meth-
ods. For instance, a simple model of the dynamics of a human arm between
shoulder and wrist has 7 degrees of freedom. This means that a model
of its dynamics would have 14 state variables, which is far beyond what
discretization-based methods can handle.

Nevertheless, this does not mean that ideas of dynamic programming can-
not be applied to high-dimensional problems. A possible alternative approach
consists in using the generalization capabilities of artificial neural networks
in order to break the cost of discretization. This method will be presented
in the next chapters.

52

Chapter 2

Artificial Neural Networks

The grid-based approximation of the value function that was used in the
previous chapter is only a particular case of a function approximator. Grid-
based approximation suffers from the curse of dimensionality, which is a
major obstacle to its application to difficult motor control tasks. Some other
function approximators, however, can help to solve this problem thanks to
their ability to generalize. This chapter presents artificial neural networks,
which are a particular kind of such approximators.

2.1 Function Approximators

2.1.1 Definition

A parametric function approximator (or estimator) can be formally defined
as a set of functions indexed by a vector ~w of scalar values called weights. A
typical example is the set of linear functions f~w defined by

f~w(x) = w1x+ w0

where

~w =

(

w0

w1

)

∈ R2

is the vector of weights. Polynomials of any degree can be used too. Other
architectures will be described in Section 2.3.

As its name says, a function approximator is used to approximate data.
One of the main reason to do this is to get some form of generalization. A typ-
ical case of such a generalization is the use of linear regression to interpolate
or extrapolate some experimental data (see Figure 2.1).

53

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

x

y

b
b

b

b

b

b

b

y = w1x+ w0

Figure 2.1: Linear regression can interpolate and extrapolate data. That
is to say it can generalize. Generalization helps function approximators to
break the curse of dimensionality.

2.1.2 Generalization

The problem of defining generalization accurately is very subtle. The simple
example below can help to explore this question:

1 2 3 4 5 6 ? 8 9 10

This is a short sequence of numbers, one of which has been replaced by a
question mark. What is the value of this number? It might as well be 2, 6
or 29. There is no way to know. It is very likely, however, that many people
would answer “7” when asked this question. “7” seems to be the most obvious
answer to give, if one has to be given.

Why “7”? This could be explained by Occam’s razor1: “One should not
increase, beyond what is necessary, the number of entities required to explain
anything.” Let us apply this principle to some function approximators:

• table of values: f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 4, f(5) = 5,
f(6) = 6, f(7) = 29, f(8) = 8, f(9) = 9, f(10) = 10.

• linear regression: f(i) = i.

Occam’s razor states that f(i) = i should be preferred to the table of values
because it is the simplest explanation of visible numbers.

So, finding the best generalization would consist in finding the simplest
explanation of visible data. A big problem with this point of view on gen-
eralization is that the “simplicity” of a function approximator is not defined
accurately. For instance, let us imagine an universe, the laws of which are
based on the “1 2 3 4 5 6 29 8 9 10” sequence. An inhabitant of this universe

1This principle is attributed to William of Occam (or Okham), a medieval philosopher
(1280?–1347?).

54

2.1. FUNCTION APPROXIMATORS

might find that 29 is the most natural guess for the missing number! Another
(less weird) possibility would be that, independently of this sequence, other
numbers had been presented to this person the day before:

1 2 3 4 5 6 29 8 9 10
1 2 3 4 5 6 29 8 9 10
1 2 3 4 5 6 29 8 9 10. . .

This means that deciding whether a generalization is good depends on prior
knowledge. This prior knowledge may be any kind of information. It may be
other data or simply an intuition about what sort of function approximator
would be well suited for this specific problem.

Some theories have been developed to formalize this notion of general-
ization, and to build efficient algorithms. Their complexity is way beyond
the scope of this chapter, but further developments of this discussion can
be found in the machine-learning literature. In particular, Vapnik’s theory
of structural risk minimization is a major result of this field [74]. Many
other important ideas, such as Bayesian techniques, are clearly explained in
Bishop’s book [16].

Without going into these theories, it is possible to estimate the gener-
alization capabilities of a parametric function approximator intuitively: it
should be as “simple” as possible, and yet be able to approximate as many
“usual” functions as possible.

2.1.3 Learning

In order to approximate a given target function, it is necessary to find a good
set of weights. The problem is that changing one weight is likely to alter the
output of the function on the whole input space, so it is not as easy as using
a grid-based approximation. One possible solution consists in minimizing an
error function that measures how bad an approximation is.

Usually, there is a finite number of sample input/output pairs and the
goal is to find a function that approximates them well. Let us call these
samples (xi, yi) with i ∈ {1, . . . , p}. In this situation, a quadratic error can
be used:

E(~w) =
1

2

p
∑

i=1

(

f~w(xi)− yi
)2
.

The process of finding weights that minimize the error function E is called
training or learning by artificial intelligence researchers. It is also called
curve-fitting or regression in the field of data analysis. In the particular
case of linear functions (Figure 2.1), the linear regression method directly

55

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

w

E
bc bc

Figure 2.2: Gradient descent. Depending on the starting position, different
local optima may be reached.

provides optimal weights in closed form. In the general case, more complex
algorithms have to be used. Their principle will be explained in Section 2.2.

Training a function estimator on a set of (input, output) pairs is called
supervised learning. This set is called the training set. Only this kind of
learning will be presented in this chapter. Actually, many of the ideas related
to supervised learning can be used by reinforcement learning algorithms.
These will be discussed in the next chapters.

2.2 Gradient Descent

As explained in Section 2.1.3, training a function estimator often reduces to
finding a value of ~w that minimizes a scalar error function E(~w). This is
a classical optimization problem, and many techniques have been developed
to solve it. The most common one is gradient descent. Gradient descent
consists in considering that E is the altitude of a landscape on the weight
space: to find a minimum, starting from a random point, walk downward
until a minimum is reached (see Figure 2.2).

As this figure shows, gradient descent will not always converge to an
absolute minimum of E, but only to a local minimum. In most usual cases,
this local minimum is good enough, provided that a reasonable initial value
of ~w has been chosen.

2.2.1 Steepest Descent

The most basic algorithm to perform gradient descent consists in setting a
step size with a parameter η called the learning rate. Weights are iteratively
added the value of

δ ~w = −η∂E
∂ ~w

.

56

2.2. GRADIENT DESCENT

This is repeated until some termination criterion is met. This algorithm is
called steepest descent2.

2.2.2 Efficient Algorithms

Choosing the right value for the learning rate η is a difficult problem. If η
is too small, then learning will be too slow. If η is too large, then learning
may diverge. A good value of η can be found by trial and error, but it is a
rather tedious and inefficient method. In order to address this problem, a
very large variety of efficient learning techniques has been developed. This
section presents the most important theoretical ideas underlying them.

One of the most fundamental ideas to accelerate learning consists in using
second order information about the error function. As Figure 2.3 shows, for
a quadratic error in one dimension, the best learning rate is the inverse of the
second order derivative. This can help to design efficient learning techniques;
if it is possible to evaluate this second order derivative, then it is possible to
automatically find a good learning rate.

Unfortunately, the error function might not be quadratic at all. So, set-
ting the learning coefficient to the reverse of the second order derivative only
works near the optimum, in areas where the quadratic approximation is valid.
But when, for instance, the second order derivative is negative, this does not
work at all (that is the case at the starting positions in Figure 2.2.) Special
care must be taken to handle these situations.

Some other problems arise when the dimension of the weight space is
larger than one, which is always the case in practice. The second order
derivative is not a single number anymore, but a matrix called the Hessian
and defined by

H =
∂2E

∂ ~w2
=

∂2E
∂w2

1

∂2E
∂w1∂w2

. . . ∂2E
∂w1∂wn

∂2E
∂w2∂w1

∂2E
∂w2

2
. . . ∂2E

∂w2∂wn

...
...

∂2E
∂wn∂w1

∂2E
∂wn∂w2

. . . ∂2E
∂w2

n

.

As Figure 2.4 shows, it is possible to have different curvatures in different
directions. It can create a lot of trouble if there is, say, a second derivative
of 100 in one direction, and a second derivative of 1 in another. In this case,

2This algorithm is sometimes also called standard backprop, which is short for back-
propagation of error. This vocabulary is very confusing. In this document, the “back-
propagation” term will only refer to the algorithm used to compute the gradient of the
error function in feedforward neural networks.

57

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

E

w

λ
2
w2

b

b

b

b
b

bc

(a) η < 1/λ

E

w

λ
2
w2

bbc

(b) η = 1/λ

E

w

λ
2
w2

b

b

bb

bb
bb

bc

(c) 1/λ < η < 2/λ

E

w

λ
2
w2

b

bb

bb

bc

(d) η > 2/λ

Figure 2.3: Effect of the learning rate η on gradient descent. λ is the second
derivative of the error function E. At each time step, the weight w is added
δw = −η ∂E

∂w
= −ηλw.

58

2.2. GRADIENT DESCENT

the learning coefficient must be less than 2/100 in order to avoid divergence.
This means that convergence will be very slow in the direction where the
second derivative is 1. This problem is called ill-conditioning.

So, efficient algorithms often try to transform the weight space in order
to have uniform curvatures in all direction. This has to be done carefully so
that cases where the curvature is negative work as well. Some of the most
successful algorithms are conjugate gradient [61], scaled conjugate gradient
[39], Levenberg Marquardt, RPROP [55] and QuickProp [26]. A collection
of techniques for efficient training of function approximators is available in a
book chapter by Le Cun et al. [37].

2.2.3 Batch vs. Incremental Learning

When doing supervised learning, the error function is very often defined as
a sum of error terms over a finite number of training samples that consist
of (input, output) pairs, as explained in Section 2.1.3. (~xi, ~yi)1≤i≤p are given
and the error function is

E =

p
∑

i=1

Ei,

with
Ei =

1

2

(

f~w(~xi)− ~yi
)2
.

Performing steepest descent on E is called batch learning, because the
gradient of the error has to be evaluated on the full training set before weights
are modified. Another method to modify weights in order to minimize E is
incremental learning. It consists in performing gradient descent steps on Ei’s
instead of E (see algorithms 2.1 and 2.2.) Incremental learning is often also
called online learning or stochastic learning. See the Neural Network FAQ
[58] for a more detailed discussion about these vocabulary issues.

Algorithm 2.1 Batch Learning
~w ← some random initial value
repeat
~g ← ~0
for i = 1 to p do
~g ← ~g + ∂Ei/∂ ~w

end for
~w ← ~w − η~g

until termination criterion is met

59

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

w1

w2b

bb

bb
bb bb bb bbbbbbbbbbbbbbbbbbbb

bc

(a) η = 0.7/λ2

w1

w2b

bb

bb

bb

bb

bb

bb

bb

bc

(b) η = 1.7/λ2

w1

w2b

bb

bb

bb

bc

(c) η = 2.1/λ2

Figure 2.4: Ill-Conditioning. Ellipses are lines of constant error E. The
Hessian of E is H =

(

λ1 0
0 λ2

)

with λ1 = 1, and λ2 = 8. The steepest descent
algorithm is applied. No learning rate η gives fast convergence.

60

2.2. GRADIENT DESCENT

Algorithm 2.2 Incremental Learning
~w ← some random initial value
repeat
i← random value between 1 and p
~w ← ~w − η∂Ei/∂ ~w

until termination criterion is met

Which of these techniques is the best? This is a difficult question, the
answer of which depends on the specific problem to be solved. Here are some
of the points to consider: (This discussion is very deeply inspired by a book
chapter by Le Cun et al. [37].)

Advantages of Incremental Learning

1. Incremental learning is usually faster than batch learning, especially
when the training set is redundant. In the case when the training set
has input/output patterns that are similar, batch learning wastes time
computing and adding similar gradients before performing one weight
update.

2. Incremental learning often results in better solutions. The reasons is
that the randomness of incremental learning creates noise in the weight
updates. This noise helps weights to jump out of bad local optima [48].

3. Incremental learning can track changes. A typical example is when
learning a model of the dynamics of a mechanical system. As this
system gets older, its properties might slowly evolve (due to wear of
some parts, for instance). Incremental learning can track this kind of
drift.

Advantages of Batch Learning

1. Conditions of convergence are well understood. Noise in incremental
learning causes weights to constantly fluctuate around a local optimum,
and they never converge to a constant stable value. This does not
happen in batch learning, which makes it easier to analyze.

2. Many acceleration techniques only operate in batch learning. In par-
ticular, algorithms listed in the previous subsection can be applied to
batch learning only (Conjugate gradient, RPROP, QuickProp, . . .).

61

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

3. Theoretical analysis of the weight dynamics and convergence rates are
simpler. This is also related to the lack of noise in batch learning.

2.3 Some Approximation Schemes

2.3.1 Linear Function Approximators

The general form of linear function approximators is

V~w(~x) =
∑

i

wiφi(~x).

This kind of function approximator has many nice characteristics that have
made it particularly successful in reinforcement learning.

Unlike some more complex function approximation schemes, like feedfor-
ward neural networks, it is rather easy to train a linear function approxim-
ator. In particular, there is no poor local optimum and the Hessian of the
error function is diagonal (and easy to evaluate).

Another nice quality of such a function approximator is locality [76]. By
choosing φi’s such that φi(~x) has a non-zero value in a small area of the input
space only, it is possible to make sure that a change in wi will have significant
consequences in a small area only. This is often considered a good property
for reinforcement learning. The reason is that reinforcement learning is often
performed incrementally, and the value-function approximator should not
forget what it has learnt in other areas of the state space when trained on a
new single input ~x.

Some of the most usual linear function approximators are described in
the sections below. Many variations on these ideas exist.

Grid-Based Approximation

The grid-based approximation of the value function used in the previous
chapter is a particular case of a linear function approximator. As explained
previously, this kind of function approximation suffers from the curse of di-
mensionality, because it takes a huge number of weights to sample a high-
dimensional state space with enough accuracy (even with clever discretization
methods). In terms of neural-network learning, this means that this kind of
function approximation scheme has very poor generalization capabilities.

Tile Coding (or CMAC[1])

Instead of using one single grid to approximate the value function, tile coding
consists in adding multiple overlapping tilings (cf. Figure 2.5). This is a way

62

2.3. SOME APPROXIMATION SCHEMES

(a) Tiling 1 (b) Tiling 2

(c) Tiling 3 (d)
∂V

∂ ~w
for one input

Figure 2.5: Tile Coding

to add generalization to tables of values. As the figure shows, changing the
value function at one point will alter it at other points of the input space.
This can help a little to alleviate the curse of dimensionality, while keeping
good locality. Using tile coding for high-dimensional problems is not that
easy though; it requires a careful choice of tilings.

Normalized Gaussian Networks

A major problem with the application of tile coding to continuous reinforce-
ment learning is that such a function approximator is not continuous. That
is to say a smooth estimate of the value function is needed, but tile coding
produces “steps” at the border of tiles. In order to solve this problem, it is
necessary to make gradual transitions between tiles. This is what is done by

63

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

normalized Gaussian networks.
In normalized Gaussian networks [40], the rough rectangular φi’s that

were used in previous approximators are replaced by smooth bumps:

φi(~x) =
Gi(~x)

∑

j Gj(~x)
,

Gi(~x) = e−(~x−~ci)tMi(~x−~ci).

~ci is the center of the Gaussian number i; Mi defines how much this Gaussian
is “spread” in all directions (it is the inverse of the covariance matrix).

It is important to choose the variance of each Gi carefully. If it is too
high, then Gi will be very wide, and locality will not be good. If it is too
small, then Gi will not be smooth enough (see Figure 2.6).

The behavior of such a normalized Gaussian network is actually closer to
a grid-based function approximator than to tile coding. In order to avoid the
curse of dimensionality, it is still possible to overlap as many sums as needed,
with a different distribution of ~ci’s in each sum, similarly to what is shown
on Figure 2.5.

Various techniques allow to make an efficient implementation of normal-
ized Gaussian networks. In particular, if the ~ci’s are allocated on a regular
grid, and the Mi matrices are diagonal and identical, then the Gi’s can be
computed efficiently as the outer product of the activation vectors for indi-
vidual input variables. Another technique that can produce significant spee-
dups consists in considering only some of the closest basis functions in the
sum; ~ci’s that are too far away from ~x can be neglected. Normalized Gaussian
Networks are still much more costly to use than tile coding, though.

2.3.2 Feedforward Neural Networks

Feedforward neural networks consist of a graph of nodes, called neurons,
connected by weighted links. These nodes and links form a directed acyclic
graph, hence the name “feedforward”. Neurons receive input values and pro-
duce output values. The mapping from input to output depends on the link
weights (see Figure 2.7), so a feedforward neural network is a parametric
function approximator. The gradient of the error with respect to weights
can be computed thanks to the backpropagation algorithm. More technical
details about this algorithm can be found in Appendix A, along with the
formal definition of a neural network.

In reinforcement learning problems, linear function approximators are of-
ten preferred to feedforward neural networks. The reason is that feedforward

64

2.3. SOME APPROXIMATION SCHEMES

1 2 3 4 x

(a) σ2 = 0.025

1 2 3 4 x

(b) σ2 = 0.1

1 2 3 4 x

(c) σ2 = 0.5

1 2 3 4 x

(d) σ2 = 2.0

Figure 2.6: Effect of σ2 on a normalized Gaussian network. Gaussians are
centered at 1, 2, 3, and 4. Each network is trained to fit the dashed function:
y = sin

(

(x − 1)π/2
)

. Vertical scale (arbitrary units) represents the value
function.

65

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

σi yi

y1

y2

y3

+

xi

wi1

wi2

wi3

Figure 2.7: Neuron in a feedforward network: yi = xi + σi

(

∑

j<i

wijyj

)

neural networks are much more tricky to handle than linear function approx-
imators: locality is poor, learning can be trapped in a local optimum, and
ill-conditioning can hurt a lot. Besides, as we shall see in the next chapter,
reinforcement learning with non-linear function approximators has very few
guarantees of convergence.

It is worth noting, however, that Tesauro used a feedforward neural net-
work with a lot of success in his backgammon player [69]. This backgam-
mon player is often regarded as one of the most remarkable achievements
of reinforcement learning research. A major strength of feedforward neural
networks is their ability to handle high-dimensional input. Barron [9] proved
that they do not suffer from the curse of dimensionality, whereas linear func-
tion approximators do.

So, although their complexity can make them difficult to harness, feed-
forward neural networks can be very efficient. They have excellent general-
ization capabilities, which can help to solve difficult reinforcement-learning
tasks, especially when the dimension of the state space is high.

66

Chapter 3

Continuous Neuro-Dynamic
Programming

The previous two chapters introduced dynamic programming and neural net-
works. They provided some intuition about the reasons why generalization
capabilities of neural networks could help to break the curse of dimension-
ality that is hanging over discretization-based approaches to dynamic pro-
gramming. This chapter describes the theory of algorithms that combine
these two techniques, which Bertsekas and Tsitsiklis called neuro-dynamic
programming [15]. Emphasis is placed on their application to continuous
problems.

3.1 Value Iteration

Value iteration algorithms presented in Chapter 1 consist in solving a fixed
point equation of the kind ~V = g(~V) by iteratively applying g to an initial
value. When a function approximator V~w is used instead of a table of values,
these algorithms cannot be applied because ~V is estimated indirectly as a
function of parameters ~w. The key issue is that the assignment ~Vi+1 ← g(~Vi)
has to be replaced by some form of weight update.

3.1.1 Value-Gradient Algorithms

The most straightforward method to perform this weight update consists in
replacing an assignment such as

V (x)← y

67

CHAPTER 3. CONTINUOUS NEURO-DYNAMIC PROGRAMMING

by one step of gradient descent on the error

E(~w) =
1

2

(

V~w(x)− y
)2
.

This leads to a weight update

~w ← ~w + η
(

y − V~w(x)
)∂V~w(x)

∂ ~w
,

where η is the learning rate.
Although this might look like a natural way to generalize value iteration to

function approximators, this method does not work well. Baird showed that
this approach to value iteration may diverge for a very small decision pro-
cess [7]. Tsitsiklis and Van Roy gave another very simple two-state counter-
example [72]:

V (0) =
w0

V (1) =
2w0

In this process, each state has only one possible action and all transitions
give a reward of zero. Thus, when a discount factor γ < 1 is used, the value
function is equal to zero everywhere. A linear function approximator is used
to approximate this value function. The value-gradient approach to value
iteration leads to a weight update of

w0 ← w0 + η

(

(

γV (1)− V (0)
)∂V (0)

∂w0

+
(

γV (1)− V (1)
)∂V (1)

∂w0

)

,

that is to say

w0 ← w0 + η
(

(2γ − 1)w0 + (2γ − 2)2w0

)

,

which can be simplified into

w0 ← w0

(

1 + η(6γ − 5)
)

.

So, when γ > 5
6
, this algorithm diverges.

A reason why this method does not work is that the contraction property
that proved convergence of lookup-table approaches can not be established
anymore. Gordon [29] studied characteristics that a function approximator
should have so that the process of updating weights still is a contraction.
Unfortunately, the conditions imposed to keep this property are extremely
restrictive, and dismiss most of the function approximators with good gen-
eralization abilities, such as tile coding or feedforward neural networks.

68

3.1. VALUE ITERATION

3.1.2 Residual-Gradient Algorithms

Divergence of value-gradient algorithms is related to interference: when
weights are updated to change the value of one state, it is very likely that the
value of other states will change as well. As a consequence, the target value
y in the V (x) ← y assignment might change as ~w is modified, which may
actually let y move away from V (x) and cause divergence of the algorithm.

In order to solve this problem, Baird proposed residual-gradient algorithms
[7]. They consist in using an error function that takes into account the de-
pendency of y on ~w:

E(~w) =
1

2

(

~V~w − g(~V~w)
)2

Since E is a function of ~w that does not change as learning progresses, there
is no moving-target problem anymore, which lets the gradient-descent al-
gorithm converge1.

One major limit to this approach, however, is that there is no guarantee
that the estimated value function obtained is close to the solution of the
dynamic programming problem. In fact, it is possible to get a value of ~w
so that ~V~w is extremely close to g(~V~w), but very far from the single solution
of the ~V = g(~V) equation. This phenomenon is particularly striking in the
continuous case, which is presented in the next section.

3.1.3 Continuous Residual-Gradient Algorithms

The semi-continuous Bellman equation derived in Chapter 1 is based on the
approximation

V π(~x) ≈ r
(

~x, π(~x)
)

δt+ e−sγδtV π(~x+ δ~x).

When using a discretization of the state space, a value of δt is used so that it
lets the system move from one discrete state to nearby discrete states. In the
general case of function approximation, however, there is no such thing as
“nearby states”. δt could be chosen to be any arbitrarily small time interval.
This leads to completely continuous formulations of dynamic programming
algorithms.

1Note that, in general, E is not differentiable because of the max operator in g. Since E
is continuous and differentiable almost everywhere, gradient descent should work, anyway.

69

CHAPTER 3. CONTINUOUS NEURO-DYNAMIC PROGRAMMING

The Hamilton-Jacobi-Bellman Equation

Let us suppose that δt is replaced by an infinitely small step dt. The policy-
evaluation equation becomes

V π(~x) ≈ r
(

~x, π(~x)
)

dt+ e−sγdtV π(~x+ d~x)

≈ r
(

~x, π(~x)
)

dt+ (1− sγdt)V π(~x+ d~x).

By subtracting V π(~x) to each term and dividing by dt we get:

0 = r
(

~x, π(~x)
)

− sγV π(~x) + V̇ π(~x). (3.1.1)

If we note that
V̇ π(~x) =

∂V π

∂~x
· d~x
dt

=
∂V π

∂~x
· f(~x, ~u),

then (3.1.1) becomes

0 = r
(

~x, π(~x)
)

− sγV π(~x) +
∂V π

∂~x
· f
(

~x, π(~x)
)

. (3.1.2)

A similar equation can be obtained for the optimal value function:

0 = max
~u∈U

(

r(~x, ~u)− sγV ∗(~x) +
∂V ∗

∂~x
· f(~x, ~u)

)

. (3.1.3)

(3.1.3) is the Hamilton-Jacobi-Bellman equation. It is the continuous equi-
valent to the discrete Bellman equation. Besides, for any value function V ,
the Hamiltonian H is defined as

H = max
~u∈U

(

r(~x, ~u)− sγV (~x) +
∂V

∂~x
· f(~x, ~u)

)

,

which is analogous to the discrete Bellman residual.

Continuous Value Iteration

So, continuous residual-gradient algorithms would consist in performing gradi-
ent decent2 on E = 1

2

∫

x∈SH
2dx. Munos, Baird and Moore [45] studied this

algorithm and showed that, although it does converge, it does not converge
to the right value function. The one-dimensional robot problem presented

2Performing gradient descent on this kind of error function is a little bit more com-
plex than usual supervised learning, because the error depends on the gradient of the
value function with respect to its input. This problem can be solved by the differential
backpropagation algorithm presented in Appendix A.

70

3.1. VALUE ITERATION

x

V ∗

−1

−1 1 x

V ∗

+1

−1 1

x

V ∗

−1 1 x

V ∗

−1

1

Figure 3.1: Some of the many solutions to the Hamilton-Jacobi-Bellman
equation for the robot-control problem

∣

∣
∂V ∗

∂x

∣

∣ = 1. The right solution is at
the top left.

in Chapter 1 can illustrate this phenomenon. The Hamilton-Jacobi-Bellman
equation (3.1.3) for this problem (with sγ = 0 and r(~x, ~u) = −1) is

0 = max
u∈[−1,1]

(

− 1 +
∂V ∗

∂x
u

)

.

Finding the value of u that maximizes this is easy. It simply consists in
taking u = +1 when ∂V ∗/∂x is positive and u = −1 otherwise. Thus, we get

∣

∣

∣

∣

∂V ∗

∂x

∣

∣

∣

∣

= 1.

The value function may be discontinuous or not differentiable. If we con-
sider functions that are differentiable almost everywhere, then this differ-
ential equation clearly has an infinite number of solutions (see Figure 3.1).

Munos et al [45] used the theory of viscosity solutions to explain this:
out of the infinity of solutions to the Hamilton-Jacobi-Bellman equation, the
viscosity solution is the only value function that solves the optimal control
problem. Gradient descent with a function approximator does not guarantee
convergence to this solution, so the result of this algorithm may be completely
wrong.

Doya [24] gives another interpretation in terms of symmetry in time. A
key idea of discrete value iteration is that the value of the current state is

71

CHAPTER 3. CONTINUOUS NEURO-DYNAMIC PROGRAMMING

updated by trusting values of future states. By taking the time step δt to
zero, this asymmetry in time disappears and the learning algorithm may
converge to a wrong value function.

So, the conclusion of this whole section is that value iteration with func-
tion approximators usually does not work. In order to find an algorithm able
to estimate the right value function, it is necessary to enforce some form of
asymmetry in time and get away from the self-reference problems of fixed
point equations. Temporal difference methods, which were developed in the
theory of reinforcement learning, can help to overcome these difficulties.

3.2 Temporal Difference Methods

The easiest way to get rid of self-reference consists in calculating the value
of one state from the outcome of a full trajectory, instead of relying on
estimates of nearby states. This idea guided Boyan and Moore [19] to design
the grow-support algorithm. This method uses complete “rollouts” to update
the value function, which provides robust and stable convergence. Sutton [66]
followed up Boyan and Moore’s results with experiments showing that the
more general TD(λ) algorithm [65] also produces good convergence and is
faster than Boyan and Moore’s method. TD stands for “temporal difference”.

3.2.1 Discrete TD(λ)

A key idea of this form of learning algorithm is online training. Value itera-
tion consists in updating the value function by full sweeps on the whole state
space. An online algorithm, on the other hand, proceeds by following actual
successive trajectories in the state space. These trajectories are called trials
or episodes.

Figure 3.2 illustrates what happens when Bellman’s equation is applied
along a trajectory. The value function is initialized to be equal to zero
everywhere. A random starting position is chosen for the first trial, and one
iteration of dynamic programming is applied. Then, an optimal action is
chosen. In this particular situation, there are two optimal actions: +1 and
−1. One of them (+1) is chosen arbitrarily. Then, the robot moves according
to this action and the same process is repeated until it reaches the boundary
(Figure 3.2(c)).

By applying this algorithm, trajectory information was not used at all. It
is possible to take advantage of it with the following idea: when a change is
made at one state of the trajectory, apply this change to the previous states
as well. This is justified by the fact that the evaluation of the previous state

72

3.2. TEMPORAL DIFFERENCE METHODS

V

b b b b

b

b b b b b

(a) Step 1

V

b b b b

b b

b b b b

(b) Step 2

V

b b b b

b b b b b

b

(c) Trial end

Figure 3.2: online application of value iteration (TD(0))

V

b b b b

b

b b b b b

(a) Step 1

V

b b b b

b

b

b b b b

(b) Step 2

V

b b b b

b

b

b

b

b

b

(c) Trial end

Figure 3.3: Monte-Carlo method (TD(1))

V

b b b b

b

b b b b b

(a) Step 1

V

b b b b

b
b

b b b b

(b) Step 2

V

b b b b

b b b b
b

b

(c) Trial end

Figure 3.4: TD(λ) algorithm with λ = 1
2

73

CHAPTER 3. CONTINUOUS NEURO-DYNAMIC PROGRAMMING

was based on the evaluation of the current state. If the latter changes, then
the previous evaluation should change accordingly. This method is called the
Monte-Carlo algorithm (Figure 3.3).

A problem with the Monte-Carlo algorithm is that there is a probability
that a change in the current value function does not affect the previous
value as much. This is handled by the TD(λ) algorithm. Let us suppose
that the correction to the current value is δV . TD(λ) consists in supposing
that the expected change for the previous state is equal to λδV (λ ∈ [0, 1]).
This change is backed up iteratively to all previous states. So the state two
time steps before gets λ2δV , the one before gets λ3δV , etc. The coefficients
1, λ, λ2, . . . are the eligibility traces. TD(λ) is a generalization of online
value iteration (TD(0)) and Monte-Carlo algorithm (TD(1)). TD(λ) has
been reported by Sutton and others to perform significantly better than
TD(0) or TD(1) if the value of λ is well chosen.

Algorithm 3.1 TD(λ)
~V ← an arbitrary initial value
~e← ~0
for each episode do
x← random initial state
while not end of episode do
x′ ← ν

(

x, π(x)
)

δ ← r
(

x, π(x)
)

+ γV (x′)− V (x)
e(x)← e(x) + 1
~V ← ~V + δ~e
~e← λγ~e
x← x′

end while
end for

Algorithm 3.1 shows the details of TD(λ). π may either be a constant
policy, in which case the algorithm evaluates its value function V π, or a
greedy policy with respect to the current value, in which case the algorithm
estimates the optimal value function V ∗. In the latter case, the algorithm is
called generalized policy iteration (by Sutton and Barto [67]) or optimistic
policy iteration (by Bertsekas and Tsitsiklis [15]). TD(λ) policy evaluation
has been proved to converge [21, 22, 32]. Optimistic policy iteration has
been proved to converge, but only with a special variation of TD(λ) that is
different from Algorithm 3.1 [71].

74

3.2. TEMPORAL DIFFERENCE METHODS

3.2.2 TD(λ) with Function Approximators

In order to use function approximators, value updates can be replaced by
weight updates in the direction of the value gradient. This is similar to what
has been presented in Section 3.1.1. Algorithm 3.2 shows the details of this
algorithm. Notice that, if a table-lookup approximation is used with η = 1,
it is identical to Algorithm 3.1

Convergence properties of this algorithm are not very well known. The
strongest theoretical result, obtained by Tsitsiklis and Van Roy [73], proves
that discrete policy evaluation with linear function approximators converges
when learning is performed along trajectories with TD(λ). They also proved
that the error on the value function is bounded by

E ≤ 1− λγ
1− γ

E∗,

where E∗ is the optimal quadratic error that could be obtained with the
same function approximator. This indicates that, the more λ is close to 1,
the more accurate the approximation.

Convergence of algorithms that compute the optimal value function has
not been established. Tsitsiklis and Van Roy also gave an example where
policy evaluation with a non-linear function approximator diverges. Nev-
ertheless, although it has little theoretical guarantees, this technique often
works well in practice.

Algorithm 3.2 Discrete-time TD(λ) with function approximation
~w ← an arbitrary initial value
~e← ~0 {dimension of ~e = dimension of ~w}
for each episode do
x← random initial state
while not end of episode do
x′ ← ν

(

x, π(x)
)

δ ← r
(

x, π(x)
)

+ γV~w(x′)− V~w(x)
~e← λγ~e+ ∂V~w(x)/∂ ~w
~w ← ~w + ηδ~e
x← x′

end while
end for

75

CHAPTER 3. CONTINUOUS NEURO-DYNAMIC PROGRAMMING

3.2.3 Continuous TD(λ)

Although the traditional theoretical framework for reinforcement learning is
discrete [67], the special characteristics of problems with continuous state
and action spaces have been studied in a number of research works [6, 8,
28, 57]. Doya [23, 24] first published a completely continuous formulation
of TD(λ). Similarly to the continuous residual-gradient method that was
presented previously, it uses the Hamilton-Jacobi-Bellman equation to get
rid of the discretization of time and space.

Let us suppose that at time t0 we get a Hamiltonian H(t0). The principle
of the TD(λ) algorithm consists in backing-up the measured H(t0) error on
past estimates of the value function on the current trajectory. Instead of the
discrete exponential decay 1, λγ, (λγ)2, . . . , the correction is weighted by a
smooth exponential. More precisely, the correction corresponds to a peak of
reward H(t0) during an infinitely short period of time dt0, with a shortness
sγ + sλ. This way, it is possible to keep the asymmetry in time although
the time step is infinitely small. Learning is performed by moving the value
function toward V̂ , defined by

∀t < t0 V̂ (t) = V~w(t0) +H(t0)dt0e
−(sγ+sλ)(t0−t).

A quadratic error can be defined as

dE =
1

2

∫ t0

−∞

(

V~w(t0)(t)− V̂ (t)
)2
dt,

the gradient of which is equal to

∂dE

∂ ~w
= −

∫ t0

−∞
H(t0)dt0e

−(sγ+sλ)(t0−t)∂V~w(t0)

(

~x(t)
)

∂ ~w
dt

= −H(t0)dt0e
−(sγ+sλ)t0

∫ t0

−∞
e(sγ+sλ)t∂V~w(t0)

(

~x(t)
)

∂ ~w
dt

= −H(t0)dt0~e(t0),

with

~e(t0) = e−(sγ+sλ)t0

∫ t0

−∞
e(sγ+sλ)t∂V~w(t0)

(

~x(t)
)

∂ ~w
dt.

~e(t0) is the eligibility trace for weights. A good numerical approximation can
be computed efficiently if we assume that

∂V~w(t0)

(

~x(t)
)

∂ ~w
≈
∂V~w(t)

(

~x(t)
)

∂ ~w
.

76

3.2. TEMPORAL DIFFERENCE METHODS

If V~w is linear with respect to ~w, then this approximation is an equality. If it
is non-linear, then it can be justified by the fact that weights usually do not
change much during a single trial. Under this assumption, ~e is the solution
of the ordinary differential equation

~̇e = −(sγ + sλ)~e+
∂V~w
∂ ~w

.

Using this result about the gradient of error, a gradient descent algorithm
can be applied using a change in weights equal to

d~w = −η∂dE
∂ ~w

= ηH~edt.

Dividing by dt gives
~̇w = ηH~e.

To summarize, the continuous TD(λ) algorithm consists in integrating
the following ordinary differential equation:

~̇w = ηH~e

~̇e = −(sγ + sλ)~e+
∂V~w(~x)

∂ ~w

~̇x = f
(

~x, π(~x)
)

(3.2.1)

with

H = r
(

~x, π(~x)
)

− sV~w(~x) +
∂V~w
∂~x
· f
(

~x, π(~x)
)

.

Initial conditions are

~w(0) is a chosen at random,
~e(0) = ~0,

~x(0) is the starting state of the system.

Learning parameters are
{

η the learning rate,
sλ the learning shortness factor (λ = e−sλδt).

Tsitsiklis and Van Roy’s bound becomes

E ≤
(

1 +
sλ
sγ

)

E∗.

77

CHAPTER 3. CONTINUOUS NEURO-DYNAMIC PROGRAMMING

V

+1

−1

θ

−π

+π

θ̇

+10

−10

b

b

b

b

b

b
b

b
b b b b b b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b b b b b b b b
b

b

b

b

b

b

b

b

b

b

b
b

b
b b b b b b b b b

b

b

b

b

b

b

b

b

b

b
b

b b b b b
b

b
b b

b

b

b

b

b

b

b

b

b

b

b
b

b b b b
b

b

b

b b

b

b

b

b

b

b

b

b

b

b
b

b b b b
b

b

b

b

b
b

b

b

b

b

b

b

b

b
b

b
b b b b

b

b

b

b

b b

b

b

b

b

b

b

b

b b b b b
b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b
b b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b b b b

b
b

b

b

b
b b

b

b

b

b

b

b

b

b
b

b b b b
b

b
b

b
b

b b
b

b

b

b

b

b

b

b

b
b

b b b b
b

b
b

b
b b b

b

b

b

b

b

b

b

b
b

b
b b b b

b

b
b

b b b
b

b

b

b

b

b

b

b

b
b

b
b b b b

b

b b b b b
b

b
b

b

b

b

b

b
b

b
b

b b b b b

Figure 3.5: Value function obtained by value iteration with a 20×20 discret-
ization of the pendulum swing-up task. Nodes are at the intersection of thick
black lines. Thin gray lines show multilinear interpolations between nodes.

3.2.4 Back to Grid-Based Estimators

Results in this chapter show that value iteration cannot be applied as-is to
continuous problems with continuous function approximators. In order to
obtain convergence to the right value function, it is necessary to use meth-
ods based on the analysis of complete trajectories. Algorithms presented
in Chapter 1 did not require this, but one might naturally think that they
would also benefit from online training.

In order to test this, let us compare value iteration applied to the pen-
dulum swing-up task (Figure 3.5) to policy iteration with Monte-Carlo trials
(Figures 3.6–3.9). Both algorithms converge, but to significantly different
value functions. By comparing to the 1600 × 1600 discretization shown on
Figure 1.12, it is obvious that Monte-Carlo policy iteration gives a much
more accurate result than value iteration.

The reason why value iteration is inaccurate is not only the poor resolu-
tion of state-space discretization, but also the accumulation of approximation
errors that propagate from discrete state to discrete state. When the estim-
ation of the value function is based on the outcome of long trajectories, a

78

3.2. TEMPORAL DIFFERENCE METHODS

V

+1

−1

θ

−π

+π

θ̇

+10

−10

b

b

b

b

b
b

b
b b b b b b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b
b b b b b b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b
b b b b b b b

b
b

b

b

b

b

b

b

b

b

b

b
b

b b b b b b b b
b

b

b

b

b

b

b

b

b

b

b

b
b

b b b b b b b b b
b

b

b

b

b

b

b

b

b

b
b

b b b b b
b b b b b b

b

b

b

b

b

b

b

b

b
b

b b b b
b

b
b

b
b b b b

b

b b

b
b b b

b
b

b
b

b

b

b
b

b b

b

b
b b b

b
b

b

b

b

b

b

b b

b

b b b
b

b

b

b

b

b

b

b

b b
b

b

b

b

b

b

b

b b

b b
b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b
b

b

b

b

b

b
b

b
b

b

b

b

b

b

b
b

b b
b

b

b
b

b b b
b

b

b

b

b b

b

b

b

b
b b

b

b
b

b

b

b

b b b

Figure 3.6: Value function obtained after the first step of policy iteration.
The initial policy was π0(~x) = −umax.

V

+1

−1

θ

−π

+π

θ̇

+10

−10

b

b

b

b

b

b
b

b
b

b b b
b

b
b

b
b

b

b

b

b

b

b

b

b

b

b
b

b b
b b b b b b

b

b

b
b

b

b

b

b

b
b

b

b
b b

b b b b b
b

b

b
b

b

b

b

b

b

b

b b

b

b b b b b

b

b

b

b

b

b

b

b

b

b

b

b
b b

b

b

b
b b

b

b

b

b

b

b

b

b

b

b

b

b b

b b
b

b

b

b

b

b

b

b

b

b

b

b
b b

b
b b b

b
b

b
b

b

b

b

b b
b b b

b
b

b

b

b

b
b

b b b
b

b

b

b
b

b

b

b b

b
b

b

b

b

b

b

b

b b

b
b

b

b b

b

b

b

b

b

b

b
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b
b

b b b

b b

b b

b

b

b

b

b b

b

b

b

b

b
b

b
b

b b b

b

b
b

b

b

b b

b

b

b

b

b

b
b

b b
b b

b
b

b
b

b

b

b

b

b

b

b
b

b b
b b

b
b

b

b

b
b

b
b

b
b b b

b
b

b
b

b
b

b

b

b
b

b b b
b

b b b

b b
b

b

b

b
b

b
b

b
b

b b b b b b

Figure 3.7: Second step of policy iteration

79

CHAPTER 3. CONTINUOUS NEURO-DYNAMIC PROGRAMMING

V

+1

−1

θ

−π

+π

θ̇

+10

−10

b

b

b

b

b

b
b

b
b

b b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b

b
b

b
b

b

b
b b

b

b

b

b

b

b

b

b
b

b
b b b b b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b b b b
b

b

b

b

b

b

b

b

b

b

b

b
b

b
b b b b b b

b

b

b

b

b

b

b

b

b

b

b
b

b b b b b b
b

b

b

b

b

b

b

b

b

b
b

b b b b b b b
b

b

b

b

b

b

b

b

b b b b
b

b
b

b

b

b

b

b

b

b

b
b

b
b

b

b
b

b

b

b
b

b

b

b b
b

b

b

b

b

b

b

b b b

b

b

b
b

b

b

b

b

b
b b b

b

b

b

b b

b

b

b

b

b b
b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b

b b b
b

b b

b
b

b

b

b

b

b
b

b

b

b

b

b
b

b
b b

b b b

b

b

b

b

b

b
b

b

b

b
b

b

b
b

b

b b
b

b

b

b
b

b

b

b
b

b

b b

b

b

b

b

b

b b b b
b

b

b

b

b

b

b b
b

b

b
b

b
b

b
b b

b b b

b

b

b

b
b

b
b b b b

b
b

b b b

b

b
b

b
b

Figure 3.8: Third step of policy iteration

V

+1

−1

θ

−π

+π

θ̇

+10

−10

b

b

b

b

b

b

b
b

b
b b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b
b

b
b

b

b

b b

b

b

b

b

b

b

b

b

b
b

b b b b b b
b

b b

b

b

b

b

b

b

b

b

b

b
b

b
b b b b b b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b b b b b

b

b

b

b

b

b

b

b

b

b

b
b

b b b b b b
b

b

b

b

b

b

b

b

b

b
b

b b b b b b b
b

b

b

b

b

b

b

b

b b b b b
b

b

b

b

b

b

b

b

b

b
b

b
b

b

b
b

b

b

b
b

b

b

b b
b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b
b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b b b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b
b

b b b
b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b
b b b b

b

b

b

b

b

b
b

b

b

b

b

b
b

b
b

b b b b
b

b

b
b

b
b

b
b

b
b

b

b
b

b
b

b b b
b

b
b

b
b

b b
b

b
b

b

b
b b b

b
b

b

b b b
b

b
b

Figure 3.9: Fourth step of policy iteration

80

3.3. SUMMARY

much more accurate result is obtained.

3.3 Summary

This chapter shows that combining function approximators with dynamic
programming produces a lot of complexity, notably in the analysis of con-
vergence properties of learning algorithms. Among all the possible learning
methods, those that have the best stability and accuracy are algorithms that
learn over trajectories. Training along trajectories is necessary to keep asym-
metry in time and get a more accurate estimation of the value function.

Another important result presented in this chapter is Doya’s continuous
TD(λ). Thanks to a completely continuous formulation of this reinforcement
learning algorithm, it is possible to get rid of time and space discretizations,
and of inaccuracies related to this approximation. The next chapter presents
some optimizations and refinements of the basic algorithm offered by this
late discretization.

81

Chapter 4

Continuous TD(λ) in Practice

The previous chapter presented the basic theoretical principles of the con-
tinuous TD(λ) algorithm. In order to build a working implementation, some
more technical issues have to be dealt with. This chapter shows how to find
the greedy control, how to use a good numerical integration algorithm, and
how to perform gradient descent efficiently with feedforward neural networks.

4.1 Finding the Greedy Control

When integrating the TD(λ) ordinary differential equation, it is necessary to
find the greedy control with respect to a value function, that is to say

π(~x) = arg max
~u∈U

(

r(~x, ~u)− sγV~w(~x) +
∂V~w
∂~x
· f(~x, ~u)

)

.

As Doya pointed out [24], a major strength of continuous model-based TD(λ)
is that, in most usual cases, the greedy control can be obtained in closed form
as a function of the value gradient. It is not necessary to perform a costly
search to find it, or to use complex maximization techniques such as those
proposed by Baird [8].

In order to obtain this expression of the greedy control, some assumptions
have to be made about state dynamics and the reward function. In the case
of most motor control problems where a mechanical system is actuated by
forces and torques, state dynamics are linear with respect to control, that is
to say

f(~x, ~u) = A(~x)~u+~b(~x).

Thanks to this property, the greedy control equation becomes

π(~x) = arg max
~u∈U

(

r(~x, ~u)− sγV~w(~x) +
∂V~w
∂~x
·
(

A(~x)~u+~b(~x)
)

)

.

83

CHAPTER 4. CONTINUOUS TD(λ) IN PRACTICE

u1

u2

~r1 + ~a
bcπ(~x)

(a) U bounded by a sphere

u1

u2

~r1 + ~a
bcπ(~x)

(b) U bounded by a cube

Figure 4.1: Linear programming to find the time-optimal control

By removing terms that do not depend on ~u we get:

π(~x) = arg max
~u∈U

(

r(~x, ~u) +
∂V~w
∂~x
·
(

A(~x)~u
)

)

= arg max
~u∈U

(

r(~x, ~u) +

(

At(~x)
∂V~w
∂~x

)

· ~u

)

= arg max
~u∈U

(

r(~x, ~u) + ~a · ~u
)

with
~a = At(~x)

∂V~w
∂~x

For many usual reward functions, this maximization can be performed easily.
The simplest situation is when the reward is linear with respect to control:

r(~x, ~u) = r0(~x) + ~r1(x) · ~u.

This is typically the case of time-optimal problems. The greedy action be-
comes

π(~x) = arg max
~u∈U

(

(~r1 + ~a) · ~u
)

.

Thus, finding π(~x) is a linear programming problem with convex constraints,
which is usually easy to solve. As illustrated on Figure 4.1, it is straightfor-
ward when U is an hypersphere or an hypercube. In the more general case,
π(~x) is the farthest point in the direction of ~r1+~a.

Another usual situation is energy-optimal control. In this case, the reward
has an additional term of

∣

∣~r1(~x) · ~u
∣

∣, which means that the reward is linear
by part. So, the greedy action can be obtained with some form of linear
programming by part.

84

4.2. NUMERICAL INTEGRATION METHOD

Quadratic penalties are also very common. For instance, if the reward is

r(~x, ~u) = r0(~x)− ~utS2~u,

then the optimal control can be obtained by quadratic programming. Fig-
ure 4.2 summarizes the three kinds of control obtained for these three kinds
of reward function when a one-dimensional control is used.

4.2 Numerical Integration Method

The most basic numerical integration algorithm for ordinary differential equa-
tions is the Euler method. If the equation to be solved is

~x(0) = ~x0

~̇x = f
(

~x, π(~x)
)

,

then, the Euler method consists in choosing a time step δt, and calculating
the sequence of vectors defined by

~xn+1 = ~xn + δtf
(

~xn, π(~xn)
)

.

The theory of numerical algorithms provides a wide range of other methods
that are usually much more efficient [53]. Their efficiency is based on the
assumption that f is smooth. Unfortunately, the equation of TD(λ) rarely
meets these smoothness requirements, because the “max” and “arg max” op-
erators in its right-hand side may create discontinuities. In this section, some
ideas are presented that can help to handle this difficulty.

4.2.1 Dealing with Discontinuous Control

Figure 4.3 shows what happens when applying the Euler method to integrate
an ordinary differential equation with a discontinuous right hand: ~x might be
attracted to a discontinuity frontier and “slide” along this frontier. The time
step of the Euler method causes the approximated trajectory to “chatter”
around this line. High-order and adaptive time-step methods are totally in-
efficient in this situation. Besides, if such a high-frequency switching control
is applied to a real mechanism, it may trigger unmodelled system resonances
and cause physical damage.

The theory of this kind of differential equation was introduced by Filip-
pov [27]. At the limit of “infinite-frequency switching”, the solution of the

85

CHAPTER 4. CONTINUOUS TD(λ) IN PRACTICE

π(~x)

a

umax

umin

(a) Time-optimal control: r(~x, u) = r0(~x)

π(~x)

a

umax

umin

(b) Energy-optimal control: r(~x, u) = r0(~x)−
∣

∣r1(~x)u
∣

∣

π(~x)

a

umax

umin

(c) Quadratic penalty: r(~x, u) = r0(~x)− r2(~x)u2

Figure 4.2: Some usual cases of greedy 1D control

86

4.2. NUMERICAL INTEGRATION METHOD

Figure 4.3: Chattering. Dotted lines represent the direction of ~̇x.

differential equation is defined as smoothly following the frontier, at a velo-
city that is a weighted average of velocities on both sides. This velocity is
called the Filippov velocity.

A usual method to integrate such a differential equation consists in re-
placing the discontinuous step in the control by a stiff (but continuous)
approximation [75]. Doya used this method in his continuous TD(λ) ex-
periments [24], replacing steps by sigmoids, thus allowing more advanced
numerical integration methods to be applied. More precisely, he replaced the
optimal “bang-bang” control law

u = umax sign
(∂f

∂u
· ∂V
∂~x

)

by

u = umax tanh
(

10× ∂f

∂u
· ∂V
∂~x

)

in the pendulum swing-up task. The smooth control obtained is plotted on
Figure 4.5(b).

The control law obtained by this smoothing clearly removes all chattering,
but it is also less efficient than the bang-bang control. In particular, it is
much slower to get out of the bottom position. This is because this position
is a minimum of the value function, so it is close to a switching boundary of
the discontinuous optimal control and the sigmoid gives a low value to the
control, whereas it should be constant and maximal. Smoothing the control
works very well near the upright balance position, because the system is
really in sliding mode there, but it works very poorly in the bottom position,
because it is a discontinuity that does not attract the system.

Instead of performing such a spatial low-pass filter on the control law,
it would make more sense to apply a temporal low-pass filter. Actually,
the Filippov velocity can be obtained by using a temporal low-pass filter on
the velocity. So, since the system dynamics are linear with respect to the

87

CHAPTER 4. CONTINUOUS TD(λ) IN PRACTICE

control, the Filippov velocity corresponds to applying an equivalent Filippov
control ~uF , obtained by low-pass filtering the bang-bang control in time. For
instance, this could be done by integrating

~̇uF =
1

τ
(~u∗ − ~uF).

Unfortunately, this kind of filtering technique does not help the numerical
integration process at all, since it does not eliminate discontinuous variables.
Applying a temporal low-pass filter on the bang-bang control only helps when
a real device has to be controlled (this is the principle of Emelyanov et al.’s
[25] “higher-order sliding modes”).

Temporal low-pass filtering does not help to perform the numerical integ-
ration, but there is yet another possible approach. It consists in finding the
control that is optimal for the whole interval of length δt. Instead of

~u∗ = arg max
~u∈U

(

r(~x, ~u)− sγV~w(~x) +
∂V~w
∂~x
· f(~x, ~u)

)

,

which is optimal when infinitely small time steps are taken, the Filippov
control can be estimated by

~uF = arg max
~u∈U

V
(

~x(t+ δt)
)

.

~uF cannot be obtained in closed form as a function of the value gradient,
so it is usually more difficult to evaluate than ~u∗. Nevertheless, when the
dimension of the control space is 1, it can be estimated at virtually no cost
by combining the value-gradient information obtained at ~xn with the value
obtained at ~xn+1 to build a second-order approximation of the value function.
Figure 4.4 and Algorithm 4.1 illustrate this technique. Figure 4.5(c) shows
the result obtained on the pendulum task. It still has a few discontinuities
at switching points, but not in sliding mode.

Unfortunately, it is hard to generalize this approach to control spaces
that have more than one dimension. It is all the more unfortunate as the
system is much more likely to be in sliding mode when the dimension of the
control is high (experiments with swimmers in Chapter 7 show that they are
in sliding mode almost all the time.) It might be worth trying to estimate
~uF , anyway, but we did not explore this idea further. The key problem is
that building and using a second order approximation of the value function
is much more difficult when the dimension is higher. So we are still stuck
with the Euler method in this case.

88

4.2. NUMERICAL INTEGRATION METHOD

x

V

b(x)δt

x x̃(0)

Vu

V1

x̃(u∗)x̃(uF)

b

b

Figure 4.4: x̃(u) = x + b(x)δt + A(x)uδt. The Filippov control uF can be
evaluated with a second order estimation of the value function.

Algorithm 4.1 One-dimensional Filippov control

~xu ← ~x+~b(~x)δt
Vu ← V~w(~xu)
u∗ ← arg maxu

(

∂V~w(~xu)/∂~x · A(~x)u
)

V̇u ← ∂V~w(~xu)/∂~x ·A(~x)u∗ {Theoretical V̇ in an infinitely small time step}
V1 ← V~w

(

~xu + A(~x)u∗δt
)

V̇e ← (V1 − Vu)/δt {Effective V̇ on a step of length δt}
if 2V̇e < V̇u then
u∗ ← u∗ × V̇u/

(

2(V̇u − V̇e)
)

{Filippov control}
end if

89

CHAPTER 4. CONTINUOUS TD(λ) IN PRACTICE

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4
time (seconds)

θ
θ̇

u/umax + 2

(a) Bang-bang control

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4
time (seconds)

θ
θ̇

u/umax + 2

(b) Smooth control

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4
time (seconds)

θ
θ̇

u/umax + 2

(c) Filippov control

Figure 4.5: Some control methods for time-optimal pendulum swing-up. The
value function is approximated with a 15×15 normalized Gaussian network.

90

4.2. NUMERICAL INTEGRATION METHOD

4.2.2 Integrating Variables Separately

The TD(λ) differential equation defines the variations of different kinds of
variables: the state ~x, eligibility traces ~e and weights ~w. All these vari-
ables have different kinds of dynamics, and different kinds of accuracy re-
quirements, so it might be a good idea to use different kinds of integration
algorithms for each of them.

A first possibility is to split the state into position ~p and velocity ~v.
Mechanical systems are usually under a “cascade” form because they are
actually second order differential equations:

{

~̇p = ~v

~̇v = fv(~x,~v, ~u).

It is possible to take advantage of this in the numerical integration algorithm,
by cascading it too. For instance, this can be done by using a first order
integration for ~v and a second order integration for ~p (algorithm 4.2).

Algorithm 4.2 Integration with Split Position and Velocity

while End of trial not reached do
~vi+1 ← ~vi + ~̇viδt

~pi+1 ← ~pi + 1
2
(~vi + ~vi+1)δt {Second order integration}

~ei+1 ← ~ei + ~̇eiδt

~wi+1 ← ~wi + ηHi~eiδt

i← i+ 1

end while

When system dynamics are stiff, that is to say there can be very short and
very high accelerations (this is typically the case of swimmers of Chapter 7),
the Euler method can be unstable and requires short time steps. In this case,
it might be a good idea to separate the integration of eligibility traces and
weights from the integration of state dynamics, using a shorter time step for
the latter.

4.2.3 State Discontinuities

We have considered continuous and differentiable state dynamics so far.
Many interesting real problems, however, have discrete deterministic discon-
tinuities. A typical example is the case of a mechanical shock that causes a
discontinuity in the velocity. Another typical case will be met in Section 6.3:

91

CHAPTER 4. CONTINUOUS TD(λ) IN PRACTICE

the distance to the obstacle ahead for a robot in a complex environment may
have discontinuities when the heading direction varies continuously.

In these discontinuous cases, the main problem is that the Hamiltonian
cannot be computed with the gradient of the value function. It can be
evaluated using an approximation over a complete interval:

H = r − sγV + V̇

≈ r − sγ
V (t+ δt) + V (t)

2
+
V (t+ δt)− V (t)

δt
.

This incurs some cost, mainly because the value function needs to be
computed at each value of ~x for two values of ~w. But this cost is usually
more than compensated by the fact that it might not be necessary to compute
the full gradient ∂V/∂~x in order to get the optimal control1. Changes to the
numerical method are given in algorithm 4.3.

Algorithm 4.3 Integration with accurate Hamiltonian

while End of trial not reached do
~vi+1 ← ~vi + ~̇viδt {or a discontinuous jump}
~pi+1 ← ~pi + 1

2
(~vi + ~vi+1)δt {or a discontinuous jump}

~ei+1 ← ~ei + ~̇eiδt

V1 ← V~wi(~xi+1)

V0 ← V~wi(~xi)

H ← r(~xi)− sγ(V1 + V0)/2 + (V1 − V0)/δt

~wi+1 ← ~wi + ηH~eiδt
i← i+ 1

end while

Practice demonstrated that algorithm 4.3 is better than algorithm 4.2
not only because it runs trials in less CPU time and can handle state discon-
tinuities, but also because it is much more stable and accurate. Experiments
showed that with a feedforward neural network as function approximator,
algorithm 4.2 completely blows up on the cart-pole task (cf. Appendix B)
as soon as it starts to be able to maintain the pole in an upright position,
whereas algorithm 4.3 works nicely. Figure 4.6 shows what happens at sta-
tionary points and why the discrete estimation of the Hamiltonian is better.

1In fact, it is possible to completely remove this cost by not updating weights during
an episode. Weight changes can be accumulated in a separate variable, and incorporated
at the end of the episode.

92

4.3. EFFICIENT GRADIENT DESCENT

V

x

bc bc

x1 x2

Figure 4.6: Example of a stationary point. The state alternates between x1

and x2. The discrete estimation of V̇ has an average of zero, whereas its
computation with the gradient of the value function has a big positive value.

4.2.4 Summary

Integrating the continuous TD(λ) algorithm efficiently is very tricky, in par-
ticular because the right-hand side of the equation is discontinuous, and the
system is often in sliding mode. A few ideas to deal with this have been
presented in this section, but we are still not very far from the lowly Euler
method. Using second order information about the value function works
very well with a one-dimensional control, and generalizing this idea to higher
dimensions seems a promising research direction.

4.3 Efficient Gradient Descent

As explained in Chapter 2, the steepest descent algorithm used in Equa-
tion 3.2.1 is known to perform poorly for ill-conditioned problems. Most
of the classical advanced methods that are able to deal with this difficulty
are batch algorithms (scaled conjugate gradient [39], Levenberg Marquardt,
RPROP [55], QuickProp [26], . . .). TD(λ) is incremental by nature since it
handles a continuous infinite flow of learning data, so these batch algorithms
are not well adapted.

It is possible, however, to use second order ideas in on-line algorithms [49,
60]. Le Cun et al. [37] recommend a “stochastic diagonal Levenberg Marquardt”
method for supervised classification tasks that have a large and redundant
training set. TD(λ) is not very far from this situation, but using this method
is not easy because of the special nature of the gradient descent used in the
TD(λ) algorithm. Evaluating the diagonal terms of the Hessian matrix would

93

CHAPTER 4. CONTINUOUS TD(λ) IN PRACTICE

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 10000 20000 30000 40000 50000 60000 70000

Trials

w1

w2

Figure 4.7: Variations of two weights when applying the basic TD(λ) al-
gorithm to the pendulum swing-up task. A value is plotted every 100 trials.
The function approximator used is a 66-weight feedforward neural network.

mean derivating with respect to each weight the total error gradient over one
trial, which is equal to

∫ tf

t0

−H(t)~e(t)dt.

This is not impossible, but still a bit complicated. An additional vector of
eligibility traces for second-order information would be required, which would
make the implementation more complex.

Another method, the Vario-η algorithm [47], can be used instead. It is
well adapted for the continuous TD(λ) algorithm, and it is both virtually
costless in terms of CPU time and extremely easy to implement.

4.3.1 Principle

Figure 4.7 shows the typical variations of two weights during learning. In
this figure, the basic algorithm (derived from Equation 3.2.1) was applied
to a simple control problem and no special care was taken to deal with ill-
conditioning. Obviously, the error function was much more sensitive to w1

than to w2. w2 varied very slowly, whereas w1 converged rapidly. This
phenomenon is typical of ill-conditioning (see Figure 2.4).

94

4.3. EFFICIENT GRADIENT DESCENT

Another effect of these different sensitivities is that w1 looks much more
noisy than w2. The key idea of Vario-η consists in measuring this noise to
estimate the sensitivity of the error with respect to each weight, and scale
individual learning rates appropriately. That is to say, instead of measur-
ing ill-conditioning of the Hessian matrix, which is the traditional approach
of efficient gradient-descent algorithms, ill-conditioning is measured on the
covariance matrix.

4.3.2 Algorithm

In theory, it would be possible to obtain a perfect conditioning by performing
a principal component analysis with the covariance matrix. This approach
is not practical because of its computational cost, so a simple analysis of the
diagonal is performed:

vi(k + 1) = (1− β)vi(k) + β

(

wi(k + 1)− wi(k)

ηi(k)

)2

,

ηi(k) =
η

√

vi(k) + ε
.

k is the trial number. vi(0) is a large enough value. β is the variance decay
coefficient. A typical choice is 1/100. ε is a small constant to prevent division
by zero. ηi(k) is the learning rate for weight wi. This formula assumes that
the standard deviation of the gradient is large in comparison to its mean,
which was shown to be true empirically in experiments.

4.3.3 Results

Experiments were run with fully-connected feedforward networks, with a
linear output unit, and sigmoid internal units. Observations during rein-
forcement learning indicated that the variances of weights on connections
to the linear output unit were usually n times larger than those on internal
connections, n being the total number of neurons. The variances of internal
connections are all of the same order of magnitude. This means that good
conditioning can be simply obtained by scaling the learning rate of the out-
put unit by 1/

√
n. This allows to use a global learning rate that is

√
n times

larger and provides a speed-up of about
√
n. The biggest networks used in

experiments had 60 neurons, so this is a very significant acceleration.

95

CHAPTER 4. CONTINUOUS TD(λ) IN PRACTICE

4.3.4 Comparison with Second-Order Methods

An advantage of this method is that it does not rely on the assumption
that the error surface can be approximated by a positive quadratic form. In
particular, dealing with negative curvatures is a problem for many second-
order methods. There is no such problem when measuring the variance.

It is worth noting, however, that the Gauss-Newton approximation of
the Hessian suggested by Le Cun et al. is always positive. Besides, this
approximation is formally very close to the variance of the gradient (I thank
Yann Le Cun for pointing this out to me): the Gauss-Newton approximation
of the second order derivative of the error with respect to one weight is

∂2E

∂w2
ij

≈ ∂2E

∂a2
i

y2
j

(with notations of Appendix A). This is very close to

(∂E

∂wij

)2

=
(∂E

∂ai

)2

y2
j .

A major difference between the two approaches is that there is a risk that
the variance goes to zero as weights approach their optimal value, whereas the
estimate of the second order derivative of the error would stay positive. That
is to say, the learning rate increases as the gradient of the error decreases,
which may be a cause of instability, especially if the error becomes zero.
This was not a problem at all in the reinforcement learning experiments that
were run, because the variance actually increased during learning, and never
became close to zero.

4.3.5 Summary

The main advantage of using gradient variance is that, in the case of rein-
forcement learning problems, it is simpler to implement than an estimation
of second order information and still provides very significant speedups. In
order to find out whether it is more efficient, it would be necessary to run
more experimental comparisons.

96

Part II

Experiments

97

Chapter 5

Classical Problems

This chapter gathers results obtained on some classical problems that are
often studied in the reinforcement learning literature. These are the simple
pendulum swing-up problem (which was presented in previous chapters), the
cart-pole swing-up task and the Acrobot. The state spaces of these problem
have a low dimension (less than 4), and the control spaces are in one dimen-
sion. Thanks to these small dimensionalities, linear function approximators
(tile-coding, grid-based discretizations and normalized Gaussian networks)
can be applied successfully. In this chapter, controllers obtained with these
linear methods are compared to results obtained with feedforward neural
networks.

Common Parameters for all Experiments

All feedforward neural networks used in experiments had fully-connected
cascade architectures (see Appendix A). Hidden neurons were sigmoids and
the output was linear. Weights were carefully initialized, as advised by Le
Cun et al. [37], with a standard deviation equal to 1/

√
m, where m is the

number of connections feeding into the node. Inputs were normalized and
centered. For each angle θ, cos θ and sin θ were given as input to the network,
to deal correctly with circular continuity. Learning rates were adapted as
explained in Chapter 4, by simply dividing the learning rate of the output
layer by the square root of the number of neurons. Detailed specification of
each problem can be found in Appendix B.

5.1 Pendulum Swing-up

In order to compare feedforward neural networks with linear function approx-
imators, the continuous TD(λ) algorithm was run on the simple pendulum

99

CHAPTER 5. CLASSICAL PROBLEMS

V

+1

−1

θ

−π

+π

θ̇

+10

−10

Figure 5.1: Value function obtained with a 15 × 15 normalized Gaussian
network (similar to those used in Doya experiments [24])

V

+1

−1

θ

−π

+π

θ̇

+10

−10

Figure 5.2: Value function learnt by a 12-neuron ((12× 11)÷ 2 = 66-weight)
feedforward neural network

100

5.1. PENDULUM SWING-UP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000 1200

Trials

〈

H2
〉

t

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs
rs
rs
rs

rsrs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs
rs

rsrs

rs

rs

rs
rs
rs

rs

rs

rs

rs
rsrs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs
rs
rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rsrs

rs

rs

rsrsrs

rs

rs

rs

rs
rs

rs

rs
rs

rs
rs
rs
rsrs

rs

rs

rs

rs
rsrs
rs
rsrsrs

rs

rs
rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rs

rs
rs

rs

rs

rs

rs

rsrs

rs

rs
rsrs
rs
rs
rs

rs

rsrsrsrs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rs

rsrs

rs

rs
rs
rs

rsrs
rs
rs

rs

rs
rs
rs

rs

rs
rs
rs

rs
rs

rs
rsrsrsrs
rs
rs
rsrs

rs
rsrs

rs

rs

rs

rs

rs

rs

rsrs
rs

rs

rsrs

rs

rs

rs

rs

rs
rs
rsrsrs

rs

rs

rs
rs
rsrs

rs

rs
〈

H2
〉

S
+

+

+

+
+

+
++
+
+
++++++

+
++
+
+
++
+

+

+
++

+
++
+
+
+
++

++
++

+
+++

+

+

+
+
++
++
+
+
++++

++
++
+++
+
+
++++++

+

++
++
+
+
+
+

+
+++++

+
+++

+

+
+++
+
+
++
++
+

+
+++++

+
+
+

+
+
++
++++++

+
+
+++

+

+

+++++++
+
++++

+++++
++++

+
++
+

+
+
+

+++
+++++++

+
++++

+++++
+
+
++++++

+
++
++
+++

+
++++

+++
++
+++++

+
++
+
++
++++

+
+++++++++++++

+++++++

+
〈V 〉S

rsrsrs
rs
rs
rs
rs
rs

rsrs
rsrs
rs
rs

rsrs
rs
rs

rs
rs
rs
rs
rs

rs

rsrs

rs

rs
rsrs
rs
rs
rs
rsrs
rs
rsrs
rsrs

rs
rs
rs

rsrsrs
rs
rs
rs

rs

rsrsrsrs
rs

rsrsrsrs
rsrs
rs
rs
rsrs
rsrsrs
rs
rsrsrsrs
rs
rsrs
rs
rsrsrs
rs
rsrs
rs

rsrs

rs
rs
rs
rs
rsrs
rs
rsrs
rsrs
rsrsrsrsrs

rs
rs
rs
rs
rs
rsrs
rs
rsrsrsrsrsrs

rsrs
rsrs
rsrs
rs
rs
rsrs
rs
rs

rs
rsrsrsrs
rs

rsrsrs
rs
rsrs
rs
rsrsrsrs
rsrsrs

rsrs
rsrsrsrsrsrs

rs
rs
rs

rs
rs
rs
rs
rsrsrsrsrs

rs
rs
rsrsrsrs
rs
rsrsrs

rs
rsrsrsrsrsrsrs

rsrsrsrs
rs
rsrsrs
rsrsrsrs
rs
rs
rsrsrsrsrs

rs
rs
rs
rsrs
rs
rs
rs
rs
rsrs
rs
rsrs
rs
rsrs

rs

rsrsrsrsrs
rsrs

rsrs
rs
rsrsrs
rsrs

rs

Figure 5.3: Progress of learning for the 15×15 normalized Gaussian network
on the pendulum swing-up task. 〈V 〉 and 〈H〉 were estimated by averaging
5000 random samples.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000 12000

Trials

〈

H2
〉

t
rs

rs

rs

rs

rs
rs
rs
rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rsrs

rs
rs

rs
rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs
rs
rs
rs

rs
rsrs

rs

rs
rs
rs

rs

rs
rs

rs

rs

rs
rsrsrs
rsrs

rsrsrsrsrs

rs

rs
rs

rs
rs

rs

rs

rs

rs
rsrs
rs
rsrsrs
rs

rsrs

rs

rs

rs
rsrs

rsrsrs
rs

rs
rs
rs
rsrs
rs

rs
rs

rsrs

rs

rs

rs
rs
rs
rs

rs
rs
rs

rs
rsrsrs
rsrs
rsrsrsrs
rs

rs

rsrsrsrs
rs
rs

rs
rsrs
rs
rs
rsrsrs
rs

rs
rs

rs
rs
rsrs
rsrsrs
rsrs
rs
rsrsrs
rsrsrsrs
rs
rsrsrsrsrs

rs

rs
rs
rsrs
rs
rs

rs
rs

rs

rs

rsrs

rs

rsrs

rs

rs
rs
rsrs
rs
rsrsrsrsrsrsrs

rsrsrs
rsrs

rs

rs

rsrsrs
rs
rs
rs

rsrs

rsrsrsrsrs
rsrsrsrs
rs
rs
rs
rs
rsrs
rsrsrsrs
rsrs

rs
〈

H2
〉

S
+

+

+

+

+ ++

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+
+

+

+
+

++
+
+

+
++
+
+
+

+
+

+

+
++
+++

++
+
+
+++++

+
++
+
+++

+
++++

+
+

+
+
++++

+
++++

++++
+

++
+

++++
+

+
+
+
+
++

+
+
++
+
+
++
+
++
+

+

+

+
+++

+
+
+
+

+
++++

+
+
+++

+
+
+
+
+
++
+
+

+

++++
+
+++

+++
++
++
+
++
+
+++

+
++++

+++
+

+++++++++
+++++

+
++
+
+
+
++
+
++++++

+
+++

++
+
+++

++
+
+

+
〈V 〉S

rs

rs

rsrs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs
rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rsrs

rs

rsrs

rs

rs

rs
rs
rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs
rs

rs

rs

rs

rs

rsrs

rs
rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs
rs

rs

rs
rs
rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs
rs
rs
rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rsrs

rs
rs

rs

rs

rs

rs

rs

rsrs

rs
rs
rs

rs

rs

rs

rs

rs

rs
rs

rs
rsrs

rs

rs

rs

rs

rs
rs

rs
rs

rs

rs

rs

rs

rs

rs
rs

rsrs

rsrs

rs

rs

rs

rs

rs
rs
rs

rs
rsrsrs

rs

rs

Figure 5.4: Progress of learning for the 12-neuron feedforward network on
the pendulum swing-up task

101

CHAPTER 5. CLASSICAL PROBLEMS

swing-up task with a 12-neuron feedforward neural network and a 15 × 15
normalized Gaussian network. Parameters for the feedforward network were
η = 1.0, trial length = 1 s, δt = 0.03 s, sλ = 5 s−1. Parameters for the
normalized Gaussian network were the same, except η = 30. Results are
presented in figures 5.1, 5.2, 5.3 and 5.4.

By comparing figures 5.1 and 5.2 to Figure 1.12, it is clear that the feed-
forward neural network managed to obtain a much more accurate estimation
of the value function. In particular, the stiff sides of the central ridge are
much stiffer than with the normalized Gaussian network. Being able to es-
timate this kind of discontinuity accurately is very important, because value
functions are often discontinuous. Sigmoidal units allow to obtain good ap-
proximations of such steps.

Another significant difference between these two function approximators
is the magnitude of the learning rate and the time it takes to learn. The good
locality of the normalized Gaussian network allowed to use a large learning
coefficient, whereas the feedforward neural network is much more “sensitive”
and a lower learning coefficient had to be used. The consequence is that
the feeforward network took many more trials to obtain similar performance
(Figure 5.3 and Figure 5.4).

Notice that the plot for the feedforward network was interrupted at 12,000
trials so curves can be easily compared with the normalized Gaussian net-
work, but learning continued to make progress long afterwards, reaching a
mean squared Hamiltonian of about 0.047 after 100,000 trials, which is three
times less than what the normalized Gaussian network got. Figure 5.2 was
plotted after 100,000 trials.

5.2 Cart-Pole Swing-up

The cart-pole problem is a classical motor control task that has been studied
very often in control and reinforcement-learning theory. In its traditional
form, it consists in trying to balance a vertical pole attached to a moving
cart by applying an horizontal force to the cart. Barto first studied this
problem in the framework of reinforcement learning [11]. Anderson first used
a feedforward neural-network to estimate its value function [2]. Doya studied
an extension of the classical balancing problem to a swing-up problem, were
the pole has to be swung up from any arbitrary starting position. He man-
aged to solve this problem by using the continuous TD(λ) algorithm with a
7× 7× 15× 15 normalized Gaussian network on the (x,ẋ,θ,θ̇) space [24].

Figures 5.5, 5.6 and 5.7 show the learning progress and typical trajectories
obtained by applying the TD(λ) algorithm with a 19-neuron fully-connected

102

5.2. CART-POLE SWING-UP

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160

Trials/1000

〈

H2
〉

x
× 3

rs

rs

rs
rsrsrs
rsrs
rs
rsrsrs
rs
rs

rsrsrs
rs

rs
rsrsrs
rs
rs
rs
rs
rs
rs
rsrs
rs
rs

rs

rsrs
rsrsrs
rs

rs
rs
rs

rs
rs
rsrs

rs

rs

rs
rs
rsrsrs

rs

rs
rs
rs
rsrsrsrs

rs

rs

rsrs
rsrsrs
rsrs
rs

rs

rsrsrs

rsrs
rs
rs
rsrsrsrs
rsrsrs
rs
rsrsrs
rs

rs
rs
rsrsrs
rsrs
rsrs
rsrs
rs
rs
rs
rs

rsrs
rs

rs
rs
rs
rs
rs
rs

rsrs

rs
rs
rs
rs

rs
rs
rsrs
rs

rs
rs

rs

rsrs

rsrs
rs
rs

rs

rs
rs

rs

rs
rs

rs

rsrs
rs
rs
rsrs
rs
rsrs
rs
rs
rs
rs
rsrs

rs

rs

rs

rs

rs

rsrsrs
rsrs

rsrs

rs

rs

rsrs

rs
rs
rs

rs

rs
rs
rsrs

rs

rs
rs
rsrs

rs

rs

rs

rs

rs
rs

rs
rs
rs

rs

rs
rs

rs
rs
rsrs
rs

rsrs

rs
rs

rs

rs
rs

rs

rs
rsrs

rs

rsrs

rs

rs
rs
rs

rs
rs
rsrs

rs
rs
rs

rs

rs

rs

rs

rs
rs
rs
rs
rsrs
rs

rs

rs
rs

rs
rs

rs

rs

rsrs

rs
rsrs
rs

rs

rsrs

rs

rs

rs

rs

rs

rsrs

rs

rsrsrs
rs
rs
rsrs

rs

rs

rs

rs
rs

rs

rs

rsrs
rs
rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs
rs

rs

rs
rs

rs

rs
rsrs

rs

rs

rs
rs

rsrs

rs
rs
rs

rs

rs

rs
rs

rs
rs
rs
rsrs

rs
rs

rs

rs

Total Reward

++

+

+

+

++

+

++
+

+
+
+
++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

++

++++

+
+

+

+

++

+

+

+
++
+
+
++

+
+

+

+

+

+
+

+

+

+

+

+++
+
++++++

+

+

++
+

++
++

++

++
++
+
+

+
++
+
+

+

+
+

+

+

+

++
+
+
++
+
++
+

+
+
+

+

++

+

+

+

++

+

++

+

+

+

+

+

+

+

+

+

+

+
+
+++

+

++

+

+

+

++

+

+

+

+

+++

+

++
+++

+

+++++++

+
+

++++++++
+++++++++

++++++++++++++++++++++
+++

+

Figure 5.5: Progress of learning for a 19-neuron (171-weight) feedforward
neural network on the cart-pole swing-up task

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5

Time in seconds

θ
x

u/umax + 2

Figure 5.6: Path obtained with a 19-neuron feedforward neural network on
the cart-pole swing-up task

103

CHAPTER 5. CLASSICAL PROBLEMS

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

(a) Swing-up from the bottom position

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bcbc bcbc bcbc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

(b) Swing-up, starting close to the right border

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

(c) Starting from the upright position, close to the right border

Figure 5.7: Cart-Pole trajectories. The time step of figures is 0.08 seconds.

104

5.3. ACROBOT

feedforward neural network. The learning coefficient was η = 0.03, episodes
were 5-second long, sλ = 2s−1 and the learning algorithm was integrated
with an Euler method using a time step of 0.02 seconds. The reward is the
height of the pendulum. When the cart bumps into the end of the track, it is
punished by jumping into a stationary state with a constant negative reward
(full details can be found in Appendix B.)

Results of simulation show that the 19-neuron feedforward network learnt
to swing the pole correctly. In comparison with Doya’s results, learning took
significantly more simulated time than with a normalized Gaussian network
(about 500,000 seconds instead of about 20,000). This is similar to what had
been observed with the simple pendulum. Trajectories obtained look at least
as good as Doya’s. In particular, the feedforward neural-network managed to
balance the pole in one less swing, when starting from the bottom position in
the middle of the track (Figure 5.7). This might be the consequence of a more
accurate estimation of the value function obtained thanks to the feedforward
neural network, or an effect of the better efficiency of Filippov control (Doya
used smoothed control).

A significant difference between the feedforward neural network used here
and Doya’s normalized Gaussian network is the number of weights: 171 in-
stead of 11,025. This is a strong indication that feedforward neural networks
are likely to scale better to problems in large state spaces.

5.3 Acrobot

The acrobot is another very well-known optimal control problem [64] (see
Appendix B.2). Here are some results of reinforcement learning applied to
this problem:

• Sutton [66] managed to build an acrobot controller with the Q-learning
algorithm using a tile-coding approximation of the value function. He
used umax = 1 Nm, and managed to learn to swing the endpoint of the
acrobot above the bar by an amount equal to one of the links, which is
somewhat easier than reaching the vertical position.

• Munos [46] used an adaptive grid-based approximation trained by value
iteration, and managed to teach the acrobot to reach the vertical po-
sition. He used umax = 2 Nm, which makes the problem easier, and
reached the vertical position with a non-zero velocity, so the acrobot
could not keep its balance.

• Yoshimoto et al. [79] managed to balance the acrobot with reinforce-
ment learning. They used umax = 30 Nm, which makes the problem

105

CHAPTER 5. CLASSICAL PROBLEMS

much easier than with 1 Nm.

Boone [18, 17] probably obtained the best controllers, but the techniques he
used are not really reinforcement learning (he did not build a value function)
and are very specific to this kind of problem.

In our experiments, physical parameters were the same as those used by
Munos (umax = 2 Nm). The value function was estimated with a 30-neuron
(378-weight) feed-forward network. η = 0.01, trial length = 5s, δt = 0.02s,
sλ = 2. Figure 5.8 shows the trajectory of the acrobot after training. It
managed to reach the vertical position at a very low velocity, but it could
not keep its balance.

Figure 5.9 shows a slice of the value function obtained. It is not likely
that a linear function approximator of any reasonable size would be able to
approximate such a narrow ridge, unless some extremely clever choices of
basis functions were made.

5.4 Summary

These experiments show that a feedforward neural network can approximate
a value function with more accuracy than a normalized Gaussian network,
and with many less weights. This is all the more true as the dimension of
the state space is high, which gives and indication that feedforward neural
networks might be able to deal with some significantly more complex prob-
lems. This superior accuracy is obtained at the expense of requiring many
more trials, though.

106

5.4. SUMMARY

Figure 5.8: Acrobot trajectory obtained with a 30-neuron (378-weight) feed-
forward neural network. The time step of this animation is 0.1 seconds. The
whole sequence is 12-second long.

107

CHAPTER 5. CLASSICAL PROBLEMS

V

+0.4

−0.4

θ1

−π

+π

θ̇1

+10

−10

Figure 5.9: A slice of the Acrobot value function (θ2 = 0, θ̇2=0), estimated
with a 30-neuron (378-weight) feed-forward neural network.

108

Chapter 6

Robot Auto Racing Simulator

This chapter contains a description of attempts at applying reinforcement
learning to a car driver in the Robot Auto Racing Simulator. This is a
problem with 4 state variables and 2 control variables that requires a lot of
accuracy.

6.1 Problem Description

The Robot Auto Racing Simulator was originally designed and written by
Mitchell E. Timin in 1995 [70]. This is the description he gave in his original
announcement:

The Robot Auto Racing Simulation (RARS) is a simulation of
auto racing in which the cars are driven by robots. Its purpose is
two-fold: to serve as a vehicle for Artificial Intelligence develop-
ment and as a recreational competition among software authors.
The host software, including source, is available at no charge.

The simulator has undergone continuous development since then and is still
actively used in a yearly official Formula One season.

6.1.1 Model

The Robot Auto Racing Simulator uses a very simple two-dimensional model
of car dynamics. Let ~p and ~v be the two-dimensional vector indicating the
position and velocity of the car. Let ~x = (~p,~v)t be the state variable of the
system. Let ~u be the command. A simplified model of the simulation is

109

CHAPTER 6. ROBOT AUTO RACING SIMULATOR

described by the differential equations:
{

~̇p = ~v

~̇v = ~u− k‖~v‖~v
(6.1.1)

The command ~u is restricted by the following constraints (Figure 6.1):

‖~u‖ ≤ at

~u · ~v ≤ P

m

(6.1.2)

k, at, P and m are numerical constants that define some mechanical charac-
teristics of the car:

• k = air-friction coefficient (aerodynamics of the car)

• P = maximum engine power

• at = maximum acceleration (tires)

• m = mass of the car

Numerical values used in official races are k = 2.843 × 10−4 kg · m−1, at =
10.30 m · s−2 and P/m = 123.9 m2 · s−3.

In fact, the physical model is a little more complex and takes into con-
sideration a friction model of tires on the track that makes the friction coef-
ficient depend on slip speed. The mass of the car also varies depending on
the quantity of fuel, and damage due to collisions can alter the car dynamics.
The simplification proposed above does not significantly change the problem
and will make further calculations much easier.

6.1.2 Techniques Used by Existing Drivers

RARS has a long history of racing, and dozens of drivers have been pro-
grammed. They can be roughly split into two categories:

• Cars that compute an optimal path first. This method allows to use
very costly optimization algorithms. For instance, Jussi Pajala optim-
ized trajectories with A∗, Doug Eleveld used a genetic algorithm in
DougE1 (and won the 1999 F1 season), and K1999 used gradient des-
cent (and won the 2000 and 2001 F1 seasons)(see Appendix C). A
servo-control is used to follow the target trajectory. Drivers based on
this kind of methods are usually rather poor at passing (K1999 always
stick to its pre-computed trajectory), but often achieve excellent lap
time on empty tracks.

110

6.2. DIRECT APPLICATION OF TD(λ)

~u · ~v =
P

m

x

y

~a

~v

bc~u1

bc
~u2

bc

~u∗

Figure 6.1: The domain U of ~u

• Cars that do not compute an optimal path first. They can generate
control variables by simply observing their current state, without re-
ferring to a fixed trajectory. Felix, Doug Eleveld’s second car, uses
clever heuristics and obtains very good performance, close to those of
DougE1. This car particularly shines in heavy traffic conditions, where
it is necessary to drive far away from the optimal path. Another good
passer is Tim Foden’s Sparky. These car are usually slower than those
based on an optimal path when the track is empty.

Reinforcement learning also has been applied to similar tasks. Barto et
al [10] used a discrete “race track” problem to study real-time dynamic pro-
gramming. Koike and Doya [34] also ran experiments with a simple dynamic
model of a car, but their goal was not racing.

Experiments reported in this chapter were motivated by the project to
build a controller using reinforcement learning, that would have had both
good trajectories, and good passing abilities. This ambition was probably a
bit too big, since our driver failed to obtain either. Still, experiments run on
empty tracks were instructive. They are presented in the next sections.

6.2 Direct Application of TD(λ)

In the first experiments, TD(λ) was directly applied to the driving problem,
using slightly different (more relevant) state variables to help the neural net-
work to learn more easily. These variables describe the position and velocity
of the car relatively to the curve of the track (see Figure 6.2). The track is
defined by its curvature as a function of the curvilinear distance to the start

111

CHAPTER 6. ROBOT AUTO RACING SIMULATOR

z

l

θ
~ı

~

~v

Figure 6.2: The new coordinate system

line c(z). The half-width of the track is L(z). The position and velocity of
the car are described by the following variables:

• z is the curvilinear abscissa from the start line along the central lane
of the track.

• l is the distance to the center of the track. The car is on the left side
of the track when l > 0 and on the right side when l < 0. It is out of
the track when |l| > L(z).

• v is the car velocity (v = ‖~v‖)

• θ is the angle of the car velocity relatively to the direction of the track.
The car moves toward the left side of the track when θ > 0 and toward
the right side when θ < 0.

Besides, the control ~u is decomposed into two components:

~u = ut~ı+ un~

where ~ı is a unit vector pointing in the direction of ~v and ~ is a unit vector
pointing to the left of ~ı.

(6.1.1) becomes:

ż =
v cos θ

1− c(z)l
l̇ = v sin θ

v̇ = ut − kv2

θ̇ =
un
v
− c(z)ż

112

6.2. DIRECT APPLICATION OF TD(λ)

b b
b

b
b
b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
bbbb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b b
b
b

b

b

b

b

b

b
b
b
b
b
b
b b b b

Figure 6.3: Path obtained with a 30-neuron feedforward network. A dot is
plotted every 0.5 second.

(6.1.2) becomes:

ut
2 + un

2 ≤ at
2

utv ≤
P

m

The two conditions for this model to be valid are:

v > 0, (6.2.1)
c(z)l 6= 1. (6.2.2)

Figure 6.3 shows a simulated path obtained with a 30-neuron feedforward
neural network. Learning parameters were

• Trial length: 5.0 s

• Simulation time step: 0.02 s

• sγ = 1/26 s−1

• sλ = 1 s−1

The reward was the velocity. The controller did not much more than prevent
the car from crashing.

113

CHAPTER 6. ROBOT AUTO RACING SIMULATOR

D

bc

C < 0

α

Figure 6.4: D, α and C are some relevant features of the current state

6.3 Using Features to Improve Learning

Features are a key idea in neuro-dynamic programming [15]. It consists in
adding some redundant relevant inputs to the function approximator in order
to make its learning easier.

The results obtained by the straight implementation of the continuous
TD(λ) algorithm were rather poor. The reason is that it was not given data
that is easy to handle. For instance, a human driver would have no difficulty
to see that a straight fits in the final S curves of clkwis.trk. He would use
this information to drive fast and straight across them. Learning to do this
with the neural network used previously is hard since this straight line has a
very complex shape in the (z, l, v, θ) space.

So, some more useful data was added as input to the neural network to
make this learning easier. An obvious relevant information for any system
that tries to avoid obstacles is the distance D to the wall ahead. The angle
α of the velocity with respect to this wall is interesting too. The curvature
C of this wall was used as well (see Figure 6.4).

It was necessary to compute the derivatives of these variables in order to
be able to compute the optimal control:

Ḋ = −v +Dθ̇ tanα

α̇ = θ̇

(

1− CD

cosα

)

Ċ = 0.

It is very important to note that these variables are discontinuous. Even

114

6.4. CONCLUSION

b b b b b b b b b
b

b
b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

bbb
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b
b

b

b

b

b

b

b
b

b

Figure 6.5: Path improved thanks to features (38 seconds instead of 46
seconds)

when they vary continuously, their variations may be very stiff when cos(α) is
close to zero. The consequence of this discontinuity is that the Hamiltonian
must be approximated as explained in Section 4.2.3. The algorithm does not
converge otherwise. As expected, results obtained were much better than
without features (Figure 6.5). There is still a long way to go to K1999’s
performance, though (K1999 completes one lap in about 30 seconds).

6.4 Conclusion

These experiments show that reinforcement learning applied to the Robot
Auto Racing Simulator works, but drivers obtained cannot compete with the
best cars. It might have been possible to improve them by adding more rel-
evant features (those used by Felix, for instance), but it is not likely that it
would have been enough to close the gap with the best drivers. Using the
relative position of the car with respect to a pre-computed path (as features)
might be a more interesting alternative, though. Anyway, the problem of
creating a good passer that could beat K1999 is still open and very challen-
ging.

115

Chapter 7

Swimmers

Control problems that have been tested in previous chapters have a rather
small dimensionality (≤ 4). Experiment results with these problems tend to
indicate that feedforward neural networks could deal accurately with systems
with many more independent state variables. In this chapter, this intuition is
confirmed by successfully applying feedforward neural networks trained with
continuous TD(λ) to complex swimmers. The most complex of them has 12
state variables and 4 control variables, which is significantly beyond the com-
plexity of some of the most difficult dynamical motor control problems that
have been solved by reinforcement learning, such as Randløv and Alstrøm’s
bicycle [54] or Morimoto and Doya’s robot [42] (both have 6 state variables).

7.1 Problem Description

The swimmers to be controlled are made of three or more segments (thus
providing a large scale of problems, from the simplest to any arbitrarily com-
plex swimmer), connected by articulations and moving in a two-dimensional
pool. Control variables are torques applied at these articulations. The goal
is to swim as fast as possible to the right, by using the friction of water.

The state of a n-segment swimmer is defined by the n angles of its seg-
ments, the two Euclidian coordinates Gx and Gy of its center of mass, and
the n + 2 derivatives of these variables. That makes a total of 2n + 4 state
variables. The control variables are the n − 1 torques applied at segment
joints. The complete model of this system can be found in Appendix B.

In fact, since the goal is to swim in a given direction (r(~x, ~u) = Ġx), the
value function and the optimal control do not depend on Gx and Gy. This
means that actually, there are only 2n+ 2 significant state variables.

117

CHAPTER 7. SWIMMERS

7.2 Experiment Results

Figures 7.1, 7.2, 7.3, 7.4 show swimming styles obtained with a variety of
swimmers and function approximators. Since the state space is isotropic
(all directions are identical), it is possible to tell a swimmer to swim in any
direction by rotating its state variables. On these figures, swimmers were
told to perform a U-turn after a few seconds.

Unlike the simpler problems that were presented in the previous chapters,
many unstabilities were observed during learning. Most of them are not well
understood yet, and would require more investigations.

Figure 7.5 shows instabilities recorded when using a 30-neuron neural net-
work to train a 3-segment swimmer. The reason for these instabilities are not
clear, but the shape of the performance curve is strikingly similar to results
obtained by Anderson [3] on a simple Q-learning experiment with feedfor-
ward neural networks. In the case of Anderson’s experiments, instabilities
were related to an insufficient number of neurons. In order to test if more
neurons would help, the learning experiment was run again with 60 neurons
instead of 30. Results are plotted on Figure 7.6. Training was much more
stable. After these 2,500,000 trials, performance kept a high level during
more than 10,000,000 trials, after which learning was stopped. This does not
prove that there would not have been instabilities, but, at least, it is much
better than with 30 neurons.

Figure 7.7 shows the learning of a 5-segment swimmer with 60 neurons.
Learning made steady progress during the first 2,500,000 trials, but then,
performance suddenly collapsed. Unlike the 3-segment instabilities of Fig-
ure 7.5, the 5-segment swimmer did not manage to recover from this crisis,
and its neural network blew up completely. What happened exactly is still
a mystery.

7.3 Summary

These experiment results clearly demonstrate the superior generalization cap-
abilities of feedforward neural networks. In fact, it is extremely unlikely that
such a high-dimensional problem could be solved with a linear function ap-
proximator. Besides, some instabilities were observed. They might be caused
by the insufficient size of the networks used, but this hypothesis would re-
quire more investigation. These swimmers clearly show the strength of the
dynamic programming approach: with very little computing power, the con-
troller can handle instantaneously any unexpected direction change.

118

7.3. SUMMARY

Figure 7.1: A 3-segment swimmer trained with a 30-neuron network. In the
first 4 lines of this animation, the target direction is to the right. In the last
8, it is reversed to the left. Swimmers are plotted every 0.1 seconds.

119

CHAPTER 7. SWIMMERS

Figure 7.2: A 4-segment swimmer trained with a 30-neuron network. In the
first 7 lines of this animation, the target direction is to the right. In the last
3, it is reversed to the left. Swimmers are plotted every 0.2 seconds.

120

7.3. SUMMARY

Figure 7.3: A 4-segment swimmer trained with a 60-neuron network. In the
first 4 lines of this animation, the target direction is to the right. In the last
4, it is reversed to the left. Swimmers are plotted every 0.1 seconds.

121

CHAPTER 7. SWIMMERS

Figure 7.4: A 5-segment swimmer trained with a 60-neuron network. In the
first 5 lines of this animation, the target direction is to the right. In the last
8, it is reversed to the left. Swimmers are plotted every 0.1 seconds.

122

7.3. SUMMARY

-5

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600

Trials/1000

Performance

rsrs
rs
rsrsrs
rsrs
rs
rsrsrsrsrsrs
rsrsrs
rs
rsrs
rs
rsrs
rs
rs

rs

rs
rs

rs
rs
rsrs
rsrs

rs

rsrsrs
rs
rs

rsrs
rs

rs

rs

rsrs

rs

rs
rs
rs
rs
rsrs

rs

rsrs
rs
rsrs

rsrsrs
rsrs
rsrs

rs
rs
rs
rs

rsrs

rs
rs
rs
rsrsrs
rs
rs

rsrs

rs
rs

rs

rsrs
rs
rs
rs
rs
rs
rs
rsrsrs
rs

rs
rsrsrsrs
rs
rs
rs
rs

rs
rsrsrs
rsrsrs
rs
rsrsrs
rsrsrs
rsrs
rsrsrsrs

rsrs

rs
rsrsrs
rsrsrs
rsrs

rs
rs
rs

rs

rs
rs
rsrs
rsrsrs
rs
rs
rs
rs
rs
rs
rs
rsrs

rs
rsrs
rsrs
rsrs

rs
rs

rs

rs

rs

rsrs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs
rsrsrs

rs

rs
rsrs

rs

rs

rsrsrs
rs

rs

rs
rs

rsrs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

rs

rsrs

rs

rs

rs
rs

rs

rsrs

rs

rsrs

rs

rsrs

rs
rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs
rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs
rsrsrsrs
rsrs
rs
rs

rs

rs

rs

rsrs

rs

rs
rs
rs
rsrsrs
rs
rs
rs

rsrs

rsrs

rsrs
rs
rs

rs

rsrs

rs

rs

rsrs

rs
rs
rsrs

rsrs

rs

rs
rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rs
rs

rs
rs

rs

rs

rsrsrs
rs
rsrsrs

rs
rs
rsrs

rs
rs
rsrs
rsrsrsrsrsrs

rs

rs

rs
rsrs
rs
rs
rs
rs
rs
rsrs

rs
rs

rs
rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs
rs

rs

rsrsrs

rs
rs
rs
rs
rs
rs
rs
rsrs
rsrs
rs
rs

rs

rsrs

rs

rsrs

rsrsrs
rs

rsrs
rsrsrsrs
rsrsrs
rs
rs
rs

rsrs

rs
rs
rs
rs

rs

rs

rs
rs
rsrs
rs

rsrs
rs
rs

rs

rs

rs

rs

rsrs

rs
rs
rs
rs
rsrs

rs
rsrs

rs

rsrs

rs
rsrs

rs
rs

rs

rs

rs

rs

rs

rs

rsrs
rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rsrs

rs
rs
rsrsrs

rsrsrs

rsrs
rs

rs

rs

rs

rs

rsrs

rs
rs
rs
rsrs

rs

rs

rs

rs

rs

rs

rs
rs
rs

rs

rsrs

rs

rsrs

rsrs
rsrsrs
rs

rsrs
rs

rs

rs

rs

rs

rs
rs

rs

rsrsrs

rs

rsrs
rs

rsrs

rs
rs
rs

rsrs
rs
rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs
rs
rsrs

rsrs

rs

rs

rs
rs
rs

rs
rsrs
rsrs

rs
rs
rs

rs

rs
rs
rs

rsrs

rs

rs

rs

rs
rs
rs
rs
rs

rs

rs

rs
rsrsrsrs

rs

rs

rs

rs

rs

rs

rsrs

rs
rsrsrs

rs

rs
rs
rs
rsrs
rs
rs
rs
rs

rs

rs

rs

rsrs

rs
rs

rs

rs

rs
rs
rs

rsrsrs

rs

rsrsrsrsrs

rs

rs
rsrsrs
rs
rs
rs

rs
rs

rs

rs

rs

rs

rs

rs
rs
rs

rs

rs

rsrs
rs

rsrs

rs

rs

rs
rsrs
rs
rsrs
rs

rsrs

rs

rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rsrs

rsrs

rs
rs

rs

rs
rs

rs

rs

rs
rs
rs
rs

rs

rs

rs

rs
rs

rs

rs

rsrs
rs

rsrs

rs

rs

rs

rs

rsrs

rs

rsrs

rsrs
rs

rs

rsrs

rs

rs

rs
rs
rsrsrs
rsrs

rs

rs

rs

rs

rsrs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs

rs

rs

rs
rsrs
rsrs
rs

rs
rs
rs
rsrs
rs
rs

rs
rsrs
rs

rsrs
rsrsrsrsrs
rsrsrs

rs

rs
rs
rs

rs

rs

rs

rsrs
rs

rs
rs

rs
rs

rs
rs
rs

rs
rs
rs

rs
rs

rs

rs
rs

rs

rsrs
rs

rs

rs

rsrs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs
rs
rs

rs

rs

rs

rsrs

rs

rsrsrs
rs
rsrs
rsrs

rs
rs
rs
rsrsrs
rs
rs
rsrsrs
rs
rsrsrs
rsrsrsrs
rs
rs
rsrsrsrs
rsrs
rs
rs
rsrsrsrsrsrs
rs
rs
rsrs
rsrs
rs
rs
rs
rs
rsrsrsrsrsrs
rsrs
rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rsrs

rs

rsrs

rs
rsrsrs
rs
rsrsrsrsrs
rsrs
rs
rsrs
rsrsrs
rsrsrs
rsrsrs
rs
rsrsrs
rs
rs
rs
rs

rs

rs

rsrs

rs
rs
rsrsrsrs
rsrs
rs
rsrsrs
rsrs
rs
rs
rs
rs
rs
rsrs
rs
rsrs
rs
rs

rs

rs

rs
rs
rsrsrsrsrs

rs
rs
rs

rsrs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs
rs
rsrs
rs
rs
rs

rs

rs
rs
rs
rs
rsrs
rsrsrs
rs
rs
rs

rs

rs

rs
rs
rsrs

rsrs
rs

rs

rs
rsrsrs
rsrsrs

rs
rs

rsrs

rs

rs
rs
rs

rs
rs

rs
rs

rs

rs

rsrs
rs

rs

rsrs
rs

rs

rs
rs
rs

rsrs
rs
rs

rs
rs
rs
rs

rs

rs

rs

rs

rsrs

rs
rs

rs

rs
rs

rs

rs
rs
rsrs

rsrs
rsrs

rs

rsrs

rs

rsrs

rs

rs

rs

rs
rs

rs
rsrs

rs

rs

rs

rs
rs

rsrs

rs

rsrs

rs

rs
rsrs

rs
rs

rs

rs
rs
rs

rs

rs

rs
rs
rs

rs

rs

rs

rs

rsrs

rs

rs
rs

rs
rs
rsrs
rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs
rs

rs

rs

rs

rs
rs
rs

rs
rs

rs

rs
rs
rs
rs
rs

rsrs

rs
rs

rsrs
rsrs

rs
rs

rs

rs

rsrs

rs

rs
rs

rs

rs

rsrs

rs
rsrsrs

rs

rs

rs

rs

rs

rs

rsrsrsrs

rs

rs

rs
rs

rs

rs
rs
rs

rs

rs
rs
rs
rs

rs

rs

rs
rs

rs
rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

rsrs

rs
rs

rsrs

rsrs

rsrs

rsrs

rs

rsrs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rsrs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs
rs

rs

rs

rsrs

rs

rs
rs

rs

rs
rsrs

rs

rs
rs

rs

rs

rsrs

rs
rs
rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrsrs

rs

rs

rsrsrs
rs
rs
rs

rsrs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rsrs

rs
rs

rs

rs

rs
rs
rs

rs

rs

rs

rs

rs

rs
rs
rs
rs

rs
rs
rsrs

rs
rs
rsrs
rs
rsrs

rs
rs

rs

rsrs
rs
rsrs

rs

rs

rsrs

rs

Figure 7.5: Instabilities during learning of a 3-segment swimmer with a 30-
neuron feedforward neural network. Performance is measured as the distance
swum in 50 seconds from a fixed starting position.

-40

-20

0

20

40

60

0 500 1000 1500 2000 2500

Trials/1000

〈

H2
〉

S
− 50

+

+++++++++++++++
+++++
+++
+++++
+
++++++++++++
+++
+++
++++
++++++
+++++
+
++
+
++
+
+
+
+
+++++
+
++
+
+
++
+
++
++++++++
++
++
+
++
+++++++
+++
+
++
+
+++
+
++++++++
++++++++++++++++
+
+
+
+
+
+++++++++
+++
+++++
+
+
++
+
++
++++++
+++++++++
+
+
++++

+
+
+++
+
+
+++
+
+
+

+++
+
+
++
+++
+

+

+
+
++
+
++

+

+

+
+++++
+
+++
++
+++
++
++
+
++
+
++
+++
+
+
+
+

++
+
++
+
+++
++
+
+

+

+
+
++
+
+
+
+++
+
+++
++
+++++
+++
+
+++
++
+
+++++++++
++++++++++++
++
+++++
+++++++++
+
++
++++
+++
+++++++++++
++++++
+
++
++
+
++++
++++
+
++++
++
+
+++
+
+++
+
++
+++
+++
++
+++++++
++++++
++
++
++++
+++++
+++++++++++++
++
+

+
+
++
++++++
++++++
+++++
+++
+
++
+
++++
++
++++
+++
+
+
+++
++++
+
+
+++++
+
+
+++++
+++++
++
++

+
++
++
++

+

+++
+++
+
++
+

+
+

+
+
+

+
++

+

+
+

++
+
+
+

+
+
+

++
+

+

+++

++
+++

+

+
+
+++
++

+
++

+

+
+
++
+
+
+
+

++
+
+
+
+
+
++
+
+
+
+
++
++

++++++
+
++
+

+
++++
+
++
++++
+
++++
+
+
+
+++

+
+++++
+

++

+
+
++
+++
+
+
+
++
+++
+++
+

+
++++
+++++++
++
++++
++
+
++++
+

+++++++

+
++
+

+

+++
++++
++
+++
+

+

+
+++
+
+
+

+

+

+

+

++

+
+
+

+

+
+

+
+

++

+

+

+

+
+
+

++
+

+

+

+

+
+
+

+
+
++
++

+

+
+

+

++
+++

+
+

+

+

+

+

+
+

+

+++
+

+
+++

++
+
+

+

+
+

+

+

+
++
+
++
+

+
+

++++

+

+
+
+
++

+++
++
+
+

+

++

++
+
+
+

+
+

+
+
+
+

+
+
+
++++
+
++

++
++
+

+
++
++

+

+

+

+++
++
+
+
+
+
+
+

+

+

+

++

++

+
+

+
++
+
++++++++++
+
+
+
+
+

+

+

+++

+++
++
++
+
+

++++
++
+
+
+

++
+
+

+

+

+

+
+
+

+
+

+
+
+
+
+++

+
+
++++

++
+
+
++
++++

+
+
+
+
++

+++++++

+

+

+

+

+

+
+
+

+++++
++++

+
+
++
+

+
+

+

+

+
+

+

+
++

+

+

+

+

+
+

+
++++
++

+
+
+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
++

+
+

++
++

+
+

+

+

+

+

+

+

+
+
++++
+
+
+

+
+

++

+

+
++
++++
+

+

+

+
++
+

+

++
+

+

+

+
+

+

+

+

+

+

+

+++
+
++
+

+
+++

+
+
++

++

+

+

+

+

+
++
++
+
+
+

++
+
+

+

+
+

+++

++

+

+

+
+
+

+

+

+

+

+
+
+
++

++

+

++

+
+

+

+
+

+
+++++
+

+

++

+
++
++

+

+

+

+
+

+

+

+
+
+
++

+++

+

+

+

++

+
+
+

+

+

++
+
++
++

+

+

+
+
+
+

+
++

+

+
+

+

+

+

++
++++
+
+
++
+
++

++

++
+
+
++
+
+
++
+

+

+

+
++++
+
+

+

++++

+

+

+

+

+

+

+

+

+

++
+

+

+
+
+

+

+

+
+

+

++
+
+
++

+++

+

++
+

+++

+
++

+
+

+

+
+

+

++
++
++
+

+

+++

+++

+

+
+++

+
+

+

+

+
+
+
+++

+
+
+

+

+
+
+
+

+

++
+
++
+
+
++++
+
+++
+

+
++
+

+
+++
+

+
+
+
+

+

+
+

+
+++++
+++
+

+++
+
++
+
+

+
++++
+
+
+

+
++
+
++
+

++

+

+

+

+

++
+
+

++
++

++++
+++++
+

+

++
++++
+++++
++
+

+
++
+
++

+
+
+
+
+
+
+
+++
++
++
+++
++
++
++
+++
+
+++++
+
+
+
+
++
++
+++
++++
+
+
+
+++
+
++
++
+

++++
+++
+
++++
++
+

+

+
++
++
++
+
+

++
++
+
+
+
+++++
+

+
+
+++++++
+
++
+
++
+
+++++
+++++++
+
+
+

++
+
+

++

+++
+
+
++
++
+++
+
+
+++
+++

+

+
+
+++

+

++
++
++++++
+
++
+
+

+
+++
+

++
+++
+

+

+

+
+
++
+++
+
+

+
+
+
+++
++++
+

+

Performance

rs

rs
rsrsrsrsrsrsrsrs
rs

rs

rs

rs
rsrs
rs
rs
rs
rsrsrsrs
rsrsrsrs
rs
rsrs

rs

rs
rs
rs
rs

rsrsrsrsrsrsrsrs
rs
rsrsrs

rs
rs
rs
rs
rsrsrs
rs
rs

rsrsrsrs
rs

rs
rs
rs
rs
rsrs
rsrs
rsrs
rs
rs
rsrs
rs

rsrs
rsrsrsrsrs
rsrs

rs
rs
rs
rsrs
rsrs
rs
rsrs
rsrsrs
rs

rs
rs
rsrs
rs
rsrsrsrsrsrs
rs
rs
rs
rsrs
rsrs
rsrs
rsrs

rsrsrs
rsrsrsrsrsrs
rsrsrsrsrs

rs

rsrs
rs
rs
rs
rs
rs
rs
rs
rs
rsrsrsrsrsrsrsrs
rsrsrs
rs
rsrsrs
rs
rs
rs
rsrsrs
rsrsrs
rsrs
rsrs
rs
rs
rsrsrsrsrsrsrs
rsrsrs
rsrs
rs
rs

rs

rs
rsrsrs
rs

rs
rs

rs

rs
rs

rs

rs

rs
rs
rs

rs

rs
rs
rs

rs

rs

rs
rs

rsrs

rs

rsrs

rs

rsrs

rs
rs
rs
rs

rsrs

rs
rs

rs

rs

rs

rs

rs
rsrsrs

rs

rs

rs

rs
rs

rs

rs

rsrs

rs

rs

rsrs
rs
rs

rs

rs
rsrs

rs

rs

rs

rs
rs
rs

rs

rsrsrsrsrs

rs

rs

rs

rs

rs

rsrs
rsrsrsrsrsrsrsrsrs

rs
rs

rs

rs

rs

rs

rsrs

rs

rs

rs
rsrs

rs

rs

rs

rs

rs
rs

rs

rsrsrsrsrs

rs
rsrsrs
rs

rs

rs

rs

rs
rs

rs
rsrsrs
rsrs

rs
rs
rs
rs
rs
rs
rs

rs

rs
rs
rs

rs

rs

rs
rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs
rs
rs

rs
rs

rs

rs

rs

rs

rs

rs
rs
rs

rs
rsrs

rsrs

rs

rs

rsrs

rsrs

rsrs
rs
rs

rs
rs

rs
rsrs

rs

rs
rs

rs
rs

rsrs

rs

rs
rs
rsrs
rs

rs
rs
rs

rs

rs

rs
rsrsrs
rs
rsrsrsrs

rs

rsrs

rsrs
rs

rs
rs

rsrs

rs
rs

rs
rs
rs
rsrs
rsrs

rs
rsrs

rs

rsrsrsrs

rs

rs

rs
rs

rs

rs

rsrs
rs
rs

rs

rs

rs

rsrs

rs

rs

rsrs

rs
rsrsrs

rs

rsrs

rs

rsrsrsrsrs
rs

rsrs
rs

rs

rs
rs
rs
rs

rs
rsrsrs
rsrsrsrs

rs

rsrs

rs
rs

rs

rs
rs
rs
rs
rs
rsrs
rs

rs

rsrsrs
rs
rs
rs
rs

rs

rs

rs

rs

rs

rsrsrs
rs
rs
rs
rsrs
rs
rsrs
rs
rsrs
rs
rs
rs
rsrs
rs
rsrs
rsrs
rs

rs

rsrs
rs
rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs
rsrs

rs

rs

rs

rs
rs

rs
rs

rs

rsrs

rs
rsrsrs

rs

rs

rs

rs
rs

rsrs
rs
rs
rs
rs
rs
rs

rs
rsrs
rs
rs
rs

rsrs

rsrs

rs

rs

rsrs

rsrs
rs
rsrs
rsrsrsrsrs
rsrs
rsrs
rs

rs
rsrs
rs

rs
rs
rsrsrsrsrsrsrsrsrsrsrs
rs

rs

rs
rs
rsrsrsrs
rsrsrs
rsrsrsrsrsrsrs
rs
rsrsrsrsrsrsrs
rs
rsrs
rsrsrsrsrsrsrsrsrs
rsrsrsrs
rs
rs

rs

rsrsrsrs
rsrs
rs
rsrs
rsrs
rsrs
rsrs
rs
rs
rsrs
rsrs
rsrsrs

rs
rs

rs
rs

rs

rs
rs

rs

rs

rs

rsrs
rs

rs

rs

rs
rs

rs

rs

rsrs
rs
rs

rs

rs
rs
rsrs
rs
rsrs
rs
rsrs
rs

rs

rs

rs

rs

rsrs

rs
rs

rsrs

rs

rs

rs
rs
rs

rs

rs
rs
rsrs
rs
rs

rsrsrs
rsrs
rs
rs
rsrsrs
rsrs
rs
rsrsrsrsrsrsrs
rs
rsrsrsrs
rs
rsrsrsrsrsrsrsrsrsrs
rsrs
rs

rs
rsrs
rs
rsrs
rsrs
rs
rsrs
rs
rsrs
rs
rs

rsrs
rs
rsrsrs
rs

rs

rs

rs
rs

rs
rs
rsrs
rsrs
rs
rs

rs

rs

rs

rs

rs

rs
rs

rs
rs

rsrs
rsrs
rs

rs

rs

rs

rs

rs
rs
rs

rs

rsrsrsrsrs
rsrsrs

rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rsrs
rsrsrsrsrsrsrs
rs
rsrs
rs
rs
rs

rsrs

rs

rs

rs

rs
rsrs

rs

rsrs

rs

rsrs
rsrs

rs

rs
rs

rsrs

rs

rs

rs

rs

rs

rsrs
rsrs
rs

rs

rs

rs

rs
rs
rs
rs

rs

rsrs
rs
rs

rs
rs

rs
rs
rs

rs

rs
rs
rsrsrs

rs
rs
rs
rs
rs

rsrs

rs

rs

rs

rsrs
rs

rs
rs

rs
rs
rs
rsrs

rs

rs
rs

rs

rs

rs

rs
rs

rs
rs

rs

rs
rs

rs
rs

rs

rs

rs

rsrs

rs

rsrs
rsrs
rsrs
rs
rsrsrsrsrsrsrsrsrs

rs
rsrsrs

rs
rs

rs
rs

rs

rs

rsrs

rs
rs

rs
rs
rs
rsrs
rs
rs
rsrs
rsrs
rsrsrsrs
rs
rs
rsrsrsrsrsrsrsrsrsrs
rs
rsrsrs
rsrs

rs

rs
rsrs
rs
rsrsrsrs
rs
rs
rs
rsrsrsrsrs
rsrs
rsrs
rs
rs
rsrsrs
rsrsrsrsrsrs
rsrsrsrs

rs

rsrsrsrs
rsrsrs
rs
rsrsrs
rs
rsrsrsrsrs
rs

rs
rs
rsrsrs
rsrs
rs

rs

rs

rsrs

rsrs
rs

rs
rs

rs
rs
rsrs
rs

rs
rs
rs

rs

rs
rs

rs
rsrs

rs
rs
rsrsrs
rsrsrsrs
rsrsrs
rs
rs
rsrs
rs
rs
rs
rs

rs

rsrsrs
rsrs
rsrsrsrsrs
rsrsrs
rs
rs
rsrsrs
rs
rs
rsrsrs
rsrsrs
rs
rsrs
rs
rsrs
rsrsrs
rs
rsrs
rs
rsrs
rs
rsrsrsrs
rs
rs
rs
rsrsrs
rs
rs
rs
rs
rs
rsrs
rsrsrs
rs
rs
rsrsrs
rsrsrs

rs

rsrs
rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rsrs

rs
rs

rsrs

rs

rs

rs
rs

rs

rs

rs
rs

rsrs
rs
rsrs
rs
rs

rs

rsrs

rs

rs

rs

rs

rs

rsrs
rs
rs
rsrsrs
rs
rs
rs

rsrs

rs

rs

rs

rsrsrs
rs

rs

rs

rs

rsrs

rsrs
rsrsrsrs
rs
rsrsrsrs
rs
rs
rsrsrsrsrsrs
rs
rs
rs
rs
rsrsrs
rs
rs
rsrs
rs
rs

rsrsrsrsrs
rsrsrsrsrsrsrsrsrsrs
rsrsrs
rsrs
rs
rsrs
rsrsrsrsrsrsrsrsrs

rs
rsrsrsrsrsrsrsrs
rs
rsrs
rs
rs
rsrs
rs
rsrsrsrsrsrsrs
rs
rs
rs
rs
rs
rs
rsrsrsrs
rsrs

rsrsrs

rs

rsrs

rs

rsrsrsrsrsrs
rs
rsrsrsrs
rsrs
rs
rsrs
rs

rs

rsrs
rs
rs
rs
rs
rs
rsrsrs

rs

rs
rsrsrs
rs
rs
rs
rsrs
rs
rsrs

rs
rsrs
rs
rs
rsrsrsrs

rs

rs
rsrs

rsrs

rsrsrsrs

rsrs

rs

rs

rsrsrs

rs
rs

rs
rsrs

rs

rsrs

rsrs
rs

rs

rs

rs
rs

rsrs
rs
rs
rsrs

rs
rs
rsrsrsrsrsrs
rs
rs
rsrs
rsrsrsrs
rsrsrs

rs

rsrs
rs
rs

rs

rs
rsrsrs
rs
rsrsrs
rsrs
rsrsrsrs
rs
rs
rsrsrsrsrsrs

rs

rsrs

rs
rsrsrsrs

rs

rs
rs

rs

rs

rs
rs

rs
rs

rs

rs

rs
rsrs

rs

rsrs
rsrsrsrsrs
rs
rs
rsrs
rsrs
rsrsrsrs
rsrsrsrs

rs

rsrs
rs

rs

rs

rsrs

rs

rsrs
rs
rs
rs

rs

rs
rsrsrs

rs

rs

rsrs

rs
rs
rs
rsrsrsrs
rsrs
rsrs
rs
rsrsrsrs
rs

rsrs
rsrsrsrsrsrsrsrsrs
rs
rsrsrsrs
rs
rs
rs
rs
rsrs
rs
rs
rs
rsrsrsrs
rs
rs
rsrsrsrs
rsrsrsrsrsrs

rs

rs
rs
rsrs
rs
rsrsrsrs

rs

Figure 7.6: Learning of a 3-segment swimmer with a 60-neuron feedforward
neural network.

123

CHAPTER 7. SWIMMERS

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Trials/1000

〈

H2
〉

S

+

++++
++++
+
++++++++
+
++
++
+
+
++

+
++
++
+++
+

+
+

+

+
+
+

+
+
+

+

++
+++++
++++++
++++++++
+++
++++
+
+++
++
+
+
+++
+
++
+
+
+

+

+

+
+

+
+

+++
++

++

++

++
+
++++

+

+
+

+

+
+
+

+
+
+
+
+
+

+
+
+
+
+++++
++++
+

+
++++

+

+

+
+

+

+
++

+
+
++++

+
+
+

+
+
+
+
+
+++
++

+

++
+

+

+
+
+

+
++

+

+
+

+
+

+
++

+

+
+

++
+
+
+
++
+
++
++
+
+++
++
++

+

+

+

+

+++
+

+

+
+
+

+++
+

+

+

++
+++++

+

++

+
+++

+

+
++
++
+

+
+

+

++

++
+++

+

+

+

++

+

++

++

++

+
+
+

+

++

+
+

+

+
+

+
+

+
+
+
+

+

+

+
+

+

++

+
+++

+

+
+

+

+

+

+

++
+
+++

+

+

+
+

+

++

++

+

+

+
+
+
++

+

++++++
++
+

++
+

++

+

+

+

+
++
+

++

+

+
+
+
+
++
+
+
+
+
++

+
+
++
+
++

+

+

+
+
+

+

+
+++

+

+
+

+

+
+

+
+

+
++

++
+

+

++
+
+

+

+

+

+
+
+
+
++

++
+

+

+

+

+

+
+
++

+
+

+
++
++
+

+

+

+
+

++

+

+

+

+

+

+
+

++

++
+
+
+

+
+

+

+

+
+
+
+
+

+
+

+

+

++

+
+

++

++++
+
++
+
+
+
+

+

+

+
++++
++

+

++

+
+

+

+
++

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+
+

+
+++

+

+

+

++

++

+

+

+

+

+

+
++

+

+

+

+
+
+

+

+

+

+

+

+++

+
+

+

+
+++

+

+

+

+

+

++

++
+

+
+

+

++

+
+

+
+

+

+

++

++

+

+

+

+

+

+

+

+
++

+

+

+++
+
+
+

+

+
+
+++
++
++
+

+

+
+

+

+

+

+

+

+

+

++

+

+
+

+

+
+++

++++

+

+
+

+

++

++

+
+

+
++
+

+
+++
+
+

+
+

+

++

+

+

+

+

+

+

++

+

+

+

+++

+

+

+

++

+

+

+

+
++

+

+

+
++

+

+

+

++

+

+

+

+++

+
+

+

+

+

+
++++

+
++

++

+
+++
+

+
+
+
+

+

+

+
+

++

+

++

+

+

+

+

+
+

++
++

+

+
+
+
+
+
+

+
++
+

+

+

++

+

+
+
+
+

+

+
+
++
++
+
+

+
++
+

+

+
+

++

+

+
+
+

+

++

+

++

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+
+
+

+++
+++++

+

+

++
+
+

++
++
++
+

+

++

+

+
+

+

+

+

+
+
+

+

+

+

+++

+

+

+
+

++

+

+

+

+

+++

+
+

+

+

+
+

+

〈V 〉S

rs

rs

rs

rs
rsrs
rs
rs

rs
rs
rs
rs
rsrs
rs
rs
rs

rs
rsrs

rs

rs
rs

rs

rs
rs

rs
rs
rsrs
rs

rs
rs

rsrs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs
rsrsrs

rs

rs

rs
rsrs
rs

rsrsrs
rs
rs

rs

rs

rs
rsrs

rsrs

rs

rs

rs

rs

rsrs

rsrsrs
rs

rs

rs
rs

rs

rsrs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rsrs

rsrs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rsrs
rs

rsrs
rs

rs

rs
rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs
rs

rs

rs

rs

rs

rsrsrs

rs

rs

rs
rs
rs

rs
rs

rs
rsrs
rsrs
rsrs

rs

rs

rs

rsrs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs
rs

rs

rs

rs
rsrs

rs

rs

rs

rs

rs

rsrs
rs

rs

rs
rs
rs
rs

rs

rsrs
rs

rs

rs
rs

rs
rs

rs

rs

rs

rs

rs

rs
rsrs

rs
rs

rs
rs

rsrsrs

rs
rs
rs

rsrs
rs

rs

rs

rs

rs

rs

rs

rsrsrs

rs
rs
rs

rs
rs
rs
rs

rs

rs
rs

rsrs

rs
rs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs
rsrs
rsrsrs
rsrs
rs

rs

rs

rs
rs

rs
rs

rs

rsrs

rs

rs

rs

rs

rs
rs

rs
rs

rs

rs
rsrs

rs
rs
rsrs

rs

rsrsrs
rsrs
rsrs
rsrsrs
rs

rs

rsrs
rs

rsrs
rs
rs
rs
rs
rsrs
rs

rs

rs

rsrs
rs
rs

rsrsrs

rs

rs
rsrs
rs

rsrs

rsrsrs
rs

rs

rs

rs
rs
rs

rsrs

rs

rs

rs

rs
rsrs
rs

rs
rs

rs

rs

rs

rs

rsrs
rs
rs
rs
rsrs

rs

rs
rs

rs

rs

rs

rsrs
rs
rs
rsrs
rsrsrs
rs
rs
rsrs
rs
rs
rs
rs
rs

rs
rs
rs
rs

rs
rs

rs

rs
rs

rs

rs
rs
rs
rs

rs
rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rsrs
rs

rs

rs
rs
rs

rs

rs

rs

rs
rs

rs

rsrs

rsrs
rsrs

rsrsrs
rs
rs

rs

rs
rs

rs

rs

rs
rsrsrs

rsrs

rs
rs
rsrsrs
rs
rs
rs
rsrsrsrsrs

rsrs
rsrs

rsrs
rsrs
rs

rs

rs
rs

rs

rsrs

rs

rs
rsrs
rs
rs
rs
rsrs

rs

rs
rsrs

rs

rs

rs

rs
rs

rs
rs

rs
rs
rs

rs

rs

rs

rs

rs

rsrs

rs
rsrs

rs

rs
rs

rs

rs

rs

rs

rsrs

rs
rs

rs

rs

rs
rs
rs

rs
rsrs

rsrs

rs

rs

rs

rs
rs
rs
rs
rsrs
rs
rs

rs

rs

rs

rsrs

rs

rsrs

rs

rs
rs

rs

rs
rs

rs

rs
rsrs

rs
rsrs
rs

rs

rs

rs

rs

rs
rs
rs
rsrs

rs

rs

rs
rsrsrsrs
rs
rsrs
rs
rs
rsrs

rs

rs

rs
rs
rs
rs

rs

rs
rsrs
rsrsrsrs
rs

rs

rs
rs

rs

rsrs
rs
rsrs

rsrs

rs
rs
rsrsrsrs

rs

rs
rs

rs

rs

rsrsrs
rsrs

rs

rsrs

rsrs
rs
rs

rs
rs
rs
rs

rs
rs
rs

rs

rsrs

rs

rsrs
rs

rs
rs
rsrs

rs

rs
rs

rs

rs

rs
rs

rs

rsrs
rsrs

rs

rsrs

rs
rs
rs
rs
rs
rs

rs

rs

rsrs

rs

rs

rs
rsrsrsrs
rs

rs

rs
rs
rs
rsrsrsrsrs
rs
rs
rsrs
rs

rs
rsrsrs
rsrs

rsrs
rsrs
rsrs

rs

rs

rs
rs
rs

rsrs
rs
rs
rs

rsrs
rs
rs

rs
rsrsrs
rs
rsrs
rs
rs
rs

rs

rs
rs
rsrsrsrsrs
rs
rs
rsrs
rs

rsrs
rsrs
rs

rs
rsrs
rsrsrsrsrs
rs

rs
rsrs
rs
rsrs

rs
rs
rsrs
rs
rs
rs
rs
rs
rs
rs

rs

rs
rs

rs

rs
rs
rs
rs
rsrsrs
rs
rs
rs

rs

rs
rs
rs
rs
rs

rs

rs
rs

rs

rs

rsrs
rs

rsrs

rs
rsrs
rs

rs
rs
rsrsrsrs

rs
rsrs
rs
rs
rsrsrs

rs

rs

rsrs
rsrsrs
rs

rs

rs
rs
rsrs
rsrs
rs
rs
rsrs
rsrsrs
rs
rsrsrsrs
rsrsrsrsrs
rsrs
rsrs
rs
rsrs
rs
rsrsrsrs
rs
rs
rs
rsrs
rsrs
rs
rsrsrsrs
rs
rsrs
rsrsrs
rs

rs

rsrs
rs
rs

rs

rs

rs
rs
rs
rs

rs
rs

rsrs

rs
rsrs
rs
rs
rsrsrs

rsrs
rs
rs

rs

rs
rsrs
rs

rs
rs
rs
rsrsrs

rs
rs
rs

rsrsrs
rsrs
rsrs
rs
rs

rs

rsrs
rs
rs
rs

rsrs
rsrs
rsrs
rsrs
rsrsrs

rsrs
rs

rs
rsrs
rs

rsrs
rs
rsrs

rs

Figure 7.7: Learning of a 5-segment swimmer with a 60-neuron feedforward
neural network.

124

Conclusion

125

Conclusion

In this thesis, we have presented a study of reinforcement learning using
neural networks. Classical techniques of dynamic programming, neural net-
works and continuous neuro-dynamic programming have been reviewed, and
some refinements of these methods have been proposed. Finally, these al-
gorithms have been applied successfully to difficult motor-control problems.

Many original results have been presented in this dissertation: the ∂∗

notation and the differential back-propagation algorithm (Appendix A), the
K1999 path-optimization algorithm (Appendix C), and the second order
equation (1.2.6) for finite difference methods. Besides these, the main original
contributions of this work are numerical integration methods to deal with
state and action discontinuities in TD(λ), and many original experimental
results on a large variety of motor tasks. The most significant of these con-
tributions is probably the success of the swimmer experiments (Chapter 7),
which demonstrates that the combination of continuous model-based re-
inforcement learning with feedforward neural networks can handle motor-
control problems that are much more complex than those usually solved
with similar methods.

Each of these contributions also opens questions and directions for future
research:

• The numerical integration method could certainly be improved signific-
antly. In particular, the idea of using second order information about
the value function to estimate the Filippov control might be extended
to control spaces with more than one dimension.

• The vario-η algorithm should be compared empirically to other classical
second-order methods.

• Many new interesting experiments could be run with swimmers. In
particular, the reasons for the observed instabilities should be investig-
ated. Methods based on the actor-critic approach seem to have better
convergence properties [68], and should be tried on this problem. Also,
bigger swimmers could learn to swim. Beyond swimmers, the method

127

CONCLUSION

used might as well be able to build controllers for much more complex
problems.

Besides these direct extensions, another very important question to ex-
plore is the possibility to apply feedforward neural networks outside the
restricted framework of simulated model-based motor-control. In partic-
ular, experiments indicate that feedforward neural networks require many
more learning episodes than linear function approximators. This require-
ment might be a major obstacle in situations where learning data is costly
to obtain, which is the case when it is collected in real time (like in robotics
experiments), or when selecting actions entails a lot of computation (like in
computer chess [12]). It was not the case in swimmer experiments, or with
Tesauro’s backgammon player, because it was possible to produce, at no cost,
as much training data as needed.

The key problem here is locality. Very often, linear function approxim-
ators are preferred, because their good locality allows them to perform in-
cremental learning efficiently, whereas feedforward networks tend to unlearn
past experience as new training data is processed. The performance of the
swimmers obtained in this thesis, however, clearly indicates that feedforward
networks can solve problems that are orders of magnitude more complex than
what linear function approximators can handle. So, it would be natural to
try to combine the qualities of these two approximation schemes.

Creating a function approximator that would have both the locality of
linear function approximators, and the generalization capabilities of feed-
forward neural networks seems very difficult. Weaver et al. [77] proposed
a special learning algorithm to prevent unlearning. Its efficiency on high-
dimensional reinforcement learning tasks remains to be demonstrated, but it
might be an interesting research direction.

Another possibility to make a better use of scarce learning data would
consist in complementing the reinforcement learning algorithm by some form
of long term memory that stores it. After some time, the reinforcement
learning algorithm could recall this stored data to check that it has not been
“unlearnt” by the feedforward neural network. A major difficulty of this
approach is that it would require some kind of off-policy TD(λ) learning, be-
cause the learning algorithm would observe trajectories that were generated
with a different value function.

128

Appendices

129

Appendix A

Backpropagation

This appendix gathers results related to backpropagation.

A.1 Notations

A.1.1 Feedforward Neural Networks

Let us consider a n-neuron feedforward neural network defined by its connec-
tion matrix W = (wij) and its output functions σi. We will suppose neurons
are ordered so that W is strictly triangular, that is ∀j ≥ i wij = 0, and
that output functions are differentiable twice. Let ~x, ~a and ~y be respect-
ively the input, the activation and the output vectors, each of them having
n components. The dynamics of the neural network is described by:

~a = W~y (A.1.1)
yi = xi + σi(ai). (A.1.2)

Since W is triangular, the output of the network can be simply obtained by
computing a1, y1, a2, y2, . . . an, yn in sequence.

Having n inputs and n outputs for a n-neuron neural network might
look a little strange. Usually, only a few of the first neurons are said to
be “input” neurons, a few of the last neurons are “output” neurons, and the
others are “hidden” neurons. Here, we will consider that all neurons can play
all these roles at the same time. This formalism has the advantage of being
both more simple and more general than the traditional input-hidden-output
layered architecture1.

1This kind of formalism is attributed to Fernando Pineda by Pearlmutter [52].

131

APPENDIX A. BACKPROPAGATION

σi yi

y1

y2

y3

+

xi

wi1

wi2

wi3

Figure A.1: Neuron in a feedforward network: yi = xi + σi

(

∑

j<i

wijyj

)

A.1.2 The ∂∗ Notation

A special notation will be used to distinguish between two forms of partial
derivative. For any variable v, the usual notation ∂/∂v means a derivative
with respect to v, with all other variables being constant. On the other hand,
∂/∂∗v means a partial derivative with respect to v with all the activations
and output of the neural network varying according to (A.1.1) and (A.1.2).
v can be an input, an output, an activation or a weight of the network. For
instance, for an error function

E(~y) =
1

2

n
∑

i=1

(yi − zi)2

the usual partial derivative is

∂E

∂yi
= yi − zi,

whereas the special partial derivative noted ∂E/∂∗yi is also the partial deriv-
ative of E with respect to yi but with all (yj)j>i varying according to (A.1.1)
and (A.1.2).

Why introduce a new notation? In fact, it would be possible to do without
it. The problem is that doing rigorous derivations with the usual partial de-
rivative notation would require to define a large number of complicated func-
tions such as Eyi(y1, . . . , yi), and write ∂Eyi/∂yi instead of ∂E/∂∗yi, which
would be very tedious. Many of the well-known publications about back-
propagation algorithms either have to introduce heavy notations like this, or
use the usual partial derivative everywhere, which can be ambiguous. The
∂∗ notation allows to make calculations that are both simple and rigorous.

132

A.2. COMPUTING ∂E/∂∗ ~W

A.2 Computing ∂E/∂∗ ~w

This section describes the backpropagation algorithm [36] [56] that computes,
for a given input ~x, the gradient with respect to weights of an error function
E(~y).

∂E

∂∗wij
=

∂E

∂∗ai

∂ai
∂wij

. (A.2.1)

Let us define
δi =̂

∂E

∂∗ai
,

and
αi =̂

∂E

∂∗yi
.

(A.2.1) becomes
∂E

∂∗wij
= δiyj. (A.2.2)

δi can be evaluated with

δi =
∂E

∂∗yi

∂yi
∂ai

= αiσ
′
i(ai),

and

αi =
∂E

∂∗yi
=
∂E

∂yi
+

n
∑

j=i+1

∂E

∂∗aj

∂aj
∂yi

=
∂E

∂yi
+

n
∑

j=i+1

wjiδj.

These equations allow to compute αn, δn, αn−1, δn−1, . . . , α1, δ1 in sequence.
Then, equation (A.2.2) gives the gradient of the error with respect to weights.

A.3 Computing ∂~y/∂∗~x

By derivating (A.1.2) and using (A.1.1) we get:

∂yi
∂∗xk

=
∂xi
∂xk

+ σ′i(ai)
i−1
∑

j=k

wij
∂yj
∂∗xk

.

This is formally equivalent to the output of a “derivative network” that has
the same connection weightsW , the input of which is ∂~x/∂xk and the output

133

APPENDIX A. BACKPROPAGATION

functions of which are multiplications by σ′i(ai). Let us call its activation
vector ~a′k. (A.1.1) and (A.1.2) for this network are

~a′k = W
∂~y

∂∗xk
(A.3.1)

∂yi
∂∗xk

=
∂xi
∂xk

+ σ′i(ai)a
′
ki. (A.3.2)

Strangely, this algorithm is sometimes called “computing the Jacobian of the
output by backpropagation”. In fact, propagation is forward, not backward.

A.4 Differential Backpropagation

This section describes an algorithm to compute, for a feedforward neural-
network, the gradient with respect to weights of an error function that de-
pends not only on the output of the network, like in the classical backpropaga-
tion, but also on its derivative with respect to inputs. This algorithm can be
used to solve partial differential equations with a neural network. Some sim-
ilar algorithms have been published [45], but, as far as I know, this general
formulation for feedforward neural networks is an original result.

Let us suppose that for a given input ~x we want the network to minim-
ize an error function E that depends on the output of the network and its
derivatives with respect to inputs:

E

(

~y,
∂~y

∂∗~x

)

.

Let us calculate its gradient with respect to weights:

∂E

∂∗wij
=

∂E

∂∗ai

∂ai
∂wij

+
n
∑

k=1

∂E

∂∗
(

∂ai
∂∗xk

)

∂
(

∂ai
∂∗xk

)

∂wij
. (A.4.1)

If we define
δi =̂

∂E

∂∗ai
and

δ′ki =̂
∂E

∂∗
(

∂ai
∂∗xk

) ,

then (A.4.1) becomes

∂E

∂∗wij
= δiyj +

n
∑

k=1

δ′ki
∂yj
∂∗xk

. (A.4.2)

134

A.4. DIFFERENTIAL BACKPROPAGATION

Let us now find recurrence relations to compute δi and δ′ki by backpropaga-
tion:

δi =
∂E

∂∗yi

∂yi
∂ai

+
n
∑

k=1

∂E

∂∗
(

∂yi
∂∗xk

)

∂
(

∂yi
∂∗xk

)

∂ai
. (A.4.3)

Decomposing the first part of the first term gives

∂E

∂∗yi
=
∂E

∂yi
+

n
∑

j=i+1

∂E

∂∗aj

∂aj
∂yj

(A.4.4)

=
∂E

∂yi
+

n
∑

j=i+1

wjiδj. (A.4.5)

Decomposing the second term (let us call it α′ki):

α′ki =
∂E

∂∗
(

∂yi
∂∗xk

) =
∂E

∂
(

∂yi
∂∗xk

) +
n
∑

j=i+1

∂E

∂∗
(∂aj
∂∗xk

)

∂
(∂aj
∂∗xk

)

∂
(

∂yi
∂∗xk

) (A.4.6)

=
∂E

∂
(

∂yi
∂∗xk

) +
n
∑

j=i+1

wjiδ
′
kj. (A.4.7)

By substituting (A.4.5) and (A.4.7) into (A.4.3) we get

δi = σ′i(ai)

(

∂E

∂yi
+

n
∑

j=i+1

wjiδj

)

+ σ′′i (ai)
n
∑

k=1

a′kiα
′
ki. (A.4.8)

The recurrence relation for δ′ki can be obtained by applying a similar chain
rule:

δ′ki =
∂E

∂∗
(

∂yi
∂∗xk

)

∂
(

∂yi
∂∗xk

)

∂
(

∂ai
∂∗xk

) (A.4.9)

= σ′i(ai)

(

∂E

∂
(

∂yi
∂∗xk

) +
n
∑

j=i+1

wjiδ
′
kj

)

(A.4.10)

= σ′i(ai)α
′
ki. (A.4.11)

To summarize, backpropagation to evaluate the gradient of an error func-
tion that depends on the derivative of outputs with respect to inputs can be
performed in 5 steps:

1. Compute the output of the neural network using usual forward propaga-
tion (equations (A.1.1) and (A.1.2)).

135

APPENDIX A. BACKPROPAGATION

2. Compute the output and activation of the derivative neural networks
by forward propagation (equations (A.3.1) and (A.3.2)).

3. Compute the δ′ki’s and α
′
ki’s using (A.4.11) and (A.4.7), which is usual

backpropagation on the derivative networks.

4. Compute the δi’s using (A.4.8) which is a special form of backpropaga-
tion on the main network.

5. Get the gradient of the error with (A.4.2)

136

Appendix B

Optimal-Control Problems

This appendix contains technical details about problems mentioned in the
text of this document. All numerical values are given in SI units.

B.1 Pendulum

B.1.1 Variables and Parameters

State variables:

• θ, angular position (θ ∈ [−π, π], circular)
• θ̇, angular velocity (|θ̇| < θ̇max, bounded)

Control variables:

• u, torque applied (|u| < umax)

System parameters:

• g, gravity acceleration

θ

mg

b

b

Figure B.1: Pendulum

137

APPENDIX B. OPTIMAL-CONTROL PROBLEMS

x

y

θ1

θ2

A1

A2

b

b

b

Figure B.2: Acrobot

• m, mass of the pendulum
• l, length of the pendulum
• µ, coefficient of friction

B.1.2 System Dynamics

θ̈ =
1

ml2
(−µθ̇ +mgl sin θ + u)

B.1.3 Reward

r(~x, ~u) = cos θ

B.1.4 Numerical Values

g = 9.81, m = 1, l = 1, µ = 0.01, umax = 5, ωmax = 10, s = 1.

B.2 Acrobot

B.2.1 Variables and Parameters

State variables:

• θ1: angle of body with respect to the vertical axis

138

B.2. ACROBOT

• θ2: angle of legs with respect to the vertical axis

• θ̇1, θ̇2: their derivatives with respect to time

Control variable:

• u, torque applied to legs (|u| < umax)

Problem parameters:

• g: gravity acceleration

• m1: mass of acrobot body

• m2: mass of acrobot legs

• l1: half-length of body

• l2: half-length of legs

• µ1: friction coefficient of body

• µ2: friction coefficient of legs

B.2.2 System Dynamics

Let ~pi, ~vi and ~ai be the vectors defined for i in {1, 2} by

~pi =

(

− sin θi
cos θi

)

,

~vi = ~̇pi =

(

−θ̇i cos θi
−θ̇i sin θi

)

,

~ai = ~̇vi =

(

θ̇2
i sin θi − θ̈i cos θi
θ̇2
i cos θi + θ̈i sin θi

)

.

Let ~f1 be the force applied to hands and ~f2 the force applied by the body to
legs. Let G1 and G2 be the centers of mass of the two body parts. The laws
of mechanics can be written as

~f1 − ~f2 +m1~g = m1l1~a1,

~f2 −m2~g = m2(2l1~a1 + l2~a2),

l21
3
m1θ̈1 = det(

−−−→
G1A1, ~f1 + ~f2)− u− µ1θ̇1,

l22
3
m2θ̈2 = det(

−−−→
G2A2, ~f2) + u− µ2θ̇2.

139

APPENDIX B. OPTIMAL-CONTROL PROBLEMS

Since

det(
−−−→
G1A1,~a1) = −l1θ̈1

det(
−−−→
G2A2,~a2) = −l2θ̈2

det(
−−−→
G1A1,~a2) = l1

(

θ̇2
2 sin(θ2 − θ1)− θ̈2 cos(θ1 − θ2)

)

det(
−−−→
G2A2,~a1) = l2

(

θ̇2
1 sin(θ1 − θ2)− θ̈1 cos(θ2 − θ1)

)

these equations can be simplified into
(

a11 a12

a21 a22

)(

θ̈1

θ̈2

)

=

(

b1

b2

)

,

with

a11 = (
4

3
m1 + 4m2)l21,

a22 =
4

3
m2l

2
2,

a12 = a21 = 2m2l1l2 cos(θ1 − θ2),

b1 = 2m2l2l1θ̇
2
2 sin(θ2 − θ1) + (m1 + 2m2)l1g sin θ1 − µ1θ̇1 − u,

b2 = 2m2l1l2θ̇
2
1 sin(θ1 − θ2) +m2l2g sin θ2 − µ2θ̇2 + u.

B.2.3 Reward

r(~x, ~u) = l1 cos θ1 + l2 cos θ2

B.2.4 Numerical Values

m1 = m2 = 1, l1 = l2 = 0.5, µ1 = µ2 = 0.05, umax = 2

B.3 Cart-Pole

B.3.1 Variables and Parameters

State variables:

• x: cart position (|x| < L),
• θ: pole angle with respect to a vertical axis,
• ẋ, θ̇: their derivatives with respect to time.

Control variable:

140

B.3. CART-POLE

u
x

θ b

b

Figure B.3: Cart-Pole

• u, horizontal force applied to the cart (|u| < umax).

Problem parameters:

• L: half-length of the track,

• g: gravity acceleration,

• mc: mass of the cart,

• mp: mass of the pole,

• l: half-length of the pole,

• µc: coefficient of friction of cart on track,

• µp: coefficient of friction of pivot.

B.3.2 System Dynamics

The position of a point of the pole at distance λ from the articulation is

(

x− λ sin θ
λ cos θ

)

.

Thus its velocity is
(

ẋ− λθ̇ cos θ

−λθ̇ sin θ

)

,

and its acceleration is
(

ẍ+ λ(θ̇2 sin θ − θ̈ cos θ)

−λ(θ̇2 cos θ + θ̈ sin θ)

)

.

141

APPENDIX B. OPTIMAL-CONTROL PROBLEMS

The “dynamic resultant” theorem for the (cart + pole) system can be written
as:

u− µc sign(ẋ) = mcẍ+

∫ 2l

0

(

ẍ+ λ(θ̇2 sin θ − θ̈ cos θ)
)mp

2l
dλ

= (mc +mp)ẍ+ lmp(θ̇
2 sin θ − θ̈ cos θ)

(B.3.1)

Let G be the center of mass of the pole and JG be the moment of inertia of
the pole at G.

JG =

∫ +l

−l
λ2mp

2l
dλ =

l2

3
mp.

Let us call ~f the force applied by the cart on the pole and C the articulation
point where this force is applied. The “dynamic resultant” theorem, applied
to the pole only, gives:

mpG̈ = mp~g + ~f,

hence
~f = mpG̈−mp~g.

The “resultant moment” theorem gives:

JGθ̈ = det(
−→
GC, ~f)− µpθ̇,

hence

l2

3
θ̈ =

∣

∣

∣

∣

l sin θ ẍ+ l(θ̇2 sin θ − θ̈ cos θ)

−l cos θ g − l(θ̇2 cos θ + θ̈ sin θ)

∣

∣

∣

∣

− µpθ̇

mp

= −l2 sin θ(θ̇2 cos θ + θ̈ sin θ) + gl sin θ + l cos θ
(

ẍ+ l(θ̇2 sin θ − θ̈ cos θ)
)

− µpθ̇

mp

= −l2θ̈ (sin2 θ + cos2 θ)
︸ ︷︷ ︸

1

−l2θ̇2 (sin θ cos θ − sin θ cos θ)
︸ ︷︷ ︸

0

+gl sin θ + lẍ cos θ − µpθ̇

mp

.

So
4

3
l2θ̈ = gl sin θ + lẍ cos θ − µpθ̇

mp

(B.3.2)

(B.3.1) and (B.3.2) give the set of linear equations to be solved:

(

4
3
l − cos θ

lmp cos θ −(mc +mp)

)(

θ̈
ẍ

)

=

(

g sin θ − µpθ̇

lmp

lmpθ̇
2 sin θ − u+ µc sign(ẋ)

)

142

B.4. SWIMMER

A0

A1

A2

An

θ1

θ2

b

b

b

b

b

Figure B.4: Swimmer

B.3.3 Reward

r(~x, ~u) = cos θ

B.3.4 Numerical Values

L = 2.4, mc = 1, mp = 0.1, l = 0.5, g = 9.8, umax = 10, µc = 0.0005,
µp = 0.000002

B.4 Swimmer

B.4.1 Variables and Parameters

State variables:

• A0: position of first point

• θi: angle of part i with respect to the x axis

• Ȧ0, θ̇i: their derivatives with respect to time

Control variables:

• (ui)i∈{1...n−1}, torques applied between body parts, constrained by |ui| <
Ui

Problem parameters:

• n: number of body parts

• mi: mass of part i (i ∈ {1...n})

• li: length of part i (i ∈ {1...n})

• k: viscous-friction coefficient

143

APPENDIX B. OPTIMAL-CONTROL PROBLEMS

B.4.2 Model of Viscous Friction

The model of viscous friction used consists in supposing that a small line of
length dλ with a normal vector ~n and moving at velocity ~v receives a small
force of value d~F = −k(~v · ~n)~ndλ. Let us use this law of friction to calculate
the total force and moment applied to a moving part of the swimmer’s body.
Let us call M a point of this body part at distance λ from the center of mass
Gi = (Ai−1 + Ai)/2. M = Gi + λ~pi with

~pi =

(

cos θi
sin θi

)

.

Besides, the normal vector is

~ni =

(

− sin θi
cos θi

)

and ~̇pi = θ̇i~ni, so Ṁ = Ġi + λθ̇i~ni. The total force is equal to

~Fi =

∫
li
2

− li
2

−k(Ṁ · ~ni)~nidλ

=

∫
li
2

− li
2

−k(Ġi · ~ni)~nidλ+

∫
li
2

− li
2

−k(λθ̇i~ni · ~ni)~nidλ
︸ ︷︷ ︸

0

= −kli(Ġi · ~ni)~ni.

Let us now calculate the total moment at Gi:

Mi =

∫
li
2

− li
2

det
(

λ~pi,−k(Ṁ · ~ni)~nidλ
)

=

∫
li
2

− li
2

−k(Ṁ · ~ni)λdλ

=

∫
li
2

− li
2

−k(Ġi · ~ni)λdλ
︸ ︷︷ ︸

0

+

∫
li
2

− li
2

−k(λθ̇i~ni · ~ni)λdλ

= −kθ̇i
l3i
12

144

B.4. SWIMMER

B.4.3 System Dynamics

Let ~fi be the force applied by part i+ 1 to part i.

∀i ∈ {1, . . . , n} − ~fi+1 + ~fi + ~Fi = miG̈i

These equations allow to express the ~fi’s as a function of state variables:

~f0 = ~0

∀i ∈ {1, . . . , n} ~fi = ~fi−1 − ~Fi +miG̈i

We end up with a set of n+ 2 linear equations with n+ 2 unknowns:

~fn = ~0,

mi
li
12
θ̈i = det(

−−→
GiAi, ~fi + ~fi−1) +Mi − ui + ui−1.

Unknowns are G̈0 (or any G̈i) and all the θ̈i’s. Solving this set of equations
gives state dynamics.

B.4.4 Reward

r(~x, ~u) = Ġx (Gx is the abscissa of the center of mass)

B.4.5 Numerical Values

mi = 1, li = 1, k = 10, Ui = 5

145

Appendix C

The K1999 Path-Optimization
Algorithm

This appendix is a description of the path-optimization algorithm that is used
in the K1999 car driver of the Robot Auto-Racing Simulator [70]. I wrote this
very informal document to explain to other competitors how my car works,
so it is probably not as formal as a serious research paper should be. In
particular, no comparison is made with classical methods. This appendix is
simply meant as an illustration of a method that is much more efficient than
reinforcement learning. K1999 won the 2000 and 2001 formula one seasons.

C.1 Basic Principle

C.1.1 Path

The path is approximated by a sequence of points (~xi)1≤i≤n. The curvature
ci of the track at each point ~xi is computed as the inverse of the radius of
the circumscribed circle for points ~xi−1, ~xi and ~xi+1. The formula is:

ci =
2 det(~xi+1 − ~xi, ~xi−1 − ~xi)

‖~xi+1 − ~xi‖‖~xi−1 − ~xi‖‖~xi+1 − ~xi−1‖
(C.1.1)

This curvature is positive for curves to the left and negative for curves to
the right. The (~xi)1≤i≤n points are initially set to be right in the middle of
the track. The method consists in slowly modifying this path by repeating
algorithm C.1 several times.

When (If ?) this algorithm has converged then the curvature of the path
varies linearly except at points where it touches one side of the track. Note
that on the actual implementation, each ~xi is constrained to stay on a given

147

APPENDIX C. THE K1999 PATH-OPTIMIZATION ALGORITHM

Algorithm C.1 Basic algorithm
for i = 1 to n do
c1 ← ci−1

c2 ← ci+1

set ~xi at equal distance to ~xi+1 and ~xi−1 so that ci = 1
2
(c1 + c2)

if ~xi is out of the track then
Move ~xi back onto the track

end if
end for

line that crosses the track. As a consequence, ~xi can not be set “at equal
distance to ~xi+1 and ~xi−1”. ci = 1

2
(c1 + c2) is replaced by a sum weighted by

distance.

C.1.2 Speed Profile

Once the path has been computed, the target speed vi all along this path can
be obtained by supposing that acceleration is limited by tyre grip to having
a norm inferior to a0. This is done in two passes. First, si is initialized with
an “instantaneous” maximum speed with algorithm C.2 (ε is a small enough
positive constant). Then, algorithm C.3 consists in anticipating braking.
This second pass is iterated a dozen times so that it reaches convergence. I
am not particularaly happy by this technique, but it works. A more clever
solution could be found that does not need iteration at all. But it does not
matter much since it is very fast and gives good results.

Algorithm C.2 Pass 1
for i = 1 to n do
if |ci| > ε then
si ←

√

a0/|ci|
else
si ←

√

a0/ε
end if

end for

148

C.2. SOME REFINEMENTS

Algorithm C.3 Pass 2
for i = n to 1 do {Note the descending order}
N ← 1

2
(ci−1 + ci)v

2
i {normal acceleration}

T ←
√

max(0, a2
0 −N2) {tangential Acceleration}

v ← 1
2
(vi + vi−1)

D ← kv2 {air drag}
t← ‖~xi − ~xi−1‖/v
vi−1 ← min

(

si−1, vi + t(T +D)
)

end for

C.2 Some Refinements

C.2.1 Converging Faster

To get a high accuracy on the path, a large number of points is necessary
(1000 or more, typically). This makes convergence very slow, especially on
wide tracks with very long curves like wierd.trk. The basic algorithm
can be sped up considerably (a dozen times) by proceeding as shown in
algorithm C.4. This will double the number of points at each iteration and
converge much more rapidly. Note that the actual implementation I pro-
grammed in k1999.cpp is uselessy more complicated. This algorithm takes
about 2-3 seconds of CPU time for a track on a 400MHz celeron PC.

Algorithm C.4 Speed optimization
Start with a small number of ~xi (typically 2-3 per segment)
while there are not enough ~xi’s do

Smooth the path using the basic algorithm
Add new ~xi’s between the old ones

end while

C.2.2 Security Margins

The path-optimization algorithm must take into consideration the fact that
the simulated car will not be able to follow the computed path exactly. It
needs to take security margins with respect to the side of the track into
consideration. These security margins should depend on the side of the track
and the curvature of the path. For instance, if the curvature is positive (the
path is turning left), it is much more dangerous to be close to the right side
of the track than to the left side.

149

APPENDIX C. THE K1999 PATH-OPTIMIZATION ALGORITHM

C.2.3 Non-linear Variation of Curvature

The statement
set ~xi so that ci = 1

2
(c1 + c2)

gives a linear variation of the curvature. But this choice was arbitrary and
better laws of variation can be found. One cause of non-optimality of a
linear variation of the curvature is that the car acceleration capabilities are
not symmetrical. It can brake much more than it can accelerate. This means
that accelerating early is often more important than braking late. Changing
the law of variation to get an exponential variation with
if |c2| < |c1| then

set ~xi so that ci = 0.51c1 + 0.49c2

else
set ~xi so that ci = 0.50c1 + 0.50c2n

end if
can give a speed-up on some tracks.

C.2.4 Inflections

Another big cause of non-optimality is inflection in S curves. The curvature
at such a point should change from −c to +c and not vary smoothly. Results
can be significantly improved on some tracks by using the change described
in algorithm C.5. This can be a big win on some tracks like suzuka.trk or
albrtprk.trk.

C.2.5 Further Improvements by Gradient Descent

Although it is good, the path computed using this algorithm is not optimal.
It is possible to get closer to optimality using algorithm C.6.

This algorithm is repeated all long the path for different values of i0. It
is more efficient to try values of i0 which are multiple of a large power of two
because of the technique described in §C.2.1. The details of the algorithm
are in fact more complicated than this. Take a look at the source code for
a more precise description. This technique takes a lot of computing power,
but works very well. The typical gain is 1%. It was programmed as a quick
hack and could be very probably improved further.

One of the main changes it causes in paths, is that they are more often
at the limit of tyre grip (and not engine power), which is more efficient.

This technique also gives improvements that could be called “making short
term sacrifices for a long term compensation”. This effect is particulary
spectacular on the Spa-Francorchamps track (spa.trk) where the computed

150

C.2. SOME REFINEMENTS

Algorithm C.5 Inflections
for i = 1 to n do
c1 ← ci−1

c2 ← ci+1

if c1c2 < 0 then
c0 ← ci−2

c3 ← ci+2

if c0c1 > 0 and c2c3 > 0 then
if |c1| < |c2| and |c1| < |c3| then
c1 ← −c1

else
if |c2| < |c1| and |c2| < |c0| then
c2 ← −c2

end if
end if

end if
end if
set ~xi at equal distance to ~xi+1 and ~xi−1 so that ci = 1

2
(c1 + c2)

if ~xi is out of the track then
Move ~xi back onto the track

end if
end for

Algorithm C.6 Rough and Badly Written Principle of Gradient Descent
Choose an index i0 and a fixed value for ~xi0
Run the standard algorithm without changing ~xi0
Estimate the lap time for this path
Change ~xi0 a little
Run the standard algorithm again and estimate the new lap time
while It is an improvement do

Continue moving ~xi0 in the same direction
end while

151

APPENDIX C. THE K1999 PATH-OPTIMIZATION ALGORITHM

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000 3500

Curvature
Maximum speed

Target speed
Estimated speed

Figure C.1: Path data for oval2.trk before gradient descent

path looses contact with the inside the long curve before the final straight so
that the car can accelerate earlier and enter the long straight with a higher
speed.

C.3 Improvements Made in the 2001 Season

I had to improve my path optimization further in 2001 to strike back after
Tim Foden’s Dodger won the first races. His driver was inspired by some of
the ideas I described in the previous sections, with some clever improvements
that made his car faster than mine. I will not go into the details of these.
One of the most important improvements in his path-optimization algorithm
were a change that makes corners more circular, and a change that makes
the inflection algorithm more stable.

C.3.1 Better Variation of Curvature

Both of these improvements by Tim Foden were ways to provide a better
variation of curvature. I thought a little more about this and came to the
conclusion that an important principle in finding the optimal path is that it
should be at the limit of tire grip as long as possible. This is what guided
the idea of the non-linear variation of curvature (Section C.2.3). Results

152

C.3. IMPROVEMENTS MADE IN THE 2001 SEASON

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000 3500

Curvature
Maximum speed

Target speed
Estimated speed

Figure C.2: Path data for oval2.trk after gradient descent

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 500 1000 1500 2000 2500 3000 3500

Basic Speed
Gradient Descent Speed

Figure C.3: Comparison before/after gradient descent

153

APPENDIX C. THE K1999 PATH-OPTIMIZATION ALGORITHM

b
b b b b b b b b b b b b

b
b

b
b

b
b

b
b
b
b
b
b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
bbbbbbbbbbbb

b
b

b
b

b
b

b
b

b
b

b
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b

b
b

b
b

b

corner exit
corner entry

Figure C.4: Path for oval2.trk (anti-clockwise). The dotted line is the path
after gradient descent. It is visibly asymmetric.

b
b

b
b b b b b b b b b b b b b b b b

b
b

b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

bbbbbbbbbbb
b

b
b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

Figure C.5: Path for clkwis.trk

154

C.3. IMPROVEMENTS MADE IN THE 2001 SEASON

of gradient descent showed this too. Dodger’s circular corners had also the
consequence of letting the car be longer at the limit. So I modified the original
algorithm into algorithm C.7. In this algorithm, vi is an estimation of the
velocity of the car at point ~xi for the current shape of the path. Velocities
are in feet per second.

Algorithm C.7 Better Variation of Curvature
for i = 1 to n do
c1 ← ci−1

c2 ← ci+1

if c1c2 > 0 then
v ←

√

2a0/(|c1|+ |c2|) {maximum velocity for current curvature}
if v > vi + 8 then {if estimated velocity inferior to limit}
if |c1| < |c2| then {try to bring it closer}
c1 ← c1 + 0.3× (c2 − c1)

else
c2 ← c2 + 0.3× (c1 − c2)

end if
end if

end if
set ~xi at equal distance to ~xi+1 and ~xi−1 so that ci = 1

2
(c1 + c2)

if ~xi is out of the track then
Move ~xi back onto the track

end if
end for

This change in the algorithm proved to be a significant improvement
in terms of path optimization (about 1% on most tracks, much more on
tracks with very fast curves like indy500.trk or watglen.trk). It is also a
significant simplification since it handles both non-linear variation ideas and
inflection ideas in a unified way.

Since the estimation of the velocity takes tyre grip and engine power into
consideration, this algorithm generates different paths depending on these
characteristics of the car (Figures C.7 and C.8).

C.3.2 Better Gradient Descent Algorithm

I first thought that after the improvement of the algorithm described previ-
ously, gradient descent would be less efficient than before. This is wrong. It
still gets about 1% improvement on most tracks. I also improved it a bit. If
you want to know more, then can take a look at the code or run the program

155

APPENDIX C. THE K1999 PATH-OPTIMIZATION ALGORITHM

b
b

b b b b b b b b b b b b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

bbbb
b

b
b

b

b

b
b

b
bbbb

b
b

b

b

b

b
b

b
bbbb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
b
b
b
b

b
b

Figure C.6: linear curvature: 68.24 mph with -s1, 82.69 mph with -s2

b
b

b b b b b b b b b b b b b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
bbbb

b
b

b

b

b

b
b

bbbbb
b

b
b

b

b

b
b

bbbbb
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b
b

b
b
b
b
b

b

b
b

Figure C.7: Algorithm C.7 with standard tire grip (-s1) before (68.30 mph,
dotted) and after (69.37 mph, not dotted) gradient descent

156

C.3. IMPROVEMENTS MADE IN THE 2001 SEASON

b
b

b b b b b b b b b b b b b b b b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
bbbb

b
b

b

b

b

b

b
bbbb

b
b

b

b

b

b
b

bbbb
b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b
b

b
b

b

b
b

Figure C.8: Algorithm C.7 with more tire grip (-s2) before (82.87 mph,
dotted) and after (84.29 mph, not dotted) gradient descent

-3

-2

-1

0

1

2

3

4

5

0 500 1000 1500 2000 2500 3000 3500 4000

Curvature
Maximum speed

Target speed
Estimated speed

Figure C.9: Path data for stef2 after gradient descent (-s2)

157

APPENDIX C. THE K1999 PATH-OPTIMIZATION ALGORITHM

to see how it works. Most of the time, the effect of gradient descent consists
in making the path a little bit slower, but shorter (see Figures C.7 and C.8).

C.3.3 Other Improvements

A significant amount of additional speed was obtained with a better servo
control system (up to 1% on some tracks). A better pit-stop strategy helped
a little too. Passing was improved slightly as well. I also programmed
a team mate for K1999. I will not go into the details of these improve-
ment since this document is mainly about methods to find the optimal path.

158

Bibliography

[1] James S. Albus. A new approach to manipulator control: The cere-
bellar model articulation controller (CMAC). In Journal of Dynamic
Systems, Measurement and Control, pages 220–227. American Society
of Mechanical Engineers, September 1975. 62

[2] Charles W. Anderson. Strategy learning with multilayer connectionist
representations. In Proceedings of the Fourth International Workshop on
Machine Learning, pages 103–114, Irvine, CA, 1987. Morgan Kaufmann.
102

[3] Charles W. Anderson. Approximating a policy can be easier than ap-
proximating a value function. Technical Report CS-00-101, Colorado
State University, 2000. 118

[4] Christopher G. Atkeson. Using local trajectory optimizers to speed up
global optimization in dynamic programming. In J. D. Cowan, G. Te-
sauro, and J. Alspector, editors, Advances in Neural Information Pro-
cessing Systems 6. Morgan Kaufmann, 1994. 50

[5] Christopher G. Atkeson and Juan Carlos Santamaría. A comparison of
direct and model-based reinforcement learning. In International Con-
ference on Robotics and Automation, 1997. 11, 29

[6] Leemon C. Baird III. Advantage updating. Technical Report WL-
TR-93-1146, Wright-Patterson Air Force Base Ohio: Wright Laborat-
ory, 1993. Available from the Defense Technical Information Center,
Cameron Station, Alexandria, VA 22304-6145. 76

[7] Leemon C. Baird III. Residual algorithms: Reinforcement learning
with function approximation. In Machine Learning: Proceedings of the
Twelfth International Conference. Morgan Kaufman, 1995. 68, 69

[8] Leemon C. Baird III and A. Harry Klopf. Reinforcement learning with
high-dimensional, continuous actions. Technical Report WL-TR-93-

159

BIBLIOGRAPHY

1147, Wright-Patterson Air Force Base Ohio: Wright Laboratory, 1993.
Available from the Defense Technical Information Center, Cameron Sta-
tion, Alexandria, VA 22304-6145. 76, 83

[9] Andrew R. Barron. Universal approximation bounds for superpositions
of a sigmoidal function. IEEE Transactions on Information Theory,
39(3):930–945, May 1993. 66

[10] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning
to act using real-time dynamic programming. Artificial Intelligence,
72:81–138, 1995. 111

[11] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neur-
onlike elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man and Cybernetics, 13:835–846, 1983. 102

[12] Jonathan Baxter, Andrew Tridgell, and Lex Weaver. Experiments in
parameter learning using temporal differences. ICCA Journal, 21(2):84–
89, June 1998. 22, 128

[13] Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, New Jersey, 1957. 10, 14, 28, 35

[14] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, 1995. 35

[15] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Program-
ming. Athena Scientific, Belmont, MA, 1996. 67, 74, 114

[16] Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, 1995. 55

[17] Gary Boone. Efficient reinforcement learning: Model-based acrobot con-
trol. In 1997 International Conference on Robotics and Automation,
pages 229–234, Albuquerque, NM, 1997. 106

[18] Gary Boone. Minimum-time control of the acrobot. In 1997 Interna-
tional Conference on Robotics and Automation, pages 3281–3287, Al-
buquerque, NM, 1997. 106

[19] Justin A. Boyan and AndrewW. Moore. Generalization in reinforcement
learning: Safely approximating the value function. In G. Tesauro, D. S.
Touretzky, and T. K. Leen, editors, Advances in Neural Information
Processing Systems 7. MIT Press, 1995. 72

160

BIBLIOGRAPHY

[20] Robert H. Crites and Andrew G. Barto. Elevator group control using
multiple reinforcement learning agents. Machine Learning, 33:235–262,
1998. 11, 28

[21] Peter Dayan. The convergence of TD(λ) for general λ. Machine Learn-
ing, 8:341–362, 1992. 74

[22] Peter Dayan and Terrence J. Sejnowski. TD(λ) converges with probab-
ility 1. Machine Learning, 14:295–301, 1994. 74

[23] Kenji Doya. Temporal difference learning in continuous time and space.
In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Ad-
vances in Neural Information Processing Systems 8, pages 1073–1079.
MIT Press, 1996. 12, 30, 50, 76

[24] Kenji Doya. Reinforcement learning in continuous time and space.
Neural Computation, 12:243–269, 2000. 11, 12, 15, 16, 28, 29, 30,
71, 76, 83, 87, 100, 102

[25] Stanislav V. Emelyanov, Sergei K. Korovin, and Lev V. Levantovsky.
Higher order sliding modes in binary control systems. Soviet Physics,
Doklady, 31(4):291–293, 1986. 88

[26] Scott E. Fahlman. An empirical study of learning speed in back-
propagation networks. Technical Report CMU-CS-88-162, Carnegie-
Mellon University, 1988. 59, 93

[27] A. F. Filippov. Differential equations with discontinuous right-hand side.
Trans. Amer. Math. Soc. Ser. 2, 42:199–231, 1964. 85

[28] Chris Gaskett, David Wettergreen, and Alexander Zelinsky. Q-learning
in continuous state and action spaces. In Proceedings of 12th Aus-
tralian Joint Conference on Artificial Intelligence, Sydney, Australia,
1999. Springer Verlag. 76

[29] Geoffrey J. Gordon. Stable function approximation in dynamic pro-
gramming. In A. Prieditis and S. Russel, editors, Machine Learning:
Proceedings of the Twelfth International Conference, pages 261–268, San
Francisco, 1995. Morgan Kaufmann. 68

[30] M. Hardt, K. Kreutz-Delgado, J. W. Helton, and O. von Stryk. Ob-
taining minimum energy biped walking gaits with symbolic models and
numerical optimal control. In Workshop—Biomechanics meets Robot-
ics, Modelling and Simulation of Motion, Heidelberg, Germany, Novem-
ber 8–11, 1999. 9, 27

161

BIBLIOGRAPHY

[31] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT
Press, Cambridge, MA, 1960. 41

[32] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the
convergence of stochastic iterative dynamic programming algorithms.
Neural Computation, 6(6):1185–1201, 1994. 74

[33] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Re-
inforcement learning: A survey. Journal of Artificial Intelligence Re-
search, 4:237–285, 1996. 11, 28

[34] Yasuharu Koike and Kenji Doya. Multiple state estimation reinforce-
ment learning for driving model—driver model of automobile. In IEEE
International Conference on System, Man and Cybernetics, volume V,
pages 504–509, 1999. 111

[35] R. Lachner, M. H. Breitner, and H. J. Pesch. Real-time collision avoid-
ance against wrong drivers: Differential game approach, numerical solu-
tion, and synthesis of strategies with neural networks. In Proceedings
of the Seventh International Symposium on Dynamic Games and Ap-
plications, Kanagawa, Japan, December 16–18 1996. Department of
Mechanical Systems Engineering, Shinsyu University, Nagano, Japan.
10, 28

[36] Yann Le Cun. Learning processes in an asymmetric threshold network.
In Disordered Systems and Biological Organization, pages 233–240, Les
Houches, France, 1986. Springer. 133

[37] Yann Le Cun, Leon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient BackProp. In Genevieve B. Orr and Klaus-Robert Müller, ed-
itors, Neural Networks: Tricks of the Trade. Springer, 1998. 59, 61, 93,
99

[38] Jean-Arcady Meyer, Stéphane Doncieux, David Filliat, and Agnès Guil-
lot. Evolutionary approaches to neural control of rolling, walking, swim-
ming and flying animats or robots. In R.J. Duro, J. Santos, and
M. Graña, editors, Biologically Inspired Robot Behavior Engineering.
Springer Verlag, to appear. 10, 28

[39] Martin F. Møller. A scaled conjugate gradient algorithm for fast super-
vised learning. Neural Networks, 6:525–533, 1993. 59, 93

[40] John Moody and Christian Darken. Fast learning in networks of locally-
tuned processing units. Neural Computation, 1:281–294, 1989. 64

162

BIBLIOGRAPHY

[41] Jun Morimoto and Kenji Doya. Hierarchical reinforcement learning of
low-dimensional subgoals and high-dimensional trajectories. In Proceed-
ings of the Fifth International Conference on Neural Information Pro-
cessing, pages 850–853, 1998. 11, 28

[42] Jun Morimoto and Kenji Doya. Acquisition of stand-up behavior by
a real robot using hierarchical reinforcement learning. In Proceedings
of 17th International Conference on Machine Learning, pages 623–630,
2000. 11, 29, 117

[43] Rémi Munos. A convergent reinforcement learning algorithm in the
continuous case based on a finite difference method. In International
Joint Conference on Artificial Intelligence, 1997. 50

[44] Rémi Munos. L’apprentissage par renforcement, étude du cas continu.
Thèse de doctorat, Ecole des Hautes Etudes en Sciences Sociales, 1997.
50

[45] Rémi Munos, Leemon C. Baird, and Andrew W. Moore. Gradient des-
cent approaches to neural-net-based solutions of the Hamilton-Jacobi-
Bellman equation. In International Joint Conference on Artificial Intel-
ligence, 1999. 70, 71, 134

[46] Rémi Munos and Andrew Moore. Variable resolution discretization for
high-accuracy solutions of optimal control problems. In International
Joint Conference on Artificial Intelligence, 1999. 51, 105

[47] Ralph Neuneier and Hans-Georg Zimmermann. How to train neural
networks. In Genevieve B. Orr and Klaus-Robert Müller, editors, Neural
Networks: Tricks of the Trade. Springer, 1998. 13, 31, 94

[48] Genevieve B. Orr and Todd K. Leen. Weight space probability densities
in stochastic learning: II. transients and basin hopping times. In S. Han-
son, J. Cowan, and L. Giles, editors, Advances in Neural Information
Processing Systems 5. Morgan Kaufmann, San Mateo, CA, 1993. 61

[49] Genevieve B. Orr and Todd K. Leen. Using curvature information for
fast stochastic search. In Advances in Neural Information Processing
Systems 9. MIT Press, 1997. 93

[50] Michiel van de Panne. Control for simulated human and animal motion.
IFAC Annual Reviews in Control, 24(1):189–199, 2000. Also published
in proceedings of IFAC Workshop on Motion Control, 1998. 10, 28

163

BIBLIOGRAPHY

[51] Stefan Pareigis. Adaptive choice of grid and time in reinforcement learn-
ing. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances
in Neural Information Processing Systems 10, pages 1036–1042. MIT
Press, Cambrdige, MA, 1998. 51

[52] Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural
Computation, 6:147–160, 1994. 131

[53] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C—The Art of Scientific Computing.
Cambridge University Press, 1992. http://www.nr.com/. 85

[54] Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using
reinforcement learning and shaping. In Machine Learning: Proceedings
of the Fifteenth International Conference (ICML’98). MIT Press, 1998.
117

[55] Martin Riedmiller and Heinrich Braun. A direct adaptive method for
faster backpropagation learning: The RPROP algorithm. In Proceedings
of the IEEE International Conference on Neural Networks, 1993. 59,
93

[56] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In D. E. Rumelhart and J. L.
McClelland, editors, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, volume 1, pages 318–362. MIT Press, Cam-
bridge, MA, 1986. 133

[57] Juan Carlos Santamaría, Richard S. Sutton, and Ashwin Ram. Exper-
iments with reinforcement learning in problems with continuous state
and action spaces. Adaptive Behavior, 6(2):163–218, 1998. 76

[58] Warren S. Sarle, editor. Neural Network FAQ. Available via anonymous
ftp from ftp://ftp.sas.com/pub/neural/FAQ.html, 1997. Periodic
posting to the usenet newsgroup comp.ai.neural-nets. 59

[59] Stefan Schaal and Christopher G. Atkeson. Robot juggling: An im-
plementation of memory-based learning. Control Systems Magazine,
14:57–71, 1994. 11, 28, 29

[60] Nicol N. Schraudolph. Local gain adaptation in stochastic gradient des-
cent. In Proceedings of the 9th International Conference on Artificial
Neural Networks, London, 1999. IEE. 93

164

nntp://comp.ai.genetic
ftp://ftp.sas.com/pub/neural/FAQ.html
http://www.nr.com/

BIBLIOGRAPHY

[61] Jonathan Richard Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain, August 1994. Available on theWorld
Wide Web at http://www.cs.cmu.edu/~jrs/jrspapers.html. 59

[62] Karl Sims. Evolving 3D morphology and behavior by competition. In
R. Brooks and P. Maes, editors, Artificial Life IV Proceedings, pages
28–39. MIT Press, 1994. 10, 28

[63] Karl Sims. Evolving virtual creatures. In Computer Graphics, Annual
Conference Series, (SIGGRAPH ’94 Proceedings), pages 15–22, July
1994. 10, 28

[64] Mark Spong. The swingup control problem for the acrobot. IEEE Con-
trol Systems Magazine, 15(1):49–55, February 1995. 105

[65] Richard S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9–44, 1988. 12, 30, 72

[66] Richard S. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In Advances in Neural Information
Processing Systems 8, pages 1038–1044. MIT Press, 1996. 11, 28, 72,
105

[67] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998. 11, 28, 74, 76

[68] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function
approximation. In Advances in Neural Information Processing Systems
12. MIT Press, 1999. 127

[69] Gerald Tesauro. Temporal difference learning and TD-Gammon. Com-
munications of the ACM, 38(3):58–68, March 1995. 11, 12, 28, 29,
66

[70] Mitchell E. Timin. The robot auto racing simulator, 1995. main internet
page at http://rars.sourceforge.net/. 109, 147

[71] John N. Tsitsiklis. On the convergence of optimistic policy iteration.
Journal of Machine Learning Research, 3:59–72, July 2002. 74

[72] John N. Tsitsiklis and Benjamin Van Roy. Feature-based methods for
large scale dynamic programming. Machine Learning, 22:59–94, 1996.
68

165

http://rars.sourceforge.net/
http://www.cs.cmu.edu/~jrs/jrspapers.html

BIBLIOGRAPHY

[73] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-
difference learning with function approximation. IEEE Transactions on
Automatic Control, 42(5):674–690, May 1997. 75

[74] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer, 1995. 55

[75] Thomas L. Vincent and Walter J. Grantham. Nonlinear and Optimal
Control Systems. Wiley, 1997. 87

[76] Scott E. Weaver, Leemon C. Baird, and Marios M. Polycarpou. An
analytical framework for local feedforward networks. IEEE Transactions
on Neural Networks, 9(3):473–482, 1998. Also published as Univeristy
of Cincinnati Technical Report TR 195/07/96/ECECS. 62

[77] Scott E. Weaver, Leemon C. Baird, and Marios M. Polycarpou. Pre-
venting unlearning during on-line training of feedforward networks. In
Proceedings of the International Symposium of Intelligent Control, 1998.
23, 128

[78] Norbert Wiener. Cybernetics or Control and Communication in the
Animal and the Machine. Hermann, 1948.

[79] Junichiro Yoshimoto, Shin Ishii, and Masa-aki Sato. Application of rein-
forcement learning to balancing of acrobot. In 1999 IEEE International
Conference on Systems, Man and Cybernetics, volume V, pages 516–521,
1999. 105

[80] Wei Zhang and Thomas G. Dietterich. High-performance job-shop
scheduling with a time-delay TD(λ) network. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neural Information
Processing Systems 8, pages 1024–1030. MIT Press, 1996. 11, 28

166

Apprentissage par renforcement utilisant des réseaux de
neurones, avec des applications au contrôle moteur

Cette thèse est une étude de méthodes permettant d’estimer des fonctions valeur avec des
réseaux de neurones feedforward dans l’apprentissage par renforcement. Elle traite plus
particulièrement de problèmes en temps et en espace continus, tels que les tâches de con-
trôle moteur. Dans ce travail, l’algorithme TD(λ) continu est perfectionné pour traiter des
situations avec des états et des commandes discontinus, et l’algorithme vario-η est proposé
pour effectuer la descente de gradient de manière efficace. Les contributions essentielles
de cette thèse sont des succès expérimentaux qui indiquent clairement le potentiel des
réseaux de neurones feedforward pour estimer des fonctions valeur en dimension élevée.
Les approximateurs de fonctions linéaires sont souvent préférés dans l’apprentissage par
renforcement, mais l’estimation de fonctions valeur dans les travaux précédents se limite
à des systèmes mécaniques avec très peu de degrés de liberté. La méthode présentée dans
cette thèse a été appliquée avec succès sur une tâche originale d’apprentissage de la na-
tation par un robot articulé simulé, avec 4 variables de commande et 12 variables d’état
indépendantes, ce qui est sensiblement plus complexe que les problèmes qui ont été résolus
avec des approximateurs de fonction linéaires.

Reinforcement Learning Using Neural Networks, with
Applications to Motor Control

This thesis is a study of practical methods to estimate value functions with feedforward
neural networks in model-based reinforcement learning. Focus is placed on problems in
continuous time and space, such as motor-control tasks. In this work, the continuous
TD(λ) algorithm is refined to handle situations with discontinuous states and controls,
and the vario-η algorithm is proposed as a simple but efficient method to perform gradi-
ent descent. The main contributions of this thesis are experimental successes that clearly
indicate the potential of feedforward neural networks to estimate high-dimensional value
functions. Linear function approximators have been often preferred in reinforcement learn-
ing, but successful value function estimations in previous works are restricted to mechanical
systems with very few degrees of freedom. The method presented in this thesis was tested
successfully on an original task of learning to swim by a simulated articulated robot, with
4 control variables and 12 independent state variables, which is significantly more complex
than problems that have been solved with linear function approximators so far.

Spécialité
Sciences Cognitives

Mots Clés
Apprentissage par renforcement, réseaux de neurones, contrôle moteur, commande opti-
male

Laboratoire
Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38000 Grenoble

	Résumé (Summary in French)
	Introduction
	Contexte
	Apprentissage par renforcement et réseaux de neurones
	Résumé et contributions
	Plan de la thèse

	Théorie
	Expériences
	Conclusion

	Introduction
	Introduction
	Background
	Reinforcement Learning using Neural Networks
	Summary and Contributions
	Outline

	I Theory
	1 Dynamic Programming
	1.1 Discrete Problems
	1.1.1 Finite Discrete Deterministic Decision Processes
	1.1.2 Example
	1.1.3 Value Iteration
	1.1.4 Policy Evaluation
	1.1.5 Policy Iteration

	1.2 Continuous Problems
	1.2.1 Problem Definition
	1.2.2 Example
	1.2.3 Problem Discretization
	1.2.4 Pendulum Swing-Up
	1.2.5 The Curse of Dimensionality

	2 Artificial Neural Networks
	2.1 Function Approximators
	2.1.1 Definition
	2.1.2 Generalization
	2.1.3 Learning

	2.2 Gradient Descent
	2.2.1 Steepest Descent
	2.2.2 Efficient Algorithms
	2.2.3 Batch vs. Incremental Learning

	2.3 Some Approximation Schemes
	2.3.1 Linear Function Approximators
	2.3.2 Feedforward Neural Networks

	3 Continuous Neuro-Dynamic Programming
	3.1 Value Iteration
	3.1.1 Value-Gradient Algorithms
	3.1.2 Residual-Gradient Algorithms
	3.1.3 Continuous Residual-Gradient Algorithms

	3.2 Temporal Difference Methods
	3.2.1 Discrete TD(lambda)
	3.2.2 TD(lambda) with Function Approximators
	3.2.3 Continuous TD(lambda)
	3.2.4 Back to Grid-Based Estimators

	3.3 Summary

	4 Continuous TD(lambda) in Practice
	4.1 Finding the Greedy Control
	4.2 Numerical Integration Method
	4.2.1 Dealing with Discontinuous Control
	4.2.2 Integrating Variables Separately
	4.2.3 State Discontinuities
	4.2.4 Summary

	4.3 Efficient Gradient Descent
	4.3.1 Principle
	4.3.2 Algorithm
	4.3.3 Results
	4.3.4 Comparison with Second-Order Methods
	4.3.5 Summary

	II Experiments
	5 Classical Problems
	5.1 Pendulum Swing-up
	5.2 Cart-Pole Swing-up
	5.3 Acrobot
	5.4 Summary

	6 Robot Auto Racing Simulator
	6.1 Problem Description
	6.1.1 Model
	6.1.2 Techniques Used by Existing Drivers

	6.2 Direct Application of TD(lambda)
	6.3 Using Features to Improve Learning
	6.4 Conclusion

	7 Swimmers
	7.1 Problem Description
	7.2 Experiment Results
	7.3 Summary

	Conclusion
	Conclusion

	Appendices
	A Backpropagation
	A.1 Notations
	A.1.1 Feedforward Neural Networks
	A.1.2 The d* Notation

	A.2 Computing dE/d*w
	A.3 Computing dy/d*x
	A.4 Differential Backpropagation

	B Optimal-Control Problems
	B.1 Pendulum
	B.1.1 Variables and Parameters
	B.1.2 System Dynamics
	B.1.3 Reward
	B.1.4 Numerical Values

	B.2 Acrobot
	B.2.1 Variables and Parameters
	B.2.2 System Dynamics
	B.2.3 Reward
	B.2.4 Numerical Values

	B.3 Cart-Pole
	B.3.1 Variables and Parameters
	B.3.2 System Dynamics
	B.3.3 Reward
	B.3.4 Numerical Values

	B.4 Swimmer
	B.4.1 Variables and Parameters
	B.4.2 Model of Viscous Friction
	B.4.3 System Dynamics
	B.4.4 Reward
	B.4.5 Numerical Values

	C The K1999 Path-Optimization Algorithm
	C.1 Basic Principle
	C.1.1 Path
	C.1.2 Speed Profile

	C.2 Some Refinements
	C.2.1 Converging Faster
	C.2.2 Security Margins
	C.2.3 Non-linear Variation of Curvature
	C.2.4 Inflections
	C.2.5 Further Improvements by Gradient Descent

	C.3 Improvements Made in the 2001 Season
	C.3.1 Better Variation of Curvature
	C.3.2 Better Gradient Descent Algorithm
	C.3.3 Other Improvements

