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Spécialité : Physique théorique
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Thèse préparée au sein de Laboratoire de Physique Subatomique et de Cosmologie
53, Avenue des Martyrs
38026 Grenoble Cedex





Remerciements

Je voudrais exprimer ma gratitude distinguée au personnel du LPSC et surtout aux membres
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J’exprime ma gratitude spécialement à Anne Delage-Wolfers, qui était la première à lire ce
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Introduction en français

Ce travail de thèse s’inscrit dans le cadre de ce que l’on appelle la ”Few-Body Physics”, que l’on peut

traduire par ”Physique à petit nombre de corps”. Elle a comme ambition d’obtenir les solutions

exactes, au sens numérique, des problèmes quantiques ”simples”, la notion de ”simplicité” ayant

comme frontière – mobile! – le nombre de corps que l’on sait traiter au moment où on l’utilise.

Dans une vision un peu simplifiée de la physique théorique, la ”Few-Body Physics” serait

le partenaire exclusif de la ”Many-Body Physics”, approche complémentaire qui, consciente de la

difficulté de la tâche au delà du problème à deux corps, rennonce dès le départ aux solutions exactes

et se donne comme but l’elaboration de modèles pertinents à une domaine de la phénoménologie.

Pour obtenir les solutions des équations de la Mécanique Quantique, le formalisme usuel de

l’équation de Schrödinger est insuffisant. Il pat̂ıt de plusieurs anomalies d’ordre formel ou/et

pratique. Par exemple l’impossibilité de décrire avec une seule équation toute la riche varieté des

comportements asymptotiques que la physique autorise à partir de N = 2. Ou encore l’existence de

solutions parasites pour les problèmes de diffusion. Le cadre formel adéquat a été établi par Faddeev

pour un nombre de corps N=3 et fut ensuite étendu par Yakubovsky au cas N quelconque. Il offre

une formulation mathématique rigoureuse du problème avec quelques questions qui demeurent

ouvertes dans le cas des réactions de ”break-up” coulombien, e.g. e− + H → e− + e− + p+.

La Few-Body Physics est par essence pluridisciplinaire. Son domaine d’application, couvre

différentes branches de physique atomique, moléculaire, nucléaire et hadronique. Branches dont

les frontières n’existent, dans la majorité des cas, que pour satisfaire des besoins administratifs.

Lorsque l’on étudie l’interaction forte nucléon-nucléon à 1 MeV, la répulsion coulombienne modifiera

de façon substantielle les résultats; si l’on continue à descendre en énergie ce sont les incontournables

électrons de la cible d’hydrogène qui vont déterminer le processus donnant lieu à des phénomènes

très intéressants, de nature purement atomique, mais qui n’ont pas de ce seul fait pu arrêter notre

curiosité. Par ailleurs, l’étude de la diffusion des anti-neutrons sur des cibles de deuterium peut

tout aussi bien porter l’étiquette ”Few-Body”, ”Nucléaire” ou ”Antiprotons”.

Ce mémoire présente donc tout naturellement plusieurs aspects de cette activité pluridisci-

plinaire. Son contenu est le reflet des aléas que le métier de chercheur comporte si l’on se donne

comme objectif principal celui d’être attentif aux différentes voies de la découverte. Ils nous ont

1
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mené à considèrer des problèmes atomiques et moléculaires avec une attention bien plus grande

que celle initialement prevue; puis des problèmes nucléaires dans un domaine – celui des clusters de

neutrons – que l’on n’avait pas du tout envisagé au départ de ce travail. Son commun dénominateur

reste notre attachement constant aux solutions exactes de la Mécanique Quantique dans

sa formulation non relativiste.

Bien qu’il soit souvent question d’états liés, la thèse a été intitulée ”Diffusion de particules

lourdes sur des systèmes atomiques et nucléaires”. Nous voulons signifier ainsi l’intérêt

spécial que nous portons aux calculs des processus de diffusion. En effet, notre savoir faire actuel

dans les problèmes de diffusion est limité à N=4. Il faut toutefois signaler que si l’on abandonne

les techniques ”analytiques” au bénefice des calculs Montecarlo l’on peut accèder aux états liés

de systèmes pouvant aller jusqu’à N=12. D’autre part, si l’on considère des systèmes purement

coulombiens – comme en physique atomique ou moléculaire – le cas N=3 semble déjà extrêmement

compliqué, avec des processus qui ne sont pas encore bien résolus (”break-up” coulombien).

Dans le premier Chapitre j’ai presenté un resumé des aspects formels et numériques perme-

ttant la résolution des équations pour les systèmes à N=2,3,4 corps en interaction. Elle contient

des parties originales en ce qui concerne le traitement des forces à plusieurs corps et l’inclusion des

forces de longue portée pour N=3 et 4. C’est une partie essentielle qui a été complétée par des

nombreux appendices en fin du manuscrit.

Le Chapitre 2 est consacré à l’étude de la diffusion purement coulombienne d’une particule

lourde (comparée à l’électron) chargée positivement (X+) sur un atome d’hydrogène (H). C’est

la suite de mon travail de DEA. Il s’est avéré suffisamment fertile pour qu’il justifie une attention

prolongée. Il aurait même pu faire l’objet de la thêse toute entière, au vu de l’intŕêt des résultats

obtenus et de tous les aspects qui n’ont pas encore pu être traités.

Cet étude permet aussi de comprendre l’influence des électrons de la cible – forcement atomique

– lors des réactions nucléaires à la limite d’énergie nulle. Lorsque les énergies incidentes sont

comparables aux énergies électroniques, le processus de diffusion est fortement influencé par la

présence des électrons. Ses excitations virtuelles, dues à l’approche d’un projectile chargé, se

traduisent par des forces X+ − H de longue portée et attractives qui génèrent une famille d’états

liés et résonances et déterminent les propriétés de diffusion à basse énergie. Le cas que nous avons

considéré est, malgre sa simplicité, le système le plus complexe que l’on puisse traiter exactement

avec les techniques actuelles.

Nous avons étudié les propriétés de ces états en fonction de la masse mX du projectile et mis

en évidence l’existence d’un spectre très riche dont la complexité augmente avec mX . Les valeurs

correspondantes aux cas physiques ont fait l’objet d’une étude plus detaillée. Nous avons obtenu

des prédictions pour les longueurs de diffusion des cas µ−H,π−H, p−H ainsi que des nombreuses

résonances étroites dans différentes ondes partielles élevées.
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Nous avons aussi prédit l’existence d’un nouvel état de l’ion moléculaire H+
2 . Son énergie de

liaison est extrêmement faible (B ∼ 10−9), ce qui se traduit par une longueur de diffusion p − H

de 750 a.u., valeur enorme qui conditionne toute la diffusion p − H à très basse énergie. Un

proton qui s’approche très lentement d’un atome d’H se comportera ainsi comme un objet de taille

nanoscopique!

L’existence de cet état peut être déterminante pour expliquer l’abondance d’H moléculaire

dans l’espace interstellaire. En effet son taux de formation par e + H+
2 → H2 + γ est determiné

par l’abondance de l’ion moléculaire H+
2 , à son tour fortement dépendant du taux de réaction

p + H → H+
2 + γ.

Il est remarquable que ce système, le plus simple après l’atome d’H, puisse encore produire

de nouveaux résultats surprennants. Nous voudrions rappeller1 que l’ion moléculaire H+
2 fit déjà

l’objet au debut du XXeme siècle du travail de thèse de W. Pauli. Rappellons aussi, pour le plaisir de

l’anécdote, que ce remarquable physicien conclut à l’impossibilité qu’un tel système puisse former

des états liés. A tort ! . . . il a, en fait, une vingtaine d’états liés (pour l’onde S seulement) et nous

venons d’en découvrir un de nouveau. Ceci illustre la difficulté et la richesse du problème à trois

corps, surtout lorsque des forces de longue portée sont en jeu.

Ces prédictions constituent des premières. Leur confirmation expérimentale s’avère être,

outre nécessaire, très intéressante. Si une mesure directe de la section efficace pH à très faible

énergie semble peu vraisemblable avec les techniques actuelles, on peut cependant accéder au

continuum pH dans l’état final de la photodissociation de H+
2 .

Le Chapitre 3 est consacré à l’étude des systèmes de neutrons. Il a été motivé par l’annonce

faite au GANIL [2] d’une possible mise en évidence d’un état lié à 3 ou 4 neutrons grâce à ses

faisceaux de noyaux éxotiques. Cette nouvelle récente remet en cause un certain nombre de résultats

obtenus précédemment et relance l’intérêt, expérimental et théorique, dans l’étude d’un tel système.

Nous nous sommes engagés dans un programme de recherches dont le but fut d’étudier dans quelle

mesure les dernières versions des potentiels nucléon-nucléon qui brisent l’indépendance de charge,

sont compatibles avec l’existence de tels objets, ainsi que d’étudier ses propriétés éventuelles (durée

de vie, etc.) Il ne semble pas actuellement que les seules forces à deux corps neutron-neutron

soient suffisantes à assurer sa liaison. Il faut pour cela faire appel aux forces à trois nucléons,

indispensables pour reproduire l’énergie de liaison de la particule α.

Nous avons voulu mener cet étude en parallèle avec celui des atomes d’helium 3 – un systeme

fermionique similaire – et d’envisager la possibilité de structures plus grandes.

Finalement, le Chapitre 4 contient ce qui aurait du constituer le corps principal de ce travail

et qui en fut son point de départ. Il s’agit de la diffusion dans les sytèmes à 4 nucléons.

1voir e.g. le livre de Gutzwiller [1]
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Après l’obtention, relativement récente, des résultats convergés pour l’état lié du noyau de 4He

[3] et les calculs Montecarlo de noyaux jusque A=12 [4, 5, 6], l’enjeu dans cette physique est la

mâıtrise du spectre continu. Celui-ci est particulièrement riche dans le cas A=4. Il représente, avec

ses multiples résonances et seuils, une transition entre la relative simplicité des cas A=2,3 et la

complexité des ”vrais” noyaux. Il constitue en outre un sérieux défi pour l’approche traditionnelle

de la physique nucléaire. On sait en effet, et c’est l’un des résultats majeurs de la Few-Body

Physics, que le meilleur des potentiels NN est incapable de reproduire l’énergie de liaison du noyau

de 3H. On s’en sort en invoquant l’existence des forces à trois corps (TNI) et, comme il s’agit de

reproduire un nombre, il n’est pas étonnant d’y parvenir lorsque les forces invoquées disposent

d’un ou plusieurs paramètres libres. Une force à trois corps bien paramétrée peut même arranger

simultanément le manque de liaison pour A=3 et A=4.

Mais la grande nouveauté du cas A=4 est que lorsque l’on quitte l’énergie nulle, la physique

est loin d’y être triviale. Il n’est pas du tout certain que le cadre conceptuel décrivant le noyau

comme un ensemble de nucléons ponctuels intéragissant par un potentiel, soit encore valable dès

que l’on atteint ce seuil.

Ainsi nous avons consideré par ordre de difficulté croissante les systèmes n+3H,

p-3He et p-3H. Le cas n+3H est un état pur d’isopin T=1, sans la complication coulombienne,

mais présente une résonance à basse energie – la première résonance de la physique hadronique

– que des travaux précèdents ont eu beaucoup du mal à décrire. Nous avons consideré ensuite

son partenaire ”miroir par rapport a T3” et obtenu les observables de diffusion à basse énergie.

Enfin le cas p + t qui contient un couplage de deux états d’isospin et dont l’amplitude de diffusion

est fortement déterminée par l’existence de la première excitation du noyau de 4He, qui se trouve

expérimentalement seulement quelques 300 keV au dessus du seuil. Nos calculs de diffusion à

4N sont pionniers dans ce domaine.

La maitrise des techniques Few-Body est difficile. Mais il est aussi difficile de pouvoir se passer

en physique du contenu mathématique des solutions des équations que nous prétendons être les

bonnes. Nos intuitions restent bien souvent en deca de ce que les solutions contiennent.

Les choses absolument nécessaires ne rentrent pas dans la catégorie des modes scientifiques.

Ils n’ont pas lieu d’être à la mode car son intérêt est constant vital. Nous espérons contribuer

modestement à depoussiérer cette évidence tout au long de ce travail.



Overview

Introduction

The most important experimental technique in quantum physics is the scattering experiment.

Particle scattering experiments preceded such fundamental discoveries as atomic, nuclear, quark

structure of the matter and determined the basic particle interaction properties as well. Scattering

theory (theory describing particle collision experiments) is very rich in physical phenomenon and

along further discussion one should recognize various possible divisions of the subject. In the first

place there are the non-relativistic and relativistic theories. Second, there are the single-channel

and multichannel parts of the theory. And third, there are time-dependent and time-independent

parts. In this thesis only non-relativistic stationary scattering systems will be treated.

Practically, throughout whole physics, an understanding of the properties of the physical sys-

tem is achieved by succeeding to represent the composite system as a one-body system. Examples

of such reductions are the Hartree-Fock equations and the method of quasi-particles, Chew-Low

equations in the field-theory describing πN interaction. However, attempts to achieve such sim-

plified description are not always successful. The reason is that multiparticle systems may possess

qualitative peculiarities going far beyond the simple one particle picture. Some examples of such

properties are

1. The so-called Efimov effect [7] for a system of three particles interacting via short range

potentials and when a system of two such particles has a bound state of zero (or close to

zero) energy. In this case a situation can arise in which the levels of the system are pushed

out of the potential well as its depth increases. Being in full contrast with the two-body case.

2. The Thomas effect [8]. The collapse occurring in a system of three particles interacting

through a pair δ-like potentials. One can note that in two-particle systems nothing of the

sort happens.

3. Off-mass-shell characteristics of the pair T-matrix, indicating that for a complete description

of a system, consisting of three or more particles, it is not sufficient to know only the two-

body scattering phases (or on-shell T matrix). Here one finds need to use new properties of

pair interaction that are not observed in two-body problem.

On the other hand, in atomic-, nuclear- and elementary-particle physics a large number of states

5
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and processes exist which need to be treated as a three- (four-) particle system. Such necessity

occurs either when two-body experiments are not accessible or when exact treatment of the problem

is required. Here are a few examples:

1. The scattering of electrons and other charged particles by hydrogen atoms. Such a system

presents the simplest possible experimental setup for testing the Coulomb interactions at

Rydberg energies.

2. Muonic, pionic atoms in order to study muon(pion) catalyzed fusion.

3. Propagation of antiprotons in gaseous media, their absorption by simplest neutral atomic

systems (H and He).

4. To test the charge symmetry and isospin invariance of nuclear forces one needs data of

neutron-neutron interaction. However, direct neutron-neutron scattering experiments are

not available. Thus, one can attain this information only by treating the system of three and

more nucleons.

5. Presence of collective forces between the nucleons, which appear only when more than two

particles interacts together. Existence of three-body, four-body nuclear forces.

6. Break-up reactions. Multichannel scattering.

All physical systems discussed above need the formalism of few-body scattering problem.

Layout

This thesis contains three chapters supported by the appendices. The first chapter is devoted

to discuss the work underlying theory. The three following chapters employ theoretical ideas in

practice by exploring real physical systems.

I will give a short description of their contains:

Chapter 1 reminds the basics of 2-body non-relativistic time-independent scattering theory. This

theory is supplemented to treat three and four particle scattering as well as bound states.

Corresponding three and four-body equations are developed in section 1.2.

Obtained equations are multidimensional coupled integro-differential equations. Their solu-

tion requires the application of powerful numerical methods. First differential equations are

discretized using ”the spline method”, transforming them into corresponding linear algebra

problem. However, resulting linear algebra systems are of very large size and still demand

very special numerical treatment to be solved. Numeric technique related issues conclude the

chapter of the formalism.
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Chapter 2 deals with quantum three charged particle scattering. In particular, heavy positive

charge particle (including e+, µ+, π+ and p+) scattering is studied on atomic hydrogen at

energies bellow the first rearrangement and inelastic threshold. Predictions for the corre-

sponding scattering lengths have been obtained.

Hence standard 3-body equations, as formulated by Faddeev[9], suppose particles interacting

via short-range forces. Therefore they are not appropriate, when one deals with charged

particles. The difficulty is overcome by reformulating these equations to treat Coulomb

interaction in Merkuriev proposed way [10].

The most intriguing behavior is exhibited in p++H elastic scattering. Enormously large low

energy scattering length found in this system have permitted to show the existence of weakly

bound first excited H+
2 σu symmetry state, as well as predict its binding energy. The H+

2

formation rate, as well as the subsequent abundance of H2 molecules, can be substantially

influenced by this resonant p-H cross section.

Chapter 3 tries to discuss the possibility of the eventual existence of bound multineutron clusters.

This work was inspired by the recent experiment at GANIL [2, 11], which once again raised

doubts if bound few neutron systems can be formed. The most promising structure is the

tetraneutron (bound state of 4 neutrons).

The aim of this chapter is to answer whether such systems (trineutron, tetraneutron) are

compatible with our current knowledge of strong interaction, and what necessary corrections

should be made to permit such an existence. Sensibility of (n=2, 3, 4) neutron systems to

various modifications in nucleon-nucleon force have been studied, as well as effects of 3-4

Nucleon forces.

Neutron systems have been compared to other fermion system having resembling interac-

tion, however eventually forming bound multifermion clusters (namely with clusters of He3

molecules).

Chapter 4 deals with four nucleon elastic scattering problem. Three- and four-nucleon systems

are the testing ground for studying the nuclear interaction. Whereas four-nucleon continuum

states, being a challenge at present for few-body community, remains very scarcely explored.

This study contributes to fill up this gap.

In order to treat all three experimentally available four-nucleon systems (namely n-3H, p-3He

and p-3H) rigorously, Faddeev-Yakubovski equations have been modified to include Coulomb

interactions. Eventual calculations were performed using semi-realistic and realistic nucleon-

nucleon interaction models and also in conjunction with three nucleon force.





Chapter 1

Formalism of a few-body scattering

problem

The formalism of three- and four-body scattering includes all the concepts of the two-body problem.

Their basic ideas are shortly reviewed in the following section. For a more complete discussion,

one could refer to classic textbooks like [12, 13, 14].

However, the general few-body problem goes far beyond the ”ordinary” two-body scattering

theory. One should recall that equations of motion for more than two particles are not integrable in

the general case: Lippmann-Schwinger equation does not lead to one unique solution. Nevertheless

this problem can be fixed by imposing mathematically rigorous constrains on the solution, which

ensures correct boundary conditions. The underlaying theory for three-particle scattering with

short range interactions was formulated by L.D. Faddeev in 1960 [9]. Later on, this theory was

generalized by O.A. Yakubovski [15] to any number of particles. Formalism developed by L.D.

Faddeev and O.A. Yakubovski will be discussed in section 1.2. Finally, to put these ideas in

practice, one should be able to solve the resulting integro-differential equations. In the general

case, these many-dimensional equations do not have analytic solutions. In order to solve them, one

should apply powerful numerical methods. The later issue will conclude this chapter.

1.1 Two-body scattering

Scattering experiments at the (sub)atomic level are performed by using particle sources and de-

tectors which are both located at large (macroscopic) distances from the scattering region. The

observed particles must be considered as propagating freely, i.e. with a motion governed by the

free rather than the full Hamiltonian. Consequently, an experiment supplies data describing a

relationship between free (or asymptotic) incoming and outgoing states, which can be expressed in

the following way:

|ψout〉 = S|ψin〉, (1.1)

where S is quantum-mechanical scattering operator. A satisfactory scattering theory must be able

to mimic this situation.

9



10 1. Formalism of a few-body scattering problem

The starting point for developing our formalism is the time dependent Schrōdinger equation:

i~
∂

∂t
|ψt〉 = H|ψt〉. (1.2)

The general solution of this equation can be formally written in the form

|ψt〉 = U(t)|ψ〉 ≡ e−
i
~

Ht|ψ〉

where U(t) is the so-called evolution operator. Let us suppose that the state U(t)|ψ〉 describes

the evolution of some scattering experiment. By following this state back to a time well before

the collision, one should trace the behavior of a free wave packet, described by the free evolution

operator U0(t) ≡ e−
i
~

H0t, and thus expect:

U(t)|ψ〉 −→
t→−∞

U0(t)|ψin〉. (1.3)

Similarly, long after the collision, particles move freely and one expects:

U(t)|ψ〉 −→
t→+∞

U0(t)|ψout〉. (1.4)

This procedure can be successful only if there is a strict relation between incoming and outgoing

states. In other words for any in- and any out- asymptote there exists one and only one state

associated with them, and vice versa. It can be shown that for smooth, short ranged and – at

the origin – non singular potentials, these conditions are satisfied1. Once the strong limits for eq.

(1.3-1.4) are satisfied2, they guarantee the existence of the so-called Møller wave operator Ω± :

Ω± = lim
t→∓∞

U(t)†U0(t). (1.5)

The Møller operators are limits of the unitary operators and relate the asymptotes to the actual

scattering states:

|ψ〉 = Ω+|ψin〉 = Ω−|ψout〉. (1.6)

Since Møller operators are isometric they can be inverted to express Scattering operator:

S = Ω†
−Ω+, (1.7)

which on its turn is unitary. Its action on incoming plane wave can be expressed as a sum of

free (non scattered) and scattered wave propagating from the center of interaction. In momentum

space one has: 〈−→
k′ |S| −→k

〉
= δ(

−→
k′ −−→

k ) − 2πiδ(k′2 − k2)t(
−→
k′ ,

−→
k ). (1.8)

1It is worth noticing that Coulomb potential does not satisfy mentioned conditions. It falls too slow to permit
asymptotic freedom of the particles and thus requires special treatment.

2In fact, conditions (1.3-1.4) are too weak, since both wave functions U(t)|ψ〉 and U0(t)|ψin(out)〉 can tend pointwise
to zero and in this case one cannot distinguish between different states |ψin(out)〉. Therefore, former conditions are
reinforced by imposing strong limits for a difference of wave functions, ie: limt→±∞

∥∥U(t)|ψ〉 − U0(t)|ψin(out)〉
∥∥ → 0
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In this equation, the delta distributions express conservation of momentum and energy, respectively.

The function t(
−→
k′ ,

−→
k ) is also known as the on-shell T-matrix (i.e. transition matrix). It differs

from the well-known scattering amplitude f(
−→
k′ ,

−→
k ) only by a trivial factor:

f(
−→
k′ ,

−→
k ) = − m

2π~2
t(
−→
k′ ,

−→
k ). (1.9)

From eq. (1.8) one defines the differential scattering cross section:

dσ

dΩ
(
−→
k′ ,

−→
k ) =

∣∣∣f(
−→
k′ ,

−→
k )

∣∣∣
2
, (1.10)

whereas the total scattering cross section can be obtained after integrating over all possible direc-

tions of scattered beam:

σ(
−→
k ) =

∫
dΩk′

dσ

dΩ
(
−→
k′ ,

−→
k ). (1.11)

1.1.1 Lippmann-Schwinger equation

The expression (1.5) for the Møller operator does not help much, as it stands, because we cannot

carry out the time integral for non commuting operators U(t)† and U0(t). But, since we are allowed

to apply Møller operators on plane waves, we can write:

|−→k 〉± = Ω±|
−→
k 〉 = lim

t→∓∞
U(t)†U0(t)|

−→
k 〉 (1.12)

= lim
ε→0

± ε

~

0∫

∓∞

dt e±
ε
~

tU(t)†U0(t)|
−→
k 〉 = lim

ε→0
± ε

~

0∫

∓∞

dt e
i
~
(H−E∓iε)t|−→k 〉

= lim
ε→0

± iε(E ± iε − H)−1|−→k 〉.

Here we have obtained important relation between the scattering solutions |−→k 〉± and the resolvent,

or Green’s function:

G(z) = (z − H)−1 , (1.13)

with z = E ± iε and E = ~
2k2

2µ , for a system with reduced mass µ. The relation (1.12) marks the

transition from time-dependent to time-independent theory. Furthermore, by using the identity

G(z) = G0(z) + G(z)V G0(z) (1.14)

= G0(z) + G0(z)V G(z), (1.15)

with G0(z) = (z − H0)
−1 being the so-called free Green’s function, equation (1.12) can be cast in

a practical mathematical tool in order to obtain the scattering wave function:

|−→k 〉± = lim
ε→0

± ε [G0(E ± iε) + G0(E ± iε)V G(E ± iε)] |−→k 〉 (1.16)

= |−→k 〉 + G0(E ± i0)V |−→k 〉±.
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This is the Lippmann-Schwinger (LS) equation, first formulated in [16, 17], for the scattering states

|−→k 〉±. The ε−limit, which has to be performed in Green’s functions, is indicated by the notation

E ± i0. In configuration space representation [14], this limit leads to

〈
~r′

∣∣ G0(E ± i0) |~r〉 = − µ

2π~2

e±ik|~r′−~r|

|~r′ − ~r| . (1.17)

The free resolvent G0(E) has a cut along the positive real E-axis. The ε−limit tells us on which

side of the cut we have to stay in order to fulfill the boundary condition. The + sign corresponds

to the physical boundary condition.

By writing LS equation in configuration space representation

〈~r|ψout〉 = 〈~r
∣∣∣~k

〉+
= 〈~r

∣∣∣~k
〉
−

∫
d3~r′

µ

2π~2

e±ik|~r′−~r|

|~r′ − ~r| V (~r′)
〈
~r′

∣∣∣~k
〉+

, (1.18)

we see that the first term on the right hand side is a plane wave, and the second one is an outgoing

spherical wave. The asymptotic conditions for outgoing state follows directly:

ψout(~r) −→
r→∞

(2π)−
3
2

(
ei~k·~r + f(kr̂, k̂)

eikr

r

)
. (1.19)

Here f(kr̂, k̂) is recognized as the scattering amplitude, which modulates the scattered wave in

different directions, and therefore determines the amount of flux going in any direction. Equa-

tion (1.19) provides the boundary conditions necessary to uniquely specify the solution of the

Schrödinger equation. Therefore one possible method of solving the scattering problem consists in

solving (
−~2∇2

2µ
+ V (~r)

)
ψ(~r) = Eψ(~r) (1.20)

differential equation with eq. (1.19) as boundary conditions.

1.1.2 Partial-wave series

Equation (1.20), derived in preceding section is the proper ground for solving two-body scattering

problem. However, in general, it is a three-dimensional and therefore not easy to solve directly.

For spherically symmetric potentials, considerable simplifications can take place. They have

the property that the three-dimensional scattering equations reduce to a set of uncoupled one-

dimensional equations in the partial-wave basis (PWB). In this case the scattering matrix commutes

with both H0 and ~L (total angular momentum of the system) and therefore is diagonal in the PWB:

〈
k′l′m′ |S| klm

〉
= δ(k′ − k)δl′lδm′msl(k). (1.21)

Because of unitarity of S-matrix, sl(k) should be unitary as well and therefore can be written in

the following form:

sl(k) = e2iδl(k). (1.22)
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The real quantity δl(k) is known as the phase shift. The scattering amplitude f(~k′,~k) can be

expanded on the angular momentum basis by using polynomial functions of Legendre:

f(~k′,~k) =
∞∑

l=0

(2l + 1)fl(k)Pl(k̂
′ · k̂), (1.23)

whereas its partial-wave components fl(k) are directly related to the phase shift by

fl(k) =
sl(k) − 1

2ik
=

eiδl(k) sin δl(k)

k
. (1.24)

Since Legendre polynomials are orthogonal functions, the total cross section is a sum of partial-

wave cross sections σl(k):

σ(k) =
∞∑

l=0

σl(k) = 4π
∞∑

l=0

(2l + 1) |fl(k)|2 = 4π
∞∑

l=0

(2l + 1)
sin2 δl(k)

k2
. (1.25)

Further as one develops scattering wave function into spherical waves

ψl,k(r) =
(π

2

) 1
2
r 〈rlm |klm+〉 , (1.26)

and obtains radial Schrödinger equation (1.20) for its components:
[

~2

2µ

d2

dr2
− ~2

2µ

l(l + 1)

r2
− V (r) + E

]
ψl,k(r) = 0. (1.27)

Boundary conditions are obtained by performing a plane wave decomposition

〈~r
∣∣∣~k

〉
= (2π)−

3
2

1

kr

∞∑

l=0

(2l + 1)il̂l(kr)Pl(r̂ · k̂), (1.28)

including them into eq. (1.19) and regrouping the partial components of a given l. Boundary

conditions to be implemented in PWB can be rewritten in several useful forms:

ψl,k(r) −→
r→∞

jl(kr) + kfl(k)ei(kr−lπ/2)

−→
r→∞

eiδl(k) sin
[
kr − lπ

2 + δl(k)
]

−→
r→∞

i
2

[
ĥ−

l (kr) − sl(k)ĥ+
l (kr)

]
,

(1.29)

where ̂l(x) is the Riccati-Bessel function and ĥ±
l (x) are the Riccati-Hankel functions [18]. The

second form of eq. (1.29) reveals the significance of the name phase shift. At large distances, the

actual radial function is proportional to the free radial function ̂l(kr) = sin
[
kr − lπ

2

]
, except that

the phase of its oscillations is shifted by an amount δl(k).

Conversely, the last expression is advantageous over the preceding one in the sense that the

right-hand side of it is a solution of the free radial Schrödinger equation, which is the form taken by

the wave function outside the range of the potential. This allows one to impose a cutoff radius of the

order of the potential range, i.e., the differential equation has to be solved only in the interaction

region. In what concerns applications of the first form, a very large cutoff radius should have to

be used, since the free solutions converge to their asymptotic forms only as slow as 1/kr.
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1.1.3 The Coulomb problem

Up to now in our discussion, we were restricting to short range potentials, i.e. those which for

r → ∞ were falling quick enough to satisfy the strong limits of eq. (1.3) and eq. (1.4). Coulomb

potential does not fulfill this condition. The reason is that the 1/r potential falls off so slowly

that it continues to influence the particles even as they move apart. For instance, a scattering

orbit never behaves freely even as t → ±∞ and therefore asymptotic conditions do not hold on.

In fact, when r → ∞ solution of radial Schrödinger equation with V (r) = Z1Z2e
2/r potential, has

asymptotic form [12, 19]:

ψl,k(r) ∼
r→∞

sin [kr − γ ln 2kr + C] , (1.30)

where γ is a dimensionless quantity:

γ =
Z1Z2µe2

~2k
= α~c

√
µ

2E
(

~2

m

) , (1.31)

µ is the reduced mass of scattered fragment and E - kinetic energy of the system in center of mass

frame. One can see solution continuing to pick up phase logarithmically for large r. Therefore to

get rid off divergent behavior of wave functions, which is purely due to Coulomb interaction, one

separates contribution of short range potential by describing wave function as a superposition of

incoming and outgoing Coulomb waves [19]:

|ψl,k(r)〉 −→
r→∞

[
u−

l (r) − eiδleiσlu+
l (r)

]
. (1.32)

Here, δl is the phase shift associated with the distortion due to strong interaction, while σl – called

Coulomb phase shift – is a quantity describing the strength of Coulomb interaction:

σl = arg Γ(l + 1 + iγ). (1.33)

It is worth noticing that eq. (1.32) is similar to the standard expression of asymptotic wave

function for short range potential scattering eq. (1.29). The only difference is that Riccati-Hankel

functions ĥ±
l (r) are replaced by appropriate Coulomb wave functions u±

l (r). On the other hand,

the interpretation of the scattering parameters is not the same. The full scattering amplitude, when

Coulomb potential is present, is separated in two terms. One is associated with strong interaction

and the other one being the pure Coulomb part. Hence, total cross section now is:

dσ (θ)

dΩ
= |fC (θ) + fS (θ)|2 . (1.34)

The strong amplitude partial components are related to strong interaction phase shifts by

standard relation, supplemented with additional Coulomb phase:

fS,l =
eiδl sin δl

k
e2iσl . (1.35)

Complete amplitude in terms of its partial waves reads as

fS (θ) =
∞∑

l=0

(2l + 1)fS,l(k)Pl(cos θ). (1.36)
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One can remark that the Coulomb term is non-isotropic and has an angular dependence in the

following form:

fC = − γ

2k sin2 1
2θ

exp

[
−iγ ln

(
sin2 1

2
θ

)
+ 2i arg Γ(1 + iγ)

]
. (1.37)

1.1.4 Integral representation of the phase shifts

Certain properties or methods of calculating the phase shifts may be obtained by starting from their

appropriate integral representations. Most of them are obtained by simply applying the Wronskian

theorem to suitably defined solutions of corresponding radial equations. These integral methods

can be very useful in numerical calculations. Contrary to phases extracted from the asymptotic

form of the wave function – eq. (1.29)– their integral representation relies much more on the

internal part of the wave function and thus provides an accurate alternative test of results.

We are seeking expression which compares the phase shifts δl(k) and δ̃l(k), corresponding re-

spectively to two different potentials V (r) and Ṽ (r) at the same given energy. We designate ψ̃l,k(r)

the regular3 solution of the radial Schrödinger equation
[

d2

dr2
− l(l + 1)

r2
− 2µ

~2

(
Ṽ (r) − E

)]
ψ̃l,k(r) = 0, (1.38)

while ψl,k(r) designates the regular solution of the same equation with potential V (r). Regular

solutions have asymptotic expression

ψ̃l,k(r) ∼
r→∞

sin
[
kr − l

π

2
+ δ̃l(k)

]
. (1.39)

The Wronskian W [ψl,k(r), ψ̃l,k(r)] is zero at the origin and asymptotically approaches the limit

lim
r→∞

W (ψl,k(r), ψ̃l,k(r)) = k sin
[
δl(k) − δ̃l(k)

]
. (1.40)

According to the Wronskian theorem:

sin
[
δl(k) − δ̃l(k)

]
=

W (ψl,k(r), ψ̃l,k(r))
∣∣∣
∞

0

k
(1.41)

= − 2µ

~2k

∞∫

0

ψ̃l,k(r)
(
V (r) − Ṽ (r)

)
ψl,k(r)dr.

This important relation is valid for any form of the potentials V (r) and Ṽ (r), provided that

they vanish at infinity more rapidly than 1/r and that they have no singularity as strong as 1/r2

at the origin.

For Ṽ (r) = 0 one has δ̃l(k) = 0, whereas the regular solution for the free wave is described by

ψ̃l,k(r) = ̂l(kr). Therefore eq. (1.41) becomes:

sin δl(k) = − 2µ

~2k

∞∫

0

̂l(kr)V (r)ψl,k(r)dr. (1.42)

3Solution of the radial equation which vanishes at the origin is called regular. On the contrary, irregular is called
the solution which is not zero at the origin.
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Equation (1.41) allows to draw some conclusions concerning the effects on the phase shifts

when the potential is changing. For infinitesimal changes one can neglect differences between the

solutions ψl,k(r) and ψ̃l,k(r) in the right-hand side of equation (1.42), whence

△δl(k) = − 2µ

~2k

∞∫

0

△V (r)ψ2
l,k(r)dr. (1.43)

In particular, if the variation of the potential △V (r) has the same sign over the entire interval

(0,∞) the variation of the phase shift △δl(k) has the opposite sign. Hence, any increase of the

potential (greater repulsion) reduces the phase shift, while any decrease of the potential (greater

attraction) enlarges it. This feature of the phase shifts, generalized for larger particle systems, will

be of great service throughout this thesis.

1.1.5 Effective-range theory

The formulae (1.41) allows to study the variation suffered by the phase shift when one modifies the

potential while keeping the energy constant. In practice, potentials are usually fixed by the nature

of the interacting particles, while one wishes to know the phase shift variation as the function of

the energy. It turns to be that in the low energy limit, useful relation can also be established.

We denote by φ(r) the regular solutions of radial Schrödinger equation (1.27). Let φ̃(r) be the

irregular solution of eq. (1.38) corresponding to the same energy, having the same asymptotic form

as φ(r) and the same normalization. Consider now two different energies E1 and E2 and their

corresponding solutions. Following the Wronskian theorem:

W (φ1(r), φ2(r))|ba =
2µ

~2
(E1 − E2)

b∫

a

φ1(r)φ2(r)dr (1.44)

W (φ̃1(r), φ̃2(r))
∣∣∣
b

a
=

2µ

~2
(E1 − E2)

b∫

a

φ̃1(r)φ̃2(r)dr.

As b → ∞, since φ(r) and φ̃(r) have the same asymptotic form, the difference of the integrals

in the right hand side of equations converge. Therefore the differences of two Wronskians of the

left hand side evaluated at b = ∞ tends to zero. Since lim
a→0

W (φ1(r), φ2(r)) = 0 one obtains:

lim
a→0


W (φ̃1(r), φ̃2(r)) +

2µ

~2
(E1 − E2)

b∫

a

(
φ̃1(r)φ̃2(r) − φ1(r)φ2(r)

)
dr


 = 0. (1.45)

In the special case Ṽ = 0 and further restricting to the S-waves (ℓ = 0) we denote functions

φ̃(r) by v(r). Choosing the normalization by the condition v(0) = 1

v(r) = cos kr + cot δ sin kr, (1.46)
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one obtains:

W (φ̃1(r), φ̃2(r)) = k1 cot δ1 (k1) − k2 cot δ2 (k2) (1.47)

=
2µ

~2
(E1 − E2)

b∫

a

(v1(r)v2(r) − φ1(r)φ2(r)) dr.

For short range potentials, when V (r) falls to zero sufficiently rapidly as r → ∞, integral in the

right-hand side converges. We denote by φ0(r) and v0(r) the functions φ(r) and v(r) corresponding

to zero energy. In this limit they read:

v0(r) = 1 − r

a0
lim
E→0

k cot δ (k) = − 1

a0
, (1.48)

where a0 is the so-called scattering length, which measures the zero energy cross section
(
σ(0) = 4πa2

0

)
.

By setting E1 = E and E2 = 0 one obtains the well known Bethe formula:

k cot δ (k) = − 1

a0
+

2µ

~2
E

∫
(v(r)v0(r) − φ(r)φ0(r))dr. (1.49)

This relation is exact for any type of potential. However it becomes useful when the integral

of the right hand side varies slowly as a function of the energy. This is the case for short range,

exponentially decreasing, potentials, where the important contribution to the right hand side in-

tegral comes only from internal region of potential with E ≪ V (r). In this region v(r) ≈ v0(r)

and φ(r) ≈ φ0(r), since they coincide at the origin and these functions have practically the same

curvature (φ′′(r)/φ(r) ≈ 2µ
~2 V (r)). One thus has in a very good approximation:

k cot δ(k) = − 1

a0
+

2µ

~2
E

∫
(v2

0(r) − φ2
0(r))dr. (1.50)

The quantity r0 = 2
∫

(v2
0(r) − φ2

0(r))dr is a characteristic parameter of the potential and is

called effective range of the interaction. The two terms on right hand side of eq. (1.50) are the

first two terms of k cot δ expansion in a even series of momentum. This effective range formula can

be generalized for any angular momentum partial waves:

k2l+1 cot δl(k) = − 1

al
+

1

2
r0,lk

2 + o(k4). (1.51)

In contrast to S-wave case, where expansions parameters had clear physical meaning, the

interpretation of al and r0,l for higher partial waves is less obvious.

For potentials which are not exponentially bounded, the effective-range function as defined in

eq. (1.51) is not anymore an entire function of k2. The reason for this is that for such a potential

the Jost function is analytic for Im(k) > 0 only. In fact, it has a branch-point singularity at k = 0,

which gives rise to logarithms appearing in the expansion. For example, the S-wave expansion for

a polarization potential with an r−4 tail, is [20]:

k cot δ0(k) = − 1

a0
+ bk + ck2 ln k + o(k2). (1.52)
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Nevertheless, one can usually define new effective-range functions, which are entire functions of

k2. Even in case of Coulomb plus exponentially-bounded potential, for which a phase shift does not

even exist in the usual sense, an analytic effective-range function can be defined. It is based on the

Coulomb-modified phase shift, which does have an expansion in k2. For S-wave, the effective-range

function reads [21] [22]:

k
[
c2
0 cot δ + 2γh

]
≈ −1

a
+

1

2
r0k

2 + ..., (1.53)

with

c2
0 =

2πγ

exp(2πγ) − 1
(1.54)

h =
1

2

[
Ψ(iγ) + Ψ(−iγ) − ln(γ2)

]

and Ψ is the digamma function [18].

1.1.6 Zero energy scattering

Let us consider the very low energy scattering. In this case, the incident wave becomes static and

there is no anymore preferred direction of arriving particle. Therefore, the scattered wave should be

isotropic in space and the scattering cross section is fully described by s-wave (ℓ = 0). On the other

hand from eq. (1.42) it follows that at zero energy all the partial phase shifts, as well as incident

wave function jℓ(kr), fall to zero. Hence, all the assymptotic forms represented in eq. (1.29) tend

to zero and can not serve as valid boundary conditions in numerical calculations. However, one

can remark from eq. (1.51) that for s-wave phase shifts fall to zero linearly:

lim
k→0

tan δ0(k)

k
= −a0 + o(k). (1.55)

It means that scattering length can be extrapolated by studying low energy limit of the phase

shifts. However, this kind of extrapolation becomes a subtle numerical task, since one must deal

with quantities falling to zero. The more practical procedure relies on the fact that final limit for

ψl=0,k(r)/k exists:

lim
k→0

ψl=0,k(r)

k
= lim

k→0

jl(kr) + kfl(k)ei(kr−lπ/2)

k

∣∣∣∣∣
l=0

= lim
k→0

j0(kr)

k
+ lim

k→0

eiδ0(k) sin δ0(k)

k
eikr

= r − a0. (1.56)

This formula provides numerically correct boundary conditions for zero energy scattering by

short range potential. Scattering length can be easily extracted from the tail of the numerical

solution f(r), representing the factorized wave function ψl=0,k(r)/k.

a0 = r − f(r)

f ′(r)
. (1.57)
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When long range interaction is present, in particular Coulomb, things become more complicated.

Of course one can use of effective range formulae (1.53) to extrapolate the scattering length from

the low energy phase shifts. However this is an even more numerically unstable task than for the

short range potentials, since Coulomb phase shifts fall to zero very rapidly, with an exponential

factor proportional to −1/k (see eq. 1.53).

The scattered S-wave, when Coulomb interaction is present, can be rewritten in alternative

form to the expression (1.32):

ψ0,k(r) −→
r→∞

[F0(kr, γ) + tan δ0G0(kr, γ)] . (1.58)

The Coulomb wave functions F0, G0 have exponentially singular behavior at the origin (k = 0).

However when kr << γ, they can be expressed in terms of modified Bessel functions [18].

G0(kr, γ) ∼ 2eπγ

√
kr

π
K1(2

√
2γkr),

F0(kr, γ) ∼ e−πγ
√

πkrI1(2
√

2γkr),

G′
0(kr, γ) ∼ −2keπγ

√
2γ

π
K0(2

√
2γkr), (1.59)

F ′
0(kr, γ) ∼ e−πγk

√
2πγI0(2

√
2γkr).

Using eq. (1.53) one obtains:

tan δ(k → 0) = − c2
0a0k

2γha0k + 1
→ −2πγa0ke−2πγ . (1.60)

By expressing the logarithmic derivative of Coulomb wave by means of eq. (1.60), one finally gets:

ψ′
0,k(r)

ψ0,k(r)
=

I0(2
√

2γkr) + 4γka0K0(2
√

2γkr)√
r

2γkI1(2
√

2γkr) − 2a0
√

2γkrK1(2
√

2γkr)
. (1.61)

Now, scattering length can be obtained by just calculating logarithmic derivative of the zero energy

solution at the extreme point of the grid and applying relation:

a0 = lim
r→∞

r

κ

(
f ′(r)
f(r) r

)
2I1(κ)

κ − I0(κ)
(

f ′(r)
f(r) r

)
K1(κ) + κ

2K0(κ)
, with κ = 2

√
2γkr = 2

√
2Z1Z2µe2

~2
r. (1.62)

1.1.7 Integral representations of the scattering lengths

In a previous section it has been demonstrated how to extract the scattering lengths from the

asymptote of the wave function. Despite of being the most straightforward and simple method, it

can be a risky practice in numerical calculations: one completely relies on the asymptote of the

wave function, thus being not sure if the provided numerical solution describes well the internal

part of the wave function. An alternative method can be developed using integral expressions of

the phase shifts presented in subsection 1.1.4.
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For short range interaction, the required expression follows by just inserting eq. (1.42) into eq.

(1.50) and by searching the low energy limit. This leads to:

a0 = − lim
k→0

tan δ(k)

k
= lim

k→0

2µ

~2

∞∫

0

̂l(kr)

k
V (r)

ψl,k(r)

k
dr =

= lim
rmax→∞

k→0

2µ

~2

rmax∫

0

rV (r)

(
f(r)

ψl,k(rmax)

kf(rmax)

)
dr

= lim
rmax→∞

2µrmax

~2f(rmax)

rmax∫

0

rV (r)f(r)dr (1.63)

Note that former expression is not applicable for the Coulomb (long range) scattering. In this

case one should rely on scattering lengths extrapolated from the asymptote of wave function.
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1.2 Basic concepts of a few-body problem

1.2.1 Multiparticle partitions. Jacobi coordinates

The Hamiltonian of a multiparticle system, with particles masses mi (i = 1, 2, ..., N) is:

HN = −
N∑

i=1

~2

2mi
∆i +

∑

i<j

Vij(ri − rj).

Here ∆i denotes a three-dimensional Laplace operator in coordinates ri, and Vij(r) are the pairwise

interaction terms. However, general coordinates are not suited for solving the multiparticle prob-

lem, since they do not separate degrees of freedom describing conserved quantities of the system

(such as the center of mass motion or projection of total angular momentum). Furthermore they

are not suited for implementing boundary conditions.

1

2

3

x

y
3

3

1

2

3

x

y
1

1

1

2

3

y
2x2

Figure 1.1: Three possible diagrams, together with associated Jacobi coordinates, for the three-
body system

Dealing with multiparticle scattering problem, one should be easily able to divide the system

into its subsystems, which describe the variety of all the possible outgoing channels, containing

different particle sets. One makes use of concepts, first introduced by Yakubovski [15], of partitions

and chain of partitions. The distribution of N particles into a groups is called partition a. A

partition is described in detail by explicitly providing the subsystems it contains. For example the

symbol

a3 = (132 )(4 )(65 )

means the subdivision of a six particle system into three groups (132 ), (4 ) and (65 ). Within these

groups, only those particles occurring in parentheses interact with each other. Let us remark that

the partition aN−1 is uniquely determined by the specifying the pair of particles (ij ) joined in the

group a2 and furthermore cannot be subdivided into smaller groups.

In the case of two partitions a and α, the symbol (a, α) will be called a chain of partitions. The

symbol a ⊃ α indicates that the partition α is obtained from the partition a by partitioning one or

more of its subsystems. The chain can be pictured as a ”tree”. Every branch of this tree switches

on an interaction between the particles.

For a three-particle system there is only one type of partition (tree): a2 = (ij )k . By renumbering
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the branches of this tree4, one obtains three diagrams corresponding to the same type of partition

(see Fig. 1.1).

i j

k l

H

x

y

z

i
j

k l

K

x

y

z

Figure 1.2: Two different partitions for four-body system

There are two ways of dividing four particle system in two groups (ijk)l and (ij )(kl). The (ijk)l

type partition is represented by so-called diagram K-type, whereas diagrams identifying partition

(ij )(kl) are called H-type (Fig. 1.2). In total, there are twelve trees of the first type and six trees

of the second one (they correspond to the different renumbering of particles (1234 ) in (ijkl)).

For each subsystem ̟i(n1, n2, ...) contained in one of the parentheses of some partition, one

has a corresponding Hamiltonian operator:

H̟i
= −

N∑

i=1

~2

2mni

∆ni
+

∑

ni<nj

Vninj
(rni

− rnj
), (1.64)

which depends only on the particle coordinates of this subsystem. For the partition ak, one can

decompose the space of states L(R3N ) in a tensor product of spaces L(R3̟i), which describes the

states of the subsystems of ak:

L(R3N ) =
k∏

j=1

⊗L(R3̟i). (1.65)

In accordance with this expression, we define the Hamiltonian of a partition as being the sum

of Hamiltonians of its subsystems:

Hak
=

k∑

j=1

H̟i
. (1.66)

Reduced coordinates

Let us introduce the coordinates related to the partition trees discussed above. First of all one

can single out the degrees of freedom which describe the center of mass motion of the system as a

4Or, that is identical, by interchanging indexes (ijk). These indexes represent any combination obtained by cyclic
permutations of (123).
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whole. We denote by a vector ~R its position:

~R =

N∑
i=1

mi~ri

N∑
i=1

mi

. (1.67)

Other coordinates are related to the branches of the partition. For two particle cluster (ij )

one uses scaled Jacobi vector (these vectors are scaled to remove the masses from kinetic energy

operator):

~xij =
√

2µij(~rj − ~ri), (1.68)

with µij being the reduced mass of two particles µij =
mimj

mi+mj
. The coordinate which joins two

subsystems (let designate them ̟i(ni1 , ni2 , ...) and ̟j(nj1 , nj2 , ...)) in the same partition is defined

by using the following strategy:

1. One finds the center of masses ~r̟i
, ~r̟j

and reduced mass µ̟i
,̟j

of these two subsystems

~r̟i
=

∑
k

mnik
~rnik

∑
k

mnik

, ~r̟j
=

∑
k

mnjk
~rnjk

∑
k

mnjk

, (1.69)

µ̟i
,̟j

=

∑
k

mnik

∑
k

mnjk

∑
k

mnik
+

∑
k

mnjk

. (1.70)

2. The required coordinate ~x̟i
,̟j

is the reduced Jacobi coordinate which joins the centers of

mass of these two subsystems:

~x̟i
,̟j

=
√

2µ̟i
,̟j

(~r̟j
− ~r̟i

). (1.71)

The coordinate basis, obtained as described above, is orthogonal and has invariant norm (the

sum of squares of these coordinates is partition and renumbering invariant):

ρ2 =
∑

̟i
<̟j

~x2
̟i

,̟j
. (1.72)

Other major advantage of these coordinates is the trivial form of the kinetic energy (or Laplace)

operator, which simply becomes:

∆ =
∑

̟i
<̟j

∂2

∂~x2
̟i

,̟j

(1.73)

and holds the same form for any partition and any renumbering of particles inside the given

partition.



24 1. Formalism of a few-body scattering problem

Three-body Jacobi coordinates

One can easily apply the definitions, introduced in the previous subsection, to write down Jacobi

coordinates associated with the three-body partition (jk)i (see Fig. 1.1):

~xi = −
√

2mjmk

mj + mk
(~rk − ~rj), (1.74)

~yi = −
√

2mi (mj + mk)

mi + mj + mk
(~ri −

mk~rk + mj~rj

mj + mk
).

The Jacobi vectors of the partitions having different indexes are related by an orthogonal

transformation:

~xj = cji~xi + sji~yi, (1.75)

~yj = −sji~xi + cji~yi,

where the coefficients are expressed through the masses of the particles:

cji = −
[

mjmi

(M − mj)(M − mi)

] 1
2

sji = (−1)j−isgn(i − j)
(
1 − c2

ji

) 1
2 . (1.76)

Four-body Jacobi coordinates

In a four-body system, one can construct 48 distinct sets of Jacobi coordinates, since there are 2

types of partitions (see Fig. 1.2) and furthermore there are 4! possible rearrangements of the 4

particles. Definitions of these coordinates are as follows:

K type partition (ij , k)l





−→xij =
√

2µij(
−→r j −−→r i)

−−→yij,k =
√

2µij,k(
−→r k − mi

−→r i+mj
−→r j

mi+mj
)

−−→zijk,l =
√

2µijk,l(
−→r l − mi

−→r i+mj
−→r j+mk

−→r k

mi+mj+mk
)

H type partition (ij )(kl)





−→xij =
√

2µij(
−→r j −−→r i)

−→ykl =
√

2µkl(
−→r l −−→r ki)

−−→zij,kl =
√

2µij,kl(
mk

−→r k+ml
−→r l

mk+ml
− mi

−→r i+mj
−→r j

mi+mj
)

.

(1.77)

Relation between the different sets of Jacobi coordinates is less trivial than in three-body case.

It can be written in general matrix form:



−→
x′
−→
y′
−→
z′


 = [M3×3]




−→x
−→y
−→z


 . (1.78)

Due to orthogonality of Jacobi coordinates and the fact that the norm ρ2 = x2 + y2 + z2

is conserved, coordinate transformation matrices M are unitary. The practical realization of the

passage between different sets of coordinates is explained in Appendix B.
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1.2.2 Faddeev equations

The simplest technique to solve Lippmann-Schwinger (LS) equation is to iterate its kernel K(z) =

G(z)V , which leads to the Born series:

K(z) = G0(z)V + G0(z)V G0(z)V + ... (1.79)

Although its simplicity makes this technique an attractive one, in practical use it is limited even

in two-body case, since Born series may diverge. In fact, it will diverge at the bound-state energy,

if a bound state is supported, since K matrix will have a pole there. This pole is not present in any

of the terms of the Born series (in this case the series will diverge for a range of positive energies

as well [12]).

For a three-body system, LS equation is not able at all to ensure a unique solution, since its

kernel becomes not square integrable. This can be easily demonstrated using graphical represen-

tation of operator G0(z)V (see Fig. 1.3). Only two particles interact in each term, while the third

one moves freely, which means that there is a δ-function in the momentum space. When looking

for useful integral equations, one should thus try to avoid disconnected parts in the kernel [23, 24].

V V

V V
V V

12 12

1

2

3
23 23

13 13+ ++ ++ +...

V12 V12 V12

Figure 1.3: Kernel of the three-particle LS equation in graphical representation. Diagrams con-
taining non-interacting particle (presented in bold) lead to singularities in right-hand side of eq.
(1.79).

After Faddeev had shown [9] in 1960 that the LS equation does not have a unique solution, he

studied the properties of the so called transition operator:

T (z) = V + V G(z)V. (1.80)

This operator is a formal analogue of the two-particle T-operator, however it is not related to

a scattering cross section as directly as in two-body case. One can easily see that operator T (z)

satisfies LS equation:

T (z) = V + V G0(z)T (z). (1.81)

Transition operator is less singular than resolvent G(z), but integral eq. (1.81) suffers from the

same disadvantage as the standard LS equation for the resolvent since they have the same kernels.

To eliminate this defect, Faddeev decomposed the total operator T (z) in three:

T (z) = T (1)(z) + T (2)(z) + T (3)(z),

where

T (k)(z) = Vij + VijG0(z)T (z), (1.82)
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with (ijk) being any combination obtained by cyclic permutations of indexes (123 ). By moving

T (k)(z) term from right hand side to the left one obtain:

[1 − VijG0] (z)T (k)(z) = Vij + VijG0(z)
[
T (i)(z) + T (j)(z)

]
. (1.83)

One can take advantage of the LS equation for pair transition operators

Tij(z) = Vij + VijG0(z)Tij(z), (1.84)

to obtain three equations:

T (k)(z) = Tij(z) + Tij(z)G0(z)
[
T (i)(z) + T (j)(z)

]
ijk = 123, 231, 312 (1.85)

It is now clear that, owing to the absence of the diagonal term T (k)(z) in the right-hand side of

eq. (1.85), the iterated series of the equation will not contain any disconnected diagram terms and,

therefore, (this is a necessary but not a sufficient condition, as shows up for Efimov effect [7]) the

set of equations (1.85) has a unique solution. In the same manner, one can split the three-particle

wave function Ψ, in so called Faddeev components ψ(k), Ψ = ψ(1) + ψ(2) + ψ(3). Faddeev equations

for these components are obtained from the equations for the components of the Green functions

G(k)(z) :

G(k)(z) = Gij(z) − G0(z) + G0(z)Tij(z)
[
G(i)(z) + G(j)(z)

]
(1.86)

and using the alternative Green function definition
∣∣∣ψ(k)

〉
= lim

ε→0
G(k)(E + iε) |Φ〉 , (1.87)

where Φ is the asymptotic function.

For bound state problem one is left with a set of homogenous equations:
∣∣∣ψ(k)

〉
= G0(z)Tij(z)

[∣∣∣ψ(i)
〉

+
∣∣∣ψ(j)

〉]
, (1.88)

while in a case of particle 1 scattering on a bound state of particles 2 and 3 one should have:
∣∣∣φ(1)

〉
= Φ1 + G0(z)T23(z)

[∣∣∣ψ(2)
〉

+
∣∣∣ψ(3)

〉]
, (1.89)

∣∣∣ψ(2)
〉

= G0(z)T31(z)
[∣∣∣ψ(3)

〉
+

∣∣∣ψ(1)
〉]

,
∣∣∣ψ(3)

〉
= G0(z)T12(z)

[∣∣∣ψ(1)
〉

+
∣∣∣ψ(2)

〉]
.

By sorting out the free Green’s function and transition operator T in favor of a free Hamiltonian

operator and pair interactions Vij , one is left with a set of Faddeev equations, in a form useful for

solving the problem in coordinate space:

(E − H0 − V23)
∣∣∣ψ(1)

〉
= V23

[∣∣∣ψ(2)
〉

+
∣∣∣ψ(3)

〉]
, (1.90)

(E − H0 − V31)
∣∣∣ψ(2)

〉
= V31

[∣∣∣ψ(3)
〉

+
∣∣∣ψ(1)

〉]
,

(E − H0 − V12)
∣∣∣ψ(3)

〉
= V12

[∣∣∣ψ(1)
〉

+
∣∣∣ψ(2)

〉]
.
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1.2.3 Faddeev-Yakubovsky equations

Faddeev’s pioneering work of reformulating the LS equations for three-body systems to have math-

ematically correct solution with a compact kernel was followed by Yakubovsky. In [15] he presented

the systematic generalization of Faddeev equations for any number of particles. Here, I will present

a simple derivation of Yakubovsky equations with a special emphasis on the four-body problem (to

be dealt later in this thesis). We will follow ideas of S.P. Merkuriev and S.L. Yakovlev [25, 26].

In the first place one should note that the rearrangement of the four-particle equations involving

only the three-body Faddeev components is insufficient. For four-body systems, in addition to the

disconnected diagrams (see Fig. 1.3) which were giving singularities and were successfully elimi-

nated by using Faddeev’s decomposition, there arise new disconnected diagrams giving δ−functions

in momentum space (see Fig. 1.4).

1

2

3

4

Figure 1.4: Disconnected diagram of four-particle system: interaction differs from zero only in (12 )
and (34 ) pair subsystems. These subsystems move independently, while the terms describing the
relative motion of these subsystems give singular contributions in LS equation, which are not taken
in account by Faddeev decomposition.

We proceed by employing concepts of partitions and chain of partitions introduced in subsec-

tion 1.2.1. To derive Yakubovsky four-body equations, one can start by introducing Faddeev-like

components of the wave function:

|ψα〉 = −G0(E)Vα |Ψ〉 ⇒ |Ψ〉 =
∑

α

|ψα〉 , (1.91)

|ψα〉 = −GαVα

∑

β 6=α

|ψβ〉 .

As was discussed, these equations still contain singular terms and are not Fredholm equations

[27]. With the aid of the chain (a, α) one introduces components for each function:

|ψα,a〉 = −GαVα

∑

(β 6=α)⊂a

|ψβ〉 . (1.92)

Mathematically, it can be proved [15], that the following summation rule holds:

∑

α⊂a

∑

(β 6=α)⊂a

=
∑

β 6=α

. (1.93)
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When applying this rule to both sides of eq. (1.91) we obtain the relation

|ψα〉 =
∑

a

|ψα,a〉 . (1.94)

Substituting it into eq. (1.92) and by shifting the resolvent to the left-hand side of equation,

one immediately gets differential Yakubovsky equation:

(H0 − E + Vα) |ψα,a〉 = −Vα

∑

(β 6=α)⊂a

∑

b

|ψβ,b〉 . (1.95)

In a four-particle case one distinguishes two types of components |ψα,a〉 , (see Fig. 1.2), - K

and H. Asymptote of component K l
ij,k (where (ijkl) denotes one of the possible permutations of

(1234 )) takes into account interaction in pair (ij ) of the group (ijk), while particle l is supposed

to propagate freely. Asymptote of component Hij,kl absorbs the interaction in pair (ij ), while in

conjunction of component Hkl,ij , it describes the free relative movement of pairs (ij ) and (kl).

One can remark that K diagram is not affected when interchanging indexes (ij ), except that

the sign of vector ~x is reversed. Therefore one can restrict components K l
ij,k to those with i < j .

For H configurations, one can interchange indexes in pairs (ij ) and (kl) , staying within the same

diagram. Therefore we restrict H components to those having i < j and k < l . Consequently one

has only 12 different components K l
i<j,k and 6 different components Hi<j,k<l.

Faddeev-like component |ψα〉 , derived for particle pair interaction α = (12 ) eq. (1.91) in terms

of components H and K, reads as:

|ψ12〉 = K4
12,3 + K3

12,4 + H12,34. (1.96)

Wave function of a four-body system is a sum of these Faddeev type components |ψα〉 as given

in eq. (1.91). There are 6 components |ψα〉, since one can count 6 different interacting pairs.

According to eq. (1.96), every |ψα〉 is expressed by one H and two K components and therefore

4-body wave function is the sum of 18 functions (12 of type K and 6 of type H):

|Ψ〉 = |ψ12〉 + |ψ13〉 + |ψ14〉 + |ψ23〉 + |ψ24〉 + |ψ34〉 (1.97)

= K4
12,3 + K3

12,4 + H12,34 + K4
13,2 + K2

13,4 + H13,24 + K3
14,2 + K2

14,3 + H14,23

+K4
23,1 + K1

23,4 + H23,14 + K3
24,1 + K1

24,3 + H24,13 + K1
34,2 + K2

34,1 + H34,12.

Consequently one has a system of 18 coupled differential equations (1.95). Each component of

type K (or H) appears once in the left hand side and is coupled with the other components in the

right hand side. I will write down only three of these equations5 containing each of the 18 terms

present in wave functions decomposition eq. (1.97).

(H0 − E + V12)
∣∣K4

12,3

〉
= −V12

[∣∣K4
23,1

〉
+

∣∣K1
23,4

〉
+ |H23,14〉 +

∣∣K4
13,2

〉
+

∣∣K2
13,4

〉
+ |H13,24〉

]
(1.98)

(H0 − E + V12)
∣∣K3

12,4

〉
= −V12

[∣∣K3
24,1

〉
+

∣∣K3
24,1

〉
+ |H24,13〉 +

∣∣K3
14,2

〉
+

∣∣K2
14,3

〉
+ |H14,23〉

]

(H0 − E + V12) |H12,34〉 = −V12

[∣∣K2
34,1

〉
+

∣∣K1
34,2

〉
+ |H34,12〉

]
.

5Other equations are identical, just indexes denoting components K and H should be permuted.



1. Formalism of a few-body scattering problem 29

1.2.4 Identity of particles

The uncertainty principle in Quantum mechanics declares the impossibility to define simultaneously

the position and the momentum of a particle. Thus, we cannot follow its trajectory (still particles

position is exactly known at a given instant, its coordinates have no definite values even at an

infinitely close subsequent instant). Hence, by localizing and numbering the identical particles

composing some system, we make no progress towards identifying them at subsequent instants.

We may say that in quantum mechanics, identical particles entirely loose their individuality and

thus lead to their indistinguishability (principle of indistinguishability of similar particles). Let us

consider some composite system containing two identical particles i and j . The states of the system

obtained from each other by merely interchanging these two particles must be completely equivalent

physically. This means that, as a result of this interchange, the wave function of the system can

change only by an unimportant phase factor. Let ψ(ξ1, .., ξi, .., ξj , ..) be the wave function of the

system, ξi denoting the full set of the co-ordinates of i-th particle. Then we have

PijPijψ(ξ1, .., ξi, .., ξj , ..) = Pijεψ(ξ1, .., ξj , .., ξi, ..) = ε2ψ(ξ1, .., ξi, .., ξj , ..). (1.99)

Thus it follows what the only possible values for ε are ±1, and the wave function is either symmetric

or antisymmetric.

Particles described with antisymmetric wave functions are said to obey Fermi-Dirac statistics

and are called fermions, while those described by symmetric functions are called bosons and obey

Bose-Einsteins statistics. Furthermore, relativistic quantum mechanics shows that the statistics

obeyed by the particles is uniquely related to their spin: particles with half-integer spin are fermions,

and those with integer spin are bosons.

Thus, any action of complicated permutation operator of identical particles will satisfy relation:

℘̂ |Ψ〉 = εp |Ψ〉 , (1.100)

where p is the number of the 2-particle permutations needed to restore the previous configuration.

The principle of indistinguishability of similar particles can be directly implemented to simplify

few-body Faddeev (Faddeev-Yakubovski) equations. It is straightforward that some rearrangement

channels become indistinguishable if we have a pair of identical particles and, therefore, the number

of equations in systems (1.90 or 1.98) can be reduced.

Let us show it in detail. The fact that the Hamiltonian Ĥ of the system is symmetric in respect

to the exchange of any two particles of the same kind means, mathematically, that Ĥ commutes

with all the permutation operators ℘̂. Evidently, the same applies for the free Green’s function G0

and the total potential Vtot. Furthermore, since the inverse of the single 2-particle permutation

coincides with itself, we have: PijĤPij = Ĥ, PijG0Pij = G0, PijVtotPij = Vtot. Conversely, one can

easily verify that PijVik = VjkPij and therefore PijVikPij = Vjk; PijVijPij = Vij .

Reduction of Faddeev equations for the system with identical particles

As was discussed in section 1.2.2, by using Faddeev decomposition the wave function of a three-

particle system is decomposed into a sum of three functions, so-called components:
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Ψ(~x, ~y) = ψ(1)(~x1, ~y1) + ψ(2)(~x2, ~y2) + ψ(3)(~x3, ~y3). (1.101)

Clearly, for a system of a three-identical particles the components ψ(i)(~r1, ~r2, ~r3) (i = 1, 2, 3)

are identical. It is useful to define the symmetry operators, which describe transitions between

them:

P+ = P12P23. (1.102)

This operator makes rise the state index by one:

ψ(2)(~x2, ~y2) = P+ψ(1)(~x1, ~y1);

ψ(3)(~x3, ~y3) = P+ψ(2)(~x2, ~y2);

ψ(1)(~x3, ~y3) = P+ψ(3)(~x2, ~y2),

(1.103)

whereas its inverse

P− =
(
P+

)−1
= P23P12, (1.104)

reduces the component index by one:

ψ(3)(~x3, ~y3) = P−ψ(1)(~x1, ~y1);

ψ(1)(~x1, ~y1) = P−ψ(2)(~x2, ~y2);

ψ(2)(~x2, ~y2) = P−ψ(3)(~x3, ~y3).

(1.105)

Using these symmetry properties, one can see that the three Faddeev equations (1.90) become

identical. Therefore a complete solution of the problem can be obtained after solving only one of

them:

(E − H0 − V ) |ψ〉 = V
[
P− + P+

]
|ψ〉 (1.106)

For a system of four identical particles these two operators are not sufficient, since they

do not affect the fourth particle. Therefore, in addition to three-body permutation operators P−

and P+, one must introduce two additional ones:

Q = εP34, (1.107)

P̃ = P13P24 = P24P13.

Let us explore the action of these operators on the Yakubovski amplitudes. For example

operator P−:

P− ∣∣K4
12,3

〉
= P−G12V12G0 (V23 + V13) |Ψ〉
= P−G12P

+P−V12P
+P−G0P

+P− (V23 + V13)P+P− |Ψ〉 . (1.108)

It is easy to show that:

P− |Ψ〉 = ε2 |Ψ〉 = |Ψ〉 P−G0P
+ = G0

P−G12P
+ = P23P12G12P12P23 = P23G12P23 = G13 (1.109)

P− (V23 + V13)P+ = P23P12 (V23 + V13)P12P23 = P23 (V13 + V23)P23 = (V12 + V23) .
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By projecting these relations into eq. (1.108), one finally obtains:

P− ∣∣K4
12,3

〉
= G13V13G0 (V12 + V23) |Ψ〉 =

∣∣K4
13,2

〉
(1.110)

Continuously applying permutation operators (1.102), (1.104) and (1.107), as was shown in the

example above, we can reconstruct all the 18 FY components from any given pair of K and H. The

necessary relations are summarized below:

∣∣K4
23,1

〉
= P+

∣∣K4
12,3

〉 ∣∣K1
34,2

〉
= P+QP+

∣∣K4
12,3

〉

∣∣K4
13,2

〉
= P− ∣∣K4

12,3

〉 ∣∣K2
14,3

〉
= P−QP+

∣∣K4
12,3

〉

∣∣K3
12,4

〉
= Q

∣∣K4
12,3

〉 ∣∣K3
14,2

〉
= QP− ∣∣K4

12,3

〉

∣∣K1
23,4

〉
= P+Q

∣∣K4
12,3

〉 ∣∣K1
24,3

〉
= P+QP− ∣∣K4

12,3

〉

∣∣K2
13,4

〉
= P−Q

∣∣K4
12,3

〉 ∣∣K2
34,1

〉
= P−QP− ∣∣K4

12,3

〉

∣∣K3
24,1

〉
= QP+

∣∣K4
12,3

〉

(1.111)

|H34,12〉 = P̃ |H12,34〉 |H14,23〉 = P+P̃ |H12,34〉

|H23,14〉 = P+ |H12,34〉 |H24,13〉 = P−P̃ |H12,34〉

|H13,24〉 = P− |H12,34〉

(1.112)

It follows, that for a four-identical particle system one should know only two FY components:

namely one component K and one H. All the other 16 can be reconstructed from those two by using

relations (1.111-1.112). Consequently, in the set (1.98) there are only two nontrivial equations,

which, by using definitions of permutation operators, can be written:

(
E − Ĥ0 − V̂

)
|K〉 = V̂ (P+ + P−) [(1 + Q) |K〉 + |H〉] (1.113)

(
E − Ĥ0 − V̂

)
|H〉 = V̂

[
(P−QP− + P+QP+) |K〉 + P̃ |H12,34〉

]
.

By remarking that P−QP− = P̃ and P+QP+ = P̃Q, the second equation can be rewritten in

the form: (
E − Ĥ0 − V̂

)
|H〉 = V̂ P̃ [(1 + Q) |K〉 + |H〉] . (1.114)

This equation is more convenient for subsequent application of permutation operators. Concerning

the system’s wave function, collecting all the operators from tables (1.111-1.112) and inserting into

eq. (1.97), one gets:

|Ψ〉 =
[
1 + (1 + P+ + P−)

]
Q(1 + P+ + P−) |K〉 + (1 + P+ + P−)(1 + P̃ ) |H〉 . (1.115)

1.2.5 Partial wave decomposition

Once the center of mass motion for a system of N particles is separated, one still has differential

equations with 3(N-1) configuration space variables to solve. The dimension of the problem can
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be further reduced by remarking that for an isolated system the total angular momentum J and

its z-component Jz are conserved. Thus, it is sensible to choose a representation whose vectors

are eigenstates of J and Jz. In this way, the number of degrees of freedom are further reduced to

3(N-1)-2.

In general, particles are not completely described by their spatial distributions. They can

possess intrinsic angular momenta (spins), or slightly differ by being member of some finite family

of particles (they are distinguished within this family by the isospin quantum number). Therefore,

in addition to space coordinates, each particle i should be provided with the spin (s, sz)i and isospin

(t, tz)i coordinates. The total space of states for a multiparticle system is represented as a tensor

product of three spaces - configuration, spin and isospin:

LN
tot =

∣∣R3N
〉
⊗

∣∣S3N
〉
⊗

∣∣T 3N
〉
. (1.116)

For a system of the particles with spin, the conserved quantity is the total angular momentum
~J = ~L + ~S, the sum of the total orbital angular momentum ~L and the total spin ~S. In most of

nuclear systems, with a very high accuracy, the total isospin ~T is conserved as well. In angular

momentum representation, one associates the angular momentum variable to each branch of the

multiparticle tree (or each Jacobi coordinate axis x, y, z...) lx, ly, lz, ... :

l̂x = p̂x × x̂; l̂y = p̂y × ŷ; l̂z = p̂z × ẑ; .... (1.117)

In addition, spins of each particle couples with orbital angular momentum through intermediate

sums by giving total angular momentum ~J . Independently, isospins of the particles couple to form

the total isospin of the system.

One can use state vectors, which are characterized by the angular momentum, rather than by

the angular variables of configuration space. The projection of momentum basis to configuration

space is realized by multiharmonic spherical functions [28, 29]:

YLM
lxlylz(x̂, ŷ, ẑ) =

∑

mx+my,+mz=M

〈lxmx, lymy, lzmz |LM〉Y mx

lx
(x̂)Y

my

ly
(ŷ)Y mz

lz
(ẑ) (1.118)

In addition, basis functions YLM
lxlylz

(x̂, ŷ, ẑ) are labelled by the internal quantum numbers of the

system:

• lx is the angular momenta of the particle pair (12 ) ;

• ly is the angular momenta of the third particle relative to the center of mass of the pair (12 )

for three-body as well as for four-body K4
12,3 configurations, whereas it describes angular

momentum of the particle pair (34 ) in four-body H12,34 configurations;

• lz is introduced only in four-body problem. It describes the angular momentum of the fourth

particle with respect to the center of mass of (123 ) particle cluster for K4
12,3 configurations.

On the other hand it describes the relative angular momenta of the two two-body fragments

(12 ) and (34 ) in H12,34 configurations.
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Three-body coupling schemes

There are two convenient schemes to realize the angular momentum |LSJ〉 basis sets, according to

the way one chooses to couple spins and momenta of the different subsystems:

1. In the so called LS coupling scheme, one first couples all the angular momenta and spins sep-

arately. Then, the total orbital momenta and spin are coupled to the total angular momenta.

Notations for the three-body LS coupling basis are as follows:

|LSJ〉(ij)k =

∣∣∣∣
{

[lxly]L

[
(sisj)σx

sk

]
S

}
J

〉
(1.119)

In this case, Faddeev components are decomposed into a sum of so-called partial amplitudes

F
(k)
n (x, y), which are functions of only radial variables x and y and represent eigenstates in

the angular momenta-isospin basis:

∣∣∣ψ(k)
〉

=
∑

n=lx,ly ,L,σx,S,tx

F
(k)
n (x, y)

xy

〈
n, x̂, ŷ

∣∣∣∣
{

[lxly]L

[
(sisj)σx

sk

]
S

}
J

〉 ∣∣∣
[
(titj)tx

tk

]
T

〉

(1.120)

2. Alternatively, in the JJ z coupling scheme the total angular momentum of each branch in

the configuration tree is first obtained. Then the momenta of each branch are coupled to the

total angular momentum of the system. The three-body JJ z coupling scheme reads:

|J J zJ 〉(ij)k =

∣∣∣∣
{[

lx (sisj)σx

]
jx

[lysk]jy

}

J

〉
. (1.121)

Decomposition of Faddeev components in partial wave basis is as follows:

∣∣∣ψ(k)
〉

=
∑

n=lx,σx,jx,ly ,jy,tx

F
(k)
n (x, y)

xy

〈
n, x̂, ŷ

∣∣∣∣
{[

lx (sisj)σx

]
jx

[lysk]jy

}

J

〉 ∣∣∣
[
(titj)tx

tk

]
T

〉
.

(1.122)

LS coupling scheme is more suited when orbital angular momenta L or/and total spin S are

conserved. It is the case for non-identical particle systems with no spin dependent interactions,

where one can easily separate the spin part. JJ z coupling scheme is advantageous in treating

nuclear systems, where orbital angular momentum and spins are no longer conserved separately,

but are coupled by the interaction. An other advantage of JJ z coupling is that the total basis is

created as a sum of jj z coupling schemes of its subsystems, therefore enabling us to extract(impose)

easily 2-body wave functions from (to) the 3-body components.

For a four-body system I will work out only a JJ z coupling scheme, since it is advantageous

when dealing with nuclear force; this scheme will be used in all practical 4-body calculations. There
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are two different JJ z coupling schemes depending on which type of partition we are dealing with:

K or H. They are as follows:

K l
ij,k basis





∣∣∣T l
ij,k

〉
=

∣∣∣∣
[{

(titj)tx
tk

}
T3

tl

]

T

〉

∣∣∣J l
ij,k

〉
=

∣∣∣∣∣

⌈{[
lx (sisj)σx

]
jx

[lysk]jy

}

jxy

[lzsl]jz

⌉

J

〉

with〈
x̂ŷẑ

[
l
ij,k

] ∣∣∣J l
ij,k

〉
= YJ (x̂, ŷ, ẑ)

= Y⌈{
[lx(sisj)σx

]
jx

[lysk]jy

}
jxy

[lzsl]jz

⌉

J

(x̂, ŷ, ẑ)

Hij,kl basis





|Tij,kl〉 =
∣∣∣
[
(titj)tx

(tktl)ty

]
T

〉

|Jij,kl〉 =

∣∣∣∣∣

⌈{[
lx (sisj)σx

]
jx

[
ly (sksl)σy

]
jy

}

jxy

lz

⌉

J

〉

with

〈x̂ŷẑ [ij,kl] |Jij,kl〉 = YJ (x̂, ŷ, ẑ)

= Y⌈{
[lx(sisj)σx

]
jx

[
ly(sksl)σy

]
jy

}

jxy

lz

⌉

J

(x̂, ŷ, ẑ)

(1.123)

To each four-body Faddeev-Yakubovski component –
∣∣∣K l

ij,k

〉
or |Hij,kl〉 – is therefore associ-

ated the natural basis –
∣∣∣αxyz

[
l
ij,k

]〉
or |αxyz [ij,kl]〉 – and in this basis each component can be

decomposed into a sum of regularized functions
〈
~x~y~z

[
l
ij,k

] ∣∣∣K l
ij,k

〉
=

∑
α

αKl
ij,k

(x,y,z)

xyz Yα[lij,k]
(x̂, ŷ, ẑ)

〈~x~y~z [ij,kl] |Hij,kl〉 =
∑
α

αHij,kl(x,y,z)
xyz Yα[ij,kl](x̂, ŷ, ẑ)

(1.124)

Reverse relations are obtained by using the fact that basis functions Yα[ij,kl] are orthogonal:

αKl
ij,k

(x,y,z)

xyz =
〈
αxyz

[
l
ij,k

] ∣∣∣K l
ij,k

〉

αHij,kl(x,y,z)
xyz =

〈
αxyz

[
l
ij,k

]
|Hij,kl〉

(1.125)

Projection of Faddeev equations

We will use the expressions of partial wave decomposed Faddeev components eq. (1.120) (or eq.

(1.122)) to project the Faddeev equations into the angular momentum basis:




〈
n1x1y1

∣∣∣E − Ĥ0 − V23

∣∣∣ ψ(1)
〉

= 〈n1x1y1|V23

(∣∣ψ(2)
〉

+
∣∣ψ(3)

〉)
〈
n2x2y2

∣∣∣E − Ĥ0 − V31

∣∣∣ ψ(2)
〉

= 〈n2x2y2|V31

(∣∣ψ(3)
〉

+
∣∣ψ(1)

〉)
〈
n3x3y3

∣∣∣E − Ĥ0 − V12

∣∣∣ ψ(3)
〉

= 〈n3x3y3|V12

(∣∣ψ(1)
〉

+
∣∣ψ(2)

〉)
(1.126)
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Here Ĥ0 is the kinetic energy operator of the system, which in angular momentum basis takes

the form:

Ĥ0 = −∆(α)(x, y) (1.127)

=
~2

mα

[
−∂2

xα
+

lx (lx + 1)

x2
α

− ∂2
yα

+
ly (ly + 1)

y2
α

]
.

If the interaction between the particles is local, then the interaction matrix V , written in its

proper Jacobi co-ordinate basis, is diagonal in variables x, y, and furthermore independent of y. In

angular momentum basis it takes the matrix form:

V̂n′x′y′,nxy = Vn′,n(x) · δ(x − x′) · δ(y − y′), (1.128)

In a general case the interaction matrix Vn′,n(x) is not diagonal in angular momentum basis.

For instance, nuclear interaction has tensor terms, which couples different orbital momenta states.

The corresponding interaction matrix can be written as:

Vn′,n(x) = δj′x,jx
δs′x,sx

V(l′xs′x)j′x
,(lxsx)jx

(x). (1.129)

Using the preceding notations, Faddeev equations reads:





∑
ñ1

[
(E + ∆(n1)(x1, y1))δñ1,n1 − V

(23)
n1,ñ1

(x1)
]
F

(1)
ñ1

(x1, y1) =

∑
ñ1

V
(23)
n1,ñ1

(x1)

[∑
n2

〈ñ1x1y1| x1y1

x2y2
F

(2)
n2 (x2, y2) |n2x2y2〉 +

∑
n3

〈ñ1x1y1| x1y1

x3y3
F

(3)
n3 (x3, y3) |n3x3y3〉

]

∑
ñ2

[
(E + ∆(n2)(x2, y2))δñ2,n2 − V

(31)
n2,ñ2

(x2)
]
F

(2)
ñ2

(x2, y2) =

∑
ñ2

V
(31)
n2,ñ2

(x2)

[∑
n1

〈ñ2x2y2| x2y2

x1y1
F

(1)
n1 (x1, y1) |n1x1y1〉 +

∑
n3

〈ñ2x2y2| x2y2

x3y3
F

(3)
n3 (x3, y3) |n3x3y3〉

]

∑
ñ1

[
(E + ∆(n3)(x3, y3))δñ3,n3 − V

(12)
n3,ñ3

(x3)
]
F

(3)
ñ3

(x3, y3) =

∑
ñ3

V
(12)
n3,ñ3

(x3)

[∑
n1

〈ñ3x3y3| x3y3

x1y1
F

(1)
n1 (x1, y1) |n1x1y1〉 +

∑
n2

〈ñ3x3y3| x3y3

x2y2
F

(2)
n2 (x2, y2) |n2x2y2〉

]

(1.130)

The coupling terms in the right hand side of equations are obtained using the so called 3-body

integral transition operators ĥni,nj
(xi, yi, ui), with ui = x̂i · ŷi :

〈nixiyi|
xiyi

xjyj
F (j)

nj
(xj , yj) |njxjyj〉 =

1∫

−1

ĥni,nj
(xi, yi, ui)

xiyi

xjyj
F (j)

nj
(xj , yj)du (1.131)

The explicit form of operators ĥ is derived in Appendix C. With the later expression we obtain

an infinite set of two-dimensional coupled integro-differential equations in the form
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∑
ñi

[
(E + ∆(ni)(xi, yi))δñi,ni

− V
(jk)
ni,ñi

(xi)
]
F

(i)
ñi

(xi, yi) =

∑
ñi

V
(jk)
ni,ñi

(xi)

[
1∫

−1

ĥñi,nj
(xi, yi, ui)

xiyi

xjyj
F

(j)
nj (xj , yj)du +

1∫
−1

ĥñi,nk
(xi, yi, ui)

xiyi

xkyk
F

(k)
nk

(xk, yk)du

]

(1.132)

with i = 1, 2, 3 and where ni indicates the set of quantum numbers for a given partial wave. In

general, this set is infinite. In practice one can reduce it to a finite number of partial components

by considering only the most relevant ones. Usually one restricts to partial waves with the smallest

angular momentum values, hence having the most smooth angular dependence.

Projection of Faddeev-Yakubovski equations

In a similar way as for Faddeev equations, we will project into angular momentum basis Faddeev-

Yakubovski equations (1.113) describing systems of four identical particles. Using expression

(1.123) one obtains:





〈αxyz [K]|
(
E − Ĥ0 − V

)
|K〉 = 〈αxyz [K]|V [(P+ + P−) ⌈(1 + Q) |K〉 + |H〉⌉]

〈αxyz [H]|
(
E − Ĥ0 − V

)
|H〉 = 〈αxyz [H]|V

[
P̃ ⌈(1 + Q) |K〉 + |H12,34〉⌉

]

The kinetic energy operator is similar to the three-body one, but now it is simply three-

dimensional:

Ĥ0 = −∆(α)(x, y)

=
~2

m

[
−∂2

x +
lx (lx + 1)

x2
− ∂2

y +
ly (ly + 1)

y2
− ∂2

z +
lz (lz + 1)

z2

]

The coupling terms appearing in the right hand side of equations turn to be double and single

integral operators. Their explicit expressions are developed in Appendix D. Interchanging particles

1 and 2 does not change any of the distances x, y, z; only vector projections onto x-axis change

sign. One can easily show that

P12 |αxyz [K]〉 = (−1)lx+sx+tx |αxyz [K]〉 = ε |αxyz [K]〉

and

P12 |αxyz [H]〉 = ε |αxyz [H]〉 .

In representation of angular momentum basis it results in reversing the x axis projections of sys-

tems’s momentum, spin and isospin. This gives a factor (−1)lx+sx+tx .

Using this simple property, one can easily show that:

〈αxyz [K]|P+ |K〉 = 〈αxyz [K]|P12P
+P12 |K〉 = 〈αxyz [K]|P12P12P23P12 |K〉

= 〈αxyz [K]|P23P12 |K〉 = 〈αxyz [K]|P− |K〉
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and in the similar way:

〈αxyz [H]|P+ |H〉 = 〈αxyz [H]|P− |H〉
Using the latter expressions, as well as the notations of integral operators indicated in Appendix

D, one finally obtains:

∑

α̃

[
(E + ∆(α)(xyz))δα,α̃ − Vα,α̃(x)

]
Kα̃(x, y, z) =

∑

α̃

Vα,α̃(x)




1∫

−1

du
∑

α′

hα̃,α′(x, y, z, u) · Kα′(x′
, y

′
, z

′)

+

1∫

−1

du

1∫

−1

dv
∑

α′′

gα̃,α′′(x, y, z, u, v)Kα′′(x′′
, y

′′
, z

′′)

+

1∫

−1

du

1∫

−1

dv
∑

α′

fα̃,α′′′(x, y, z, u, v) · Hα′′′(x
′′′

, y
′′′

, z
′′′

)




∑

α̃

[
(E + ∆(α)(xyz))δα̃,α − Vα,α̃(x)

]
Hα̃(x, y, z) =

∑

α̃

Vα,α̃(x)




1∫

−1

du
∑

α′

jα̃,α′(x, y, z, u) · Kα′(x′
, y

′
, z

′)

+
∑

α′′

kα̃,α′′Hα′′(x′′
, y

′′
, z

′′)

]
(1.133)
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1.3 Numerical Realization

1.3.1 Piecewise spline method

Once differential equations are established, one has to employ numerical methods to solve them.

It turns to be that spline decomposition, a method widely used in civil engineering applications,

is a very effective tool to solve systems of differential equations. In few-body physics, it was

first introduced by Payne [30] to solve the Faddeev equations in configuration space. The spline

method mathematical foundations were laid by Boor and Swartz [31, 32]. They showed that a basis

of piecewise polynomial functions of degree less than m+k with m-1 continuous derivatives can be

used to approximate the solution of m-th order differential equation with an error of O(hm+k),

where h is size of subintervals. One should require that the differential equation is only exactly

satisfied at k Gauss quadrature points of the subintervals. The method consist of:

1. Subdividing the domain into a number of subintervals (a grid).

2. Expanding a wave function in a spline basis (we used Hermite polynomials) on the grid.

3. Requiring the equation to be satisfied on a set of well-chosen points (collocation points).

This procedure leads to a finite-dimensional algebraic problem, which is solved using linear

algebra techniques.

Let us closer discuss the matter. Suppose we want to solve one-dimensional differential equation

described by the linear operator L̂, which is defined on the finite size domain ℜ ∈ [rmin, rmax] :

L̂ ∗ F (r) = 0, (1.134)

with a solution F satisfying some boundary conditions at r = rmin and rmax. To solve this system

we divide ℜ in subintervals r0 < r1 < r2 < ... < rN (for some finite grid r0 = rmin, rN = rmax).

We search the solution F in the form:

F (r) =

k(N+1)−1∑

j=0

CjSj(r), (1.135)

where Sj are Hermite piecewise polynomials of k -th order 6 and where Cj is a set of unknown

coefficients to determine. Due to its linearity, operator L̂ of eq. (1.134) acts only on known

piecewise functions Sj , and its action can be determined at any r inside the domain ℜ. In this way

eq. (1.134) becomes:

k(N+1)−1∑

j=0

Cj

[
L̂ ∗ Sj(r)

]
= 0 (1.136)

6their expressions for k = 2 (cubic splines) and 3 (quintic splines) are given in Appendix E
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We demand that this system of equations is satisfied on a number of well-chosen points (colloca-

tion points, k for each subinterval)7. Consequently we obtain kN equations for k(N + 1) unknown

coefficients Cj . We can as well implement k different boundary conditions to have a number of

linear equations equal to the number of unknowns:

k(N+1)−1∑

j=0

Cj

[
L̂ ∗ Sj(r̃i)

]
= 0 i = 1, 2, .. , k(N + 1), (1.137)

where r̃i signifies i -th collocation point.

It is not very difficult to generalize this method for systems of differential equations depending

on more variables. In this way, the unknown function should be expanded on multidimensional

basis of Hermite polynomials

F (x, y, z, ...) =

k(Nx+1)−1∑

jx=0

Sx
jx

(x)

k(Ny+1)−1∑

jy=0

Sy
jy

(y)

k(Nz+1)−1∑

jz=0

Sz
jz

(z)
[∑

.....
]
Cjx,jy ,jz ,... (1.138)

The system of coupled differential equations is validated on a set of collocation points of a

multidimensional mesh, i.e. at points ~ri, where i represents a set (ix, iy, iz, ...) of collocation point

indexes at the mesh subdomains. Index i runs through all the possible combinations of the set

(ix, iy, iz, ...). Each subset index iw, varies from 1 to k(Nw +1), and describes ~ri projection on axis

w and gives the collocation point wiw .

Resulting systems of linear equations

As was discussed in previous section, spline interpolation can be employed to transform a system

of differential equations into a finite-dimensional linear algebra problem. For bound states, one

obtains a matrix generalized eigenvalue equation, which reads:

Ac = EBc. (1.139)

For scattering states, since the value of scattering energy is fixed, one is left with a linear system

of equations:

Ac = b (1.140)

The unknown vector c represents the set of spline interpolant coefficients Ci. Homogeneous term

b is a vector of spline coefficients imposed by the boundary conditions. Square matrices A,B are

obtained by performing the product
[
L̂ ∗ Sj(r̃i)

]
in eq. (1.137).

Resulting linear systems are of very large size. More precisely, the number of equations is:

N = Na

n∏

i=1

ki(Ni + 1),

7Knowing the properties of Gauss integral quadrature, it becomes rather obvious [32], that if the exact solution
can be extrapolated in any subinterval by polynomials of order m = 2k − 1 , then the numerically obtained one would
be exact if differential equations are satisfied on only k Gauss quadrature points of this subinterval.
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where n is the dimension of the configuration space, Ni and ki are respectively the number of points

and the number of spline associated with each point of a given dimension, Na is the number of

coupled integro-differential equations. To obtain a converged solution for the 4-body problem with

realistic nuclear potentials one needs Na = NaH +NaK ∼ (500−1000) and at least ki(Ni +1) = 30

for each dimension x, y, z. So, the total number of equations is N ∼ 107 and the resulting matrices

have ∼ 1014 elements. Such dimensions make impossible a direct application of matrix inversion

methods, since it would require memory of ∼ 109 MB just for matrices to be stored. This by far

exceedes capacities of the largest hard disk installations.

However, one can observe that due to finite size of spline interpolants, obtained matrices are

rather sparse. One can employ the iterative methods, which do not need storage space for square

matrices to be explicitly provided. These methods, relying only on matrix-vector multiplication

operations, turn to be very efficient in treating large linear systems.

Structure of the matrix

In previous section we discussed how to transform a system of differential equations into a system

of linear equations by using the spline interpolation functions. It resulted into equivalent linear

algebra equations (1.139-1.140). It is useful to have the explicit expressions for matrices A and B.

By analyzing the system of differential equations (1.133), it is convenient to express each term

in separate matrix. We make use of the following definitions:

• [B] will stand for matrix appearing with total energy E, as in eq. (1.139)

• [∆] gathers the terms implemented by the kinetic energy operator,

• [V ] represents the matrix given by potential energy terms in left hand side of equation,

• [H] , [G] , [F ] , [J ] , [K] are the matrices induced by the coupling terms in the right hand sides

of Faddeev (FY) equations.

Here and below I will provide explicit expressions for the 4-body problem, with spline interpo-

lation being done in 3-dimensional configuration space. 3-Body equations are imbibed in 4-body

ones, and can be extracted from 4-body K components by removing z-coordinate depending terms.

Matrix [B] Although the total energy appears in equation (1.133) as diagonal term (its value

being simple scale factor) in variables α, x, y, z, spline interpolation matrix [B] associated with it

(or standing behind energy value E) is not diagonal in our approach. In fact, for a given collocation

point, several polynomials of interpolation are non-zero (to be precise 2*k for each coordinate).

Using eq. (1.138) one easily finds:

[B]n,n′ = δα,α′Sx
j′x

(xjx)Sy
j′y

(yjy)S
z
j′z

(zjz). (1.141)

Indexes n and n′ stand for a bijection of sub-indexes (α, jx, jy, jz) and (α′, j′x, j′y, j
′
z) consequently.

It is worth noticing that elements of the matrix [B] are independent of α.
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Matrix [V ] The case of matrix [V ] is similar to that of matrix [B]. Its elements can be expressed

as a product:

[V ]n,n′ = Vα,α′(xjx) · Sx
j′x

(xjx)Sy
j′y

(yjy)S
z
j′z

(zjz) (1.142)

It is useful to express this matrix as a product of [B] with pure potential matrix
[
Ṽ

]
, which

in case of local interactions, is diagonal in variables x, y, z and independent of both y and z:

[
Ṽ

]
n,ñ

= Vα,α̃(xjx)δjx,j̃x
δjy,j̃y

δjz ,j̃z
. (1.143)

Therefore

[V ]n,n′ =
∑

ñ

[
Ṽ

]
n,ñ

[B]ñ,n′ . (1.144)

Matrix [∆] Obtaining elements of this matrix is pure triviality. One simply has to apply kinetic

energy operator eq. (1.127) on spline interpolant function basis:

[∆]n,n′ =
~2

m
δα,α′

[
Sx′′

j′x
(xjx)Sy

j′y
(yjy)S

z
j′z

(zjz) −
lx (lx + 1)

x2
jx

Sx
j′x

(xjx)Sy
j′y

(yjy)S
z
j′z

(zjz) (1.145)

+Sx
j′x

(xjx)Sy′′
j′y

(yjy)S
z
j′z

(zjz) −
ly (ly + 1)

y2
jy

Sx
j′x

(xjx)Sy
j′y

(yjy)S
z
j′z

(zjz)

+Sx
j′x

(xjx)Sy
j′y

(yjy)S
z′′
j′z

(zjz) −
lz (lz + 1)

z2
jz

Sx
j′x

(xjx)Sy
j′y

(yjy)S
z
j′z

(zjz)

]
,

S′′ designates here the second order derivatives.

Integral operators Let us discuss the general case of integral operators. By using Gauss inte-

gration rule one can evaluate integral

b∫

a

f(u)du ≈
Nu∑

i=1

f(ui)wi, (1.146)

where ui are Gauss distribution points in interval [a, b] , and wi their relative weights. The former

formula is exact for functions f(u) which are polynomials of order not exceeding 2 ∗ Nu − 1.

Therefore, for rather smooth functions it provides a very good approximation even if having only

few terms in the sum8. Applying this Gauss rule, one obtains the following expressions for integral

operators:

[H]n,n′ =
∑

α̃,α′

Vα,α̃(xjx) ·
Nu∑

iu=1

hα̃,α′(xjx , yjy , zjz , uiu) · Sx
j′x

(xh
α,α′)S

y
j′y

(yh
α,α′)Sz

j′z
(zh

α,α′) (1.147)

8In practice, results are well converged for relatively low Nu ∼ 8. Even for the most precision demanding calcula-
tions there is no need of taking more than 16 Gauss points per variable.
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When dealing with local interactions, one can separate pure potential matrix
[
Ṽ

]
, and express

integral operators as a product of two matrices:

[H]n,n′ =
∑

ñ

[
Ṽ

]
n,ñ

[
H̃

]
ñ,n′

(1.148)

and
[
H̃

]
ñ,n′

=

Nu∑

iu=1

hα̃,α′(xjx , yjy , zjz , uiu) · Sx
j′x

(xh
α̃,α′)S

y
j′y

(yh
α̃,α′)Sz

j′z
(zh

α̃,α′). (1.149)

This separation is useful in numerical applications: it provides extra flexibility to the code requiring

less storage memory.

Other integral operators are analogous to this one. Here, I will develop expressions only for the

elements of double integral requiring matrix [G] and no integral requiring matrix [K]. Expression

for elements of matrix [F ] are identical to those of [G], since they are double-integral operators.

Expression for [J ]-matrix are identical to [H] − matrix both being single-integral operators.

[G]n,n′ =
∑

ñ

[
Ṽ

]
n,ñ

[
G̃

]
ñ,n′

(1.150)

[K]n,n′ =
∑

ñ

[
Ṽ

]
n,ñ

[
K̃

]
ñ,n′

[
G̃

]
ñ,n′

=

Nu∑

iu=1

Nv∑

iv=1

gα̃,α′(xjx , yjy , zjz , uiu , viv) · Sx
j′x

(xg
α̃,α′)S

y
j′y

(yg
α̃,α′)S

z
j′z

(zg
α̃,α′) (1.151)

[
K̃

]
ñ,n′

= fα̃,α′ · Sx
j′x

(xk
α̃,α′)S

y
j′y

(yk
α̃,α′)Sz

j′z
(zk

α̃,α′)

Bound states

To obtain eigenvalue equation (1.139), one has just to collect terms in matrix [A] :

[A] = ([V ] − [∆] + [W ]) (1.152)

with [W ] signifying sum of all integral terms

[W ] = [F ] + [G] + [H] + [J ] + [K]

Scattering states

The scattering wave function is not vanishing. Therefore, even for extreme values of the grid it

will not fall to zero. One needs to implement additional term due to boundary conditions. With

no loss of generalization, one can easily fix the value of the open channels amplitudes at zm, to be:

Fα(x, y, zM ) = fα(x, y)SkzNz+1(zM ), (1.153)
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where functions fα(x, y) represent partial wave components of the residual bound state(s) wave

function. For amplitudes K, fα describes the bound state of particles (123), whereas for amplitudes

H it designates the composite state of two separated bound pairs (12) and (34).

The function fα(x, y) can be projected into spline basis:

fα(x, y) =

k(Nx+1)−1∑

jx=0

Sx
jx

(x)

k(Ny+1)−1∑

jy=0

Sy
jy

(y) · Cα,jx,jy (1.154)

Imposing certain value for extreme points of the grid will result in the appearing of the inho-

mogeneous term, which in eq. (1.137) is denoted by vector b. This vector is a result of the operator

L̂ eq. (1.134) acting on the irregular wave function term F eq. (1.153), and is given by:

bn =
∑

α′,j′x,j′y

Cα′,j′x,j′y

[(
E − Vα,α′(xjx)

)
· Sx

j′x
(xjx)Sy

j′y
(yjy)S2Nz+1(zM ) (1.155)

−~2

m
δα,α′




Sx′′
j′x

(xjx)Sy
j′y

(yjy)S
z
kzNz+1(zjz) − lx(lx+1)

x2
jx

Sx
j′x

(xjx)Sy
j′y

(yjy)S
z
kzNz+1(zjz)

+Sx
j′x

(xjx)Sy′′
j′y

(yjy)S
z
kzNz+1(zjz) − ly(ly+1)

y2
jy

Sx
j′x

(xjx)Sy
j′y

(yjy)S
z
kzNz+1(zjz)

+Sx
j′x

(xjx)Sy
j′y

(yjy)S
z′′
kzNz+1(zjz) − lz(lz+1)

z2
jz

Sx
j′x

(xjx)Sy
j′y

(yjy)S
z
kzNz+1(zjz)




+Vα,α′(xjx) ·
⌈
fα̃,α′ · Sx

j′x
(xh

α,α′)S
y
j′y

(yh
α,α′)Sz

kzNz+(zh
α,α′)

+

Nu∑

iu=1

hα̃,α′(xjx , yjy , zjz , uiu) · Sx
j′x

(xh
α,α′)S

y
j′y

(yh
α,α′)Sz

j′z
(zh

α,α′)

+

Nu∑

iu=1

Jα̃,α′(xjx , yjy , zjz , uiu) · Sx
j′x

(xj
α,α′)S

y
j′y

(yj
α,α′)S

z
j′z

(zj
α,α′)

+

Nu∑

iu=1

Nv∑

iv=1

gα̃,α′(xjx , yjy , zjz , uiu , viv) · Sx
j′x

(xg
α,α′)S

y
j′y

(yg
α,α′)S

z
j′z

(zg
α,α′)

+

Nu∑

iu=1

Nv∑

iv=1

kα̃,α′(xjx , yjy , zjz , uiu , viv) · Sx
j′x

(xk
α,α′)S

y
j′y

(yk
α,α′)Sz

j′z
(zk

α,α′)

⌉]

It remains to collect all these terms in scattering matrix [A] of eq. (1.137). This matrix differs

from the bound state one by the fact that energy terms, represented by the product E [B] , are

absorbed in it:

[A] = ([V ] − E [B] − [∆] + [W ]) (1.156)

1.3.2 Numerical methods of linear algebra problems

Bound state problem

Spline expansion for bound states have resulted in linear algebra eigenvalue equations (1.139).

However, the obtained linear problem is usually of very large size, which makes application of

direct matrix inversion methods impossible. I will stretch here out a few methods, which enable
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to extract physical eigenvalues from large size eigenvalue-eigenvector problem by avoiding explicit

matrix inversion.

Inverse iteration method Eigenvalue problem, eq. (1.139), can be rewritten in the form:

(
E0 − [B]−1 [A]

)
ψ = (E0 − E)ψ (1.157)

with E0 being some starting guess value for a searched bound state energy.

By arbitrarily choosing some starting vector x0 and using the fact that any vector can be

decomposed in basis of matrix B−1A eigenvectors, we write

xk =
∑

i

C
(k)
i ψi, (1.158)

where C
(k)
i are some expansion coefficients.

We define the following recursive sequence:

(
E0 − [B]−1 [A]

)
xn = xn−1. (1.159)

One can easily remark that:

xn =
∑

i

C
(n)
i ψi =

∑

i

1

(E0 − Ei)
C

(n−1)
i ψi =

∑

i

1

(E0 − Ei)
n C

(0)
i ψi. (1.160)

Therefore, if E0 is close to some eigenvalue Ei, x will converge to the corresponding eigenvector

ψi. Therefore

lim
n→∞

〈xn| |xn−1〉
〈xn| |xn〉

= lim
n→∞

〈xn−1| |xn−1〉
〈xn| |xn−1〉

= E0 − Ei. (1.161)

It turns to be that by properly choosing starting energy E0 and continuously resolving eq.

(1.159), independently of guess vector x0, we will converge to the closest eigenvalue to E0. In other

words, eigenvalue-eigenvector problem is reduced to consequent resolution of linear equations of

the (1.159) form.

Power (Malfiet-Tjon) method There is another technique to solve physical eigenvalue prob-

lem, popularized by Malfiet and Tjon in [33]. It is based on the observation that the absolute

largest eigenvalue λmax for an eigensystem of type:

Kψ = λψ (1.162)

is easy to find. The most obvious way is due to the so called Power method. By starting with some

x0 =
∑
i

C
(0)
i ψi we can see that:

xn = Knx0 =
∑

i

λn
i C

(0)
i ψi (1.163)
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and

lim
n→∞

xn

xn−1
= λmax lim

n→∞
xn

〈xn| |xn〉
= ψ(λmax) (1.164)

Therefore xn tends towards the eigenstate corresponding to eigenvalue λmax.

Let us write the eigenvalue equation in a matrix form:

([V ] − [∆] + [W ])ψ = EBψ. (1.165)

By introducing some guess eigenenergy E0 we can reformulate the upper equation in the form:

(E0 [B] − [V ] + [∆])−1 [W ] ψ = λ(E0)ψ. (1.166)

So, if E0 is exactly the ground state energy EGS of eq. (1.166), then λ(EGS) = 1, whereas if it

is some other eigenvalue Ei of eq. (1.165) one will have λ(Ei) < 1. Furthermore, it can be easily

shown that if we have purely attractive potential 0 < λ(Ei) ≤ 1. Therefore λ corresponding to

the ground state with EGS is the absolute largest eigenvalue. For guess energies E0 < EGS , after

solving eq. (1.166), one has λ < 1, while if E0 > EGS one gets λ(E0) > 1.

If the potential has also a repulsive part, negative eigenvalues λ will also occur and it may

become smaller than -1. Then eq. (1.166) will converge towards this spurious eigenvalue. A simple

algorithm to overcome this problem was proposed in [34, 35]. Firstly, one should evaluate this

parasite eigenvalue λmax < −1 and then modify eq. (1.166):

(
(E0 [B] − [V ] + [∆])−1 V − λmax

)
ψ = λ′(E0)ψ. (1.167)

Therefore λmax is mapped onto λ′ ≈ 0, whereas the physical eigenvalue, corresponding to EGS ,

becomes λ′ = 1 − λmax.

Discussion In previous subsection, two different methods were presented to solve physical bound

state problem. These methods are based on iterative techniques and both employ similar matrix

vector product operations. This enables us to use special properties of these matrices (sparsity,

tensor structure) and to avoid their explicit storage. One should mention that these two methods

require performing vector multiplication operations with inversed matrices: interpolation matrix

[B]−1 and inverse of kinetic energy operator (E0 [B] − [V ] + [∆])−1 . However, these matrices turn

to have simple tensor structure in Euclidean coordinates and their inverse can be easily performed.

This will be discussed in the next section.

The principal technical difference of these two methods is that inverse iteration method requires

to perform successively solutions of linear system of equations. And, even though linear system is

solved using iterative techniques, more operations are always needed to obtain a converged solution

than using the power method. The advantage of inverse iteration method lies in its ability to treat

the excited state problem on the same foot as the ground state. Malfiet-Tjon technique for excited

states becomes then complicated for it requires finding eigenfunctions of all lower lying states and

afterwards, at each step, orthogonalize the solution in this eigenfunction basis.
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Figure 1.5: Convergence of inverse iteration method in calculating deuterium’s ground state binding
energy. The guess energies were taken close to eigenvalue B0 = 2.2245 MeV. The same calculations,
just guess value for deuterium binding energy, was chosen to be 100 times larger.

One should remark that inverse iteration method is very sensitive on guess energy value and if

the guess is not close enough to the searched eigenvalue, it converges very slowly (see Fig. 1.5). For

Malfiet-Tjon method, the dependence of λ(E) is almost logarithmic (see Fig. 1.6) and therefore

very effective codes can be written in order to find ground state energy Eg, for which λ(Eg) = 1.

Usually, one needs no more than 5-10 iterations to get converged value when Malfiet-Tjon method

is in use. However, this method fails when the interaction potential has a very repulsive core (as

Aziz potential [36]), or some very large eigenvalues (harmonic oscilator9). In this case the physical

state with negative eigenvalue is hidden by the existence of many non-physical eigenvalues which

are extremely large and positive. To impose the physical negative eigenvalue to be the largest in

the spectrum, one should find with very high precision the largest positive one, which numerically

is not always possible. On the other hand, after the eigenvalue remapping, one obtains negative

eigenvalue λ(E) being very close to each other and hardly distinguishable.

Solution of linear systems using iterative methods

As mentioned before, due to our need of solvie linear systems of extremely large sizes, direct

methods can not be put in practice. They require explicit place to store and perform operations

with the matrices. Recently a number of efficient iterative methods were developed to handle large

sparse linear systems [37, 38]. In general, these methods do not require the storage of matrix; they

rather rely on successive application of arithmetic matrix vector operations.

Most of the existing iterative techniques for solving large linear systems utilize, in one or another

9Nevertheless, in the case of harmonic oscillator potential, one can single out problem of spurious infinitely large
eigenvalues. The growth of potential can be switched off at some large r, where searched bound state wave function
is already negligibly small and does’t affect bound state energy.
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Figure 1.6: Dependence of projected value function λ(Bg) on given guess value B in deuterium
binding energy calculations.

way, a projection process. Consider the linear system:

Ax = b, (1.168)

where A is n × n matrix. The idea of projection technique is to extract an approximation to the

solution of a linear system from a subspace of a Rn (linear map of matrix A). If K is this subspace of

candidate approximates, or search subspace, and m is its dimension, then m constraints should be

imposed to be able to extract such an approximation. A typical way of describing these constraints

is to impose m independent orthogonality conditions. Specifically, the residual vector b − Ax is

constrained to be orthogonal to m linearly independent vectors. This defines another subspace L of

dimension m which is called the subspace of constraints or left subspace. This simple framework is

common to many different mathematical methods and is known as the Petrov-Galerkin conditions.

b − Axm ⊥ Lm (1.169)

Let V = [v1, v2, ..., vm] , be a n × m matrix, whose column-vectors form a basis of Km, and

similarly let W = [w1, w2, ..., wm] be the matrix representing basis of Lm. If the approximate

solution is written as:

x = x0 + V y (1.170)

and the initial residual vector is r0 = b−Ax0, then the orthogonality condition leads immediately

to the following system of equations for the vector y:

W †AV y = W †r0 (1.171)
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If the assumption is made that the matrix W †AV is nonsingular, the following expression for

the approximate solution x̃ results:

x̃ = x0 + V
(
W †AV

)−1
W †r0 (1.172)

In many algorithms the matrix
(
W †AV

)
does not have to be formed since it is available as a

by-product of the algorithm. The practical choice of subspace K is so called Krylov subspace:

Km(A, r0) = span
{
r0, Ar0, A

2r0, ..., A
m−1r0

}
. (1.173)

In this way one constructs the basis for approximate solution by just multiplying some guess vector

with the linear system’s matrix A. Different versions of Krylovs methods arise from different choices

of subspace Lm. The most straightforward way is the so called orthogonal projection technique,

for which L is the same as K. We will use a slightly modified definition where L = AK. Then

Arnoldi’s procedure can be applied to build an orthogonal basis of the Krylov subspace Km. In

exact arithmetic, one variant of the algorithm due to Y. Saad [39] is as follows:

Algorithm 1 Arnoldi

1. Choose a vector v1 of norm 1.

2. For j=1 to m Do

Compute hij = (Avj , vi) i = 1, 2, ..., j

Compute wj = Avj −
j∑

i=1
hijvi

hj+1,j = ‖wj‖2 . If hj+1,j = 0 Stop.

vj+1 = wj/hj+1,j

3. End Do.

By taking as a starting vector v1 = r0/ ‖r0‖2 and relaying on Arnoldi procedure, one obtains

the so called GMRES algorithm. At each step of Arnoldi’s procedure, Heisenberg type matrix

H̄m+1,m, constituting of elements hij is supplied by an additional column. Matrix H = W †AV

contains m first lines of matrix H̄m, and thus the approximate solution after m iterative steps is

the one for which the residual norm

J(y) = ‖b − Ax‖2 = ‖b − A(x0 + Vmy)‖2 = ‖r0 − AVmy‖2 (1.174)

=
∥∥Vm+1

(
‖r0‖2 e1 − H̄my

)∥∥
2

=
∥∥‖r0‖2 e1 − H̄my

∥∥
2

is the smallest. In other words:

y = arg

(
min

y

∥∥‖r0‖2 e1 − H̄my
∥∥

2

)
. (1.175)

The minimizer ym is inexpensive to compute since it requires the solution of an (m + 1) × m

least-squares problem, where m should be small (of the order 4 50) for well convergent iteration

procedure. Thus, approximate solution and its residual norm can be obtained after each Arnoldi’s
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iteration step. The most computer memory demanding task is due to the need of keeping the

(m + 1) vectors of matrix V . It requires storage space for (m + 1) × n real numbers.

These requirements can be moderated. One should remark that it is not necessary to grow m

up till hj+1,j is zero. One can restart Arnoldi’s procedure after m reaches some maximal value by

imposing new v1 = r0/ ‖r0‖2 = (b − Axm) / ‖b − Axm‖2 . However, restarted GMRES algorithm is

usually less efficient for it converges after more iteration steps than the standard one.

BICGSTAB While GMRES algorithm looks as the most robust iterative method, its deficiency

is the need of accumulating the basis vectors of Krylov subspace (or matrix V ), which for very

large linear systems can be extremely costly. However, there are a few iterative solution schemes

which overcome this deficiency and perform operations only with current vectors of subspaces Km

and Lm. One of such algorithms is BICGSTAB due to van der Vorst [40]. This algorithm relies on

biorthogonal basis for the two subspaces:

Km(A, r0) = span
{
v1, Av1, A

2v1, ..., A
m−1v1

}
(1.176)

and

Lm(A, r0) = span

{
w1, A

†w1,
(
A†

)2
w1, ...,

(
A†

)m−1
w1

}
(1.177)

Thus, in principle, this algorithm should require operations of multiplication with matrices A†.

However, it is remarked that vectors generated with A† do not contribute directly to the solution.

Instead, they are used only to obtain the scalars needed in the algorithm. The multiplication of

vectors with A† matrix is bypassed by making some approximations.

Algorithm 2 BICGSTAB

1. Compute r0 = b − Ax0; choose arbitrary r∗0
2. p0 = r0

3. For j=1,2..., until convergence Do

αj = (rj , r
∗
0) / (Apj , r

∗
0)

sj = rj − αjApj

wj = (Asj , sj) / (Asj , Asj)

xj+1 = xj + αjpj + wjsj

βj =
(rj+1,r∗0)
(rj ,r∗0)

αj

wj

pj+1 = rj+1 + βj(pj − wjApj)

4. End Do.

Preconditioning Although the methods seen in previous chapter are well founded theoretically,

they are all likely to suffer from slow convergence. Typically, convergence is guaranteed only after

m ∼ n iterative steps of orthogonalization, where n stands for the dimensions of the matrix. Of

course, such convergence is not satisfactory since resolution time will grow as n3 (even faster than

for the direct methods).
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The remedy for improving robustness and efficiency of iterative methods is preconditioning.

Preconditioning simply means the transformation of the original linear system into another one,

which has the same solution, but which is likely to be easier to be solved with an iterative solver. In

fact, the reliability of iterative techniques, when dealing with various applications, depends much

more on the quality of the preconditioning than on the particular Krylov subspace accelerator in

use.

The principal idea of preconditioning is to solve systems

M−1Ax = M−1b (left preconditioning) (1.178)

or

AM−1x = M−1b (right preconditioning)

which are identical to the initial system Ax = b, but preconditioning matrix M−1 is such that it

makes iterative process converge more rapidly. It is obvious that if M−1 = A−1, the exact solution

will be obtained after the first iteration. Therefore the successful preconditioning matrix should in

some way approximate the inverse of matrix A. In fact, if one supposes that A = M+ △ M , where

△ M only slightly modifies the kernel of matrix M , one has:

x = A−1b = (M+ △ M)−1 b = M−1(1 − M−1 △ M +
(
M−1 △ M

)2 − ...)b. (1.179)

After each iteration one will span with at least one more term of the Taylor expansion and

therefore iterative method should quickly converge, since M−1 △ M ≪ 1.

Standard preconditioners proposed by pure mathematical algorithms are based on the non-zero

structure of the matrix. The simplest preconditioner is the inverse of the diagonal of A. One

can improve this technique by inverting more lines close to diagonal, as well as forcing to invert

the subdiagonals consisting the largest (’most important’) elements of the initial matrix. In Fig.

1.7 is shown the efficiency of various matrix structure based preconditioners for a system of 100

equations. It follows that non preconditioned GMRES converges only after the number of iterations,

which is almost equal to the size of linear system. Using diagonal inverse and more complicated

preconditioners, the number of iterations tends to reduce. If one looks at Fig. 1.8, where the number

of iterations required to obtain solution is plotted against the size of the system, one remarks that

the slope has tendency to bend, presenting some exponential saturation behavior. However, if one

extrapolates this curve for larger linear systems, at least ∼ 466 iterations are required for any size

system to be solved. It is too much. Of course, by using more sophisticated preconditioners (as

inverse of a few subdiagonals) one can expect a better convergence pattern. On the other hand,

the use of more complicated preconditioning matrices requires more numerical efforts to create, to

store and finally to apply them10.

10Creating a preconditioner based on inverse of diagonal and a few subdiagonals of the matrix requires performing
LU factorization of the band structure matrix. Thus it needs providing additional memory to store a preconditioner,
as well as it takes time to perform this LU factorization.

If one wishes to take into account also some subdiagonals containing the largest elements - one should perform
search operations, which are very time consuming tasks.
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One can conclude that such preconditioners based on matrix non-zero structure turns to be not

very effective. The reason is that they completely ignore the physical origin of the problem. The

non-zero structure of matrix A is not reflecting the physical background of the problem. Thus the

preconditioner obtained by pure mathematical speculations is often not a very good approximate

of its inverse. In the next section the preconditioner based on physical structure of matrix A would

be proposed. It turns to be a very effective one to boost the convergence of the iterative methods.

1.3.3 Tensor inversion

In previous subsection we have seen that for solving bound state problem, one needs to perform

vector multiplication operations with inverse matrices [B]−1 and (E0 [B] − [V ] + [∆])−1 eq. (1.159)

and eq. (1.167). On the other hand, it can be remarked that the matrix (E0 [B] − [V ] + [∆])

contains the great part of operators in the matrix [A] and thus its inverse can serve as a very

effective preconditioning.

However, one cannot invert them directly since obtained matrices would be full and due to their

large size physically unstorable even on computer hard disk.
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LU Factorization

One rather straightforward way to perform multiplication operations with inverses of the discussed

matrices relies on the fact that there are no elements coupling different amplitudes. Thus, these

matrices can be written as box diagonal ones, with a number of boxes equal to the number of partial

amplitudes (Fig. 1.9). Furthermore, these box matrices, due to the fact that extrapolation splines

are piecewise, are rather sparse. By prudently arranging row and column indexes n = (jx, jy, jz),

these box matrices have a band structure with rather few upper and lower diagonals. Band matrices

can be easily LU factorized [41], i.e. written as a product of lower and upper triangular matrices.

For every block one has:

[M ]α = [L]α [U ]α (1.180)

Multiplication of vector with the inverse of such matrix can be done after solving the linear

system of equations, since:
[
b′

]
α

= [M ]−1
α [b]α . (1.181)

If one wants to obtain [b′]α from [b]α one has to solve the following sequence of linear systems:

[b]α = [M ]α [b′]α = [L]α [U ]α [b′]α

[b]α = [L]α

[
b̃′

]
α

[
b̃′

]
α

= [U ]α [b′]α
(1.182)
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The solution of linear system with triangular matrices is very rapid and needs only O(n2)

floating point operations. However, LU factorization procedure is rather costly, even though it

can be performed block by block. Nevertheless the band of matrix (E0 [B] − [V ] + [∆]) (or [B]) is

rather compact. However it still continues to grow with the dimension of the problem. This makes

LU factorization operations very lengthy, and the method is hardly applicable in solving four-body

problem.

Tensor inversion

There exists a more effective method to perform vectors multiplication operations with inverse ma-

trices [B] and (E0 [B] − [V ] + [∆]). It was first proposed by Payne [30], implemented by Schellinger-

hout and Bosvelt [42] for three-body systems, and reformulated in the four-body case by the same

group [43]. This method is based on the fact that former matrices can be expressed as a com-

bination of simpler matrices, such as diagonal ones, or matrices acting only in one of subspaces

α, x, y, z. This fact enables to write them as a tensor product of smaller matrices.
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Terms in matrix (E0 [B] − [V ] + [∆]) can be grouped as follows:

[∆]n,n′ = δα,α′ ·




[(
E0 − Vα,α′(xjx) − ~

2

m
lx(lx+1)

x2
jx

)
Sx

j′x
(xjx) + ~

2

m Sx′′
j′x

(xjx)

]
Sy

j′y
(yjy)S

z
j′z

(zjz)

+Sx
j′x

(xjx)

[
−~

2

m
ly(ly+1)

y2
jy

Sy
j′y

(yjy) + ~
2

m Sy′′
j′y

(yjy)

]
Sz

j′z
(zjz)

+Sx
j′x

(xjx)Sy
j′y

(yjy)

[
−~

2

m
lz(lz+1)

z2
jz

Sz
j′z

(zjz) + ~
2

m Sz′′
j′z

(zjz)

]




(1.183)

It is convenient to introduce matrices [1α] ,
[
δα
α0

]
,
[
NX

]
,
[
NY

]
,
[
NZ

]
,
[
DX

α0

]
,
[
DY

]
,
[
DZ

]
with

respective sizes Nα, Nx × kx, Ny × ky and Nz × kz and defined as:

[1α]α,α′ = δα,α′ (of dimension Nα × Nα)

[
δα
α0

]
α,α′ = δα0,αδα,α′

(of dimension Nα × Nα)

Nα distinct matrices[
NX

]
jx,j′x

= Sx
j′x

(xjx) (of dimension Nxkx × Nxkx)
[
NY

]
jy ,j′y

= Sy
j′y

(yjy) (of dimension Nyky × Nyky)
[
NZ

]
jz ,j′z

= Sz
j′z

(zjz) (of dimension Nzkz × Nzkz)

[
DX

α0

]
jx,j′x

=

(
E0 − Vα0,α′

0
(xjx) − ~

2

m
lx(lx+1)

x2
jx

)
Sx

j′x
(xjx) + ~

2

m Sx′′
j′x

(xjx)
(of dimension Nxkx × Nxkx)

Nα distinct matrices11

[
DY

]
jy ,j′y

= −~
2

m
ly(ly+1)

y2
jy

Sy
j′y

(yjy) + ~
2

m Sy′′
j′y

(yjy) (of dimension Nyky × Nyky)
[
DZ

]
jz ,j′z

= −~
2

m
lz(lz+1)

z2
jz

Sz
j′z

(zjz) + ~
2

m Sz′′
j′z

(zjz) (of dimension Nzkz × Nzkz)

Using these notations, matrix [B], expressed in eq. (1.141), displays its tensor structure:

[B] =




[1α]

⊗[
NX

]

⊗[
NY

]

⊗[
NZ

]
.




(1.184)

The inversion of this matrix is straightforward:

[B]−1 =




[1α]

⊗[
NX

]−1

⊗[
NY

]−1

⊗[
NZ

]−1




(1.185)
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On the other hand, the inversion of matrix [M ] = (E0 [B] − [V ] + [∆]) is less straightforward.

In order to invert it, one can decompose this matrix into a sum of the matrices having similar

tensor structure:

[M ] =




∑

α

[[δa
α]]

⊗[
DX

α

]

⊗[
NY

]

⊗[
NZ

]




+




[1α]

⊗[
NX

]

⊗[
DY

]

⊗[
NZ

]




+




[1α]

⊗[
NX

]

⊗[
NY

]

⊗[
DZ

]




(1.186)

It is useful to factor out interpolation matrix, or [B] = [1α] ⊗
[
NX

]
⊗

[
NY

]
⊗

[
NZ

]
. An

important fact is, as we have seen in eq. (1.185), that this matrix is tensor inversible. We obtain:

[M ] =




[1α]

⊗[
NX

]

⊗[
NY

]

⊗[
NZ

]







∑

α

[δa
α]

⊗[
NX

]−1 [
DX

α

]

⊗[
1Y

]

⊗[
1Z

]




+




[1α]

⊗[
1X

]

⊗[
NY

]−1 [
DY

]

⊗[
1Z

]




+




[1α]

⊗[
1X

]

⊗[
1Y

]

⊗[
NZ

]−1 [
DZ

]




. (1.187)

Here
[
1X

]
,
[
1Y

]
,
[
1Z

]
are unity matrices of sizes Nxkx, Nyky, Nzkz..

Direct methods can be applied to diagonalize matrices
[
NX

]−1 [
DX

α

]
,
[
NY

]−1 [
DY

]
or

[
NZ

]−1 [
DZ

]

at relatively low cost, since they are of considerably smaller size than the original system. Further-

more, these matrices can be represented as diagonal matrices affected by similarity transformation:

[
NX

]−1 [
DX

α

]
=

[
UX

α

] [
dX

α

] [
UX

α

]−1

[
NY

]−1 [
DY

]
=

[
UY

] [
dY

] [
UY

]−1

[
NY

]−1 [
DY

]
=

[
UZ

] [
dZ

] [
UZ

]−1

In this equation, unitary matrices – denoted by [U ] – contain the eigenvectors of the original

matrix [N ]−1 [D] while diagonal matrices – denoted by [d]) – contain its eigenvalues. Consequently,

the matrix [M ] can be expressed in the form:

[M ] =




[1α]

⊗[
NX

]

⊗[
NY

]

⊗[
NZ

]







∑

α

[1α]

⊗[
UX

α

]−1

⊗[
UY

]−1

⊗[
UZ

]−1







∑

α




[δa
α]

⊗[
dX

α

]

⊗[
1Y

]

⊗[
1Z

]




+




[1α]

⊗[
1X

]

⊗[
dY

]

⊗[
1Z

]




+




[1α]

⊗[
1X

]

⊗[
1Y

]

⊗[
dZ

]










∑

α

[1α]

⊗[
UX

α

]

⊗[
UY

]

⊗[
UZ

]




.
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The central term, containing sums of tensor products with matrices [d] , is purely diagonal and

thus is trivial to invert. On the other hand, using the fact that the inverse of a tensor product is

the tensor product of their respective inverse [44], one can easily obtain the inverse of [M ]:

[M ]−1 =




∑

α

[1α]

⊗[
UX

α

]−1

⊗[
UY

]−1

⊗[
UZ

]−1










∑

α

[δa
α]

⊗[
dX

α

]

⊗[
1Y

]

⊗[
1Z

]




+




[1α]

⊗[
1X

]

⊗[
dY

]

⊗[
1Z

]




+




[1α]

⊗[
1X

]

⊗[
1Y

]

⊗[
dZ

]







−1 


∑

α

[1α]

⊗[
UX

α

]

⊗[
UY

]

⊗[
UZ

]







[1α]

⊗[
NX

]−1

⊗[
NY

]−1

⊗[
NZ

]−1




.

Analysis

0 5 10 15 20
1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
    N=3200

 L-P GMRES
 R-P GMRES
 L-P BICGSTAB

 

 

Re
s. 

N
or

m

Num. Iterations

    N=800
 L-P GMRES
 R-P GMRES
 L-P BICGSTAB

Figure 1.10: Comparison of convergence for right and left preconditioned iterative methods. GM-
RES and BIGSTAB algorithms were applied for different size linear systems.

As was suggested, the inverse of (E0 [B] − [V ] + [∆]) matrix is found to be the most effective

preconditioning. It works with equal success in GMRES as well as in BICGSTAB iterative schemes.

The number of iteration steps required to obtain a converged solution grows very slowly with the

size of the system and stays always reasonable12. As seen from Fig. 1.10, in most cases left and

12The largest number of iterations required to obtain converged solution was ∼ 50 for GMRES and ∼ 70 for
BICGSTAB algorithms. Slow convergence, or its absence, usually indicates ambiguities in physical formulation of
the problem.
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right preconditioning have almost identical convergence patterns. However, some peculiarities can

arise making one of these schemes fail.

It seems that BICGSTAB algorithm needs fewer iterations to converge. One should however

keep in mind that each iteration step of BICGSTAB requires two vector-matrix M−1A (or AM−1

for right preconditioned) multiplication operations, whereas GMRES requires only one. Thus, in

general GMRES scheme turns to be faster. On the other hand BICGSTAB is a more flexible

scheme due to its lower orthogonalization vector storage requirements.

To reduce or (and) control the necessary RAM used by GMRES algorithm, one can restart

it if some maximal number of iterations (fixed by default) were performed. After that, Arnoldi’s

orthogonalization procedure is restarted and new Krylov subspace is formed from residual vector,

based on the obtained approximate solution. As seen in Fig. 1.11 the number of iteration steps

tends to grow if one chooses to restart the algorithm. However, if the maximal size of Krylov’s

subspace is chosen reasonably, the number of iteration steps grows only a little. In some cases the

restarted algorithm can become even faster, since each successful iteration step is heavier than the

previous one (new obtained vector should be orthogonalised in respect to the basis formed by all

the previous ones). The restart option can accelerate the convergence due to possible stuck down

of direct iteration caused by numerical peculiarities. In this case restarted algorithm can converge

even after fewer iteration steps.
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Figure 1.11: Comparison of convergence for restarted GMRES algorithm. One can remark that
limiting the size of Krylov subspace (limiting number of iterations in Arnoldi orthogonalization
procedure) increases the number of iterations required to obtain converged solution. However,
total number of iterations stays reasonable if Nrest > 15.



Chapter 2

Three-Body Coulomb Scattering

Coulomb interaction is the fundamental ground in the atomic and molecular systems, being the

origin of all vital processes in nature. It is the dominant interaction from nano to millimeter

shell, therefore the ability to treat Coulomb systems represents a substantial interest for a large

community of scientist. In spite of the simplicity of this potential analytical solutions exist only

for two interacting charges and are able to account only negligible part of Coulomb systems. Three

interacting charges therefore represent the simplest case of this type, which cannot be solved

analytically. The straightforward approach should consist of considering the system interacting

via some effective potential, however this approach cannot take into account of particle exchange,

neither of single particle decomposition effects. Hence, three-charge system constitutes a genuine

3-body problem, including numerous examples of the fundamental importance in physics:

• H+
2 , H− being the simplest molecules found in nature

• muonic (d+µ−t+) , pionic (d+π−t+) molecules presenting one of the possible enhancements

to solve long-standing catalyzed fusion dilemma.

• scattering of electrons and positrons on H atoms. Representing the simplest experimentally

eligible structure to test matter-antimatter symmetry breaking.

• propagation of antiprotons in space, annihilation of the matter and antimatter in antiproton

H scattering.

Coulomb systems were studied since the first days of quantum mechanics [?]. From that time

much progress has been done in solving bound state problem with explicit results obtained for

molecular structures as H+
2 ([45]-[51]), H− [52], d+µ−t+ [53, 54] and many others. However, the

advances in the scattering problem are weak. Until now, rigorous studies were performed only

for the simplest cinematical configurations like e− − e−e+ [55], e−-H and e+-H [56], and still only

for elastic channels. Considered systems had either all the particles of equal mass, or two charges

much lighter than the third one. In this case all the reduced masses of two-particle fragments are

of the same order and therefore exhibit comparable dynamics.

59
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Figure 2.1: Schematic view of Hydrogen atom interacting with a positive projectile particle. In
figure [a] projectile is far away, however its static electric field polarizes the atom. Weak attraction
appears between the particle and the atom. In figure [b] positive particle penetrates inside the
atom by pushing electron cloud outside, projectile feels strong Coulomb repulsion from the same
sign charge nucleus.

This section of my thesis is devoted to expand these studies by considering elastic scattering

of heavy positively charged particles with masses m ∈ [me,mp] on atomic hydrogen, since still

restricting to the energies below the inelastic thresholds. The principal binding of such systems is

due to electron’s binding in hydrogen atom, which can have infinite number of bound states. In

presence of the third charged particle electron cloud is stretched (see Fig. 2.1) by virtual excitation

of electron into excited states, in the way to favor more attraction. Hydrogen atom is deformed

and gains dipole moment (polarizes) in the direction of arriving third particle. For the distances

when projectile particle is far away its induced dipole moment is proportional to the electric field

at the center of the H atom. This dipole moment is furthermore responsible for appearance of a

weak attractive force with arriving particle, which behaves as:

Vpol(r → ∞) = −αH

2r4
, (2.1)

αH being the polarizability of the hydrogen atom. Of course, it is not anymore true when projectile

penetrates inside the atom forcing electronic cloud out and interrupting its action as a binding

medium. On the other hand, when the projectile gets very close to the nucleus and electronic

cloud is all forced outside - it is due to strong repulsion between two charges of the same sign - the

effective interaction can be described by the screening potential

V (r → 0) =
e−r

r
. (2.2)

Consequently, one has some effective potential as presented in Fig. 2.2 with non-trivial behavior

at the intermediate distances between cope of validity of the two limiting cases eqs. (2.1-2.2). This

potential is very weak having the minimal value only about ∼ 0.1 a.u. (2.7 eV), however its

attractive part is of long range and if projectile is heavy enough and therefore rather static, as

it was shown in [57], this potential can support many nearthreshold bound and resonant states.

These states will manifest in the charged particle low energy scattering on H atom. All the facts

described above make this system very rich in physical phenomenon and motivate us to study it.
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Figure 2.2: Effective polarization potential as a sum of short range repulsion with a nucleus and
attractive long range polarization part.

It is worth mentioning that if the projectile is of the opposite charge, the system behavior

changes completely. The long range part of the effective potential (polarization part) is not affected,

however short range part of this potential becomes attractive. Furthermore, if the projectile is

heavier than an electron, its 2-body bound states with proton (nucleus of H atom) lie below those

of H atom and represent - when scattering problem is being considered - open rearrangement and

eventually annihilation channels. Thus, antiproton-proton system has already 30 S-wave bound

states below ground state of H atom. The necessity to take into account all those annihilation

channels makes rigorous treatment of such systems very difficult, and until now only approximate

solutions were achieved [58, 59, 60].

Many numerical methods are very successful in solving Coulomb few-body bound state problem.

The most precise of them are based on variational principle, furthermore relying on the fact that

analytical solutions exist for 2-body Coulomb problem. See [50, 61] and references therein.

The Faddeev like equations, that we would like to employ, were for a long time believed to be

very useful in nuclear problems, but not in the atomic ones. Due to difficulties I’ll describe in the

next subsection, nobody even tried to calculate three-body bound states with Coulomb potential.

The first essay was done by Cravo and Fonseca [62], by using AGS [163] formalism, to calculate the

ground state of Helium atom. However their attempt failed largely, due to inability in representing
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the long range Coulomb force by a separable approximation. The first successful calculations were

performed by Bosveld and Schellingerhout [42] just one year later.

Remark 3 We will use electronic atomic units (a.u.) to measure physical quantities throughout

this chapter. They are obtained by considering mass of the electron me = 1 as well as ~ = e2 = 1.

The length unit is the Bohr radius a0 = 1 a.u.= 0.529 Å and the energy unit is the Hartree 1 Ha= 1

a.u.= 2 Ry= 27.2 eV.

2.1 Merkuriev equations

As introduced in section 1.2.2, it has been proven that Faddeev equations have compact kernels

only for fast enough decreasing potentials. If one considers long range potentials, in particular

Coulomb potential, kernel of Faddeev equations becomes non-compact and problems formulation

is not anymore valid [63]. In configuration space it shows up in two kind of difficulties:

1. Asymptotic motion of the particles is never free. Long range interaction terms continue

to couple Faddeev equations even in far asymptote, thus making nontrivial distribution of

asymptotic state wave function between the Faddeev components. This non-trivial coupling

makes implementation of correct boundary conditions hardly possible.

2. Even more severe difficulties exist above three-body threshold. Faddeev equations above

3-body threshold are not of the Fredholm type. In configuration space, one is confronted

with finding asymptotic form of 3-body, Coulomb interacting, breakup wave function, which

until now is a non-resolved task. In momentum space, one doesn’t need to know asymptotic

form of wave function (it is integrated out in equations), however Coulomb singularities make

equations not integrable [64].

In this thesis I will not discuss 3-body breakup problem, therefore only the difficulties described

in the first point will be confronted. On the other hand, one has to mention that 3-body bound

state problem can be tackled even by applying standard Faddeev equations. Uncoupling of Faddeev

components is here guaranteed by exponential decay of wave function.

For the systems with Coulomb
(
V C

l

)
plus short-range interaction (Vi), J. Noble formulated

modified Faddeev equations [65].

(E − H0 − Vi −
3∑

l=1

V C
l )

∣∣ψ(i)
〉

= Vi

[∣∣ψ(j)
〉

+
∣∣ψ(k)

〉]
(i, j, k) ∈ (1, 2, 3) (2.3)

One can see that these equations are asymptotically uncoupled. Uncoupling is assured by a

rapid vanishing of short range potential terms Vi in the right hand side of the equation. Hence,

introducing boundary conditions shouldn’t cause big problems. However, the Noble equations have

singularities, nevertheless integrable, in the left hand side of equation, due to non-proper long range

potential terms at cijxj = sijyj line, corresponding to the particle configurations when two of them

can get close to each other (see Fig. 2.3). If long range interaction is repulsive, one will have
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Faddeev components vanishing near this line and since φ(x → ∞) = 0 boundary conditions still

can be in agreement with these components. On the other hand, if one has attractive Coulomb

terms, J. Noble equations become ill behaved. Faddeev components will accumulate around the

singular line cijxj = sijyj
1, and therefore the vanishing of Faddeev components is not anymore

guaranteed even for x → ∞. Thus, Faddeev components are not anymore smooth and bound

functions. Technically it materializes in two kind of difficulties: first Faddeev components need

large grids to implement the boundary conditions, whereas secondly partial wave decomposition is

slowly or even non-converging.

Figure 2.3: Singularities of non-proper potential terms appear when one confronts the situa-
tion, in which two particles, coupled by this potential, can get close to each other. These
dangerous configurations in Jacobi coordinate space xy are marked by the red-dashed line.
Note, that for different mass particles, this line splits into two satisfying equalities: c21x1 = s21y1

and c31x1 = s31y1.

In conclusion, one can summarize that when dealing with long range interactions one should

have equations satisfying the following conditions:

1. The left hand side of equations should absorb all the contributions of long range potentials

at some y >> x, to permit asymptotic uncoupling of the Faddeev components, thus enabling

unambiguous implementation of the boundary conditions.

2. On the other hand, potential terms Vi(xi), for which xi → 0, should be kept in the left hand

side of their original Faddeev equation, where potential singularities are suppressed by the

1When one deals with system of non-equal mass particles - for each given xiyi (i = 1 , 2 , 3 ) plane there exist
two singular lines. I.e.: If one considers configuration x1y1 of Jacobi basis (23 ) 1 - one obtains singularities for
c21~x1 = s21~y1 and c31~x1 = s31~y1, respectively corresponding change of Jacobi basis to (31 ) 2 and (12 ) 3 .
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boundary condition ψ(i)( xi = 0, yi) = 0. This will avoid appearance of the singular terms

near the xj = yj line in non-appropriate Faddeev components.

These principal observations motivated Merkuriev [10, 66] to split the Coulomb potential in

two parts (short range V (s) and long range V (l)), V C = V (l) + V (s), by means of some arbitrary

cut-off function χ(x, y) :

V (s)(x, y) = V C(x)χ(x, y) V (l)(x, y) = V C(x) [1 − χ(x, y)] (2.4)

One is then left with a system of equivalent Noble equations:

(E − H0 − V
(s)
i − W )

∣∣ψ(i)
〉

= V
(s)
i

[∣∣ψ(j)
〉

+
∣∣ψ(k)

〉]
(i, j, k) ∈ (1, 2, 3) (2.5)

in which

W = V
(l)
i + V

(l)
j + V

(l)
k (2.6)

where right hand side contains only the short range contributions of the proper potential terms.

The left hand side of equation is supplied with some effective 3-body potential Wi, containing long

range contributions from all potential terms. In order to have a set of equations with an unique

solution, the short range potential V
(s)
i (xi, yi) should be bounded and vanishing fast enough to

satisfy the Faddeev condition:

V
(s)
i (xi, yi) = 0 for xi > a0(1 + yi)

υ′

, (2.7)

where a0 is some constant and υ′ is the parameter, contained in
(
0, 1

2

)
. Additionally, complementary

condition should be satisfied (introduced by Merkuriev) to isolate singular potential terms when

coupling them in the left hand side of equation with non-proper Faddeev components.

V
(s)
i (xi, yi) = V C

i (xi) for xi < a0(1 + yi)
υ (2.8)

and 0 < υ < υ′. To make these two conditions valid, Merkuriev proposed the splitting function χ,

which reads

χ(x, y) =
2

1 + exp
[

(x/x0)µ

1+y/y0

] , (2.9)

where µ = 1/ν and thus µ > 2. Parameter x0 evaluates the effective size of the 2-body interactions;

it is therefore logic to attribute the size of two body bound state for it. On the other hand parameter

y0 is an evaluate of the size of the so called three body region2.

Please note that, no approximations were made by making potential separation in eq. (2.4).

Therefore, Faddeev and Merkuriev equations should provide identical solutions (formally they

should have the same eigenvalue spectra, as well as the same eigenvectors represented by systems

2Three-body region is the region, where three-particle decomposition of the system is important, here single
particle dynamics should be taken into account. In so called, two-body region the system can be described successfully
by the residual interaction of two particle cluster, forming a bound pair, and retreating third particle.
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total wave function |Ψ〉 =
∣∣ψ(i)

〉
+

∣∣ψ(j)
〉

+
∣∣ψ(k)

〉
). Nevertheless, one has different equations

for the Faddeev and Merkuriev components. Hence, total wave functions |Ψ〉 decomposition into

components
∣∣ψ(k)

〉
is different.

One can admit that Merkuriev equations, even though their major goal is the scattering states,

are advantageous even when dealing with Coulomb bound state problem (see Fig. 2.4). Ground

state energy calculations for µ+H system are presented there by comparing convergence of Faddeev

and Merkuriev equations. Convergence was achieved by increasing number of partial waves in bipo-

lar harmonics basis to describe Faddeev (-Merkuriev) components . The two different convergence

schemes were employed, when using Faddeev method: in the first one, a number of partial waves

in attractive components was chosen to be equal to repulsive ones3, whereas in the second scheme

number of partial waves in repulsive component was chosen to be smaller by one than in attractive

ones. Such a scheme permitted to trap bound state energy between the two convergence curves.

However, convergence of Faddeev equations was rather slow, whereas results with a small number

of partial waves couldn’t even confirm existence of the bound states.
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Figure 2.4: Convergence of the µ+H systems bound state energy calculations. In the smaller plot
zoom in converged area is shown. Number of partial amplitudes indicates the sum N=N1+N2+N3

of partial waves used in expansion of the Faddeev-Merkuriev components.

3Faddeev components are called attractive if the particles of principal pair in the corresponding configuration tree
attracts each other, while repulsive components are those for which principal pairs particles retracts. For the system
of two positive and one negative charge, as µ+e−p+ one has two attractive components corresponding to particle
trees (µ+e−)p+ and (p+e−)µ+, as well as one repulsive - (p+µ+)e−.
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In Merkuriev scheme originally repulsive components become very feeble, and so they can be

absorbed in originally attractive components by choosing splitting function χrep(x, y) = 0 for them.

Considering electron as a 3-rd particle, one obtains two component coupled equations.

(E − H0 − V
(l)
2 − V1 − V3)

∣∣∣ψ(1)
〉

= V
(s)
1

∣∣∣ψ(2)
〉

(2.10)

(E − H0 − V
(l)
1 − V2 − V3)

∣∣∣ψ(2)
〉

= V
(s)
2

∣∣∣ψ(1)
〉

|Ψ〉 =
∣∣∣ψ(1)

〉
+

∣∣∣ψ(2)
〉

Parameters set of x0 = 2; y0 = 2
√

mx, where mx represent the mass of projectile particle,

and µ = 2.3 were found to be a suitable choice for splitting function χatt(x, y) in two attractive

Faddeev-Merkuriev components. Convergence curve in Fig. 2.4 was plotted by choosing equal

number of partial waves to approximate these two components.

It can be seen that the exact results for Merkuriev equations are obtained by using rather small

partial wave basis. This indicates that by using decomposition of eq. (2.4-2.9), one constrains

the components to be the smooth functions, which is not the case when using standard Faddeev

equations.

2.2 Bound state calculations

2.2.1 Numerical tests

To test the validity of the numerical code, as well as the efficiency of numerical methods in use, one

can consider the well known e+e−e− bound state problem. Very precise results for this system were

obtained by variational method [67], as well later reobtained by Faddeev calculations [68], agreeing

on binding energy of E = −0.26200507 (a.u.). The complexity of this system is due to the very

weak binding of the electron to positronium atom (Ps), for which EPs = −0.25 (a.u.). Therefore

the wave function decreases very slowly as one of the electrons is separated causing a rather slow

convergence with a number of channels, as should be expected for identical mass system.

One of possible improvements relies on factorizing out the positronium’s wave function. Faddeev

components are searched in form:

ψ(~x, ~y) = e−q
2b
·x ∑

α

Fα(x, y)

xy
Yα(x̂, ŷ), (2.11)

where q
2b

=
√

−me

~2 EPs. This way, one is left with eigenvalue problem for the quantity E − EPs,

and therefore is more sensible to the weak binding of the third particle. On the other hand, such

factorization numerically gives exact wave function of Positronium atom thus imposing correct 3-

Body wave function dependence on variable x, when one of the electrons is far away. To facilitate

spline interpolation on variable y one can further factorize

ψ(~x, ~y) = e−q
2b
·x−qy ·y

∑

α

Fα(x, y)

xy
Yα(x̂, ŷ) (2.12)
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Cubic splines Quintic spl.

max(lx, ly) BNo fact (a.u.) BFact (a.u.) BNo fact (a.u.)

1 0.2618468 0.2618462 0.2618454

3 0.2621025 0.2621020 0.2621013

5 0.2620195 0.2620190 0.2620182

7 0.2620080 0.2620075 0.2620067

9 0.26200715 0.26200663 0.26200584

11 0.26200717 0.26200664 0.26200586

Table 2.1: Comparison of convergence in ground state calculations of e+e−e+ system. In the first
two columns results obtained using Cubic spline interpolation of wave function are presented. In
the second column, wave function was additionally factorized as in eq. (2.11). Third column
presents results obtained using Quintic spline interpolation without additionally factorizing wave
function.

with qy =
√
−me

~2 (E − EPs), which describes the tail of the wave function in differential equations

sensible region, where x is relatively small, while y → ∞. The precedent eq. (2.12) factorization

enables one to impose grid cutoff on variable y at sensibly smaller values. Results obtained for

the (e+e−e−) system are collected in Table 2.1. In this study I haven’t tried to fight for numerical

accuracy and have used rather small and not optimized grids. Density of grid points in calculations

using quintic spline interpolants were chosen in proportion of 2/3 to cubic ones to result into the

same size linear algebra problem. One can see that the quintic spline interpolation provides slightly

more accurate results.

2.2.2 Results for X
+-H system

Merkuriev equations were employed to calculate a few lowest bound state energies of µ+-H, π+-

H and p+-H systems. These systems are difficult to treat using Faddeev-Merkuriev formalism,

since they consist of very asymmetric 2-body fragments with very different reduced masses and

consequently with different dynamics. It results that important regions of different Faddeev com-

ponents are non-intersecting and even appear at the shells of different magnitude, therefore one

has to use rather dense and asymmetric grids in order to properly describe all these components

. Consequently, due to asymmetry, convergence on channels is even slower than in (e+e−e−) case

and needs amplitudes containing (lx, ly) 3 15. Coupling of such high order amplitudes becomes a

lengthy and numerically not very stable task.

The obtained results are summarized in Table 2.2 and plotted in Fig. 2.5. I have tried to repro-

duce the same results by using some effective 2-body potential, satisfying conditions as provided

by eq. (2.1-2.2). Mott-Massey potential VMM [69] was chosen as a driving potential term, used to

simulate positron-Hydrogen scattering.

VMM (r) = −α(r)

2r4
, (2.13)
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Systems B(a.u.)

LΠ v µ+ − H π+ − H p+ − H

0 0.589721 0.591262 0.597144
1 0.569195 0.572812 0.587156

0+ 2 0.551350 0.556491 0.577748
3 0.536042 0.542195 0.568900

0 0.588470 0.590276 0.596879
1− 1 0.568090 0.571928 0.586912

2+ 0 0.585877 0.5788145 0.596352

Table 2.2: Comparison of binding energies for the lowest LΠ = 0+, 1−, 2+ energy states in π+H,
µ+H and p+H systems
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Figure 2.5: Comparison of binding energies obtained using phenomenological 2-body potential
with exact 3-body results. 2-body potential eq. (2.15) was adapted to reproduce 2 lowest H+

2 1sσg

states.

where α(r) is given by

α(r) =
9

2
− 2

3
exp(−2r)(r5 +

9

2
r4 + 9r3 +

27

2
r2 +

27

2
r +

27

4
). (2.14)

Mott-Massey potential behaves as the hydrogen polarization potential, when r → ∞, whereas

falls to zero as r → 0. I have added an additional short range potential having repulsive behavior

at the origin as required by eq. (2.2), whereas falling to zero as distance with projectile particle

increases. This additional potential term read as:

VADD(r) = −4

r
exp(− r

R1
) +

5

r
exp(− r

R2
). (2.15)

Parameters for this additional potential have been adjusted to reproduce ground and first

excited state energies of H+
2 molecular ion as obtained by exact 3-body calculations. These param-

eters were found to be: R1 = 2 .3985 (a.u.) and R2 = 1 .6561 (a.u.). Comparison of two-body and

three-body results are presented in Fig. 2.5.
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[e] [f]

[d][c]

[b][a]

Figure 2.6: Electron distribution densities when distance between two positive charges d is fixed.
Figures in the left are plotted for µ+H system, while figures in the right correspond to p+H. Figures
are made for distances d = 0 .2 , 1 and 4 (a.u.) respectively.
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Figure 2.7: Heavy particle distribution in X+-H ground state wave functions, when electron and
the third particle are fixed on x axis and separated by 1 (a.u.). Figure [a] presents protons
distribution in µ+H, figure [b] shows proton distribution in H+

2 ground state, whereas in figure [c]
muon distribution in µ+H is plotted.
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Despite the mass variation, from mp to mµ, being almost one order of magnitude, one can see

that effective two body potential rather successfully predicts energies for the lowest bound states.

For the excited states, where wave function becomes more complicated and electrons dynamics

less trivial, the difference in results increases. Furthermore, two-body results for µ+ and π+ are

overestimated. This overestimation is increasing with diminishing projectile mass. It is due to the

fact that these systems are less rigid than H+
2 molecule and furthermore mass asymmetric. Thus

electrons dynamics here is relatively more important than in H+
2 molecule, since electron has small

additional momenta due to asymmetry of the system.

Finally, for a better understanding of the dynamics, it is interesting to compare the wave

functions of the different systems. These wave functions are multidimensional and therefore not

easy to represent. In order to plot them one is obliged to fix some degrees of freedom. In Fig. 2.6

electron distributions for µ+−H and H+
2 ground states are compared. 3-D representations were

made by fixing two positive charges (µ+ and p+, or p+ and p+ respectively) on x axis, consequently

separated by 0.2, 1 and 4 (a.u.), so that their center of the mass is held at the origin (x = 0; y = 0).

All these wave functions resemble each other, indicating the similarity of their origin. Nevertheless,

one can note, that electron distribution has a sharper peak near the proton than near the µ+ in

µ+− H wave function (see figures [a], [c] and [e]). This is related to the fact that µ+ is lighter than

the p+ and therefore is easier misbalanced by the quick electron. Furthermore electron distributions

are sharper in H+
2 ground state than in µ+−H (compare figures in the left with their right hand

counterparts), simply reflecting the fact that the first system is stronger bound.

Alternatively, in Fig. 2.7 one of positive particles distributions is presented, when the distance

between the electron and the other positive particle is fixed to 1 (a.u.). Two fixed charges, as in

previous case, are situated on the x axis, whereas their center of the mass is situated at the origin.

One can see that a free positive particle rotates around the fixed pair, by having higher density

distribution when being screened by the electron. All three plots resembles each other, however

one can remark that the muon exhibit stronger oscillations (has wider spread distribution) than

the proton.

2.3 Scattering problem

2.3.1 Modified boundary conditions

As stated in section 2.1, in order to solve scattering problem in configuration space, one has to

implement equations (2.1) with appropriate boundary conditions. For elastic scattering, when all

rearrangement and breakup channels are closed, one supposes that the asymptotic state is due

to the free propagation of the projectile particle relatively to the cluster of other two particles,

forming a bound pair. Therefore, the asymptotic state can be written as a tensor product of the

bound pairs wave function ϕ(x), describing the bound pair, and the scattering wave fl (y), which

on its side is a superposition of incoming and outgoing waves:

fl(y) =
[
ĥ−

l (ky) − sl(k)ĥ+
l (ky)

]
(2.16)
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However, when one deals with long range interactions, projectile particle is never free and

these boundary conditions, if can be satisfied then only in very far asymptotes, which are hardly

attainable numerically. Here, one can distinguish two effects: on one hand the bound pair still feels

the presence of retreating projectile and adapts to its created field by ’polarizing’, on the other

hand retreating particle feels effective interaction of the ’polarized’ bound pair. It will be shown

that both of these effects can be accounted properly by modifying boundary conditions.

Let us consider three-charge system, in particular scattering of heavy positive charge particle

X+ on Hydrogen atom. If scattered particle is far away, at the distances by a few orders of

magnitude larger than electrons orbit in H atom, it will describe the long outer orbit (see Fig.

2.8) with the relatively long period. For the hydrogen atom, having much more compact size, it

would look like a static charge. Electrons orbit is much smaller, thus permitting quick electron to

adapt to outer particles created field and to follow its slow development. This field is nothing more

than static electric field4 ~Eel(~y) = ŷ/y2, whereas so perturbed hydrogen atom can be described

by the Stark effect. As it is well known, since electric field is vector field, therefore non vanishing

corrections to the hydrogen atom energies are given by second and higher-order perturbations.

Therefore hydrogen atom levels are shifted square proportionally to the strength of the electric

field, if weak field is considered. If hydrogen atom is originally in the ground state, its wave

function modified by the static electric field, is given by including the second order corrections

[70, 71]:

ϕ(x, y) =
2√
4π

(
1

aB

) 3
2
[
1 + cos (x̂ · ŷ) |Eel(~y)| (aBx +

1

2
x2)

]
e
− x

aB , (2.17)

while the ground state energy is corrected by:

δEH = −9

4
a3

BE2
el + o(E2

el). (2.18)

If one imposes Eel(~y) = ŷ/y2, the expression of hydrogen polarization potential will be recovered

eq. (2.1), with αH = 9
2a3

B = 9
2 (a.u.) .

In terms of the Hamiltonian, these ideas can be translated as follows. We uncouple Hamiltonian,

for quick motion of the electron inside Hydrogen atom, dependent on variable ~x for some fixed ~y,

where residual motion of scattered particle is described by slow variable ~y. The total state is

written as a product of perturbed hydrogens atom state ϕ(x, y) and some function χ(y), describing

recoil propagation:

ψ(ep)X+(x, y) = ϕ(x, y)χ(y) (2.19)

Hamiltonian part of Hydrogen atom cluster absorbs all the potential energy terms, where Hy-

drogen atoms interaction with a scattered particle (X+), namely V = VpX+ + VeX+ , when y ≫ x

can be replaced by ~Eel(~y) · ~x.
(

H
(pe)
0 + H

(X+H)
0 + VpX+ + Veh+ + Vpe − E

)
ψ(pe)X+(x, y) = 0(2.20)

([
H

(pe)
0 + ~Eel(~y) · ~x + Vpe − EH − δEH

]
+ H

(X+H)
0 + δEH − (E − EH)

)
ψ(pe)X+(x, y) = 0.(2.21)

4In this section i express x and y in standard length units, not modified by Jacobi factor.
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The approximate solution of the Hamiltonian part contained in parentheses, which becomes

very close to exact one for the large values of y, is given by the function eq. (2.17). The rest of

Hamiltonian depends only on variable ~y and should be satisfied by function χ(y), therefore:

[
H

(pe)
0 + ~Eel(~y) · ~x + Vpe − EH − δEH(y)

]
ϕ(x, y) = 0 (2.22)

(
H

(X+H)
0 + δEH(y) − (E − EH)

)
χ(y) = 0 (2.23)

The term (E − EH) is nothing else as kinetic energy of the projectile relatively to the Hydrogen

atom in the C.M. frame. The term δEH(y) reflects the origin of the polarization potential. Thus, as

was discussed in previous section, scattered particle feels only effective field of hydrogen polarization

δEH(y) by not seeing details of the hydrogen atom itself. Propagation of this scattered particle is

described by the function χ(y).

The form eq. (2.17-2.19) can serve as boundary conditions for three-body Faddeev-Merkuriev

equations. Implementation of these boundary conditions is done after projecting it into partial

wave basis. One can remark that first term in eq. (2.17), not containing cos (x̂ · ŷ) , is projected to

Faddeev amplitudes of elastic channel with ℓx = 0 and ℓy = L. Whereas term containing cos (x̂ · ŷ)

is distributed between the elastic channel amplitudes with ℓx = 1 and ℓy = L ± 1.

R

r

Figure 2.8: Asymptote configuration of hydrogen atom interacting with a positive particle. If
distance to this particle is rather large - quick electron moving in small inner orbit is able to adapt
to the projectile created field.

Practical implementation

The scattered particle propagation function is the solution of the two-body Scrödinger equation,

from eq. (2.23) one has:

[
∂2

∂y2
− ℓ(ℓ + 1)

y2
+ k2 − 2µ

~2
V (y)

]
χ(y) = 0 (2.24)
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with V (y) = δEH(y) being hydrogen polarization potential see eq. (2.1). For zero energy scattering

(k = 0) this equation has an analytical solution

χ(y) = C1y exp

(
−i

√
β

y

)
+ C2y exp

(
i

√
β

y

)
, with β =

µαH

~2
. (2.25)

Scattering lengths can be calculated by matching these boundary conditions at some big but

finite distance ymax . Whereas, scattering amplitude is found by using its standard definition eq.

(1.57):

A0 =
yχ′(y) − χ(y)

χ′(y)

∣∣∣∣
y→∞

= i
C1 − C2

C1 + C2

√
β

On the contrary, for non zero energy scattering analytical solution of eq. (2.24) doesn’t exist.

However, if for some ymax 3-Body wave function satisfies modified boundary conditions of eq. (2.19),

scattering wave function in the outer region [ymax .,∞) can be reproduced by just propagating

internal wave functions part by means of differential equation (2.24). Practically it signifies, that

three body equations should be solved only in the restrained region y ∈ [0, ymax]; afterwards, once

logarithmic derivative of the wave function is found at some finite ymax, external part of wave

function is obtained after continuing it by integrating two-body equation (2.24) in the outer region

[ymax .,∞) and inserting obtained solution into eq. (2.19).

To test these ideas, we have repeatedly solved the zero energy scattering equations for π+-H

system by constantly increasing the grid in y direction. Computed π+ scattering length values were

plotted as a function of cut-off in y direction Fig. 2.9. Then by varying values of αH and A0 in

eq. (2.25) we have fitted calculated A(ymax) points (see red curve in Fig. 2.9). This extrapolation

provided a hydrogen polarizability value of αH = 4.501 ± 0.017, which within numerical precision

coincides with the theoretical hydrogen atoms polarizability 9
2 , given by the 2-nd order perturbation

calculations. Thus, validity of 2-body interaction model of eq. (2.24) for large projectile-Hydrogen

atom distances is confirmed. Of course, before introducing cut-off in projectile recoil direction

(ymax) one should always make sure that it is sufficiently large to fall in 2-body region, and then

that three-body wave function has the corresponding asymptote behavior.

2.3.2 Synthesis of results

Using the ideas developed in the previous section, studies of positive particle scattering on Hydrogen

atom have been extended for projectiles with masses mX+ ∈ (me, 140) MeV. Zero energy scattering

cross sections (see Fig. 2.11 [a]) as well as scattering lengths in the region of physical interest, mX+

∈ (90, 140) MeV, containing µ+ and π+, (see Fig. 2.11 [b]) are presented. Some interesting features

of the 3-body Coulomb system can be learned by studying these dependencies.

One should recall remarks pointed out in introduction section of this chapter, that X+−H

system becomes more static when mass of particle X + is increased and therefore number of 3-

body bound states should grow. If mass of projectile is such, that it has some L = 0 bound

state ’rather near’ threshold its wave function will have a node and therefore will result in positive

scattering lengths olive curve in Fig. 2.10. Alternatively, wave function of the system without
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Figure 2.9: Scattering lengths as obtained after solving Faddeev-Merkuriev equations for π+-H
system and by varying cut-off radius of the grid in y direction. By fitting these results using eq.
(2.25) we extrapolated value of hydrogens atom polarizability αH = 4.501±0.017. Please note, that
these calculations were done with slightly smaller PWB, therefore extrapolated scattering length
is not very precise.

bound state formed yet cannot have any node and provide negative scattering lengths (blue curve).

Conversely if L = 0 bound state is just formed at Eb = 0, asymptote of its wave function will be

flat (corresponding to exponential decay e−ky, with k ∼
√
−Eb = 0), therefore resulting infinite

scattering length, which furthermore has discontinuity passing from -∞ to +∞. Zero energy cross

section, being proportional to square of scattering length, therefore tends to infinity for critically

bound systems.

v mc(MeV ) v mc(MeV ) v mc(MeV ) v mc(MeV )

0 1.115 3 21 6 61.5 9 128

1 5.26 4 32 7 81
2 11.8 5 45.5 8 101

Table 2.3: Critical masses of positive charge particle X+ at which X+-H states occur.

Thus, each peak (singularity) in Fig. 2.11 indicates the formation of a new S-wave bound

state. The critical mass values mi at which they occur, would enable to generalize the ground state

stability triangle [72] to higher excitations.
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Figure 2.10: Scattering lengths for a L = 0 critically bound projectile-target system.
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Figure 2.11: Dependence of zero energy X+−H scattering cross sections (Figure [a]) on the particles
X+ mass. In Figure [b] similar dependence of scattering lengths is presented in the region of the
physical interest mX+ ∈ (90, 140) MeV, containing µ+ and π+.
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Figure 2.12: Critical mass values of positive charge particle X+ for which in X+−H system L = 0
states appear.

Surprisingly, with rather good precision, number of bound states grows as
√

µ with the reduced

mass of the system µ (see Fig. 2.12). By prolonging this phenomenological dependency, one can

evaluate 21 bound state for H+
2 molecular ion5, which agrees with precise 3-body calculations

[46, 50, 51]6. Such dependence is very close to well known WKB approximation:

∫ b

a

√
2µ |E − V (x)|

~
dx = (N +

1

2
)π,

only additional coefficient with N should be moreover 1 than 1
2 . Success of WKB approximation sug-

gests that such a system retains 2-body systems properties and therefore can be rather successfully

modelled by effective two body potential.

The critical mass at which X+−H system gains the first bound state agrees with the evaluation

of [73, 74] 1.1me ≤ m1 ≤ 2.2me, being however closer to the upper bound and furthermore providing

with the exact value m1 = 2.182 · me = 1.115 MeV.

Furthermore, we have calculated the scattering lengths for the real physical systems µ+ − H

and π+ − H. They are respectively aµ+H = 69 .1 (a.u.) and aπ+H = 24 .4 (a.u.). One can point

5Actually, since H+
2 system consist two identical particles, its wave function should satisfy symmetry relations for

the exchange of two protons. In this sense it differs from general three different particle system and therefore it is
not fully rigorous to compare.

6However we will show later that H+
2 molecular ion contains one more very loosely bound L = 0 state.
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out that these scattering lengths are comparably large, being more than by one order of magnitude

larger than Hydrogen atom itself, thus reflecting long range behavior of polarization potential.

By counting number of peaks in the left of scattering cross section curve, one can conclude that

µ+ − H has 9 L = 0 states below the H atoms ground state, whereas π+ − H has by one bound

state more. The information about the total number of those states can be recovered by examining

the form of Faddeev components. If one looks at Fig. 2.13, where open elastic channels Faddeev

component for µ+ scattering on H atom at E = 0 is presented , one can see that all its nodal

structure is situated along the y axis, or in µ+ separation from H direction. This fact indicates

strong vibrational origin of these states. Consequently, the number of bound states is simply equal

to the number of nodes along the y axis (in this case n = 9). The last node is very broad and only

its first half is present in the figure, however it can be seen that asymptote of the wave function

will create one more node by diverging linearly with y to +∞.

One should note that the correspondance of number of nodes in Faddeev-Merkuriev components

(FMC) to number of systems bound states is by no means a strong proof. Rigorously, only the

number of nodes in the systems total wave function can be associated with a number of bound

states, whereas the structure of the FMC depends on the parameter choice in potential splitting

function (eq.2.9). In general, for a bad parameter set, FMC can have a complicated structure

with many parasite bumps, which compensate each other once added to construct systems total

wave function. However, we have optimized this parameter set to improve partial wave convergence,

therefore making FMC as smooth and regular as possible and, at the same time, minimizing number

of nodes in it (note the minimal number should be equal to the number of nodes in systems wave

function). On the other hand, since these bound states have a pronounced vibrational structure it

is reflected in single FMC as well.

0 100 200 300 400

0.0

0.000 5.187 10.373 15.560 20.747

y
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Y
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)
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Figure 2.13: Faddeev-Merkuriev component is represented for the zero-energy µ+-H scattering. In
the second picture a cut along y axis is made. One can count wave function exhibiting up to 9
nods along this axis, therefore indicating presence of 9 vibrational L = 0 bound states.
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π+ − H and µ+ − H elastic scattering calculations in L = 0 state were extended for non-zero

projectile energies up to 2-nd minima. Analogous calculations were also performed for L = 1 states

and corresponding results are presented in figures 2.14 [a] and [b].
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Figure 2.14: Elastic phase shifts in π+-H and µ+-H scattering. Figure [a] represents total angular
momentum L = 0 results, whereas in figure [b] L = 1 phase shifts are plotted.

2.3.3 p+-H elastic scattering

The case of proton scattering on atomic Hydrogen is of special interest. Since Hydrogen atom itself

contains one proton, the Pauli principle implies that the total wave function of the p+-(p+e−)

system must be antisymmetric in the two proton exchange. This can be realized in two different

ways following the proton-proton spin coupling. In case when the two proton spins are antiparallel

(spin singlet state, noted σg by atomic physicist), the spatial part of the wave function is symmetric

in proton exchange, whereas in the case when the two proton spins are parallel (spin triplet state,

noted σu ) it is antisymmetric.

Considering a 2-body approach, in which one of the protons interacts with the Hydrogen atom

via an effective potential, these two states give rise to two completely different p+-H potentials.

The singlet case (σg ) has a broad attractive well, that supports a great number of bound states

(see Fig. 2.15). These states have been calculated since the first days of Quantum Mechanics and

are presently known with a very high precision (see e.g. [50, 51] and reference therein). Our 3-

body bound state calculations, which have already been presented in Table 2.2, cannot reach such

accuracy but are in good agreement for the lower excitations (at the level of 5-6 significant digits).

Our calculations provide however the first result for p+H singlet scattering length as = −29 .3

a.u.. The convergence test for these calculations is presented in Fig. 2.16. We notice that the

zero energy Faddeev components have 20 nodes in p+-H direction, thus indicating the existence of

20 L = 0 σg symmetry energy levels for H+
2 ion in agreement with the predictions of variational
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Figure 2.15: Qualitative 2-body H+

2 effective potentials as a function of internuclear distances for
σu and σg proton exchange symmetries. Effective σu potential is basically repulsive due to Pauli
principle interdicting protons to approach each other, whereas overbalanced at r ∼ 12 (a.u.) by
attractive polarization potential.

calculations. These states are noted 1sσg in atomic physics.

The necessity to describe wave functions having 20 nodes demands very dense grid in the p+-H

interdistance. Furthermore, the partial wave convergence is very slow, as it can be seen in Fig.2.16.

On one hand, this is due to the complicated structure of the wave function. On the other hand it

is caused by the big proton-electron mass difference. One should take into account partial waves

with (ℓx, ℓy) < 17 to obtain satisfactory results, what constitutes a numerically very expensive and

challenging task.

2pσu symmetry states of H+
2 molecular ion

A completely different situation to σg states discussed just above, arises when one considers σu

symmetry states. These configurations are dominated by the strong Pauli repulsion between two

protons, since they should be described by space antisymmetric wave functions. The effective 2-

body interaction was successfully modelled by Landau [75] (in the exercise of page 361-362!). This

potential has a very simple form
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Figure 2.16: Convergence on the number of partial waves in p+-H scattering length calculations
for proton singlet configurations (1sσg state). Convergence is very fluctuating, when one has small
number of partial waves.

Vg(r) = 2r · e−(r+1) − 9

4r4
, (2.26)

with r representing the distance between two protons. The first term in this potential accounts

for Pauli repulsion between the protons, while the second one represents a long-range attraction

due to Hydrogen polarizability. Some regularization should be made at short-distance to avoid

polarization term becoming infinitely attractive (this regularization does not affect noticeably the

results).

Surprisingly, it turns out that the strong Pauli repulsion is still overbalanced at ∼ 10 (a.u.)

by the attractive polarization forces and therefore the potential has a very weak attractive well

of ∼ 10−5 (a.u.) (see Fig. 2.15). Nevertheless, this shallow potential is able to support a few σu

symmetry H+
2 molecular ion bound states, precisely calculated in [46, 47].

One can see in Table 2.4 that Landau potential predicts rather well the binding energies of

these states, however slightly underestimating them. This underestimation is caused by the Pauli

repulsion term, which in Landau potential is found too strong. This can be shown by constructing

Born-Opernhaimer potential [78]. An even better agreement can be obtained by modifying the

short range part of Landau potential to give the exact binding of 2pσu (L = 0, v = 0) state,
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v,L 3-Body Landau Modif. Landau

0,0 1.56625 · 10−5 1.45350 · 10−5 1.56625 · 10−5

0,1 1.14283 · 10−5 1.04144 · 10−5 1.13850 · 10−5

0,2 0.36829 · 10−5 0.29362 · 10−5 0.35789 · 10−5

1,0 - 3.7126 · 10−11 1.2381 · 10−9

Table 2.4: Comparison of exact 3-body H+
2 σu bound state calculations, values borrowed from [46],

with results obtained by simple 2-body Landau potential model.

Landau Modif. Landau 3-body

Bdirect 3.7126 · 10−11 1.2381 · 10−9 -

BScatt 3.7152 · 10−11 1.2419 · 10−9 1.125 · 10−9

A0 3892.3 715.84 750

α 2.5691 · 10−4 1.3970 · 10−3 1.330 · 10−3

β 63.089 49.687 51.82

Table 2.5: Extrapolation of the H+
2 2pσu symmetry (ν = 1, L = 0) state binding energy from low

energy elastic phase shifts. In case of 2-body Landau potential we were able to perform direct
bound state calculations as well.

provided by direct 3-Body calculations7, see Table. 2.4. On the other hand, Landau potential

suggests the existence of a first excited L = 0 state with extremely small binding energy. One

should notice that R.E. Moss [46], in the most complete study of H+
2 molecular ion spectra, was

not able to conclude about the existence of a second 2pσu bound state (v=1, L = 0).

The accuracy of our direct 3-body bound state calculations is much smaller than the one

obtained by Coulomb problem adapted variational methods [45, 50] and is only sufficient to obtain

the 2pσu ground state. Nevertheless, our zero-energy scattering calculations give a large positive

value of the triplet scattering length at = 750 (a.u.). The positive sign of the scattering length

and the nodal structure of the Faddeev amplitudes indicate that such a big value is due to the

existence of a first excited L = 0 state with extremely small binding energy. In a certain way this

confirms the indications of simple 2-body Landau potential model.

One should now wonder whether it is possible to extract the corresponding nearthreshold bound

state energy from scattering calculations. In this purpose we will use the ideas of the effective range

theory. For potentials having 1/r4 asymptotic behavior, it was shown in [20] by L. Rosenberg, T.

F. O’Mally and L. Spruch that the effective range expansion has the form

k cot δ = −1

a
+ c1k + c2k

2 log k + c3k
2 + o

(
k2

)
(2.27)

However, this formulae is confusing when one considers nearthreshold bound state. Bound

state energy E = ~
2k2

2µ and k = ik0, should appear as a negative energy pole in this expansion.

However the presence of linear, as well as logarithmic terms in k, suggests complex values for this

73-body results were taken from the [46], our 3-body direct calculations are less accurate, giving value E=1.569 ·
10−5 (a.u.) for (v = 0,L = 0) state.
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energy. The later fact was well observed and discussed by the same authors [20]. Usually, when a

nearthreshold bound state exist, it is more convenient to make expansion about its energy rather

than about E = 0. Such procedure will finally lead to the standard effective range expansion

k cot δ = α + βk2 + o
(
k2

)
(2.28)

with α = −k0 + βk2
0. Note that the parameter β can not be anymore straightforwardly related to

the effective range of the potential.

One could question the equivalency of these two expansions. The point is that, if a nearthreshold

bound state exist, coefficients c1 and c2 of eq. (2.27), making the difference between these two

expansions, vanishes. Actually, when one makes expansion about E = 0, no assumption are

made about the magnitude of the scattering length a. On the contrary, in the expansion about

nearthreshold bound state a value k0 is introduced, which scales with the scattering length k0 ∼ 1
a .

It can also be shown that coefficients c1 and c2 scale with scattering lengths as well: c1 ∼ 1
a2 and

c2 ∼ 1
a . Therefore, these parasite terms in formulae (2.27) are as small as 1

a3 and represent higher

order corrections in the expansion (2.28), which are here neglected.

The 3-body energy extrapolation procedure from the low energy scattering phase shifts is

presented in Fig. 2.18 and the corresponding result is given in Table 2.5. We predict a bound state

at B=(1 .125 ± 0 .03 ) × 10−9 (a.u.) below the first dissociation limit (H(n = 1) + p+). To our

knowledge, this is the weakest bond ever predicted, three times smaller than the 4He atomic dimer

[76].

Finally, to erase the last doubts, I have tested this extrapolation procedure by predicting bound

state energies of 2-body Landau potential from the scattering observables. In this case direct bound

state calculations can be made and therefore two approaches can be compared. In Figs. 2.17 two

phase shift calculations with 2-body potentials having 1/r4 long range behavior are presented.

In the upper plot, results of standard Landau potential are given. Results of bottom plot were

obtained by modifying the short range part of Landau potential in order to give the correct 3-body

binding energy of the L = 0 ground state, as given in Table 2.4. Both curves in Fig. 2.17 display

a linear dependency of k · ctgδ as a function of k2, therefore confirming the validity of expansion

(2.28). The binding energies extrapolated from the scattering results are in good agreement with

direct calculations, even though we have tested two states with rather different binding energies

and scattering length values. Evidently, a better agreement is found for the state which lies closer

to the threshold and for which the scattering amplitude is stronger influenced by the nearthreshold

bound state.

One can ask an evident question: how can we rely on the the scattering results, while our direct

bound state calculations are far below the necessary accuracy. The point is that in scattering

calculations the energy is fixed, as well as the asymptotic behavior of the p-H wave function. Thus,

the nontrivial part of the 3-Body wave function is restricted. On the contrary, in direct bound state

calculations the asymptotic behavior is determined by the separation energy, which is the principal

unknown. Since even a magnitude of this value is a priory unknown, one is forced to cover very

large regions by the trial functions in order to be able to correctly describe the asymptotic behavior
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Figure 2.17: Extrapolation of the nearthreshold bound state energy from low energy scattering
calculations. In the above figure standard Landau potential was applied, in the bottom figure
Landau potential was modified as explained in the body text. In both cases, one has a good
agreement between the scattering results and direct bound state energy calculations.

of a bound state. This becomes a cumbersome numerical task. Other difficulty when using direct

bound state methods is that they deal with the total 3-body binding energy. Therefore, when

looking for states with small separation energies one has to ensure very high numerical accuracy.

In scattering calculations the 2-body cluster energy is effectively factorized.

To ensure that obtained results are not due to the numerical deficiency of our methods, we have

asked theoreticians of Laboratoire Kastler Brossel to search for this H+
2 state using a completely

different approach. The high accuracy variational method they use [50] is specially adapted to treat

the 3-body Coulomb problem. It is able to provide H+
2 molecular ion L = 0 spectrum with the

currently best known precision (15 significant digits). They have recently confirmed our results,

providing much more accurate values (see Table 2.6), as well as bound state wave function. In Fig.

2.19 we display the 2pσu ground and first excited state wave functions and compare them with the

zero energy p-H scattering wave function. These are full three-body wavefunctions and thus are

not easy to plot. However, they take significant values only for rather large internuclear distances

(at short distance, the molecular energy curve is very repulsive): consequently, the electronic
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Figure 2.18: Extrapolation of the H+
2 2pσu (ν = 1, L = 0) state binding energy from the low energy

3-body scattering calculations of the p+H system.

wavefunction is essentially the ground state of the hydrogen atom attached to one of the protons,

independently of the internuclear distance. Due to the large size of the excited state, we chose to

plot the wavefunction using a logarithmic scale for the internuclear distance r. The ground state

is a nodless wavefunction centered around 15 (a.u.), when the excited state extends much further;

it has a maximum at r ∼ 100 (a.u.) and still significant values in the r ∈ [1000, 2000] (a.u.) range.

There is an inflection point at r ≈ 215 (a.u.). As expected, it is located at the outer turning point

of the Born-Oppenheimer (or Landau) potential, where the polarization potential is equal to the

binding energy. This gives another indication that calculations are well converged. By comparing

zero-energy scattering wave function, one can notice that for small r it is remarkably similar to the

wavefunction of the excited state, which is principally due to the small energy difference between

the two wavefunctions. At large distances, the zero-energy wave function diverges linearly with

r, as is given by eq. (1.56). This linear behavior is already reached before the second node is

completed and therefore a wavefunction has a zero at about the scattering length value 750 (a.u.).

Finally, in view of the extremely small binding energy of the predicted state, one should quantify

the neglected physical effects that could destroy this state. One should stretch out the fact that we

have worked in a non-relativistic frame and that only pure Coulomb interactions were considered.

Three following effects can be found:
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BH (a.u.) BpH (a.u.) BpH − BH (a.u.)

0.499727839716466 0.499727840801511 1.085045 · 10−9

0.499722416519476 0.499722417601384 1.081908 · 10−9

Table 2.6: Values obtained by [77][78] in direct H+
2 σu symmetry (ν = 1, L = 0) state calculations

(second line). In the last line values including relativistic and radiative corrections are given.
Radiative corrections, being very small for the separation energy BpH − BH , are applied only to
BH .

1. Effects due to relativistic treatment of the electron. Relativistic corrections due to motion of

protons will be negligible in comparison. Furthermore, the effects of the nuclear motion on

the electron wave function (non-adiabatic effects) are small [79]. Therefore in determining

relativistic corrections it is appropriate to treat them as being fixed, point-like charges. One

should start by considering Dirac Hamiltonian for the electron in the Coulomb field of two

fixed nuclei with an elementary charge +1:

HD(R) = mc2

[
β + αα · p − α2

(
1

r1
+

1

r2

)]
, (2.29)

where α is a fine-structure constant, α and β are Dirac matrices. The solution of this

Hamiltonian gives relativistic energy of H+
2 as a function of internuclear separation R. When

relativistic effects are completely neglected, the Scrödinger equation for an electron in the

Coulomb field of two fixed nuclei is recovered. Since relativistic effects are small it is at-

tractive to treat them as a perturbation to the solved fixed-nuclei Scrödinger problem. This

was achieved in a work of M.H. Howells and A. Kennedy [79]. They have tabulated the

corrections for the 2pσu state of H+
2 as a function of R, up to Rmax=500 (a.u.). The exten-

sion of this tabulation to Rmax=∞ presents no difficulty, since at large distances relativistic

corrections VRel(R) vanishes as 1/R4. Using bound state wave functions calculated by the-

oreticians of Laboratoire Kastler Brossel [78] Ψ(R, ~r), the evaluation of these corrections is

straightforward:

∆ERel =
〈Ψ(R, ~r)|VRel(R) |Ψ(R, ~r)〉

〈Ψ(R, ~r)| |Ψ(R, ~r)〉 (2.30)

In this way, we have obtained ∆ERel = 3.137 · 10−12 (a.u.). A very small value unable to

destroy, or even to have observable effects on this bound state. The corrected bound state

energies are summarized in the last row of Table 2.6.

To check the validity of these calculations we have also calculate the relativistic corrections

for the ground 2pσu H+
2 state. A value ∆ERel = 1.528 · 10−9 (a.u.)= 3.354 · 10−4 cm−1 was

obtained, in agreement with ∆ERel = 3 · 10−4 cm−1 obtained by R.E. Moss [46].

Finally, we display in Fig. 2.20 relative corrections to the binding energy (△B/B) for all

the L = 0 1sσg (filled circles, results borrowed from [46]) and L = 0 2pσu (filled squares,

our results) states. In all these states effect of the relativistic corrections is smaller than

0.3% and vary very slowly with the binding energy. Of course at some level, for even much
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Figure 2.19: Wavefunctions (not normalized) of the ground (dashed line) and excited (solid thick
line) of the H+

2 molecular ion 2pσu (L = 0) states. They are compared with the corresponding p+-
H zero energy wavefunction (dot line). The existence of an excited level with very small binding
energy is predicted by our calculations. Its wavefunction extends very far in the internuclear
distance r, with a maximum probability density around 100 (a.u.). It is responsible for a huge
scattering length of 750 (a.u.). Note the use of a logarithmic scale on r.

weaker bound states, these corrections become destructive, however it can only happen for

the binding energies below 10−12 (a.u.).

2. However, Dirac Hamiltonian does not exhaust the complete relativistic treatment of the

problem. It misses the effects due to quantification of the electromagnetic field, which are

responsible, for instance, for the well known Lamb shift effect in Hydrogen atom. These

corrections are known as radiative corrections, being not easy to evaluate. Atomic limit

affected by these corrections is modified by ∆ERad = −0.270661 cm−1 = −1.23322 · 10−6

(a.u.). Radiative corrections relative to the atomic limit were estimated in work of KoÃlos et

al. [226]. It was shown that they are internuclear distance dependent and rapidly vanishes

as the size of the state increases. For the highest 1sσg H+
2 excited states, with dissociation

energies of 10−5 (a.u.), they are already smaller than 10−10 (a.u.) and are by few orders of

magnitude weaker than the relativistic corrections due to the electron motion. Furthermore

for the largely extended states these corrections gives even some additional attraction.
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3. There is one more effect due to field theory treatment of the interaction: it is known as

Casimir-Polder or retardation effect. The classical explanation of this effect relies on the fact

that the interaction is spread not instantaneously but with the finite speed of light. In [227]

H.B.G Casimir and D. Polder pointed out that if retardation effects are properly taken into

account, the long range interaction between two neutral atoms is no longer Van-der Waal’s

1/r6 law, but approaches a 1/r7 law for sufficiently large r [228]. This rather surprising

result might suggest that at sufficiently large r, the 1/r4 polarization potential, due to the

adiabatic approximation, of a proton with a neutral Hydrogen atom could be considerably

modified when retardation effects are taken into account. However, in atom-atom case, there

are two fluctuating dipole moments (classically there are two rotating dipole moments) and

therefore interaction between them strongly depends upon the time it takes to the light to

travel from one atom to another. On the contrary, in the case of proton interacting with

a neutral Hydrogen atom, the dipole moment, induced by the proton, is not fluctuating.

Therefore the retardation effect at extremely small v/c values we are considering, modify the

p−H potential by only adding very weak term with 1/r5 long range behavior. According to

reference [80], the long range polarization potential becomes:

V (r) = − αd

2r4

(
1 − 11~

2πmpcr

)

With r ∼ 100 (a.u.) and the appearance of the proton mass (mp) in the denominator, these

corrections turn to be negligible.

On the other hand, one should be careful with the spin-orbit and spin-spin interactions. We

are indeed interested in triplet states with total two-proton spin Spp = 1, so that the total angular

momentum can be either F = 1/2 or F = 3/2 when the electronic spin is taken into account.

This hyperfine structure should be very close to the F = 0 / F = 1 hyperfine structure of the

hydrogen atom. As the latter is much larger than the binding energy we have calculated for the

non-relativistic problem, it is likely that the v = 1,L = 0, F = 3/2 level lies above the dissociation

limit of the F = 1/2 series. The dissociation rate induced by the hyperfine coupling is however

most probably very low.

Finally, I would like to stretch that this weakly bound H+
2 molecular ion state is of fundamental

importance. Its interest is not limited by the excitement of a numerical exercise. This state

manifests itself in a huge p-H scattering length a = 750 (a.u.), which will dominate the low energy

scattering cross section of proton by atomic hydrogen. The H+
2 formation rate will be substantially

influenced by this resonant p-H cross section. Since positive charge H+
2 system can easily catch an

electron by exhibiting radiative association, the existence of a resonant p-H scattering cross sections

can help to explain the abnormal abundance of H2 molecules present in the interstelar space [81][82].

This problem is of fundamental astrophysical and geophysical importance and represents up to now

an intriguing puzzle.

A direct measurement of the p-H cross section at very low energy seems unlikely. One can

however access the low energy p-H continuum in the final state of the H+
2 photodissociation cross
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Figure 2.20: Relativistic corrections to the binding energies for L = 0 1sσg (filled circles) and L = 0
2pσu (filled squares) states of the H+

2 molecular ion.

section. The excited vibrational 2pσu(v = 1,L = 0) level predicted here is radiatively coupled

to the 1sσg(v = 19,L = 1) level. The electric dipole transition between those two levels should

be observable in the 6 GHz range using an experiment similar to the one used to detect the

(v = 0,L = 0) → (v = 19,L = 1) transition [83, 84]. An experimental confirmation of our results

would be very interesting.

Scattering calculations for σu symmetry continuum states were extended to higher energies.

The obtained results are presented in Fig. 2.21. They are compared with those provided by the

2-body Landau potential. Scattering cross sections were calculated up to the energies of the second

cross sections minima. At even higher energies scattering cross sections continue to oscilate, having

few more minima. It seems confusig, since remembering, the well known theorem of Levinson for

scattering phase shifts:

δ(k = ∞) − δ(k = 0) = πn,

where n-indicates the number of bound states in the system. Thus by translating this theorem

to the scattering cross sections, and expecting the smooth behavior of phase shifts on projectile

energy, one obtains, that the number of nodes (for L=0 states) in the scattering cross section

correspond to the number of existent bound states. However it is not a case here and is due to the

hard repulsive core of the potential. I.e. for strongly repulsive potentials phase shifts continue to

grow up to rather high energies (compatible with a height of repulsive part) and only then start

to decrease. If repulsive part of potential is rather wide phase shifts can become few times larger
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Figure 2.21: p+-H elastic scattering cross sections for proton spin triplet (σu symmetry states)
configurations. 3-body results, obtained by solving Faddeev-Merkuriev equations, are compared
with simple Landau potential model. It is worth noticing that Landau potential predictions are
rather accurate except for very-low energies, dominated by nearthreshold H+

2 bound state.

than π before starting to decrease. Therefore total cross section can exhibit several minima, even

for repulsive systems without any bound state.

Furthermore, one can observe that apart from the low energies (where scattering is dominated

by nearthreshold H+
2 bound state and therefore is very sensitive to the details of the potential),

Landau potential provides very precise results for the elastic cross-sections.

σu symmetry resonant states of H+
2 molecular ion

The pH cross sections were calculated for higher partial waves as well. The principle interest

of studying these waves is that they provide the possibility of observing short living resonances.

Unfortunately, direct calculations of 3-body resonances are complicated. Using complex plane

rotation method [85] one can derive equations similar to the eigenvalue equations of bound state

problem, however being in complex algebra. One is then faced to the problem of finding complex

eigenvalues of the complex Hamiltonian matrix. However, as it was already noted several times,

this matrix is too large to be diagonalized directly. In bound state problem we have avoided direct

diagonalization by either searching the largest eigenvalue (Power method), or by being able to

provide energy guess value sufficiently close to the searched one (inverse iteration method). For

resonant states both these approaches risk to fail: resonances do not correspond to the largest
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eigenvalue and furthermore it is not trivial to cover a 2-dimensional plane when trying to provide

sufficiently good guess value.

L = 3 L = 4

ER (a.u.) ΓR (a.u.) ER (a.u.) ΓR (a.u.)

5.13 × 10−6 1.61 × 10−6 1.56 × 10−5 0.94 × 10−5

Table 2.7: p+H resonance energies and widths obtained by using Landau potential.
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Figure 2.22: Comparison of p+H scattering cross sections in resonant behavior exhibiting σu sym-
metry states (angular momentum L = 3 results are presented in the figure on the left, whereas
figure on the right contains L = 4 results). Points correspond to exact 3-body calculations, whereas
line represents 2-body calculations with Landau potential.

However, we have remarked that for non-zero energy scattering, Landau potential provides very

good evaluates for 3-body scattering observables. Landau potential results for non-zero angular

momentum states should be even more accurate, since these states start contributing in the total

cross sections only at higher energies. It does not bring out any difficulty to apply the complex

plane rotation method for 2-body Landau potential model. Corresponding matrices are rather

small and easy to invert directly.

Two resonances have been found respectively for angular momentum of the system L = 3 and

L = 4. Their positions and the widths are given in the Table 2.7. Furthermore we have analyzed the

predicted resonance region by calculating elastic scattering phase shifts through Faddeev-Merkuriev

equations. Comparison of exact 3-body and Landau potential results is presented in Figure 2.22

[a] and [b]. One can observe an almost perfect agreement. The exact 3-Body resonances still are

slightly sharper than those predicted by the effective interaction model.

Finally I present in Fig.2.23 the total scattering cross section for σu symmetry states, as obtained

with Landau potential. The resonance peaks are clearly visible there. This curve differ from the
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Figure 2.23: Calculated scattering cross sections for the Landau potential. Out of zero-energy
region these cross sections coincide with precise 3-Body σu symmetry p+-H cross sections. Both,
L = 3 and L = 4, resonances are visible in total cross sections.

exact results only for very low energies (E 4 10−6 a.u.), whereas the resonance region is well

reproduced.

One should keep in mind that in experimental setup one usually deals with non-polarized proton

beam and non polarized target. Therefore observed p+- H scattering cross sections represent an

average of two possible proton spin configurations (i.e. one has admixture of σu and σg states).

Nevertheless, the statistical contribution of σu states is 3 times larger than the σg ones and are

therefore dominant. One can thus expect that the above predicted resonant states would be visible

even in the total p+- H cross sections.



Chapter 3

Clusters of neutrons

3.1 Nucleon-nucleon interaction models

An already long time ago, one succeeded to unveil the mystery of the atomic systems construc-

tion. On the contrary, the principal interest in nuclear physics still remains to model the nucleon

interaction inside the nucleus. One is not yet able to work out the strong interaction for nuclei

constituents: neutrons and protons. Despite the QCD being generally accepted as the underlying

theory of the strong interaction, it has not yet been possible to derive the interactions between the

hadrons from this fundamental basis. The complexity is due to quark confinement, which makes

direct experimental investigation of isolated quarks impossible. Furthermore, the simplest strongly

interacting objects which one can investigate experimentally, baryons and mesons, are already

rather complex objects. Being non-able to describe rigorously the internal structure of the nucle-

ons, one is constrained to develop less profound and partially phenomenological models, in order

to describe the interaction between them.

Many experimental data have been collected in the last 50-60 years, which set up strong con-

straints on the np and pp interactions. Already at the very beginning of nuclear physics, just

after the neutron was discovered by Chadwick [86], Heisenberg suggested that the neutron and

the proton can be considered as corresponding states of the same particle [87]: the nucleon. The

observations that the strong interaction is very similar for the neutrons and the protons led to

the introduction of the concept of isotopic spin [88]. In this formalism the two states are dis-

tinguished by their isospin magnetic quantum number. The first modern model of nuclear forces

was proposed by Yukawa [89], who assumed that nucleons interact due to the exchange of massive

scalar particles (mesons). Within the last, 60 years, the meson-exchange theory of nuclear forces

has undergone many developments and improvements. However Yukawa’s fundamental idea about

meson exchange origin of the nuclear forces is still valid and remains the dominant model for the

nuclear interaction.

For further discussion of interaction models one should be familiarized to concepts introduced

by Taketani, Nakamura and Sasaki [90]. They suggested that nucleon-nucleon interaction is divided

into three regions: a long range part (r > 2 fm), an intermediate region (1 fm 6 r 6 2 fm) and

93
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a short range or core part r 6 1 fm. Since the nuclear force of Yukawa type due to exchange of

particles with the mass m is proportional to

V ∼ e−mr

r
, (3.1)

where r denotes the distance between two nucleons, the exchange of the heavier particles are, in

general, of shorter range. Therefore, the long range part of the nuclear force is dominated by the

exchange of one-pion, while two-pion as well as exchange of heavier mesons become important in the

intermediate region. In the core region nucleons are overlapping with each other. So the ”classical”

meson-exchange picture of the nuclear force is not any more adequate. Furthermore, Taketani and

co-workers [91] proposed a phenomenological treatment of the short-range nuclear force, which was

commonly agreed as being repulsive. Since, the long-range part of the nuclear interaction due to

one-pion exchange became well established. More attention is paid to the intermediate region, by

trying to simulate the two-pion and heavier meson exchange contributions. It is not clear whether

one can control all these effects. Nevertheless one-boson exchange (OBE) models of the nuclear

interaction have been widely accepted. In such models it is assumed that the two- and more-pion

exchange can be parameterized in terms of multi-pion resonances.

Relying on the OBE, several ’so-called’ realistic potentials were developed to describe the NN

interaction. They differ by the operator structure and particle-exchange patterns taken into con-

sideration. All of them are sustained by a fit of more than 15 free parameters and keep as the main

purpose, to describe the experimentally available NN scattering data as exactly as possible.

The pioneering model of realistic potentials was constructed by Nijmegen group [92] and is

based on the pure one-boson exchange picture. They have also performed a partial-wave analysis

(PWA) of all pp and np scattering data [93]. The fit of 15 free parameters permitted Nijmegen 93

potential to describe NN data with χ2/Ndata ≈ 2. By introducing some additional free parameters

separately in each partial wave, a perfect data description with χ2/Ndata ≈ 1 was achieved in

the Nijmegen I,II potentials [94]. However, the number of free parameters explodes up to about

40. Nijmegen group provides with equivalent momentum and configuration space versions of the

potentials. Furthermore there are non-local Nijm I and Nijm 93 potentials, whereas the structure

of Nijm-II and Reid-93 potentials is local.

Nijmegen groups work was followed by Paris collaboration [95]. In their potential model, con-

cepts like dispersion relations and field theoretical approaches were introduced to describe the

nucleon-nucleon interaction in addition to OBE. In particular, dispersion theory was applied to

calculate two-pion exchange contributions in the NN amplitude starting from πN and ππ scat-

tering data. They developed equivalent versions of non-local momentum and configurations space

potentials.

One of the most complete works within the meson-exchange models was performed by the Bonn

group [96]. They kept the whole Dirac structure of the OBE kernel. Similarly to Nijmegen group,

they could describe data set quite well using operator structure of the OBE in Bonn B model [97],

whereas a perfect fit has only been reached by treating the partial waves independently (CD-Bonn
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[98]). The last model requires the same amount of about 40 free parameters. Bonn group potentials

are defined in momentum space and are strongly non-local.

Realistic potential models of the Argonne group [99, 101] are the most phenomenological. In

their potential, only one-pion exchange is explicitly considered, whereas all the remaining contribu-

tions were parameterized in a general operator form. Once again, by fitting around 40 adjustable

parameters, a quite accurate description of the two-nucleon scattering data with χ2/Ndata ≈ 1.09

was achieved [100]. Argonne potentials Av.14 and Av.18 are local and developed in configuration

space.

3H 3He 4He

Paris[102] 7.46 24.26

Nijm II 7.659 7.008 24.56

Reid. 93 7.636 7.011

Av.14 7.674 7.053 24.06

Av. 18 7.615 6.917 24.21

CD-Bonn[103][3] 8.013 7.288 26.26

MT I-III 8.535 7.904 29.50

Exp. 8.482 7.718 28.3

Table 3.1: Triton, 3He and α-particle binding energies as predicted by different NN interaction
models, compared with experimental values. Results for CD-Bonn and Paris potentials were
borrowed from above indicated references.

All the realistic potentials, mentioned above, currently represent the most successful models to

describe the two-nucleon scattering data as well as the deuteron properties in a systematic way.

However their success is guaranteed by the large number of fitted parameters, therefore rising doubts

on their ability to represent the underlying physical processes. Furthermore, the failure of these

OBE models becomes evident when one considers three and more nucleon systems. The simplest

three nucleon structure – tritium – is underbound by about 5-10% (see Table 3.1). This seems to

be related to the fact that 2-nucleon data, on which all these potential models rely, represent only

on-energy-shell physics [24, 104]. Off–energy-shell effects, appearing in reactions with more than

two nucleons and in the processes with the external probes, are completely obliterated and seem to

be responsible for the difference in tritium binding energies predicted by 2-body phase-equivalent

realistic potential models.

It is believed that two additional ingredients – relativistic effects [105] and three-nucleon forces

(3NF) – can solve the nucleus underbinding problem. Contribution of 3NF in nuclear Hamiltonians

has been considered already 50 years from now [106]. However one should point out that much less

is known about their nature compared to the two-body interactions.

At the present time, several models for the three body force are available. Some of them like

Fujita-Miyazawa [106] or the Tucson-Melbourne [107] are based on the two-pion exchange with

one intermediate ∆ excitation. This kind of interaction represents the longest range part of the

3NF. The model proposed by Brazil group [109], pursued with the latest Tucson-Melbourne works
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[108], includes in addition π − ρ and ρ− ρ exchanges. The Urbana-Argonne group has worked out

Urbana IX (UIX ) 3NF model, which incorporates two-pion exchange graphs completed by a purely

phenomenological repulsion [110]. These forces are generally adjusted (typically by fitting values

of some required coupling constants and/or cut-off) in conjunction with some two-nucleon force

model in order to reproduce the tritium binding energy. However, some low energy 3N scattering

observables, as the Ay analyzing power, are not improved in this way [111, 112].

Despite the big success and recognition that OBE models benefited, they face an evident con-

ceptual problem [224, 225]: the charge radius of the proton is
√

r2 ≈ 0.6 fm, while the typical size

of light mesons is about 0.5 fm. Then the mesons cannot mediate the nuclear force at distances

bellow 2 · (0.6 fm + 0.5 fm) ≈ 2.2 fm. Even if this picture is much simplified and does not account

for quantum mechanical effects, it is rather clear that the traditional meson-exchange theory is not

adequate to describe the nuclear matter phenomena at distances below 2 fm, when this value is

greater than the average distance between the nucleons in the nuclei.

Even disregarding conceptual problems, there are still some uncertainties when determining NN

force. Up to 1993, all the potential models supposed the isospin invariance of nuclear interaction.

However, two aspects of isospin invariance violation have been noticed:

1. The experimentally well established difference between the np and pp interactions, called

charge independence breaking (CIB)

2. The differences in the strong nn and pp interaction, called charge symmetry breaking (CSB).

These are less known, due to the impossibility of performing neither direct nn, nor Coulomb-

free pp scattering experiments.

The recent indirect measurements of nn [?] scattering lengths provide for 1S0 state: ann =

−18.59 ± 0.40 fm, whereas the corresponding np value is sensibly differentanp = −23.748 ± 0.001

fm. This indicates a sizeable CSB effect. Potential models elaborated after 1993 felt obliged to

introduce an isospin breaking, to mimic these experimental findings. However, due to the lack of

nn data, one could expect considerable uncertainties in nn potentials.

On the other hand, the difference in the 3He and 3H binding energies predictions, once Coulomb

and nucleon mass are corrected, suggests a CSB in the NN force of the order of 2% [117]. Nothing

can be said about a CSB in 3NF.

Recent advances in numerical methods permit to calculate the nuclear binding energies up

to A ≤ 10 [4, 5, 6]. Sizeable underbinding of the neutron rich nuclei, obtained by Av.18 NN

interaction model in conjunction with UIX three-nucleon force, obliged Urbana-Argonne group to

introduce additional isospin dependent terms into their 3NF model. New series of Illinois 3NF were

developed [4]. These modifications considerably improved the agreement with the experimental

results. However, one still confronts increasing difficulty when describing neutron rich nuclei (see

Fig. 3.1). These discrepancies can be a consequence of the uncertainties in the nn force.

One should admit that higher nn and pp partial waves are even less controlled. There are no

direct experiments on nn scattering and the analysis of low energy pp data is made difficult by
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Figure 3.1: Relative discrepancies of binding energy predictions for nuclei of various He isotopes.
Data is taken from variational Monte-Carlo calculations of Argonne group [4] [5][6]. Basing on 2N
interactions (Av.18 model) only: one is not able to describe any nucleus beyond A = 2, whereas
increasing underbinding with growing neutron excess is observed. With aid of Urbana IX 3NF one
is able to adjust 3He and 4He nuclei, however the trend to underbind neutron richer nuclei remains.
Illinois 3NF was fitted to describe nuclei up to A = 8. However the latter model seems to suffer
from the same deficiency in describing A = 9, 10 nuclei.

the Coulomb effects. The treatment of high energy data, as well as phase shift analysis of higher

partial waves, is a piece of art, since in this case the scattering observables result from contribution

of very many partial waves.

The discussion of nuclear potential models would not be complete without mentioning the so

called ’non-realistic’ or ’semi-realistic’ potentials. Contrary to realistic ones, these potentials are

fully phenomenological. In these models, the physical processes underlying NN interaction were

completely ignored. Non-realistic potentials as ATS3 [118], Volkov [119], MT V, MT I-III [120],

were developed to have a simple analytical structure (such as sum of Yukawas or Gaussians).

They are usually restricted to a small number of partial waves, that considerably facilitates the

calculations. Some of these potentials are averaging interaction over the spins, others like MT

I-III explicitly distinguishes spin singlet (s = 0) and spin triplet (s = 1) states. Furthermore,

these potentials lacking spin-orbit and tensor interaction terms conserve separately the total spin
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and orbital angular momentum of the system. Consequently, by definition, they are not able

to reproduce polarization observables. For the same reason these potentials provide spherically

symmetric deuterium wave function, being not able to explain its quadruple momenta. On the

other hand, some semi-realistic potentials are very successful in predicting the so-called integrable

observables of the system (like binding energies and scattering cross sections) [122, 123, 124]. This

is a rather surprising fact, since they contain only a few fitted parameters compared with dozens

in their realistic counterparts.

MT I-III is a potential, which form was inspired by the OBE. It contains long-range attractive

term corresponding to one massive particle exchange, with the mass slightly smaller than that

of the pion. Its short range part is dominated by repulsive term, corresponding to exchange of

phenomenological heavy boson, not-having any physical analogue. This potential acts only in

S-waves and is given as a superposition of two Yukawas, of which coefficients were adjusted in

[121]:

V (r) = Vr ·
exp(−µrr)

r
− Va ·

exp(−µar)

r
(3.2)

for the 1S0 waves Vr = 1438.72 MeV·fm and Va = 513.968 MeV·fm
for the 3S1 waves Vr = 1438.72 MeV·fm and Va = 626.885 MeV·fm

µa = 1.55 fm−1 and µr = 3.11 fm−1

(3.3)

3.2 On the existence of bound neutron clusters

For a long time, the possible existence of pure neutron nuclei fancied the physicist. One seldom

finds a theoretical nuclear physicist who has never considered this question. If confirmed, such

nuclei would challenge our understanding of NN interaction, providing invaluable information of

the isospin dependence in nuclear forces. This would undoubtedly affect other fields of science, such

as astrophysics, by modifying the accepted nucleosynthesis scheme. The possibility of obtaining

long-lived neutron nuclei could also have practical applications, since one might then operate with

so called ”canned neutrons”. However, all experimental attempts trying to confirm the existence

of the simplest multineutron structures, as 3n or 4n, have failed [125, 126].

A recent experiment performed in GANIL [2] renews the interest in pure neutron systems,

claiming their possible existence. GANIL experimentalists mastered the technique of producing

and controlling neutron-rich nuclei beams. They have projected a beam of 14Be nuclei on lead

(Pb) target and have observed neutral recoils in coincidence with Be nuclei (see Fig. 3.2). A few

events have been detected exhibiting the characteristic of a multineutron cluster liberated in the
14Be reaction, the most promising structure being tetraneutron (a bound state of four neutrons).

In this experiment, the detectors were separated from the target by a distance corresponding to

recoil runtime of 100 ns or more. Therefore, the recoils of the same breakup event are claimed

to be already well separated; this prevents them from being observed by the same detector. As
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Figure 3.2: The setup of experiment performed by GANIL group [2]. The beam of 14Be nuclei
traverse the lead target. Four neutron separation energy is very low in 14Be, thus it is expected
that tetraneutron can be formed and released, when 14Be nucleus is scattered by lead (Pb) nuclei
of the target. Coincidence of outgoing 10Be nuclei and neutral recoils are observed and analyzed.

indicated in [11] the breakup reaction

14Be → 10Be +4 n

represents a privileged channel when searching for a tetraneutron. The 10Be nucleus is strongly

bound, whereas the four-neutron separation energy for 14Be is only about 5 MeV. It is known that

in an external potential well, neutrons can form drops [127, 4]. Therefore, it is supposed that there

is a rather high probability to form tetraneutron like structures inside the 14Be nucleus. During

the collision this tetraneutron, being weakly bound to the core nucleus, can be liberated.

In earlier experiments, the tetraneutron was searched by using heavy-ion transfer reactions

such as 7Li(11B,14O)4n [128], 7Li(7Li,10C)4n [129] and double exchange reaction 4He(π−,π+)4n

[130, 131]. However, these reactions should be strongly suppressed by spectroscopic reasons, as

well as due to considerably larger decay energies, which leaves little hope for such a fragile structure

as tetraneutron to survive. Therefore, a negative outcome in the former experiments could be easily

anticipated.

Alternative studies of 3He(π−,π+)3n reaction shows some discrepancies in differential cross

sections from what should be expected by a pure phase space description of the final state. The

ambitious claims of reference [132], trying to explain the result by the existence of a broad E =

(2 + i ∗ 6) MeV three-neutron resonance, were later denied by a more thorough experimental study

[133]. The slim indication of a three-nucleon resonance at even larger energies (E = 20 MeV) still

remains. One can expect that an eventual tetraneutron resonant state would be advantageous due

to neutron pairing effect.
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3.2.1 What do we know?

It is useful to start by presenting the principle facts at our disposal on pure neutron systems.

• First neutrons are fermions, and therefore their wave functions should be antisymmetric with

respect to two neutron exchange. If a two neutron system has relative angular momentum

equal to zero (energetically the most favorable state), neutron spins must be antiparallel,

which is realized in the 1S0 state. The experimentally measured negative nn scattering

length value in this state indicates that dineutron is not bound.

• The fact that 6He and 8He [134]-[137] nuclei are bound, whereas 7He(α+3n) is not, testifies

that trineutron is, most probably, not bound.

• The stability of 8He sets an upper limit to the total binding energy of 4n, because decay
8He→ α +4 n does not occur [138]. The most precisely determined mass excess of 8He [139]

yields B(4n) ≤ 3.1 MeV. Furthermore, if 4n was bound by more than 1 MeV, the α +4 n

would be the first particle threshold in 8He. As the breakup of 8He is dominated by the 6He

channel [140], the tetraneutron, if bound, should be so by less than 1 MeV.

• Thus if bound 4n exists, considering similarity between nn and np interactions, a T = 21

state should be found in 4He at 26 < E < 29 MeV. Also a T = 2 resonance should occur for

n+3H scattering at 6 < Ec.m. < 9 MeV. Resonances have been found in n+3H (see discussion

in the next chapter), but there is not evidence to support a suggestion [141] of T = 2. No

low-lying T = 2 4He states have been found; systematics give E(T = 2) ∼ 34 MeV [142],

> 32 MeV [143].

There are numerous theoretical studies on pure neutron systems. However, ideas are not fully

settled, principally because of uncertainty when describing the neutron-neutron interaction. There

are two principally different ways to tackle the question of bound neutron systems. The first one

is the few-body approach, which starts from nn interaction model and checks out the existence

of bound neutron systems with increasing complexity. The second one is related to many-body

methods: it consists in constructing in-media neutron-neutron potential to conclude about the

eventual existence of bound infinite neutron matter. One should remark that a definite answer on

the non-existence of infinite neutron matter would impose that the finite size neutron clusters does

not exist either. However, the many-body approach suffers from an evident deficiency. It is due

to the fact that the nuclear media potentials are density dependent and are determined relying on

the nuclear data of well neutron-proton balanced nuclei with steady nuclear densities. In addition,

neutron matter, if existent at all, is expected to be unnaturally sparse compared to the stable nuclei.

The most neutron asymmetric heavy nuclei have neutron excess of η = (N − Z) /A ∼ 0.36, whereas

the stability valley is filled with nuclei having neutron excess of η ∼ [0.21 − 0.23]. Therefore, it is

rather clear that the extrapolation of these models to describe neutron matter with η = 1 is not

reliable.
1T is the total isospin quantum number of the system
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Most of theoretical few-body calculations on bound pure neutron systems have given negative

results. The studies were made by employing various realistic and non-realistic potential models.

Varga [144], within the stochastic variational method on a correlated Gaussian basis, has checked

for bound tetraneutron with several simple non-realistic NN potentials: Volkov, MT V, ATS 3

and Minnesota. None of them gave tetraneutron bound. Volkov potential is so strong that it binds

dineutron, however tetraneutron provided by this potential lies above two dineutron threshold. By

using the angular potential functions method with semi-realistic GPT and SSCB NN interactions,

none of 4n, 6n or 8n systems were found to be bound in [145]. However, the same authors suggested

that 0+ states should be the most favorable. It has been shown in [4], that Av.18 realistic NN

interaction in conjunction with the most recent Illinois and UIX 3NF models, cannot bind pure

neutron systems up to A = 8. Furthermore, neutron matter calculations of [127, 146, 147] suggest

that even infinite neutron matter can not be bound by the strong interaction.

There were a few theoretical efforts to find 3n and 4n resonances. By using central potential

models, no resonances were found neither in 3n nor in 4n [148]. No real tetraneutron resonances

was found by Sofianos et al. [149], with MT I-III potential model; only some broad subthreshold

resonances were discovered. However, realistic interaction models can provide different conclu-

sions. These models contain interactions in P- and higher partial waves, due to the necessity of

antisymmetric wave functions: a crucial point in pure fermion systems.

Glöckle and WitaÃla [150], using realistic potentials, searched for tri-neutron resonances. They

claimed that within the current interaction models, trineutron resonances do not exist. However,

resonance calculations with realistic potentials drives to some bad numerical instabilities already

on the trineutron level. The theoretical research of tetraneutron resonances with realistic potential

models is a big challenge and has not been performed yet.

The aim of this study is not to redo or contest the results of mentioned authors, but rather

to try to understand the underlaying reasons which prevent pure neutron systems of being bound.

Furthermore, we will explore what kind of necessary corrections should be made in the NN inter-

action to permit the existence of such systems. We will conclude to what extend such modifications

can be tolerated within our current understanding of the strong interaction. Unfortunately, at the

moment, we are still not able to explore multineutron resonances.

3.3 Borromean effect

The possible existence of bound pure neutron clusters can be formulated in terms of the Boromean2

effect in fermionic systems. One can easily check that neutron-neutron interaction supports Bosonic

borromean effect. Let us consider for instance a charge dependent (CD) version of MT I-III

potential (CD MT I-III ), adjusted to reproduce the experimental value of nn scattering length

in 1S0 state. This is achieved by setting the strength of the attractive term in eq. (3.2) equal to

Va = 509.4 MeV· fm, i.e. only 1% weaker than in the standard version of this potential. If one

2Borromean effect is well known for the bosons. N+1 identical boson system is called borromean when it is bound
by pair interactions, nevertheless analogous system of N bosons (or any smaller system) is not.
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3n 4n

0.9423 9.003

(
3He

)
3

(
3He

)
4

not bound -

Table 3.2: Binding energies for ’fictive trineutron’ and tetraneutron, if one permits multineutron
system to be described by bosonic wave functions. Results were obtained with MT I-III interaction
with slightly reduced attractive part, which permits to reproduce experimental 1S0 nn scattering
length.

nn 3He −3 He

Nijm II Reid 93 Av. 14 Av. 18 MT I-III Aziz

1.0876 1.0872 1.0626 1.0799 1.1011 1.2989

Table 3.3: Enhancement factors needed for nn potentials to bind dineutron in 1S0 state. These
factors are compared to factor needed to bind two He3 atoms.

permits neutrons to be described by bosonic wave functions: the CD MT I-III potential is too

weak to bind dineutron, but binds ’bosonic trineutron’, whereas ’bosonic tetraneutron’ is already

bound by more than 9 MeV (see Table 3.2).

However the situation in fermionic systems is completely different, since here Pauli principle

results into a strongly repulsive effective interaction. Of course, the requirement for systems wave

function to be antisymmetric is important only when particles are close to each other and thus

can be overcome if an attractive long range interaction is present. The only long range interaction

between two neutrons is due to their spin magnetic momentum coupling. This interaction can be

exhibited only when the two neutron spins are parallel and thus the total spin of the system is s = 1.

However, Pauli principle implies that ℓ+s = 2n for two identical fermions, therefore imposing non-

zero relative angular momentum and providing an extra kinetic energy. This centrifugal energy

is by a few orders stronger than the weak attraction that could be gained by the spin magnetic

coupling. Therefore, in order to bind multineutrons, one should completely rely on the strong

interaction trying to compensate the Pauli repulsion at short distance.

It is worth noticing that borromean fermion systems exist, governed by short range interactions.

One knows that 3He atoms can form liquid drops despite being a fermionic system and despite

the striking similarity existent in form of interatomic 3 He-3He and the neutron-neutron potentials

(see Fig. 3.3). Recent calculations using Aziz 3He-3He potential [36], have shown that
(
3He

)
N

are

bound for N > 35 [151]. Furthermore, one can see that two neutrons are much closer to be bound,

than two 3He atoms. Indeed, the 1S0 nn potential should be multiplied by an enhancement factor γ

of only [1.0626−1.1011], depending on interaction model, to bind dineutron. This is to be compared

with the value γ = 1.299 needed in the case of 3He atoms (see Table 3.3). Additionally, as displayed

in Table 3.2, bosonic trineutrons and tetraneutrons exist, whereas analogous calculations with Aziz

potential give 3He trimers and tetramers unbound. These facts are all in favor of multineutron

existence. If these objects turn out to be unbound, one should stretch out the underlaying reasons

making difference between 3He and neutron multimer structures.
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Figure 3.3: Comparison of nn potentials in 1S0 partial wave. These potentials are compared with
Aziz potential between two 3He-3He atoms (black curve). All the potentials were normalized by

multiplying them with a factor ~
2

m .

One should finally remark the close agreement between the realistic potential models, concerning

the nn potential enhancement factor, despite the visible difference in their internal structure (see

Fig. 3.3). The smaller value obtained with the Av.14 potential is due to the fact that this potential

is isospin invariant and was fitted to reproduce np scattering length, which is smaller than the nn

one. The CD MT I-III potential, even adjusted to reproduce nn scattering length, gives slightly

larger enhancement factor value. It is determined by the long range part of this potential, which

does not have one pion exchange tail. Former facts indicate that the nn 1S0 partial waves are well

controlled by only two ingredients: the experimentally measured nn scattering length and the long

range part of the potential, provided by the widely accepted one pion exchange model. Eventual

modifications in this partial wave in favor to bind multineutron can be hardly justified.
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3.4 Some results

In previous section, we have seen that dineutron is very close of being bound. It would be inter-

esting to know how much one should enhance nn potential to bind even larger neutron structures:

trineutron and tetraneutron. In addition, we would like to find out the most favorable quantum

states for these systems. This question is far from being obvious. In the stable, well neutron-proton

balanced, nuclei, protons and neutrons mingle among themselves by mostly profiting the 1S0-wave

interaction. Therefore the most favorable states are those for which the nucleus exhibits the highest

spatial symmetry. Consequently, the positive parity states with small total angular momentum J
are predominant. In pure neutron systems, due to Pauli principle, many particle pairs must be

projected into higher angular momentum states and therefore it is not clear whether or not the

positive parity and low angular momentum states remain the most promising.
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Figure 3.4: Development of relative(compared to dissociation threshold) binding energies of ’fic-
tive trineutron and tetraneutron’ with potential enhancement factor. Dependencies for the most
favorable states are presented: 0+ for 4n and 3

2

−
for 3n.

We have performed calculations using four different realistic nn potential models: Av.14, Av.18,

Nijm II and Reid 93, as well as the phenomenological CD MT I-III. None of these potentials was
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Figure 3.5: Development of relative binding energy of ’fictive tetraneutron’ (energy of tetraneutron
is divided by double binding energy of dineutron) with enhancement factor. In these calculations
restriction was made to interactions in S-waves only. One can see that results of realistic potentials
become much closer to those obtained by MT I-III, as when interaction in all partial waves is
considered (critical enhancement factor grows from ∼ 2.4 to ∼ 3.6).

able to bind trineutron or tetraneutron for enhancement factors smaller than the required critical

values binding dineutron, which are summarized in Table 3.3.

By increasing further the nn enhancement factors we have searched for trineutron states lying

below dineutron breakup threshold. Alternatively, ’fictive tetraneutron’ should have binding energy

twice as large as dineutron one to be ’particle decay stable’. A summary of our results is presented

in Fig. 3.4 and Table 3.4. One should first remark that, independently of the potential model we

used, 4n system appears almost for the same enhancements as 3n. Nevertheless 4n is slightly more

favorable than 3n, although its binding energy stays very close to the two-dineutron threshold.

This indicates the dominance of two-dineutron configurations in it.

The most energetically favorable state in 3n system is 3
2

−
. For CD MT I-III potential, which

conserves separately the orbital angular momentum (L) and the total spin of the system (S), this

state is degenerate with 1
2

−
, both of them being realized with L = 1 and S = 1

2 . The 1
2

+
and

3
2

+
states are much less favorable, since here Pauli principle plays a major role by suppressing
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Reid 93 Nijm II Av.14 Av.18 MT I − III
3n γ 2.49 2.47 2.41 2.44 4.29

ETh (MeV) 21.48 21.59 22.66 23.54 45.45
4n γ 2.44 2.43 2.38 2.38 3.57

ETh (MeV) 40.36 41.04 43.57 43.50 61.34

Table 3.4: Critical values of enhancement factors for different potential models needed to bind
trineutron and tetraneutrons. In addition critical threshold energies are given. Hence, these factors
are extremely large, whereas threshold energies are far from that is ’reasonable’.

configuration with ℓx = ℓy = 0 in the total wave function (the reader is reminded that angular

momenta ℓx, ℓy are associated to 3-body Jacobi variables). Corresponding wave functions are

composed of states with ℓx + ℓy > 2 and possess large kinetic energies. The dominance of the
3
2

−
state compared to 1

2

−
, when realistic interactions intervene, is determined by the presence of

attractive tensor force in 3P2 −3 F2 channel.

1
S0

P,D,F,...

i

j
k

l

m

n

Figure 3.6: The schematic picture of NN interactions in multineutron system. There can exist
only one pair interaction in 1S0 partial wave for a considered neutron (i).

In 4n system, the most favorable state is 0+. nn potential is not sufficiently attractive to

compensate centrifugal energy, therefore trying to have the smallest possible angular momentum.

The major part of potential energy still comes from the nn pairs interacting in 1S0 waves as well as

from dineutron configurations. One should remark that all the realistic models provide very similar

results and that a striking difference exists with CD MT I-III calculations. Realistic potentials

need sensibly smaller enhancement factors to bind 4n or 3n than CD MT I-III. This effect can

be easily explained. CD MT I-III potential acts only in S-waves. When higher partial waves are

switched off for the realistic potentials, one obtains very similar results to those of CD MT I-III

(see Fig. 3.5). Qualitatively, this can be explained in the shell model language. Let us consider
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– see Fig. 3.6 – one particular neutron i. Due to the antisymmetry of the total wave function,

this neutron can have only one partner interacting within 1S0 wave. Other neutrons (relatively

to neutron i) should be projected into higher angular momentum states. Therefore, in case of

S-wave potentials, other neutrons (k, l, m,...) do not contribute in binding neutrons i or j. This

fact makes interactions in higher partial waves very important in pure fermionic systems, contrary

to bosonic systems, which are dominated by interaction in S-waves. Furthermore, each time one

adds a neutron to neutrons i and j, which are originally in 1S0 state, the average kinetic energy

per particle will grow (since one makes system more condense3). If attraction can be gained only

in S-waves, no new potential terms with neutrons i and j will be created, thus giving a negative

balance. Therefore, uniform fermionic system cannot be bound with only S-wave interactions and

with the difermion system being unbound. One can deduct that potential models acting only in

S-waves, such like MT I-III, exclude the very existence of bound multineutrons.

One should finally remark that the enhancement factors needed to bind multineutron are ab-

normally high (see Table 3.4). In order to bind tetraneutron, one has to enhance potential with

factors as large as ∼ 2.4, compared to the decent ∼ 6% enhancement needed in dineutron. The

tetraneutron, forced in such a way, represents rather two weakly bound dineutrons than a qual-

itatively new four particle structure. Since trineutron and tetraneutron need almost the same

enhancement factors to be formed, the same phenomenon should be expected for larger neutron

systems. This excludes the eventual multineutron existence in the framework of NN interactions,

at least in their present form.

In conclusion, we have seen that nn 1S0 waves are very important, that they are almost able to

bind dineutron on them own and are the principal ingredient in binding multineutrons. Nevertheless

multineutron properties are marginally dependent on the particular form this potential can take,

once nn scattering length and potential range are fixed. Therefore one should rely on secondary

effects to make difference of binding multineutron, when dineutron is not bound. Two different

effects can be explored:

• Modified interaction in P and higher partial waves. These nn waves are much less constrained

by the experiment. Their form is determined by analyzing pp scattering data, of which low

energy behavior is hidden by Coulomb effects. Whereas one can expect in addition visible

CSB (Isospin breaking effects).

• One can try to provide some binding through many nucleon force (three nucleon force (3NF),

four nucleon force (4NF),...). These forces are purely phenomenological and cannot be con-

trolled directly by the experiment. Recent many body calculations show that UIX, and even

more recent Illinois, 3NF models rather systematically underbind the rich in neutrons nuclei.
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Figure 3.7: Comparison of P-waves for realistic nn interaction potentials Reid 93 and Av.18.

3.4.1 Importance of P-waves

The systematics of P-waves in nuclear systems is a very fragile task. The description of NN

scattering data requires a very repulsive 3P1 wave, whereas tensor force coupled 3P2−3F2 channel

is very attractive (see Fig. 3.7). 3P0 potential is repulsive at the origin, whereas has some weak

attractive well at long internuclear distances. This well does not coincide neither with the attractive

part of 3P2−3F2 channel nor with 1S0 and it is therefore of minor importance when constructing

nuclear systems. All P-waves added together compensate each other. As a result, they are ’hidden’

in the standard nuclei but can provide unexpected effects in asymmetric (exotic) systems due to

nontrivial compensations.

We have tried to boost the 3n and 4n binding by modifying only P-waves. By enhancing all

P-waves with the same enhancement factor, we have not been able to bind any of trineutron or

tetraneutron states, without first binding dineutron in 3P2−3F2 channel. Binding dineutron in

P-waves goes too far beyond the reality of nuclear structure, since one needs enormously large

3Semiclassically, due to Pauli principle, neutron j and i should be provided additional kinetic energy, since they
are forced to travel around the added neutron.
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Nijm II Reid. 93 Av.14 Av.18
2n(1−) 3.89 4.00 4.29 4.39
3n(3

2

−
) 3.61 3.74 3.86 3.98

4n(0+) —— 3.97
4n(2+) 3.48 3.78
4n(2−) 3.93

Table 3.5: Critical enhancement factors for 3P2−3F2 channel needed to bind multineutrons.

enhancement factors in 3P2−3F2 channel (see Table 3.5), making the interaction in these waves

considerably stronger than the one in 1S0.

The next step consist in trying to enhance only one of P channels, whereas keeping their

natural strengths for the other ones. The 3P1 channel is purely repulsive and the enhancement

of this wave could not give any positive effect. The enhancement of 3P0 gave null result as well:

dineutron was always bound before any of 3n or 4n states could be formed. By enhancing 3P2−3F2

channel we managed to bind 3n only in 3
2

−
state, without first binding dineutron. Using enhanced

Av.18 interaction, 4n can be bound in 0+, 2+ and 2− states, without binding 2n or 3n. The

most favorable tetraneutron state becomes 2+, whereas 0+ state is very close to trineutron jΠ=3
2

−

threshold and overshoots it when other potential models are used. All other 4n states lie above

trineutron 3
2

−
threshold. One should remark that all the four realistic NN potential models that

we have considered, provide qualitatively identical results.

Please quote that the enhancement factors, for which these states become bound, are extremely

large and still very close to those needed to bind two neutrons in 3P2−3F2 channel. No significant

reduction is gained for these factors, when passing from trineutron to tetraneutron, thus indicating

that even very large neutron systems would require considerably enhanced 3P2−3F2 waves to

be bound. Moreover, once multineutron is bound, its binding energy grows very fast with the

enhancement factor (see Fig. 3.8). This is due to the non-physical structure of such a system.

Multineutron is formed only when sufficiently deep attractive well is created in P-waves, making

them much stronger than the effective centrifugal term and therefore being almost able to bind

dineutron on its own. Furthermore, this potential well is realized at internuclear distances smaller

than 1 fm. In order to bind multineutron, in the first place all neutrons should be placed very close

to each other. Once this is realized, small change in the potential has an enormous effect on the

binding energy. In other words, the construction of multineutron goes the very unnatural way: the

enhanced potential resist Pauli repulsion at short distances, without trying to overcome it in the

periphery. Such a behavior, if one tries to realize multineutron in a similar manner, will lead to

condensate the neutron matter beyond the standard nuclear densities. It would undoubtedly affect

the other neutron-rich nuclei as 4H or 5He, which will be strongly overbound. For example, with a

critical enhancement factor γ = 3.78 in the 3P2−3F2 waves of Av.18 potential one obtains an 4H

nucleus bound by B = 46 MeV4 in the JΠ = 1+ state. Furthermore, such modifications will affect

4Experimentally 4H nucleus is not bound, it only has a few resonant states above 3H threshold (E=-8.482 MeV).
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√
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NN B3H (MeV) B3He (MeV)

Nijm II 8.545 7.867

Av.18 8.669 7.858

Av.18+UIX 9.765 8.913

Table 3.6: Triton binding energies obtained with critically enhanced NN interaction in 3P2 −3 F2

channel to bind tetraneutron.

the nuclear level structure in favor of P -shell nuclei. The former facts clearly show that it is not

possible to bind multineutron by modifying P-waves interaction and without severely disrupting

other nuclear properties at the same time.

Rather surprisingly, such dramatic changes in P-waves do not affect too much the binding

energy of tritium and/or 3He (see Table 3.6). Anyway, one should not hold illusions concerning

the validity of such modifications: their small effect on tritium binding energy is simply due to the

fact that pair configurations in 3P2−3F2 waves are marginally important. This system requires

positive parity configurations, in special the 3S1−3D1 channel, which request considerably smaller

centrifugal energy to be realized.

Nevertheless the possibility of slim modifications in P-waves should still be explored. Especially,

when trying to remove discrepancies in describing the real nuclear systems, such as the n+3H

resonance at Ecm = 3 MeV. Furthermore such modifications can possibly improve the description

of neutron-rich nuclei, thus permitting to reduce isospin violation effect in 3NF [4].

3.4.2 Many nucleon force

Finally, one more field of investigation is based on the fact that little is known about the presence

and the structure of many nucleon forces (3NF, 4NF). As mentioned above, one needs to modify

these forces in favor to supply the additional attraction needed to reproduce the binding energies

of neutron-rich nuclei. The 3NF, which is the most explored - namely UIX - systematically gives

small repulsive effect for multineutron systems and therefore was intentionally neglected in the

calculations presented in previous sections.

UIX force consists of two parts. The first one (O2π
ijk) is entirely due to the ∆ resonance excitation

produced by pion exchange coupling among three nucleons (see diagram [a] in Fig. 3.9). This

term is spin-isospin dependent and is very attractive in neutron-proton balanced nuclei, leading to

significant overbinding and to the high equilibrium density of nuclear matter. One is thus obliged

to add a purely phenomenological repulsive spin-isospin independent potential term (OR
ijk), which

is designed to approximate all the other effects contributing in 3NF. UIX force reads (its explicit

form and discussion of practical implementation are given in Appendix G.2):
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Figure 3.9: Some pion exchange diagrams contributing in 3NF through ∆ resonance excitations:
a) Fujita-Miyazawa, b) two pion S-wave, c) and d) represent three-pion rings.

Vijk = A2π · O2π
ijk + U0 · OR

ijk (3.4)

O2π
ijk =

∑

cyc

(
{Xij , Xjk} {τi · τj , τj · τk} +

1

4
[Xij , Xjk] [τi · τj , τj · τk]

)
(3.5)

OR
ijk =

∑

cyc

T 2 (mπrij)T 2 (mπrjk) (3.6)

It turns out that in pure neutron systems, due to non-existence of neutral charge ∆ resonance,

the first (Fujita-Miyazawa) term in eq. (3.4) can contribute only in a second order and there-

fore becomes very feeble. Therefore, the major contribution in 3NF comes from the repulsive

phenomenological isospin independent term OR
ijk. There are however many other diagrams con-

tributing to 3NF, which should have constructive effect in pure neutron systems (ex. [c]-[d] Fig.

3.9) as well as contributions coming from the other meson exchange [223].

jΠ 1
2

+ 3
2

+ 1
2

− 3
2

− 5
2

−

UC ; MeV −0.0829 −0.0827 −0.0837 −0.0481 −0.0809

〈T 〉 ; MeV 757 768 444 304 1052

〈VNN 〉 ; MeV 355 620 497 33 286

〈V3NF 〉 ; MeV −1112 −1387 −941 −337 −1339√
〈ρ2〉 ; fm 0.566 0.527 0.743 0.902 0.510

Table 3.7: Characteristic of critically bound trineutrons obtained by changing the strength UC of
phenomenological term of UIX 3NF. Average values of kinetic 〈T 〉, 2NF 〈VNN 〉 and 3NF 〈V3NF 〉
potential energies, as well as root mean square radius

√
〈ρ2〉 are given.

We have tried to modify the strength U0 (its original value is U0 = 0.0048 MeV ) of the

phenomenological part of 3NF in order to provide the attraction lacking in neutron systems. Since

this potential term is repulsive, U0 > 0, one firstly needs in artificial way to make it attractive

by changing its sign. This is however still not enough to bind either 3n or 4n. One needs further

dramatically reduce this coefficient to make trineutron bound (see 3.7). The effect of changing 3NF
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is somehow similar to that of modifying P-waves and is even more pronounced. Once trineutron

is bound, any change in 3NF gives an enormous effect on the binding energy. It appears that

trineutron is bound only when the root mean square radius of the system becomes smaller than 1

fm, whereas in tritium it is ∼ 1.8 fm. The kinetic energy of such a system is at least twice as large as

in the ’fictive trineutron’, formed by enhancing P-waves. Furthermore the attractive contribution

in potential energy comes from modified 3NF only: NN forces act even destructively! Tetraneutron

calculations with so severely modified 3NF is numerically very unstable and therefore has not been

performed. It was nevertheless remarked that in order to make 4n bound these interactions should

be almost as much modified as in trineutron case. It is clear that such a structure has no physical

meaning. Indeed, if one supposes multineutron existent, it should expected to be a very sparse and

weakly bound system in which neutrons are very slow. In addition, and contrary to modifications

of P-waves, such drastic 3NF changes have very large impact on the binding energies of tritium,
3He or α-particle. Using a critical value UC = −0.0481 MeV of the most favorable trineutron

state jΠ = 3
2

−
, one gets tritium bound by ∼ 211 MeV!!! Of course, one can always pledge very

strong CIB in 3NF, in order to avoid modifications in the tritium or α-particle. However such

dramatic changes in 3NF can not be tolerated neither by the nuclear force underlying theory,

neither with respect to binding energies of the other stable neutron-rich nuclei (these nuclei will be

found strongly overbound).

The extremely small sensibility of multineutron to 3NF is determined by the fact that these

forces are of very short range, whereas to be efficient they need configurations when three neutrons

gets very close to each other. Due to the Pauli principle, three neutrons can be put together only

when non zero angular momentum pairs are present. Such pairs can be realized in the restrained

space only in conjunction with large kinetic energies, much larger than that could be provided by

3NF.

We have therefore tried to increase the range of the 3NF, still staying within that is more

or less ’reasonable’: being a few times larger than the pion-range. However these modifications

could not moderate trineutron results neither. Since the phenomenological (repulsive) term of UIX

for neutron systems is much stronger than the attractive one, corresponding to 2π exchange, one

cannot bind any neutron system by only modifying the range of the 3NF potentials. By removing

repulsive term (setting U0 = 0) one has still to increase the potential range up to mπ = 87 MeV in

order to bind trineutron in jΠ = 3
2

−
state. However such trineutron, like in the case of modified

strength of 3NF, is very dense, has kinetic energy as large as 〈T 〉 = 300 MeV and suffers from

repulsive contribution in NN potential 〈VNN 〉 = 20 MeV.

By making the phenomenological potential slightly repulsive U0 = 10−4 and by further increas-

ing the potential range to mπ = 74 MeV we have forced 2NF and 3NF to act constructively.

However, even in this way, the obtained trineutron had very large kinetic energy 〈T 〉 = 200 MeV

and still the principal binding coming from 3NF.

Finally, we have made calculations by introducing hyperradial force, of Yukawa type:

V = W
e−ρ/ρ0

ρ
, (3.7)
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where ρ is hyperradius - a quantity invariant in Jacobi coordinate transformations and is expressed

as:

ρ3n =
√

x2 + y2; ρ4n =
√

x2 + y2 + z2. (3.8)

Such kind of three- and/or four-body force is easy to treat in the numerical calculations. It

permits to compare its contribution in conjunction with different NN interaction models. As it

was the case for the modified UIX model, the most promising states susceptible to this force were

found to be jΠ = 3
2

−
for 3n system and jΠ = 0+ for 4n. In performing trineutron calculations, we

have chosen ρ0 = 2 fm, which roughly corresponds to an exchange particle two times less massive

than a pion!! Still, in order to make trineutron bound one needed a potential strength W > 410

MeV·fm (see Fig 3.10), i.e. a strength compatible with the attractive part of MT I-III potential!!!

Different realistic potential model predictions gave similar results, when MT I-III required even

stronger W values.
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Figure 3.10: Tetraneutron bound using different NN interaction models in conjunction with hy-
perradial Yukawa type force eq. (3.7), length of which was fixed to ρ0 = 2 fm, whereas its strength
W varied.

Tetraneutron case is not any better. In this study, the potential strength value has been fixed

to W = −612.4 MeV·fm and the evolution of its biding energy as a function of the potential range

ρ0 has been studied. It turns that this range should be increased up to as much as ρ0 = 2.32 fm to

make tetraneutron bound (see Fig 3.11). Such a strong force will make α-particle overbound to 78
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MeV, whereas in order to compensate the underbinding produced by the realistic NN interaction

models, an hyperradial force with W ≃ 90 MeV·fm is sufficient (see Fig 3.12).
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Figure 3.11: Tetraneutron bound using different NN interaction models in conjunction with hyper-
radial Yukawa type force eq. (3.7), strength of which was fixed to W = −612.4 MeV fm, whereas
its length ρ0 varied.

In that concerns the many body force effects,we conclude that whatever the form they can take,

they are not able to ensure the binding of pure neutron systems: their range is too small to act

constructively with 2NF for weakly bound, sparse systems. Furthermore in pure neutron systems

the many body forces play a minor role and their presence can be eventually neglected. The short

range character of these forces makes them fade away, since due to Pauli principle, the probability

to find three nucleon close to each other is extremely small .

3.5 Atomic 3He against the neutrons

In section 3.3 and particulary in Fig. 3.3, we have mentioned that nn interaction is very similar to

the one existing between two 3He atoms. Even a few arguments in favor of the bound multineutron

clusters have been presented.

The reasons why multiatomic 3He molecules can be bound, whereas multineutrons seems to be
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Figure 3.12: α-particle calculations within Nijm II NN interaction model in conjunction with
Yukawa-type hyperradial force. Dependence of binding energies on the strength W of this force
are presented. Real α-particle binding energy, without Coulomb interaction taken into account,
should be ≃ 29 MeV is marked by the blue lines.

unbound remains unclear. In this chapter we will try to compare the behavior of these two systems

and find out their differences.

The complexity of Faddeev-Yakubovski equations, increases very rapidly with the number of

constituant particles. Our actual numerical capabilities permit only to study the systems containing

up to 4 particles that is far below the number at which bound 3He clusters can be formed. How

to compare the relative role of the interactions in two systems, which are both unbound? The first

possibility is to enhance the potential. However, as we have seen in sections 3.4 and 3.4.1, in order

to form a bound 3-body (4-body) state, the enhancement factors must be very large, considerably

modifying the properties of the system.

Furthermore, Aziz potential describing 3He-3He interaction contains a very strong repulsive

core, which makes bound state calculations numerically unstable. A strong enhancement of this

potential will further complicate the numerical stability.

In order to circumvent the two mentioned problems we have enhanced the nn and 3He-3He
1S0 waves by artificially binding the corresponding difermion systems. Notice that one needs very
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small enhancements for these waves to make difermion bound Table. 3.3, contrary to 3(4)-body

case. This allows us to perform dimer-dimer scattering calculations, instead of direct bound state

calculations.

The main idea is based on the fact that the scattering length is positive for repulsive systems

and diminishes up to -∞ when more attraction is gained. Once the projectile-target interaction

is sufficiently strong to form a bound state, the scattering length has a singularity and passes

from -∞ to ∞ (see similar discussion in section 1.1.7 and 2.3.3). Therefore, the scattering length

sign indicates whether the effective interaction between two multiparticle clusters is attractive or

repulsive. On the other hand, by comparing systems with equal number of bound states, the size

of the scattering length evaluates the strength of this interaction. Former ideas can be generalized

for the scattering of composite systems. In this case, the scattering length will be a measure of the

effective interaction between the appropriate scattered clusters.
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Figure 3.13: Dependence of scattering lengths on interaction in P-waves for n − (nn) and
3He−(3He3He) systems. Dineutron was bound with B = 1.596 MeV. by enhancing Av.18 potentials
S-waves with γs = 1.4. Two series of calculations were performed for 3He−(3He3He) scattering:
3He dimer was bound by enhancing Aziz potential S-waves with γs = 1.6 and γs = 1.9, which given
dimer binding energies B = 0.1275 K and 0.4812 K respectively.

The sensitivity of elastic scattering lengths to P-wave interaction in n − (nn) and (nn) − (nn)
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Figure 3.14: The same as in Fig.3.13 just for 4 body scattering in (XX) − (XX) configuration.

systems has been analyzed and compared to the analogous 3He - (3He)2 and (3He)2 - (3He)2 case.

The most promising states to support multifermion clusters, namely JΠ = 3
2

−
for 3-body X−(XX)

scattering case and JΠ = 0+ for 4-body (XX) − (XX) case, were investigated.

lx sx jx ly jy

0 0 0+ 1 3
2

−
JΠ

3
2

−

Table 3.8: Partial wave decomposition for the asymptote of the elastic channel in X-(XX) scattering.

In order to realize a JΠ = 3
2

−
3-body state, the projectile should have an orbital angular

momentum ℓy = 1 with respect to the bound (XX) difermion cluster in the asymptotic channel
5 (see Table 3.8). According to the effective range formulae (1.51), the scattering length aℓ has

k−(2ℓ+1) dimension, that is a cube length unit for scattering with relative orbital momentum ℓy = 1.

5Indeed the (XX) cluster is bound in 1S0 state. Therefore the angular momentum is completely due to the
relative motion of the projectile.
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lx sx jx ly sy jy lz

0 0 0+ 0 0 0+ 0

JΠ

0+

Table 3.9: Partial wave decomposition for the asymptote of the elastic channel in (XX)-(XX)
scattering.

Although the interpretation of higher angular momentum scattering lengths has no clear physical

meaning, they exhibit a similar singular behavior near the S matrix poles (i.e. those given by bound

or resonant states). In order to compare similar quantities in different states, we have transformed

ℓy = 1 scattering lengths into length unit by taking its cube root 3
√

aℓ=1.

In the (XX) − (XX) 4-body scattering, having the most favorable state (i.e. JΠ = 0+) in

mind, the elastic channel can be realized with a relative angular momentum ℓz = 0 (see Table 3.9).

Therefore the corresponding scattering length has the standard length dimension.
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Figure 3.15: 3-dimensional equisurfaces of the Faddeev-Yakubovski amplitude corresponding to
2n − 2n elastic scattering open channel. Calculations were done with all the Av.18 potential waves
enhanced γ = 1.4 times. For such enhancement 2n is bound with B = 1.596 MeV in 1S0 state.
One can see that these surfaces don’t create any close shells, indicating that 4n is not bound.
In the right hand side cut of this FY amplitude is plotted with the values x and y being fixed.

Results are presented in Figs. 3.13 and 3.14. One can see that if interaction in P-waves is
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switched off, positive scattering lengths are obtained in both multineutron and 3He cases. This

indicates the existence of an effective repulsion between the scattered clusters. As mentioned in

section 3.4 in case of S-wave potential, particles try to cluster two by two, while the different

2-body clusters, formed this way, do not interact with each other.

Switching on P-wave interaction in neutron systems has negligible effect for their scattering

lengths as well as for their wave functions (see Fig. 3.15). They do not depend on whether

all P-waves are enhanced or whether one enhance only the attractive 3P2−3F2 channel. These

calculations were performed using Av.18 potential, without 3NF. Note that, as it was a case in

the preceding calculations, the introduction of 3NF or the use of other interaction model can not

qualitatively modify these results.

The 3He-3He interaction is assumed to have the same form in all partial waves and to be spin

independent. One can not distinguish among the different P-waves and therefore in our calculations

they were scaled by the same factors. Contrary to neutron systems, 3He clusters seems to be very

sensitive to the interaction in P-waves. By enhancing these P-wave potentials, the scattering

length changes considerably in both cases of 3He - (3He)2 and (3He)2 - (3He)2. For some value

of the enhancement factor, the scattering length exhibits a singularity, passing from -∞ to ∞ ,

when the zero energy wave function displays a node in the two cluster separation direction (see

Fig. 3.17). This is an indication that the tri- and four- 3He clusters become bound. The critical

P-wave enhancement factors, at which these bound states appear, are reasonable. If one binds

(3He)2 by enhancing 1S0 waves with γs = 1.9, one can obtain bound 3He tetramers almost without

enhancing P-waves. 3He trimers are less propitious to be bound than tetramers and therefore they

need more enhanced interaction. By reducing the 1S0 enhancement factor to γs = 1.6, stronger

P-waves (γp > 1.4) are required to retain 3He tetramer bound. On the other hand 3He trimers are

still not bound for (γp = 1.6).

In what precede, we have shown that 3He multimers are much more sensitive to P-wave inter-

action than neutrons are. This is due to the fact that attractive potential well in 3He-3He potential

lies at sensibly larger separation distance between the particles than in case of n − n interaction.

Centrifugal energy terms in 3He system are thus considerably smaller. Since centrifugal kinetic

energy reads

TK =
~2

2µ

ℓ(ℓ + 1)

r2
=

~2

m

ℓ(ℓ + 1)

r2
, (3.9)

it is useful to compare the rescaled potentials

Vsc(r) =
m

~2
r2V (r). (3.10)

These potentials represent a measure of systems sensitivity to higher partial waves. For nn inter-

action, the rescaled potential in any P partial wave are smaller than 2 (Vsc(r) > −ℓ(ℓ + 1) = −2)

(see Fig. 3.18), therefore indicating that nn P (and higher order D,F ,..) waves are not able to

compensate the centrifugal kinetic energy terms. Consequently, one has a very small impact of

these waves in binding multineutron systems.
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Figure 3.16: 3-dimensional equisurfaces of the Faddeev-Yakubovski amplitude corresponding to(
3He

)
2
−

(
3He

)
2

scattering elastic channel. Calculations were done with γs = 1.9 times enhanced

S-waves of Aziz potential, for which
(
3He

)
2

is bound at B = 0.4812 K. Enhancement of interaction
in P-waves was only γp = 0.5. One can see that equisurfaces don’t create any close shell, indicating
that

(
3He

)
4

is not bound for this parameter set.
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Figure 3.17: Same as in Fig. 3.16 only P−waves here were enhanced with γp = 1.4. One can see
closed shell, therefore indicating that
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cluster is already bound. Whereas in 2D plot one can
see that wave function has a node in the direction of two 2-body cluster separation.
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Figure 3.18: Comparison of normalized P-waves of Aziz potential (describing interaction be-
tween 3He atoms) with different model nn 3P2 waves (the most attractive nn P-waves).
In MT I-III potential case (having no interaction in P-waves) renormalized 1S0 waves were plotted.

On the contrary, the 3He - 3He rescaled potential Vsc(r) displays a deep minima (smaller than

−6). This indicates that the effective potential

Veff (r) = V (r) +
~2

m

ℓ(ℓ + 1)

r2
(3.11)

will have a small attractive well even in D-waves, making considerable impact in constructing 3He

multimers.

In contrary to S-wave pairwise interaction, where one can have only one interacting partner for

each particle, one can create more interacting pairs in P and D-waves (6 and 10 respectively). These

waves thus play a major role in large fermionic clusters, where the number of nearest neighbors for

each particle can be large.

Fermionic systems with predominant S-waves (like neutrons), even forced to stay together (for

instance by confining them in external fields) will try always to split into 2-particle clusters. If the

difermion system is not bound, multiparticle cluster will finally break into single particles.



3. Clusters of neutrons 123

On the contrary, if the effective interaction is attractive even in higher partial waves, multi-

fermion condensation will be possible, exhibiting some similarities with the bosonic systems. The

number of attractive partial waves, as in solid state physics, determine the signature of the multi-

fermion lattice.
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Chapter 4

Four nucleon continuum states

4.1 Introduction

The four nucleon continuum is a challenge for the few-body nuclear problem. Its interest lies

not only in the natural progression that it represents, towards the systematic description of an

increasing complexity nuclear system, but also in the richness of the A = 4 nuclear chart itself (see

Fig. 4.1). Four nucleon problem, we believe, implies a qualitative jump in respect to the A = 3

case.

As mentioned in the previous chapter, one needs to implement 3NF in order to provide the

lacking binding energy for the nuclei with A > 3. These forces are usually adjusted to describe

tritium and/or 3He, eventually α-particle (4He), binding energies, with no other constraints taken

into account. Therefore continuum states could be the supplementary testing ground for these

forces.

The A = 3 low energy scattering is dominated by the J Π = 1
2

+
and 3

2

+
states, which cannot

provide a comprehensive test for 3NF. Indeed, on one hand J Π = 1
2

+
has the same quantum

numbers as the tritium, without exhibiting any narrow resonances neither in n+d nor in p+d

continuum. Therefore success in describing the low energy continuum of the J Π = 1
2

+
state is

closely correlated with the ability to reproduce the tritium binding energy, a well known effect

which manifests by the existence of the ’so called’ Philips line [152]. On the other hand, J Π = 3
2

+

state can not be constructed without permitting one of the particle pairs to have non-zero angular

momentum. The last means that low energy three particle quartet configurations, when they are

close to each other, are largely suppressed. Therefore 3NF plays a minor role in J Π = 3
2

+
state,

whereas all dynamics are dominated by NN interaction only. At higher energies, even though

deuterium breakup takes place, 3N scattering observables exhibit smooth behavior (see Fig. 4.2).

This means that satisfactory description of 3N problem at low and intermediate energies depends

only on a few parameters, which can be found in any existing 3NF.

The strength of the 3NF depends on the underlying NN forces and their main effect is to

rescale 3N and 4N bound state energies. Their influence on the 3N continuum, beyond the effect

correlated with tritium rescaling, manifests itself only at relatively high energies, above 65 MeV

125
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Figure 4.1: Four nucleon energy spectra. Single lines indicate particle thresholds, whereas dashed
lines represent particle decay unstable excited states (resonances). These fine structures are mani-
festing in the scattering experiment, whereas their proper description is a severe test for the nuclear
interaction models.

[111, 112, 153].

The only stable 4N bound state is the α-particle. However, α-particles structure is closely

correlated to the tritium, effect demonstrated by the existence of a Tjon line [157] (see Fig. 4.3).

Therefore being of fundamental interest in testing NN forces, it does not provide qualitatively new

features. On the other hand 4N continuum spectrum, unlike in 3N case, exhibits a rich variety

of resonances and thresholds. These dynamical structures, being distributed over the large energy

region, could show properties different from that of the tritium or α-particle. The naive comparison

between the smooth behavior observed in the n+1H and n+2H elastic cross sections and largely non

trivial structure manifested in n+3H case illustrates clearly this point (see Fig. 4.2). Therefore it

is far from being obvious that the approach followed until now, based on a good description of the

2N observables as well as tritium binding energy, could be successfully extended to 4N continuum.

Furthermore 4N spectrum contains many negative parity resonances, which come as the doublet,

spin degenerate, states. Precise treatment of these states can provide invaluable information of

nuclear force spin dependence, thus permitting us a better understanding of the longstanding Ay

problem.

A resonant state spreads over an energy region given by its width and fully displays there

the internal dynamics of the 4N system. Its theoretical description provides a severe test in our
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Figure 4.2: Neutron total cross sections for hydrogen (1H), deuterium (2H) and tritium (3H) as
given by the experimental data. Naive comparison demonstrates well the qualitative difference of
n+3H continuum in respect to the A=2 and A=3 case.

comprehension of the nuclear forces.

There are five different realizations of particle states in four nucleon system and they are

enumerated in Fig. 4.1. However, only three of them can be explored experimentally, since one

doesn’t have pure neutron or proton systems. Furthermore, 4H (nnnp) and 4Li (pppn) are mirror

systems for the proton-neutron exchange. Due to similarity of nuclear interaction, these two systems

have resembling spectra, which become almost identical once 4Li data is corrected by removing

Coulomb interaction between the protons. The n+3H elastic scattering is the simplest 4N reaction

and represents a first and incontournable step before a more ambitious program can be undertaken.

On one hand, it is almost a pure T = 1 channel, free from the difficulties arising when dealing with

Coulomb force. On the other hand, high quality measurement of the total n+3H cross sections are

available [158]. They show a resonant structure interpreted by the R-matrix analysis of Hale and

collaborators [125] as being generated by a family of resonances (see Fig. 4.1).

The next obligatory step should be to describe n+3H isospin partners, i.e. p+3He continuum

states. The comparison of two systems permits us to have a deeper understanding of the CSB

in nuclear force. In order to solve p+3He problem theoretically one should introduce Coulomb

interaction in few-body formalism. This far from trivial issue will be presented in the following

section.



128 4. Four nucleon continuum states

n-d p-d

J Π = 1
2

+ J Π = 3
2

+ J Π = 1
2

+ J Π = 3
2

+

MT I-III 0.70 6.44 −0.027 13.95

Nijm II 1.24 6.34 1.004 13.46

Reid 93 1.23 6.34 0.989 13.47

Av.14 1.20 6.38 0.920 13.57

Av.18 1.26 6.34 1.42 13.62

Av.18+UIX 0.60 6.34 0.20 13.62

Exp. [154]-[156] 0.65 ± 0.04 6.35 ± 0.02 [1.3 − 4.0] ∼ 11.5

Table 4.1: Comparison of calculated p−d and n−d scattering lengths with the experimental data.
One can remark very small influence of 3NF on the results.

The p+3H continuum represents the richest and apparently the most complicated 4N system.

Even at very low energies one is obliged to separate p+3H and n+3He channels, which are isospin

degenerate. Their experimental separation is only 0.764 MeV, principally due to Coulomb repulsion

existing between two protons in 3He nucleus [117]. One needs very accurate treatment of Coulomb

interaction, as well as a formalism permitting to separate isospin degenerate states. This subject

will be discussed in the section 4.3.

4.2 Coulomb interaction

In order to introduce the Coulomb interaction in 4-body Faddeev-Yakubovski equations, we will

extend the ideas of Merkuriev. We split Coulomb potential into long and short range parts, similarly

as it was done by Merkuriev for 3-body equations [10][66]:

VCoul(x) = V
(short)
Coul (x, y, z) + V

(long)
Coul (x, y, z), (4.1)

where

V
(short)
Coul (x, y, z) = χ(x, y, z)VCoul(x) (4.2)

V
(long)
Coul (x, y, z) = [1 − χ(x, y, z)]VCoul(x) (4.3)

One can rewrite the 4-body Faddeev-Yakubovski equations:

(H0 − E + V12 + W )
∣∣K4

12,3

〉
= −V

(short)
12

[∣∣K4
13,2

〉
+

∣∣K4
23,1

〉
+

∣∣K2
13,4

〉
+ (4.4)

∣∣K1
23,4

〉
+ |H13,24〉 + |H23,14〉

]
(4.5)

(H0 − E + V12 + W ) |H12,34〉 = −V
(short)
12

[∣∣K2
34,1

〉
+

∣∣K1
34,2

〉
+ |H34,12〉

]
(4.6)

with using short notations for potential terms

W = V
(long)
13 + V

(long)
14 + V

(long)
23 + V

(long)
24 + V

(long)
34

V
(short)
12 =

(
V (Nucl) + V

(short)
Coul

)
12

(4.7)

V12 =
(
V (Nucl) + VCoul

)
12
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Figure 4.3: Tjon line: α-particle binding energy predictions B(4He) depend on the prediction of the
tritium binding energy B(3H) for several interaction models. Predictions without 3NF (snowflakes)
and with 3NF (diamonds) are shown. The experimental point is marked by a red star. Results
for CD-Bonn, Nijm I as well as Av.18 in conjunction with Tucson-Melbourne (TM ) 3NF were
borrowed from [103][3].

Actually the choice of splitting function χ(x, y, z) is arbitrary, moreover one can use different

splitting functions for Coulomb terms coupling different particle pairs. To make the calculations

of Coulomb integrals as simple as possible, we have used

χi4(x, y, z) = χ(x,
√

y2 + z2) i = 1, 2, 3 (4.8)

splitting function for Coulomb terms coupling particle pairs (34), (24) and (14) . By the contrary,

in order to facilitate the reduction of 4-body equations into 3-body Merkuriev equations, similar

to those of eq. (2.5), for pair interactions (23) and (13) it is convenient to use standard 3-body

definitions as in eq. (2.9):

χi3(x, y, z) = χ(x, y) i = 1, 2 (4.9)

In this case one should rewrite equations in the following form:

(H0 − E + V
(short)
12 + W )

∣∣K4
12,3

〉
= −V

(short)
i3

[∣∣K4
13,2

〉
+

∣∣K4
23,1

〉]
(4.10)

−V
(short)
i4

[∣∣K2
13,4

〉
+

∣∣K1
23,4

〉
+ |H13,24〉 + |H23,14〉

]
(4.11)

(H0 − E + V
(short)
12 + W ) |H12,34〉 = −V

(short)
i4

[∣∣K2
34,1

〉
+

∣∣K1
34,2

〉
+ |H34,12〉

]
, (4.12)
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where

V
(short)
i4 =

(
V (Nucl) + χi4(x, y, z)VCoul

)
12

(4.13)

V
(short)
i3 =

(
V (Nucl) + χi3(x, y, z)VCoul

)
12

(4.14)

The notes on practical implementation of these ideas are presented in Appendices C.2 and D.3.

4.3 Separating 4He channels in the isospin formalism

Since nuclear interaction properties of neutrons and protons are very similar, it is very useful

to treat them as a single particle nucleon, introducing ’so called’ isospin formalism (see sections

1.2.4-1.2.5). However, the effect of isospin invariance breaking cannot be ignored, especially when

one wants to treat Coulomb interactions explicitly. Interaction in pp pairs becomes considerably

different from those in nn or np, once the Coulomb interaction is considered. Still matrix elements

of Coulomb interactions can be evaluated in the isospin state bases:

|Tiso〉 =

{
|tx, T3, T , Tz〉 for the configurations of the type K

|tx, ty, T , Tz〉 for the configurations of the type H
. (4.15)

Hence these bases are not proper for the particle states. Considered matrix elements are found

by introducing the full basis of particle states |part〉 = |m1,m2,m3,m4〉 and using completeness

relations:

∑

part

|part〉 〈part| = 1. (4.16)

In former relation mi indicated the z-component of i − th nucleon isospin t(i). This isospin

projections of nucleon state can have two possible values m(n) = −1
2 , m(p) = 1

2 . Then

〈
T ′

iso

∣∣ V |Tiso〉 =
∑

part,part′

〈
T ′

iso

∣∣ ∣∣part′
〉 〈

part′
∣∣ V |part〉 〈part| |Tiso〉 (4.17)

=
∑

part,part′

δpart,part′
〈
T ′

iso

∣∣ ∣∣part′
〉
〈part|V |part〉 〈part| |Tiso〉 (4.18)

=
∑

part

〈
T ′

iso

∣∣ |part〉 〈part|V |part〉 〈part| |Tiso〉 (4.19)

In particle basis, Coulomb interaction terms can be expressed using charge projection operator:

〈part|VC(rij) |part〉 =

(
1

2
+ mi

)(
1

2
+ mj

)
e2

rij
(4.20)

Whereas transitions between particle and isospin states are coupled by the Clebsch-Gordan

coefficients. In case of K configuration functions:
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〈part| |Tiso〉 = 〈Tiso| |part〉 = Ctxmx
t1m1t2m2

CT3M3
txmxt3m3

CT T Z

T3M3t4m4
(4.21)

Finally Coulomb interaction terms for a system of interacting nucleons in isospin formalism will

have the following form:

〈
T ′

iso

∣∣ VC(rij) |Tiso〉 =
∑

m1+m2+m3+m4=TZ

Ctxmx
t1m1t2m2

CT3M3
txmxt3m3

CT T Z

T3M3t4m4
× (4.22)

×C
t′xmx

t1m1t2m2
C

T ′
3M3

txmxt3m3
CT ′TZ

T ′
3M3t4m4

(
1
2 + mi

) (
1
2 + mj

)
e2

rij

Expressions of matrix elements in H basis are obtained by repeating the same steps as for the

K basis. They read:

〈
T ′

iso

∣∣ VC(rij) |Tiso〉 =
∑

m1+m2+m3+m4=TZ

Ctxmx
t1m1t2m2

C
tymy

t3m3t4m4
CT T Z

txmxtymy
× (4.23)

×C
t′xmx

t1m1t2m2
C

t′ymy

t3m3t4m4
CT ′TZ

t′xmxt′ymy

(
1
2 + mi

) (
1
2 + mj

)
e2

rij

Non-invariant interactions for rotations in the isospin space break the conservation of total

isospin quantum number T . Therefore the 4-body nucleon states are in general the combinations

of T = 0, 1, 2 states. Nevertheless the n+3H and p+3He systems, with a very high accuracy, can

be supposed to be T = 1 states. On one hand it is due to the fact that T = 0 states are forbidden,

since z component of this quantum number is Tz = ±1 and T > |Tz|. On the other hand T = 2

states contributes very little, since triton (or 3He) are dominated by the T3 = 1
2 state (admixture

of T3 = 3
2 state contributes less than 0.1% in binding energy, this state occupation probability is

even smaller [117]).

The non conservation of the isospin becomes evident, when one has to distinguish between

n+3He and p+3H channels in 4He continuum. Both of these channels are proper to K configu-

rations, whereas they couple each other in isospin basis |tx, T3, T , Tz〉. To single out these two

channels we introduce a new basis:

|TM3〉 = |tx, T3,M3, Tz〉 (4.24)

For the n+3He channel M3 = 1
2 , whereas p+3H is represented by the M3 = −1

2 . Therefore these

two states are separated in the former basis. Transitions between these two bases are effectuated

by means of orthogonal transformation matrix Aij

|Tiso〉i =
∑

j

Aij |TM3〉j . (4.25)

The elements of this matrix are:
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〈
t′x, T ′

3,M
′
3, T ′

z

∣∣ |tx, T3, T , Tz〉 = 〈tx, T3, T , Tz|
∣∣t′x, T ′

3,M
′
3, T ′

z

〉
= δtx,t′xδT3,T ′

3
δTz ,T ′

z
CT T z

T ′
3M ′

3,t4Tz−M ′
3

(4.26)

Observing the last expression – one can remark that it depends only on three parameters T3,M3

and T . Value of Tz is fixed by the problem, whereas delta term δtx,t′x can be separated. Therefore

the matrix Aij can be represented as a tensor product, whose nontrivial part is the matrix coupling

the reduced bases |T ′
3,M

′
3〉 and |T3, T 〉 . One has the following possible states in these bases:

|T3, T 〉 =





∣∣1
2 , 0

〉
∣∣1
2 , 1

〉
∣∣3
2 , 1

〉
∣∣3
2 , 2

〉
and

∣∣T ′
3 ,M ′

3

〉
=





∣∣1
2 ,−1

2

〉
∣∣1
2 , 1

2

〉
∣∣3
2 , 1

2

〉
∣∣3
2 ,−1

2

〉
(4.27)

In the presented order of states, the coupling matrix reads as

|T3, T 〉 =
1√
2




−1 1

1 1

1 1

1 −1




∣∣T ′
3,M

′
3

〉
. (4.28)

Inverse of this unitary matrix is its own transpose. For a given ordering of states as in eq.

(4.27) this transition matrix is identical to its inverse.

4.4 Convergence

The main technical difficulty one encounters when solving four-body problem using Faddeev-

Yakubovski (FY) equations is due to the partial wave convergence of the amplitudes. The spin,

the isospin and the angular part of these FY amplitudes are developed (see section 1.2.5) into

finite size partial wave basis (PWB). In three-body problem, if one limits the number of partial

waves describing interaction, one will have a finite number of relevant partial waves contributing in

construction of Faddeev amplitudes. Interactions are usually important only in a few lowest partial

waves, therefore results tend to converge and a numerically precise solution can be obtained.

In the 4-body case the situation is different. The number of relevant 4-body partial waves is

still infinite once two particle interaction terms are truncated. One is obliged to make additional

truncations in order to reduce PWB to a finite size. Still, it is expected that partial waves with large

angular momentum have small contributions, due to rapidly (as ℓ2) increasing repulsive centrifugal

terms in the Hamiltonian. However the PWB size required to obtain well converged solutions can

be extremely large, knowing the number of degrees of freedom they represent [102][103].

Discussion between Grenoble group [161][122] and Fonseca [162] over Av.14 realistic potentials

ability to describe n+3H total cross section at the peak of the resonance (center of mass energy

Ecm = 3 MeV ) is apparently PWB convergence related. Grenoble group solving FY equations
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performed calculations without making formal approximations, however their PWB was rather

poor. Their results indicate that Av.14 potential underestimates scattering cross section near the

resonance peak. Some NN P-waves present in their PWB had very small contributions. Fonseca

calculations are based on Alt-Grassberger-Sandhas (AGS) equations [163][164], but rely on only

one rank expansion of the T -matrices. His results are in rough agreement with Grenoble group,

when NN P-waves are not present. However NN P-waves tend to become much more important

in Fonseca’s calculations. By introducing them, the scattering cross sections increase enough to

describe almost perfectly the experimental data near the resonance peak.

jx 6 Namp E (MeV ) 〈T 〉 (MeV )
√
〈r2〉 (fm)

1 10 7.196 44.49 1.81

2 18 7.502 46.13 1.78

3 26 7.594 46.63 1.77

4 34 7.606 46.67 1.77

5 42 7.614 46.70 1.77

6 50 7.615 46.71 1.77

Table 4.2: Convergence of the tritium binding energy, r.m.s. radius and kinetic energy calculations.
PWB was truncated by choosing the maximal value of angular momentum jx. Namp indicates num-
ber of partial amplitudes present for a given truncation. Calculations were performed using Av.18
NN interactions model, supposing that neutron and protons have the same mass corresponding to
~
2

m = 41.471 MeV · fm2.

jx 6 Namp E (MeV ) 〈T 〉 (MeV )
√
〈r2〉 (fm)

1 10 6.499 43.45 1.85

2 18 6.809 45.11 1.82

3 26 6.897 45.60 1.81

4 34 6.907 45.64 1.81

5 42 6.916 45.67 1.81

6 50 6.917 45.68 1.81

Table 4.3: The same as in Table 4.2 only for 3He bound state. Calculations were performed
using Av.18 NN interactions model, supposing that neutrons and protons have the same mass
corresponding to ~

2

m = 41.471 MeV · fm2.

To control the convergence in PWB we have performed several tests. First it is necessary to

assure the convergence of 3-particle bound states, needed when implementing boundary conditions.

Since 3H and 3He are isospin partners, convergence patterns for these two systems are very similar

(see Tables 4.2 and 4.3). In tables 4.2 and 4.4 we present convergence of tritium binding energy

calculated using respectively Av.18 and Av.18+UIX models. One can see that a good description

of the bound states can be achieved with jx 6 4; inclusion of the 3-body force has overall small

effect on the convergence.

Test calculations, in order to compare convergence of 4N results with Fonseca, have been
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jx 6 Namp E (MeV ) 〈T 〉 (MeV )
√

〈r2〉 (fm)

1 10 7.863 48.89 1.740

2 18 8.216 50.35 1.707

3 26 8.444 51.24 1.685

4 34 8.445 51.23 1.685

5 42 8.469 51.28 1.684

6 50 8.468 51.28 1.684

Table 4.4: The same as in Table 4.2 only here Av.18 model has been used in conjunction with UIX
three nucleon force.

JΠ
3 lz jΠ

z JΠ
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2

+
0 1
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+
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+
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+
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2

−

Table 4.5: The composition of 4N JΠ 6 2± elastic 3 + 1 channels.

performed using Av.14 potential. This potential has a similar structure to Av.18, except of being

charge independent. The small charge independence breaking introduced into Av.18 has an overall

small effect in correcting predictions of nuclear observables. In any case these small terms do not

affect general structure of the potential and thus cannot influence much the convergence in partial

waves.

At very low energies only positive parity states J Π = 0+ and J Π = 1+ contribute. Their

construction is rather similar, and therefore the convergence patterns are similar as well. In Table

4.6 we present convergence of n +3 H scattering lengths in J Π = 0+ state, whereas analogous

phase shift convergence analysis at Ecm = 3 MeV is presented in Table 4.7. Convergence was

achieved by including tritium amplitudes up to jx 6 4. in the open channel, thus permitting to

precisely describe elastic channel and situate the tritium threshold. Other amplitudes were limited

by truncating interaction terms and maximal angular momenta jy and jz. Calculations for positive

parity states are rapidly convergent, very precise values can be already obtained by restricting the

interaction terms to P-waves and jy 6 1, jz 6 1. Increasing the scattering energy does not affect

much the convergence, as can be seen by comparing results in the tables 4.6 and 4.7.

Similar analysis has been performed for n+3H phase shifts in J Π = 0− state at the center of

resonance peak Ecm = 3 MeV (see Table 4.8). This state contains a broad resonance at E0− = 5.27

MeV (see Fig. 4.4). However, the scattering cross section near the peak are influenced mostly by the
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0+ state jy, jz6

Interaction terms 1 2

S+3D1 4.26 4.24

...+1P1 4.27 4.27

...+3P0 4.26 4.26

...+3P1 4.28 4.28

S+3D1+P+3F2 4.28 4.28

S+P+D+3F2 4.28 4.28

S+P+D+3G3+F 4.28 4.28

Table 4.6: Convergence of n +3 H singlet (JΠ = 0+) scattering lengths. Calculations were per-
formed using Av.14 NN interaction model. PWB was truncated in NN interaction waves, as
well as imposing limits on jy and jz. Former truncations were not applied to open channel, which
incorporated all the tritium waves up to jx 6 4. Presented values are in fm.

0+ state jy, jz6

Interaction terms 1 2

S+3D1 -69.95 -69.46

...+1P1 -70.32 -70.47

...+3P0 -70.11 -70.03

...+3P1 -70.60 -70.52

S+3D1+P+3F2 -70.40 -70.25

S+P+D+3F2 -70.40 -70.09

S+P+D+3G3+F -70.40 -70.12

Table 4.7: The same as in Table 4.6 only for n+3H scattering phase shifts (in degrees) at En = 3.5
MeV (3.0 MeV at center of mass). Additional calculations for jy 6 3, jz 6 3 have given δn−3H =
−70.18◦, thus indicating that calculations with jy 6 2, jz 6 2 are very well converged.
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0− state jy, jz6

Interaction terms 1 2 3

S+3D1 23.98 22.52
...+1P1 23.91 22.21
...+3P0 41.28 39.00
...+3P1 27.76 24.33
S+3D1+P+3F2 27.76 24.42
S+P+D+3F2 27.76 24.66

S+P+D+3G3+F 27.76 24.66 24.59

Table 4.8: Convergence of n+3H scattering phase shifts (in degrees) at En = 3.5 MeV (3.0 MeV
at center of mass). Additional calculation for jy 6 3, jz 6 3 almost has not changed the value,
thus indicating that calculations with jy 6 2, jz 6 2 are very well converged .

J Π = 1− and J Π = 2− resonances. Convergence is worse than in a case of positive parity states.

It is partially due to the presence of lz = 1 waves in the open channel rising the importance of

larger angular momentum states through the coupling. However, obviously the major reason is due

to the importance of interaction in NN P-waves, as well as the effect of non-trivial compensations

of interactions in 3P0 and 3P1 waves. Interaction in D and F-waves, unless the tensor coupled
3S1-

3D1 state, does not seem to be important. One should expand PWB to include jy 6 2, jz 6 2

amplitudes in order to obtain up to 0.25% converged results.

The most complicated convergence one encounters is in J Π = 1−, J Π = 2− states. Both of

these states have tensor force coupled open channels (see Table 4.5), furthermore they contain

narrow resonances near Ecm = 3 MeV. Moreover one of the open channels already has jz = 1.5

contributions. Therefore it is highly unlikely to achieve convergence with jz 6 2. We have used

different convergence scheme, by truncating maximal values of lz and ly instead of truncating jz

and jy as previously. In Table 4.9 we present the convergence for J Π = 2− state, contributions of

the open channel with lz = 3 at Ecm = 3 MeV are only of order 0.1◦ and in these calculations were

neglected. One can remark very strong contributions of tensor force in P waves (3P2−3F2), which

was not the case in J Π = 0−, 0+ and 1+ states. This fact complicates calculations by making them

much more demanding on PWB as previously. Unfortunately, our numerical capacities could not

allow to go beyond ly 6 2, lz 6 2, without making additional truncations. Nevertheless calculations

with more truncated interaction terms suggest that the results with ly 6 2, lz 6 2 are as accurate

as 1 − 2◦. Like in other states, interactions in D and higher partial waves contribute very slightly.

On the end we have compared convergence with Fonseca calculations [165]. Convergence pat-

terns were similar in positive parity states, as well as our results are still in rather good agreement

(up to a few percent difference in phase shifts). The major discrepancies are coming from negative

parity states. Still, results were much closer without interactions in NN P-waves. Introduction of

P-waves one by one show qualitatively the similar trends, however P-wave compensation effect is

considerably weaker in Fonseca results.

One should stress that Fonseca calculations rely on separable approximations of the two-body
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2− state ly, lz6

Interaction terms 1 2

S+3D1 35.3 36.0

...+1P1 35.4 35.9

...+3P0 35.3 36.4

...+3P1 33.2 32.9

S+3D1+P+3F2 41.3 43.0

S+D+P+3F2 41.5

Table 4.9: Convergence of n+3H scattering phase shifts (in degrees) in 2− state at En = 3.5 MeV
(3.0 MeV at center of mass).

and three-body T-matrices [166]. It has been demonstrated several times [167] that the predic-

tions based on the separable expansions of T-matrices can be rather accurate. However, such a

separable approximation is in general a piece of art. There are no objective criteria, whether the

approximation is reliable or not and how far in expansion one should go. Is one rank expansion

enough to account for strong compensations in the NN P-waves? This issue should be verified by

extending separable expansions to at least the second rank.
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Figure 4.4: Spectra of 4H and 4Li continuum. These two systems are isomers, therefore having
similar structure. Comparison of these two systems can be very important in determining CSB in
nuclear force. The interesting feature is that Coulomb interaction present in 4Li pushes the broad
Jπ = 0− and 1− resonances in-between dpp and 4-particle breakup thresholds.

The previous convergence discussion was based on n+3H scattering. Analogous convergence
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pattern should be expected for its isospin partner p+3He system (note the similar structure of two

systems). The slow partial wave convergence is determined by the properties of nuclear poten-

tial and the nuclear part of interaction is similar in both cases. The biggest difference in these

two systems is due to the presence of Coulomb interactions between protons in p+3He. In the

internal region these interactions are weak compared to the nuclear ones, therefore they cannot

affect convergence. This has been shown when comparing the convergence of 3H and 3He bound

state calculations (see Table 4.2 and 4.3); whereas the open channels asymptotic, where Coulomb

interactions are dominant, is described very accurately by using formalism explained in the section

4.2.

4.5 n+3H elastic cross sections

n+3H elastic channel represents the simplest 4N reaction. It is almost pure T = 1 isospin state, free

of Coulomb interaction in the final state as well as in the target nucleus. The first calculations of

the scattering lengths, using simple interaction models, were already performed in the beginning of

the eighties [168][169]. Advances in computation techniques nowadays allow to perform calculations

using realistic NN potential models, which have complex structure, as well in conjunction with

3NF. Various model predictions for singlet a0+ and triplet a1+ scattering lengths together with

deduced coherent scattering length

ac =
a0+ + 3a1+

4
(4.29)

and the zero energy cross section

σ(0) = π
(
a2

0+ + 3a2
1+

)
(4.30)

are summarized in Table 4.11. One can remark a very good agreement between the values obtained

by different groups, using different numerical methods. Fonseca [170] values were obtained by

solving AGS equations, Viviani and collaborators [171][172] used the Correlated Hyperspherical

Harmonics Method (CHH), whereas Hoffmans [173] results are based on Resonant Group Method

(RGM). The overall agreement in scattering length calculations indicates that theoretical results

are well controlled and credible at least for the positive parity states.

Semi-realistic MT I-III potential gives slightly too large zero energy cross sections σ(0) = 177

mb, whereas experiment indicates 170 ± 3 mb [158]. This discrepancy is related to the small

overbidding found in tritium and α−particle when using the same potential model.

On the contrary, for the realistic potential models in use, zero energy cross sections become even

worse, providing ≈ 12% overestimated values. This failure is not due to a bad choice of realistic

NN interaction model. In [122, 174] it has been shown that Av.14, NijmII, Reid93 and Av.18

potentials provide almost identical results, differing only by less than 1%. However, it is remarked,

that these 4N scattering lengths are linearly correlated with tritium binding energy, similarly to

the well known case of ’Philips line’ in n+2H scattering [152]. Underestimation of tritium energy

indicates that effective interaction between the nucleons in A > 3 nuclei is more attractive, as

predicted by NN realistic forces alone. On the other hand positive scattering lengths demonstrate
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a0 a1 ac Ref.

3.91 ± 0.12 3.6 ± 0.1 3.68 ± 0.05 [178]

3.70 ± 0.62 3.7 ± 0.21 3.82 ± 0.07 [179]

4.98 ± 0.29 3.13 ± 0.11 3.59 ± 0.02 [180] I

2.10 ± 0.31 4.05 ± 0.09 3.59 ± 0.02 [180] II

4.453 ± 0.1 3.325 ± 0.016 3.607 ± 0.017 [160]

Table 4.10: Experimental values of n-3H scattering lengths.

NN + 3NF a0+ a1+ ac σ(0) Ref.

Av.14 4.28 3.81 3.92 194 this work

4.39 3.89 4.01 203 Fonseca[170]

4.32 3.80 3.93 195 Viviani[171][172]

Av.18 4.28 3.80 3.92 194 this work

4.32 3.76 3.90 192 Viviani[171][175]

4.21(4) 3.65(2) 3.79(3) 181(3) Hofmann[173][176]

Av.18 + UIX 4.04 3.60 3.71 173 this work

4.05 3.58 3.71 173 Viviani[175]

4.00(3) 3.49(1) 3.62(1) 165(2) Hofmann[173][176]

MTI − III 4.10 3.63 3.75 177 this work

Exp. 170 ± 3 [158]

Table 4.11: Comparison of n-3H scattering lengths calculated by using different models and ob-
tained by various groups.

that effective n+3H interaction is repulsive, dominated by Pauli effect between the neutrons. The

presence of additional attraction makes smoother this effective potential and that will be reflected

in diminished scattering lengths. Therefore adding 3NF, in order to correct tritium binding energy,

automatically improves n+3H zero energy cross section as well.

We have performed calculations using Av.18 potential model in conjunction with UIX 3NF.

Partial wave bases, used in these calculations, were selected according to the rules explained in

previous section. Such PWB let us have tritium binding energy Et = 8.45 as precise as 30 keV

(hence the effect of isospin non-conservation and neutron-proton mass difference gives around 15

keV [117]). The obtained results are compared in the last part of Table 4.11 with other existent

calculations. One can quote a very good agreement with Viviani et al. [175] calculations and

relatively good agreement with Hofmanns RGM results [176]. The small difference in the last

predictions is probably due to the fact that RGM is not very well adapted to work at very low

energies. Error bars in former calculations, being induced by the extrapolation used to extract

scattering lengths from higher energy results, can be also underestimated.

If the very low energy scattering cross sections are accurately measured and reproduced, situ-

ation with scattering lengths looks more precarious (see Table 4.10). The best agreement is found

with the results [178]; in fact they contain as a theoretical input ratio a1+/a0+ which turns to be
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NN + 3NF 0+ 1+ 0− 1− 2− Ref.

Av.14 -70.2 -62.2 24.7 42.2 21.3 43.0 this work

-70.3 -64.4 21.2 47.8 26.6 35.4 Grenoble[161] [122]

-68.4 -63.0 29.7 48.1 23.5 45.8 Fonseca[162] [165]

Av.18 -70.0 -62.3 24.2 41.2 22.3 43.0 this work

-70.1 -63.9 23.8 ∼36 ∼20 ∼40 Viviani [181]

-69.5 -61.4 23.5 41.9 22.0 43.6 Hofmann[173][176]

Av.18+UIX -67.5 -61.3 21.7 41.9 21.5 45.9 this work

-66.7 -59.1 20.8 41.3 20.9 42.2 Hofmann[173][176]

Table 4.12: Comparison of n-3H scattering phase shifts at En = 3.5 MeV (3.0 MeV at center of
mass) in degrees, calculated by using different interaction models and obtained by various groups.
Values are well converged, however some discrepancies are still present in the 1− and 2− states,
work to remove these discrepancies is well in progress.

very close to the one given by the realistic potentials in Table 4.11. The other compatible results

are [179]. However, apart from the quite comfortable error bars in a0+ , they have been obtained

using a value of ac = 3.82 fm, which is in evident disagreement with more recent and precise values

of [180]. Finally, as it was pointed out in [175], the experimental value doesn’t seem to intersect

with the theoretical curve relying n+3H scattering lengths to tritium binding energies.

The usual way to get ai is by reversing the relations eq. (4.29) and eq. (4.30), respectively giving

ac and σ(0). This procedure is numerically quite unstable (see Fig. 4.5). It can be demonstrated

in the following way. By fixing the zero energy scattering cross section σ(0) one still has a range of

permitted values of a1+ and a0+ , which is described by the ellipse slope in a1+(a0+) plane. Since

one has uncertainty in evaluating σ(0), the permitted values of scattering lengths will be trapped

in-between two ellipse slopes, determined by the minimal and maximal σ(0) values (i.e. in-between

two red-doted curves Fig. 4.5). On the other hand, by fixing the coherent scattering length (ac)

- one restricts a1+ and a0+ to values lying on the straight line in a1+(a0+) plane. Indeed, by

assuming an exact value of ac = 3.59 fm (conditioned by the blue dashed line), the small existing

error in σ(0) leads to two ranges of permitted values a0+ = [4.7 − 5.2] fm, a1+ = [3.05 − 3.2] fm

and a0+ = [2.0 − 2.5] fm, a1+ = [3.8 − 4.1] fm. In this sense, a more precise measurement of σ(0)

should be very helpful.

Calculations have been pursued beyond zero energy. Total scattering cross sections can be

successfully reproduced up to almost three-body n+n+d breakup threshold (at Ecm ≈ 6.2 MeV)

with MT I-III potential Fig. 4.6. The only small discrepancy is in the Ecm ∈ [0.04 − 1.5] MeV

region, where experimental data suggest the decrease in the total cross sections, whereas MT I-

III results remain flat before undertaking the smooth growth towards the resonance peak point.

Despite its success, this potential has an evident conceptual problem in neglecting tensor force and

thus conserving the angular momentum and the total spin of the system separately. Thus already

at its construction the existence of some well known polarization observables (as Ay) is completely

ignored. Nevertheless MT I-III potential describes surprisingly well the differential cross sections
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Figure 4.5: Comparison of experimental n+3H singlet (a0+) and triplet (a1+) scattering lengths with
theoretically calculated values. Situation with the experimental data is very disturbing: one has
direct control of low energy cross sections and coherent scattering lengths in the experiment. Small
error bars existent in these measurements cause very big uncertainties in extrapolated singlet/triplet
scattering lengths.

Fig. 4.7, being able to reproduce experimental data perfectly within experiment provided error

bars. The small underestimation of backward angle differential cross sections at Ecm = 4.5 MeV

can be caused by the impact of F- waves, not considered in these calculations.

Situation is much more complicated with realistic potential models. As was observed by Greno-

ble group: although realistic potentials gives too large total cross sections at zero energy, they fail

to reproduce the experimental results near the resonance peak by underestimating them. Fonseca’s

claims that NN P-waves can act constructively and correct the results have not been confirmed

by our recent calculations with all the relevant channels added. NN P-waves increase elastic cross

sections in the negative parity states, however seems to have an opposite effect on the positive

parity states. Overall gain in the total cross section is rather small.

Although UIX 3NF was able to correct n+3H zero energy cross section, it fails to improve the

agreement with experimental data near the resonance peak. On the other hand, one can remark

that cross section maxima position is well reproduced by Av.18+UIX model (it was not the case

with single NN force). Alternatively to MT I-III potential, Av.18+UIX model exhibits a small

dip in total cross sections for Ecm ∈ [0.04 − 1.5] MeV ; this dip however is too shallow to follow

experimental results. From Fig. 4.8, where influence of S−waves in total cross sections is presented,

it becomes clear that this dip can be reproduced only by further reducing S-wave cross sections. It

is worth noticing that the zero energy scattering lengths are still overestimated by a few percent.
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Figure 4.6: Comparison of calculated n+3H total cross sections with experimental data of [158].
Fonseca point is taken from reference [162], Grenoble’98 point is due to Grenoble group calculations
of [182][122].

When introducing 3NF, realistic potential predictions for positive parity states become very close

to MT I-III values. Therefore the principal failure is due to contributions of negative parity states,

where series of resonances are present. Comparison of state by state contribution in realistic model

cross sections with MT I-III results is not easy (see Fig. 4.9). MT I-III potential conserves the

angular momentum and the spin of the system separately, therefore its 0− state cross sections are

very similar to 2− state (both being dominated by the L =1, S =1 state). Thus 0− state exhibits

resonant behavior near the peak, which is not expected by the experimental data. For realistic

potential models, this state contributes very little, since the resonance in this state is very broad

and situated by a few MeV further in the continuum. One can see that for Av.18+UIX model,

J Π = 1− and 2− cross sections maxima are still shifted to larger energies than in MT I-III case,

therefore indicating that the resonances are located too far in the continuum. If one manage to

locate these resonances properly, their influence for scattering cross sections would be larger and

agreement with the experimental data should improve.

The failure of realistic potentials is even more noticeable in the differential cross sections (see

Fig. 4.7). Already at the low energies, where the total scattering cross sections are reproduced,

Av.18+UIX model underestimates backward angle cross sections. At higher energies this tendency

becomes even more pronounced. Considering this failure, the description of more sensible polariza-
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Figure 4.7: Comparison of experimental data [177] and theoretically calculated n+3H differential
cross sections. Figures correspond to center of mass energies: [a] 0.75 MeV, [b] 1.5 MeV, [c] 2.625
MeV and [d] 4.5 MeV. The last figure contains only MT I-III model calculations. One can see
evident fail of ’so called’ realistic potentials. On the other hand, phenomenological MT I-III model
successfully describes experimental data up to Ecm = 2.625 MeV . Small discrepancies appearing
for this model at Ecm = 4.5 MeV can be related to the impact of F-waves, not considered in these
calculations.
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Figure 4.8: Comparison of the positive parity state contributions in n+3H elastic cross sections. By
adding 3NF (Av.18+UIX ) realistic potential predictions become very similar to MT I-III results.

tion observables has no sense. These observables are comparably small and much more demanding

of accurate nuclear force than the differential cross sections.

Once more, it should be of interest to stress the success of a trivial NN model as MT I-III

in describing such a non trivial thing as 4N system. This potential acts only in S-waves, has no

tensor term, no spin-orbit force, even non-pion tail and the corresponding tritium wave function

contains only S-wave Faddeev components. It provides however a very good agreement with the

experimental results, specially near the resonance peak and even for differential cross sections, in

contrast to its complicated realistic counterparts. Only the zero energy and Ecm ∈ [0.04 − 1.5]

MeV dip cross sections are slightly overestimated. In this model the n+3H resonant cross sections

has nothing to do with NN P-waves: it is created by the exchange mechanism between incoming

and target nucleons. That results into an effective 1 + 3 potential, which can be successfully

generated by only S-wave NN interactions. This furthermore confirms the presence of strong

compensation of interaction in higher partial waves. Therefore, nothing is trivial beyond A = 1,

whereas distinction of the NN interaction from the N − A data is a cumbersome task.

4.6 p+3He low energy scattering

p+3He is an isospin partner of n+3H system, the principal difference of two systems coming from

the Coulomb interaction acting between the protons. p+3He scattering presents fundamental

interest, since it is the richest composite nuclear system in protons (having proton excess ratio
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Figure 4.9: Comparison of the negative parity state contributions in n+3H elastic cross sections.
For MT I-III potential only collective contribution of all these states is plotted.

equal to ηp = 0.5), displaying such dynamical structures as resonances. There are no nuclei with

proton excess ratio so high. Moreover the comparison of p+3He and n+3H scattering spectra is a

perfect ground for CSB analysis in nuclear force. Experimentally, this system is more accessible

than n+3H, since it is easier to produce and to control proton beams, as well as later on detect

proton recoils. However experimental data badly suffers from Coulomb effects, which dominates

scattering at forward angles as well as at very low energies. Pure Coulomb scattering amplitude

fC = − γ

2k sin2 θ
2

exp

[
−iγ ln

(
sin2 θ

2

)
+ 2i arg Γ(1 + iγ)

]
(4.31)

becomes infinite when θ → 0, as well when E → 0. One cannot control the total cross sections,

due to Coulomb divergencies in forward angle direction. Analysis of scattering lengths is also very

complicated, for it requires non-trivial extrapolation procedure from low energy scattering data.

Therefore one has very high uncertainty in very low energy experimental predictions.

Theoretically we calculate scattering lengths by directly performing zero energy calculations.

By using analytical zero energy limit expressions of Coulomb wave functions with singularities

factorized out, we implement boundary conditions as in eq. (1.60). Therefore we do not encounter

extrapolation problem as in experimental data analysis.

Our calculated scattering lengths with MT I-III potential falls in-between experimental points.

These results, however, are in disagreement with calculations of Yakovlev and Filikhin [183]. In

their calculations, restrictions to S-waves were made and further cluster reduction method was
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lx ≤ ly ≤ lz ≤ a0+ a1+

0 0 0 11.54 9.551

0 1 1 11.47 9.170

1 1 0 11.56 9.565

1 1 1 11.49 9.200

Table 4.13: Results of scattering lengths for p −3 He system calculated using MT I-III potential
with truncated PWB. One can see that results are well converged with (ℓx, ℓy, ℓz) 6 1.

NN+3NF a0+ a1+ Ref.

MT I-III 11.49 9.20 this work

8.2 7.7 Yakovlev[183]

Av.18 12.7 this work

12.9 10.0 Viviani [175]

Av.18+UIX 11.3 this work

11.5 9.13 Viviani [175]

Exp. 10.8 ± 2.6 8.1±0.5 [184]

10.2±1.5 [185]

Table 4.14: Comparison of the calculated p+3He scattering lengths.

used to solve FY equations. Such a reduction is a crude approximation and, even without taking

Coulomb interaction into account, it introduced some discrepancies in the results [186]. Even more

doubtful is the evaluation of Coulomb integrals by former authors. These integrals were calculated

by making questionable approximations when expanding Coulomb terms in non-proper coordinate

bases.

On the contrary, MT I-III scattering lengths are very close to the ones calculated with Av.18+UIX

model, as should be expected from their agreement in n+3H scattering lengths. CSB breaking is

rather small in Av.18 NN force, whereas is not present neither in UIX 3NF nor in MT I-III mod-

els. Concerning realistic model calculations of scattering lengths, we are in very good agreement

with Viviani et al. results [175], both for Av.18 NN alone as well as including UIX 3NF. Our

values are slightly smaller than Viviani’s, similarly as in n+3H case.

Finally, we have expanded calculations to the energies greater than zero. Yet, calculations

have been performed by using MT I-III model only. Results are accumulated in Table 4.15. We

have compared the obtained differential cross sections with the experimental data from [188, 187]

in Fig. 4.10 [a]-[e]. This data is reproduced perfectly by MT I-III potential, even better than

in n+3H case. One can remark the importance off D-waves (L=2 states) in reproducing forward

angle differential cross sections for energies above Ecm = 3.0 MeV. Similar effect was remarked in

n+3H differential cross sections, although contribution of D waves was negligible in the total cross

sections.

Viviani et al. [175] have calculated these differential cross sections using realistic Av.18 and
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Figure 4.10: Differential cross sections in p+3He elastic scattering calculated using MT I-III model.
Obtained results are compared with the experimental data from [187] and [188].
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S=0 S=1

Ecm (MeV ) L=0 L=1 L=2 L=0 L=1 L=2

0.05 −0.093 −0.075
0.1 −0.838 −0.683
0.2 −3.79 0.188 −3.14 0.166
0.5 −13.9 1.56 −11.8 1.48

0.7575 −21.2 3.55 −18.2 3.52
1.2 −31.3 7.81 −27.1 8.36
1.69 −40.0 13.1 −34.9 15.1

3.00 −56.6 24.7 −1.06 −50.2 33.4 −0.58

4.1325 −66.9 30.8 −2.22 −59.7 44.0 −1.5

5.115 −74.0 34.2 −2.10 −66.3 49.6 −1.27

Table 4.15: Phase shifts in degrees calculated for p+3He system using MT I-III potential model.

Av.18+UIX models at relatively low energies (Ecm=1.2 MeV and 1.69 MeV). By comparing their

realistic model results with our MT I-III calculations, one should remark that MT I-III still

describes the experimental data in a much better way. Av.18 potential, without 3NF, provides too

large differential cross sections at Ecm = [1.2 − 1.69] MeV near the distribution minima centered

around θ ≈ 70 − 80◦. By including 3NF, differential cross section behavior near the minima is

corrected, however backward cross sections become underestimated. Note that n+3H differential

cross sections suffer from the same effect. Smaller discrepancies in realistic model predictions for

p+3He differential cross sections, compared to n+3H results, could be just an artifact of resonance

being situated further from the 3He threshold (see Fig. 4.4). The relative shift of 4Li spectra is

almost 900 keV, therefore energies Ecm = [1.2 − 1.69] MeV should correspond to Ecm . 0.79 MeV

in n+3H. This region, being closely related with successful positioning of 3-body bound state, is

rather well described by Av.18+UIX model. The real challenge in p+3He continuum states is to

describe nearesonance region being situated at Ecm ≈ 4 MeV.

4.7 p+3H scattering at very low energies

4He continuum presents probably the most complex 4N system, and its spectrum contains numerous

resonances Fig. 4.11. Calculations of p+3H scattering are furthermore complicated by the existence

of the first J Π = 0+ excitation of 4He in its thresholds vicinity. This resonance located at ER = 0.4

MeV above p+3H threshold covers with its width Γ = 0.5 MeV the almost entire region below

n+3He threshold.

It turns out that most of the calculations performed until now find this state below the p+3H

threshold, locating it as a second 4He bound state. The failure of these calculations is due to

the exclusion of Coulomb interaction. In this way, p+3H and n+3He thresholds coincide, whereas
4He resonant state is pushed bellow this degenerate threshold becoming a bound state (see Fig.

4.13). Depending on nuclear interaction model considered, one finds the binding energy of Bα∗ =
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Figure 4.11: Spectra of 4He. Single lines represent existing thresholds, whereas dashed lines signify
α-particle resonant states. Corresponding values of angular momentum, parity and isospin (J Π, T )
are noted besides.

[0.25 − 0.4] MeV . Thus, the sign of the strong p+3H singlet (J Π = 0+) scattering length is found

positive.

Low energy p+3H differential cross sections are dominated by long range Coulomb forces, thus

hiding effects due to strong interaction. Non rigorous attempt to describe these cross sections

can be performed by using pure strong interaction phase shifts (although they were calculated

excluding Coulomb interaction) and then correcting scattering amplitudes by adding analytical

expression of Coulomb amplitude. This approach corresponds to scattering, where one supposes

that in the internal 4-body region (where all four particles are coupled by the strong interaction)

Coulomb interactions are not present. Outside the range of strong interaction, p+3H channel is

propagated by switching on Coulomb repulsion between receding proton and tritium nucleus. The

p+3H amplitude reads as

f(θ) = fc(θ) + fs, (4.32)

where fs is the strong amplitude and fc(θ) is the pure Coulomb term, the analytical expression

of which was given in eq. (1.37). The MT I-III model results obtained using this approach are

presented in Fig. 4.13 by an orange dashed line. The experimentally observed resonant structure

is not reproduced. Instead one has smoothly decreasing differential cross sections. Even at higher

energies, when one gets out of the resonance region, the total cross sections are considerably
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Figure 4.12: Spectra of 4He, once with Coulomb interaction considered and once by neglecting it.
Red dashed lines indicate the placement of α-particle excited state as obtained by using MT I-III
model in both cases.

underestimated. In addition, non-existence of n+3He threshold in this approach further disregards

the correct description of the experimental data. Two other resonances (J Π = 1− and J Π = 2−),

situated in the vicinity of this threshold, won’t be properly placed.

Keeping in mind the very fine structure of thresholds and resonances in 4He continuum, one is

obliged to introduce an exact formalism in order to describe this system properly. As was demon-

strated, any approximation or inaccuracy made in the theoretical model can lead into misleading

conclusions. On the other hand, the complexity of this system makes it the ideal testing ground

for NN interaction models.

The major step in the formalism is the inclusion of Coulomb interaction so that to be able to

separate n+3He and p+3H thresholds. Hence, the standard model of calculating effective Coulomb

interactions applied in 3He bound state or p+d scattering calculations is not appropriate here,

since one has to separate two Coulomb degenerate channels. This non-trivial issue was discussed

in section 4.3.

Scattering length results, obtained after implementing full treatment of Coulomb interaction

with MT I-III potential are summarized in Table 4.16. One obtains a negative scattering length

in 0+ state, thus indicating that the α-particle excitation is a resonant and not a bound state,

as it was erroneously predicted when neglecting Coulomb interactions. However its very large

value a0+ = −63.1 fm (expected to be a0 ≈ [−16,−22] fm by the experiment) indicates that this

resonance is placed too close to p+3H threshold. Simple evaluations give resonance being placed

by only ER ≈ 70 keV above this threshold.

The only known calculations of p+3H scattering lengths with Coulomb separated thresholds and

using MT I-III potential, were performed by Yakovlev and Filikhin [189], finding a0+ = −22.6 fm

and a1+ = 5.2 fm. We are in strong disagreement with calculations of former authors for a 0+ state,

although their a0+ scattering length fits well the experimental data. By comparing our results, it
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Figure 4.13: p+3He elastic scattering differential cross sections: experimental results are compared
with calculation in which Coulomb interaction was neglected in nuclear region, whereas outside
range of nuclear interaction phases were propagated by switching on Coulomb between the scattered
clusters (orange-dashed line). Red curve in conjunction with red points disclose our MT I-III
results, where full Coulomb interaction treatment was considered. Dark green dot line shows cross
sections given by single Coulomb interaction taken into account.

can be remarked, like in p+3He case that [183], Yakovlev and Filikhin find effective interaction of

proton with target nucleus being more attractive. This can be due to the approximations that the

former authors indulged in calculating Coulomb terms by former authors.

The huge p+3H singlet scattering length value can be explained by the fact that MT I-III

potential overbinds α-particle. Note this potential predicts the binding energies much better than

any realistic NN interaction model alone (without 3NF ). However relative overbinding of α-

particle is considerably stronger than the tritium one. This can be seen from well known Tjon

line [157] (see Fig. 4.3), presented in the beginning of this chapter. Predictions of MT I-III

potential are off this line, placed in overestimated α-particle direction, in spite being very close to

the experimental point. Since α-particle is relatively overbound, its excitation is expected to be

overbound as well. Experimentally, the 4He resonance is at ER ≈ 0.4 MeV (above triton energy),

MT I-III potential (overestimating it) will push it closer to tritium threshold. Therefore by ≈ 0.33

MeV overestimated α-particle excitation is compatible with ≈ 0.7 MeV overestimation found in
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its ground state.

J Π = 0+ J Π = 1+

MT I-III -63.1 5.50

Av.14* -11.7 6.04

Av.18+UIX* -12.1 5.39

Av.14 -13.9 5.77

Av.18+UIX -16.5 5.39

Table 4.16: Comparison of p+3H scattering lengths in fm for MT I-III, Av.14 and Av.18+UIX
interaction models. Av.14* and Av.18+UIX* lengths correspond the calculations with the smaller
PWB, whereas Av.14 and Av.18+UIX results are the most complete.

Ere

Eim

Figure 4.14: Trajectory of S-matrix pole in the complex energy plane.

Calculations were extended to higher energies still staying in within threshold region. Obtained

results were compared with experimental results for differential cross sections at θ = 120
◦

in

Fig.4.13. One can clearly see that the α-particle resonance predicted by MT I-III potential is

situated not only too close to the threshold but has very small width as well. It is not surprising,

if one recalls the trajectory of the singularity in complex energy plane [190] (see Fig. 4.14). For

sufficiently attractive interaction, this singularity is on the negative part of the real energy axis

(representing a bound state). By reducing the attraction in the potential this singularity will move

towards zero, still remaining on the axis. At the zero energy it will move to complex energy plane,

thus becoming a resonant state with positive energy ERe and width Γ = EIm. Since this trajectory

is smooth, one should expect smaller widths for resonances situated closer to the thresholds.

Finally one can see that out of the resonance region theoretical scattering cross sections ap-

proach the experimental values, which was not the case in Coulomb interaction neglecting model.
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Figure 4.15: p+3He elastic scattering differential cross sections: experimental results are compared
with our calculation using Av.14 and Av.18+UIX interaction models, with complete treatment of
Coulomb interactions. Dotted curves in conjunction with data points indicate our the most com-
plete PWB calculations, whereas single line results were obtained without partial waves containing
lz = 2. Dark green dotted line shows cross sections given by single Coulomb interaction present.

Therefore near n+3He threshold behavior is expected to be well reproduced and this represents a

very positive result. This work is expected to be accomplished in the nearest future.

Calculations using realistic interaction models were performed as well. However due to the

necessity to calculate time-demanding Coulomb integrals, we were limited to rather small partial

wave basis. Expansion of PWB was additionally limited by the fact that in order to distinguish

n+3He and p+3H we had to incorporate all the isospin (T =0,1,2) states, roughly doubling its

size. The first essay was done with the PWB as in previous case containing open channel triton

(3He) amplitudes up to jx 6 4, however other amplitudes were limited to ly 6 2 and lz 6 1 and

interaction terms up to P-waves. Results with this limited PWB using Av.14 model as well as

Av.18 in conjunction with UIX 3NF are presented in Table 4.16- 4.17 and Fig. 4.15. Additional

calculated values by considering Av.18 NN model, without 3NF interaction, have given results

coinciding with those of Av .14 by more than two significant digits. The 0+ state scattering lengths

are negative, therefore indicating that resonance is well situated in-between thresholds. They are

smaller than expected by the experiment showing that the resonance is located too far from p+3H
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MT I-III Av.14 Av.18+UIX
J Π = 0+ J Π = 1+ J Π = 0+ J Π = 1+ J Π = 0+ J Π = 1+

0.01 0.123 −9.88 × 10−3 2.46 × 10−2 −1.03 × 10−2 2.92 × 10−2 −9.21 × 10−3

0.02 1.833 −0.1213 0.3169 −0.1263 0.379 −0.1136

0.05 35.14 −1.107 3.343 −1.153 4.074 −1.056

0.075 84.78 −2.228 7.425 −2.319 9.174 −2.151

0.1 −76.13 −3.400 12.23 −3.536 15.25 −3.310

0.25 −67.59 −9.760 41.27 −10.14 49.60 −9.690

0.45 −69.91 −16.20 65.19 −16.71 71.20 −15.94

Table 4.17: Comparison of p+3H scattering nuclear phaseshifts in degrees for MT I-III, Av.14 and
Av.18+UIX interaction models. Av.14 and Av.18+UIX phaseshifts correspond the calculations
with the most complete PWB used.

threshold. On an other hand the scattering observables in 1+ state, not exhibiting resonance, were

compatible to MT I-III predictions. With this PWB, 3NF had an overall small, however positive,

effect in correcting results.

As was observed in [103, 3] α-particle bound state calculations are very PWB demanding. The

sensible state in p+3H scattering calculations: J = 0+ is the α-particle state. Therefore non-

surprisingly slow convergence remains. Quoting that α-particle is very sensible to the presence

of FY amplitudes with lz = 2 we have added the most contributing lz = 2 amplitudes into our

PWB (these amplitudes principally contained NN tensor force terms in 3S1 - 3D1 waves). With

this PWB, results are considerably improved (see last two lines of Table 4.16). Furthermore, 3NF

started to contribute considerably in correcting results as much as did it the PWB expansion in the

calculations with NN forces alone. Singlet scattering length, obtained using Av.18+UIX model is

very close to the value expected by the experimental data analysis.

In Fig. 4.15 we present differential cross sections calculated at higher energies. The Av.18+UIX

model describes the experimental data very well. NN interaction model alone places resonance too

far from p+3H threshold, therefore underestimating cross sections at the resonance, and failing to

reproduce its shape. All the calculated curves tend to join the experimental data points near the

n+3He threshold, therefore indicating success in locating and describing it. Similar calculations

were preformed by Hoffman using RGM method [191]. Their Av.18 curve resembles the one we

obtained with Av.14 potential (note the similarity of Av.14 and Av.18 potential predictions for

scattering lengths). However once 3NF is included, results of former author starts considerably

overestimate the experimental data by visibly placing the resonance too close to p+3H threshold

(similarly as we had in case of MT I-III potential). The problems can be due to the fact that former

calculations were also limited in PWB and to peculiarities related with the RGM applicability to

describe low energy scattering.

In conclusion, one should admit that p+3H results are very promising. PWB has still to be

further expanded to guarantee the better converged results. Nevertheless it was demonstrated that

Av.18+UIX model is able to describe low energy behavior of p+3H scattering, as well as to place
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fine structure resonance in-between the thresholds.

Curiously realistic potential model seems to do well in describing such accuracy requiring system

as p+3H when it fails in visibly less complicated n+3H case. On the contrary, semi-realistic MT

I-III model describes well n+3H and p+3He systems, whereas fails in p+3H. A possible explanation

could be inaccuracy of realistic NN force models, when describing isospin breaking effects. Note,

that n+3H has a very large neutron excess ratio, being equal 0.5. The only nucleus having such large

ratio is 8He. As was discussed in previous chapter and demonstrated in figure 4.1, Av.18+UIX

model badly suffers in describing neutron rich nuclei as well as when moving away from the stability

valley. These observations forced Illinois group [4] to make isospin dependent modifications in 3NF.

Are these modifications sufficient, or they manifest a kind of Sisyphus effect when constructing

so called realistic nuclear interaction models. First, one has fitted NN force to describe 2N

observables. However, it became soon evident that these forces begin to suffer already for A > 3.

3NF was introduced to correct 3 and 4-body bound states, but it fails for 4N continuum as well

as for neutron rich nuclei with A > 5. Recently a big advance was achieved by adapting 3NF to

describe nuclear energies up to A = 8, however results for nuclei with A > 9 remain controversial.

Are all these discrepancies related to the numerical accuracy only?

4N continuum calculations are very useful here, they represent a comprehensive test of nuclear

interaction models. Whereas from a practical point of view – although these calculations are

cumbersome and computer time demanding – the required calculation time is by one order less

important than the one needed in calculating binding energies of the nuclei with A > 8.
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Conclusion

This thesis concentrates on non-relativistic quantum mechanical ” Few-body problem ”. The major

goal of ” Few-body” formalism is to obtain mathematically correct and computationally tractable

equations describing exactly processes in a few particle systems (number of particles N > 2), for any

assumed interaction between them. To obtain Quantum mechanical solutions standard formalism

of the Schrödinger equation is not enough, it suffers from several formal and/or practical anomalies,

since one is not able to describe the richness of available processes in systems with N > 2 by means

of a single equation. The mathematically rigorous equations for three particle systems, constrained

by short-range pair interactions, were formulated by Faddeev [9]. Ideas of Faddeev, were later

generalized by Yakubovski [15] to describe systems with any number of particles. Long range

interactions, in particularly Coulomb, presents special difficulties in the scattering theory. The

formalism of Faddeev-Yakubovski equations becomes not appropriate. Nevertheless, below the

particle break-up threshold, one can still incorporate Coulomb interaction into Faddeev equations

in Merkuriev proposed way [10]. In this thesis four particle Faddeev-Yakubovski equations have

also been modified to enable treatment of Coulomb interactions. The few-body formalism is very

general and therefore can be applied in several fields of theoretical physics. This fact is reflected

in the manuscript, where original results were obtained for atomic-molecular as well as for nuclear

systems.

In a framework of molecular physics I have studied heavy positive charge particle scattering on

the Hydrogen atoms. It is the first time when scattering lengths for µ+ − H, π+ − H and p+ − H

systems were rigorously calculated. Proton scattering on hydrogen atom presents a special interest

as well from the theoretical as from the experimental point of view. The large scattering length

found for proton spin triplet configuration, indicates an existence of the first excited H+
2 ions L = 0

2pσu symmetry state. By using modified effective range theory we were able to extract its binding

energy from our low energy scattering results. This is the weakest bound ever predicted. Effect of

the most important relativistic and QED corrections have been estimated. These corrections have

been found to be too weak to destroy the state.

Inspired by the recent experiment at GANIL [2, 11], which once again raised doubts on possible

existence of bound few neutron systems, I have tried to answer whether such the systems (trineu-

tron, tetraneutron) are compatible with what we know of strong interaction and what necessary

corrections should be made to permit such an existence. Sensibility of (n=2, 3, 4) neutron sys-

tems to modifications in nucleon-nucleon (NN) force, as well as effects of 3-4 nucleon forces were
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examined. This study has shown that such structures can be formed only at the price of very

strong violations in nuclear force. Such violations can hardly be tolerated from the point of view of

nuclear interaction underlying theory, as well as being in strong disagreement with other observed

nuclear properties (like nuclear matter density or the energy chart of stable nuclei). Therefore

possible existence of bound 2n , 3n or 4n systems is excluded, existence of even larger multineutron

structures seems very doubtful.

Neutron systems have been compared to other fermion system having resembling interaction,

however eventually forming bound multifermion clusters (namely with clusters of He3 molecules).

It have been shown that the principal difference in two systems is due to interaction in P and higher

partial waves, which in contrary to bosonic systems, plays a major role in multifermion systems.

These interactions, due to presence of angular momentum, come together with centrifugal energy

terms. Nuclear potential is weak compared with an effective centrifugal energy at the same range,

therefore making interaction in P and higher partial waves fade away.

Elastic scattering at low energies have been studied in four nucleon systems. For the first time

all the 3 (experimentally accessible) 4N system, namely p+3H, n+3H and p+3He were examined

in a complete and rigorous way. Calculations were performed by using non-realistic (MT I-III) as

well as several local realistic potential models.

Non-realistic MT I-III potential is very successful in predicting total as well as differential cross

sections in n+3H and p+3He systems. However it fails in describing p+3H scattering below n+3He

threshold, where α-particle excitation is present.

Despite of the complexity of the realistic potentials and the considerable number of partial

amplitudes appearing in the calculations, it has been shown that these potentials are not able to

reproduce the scattering cross sections in n+3H system, especially failing near the resonance at

Ecm = 3 MeV. Inclusion of three-nucleon force, in exception of very low energies, does not improve

agreement with the experimental data. In contrary these potential models seems to be efficient in

describing visibly more complex p+3H system.

These results suggest three possible hypotheses:

• either description of nuclear systems requires three-nucleon force having strong isospin sym-

metry breaking.

• NN P waves are not well described, isospin symmetry breaking is not well taken into account.

• finally, description of nuclear systems, due to finite size of nucleons, could require qualitatively

different force, in particular one having strong non-locality.
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Conclusion et perspectives en français

Ce travail de thèse contient une série de résultats théoriques obtenus dans la description des

systèmes quantiques à petit nombre de corps (Few-Body). Le formalisme utilisé est celui

des équations de Fadeev-Yakubovsky, qui ont été résolues dans l’espace de configuration. Ces

équations constituent une formulation mathématiquement rigoureuse, physiquement transparente

et numériquement accessible de la Mécanique Quantique non relativiste, indispensable dès

que le nombre de particules mises en jeu est N > 2.

Les résultats nouveaux que nous avons obtenus au cours de ce travail concernent le for-

malisme lui-même ainsi que les méthodes numériques utilisées et contiennent des prédictions

dans le domaine de la physique atomique et nucléaire.

A titre de conclusion et pour les perspectives nous voudrions signaler les points suivants:

1. Les développements formels obtenus concernent tous le traitement des forces de longue

portée, soit dans des sytèmes purement Coulombiens, soit dans des systèmes en interaction

forte mais dont l’inclusion de l’interaction coulombienne dans les paires p-p s’avère indispens-

able. Dans le cas N=3 nous avons consideré des systèmes chargés ainsi que les potentiels

de polarization qui en résultent. L’obtention des observables de diffusion nécéssite en effet

des méthodes appropriées qui ont été mises au point tout au long de ce travail. Dans le cas

N=4, nous avons développé le formalisme permettant d’inclure le potentiel de Coulomb dans

des sytèmes nucléaires en interaction forte.

2. Nous avons mis au point des méthodes numériques puissantes permettant d’inclure les forces

à trois et quatre corps par passages en coordonnées hyperradiales. Ces forces jouent un rôle

important en physique nucléaire mais leur traitement numérique est très lourd.

3. Dans le domaine de la physique atomique, nous présentons des résultats originaux dans

la diffusion d’une particule lourde chargée positivement (X+) sur des atomes

d’Hydrogène.

Nous avons obtenu en particuler des prédictions sur les longueurs de diffusion et les

sections efficaces pour les cas d’intérêt physique X = µ+, π+, p+. Un grand nombre
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de résonances dans des ondes partielles élevées ont été également prédites dans ces

différents systèmes.

La cas de la diffusion p−H présente un intérêt spécial. Nous prédisons une longueur

de diffusion p−H dans l’état triplet de spin proton-proton – 1pg, en notation de physique

moléculaire – d’une valeur at = 750 u.a.. Elle traduit l’existence d’un état excité de l’ion

moléculaire H+
2 très près du seuil, lié par une énergie de liaison extrêmement faible

B ∼ 10−9. L’existence de cet état conditionne toute la diffusion p − H à très basse énergie

avec des sections efficaces de taille nanoscopique.

Outre son caractère exotique, l’existence de cet état pourrait avoir un rôle clé

dans la formation de l’hydrogène moléculaire interstellaire, en accélérant le processus

intermédiaire de formation p + H2 → H+
2 + hν.

Ces résultats pourraient s’étendre sans difficulté, d’une part en considérant des masses

incidentes plus lourdes que le proton (e.g. système d − H) et d’autre part en prenant

des projectiles négativement chargés. Ce dernier cas implique des seuils inélastiques

ouverts même à énergie nulle, e.g. X− + H → e− + (p+, X−), et l’on y devine une physique

potentiellement très riche et encore inexplorée. En particulier dans la physique des

antiprotons (X = p̄) avec formation d’un très grand nombre d’états du protonium (p − p̄)

dans la voie finale.

4. Notre étude sur les petits clusters de neutrons a été motivée par l’annonce faite

au GANIL d’une possible mise en évidence de systèmes liés à trois ou quatre

neutrons. Il s’agit toutefois d’un problème classique dans la communauté Few-Body –

autant du point de vue expérimental que théorique – que l’on reconsidère chaque fois que des

progrès substantiels ont été accomplis soit dans les interactions, soit dans les techniques de

calcul.

Nous avons examiné les différentes pistes pouvant mener à une éventuelle liaison

pour des systèmes avec N=3 et 4, compte tenu de notre connaissance actuelle des forces

neutron-neutron, et surtout de leurs incertitudes. Nous avons ainsi evalué (i) le changement

nécessaire à l’interaction n−n dans l’onde 1S0 (la seule sous contrôle expérimental

direct), (ii) l’intensité des forces à trois et quatre corps, et (iii) l’attraction dans

l’onde P nécessaire pour obtenir des systèmes faiblement liés.

Nous avons conclu à son impossibilité.

Concernant les systèmes plus grands, la situation est moins claire et ne peut pas

être strictement infirmée par notre, relativement modeste, technologie actuelle. Nos résultats

montrent toutefois son caractère fortement improbable.

L’étude a été menée en parallèle avec un système de fermions qui présente des remar-

quables analogies avec les neutrons: les atomes d’Helium 3. On sait ce dernier système lié

à partir de N=35 atomes. Or nous avons montré que dans le cas N=2, la liaison des atomes
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d’Helium est nettemment défavorisé par rapports à celle des neutrons et que ceci reste vrai

si l’on ”bosonize” le problème, i.e. si l’on ne tient pas compte du principe de Pauli et qu’on

laisse jouer tout leur rôle aux interactions.

Nous pensons avoir éclairci la différence qu’existe entre ces deux systèmes de

fermions et qui peut aboutir à la formation, dans un cas mais pas dans l’autre, de matière

infinie liée. Cette différence se trouve en dernier ressort dans le rayon du coeur dur des

interactions respectives. Il diffère par un facteur trois (dans des unités caractéristiques). De

ce fait, la barrière centrifuge est un ordre de grandeur moins efficace dans la région où se

trouve le puits attractif et les ondes P contribuent de manière importante à la liaison.

5. Dans l’étude du système à quatre nucléons, nous avons abordé de facon unifiée les

différents processus possibles à basse énergie: n+t, p+3He, p-t.

Nous avons consideré tout d’abord le cas n+t. C’est le cas le plus simple puisqu’il est soumis

aux seules interactions fortes, mais dynamiquement très riche car il présente la premiére

résonance hadronique, située seulement à quelques MeV au dessus du seuil. Malgré un

nombre très supérieur d’ondes partielles inclu dans les calculs, il semble y avoir toujours

un désaccord avec les données expérimentales aussi bien dans la region ”d’onde

S” que dans la région du pic de résonance. Nous avons ainsi mis en évidence un

échec des modèles nucléaires actuels, alors même qu’ils founissent une description

satisfaisante des états liés. Il est probable que des forces à trois corps plus élaborées

incluant une structure en isospin plus riche (e.g. les forces d’Urbana-Illinois) soient nécessaires

pour aboutir à un accord satisfaisant.

L’inclusion des forces coulombiennes dans les équations de Faddeev-Yakubovski

nous a permis d’obtenir les sections efficaces différentielles de la réaction p-3He, le système

”miroir” de n+t. Nous avons montré que le modèle MT I-III donne une description

très satifaisante de l’ensemble des observables malgré son extrême simplicité. Des résultats

obtenus avec les potentiels réalistes, en incluant les forces à trois corps, sont aussi en assez

bon accord avec les calculs existants du groupe de Pisa.

Nous avons ensuite obtenu la première description théorique du complexe p + t →
4He∗ → n +3 He. L’inclusion des forces coulombiennes a permis pour le première

fois de placer la première excitation de l’4He dans le continuum, entre les seuils

p-3H et n-3He. Nous avons montré que dans ce système, le potentiel semi-réaliste MT

I-III, qui était jusqu’à présent le plus performant pour la description des petits noyaux,

donne des résultats en désaccord avec l’expérience, en particulier une longueur de diffusion

excessivement grande, de l’ordre de −60 fm.

Nous avons présenté la première prédiction pour la longueur de diffusion p+t (a =

−16 fm) avec des potentiels réalistes et obtenu une bonne description de la fonction
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d’excitation σ(θ = 120, E) mesurée expérimentalement. Cet accord nécessite toutefois

l’inclusion des forces à trois corps et constitue donc une mise en évidence de leurs

effets dans un observable de diffusion à très basse énergie. L’accord obtenu est un

peu surprenant, vue la difficulté que ces mêmes potentiels ont pour la description du système

n+t, a priori plus simple.

Ce travail pourrait être complété par la prise en compte du canal couplé n-3He,

seulement 0.7 MeV au dessus du seuil p-t, ce qui permettra d’obtenir pour la première fois

sa longueur de diffusion complexe en incorporant toute la richese dynamique sous le seuil

(p-t,4He∗).

Nous voudrions finalement signaler la puissance du formalisme de Faddeev-Yakubovski

qui a été utilisé dans ce travail et que nous avons, on l’espère, avoir contribué à dévélopper. Si,

en ce qui concerne le précission des états liés, ses performances sont bel et bien inférieures à celles

des méthodes variationelles, c’est le seul formalisme qui présente un degré de souplesse

permettant de décrire une grande variété de situations physiques, et ceci quel que

soit le type d’interaction. Nous voudrions souligner à cet égard notre prédiction, en utilisant

des résultats de diffusion, d’un état lié dont l’énergie extrêmement faible était jusqu’à présent

inaccesible par d’autres approches.

Il serait souhaitable de continuer à developper ce formalisme en explorant par exemple

le domaine très riche des résonances (calcul directe de position et largeurs) ou les réactions de

break-up avec trois et quatre corps dans la voie finale. Son utilisation combinée avec la rotation

complexe des coordonnées devrait permettre d’aboutir rapidemment à des résultats.
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164 A. Often used notations and abbreviations

Appendix A

Often used notations and

abbreviations

σu; σg Designates symmetry state of a diatomic molecule.

σ indicates that projection of angular momentum on the axis of two nuclei is

equal zero (Λ = 0). Subscript index marks the parity of the spatial wave

function in respect to exchange of two nuclei:

u - stands for antisymmetric wave functions,

g - for the symmetric ones.

1sσg; 2pσu Number and a latin letter in front of notations marks the electronic level

in the united atoms limit r → 0.

3NF Three nucleon force.

AGS Alt-Grassberger-Sandhas equations [163].

Av.14 Realistic potential model developped by Argonne group [99].

Av.18 Realistic potential model developped by Argonne group [101].

CD Charge dependence.

CD MT I-III Charge dependent Malfiet -Tjon potential, as defined in section 3.3.

CHP Cubic Hermite interpolants, see Appendix E.

Dineutron Bound system of two neutrons.

Dimer Bound state of two identical atoms (molecules).

FY Faddeev-Yakubovski equations [15], see section 1.2.3.

LS Lipmann-Schwinger equation [16].

LS Angular momentum-spin coupling scheme used in partial wave expansion,

see section 1.2.5.

MT I-III Semirealistic Malfiet -Tjon potential [120][121].

Nijm II Realistic potential model developped by Nijmegen group [94].

NN Nucleon-nucleon.

OBE One boson exchange model.

PWB Partial wave basis.

QHP Quintic Hermite interpolants, see Appendix E.

Reid 93 Realistic potential model developped by Nijmegen group [93].
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Tetramer Bound state of four identical atoms (molecules).

Tetraneutron Bound system of four neutrons.

Trimer Bound state of three identical atoms (molecules).

Trineutron Bound system of three neutrons.

UIX Three nucleon force developed by the Argonne group [110].
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Appendix B

Transformation of Jacobi coordinates

in arbitrary 4-body systems

In this work Jacobi coordinates were used to describe the motion of the particles. These coordinates

are well suited to separate the center of mass motion of the system, as well as of its subsystems,

therefore simplifying expressions for kinetic energy operator.

Faddeev-Yakubovski equations are written in terms of so called components. These compo-

nents are designated to describe different asymptotic configurations of the particles and thus are

convenient to write in their proper Jacobi coordinate sets. As it was shown in section 1.2.1, there

are two types of Jacobi coordinate sets: one associated with 4-particle partitions of type K and

one with type H partitions. They are defined as follows:

K l
ij,k →





−→xij =
√

2
mimj

mi+mj
(−→r j −−→r i)

−−→yij,k =
√

2
mk(mi+mj)
mk+mi+mj

(−→r k − mi
−→r i+mj

−→r j

mi+mj
)

−−→zijk,l =
√

2
ml(mi+mj+mk)
ml+mk+mi+mj

(−→r l − mi
−→r i+mj

−→r j+mk
−→r k

mi+mj+mk
)

(B.1)

Hij,kl →





−→xij =
√

2
mimj

mi+mj
(−→r j −−→r i)

−→ykl =
√

2 mkml

mk+ml
(−→r l −−→r k)

−−→zij,kl =
√

2
(mi+mj)(mk+ml)
mi+mj+mk+ml

(mk
−→r k+ml

−→r l

mk+ml
− mi

−→r i+mj
−→r j

mi+mj
)

(B.2)

One wishes to establish relations enabling to transform the coordinates between any two Jacobi

coordinate sets. In general, such transformation can be written by use of 3-dimensional rotation

matrix: 


−→
x′
−→
y′
−→
z′


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







−→x
−→y
−→z


 . (B.3)
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However, since for 4-body system we have as much as 48 different sets of Jacobi coordinates

deriving separate expression for each possible coordinate transformation is too burdensome task.

Nevertheless one can decompose any complicated coordinate transformation to cyclic application of

some notably simpler transformation operations, which keep some of Jacobi coordinates unchanged.

Before explicitly writing down equations, I would like to introduce some abbreviate notations of

particle mass combinations, to be used in simplifying expressions:

µij =
mimj

mi + mj

ηij =
mi(M − mi − mj)

M − mi
= µi(kl) (B.4)

γi =
mi(M − mi)

M
= µi(jkl)

λij =
(mi + mj)(M − mi − mj)

M
= µ(ij)(kl)

and the total mass of the system

M =

4∑

i=1

mi (i, j, k, l) ∈ (1, 2, 3, 4). (B.5)

B.1 Transformation between K-type coordinate sets

Transformations between any two K l
ij,k-type coordinate sets can be reduced to subsequent applica-

tion of transformations, which at the time permute only two neighboring indexes in the set [(ij )k ] l .

Therefore, one has to introduce only four rotation matrices:

1. Rotation matrix Rij enables to permute two first indexes i and j . I.e. this matrix trans-

forms coordinate set K l
ij,k to K l

ji,k. Its expression is trivial, since in such transformation only

direction of the vector ~x is reversed, whereas other two vectors ~y and ~z are not affected.




~x′

~y′

~z′




Kl
ji,k

=




−1 0 0

0 1 0

0 0 1







~x

~y

~z




Kl
ij,k

(B.6)

2. Rotation enabling to pass between the coordinate sets with the second and the third particle

indexes (j and k) interchanged is the principal coordinate transformation operation used in

solving three-body problem. Such transformation relates Jacobi coordinate set K l
ij,k to K l

ik,j .

Hence, vector ~z is not affected by this, while expressions for this matrix was already provided

in eq. (1.76) and eq. (1.76):




~x′

~y′

~z′




Kl
ik,j

=




√
1

mi

√
µik

ηkl
0

√
µij

ηjl
− mk

mk+mi

√
ηjl

ηkl
0

0 0 1







~x

~y

~z




Kl
ij,k

(B.7)
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3. Transformations between two K-type coordinate sets are completed by establishing rotation

matrix permitting to permute order of the last two indexes in general coordinate set K l
ij,k,

namely l and k :




~x′

~y′

~z′




Kk
ij,l

=




1 0 0

0
√

ηklηlk

mi+mj

√
ηlk

γl

0
√

ηkl

γk
− ml

M−mk

√
γk

γl







~x

~y

~z




Kl
ij,k

(B.8)

B.2 Transformation between H -type coordinate sets

One can similarly decompose any complicated rotation matrix permitting to pass between any

two H-type Jacobi coordinate sets into consequent application of simpler rotation matrixes, which

permits to permute only two neighbor indexes at the time.

1. One should remark, that transitions between two H-type coordinate sets, which differ only

by the first two (i and j ) or the last two (k and l) indexes are very trivial. In this case

Yakubovski partition structure is not changed, only direction of single coordinate vectors ~x

or ~y is reversed. Respectively, one has two following expressions:




~x′

~y′

~z′




Hji,kl

=




−1 0 0

0 1 0

0 0 1







~x

~y

~z




Hij,kl

(B.9)




~x′

~y′

~z′




Hij,lk

=




1 0 0

0 −1 0

0 0 1







~x

~y

~z




Hij,kl

(B.10)

2. Much more complicated situation arises, when one tries to pass between Hij,kl coordinate

sets, which differ by interchange of the indexes in the middle (i.e. k and j ). One can see that

none of three Jacobi coordinate vectors is conserved. This coordinate transformation matrix

is given by




~x′

~y′

~z′




Hik,jl

=




√
µijµik

mi
−

√
µikµkl

mk

√
µik

λij

−
√

µijµjl

mj

√
µjlµkl

ml

√
µjl

λij√
µij

λik

√
µkl

λik

miml−mjmk

M
√

λijλik







~x

~y

~z




Hij,kl

(B.11)

B.3 Coordinate transformation between H and K Jacobi bases

Finally, when solving Faddeev-Yakubovki equations situations when one has to switch between

Jacobi coordinate representations of K- and H-type are inevitable. Note, one needs to precise two

transformation matrices, which furthermore are inverse of each other and enable to pass from(to)
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any general coordinate set Kk
ij,l to(from) coordinate set Hij,kl. These transformation matrices do

not affect Jacobi vector ~x, whereas rotation in the plane yz should be performed.




~x′

~y′

~z′




Hij,kl

=




1 0 0

0 −
√

µklηkl

mk

√
µkl

γl

0
√

ηkl

λij

µkl

mk

√
λij

γl







~x

~y

~z




Kl
ij,k

(B.12)

and vice versa




~x′

~y′

~z′




Kl
ij,k

=




1 0 0

0 −
√

µklηkl

mk

√
ηkl

λij

0
√

µkl

γl

ηkl

mk

√
γl

λij







~x

~y

~z




Hij,kl

(B.13)



Appendix C

Three-body operators

C.1 Three-body transformation operator ĥ

Using Faddeev formalism we deal with so called Faddeev components, which are described by

means of three different Jacobi coordinate sets. For the numerical convenience these components

were decomposed into amplitudes (see section 1.2.5) by projecting them into bipolar harmonics

basis. Thus one introduces three bipolar harmonic bases, each associated with a given Faddeev

component and expressed in the corresponding Jacobi coordinate set.

Thus, one is obliged to define operators, which enable to project Faddeev amplitudes into the

amplitude basis of the non-proper Faddeev component. Or, more precisely, to calculate projec-

tion of some arbitrary function
Fα′ (x′,y′)

x′y′

[
Yl′x(x̂′)Yl′y(ŷ

′)
]
LM

, defined in the basis of the coordinate

set α′~x′~y′, onto bipolar harmonics basis
[
Ylx(x̂)Yly(ŷ)

]
LM of the other coordinate set α~x~y.

As seen in eq. (1.76), transition between different Jacobi coordinate sets can be performed

using rotation matrix, which furthermore is unitary:

(
~x′

~y′

)
=

(
c1 s1

s2 c2

)(
~x

~y

)
(C.1)

One can remark, that scalars x′, y′ can be expressed through only three parameters: x, y and

u = x̂ · ŷ. Therefore, the function, depending only on scalar variables x′, y′, written in the non-

proper basis xy, depend only on one angular variable u = x̂ · ŷ of four possible angular variables (x̂

and ŷ). The other three angular variables can be integrated out. This property is realized using

operator ĥ, defined by:

∫∫
dx̂dŷ

[
Ylx(x̂)Yly(ŷ)

]
LM

xy

x′y′
Fα′(x′, y′)

[
Yl′x(x̂′)Yl′y(ŷ

′)
]
LM

=

+1∫

−1

ĥLM
lxly ,l′xl′y

(x, y, u)Fα′(x′, y′)du.

(C.2)

Derivation of this operator ĥ consist of no difficulty [190], it can be written as a convolution of

171
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the geometrical coefficients:

ĥLM
lxly ,l′xl′y

(x, y, u) =
∑

λ=0

λ̂
√

l̂x l̂y l̂′x l̂′y

2
Pλ(u)

∑

l1+l2=l′x

∑

l3+l4=l′y

√
(2l′x + 1)!(2l′y + 1)!

(2l1)!(2l2)!(2l3)!(2l4)!

xl1+l3+1yl2+l4+1

(x′)l′x+1(y′)l′y+1
cl1
1 cl4

2 sl2
1 sl3

2

∑

l5

l̂5

(
λ lx l5

0 0 0

)(
l1 l3 l5

0 0 0

)

∑

l6

l̂6(−)l6+lx+L
(

λ ly l6

0 0 0

)(
l2 l4 l6

0 0 0

){
lx ly L
l6 l5 λ

}





l1 l3 l5

l2 l4 l6

l′x l′y L





. (C.3)

Here l̂ = 2l + 1 and Pλ(u) is polynomial of Lagendre of order λ [18].

Considerable simplifications take place, if angular momentum is equal zero (L = 0). In this

particular case bipolar harmonic becomes:

[Yl1(Ω1)Yl2(Ω2)]00 =
(−)l1

√
l̂1

4π
Pl1(cos(Ω̂1, Ω2)), (C.4)

whereas expression for the operator ĥ is very simple:

ĥ00
lxly ,l′xl′y

(x, y, u) = δlxlyδl′xl′y(−)lx+l′x

√
l̂x l̂′xPlx(u)Pl′x(u′)

2

xy

x′y′
. (C.5)

Spin (isospin) bases If system posses spins and isospins, expression for projection operator of

Faddeev amplitudes should be extended to incorporate these bases as well. Operator ĥ merely

permits to pass from one representation basis to the other and thus does not affect the physical

system as a whole. Therefore collective systems quantum numbers as angular momenta L, total spin

(S), total isospin (T ) and total angular momenta (J ) are conserved separately by this operator.

Therefore, in each of the basis L, S and T transformation operator acts independently and can be

written as a simple product of transformation operators in each of these bases.

ĥα,α′(x, y, u) = ĥLM
α,α′(x, y, u) · ĥS

α,α′ · ĥT
α,α′ . (C.6)

Expression of these operators are trivial. I will write down only operator permitting to pass

from the base with order of particles numbered (12 )3 to (31 )2 , while all the other transformation

operators follow by merely interchanging particle indexes. For spin basis one has:

ĥS
α,α′ =

〈[
(s3s1)σx

s2

]
S

∣∣∣
∣∣∣
[
(s1s2)σ′

x
s3

]
S

〉
= (−)σ′

x+s3−S A

{
s3 s1 σx

s2 S σ′
x

}
(C.7)

One has analogous expression, for transitions between the isospin basis:

ĥT
α,α′ =

〈[
(t3t1)τx

t2
]
T

∣∣∣
∣∣∣
[
(t1t2)τ ′

x
t3

]
T

〉
= (−)τ ′

x+t3−T A

{
t3 t1 τx

t2 T τ ′
x

}
(C.8)
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Here we have used notation for the modified 6j coefficients:

A

{
j1 j2 j12

j3 J j23

}
= (−)j1+j2+j3+J

√
̂12̂23

{
j1 j2 j12

j3 J j23

}
=

〈[
j1 (j2j3)j23

]
J

∣∣∣
∣∣∣
[
(j1j2)j12

j3

]
J

〉

(C.9)

C.2 Expectation value operator W

When trying to solve scattering problem with long range interaction one needs to artificially un-

couple Faddeev components at some finite distance to be able to implement correct boundary

conditions (see section 2.1). Therefore, left hand side of Faddeev equation, at some large (but

finite) separation of the scattered particle, absorbs full interaction terms. The full three particle

potential cannot be simply written as a function of two scalars x and y. It necessarily depends at

least on one angular variable, which is the angle between vectors ~x and ~y. Hence, full potential

is not diagonal in bipolar harmonic basis and couples the different amplitudes even staying within

the same component. One would like to write down the action of general scalar multiplicative

operator F (x, y, u = x̂ · ŷ) in bipolar harmonics basis. It is done by using operator ŴLM
lxly ,l′xl′y

, which

projects action of F (x, y, u) from one general amplitude
(
l′xl′y

)
LM to the other ones (lxly)LM , and

is defined as:

∫∫
dx̂dŷ

[
Ylx(x̂)Yly(ŷ)

]
LM F (x, y, u)

[
Yl′x(x̂)Yl′y(ŷ)

]
LM

=

+1∫

−1

ŴLM
lxly,l′xl′y

(x, y, u)F (x, y, u)du. (C.10)

Derivation of this operator is similar to that of operator ĥLM
α,α′(x, y, u), after some routine algebra

one obtains:

ŴLM
lxly,l′xl′y

(x, y, u) = (−)lx+l′x−L
√

l̂x l̂y l̂′x l̂′y
∑

λ=0

λ̂

2
Pλ(u)

(
l′x lx λ

0 0 0

)(
l′y ly λ

0 0 0

) {
λ l′x lx

L ly l′y

}

(C.11)

In case of zero angular momentum (L = 0), as in previous section for operator ĥLM
lxly ,l′xl′y

(x, y, u),

expression of the operator Ŵ considerably simplifies:

Ŵ 00
lxly ,l′xl′y

(x, y, u) = δlxlyδl′xl′y(−)lx+l′x

√
l̂x l̂′xPlx(u)Pl′x(u)

2
. (C.12)

Operator Ŵ as well can be utilized to evaluate the diagonal terms of Urbana IX three-body

force. Therefore, this operator can serve as alternative test to the rotation formalism developed to

treat 3-body force (see Appendix G.2).
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C.3 Case of the identical particles

Let us suppose particles 2 and 3 to be identical. It follows from the subsection 1.2.4 that component

functions in bases 2 and 3 , except some phase multiplier, are identical. One has:

Ψ = (12 ) 3 + (23 ) 1 + (31 ) 2 (C.13)

= ε [(13 ) 2 + (32 ) 1 + (21 ) 3 ] .

Here by (ij ) k we denote Faddeev components
∣∣ψ(ij )k

〉
. As discussed in subsection 1.2.5, these

components are decomposed into partial wave basis, by means of so called partial amplitudes

Fα(ij)k
(x, y), being projection of Faddeev component

∣∣ψ(ij )k

〉
onto partial wave α. By expanding

eq. (C.13) in partial waves and regrouping similar terms, one can remark simple symmetry relation

for the partial amplitudes:

Fα(23)1
= εFα(32)1

= ε (−)lx+tx+sx−s2−s3−t2−t3 Fα(23)1
(C.14)

and

Fα(12)3
= εFα(13)2

= ε (−)lx+tx+sx−s1−s3−t1−t3 Fα(31)2
. (C.15)

The first relation imposes certain restrictions to the choice of partial waves in the component

(23 ) 1 . I.e.

ε = (−)lx+tx+sx−s2−s3−t2−t3 = (−)lx+tx+sx . (C.16)

Thus, for the fermionic systems quantity lx + tx +sx should be impair, whereas for bosonic systems

it is pair.

Relation (C.15) enables one to reduce number of integro-differential equations to solve, since

equations given by decomposition of component (12 ) 3 become identical to those of component

(31 ) 2 .



Appendix D

Four-body operators

D.1 Four-body basis transformation operators

In this appendix I will develop expressions of the permutation operators, introduced in subsection

1.2.5 and applied in solving four identical particle Faddeev-Yakubovski equations. Before doing this

I should like to stress out that matrix elements of these operators are strongly related to partial

wave basis transformation operators. Actually, they differ only by the some phase coefficient.

This phase appears once one is referring to the identity of the particles, trying to project some

wave function into the PWB of its non-proper Faddeev-Yakubovski component (as was done in eq.

(C.15)).

D.1.1 Matrix elements of three-body permutation operator 〈αxyz [K]|P+ |α′x′y′z′ [K]〉

This operator, 〈αxyz [K]|P+ |α′x′y′z′ [K]〉 = 〈αxyz [K]|P12P23 |α′x′y′z′ [K]〉 , is identical to three-

body rotation operator introduced in previous section. In fact, necessary phase for the transition

elements is given by eq. (C.15). However if one deals with the physical states1 this phase turns

to be 1. From eq. (C.14) it follows that the amplitudes of physical states are those for which

ε = (−)lx+sx+tx .

By assuming all the 4 particles being identical, thus beyond of all having the same masses as

well, rotation matrix given by eq. (B.7) becomes:




~x′

~y′

~z′




K4
23,1

=




−1
2

√
3

2 0

−
√

3
2 −1

2 0

0 0 1







~x

~y

~z




K4
12,3

1Physical states are the states which have appropriate symmetry of the systems wave function. Hence, waves
function of the system of the identical fermions are antisymmetric in exchange of any two particles, whereas in case
of bosonic systems wave function is symmetric.
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The action of permutation operator P+ in isospin bases follows immediately, from eq. (C.8):

t̂α,α′ = 〈TKα |P+
∣∣TKα′

〉
=

〈[{
(t1t2)τx

t3
}

T3
t4

]
T

∣∣∣
∣∣∣∣
[{

(t2t3)τ ′
x
t1

}
T ′
3

t4

]

T

〉
= (D.1)

= (−)τ ′
x+t1−T ′

3δT3,T ′
3
A

{
t1 t2 τx

t3 T3 τ ′
x

}

If one works with (LS) coupling scheme, desired operator can be easily obtained by collecting

equations (C.3),(C.7) and (C.8) into eq.(C.6). However in practical 4-body applications we have

utilized (JJ‡) coupling scheme. Therefore one additional step had to be made to pass from (JJ‡)

basis to (LS) basis before expressions of the previous Appendix are applied. Summarizing all this

procedures in one equation, one obtains:

〈αxyz [K]|P+
∣∣α′x′y′z′ [K]

〉
= t̂α,α′

1∫

−1

hJ
α,α′

(x, y, u)Kα′(x′, y′, z′)du, (D.2)

with

ĥJ
α,α′

(x, y, z, u) =
∑

lxy ,σ

δlz ,l′zδjz ,j′zδJ3,J ′
3
A





lx σx jx

ly s3 jy

lxy σ J3





A





l′x σ′
x j′x

l′y s′1 j′y
l′xy σ′ J ′

3





(D.3)

(−)σ′
x+s1−σA

{
s1 s2 σx

s3 σ σ′
x

}
xy

x′y′
ĥ

lxy

lxly ,l′xl′y
(x, y, u).

While symmetry provided coefficients for P+ matrix elements are shown to be 1, therefore

defined expressions are valid for the rotation matrix between the K components as well. However

this rotation matrix is twice as large, since once this operator applied it can create non-physical

states, which do not satisfy condition (C.16)2.

〈(12)3, 4| R̂α,α′ |(23)1, 4〉 = 〈(31)2, 4| R̂α,α′ |(12)3, 4〉 = 〈(23)1, 4| R̂α,α′ |(31)2, 4〉 = 〈K|P+ |K〉
(D.4)

D.1.2 Permutation matrix 〈αxyz [K]|Q |α′x′y′z′ [K]〉 = 〈K| εP34 |K〉 elements

Permutation operator εP34 relies the partial wave amplitudes of the base K4
12,3 to the base K3

12,4

(see eq. 1.111). Transformation of appropriate Jacobi coordinate sets is effected by the rotation

matrix eq. (B.8), which for a system of identical particles becomes:



~x′

~y′

~z′




K3
12,4

=




1 0 0

0 1
3

2
√

2
3

0 2
√

2
3 −1

3







~x

~y

~z




K4
12,3

(D.5)

2Physical FY components Kl
ij,k should satisfy condition (C.16) (i.e. having right symmetry relations for exchange

of particles i and j), however they are not obliged to have certain symmetry for exchange of any other particle
pair. Only the total wave function, being a sum of all these components is (anti-)symmetric in exchange of any two
particles.Therefore if we write component Kl

ij,k in some other coordinate set, let it be Kl
ik,j , one will loose validity

of condition (C.16), since component of departure does not have defined symmetry for particles i and k.
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Permutation matrix we define in a standard way, as

〈αxyz [K]|Q
∣∣α′x′y′z′ [K]

〉
= t̃α,α′

1∫

−1

h̃J
α,α′

(y, z.u)Kα′(x′, y′, z′)du. (D.6)

Integration is done only in one angular variable u = ŷ · ẑ, since by permutating particles 3 and

4, vector ~x is unchanged. Therefore rotations are done only in the yz plane. Expressions of the

function h̃J
α,α′

(x, y, z.u), as well as corresponding coefficient t̃α,α′ are easy to find:

t̃α,α′ = 〈TKα |P34

∣∣TKα′

〉
=

〈[{
(t1t2)τx

t3
}

T3
t4

]
T

∣∣∣
∣∣∣∣
[{

(t1t2)τ ′
x
t4

}
T ′
3

t3

]

T

〉
= (D.7)

= (−)T3+T ′
3−τ ′

x−T δτx,τ ′
x
A

{
t3 τ ′

x T3

t4 T T ′
3

}

h̃J
α,α′

(x, y, z, u) = ε
∑

σ,l′yz ,J ′
2

δlx,l′xδσx,σ′
x
δjx,j′x(−)s3+s4−σA

{
jx jy J3

jz J J ′
2

}
A

{
j′x j′y J ′

3

j′z J J ′
2

}

A





ly s3 jy

lz s4 jz

l′yz σ J ′
2





A





l′y s4 j′y
l′z s3 j′z
l′yz σ J ′

2





yz

y′z′
ĥ

lyz

lylz ,l′yl′z
(y, z, u). (D.8)

D.1.3 Permutation operator 〈αxyz [H]| P̃ |α′x′y′z′ [H]〉 = 〈αxyz [H]|P13P24 |α′x′y′z′ [H]〉

Operator P13P24 when applied on components H (see eq. (1.112) retains the form of the partition

tree, simply vectors ~x and ~y are permuted:




~x′

~y′

~z′




H34,12

=




0 1 0

1 0 0

0 0 −1







~x

~y

~z




H12,34

(D.9)

Since rotation matrix is a simple variable permutation its resultant permutation operator is isotropic

in space and therefore presents as a simple phase factor.

tα,α′ = δτy ,τ ′
x
δτx,τ ′

y
(−)τx+τy−T (D.10)

〈H|P13P24 |H〉 =
∑

α′

tα,α′δlx,l′yδly ,l′xδlz ,l′zδlx,l′xδσx,σ′
y
δσy,σ′

x
δσz ,σ′

z
δjx,j′yδjy ,j′xδjz ,j′zδjxy,j′xy

(−)jx+jy−jxy+lz

(D.11)

D.1.4 Transitions between the bases K and H

Transition between the PWB sets of K-type and H-type components, having the same particle

indexing order, is effected by the rotation matrix, which in case of identical particle coincides with
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its own inverse (see eq. (B.12) and eq. (B.13)):




~x′

~y′

~z′




H(K)

=




1 0 0

0 − 1√
3

√
2
3

0
√

2
3

1√
3







~x

~y

~z




K(H)

(D.12)

This rotation matrix conserves ~x value and thus describes rotations only in yz plane. Rotation

angle of yz plane we denote by u = ŷ · ẑ. Permutation operator we write in the standard one-

dimensional integral form:

〈αxyz [K]|Q
∣∣α′x′y′z′ [H]

〉
= t̃α,α′

1∫

−1

h̃J
α,α′

(y, z.u)Kα′(x′, y′, z′)du. (D.13)

Since, rotation matrix is the same for transitions from H to K components as for transitions

from K to H, simple relation between corresponding permutation functions h̃
α,α′ (y, z.u) exist:

h
〈K||H〉
α,α′ (x, y, z, u) = h

〈H||K〉
α′,α (x, y, z, u). (D.14)

These permutation operators are easy to calculate, they result in the following expressions:

tα,α′ = δτx,τ ′
x
A

{
τ ′
x t3 T3

t4 T τ ′
y

}
(D.15)

h
〈K||H〉
α,α′ (x, y, z, u) = tα,α′

∑

l′yz ,J ′
2

δlx,l′xδσx,σ′
x
δjx,j′x(−)j′y+l′yz−l′y−J ′

2A

{
jx jy J3

lz J J ′
2

}

A

{
j′x j′y j′xy

l′z J J ′
2

}
A

{
l′z l′y l′yz

σ′
y J ′

2 j′y

}
A





ly s3 jy

lz s4 jz

l′yz σ′
y J ′

2





(D.16)

xyz

x′y′z′
ĥ

lyz

lylz ,l′yl′z
(y, z, u).

D.2 Double operators

In general, four operators defined above are sufficient to solve 4-body problem and construct systems

wave function. However, one needs their successive application already when solving FY equations.

Even if one only wishes to evaluate projection of a single amplitude into other one from different

basis by consequent application of a few permutation operators, one should introduce a full function

basis in-between those operators. Note the first permutation operator, when applied to a given

amplitude, will project it to full amplitude set of the intermediate basis. By limiting (truncating)

this basis to the amplitudes selected in the solution one makes approximation and thus cannot

blame that obtained results are well converged. Alternative is to define the double operators,

which need double integrals, and appear in FY equations.
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Systems wave function consist some terms, which can be obtained only after three subsequent

plane rotations (has three permutation operator terms). Therefore, in general, they need some

triple integrals to be performed. Evaluation of these integrals is very costly numerical task, thats

why we always reconstruct the wave function by at least once truncating the basis.

D.2.1 Permutation operator 〈H|P−QP− |K〉 = 〈H|P13P24 |K〉

This operator can be expressed as 〈H| P̃ |H〉 〈H| |K〉 , however due to triviality of operation 〈H| P̃ |H〉
it can still be obtained by performing a single integral. Expressions for it follows directly by com-

bining expressions of 〈H| P̃ |H〉 and 〈H| |K〉 operators:




~x′

~y′

~z′




K2
34,1

=




1 0 0

0 − 1√
3

√
2
3

0
√

2
3

1√
3







0 1 0

1 0 0

0 0 −1







~x

~y

~z




H12,34

=




0 1 0

− 1√
3

0 −
√

2
3√

2
3 0 − 1√

3







~x

~y

~z




H12,34

(D.17)

For the isospin part we have:

tα,α′ = δτ ′
x,τy

(−)τx+τy−T A

{
τx t3 T ′

3

t4 T τy

}
(D.18)

and finally:

h
〈H||K〉
α,α′ (x, y, z, u) = tα,α′

∑

l′yz ,J ′
2

δly ,l′xδσy,σ′
x
δjy ,j′x (−)2jx+jy−jxy−J ′

2+lx−l′yz A

{
jy jx jxy

lz J J ′
2

}

A

{
j′x j′y J ′

3

j′z J J ′
2

}
A

{
lz lx l′yz

σx J ′
2 jx

}
A





l′y s1 j′y
l′z s2 j′z
l′yz σx J ′

2





(D.19)

xyz

x′y′z′
ĥ

l′yz

lxlz ,l′yl′z
(x, z, u).

D.2.2 Double operator 〈αxyz [K]|P+Q |α′x′y′z′ [K]〉 = ε 〈αxyz [K]|P12P23P34 |α′x′y′z′ [K]〉

This operator projects the partial wave amplitudes of base K4
12,3 to the base K1

23,4 (see eq. 1.111).

To express Jacobi coordinates of K1
23,4 set through coordinates of the set K4

12,3 one should perform

at least two consequent rotations.

First we perform rotation in xy plane and afterwards in the plane y0z. The vectors ~y0 is inter-

mediate coordinate vector ~y, obtained after the first rotation. The subsequent rotation operation

can be written in the matrix form:




~x′

~y′

~z′




K1
23,4

=




1 0 0

0 1
3

2
√

2
3

0 2
√

2
3 −1

3







~x′

~y0

~z




K4
23,1




~x′

~y0

~z




K4
23,1

=




−1
2

√
3

2 0

−
√

3
2 −1

2 0

0 0 1







~x

~y

~z




K4
12,3

(D.20)
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Isospin part of this operator can be easily obtained by collecting terms from eq. (D.1) and eq.

(D.7), which correspond respectively action of operators P+ and Q:

tα,α′ =
〈[{

(t1t2)τx
t3

}
T3

t4

]
T

∣∣∣
∣∣∣∣
[{

(t2t3)τ ′
x
t4

}
T ′
3

t1

]

T

〉
(D.21)

= (−)t1+T ′
3−T A

{
t1 t2 τx

t3 T3 τ ′
x

}
A

{
t1 τ ′

x T3

t4 T T ′
3

}
.

By noting u = cos(̂̂x, ŷ), v = cos( ̂̂y0, ẑ) and after applying some routine algebra the following

relation is obtained by:

g
〈K||K〉
α,α′ (x, y, z, u, v) = tα,α′

∑

lxy,l′xy ,σ,σ′,l′yz ,λ,L,S

A





lx σx jx

ly s3 jy

lxy σ J3





A





l′x σ′
x j′x

l′y s4 j′y
l′xy σ′ J ′

3





A





lxy σ J3

lz s4 jz

L S J





A





l′xy σ′ J ′
3

l′z s2 j′z
L S J





A

{
l′x l′y l′xy

l′z L l′yz

}
(D.22)

A

{
l′x λ lxy

lz L l′yz

}
(−)s1+σ′−S A

{
s1 s2 σx

s3 σ σ′
x

}
A

{
s1 σ′

x σ

s4 S σ′

}

xyz

x′y′z′
ĥ

lxy

lxly,l′xλ(x, y, u)ĥ
l′yz

λlz ,l′yl′z
(y0, z, v)

Transition between these two basis is done after calculating a double integral:

〈Kαxyz|P+Q |K〉 =
∑

α′

1∫

−1

du

1∫

−1

g
〈K||K〉
α,α′ (x, y, z, u, v)Kα′(x′, y′, z′)dv. (D.23)

D.2.3 Double operator 〈αxyz [K]|P+ |α′x′y′z′ [H]〉 = 〈αxyz [K]|P12P23 |α′x′y′z′ [H]〉

It is clear that this operator can be decomposed into two operators, demanding single integration

each (i.e. 〈K|P12P23 |K〉 〈K| |H〉), by introducing full functions basis of K-type components in

between those two operators. But, as was mentioned above in order to have more assured conver-

gence one is obliged to perform it directly . Following the same steps and using the same notations

as for the previous double integral operator, one obtains:




~x′

~y′

~z′




H23,14

=




1 0 0

0 − 1√
3

√
2
3

0
√

2
3

1√
3







~x′

~y0

~z




K4
23,1




~x′

~y0

~z




K4
23,1

=




−1
2

√
3

2 0

−
√

3
2 −1

2 0

0 0 1







~x

~y

~z




K4
12,3
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tα,α′ =
〈[{

(t1t2)τx
t3

}
T3

t4

]
T

∣∣∣
∣∣∣
[
(t2t3)τ ′

x
(t1t4)τ ′

y

]
T

〉
(D.25)

= (−)t1+τ ′
x−T3 A

{
t2 t3 τ ′

x

t1 T T3

}
A

{
t1 t2 τx

t3 T3 τ ′
x

}
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And finally:

g
〈K||K〉
α,α′ (x, y, z, u, v) = tα,α′

∑

lxy,l′xy ,σ,l′yz ,λ,L,S

A





lx σx jx

ly s3 jy

lxy σ J3





A





l′x σ′
x j′x

l′y σ′
y j′y

l′xy S j′xy





A





lxy σ J3

lz s4 jz

L S J





(−)J−L−j′xy+l′xy A

{
S l′xy J ′

3

l′z J L

}

A

{
l′x l′y l′xy

l′z L l′yz

}
A

{
l′x λ lxy

lz L l′yz

}
(D.26)

(−)s1+σ′
x−σ A

{
s2 s3 σ′

x

s1 S σ

}
A

{
s1 s2 σx

s3 σ σ′
x

}

xyz

x′y′z′
ĥ

lxy

lxly,l′xλ(x, y, u)ĥ
l′yz

λlz ,l′yl′z
(y0, z, v)

D.3 Four body W operators

In full analogy with Ŵ operators introduced for 3-body system, one can define operators for 4-body

system, which enables one to evaluate potential terms expressed in non-proper Jacobi coordinate

sets. These operators enable to shift full long-range interaction terms into the left hand side of

Faddeev-Yakubovski equations. Therefore one can afford to uncouple FY components at some

finite distance and implement the correct boundary conditions.

Let suppose that we have to calculate impact of potential terms V l = F (x′, y′, z′) in one of FY

components amplitude basis, described by non proper Jacobi coordinate set xyz. Furthermore,

suppose that transformation from ~x, ~y, ~z to ~x′, ~y′, ~z′ can be effected by two consequent rotations3:




~x′

~y′

~z′


 =




c2 s2 0

s2 −c2 0

0 0 1







~x

~y0

~z′







~x

~y0

~z′


 =




1 0 0

0 c1 s1

0 s1 −c1







~x

~y

~z


 (D.27)

Our aim is to find such function ULM
lxly ,lz ,l′xl′yl′z

, which enables equality:

∫∫∫
dx̂dŷdẑ

[{
Ylx(x̂)Yly(ŷ)

}
lxy

Ylz(ẑ)
]
LM

F (x′, y′, z′)

[{
Yl′x(x̂)Yl′y(ŷ)

}
l′xy

Ylz(ẑ)

]

LM
=

+1∫

−1

+1∫

−1

ULM
lxly ,lz ,l′xl′yl′z

(x, y, z, u, v)F (x′, y′, z′)dudv

3In general, not all the relations between 4-body Jacobi coordinate sets can be established by 2 successive rotations.
For some coordinate sets necessary relations can be given only after effecting three successive rotations (ex.: K4

12,3

and K1
24,3). However, local potential terms depend only on distances between two particles (i.e. only distance x is

of interest), whereas other two vectors ~y and ~z are relevant. Therefore to evaluate non-proper potential terms one
needs only to reproduce vector ~x, which can always be done by two consequent rotations.
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where as previously u = cos( ̂̂x, ŷ0) and v = cos(̂̂y, ẑ). One can verify that this operator ULM
lxly ,lz ,l′xl′yl′z

can be expressed using the following relation:

ULM
lxly ,lz ,l′xl′yl′z

(x, y, z, u, v) =
∑

l′yz ,λ

(−)l′xy+lx+ly+L+l2+l3 l̂1 l̂2 l̂5 l̂6(c1y)l3(s1z)l4

4yl2
0

√
(2l2 + 1)!l̂x l̂′x l̂y l̂′y l̂z l̂′z l̂xy l̂′xy l̂3 l̂4

(2l3 + 1)!(2l4 + 1)!

(
l1 l3 l5

)(
l1 l4 l6

)(
lx l′x l2

)(
ly l′y l5

)(
lz l′z l6

)

(D.28)

{
l′xy l6 lxy

lz L l′z

}{
l2 l6 l5

l1 l3 l4

}



lx l′x l2

ly l′y l5

lxy l′xy l6





Pl2 (u)Pl1 (v)

Four identical particles possess certain trivial symmetry properties, which can be used to reduce

number of matrix elements to evaluate:

〈Kα|V13 |Kα′〉 = (−)lx+l′x+tx+t′x+σx+σ′
x 〈Kα|V23 |Kα′〉

〈Kα|V14 |Kα′〉 = (−)lx+l′x+tx+t′x+σx+σ′
x 〈Kα|V24 |Kα′〉

〈Hα|V13 |Hα′〉 = (−)lx+l′x+tx+t′x+σx+σ′
x 〈Hα|V23 |Hα′〉 (D.29)

= (−)ly+l′y+ty+t′y+σy+σ′
y 〈Hα|V14 |Hα′〉

〈Hα|V14 |Hα′〉 = (−)lx+l′x+tx+t′x+σx+σ′
x 〈Hα|V24 |Hα′〉

For the physical states ε = (−)lx+tx+σx , all the phase factors above give 1. Furthermore,

Coulomb potential does not depend on spins of the interacting particle pair, and therefore conserves

spin quantum numbers, thus for the physical states one has:

〈Kα|V13 |Kα′〉 = 〈Kα|V23 |Kα′〉 δσx,σ′
x

〈Kα|V14 |Kα′〉 = 〈Kα|V24 |Kα′〉 δσx,σ′
x

〈Hα|V13 |Hα′〉 = 〈Hα|V23 |Hα′〉 δσx,σ′
x

(D.30)

= 〈Hα|V14 |Hα′〉 δσy ,σ′
y

〈Hα|V14 |Hα′〉 = 〈Hα|V24 |Hα′〉 δσx,σ′
x
,

which finally leads to:

〈Kα|V13 + V23 |Kα′〉 = 2 〈Kα|V13 |Kα′〉 δσx,σ′
x

〈Kα|V14 + V24 |Kα′〉 = 2 〈Kα|V14 |Kα′〉 δσx,σ′
x

(D.31)

〈Hα|V13 + V23 + V14 + V24 |Hα′〉 = 4 〈Hα|V13 |Hα′〉 δσx,σ′
x
δσy ,σ′

y
.



Appendix E

Spline interpolation

This appendix is devoted to describe function interpolation techniques used throughout this thesis.

The smooth function can be approximated on a finite domain x ∈ [a, b] by expanding it in a

complete set of basis functions; that is:

f(x) =

k·(N+1)−1∑

n=0

CnSn(x), (E.1)

where the choice of the basis functions Sn(x) is arbitrary. A basis set with many numerical ad-

vantages is the set of spline functions. The spline functions are defined as piecewise polynomials

of degree k with a continuous derivative of order m. By dividing interval [a, b] into subintervals,

separated by the breakpoints x0, x1, ...xN , one associates k splines with each of them. The break-

points can be distributed so that there are less breakpoints in the region where the function is

smooth. This is one of advantages of the splines, since by a careful choice of breakpoints one can

reduce the size of spline basis without losing precision in approximation.
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Figure E.1: The form of CHP (figure on the left) and QHP (figure on the right) interpolants.
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In order for the m-th derivative to be continuous interpolant polynomial functions should

be of degree m + 1 or higher. Since we deal with the second-order differential equations, the

spline functions should have second order continuous derivatives. The minimal order polynomials

satisfying it are cubic ones. Therefore we associate k = 2 cubic Hermite polynomials (CHP) with

each breakpoint (see Fig. E.1), being defined as:

for Xi−1 ≤ x ≤ Xi

(with r = x−Xi−1

Xi−Xi−1
)

{
S2i(x) = r2(3 − 2r)

S2i+1(x) = −(Xi − Xi−1)r
2(1 − r)

for Xi ≤ x ≤ Xi+1

(with r = x−Xi

Xi+1−Xi
)

{
S2i(x) = (1 − r)2 (1 + 2r)

S2i+1(x) = −(Xi+1 − Xi)r(1 − r)2

(E.2)

It turns to be an optimal choice [32]. However, sometimes dealing with more acute wave

functions or trying to obtain better precision (especially, when expectation value of kinetic energy

is required), it is useful to use quintic Hermite polynomials (QHP), having k = 3 polynomials

associated with each breakpoint (see Fig. E.1):

for Xi−1 ≤ x ≤ Xi

(with r = x−Xi−1

Xi−Xi−1
)





S3i(x) =
(
1 − r3

)
[1 + 3r (1 + 2r)]

S3i+1(x) = −(Xi − Xi−1)
(
1 − r3

)
(1 + 3r)

S3i+2(x) = 1
2(Xi − Xi−1)

2r2(1 − r)3
(E.3)

for Xi ≤ x ≤ Xi+1

(with r = x−Xi

Xi+1−Xi
)





S3i(x) = r3 [3(1 − r)(3 − 2r) + 1]

S3i+1(x) = (Xi+1 − Xi)r
3(1 − r)(4 − 3r)

S3i+2(x) = 1
2(Xi − Xi−1)

2r3(1 − r)2
(E.4)

Here I will figure out some useful properties of QHP and CHP interpolants. First, one can

notice that in each subinterval i ≡ [xi−1, xi] there are only 2 · k non zero splines, therefore one

needs to sum only 2 · k terms to reconstruct the functions value at any given point:

f(x) =

k·(i+1)−1∑

k·(i−1)

CnSn(x) x ∈ [xi−1, xi] (E.5)

This fact turns to be crucial in numerical applications, since it enables one to reduce number of

arithmetical operations and furthermore, when applied for solving systems of differential equations,

results in linear systems with sparse matrices. Sparse matrices can be compactly stored, therefore

considerably reducing requirements of computer memory.

One can remark that it is easy to obtain the interpolated function and its derivative values at

the breakpoints, when QHP or CHP interpolants in use:

f(xi) = Ck·i f ′(xi) = Ck·i+1

f ′′(xi) = Ck·i+2 for QHP interpolants.
(E.6)
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These relations facilitates implementation of the boundary conditions. Furthermore, they can

serve to interpolate the functions, which values and derivatives are known at the breakpoints:

f(x) =
N∑

i=0
[f(xi)S2i(x) + f ′(xi)S2i+1(x)] for CHP.

f(x) =
N∑

i=0
[f(xi)S3i(x) + f ′(xi)S3i+1(x) + f ′′(xi)S3i+2(x)] for QHP.

(E.7)
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Appendix F

Passing to spherical coordinates

In solving FY equations we have chosen Cartesian Jacobi coordinates x, y, z, since in these coordi-

nates expressions of potential and kinetic energy operators have simple separable form. Separability

of these two operators results in major advantage of the Cartesian coordinates, which is separabil-

ity of elastic scattering wave function into two independent wave functions - one describing plane

wave propagation in z direction, whereas other internal wave function of two scattered fragments.

However, one can remark that permutation operators described in Appendix D conserve the hy-

perradius value: ρ =
√

x2 + y2 + z2. Therefore by using spherical coordinates these operators can

be represented by significantly smaller matrices, in which dependency on hyperradius is separated.

These observations pose an evident question: if one can make use advantages of both coordinate

systems in the same resolution code? In order of doing that - one should be able to transform easily

the wave function from one coordinate system to the other. Spline interpolation can be effectively

applied for it.

Transformation from spherical to Cartesian coordinates is affected using relations:

x = ρ cos θ sinϕ

y = ρ sin θ sinϕ (F.1)

z = ρ cos ϕ

Its backtransformation follows

ρ =
√

x2 + y2 + z2

u = cos θ =
x√

x2 + y2
(F.2)

v = cosϕ =
z

ρ

We define two spline bases: one associated with the Cartesian coordinates and the other with

the spherical. Spherical variables are contained in ρ ∈ [0, ρmax] , u ∈ [0, 1] and v ∈ [0, 1]. One can

interpolate any function by developing it in the former two spline bases:
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f(x, y, z) =

kx·(Nx+1)−1∑

ix=0

Six(x)

ky·(Ny+1)−1∑

iy=0

Siy(y)

kz ·(Nz+1)−1∑

iz=0

Siz(z) · C(xyz)
ix,iy ,iz

(F.3)

=

kR·(Nρ+1)−1∑

iR=0

SiR(ρ(x, y, z))

ku·(Nu+1)−1∑

iu=0

Siu(u(x, y, z))

kv ·(Nv+1)−1∑

iv=0

Siv(v(x, y, z)) · C(ρuv)
iR,iu,iv
(F.4)

At the Gauss points of the Cartesian spline mesh, using notations of section 1.3.3, function

values are obtained employing the following relations:

[
f (xyz)

]
jx,jy ,jz

=




[
NX

]

⊗[
NY

]

⊗[
NZ

]




[
C

(xyz)
ix,iy ,iz

]
=

[
M

(ρuv)
(xyz)

]iρ,iu,iv

jx,jy ,jz

[
C(ρuv)

]
iρ,iu,iv

(F.5)

where
[
M

(ρuv)
(xyz)

]iR,iu,iv

jx,jy,jz

is a square matrix, permitting to project a function, given its spherical

coordinate spline interpolants
[
C

(ρuv)
iR,iu,iv

]
, to the Gauss points of Cartesian spline mesh. Analogous

expression can be written for the Gauss points of the spherical spline mesh:

[
f (Ruv)

]
jR,ju,jv

=




[Nρ]

⊗
[Nu]

⊗
[Nv]




[
C(ρuv)

]
iR,iu,iv

=
[
M

(xyz)
(ρuv)

]ix,iy ,iz

jR,ju,jv

[
C(xyz)

]
ix,iy ,iz

(F.6)

Spline interpolation matrices, written in tensor form, can be easily inverted. Therefore, nec-

essary procedure to represent function in spherical coordinate system spline basis
[
C(ρuv)

]
iR,iu,iv

,

when the values of cartesian grid spline interpolant coefficients are known
[
C(xyz)

]
ix,iy ,iz

, is:

[
C(ρuv)

]
iR,iu,iv

=




[Nρ]−1

⊗
[Nu]−1

⊗
[Nv]−1




[
M

(xyz)
(ρuv)

]ix,iy,iz

jR,ju,jv

[
C(xyz)

]
ix,iy,iz

(F.7)

One can establish relation for the inverse process, to determine unknown spline interpolant

coefficients of the Cartesian spline basis:

[
C(xyz)

]
ix,iy ,iz

=




[
NX

]−1

⊗[
NY

]−1

⊗[
NZ

]−1




[
M

(ρuv)
(xyz)

]iR,iu,iv

jx,jy,jz

[
C(ρuv)

]
iR,iu,iv

(F.8)
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Therefore, one can represent permutation matrices in spherical coordinates, whereas working

in Cartesian ones. To evaluate this matrix action - one should transform spline basis to spherical

coordinates using eq. (F.7), then multiply with desired permutation matrix and return back to

Cartesian coordinates by using eq. (F.8). This procedure, even though looking rather heavy,

considerably reduces storage requirements as well as number of arithmetical operations to perform.

Note square matrices
[
M

(ρuv)
(xyz)

]
and

[
M

(xyz)
(ρuv)

]
are very sparse, having respectively only 8kρkukv and

8kxkykz non-zero elements per line.
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Appendix G

Implementing three-body force

G.1 Modified FY equations

Three-body force exhibited between the particles (ijk) can be written as a sum of three terms:

Vijk = V
(k)
ij + V

(i)
jk + V

(l)
ik . (G.1)

The only restriction in former decomposition is that term V
(k)
ij is symmetric in exchange of particles

(ij) . There is though infinitely many possible ways to perform such a decomposition.

Using these definitions the total potential for the four particle system contains a sum of 6

different pair interaction terms (Vij) and 12 three-body potential terms (V
(k)
ij ):

V =
∑

i<j

Vij +
∑

i<j,k

V
(k)
ij (G.2)

The eq. (1.91) can be rewritten in next evident form:

ψij = G0VijΨ + G0(V
(k)
ij + V

(l)
ij )Ψ. (G.3)

By multiplying both sides of this equation by [1 + GijVij ] and employing the identity:

[1 + GijVij ]G0 = Gij (G.4)

one obtains:

ψij = GijVij [Ψ − ψij ] + Gij(V
(k)
ij + V

(l)
ij )Ψ. (G.5)

The function ψij can be further decomposed into a sum of subcomponents K l
ij,k, Kk

ij,l and

Hij,kl, whereas regrouping terms in the last relation one obtains a set of modified FY equations,

which permits treatment of three-body interactions:





K l
ij,k = GijVij [ψjk + ψik] + GijV

(k)
ij Ψ

Kk
ij,l = GijVij [ψjl + ψil] + GijV

(l)
ij Ψ

Hij,kl = GijVijψkl

(G.6)

191
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G.2 Implementing UIX forces

G.2.1 Urbana IX model

The Urbana 3NF model is based on the 2π mechanism with an intermediate ∆ excitation proposed

in [106]. It is supplemented by a purely phenomenological repulsive short range part. The parame-

ter set of Urbana IX 3NF, was recently adjusted [220], when in conjunction of Av18 NN interaction

model, the experimental 3H binding energy and the nuclear matter density were reproduced.

Usually one express the Urbana interaction in terms of a commutator and anti-commutator

part. This reads:

Ṽ
(3)
12 = A2π

(
{X31,X12}{~τ3 · ~τ1, ~τ1 · ~τ2} +

1

4
[X31,X12][~τ3 · ~τ1, ~τ1 · ~τ2]

)
+ U0T

2(r31)T
2(r12). (G.7)

By expanding isospin terms one can rewrite it, as:

Ṽ
(3)
12 = A2π

(
X31X12I

−
23 + X12X31I

+
23

)
+ U0T

2(r31)T
2(r12) (G.8)

with

I−23 = 2

(
~τ2 · ~τ3 −

i

4
~τ1 · ~τ2 × ~τ3

)
(G.9)

I+
23 = 2

(
~τ2 · ~τ3 +

i

4
~τ1 · ~τ2 × ~τ3

)
.

The force is explicitly defined as an ensemble of NN interactions, derived from π exchange NN

force.

Xij = Y (rij) ~σi · ~σj + T (rij)Sij (G.10)

It contains a spin-spin ~σi · ~σj and a tensor part

Sij = 3 (~σi · ~rij) (~σj · ~rij) − ~σi · ~σj (G.11)

The radial dependence is provided by

Y (r) =
e−mπr

mπr

(
1 − e−cr2

)
(G.12)

T (r) =

[
1 +

3

mπr
+

3

(mπr)2

]
e−mπr

mπr

(
1 − e−cr2

)2

Urbana IX model is supplied by 3 adjusted parameters, having following values A2π = −0.0293

MeV, U0 = 0.0048 MeV and c = 2.1 fm−2.

G.2.2 Practical implementation

To calculate matrix elements introduced by three-body force we use a trick proposed by W. Glöeckle

et al. in [221]. However different three-body force decomposition scheme is employed, which helps

us to write equations in more symmetrical form and further simplify the numerical task.
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Complete UIX force between particles (123 ) reads as:

V123 = A2π

(
X31X12I

−
23 + X12X31I

+
23 + X12X23I

−
31 + X23X12I

+
31 + X23X31I

−
12 + X31X23I

+
12

)

+U0T
2(r31)T

2(r12) + U0T
2(r12)T

2(r23) + U0T
2(r23)T

2(r31) (G.13)

Decomposed terms of eq. (G.1) we define as:

V
(3)
12 = A2π

(
X12X31I

+
23 + X12X23I

−
31

)
+

1

2
U0

[
T 2(r12)T

2(r23) + T 2(r31)T
2(r12)

]
(G.14)

In FY scheme we are using matrix elements
〈
αxyz

[
K4

12,3

]∣∣ V
(3)
12 |Ψ〉 are present. One is left

with a task of calculating them:

〈
αxyz

[
K4

12,3

]∣∣ V
(3)
12 |Ψ〉 = A2π

〈
αxyz

[
K4

12,3

]∣∣ X12X31I
+
23 + X12X23I

−
31 |Ψ〉 (G.15)

+
1

2
U0

〈
αxyz

[
K4

12,3

]∣∣ T 2(r12)T
2(r23) + T 2(r31)T

2(r12) |Ψ〉

Let us precise the necessary steps one should follow in order to evaluate the matrix elements

given by the first two potential terms in eq.(G.14). Expressions for the other two potential terms,

having only radial dependence, will follow immediately.

〈
αxyz

[
K4

12,3

]∣∣ X12X31I
+
23 + X12X23I

−
31 |Ψ〉 =

〈
αxyz

[
K4

12,3

]
|X12|α′x′y′z′

[
K4

12,3

]〉

×
[〈

α′x′y′z′
[
K4

12,3

] ∣∣I+
23

∣∣ α′′x′′y′′z′′
[
K4

31,2

]〉 〈
α′′x′′y′′z′′

[
K4

31,2

]
|X31|Ψ

〉

+
〈
α′x′y′z′

[
K4

12,3

] ∣∣I−31

∣∣ α′′x′′y′′z′′
[
K4

23,1

]〉 〈
α′′x′′y′′z′′

[
K4

23,1

]
|X23|Ψ

〉] (G.16)

Here we have introduced intermediate states noted with bars. We suppose that the basis of the

intermediate states is full and integration over its vectors is performed on. The implementation

of the intermediate states was made to enable calculation of Xij and Tij potential terms in their

proper Jacobi coordinate sets.

First, it is straightforward to prove the identities:

〈
α′x′y′z′

[
K4

12,3

] ∣∣I+
23

∣∣ α′′x′′y′′z′′
[
K4

31,2

]〉
= εα′εα′′

〈
α′x′y′z′

[
K4

31,2

] ∣∣I−23
∣∣ α′′x′′y′′z′′

[
K4

12,3

]〉
(G.17)

= εα′εα′′

〈
α′x′y′z′

[
K4

12,3

] ∣∣I−31
∣∣ α′′x′′y′′z′′

[
K4

23,1

]〉

and

〈
αxyz

[
K4

12,3

]∣∣ X12X31I
+
23 + X12X23I

−
31 |Ψ〉 = [1 + εα′εα′′ ]

〈
αxyz

[
K4

12,3

]
|X12|α′x′y′z′

[
K4

12,3

]〉

×
〈
α′x′y′z′

[
K4

12,3

] ∣∣I−31
∣∣ α′′x′′y′′z′′

[
K4

23,1

]〉 〈
α′′x′′y′′z′′

[
K4

23,1

]
|X23|Ψ

〉

Here εα′ and εα′′ denotes symmetry factor of the states α′ and α′′ consequently
(
ε = (−)tx+sx+lx

)
.

It worths mentioning, that multiplication with operator I+
23 (I−31) results in loosing antisym-

metry properties of FY components. However, since operators Xij are symmetric in exchange of

particles (ij) and since the total wave function of the system Ψ is fully antisymmetric, states α′′ are

antisymmetric. Furthermore states α′ are also antisymmetric (physical) in exchange of particles

(12), since X12X31I
+
23 + X12X23I

−
31 is symmetric in exchange of particles (12 ) . It means that con-

tributions of symmetric(non-physical) states α′ singles out, when one adds contributions of matrix
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elements of X12X31I
+
23 and X12X23I

−
31. On the other hand contributions of physical states are

equal and adds up. Therefore one can restrict to only physical states and replace the phase factor

[1 + εα′εα′′ ] by 2.

Equation for the other two potential terms can be obtained in the similar way:

〈
αxyz

[
K4

12,3

]∣∣ T 2(r12)T
2(r23)+T 2(r31)T

2(r12) |Ψ〉 = [1 + εα′εα′′ ]
〈
αxyz

[
K4

12,3

] ∣∣T 2(r12)
∣∣ α′x′y′z′

[
K4

12,3

]〉

×
〈
α′x′y′z′

[
K4

12,3

]
||α′′x′′y′′z′′

[
K4

23,1

]〉 〈
α′′x′′y′′z′′

[
K4

23,1

] ∣∣T 2(r23)
∣∣ Ψ

〉

The same strategy is valid in calculating these matrix elements. One can restrict to only

physical intermediate basis functions and calculate the double contribution of one of two terms.

The ability to restrict in calculations to only physical states is a major advantage of modified

decomposition of UIX 3BF. Original method, proposed by Glöeckle et al. [221], required doubling

the basis states by introducing non-physical, spurious, states. Furthermore, we must perform only

one Jacobi basis transformation operation, which is the most CPU-time requiring task, whereas in

[221] two such operations were used.

G.2.3 Explicit form of matrix elements

In this section we briefly summarize the matrix elements of the NN-like interactions Xij , as well

as I± isospin operators. Matrix elements of the operator Xij in its proper Jacobi basis reads as:

〈
αxyz

[
K4

12,3

]
|X12|α′x′y′z′

[
K4

12,3

]〉

= δ(x−x′)δ(y−y′)δ(z−z′)δσx,σ′
x
δjx,j′xδly ,l′yδjy,j′yδJ3,J ′

3
δlz ,l′zδjz ,j′zδJ,J ′δτx,τ ′

x
δT3,T ′

3
δT,T ′

×
[
δlx,l′x(4σx − 3)Y (x) + δσx,1T (x)Slx,l′x,jx

]

with

Slx,l′x,jx
=




−2 jx−1
2jx+1 0 6

√
jx(jx+1)

2jx+1

0 2 0

6

√
jx(jx+1)

2jx+1 0 −2 jx+2
2jx+1




lx=jx−1

lx=jx

lx=jx+1

l′x=jx−1 l′x=jx l′x=jx+1

(G.18)

Terms of the isospin operators I±αβ are easy to calculate, they give following expressions:
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〈
((τ1τ2)t τ3)T

∣∣~τ3 · ~τ1

∣∣((τ2τ3)t′ τ1)T ′

〉
= δTT ′(−)t+16

√
t̂t̂′





1
2

1
2 t′

1
2 1 1

2

t 1
2 T





− i

4

〈
((τ1τ2)t τ3)T

∣∣~τ2 · ~τ3 × ~τ1

∣∣((τ2τ3)t′ τ1)T ′

〉

= δTT ′6
√

t̂t̂′
∑

ξ

(−)2T−ξ+ 1
2

{
ξ 1

2 1
1
2

1
2 t

} 



T 1
2 t

1
2 1 ξ

t′ 1
2

1
2





This concludes the summary on the three-body force implementation in FY equations. The

form of Jacobi basis transformation operators required in expressions have been already provided

through eq. (D.4) in Appendix D.
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Appendix H

The Scattering amplitude

In the main part of the thesis it was shown how to calculate the total cross sections and the phase-

shifts of the scattering process. However one can not measure these quantities by the scattering

experiment directly. To obtain the total cross sections one should cover the target by the detectors

and integrate number of detected events. Extraction of phaseshifts is even more complicated and

one should perform far from trivial analysis in order to extract these quantities from the exper-

imental data. Directly controlled quantities in the experiment are the scattered particle angular

distributions, or differential cross sections. In addition if one deals with polarized particle target

and beam one is able to measure ’so called’ polarization observables. In this appendix I will outline

how to relate theoretically calculated phaseshifts to the quantities controlled by the experiment.

First, I would like to outline the formalism, when no Coulomb interaction are present. For an

incoming plane wave with momentum pi along the z axis in the channel i, with the spin state ξSν ,

the wave function asymptote can be written as:

|ψSν(~r)〉 −→
r→∞

eikizξSνβi +
∑

f,s′,ν′

(
mivi

mf vf

) 1
2
ξS′ν′βfMfi

S′ν′,Sν(θ, ϕ) e
ikf z

r , (H.1)

where βi and βf denote the particle channels. We expand the incoming plane wave in partial waves

using the spherical Hankel functions [18]:

eikizξSν =
∞∑

L=0

iL
√

4π (2L + 1)

2

{
ĥ

(−)
L (kir) + ĥ

(+)
L (kir)

}
YL0(θ, ϕ)ξSν (H.2)

=
∑

L,J

√
4π (2L + 1)

2

{
ĥ

(−)
L (kir) + ĥ

(+)
L (kir)

}
CJ ν
L0,SνΦ|LSJ ν〉 (H.3)

Where Φ|LSJ ν〉 is eigenfunction of the system in |LSJ ν〉 basis, which can be projected to

corresponding LS basis |Lν − ν ′Sν ′〉 basis:

Φ|LSJ ν〉 = iL
∑

ν′

CJ ν
Lν−ν′,Sν′ξSν′YLν−ν′(θ, ϕ). (H.4)

Expressed in the partial waves outside the range of the nuclear potential the wave function
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reads:

|ψSν(~r)〉 −→
r→∞

∑

JLL′S′f

√
4π (2L + 1)

2
CJ ν
L0,Sν

{
ĥ

(−)
L (kir)δfiδLL′δSS′

+
〈
f,L′,S ′∣∣ SJ |i,L,S〉

(
mivi

mfvf

) 1
2

ĥ
(+)
L (kir)Φ|L′S′J ν〉βf

}

One should note that S matrix 〈f,L′,S ′|SJ |i,L,S〉 is diagonal in J and independent of ν,

because of the rotational invariance of the Hamiltonian. The factor
(

mivi

mf vf

) 1
2

has been inserted in

order to obtain unitarity of S matrix. By inserting eq. (H.4) into the last formulae and comparing

with eq. (H.1) one gets the final expression for the scattering amplitude:

Mfi
S′ν′,Sν(θ, ϕ) =

∑

JLL′

√
π (2L + 1)

iki
CJ ν
L0,SνC

J ν
Lν−ν′,Sν′

〈
f,L′,S ′∣∣ SJ − 1 |i,L,S〉YL′ν−ν′(θ, ϕ). (H.5)

Differential cross section one obtains after summing all the scattering cross sections occurring

after transitions between different spin states and after dividing by the number of initial spin

configurations:
dσ

dΩ
(θ, ϕ) =

1

ŝ1ŝ2
Tr

[
M †(θ, ϕ)M(θ, ϕ)

]
. (H.6)

Here I use notation ŝi = 2si + 1 to indicate number of possible spin degenerated states for a

given spin quantum number si.

Total elastic scattering cross section one obtains after integrating angular parts of the last

equation and using the the fact that spherical harmonics are orthogonal functions. In the case

when both systems orbital angular momentum (L) and spin (S) are conserved by the interaction,

one has:

σ =
4π

k2

1

ŝ1ŝ2

∑

i

L̂iŜi sin
2 δi (H.7)

δi - here indicates elastic scattering phase shift in state with Li and Si, whereas the sum runs

over all the partial waves i and their subdivisions, in case of degeneracy.

More general formula, when only total angular momenta is conserved is:

σ =
4π

k2

1

ŝ1ŝ2

∑

i

Ĵi sin
2 δi (H.8)

Experimentally determined spin observables, or various polarization parameters, are obtained

by taking averages of various target-beam spin projection combinations:

Aik =
Tr

[
M †(θ, ϕ)S1iM(θ, ϕ)S2k

]

Tr [M †(θ, ϕ)M(θ, ϕ)]
(H.9)

These observables are called analyzing powers. Powers with only average taken of one particles

spin projection is called vector analyzing power and is indicated by only one index, whereas two

particle spin correlation observables are called tensor analyzing powers.
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When Coulomb interaction is present the strong scattering amplitude absorbs the Coulomb

phase factor as in eq. (1.32). In analogy with scattering of particles without spin eq. (1.34) the full

scattering amplitude is the sum of strong and Coulomb amplitude. Keeping in mind that Coulomb

interaction conserves spin quantum number one has:

Mfi
S′ν′,Sν(θ, ϕ) = fCδSS′δνν′ +

∑

JLL′

√
π (2L + 1)

iki
×

CJ ν
L0,SνC

J ν
Lν−ν′,Sν′e

iσL′
〈
f,L′,S ′∣∣ SJ − 1 |i,L,S〉 eiσLYL′ν−ν′(θ, ϕ)

where fC is the same as in eq. (1.37).

For scattering of two demi-integer spin corps, that is a case of N-N, N-3He or N-3H not all the

elements of scattering amplitude matrix (or M -matrix) are independent, and numerous symmetry

relations can be established [199],[200]. In practice using M -matrix elements one can define 7

independent quantities called invariant amplitudes, which are expressed as [198]:

a =
1

2
(M10,10 + M11,11 − M1−1,11) (H.10)

b =
1

2
(M10,10 + M11,11 + M1−1,11) (H.11)

c =
1

2
(−M00,00 + M11,11 + M1−1,11) (H.12)

d = − 1√
2 sin θ

(M11,10 + M10,11) (H.13)

e =
1√
2

(M11,10 − M10,11) (H.14)

f = −i
√

2M11,00 (H.15)

The M-matrix in this formalism can be written as [199], [200]:

M(kf , ki) =
1

2
{(a + b) + (a − b) (σ1 · n̂) (σ2 · n̂) + (c + d) (σ1 · m̂) (σ2 · m̂)

+ (c − d)
(
σ1 · l̂

) (
σ2 · l̂

)
+ e (σ1 + σ2) · n̂ + f (σ1 − σ2) · n̂

}

where l̂, m̂, n̂ are defined according to

l̂ =
~kf + ~ki∣∣∣~kf + ~ki

∣∣∣
, m̂ =

~kf − ~ki∣∣∣~kf − ~ki

∣∣∣
, n̂ =

~kf × ~ki∣∣∣~kf × ~ki

∣∣∣
. (H.16)

By σ1 and σ2 Pauli operators are denoted acting on the spin wave functions of the projectile

and target particles of demi-integer spin. Experimentally controlled elastic scattering observables
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are given by:

σ0 =
dσ

dΩ
(θ, ϕ) =

1

2

(
|a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2

)
(H.17)

σ0Ay0 = Re (a∗e + b∗f) (H.18)

σ0A0y = Re (a∗e − b∗f) (H.19)

σ0Ayy =
1

2

(
|a|2 − |b|2 − |c|2 + |d|2 + |e|2 − |f |2

)
(H.20)

σ0Axz = −Re (a∗d) sin θ + Im (c∗f) − Im (d∗e) cos θ (H.21)

σ0Azx = −Re (a∗d) sin θ − Im (c∗f) − Im (d∗e) cos θ (H.22)

σ0Axx = Re (a∗d) cos θ + Re (b∗c) − Im (d∗e) sin θ (H.23)

σ0Azz = −Re (a∗d) cos θ + Re (b∗c) + Im (d∗e) sin θ (H.24)
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Abstract

In this thesis quantum mechanical non-relativistic few-body problem is discussed. Basing on fun-

damentals ideas of Faddeev and Yakubovski three and four body equations are formulated and

solved for fermionic atomic and nuclear systems. Former equations are modified to include long

range interactions. Original results for nuclear and molecular physics were obtained :

• Positively charged particle scattering on Hydrogen atoms was considered. Predictions for

π+-H, µ+-H and p+-H scattering lengths were given. Existence of an unknown, very weakly

bound H+
2 bound state was predicted.

• Motivated by the possible observation of bound four neutron structure at GANIL we have

studied compatibility of such an existence within the current nuclear interaction models.

• 4 nucleon scattering at low energies was investigated. Obtained results for n-3H, p-3H and p-
3He systems were compared with the experimental data. Validity of realistic nucleon-nucleon

interaction models is questioned.

Keywords: Few-body, four body, scattering, Coulomb scattering, bound states, resonant

states, tetraneutron, hydrogen molecular ion

Résumé

Cette thèse est consacrée à l’étude numérique de systèmes quantiques non-relativistes à trois et

quatre particules.

Les équations de Faddeev-Yakubovski ont été modifiées pour pouvoir inclure les interactions

à longue portée et ont été appliquées à l’ étude des nombreux systèmes physiques. Des résultats

originaux ont été obtenus pour les systèmes nucléaires et moléculaires :

• Dans le cadre de la physique moléculaire, la diffusion des particules chargées sur les atomes

d’hydrogène a été étudiée. Les longueurs de diffusion pour les systèmes π+-H, µ+-H et p+-H

ont été prédites. L’existence d’un nouvel état, très faiblement lié de l’ion moléculaire H+
2 a

été prédit.

• Suite à l’annonce d’une possible mise en évidence expérimentale du tetraneutron (état lié

à 4 neutrons) au GANIL, nous avons étudié la compatibilité d’une telle existence avec nos

connaissances des forces neutron-neutron.

• La diffusion des systèmes à 4 nucléons (n-3H, p-3H et p-3He) à basse énergie a été examinée.

Les résultats sont comparés aux résultats expérimentaux. La validité des potentiels nucléon-

nucléon a ainsi été remise en cause.

Mots-clés: Few-body, quatre corps, diffusion, diffusion Coulombienne, états liés, états de

resonance, tetraneutron, ion moléculaire d’hydrogène


