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cadre du projet TOL̀ERE.
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1. Introduction

Formal methods make themselves increasingly needed in a wide range of areas of computer sci-
ence, from hardware specification and verification to the design and validation of computer sys-
tems. They are especially needed when critical properties of systems have to be insured. Within
formal methods, the two main directions for producing evidence of the correct design of a system
are themodel checking approach and thetheorem proving approach.

Within the model checking approach, systems are usually modeled as automata (very frequently
with a finite state space) and properties are themselves specified in a descriptive language, such as
logic or process algebra. For a large subclass ofsafety properties, the model-checking problem can
be reformulated as the problem of checking whether the language of an automaton is empty.

Two basic features a specification language needs are sequentiality and parallelism, which in the
automata model translate to concatenation, resp. intersection of automata. Whereas sequentiality
interacts optimally with emptiness checking, parallelism brings in the well-known “state space
explosion problem”. Sequentiality is well studied and understood, while parallelism still raises
problems at both theoretical and practical level. Regular expressions [Kle56] are among the most
basic specification language. They model, however, only the sequential structure of systems. Still
regular expressions are able to represent also parallel structure, due to the intersection construction
and the celebrated Kleene theorem.

Timed systems and their automata model: timed automata

Timed systems (or real-time systems) are computer systems in which the components interact
continuously with one another and with the environment, in order to provide a certain service in
which time plays an important rôle. This r̂ole might be bounded response to some stimuli, limited
duration of execution of tasks, and so on.

The now classical automata model for timed systems is thetimed automata model [AD94].
Timed automata are finite automata enhanced with the possibility to record time passage, by means
of real-valued clocks. Clocks evolve synchronously at rate 1, and transitions are taken when some
simple arithmetic conditions on the clocks are met, and some transitions might reset some clocks
to 0.

A wealth of algorithms ([Yov98, LPWY95] give surveys) and dedicated tools [BDM�98,
LPY97] are now available for model-checking with timed automata. The main problem which lim-
its the efficiency of any algorithm for model checking with timed automata is that the emptiness



12 1. Introduction

problem for timed automata, though a decidable problem, has a very high complexity (PSPACE-
complete), hence being even harder than model-checking for untimed systems.

On the specification side, several process algebras with time have been proposed in the be-
ginning of the 90’s [WY91, NSY93, BB91]. The semantics of these algebras rely upon timed
automata.

Curiously, the search forregular expressions that allow specification of timing behaviors suc-
ceeds the concern for process algebras (though, in the untimed case, it is regular expressions that
have preceded and issued process algebras [Mil80]). Only recently there have been issued several
results for timed automata [ACM97, BP99], or for subclasses [Dim99b] or superclasses [BP01] of
timed automata.

Timed regular expressions [ACM97] are a very convenient specification language for timed
systems. They are regular expressions enhanced with the possibility to express intervals between
two moments during the computation, by the use of interval-labeled parentheses. A left parenthesis
corresponds to resetting a clock and a right parentheses, labeled with an intervalI, corresponds to
checking whether the clock value is in the intervalI.

In spite of their elegance in use, timed regular expressions bear some expressiveness problems:
intersection and renaming are essential in proving the reverse implication of the Kleene theorem
for timed regular expressions and timed automata.

Subject and contributions of the thesis

In our thesis we study the relationship between timed automata and timed regular expressions.
In the first part, we study the simpler case of timed regular expressions in which we bound only

state duration. The automata associated with this class behave like finite automata, most notably
being closed under negation and algebraically definable via inverse monoid morphisms.

In the sequel we try to expand the technique developed in the first part for the whole class
of timed automata. We start from the consideration that the parallel composition operation on
automata destroys the sequential structure. Our idea is to drop the intersection operator from timed
regular expressions by usingcolored parentheses, in which each color corresponds to one clock.
The feature brought in by this idea is that the structuring of the specification would be preserved to
a certain extent. Also renaming is no longer necessary. However this idea brings in some difficulties
as well, mainly a different view of sequentialization.

In our calculus, an atomic regular expression contains parentheses of different colors. If we
apply to such an atom a “color filter” which retains only parentheses of a certain color and deletes
the other colors, we would get a timed regular expression of the formE�hE�iIE�. HereE�,E� and
E� are untimed (i.e. nonparenthesized) regular expressions andI is some interval. The semantics
of such an atom consists of signals in which a number of points have been distinguished: two
points per each color, one “startpoint” for resetting the clock associated with the color, and one
“endpoint” for checking the value of the clock.
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This special form of atoms has nevertheless a huge expressive power in combination with the
concatenation operation. This is apartial operation which allows two signals with distinguished
points to be concatenated iff the distinguished endpoint for each color in the first signal matches
the distinguished startpoint for the same color in the second signal.

In the second part of the thesis we study the algebraic structure of signals with distinguished
points and the regular expressions with colored parentheses that represent sets of such signals. We
prove that the emptiness problem is undecidable for regular expressions with colored parentheses,
the problem lying in their untimed structure.

We then study this untimed structure by associating, for regular expressions withn colors, a
class of finite automata with�n accepting sets, which we call�n-automata. The idea is to have
two accepting sets for each color: one for the startpoint associated with the color and one for
endpoint for that color.

We show that the class of�n-automata is closed under union, intersection, concatenation and
shuffle. The central theorem of this thesis is then that, under mild assumptions,�n-automata are
also closed under star. On the other hand, we show that these automata can be used to represent
timing information in the regular expressions. In other words, they can be used for representing
constraints over the real domain. The idea is that eachrun in an automaton represents aclock
region, in the sense of Alur and Dill [AD94].

We also show that the mild assumptions necessary for star closure are satisfied when model-
ing timed automata. As a consequence, we provide a method for checking whether the language
denoted by a given regular expression with colored parentheses is empty.

As an auxiliary result, our technique allows the computation ofreachability relations defined by
timed automata. These are the relations on clock values defined by the behaviors of timed automata,
such as starting from one state and reaching another. The computation of such relations is useful in
verification, since the language accepted by a timed automaton is empty iff the reachability relation
defined by initial and final states is the empty relation.

Summarizing, the main contributions of our thesis are the following:

� The presentation of a new class of regular expressions that generalize the timed regular expres-
sions of [ACM97]. Our regular expressions do not need renaming or intersection and are more
expressive than timed automata.

� The introduction of a new class of finite automata with�n accepting states, automata that cor-
respond to the atomic regular expressions that we utilize. The emptiness problem for these au-
tomata is decidable, but NP-complete.

� The translation of regular expressions into a class of finite automata with�n accepting sets. This
translation works for regular expressions bearing a certainnon-elasticity property. This gives a
method for checking for emptiness the semantics of a regular expression with the non-elasticity
property.

� A new method for checking emptiness of a timed automaton by constructing the regular expres-
sion for it.
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� A new method for computing the reachability relations defined by timed automata, based upon
the same class ofn-automata.

� A collateral result is that our finite automata give a new method for representing general clock
constraints. In some cases, clock constraints are represented more compactly than with existing
methods.
The detailed study of a data structure that embodies this representation method is not the subject
of this thesis.

Related work

As we have already mentioned, our study has started from the results in [ACM97, ACM01, Asa98]
which introduce timed regular expressions, and [Her99], which shows the necessity of renaming in
timed regular expressions. A different approach to regular expressions is given in [BP99, BP01].
The regular expressions in these studies do not need intersection or renaming, being based upon
atoms of the type�a� C�X� for some symbola, clock constraintC and reset setX. The paper
[BP99] gives a variant of this, in which the reset sets are shifted to the concatenation symbols,
hence having a whole range ofindexed concatenations. However none of these papers study in de-
tail the algebraic structure on which the semantics of regular expressions is based, and neither they
give the possibility to lift the semantic operations of concatenation and star to syntactic operations
on atoms.

In fact, it can be observed that, with the clock valuation semantics, if one tries to lift concate-
nation and star at a syntactic level then he would run into problems with the representation of the
results. More specifically, timing in the atomic regular expressions of [BP99] or [BP01] is speci-
fied by clock constraints which utilizenondiagonal constraints of the typex�i � xi � y�i � yi (this
is an expression which says that the clocksxi andyi evolve synchronously). As a consequence,
the “zones” in the�n-th dimensional space which satisfy such constraints are no longer unions of
clock regions [AD94] and hence need representations for more general polyhedra. But it is known
[Sor01] that general polyhedra-based representations are less efficient that representations which
take advantage of the fact that the polyhedra in discussion are unions of regions.

The study whose results are perhaps the closest to our approach is Yan Jurski’s PhD thesis
[Jur99] (see also the journal version [CJ99]). In his thesis, Jurski proves that the reachability re-
lation in timed automata is expressible in Pressburger arithmetic. The technique employed in his
work can be characterized as a generalization of constraint graphs (which are the graphical repre-
sentation of DBMs), with a construction of the “star” of a constraint graph. The problem with this
approach is that constraint graphs cannot record “disjunctive information”: they can only record
conjunction of “diagonal” constraints over clocks, i.e., of the typexi � xj � I. Whereas the star
is naturally built as an infinite disjunction. Therefore Jurski needs to “flatten” each timed automa-
ton, such that no nested loops be allowed, and only afterwards apply his star construction. On
the contrary, ourn-automata can record disjunctive information too (the set of accepting runs is a
union) and therefore we may iterate the star closure theorem without any problem. Besides this,
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our presentation allows not only expressing the timing behavior of timed automata, but also the
representation of both the timing and untimed information in the same expression. Finally, Jurski’s
result is limited to timed automatawithout diagonal constraints, and it is not clear whether this
restriction is essential or not.

We may also mention the approach on using Pressburger arithmetics and its decision procedures
in systems with infinite state-space [Boi99, WB00]. [BC96] report on solving systems of linear
equations over the integers by coding integer solutions into finite words and using finite automata
to accept such words. The idea dates back to Büchi’s work onweak monadic second order theory of
one succesor function (WS1S) [B̈uc60], see also the two comprehensive handook articles [Tho90,
Tho97] on the subject. We note here that our coding of integer solutions of constraints (which are
nothing else but systems of linear equations) is different from the one used by [BC96, Boi99].
Our coding takes advantage of thequasidiagonal format of systems of linear equations which are
associated with the clock constraints.

There are already several data structures that are used for reachability algorithms for timed au-
tomata [Tri98, LWYP99, ABK�97, MLAH99], to cite a few only. Most of them are based upon
the DBM technique, and DDDs are generalizations of BDDs [Bry86] for representing clock con-
straints. Our automata-based technique, with constraints regarded as runs in a finite automaton, is
therefore new and might yield new data structures for reachability algorithms.

Let us also mention that there is a whole theory concerning constraint propagation [DMP91],
which is an essential ingredient for the representation of reachable states [Tri98]. The most gen-
eral way of looking at these is perhaps the�max���-algebra [Gau99, GP97]. However�max���-
algebra does not deal with the possibility to chain timing constraints, that is, to specify algebraically
the behavior of timed automata.

Another related work that we might mention here is the study [CG00] on employing periodic
constraints in timed automata. Our presentation of timed automata requires that constraints use
only intervals, but our theory of regular expressions allows the use of periodic constraints.

We finally mention the interest for Kleene theorems for subclasses of timed automata [Dim99b],
or for superclasses [BP01].

Organization of the thesis

The thesis is divided in�� chapters, including this introductory one and a conclusion chapter.

2. In the second chapter we give some basic properties of signals and timed languages. We prove
here that the monoid of signals and the monoid of timed words are not “algebraically” related,
and that the idea of producing timed languages via inverse morphisms from finite monoids
issues only languages with no timing information.

3. In the third chapter we study the special class of one-clock timed automata, calledreal-time
automata, in which the clock is reset at each transition. We show that language emptiness and
universality are decidable, we give a “pumping lemma” characterization of the associated class
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of languages, and show that, by utilizing a “stuttering-free concatenation” on the set of signals,
we get exactly the class of languages accepted by real-time automata.

4. In the fourth chapter we review briefly the notion of timed automata and the possibility to have
a Kleene theorem for them. The regular expressions we utilize here are taken from [BP99,
BP01]. They involve clock constraints and resets, and therefore they are easily related to timed
automata. However it is not the class of expressions which we aim to study, the reason (given
in chapter 5 also) being that clock usage in expressions is specific to low-level specification
languages, while regular expressions are meant to be a high-level specification language.

5. In the fifth chapter we review the timed regular expressions of [ACM97] and discuss their prob-
lems. We also present here our ideas for solving these problems - usage of colored parentheses
and of a partial concatenation operation. This chapter is meant as an intuitive presentation of
the problems we have sought to solve and the solution we have found. We also give here an
undecidability result concerning timed regular expressions with negation.

6. In the sixth chapter we introduce and study our algebraic framework of signals with distin-
guished points. These signals are given a matricial presentation, mainly by similarity to Dif-
ference Bound Matrices [Bel57], which are, on their own, a subject of discussion in chapter
8. We define the partial concatenation operation on signals and establish some basic algebraic
properties for it. Wee introduce concatenation by means of two “more basic” operations:jux-
taposition, which can be thought as “conjugating” the two signals andprojection, which can
be thought as quantification. A first try to lift this operation at the specification level, that is,
to provide a calculus with regular expressions with colored parentheses, is shown to fail, the
reason being that projection is not compositional. More specifically, there is no way to de-
fine the projection operation on regular expressions, such that the semantics of the projection
be the projection of the semantics. An equally worrying result is the undecidability of the
emptiness problem for the general class of regular expressions with colored parentheses. This
result follows by showing that the Post Correspondence Problem [Pos46] can be reduced to the
emptiness problem for regular expressions with colored parentheses. Hence the undecidability
problem is hidden in the untiming structure of the regular expressions.

7. In the seventh chapter we investigate the class ofn-automata for their possibility to represent
regular expressions with colored parentheses, but over adiscrete time domain. The necessity
of this study is emphasized by the undecidability result. We provide here a mild property – the
non-elasticity property – that assures star closure of automata, and hence accomplish in part
the task of representing regular expressions.

8. The eighth chapter is concerned with the generalization of these results forcontinuous time
domains, in particular with the possibility to represent timing information in a continuous time
domain with the automata defined in chapter 7. This approach is successful and provides the
possibility to represent timing constraints in the continuous domain byn-automata.

9. In the ninth chapter we gather together all the results obtained so far in order to provide a
compositional calculus with regular expressions with colored parentheses. In this chapter we
also show that the non-elasticity property discovered in chapter 7 is satisfied by the regular
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expressions which encode timed automata. We then provide a method for checking language
emptiness in timed automata, by transformation to regular expressions.

Each chapter starts with a short presentation of the problems and solutions that are treated
within it.
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2. Signals and their basic properties

In this chapter we study some of the algebraic properties of signals and timed words.
Signals and timed words are the two alternative models for the behavior of timed systems. While

signals put the accent on states in which the system is and on state durations, timed words put the
accent on actions that a system is executing and on moments at which actions take place. We take
the approach of [ACM01] and present these monoids as coproduct monoids – or, in an alternative
terminology, as direct sums. This algebraic presentation makes some proofs more succinct.

Since the two notions, signals and timed words, try to model the same phenomena it is natural
to search a connection between monoids of signals and monoids of timed words. In this chapter
we prove that this connection isnot of an algebraic nature: we prove that the monoid morphisms
between the monoid of signals and the monoid of timed words are unable to relate state changes
to actions. More formally, we prove that each signal is mapped, by such a monoid morphism, into
a timed wordwith no action.

The second result of this chapter concerns the nonexistence of a Myhill-Nerode characterization
of timed languages. We prove that any timed language (i.e. set of signals) that can be defined as
the inverse image of a subset of a finite monoid, does not carry any timing information. That is,
whenever a signal� is in the language, any other signal with the same sequence of states (and with
any other durations of these states) is in the language too. This property is based upon a lemma
stating that there are at most two morphisms from the monoid of nonnegative reals to any finite
monoid: the trivial morphism and, in the eventuality the target monoid has a “zero”, the morphism
which takes any positive number to this “zero”. Hence the problem is traced to the “stuttering”
structure of the real numbers, and we will see in the next chapter that, if we allow two signals
to concatenate only when at the concatenation point they create a discontinuity, then the “inverse
morphisms” approach will produce timed languages with nontrivial timing information.

This second result is proved using a “diagram-chasing” technique specific to category theory
[Mac71]. This proof takes advantage of the algebraic presentation of signals and we believe it is
drastically shorter than any other proof, that would need to mimic the uniqueness properties of the
monoid of signals.

The chapter is organized as follows: the first section presents some basic properties about
monoids, especially the construction of the coproduct (or direct sum) of a family of monoids.
We also remind here the notion of Kleene algebra. We also incude in this section a short subsec-
tion recalling the definition of Kleene algebras. Then in the second section we recall the coproduct
representation of signals and the fact that, similarly to languages of words, the powerset of signals
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can be organized as a Kleene algebra. The third section presents also timed words as a coproduct
monoid and gives the negative result about the monoids of signals and timed words. The fourth
section is concerned with the other negative result, concerning the “lack of interest” of timed lan-
guages defined by inverse monoid morphisms.

2.1 Basic notions

In this section we remind the notion of coproduct (or direct sum) of a family of monoids, and the
notion of Kleene algebra.

2.1.1 Coproduct monoids

Definition 2.1.1. The coproduct of a family of monoids �Mi� �� ei�i�I is the monoid �M� �� e� de-

fined as the quotient: M �
��

i�IMi

���
�

where

�
�

is the usual disjoint sum:
�

i�IMi � f�mi� i� j i � I�mi �Mig;

�
��

i�IMi

��
is the free monoid over

�
i�IMi (with concatenation denoted as juxtaposition and

empty sequence as �);

� and � is the congruence on
��

i�IMi

��
generated by the equations:

�mi� i��m
�
i� i� � �mi �m

�
i� i� �mi�m

�
i �Mi� i � I (2.1)

�ei� i� � �ej� j� �i� j � I (2.2)

�ei� i� � � �i�� I (2.3)

We denote the coproduct of the family�Mi� �� ei�i�I as
L

i�IMi. Note that the unit of
L

i�IMi

is the class of�. we denote this unit ase.
Observe that each elementm �

L
i�IMi can be uniquely represented as a finite concatenation

of “atomic” elements

m � �mi�� i�	 � � � � � �mik � ik	 (2.4)

in which �mij � ik	 �� e for all j � �� � � � k	.

Theorem 2.1.2. The monoid
L

i�IMi has the following universality property: for any monoid
�M� �� e� and family of morphisms �i 
 Mi � M , there exists a unique morphism � 


L
i�IMi �

M such that ���mi� i	� � �i�mi�. This morphism is denoted h�iii�I and is called the coproduct of
the family ��i�i�I .

This theorem is depicted in Figure 2.1. Here,�i denotes the inclusion morphism.
The construction of the coproduct morphism is the following: each elementm �

L
i�IMi is

decomposed as in Identity 2.4,m � �mi�� i�	 � � � � �mik � ik	. We then put:
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Mi
�

�i �
L

i�IMi
HHHHHHH�i j

M

	�h�iii�I
�

Fig. 2.1. The commutative diagram for Theorem 2.1.2.

h�iii�I�m� � �i��mi�� � � � � �ik�mik�

When the familyI is finite, sayI � f�� � � � � ng, we denote the coproduct as
Ln

i��Mi, and
when the monoidsMi are identical (this implies that their operations and units are the same too)
we denote it as

L
i�IM . Finally, whenI � f�� � � � � ng andM � Mi for all i � I, we denote the

coproduct as
Ln

i��M .

2.1.2 Kleene algebras

We remind here one of the possible axiomatizations of Kleene algebras.

Definition 2.1.3. A Kleene algebra is a structure �A��� �� ����� �� �� which satisfies the following
properties:

1.
�
A��� �� �� �

�
is a semiring, that is:

� �A��� �� is an idempotent monoid;
� �A� �� �� is a monoid;
� � distributes over �.

2. ���� satisfies the following equations [Con71, Koz94]:

X � Y 
 Y � X� � Y 
 Y (2.5)

Y �X 
 Y � Y �X� 
 Y (2.6)

� �X �X� 
 X� (2.7)

� �X� �X 
 X� (2.8)

where 
 is the partial order induced by the idempotent � [Bir79], that is,

X 
 Y iff X � Y � Y�

A Kleene algebra is called commutative iff it satisfies the following identity [Con71]:

X� � Y � � �X � Y �� � �X� � Y �� (2.9)

The classical example for Kleene algebras is the set of all languages over an alphabet��,�
P������� �� ����� � f�g

�
. An example of a commutative Kleene algebra is the Kleene algebra

over a one-letter alphabet.
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2.2 Signals

We denoteR�� , R�� andR�� the sets of negative, nonnegative, resp. positive numbers,Q�� the
set of nonnegative rational numbers,Z the set of integers andN the set of nonnegative integers
(also callednaturals). For eachn�� n� � Z, �n� � � � n�	 denotes theinterval of integers fn�� n� �
�� � � � � n�g, while 	�� �	 denotes the left-open, right-closed interval of reals whose limits are�, resp.
�. Q Int denotes the set of intervals having bounds inQ���f�g and including the empty set, while
ZInt denotes the set of intervals having bounds inZ � f����g and including the empty set. An
open interval is denoted as	a� b�, while a closed one is denoted as�a� b	. We will extensively use
left-closed right-open intervals, which are thence denoted�a� b�.

For each functionf 
 R � A, real number� and eacha � A, we say thatthe left limit of f at
� is a and denote itlim

t��
f � a iff the following property holds:

there exists some� 	 � such that for allt �	�� �� ��� f�t� � a

Right limits lim
t��

f � a can be defined similarly. This definition amounts to considering that the set

A is equipped with thediscrete topology.
A left discontinuity in f is some� � R for which lim

t��
f�t� �� f��� � lim

t��
f�t�. The discontinu-

ity is right if we rather have thatlim
t��

f�t� � f��� �� lim
t��

f�t�.

Definition 2.2.1. A signal over a finite alphabet � is a function � 
 ��� ��� � where � is a
nonnegative number, function which has finitely many discontinuities, all of them being left discon-
tinuities.

We denotedom��� the domain of� and
��� its endpoint.
��� is also called thelength of �.
Signals can be given graphical representation. For example, Figure 2.2 gives the graphical rep-

resentation of the signal�� 
 ��� �� fa� b� cg defined by:

���t� �

���	
��

a iff t � ��� ������ �����

b iff t � ��� ��

c iff t � ������ �

(2.10)

a

�

b

a

� ���� �

c

Fig. 2.2. A graphical representation of the signal defined in Identity 2.10.

Sig��� denotes the set of signals over�. Note that there exists a unique signal with empty
domain�� 
 ��� ��� �.
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For��� �� � Sig��� with dom��i� � ��� ei� (i � �� �) define theirconcatenation �� � �� � � as
the signal withdom��� � ��� e� � e�� and such that

��t� �

�
���t� for t � ��� e���

���t� e�� for t � �e�� e� � e���

For example, the signal�� in Figure 2.2 can be regarded as the concatenation of the two signals
in Figure 2.3.

b

a

�

b

a

c

� �� 	 � ����

a

�

b

a

� ���� �

c
 �

Fig. 2.3. An example of signal concatenation.

Proposition 2.2.2 ([ACM01]). �Sig���� �� ��� is a a noncommutative monoid, called the monoid
of signals with concatenation.

Moreover �Sig���� �� ��� is isomorphic to the coproduct
L

a�� R�� of card��� copies of the
monoid of nonnegative reals �R�� ��� ��.

Proof. It is clear that the domain of each signal� splits into finitely many intervals�ei	�� ei� (i �
�� � � � n	) on which� is constant. Therefore we may identify� with the formal concatenation:

���� � at�� a
t�
� � � � a

tn
n whereti � ei � ei	� andai � ��t� �t � �ei	�� ei� (2.11)

If we add����� � � we obtain the isomorphism� 
 Sig����
L

a�� R�� . ut

As we can see, this proposition gives a more “friendly” presentation of signals [ACM97]: the
signal presented in Figure 2.2 is represented also by the following element of

L
a�� R��:

�� � a�b�	�a����	�c��	�

Observe also that the empty signal�� is denoted by the empty sequence� and thata� � � � �� for
anya � �. We will utilize both notations� and�� for the unit of concatenation inSig���.

Proposition 2.2.2 allows us to define the length of a signal as a monoid morphism induced by
the coproduct property: denote first�a 
 R�� � Sig��� the coproduct inclusion for each copy of
R�� . Then
 is the unique morphism
 
 Sig���� R�� defined by the following diagram:

R�� �
�a �L

a��R��HHHHHHH�R�� j
R��

	�

�

For each symbola � � we denoteSiga��� the set of signals whose value is constantlya:

Siga��� 
� �a�R��� � fat j t � R��g
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2.2.1 Timed languages: basic properties

For any setX, the set of subsets ofX is denoted asP�X�.
Subsets ofSig��� are calledtimed languages. Signal concatenation can be naturally extended

to timed languages:

L� � L� � f���� j �� � L�� �� � L�g

and gives rise to star:

L� �
�
n�N

Ln

whereL� � f��g andLn�� � Ln � L.

Proposition 2.2.3.
�
P�Sig������� �� ����� � f��g

�
is a Kleene algebra.

Proof. All properties follow by transporting the proof that
�
P������� ������ � f�g

�
is a Kleene

algebra [Sal66, Koz94]. For example, the implication 2.5 follows by proving, by induction on
n � N , thatX � Y � Y impliesXn � Y � Y . ut

2.3 Timed words

Given a set of symbols�� and a wordw � ��, the length of w, denotedjwj, is the number of
symbols inw. It can be regarded as the unique morphismj � j 
 ���� �� �� � �N ��� �� determined
by jaj � � for all a � �. Remind that���� �� �� is the free monoid generated by�.

Definition 2.3.1. A timed word over the alphabet � is a pair � � �w� � consisting of a word
w � ��, and a function  
 �� � � � jwj � �	� R�� .

The wordw is called thesequence of actions in � and the function is called thesequence of time
labels in �. Thelength of a timed word is simply the length of the sequence of actions in it, and is
denotedj�w� �j.

We denoteTW��� the set of timed words over�. Subsets of it are calledtimed word languages.
On TW��� we can define aconcatenation operation as an extension of the concatenation on

words: given two timed words�w�� �� and�w�� �� define�w�� �� � �w�� �� � �w�w�� � where

�i� �

�	



��i� iff i � �� � � � jw�j	

��jw�j� �� � ���� iff i � w� � �

��i� jw�j� iff jw�j� � 
 i 
 jw�j� jw�j� �

Note again that there exists a unique timed word� � ����� whose sequence of time labels is the
function which maps the unique element in its domain to�.
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Proposition 2.3.2. �TW���� �� �� is a noncommutative monoid.
Moreover �TW���� �� �� is isomorphic to the coproduct monoid R�� � ��, where �R�� ��� ��

is the monoid of nonnegative reals.

Proof. The isomorphism is simply the “rearrangement” of each timed word as follows:

�
�
�w� �

�
� ��� � w� � � � � � wjwj � �jwj� �� ut

It follows that j � j 

�
TW���� �� ��� �N��� �� is a monoid morphism.

2.3.1 Relating the monoids of signals and of timed words

For the sequel we fix two alphabets���. We call a monoid morphism� 
 Sig��� � TW��� as
trivial if for each signal� � Sig���

���� �
�
�� �
�

for some� � R�� �

Observe that a morphism is trivial iffj����j � � for all � � Sig���.

Proposition 2.3.3. Any monoid morphism from Sig��� to TW��� is a trivial morphism in the
above sense.

Proof. Assume� 
 Sig���� TW��� is a monoid morphism. We first prove that for eacha � �,
�
Siga
��

is a trivial morphism. Then the result would follows since each signal is a concatenation
of constant signals.

Observe first that, for each two nonnegative reals�� � � R�� ,

if � 
 � thenj��a��j 
 j��a��j (2.12)

Here we have used the fact that the length of a timed wordj � j is a monoid morphism. This comes
asa� � a�	� � a� and hence, if we apply the composition of morphisms� � j � j � � to a� we get

j��a��j � j��a��j� j��a�	��j � j��a��j

This implies that there is a countable partition�Signa�n�N of Siga��� such thatSigna��� � the
set of constanta-signals which are mapped by the morphismj � j � � to the integern:

Signa��� � fa� j j��a��j � ng

Let us denoten� thefirst integer with the property thatSign�a ��� has a nonempty interior. Such
a number must exist since, for eachn � N , if there exist some��� �� � Signa��� with �� � ��

then ���� ��	 � Signa��� due to implication 2.12. As a consequence,Sign�a ��� �	�� �� for some
� � R��.

But then, for each� �	�� ��, ��� �	�� �� too and hence:
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n� � j��a��j � j��a���a����j � j��a��� � ��a����j � j��a����j� j��a����j � n� � n�

It follows thatn� � �.
But then, for each� � R�� , if we denotek � d�

�
e then�

k
� � and hencej���

k
�j � �. It follows

that

j��a��j � j��a
�

k

k�j � kj��a

�

k �j � �

This proves our claim thatj � j � � maps all signals fromSiga��� to �. But every signal� �
Sig��� is a concatenation of constant signals� � at�� � � � � � a

tp
p whereai � �. Hence we have that

for all � � Sig���

j����j � j��at�� � � � � � � ��a
tp
p �j � � ut

Remark 2.3.4. In general, trivial morphisms fromSig��� toTW��� are linear on each submonoid
Sig�faig� of Sig���, but the slopes might be different. Hence we might add to the above proof
the observation that, on eachSig�faig� there exists someK � R�� such that��at� � Kt. Conse-
quently, we may conclude that all morphisms fromSig��� to TW��� are “piecewise-linear”, that
is, there existK�� � � � �Km such that

��at�� � � � a
tm
m � � K�t� � � � � Kmtm

wherem � card���.

We have another option for relating signals and timed words: to join the two structures into a
single one, i.e. define signals with actions or timed words with states:

Definition 2.3.5. The monoid of signals with actions over the set of states � and the set of actions
� is the coproduct

M
a�	

R����
� of card��� copies of the monoid of nonnegative reals �R�� ��� ��

with the free monoid ���� �� ��.

Hence now the monoids of signals and of timed words can be regarded as “particularizations”
(or projections, in the algebraic sense) of the monoid of signals with actions. However we will not
utilize this notion since it will make all derived notions and proofs unnecessarily more complicated.

2.4 Timed regular languages defined by inverse monoid morphisms

We start this section by reminding the way regular languages are related to monoid morphisms
[Eil74].

Definition 2.4.1. Given �M� �� e� a (possibly infinite) monoid, an M -automaton is a tuple A �

�Q�M� �� q�� Qf� where q� � Q, Qf � Q and � 
 Q�M � Q has the property that for all q � Q,
m��m� �M :

��q�m� �m�� � ����q�m���m�� and ��q� e� � q (2.13)
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A is calledfinite wheneverQ is finite. Theaccepted language of A is L�A� � fm � M j

��q��m� � Qfg. It is also assumed that all statesq � Q in anM -automaton areaccessible, i.e.
there exists somem �M such that��q��m� � q.

Definition 2.4.2. Given a monoidM , the family of M -regular languages, denoted Reg�M�, is the
family of subsets L �M which are the accepted language of some finiteM -automaton.

Theorem 2.4.3 ([Eil74]). Reg�M� coincides with the family of subsets L � M for which there
exists some finite monoid �F� �� e��, some surjective monoid morphism � 
 M � F and some
subset F � � F such that L � �	��F ��.

2.4.1 Essentially untimed regular languages

Theuntiming of a signal is the sequence of symbols that appear in it. Observe that in the untim-
ing of a signal, two consecutive symbols are distinct. Hence the untiming application (actually,
morphism) is not surjective.

We will take advantage of the algebraic definition ofSig��� and define the untiming as a co-
product of morphisms. We define first the monoidSF ��� of stuttering-free words, that is, the set
of words in which no two consecutive letters are equal. This monoid is endowed with a concatena-
tion operation that “fuses” two identical letters. For example,

aba � ac � abac

We may defineSF ��� in two ways: as a coproduct monoid and as a quotient monoid:

The coproduct definition is the following: for eacha � � consider the monoid�Sa �

f�� ag� �� �� wherea � a � a (i.e. a is idempotent). Define thenSF ���� as the coproduct of the
family monoids�Sa� �� ��a�� ,

SF ��� �
M
a��

Sa

and denote�a 
 Sa � � SF ��� the inclusion morphism which defines this coproduct.

Thequotient presentation ofSF ��� is the following: consider the relation� � ��� defined
by

� � f�aa� a� j a � �g

This relation can be uniquely extended to a congruence on�� as follows:

�� � f�w�aaw�� w�aw��� �w�aw�� w�aaw�� j w�� w� � �
�� a � �g

ThenSF ��� is isomorphic to the quotient of the�� by the congruence��. That is, elements of
SF ��� can be thought as equivalence classes w.r.t.��. We denote

z��
� 
 �� � ����� the canonical

projection. For example,
z � �
aabcbba � abcba.
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Concatenation of stuttering-free words, i.e. theinternal operation onSF ��� that makes it a
monoid, can then be defined as follows: for eachw�w� � SF ���, w not ending ina andw� not
beginning inb,

wa � bw� �

�
wabw� iff a �� b

waw� iff a � b

We may now proceed to the algebraic definition of untiming: consider the following monoid
morphism:

�a 
 �R����� ��� �Sa� �� ��� �a�t� �

�
a iff t �� �

� iff t � �

The following diagram defines, by theorem 2.1.2, theuntiming morphism U :

R�� �
�a � Sig��� �

L
a�� R��

Sa

�a
�
�

�a � SF ���

	�U � h�a � �aia��
�

Definition 2.4.4. A timed language L � Sig��� is called essentially untimed iff there exists some
set L� � SF ��� (i.e. a language in the classical sense) such that L � U	��L��. The class of
essentially untimed regular languages consists of essentially untimed languages that are inverse
images of regular languages in SF ���.

Observe thatSF ���-regular languages in the sense of definition 2.4.2 are in fact regular lan-
guages in the classical sense [HU92] with the restriction that in each word no two consecutive
letters are equal – and this restriction means intersection with a regular set.

2.4.2 Syntactic monoids on �Sig���� �� ��� are not interesting

In this section we show thatSig���-regular languages are essentially untimed. Remind first that a
zero element in a monoid�M� �� e� is an element��M which satisfies

�x �M� � �x � x� ���

Our result relies on the following lemma:

Lemma 2.4.5. Suppose f 
 �R�� ��� ��� �M� �� e� is a surjective monoid morphism and �M� �� e�

is a finite monoid. Then

� either f is the trivial morphism f�x� � e, �x � R�� (and hence M � feg);
� or M � fe� � g where � is a zero element and f maps any x �� � to � and � to e.
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Proof. We note first that the surjectivity off implies that� is commutative. We may also prove by
induction onk that for allx � R�� and for allk � N , f�k � x� � f�x�k.

Let’s prove first the following:

Claim. If M contains only idempotents then it has at most two elements, and one of these elements
is a zero element (in factthe zero element, since it is unique).

Proof. SupposeM � fm�� � � � �mng. Thenm � m� � � � � �mn is the zero element because

m �mi � m� � � � � �mn �mi � m� � � � � �mi �mi � � � � �mn

� m� � � � � �mi � � � � �mn � m

where we have used the commutativity of�.
Two cases arise then: the first is whenm � e, the unit ofM . But the unit can be a zero element

only if the monoid has only one element, the unit:

e � e �mi (ase is the zero element)� mi (ase is the unit)

The second case ism �� e. In this case there must exist� �� � such thatf��� � m.
Take then any� 	 �. Sincef��� is idempotent we have thatf��� � f�k � �� for anyk � N��.

If we take thenk � d�
�
e we obtaink� � � and hencek�� � � �, hencef�k� � �� is defined.

But then, asm � f��� is the zero element we have thatf��� � f��� � f�k�� ��. Therefore

m � f��� � f��� � f�k�� �� � f�� � k�� �� � f�k�� � f���

which proves that any positive real� is mapped to the zero element. ut

So what is left to prove is that iff is surjective thenM contains only idempotents. Take a
positive real� � � and denoteG��� the image underf of the submonoid�N of multiples of �:

G��� �
�
f�n�� j n � N

�
It is clear thatG��p�� � G��p���� for any p � Z. But sinceM is finite, there must exist

somep� � Z such thatG��p��� � G��p�����. Let us then denote� � min��� �p���, hence

G��� � G
��
�

�
.

We may prove thatG��� is cyclic, that is, if we denotek � cardG��� then

G��� �
�
f�i�� j i � �� � � � k	

�
�
�
f���� f���� � � � � f�k��

�
(2.14)

f��k � ���� � f��� (2.15)

To this end, note that if there existi � �� � � � k	, j � N with i �� j and such thatf�i�� � f�j��

then we would have thatf��i� n��� � f��j � n��� for all n � N . But this would imply that

G��� �
�
f���� � � � � f��j � ����

�
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and hencecardG��� 
 j � �, which implies thatj � k � �. This shows that Identity 2.14 holds.
For showing that Identity 2.15 holds too, suppose thatf��k � ���� � f�i�� for somei �

�� � � � k	. By a simple induction argument, we may prove that, for alln � N ,

f
�
�k � � � n�k � �� i���

�
� f

�
�i� n�k � �� i���� (2.16)

On the other hand, sincef
��
�

�
� G���, we must have somej � �� � � � k	 such thatf

��
�

�
�

f�j�� too. Therefore,

f��� � f
��
�

�
� f
��
�

�
� f�j�� � f�j�� � f��j��

It follows that�j � k � �. By recursively appying the Identity 2.16 we further get that:

f��j�� � f
�
��j � �k � �� i���

�
� f

�
��j � ��k � �� i���

�
� � � �

� f

��
�j �

�j �j � k

k � �� i

k
� �
�
�k � �� i�

�
�

�
(2.17)

and�j �
�j �j � k

k � �� i

k
� �
�
�k � �� i� � �i � � � k	.

But this rewrites to the fact thatf��� � f�l�� for somel � �i � � � k	, which would be impossible,
by Identity 2.14, unlessi � l � �. Hence Identity 2.15 holds too.

But then, starting from Identity 2.17 and replacingi with � we may further conclude that

f��� � f��j�� � f

��
�j �

�j�j � k

k

k
� �
�
� k
�
�

�
� f

��
�j �

j�j
k

k
� k
�
�

�

with �j �
j�j
k

k
k � �� � � � k	. This also implies, by Identity 2.14, that

�j �
j�j
k

k
k � �

As a consequence,k j �j��, fact which, corroborated with the hypothesis thatj � �� � � � k	, implies
thatk � �j � �.

Therefore,

f
��
�

�
� f��k � ���� � f��� (by Identity 2.15)

or, by multiplying by�,

f��� � f���� � f�����

Hencef��� is an idempotent. By an easy induction we may show then thatf��p�� is an idem-
potent too, which implies thatf��� � f��p��� is an idempotent. ut
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Observe that it was essential to utilize the fact thatf
��
�

�
� G��� to show thatG��� is cyclic.

The difference between this lemma and Proposition 2.3.3 is that the monoid of natural numbers
is an ordered monoid, in which the order is compatible with the monoidal structure. On the con-
trary, in a finite monoid there is no compatible ordering for free. This is why the two proofs are
different, with the proof of Lemma 2.4.5 much more involved than the proof of Proposition 2.3.3.

Theorem 2.4.6. The family of Sig���-regular languages equals the family of essentially untimed
regular languages.

Proof. This is a corollary of theorem 2.4.3 and the above lemma. The right-to-left inclusion follows
by an easy argument: ifK is a regular language inSF ���, then we have some surjective morphism
� 
 SF ��� � M where�M� �� e� is a finite monoid, and some subsetF � M such thatK �

�	��F �. But then� � U 
 Sig��� � M is a surjective monoid morphism too and definingL �

U	��K� � �� � U�	��F � we get thatL is a regular language in�Sig���� �� ���.
For the reverse inclusion, suppose we have some finite monoid�M� �� e� and some surjective

morphism� 
 Sig����M . We look for a decomposition of� in which the untimed morphismU
occurs.

Remember that, for anya � �, �a 
 R�� � Sig��� is the inclusion morphism for the coproduct
property. It follows that� � �a 
 R�� � M is a monoid morphism. This implies, by the above
lemma, that the image of this morphism,Im�� � �a�, is a submonoid ofM having at most two
elements,M � fe� �g with � � ���.

But the monoid�Sa � f�� ag� �� �� which was used to defineU on page 27 is isomorphic to
Im�� � �a�, sinceaa � a in Sa. Define then the morphismja 
 Sa �M as

ja��� � e and ja�a� � ���a���� � ���a�t�� for all t �� �

That is,ja is either the isomorphism fromSa toM or the trivial morphism.
Define also the morphisms�a 
 R�� � Sa and�a 
 Sa � Sa as follows:

�a��� � � and for all� �� �� �a�t� �

�
a iff ���a�t�� �� e

� otherwise

�a��� � � �a�a� � �a��� � �a�t� for anyt �� �

Then� � �a � ja � �a and�a � �a � �a.
Now we are ready to chase the following diagram, in which all the squares and triangles com-

mute:

�a

R��
�a � Sa

�a � Sa
�

PPPPPPPPPP

ja

q
Sig���

�a �

�

	�h�a��aia��� SF ���

�a �

�

	�h�a��aia��� SF ���

�a �

�

	�hjaia�� � M
� �
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The upper triangle and the outer square commute as shown above. The inner squares and the
right triangle commute by just the coproduct property. The outcome of this diagram is the commu-
tativity of the bottom square, i.e.

� � hjaia�� � h�a � �aia�� � h�a � �aia�� � hjaia�� � h�a � �aia�� � U (2.18)

sinceU � h�a��aia�� .
This commutativity follows by the coproduct property: both the left-hand side and the right-

hand side, when composed with�a, give ja � �a. Therefore, both must be equal to the unique
coproducthja � �aia�� . Hence we have managed to show that the untiming morphismU � h�a �

�aia�� occurs in some decomposition of�.
So suppose we have someSig���-regular languageL, witnessed by the subsetF � M , i.e.

L � �	��F �. Consider then theSF ���-regular languageK �
�
hjaia�� � h�a � �aia��

�	�
�F �.

Then, using the decomposition 2.18 we get

L � �	��F � �
�
hjaia�� � h�a � �aia�� � U

�	�
�F � � U	��K�

HenceL is indeed essentially untimed. ut



3. Real-time automata

In this chapter we study a class of automata which seems to be the largest extension from finite
automata still carrying the decidability of both the emptiness and the universality problems, a
Pumping Lemma and, moreover, a Kleene theorem in which the semantics of the associated regular
expressions is based upon atotal concatenation operation. The automata we study, called Real-
Time Automata (RTA), can be regarded as timed automata with a single clock which is reset at
each transition, and they appeared (in a slightly different version) in connection with the so-called
Simple Duration Calculus [HJ96].

However, even at this lowest level of introduction of timing constraints into finite automata
we find that complementation raises a specific problem: the subset construction can be adapted
to handle timing constraints, but it works only if the automata arestuttering-free, i.e., two states
labeled with the same symbol are not connected by any transition. We also find out thatlanguage
determinism, i.e., the property that each signal is associated with a unique run that starts in an
initial state, cannot be captured by local properties like state-determinism or stuttering-freeness:
stuttering-free state-deterministic RTA are less expressive than RTA.

We solve this problem by introducing the Kleene algebra of sets of real numbers. The rôle of
concatenation from Kleene algebras of languages is taken here by addition of sets of real numbers.
This operation models the process of removing one stuttering transition by “fusing” the adjacent
states. We then study the sub-Kleene algebra generated by finite unions of intervals with rational
bounds and prove a normal form theorem for this subalgebra, result which is based on properties of
integer division and roughly says that elements in this subalgebra are “ultimately periodic”. This
result is not a corollary of the normal form for regular languages over a one letter alphabet because
our Kleene algebra has two generators whose generated subalgebras are not disjoint but which
cannot generate one another.

We also show here that the class of languages recognizable by real-time automata can be given
an “algebraic” characterization, that is, can be presented as inverse morphic images of subsets
in finite monoids, butthe monoid of signals needs to be redefined: the concatenation has to be a
“stuttering-free” concatenation, allowing two signals to concatenate only if they produce a discon-
tinuity at the concatenation point.

The chapter runs as follows: in the next section we remind what RTA are, their associated
regular expressions and the problem raised by their complementation. In the second section we
introduce the Kleene algebra of sets of nonnegative reals and prove the normal form theorem. The
third section contains the constructions that accomplish stuttering elimination and determinization
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and the fourth is reserved for a pumping lemma and expressiveness issues concerning real-time
automata. Finally, the fifth section is concerned with the “algebraic” presentation of the class of
languages accepted by real-time automata.

This chapter contains the results from [Dim00a, Dim01b]

3.1 Real-time automata and their regular expressions

Real-time automata are state-labeled timed automata [ACM97] with a single clock which is reset
at each transitions.

3.1.1 Real-time automata defined

Definition 3.1.1. A real-time automaton (RTA) is a tuple A � �Q��� �� �� �� Q�� Qf � where Q is
the (finite) set of states, � is the (finite nonempty) alphabet, � � Q � Q is the transition relation,
Q�� Qf � Q are the sets of initial, resp. final states, � 
 Q � � is the state labeling functionand
� 
 Q� Q Int is the time labeling function.

We also call the pair
�
��q�� ��q�

�
thelabel of the stateq.

RTA work over signals: arun of lengthn � � is a sequence of states�qi�i������n connected by
�, i.e., �qi� qi��� � ���i � �� � � � n � �	. The run isassociated with a signal� iff there exists a
decomposition

� � ��q��
t� � � � � � ��qn�

tn

such thatti � ��qi� for all i � �� � � � n	. Or, in other words, iff there exist some sequence of
“splitting” points � � e� 
 � � � 
 en�� � 
��� such thatei�� � ei � ��qi� and��t� � ��qi�

for all t � �ei� ei��� and alli � �� � � � n	. Observe that the “splitting” points must contain all the
discontinuities in the signal but this inclusion might be strict, case in which we say that the run is
stuttering.

A run is accepting if it starts inQ� and ends inQf . When a signal� is associated with some
accepting run we say that� is accepted byA. Thelanguage of A is the set of signals associated
with some accepting run ofA and is denotedL�A�. Two RTA areequivalent if they have the same
language. If we denote the class of all RTA whose alphabet is� as RTA���, then we may define
the class ofreal-time recognizable languages over� as

TRec��� � fL � Sig��� j 	A � RTA��� s.t.L�A� � Lg

As an example, the automaton in Figure 3.1 accepts the signal� � a���b��� The accepting run
which is associated with this signal is�q� r� s� t� and the splitting points aree� � �, e� � ���,
e� � e� � �� ande� � �. Note that the run is stuttering.

A real-time automaton whose alphabet is� is, from a syntactic point of view, a “finite presen-
tation” of a classical automaton over the (uncountable) set of symbols� � R�� , where a stateq
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r� b

��� ��

s� b t� b

��� ����� ��

q� a

��� ��

b

a

���� ���

q r s t

�

Fig. 3.1. An example of a real-time automaton and a signal accepted by it.

labeled�a� I� embodies a whole family of states labeled with�a� �� for all � � I. However the
comparison stops at this syntactic level since semantically� � R�� comes with a structure which
is unavailable for the alphabet of a classical automaton: according to this structure, we may “fuse”
two symbols sharing the same state label. It is this structure that allows the acceptance of the signal
� in the above example by splitting the symbolb��� into three symbolsb�, b� andb���.

We end this subsection with the following adaptation of the decidability of the emptiness prob-
lem for finite automata.

Proposition 3.1.2. The emptiness problem for RTA is decidable.

The proof relies on the algorithm for computing the sets of accessible states and then checking
whether a final state is accessible, which can be done in linear time w.r.t.card�Q� � card���.

Real-time automata can also be defined such that their accepted language would consist of timed
words instead of signals. Most notably stuttering steps would translate into epsilon-transitions in
the timed words setting. The whole contents of this chapter can then be translated to such automata
without very much difficulty.

3.1.2 Regular expressions and the Kleene theorem

We have observed that labels in RTA are finite presentations of sets of symbols from��R�� . This
observation can be further extended to considering regular expressions over�QInt 
� � � Q Int

with the aim of obtaining a Kleene theorem:

Definition 3.1.3. Consider Rat��QInt �, the set of rational (or regular) expressions over�QInt , i.e.,
defined by the following grammar

E 

� � j � j aI j E � E j E � E j E�

where the atomsaI are symbols from �QInt .
Rational expressions in Rat��QInt � will be mainly called real-time regular expressions.

There are two types of semantics for real-time regular expressions: the first one, called hence-
forth abstract, is the classic semantics in terms of words over the set of symbols�QInt and is
denotedj � j. For this semantics,j�j is the empty set andj�j is the set containing the empty word
over�QInt , word which is denoted� too.
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The second semantics, called thereal-time semantics or simply the semantics, is in terms of
signals and is denotedk � k:

kaIk � f� � Sig��� j 	t � I such that� � atg kE�k � kEk�

kE�Fk � kEk � kFk k�k � 

kE � Fk � kEk � kFk k�k � f��g

Note also thatka��
�k � f��g for anya � �.
The following straightforward property relates the two types of semantics:

Proposition 3.1.4. For each real-time regular expression E � Rat��QInt �,

kEk �
��

kwk j w � jEj
�

We define the class ofreal-time regular languages over� as

TReg��� � fL � Sig��� j 	E � Rat��QInt � such thatkEk � Lg

Theorem 3.1.5 (Kleene theorem for RTA). TRec��� � TReg���.

The Kleene theorem would follow almost immediately from proposition 3.1.4 and the classical
Kleene theorem [HU92] if we would have transition-labeled real-time automata rather than state-
labeled. Since this kind of automata will further show useful, we define them here and provide the
straightforward translations from and to RTA:

Definition 3.1.6. A transition-labeled RTA (t-RTA) is a tuple A � �Q��� ��Q�� Qf � where Q, �,
Q� and Qf have the same names and properties as in RTA and the transition relation � satisfies
� � Q�� � Q Int �Q with card��� ��.

Transitions of the form�q� a� I� r� � � will be calleda-transitions.
Since a transition-labeled RTA is a finite automaton over a finite subset of�QInt , we may speak

of its language in the classical sense, as the set of words over�QInt which are concatenations of the
labels of some accepting run. Let’s call this theabstract language and denote it asLabs�A�. The
real-time language accepted byA, or simplythe language ofA, denotedL�A�, is then the union
of the semantics of each word inLabs�A�, with this abstract word viewed as a regular expression
over�QInt , that is,

L�A� �
��

kwk j w � Labs�A�
�

(3.1)

The translations between RTA and transition-labeled RTA are the usual transformations of a
state-labeled automaton into a transition-labeled one and back, with a special case when the empty
signal is accepted by the t-RTA:
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� Given some RTAA � �Q��� �� �� �� Q�� Qf�, a transition-labeled RTA with the same language
isB � �Q � ft�g� �� �� ft�g� Qf � wheret� �� Q and

� �
��
q� ��r�� ��r�� r� j �q� r� � �

�
�
��
t�� ��q�� ��q�� q

�
j q � Q�

�
� For the reverse, given some transition-labeled RTAB � �Q��� ��Q�� Qf�, a RTA whose lan-

guage isL�B� isA � �� � fq�g� �� �� �� �� T�� Tf � where
– for each RTA state�q� a� I� r� � �, �

�
�q� a� I� r�

�
� a and�

�
�q� a� I� r�

�
� I;

– ��q�� � a for somea � � (assumed nonempty) and��q�� � ��� �	;
– T� � f�q� a� I� r� j q � Q�g � fq�g;
– Tf � f�q� a� I� r� j r � Qfg � fq� j �� � L�B�g;
– � �

��
�q� a� I� r�� �r� b� J� s�

�
j �q� a� I� r�� �r� b� J� s� � �

�
Hence, when�� � L�B� we must add toA an initial and final state for accepting��. Note that this
state is neither the source nor the target of any transition.

Proof (of the Kleene theorem 3.1.5). The proof is then the following: we have already seen that
each RTAA is equivalent to some t-RTAB. Then, by applying the classical Kleene theorem we
get a regular expressionE � Rat��QInt �, that is, a real-time regular expression, whose abstract
semantics equalsLabs�B�. Then, by combining properties 3.1.4 and Identity 3.1 we obtain that the
(timed) semantics ofE and the language ofA are equal. The reverse implication is similar. ut

We end this subsection with a procedure for removing the zeroes from the time labels in RTA
which is a straightforward adaptation of the epsilon-elimination procedure for finite automata
[HU92]: First observe that transitions of the kind�q� a� ��� �	� r� play the r̂ole of �-transitions
in finite automata. Consequently, in each t-RTAA � �Q��� ��Q�� Qf � we split each transition
�q� a� I� r� with � � I in two parts, the first being

�
q� a� I n f�g� r

�
and the second

�
q� a� ��� �	� r

�
.

We further define, for each stateq in A,

��q� � fq� � Q j there exists a run
�
�qi	�� ai� ��� �	� qi�

�
i������n

with q � q�� q
� � qng

Then, the t-RTAA � �Q��� ��Q�� Qf� in which

� �
�
�q� a� I n f�g� r� j 	�q� a� I� s� � � andr � ��s�

�
Qf � Qf � fq � Q j Qf � ��q� �� g

is equivalent toA. Note that when translating transition-labeled RTA without zero labels into state-
labeled RTA, we will get the special initial stateq� whose time label is��� �	, needed for not loosing
the empty signal from the accepted language.

All the above observations can be gathered together in the following:

Proposition 3.1.7. Each transition-labeled RTA is equivalent to some t-RTA in which the interval
labels of the transitions do not contain �.

Each RTA is equivalent to some RTA in which there exists a single state whose interval label
contains �, the label of this state is actually ��� �	 and no transition enters or leaves this state.
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3.1.3 The problem of complementation of real-time automata

The usual way of showing that a class of automata is closed under complementation is to prove
that the automata can be transformed such that for each entry there exists a unique run that starts
in an initial state, for then complementation would be accomplished simply by complementing the
set of final states. The notions that assure theuniqueness of the run for RTA are state-determinism
combined with stuttering freeness:

Definition 3.1.8. A RTA A is language deterministic if each signal in L�A� is associated with a
unique run that starts in an initial state.
A is stuttering-free if

� there exists a state q� � Q� which is not connected to any other state and whose time label is
��q�� � ��� �	;

� the time labels of all the other states do not contain �;
� for each transition �q� r� � �, ��q� �� ��r�.

A is state-deterministic if initial states have disjoint (state- or interval-)labels and transitions
starting in the same state have disjoint (state- or interval-)labels too:

Whenever r �� s and either r� s � Q� or �q� r�� �q� s� � � then either ��r� �� ��s� or
��r� � ��s� � .

A is called deterministic iff it is both state-deterministic and stuttering-free.

The translations of these notions for transition-labeled RTA are the following:

Definition 3.1.9. A t-RTA A is transition-deterministic if it has a single initial state and for each
state q � Q and symbol a � �, if two distinct a-transitions leave q then their time labels are
disjoint, i.e.,

If �q� a� I� r�� �q� a� J� s� � � and I � J ��  then I � J and r � s.

A is stuttering-free if the time labels of the transitions do not contain zero and there are no two
distinct adjacent transitions labeled with the same symbol, i.e., if �q� a� I� r�� �r� b� J� s� � � then
a �� b.
A is deterministic if it is state-deterministic and stuttering-free.

Proposition 3.1.10. The translations between RTA and t-RTA provided in section 3.1.2 are such
that

� state determinism in RTA is translated to transition determinism in t-RTA and vice-versa and
� stuttering-freeness in RTA is translated to stuttering-freeness in t-RTA and vice-versa.

It is clear that determinism implies language determinism. On the other hand, state-determinism
without stuttering freeness does not imply language determinism, due to the nondeterministic na-
ture of choosing the stuttering steps. But a more important observation is that stuttering-free RTA
arestrictly less expressive than general RTA: consider the language of constant signals with integer
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lengthLN � fan j n � N g, which is accepted by the RTA in the Figure 3.2. Observe that this RTA
is language deterministic.

q� a
��� ��

Fig. 3.2. An RTA for the languageLN .

Proposition 3.1.11. LN cannot be accepted by any stuttering-free RTA.

Proof. The proof is based on the intuition that a stuttering-free RTA forLN would need an infinite
number of states:

Suppose we had a stuttering-free automatonA � �Q��� �� �� �� T�� Tf � which would recognize
LN . We may consider� � fag since any state with other state-label cannot be in an accepting
run. Then, since the automaton is stuttering-free,� � . Hence the number of accepting runs inA
equals the number of states that are both initial and final. Denote then� the max inR�� � f�g of
the time labels of these initial and final states. But then both the assumption� � � and� � �

lead to a contradiction:
If � �� then for some stateq � Q��Qf we have that��q� � hl��� where�h� is any left paren-

thesis. Then any constant signal� � at with t � hl��� would be accepted byA, contradicting the
assumption that only signals with natural endpoints are accepted.

On the other hand, if� � � then any constant signal� � an with n � N , n 	 �, is not
accepted byA, again a contradiction. ut

This proof can be easily adapted for showing that state-clock automata [RS97] cannot accept
the following language:

k�b	�
��j � LN � j�b	�
��k �
�
bt�akbt� j k � N � t� � t� � R��

�
A similar property can be shown for event-clock automata, but in which stuttering is replaced

by �-steps.
Despite Proposition 3.1.11, there is no problem in building a RTA for the complement ofLN : it

is the RTA in Figure 3.3 below.
Figure 3.4 below gives an example of how to transform some stuttering RTA into a stuttering-

free RTA.
Hence we discover the need of computing the “sum” of two intervals and the “star” of some in-

terval, or, in a more formal setting, the need for defining some operations that satisfy the following
relations suggested by Figures 3.3 and 3.4:

R n f�g� � f�g��	�� �� and ��� �	� � f�g � ��� �	 � �����
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q� a
��� ��

r� a
��� ��

Fig. 3.3. A RTA for the languageSig�fag� n LN .

q� a
��� ��

q� a
��� ��

r� a
�����

�a� �b�

Fig. 3.4. The stuttering RTA at�a� is equivalent to the stuttering-free one at�c�.

3.2 The Kleene algebra of sets of real numbers

The powerset of the nonnegative numbersP�R��� is naturally endowed with a concatenation op-
eration: it is addition extended to sets of reals:

X � Y � fx� y j x � X� y � Y g for all X�Y � R

whose unit is the set� � f�g.
We can also define a star operation via the usual least fixpoint construction

X� �
�
n�N

nX

where the multiples ofX are defined as usual:�X � � and�n� ��X � nX �X.
The following theorem can be easily verified:

Theorem 3.2.1. The structure P�R��� �
�
P�R�������� ���

�� ��
�

is a commutative Kleene al-
gebra (see Definition 2.1.3).

Because a complement operation is available,�X � R�� n X, we actually get acommuta-
tive complemented Kleene algebra, i.e., a boolean algebra which is also a commutative Kleene
algebra.

Note also that summation with singletons distributes over intersection:

fxg�
�
Y � Z

�
�
�
fxg� Y

�
�
�
fxg� Z

�
(3.2)

but distributivity of summation over intersection is not valid in general as the following example
shows: �

	�� ��� 	�� ��
�
�
�
	�� ��� 	�� �

�
� 	�� ��

	�� ���
�
	�� ��� 	�� �

�
� 
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3.2.1 Normal forms

DenoteK�Q Int � the sub-(commutative complemented Kleene) algebra generated byQ Int in
P�R���, that is the family of sets which can be obtained from intervals ofQ Int by applying
union, summation, star and complementation.

Definition 3.2.2. A set X � K�Q Int � can be written in normal form if there exist X�� X� two
finite unions of rational intervals and k � Q �� , N � N such that

X � X� � �X� � fkg�� (3.3)

and X� � ��� Nk�� X� � �Nk� �N � ��k� (3.4)

We call N the bound of the normal form.

We will work with normal forms in whichX� andX� are unions ofdisjoint intervals. It is straight-
forward how to transform some normal form such that this property holds.

Normal forms are not unique: for the normal form in the definition and somep � N , the
following expression:

X �
�
X� �

�
X� � f�� k� �k� � � � � �p� ��kg

��
�
�
X� � fpkg� fkg�

�
is a normal form too, but with boundN � p.

Any finite union of rational intervalsX can be put into normal form: whenX is bounded from
above byM thenX � X �

�
� f�g�

�
is a normal form with bounddMe. WhenX is unbounded,

supposeX � X�� �M��� is some decomposition of it into disjoint intervals, whereM �� N . Then

X �
�
X� �

�
M� dMe

��
�
��
dMe� dMe� �

�
� f�g�

�
is a normal form with bounddMe.

Proposition 3.2.3. For each set X written into normal form as X � X� �
�
X� � fkg�

�
, X �  iff

both X� and X� are empty.

This property, though trivial, has its own importance since we will use normal forms as time labels
in automata and we still want to have a decidable emptiness problem for the resulting automata.

Sometimes, after the application of different operations to normal forms we might not be able to
get directly a normal form; instead, we might get aweak normal form, which is a decomposition
as in Identity 3.3 but without the additional requirement 3.4 on the existence of the bound. As an
example we have the following:

� X �
�
	�� ��� 	�� �

�
�
��

�� ������ ��
�
� f�g�

�
is written in normal form with bound� since we

haveX� �	�� ���	�� �� ��� �,X� � �� ��� 	�� ��� �� ��.
� Y �

�
	�� ��� 	�� ��

�
�
�
��� �	 � f�g�

�
is a weak normal form which is not a normal form: there

is noN � N such that��� �	 �
�
�N� ��N � ��

�
and	�� ���	�� �� ��� �N �.
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However both expand to the same set:

X � Y �	�� ���	�� �	 �
�
n��

��n� �� �n� �	

Lemma 3.2.4. Weak normal forms can be transformed into normal forms.

Proof. TakeX � X���X��fkg
�� some weak normal form and defineM � sup�supX�� supX��.

Two cases arise:

1. M � �. This means that there exists someL � R�� such thathL���� X, where�h� denotes

some left parenthesis. Define thenn �

�
L

k

�
, hencenk 
 L � �n � ��k. Then for each

i � n��,X��fikg �
�
�n���k��

�
� hL���. It follows thatX is a finite union of intervals

X � X� �

�
n�
i��

�
X� � fikg

��
� hL���

and thus we know how to transform it into normal form.

2. M ��. Define thenn �

�
M

k

�
� �, hence�n� ��k 
M � nk. Define further

Z� � X� �

��
n	��
i��

�
X� � fikg

��
� ��� nk�

�

Z� �

�
n�
i��

�
X� � fikg

��
�
�
nk� �n� ��k

�

We claim thatX � Z� �
�
Z� � fkg�

�
which is a normal form with boundn.

To prove this, observe first that for eachi 	 j, i� j � N ,�
X� � fikg

�
� ��� jk�� 

Moreover, distributivity of summation of singletons over intersection (property 3.2) implies that,
for eachj � N , �

X� � fjkg
�
�
�
�n� j�k��

�
�
�
X� � �nk���

�
� fjkg � 

due to the fact thatX� � ���M 	 � ��� nk�. This also implies that, for eachi 
 j, i� j � N ,�
X� � fikg

�
�
�
�n� j�k��

�
� 

Therefore, by the same distributivity property 3.2 we get
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�
X� � fkg�

�
�
�
�n� j�k� �n� j � ��k

�
�

�

� n�j�
i�j��

�
X� � fikg

��
� ��n� j�k� �n� j � ��k��

�

� n�
i��

�
X� � fikg

��
� �nk� �n� ��k��fjkg

and further

X � X� �
�
X� � fkg�

�
� X� �

��
X� � fkg�

�
�
�
��� nk��

�
j��

��n� j�k� �n� j � ��k�
��

� X� �

� n	��
i��

�
X� � fikg

�
� ��� nk�

�
�

�
j��

�� n�
i��

�
X� � fikg

�
� �nk� �n � ��k�

�
� fjkg

�

� Z� �
�
Z� � fkg�

�
ut

3.2.2 A normal form theorem

The key result for normal forms is the following:

Theorem 3.2.5. Each X � K�Q Int � can be written in normal form.

Proof. We must show that the result of any operation applied to some normal forms can be put into
normal form. We first list some useful identities valid inP�R � [Con71]:

X�� � X� (3.5)

�X � Y �� � X� � Y � (3.6)

�X� � Y �� � f�g � �X� � Y � � Y � (3.7)

We employ the notationslcm�p� q� andgcd�p� q� wherep� q � Q�� as the generalization oflcm
andgcd from integers. The formal definitions are:

lcm�p� q� � minfr � Q �� j 	l�m � N such thatlp � r � mqg

gcd�p� q� �
pq

lcm�p� q�

We also use the followingultimately periodicity property:
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For eachn distinct positive rationalsai � Q �� (i � �� � � � n	) we have thatfa�� � � � � ang�

is ultimately periodic, i.e., there exist somefinite set of rationalsB and some rationals
q� r � Q �� such that

fa�� � � � � ang
� � B �

�
fqg� frg�

�
(3.8)

This property can be seen as an equivalent form of the normal form theorem for regular languages
over a one letter alphabet. For a direct proof note first that, given two rationalsp� q � Q�� ,

fp� qg� � B �
��
lcm�p� q�

�
�
�
gcd�p� q�

���
whereB �

�
� � Q �� j � � lcm�p� q�� � � lp �mq� l�m � N

�
� fp� qg� �

�
�� lcm�p� q�

�
. The

property 3.8 follows from this by induction upon the number of elements in the starred set.
Fix now two normal formsX � X� � �X� � fkg�� with boundM andY � Y� � �Y� � flg��

with boundN and denotem � lcm�k� l�. We then get the following form forX � Y :

X� � Y� �

�
��m�k	��

i��

�
X� � fikg

�
�

m�l	��
i��

�
Y� � filg

��
� fmg�

�
A

This is a weak normal form and Lemma 3.2.4 shows how to transform it into normal form.
ForX � Y , distributivity of� over� transforms it into:�

X� � Y�
�
�
�
X� � Y� � flg�

�
�
�
X� � Y� � fkg�

�
�
�
X� � Y� � fkg� � flg�

�
An instantiation of identity 3.6 givesfkg� � flg� � fk� lg�. The ultimately periodicity property
3.8 gives a normal form for this set and thence we have above a union of weak normal forms which
we already know how to bring to normal form.

ForX� we have two cases. The first one occurs when one ofX� andX� contains a nonpoint
interval. Thenthe set X� is a finite union of rational intervals, so we know how to bring it into
normal form.

To prove this claim, note that for each nonpoint interval, e.g.,	a� b	 (that isb� a 	 �), denoting

m� �

�
a

b� a

�
, we have that	a� b	� � � �

m�	��
i��

	ia� ib	�	m�a��� since the choice ofm� assures

that�m� � ��a � m�b. Hence from them�-th iteration the intervals start to overlap.
The second case forX� is when bothX� andX� consist of point intervals. Applying identity

3.6 we getX� � X�
� �

�
X� � fkg�

��
. Then by the ultimately periodicity property 3.8X� can be

written into normal form, so we may concentrate on
�
X� � fkg�

��
.

By identities 3.7 and 3.6 we further get�
X� � fkg�

��
� f�g �

�
X� �X�

� � fkg�
�

� f�g �
�
X� �

�
X� � fkg

���
Finally the ultimately periodicity property 3.8 tells us that

�
X� � fkg

��
can be put into normal

form and therefore this case reduces to a summation of normal forms.
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For�X the strength of the normal form, i.e., the additional requirement on the existence of the
boundN helps us giving directly the result: it is

�X �
�
�X� � ��� Nk�

�
�
��
�X� � �Nk� �N � ��k�

�
� fkg�

�
and the bound of this normal form isN too. ut

In [CG00] it is proved that the set of finite unions ofn-dimensional normal forms in which
X� �  forms a boolean algebra. The essential novelty in our result is the closure of�-dimensional
normal forms under star.

Though the proof of Theorem 3.2.5 is based on the same technique that gives the normal form
of regular languages over a one-letter alphabet, it cannot be a simple corollary of that result: even
if we restrict our attention to the algebra generated by intervals with natural bounds, denote it
N Int , we find two generators: the point setf�g and the nonpoint interval	�� ��. Neither of them
may generate the other:f�g generates just sets with isolated points or complements of such sets
(i.e., countable or co-countable sets), while	�� �� generates just finite unions of intervals (it cannot
generate	�� ���f�g�).

One might also think that the result follows from Eilenberg’s theory of automata with multiplic-
ities [Eil74]. But this is not the case either since in that work star is defined via some formal power
series and one cannot prove, unless defining some suitable equivalence on power series, that e.g.
��� ���� �����.

Finally note the interesting relation which holds between the two generators ofN Int , showing
they are not independent:

	�� ���� ���	�� ��� � f�g� (3.9)

3.2.3 Matrices of normal forms

At the end of this section we make a brief excursion into matrix theory. We construct, as in [Koz94]
the Kleene algebra ofn � n matrices overP�R��� whose operations are the matrix extensions of
the operations in the Kleene algebraP�R���:

�A �B�ij � Aij � Bij �A�B�ij �

n�
k��

�Aik �Bkj�

A� �
�
n�N

nA

where�A � In and�n� ��A � nA� A, In denoting the unit for matrix summation, i.e.

�In�ij �

 
f�g iff i � j

 iff i �� j

If we write in detail the components ofA� we have:
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�A��ij �
��

Ai i��Ai�i��� � ��Aimj j i�� � � � � im� �� � � � n	�m�N
�
� f� j i � jg (3.10)

The star of a matrixA can be computed by the following well-known Floyd-Warshall-Kleene
algorithm [Con71, Eil74]: we recursively define a sequence ofn � � matricesA�k� (� 
 k 
 n)
with

A��� � A � In

A�k�ij � A�k � ��ij �
�
A�k � ��ik �

�
A�k � ��kk

��
� A�k � ��kj

�
(3.11)

Proposition 3.2.6 ([Eil74]). A�n� � A� for any matrix over P�R���.

The classical proof may run as follows: one proves first that�nA�ik � �mA�kj � ��n �m�A�ij.
This implies that�A��ik �

�
�A��kk

��
� �A��kj � �A��ij. Then one shows thatA�k�ij � �A��ij by

induction onk and hence get the left-to-right inclusion.
The right-to-left inclusion follows by proving that

A�k�ij �
��

Ai i� � Ai�i� � � � �� Aimj j i�� � � � � im � �� � � � k	�m � N
�
� f� j i � jg

by induction onk.

Corollary 3.2.7. If A is a matrix of normal forms then A� can be transformed into a matrix of
normal forms too.

Corollary 3.2.8. For each matrix of normal forms A if for all indices i �� j we have that � �� Aij
then for all indices i �� j, � �� �A��ij .

Proof. This is a corollary of relation 3.10: for anyi�� � � � � im � �� � � � n	 consider the sumAi i� �

Ai�i� � � � � � Aimj. As we assumedi �� j we must have somep � �� � � � m	 such thatip �� ip��.
Thence� �� Aipip�� and therefore the sum itself does not contain�. By identity 3.10, it follows that
� �� �A��ij. ut

Note however that for anyi, �A��ii will always contain�.

3.3 Determinization and complementation of RTA

The above theory suggests that “periodic” constraints may replace intervals in RTA:

Definition 3.3.1. An augmented real-time automaton is a tupleA � �Q��� �� �� �� Q�� Qf � where
Q, �, Q�, Qf , � and � are the same as in RTA while � 
 Q� K�Q Int � (actually � gives a normal
form).

Augmented RTA work similarly to RTA:runs have the same definition and a signal� is associ-
ated with a run�qi�i������n iff � � ��q��

t� � � � � � ��qn�
tn The emptiness problem is again decidable
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in linear time w.r.t.card�Q�. Note that we need a preliminary step in which statesq whose interval
labeldenotes the empty set are removed. It is here where we need Proposition 3.2.3.

The different notions of determinism remain unchanged for augmented RTA; hence we will
speak of state-deterministic augmented RTA and stuttering-free augmented RTA in the sense of
Definition 3.1.8.

We also have a transition-labeled version of augmented RTA, called in the sequelaugmented
t-RTA, which are tuplesB � �Q��� ��Q�� Qf � like t-RTA, the difference being that the transition
relation is time-labeled with normal forms instead of just intervals:� � Q � � � K�Q Int � �

Q. The different notions of determinism in Definition 3.1.9 are the same for augmented t-RTA,
the translations between RTA and t-RTA and back from subsection 3.1.2 work with augmented
automata too and Proposition 3.1.10 is valid for augmented automata.

The following theorem says that we do not increase the expressive power of RTA if we use
normal forms instead of mere intervals:

Theorem 3.3.2. TReg��� equals the class of languages accepted by augmented RTA.

The proof is very close to the one of Theorem 3.1.5 and is based on the following property of
regular expressions:

k�a	a
b��
c
d��fkg��k � k�a	a
b� � �a	c
d� � �a	
�
fkgk

Of course, we also have to redefine regular expressions allowing normal forms as indices for atoms.

The first step in determinization is the achievement of stuttering-freeness and the proof runs
smoother foraugmented t-RTA:

Theorem 3.3.3. Each augmented t-RTA is equivalent to some stuttering-free augmented t-RTA.

Proof. As a preliminary step, in the given augmented t-RTA we remove zeroes from the time
labels by applying Proposition 3.1.7, slightly modified for handling normal forms instead of mere
intervals. We also assume that all transitions with empty time label have been removed.

We achieve stuttering freeness by removing all stutteringa-transitions for somea � �, and then
repeating this for all the other letters in�. The idea is to find, for each pair of states�q�� q�� the set
of durations of signals that are associated with runs starting inq�, ending inq� and containing only
a-transitions. For this we need to recursively add all the intervals of the transitions that may lie on
such a run. This is the place where we apply the normal form theorem 3.2.5 and the algorithm for
computing the star of a matrix of sets of positive numbers. The formalization is the following:

Start with some augmented t-RTAA � �Q��� �� q�� Qf � and number its states asQ �

fq�� � � � � qpg. Construct a matrixA whose elements are the interval labels of thea-labeled states:

Aij �

�
X iff �qi� a�X� qj� � �

 otherwise

Then�A��ij consists of the lengths of signals associated with runs starting inqi, ending inqj
and consisting ofa-transitions only. More formally,
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�A��jk �
��

X��� � ��Xm j �ri	�� a�Xi� ri�i������n is a run inA and

r� � qj� rn � qk
�
� f� j j � kg (3.12)

This fact is a corollary of identity 3.10.
Computation ofA� is done by the Floyd-Warshall-Kleene algorithm (3.11). Note here the im-

portance of Corollary 3.2.7: the elements ofA� are still normal forms, hence they may be used
for labeling some new transitions of an augmented RTA. Hence, while non-a-transitions will be
preserved, thenonempty components ofA� will replace alla-transitions: their time label will be
�A��ij and they will be connected only to states from which no othera-transition is issued.

Formally, consider a disjoint copy ofQ, Q� � fq�i j qi � Qg; the primed states will be reached
exactly after ana-transition. Build thenB � �Q � Q�� �� ��Q�� Qf � Q

�
f � whereQ�

f is the set of
copies of final states and

� �
�
�q� b�X� r�� �q�� b�X� r� j b �� a� �q� b�X� r� � �

�
�n�

qi� a� �A
��ij n f�g� q

�
j

�
j
�
A��ij n f�g �� 

o
The need for removing zero from the new transitions comes from the fact that we do not want to
add stuttering steps involving the other symbols from�.

The equivalence ofA andB follows from the observation that a run
�
�ri	�� ai� Xi� ri�

�
i������n

in
A associated with some signal�, can be transformed into a run inB for � by replacing all maximal
sequences ofa-transitions with the appropriatea-transition time-labeled fromA� and by priming
the state that follows this transition.

Observe that, by construction, no twoa-transitions are directly connected. On the other hand,
all non-a-transitions involving nonprimed states are just copied, hence no stuttering transitions are
added on these states. Finally, the primed states are not involved in any stuttering transitions since
they are targets ofa-transitions and sources of non-a-transitions. This shows that by recursively
applying this construction for all letters in� we end with a stuttering-free augmented RTA. ut

The number of states in the final t-RTA is�card
�� � card�Q�, since at each step the states are
at most duplicated. Concerning the number of transitions, note that, for eacha � �, at each
step the number ofa-transitions is either doubled (ifa is not chosen at that moment for stuttering
elimination) or squared. Since there is a single step in which the number ofa-transitions is squared,
an upper bound for the number ofa-transitions would be��
card
�� � m�

a, wherema is the initial
number ofa-transitions. Note that the earlier we choose to eliminate the stutteringa-transitions, the
smaller the number ofa-transitions we obtain. This is because squaring would apply to a smaller
number of transitions.

The last step in the determinization process is the achievement of determinism in stuttering-free
automata. This time, the construction works smoother forstate-labeled automata:

Theorem 3.3.4. Each stuttering-free augmented RTA is equivalent to some deterministic aug-
mented RTA.
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Proof. Note that, as we work with state-labeled RTA, the given stuttering-free RTA has the special
initial stateq� whose time-label is��� �	 and which is not connected to any other state.

Start with a stuttering-free augmented RTAB �
�
Q � fq�g� �� �� �� �� Q� � fq�g� Qf

�
with

q� �� Q. For some subset of statesS � Q we write��S� � a as a shortcut for saying that all states
in S are identically labeled witha.

If B were untimed, the states of the deterministic automaton would have been identically state-
labeled subsets ofQ and we would draw a transition from someS� with ��S�� � a to someS�
with ��S�� � b iff S� � fr � Q j 	q � S� s.t.�q� r� � �g. Taking into account the time labels
is done by splittingS� into several “smaller” states, each one with its distinct time label, such that
their time give a partition ofR�� .

To eachU � Q with ��U� � a we associate the set of time labels appearing inU :

T l�U� � fX � K�Q Int � j 	q � U s.t.��q� � Xg

LetR denote the set of triples�S� S�� a	 wherea � � andS� � S � Q with ��S� � a. Define then
�
�
�S� S �� a	

�
� a and

�
�
�S� S �� a	

�
� R�� �

�!
T l�S ��

�
� �

��
T l�S n S ��

�
where the usual conventions

T
 � R�� and

S
 �  apply. Intuitively the control passes through

�S� S �� a	 iff in B the control may pass through some state inS� but not through any of the states
in S n S�. We putR�� in front of ���S� S�� a	� because otherwise we would lose stuttering-freeness.
Also note that it ishere where we need the result that normal forms are closed under complemen-
tation, because we need to put���S� S�� a	� into normal form and���S� S�� a	� contains complemen-
tation.

Hence we buildC � �R� fq�g� �� ��� ��� ���R��Rf � in which

� �� consists of transitions going from each�S� S�� a	 � R to each tuple�U�U �� b	 defined by

U �
�
q � Q j 	r � S � s.t.�r� q� � � and��q� � b

�
and U � � U�

CaseU � �  stands for the situation when the length of the current state in the signal is not in
any of the sets fromT l�U�. Note how states�� � a	 time-labeled withR�� play the role of the
trap states in finite automata.

� initial and final states are

R� �
n
�S� S �� a	 � Q j S �

�
q � Q� j ��q� � a

�o
� fq�g

Rf �
�
�S� S �� a	 � Q j S � �Qf �� 

�
�
�
q� j �� � L�B�

�
The proof thatC is equivalent toB proceeds by induction on the number of discontinuities in

a signal. The construction assures that, at each discontinuity, exactly one state can be chosen such
that the control goes to that state. ut
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The complexity of this construction is exponential in the number of states: by denotingn �

card�Q�, observe first that the number of states�S� S�� a	 wherecard�S� � k is at most�k �

�
n

k

�
(at most due to the fact that some sets of statesS might not be consistently state-labeled). Therefore
the cardinality ofR is at most

nX
k��

�
�k �

�
n

k

��
� �n

Theorem 3.3.5. TRec��� is closed under complementation.
The universality problem for TRec��� is decidable.

Proof. This is a corollary of Theorem 3.3.4 and Proposition 3.1.2. The important property provided
by the construction of the deterministic augmented RTAC in this theorem is that each signal
(including the empty signal!)is associated with a unique run that starts in T�. Hence the augmented
RTA that acceptsSig��� n L�C� is obtained by complementing the set of final states ofC. ut

Let us finally underline the need for theorem 3.2.5 in determinization: in our construction,
we actually build an automaton whose time labels are in factextended regular expressions (i.e.,
using complementation) over intervals. In the absence of theorem 3.2.5, such an automaton would
not be an augmented RTA any longer and we would be in no position to decide whether, after
complementing the set of final states, the resulting automaton would still be an augmented RTA.
This would make questionable the decidability of the universality problem.

It is actually this problem what stops the application of the determinization construction for
RTA whose time labels lie in a class larger thanQ Int in which comparison of the time bounds is
effective - for example, the class of intervals whose bounds are algebraic numbers. If this class of
intervals is chosen for time labels, it is unclear whether the universality problem remains decidable.

3.4 The Pumping Lemma and expressiveness issues

Lemma 3.4.1 (Pumping Lemma). If a language L is accepted by a RTA then there exists N � N

such that each signal � having at least N discontinuities can be factored into three signals � �

��������, such that �� contains at least one discontinuity and for any n � N we have ����n� ��� � L.

Proof. The proof of this lemma is almost the same as in the untimed case, the difference lying
in the reference to discontinuities. TakeA � �Q��� �� �� �� Q�� Qf � a stuttering-free augmented
RTA acceptingL and defineN � card�Q� � �. It is clear that each signal� � L havingN
discontinuities must be accepted by some run having exactlyN � � states, hence one of the state
must be repeated throughout the run. Since we assumed thatA is stuttering-free we cannot have
self loops at the repeated state. Hence the part of the run which can be repeated must contain at
least two distinctly state-labeled states and therefore�� must contain a discontinuity. ut
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Proposition 3.4.2. The language Lnonreg � f� � Sig�fa� bg� j 
��� � ��� �	g is not real-time
regular.

Proof. SupposingLnonreg is real-time regular, we may pick up a signal� � Lnonreg such that its
number of discontinuities is more than the natural numberN provided by the Pumping Lemma.
An example is the signal

� � a
k
N b

k
N � � � � � a

k
N a

k
N� �z 

N times

that is, for eachk � �� � � � N 	, ��t� � a for t �
�
�k	�
N
� �k	�

N

�
and��t� � b for t �

�
�k	�
N
� �k
N

�
.

Then by the Pumping Lemma� can be factored as� � �� � �� � �� such that�� has at least a
discontinuity, (and hence
���� 	 �) and�� ��n� ��� � Lnonreg for anyn � N . But thenn �
���� 
 �

for all n � N , which is in obvious contradiction with
���� 	 �. ut

It is easy to build a state-labeled timed automaton [ACM97] with a single clock accepting
Lnonreg. Note also that the untiming of this languageU�Lnonreg� is a regular (untimed) language.

3.5 Stuttering-free concatenation

Theorem 2.4.6 seems to provide a disappointing result concerning the possibility to have some
results on syntactic monoids for real-time languages. But it this is not the case: we just have to
shift our attention to other monoidal structures on the set of signals.

A “quasimonoidal” structure onSig��� arises if we consider apartial concatenation operation
� as follows: for eachnonempty signal� 
 ��� ��� � (� �� �) we define thelast symbol occurring
in � as last��� � lim

t��
��t�. Alternatively, last��� is the last letter inU���. The partial operation,

calledstuttering-free concatenation, is defined as follows: for each��  � Sig��� n f��g

� �  �

�
� �  , iff last��� � ���

undefined , ifflast��� �� ���
(3.13)

Further, for any� � Sig���, put�� � � � � � � � ��
We may easily extend this operation to a total one, by augmentingSig��� with a fresh symbol

�, standing for “undefined”, which becomes a “zero element”:

�� � Sig���� � �� � �� � � �

Of course then instead of having� �  � undefined we put� �  ��.

Proposition 3.5.1. �Sig������ ��� is a monoid, where Sig��� � Sig��� � f�g.

Hence the whole theory of regularity from Chapter 2 applies. It should be noted that, though
we have augmentedSig��� with the “undefined” element we may still define regular subsets of
Sig��� as those that are regular inSig���. The question is whether in this case we will not get
again “uninteresting” regular languages. We will show that this is not the case by relatingSig���-
regular languages with languages accepted by real-time automata.
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3.5.1 Syntactic monoids for stuttering-free concatenation and real-time automata

In this subsection we prove that real-time regular languages can be characterized by inverse monoid
morphisms whose domain isSig���. Unfortunately the mechanism of finite monoid recognizabil-
ity does not give in generalfinite representations of the generated class of timed languages. This
means that, by inverse monoid morphisms, we may obtain languages in which the timing informa-
tion might not necessarily consists of time intervals, like in real-time regular languages.

Take, for example, the languageLdirichlet � Sig�fag� consisting of signals whose length is a
rational number

Ldirichlet � fat j t � Q ��g

This language can be given as the inverse morphic image of the subsetfe� ag in the monoidM� �

fe� a� �g in whichaa � �, under the morphism

� 
 Sig����M��

��at� �

 
a iff t � Q ��

� iff t �� Q ��

���� � �

because

��at � at
�

� � ���� � ��at���at
�

�

We interpret this as the fact that monoid recognizability and finite generation of timed languages
are “orthogonal” properties1.

To cope with this problem, we will utilize hereextended RTAs here, which are tuplesA �

�Q��� ��Q�� Qf � like RTAs, but in which the only constraint on� is that it gives a finite set of tuples
� � Q�P�R����Q, that is, each tuple�q�X� r� might containany subset of realsX � R�� . For
this class of automata, all the closure results, including complementation, hold. The only property
that is not valid is their decidability.

Theorem 3.5.2. Given some RTA A, L�A� is a Sig���-regular language. The following reverse
also holds: for eachReg�Sig����-regular language L, Lnf�g is accepted by some extended RTA.

Proof. We will utilize here transition-labeled RTA.
AssumeB is some t-RTA acceptingL, with �� �� L. Using the Theorems 3.3.3 and 3.3.4, we

get a deterministic t-RTAC � �Q��� �� q�� Qf � with the same language asB. Then define the
Sig���-automatonA � �Q� f�g� Sig���� �� q�� Qf � as follows: for each constant signalat, with
a � � andt � R�� , define

� Observe that the algebraic characterization in [BPT01] also is insensitive to finite presentation of each set in the finite decompo-
sition ofR��

n.
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��q� at� �

�
r iff 	X � R�� s.t.�q� a�X� r� � � andt � X
� otherwise

This definition makes� a partial function, i.e., correctly defined: we cannot haver�� r� � Q with
�q� a�X�� r��� �q� a�X�� q�� � � for someX�� X�, both containingt since we would contradict
transition determinism inB.

Then extend� on all signals using again the decomposition property 2.11: for each� � at�� �

� � � � atnn we put��q� �� � �
�
��� � � ��q� at�� �� � � � �� a

tn
n

�
. Finally put��q� ��� � q and��q� � � ��.

By now � is a total function.
The equalityL�A� � L�C� follows from the deterministic character ofC. The left-to-right

inclusionL�A� � L�C� is straightforward. For the right-to-left inclusion, observe that, by deter-
minism ofC we have that� � L�C� iff there exists aunique accepting run

�
�qi	�� ai� Xi� qi�

�
i������n

associated with�. As an outcome of stuttering freeness we haveai �� ai�� for all i � �� � � � n� �	.
This implies that for the (unique!) decomposition� � at�� � � � � � atnn , we must haveti � Xi and
��qi	�� a

ti
i � � qi and therefore

��q�� �� � ��q�� a
t�
� � � � �� atnn � � �

�
��� � � ��q�� a

t�
� �� � � � �� a

tn
n

�
� qn � Qf (3.14)

and hence� � L�A�.
For the reverse implication, take some setL � Reg�Sig����, hence there exists someSig���-

automatonA � �Q� Sig���� �� q�� Qf� such thatL � L�A�.
For eachq� r � Q anda � � defineX�a� q� r� � R�� as the set of lengths ofa-signals which

lead fromq to r:

X�a� q� r� � ft j ��q� at� � rg

Define the (extended) t-RTAB � �Q�� � fq�g� �� q�� Qf��� where

� �
��

�q� a�� b�X�b� q� r�� �r� b�
�
j a� b � �� a �� b� q� r � Q

�
�

�
��
q�� a�X�a� q�� q�� �q� a�

�
j a � �� q � Q

�
(If �� � L then just addq� to the set of final states). Note that inB no two transitions with the same
�-label are consecutive, i.e.B is a stuttering-free extended t-RTA.

The equalityL�B� � L�A� follows by the decomposition property 2.11 and the stuttering-
freeness ofA which assures that, when a signal is associated with some run inA, the decomposi-
tion points that witness this must be exactly the discontinuity points within the signal. ut

HenceSig���-regular languages are “more interesting” thanSig���-regular languages, since
the class of languages accepted by RTA contains nontrivial examples with timing information.

At the end of this chapter we will give a simple property which argues our view of monoid
recognizability being orthogonal to finite generation.

Denote firstSige� ��� the class of signals whose discontinuities occur only at rational points
and whose endpoints are rational too. We call aSig���-automatoneffective if there exists some
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algorithm for deciding, for each signal� � Sige� ��� and statesq� r, whether��q� �� � r. On the
other hand, we call a RTAeffective if for each time labelX in A, the setX � Q�� is a recursive
set.

Proposition 3.5.3. The translations provided by Theorem 3.5.2 are such that effective Sig���-
automata are translated into effective deterministic RTA and vice-versa.

Proof. The first implication is straightforward, since the algorithm for deciding whetherp � X,
for each time labelX and rationalp, is a particularization of the algorithm provided by the given
effectiveSig���-automaton. For the reverse we will consider the following algorithm: for each
signal� � Sige� ��� and pair of statesq� r � Q, consider all the paths in the RTA which lead from
q to r, whose number of transitions equals the number of symbols ofU��� (the untiming of�) and
are such that thei-th transition is labeled with thei-th symbol inU���. This set is finite for each
signal due to stuttering-freeness of the RTA. Then, for each such run, using the algorithm provided
by the given RTA, check whether the length of thei-th constant component of the signal is in the
time label of thei-th transition within the run. ut

We have no answer to the questions whether the other constructions in this chapter (concatena-
tion, star closure, complementation) preserve effectiveness.



4. Timed automata

This chapter gives an outlook of semantics of timed automata [AD94] and of the clock regular
expressions [BP99, BP01] that can be associated with them. We remind the Kleene theorem which
connects them, and provide an alternative proof of this theorem for regular expressions that use
indexed concatenations, theorem first proved in [BP99]. We also remind an alternative semantics
for timed automata, semantics which makes reference toreset points rather than clock values, like
in [BJLWY98]. The clock valuation semantics and the reset clock semantics are interchangeable,
but we will see in the next chapters that the latter works better for timed regular expressions.

The chapter runs as follows: the first section presents clock valuations and clock constraints. In
the second we remind the semantics of timed automata as timed transition systems, and show how
this semantics can be transformed into a compositional one, such that clock regular expressions be
equivalent to timed automata We also present here the alternative proof of the Kleene theorem for
clock regular expressions with indexed concatenation, proof which is based upon the possibility
to define classical regular expressions with indexed concatenation. The final section presents the
reset time semantics for timed automata.

4.1 Clocks and clock constraints

Throughout this and the subsequent chapters,� will denote the countable set of symbols� �

fx�� x�� � � � g while �n will denote the firstn symbols from�, �n � fx�� � � � � xng. We name
the symbols from� as clocks as they will be used to remember the time passage in the class
of automata under study here. From these symbols we construct logical formulas which will be
used to express constraints on clocks values which are to be satisfied at different moments while
processing the signal.

An atomic clock constraint over�n is a formula of the following type:

� xi � U , for somei � �n	 and nonnegative intervalU � N Int ;
� xi � xj � U for somei� j � �n	� i �� j and intervalU � ZInt .

Observe that we allow also comparisons of clocks w.r.t.negative intervals.
An elementary clock constraint over�n is conjunction of the form

n"
i��

�xi � Ui� �
"

i
j������n
i��j

�xi � xj � Uij� (4.1)
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where each conjunct is an atomic clock constraint. Aclock constraint over�n is any boolean
combination of atomic clock constraints. The set of clock constraints over the set of clocks�n is
denotedC��n�, while the set of elementary clock constraints over�n is denotedEC��n�.

A clock valuation is a functionv 
 � � R��. Usually we are interested only in the values
associated with the firstn clocks, that is, in the restrictionv

�n

 �n � R�� , which we denotev

too.
Clock valuations can be extended tointerpretations of clock constraints in the well-known way:

� First, each atomic clock constraintxi � U is interpreted by “replacing” the clockxi with its
valuev�xi� and then computing the truth value of the resulting formula, where the symbol� is
interpreted as membership.

� Then the boolean operations are applied to the resulting truth values to get the truth value of the
whole interpreted formula.

We denotev j� C if the interpretation ofC induced byv is the truth value “true”.
We will identify a clock valuationv 
 �n � R�� with an n-dimensional pointv � Rn��.

Therefore we may import different operations onn-dimensional points to clock valuations. The
two operations we use in the sequel are

1. Addition with a nonnegative integer: givenv � Rn�� andt � R�� , we denotev � t the clock
valuation defined by�v � t��xn� � v�xn� � t.

2. Resetting the set of clocks inX � �� � � � n	, or, equivalently, projection onto a subspaceS of
R�� defined by the equationsS � fxi � � j i � Xg: givenv � R n

�� , we denotev�X 
� �	 the
clock valuation given by

v�X 
� �	�xi� �

 
� iff i � X

v�xi� otherwise

4.2 Timed automata and their clock valuation semantics

In the sequel we fix a set of symbols� and a positive integern � N .

Definition 4.2.1. A timed automaton with n clocks is a tuple A � �Q� �� ��Q�� Qf � where, Q
denotes the (finite) set of states, � denotes the transition relation

� � Q� EC��n��P��n��Q with card��� ��

� denotes the state labeling function � 
 Q� �, andQ�� Qf � Q are the sets of initial, resp. final
states.

The classical way to give semantics to each timed automaton is to build atimed transition system
first from the specified automaton, then to consider the set ofaccepting runs in this transition
system, and finally to concatenate the labels of all transitions in each such run in order to get
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the set of signals accepted by the given timed automaton. Hence, given a timed automatonA �

�Q� �� ��Q�� Qf �, we associate a transition system whose set of configurations is the uncountable
set of tuples�q� v� comprising a stateq � Q and a clock valuationv � Rn�� and whose transitions
are classified asinstantaneous or timed, as they are produced either by a transition in� or by the
passage of time while resting in a stateq. Formally, thetimed transition system associated withA
is T �A� � �Q� R n

�� � �� Q� � f�ng� Qf � R n
��� where

� �
��

�q� v�� �� �q�� v��
�
j 	�q� C�X� q�� � � such thatv j� C andv� � v�X 
� �	

�
� (4.2)

�
��

�q� v�� at� �q� v � t�
�
j v � R n

�� � a � ��q�
�

(4.3)

We call transitions of the form 4.2 asinstantaneous transitions while those of the form 4.3 are
calledtimed transitions.

In this transition system, the set ofruns is the set of sequences
�
�qi	�� vi	��� zi� �qi� vi�

�
i�����k

with
�
�qi	�� vi	��� zi� �qi� vi�

�
� � for all i � ����k	. An accepting run is a run in whichq� � Q�,

v� � �n andqk � Qf . Thelanguage accepted by A is then the set of concatenations of labels of
transitions of each accepting run:

L�A� �
�
z� � z� � � � � � zk j

�
�qi	�� vi	��� zi� �qi� vi�

�
i�����k

is an accepting run
�

We also say that the signalz� � � � � � zk is associated with the run
�
�qi	�� vi	��� zi� �qi� vi�

�
i�����k

.
This semantics has the drawback of being unstructured and hence noncompositional. To make

it compositional, we observe first that we may consider only runs in which instantaneous and timed
transitions fromT �A� alternate. More formally:

1. Suppose that in some run we have two consecutive instantaneous transitions,
�
� �� �q�� v��

�
and�

�q�� v��� ��
�
. Then insert��q� v�� a�� �q� v��, wherea is an arbitrary letter, in between them. Do

this for all such consecutive occurrences.
2. Suppose now we are given a run in which two timed transitions

�
�q� v�� at� �q� v � t�

�
and�

�q� v�t�� bt
�

� �q� �v�t��t��
�

are consecutive. Since� is a function, we necessarily havea � b.
Then replace these two transitions with a single timed transition

�
�q� v�� at�t

�

� �q� v��t� t���
�
.

We may therefore join together timed transitions with instantaneous transitions and “forget” the
in-between configuration. Hence, we transform the transition system into the following:T ��A� �

�Q� R n
��� �

�� Q� � f�ng� Qf � R n
��� where

�� �
��

�q� v�� at� �q�� v��
�
j 	�q� C�X� q�� � � such that

v � t j� C� v� � v�X 
� �	 and��q� � a
�

For such a transition system, a run is defined as a sequence
�
�qi	�� vi	��� a

ti
i � �qi� vi�

�
i�����k

in which�
�qi	�� vi	��� a

ti
i � �qi� vi�

�
� �� for all i � ����k	. Accepting runs have the same defining require-

ments as in the timed transition systemT �A�, and the language accepted byA still consists of the
concatenation of the labels on each accepting run, that is,
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L�A� �
�
at�� � � � � � ak

tk j
�
�qi	�� vi	��� a

ti
i � �qi� vi�

�
i�����k

is an accepting run inT ��A�
�

Further we may split�� into a union ofcard��� sets, one set for each tuple�q� C�X� q�� � �:

��q�X�C� q�� �
��

�q� v�� at� �q�� v��
�
j v � t j� C� v� � v�X 
� �	 and��q� � a

�
Then we “classify” accepting runs according to the sequences of tuples of transitions in� which

are employed. That is, we define a�-sequence as a sequence of tuples� �
�
qi	�� Ci� Yi� qi

�
i�����k

,
each tuple belonging to�. We also define the set of runssubsumed by the �-sequence� ��
qi	�� Ci� Yi� qi

�
i�����k

as follows:

S��� �
��

�qi	�� vi	��� a
ti
i � �qi� vi�

�
i�����k

j for eachi � ����k	��
�qi	�� vi	��� a

ti
i � �qi� vi�

�
� ��qi	�� Ci� Yi� qi�

�
This set naturally provides a set of signals which areassociated to �:

L��� �
�
at�� � � � � � a

tk
k j
�
�qi	�� vi	��� a

ti
i � �qi� vi�

�
i�����k

is a run subsumed by�
�

(4.4)

In order to define accepting�-sequences we must observe that these have to insure that all the
subsumed runs must begin with the zero clock valuation�n � R n

��. Therefore an accepting�-
sequence must not only start in an initial state and end in a final state, but also contain an initial
tuple whose constraint imposes that all clocks are zero.

Formally, we define anaccepting �-sequence as a sequence� �
�
qi	�� Ci� Yi� qi

�
i�����k

in which�
qi	�� Ci� Yi� qi

�
i�����k

is a �-sequence,q� � q� � Q�, C� �

n"
i��

�xi � ��, Y� � , andqk � Qf .

This amounts to adding all transitions�q��
n"
i��

�xi � ��� � q�� to �� and requiring that all accepting

runs start with one of these.
As a consequence, we get that

L�A� �
��

L��� j � is an accepting�-sequence inA
�

Let us now observe that we have, in some sense, already separated an abstract level, in which
runs have exactly the classical meaning as sequences of transitions in an automaton, and a “seman-
tic” level, in which each abstract run is interpreted as some set of signals.

A new step consists of hiding away from states: note that, when building the setL���, the
information regarding states is used only for retrieving the symbols that compose the associated
signal. Hence we may buildabstract runs � � �ai� Ci� Yi�i�����k for which, if we consistently add
states into tuples, we get a�-sequence. And further build the setS��� of runs inT ��A� which are
subsumed by� and the setL��� of timed words associated with�. This is nothing but the spirit of
the Kleene theorem.
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More formally, anabstract run is a sequence� � �ai� Ci� Yi�i�����k for which there exists
a sequence of states�qi�i�����k such that

�
qi	�� Ci� Yi� qi

�
i�����k

is a �-sequence and for eachi �
����n� �	, ��qi	�� � ai. The two setsS��� andL��� are then built as follows:

S��� �
��

�vi	�� a
ti
i � vi�

�
i�����k

j 	�qi�i�����k such that�
�qi	�� vi	��� a

ti
i � �qi� vi�

�
� ��qi	�� Ci� Yi� qi� for all i � �� � � � k	

�
L��� �

�
at�� � � � � a

tk
k j
�
�vi	�� a

ti
i � vi�

�
i�����k

� S���
�

Again it is easy to see that

L�A� �
��

L��� j � is an accepting abstract run inA
�

Moreover, the Kleene theorem for finite automata assures us that the set of abstract accepting runs
can be generated by some regular expression over atoms of the type�a� C�X� � � � EC��n� �

P��n�.
Now we observe that the setsS��� can be subject of aconcatenation operation by matching

on the clock valuation “in the middle”. That is, given two abstract runs� � �ai� Ci� Yi�i�����k and
�� � �bi� C

�
i� Y

�
i �i�����k�,

S��� � S���� �
��

�vi	�� c
ti
i � vi�

�
i�����k�k�

j
��

�vi	�� c
ti
i � vi�

�
i�����k

� S��� and�
�vi	�� c

ti
i � vi�

�
i��k����k�k�

� S����
�

That is, we have thatci � ai for i � ����k	 andci � bi	k for i � �k � ���k � k�	.
And the final observation is that the intermediary clock valuations in each run belonging to

someS���, are useless, both for concatenation purposes and when constructing the setL��� of
signals associated with�. We mean that we may consider only tuples�v� �� v�� consisting of a
signal� � Sig��� and two clock valuationsv� v� � R n

�� , tuples which are calledsignals with
clock valuations. Then the setS��� may be replaced by the following:

S��� �
�
�v� at�� � � � � � a

tk
k � v

�� j 	�vi�i�����k�	�qi�i�����k such thatv� � v� vk � v� and�
�qi	�� vi	��� a

ti
i � �qi� vi�

�
� ��qi	�� Ci� Yi� qi�

�
while the setL��� could be described as:

L��� �
�
at�� � � � � � a

tk
k j �v� at�� � � � � � a

tk
k � v

�� � S���
�

Clearly, the concatenation operation on setsS��� could be easily “adapted” to the setsS���.

We may summarize the above not completely formal discussion as follows: we define first the
set ofsignals with clock valuations

Sigclk��� �
�
�v� �� v�� j � � Sig���� v� v� � R n

��

�
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We then define a partial operation of concatenation onSigclk��� as follows: for all pairs of
signals with clock valuations�v�� ��� v���� �v�� ��� v

�
�� � Sigclk���,

�v�� ��� v
�
�� � �v�� ��� v

�
�� �

 
�v�� �� � ��� v

�
�� iff v�� � v�

� otherwise

We further extend this partial operation to atotal operation on subsets ofSigclk��� by putting,
for eachS�� S� � Sigclk���,

S� � S� �
�
� � � j � � S�� � � S� and� � � �� �

�
whose unit is the set

S� �
�
�v� �� v� j v � R n

��

�
�

By the usual least fipoint construction, we then get thestar operation: for eachS � Sig���,

S� �
�
n�N

Sn

whereS� � S� andSn�� � Sn � S for all n � N .

Definition 4.2.2. The set of n-clocked regular expressions as the language generated by the fol-
lowing grammar:

E 

� �a� C�X� j E � E j E � E j E� j � j � (4.5)

where C � EC��n�, a � � and X � �n.

We denote the set ofn-clocked regular expressions asCRegn���.
The semantics of n-clocked regular expressions is an applicationk � k 
 CRegn��� �

P�Sigclk���� inductively defined as follows:

k�k � 

k�k � S�

k�a� C�X�k �
�
�v� at� v�� j v � t j� C andv� � �v � t��X 
� �	

�
kE� � E�k � kE�k � kE�k

kE� � E�k � kE�k � kE�k

kE�k � kEk�

Besides this, eachn-clocked regular expression is endowed with anabstract semantics, which
is the classical semantics as a set of words overEC��n� � � � P��n�. We denote this abstract
semantics asj � j 
 CRegn����

�
EC��n��� �P��n�

��
.

The following property, similar to the Proposition 3.1.4 and relates the abstract semantic of a
regular expression to its semantics in terms of signals with clock valuations:
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Proposition 4.2.3. For each n-clocked regular expression E,

kEk �
�
k�k j � � jEj

�
in which jEj is the abstract semantics of E.

Proof. By easy structural induction over then-clocked regular expression.

The following straightforward property shows how to associate signals with clock valuations to
�-sequences:

Proposition 4.2.4. Given some timed automatonA � �Q� �� ��Q�� Qf � consider some �-sequence�
qi	�� Ci� Xi� qi

�
i������k

and denote E��� the following n-clocked regular expression:

E��� � �a�

n"
i��

xi � �� �� ���q��� C�� X�� � � � � � ���qk	��� Ck	�� Xk	�� (4.6)

Then

L��� � kE���k

in which L��� is the language associated with a run, defined in Identity 4.4 above.

Define also the familyTRecn��� as the family of timed languages which are accepted by some
timed automaton andTRatn��� as the family of timed languages which are the semantics ofn-
clocked regular expressions of the form�a�

Vn
i�� xi � �� � � E whereE � CRegn���.

Theorem 4.2.5 (Kleene theorem for timed automata, [BP01]). The classes of timed languages
TRecn��� and TRatn��� are equal, and the equality is effective.

Proof. Corollary of the classical Kleene theorem and the Lemma 4.2.3.

4.2.1 A Kleene theorem with indexed concatenation

In [BP99], another Kleene theorem is presented in the framework ofindexed concatenations and
stars. There is a natural question concerning the connections between this result and the above
Kleene theorem 4.2.5. We show here that these results are intimately related and it is still the
classical Kleene theorem which can be put at the basis of both. This proof can be seen as a rear-
rangement of the proof in [BP99].

In the cited paper, the semantics of timed automata is given in terms ofconstrained generators:
a constrained generator is a pair�G� �� consisting of two mappingsG 
 Rn�� � P�Sig���� and
� 
 R n

���Sig���� P�R n
���, with the further requirement that for eachu � Sig��� andv � Rn��,

u � G�v� iff ��v� u� �� .
The aim is to associate, to each sequence of transitions1,  , a pair

�
G� �

�
that gives the following

information:
� Actually, to eachset of sequences, see the definition ofn-clocked regular expressions with indexed concatenation.
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� For eachv � R n
�� , G�v� gives the set of signals that describe the behavior of the timed automaton

through the sequence of transitions , if the automaton starts with the clock valuationv and
can be performed starting withv.

� For eachv � R n
�� and� � Sig���, ��v� �� gives the possible clock valuations in which the

timed automaton might arrive after performing the sequence of transitions , provided it starts
with the clock valuationv and is able to “parse” the signal�.

More specifically, with each clock constraintC � EC��n� and symbola � �, the following
atomic constrained generators is associated:

G
a
C��v� �
�
at j v � t j� C

�
�
a
C��v� a

t� �
�
v � t j v � t j� C

�
The idea is then to build regular expressions over such atoms, and the full expressivity is ac-

quired only if concatenation mightreset some clocks. This feature is brought in by definingindexed
concatenations as follows: given two constrained generators�G�� ��� and�G�� ���, and some sub-
setX � �n, theX-indexed concatenation of �G���� with �G�� ��� is the constrained generator
denoted as�G� �� � �G�� ����X �G�� ��� and defined as:

G�v� �
�
�� � �� j �� � G��v� and there exists somev� � ���v� ��� such that

�� � G��v
��X 
� �	�

�
��v� �� �

��
���v

��X 
� �	� ��� j � � �� � �� for some�� � G��v� andv� � ���v� ���
�

Each of these indexed concatenations induce naturally anindexed iteration, denoted����X and
defined as follows:

�G� ���X �
�
i��

�G� ��i�X

where

�G� ����X � �G� ��

�G� ��
i����X � �G� ��i�X �X �G� ���

Observe that�G� ���X does not “contain” the zero iteration.
Let us also denote�G�� �X� the following constrained generator:

G��v� �f�g (4.7)

�X�v� �� �fv�X 
� �	g (4.8)

The set ofn-clocked regular expressions with indexed concatenation is the setIReg���

defined by the following grammar:

E 

� � j � j �a� C� j E � E j E �X E j E�X
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whereC � EC��n�, a � � andX � �n.
Their semantics is given by the following rules:

k�k �  kE� � E�k � kE�k � kE�k

k�k �
�
�G�� �X�

�
kE� �X E�k � kE�k �X kE�k

k�a� C�k �
�
�G
a
C�� �
a
C��

�
kE�Xk � kEk�X

We will show here that there exists a straightforward bidirectional translation between clocked
regular expressions with indexed concatenation andn-clocked regular expressions, translation
which works by regarding constrained generators as sets of signals with clock valuations and vice-
versa. This translation relies on a simple property of untimed languages which deals with indexed
concatenations, property which we will state and prove here. In other words, we show that the
Kleene theorem from [BP99] is a corollary of the Kleene theorem for finite automata too.

In order to relate the constrained generators semantics with the signals with clock valuations
semantics, let us consider, for eachX � �n, the atomicn-clock expression

�X � �a�

n"
i��

xi � �� X�

whose semantics is

k�Xk �
�
�v� �� v�X 
� �	� j v � R n

��

�
Then eachn-clocked atom�a� C�X� can be decomposed as follows:

k�a� C�X�k � k�a� C� �k � k�Xk

The next observation to be made is that, for anyC � EC��n� anda � �, k�a� C� �k is the
graph of the function2�
a
C� 
 R

n
���Sig� P�R n

��� from the constrained generator�G
a
C�� �
a
C��

– that is, the set
�
�v� �� v�� j ��v� �� � v�

�
. Moreover,G
a
C� gives the “domain” of�
a
C�, that

is, the set of tuples�v� �� � Rn
�� � Sig��� for which��v� �� �� . This observation can be easily

generalized as follows:

Each set of signals with clock valuationsS � Sigclk��� is the graph of the second compo-
nent of a constrained generator�G� ��.

In particular, the sets�X are the graphs of the constrained generator�G�� �X� defined in the Iden-
tities 4.7 and 4.8.

Two other important observations to be made are that concatenation of subsets ofSigclk��� cor-
responds to the-indexed concatenation of constrained generators, and that nonemptyset-indexed
concatenation of constrained generators can be reduced to-indexed concatenation by the aid of
the constrained generators�G�� �X�:

� In fact, this is even a partial function with values inRn�� .
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Proposition 4.2.6. Given two sets of signals with clock valuations S� and S� which are the graphs
of the constrained generators �G�� ���, resp. �G�� ���, the set S � S� � S� is the graph of the
constrained generator �G�� ����� �G�� ���.

Moreover,

�G�� ����X �G�� ��� � �G�� ����� �G�� �X��� �G�� ���

Proof. By straightforward verification.

By now, we may state the following:

Lemma 4.2.7. Given k�� constraintsCi � EC��n� (i � ����k	), k�� symbols ai � � (i � ����k	)
and k subsets Yi � �n (i � ����k	), consider the n-clocked regular expression (without indexed
concatenation)

E � �a�� C�� � � �Y� � �a�� C�� � � � � � � �Yk � �ak��� Ck��� �

and the n-clocked regular expression with indexed concatenation

F � �a�� C���Y� � � ��Yk �ak��� Ck���

Then kEk is the graph of the second component of kFk.

Proof. By induction onk, using Proposition 4.2.6 for the induction step.

To complete the claimed connection we introduce regular expressions with indexed concatena-
tions for untimed languages and prove a simple property concerning the translation from expres-
sions with indexed concatenations into classical regular expressions:

Definition 4.2.8. The set of regular expressions over � with indexed concatenations from � is
defined as follows:

E 

� � j � j a j E � E j E �x E j E�x

where a � � and x � � � f�g.

The semantics of these expressions is in terms of languages over�� ���� as follows:

j�j � jE� � E�j �jE�j � jE�j

j�j �f�g jE� �x E�j �jE�j � fxg � jE�j

jaj �fag jE�x j �
�
jEj � fxg

��
� jEj

Lemma 4.2.9. The set of languages which are the semantics of a regular expression with indexed
concatenation from � equals the set of regular languages over � ��.
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Proof. The direct inclusion is a straightforward consequence of the semantics of regular expres-
sions with indexed concatenation.

The inverse inclusion follows by induction upon the structure of the (classical) regular expres-
sion: the base cases�, � anda � � are trivial, while forx � � we consider the expression��x �.

For the induction step, suppose that we have two classical regular expressionsE� andE� and
that we have built regular expressions with indexed concatenationE� andE� such thatjE�j � jE�j

andjE�j � jE�j. Then

jE� � E�j �jE� � E�j

jE� � E�j �jE� �� E�j

jE�
� j �j�� E

��

� j ut

As a corollary we have

Theorem 4.2.10. The classes TRec��� and TRat��� are equal to the class of timed languages
which are the semantics of some clocked regular expression with indexed concatenation of the
form

�
a�
Vn

i�� xi � �� � E, where E � IRegn���.

Proof. This is a corollary of Proposition 4.2.6 and Lemma 4.2.9: for the direct inclusion, we trans-
form eachn-clocked regular expressionE into a regular expression over�� � EC��n� � � with
indexed concatenation over� �

�
�X j X � �n

�
, denote it �E. At this point we introduce the

timed semantics of such a regular expression as the union of the timed semantics of all the words
in its abstract semantics over� �� ����.

Now, we only have to replace operations of the form��X with �X and��X with �X and
observe that, for any clocked regular expression with indexed concatenationE�,

kE �k �
��

kWk j W � jE �j
�

wherejE�j is the semantics ofE� as a regular expression over�� ��. This property, corroborated
with Proposition 4.2.6, assures us that the timed semantics of�E (with the replacements of��X

with �X) equals the timed semantics ofE.
The reverse inclusion follows by the same argument. ut

4.3 Reset time semantics for timed automata

In this section we will show another semantics that can be given to timed automata, semantics
originally proposed in [BJLWY98]. The idea is to record the reset time for each clock, and the
current time. In other words, we only make a change of variables, from clock values to reset times,
change of variables defined as follows: for each clockxi � �n,

v�xi� � t� r�xi� wheret is the “current time point”.



66 4. Timed automata

Though this semantics is almost the same as the clock valuation semantics, it has certain features
that will help us develop our theory concerning reachability. The regular expressions we utilize
here aren-clocked regular expressions defined in 4.5, we will only provide a different semantics
for them in terms ofsignals with reset times.

Definition 4.3.1. A signal with reset times is a tuple �t�� � � � � tn� t� �� t
�
�� � � � � t

�
n� t

�� where � � Sig

and ti� t�i� t� t
� � R�� for each i � �� � � � n	.

The intuition is that the realti represents some moment before a chain of transitions when the
clockxi was reset,t is the “initial” moment,t� is the moment when the last transition in the chain is
taken, andt�i represents the last reset time for the clockxi before the momentt�. The set of signals
with reset times is denotedSigreset���.

Similarly to signals with clock valuations, signals with reset times can be concatenated if and
only if the intermediary time points match. More formally, given two signals with reset times
� � �t�� � � � � tn� t� �� t

�
�� � � � � t

�
n� t

�� and�� � �u�� � � � � un� u� �
�� u��� � � � � u

�
n� u

��, the concatenation
��� � � � �� is defined as follows:

��� �

 
�t�� � � � � tn� t� � � ��� u��� � � � � u

�
n� u

�� iff for all i � ����n	� t�i � ui andt� � u

� otherwise

This concatenation operation is extended, as usual, tosets of signals with reset times: for each
pair of setsS�� S� � Sigreset���,

S� � S� �
�
�� � �� j �� � S�� �� � S� and�� � �� �� �

�
(4.9)

which is a total operation onSigreset��� whose unit is the set of signals with reset times

S� �
�
�t�� � � � � tn� t� �� t�� � � � � tn� t� j t� ti � R��

�
Again as usual, concatenation on sets gives rise to the star operation

S� �
�
i�N

Si

whereS� � S� andSi�� � Si � S for all i � N .
The configurations of the timed transition system for the reset time semantics are tuples com-

prising a state andn � � positive numbers, the firstn representing the reset time for each clock
and the last recording the current moment. That is, the timed transition system is the tuple
T �

�
Q� R��

n��� �� Q� � �n��� Qf � R��
n��
�

where:

� �
�
��q� t�� � � � � tn� t�� a

t� � �q�� t��� � � � � t
�
n� t

���� j 	�q� C�X� q�� � � such that

��q� � a� t�� � t� t�� t�i � t�� for all i � X� t�i � ti for all i �� X andv j� C

wherev is the clock valuation defined byv�xi� � t�� � ti for all i � ����n	
�
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By an argument similar to the one given in section 4.2.1 we may transform this semantics into a
compositional one by giving reset time semantics to each�-sequence in the timed automaton. This
compositional reset time semantics is built using the following basic rule:

k�a� C�X�k �
�
��t�� � � � � tn� t�� a

t� � �t��� � � � � t
�
n� t

���� j t�� � t� t�� t�i � t�� for all i � X�

t�i � ti for all i �� X andv j� C wherev is the clock valuation defined by

v�xi� � t�� � ti for all i � ����n	
�

(4.10)

and the “compositionality” rule 4.9. Hence each�-sequence� � �qi	�� Ci� Yi� qi�i�����k in A gives
rise to the following word over� � EC��n��P��n�

w��� � �a�� C�� X�� � � � � � �ak� Ck� Xk� whereai � ��qi	��

Then the language of the given timed automaton is:

L�A� �
��##w���� n"

i��

xi � �� � � �
�## j � is an accepting run inA

�
The semantics ofn-clock regular expressions may be given similarly by the usual rules which

allow commuting semantics with union, concatenation and star, that is

kE� � E�k �kE�k � kE�k

kE� � E�k �kE�k � kE�k

kE�k �kEk�

provided that the atoms have the semantics given in 4.10 above and the expressions� and� have
the following semantics:

k�k � � k�k � S�
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5. Timed regular expressions

In this section we investigate the possibility to define some timed regular expressions that do not
use clocks and clock constraints. The reason for searching such expressions is, at a first sight,
esthetic, since the clocked regular expressions are harder to write. But this reason hides a more
profound one: namely that, at the specification level, properties refer to (i.e., bind) state dura-
tions, or intervals separating two actions, or delays. Clock manipulation might be regarded as a
“low-level” language, like automata, whereas regular expressions are intended to be a “high-level”
language easy to handle.

There exists a “high-level” approach to regular expressions that has preceded the clocked reg-
ular expressions: it is thetimed regular expressions of [ACM97]. These expressions do not use
clocks, they only provide time binding by the use of some interval-indexed parentheses. For ex-
ample, the timed regular expressionahbci� specifies the set of signals in which ana-state with an
arbitrary duration is followed by ab-state and then by ac-state, the overall duration of theb andc
states being equal to�.

Though giving a neat specification language, timed regular expressions hide some mathematical
problems, connected to the density of the set of real numbers. Namely, and contrary to classical
regular expressions, they are not closed under intersection, and hence this operation must be put
between the basic operations such that the generative power be reasonable. Even with intersection
they still show less expressive power than timed automata, and another operation is needed then:
renaming.

This chapter recalls these problems and discusses one possible solution to them. This solution
is the use ofcolored parentheses. As simple it seems, this solution shows itself some hurdles:
first, the language of “colored” and balanced parentheses is not a context-free language, hence
it might raise difficult problems concerning parsing and translating. The solution we find is to
consider a different concatenation operation, that allows two expressions with colored parentheses
to concatenate on “matching” parentheses. But the algebraic bases for this interpretation must be
laid, and the subsequent chapters are concerned with this task.

The chapter is more of a “hand-waiving” style, presenting more intuition and discussions than
formalization. It runs as follows: the first section recalls the definition of timed regular expressions
and their relationship to timed automata. We also show here some peculiarities of interpreting a
timed regular expression without parentheses as a classical regular expression. In other words, we
investigate succinctly the effect of the untiming morphism at the regular expression level. The sec-
ond section presents an undecidability result concerning the extension of timed regular expressions
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with negation. This is a rather expected result, however it does not follow from the undecidabil-
ity of the universality problem for timed automata, due to the “incomplete” Kleene connection
between timed automata and timed regular expressions. The third section is a short abstract of
the results that connect timed regular expressions with timed automata. The last section discusses
the problems and the possible solutions for the generalization of timed regular expressions with
colored parentheses. This section is informal and will be developed in the following chapters.

5.1 Basic properties of timed regular expressions

Definition 5.1.1 ([ACM97]). The set of timed regular expressions is given by the following gram-
mar:

E 

� � j � j a j E � E j E � E j E � E j E� j hEiI

where a is any symbol in � and I is any positive interval.

The semantics of timed regular expressions is, of course, in terms of signals. The idea is that
the angle brackets bind the duration of signals:

kak � fat j t � R��g kE� � E�k � kE�k� kE�k

kE� � kE�k � kE�k � kE�k kE� � E�k � kE�k � kE�k

kE�k � kEk� khEikI � f� � kEk j 
��� � Ig

There is an alternative way of generalizing from real-time regular expressions: namely allow
atoms of the type�A	I for any setA � �. The semantics of such an atom would be the following:

�A	I �
�
� � Sig��� j ��t� � A for all t � dom���

�
Of course, we need conjunction in both cases. Then we may replace, in an “inside-out” manner,
each expression of the typehEiI with E � ��	I .

5.1.1 Timed regular expressions without brackets

Timed regular expressionswithout brackets can be given also an untimed semantics, that is, in
terms of words over�. We would expect that this semantics be related to the untiming morphism
U . More formally, if we denoteU�E� the classical regular expression which we associate to the
timed regular expression1 E, then we would like to have

jU�E�j � U�kEk� (5.1)

wherejU�E�j is the set of words defined by the classical regular expressionU�E�.

� That is,U�E	 
 E whenE contains no parentheses
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But there is a small problem: the semantics of the timed regular expressionaa is equal to the
semantics of the timed regular expressiona, fact which does not hold when the two expressions
are viewed as (classical) regular expressions. In other words, this “brute” transformation of timed
regular expressions without brackets into classical regular expressions is not compatible with the
untiming morphism:

jaa � aj �  �� fag � U�kaak� � U�kak�

We recall then that the untiming morphism is in fact a morphism whose target is the monoid of
stuttering-free words, endowed with the stuttering-free concatenation. This implies that if we want
Identity 5.1 to hold, we need to consider a different semantics for classical regular expressions:
namely, to interpret each classical regular expression into elements ofSF ��� and to interpret
regular expression concatenation asstuttering-free concatenation, see page 27. This is not a nice
solution since it requires a reconsideration of the theory of finite automata and regular expressions
for the special monoidSF ���.

There is yet another solution which does not induce this reconsideration: recall thatSF ��� is
also representable as the quotient����� (Chapter 2, page 27), where�� is generated by the relation
�aa� a� � � for all a � �. We may then consider the closure under�� for the semantics of the
regular expression. In other words, the timed regular expressiona, when interpreted as a classical
regular expression, would have the semanticsfan j n � N ��g � jaa�j.

Syntactically, this can be done as follows: given a timed regular expression without braces, we
replace each symbola with the classical regular expressionaa�. DenoteU this syntactic operation.
Of course, a formal definition ofU�E� would be done by structural induction on the timed regular
expressionE. HenceU commutes with all operations – summation, conjunction, concatenation,
star.

This solution implies a weaker version of Identity 5.1: remind that
z��
� 
 �� � SF ��� denotes

the canonical projection induced by the congruence��. Its action consists of transforming each

sequence of identical symbols into one symbol, e.g.,
z � �
abbabcca � ababca. Then

z � �
jU�E�j � U�kEk� (5.2)

One may think that this property also holds for the “brute” transformationU�E� � E. But this
is not true, especially due to the use ofconjunction in timed regular expressions:

z � �
jaa � aj �  �� fag � U�kaa � ak�

The translation of timed regular expressions without brackets into classical regular expressions
will be instrumental in Chapter 9.
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5.2 Undecidability of the language emptiness problem for extended timed
regular expressions

As for the case of classical regular expressions, we may extend the grammar by allowing the use of
negation. The resulting expressions will be calledextended timed regular expressions, by similarity
with extended classical regular expressions which utilize negation. The generating grammar for this
class of expressions is the following:

E 

� a j E � E j E � E j E � E j E� j hEiI j �E

and the semantics for the negation is, naturally, based upon set complementation:

k�Ek � Sig��� n kEk

In this section we show that the emptiness problem for the semantics of extended timed regular
expressions is undecidable. The technique we use is drawn from one of the undecidability results
concerning Duration Calculus [ZCHS93], namely the undecidability of the fragment that allow

 � a formulas. We prove the result by showing that the halting problem for two-counter machines
[HU92] is reducible to our emptiness problem.

We mention that this negative result does not follow from the undecidability of the universality
problem for timed automata [AD94], since the Kleene theorem relating timed automata and timed
regular expressions involves renaming.

A 2-counter machineC � �Q� q�� T � consists of a set of locationsQ, an initial locationq�
and a set of transitionsT which are tuples�q�� s� t� x� y� q�� wheres� t � f� � �� � �� �g and
x� y � f��� �� �g. The meaning is the following:

� The machine works on two countersx andy which can hold arbitrarily large, nonnegative values,
and which may be checked and/or modified by each transition.

� A transition in whichs is ��� �� is taken iff the first counter is zero, and similarly a transition in
which t is ��� �� is taken iff the second counter is zero.

� Taking a transition in whichx � �� increases the first counter by one. Whenx � � the first
counter is not changed, while forx � �� the first counter is decreased by one, if its value is
positive, and is left unchanged otherwise. Similarly for the values ofy and the second counter.

It is additionally required that the machine bedeterministic in the following sense: for each state
q � Q and preconditionss� t � f�� �� � �� �g, at most one transition can be enabled inq by the
preconditionss andt:

� � card
�
�q� s� t� x� y� q�� j q� � Q� x� y � f��� �� �g

�
We may see the states of the 2-counter machine as labels of the statements of a program containing
test conditions over each counter and increments and/or decrements of each counter.
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A configuration of a 2-counter machine is then a triple�q� x� y� containing a location and the
values of each counter. Arun of the 2-counter machine is a (finite or infinite) sequence of config-
urations connected by transitions which starts with both tapes holding�.

Thehalting problem for 2-counter machines is the problem of whether a given 2-counter ma-
chine has a finite run. Here, the 2-counter machine is an input to the problem.

Theorem 5.2.1 ([HU92]). The halting problem for 2-counter machines is undecidable.

Theorem 5.2.2. The language emptiness problem for extended timed regular expressions is unde-
cidable.

Proof. We will prove that the emptiness problem for extended timed regular expressions ismany-
one reducible (in the sense of [HU92]) to the halting problem for 2-counter machines:

Start with a 2-counter machineC � �Q� q�� T � and suppose it has a finite run,
�
�qi�mi� ni�

�
i������N 

.
We associate to this run a family of signals over the set of symbols� � Q � fa� b� c� dg where
a� b� c� d �� Q. The association will be such that, for each signal in this family and eachi � �� � � � N 	,
the interval�i� i � �� of the signal consists of a first part in which the signal is constantly equal to
qi and then a sequence of�mi �� discontinuities where the signal jumps froma to b and fromb to
a, and another sequence of�ni � �-discontinuities where the signal jumps fromc to d and fromd
to c.

Formally, we say that the signal� encodes within the interval �k� k � �� the configuration
�q�m� n� if

�
�k
k���

� qt�at�bt� � � � at�m��bt�m��ct�m��dt�m�� � � � ct�m��n��dt�m��n��

with ti 	 � for all i � �� � � � �m� �n� �	.
We then say that the signal� encodes the run

�
qi� ni�mi

�
i������N 

if it encodes the configuration
�qi�mi� ni� within the interval�i� i� �� for eachi � �� � � � N 	.

We aim at building an extended timed regular expression that accepts only signals which are
associated with the run. This expression must therefore specify the initial configuration of the
run and each of the transitions. The initial configuration is specified by an expression which says
that the first interval of each signal encodes the first configuration of the 2-counter machine. Then,
each transition is simulated by an extended timed regular expression which accepts some signal iff,
whenever in some interval�k� k � �� the signal encodes some configuration in which the transition
is enabled, then in the subsequent interval�k � �� k � �� the signal encodes the configuration
which results by taking the respective transition. Then, the expression that simulates the run is the
intersection of all these expressions.

The initial configuration is encoded by the extended timed regular expression

Init � �hq� � a � b � c � di�� ��

Then each transition � �q� s� t� x� y� r� is simulated by a regular expression which we will
denotetr�� and build in the sequel. There can be�� �� �� � � � types of transitions:� due to
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the two different modes of checking the contents of a tape and� due to different ways the contents
of each tape can be updated.

We give as an example the expression that simulates a transition of the type�q� � � �� � ��

�������� r�. Our aim is that any signal� � ktr��k has the property that if

�
�k
k���

� qt�at�bt�ct�dt� � � � ct�n��dt�n��ct�n��dt�n��

with n � � then

�
�k��
k���

� rt�aubvawbt�ct�dt� � � � ct�n��dt�n���t�n���t�n��

whereu� v � w � t�.
The expressiontr�� is a conjunction of the following three subexpressions:

� the subexpression saying that if the signal encodes, within some interval�k� k���, a configuration
in which  is enabled then the interval�k � �� k � �� of the signal starts with stater:

�
�
�� � hq � a � b � c � d � c ���i�� � �� n frg� ���

�
� a conjunction of two expressions saying that if the interval�k� k � �� encodes a configuration in

which transition is enabled then in�k��� k��� the stater is followed by statesa, b, a andb in
this order such that the length of the lastb-state equals the length of the onlyb within the interval
�k� k � �� while the length of theaba-signal equal the length of the onlya state in the interval
�k� k � ��:

�
�
�� � q � a � �a� b� � hb � c � d � c � d � �c � d�� � r � �a� b��i� � �� n fbg� ���

�
�

�
�
�� � q � a � hb � c � d � c � d � �c � d�� � r � ��a � b � a�i�� ���

�
� a conjunction of three expressions saying that if the interval�k� k � �� encodes a configuration

where transition can be taken and there aren�� c-states andn�� d-states within this interval
then in the interval�k��� k��� there have to ben statesc andn statesd such that the length of
thei-th c-state within�k��� k��� is equal to the length of thei-th c-state within�k� k��� for all
i � �n	, the length of thei-th d-state within�k � �� k � �� is equal to the length of thei-th c-state
within �k� k � �� for all i � �n� �	 and finally the length of the lastd-state within�k � �� k � ��

equals the sum of the lengths of then � �-th c-state, then-th and then � �-th d-state within
�k� k � ��:

�
�
�� � q � a � b � �c � d�� � c � hc � d � �c � d�� � c � d � r � �a� b� c� d��i�� � �� n fcg� ���

�
�

�
�
�� � q � a � b � �c � d�� � c � d � hd � �c � d�� � c � d � r � �a� b� c� d��i�� � �� n fdg� ���

�
�

�
�
�� � q � a � b � �c � d�� � c � d � c � h�c � d � r � �a� b� c� d�� � ci�� � �� n fdg� ���

�
�

�
�
�� � q � a � b � �c � d�� � �c � d�� � hd � r � �a� b� c� d�� � ci�� � �� n fdg� ���

�
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The specification of the remaining�� types of transitions can be done similarly.
Then the (finite) run of the 2-counter machine, if it exists, is simulated by the following extended

timed regular expression:

EC � Init �
"
�T

tr�� ut

5.3 Relating timed regular expressions and timed automata

Timed regular expressions are a nice specification language, but they carry some expressivity prob-
lems. The following theorem and the discussion after it shows them:

Theorem 5.3.1 ([ACM97]). The class of timed languages accepted by timed automata equals the
class of timed languages accepted by timed regular expressions with intersection and renaming.

Here renaming refers to signals: formally, given two sets� and� and a mappingf 
 � � �,
this can be extended canonically to a monoid morphismf�Sig��� � Sig���. The morphism
f � simply replaces symbols from� with symbols from� in each signal. For example, for the
functionf 
 fa� bg � fc� dg given byf�a� � c andf�b� � d, f��a�b���� � c�d���. Renamings are
not necessarily bijective, and it is this feature that is essential in the Kleene theorem relating timed
regular expressions with timed automata.

The direct inclusion follows by showing first that automata with a single clock can be embedded
into timed regular expressions without intersection, and then by decomposing a timed automaton
with n clocks inton automata with a single clock, building the timed regular expressions for each
timed automaton and intersecting the results. The timed regular expression for each one-clock au-
tomaton will specify theruns rather than the signals accepted by it, that is, the one-clock automaton
is considered to work over signals whose symbols are exactly the states of the automaton. This is
why, after building the intersection, one needs to apply the renaming that associates to each state
in the timed automaton, its label.

The reverse inclusion follows by proving that the usual union/intersection/concatenation/star
constructions can be generalized to timed automata.

It was also shown in [ACM97] that intersection is necessary for representing timed automata.
Their example is the timed regular expressionahbci� � habi�c, which cannot be expressed without
conjunction. The timed language accepted by this expression is:

L� � fa�b�c� j � � � � �� � � � � �g (5.3)

Moreover, in [Her99] it was shown that renaming also is necessary. An example of timed automa-
ton whose language cannot be represented by regular expressions without renaming is presented
in Figure 5.1 (modification from [Her99]).

The language of this automaton equals the renamingx �� b applied to the semantics of the
timed regular expression

�
�xa��hb�ax��i��h�xa��bi��ax��

�
.
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b a bab
y 
� � x � ��

y � ��

Fig. 5.1. A timed automaton that is not equivalent to any timed regular expression, even with
intersection.

5.4 Colored parentheses: basic ideas and problems

Let us first start with an observation with a “language theoretical” flavor: timed regular languages
can be redefined withmatching parentheses, that is, by putting interval indices on eachleft paren-
thesis as well. Hence, instead ofhabi� we would haveh�abi�, and a construction likeh�abi� would
not be a timed regular expression. What we would get this way is theDyck language over the set

P �
�
�hI �� �iI � j I � Q Intg

The generating grammar will be almost the same:

E 

� a j E � E j E � E j E � E j E� j hIEiI

wherea � � andI � Q Int . Let us use the notation�	 for the Dyck language over a (possibly
infinite) set of symbols�.

The big problem with timed regular expressions is that they cannot be “interleaved”, due to
their context-freeness. But it is exactly interleaving what is necessary for specifying the language
L� in 5.3 without intersection!

Our idea is to usecolored parentheses: for example,L� would be specified by the following
timed regular expression with colored parentheses:

hblue
� a hred

� biblue
� cired

�

But this idea poses some big language-theoretic problem: if we want to specify also cyclic behav-
iors, we fall into non-context-free specification languages! Consider just a cyclic behavior of the
kind

hblue
� a hred

� biblue
� hblue

� aired
� h

red
� biblue

� � � �

with arbitrarily many repetitions. Specifying the union of all such timed regular expressions is not
easy: if we try �

hblue
� aired

� h
red
� biblue

�

��
(5.4)

then the first red parenthesis is a right parenthesis! This implies both syntactic and semantic prob-
lems:
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� At the syntactic level, if we accept expressions like 5.4, then what to do with expressions like�
a hred

I b
��
�

� If such expressions are also acceptable, then how to interpret them? Intuitively, such an ex-
pression resets apotentially infinite number of clocks, hence we might run into trouble with
decidability.

� Even when such expressions are to be rejected – by some non-context-free rules – how to prove
then a Kleene theorem? Its proof for the timed regular expressions of [ACM97] is essentially
based upon the context-free presentation of expressions.

To put all the above considerations into a more formal and “language-theoretic” framework, we
have to considern (infinite!) sets of matching parentheses, each indexed with an interval:

Pi �
�
�hiI �� �i

i
I � j I � Q Int

�
for all i � �� � � � n	

We may then definen deletion morphisms, �ei�i������n, eachei deleting all parentheses not in
Pi: these morphisms are the canonical extensions of the following deletion functions:

pi 


n�
i��

Pi � Pi � f�g� pi�a� �

 
a iff a � Pi

� otherwise

ei 

� n�
i��

Pi

��
� �Pi�

�� ei�a� � � � an� � pi�a�� � � � pi�an�

Then define the language ofcorrectly matching parentheses over
n�
i��

Pi,

Lpar �
n
w �

� n�
i��

Pi

��
j for eachi � �� � � � n	� ei�w� � �Pi

o
This language is unfortunately context-sensitive forn � �: just consider the intersection ofLpar

with
�
h��
���
h��
���
i��
���
i���
��

, which gives a language of the formfakblckdl j k� l � N g which is an
easy prey to the Bar-Hillel (pumping) lemma for context-free languages [HU92].

Let us mention, at the end of these considerations, that the languageLpar can be generated by matricial grammars [DP89],
or with the so-calledcontextual grammars with distributed catenation and shuffle [KMM97].

5.4.1 Changing the concatenation

Here we come with the idea to use a different concatenation operation: the expression

hblue
� a hred

� biblue
� hblue

� aired
� h

red
� bi

blue
� aired

�

could be represented by an expression like



78 5. Timed regular expressions

a��� a���b���

a��� a��� a���b��� b���

�

�

b��� a���a���

Fig. 5.2. An example of “overlapping” concatenation.

hblue
� a hred

� biblue
� aired

� � hblue
� a hred

� biblue
� aired

�

At the semantic level, concatenation would require two signals tomatch on theira-parts, as
depicted in Figure 5.2:

The question is then how to identify the subsignals on the right and on the left that must match.
Our idea is to use some distinguished points in each signal, like some markers for the moments
when each parenthesis opens or closes. If we order these points such that the left point for thei-th
color isti and the right point for thei-th color istn�i then we may represent the above concatena-
tion like in Figure 5.3.

a��� a���b���

a��� a��� a���b��� b���

�

�

b��� a���a���

t� t�

t� t� t� t�

t� t�

t� t� t� t� t� t�

Fig. 5.3. An example of concatenation with distinguished points.

Of course, the result has more distinguished points than the operands, so we would need also
a convention how to index them. But this very fact to increase the number of distinguished points
creates some problems when trying to define star: namely we need to manage with unbounded
numbers of points and to rearrange the indices after each concatenation etc.

The issue from this is to observe that, once the time pointt� was concatenated, it has played its
role, since the right parenthesis it represents has found a matching left parenthesis. Then we may
simply forget it: the result of concatenation from Figure 5.3 would no longer have six distinguished
points, but four. Hence we need two operations: a “juxtaposition” operation that “fuses” two signals
with distinguished points along a certain subset of points, and a “projection” operation, that forgets
the points that have “actively” participated to the concatenation.

Let us see now how this idea works for timed automata too.
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5.4.2 The “overlapping” concatenation for timed automata

In the previous chapter we have introduced the reset time semantics which associates to each run in
the timed automaton a signal with reset times� � �t�� � � � � tn� t� �� t

�
�� � � � � t

�
n� t

�� whereti� t�i� t� t
�

are nonnegative reals and� � Sig��� is a signal.� can be concatenated to another signal with
reset times�� � �u�� � � � � un� u� �

�� u��� � � � � u
�
n� u

�� iff the lastn�� components of the left operand
match the firstn� � components of the right operand.

Observe first that, when� and�� above can be concatenated, the signals with reset times which
can be obtained from� and�� by translating all the reals by some constant� can be concatenated
too. That is, the following two signals with reset times can be concatenated:

��� � �t� � �� � � � � tn � �� t� �� �� t�� � �� � � � � t�n � �� t� � ��

���� � �u� � �� � � � � un � �� u� �� ��� u�� � �� � � � � u�n � �� u� � ��

This means that the only useful timing information in each signal with reset times is the set of
differences between the components. We may then define an equivalence relation onSigreset���

which relates each pair of signals which “differ by a constant”. Hence,�� � �� if there exists
� � R�� such that

�� � �t�� � � � � tn� t� �� t
�
�� � � � � t

�
n� t

��

�� � �t� � �� � � � � tn � �� t � �� �� t�� � �� � � � � t�n � �� t� � ��

Though this equivalence is not a congruence, our observation above shows that it satisfies the
following property:

If �� � �� and�� � �� ��� then there exists�� � �� such that�� � �� ��� and the reverse.

In other words, it is a bisimulation w.r.t. concatenation.
Hence in the equivalence class of�� and �� the timing information refers only to thedif-

ferences between the reset points and therefore can be represented by anantisymmetric matrix
A � M�n���R �, (i.e., withAij � �Aji for all i� j � �� � � � �n � �	) having the property that for
eachi� j � �� � � � n	:

Aij � tj � ti An�i��
n�j�� � t�i � t�j

An��
j � tj � t A�n��
n���j � t�j � t�

Ai
n�� � t� ti An���i
�n�� � t� � t�i

Ai
n���j � t�j � ti An��
n���j � t�j � t

A�n��
j � tj � t� An��
�n�� � t� � t

This way a signal with reset times can be represented as a tuple� � �A��� �� consisting of an
antisymmetric matrixA � M�n���R �, a real number� which represents the “offset” of� w.r.t.
some representative in its equivalence class, and a signal�.
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a�a�
b�

� t� � �
t� � ���

t��
t�
�
� ��� t� � t�

�
� 	

Fig. 5.4. A graphical representation of the signal with reset times��� ���� �� a�b�a�� �� ���� ��.

On the other hand, signals with reset times may be graphically represented by putting all the
timing and signal information on the time axis:

Observe that this representation is asymmetric: there is no information regarding the signal that
has passed in between the first reset timet� and the “start of observation”t.

For a more “symmetric” graphical representation we might use objects like in the Figure 5.5.

a�
b�

t� � �

b�
a���a���

t� � ��� t� � ��� t� � 	

Fig. 5.5. A signal with “symmetric” reset time information.

We will call the� class of an object like in Figure 5.5 as an�-signal. This presentation provides
information about what happened since the first reset time in consideration: the piece of signal
��� � a���b�a� tells the “history” between the time pointt� � � and the time pointt� � ���.

For a more algebraic setting, the�-signal in Figure 5.5 can be represented as a� � � matrix
whose�i� j� entry records the piece of signal in between thei-th and thej-th time point. In order
to distinguish the case whenti 	 tj from the case whenti � tj we may employantisignals, or
signals in which time flows in the opposite direction, or, moreover, signals which are “read” in the
reverse order. Intuitively, the antisignal corresponding to the signala�b� should beb	�a	�. The
matrix representing the�-signal in Figure 5.5 is the following:

A �

�
BBB�

� a��� a���b�a���b�a� a���b�a�

a	��� � b�a���b�a� b�a�

a	�b	�a	���b	�a	��� a	�b	�a	���b	� � a	�b	�a	�

a	�b	�a	��� a	�b	� a���b�a� �

�
CCCA

Note that in the matrixA we have that, for eachi� j� k � �� � � � �	, AijAjk � Aik. We will
extensively use this “triangle identity” in the subsequent chapters.

Then, if we generalize concatenation of signals with reset times to�-signals we get exactly the
overlapping concatenation we have defined in the previous subsection. A graphical representation
of concatenation is given in Figure 5.6.

The necessary condition for the two�-signals in Figure 5.6 to concatenate can be put also in
terms of matrix representation: suppose that we have the following block-decomposition of the
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a�
b�

t� � �

a��� a���b�

t� � ��� t� � ��� t� � 	

�

�

b�

t� � �

a��� a���b�

t� � ���

a�

t� � ��
t� � ��

b�
a��� b�

t� � 	t� � ���

a�

t� � ��
t� � ��

Fig. 5.6. Concatenation of two�-signals.

matrices that represent each�-signal in Figure 5.6:

A �

�
A� A�

A� A�

�
� A� �

�
A�� A��
A�� A��

�

with A�� � � � � A�� A
�
�� � � � � A

�
� being antisymmetric matrices inM��R���.

ThenA can be concatenated toA� iff A� � A��. The result will be the matrix

A�� �

�
A� B

�Bt A��

�

whereBij � �A��ik�A
�
��kj for all i� j � �� � � � �	 and somek � �� � � � �	. HereBt is the transpose of

the matrixB.
The next chapter discusses this formalization, and in particular the regular expressions which

work over�n-signals and their relationship to timed automata. Our choice for a matricial presen-
tation of �n-signals, which could be thought as holding a lot of “redundant” information due to
the triangle identity, comes not only from an aim to “algebraize” everything, but also because this
presentation is closely related to a certain data structure which is aimed at representing timing
information: theDifference Bound Matrices (DBMs) [Bel57]. We will take full advantage of the
intimate relationship between DBMs and our matricial presentation ofn-signals.
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6. Matrices of signals

In this chapter we provide the basic algebraic properties of the overlapping concatenation. We base
our definition of concatenation on two other operations: projection, which “forgets” certain rows
and columns in a matrix, and juxtaposition, which “fuses” two matrices along a certain submatrix.
This choice is again not only algebraic, but also emphasizes special properties of each of these two
basic operations in different contexts.

We then define a class of regular expressions whose semantics is based on�n-signals (parity
is needed for concatenation). The atoms of these expressions are matrices whose components are
timed regular expressions – we call them�n-regsignals. These are in fact our algebraization of reg-
ular expressions with colored parentheses. We also show here that timed automata can be simulated
by regular expressions over�n-signals.

We then make a first try to lift concatenation at the specification level, that is, we try to provide
a compositional calculus with regular expressions, in order to be able to check whether a regular
expression has a nonempty semantics. But we discover very quickly that no compositional concate-
nation operation can be defined on�n-regsignals, and the problem lies in the noncompositionality
of projection. This means that we cannot have the wished calculus of emptiness for free. On the
contrary, we show that juxtaposition can be lifted to a compositional operation on�n-regsignals.

We also discover an equally serious problem, namely that the emptiness problem for our regular
expressions is undecidable. This result follows by encoding any instance of the Post Correspon-
dence Problem into a regular expression of a very simple form: a star of a sum of�n-regsignals.
The problem lies therefore in the untimed structure of the expressions, and we leave this problem
for study in the next chapter.

This chapter is organized as follows: in the first section we present the definition ofn-signals.
They are in fact presented as a particular case ofn-dominoes, which are matrices whose com-
ponents are a mixture of signals and antisignals. In the second section we give the definition of
the projection, juxtaposition and concatenation operations, and provide some algebraic properties
relating them. In a short third section we present the notion ofn-signal language and the more gen-
eral notion ofn-domino language and show that these languages form a Kleene algebra w.r.t. the
concatenation inherited from�n-signals and the star operation which is induced by concatenation.
The fourth section presents the notions of regsignals and regminoes, which are “compact”, single-
matricial representations ofn-signal languages, respectivelyn-domino languages. We show here
the possibility to define a compositional juxtaposition and the impossibility to define a composi-
tional projection on regsignals (regminoes). We also define here the class of regular expressions
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whose atoms are regsignals (resp. regminoes). In the fifth section we give the translation of timed
automata semantics into regular expressions over regsignals, or, in other words, we give ann-
signal-semantics of timed automata. And in the sixth and last section we give the undecidability
result concerning the emptiness problem for regular expressions over regsignals.

6.1 n-dominoes and n-signals

As pointed out at the end of Chapter 5, matricial presentations ofn-signals require working not
only with signals, but also withantisignals, that is, sequences of the typea	t�� a	t�� � � � a	tkk where
t�� � � � � tk � R�� . Intuitively, such a sequence denotes the history of states and their duration, and
hencea	t � at � �. Formally, we replace the set of signalsSig��� (which is the coproduct of
card��� copies of the monoid�R����� ��) with the coproduct ofcard��� copies of thegroup
�R ��� ����. We denote this coproduct group byBiSig���. Of course, inBiSig��� we would also
have “words” containing positive and negative powers likea�b	� and such words are counterintu-
itive in the “timed world”, but we are forced to use them as they naturally occur by concatenation
of signals and antisignals. In algebraic terms, working with mixed words likea�b	� is a must since
the union of the set of signals and the set of antisignals does not have a nice algebraic structure –
it is not stable w.r.t. concatenation.

We denote the inverse operation inBiSig��� as ���	�. Hence�at�	� � a	t and
�
atbu

�	�
�

b	ua	t. For a timed languageL � Sig��� we denoteL	� the set of inverses of signals inL. The
set of antisignals over� is denotedSig��	�� and does not contain, by definition, the empty signal
��.

Definition 6.1.1. An n-domino over � is a matrix w � �wij�i
j������n of elements from BiSig���

with the following property:

wij � wjk � wik for each i� j� k � �� � � � n	 (6.1)

When wij � Sig��� � Sig��	�� for all i� j � �� � � � n	 we say that w is an n-signal over �.

Identity 6.1 will be referred to as thetriangle identity.
We denote byDn��� the class ofn-dominoes over� and bySign��� the class ofn-signals

over�. Observe that in ann-dominow we have that for alli� j � �� � � � n	,wii � � andwij � w	�ji .
The above definition does not faithfully formalize the drawings we have made in the previous

chapter since in those drawings we have also associated a real number,ti, to each entry in the
matrix. But this difference is inessential since, given any real number�, we may associate it to the
first index, that is, putt� � �, and then build the sequence oftis by puttingti � t� � 
�w�i�. By
abusing notation, we will still draw then-signals as in the first section, with thetis in place.

Remark 6.1.2. For everyn-signal there exists some ordering on�� � � � n	, sayi� � � � � � in (or,
equivalently, a bijection 
 �� � � � n	 � �� � � � n	, with  �j� � ij) such thatwik
ik��

� Sig��� for
all k � �� � � � n � �	. When� satisfies this property, we say that it is anordering compatible with
w. The ordering is unique whenwij �� � for all i �� j.
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a�

� t��t��� t���

c���

b�

t����t�� t	�
��

t��� t����� �

b�
a���

Fig. 6.1. An example of a�-signal.

For example, for the�-signal presented in Figure 6.1 we may have the ordering� � � � � �

� �  � � � � � �, as it follows by reading the time points from left to right. Observe also that
this ordering is not unique, the ordering� � � � � � � � � �  � � � � being also compatible
with the�-signal in the figure.

Remark 6.1.3. Let us observe that, in order to give an�n-dominow we may specify only the first
n componentswij with i� j � �� � � � n	 and the “pseudodiagonal” componentswi
n�i with i �

�� � � � n	, or, similarly, thelast n componentswij with i� j � �n � � � � � �n	 and the pseudodiagonal
components. This follows since the remaining components can be defined by the aid of the triangle
identity 6.1. For example, if we have specified the firstn components and the pseudodiagonal
components, the remaining components to be specified arewij with �i� j� �

�
�n� � � � � �n	� �n�

� � � � �n	
�
�
�
�n � � � � � �n	 � �� � � � n	

�
�
�
�� � � � n	 � �n � � � � � �n	

�
. These can be recovered as

follows:

� For i � �� � � � n	 andj � �n� � � � � �n	, wij � wi
j	n � wj	n
j andwji � w	�ij .
� For i� j � �n� � � � � �n	, wij � �wi
i	n�

	� � wi	n
j	n � wj	n
j.

6.1.1 n-dominoes over a one-letter alphabet

The class ofn-dominoes over a one-letter alphabet form a special class, due to the fact that any
concatenation of a signal and an antisignal is a signal or an antisignal – Therefore, anyn-domino
is also ann-signal.

In fact, instead of working withn-signals we might employn-tuples of reals – that is, instead
of working with an-signalw � Sign���, we might work with ann-tuple �t�� � � � � tn� � R n for
whichwij � atj	ti . This observation was already made at the end of last chapter.

Then the projection/juxtaposition/concatenation operations are straightforward operations on
tuples:

1. Given ann-tuple t � Rn
�� andX � �� � � � n	, theX-projection of t is the tuple denotedt

X

with the property that

t
X

� �ti� � � � � � tik�

whereX � fi�� � � � � ikg, ij � ij��.
2. Givenm�n� p � N with p 
 min�m�n�, thep-juxtaposition of anm-tuple t � �t�� � � � tm� �

Rm
�� with ann-tupleu � �u�� � � � � un� � R n

�� is defined ifftm	p�i � ui for all i � �� � � � p	 and
is the�m�n�p�-tuplev � �z�� � � � � zm�n	p� with
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vi �

 
ti for i � �� � � � m	

ui for i � �m� � � � � m� n� p	

We denotez � x�py.
3. Given two�n-tuplest� u � R �n

�� , theirconcatenation is the�n-tuple

t� u �
�
t�nu� �n������n

The operations we will build onn-dominoes are then “matricial” translations of these three
operations.

One question can then be raised here: why haven’t we adapted thisn-tuple approach to signals,
and use the more cumbersome matricial presentation forn-signals? Different reasons for our choice
will be given at different moments throughout this chapter, especially when defining the three
operations onn-signals. These reasons are, to a certain extent, related to the fact that the set of
signals and antisignals is not closed under concatenation.

6.2 Operations on n-dominoes

In this section we introduce several operations onn-dominoes, operations which aim at modeling
the concatenation on signals with distinguished time points from the introduction of the chapter.
We start with presenting some notations.

Given a naturaln � N and a setX � �� � � � n	 we denotelX 
 �� � � � n	 � �� � � � card�X�	 the
surjection defined by

lX�i� � cardfj � X j j 
 ig (6.2)

Observe that the restriction oflX toX is a bijection. We denote the inverse of this bijection byl	�X .
Hencel	�X 
 �� � � � card�X�	� X.

Observe that, whenX � A �B with A � B, that isx � y for all x � A andy � B, we have:

lA�B�i� �

 
lA�i� iff i � A

card�A� � lB�i� iff i � B
(6.3)

6.2.1 Projection

A useful operation isprojection, which cuts some of the rows and columns of the matrix, such that
the remaining matrix be still a square matrix.

Definition 6.2.1. Given an n-domino w � Dn��� the X-projection of w is denoted w
X

and is
defined as: �

w
X

�
ij
� wl��

X

i�l��

X

j� for all i� j � �� � � � card�X�	 (6.4)
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a�

t��t��� t���

c���

b�

t����t�� t	�
��

t���

b�
a���

t���t���

b�
c���

a��� b���

�b

�a

t������

t������

Fig. 6.2. The projection of the�-signal at�a� onto the setX � f�� �� �g gives the�-signal at�b�.

It is clear that theX-projection of ann-signal is acard�X�-signal. An example of projection is
given in Figure 6.2.

Proposition 6.2.2. For each w � Dn���, X � �� � � � n	 with card�X� � p and Y � �� � � � p	,

w
X Y

� w
l��
X


Y �
(6.5)

Proof. The components of the left-hand side in identity 6.5 are:�
w

X Y

�
ij
�
�
w

X

�
l��
Y


i�
l��
Y


j�
� wl��

X

l��
Y


i��
l��
X


l��
Y


j��

The identity follows if we provelY � lX � ll��
X


Y � 
 l	�X �Y � � �� � � � card�Y �	 and this can be
showed as follows:

lY �lX�i�� � card
�
j � Y j j 
 lX�i�

�
� card

�
l	�X �j� � l	�X �Y � j l	�X �j� 
 i

�
� card

�
k � l	�X �Y � j k 
 i

�
� ll��

X

Y ��i�

We have applied here the fact thatlX 
 X � �� � � � p	 is a strictly increasing bijection.

Proposition 6.2.3. For each w�w� � Dn��� and X�Y � �� � � � n	 with X � Y �� , X � Y �

�� � � � n	, if w
X

� w�
X

and w
Y
� w�

Y
then w � w�.

In general, givenX�� X�� � � � � Xk � �� � � � n	 such thatX��� � ��Xk � �� � � � n	 andXi�Xi�� ��

 for all i 
 k � �, if w
Xi

� w�
Xi

for all i 
 k then w � w�.

Proof. We only need to prove thatwij � w�ij for i � X andj � Y , since the other cases hold
by hypothesis or by symmetry: take somek � X � Y , which must exist sinceX � Y �� . Since
i� k � X, we havewik � w�ik. Similarly,k� j � Y implieswkj � w�kj . Therefore

wij �wikwkj � w�ikw
�
kj � w�ij

The second property follows by showing, by induction oni, thatw
X������Xi

� w�
X������Xi

. ut
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6.2.2 Juxtaposition

The juxtaposition operation joins two matrices along a common “submatrix”, such that both ma-
trices can be found in the result:

Definition 6.2.4. Given an m-domino w � Dm���, an n-domino w� � Dn��� and an integer
p 
 min�m�n�, the p-indexed juxtaposition of w and w� is defined if and only if w

�m	p�����m
�

w�
�����p

, is denoted w�pw
� and is the �m� n� p�-domino w�� � Dm�n	p with the property that

w��
�����m

� w and w��
�m	p�����m�n	p

� w� (6.6)

Note that Proposition 6.2.3 assures the uniqueness of the�m� n� p�-dominow�� � w�pw
�.

The explicit construction ofw�pw
� is the following:

�
w�pw

�
�
ij
�

���	
��

wij iff i� j � �� � � � m	

w�i	m�p
j	m�p iff i� j � �m� p� � � � � m� n� p	

wik � w�k	m�p
j	m�p iff i� �� � � � m	� j� �m�p�� � � � m�n�p	� k� �m� p � � � m	

(6.7)

The componentswij with i � �m � p � � � � � m � n � p	 andj � �� � � � m	 can be recovered as
�wji�

	� from the third line in the definition. Note again that the definition ofw��ij for the case when
i � �� � � � m	� j � �m� p� � � � � m� n� p	 is independent of the choice ofk � �� � � � m	.

An example of juxtaposition is depicted in Figure 6.3.

a�

t�� t��� t���

b�

t����t��t	�
��

t���

c���

a���

t����

t������

t�� t��
��

t��t����� �

t����t	�����

t�� t��� t��� t���

t����� �

b�

b���b�

c���

b� a��� b�
a��� b���

a���

a���

t��t	�
��

t
�����

t�����t����t�������

t�� t������ �
�c

�a

�b

Fig. 6.3. The�-juxtaposition of the�-signals at�a� and�b� gives the��-signal at�c�.

Remark 6.2.5. Observe that, for eachw � Dn��� and p� q 
 m such thatp � q � m � �,
w

�����p
�p�q	mw �m	q�����m

� w.



6.2 Operations onn-dominoes 89

This result is a direct corollary of property 6.2.3.

Remark 6.2.6. The p-juxtaposition of am-signal with an-signal does not yield a�m � n � p�-
signals in general. As an example, the�-juxtaposition of the two�-signals in Figure 6.4 cannot
yield a�-signal since, intuitively, the pointt� of the second�-signal does not correctly fit in between
the first two pointst� and t� of the first �-signal. This rewrites as the fact that the component
w�� � b�a	� of the result is neither a word nor an antiword.

t���

c���

b� a���

t��� t���

t� � �

��

c���

a���a�

t��� t���

t� � �t� � �

w �

�
BBBBB�

� b� � b�c���a��� b�a	�

b	� � b	� c���a��� a	�

� b� � b�c���a��� a	���c	���a	�

a	���c	���b	� a	���c	��� a	���c	���b	� � c	�a	�

a�b	� a� a�c���a��� a�c� �

�
CCCCCA

Fig. 6.4. The�-juxtaposition of the two�-signals in this figure does not yield a�-signal. The result
is the�-domino depicted below them.

This is an outcome of the fact thatSig��� � Sig��	�� is not closed under concatenation, and
argues in favor of our need of introducingn-dominoes as the basis of the study.

A sufficient condition for thep-juxtaposition of am-signalw with an-signalw� to be a�m �

n� p�-signal is the conjunction of the following properties:

1. For eachi � �� � � � m� p	� j � �m� p� � � � � m	, wij � Sig���.
2. For eachi � �� � � � p	� j � �p� � � � � n	, w�ij � Sig���.

This follows since, under this condition, the third line in the detailed definition ofw�pw
� (Defini-

tion 6.7) would yield only elements ofSig���.

This problem with concatenation which is not an internal operation onn-signals is one of our
reasons for using the matricial presentation ofn-signals, and of defining them as special cases of
n-dominoes. Had we worked only with signals with distinguished points, we would have had to
use the above sufficient condition for correctly defining the juxtaposition. But, as we will see later,
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this condition is not satisfied by then-signals which are issued by then-signals semantics of timed
automata, as we will see in a further section in this chapter. Hence, our calculus withn-signals
would have been less expressive than timed automata.

6.2.3 Properties of juxtaposition

Proposition 6.2.7. 1. For each w � Dm���, w� � Dn��� given X � �� � � � m	 with card�X� �

p, given Y � �� � � � n	 with card�Y � � q, and given r 
 min�p� q� such that and �m � r �

� � � � m	 � X and �� � � � r	 � Y , we have that

w
X
�rw

�
Y
� �w�rw

��
X�
Y�m	r�

� (6.8)

2. For each w � Dm���, w� � Dn��� and w�� � Dp��� and for each q 
 min�m�n� and
r 
 min�n� p�,

�w�qw
���rw

�� � w�q�w
�
�rw

��� (6.9)

Proof. Both properties will be proved with the aid of Propositions 6.2.2 and 6.2.3:
For the first identity, denote firstp � card�X� andq � card�Y �. Let us observe first that the

left-hand sidew
X
�rw

�
Y

is defined iff the right-hand side�w�rw
��

X�
Y�m	r�
is:

w
X �p	r�����p

� w
l��
X


�p	r�����p�
(by identity 6.5)

� w
�m	r�����m

since, by hypothesis,�m � r � � � � �m	 � X � �� � � � m	 and hencelX��m � r � � � � � m	� �

�p� r � � � � � p	, and, respectively,

w�
Y �����r

� w
l��
Y


�����r�
(by identity 6.5)

� w
�����r

since, again by hypothesis,�� � � � r	 � Y � �� � � � n	 and hencelY ��� � � � r	� � �� � � � r	.
We will prove then that the projections of both sides of identity 6.5 onto�� � � � p	 and�p � r �

� � � � p � q � r	 are respectively equal. The projections of the left-hand side of Identity 6.8 are, by
definition of�, the following: �

w
X
�rw

�
Y

�
�����p

� w
X�

w
X
�rw

�
Y

�
�p	r�����p�q	r

� w�
Y

For the projections of the right-hand side of Identity 6.8 we will apply the identity 6.5. First, the
projection onto�� � � � p	 gives:



6.2 Operations onn-dominoes 91

�w�rw
��

X�
Y�m	r� �����p
� �w�w��

l��
X�	Y�m�r



�����p�
(by identity 6.5)

� �w�rw
��

l��
X


�����p�
(by property 6.3 oflX)

� �w�rw
��

X
(sincelX�X� � �� � � � p	)

� �w�rw
��

l��
�����m�


X�
(sinceX � �� � � � m	)

� �w�Rw
��

�����m X
(by identity 6.5)

� w
X

Before computing the projection onto�p � r � � � p � q � r	 we observe thatlX�
Y�m	r�

�
X n

�Y �m� r�
�
� �� � � � p� r	. Therefore:

�w�rw
��

X�
Y�m	r� �p	r���p�q	r
�

� �w�rw
��

l��
X�	Y�m�r



�p	r���p�q	r�
(by identity 6.5)

� �w�rw
��

l��
Y�m�r
�����q�

(by the above observation)

� �w�rw
��

Y�m	r
(sincelY�m	r�Y �m� r� � �� � � � q	)

� �w�rw
��

l��
�m�r�����m�n�r�


Y �
(sinceY �m� r � �m� r � � � � � m� n� r	)

� �w�rw
��

�m	r�����m�n	r Y
(by identity 6.5)

� w�
Y

For proving the Identity 6.9, let us observe first that the right-hand side is defined iff the left-
hand side is defined, and both iffw�qw

� andw��rw
�� are defined, since:

�w�qw
��

�m�n	q	r�����m�n	q
� �w�qw

��
l��
�m�q�����m�n�q�


�n	r�����n�

(sincel�m	q�����m�n	q��m� n� q � r � � � � � m� n� q	� � �n� r � � � � � n		)

� �w�qw
��

�m	q�����m�n	q �n	r�����n
(by identity 6.5)

� w�
�n	r�����n

(by definition of�q)

�w��rw
���

�����q
� �w��rw

���
l��
�����n�


�����q�
(sincel�����n��� � � � q	� � �� � � � q		)

� �w�qw
��

�����n �����q
(by identity 6.5)

� w�
�����q

(by definition of�q)

Hence

� w
�m	q�����m

� w�
�����q

if and only ifw
�m	q�����m

� �w��rw
���

�����q
.

� w�
�n	r�����n

� w��
�����r

if and only if �w�qw
��

�m�n	q	r�����m�n	q
� w��

�����r
.
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We will then show that the projections of both sides of this identity onto the sets�� � � � m	,
�m� q � � � � � m� n� q	 and�m� n� q � r � � � � � m� n� p� q � r	 are respectively equal.
To this end, observe first that

l�����m�n	r��� � � � m	� � �� � � � m	 (6.10)

l�����m�n	q��m� q � � � � � m� n� q	� � �m� q � � � � � m� n� q	 (6.11)

Then, the three projections of the left-hand side of Identity 6.9 can be rewritten as follows:�
�w�qw

���rw
��
�
�����m

�
�
�w�qw

���rw
��
�
l��
�����m�n�q�


�����m�
(by observation 6.10)

�
�
�w�qw

���rw
��
�
�����m�n	q �����m

(by identity 6.5)

� �w�qw
��

�����m
(by definition of�r)

� w (by definition of�q)

�
�w�qw

���rw
��
�
�m	q�����m�n	q

�

�
�
�w�qw

���rw
��
�
l��
�����m�n�q�


�m	q�����m�n	q�
(by observation 6.11)

�
�
�w�qw

���rw
��
�
�����m�n	q �m	q�����m�n	q

(by identity 6.5)

� �w�qw
��

�m	q�����m�n	q
(by definition of�r)

� w� (by definition of�q)�
�w�qw

���rw
��
�
�m�n	q	r�����m�n�p	q	r

�

� w�� (by definition of�q)

Before computing the projections of the right-hand side of Identity 6.9, note the following
properties:

l�m	q�����m�n�p	q	r��m� q � � � � � m� n� q	� � �� � � � n	 (6.12)

l�m	q�����m�n�p	q	r��m� n� q � r � � � � � m� n� p� q � r	� � �n� r � � � � � n� p� r	

(6.13)

The projections of the right-hand side of Identity 6.9 are the following:�
w�q�w

�
�rw

���
�
�����m

� w (by definition of�q)�
w�q�w

�
�rw

���
�
�m	q�����m�n	q

�

�
�
w�q�w

�
�rw

���
�
l��
�m�q�����m�n�p�q�r�


�����n�
(by observation 6.12)

�
�
w�q�w

�
�rw

���
�
�m	q�����m�n�p	q	r �����n

(by identity 6.5)

� �w��rw
���

�����n
(by definition of�q)

� w� (by definition of�r)
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�
w�q�w

�
�rw

���
�
�m�n	q	r�����m�n�p	q	r

�

�
�
w�q�w

�
�rw

���
�
l��
�m�q�����m�n�p�q�r�


�n	r�����n�p	r�
(by observation 6.13)

�
�
w�q�w

�
�rw

���
�
�m	q�����m�n�p	q	r �n	r�����n�p	r

(by identity 6.5)

� �w��rw
���

�n	r�����n�p	r
(by definition of�q)

� w�� (by definition of�r)

Hence, an application of Proposition 6.2.3 ends our proof. ut

At the end of this subsection we prove a property which relates orderings compatible with
�-signals to juxtaposition and will be used in the proof of the undecidability theorem.

6.2.4 Concatenation

The concatenation of two�n-dominoesw�w� � D�n��� is defined as then-juxtaposition ofw and
w� followed by the projection onto the first and the lastn components.

Definition 6.2.8. Given two �n-dominoes w�w� � D�n���, the concatenation of w and w� is
denoted as w � w� and defined as

w � w� �
�
w�nw

�
�
�����n���n������n

(6.14)

In detail,w � w� is defined iffw
�n������n

� w�
�����n

and in this case we have

�w � w��ij �

���	
��

wij iff i� j � �� � � � n	

w�ij iff i� j � �n� � � � � �n	

wik � w�k	n
j iff i� �� � � � n	� j� �n�� � � � �n	 andk� �n�� � � � �n	

(6.15)

The componentswij with i � �n� � � � � �n	 andj � �� � � � n	 can be recovered as�wji�	� from the
third line in the definition. An example of concatenation is given in Figure 6.5 below. The reader
may observe now that the concatenation of the two�-signals from Figure 6.5, is the projection of
their�-juxtaposition, as given in Figure 6.3, onto the set�� � � � �	 � �� � � � ��	.

Remark 6.2.9. As an outcome of the remark 6.2.6, the composition of two�n-signals might not be
a�n-signal in general.

Proposition 6.2.10. Composition is associative, has no unit but each �n-domino has a left and a
right unit and a left and right inverse w.r.t. this unit:

1. For each triplet of �n-dominoes w�w�� w�� � D�n���

�w � w��� w�� � w � �w� � w��� (6.16)
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a�

t��t��� t���

b�

t����t��t	�
��

t���

c���

a���

t����

t������

t��t��
��

t��t����� �

t����t	�����

t��t��� t��� t��� t����� �

t	�����

t������

t����

t����� �

b�

b���b�

c���

b� a��� b�
a��� b���

a���

a���

Fig. 6.5. Concatenation of two�-signals.

2. For each w � D�n���, denote �lw, resp. �rw the �n-dominoes defined as follows: for each
i� j � �� � � � n	,

��lw�ij � ��lw�n�i
j � ��lw�i
n�j � ��lw�n�i
n�j � wij (6.17)

��rw�ij � ��rw�n�i
j � ��rw�i
n�j � ��rw�n�i
n�j � wn�i
n�j (6.18)

Observe that ��lw�i
n�i � ��rw�i
n�i � �, for any i � �� � � � n	.
Then

�lw � w � w � �rw � w (6.19)

3. In the same setting, define �w � D�n��� as follows:

�wij �

�����	
����


wi�n
j�n iff i� j � �� � � � n	

wi�n
j	n iff i � �� � � � n	� j � �n� � � � � �n	

wi	n
j�n iff i � �n� � � � � �n	� j � �� � � � n	

wi	n
j	n iff i� j � �n� � � � � �n	

(6.20)

Then

w � �w � �lw and �w � w � �rw (6.21)

Proof. The associativity property follows from the definition of composition and the associativity
of juxtaposition. Let us observe first that�w � w�� � w�� is defined iffw � �w� � w��� is defined,
and both are defined iffw � w� andw� � w�� are defined. This follows directly from the proof of
associativity of�. Then:
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�w � w��� w�� �
�
�w�nw

��
�����n���n������n

�nw
��
�
�����n���n������n

�
�
�w�nw

���nw
��
�
�����n���n������n���n������n �����n���n������n

(by identity 6.8)

�
�
�w�nw

���nw
��
�
l��
�����n����n������n�


�����n���n������n�
(by identity 6.5)

�
�
�w�nw

���nw
��
�
�����n���n������n

(sincel�����n���n������n��� � � � n	 � ��n� � � � � �n	� � ��� � � � n	 � ��n� � � � � �n	�)

Similarly,

w � �w� � w��� �
�
w�n�w

�
�nw

���
�����n���n������n

�
�����n���n������n

�
�
w�n�w

�
�nw

���
�
�����n��n������n���n������n �����n���n������n

(by identity 6.8)

�
�
w�n�w

�
�nw

���
�
l��
������n����n������n�


�����n���n������n�
(by identity 6.5)

�
�
w�n�w

�
�nw

���
�
�����n���n������n

(sincel������n���n������n��� � � � n	 � ��n� � � � � �n	� � ��� � � � n	 � ��n� � � � � �n	�)

For the second property, observe first that�lw andw can be concatenated (in this order) since by
definition

�lw �n������n
� w

�����n

Then

��lw�nw�ij �

�

���	
��

��lw�ij for i� j � �� � � � n	

wij for i� j � �n� � � � � �n	

��lw�ik � wk	n
j for i � �� � � � n	� j � �n� � � � � �n	 and somek � �n� � � � � �n	

�

 
wij for i� j � �n� � � � � �n	 or i� j � �n� � � � � �n	

��lw�i
n�i � wij for i � �� � � � n	 andj � �n� � � � � �n	

� wij

The proof is similar for the right unit�rw.
Finally, for proving that�w is the inverse ofw w.r.t. concatenation we only must observe that,

for anyi� j � �� � � � n	 we have�
w � �w

�
ij
�
�
w � �w

�
n�i
n�j

� wij�
w � �w

�
i
n�j

� wi
n�i � �wi
n�j � wi
n�i � wn�i
j � wij ut
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6.3 n-domino languages

Having definedn-dominoes and their operations, we may turn our attention to sets ofn-dominoes
now. These sets will be calledn-domino languages, respectivelyn-signal languages when they
consist ofn-signals only. We denote the family ofn-domino languages asDLn��� and the family
of n-signal languages asWLn���.

All the operations built so far extend naturally ton-domino languages. We will only write here
the extension of the concatenations to�n-domino languages, since this gives rise to a star operation:
given two�n-domino languagesL�L� � D�n���, the concatenation ofL andL� is the�n-domino
language

L� L� � fw � w� j w � L�w� � L�g�

Let us consider the following language:

��n �
�
w � D�n��� j �i � �� � � � n	� wi
n�i � �

�
�
�
�lw j w � D�n���

�
(6.22)

Proposition 6.3.1. ��n is the unit for concatenation on sets, hence
�
P�D�n���������n

�
is a

monoid.

Concatenation gives rise to astar operation: for each�n-domino languageL � D�n���, the
star of L is defined as:

L� �
�
k��

Lk�

whereL�� � ��n andL
k���� � Lk� � L for all k � N .

Proposition 6.3.2. The structure
�
P�D�n����������� ���n

�
is a Kleene algebra.

We will also use thepositive star operation�, defined as the positive iterations of the given
language:

L� �
�
k��

Lk�

A nice property relating projection and juxtaposition is the following:

Proposition 6.3.3. Given anm-domino languageL, an n-domino languageL� and a positive num-
ber p 
 min�m�n�, denote L the set of �m � n � p�-dominoes which project onto elements of L
and L

�
the set of �m� n� p�-dominoes which project onto elements of L�, that is:

L �
�
w � Dm�n	p��� j w

�����m
� L
�

L
�
�
�
w � Dm�n	p��� j w

�m	p�����m�n	p
� L�

�
Then

L�pL
� � L � L

�
(6.23)
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Proof. By straightforward verification:

L�pL
� �
�
w�pw

� j w � L�w� � L�
�

�
�
w � Dm�n	p��� j w

�����n
� L�w

�m	p�����m�n	p
� L�

�
�
�
w � Dm�n	p��� j w

�����n
� L
�
�
�
w � Dm�n	p��� j w

�m	p�����m�n	p
� L�

�
� L � L

�
ut

6.4 Regminoes, regsignals, and regular expressions over them

Going back to the “colored parentheses” idea, we would like to decompose each object of the form

hbluea hredbiblue
� hblueaired

� h
redbiblue

� aired
�

into a concatenation of the kind

hbluea hredbiblue
� aired

� � hbluea hredbiblue
� aired

�

Consequently, we would like to base our regular expressions with colored parentheses on atoms
like hblueahredbiblue

� aired
� , that is, in which, if we apply a “color filter” for the any of the colors, we

would get a timed regular expression of the kindE� � hE�iIE�, in whichE�� E� andE� are regular
expressions without timing parentheses.

This rough idea still needs some refinement: observe that, in an atom of the kindhblueahredbiblue
� aired

� ,
there exist some implicit timing constraints limiting the duration of each state: neither of the two
statesa or the stateb may last more than� time unit. A graphical presentation of the resulting
object is the following:

hbluea hredbiblue
� aired

�

hred ired
�

hblue iblue
�

ha
i 
�

�
�

habi�

haba
i
�
��

hbi

�
��

hbai�

ha
i 
�

�
�

We will put all this information in a matricial presentation: we defineregminoes as matrices of
timed regular expressions, whose semantics consists of sets of dominoes. These are the atoms of
our calculus of regular expressions with colored parentheses:

Definition 6.4.1. An n-regmino is a matrix R � �Rij�i
j������n whose components are timed regu-
lar expressions: for each i� j � �� � � � n	, Rij is a timed regular expression over � ��	�.

An n-regsignal is an n-regmino R for which, for each i� j � �� � � � n	, Rij � hEiI � hE �iI for
some untimed regular expression E over �, some untimed regular expression E� over �	� and
some interval I � Q Int .
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The set ofn-regminoes is denotedRDn��� while the set ofn-regsignals is denotedRSign���.
Thesemantics of n-regminoes is the mappingk�k 
 RDn���� P�Dn���� defined as follows:

for eachR � RDn���,

kRk �
�
w � Dn��� j wij � kRijk for all i� j � �� � � � n	

�
(6.24)

Remark 6.4.2. Observe that the semantics of ann-regsignal contains onlyn-signals.

Figure 6.6 gives an example of a�-regsignal and a�-signal in its semantics.

R �

�
BBB�

� hbif�g hb� �i��
� hb�ca��i��
�
hb	�if	�g � hb	�i�	�
	� h�a� ��cai��
�
hb� �i�	�
� hbi��
� � hbac�a	�b	�i�	�
�

h�a	�c	���b	�i�	�
	� ha	�c	�a	�i�	�
	� hc	�a	�b	��bai�	�
� �

�
CCCA

t��t��� t���

c���

b�

t���

a���

Fig. 6.6. A �-regsignal and a�-signal in its semantics.

We have used here the expressionhbac�a	�b	�i�	�
� as a shortcut forhbaci�	�
��ha	�b	�i�	�
�.
Observe also that, since signals cannot have negative length and antisignals cannot have positive
length, we may further replace this timed regular expression withhbaci��
� � ha	�b	�i�	�
�.

For eachn-regsignalR � RSign��� we will denoteRij � R�
ij � R	

ij with R�
ij being the

“positive part” andR	ij the “negative part” of the timed regular expression, that is:

R�
ij � hEiI with E regular expression over�� andI � �����

R	
ij � hEiI with E regular expression over��	��� andI � ���� �	

6.4.1 Projection and juxtaposition on n-regsignals

We have seen that the domino operations can be naturally extended to languages. We may ask
then whether there is a way torepresent the results of each operation, when applied to languages
which are representable by regminoes. We show here that, for juxtaposition and intersection, such a
representation can be found, but not for union and projection, and, hence, neither for concatenation
and star.

We present these results in an algebraic setting, that is, we define juxtaposition and intersection
on regminoes and prove that they arecompositional. On the other hand, we show that the natural
candidate for theX-projection operation on regminoes - the operation which removes the rows and
columns not inX - is not compositional.

Definition 6.4.3. Given R � RDn��� andX � �� � � � n	, theX-projection ofR is the �card�X��-
regmino denoted R

X
and defined as follows:
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�
R

X

�
ij
� Rl��

X

i�l��

X

j� for all i� j � �� � � � card�X�	

Given R� � RDm���, R� � RDn���, and p 
 min�m�n� a nonnegative integer, the p-juxta-
position of R� with R� is the �m� n� p�-regmino R � RDm�n	p��� denoted R � R��pR� and
defined as follows:�
R��pR�

�
ij
�

�

������������������	
�����������������


�R��ij iff i � �� � � � m� p	� j � �� � � � m	

or i � �� � � � m	� j � �� � � � m� p	

�R��i	m�p
j	m�p iff i� �m�p�� � � �m�n�p	� j� �m�� � � � m�n�p	

or i� �m�� � � � m�n�p	� j� �m�p�� � � � m�n�p	

�R��ij � �R��i	m�p
j	m�p iff i� j � �m� p� � � � � m	
m!

k�m	p��

�R��ik�R��k	m�p
j	m�p iff i � �� � � � m� p	� j � �m� � � � � m� n� p	

m!
k�m	p��

�R��i	m�p
k	m�p�R��kj iff j � �� � � � m� p	� i � �m� � � � � m� n� p	

Unfortunately projection is not a good syntactic operation since it does not commute with se-
mantics of regminoes: we might have ann-regmino with an empty semantics whose projection
onto some subset has a nonempty semantics. For example, consider the following�-regsignal over
a one-letter alphabet� � fag (in fact, a matrix whose entries are sets of reals):

R �

�
BBB�

� a� � a� a� � a� a� � a�

a	� � a	� � a� � a� a� � a	

a	� � a	� a	� � a	� � a� � a�

a	� � a	� a		 � a	� a	� � a	� �

�
CCCA (6.25)

This �-regsignal has an empty semantics: if we construct all the integer-valued matricesA

whose components belong to the respective components ofR, that is, withAij � Rij for all
i� j � �� � � � �	, we observe that none is a�-signal as none satisfies the triangle identity. However
the projection ofR onto the setX � f�� �g gives the following�-regsignal:

R
f�
�g

�

�
� fa�� a�g

fa	�� a	�g �

�

whose semantics is nonempty, since:

w �

�
� a�

a	� �

�
�
##R

f�
�g

## � Sig��fag�

In general, we only have the inclusion



100 6. Matrices of signals

##R
X

## � �w
X
j w � kRkg (6.26)

for eachR � RD��� andX � �� � � � n	.
Contrary to projection,indexed juxtaposition is compositional w.r.t. semantics:

Proposition 6.4.4. The following property holds for any R� � RDm���, R� � RDn���, and
p 
 min�m�n�:

kR��pR�k � kR�k�pkR�k (6.27)

Proof. The property follows by easy verification: for the direct inclusion observe that, ifw �

kR��pR�k thenw
�����m

� kR�k andw
�m	p�����m�n	p

� kR�k. Butw � w
�����m

�pw �m	p�����m�n	p
,

hencew � kR�k�pkR�k.
For the inverse inclusion we just have to observe that, if we are givenw� � kR�k andw� � kR�k

such thatw��pw� is defined, then for alli � �� � � � m � p	, j � �m � � � � � m � n � p	 and
k � �m� p� � � � � m	, �w��w��ij � �w��ik � �w��k	m�p
j	m�p and this implies that

�w��w��ij �
m!

k�m	p��

k�R��ikk � k�R��k	m�p
j	m�pk � kR��pR�kij ut

An operation which is availablefor n-regsignals only is intersection:

Definition 6.4.5. Given two n-regsignalsR�� R� � RSign��� the intersection of R� andR� is the
n-regsignal R with

Rij � �R��ij � �R��ij for all i� j � �� � � � n	 (6.28)

We denote then R � R� �R�.

Remark 6.4.6. Of course, to actually obtainn-regsignals we need to transform the intersection in
each component into a regular expression. Observe that it is essential that both operands aren-
regsignals since then each component can be still written in the formhEiI � hE �iI� with E an
untimed regular expression over� andE� an untimed regular expression over�	�. HereI is
intended to be a nonnegative interval andI� a nonpositive interval.

On the contrary, the intersection of the semantics of twon-regminoes might not be representable
as ann-regmino. This follows even forn � � by the nonclosure of timed regular expressions under
intersection [ACM97, Her99].

Proposition 6.4.7. For each pair of n-regsignals R�� R� � RSign��� we have

kR� �R�k � kR�k � kR�k

We may then to alternatively definep-juxtapositionR��pR� by the aid of projection and inter-
section as follows: supposeR�RSigm��� andR� � RSign���. Consider then the following two
�m� n� p�-regsignals which, intuitively, extendR�, resp.R�:



6.4 Regminoes, regsignals, and regular expressions over them 101

�R��ij �

 
�R��ij iff i� j � �� � � � m	

�� � ��	��� otherwise

�R��ij �

 
�R��i	m�p
j	m�p iff i� j � �m� p� � � � � m� n� p	

�� � ��	��� otherwise

Observe thatkR�k �����m
� kR�k andkR�k �m	p�����m�n	p

� kR�k.
Then

kR��pR�k � kR� �R�k (6.29)

since we have:

kR��pR�k �kR�k�pkR�k by proposition 6.4.4

�kR�k � kR�k by Proposition 6.3.3

�kR� �R�k by Proposition 6.4.7

6.4.2 �n-domino regular expressions and �n-signal regular expressions

We may push the theory further by defining regular expressions whose atoms are regminoes.

Definition 6.4.8. The class of �n-domino regular expressions is generated by the grammar:

E 

� R j E � E j E � E j E� (6.30)

where R is a �n-regmino. When the atoms in a �n-domino regular expression E are all �n-
regsignals we say that E is a �n-signal regular expression.

We denote byRegD�n��� the class of�n-domino regular expressions over� and byRegSig�n���

the subclass of�n-signal regular expressions over�.
The semantics of a�n-domino regular expression is in terms of�n-dominoes and uses the

indexed concatenations and stars:

kE � E �k � kEk � kE �k

kE � E �k � kEk � kE �k

kE�k � kEk�

Observe that the definitionkE � E�k � kEk � kE �k does not contradict the fact that the
semantics ofn-regminoes is noncompositional w.r.t. concatenation. The left-hand side of� is
an abstract operation onregular expressions, that is, its result is a regular expression, and not a
regmino.

We would like to define a specific semantics of�n-signal regular expressions in terms of�n-
signal languages. But�n-signal regular expressions cause a special problem due to the fact that
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Sig�n��� is not closed under concatenation. We then need to restrict the semantics of each�n-
signal regular expression to its intersection withSig�n���. We denote the�n-signal language-
semantics of a�n-signal regular expression ask � ks. Hence, for eachE � RegSig�n���,

kEks � kEk � Sig�n��� (6.31)

Observe that, due to Remark 6.4.2 we have thatkRks � kRk for eachn-regsignalR.

Remark 6.4.9. Occasionally, we will also speak ofn-signal regular expressions. These are noth-
ing else but formal sums ofn-regsignals, since forn odd no concatenation operation is available.
This notion is useful asn-regsignals are not closed under summation.

We may also define a class of automata equivalent to�n-domino regular expressions, equiv-
alence which follows via the Kleene theorem and the compositionality of�n-domino regular ex-
pression semantics. We call them�n-regsignal automata. We will only provide, in Figure 6.7, an
example of such an automaton, the general definition being easily deducible.

q r s
R�

R�

R�

Fig. 6.7. An example of a�n-regsignal automata that corresponds to the�n-domino regular ex-
pressionsR� � �R� �R��

�, for any�n-regsignalsR�� R�� R�.

6.5 �n-signal regular expressions and timed automata

We have started the study ofn-signals with the aim of modeling timed languages. This section
provides the formalization of this modeling, namely the way the language of ann-clock timed
automaton can be presented by some�n-signal regular expression.

In the introduction to this chapter we have intuitively presented the way to encode a signal with
reset times into a�n-signal. The decoding of a�n-signal into a signal with reset times works as
follows: we simply need to consider the component with the largest length in the matrix, and then
distinguish some points in it, according to the timing constraints. This idea can be generalized to a
definition of thetimed language associated with a�n-signal regular expression, as the set of largest
components that occur in some�n-signal which belongs to the semantics of the given�n-signal
regular expression. More formally:

Definition 6.5.1. Given a �n-signal regular expression E � RegSig�n���, the timed language
associated with E consists of the following set of signals:

L�E� �
�
� j 	w � kEks�	i� j � �� � � � n	�	 � an ordering compatible with w such that

wij � � and �k � �� � � � n	� i � k � j
�

(6.32)
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The following theorem formalizes the intuition thatn-clocked timed automata can be presented
as�n-signal regular expressions:

Theorem 6.5.2. The class of languages accepted by timed automata with n clocks is included in
the class of timed languages associated with some ��n� ��-signal regular expression.

Proof. We will actually prove that the semantics of eachn-clocked timed automatonin which each
transition resets at least one clock can be associated with a�n-signal regular expression. The “��”
increment in the theorem statement comes from an augmentation of the number of clocks by one
which is reset on each transition. Throughout this proof we will consider the reset time semantics
of timed automata.

So take a timed automaton withn clocks,A � �Q� �� ��Q�� Qf�, in which each transition resets

at least one clock. We code each transition � q

C
X�
���� r in whichX ��  and��q� � a into a

�n-regsignalR�� as follows: suppose that the constraint in the atom is

C �
� "
i������n

xi � Ii
�
�
� "
i
j������n
 i��j

xi � xj � Jij
�

Then the components of the�n-regsignalR�� are:

R��ij �

���������������������	
��������������������


h�� � ��	���iJij for i� j � �� � � � n	

h�� � ��	���iJkl for i � n� k� j � n� l� k� l � X

� for i � n� k� j � n� l� k� l � X

h�� � ��	���iJik for i � �� � � � n	� j � n� k� k � X� i �� k

h�� � ��	���iJkj for j � �� � � � n	� i � n� k� k � X� j �� k

� for j � n� i� i � X or i � n� j� j � X

h�� � aiIi for i � �� � � � n	� j � n� k� k � X

or i � n� l� j � n� k� k � X� l � X

ha	� � ��	���i
	Ii� for j � �� � � � n	� i � n� k� k � X

or i � n� k� j � n� l� k � X� l � X

Here�I � f�� j � � Ig.
Observe the utility of havingX �� , since we may then code the subconstraintxi � Ii by a

comparison on the duration between the last reset point for clockxi and the reset point of any clock
in X.

Consider also the matrixE��n� whose all entries are�, E�nij � � for all i� j � �� � � � �n	. The
meaning of this matrix is the following: when this matrix is concatenated to the left of a regular
expression, all the starting points of the result are the same.

We then build a�n-regsignal automatonB � �Q � fq�g� �� fq�g� Qf� in which

� � fq
R
�
��� r j  � q


C
X�
���� r � �

�
� fq�

E
�n�
���� q j q � Q�

�
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To prove that this construction is correct, observe first that each accepting run inA can be
uniquely transformed into an accepting run inB that starts infq�g by just appending some transi-
tion labeled with the�n-regsignalE��n�, and vice-versa.

Consider then a run� � �qi�i������k with i � qi
Ci
Xi���� qi�� for all i � �� � � � k � �	. We may

associate to this run the following regsignal:

R��� � R���� � � ��R�k	��

Consider now the “word-like”n-clocked expressionE��� associated with the run�, as defined
in Identity 4.6 on page 61.

E��� � �a�

n"
i��

xi � �� �� ���q��� C�� X�� � � � � � ���qk	��� Ck	�� Xk	��

Then, if a signal with reset times� � �t�� � � � � tn� t� �� t
�
�� � � � � t

�
n� t

�� is in the (reset time) semantics
of E��� thenti � tj � t � � and the signal with reset times can be represented by the following
�n-signal:

�
w���

�
ij
�

 
� for all i� j � �� � � � n	

�
�ti
t�k�

for j � n� k� i� k � �� � � � n	

(of course, the whole�n-signal results with the aid of the triangle identity).
It is clear that there exists a bijection between the set of signals with reset times witht� �

� � � � tn � t � � and t�i � � and the set of�n-signalsw � Sig�n��� with wij � � for all
i� j � �� � � � n	. We may apply this bijection to then-clocked semantics ofE��� and hence get a
�n-signal semantics for it.

The proof ends if we show that, for each run�, this �n-signal semantics forE��� equals the
semantics of the�n-signal regular expressionE��n�� R���. This will be proved by induction on
the length of the run.

For zero-length runs the proof is trivial. Let us suppose then that we have proved the property
for all runs of length up tok � � and take some run of lengthk, say� � �qi�i������k��, with

i � qi

Ci
Xi�
����� qi�� � � for all i � �� � � � k	. Denote also�� � �qi�i������k, the run reduced to the

first k � � steps. Hence we have

E��� � E���� � �ak��� Ck��� Xk���

Then each signal with reset times in the reset semantics ofE��� can be decomposed as

��� � � � � �� �� t�� � � � � tn� t� � �t�� � � � � tn� t� ak��� t
�
�� � � � � t

�
n� t

��

where� � ��� � � � � �� �� t�� � � � � tn� t� � kE���k and�� � �t�� � � � � tn� t� ak��� t
�
�� � � � � t

�
n� t

�� �

k�ak��� Ck��� Xk���k.
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We may build then the�n-signalw��� associated with�, which, by induction hypothesis, is in
the semantics ofE��n��R����. We further consider the following�n-signal which, intuitively, is
associated with��:

w�ij �

 
w���n�i
n�j iff i� j � �� � � � n	

w���n�i
j � ak�� iff i � �� � � � n	� j � �n� � � � � �n	
(6.33)

the rest being derivable by the triangle identity.
Observe thatw���� w� is defined and the result is

w���� w� � w�� � ���

which proves in fact that the�n-signal semantics ofE��� is included in the semantics ofE��n��
R���.

For the reverse inclusion we proceed by mirroring the above argument: for the induction step,
consider a�n-signalz � kE��n� � R���k � kE��n� � R���� � R�ak��� Ck��� Xk���k. Hence,
z � w � w� with w � kE��n� � R���k andw� � kR�ak��� Ck��� Xk���k. By the induction
hypothesis,w is in the�n-signal semantics ofE����, hencew � w��� for some signal with reset
times� � ��� � � � � �� �� t�� � � � � tn� t� � kE����k. We may then build a signal with reset times from
the information provided byw� as follows:�� � �t�� � � � � tn� t� ak��� t

�
�� � � � � t

�
n� t

�� where

t�i � ti � 
�w�i
n�i� for eachi � �� � � � n	

t� � t�i for somei � Xk��

But � � �� is defined and produces the signal with reset times��� � ��� � � � � �� �� t��� � � � � t
�
n� t

�� �

kE���k which clearly has the property thatw����� � z. ut

6.6 The emptiness problem for �n-signal regular expressions is undecidable

In this section we show that our regular expressions over regsignals have an undecidable emptiness
problem, hence being more expressive than timed automata. In particular, we show here how to
encode each instance of the Post Correspondence Problem into a�n-signal regular expression.
Interestingly, the problem comes from the “untimed” part, the time playing no role in this result.

We remind here briefly thePost Correspondence Problem [Pos46] and the result concerning its
undecidability:

Definition 6.6.1. A PCP instance consists of a finite list
�
�ui� vi�

�
i������p

of pairs of words, ui� vi �
��. A solution of this instance consists of a finite list of indices �ij�j������p such that

ui�ui� � � � uip � vi�vi� � � � vip

The Post Correspondence Problem is the problem of checking whether a given PCP instance
has a solution.
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Theorem 6.6.2 ([Pos46, HU92]). The Post Correspondence Problem is undecidable.

Theorem 6.6.3. The emptiness problem for �n-signal regular expressions is undecidable.

Proof. We encode each PCP instance into a�-signal regular expression. Hence, supposing we
are given the instance

�
�xi� yi�

�
i������p

, we associate to each PCP-domino�xi� yi� the following
�-regsignal:

Ri �

�
BBB�

� �� � ��	��� xi �� � ��	���

�� � ��	��� � �� � ��	��� yi
x	�i �� � ��	��� � �� � ��	���

�� � ��	��� y	�i �� � ��	��� �

�
CCCA (6.34)

Then, by using the�-regsignalE��� defined in the proof of Theorem 6.5.2,

##E���� � pX
i��

Ri

��
� E���

## �� 

iff the given PCP has a nontrivial solution.
To observe this, consider first a�-signalw �

##E���� �Pp
i��Ri

��
� E���

##. By definition, we
havew � w��w�� � � ��wk�wk�� with w�� wk�� � kE���k andwj � kRljk for all j � �� � � � k	

and lj � �� � � � p	. This implies that�wj��� � ulj and�wj��� � vlj for all j � �� � � � k	, and, by
construction ofE���, that�w���� � �wk����� � �.

We first need to prove thatw� � � � � � wk�� is a�-signal. The following proposition will help
us:

Proposition 6.6.4. Given two �-signals z� z� � Sig����, suppose that z��� z��� z���� z
�
�� are not an-

tisignals, that is, z��� z��� z���� z
�
�� � Sig���. Suppose also that z��z

� is defined. Then z��z
� is a

-signal.

Proof. The proof of this property is done by case study on the possible orderings which are com-
patible withz, respectively withz�.

For each of the two�-signals, they are cases that can occur, under the assumption that the
��� ��-components and the��� ��-components are not antisignals, three when� � �:

�a�� � � � � � �� �b�� � � � � � �� �c�� � � � � � �

and the� symmetric cases in which� � �. Since not all combinations are possible due to the need
to havez��z

� defined, the correct combinations are as much as 18. Let us denote� the ordering
compatible withz and�� the ordering compatible withz� and suppose that� � �, hence� �� �

due to correct juxtaposition.
The only problematic components ofz��z

� are�z��z
���� and�z��z

����. To see that the other
components are indeed signals or antisignals, observe that�z��z

���� � z��z
�
�� � Sig��� and

�z��z
���� � z��z

�
�� � Sig��� by hypothesis.
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1. For the six cases in which� �� � and� �� �, that is, whenz���� z
�
�� � Sig���, we have that

�z��z
���� � z��z

�
�� � z��z

�
��z

�
�� � Sig���

�z��z
���� � z��z

�
�� � Sig���

By similarity, the other two cases in which� � � and� � � are also solved.
2. For the last remaining case, when� � � � � � � and� �� � �� � �� �, observe first that we

getz��� � Sig���, and therefore

�z��z
���� � z��z

�
�� � Sig���

we observe that

z��z�� � z���z
�
��

But the four factors of this identity are signals, and signals have the followingequidivisibility
property:

there exists� � Sig��� such that

 
either z�� � z���� andz��� � �z��

or z�� � �z��� andz��� � z���

Graphically, the two possibilities are depicted in Figure 6.8
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�����
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z��

� or

�����
�����
�����
�����
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���
���
���

���
���
���
���

������
������
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������

�

z�

��

z�� z��

z�

��

Fig. 6.8. The equidivisibility property.

Let us consider the first variant, that is,z�� � z���� andz��� � �z��. It follows that:

�z��z
���� � z��z

�
�� � �	��z����

	�z��� � �	� � Sig��	��

We have already seen that�z��z
���� � Sig���, hence none of the components ofz��z

� is a
mixture of signals and antisignals, which means thatz��z

� � Sig����. (Observe that, in this
case, onz��z

�, we may choose the compatible ordering� ��� � ��� � ��� � ��� � ��� .)
The same result follows if we choose the second variant, that isz�� � �z��� andz��� � z���. ut

Proof (of Theorem 6.6.3, continued). We may prove, by induction onj and by means of Proposi-
tion 6.6.4, thatw� � � � �� wj is a�-signal.

On the other hand, if we explicitely buildw fromw�� � � � � wk�� we get that
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w�� � �w���� � �w���� � � � � � �wk��� � �wk����� � ul�ul� � � � ulk

w�� � �w���� � �w���� � � � � � �wk��� � �wk����� � vl�vl� � � � vlk

Then, the triangle identity 6.1 implies thatw�� � w��w�� � w��w�� and thereforew�� � w��,
fact which assures that

�
lj�j������k is a solution of the given PCP instance.

For the reverse implication, suppose now that the PCP instance�ui� vi�i������p has a solution�
lj�j������k. Let us denote, for simplicity, for eachj � �� � � � k	, �ulj � ulj � � � � � ulk and �vlj �

vlj � � � � � vlk .
We build a sequence�wj�j�����k of �-signals which, intuitively, record the positioning of thej-th

domino in the chain of concatenations. Formally:

wj �

�
BBB�

� �ulj � ��v
	�
lj

� ulj �ulj � ��v
	�
lj��

��
�ulj � ��v

	�
lj

�
�	�

� �ulj�� � ��v
	�
lj

� vlj
u	�lj

�
�ulj � ��v

	�
lj��

�
�
�� � �ulj�� � ��v

	�
lj��

��
�ulj � ��v

	�
lj��

�
�	�

v	�lj
�
�ulj�� � ��v

	�
lj��

�
�	�

�

�
CCCA

For example,�wj��� holds the word or antiword that lies in between the occurrence ofulj andvlj .
The fact that

�
lj�i������k is a solution implies that, for eachi � �� � � � k	, �ulj � ��v

	�
lj

� is either a
word or an antiword. Hencewj � kRjk.

It is then easy to check by induction thatwj f�
�g � wj�� f�
�g
and that the concatenationw� �

� � � � wk is a�-signal. The proof is accomplished if we observe that�w���� � �wk��� � �, hence
we may concatenate at left and right with the matrixE���, viewed this time as a�-signal, to get
that

E���� w� � � � �� wk � E��� �
##E���� � pX

i��

Ri

��
� E���

## ut

Note that the problems concerning the semantics of�n-signal regular expressions, problems
due to nonclosure ofSig�n��� under concatenation, are harmless for the proof of this theorem.

Corollary 6.6.5. �n-signal regular expressions are strictly more expressive than timed automata.

Throughout the following chapters we will search for the following two things:

� A subclass of�n-signal regular expressions having a decidable emptiness problem and the same
expressive power as timed automata and

� A discrete representation of this class, which allows manipulating only untimed�n-signals.

The search will proceed hand-in-hand, since the discrete representation for the subclass will
eventually lead to the decision procedure.



7. n-words and their automata

A closer look at Theorem 6.6.3 shows that time plays no rôle in the undecidability of the empti-
ness problem. It is only the untimed structure ofn-dominoes that gives the possibility to encode
PCP instances into�-domino regular expressions. We therefore need to study in deeper detail this
untimed structure, that is, untimedn-dominoes and untimedn-signals. We will call the latter asn-
words. Actually, the whole theory of juxtaposition and concatenation might have been introduced
on untimed dominoes andn-words, but we have preferred introducing it for signals in order to
justify its utility for the study of timed automata.

We investigate in this chapter a class of finite automata that is naturally associated with these
n-words. We will call these automata asn-automata. The idea is to haven accepting sets, such
that a run accepts ann-word iff it passes through an accepting set exactly when it crosses one of
the distinguished points in then-word. Of course, the accepting sets are indexed, such that when
crossing the distinguished pointi, the i-th accepting set is reached. In the matrix presentation of
n-words, this is rephrased as follows: the run in between the moment of passing through thei-th
accepting set and the moment of passing through thej-th accepting set is labeled withwij. Or, in
the casewij is anantiword, its inversew	�ij labels the run between the moment of passing through
thej-th accepting set and the moment of passing through thei-th accepting set.

We show here thatn-automata are as expressive as sums ofn-regwords (that is, sums of untimed
n-regsignals) and that they are closed under concatenation. We also show that they have a decidable
emptiness problem, though with a high complexity solution (in the NP class [GJ79]).

This allows us to identify better what harms the emptiness problem for�n-word regular expres-
sions: it is the star operation in combination with theelasticity of �-regwords that represent each
PCP domino. By elasticity we name the property that, for some�-regword which represents a PCP
domino, allows the two words in the domino to be arbitrarily far away from one other. Our idea is
then to forbid this elasticity both at the untimed and timed level and to show that, when simulating
timed automata with�n-signal regular expressions, we obtain non-elastic�n-regsignals too.

Non-elasticity does not prove to be a nice algebraic property since it is not closed under concate-
nation. But our search is for a property that assures decidability rather than for a class of�n-word
regular expressions which is decidable, since such a property can be checked on different classes
of algebraically closed classes of�n-signal languages.

One question might be asked here: why do we “complicate” our life and use a fussy class
of automata and not work with classical finite automata and the intersection construction? But
in fact, our class of automata is nothing else but a compact representation of an “asynchronous”
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composition of finite automata. Then, in a certain sense, our non-elasticity property requires a
bound on the asynchronicity in order for the emptiness problem to become decidable. Even more,
our class of automata will be able to represent also timing constraintsover the continuous time
domain, as we will see in the next chapter.

This chapter runs as follows: in the first section, we definen-words,n-regwords and the reg-
ular expressions over�n-regwords, and show that all the algebraic properties ofn-signals and
n-regsignals from Chapter 6 hold forn-words andn-regwords. The second section contains the
definition ofn-automata and their basic closure properties, must notably the closure under projec-
tion and juxtaposition. We also show here that the emptiness problem forn-automata is decidable
and thatn-automata are equivalent ton-regwords. The third section serves for the introduction of
the non-elasticity property and some basic observations on it. The fourth section contains the main
result of this chapter, the star closure property of�n-automata whose accepted languages have the
property that all their powers are non-elastic�n-word languages.

7.1 n-words

n-words can be thought as words with distinguished points, similarly ton-signals. Hence, when
presenting words with distinguished points, we must employantiwords, that is, words over the set
of symbols�	� � fa	� j a � �g. Algebraically, we work on thefree group generated by the
set of symbols�, which is nothing else but the set�� � �	���, endowed with a concatenation
operation which “cancels” inverse letters.

Definition 7.1.1. An untimed n-domino is a matrixw � �wij�i
j������n of elements from ����	���

which satisfies the triangle identity 6.1, that is,

for all i� j� k � �� � � � n	� wijwjk � wik

When wij � �� � ��	��� we say that w is an n-word over �.

A graphical representation of a�-word is given in Figure 7.1:

W �

�
� � a abab

a	� � bab

b	�a	�b	�a	� b	�a	�b	� �

�
A �

� � �

a b a b

Fig. 7.1. A �-word and its graphical representation.

The whole theory of projection/juxtaposition/concatenation will be used directly forn-words
(�n-words where needed) without rephrasing, as it can be easily adapted to the untimed structure.
We translate in this introduction all the notations and results for the untimed case:
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The set ofn-words is denotedWDn��� while the set of untimedn-dominoes over� is denoted
UDn���. Note that juxtaposition ofn-words does not necessarily yieldn-words.

An n-word language is any subset ofWDn���. Similarly to �n-signal languages, the set of
�n-word languages can be given a Kleene algebra structure with the concatenation inherited from
�n-words and the resulting star operation.

An n-regword R is then an � n matrix whose entries are (untimed) regular expressions over
� ��	�. The set ofn-regwords is denotedRWn���.

The semantics of ann-regword consists of untimedn-dominoes with the property thatwij �
Rij for eachi� j � �� � � � n	 and is denotedkRk:

kRk �
�
w � UDn��� j wij � jRijj for all i� j � �� � � � n	

�
Remind thatjEj denotes the semantics of the classical regular expressionE.

Similarly to n-regsignals,n-regwords semantics is not compositional w.r.t. projection but is
compositional w.r.t. juxtaposition.

For eachn-regwordR � WDn��� we will denoteR�
ij the “positive part” of the�i� j�-

component ofR andR	
ij the “negative part” of the�i� j�-component ofR, that is,

Rij � R�
ij �R	

ij with R�
ij � Rij ��

�� R	
ij � Rij � ��	���

In fact, we will utilize this decomposition for bothR�
ij andR	

ij being regular expressions that
denote respectivelyRij ��� andRij � ��	���.

The set of�n-word regular expressions is defined by the following grammar:

E 

� R j E � E j E � E j E� (7.1)

whereR is any�n-regword. Their semantics is based upon the�n-word language operations as
usually:

kE � E �k � kEk � kE �k

kE � E �k � kEk � kE �k

kE�k � kEk�

All the properties that hold forn-regminoes andn-regsignals will also hold for untimedn-
regminoes andn-regwords.

Remark 7.1.2. Proposition 6.4.7 and identity 6.29 hold for untimed regminoes, since any intersec-
tion of untimed regular expressions over� � �	� can be transformed into a regular expression
over� ��	�.

7.2 n-automata

We define here a class of finite automata that are equivalent ton-regwords. The idea is to generalize
from finite automata by utilizingn sets of accepting states and requiring that the accepting runs
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pass at least once through each of these sets. The class can be generalized to support also untimed
n-regminoes but we will not present this generalization.

Definition 7.2.1. An n-automaton over an alphabet� is a tupleA � �Q� ��Q�� � � � � Qn� in which
Q is the finite set of states, � � Q � � � Q is the transition function, and for each i � �� � � � n	,
Qi � Q is the set of accepting states for index i.

A run in such an automaton is simply a sequence of transitions�qj� aj � qj���i������k with
�qj� aj � qj��� � � for all i � �� � � � k	. We also have word-labeled transitions, as in finite automata:
q

w
�� q� if there exists a sequence of transitions fromq to q� whose concatenation of labels givesw.

For any run� � �qj� aj � qj���i������k and two indicesi�� i� � �� � � � k � �	, we denoteword��� i�� i��
the word or antiword which labels the transitions in between thei�-th state and thei�-th state in
the run:

word��� i�� i�� �

 
ai�ai��� � � � ai�	� iff i� 
 i�

a	�i�	�a
	�
i�	�

� � � a	�i� iff i� 	 i�
(7.2)

By mirroring this definition we also get antiword-labeled transitions: forw � ��	���, q
w
�� q� if

q�
w��

��� q.
An accepting run is a run� � �qj� aj � qj���j������k that passes through each accepting set, i.e.,

for eachi � �� � � � n	� fq�� � � � � qkg �Qi �� 

Given an accepting run� � �qj� aj � qj���j������k and a set ofn indices within this run,lll �

�li�i������n with li � �� � � � k	, such thatqli � Qi for all i � �� � � � n	, ann-wordw � WDn��� is
said to beaccepted by the run� and the index sequencelll iff

for eachi� j � �� � � � n	� qli
wij

�� qlj � that is,wij �

 
aliali�� � � � alj	� iff li 
 lj

a	�li	�a
	�
li	�

� � � a	�lj iff li 	 lj

We say that the sequence of indiceslll witnesses the acceptance of then-word by the run�.
A first example is provided in the Figures 7.2 and 7.3:

a b a b

a

b

� � ��� �

q� q� q� q� q�

Fig. 7.2. An example of a�-automaton. The accepting sets areQ� � fq�� q�g, Q� � fq�� q�g and
Q� � fq�g.

The�-automaton in Figure 7.2 accepts the�-word in Figure 7.3�a�: the associated run is�
�q�� a� q��� �q�� b� q��� �q�� a� q��� �q�� b� q��

�
and the witnessing sequence��� �� ��. Note that the

same run, but with the witnessing sequence��� �� �� accepts the�-word in Figure 7.3�b�.
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� � �

a b a b

q� q� q� q� q�

� �

b a b

q� q� q� q�

�

q�

�a� �b�

Fig. 7.3. Two �-words accepted by the automaton in Figure 7.2. The accepting runs are depicted
below each word. The witnessing sequences can be retrieved by identifying the indices in the run
which correspond to the distinguished positions inside the�-words.

Remark 7.2.2. Observe that a run might be longer in both directions than the word actually ac-
cepted by it. For example, the�-word in Figure 7.3�b� might be accepted by a shorter run, namely�
�q�� b� q��� �q�� a� q��� �q�� b� q��

�
in combination with the witnessing sequence��� �� ��.

Hence in anyn-automaton we may consider only runs that start and end in some accepting set,
in pair with witnessing sequences that contain the index� and the final index in the run.

Remark 7.2.3. Observe also that the witnessing sequence does not necessarily captureall the mo-
ments when the accepting run passes through an accepting set. In Figure 7.3, the two runs pass
twice throughQ�, but only once this pass is really needed and used.

There exists an alternative way of acceptingn-words: we may define an accepting run as a
sequence of tuples� �

�
�Xi� qi� X

�
i�� ai� �Xi��� qi��� X

�
i���
�
i������k

with the following properties:

� �qi� ai� qi��� � �.
� For eachi � �� � � � k � �	,X �

i � Xi��.
� For eachi � �� � � � k	, if j � X �

i nXi thenqi � Qj.
� X� �  andXk�� � �� � � � n	.

The componentsXi record the “history” of passing through accepting sets up to thei-th state
while theX �

i components also take into account thei-th state. The translation from the “witness-
ing” presentation to the “history” presentation is straightforward: given an accepting run� and
a witnessing sequence�li�i������k, we construct the “history” components asXi � flj j j � ig

andX �
i � flj j j 
 ig. For the reverse, given an accepting run in the “history” presentation

� �
�
�Xi� qi� X

�
i�� ai� �Xi��� ai��� Xi���

�
i������k

we associate the witnessing sequence�li�i������n in
which li � j iff j � X �

i nXi.

Definition 7.2.4. The n-word language accepted by A, denoted L�A�, is the set of n-words ac-
cepted by some accepting run in A, together with some witnessing set of indices.

The class of regular n-languages consists of the family of n-word languages which can be
accepted by some n-automaton.

7.2.1 The emptiness problem for n-automata

Proposition 7.2.5. The problem of checking whether the language of an n-automaton is nonempty
is an NP-complete problem.
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Proof. Let us first show that the non-emptiness problem is NP-easy. To this end, consider the
following “nondeterministic algorithm” (in the sense of [HU92]) that associates to each stateq � Q

an index setX � �� � � � n	 with the property that there exists a run that starts anywhere, ends inq

and passes through each of the accepting sets whose indices are inX:

- pick q � Q;
- putX 
�

�
i � �� � � � n	 j q � Qi

�
;

- putS 
�  - putT 
� f�q�X�g;
- whileX �� �� � � � n	 and S �� T do

- putS 
� T ;
- pick �q�X� � T ;
- pick a � �;
- pick r � Q;
- if �q� a� r� �� � then stop;
- compute the newX 
� X � fi � �� � � � n	 j r � Qi

�
;

- compute the newT 
�
�
T n

�
frg � P��� � � � n	�

��
� f�r�X�g;

endwhile;
if X � �� � � � n	 thenwrite(‘‘nonempty’’)

else write(‘‘empty’’).

This nondeterministic algorithm runs in polynomial time and linear space in the size of the
givenn-automaton. It is clear that, if there exists an accepting run, then one of the choices in this
algorithm will find it.

For the NP-hardness part, we show that the Hamiltonian Path Problem (HP) can be polynomi-
ally reduced to checking emptiness of ann-automaton. Remind that theHamiltonian Path Problem
[GJ79] is the problem whether a given directed graph contains a path which visits each node ex-
actly once.

The polynomial reduction of HP to the emptiness problem forn-automata is the following:
given a graphG � �V�E� with V � fv�� � � � � vkg, we construct the followingk-automaton:
A � �V � �� � � � k	� �� Q�� � � � � Qk� where

� �
�
�v� j�� �v�� j � �� j �v� v�� � E� j � �� � � � k � �	

�
Qi �

�
�vi� j� j j � �� � � � k	

�
We then have that each accepting run throughA corresponds to a Hamiltonian path inG and vice-
versa. This follows since an accepting run must havek nodes as it visits each accepting set at least
once and each visit increases the “level” of the node by one, and also the number of sets visited is
less or equal than the number of nodes in the run. ut

We present here an algorithm that is an adaptation of the Floyd-Warshall-Kleene algorithm,
hence containingO

�
card�Q��

�
iterations, but each iteration might take exponential time since it

involves operations on possibly exponentially manysubsets of �� � � � n	. It associates to each pair
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�q� r� of states in the givenn-automaton, a set of subsets�qr of �� � � � n	. The set�qr has the
property that, for eachX � �qr there exists a run fromq to r that passes through eachQi for
eachi � X. Once the matrix� is constructed, the answer is “YES” if and only if there exists one
component�q� r� with �� � � � n	 � �qr.

For the computation of�, we suppose an ordering ofQ is given, sayQ � fq�� � � � � qpgwith p �
N . A special operation onP

�
P��� � � � n	�

�
, denoted�, is used. This operation works as follows:

givenX �Y � P��� � � � n	�,

X � Y �
�
Z� � Z� j Z� � X � Z� � Y

�
Remark 7.2.6. � is associative.

The algorithm works by constructing a sequence of matrices��k�k������p with

����ij �

 
fXg iff i � j and for alll � X� qi � Ql

fg otherwise

��k���ij � ��k�i
k�� � ��k�k��
k�� � ��k�k��
j

Proposition 7.2.7. For each i� j � �� � � � n	 and k � �� � � � p	, X � ��k�ij iff there exists a run that
starts in qi, ends in qj , whose intermediary states are labeled with indices less than or equal to k,
and which passes through all accepting sets Ql for each l � X .

Proof. By induction onk.
For k � � the proof is trivial. Suppose we have proved the result fork. Then, for each

i� j � �� � � � n	 andX � ��k���ij, by associativity we have thatX � Z� � Z� � Z� with
Z� � ��k�i
k��� Z� � ��k�k��
k�� andZ� � ��k�k��
j. By induction hypothesis we get the follow-
ing three runs:

� A run �� � �r�h� a
�
h� r

�
h���h������m� with

1. r�� � qi, r�m��� � qk��;
2. r�h � fq�� � � � � qkg for all h � �� � � � m�	;
3. For eachl � Z� there existsh � �� � � � m�	 such thatr�h � Ql.
� A run �� � �r�h� a

�
h� r

�
h���h������m� with

1. r�� � qk��, r�m��� � qk��;
2. r�h � fq�� � � � � qkg for all h � �� � � � m�	.
3. For eachl � Z� there existsh � �� � � � m�	 such thatr�h � Ql.
� A run �� � �r�h� a

�
h� r

�
h���h������m� with

1. r�� � qk��, r�m��� � qj;
2. r�h � fq�� � � � � qkg for all h � �� � � � m�	;
3. For eachl � Z� there existsh � �� � � � m�	 such thatr�h � Ql.

But then, by concatenating these three runs we obtain the run

� �
�
�r�h� a

�
h� r

�
h���h������m�� �r

�
h� a

�
h� r

�
h���h������m�� �r

�
h� a

�
h� r

�
h���h������m�

�
which verifies the claimed property. The inverse implication follows similarly. ut
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Corollary 7.2.8. L�A� ��  iff there exist i� j � �� � � � p	 such that �� � � � n	 � ��p�ij .

The advantage of this algorithm is that the sets�ij can be represented as BDDs, since they give
an “and-or” information concerning the runs that connectqi to qj.

The search for a component that contains�� � � � n	 in the matrix� might prove a lengthy process,
even if we restrict ourselves to only the union

Sn
i��Qi. But, with a simple trick, we may only need

to check a single component: we append to the set of statesQ two special states, denotedq� and
q��. q� is used for loopingbefore any run andq�� for loopingafter any run. We will call the state
q� as thesource state and the stateq�� as thesink state.

Formally, we transformA into then-automaton�A � � �Q� ���Q�� � � � � Qn� where:

�Q � �Q � fq�� q��g�

�� � � �
�
q�

a
�� q�� q�

a
��q� q��

a
�� q��� q

a
�� q�� j q � Qi� i � �� � � � n	� a � �

�
Definition 7.2.9. The automaton �A is called the completion of A.

As a consequence, once we have constructed the matrix� for �A, we only need to check whether
the component corresponding to�q�� q��� contains�� � � � n	.

7.2.2 �-transitions in n-automata

The class ofn-automata was defined without allowing�-transitions. However in the sequel we will
sometimes need them in order to make simpler constructions ofn-automata.

An n-automaton with �-transitions is a tupleA � �Q� ��Q�� � � � � Qn� in which� � Q� ���

f�g��Q. The notions of run, accepting run andn-word accepted by an accepting run are the same
as for “ordinary”n-automata.

The elimination of�-transitions proceeds, like for finite automata, by computing the reflexive-
transitive closure of the relation

�
�� on Q. There is however a problem specific ton-automata,

the recomputation of accepting sets. Remind that, in the process of removing�-transitions from
finite automata, a state is declared as “accepting” (i.e. final) iff it reaches, after finitely many�-
transitions, a final state. This cannot be the case forn-automata, as we may see from the example
in Figure 7.4.

The �-automaton in Figure 7.4�b� is obtained by removing all the�-transitions from the�-
automaton in Figure 7.4�a� with the usual technique, that is, by puttingq

x
�� r in the new au-

tomaton iff there exist statesq�� r� such thatq�
�
����q�

x
�� r��

�
����r. We have denoted here�

�
���� the

reflexive and transitive closure of the relation
�
��onQ.

But we need to redefine also the accepting states, and besides the choiceQ� � fq�g andQ� �

fq�g there is no way for redefining the accepting sets that renders the resulting�-automaton at�b�
equivalent to the one at�a�. The reason for this deadlock is that, if we chooseq� to be in both
Q� andQ� then the resulting�-automaton would accept the�-word represented in Figure 7.5�a�,
which is not accepted by the�-automaton in Figure 7.4�a�. The same situation occurs if we choose
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a

�

� b

�

q�q� q�

��

b

a

a q�q�

�� �

�a�

a

�

b

�

q�q� q�
a q�

a� b

a� b

q�

�� �? ?

�b�

Fig. 7.4. The “brute force” removal of�-transitions from the�-automaton at�a� is drawn at�b�. In
this�-automaton there is no way to establish the accepting sets to whichq� andq� must belong.

a a

�� �

q� q�

��

q�

a

�� � ��

b

�a� �b�

Fig. 7.5. Two �-words for exemplifying the peculiarities of removing�-transitions inn-automata.

q� to be in bothQ� andQ�, whereas if we leave the accepting sets unchanged then the resulting
automaton would not accept the�-word depicted in Figure 7.5�b�.

The solution is to replicate each state that takes part into a sequence of�-transitions, according
to the number of distinct runs with�-transitions that pass through it. For our�-automaton in Figure
7.4 the solution is the�-automaton in Figure 7.6.

�

b

�

q� q�
a q�

�� �

q�q�

q�q�

q�q�

a

a
b

b

a
�

�

�� �

Fig. 7.6. A �-automaton without�-transitions equivalent to the�-automaton in Figure 7.4.

In general, suppose we are given ann-automaton with�-transitionsA � �Q� ��Q�� � � � � Qn�.
The states of then-automaton without�-transitions are pairs�q� q�� X� consisting of two states in
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Q and an index setX � �� � � � n	. The idea is to encode in each such state an�-run that starts inq,
ends inq� and passes through all the accepting sets whose indices are inX.

Formally, the following automaton without�-transitions can be showed equivalent toA:

B �
�
Q�� �� Q�

�� � � � � Q
�
n

�
where

Q� �
�
�q� q�� X� j 	� � �qi�i������k such thatq� � q� qk � q� andqi

�
��qi�� for all i � �� � � � k � �	

and for allj � X� there exists somei � �� � � � n	 with qi � Qj

�
� �

�
�q� q�� X�

a
�� �r� r�� Y � j q�

a
��r

�
Q�
j �

�
�q� q�� X� j j � X

�
� for all j � �� � � � n	

7.2.3 Basic operations with n-automata

Proposition 7.2.10. The class of regular n-languages is closed under union and intersection.

Proof. Both results are straightforward generalizations of the closure results for regular languages.
We will provide only the proof for intersection:

Given twon-automataA � �Q� ��Q�� � � � � Qn� andA� � �Q���� Q�
�� � � � � Q

�
n�, then-automaton

that acceptsL�A� � L�A�� isA� � �Q�Q�� ��� Q� �Q�
�� � � � � Qn �Q�

n� where

�� �
�
�q� q��

a
�� �r� r�� j q

a
�� q� � � andr

a
�� r� � ��

�
ut

Remark 7.2.11. Observe that the resulting automaton is a completion since the pair state�q�� q��

plays the r̂ole of q� and the pair state�q��� q��� works asq��.

Proposition 7.2.12. Given an n-automaton A � �Q� ��Q�� � � � � Qn� and a subset J � �� � � � n	

with card�J� � p, then the p-word language L�A�
J

can be recognized by some p-automaton.

Proof. The first step is to take the completion�A of A. Then we transform this automaton by
remembering in each state the set of indices fromJ which “can be visited” through a run that starts
in q�.

Formally, suppose thatJ � fi�� � � � � ipg is the presentation ofJ in increasing order, that is,
ik � l	�J �k�. We then construct thep-automatonB � � �Q � P��J�� �� Q�

�� � � � � Q
�
n	p� where�J

denotes the complement ofJ and

� �
�
�q�X�

a
�� �r� Y � j q

a
�� r � ���X � Y � �J andr � Qj for all j � Y nX

�
Q�
k � Qik �P��J�� or, in other words,Q�

k � Ql��
J


k� �P��J�

This automaton is not yet the desired one since there is no guarantee that in an accepting run
in B, the index component of each state records exactly the set of indices from�J which have
been visited. But we will take advantage of the existence of the completion statesq� andq�� in the
following way: we restrict the set of states to those that arereachable from �q�� � andcoreachable
from �q��� J�. DenoteQ the resulting set of states andB the restrictedp-automaton. We claim that,
with this restriction, onlyp-words inL�A�

J
are accepted.
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To this end, observe that an accepting run in�B must necessarily be extensible to an accepting
run that starts inq�� and ends inq����J . But the construction of the transition function assures
then that, for alli � J this run must pass through a state belonging toQi � P��J�. Since it
is an accepting run, it also passes through eachQi for all i � J . Therefore, if we forget the set
component of each state we get an accepting run in�A. Hence thep-word associated with the run
in B is theJ-projection of then-word associated with the run in�A. The reverse proof follows
similarly. ut

Proposition 7.2.13. Given an m-automaton A � �Q� ��Q�� � � � � Qm�, an n-automaton B �

�Q�� ��� Q�
�� � � � � Q

�
n� and a number p 
 min�m�n�, the p-juxtaposition of L�A� with L�B� is

accepted by some �m� n� p�-automaton.

Proof. The essential tool used here is the relationship between juxtaposition, extension and projec-
tion onn-word languages given by Identity 6.23. Hence we build the�m�n�p�-automaton which
acceptsL�A��pL�B� as an intersection of an extension ofA with an extension ofB. The idea is
to use the completed automata�A, resp.�B, transformed into�m� n� p�-automata by adding new
accepting components. The new components will simply contain all the states in the automata.

Formally, we transformA into the �m � n � p�-automatonA � �Q�� ��� Q�� � � � � Qm�n	p�

where:

Q� � �Q � fq�� q��g�

�� � � �
�
q�

a
��q�� q�

a
�� q� q��

a
�� q��� q

a
��q�� j q � Qi� i � �� � � � m	

�
Qk � Q� for eachk � �m� � � � � m� n� p	�

Similarly we extendB intoB � �Q��� �
�
�� S�� � � � � Sm�n	p� where:

Q�
� � �Q� � fq�� q��g�

��� � �� �
�
q�

a
��q�� q�

a
�� q� q��

a
�� q��� q

a
��q�� j q � Qi� i � �� � � � m	

�
Sk �

 
Q�
� for eachk � �� � � � m� p	

Q�
k	m�p for eachk � �m� p� � � � � m� n� p	�

Observe that

L�A� �
�
w � WDm�n	p��� j w

�����m
� L�A�

�
L�B� �

�
w � WDm�n	p��� j w

�m	p�����m�n	p
� L�B�

�
�

Then identity 6.23 implies that

L�A��pL�B� � L�A� � L�B�� ut
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7.2.4 Relationship with n-regwords

Once at this point, we may ask what is the relationship betweenn-regwords andn-automata. The
following theorem gives this relationship:

Theorem 7.2.14. The class of n-word languages accepted by n-automata equals the class of n-
word languages which are the semantics of a sum of n-regwords.

Proof. The left-to-right inclusion works by the aid of the classical Kleene theorem as follows:
first, we decompose eachn-automaton into several smaller ones, in which each accepting set is a
singleton. Hence, the language of then-automatonA � �Q� ��Q�� � � � � Qn� equals the union of
the languages of all the automataB � �Q� �� fq�g� � � � � fqng� with qi � Qi for all i � �� � � � n	. It
there remains to prove the inclusion for such automata.

So consider that for the given automatoncard�Qi� � �, i.e.,Qi � fqig for all i � �� � � � n	.
For eachi� j � �� � � � n	, denoteAij the finite automaton whose transition function is� and whose
initial, resp. final states areqi, resp.qj, that is,Aij � �Q��� �� qi� fqjg�. This automaton constrains
all the n-words whose�i� j�-component ispositive (i.e. in ��). The constraint for then-words
whose�i� j�-component isnegative (i.e. in ��	���) is provided by theinverted language ofAji,
L�Aji�

	� � ��	���.
Let us denote then byEij the regular expression over� equivalent (by the Kleene theorem) to

Aij. Construct then-regwordR whose components are

Rij � Eij � E	�
ji (7.3)

We have denoted here byE	� the expression obtained fromE by replacing each letter in� with
its inverse.

We claim thatL�A� � kRk. The inclusion� is assured by construction. For the reverse we will
essentially use the triangular identity characterizingn-words:

Considerw � kRk and let� be an ordering on�� � � � n	 which is compatible withw, that is, if
i � j thenwij � ��. We construct a run inA for w, run which passes through the accepting states
in the order indicated by�. The run is constructed inductively on the order� as follows: denote
ik thek-th index in the order�, for k � �� � � � n	.

Fork � � we havewi�
i� � jEi�i� j � L�Ai�
i�� and hence we get a run inA that starts inqi� and
ends inqi�.

Suppose we have built a run, up tok, that passes throughqi�� � � � � qik in this order. To extend
this run we consider first a run� associated withwik
ik��

in Aik
ik��
. This run exists since, by

hypothesis,wikik��
� jEikik��

j � L�Aikik��
�. Moreover this run starts inqik and ends inqik��

.
Then we just append this run to the one we have built so far.

The fact that this concatenation is consistent with the other constraints imposed on the word
follows by the triangle identity: for eachl � k � � the fraction of the run that is associated with
wil
ik concatenated to the run associated withwik
ik��

in Aik
ik��
is an accepting run associated

with wil
ik��
in Ail
ik��

. Observe also that the compatibility of the ordering� assures that the
concatenationwil
ik � wik
ik��

gives a word and not a mixture of letters and antiletters.
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The embedding ofn-regwords inton-automata works by an argument similar to the intersection
argument. Hence, given ann-regwordR � WDn���, for each pair�i� j� �

�
�� � � � n	��� � � � n	

�
we

consider the finite automaton which is associated with the regular expressionR�
ij by the classical

Kleene theorem, be it

A�
ij � �Q��i� j�� �� ���i� j�� Q�

� �i� j�� Q
�
f �i� j���

Consider also the finite automaton which is associated withR	ij, be it

A	
ij � �Q	�i� j�� �	�� �	�i� j�� Q	

� �i� j�� Q
	
f �i� j���

Observe thatL�Aij� � ��	���.
Build then the automatonAij as the union ofA�

ij and theinverse of A	
ij. The inverse ofA	

ij is�
Q	�i� j��

�
�	�i� j�

�	�
� Q	

f �i� j�� Q
	
� �i� j�

�
where

�
�	�i� j�

�	�
� fq

a
�� r j r

a��

��� q � �	�i� j�g

We denoteAij � �Q�i� j�� ��i� j�� Q��i� j�� Qf�i� j��.
We transformAij into ann-automaton by the same technique used in the proof of Proposition

7.2.13. That is, we do the following steps:

� Append two new statesq� andq�� to Q�i� j� and putq�
a
�� q�� q�

a
�� q for eachq � Q��i� j�

anda � �, andq��
a
�� q��� q

a
�� q�� for eachq � Qf�i� j� anda � �. We denoteQ��i� j� �

Q � fq�� q��g.
� For eachk � �� � � � n	 n fi� jg we putQk � Q��i� j� andQi � Q��i� j�� Qj � Qf�i� j�.

Denote the resulting automaton asA�
ij.

Build then the intersection of allA�ij for all i� j � �� � � � n	 by a straightforward generalization
of the intersection construction from Proposition 7.2.10. An easy check shows that the resulting
n-automaton accepts indeedkRk. ut

7.3 Non-elasticity

In our search of a decidable class of�n-word regular expressions we may recall that, when we have
constructed the�n-signal semantics to timed automata in 6.5.2, we have produced only signals with
reset times in which for eachi � �� � � � n	, eithert�i � ti, or, for eachj � �� � � � n	, t�i 	 tj . Or, in�n-
signal format, for eachi � �� � � � n	, eitherwi
n�i � �, or, for eachj � �� � � � n	, wj
n�i � Sig���.

In the sequel we will focus on the following weaker property (written here forn-words):

(N) For eachi� j � �� � � � n	, one of the following requirements holds
(N1) wi
n�i � �;
(N2) wj
n�j � �;
(N3) wi
n�j � �� andwj
n�i � ��.
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Equivalently, this property says that for eachi� j � �� � � � n	, if wi
n�i �� � andwj
n�j �� � then
wi
n�j � �� andwj
n�i � ��. We prefer the above formulation since we will make some reference
to �n-words that have only property(N3).

Observe that, for PCP dominoes, this property forbids the situation in which one of the words
ends before the other begins. If we recall the proof of the undecidability of PCP, we may observe
that the simulation of a Turing Machine by a PCP instance requires copying the contents of certain
cells, and this procedure needs “elastic” dominoes in which the relative distance between the two
words composing a domino can be arbitrarily large.

We will show that this property assures the star closure of�n-automata. As a consequence, this
property assures the decidability of the emptiness problem for�n-word regular expressions.

Definition 7.3.1. A �n-word w is called non-elastic if the property (N) holds. If for each i� j �
�� � � � n	 only the property (N3) holds then we say that w is strictly non-elastic.

For each �n-word regular expression E, the non-elastic semantics of E, denoted jEjn consists
of the non-elastic �n-words in its semantics.

For each �n-automaton A, the non-elastic language of A denoted Ln�A�, consists of the non-
elastic �n-words in its language.

The set of indicesi � �� � � � n	 which satisfy property(N3) for a �n-word w is called the set of
strictly non-elastic indices forw. Examples of elastic, non-elastic and strictly non-elastic�-words
are given in Figure 7.7.

ca b

� � � �

�a�

a b

�b�

� ��� �

ca b

� �

�c�

� �

Fig. 7.7. �a� A elastic�-word.�b� A non-elastic�-word.�c� A strictly non-elastic�-word.

For a more general scheme of the positioning of distinguished points in non-elastic or strictly
non-elastic�n-words, see Figure 7.8. This figure also presents intuitively the “interface” part of
and the “contribution” part of the non-elastic�n-word.

Note that in a strictly non-elastic�n-word the interface part is empty.

Remark 7.3.2. Observe that, for any non-elastic�n-wordw,wi
n�i � ��. Moreover, ifw is strictly
non-elastic andwi
n�i � wj
n�j � � thenwi
n�j � wj
n�i � �.

Let us see now how non-elasticity works in�n-automata: consider an�n-automatonA, an ac-
cepting run� � �qi� ai� qi���i������m in A, a �n-wordw � WD�n��� and a sequence of indices
lll � �li�i�������n witnessing the acceptance ofw by �. If w is non-elastic then the witnessing se-
quence bears the following property:

For eachi� j � �� � � � n	,
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w

in �� � � � n	
distinguished pointsdistinguished points

in �n� � � � � �n	

w

left “interface” part right “interface” p
“contribution” part

here, iftn�i occurhere, iftn�i occurs,
thenti occurs

at the same point
thenti occurs

at the same poinhere alltis
precede alltn�is

�d� �e�

Fig. 7.8. Positioning of distinguished points in�a� a strictly non-elastic�n-word and�b� in a non-
elasticn-word.

1. li 
 ln�i;
2. If li �� ln�i andlj �� ln�j thenli 
 ln�j andlj 
 ln�i.

We will call the pair��� lll� with the above properties anon-elastic pair. It is clear that, in any�n-
automata, non-elastic pairs are associated only to non-elastic�n-words accepted by the automaton.

The following property shows the way of constructing the non-elastic semantics for�n-
regwords:

Proposition 7.3.3. Start with some �n-regwordR. DenoteX the set of subsetsX � �� � � � n	 which
satisfy the property that � � Ri
n�i for all i � X . For each X � X , denote R�X� the following
�n-regword:

R�X�ij �

��������	
�������


Rij for i� j � �� � � � n	 or i� j � �n� � � � � �n	

� for j � n� i� i � X or i � n� j� j � X

Rij for j � n� k� k � X� i � �� � � � n	 or i � n� k� k � X� j � �� � � � n	

R�
ij for i � �X� j � n� k� k � �X

R	
ij for j � �X� i � n� k� k � �X

(7.4)

Then the non-elastic semantics of R equals the semantics of the �n-word regular expressionX
X�X

R�X�.

Proof. The property follows by double inclusion. One direction is straightforward, since clearly
the semantics of eachR�X� is non-elastic and included in the semantics ofR.

The reverse follows again easily since each non-elastic�n-wordw in the semantics ofR also
belongs to the semantics ofR�X�, whereX is thecomplement of the set of strictly non-elastic
indices inw. ut

Unfortunately non-elasticity is not preserved by concatenation, as the example in the Figure 7.9
shows.
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a

� � �� �

a � � a

� �

aa a

�� � � �

a

� �

Fig. 7.9. The concatenation of two non-elastic�-words does not necessarily yield a non-elastic
�-word.

As a consequence, the undecidability theorem 6.6.3 can be proved even for non-elastic�-words,
since we may decompose the�-regwords corresponding to each domino in a PCP instance into a
concatenation of non-elastic�-words.

We might be tempted to restrict� to a “more partial” concatenation, let’s call itnon-elastic
concatenation and denote it�r, that would produce only non-elastic�n-words. But observe that
this non-elastic concatenation is nonassociative, as it is exemplified in Figure 7.10.

�

a a a

��� �
)(

�

a a a

� �� �

a a a

�� � �� �

a a a

� �� �

�

a a a

��� �
( )a a a

�� � ��

� �� � �

a a a

�� � ��

a a a a

�

�

undefined

defined:

a

� � � �

a a a

�r
�r

�r

�r�r

Fig. 7.10. An example of nonassociativity of the concatenation�r: the first parenthesis layout leads
to undefined, since the concatenation of the two�-words in the parenthesis leads to a non-elastic
�-word. Of contrary, the second parenthesis layout gives a non-elastic�-word.

This would make doubtful the possibility to construct the associatednon-elastic star since the
powersLi of a�n-word languageL �W�n��� might not be uniquely defined.

Hence, non-elasticity is not a good algebraic property and one might be tempted to search for
other properties. But our aim in this chapter is not to find algebraic structures that are “good”
w.r.t. decidability. We only want to isolate some property that assures decidability and then, in a
subsequent chapter, to show that particular structures, associated to special classes of�n-words,
bear these properties and hence have decidable emptiness problems.
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We will show in the next section that non-elasticity, when carefully handled, leads indeed to
decidability. Careful handling means the following two conditions:

1. If we intend to concatenate two non-elastic�n-word languages, we need to check first that only
non-elastic�n-words are produced.

2. If we intend to build the star of a non-elastic�n-word language, we need to check first that, by
concatenating the given non-elastic�n-word language with itself an arbitrary number of times,
we get only non-elastic�n-words.

Observe that, in a certain sense, the second condition says that thenon-elastic star is built in a
“canonical” manner, since it assures that all the non-elastic concatenations on which it relies are
associative.

7.4 The non-elastic star closure theorem

We start this section by noting that, as a combination of the juxtaposition and the projection con-
structions, the family of�n-word languages accepted by�n-automata is closed under concatena-
tion. It is clear that if require the given�n-automata to accept only non-elastic�n-words such that
the concatenation of the two languages produces only non-elastic�n-words, we still get the same
construction. We provide here a direct concatenation construction as we will get this way some
intuition for the main theorem of this section, the star closure theorem.

Take two�n-automataA � �Q� ��Q�� � � � � Q�n� andB � �Q�� ��� Q�
�� � � � � Q

�
�n�, both of which

accept only non-elastic�n-words. Suppose also thatL�A� � L�B� is composed of non-elastic
�n-words. Our aim is to build a�n-automaton for this set, and we proceed as follows:

If both automata accepted onlystrictly non-elastic �n-words then the idea would be the follow-
ing: we startA on the “NW quarter” of the given�n-word (that is, onw

�����n
) and check whether

on this section we pass through all the accepting statesQ�� � � � � Qn. Then continue until we reach
an accepting state betweenQn��� � � � � Q�n. (the assumption thatw is non-elastic implies that the
first such moment succeeds all the moments of passing throughQ�� � � � � Qn). At this moment we
startB and synchronously fire transitions from both automata.

From now on,A must pass through some accepting setQn�i (i � �� � � � n	) synchronously
with a passage ofB through the accepting setQ�i. We record all indicesi that have observed such
a “synchronous passage” into some setX. Once this set equals�� � � � n	, we are sure we have
identified in our given�n-word a section which is accepted byA, and we may now proceed with
finalizing the run inB.

Formally, the�n-automaton forL�A�� L�B� would be
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C �
�
Q �Q� �

�
Q�Q� � P��� � � � n	�

�
� ���� Q�� � � � � Qn� Q

�
n��� � � � Q

�
�n

�
with

��� � � � �� �
�
�q� q�� �� � � � n	�

�
��q� j q � Q� q� � Q�

�
��

q
�
���q� q�� I� j q � Qn�i� q

� � Q�
i for all i � I � �� � � � n	

�
��

�q� q�� I�
a
�� �r� r�� J� j q

a
�� q� � �� r

a
�� r� � ��� I � J � �� � � � n	

and for alli � J n I� r � Qn�i andr� � Q�
i

�

part with distinguished
time points in�� � � � n�

part with distinguished
time points in�n� � � � � �n�

part whereA andB need to
find the concatenation points

A parses alone here B parses alone here

A andB parse synchronously here

w

Fig. 7.11. Graphical exemplification of the concatenation construction.

Observe that an accepting run assures, by construction, that all the setsQn�i � Q�
i are visited

“in between” the last moment when an accepting setQj with j � �� � � � n	 is visited and the first
moment when an accepting setQ�n�k with k � �� � � � n	 is visited. This property is consistent with
the hypothesis that all�n-words inL�A� andL�B� are strictly non-elastic.

The conditions(N1) and (N2) pose specific problems since we might need to “start” the au-
tomatonB “before” the automatonA has visited all the accepting setsQj with j � �� � � � n	. But
the idea is the same, namely to “synchronize” the two automata as follows:

Each timeA passes through the accepting setQn�i, B must pass through the accepting set
Q�
i and viceversa.

Accepting states would then be simply tuples�q� q�� X� in whichq is a state inA, q� is a state in
B andX is the set recording synchronous passages.

At this point, one problem might arise, a problem which we have observed also on the projection
construction: to actually be sure that theX component has recorded all the synchronous passages,
we need to start with an emptyX and finish with anX � �� � � � n	. We do this by working with
completed automata, and then reducing the state space of the resulting�n-automaton to the states
reachable from�q�� q��� � (which acts as a source state) and coreachable from�q��� q

�
��� �� � � � n	�

(which acts as a sink state).
Formally, we build first �A and �B, the completions ofA andB. We denoteq� andq�� the source

states of each automaton, respectivelyq�� andq��� their sink states. We then define the following
�n-automaton:
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C �
�
Q�Q� �P��� � � � n	�� �� S�� � � � � S�n

�
with

� �
�
�q� q�� X�

a
�� �r� r�� Y � j q

a
�� r � ��� q�

a
�� r� � ���� X � Y � �� � � � n	�

and for alli � Y nX� r � Qn�i andr� � Q�
i

�
Si � Qi �Q� �P��� � � � n	� for all i � �� � � � n	

Sn�i � Q�Q�
n�i �P��� � � � n	� for all i � �� � � � n	

Finally drop all the states ofC that are not reachable from�q�� q��� � or not coreachable from
�q��� q

�
��� �� � � � n	�, that is, consider the automaton

D �
�
Q� � � �Q�� �Q�� S� �Q� � � � � S�n �Q

�
where

Q �
�
q � Q�Q� �P��� � � � n	� j 	w�w� � �� such that

�q�� q
�
�� �

w
�� q

w�
�� �q��� q

�
��� �� � � � n	�

�
Proposition 7.4.1. L�D� � L�A�� L�B�.

Proof. For the right-to-left inclusion, takew � L�A� andw� � L�B� such thatw � w� is defined.
Both �n-words come with an accepting run, be they� � �qi� ai� qi���i������k	� for w, respectively
�� � �q�j� a

�
j � q

�
j���j������k�	� for w�, and with two witnessing sets of indices,iii � �il�l�������n, respec-

tively jjj � �jl�l�������n, such that

qil � Ql andwlm � word��� il� im� for all l�m � �� � � � �n	

q�jl � Q
�
l andw�lm � word���� jl� jm� for all l�m � �� � � � �n	

Observe first that the assumption thatw � w� is defined implies that for eachl�m � �� � � � n	,
wl�n
m�n � w�lm. Hence the piece of run from� that lies in betweenqil�n and qim�n has
the same length as the piece of run from�� that lies in betweenq�jl and q�jm. More formally,
word��� in�l� in�m� � word���� jl� jm�. This has the following important consequence:

for eachl�m � �� � � � n	� im�n � il�n � jm � jl (7.5)

Our first aim is then to extend the two runs such that they have equal length and the moment
when the first run passes throughQn�l be the same as the moment when the second run passes
throughQ�

l. This extension will be accomplished by adding loops inq�, q��, q�� and/orq���.
We may assume, according to Remark 7.2.2, that both runs start and end in some accepting set

and both witnessing sequences contain the first and the last index in the respective run, that is,

� � � il�� k � im� for somel��m� � �� � � � �n	,
� � � jl��� k

� � jm�
�

for somel���m
�
� � �� � � � �n	.

Moreover, by the non-elastic assumption we may consider thatl�� l
�
� � �� � � � n	 andm��m

�
� �

�n� � � � � �n	.
On the other hand, by Identity 7.5 we have thatim� � il���n � jm�	n � jl�� . It follows thatil���n

is the earliest moment at which� passes through some accepting setQn�h for someh � �� � � � n	,
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andjm�	n is the latest moment at which�� passes through some accepting setQ�h� for someh� �
�� � � � n	. That is, if we denote

! � minfil j l � �n� � � � � �n	g " � minfjl j l � �� � � � n	g

! � maxfil j l � �n� � � � � �n	g " � maxfjl j l � �� � � � n	g

then

! � k � im� " � � � jl��
! � il���n " � jm�	n

Hence, due to Identity 7.5,

!� ! � "� "� (7.6)

On the other hand, from the equalityword��� in�l� in�m� � word���� jl� jm� we msut also have
that, for eachh � �!� !	,

ah � a�h	��� (7.7)

We then extend� by addingk� � " � � replicas ofq�� at the end and one replica ofq� at the
beginning. Similarly, we extend�� by adding! replicas ofq�� at the beginning and one replica ofq���
at the end. Observe that the two runs would have the same length since

k � k� � "� � � !� k� � "� "� � � !� k� � !� !� � � k� � !� �

More formally, denotingk � k� � � � !, we consider the runs� � �ri� bi� ri���i������k	� and
�� � �r�i� bi� r

�
i���i������k	� with

ri �

���	
��

q� for i � �

qi	� for i � �� � � � k � �	

q�� for i � �k � � � � � k	

r�i �

���	
��

q�� for i � �� � � � !	

q�i	� for i � �!� � � � � k � �	

q��� for i � k

bi �

 
ai	� iff i � �� � � � k � �	

a�i	� iff i � �!� � � � � !� k�	

The property 7.7 assures that thebi’s can be uniquely chosen for alli � �!� � � � � k � �	.
Observe that these two extended runs bear the desired property: the moment when the first run

passes throughQn�l is the same as the moment when the second run passes throughQ�l, or, more
formally,

for anyl � �� � � � n	� ri � qil�n iff r�i � q�jl� (7.8)
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We finally construct theC run � �
�
�ri� r

�
i� Ii�� bi� �ri��� r

�
i��� Ii���

�
i������k	�

in which I� � 

and

Ii�� � Ii �
�
l � �� � � � n	 j ri � qil�n

�
Property 7.8 assures that� is indeed a run inC, because it implies the following fact: ifIi�� �� Ii

then for all l � Ii�� n Ii, ri � Qn�l andr�i � Q�
l. Observe also that, for eachi � �� � � � k	, Ii

records all the indicesl � �� � � � n	 with the property that the run has passed throughQl�n � Q�
l.

Moreover, since the run contains only states that are accessible from�q�� q
�
�� � and coaccessible

from �q��� q
�
��� �� � � � n	�, it is actually a run inD.

We consider then the family of indicesppp � �pl�l�������n, defined as follows:

pl �

 
il � � for l � �� � � � n	

jl � ! for l � �n� � � � � �n	

It remains to prove that the pair���ppp� is associated withw� � w�, that is, thatppp witnesses the
acceptance ofw � w� by �:

1. For l�m � �� � � � n	, �w � w��lm � wlm, rpl � ril�� � qil andrpm � rim�� � qim. Since we
have thatqil

wlm��� qim we get then

�rpl� r
�
pl
� Ipl�


w�w��lm
������ �rpm� r

�
pm
� Ipm�

2. Forl�m � �n � � � � � �n	, �w � w��lm � w�lm, rpl � r�jl�� � q�jl andrpm � r�jm�� � q�jm . Since

we have thatq�il
w�
lm��� q�im we get then

�rpl� r
�
pl
� Ipl�


w�w��lm
������ �rpm� r

�
pm � Ipm�

3. Forl � �� � � � n	 andm � �n�� � � � �n	 we have to decompose�w�w��lm into a concatenation
of two words or two antiwords. We then have the following subcases:
� Forw�m	n
m � � we have�w � w��lm � wlm and hence fall in the first case above.
� Forwl
l�n � � we have�w � w��lm � w�lm and hence fall in the second case above.
� If wl
l�n �� � andw�m	n
m �� � then, by the non-elasticity assumption,

�w � w��lm � wl
l�n � w
�
lm � ���

On the other hand, by Identity 7.5 we haveil�n � il���n � jl � jl��, that is,il�n � � � jl � !.
Therefore, similarly to the above cases,

�ril��� r
�
il��� Iil���

wl�l�n
���� �ril�n��� r

�
il�n��� Iil�n��� � �rjl��� r

�
jl��

� Ijl���
w�
lm��� �rjm��� r

�
jm��� Ijm���

which assures that�rpl� r
�
pl
� Ipl�


w�w��lm
������ �rpm� r

�
pm � Ipm� in this case too.
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For the reverse inclusion, take some accepting run� �
�
�ri� r

�
i� Ii�� bi� �ri��� r

�
i��� Ii���

�
i������k	�

in D with �r�� r
�
�� I�� � �q�� q

�
�� � and �rk� r

�
k� Ik� � �q��� q

�
��� �� � � � n	� and fix some family of

indiceslll � �li�i�������n such that�rli � r
�
li
� Ili� � Si for all i � �� � � � �n	. Suppose also that the

associated word isw, that is,

word��� li� lj� � wij for all i� j � �� � � � �n	

Let us first observe thatIk � �� � � � n	 implies that for eachj � �� � � � n	 there exists some index
pj � �� � � � k	 such thatj � Ipj n Ipj	�. By construction, this implies thatrpj � Qj�n andr�pj � Q

�
j.

But then the sequence�� � �ri� bi� ri���i������k	� is an accepting run in�A: consider the�n-
word z accepted by this run and the sequence of indices��li�i������n� �pj�j������n�, that is, bearing
the following properties:

word���� rli � rlj � �zij word���� rpi � rpj� �zn�i
n�j

word���� rli � rpj � �zi
n�j word���� rpi � rlj� �zn�i
j

As a consequence,z
�����n

� w
�����n

.

Similarly, the sequence�� � �r�i� bi� r
�
i���i������k	� is an accepting run in�A and we may con-

struct the�n-word z� accepted by this run and the sequence of indices��pj�j������n� �li�i��n������n�,
that is

word���� r
�
li
� r�lj � �z

�
ij word���� r

�
pi
� r�pj� �z

�
n�i
n�j

word���� r
�
li
� r�pj � �z

�
i
n�j word���� r

�
pi
� r�lj� �z

�
n�i
j

with the corollary thatz�
�n������n

� w�
�n������n

.
But the above relations also imply that, for alli� j � �� � � � n	, zn�i
n�j � z�ij, hencez

�n������n
�

z�
�����n

. If we corroborate this with the observations thatz
�����n

� w
�����n

and z�
�n������n

�

w�
�n������n

, we get that

w � z � z� � L�A�� L�B� ut

Remark 7.4.2. 1. Reachability plays an essential rôle in the proof of the reverse inclusion. Without
the hypothesis that the run ofD starts in�q�� q��� � and ends in�q��� q���� �� � � � n	� we would not
be able to split this run into accepting runs ofA andB. Specifically, the existence of the family
of indices �pi�i������n (which helped constructing the two�n-words z and z�) could not be
assured.

2. The set of indicespi cannot be placed anywhere in the run�, since, by hypothesis,A andB are
non-elastic. Concretely, if an indexpi precedes an indexlj with j � �� � � � n	 thenzi
n�j is an
antiword, and this may happen iffzi
i�n � �. Hence we must havelj � pi.

The main result of this chapter is the following:



7.4 The non-elastic star closure theorem 131

Theorem 7.4.3. Given a �n-automaton A, suppose that, for any k � N , L�A�k� is a non-elastic
�n-word language, or, equivalently, that L�A�� is a non-elastic �n-word language. Then L�A��

is accepted by a �n-automaton.

Proof. We will construct actually the automaton forL��� 
�
�
k��

L�A�k� since the automaton

for L�A�� follows by applying the union construction. The technique draws much from the con-
catenation construction for non-elastic�n-automata. We will first explain the construction for a
�n-automaton that accepts only strictly non-elastic�n-words, and then generalize this construc-
tion to arbitrary non-elastic�n-automata.

The idea for the simpler case of strictly non-elastic�n-automata is to use two component states
as in the proof for concatenation, but each time one component has completed an accepting run
in A, a new component starts checking for an accepting run inA. That is, at each moment during
the parse of the given�n-word we have one or two copies ofA working synchronously, and on
the sections where two copies are working, a passage of the first copy throughQn�i must be
simultaneous with a passage of the second copy throughQi. Also, each such indexi that witnesses
a synchronous passage must be recorded in a setI. (Of course, there might be passages through
Qn�i � Qi that are ignored.) We may consider the points where these “synchronous passages”
happen as the “concatenation points” between two factors of the given�n-word.

When the index set equals�� � � � n	, the first copy has identified a section of the�n-word which
is accepted byA, hence it stops. The second copy must continue its search since it has only passed
through the accepting setsQ�� � � � � Qn. Next time it reaches an accepting set fromQn��� � � � � Q�n,
a new copy ofA is restarted and proceeds synchronously with the old copy as described above. The
whole process is stopped with a choice not to start a new copy ofA after a passage of the active
copy through one ofQn��� � � � � Q�n, hence leaving to this active copy only the task of finishing an
accepting run inA.

The formalization of this construction is the following: start with a strictly non-elastic�n-
automatonA � �Q� ��Q�� � � � � Q�n�. The automaton (with�-transitions) acceptingL��� would be
then:

B �
�
Q �

�
Q�Q�P��� � � � n	�

�
� �� Q�� � � � � Q�n

�
where

� � � �
�
�q� q�� �� � � � n	�

�
��q� j q� q� � Q

�
��

q
�
���q� q�� X� j for all i � X� q � Qn�i andq� � Qi

�
��

�q� r�X�
a
�� �q�� r�� Y � j q� q�� r� r� � Q�X � Y � �� � � � n	 and

for all i � Y nX� q� � Qn�i andr� � Qi

�
A graphical presentation of the wayB parses a strictly non-elastic�n-word is given in Figure

7.12.
Observe that strict non-elasticity assures the fact that at each moment, only two copies ofA

are necessary, because it is not possible that more than two�n-words overlap on the same part.
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wi	�

wi

wi��

w

on this part only one
of A must work synchronously copy ofA is needed

on this part two copies

Fig. 7.12. A graphical presentation of the wayB parses a strictly non-elastic�n-word. We also
suggest here that no three consecutive factors in a decomposition ofw may overlap.

This is a very important property that is not valid for elastic concatenations – for example, when
concatenating dominoes of a PCP instance.

In order to cope with properties(N1) and(N2) we need to take into account the fact that more
than two copies ofAmight have to be initiated when the active copy passes through some accepting
setQn�i. Intuitively, when concatenating (non-strict) non-elastic�n-words, interface parts of the
factors overlap and hence at each point we might have more than two copies ofA that need to
work synchronously.

Suppose we have to parse a non-elastic�n-wordw whose decomposition is

w � w� � � � �� wl � wl�� � � � �� wm � � � �� wp� with wj � L�A��j � �� � � � p	 (7.9)

Two important observations are to be made here: the first is that on each part ofw no more than
two factors may overlap on their contribution parts – and, as a consequence, these two factors must
be successive factors, i.e.,wk andwk�� for somek � �� � � � p� �	.

The second observation is related to the interface parts of the factors: on each part ofw (viewed
as a word with distinguished points), several factors overlap on their left interface part – be they
wk� � � � � wl, with � 
 k � l 
 p. We may consider that the part starts at the leftmost symbol from
w – that is, that it is a prefix part ofw. The number of factors which overlap on their left interface
part is no longer uniformly bounded, as it was the case with the contribution part. But they bear an
important property: if in the considered part ofw,wl contains some distinguished pointti for some
i � �� � � � n	, thenwl	� must have its distinguished pointti�n on the same position – and, aswl	�

is on its left interface part, its distinguished pointti must also be on the same position. Inductively,
we obtain that all the factorswk� � � � � wl	� must have their distinguished pointsti andti�n on the
same position.

This property is very important, since it implies that any run inA which is associated towk
during this part ofw, that is, which passes through all the accepting setsQi at the distinguished
point ti for wk, is also a run associated to wl! Of course, this does not mean that the same run will
be extensible to an accepting run for the wholewl – maybe the run forwk will eventually lead to a
deadlock when trying to associate it towl. But this property says thatwe do not need to memorize
the whole sequence of states in the run, we only need tomemorize the set of states in which the
automaton A might be on a run which is associated to this prefix part of w. And this imposes a
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uniform bound on the memory that is needed for a device that acceptsL�A����: this bound is
proportional to the cardinality ofQ. Hence, at least intuitively, a finite automaton would suffice.

We will now introduce several notations and ideas for our construction. Denote first

X �
�
X � �� � � � �n	 j �i � �� � � � n	� i� n � X � i � X

�
(7.10)

Q �
�
�X� q�X �� j X�X � � X � X � X � and for alli � X � nX we haveq � Qi

�
(7.11)

The states of our “starred” automaton will be quadruples�S� �� �� T � with S� T � Q and�� � �
Q�fg.� is called theleft active component,� is theright active component whileS is thehistory
component andT is theprophecy component.

The pair��� �� plays the same role as the pair of states in the construction for the strictly non-
elastic case1 for strictly non-elastic�n-words as� must pass through an accepting setQn�i at
the same time� passes through the accepting setQi for the samei � �� � � � n	. We say here that
� � �X� q�X �� is passing through someQi iff

The prophecy component’s utility is then the following: it provides the bounded memory which
is needed for parsing the left interface parts of the factors. Symmetrically, the history component
is utilized for parsing the right interface parts of the factors.

7.11

Formally, the states are of the following three forms:

1. �� � �X� q�X ��� T � where �X� q�X �� � Q and T � Q, with the property that, for all
�Y� r� Y �� � T ,
a) X � �n� � � � � �n	 � �Y � �� � � � n	� � n.
b) X � � �n� � � � � �n	 � �Y � � �� � � � n	� � n.
c) �Y � n Y � � �n� � � � � �n	 � ��Y � n Y � � �� � � � n	� � n � �X � nX� � �n� � � � � �n	.

These states are used during the search for the first set of concatenation points, the ones that
“separate”w� fromw�. The requirements intuitively say that the tuples in the prophecy compo-
nent cannot consider passing through some accepting setQi unless the right active component
is passing through the accepting setQn�i for the samei.

2. �S� �X� q�X ��� �Y� r� Y ��� T � with �X� q�X ��� �Y� r� Y �� � Q andS� T � Q, with the following
properties:
a) X � �n� � � � � �n	 � �Y � �� � � � n	� � n.
b) X � � �n� � � � � �n	 � �Y � � �� � � � n	� � n.
c) For each�U� s� U �� � S,

i. U � �n� � � � � �n	 � �X � �� � � � n	� � n.
ii. U � � �n� � � � � �n	 � �X � � �� � � � n	� � n.
iii. �U � n U� � �� � � � n	 � ��U � n U� � �n� � � � � �n	�� n � �X � nX� � �� � � � n	.

d) For each�V� t� V �� � T ,

� Note that, in fact, we have a difference with the construction in the strictly non-elastic case since both the left and the right active
components recordall the indices of the accepting sets throughout which they pass, that is, their memory needs to reach the set
�� � � � �n� before considering they have accomplished their duty of tracking an accepting run inA.
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i. Y � �n� � � � � �n	 � �V � �� � � � n	� � n.
ii. Y � � �n� � � � � �n	 � �V � � �� � � � n	� � n.
iii. �V � n V � � �n� � � � � �n	 � ��V � n V � � �� � � � n	� � n � �Y � n Y � � �n� � � � � �n	.

These states are used when trying to find concatenation points in between thewj	� andwj for
all j � �� � � � p� �	.

3. �S� �X� q�X ��� � � with �X� q�X �� � Q, S � Q, with the property that for all�Y� r� Y �� � S,
a) U � �n� � � � � �n	 � �X � �� � � � n	� � n.
b) U � � �n� � � � � �n	 � �X � � �� � � � n	� � n.
c) �U � n U� � �� � � � n	 � ��U � n U� � �n� � � � � �n	�� n � �X � nX� � �� � � � n	.

These states are used when trying to find concatenation points for the last concatenationwp	��

wp.

The transitions are the following:

1. �� � �X� q�X ��� T �
a
�� �� � �X �� q�� X ���� T �� iff

a) q
a
�� q�;

b) For all�V �� t�� V ��� � T � there exists�V� t� V �� � T such thatt
a
�� t�.

These transitions are used during the first search for “concatenation points”. The above re-
quirements, corroborated with the consistency requirements on hex-uples, say that, if the active
component considers passing through some accepting setQn�i then each tuple in the prophecy
component must also consider passing through the accepting setQi.

2. �S� �X� q�X ��� �Y� r� Y ��� T �
a
�� �S �� �X �� q�� X ���� �Y �� r�� Y ���� T �� iff

a) q
a
�� q�, r

a
�� r�;

b) For all�U� s� U �� � S there exists�U�� s�� U ��� � S � such thats
a
��s�;

c) For all�V �� t�� V ��� � T � there exists�V� t� V �� � T such thatt
a
�� t�.

This is the general pattern for the evolution of all the copies ofA during their search for
“concatenation points”.

3. �S� �X� q�X ��� � �
a
�� �S �� �X �� q�� X ���� � � iff

a) q
a
�� q�;

b) For all�U� s� U �� � S there exists�U �� s�� U ��� � S � such thats
a
��s�.

These transitions are used after finding the last “concatenation points”, that is, while parsing
the last factorwp of w.

4. �S� �X� q�X ��� �Y� r� Y ��� T �
�
���S �� �Y� r� Y ��� �Z� s� Z ��� T �� iff

a) There existsX�� � X such that�X �� q�X ��� � S;
b) There existsY � X such that�Y� r� Y �� � T ;
c) For each�Z� s� Z�� � S there existsZ�� � X such that�Z�� s� Z ��� � S.
d) For each�Z�� s� Z ��� � T � there existsZ � X such that�Z� s� Z�� � T .
This transition is taken upon the decision that the current left active component needs to post-
pone its search for concatenation points – because it has arrived at the “right interface” of the
current factor.

5. �� � �X� q�X ��� T �
�
���� �X �� q�X ���� �Y �� r� Y ���� T �� iff
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a) There existsY � X such that�Y� r� Y �� � T ;
b) For each�Z�� s� Z ��� � T � there existsZ � X such that�Z� s� Z�� � T .
Transitions of this type are taken upon decision to activate a second copy ofA in order to check
the first set of “concatenation points”.

6. �S� �X� q�X ��� �Y� r� Y ��� �
�
���S �� �Y� r� Y ��� � � iff

a) There existsX�� � X such that�X �� q�X ��� � S;
b) For each�Z� s� Z�� � S there existsZ�� � X such that�Z�� s� Z ��� � S.
This transition is taken upon decision that the latest set of “concatenation points” should be the
last one to be checked.

The accepting sets are, for alli � �� � � � n	,

Ui �
�
�S� �X� q�X ��� �Y� r� Y ��� T � j i � X nX � and for all�Z� s� Z�� � S� i � Z � n Z

�
��

�� � �X� q�X ��� T � j i � X � nX
�

(7.12)

Un�i �
�
�S� �X� q�X ��� �Y� r� Y ��� T � j i�n � Y � n Y and for all�Z� s� Z���T� i�n � Z � n Z

�
��

�S� �X� q�X ��� � � j n� i � X � nX
�

(7.13)

Finally, we restrict the state space only to statesreachable from
�
� � �� q�� ��

�
�� q�� �

��
and coreachable from

��
��� � � � �n	� q��� �� � � � �n	�

�
� ��� � � � �n	� q��� �� � � � �n	�� � 

�
. Let us de-

noteD � �Q�� ��� U�� � � � � U�n� the automaton build above.

Claim. L�A���� � L�D�.

Proof (of the Claim). Consider some accepting run inA,

� �
�
�Si� �i� �i� Ti�� ai� �Si��� �i��� �i��� Ti���

�
i������m	�

with

�S�� ��� ��� T�� �
�
� � �� q�� ��

�
�� q�� �

��
�Sm� �m� �m� Tm� �

��
��� � � � �n	� q��� �� � � � �n	�

�
� ��� � � � �n	� q��� �� � � � �n	�� � 

�
Consider also some non-elastic�n-word w � WD�n��� and a sequence�pi�i�������n with pi �

�� � � � m	, sequence which witnesses the acceptance ofw by �, that is,

� �Spi � �pi � �pi � Tpi� � Ui for all i � �� � � � �n	, and

� �Spi � �pi � �pi � Tpi�
wij

�� �Spj � �pj � �pj � Tpj � for all i� j � �� � � � �n	.

Since the first state in the run is
�
� � �� q�� ��

�
�� q�� �

��
and the last state in the run

is
��

��� � � � �n	� q��� �� � � � �n	�
�
� ��� � � � �n	� q��� �� � � � �n	�� � 

�
, the run must contain some�-

transitions which shift tuples from the right active to the left active component or make tuples
“arise” or “disappear” in the left and right active components. More specifically, we may find an
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increasing sequence of indices�kj�j������p such that thekj-th transition in� is of type 4,5 or 6. At
a closer look, we note that thek�-th transition must be of the type 4, thekp-th transition must be of
the type 6 and the transitionsk�� � � � � kp	� must be of the type 5, and also thatp � �.

More formally:

Sk� � �k� � Sk��� � 

�k��� � �k� � �Xk� � qk� � X
�
k�
�

�k��� � �Xk���� qk���� X
�
k����

Tk� �
�
�Y� r� Y �� j 	Y �� � X such that�Y �� r� Y ��� � Tk��� or �Y �� r� Y ��� � �k���

�
Tkp � �kp�� � Tk��� � 

�kp�� � �kp � �Xkp��� qkp��� X
�
kp���

�kp � �Xkp � qkp � X
�
kp�

Skp�� �
�
�Y �� r� Y ��� j 	Y � X such that�Y� r� Y �� � Skp or �Y� r� Y �� � �kp

�
�kj�� � �kj

Skj�� �
�
�Y �� r� Y ��� j 	Y � X such that�Y� r� Y �� � Skj or �Y� r� Y �� � �kj

�
Tkj �

�
�Y� r� Y �� j 	Y �� � X such that�Y �� r� Y ��� � Tkj�� or �Y �� r� Y ��� � �kj��

�

Our aim is to show thatw, the�n-word associated with�, can be factored intop �n-words,
w � w� � � � �� wp with wj � L�A� for all j � �� � � � p	

Let us denote also

�i � �Xi� qi� X
�
i�� for all i � �k� � � � � � m	

�i � �Yi� ri� Y
�
i �� for all i � �� � � � kp	

Observe first that the following concatenation of transitions:

�� �
�
�ri� ai� ri���i������k�	�� �rk� � �� qk����� �qi� ai� qi���i��k������k�	�

�
is a run inA, since thek�-th moment corresponds to the shift of the right active component into
the left active component.

Moreover, the sequence
�
�Y �

i �i������k�� �X
�
i�i��k������k�

�
records the indices of accepting states of

A through which�� has passed. Since it is possible thatX�
k�
�� �� � � � �n	, we cannot say that this

run is accepting. We would therefore like to extend it to an accepting run, by carefully extracting
more information from the history componentsSi with i 	 k�:

We extend�� to a run�� �
�
�Z�

i � s
�
i � Z

�

i �� ai� �Z
�
i � s

�
i � Z

�

i �
�
i������m

by induction by choosing, for

eachi � k�, a tuple�Z�
i � s

�
i � Z

�

i � � Si such thats�i
ai�� s�i�� inA. The fact that�� extends�� means

that
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Z�
i �

 
Yi for i � �� � � � k�	

Xi for i � �k� � � � � � k�	
Z

�

i �

 
Y �
i for i � �� � � � k�	

X �
i for i � �k� � � � � � k�	

si �

 
ri iff i � �� � � � k�	

qi iff i � �k� � � � � � k�	

The possibility to choose at each step a states�i�� is assured by the requirements 2.b, 3.b,
4.c, and/or 6.b, that transitions inD must obey, according to the situation in which thei-th tu-
ple �Si� �i� �i� Ti� falls and also according to the labelai. Consequently we have thatZ�

i�� � Z
�

i

for all i � �� � � � m	.
Observe thatZ� � Z� �  and the last tuple in�� must belong toSm and hence must be

��� � � � �n	� q��� �� � � � �n	�, thereforeZm � Zm � �� � � � �n	. Moreover, for eachj � Z
�

i n Z
�
i we

must have, by construction, thats�i � Qj. Hence�� is an accepting run inA in the “history”
presentation, run that starts inq�, ends inq��.

Therefore, if we associate to this run the sequence of indiceslll� � �l�u�u�������n with l�u � i iff

u � Z
�

i n Z
�
i , then this sequence witnesses that�� accepts some�n-wordw�. Observe that���� lll

��

is a non-elastic pair, hencew� is a non-elastic�n-word. Our intuition is thatw� is thefirst factor of
w in its decomposition into�n-words fromL�A�.

The remaining factors can be recovered, together with their accepting runs, by generalizing the
above argument: for eachj � �� � � � p	 the concatenation

�j �
�
�ri� ai� ri���i��kj�������kj	�� �rkj � �� qkj���� �qi� ai� qi���i��kj�����kj��	�

�
is a run inA that we intuit to correspond to a part of an accepting run associated with a�n-word
wj; we have denoted herek� � � andkp�� � m. We extend this run in both directions to an
accepting run�j which starts inq� and ends inq�� as follows:

� For the part of the run in betweenkj	� � � andkj we putsji � ri, Z
j
i � Yi andZ

j

i � Y �
i , while

� For the part of the run in betweenkj � � andkj�� we putsji � qi, Z
j
i � Xi andZ

j

i � X �
i.

� Suppose we have build the run fromi � � to kj��, for some.i 
 kj. We then choose a tuple

�Zj
i � s

j
i � Z

j

i � � Ti such that,sji
ai�� sji�� in A.

The availability of this choice follows from the requirements 1.b, 2.c, 4.d, respectively 5.b from
the definition of the transition function ofD.

� Suppose also that we have build the run fromkj	� to i�� for somei � kj���� We then choose

a tuple�Zj
i � s

j
i � Z

j

i � � Si such that ifx denotes the�i� ��-th transition in�, then thensi	�
x
�� si

in A.
The possibility to choose is assured by the requirements 2.b, 3.b, 4.c, respectively 6.b from the
definition of the transition function inD.

Also observe that in each such run, for eachi � �� � � � p	, we have thatZji�� � Z
j

i as
assured by the definition of the transition function��. We call this property theConsecu-
tiveness Property.
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Finally, we associate to each run�j the sequence of integers

lllj � �lju�u�������n in which lju � i iff u � Z
j

i n Z
j
i �

This sequence witnesses that�j accepts some�n-word wj in A, which is actually a non-elastic
�n-word.

Though we have identified these accepting runs inA, we still need to prove thatwj correctly
concatenates towj�� and that the result of concatenating allwj is w. To this end we prove the
following property:

(*) For all j � �� � � � p� �	 and for alli � �� � � � m	,
Zj
i � �n� � � � � �n	 � �Zj��

i � �� � � � n	� � n and

Z
j

i � �n� � � � � �n	 � �Z
j��

i � �� � � � n	� � n.

In other words, we prove that�j passes through some accepting setQn�i at the same moment
when �j�� passes through the accepting setQi for the samei � �� � � � n	. It is clear that this
requirement is sufficient for proving thatwj andwj�� correctly concatenate.

For proving the desired property (*), let us observe first that for alli � �kj � � � � � kj��	, the
run �j “gives” the left active component and�j�� “gives” the right active component of�. That

is, �Zj
i � s

j
i � Z

j

i � � �Xi� qi� X
�
i� and �Zj��

i � sj��
i � Z

j��

i � � �Yi� ri� Y
�
i �. But then, by construction

(requirements 2.a and 2.b in the definition ofQ�), we haveXi � �n�� � � � �n	 � Yi � �� � � � n	 � n

andX �
i � �n � � � � � �n	 � Y �

i � �� � � � n	 � n. This implies that our property (*) holds over the
interval �kj � � � � � kj��	. Observe also that the interval�kj � � � � � kj��	 is nonempty since the
sequence�kj�j������p is strictly increasing.

Consider now the interval�kj	� � � � � � kj 	. In this interval,�j is the right active compo-

nent while�j�� is included in the prophecy component. That is,�Zj
i � s

j
i � Z

j

i � � �Yi� ri� Y
�
i � and

�Zj��
i � sj��

i � Z
j��

i � � Ti. Note that half of the property (*) holds fori � kj : by construction, we

haveZ
j

kj
� Zj

kj�� andZ
j��

kj
� Zj��

kj��. On the other hand, the property (*) holds forkj � � as

proved above, hence we haveZj
kj�� � �n � � � � � �n	 � �Zj��

kj�� � �� � � � n	� � n. Therefore, by the

Consecutiveness Property,Z
j

kj
� �n� � � � � �n	 � �Z

j��

kj
� �� � � � n	� � n.

We will then prove the property (*) by a “decreasing induction” argument: suppose thatZ
j

i �

�n�� � � � �n	 � �Z
j��

i ��� � � � n	��n for somei � �kj	��� � � � kj 	. Since�Zj��
i	� � s

j��
i	� � Z

j��

i	� � � Ti	�

and�Zj
i	�� s

j
i	�� Z

j

i	�� is the right active component, we must have by construction (requirements
2.c.i and 2.c.iii in the definition ofQ�) that

Zj
i	� � �n� � � � � �n	 � �Zj��

i	� � �� � � � n	� � n (7.14)�
�Z

j��

i	� n Z
j��
i	� � � �n� � � � � �n	

�
� n � �Z

j

i	� n Z
j
i	�� � �n� � � � � �n	 (7.15)

We then have the following sequence of identities:



7.4 The non-elastic star closure theorem 139

Zj
i	� � �n� � � � � �n	 �

�
Z
j

i	� � �n� � � � � �n	
�
n
�
�Z

j

i	� n Z
j
i	�� � �n� � � � � �n	

�
�
�
�Z

j��

i	� � �� � � � n	� � n
�
n
�
�Z

j

i	� n Z
j
i	�� � �n� � � � � �n	

�
(by assumption)

�
�
�Z

j��

i	� � �� � � � n	� � n
�
n
��
�Z

j��

i	� n Z
j��
i	� � � �� � � � n	

�
� n
�

(by inclusion 7.15)

� �Zj��
i	� � �� � � � n	� � n

� Zj
i	� � �n� � � � � �n	 (7.16)

From identities 7.14 and 7.16 we get by double inclusion thatZj
i	� � �n � � � � � �n	 � �Zj��

i	� �

�� � � � n	� � n, that is, the other half of property (*) holds fori� �.
Let us now consider the intervals�kv � � � � � kv��	 for v 
 j � �. Within these intervals, both

�j and�j�� take part into the prophecy component, i.e.,�Zj
i � s

j��
i � Z

j

i �� �Z
j��
i � sj��

i � Z
j��

i � � Ti.
Again as above, the validity of the property (*) within the interval�kv�� � � � � � kv��	 and the
Consecutiveness Property assures that half of the property (*) holds fori � kv, namelyZ

j

kv � �n�

� � � � �n	 � �Z
j��

kv � �� � � � n	� � n. We will prove by decreasing induction that it holds within all
the interval�kv � � � � � kv��	.

Let us provide first the properties that connect the right active component of the�i� ��-th tuple
in the run� with the tuples of the runs�j and�j��, as implied by the definition ofQ�:

Yi	� � �n� � � � � �n	 � �Zj
i	� � �� � � � n	� � n (7.17)

Yi	� � �n� � � � � �n	 � �Zj��
i	� � �� � � � n	� � n (7.18)

Y �
i	� � �n� � � � � �n	 � �Z

j

i	� � �� � � � n	� � n (7.19)

Y �
i	� � �n� � � � � �n	 � �Z

j��

i	� � �� � � � n	� � n (7.20)�
�Z

j

i	� n Z
j
i	�� � �� � � � n	

�
� n � �Y �

i	� n Yi	�� � �n� � � � � �n	 (7.21)�
�Z

j��

i	� n Z
j��
i	� � � �� � � � n	

�
� n � �Y �

i	� n Yi	�� � �n� � � � � �n	 (7.22)

Suppose thatZj
i ��n�� � � � �n	 � �Zj��

i ��� � � � n	��n, hence, by the Consecutiveness Property,
Z
j

i	�� �n�� � � � �n	 � �Z
j��

i	� � �� � � � n	��n. Denote furtherV � �Zj
i	�� �n�� � � � �n	�n

�
�Zj��

i	� �

�� � � � n	��n
�
. SinceZj

i	� � X , we have thatZj
i	�� �n�� � � � �n	 � �Zj

i	�� �� � � � n	��n. Hence,
by inclusion 7.17,

V � �Zj
i	� � �� � � � n	� � n � Yi	� � �n� � � � � �n	

On the other hand,

V �
�
�Zj

i	� � �� � � � n	� � n
�
n
�
�Zj��

i	� � �� � � � n	� � n
�

(sinceZj
i	� � X )

�
�
�Zj

i	� n Z
j��
i	� � � �� � � � n	

�
� n

�
�
�Z

j

i	� n Z
j��
i	� � � �� � � � n	

�
� n

�
�
�Z

j��

i	� n Z
j��
i	� � � �� � � � n	

�
� n (by induction hypothesis)

� �Y �
i	� n Yi	�� � �n� � � � � �n	 (by inclusion 7.22)
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Hence, in order to avoid the contradiction withV � Yi	� � �n� � � � � �n	 we must haveV � .
Similarly, if we denoteV � �

�
�Zj��

i	� � �� � � � n	� � n
�
n �Zj

i	� � �n� � � � � �n	�, we get that

V � � Yi	� � �n� � � � � �n	

V � �
�
�Z

j��

i	� � �� � � � n	� � n
�
n �Zj

i	� � �n� � � � � �n	�

�
�
�Z

j��

i	� � �� � � � n	� � n
�
n
�
�Zj

i	� � �� � � � n	� � n
�

�
�
�Z

j��

i	� n Z
j
i	�� � �� � � � n	

�
� n

�
�
�Z

j

i	� n Z
j
i	�� � �� � � � n	

�
� n

� �Y �
i	� n Yi	�� � �n� � � � � �n	

which impliesV � �  too. Hence,Zj
i	� � �n � � � � � �n	 � �Zj��

i	� � �� � � � n	� � n and this proves
that property (*) holds within the interval�� � � � kj��	.

By mirroring the above arguments, we may show that property (*) also holds within the interval
�kj�� � � � � � m	. We only show the argument for the intervals�kv � � � � � kv��	 for v � j � �:

In this interval, both�j and�j�� take part in the history component. Since the property holds

for i � kv, we haveZ
j

kv � �n � � � � � �n	 � �Z
j��

kv � �� � � � n	� � n. But sinceZ
j

kv � Zj
kv�� and

Z
j��

kv � Zj��
kv�� we also have that the “first half” of the property (*) holds fori � kv � �, that is,

Zj
kv��� �n�� � � � �n	 � �Zj��

kv��� �� � � � n	��n. We will prove by increasing induction that it holds
for all i � �kv � � � � � kv��	.

Suppose thatZ
j

i � �n � � � � � �n	 � �Z
j��

i � �� � � � n	� � n. SinceZj
i�� � Z

j

i andZj��
i�� � Z

j��

i

we then get thatZj
i��� �n�� � � � �n	 � �Zj��

i�� � �� � � � n	��n, so it only remains to check the other
half of the property (*).

DenoteV � �Z
j

i�� � �n� � � � � �n	� n
�
�Z

j��

i�� � �� � � � n	� � n
�
. We then have:

V � �Z
j

i�� � �n� � � � � �n	� n
�
�Zj��

i�� � �� � � � n	� � n
�

(sinceZ
j��

i�� � Zj��
i�� )

� �Z
j

i�� � �n� � � � � �n	� n �Zj
i�� � �n� � � � � �n	� (by induction hypothesis)

� �Z
j

i�� n Z
j
i��� � �n� � � � � �n	�

�
�
�X �

i�� nXi��� � �� � � � n	
�
� n (by requirement 2.c.iii)

� �X �
i�� � �� � � � n	� � n

� Z
j��

i�� � �n� � � � � �n	 (by requirement 2.c.ii)

� �Z
j��

i�� � �� � � � n	� � n (sinceZ
j��

i�� � X )

(references are to requirements in the definition ofQ�) which proves thatV �  in order to avoid
contradiction between the first and the last inclusion.

On the other hand, if we denoteV � �
�
�Z

j��

i�� � �� � � � n	��n
�
n �Z

j

i��� �n�� � � � �n	� we would
have the following sequence of inclusions:
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V � �
�
�Z

j��

i�� � �� � � � n	� � n
�
n �Zj

i�� � �n� � � � � �n	�

�
�
�Z

j��

i�� � �� � � � n	� � n
�
n
�
�Zj��

i�� � �� � � � n	� � n
�

�
�
�Z

j��

i�� n Z
j��
i�� � � �� � � � n	

�
� n

�
�
�X �

i�� nXi��� � �� � � � n	
�
� n (by requirement 2.c.iii)

� �X �
i�� � �� � � � n	� � n

� Z
j

i�� � �n� � � � � �n	 (by requirement 2.c.ii)

Hence againV � �  in order to avoid the contradiction between the first and the last inclusion.
It remains to prove thatl�i � pi andlkn�i � pn�i for all i � �� � � � n	, that is, that the concatena-

tionw� � � � �� wk really givesw. But this property is evidently true, since, by construction of the
accepting sets inD (Identities 7.12 and 7.13), regardless of the component to which�Z�

pi
� q�pi � Z

�

pi
�

belongs (but note it may belong only to the right or left active component or to the history compo-
nent), we have thati � Z

�

pi
n Z�

pi
, and similarly forpn�i.

This ends our proof of our first Claim. ut

Claim. L�A���� � L�D�

Proof. Start with a concatenationw � w� � � � � � wp with wi � L�A� for all i � �� � � � p	, and
considerp accepting runs in the completed�n-automaton�A, one for eachwi, together with their
witnessing sequences of indices:

�i � �qij� a
i
j � q

i
j���j�mi	� with witnessing index sequence�lik�k�������n

We assume that each run starts inq� and ends inq��.
Transform these runs into runs in the “history” presentations, that is, denoteXi

j the set of indices

of the accepting states which were visited by each run�i just before thej-th step and byX
i

j the set
of indices of accepting states visited by�i up to thej-th step, and also denote�i

j their difference:

X i
j �

�
u � �� � � � �n	 j 	v � �� � � � j � �	 such thatliu � v

�
X

i

j �
�
u � �� � � � �n	 j 	v � �� � � � j	 such thatliu � v

�
�i

j � X
i

j nX
i
j�

Note first that, due to the fact thatwi andwi�� correctly concatenate, we have that for all
u� v � �� � � � n	 and for all j�� j� � �� � � � mi	, j�� j� � �� � � � mi��	 if u � �i

j�
� v � �i

j�
and

u� n � �i��
j�
� v � n � �i��

j�
thenj� � j� � j� � j�.

By a trick similar to the right-to-left proof for concatenation, we bring all runs to equal length
such that when�i passes throughQn�j, �i�� passes throughQj and vice-versa (we call this prop-
erty theSynchronicity Property)

To this end, we extend each run�i to a run��i of lengthm (the same for alli-s) by adding loops
in q� and/orq��, then suitably redefine the indiceslij and the index setsXi

j, X
i

j and�i
j such that
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for all i � �� � � � p� �	 we have�i
j � �n � � � � � �n	 � ��i��

j � �� � � � n	� � n. This can be done as
follows:

Take someu � �� � � � n	. Then, for eachi � �� � � � p	 define�i � �� � � � mi	 as theunique index
for which u � �i

�i
. Similarly, define�i � �� � � � mi	 as theunique index for whichu � n � �i

�i
.

Define further�i � �i � �i��.
This integer gives the number of loops inq� that must be appended to�i�� such that it is brought

to the same length as�i.

This follows because, if the runs would have the Synchronicity Property then�i�� must equal�i, regardless of the choice
of the indexu � �� � � � n�.

Then, for eachi � �� � � � p	 we append, at the beginning of�i, �� � � � � � �i copies of the state
q�. Also, the indices that witness the acceptance ofwi are then shifted by

Pi	�
j�� �

j , that is,

�lik � lik �

i	�X
j��

�j �

It is routine to check then that, after suitably redefining the index setsXi
j,X

i

j and�i
j, we have that

�i � �� � � � p� �	��j � �� � � � m	� �i
j � �n� � � � � �n	 � ��i��

j � �� � � � n	� � n (7.23)

However the runs do not have the same length yet. To bring them to the same length, define
firstm � max

�
mi �

Pi	�
j�� �

j j i � �� � � � p	
�

, and then append, at the end of each run�i,m�mi

copies of the stateq��, and we are done.

We suppose from now on that the runs�i have equal lengthm and that their associated index sets
satisfy condition 7.23. Observe that, by the hypothesis that all�n-wordswi correctly concatenate,
we may choose the runs�i such thatall the labels of the transitions are the same (a similar property
was obtainted for concatenation), hence we may consider that there exista� � � � am � � such that
for all i � �� � � � p	,

�i � �qij� aj � q
i
j���j�m	�

Let us show now some properties of the index setsXi
j,X

i

j and�i
j:

(X1) For eachi � �� � � � p	 andj � �� � � � m	,Xi
j� X

i

j � X .
(X2) For eachi � �� � � � p � �	 andj � �� � � � m	, Xi

j � �n � � � � � �n	 � �X i��
j � �� � � � n	� � n and

X
i

j � �n� � � � � �n	 � �X
i��

j � �� � � � n	� � n

(X3) For eachi � �� � � � p� �	 andj � �� � � � m	,Xi
j � X i��

j andX
i

j � X
i��

j .
(X4) For each� 
 i � i� 
 p andj � �� � � � m	, X i

j � �n � � � � � �n	 � �X i�

j � �� � � � n	� � n and

X
i

j � �n� � � � � �n	 � �X
i�

j � �� � � � n	� � n.

Property(X1) follows due to the fact thatX
i

j � X i
j � �i

j, while property(X2) follows by
induction onj:
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X i
j�� � �n� � � � � �n	 � �X i

j � �n� � � � � �n	� � ��i
j�� � �n� � � � � �n	�

�
�
�X i��

j � �� � � � n	� � n
�
�
�
��i��

j�� � �� � � � n	� � n
�

� �X i��
j�� � �� � � � n	� � n

Property(X3) is a consequence of the first two properties, while property(X4) follows by induction
on i� � i, since the first three properties imply that

�X i�

j � �� � � � n	� � n � X
i�	�

j � �n� � � � � �n	 � �X i�	�
j � �� � � � n	� � n � � � �

� � � � �X i��
j � �� � � � n	� � n � X i

j � �n� � � � � �n	

The idea that guides us in building theD run forw is that the union of the history, left active,
right active and prophecy components at each stepj in � must be the setf�Xi

j� q
i
j� X

i

j� j i �

�� � � � p	g. The problem is to correctly choose the left and the right active components at each step,
and to check the additional constraints on the states of this run, and it is here where the non-elastic
assumption plays its role.

Clearly, the order in which the runs�i “become” left active components is the order of con-
catenation. Or, in other words, if�Xi

j� q
i
j� X

i

j� is the left active component at stepj, then the right

active component is�Xi��
j � qi��

j � X
i��

j �, the prophecy component is
�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 i � �

�
and the history component is

�
�X i�

j � q
i�

j � X
i�

j � j i
� � i

�
.

The choice of the moments at which a run�i passes from the history component into the right
active component, then into the left active component and finally into the history component need
not be unique. But the bottom line is that�i cannot “sleep” all the time it parses the contribution
part of wi This translates to the fact that�i cannot be in the history component at the end of
�wi�u
n�u and cannot be in the prophecy component before the beginning of�wi�u
n�u.

The non-elasticity property intervenes then in the fact that, if we have decided to shift
�i, say from the prophecy into the history component, then we will never “regret” this
decision, that is, we will never need�i in the prophecy component back.

This means that each run�i will be, at its turn, in the prophecy component, then a left active
component, then a right active component, and finally in the history component. Observe then that
each time we shift the left active component into the right active component we must employ an�-
transition. This means that the run�would have lengthm�p –m, since it simulates each transition
in all the runs�i andp since there must bep �-transitions for shifting left active into right active
components.

Our choice for the shifting moments is a “lazy” one: a run�i is moved from its place only when there is a run�i� with
i� � i that needs to be “pulled out” of the history component because it is about to finish its parsing of the contribution
part ofwi� – it needs to be “waked up before it’s too late”.

Formally, the construction runs by induction as follows: the first tuple of in the run is�
� � �X�

� � q�� X
�

���
�
�X i

�� q�� X
i

�� j i � �
��
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(observe that in factXi
� � X

i

� �  for all i � �� � � � 	 sinceq� �� Qu for anyu � �� � � � �n	).
Assume that we have built the run up to the�k� ��-th tuple. Denote the run built so far as�k	�

and its last tuple ask	� � �Sl� �l� �l� Tl�l������k	�. For the induction, we also assume that

� either�k	� � �X i
j	�� q

i
j	�� X

i

j	�� with k � j � i

� or �k	� �  and then�k	� � �Xp
j	�� q

p
j	�� X

p

j	�� with k � j � p.

These properties hold fork � �, hence the induction has indeed a base case.
We then have the following cases, triggering specific ways to extend the run�k	�:

1. If �k	� � �X i
j	�� q

i
j	�� X

i

j	�� and for alli� 	 i,�i�

j � �n�� � � � �n	 � ��i�

j � �� � � � n	��n (that
is, we have not reached the end of some component�wi��u
n�u) then we extend the run with the
tuple �

�Sk	�� �k	�� �k	�� Tk	��� ak	�	i� �Sk� �k� �k� Tk�
�

in which

Sk �
�
�X i�

j � q
i�

j � X
i�

j � j i
� � i� �

�
�k �

 
 iff i � �

�X i	�
j � qi	�j � X

i	�

j � iff i � �

�k � �X i
j� q

i
j� X

i

j�

Tk �
�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 i

�
2. If �k	� � �X i

j	�� q
i
j	�� X

i

j	�� and there exists somei� 	 i for which
�
�i�

j � �n � � � � � �n	
�
n�

��i�

j � �� � � � n	� � n
�
��  then let

� � max
�
i� � i j

�
�i�

j � �n� � � � � �n	
�
n
�
��i�

j � �� � � � n	� � n
�
�� 
�

Observe that in this case the tuple�X�
j � q

�
j �X

�

j	 cannot belong to the history component since it would contradict the

requirements 1.c or 2.c.iii, according to whether�k�� 
 � or not.

We then append�� i� � tuples as follows:
a) The first tuple to be appended is�

�Sk	�� �k	�� �k	�� Tk	��� �� �Sk� �k� �k� Tk�
�

and has the following components:

Sk �
�
�X i�

j � q
i�

j � X
i�

j � j i
� 
 i� �

�
�k � �X i

j� q
i
j� X

i

j�

�k �
�
X i��

j � qi��
j � X i��

j � ��i��
j n �n� � � � � �n	�

�
Tk �

�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 i� �

�
Observe that we do not change the third component in the tuples belonging to the prophecy
component. Also observe that�k ��  becausei � � 
 p.
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b) For eachl � �� � � � �� i� �	, thel-th appended tuple is:�
�Sk�l	�� �k�l	�� �k�l	�� Tk�l	��� �� �Sk�l� �k�l� �k�l� Tk�l�

�
in which

Sk�l �
�
�X

i�

j � q
i�

j � X
i�

j � j i
� � i� l � �

�
�k�l �

�
X i�l	�

j � ��i�l	�
j n �n� � � � � �n	�� qi�l	�j � X

i�l	�

j

�
�k�l �

�
X i�l

j � qi�lj � X i�l
j � ��i�l

j n �n� � � � � �n	�
�

Tk�l �
�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 i� l

�
These are the transitions that “pull” the�i� l�-th tuple from the prophecy component into
the right active component. This operation is accompanied by the modification of the index
set of the�i� l�-th tuple, but the index sets of all tuples in the prophecy component are left
unchanged.

c) Forl � �� i, the�� i appended tuple is:�
�Sk��	i	�� �k��	i	�� �k��	i	�� Tk��	i	��� ak	�� �Sk��	i� �k��	i� �k��	i� Tk��	i�

�
with

Sk��	i �
�
�X

i�

j � q
i�

j � X
i�

j � j i
� � �� �

�
�k��	i �

�
X �

j ��
�
j n �n� � � � � �n	�� q�j� X

�

j

�
�k��	i �

 
 iff � � p

�X ���
j � q���

j � X
���

j � iff � 
 p� �

Tk��	i �
�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 �� �

�
Hence, once the�-th tuple is pulled out from the prophecy component, we also change the
index sets of all tuples remaining in the prophecy component. This is possible since, by
choice of�, we will prove that all the tuples inTk��	i do not contradict requirements 1.c
and 2.c.iii.

3. If �k	� � , which can only happen when�k	� � �Xp
j	�� q

p
j	�� X

p

j	��, we append to the run
the following tuple: �

�Sk	�� �k	�� �k	�� Tk	��� ak	p	�� �Sk� �k� �k� Tk�
�

in which

Sk �
�
�X i�

j � q
i�

j � X
i�

j � j i
� � p

�
�k � �Xp

j � q
p
j � X

p

j �

�k � 

Tk � 
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Observe that, after case 2, we already get at stagek � �� i� � since we have appended�� i� �

tuples to�k	�. We denote� the run obtained after stagek � m� p.
It remains to prove that the appended tuples are indeed states fromQ�. We will only prove the

validity of requirements 2 (a, b, c.i, c.ii, c.iii, d.i, d.ii, d.iii) since the other requirements can be
regarded as special cases of requirements 2(a� � � d.iii). Consequently, we will only study the cases
1 and 2 in the construction of�. Let us show first that the properties(X1)-(X4) imply that the newly
appended tuples satisfy requirements 2.a, 2.b, 2.c.i, 2.c.ii, 2.d.i, 2.d.ii, respective of the case the
tuple falls in.

In case 1, requirements 2.a and 2.b are restatements of property(X2), while requirements 2.c.i,
2.c.ii, 2.d.i, and 2.d.ii are restatements of property(X4).

For the case 2, subcase a, that is, for the tuple�Sk� �k� �k� Tk�, requirement 2.a results directly
from (X2). On the other hand, we have that�

X i��
j � ��i��

j n �n� � � � � �n	�
�
� �� � � � n	 � �X i��

j � �� � � � n	� � ��i��
j � �� � � � n	�

� X
i��

j � �� � � � n	

hence requirement 2.b is implied by(X2). Next, properties 2.c.i, 2.c.ii and 2.d.i are trivially implied
by (X4). Finally, due to(X4) again, we observe that for alli� 	 i� �,�

X i��
j � ��i��

j n �n� � � � � �n	�
�
� �n� � � � � �n	 � X i��

j � �n� � � � � �n	 � X i�

j

hence requirement 2.d.ii holds also for the case 2, subcase a.
For the case 2, subcase b, that is, for each tuple�Sk�l� �k�l� �k�l� Tk�l� with l � �� � � � �� i��	,

the requirements 2.a and 2.b can be similarly shown to derive from to(X2). For requirement 2.c.i
observe that for alli� � i� l � � we have by(X4)

X
i�

j � X
i�l	�

j � X i�l	�
j � ��i�l	�

j n �n� � � � � �n	�

while requirement 2.c.ii is directly implied by(X4). Then, requirement 2.d.i is a direct consequence
of (X4) while for 2.d.ii we have that for alli� 	 i� l,

X i�l
j � ��i�l

j n �n� � � � � �n	� � �� � � � n	 � X
i�l

j � �� � � � n	 � X
i�

j � X i�

j

Finally, in case 2, subcase c, that is, for the tuple�Sk��	i� �k��	i� �k��	i� Tk��	i�, the proof that
all requirements 2.a, 2.b, 2.c.i, 2.c.ii, 2.d.i, and 2.d.ii hold is very similar to the other cases.

Consider now the requirement 2.d.iii. For the case 1, requirement 2.d.iii can be proved as fol-
lows: if we suppose that for alli� 	 i,�i�

j	� � �n� � � � � �n	 � ��i�

j	� � �� � � � n	� � n then we can
show that for alli� 	 i,

�i
j � �n� � � � � �n	 � ��i�

j � �� � � � n	� � n� (7.24)

We can prove this inclusion as follows: for eachi� 	 i, consider some indexu � n �
�
��i�

j �

�� � � � n	� � n
�
. Identity 7.23 says that��i�

j � �� � � � n	� � n � �i�	�
j � �n�� � � � �n	, henceu�n �
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��i�	�
j ��n�� � � � �n	�. On the other hand, the hypothesis of case 1 says that�i�	�

j ��n�� � � � �n	 �

�i
j � �n � � � � � �n	, and henceu � n � �i

j � �n � � � � � �n	, which shows that our inclusion 7.24
holds.

For the case 2 subcase a, consider the tuple�Sk� �k� �k� Tk� which is the first to be appended to
�k	�. The requirement 2.d.iii for this tuple is the following: for alli� 	 i,

�X i�

j nX
i�

j � � �n� � � � � �n	 �
�
�X i�

j nX
i�

j � � �� � � � n	
�
� n

�
��
X i��

j � ��i��
j n �n� � � � � �n	�

�
nX i��

j

�
� �n� � � � � �n	

But this property holds trivially since all the three sets involved in this chain of inclusions are
empty.

For case 2, subcase b, consider each tuple�Sk�l� �k�l� �k�l� Tk�l� with l � �� � � � �� i� �	, But
for the requirement 2.d.iii to hold for this tuple, we must have that for alli� 	 i� l,

�X i�

j nX
i�

j � � �n� � � � � �n	 �
�
�X i�

j nX
i�

j � � �� � � � n	
�
� n

�
��
X i�l

j � ��i�l
j n �n� � � � � �n	�

�
nX i�l

j

�
� �n� � � � � �n	

which again holds trivially since all sets are empty.
Finally, in case 2, subcase c, requirement 2.d.iii for tuple�Sk��	i� �k��	i� �k��	i� Tk��	i� says

that, for alli� 	 �� �,

�i�

j � �n� � � � � �n	 � ��i�

j � �� � � � n	� � n � ����
j � �n� � � � � �n	

First observe that, by choice of�, for all i� 	 � the first inclusion holds. We then only have to
prove that the second inclusion holds too.

Suppose this does not hold for somei� 	 ���. We show that this would be in contradiction with
the choice of�: take someu � �� � � � n	 with u�n �

�
��i�

j � �� � � � n	��n
�
n�����

j � �n�� � � � �n	�.

Thenu� n � X
i�

j , and by(X3), u� n � X
���

j . Sinceu� n �� ����
j we must haveu� n � X���

j .

Again by(X3), we get thatu � n � Xi
j, henceu � n � X

i

j and furtheru � n �� �i
j. But then, by

gathering all the information we obtained onu� n we get:

u� n �
�
��i�

j � �� � � � n	� � n
�
n ��i

j � �n� � � � � �n	� (7.25)

This is in contradiction with the choice of�, since the greatest integer in�� � � � p	 which verifies
property 7.25 is�, and we have assumedi� 	 �� �.

Let us finally check requirement 2.c.iii. First, we observe that for the case 2, subcases b and
c, requirement 2.c.iii holds trivially since in the respective chain of inclusions the two sets are
empty. (The proof of this observation is similar to the proof that requirement 2.d.iii holds in cases
2, subcases b and c.)

For checking case 1 and case 2, subcase a, we will first show that the first part of the inclusion
from requirement 2.c.iii holds, that is,

for all i� � i� ��i�

j � �� � � � n	� � n � �i�

j � �n� � � � � �n	� (7.26)
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This property will be proved by contradiction, with essential use of the non-elasticity assumption:

Suppose that there exists somei� � i and someu� � �� � � � n	 such thatu� � �i�

j ��� � � � n	n��
i�

j �

�n � � � � � �n	� � n. The first observation to be made is that sincei� is in the history component
at j � �, there must exist a momentj� � j at which i� had to be pulled out from the prophecy
component because for somei� � i�, we had that�i�

j� � �n�� � � � �n	 �� ��i�
j� � �� � � � n	� � n. Pick

up then somev� � �� � � � n	 such thatv� � n � ��i�
j� � �n � � � � � �n	� n

�
��i�

j� � �� � � � n	� � n
�
.

Hencev� � n � X
i�
j� , and sinceX

i�
j� inX we have thatv� � X

i�
j� , and furtherv� � X

i�
j� .

Let us further observe thatu� � n �� X i�

j and hence, by(X3) u� � n �� X i�
j Moreover, we have

that v� � X i�
j� which by (X3) gives thatv� � X i�

j� . This means that there existsj� 	 j such that
u� � n � �i�

j�
and there existsj� � j� such thatv� � �i�

j�
.

We then need the following property:

(W) For each� 
 k � k� 
 p and eachl� l� � �� � � � m	, supposeu � �k
l andv � n � �k�

l�

for someu� v � �� � � � n	. Denote alsoat the label of thet-th transition in any of the runs�k
or �k� . Then,
� If l � l� then�wk � � � �� wk��u
v�n � �.
� If l � l� then�wk � � � �� wk��u
v�n � alal�� � � � al�	�.
� If l 	 l� then�wk � � � �� wk��u
v�n � a	�l�	� � � � a

	�
l��a

	�
l .

Proof (of property (W)). The property (W) can be proved by induction onk� � k: for k � k�

it holds straightforwardly since it says that the concatenation of the labels of the transitions in
between the moment�k passes throughQu (i.e., l) and the moment it passes throughQv�n (i.e., l�)
equalswu
v�n.

Suppose then it holds fork�, and we want to prove it fork� � �. Sincev � n � �k���
l� it follows

that there exists somel� 
 l� such thatv � �k���
l�

. And further, by 7.23, thatv � n � �k�

l�
. We

thence have 12 cases concerning the relative position ofl�, l and l�. We will only study three of
them and discuss the similarities with the other cases.

� Supposel � l� � l�. Then, by the induction hypothesis fork� k�� l andl�, we have
�wk � � � �� wk�	��u
v�n � alal�� � � � al�	�. On the other hand,�wk��v
v�n � al� � � � al�	�. There-
fore,

�wk � � � �� wk����u
v�n � �wk � � � �� wk��u
v�n � �wk����v
v�n

� alal�� � � � al�	� � al� � � � al�	�

� alal�� � � � al�	�

since the label of thet-th transition in any of thep runs is the same. Hence property (W) holds
for k� � �. This proof works also for all the cases in whichl� is in betweenl andl�.

� Supposel� � l� � l. Then, by the induction hypothesis fork� k�� l andl�, we have�wk � � � � �

wk�	��u
v�n � a	�l	� � � � a
	�
l�

. On the other side,�wk��v
v�n � a	�l�	� � � � a
	�
l� . Therefore,
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�wk � � � �� wk����u
v�n � �wk � � � �� wk��u
v�n � �wk����v
v�n

� a	�l	� � � � a
	�
l�
� al�	� � � � al�	�

� a	�l	� � � � al�	�

hence property (W) holds fork� � � also in this case. This proof works also for all the cases in
which l� is in betweenl� andl.

� Supposel� � l � l�. In this case we have, by the induction hypothesis, that�wk � � � � �

wk�	��u
v�n � a	�l	� � � � a
	�
l�

and�wk��v
v�n � al� � � � al�	�. But

�wk � � � �� wk��u
v�n � �wk � � � �� wk�	��u
v�n � �wk��v
v�n

� a	�l	� � � � a
	�
l�
� al� � � � al�	�

� alal�� � � � al�	�

Hence property (W) holds fork��� in this last case. A similar proof can be produced in the case
l� � l� � l. ut

We may now particularize the property (W) as follows: we putu 
� u�, v 
� v�, k 
� i�,
k� 
� i�, l 
� j�, l� 
� j� and get that

� �wi� � � � �� wi��u
u�n �� �;
� �wi� � � � �� wi��v
v�n �� �;
� �wi� � � � �� wi��u
v�n is an antiword;

facts which clearly contradict the non-elasticity assumption onwi� � � � ��wi� . Hence our assump-
tion on the nonvalidity of Inclusion 7.26 is itself false.

Let us then observe that, based on the validity of the first half of requirement 2.c.iii for alli� � i

and on Identity 7.23, the last half of requirement 2.c.iii can be proved by induction as follows:

�i�

j � �n� � � � � �n	 � ��i���
j � �� � � � n	� � n (by Identity 7.23)

� �i���
j � �n� � � � � �n	 (by Inclusion 7.26)

...

� �i	�
j � �n� � � � � �n	

� ��i
j � �� � � � n	� � n (by Identity 7.23)

It follows that � � �m�p is indeed a run inD. We need now to show it is an accepting run,
and then associate a sequence of indices�tu�u�������n such that thetu-th state in this run is inUu
and such that, foru � �� � � � n	, the passage throughUu of � be synchronous with the passage of
�� throughQu and the passage of� throughUn�u be synchronous with the passage of�p through
Qn�u.

Remind thatl�u represents the moment�� passes throughQu, i.e.,u � ��
l�u

. Consider then the
indexk � �� � � � m � p	 which denotes the moment in the run� which corresponds tol�u. That is,
k � l�u � i for somei � �� � � � p	, and further:
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� If i � � then�k �  and�k � �X�
l�u
� q�l�u � Z�. Note that we may have eitherZ � X

�

l�u
or

Z � X�
l�u
� ���

l�u
n �n� � � � � �n	�, according to whether the�l�u � ��-th transition in�m�p falls in

case 1 or case 2, subcase a from the construction of�.
� Otherwise,�k � �X i	�

l�u
� qi	�l�u

� X
i	�

l�u
� and hence�X�

l�u
� q�l�u � X

�

l�u
� � Sk � f�kg.

In the first case, it is clear that�Sk� �k� �k� Tk� � �� � �X�
l�u
� q�l�u � Z�� Tk� � Uu because by

construction we haveu � Z nX�
l�u

, in any of the casesZ falls in.

In the second case, ifi � � then �k � �X�
l�u
� q�l�u � X

�

l�u
�, Sk �  and we get again that

�Sk� �k� �k� Tk� � Uu. For i � � we must have that�X�
l�u
� q�l�u � X

�

l�u
� � Sk. Let us observe that

requirement 2.c.iii in the construction ofQ� says that��
l�u
� �� � � � n	 � �i	�

l�u
, and henceu � �i	�

l�u
.

Suppose then that�Sk� �k� �k� Tk� �� Uu. This implies that there exists somei� � i � �� i� 	 �

such thatu �� �i�

l�u
. Then there must exist somei� � i� such thatu � �i�

l�u
andu� n �� �i�

l�u
. But this

is in contradiction with the requirement 2.c.iii, first inclusion. Hence the assumption is false, that
is, �Sk� �k� �k� Tk� � Uu.

We may therefore definetu � l�u� i. We also definetn�u � lpn�u� i, wherelpn�u� i is the index
in the run�m�p which corresponds to the�lpn�u���-th transition in each of the runs�i, i � �� � � � p	.
Similarly to the proof fortu, we may get that�Stn�u � �tn�u � �tn�u � Ttn�u� � Un�u.

It remains just to observe that, by property (W), for eachu� v � �� � � � n	, the word or antiword
that labels the transitions in between thetu-th state and thetn�v-th state equals the word or antiword
that labels the transitions in between thel�u-th state and thelpn�v-th state of any of the runs�i, that
is, equals�w� � � � � � wp�u
n�v. Similarly, by concatenating the labels of the piece of run from
�m�p that lies in between thetu-th state and thetv-th state (eventually in reversed order, iftu 	 tv)
we get�w��uv, and similarly fortu�n, tv�n and�wp�u�n
v�n. Hence, the run�m�p accepts indeed
w� � � � �� wp.

This ends our proof of the second claim, and, consequently, the proof of Theorem 7.4.3.ut



8. Representing timing information with n-words

Up to this moment we have investigated only the possibility to use�n-automata for representing
the discrete information in�n-signal regular expressions. In this chapter we investigate the possi-
bility of representing also thetiming information in�n-signal regular expressions. By the timing
information we mean the set of tuples representing the duration of each�n-signal in the semantics
of a�n-signal regular expressionE � RegSig�n, that is, the set�


��� j � � kEk
�

Here
��� is the extension of the length morphism ton-signals, that is, an-signal over a one-letter
alphabetfag with �
����ij � a�
�ij�. Or, in other words, an � n matrix � � Matn�R � which
satisfies the triangle identity�ij � �jk � �ik.

Let us note that, for the�n-signal-semantics of timed automata, our aim translates to the
construction of thereachability relation on clocks, that is, the dependence between clock
values when starting in initial states and the clock values with which final states may be
reached.

This problem is nothing else but the problem of representingtiming constraints over a set of real
variables (or clocks).Conjunctive timing constraints are usually represented asdifference bound
matrices (DBMs, see [Bel57, Yov98]). These can be thought asn � n matrices over intervals
(nonnecessarily positive),D � Matn�n�ZInt � such thatDij � �Dji.

The idea is that each variable is associated with an index in the index set of the matrix, and
each differencexi � xj � I puts the intervalI in the�j� i�-component (note that the indices have
swapped their places). To represent single-variable constraints likex � ��� �	, a special variable
x� is appended, whose value is considered always�, such that constraints likex � ��� �	 may be
written asx� x� � ��� �	.

For example, the two-variable constraintx � ��� �	 � y � ��� �	 � x � y � � is represented by
the following�� � matrix over intervals:

D �

�
� � ��� �	 ��� �	

������	 � ��

������	 � �

�
A (8.1)
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Actually, to avoid redundant representation of the same interval, the important information is kept as follows: ifDij 

�a� b�, the�i� j	-th component will be�b� � � �	 while the�j� i	-th component will be��a� � � �	. In other words, instead
of the matrix of intervalsD one keeps a matrixP of pairs��� �	 where� is a real number and� is a relation symbol
� � f� � �� � � �� � 
 �g, such that

Pij 
 �supDij � �	 where� 


���
��
� 
 � iff Dij is a point interval

� � � iff maxDij exists andmaxDij �
 infDij

� � � otherwise

We will however utilize the “redundant” matrix of intervalsD in order not to complicate certain proofs.

If we think of the set of interpretations that validate the constraintx � ��� �	�y � ��� �	�x�y �

�, then this set has more than one representation. The reason is that the first constraint can be
deduced from the other two by arithmetic manipulation. However the representation given in 8.1
can be thought as the “canonical” one, since it is “closed” under these arithmetical manipulations
– even more, it is “minimal”, that is, no other representation can be found in which some of the
intervals are smaller than the ones inD.

As already said, a DBM can only representconjunctions of atomic constraints, therefore general
atomic constraints (i.e. containing disjunction also) require using sets of DBMs. Our aim is to
show thatn-automata overone-letter alphabets can be used also for representingarbitrary clock
constraints. We will start by showing, as a corollary of the previous chapter, how to represent
timing constraintsover the discrete time domain Z:

The constraintx � � can be represented by a finite automaton (i.e. a�-automaton) with four
states and three transitions in a chain. The idea is that the constraintx � � is satisfied by the
set of integersf�g, which is a regular language over the one-symbol setf�g – simply because
� � � � � � �.

To represent a two-clock constraintx � � � y � � one might transform the above�-automaton
into the�-automaton depicted in Figure 8.1 at�a�. What we have done is to identify, during the
run that accepts�, a point in whichy � � is satisfied. Note that we have an implicit subconstraint1

x � y � �, which is represented by the two arrows in between the state labeledy and the state
labeledx. A “nonpoint” constraint,x � ��� �	 � y � ��� �	 � x � y � �, is depicted at�b� (remind
that we work with discrete clocks for the moment):

� y x � y x

�a� �b�

Fig. 8.1. Two n-automata representations of timing constraints over a discrete domain:�a�: x �

� � y � � and�b�: x � ��� �	 � y � ��� �	 � x� y � �.

Of course, to actually have�-automata we would putQ� as the state labeled�, Q� as the state
labeledx andQ� as the state labeledy.

� Which would result after bringing the constraint to the “normal form” [Yov98].
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A more complicated constraint is depicted in Figure8.2.

y x

y

�� y

Fig. 8.2. An n-automata representation of the following timing constraint:�
y � ������x� y � �

�
 
�
y � f�g � x � �����

�
 
�
y � ��� �	 � x � �

�
 
�
y � ��� �	 � x � �

�
.

Of course, our approach makes constraint representation more sensible to the numbers used in
the constraints than other representations (e.g., unions of DBMs). But observe that the constraint
in Figure 8.2 uses only� states, instead of the� DBMs necessary. Also theclock difference dia-
grams approach [LWYP99] does not provide a better representation for this constraint, since the
intervals used in each atomic constraint are distinct. Hence then-automata representation of clock
constraints might be better in some cases.

So far, so good with the intuition about discrete timing, but how to export it to thecontinuous
timing? Here we will get aid from the notion ofclock regions [AD94]. A region is a special kind
of DBM, in which each interval is either a point or an open unit length interval. For example,

R �

�
� � 	�� �� 	�� ��

	� ����� � 	� �� ��

	� ����� 	�� �� �

�
A (8.2)

Of course, this is not exactly the classical definition of a region: they were originally defined
as sets of pointsx � R n which have the same integral parts and the same ordering between the
fractional parts [AD94]. For our example, the graphical representation of the regionR defined in
Identity 8.2 (considering that this region represents in fact the constraintx �	�� ���y �	�� ���x�

y �	�� ��) is depicted in Figure 8.3:

� �

�

�

y

x

Fig. 8.3. The graphical representation of the region defined in 8.2 is the interior of the shadowed
triangle.
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It is clear that any DBM whose intervals have integer bounds can be decomposed into a (finite
or infinite) set of regions.

Now the key idea is to observe that the�-regword of all endpoints of the intervals of a regionhas
a nonempty semantics: for example, our regionR described in Identity 8.2 defines the following
�-regword whose components are the bounds of the intervals ofR:�

� � f�� �g f�� �g

f�����g � f��� �g

f�����g f��� �g �

�
A (8.3)

Here the sets represent regular expressions over the symbol setf�g: for example2, f�� �g � � �

� � � � � � �. In other words, we use here theunary encoding of integers.
Then, if from the upper triangular part we keep the upper bounds and from the lower triangular

part we keep the lower bounds we get the following�-word:

w �

�
� � � �

�� � ��

�� � �

�
A

Note that this�-word is (represented by the) lower vertex of the shadowed triangle in Figure
8.3.

We then just have to add the information about what kind of bound is each component inw.
This information is given by a� � � matrixM whose entries are relation symbols from the set
f� � �� � � �� � 	 �g. Hence, we putMij � � � � iff wij is the supremum ofRij but does not belong
toRij, we putMij � � � � if wij � maxRij andMij � � 	 � iff wij � inf Rij andwij �� Rij.

For our example, the following pair represents the region in 8.2:�
�
�
� � � �

�� � ��

�� � �

�
A �

�
�� � � � � � � � �

� 	 � � � � � 	 �

� 	 � � � � � � �

�
A
�
A

This representation of the region in 8.2 is not unique: the following pair is also a representation
of it: �

�
�
� � � �

�� � �

�� � �

�
A �

�
�� � � � 	 � � � �

� � � � � � � � �

� 	 � � 	 � � � �

�
A
�
A

Note that the�-word in it is the upper left vertex of the triangle in Figure 8.3.
It is then clear that not all the matrices having lower or upper bounds from the intervals involved

in 8.2 are�-words, since some do not verify the triangle identity: they are�� such matrices but only
� vertices of the region!

� We have preferred this set notation instead of the regular expression notation due to the ambiguous overloading of summation it
would imply.
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There is yet one more thing to observe: the matrices of relation symbols have themselves a sort
of “triangle” property. due to the fact that they have to represent correct regions. We will see later
the exact formulation of this property, but let’s see an example of an incorrect matrix:

M �

�
�� � � � 	 � � � �

� � � � � � � 	 �

� 	 � � � � � � �

�
A

Intuitively, M is incorrect because the cycle�M���M���M��� � �� 	 �� � 	 �� � 	 �� is inconsistent
with the componentM��: the cycle requires thatM�� be� 	 �, which is unimaginable for a diagonal
component which must always be zero!

Once we are convinced regions may be represented this way, we only have to think thatn-
automata can be adapted to accept pairs consisting of an-word over a one-letter alphabet and a
matrix of relational symbols. There are two ways: either put the relational matrices into states, or
put them into transitions. The two ways are completely interchangeable, as are state-labeled or
transition-labeled finite automata. Then what we need to assure is that in an accepting run all states
or all transitions are labeled with the same relational matrix.

Yet we are not through with the problems: concatenation is a clear operation on�n-words, but
how do we generalize it to DBMs/regions/pairs like the above? In fact, we need to define a con-
catenation operation on regions, concatenation that would be compositional w.r.t. the “semantic”
concatenation on�n-signals.

If we regard the problem from the logical point of view, when we want to concatenate two
DBMs which represent two constraintsC�� C� over �n variables, what we need is to take their
conjunctionC� �C�, then to identify the lastn variables ofC� with the firstn variables ofC�, and
finally to project the result over these variables “in the middle”: denotingx�� � � � � x�n the variables
in C� andy�� � � � � y�n the variables inC�, we need

C� � C� � 	xn�� � � � 	x�n
�
C� � C��xn���y�� � � � � x�n�yn	 �

n"
i��

xn�i � yi

�

in which the notationC�x�y	 stands for the syntactic replacement of variabley with x in C.
But if we proceed by pure arithmetic tools to compute the concatenation of two regions we will

find out thatit might not be a region but a more general DBM: even for�-dimensional DBMs, that
is, constraints over a single clock, we have�

x �	�� ��
�
�
�
x �	�� ��

�
�
�
x �	�� ��

�
(8.4)

And here is an example concerning�-regions:
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�
BBB�

� 	�� �� 	�� �� 	�� ��

	� �� �� � 	�� �� 	�� ��

	� �� �� 	� �� �� � 	�� ��

	� ����� 	� �� �� 	� �� �� �

�
CCCA�

�
BBB�

� 	�� �� 	�� �� 	�� ��

	� �� �� � 	�� �� 	�� ��

	� �� �� 	� �� �� � 	�� ��

	� ����� 	� �� �� 	� �� �� �

�
CCCA �

�

�
BBB�

� 	�� �� 	�� �� 	�� ��

	� �� �� � 	�� �� 	�� ��

	� �� �� 	� �� �� � 	�� ��

	� ����� 	� �� �� 	� �� �� �

�
CCCA (8.5)

The issue from this is todecompose the result into regions. That is, we will define the concate-
nation of two regions as aset of regions. For the simple example described by Formula 8.4 we
put

x �	�� ���x �	�� ���
�
x �	�� ��

�
 
�
x � �

�
 
�
x �	�� ��

�
The advantage is that, contrary to constraints, which, after each conjunction, need to be brought

to normal forms, region concatenation gives directly normal forms.
Since we represent regions by pairs�w�M� consisting of a�n-word overf�g and a�n-relation

M , we may wonder how this concatenation can be implemented over such items, and also why
it gives sets of regions rather than mere regions, since�n-word concatenation is not a set-based
partial operation. The answer relies on the need of a concatenation operation on�n-relations, which
itself returnssets of �n-relations. For our simple example 8.4 of�-regions, we have

��� � � ��� ��� � 	 �� �
�
��� � � ��� ��� � � ��� ��� � 	 ��

�
because

�� � ��� �� 	 �� �
�
�� � ��� �� � ��� �� 	 ��

�
We might also observe that some pairs representing regions may fail to concatenate, even when

the represented regions concatenate: for example, the following pairs cannot concatenate because
the�-words in it cannot, though they represent the concatenation of the�-regions in 8.5:�
BBB�
�
BBB�

� � � �

� � � �

� � � �

�� �� �� �

�
CCCA �

�
BBB�
� � � � 	 � � 	 � � 	 �

� � � � � � � 	 � � � �

� � � � � � � � � � � �

� � � � 	 � � 	 � � � �

�
CCCA
�
CCCA�

�

�
BBB�
�
BBB�

� � � �

� � � �

� � � �

�� �� �� �

�
CCCA �

�
BBB�
� � � � � � � � � � � �

� 	 � � � � � � � � 	 �

� 	 � � 	 � � � � � 	 �

� 	 � � � � � � � � � �

�
CCCA
�
CCCA � �
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But this does not mean that no pair of representations of the�-regions from Identity 8.5 can be
concatenated: we just have to be more careful when choosing the representations. For example, the
two representations in Identity 8.6 below can be concatenated, since the lower right corners of the
first representation equal the upper left corners of the second representation. The result is obtained
by first concatenating the�-words in each representation, then concatenating the two�-relation
matrices. We present the result as a cartesian product between the resulting�-word and a set of
�-relation matrices, just in order to save space.�
BBB�
�
BBB�

� � � �

� � � �

� � � �

�� �� �� �

�
CCCA �

�
BBB�
� � � � 	 � � 	 � � 	 �

� � � � � � � 	 � � � �

� � � � � � � � � � � �

� � � � 	 � � 	 � � � �

�
CCCA
�
CCCA�

�

�
BBB�
�
BBB�

� � � �

�� � � �

�� � � �

�� � � �

�
CCCA �

�
BBB�
� � � � � � � � � � 	 �

� 	 � � � � � 	 � � 	 �

� 	 � � 	 � � � � � 	 �

� � � � � � � � � � � �

�
CCCA
�
CCCA �

�

�
BBB�

� � � �

� � � �

�� �� � �

�� �� � �

�
CCCA�

����	
���


�
BBB�
� � � � 	 � � 	 � � 	 �

� � � � � � � � � � 	 �

� � � � 	 � � � � � 	 �

� � � � � � � � � � � �

�
CCCA �

�
BBB�
� � � � 	 � � 	 � � 	 �

� � � � � � � � � � 	 �

� � � � � � � � � � 	 �

� � � � � � � � � � � �

�
CCCA �

�
BBB�
� � � � 	 � � 	 � � 	 �

� � � � � � � 	 � � 	 �

� � � � � � � � � � 	 �

� � � � � � � � � � � �

�
CCCA
$���%
���& (8.6)

The��� �� component of the resulting�-relation matrices is fixed, because it must be consistent
with the fact that the��� �� component in the left operand is a� 	 � and the��� �� component in the
second operand is a� 	 � too. Similarly, the components��� �� and��� �� are uniquely generated.
However, the��� �� component is not uniquely generated, and this is why the above concatenation
produces three representations.

Clearly, the above result is not the representation of all regions that are included in the resulting
DBM as given in Identity 8.5. But if we try all the combinations of representations of the two factor
regions and join together all the results, we will obtain the expected decomposition of the DBM
into regions.

By summarizing, in order to get a correct representation of the concatenation of regions by pairs
�w�M�, we need to work withsets of such pairs, and to assure that, in each such set, together with
a pair�w�M� representing a regionR, all the pairs that represent this region are contained.

We will develop in this chapter the theory of DBMs, regions andn-word representations for
regions. Part of the chapter is a restatement of some well-known properties concerning DBM nor-
malization and/or constraint propagation [Gau99, DMP91, vH89]. But the bulk of it is new, and
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concerns the restatement of the properties of concatenation and star on�n-signals and�n-words,
as given in Chapter 6, for regions and�n-word representations of regions.

A permanent concern in this chapter is again the compositionality of the projection, juxtapo-
sition, resp. concatenation operations. This is quite normal, since we try to define syntactic op-
erations on representations of sets of�n-signals, and we already know from Chapter 6 that, for
�n-regminoes, such compositional operations are not possible (excepting juxtaposition). The key
property that makes projection compositional isconvexity of intervals.

This chapter runs as follows: the first section resumes some well-known properties concerning
DBM normalization. In the second section we introduce our concatenation operation on regions
and prove its compositionality. The third section serves for introducing then-word representations
for regions and for defining concatenation on them. In the fourth section we generalizen-automata
to a class that works onn-word representations and prove that this class enjoys the same properties
asn-automata. Most notably, we show that the non-elastic star closure theorem also holds for
automata that work on non-elastic�n-word representations.

Let us note thatn-automata representing clock constraints are different from region automata
in the sense of Alur and Dill [AD94]: inn-automata, each region is represented by arun, while in
region automata, each region is a state.

8.1 Difference bound matrices

Traditionally,n-regsignals over a one-letter alphabetR � RSign�fag� bearing the property

Rij � ZInt for all i� j � �� � � � n	

are calleddifference bound matrices, orn-DBMs. By generalizing, we call anyn-regsignal over a
one-letter alphabet as anextended difference bound matrix, orn-EDBM. Observe that an EDBM
is in fact a matrix whose components areregular expressions over intervals, in the sense used in
Chapter 3. For example, the following matrix is a�-EDBM and not a�-DBM:

A �

�
� f�g�

f��g� �

�

When speaking of regular expressions over intervals, we have in mind the theory developed in Section 3.2. Which, of
course, needs to be extended over the whole Kleene algebra of intervals with integer boundsK�ZInt 	 (in Section 3.2 we
have studied only intervals withnatural bounds).

The class ofn-DBMs is denotedDbmn while the class ofn-EDBMs is denotedEdbmn.
Thesemantics of ann-EDBM D � Edbmn is formally defined as follows:

kDk �
�
� � Sign�fag� j for all i� j � �� � � � n	 there exists� � Dij such that�ij � a�

�
We present, in this section, several properties concerning DBMs, most of them well-known in

the domain of�max���-algebras [Gau99, GP97, Gau92]:
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Proposition 8.1.1 ([Gau99]). Given an n-DBM D � Dbmn, kDk ��  if and only if for each cycle
�ij�j������k�� with ij � �� � � � n	 and ik�� � i�, we have that

� �
kX

j��

Dijij�� (8.7)

Proof. We may observe first that, given ann-signal� � Sign�fag�, for each cycle�ij�j������k��

with ij � �� � � � n	 andik�� � i�,
kX

j��

�ijij�� � �� � a�. This property follows by induction onk

from the triangle identity 6.1. We then only have to observe that for each� � kDk,
Pk

j�� �ijij�� �Pk
j��Dijij��

. ut

Definition 8.1.2. An n-DBM D � Dbmn is said to be in normal form iff the following two prop-
erties hold:

1. For each i � �� � � � k	, Dii � f�g.
2. For each i� j� k � �� � � � k	,

Dik � Dij �Djk (8.8)

We will refer to the property 8.8 as thetriangle inclusion, by similarity to the triangle identity for
n-dominoes. The set ofn-DBMs in normal form is denotedDnfn.

Remark 8.1.3. The triangle inclusion implies that a DBM in normal formD � Dnfn is antisym-
metric, that is, it has the property thatDij � �Dji for all i� j � �� � � � n	.

Proposition 8.1.4. Any n-DBM in normal form has a nonempty semantics.

Proof. We first check the hypotheses of Proposition 8.1.1 for cycles of length 3. To this end, take
three indicesi� j� k � �� � � � n	. Two cases occur:

1. Dik is a point interval,Dik � f�g for some� � Z. Then

Dij �Djk �Dki � Dik �Dki � f�g� f��g � f�g

hence Proposition 8.1.1 holds.
2. Dik has a nonempty interior. Denote then� � infDik and� � supDik. Clearly� � �.

Then

Dij �Djk �Dki � Dik �Dki � 	�� �� � 	������ � 	���� ���� ! �

due to the property� � �.
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On the other hand, for any cycle�ij�j������k with ik�� � i�, the triangle inclusion 8.8 can be
repeatedly used to prove that

kX
j��

Dijij�� � Di�i� �

kX
j��

Dijij�� � � � � � Di�ik��
�Dik��ik �Diki�

But we already know that� � Di�ik��
�Dik��ik �Diki� from the first part of the proof. Therefore,

this chain of inclusions implies that property 8.7 must also hold for the whole cycle�ij�j������k. ut

Observe that, in the above proof, we have used the fact thatDij is an interval. Hence the property
does not hold for EDBMs. In fact, the example 6.25 from Chapter 6, page 99 is an example of an
EDBM which is in normal form, but has an empty semantics:

R �

�
BBB�

� f�� �g f�� �g f� �g

f�����g � f�� �g f�� �g

f�����g f�����g � f�� �g

f����g f�����g f�����g �

�
CCCA

As a corollary, ann-DBM is equivalent to ann-DBM in normal form (isnormalizable) iff its
semantics is nonempty.

The following result shows that, unlike the case ofn-regsignals, projection is compositional for
DBMs in normal form. Remind that projection of ann-regsignalR � RSign��� onto some set
X � �� � � � n	 was defined in Chapter 6, Definition 6.4.3 as the matrix resulting after deleting the
rows and columns ofR whose indices are not inX.

Proposition 8.1.5. For each n-DBM in normal form D and X � �� � � � n	, D
X

is an n-DBM in
normal form too and kD

X
k � kDk

X
.

Proof. The first part of the property is straightforward. We prove the second part by induction on
the size ofn� card�X�, and the proof of the induction step relies on interval convexity.

Take some�n � ��-DBM in normal formD � Dnfn and consider its projectionD
�����n

. Take
further somen-signal� � kD

�����n
k. We will prove that this signal can be (perhaps not uniquely)

extended to a�n� ��-signal�� � kDk.
Fix some real�� � R and denote�i � �� � ��i, for all i � �� � � � n	. Observe then that

�j � �i � ��j � ��i � ��j � �i� � �ij � ��ij

by straightforward applications of the triangle identity 6.1.
Let us observe that, if we find a real�n�� such that

�n�� � �i � Di
n�� for all i � �� � � � n	 (8.9)

then we are done, because the matrix�� defined by
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��ij �

���	
��

�ij iff i� j � �� � � � n	

�n�� � �i iff j � n� �� i � �� � � � n� �	

�j � �n�� iff i � n� �� j � �� � � � n� �	

would be an�n� ��-signal, as the triangle identity 6.1 can be easily checked on��, e.g.:

��i
n�� � ��n��
j � �n�� � �i � �j � �n�� � �j � �i � �ij

and further,�� would be in the semantics ofD, since��i
n�� � �n����i � Di
n�� by construction.
For proving property 8.9 let us first prove that, for alli� j � �� � � � n	,

��i �Di
n��� � ��j �Dj
n��� ��  (8.10)

To this end observe that, by the triangle inclusion 8.8,

�i �Di
n�� � �j �Dj
n�� � �i � �j �Di
n�� �Dn��
j � �ji �Dij

and since�ji � ��ij � �Dij it follows that� � �ji �Dij. Hence

� � �i �Di
n�� � �j �Dj
n��

which is equivalent to property 8.10.
But then, due to convexity,

n!
i��

�
�i �Di
n��

�
�� 

fact which shows the existence of a real�n�� that satisfies property 8.9. ut

The following property says that the adjective “normal form” is correctly chosen to characterize
the property:

Proposition 8.1.6. For any two n-DBMs in normal form, D�D� � Dnfn with Dij � D�
ij for all

i� j � �� � � � n	 and Dij �� D�
ij for some i� j � �� � � � n	 we have that

kDk � kD�k

Proof. This property is a corollary of Proposition 8.1.5: take somen-DBM in normal formD �

Dnfn. The property is trivial if all components are point intervals, because choosingD� as in the
statement would lead to havingD�

ij �  for somei� j � �� � � � n	.
Suppose then thatDij has a nonempty interior for somei� j � �� � � � n	, sayDij � 	�� �� (the

cases with other parentheses are treated similarly). Suppose also we have some othern-DBM in
normal formD� withD�

ij � Dij. Take then� � Dij nD�
ij. Note that� can be regarded as a�-signal.

But then, by the construction in Proposition 8.1.5, this�-signal can be inductively extended to
ann-signal, denote it�, which belongs to the semantics ofD. This ends the proof, since� �� kD�k
due to the fact that�ij � � �� D�

ij. ut
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For each sets of real numbersA � R , denote�A	 the convex closure ofA, that is:

�A	 �
�
�x� ��� ��y j x� y � A� � � ��� �	

�
(8.11)

Observe that the convex closure commutes with summation: for any two setsA�B � R ,

�A	 � �B	 � �A�B	 (8.12)

Proposition 8.1.7. Given two n-DBMs in normal form D�D� the following n-DBM is also in nor-
mal form:

�D �D�	ij � �Dij �D
�
ij	

More generally, for any set of n-DBMs in normal form D � �Di�i�I (nonnecessarily finite or
countable), the following n-DBM is in normal form:

�D	ij �
h �
D�D

Dij

i
Proof. By verification of the triangle inclusion 8.8: given a tripleti� j� k � �� � � � n	,

�D �D�	ij � �D �D�	jk � �Dij �D
�
ij	 � �Djk �D

�
jk	

�
�
�Dij �D

�
ij� � �Djk �D

�
jk�
'

�
�
�Dij �Djk� � �Dij �D�

jk� � �D�
ij �Djk� � �D�

ij �D�
jk�
'

�
�
�Dij �Djk� � �D�

ij �D�
jk�
'

�
�
Dik �D

�
ik

'
by assumption thatD is in normal form

� �D �D�	ik

The generalization to arbitrary families ofn-DBMs in normal form follows along the same lines,
due to the distributivity of summation over union. Note that we rely on the fact that the convex
closure of any set of real numbers is an interval. ut

Propositions 8.1.6 and 8.1.7 allow us to define thenormalization of a DBMD with nonempty
semantics: it is the largest DBMD� (with respect to inclusion) satisfying the triangle inclusion and
bearing the property thatD�

ij � Dij for all i� j � �� � � � n	. That is,D� is the normalization ofD iff
D� is in normal form,kD�k � kDk and for allD�� with kD��k � kDk we havekD��k � kD�k.

Proposition 8.1.8. The normalization of each DBM is unique.
If D� is the normalization of D then kD�k � kDk.

Proof. The first part of the statement follows by Proposition 8.1.7, since this proposition says that
the set of DBMs in normal form whose semantics is included inkDk forms a complete superior
lattice [Bir79], which hence has a supremum.

The second part can be proved by contradiction: suppose thatkDk �� kD�k, hence we may pick
an-signal inkDk n kD�k and produce the convex closure�D� �	, which would be, by Proposition
8.1.7, an-DBM in normal form strictly larger thanD�, hence contradicting the assumption. ut
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To bring ann-DBM D with the property 8.7 into normal form, we may utilize another form
of the Floyd-Warshall-Kleene algorithm: namely, we build the sequence ofn-DBMs ��k�k������n
inductively as follows [Gau99]:

�� � D

��k���ij � ��k	��ij �
�
��k	��ik � ��k	��kj for eachi� j � �� � � � n	

The correctness of this algorithm is the subject of the following proposition. Similar results can
be found in [Gau99, Tri98]3.

Proposition 8.1.9. ProvidedD has a nonempty semantics,�n is the normalization of the DBMD.

Proof. Observe first that the nonemptiness hypothesis onkDk implies that, for eachi� j � �� � � � n	,

!n p	�X
l��

Dilil��
j il� �� � � � n	� p�N � i�� i� ip�j

o
�

�
!n p	�X

l��

Dilil��
j il� �� � � � n	��l�� l�� �� � � � p	� il� �� il�� i�� i� ip�j� p�N

o
(8.13)

This follows because, if we haveil� � il� then� � Dil� 
il���
� � � ��Dil���
il�

and hence

Di�i� � � � � Dil���
il�
�Dil� 
il���

� � � ��Dil���
il�
�Dil� 
il���

� � � ��Dip��il �

� Di�i� � � � � Dil���
il�
�Dil� 
il���

� � � ��Dip��il

and this implies that, in the intersection in 8.13, sums in which an index is repeated are “useless”.
Let us denoteD the set defined in Identity 8.13. ThenkDk � kDk due to the fact that all

n-signals inkDkmust obey the triangle identity. It only remains to show thatD is in normal form.
To this end, observe that, for eachi� j � �� � � � n	,

Dij �Djk �
!n p	�X

l��

Dilil��
j il� �� � � � n	��l�� l�� �� � � � p	� il� �� il�� i�� i� ip�j� p�N

o
�

�
!n q	�X

l��

Djljl��
j jl� �� � � � n	��l�� l�� �� � � � q	� jl� ��jl�� j��j� jq�k� q�N

o
(8.14)

Remind now that the distributivity of intersection over summation

A � �B � C� � �A �B� � �A � C�

holds iff in the right hand side the intersections are nonempty. This is our case since we have
assumed that the semantics ofD is nonempty and hence each intersection in Identity 8.14 must be
nonempty. Hence we may apply this distributivity (in the reverse direction) to get:

� Such results are an essential tool in the computation of the set of reachable states in timed automata.
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Dij �Djk �
!n p	�X

l��

Dilil��
�

q	�X
l��

Djljl��
j il� �� � � � n	��l�� l�� �� � � � p	� il� �� il�� i�� i�

ip�j� p�N � jl � �� � � � n	��l�� l�� �� � � � q	� jl� ��jl�� j��j� jq�k� q�N
o

and then observe that from the two sequences of indices we may construct a single sequence that
starts ini and ends ink, which means that the above intersection is included in the left-hand side
of identity 8.13, written for the indicesi andk. ut

8.2 Regions

In this chapter we will be interested in a special class of DBMs in normal form, namely DBMs in
which each interval is either a point interval or a unit interval. The reason to do this is that we want
to represent (E)DBMs as sets of regions.

We will call such DBMs asregions, due to their close connection to the regions in timed au-
tomata [AD94].

Definition 8.2.1. An n-DBM D � Dbmn is called an n-region if it has a nonempty semantics and,
for each i� j � �� � � � n	,

� Either Dij is a point interval Dij � f�g for some � � Z,
� Or Dij is an open interval of unit length Dij � 	�� ���� for some � � Z.

The set of regions is denotedRegnn.

Proposition 8.2.2. Each region is in normal form.

Proof. Take some regionD � Regnn and suppose it is not in normal form, that is, there exist
somei� j� k � �� � � � n	 such thatDij �� Dik � Dkj. We will show then that it does not verify the
nonemptiness property 8.7. We have the following cases to analyze:

1. All three intervalsDij, Dik andDkj are point intervals, sayDij � f�g, Dik � f�g and
Dkj � f�g. Then it follows that� �� � � �. But this implies that

Dij �Djk �Dki � f�� � � �g �� f�g

which is in contradiction with property 8.7.
2. Dij � 	�� ����,Dik � 	�� ���� andDkj � f�g. Then the assumption thatDij �� Dik �Dkj

rewrites to	�� ���� �� 	���� ��� � ��. Hence we must have either� � � � � � � or
� � � 
 � � �.
It then follows that

Dij �Djk �Dki � 	�������� ���� �� �! �

The case whenDjk is a point interval andDik is an open unit interval is similar.
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3. Dij � 	�� ����,Dik � 	�� ���� andDkj � 	�� ����. Then the assumption thatDij �� Dik�Dkj

rewrites to	�� ���� �� 	���� ������. Hence we must have either� � ����� or��� 
 ���.
But again this implies that� �� Dij �Djk �Dki, as it can be easily seen by verification. ut

In the introduction to this subsection we have talked about decomposition of each DBM into a
union of regions. The formalization of this is given by the “inclusion” relation,� v � � Regnn �

Edbmn, defined as follows

R v D iff Rij � Dij for all i� j � �� � � � n	

If R v D for some regionR and EDBMD, then we say thatR is included inD, or thatD includes
R. We also denoteD w R in this case.

Of course,v can be defined as a relation on EDBMs, but we utilize it only onRegnn�Edbmn.
For eachD � Edbmn we also denote�wD� the set of regions which are included inD.

The following property shows that, by replacing an EDBMD with the set of regions which are
included inD we lose nothing w.r.t. semantics:

Proposition 8.2.3. For each n-EDBM D � Edbmn,

kDk �
��

kRk j R v D
�

Proof. The inverse inclusion is straightforward. For the direct inclusion, take somen-signal� �
kDk. Define then the following DBM:

Rij �

 
f�ijg iff �ij � N�
b�ijc� d�ije

�
iff �ij �� N

By definitionR ! �, henceR has a nonempty semantics, hence it is a region. On the other
hand, for eachi� j � �� � � � n	, �ij � Dij by assumption. But then the following two cases arise,
according to whether�ij is integer or not:

� �ij � Z. Then clearlyRij � Dij.
� �ij �� Z. ButDij has integer bounds, hence eitherb�ijc � Dij or b�ijc is the lower bound ofDij.

Similarly, eitherd�ije � Dij or d�ije is the upper bound ofDij .
Hence in this case tooRij � Dij. ut

Another essential property of regions is the fact that region representation of a set ofn-signals
is unique:

Proposition 8.2.4. For each pair of n-regions R�R� � Regnn, if kRk � kR�k ��  then R � R�.

Proof. The hypothesis implies that, for eachi� j � �� � � � n	,Rij �R�
ij �� . But as the intervalsRij

andR�
ij are either point intervals or open intervals of unit length,Rij � R�

ij ��  is equivalent to
Rij � R�

ij. ut
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Corollary 8.2.5. For each two sets of regions R��R� � Regnn, kR�k � kR�k if and only if
R� � R�.

Proof. The inverse inclusion is straightforward. For the direct inclusion, take some regionR � R�,
hencekRk � kR�k which implies thatkRk � kR�k. But then, for each� � R there must exist a
regionR� � R� with � � R�. But� � kRk � kR�k, which implies thatR � R�. ut

8.2.1 Juxtaposition and concatenation on regions

The representation of EDBMs by regions would not be satisfactory if we would not have a compo-
sitional concatenation on these representations: compositionality is essentially needed for further
representing EDBMs – and regular expressions over them – with the aid ofn-automata.

In Chapter 6, Definition 6.4.3 we have introduced a juxtaposition operation on regsignals, hence
we may think we only need consider its particularization to regions. Since projection is compo-
sitional on regions, we would have the desired compositional concatenation. However, with the
definition from Chapter 6, juxtaposition is not an internal operation on regions, that is, the result
might not necessarily be a region, but rather a DBM. An example was provided in the introductory
part of this chapter.

The issue from this situation is to define juxtaposition as an operation that associates, to each
pair of regions, aset of regions, namely those regions which are included in the DBM constructed
by Definition 6.4.3. For avoiding working with that heavy definition, but also due to the composi-
tionality of projection, we may define way more simpler the juxtaposition of regions as follows:

Definition 8.2.6. Given two regions R� � Regnm and R� � Regnn and some integer p 


min�m�n�, suppose that

R� �n	p�����n
� R� �����p

(8.15)

The region p-juxtaposition of R� and R� is the following set of �m� n� p�-regions:

R��pR� �
�
R � Regnm�n	p j R �����m

� R�� R �n	p�����m�n	p
� R�

�
(8.16)

If R� �n	p�����n
�� R� �����p

then we put R��pR� � .

In the sequel, the juxtaposition operation from Definition 6.4.3, with regions as arguments, will
be called asDBM juxtaposition.

The next concern is to check that all the (signal-)juxtaposition properties, as stated in Chapter
6, hold for region juxtaposition too.

Proposition 8.2.7. 1. Region juxtaposition is compositional: for each R� � Regnm and R� �

Regnn and p 
 min�m�n�,

kR��pR�k � kR�k�pkR�k (8.17)
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2. For each R � Regnm, R� � Regnn, for each X � �� � � � m	 with card�X� � p, for each
Y � �� � � � n	 with card�Y � � q and given r 
 min�p� q�, suppose that �m� r � � � � � m	 � X

and �� � � � r	 � Y . Then we have that

R
X
�rR

�
Y
� �R�rR

��
X�
Y�m	r�

� (8.18)

3. Region juxtaposition is associative: for eachR� � Regnm,R� � Regnn andR� � Regnp, and
for each k 
 min�m�n� and l 
 min�n� p�,

�R��kR���lR� � R��k�R��lR�� (8.19)

Proof. The first property follows due to the compositionality of projection: suppose that require-
ment 8.15 holds. Then:

kR��pR�k �
�
� � R j R

�����m
� R�� R �n	p�����m�n	p

� R�

�
�
�
� � R j �

�����m
� kR�k� � �n	p�����m�n	p

� kR�k
�

� kR�k�pkR�k�

In the case requirement 8.15 does not hold, there must exist some indicesi� j � �� � � � p	 such
that�R��i�m	p
j�m	p �� �R��ij. But this implies that�R��i�m	p
j�m	p��R��ij � , fact which as-
sures that for any twon-signals�� � kR�k and�� � kR�k we must have����i�m	p
j�m	p �� �ij.
Therefore, the setskR�k andkR�k cannot bep-juxtaposed, i.e.kR�k�pkR�k � . As a conse-
quence,kR��pR�k �  � kR�k�pkR�k.

The other two properties can be proved with the aid of the compositionality of juxtaposition
and projection, by using Corollary 8.2.5 and Proposition 6.2.7:

kR
X
�rR

�
Y
k � kR�k X

�rkR�k Y
by compositionality of juxtaposition

� �kRk�rkRk
��

X�
Y�m	r�
by Proposition 6.2.7

� k�R�rR
��k

X�
Y�m	r�
by compositionality of projection

k�R��kR���lkR�k �
�
kR�k�kkR�k

�
�lkR�k

� kR�k�k

�
kR�k�lR�

�
by associativity of�p

� kR��k�R��lR��k ut

Consequently we may define the desired compositional concatenation on�n-regions:

Definition 8.2.8. Given R�� R� � Regn�n, the �n-region-concatenation of R� and R� is the fol-
lowing set of �n-regions:

R� �R� �
�
R

�����n���n������n
j R � R��nR�

�
(8.20)

The following proposition shows that region concatenation shares almost the same properties
as�n-signal concatenation:
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Proposition 8.2.9. 1. Region concatenation is compositional: for each two �n-regions, R�� R� �

Regn�n,

kR� � R�k � kR�k � kR�k (8.21)

Observe that here we have implicitly extended the semantics application k � k to setsof regions.
2. Region concatenation is associative: for each triplet of �n-regions R�� R�� R� � Regn�n,

R� � �R� �R�� � �R� � R���R� (8.22)

3. Each region has a left and a right unit: for each R � Regn�n there exist �lR� �
r
R � Regn�n such

that

�lR �R � R� �rR � fRg (8.23)

The definitions of the left and right units are the following:

��lR�ij � ��lR�n�i
j � ��lR�i
n�j � ��lR�n�i
n�j � Rij

��rR�ij � ��lR�n�i
j � ��lR�i
n�j � ��lR�n�i
n�j � Rn�i
n�j

4. For each region R � Regn�n there exists a weak inverse�R with the property that

�lR � R� �R� �rR � �R� R (8.24)

The definition of the weak inverse is the following:

�Rij �

�����	
����


Ri�n
j�n iff i� j � �� � � � n	

Ri�n
j	n iff i � �� � � � n	� j � �n� � � � � �n	

Ri	n
j�n iff i � �n� � � � � �n	� j � �� � � � n	

Ri	n
j	n iff i� j � �n� � � � � �n	

(8.25)

Proof. The first property is a straightforward corollary of the compositionality of juxtaposition and
projection, while the second property follows from the associativity of region juxtaposition and its
proof runs exactly as the proof of the associativity of�n-signal composition – see Proposition
6.2.10.

The other two properties have more specific proofs, compared to their “relatives” form Propo-
sition 6.2.10, and this is due to the particularity of region juxtaposition. Still both of them rely
essentially on compositionality.

For proving property 3, observe first that each�n-signal � �rR is a unit of the form�r� for
some� � Sig�n�fag�. On the other hand, for any�n-signal� � Sig�n���, if �� �r� is defined then
�r� �����n

� �
�n������n

. But this implies that�r� � �r� and therefore
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kR� �rRk �
�
� �  j � � kRk�  � k�rRk

�
�
�
� � �r� j � � kRk� �

r
� �����n

� �
�n������n

�
�
�
� � �r� j � � kRk

�
� kRk

The equalityR� �rR � fRg follows then by the uniqueness property 8.2.5. The validity of the
identity regarding the right unit can be established similarly.

The proof of the last property proceeds along similar lines: for each� � R we have that
�� � k �Rk and� � �� � �l�. Hence�l� � kR � �Rk, which implies thatk�lRk � kR� �Rk. And here
we apply Corollary 8.2.5 to get that�lR � R� �R. ut

Let us observe here that only the weak inverse property can be obtained, that is, we cannot have
equality in Identity 8.24, since in general the setR� �R might have cardinality greater than�.

As usual, any operation defined on elements of a certain type can be easily extended to sets
of elements. Therefore we also dispose of the following compositional concatenation onsets of
regions: for each pair of sets of regionsR��R� � Regn�n,

R� �R� �
�
R� �R� j R� � R�� R� � R�

�
Let us also denote the set of all left and right units for�n-region concatenation as��n:

��n � fR � Regn�n j �i � X�Ri
n�i � �g �
�
�lR j R � Regn�n

�
(8.26)

It is easy to see that��n is a unit for concatenation on sets of regions. Once in the possession of
this unit we may define thestar operation� on sets of regions as follows: for eachR � Regn�n

R� �
�
k�N

Rk�

whereR�� � ��n andR
k���� � Rk� �R for all k � N .

Proposition 8.2.10. For any sets of regions R�R� � Regn�n,

kR �R�k � kRk � kR�k (8.27)

kR�k � kRk� (8.28)

Consequently,
�
P�Regn�n���� �����n� ���

�
�

is a Kleene algebra.

8.3 Representing DBMs with the aid of n-words and n-relations

In this section we formalize the possibility to represent sets ofn-regions with pairs consisting of a
n-word and a matrix of relational symbols.
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8.3.1 n-relations

Definition 8.3.1. An n-relation is an n� n matrix M over the set of relation symbols # � f���

� 	g satisfying the following property (called in the sequel as the consistency property):

There exists no cycle in the matrix �ij�j������k�� with ij � �� � � � n	, k � � and ik�� � i�
such that
� For all j � �� � � � k	, Mij 
ij�� � f� � �� � � �g;
� For some j � �� � � � k	, Mij 
ij�� � � � �.

We denote the set ofn-relations as#n.
Observe that anyn-relationM is anantisymmetric matrix, that is:

� Mii � � � � and
� If Mij � � � � thenMji � � � �;
� If Mij � � � � thenMji � � 	 �;
� If Mij � � 	 � thenMji � � � �.

An alternative definition ofn-relations is the following: for each sequence of indicesm �

�mr�r������p with mp�� � m�, denote

A�m� �
�
r � �� � � � p	 jMmrmr�� � � � �

�
B�m� �

�
r � �� � � � p	 jMmrmr�� � � � �

�
C�m� �

�
r � �� � � � p	 jMmrmr�� � � 	 �

�
Then ann-relation is ann� n matrix over# bearing the property that

If card�A�m�� 
 p� � then bothcard�B�m�� � � andcard�C�m�� � �� (8.29)

Let us also provide a simple way for checking whether a matrixM �Mn�n�# � is ann-relation:

Proposition 8.3.2. M is an n-relation if and only if it is antisymmetric and the consistency prop-
erty holds for all cycles of length equal to 3.

Proof. The reverse implication can be proved as follows: take some arbitrary sequence of indices
m � �mr�r������p withmp�� � m�. Suppose that property 8.29 is false for this sequence. Of course,
the antisymmetry and the hypothesis imply thatp � �. We will show that the same property is false
for a shorter sequence, fact which, by induction, would imply that property 8.29 would be false for
a sequence of length 3.

To this end, assume w.l.o.g. thatcard�C�m�� � �, hence we havecard�A�m���card�B�m�� �

n. We have� cases to study, according to whetherMm�m� is � � � or � � �, respectively to whether
Mm�m� is � � � or � � �.

Consider first the caseMm�m� � Mm�m� � � � �. Since by hypothesis, the sequence
�m��m��m�� satisfies property 8.29, we must haveMm�m� � � 	 �, hence, by antisymmetry,
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Mm�m� � � � �. But then the sequencem� � �m��m�� � � � �mp� doesnot satisfy property 8.29,
because we have replaced two� � � signs by with one� � � sign, hence

A�m�� � A�m�� B�m�� � B�m�� �� C�m�� � C�m� � �

Similarly, if Mm�m� � � � � andMm�m� � � � � thenMm�m� � � 	 � and again the sequence
m� does not satisfy property 8.29. The other cases are treated similarly. ut

Remark 8.3.3. By Proposition 8.3.3, we have that in ann-relationM the length 3 cycles may only
be of the types�� � �� � � �� � � ��, �� � �� � � �� � 	 ��, �� � �� � � �� � 	 ��, �� � �� � � �� � 	 �� and
their circular permutations.

8.3.2 Operations on n-relations

Since our aim is to represent sets of regions (and thus EDBMs) with the aid ofn-words andn-
relations, we need to provide an algebraic calculus of composition and star on�n-relations too.
This is the issue of this subsection.

The first operation to be defined is projection: for eachM � #n andX � �� � � � n	, theX-
projection of M is thecard�X�-relation resulting by deleting fromM the rows and columns that
are not inX.

Definition 8.3.4. Given an m-relation M� � #m, an n-relation M� � #n and a positive integer
p 
 min�m�n�, if

M� �m	p�����m
�M� �����p

(8.30)

then the p-juxtaposition of M� with M� is the following set of �m� n� p�-relations:

M��pM� �
�
M � #m�n	p jM �����m

�M��M �m	p�����m�n	p
�M�

�
(8.31)

If requirement 8.30 is not satisfied then we put M��pM� � .

The following proposition shows that relation juxtaposition enjoys all the properties of the
juxtaposition operations seen so far:

Proposition 8.3.5. 1. Given an m-relation M� � #m, an n-relation M� � #n and a positive
integer p 
 min�m�n�, M��pM� ��  if and only if M� and M� verify the requirement 8.30.

2. For each M� � Regnm, M� � Regnn, for each X � �� � � � m	 with card�X� � p, for each
Y � �� � � � n	 with card�Y � � q and each r 
 min�p� q�, suppose that �m� r � � � � � m	 � X

and �� � � � r	 � Y . Then we have that

M� X
�rM� Y

� �M��rM�� X�
Y�m	r�
� (8.32)

3. Relation juxtaposition is associative: for each M� � #m, M� � #n and M� � #p, and for each
k 
 min�m�n� and l 
 min�n� p�,

�M��kM���lM� �M��k�M��lM�� (8.33)
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Proof. Concerning the first property, note first that we are interested in proving the reverse impli-
cation, since the direct implication is contained in the definition of juxtaposition. Hence consider
two relationsM� andM� satisfying the hypotheses. In order to build a�m� n� p�-relation from
them, we must first see what could be the possible choices for the components�i� j� in the new
relation, wherei � �� � � � m� r � �	 andj � �m� � � � � m� n� p	.

So let’s consider, for each such pair of indices�i� j� � �� � � � m� r��	� �m�� � � �m�n�p	,
the following set of pairs of relation symbols:

�ij �
��

�M��ik� �M��k	m�p
j

�
j k � �m� p� � � � � m	

�
Let us then call pairs that are different from�� � �� � 	 �� or �� 	 �� � � �� ascritical. We

would like to prove that, once some critical pair is in�ij, all the other critical pairs from�ij do
not “contradict” it. There could be several “contradictory” pairs that may occur:�� � �� � � �� and
�� 	 �� � 	 ��, or �� � �� � � �� and�� 	 �� � � ��, or �� � �� � � �� and�� 	 �� � 	 ��, or �� � �� � � ��

and �� 	 �� � 	 ��, or their symmetrics/cyclic permutations. We will prove the impossibility of
occurrence only for the first case, the other proofs being similar.

Suppose the contrary, hence there existsk� l � �m � p � � � � � m	 such that�M��ik � � � �,
�M��k	m�p
j � � � �, and�M��il � � 	 �, �M��l	m�p
j � � 	 �. But then, by the consistency re-
quirement,�M��kl � � 	 � and�M��k	m�p
l � � � �, which is in contradiction with the assumption
8.30. Hence, the two critical pairs cannot occur both in�ij.

It follows that, if ��M��ik� �M��k	m�p
j� is a critical pair, thenthere is only one choice of a
third relation symbolMji such that the triplet��M��ik� �M��k	m�p
j�Mji� satisfies the consistency
requirement for cycles of length 3. Moreover, this choice is the same for two critical pairs that are
“noncontradictory”.

As a consequence, an�m� n� p�-relation inM��pM� can be constructed the following way:

� For eachi� j � �� � � � m	,Mij � �M��ij.
� For eachi� j � �m� p� � � � � m� n� p	,Mij � �M��i	m�p
j	m�p.
� For eachi � �� � � � m � p	 andj � �m � � � � � m � n � p	, Mij is a choice which is consistent

with any (i.e. all) of the critical pairs in�ij. AlsoMji is the reverse ofMij.

Observe that the pairs�� � �� � 	 �� and�� 	 �� � � �� are noncritical since they are consistent
with any choice of a third relation symbol. That is, if a set�ij contains only noncritical pairs then
the choice ofMij can be any relation symbol.

This observation ends the proof of the first property. However we will observe that the same
proof could be employed for establishing the truth of the following two related properties:

(A) Given anm-relationM� � #m, ann-relationM� � #n, a positive integerp 
 min�m�n� and a
setX � �� � � � m	 with card�X� � p, if M� X

� M� �����p
then there exists someM � #m�n	p

such thatM
�����m

�M� andM
�m	p�����m�n	p

�M�.
(B) With the same hypotheses as above, and considering also a setY � �� � � � n	 with card�Y � � p,

if M� �m	p�����m
� M� Y

then there exists someM � #m�n	p such thatM
�����m

� M� and
M

�m	p�����m�n	p
�M�.
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In fact, these properties can be regarded as connected to a definition of aset-indexed juxtaposition, something of the type
M��X�pM�, respectivelyM��p�YM�.

For proving the second property, start withM� � #m, M� � #n, and with setsX�Y and
integersp� q� r as in the statement of the property. The right-to-left inclusion of Identity 8.32 is
straightforward since for each�m� n� p�-relationM � �M��pM�� X�
Y�m	r�

we have that

M
�����k

� �M��pM�� X�
Y�m	r� �����p
� �M��pM�� X � fM� X

g

M
�p	r�����p�q	r

� �M��pM�� X�
Y�m	r� �p	r�����p�q	r
� �M��pM�� Y�m	r

� fM� Y
g

For the left-to-right inclusion we will essentially rely on the two properties (A) and (B): take a
�p� q � r�-relationM �M� X

�rM� Y
, that is,M

�����p
�M� X

andM
�p	r�����p�q	r

�M� Y
.

FromM
�����p

�M� X
we conclude, by means of property (A), that there exists an�m� q� r�-

relationM� � #m�q	r such that

M� �����m
�M� and M� �m	p�����m�q	r

�M

FromM
�p	r�����p�q	r

�M� Y
we deduce, by applying property (B), that there exists a�n�p�r�-

relationM� � #m�q	r such that

M� �����p�q	r
�M and M� �p	r�����n�p	r

�M�

But these two choices imply that

M� �m	p�����m�q	r
�M� �����p�q	r

hence there must further existM � #m�n	r such that

M
�����m�q	r

�M� and M
�m	p�����m�n	r

�M�

We then only have to observe that this�m� n� r�-relation belongs toM��pM� because:

M
�����m

� M
�����m�q	r �����m

�M� �����m
�M�

M
�m	r�����m�n	r

� M
�m	p�����m�n	r �p	r�����n�p	r

� M� �p�r	����n�p	r
�M�

Finally, the proof of the third property follows by easy verification:
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�M��kM���lM� �
�
M � #m�n�p	k	l jM �����m�n	k

�M��kM�

andM
�m�n	k	l�����m�n�p	k	l

�M�

�
�
�
M �#m�n�p	k	l jM �����m�n	k �����m

�M��

M
�����m�n	k �m	k�����m�n	k

�M��

andM
�m�n	k	l�����m�n�p	k	l

�M�

�
�
�
M � #m�n�p	k	l jM �����m

�M��M �m	k�����m�n	k
�M��

andM
�m�n	k	l�����m�n�p	k	l

�M�

�
M��k�M��lM�� �

�
M � #m�n�p	k	l jM �����m

�M�

andM
�m	k�����m�n�p	k	l

�M��lM�

�
�
�
M � #m�n�p	k	l jM �����m

�M��M �m	k�����m�n�p	k	l �����n
�M��

andM
�m	k�����m�n�p	k	l �n	l�����n�p	l

�M�

�
�
�
M � #m�n�p	k	l jM �����m

�M��M �m	k�����m�n	k
�M��

andM
�m�n	k	l�����m�n�p	k	l

�M�

�
ut

Having these properties, we proceed further to defining concatenation and star:

Definition 8.3.6. Given two �n-relation M��M� � #�n, their concatenation is defined as follows:

M� �M� �
�
M��nM�

�
�����n���n������n

(8.34)

The good properties of concatenation are the following:

Proposition 8.3.7. 1. �n-relation concatenation is associative: for each triplet of �n-relations
M��M��M� � #�n,

M� � �M� �M�� � �M� �M���M� (8.35)

2. Each �n-relation has a left and a right unit: for each M � #�n there exist �lM � �
r
M � #�n such

that

�lM �M �M � �rM �M (8.36)

The definitions of the left and right pseudounits are the following:

��lM�ij � ��lM�n�i
j � ��lM�i
n�j � ��lM�n�i
n�j �Mij

��rM�ij � ��rM�n�i
j � ��rM�i
n�j � ��rM�n�i
n�j �Mn�i
n�j

Observe that, similarly to all units for the concatenations encountered so far, ��lM�ii �

��rM�ii � � � � for all i � �� � � � �n	.
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3. For each �n-relation M � #�n there exists a weak inverse�M with the property that

�lM �M � �M� �rM � �M �M (8.37)

The definition of the weak inverse is the following:

�Mij �

�����	
����


Mi�n
j�n iff i� j � �� � � � n	

Mi�n
j	n iff i � �� � � � n	� j � �n� � � � � �n	

Mi	n
j�n iff i � �n� � � � � �n	� j � �� � � � n	

Mi	n
j	n iff i� j � �n� � � � � �n	

(8.38)

Proof. The proof of this proposition is similar to the proof of Proposition 8.2.9. We will only prove
the first property, whose proof relies on Proposition 8.3.5:

�M� �M���M� �
�
�M� �M���nM�

�
�����n���n������n

�
�
�M��nM�� �����n���n������n

�nM�

�
�����n���n������n

�
�
M��nM��nM�

�
�����n���n������n���n������n �����n���n������n

�
�
M��nM��nM�

�
�����n���n������n

M� � �M� �M�� �
�
�M��n�M� �M��

�
�����n���n������n

�
�
M��n�M��nM�� �����n���n������n

�
�����n���n������n

�
�
M��nM��nM�

�
�����n��n������n���n������n �����n���n������n

�
�
M��nM��nM�

�
�����n���n������n

ut

The powerset�n-relations becomes then a monoid with concatenation and with the following
unit:

���n �
�
M � #�n jMi
n�i � � � �

�
Let us finally introduce star onsets of �n-relations: given a set of�n-relationsM� #�n, thestar
of M is defined as:

M� �
�
k��

Mk� (8.39)

whereM�� � ���n andM
k���� �Mk� �M for eachk � N .

8.3.3 n-word representations

Definition 8.3.8. A tuple �W�M� � WR n � #n is called a n-word representation.
The n-region R � Regnn represented by the tuple �W�M� is defined as follows: for all i� j �

�� � � � n	,
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Rij �

���	
��

fWijg iff Mij � � � �

	Wij � ��Wij� iff Mij � � � �

	Wij�Wij � �� iff Mij � � 	 �

(8.40)

The region represented by the tuple�W�M� is denoted�W�M 	. That is, we define a mapping
��	 
 WR n � #n � Regnn, calledrepresentation, which associates to eachn-word representation
the region which is represented by it.

The above definition should be incorrect unless we prove the following:

Proposition 8.3.9. For each �W�M� � WR n � #n, �W�M 	 has a nonempty semantics.

Proof. The proof idea is to check that�W�M 	 is in normal form. By Remark 8.3.3, we have to
check four (representative) cases onM . We check here only two, the�� � �� � � �� � � �� case and
the�� � �� � � �� � 	 �� case, the proof in the other cases being similar.

1. Take somei� j� k � �� � � � n	 and suppose thatMij � � � �,Mjk � � � � andMki � � � �. Then,
by the triangle identity

�W�M 	ij � �W�M 	jk � fWijg� fWjkg � fWij �Wjkg � fWikg � �W�M 	ik

2. Take somei� j� k � �� � � � n	 and suppose thatMij � � � �,Mjk � � � � andMki � � � �. Then,
again by the triangle identity

�W�M 	ij � �W�M 	jk � 	Wij � ��Wij� � 	Wjk���Wjk� � 	Wij�Wjk���Wij�Wjk�

� 	Wik���Wik� while

�W�M 	ik � 	Wik���Wik�

because, by construction,�W�M 	ki � 	Wki�Wki��� andWki � �Wik. Hence, we get that
�W�M 	ik � �W�M 	ij � �W�M 	jk in this case too. ut

The mapping��	 defines an equivalence relation onWRn � #n (the kernel of ��	, in category
theoretic terms) denoted in the sequel"n and defined as follows:

�W�M� "n �W ��M �� iff �W�M 	 � �W ��M �	 (8.41)

The following proposition can be used to prove that eachn-region has at least onen-word
representation:

Proposition 8.3.10. Given some n-word representation �W�M� � WRn � #n, suppose that there
exists some region R � Regnn�� such that R

�����n
� �W�M 	. Then there exists a �n � ��-word

representation of R, �W ��M �� � WR n�� � #n��, such that �W ��M ��
�����n

� �W�M�.

Proof. We first “close” each open interval inR, that is, compute the DBMR � Dbmn�� with

Rij �

 
��� � � �	 iff Rij �	�� � � ��

f�g iff Rij � f�g
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It is easy to see thatR is still in normal form since the triangle inclusion is preserved by taking
closures of the sets involved in it.

We now simulate in part the proof of Proposition 8.1.5, namely choose a set of integers�i such

that�j � �i � Wij (for simplicity we put�i � W�i) and then prove that
n�
i��

�
�i � Ri
n��

�
�� .

Then we observe that this intersection is a closed unit length interval with integer bounds, since
each factor of the intersection is. Thence we may choose one of the bounds of this interval, denote
it K, and build from it a�n� ��-wordW � � WDn�� which extendsW :

W �
ij �Wij for all i� j � �� � � � n	

W �
i
n�� �Wi� �K for all i � �� � � � n	

W �
n��
i � �Wi
n�� for all i � �� � � � n	

Similarly to the proof of Proposition 8.1.5 we get thatW � is a�n � ��-word (in fact a�n � ��-
signal) which belongs tokRk. We now need to choose some relation symbols that extendM to
some�n� ��-relationM � such that�W ��M �	 � R. This extension is done as follows:

M �
i
n�� �

���	
��

� � � iff Ri
n�� � fWi
n��g

� � � iff Ri
n�� �	Wi
n�� � ��Wi
n���

� 	 � iff Ri
n�� �	Wi
n���Wi
n�� � ��

and of courseM �
�����n

�M .
Let us show that this is a�n���-relation, i.e., that it is consistent. SinceM�

�����n
� M we only

need to check cycles of length 3 in whichn� � participates.
Suppose such a cycle is inconsistent, sayMij � � � ��Mj
n�� � � � � andMn��
i � � � �. But

thenRij � 	Wij���Wij� � Rj
n�� � 	Wj
n�����Wj
n��� � Rn��
i � 	Wn��
i���Wn��
i�. It follows
that

Rij �Rj
n�� �Rn��
i � 	Wij�Wj
n���Wn��
i���Wij�Wj
n���Wn��
i� � 	� �� ��

which obviously contradicts the assumption thatR has a nonempty semantics, that is, the Identity
8.7 The other cases of inconsistent cycles are treated similarly.

HenceM � is indeed a�n� ��-relation. As a consequence,�W ��M �� is one of the�n� ��-word
representations forR. ut

The following corollary says that representation of sets ofn-regions with the aid ofn-word
representations is complete:

Corollary 8.3.11. For each region R � Regnn there exists an n-word representation of it.

Proof. We only have to apply Proposition 8.3.10 iteratively, starting with a representation ofR
f�g

,
that is, with��� � � �	. ut
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8.3.4 Operations on n-word representations

Our quest on providing representations of EDBM demands now to extend projection, juxtaposi-
tion, concatenation and positive star fromn-words andn-relations ton-word representations. The
extensions are then, as expected, the following:

�W�M�
X

� �W
X
�M

X
� (8.42)

�W�M��p�W
��M �� �

�
W�pW

��M ��� jM �� �M�pM
�
�

(8.43)

�W�M�� �W ��M �� �
�
�W�M��n�W

��M ��
�
�����n���n������n

(8.44)

W� �
�
k��

Wk� (8.45)

whereW �WR �n � #�n.
The main concern is then to show that then-word representation operations correctly simulate

then-signal/region operations, that is, to show they are compositional, because this would assure
us of the usefulness ofn-word representations. The following proposition paves the way of proving
this compositionality:

Proposition 8.3.12. 1. For each �W�M� � WR n � #n,

�W
X
�M

X
	 � �W�M 	

X
(8.46)

2. For each m-word representation �W��M�� � WRm � #m, each n-word representation
�W��M�� � WR n � #n and each integer p 
 min�m�n�,

�W��M�	�p�W��M�	 �
�
�W �

��pW
�
��M 	 j �W �

��M
�
�� " �W��M���

�W �
��M

�
�� " �W��M�� and M �M �

��pM
�
�

�
(8.47)

3. For each pair of �n-word representations �W��M��� �W��M�� � WR �n � #�n,

�W��M�	� �W��M�	 �
�
�W �

� �W �
��M 	 j 	�W �

��M
�
�� " �W��M���

	�W �
��M

�
�� " �W��M�� and M �M �

� �M �
�

�
(8.48)

Proof. The first property follows by easy verification and we skip its proof.
For the second property, the inverse inclusion is straightforward: given any�m� n� p�-region

R �
�
�W �

��pW
�
��M 	 j �W �

��M
�
�� " �W��M��� �W

�
��M

�
�� " �W��M�� andM � M �

��pM
�
�

�
, we

have, by the first property 8.46, thatR
�����m

� �W��M�	 andR
�m	p�����m�n	p

� �W��M�	. But
this implies thatR � �W��M�	�p�W��M�	 by definition of�p on regions.

For the left-to-right inclusion we rely upon Proposition 8.3.10 in the following way: take
someR � �W��M�	�p�W��M�	. Take some representation ofR

�m	p�����m
, say �W��M�	 �

R
�m	p�����m

. Then, using Proposition 8.3.10, extend this representation to two other represen-
tations: one equivalent to�W��M�� and the other equivalent to�W��M��. Denote these two repre-
sentations as�W ��M��, respectively�W ��M��.
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Observe that, since both these representations are extensions of�W��M�� we have that

W � �m	p�����m
�W� �W � �����p

M� �m	p�����m
�M� �M� �����p

But thenceW ��pW � is defined, and it remains to choose an extensionM of M� andM� such
that �W ��pW ��M 	 � R. This extension is the following: for eachi � �� � � � m � p	 and j �
�m� � � � � m� n� p	,

M ij �

���	
��

� � � iff Rij �

�
�W ��pW ��ijg

� � � iff Rij �
�
�W ��pW ��ij � �� �W ��pW ��ij

�
� 	 � iff Rij �

�
�W ��pW ��ij� �W ��pW ��ij � �

� (8.49)

Of course,M
�����m

�M� andM
�m	p�����m�n	p

�M�.

It is routine to check that only these three conditions onRij really hold and thatM is consistent.
And, by construction, we have�W��pW ��M 	 � R.

The last two properties are easy corollaries of the property 8.47. ut

Remark 8.3.13. Observe that the identity

�W��M�	�p�W��M�	 �
�
�W��pW��M 	 jM �M��pM�

�
is not valid in general since it might be possible that�W��M�	 �n������n

� �W��M�	 �����n but
W� �n������n

�� W� �����n
just because the same region might have different representations.

An example of this mismatch is provided in the introductory part of this chapter.

This observation raises the problem whether we may correctly represent region concatenation
with �n-word representation concatenation. The idea that helps us overcome this problem is that,
for each pair of�n-regions which correctly concatenate, there must exist a pair of�n-word rep-
resentations which correctly concatenate, and hence represents the concatenation of the two given
regions. In other words, we will be interested in composingsets of �n-word representations which
bear the property thatall the�n-word representations associated with a certain region are in the
set. The formalization of this idea is the following notion ofconvexity:

Definition 8.3.14. A set of n-word representations N � WRn � #n is called convex if it is satu-
rated by the equivalence relation "n, that is, if the following property holds:

For each set of n-word representations W �WRn � #n and each n-word representation
�W�M��N , if �W�M 	 � �W ��M �	 for some �W �� R���WR n�#n then also �W ��M ���N .

In the sequel, for each set ofn-word representationsW � WRn � #n, we denote�W	 as the
set of regions which are represented by some element ofW:

�W	 �
�
�W�M 	 j �W�M� � W

�
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Proposition 8.3.15. 1. For each convex set of n-word representationsW � WRn �#n and each
X � �� � � � n	, W

X
is also a convex set of card�X�-word representations.

2. For each two convex sets of word representations W� � WRm � #m, W� � WR n � #n, and
integer p 
 min�m�n�, W��pW� is a convex set of �m� n� p�-word representations and

�W��pW�	 � �W�	�p�W�	 (8.50)

3. For each two convex sets of �n-word representations W��W� � WR �n � #�n, W� �W� is a
convex set and

�W� �W�	 � �W�	� �W�	

4. For each convex set of �n-word representations W �WR�n � #�n, W� is convex and

�W�	 � �W	�

Proof. All the properties rely on Proposition 8.3.10. For the first property, observe that, if�W�M� �

W and�W ��M �	 � �W�M 	 then there must existR � �W	 such thatR
X

� �W�M 	 � �W ��M �	.
But then we may recursively apply Proposition 8.3.10 to extend�W��M �� to an-region�W ���M ���

that is, with�W ���M ���
X

� �W ��M ��, such that�W ���M ��	 � R. But sinceR � �W	, by convexity
of W it follows that�W ���M ��� � W. Fact which implies that�W ��M �� � W

X
.

For the second property, observe that identity 8.47 from Proposition 8.3.12 gives the left-to-right
inclusion:

�W��pW�	 �
��

�W��pW��M 	 j 	M� � #m�M� � #n such that�W��M�� � W��

�W��M�� � W� andM
�����m

�M��M �m	p�����m�n	p
�M�

�
�
��

�W �
��pW

�
��M 	 j 	�W��M�� � W�� �W��M�� � W� with

�W �
��M

�
�� " �W��M��� �W

�
��M

�
�� " �W��M�� andM �M��pM�

�
�
��

�W��M�	�p�W��M�	 j �W��M�� � W�� �W��M�� � W�

�
� �W�	�p�W�	

For the reverse identity, suppose we have some regionR � �W�	�p�W�	. HenceR
�����m

� �W�	

andR
�m	p�����m�n	p

� �W�	. It follows that there exist�W��M�� � W� withR
�����m

� �W��M�	.
Consider now�W��M�� �m	p�����m

. We have that�
�W��M�� �m	p�����m

'
� R

�m	p�����m

hence, by Proposition 8.3.10 we may extend thisp-word representation to ann-word representation
that representsR

�m	p�����m�n	p
, say

�W��M�� �����p
� �W��M�� �m	p�����m

and (8.51)

�W��M�	 � R
�m	p�����m�n	p

(8.52)



8.4 n-region automata 181

Observe that Identity 8.52 implies that�W��M�	 � �W�	, hence, by convexity ofW� it follows
that �W��M�� � W�. On the other hand, Identity 8.51 says thatW� andW� can bep-juxtaposed
and so canM� andM�. Hence�W��pW��M��pM�� is nonempty and�W��pW��M��pM�	 �

�W��pW�	.
It remains just to pick some�m�n� p�-relationM �M��pM� such thatR � �W��pW��M 	,

and the choice is the same as for theM defined in 8.49 in the proof of Proposition 8.3.12. Also it
is easy to observe that the convexity of bothW� andW� implies the convexity ofW��pW�.

The proof of the last two properties is a straightforward corollary of the first two. ut

8.4 n-region automata

Definition 8.4.1. An n-region automaton is a tuple A � �Q� ��Q�� � � � Qn� $� in which all but
the last components form an n-automaton A� � �Q� ��Q�� � � � � Qn� over the one-letter alphabet
� � f�g while $ 
 Q � #n is the n-relation labeling function, associating a n-relation to each
state.

Then-automatonA� � �Q� ��Q�� � � � � Qn� is called theunderlying n-automaton ofA.
n-region automata are intended to represent EDBMs by means ofn-word representations: a

run in ann-region automaton is a sequence of transitions in� which match on intermediary states,
with the additional property thatall states in the run are labeled with the same n-relation. Because
only one symbol can label any transition, we will represent each run as the sequence of states in
the run,� � �qi�i������k and denote$��� then-relation which identically labels all the statesqi in �.

A run � � �qj�j������k is accepting if it passes through each accepting set, that is, if for eachi �

�� � � � n	 there exists somej � �� � � � k	 such thatqj � Qi. Given an-word representation�W�M� �

WR n � #n, a run� � �qj�j������k and a sequence of indices of states in the runlll � �li�i������n with
the property thatqli � Qi, we say that then-word representation�W�M� is accepted by ��� lll� if
W is accepted by the underlyingn-automatonA� andM � $���. Similarly ton-automata, we call
the sequencelll as the sequencewitnessing the acceptance of�W�M� by �.

Remark 8.4.2. Since in eachn-region automaton we are interested only in runs in which states are
labeled with the samen-relation, we will consider onlyn-region automata in which the transition
function is consistent with then-relation labeling$, that is, in which wheneverq

a
�� r for some

a � � then$�q� � $�r�.

To eachn-region automaton we will associate three languages:

� Then-word representation language accepted by A, denotedLrep�A�, consists of then-word
representations accepted by some tuple��� lll� as above.

� Theregion language ofA is the set of regions which are represented by somen-word represen-
tation inLrep�A�, and is denotedLrgn�A�:

Lrgn�A� �
�
�W�M 	 j �W�M� � Lrep�A�

�
(8.53)
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� Finally, then-signal language of A is the union of the semantics of the regions in the region
language ofA,

Lsig�A� �
��

kRk j R � Lrgn�A�
�

Remark 8.4.3. Observe that, for each twon-region automataA andB, Lrgn�A� � Lrgn�B� iff
Lsig�A� � Lsig�B�, but it might be possible thatLrgn�A� � Lrgn�B� andLrep�A� �� Lrep�B�,
due to the possibility to represent the samen-region by differentn-word representations. But if
the twon-word representation languages are convex, then we also haveLrgn�A� � Lrgn�B� iff
Lrep�A� � Lrep�B�.

Definition 8.4.4. An n-region automaton is called convex if its n-word representation language is
convex.

With this definition, the following chain of equivalences is valid for convexn-region automata:

Lrep�A� � Lrep�B� iff Lrgn�A� � Lrgn�B� iff Lsig�A� � Lsig�B� (8.54)

Hence, when we will need to prove the equality of the languages of two convexn-region au-
tomata we will only need to prove the equality of theirn-word representation language.

8.4.1 Basic closure properties for n-region automaton

Throughout this section we prove that the operations onn (or �n)-automata can be extended to
operations onn-region automata. This subsection is just a restatement for EDBMs andn-region
automata of the results contained in Chapter 7. We start by the translation of Proposition 7.2.10:

Proposition 8.4.5. The class of n-signal languages accepted by n-region automata is closed under
union and intersection. Moreover, ifA andB are two convex n-region automata, then one can build
convex n-region automaton for Lsig�A� � Lsig�B� and Lsig�A� � Lsig�B�.

Proof. The constructions are straightforward adaptations from Proposition 7.2.10. The convexity
property follows due to the fact that intersection and union of saturated sets give saturated sets.ut

Theorem 8.4.6. The class of n-signal languages which are the n-signal language of some n-region
automaton equals the class of n-signal languages which are the semantics of a sum of n-EDBMs.

Note that the result refers toextended DBMs. It is clear that, in general,n-region automata are
more expressive than sums of mere DBMs.

Proof. The proof of the direct inclusion is very similar with the proof of Theorem 7.2.14.
Consider all tuples of accepting states�q�� � � � � qn� with qi � Qi and such that all the states

in the tuple are labeled with the samen-relationM . For each such tuple andn-relationM , we
construct then-region automaton in which only the states labeled withM are present and in which
all Qis are singleton setsQi � fqig. Denote this reduced automatonA�q�� � � � � qn�M�.
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Then, for eachi� j � �� � � � n	 we build the regular expressionE�
ij which denotes the set of

positive integers that are the length of a path fromqi to qj in A�q�� � � � � qn�M�. Since we speak
about positive integers, we may putE�

ij in the form

E�
ij � A � �B � fcg��

whereA�B are finite sets of integers4 andc � N .
Then, fromE�

ij we build a regular expressionover intervals – that is, ann-EDBM – as follows:

1. If Mij � � � � then clearly

D�
ij � E�

ij � A � �B � fcg���

2. If Mij � � � � then observe that, intuitively, each� � A is anupper bound for a n-region
which is accepted byA along a path fromqi to qj. Hence we put

D�
ij �

��
	���� �� j � � A

�
�
���

	���� �� j � � B
�
� fcg�

�
3. If Mij � � 	 � then we put

D�
ij �

��
	�� ���� j � � A

�
�
���

	�� ���� j � � B
�
� fcg�

�
Finally, from all these regular expressions over nonnegative intervals we build then-EDBM

D � Edbmn defined by:

Dij � D�
ij � ��D�

ji�

where�D denotes the regular expression over real intervals which results by changing every
bound into its opposite; for example, for the case 3 above,

�D�
ji �

��
	�������� j � � A

�
�
���

	�������� j � � B
�
� f�cg�

�
It is then easy to check that the semantics of the sum of alln-EDBMs built for each tuple

�q�� � � � � qn� and eachn-relationM equals then-signal language ofA.

The reverse inclusion can be proved by induction onn as follows: in the base case, we code
each regular expression over real intervals into a�-region automaton. The idea is to decompose
each regular expression over intervals

R � A � �B � fcg�� (8.55)

into a union of two regular expressions, one containing only point intervals and the other containing
only open intervals of unit length. Hence the basic case reduces to the following constructions:

� Remind that we use� � � for denoting union and� � � for denoting concatenation for regular expressions over intervals.
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1. Suppose thatA�B � N . DenotemA � maxA andmB � maxB. Then the�-region automaton
equivalent toR is:

C �
�
Q� ��Q�� Q�� $

�
where

Q � ��� � � � mA	� f�g� � ��� � � � mB	� f�g� � ��� � � � c	� f�g�

� �
�
���� �� ��� ��� ��� j � � �� � � � mA	

�
�
�
���� �� ��� ��� ��� j � � �� � � � mB	

�
��

���� �� ��� ��� ��� j � � �� � � � c	
�
�
�
��c� ��� ��� ���

�
�
�
��b� ��� ��� ��� j b � B

�
Q� � f��� ��� ��� ��g

Q� � �A� f�g� � �B � f�g� � f�c� ��g

$�q� � � � � for all q � Q

Observe thatC is a convex�-region automaton.
2. Suppose there exist two strictly increasing sequences of integers��i�i������card
A� and

��i�i������card
B� such that:

A �
�
	�i� �i��� j i � card�A�

�
and B �

�
	�i� �i��� j i � card�B�

�
Then the�-region automaton equivalent toR is

C �
�
Q� ��Q�� Q�� $

�
where

Q �
�
�� � � � �card
A� � �	� f�g � f� � �� � 	 �g

�
��

�� � � � �card
B� � �	� f�g � f� � �� � 	 �g
�
��

�� � � � c	� f�g � f� � �� � 	 �g
�

� �
�
��x� �� �� s�� �x� �� s�� j x � �� � � � �card
A� � �	� s � f� � �� � 	 �g

�
��

��x� �� �� s�� �x� �� s�� j x � �� � � � �card
B� � �	� s � f� � �� � 	 �g
�
��

��x� �� �� s�� �x� �� s�� j x � �� � � � c	� s � f� � �� � 	 �g
�
��

���i� �� � 	 ��� ��� �� � 	 ��� j i � �� � � � card�B�	
�
��

���i � �� �� � � ��� ��� �� � � ��� j i � �� � � � card�B�	
�

Q� � f��� �� s�� ��� �� s� j s � f� � �� � 	 �gg

Q� �
�
��i� �� � 	 ��� ��i � �� �� � � �� j i � �� � � � card�A�	

�
��

��i� �� � 	 ��� ��i � �� �� � � �� j i � �� � � � card�B�	
�
�

�fcg � f�g � f� � �� � 	 �g�

$�k� l� � � �� � � � � and$�k� l� � 	 �� � � 	 � for all k� l

Observe again thatC is convex.

For the induction step we rely upon the following property:

Proposition 8.4.7. Given an n-region automatonA, there exists an �n���-region automaton with
the property that
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Lrgn�B� �
�
R � Regn
n��� j R �����n

� Lrgn�A�
�

(8.56)

or, equivalently, by Proposition 8.1.5, Lsig�B� �
�
� � Sign���fag� j � �����n

� Lsig�A�
�

.
Moreover, if A is convex, then B can be chosen to be convex too.

Proof. Denote the givenn-region automatonA � �Q� ��Q�� � � � � Qn� $�. We first build an ex-
tension of the automaton, by appending states similar toq� andq�� from Definition 7.2.9 of the
completion of ann-automaton. We will actually append� � card�#n� states, namely the union
Q� �Q�� where

Q� �
�
�q��M� jM � #n

�
and Q��

�
�q���M� jM � #n

�
due to the need to have a stateq� and a stateq�� labeled with eachn-relation. These states will be
connected to the others as follows:

�� � � �
�
��q��M�� �q��M��� ��q���M�� �q���M�� jM � #n

�
��

��q��M�� q��� �q�� �q���M�� jM � #n and there existsi � �� � � � n	 such thatq� � Qi

�
Thus we get ann-region automaton, which we call thecompletion of A and denote�A. In this
automaton, any accepting run can be extended to a run that starts inQ� and end inQ��.

We further transform this automaton into an�n � ��-region automaton by putting any state in
the�n� ��-th accepting set and by augmenting alln-relation labels to�n� ��-relation labels. The
resulting automaton is

B � �Q�� ��� Q�
�� � � � � Q

�
n� Q

�
n��� $

�� with Q� � Q �Q� �Q�� and

Q� �
�
�q�M� j q � Q�M � #n�� andM

�����n
� $�q�

�
�� �

�
��q�M�� �q��M�� j �q� q�� � ��

�
Q�
i �
�
�q�M� � Q� j q � Qi

�
for i � �� � � � n	

Q�
n�� � Q�

$�q�M� �M for all �q�M� � Q�

By a straightforward adaptation of the proof for Proposition 7.2.12 we get that

Lrep�B� �
�
�W�M� � WR n�� � #n�� j �W �����n

�M
�����n

� � Lrep�A�
�

(8.57)

Observe that this property is equivalent to the fact thatLrep�B� �����n
� Lrep�A�.

The convexity ofB follows easily from the above property: suppose that�W�M 	 � �W��M �	

and�W�M 	 � L�B�. By assumption, we then have

�W
�����n

�M
�����n

	 � �W�M 	
�����n

� �W ��M �	
�����n

� �W �
�����n

�M �
�����n

	

Further,�W�M 	 � L�B� implies that�W
�����n

�M
�����n

	 � Lrgn�A�. From these and from the
convexity ofA we get that�W �

�����n
�M �

�����n
� � Lrep�A�, which, by identity 8.57, is equivalent

to �W ��M �� � Lrep�B�. ut
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Proof (of Theorem 8.4.6, continued). For each EDBMR � Edbmn and each� 
 i � j 
 n, we
construct the�-region automaton equivalent toRij. Then we extend this automaton to ann-region
automaton, by recursively applying Proposition 8.4.7. Finally, we intersect then�n����� automata
to get then-region automaton equivalent toR.

If we are given a finite sum of EDBMs, we utilize the above construction for each term of the
sum, and then apply the union construction from Proposition 8.4.5. ut

8.4.2 Non-elasticity for �n-DBMs

To further adapt the results on concatenation and star closure from Chapter 7, we need to transport
non-elasticity for�n-regsignals/�n-regions/�n-word representations and to relate these properties
to one another.

Definition 8.4.8. A �n-signal � � Sig�n��� is called non-elastic if the following property holds:

(NS) For each i� j � �� � � � n	, if �i
n�i �� � and �j
n�j �� � then 
��i
n�j� � � and

��j
n�i� � �.

A �n-signal language is called non-elastic if each �n-signal in it is non-elastic.
A �n-region automaton is called non-elastic if its �n-signal language is non-elastic.

As we intend to representn-signal languages by sets ofn-regions, and further by sets ofn-word
representations, we need to transport the notion of non-elasticity from�n-signals to�n-regions
and to�n-word representations in a consistent way. Moreover, we expect that the notion of non-
elasticity of�n-word representations rely on the notion of non-elasticity of�n-words, similar to
Definition 7.3.1.

Definition 8.4.9. A �n-DBM D � Dbm�n is called non-elastic iff the following property holds:

(ND) For each i� j � �� � � � n	, if Di
n�i n f�g �� , Dj
n�j n f�g ��  then Di
n�j � �����

and Dj
n�i � �����.

Proposition 8.4.10. For each �n-DBM in normal form D � Dnf�n, D is non-elastic iff kDk is
non-elastic.

Proof. For proving the first property, observe first that, ifkDk contains a�n-signal which is elastic
thenD itself must not be non-elastic. For the other implication supposeD is elastic, hence there
exists a pair of indicesi�� j� � �� � � � n	 such thatDi�
n�i� n f�g �� , Dj�
n�j� ��  butDi�
n�j� ��

����� orDj�
n�i� �� �����. Suppose also, for the sake of contradiction, thatkDk is non-elastic.
Let us first observe thatDi�
n�i� � ����� and similarlyDj��
n�j� � �����, since otherwise we

may construct, by means of Proposition 8.1.5, a�n-signal� � kDk with 
��i�
n�i�� � �, hence
contradicting the assumption thatkDk is non-elastic.

We will replace firstD by the “sub-DBM”D� which is obtained fromD by transforming closed
parentheses into open parentheses on allnonpoint components ofD. That is,
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D�
ij �

 
	�� �� iff infDij � �� supDij � � and� �� �

Dij otherwise, that is, iffDij � f�g for some� � R

Let us first observe thatD� is also a�n-DBM in normal form: for eachi� j� k � �� � � � �n	, since
Dik � Dij �Djk it follows also thatintDik � intDij � intDjk, (where we have denoted byintA
the interior of a set of realsA � R ). Hence the triangle inclusion is valid if all three components
are nonpoint sets. The triangle inclusion also holds for all triplet of point components ofD� since
such components are copied fromD. It remains to check the triangle inclusion for the case when
one or two components are point intervals and the other (or the others) is (are) nonpoint interval(s).

Observe first that the situation withDij andDjk being point sets andDik nonpoint set is im-
possible, since the sum of two point sets is also a point set.

SupposeDij is a point set andDjk� Dik are nonpoint sets, say

Dij � f�g� Djk � ��� ��	� Dik � ��� ��	

the cases with other parentheses forDjk andDik being treated similarly. SinceD is a DBM we
haveDik � Dij �Djk, that is,��� ��	 � �� � �� � � ��	. Therefore

D�
ik � 	�� ��� � 	���� ����� � D�

ij �D�
jk

A similar proof can be done whenDij andDik are both point intervals andDjk is nonpoint.
The last distinct case is whenDik is a point interval and one ofDij orDjk is a nonpoint interval:

suppose, w.l.o.g., that

Dik � f�g� Dij � ��� ��	� Djk � ��� ��	 with � � ��

Since by hypothesisDij � Dij �Djk, we must then have

��� ��	 � f�g� �������	 � ��� ��� �� �	

which means that�� 
 �� �, hence

� � �� � � 	 � � �

Similarly we may prove that� � �� � ��, hence in fact we must have� � 	���� ������. But this
is equivalent to the triangle inclusionD�

ik � D�
ij �D�

jk. HenceD� is a DBM.
Observe now that, following our observation thatDi�
n�i�� Dj�
n�j� � �����, we must have

Di�
n�i�� Dj�
n�j� � 	����.
We utilize thenD� as follows: take some negative number� � D�

i�
n�j�
. Such a number must

exist, because we have assumed thatDi�
n�j� �� ����� andD�
i�
n�j�

� intDi�
n�j�. The number�
can also be regarded as a�-signal in the semantics of the�-DBM D�

fi�
n�j�g
. Then, by recursively

applying the construction from Proposition 8.1.5 we extend this to a�n-signal� � kD�k.
But obviously� is elastic since
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� �i�
n�i� � D
�
i
n�i hence
��i�
n�i�� 	 �,

� similarly 
��j�
n�j�� 	 �,
� and
��i�
n�j�� � � � �.

which gives a contradiction with the non-elasticity ofkDk, sincekD�k � kDk. ut

Non-elasticity extends to�n-word representations in the following way: a�n-word representa-
tion �W�M� is callednon-elastic if the �n-DBM represented by it is non-elastic. Consequently, a
non-elastic�n-word representation must satisfy the following property: for eachi� j � �� � � � n	,

if
� Wi
n�i 	 � or (Wi
n�i � � andMi
n�i � � 	 �)
and
� Wj
n�j 	 � or (Wj
n�j � � andMj
n�j � � 	 �)
thenWi
n�j 	 � or (Wi
n�j � � andMi
n�j � f� � �� � 	 �g).

Observe that if a�n-word representation�W�M� is non-elastic then the�n-wordW is non-
elastic.

8.4.3 Closure under concatenation and star

Proposition 8.4.11. Given two convex �n-region automata A and B, there exists a �n-region au-
tomaton D with the property that Lsig�D� � Lsig�A� � Lsig�B�. Moreover, if both A and B are
non-elastic then D is non-elastic too.

Proof. We adapt the concatenation construction in Section 7.4 for�n-region automaton: denote the
given automata asA � �Q� ��Q�� � � � � Q�n� $� andB � �Q�� ��� Q�

�� � � � � Q
�
�n� $

��. There are two
ideas that guide this adaptation (we refer the reader to the construction on page 127):

� First, we require that, in each tuple�q� q�� X�, the labels ofq and q� are “consistent”, that is,
the projection of$�q� onto the lastn components equals the projection of$��q�� onto the first
components.

� We then attach to each tuple�q� q�� X� a�n-relation labelM which is in the concatenation of the
�n-relation labels$�q� and$�q��.

The formalization is the following: we construct first�A and �B, the completions ofA andB,
as in the proof of Proposition 8.4.7. Hence�A � � �Q� ���Q�� � � � � Q�n� �$� with �Q � Q � Q� � Q��

where

Q� �
�
�q��M� jM � #�n

�
�$�q��M� �M

Q�� �
�
�q���M� jM � #�n

�
�$�q��M� �M

and�q��M�
�
�� �q��M�, �q��M�

�
�� q, respectively�q���M�

�
�� �q���M�, q

�
�� �q���M� for all

q �
S

i�����nQi.
Similarly �B � � �Q�� ���� Q�

�� � � � � Q
�
�n� �$

�� with �Q� � Q� �Q�
� �Q

�
�� where
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Q�
� �

�
�q���M� jM � #�n

�
�$ ��q���M� �M

Q�
�� �

�
�q����M� jM � #�n

�
�$ ��q����M� �M

and�q���M�
�
�� �q���M�, �q���M�

�
�� q�, respectively�q����M�

�
�� �q����M�, q�

�
�� �q����M� for all

q� �
S

i�����nQ
�
i. We will also assume, as stated by Remark 8.4.2, that in both�A and �B the transition

relation is consistent w.r.t. the�n-relation labeling, that is, two states are connected by a transition
iff they are both labeled with the same�n-relation.

Then build the following�n-region automaton:

C �
�
Q�� �� S�� � � � � S�n� $�

�
with

Q� �
�
�q� q�� X�M� j X � �� � � � n	� q � �Q� q� � �Q� with �$�q�

�n������n
� �$ ��q��

�����n

andM � �$�q�� �$ ��q��
�

� �
�
�q� q�� X�M�

a
�� �r� r�� Y�M� j �q� q�� X�M�� �r� r�� Y�M� � Q�� q

a
��r � ��� q�

a
��r� � ����

X � Y � �� � � � n	 and for alli � Y nX� r � Qn�i andr� � Q�
i

�
Si �

�
�q� q�� X�M� � Q� j q � Qi

�
Sn�i �

�
�q� q�� X�M� � Q� j q

� � Q�
n�i

�
$��q� q

�� X�M� �M for all �q� q�� X�M� � Q�

Finally drop all the states ofC that are not reachable fromQ��Q�
��fg�#�n or not coreachable

fromQ�� �Q�
�� � �� � � � n	� #�n and denoteD the resulting automaton.

To prove thatLrep�A� � Lrep�B� � Lrep�D�, take some�n-word representation�W�M� �

Lrep�A� � Lrep�B�, hence there must exist�W��M�� � Lrep�A� and�W��M�� � Lrep�B� such
thatW �W��W� andM �M��M�. It follows that there exists an accepting run�� � �ri�i������k
in A (actually we will consider it in�A�) and a sequence of indices�il�l�������n which witness the
acceptance of�W��M�� byA, hence all its states are labeled with the�n-relationM�; also we may
assume that�� starts inQ� and ends inQ��. Similarly, there exists a run�� � �r�i�i������k� in �B and
a sequence of indices�jl�l�������n which witness the acceptance of�W��M�� byB and whose states
are all labeled withM�. We may also assume that�� starts inQ�

� and ends inQ�
��.

As in the proof of Proposition 7.4.1, we may transform the two runs by addition of loops in
Q� andQ��, respectivelyQ�

� andQ�
��, and “translate” the two witnessing sequences�il�l������n and

�jl�l�������n such that the runs have equal length (we assume thencek � k�) and the following
property holds:

For all l � �� � � � n	� in�l � jl�

Then we construct the run� � �ri� r
�
i� Ii�M�i������k in which

I� � 

Ii�� � Ii �
�
l � �� � � � n	 j ri � qil�n

�
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and the sequence of witnessing points�pl�l�������n with

pl �

 
il for l � �� � � � n	

jl for l � �n� � � � � �n	

Observe first that each tuple in the run� is inQ�, since

M �M� �M� � �$�ri�� �$ ��r�i� for all i � �� � � � k	

Moreover, the first state being inQ� � Q�
� � #�n and the second state inQ�� � Q�

�� � #�n, it
follows that all the states are also states ofD.

Then observe that�ri� r�i� Ii�i������k and the sequence�pl�l�������n are exactly the run and the
witnessing sequence associated withW��W� in the underlying automatonD�. Hence the run and
the accepting sequence are associated with the�n-word representation�W�M�, which shows that
�W�M� � Lrep�D�.

To prove thatLrep�D� � Lrep�A� � Lrep�B�, take some�n-word representation�W�M� �

Lrep�D�, which is thence associated with a run� � �ri� r
�
i� Xi�M�i������k in D and a sequence

�li�i�������n.
Observe then that�� � �ri�i�������n is an accepting run in�A because we have assumed that

the transition relation is consistent with the�n-relation labeling. Similarly,�� � �r�i�i�������n is
an accepting run in�B. Let’s denoteM� the common�n-relation label of all states in��, that is
M� � �$���� andM� � �$ �����.

Then we construct the following sequence of indices:�pj�j������n with pj � �� � � � k	 and

pj � i iff j � Xi�� nXi

It follows that the sequence
�
�li�i������n� �pi�i������n

�
witnesses the acceptance of some�n-word rep-

resentation�W��M�� by the run�� in �A and the sequence
�
�pi�i������n� �li�i��n������n

�
witnesses the

acceptance of some�n-word representation�W��M�� by the run�� in �B. MoreoverW� �n������n
�

W� �����n
because both are associated with the run� and the sequence of indices�pi�i������n. Hence

�W�M� � �W��M��� �W��M��, which shows that�W�M� � Lrep�A�� Lrep�B�. ut

In the previous chapter we have also proved the closure under indexed juxtaposition forn-
automata. The respective construction can be easily adapted ton-region automata, along the same
lines of the above proof. We have preferred to present here only the proof for concatenation since
it offers insights for the proof for star closure.

Theorem 8.4.12. Given a convex �n-region automatonA, suppose that, for any k � N , Lrep�A�k�

is a non-elastic �n-signal language. Then Lrep�A�� is accepted by a �n-region automaton.

Proof. We adapt the construction from Theorem 7.4.3 as follows: first, we replaceA by its com-
pletion �A in which we assume, following Remark 8.4.2, that the transition function connects only
states labeled with the same�n-relation.
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The automaton that acceptsLsig�A���� is denoted as

C � �Q�� ��� U�� � � � � U�n� $��

Q� consists of tuples�S� �� �� T�M�M �� in which the first� components have the same meaning
and utility as in Theorem 7.4.3, while the last two components give the information concerning the
�n-relation which is to be accepted. Namely, the fifth component is exactly the�n-relation-label
of the macrostate, while the sixth serves for succesively concatenating all the�n-relation labels of
the states which have passed through the right active component. The idea is that, at the end of the
parse we want to haveM � M �. In some sense, inM we make a guess at the beginning for theM�

that we will get at the end of the parse.
Formally,Q� consists of the following types of states and$� gives the following�n-relation

labeling (we utilize here the notationsQ andX from the proof of Theorem 7.4.3):

1. �� � �X� q�X ��� T�M�M �� where�X� q�X �� � Q, T � Q, andM�M � � #�n, with the prop-
erty that, for all�Y� r� Y �� � T ,
a) $�q� �M �.
b) $��� � �X� q�X ��� T�M�M �� �M .
c) X � �n� � � � � �n	 � �Y � �� � � � n	� � n.
d) X � � �n� � � � � �n	 � �Y � � �� � � � n	� � n.
e) �Y � n Y � � �n� � � � � �n	 � ��Y � n Y � � �� � � � n	� � n � �X � nX� � �n� � � � � �n	.

2. �S� �X� q�X ��� �Y� r� Y ��� T�M�M �� with �X� q�X ��� �Y� r� Y �� � Q, S� T � Q, M�M � � #�n,
with the following properties:
a) $�q�

�n������n
� $�r�

�����n
.

b) $��� � �X� q�X ��� T�M�M �� �M .
c) X � �n� � � � � �n	 � �Y � �� � � � n	� � n.
d) X � � �n� � � � � �n	 � �Y � � �� � � � n	� � n.
e) For each�U� s� U �� � S,

i. U � �n� � � � � �n	 � �X � �� � � � n	� � n.
ii. U � � �n� � � � � �n	 � �X � � �� � � � n	� � n.
iii. �U � n U� � �� � � � n	 � ��U � n U� � �n� � � � � �n	�� n � �X � nX� � �� � � � n	.

f) For each�V� t� V �� � T ,
i. Y � �n� � � � � �n	 � �V � �� � � � n	� � n.
ii. Y � � �n� � � � � �n	 � �V � � �� � � � n	� � n.
iii. �V � n V � � �n� � � � � �n	 � ��V � n V � � �� � � � n	� � n � �Y � n Y � � �n� � � � � �n	.

3. �S� �X� q�X ��� � �M�M �� with �X� q�X �� � Q, S � Q, andM�M � � #�n, with the property
that for all�Y� r� Y �� � S,
a) $��� � �X� q�X ��� T�M�M �� �M .
b) U � �n� � � � � �n	 � �X � �� � � � n	� � n.
c) U � � �n� � � � � �n	 � �X � � �� � � � n	� � n.
d) �U � n U� � �� � � � n	 � ��U � n U� � �n� � � � � �n	�� n � �X � nX� � �� � � � n	.
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The transitions are the following:

1. �� � �X� q�X ��� T�M�M ��
a
�� �� � �X �� q�� X ���� T ��M�M �� iff

a) q
a
�� q�;

b) For all�V �� t�� V ��� � T � there exists�V� t� V �� � T such thatt
a
�� t�.

2. �S� �X� q�X ��� �Y� r� Y ��� T�M�M ��
a
�� �S �� �X �� q�� X ���� �Y �� r�� Y ���� T ��M�M �� iff

a) q
a
�� q�, r

a
�� r�;

b) For all�U� s� U �� � S there exists�U�� s�� U ��� � S � such thats
a
��s�;

c) For all�V �� t�� V ��� � T � there exists�V� t� V �� � T such thatt
a
�� t�.

3. �S� �X� q�X ��� � �M�M ��
a
�� �S �� �X �� q�� X ���� � �M�M �� iff

a) q
a
�� q�;

b) For all�U� s� U �� � S there exists�U �� s�� U ��� � S � such thats
a
��s�.

4. �S� �X� q�X ��� �Y� r� Y ��� T�M�M ��
�
���S �� �Y� r� Y ��� �Z� s� Z ��� T ��M�M ��� iff

� M �� �M � � $�s�;
� There existsX �� � X such that�X �� q�X ��� � S;
� There existsY � X such that�Y� r� Y �� � T ;
� For each�Z� s� Z�� � S there existsZ�� � X such that�Z�� s� Z ��� � S.
� For each�Z�� s� Z ��� � T � there existsZ � X such that�Z� s� Z�� � T .

5. �� � �X� q�X ��� T�M�M ��
�
���� �X �� q�X ���� �Y �� r� Y ���� T ��M�M ��� iff

� M �� �M � � $�r�;
� There existsY � X such that�Y� r� Y �� � T ;
� For each�Z�� s� Z ��� � T � there existsZ � X such that�Z� s� Z�� � T .

6. �S� �X� q�X ��� �Y� r� Y ��� �M�M�
�
���S �� �Y� r� Y ��� � �M�M� iff

� There existsX �� � X such that�X �� q�X ��� � S;
� For each�Z� s� Z�� � S there existsZ�� � X such that�Z�� s� Z ��� � S.

The accepting sets are, for alli � �� � � � n	,

Ui �
�
�� � �X� q�X ��� T�M�M �� j i � X � nX�M�M � � #�n�M

� � $�q�
�
��

�S� �X� q�X ��� �Y� r� Y ��� T�M�M �� j i�X nX ��M�M � � #�n� and

for all �Z� s� Z�� � S� i � Z � n Z
�

(8.58)

Un�i �
�
�S� �X� q�X ��� � �M�M� j n� i � X � nX�M � #�n

�
��

�S� �X� q�X ��� �Y� r� Y ��� T�M�M �� j i� n � Y � n Y�M�M � � #�n and

for all �Z� s� Z�� � T� i� n � Z � n Z
�

(8.59)

Finally, the state space is reduced to the states reachable from the following set

Q� �
n�
� � �� q��M�� �� T�M�M �

�
j T � Q��M��M�M � � #�n

o
(8.60)

and coreachable from

Qf �
n�
S� ��� � � � �n	� q���Mf � �� � � � �n	�� � �M�M j S � Q���Mf �M � #�n

o
(8.61)
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We will denote this reduced state space asQ
�

and the resulting automaton asD. The correctness
of this construction is almost the same as the proof of Theorem 7.4.3, with some extra consider-
ations on the relation labels of the states. Though it might look redundant, we have to retrace the
constructions in Theorem 7.4.3, for showing why they work for�n-region automata too.

For proving the inclusionLrep�D� � Lrep�A����, take some�n-word representation�W�M�

accepted byD, that is, associated with some accepting run ofD � � �Si� �i� �i� Ti�M�Mi�i������m,
with

�S�� ��� ��� T��M�M�� �
�
� � �q��M

�
�� �� T�M�

�
�Sm� �m� �m� Tm�M�Mm� �

��
�S� �q���M

�� �� � � � �n	�� � �M�M
�

and with a sequence of indiceshhh � �hi�i�������n with hi � �� � � � m	 and�Shi � �hi � �hi � Thi �M�Mhi� �

Ui for all i � �� � � � �n	. Hence, for alli� j � �� � � � �n	,

�Shi � �hi � �hi � Thi �M�Mhi�
Wij

��� �Shj � �hj � �hj � Thj �M�Mhj �

Similarly to the proof of Theorem 7.4.3 we identify a numberp of times the run� passes
through transitions that “move around” states from the right active to the left active component.
Denote�k�� � � � � kp� the indices at which transitions of the type 4,5 or 6 occur in�. We then use�

and buildp runs in “history” presentation,�j � �Zj
i � s

j
i � Z

j

i �i������k in �A (i � �� � � � m	) such that
the following properties are satisfied:

1. For eachj � �� � � � p	 and i � �kj	� � � � � � kj 	, �Z
j
i � s

j
i � Z

j

i � is the right active component,

�Zj
i � s

j
i � Z

j

i � � �i.
2. For eachj � �� � � � p � �	 and i � �kj	� � � � � � kj 	, �Z

j	�
i � sj	�i � Z

j	�

i � is the right active

component,�Zj	�
i � sj	�i � Z

j	�

i � � �i.
3. For eachj � �� � � � p	, andi � �� � � � kj	�	, �Z

j
i � s

j
i � Z

j

i � is part of the prophecy component,

�Zj
i � s

j
i � Z

j

i � � Ti.
4. For eachj � �� � � � p��	, andi � �kj���� � � � m	, �Zj

i � s
j
i � Z

j

i � is part of the history component,

�Zj
i � s

j
i � Z

j

i � � Si.
5. �j passes through some accepting setQn�i at the same moment when�j�� passes through the

accepting setQi for the samei � �� � � � n	, that is, the essential property (*) utilized in the proof
of Theorem 7.4.3:
For all j � �� � � � p� �	 and for alli � �� � � � m	,
Zj
i � �n� � � � � �n	 � �Zj��

i � �� � � � n	� � n andZ
j

i � �n� � � � � �n	 � �Z
j��

i � �� � � � n	� � n.

Here we have denotedk� � � andkp�� � m.
Once having these runs, we translate them to the witnessing presentation by buildingp se-

quences of indicesllli � �liu�u�������n (i � �� � � � p	), with lji � u iff u � Z
j

i n Z
j
i , and observe

that these sequences witness the acceptance ofp �n-words�wj�j������p for which we may prove,
similarly to the proof of Theorem 7.4.3, that for eachj � �� � � � p� �	,
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W � w� � � � �� wp wj �n������n
� wj�� �����n

w� �����n
� w

�����n
wp �n������n

� w
�n������n

As �j � �Zj
i � s

j
i � Z

j

i �i������m is a run in �A, it follows that$�sji � � $�sji��� for all i� i� � �� � � � m	.
Let us denote thenM �

j � $�sji � for somei � �� � � � n	. We would like now to relate these�n-relation
labels with the componentsMi in the run�, in order to prove that these labels correctly concatenate
and thatM is in their concatenation.

Let us note first that for eachj � �� � � � p � �	 the tuple�Zj
i � s

j
i � Z

j

i � is the right active com-
ponent while the tuple�Zj��

i � sj��
i � Z

j��

i � is the left active component. Hence we must have, by
requirement 2.b from the construction ofQ�,

M �
j �n������n

� $�sji � �n������n
� $�sj��

i �
�����n

�M �
j�� �����n

Therefore theM �
is correctly concatenate, it only remains to prove that their concatenation isM .

To this end, observe that, for eachj � �� � � � p � �	 and eachi � �kj	� � �� kj 	 (we consider
k� � � andkp�� � m), the i-th transition is of type 1,2 or 3 and thereforeMi � Mi��. By
requirement 1.a from the construction ofQ�, M� must be the label of the right component of the
first tuple, henceM� �M �

�. It follows thatMi �M �
� for all i � �� � � � k�	.

Consider now thek�-th transition. It is an�-transition of type 4 and it pulls the states�i out
of the prophecy component into the right active component. Therefore, by construction,Mk��� �

Mk� � $�s�i �, that isMk��� �M
�
� �M �

�.
By induction we may then prove that, if thei-th right active component is�Zji � s

j
i � Z

j

i � then
Mi � M �

� � � � ��M �
j. Hence, fori � m we have thatMm � M �

� � � � ��M �
p. ButMm � M , and

therefore�W�M� � �w��M
�
��� � � �� �wp�M

�
p�, fact which shows that�W�M� � Lrep�A����.

For the reverse proof, takep �n-word representations�wi�Mi� � Lrep�A� which correctly
concatenate, that is,�wi�Mi� �n������n

� �wi���Mi��� �����n
for all i � �� � � � p � �	, and consider

p accepting runs in the completed�n-automaton�A, one for each�wi�Mi�, together with their
witnessing sequences of indices:

�i � �qij�j�mi
with witnessing index sequence�lik�k�������n

We assume that each run starts inQ� and ends inQ��.
Then consider some�n-word representation�w�M� � �w��M��� � � �� �wp�Mp�, that is, take

w � w� � � � �� wp andM �M� � � � �Mp. We would like to show that�w�M� � L�D�.
The first step is to transform each run�i into a run in the “history” presentation, that is, denote

X i
j the set of indices of the accepting states which were visited by each run�i just before thej-th

step and byX
i

j the set of indices of accepting states visited by�i up to the j-th step, and also
denote�i

j their difference:

X i
j �

�
u � �� � � � �n	 j 	v � �� � � � j � �	 such thatliu � v

�
X

i

j �
�
u � �� � � � �n	 j 	v � �� � � � j	 such thatliu � v

�
�i

j � X
i

j nX
i
j�
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Then, similarly to the proof of Theorem 7.4.3, we bring all the runs�i to equal length, saym,
and build up a sequence of tuples� � �Si� �i� �i� Ti�M�M �

i�i������m�p, as follows:

1. The first tuple in� is�
� � �X�

� � q
�
�� X

�

��� f�X
i
�� q

i
�� X

i

�� j i � �� � � � p	g�M� $�q���
�

and the last tuple is�
f�X i

m� q
i
m� X

i

m� j i � �� � � � p� �	g� �Xp
m� q

p
m� X

p

m�� � �M�M
�

2. If �k	� � �X i
j	�� q

i
j	�� X

i

j	�� and for alli� 	 i, �i�

j � �n � � � � � �n	 � ��i�

j � �� � � � n	� � n,
then we append to the run the tuple�Sk� �k� �k� Tk�M�M �

k� with:

Sk �
�
�X i�

j � q
i�

j � X
i�

j � j i
� � i� �

�
�k �

 
 iff i � �

�X i	�
j � qi	�j � X

i	�

j � iff i � �

�k � �X i
j� q

i
j� X

i

j�

Tk �
�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 i

�
M �

k �M �
k	�

3. If �k	� � �X i
j	�� q

i
j	�� X

i

j	�� and there exists somei� 	 i for which�
�i�

j � �n� � � � � �n	
�
n
�
��i�

j � �� � � � n	� � n
�
�� 

then let

� � max
�
i� � i j

�
�i�

j � �n� � � � � �n	
�
n
�
��i�

j � �� � � � n	� � n
�
�� 
�

We then append�� i� � tuples as follows:
a) The first tuple to be appended is the tuple�Sk� �k� �k� Tk�M�M �

k� in which:

Sk �
�
�X i�

j � q
i�

j � X
i�

j � j i
� 
 i� �

�
�k � �X i

j� q
i
j� X

i

j�

�k �
�
X i��

j � qi��
j � X i��

j � ��i��
j n �n� � � � � �n	�

�
Tk �

�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 i� �

�
M �

k �M
�
k	� � $�qi��

j �

b) For eachl � �� � � � �� i� �	 we append the tuple�Sk�l� �k�l� �k�l� Tk�l�M�M �
k�l� with:

Sk�l �
�
�X

i�

j � q
i�

j � X
i�

j � j i
� � i� l � �

�
�k�l �

�
X i�l	�

j � ��i�l	�
j n �n� � � � � �n	�� qi�l	�j � X

i�l	�

j

�
�k�l �

�
X i�l

j � qi�lj � X i�l
j � ��i�l

j n �n� � � � � �n	�
�

Tk�l �
�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 i� l

�
M �

k�l �M �
k�l	� � $�qi�lj �
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c) Forl � �� i we append the tuple�Sk��	i� �k��	i� �k��	i� Tk��	i�M�M �
k��	i� where:

Sk��	i �
�
�X

i�

j � q
i�

j � X
i�

j � j i
� � i� �

�
�k��	i �

�
X �

j ��
�
j n �n� � � � � �n	�� q�j� X

�

j

�
�k��	i �

 
 iff � � p

�X ���
j � q���

j � X
���

j � iff � 
 p� �

Tk��	i �
�
�X i�

j � q
i�

j � X
i�

j � j i
� 	 �� �

�
M �

k��	i �M �
k��	i	� � $�qk��	ij �

4. If �k	� � , which can only happen wheni � p, we append the tuple�Sk� �k� �k� Tk�M�M �
k�

with:

Sk �
�
�X i�

j � q
i�

j � X
i�

j � j i
� � p

�
�k � �Xp

j � q
p
j � X

p

j�

�k � 

Tk � 

M �
k � M �

k	�

Consider the sequence of indicesttt � �tu�u�������n such thattu � l�u andtn�u � lpn�u for all
u � �� � � � n	. Also consider the run inA� �� � �Si� �i� �i� Ti�i������m�p that is, we purge the�n-
relations from the components of�. Then the pair���� ttt� witnesses the acceptance ofw by the
underlying automatonD�.

To end the proof, we only need to show that� is a run inD. The specific requirements (for
�n-region automata) that need to be checked are 1.a and 2.a, since all the other requirements are
either trivially true (the case of 1.b, 2.b and 3.a) or implied by the fact that�� is an accepting run
in D� (the case of requirements 1.c, 1.d, 1.e, 2.c, 2.d, 2.e.i, 2.e.ii, 2.e.iii, 2.f.i, 2.f.ii, 2.f.iii, 3.b, 3.c,
3.d).

The validity of requirement 1.a is straightforward, sinceM�
� � $�q��� and each step before the

first �-transition preservesM �
�.

For proving the validity of requirement 2.a, we have to observe that, according to the definition
of �, at each momentk � i�j at which�k ��  and�k �� , the left and the right active components
are thej-th tuple of the run�i, respectively the run�i��, that is,

�k � �X i	�
j � qi	�j � X

i	�

j �� �k � �X i
j� q

i
j� X

i

j�

This implies that$�qi	�j � �Mi	� and$�qij� �Mi, and then, due to the hypothesis thatMi correctly
concatenates toMi��, we will get that$�qi	�j � � $�qij�. Hence requirement 2.a also holds. ut
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In this chapter we gather together all the result and techniques developed so far, and provide a
method for checking whether the semantics of a�n-signal regular expression is empty. Conse-
quently we get a method for checking whether the language of a timed automaton is empty.

We have seen how to study untimed behavior and timing behavior of systems by using�n-
automata. We might then think to decompose each�n-regsignal into the “untimed” part, which
represents the qualitative behavior of the modeled system, and the “timing” part, which give the
temporal constraints on the behavior of the system.

More formally, givenR � RSig�n��� whereRij � hEijiIij � hE �
ijiI�ij with Eij regular expres-

sion over�, E�
ij regular expression over�	�, Iij � R�� andI �ij � R��, we define the following

two n-regsignals:

1. Ru, called theuntiming of R,Ru
ij � Eij � E �

ij for all i� j � �� � � � �n	.
2. Rt, called thetiming of R,Rt

ij � h��iIij � h��	���iI�ij for all i� j � �� � � � �n	.

ThenkRk � kRu �Rtk.
Ru can be considered as a�n-regword andRt as a�n-DBM. This implies that from each�n-

signal� � kRk we keep only the untiming information and the duration of each component�ij,
for i� j � �� � � � �n	. Hence the two aspects, untimed behavior and timing behavior, can be studied
separately.

However, for systems in which both the untimed behavior and the timing constraints are im-
portant, studying each one separately might prove an incomplete method, since we might miss
the interconnections which limit the behaviors. In our setting, this amounts to some expressions
which, when decomposed into timing and untimed and studied separately, give nonempty seman-
tics, while it is clear that their semantics is empty. For example, the following�-signal regular
expressions clearly has an empty semantics:�
BBB�

� hai� � habi�
ha	�i	� � ha	�i	� hbi�

� hai� � habi�
hb	�a	�i	� hb	�i	� hb	�a	�i	� �

�
CCCA�

�
BBB�

� habi� hai� habi�
hb	�a	�i	� � hb	�i	� �

ha	�i	� hbi� � hbi�
hb	�a	�i	� � hb	�i	� �

�
CCCA (9.1)

The reason why the concatenation of the two�-regsignals given in 9.1 has an empty semantics
lies in the fact that the first�-regsignal requires ana state of length� while the second imposes ana
state of length�. The Figure 9.1 below gives a graphical interpretation of this empty concatenation.
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habi�

�� � �

hai� hbi�

�

hai� hbi�

habi�

� � �� �
� � �

Fig. 9.1. A concatenation of two�-regsignals that has an empty semantics.

On the contrary both the untimed and the timing of the�-signal regular expression in 9.1 have
nonempty semantics:�

BBB�
� � � �

�� � �� �

� � � �

�� �� �� �

�
CCCA�

�
BBB�

� � � �

�� � �� �

�� � � �

�� � �� �

�
CCCA �

�
BBB�

� � � �

�� � � �

�� �� � �

�� �� �� �

�
CCCA

respectively�
BBB�

� a � ab

a	� � a	� b

� a � ab

b	�a	� b	� b	�a	� �

�
CCCA�

�
BBB�

� ab a ab

b	�a	� � b	� �

a	� b � b

b	�a	� � b	� �

�
CCCA �

�
BBB�

� a a ab

a	� � � b

a	� � � b

b	�a	� b	� b	� �

�
CCCA

The correct handling of such expressions requires working with both the untimed structure and
the timing structure together. But we only know to handle each one on its own.

The solution is the following: to decompose first each�n-regsignal into the untimed and the
timing part, then to build the�n-word representation of the timed part, and finally to recombine
the�n-regword in the untimed part with the�n-regword over a one-letter alphabet from the�n-
word representation of the timing part.

This recombination is simply theshuffle of the two�n-regwords. The simple but essential prop-
erties of shuffle that we will take advantage of is the fact that, for any two setsL�L�,L L� is empty
iff both L andL� are empty. Then what remains to be shown is that the union/concatenation/star
constructions correctly “combine” with this shuffle operation.

We show here that this idea works fine, in spite of the noncompositionality of projection on our
shuffled items. The reason this time noncompositionality is no longer harmful is that we are able
to provide a “weak compositionality” result, saying that the shuffle representation has a nonempty
semantics iff the semantics of the initial�n-signal regular expression is nonempty.

We end this section with an expected result, namely that the�n-regsignals that we have pro-
duced for timed automata satisfy the non-elasticity assumption, hence we can use the technique
developed here for checking timed automata for emptiness.

9.1 Decomposition and recomposition of �n-signal regular expressions

Throughout this section we will extend several operations from (�-dimensional) words/signals to
n-words/n-signals:
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1.
z��
� is the extension of the canonical projection

z��
� 
 �� � ����� (defined in Chapter 2,

page 27) ton-words: for eachn-wordw � WD�n��� andi� j � �� � � � n	,� z��
w
�
ij
�
z��
wij

Observe that we first need to extend
z��
� to antiwords and only after that ton-words.

2. U is the extension of the untiming morphismU 
 Sig��� � SF ��� to arbitraryn-signals: for
eachn-signal� � Sign��� andi� j � �� � � � n	,�

U���
�
ij
� U��ij�

Observe again that we first extendU to antisignals and only after that ton-signals.
3. 
 is the extension of the length morphism
 
 Sig��� � R�� to arbitraryn-signals: for each
n-signal� � Sign��� andi� j � �� � � � n	,�


���
�
ij
� 
��ij�

Similarly to above we first need to extend
 to antisignals.

The definition of the shuffle operation on words is the following: given two wordsw�w� � ��,
the shuffle of w andw�, denotedw w�, is the language obtained as follows: for eachk � N ,
we decomposew in k words,w � w� � � � wk andw� in k words too,w� � w�� � � � w

�
k, and then

recombine these pieces into a single word by interleaving subwords ofw with subwords ofw�.
More formally,

w w� �
�
w�� j 	w�� � � � wk� w

�
�� � � � � w

�
k � �

� such that

w � w� � � � wk� w
� � w�� � � � w

�
k andw�� � w�w

�
� � � � wkw

�
k

�
We will take advantage of the fact that we utilize disjoint sets of symbols (the set of symbols

which represent states within the signals, and the singleton set which is used in�n-word represen-
tations) and redefine shuffle with the aid of monoid morphisms as follows:

Let us consider two disjoint sets of symbols� � � � . We will define the shuffle ofw � ��

andw� � �� as the set of wordsw�� with the property that, if we delete fromw�� the symbols from
�, the result isw, and if we delete the symbols from� we getw�.

The formal definition of “deletion of symbols” is the following: denote first�� and�	 the
applications

�� 
 �� ���� ��� ���a� �

 
a for all a � �

� for all a � �

�	 
 �� ���� ��� �	�a� �

 
a for all a � �

� for all a � �

Then the “deletion of symbols” are the induced morphisms��� 
 �� � ��� � �� and resp.
��	 
 �� � ��� � ��. In the sequel we will utilize the notations�� and�	 for the induced
morphisms too.
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Definition 9.1.1. Given two words w � ��, w� � ��, the shuffle of w and w�, denoted w w�, is
the following set:

w w� �
�
w�� � �� ���� j ���w

��� � w and �	�w
��� � w�

�
(9.2)

The generalization ton-words gives the following:

Definition 9.1.2. Suppose we are given two �n-words w�w� � WDn���. The shuffle of w with
w�, denoted w w�, is the set of �n-words for which, for each i� j � �� � � � n	, the �i� j�-component
belongs to the shuffle of wij with w�ij:

w w� �
�
w�� � WDn�� ��� j for all i� j � �� � � � n	� w��ij � wij w�ij

�
(9.3)

Note however that “random shuffling” of components does not give in generalw w� because
some results might not satisfy the triangle identity 6.1.

Even more, we may define a class of�n-word regular expressions with shuffle, generated by
the following grammar:

E 

� R j E � E j E E j E � E j E�

The following proposition shows, in essence, that shuffle is expressible by the other operations,
that is, its use does not increase the expressive power of�n-word regular expressions:

Proposition 9.1.3. The class of n-word languages accepted by n-automata is closed under shuffle.

Proof. The construction is a generalization of a well-known construction for the shuffle of two
regular languages. It can be described as anasynchronous composition of two automata: at each
moment, the automaton for the shuffled language has the possibility to choose between a transition
in the first automaton and a transition in the second automaton.

Formally, for any twon-automataA � �Q� ��Q�� � � � � Qn� andB � �Q�� ��� Q�
�� � � � � Q

�
n�, the

automaton acceptingL�A� L�B� is the following:

C �
�
Q�Q�� theta�Q� �Q�

�� � � � � Qn �Q�
n� where

� �
�
�q� q��

a
�� �r� q�� j q

a
�� r � �

�
�
�
�q� q��

a
�� �q� r�� j q�

a
�� r� � ��

�
The proof thatL�C� � L�A� L�B� is based on the argument that all accepting runs ofC can

be obtained by shuffling accepting runs ofA with accepting runs ofB. ut

9.2 Shuffled n-words

Definition 9.2.1. An n-dimensional shuffled word, or shuffled n-word, is a tuple ���M� consist-
ing of an n-word � � WDn�� � f�g� and an n-relation M � #n.
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The set of shuffledn-words with symbols in� is denotedSWn���.
The semantics of shuffledn-words is based upon the following observation: if we have an-word

w and an-signal over a one-letter alphabet� � Sign�fag�, then we may combine them and build
(uncountably many)n-signals whose untiming is stuttering equivalent tow and whose timing is
exactly�.

Thesemantics of a shuffledn-word is the following set:

��M �
�
� � Sign��� j U��� �

z � �
����� and
��� �

�
�f�g����M

'�
(9.4)

Proposition 9.2.2. Each shuffled n-word ���M� has a nonempty semantics.

Similarly to n-word representations, we may define an equivalence relation onSWn��� as
follows:

����M�� � ����M�� if and only if ���M� � ���M� �

Then call a setS � SWn��� asconvex if it is saturated by this equivalence relation, that is,
whenever����M�� � S and ���M� � ���M� then����M�� � S.

9.2.1 Projection on shuffled words

Definition 9.2.3. Given a shuffled n-word ���M� and a set Y � �� � � � n	, the projection of ���M�

onto Y is the shuffled card�Y �-word �
�
Y
�M

Y

�
As for n-regsignals, projection poses problems: it is not compositional w.r.t. the semantics. As

an example, consider the following shuffled�-word:�
�
�
� � a�a a�ab�b

a	��	�a	� � b�b

b	��	�b	�a	��	�a	� b	��	�b	� �

�
A �

�
�� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

�
A
�
A (9.5)

whose semantics consists exactly of the singleton�-signal language�	


�
� � a� a�b�

a	� � b�

b	�a	� b	� �

�
A
$%
&

On the contrary, the projection of the shuffled�-word defined in 9.5 onto the setf�� �g, gives
the following shuffled�-word with its nonsingleton semantics

a�ab�b� � � � �
�
a�b� j �� � � �

�
We have used here the convention that any wordw � �� can be regarded as the�-word�

� w

w	� �

�
.

However we have the following “weakly compositional” characterization of the emptiness prob-
lem for the semantics of shuffledn-words:
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Proposition 9.2.4. 1. For each shuffled n-word ���M� and Y � �� � � � n	,

�
Y
�M

Y
� ��M

Y
(9.6)

2. For each two equivalent shuffled n-words ����M��� ����M�� � SWn������, and subset of
indices Y � �� � � � n	, if ���M� � ���M� then the projections of both shuffled n-words on
Y are equivalent.

Proof. 1) Straightforward, since for each� � ��M , �
Y
� �

Y
�M

Y
by easy verification.

2) Let us observe that, if���M� � ���M� then
z � �
������ �

z � �
������ and

�
�f�g�����M�

'
��

�f�g�����M�

'
. This implies that

z � �
������ Y

�
z � �
������ Y

and�
�f�g�����M�

'
Y
�
�
�f�g�����M�

'
Y

By the compositionality of projection on word representation, the last line is equivalent to�
�f�g���� Y �M� Y

'
�
�
�f�g���� Y �M� Y

'
But this means that�� Y

�M� Y
� �� Y

�M� Y
. ut

Remark 9.2.5. The inclusion 9.6 is the same as the property 6.26 on page 100, forn-regsignals.
Hence we may never get “false negative” answers to the emptiness problem by working with
projection at the syntactic level.

The question is then whether we may get “false positive” answers. The answer to this question
is negative, due to the fact that we always work with shuffled words, that is, items satisfying the
triangle identity and whose timing denote some nonempty region. It will be the task of the normal
form algorithm for DBMs, respectively the emptiness algorithm forn-automata, to “purge” the
possible items that have empty semantics.

The difference withn-regsignals is that, with these ones, we had no algorithm for checking
whether an-regsignal has an empty semantics or not. For shuffledn-words we haven-automata.

9.2.2 Juxtaposition on shuffled words

The juxtaposition operation on shuffled words can be defined similarly to word representations:
one juxtaposes both the word parts and the relational parts in each operand, and the result must be
a set, due to juxtaposition on relation matrices:

Definition 9.2.6. Given a shuffled m-word ����M��, a shuffled n-word ����M�� and an integer
p 
 min�m�n�, the p-juxtaposition of ����M�� with ����M�� is the following set of shuffled
�m� n� p�-words

����M���p����M�� �
�
����p���M� jM �M��pM�

�
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Remind that, even for word representations of regions, juxtaposition is compositional only when
defined onconvex sets, that is, on sets which were closed under region equivalence.

Proposition 9.2.7. For each m-word representations ����M�� � SWm���, ����M�� � SWn���

and integer p 
 min�m�n�,

���M� �p ���M� �
��

����p�
�
��M j �����M

�
�� � ����M���

�����M
�
�� � ����M�� and M �M �

��pM
�
�

�
(9.7)

Proof. The proof of the inverse inclusion is straightforward: given any�m� n� p�-signal

� �
�
����p�

�
��M j �����M

�
�� " ����M��� ��

�
��M

�
�� " ���M�� andM �M �

��pM
�
�

�
�

we have, by the inclusion 9.6 from Proposition 9.2.4, that�
�����m

� ����M
�
� � ���M� and

�
�m	p�����m�n	p

� ����M
�
� � ���M� . But this implies that� � ���M� �p ���M� by

definition of�p on signals.
The left-to-right inclusion follows this way: given� � ���M� �p ���M� , we will try con-

struct a shuffled�m � n � p�-word, denote it���M�, whose semantics contains�. ���M� is
a juxtaposition of a shuffledm-word equivalent to����M�� with a shuffledn-word equivalent
to ����M��. This shuffled�m � n � p�-word arises as a shuffle of the untiming of� with any
�m� n� p�-word representation of the�m� n� p�-region which contains
���.

Formally, we pick a�m�n�p�-wordw � U���, which is possible sinceU��� is nonempty for
anyn-signal. Then, for theunique regionR � Regnn which contains
��� we pick an�m�n�p�-
word representation���M�, hence� � ���M 	. We then shufflew and� and pick some�m�n�p�-
word� in this shuffle. Consequently,

U��
�����m

� �
z � �
���� �����m

� �
z � �
������

�
�f�g�� �����m

��M
�����m

'
�
�
�f�g�����M�

'
since

�
�f�g�� �����m

��M
�����m

'
is theunique region which contains�

�����m
. It then follows that

�
�����m

�M
�����m

� ���M� and �
�m	p�����m�n	p

�M
�m	p�����m�n	p

� ���M� �

The equality �
�m	p�����m�n	p

�M
�m	p�����m�n	p

� ���M� follows similarly. ut

Remark 9.2.8. Observe that in the above proof we have utilized the fact that the mappingsU , ��,
�f�g and
 commute with projection, fact which can be easily established.

The rest of the good properties of juxtaposition hold as expected:

Proposition 9.2.9. 1. For each convex set of shuffled n-words S � SWn��� and each X �

�� � � � n	, S
X

is also a convex set of shuffled card�X�-words.
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2. For each two convex sets of shuffled words S� � SWm���, S� � SWn���, and integer p 

min�m�n�, S��pS� is a convex set of �m� n� p�-word representations and

S��pS� � S� �p S� (9.8)

3. For each three convex sets of shuffled words S� � SWm���, S� � SWn���, S� � SWp���,
and integers q 
 min�m�n�, r 
 min�n� p�,

�S��qS���rS� � S��q�S��rS�� (9.9)

Proof. The second property is a corollary of Proposition 9.2.7.
The first property can be proved as follows: given a shuffledcard�X�-word ���M� � S and

another shuffledn-word����M �� with �
X
�M

X
� ���M � , we get that

z � �
���� X

� �
z � �
����

�� and
��f�g�� X

��M
X
	 � ��f�g��

���M �	.
Let us denotew� � ����� andw� � ����

��. We may then build an-word w� such that
U�w�

X
� �

z��
w� andU�w�� �

z��
w� , as follows:

� For eachi� j � X, if �w��ij � al�� � � � a
lk
k andwlX
i�lX
j� � am�

� � � � amk

k then put

w�ij � a
max
l�
m��
� � � � a

max
lk
mk�
k

� Let i� denote one of themaximal indices1 in any ordering compatiblew�, that is,�w��ji� � ��

for any j � �� � � � n	. Let alsoj� denote one of theminimal indices in any ordering compatible
w�, that is,�w��j�i � �

� for anyi � �� � � � n	.
Then for alli �� X for which �w��j�i � �� putw�i�i � �w��j�i, while for all i �� X for which
�w��ii� � �

� putw�i�i � �w��ii� . Finally completew� by the triangle identity.

It is easy to observe then that
z��
w� �

z��
w� while

z��
w�

X
�
z��
w� .

Further, let us build ann-word representation����M�� which is equivalent with��f�g����M�

and extends��f�g�����M ��. This part of the proof has already been done in Proposition 8.3.15.
We may then conclude that any shuffledn-word�����M�� in which��� � w� �� has the property

that ����M� � ��M . By convexity ofS we get that�����M�� � S, which assures, on its turn,
that����M �� � S

X
. ut

Proposition 9.2.10. 1. For each five integers m�n� p� q� r � N with r 
 min�p� q�, shuffled words
����M�� � SWm���, ����M�� � SWn���, given X � �� � � � m	 with �m � r � � � � � m	 � X

and card�X� � p, and given also Y � �� � � � n	 with �� � � � r	 � Y and card�Y � � q, we have
that

����M�� X�r����M�� Y �
�
����M�������M��

�
X�
Y�m	r�

� (9.10)

� Such maximal indices are not unique.
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2. Juxtaposition is associative on shuffled words: for each ����M�� � SWm���, ����M�� �

SWn��� and ����M�� � SWp���, and for each k 
 min�m�n� and l 
 min�n� p�,�
����M���k����M��

�
�l����M�� � ����M���k

�
����M���l����M��

�
(9.11)

Proof. Both properties are straightforward corollaries of the respective properties concerning jux-
taposition and projection onn-words andn-word representations. ut

Note that this proposition refers only to the syntactic properties relating juxtaposition and pro-
jection, not to their semantic properties. Therefore it hides no contradiction with the noncomposi-
tionality of projection.

9.2.3 Concatenation and star on shuffled words

This is defined as usual, by means of projection an juxtaposition: for each two shuffled�n-words
����M��� ����M�� � SW�n���,

����M��� ����M�� �
�
��� � ���M� jM �M� �M�

�
Composition enjoys the well-known properties at the syntactic level, namely associativity, ex-

istence of two units per each shuffled�n-word and existence of pseudoinverses, but, due to the use
of projection, it is not compositional. It can also be extended to sets of shuffled�n-words in the
usual way, and gives rise to the star operation

for eachS � SW�n���� S� �
�
Sk� whereS� � ��n andS
k���� � Sk� � S

Here��n is the set of all units:

��n � f���M� j �i � X� �i
n�i � ��Mi
n�i � � � �g

The following properties are essential in our “shuffle” approach to checking�n-signal regular
expressions for emptiness:

Proposition 9.2.11. 1. For each pair of sets of convex shuffled �n-words S�� S� � SW�n���,

S� � S� ��  if and only if S� � S� �� 

2. For each set of convex shuffled �n-words S � SW�n���,

S� ��  if and only if S
�

�� 

Proof. For both properties, the right-to-left implication follows by means of Proposition 9.2.4 and
of compositionality of juxtaposition. Note that convexity is essential in this implication. Moreover,
the second property follows by induction from the first.



206 9. Applications

For the proof of the left-to-right implication for the first property, supposeS�� S� �� . This
implies in fact that there exist����M�� � S� and����M�� � M�� such that�� � �� is defined and
M� �M� is nonempty. But this implies also that���n�� is defined andM��nM� is nonempty,
hence for anyM � M��nM� we have that ���n���M is a nonempty set. The proof ends if we
pick up any� � ���n���M and observe that�

������n
� ���M� and�

�n������n
� ���M� ,

which means that

�
������n

� �
�n������n

� ���M� � ���M�

or, in other words, that���M� � ���M� is nonempty. ut

Shuffle regwords are naturally associated withn-automata that generalizen-region automata:
these are tuplesA � �Q� ��Q�� � � � � Qn� ��, with � labeling states withn-relations. Proposition
9.1.3 implies that we may constructn-automata for shuffledn-regwords by shufflingn-automata
for the untiming withn-region automata.

Proposition 9.2.12. For each n-regword R � RWn��� and convex set of n-word representations
W � WdRepn, the shuffled n-word semantics of the shuffle regword R W is a convex set of
shuffled n-words.

Proof. Easy corollary of the convexity ofW. ut

9.2.4 A method for checking whether the semantics of a �n-signal regular expression is
empty

1. Given a�n-signal regular expressionE, we decompose each�n-regsignal occurring inE into
the untimed part and the timing part.

2. We then interpret the untimed�n-regsignal as a�n-regword (this implies that stuttering is
added) and associate a�n-automaton to it.

3. On the other hand, we interpret the timing�n-regsignal as a�n-EDBM and hence associate a
�n-region automaton to it.

4. Subsequently, we produce the shuffle of the two automata.
5. Then we apply the union/concatenation/star constructions for the resulting automata (provided

the non-elasticity assumption holds) until we associate a�n-automaton to the whole expression.
6. Finally, we check whether the semantics of this final�n-automaton is void.

In order for this algorithm to be correct, we need to redefine the non-elasticity property for�n-
signals, and to prove that this definition is consistent with the representations of sets of�n-signals.

Definition 9.2.13. A �n-signal � is called non-elastic if the following property holds:

For each i� j � �� � � � n	, if �i
n�i �� � and �j
n�j �� � then both �i
n�j and �j
n�i are not
antisignals, that is�i
n�j � Sig��� and �j
n�i � Sig���.
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Proposition 9.2.14. For each �n-signal � � Sig�n���, � is non-elastic if and only if U��� is
non-elastic, if and only if 
��� is non-elastic.

Proof. Straightforward, due to the fact that�ij � � if and only if U��ij� � � if and only if

��ij� � �. ut

Proposition 9.2.15. Given a �n-regword R � RW�n�� � f�g� and a �n-relation M , R�M

contains only non-elastic �n-signals if and only if ���kRk� contains only non-elastic �n-words
and ��f�g�M 	 is a non-elastic region.

Proof. Corollary of the above Proposition and of the Proposition 8.4.10. ut

Theorem 9.2.16. The above procedure terminates with some �n-automaton with a nonempty lan-
guage if and only if the semantics of the initial expression is nonempty, provided the �n-signal
regular expression this initial expression E satisfies the following non-elasticity assumption:

Denote LE the union of the semantics of all �n-regsignals from which E is built of. Then
Lk�
E consists of non-elastic �n-signals for any k � N .

Proof. Corollary of Proposition 9.2.11, which is applied by structural induction on the�n-signal
regular expression involved. The essential property in the proof is that for each�n-regsignal, the
shuffle�n-regword associated as above is convex. ut

9.3 Checking emptiness of timed automata with �n-signal regular
expressions

Remind that in Chapter 6 we have proved that (languages of) timed automata are embeddable in
�n-signal regular expressions. Then, our search for a property that assures decidability was guided
in part by some observations on the�n-signals that occur during this embedding. We will show
here that, indeed, timed automata can be simulated by�n-signal regular expressions which have
the non-elasticity property.

Remind that, in Theorem 6.5.2, for each timed automaton withn clocksA � �Q��� �� ��Q�� Qf �

in which each transition resets at least one clock, and for each transitionq

C
X�
���� r in this automa-

ton, in whichX ��  and��q� � a we have associated a�n-regsignalR�C�X�. More specifically,
for C �

� "
i������n

xi � Ii
�
�
� "
i
j������n
i��j

xi � xj � Jij
�
, the�n-regsignalR�C�X� is:
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R�C�X�ij �

���������������������	
��������������������


h�� � ��	���iJij for i� j � �� � � � n	

h�� � ��	���iJkl for i � n� k� j � n� l� k� l � X

� for i � n� k� j � n� l� k� l � X

h�� � ��	���iJik for i � �� � � � n	� j � n� k� k � X� i �� k

h�� � ��	���iJkj for j � �� � � � n	� i � n� k� k � X� j �� k

� for j � n� i� i � X or i � n� j� j � X

h�� � aiIi for i � �� � � � n	� j � n� k� k � X

or i � n� l� j � n� k� k � X� l � X

ha	� � ��	���i
	Ii� for j � �� � � � n	� i � n� k� k � X

or i � n� k� j � n� l� k � X� l � X

DenoteL the union of the semantics of all�n-regsignalsR�C�X� for all n-constraintsC and
subsets �� X � �� � � � n	, L �

S�
kR�C�X�k j C � C����  �� X � �� � � � n	

�
.

Proposition 9.3.1. L satisfies the hypothesis in Theorem 7.4.3, that is, Lk� consists of non-elastic
�n-signals for all k � N .

Proof. Observe that setsR�C�X� bear the following important property:

(*) For eachC � C�X�, eachX � �� � � � n	 and� � kR�C�X�k, if �i
n�i �� � then for all
j � �� � � � n	, �j
n�i is not an antisignal, that is,�j
n�i � Sig���.

We will then actually show that the set of all�n-signals with property (*) satisfies the hypothesis
in Theorem 7.4.3:

Takek �n-signals��� � � � � �k, all satisfying property (*). Suppose that��� � � ���k is anelastic
�n-signal. That is, there existi� j � �� � � � n	 such that

1. ��� � � � �� �k�i�
n�i� �� �, ��� � � � �� �k�j�
n�j� �� � and
2. ��� � � � �� �k�i�
n�j� is an antisignal, i.e.��� � � � �� �k�i�
n�j� � Sig��	�� n f�g.

Let us show that��l�j�
n�i� is an antisignal. We prove this by contradiction: since for alll �

�� � � � k	, �h is a non-elastic�n-signal, we must then have��h�i�
n�i� � Sig��� and, similarly,
��h�j�
n�j� � Sig���. But then

���� � � �� �k�j�
n�i� �

� ����j�
n�j� � � � ��l	��j�
n�j���l�j�
n�i���l���i�
n�i� � � � ��k�i�
n�i�

hence��� � � � �� �k�j�
n�i� is a signal, fact which contradicts condition 2 above.
On the other hand, condition 1 above implies that there exists somel� � �� � � � k	 such that

��l��i�
n�i� �� �. But by property (*), we must have then��l��j�
n�i� � Sig���, which we have
already seen to be in contradiction with condition 2. ut
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Remark 9.3.2. Observe that using non-elasticity instead of property (*) does not suffice to prove
the above result.

Observe also that Proposition 9.3.1 assures that each concatenation produces non-elastic lan-
guages.
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10. Conclusions

We have presented an approach on checking timed automata for language emptiness, approach
based on regular expressions. The regular expressions we use arise as a generalization of timed
regular expressions of [ACM97], with the use of colored parentheses. Our method associates
to each atomic regular expression a class of automata with�n accepting sets, and then applies
union/concatenation/star constructions to build an automaton representing the whole regular ex-
pression.

The essential steps that give this method are the following:

� The possibility to represent timing constraints over the continuous time domain with the aid of
n-automata. This possibility is based upon region decomposition of each timing constraint, and
on the representation of each region as a pair consisting of ann-word over a one-letter alphabet
and a matrix of relational symbols.

� The star-closure theorem for�n-automata with the property that all the powers of its accepted
language are composed of only non-elastic�n-words.

� The decomposition of each regular expression into the untimed and the timing part, decompo-
sition which allows representing the timing part with�n-word representations. And then, the
recomposition of the untiming part with the�n-word representation of the timing part, by means
of the shuffle operation. This recomposition replaces a (perhaps uneasy) synchronous application
of the union/concatenation/star constructions for both the untimed and the timing part, which is
needed when the interactions between untiming and timing are more involved and may lead to
emptiness – that is, to unfeasible specifications.

We hope that our study gives new insights in better understanding the theory of timed systems.
The difficulty of the emptiness checking for timed automata keeps the performances modeling sys-
tems with timed automata and model-checking their properties far from the performances reached
for untimed modeling. Therefore, any alternative insight might help in identifying subclasses with
nice properties. Our theory of�n-signal regular expressions and�n-automata is such an alternative
insight.

For the comparison of our approach to the emptiness problem for timed automata with the clas-
sical approaches [Yov98, LPWY95] based on the region construction of [AD94], we may observe
the following points:

� The essential property that gives a terminating algorithm in the classical approach is the pos-
sibility to collapse the infinite region space into a finite one, which is of the cardinality of the
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set of regions included into some hypercupe. The length of the edge of this hypercube isk � �,
with k being computable from the largest constants used in the clock constraints of the given
timed automaton. In the reference paper on timed automata [AD94] this constant is exactly the
largest constant in any clock constraint, but this is due to the fact that clock constraints do not
use diagonal atomic constraintsxi � xj � I. In general, this constant needs to be computed by
“propagating” also the diagonal constraints [Tri98].
On the other hand, in our approach, termination is assured by the non-elasticity property of the
�n-signals which give the�n-signal-semantics of a timed automaton, property which allows the
possibility to iteratively build a finite representation for the reachability relation defined by the
timed automaton. This still means that we get a finite decomposition of the set of clock regions,
but this decomposition is “finer” (that is, gives in general more equivalence classes) than Alur’s
decomposition.
As a consequence, our algorithm might sometimes require more memory than the classical ap-
proach. Of contrary, sometimes our approach might give faster results due to the possibility to
get the behavior of a loop in the timed automaton in a single application of the star closure al-
gorithm, fact which is not available in the classical approach since there one needs to iteratively
pass through the loop until the fixpoint is reached.

� The complexity of our algorithm is nonelementary, in contrast with the PSPACE complexity
of the classical approach. This follows due to the fact that each star produces an exponential
explosion of the state space. However this result concerns only the worst-case complexity, and is
highly dependent on the number of nested stars in the regular expression that one may associate
to a timed automaton.

Our contributions are partly theoretical, but with a certain interest for the domain of verification
of timed systems. In this sense, our main contribution is the verification method for timed automata
by translation to�n-signal regular expressions. It can be argued that building a regular expression
from a timed automaton is a difficult task, a legitimate observation. But we expect to further study
the possibility of directly translating the timed regular expressions of [ACM97] into our regular
expressions and hence making available our technique without passing through timed automata.

This gives one of the directions for future research: the introduction of parallel composition in
regular expressions with colored parentheses. Specifically, we would like to have some “distribu-
tivity” laws of parallel composition over atomic blocks. Such laws would allow transformation
of parallel compositions of timed regular expressions of [ACM97] into regular expressions with
colored parentheses. This would allow doing emptiness checking for timed regular expressions of
[ACM97] without passing through timed automata.

Another promising direction is given by the applicability ofn-automata in representing timing
constraints. We have found that an argument in favor ofn-automata is that they sometimes give
a more compact representation of timing constraints. Unfortunatelyn-automata are nondetermin-
istic, hence the problem of finding small representation of timing constraints is somewhat related
to the problem of finding small nondeterministic finite automata. In particular, the union construc-
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tion of severaln-automata, which in theory is done by simply joining the state spaces, has to be
accompanied by a technique which identifies some states, in order to reduce the state space.

We would also like to transform our closure algorithms forn-automata (that is, the union,
concatenation and star closure algorithms) into symbolic algorithms. One might be tempted to
say that this would bring us back to the existing symbolic algorithms for reachability of timed
automata. But this is not true, because we would not code disjunctions of constraints. Symbolic
algorithms would allow one to symbolically represent states inn-automata, and we have already
pointed out that there is no connection between states in ann-automaton and clock regions.

Another direction of further study is the possibility to combine our emptiness checking tech-
nique with partial order reduction methods. For timed automata, partial order reductions involve
the possibilty to split, at certain moments, the clock set into subsets of dependent clocks, such that
two clocks belonging to different subsets are not related by any constraint during the respective
moments. For our setting, this would mean to split a�n-regsignal into smaller regsignals and to do
concatenation and star on these regsignals. Some care needs to be put in order to define a “parallel”
composition of these smaller rsgsignals such that one does not obtain elastic regsignals.

And a final mention for the idea of finding more general classes of timed systems that may be
modeled by�n-automata. We mainly think of hybrid automata with stopwatches [Hen96]. It has
been already observed that preemptive scheduling can be modeled by such hybrid automata [AM].
The essence is that preemptive scheduling is intimately related to theshuffle operation, hence it
remains to be studied how to model this inton-automata and what would be the resulting class of
timed languages.
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[Gau92] S. Gaubert.Théorie des systèmes linéaires dans les dioı̈des. PhD thesis,́Ecole des
Mines de Paris, 1992.
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Résumé. Un automate temporisé est un automate augmenté avec plusieurs horloges qui mesurent
le passage de temps et peuvent conditionner la modification de l’état du syst̀eme. Les automates
temporiśes ontét́e introduits en tant que modèle formel pour les systèmes temps-réel, en esṕerant
que leur r̂ole dans la v́erification de tels systèmes sera similaire au rôle des automates finis dans la
recherche systématique des erreurs de conception de systèmes non-temporisés. Dans notre th̀ese
nousétudions plusieurs questions théoriques líes aux automates temporisés et aux langages tem-
poriśes.

Dans une première partie nouśetudions une sous-classe simple d’automates temporisésà une
seule horloge qui est remiseà źero pendant chaque transition. Nous montrons que cette sous-
classe supporte des résultats similaires̀a la th́eorie classique des automates finis: des théor̀emes de
Kleene, de Myhill-Nerode et de fermeture par complémentation.

La deuxìeme et principale partie de la thèse est motiv́ee par les expressions régulìeres tempo-
risés de Asarin, Caspi et Maler. Depuis leur introduction, on sait qu’il faut employer l’intersection
dans les expressions régulìeres pour que leur expressivité soit égale aux automates temporisés.
Nous poursuivons alors une approche alternative en utilisant des parenthèses coloŕees pour d́efinir
les contraintes temporelles sur une séquence d’́evénements. Cette idée aboutit̀a une repŕesenta-
tion alternative des langage des automates temporisés, baśee sur une nouvelle classe de langages
formels que nous appelonslangages des regminos. Nous d́eveloppons alors la théorie des expres-
sions ŕegulìeres sur les regminos et nous montrons que le problème de śemantique vide est indé-
cidable en cas ǵeńeral, et d́ecidable pour une sous-classe large de langages. L’application de ces
résultats nous am̀eneà des nouvelles structures de données et̀a des algorithmes pour le problème
du langage vide dans les automates temporisés et les expressions régulìeres.

Mots clés. automate temporisé, expressions régulìeres, th́eor̀eme de Kleene, contraintes tem-
porelles, decidabilité, langages formels.

Title. An algebraic theory of real-time formal languages.

Abstract. A timed automaton is an automaton augmented with several clocks that measure the
time passage and may influence state changes in the system. Timed automata were introduced as
a formal model for real-time systems hoping that their role in the verification of such systems will
be similar to the role of finite automata in the systematic search of errors in the design of untimed
systems. In our thesis we are concerned with several theoretical questions related to timed automata
and timed languages.

In the first part of the thesis we investigate a simple sub-class of timed automata with one clock
which is reset at each transition. We show that for this sub-class we can obtain simple analogs of
the classical results of automata theory, namely Kleene and Myhill-Nerode theorems and closure
under complementation.

The second and main part of the thesis is motivated by the timed regular expressions of Asarin,
Caspi and Maler where it was shown that, in order to match the expressive power of timed au-
tomata, one needs to introduce intersection into the expressions. We investigate an alternative to
intersection by using colored parentheses for defining timing restrictions on overlapping parts of a
sequence. This idea leads to an alternative representation of languages of timed automata, which
is based on a new class of languages called hereregmino languages. We develop the theory of reg-
ular expressions over regminoes and prove that their emptiness problem is undecidable in general,
and decidable for a large subclass of languages. From these results we develop new data-structures
and algorithms for solving emptiness and reachability problems for timed automata and regular
expressions.

Keywords. timed automata, regular expressions, Kleene theorem, timing constraints, decidability,
formal languages.
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