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1. Introduction

Formal methods make themselves increasingly needed in a wide range of areas of computer sci-
ence, from hardware specification and verification to the design and validation of computer sys-
tems. They are especially needed when critical properties of systems have to be insured. Within
formal methods, the two main directions for producing evidence of the correct design of a system
are themodel checking approach and thiéneorem proving approach.

Within the model checking approach, systems are usually modeled as automata (very frequently
with a finite state space) and properties are themselves specified in a descriptive language, such as
logic or process algebra. For a large subclassfaty properties, the model-checking problem can
be reformulated as the problem of checking whether the language of an automaton is empty.

Two basic features a specification language needs are sequentiality and parallelism, which in the
automata model translate to concatenation, resp. intersection of automata. Whereas sequentiality
interacts optimally with emptiness checking, parallelism brings in the well-known “state space
explosion problem”. Sequentiality is well studied and understood, while parallelism still raises
problems at both theoretical and practical level. Regular expressions [Kle56] are among the most
basic specification language. They model, however, only the sequential structure of systems. Still
regular expressions are able to represent also parallel structure, due to the intersection construction
and the celebrated Kleene theorem.

Timed systems and their automata model: timed automata

Timed systems (or real-time systems) are computer systems in which the components interact
continuously with one another and with the environment, in order to provide a certain service in
which time plays an importandle. This Ble might be bounded response to some stimuli, limited
duration of execution of tasks, and so on.

The now classical automata model for timed systems idithed automata model [AD94].
Timed automata are finite automata enhanced with the possibility to record time passage, by means
of real-valued clocks. Clocks evolve synchronously at rate 1, and transitions are taken when some
simple arithmetic conditions on the clocks are met, and some transitions might reset some clocks
to O.

A wealth of algorithms ([Yov98, LPWY95] give surveys) and dedicated tools [BD8&]
LPY97] are now available for model-checking with timed automata. The main problem which lim-
its the efficiency of any algorithm for model checking with timed automata is that the emptiness
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problem for timed automata, though a decidable problem, has a very high complexity (PSPACE-
complete), hence being even harder than model-checking for untimed systems.

On the specification side, several process algebras with time have been proposed in the be-
ginning of the 90’s [WY91, NSY93, BB91]. The semantics of these algebras rely upon timed
automata.

Curiously, the search faegular expressions that allow specification of timing behaviors suc-
ceeds the concern for process algebras (though, in the untimed case, it is regular expressions that
have preceded and issued process algebras [Mil80]). Only recently there have been issued several
results for timed automata [ACM97, BP99], or for subclasses [Dim99b] or superclasses [BP01] of
timed automata.

Timed regular expressions [ACM97] are a very convenient specification language for timed
systems. They are regular expressions enhanced with the possibility to express intervals between
two moments during the computation, by the use of interval-labeled parentheses. A left parenthesis
corresponds to resetting a clock and a right parentheses, labeled with an infesesponds to
checking whether the clock value is in the interyal

In spite of their elegance in use, timed regular expressions bear some expressiveness problems:
intersection and renaming are essential in proving the reverse implication of the Kleene theorem
for timed regular expressions and timed automata.

Subject and contributions of thethesis

In our thesis we study the relationship between timed automata and timed regular expressions.

In the first part, we study the simpler case of timed regular expressions in which we bound only
state duration. The automata associated with this class behave like finite automata, most notably
being closed under negation and algebraically definable via inverse monoid morphisms.

In the sequel we try to expand the technique developed in the first part for the whole class
of timed automata. We start from the consideration that the parallel composition operation on
automata destroys the sequential structure. Our idea is to drop the intersection operator from timed
regular expressions by usirglored parentheses, in which each color corresponds to one clock.

The feature brought in by this idea is that the structuring of the specification would be preserved to
a certain extent. Also renaming is no longer necessary. However this idea brings in some difficulties
as well, mainly a different view of sequentialization.

In our calculus, an atomic regular expression contains parentheses of different colors. If we
apply to such an atom a “color filter” which retains only parentheses of a certain color and deletes
the other colors, we would get a timed regular expression of the fo(ifi,) ; F'3. Here E;, E, and
E5 are untimed (i.e. nonparenthesized) regular expressions ensbme interval. The semantics
of such an atom consists of signals in which a number of points have been distinguished: two
points per each color, one “startpoint” for resetting the clock associated with the color, and one
“endpoint” for checking the value of the clock.



wee I VAU WMWVET

This special form of atoms has nevertheless a huge expressive power in combination with the
concatenation operation. This igartial operation which allows two signals with distinguished
points to be concatenated iff the distinguished endpoint for each color in the first signal matches
the distinguished startpoint for the same color in the second signal.

In the second part of the thesis we study the algebraic structure of signals with distinguished
points and the regular expressions with colored parentheses that represent sets of such signals. We
prove that the emptiness problem is undecidable for regular expressions with colored parentheses,
the problem lying in their untimed structure.

We then study this untimed structure by associating, for regular expressions witlors, a
class of finite automata withn accepting sets, which we cah-automata. The idea is to have
two accepting sets for each color: one for the startpoint associated with the color and one for
endpoint for that color.

We show that the class @h-automata is closed under union, intersection, concatenation and
shuffle. The central theorem of this thesis is then that, under mild assumg@icastomata are
also closed under star. On the other hand, we show that these automata can be used to represent
timing information in the regular expressions. In other words, they can be used for representing
constraints over the real domain. The idea is that gachin an automaton representsclck
region, in the sense of Alur and Dill [AD94].

We also show that the mild assumptions necessary for star closure are satisfied when model-
ing timed automata. As a consequence, we provide a method for checking whether the language
denoted by a given regular expression with colored parentheses is empty.

As an auxiliary result, our technique allows the computatioreachability relations defined by
timed automata. These are the relations on clock values defined by the behaviors of timed automata,
such as starting from one state and reaching another. The computation of such relations is useful in
verification, since the language accepted by a timed automaton is empty iff the reachability relation
defined by initial and final states is the empty relation.

Summarizing, the main contributions of our thesis are the following:

e The presentation of a new class of regular expressions that generalize the timed regular expres-
sions of [ACM97]. Our regular expressions do not need renaming or intersection and are more
expressive than timed automata.

e The introduction of a new class of finite automata withaccepting states, automata that cor-
respond to the atomic regular expressions that we utilize. The emptiness problem for these au-
tomata is decidable, but NP-complete.

e The translation of regular expressions into a class of finite automat@2walcepting sets. This
translation works for regular expressions bearing a certamrel asticity property. This gives a
method for checking for emptiness the semantics of a regular expression with the non-elasticity
property.

¢ A new method for checking emptiness of a timed automaton by constructing the regular expres-
sion for it.
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e A new method for computing the reachability relations defined by timed automata, based upon
the same class of-automata.

¢ A collateral result is that our finite automata give a new method for representing general clock
constraints. In some cases, clock constraints are represented more compactly than with existing
methods.
The detailed study of a data structure that embodies this representation method is not the subject
of this thesis.

Related wor k

As we have already mentioned, our study has started from the results in [ACM97, ACMO01, Asa98]
which introduce timed regular expressions, and [Her99], which shows the necessity of renaming in
timed regular expressions. A different approach to regular expressions is given in [BP99, BP0O1].
The regular expressions in these studies do not need intersection or renaming, being based upon
atoms of the typda, C, X)) for some symbok, clock constraint”' and reset seX. The paper

[BP99] gives a variant of this, in which the reset sets are shifted to the concatenation symbols,
hence having a whole rangeioflexed concatenations. However none of these papers study in de-

tail the algebraic structure on which the semantics of regular expressions is based, and neither they
give the possibility to lift the semantic operations of concatenation and star to syntactic operations
on atoms.

In fact, it can be observed that, with the clock valuation semantics, if one tries to lift concate-
nation and star at a syntactic level then he would run into problems with the representation of the
results. More specifically, timing in the atomic regular expressions of [BP99] or [BP01] is speci-
fied by clock constraints which utilizeondiagonal constraints of the typ€, — z; = y; — y; (this
is an expression which says that the cloeksndy; evolve synchronously). As a consequence,
the “zones” in then-th dimensional space which satisfy such constraints are no longer unions of
clock regions [AD94] and hence need representations for more general polyhedra. But it is known
[Sor01] that general polyhedra-based representations are less efficient that representations which
take advantage of the fact that the polyhedra in discussion are unions of regions.

The study whose results are perhaps the closest to our approach is Yan Jurski’'s PhD thesis
[Jur99] (see also the journal version [CJ99]). In his thesis, Jurski proves that the reachability re-
lation in timed automata is expressible in Pressburger arithmetic. The technique employed in his
work can be characterized as a generalization of constraint graphs (which are the graphical repre-
sentation of DBMs), with a construction of the “star” of a constraint graph. The problem with this
approach is that constraint graphs cannot record “disjunctive information”: they can only record
conjunction of “diagonal” constraints over clocks, i.e., of the type- z; € I. Whereas the star
is naturally built as an infinite disjunction. Therefore Jurski needs to “flatten” each timed automa-
ton, such that no nested loops be allowed, and only afterwards apply his star construction. On
the contrary, oun-automata can record disjunctive information too (the set of accepting runs is a
union) and therefore we may iterate the star closure theorem without any problem. Besides this,
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our presentation allows not only expressing the timing behavior of timed automata, but also the
representation of both the timing and untimed information in the same expression. Finally, Jurski’s
result is limited to timed automataithout diagonal constraints, and it is not clear whether this
restriction is essential or not.

We may also mention the approach on using Pressburger arithmetics and its decision procedures
in systems with infinite state-space [Boi99, WBO00]. [BC96] report on solving systems of linear
equations over the integers by coding integer solutions into finite words and using finite automata
to accept such words. The idea dates backitchBs work onweak monadic second order theory of
one succesor function (WS1S) [Bic60], see also the two comprehensive handook articles [Tho90,
Tho97] on the subject. We note here that our coding of integer solutions of constraints (which are
nothing else but systems of linear equations) is different from the one used by [BC96, B0i99].
Our coding takes advantage of tgasidiagonal format of systems of linear equations which are
associated with the clock constraints.

There are already several data structures that are used for reachability algorithms for timed au-
tomata [Tri98, LWYP99, ABK97, MLAH99], to cite a few only. Most of them are based upon
the DBM technique, and DDDs are generalizations of BDDs [Bry86] for representing clock con-
straints. Our automata-based technique, with constraints regarded as runs in a finite automaton, is
therefore new and might yield new data structures for reachability algorithms.

Let us also mention that there is a whole theory concerning constraint propagation [DMP91],
which is an essential ingredient for the representation of reachable states [Tri98]. The most gen-
eral way of looking at these is perhaps theax, +)-algebra [Gau99, GP97]. Howeveanax, +)-
algebra does not deal with the possibility to chain timing constraints, that is, to specify algebraically
the behavior of timed automata.

Another related work that we might mention here is the study [CG00] on employing periodic
constraints in timed automata. Our presentation of timed automata requires that constraints use
only intervals, but our theory of regular expressions allows the use of periodic constraints.

We finally mention the interest for Kleene theorems for subclasses of timed automata [Dim99b],
or for superclasses [BPO1].

Organization of thethesis

The thesis is divided im0 chapters, including this introductory one and a conclusion chapter.

2. In the second chapter we give some basic properties of signals and timed languages. We prove
here that the monoid of signals and the monoid of timed words are not “algebraically” related,
and that the idea of producing timed languages via inverse morphisms from finite monoids
issues only languages with no timing information.

3. In the third chapter we study the special class of one-clock timed automata, reall¢nne
automata, in which the clock is reset at each transition. We show that language emptiness and
universality are decidable, we give a “pumping lemma” characterization of the associated class
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of languages, and show that, by utilizing a “stuttering-free concatenation” on the set of signals,
we get exactly the class of languages accepted by real-time automata.

. In the fourth chapter we review briefly the notion of timed automata and the possibility to have
a Kleene theorem for them. The regular expressions we utilize here are taken from [BP99,
BPO1]. They involve clock constraints and resets, and therefore they are easily related to timed
automata. However it is not the class of expressions which we aim to study, the reason (given
in chapter 5 also) being that clock usage in expressions is specific to low-level specification
languages, while regular expressions are meant to be a high-level specification language.

. In the fifth chapter we review the timed regular expressions of [ACM97] and discuss their prob-
lems. We also present here our ideas for solving these problems - usage of colored parentheses
and of a partial concatenation operation. This chapter is meant as an intuitive presentation of
the problems we have sought to solve and the solution we have found. We also give here an
undecidability result concerning timed regular expressions with negation.

. In the sixth chapter we introduce and study our algebraic framework of signals with distin-
guished points. These signals are given a matricial presentation, mainly by similarity to Dif-
ference Bound Matrices [Bel57], which are, on their own, a subject of discussion in chapter
8. We define the partial concatenation operation on signals and establish some basic algebraic
properties for it. Wee introduce concatenation by means of two “more basic” opergtigns:
taposition, which can be thought as “conjugating” the two signals prajection, which can

be thought as quantification. A first try to lift this operation at the specification level, that is,

to provide a calculus with regular expressions with colored parentheses, is shown to fail, the
reason being that projection is not compositional. More specifically, there is no way to de-
fine the projection operation on regular expressions, such that the semantics of the projection
be the projection of the semantics. An equally worrying result is the undecidability of the
emptiness problem for the general class of regular expressions with colored parentheses. This
result follows by showing that the Post Correspondence Problem [Pos46] can be reduced to the
emptiness problem for regular expressions with colored parentheses. Hence the undecidability
problem is hidden in the untiming structure of the regular expressions.

. In the seventh chapter we investigate the class-afitomata for their possibility to represent
regular expressions with colored parentheses, but odesceete time domain. The necessity

of this study is emphasized by the undecidability result. We provide here a mild property — the
non-elasticity property — that assures star closure of automata, and hence accomplish in part
the task of representing regular expressions.

. The eighth chapter is concerned with the generalization of these resuttsnforuous time
domains, in particular with the possibility to represent timing information in a continuous time
domain with the automata defined in chapter 7. This approach is successful and provides the
possibility to represent timing constraints in the continuous domain-aytomata.

. In the ninth chapter we gather together all the results obtained so far in order to provide a
compositional calculus with regular expressions with colored parentheses. In this chapter we
also show that the non-elasticity property discovered in chapter 7 is satisfied by the regular
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expressions which encode timed automata. We then provide a method for checking language
emptiness in timed automata, by transformation to regular expressions.

Each chapter starts with a short presentation of the problems and solutions that are treated
within it.
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2. Signalsand their basic properties

In this chapter we study some of the algebraic properties of signals and timed words.

Signals and timed words are the two alternative models for the behavior of timed systems. While
signals put the accent on states in which the system is and on state durations, timed words put the
accent on actions that a system is executing and on moments at which actions take place. We take
the approach of [ACMO1] and present these monoids as coproduct monoids — or, in an alternative
terminology, as direct sums. This algebraic presentation makes some proofs more succinct.

Since the two notions, signals and timed words, try to model the same phenomena it is natural
to search a connection between monoids of signals and monoids of timed words. In this chapter
we prove that this connection mot of an algebraic nature: we prove that the monoid morphisms
between the monoid of signals and the monoid of timed words are unable to relate state changes
to actions. More formally, we prove that each signal is mapped, by such a monoid morphism, into
a timed wordwith no action.

The second result of this chapter concerns the nonexistence of a Myhill-Nerode characterization
of timed languages. We prove that any timed language (i.e. set of signals) that can be defined as
the inverse image of a subset of a finite monoid, does not carry any timing information. That is,
whenever a signat is in the language, any other signal with the same sequence of states (and with
any other durations of these states) is in the language too. This property is based upon a lemma
stating that there are at most two morphisms from the monoid of nonnegative reals to any finite
monoid: the trivial morphism and, in the eventuality the target monoid has a “zero”, the morphism
which takes any positive number to this “zero”. Hence the problem is traced to the “stuttering”
structure of the real numbers, and we will see in the next chapter that, if we allow two signals
to concatenate only when at the concatenation point they create a discontinuity, then the “inverse
morphisms” approach will produce timed languages with nontrivial timing information.

This second result is proved using a “diagram-chasing” technique specific to category theory
[Mac71]. This proof takes advantage of the algebraic presentation of signals and we believe it is
drastically shorter than any other proof, that would need to mimic the uniqueness properties of the
monoid of signals.

The chapter is organized as follows: the first section presents some basic properties about
monoids, especially the construction of the coproduct (or direct sum) of a family of monoids.
We also remind here the notion of Kleene algebra. We also incude in this section a short subsec-
tion recalling the definition of Kleene algebras. Then in the second section we recall the coproduct
representation of signals and the fact that, similarly to languages of words, the powerset of signals
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can be organized as a Kleene algebra. The third section presents also timed words as a coproduct
monoid and gives the negative result about the monoids of signals and timed words. The fourth
section is concerned with the other negative result, concerning the “lack of interest” of timed lan-
guages defined by inverse monoid morphisms.

2.1 Basic notions

In this section we remind the notion of coproduct (or direct sum) of a family of monoids, and the
notion of Kleene algebra.

2.1.1 Coproduct monoids

Definition 2.1.1. The coproduct of a family of monoids (M, -, e;);cz is the monoid (M, -, e) de-

fined as the quotient: M = <HieI MZ»)*/N where

o [[ istheusual digoint sum: [[..; M; = {(m;,7) | i € T,m; € M},

) ( [icr Mi>* is the free monoid over [ [,_, M; (with concatenation denoted as juxtaposition and
empty sequence asc);

e and ~ isthe congruence on ( [icr Mi)* generated by the equations:

(mi,i)(mk,i) ~ (m; - mk, 7) Vm;,m; € M;,i € T (2.1)
(ei,i) ~ (ej,j) \V/Z,j el (22)
(e;,1) ~ & Vi,e T (2.3)

We denote the coproduct of the fam{lyz;, -, e;)icz aséP, ., M;. Note that the unit ofp, ., M;
is the class of. we denote this unit as

Observe that each elemant € @,_; M; can be uniquely represented as a finite concatenation
of “atomic” elements

inwhich[m;,i,] #eforall j € [1...k].

Theorem 2.1.2. The monoid @, M; has the following universality property for any monoid
(M, -, e) and family of morphisms ¢; : M; — M, there exists a unique morphism¢ : @, ., M; —
M such that ¢([m;,i]) = ¢;(m;). Thismorphismis denoted (¢;);c7 and is called the coproduct of
the family (¢;)icz-

This theorem is depicted in Figure 2.1. HeteJenotes the inclusion morphism.
The construction of the coproduct morphism is the following: each elemeatd®,_; M; is
decomposed as in Identity 2y = [m;,,i1] - ... [m;,, ix]. We then put:
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L

M; @ieIMi
|3@ier

M

i

Fig. 2.1. The commutative diagram for Theorem 2.1.2.

(bi)iez(m) = diy (M) - - .. Gi, (mzk)

When the familyZ is finite, sayZ = {1,... ,n}, we denote the coproduct €., M;, and
when the monoidg/; are identical (this implies that their operations and units are the same too)
we denote it agp,_; M. Finally, whenZ = {1,... ,n} andM = M; for all i € 7, we denote the
coproduct agp;_, M.

2.1.2 Kleene algebras
We remind here one of the possible axiomatizations of Kleene algebras.

Definition 2.1.3. A Kleene algebra is a structure (A, +, -, (-)*, 0, 1) which satisfies the following
properties:

1. (A, +,-,0,1) isasemiring, that is:
e (A,+,0) isan idempotent monoid;
e (A, -, 1)isamonoid;
e - distributes over +.
2. (+)* satisfies the following equations [ Con71, Koz94]:

X Y<Y=X'Y<Y (2.5)
Y- X<Y=Y -X*<Y (2.6)
1+X - X*<X* (2.7)
1+X* X < X* (2.8)

where < isthe partial order induced by the idempotent + [Bir79], that is,
X<YiffX+Y =Y.
A Kleene algebra is called commutative iff it satisfies the following identity [ Con71]:
X' +Y ' =(X+Y)+(X"UY") (2.9)

The classical example for Kleene algebras is the set of all languages over an alphabet
(P(E*),U, (), 0, {s}). An example of a commutative Kleene algebra is the Kleene algebra
over a one-letter alphabet.
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2.2 Signals

We denoteR<j, R, andR., the sets of negative, nonnegative, resp. positive numkegsthe
set of nonnegative rational numbesthe set of integers anl the set of nonnegative integers
(also callednaturals). For eachn;,ny € Z, [n; ...ns] denotes thénterval of integers {n;,n; +
1,...,n2}, while]2, 3] denotes the left-open, right-closed interval of reals whose limit8,aesp.
3. QInt denotes the set of intervals having bound®ig U{co} and including the empty set, while
ZInt denotes the set of intervals having boundZin { —oco, oo} and including the empty set. An
open interval is denoted &s, b[, while a closed one is denoted fasb]. We will extensively use
left-closed right-open intervals, which are thence dengtefd.

For each functiory : R — A, real numbery and eachu € A, we say thathe left limit of f at
a isa and denote itti/rg f = a iff the following property holds:

there exists some > 0 such that for alt €la — ¢, af, f(t) =a

Right Iimitstli\m f = a can be defined similarly. This definition amounts to considering that the set
A'is equipped with theliscrete topology.

A left discontinuity in f is somex € Rforwhichtli/m f(t) # fla) = }{n f(t). The discontinu-
ity is right if we rather have thatlli/m f(t) = fla) # tlgn f(t).

Definition 2.2.1. A signal over a finite alphabet X' is a function o : [0,a]— X where o is a
nonnegative number, function which hasfinitely many discontinuities, all of them being left discon-
tinuities.

We denotelom (o) the domain ot and/(¢) its endpoint/(o) is also called théength of o.

Signals can be given graphical representation. For example, Figure 2.2 gives the graphical rep-
resentation of the signai, : [0, 6]— {a, b, c} defined by:

a iff t €0, 1]U[r,4.25]
o1(t) =< b iff t € [1,7] (2.10)
¢ iff t € [4.25,6]

1 m 4.25 6

Fig. 2.2. A graphical representation of the signal defined in Identity 2.10.

Sig(X') denotes the set of signals ovEr Note that there exists a unique signal with empty
domaino, : [0,0]— X.
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Foroy, oy € Sig(X) with dom(o;) = [0, ¢;[ (i = 1, 2) define theirconcatenation oy - 05 = o as
the signal withdom (o) = [0, e; + e[ and such that
01(t> fort e [0, 61[,
o(t) =
O'Q(t—el) fort e [61,61+62[.

For example, the signal in Figure 2.2 can be regarded as the concatenation of the two signals
in Figure 2.3.

1 3 T—3 125 3

Fig. 2.3. An example of signal concatenation.

Proposition 2.2.2 ([ACMO01]). (Sig(X), -, o¢) is a a noncommutative monoid, called the monoid
of signalswith concatenation.

Moreover (Sig(X), -, o.) isisomorphic to the coproduct @, 5, R~ of card(X’) copies of the
monoid of nonnegative reals (R-, +, 0).

Proof. It is clear that the domain of each sigrabplits into finitely many intervalgs; 1, e;[ (i €
[1...n]) on whicho is constant. Therefore we may identifywith the formal concatenation:

¢(U) = a?a? ce af{l Whereti =€, — €1 andai = O'(t) YVt € [ei,l, 61'[ (211)
If we add¢ (o) = 0 we obtain the isomorphism : Sig(X) — @, R>o. 0

As we can see, this proposition gives a more “friendly” presentation of signals [ACM97]: the

signal presented in Figure 2.2 is represented also by the following elem@t.ofR-:
o1 = albﬂ'—la4.25—7rcl.75

Observe also that the empty signais denoted by the empty sequencand thats” = ¢ = o, for
anya € X. We will utilize both notationg ando, for the unit of concatenation idig().

Proposition 2.2.2 allows us to define the length of a signal as a monoid morphism induced by
the coproduct property: denote fitgt: R>, — Sig(X) the coproduct inclusion for each copy of
R>y. Then/ is the unique morphisr: Sig(X) — R, defined by the following diagram:

— D.csRx0
law

RZO
For each symbat € 3’ we denoteig,(X) the set of signals whose value is constantly

Sig,(X) := ta(Rso) = {a' | t € Rxo}

L
RZO

1g.,
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2.2.1 Timed languages: basic properties

For any setX, the set of subsets of is denoted a® (X).
Subsets obig(}’) are calledimed languages. Signal concatenation can be naturally extended
to timed languages:

Li-Ly= {0'10'2 | o1 € L1,0'2 € Lg}

and gives rise to star:
I — U I
neN
whereL? = {o.} andL"*! = L™ - L.
Proposition 2.2.3. (P(Sig(X)),U,-, (-)*,0,{o.}) isaKleene algebra.

Proof. All properties follow by transporting the proof thé®(X*), U, -(-)*,0, {¢}) is a Kleene
algebra [Sal66, Koz94]. For example, the implication 2.5 follows by proving, by induction on
n €N, thatX - Y CY impliesX"-Y CY. O

2.3 Timed words

Given a set of symbol&™* and a wordw € X*, thelength of w, denotedw|, is the number of
symbols inw. It can be regarded as the unique morphjsm: (2%, - ) — (N, +,0) determined
by |a| = 1 forall a € ¥. Remind tha{ X*, -, ¢) is the free monoid generated By

Definition 2.3.1. A timed word over the alphabet Y’ is a pair w = (w, ) consisting of a word
w e X, andafunction : [1...|w| + 1] — Ryy.

The wordw is called thesequence of actionsin w and the function is called thesequence of time
labelsin w. Thelength of a timed word is simply the length of the sequence of actions in it, and is
denoted(w, 7).

We denotel W(X) the set of timed words over. Subsets of it are calledmed word languages.

On TW(X') we can define @oncatenation operation as an extension of the concatenation on
words: given two timed word&u;, 71) and(ws, 72) define(ws, 1) - (ws, 72) = (wiws, 7) Where

71(%) iff i € [1...|w]
(1) =< T(lwi|+ 1)+ (1) iff i=w +1

Note again that there exists a unique timed word (¢,0) whose sequence of time labels is the
function which maps the unique element in its domaifi.to
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Proposition 2.3.2. (TW(X), -,€) isa noncommutative monoid.
Moreover (TW(X), -, €) isisomorphic to the coproduct monoid R, & X*, where (Rxg, +, 0)
is the monoid of nonnegative reals.

Proof. The isomorphism is simply the “rearrangement” of each timed word as follows:
d)((w,T)) =7(1)-wy-...-wy - T(Jw|+1) ad

It follows that| - | : (TW(X),,g) — (N, +,0) is @ monoid morphism.

2.3.1 Relating the monoids of signalsand of timed words

For the sequel we fix two alphabels (2. We call a monoid morphism : Sig(X) — TW({?) as
trivial if for each signab € Sig(X)

¢(0) = (e, ) for somea € Raq.

Observe that a morphism is trivial iffy(c)| = 0 for all o € Sig(X).

Proposition 2.3.3. Any monoid morphism from Sig(X') to TW({2) is a trivial morphism in the
above sense.

Proof. Assumeyp : Sig(X') — TW({2) is a monoid morphism. We first prove that for each X,
¢|Siga(2) is a trivial morphism. Then the result would follows since each signal is a concatenation
of constant signals.

Observe first that, for each two nonnegative reals € R-,

if o < 3 then|p(a®)| < |¢(a”)] (2.12)

Here we have used the fact that the length of a timed woyds a monoid morphism. This comes
asa® -’ = a” and hence, if we apply the composition of morphigms | - | o ¢ to o’ we get

[6(a”)] = [¢(a)] +1d(a"*) = |$(a®)

This implies that there is a countable partitidig} ),y of Sig,(X) such thasig)(X) = the
set of constant-signals which are mapped by the morphismo ¢ to the integer:

Sig (&) = {a” [ |¢(a”)| = n}

Let us denotey, thefirst integer with the property th&ig,° (%) has a nonempty interior. Such
a number must exist since, for eaehe N, if there exist somey, a, € Sig) (X)) with a; < ay
then[ay, as] C Sigl(X) due to implication 2.12. As a consequen$i;°(X) 2]0, «f for some
a € Rxp.

But then, for eact €]0, o[, /2 €]0, o[ too and hence:
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no = |¢(a”) = |p(a”?a”?)| = |(a”? - $(a”?)| = |$(a”/?)| + [$(a”?)| = 1o + no

It follows thatny = 0.
But then, for each € R, if we denotek = [2] thenZ < « and hencégp(2)| = 0. It follows
that

p(a”)] = |¢(aF™)] = k|g(a%)| = 0

This proves our claim thdt- | o ¢ maps all signals frontig, (') to 0. But every signab €
Sig(X) is a concatenation of constant signals- ! - ... - a/” whereq; € ¥. Hence we have that
for all o € Sig(X)

[p(0)] = Ip(ay) -...- $lar)| =0 O

Remark 2.3.4. In general, trivial morphisms frogig(X') to TW({?2) are linear on each submonoid
Sig({a;}) of Sig(X'), but the slopes might be different. Hence we might add to the above proof
the observation that, on ea6ig({a;}) there exists som& € R, such that(a') = Kt. Conse-
quently, we may conclude that all morphisms fr68ig(X’) to TW((2) are “piecewise-linear”, that

is, there exist<, ... , K,, such that

d)((lil e CLZTI") = Kltl + ... Kmtm
wherem = card(X).

We have another option for relating signals and timed words: to join the two structures into a
single one, i.e. define signals with actions or timed words with states:

Definition 2.3.5. The monoid of signalswith actions over the set of states {2 and the set of actions
X isthe coproduct @ R>( @ X of card(S2) copies of the monoid of nonnegativereals (R-g, +, 0)

acf?
with the free monoid (X", -, ¢).

Hence now the monoids of signals and of timed words can be regarded as “particularizations”
(or projections, in the algebraic sense) of the monoid of signals with actions. However we will not
utilize this notion since it will make all derived notions and proofs unnecessarily more complicated.

2.4 Timed regular languages defined by inver se monoid morphisms

We start this section by reminding the way regular languages are related to monoid morphisms
[Eil74].

Definition 2.4.1. Given (M, -, e) a (possibly infinite) monoid, an M-automaton is a tuple A =
(Q,M,d,q0,Qf) Wheregy € Q,Qy C Qandd : Q x M — () hasthe property that for all ¢ € @),
mi, Mo € M:

d(g,my1 - mg) = (6(q,mq),me) and d(q,e) =q (2.13)
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A is calledfinite whenever() is finite. Theaccepted language of Ais L(A) = {m € M |
d(qo,m) € Qy}. It is also assumed that all statgs () in an M-automaton ar@ccessible, i.e.
there exists some, € M such that(qy, m) = q.

Definition 2.4.2. Given amonoid M, the family of M -regular languages, denoted Reg(/), isthe
family of subsets L C M which are the accepted language of some finite A/ -automaton.

Theorem 2.4.3 ([Eil74]). Reg(M ) coincides with the family of subsets . C M for which there
exists some finite monoid (F, o, ¢’), some surjective monoid morphism ¢ : M — F and some
subset F' C F suchthat L = ¢ (F").

2.4.1 Essentially untimed regular languages

Theuntiming of a signal is the sequence of symbols that appear in it. Observe that in the untim-
ing of a signal, two consecutive symbols are distinct. Hence the untiming application (actually,
morphism) is not surjective.

We will take advantage of the algebraic definitionSaf(X') and define the untiming as a co-
product of morphisms. We define first the mon6il(Y') of stuttering-free words, that is, the set
of words in which no two consecutive letters are equal. This monoid is endowed with a concatena-
tion operation that “fuses” two identical letters. For example,

aba - ac = abac

We may definesF'(X) in two ways: as a coproduct monoid and as a quotient monoid:

The coproduct definition is the following: for eaclu € X consider the monoidS, =
{e,a},-,¢) wherea - a = a (i.e. a is idempotent). Define thefF (X*) as the coproduct of the
family monoids(S,, -, €)ue s,

SF(2) =P Sa
acXy
and denote, : S, —— SF(X) the inclusion morphism which defines this coproduct.
Thequotient presentation obF (X) is the following: consider the relation C X' x X defined
by
p={(aa,a) |ac X}
This relation can be uniquely extended to a congruencE*aas follows:

p = {(wiaaws, wiaws), (wiaws, wraaws) | wi, we € X* a € X}

ThenSF (X)) is isomorphic to the quotient of the* by the congruencg. That is, elements of
SF(X) can be thought as equivalence classes .\We denoté -~ : X* — * /5 the canonical

projection. For exampleyabcbba = abcba.
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Concatenation of stuttering-free words, i.e. th@ternal operation onSF(X) that makes it a
monoid, can then be defined as follows: for each/ € SF(X), w not ending ina andw’ not
beginning inb,

wa-bw’—{ wabw'  iff a £ b

waw' iff a=05b

We may now proceed to the algebraic definition of untiming: consider the following monoid
morphism:

a ifft#£0

Pa: (Rzo,+,0) = (Sa,+,€),  pa(t) = { e ifft=0

The following diagram defines, by theorem 2.1.2, timéiming mor phism /:

Lg .
R>p ————— Sig(¥) = @aeE R>o
Pa la!u = (K4 © Pa)acs
S, L Sp(x)

Definition 2.4.4. Atimed language L C Sig(X) is called essentially untimed iff there exists some
st I C SF(X) (i.e a language in the classical sepsach that L. = U/~'(L’). The class of
essentially untimed regular languages consists of essentially untimed languages that are inverse
images of regular languagesin SF(X).

Observe thatSF'(X)-regular languages in the sense of definition 2.4.2 are in fact regular lan-
guages in the classical sense [HU92] with the restriction that in each word no two consecutive
letters are equal — and this restriction means intersection with a regular set.

2.4.2 Syntactic monoidson (Sig(X), -, o) arenot interesting

In this section we show th&ig(’)-regular languages are essentially untimed. Remind first that a
zero element in a monoid(M, -, e) is an elemente M which satisfies

Vee M, t-x=z 1=t
Our result relies on the following lemma:

Lemma 2.4.5. Suppose f : (Rso, +,0) — (M, -, e) isa surjective monoid morphismand (17, -, e)
is afinite monoid. Then

e either f isthetrivial morphism f(z) = e, Vo € R>( (and hence M = {e});
e or M ={e,1 } wheretisazeroelement and f mapsany = # 0 to 1 and 0 to e.
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Proof. We note first that the surjectivity gf implies that: is commutative. We may also prove by
induction onk that for allz € Ryp and forallk € N, f(k-z) = f(x)*.
Let’s prove first the following:

Claim. If M contains only idempotents then it has at most two elements, and one of these elements
is a zero element (in fathe zero element, since it is unique).

Proof. SupposeV/ = {m,... ,m,}. Thenm =m; -...-m, is the zero element because
=mMmy-...-M;j-...-Mp=1"m

where we have used the commutativity- of
Two cases arise then: the first is whan= ¢, the unit of M. But the unit can be a zero element
only if the monoid has only one element, the unit:

e = e -m; (ase is the zero element}= m; (ase is the unit)

The second caseis # e. In this case there must exjst# 0 such thatf (5) = m.
Take then anyx > 0. Sincef(«) is idempotent we have thgt{«) = f(k - «) foranyk € N>;.
If we take therk: > [2] we obtainka >  and hencéa — 3 > 0, hencef (ka — (3) is defined.

«

But then, asn = f(3) is the zero element we have th&ls) = f(3) - f(ka — (3). Therefore

m = f(8) = f(B) - f(ka = B) = f(B+ ka = B) = f(ka) = f(a)
which proves that any positive realis mapped to the zero element. O

So what is left to prove is that if is surjective then\/ contains only idempotents. Take a
positive reaky > 0 and denot&7(«) the image undef of the submonoidN of multiples of a:

G(a) = {f(na) | n € N}

It is clear thatG(2*a) C G(2"™a) for anyp € Z. But sinceM is finite, there must exist
somep, € Z such thatG(2”a) = G(2"*"'a). Let us then denot@ = min(«,2”a), hence

a0 -6(;)
We may prove thafz(3) is cyclic, that is, if we denoté& = cardG () then
G(B)={f@B) |ie1...k]} = {f(0),f(B),....f(kp)} (2.14)
f((k+1)3) = f(B) (2.15)

To this end, note that if there exisE [1...k|, j € Nwith i # j and such thaf (i) = f(j0)
then we would have that((i +n)5) = f((j + n)3) for all n € N. But this would imply that

G(B) = {f(0),....f((5—1)B)}
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and henceardG(5) < j — 1, which implies that > & + 1. This shows that Identity 2.14 holds.
For showing that Identity 2.15 holds too, suppose thdk + 1)3) = f(i3) for somei €
[1...k]. By a simple induction argument, we may prove that, fonall N,

f((k+1+nk+1-1)8) = f((i +nk+1—14)3) (2.16)

On the other hand, Sil’lC}é(g) € G(f), we must have somg € [0...k] such thatf<§> =
f(j8) too. Therefore,

10 =1(5) - 1(5) = 168 168) = 123)

It follows that2j > k + 1. By recursively appying the Identity 2.16 we further get that:
f258) = f((2) — (k+1-12)8) = f((2) —2(k +1—1))8) = ...
27—k
- f(<2j— (WL—J +1)(k+1 —i))ﬁ) (2.17)

and2;j — (L%J +1>(k+1—z’)€[z’...k].

But this rewrites to the fact that(5) = f(I3) for somel € [i. .. k], which would be impossible,
by Identity 2.14, unlesé= [ = 1. Hence Identity 2.15 holds too.
But then, starting from Identity 2.17 and replacingith 1 we may further conclude that

10 = 10230 = 1 (2= (|25 1) - 1)8) = (20 [ 2] - 1))

with 25 — L%J k € [1...k]. This also implies, by Identity 2.14, that

.12
%~ | ]k=1
As a consequencg,| 25 —1, fact which, corroborated with the hypothesis that [1 . .. k], implies
thatk =25 — 1.
Therefore,

7(5) = 10+ 1)8) = (5 (by dentity 2.15)

or, by multiplying by2,
f(B) = £(28) = f(B)*.

Hencef (/) is an idempotent. By an easy induction we may show thenftt®at) is an idem-
potent too, which implies that(«) = f(203) is an idempotent. O
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Observe that it was essential to utilize the fact tf(dgr) € G(p) to show thatG(p) is cyclic.

The difference between this lemma and Proposition 2.3.3 is that the monoid of natural numbers
is an ordered monoid, in which the order is compatible with the monoidal structure. On the con-
trary, in a finite monoid there is no compatible ordering for free. This is why the two proofs are
different, with the proof of Lemma 2.4.5 much more involved than the proof of Proposition 2.3.3.

Theorem 2.4.6. The family of Sig(X')-regular languages equals the family of essentially untimed
regular languages.

Proof. Thisis a corollary of theorem 2.4.3 and the above lemma. The right-to-left inclusion follows
by an easy argument: K is a regular language ifiF'( ), then we have some surjective morphism

¢ : SF(X) — M where(M,-, e) is a finite monoid, and some subgétC M such thatK =

¢ (F). But theng o U : Sig(X) — M is a surjective monoid morphism too and definihg=
UHK) = (¢poU)"(F) we get thatl is a regular language iSig(X), -, o¢).

For the reverse inclusion, suppose we have some finite mdidid ¢) and some surjective
morphisme¢ : Sig(X) — M. We look for a decomposition af in which the untimed morphis#
occurs.

Remember that, for anye X, ¢, : R>o — Sig(Y) is the inclusion morphism for the coproduct
property. It follows thatp o ¢, : R5y — M is a monoid morphism. This implies, by the above
lemma, that the image of this morphisim (¢ o ), is @ submonoid of\/ having at most two
elementsM = {e, 1} with T - t=1.

But the monoid(S, = {e,a},-,¢) which was used to defing on page 27 is isomorphic to
Im(¢o,), Sinceaa = ain S,. Define then the morphism : S, — M as

ja(e) = e and ja(a) = ¢(a(1)) = ¢(1a(t)) forall t # 0

That s, j, is either the isomorphism frorfi, to M or the trivial morphism.
Define also the morphismg, : R>y — S, andn, : S, — S, as follows:

iff $(ea(t)) # €

a
Xa(0) =¢ andforalla # 0, x.(t) = { - otherwise

Ta(€) = € Ta(a) = Xa(1) = xa(t) foranyz # 0

Then¢ Olg = Ja© Xa anan = Tq O Pq-
Now we are ready to chase the following diagram, in which all the squares and triangles com-
mute:

Tq

Xa
}
Pa . S, . S,

|
>
Lal Ka \
. 3!<naopa>a62 /iaO7TG>a€E El!<]a>a€£‘ ~

SF(E




el e iyt Wi il yludtv pivpeitdies

The upper triangle and the outer square commute as shown above. The inner squares and the
right triangle commute by just the coproduct property. The outcome of this diagram is the commu-
tativity of the bottom square, i.e.

(b = <ja>a€2 o <’€a o 7Ta>a€2 o <"fa o pa>a€2 = <ja>a€2 o <’€a o 7Ta>a€2 ol (218)

sinceld = (Kk,0p04)aes-

This commutativity follows by the coproduct property: both the left-hand side and the right-
hand side, when composed with give j, o x,. Therefore, both must be equal to the unique
coproduct(j, o x.)«cx. Hence we have managed to show that the untiming morp#ism(x, o
Pa)acx OCCUrS in some decomposition of

So suppose we have sorfig(X)-regular languagd., witnessed by the subsét C M, i.e.

L = ¢ !(F). Consider then théF (X)-regular languagé = ({ju)acs © (kg © 7ra>a62)71(F).
Then, using the decomposition 2.18 we get

-1

L= 67(F) = ((ja)acs © (o 0 Ta)aes oU) (F) = UH(K)

HencelL is indeed essentially untimed. O



3. Real-time automata

In this chapter we study a class of automata which seems to be the largest extension from finite
automata still carrying the decidability of both the emptiness and the universality problems, a
Pumping Lemma and, moreover, a Kleene theorem in which the semantics of the associated regular
expressions is based uponatal concatenation operation. The automata we study, called Real-

Time Automata (RTA), can be regarded as timed automata with a single clock which is reset at
each transition, and they appeared (in a slightly different version) in connection with the so-called
Simple Duration Calculus [HJ96].

However, even at this lowest level of introduction of timing constraints into finite automata
we find that complementation raises a specific problem: the subset construction can be adapted
to handle timing constraints, but it works only if the automatastiuttering-free, i.e., two states
labeled with the same symbol are not connected by any transition. We also find dahthege
determinism, i.e., the property that each signal is associated with a unique run that starts in an
initial state, cannot be captured by local properties like state-determinism or stuttering-freeness:
stuttering-free state-deterministic RTA are less expressive than RTA.

We solve this problem by introducing the Kleene algebra of sets of real numberg|&loé r
concatenation from Kleene algebras of languages is taken here by addition of sets of real numbers.
This operation models the process of removing one stuttering transition by “fusing” the adjacent
states. We then study the sub-Kleene algebra generated by finite unions of intervals with rational
bounds and prove a normal form theorem for this subalgebra, result which is based on properties of
integer division and roughly says that elements in this subalgebra are “ultimately periodic”. This
result is not a corollary of the normal form for regular languages over a one letter alphabet because
our Kleene algebra has two generators whose generated subalgebras are not disjoint but which
cannot generate one another.

We also show here that the class of languages recognizable by real-time automata can be given
an “algebraic” characterization, that is, can be presented as inverse morphic images of subsets
in finite monoids, buthe monoid of signals needs to be redefined: the concatenation has to be a
“stuttering-free” concatenation, allowing two signals to concatenate only if they produce a discon-
tinuity at the concatenation point.

The chapter runs as follows: in the next section we remind what RTA are, their associated
regular expressions and the problem raised by their complementation. In the second section we
introduce the Kleene algebra of sets of nonnegative reals and prove the normal form theorem. The
third section contains the constructions that accomplish stuttering elimination and determinization
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and the fourth is reserved for a pumping lemma and expressiveness issues concerning real-time
automata. Finally, the fifth section is concerned with the “algebraic” presentation of the class of
languages accepted by real-time automata.

This chapter contains the results from [Dim00a, Dim01b]

3.1 Real-time automata and their regular expressions

Real-time automata are state-labeled timed automata [ACM97] with a single clock which is reset
at each transitions.

3.1.1 Real-time automata defined

Definition 3.1.1. A real-time automaton (RTA) isatuple A = (Q, X, X, ¢,d,Qo, Q) Where Q is
the (finite) set of states . isthe (finite nonempty) alphabety C @ x @ isthe transition relation
Qo, Qs C @ arethe setsof initial, resp. final states, A : ) — X isthe state labeling functioand
Lt : @ — QInt isthetime labeling function

We also call the paifA(q), (¢)) thelabel of the statey.

RTA work over signals: aun of lengthn > 1 is a sequence of statés);cj:...,] connected by
J,i.e., (¢, qi+1) € 0,¥i € [1...n — 1]. The run isassociated with a signalo iff there exists a
decomposition

o=Aaq)" . M)

such thatt; € «(¢;) for all « € [1...n]. Or, in other words, iff there exist some sequence of
“splitting” points 0 = e; < ... < e,y1 = {(0) such thate; 1 — e; € «(q;) ando(t) = Mg;)

forall t € [e;,e;41] @and alli € [1...n]. Observe that the “splitting” points must contain all the
discontinuities in the signal but this inclusion might be strict, case in which we say that the run is
stuttering.

A run is accepting if it starts in ), and ends irQ) ;. When a signab is associated with some
accepting run we say thatis accepted by A. Thelanguage of A is the set of signals associated
with some accepting run o4 and is denoted.(.A). Two RTA areequivalent if they have the same
language. If we denote the class of all RTA whose alphabBtés RTAY'), then we may define
the class of eal-time recognizable languages over X as

TRec(%) = {L € Sig(¥) | 34 € RTA(Y) s.t. L(A) = L}

As an example, the automaton in Figure 3.1 accepts the sigrab®*°v%° The accepting run
which is associated with this signal (8, r, s,t) and the splitting points area = 0, e; = 2.5,
ez = e, = 6.5 ande; = 9. Note that the run is stuttering.

A real-time automaton whose alphabetiss, from a syntactic point of view, a “finite presen-
tation” of a classical automaton over the (uncountable) set of syniboisR.,, where a statg
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Fig. 3.1. An example of a real-time automaton and a signal accepted by it.

labeled(a, I) embodies a whole family of states labeled w(th«) for all « € I. However the
comparison stops at this syntactic level since semanti¢allyR., comes with a structure which
is unavailable for the alphabet of a classical automaton: according to this structure, we may “fuse”
two symbols sharing the same state label. It is this structure that allows the acceptance of the signal
o in the above example by splitting the symiyot into three symbolg?, 1° andb?5.

We end this subsection with the following adaptation of the decidability of the emptiness prob-
lem for finite automata.

Proposition 3.1.2. The emptiness problem for RTA is decidable.

The proof relies on the algorithm for computing the sets of accessible states and then checking
whether a final state is accessible, which can be done in linear timecartf Q) - card(d).

Real-time automata can also be defined such that their accepted language would consist of timed
words instead of signals. Most notably stuttering steps would translate into epsilon-transitions in
the timed words setting. The whole contents of this chapter can then be translated to such automata
without very much difficulty.

3.1.2 Regular expressions and the Kleene theorem

We have observed that labels in RTA are finite presentations of sets of symbol&'fxdRy,. This
observation can be further extended to considering regular expressionSgyer= X' x QInt
with the aim of obtaining a Kleene theorem:

Definition 3.1.3. Consider Rat(Xgy,.: ), the set of rational (or regular) expressionsover Xy, i.e,
defined by the following grammar

E:=0|1|a;|E+E|E-E|E"

where the atomsa; are symbols from Xg,,; .
Rational expressionsin Rat( Xy, ) will be mainly called real-time regular expressions.

There are two types of semantics for real-time regular expressions: the first one, called hence-
forth abstract, is the classic semantics in terms of words over the set of symMigls and is
denoted - |. For this semanticg(| is the empty set anf| is the set containing the empty word
over Yo, word which is denoted too.
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The second semantics, called ttgal-time semantics or simply the semantics, is in terms of
signals and is denotef |:

laz]| = {o € Sig(£) | 3t € I such tha = a'} 1E*| = |E|I*
[E+F|| = [E]U]F] [0} =0
1E-F|=£]-Fl 1| = {oc}

Note also thafajoq|| = {oc} for anya € X.
The following straightforward property relates the two types of semantics:

Proposition 3.1.4. For each real-time regular expression £ € Rat( Xy ),

1Bl = {lwll | w e |E]}
We define the class okal-timeregular languages over )’ as
TReg(X) = {L € Sig(Y) | 3£ € Rat(Zgm:) such thal|E|| = L}

Theorem 3.1.5 (Kleenetheorem for RTA). T'Rec(X) = T Reg(X).

The Kleene theorem would follow almost immediately from proposition 3.1.4 and the classical
Kleene theorem [HU92] if we would have transition-labeled real-time automata rather than state-
labeled. Since this kind of automata will further show useful, we define them here and provide the
straightforward translations from and to RTA:

Definition 3.1.6. Atransition-labeled RTA (t-RTA) isatuple A = (Q, X, 6, Qy, Q) Where Q, X,
Qo and @y have the same names and properties as in RTA and the transition relation ¢ satisfies
§ CQx X xQInt x Q with card(d) < oo.

Transitions of the formq, a, I,r) € ¢ will be calleda-transitions.

Since a transition-labeled RTA is a finite automaton over a finite subsef;pf, we may speak
of its language in the classical sense, as the set of words@ygrwhich are concatenations of the
labels of some accepting run. Let’s call this #iestract language and denote it a,;,;(.A). The
real-time language accepted by A, or simplythe language of .4, denoted.(.4), is then the union
of the semantics of each word i, (.4), with this abstract word viewed as a regular expression
over Yo, that is,

L(A) = | {llwll | w € Laps(A)} (3.1)

The translations between RTA and transition-labeled RTA are the usual transformations of a
state-labeled automaton into a transition-labeled one and back, with a special case when the empty
signal is accepted by the t-RTA:
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e Given some RTAA = (Q, X, X, 1,0, Qo, @), a transition-labeled RTA with the same language
isB = (Q U {tO}v 27 97 {tO}v Qf) WheretO € Q and

0= {(q.\r),u(r),r) ] (¢;7) € 6} U{(to, A(q),2(q),q) | 4 € Qo}

e For the reverse, given some transition-labeled BA= (Q, X,0,Q, Q¢), @ RTA whose lan-
guage isL(B)is A = (0 U{q¢.}, 2,9, A, 1, Ty, Ty) where
— for each RTA statéq, a,I,r) € 0, )\((q, a, [,r)) =a andL((q, a, [,7")) =1
— A(g:) = afor somea € X' (assumed nonempty) angy.) = [0, 0];
_TO = {(Qaaa[7r> | qE€ QO}U{QE};
_Tf = {(q’av[7r> | re Qf}U {QE | Oe € L(B)}1
-0={((g.a,I,r),(r,b,J,s)) | (g,a,I,7),(rb,J s) €0}

Hence, whemw, € L(B) we must add to4 an initial and final state for accepting. Note that this
state is neither the source nor the target of any transition.

Proof (of the Kleene theorem 3.1.5). The proof is then the following: we have already seen that

each RTAA is equivalent to some t-RTA. Then, by applying the classical Kleene theorem we

get a regular expressiai € Rat(Xg: ), that is, a real-time regular expression, whose abstract
semantics equalk,;s(B). Then, by combining properties 3.1.4 and Identity 3.1 we obtain that the
(timed) semantics of’ and the language o4 are equal. The reverse implication is similar. O

We end this subsection with a procedure for removing the zeroes from the time labels in RTA
which is a straightforward adaptation of the epsilon-elimination procedure for finite automata
[HU92]: First observe that transitions of the kirid, a, [0,0],7) play the ®le of e-transitions
in finite automata. Consequently, in each t-RPA= (Q, X, 4, Qv, Q) we split each transition
(¢,a,1,7) with 0 € I in two parts, the first beingg, a, I \ {0},) and the secondy, a, [0,0],7).

We further define, for each stagen A,

e(q) = {¢' € Q| there exists a ruf(g;_1, a;, [0, 0], qi))ie[l...n] with ¢ = g0, ¢ = ¢.}

Then, the t-RTAA = (Q, X, 6, Qo, Q) in which

0 = {(g,a,1\{0},7)]3(q.a,I,s) € dandr € e(s)}
Q; = QrU{geQ]|Qsrnelq) #0}

is equivalent to4. Note that when translating transition-labeled RTA without zero labels into state-
labeled RTA, we will get the special initial stajewhose time label if), 0], needed for not loosing
the empty signal from the accepted language.

All the above observations can be gathered together in the following:

Proposition 3.1.7. Each transition-labeled RTA is equivalent to some t-RTA in which the interval
labels of the transitions do not contain 0.

Each RTA is equivalent to some RTA in which there exists a single state whose interval |abel
contains 0, the label of this state is actually [0, 0] and no transition enters or leaves this state.
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3.1.3 The problem of complementation of real-time automata

The usual way of showing that a class of automata is closed under complementation is to prove
that the automata can be transformed such that for each entry there exists a unique run that starts
in an initial state, for then complementation would be accomplished simply by complementing the
set of final states. The notions that assureutigueness of the run for RTA are state-determinism
combined with stuttering freeness:

Definition 3.1.8. A RTA A is language deterministic if each signal in L(.A) is associated with a
unique run that startsin aninitial state.
A isstuttering-free if

e there exists a state ¢. € (o which is not connected to any other state and whose time label is
1(g:) = [0,0];

e thetime labels of all the other states do not contain 0;

e for each transition (¢, 7) € 9, A(¢) # A(r).

A is state-deterministic if initial states have digoint (state- or interval-)labels and transitions
starting in the same state have digjoint (state- or interval-)labels too:

Whenever r» # s and either r,s € @y or (¢,7),(g,s) € 0 then either \(r) # A(s) or
t(r)Ne(s) = 0.

A iscalled deterministic iff it is both state-deterministic and stuttering-free.

The translations of these notions for transition-labeled RTA are the following:

Definition 3.1.9. At-RTA A istransition-deterministic if it has a singleinitial state and for each
state ¢ € @ and symbol a € X, if two distinct a-transitions leave ¢ then their time labels are
digoint, i.e.,

If (q,a,1,7),(q,a,J,8) €dandINJ #Dthenl = Jandr = s.

A isstuttering-free if the time label s of the transitions do not contain zero and there are no two
distinct adjacent transitions labeled with the same symbol, i.e,, if (¢,a,1,7),(r,b, J,s) € ¢ then
a # b.

A isdeterministic if it is state-deterministic and stuttering-free.

Proposition 3.1.10. The translations between RTA and t-RTA provided in section 3.1.2 are such
that

e state determinismin RTA istransated to transition determinismin t-RTA and vice-versa and
e stuttering-freenessin RTA istranglated to stuttering-freenessin t-RTA and vice-versa.

It is clear that determinism implies language determinism. On the other hand, state-determinism
without stuttering freeness does not imply language determinism, due to the nondeterministic na-
ture of choosing the stuttering steps. But a more important observation is that stuttering-free RTA
arestrictly less expressive than general RTA: consider the language of constant signals with integer
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lengthLy = {a" | n € N}, which is accepted by the RTA in the Figure 3.2. Observe that this RTA
is language deterministic.

®

Fig. 3.2. An RTA for the languagé€ .

Proposition 3.1.11. Ly cannot be accepted by any stuttering-free RTA.

Proof. The proof is based on the intuition that a stuttering-free RTA'fowould need an infinite
number of states:

Suppose we had a stuttering-free automadosa (Q, X, 0, A, ¢, Ty, T'r) which would recognize
Ly. We may considet’ = {a} since any state with other state-label cannot be in an accepting
run. Then, since the automaton is stuttering-fiee, ). Hence the number of accepting runs4n
equals the number of states that are both initial and final. Denoteuttiemax inR., U {co} of
the time labels of these initial and final states. But then both the assumptionc andu < oo
lead to a contradiction:

If 1 = oo then for some statg € QyNQ s we have that(q) = (I, co[ where'(‘ is any left paren-
thesis. Then any constant sigrak o' with ¢ € (I, oo[ would be accepted hyl, contradicting the
assumption that only signals with natural endpoints are accepted.

On the other hand, ifi < oo then any constant signal = " with n € N, n > u, is not
accepted by4, again a contradiction. O

This proof can be easily adapted for showing that state-clock automata [RS97] cannot accept
the following language:

1[B)j0,00(| * Ly * [[Bljo,cofl] = {0 a*b | k € Nt1,t2 € Rsg }

A similar property can be shown for event-clock automata, but in which stuttering is replaced
by e-steps.

Despite Proposition 3.1.11, there is no problem in building a RTA for the complemént wf
is the RTA in Figure 3.3 below.

Figure 3.4 below gives an example of how to transform some stuttering RTA into a stuttering-
free RTA.

Hence we discover the need of computing the “sum” of two intervals and the “star” of some in-
terval, or, in a more formal setting, the need for defining some operations that satisfy the following
relations suggested by Figures 3.3 and 3.4:

R\ {1} = {1}*+]0,1] and [2,3]* = {0} U[2,3] U [4, 00
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Fig. 3.3. A RTA for the languag&ig({a}) \ L.

Fig. 3.4. The stuttering RTA ata) is equivalent to the stuttering-free oneay.

3.2 TheKleene algebra of setsof real numbers

The powerset of the nonnegative numbg(R.) is naturally endowed with a concatenation op-
eration: it is addition extended to sets of reals:

X+Y={z+y|lzeX,yecY}foral X,Y CR

whose unit is the set = {0}.
We can also define a star operation via the usual least fixpoint construction

X+ = Jnx
neN
where the multiples oK are defined as usudlX = 0and(n + 1)X =nX + X.
The following theorem can be easily verified:

Theorem 3.2.1. The structure P(R>o) = (P(Rxo), U, +, (-)*, 0, 0) is a commutative Kleene al-
gebra (see Definition 2.1.3).

Because a complement operation is availabl¥, = R., \ X, we actually get &ommuta-
tive complemented Kleene algebra, i.e., a boolean algebra which is also a commutative Kleene
algebra.

Note also that summation with singletons distributes over intersection:

{fe}+(YNnZ)={z}+Y)n({z}+ 2) (3.2)
but distributivity of summation over intersection is not valid in general as the following example
shows:
(12,3[+14.5[) N (12,3[+15,6]) = 7,8]
12,3[+ (]4,5[N15,6]) = 0
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3.2.1 Normal forms

Denote K(QInt) the sub-(commutative complemented Kleene) algebra generatédly in
P(Rsp), that is the family of sets which can be obtained from interval€att by applying
union, summation, star and complementation.

Definition 3.2.2. Aset X € K(QInt) can be written in normal form if there exist X;, X, two
finite unions of rational intervalsand £ € Q-y, N € N such that

X = XU(Xy+ {k}) (3.3)
and X1 C [0, NE[, X5 C [Nk, (N + 1)k] (3.4)

We call N the bound of the normal form.

We will work with normal forms in whichX; and X, are unions otligoint intervals. It is straight-
forward how to transform some normal form such that this property holds.

Normal forms are not unique: for the normal form in the definition and spme N, the
following expression:

X = <X1 U (Xo+ {0,k 2%, ... ,(p— 1)k})> U (X3 + {pk} + {k}")

is a normal form too, but with bountf + p.

Any finite union of rational intervals( can be put into normal form: whek is bounded from
above byM thenX = X U (0 + {1}*) is a normal form with boundlA/]. WhenX is unbounded,
supposeX = X; U[M, oo| is some decomposition of it into disjoint intervals, whéfeZ N. Then

X = <X1U [M, [M] [) U <HM], (M +1[+{1}*>
is a normal form with boundiM].

Proposition 3.2.3. For each set X writteninto normal formas X = X; U (X + {k}*), X = 0 iff
both X; and X, are empty.

This property, though trivial, has its own importance since we will use normal forms as time labels

in automata and we still want to have a decidable emptiness problem for the resulting automata.
Sometimes, after the application of different operations to normal forms we might not be able to

get directly a normal form; instead, we might geweak normal form, which is a decomposition

as in ldentity 3.3 but without the additional requirement 3.4 on the existence of the bound. As an

example we have the following:

e X = (]2,3[U]4,6]) U <([6 7[U[8,9[) + {3}*) is written in normal form with bound since we

haveX; =]2, 3[Ul4, 6[C [0, 6], X> = [6, 7[U]3,9[C [6,9].

oV = (]2,3[U]4, 7[) ([5,7] + {3}") is a weak normal form which is not a normal form: there
is noN € N such thaf5,7] C [3N,3(N + 1)[ and]2, 3[U]4, 6[C [0, 3N
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However both expand to the same set:

X =Y =[2,3[U4,7 U JBBn —1,3n +1]
n>3

Lemma 3.2.4. Weak normal forms can be transformed into normal forms.

Proof. TakeX = X,U(X,+{k}*) some weak normal form and definé = sup(sup Xi, sup Xs).
Two cases arise:

1. M = oo. This means that there exists some R, such that{Z, co[C X, where‘(‘ denotes
, . L
some left parenthesis. Define then= hJ hencenk < L < (n + 1)k. Then for each

i >n+1, Xo4 {ik} C [(n+1)k,00[ C (L, o00[. It follows thatX is a finite union of intervals

X =X, U (O (X2 + {ik})) U (L, o0

=0
and thus we know how to t]\r?nsform it into normal form.
2. M < oo. Define them = {?J + 1, hence(n — 1)k < M < nk. Define further

7 = XU KU (X2 n {z’k})) N [O,nk[]

1=0

Zy = (o <X2+{ik}>>ﬂ[nk,(n+l)k[

=1
We claim thatX = Z; U (Z, + {k}*) which is a normal form with bound.
To prove this, observe first that for eack j,4,7 € N,
(Xo + {ik}) 0 [0, k(= 0

Moreover, distributivity of summation of singletons over intersection (property 3.2) implies that,
for eachj € N,

(Xa + {jk}) N [(n+ j)k,00[ = (X2 N [nk, 00[) + {jk} =0
due to the fact thak, C [0, M| C [0, nk[. This also implies that, for eagh< j, i,j € N,
(Xo+ {ik}) N [(n+j)k,00[ =0

Therefore, by the same distributivity property 3.2 we get
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(X2 + {K}) O [(n+ )k, (n+j + k[ =

(U Gt b)) nltn+ ok -4+ =

i=j+1

<U (X + {ik})) N [nk, (n + D)k[+{jk}

1=1

and further
X =X U (Xs+ {k})

=X, U ( (% + {k}) 0 (10, k[0 [0+ )k (n 45 + 1)k[>)

J=0

>
= 21U (2, ) 2

3.2.2 A normal form theorem

The key result for normal forms is the following:

Theorem 3.2.5. Each X € IC(QInt) can be written in normal form.

Proof. We must show that the result of any operation applied to some normal forms can be put into
normal form. We first list some useful identities valid/{R) [Con71]:

X = X* (3.5)
(XUY)" = X"4Y~" (3.6)
(X*4+Y) = {0JUX"+Y"+Y) (3.7)

We employ the notationgm(p, ¢) andgcd(p, q) wherep, g € Q- as the generalization étm
andgcd from integers. The formal definitions are:

lem(p,q) = min{r € Qs¢ | 3, m € N such thalp = r = mq}

pq
ged(p,q) = lem(p. )

We also use the followingltimately periodicity property:
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For eachn distinct positive rationals; € Q> (i € [1...n]) we have thafa, ... ,a,}"
is ultimately periodic, i.e., there exist soménite set of rationalsB and some rationals
g, € Q> such that

{ai,...,a,}* = BU ({¢} + {r}") (3.8)

This property can be seen as an equivalent form of the normal form theorem for regular languages
over a one letter alphabet. For a direct proof note first that, given two ratipnats Q.,

{p.q}* =BU ({lcm(p, q)} + { ged(p, Q)}*)

whereB = {a € Qs | a<lem(p,q),a =Ilp+mg,l,m e N} ={p,q}* N [0,lcm(p, q) [ The
property 3.8 follows from this by induction upon the number of elements in the starred set.

Fix now two normal formsX = X; U (X + {k}*) with boundM andY = Y; U (Y, + {l}")
with boundN and denoten = lcm(k,1). We then get the following form foK U Y':

m/k—1 m/l—1

X,UY;U ( U <X2+{ik})u U (Y2+{@'z}))+{m}*

= =

This is a weak normal form and Lemma 3.2.4 shows how to transform it into normal form.
For X + Y, distributivity of + overu transforms it into:

(X1 +V) U (X 4+ Y +{I}") U (Xo+ Y+ {k}) U (X2 + Yo+ {k} +{1})

An instantiation of identity 3.6 give§k}* + {I}* = {k,[}*. The ultimately periodicity property
3.8 gives a normal form for this set and thence we have above a union of weak normal forms which
we already know how to bring to normal form.

For X* we have two cases. The first one occurs when ong;odind X, contains a honpoint
interval. Thenthe set X* is a finite union of rational intervals, so we know how to bring it into
normal form.

To prove this claim, note that for each nonpoint interval, éagb| (that isb — a > 0), denoting

mo—1

a . .

my = [b w we have thata, b = 0 U | ] Jia, ib]UJmga, oof since the choice afiz assures

—a
=1

that (mg + 1)a < meb. Hence from then,-th iteration the intervals start to overlap.

The second case for* is when bothX; and X, consist of point intervals. Applying identity
3.6 we getX* = X7 + (X2 + {k}*)*. Then by the ultimately periodicity property 338 can be
written into normal form, so we may concentrate(of + {k;}*)*.

By identities 3.7 and 3.6 we further get

(X {k))" = {0} U (Xa + X5+ {K}") = {0} U (X2 + (Xa U {K})")

Finally the ultimately periodicity property 3.8 tells us tt(af2 U {k})* can be put into normal
form and therefore this case reduces to a summation of normal forms.
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For—X the strength of the normal form, i.e., the additional requirement on the existence of the
boundN helps us giving directly the result: it is

-X = (ﬁX1 N [0, Nk:[) U <(_'X2 N[Nk, (N + 1)k[) + {k:}*>

and the bound of this normal form i$ too. O

In [CGOO] it is proved that the set of finite unions efdimensional normal forms in which
X, = () forms a boolean algebra. The essential novelty in our result is the closihdimiensional
normal forms under star.

Though the proof of Theorem 3.2.5 is based on the same technique that gives the normal form
of regular languages over a one-letter alphabet, it cannot be a simple corollary of that result: even
if we restrict our attention to the algebra generated by intervals with natural bounds, denote it
Nint, we findtwo generators: the point st} and the nonpoint intervaD, 1[. Neither of them
may generate the othef1} generates just sets with isolated points or complements of such sets
(i.e., countable or co-countable sets), whilel | generates just finite unions of intervals (it cannot
generatd0, 1[+{1}").

One might also think that the result follows from Eilenberg’s theory of automata with multiplic-
ities [Eil74]. But this is not the case either since in that work star is defined via some formal power
series and one cannot prove, unless defining some suitable equivalence on power series, that e.g.
[0, 1[*= [0, oo].

Finally note the interesting relation which holds between the two generatdig:0f showing
they are not independent:

10,1[*= (0U]0, 1[) + {1}* (3.9)

3.2.3 Matrices of normal forms

At the end of this section we make a brief excursion into matrix theory. We construct, as in [Koz94]
the Kleene algebra of x n matrices ovefP(R.,) whose operations are the matrix extensions of
the operations in the Kleene algel#éR-):

(A U B)Z] = Aij U Bij (A + B U ik Bkj
k=1
A =|JnA
neN

where0A = [, and(n + 1)A = nA + A, I,, denoting the unit for matrix summation, i.e.

(Ln)ij = {{O} iﬁ Z :j:
0 iff £ 7

If we write in detail the components of we have:
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The star of a matrix4 can be computed by the following well-known Floyd-Warshall-Kleene
algorithm [Con71, Eil74]: we recursively define a sequence ef1 matricesA(k) (0 < k < n)
with

A0)=AUI,
A(k)i; = A(k = 1);; U (A(k; — Dix + (A(k — 1)) + Ak — 1)kj) (3.11)

Proposition 3.2.6 ([Eil74]). A(n) = A* for any matrix over P (R ).

The classical proof may run as follows: one proves first that),, + (mA)y; C ((n +m)A),;.
This implies tha A*);x + ((A*)i)” + (A*)x; C (A*);;. Then one shows that(k),; C (A*);; by
induction onk and hence get the left-to-right inclusion.

The right-to-left inclusion follows by proving that

A(k)l]:U{Alll_l_All’Lg_l_+A’Lm]|217 ,zme[lk],mGN}U{0|z:]}
by induction onk.

Corollary 3.2.7. If A isa matrix of normal forms then A* can be transformed into a matrix of
normal forms too.

Corollary 3.2.8. For each matrix of normal forms A if for all indicesi # j we have that 0 ¢ A,;
then for all indicesi # 7,0 & (A*),;.

Proof. This is a corollary of relation 3.10: for any, ... ,i, € [1...n] consider the suml,;, +
A, + ...+ A, ;. As we assumed # j we must have some € [1...m] such that, # i,.1.
Thenced ¢ A; ; ., and therefore the sum itself does not contaiBy identity 3.10, it follows that

Note however that for any (A*);; will always contain.

3.3 Determinization and complementation of RTA

The above theory suggests that “periodic” constraints may replace intervals in RTA:

Definition 3.3.1. Anaugmented real-time automaton isatuple 4 = (Q, X, 9, A, ¢, (o, Q¢) where
Q, X, Qo, Qy, d and X arethesame asin RTAwhile. : Q — KC(QInt) (actually ¢ gives a normal
form).

Augmented RTA work similarly to RTAruns have the same definition and a sighas associ-
ated with a run(g;)icp1..np iff 0 = AM(@1)™ - ... - M(gn)" The emptiness problem is again decidable
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in linear time w.r.tcard(Q). Note that we need a preliminary step in which statesose interval
labeldenotes the empty set are removed. It is here where we need Proposition 3.2.3.

The different notions of determinism remain unchanged for augmented RTA; hence we will
speak of state-deterministic augmented RTA and stuttering-free augmented RTA in the sense of
Definition 3.1.8.

We also have a transition-labeled version of augmented RTA, called in the semgneénted
t-RTA, which are tuple$ = (Q, X 9, Qo, Q) like t-RTA, the difference being that the transition
relation is time-labeled with normal forms instead of just intervalsz @ x X' x K(QInt) x
Q. The different notions of determinism in Definition 3.1.9 are the same for augmented t-RTA,
the translations between RTA and t-RTA and back from subsection 3.1.2 work with augmented
automata too and Proposition 3.1.10 is valid for augmented automata.

The following theorem says that we do not increase the expressive power of RTA if we use
normal forms instead of mere intervals:

Theorem 3.3.2. T Reg(X') equalsthe class of languages accepted by augmented RTA.

The proof is very close to the one of Theorem 3.1.5 and is based on the following property of
regular expressions:

Hahiaprogeds (1)l = llaliapr + (@l - [alfey

Of course, we also have to redefine regular expressions allowing normal forms as indices for atoms.

The first step in determinization is the achievement of stuttering-freeness and the proof runs
smoother foraugmented t-RTA:

Theorem 3.3.3. Each augmented t-RTA is equivalent to some stuttering-free augmented t-RTA.

Proof. As a preliminary step, in the given augmented t-RTA we remove zeroes from the time
labels by applying Proposition 3.1.7, slightly modified for handling normal forms instead of mere
intervals. We also assume that all transitions with empty time label have been removed.
We achieve stuttering freeness by removing all stutteri@gnsitions for some <€ 3/, and then
repeating this for all the other letters.In The idea is to find, for each pair of states ¢.) the set
of durations of signals that are associated with runs startipg ending ing, and containing only
a-transitions. For this we need to recursively add all the intervals of the transitions that may lie on
such a run. This is the place where we apply the normal form theorem 3.2.5 and the algorithm for
computing the star of a matrix of sets of positive numbers. The formalization is the following:
Start with some augmented t-RTA = (Q,X.J, ¢, Q) and number its states &8 =
{q1,--. ,q,}. Construct a matri¥d whose elements are the interval labels ofdHabeled states:

h - X iff (¢s,a,X,q;) €06
Y71 0 otherwise

Then(A*),; consists of the lengths of signals associated with runs starting émding ing;
and consisting ofi-transitions only. More formally,
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(A = (J{X1+ . +Xm | (rii1,0, X5, 73)ie1.. IS @ run inA and
ro=q;rn = q} U{0]j =k} (3.12)

This fact is a corollary of identity 3.10.

Computation ofA* is done by the Floyd-Warshall-Kleene algorithm (3.11). Note here the im-
portance of Corollary 3.2.7: the elementsAif are still normal forms, hence they may be used
for labeling some new transitions of an augmented RTA. Hence, whilezftaamsitions will be
preserved, th@onempty components ofd* will replace alla-transitions: their time label will be
(A*);; and they will be connected only to states from which no othansition is issued.

Formally, consider a disjoint copy ¢f, @' = {q; | ¢; € Q}; the primed states will be reached
exactly after amu-transition. Build themB = (Q U @, X, 6, Qo, Q5 U Q') where(@; is the set of
copies of final states and

b = {(¢.0,X,7),(d.b,X,r) | b#a,(qbXr)Ed}U
{{a 0. (45 \ (0. 5) | (4705 \ {0} # 0}

The need for removing zero from the new transitions comes from the fact that we do not want to
add stuttering steps involving the other symbols frdm

The equivalence aofl ands follows from the observation that a I‘l(lfn_l, a;, X;, Ti))ie[l...n] in
A associated with some signalcan be transformed into a runffor ¢ by replacing all maximal
sequences af-transitions with the appropriatetransition time-labeled fromt* and by priming
the state that follows this transition.

Observe that, by construction, no twetransitions are directly connected. On the other hand,
all non-u-transitions involving nonprimed states are just copied, hence no stuttering transitions are
added on these states. Finally, the primed states are not involved in any stuttering transitions since
they are targets ai-transitions and sources of nartransitions. This shows that by recursively
applying this construction for all letters i we end with a stuttering-free augmented RTA. O

The number of states in the final t-RTA2%"4*) . card(Q), since at each step the states are
at most duplicated. Concerning the number of transitions, note that, foreeahy’, at each
step the number af-transitions is either doubled (if is not chosen at that moment for stuttering
elimination) or squared. Since there is a single step in which the numbdrarfisitions is squared,
an upper bound for the number eftransitions would b 4*) . ;2 wherem, is the initial
number ofa-transitions. Note that the earlier we choose to eliminate the stuttefiragsitions, the
smaller the number aif-transitions we obtain. This is because squaring would apply to a smaller
number of transitions.

The last step in the determinization process is the achievement of determinism in stuttering-free
automata. This time, the construction works smoothestfie-labeled automata:

Theorem 3.3.4. Each stuttering-free augmented RTA is equivalent to some deterministic aug-
mented RTA.
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Proof. Note that, as we work with state-labeled RTA, the given stuttering-free RTA has the special
initial stateq. whose time-label i§0, 0] and which is not connected to any other state.

Start with a stuttering-free augmented RTA= (Q U {¢.}, X,46,A,¢,Qo U {g.}, Q) with
q- ¢ (). For some subset of stat§sC @) we write A\(S) = a as a shortcut for saying that all states
in S are identically labeled with.

If B were untimed, the states of the deterministic automaton would have been identically state-
labeled subsets @ and we would draw a transition from somg with \(S;) = a to somesS;
with A\(S2) = biff Sy = {r € Q | 3¢ € Sy s.t.(¢,r) € §}. Taking into account the time labels
is done by splittingS, into several “smaller” states, each one with its distinct time label, such that
their time give a partition oR. .

To eachU C @ with A\(U) = a we associate the set of time labels appearing:in

TI(U)={X € K(QInt) | g € U s.t.e(q) = X}

Let R denote the set of triple$, S’, a| wherea € X andS’ C S C @ with A(S) = a. Define then
A([S,S",a]) = aand

2([S,8',a]) =Rso N (ﬂ Tl(S’)) n- (U TI(S\ S’))

where the usual conventiofi$0 = R-, and|J 0 = 0 apply. Intuitively the control passes through
[S, 5, a] iff in B the control may pass through some staté'ibut not through any of the states
in S\ S’. We putR. in front of 2([S, S’, a]) because otherwise we would lose stuttering-freeness.
Also note that it ishere where we need the result that normal forms are closed under complemen-
tation, because we need to p(jts, ', a]) into normal form and([.S, S’, a]) contains complemen-
tation.

Hence we buil® = (R U {¢.}, ¥, 4, \, 7, Ro, R;) in which

« § consists of transitions going from eah S', a] € R to each tupléU, U”, b] defined by
U={qeQ|3res st(rg)edandr(q)=b} and U CU.

CaselU’ = () stands for the situation when the length of the current state in the signal is not in
any of the sets frorfi'l(U). Note how statef), 0, a] time-labeled withR., play the role of the
trap states in finite automata.

e initial and final states are

Ry = {15,501 € Q1S ={a€ Q| Na)=a}}U{a}
Ry = {[S)S’va] € @ | Slﬂ@f # @} U {QE | O¢ € L(B)}
The proof thatC is equivalent ta3 proceeds by induction on the number of discontinuities in

a signal. The construction assures that, at each discontinuity, exactly one state can be chosen such
that the control goes to that state. O
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The complexity of this construction is exponential in the number of states: by denotiag
card(Q), observe first that the number of statgsS’, a] wherecard(S) = k is at most* -

(at most due to the fact that some sets of statesght not be consistently state-labeled). Therefore

the cardinality ofR is at most
- k n __an
(- (1))
k=0

Theorem 3.3.5. T Rec(X') isclosed under complementation.
The universality problemfor 7' Rec(X) is decidable.

Proof. Thisis a corollary of Theorem 3.3.4 and Proposition 3.1.2. The important property provided
by the construction of the deterministic augmented RTAn this theorem is that each signal
(including the empty signali} associated with a uniquerunthat startsin 7. Hence the augmented
RTA that acceptsig(X) \ L(C) is obtained by complementing the set of final stateS.of 0O

Let us finally underline the need for theorem 3.2.5 in determinization: in our construction,
we actually build an automaton whose time labels are in dgiehded regular expressions (i.e.,
using complementation) over intervals. In the absence of theorem 3.2.5, such an automaton would
not be an augmented RTA any longer and we would be in no position to decide whether, after
complementing the set of final states, the resulting automaton would still be an augmented RTA.
This would make questionable the decidability of the universality problem.

It is actually this problem what stops the application of the determinization construction for
RTA whose time labels lie in a class larger th@i¢ in which comparison of the time bounds is
effective - for example, the class of intervals whose bounds are algebraic numbers. If this class of
intervals is chosen for time labels, it is unclear whether the universality problem remains decidable.

3.4 The Pumping L emma and expressiveness issues

Lemma 3.4.1 (Pumping Lemma). If alanguage L is accepted by a RTA then thereexists N € N
such that each signal ¢ having at least N discontinuities can be factored into three signals o =
01-05-03, such that o, containsat least one discontinuity and for anyn € Nwehaveo,-0%-03 € L.

Proof. The proof of this lemma is almost the same as in the untimed case, the difference lying
in the reference to discontinuities. Talke = (Q), X, 9, A, ¢, (o, Q) a stuttering-free augmented

RTA acceptingL and defineN = card(Q) + 1. It is clear that each signal € L having N
discontinuities must be accepted by some run having exactly1 states, hence one of the state

must be repeated throughout the run. Since we assumeditisastuttering-free we cannot have

self loops at the repeated state. Hence the part of the run which can be repeated must contain at
least two distinctly state-labeled states and therefpraust contain a discontinuity. O
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Proposition 3.4.2. The language Lonreq = {0 € Sig({a,b}) | ¢(o) € [1,3]} is not real-time
regular.
Proof. SupposingL, .., is real-time regular, we may pick up a signak L., such that its

number of discontinuities is more than the natural numbesrovided by the Pumping Lemma.
An example is the signal

kK kK
U:ngN. .-aNan,
N%es
that is, for eactk € [1... N], o(t) = afort € [2522, 2521) ando(t) = bfor t € [221, 28,

Then by the Pumping Lemmacan be factored as = o7 - 0, - 03 such tha, has at least a
discontinuity, (and hencéo,) > 0) andoy 05 - 03 € Lyonreqy fOr anyn € N. Butthemn-£(o3) < 3
for all n € N, which is in obvious contradiction witf(oy) > 0. O

It is easy to build a state-labeled timed automaton [ACM97] with a single clock accepting
Lyonreq- NOte also that the untiming of this languddéL,,....,) is a regular (untimed) language.

3.5 Stuttering-free concatenation

Theorem 2.4.6 seems to provide a disappointing result concerning the possibility to have some
results on syntactic monoids for real-time languages. But it this is not the case: we just have to
shift our attention to other monoidal structures on the set of signals.

A “quasimonoidal” structure oBig(X') arises if we consider partial concatenation operation
® as follows: for eacmonempty signalo : [0, a[— X' (o # 0) we define théast symbol occurring
in o aslast(c) = }1/1% o(t). Alternatively, last(o) is the last letter id/(c). The partial operation,

calledstuttering-free concatenation, is defined as follows: for each 7 € Sig(X) \ {o.}
_ o-T , Iff |aSt(0') = 7'(0)
7OT= { undefined , ifflast(c) # 7(0) (3.13)

Further, for any € Sig(X), puto. ©0 =0 =0 ® o,
We may easily extend this operation to a total one, by augme6tgtid.) with a fresh symbol
71, standing for “undefined”, which becomes a “zero element”:

Vo € Sig(X), 1 0o=001T =1
Of course then instead of haviag®> © = undefined we put © 7 =1.
Proposition 3.5.1. (Sig'(¥), ®, o.) isamonoid, where Sig'( %) = Sig(¥) U {1}.

Hence the whole theory of regularity from Chapter 2 applies. It should be noted that, though
we have augmentesig(X') with the “undefined” element we may still define regular subsets of
Sig(X) as those that are regular $ig'(X). The question is whether in this case we will not get
again “uninteresting” regular languages. We will show that this is not the case by redafiig)-
regular languages with languages accepted by real-time automata.
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3.5.1 Syntactic monoidsfor stuttering-free concatenation and real-time automata

In this subsection we prove that real-time regular languages can be characterized by inverse monoid
morphisms whose domain$sg'(X). Unfortunately the mechanism of finite monoid recognizabil-
ity does not give in generdinite representations of the generated class of timed languages. This
means that, by inverse monoid morphisms, we may obtain languages in which the timing informa-
tion might not necessarily consists of time intervals, like in real-time regular languages.

Take, for example, the languade;.....: C Sig({a}) consisting of signals whose length is a
rational number

Laiviehier = {a" | t € Qs0}

This language can be given as the inverse morphic image of the ubsgtin the monoidls; =
{e,a,1} in whichaa = 1, under the morphism

¢ : Sigh(X) — Ms,

o fa ifftequy
o) {T ff £ & Qs

because

¢(a’ ©d") = ¢(1) = ¢(a’)p(a)

We interpret this as the fact that monoid recognizability and finite generation of timed languages
are “orthogonal” propertiés

To cope with this problem, we will utilize herextended RTASs here, which are tuplegl =
(Q, X, 0,Q0, Q) like RTAs, but in which the only constraint @ris that it gives a finite set of tuples
J C Q xP(Rsp) xQ, that is, each tupléy, X, r) might contairany subset of real’ C R.,. For
this class of automata, all the closure results, including complementation, hold. The only property
that is not valid is their decidability.

Theorem 3.5.2. Given some RTA A, L(.A) is a Sig'(X)-regular language. The following reverse
also holds: for each Reg(Sig'(X))-regular language L, L\ {1} is accepted by some extended RTA.

Proof. We will utilize here transition-labeled RTA.

AssumeB is some t-RTA accepting, with 0. ¢ L. Using the Theorems 3.3.3 and 3.3.4, we
get a deterministic t-RTA = (Q,X,0, ¢, Q) with the same language @ Then define the
Sig'(X)-automatond = (Q U {1}, Sig'(X), 4, ¢, Q) as follows: for each constant signa) with
a € Y andt € R, define

1 Observe that the algebraic characterization in [BPTO01] also is insensitive to finite presentation of each set in the finite decompo-
sition of R ™.
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r o iff 3X C Ry S.t.(¢,a,X,r) €fandt € X
1 otherwise

d(q,a") = {

This definition make$ a partial function, i.e., correctly defined: we cannot haxer, € @ with
(q,a,X1,71),(q,a,Xs,q2) € 0 for some Xy, X5, both containingt since we would contradict
transition determinism ii8.

Then extend on all signals using again the decomposition property 2.11: for eaghd)' ®
... ®al» we putd(q,o) = (5((5(. . 6(g,al), ... ),afl"). Finally putd(q,o.) = g andd(q, T ) =1.
By now ¢ is a total function.

The equalityL(A) = L(C) follows from the deterministic character 6f The left-to-right
inclusionL(A) C L(C) is straightforward. For the right-to-left inclusion, observe that, by deter-
minism ofC we have that € L(C) iff there exists ainique accepting runﬁ(qi_l, a;, X;, qi))ie[l...n]
associated witlr. As an outcome of stuttering freeness we havg a,, foralli € [1...n — 1].
This implies that for the (unique!) decomposition= di' © ... ® a!", we must have; € X; and
§(gi_1,al’) = ¢; and therefore

5(q0,0) = 8(do, al! © ... @ al2) = §(3(... (a0, b)), ..),a7) = ga € Q (3.14)

and hencer € L(A).

For the reverse implication, take some Bet Reg(Sig'(X)), hence there exists sorg'(2)-
automatond = (Q, Sig'(X), 6, g0, Q) such thatl, = L(A).

For eachy,r € Q anda € X defineX (a,q,r7) C R., as the set of lengths afsignals which
lead fromq to r:

X(a,q,r) ={t]d(g,a") =r}

Define the (extended) t-RTA = (Q x X U {q}, 0, q0. Q@ x ) where

0 = {((g;0),b,X(b,q,7),(r,b)) [ a,b € Z,a#bqreQ}U
U{(QOaaaX(a7Qan>a(Q7a)> |a € ane Q}

(If o. € L then just add, to the set of final states). Note that#mno two transitions with the same
Y-label are consecutive, i.8.is a stuttering-free extended t-RTA.

The equalityL(B) = L(.A) follows by the decomposition property 2.11 and the stuttering-
freeness ofd which assures that, when a signal is associated with some vdnthre decomposi-
tion points that witness this must be exactly the discontinuity points within the signal. O

HenceSig'(X)-regular languages are “more interesting” tifag( 2)-regular languages, since
the class of languages accepted by RTA contains nontrivial examples with timing information.

At the end of this chapter we will give a simple property which argues our view of monoid
recognizability being orthogonal to finite generation.

Denote firstSig.;(X) the class of signals whose discontinuities occur only at rational points
and whose endpoints are rational too. We calgi( X)-automatoreffective if there exists some
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algorithm for deciding, for each signale Sig.;(X) and stateg., r, whetheri(q, o) = r. On the
other hand, we call a RTAffective if for each time labelX in A, the setX N Q. is a recursive
set.

Proposition 3.5.3. The trandations provided by Theorem 3.5.2 are such that effective SigT(E)-
automata are trandlated into effective deterministic RTA and vice-versa.

Proof. The first implication is straightforward, since the algorithm for deciding whether X,

for each time labeKX and rationap, is a particularization of the algorithm provided by the given
effective Sig'(X)-automaton. For the reverse we will consider the following algorithm: for each
signalo € Sig.;(X) and pair of stateg, r € (), consider all the paths in the RTA which lead from

q tor, whose number of transitions equals the number of symbaig ef (the untiming ofs) and

are such that théth transition is labeled with theth symbol ini/(s). This set is finite for each
signal due to stuttering-freeness of the RTA. Then, for each such run, using the algorithm provided
by the given RTA, check whether the length of théh constant component of the signal is in the
time label of the-th transition within the run. O

We have no answer to the questions whether the other constructions in this chapter (concatena-
tion, star closure, complementation) preserve effectiveness.



4. Timed automata

This chapter gives an outlook of semantics of timed automata [AD94] and of the clock regular
expressions [BP99, BP01] that can be associated with them. We remind the Kleene theorem which
connects them, and provide an alternative proof of this theorem for regular expressions that use
indexed concatenations, theorem first proved in [BP99]. We also remind an alternative semantics
for timed automata, semantics which makes referenceseb points rather than clock values, like

in [BJLWY98]. The clock valuation semantics and the reset clock semantics are interchangeable,
but we will see in the next chapters that the latter works better for timed regular expressions.

The chapter runs as follows: the first section presents clock valuations and clock constraints. In
the second we remind the semantics of timed automata as timed transition systems, and show how
this semantics can be transformed into a compositional one, such that clock regular expressions be
equivalent to timed automata We also present here the alternative proof of the Kleene theorem for
clock regular expressions with indexed concatenation, proof which is based upon the possibility
to define classical regular expressions with indexed concatenation. The final section presents the
reset time semantics for timed automata.

4.1 Clocks and clock constraints

Throughout this and the subsequent chaptersyill denote the countable set of symbdis =
{z1,z2,...} while =, will denote the first. symbols from=, =, = {z4,... ,z,}. We name
the symbols from=" asclocks as they will be used to remember the time passage in the class
of automata under study here. From these symbols we construct logical formulas which will be
used to express constraints on clocks values which are to be satisfied at different moments while
processing the signal.

An atomic clock constraint over =, is a formula of the following type:

e z; € U, for somei € [n] and nonnegative interval € Nint;
o z; —z; € U forsomei, j € [n],i # j and intervall' € ZInt.

Observe that we allow also comparisons of clocks wegative intervals.
An elementary clock constraint over =, is conjunction of the form

n

/\(%i € Ul) N /\ (iL‘l — I € U”) (41)

i=1 i,j€[L...n],i#]
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where each conjunct is an atomic clock constraintléck constraint over =, is any boolean
combination of atomic clock constraints. The set of clock constraints over the set of docks
denoted’(=,,), while the set of elementary clock constraints agglis denotedC(=),).

A clock valuation is a functionv : = — R-(. Usually we are interested only in the values
associated with the first clocks, that is, in the restrictioqgn : =, = R>g, which we denote
too.

Clock valuations can be extended mber pretations of clock constraintsin the well-known way:

e First, each atomic clock constraimt € U is interpreted by “replacing” the clock; with its
valuev(z;) and then computing the truth value of the resulting formula, where the symisol
interpreted as membership.

e Then the boolean operations are applied to the resulting truth values to get the truth value of the
whole interpreted formula.

We denotey = C' if the interpretation of” induced by is the truth value “true”.

We will identify a clock valuationv : =, — Ry, with an n-dimensional point € RZ,.
Therefore we may import different operations stimensional points to clock valuations. The
two operations we use in the sequel are

1. Addition with a nonnegative integer: givenc R, andt € R>,, we denote + ¢ the clock
valuation defined byv + t)(z,,) = v(x,,) + t.

2. Resetting the set of clocks i C [1...n], or, equivalently, projection onto a subspétef
R, defined by the equationts = {z; = 0 | i € X }: givenv € R%,, we denotey[X := 0] the
clock valuation given by

0 iff 1 € X
v(xz;) otherwise

4.2 Timed automata and their clock valuation semantics

In the sequel we fix a set of symbaisand a positive integet € N.

Definition 4.2.1. A timed automaton with n clocks is a tuple A = (Q,d, A, (o, Qf) Where, Q)
denotes the (finite) set of states, § denotes the transition relation

dCQ xEC(E,) x P(E,) x Qwith card(d) < oo

A denotes the state labeling function A : @ — X, and @, Q¢ C () arethe setsof initial, resp. final
states.

The classical way to give semantics to each timed automaton is to hihdaitransition system
first from the specified automaton, then to consider the secadpting runs in this transition
system, and finally to concatenate the labels of all transitions in each such run in order to get
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the set of signals accepted by the given timed automaton. Hence, given a timed autgmaton
(@,0, X, Qo,Qy), we associate a transition system whose set of configurations is the uncountable
set of tuplegq, v) comprising a state € Q and a clock valuatiom € RZ, and whose transitions

are classified aBstantaneous or timed, as they are produced either Hy a transition ior by the
passage of time while resting in a statd~ormally, thetimed transition system associated witt4
isT(A) = (Q xR%,0,Q0 x {0,},Q x R%,) where

0 ={((¢q,v),e,(¢',v") | g, C, X, ') € § such that = C andv’ = v[X :=0]} U (4.2)
U {((q,v), a',(q,v+ t)) |veRLy,a= /\(q)} (4.3)

We call transitions of the form 4.2 amstantaneous transitions while those of the form 4.3 are
calledtimed transitions.

In this transition system, the set afins is the set of sequencééqi,l, vi_1),s 2, (Gi, Ui))ieu..k]
with ((g;—1,vi-1). 2, (@, v;)) € 6 for all i € [1..k]. An accepting run is a run in whichg € Qo,
vy = 0,, andg;, € Q. Thelanguage accepted by A is then the set of concatenations of labels of
transitions of each accepting run:

L(A) = {21 2y 2 | ((%‘—17%—1)7% (invi))ie[l_k] is an accepting rUﬁ‘

We also say that the signal - ... - z;, is associated with the run((gi—1, vi—1), 2i, (¢, %)) ;¢ -

This semantics has the drawback of being unstructured and hence noncompositional. To make
it compositional, we observe first that we may consider only runs in which instantaneous and timed
transitions front/ (.A) alternate. More formally:

1. Suppose that in some run we have two consecutive instantaneous trar(sjlk)ms’,, v’)) and
((q’, V'), e, _). Theninser{(q, v),a’, (¢,v)), wherea is an arbitrary letter, in between them. Do
this for all such consecutive occurrences.

2. Suppose now we are given a run in which two timed transit{égn), a’, (¢,v + t)) and
((q,v+t),b", (¢, (v+t)+1')) are consecutive. Sinceis a function, we necessarily have-= b.
Then replace these two transitions with a single timed transtipm), att (g, v+ (t+ t')).

We may therefore join together timed transitions with instantaneous transitions and “forget” the
in-between configuration. Hence, we transform the transition system into the followind) =

(@ x RLy,0',Q0 x {0,},Qf x RE;) where

0' = {((¢q,v),d",(¢',v")) |3(q,C, X,q') € § such that
v+tECv =X :=0and\(q) = a}
For such a transition system, arun is defined as a seql(le;;-ncg v 1), ar, (g, Ui))ie[l..k} in which
((qi_l,vi_l),aﬁi, (qi,vl-)) € 0 for all i € [1..k]. Accepting runs have the same defining require-
ments as in the timed transition systdmA), and the language acceptedMystill consists of the
concatenation of the labels on each accepting run, that is,
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L(A) = {at i | (@1, vi0), af' (,01)) .,y IS @N @ccepting run i (A)}
Further we may spli#’ into a union ofcard(0) sets, one set for each tugle C, X, ¢) € o:
0(¢, X, C,q) = {((¢,v),a", (¢, v")) | v+t | C,v" = 0[X := 0] andA(q) = a}

Then we “classify” accepting runs according to the sequences of tuples of transitioniich
are employed. That is, we defing-aequence as a sequence of tuples= (qH, C, Y, qi)l.e[l_.k},
each tuple belonging t6. We also define the set of rurssbsumed by the §-sequencep =
(ql-_l, Y, Qi)ie[l..k] as follows:

S(p) = {((gi-1,vi-1), a7’ (Qi’vi))ie[l..k] | for eachi € [1..£],
((qi—h Ui—l)a (l?, (qla U’L)) S 0(%‘—1, Cia )/;a qz)}

This set naturally provides a set of signals whichassciated to p:

Lip) = {al ... a)* | ((gi=1,vi-1), @, (:0)) ;1.4 1S @ run subsumed by} (4.4)

In order to define acceptingsequences we must observe that these have to insure that all the
subsumed runs must begin with the zero clock valua@ipre RZ,. Therefore an accepting
sequence must not only start in an initial state and end in a final state, but also contain an initial
tuple whose constraint imposes that all clocks are zero.

Formally, we define aaccepting J-sequence as a sequenge= (qH, C;, Y5, ql’)ieu..k] in which

(2i-1,C4, i, @) g 1S @0-SEQUENCEY = ¢1 € Qo, C1 = Az = 0), Y7 =0, andg, € Q.
i=1

This amounts to adding all transitiofg), /\(:cl- = 0),0, qo) to 8 and requiring that all accepting
=1
runs start with one of these.

As a consequence, we get that
L(A) = U {L(p) | pis an accepting-sequence i }

Let us now observe that we have, in some sense, already separated an abstract level, in which
runs have exactly the classical meaning as sequences of transitions in an automaton, and a “seman-
tic” level, in which each abstract run is interpreted as some set of signals.

A new step consists of hiding away from states: note that, when building the(ggtthe
information regarding states is used only for retrieving the symbols that compose the associated
signal. Hence we may buildbstract runsp = (a;, C;, Y; )iy for which, if we consistently add
states into tuples, we getdasequence. And further build the s&tp) of runs in7'(.A) which are
subsumed by and the seL(p) of timed words associated wigh This is nothing but the spirit of
the Kleene theorem.
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More formally, anabstract run is a sequencg = (a;, C;,Y;)icp1.1) fOr which there exists
a sequence of statgg;);c(..,] such that(qH, C;,Y;, Qi)ie[l..k] is ad-sequence and for eache
[1.n — 1], XM(¢;_1) = a;. The two sets5(p) and L(p) are then built as follows:

S(p) :{ ((Uifla a/fi’vi))ie[l..kz] | H(qz)zG[Ok] such that
((gi—1,vi-1),ai, (g5, vi)) € 0(gi1,Cy,Yi,q;) foralli € [1...k]}
p :{a? s afck | ((Ui—h alitiv Ui))iep__k} = S(ﬁ)}
Again it is easy to see that

U {L(p) | pis an accepting abstract run.i}

Moreover, the Kleene theorem for finite automata assures us that the set of abstract accepting runs
can be generated by some regular expression over atoms of theutypeX) C X' x £C(5,) x
P(=n).
Now we observe that the sef§p) can be subject of aoncatenation operation by matching
on the clock valuation “in the middle”. That is, given two abstract rars (g;, C;, Y;)icni. @and
= (b, CLY) icipi,

1) (2

S(p)-S(7) = {((Uifl’c?’vi))z‘e[L.kJrk'] | {((Uifl’c?’vi» . € S(p) and
(01, €’ ’Ui))ie[kJrl..kJrk’] € S(p)}
That is, we have that = a; fori € [1..k] andc; = b; 4, fori € [k + 1.k + £/].

And the final observation is that the intermediary clock valuations in each run belonging to
someS(p), are useless, both for concatenation purposes and when constructing fHg)set
signals associated with. We mean that we may consider only tupleso, /) consisting of a
signalo € Sig(Y) and two clock valuations, v’ € R%, tuples which are calledgnals with
clock valuations. Then the sef(p) may be replaced by the following:

S(p) = {(v, al' - oak ) | 3(vi)ieqo..47, (¢ )ico..x) SUCh thaty = v, v, = 0" and
((gi1,vi1), 0", (i, vi)) € 0(qi—1,Ci, Vi, q) }

while the setl(p) could be described as:
p)={al ... aq} | (val ... a4, 0') € S(p)}

Clearly, the concatenation operation on s&g) could be easily “adapted” to the setép).

We may summarize the above not completely formal discussion as follows: we define first the
set ofsignals with clock valuations

Sigclk(X) = {(v,0,0") | o € Sig(X),v,v" € R}
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We then define a partial operation of concatenatiorbignlk(Y') as follows: for all pairs of
signals with clock valuation&;, 1, v}), (vs, o2, v4) € Sigclk(X),

’ ; ’
(’Ul,O'l . 0'2,’02) iff V1 = Vg

T otherwise

(/Ulao-lavi) ' (/0270-2705) = {

We further extend this partial operation toatal operation on subsets d$igclk(X') by putting,
for eachS;, Sy C Sigelk(X),

5'1-32:{a-5|a651,BESganda-ﬁ7éT}
whose unit is the set
Se ={(v,e,v) | v e RL,}.

By the usual least fipoint construction, we then getdiae operation: for eacls € Sig(X),

S*:Usn

neN
whereS® = S. andS™*! = S™. Sforalln € N.

Definition 4.2.2. The set of n-clocked regular expressions as the language generated by the fol-
lowing grammar:

E:=(a,C,X)|E+E|E-E|E"|c]|0 (4.5)
whereC € £C(Z,),a € Yand X C Z,,.

We denote the set of-clocked regular expressions @Beg, (X).
The semantics of n-clocked regular expressions is an applicatipn || : CReg,(X) —
P (Sigclk(X)) inductively defined as follows:

10} =0
lef] = Se
|(a,C, X)|| = {(v,at,v') |v+tECandy = (v+t)[X = O]}
1By + Es|| = [[Exl| U ]| 2|l
1Ex - Eall = [|Ex | - || E2ll
£ = I E]]*

Besides this, each-clocked regular expression is endowed withagtract semantics, which
is the classical semantics as a set of words \WHI=,,) x X x P(Z=,,). We denote this abstract
semantics ap- | : CReg, (X) — (EC(Z,) x ¥ x P(Z,))".

The following property, similar to the Proposition 3.1.4 and relates the abstract semantic of a
regular expression to its semantics in terms of signals with clock valuations:
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Proposition 4.2.3. For each n-clocked regular expression £,
1E] = {llwll | w € |E]}
inwhich | E| isthe abstract semantics of E.

Proof. By easy structural induction over theclocked regular expression.

The following straightforward property shows how to associate signals with clock valuations to
d-sequences:

Proposition 4.2.4. Given some timed automaton A = (@), 0, A, Q. () ) consider some J-sequence
(gi-1,Cs, X3, ql')ieu...k] and denote E(p) the following n-clocked regular expression:

E(p) = (CL, /\ Xr; = 0, @), ()\(ql), ClaXl) Lt ()\(qkfl), Ckfl, kal) (46)

Then

L(p) = | E(p)|l
inwhich L(p) isthe language associated with a run, defined in Identity 4.4 above.

Define also the familyf Rec, (X') as the family of timed languages which are accepted by some
timed automaton and@Rat,(X') as the family of timed languages which are the semanties of
clocked regular expressions of the fotmA!_, z; = 0,0) - E whereE € CReg, (X).

Theorem 4.2.5 (Kleene theorem for timed automata, [BPO1]). The classes of timed languages
TRec,(X) and TRat, (X)) are equal, and the equality is effective.

Proof. Corollary of the classical Kleene theorem and the Lemma 4.2.3.

4.2.1 A Kleenetheorem with indexed concatenation

In [BP99], another Kleene theorem is presented in the framewonkdeked concatenations and
stars. There is a natural question concerning the connections between this result and the above
Kleene theorem 4.2.5. We show here that these results are intimately related and it is still the
classical Kleene theorem which can be put at the basis of both. This proof can be seen as a rear-
rangement of the proof in [BP99].

In the cited paper, the semantics of timed automata is given in ternubisif ained generators:
aconstrained generator is a pair(G, A) consisting of two mappings : R2, — P(Sig(X)) and
AR, x Sig(X) — P(RL,), with the further requirement that for eacte Sig(X) andv € R,
u € G(v)iff A(v,u) # 0.

The aim is to associate, to each sequence of transifiorespair (g, A) that gives the following
information:

L Actually, to eachset of sequences, see the definition ofi-clocked regular expressions with indexed concatenation.
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e Foreachy € RZ,, G(v) gives the set of signals that describe the behavior of the timed automaton

through the sequence of transitionsif the automaton starts with the clock valuatiorand 7
can be performed starting with

e For eachw € R%, ando € Sig(X), A(v,0) gives the possible clock valuations in which the
timed automaton might arrive after performing the sequence of transitiom®vided it starts
with the clock valuationy and is able to “parse” the signal

More specifically, with each clock constraifit € £C(=;,) and symbolk € X, the following
atomic constrained generators is associated:

Q(avc)(v) = {at | v+t |: C}
A(a,c)(v,at) = {U +t | v+t |= C}
The idea is then to build regular expressions over such atoms, and the full expressivity is ac-
quired only if concatenation migheset some clocks. This feature is brought in by definindexed
concatenations as follows: given two constrained generat@@s, /A;) and (G, A»), and some sub-

setX C =, the X-indexed concatenation of (G; A;) with (G, As) is the constrained generator
denoted a$G, A) = (G1, A1) ©®x (G2, A2) and defined as:

G(v) = {01 - 09 | 01 € G1(v) and there exists somé € A, (v, o1) such that
o9 € Go(V'[X := O])}
Av,0) = U {A;(V'[X :=0],02) | 0 = 01 - 05 fOor someo; € G;(v) andv’ € A;(v,01)}

Each of these indexed concatenations induce naturaligdemed iteration, denoted-)** and
defined as follows:

(g,/l)@X — U<g’A)i®X

i>1

where

(G, 4)'x = (G, 4)
(gv/l)(iJrl)@X = (gvA)iQX Ox (gv/l)

Observe thatG, A)®* does not “contain” the zero iteration.
Let us also denot&j., Ax) the following constrained generator:

G.(v) ={e} (4.7)
Ax(v,e) ={v[X = 0]} (4.8)

The set ofn-clocked regular expressions with indexed concatenation is the setlReg(X)
defined by the following grammar:

E:=0|¢c|(a,C)|E+E|E®Gx E| E®
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whereC € £C(Z),),a € Y andX C =,.
Their semantics is given by the following rules:

1o} =0 1By + Eofl = [ Ey]| U || 2l
lell = {(G, 4x)} 1By ©x Esf| = || Exll Ox [ E2|
1(a, O)l = {(Glac)s Awcr) } B = 1=

We will show here that there exists a straightforward bidirectional translation between clocked
regular expressions with indexed concatenation araocked regular expressions, translation
which works by regarding constrained generators as sets of signals with clock valuations and vice-
versa. This translation relies on a simple property of untimed languages which deals with indexed
concatenations, property which we will state and prove here. In other words, we show that the
Kleene theorem from [BP99] is a corollary of the Kleene theorem for finite automata too.

In order to relate the constrained generators semantics with the signals with clock valuations
semantics, let us consider, for eakhC =, the atomicn-clock expression

whose semantics is
lexll = {(v,e,0[X :=0]) | v € RZy }
Then each-clocked aton(a, C, X') can be decomposed as follows:
1(a, €, X)|I = [l(a, C, D) - l[ex|l

The next observation to be made is that, for @&hye £C(=),) (a,C,0)| is the
graph of the functiort A, ¢ : RZ, xSig — P(RR%,) from the constrained generai@..c), A.,c))
— that is, the sef(v,0,v') | A(v,0) = v'}. Moreover,G, c) gives the “domain” ofA, ¢, that
is, the set of tupleév, o) € RZ, x Sig(X) for which A(v, o) # 0. This observation can be easily
generalized as follows: B

Each set of signals with clock valuatioAsC Sigclk(X') is the graph of the second compo-
nent of a constrained generator, A).

In particular, the setsy are the graphs of the constrained generéfor/Ax) defined in the Iden-
tities 4.7 and 4.8.

Two other important observations to be made are that concatenation of sulsgttk¢$.) cor-
responds to th@-indexed concatenation of constrained generators, and that nonemptyset-indexed
concatenation of constrained generators can be redudkthtiexed concatenation by the aid of
the constrained generatqi@., Ax):

2 In fact, this is even a partial function with valuesRf,, .
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Proposition 4.2.6. Given two sets of signalswith clock valuations S; and S, which are the graphs
of the constrained generators (G, Ay), resp. (Ga, As), the set S = S; - S; is the graph of the
constrained generator (G, A;,) ®p (Gz, A2).

Moreover,

(G1, A1) Ox (G2, A2) = (G1, A1) O (Ge, Ax) @p (G2, A2)

Proof. By straightforward verification.

By now, we may state the following:

Lemma4.2.7. Givenk+1 constraintsC; € £C(=,,) (i € [0..k]), k+1 symbolsa; € X (i € [0..k])
and k subsets Y; C =, (i € [1..k]), consider the n-clocked regular expression (without indexed
concatenation)

E = (a1,C1,0) - ey, - (ag, C2,0) - ... - ey, - (ags1, Cry1,0)
and the n-clocked regular expression with indexed concatenation
F =(a1,C1) Oy, ... Oy, (@41, Cri1)
Then || E|| isthe graph of the second component of || F||.

Proof. By induction onk, using Proposition 4.2.6 for the induction step.

To complete the claimed connection we introduce regular expressions with indexed concatena-
tions for untimed languages and prove a simple property concerning the translation from expres-
sions with indexed concatenations into classical regular expressions:

Definition 4.2.8. The set of regular expressions over 3’ with indexed concatenations from (2 is
defined as follows:

E:=0|c|a|E+E|EQ, E|E®
wherea € Y andz € 2 U {e}.

The semantics of these expressions is in terms of languagesXver?)* as follows:

0] =0 |Ey + Es| =|Eq| U |Ey|
le] ={e} |By ©p Bo| =|Ey| - {2} - | Ea|
la] ={a} |E®*| =(|E|-{z})" - |E]|

Lemma 4.2.9. The set of languages which are the semantics of a regular expression with indexed
concatenation from {2 equals the set of regular languages over X' U (2.



ST T lwJdist LT JLITTWIVTVvY TV TV LUV T IR

Proof. The direct inclusion is a straightforward consequence of the semantics of regular expres-
sions with indexed concatenation.

The inverse inclusion follows by induction upon the structure of the (classical) regular expres-
sion: the base cas@sec anda € X are trivial, while forz € 2 we consider the expressien, ¢.

For the induction step, suppose that we have two classical regular expregsiang £, and
that we have built regular expressions with indexed concatenatiand £, such thatE,| = | E, |
and|E,| = |E,|. Then

|Ey + Bs| =|E; + Eo
|Ey - B :|E1 O E2|
* —=Pe
|ET| =le + E{| 0
As a corollary we have

Theorem 4.2.10. The classes TRec(X') and TRat(X) are equal to the class of timed languages
which are the semantics of some clocked regular expression with indexed concatenation of the
form (a, Al_, z; = 0) - E, where E € IReg, (X).

Proof. This is a corollary of Proposition 4.2.6 and Lemma 4.2.9: for the direct inclusion, we trans-
form eachn-clocked regular expressiaf into a regular expression over= £C(=,) x X with
indexed concatenation ovér = {¢x | X C =,}, denote itE. At this point we introduce the
timed semantics of such a regular expression as the union of the timed semantics of all the words
in its abstract semantics ovexr U £2)*.

Now, we only have to replace operations of the form. with ©x and @., with &x and
observe that, for any clocked regular expression with indexed concateation

£ =i we e}

where|F'| is the semantics of’ as a regular expression ovErU 2. This property, corroborated
with Proposition 4.2.6, assures us that the timed semantiés(ofith the replacements ab.
with ®x) equals the timed semantics bf

The reverse inclusion follows by the same argument. O

4.3 Reset time semanticsfor timed automata

In this section we will show another semantics that can be given to timed automata, semantics
originally proposed in [BJLWY98]. The idea is to record the reset time for each clock, and the
current time. In other words, we only make a change of variables, from clock values to reset times,
change of variables defined as follows: for each clgck =,,,

v(z;) =t — r(x;) wheret is the “current time point”.
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Though this semantics is almost the same as the clock valuation semantics, it has certain features
that will help us develop our theory concerning reachability. The regular expressions we utilize
here aren-clocked regular expressions defined in 4.5, we will only provide a different semantics
for them in terms o&ignals with reset times.

Definition 4.3.1. Asignal with reset timesisatuple (t,,... ,t,,t,0,t,... ,t..t') whereo € Sig
andt;, t;,t,t' € Ry, foreachi € [1...n].

The intuition is that the rea} represents some moment before a chain of transitions when the
clock z; was resett is the “initial” moment,’ is the moment when the last transition in the chain is
taken, and, represents the last reset time for the clackefore the moment. The set of signals
with reset times is denoteSigreset(Y).

Similarly to signals with clock valuations, signals with reset times can be concatenated if and
only if the intermediary time points match. More formally, given two signals with reset times
&= (t1,... ,ty, tyoth, ...t t')yand¢ = (uy,... ,u,,u, 0’ ul, ... u,, u'), the concatenation

" = ¢ ¢ is defined as follows:

y 'n

ti,... to,t,o-o' u, . .. ul u)  iffforall i € [1.n],t) = u; andt’ = u
" _ 1 7
T otherwise

This concatenation operation is extended, as usuaétsmf signals with reset times: for each
pair of setsS;, Sy C Sigreset(X),

S1-Sy={& & |& € S1,& e Syandéy - & # 1) (4.9)
which is a total operation oBigreset(X') whose unit is the set of signals with reset times
Se={(t1,... statiete, .. tut) | £t € Rog}

Again as usual, concatenation on sets gives rise to the star operation

g U gi
€N
whereS® = S. andSitt = S¢. S forall i € N.

The configurations of the timed transition system for the reset time semantics are tuples com-
prising a state and + 1 positive numbers, the first representing the reset time for each clock
and the last recording the current moment. That is, the timed transition system is the tuple
T = (Q x Ro¢™™,0,Q0 x 0,41,Q; x Rsg™ ') where:

0 ={((g,t1,... ,tu,t),a" (d b, ..., th, ")) | I(q,C, X, q) € & such that
Mqg)=a,t"=t+t t.=t"foralli e X,t. =t foralli ¢ X andv = C
wherev is the clock valuation defined hy(z;) = ¢" — ¢; forall i € [1..n]}
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By an argument similar to the one given in section 4.2.1 we may transform this semantics into a
compositional one by giving reset time semantics to @aséguence in the timed automaton. This

compositional reset time semantics is built using the following basic rule:

1(a, O, )| ={((trs- -« s tay )’ (B, ... o, t") | ¢ =t + ¢, 8, =" foralli € X,

t; =t; foralli ¢ X andv = C whereuv is the clock valuation defined by
v(z;) =t" —t; foralli € [1..n]} (4.10)

and the “compositionality” rule 4.9. Hence eagsequence = (¢_1,C;, Y, ¢;)icr1.x) IN A gives
rise to the following word ovel x £C(%,,) x P(Z,)

w(p) = (al, Cl,Xl) el (ak,C’k,Xk) wherea; = )\(Qz—l)

Then the language of the given timed automaton is:

n

L(A) = [J{|Jw((e, A\ zi =0,0) - p)|| | pis an accepting run inl}

i=1

The semantics af-clock regular expressions may be given similarly by the usual rules which

allow commuting semantics with union, concatenation and star, that is

1By + Eofl =[ Ex[| U || E.|
[y - Bl =[Ex ]l - || E-|
IEA | =IE[*

provided that the atoms have the semantics given in 4.10 above and the expressidashave
the following semantics:

10 =0, el = S






5. Timed regular expressions

In this section we investigate the possibility to define some timed regular expressions that do not
use clocks and clock constraints. The reason for searching such expressions is, at a first sight,
esthetic, since the clocked regular expressions are harder to write. But this reason hides a more
profound one: namely that, at the specification level, properties refer to (i.e., bind) state dura-
tions, or intervals separating two actions, or delays. Clock manipulation might be regarded as a
“low-level” language, like automata, whereas regular expressions are intended to be a “high-level”
language easy to handle.

There exists a “high-level” approach to regular expressions that has preceded the clocked reg-
ular expressions: it is themed regular expressions of [ACM97]. These expressions do not use
clocks, they only provide time binding by the use of some interval-indexed parentheses. For ex-
ample, the timed regular expressiofbc); specifies the set of signals in which asstate with an
arbitrary duration is followed by &state and then by astate, the overall duration of tleandc
states being equal to

Though giving a neat specification language, timed regular expressions hide some mathematical
problems, connected to the density of the set of real numbers. Namely, and contrary to classical
regular expressions, they are not closed under intersection, and hence this operation must be put
between the basic operations such that the generative power be reasonable. Even with intersection
they still show less expressive power than timed automata, and another operation is needed then:
renaming.

This chapter recalls these problems and discusses one possible solution to them. This solution
is the use ofcolored parentheses. As simple it seems, this solution shows itself some hurdles:
first, the language of “colored” and balanced parentheses is not a context-free language, hence
it might raise difficult problems concerning parsing and translating. The solution we find is to
consider a different concatenation operation, that allows two expressions with colored parentheses
to concatenate on “matching” parentheses. But the algebraic bases for this interpretation must be
laid, and the subsequent chapters are concerned with this task.

The chapter is more of a “hand-waiving” style, presenting more intuition and discussions than
formalization. It runs as follows: the first section recalls the definition of timed regular expressions
and their relationship to timed automata. We also show here some peculiarities of interpreting a
timed regular expression without parentheses as a classical regular expression. In other words, we
investigate succinctly the effect of the untiming morphism at the regular expression level. The sec-
ond section presents an undecidability result concerning the extension of timed regular expressions



I\ ~e o PiiieAd gl LANTboITVTIY

with negation. This is a rather expected result, however it does not follow from the undecidabil-
ity of the universality problem for timed automata, due to the “incomplete” Kleene connection
between timed automata and timed regular expressions. The third section is a short abstract of
the results that connect timed regular expressions with timed automata. The last section discusses
the problems and the possible solutions for the generalization of timed regular expressions with
colored parentheses. This section is informal and will be developed in the following chapters.

5.1 Basic properties of timed regular expressions

Definition 5.1.1 ([ACM97]). The set of timed regular expressionsis given by the following gram-
mar:

E:=0le|la|E+E|EANE|E-E|E"|(E)
where a isany symbol in X and 7 isany positive interval.

The semantics of timed regular expressions is, of course, in terms of signals. The idea is that
the angle brackets bind the duration of signals:

lall = {a" | £ € Roo} 1By + Es| = (|0 ]| + || B
1By A Esl| = [[Ex]] OV sl 1By - Bl = [|Ey]] - || E2ll
IE= = 1E]* IKEMr = {o € [|E|l [ £(o) € I}

There is an alternative way of generalizing from real-time regular expressions: namely allow
atoms of the typéA|; for any setd C X. The semantics of such an atom would be the following:

[A]; = {0 € Sig(X) | o(t) € Aforall t € dom(o)}

Of course, we need conjunction in both cases. Then we may replace, in an “inside-out” manner,
each expression of the typ&'); with E A [X];.

5.1.1 Timed regular expressionswithout brackets

Timed regular expressiongithout brackets can be given also an untimed semantics, that is, in
terms of words ovel’. We would expect that this semantics be related to the untiming morphism
U. More formally, if we denotd/(E) the classical regular expression which we associate to the
timed regular expressiéi, then we would like to have

U(E)| =U(|[E]) (5.1)

where|U (E)| is the set of words defined by the classical regular expregsian.

! Thatis,U(E) = E whenE contains no parentheses
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But there is a small problem: the semantics of the timed regular expressigrequal to the
semantics of the timed regular expressigriact which does not hold when the two expressions
are viewed as (classical) regular expressions. In other words, this “brute” transformation of timed
regular expressions without brackets into classical regular expressions is not compatible with the
untiming morphism:

laa Nal =0 # {a} = U([laal]) NU([|al])

We recall then that the untiming morphism is in fact a morphism whose target is the monoid of
stuttering-free words, endowed with the stuttering-free concatenation. This implies that if we want
Identity 5.1 to hold, we need to consider a different semantics for classical regular expressions:
namely, to interpret each classical regular expression into elemerfig'(df) and to interpret
regular expression concatenationsagtering-free concatenation, see page 27. This is not a nice
solution since it requires a reconsideration of the theory of finite automata and regular expressions
for the special monoidF (Y).

There is yet another solution which does not induce this reconsideration: recallAh&y is
also representable as the quotiéry p (Chapter 2, page 27), whepes generated by the relation
(aa,a) € pforall a € X. We may then consider the closure ungefor the semantics of the
regular expression. In other words, the timed regular expreasiwhen interpreted as a classical
regular expression, would have the semani¢s| n € N>} = |aa*|.

Syntactically, this can be done as follows: given a timed regular expression without braces, we
replace each symbalwith the classical regular expressiadgi. Denotel this syntactic operation.

Of course, a formal definition df (£) would be done by structural induction on the timed regular
expression®. HenceU commutes with all operations — summation, conjunction, concatenation,
star.

This solution implies a weaker version of Identity 5.1: remindfhat : * — SF(X') denotes
the canonical projection induced by the congruepcéts action consists of transforming each

sequence of identical symbols into one symbol, ei@gbcca = ababca. Then

—
U(E)| = U(llEl) (5.2)

One may think that this property also holds for the “brute” transformdtioR) = E. But this
is not true, especially due to the usecohjunction in timed regular expressions:

——
aa Aal = 0 # {a} = U(laa A a])

The translation of timed regular expressions without brackets into classical regular expressions
will be instrumental in Chapter 9.



L ~e o PiiieAd gl LANTboITVTIY

5.2 Undecidability of the language emptiness problem for extended timed
regular expressions

As for the case of classical regular expressions, we may extend the grammar by allowing the use of
negation. The resulting expressions will be callexdended timed regular expressions, by similarity

with extended classical regular expressions which utilize negation. The generating grammar for this
class of expressions is the following:

E:=a|E+E|EANE|E-E|E*|(E);|-E
and the semantics for the negation is, naturally, based upon set complementation:
I=E| = Sig(X)\ | E]|

In this section we show that the emptiness problem for the semantics of extended timed regular
expressions is undecidable. The technique we use is drawn from one of the undecidability results
concerning Duration Calculus [ZCHS93], namely the undecidability of the fragment that allow
¢ = a formulas. We prove the result by showing that the halting problem for two-counter machines
[HU92] is reducible to our emptiness problem.

We mention that this negative result does not follow from the undecidability of the universality
problem for timed automata [AD94], since the Kleene theorem relating timed automata and timed
regular expressions involves renaming.

A 2-counter machin€ = (Q, g, T) consists of a set of location@, an initial locationg
and a set of transition® which are tuplesq, s,t, z,y, ) wheres,t € {? = 0,7 # 0} and
z,y € {—1,0,1}. The meaning is the following:

e The machine works on two countersndy which can hold arbitrarily large, nonnegative values,
and which may be checked and/or modified by each transition.

e A transition in whichs is ‘7= (¢ is taken iff the first counter is zero, and similarly a transition in
whichtis ‘7= 0‘ is taken iff the second counter is zero.

e Taking a transition in whiclx = +1 increases the first counter by one. Whena= 0 the first
counter is not changed, while far = —1 the first counter is decreased by one, if its value is
positive, and is left unchanged otherwise. Similarly for the valugsanfd the second counter.

It is additionally required that the machine deterministic in the following sense: for each state
q € @ and preconditions,t € {?= 0,7 # 0}, at most one transition can be enabled iy the
preconditions; andt:

1 Z card{(q,s,t,x,y,q/) | q/ € vavy S {_1707 1}}

We may see the states of the 2-counter machine as labels of the statements of a program containing
test conditions over each counter and increments and/or decrements of each counter.
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A configuration of a 2-counter machine is then a trigle =, y) containing a location and the
values of each counter. Ain of the 2-counter machine is a (finite or infinite) sequence of config-
urations connected by transitions which starts with both tapes halding

The halting problem for 2-counter machines is the problem of whether a given 2-counter ma-
chine has a finite run. Here, the 2-counter machine is an input to the problem.

Theorem 5.2.1 (J[HU92]). The halting problem for 2-counter machines is undecidable.

Theorem 5.2.2. The language emptiness problem for extended timed regular expressionsis unde-
cidable.

Proof. We will prove that the emptiness problem for extended timed regular expressioasyis
one reducible (in the sense of [HU92]) to the halting problem for 2-counter machines:

Start with a 2-counter machige= (Q, g, 7') and suppose it has a finite rl(l(lqi, m;, ni))ie[l...N]'
We associate to this run a family of signals over the set of symboits Q U {a, b, ¢, d} where
a,b,c,d ¢ Q. The association will be such that, for each signal in this family andeadh . . . N|,
the intervalli, i + 1] of the signal consists of a first part in which the signal is constantly equal to
¢; and then a sequence of:; + 1 discontinuities where the signal jumps franto b and fromb to
a, and another sequencef; + 1-discontinuities where the signal jumps frano d and fromd
toc.

Formally, we say that the signal encodes within the interval [k, k + 1] the configuration
(g, m,n) if

J|[k - — qtoat1 btz . at27n+1 bt2m+2 Ct2m+3 dt2m+4 . Ct2m+2n+3 dt2m+2n+4

witht; > 0foralli € [0...2m + 2n + 4].

We then say that the signalencodestherun (g;, n;, m,-)ie[1
(gi, m;,n;) within the interval[i,7 + 1 for eachi € [1... N].

We aim at building an extended timed regular expression that accepts only signals which are
associated with the run. This expression must therefore specify the initial configuration of the
run and each of the transitions. The initial configuration is specified by an expression which says
that the first interval of each signal encodes the first configuration of the 2-counter machine. Then,
each transition is simulated by an extended timed regular expression which accepts some signal iff,
whenever in some intervét, k£ + 1] the signal encodes some configuration in which the transition
is enabled, then in the subsequent intefvak- 1, k + 2[ the signal encodes the configuration
which results by taking the respective transition. Then, the expression that simulates the run is the
intersection of all these expressions.

The initial configuration is encoded by the extended timed regular expression

N if it encodes the configuration

Init=((go-a-b-c-d);)- X

Then each transitiom = (q, s,t,z,y,r) is simulated by a regular expression which we will
denotefr(7) and build in the sequel. There canbeg 2 x 3 x 3 = 36 types of transition2 due to
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the two different modes of checking the contents of a tape3ahe to different ways the contents
of each tape can be updated.

We give as an example the expression that simulates a transition of thégtype 0,7 #
0,+1,—1,r). Our aim is that any signal € |tr(7)|| has the property that if

— totipte t3 gta ton+1 Jtan+2 t2n+3 Jtan+4a
J|[k’k+1[—q atb2esdle | et glana2 clans gt
with n > 1 then

— ploupv wyts t3 gty L2n+t1 Jt2nt2+tant3+tanta
0'|[k+1,k+2[ roa b a b2 d .. d

whereu + v + w = t;.
The expressiotr(7) is a conjunction of the following three subexpressions:

e the subexpression saying that if the signal encodes, within some infterkal1[, a configuration
in which 7 is enabled then the intervgt + 1, £ + 2[ of the signal starts with staie

—|<E*-(q-a-b-c-d-c-2*>1)-(E\{r})-E*)

e a conjunction of two expressions saying that if the intefkak + 1] encodes a configuration in
which transitionr is enabled then if + 1, k£ + 2[ the state- is followed by states, b, a andb in
this order such that the length of the lasttate equals the length of the omlwithin the interval

[k, k + 1] while the length of thewba-signal equal the length of the ondystate in the interval
[k, K+ 1]:

—|<Z’*-q-a-(a—|—b)-(b-c-d-c-d-(c-d)*-r-(a—l—b)*)l-(E\{b})-E*)/\
ﬁ<2*-q-a-(b-c-d-c-d-(c-d)*-r-—-(a-b-a)>1)-E*)

e a conjunction of three expressions saying that if the inteival + 1] encodes a configuration
where transition can be taken and there are- 1 c-states and + 1 d-states within this interval
then in the intervalk + 1, k + 2[ there have to be states: andn states/ such that the length of
thei-th c-state within[k + 1, k£ + 2[ is equal to the length of thieth c-state within[k, k£ + 1] for all
i € [n], the length of the-th d-state within[k + 1, k& + 2[ is equal to the length of thieth c-state
within [k, k£ + 1[ for all i € [n — 1] and finally the length of the lagtstate within[k + 1, k + 2]
equals the sum of the lengths of thet 1-th c-state, then-th and then + 1-th d-state within
bk + 1]

- E*-q-a-b-(c-d)*-c-(c-d-(c-d)*-c-d-r-(a—l—b-l—c-l—d)*)1)-(E\{c})-Z*)/\
~(z*-q-a b-(c-d)*-c-d-(d-(c-d)*-c-d-r-(a+b+c+d)*>1)-(E\{d})-E*)/\
~(5*-q-a b-(c-d)*-c-d-c-(-c-d-r-(a+b+c+d)*-c>1)-(E\{d})-Z‘*)/\

. z*.q-a-b-(c-d)*-(c-d)Z-<d-r-(a+b+c+d)*-c>1)-(2\{d})-z*)



el bty thitibd toygital AN oIV ddlhia iy (autiuiiisata I~

The specification of the remainirdj types of transitions can be done similarly.
Then the (finite) run of the 2-counter machine, if it exists, is simulated by the following extended
timed regular expression:

Ec¢ = Init A /\ tr(T) O

TeT

5.3 Relating timed regular expressions and timed automata

Timed regular expressions are a nice specification language, but they carry some expressivity prob-
lems. The following theorem and the discussion after it shows them:

Theorem 5.3.1 (JACM 97]). The class of timed languages accepted by timed automata equals the
class of timed languages accepted by timed regular expressions with intersection and renaming.

Here renaming refers to signals: formally, given two seétand(2 and a mapping : X — (2,
this can be extended canonically to a monoid morphjdfig(¥) — Sig(£2). The morphism
f* simply replaces symbols frof% with symbols froms2 in each signal. For example, for the
functionf : {a,b} — {c,d} given by f(a) = candf(b) = d, f*(a’b'®) = c2d**. Renamings are
not necessarily bijective, and it is this feature that is essential in the Kleene theorem relating timed
regular expressions with timed automata.

The direct inclusion follows by showing first that automata with a single clock can be embedded
into timed regular expressions without intersection, and then by decomposing a timed automaton
with n clocks inton automata with a single clock, building the timed regular expressions for each
timed automaton and intersecting the results. The timed regular expression for each one-clock au-
tomaton will specify theunsrather than the signals accepted by it, that is, the one-clock automaton
is considered to work over signals whose symbols are exactly the states of the automaton. This is
why, after building the intersection, one needs to apply the renaming that associates to each state
in the timed automaton, its label.

The reverse inclusion follows by proving that the usual union/intersection/concatenation/star
constructions can be generalized to timed automata.

It was also shown in [ACM97] that intersection is necessary for representing timed automata.
Their example is the timed regular expressigbr); A (ab);c, which cannot be expressed without
conjunction. The timed language accepted by this expression is:

Ly ={a"¢" |a+B=1,0+y=1} (5.3)

Moreover, in [Her99] it was shown that renaming also is necessary. An example of timed automa-
ton whose language cannot be represented by regular expressions without renaming is presented
in Figure 5.1 (modification from [Her99]).

The language of this automaton equals the renaming b applied to the semantics of the
timed regular expressiofiza)* (b(az)*)1 A((za)*b): (az)*).
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0I0=0=0I08

Fig. 5.1. A timed automaton that is not equivalent to any timed regular expression, even with
intersection.

5.4 Colored parentheses. basic ideas and problems

Let us first start with an observation with a “language theoretical” flavor: timed regular languages
can be redefined withatching parentheses, that is, by putting interval indices on ééftiparen-
thesis as well. Hence, instead(ab); we would have,ab), and a construction liké,ab); would

not be a timed regular expression. What we would get this way Bk |language over the set

P = {‘([‘,‘>[£ | I e Q[nt}
The generating grammar will be almost the same:
E:=a|E+E|EANE|E-E|E*|({E);

wherea € Y andl € QInt. Let us use the notatiod,, for the Dyck language over a (possibly
infinite) set of symbols?.

The big problem with timed regular expressions is that they cannot be “interleaved”, due to
their context-freeness. But it is exactly interleaving what is necessary for specifying the language
L in 5.3 without intersection!

Our idea is to useolored parentheses: for example,Z, would be specified by the following
timed regular expression with colored parentheses:

<tl)luea <|iedb>kl)lue C> rled

But this idea poses some big language-theoretic problem: if we want to specify also cyclic behav-
iors, we fall into non-context-free specification languages! Consider just a cyclic behavior of the
kind

<li)luea <|iedb>li)lue<?luea>rled<r1edb>§>lue' N
with arbitrarily many repetitions. Specifying the union of all such timed regular expressions is not
easy: if we try
(%) P )3)" (5.4)

then the first red parenthesis is a right parenthesis! This implies both syntactic and semantic prob-
lems:
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e At the syntactic level, if we accept expressions like 5.4, then what to do with expressions like
(a (F%)"?

e If such expressions are also acceptable, then how to interpret them? Intuitively, such an ex-
pression resets potentially infinite number of clocks, hence we might run into trouble with
decidability.

e Even when such expressions are to be rejected — by some non-context-free rules — how to prove
then a Kleene theorem? Its proof for the timed regular expressions of [ACM97] is essentially
based upon the context-free presentation of expressions.

To put all the above considerations into a more formal and “language-theoretic” framework, we
have to considen (infinite!) sets of matching parentheses, each indexed with an interval:

P= {95 | 1€ Qnt}foralli e [1...n]

We may then define deletion morphisms, (e;)icj1..., €ache; deleting all parentheses not in
P;: these morphisms are the canonical extensions of the following deletion functions:

a iff ae P,
e otherwise

pi:|JP = Pu{e},pia) = {

=1

et (UR) = (o) = )t

Then define the language adrrectly matching parentheses overU P,
=1

Lpar= {w € <OPZ)* | foreachi € [1...n],e;(w) € qu.}

=1

This language is unfortunately context-sensitiverfor 2: just consider the intersection &f,,
with ((})"(3)"()1)7()?))", which gives a language of the forfa*b'c"d’ | k,1 € N} which is an
easy prey to the Bar-Hillel (pumping) lemma for context-free languages [HU92].

Let us mention, at the end of these considerations, that the langyagan be generated by matricial grammars [DP89],
or with the so-calledontextual grammars with distributed catenation and shuffle [KMM97].

5.4.1 Changing the concatenation
Here we come with the idea to use a different concatenation operation: the expression
<§)Iuea <|iedb>li)lue<§>luea> rled<r1edb>lflue a> rled

could be represented by an expression like
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0.6 b0.4 0.6

©
\ aO.G 1 b0.4 1 aO.G J
[ I I |
a0.6 b0.4 a0.6 b0.4 a0.6

Fig. 5.2. An example of “overlapping” concatenation.

<lf|uea <r1edb> ll)lue a> rled o <§)Iuea <r1edb> ?Iue a>r1ed

At the semantic level, concatenation would require two signalsdizh on their a-parts, as
depicted in Figure 5.2:

The question is then how to identify the subsignals on the right and on the left that must match.
Our idea is to use some distinguished points in each signal, like some markers for the moments
when each parenthesis opens or closes. If we order these points such that the left pointfior the
color ist; and the right point for thé-th color ist, . ; then we may represent the above concatena-
tion like in Figure 5.3.

‘ a0-6 ‘60.4 ‘ a0-6 ‘
bttt
(O]
‘ a0-6 ‘60.4 ‘ a0-6 ‘
bttt
a0-6 p0-4 a0-6 p0-4 a0-6

Fig. 5.3. An example of concatenation with distinguished points.

Of course, the result has more distinguished points than the operands, so we would need also
a convention how to index them. But this very fact to increase the number of distinguished points
creates some problems when trying to define star. namely we need to manage with unbounded
numbers of points and to rearrange the indices after each concatenation etc.

The issue from this is to observe that, once the time pgwas concatenated, it has played its
role, since the right parenthesis it represents has found a matching left parenthesis. Then we may
simply forget it: the result of concatenation from Figure 5.3 would no longer have six distinguished
points, but four. Hence we need two operations: a “juxtaposition” operation that “fuses” two signals
with distinguished points along a certain subset of points, and a “projection” operation, that forgets
the points that have “actively” participated to the concatenation.

Let us see now how this idea works for timed automata too.
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5.4.2 The“overlapping” concatenation for timed automata

In the previous chapter we have introduced the reset time semantics which associates to each runin
the timed automaton a signal with reset tinges (¢,... ,t,,t,0,t,,... ,t. t') wheret; t. ¢t
are nonnegative reals amdec Sig(X) is a signal£ can be concatenated to another signal with
resettimes’ = (uy,... ,u,, u,0’,ul, ... ,u,, ) iff the lastn + 1 components of the left operand
match the firskz + 1 components of the right operand.

Observe first that, whefiand¢’ above can be concatenated, the signals with reset times which
can be obtained fror and¢’ by translating all the reals by some constartan be concatenated

too. That is, the following two signals with reset times can be concatenated:

=Mt+a,... th+at+aoti+a,... 0 +at +a)
" =(u+a,...,u, +a,u+a,0 u] +a,...,u +au +a)
This means that the only useful timing information in each signal with reset times is the set of
differences between the components. We may then define an equivalence rel&igresen(Y)
which relates each pair of signals which “differ by a constant”. Heticey & if there exists
a € Ry, such that

& = (try. oo ytn,tyo, by, oot )
L=MHt+a,. ..  tatattaoti+a,... t+at +a)

Though this equivalence is not a congruence, our observation above shows that it satisfies the
following property:

If & ~ & and¢; - & #1 then there exist§, ~ &5 such that, - £, #71 and the reverse.

In other words, it is a bisimulation w.r.t. concatenation.

Hence in the equivalence class &f and & the timing information refers only to thdif-
ferences between the reset points and therefore can be represented dnisymmetric matrix
A € My, 19(R), (i.e., withA4;; = —A;; forall i,j € [1...2n + 2]) having the property that for
eachi,j € [1...n]:

Ay =t —ti Antiviprja =t =t
App1j=1t;—t Apniopsiry =t =t
Aipy1 =t —1; Antitionge =t —1;

Aipyrey =t — 1 Apginirey =t —t
Agpyo; =1t; =t Ansipnie =1 —1

This way a signal with reset times can be represented as adupleA, a, o) consisting of an
antisymmetric matrixA € M, »(R), a real numbere which represents the “offset” @f w.r.t.
some representative in its equivalence class, and a signal
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e B
|‘ ______ _| __________ T
0 t=2 [ t=5 ‘

Fig. 5.4. A graphical representation of the signal with reset tifRes 5, 5, a*b*a*, 9, 5.5, 9).

On the other hand, signals with reset times may be graphically represented by putting all the
timing and signal information on the time axis:

Observe that this representation is asymmetric: there is no information regarding the signal that
has passed in between the first reset tirend the “start of observatior”

For a more “symmetric” graphical representation we might use objects like in the Figure 5.5.

1 2
al® b alb b al
[ | I 1 E—
t1=2 t2=35 ty =5.5 t3=9

Fig. 5.5. A signal with “symmetric” reset time information.

We will call the~ class of an object like in Figure 5.5 as4signal. This presentation provides
information about what happened since the first reset time in consideration: the piece of signal
o4 = a'blal tells the “history” between the time poiht= 2 and the time point, = 5.5.

For a more algebraic setting, tHesignal in Figure 5.5 can be represented as>a4 matrix
whose(i, j) entry records the piece of signal in betweenle and thej-th time point. In order
to distinguish the case when> ¢; from the case when < t; we may employantisignals, or
signals in which time flows in the opposite direction, or, moreover, signals which are “read” in the
reverse order. Intuitively, the antisignal corresponding to the sigttél should beb="a~*. The
matrix representing thé-signal in Figure 5.5 is the following:

c a1.5 a1.5b1a1.5b2a1 a1.5b1a1
4 a71.5 c b1a1'5b2a1 blal
- a—lb—2a—1.5b—1a—1.5 a—lb—Qa—1.5b—1 c a—lb—Qa—l
a—lb—la—1.5 a—lb—l a0'5b2a1 e

Note that in the matrix4A we have that, for each j,k € [1...8], 4;A; = Aix. We will
extensively use this “triangle identity” in the subsequent chapters.

Then, if we generalize concatenation of signals with reset timessignals we get exactly the
overlapping concatenation we have defined in the previous subsection. A graphical representation
of concatenation is given in Figure 5.6.

The necessary condition for the twesignals in Figure 5.6 to concatenate can be put also in
terms of matrix representation: suppose that we have the following block-decomposition of the
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a  —— 24—
[ | [ | |
t1—2 t2:35 t4:55 t3:9
©
b2 bt
0.5 2
e I S
to =55 th=9 ty =11
= t4:10
1 bl 1.5 b2 2
a”? — a” a
| | ' '
t1=2 =235 t3 =11
ty = 10

Fig. 5.6. Concatenation of twd-signals.

matrices that represent eagisignal in Figure 5.6:

o A A A4,
A_<A3A4)’ A_(A;,Ag

with A,,... Ay, AL, ..., A} being antisymmetric matrices iy (R>).
Then A can be concatenated # iff Ay = A}. The result will be the matrix

A, | B
A/l:
(—Bt Aa>

whereB;; = (As)i(A})g; foralli,j € [1...4] and some: € [1...4]. HereB" is the transpose of
the matrixB.

The next chapter discusses this formalization, and in particular the regular expressions which
work over2n-signals and their relationship to timed automata. Our choice for a matricial presen-
tation of 2n-signals, which could be thought as holding a lot of “redundant” information due to
the triangle identity, comes not only from an aim to “algebraize” everything, but also because this
presentation is closely related to a certain data structure which is aimed at representing timing
information: theDifference Bound Matrices (DBMs) [Bel57]. We will take full advantage of the
intimate relationship between DBMs and our matricial presentationgfnals.
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6. Matricesof signals

In this chapter we provide the basic algebraic properties of the overlapping concatenation. We base
our definition of concatenation on two other operations: projection, which “forgets” certain rows
and columns in a matrix, and juxtaposition, which “fuses” two matrices along a certain submatrix.
This choice is again not only algebraic, but also emphasizes special properties of each of these two
basic operations in different contexts.

We then define a class of regular expressions whose semantics is ba&edignals (parity
is needed for concatenation). The atoms of these expressions are matrices whose components are
timed regular expressions — we call themiregsignals. These are in fact our algebraization of reg-
ular expressions with colored parentheses. We also show here that timed automata can be simulated
by regular expressions oven-signals.

We then make a first try to lift concatenation at the specification level, that is, we try to provide
a compositional calculus with regular expressions, in order to be able to check whether a regular
expression has a nonempty semantics. But we discover very quickly that no compositional concate-
nation operation can be defined @mregsignals, and the problem lies in the noncompositionality
of projection. This means that we cannot have the wished calculus of emptiness for free. On the
contrary, we show that juxtaposition can be lifted to a compositional operati@n-oegsignals.

We also discover an equally serious problem, namely that the emptiness problem for our regular
expressions is undecidable. This result follows by encoding any instance of the Post Correspon-
dence Problem into a regular expression of a very simple form: a star of a stwaregsignals.

The problem lies therefore in the untimed structure of the expressions, and we leave this problem
for study in the next chapter.

This chapter is organized as follows: in the first section we present the definitiosighals.

They are in fact presented as a particular case-dbminoes, which are matrices whose com-
ponents are a mixture of signals and antisignals. In the second section we give the definition of
the projection, juxtaposition and concatenation operations, and provide some algebraic properties
relating them. In a short third section we present the notionsifjnal language and the more gen-

eral notion ofn-domino language and show that these languages form a Kleene algebra w.r.t. the
concatenation inherited fro@n-signals and the star operation which is induced by concatenation.
The fourth section presents the notions of regsignals and regminoes, which are “compact”, single-
matricial representations aefsignal languages, respectivelydomino languages. We show here

the possibility to define a compositional juxtaposition and the impossibility to define a composi-
tional projection on regsignals (regminoes). We also define here the class of regular expressions
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whose atoms are regsignals (resp. regminoes). In the fifth section we give the translation of timed
automata semantics into regular expressions over regsignals, or, in other words, we give an
signal-semantics of timed automata. And in the sixth and last section we give the undecidability
result concerning the emptiness problem for regular expressions over regsignals.

6.1 n-dominoes and n-signals

As pointed out at the end of Chapter 5, matricial presentationsfnals require working not
only with signals, but also witantisignals, that is, sequences of the typg'a, " ... a, " where
t1,...,tr € Rog. Intuitively, such a sequence denotes the history of states and their duration, and
hencea ' - a' = . Formally, we replace the set of signdlig(Y’) (which is the coproduct of
card(X') copies of the monoidR-y, +,0)) with the coproduct okard(X) copies of thegroup
(R,+,0,—). We denote this coproduct group BySig(X'). Of course, irBiSig(X’) we would also
have “words” containing positive and negative powers like ® and such words are counterintu-
itive in the “timed world”, but we are forced to use them as they naturally occur by concatenation
of signals and antisignals. In algebraic terms, working with mixed wordsdike is a must since
the union of the set of signals and the set of antisignals does not have a nice algebraic structure —
it is not stable w.r.t. concatenation.

We denote the inverse operationBiSig(Y) as (). Hence(a’) ! = a* and (a’fb“)f1 =
b~“a~'. For a timed languagé C Sig(X') we denotel. ! the set of inverses of signals in The
set of antisignals oveY is denotedig(~~!) and does not contain, by definition, the empty signal

Oe.

Definition 6.1.1. An n-domino over X' isa matrix w = (wj;); je)..n) Of €lements from BiSig(X)
with the following property:

wij - wir = wy, for eachi, j,k € [1...n] (6.1)
When w;; € Sig(X) USig(X~!) forall i, j € [1...n] wesay that w isan n-signal over X.

Identity 6.1 will be referred to as theiangle identity.

We denote byD, (X)) the class of,--dominoes over and bySig, (X) the class of:-signals
overX. Observe that in an-dominow we have thatforall, j € [1...n], w; = ¢ andw;; = wj‘,.l.

The above definition does not faithfully formalize the drawings we have made in the previous
chapter since in those drawings we have also associated a real namtzegach entry in the
matrix. But this difference is inessential since, given any real numpee may associate it to the
first index, that is, put; = a, and then build the sequencegd by puttingt; = t; + ¢(wy;). By
abusing notation, we will still draw the-signals as in the first section, with the in place.

Remark 6.1.2. For everyn-signal there exists some ordering [dn..n], says < ... < i, (or,
equivalently, a bijectiop : [1...n] — [1...n], with p(j) = i;) such thatw;, ;, ., € Sig(X) for
all k € [1...n — 1]. When< satisfies this property, we say that it is @ering compatible with
w. The ordering is unique when;; # ¢ for all ¢ # j.
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,Lw
|‘ __________ T T : } :
0 tl—t3:3 t2:5 t4:7 ‘ t5:10,5
te=13=28.5 ty=12

Fig. 6.1. An example of a&-signal.

For example, for th&-signal presented in Figure 6.1 we may have the orderirg3 < 2 <
4 <6<8=<5<1,asitfollows by reading the time points from left to right. Observe also that
this ordering is not unique, the orderiig< 1 <2 <4 <8 < 6 < 5 < 7 being also compatible
with the 8-signal in the figure.

Remark 6.1.3. Let us observe that, in order to give 2m-dominow we may specify only the first

n componentsy;; with i,j € [1...n] and the “pseudodiagonal” components,; with i &

[1...n], or, similarly, thelast n componentsy;; with i, j € [n + 1...2n] and the pseudodiagonal
components. This follows since the remaining components can be defined by the aid of the triangle
identity 6.1. For example, if we have specified the fisstomponents and the pseudodiagonal
components, the remaining components to be specified;avéith (i, j) € ([n+1...2n] x [n +
l...2n))U(In+1...2n] x [1...n]) U ([L...n] x [n 4+ 1...2n]). These can be recovered as
follows:

e [Fori € []_ R n] andj € [n +1... 27’L], Wij = Wi j—n * Wj—pj andwji =w;

ij
e Fori,j € [TL +1... 27’1,], Wiy = (wi,i,n)_l " Winjn " Wjnj-

6.1.1 n-dominoes over a one-letter alphabet

The class of:.-dominoes over a one-letter alphabet form a special class, due to the fact that any
concatenation of a signal and an antisignal is a signal or an antisignal — Thereforedanyno
is also am-signal.

In fact, instead of working withe-signals we might employ-tuples of reals — that is, instead
of working with an-signalw € Sig,(X), we might work with am-tuple (¢, ... ,t,) € R" for
whichw,; = a'~%. This observation was already made at the end of last chapter.

Then the projection/juxtaposition/concatenation operations are straightforward operations on
tuples:

1. Given am-tuplet € R%, and X C [1...n], the X-projection of 7 is the tuple denoted,
with the property that

f|X = (til, “e 7tik)

whereX = {iy,... ,ig}, 1 < ij41.
2. Givenm,n,p € N with p < min(m,n), thep-juxtaposition of anm-tuplet = (t,...t,) €
RZ, with ann-tuplew = (ui, ... ,u,) € R%, is defined ifft,,_,.; = u; foralli € [1...p] and

is the(m+n—p)-tuple = (21, ... , Zmin_p) With
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t; forie[l...m]
(e
u; foriem+1...m+n—p|

We denotez = z0,,7.
3. Given two2n-tuplest,uw € R%, their concatenation is the2n-tuple
tou= (10,u) .
The operations we will build om-dominoes are then “matricial” translations of these three
operations.
One guestion can then be raised here: why haven’t we adaptedtiide approach to signals,
and use the more cumbersome matricial presentation$ognals? Different reasons for our choice
will be given at different moments throughout this chapter, especially when defining the three
operations om-signals. These reasons are, to a certain extent, related to the fact that the set of
signals and antisignals is not closed under concatenation.

6.2 Operations on n-dominoes

In this section we introduce several operations:etitominoes, operations which aim at modeling
the concatenation on signals with distinguished time points from the introduction of the chapter.
We start with presenting some notations.

Given a naturah € NandasetX C [1...n] wedenotdy : [1...n] — [1...card(X)] the
surjection defined by

Ix(i) = card{j € X | j <1} (6.2)

Observe that the restriction bf to X is a bijection. We denote the inverse of this bijectionpy
Hencely' : [1...card(X)] — X.
Observe that, whe = AU B with A < B, thatisz < y for all z € A andy € B, we have:

1) iff i € A
aup(i) = {card(A) Vig(i) iffieB (6.3)

6.2.1 Projection

A useful operation iprojection, which cuts some of the rows and columns of the matrix, such that
the remaining matrix be still a square matrix.

Definition 6.2.1. Given an n-domino w € D, (X)) the X-projection of w is denoted w|, and is
defined as:
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#ﬂﬂ
I T } 1 } (a)
t,=t3=3 to=5 ty=T ts=10.5
te =t =8.5 tr =12
b2 Cl.5 a2-5 b1.5
. : . (b)
t1=3 ty=T t3=10.5

Fig. 6.2. The projection of the-signal at(a) onto the sefX = {1, 4,5} gives the3-signal at(b).

It is clear that theX-projection of ann-signal is acard(X)-signal. An example of projection is
given in Figure 6.2.

Proposition 6.2.2. For eachw € D, (X), X C [1...n]with card(X) =pandY C [1...p],

wlxly = w|z;(1(y) (6.5)

Proof. The components of the left-hand side in identity 6.5 are:

(w |X |Y)ij = (w |X)l;,1(i),z;1(j) = Wit ()05 (51 G)

The identity follows if we provely o lx = -1y, : Ix'(Y) = [1...card(Y)] and this can be
showed as follows:

by (Ix(i)) = card{j € Y | j < Ix(i)} = card{l5'(j) € Ix' (V) | Ix'(j) < i}
= card{k € Ix'(YV) | k < i} =1y, (0)

We have applied here the fact that: X — [1...p| is a strictly increasing bijection.

Proposition 6.2.3. For each w,w’ € D, (Y¥)and X, Y C [1...n]withX NY # 0, X UY =
[1...n],ifw|, =v'|, andw|, = w'|, thenw = w'.

Ingeneral, given X, Xy, ..., Xy C [1...n]suchthat X;U...UX; = [1...n]and X;NX;,; #
( for alligk—l,ifw|Xi=w’|Xi forall i < kthenw = w'.

Proof. We only need to prove that;; = w;; for: € X andj € Y, since the other cases hold
by hypothesis or by symmetry: take some X N'Y', which must exist sinc& NY # (). Since
i,k € X, we havew;, = wj,. Similarly, k, 7 € Y implieswy; = w;j. Therefore

. R A A
Wij =WikWj = Wy Wy; = Wy

The second property follows by showing, by inductiomoﬂnatw|X1U___UXi =w x,0.ux, O
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6.2.2 Juxtaposition

The juxtaposition operation joins two matrices along a common “submatrix”, such that both ma-
trices can be found in the result:

Definition 6.2.4. Given an m-domino w € D,,(X), an n-domino w’ € D,(X) and an integer
p < min(m,n), the p-indexed juxtaposition of w and «' is defined if and only if w|[mfp+1...m] =
w’ |[1...p]’ is denoted wO,w’ and isthe (m + n — p)-domino w” € D, ., With the property that

=’ (6.6)

Note that Proposition 6.2.3 assures the uniqueness ¢hthen — p)-dominow” = wd,w'.
The explicit construction ofvT,w’ is the following:

W;j iff Z,]E[lm]
(prw')ij = QWi i omtp iffi,je[m—p+1...m+n—rp

Wik, * Wi yp i map M EE[L...m], j€[m—p+1...m+n—p|k€[m —p...m]
(6.7)

The components);; withi € [m —p+1...m +n — p| andj € [1...m] can be recovered as
(w;;)~" from the third line in the definition. Note again that the definitionjffor the case when
i€[l...m],j € m—p+1...m+n—p|isindependent of the choice bfc [1...m)].

An example of juxtaposition is depicted in Figure 6.3.

B2 c'? a25 b’ al
I T } 1 } (a)
ti=t;=3  t=5 ty=T | t5=10,5
te=ts=8.5 tr=12
05 b? 25 b'o
| — | (b)
t1:t6:10}5j k t5=13.5
to=t,=8.5  tg=11.5 t3=12 tr=13
b2 01.5 a2-5 b2 a2.5 b1.5
r T } } } } } T (C)
ti=t3=3 to=>5 ty="T7 ‘ t5:t10:19/§ K tg=13.5
te=13=8.5 ti1o=11.5 ty=12 t11=13

Fig. 6.3. The4-juxtaposition of thes-signals afa) and(b) gives thel2-signal at(c).

Remark 6.2.5. Observe that, for each € D, (X) andp,q < m such thatp + ¢ > m + 1,

w |[1p] Derquw |[qu+1...m] =w.
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This result is a direct corollary of property 6.2.3.

Remark 6.2.6. The p-juxtaposition of am-signal with an-signal does not yield &n + n — p)-
signals in general. As an example, thuxtaposition of the twat-signals in Figure 6.4 cannot
yield a5-signal since, intuitively, the poirt of the second-signal does not correctly fit in between
the first two pointst; andt, of the first4-signal. This rewrites as the fact that the component
wys = b?a~! of the result is neither a word nor an antiword.

1_l'
b2 ¢ 005
1
T T 1
t1=3 to=>5 ‘ t3="7
ty =6
U
15
C
L|—‘_a|0'5
T t 1
tl :5 ‘ t2 :7
t4 =1 t3 =6
€ b2 c b201.5a0.5 b2a71
b2 R = 15405 a1
w = c b2 c B2l 505 —05,—15,-1
a—0.5c—1.5b—2 a—0.5c—1.5 a—0.5c—1.5b—2 € C—la—l
a/lb*Q al alcl.5a0.5 alcl c

Fig. 6.4. The3-juxtaposition of the twal-signals in this figure does not yieldasignal. The result
is the5-domino depicted below them.

This is an outcome of the fact théig(Y') U Sig(X ') is not closed under concatenation, and
argues in favor of our need of introducingdominoes as the basis of the study.

A sufficient condition for they-juxtaposition of am-signalw with an-signalw/ to be a(m +
n — p)-signal is the conjunction of the following properties:

1. Foreach e [1...m —pl|,j € [m —p+1...m], w; € Sig(X).
2. Foreach € [l...p|,j € [p+1...n],wj; € Sig(X).

This follows since, under this condition, the third line in the detailed definitiom@fw’ (Defini-
tion 6.7) would yield only elements &iig().

This problem with concatenation which is not an internal operation-signals is one of our
reasons for using the matricial presentatiomedignals, and of defining them as special cases of
n-dominoes. Had we worked only with signals with distinguished points, we would have had to
use the above sufficient condition for correctly defining the juxtaposition. But, as we will see later,
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this condition is not satisfied by thesignals which are issued by thesignals semantics of timed
automata, as we will see in a further section in this chapter. Hence, our calculus-giginals
would have been less expressive than timed automata.

6.2.3 Propertiesof juxtaposition

Proposition 6.2.7. 1. For eachw € D,,(X), w' € D,(X) given X C [1...m] with card(X) =
p, givenY C [1...n] with card(Y') = ¢, and given r < min(p, ¢) such that and [m — r +
l...mJC Xand[l...r] CY,wehavethat

wlyOr'ly, = (whyw') |XU(Y+mfr)' (6.8)

2. For eachw € D,,(X), w' € D,(X) and w” € D,(X¥) and for each ¢ < min(m,n) and
r < min(n,p),

(wO,w")0,w" = wh,(w'0,w") (6.9)

Proof. Both properties will be proved with the aid of Propositions 6.2.2 and 6.2.3:
For the first identity, denote firgt = card(X) andq = card(Y'). Let us observe first that the
left-hand sidew |, O,w'|,, is defined iff the right-hand sidevt,w’) |XU(Y+m7T) IS:

(by identity 6.5)

w|X |[p7'r’+1...p} = w|l)_(1([10*7‘+1...p])
= w|[m—r+1...m]

since, by hypothesigm —r+ 1...m] C X C [1...m] and hencéx(fm —r + 1...m|) =
[p—r+1...p], and, respectively,

(by identity 6.5)

w'ly |[1...r} = “’|z;1([1...r])

= w|[1r}

since, again by hypothesig,...r] CY C [1...n]and hencéy ([1...r]) =[1...7].

We will prove then that the projections of both sides of identity 6.5 ¢hto. p] and[p — r +
1...p+ g —r] are respectively equal. The projections of the left-hand side of Identity 6.8 are, by
definition ofd, the following:

(w |XD7"w/ |Y) |[1...p] = wly
(w |XDTw/ |Y) |[p—r—|—1...p+q—r] = lU/ |Y

For the projections of the right-hand side of Identity 6.8 we will apply the identity 6.5. First, the
projection ontd1 . . . p| gives:
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(wmrw,>|XU(Y+mfr) |[1...p] (wOw') |1X{J(Y+m (L)) (by identity 6.5)
= (wO,w' |l;(1([1...p}) (by property 6.3 ofx)
(wO,w') |y (sincelx(X) =1[1...p])
= (wO,w") |l[,1.1. 0 (sinceX C[1...m))
= mewHu | lx (by identity 6.5)
= wly

Before computing the projection onfp — r...p + ¢ — r| we observe thaky iy m-r) (X \
(Y +m—r)) =[L...p—r]. Therefore:

’ _
(UJDT’LU )|XU(Y+mfr) |[p r.ptq-r]

= (wO,w") |l§b(y+m L (p—rpba—r) (by identity 6.5)
= (wO,w") |ly1+m () (by the above observation)
= (wiw' )|, (sincely (Y +m —1) =[1...4])

— (wD,nw’)|l": @) (sinceY +m—rCim—r+1...m+n—r)

= (wO,w") |[mfr+l...m+nfr] ly (by identity 6.5)
=u'l,

For proving the Identity 6.9, let us observe first that the right-hand side is defined iff the left-
hand side is defined, and bothffJ,w' andw'0,w” are defined, since:

(wO (wO,w') |l !

[m—g1...mtn— q]([nfr%»l...n})

(sincelp, gi1.min-q(lm+n—q—r+1...m+n—gq])=[n—-r+1...n])

/
qW ) |[m+n7q7r+1...m+n7q]

= (WO i1 mng) et (by identity 6.5)
= |[n_r . (by definition ofd,)
(w'0,w") |[1___q} = (w'0,w") |z— (0] (sincel;. n([1...q]) =[1...q]])
= (wd,uw' )|[1___n] |[1___q] (by identity 6.5)
= |[1___q] (by definition ofd,)
Hence
° wl|[m—q+1...m] - U},: |[1q] If and Only |f’lU|[m m] = (wID ’UJ” |[1 q]
e w |[n77'+1...n] =w |[1r] if and Only if (’LUD w |[ +n—q—r+l.min—q |[1 rl’
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We will then show that the projections of both sides of this identity onto the[setsm],

[m—q+1...m+n—gqglandjm+n—qg—r+1...m+n+p— q— r| are respectively equal.
To this end, observe first that

Inmgn—r([1...m]) =[1...m] (6.10)
In.min-q(m—q+1..m+n—gq])=m—-—qg+1...m+n—q (6.11)

Then, the three projections of the left-hand side of Identity 6.9 can be rewritten as follows:

((wO,w")O )|[1 = (wOu')O,u") |l[1 (L) (by observation 6.10)
( quw ) |[1...m+n—q] |[1m] (by Identlty 65)
= (wO )| ] (by definition ofr,)
=w (by definition of,)

((quwl) DT’U}”) |[qu+1...m+nfq] -

!/ n
= ((quw )0 w )|l[71_1__m+n_q]([m*q+1...m+nfq])

(by observation 6.11)

( quw I) |[1...m+n7q] |[qu+1...m+n—q] (by Identlty 65)
= (W) | i1 ] (by definition of0,)
= w' (by definition ofd,)
((U}qu/)Drw”) |[m+n*qﬂ“+l-..m+n+p7q,r] =
=" (by definition of,)

Before computing the projections of the right-hand side of Identity 6.9, note the following
properties:

l[m_q+1,_m+n+p_q_r}([m —(q —+ 1...m +n— Q]) = [1 Cee n] (612)
l[qu+1...m+n+pqur]([m+n_q_r—i'1---m+n+p_q_r]) = [n—r-l—l...n-l—p—r]
(6.13)
The projections of the right-hand side of Identity 6.9 are the following:
(wO,(w'0,w")) o] = (by definition ofd,)
(wDQ(wIDTw”>) |[m—q+1...m+n—q] -

[m—g+1..m+ntp—g—r

= (w3, (w'Dw")) |- (L) (by observation 6.12)
( 0 (w,DTw )|[m—q+1...m+n+p—q—r] |[1n} (by Identlty 65)

= (w'0,w") |[1“_n} (by definition ofd,)

w

(by definition ofd,.)
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(qu(w/Der)) |[m+n7q—r+1...m+n+17 -]

_ / .
= (wO,(w'0,w" )|l (et L) (by observation 6.13)

= (wOy(w'0,w")) |[m7q Lmintpq] |[qu ontper] (by identity 6.5)
(w BRI S (by definition ofd,)
w” (by definition of,.)
Hence, an application of Proposition 6.2.3 ends our proof. O

At the end of this subsection we prove a property which relates orderings compatible with
4-signals to juxtaposition and will be used in the proof of the undecidability theorem.

6.2.4 Concatenation

The concatenation of twen-dominoesw, w' € D, (X)) is defined as the-juxtaposition ofw and
w'’ followed by the projection onto the first and the lastomponents.

Definition 6.2.8. Given two 2n-dominoes w,w’ € D,,(X), the concatenation of w and «' is
denoted asw ® w’ and defined as

wow = (wh,uw) |[1...n]u[2n+1...3n] (6.14)
In detail,w ® ' is defined iffw|[n+1m2n} = |[1...n] and in this case we have
(wOw); = 4w, iff i,5 € [n+1...2n] (6.15)

wi, - wy,_, i€l .n],j€ [n+1...2n]andke[n+1...2n]

The components);; withi € [n + 1...2n] andj € [1...n] can be recovered ds);) ! from the

third line in the definition. An example of concatenation is given in Figure 6.5 below. The reader
may observe now that the concatenation of the §wgignals from Figure 6.5, is the projection of
their 4-juxtaposition, as given in Figure 6.3, onto the get . 4] U [9...12].

Remark 6.2.9. As an outcome of the remark 6.2.6, the composition of 2wesignals might not be
a2n-signal in general.

Proposition 6.2.10. Composition is associative, has no unit but each 2n-domino has a left and a
right unit and a left and right inverse w.r.t. this unit:

1. For each triplet of 2n-dominoes w, w', w” € Do, (%)

(wouw)ow" =wo (wow”) (6.16)
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b2 c'? a3 b’ al
t1=t3=3 to=>5 ta="T ‘ ts=10,5
te=1ts=8.5 tr=12
2 1.5
05 b 25 b
| tl—t6:10)5j K ts=13.5
to=1t4,=8.5 ts=11.5 t3=12 tr=13
b2 c'? a2s b 25 b'-?
ti=t3=3 ta=5H ta="7 te=10,5 ‘ ts=13.5
ts=11.5 tr=13

Fig. 6.5. Concatenation of tw8-signals.

2. For each w € D,,(X), denote 1., resp. 17, the 2n-dominoes defined as follows: for each
i,j€[l...n]

(U)ot = (Ah)ints = (U ntimes = wij (6.17)
(12;)17' = (12;)n+i,j = (1;)i,n+j = (1Tw)n+i,n+j = Wn+in+tj (6-18)

—~
o
g~
S~—
Gv
I

Observethat (1.,);ni = (17))insi = €, foranyi € [1...n).
Then

1l ow=wol, =w (6.19)
3. In the same setting, define w € Dy, (X) asfollows:

5 — ) Witnion iffie[l...n],j€[n+1...2n] (6.20)
Y Wi—pjin (ffi€n+1...2n],5€[l...n] -

Wi—n,j—n iff Z,] € [n +1... 27?,]
Then
wow =1, andw ©w =17, (6.21)

Proof. The associativity property follows from the definition of composition and the associativity
of juxtaposition. Let us observe first that ® «') ® w" is defined iffw ® (v © w") is defined,

and both are defined ith ® v’ andw’ ® w” are defined. This follows directly from the proof of
associativity ofd. Then:
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(w o w) = ((wB,w') | 1..nJU[2n+1...3n] 0,w") |[1...n}u[2n+1...3n]
= (B ) O )y ot sniupnton] fonozns.a,  (BY identity 6.8)
= ((wO,w") 0, )|l11 ont s an ([Ln]U[2n 4+ 1..30]) (by identity 6.5)
= ((anw')an )|[1...n]u[3n+1...4n]
(sincelp. nupnti.an([1...n)JUBn+1...4n]) = ([1...n]U[2n +1...3n]))
Similarly,

/ "

wo (wow") = (wd

(WO (w'Tw") |,
= (an(w'an")) 1
( (w'Bnw )) !

.nJU[2n+1.. 3n]) |[1...n]U[2n+1...3n]

(by identity 6.8)
(by identity 6.5)

n]U[n+1...2n]J[3n+1...4n] |[1...n]U[2n+1...3n]

/
n

"
n 11 SnlUfn 1. dn ]([1...n]u[2n+1...3n})

= (an(wIan )) |[1...n]u[3n+1...4n]
(sincel. anjuntt.an([1...n]UBn+1...4n]) = (1...n]U[2n + 1...3n]))

For the second property, observe first tiiaandw can be concatenated (in this order) since by
definition

!
L, |[n+1...2n] - w|[1...n]
Then
(121 ) J =
= q w;j fori,je[n+1...2n]

(1)ix -wy; foriefl...n],j €[n+1...2n]and some € [n+1...2n]

) wy fori,jen+1...2nJori,j€n+1...2n]
(1b)i’n+i"wij fori e [17’L] andj S [n+12n]

The proof is similar for the right unit, .
Finally, for proving thato is the inverse oty w.r.t. concatenation we only must observe that,

foranyi,j € [1...n] we have
(wow).. =(wo )

ij = Wi

n—+i,n+j

(w ®© w)i,nﬂ- = Win+i - Wintj = Winti * Wni,j = Wij u
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6.3 n-domino languages

Having defined:.-dominoes and their operations, we may turn our attention to setglofninoes
now. These sets will be calleddomino languages, respectivelyr-signal languages when they
consist ofn-signals only. We denote the family afdomino languages &£, (X') and the family
of n-signal languages a8/, (X).

All the operations built so far extend naturallystedomino languages. We will only write here
the extension of the concatenation@tedomino languages, since this gives rise to a star operation:
given two2n-domino languages, L' C D,,(X'), the concatenation af and L’ is the2n-domino
language

Lol ={wouw |weLw elL}.
Let us consider the following language:
Lo, = {w € Do, (X) | Vi € [1...n),wipy; =} = {1}, | w € Dy, (2)} (6.22)

Proposition 6.3.1. 1,, is the unit for concatenation on sets, hence (P(DQn(E)), o, 12n) isa
monoid.

Concatenation gives rise tostar operation: for eac2n-domino languagd, C Dy, (X)), the
star of L is defined as:

L® — U I,F©
k>0
whereL%® = 1,, andL*+1® = [k© o [ for all k € N.
Proposition 6.3.2. The structure (P(D2,(X)), U, ®, ®, 0, 1,,) isa Kleene algebra.

We will also use thepositive star operation®, defined as the positive iterations of the given
language:
Lo = Jr*
k>1
A nice property relating projection and juxtaposition is the following:

Proposition 6.3.3. Given an m-domino language L, an n-domino language L’ and a positive nunm-
ber p < min(m,n), denote L the set of (m + n — p)-dominoes which project onto elements of L
and L the set of (m + n — p)-dominoes which project onto elements of L, that is:

L={w€ Dpinp(X) | w|[1mm} €L}

L' ={w € DpinyplE erL'}

) | w |[mfp+1...m+n7p]

Then
Lol =LNT (6.23)
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Proof. By straightforward verification:
LO,L = {wOw' |we Lw € L'}
= {w € Dypyn—p(2) | w|[1...n] < L7w|[mfp+l...m+nfp} €L}
= {w € Dinsnyp(Z) [ W]y € L} 0 {w € Dypsnp(Z) | Wy v € L'
=LNL O

6.4 Regminoes, regsignals, and regular expressionsover them

Going back to the “colored parentheses” idea, we would like to decompose each object of the form
<bluea <redb>t11|ue<bluea> rled<redb>k1JIue a> rled
into a concatenation of the kind
<b|uea <redb> ll)lue a> rled o <bluea <redb> ?Iue a>|ied

Consequently, we would like to base our regular expressions with colored parentheses on atoms
like (Plueg(redp)blueg)ed that is, in which, if we apply a “color filter” for the any of the colors, we
would get a timed regular expression of the kifid (F»);Es, in which E;, E, and E;5 are regular
expressions without timing parentheses.

This rough idea still needs some refinement: observe that, in an atom of thg4&neh) blueq ) e,
there exist some implicit timing constraints limiting the duration of each state: neither of the two
statesa or the stateh may last more than time unit. A graphical presentation of the resulting
object is the following:

<bCL>1

<b|uea <redb> t1>lue a>r1ed

We will put all this information in a matricial presentation: we defiesgminoes as matrices of
timed regular expressions, whose semantics consists of sets of dominoes. These are the atoms of
our calculus of regular expressions with colored parentheses:

Definition 6.4.1. Ann-regminoisamatrix R = (R;;); je[1..,) Whose components are timed regu-
lar expressions: for each4,j € [1...n], R;; isatimed regular expression over X' U X1,

An n-regsignal is an n-regmino R for which, for eachi,j € [1...n|, R;; = (E); + (E'); for
some untimed regular expression £ over X, some untimed regular expression £’ over > ! and
someinterval I € QInt.
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The set ofr-regminoes is denoteRD,, (X') while the set of:-regsignals is denote®Sig,, (X).
Thesemantics of n-regminoes is the mapping|| : RD,(X) — P(D, (X)) defined as follows:
for eachR € RD, (X),

|R|| = {w € D,(X) | wij € ||Ryj| foralli,j € [1...n]} (6.24)
Remark 6.4.2. Observe that the semantics of amegsignal contains only-signals.

Figure 6.6 gives an example oftaregsignal and &-signal in its semantics.

(b) {2 b+ ) (b(ca)*) 3.5
R (b 1>{ 2) e (b =31y ((a+e)ca)py
(b+e)- 10] (O3 € <bac+a_1b_1>[_274}
<( -1 71)*1) >[ 5,—3] <a71071a71>[_3,_2} <Cil(l71b71—|—ba>[_472} 5
B2 c'd 05
—r
tlztlgz?) LLQI:5 t4I:7

Fig. 6.6. A 4-regsignal and d-signal in its semantics.

We have used here the expressjbre+a~'b~")_, 4 as a shortcut fofbac);_s 4+ (a™ 07" 2.4
Observe also that, since signals cannot have negative length and antisignals cannot have positive
length, we may further replace this timed regular expression it} 4 + (a0 1)[_29.

For eachn-regsignalR € RSig,(¥) we will denoteR;; = R;; + R;; with R}, being the
“positive part” andR;; the “negative part” of the timed regular expression, that is:

R;; = (E); with E regular expression over* and/ C [0, co)
R;. = (E); with E regular expression ové® !)* and] C (—oo, 0]

(]
6.4.1 Projection and juxtaposition on n-regsignals

We have seen that the domino operations can be naturally extended to languages. We may ask
then whether there is a way tepresent the results of each operation, when applied to languages
which are representable by regminoes. We show here that, for juxtaposition and intersection, such a
representation can be found, but not for union and projection, and, hence, neither for concatenation
and star.

We present these results in an algebraic setting, that is, we define juxtaposition and intersection
on regminoes and prove that they amompositional. On the other hand, we show that the natural
candidate for theX -projection operation on regminoes - the operation which removes the rows and
columns not inX - is not compositional.

Definition 6.4.3. Given R € RD,(X)and X C [1...n], the X-projection of R isthe (card(X))-
regmino denoted R|,. and defined as follows:



M TRV LG, TegYiyl T, v iyt LANTeOlIVTIe UVeD it

(RlX)ij =Ry 1y foralli j e [1...card(X)]

Given Ry € RD,,(X), Ry € RD,(X), and p < min(m,n) a nonnegative integer, the p-juxta-
position of Ry with R, isthe (m +n — p)-regmino R € RD,,,, ,(X) denoted R = R;0,R, and
defined as follows:

(RlDPR2>¢j -
((Ry); iffic[l...m—pl,jell...m]
oriefl...ml,jel...m—p|
(R2)i—m+p,j—mtp iffic[m—p+1...m+n—plj€m+1...m+n—p|
ori€lm+1...m+n—p|, j€m—p+1...m+n—p|
= (R1)ij N (R2)i—mtpj—mtp iffi,jem—p+1...m|

ﬂ (B1)ik(R2)k—mpj—m+p iffi€[l...m—pl.j€[m+1...m+n—p|
k=m—p+1

ﬂ (Rgz miph-mip(R)g; ffj€[l...m—pli€e[m+1...m+n—rp|

Unfortunately projection is not a good syntactic operation since it does not commute with se-
mantics of regminoes: we might have arregmino with an empty semantics whose projection
onto some subset has a nonempty semantics. For example, consider the follsegsignal over
a one-letter alphabéet = {a} (in fact, a matrix whose entries are sets of reals):

5 a' + a? a’>+a®  ab+dd
R a?+a! £ a'+a® at+d (6.25)
a®+a? a3+a! € a® + a* '
a8 + ab a7 + a?t at + a3 £

This 4-regsignal has an empty semantics: if we construct all the integer-valued matrices
whose components belong to the respective componentg tfat is, withA4;; € R;; for all
i,7 € [1...4], we observe that none isdasignal as none satisfies the triangle identity. However
the projection ofR? onto the sefX’ = {1, 3} gives the following2-regsignal:

(et )

whose semantics is nonempty, since:

1
w= (50 ) € Rl | nSieatio

In general, we only have the inclusion
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IRl 2 {wly [we |RI} (6.26)

for eachk € RD(X) andX C [1...n].
Contrary to projectionindexed juxtaposition is compositional w.r.t. semantics:

Proposition 6.4.4. The following property holds for any R, € RD,,(X), Ry € RD,(X), and
p < min(m,n):

[B1Op Ral| = [ By |5, Ry (6.27)

Proof. The property follows by easy verification: for the direct inclusion observe that, &
| R0, Rs|| thenw|[1___m] € || R4l andw|[ € ||Rz||- Butw = w|[1__
hencew € [|Ry |0, || Rs|l.

For the inverse inclusion we just have to observe that, if we are given|| R, || andw, € || Rs||
such thatw,0,w, is defined, then for ali € [1...m —p], 7 € [m+1...m + n — p|] and
ke[m—p+1...m], (wi0ws)i; = (w1)ik - (W2)k—mp,j—m+p @nd this implies that

O
m—p+1..m+n—p] .m)| pW |[m—p+1...m+n—p]’

m

(wiOwa); € () IRkl - |(Ro)k-mpi-menll = [ R1TRalls; O

k=m—p+1
An operation which is availabl®r n-regsignals only is intersection:
Definition 6.4.5. Giventwo n-regsignals Ry, Rs € RSig,,(X) theintersection of R; and R isthe
n-regsignal R with
Rij = (R1);j N (Ry);; foralli,j € [1...n] (6.28)
We denotethen R = R; N R,.

Remark 6.4.6. Of course, to actually obtain-regsignals we need to transform the intersection in
each component into a regular expression. Observe that it is essential that both operands are
regsignals since then each component can be still written in the @i+ (£’) with E an
untimed regular expression over and £’ an untimed regular expression ovBr'. Here[ is
intended to be a nonnegative interval ahd nonpositive interval.

On the contrary, the intersection of the semantics oftwegminoes might not be representable
as am-regmino. This follows even fot = 1 by the nonclosure of timed regular expressions under
intersection [ACM97, Her99].

Proposition 6.4.7. For each pair of n-regsignals R;, R, € RSig, (X)) we have
[By N Ra| = [ B[] O || R

We may then to alternatively defipgjuxtapositionR; 0, R, by the aid of projection and inter-
section as follows: suppode RSig,,(X~) and R, € RSig, (X). Consider then the following two
(m 4+ n — p)-regsignals which, intuitively, exten;, resp.Rx:
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=\ (Ru)ij iff i,7 € [1...m]
X+ (XY otherwise

(R) _ (Rz)i*mﬂ?,j*mﬂ) iff i,jE[m—p+1...m+n—p]
2)i] —
’ Xr 4 (X otherwise
Observe thaﬂf_%1|||[1mm] = ||Ry|| and|| Ry || b ptmmsnp = IRl
Then
RO, R = [[Ry N Ryl (6.29)
since we have:
| RO, Ryl =|| Ry |5y Rel| by proposition 6.4.4
=||R1|| N || Re|| by Proposition 6.3.3
=||Ri N R || by Proposition 6.4.7

6.4.2 2n-domino regular expressions and 2n-signal regular expressions
We may push the theory further by defining regular expressions whose atoms are regminoes.

Definition 6.4.8. The class of 2n-domino regular expressionsis generated by the grammar:
E:=R|E+FE|E®E|E® (6.30)

where R is a 2n-regmino. When the atoms in a 2n-domino regular expression E are all 2n-
regsignalswe say that F isa 2n-signal regular expression.

We denote byegD,,, (X)) the class oRn-domino regular expressions ovBrand byRegSig,,, (X)
the subclass din-signal regular expressions ovEt

The semantics of &n-domino regular expression is in terms Di-dominoes and uses the
indexed concatenations and stars:

IE+E =[E[u|E]
IE©E| =[E]lo|E]
1E=] = |IE]®

Observe that the definitioff © F'| = ||E|| ® ||E'|| does not contradict the fact that the
semantics ofh-regminoes is noncompositional w.r.t. concatenation. The left-hand side isf
an abstract operation amrgular expressions, that is, its result is a regular expression, and not a
regmino.

We would like to define a specific semantics2afsignal regular expressions in terms2of-
signal languages. Butn-signal regular expressions cause a special problem due to the fact that
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Sig,, (X)) is not closed under concatenation. We then need to restrict the semantics @heach
signal regular expression to its intersection w8tl,,, (). We denote then-signal language-
semantics of &n-signal regular expression és ||s. Hence, for eaclt € RegSig,, (),

IE]ls = [[E]] N Siga, (2) (6.31)
Observe that, due to Remark 6.4.2 we have iligl; = || R|| for eachn-regsignalR.

Remark 6.4.9. Occasionally, we will also speak afsignal regular expressions. These are noth-
ing else but formal sums of-regsignals, since fat odd no concatenation operation is available.
This notion is useful as-regsignals are not closed under summation.

We may also define a class of automata equivalehtdomino regular expressions, equiv-
alence which follows via the Kleene theorem and the compositionaligp.afomino regular ex-
pression semantics. We call them-regsignal automata. We will only provide, in Figure 6.7, an
example of such an automaton, the general definition being easily deducible.

R3

OO 0

Fig. 6.7. An example of &@n-regsignal automata that corresponds toZhedomino regular ex-
pressions?; ® (Ry ® R3)®, for any2n-regsignalsk;, R, Rs.

6.5 2n-signal regular expressions and timed automata

We have started the study efsignals with the aim of modeling timed languages. This section
provides the formalization of this modeling, namely the way the language ef@ack timed
automaton can be presented by sa@mesignal regular expression.

In the introduction to this chapter we have intuitively presented the way to encode a signal with
reset times into &n-signal. The decoding of 2n-signal into a signal with reset times works as
follows: we simply need to consider the component with the largest length in the matrix, and then
distinguish some points in it, according to the timing constraints. This idea can be generalized to a
definition of thetimed language associated with an-signal regular expression, as the set of largest
components that occur in sorge-signal which belongs to the semantics of the giRersignal
regular expression. More formally:

Definition 6.5.1. Given a 2n-signal regular expression £ € RegSig,,,(X), the timed language
associated with £ consists of the following set of signals:

L(E)={c|3we€ |E|;,3i,j € [1...n],3 < an ordering compatible with w such that
w;; =candVk € [l...n],i <k <j} (6.32)
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The following theorem formalizes the intuition thatclocked timed automata can be presented
as2n-signal regular expressions:

Theorem 6.5.2. The class of languages accepted by timed automata with n clocks isincluded in
the class of timed languages associated with some (2n 4 2)-signal regular expression.

Proof. We will actually prove that the semantics of eaclslocked timed automatam which each
transition resets at least one clock can be associated withea-signal regular expression. The-2”
increment in the theorem statement comes from an augmentation of the number of clocks by one
which is reset on each transition. Throughout this proof we will consider the reset time semantics
of timed automata.

So take a timed automaton withclocks, A = (@, 0, A, Qo, @ ¢), in which each transition resets

at least one clock. We code each transitioa ¢ (@9, 1 in which X # () and)\(q) = ainto a

2n-regsignalR(7) as follows: suppose that the constraint in the atom is
OZ( /\ a?iEIZ')/\( /\ $i_$j€Jij)
1€[1...n] 1,j€[1...n], i#£]
Then the components of tRe-regsignalR(7) are:

;

forj=n+iicXori=n+j,j€X
X -a)g foriefl...n],j=n+kkeX
ori=n+lj=n+kkecX,leX
(@t (XYY forjell...nli=n+kkeX
ori=n+kj=n+lkcX,lecX

(Zru(ZYY"y,, forijel...n]

(XU (XY, fori=n+kj=n+lkleX

€ fori=n+k,j=n+0LkleX
(Zru (XY, forie[l...n),j=n+kkeX,i#k
(Zru(Zh)y,, forjell..nlii=n+kkeX j#£k
9

(

\

Here—I = {—a | a € I}.

Observe the utility of havind{ =# (}, since we may then code the subconstrajnt I; by a
comparison on the duration between the last reset point for alakd the reset point of any clock
in X.

Consider also the matri&(2n) whose all entries are, £ = ¢ for all i, j € [1...2n]. The
meaning of this matrix is the following: when this matrix is concatenated to the left of a regular
expression, all the starting points of the result are the same.

We then build &n-regsignal automatoBi = (QQ U {¢},0,{q}, @) in which

R(T) (C,X) E(2n)
0={q——r|t=¢g——=recd}U{p—q|qeQ}
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To prove that this construction is correct, observe first that each accepting tdrcam be
uniquely transformed into an accepting rundrihat starts in{ ¢, } by just appending some transi-
tion labeled with then-regsignalf (2n), and vice-versa.

Consider then a rup = (g;)icp1..i) With 7 = ¢; X, g1 foralli € [1...k — 1]. We may
associate to this run the following regsignal:

R(p) = R(11) © ... © R(71)

Consider now the “word-like:-clocked expressiof(p) associated with the rum as defined
in Identity 4.6 on page 61.

E(p) = (a, /\ 2 =0,0), Mq1),C1, X1) ... - (A(qo-1), Cre1, X1

Then, if a signal with reset times= (¢, ... ,t,,t,0,t},... ,t.,t') isin the (reset time) semantics

of E(p) thent; = t; = ¢t = 0 and the signal with reset times can be represented by the following
2n-signal:

€ foralli,j €[1...n]
forj=n+kike[l...n]

(i, - {

a |{n,t;c)

(of course, the whol@n-signal results with the aid of the triangle identity).

It is clear that there exists a bijection between the set of signals with reset timeg with
... =1, =t = 0andt, > 0 and the set oBn-signalsw € Sig,,(X) with w;; = ¢ for all
i,7 € [1...n]. We may apply this bijection to the-clocked semantics af(p) and hence get a
2n-signal semantics for it.

The proof ends if we show that, for each rpnthis 2n-signal semantics foF/(p) equals the
semantics of th@n-signal regular expressiadf(2n) ® R(p). This will be proved by induction on
the length of the run.

For zero-length runs the proof is trivial. Let us suppose then that we have proved the property

for all runs of length up tdk — 1 and take some run of length, sayp = (¢)icp..k+1), With

T = q; ﬂ ¢i1 € dforalli € [1...k]. Denote alsQ/ = (¢;)icp...k), the run reduced to the

first k — 1 steps. Hence we have
E(P) = E(P/) : (ak+1, Ck+17Xk+1)
Then each signal with reset times in the reset semanti€§fcan be decomposed as
(0,...,0,0,t1, .. stn,t) - (t1ye e sty by g, By, oo 1, )

Where,}/ - <O’ ’O’O-’tl"" ’tn’t) € ||E<10)|| and’Y, = (tla--. ,tnataak+17t/17-.. ,t{n;t/) S
H(ak—&-lack+1,Xk+1)||.
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We may build then thé@n-signalw(~y) associated with, which, by induction hypothesis, is in
the semantics of (2n) ® R(p'). We further consider the followingn-signal which, intuitively, is
associated with/:

{ {w(y)nﬂ-,nﬂ- iff i,7 €[1...n] (6.33)

W(Y)ntij-axrr  ffiel...n],j€n+1...2n]

the rest being derivable by the triangle identity.
Observe thatv(v) ® «' is defined and the result is

w(y) ©w' =w(y-7)

which proves in fact that then-signal semantics af/(p) is included in the semantics 612n) ®
R(p).

For the reverse inclusion we proceed by mirroring the above argument: for the induction step,
consider &n-signalz € ||£(2n) ® R(p)|| = [|E(2n) ® R(p') ® R(aks1, Cri1, Xks1)||. Hence,
z = wow withw € ||E(2n) ® R(p)|| andw’ € ||R(ags1, Cri1, Xx+1)||. By the induction
hypothesisw is in the2n-signal semantics of(¢'), hencew = w() for some signal with reset
timesy = (0,...,0,0,t1,... ,t,,t) € [|[E(p)]|. We may then build a signal with reset times from
the information provided by’ as follows:y' = (t1,... ,tn, t,ak1,t), ... ,t),t") where

r¥n?

t; =t + L(w],, ;) foreachi € [1...n]
t' = t, for somei € X4

But~ - 4 is defined and produces the signal with reset tiffes (0, ... ,0,0,¢},... ,t . t') €

7 'n)

| E(p)|| which clearly has the property thai~") = =. 0

6.6 The emptiness problem for 2n-signal regular expressionsis undecidable

In this section we show that our regular expressions over regsignals have an undecidable emptiness
problem, hence being more expressive than timed automata. In particular, we show here how to
encode each instance of the Post Correspondence Problem 2ntsignal regular expression.
Interestingly, the problem comes from the “untimed” part, the time playing no role in this result.

We remind here briefly thBost Correspondence Problem [Pos46] and the result concerning its
undecidability:

Definition 6.6.1. A PCP instance consists of a finite list ((“iv“i))ie[l...p} of pairs of words, u;, v; €
X7*. Asolution of this instance consists of a finite list of indices (i;) jcp1..,, such that

Uiy Uy -+ - ’LLip = V;; Vg -+« Uip

The Post Correspondence Problem is the problem of checking whether a given PCP instance
has a solution.
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Theorem 6.6.2 ([Pos46, HU92]). The Post Correspondence Problemis undecidable.
Theorem 6.6.3. The emptiness problem for 2n-signal regular expressions is undecidable.

Proof. We encode each PCP instance intd-signal regular expression. Hence, supposing we

are given the instanc(a(xi,yl-))ie[lmp], we associate to each PCP-doming, y;) the following

4-regsignal:
e (B z; 4 (B
E* ‘I‘ (E_l)* c Z* ‘I‘ (Z—l)* yz
R;, = 6.34
.I';l Z* 4 ( —1)* c E* + (2—1)* ( )
Z* + (E_l)* y; E* + (2—1)* c

Then, by using the-regsignalf(4) defined in the proof of Theorem 6.5.2,

1€(4) © (ZRi)@) ©EM) #0

iff the given PCP has a nontrivial solution.

To observe this, consider firstiasignalw € ||£(4) ® (37_, R;)” @ £(4)|. By definition, we
havew = wy O w1 © ... © wy © Wry1 With wo, wey1 € [|E(4)| andw; € || Ry, || forall j € [1... k]
andl; € [1...p]. This implies that(w;).3 = w;, and(w;):4 = vy, for all j € [1...k], and, by
construction o (4), that(wp)12 = (wgy1)34 = €.

We first need to prove that, © ... ® wg; IS a4-signal. The following proposition will help
us:

Proposition 6.6.4. Given two 4-signals z, ' € Sig,(X'), suppose that z;3, 224, 213, 25, are not an-
tisignals, that is, 213, 204, 213, 25, € Sig(X'). Suppose also that 20,2 is defined. Then 20,2’ isa
6-signal.

Proof. The proof of this property is done by case study on the possible orderings which are com-
patible withz, respectively with'.

For each of the twa-signals, they aré cases that can occur, under the assumption that the
(1,3)-components and th@, 4)-components are not antisignals, three whex 4:

()l <2<3<4, ()2 <1=<3<4, ()1 <3<2<4

and the3 symmetric cases in which< 3. Since not all combinations are possible due to the need
to havezO,z’' defined, the correct combinations are as much as 18. Let us dertbeordering
compatible withz and <’ the ordering compatible witlf and suppose that < 4, hencel <’ 2
due to correct juxtaposition.

The only problematic components dgfl,2’ are(z0,2")16 and (202" )25. TO See that the other
components are indeed signals or antisignals, observe(that'),;; = z1321; € Sig(X) and
(2092")96 = 20424, € Sig(X) by hypothesis.
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1. For the six cases in which<’ 3 and2 <’ 4, that is, when,, 25, € Sig(X), we have that

(2022)16 = 213214 = 213212294 € Sig(L)

(ZD22/>25 = 2242;3 € SIg(Z)

By similarity, the other two cases in whidh< 3 and2 < 3 are also solved.
2. For the last remaining case, wherk 3 < 2 < 4 andl <’ 3 <’ 2 <’ 4, observe first that we
getz, € Sig(X), and therefore

(2052 )16 = 213214 € Sig(X)
we observe that
230204 = 213759

But the four factors of this identity are signals, and signals have the folloeguiglivisibility
property:

either 23, = zj;0 andzl, = o294

there existe € Sig(X) such that
or Zo4 = 025, ANA2] 3 = 2300

Graphically, the two possibilities are depicted in Figure 6.8

SNOWZ NN

k%&xaﬂ////% k@@@a 7

Fig. 6.8. The equidivisibility property.

Let us consider the first variant, that ig; = z}.0 andz;, = 0z.4. It follows that:
13 32
(2052 )o5 = 203255 = 01 (2)3) ' 23 = 0 € Sig(X7)

We have already seen that,2');s € Sig(X), hence none of the componentsa0f,2’ is a
mixture of signals and antisignals, which means thatz’ € Sig,(X). (Observe that, in this
case, ort,z', we may choose the compatible ordering” 3 <" 4 <" 5 <" 2 <" 6.)

The same result follows if we choose the second variant, thaf is 025, andz; = z320. O

Proof (of Theorem 6.6.3, continued). We may prove, by induction ofpand by means of Proposi-
tion 6.6.4, thaty, © ... ® w; is a4-signal.
On the other hand, if we explicitely build from wy, . .. , wi,; We get that
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w13 = (w0)13 : (w1)13 et (wk)ls : (wk+1)13 = U Uy - .U,

Wo4 = (w0)24 ’ (w1)24 EE (wk)24 : (wk+1)24 =U,0, ...,

Then, the triangle identity 6.1 implies that; = wy;wi3 = woyw,z and thereforev;; = woy,
fact which assures th@j)je[lmkl is a solution of the given PCP instance.

For the reverse implication, suppose now that the PCP instance)c;:..,; has a solution
(lj)je[lmk}. Let us denote, for simplicity, for each € [1...k], &, = w; - ... - w, andv; =
Ut Uy

We build a sequendey;) <1 Of 4-signals which, intuitively, record the positioning of tjeh
domino in the chain of concatenations. Formally:

3 L - (0 u, 1 - (0,)
I R
/ uljl (, - (vljil))—l £ iy, - (vljil)
(alj ’ (ﬁl;L))il UZ;I (ﬂlﬂl ’ (?jl;il))il €

For example(w;)»3 holds the word or antiword that lies in between the occurreneg ahdv;; .

The fact that(lj)ie[lmk} is a solution implies that, for eache [1...k], %; - (171;1) is either a
word or an antiword. Hence; € || R,||.

It is then easy to check by induction thajt|{374} = wj+1|{172} and that the concatenatian ©
... ® wy is a4-signal. The proof is accomplished if we observe that);» = (wy)34 = ¢, hence
we may concatenate at left and right with the maff{®), viewed this time as a-signal, to get
that

EQ)Ow O...0uw,0E(4)¢€ ]|€(4)®(iRi)®®€(4)\\ O

Note that the problems concerning the semantic8w$ignal regular expressions, problems
due to nonclosure dig,,(X) under concatenation, are harmless for the proof of this theorem.

Corollary 6.6.5. 2n-signal regular expressions are strictly more expressive than timed automata.

Throughout the following chapters we will search for the following two things:

e A subclass oPn-signal regular expressions having a decidable emptiness problem and the same
expressive power as timed automata and
e A discrete representation of this class, which allows manipulating only unttmeignals.

The search will proceed hand-in-hand, since the discrete representation for the subclass will
eventually lead to the decision procedure.



7. n-words and their automata

A closer look at Theorem 6.6.3 shows that time playsate in the undecidability of the empti-
ness problem. It is only the untimed structureneflominoes that gives the possibility to encode
PCP instances intd-domino regular expressions. We therefore need to study in deeper detail this
untimed structure, that is, untimeddominoes and untimegtsignals. We will call the latter as-

words. Actually, the whole theory of juxtaposition and concatenation might have been introduced
on untimed dominoes angwords, but we have preferred introducing it for signals in order to
justify its utility for the study of timed automata.

We investigate in this chapter a class of finite automata that is naturally associated with these
n-words. We will call these automata asautomata. The idea is to have accepting sets, such
that a run accepts anword iff it passes through an accepting set exactly when it crosses one of
the distinguished points in theword. Of course, the accepting sets are indexed, such that when
crossing the distinguished poifitthei-th accepting set is reached. In the matrix presentation of
n-words, this is rephrased as follows: the run in between the moment of passing through the
accepting set and the moment of passing throughieaccepting set is labeled with;. Or, in
the casav;; is anantiword, its inversew,.;1 labels the run between the moment of passing through
the j-th accepting set and the moment of passing througltheccepting set.

We show here that-automata are as expressive as sumsiagwords (that is, sums of untimed
n-regsignals) and that they are closed under concatenation. We also show that they have a decidable
emptiness problem, though with a high complexity solution (in the NP class [GJ79]).

This allows us to identify better what harms the emptiness problegnfevord regular expres-
sions: it is the star operation in combination with ehasticity of 4-regwords that represent each
PCP domino. By elasticity we name the property that, for sésregword which represents a PCP
domino, allows the two words in the domino to be arbitrarily far away from one other. Our idea is
then to forbid this elasticity both at the untimed and timed level and to show that, when simulating
timed automata witn-signal regular expressions, we obtain non-elasticegsignals too.

Non-elasticity does not prove to be a nice algebraic property since it is not closed under concate-
nation. But our search is for a property that assures decidability rather than for a c2ase/ofd
regular expressions which is decidable, since such a property can be checked on different classes
of algebraically closed classesdi-signal languages.

One question might be asked here: why do we “complicate” our life and use a fussy class
of automata and not work with classical finite automata and the intersection construction? But
in fact, our class of automata is nothing else but a compact representation of an “asynchronous”



e =l W o 10U FVUVIWD ATTUA BTTWIT RAUtVITTIAL R

composition of finite automata. Then, in a certain sense, our non-elasticity property requires a
bound on the asynchronicity in order for the emptiness problem to become decidable. Even more,
our class of automata will be able to represent also timing constramststhe continuous time
domain, as we will see in the next chapter.

This chapter runs as follows: in the first section, we defingords, n-regwords and the reg-
ular expressions oveln-regwords, and show that all the algebraic properties-sfgnals and
n-regsignals from Chapter 6 hold farwords andn-regwords. The second section contains the
definition ofn-automata and their basic closure properties, must notably the closure under projec-
tion and juxtaposition. We also show here that the emptiness problemdatomata is decidable
and thatn-automata are equivalent teregwords. The third section serves for the introduction of
the non-elasticity property and some basic observations on it. The fourth section contains the main
result of this chapter, the star closure propertgofautomata whose accepted languages have the
property that all their powers are non-elagticword languages.

7.1 n-words

n-words can be thought as words with distinguished points, similarh$@nals. Hence, when
presenting words with distinguished points, we must emplaiwords, that is, words over the set
of symbolsX ! = {a! | a € ¥'}. Algebraically, we work on théree group generated by the
set of symbolsY, which is nothing else but the seE’ U X~1)*, endowed with a concatenation
operation which “cancels” inverse letters.

Definition 7.1.1. Anuntimed n-dominoisamatrixw = (w;;); jej1..n,) Of elementsfrom (LUX1)*
which satisfies the triangle identity 6.1, that is,

forall 7,7,k € [1 . n],wijwjk = Wik
When w;; € X* U (X~1)* we say that w isan n-word over X.

A graphical representation oflaword is given in Figure 7.1:

15 a abab
a b a b
W = a~! 5 bab | = | % % % {
bla v ta"t b la" 7! € 1 2 3

Fig. 7.1. A 3-word and its graphical representation.

The whole theory of projection/juxtaposition/concatenation will be used directly-fwords
(2n-words where needed) without rephrasing, as it can be easily adapted to the untimed structure.
We translate in this introduction all the notations and results for the untimed case:
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The set ofr-words is denotetVD,, (X') while the set of untimed-dominoes ovel’ is denoted
UD,(X). Note that juxtaposition of-words does not necessarily yietdwords.

An n-word language is any subset o'WD,,(X'). Similarly to 2n-signal languages, the set of
2n-word languages can be given a Kleene algebra structure with the concatenation inherited from
2n-words and the resulting star operation.

An n-regword R is then an x n matrix whose entries are (untimed) regular expressions over
Y U X~ The set ofr-regwords is denoteBW,, ().

The semantics of ann-regword consists of untimea-dominoes with the property that;

R;; for eachi,j € [1...n] and is denoted R

|R|| = {w e UD,(X) | w;; € |R;j|foralli,j € [1...n]}

Remind that | denotes the semantics of the classical regular expregsion

Similarly to n-regsignalsy-regwords semantics is not compositional w.r.t. projection but is
compositional w.r.t. juxtaposition.

For eachn-regword R € WD, (¥) we will denote R}, the “positive part” of the(i, j)-
component of? and i;; the “negative part” of théi, j)-component of?2, that is,

R;j = Rf, + R;; with Rf, = R;; N X*, R, = R;; N (X1

In fact, we will utilize this decomposition for botRj; and R;; being regular expressions that
denote respectivelg;; N X* andR;; N (X~1)*.
The set oR2n-word regular expressionsis defined by the following grammar:

E:=R|E+E|E®E|E® (7.1)

whereR is any2n-regword. Their semantics is based upon 2heword language operations as
usually:

1B+ E'| = [|E][UE]
IE©E| =[E]lo|E]
IE=l = I1E]®

All the properties that hold forn-regminoes andi-regsignals will also hold for untimed-
regminoes anad-regwords.

Remark 7.1.2. Proposition 6.4.7 and identity 6.29 hold for untimed regminoes, since any intersec-
tion of untimed regular expressions overU X~! can be transformed into a regular expression
overY U X1,

7.2 n-automata

We define here a class of finite automata that are equivalenteégwords. The idea is to generalize
from finite automata by utilizing: sets of accepting states and requiring that the accepting runs
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pass at least once through each of these sets. The class can be generalized to support also untimed
n-regminoes but we will not present this generalization.

Definition 7.2.1. Ann-automaton over an alphabet X isatuple A = (@, 9, @1, . .. ,Q,) inwhich
@ isthefinite set of states, § C ) x X' x @ isthe transition function, and for each i € [1...n],
Q; C @ isthe set of accepting states for index i.

A run in such an automaton is simply a sequence of transiti@ns:;, ¢j1)icj1..k With
(¢;,a;,q541) € 0 forall i € [1...k]. We also have word-labeled transitions, as in finite automata:
q = ¢ if there exists a sequence of transitions frote ¢ whose concatenation of labels gives
For any runp = (g;, a;, ¢j+1)icq1...,) @nd two indices;, i, € [1...k 4 1], we denotevord(p, iy, i2)
the word or antiword which labels the transitions in betweenithk state and theé,-th state in
the run:

word(p. iy i) = {aillailﬂl. . aiz—ll iff iy <y (7.2)

Qi1 @iy g -0y i >y

By mirroring this definition we also get antiword-labeled transitionsafoe (271)*, ¢ = ¢ if
q £> q.
An accepting runiis a runp = (g5, a;, g;+1) ...k that passes through each accepting set, i.e.,
foreachi e [1...n], {q1,..., @} NQ; #0

Given an accepting rup = (g;,a;,¢;+1)jen..x and a set of indices within this run] =
(li)icp..y With I; € [1... k], such thaly, € Q; foralli € [1...n], ann-wordw € WD, (X) is
said to beaccepted by the runp and the index sequentéf

wi, , g1 .. .a,_ iff I, <1,

foreachi,j € [1...n], ¢, — q, thatis,w;; = Ut - - ;=1 . !

alfiilafiiz .. .alzl iff I, >

We say that the sequence of indidegitnesses the acceptance of theword by the rurp.
A first example is provided in the Figures 7.2 and 7.3:

b
.

b b
o) @) qu ()" ~(e)

1 2 1,2 3

Fig. 7.2. An example of &8-automaton. The accepting sets &e= {¢1,q}, Q> = {4, ¢s} and
Q3 ={gs}

The3-automaton in Figure 7.2 accepts thavord in Figure 7.3a): the associated run is
((QIa a, Q2)a (q2a ba QS)a (q?n a, Q4)a <Q4a ba Q5)> and the WitneSSing SequenCH 2? 5) Note that the
same run, but with the witnessing sequefte, 5) accepts th&-word in Figure 7.3b).
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Fig. 7.3. Two 3-words accepted by the automaton in Figure 7.2. The accepting runs are depicted
below each word. The witnessing sequences can be retrieved by identifying the indices in the run
which correspond to the distinguished positions inside3tia@rds.

Remark 7.2.2. Observe that a run might be longer in both directions than the word actually ac-
cepted by it. For example, ti3eword in Figure 7.3b) might be accepted by a shorter run, namely
((q2,b,3), (g3, @, 1), (g, b, g5)) in combination with the witnessing sequeriéel, 4).

Hence in any:-automaton we may consider only runs that start and end in some accepting set,
in pair with witnessing sequences that contain the indard the final index in the run.

Remark 7.2.3. Observe also that the witnessing sequence does not necessarily epiueemo-
ments when the accepting run passes through an accepting set. In Figure 7.3, the two runs pass
twice through@),, but only once this pass is really needed and used.

There exists an alternative way of acceptingvords: we may define an accepting run as a
sequence of tuples= ((X;,q;, X)), ai, (Xit1, Giv1, X/41)) } with the following properties:
® (i ai,giv1) € 0.
e Foreachi e [1...k—1], X/ = X;11.
e Foreachi € [1...k],if j € X]\ X, theng, € Q,.
e X; =0andX;,; =[1...n].

€1k

The components(; record the “history” of passing through accepting sets up to-thestate
while the X! components also take into account thi state. The translation from the “witness-
ing” presentation to the “history” presentation is straightforward: given an accepting aunal
a witnessing sequendg );cj1..,;, We construct the “history” components &5 = {[; | j < i}
and X! = {l; | j < i}. For the reverse, given an accepting run in the “history” presentation
p=((X;, a0, X)), ai, (Xit1, ais1, Xi+1>)ie[1...k] we associate the witnessing sequefige-(i__,j in
whichl; = jiff j € X/ \ X,.

Definition 7.2.4. The n-word language accepted by A, denoted L(.A), is the set of n-words ac-
cepted by some accepting run in A, together with some witnessing set of indices.

The class of regular n-languages consists of the family of n-word languages which can be
accepted by some n-automaton.

7.2.1 The emptiness problem for n-automata

Proposition 7.2.5. The problem of checking whether the language of an n-automaton is nonempty
is an NP-complete problem.
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Proof. Let us first show that the non-emptiness problem is NP-easy. To this end, consider the
following “nondeterministic algorithm” (in the sense of [HU92]) that associates to eachystatg

an index setX C [1...n] with the property that there exists a run that starts anywhere, ends in
and passes through each of the accepting sets whose indicesXare in

- pickq € Q;
-putX :={ie[l...n] | g€ Q:};
-putS :=0-putT :={(¢, X)};
-while X #[1...nJand S # T do
-putsS =T,
- pick (¢, X) € T,
- picka € X;
- pickr € Q;
-if (¢,a,7) ¢ 0 then stop;
-compute the newX := X U{i € [1...n] |7 € Q;};
- compute the neW := (T'\ ({r} x P([1...n]))) U{(r,X)};
endwhi | e;
if X=[1...n/thenwrite('  nonenpty’ )
else wite(' enpty’’).

This nondeterministic algorithm runs in polynomial time and linear space in the size of the
givenn-automaton. It is clear that, if there exists an accepting run, then one of the choices in this
algorithm will find it.

For the NP-hardness part, we show that the Hamiltonian Path Problem (HP) can be polynomi-
ally reduced to checking emptiness ofraaautomaton. Remind that ttéamiltonian Path Problem
[GJ79] is the problem whether a given directed graph contains a path which visits each node ex-
actly once.

The polynomial reduction of HP to the emptiness problemrf@utomata is the following:
given a graphG = (V, E) with V' = {v,... ,u}, we construct the following:-automaton:
A=V x[1...k],0,Q1,...,Q) where

d={(v,j) = W,j+1) | (v,v)eEjel...k—1]}
Qi ={(vi,j) | jel.. .k}

We then have that each accepting run throdgtorresponds to a Hamiltonian pathGhand vice-

versa. This follows since an accepting run must Hamedes as it visits each accepting set at least
once and each visit increases the “level” of the node by one, and also the number of sets visited is
less or equal than the number of nodes in the run. O

We present here an algorithm that is an adaptation of the Floyd-Warshall-Kleene algorithm,
hence containin@)(card(Q)S) iterations, but each iteration might take exponential time since it
involves operations on possibly exponentially manlgsets of [1...n]. It associates to each pair
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(g,r) of states in the givem-automaton, a set of subse®, of [1...n]. The set=,, has the
property that, for eactX € =, there exists a run from to r that passes through each for
eachi € X. Once the matrib is constructed, the answer is “YES” if and only if there exists one
componentq,r) with [1...n] € Z,.

For the computation of, we suppose an ordering Qfis given, say = {¢, ... ,q,} Withp €
N. A special operation o?(P([1...n])), denoteds, is used. This operation works as follows:
givenX,y C P([1...n]),

XRY={Z1UZ | Z1€X,Z, €Y}
Remark 7.2.6. ® is associative.

The algorithm works by constructing a sequence of matti&g$.c(..,; with

_ {X} iffi=jandforall € X,q € Q,
(So)s = {{(0} otherwise
(Zk41)i5 = (Zk)ik+1 ® (Z)kt14+1 @ (Sk)kt1
Proposition 7.2.7. For eachi,j € [1...nJand k € [0...p], X € (Zk);; iff there exists a run that

startsin ¢;, endsin ¢;, whose intermediary states are labeled with indices less than or equal to k,
and which passes through all accepting sets ), for each [ € X.

Proof. By induction onk.

For £ = 0 the proof is trivial. Suppose we have proved the resultifoiThen, for each
i,j € [1...n] and X € (Zy41);;, by associativity we have thaX = Z; U Z, U Z; with
Z1 € (Zk)ik+1, Z2 € (Ek)k+1,6+1 aNdZ3 € (Z%)r+1,5- By induction hypothesis we get the follow-
ing three runs:

e Arun py = (7}, 4}, Thiq ) hel...my) With

1. 7"} = i, rrln1+1 = Qk+1,

2.1t €{q,... ,qx} forallh € [2...my];

3. For eachl € Z; there existd: € [1...m,] such that}, € Q,.
e Arunp, = (r7, a3, 7“,21+1)h€[1mm2] with

1.7 = Q1 TZ@QH = k41,

2.12e{q,... ,qx}forallh € [2...my).

3. For eachl € Z, there exists € [1...m;] such that? € Q.
e Arunp; = (r3, a3, 7“2+1)he[1...m3] with

1. 7”% = Qk+1, T;o’nsﬂ = g;,

2.3 e{q,... ,qu}forallh € [2...mg);

3. For eachi € Z; there existsh € [1...mg] such that? € Q.

But then, by concatenating these three runs we obtain the run

_ 1 1 1 2 2 2 3 3 .3
pP= <(rh7 ay,, rh+1)h€[1...m1]7 (rha ay,, rh+1)h€[1...m2]7 (rhv ayp,, rh+1)h€[1...m3])

which verifies the claimed property. The inverse implication follows similarly. O
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Corollary 7.2.8. L(A) # D iff thereexisti,j € [1...p]suchthat [1...n] € (5,);;.

The advantage of this algorithm is that the s&tscan be represented as BDDs, since they give
an “and-or” information concerning the runs that conngb g;.

The search for a component that contdins . »| in the matrix= might prove a lengthy process,
even if we restrict ourselves to only the unlgfi_, Q;. But, with a simple trick, we may only need
to check a single component: we append to the set of states special states, denotgdand
¢+« - IS used for loopindgefore any run and;... for loopingafter any run. We will call the state
g as thesource state and the state,., as thesink state.

Formally, we transfornd into then-automatond = (Q, 9, Q1, . .. ,Q,) where:

Q = (Q U {Q*7Q**})
b=0U {q* B s e = Qx> Qo § = Qi | € Qii €[1... 0] a € E}

Definition 7.2.9. The automaton A is called the completion of A.

As a consequence, once we have constructed the niafdr A, we only need to check whether
the component corresponding(ig, ¢..) containg[1 . .. n].

7.2.2 e-transitionsin n-automata

The class of-automata was defined without allowiagransitions. However in the sequel we will
sometimes need them in order to make simpler constructionsaotomata.

An n-automaton with e-transitionsis atupled = (@, 6, @, ... ,@,) inwhichd C Q x (XU
{e}) x Q. The notions of run, accepting run andvord accepted by an accepting run are the same
as for “ordinary’n-automata.

The elimination of:-transitions proceeds, like for finite automata, by computing the reflexive-
transitive closure of the relatiof on (). There is however a problem specific ieautomata,
the recomputation of accepting sets. Remind that, in the process of remmtriaugsitions from
finite automata, a state is declared as “accepting” (i.e. final) iff it reaches, after finitely 4nany
transitions, a final state. This cannot be the casefautomata, as we may see from the example
in Figure 7.4.

The 4-automaton in Figure 7.4b) is obtained by removing all the-transitions from thel-
automaton in Figure 7.4a) with the usual technique, that is, by putting™ r in the new au-
tomaton iff there exist stateg, v such thaiy(=)*¢’ = r'(=)*r. We have denoted here>)* the
reflexive and transitive closure of the relatiéron Q.

But we need to redefine also the accepting states, and besides the@heicg;, } andQ, =
{q4} there is no way for redefining the accepting sets that renders the restifiutgmaton atb)
equivalent to the one dt:). The reason for this deadlock is that, if we chogséo be in both
@2 and@; then the resulting-automaton would accept theword represented in Figure 7(b),
which is not accepted by theautomaton in Figure 7.4:). The same situation occurs if we choose
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Fig. 7.4. The “brute force” removal of-transitions from the-automaton ata) is drawn at(b). In
this 4-automaton there is no way to establish the accepting sets to whacitg; must belong.

a a a b
1 2,3 4 1 2,3 4
q1 —>q2—>(q4

(a) (b)

Fig. 7.5. Two 4-words for exemplifying the peculiarities of removiagransitions imm-automata.

g3 to be in bothQ, and (@3, whereas if we leave the accepting sets unchanged then the resulting
automaton would not accept thevord depicted in Figure 7.8).
The solution is to replicate each state that takes part into a sequesdensitions, according
to the number of distinct runs withtransitions that pass through it. For aautomaton in Figure
7.4 the solution is thé-automaton in Figure 7.6.

a ()
4393
2.3

1‘_/,4

Fig. 7.6. A 4-automaton WIthOUzt-tl’anSItIOI’]S equivalent to theautomaton in Figure 7.4.

In general, suppose we are givenraautomaton withe-transitionsA = (Q, 0, Qy, ... , Q).
The states of the-automaton without-transitions are pair§;, ¢, X ) consisting of two states in
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@ and an index seX C [1...n]. The idea is to encode in each such state-amm that starts i,
ends ing’ and passes through all the accepting sets whose indices &re in
Formally, the following automaton withouattransitions can be showed equivaleni4o

=(Q,0,Q1,...,Q,) where
Q = {(q,q’,X) | 3p = (¢i)iep..iy SUch thaty, = ¢, gx = ¢’ andg; S foralli e [1...k —1]
and for allj € X, there exists somee [1...n] with ¢; € Q;}
0 ={(q q’,X) S Y) | ¢ S}
Q,={(¢.4,X)|jeX}, forallj € [1...n]

7.2.3 Basic operations with n-automata
Proposition 7.2.10. The class of regular n-languages is closed under union and intersection.

Proof. Both results are straightforward generalizations of the closure results for regular languages.
We will provide only the proof for intersection:

Given twon-automatad = (Q,6,Q1, ... ,Q,) andA’ = (Q'¥,Q}, ... ,Q’), then-automaton
that acceptd.(A) N L(A)isAq = (Q X @, 00, Q1 X Q... ,Qpn X Q;) where

on={(q,q") = (r,v") | ¢ ¢ €dandr 51" €4’} 0

Remark 7.2.11. Observe that the resulting automaton is a completion since the pain gtate
plays the éle of ¢. and the pair statéy.., ¢..) works asy...

Proposition 7.2.12. Given an n-automaton A = (Q,0,Q1,... ,Q,) andasubset J C [1...n]
with card(J) = p, then the p-word language L(.A)|, can be recognized by some p-automaton.

Proof. The first step is to take the completioh of .A. Then we transform this automaton by
remembering in each state the set of indices ftbwhich “can be visited” through a run that starts
in q,.

Formally, suppose that = {iy,... ,i,} is the presentation of in increasing order, that is,
i, = 1;*(k). We then construct the-automaton3 = (Q x P(=J),0,Q}, ... , @, ,) where—J
denotes the complement dfand

d={(¢,X) & (rY)|¢Sres XCyY C—Jandre Q;foralljeY\ X}
Q) = Q:, X P(=J), or, in other wordsg);, = Qp-1(k) % P(—J)

This automaton is not yet the desired one since there is no guarantee that in an accepting run
in B, the index component of each state records exactly the set of indicesyowhich have
been visited. But we will take advantage of the existence of the completion gtated;... in the
following way: we restrict the set of states to those thatreaehable from (¢., ) andcoreachable
from (¢.., J). DenoteQ the resulting set of states afithe restrictegh-automaton. We claim that,
with this restriction, only-words inZ(.A)|, are accepted.
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To this end, observe that an accepting rumhimust necessarily be extensible to an accepting
run that starts i, x () and ends im... x —J. But the construction of the transition function assures
then that, for alli € .J this run must pass through a state belongingtox P(—.J). Since it
is an accepting run, it also passes through eacfor all i € J. Therefore, if we forget the set
component of each state we get an accepting ruf. iHence thep-word associated with the run
in B is the J-projection of then-word associated with the run iA. The reverse proof follows
similarly. O

Proposition 7.2.13. Given an m-automaton A = (Q,6,Q1,...,Q,), an n-automaton B =
(Q',0,Q1,...,Q,) and a number p < min(m,n), the p-juxtaposition of L(.A) with L(B) is
accepted by some (m + n — p)-automaton.

Proof. The essential tool used here is the relationship between juxtaposition, extension and projec-

tion onn-word languages given by Identity 6.23. Hence we build(the-n —p)-automaton which

acceptsL(.A)0,L(B) as an intersection of an extension.4fwith an extension oB. The idea is

to use the completed automadaresp.5, transformed intdm + n — p)-automata by adding new

accepting components. The new components will simply contain all the states in the automata.
Formally, we transformA into the (m + n — p)-automatond = (Q., 6., Q1,--- , Qmin—p)

where:

Q« = (Q U {qx; Gur })
Ox :6U{Q* iﬂ]*a‘]* i>Q7Q** ngaq i>qw g€ Qi€ [1m]}
Qr = Q. foreachk € [m+1...m+n—p).

Similarly we extend3 into B = (Q.,, 8., S1, ... , Smin_p) Where:

Q. = (Q"U{q, ¢s})
8 =0U {q* B G @ 2 Qx5 G @ — G | § € Qiy0 € [1m]}

g Q. foreachk € [1...m — p)
k k-mip foreachke[m—p+1...m+n—pl.

Observe that

L(A) = {w € WD,sn—p(Z) | w]y . € L(A)}

L(B) = {w € WDy (2) | w], € L(B)}.

m—p+1..m+n—p]

Then identity 6.23 implies that

L(A)O,L(B) = L(A) N L(B). 0
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7.2.4 Relationship with n-regwords

Once at this point, we may ask what is the relationship betweergwords andi-automata. The
following theorem gives this relationship:

Theorem 7.2.14. The class of n-word languages accepted by n-automata equals the class of n-
word languages which are the semantics of a sum of n-regwords.

Proof. The left-to-right inclusion works by the aid of the classical Kleene theorem as follows:
first, we decompose eachautomaton into several smaller ones, in which each accepting set is a
singleton. Hence, the language of th@utomatond = (Q, 6, @, ... ,Q,) equals the union of
the languages of all the automafa= (Q,d,{a1},... ,{g.}) withg; € Q,; foralli € [1...n]. It
there remains to prove the inclusion for such automata.

So consider that for the given automatond(Q;) = 1, i.e.,Q; = {¢;} foralli € [1...n].
For eachi, j € [1...n], denote4,; the finite automaton whose transition functiord iand whose
initial, resp. final states ag, resp.g;, thatis, A;; = (Q, X, 6, ¢;, {¢;}). This automaton constrains
all the n-words whose(7, j)-component igositive (i.e. in X*). The constraint for the-words
whose(i, j)-component iswegative (i.e. in (¥')*) is provided by thenverted language of4;;,
L(Az) P C ()

Let us denote then b¥;; the regular expression ovér equivalent (by the Kleene theorem) to
A;;. Construct thex-regword R whose components are

Ry = By + E;! (7.3)

We have denoted here liy~! the expression obtained frofm by replacing each letter i with
its inverse.

We claim thatL(.A) = || R||. The inclusionC is assured by construction. For the reverse we will
essentially use the triangular identity characterizingords:

Considerw € | R|| and let< be an ordering offil ... n| which is compatible witho, that is, if
i < j thenw;; € X*. We construct a run it for w, run which passes through the accepting states
in the order indicated by. The run is constructed inductively on the ordeas follows: denote
i, thek-th index in the order, fork € [1...n|.

Fork = 2 we havew;, ;, € |E;,:,| = L(A,;, ;,) and hence we get a run j# that starts in;, and
ends ing;, .

Suppose we have built a run, uptpthat passes through, . .. , ¢;, in this order. To extend
this run we consider first a rup associated with;, ;, ., in A;, ;... This run exists since, by
hypothesisw;,;,,, € |Ei.,.,| = L(Ai,,,). Moreover this run starts ip; and ends in;, ., .
Then we just append this run to the one we have built so far.

The fact that this concatenation is consistent with the other constraints imposed on the word
follows by the triangle identity: for each< k + 1 the fraction of the run that is associated with
w;, i, concatenated to the run associated with;, ., in A;, ;.. is an accepting run associated
with w;, ;. in Ay ;... Observe also that the compatibility of the orderiagassures that the
concatenatiomw;, ;, - w;, ;,,, gives a word and not a mixture of letters and antiletters.

U,k
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The embedding of-regwords into:-automata works by an argument similar to the intersection
argument. Hence, given anregwordR € WD, (X), for each pai(i, j) € ([1...n]x[L...n]) we
consider the finite automaton which is associated with the regular expre%?ibyl the classical
Kleene theorem, be it

Af = (QF(1,5), 2, 6% (i, 5), Qi (i, ), QF (i, ))-
Consider also the finite automaton which is associated Rjthbe it
A5 =(Q(6,), 27,67 (1,5), Qg (i, 4), Q7 (i, 5))-

Observe thaf.(A;;) C (271"
Build then the automatos,;; as the union ofAjj and theinverse of A The inverse ofd,. is

(Q(i.9), (6-(1,4)) . Q5 (i.5), Qg (i. 5)) where
(6, 0) " ={qg Br|r g €8 (i)}

We denoted;; = (Q(i, 5),6(¢, j), Qo(i, 7), Q¢ (3, 5))-
We transform4,; into ann-automaton by the same technique used in the proof of Proposition
7.2.13. That is, we do the following steps:

e Append two new stateg. andq.. to Q(i,j) and putg, = ¢.,q¢. — q for eachq € Qu(i, )
anda € X, andg.. = qu., ¢ — q.. for eachg € Q;(i,5) anda € . We denote. (i, j) =
Q U {qs, Gur }-

e Foreacht € [1...n]\ {i,j} we putQ, = Q.(i,7) and@Q; = Qo(4,7),Q; = Qs(i, ).

Denote the resulting automaton.4s.

Build then the intersection of all;; for all 4,7 € [1...n| by a straightforward generalization
of the intersection construction from Proposition 7.2.10. An easy check shows that the resulting
n-automaton accepts indeé®||. O

7.3 Non-€elasticity

In our search of a decidable clas2efword regular expressions we may recall that, when we have
constructed thén-signal semantics to timed automata in 6.5.2, we have produced only signals with
reset times in which for eache [1...n], eithert, = ¢;, or, foreachj € [1...n], t; > ¢;. Or, in2n-
signal format, for each € [1...n], eitherw;, ,,; = ¢, or, for eachy € [1...n], w; ,,.4; € Sig(X).

In the sequel we will focus on the following weaker property (written herexfarords):

(N) For each, j € [1...n], one of the following requirements holds
(N1) w;pqi = &,
(N2) w;pyj = €;
(N3) Wintj € P andwmﬂ- e X*.
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Equivalently, this property says that for each € [1...n], if w;,1; # ¢ andw;,,1; # ¢ then
Wi ntj € X* andw;,,4; € 2. We prefer the above formulation since we will make some reference
to 2n-words that have only proper{iNg).

Observe that, for PCP dominoes, this property forbids the situation in which one of the words
ends before the other begins. If we recall the proof of the undecidability of PCP, we may observe
that the simulation of a Turing Machine by a PCP instance requires copying the contents of certain
cells, and this procedure needs “elastic” dominoes in which the relative distance between the two
words composing a domino can be arbitrarily large.

We will show that this property assures the star closuedutomata. As a consequence, this
property assures the decidability of the emptiness problerfavord regular expressions.

Definition 7.3.1. A 2n-word w is called non-elastic if the property (N) holds. If for each 7,7 €
[1...n] only the property (N3) holds then we say that w is strictly non-elastic.

For each 2n-word regular expression E, the non-elastic semantics of F, denoted |E|, consists
of the non-elastic 2n-wordsin its semantics.

For each 2n-automaton A, the non-elastic language of .4 denoted L, (A), consists of the non-
elastic 2n-wordsin its language.

The set of indices € [1...n]| which satisfy propertyN3) for a 2n-word w is called the set of
strictly non-elastic indices forw. Examples of elastic, non-elastic and strictly non-elastioords
are given in Figure 7.7.

e b e e b e b e
1 3 2 4 L3 2 4 1 2 3 4
(a) (b) (c)

Fig. 7.7. (a) A elastic4-word. (b) A non-elastici-word. (¢) A strictly non-elastict-word.

For a more general scheme of the positioning of distinguished points in non-elastic or strictly
non-elastic2n-words, see Figure 7.8. This figure also presents intuitively the “interface” part of
and the “contribution” part of the non-elastie-word.

Note that in a strictly non-elastitn-word the interface part is empty.

Remark 7.3.2. Observe that, for any non-elasfie-wordw, w; ,+; € X*. Moreover, ifw is strictly
non-elastic an; ,, . ; = w; ,+; = € thenw; ,; = Wi, = €.

Let us see now how non-elasticity worksan-automata: consider alm-automaton4, an ac-
cepting runp = (¢, @i, Git1)icpr..m) IN A, @a2n-wordw € WD,,(X) and a sequence of indices
I = (I;)icp..2n) Witnessing the acceptance ofby p. If w is non-elastic then the witnessing se-
guence bears the following property:

Foreach,j € [1...n],
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“contribution” part

left “interface” part right “interfacey

w w
distinguished poiwlistinguished points here, ift, ; occurs, here, ift,, ; occt
infl...n] in[n+1...2n] thent; occurs thent; occus

atthe same point | .o q11.s @t the sameai

precede alt, ;s

(d) ()
Fig. 7.8. Positioning of distinguished points (i) a strictly non-elasti@n-word and(b) in a non-
elasticn-word.

105 <l

2. If l; 7é ln+i andl]' 7& anrj thenli < ln+j andlj < anri-
We will call the pair(p,l) with the above propertiesr@on-elastic pair. It is clear that, in an@n-
automata, non-elastic pairs are associated only to non-etastiords accepted by the automaton.

The following property shows the way of constructing the non-elastic semanticnfor
regwords:

Proposition 7.3.3. Sart with some 2n-regword R. Denote A the set of subsets X C [1...n]|which
satisfy the property that ¢ € R, ,,.; for all i € X. For each X € X, denote R(X) the following
2n-regword:

R fori,je(l...njori,jen+1...2n]

€ forj=n+iieXori=n+jj57€X

R(X)ij=< Ry forj=n+kkecX,ic[l...njori=n+kkecX,jecl...n] (7.4)
R forie-X,j=n+kke-X

R forje-X,i=n+kke-X

\ "~

Then the non-elastic semantics of R equals the semantics of the 2n-word regular expression

Y R(X).
XeX
Proof. The property follows by double inclusion. One direction is straightforward, since clearly
the semantics of eacR(.X) is non-elastic and included in the semanticgof

The reverse follows again easily since each non-elastiword w in the semantics oR also
belongs to the semantics &f( X ), where X is the complement of the set of strictly non-elastic
indices inw. O

Unfortunately non-elasticity is not preserved by concatenation, as the example in the Figure 7.9
shows.
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1 3 24 1,3 2 4 1 3 2 4

Fig. 7.9. The concatenation of two non-elastievords does not necessarily yield a non-elastic
4-word.

As a consequence, the undecidability theorem 6.6.3 can be proved even for nor4elastis,
since we may decompose theegwords corresponding to each domino in a PCP instance into a
concatenation of non-elastiewords.

We might be tempted to restrict to a “more partial” concatenation, let’s callnibn-elastic
concatenation and denote it>,, that would produce only non-elastia-words. But observe that
this non-elastic concatenation is nonassociative, as it is exemplified in Figure 7.10.

La . a | a | La . a | a | a a a
( I T T 1 ®’I" I T T 1 ) ®7‘ T T 1
1,3 2 4 13 2,4 1 2,4 3

undefined
:“:“:G:QT(:“:“:“:QT:a:a:a:)
1,3 2 4 1 3 2,4 1 2,4 3
= defined:

L P S L
1,3 2 4 1 2,4 3

L a 1l a 1l a 1l a ]

1 2 4 3

Fig. 7.10. An example of nonassociativity of the concatenatipnthe first parenthesis layout leads
to undefined, since the concatenation of the #awords in the parenthesis leads to a non-elastic
4-word. Of contrary, the second parenthesis layout gives a non-elastcd.

This would make doubtful the possibility to construct the associabeeelastic star since the
powersL’ of a2n-word languagd. C W5, (X) might not be uniquely defined.

Hence, non-elasticity is not a good algebraic property and one might be tempted to search for
other properties. But our aim in this chapter is not to find algebraic structures that are “good”
w.r.t. decidability. We only want to isolate some property that assures decidability and then, in a
subsequent chapter, to show that particular structures, associated to special classesrofs,
bear these properties and hence have decidable emptiness problems.
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We will show in the next section that non-elasticity, when carefully handled, leads indeed to
decidability. Careful handling means the following two conditions:

1. If we intend to concatenate two non-elagticword languages, we need to check first that only
non-elastin-words are produced.

2. If we intend to build the star of a non-elastie-word language, we need to check first that, by
concatenating the given non-elasticword language with itself an arbitrary number of times,
we get only non-elasti2n-words.

Observe that, in a certain sense, the second condition says thainHetastic star is built in a
“canonical” manner, since it assures that all the non-elastic concatenations on which it relies are
associative.

7.4 The non-elastic star closuretheorem

We start this section by noting that, as a combination of the juxtaposition and the projection con-
structions, the family ofn-word languages accepted By-automata is closed under concatena-
tion. It is clear that if require the giveln-automata to accept only non-elastic-words such that

the concatenation of the two languages produces only non-eastiords, we still get the same
construction. We provide here a direct concatenation construction as we will get this way some
intuition for the main theorem of this section, the star closure theorem.

Take two2n-automatad = (Q, 9, @1, ... ,Q2,) andB = (Q', 0", Q' ... ,Q5,,), both of which
accept only non-elastign-words. Suppose also thétf.A) ©® L(B) is composed of non-elastic
2n-words. Our aim is to build an-automaton for this set, and we proceed as follows:

If both automata accepted ordiyictly non-elastic 2n-words then the idea would be the follow-
ing: we start4 on the “NW quarter” of the givean-word (that is, orw|[1___n}) and check whether
on this section we pass through all the accepting stagfes . , @,,. Then continue until we reach
an accepting state betweéh .1, ... ,Q2,. (the assumption that is non-elastic implies that the
first such moment succeeds all the moments of passing thiQugh. , @,,). At this moment we
start3 and synchronously fire transitions from both automata.

From now on,4 must pass through some accepting @gt; (: € [1...n]) synchronously
with a passage df through the accepting sé€t. We record all indices that have observed such
a “synchronous passage” into some &etOnce this set equalg ... n|, we are sure we have
identified in our giver2n-word a section which is accepted By and we may now proceed with
finalizing the run ins.

Formally, the2n-automaton for.(.A) ® L(B) would be
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C— (Qu@’u (Q@xQ xP(1...0]), 0", Qu, .. ,Qn,Q;LH,...an) with
0" =06UdU{(¢,d,[1..n]) =q |¢eQ,d €Q'}U
{¢=(aq.¢,1)| ¢ € Quiid €Qiforallie I C[1...n]}U
{(q,q’,]) S, D) | g Sqdedr Sred, ICJC...n]
andforalli € J\ I,r € Q,4; andr’ € Q}}

A andB parse synchronously here

A parses alone here B parses alone here
w
part with distinguished part with distinguished
time pointsin[l1...n] time points infn + 1...2n]

part whered and5 need to
find the concatenation points

Fig. 7.11. Graphical exemplification of the concatenation construction.

Observe that an accepting run assures, by construction, that all th@,sets ()’ are visited
“in between” the last moment when an accepting@getwith j € [1...n] is visited and the first
moment when an accepting €4, , with & € [1...n] is visited. This property is consistent with
the hypothesis that aln-words inL(.A) and L(B) are strictly non-elastic.

The conditiongN1) and (N2) pose specific problems since we might need to “start” the au-
tomatonB “before” the automatond has visited all the accepting seps with j € [1...n]. But
the idea is the same, namely to “synchronize” the two automata as follows:

Each timeA passes through the accepting &gt ;, B must pass through the accepting set
@} and viceversa.

Accepting states would then be simply tupless, X) in whichq is a state in4, ¢’ is a state in
B and X is the set recording synchronous passages.

At this point, one problem might arise, a problem which we have observed also on the projection
construction: to actually be sure that tNecomponent has recorded all the synchronous passages,
we need to start with an empfy and finish with anX = [1...n]. We do this by working with
completed automata, and then reducing the state space of the resitiagtomaton to the states
reachable fromq., ¢.,®) (which acts as a source state) and coreachable frony.,,[1...n])
(which acts as a sink state).

Formally, we build first4 and, the completions ofd and3. We denotey, andg. the source
states of each automaton, respectiwglyandq., their sink states. We then define the following
2n-automaton:
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C=(QxQ xP(1...n]),0,S,...S) with
0 = {(q,q’,X) i>(7“,7”,Y)|qim“eg,q’iﬂ“'ES’,XQYg 1...n],
and foralli € Y\ X,r € Q,4; andr’ € Q'}
S;i=QixQ xP([1...n])foralli €[1...n]
Spti =Q X Qr; x P([1...n])foralli e [1...n]

Finally drop all the states af that are not reachable frofy., ¢, #) or not coreachable from
(Gsxs 4byy [1 ... m]), that is, consider the automaton

D=(Q.0N(QxXxQ),S$NQ,...,S%,NQ) where
Q={7€QxQ xP([1...n]) | Jw,w" € X* such that

(G 0 0) % TS (Guur @y [1-..m])}
Proposition 7.4.1. L(D) = L(A) ® L(B).

Proof. For the right-to-left inclusion, take € L(.A) andw’ € L(B) such thatw ® w' is defined.
Both 2n-words come with an accepting run, be they (¢, a;, ¢i+1)icp..x—1) for w, respectively
P = (g, a}, @1 1) jepn...w ) for w', and with two witnessing sets of indicés= (i;)e(1...2n), respec-
tively § = (ji)iep..2n), SUCh that

¢, € @ andwy,, = word(p, i;,i,,) forall l,m € [1...2n]
¢, € Q; andwy,, = word(p', ji, jm) forall l,m € [1...2n]

Observe first that the assumption that «' is defined implies that for eadhm € [1...n],
Wiynm+n = w,. Hence the piece of run from that lies in betweeny;,, andg;, . has
the same length as the piece of run frefthat lies in betweeny;, andg; . More formally,
word(p, iy11, intm) = word(p', ji, 7m)- This has the following important consequence:

foreachl,m € [1...n], imin —ti4n = Jm — Ji (7.5)

Our first aim is then to extend the two runs such that they have equal length and the moment
when the first run passes through ,; be the same as the moment when the second run passes
through();. This extension will be accomplished by adding loops.iny., ¢.. and/org.,,.

We may assume, according to Remark 7.2.2, that both runs start and end in some accepting set
and both witnessing sequences contain the first and the last index in the respective run, that is,

o 1 =iy, k=ipn, forsomely,my € [l...2n],
o 1 =jy,k = jm, for somely, mg € [1...2n].

Moreover, by the non-elastic assumption we may considerighigte [1...n] andmg, m; €
[n+1...2n).

On the other hand, by Identity 7.5 we have that— iy ., = jm, n — Jju - It follows thatiy, .,
is the earliest moment at whighpasses through some accepting@et; for someh € [1...n],
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andj,.,—n is the latest moment at whigt passes through some accepting@gtfor someh’ €
[1...n]. Thatis, if we denote

v=min{y |l € [n+1...2n]} g=min{j [l € [1...n]}
t=max{sy |l €[n+1...2n|} J=max{j |l €[l...n|}
then
T= k= i J=1=jy
1= Z'l6+n j:jmofn
Hence, due to Identity 7.5,
1—1=7—]. (7.6)

On the other hand, from the equalibyrd(p, i,11, intm) = word(p', ji, jm) We msut also have
that, for eachh € [2,7],

h = Gy (7.7)

We then exteng by addingk’ — 7 + 1 replicas ofq.. at the end and one replica gf at the
beginning. Similarly, we extengd by adding: replicas ofg, at the beginning and one replicagf
at the end. Observe that the two runs would have the same length since

k4+kE —J4+2=1+FK -J+)+1=1+kK -i4+14+1=kK+1+1

More formally, denotingc = ¥ + 1 + 1, we consider the rung = (7 biy Tis1)iepn. 51y @nd

—/ /

p = (r biariJrl)ie[l...Efl] with

s fori=1 q. forie[1...4]
ri=14q-1 forie[2.. . k+1] ri=q4q_, foricel+1...k—1]
G fOrick+2...k ¢, fori=%k
"o \al, ffieltl. o+ k]

The property 7.7 assures that #iys can be uniquely chosen foralk [+ 1...%k + 1].

Observe that these two extended runs bear the desired property: the moment when the first run
passes throug®, ., is the same as the moment when the second run passes tl@ppuaghmore
formally,

foranyl € [1...n],r = g, iff 7 =g, (7.8)
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We finally construct the run x = ((r;, 7}, 1;), bi, (riv1, 7y, Liv1)) inwhichI; = 0

and

i€[l..k—1]

Ii+1 :]1U{ZE [17’L]|7"l:q”+n}

Property 7.8 assures thats indeed a run i, because it implies the following fact: if,.; # I;
then for alll € ;1 \ I;, r; € @,y andr, € Q). Observe also that, for eache [1.. k], I
records all the indices € [1...n] with the property that the run has passed thro@gh, x Q.
Moreover, since the run contains only states that are accessible(§rogh () and coaccessible
from (q.«, ¢..,[1...n]), itis actually a run irD.

We consider then the family of indicgs= (p;)ic1..2,,), defined as follows:

ii+1 forlell...n
pr=y .
Ji+r forle[n+1...2n]

It remains to prove that the pdix,p) is associated withv; © wy, that is, thap witnesses the
acceptance ob © v’ by x:

1. Forl,m € [1...n], (W ® W )im = Wi, Tp, = Tiy+1 = ¢, andr,  =r; 1 = ¢, . Since we
have thaty;, — ¢;,, we get then

I I ) (wOW)im (’I“ 7“1 I )

(Tpnrplv » Pms Tpp s Lpm

/

2. Forlym € [n+1...2n), (WO W )im = Wy, Tp, = 7y, = q;, @Nd7r,,, =1, . =q; .Since

we have that;, i, ¢, we get then

(wOW)im
(715 T;lw 1) — (Tpon s T;Iama I,.)
3. Forle[l...n]andm € [n+1...2n] we have to decompoge ® '), into a concatenation
of two words or two antiwords. We then have the following subcases:
e Forw,, , .. =¢wehave(w ® w');, = w,, and hence fall in the first case above.

e Forw 1, = ¢ we have(w ® '), = wy,,, and hence fall in the second case above.
o If wyy, #candw, =# ¢ then, by the non-elasticity assumption,

m—n,m
/ / *
(’UJ ©Ow )lm = Wy l4n - Wy, € 2

On the other hand, by Identity 7.5 we have, — iy ., = ji — ji;, thatisip, +1 = ji + 2.
Therefore, similarly to the above cases,

i
Wi, l+n ’ _ / Wi ’
(Pivgt s i1 Tirgnt1) = Pt s Tivkd) = (T s i)

/
(rinrla ril+1’ [iz+1)

) ('w@w’)lm (

which assures that,,, r,, , I, Tpum> Ty s Ipm ) IN this case too.
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For the reverse inclusion, take some acceptingren((r;, 74, 1), bi, (i1, 71, [i+1))ie[1...k—1]
in D with (r,7}, 1) = (¢« ¢.,0) and (rg, v}, Ix) = (Gux, €.y, [1 - .. n]) @and fix some family of
indicesl = (li)iep..2n) SUCh that(r;,,r;, I;;) € S; forall 7 € [1...2n]. Suppose also that the
associated word is, that is,

Word(p, l;, l]) = W;; for all 1,] € []_ R 27’L]

Let us first observe thd}, = [1...n] implies that for each € [1...n] there exists some index
p; € [1...k]suchthay € I, \ I,,_:. By construction, this implies tha} € Q;., andr;j € Q.

But then the sequengg = (7, b;, 7i11)icp1..x—1] IS @n accepting run id: consider the2n-
word z accepted by this run and the sequence of indi€esc1..., (P))jen..n)), that is, bearing
the following properties:

word (pla Tl rlj) =Zij word (pl’ Tp;s rpj) =Zn+in+j

word (p17 Tl rpj) =Zin+j WOI‘d(pl, Tpi>s rlj) =Zn+ij

As a consequence}, = =wl|, .

Similarly, the sequencg, = (7}, b;, 7}, )icq1..x-1] IS @n accepting run il and we may con-
struct the2n-word 2’ accepted by this run and the sequence of indiG&3sc1...n), (i)icp+1...2n])
that is

PN / PN

word(pa, 7}, rlj) =2 word(ps, This rpj) = it
PN / rN

word(p1, rli,rpj) =Zint; WOfd(Ph?”pia?”lj) =Zntij

with the corollary that|, | , =w'| ., ...
But the above relations also imply that, foralj € [1...n], z,1intj = Ziis hencez|[n+1___2n} =
, . . " , B
zl|[1mn]. If we corroborate this with the observations th"?{..n} = w|[1...n] and z |[n+1...2n] =
W',y g, WE get that
w=z202€L(A) e LB) 0

Remark 7.4.2. 1. Reachability plays an essenti@lerin the proof of the reverse inclusion. Without
the hypothesis that the run & starts in(q., ¢., #) and ends if{¢.., ¢.,, [1 . .. n]) we would not
be able to split this run into accepting runs4fnds. Specifically, the existence of the family
of indices (p;)ic1..n) (Which helped constructing the twan-words z and 2') could not be
assured.

2. The set of indiceg; cannot be placed anywhere in the mrsince, by hypothesis4 andB are
non-elastic. Concretely, if an index precedes an index with j € [1...n] thenz;,; iS an
antiword, and this may happen i, ., = . Hence we must havg = p;.

The main result of this chapter is the following:
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Theorem 7.4.3. Given a 2n-automaton A, suppose that, for any £ € N, L(A)*® isa non-elastic
2n-word language, or, equivalently, that .(.A)® is a non-elastic 2n-word language. Then L(.A)®
is accepted by a 2n-automaton.

Proof. We will construct actually the automaton féf=2 := U L(A)*® since the automaton
k>2
for L(A)® follows by applying the union construction. The technique draws much from the con-

catenation construction for non-elasiig-automata. We will first explain the construction for a
2n-automaton that accepts only strictly non-elagtiewords, and then generalize this construc-
tion to arbitrary non-elastign-automata.

The idea for the simpler case of strictly non-elagticautomata is to use two component states
as in the proof for concatenation, but each time one component has completed an accepting run
in A, a new component starts checking for an accepting rud.ifhat is, at each moment during
the parse of the given-word we have one or two copies gf working synchronously, and on
the sections where two copies are working, a passage of the first copy thipuglimust be
simultaneous with a passage of the second copy thr@ughlso, each such indexthat withesses
a synchronous passage must be recorded in A g€if course, there might be passages through
Q.+ x Q; that are ignored.) We may consider the points where these “synchronous passages”
happen as the “concatenation points” between two factors of the givavord.

When the index set equd]s. . . n], the first copy has identified a section of theword which
is accepted by, hence it stops. The second copy must continue its search since it has only passed
through the accepting seis, . .. , Q... Next time it reaches an accepting set frQn 1, . .. , Qa,,
a new copy of4 is restarted and proceeds synchronously with the old copy as described above. The
whole process is stopped with a choice not to start a new copy after a passage of the active
copy through one of),.. 1, ... , Q2,, hence leaving to this active copy only the task of finishing an
accepting run inA.

The formalization of this construction is the following: start with a strictly non-elatic
automatond = (Q,d,Q;, ... ,Q2,). The automaton (with-transitions) accepting®=2 would be
then:

B= <QU (Q@xQxP(1...n]).0.Q1, ... ,an) where

0=05U{(q,q,[1...n]) 5q | q,q € Q}uU
{¢=(q,¢,X) | foralli € X,q € Q,4; andq’ € Q;} U
{(q,r,X) S Y)Y ¢, ¢, €@, XCY CJ[l...n]and
foralli € Y\ X,¢ € Q,1; andr’ € Q;}

A graphical presentation of the wdy parses a strictly non-elaskie-word is given in Figure
7.12.

Observe that strict non-elasticity assures the fact that at each moment, only two cogies of
are necessary, because it is not possible that more thadtwards overlap on the same part.
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Wi—1 Wi+1
| I ] I ] |

I , :
L

on this part two copie®n this part only one
of A must work synchronously copy of is needed

Fig. 7.12. A graphical presentation of the wdy parses a strictly non-elasti-word. We also
suggest here that no three consecutive factors in a decompositiomal/ overlap.

This is a very important property that is not valid for elastic concatenations — for example, when
concatenating dominoes of a PCP instance.

In order to cope with propertig®N1l) and(N2) we need to take into account the fact that more
than two copies ofd might have to be initiated when the active copy passes through some accepting
set®,, ;. Intuitively, when concatenating (non-strict) non-elagticwords, interface parts of the
factors overlap and hence at each point we might have more than two copiesthat need to
work synchronously.

Suppose we have to parse a non-elastievord w whose decomposition is

W=wWO... 0 W QW1 O...0 Wy, O...O0w,, Withw; € L(A)Vj € [0...p] (7.9)

Two important observations are to be made here: the first is that on each panbahore than
two factors may overlap on their contribution parts — and, as a consequence, these two factors must
be successive factors, i.ay, andwy; forsomek € [0...p — 1].

The second observation is related to the interface parts of the factors: on eachupériesied
as a word with distinguished points), several factors overlap on their left interface part — be they
Wy, ... ,w, With 0 < k < [ < p. We may consider that the part starts at the leftmost symbol from
w —that is, that it is a prefix part ab. The number of factors which overlap on their left interface
part is no longer uniformly bounded, as it was the case with the contribution part. But they bear an
important property: if in the considered partwofw, contains some distinguished poipfor some
i € [1...n], thenw, ; must have its distinguished poifit,, on the same position — and, as ;
is on its left interface part, its distinguished paintnust also be on the same position. Inductively,
we obtain that all the factorsy, ... , w;_; must have their distinguished poirttsandt; . ,, on the
same position.

This property is very important, since it implies that any rundrwhich is associated toy,
during this part ofw, that is, which passes through all the accepting et the distinguished
pointt; for wy, isalso a run associated to w;! Of course, this does not mean that the same run will
be extensible to an accepting run for the wheje- maybe the run fow, will eventually lead to a
deadlock when trying to associate itid@ But this property says thate do not need to memorize
the whole sequence of states in the run, we only need tanemorize the set of states in which the
automaton .4 might be on a run which is associated to this prefix part of w. And this imposes a
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uniform bound on the memory that is needed for a device that acéépty’=2: this bound is
proportional to the cardinality ap. Hence, at least intuitively, a finite automaton would suffice.

We will now introduce several notations and ideas for our construction. Denote first

X={XC[l..2n]|Vie[l...n,i+neX =i X} (7.10)
Q={(X,¢,X) | X, X' € X, XCX’andforaIIzeX’\Xwe havey € Q; } (7.11)

The states of our “starred” automaton will be quadrupkesy, 3, 7)) with S, T C Q anda, 5 €
QU{0}. «is called thdeft active component is theright active component while' is thehistory
component and7’ is theprophecy component.

The pair(a, 3) plays the same role as the pair of states in the construction for the strictly non-
elastic casefor strictly non-elasti2n-words asa must pass through an accepting égt,; at
the same time? passes through the accepting &effor the same € [1...n|. We say here that
a = (X, q, X') ispassing through someqQ); iff

The prophecy component’s utility is then the following: it provides the bounded memory which
is needed for parsing the left interface parts of the factors. Symmetrically, the history component
is utilized for parsing the right interface parts of the factors.

7.11

Formally, the states are of the following three forms:

1. (0,0,(X,q,X"),T) where (X,q,X') € Q@ andT C Q, with the property that, for all
(Y,r,Y') €T,
ayXNn+1...2n) 2 (Y N[l...n]) +n.
b) X'Nn+1...2n] D (Y'N[l...n]) +n.
Q) (Y\Y)N[n+1...20) C(Y'\Y)N[1...0]) +n C (X' \ X)N[n+1...2n].

These states are used during the search for the first set of concatenation points, the ones that

“separate”w, from w;. The requirements intuitively say that the tuples in the prophecy compo-
nent cannot consider passing through some accepting setless the right active component
is passing through the accepting &gt,; for the same.
2. (S,(X,¢, X", (Y,r,Y"), T) with (X, q, X", (Y,r,Y’) € QandS, T C Q, with the following
properties:
a)XNn+1l...2n=(YN[l...n])+n.
b) X'Nn+1...2n]=(Y'N[l...n]) +n.
c) ForeachU,s,U') € S,
LUNn+1...2n)2(XN[1...n])+n.
i. U'Nnn+1...2n] 2 (X'N[1...n])+n.
i. (U'\U)N[1...n]C((U'\U)Nn+1...2n])—=n C(X'\X)N[Ll...n].
d) ForeachV,t, V') € T,
m, in fact, we have a difference with the construction in the strictly non-elastic case since both the left and the right active

components recoral the indices of the accepting sets throughout which they pass, that is, their memory needs to reach the set
[1...2n] before considering they have accomplished their duty of tracking an accepting.Aun in
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LYNn+1...2n] 2 (VN[l...n])+n.
i. Y'N [n—|—1 2n] O (V'n [ ..n]) +n.

i. (V'\V)n [n+1...2n] C ((V’\V)ﬂ[l...n])+ng (Y'\Y)Nn[n+1...2n].
These states are used when trying to find concatenation points in betwegn tlaadw, for
allje2...p—1].

3. (5,(X,¢,X"),0,0) with (X, ¢, X') € Q, S C Q, with the property that for ally,r,Y") € S,
aUnn+1...2n] 2 (XNJ[l...n]) +n.
b) Unn+1...2n] 2 (X'NI[l...n])+n.
o) (U'\U)N[1...n] C((U'\U)Nn+1...2n))—n C(X'\X)N[1l...n].
These states are used when trying to find concatenation points for the last concatgnation
Wy

The transitions are the following:

1. (0,0, (X ¢, X"),T) = (0,0,(X',q¢,X"), T iff
a)q—q,
b) Forall(V',¢,V") € T' there exist§V, ¢, V') € T such that % t'.
These transitions are used during the first search for “concatenation points”. The above re-
guirements, corroborated with the consistency requirements on hex-uples, say that, if the active
component considers passing through some acceptirig,sethen each tuple in the prophecy
component must also consider passing through the accepting. set
2. (S,(X,q, X", (Y, r,Y"),T) % (S, (X', ¢/, X"),(Y' v, Y"), T iff
a)qgSq,r S
b) For all(U,s,U’) € S there exist§U,’ s', U") € S’ such thats = s';
c) Forall(V',#', V") € T' there existgV, t, V') € T such that = ¢'.
This is the general pattern for the evolution of all the copiesdofiuring their search for
“concatenation points”.
3. (S,(X,q,X"),0,0) & (8", (X', ¢, X"),0,0) iff
a)q—=d,
b) Forall(U,s,U’) € S there existgU’, s',U") € S’ such thats % s'.
These transitions are used after finding the last “concatenation points”, that is, while parsing
the last facton, of w.
4. (S,(X,q, X", (Y, r,Y"), T) = (S, (Y,r,Y"), (Z,s,2"),T) iff
a) There exists(” € X such tha{ X', ¢, X") € S,
b) There existy” € X suchthat(Y,r,Y’) € T}
c) ForeachZ,s, Z') € S there existsZ” € X suchtha{ 7', s, Z") € S.
d) Foreach 7' s, Z") € T' there existsZ € X suchtha{Z,s,7') € T.
This transition is taken upon the decision that the current left active component needs to post-
pone its search for concatenation points — because it has arrived at the “right interface” of the
current factor.
5. (0,0,(X,q,X"),T) =0, (X', q. X"),(Y',r,Y"), T") iff
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a) There existy” € X suchthal(Y,r,Y’) € T}
b) ForeachZ',s, Z") € T' there existZ € X suchthat{Z,s,Z') € T.
Transitions of this type are taken upon decision to activate a second cgpyafrder to check
the first set of “concatenation points”.
6. (S,(X,q, X", (Y,r,Y"),0) = (S, (Y,r,Y'),0,0) iff
a) There exists(” € X such tha{ X', ¢, X") € S;
b) Foreach Z, s, 7Z’) € S there existZ” € X suchthat{ 7', s, Z") € S.
This transition is taken upon decision that the latest set of “concatenation points” should be the
last one to be checked.

The accepting sets are, for alE [1...n],

={(5,(X,¢,X"),(Y,r,Y"),T)|ie X\ X"andforall(Z,s,Z') € S,ic€ Z'\ Z} U

{«MJ(Xq, ).T)]ie X\ X} (7.12)
Upsi = {(S,(X,q,X"),(Y,r,Y'),T) | i+n €Y'\ Y andforall(Z,s, Z") €T, i+n € Z'\ Z} U
{(S,(X,q, 7,0,0) |n+ic X'\ X} (7.13)

Finally, we restrict the state space only to statsshable from (0), 0,(0,q.,0),{(,q, V))})

and coreachable from <{([1...2n],q**, [1...2n)},([1...2n], ¢, [1. ..2n]),®,®>. Let us de-
noteD = (Qg,ds, U1, ... ,Us,) the automaton build above.

Claim. L(A)®>? D L(D).

Proof (of the Claim). Consider some accepting run.h
= ((8i, 4, 85, T2), @i, (Sicrr, @i, Bt Tet)) sy ney
with
(S1, 01,81, T1) = (0,0, (0,4.,0), {(0,4.,0)} )
(S s s To) = ({([1- - 200, sy (120D}, ([1 -+ 20 s [T 20]),0,0)

Consider also some non-elasfie-word w € WD,,(X) and a sequence; )c(i..2,) With p; €
[1...m], sequence which witnesses the acceptancelnf p, that is,

o (Sps s, Bpiy Tnyi) e U foralli e [1...2n], and

o (Sps s, By pl) S (Spy s sy By, Tp,) foralli, j e [1...2n].

Since the first state in the run (S(Z),Q), (0, g.,0), {(V),q*,(b)}) and the last state in the run

is <{ n], Gus, [1 ...2n])},([1...Qn],q**,[l...Qn]),@,(Z)), the run must contain some
transitions WhICh shift tuples from the right active to the left active component or make tuples
“arise” or “disappear” in the left and right active components. More specifically, we may find an
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increasing sequence of indice§);c[1..,) Such that the;-th transition inp is of type 4,5 or 6. At
a closer look, we note that tiig-th transition must be of the type 4, thgth transition must be of
the type 6 and the transitions, . .. , k,_; must be of the type 5, and also that 3.

More formally:

Sy, = gy = Sgyp1 =10
Uy 1 = Bry = (kaqkal/cl)
Bry+1 = (Xk1+1an1+1lelcl+1)
T, 2 {(Y,r,Y') | 3Y" € & such thatY”,r,Y") € T 41 0 (Y, 1, Y") = By, 41}
Tr, = Brpr1 = Thyy1 =10
Uyt = O, = (Kb, Gyt Xpp 1)
ar, = (X, k> X3,)
Spy1 2 {(Y',r,Y") | 3Y € X suchtha(Y,r,Y') € S, or (YV,r,Y') = ay, }

Qk;+1 = ﬂkj
Si+1 2 {(Y',r,Y") | 3Y € X such thalY,r,Y") € Sy, or (Y, r,Y') = ay, }
Ty, 2 {(Y,r,Y") | 3Y" € X such thatY’,r,Y") € Ty, ;1 or (Y, r,Y") = By, 11}

J

Our aim is to show thaty, the 2n-word associated witl, can be factored intp 2n-words,
w=w O...0w,Withw; € L(A)forall j € [1...p]
Let us denote also

a; = (X;,q:, X)), foralli € [ky +1...m)]
Bi = (Yi,r, Y)), forallie [1... k]

Observe first that the following concatenation of transitions:

pP1 = ((Ti, aiari+1)i€[1...k1—1]a (Tku& Qk1+1)a (Qi, a;, Qi+1>ie[k1+1...k2—1})

is a run inA, since thek;-th moment corresponds to the shift of the right active component into
the left active component.

Moreover, the sequend€Y; );c(i..k,], (X} )ick+1..1,] ) T€COrds the indices of accepting states of
A through whichp, has passed. Since it is possible th@{ # [1...2n], we cannot say that this
run is accepting. We would therefore like to extend it to an accepting run, by carefully extracting
more information from the history componeistswith ¢ > k,:

We extendp; to arunp, = ((Z}, s 7)), a;i, (21, 5! Z.l))l.e[lmm] by induction by choosing, for

eachi > ky, atuple(Z., 5!, Z,

1 s, Z;) € S;suchthat! = s, in A. The fact thap, extendsp; means
that

(2
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g1 Y, foriel[l... k] 1 _ Y! forie[l...k]
X; forielky+1... k) Y X) fori€ k1. k]

S; = .
q; |ﬁZ€[k1+1k’2]

The possibility to choose at each step a statg is assured by the requirements 2.b, 3.b,
4.c, and/or 6.b, that transitions i must obey, according to the situation in which thth tu-
ple (S;, o, 6;, T;) falls and also according to the label Consequently we have thaf, , = Z-l
foralli e [1...m].

Observe thatZ, = Z, = 0 and the last tuple i, must belong taS,, and hence must be
([1...2n], g, [1...2n]), thereforeZ,, = Z,, = [1...2n]. Moreover, for eaclj € Z, \ Z! we
must have, by construction, that € @;. Hencep, is an accepting run i in the “history”
presentation, run that startsgn ends ing,..

Therefore, if we associate to this run the sequence of indfices(l},),cj1..2,) With I, = i iff
u € 73 \ Z}, then this sequence witnesses thaaccepts somen-word w;. Observe thatp,,1!)
is a non-elastic pair, heneg is a non-elasti@n-word. Our intuition is thaty, is thefirst factor of
w in its decomposition int@n-words fromZL(.A).

The remaining factors can be recovered, together with their accepting runs, by generalizing the
above argument: for eaghe [1. .. p] the concatenation

P = ((T'i, Clz‘,7”i+1)ie[kj_1+1...kj—1], (Tk]-, &, ij+1), (qia Qj, qi+1)ie[kj+1...kj+1—1])

is a run inA that we intuit to correspond to a part of an accepting run associated ®ithward
w;; we have denoted herg = 0 andk,.; = m. We extend this run in both directions to an
accepting rurp, which starts ing, and ends in,.. as follows:

e For the part of the run in betwedn_; + 1 andk; we puts! = r;, Z/ = Y; andZ’ = Y/, while

e For the part of the run in betweén + 1 andk;., we puts{ = q;, ZZ = X; and?f = X

e Suppose we have build the run from- 1 to £;,4, for some. < k;. We then choose a tuple
(77,51, 7)) € T; such thats? % s/, in A.
The availability of this choice follows from the requirements 1.b, 2.c, 4.d, respectively 5.b from
the definition of the transition function @.

e Suppose also that we have build the run frigm, toi — 1 for some:i > k., + 1 We then choose
atuple(Z/,s!, 7)) € S; such that ifz denotes théi — 1)-th transition inp, then thers;,_; = s;
in A.
The possibility to choose is assured by the requirements 2.b, 3.b, 4.c, respectively 6.b from the
definition of the transition function if.

Also observe that in each such run, for edch [1...p], we have thalZf+1 — 7, as
assured by the definition of the transition functign We call this property th€onsecu-
tiveness Property.
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Finally, we associate to each rgnthe sequence of integers
UV = (I2)uep..on inWhich? = i iff u € AVAS

This sequence witnesses thiataccepts somen-word w; in A, which is actually a non-elastic
2n-word.

Though we have identified these accepting runsljiwe still need to prove that; correctly
concatenates ta;,; and that the result of concatenating all is w. To this end we prove the
following property:

(*) Forallje[l...p—1]andforalli € [1...m],
ZINm+1...2n]=(Z""N[1...n]) +nand

Znn+1...20)=(Z " N[1...n)) +n.

In other words, we prove that passes through some accepting(@gt; at the same moment
whenp;,, passes through the accepting gktfor the samei € [1...n]. It is clear that this
requirement is sufficient for proving that andw;; correctly concatenate.

For proving the desired property (*), let us observe first that foi a&ll [k; + 1...k;4], the
runp; “gives” the left active component ang_; “gives” the right active component gf. That

s, (7,51, 7)) = (X;,q;, X!) and (Z/*", 57", 77" = (V;,7:,Y/). But then, by construction
(requwements 2.a and 2.b in the definitior(pf), we haveX; N[n+1...2n| =Y, N[1...n]+n
andX!N[n+1...2n] = Y/ N[1...n] + n. This implies that our property (*) holds over the
interval [k; + 1...k;41]. Observe also that the intervgl; + 1...%;.,] is nonempty since the
sequencék; ) ci..p iS strictly increasing.

Consider now the intervalk;_; + 1...k;]. In this interval,p; is the right active compo-

nent whilep, , is included in the prophecy component. That(ig!, s, Z7 ) = (Y;,r,Y/) and
(Zf“, f“,Z]H) € T;. Note that half of the property (*) holds far= £;: by construction, we
i+l

haveij = Z,i pandzy - = Z,Jjjl On the other hand, the property (*) holds for+ 1 as

proved above, hence we haﬂgj+1 [n4+1...2n] = (Z,Jjjl [1...n]) + n. Therefore, by the
Consecutiveness Properrf_y}’;j Nn+1...2n] = (fol N[l...n])+n.

We will then prove the property (*) by a “decreasing induction” argument: suppos@ﬁhmt
[n+1.. 2n] (Z7' 1. . .n])+nforsomei € [k;_1+1...k;]. Since(Z*}, st 771 )) e Ti,
and(Z} |, sl |, Zf_l) is the right active component, we must have by construction (requirements
2.Cc.i and 2.c.iii in the definition of)) that

Z Nn+1...2n]2 (Z?'“mu ..n])+n (7.14)

)

(Z\NZhnn+1...20) +nC (7 \Z )Nn+1...20] (7.15)

We then have the following sequence of identities:



Zl nn+1...

From identities 7.14 and 7.16 we get by double inclusion fat N [n +1...2n] =

Qn]:(fg_lﬂ[n-l—l...

—(Z ..

C (@50
= (Z n[1...n) +n
CZ  Nn+1...2n]

20) \ (Zia \ Z0) 0
n)) + ) \ ((Zi\ 2100

) +n) \ ((Z\ZEH ..
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[n+1...2n])

[n+1...2n])
(by assumption)

(by inclusion 7.15)

(7.16)

(Z ]+1m

[1...n]) + n, that s, the other half of property (*) holds for- 1.

Let us now consider the intervalk, + 1.
p; andp, ., take part into the prophecy component, (g
Again as above, the validity of the property (*) within the interal,; + 1...

VA l

. kyyq] foro < j — 2. Within these intervals, both

s ZN (28 S 7Y e T
k.12] and the

Consecutiveness Property assures that half of the property (*) holds=féy, namelyZv N[n+

1...20] = (Z3, '

the intervallk, + 1.

n[L...
kv-H]-

n]) + n. We will prove by decreasing induction that it holds within all

Let us provide first the properties that connect the right active component @f-the-th tuple
in the runp with the tuples of the rurig; andp, ,, as implied by the definition aDs;:

(( i— 1\

«J“\z?
‘Suppose thaf/N[n+1. ..
(Z N ..
+n). SinceZ!_, € X, we have thaZ,

nglﬂ[nle .2n] =

by inclusion 7.17,

Z1ﬁ[n—|—1...2n] (ZI_ Nn[l...n))+n (7.17)

Nn+1...2n] D (Z]“ﬂ[ .n])+n (7.18)
1ﬁ[n—|—1...2n]2( N[l...n])+n (7.19)
Y/ Nin+ ...2n]2( N[l...n]))+n (7.20)
T)N[1...n])+ ng(}g'l\y )Nn+1...2n] (7.21)
JN[L...n))+nC (Y \Yi)N[n+1...2n] (7.22)

on) = (Z77'N[1...

VC(z,nl...
On the other hand,
VC((Zn[.. mnwﬂ«ﬂﬂm[
= ((Z_ \Z'Hn[1l...n)) +
C((Z \zZhnp.. nD+n
— (Z5 I\ 2N ) +n
C (Y \Yi) Nn+1...20)

n])+n, hence, by the Consecutiveness Property,
nl) +n. Denote furthelt/ =
i Nr+1.

(Z n[n+1...
20 C(Z N1,

2n))\ ((Z5 0
n]) +n. Hence,

n)+nCY_1Nn+1...2n]

.n]) +n)

(sinceZ’_, € X)

(by induction hypothesis)
(by inclusion 7.22)
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Hence, in order to avoid the contradiction withC Y;_; N [n+ 1...2n] we must havé” = (.
Similarly, if we denote/” = ((Z/*! N[1...n]) +n) \ (Z/_, N [n+1...2n]), we get that

V'CY,1Nn+1...2n]

V' C((Z (.. .n)

which impliesV’ = () too. HenceZ/ , N [n+1...2n] = (Z/7 N[1...n]) + n and this proves
that property (*) holds within the interval . .. &;].

By mirroring the above arguments, we may show that property (*) also holds within the interval
[kj+1+ 1...m]. We only show the argument for the interv@lts + 1. .. k, 1] forv > j + 2:

In this interval, botlp; andp,, , take part in the history component. Since the property holds
fori = k,, we have?iv Nn+1...2n = (71?1 N[l...n]) +n. But since?f;v = Z,{”H and
AN Z{*!, we also have that the “first half” of the property (*) holds fot= &, + 1, that is,

ZI . Nn+1...2n) = (Z/*} N[1...n])+n. We will prove by increasing induction that it holds
foralli € [k, +1... k1] _ ,

Suppose thal’ N[n+1...2n] = (Z. N [1...n]) +n. SinceZ?,, = 7! and /{1 = 70"
we then getthag? ,Nn+1...2n] = (Z/1' N[1...n])+n, so it only remains to check the other
half of the property (*).

DenoteV = (Z2,, Nn+1...2n))\ (Z21, N[1...n]) + n). We then have:

VC(Z nh+1...20)\ (ZZ (1. .n]) +n) (sinceZ;, D Z/th
—(Z. nn+1...20)\(Z, Nn+1...20) (by induction hypothesis)
— (Z N\ Z )N +1...2n])
C (X \ Xy N[L...n]) +n (by requirement 2.c.iii)
C(X/1N1...n])+n
C 753 N[n+1...2n] (by requirement 2.c.ii)
c @A ) +n (sinceZl}, € X)

(references are to requirements in the definitio®)gf which proves that’ = () in order to avoid
contradiction between the first and the last inclusion. _

On the other hand, if we denot& = ((Z/, N[1...n])+n)\(Z..,N[n+1...2n]) we would
have the following sequence of inclusions:
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Vic((Z Zf.im )+ )\ (ZyNn+1...2n))
= (ZZ 0l +n)\ (ZN[L..n]) +n)
= ((Zh Zfif N[t...n)) +n
C (X \ X)) N [1 n]) +n (by requirement 2.c.iii)
C(XipN[L...n))+
C Zi+1 N[n+1...2n] (by requirement 2.c.ii)

Hence agaiV’ = () in order to avoid the contradiction between the first and the last inclusion.

It remains to prove thaf = p; andi® ., = p,,; foralli € [1...n], thatis, that the concatena-
tionw; ® ... ® wy really givesw. But this property is evidently true, since, by construction of the
accepting sets ifv (Identities 7.12 and 7.13), regardless of the component to vx(lﬂg;hq;ij;i)
belongs (but note it may belong only to the right or left active component or to the history compo-
nent), we have thate 7;_ \ Z,., and similarly forp,, ...

This ends our proof of our first Claim. O
Claim. L(A)®=2 C L(D)

Proof. Start with a concatenation = w; ® ... ® w, with w; € L(A) foralli € [1...p], and
considerp accepting runs in the completéd-automatonA, one for eachy;, together with their
witnessing sequences of indices:

pi = (g5, a5, 1) jem,—1 With witnessing index sequenc& ) cej1...2,)

We assume that each run startgi@nd ends iny...
Transform these runs into runs in the “history” presentations, that is, dﬁi;?ndhe set of indices

of the accepting states which were visited by eachyryst before the j-th step and by—(; the set
of indices of accepting states visited hyup to the j-th step, and also denot&g'- their difference:

X:={ue[l...2n] | Fv e [l...j — 1] such that, = v}

1

X,={uell...2n]| Jve[l...j]suchthat, = v}
Al =X\ X

J

Note first that, due to the fact that, and w;,; correctly concatenate, we have that for all
u,v € [1...n] and for allj,jo € [1...m4], j3,js € [1...m] if u € A% v € A} and
u+ne A;jl,u +n e Al thenjy — ja = js — ja.

By a trick similar to the right-to-left proof for concatenation, we bring all runs to equal length
such that whem; passes throug.. ;, pi+1 passes througl); and vice-versa (we call this prop-
erty theSynchronicity Property)

To this end, we extend each rgnto a runp; of lengthm (the same for all-s) by adding loops

in ¢. and/org,., then suitably redefine the indicésand the index setX’, 7;- and A% such that
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foralli e [1...p— 1] we haveAi N[n+1...2n] = (A" N[1...n]) + n. This can be done as
follows:

Take some: € [1...n]. Then, for eachi € [1...p] definey; € [1...m,] as theunique index
for whichu € A: . Similarly, definey; € [1...m;] as theunique index for whichu +n € AL .
Define further; =7, — vi11.

This integer gives the number of loopsgnthat must be appended o ; such that it is brought
to the same length as.

This follows because, if the runs would have the Synchronicity Propertysthermust equaly;, regardless of the choice

of the indexu € [1...n].

Then, for eachi € [2...p] we append, at the beginning pf ¢; + ... + §; copies of the state
¢ Also, the indices that witness the acceptance;aire then shifted by~ &/, that is,

i—1
ho=0+) o
j=1
It is routine to check then that, after suitably redefining the index)éﬁt?j. andAi, we have that

Vie[l...p—1],Vje[l..m},AiN[n+1...2n] = (A" N[L...n]) +n (7.23)

However the runs do not have the same length yet. To bring them to the same length, define
firstm = max {m; + >>/_1 67 | i € [1...p]}, and then append, at the end of eachgym — m;
copies of the state.., and we are done.

We suppose from now on that the rypdave equal lengthn and that their associated index sets
satisfy condition 7.23. Observe that, by the hypothesis thanallordsw; correctly concatenate,
we may choose the rupssuch thatll the labels of the transitions are the same (a similar property
was obtainted for concatenation), hence we may consider that theresexisi,, € X such that
foralli e [1...p],

_ ) )
pi = (qj7 asj, q]'+1)j€mfl

Let us show now some properties of the index §é;l;sY; and A%
(X1) Foreach € [1...p]andj € [1...m],Xj,7§- €X.
(X2) queacw ell...p—1] landj ell..m, Xinn+1...2n] = (X;*'N[l...n]) +nand
Xonm+1...20] =X, N[l...n) +n
(X3) Foreach € [1...p—1]andj € [1...m], X! C X/ andX, C Y;H.
(X4) Foreachl < i < <pandj € [1...m], XN[n+1...2n] D (X N[l...n]) + n and
X;Nn+1...2n] 2 (X, N[1...n])+n.
Property(X1) follows due to the fact thafj. = X;ﬁ U A; while property(X2) follows by
induction ony:
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X yNh+1..2n)=(XN[n+1...2n))U (A N[n+1...2n])
(X AL o)+ ) U ((AZA AL a]) + )
= (X[ ) +n

Property(X3) is a consequence of the first two properties, while propg@y follows by induction
oni’ — i, since the first three properties imply that

-/

(XiN[.n)+n=X; Nh+1...20) C(XI N0 +n=...

-
C(XHnl...n))+n=XNn+1...2n]

The idea that guides us in building téerun for w is that the union of the history left active,
right active and prophecy components at each gtapp must be the sef(X}, ¢}, X ) | i €
[1...p]}. The problem is to correctly choose the left and the right active components at each step,
and to check the additional constraints on the states of this run, and it is here where the non-elastic
assumption plays its role.

Clearly, the order in which the runs “become” left active components is the order of con-

catenation. Or, in other words, (X’ q;',YL) IS the left active component at stgpthen the right

active component i(;X?“,q;“,_1+ ), the prophecy component {$X ,q§',7;,) |7 > i+ 1}

and the history component {$X7, ¢, j) | i’ <i}.

The choice of the moments at which a ryrpasses from the history component into the right
active component, then into the left active component and finally into the history component need
not be unique. But the bottom line is thatcannot “sleep” all the time it parses the contribution
part of w; This translates to the fact that cannot be in the history component at the end of
(w;)untu @nd cannot be in the prophecy component before the beginnifg )Qf,.-...

The non-elasticity property intervenes then in the fact that, if we have decided to shift
pi, say from the prophecy into the history component, then we will never “regret” this
decision, that is, we will never negglin the prophecy component back.

This means that each run will be, at its turn, in the prophecy component, then a left active
component, then a right active component, and finally in the history component. Observe then that
each time we shift the left active component into the right active component we must employ an
transition. This means that the rgnvould have lengthn+p —m, since it simulates each transition
in all the runsp; andp since there must be e-transitions for shifting left active into right active
components.

Our choice for the shifting moments is a “lazy” one: a ris moved from its place only when there is a run with
i’ > i that needs to be “pulled out” of the history component because it is about to finish its parsing of the contribution
part ofw;, — it needs to be “waked up before it's too late”.

Formally, the construction runs by induction as follows: the first tuple of in the run is

(0,0, (X}, g, X)), {(Xi,q., X}) | i > 2})
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(observe that in fack? = Yi =(foralli e [1...]sinceq. & Q, foranyu € [1...2n]).
Assume that we have built the run up to tite— 1)-th tuple. Denote the run built so far 8s ;
and its last tuple ag, 1 = (S, oy, 31, 11)ie1...k—1)- FOr the induction, we also assume that

e eitherf,_, = (X;_,, Q;'flay;fl) with & = j +

o or 3,1 =0andthemy 1 = (X?_,¢%_, X7 ) with k = j + p.

These properties hold fdr= 1, hence the induction has indeed a base case.
We then have the following cases, triggering specific ways to extend thi run

10 By = (X, qi_y, X;_y) andforalli’ > i, AY N[n+1...2n] C (AYN[1...n])+n (that

J
is, we have not reached the end of some compo(n@t)thmu) then we extend the run with the

tuple

((Sk=1, ar—1, Br—1, Tr—1), ak—1-i, (Sk, ok, Br, Tis))

in which

Sy = {(XV ¢/, X0 |l <i—1}

0 iff i =1
o= {(X;i L LX) iff i > 2
B = (X, Q§77)
T ={(XI',q¢,X, )|7;’>7;}

J’J’

2. If B4 = (X?_l,q;l_l,Y;_l) and there exists somé> i for which (A¥ N [n + 1...2n]) \

J

((AYN[1...n]) +n) # 0 then let
t=max {7 >i| (A" N[n+1...2n]) \ (A7 N[L...n]) +n) # 0}

Observe that in this case the tugls’, ¢, X ) cannot belong to the history component since it would contradict the
requirements 1.c or 2.c.iii, according to whethgr ; = () or not.

We then appent— i + 2 tuples as follows:
a) The first tuple to be appended is

((Sk=1, @1, Br—1, Tk—1), €, (S, e, Br, T))
and has the following components:
Se={(X].q. X)) | <=1
ax = (Xi,q;, X))
Br = (X;“, q;“ X]’:Jrl U (A;+1 \[n+1...2n)))
To={(X],q . X)) |i>i+1}

Observe that we do not change the third component in the tuples belonging to the prophecy

component. Also observe that # () because < 7 < p.
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b) ForeacH € [1...7 —i — 1], thel-th appended tuple is:

((Sk+l—1, 11, Beti—1, Thyi-1), €, (Sktts Qs Brg, Tk+z))
in which

S = {(X5 ¢/ Xy | <i+1—1)}
Ot = (XZJrl 1 (Al+l 1 \ [n +1. 2”]) +l 1 X
ﬂk+l (Xerl 1+l XZJrl (A§+l \ [n +1... 2 ]))

Tk+l—{(X'7q]‘7X;')|Z >i+1}

J

i+l 1)

These are the transitions that “pull” tkie+ 1)-th tuple from the prophecy component into
the right active component. This operation is accompanied by the modification of the index
set of the(i + [)-th tuple, but the index sets of all tuples in the prophecy component are left
unchanged.

c) Forl =7 — i, thet — i appended tuple is:

((Skti—i-1, Qhti—i—1 Brriits Thar—i-1)s @1, (Skti—is Uhi—i Brti—is Thaz—i))
with

Skii—i = {(X ]’q]’ |Z<L_1}

i = (XjU A%\ ”‘I‘l .- 2n]), qﬂ_’YL)
iff z=p

ﬂk+li:{(XL+1 L+1,7§+1) iffz<p—1

TkJrZ*i: {(ij7 ;7X )|Zl>z+1}

=

Hence, once theth tuple is pulled out from the prophecy component, we also change the
index sets of all tuples remaining in the prophecy component. This is possible since, by
choice ofz, we will prove that all the tuples iff;,; ; do not contradict requirements 1.c
and 2.c.lii.
3. If Bx—1 = 0, which can only happen when,_; = (X} |, Q§7177§_1), we append to the run
the following tuple:

((Sk—b k-1, ﬁk—lv Tk—1)7 Af—p—1, (Sk7 Qk, ﬁk? Tk))

in which

= {(x7 |z <p}
ak_( ]7q]7 )
ﬁ =
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Observe that, after case 2, we already get at stage — 7 + 1 since we have appended- ; + 1
tuples tod,. ;. We denote the run obtained after stage= m + p.

It remains to prove that the appended tuples are indeed stateg)frowie will only prove the
validity of requirements 2 (a, b, c.i, c.ii, c.iii, d.i, d.ii, d.iii) since the other requirements can be
regarded as special cases of requirements.2(d.iii). Consequently, we will only study the cases
1 and 2 in the construction éf Let us show first that the properti@sl)-(X4) imply that the newly
appended tuples satisfy requirements 2.a, 2.b, 2.c.i, 2.c.ii, 2.d.i, 2.d.ii, respective of the case the
tuple falls in.

In case 1, requirements 2.a and 2.b are restatements of prO¥2ytyvhile requirements 2.c.i,
2.c.ii, 2.d.i, and 2.d.ii are restatements of prop€xs).

For the case 2, subcase a, that is, for the tagleas., 5x, T1.), requirement 2.a results directly
from (X2). On the other hand, we have that

(X;HU(A;-H\[n-i—l...Zn])) N[l...n]= (X;ﬁ“ﬂ[1...n])U(A§+1m[1...n])
— X[ .0
hence requirement 2.b is implied B¥2). Next, properties 2.c.i, 2.c.ii and 2.d.i are trivially implied
by (X4). Finally, due to(X4) again, we observe that for all> i + 1,

(X U@\ n+1..2n))Nn+1...20) D X N [n+1...20] D XY

hence requirement 2.d.ii holds also for the case 2, subcase a.

For the case 2, subcase b, that is, for each tUfle, ag i, Bryi, Trr) Withl € [1...7—i—1],
the requirements 2.a and 2.b can be similarly shown to derive frq2jo For requirement 2.c.i
observe that for all < i+ — 1 we have by(X4)

i~ it i1 itl—1

X; 02X, OX;ru(A7T \[n+1...2n))
while requirement 2.c.ii is directly implied {X4). Then, requirement 2.d.i is a direct consequence
of (X4) while for 2.d.ii we have that for all > i + [,

XHUAF\[n+1...20)n[l...n] =X, N[l..n] DX, D X!

Finally, in case 2, subcase c, that is, for the tuUgle i, ax17—i, Brii—i Trii—i), the proof that
all requirements 2.a, 2.b, 2.c.i, 2.c.ii, 2.d.i, and 2.d.ii hold is very similar to the other cases.
Consider now the requirement 2.d.iii. For the case 1, requirement 2.d.iii can be proved as fol-
lows: if we suppose that for afl > i, AY | N [n+1...2n] C (AZ_ N[1...n])+nthen we can
show that for all” > i,

A;ﬂ[n+1...2n]Q(A?ﬂ[l...n])—l—n. (7.24)

We can prove this inclusion as follows: for eath- i, consider some index + n € ((A;’ N
[1...n])+n). ldentity 7.23 says thé(TAj.' N[l...n])+n= Aj.'_l N[n+1...2n], henceu+n €
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(A"='M[n+1...2n]). Onthe other hand, the hypothesis of case 1 saystfiaitn[n+1...2n] C
AN [n+1...2n], and hence: + n € A} N [n + 1...2n], which shows that our inclusion 7.24
holds.

For the case 2 subcase a, consider the tuglens,, 5k, Tx) which is the first to be appended to
0,_1. The requirement 2.d.iii for this tuple is the following: for &lt> i,

(X;,\X;’)ﬂ[n—i—l...Zn]g ((X;’\X;’)ﬂ[l...n])—l—n
C((XF'uA \[n+1...20))\ X" ) N [n+1...2n]

But this property holds trivially since all the three sets involved in this chain of inclusions are
empty.

For case 2, subcase b, consider each tule;, oy, Bri, Try) With 1 € [1...7 — i+ 1], But
for the requirement 2.d.iii to hold for this tuple, we must have that fof alli + I/,

(X;:,\X;/)ﬂ[n—l—l...Qn]g ((X;:’\X]’:')ﬂ[l...n])+n
C (XU \[n+1..20))\ X)) N[n+1...2n]

which again holds trivially since all sets are empty.
Finally, in case 2, subcase c, requirement 2.d.iii for tUdle :—;, k17—, Brri—i, Triz—i) SAYS
that, foralle’ > 7 + 1,

7 ¢ +1
Aynn+1...2n)C(AN[L...n]) +n C AT Nn+1...20]

First observe that, by choice offor all 7/ > 7 the first inclusion holds. We then only have to
prove that the second inclusion holds too.

Suppose this does not hold for sokhe- 7+ 1. We show that this would be in contradiction with
the choice of: take some: € [1...n]withu+n € (A7 N[1...n])+n)\ (A7 N[n+1...2n]).

Thenu +n € 7; and by(X3), u +n € 7?1. Sinceu +n ¢ A" we must have, +n € X,

Again by (X3), we get that. + n € X}, henceu + n € 7;. and furtheru +n ¢ A’. But then, by
gathering all the information we obtained on+ n we get:

u+ne ((Agﬂ[l...n])—l—n)\(Aé-ﬂ[n-l-l...Qn]) (7.25)

This is in contradiction with the choice of since the greatest integer [in. .. p] which verifies
property 7.25 ig, and we have assuméd> 7 + 1.

Let us finally check requirement 2.c.iii. First, we observe that for the case 2, subcases b and
c, requirement 2.c.iii holds trivially since in the respective chain of inclusions the two sets are
empty. (The proof of this observation is similar to the proof that requirement 2.d.iii holds in cases
2, subcases b and c.)

For checking case 1 and case 2, subcase a, we will first show that the first part of the inclusion
from requirement 2.c.iii holds, that is,

foralld <i,(AYN[l...n])+n C A Nn+1...20]. (7.26)



TS o 10U FVUVIWD ATTUA BTTWIT RAUtVITTIAL R

This property will be proved by contradiction, with essential use of the non-elasticity assumption:

Suppose that there exists soihe i and somey, € [1...n]such that, € A;’m[l . n]\(A;ﬁ'ﬂ
[n + 1...2n]) — n. The first observation to be made is that siias in the history component
atj — 1, there must exist a momeyit < j at whichi’ had to be pulled out from the prophecy
component because for some< i,, we had tham;'-% Nn+1...2n] & (A;'.% N[l...n])+n. Pick
up then somey € [1...n] such thaty +n € (A2 N[n+1...2n]) \ ((A% N[1...n]) + n).
Hencev, +n € X7, and sinceX;inX we have that, € X;, and furthen, € X?.

Let us further observe that + n ¢ X! and hence, byX3) uo + n ¢ X* Moreover, we have
thatv, € X7 which by (X3) gives thaty, € X]’-f. This means that there exists > j such that
up +n € A} and there existg, < j' such thaty, € Ag.;.

We then need the following property:

(W) For eachl < k < ¥' < pand each,’ € [1...m)], suppose. € AF andv +n € A¥

for someu, v € [1...n]. Denote alsa, the label of the-th transition in any of the runs,

or pyr. Then,

olf [ =1 then(wk ®...0 wk:)u,wn =c.

olf I </ then(wk ®...0 wk:)u,wn = Q041 ... Gp_1.

o If [ > l'then(w, ® ... 0 wp)ypin = al_,il e aljrllal_l.

Proof (of property (W)). The property (W) can be proved by induction 8n> k: for k = ¥

it holds straightforwardly since it says that the concatenation of the labels of the transitions in
between the momeni, passes throug®, (i.e.,/) and the moment it passes through,,, (i.e.,!")
equalsw, ;i n.

Suppose then it holds f@f, and we want to prove it fot’ + 1. Sincev + n € Af,'“ it follows
that there exists somle < I’ such that € Ai’“. And further, by 7.23, that + n € Af. We
thence have 12 cases concerning the relative positidn) band/’. We will only study three of
them and discuss the similarities with the other cases.

e Suppose < [; < I'. Then, by the induction hypothesis fbrk’, [ andl;, we have
(We © ... © We—1)uptn = QG141 - - - a,—1. ON the other handwy )y y+n = @i, - . . ay_1. There-
fore,

(wk ©...0 wk’+1)u,v+n - (wk ©...0 wk’)u,v+n ' (wk’+1)v,v+n
=ay41...01;—-1 Q) ... Qr—1

=aqQp41---ap 1

since the label of thé-th transition in any of the runs is the same. Hence property (W) holds
for k' + 1. This proof works also for all the cases in whighs in betweerl and!/’.
e Supposé’ < [; < I. Then, by the induction hypothesis fort’, [ andl,, we have(w, © ... ®

Wi 1)upin = a1 - .. a;,". On the other sidewy )y vin = i, ... a; . Therefore,
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(wk ©...0 wk’+1)u,v+n - (wk ©...0 wk’)u,v+n ' (wk’+1>v,v+n

-1 -1
= q 1...al1 Q-1 -0

-1
=Q_q.--Qr—1

hence property (W) holds fd¥ + 1 also in this case. This proof works also for all the cases in
whichl; is in betweerl’ andi.

e Suppose; < [ < ['. In this case we have, by the induction hypothesis, that® ... ®
W1 )uptn = af_ll e al’l1 and(wy )y.pn = ai, - - ap_1. But

(wk ©...0 wk’)u7v+n = (wk ©...0 wk’—l)uﬂ)—}—n ' (wk’)v,v+n

1 -1

=q 1...(111 cQp ... ap—q

= qapy1 - - QA1

Hence property (W) holds fa¥ + 1 in this last case. A similar proof can be produced in the case
L <l <l O

We may now particularize the property (W) as follows: we put= wuy, v := vy, k := ¢/,
k' =19, := ji, ' := j5 and get that

o (’LUZ'I ®...® ’U}i2)u’u+n 7é g,
o (’LUZ'/ ®...® wiz)v,v+n 7é g,
o (wy ®...O Wi, )uuin IS an antiword;

facts which clearly contradict the non-elasticity assumptiono® . . . © w;,. Hence our assump-
tion on the nonvalidity of Inclusion 7.26 is itself false.

Let us then observe that, based on the validity of the first half of requirement 2.c.iii foxall
and on Identity 7.23, the last half of requirement 2.c.iii can be proved by induction as follows:

ATN[n+1...2n) = (AT N[1...n]) +n (by Identity 7.23)
C A An+1...2n] (by Inclusion 7.26)

C A;‘lﬂ[n—l—l...Zn]
=(AiN[l...n]) +n (by Identity 7.23)

It follows that® = 6,,., is indeed a run irD. We need now to show it is an accepting run,
and then associate a sequence of indi¢gsc..o,) Such that the,-th state in this run is i/,
and such that, for € [1...n], the passage throudh, of # be synchronous with the passage of
p1 through@), and the passage 6fthroughU,, ., be synchronous with the passageppthrough
QnJru-

Remind that;, represents the momept passes throug,, i.e.,u € A;,. Consider then the
indexk € [1...m + p] which denotes the moment in the ramwhich correusponds t). That is,

k =1L +iforsomei € [0...p], and further:
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olf i = O0thenay = 0 and 3, = (X}\,q,:,Z). Note that we may have eithef = 71173 or
Z=X)U(AL\[n+1...2n]), according to whether th@. — 1)-th transition ing,,, ., falls in
case 1 or case 2, subcase a from the constructién of

e Otherwisep;, = (X;'%L‘l, qgl,ygl) and hence X} , q1157711i) € Sy U{ax}.

In the first case, it is clear thdS, ax, 6, T) = (0,0,(X}i,q4.2),T)) € U, because by
construction we have € Z \ X;;, in any of the cases falls in. s

In the second case, if = 2 thena; = (Xz{gaqzlaayzl;)a Sy = 0 and we get again that
(Sk, an, Bp, Tr) € U,. Fori > 3 we must have tthlz,q}i,Ylli) € Si. Let us observe that
requirement 2.c.iii in the construction @ says thatA}, N[1...n] C A", and hence € A} .

Suppose then thasy, ay, Ok, Tr) & U,. This implieg that there exists sonfe< i — 1,7 > 1
such that: ¢ A7 . Then there must exist sonie< ' such thatu € Ajl andu+n ¢ A}, But this
is in contradiction with the requirement 2.c.iii, first inclusion. Hence the assump}fion is false, that
is, (Sk, ay, ﬁk, Tk) e U,.

We may therefore defing = I +. We also define, ., = I, + i, wherel? , + i is the index
in the runé,,, ., which corresponds to thé& ., —1)-th transition in each of the runs, i € [1...p].
Similarly to the proof fort,, we may get thatS;,. .., ..., Biniws> Ttniw) € Uniu

It remains just to observe that, by property (W), for each € [1...n], the word or antiword
that labels the transitions in between th¢h state and thg, ., -th state equals the word or antiword
that labels the transitions in between th¢h state and thé& ,  -th state of any of the rung, that
is, equals(w;, ® ... ® wy,)unive- Similarly, by concatenating the labels of the piece of run from
..+, that lies in between thg-th state and the,-th state (eventually in reversed order,it> t,)
we get(w, )y, and similarly fort, ., t,+, and(w,)uin..+.. HeENCe, the rud,, ., accepts indeed
Wy O ...Ow,.

This ends our proof of the second claim, and, consequently, the proof of Theorem 7.4(3B.



8. Representing timing infor mation with n-words

Up to this moment we have investigated only the possibility tolusautomata for representing
the discrete information ifn-signal regular expressions. In this chapter we investigate the possi-
bility of representing also theming information in2n-signal regular expressions. By the timing
information we mean the set of tuples representing the duration of2zasignal in the semantics

of a2n-signal regular expressiafi € RegSig,,,, that is, the set

{to) | o ellE|}

Here/(o) is the extension of the length morphisnmritesignals, that is, a-signal over a one-letter
alphabet{a} with (¢(c));; = a*“@). Or, in other words, @ x n matrix a € Mat,(R) which
satisfies the triangle identity;; + o, = ay.

Let us note that, for then-signal-semantics of timed automata, our aim translates to the
construction of theeachability relation on clocks, that is, the dependence between clock
values when starting in initial states and the clock values with which final states may be
reached.

This problem is nothing else but the problem of represenimigng constraints over a set of real
variables (or clocks)Conjunctive timing constraints are usually representedidference bound
matrices (DBMs, see [Bel57, Yov98]). These can be thoughthag n matrices over intervals
(nonnecessarily positive]) € Mat,,,(ZInt) such thatD,; = —Dj;.

The idea is that each variable is associated with an index in the index set of the matrix, and
each difference; — z; € I puts the interval in the(j,7)-component (note that the indices have
swapped their places). To represent single-variable constraints like€3, 4], a special variable
zo is appended, whose value is considered alwaysich that constraints like € [3,4] may be
written asz — zo € [3,4].

For example, the two-variable constraint [3,4] Ay € [1,2] Az — y = 2 is represented by
the following3 x 3 matrix over intervals:

0 [3.4] [1,2]
D=|[-4,-3] 0 —2 (8.1)
[2,-1 2 0
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Actually, to avoid redundant representation of the same interval, the important information is kept as folPyys=if
la, b[, the (4, j)-th component will beb, ¢ < ‘) while the(j, ¢)-th component will b€ —a, * < *). In other words, instead
of the matrix of intervalsD one keeps a matri® of pairs(«, 1) wherea is a real number angd is a relation symbol
pe << =}, suchthat
‘=*¢ iff D;;isapointinterval
Pij = (sup Dij, M) Whel’eu = {‘ < ‘¢ iff max Dij exists andmax Di]' 75 inf Dij
‘< ¢ otherwise

We will however utilize the “redundant” matrix of interval2 in order not to complicate certain proofs.

If we think of the set of interpretations that validate the constraiat[3, 4| Ay € [1,2]Az—y =
2, then this set has more than one representation. The reason is that the first constraint can be
deduced from the other two by arithmetic manipulation. However the representation given in 8.1
can be thought as the “canonical”’ one, since it is “closed” under these arithmetical manipulations
— even more, it is “minimal”, that is, no other representation can be found in which some of the
intervals are smaller than the ones/in

As already said, a DBM can only represeajunctions of atomic constraints, therefore general
atomic constraints (i.e. containing disjunction also) require using sets of DBMs. Our aim is to
show thatr-automata oveone-letter alphabets can be used also for representadpitrary clock
constraints. We will start by showing, as a corollary of the previous chapter, how to represent
timing constraint®ver the discrete time domain Z:

The constraint: = 3 can be represented by a finite automaton (i.2-aaitomaton) with four
states and three transitions in a chain. The idea is that the constrain8 is satisfied by the
set of integerg 3}, which is a regular language over the one-symbol{dét— simply because
3=1+1+1.

To represent a two-clock constraint= 3 A y = 1 one might transform the abo2eautomaton
into the3-automaton depicted in Figure 8.1 (@t). What we have done is to identify, during the
run that accepts, a point in whichy = 1 is satisfied. Note that we have an implicit subconstraint
r —y = 2, which is represented by the two arrows in between the state labeded the state
labeledz. A “nonpoint” constraint € [3,4] Ay € [1,2] Az —y = 2, is depicted atb) (remind
that we work with discrete clocks for the moment):

OO O—O K O—X0—0—0O
0 y x 0 y x

(a) (b)
Fig. 8.1. Two n-automata representations of timing constraints over a discrete dofagin: =
3Ay=1land(b):z €3, 4 Aye[l,2]Nz—y=2.

Of course, to actually hav&automata we would pu®; as the state labeldd (), as the state
labeledx and(@); as the state labeled

L Which would result after bringing the constraint to the “normal form” [Yov98].
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A more complicated constraint is depicted in Figure8.2.

0,y

Figg 82 An n-automata representation of the following timing constraint:
(ye[2o0Az—y=2)V(ye{0}Aze[4,00))V(ye[0,2]Az=4)V(ye[0,1]Az=3).

Of course, our approach makes constraint representation more sensible to the numbers used in
the constraints than other representations (e.g., unions of DBMs). But observe that the constraint
in Figure 8.2 uses only states, instead of the DBMs necessary. Also theock difference dia-
grams approach [LWYP99] does not provide a better representation for this constraint, since the
intervals used in each atomic constraint are distinct. Hence-tigomata representation of clock
constraints might be better in some cases.

So far, so good with the intuition about discrete timing, but how to export it t@dh#nuous
timing? Here we will get aid from the notion afock regions [AD94]. A region is a special kind
of DBM, in which each interval is either a point or an open unit length interval. For example,

0 12,3 L2
R=|]-3-2[ 0 ]-1,0] (8.2)
]—2,—-1[ ]0,1[ 0

Of course, this is not exactly the classical definition of a region: they were originally defined
as sets of points € R” which have the same integral parts and the same ordering between the
fractional parts [AD94]. For our example, the graphical representation of the ré&gaw@iined in
|dentity 8.2 (considering that this region represents in fact the consiraiit, 3| Ay €]1, 2[Az —

y €]0, 1[) is depicted in Figure 8.3:

Fig. 8.3. The graphical representation of the region defined in 8.2 is the interior of the shadowed
triangle.
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It is clear that any DBM whose intervals have integer bounds can be decomposed into a (finite
or infinite) set of regions.

Now the key idea is to observe that theegword of all endpoints of the intervals of a regias
a nonempty semantics. for example, our regiork described in Identity 8.2 defines the following
3-regword whose components are the bounds of the intervdks of

0 2,30 {1,2)
{(-3,-2} 0 {-1,0} (8.3)

{-2,-1} {-1,0} 0

Here the sets represent regular expressions over the symbdl}sdor examplg, {2,3} = 1 +
1+ 1U1+ 1. Inother words, we use here theary encoding of integers.

Then, if from the upper triangular part we keep the upper bounds and from the lower triangular
part we keep the lower bounds we get the followisagord:

0 3 2
w=|-3 0 -1
-2 1 0

Note that this3-word is (represented by the) lower vertex of the shadowed triangle in Figure
8.3.

We then just have to add the information about what kind of bound is each component in
This information is given by & x 3 matrix M whose entries are relation symbols from the set
{f <4 ="5>"}. Hence, we puf;; = * < ‘ iff w;; is the supremum af;; but does not belong
to R;;, we putM;; = = “ if w;; = max R;; andM;; = * > ‘iff w;; = inf R;; andw;; € R;;.

For our example, the following pair represents the region in 8.2:

0 3 2 4 — ¢ ¢ < 4 4 < 4
_3 0 _1 , 4 > ¢ ¢ — 4 4 > 4
_2 1 O 4 > ‘ ‘ < 4 4 — 4

This representation of the region in 8.2 is not unique: the following pair is also a representation
of it:

0 2 2 I N
-2 0 0 , c<c (E— c<n
-2 0 0 ¢>¢ ¢>c (E——

Note that the3-word in it is the upper left vertex of the triangle in Figure 8.3.

It is then clear that not all the matrices having lower or upper bounds from the intervals involved
in 8.2 are3-words, since some do not verify the triangle identity: they2ich matrices but only
3 vertices of the region!

2 We have preferred this set notation instead of the regular expression notation due to the ambiguous overloading of summation it
would imply.
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There is yet one more thing to observe: the matrices of relation symbols have themselves a sort
of “triangle” property. due to the fact that they have to represent correct regions. We will see later
the exact formulation of this property, but let's see an example of an incorrect matrix:

4 — 4 ¢ > ¢ ¢ < ‘
¢ ¢ ¢ > ‘

M — ¢ < ¢ _
¢ > ¢ ¢ < ¢ ¢ — ¢
Intuitively, M is incorrect because the cydl®f;o, Mas, M3;) = (¢ > 4, ¢ > ¢ ¢ > ¢) is inconsistent

with the componeni/;;: the cycle requires thadlt/;; be‘ > ¢, which is unimaginable for a diagonal
component which must always be zero!

Once we are convinced regions may be represented this way, we only have to think that
automata can be adapted to accept pairs consistingheivard over a one-letter alphabet and a
matrix of relational symbols. There are two ways: either put the relational matrices into states, or
put them into transitions. The two ways are completely interchangeable, as are state-labeled or
transition-labeled finite automata. Then what we need to assure is that in an accepting run all states
or all transitions are labeled with the same relational matrix.

Yet we are not through with the problems: concatenation is a clear operat@nwords, but
how do we generalize it to DBMs/regions/pairs like the above? In fact, we need to define a con-
catenation operation on regions, concatenation that would be compositional w.r.t. the “semantic”
concatenation o2n-signals.

If we regard the problem from the logical point of view, when we want to concatenate two
DBMs which represent two constraintg, C> over 2n variables, what we need is to take their
conjunctionC; A Cs, then to identify the last variables ofC; with the firstn variables ofC;, and
finally to project the result over these variables “in the middle”: denoting . , z»,, the variables
in Cy andyy, ... ,ys, the variables ir(;, we need

Cl ® CQ = ElJZTH_l e Ell’gn <Cl A Cg[$n+1/y1, e ,!L’Qn/yn] A\ /\ Tnti = yz>
i=1

in which the notatiorC[z/y] stands for the syntactic replacement of variapleith = in C.

But if we proceed by pure arithmetic tools to compute the concatenation of two regions we will
find out thatit might not be a region but a more general DBM: even fardimensional DBMs, that
is, constraints over a single clock, we have

(z €]1,2]) ® (= €]2,3[) = (z €]3,5]) (8.4)

And here is an example concernifigegions:
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0 10,1 Jo,1[ ]L.2 0 10,1 0,1 11,2

=100 J-100 o0 Qo710 J-10 o Joi[|"
]_27_1[ ]_170[ ]_170[ 0 ]_27_1[ ]_170[ ]_170[ 0
0 10,1] 10,2[  ]1, 3]
| 12,0 ]-2,0 0 10, 1] (8.5)

|—3,—1] ]—2,0[ ]—1,00 0

The issue from this is tdecompose the result into regions. That is, we will define the concate-
nation of two regions as set of regions. For the simple example described by Formula 8.4 we
put

€]1,2[0z €]2,3[= (z €]3,4]) V (x =4) V (z €]4,5])

The advantage is that, contrary to constraints, which, after each conjunction, need to be brought
to normal forms, region concatenation gives directly normal forms.

Since we represent regions by pdits M) consisting of &n-word over{1} and a2n-relation
M, we may wonder how this concatenation can be implemented over such items, and also why
it gives sets of regions rather than mere regions, stace/ord concatenation is not a set-based
partial operation. The answer relies on the need of a concatenation operatiomadations, which
itself returnssets of 2n-relations. For our simple example 8.4%fegions, we have

(2°<90 @2 >9)={(4" <94 =9 4">9}

because

We might also observe that some pairs representing regions may fail to concatenate, even when
the represented regions concatenate: for example, the following pairs cannot concatenate because
the4-words in it cannot, though they represent the concatenation aftagions in 8.5:

0O 0 0 1 >0 P>t
0 0 0 1 R
) ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ @
0O 0 0 1 < = <
_1 _1 _1 O ¢ ¢ z>c c>c [

<
<
<
0 1 =R N N
0 1 D
1]’ >
0

-1
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But this does not mean that no pair of representations of-tfegions from ldentity 8.5 can be
concatenated: we just have to be more careful when choosing the representations. For example, the
two representations in Identity 8.6 below can be concatenated, since the lower right corners of the
first representation equal the upper left corners of the second representation. The result is obtained
by first concatenating thé-words in each representation, then concatenating theltvetation
matrices. We present the result as a cartesian product between the resulting and a set of
4-relation matrices, just in order to save space.

0 0 0 1 D
0 0 0 1 c<c C__ ¢ c>c L<c
O 0 0 1 ) c<n z<c C_ ¢ c<c @
-1 -1 _10 c<cc>cc>cc:c
0 1 1 1 C_ ¢ c<c c<c c>c
—1 0 0 0 c>c ¢ c>c c>c
@ _1 0 0 0 ) ¢>¢ ¢>c [ c>¢ =

-1 0 0 0 c<c c<c n<c C ¢

0 0 1 1 C ¢ L>c c>c n>c

0 0 1 1 c<c C_ ¢ c<n :>c

= -1 =1 0 0 X c<¢ ¢>c (E— c>c ’

-1 =1 0 0 c<c c<c c<c C__ ¢
c:cc>cc>cc>c c:cc>cc>cc>c
c<c [ c>c c<c C__ ¢ c>c c>c
c<c (¢ C__ ¢ L>L ) L<L c<c C ¢ c>c (86)
c<::<cc<cc:c c<cc<:¢<nc:c

The(1, 3) component of the resultingrrelation matrices is fixed, because it must be consistent
with the fact that th€1, 4) component in the left operand is & ‘ and the(2, 3) component in the
second operand is‘a>  too. Similarly, the componentd, 4) and(2, 4) are uniquely generated.
However, theg2, 3) component is not uniquely generated, and this is why the above concatenation
produces three representations.

Clearly, the above result is not the representation of all regions that are included in the resulting
DBM as given in Identity 8.5. But if we try all the combinations of representations of the two factor
regions and join together all the results, we will obtain the expected decomposition of the DBM
into regions.

By summarizing, in order to get a correct representation of the concatenation of regions by pairs
(w, M), we need to work wittsets of such pairs, and to assure that, in each such set, together with
a pair(w, M) representing a regioR, all the pairs that represent this region are contained.

We will develop in this chapter the theory of DBMs, regions andord representations for
regions. Part of the chapter is a restatement of some well-known properties concerning DBM nor-
malization and/or constraint propagation [Gau99, DMP91, vH89]. But the bulk of it is new, and
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concerns the restatement of the properties of concatenation and 2tarsgynals andn-words,
as given in Chapter 6, for regions azwtword representations of regions.

A permanent concern in this chapter is again the compositionality of the projection, juxtapo-
sition, resp. concatenation operations. This is quite normal, since we try to define syntactic op-
erations on representations of set2efsignals, and we already know from Chapter 6 that, for
2n-regminoes, such compositional operations are not possible (excepting juxtaposition). The key
property that makes projection compositionatesvexity of intervals.

This chapter runs as follows: the first section resumes some well-known properties concerning
DBM normalization. In the second section we introduce our concatenation operation on regions
and prove its compositionality. The third section serves for introducing-therd representations
for regions and for defining concatenation on them. In the fourth section we generai#emata
to a class that works omword representations and prove that this class enjoys the same properties
asn-automata. Most notably, we show that the non-elastic star closure theorem also holds for
automata that work on non-elasfig-word representations.

Let us note thah-automata representing clock constraints are different from region automata
in the sense of Alur and Dill [AD94]: im-automata, each region is represented byra while in
region automata, each region is a state.

8.1 Difference bound matrices

Traditionally,n-regsignals over a one-letter alphabiet RSig, ({a}) bearing the property
R;; € ZInt foralli,j € [1...n]

are calledifference bound matrices, orn-DBMs. By generalizing, we call any-regsignal over a
one-letter alphabet as artended difference bound matrix, orn-EDBM. Observe that an EDBM
is in fact a matrix whose components aegular expressions over intervals, in the sense used in
Chapter 3. For example, the following matrix i2-&DBM and not &2-DBM:

4= ({—%}* {‘3}*)

When speaking of regular expressions over intervals, we have in mind the theory developed in Section 3.2. Which, of
course, needs to be extended over the whole Kleene algebra of intervals with integer5¢#has (in Section 3.2 we
have studied only intervals withatural bounds).

The class of:-DBMs is denoted>bm,, while the class ofi-EDBMs is denoteddbm,,.
Thesemantics of ann-EDBM D € £dbm,, is formally defined as follows:

|D|| = {o € Sig,({a}) | foralli,;j € [1...n] there exists € D;; such that;; = a*}

We present, in this section, several properties concerning DBMs, most of them well-known in
the domain of max, +)-algebras [Gau99, GP97, Gau92]:
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Proposition 8.1.1 ([Gau99]). Givenann-DBM D € Dbm,,,
(ij)je[l...k+1] with ij € [1 .. n] and ik+1 =11, We have that

D|| # 0 if and only if for each cycle

k
0€> Di., (8.7)
j=1

Proof. We may observe first that, given ansignalo < Sig,({a}), for each cycle(i;)ci..k+1]

k
with i; € [1...n] andipy, = i1, Z%im = o, = a”. This property follows by induction oh
j=1
from the triangle identity 6.1. We then only have to observe that for eaeh D], 2?21 Tijijen €

k
Zj:l Dijij+1' U

Definition 8.1.2. Ann-DBM D € Dbm,, is said to be in normal form iff the following two prop-
erties hold:

1. Foreachi € [1...k], D; = {0}.
2. Foreachi,j, k€ [1... k],
Dji, € Dij + Djy, (8.8)

We will refer to the property 8.8 as thieiangle inclusion, by similarity to the triangle identity for
n-dominoes. The set of-DBMs in normal form is denote®nf,,.

Remark 8.1.3. The triangle inclusion implies that a DBM in normal forth € Dnf,, is antisym-
metric, that is, it has the property th&f; = —D,; forall 4, j € [1...n].

Proposition 8.1.4. Any n-DBM in normal form has a nonempty semantics.

Proof. We first check the hypotheses of Proposition 8.1.1 for cycles of length 3. To this end, take
three indices, j, k € [1...n]. Two cases occur:

1. Dy is a point interval D, = {«} for somea € Z. Then

Dij + Dj, + Dy 2 Dig + Dy = {a} + {—a} = {0}

hence Proposition 8.1.1 holds.
2. D, has a nonempty interior. Denote then= inf D;;, andg = sup D;;. Clearlya < .
Then

Djj+ Dji. + Dy 2 Dig. + Dy 2], B[ + 1=, —a[ =]a—B,6-a[ >0

due to the property < .
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On the other hand, for any cycl&;);c(i..,) With iy, = i, the triangle inclusion 8.8 can be
repeatedly used to prove that

Z Dijij+1 2 Dilig + Z Dijij+1 2 L 2 Dil’ik_l + Dik‘—lik + lell

But we already know that € D;,;, , + D;, ,:, + D;,i, from the first part of the proof. Therefore,
this chain of inclusions implies that property 8.7 must also hold for the whole ¢yglg;. 4. O

Observe that, in the above proof, we have used the factih& an interval. Hence the property
does not hold for EDBMs. In fact, the example 6.25 from Chapter 6, page 99 is an example of an
EDBM which is in normal form, but has an empty semantics:

0 {1,2} {2,5}  {6,8}
po [{=2-1} 0 {1,3}  {4,7}
| {-5,-2} {-3,-1} 0 {3,4}
{-8,—6} {-7,—-4} {-4,-3} 0

As a corollary, am-DBM is equivalent to am-DBM in normal form (isnormalizable) iff its
semantics is nonempty.

The following result shows that, unlike the casenafegsignals, projection is compositional for
DBMs in normal form. Remind that projection of anregsignalR € RSig,(X) onto some set
X C [1...n] was defined in Chapter 6, Definition 6.4.3 as the matrix resulting after deleting the
rows and columns oR whose indices are not iN .

Proposition 8.1.5. For each n-DBM in normal form D and X C [1...n], D|, isann-DBM in
normal formtoo and || D|, || = || D[

Proof. The first part of the property is straightforward. We prove the second part by induction on
the size of» — card (X)), and the proof of the induction step relies on interval convexity.

Take somén + 1)-DBM in normal form D € Dnf,, and consider its projectioﬁ)hlmn}. Take
further somen-signalo € ||D|[1._.n} ||. We will prove that this signal can be (perhaps not uniguely)
extended to &n + 1)-signalo’ € || D||.

Fix some reaby, € R and denotey; = o + oy;, for alli € [2...n]. Observe then that

aj — ;= 015 — 01 = 015 + 01 = 045 = 0}
by straightforward applications of the triangle identity 6.1.
Let us observe that, if we find a real. ; such that

Qpi1—; € Dy foralli e [1...n] (8.9)

then we are done, because the maitfigdefined by
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0;j Iﬁl,jE[ln]
0= a1 —a; iff j=n+1i€[l...n+1]
Q5 — Qo |ﬁZ:n+1,j€[1n—|—1]
would be ann + 1)-signal, as the triangle identity 6.1 can be easily checked,ang.:
Timi1 T 01y = Qni1 — & + QG — Gyt = @ — @ = 035

and furtherg’ would be in the semantics @4, sinceo; ,,,; = a,,11 —a; € D;,11 by construction.
For proving property 8.9 let us first prove that, foralf € [1...n],

(@i + Dini1) N (aj + Djpyr) # 0 (8.10)
To this end observe that, by the triangle inclusion 8.8,
&+ Dipi1— 0o —Djppr=0o; —aj+ D1+ Dypgrj 2 0y + Dy
and sincer;; = —o;; € —D;; it follows that0 € o, + D;;. Hence
Oc€o;+Djpy1 —aj—Djnpr

which is equivalent to property 8.10.
But then, due to convexity,

ﬂ az+Dzn+1 7é®

fact which shows the existence of a regl ; that satisfies property 8.9. O

The following property says that the adjective “normal form” is correctly chosen to characterize
the property:

Proposition 8.1.6. For any two n-DBMs in normal form, D, ) € Dnf, with D;; C D;; for all
i,j € [L...n]and Dy; # D;; for somei, j € [1...n] we have that

IDI < 1Dl

Proof. This property is a corollary of Proposition 8.1.5: take sam@BM in normal formD &
Dnf,. The property is trivial if all components are point intervals, because choa@¥iag in the
statement would lead to havirig; = () for somei, j € [1...n].

Suppose then thdd;; has a nonempty interior for somgj € [1...n|, sayD;; = |a, f] (the
cases with other parentheses are treated similarly). Suppose also we have someDRMIn
normal formD’ with D}, C D;;. Take theny € D;;\ D;;. Note thaty can be regarded agasignal.

But then, by the construction in Proposition 8.1.5, thisignal can be inductively extended to
ann-signal, denote ity, which belongs to the semantics Bf This ends the proof, sinee¢ || D ||

due to the fact thay,; = v ¢ D;;. O
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For each sets of real numbetsC R, denoteg A] the convex closure of,, that is:
= {)\x—l—(l—)\)y |z,y € A\ € [0,1]} (8.11)
Observe that the convex closure commutes with summation: for any twd sBts- R,
[A] 4+ [B] = [A+ B] (8.12)

Proposition 8.1.7. Given two n-DBMsin normal form D, )’ the following n-DBM is also in nor-
mal form:

[D U D'];; = [Dyi; U D]

More generally, for any set of n-DBMs in normal form D = (D;);cz (nonnecessarily finite or
countable), the following n-DBM isin normal form:

DeD
Proof. By verification of the triangle inclusion 8.8: given a triptefj, £ € [1...n],
[DU D'ij + [DU D = [Dij U D] + [Dji U D]
[(Dy; U D) + (Dj U DY)
[(Dy + D]k (Dij + D) U (Df + Djy) U (D + Diy)]

D [(Dij + Djx) U (D}, + Dly)]
D [Dl-k U Dik] by assumption thab is in normal form
= [D U D,]ik

The generalization to arbitrary families @ DBMs in normal form follows along the same lines,
due to the distributivity of summation over union. Note that we rely on the fact that the convex
closure of any set of real numbers is an interval. O

Propositions 8.1.6 and 8.1.7 allow us to definerbemalization of a DBM D with nonempty
semantics: it is the Iargest DBMD’ (with respect to inclusion) satisfying the triangle inclusion and
bearing the property thdd;; C D,; foralli,j € [1...n]. Thatis,D" is the normalization oD iff
D'is in normal form,|D'|| C HD|| and for allD" with | D"|| C || D|| we have||D"|| C || D'||.

Proposition 8.1.8. The normalization of each DBM is unique.
If D’ isthe normalization of D then || D’'|| = || D]

Proof. The first part of the statement follows by Proposition 8.1.7, since this proposition says that
the set of DBMs in normal form whose semantics is include{{7if| forms a complete superior
lattice [Bir79], which hence has a supremum.

an-signal in||D|| \ || D'|| and produce the convex closyie U ¢|, which would be, by Proposition
8.1.7, an-DBM in normal form strictly larger tha®’, hence contradicting the assumption. O
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To bring ann-DBM D with the property 8.7 into normal form, we may utilize another form
of the Floyd-Warshall-Kleene algorithm: namely, we build the sequenee@BMSs (A)kco...n]
inductively as follows [Gau99]:

Ao=D
(Ak+1)ij = (Ak—l)ij N ((Ak—l)zk + (Ak—l)kj for eachz',j € [1 ... n]

The correctness of this algorithm is the subject of the following proposition. Similar results can
be found in [Gau99, Tri9§]

Proposition 8.1.9. Provided D hasa nonempty semantics, 4,, isthe normalization of the DBM D.

Proof. Observe first that the nonemptiness hypothesisofimplies that, for each j € [1...n],

p—1
ﬂ{ZDmm |ile[l...n],pEN,ilzi,ip:j} -
=1
p—1
= m{ DlmJrl |Zl€ ] Vll,ZQE[ .p],ill#iZQ,ilzi,ip:j,pEN} (813)

=1

This follows because, if we havg =i, then0 € D;, ;, ., +...+ D;,__,;, and hence
Diiy + Dill—hizl + Di117i11+1 +. Tt Dizz—hilz + Dilz,i12+1 +o Dip—lil 2
2D Diyiy + ... Dizl—l,izl + Diz2,iz2+1 +..t Dip—liz

and this implies that, in the intersection in 8.13, sums in which an index is repeated are “useless”.
Let us denoteD the set defined in Identity 8.13. ThélD| = ||D| due to the fact that all

n-signals in|| D|| must obey the triangle identity. It only remains to show thas in normal form.

To this end, observe that, for each € [1...n],

p—1
Eij +E]k = ﬂ { ZDiliH—l | 2.le[l e 'n]vvhvl?e[l e 'p]vih %ilmil:ivip:jvpeN} +
=1

qg—1
+ { S Dy L€ n ¥l e q), %jlz,jlzj,jq:k,qu}
o (8.14)
Remind now that the distributivity of intersection over summation
AN(B+C)=(ANB)+ (ANC)

holds iff in the right hand side the intersections are nonempty. This is our case since we have
assumed that the semantics/ofs nonempty and hence each intersection in Identity 8.14 must be
nonempty. Hence we may apply this distributivity (in the reverse direction) to get:

3 Such results are an essential tool in the computation of the set of reachable states in timed automata.
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—

p— q—1

Eij ‘|‘E]k = ﬂ{ Dim_H -|- ZDjlel | ile[l . .n],Vll,lge[l . .p],ill %ilz,lll:i,

=1 =1

ip=J,PEN, i €[L...n), Yly, Ly €[ q). i s 1= Ja =k, gEN |

and then observe that from the two sequences of indices we may construct a single sequence that
starts ini and ends irk, which means that the above intersection is included in the left-hand side
of identity 8.13, written for the indicesandk. O

8.2 Regions

In this chapter we will be interested in a special class of DBMs in normal form, namely DBMs in
which each interval is either a point interval or a unit interval. The reason to do this is that we want
to represent (E)DBMs as sets of regions.

We will call such DBMs agegions, due to their close connection to the regions in timed au-
tomata [AD94].

Definition 8.2.1. Ann-DBM D € Dbm,, iscalled an n-region if it has a nonempty semantics and,
for eachi,j € [1...n],

e Either D;; isapointinterval D;; = {a} for somea € Z,
e Or D;; isan openinterval of unit length D;; = |3, 5+1[ for some 5 € Z.

The set of regions is denot&tkgn,,.
Proposition 8.2.2. Each regionisin normal form.

Proof. Take some regio) € Regn, and suppose it is not in normal form, that is, there exist
somei, j,k € [1...n] such thatD,; Z D, + Dy,;. We will show then that it does not verify the
nonemptiness property 8.7. We have the following cases to analyze:

1. All three intervalsD,;, D;, and D,; are point intervals, say),; = {a}, Dy, = {8} and
Dy; = {v}. Then it follows thatx # (3 + ~. But this implies that
Dij + Djy+ Dy = {a—  —~v} # {0}

which is in contradiction with property 8.7.

2. D;j =]a,a+1], Dy =16, 6+1[ andDy; = {v}. Then the assumption thak; & D;; + Dy;
rewrites tola,a+1[ € |3+, 5+~ + 1[. Hence we must have either > 5+ ~v + 1 or
a+1<B+7.

It then follows that

Dij 4+ Dji + Dyi =Ja—y—p—1,a=y—= B[ F 0

The case whem;,, is a point interval and);;, is an open unit interval is similar.



e L ke

3. D;; = o, a+1], Dy, = |8, f+1[ andDy; = |y, y+1[. Then the assumption th&k; Z D, + Dy,
rewrites toa, a+1[ Z |5+, f++2]. Hence we must have either> g+v+2ora+1 < g++.
But again this implies that & D;; + D, + Dy, as it can be easily seen by verification. O

In the introduction to this subsection we have talked about decomposition of each DBM into a
union of regions. The formalization of this is given by the “inclusion” relation, * C Regn, x
£dbm,,, defined as follows

REDIff RZJQD,]forallz,]E[ln]

If R C D for some regiom and EDBM D, then we say thaR isincluded in D, or thatD includes
R. We also denot® 2 R in this case.

Of course = can be defined as a relation on EDBMSs, but we utilize it onlyjRagn, x £dbm,,.
For eachD € £dbm,, we also denoté D) the set of regions which are includediin

The following property shows that, by replacing an EDBMwith the set of regions which are
included inD we lose nothing w.r.t. semantics:

Proposition 8.2.3. For each n-EDBM D € £dbm,,

DIl = J{IRIl| RC D}

Proof. The inverse inclusion is straightforward. For the direct inclusion, take segignalo €
| D||. Define then the following DBM:

R = {{Uz’j} iff o €N
(loij]). [o3])  iff 05 €N

By definition R > o, henceR has a nonempty semantics, hence it is a region. On the other
hand, for eachi,j € [1...n], 0;; € D;; by assumption. But then the following two cases arise,
according to whether;; is integer or not:

e 0;; € Z. Then clearlyR;; C D;;.

e 0,; ¢ 7. But D;; has integer bounds, hence eithey; | € D;; or |0, | is the lower bound oD;;.
Similarly, either[o;;] € D;; or [o;;] is the upper bound ab;;.
Hence in this case toB;; C D;;. O

Another essential property of regions is the fact that region representation of anssigofals
is unique:

Proposition 8.2.4. For each pair of n-regions R, R’ € Regn,,, if |R|| N ||R|| # 0 then R = R'.

Proof. The hypothesis implies that, for eachy € [1...n], R;; N R;; # 0. But as the interval&;
and R;; are either point intervals or open intervals of unit leng®y,n i}, # 0 is equivalent to
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Corollary 8.2.5. For each two sets of regions R, R, C Regn,,
Ri1 C Rs.

Ril| € [[Rq|l if and only if

Proof. The inverse inclusion is straightforward. For the direct inclusion, take some r&goR;,
hence||R|| C ||R:|| which implies that| R|| C ||R.||. But then, for eacls € R there must exist a
regionR’ € R, with o € R'. Buto € ||R|| N ||R'||, which implies that? = R'. 0

8.2.1 Juxtaposition and concatenation on regions

The representation of EDBMs by regions would not be satisfactory if we would not have a compo-
sitional concatenation on these representations: compositionality is essentially needed for further
representing EDBMs — and regular expressions over them — with the aidatomata.

In Chapter 6, Definition 6.4.3 we have introduced a juxtaposition operation on regsignals, hence
we may think we only need consider its particularization to regions. Since projection is compo-
sitional on regions, we would have the desired compositional concatenation. However, with the
definition from Chapter 6, juxtaposition is not an internal operation on regions, that is, the result
might not necessarily be a region, but rather a DBM. An example was provided in the introductory
part of this chapter.

The issue from this situation is to define juxtaposition as an operation that associates, to each
pair of regions, aet of regions, namely those regions which are included in the DBM constructed
by Definition 6.4.3. For avoiding working with that heavy definition, but also due to the composi-
tionality of projection, we may define way more simpler the juxtaposition of regions as follows:

Definition 8.2.6. Given two regions R; € Regn,, and R, € Regn, and some integer p <
min(m, n), SUppose that

Fa |[”*P+l...n] = Iy |[1...p} (8.15)
The region p-juxtaposition of R; and R; isthe following set of (m + n — p)-regions:
RiO,Ry = {R € Regny, i | Ry = Bi Rl i = B} (8.16)
If Ry |[n7p+1n_n] #+ Ry |[1...p] then we put R0, Ry = 0.

In the sequel, the juxtaposition operation from Definition 6.4.3, with regions as arguments, will
be called aPBM juxtaposition.

The next concern is to check that all the (signal-)juxtaposition properties, as stated in Chapter
6, hold for region juxtaposition too.

Proposition 8.2.7. 1. Region juxtaposition is compositional: for each R, € Regn,, and Ry €
Regn,, and p < min(m,n),

1Ry 0y Ro|| = [| Ra[| By || R (8.17)
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2. For each R € Regn,,, R' € Regn,, for each X C [1...m] with card(X) = p, for each
Y C[1...n]with card(Y) = q and given r < min(p, ¢), supposethat [m —r+1...m] C X
and[1...r] C Y. Then we have that

R[,O,R|, = (RO,R’ (8.18)

|Y ) |XU(Y+mfr) :

3. Region juxtaposition isassociative: for each R, € Regn,,, R, € Regn, and R3 € Regn,, and
for each k& < min(m,n) and ! < min(n, p),

(R1OxR2)0, Ry = ROk (RO, R3) (8.19)

Proof. The first property follows due to the compositionality of projection: suppose that require-
ment 8.15 holds. Then:
||R1DPR2|| = {0 €R | R|[1m} - R17R|[nfp+1...m+nfp] - R2}
={0€ER] ‘7|[1...m} € || Ry € [|Rs||}
= | R[5 Rel|-

Hv U|[n7p+1...m+n*p]

In the case requirement 8.15 does not hold, there must exist some indiceq1 ... p| such
that(R1)itm—p,j+m—p 7 (R2):;. Butthis implies that R1 );+m—p, j+m—p N (R2)i; = 0, fact which as-
sures that for any twa-signalss; € ||R,|| andoy € || R,|| we must havéo, )i m pitm p 7 Oij-
Therefore, the sethR; || and || R;|| cannot bep-juxtaposed, i.e|| R, ||0,|| Rz|| = 0. As a conse-
quence|| R0, Rl| = 0 = || Ru]|T, | Re-

The other two properties can be proved with the aid of the compositionality of juxtaposition
and projection, by using Corollary 8.2.5 and Proposition 6.2.7:

IR O R ||| = | Rill |y Or | B2l |, by compositionality of juxtaposition
= (IRIF 1R Ly s by Proposition 6.2.7
= (RO, R)| |XU(Y+m7T) by compositionality of projection
[(R B Ro) || Ra| = (|| R0 ]| O [| Ro||) O B3|
= || Ry ]| Ok (|| Rz D0 Rs) by associativity of7,
= || RO (R0 R3) | O

Consequently we may define the desired compositional concatenatibnrregions:

Definition 8.2.8. Given Ry, R, € Regn,,, the 2n-region-concatenation of R, and R is the fol-
lowing set of 2n-regions:

Rl © R2 = {R|[1...n]u[2n+1...3n] | Re RanR2} (820)

The following proposition shows that region concatenation shares almost the same properties
as2n-signal concatenation:
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Proposition 8.2.9. 1. Region concatenation is compositional: for each two 2n-regions, Ry, Ry €
Regn,,,

1By © Ryl = [|Ba| © || Re (8.21)

Observe that here we have implicitly extended the semantics application || - || to setsof regions.
2. Region concatenation is associative: for each triplet of 2n-regions Ry, Rs, R3 € Regn,,,,

R1 © (R2 © Rg) = (Rl © RQ) © R3 (822)

3. Eachregion hasaleft and aright unit: for each R € Regn,, thereexist 15, 1%, € Regn,,, such
that

1o R=R® 1} ={R} (8.23)
The definitions of the left and right units are the following:

(1%)i; = (Pe)ntij = WR)imss = Lp)ntints = Rij

(1R)i = Wp)nsig = WRin+s = W)ntints = Batints
4. For eachregion R € Regn,, there exists a weak inverser with the property that
l,eROR, 1,eROR (8.24)
The definition of the weak inverse is the following:

B Ritnin ?ffiE[l...n],jE[n—i—l...Qn] (8.25)
Ri,n,jJrn |ffz€[n—|—12n],]€[1n]

Ri—n,j—n iff Z,j S [n +1... 271]

Proof. The first property is a straightforward corollary of the compositionality of juxtaposition and
projection, while the second property follows from the associativity of region juxtaposition and its
proof runs exactly as the proof of the associativity2afsignal composition — see Proposition
6.2.10.

The other two properties have more specific proofs, compared to their “relatives” form Propo-
sition 6.2.10, and this is due to the particularity of region juxtaposition. Still both of them rely
essentially on compositionality.

For proving property 3, observe first that eavhsignalr € 1} is a unit of the formlj, for
somef € Sig,,,({a}). On the other hand, for argn-signalo € Sig,,,(X), if o ® 1} is defined then

15}y n) = Olps1. 20 Butthis implies thaty = 17 and therefore
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RO 1] = {oo7|0c IRl T e IR}
={coL;|oe|RI.1
={ocol,|oec|R|}
= Iz

= U|[n+1...2n]}

The equalityR ® 1%, = { R} follows then by the uniqueness property 8.2.5. The validity of the
identity regarding the right unit can be established similarly.

The proof of the last property proceeds along similar lines: for each R we have that
& € |R||ande ® & = 1. Hencel’, € |R ® R||, which implies that|1%|| C ||R ® R||. And here
we apply Corollary 8.2.5 to get thal, € R ® R. O

Let us observe here that only the weak inverse property can be obtained, that is, we cannot have
equality in Identity 8.24, since in general the &b R might have cardinality greater than

As usual, any operation defined on elements of a certain type can be easily extended to sets
of elements. Therefore we also dispose of the following compositional concatenatsets @h
regions: for each pair of sets of regior®;, R, C Regn,,,,

RiORs={Ri® Ry | R1 € Ri,Rs € Ro}
Let us also denote the set of all left and right units¥afregion concatenation ds,:
1o, = {R € Regn,, | Vi € X, R, = 0} = {15 | R € Regn,, } (8.26)

It is easy to see thdh,, is a unit for concatenation on sets of regions. Once in the possession of
this unit we may define thstar operation® on sets of regions as follows: for eafhC Regn,,,

R® = JRM®

keN
whereR% = 1,,, andR*tD® = Rk o R for all k& € N.

Proposition 8.2.10. For any setsof regions R, R’ C Regn,,,,

IROR =[IRI©IR] (8.27)
IRl = IR (8.28)

Consequently, (P(Regn,,), U, 0, ®, 12, (-)¥) isaKleene algebra.

8.3 Representing DBM s with the aid of n-words and n-relations

In this section we formalize the possibility to represent sets-@gions with pairs consisting of a
n-word and a matrix of relational symbols.
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8.3.1 n-relations

Definition 8.3.1. Ann-relation isan n x n matrix M over the set of relation symbols I = {<, =
, >} satisfying the following property (called in the sequel as the consistency property):

There exists no cycle in the matrix (i;) e k1 Withé; € [1...n], k > 1 and iy = i3
such that

eForalljel[l.. k], Mj .,
e Forsomej € [1...k|, M;

e {L < L’L — L}’
i = <.
We denote the set of-relations ag;,.

Observe that any-relation M is anantisymmetric matrix, that is:

o M, =‘="‘and
o If M;; ="="thenM;; = =",
o If M;; =< ‘thenM;; = >*
o If M;; =* > “thenM;; =" <"
An alternative definition of:-relations is the following: for each sequence of indicas=
(Mg )ren..p) With my, 11 = m,, denote

A(m):{re[l...p]|MmeT+1 =¢="
B(m):{re[l...p]|Mmrmr+1 =<
Cm)={rell...p]| Mpm,, = >°

Then am-relation is am x n matrix over” bearing the property that
If card(A(m)) < p — 1 then bothcard(B(m)) > 1 andcard(C(m)) > 1. (8.29)

Let us also provide a simple way for checking whether a matfix M,,,.,,(I") is ann-relation:

Proposition 8.3.2. M isan n-relation if and only if it is antisymmetric and the consistency prop-
erty holds for all cycles of length equal to 3.

Proof. The reverse implication can be proved as follows: take some arbitrary sequence of indices
m = (m,),cn.., With m,; = m4. Suppose that property 8.29 is false for this sequence. Of course,
the antisymmetry and the hypothesis imply that 4. We will show that the same property is false
for a shorter sequence, fact which, by induction, would imply that property 8.29 would be false for
a sequence of length 3.

To this end, assume w.l.0.g. thatrd(C(m)) = 0, hence we haveard(A(m))+card(B(m)) =

n. We havel cases to study, according to whetlidy, .., is‘ < ‘ or © = ¢, respectively to whether
M pyms 1SC < COrt =",
Consider first the casé/,,,,,, = M,,m; = ° < ‘. Since by hypothesis, the sequence

(my, mg, m3) satisfies property 8.29, we must havg,..,, = ¢ > ¢, hence, by antisymmetry,
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Myyms = ¢ < ‘. But then the sequena®’ = (m4,ms, ... ,m,) doesnot satisfy property 8.29,
because we have replaced twva ‘ signs by with one < * sign, hence

A(m') = A(m), B(m')=B(m)—-1, C(m')=C(m)=0

Similarly, if M,,m, = < “andM,,,,m, = * = ‘thenM,,,», = > ‘ and again the sequence
m’ does not satisfy property 8.29. The other cases are treated similarly. O

Remark 8.3.3. By Proposition 8.3.3, we have that in afrelation M the length 3 cycles may only
beofthetype$( — (74 — L,L — L>’ (L < L’L — L’L > ()’ (L — C’( < C’( > L)’ (( < L,L < L,L > L) and
their circular permutations.

8.3.2 Operationson n-relations

Since our aim is to represent sets of regions (and thus EDBMs) with the aidvofds andn-
relations, we need to provide an algebraic calculus of composition and star-mtations too.
This is the issue of this subsection.

The first operation to be defined is projection: for eddhe I, andX C [1...n|, the X-
projection of M is the card (X )-relation resulting by deleting from/ the rows and columns that
are not inX.

Definition 8.3.4. Given an m-relation M; € I,,, an n-relation M, € I, and a positive integer
p < min(m,n), if

M, |[mfp+1...m] = M, |[1p] (830)
then the p-juxtaposition of Af; with M, isthe following set of (m + n — p)-relations:
MO My = {M € iy | M|[1___m] = M, M|[m_p+1___m+n_p] = M} (8.31)

If requirement 8.30 is not satisfied then we put M; 0, M, = 0.

The following proposition shows that relation juxtaposition enjoys all the properties of the
juxtaposition operations seen so far:

Proposition 8.3.5. 1. Given an m-relation M; € I,,, an n-relation M, € I, and a positive
integer p < min(m,n), M;0,M, # ( if and only if M, and M, verify the requirement 8.30.

2. For each M, € Regn,,, My € Regn,, for each X C [1...m] with card(X) = p, for each
Y C[1...n]with card(Y') = g and each r < min(p, q), supposethat [m —r+1...m] C X
and[1...r] C Y. Then we have that

M|, O, M|, = (M0, M, (8.32)

|Y ) |XU(Y+mfr) ’

3. Relation juxtaposition is associative: for each M; € I, M, € I, and M5 € I, and for each
k < min(m,n) and [ < min(n, p),

(MlljkM2>DlM3 = Mlljk(MQDlM?)) (833)
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Proof. Concerning the first property, note first that we are interested in proving the reverse impli-
cation, since the direct implication is contained in the definition of juxtaposition. Hence consider
two relations)M; and M, satisfying the hypotheses. In order to buil¢ha+ n — p)-relation from
them, we must first see what could be the possible choices for the comp@ngnts the new
relation, where € [1...m —r+1jandj € [m+1...m+n —p|.

So let’s consider, for each such pair of indi¢es) € [1...m—r+1]x[m+1...m+n—p],
the following set of pairs of relation symbols:

Aij = {((M)ix, (Ma)k-mps) | k€ [m—p+1...m]}

Let us then call pairs that are different frofn< *,* > ‘) or (* > ‘¢ < ‘) ascritical. We
would like to prove that, once some critical pair is4yy;, all the other critical pairs from);; do
not “contradict” it. There could be several “contradictory” pairs that may od¢ut: *, ¢ < ) and
(‘>4 >9,or(f<Lr=9and(t > =9),or (‘=S =9and(* > > ), or(f <<
and(‘ > ‘¢ > ), or their symmetrics/cyclic permutations. We will prove the impossibility of
occurrence only for the first case, the other proofs being similar.

Suppose the contrary, hence there existsc [m — p + 1...m] such that(M; ) = © < °,
(M2)k-mip; =< and(My)y = > ¢ (Ms)—mip; = * > ‘. But then, by the consistency re-
quirement(M;), = ¢ > ‘and(Ms)k_m+p; = * < ‘, Which is in contradiction with the assumption
8.30. Hence, the two critical pairs cannot occur botijn

It follows that, if (M )ik, (M2)r—m-p,;) IS & critical pair, therthere is only one choice of a
third relation symbol\/;; such that the triplet(M; )ix, (M2)k—m+p;, Mj;) Satisfies the consistency
requirement for cycles of length 3. Moreover, this choice is the same for two critical pairs that are
“noncontradictory”.

As a consequence, &m + n — p)-relation inA/; 0, M, can be constructed the following way:

e Foreach,j € [1...m|, M;; = (My);.

eForeach,jem—p+1...m+n—p|, Mij = (M2)i—mtpj—m+p-

e Foreachi € [1...m —p|andj € [m+ 1...m + n — p|, M,; is a choice which is consistent
with any (i.e. all) of the critical pairs in\;;. Also M, is the reverse ol/;;.

Observe that the pais < “,* > ‘) and(‘* > *,¢ < ‘) are noncritical since they are consistent
with any choice of a third relation symbol. That is, if a s&f contains only noncritical pairs then
the choice ofi/;; can be any relation symbol.

This observation ends the proof of the first property. However we will observe that the same
proof could be employed for establishing the truth of the following two related properties:

(A) Given anm-relationi; € I,, ann-relationM, € I, a positive integep < min(m,n) and a
setX C [1...m]with card(X) = p, if My|, = M, |[1...p} then there exists som¥ € I5,.,,,
such that]\/.l|[1mm} = M, andM|[m_p+1mm+n_p] = M,.

(B) With the same hypotheses as above, and considering als®’asét . . . n] with card(Y') = p,

if M | = M, |Y then there exists som¥ € I,,.,—, such thatM|{1mm] = M, and

M.

[m—p+1...m]

[m—p+1..m+n—p] -
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In fact, these properties can be regarded as connected to a definitiset-dhdexed juxtaposition, something of the type
M,Ox , M, respectivelyM, 0, v Mo.

For proving the second property, start wity, < I5,, My € I}, and with setsX,Y and
integersp, ¢, r as in the statement of the property. The right-to-left inclusion of Identity 8.32 is
straightforward since for eadh: + n — p)-relationM € (M;0,M,) |XU(Y+m_T) we have that

M|[1k] < (MIDPM2)|XU(Y+m7r) |[1p} - (MllijZHX = {Ml |X}

M|[p— = (MIDPM2)|XU(Y+m—r) |[p—r+1...p+q—r] = (MlmpM2)|Y+m—r = {M2 |Y}

r+1..p+q—r]
For the left-to-right inclusion we will essentially rely on the two properties (A) and (B): take a
(p+ q —r)-relationM € M, |, 0, M|, that is,M|[1mp] = M|, andM|[p7T+1n_p+qir] = M|, .
FromM|[1mp] = M, |, we conclude, by means of property (A), that there existsan-q —r)-
relationM; € I,,, , such that

M1| :M1 and Ml :M

[1...m] |[m—p+1...m+q—r]

FromM|[p_T+1mp+q_r] = M, | we deduce, by applying property (B), that there exigts-ap—r)-

relationM, € I},,-, such that

M2| =M and Mg M,

[1...p4+q—7] |[p—r+1...n+p—r] =

But these two choices imply that

M, |[m—p+1...m+q—r] =M, |[1...p+q—7"}
hence there must further exisf < I,,.,,_, such that

= Ml and Mhm MQ

—p+1l..m+n—r] =

M |[1...m+q—r]

We then only have to observe that this + n — r)-relation belongs td/ 0,1, because:

M|[1...m] = M|{1...m+q—r} |[1...m} = M, |[1...m} =M

|[m—7"+1...m+n—7"} = M|[m—p+1...m+n—r] |[p—r+1...n+p—7"} = M2 |[p+r—1...n+p—r] = M2

Finally, the proof of the third property follows by easy verification:
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€ M0, M,
andM |, k) = Ms}

= {MGFm+n+p—k—l | M|[1...m+n—lc] |[1...m] = M,
M|[ M27

andM|[m+n—k—l+1...m+n+p—k—l} = M}

= {M € Dntnp—t—t | M|[1...m] = M, M|[

(MlmkM2)DlM3 = {M € FTTH-TH‘IJ—]C_I | M|[1...m+nfk]

1..m+n—k]| |[m—k+1...m+n—k] -

m—k+1..m+n—FkK| = MQ’

andM |, kit = M}

Mle<M2DlM3) = {M € Fernerfkfl | M|[ = Ml
€ M,O,Ms}

1...m]

and M |[m—k+1...m+n+p—k—l]

- {M € Dntnipht | M|[1...m] = M, M|[m—k+1...m+n+p—k—l] |[1...n] = M,
andM'[m*k+1...m+n+pfkfl] |[nfl+1...n+pfl} - M3}

= {M € Nyanipit | My =My M| = My,
andM |, it ik = Ms} u

Having these properties, we proceed further to defining concatenation and star:

Definition 8.3.6. Given two 2n-relation M;, M, € I5,, their concatenation is defined as follows:

M; ® M, = (M0, M>) (8.34)

|[1...n]u[2n+1...3n]
The good properties of concatenation are the following:

Proposition 8.3.7. 1. 2n-relation concatenation is associative: for each triplet of 2n-relations
My, My, M3 € I3y,

My © (My ® M3) = (M; © M) ® M3 (8.35)

2. Each 2n-relation has a |eft and a right unit: for each M € Iy, there exist 1}, 1%, € I, such
that

1L, oM=Moly, =M (8.36)
The definitions of the left and right pseudounits are the following:

(1005 = iy = Winss = sty = My

(17;\4)ij = (H\/l)nﬂ',j = (17;\/[)i,n+j = (17\/1)n+i,n+j = Mn+i,n+j

Observe that, similarly to all units for the concatenations encountered so far, (1,); =
(1h)a == forallie[l...2n].
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3. For each 2n-relation M e I, there exists a weak inversel/ with the property that
1, e Mo M, 1, e MoM (8.37)
The definition of the weak inverse is the following:

- M, iffiefl...n],je 1...2
ity = | Minomn i€ llnhjelnt il on) (8.38)
Mi—n,j—n |ﬂ:l,j S [n—|—12n]
Proof. The proof of this proposition is similar to the proof of Proposition 8.2.9. We will only prove
the first property, whose proof relies on Proposition 8.3.5:

(My © Ms) © Ms = ((M; © Ms)0,, Ms) .ozt 1.0

M0, (M,0, Ms)
M0, M0, Ms)
= (M0, M,0,,M;)

|[1...n]u[2n+1...3n}) |[1...n]u[2n+1...3n}

(MlD M2 1 n]u[2n+1...3n]D”M3) |[1...n]u[2n+1...3n}
( 180, Mp0,, M3) |[1...n}u[2n+1...3n]u[3n+1...4n] |[1...n}u[2n+1...3n]
(M O MZD Mg) |[1 .nJU[Bn+1...4n]
My © (M ® M) = (( n(My © M ) |[1...n}u[2n+1...3n}
(

|[1...n}U[n+1...2n]u[3n+1...4n} |[1...n]u[2n+1...3n]
|[1...n}U[3n+1...4n] O
The powerse?n-relations becomes then a monoid with concatenation and with the following
unit:
1571: {MGFQTL | Mi,n+i:‘: ‘}

Let us finally introduce star osets of 2n-relations: given a set dn-relationsM C 5, thestar
of M is defined as:

M® = J M (8.39)

k>0

whereM® = 12 and M*+1® = M*E® & M for eachk € N.

8.3.3 n-word representations

Definition 8.3.8. Atuple (W, M) € WR, x I, iscalled a n-word representation.
The n-region R € Regn,, represented by the tuple (17, M) is defined as follows: for all 7, j €
[1...n],
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{Wi;} iff Mi; = ="
Rij = §IWi; — LWyl iff My =* < (8.40)
]W”,W”—I—l[ iﬁMij:‘>‘
The region represented by the tugh’, M) is denoted IV, M]. That is, we define a mapping
[-] : WR,, x I,, — Regn,, calledrepresentation, which associates to eacghword representation

the region which is represented by it.
The above definition should be incorrect unless we prove the following:

Proposition 8.3.9. For each (W, M) € WR,, x I,,, [W, M] has a nonempty semantics.
Proof. The proof idea is to check thélV, M] is in normal form. By Remark 8.3.3, we have to

check four (representative) casesdn We check here only two, the = “,* = *,* = ‘) case and
the(‘ <, ¢ < ‘> ‘) case, the proof in the other cases being similar.

1. Take some, j, k € [1...n] and suppose thdil;; = ‘=, M;;, = * = ‘andM,; = ‘ = ‘. Then,

by the triangle identity

W, Mlij + W, Mk = {Wi;} + {Wi} = {Wy; + Wi} = {Wa} = [W, M]a,

2. Take some, j, k € [1...n]and suppose thadt;; = * < ‘, M, = < ‘andM;; = < ‘. Then,

again by the triangle identity

W, Mij + W, Mk = Wij — L W[ + Wi =1, Wi[ = [Wij+ Wik —2, Wi; + Wi
[Wa M]zk = ]VVik_la VVzk[

because, by constructiofiy, M|; = Wy, Wy + 1] andWy; = —W;,. Hence, we get that

(W, M. C [W, M];; + [W, M];; in this case too. 0

The mappind:] defines an equivalence relation ®iR, x I, (the kernel of [-], in category
theoretic terms) denoted in the seqagland defined as follows:

(W, M) =, (W', M")iff [W,M]=[W' M (8.41)

The following proposition can be used to prove that eaategion has at least one-word
representation:

Proposition 8.3.10. Given some n-word representation (W, M) € WR,, x I,, suppose that there
exists some region R € Regn,,,; such that R|[1...n] = [W, M]. Then there exists a (n + 1)-word

representation of R, (W', M') € WR, 41 X I},41, such that (W’,M’)|[1___n} = (W, M).

Proof. We first “close” each open interval iR, that is, compute the DBMR € Dbm,_; with

= _ {[a,a-l— 1] iff Ry =Ja,a+ 1]
Y {a} iff Ri;j ={a}
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It is easy to see thak is still in normal form since the triangle inclusion is preserved by taking
closures of the sets involved in it.
We now simulate in part the proof of Proposition 8.1.5, namely choose a set of integarh

thata; — a; = W;; (for simplicity we puta; = W;;) and then prove thd\tj (o + Ripy1) # 0.

i=1
Then we observe that this intersection is a closed unit length interval with integer bounds, since
each factor of the intersection is. Thence we may choose one of the bounds of this interval, denote
it K, and build from it an + 1)-word W’ € WD,,,; which extends$V:

Wi, =W foralli,j € [l...n]
W/, =Wa+Kforallie[l...n]
W= Winpforalli e [1...n]

Similarly to the proof of Proposition 8.1.5 we get thé&t is a(n + 1)-word (in fact a(n + 1)-
signal) which belongs td R||. We now need to choose some relation symbols that extértd
some(n + 1)-relationM’ such thafiW’, M'] = R. This extension is done as follows:

‘= iff Ri,nJrl = {VVi,nJrl}
Iﬁ: Ri,n—i—l :]Wi,n+1 - ]-7 I/I/i,n—i-l[
iff Rint1 =|1Wint1, Wint1 +1]

len+1 = <
(¢
and of coursé\’ |[1___n} = M.

Let us show that this is @ + 1)-relation, i.e., that it is consistent. Singé& |[1_“n} = M we only
need to check cycles of length 3 in whight 1 participates.

Suppose such a cycle is inconsistent, 8y = <, M;,1; = < ‘andM,,,; = < ‘. But
thenR;; = |Wi;— 1L, W[, Rjns1 = Wint1—1, Wi, Rug1i = |Wag1,— 1, Wapa [ It follows
that

Rij+ Rjpi1+ Roy1i = Wi+ W1 + Wi, —3, Wi+ Wi 1 +Whpai =1 — 3,0]

which obviously contradicts the assumption tikahas a nonempty semantics, that is, the ldentity
8.7 The other cases of inconsistent cycles are treated similarly.

HenceM' is indeed gn + 1)-relation. As a consequend@)’, M’) is one of then + 1)-word
representations fak. 0

The following corollary says that representation of sets-@€gions with the aid of.-word
representations is complete:

Corollary 8.3.11. For eachregion R € Regn, there exists an n-word representation of it.

Proof. We only have to apply Proposition 8.3.10 iteratively, starting with a representatﬂﬁpf
that is, with[0, * = ‘].
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8.3.4 Operationson n-word representations

Our quest on providing representations of EDBM demands now to extend projection, juxtaposi-
tion, concatenation and positive star frenwords andr-relations ton-word representations. The
extensions are then, as expected, the following:

(W, M)|, = (Wl,, M|,) (8.42)
(W, M)O,(W', M") = {Wa,W', M") | M" € MO,M"} (8.43)
(W, M) © (W', M) = (W, M)Bn (W', M)y ioon i1 3 (8.44)

we = Jwke (8.45)

k>0

whereWW C WRy,, X I5,.

The main concern is then to show that th&ord representation operations correctly simulate
the n-signal/region operations, that is, to show they are compositional, because this would assure
us of the usefulness afword representations. The following proposition paves the way of proving
this compositionality:

Proposition 8.3.12. 1. For each (W, M) € WR,, x I,
Wy, M|] = [W, M]|, (8.46)

2. For each m-word representation (Wi, M;) € WR,, x [,,, each n-word representation
(W, My) € WR,, x I, and each integer p < min(m,n),

(Wi, M)O,[Wa, M) = {(W{O,W3, M] | (W, M}) = (Wi, M),
(W3, My) = (W, M) and M € M{O,Mj} (8.47)

3. For each pair of 2n-word representations (Wi, M), (W, Ms) € WRy,, X I,

(W, Mi] © [Wa, Ms] = {[W] ® W3, M] | I(W7, M}) = (Wy, M),
AW}, M) = (Wa, My) and M € M, & M,} (8.48)

Proof. The first property follows by easy verification and we skip its proof.

For the second property, the inverse inclusion is straightforward: givefvanyn — p)-region
R e {(W{O,W}, M) | (W{,M;) = (Wy, M), (W3, M}) = (Wa, M) andM € M{0O,Mj}, we
have, by the first property 8.46, thB'lu...m] = [Wh, M| andR|[m_p+1mm+n_p] = [Ws, Ms)]. But
this implies thatk € [W;, M;]0,[W>, M,] by definition ofC,, on regions.

For the left-to-right inclusion we rely upon Proposition 8.3.10 in the following way: take
someR € [Wy, M;|0,[Ws, M,]. Take some representation Bﬂ[mfpﬂ...m]’ say [Ws, M3] =
R|[m7p+1mm]. Then, using Proposition 8.3.10, extend this representation to two other represen-
tations: one equivalent tdV;, M;) and the other equivalent {&;, M5). Denote these two repre-

sentations afiV |, M), respectively W, M5).
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Observe that, since both these representations are extensidiig 6f;) we have that

W)
.|

W3 = W2 |[1p]
M3 = M2 |[1p]

m—p+1...m] =
[m—p+1...m] =
But thencelV, 0,1V, is defined, and it remains to choose an extensibwf A/, and M, such

that [W,0,W,, M] = R. This extension is the following: for eache [1...m — p] andj €
[m+1...m+n-—p],

f= iff Rij = {(WlmpWQ)ij}
|ﬁ Rij = ((WIDpW2>ij - 1, (WlmpWQ)ij) (849)
iff Ry = (W10,Ws)y, (W10,Wa);; + 1)

Mjj=(¢<"
(s
of course,]\7|[1mm] = M, andﬁhm_p i) = M. B

It is routine to check that only these three conditiong®really hold and thal/ is consistent.
And, by construction, we havél’,0,W,, M| = R.

The last two properties are easy corollaries of the property 8.47. O

Remark 8.3.13. Observe that the identity
[leMl]Dp[W27M2] = {[WlDPW27M] | M e MleMQ}

is not valid in general since it might be possible t}hﬁzﬁ,MlH[nHm%] = [Wy, My |[1...n] but
Wi |[n+1...2n] %+ Wy |[1...n] just because the same region might have different representations.
An example of this mismatch is provided in the introductory part of this chapter.

This observation raises the problem whether we may correctly represent region concatenation
with 2n-word representation concatenation. The idea that helps us overcome this problem is that,
for each pair oR2n-regions which correctly concatenate, there must exist a pain-aford rep-
resentations which correctly concatenate, and hence represents the concatenation of the two given
regions. In other words, we will be interested in composg of 2n-word representations which
bear the property thatl the 2n-word representations associated with a certain region are in the
set. The formalization of this idea is the following notioncohvexity:

Definition 8.3.14. A set of n-word representations ' C WR,, x I, iscalled convex if it is satu-
rated by the equivalence relation =,,, that is, if the following property holds:

For each set of n-word representations YW C WR,, x I, and each n-word representation
(W, M)eN,if[W, M] = [W' M'] for some (W', R') e WR,, x I, thenalso (W', M") e N.

In the sequel, for each set afword representationsy C WR, x I;,, we denotg)V] as the
set of regions which are represented by some element.of

W] ={[w,M] | (W, M) e W}
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Proposition 8.3.15. 1. For each convex set of n-word representations WV C WR,, x I, and each
X C[1...n], W], isalso aconvex set of card(X )-word representations.

2. For each two convex sets of word representations W, € WR,,, x I,,, W € WR,, x [,, and
integer p < min(m,n), W10O,W, isa convex set of (m + n — p)-word representations and

WiB W, = [0, V)] (8.50)

3. For each two convex sets of 2n-word representations Wy, Wy C WRy,, X I5,, W) ® Wsr isa
convex set and

W1 © Wa] = 1] © W]
4. For each convex set of 2n-word representations YV C WR,,, x I5,,, W® is convex and
We = [W]®

Proof. Allthe properties rely on Proposition 8.3.10. For the first property, observe thH, if/) €
W and[W’', M'| = [W, M] then there must exist € [W] such thatk|, = [W, M] = [W', M'].
But then we may recursively apply Proposition 8.3.10 to extént M’) to an-region(W”, M")
that is, with(W”, M")|, = (W', M'), such thafiW”, M"] = R. But sinceR € [W], by convexity
of W it follows that (1", M”) € W. Fact which implies thatiV’, M) € W..
For the second property, observe that identity 8.47 from Proposition 8.3.12 gives the left-to-right
inclusion:

WEW,] = | {W10, W, M] | AM; € T, M, € T, such tha( Wy, M) € W,
(W, M) € WoandM|, =M M| . = M}
C | J{W{o,ws, M] | AW, M) € Wi, (W, Ma) € Wy with
(W1, My) = (Wy, My), (W3, My) = (W, My) andM € M0, M, }
= | J{W1, M) O, [Wa, My) | (Wh, My) € Wh, (Wa, Ma) € Wa}

= Wi]E, 2]
For the reverse identity, suppose we have some reien)Vi]0,[W,]. HenceR|, . € [Wi]
andR|[m_p+1___m+n_p] € [Ws]. It follows that there existiVy, M;) € W; with R|[1___ [WI, M;].

Consider nowWW;, M) . We have that

|[m7p+1...m]

[(Wh, M) = R

[mprrl...m]] [m—p+1...m]

hence, by Proposition 8.3.10 we may extend phigord representation to arrword representation

thatrepresentg| ., . . say

(W?)a MB) |[1p] = (Wb Ml)
(W3, M3] = R

and (8.51)
(8.52)

|[m7p+1...m}

|[mfp+1...m+n7p]
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Observe that Identity 8.52 implies thigt;, M3] € [Ws], hence, by convexity ofV; it follows
that (W3, M3) € W,. On the other hand, Identity 8.51 says thit and 13 can bep-juxtaposed
and so canV/; and M;. Hence(W,0,W3, M;0,Ms) is nonempty andiW, 0, Ws, M,0,M;] C
(WO, Ws.

It remains just to pick somen +n — p)-relationM € M,0, M5 such that? € [W,0,Ws;, M],
and the choice is the same as for thledefined in 8.49 in the proof of Proposition 8.3.12. Also it
is easy to observe that the convexity of bdth and)V, implies the convexity o¥V, 0, W;.

The proof of the last two properties is a straightforward corollary of the first two. O

8.4 n-region automata

Definition 8.4.1. An n-region automaton is a tuple A = (Q,9,Q1,...Q,,v) in which all but
the last components form an n-automaton A” = (Q,6,Q1, ... ,Q,) over the one-letter alphabet
Y ={1} whilev : Q — I, isthe n-relationlabeling function, associating a n-relation to each
State.

Then-automatond’ = (Q, 6, Q.. .. ,Q,) is called theunderlying n-automaton ofA.
n-region automata are intended to represent EDBMs by meanswafrd representations: a
run in ann-region automaton is a sequence of transitionswhich match on intermediary states,
with the additional property thall statesin the run are labeled with the same n-relation. Because
only one symbol can label any transition, we will represent each run as the sequence of states in
the run,p = (¢:)icq1...1) and denote(p) then-relation which identically labels all the statgsn p.
Arunp = (g;)jen.. IS accepting if it passes through each accepting set, that is, if for éach
[1...n]there exists somge [1... k] such thay; € Q,. Given a-word representatio(iV, M) €
WR,, x I,, arunp = (g;)jecn..x) @and a sequence of indices of states in thelren(l; ) ;... With
the property that;, € Q;, we say that thei-word representatioiV, M) is accepted by (p,1) if
W is accepted by the underlyingautomaton4’ and M = v(p). Similarly ton-automata, we call
the sequenckas the sequenceitnessing the acceptance @iV, M) by p.

Remark 8.4.2. Since in eacln-region automaton we are interested only in runs in which states are
labeled with the same-relation, we will consider only.-region automata in which the transition
function is consistent with the-relation labelingy, that is, in which whenevey % r for some

a € X thenv(q) = v(r).

To eachn-region automaton we will associate three languages:

e Then-word representation language accepted by A, denoted.,.,(.A), consists of the:-word
representations accepted by some tiplé) as above.

e Theregion language of A is the set of regions which are represented by som®rd represen-
tation inL,..,(A), and is denoted.,.,,,(.A):

Lygn(A) = {[W, M] | (W, M) € Ly, (A) } (8.53)
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e Finally, then-signal language of A is the union of the semantics of the regions in the region
language of4,

Lyig(A) = [J{IRI | R € Lpn(A)}

Remark 8.4.3. Observe that, for each twe-region automatad and B, L,;,,(A) = Lyg,(B) iff
L4,(A) = L,(B), but it might be possible that,,,(A) = L,,.(8B) and L,.,(A) # L.p(B),
due to the possibility to represent the sameegion by differentn-word representations. But if
the twon-word representation languages are convex, then we alsolhgwed) = L,,,(B) iff
Lrep(A) = Lrep(B)'

Definition 8.4.4. Ann-region automaton is called convex if its n-word representation language is
CONvex.

With this definition, the following chain of equivalences is valid for conuesegion automata:
Lyep(A) = Lyep(B) iff Lygy(A) = Lygn(B) iff Ly (A) = Lgiy(B) (8.54)

Hence, when we will need to prove the equality of the languages of two convegion au-
tomata we will only need to prove the equality of thetword representation language.

8.4.1 Basic closure propertiesfor n-region automaton

Throughout this section we prove that the operations dor 2n)-automata can be extended to
operations om-region automata. This subsection is just a restatement for EDBMs.-#adion
automata of the results contained in Chapter 7. We start by the translation of Proposition 7.2.10:

Proposition 8.4.5. The class of n-signal languages accepted by n-region automata is closed under
union and intersection. Moreover, if A and B are two convex n-region automata, then one can build
convex n-region automaton for Ly;,(A) U Lg;,(B) and L4 (A) N Lgig(B).

Proof. The constructions are straightforward adaptations from Proposition 7.2.10. The convexity
property follows due to the fact that intersection and union of saturated sets give saturated sets.

Theorem 8.4.6. Theclassof n-signal languageswhich arethe n-signal language of some n-region
automaton equals the class of n-signal languages which are the semantics of a sum of n-EDBMSs.

Note that the result refers txtended DBMs. It is clear that, in generak-region automata are
more expressive than sums of mere DBMs.

Proof. The proof of the direct inclusion is very similar with the proof of Theorem 7.2.14.

Consider all tuples of accepting states, . .. ,¢,) with ¢; € @, and such that all the states
in the tuple are labeled with the sameelation M. For each such tuple andrelation M, we
construct thex-region automaton in which only the states labeled Witlare present and in which
all @;s are singleton setg; = {¢;}. Denote this reduced automatditqi, . .. , g,, M).
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Then, for each,j € [1...n] we build the regular expressiafj’ which denotes the set of
positive integers that are the length of a path frgrto ¢, in A(q, ... ,¢., M). Since we speak
about positive integers, we may pﬂgg in the form

Ef = AU(B+{c})

whereA, B are finite sets of integeérandc € N.
Then, fromEg we build a regular expressiaver intervals— that is, am-EDBM — as follows:

1. If M;; = = ‘ then clearly
D = Ef = AU(B + {c}").

2. If M;; = * < ‘ then observe that, intuitively, each € A is anupper bound for a n-region
which is accepted byl along a path frong; to ¢;,. Hence we put

D5 =Jtla=1allaca}u (Uf1s-1.81 8 € B} +{e})

3. If M;; =* > ‘ then we put

D} =J{leat1l|a e a}u (| J{18.8+1]| 8 € B} +{c})

Finally, from all these regular expressions over nonnegative intervals we build-BizBM
D € £dbm,, defined by:

Dy = Df; + (=Df)

where —D denotes the regular expression over real intervals which results by changing every
bound into its opposite; for example, for the case 3 above,

-5 ={1—a—t,—alla € a}u (U{)-8-1.-6lI B € B} +{~c}")

It is then easy to check that the semantics of the sum of-&IDBMs built for each tuple
(q1,--. ,q,) and each-relation M equals the:-signal language oAl.

The reverse inclusion can be proved by inductiomoas follows: in the base case, we code
each regular expression over real intervals infaragion automaton. The idea is to decompose
each regular expression over intervals

R=AU(B+{c}) (8.55)

into a union of two regular expressions, one containing only point intervals and the other containing
only open intervals of unit length. Hence the basic case reduces to the following constructions:

4 Remind that we useu ‘ for denoting union ané+ ¢ for denoting concatenation for regular expressions over intervals.
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1. Supposethat, B C N. Denoten, = max A andmp = max B. Then the-region automaton
equivalent toR is:

= (Q.0,Q1,Q2,v) where
Q=(0...masl x {1HU(0...mp] x {2}) U([1...¢] x {3})
d={((a—1,1),(a,1)) |a €L. mA]}U{ ((@—=1,2),(x,2)) | €[l...mp]} U
{((0—1.3),(@3) o€ [1...d} U{((e.3),(1,3)} U{((52),(1.3) | be B}
Q1 ={(0,1),(0,2)}
Q2 = (Ax {1} U(B x {2}) U{(c,3)}
v(g) == forallg e @

Observe thaf is a convex-region automaton.

2. Suppose there exist two strictly increasing sequences of iNtRg&ES: . cqra(4) and
(Bi)ieln...cara(3) SUCh that:

A={]a;,a;+1[|i € card(A)} and B = {]3;, Bi+1[| i € card(B)}

Then the2-region automaton equivalent fois

C =(Q.0,Q1,Q2,v) where
Q=([0...qmmuua +1] x {1} x {f< " >HU
([0 Bearaey + 1] x {2} x { <>} U
(... x {8} x{f < >}
d={((z—1,1,5),(z,1,8) |z € [1...Quuraay + 1], s € {! <*,*>}} U
(2 - 1,2,s> (2.2,8) |2 € (1. Boaraisy + s € { <5 > J} U
(z—1,3,5),(2,3,8) |z €[l...d,se{ <" >}}U
((@,2,‘ >, (1,3, >9) |i€[l...card(B)]} U
(Bi+1,2, <9, (1,3, <)) [ie[l...card(B)]}
,1,5),(0,2,5) [s e { <" > ")}
a;, 1, > ), (i + 1,1, <) i€ [l...card(A)]} U
(B, 1, > 9, (B + 1,1, < )|Z€[ 1...card(B)]} U

({ep x {3y x{* <% >"})
vk, 1, <) =‘<‘andv(k,l,* > ) =*>‘forall k,I

Q1 ={
Q2 ={

{
{
{
{
(0
(

{

Observe again thdt is convex.
For the induction step we rely upon the following property:

Proposition 8.4.7. Given an n-region automaton .4, there exists an (n + 1)-region automaton with
the property that
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Lygn(B) = {R € Regn(,,y) | R, . € Lygn(A)} (8.56)

or, equivalently, by Proposition 8.1.5, Ly, (B) = {o € Sig,,,({a}) | Olym € Lgig(A)}.
Moreover, if A is convex, then B can be chosen to be convex too.

Proof. Denote the givem-region automatomd = (Q,0, @, ... ,Q,,v). We first build an ex-
tension of the automaton, by appending states similas tnd¢,. from Definition 7.2.9 of the
completion of ann-automaton. We will actually apperitl- card(I;,) states, namely the union
@« U Q. Where

Q.= {(g..M)| M eT,} and Qu.{(qu, M) | M € I,,}

due to the need to have a stagteand a state.. labeled with each-relation. These states will be
connected to the others as follows:

5 =0oU {((Q*aM)a (q*,M)), ((q**,M), (Q**aM)) | M e Fn} U
{((g=, M), q), (¢, (g, M)) | M € I, and there exists€ [1...n] such thay/ € Q;}

Thus we get am-region automaton, which we call templetion of .4 and denoted. In this
automaton, any accepting run can be extended to a run that stéitaimd end irg).....

We further transform this automaton into @n+ 1)-region automaton by putting any state in
the (n + 1)-th accepting set and by augmentingralielation labels tgn + 1)-relation labels. The
resulting automaton is

:( /7 le"'vQ;nQ;H—lv /)WithQ/:QUQ*UQ**and
Q' ={(¢.M |qu M € LypandM|, o =v(q)}
&' ={((¢. M), (¢, M)) | (¢.4) 66}
Q= {(q, M EQ|qEQ}fOI‘ZE 1)
Qni1=Q'

v(q, M) = M forall (¢, M) €
By a straightforward adaptation of the proof for Proposition 7.2.12 we get that
Lyep(B) = {(W, M) € WRyi1 X Do | (W, 0o My 1) € Liep(A)} (8.57)

Observe that this property is equivalent to the fact thaj(B) |[1...n] = Lyep(A).
The convexity of3 follows easily from the above property: suppose &t M| = [W, M']

and[W, M] € L(B). By assumption, we then have

M|

|[1...n] =W |[1...n]’ [1...n]]

Further,[W, M] € L(B) implies that[W|[1___n],M|[1___n]] € L,4n(A). From these and from the
convexity of A we get that 1/’ |[1mn], M’ |[1...n]) € L,.,(A), which, by identity 8.57, is equivalent
to (W', M") € L,¢p(B). O
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Proof (of Theorem 8.4.6, continued). For each EDBMR € £dbm,, and eachl < i < j < n, we
construct the-region automaton equivalent £,. Then we extend this automaton to-amegion
automaton, by recursively applying Proposition 8.4.7. Finally, we interseefihe1) /2 automata
to get then-region automaton equivalent 1

If we are given a finite sum of EDBMs, we utilize the above construction for each term of the
sum, and then apply the union construction from Proposition 8.4.5. O

8.4.2 Non-elasticity for 2n-DBMs

To further adapt the results on concatenation and star closure from Chapter 7, we need to transport
non-elasticity for2n-regsignalsin-regions2n-word representations and to relate these properties
to one another.

Definition 8.4.8. A 2n-signal o € Sig,, () iscalled non-elastic if the following property holds:

(NS) For each 4,5 € [1...n], if 0,,4; # ¢ and 0;,4+; # ¢ then ¢(0;,.;) > 0 and
E(Uj,n+i) Z 0.

A 2n-signal language is called non-elastic if each 2n-signal in it is non-elastic.
A 2n-region automaton is called non-elastic if its 2n-signal language is non-elastic.

As we intend to representsignal languages by setsmfregions, and further by sets efword
representations, we need to transport the notion of non-elasticity Zresignals to2n-regions
and to2n-word representations in a consistent way. Moreover, we expect that the notion of non-
elasticity of2n-word representations rely on the notion of non-elasticit:ofwords, similar to
Definition 7.3.1.

Definition 8.4.9. A2n-DBM D € Dbm,, iscalled non-elastic iff the following property holds:

(ND) For eachi,j € [1...n],if D; i \ {0} # 0, D;nij \ {0} # 0 then D;,,.; C [0, 00]
and Dj,nJri - [O, OO[

Proposition 8.4.10. For each 2n-DBM in normal form D € Dnf,,, D is non-elastic iff || D|| is
non-elastic.

Proof. For proving the first property, observe first that| i?|| contains &n-signal which is elastic
then D itself must not be non-elastic. For the other implication supgose elastic, hence there
exists a pair of indices, jo € [1...n] such thatD;, ., \ {0} # 0, Dj,nvjy # O bUt Dy iy €
[0, 00[ OF Djy ntip Z [0, 00[. Suppose also, for the sake of contradiction, thaj is non-elastic.

Let us first observe thd®;, ,,.;, C [0, co[ and similarlyD; ,+;, C [0, o[, Since otherwise we
may construct, by means of Proposition 8.1.8nasignale < || D|| with ¢(0;, »+i,) < 0, hence
contradicting the assumption thab|| is non-elastic.

We will replace firstD by the “sub-DBM” ) which is obtained fronD by transforming closed
parentheses into open parentheses onagboint components o). That is,
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oo {]a,ﬁ[ iff inf D;; = a,sup D;; = fanda # (3
Y Di; otherwise, that is, ifiD;; = {a} for somea € R
Let us first observe tha' is also &n-DBM in normal form: for eachi, j, k € [1...2n], since
D;, C D;; + D,y it follows also thatntD;;, C intD;; + intD;;, (where we have denoted Iyt A
the interior of a set of reald C R). Hence the triangle inclusion is valid if all three components
are nonpoint sets. The triangle inclusion also holds for all triplet of point componemntssaice
such components are copied frdm It remains to check the triangle inclusion for the case when
one or two components are point intervals and the other (or the others) is (are) nonpoint interval(s).
Observe first that the situation with,; and D;;, being point sets and;;, nonpoint set is im-
possible, since the sum of two point sets is also a point set.

SupposeD;; is a point set and,, D, are nonpoint sets, say
Dij = {Oé}, Djk = [ﬁaﬁ,]a Dzk = [7,7/]

the cases with other parentheses £y, and D;;, being treated similarly. Sinc® is a DBM we
haveD,, C D;; + Dji, thatis,[3, 3] C [« + v, a ++']. Therefore

Dy, =16, C lat+y,a++'[ = Dj; + D,

A similar proof can be done whef;; and D;;, are both point intervals anB;;, is nonpoint.
The last distinct case is whéewy,, is a point interval and one db;; or D, is a nonpoint interval:
suppose, w.l.0.g., that

Dy ={a}, Di; = 18,0, Djr. = [,y ] with g < /'
Since by hypothesi®;; C D;; + D, we must then have
[8,8] S {a} + -7, ] =la =7, a—1]
which means that’ < a — v, hence
a>f+y>p0+y

Similarly we may prove that < ' + +/, hence in fact we must havee |5+~, 3 +~'[. But this
is equivalent to the triangle inclusiad®,, C D;; + D’,. HenceD' is a DBM.

Observe now that, following our observation thaf ,,.;,, Dj, n+j, C [0,00[, we must have
DioynJrioa Dj07n+jo - ]0’ OO[

We utilize thenD’ as follows: take some negative numbee D, ., . Such a number must
exist, because we have assumed gt ;, Z [0,00[ andD;, , .. = intDi, . j,- The numbery
can also be regarded ag-signal in the semantics of ttleDBM D|{i0 o} Then, by recursively
applying the construction from Proposition 8.1.5 we extend this2e-aignafa € || D ||.

But obviouslya is elastic since
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o aio,n+lo € D; n+i henceg(aio,n-ﬂo) > 0,
e similarly ¢(@j, ,,+j,) > 0,

° andﬁ(@i07n+jo) =a<0.
O

Non-elasticity extends t®n-word representations in the following way2a-word representa-
tion (W, M) is callednon-elastic if the 2n-DBM represented by it is non-elastic. Consequently, a
non-elastin-word representation must satisfy the following property: for eaghe [1...n],

if

o Winti>00r (W, =0andM,,,; =*> )

and
o Wi >00r (W, =0andM;, ;="*>")

Observe that if @n-word representatioi¥, M) is non-elastic then then-word W is non-
elastic.

8.4.3 Closure under concatenation and star

Proposition 8.4.11. Given two convex 2n-region automata .4 and B, there exists a 2n-region au-
tomaton D with the property that L, (D) = Ly, (A) © Ls,(B). Moreover, if both A and B are
non-elastic then D is non-elastic too.

Proof. We adapt the concatenation construction in Section 7. Zn‘cregion automaton: denote the
given automata asl = (Q,0,Q1,... ,Q2,,v) andB = (Q', 8, QY, ... ,Q5,, V). There are two
ideas that guide this adaptation (we refer the reader to the construction on page 127):

e First, we require that, in each tuple, ¢, X), the labels ofy and¢ are “consistent”, that is,
the projection ofv(q) onto the last: components equals the projectionufq’) onto the first
components.

¢ \We then attach to each tuple ¢, X) a2n-relation labelM which is in the concatenation of the
2n-relation labels/(¢) andv(¢).

The formalization is the following: we construct fitdtand B3, the completions of4 and 3,
as in the proof of Proposition 8.4.7. Hende= (Q.0,Q1,... ,Qa. D) With Q = QU Q, U Q..
where

{q**7 |M€F2n} (q*,M):M

>

and (q., M) = (q., M), (q., M) = q, respectively(qu., M) = (qus, M), ¢ — (gur, M) for all

7 € Uicr.m Qf- .
Similarly B = (Q’ &, e, Q5 U)with @ = Q'U QL UQ.,, where
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Q.= {(q.. M) | M € I} V(q., M) =M
:{Q**a |M€F2n} ﬁl(Qi*vM):M

and(q., M) = (., M), (¢, M) — ¢, respectively(q.., M) = (¢... M), ¢~ (q,. M) for al
¢ € U,e1_, Qi- We will also assume, as stated by Remark 8.4.2, that inbathd’3 the transition
relation is consistent w.r.t. thz-relation labeling, that is, two states are connected by a transition
iff they are both labeled with the sarge-relation.

Then build the following2n-region automaton:

C = (Qo.0,51,. .. , San, ) with
Qo = {(g,¢, X, M) | X C[1...n],q € Q,q € Q" with i(q)
andM = 0(q) © 7/(¢)}
0 = {(q,q',X,M) L (r,r Y, M) | (¢, ¢, X, M), (r,r,Y,M) € Qo,q=r € 6,4 S ed,
X CYC[l...n]Jandforalli € Y\ X,r € Q,+; andr’ € Q’}
S; = {(qvqlaXvM) €Qolqe Qi}

Sn—}—i = {((Lq,va M) S Q@ | q/ € Q/n—i-z}
vo(q,qd, X, M) = Mforall (¢,q4,X, M) € Qg

|[n+1...2n] = '(q) |[1...n]

Finally drop all the states @fthat are not reachable frof). x @', x {0} x I';, or not coreachable
from Q.. x @, x [1...n] x Iy, and denoté the resulting automaton.

To prove thatL,,(A) ® L,¢,(B) C L,e»(D), take some2n-word representatioglV, M) <
Lyep(A) @ Lyep(B), hence there must existVy, M) € L,.,(A) and (W, M) € L,,(B) such
thatiV = W, W, andM € M, ® M. It follows that there exists an accepting in= (7;)icq1...x]
in A (actually we will consider it in/i)) and a sequence of indic€s);c1..2,) Which witness the
acceptance dfit’;, M;) by A, hence all its states are labeled with therelation/;; also we may
assume that, starts inQ). and ends irQ.... Similarly, there exists a rum, = (7});cj1...x7] IN Band
a sequence of indicég;);c1.. 2,y Which witness the acceptance(®¥s, M,) by B and whose states
are all labeled with\Z;. We may also assume thatstarts inQ)’, and ends ir)’,,

As in the proof of Proposition 7.4.1, we may transform the two runs by addition of loops in
Q. andQ.., respectively), andq)’,,, and “translate” the two witnessing sequenggs|:...,y and
(71)1e1...2n) SUCh that the runs have equal length (we assume thieneel’) and the following
property holds:

Forall [ € [1...n],iny = i
Then we construct the ryn= (r;, 7%, I;, M );c...k) in Which

[1:(0
Ii+1 :]1U{ZE [17’L]|7"l:q”+n}
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and the sequence of witnessing poifg;ci..2n) With

iy forle[l...n]
p:
l s forle[n+1...2n]

Observe first that each tuple in the rpis in @, since
M =M, ® My, = I)(Tl) @ﬁ’(r;) forall: [1]{]

Moreover, the first state being @, x Q. x I, and the second state .. x Q. x I5,, it
follows that all the states are also stategof

Then observe thatr;, 7}, [;)icn... and the sequenc)cpi..2, are exactly the run and the
witnessing sequence associated With® W, in the underlying automataR’. Hence the run and
the accepting sequence are associated witRth&ord representatio(iV, M), which shows that
(W, M) € Lyp(D).

To prove thatL,.,(D) C L,.,(A) ® L,.,(B), take somen-word representatiofiV, M) &
L,.,(D), which is thence associated with a rgn= (r;,7;, X;, M );cq1.., in D and a sequence
(li)ie[l...2n]- .

Observe then that; = (7;)ic1..20) IS @an accepting run iod because we have assumed that
the transition relation is consistent with the-relation labeling. Similarlyp, = (7})icn. .24 1S
an accepting run il8. Let's denote)M; the commorRn-relation label of all states ipy, that is
M, =v(p1) andMsy = /' (ps).

Then we construct the following sequence of indid@s);c(1..,) with p; € [1... k] and

p;=1iff j € X1 \ X;

It follows that the sequenc(eéli)ie[lmn], (pi)ie[lmn]) witnesses the acceptance of sdtneword rep-

resentatior{¥;, M) by the runp; in A and the sequenc(épi)ie[l___n], (li)ie[nﬂ_"gn]) witnesses the
acceptance of soni-word representatioits, M) by the runp, in B. MoreoveriV; |[n tiom] =
Wy |[1...n} because both are associated with thegamd the sequence of indicgs);c[i...;- Hence

(W, M) € (Wy, My) ® (Wa, My), which shows thatWV, M) € L,ep(A) @ Lyep(B). 0

In the previous chapter we have also proved the closure under indexed juxtaposition for
automata. The respective construction can be easily adaptetegion automata, along the same
lines of the above proof. We have preferred to present here only the proof for concatenation since
it offers insights for the proof for star closure.

Theorem 8.4.12. Given a convex 2n-region automaton A, supposethat, for any k € N, L, (A)*®
isanon-elastic 2n-signal language. Then L,.,(.A)® is accepted by a 2n-region automaton.

Proof. We adapt the construction from Theorem 7.4.3 as follows: first, we repldog its com-
pletion.4 in which we assume, following Remark 8.4.2, that the transition function connects only
states labeled with the sarpe-relation.
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The automaton that accepts;, (.4)®=? is denoted as

C= (Q®76®7U17 s 7U2nvl/®)

Q) consists of tuplesS, o, 5, T, M, M') in which the first4 components have the same meaning
and utility as in Theorem 7.4.3, while the last two components give the information concerning the
2n-relation which is to be accepted. Namely, the fifth component is exactlgrthrelation-label
of the macrostate, while the sixth serves for succesively concatenating 2iliedation labels of
the states which have passed through the right active component. The idea is that, at the end of the
parse we want to hav&/ = M’. In some sense, if/ we make a guess at the beginning for e
that we will get at the end of the parse.
Formally, QQ consists of the following types of states amggives the following2n-relation
labeling (we utilize here the notatiogdand X’ from the proof of Theorem 7.4.3):

1.(0,0,(X,q,X"), T, M, M) where(X,q,X') € Q, T C Q,andM, M' € I,, with the prop-
erty that, forall(Y,r,Y'") € T,
a)v(q) = M.
b) v (0,0, (X,q,X"), T, M,M'") = M.
o XNn+1l...2n) 2 (Y N[l...n])+n.
d X' Nnn+1...2n] 2 (Y'N[L...n]) +n.
e) Y\Y)Nn+1..2n]C(Y'\Y)N[1l...n)+n C(X'\X)N[n+1...2n].
2. (S, (X,q,X"), (Y,r,Y'), T, M, M") with (X, q, X"),(Y,r,Y') € Q,8,T C Q, M, M' € I,
with the following properties:
a) v q)|[n+1...2n} - |1 n’
b) v (0,0, (X,q,X) T M,M'") = M.
o) XNn+1l...2n)=(YN[l...n])+n.
d X'Nnn+1...2n]=Y"'NI[l...n])+n.
e) ForeachU, s, U') € S,
L UNn+1...2n] 2 (XN[1...n])+n.
i. 'Nn+1...2n] 2 (X'N [1...n])+n.
i. (U\U)N[Ll...n]C((U\U)Nn+1...20]))—n C(X'\X)N[1l...n].
f) For each(V,t,V’) eT,
LYNnh+1...2n] 2 (VN[l...n])+n.
i. YN[n+1...2n] 2 (V' N[1...n]) + n.
i. (V\V)n [n+1...2n]g((V’\V)ﬂ[l...n])Jrng(Y’\Y)m[n+1...2n].
3. (S,(X,q,X"),0,0, M, M) with (X,q,X") € Q,S C Q,andM, M' € I5,, with the property
that for all (Y, r,Y’) € S,
a) vy (0,0, (X, q,X"), T, M,M') = M.
b)Unn+1...2n] 2 (XN[1...n]) +n.
U nNn+1...2n] 2 (X'N [n])—l—n
d (U'\U)Nn[1...n] C((U'\U)N[n+1...2n]) —n C(X'\X)NI[l...n].
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The transitions are the following:

1. (0,0, (X ¢, X", T,M,M') % (0,0, (X', ¢, X"), T, M, M) iff

a)q—q,

b) Forall(V',¢,V") € T' there exist§V, ¢, V') € T such that % t'.
2. (S, (X,q, X", (Y,r,Y'), T,M,M') % (&' (X', ¢, X"),(Y',7",Y"),T', M, M") iff

a)qgSq,r S

b) Forall(U,s,U’) € S there exist§U, s',U") € S’ such thats % ',

c) Forall(V',#, V") € T" there existV, ¢, V') € T such that = ¢
3. (5,(X,q,X"),0,0, M, M") % (5", (X", ¢, X"),0,0, M, M) iff

a) g —q;

b) For all(U,s,U’) € S there exist§U’, s', U") € S’ such thats = s'.
4. (S,(X,q, X", (Y,r,Y"), T, M, M") S (5" (Y,r,Y"),(Z,s,2'), T, M, M") iff

o M" e M ©uv(s),

e There existsX” € X such tha{ X', ¢, X") € S;

e There existy” € X such thatY,r,Y’) € T;

e Foreach(Z,s,Z') € S there existz” € X suchtha{Z’,s,2") € S.

e Foreach( 7', s, Z") € T' there exist&Z € X suchthatZ,s,7') € T.
5. (0,0,(X,q,X"), T, M, M) <0, (X',q,X"), (Y, 7, Y"), T, M, M") iff

° M// —M’@ (’I“);

e There existy” € X such thatY,r,Y’) € T;

e ForeachZ', s, Z") € T' there existsZ € X suchthat Z,s,2") € T.
6. (S,(X,q, X"), (Y, r,Y"), 0, M, M) =(S',(Y,r,Y"),0,0, M, M) iff

e There existsX” € X such tha{ X', ¢, X") € S;

e Foreach(Z,s,7') € S there existsZ” € X suchtha{Z’,s, Z") € S.

The accepting sets are, for alE [1...n],

U ={0,0,(X,q,X"), T,M,M') | i € X'\ X,M,M" € Iy, M' = v(q)} U
{(S,(X,q, X"),(Y,r,Y"), T,M, M) | i€ X \ X', M, M’ € I},, and
forall (Z,s,2") € S,ie Z'\ Z} (8.58)
Upsi = {(S,(X,¢,X"),0,0, M, M) |n+i€ X'\ X,M € I} U
{(8,(X,q. X"), (Y,r,Y'), T, M, M") | i+ne€Y'\Y,M,M € I}, and
forall (Z,s,Z') e T,i+ne Z'\ Z} (8.59)

Finally, the state space is reduced to the states reachable from the following set
Qo = {(0, 0,(0,q., Mo, 0), T, M,M") | T C Q., Mo, M, M’ € an} (8.60)
and coreachable from

Qf = {(s, ([1...20], que, My, [1...20]),0,0, M, M | S C Q... My, M € an} (8.61)
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We will denote this reduced state spacéjasand the resulting automaton&s The correctness
of this construction is almost the same as the proof of Theorem 7.4.3, with some extra consider-
ations on the relation labels of the states. Though it might look redundant, we have to retrace the
constructions in Theorem 7.4.3, for showing why they work2ietregion automata too.

For proving the inclusior,.,(D) C L,.,(.A)®=2, take somen-word representatioiV, M)
accepted byD, that is, associated with some accepting rudof = (S;, as, 3;, T;, M, M;)icqi..m)»
with

(S1, a1, b1, Th, M, My) = (0 0, (Q*7M17®)7T7M1>

(Sims Qs B Tros M. M) = ({(S. (@ M, 1. 20]),0,0, 0, 1)

and with a sequence of indicks= (h;);cj1..on) With h; € [1...m]and(Sy,, au,, Br,, Th,, M, My,) €
U;foralli e [1...2n]. Hence, forall,j € [1...2n],

Wi
(Shis @i Brys Thyy M, My,) — (Sh;, oy, Bnys Thys M, My,)

Similarly to the proof of Theorem 7.4.3 we identify a numbeof times the runp passes
through transitions that “move around” states from the right active to the left active component.
Denote(k, ... , k,) the indices at which transitions of the type 4,5 or 6 occyr.ie then use
and buildp runs in “history” presentatiory; = (Zf,sz,Z )ik N A (@ € [1...m]) such that
the following properties are satisfied:

1. For eachj c[l...plandi € [kj , + 1...k;), (Z/,s], 7] ) is the right active component,
(Zz]? Sis Z) :ﬁz .

2. Foreachj € [2...p+ 1] andi € [k + 1...kj], (Z771, s, Z7 Y is the right active
component(Z/ ', s/ 1. 70 1) = a,.

3. Foreachj € [1...p], andi € [1...k;4], (7,5, 7] ) is part of the prophecy component,
(7].51.7)) € T. |

4. Foreachv €[l...p—1],andi € [k;.1+1...m], (%!, ], Z]) is part of the history component,
(2],51.7) € 5.

5. p; passes through some accepting@et; at the same moment when, ; passes through the
accepting sef); for the same € [1...n], thatis, the essential property (*) utilized in the proof
of Theorem 7.4.3:

Forallje[l...p—1]andforalli € [1...m],
Zinm+1...20 = (Z* N1, .n))+nandZ N[n+1...2n) = (Z. " A[L...n]) +n.

Here we have denotggl = 0 andk,.; = m

Once having these runs, we translate them to the witnessing presentation by builkkag
quences of indice& = (I )uep. 20 (@ € [1...p]), With &} = w iff w € Z] \ Z/, and observe
that these sequences witness the acceptangewfwords (w;);cp..,) for which we may prove,
similarly to the proof of Theorem 7.4.3, that for eachk [1...p — 1],
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W=wo.. 0w wj |[n+1...2n] = Wjt+1 |[1...n}

W |[1n] =w |[1n} Wp |[n+1...2n] =w |[n+1...2n]
RER)

Let us denote thef/; = v(s!) for somei € [1...n]. We would like now to relate thegm-relation
labels with the componentd; in the runp, in order to prove that these labels correctly concatenate
and that) is in their concatenation. '

Let us note first that for each € [1...p — 1] the tuple(Z/, s/, Z}) is the right active com-
ponent while the tupléZ/ !, s/*', Z2™") is the left active component. Hence we must have, by

7

requirement 2.b from the construction@f,

M;]

Asp; = (Z],s] 7Z)ie[1...m} is aruninA, it follows thatv(s!) = v(s!,,) foralli,s € [1...m].

g+1> |[1n}

J

l> |[n+1...2n] = V(S

[n+1..2n] v(s = MJ/'H |[1...n]
Therefore thell/s correctly concatenate, it only remains to prove that their concatenatidn is

To this end, observe that, for eaghe [1...p + 1] and each € [k;_; + 1,k;] (we consider
ky = 0 andk,;1 = m), thei-th transition is of type 1,2 or 3 and therefolé = M,,,. By
requirement 1.a from the construction@f, M; must be the label of the right component of the
first tuple, hencé/, = Mj. It follows thatM; = M foralli € [1...k].

Consider now thék;-th transition. It is are-transition of type 4 and it pulls the stat® out
of the prophecy component into the right active component. Therefore, by construdtion, <
Mk1 ® V(S?), that iSMkl-H S M{ ® Mé '

By induction we may then prove that, if theth right active component i@Zf, sf,?ﬁ) then
M; € M{ ® ...® M;. Hence, fori = m we have that\/,, € M| © ... ® M;. ButM,, = M, and

therefore(W, M) € (wy, M{) ® ... ® (wy,, M}), fact which shows thaiV, M) € L,.,(A)®=>.

For the reverse proof, take 2n-word representation&w;, M;) € L,.,(A) which correctly
concatenate, that i$qw;, Mi)|[n+1...2n] = (wi+17Mi+})|[l...n] foralli € [1...p — 1], and consider
p accepting runs in the complet@a-automatonA, one for each'w;, M;), together with their
witnessing sequences of indices:

pi = (q}) jem, With witnessing index sequen¢g)c(1...2n)

We assume that each run start€jpand ends in)....

Then consider sonm-word representatiotw, M) € (wy, My) ® ... ® (w,, M,), that is, take
w=w O...0w,andM € M; ® ... M,. We would like to show thatw, M) € L(D).

The first step is to transform each rgninto a run in the “history” presentation, that is, denote
X J’ the set of indices of the accepting states which were visited by each jush before the j-th

step and bﬁé the set of indices of accepting states visitedgbyp to the j-th step, and also
denoteA;ﬁ their difference:

X ={ue[l...2n]|Fve[l...j—1] suchthat, = v}
X.,={uel...2n]| Jv € [l...j] suchthat] = v}
Al=X\ X
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Then, similarly to the proof of Theorem 7.4.3, we bring all the rgn® equal length, say,
and build up a sequence of tuples- (S;, a;, 8;, T;, M, M])icp1...m+p), @S follows:

1. The first tuple ir9 is
(0,0, (X1, X)), {(X{,q}, X,) [ € [2...p]}, M, w(a})
and the last tuple is
(X} ahn X0 L€ [1.p— 1T} (X2, q2,, X0,),0,0, M, M)
2. By = (Xi_y,¢i_y, X;_y) and for alli’ > i, A N [n+1...2n] C (AY A [1...n]) +n,

J

then we append to the run the tupl®., o, Bx, Tx., M, M) Wlth

S ={(x.q/, X)) |7 <i—1}

0 iff i =1
Q= ; ~i— :
Clxi g LX) iffi> 2
Bk = (leaqzaX])
T ={(X].q,X;) |1 >i}
Mllc = Mlg—1
3. Mf By = (X4, q;l_l,Y;_l) and there exists somie> i for which
(A7N[n+1...2n)) \ ((AYN[1...n]) +n) #0
then let
t=max {7 >i| (A" N[n+1...2n])\ (A7 N[L...n]) +n) # 0}

We then append— i + 2 tuples as follows:
a) The first tuple to be appended is the tu@g, oy, Gk, Tk, M, M) in which:

Se={(X!, ¢/, X) | <i—1}
= (X},4), X))
ﬂk = (XL gt XU (AT [n+ 1. .2n)))
T ={(X/, ¢, X)|i>i+1}
M € M;_; ®v(g ZH)
b) Foreach € [1...7 —i — 1] we append the tupl€Sy i, 11, Brvi, Trgt, M, M, ;) with:

,L'/

Sin = {(X;. ¢, X )|z <i+l—1}

Qpp = (X”l tu (A;H "\ [n4+1...2n]), q”l LX
Bryt = (X;+l,q;+l XU (AT N\ [n+1...2n)))
Ty = {(Xj , ,Xi’) i >i+1}

My =My ,0v (Q;H)

i+ 1)
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c) Forl =7 — i we append the tupl€S, :—;, kri—i; Bryi—ir Thii—ir M, My, ;) Where:

S = {54, X5) | < i - 1
Qpi—i = (X]L U A; \[n+1. ..2n]),q§-,7§)
0 iff r=p
2 ’””:{(XL+1 ¢HXY) iffr<p—1
Toii = {(XI ¢/, X) | # >1+1)}

J’J’

M;H—Z—i = Mk+z-i—1 © (Q;C+L l)

4. If By—1 = 0, which can only happen when= p, we append the tupl€5, ax, Ox, Ty, M, M)
with:

ar = (X7, ¢}, X7)
B =0

T, =0
My = Mj_,

Consider the sequence of indides= (f,).e(1..20 SUch that, = I} andt,, = &, for all
u € [1...n]. Also consider the run iod’ ¢ = (S;, i, B, Th)ic1..m+p) that is, we purge then-
relations from the components 6f Then the pain#,t) witnesses the acceptanceofby the
underlying automato®”.

To end the proof, we only need to show tifais a run inD. The specific requirements (for
2n-region automata) that need to be checked are 1.a and 2.a, since all the other requirements are
either trivially true (the case of 1.b, 2.b and 3.a) or implied by the factéhatan accepting run
in D’ (the case of requirements 1.c, 1.d, 1.e, 2.c, 2.d, 2.e.i, 2.e.ii, 2.e.iii, 2.f.i, 2.f.ii, 2.f.iii, 3.b, 3.c,
3.d).

The validity of requirement 1.a is straightforward, sinidé = v(q}) and each step before the
first e-transition preserves/;.

For proving the validity of requirement 2.a, we have to observe that, according to the definition
of 9, at each momerit = i+ j at whichay, # () andg;, # ), the left and the right active components
are thej-th tuple of the rurp;, respectively the rup;, ., that is,

—i—1 =)

o= (LT, A= (X0 X))

Thisimplies that/(q;fl) =M, andy(q;l) = M;, and then, due to the hypothesis thatcorrectly
concatenates t/; 1, we will get thatv(¢;~") = v(¢’). Hence requirement 2.a also holds. O



9. Applications

In this chapter we gather together all the result and techniques developed so far, and provide a
method for checking whether the semantics &fnasignal regular expression is empty. Conse-
guently we get a method for checking whether the language of a timed automaton is empty.

We have seen how to study untimed behavior and timing behavior of systems by2using
automata. We might then think to decompose eachiegsignal into the “untimed” part, which
represents the qualitative behavior of the modeled system, and the “timing” part, which give the
temporal constraints on the behavior of the system.

More formally, givenR € RSig,, (X) whereR;; = (Ey;)1,; + (Ej;)r;, with E;; regular expres-
sion overX, Ej; regular expression over ', I;; € R- and/j; C R<,, we define the following
two n-regsignals:

1. Rr*, called theuntiming of R, R}, = E;; + E;; foralli,j € [1...2n].
2. R, called thetiming of R, Rj; = (X*);,, + ((X71)")p, foralld,j € [1...2n].

Then| R|| = [|R* N RY|.

R" can be considered as2a-regword andR’ as a2n-DBM. This implies that from eacBhn-
signalo € || R|| we keep only the untiming information and the duration of each compangnt
fori,j € [1...2n]. Hence the two aspects, untimed behavior and timing behavior, can be studied
separately.

However, for systems in which both the untimed behavior and the timing constraints are im-
portant, studying each one separately might prove an incomplete method, since we might miss
the interconnections which limit the behaviors. In our setting, this amounts to some expressions
which, when decomposed into timing and untimed and studied separately, give honempty seman-
tics, while it is clear that their semantics is empty. For example, the followismnal regular
expressions clearly has an empty semantics:

£ (a), £ (ab)s £ (ab)s  (a)e  (ab)s
(a=) 2 (@)1 (b o 0lah) s e (O7Ha e

€ a)1 £ (ab)s (@ (bh £ (0)1
Bla Dy (V) (blal)y e Bl s e (Y, e

(9.1)

The reason why the concatenation of the tim@gsignals given in 9.1 has an empty semantics
lies in the fact that the first-regsignal requires anstate of length while the second imposes an
state of lengtl2. The Figure 9.1 below gives a graphical interpretation of this empty concatenation.
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(ab)s (ab)s

K"J\/”/R
a)yy o (b)o \ ®  (a)o , (b1

1,3 2 4 1 3 24

= 1

Fig. 9.1. A concatenation of twd-regsignals that has an empty semantics.

On the contrary both the untimed and the timing of 4kgignal regular expression in 9.1 have
nonempty semantics:

0 1 0 3 0O 3 2 3 0 1 2 3

-1 0 -1 2 o -3 0 -1 0 _ -1 0 1 2

0 1 0 3 -2 1 0 1| |-2 -1 0 1

-3 -2 -3 0 -3 0 —1 0 -3 -2 -1 0

respectively

€ a € ab € ab a ab € a a ab
a ! € a ! b - blat ¢ bt e | a ! e e b
5 a € ab a~! b ¢ b | a~! e e b
b~la™' b ' blat e b=la™' ¢ b' ¢ b~la™' b bl e

The correct handling of such expressions requires working with both the untimed structure and
the timing structure together. But we only know to handle each one on its own.

The solution is the following: to decompose first e&ehregsignal into the untimed and the
timing part, then to build thén-word representation of the timed part, and finally to recombine
the 2n-regword in the untimed part with thz:-regword over a one-letter alphabet from the
word representation of the timing part.

This recombination is simply thanuffle of the two2n-regwords. The simple but essential prop-
erties of shuffle that we will take advantage of is the fact that, for any twd'sétsL i ' is empty
iff both . and L' are empty. Then what remains to be shown is that the union/concatenation/star
constructions correctly “combine” with this shuffle operation.

We show here that this idea works fine, in spite of the noncompositionality of projection on our
shuffled items. The reason this time noncompositionality is no longer harmful is that we are able
to provide a “weak compositionality” result, saying that the shuffle representation has a nonempty
semantics iff the semantics of the initiat-signal regular expression is nonempty.

We end this section with an expected result, namely thaRtheegsignals that we have pro-
duced for timed automata satisfy the non-elasticity assumption, hence we can use the technique
developed here for checking timed automata for emptiness.

9.1 Decomposition and recomposition of 2n-signal regular expressions

Throughout this section we will extend several operations frawdihensional) words/signals to
n-wordsh-signals:
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1.7 - " is the extension of the canonical projection ™ : X¥* — X*/p (defined in Chapter 2,

page 27) tov-words: for eacm-word w € WD, (X)) andi,j € [1...n],
(/TU\)ZJ = TU;
Observe that we first need to exténd™ to antiwords and only after that ta-words.
2. U is the extension of the untiming morphigi: Sig(X) — SF(X) to arbitraryn-signals: for
eachn-signalo € Sig,(X) andi,j € [1...n],

(u(a>)ij =U(oy;)

Observe again that we first extebido antisignals and only after that ta-signals.
3. ¢ is the extension of the length morphigm Sig(X) — R-, to arbitraryn-signals: for each
n-signale € Sig,,(X) andi,j € [1...n],

(€<U))ij = {(03)
Similarly to above we first need to exteAdo antisignals.

The definition of the shuffle operation on words is the following: given two wardg € X*,
the shuffle of w andw’, denotedwww’, is the language obtained as follows: for edcle N,
we decomposev in k words,w = w;...w; andw’ in k words too,w’ = wj...w;, and then
recombine these pieces into a single word by interleaving subwordsvaith subwords ofu/.
More formally,

www' = {w” | 3w, ... wk,wi, ... ,w, € X* such that

w=w .. wp,w =w... w,andw” = ww ... ww}

We will take advantage of the fact that we utilize disjoint sets of symbols (the set of symbols
which represent states within the signals, and the singleton set which is useaviord represen-
tations) and redefine shuffle with the aid of monoid morphisms as follows:

Let us consider two disjoint sets of symbalsn 2 = (). We will define the shuffle ofy € X~
andw’ € 2* as the set of words” with the property that, if we delete from’ the symbols from
Y, the result isv, and if we delete the symbols frof we getu/.

The formal definition of “deletion of symbols” is the following: denote first and k, the
applications

foralla €¢ X
Ky (ZUQ) = 5 kyla) =4 ¢
e forallae 2

a forallae
ko (XUR)— 2% kpla) =

e forallae X
Then the “deletion of symbols” are the induced morphisths: (X U 2)* — X* and resp.
nbg (XU 2)* = 02* In the sequel we will utilize the notations; and x, for the induced
morphisms too.
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Definition 9.1.1. Given two wordsw € X*, w' € 2%, the shuffle of w and w’, denoted www/’, is
the following set:

www' = {w" € (ZUN)" | ks(w") =wandko(w”) =w'} (9.2)
The generalization ta-words gives the following:

Definition 9.1.2. Suppose we are given two 2n-words w,w' € WD, (X'). The shuffle of w with
w', denoted www', isthe set of 2n-words for which, for each i, j € [1...n], the (4, j)-component
belongs to the shuffle of w;; with w;;:

www' = {w" e WD, (2 U 2) | foralli,je[l...n],w; € w;ww,} (9.3)

Note however that “random shuffling” of components does not give in general because
some results might not satisfy the triangle identity 6.1.

Even more, we may define a class2f-word regular expressions with shuffle, generated by
the following grammar:

E:=R|E+FE|EwE|E®E|E®
The following proposition shows, in essence, that shuffle is expressible by the other operations,
that is, its use does not increase the expressive powir-oford regular expressions:
Proposition 9.1.3. The class of n-word languages accepted by n-automata is closed under shuffle.

Proof. The construction is a generalization of a well-known construction for the shuffle of two
regular languages. It can be described aasggnchronous composition of two automata: at each
moment, the automaton for the shuffled language has the possibility to choose between a transition
in the first automaton and a transition in the second automaton.

Formally, for any twon-automatad = (Q,4,Q,... ,Q,) andB = (Q',¢,Q", ... ,Q.), the
automaton accepting(A)w L(B) is the following:

C=(Q x Q' theta,Q1 X Q},... ,Q, x Q) where
0={(a.d) > (rd)la5restulled) =) d S ed}

The proof thatL(C) = L(A)w L(B) is based on the argument that all accepting runs cén
be obtained by shuffling accepting runs4fwith accepting runs oB. O

9.2 Shuffled n-words

Definition 9.2.1. An n-dimensional shuffled word, or shuffled n-word, isatuple (v, M) consist-
ing of an n-word v € WD,,(X' U {1}) and an n-relation M € I,.
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The set of shuffled-words with symbols in¥' is denotedsW,, (X).

The semantics of shuffledwords is based upon the following observation: if we haxeveord
w and an-signal over a one-letter alphabete Sig,({a}), then we may combine them and build
(uncountably manyj-signals whose untiming is stuttering equivalentit@nd whose timing is
exactlyo.

Thesemantics of a shuffledn-word is the following set:

. — =
[y, M] = {0 € Sig,(X) | U(c) = kx(v) andl(o) € [ry(y), M]} (9.4)
Proposition 9.2.2. Each shuffled n-word (-, M) has a nonempty semantics.

Similarly to n-word representations, we may define an equivalence relaticB\oiiY’) as
follows:

(71, M) ~ (72, My) if and only if [[’h, Mﬂ] = [[’Yz,Mﬂ]-

Then call a seS C SW,,(X') asconvex if it is saturated by this equivalence relation, that is,
Whenevel(’}/l, Ml) € S and [[’)/1, Ml]] = [[’)/2, Mg]] then(’)/Q, Mg) es.

9.2.1 Projection on shuffled words

Definition 9.2.3. Given a shuffled n-word (v, M) andasetY C [1...n], theprojection of (v, M)
onto Y isthe shuffled card(Y')-word

(7|Y7M|Y)

As for n-regsignals, projection poses problems: it is not compositional w.r.t. the semantics. As
an example, consider the following shuffledvord:

€ ala alablb f=t r =t =
a1 1g1 € bl |, = = = (9.5)
bfllflbflafllflafl bfllflbfl e A

whose semantics consists exactly of the singlétsignal language

€ a'  a'b!
a! e b
bla! b1 ¢
On the contrary, the projection of the shufflgdvord defined in 9.5 onto the sét, 3}, gives
the following shuffled2-word with its nonsingleton semantics
Jalablb, < =] = {a“bﬂ |+ =2}
We have used here the convention that any woerde X* can be regarded as thieword
£ w
w e )
However we have the following “weakly compositional” characterization of the emptiness prob-
lem for the semantics of shuffledwords:
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Proposition 9.2.4. 1. For each shuffled n-word (v, M) andY C [1...n],
v\, M|, 2 [y, MT |, (9.6)

2. For each two equivalent shuffled n-words (y1, M1), (72, M) € SW,,(X)(Y), and subset of
indicesY C [1...n],if [y, Mi] = [2, Ms] then the projections of both shuffled n-words on
Y areequivalent.

Proof. 1) Straightforward, since for eache [, M], 0|, € [v|,, M|, ] by easy verification.

—
2) Let us observe that, {fyi, Mi]] = [ye, Mol thenks(vi) = kx(y2) and [k (v1), Mi] =
[k413(72), M>]. This implies that

— —_——
ks(m) |y = ks(72) |, and
[K{l}(%)’ Ml} y = [”{1}(72% Mﬂ |

By the compositionality of projection on word representation, the last line is equivalent to
[“{1}(71)|Y7M1 |Y] = [H{l}(72)|Y7M2 |Y]

But this means thaty |, M|, [| = [2|,, Mo, ]. .

Remark 9.2.5. The inclusion 9.6 is the same as the property 6.26 on page 100;regsignals.
Hence we may never get “false negative” answers to the emptiness problem by working with
projection at the syntactic level.

The question is then whether we may get “false positive” answers. The answer to this question
is negative, due to the fact that we always work with shuffled words, that is, items satisfying the
triangle identity and whose timing denote some nonempty region. It will be the task of the normal
form algorithm for DBMs, respectively the emptiness algorithmfesutomata, to “purge” the
possible items that have empty semantics.

The difference withn-regsignals is that, with these ones, we had no algorithm for checking
whether an-regsignal has an empty semantics or not. For shufflecrds we haver-automata.

9.2.2 Juxtaposition on shuffled words

The juxtaposition operation on shuffled words can be defined similarly to word representations:
one juxtaposes both the word parts and the relational parts in each operand, and the result must be
a set, due to juxtaposition on relation matrices:

Definition 9.2.6. Given a shuffled m-word (v;, M;), a shuffled n-word (v, M;) and an integer
p < min(m,n), the p-juxtaposition of (v, M;) with (v, M>) is the following set of shuffled
(m 4+ n — p)-words

(71, M1)3p (2, M) = {(mOpy2, M) | M € MO, M>}
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Remind that, even for word representations of regions, juxtaposition is compositional only when
defined orconvex sets, that is, on sets which were closed under region equivalence.

Proposition 9.2.7. For each m-word representations (1, M1) € SW,,(X), (72, M2) € SW,,(X)
and integer p < min(m,n),

[y, My B, Iy, Ma] = U {[[Vimp“YéaM]] | (71, My) =~ (71, My),
(43, M3) = (72, Mo) and M € M{B, Mz} (9.7)

Proof. The proof of the inverse inclusion is straightforward: given &my+ n — p)-signal
(OlS {[[/ﬁmpqév M]] | (’ﬁvM{) = (’717M1)7 (VévMé) = ’727M2) andM € M{DpMé}v

we have, by the inclusion 9.6 from Proposition 9.2.4, tigt € v, M| = [y, M,] and
Ol ptominp] = vy, Myl = [e, Ms]. But this implies thatr € [, M1]0,[y2, Ma] by
definition of O, on signals.

The left-to-right inclusion follows this way: givem € [y, M;]0, [v2, M,], we will try con-
struct a shuffledm + n — p)-word, denote it(y, M), whose semantics contaias (v, M) is
a juxtaposition of a shuffledn-word equivalent toy, M;) with a shuffledn-word equivalent
to (72, Ms). This shuffled(m + n — p)-word arises as a shuffle of the untiming @fwith any
(m 4+ n — p)-word representation of then + n — p)-region which containg(o).

Formally, we pick &m +n —p)-wordw € U(o), which is possible sincH (c) is nonempty for
anyn-signal. Then, for thenique regionR € Regn,, which containg(c) we pick an(m +mn — p)-
word representatiofw, M), hencer € [w, M|. We then shufflev andw and pick somém-+n—p)-
word+ in this shuffle. Consequently,

——~—
u(‘7|[1...m]) = ”2(7|[1...m]) = kx(n) [K{l}(7|[1...m])v M|[1...m]]
= [Fy(m), Mi]

since (k13 (V] n)> M,y 1S theunique region which contains|, . It then follows that

[[’Y |[1m}’ M|[1m]]] - [[717 Ml]] and [[7 |[m—p+1...m+n—p]’ M|[m—p+1...m+n—p]]] - [[’72’ MZ]] ’

The equality[[7|[m | = 2, M,] follows similarly. O

—p+1..m+n—p]’ M |[m—p+1...m+n—p]

Remark 9.2.8. Observe that in the above proof we have utilized the fact that the maggings
x{13 and/ commute with projection, fact which can be easily established.

The rest of the good properties of juxtaposition hold as expected:

Proposition 9.2.9. 1. For each convex set of shuffled n-words S C SW,,(X) and each X C
[1...n], S|, isalso aconvex set of shuffled card (X )-words.
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2. For each two convex sets of shuffled words S; C SW,,,(X), S € SW,,(X), and integer p <
min(m,n), 510,55 isa convex set of (m + n — p)-word representations and

1510, = [S1]0,[5:] (9.8)

3. For each three convex sets of shuffled words S; C SW,,,(X), So C SW,,(X), S5 C SW,(X),
and integers ¢ < min(m,n), r < min(n, p),

(SIDqSQ)DTS:J, - Slmq(SQDTS:J,) (99)

Proof. The second property is a corollary of Proposition 9.2.7.
The first property can be proved as follows: given a shuffied (X )-word (v, M) € S and

. ——
another shuffled-word (v, M) with [[y|,, M|, ] = [v/, M'], we get thak 5(v|, ) = xx(7') and
[y (Y] ) M 5] = [rey (), M7

Let us denotew; = kx(y) andw, = kx(y'). We may then build a-word «' such that
U(w'|) = "wy~andU (w') ="w; ", as follows:

e [or each’,j e X, Iif (wl)i]‘ = alf c CLZC andwlx(i)lx(j) = a71”1 R GZLk then put

max(li,m max(lg,m
wi; = a xtom) - gmax(lem)

e Let i, denote one of thenaximal indices in any ordering compatible,, that is,(w2) i, € X"
foranyj € [1...n]. Let alsoj, denote one of theninimal indices in any ordering compatible
we, that is,(ws);,; € X* foranyi € [1...n].

Then for alli ¢ X for which (wy);,;, € X* putw, ; = (w1),,;, while for alli ¢ X for which

0%

(w1)i, € X% putw, , = (wy)s,. Finally completew’ by the triangle identity.

0%

~ =~ A = ~
Itis easy to observe then that' = “w;~ while w'|,, = "w;".

Further, let us build an-word representatiofw;, A/;) which is equivalent with{rxgy(7y), M)
and extendsr ('), M'). This part of the proof has already been done in Proposition 8.3.15.

We may then conclude that any shuffledvord (v, M,) in which+y” € v’ ww, has the property
that[[y”, M,]] = [y, M]. By convexity ofS we get thaty”’, M) € S, which assures, on its turn,
that(y', M') € S|, 0

Proposition 9.2.10. 1. For each fiveintegersm,n,p, ¢, € N withr < min(p, ¢), shuffled words
(71, M1) € SW,, (X)), (72, Ma) € SW,,(X),given X C [1...m]withjm —r+1...m|C X
and card(X) = p,andgivenalsoY C [1...nJwith[1...r] C Y and card(Y') = ¢, we have
that

(’71, Ml) |XDr(’Yz, M2) |Y = ((’Yl, Ml)D(’Ym M2)) |XU(Y+m_T)- (9.10)

! Such maximal indices are not unique.
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2. Juxtaposition is associative on shuffled words: for each (v, M;) € SW,,(X), (72, M) €
SW,,(X) and (vs, M3) € SW,(X'), and for each £ < min(m,n) and { < min(n,p),

((v1, M) O(v2, Ma)) Oy(ys, M3) = (y1, My) O (72, M2) O (s, M3)) (9.11)

Proof. Both properties are straightforward corollaries of the respective properties concerning jux-
taposition and projection omwords and:-word representations. O

Note that this proposition refers only to the syntactic properties relating juxtaposition and pro-
jection, not to their semantic properties. Therefore it hides no contradiction with the noncomposi-
tionality of projection.

9.2.3 Concatenation and star on shuffled words

This is defined as usual, by means of projection an juxtaposition: for each two stuiffledrds
(717 M1)7 (727 M2) € SWZn(E)a

(71, M1) © (72, Ma) = {(m © 72, M) | M € My © My}

Composition enjoys the well-known properties at the syntactic level, namely associativity, ex-
istence of two units per each shuffl2etword and existence of pseudoinverses, but, due to the use
of projection, it is not compositional. It can also be extended to sets of shafiledrds in the
usual way, and gives rise to the star operation

for eachS C SW,, (X)), S® = U S*© whereS° = 1,, andS*tHe = §k© o g
Herel,, is the set of all units:
Lo ={(,M) | Vi€ X, Yipri =& Mipyi =" "=}

The following properties are essential in our “shuffle” approach to checkirgignal regular
expressions for emptiness:

Proposition 9.2.11. 1. For each pair of sets of convex shuffled 2n-words S;, So € SW,,, (X)),
[S) ® So]l # 0 if and only if [.S] ® [So]] # 0
2. For each set of convex shuffled 2n-words S C SWo,, (X)),
5] + 0 if and only if [S]* # 0

Proof. For both properties, the right-to-left implication follows by means of Proposition 9.2.4 and
of compositionality of juxtaposition. Note that convexity is essential in this implication. Moreover,
the second property follows by induction from the first.
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For the proof of the left-to-right implication for the first property, supppSe® Ss] # 0. This
implies in fact that there existy, M) € S; and(~,, M3) € M,) such thaty; ® 7, is defined and
M; ® M, is nonempty. But this implies also thatO,, v, is defined and\/;0,, M, is nonempty,
hence for anyM € M,0,, M, we have thafly, 0,7, M] is a nonempty set. The proof ends if we
pick up anyo € [,0,7., M] and observe that|, ,, € [y1, Mq] andol, 4. € (2, Ms],
which means that

O.|[1...2n] © O-l[n+1...3n} < [[’71’ Ml]] © [[72’ MZ]]

or, in other words, thaty;, M, ]| ® [y2, Ms] is nonempty. O

Shuffle regwords are naturally associated withutomata that generalizeregion automata:
these are tuplesl = (Q,4,Q1,...,Q,, A), with X\ labeling states witm-relations. Proposition
9.1.3 implies that we may construetautomata for shuffled-regwords by shuffling.-automata
for the untiming withn-region automata.

Proposition 9.2.12. For each n-regword R € RW,,(X') and convex set of n-word representations
W C WdRep,, the shuffled n-word semantics of the shuffle regword Rw W is a convex set of
shuffled n-words.

Proof. Easy corollary of the convexity ofy. O

9.2.4 A method for checking whether the semantics of a 2n-signal regular expression is
empty

1. Given a2n-signal regular expressiall, we decompose ea@n-regsignal occurring irk into
the untimed part and the timing part.

2. We then interpret the untimezh-regsignal as &n-regword (this implies that stuttering is
added) and associatea-automaton to it.

3. On the other hand, we interpret the timihwgregsignal as &n-EDBM and hence associate a
2n-region automaton to it.

4. Subsequently, we produce the shuffle of the two automata.

5. Then we apply the union/concatenation/star constructions for the resulting automata (provided
the non-elasticity assumption holds) until we associ@te-automaton to the whole expression.

6. Finally, we check whether the semantics of this filralautomaton is void.

In order for this algorithm to be correct, we need to redefine the non-elasticity propegty-for
signals, and to prove that this definition is consistent with the representations of 3etsighals.

Definition 9.2.13. A 2n-signal ¢ is called non-elastic if the following property holds:

For eachi,j € [1...n], if 0,,4; # € and 0} ,,4; # ¢ then both o, ,,; and ¢; ., are not
antisignals, that iso; ,,+; € Sig(X') and o, ,,+; € Sig(X).
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Proposition 9.2.14. For each 2n-signal ¢ € Sig,,(Y), o is non-elastic if and only if U(o) is
non-elastic, if and only if /(o) is non-elastic.

Proof. Straightforward, due to the fact that; = ¢ if and only if U(0;;) = ¢ if and only if
g(O'ij) = 0. O

Proposition 9.2.15. Given a 2n-regword R € RW,, (X U {1}) and a 2n-relation M, [R, M]
contains only non-elastic 2n-signals if and only if x5 (|| R||) contains only non-elastic 2n-words
and [rq}, M] isanon-elastic region.

Proof. Corollary of the above Proposition and of the Proposition 8.4.10. O

Theorem 9.2.16. The above procedure ter minates with some 2n-automaton with a nonempty lan-
guage if and only if the semantics of the initial expression is nonempty, provided the 2n-signal
regular expression thisinitial expression £ satisfies the following non-elasticity assumption:

Denote L the union of the semantics of all 2n-regsignals from which E is built of. Then
LY consists of non-€elastic 2n-signalsfor any k € N.

Proof. Corollary of Proposition 9.2.11, which is applied by structural induction or2thsignal
regular expression involved. The essential property in the proof is that for2eadgsignal, the
shuffle2n-regword associated as above is convex. O

9.3 Checking emptiness of timed automata with 2n-signal regular
expressions

Remind that in Chapter 6 we have proved that (languages of) timed automata are embeddable in
2n-signal regular expressions. Then, our search for a property that assures decidability was guided
in part by some observations on the-signals that occur during this embedding. We will show
here that, indeed, timed automata can be simulatehbsignal regular expressions which have
the non-elasticity property.

Remind that, in Theorem 6.5.2, for each timed automatonmitlocks A = (Q, X, 0, A, Qo, Q¢)
in which each transition resets at least one clock, and for each tran;siicré)é)a r in this automa-
ton, in whichX # () and\(¢q) = a we have associated2a-regsignalR(C, X'). More specifically,
forC=( N\ meL)n( N - €Jy;) the2n-regsignalR(C, X) is:

1€[1...n] 1,j€[L...n],i#]
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(Zru(ZYs,, fori,jell...n]
(XU (XY, fori=n+kj=n+lLkleX
€ fori=n+kj=n+1kleX
(Zru(xYHn,, foriel...n),j=n+kkeX,itk
R(C.X),, = 1 (2 U (X, fOI’j:E [1n]zin+kk67]7&_k
€ forj=n+iieXori=n+jjeX
(X% -a)g, forie[l...n],j=n+kkeX
ori=n+lj=n+kkecXIlecX
(@' (2 )Yy forjell...nli=n+kkeX
ori=n+kj=n+lkcXIleX

DenoteL the union of the semantics of &h-regsignalsk(C, X) for all n-constraints”' and
subset) # X C [1...n], L=U{|R(C,X)|||C €C(E),0#X C[L...n]}.

Proposition 9.3.1. £ satisfies the hypothesisin Theorem 7.4.3, that is, £*© consists of non-elastic
2n-signalsfor all £ € N.

Proof. Observe that setB(C, X) bear the following important property:

(*) For eachC € C(X), eachX C [1...n]ando € ||R(C,X)||, if 0;,,+: # € then for all
j €[1l...n],0;,+; is notan antisignal, that ig; ,,,; € Sig(X).

We will then actually show that the set of ati-signals with property (*) satisfies the hypothesis
in Theorem 7.4.3:

Takek 2n-signalsoy, . . . , oy, all satisfying property (*). Suppose that® . .. ® ;. is anelastic
2n-signal. That is, there existj € [1...n] such that

1. (0'1 ®...0 Uk)io,n+i0 7é €, (0'1 ®...0 Uk)jom-i—jo 7£ ¢ and
2. (01®...0 0k)igntjo IS an antisignal, i.e(o; @ ... ® og)ignsio € Sig(X 1)\ {e}.

Let us show thato;),,.»+i, iS an antisignal. We prove this by contradiction: since forl a

[1...k], oy is @ non-elasti@n-signal, we must then have,), .+, € Sig(X) and, similarly,
(h)jon+jo € Sig(X). But then

(0'1® e @ O-k)joﬂ’”rio =

= (01)jountdo - - - (01-1) jo,nt50 (01) jontio (T111 igim-tio - - - (Ok )i mtio

hence(o; © ... ® ok)j, n+4, 1S @ Signal, fact which contradicts condition 2 above.

On the other hand, condition 1 above implies that there exists ¢pme|l ... k] such that
(01)iom+ic 7 €. But by property (*), we must have thémy,);, .+i, € Sig(X), which we have
already seen to be in contradiction with condition 2. O
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Remark 9.3.2. Observe that using non-elasticity instead of property (*) does not suffice to prove
the above result.

Observe also that Proposition 9.3.1 assures that each concatenation produces non-elastic lan-
guages.
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10. Conclusions

We have presented an approach on checking timed automata for language emptiness, approach
based on regular expressions. The regular expressions we use arise as a generalization of timed
regular expressions of [ACM97], with the use of colored parentheses. Our method associates
to each atomic regular expression a class of automata awitaccepting sets, and then applies
union/concatenation/star constructions to build an automaton representing the whole regular ex-
pression.

The essential steps that give this method are the following:

e The possibility to represent timing constraints over the continuous time domain with the aid of
n-automata. This possibility is based upon region decomposition of each timing constraint, and
on the representation of each region as a pair consisting efvaord over a one-letter alphabet
and a matrix of relational symbols.

e The star-closure theorem f@n-automata with the property that all the powers of its accepted
language are composed of only non-elagtiewords.

e The decomposition of each regular expression into the untimed and the timing part, decompo-
sition which allows representing the timing part with-word representations. And then, the
recomposition of the untiming part with tRe-word representation of the timing part, by means
of the shuffle operation. This recomposition replaces a (perhaps uneasy) synchronous application
of the union/concatenation/star constructions for both the untimed and the timing part, which is
needed when the interactions between untiming and timing are more involved and may lead to
emptiness — that is, to unfeasible specifications.

We hope that our study gives new insights in better understanding the theory of timed systems.
The difficulty of the emptiness checking for timed automata keeps the performances modeling sys-
tems with timed automata and model-checking their properties far from the performances reached
for untimed modeling. Therefore, any alternative insight might help in identifying subclasses with
nice properties. Our theory @h-signal regular expressions atwe-automata is such an alternative
insight.

For the comparison of our approach to the emptiness problem for timed automata with the clas-
sical approaches [Yov98, LPWY95] based on the region construction of [AD94], we may observe
the following points:

e The essential property that gives a terminating algorithm in the classical approach is the pos-
sibility to collapse the infinite region space into a finite one, which is of the cardinality of the
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set of regions included into some hypercupe. The length of the edge of this hyperéubd js

with k& being computable from the largest constants used in the clock constraints of the given
timed automaton. In the reference paper on timed automata [AD94] this constant is exactly the
largest constant in any clock constraint, but this is due to the fact that clock constraints do not
use diagonal atomic constraints— =; € I. In general, this constant needs to be computed by
“propagating” also the diagonal constraints [Tri98].

On the other hand, in our approach, termination is assured by the non-elasticity property of the
2n-signals which give thén-signal-semantics of a timed automaton, property which allows the
possibility to iteratively build a finite representation for the reachability relation defined by the
timed automaton. This still means that we get a finite decomposition of the set of clock regions,
but this decomposition is “finer” (that is, gives in general more equivalence classes) than Alur’s
decomposition.

As a consequence, our algorithm might sometimes require more memory than the classical ap-
proach. Of contrary, sometimes our approach might give faster results due to the possibility to
get the behavior of a loop in the timed automaton in a single application of the star closure al-
gorithm, fact which is not available in the classical approach since there one needs to iteratively
pass through the loop until the fixpoint is reached.

e The complexity of our algorithm is nonelementary, in contrast with the PSPACE complexity
of the classical approach. This follows due to the fact that each star produces an exponential
explosion of the state space. However this result concerns only the worst-case complexity, and is
highly dependent on the number of nested stars in the regular expression that one may associate
to a timed automaton.

Our contributions are partly theoretical, but with a certain interest for the domain of verification
of timed systems. In this sense, our main contribution is the verification method for timed automata
by translation t@n-signal regular expressions. It can be argued that building a regular expression
from a timed automaton is a difficult task, a legitimate observation. But we expect to further study
the possibility of directly translating the timed regular expressions of [ACM97] into our regular
expressions and hence making available our technique without passing through timed automata.

This gives one of the directions for future research: the introduction of parallel composition in
regular expressions with colored parentheses. Specifically, we would like to have some “distribu-
tivity” laws of parallel composition over atomic blocks. Such laws would allow transformation
of parallel compositions of timed regular expressions of [ACM97] into regular expressions with
colored parentheses. This would allow doing emptiness checking for timed regular expressions of
[ACM97] without passing through timed automata.

Another promising direction is given by the applicability:ofautomata in representing timing
constraints. We have found that an argument in favoi-alitomata is that they sometimes give
a more compact representation of timing constraints. Unfortunatelytomata are nondetermin-
istic, hence the problem of finding small representation of timing constraints is somewhat related
to the problem of finding small nondeterministic finite automata. In particular, the union construc-
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tion of severalh-automata, which in theory is done by simply joining the state spaces, has to be
accompanied by a technique which identifies some states, in order to reduce the state space.

We would also like to transform our closure algorithms feautomata (that is, the union,
concatenation and star closure algorithms) into symbolic algorithms. One might be tempted to
say that this would bring us back to the existing symbolic algorithms for reachability of timed
automata. But this is not true, because we would not code disjunctions of constraints. Symbolic
algorithms would allow one to symbolically represent states-automata, and we have already
pointed out that there is no connection between states inartomaton and clock regions.

Another direction of further study is the possibility to combine our emptiness checking tech-
nique with partial order reduction methods. For timed automata, partial order reductions involve
the possibilty to split, at certain moments, the clock set into subsets of dependent clocks, such that
two clocks belonging to different subsets are not related by any constraint during the respective
moments. For our setting, this would mean to spliharegsignal into smaller regsignals and to do
concatenation and star on these regsignals. Some care needs to be put in order to define a “parallel”
composition of these smaller rsgsignals such that one does not obtain elastic regsignals.

And a final mention for the idea of finding more general classes of timed systems that may be
modeled by2n-automata. We mainly think of hybrid automata with stopwatches [Hen96]. It has
been already observed that preemptive scheduling can be modeled by such hybrid automata [AM].
The essence is that preemptive scheduling is intimately related tehtiffee operation, hence it
remains to be studied how to model this imt@utomata and what would be the resulting class of
timed languages.
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Résumé. Un automate tempoiésest un automate augmeravec plusieurs horloges qui mesurent
le passage de temps et peuvent conditionner la modificatio®tdé du systme. Les automates
tempori€s ontéte introduits en tant que metk formel pour les sydimes tempseel, en esprant
gue leur dle dans la @rification de tels systmes sera similaire adle des automates finis dans la
recherche sy8tnatique des erreurs de conception deesges non-tempo@s. Dans notre #se
nouseétudions plusieurs questionsedriques les aux automates tempdiset aux langages tem-
porises.

Dans une prenare partie nougtudions une sous-classe simple d’automates tengsarisne
seule horloge qui est remisezro pendant chaque transition. Nous montrons que cette sous-
classe supporte dessultats similairea la theorie classique des automates finis: désimes de
Kleene, de Myhill-Nerode et de fermeture par coenpentation.

La deuxeme et principale partie de lagke est motige par les expressionsgulieres tempo-
rises de Asarin, Caspi et Maler. Depuis leur introduction, on sait qu’il faut employer 'intersection
dans les expressionggulieres pour que leur expressevisoitégale aux automates temp@ss
Nous poursuivons alors une approche alternative en utilisant des geenttoldres pour dfinir
les contraintes temporelles sur urggjgence dvenements. Cette & aboutita une repesenta-
tion alternative des langage des automates tengstimee sur une nouvelle classe de langages
formels que nous appelotengages des regminos. Nous @veloppons alors la #orie des expres-
sions egulieres sur les regminos et nous montrons que le pnoblde 8mantique vide est irgd
cidable en caségeral, et @cidable pour une sous-classe large de langages. L'application de ces
résultats nous aemea des nouvelles structures de dees eta des algorithmes pour le prébhe
du langage vide dans les automates tempsrit les expressionsgulieres.

Mots clés. automate temporés expressionségulieres, tkoeme de Kleene, contraintes tem-
porelles, decidabii, langages formels.

Title. An algebraic theory of real-time formal languages.

Abstract. A timed automaton is an automaton augmented with several clocks that measure the
time passage and may influence state changes in the system. Timed automata were introduced as
a formal model for real-time systems hoping that their role in the verification of such systems will

be similar to the role of finite automata in the systematic search of errors in the design of untimed
systems. In our thesis we are concerned with several theoretical questions related to timed automata
and timed languages.

In the first part of the thesis we investigate a simple sub-class of timed automata with one clock
which is reset at each transition. We show that for this sub-class we can obtain simple analogs of
the classical results of automata theory, namely Kleene and Myhill-Nerode theorems and closure
under complementation.

The second and main part of the thesis is motivated by the timed regular expressions of Asarin,
Caspi and Maler where it was shown that, in order to match the expressive power of timed au-
tomata, one needs to introduce intersection into the expressions. We investigate an alternative to
intersection by using colored parentheses for defining timing restrictions on overlapping parts of a
sequence. This idea leads to an alternative representation of languages of timed automata, which
is based on a new class of languages called tegraino languages. We develop the theory of reg-
ular expressions over regminoes and prove that their emptiness problem is undecidable in general,
and decidable for a large subclass of languages. From these results we develop new data-structures
and algorithms for solving emptiness and reachability problems for timed automata and regular
expressions.

Keywords. timed automata, regular expressions, Kleene theorem, timing constraints, decidability,
formal languages.

Adresse du laboratoire d accueil. Vérimag, 2 av. de Vignate, 38610&Bés.



