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Prologue

apparence n. f. Ce qui se présente immédiatement à la vue ou à l’esprit :Une maison de
belle apparence. Toutes les apparences sont contre l’accusé.�� Aspect extérieur, qui ne répond pas
à la réalité ; semblant :Cacher sous une apparence bonasse une dureté intraitable.�� — SYN. :
air, dehors, extérieur, façade, phénomene, probabilité, semblant, vraisemblance.� Sauver les ap-
parences,ne rien laisser paraître qui puisse nuire à la réputation ou blesser les bienséances.�
LOC. ADV. En apparence,extérieurement, à en juger d’après ce que l’on voit.

Larousse [Lar92].
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Chapitre 1

Introduction

FIG. 1.1: La mine d’or
de communications glo-
bales : Terminal UMTS
(source [BBF�01])

Depuis sa création en 1990 avec la définition deHyperText Trans-
port Protocol (HTTP)[HTT00], le World Wide Web a révolutionné
presque chaque aspect de la communication et du calcul personnel et
professionnel. En même temps, leGlobal System for Mobile Commu-
nications (GSM)[GSM01] est devenu le protocole le plus important
pour le téléphone mobile. L’Universal Mobile Telecommunications
System (UMTS)fait partie des systèmes de communication mobile
de troisième génération (3G) de l’International Telecommunications
Union (ITU) [UMT01]. En 2000, les compagnies de télécommunica-
tion ont dépensé le montant sans précédent de 305 milliards� pour
obtenir des licences d’UMTS pour les services mobiles de commu-
nication 3G en Europe [BBF�01]. UMTS fournira de l’information
et des services de commerce et de divertissement aux utilisateurs mo-
biles par l’intermédiaire de réseaux fixes, radio, et satellites, soutenant
de cette façon l’intégration des télécommunications, des technologies
d’information, des médias et des services de contenu. Ceci correspond à une connexion Internet
mobile permanente avec des services de voix, de vidéo, de communication de données, et d’autres
services d’information intégrés. La figure 1.2 illustre les changements des habitudes de communi-
cation (mobile) pour un tel genre de systèmes.

La largeur de bande visée de transmission pour UMTS est 2 mégabits/seconde, mais pour
son début en 2002, cette cadence a été réduite à 384 kilobits/seconde en raison de problèmes
techniques. L’obstacle technique principal est l’alimentation d’énergie pour les appareils d’utilisa-
teurs. Bien qu’il n’ait pas répondu à toutes les espérances, leWireless Application Protocol (WAP)
[WAP00] pour les téléphones mobiles était une première étape pour rendre invisible l’emplace-
ment physique d’un terminal d’utilisateur. Dès lors qu’il fonctionnera comme annoncé, UMTS,
en effet, rendra sans importance l’emplacement physique réel d’un utilisateur et des informations
qui lui sont fournies. Un terminal UMTS avec une connexion à l’Internet est tout ce qui est néces-
saire pour rendre n’importe quelle information disponible partout sur cette planète. La figure 1.3
démontre quelques exemples d’études de projets des terminaux UMTS.

17
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Cet environnement technologique crée une situation dans laquelle il est nécessaire de trans-
mettre une quantité de données par les lignes de communication avec une largeur de bande très
limitée, qu’elles soient par radio ou par fil. Ceci mène aux demandes techniques suivantes :

� Représentation de données efficace, élimination d’information redondante

� Protection de la sécurité et de l’espace privé pendant la communication et la transmission
ou l’accès aux données

� Accès omniprésent et instantané/permanent à l’information
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FIG. 1.2: Évolution des styles de communication et des contenus de messages. Nous notons de
gauche à droite le développement du texte, d’après graphiques, images numériques, et vidéo nu-
mérique à l’intégration de contenu mobile multimédia. Verticalement nous voyons l’intégration de
services fax, voix, et Internet(WWW, E-Mail, Chat)séparés dans un seul service.

Du côté du hardware, la puissance de calcul exponentiellement croissante et les nouveaux pé-
riphériques et techniques telles que les caméras pilotables avec suivi intégré, les écrans à contact,
les capteur-gants, et les logiciels de reconnaissance de la parole ouvrent de nouvelles voies d’in-
teraction homme-machine. La conséquence est le développement de demande complexes de mul-
timédia, de système de vidéoconférences, de la vidéotéléphonie, d’échange de données vidéo,
et d’autres de communication vidéo. Par contre, les capacités améliorées des environnements de
calcul actuels (et à venir) vont au-delà de la création de nouvelles applications. Les publications ré-
centes comme [CCB00, Pen00] démontrent que les systèmes soutenus par ordinateur deviennent
maintenant capables depercevoir leur environnement. Une fois réussi, ceci changera la façon
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dont on interagit avec les ordinateurs. Alors que ces nouvelles applications sont développées, la
puissance de calcul insuffisante reste un problème critique à cause des largeurs de bande de trans-
mission et de l’espace mémoire limités.

Ericsson Motorola Siemens SX45 Nokia C3 Nokia F3

FIG. 1.3: Études de conception de terminaux UMTS [GSM01]

Une largeur de bande et une puissance de calcul croissante feront de la vidéo une propriété de
base des appareils et des services de communication. Cependant, même les canaux de communi-
cation à grande vitesse les plus modernes exigent la compression vidéo. Les formats d’images de
séquences vidéo les plus communs sont ceux utilisés pour l’émission de télévision, c’est–à–dire,
NTSC1, PAL2, SECAM3, et CIF4. Le tableau 1.1 contient les tailles d’images correspondantes
[ITU96, ITU93, ITU94].

TAB. 1.1: Formats d’images standards importants

Standard pixels / ligne
lignes /
image

images /
seconde

codage de pixels

NTSC 858 (720 digital active) 525 30 YC RCB (ITU-R BT.601-4)
PAL 864 (720 digital active) 625 25 YC RCB (ITU-R BT.601-4)
CIF 352 288 29.97 YCRCB (ITU-R BT.601-4)

Afin de démontrer la quantité de données que nécessite l’information vidéo, considérons deux
exemples.

1NTSC =National Television Standards Committee, approuvé par la Commission fédérale de transmissions (FCC)
des Etats-Unis ; standard visuel analogique officiel aux Etats-Unis, Canada, Mexique, Japon, Taïwan, Corée, et quelques
régions d’Amérique centrale et sud. Une autre définition est « Never Twice the Same Color ».

2PAL = Phase shift on Alternate Lines; standard vidéo analogique le plus répandu, utilisée au Royaume-Uni, en
Allemagne, en Espagne, au Portugal, en Italie, en Chine, en Inde, dans la majeure partie de l’Afrique et du Moyen-
Orient

3SECAM = Système sÉquentiel Couleur À Mémoire; utilisé en France, en Russie, en Europe de l’Est, et quelques
parties du Moyen-Orient. Une autre définition est « Surtout Éviter la Compatibilité Avec le Monde »

4CIF = Common Intermediate Format; conçu par l’ITU-T comme format intermédiaire entre PAL et NTSC, en
particulier pour la compression vidéo



20 Chapitre 1 INTRODUCTION

Exemple 1 Une seconde d’une séquence vidéonon-compriméecorrespond à

864
pixels
ligne

� 625
lignes
image

� 25
images

sec
� 16

bits
pixel

� 1 sec� 216mégabits� 27mégabytes�

admettant un codage de 8 bits pour la luminance et la chrominance et un sous-échantillonnage de
1 : 4 des deux valeurs de chrominance. C’est–à–dire, une séquence vidéo de 90 minutes représente

27
mégabytes

sec
� 60

sec
min

� 90min � 145�8 gigabytes�

Ceci correspond à 225 ( !) CD-ROM d’une capacité de 650 mégabytes.

Un réseau ethernet de 100 mégabits/sec ne serait pas suffisant pour traiter cette quantité de données
dans une application temps-réel. Ce n’est donc pas concevable de transmettre des données non-
comprimées par l’Internet. Même si on réduit fortement la taille des images, par exemple au format
QCIF, cela crée rapidement une quantité de données considérable.

Exemple 2 Une seconde d’une séquence vidéo non-comprimée avec des images en format QCIF
correspond à

176
pixels
line

� 144
lines
img.

� 29�97
img.
sec

� 16
bits
pixel

� 1 sec� 12�2 mégabits� 1�5 mégabytes�

Ceci admet un codage 8 bits pour les valeurs de luminance et de chrominance et un sous-échan-
tillonnage de 1 : 4 des deux valeurs de chrominance. Un E-Mail vidéo de 5 minutes en format
QCIF et non-comprimé aurait

1�52
mégabytes

sec
� 60

sec
min

� 5 min � 455�7 mégabytes�

ce qui est beaucoup pour une boite aux lettres électroniques et cela boucherait rapidement toute
connexion internet, même à large bande.

Nous verrons dans le chapitre 4, qu’il n’y a aucun algorithme universel de compression qui
comprime efficacement toutes les sortes de données. L’exécution des algorithmes de compression
dépend toujours de l’application et du modèle de données utilisés. Nous choisissons donc d’abord
notre domaine d’application et un modèle approprié pour nos données, faisons nos mesures et dé-
terminons enfin à quel point notre algorithme fonctionne. Comme indiqué au début de ce chapitre,
le domaine d’application choisi pour ce travail est la communication vidéo « point-to-point ».

Pour le domaine d’application de la compression vidéo, il y a déjà une variété de techniques.
Cependant nous justifierons dans la prochaine section notre propre approche, qui est fondamenta-
lement différente des approches existantes du problème. En dehors des algorithmes propriétaires
et commerciaux de compression vidéo tels que Cinepak [CTI01], RealVideo [Rea01] streaming,
et DVD [DVD01], un certain nombre de standards techniques internationaux existent tels que
H.261 [ITU93], et H.263 [ITU96], édités par lesecteur de télécommunication de l’ITU (ITU-T),
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et MPEG-1 [ISO93] et MPEG-2 [ISO96a] de l’International Organization for Standardization
(ISO). Ces standards sont employés dans la plupart des produits commerciaux en utilisant la tech-
nologie de compression vidéo telle que la vidéotéléphonie, la communication vidéo, l’archivage
de films et la télévision numérique. Tout en étant très efficaces, ces standards ont leurs limites de
rentabilité imposant des compensations entre la qualité de reconstruction et le taux de compres-
sion. Ceci a naturellement mené, grâce à des efforts de recherche, à repousser ces limites plus loin.

D’ailleurs, les appareils modernes comme pour UMTS exigent une intégration de médias dif-
férents et, finalement, des possibilités de l’interaction avec leur contenus. Les développements
actuels tels que MPEG-4 et MPEG-7 d’ISO répondent à ces demandes. En utilisant la même mé-
thode en trois étapes pour la compression vidéo que MPEG-1 et MPEG-2, ces nouveaux standards
fournissent un cadre pour la fusion des contenus vidéo, audio, multimédia, et pour l’interaction
avec ces contenus. Les outils d’accès au contenu d’images viennent de la vision par ordinateur.
On pourrait dire que la vision par ordinateur donne aux ordinateurs la capacité de voir par l’extrac-
tion d’information d’images. L’interaction de la vision par ordinateur et de la compression vidéo
est donc une conséquence normale de la nécessité de satisfaire de nouvelles demandes technolo-
giques. C’est le postulat de cette thèse.

1.1 Sujet de recherche et approche

Les standards actuels d’ITU-T et d’ISO pour le codage vidéo se fondent principalement sur
la relation statistique entre des images et des pixels. Intuitivement, l’utilisation d’information sup-
plémentaire accessiblea priori, sagement appliqué, devrait apporter une augmentation du taux de
compression. Pour le cas de la communication «point-to-point» entre deux personnes, ceci cor-
respond en principe à un scénario de visage et d’épaules (head-and-shouldersci-dessous), qui est
également utilisé pour des approches de compression vidéo basées sur des modèles [HL96]. Nous
acceptons ce scénario et le paradigme d’extraire de l’information de l’image afin d’améliorer la
compression vidéo au delà de la performance des standards actuels. Cependant, nous croyons que
les méthodes pour l’extraction de contenu d’image basées sur l’apparence sont plus flexibles face
à un contenu d’image changeant et plus faciles à utiliser que des modèles géométriques 3D.

Nous affirmons qu’on n’a pas besoin de toutes les informationspossiblesd’un contenu d’ima-
ge. On devrait plutôt se concentrer sur ce qu’onvoit dans l’image. Cette distinction est importante,
parce que la façon dont on regarde les données détermine l’approche pour leur traitement. Puisque
l’étape de codage décisive de notre méthode de compression est le calcul d’un espace de base or-
thonormal à partir d’un ensemble d’images sélectionnées, nous appelons notre techniqueCodage
de Bases Orthonormales (CBO), en anglaisOrthonormal Basis Coding (OBC). CBO crée une re-
présentation optimale des données d’entrée en ce qui concerne le compactage d’énergie, et fournit
une représentation permettant la manipulation du contenu avec d’autres méthodes basées sur l’ap-
parence de la vision par ordinateur. La figure 1.4 localise CBO à l’intersection de la compression
vidéo, de la vision par ordinateur, et de l’identification de configuration.
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Les exemples d’application pour CBO sont, par exemple, le courrier électronique vidéo (Video
E-Mail), où une séquence est enregistrée pour être transmise comme un E-Mail ; la compression
vidéo ou defilms, bien qu’un algorithme conçu pour un scénariohead-and-shouldersn’est pas
forcement approprié pour le codage vidéo de plein mouvement ; un visage parlant sur des pages
web (talking head on web pages) pour guider l’utilisateur par la sélection de produits ; cela est juste
unexemple pour la vidéo interactive, un outil pour la convenance d’utilisateurs dont les entreprises
qui vendent par le web ou par la télé pourraient profiter ; et finalement levidéotéléphoneet la
vidéoconférencepour une version en ligne de CBO.
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FIG. 1.4: Localisation de CBO à l’in-
tersection de la compression vidéo, de
la vision par ordinateur, et de l’identifi-
cation de configuration.

Les méthodes basées sur l’apparence exigent que
l’entrée de données vidéo soit normalisée à un objet
principal. Nous présentons dans cette dissertation un
nouveau suivi de visage de basse complexité basé sur
la détection et le suivi de couleur. Ce suivi rapporte
une stabilisation de données d’entrée suffisamment pré-
cises pour permettre l’utilisation de CBO. Cependant,
comme les résultat le suggèrent, une amélioration du
suivi, probablement par d’autres modules que la détec-
tion de couleur, pourrait encore contribuer à l’efficacité
de CBO.

Un problème particulier rencontré lors de l’évalua-
tion de CBO est que la dégradation d’image liée à la
compression est essentiellement différente de celles im-
posée par d’autres méthodes de compression utilisant
des bases fixes telles que MPEG. Les mesures de qua-
lité de reconstruction utilisées actuellement ne consi-
dèrent pas la perception humaine visuelle. Ce travail
souligne donc la nécessité du développement des me-
sures de qualité de reconstruction basées sur le système visuel humain. Ceci exige une collabo-
ration avec des psychologues, dont la contribution est de valeur inestimable pour la conception
d’une série d’essais pour mesurer la perception visuelle humaine. Ceci pourrait par la suite aider
à la définition d’une description mathématique de l’estimation humaine de la qualité d’image.

Heureusement, même avec les inconvénients de l’utilisation des mesures de qualité d’images
conventionnelles comme lePeak Signal-to-Noise Ratio (PSNR), CBO a de bonnes performances
comparé à MPEG en termes de qualité de reconstruction et de taux de compression. Si les préa-
lables de CBO tels qu’un suivi précis sont réalisés, CBO surpasse facilement la compression
MPEG5 en termes de qualité et de compression. Malheureusement, CBO surpasse aussi MPEG
en terme de lourdeur de calcul. C’est dû la plupart du temps aux algorithmes complexes et surtout
à des codes non-optimisé. CBO, comme il est présenté dans cette dissertation, est en principe un

5Codec de référence est le logicielmpeg_encodede Université de Californie à Berkeley dans diverses configurations
[Ber97]
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processus hors ligne, quoique les considérations pour une version incrémentale sont documentées
et les expérimentations – non incluses – montrent des résultats prometteurs.

1.2 Organisation du manuscrit

Le chapitre 3 trace les grandes lignes du contexte technique et scientifique de ce travail, ana-
lysant la contribution des méthodes de la vision par ordinateur basées sur l’apparence à la com-
pression des signaux vidéo. Les méthodes basées sur l’apparence demandent en général un suivi
d’objet, et c’est pour cela que nous définissons trois catégories pour trier le grand nombre d’al-
gorithmes de suivi de la vision par ordinateur. Une sélection des plus importants est utilisée pour
illustrer l’utilité d’une telle catégorisation. Après avoir prouvé qu’un suivi de couleur, basé sur des
propriétés(feature-based), est suffisant pour l’application destinée, nous tournons notre attention
vers la compression vidéo. Un rapide historique des algorithmes de compression vidéo les plus
importants d’aujourd’hui est donnée suivie des perspectives sur les développements actuels et à
venir.

La base théorique de ce travail est passé en revue dans lechapitre 4 . Point par point des des
critères de classification pour les ingrédients d’un codec6 vidéo sont dérivés de la théorie d’in-
formation. Ces critères de classification permettent une analyse des codecs vidéo actuellement
existants et soutiennent la synthèse de nouvelles techniques pour la compression vidéo. Les al-
gorithmes de compression relevant pour ce travail sont développés systématiquement à partir de
ces critères de classification, illustrant les relation entre eux ainsi que leurs points forts et leurs
faiblesses.

En utilisant les résultats de chapitre 4, nous discutons en bref les techniques de compression
les plus importantes telles que MPEG, H.263, JPEG et ZIP dans lechapitre 5 . Ces techniques
fournissent une référence pour, ou sont mis en application dans CBO. On voit comment les tech-
niques des différents critères de classification sont combinées créant des codecs efficaces pour des
applications particulières. Des perspectives données sur les développements actuels illustrent les
limites des codecs actuels et motivent à nouveau ce travail.

Nous élaborons les détails des techniques développées pour ce travail dans lechapitre 6 . Un
feature-based suivi de couleur est motivé et conçu. Nous démontrons comment des histogrammes
de couleur peuvent être employés pour localiser et suivre des objets. Dans une première étape, les
histogrammes sont employés pour créer un plan de probabilité pour les pixel de la couleur de peau
utilisant la règle de Bayes. Un algorithme efficace de suivi basé sur les premiers et deuxièmes mo-
ments de ce plan de probabilité est proposé. Cet algorithme, appelé l’algorithme CENTEROFGRA-
VITY , est inspiré par la statistique robuste. Il élimine des points éloignés en pesant de nouvelles
données d’entrée. De plus l’algorithme CENTEROFGRAVITY utilise la compensation de peser et
de mouvement inspirée par les concepts du filtrage de Kalman. Le résultat est un suivi de couleur
robuste qui surpasse des algorithmes de suivi conventionnel utilisant des seuils, des composants

6codec =coder - décoder



24 Chapitre 1 INTRODUCTION

connectés et des filtres de Kalman en termes de précision tout en ayant une performance de calculs
comparable.

Le chapitre 7 développe l’algorithme duCodage de Bases Orthonormales (CBO). Le concept
de CBO, qui associe l’algorithme à ses applications destinées, est décrit. Puisque la façon dont
les données sont traitées par un algorithme est étroitement liée à la façon dont les données sont
perçues, nous comparons CBO et compression vidéo conventionnelle par le modèle de données
utilisé. Les implications de la représentation des images comme vecteurs au lieu d’une décompo-
sition en blocs sont discutées. Une conséquence de cela est que la quantification de vecteur(vector
quantization)ou les algorithmes groupants(clustering)deviennent applicables. Nous discutons
quelques algorithmes groupants importants, et leur impact la qualité de reconstruction et la durée
de calcul sont illustrés. En conclusion, en raison de leur importance et de leur fréquente utilisation,
les mesures de qualité de reconstruction les plus communes telles que MSE, SNR, et PSNR sont
discutées en détail. Elles sont interprétées dans le contexte du traitement d’image et de la vidéo et
leurs limitations sont montrées.

Le chapitre 8 présente les résultats qui démontrent que CBO est une alternative valide pour
la standard et d’autres algorithmes visuels de compression. Il est particulièrement efficace si les
données d’entrée sont bien normalisées à un objet, dans ce cas le visage d’un locuteur dans un scé-
nariohead-and-shoulders. Des résultats de codage sont évalués pour sept séquences, dont quatre
sont des séquences standard employés par la communauté de chercheurs en compression vidéo,
les trois autres séquences ont été créées dans notre laboratoire. On montre que dans tous les cas
CBO produit des résultats comparables à un encodeur de MPEG représentant les arrangements
largement répandus de compression de DCT/DPCM. Dans certains cas, caractérisée par un ordre
visuel bien normalisé, CBO surpasse de manière significative le codec de MPEG de référence en
termes de qualité et/ou compression. Cependant, CBO est moins performant en termes de puis-
sance de calcul. En effet, le logiciel encodant de CBO n’a pas été optimisé en ce qui concerne
la vitesse de calcul. Des résultats comparatifs sont donnés en utilisant la durée de calcul comme
mesure.

Le codec CBO présenté dans cette dissertation peut être vu comme première étude de faisabi-
lité d’un codec vidéo basé sur l’apparence des objets dans une séquence vidéo en remplacement
de la corrélation statistique entre les valeurs de pixel. Il y a toujours matière à des améliorations
conceptuelles et par rapport à l’implémentation ; Lechapitre 9 discute donc de quelques perspec-
tives.
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Prolog

Two definitions ofappearance:

Main Entry: ap�pear �ance
Pronunciation: &-’pir-&n(t)s
Function: noun
Date: 14th century
1 a : external show : SEMBLANCE <although hostile, he preserved
an appearance of neutrality> b : outward aspect : LOOK <had a
fierce appearance> c plural : outward indication <trying to keep up
appearances>
2 a : a sense impression or aspect of a thing <the blue of distant
hills is only an appearance> b : the world of sensible phenomena
3 a : the act, action, or process of appearing b : the presentation
of oneself in court as a party to an action often through the
representation of an attorney
4 a : something that appears : PHENOMENON b : an instance of
appearing : OCCURRENCE

from Merriam-Webster’s Collegiate Dictionary[MW00]

appearance

SYLLABICATION: ap�pear�ance
PRONUNCIATION: &-pîr’&ns

NOUN : 1. The act or an instance of coming into sight. 2. The act or an instance
of coming into public view: "The author made a rare personal
appearance." 3. Outward aspect: "an untidy appearance." 4. Something
that appears; a phenomenon. 5. A superficial aspect; a semblance:
"keeping up an appearance of wealth." 6. appearances Outward
indications; circumstances: "a cheerful person, to all appearances."

from The American Heritage Dictionary of the English Language: 4th Edition. 2000.[AH00]

We will useappearancein the sense of 2a and b of [MW00] and 4 of [AH00] hereafter, which
we consider equivalent.
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Chapter 2

Introduction

Figure 2.1: UMTS ter-
minal as the gold mine
of global communica-
tions(source [BBF�01])

Since its creation in 1990 with the definition of theHyperText
Transport Protocol (HTTP)[HTT00], the World Wide Web has rev-
olutionized almost every aspect of personal and professional com-
munication and computing. At the same time, theGlobal System
for Mobile Communications (GSM)[GSM01] has become the most
important protocol for mobile telephone. TheUniversal Mobile
Telecommunications System (UMTS)is a part of the International
Telecommunications Union’s third generation (3G) mobile commu-
nications systems [UMT01]. The year 2000 saw telecommunication
companies spend the unprecedented amount of 305 billion� just
for UMTS licenses for third generation mobile communication ser-
vices in Europe [BBF�01]. UMTS will deliver broadband informa-
tion, commerce and entertainment services to mobile users via fixed,
wireless, and satellite networks, this way supporting the integration
of telecommunications, IT, media and content services. This cor-
responds to a permanent mobile internet connection with integrated
voice, video, data communication, and other information services. Figure 2.2 illustrates the antic-
ipated change in (mobile) communication habits for such kind of systems.

The targeted transmission bandwidth for UMTS is 2 Mbits/sec, but for its start in 2002, this rate
has been reduced to 384 kbits/sec due to technical problems. Main technical obstacle is the power
supply for end-user devices. Although it fell short of its expectations, theWireless Application
Protocol (WAP)[WAP00] for mobile phones was a first step towards making the physical location
of a user terminal invisible. Once it works as announced, UMTS will indeed make the actual
physical location of a user and the information provided to him unimportant. A UMTS terminal
with a connection to the internet is all that is needed to make any information available everywhere
on this planet. Figure 2.3 shows some examples from design studies of UMTS terminals.

This technological environment creates a situation where it is necessary to transmit an enor-
mous amount of data over communication lines with very limited bandwidth, be they radio or
wires. This leads to the following technical demands:

29
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� Efficient data representation, elimination of redundant information, data compression

� Protection of security and privacy during communication and data access/transmission

� Ubiquitous and instant/permanent access to information
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Figure 2.2: Evolution of communication styles and message contents. We note from left to right
the development from text-based over graphics, digital images, and digital video to integrated
mobile multimedia contents. Vertically we see an integration of separate Fax, Voice, and Internet
(WWW, E-Mail, Chat) services into one service.

On the hardware side, exponentially increasing computing power and new peripheral devices
and techniques such as steerable cameras with built-in tracker, touch-screens, sensor-gloves, and
speech-recognition software enable new ways of human-computer interaction. The consequence
is the development of complex multimedia applications for teleconferencing, video telephony, vi-
sual data exchange, and other video communications. But the improved capabilities of current
(and future) computing environments go beyond the creation of new applications. Recent publica-
tions [CCB00, Pen00] show that computer supported systems are now becoming able toperceive

their environment. Once succeeded, this will change the way people interact with computers.
As these new applications are developed, the bottleneck of limited transmission bandwidths and
storage space rather than insufficient computing power remains a critical problem.
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Ericsson Motorola Siemens SX45 Nokia C3 Nokia F3

Figure 2.3:Design studies of UMTS terminals [GSM01]

Increasing bandwidth and computing power will make video a common feature of communi-
cation devices and services. However, even the most modern high-speed communication channels
and hardware require video compression. The most common video image sequence formats are
those used for television broadcast, i.e., NTSC1, PAL2, SECAM3, and CIF4. Table 2.1 contains
the corresponding video image sizes [ITU96, ITU93, ITU94].

TAB. 2.1: Important standard image formats

Standard pixels / line
lines /
image

images /
second

pixel encoding

NTSC 858 (720 digital active) 525 30 YC RCB (ITU-R BT.601-4)
PAL 864 (720 digital active) 625 25 YC RCB (ITU-R BT.601-4)
CIF 352 288 29.97 YCRCB (ITU-R BT.601-4)

In order to demonstrate how much data video information can be, consider two examples.

Example 1 One second of anuncompressedPAL video stream corresponds to

864
pixels
line

� 625
lines
image

� 25
images

sec
� 16

bits
pixel

� 1 sec� 216 Mbits � 27 MBytes�

1NTSC =National Television Standards Committee, approved by the Federal Communications Commission (FCC)
of the U.S.A.; official analog video standard in the U.S.A., Canada, Mexico, Japan, Taiwan, Korea, some parts of central
and south America. Another definition of NTSC is "Never Twice the Same Color".

2PAL = Phase shift on Alternate Lines; most widespread analog video standard, used in the U.K., Germany, Spain,
Portugal, Italy, China, India, most of Africa and the Middle East.

3SECAM = (in Engl.) Sequential Color system with Memory; used in France, Russia, Eastern Europe, and some
parts of the Middle East. It has also been dubbed "SomEthing Contrary to American Methods".

4CIF = Common Intermediate Format; designed by the ITU-T as an intermediate format between PAL and NTSC
especially for video compression.
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assuming 8-bit encoding for luminance and chrominance and a 1 :4sub-sampling of both chromi-
nance values. That is, a 90 minute PAL movie has a raw size of

27
MBytes

sec
� 60

sec
min

� 90 min � 145�8 GBytes�

This corresponds to 225 ( !) CDROMs with a capacity of 650 MBytes.

Even a 100 Mbits/sec Ethernet would be largely insufficient to handle this amount of data in
a real-time application. It is thus unconceivable to transmit the raw data over the Internet. But
even a heavily reduced image size, such as the QCIF format, does quickly produce a considerable
amount of data.

Example 2 One second of anuncompressedvideo stream with images in QCIF format corres-
ponds to

176
pixels
line

� 144
lines
img�

� 29�97
img�
sec

� 16
bits
pixel

� 1 sec� 12�2 Mbits � 1�5 MBytes�

assuming 8-bit encoding for luminance and chrominance and a 1 :4sub-sampling of both chromi-
nance values. A 5 minute video (e-)mail in QCIF format and uncompressed would have

1�52
MBytes

sec
� 60

sec
min

� 5 min � 455�7 MBytes�

This is quite a lot of data for any (video-)mailbox, and would quickly congest even broadband
internet connections.

As we will see in chapter 4, there is no universal compression algorithm which efficiently
compresses all kinds of data. The performance of compression algorithms always depends on the
application and on the data model used. We therefore choose our application area first, then select
an appropriate model for our data, and finally make our measurements and decide how well our
algorithm performs. As indicated by the beginning of this chapter, the application area chosen for
this work is personal point-to-point video communication.

For the application area of video compression, there already is a variety of techniques. We
will however justify in the next section our own approach, which is fundamentally different from
existing approaches to the problem. Other than proprietary, commercial video compression algo-
rithms such as Cinepak [CTI01], RealVideo [Rea01] streaming, and DVD [DVD01], there are a
number of international technical standards such as H.261 [ITU93], and H.263 [ITU96], publi-
shed by theTelecommunication Standardization Sectorof the International Telecommunications
Union (ITU-T), and MPEG-1 [ISO93] and MPEG-2 [ISO96a] from theInternational Organiza-
tion for Standardization (ISO). These standards are employed in most commercial products using
video compression technology such as video telephony, video conferencing, movie storage and
digital television. While being very efficient, those standards have their usability limits imposing
trade-offs between reconstruction quality and compression ratio. This has naturally led to research
efforts pushing those limits further.
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Moreover, modern application devices such as for UMTS demand an integration of different
media and, eventually, possibilities for interaction with their content. Current developments such
as ISO standards MPEG-4 and MPEG-7 address these demands. While they use the same three-
step encoding scheme as MPEG-1 and MPEG-2 in their video compression layers, these new
standards provide a framework to merge video, audio, and other multimedia content, and to interact
with that content. The access tools to image or video content come from the area of computer
vision. In a sense, computer vision makes computers see by extracting information from an image
or video image content. So the interaction of computer vision and video compression is a natural
consequence out of the need to satisfy new technological demands. This is the starting point for
this thesis.

2.1 Approach

Actual video coding standards from ITU-T and ISO rely mainly on the statistical relation
between images and pixels. Intuitively, the use of additionala priori information, if wisely applied,
should further increase compression ratios. For the case of point-to-point communication of two
persons, this basically corresponds to a head and shoulders scenario, which is also used for model
based approaches to video compression [HL96]. We agree with this scenario and the paradigm
of extracting image information in order to improve video compression over current standards.
However, we think that appearance based methods for image content extraction are more flexible
to changing image content and easier to use than creating 3D models.

We claim that we do not need allpossibleinformation about an image content. We rather
should focus in what weseein the image. This distinction is important, because the way we look
at our data determines how we approach them. Since the decisive encoding step in our compres-
sion scheme is the computation of an orthonormal basis space our of a set of selected images, we
call our techniqueOrthonormal Basis Coding, or shortOBC. OBC creates an optimal representa-
tion of the input data with respect to energy compaction, and provides a representation enabling
subsequence content manipulation with other appearance based methods from computer vision.
Figure 2.4 localizes OBC at the intersection of video compression, computer vision, and pattern
recognition.

Application examples for OBC are, e.g.,Video electronicmail, where a sequence is recorded
to be transmitted like an email ;Video/Movie compression, where it has to be considered that
an algorithm designed for a head-and-shoulders scenario is not necessarily appropriate for full
motion video encoding ; atalking head on web pagesto guide a user through the product selection
process, which is only one example for interactive video, a tool for enhanced user convenience
that companies selling over the Web or T.V. could use ; and finally,video telephonyand video
conferenceas examples for an online version of OBC.
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FIG. 2.4: Localization of OBC at
the intersection of Video compression,
Computer vision, and Pattern recogni-
tion.

Appearance based methods require that the video
input stream be normalized to a principal object. We
present in this dissertation a new, low-complexity face
tracker based on color detection and tracking. This tra-
cker yields a stabilization of the input data sufficiently
precise to enable OBC. However, as results suggest, a
refinement of the tracker, possibly enhanced by other
modules than color detection, could further contribute
to the efficiency of OBC.

A particular problem encountered when evaluating
OBC is that its compression artifacts are substantially
different from fixed-basis compression schemes such
as MPEG. Most currently used reconstruction quality
measures do not reflect human visual perception. This
work therefore underlines the necessity of developing
reconstruction quality measures based on the human vi-
sual system. This requires collaboration with psycholo-
gists, whose input is invaluable for the design of a test
series to quantify human visual perception in order to
eventually create a mathematical description of human
image quality rating.

Fortunately, even with the drawbacks of using conventional image quality measures such as
the Peak Signal to Noise Ratio (PSNR), OBC performs well compared to MPEG in terms of re-
construction quality and compression ratio. If the prerequisites for OBC such as precise tracking
are met, then OBC easily outperforms MPEG compression5 in terms of quality and compression.
Solely w.r.t. computing power consumption, OBC is falling short of MPEG. This is mostly due
to non-optimized code and complex algorithms. OBC as it is presented in this dissertation is ba-
sically an offline process, even though considerations for an incremental version are documented,
and a series of – not included – experiments showed promising results.

2.2 Outline of dissertation

Chapter 3 outlines the technical and scientific context of this work, which analyzes the contri-
bution of appearance-based computer vision methods to the compression of video data. Appea-
rance based methods generally require object tracking as a prerequisite, and we define three cate-
gories to sort out the plethora of computer vision tracking algorithms. A selection of the currently
most important ones is used to illustrate the usefulness of such a categorization. After showing
that a feature-based color tracker is sufficient for the intended application, we turn our attention

5Reference encoder was the Berkeleympeg_encodeprogram in various configurations [Ber97]
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to video compression. A short history of today’s most important video compression algorithms is
given followed by an outlook on current and future developments.

The theoretical background of this work is reviewed inchapter 4 . Step by step classification
criteria for the ingredients of a video codec6 are derived from information theory. These classi-
fication criteria allow for an analysis of current existing video codecs and support the synthesis
of new techniques for video compression. Systematically the compression algorithms relevant for
this work are developed out of these classification criteria, illustrating their relation to each other
as well as their strengths and weaknesses.

Using the results from chapter 4, we briefly discuss the most important compression techniques
such as MPEG, H.263, JPEG, and ZIP compression inchapter 5 . These techniques provide a
benchmark for OBC, or are implemented within OBC. We see how techniques from the different
classification criteria are combined to form efficient codecs for special applications. An outlook
on current developments highlights their limits and motivates again this work.

We elaborate details of the techniques developed for this work inchapter 6 . A feature-based
skin color tracker is motivated and designed. We show how color histograms can be used to loca-
lize and track objects. In a first step the histograms are used to generate a probability map for skin
colored pixels using Bayes’ Rule. An efficient tracking algorithm based on the first and second
moments of that probability map is suggested. This algorithm, called CENTEROFGRAVITY algo-
rithm, is inspired by robust statistics eliminating outliers through weighting of new input data. The
CENTEROFGRAVITY algorithm also employs weighting and motion compensation inspired by the
concepts of Kalman filtering. The result is a robust color tracker which outperforms conventional
Threshold/Connected Components/Kalman filter tracking algorithms in terms of precision while
being of comparable computing performance.

Chapter 7 develops theOrthonormal Basis Coding (OBC)algorithm. The concept of OBC,
which relates the algorithm to its intended applications, is described. Since the way data is proces-
sed by an algorithm is closely related to how the data is perceived, we compare OBC and conven-
tional video compression by the data model used. The implications of seeing images as vectors
instead of decomposing them into blocks are discussed. One of those consequences are that vector
quantization or clustering algorithms become applicable. Some important clustering algorithms
are presented and their impact on reconstruction quality and computing time illustrated. Finally,
because of their importance and frequent use, the most common reconstruction quality measures
such as MSE, SNR, and PSNR are discussed in detail. They are interpreted in the context of image
and video processing and their limitations are shown.

Chapter 8 presents results that show that OBC is a valid alternative for standard and other
video compression algorithms. It is particularly efficient if the input data is well normalized to
an object as in this case a talking head in a head-and-shoulders scenario. Encoding results are
evaluated for seven sequences, four of which are standard sequences used by the video compres-
sion research community, and three other sequences created in our laboratory. It is shown that in
all cases OBC produces results comparable to an MPEG encoder representing the widely used

6codec =coder - decoder
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DCT/DPCM compression schemes. In some cases, characterized by a well-normalized video se-
quence, OBC significantly outperforms the benchmark MPEG codec in terms of quality and/or
compression. However, OBC is less performant in terms of computing power. Since the OBC en-
coding software has not been optimized with respect to computing speed, comparative results are
given using computing time.

The OBC codec presented in this dissertation should be seen as a first feasibility study for a vi-
deo codec based on appearance of objects in a video stream, instead of using statistical correlation
between its pixel values. There still is a lot of room for conceptual as well as implementational
improvement, andchapter 9 gives an outlook on these issues.



Chapitre 3

Technical and Scientific
Context

This chapter outlines why it is interesting to reconsider the problem of efficient compression
of video stream data. Although computer and communication hardware and software have consi-
derably improved over the last few of years, there still remains (and probably will always remain)
a need to compress large amounts of video data. Historically, whenever a communication channel
has developed into a powerful tool, another technical possibility emerges to renew the demand for
low-bandwidth communication. Digital television orIntegrated Services Digital Network (ISDN)
telephone may serve here as examples1. ISDN was designed to enhance telephone communication
with different sorts of data transmission services. The increased bandwidth inspired engineers to
use ISDN lines for video telephone and internet access. However, such services need even more
bandwidth to be truly satisfactory to an end-user. In some places cable television networks are
therefore used for internet access, and UMTS targets 2 Mbits/sec transmission bandwidth.

A variety of techniques exist or are being developed in order to meet the demand of low
bandwidth communication. Techniques employed in current video compression standards as well
as in proprietary video codecs are based on statistical correlation between pixel values, in the
image plane as well as on the time axis. In other words, they are based on the fact that the images
to be compressed have acontent, but they make no assumption about what that content is, nor do
they extract information about the image content. If an image contained only uncorrelated pixel
values, i.e., noise, those techniques lose their effect.

Over the last ten years the video compression problem has not been re-thoughtas a whole.
Research in video compression has experienced a kind of stagnation and rather focussed on the re-
finement of already available techniques than looked for new approaches to the problem. Sympto-
matic is the fact that the video compression layers of MPEG-4 and MPEG-7 are still the algorithms
of MPEG-1 and MPEG-2 [Cha95a, Cha95b], respectively. On the other hand, the field of computer
vision has seen remarkable progress, and a large set of reliable techniques have been developed,

1ISDN is defined by the I.xxx series of ITU-T recommendations.http://www.itu.int

37
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some of which are presented in section 3.2. There is a general agreement that new video com-
pression algorithms should make use of computer vision methods such as segmentation, feature
extraction, and 3D modeling, as a preprocessing step for subsequent data compression [HL96].

The idea is that once the video image content has been decomposed, identified and modeled,
only its parameters such as size, position, and orientation, need to be transmitted or stored, e.g.,
in the form of a low-dimensional parameter vector. This approach is calledSecond generation
video coding. It assumes, however, that the scene in the image does not change too much, since
such an approach requires an appropriate model for each new scene. The subsequent encoding
after segmentation is done with conventional data compression techniques such as described in
chapter 4. Such approaches are incorporated into new coding and representation standards as ISO
MPEG-4 [ISO96b, BCL99, BCL00] or ISO MPEG-7 [ISO00b, NL99a, NL99b].

The success of an approach using segmentation and models is very dependent on the quality
of the model. Good models are computationally costly, and the initialization of feature tracking
algorithms for good model matching is often done by hand. A promising approach for automa-
ted feature tracking using the Hough-transform is currently being developed at the University of
Manchester [CWT00]. Yet, efficient model-based video coding, especially in real-time, remains
unavailable.

Let us summarize the state of the art about video compression in a few points before we define
the goals addressed in this dissertation.

� Current video compression techniques are based on statistical correlation of pixel values,
and decomposition in frequency space (DCT, FFT, Wavelets)

� The current paradigm of second generation video coding requires segmentation and content
extraction

� No automatic model extraction is yet available.

� Mapping onto models is slow, computationally costly, and unstable.

Our goal is to develop an efficient representation of video data implicitly allowing us to gather
information about the video image content. Extraction of image content is the currently accepted
paradigm to improve video compression over purely statistical methods. Lacking a more convin-
cing paradigm, we will employ a data representation where we can identify image content. We
reject, however, the use of geometric models. Such an approach does not appear to be flexible
enough to be used in varying communication situations, it is computationally too costly, plus it
requires us to make assumptions about and computenon-visibleimage content, which may result
in an unnecessary overhead.

Our technique should therefore :

a. Extract image information,

b. Use only the information supplied by the images,

c. (optionally) makes use of available compression methods and other efficient data represen-
tations,
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d. Yield a compression ratio higher than that of"classical" compression algorithms like those
in section 3.3 while maintaining a comparable reconstruction quality.

Section 3.1 gives a description of our approach to video coding as we have realized it. This
approach uses tools from computer vision and from data compression techniques designed for
video coding. Section 3.2 gives an overview of computer vision techniques with the focus on
tracking, since tracking is pre-requisite for OBC. The competition of OBC is then presented in
section 3.3, while section 3.4 concludes this chapter.

3.1 What you code is what you see

Extraction and identification of image content falls into the domain of computer vision. In
order to extract and identify image content, we have to make assumptions about that image content.
An automatic creation and update of a knowledge database of image content would imply the use
of Artificial Intelligence methods. Such an approach, however, would go beyond the scope of this
work. Sole alternative to automatic image content extraction and making assumptions about the
image content would be "blind encoding", i.e., fall back on purely statistical methods.

Making assumptions about the content of a video stream is identical to defining a scenario
which we design our coding method for. The scenario chosen for this work is the classical one-to-
one video communication scenario, that is, a single person talking with only his head and shoul-
ders shown. A major difference between our approach and conventional model-based approaches
is that we only usevisible image information. Hidden information like color, texture, and shape
of a talking head is unimportant, as long as the communicating person does not expose it to the
camera. Two examples for a head and shoulders scenario are shown in figure 3.1 a) and 3.1 b),
which is the same scenario assumed for the development of the ITU-T video compression stan-
dards (see subsection 3.3.2). Compression requires finding a more compact representation of data
than its original form. Chapter 4 discusses general aspects of data compression with emphasis on
techniques which are relevant for this thesis, either as techniques employed or as benchmarks.
In many cases, an assumption about the data to be compressed improves the efficiency of the
compression algorithm.

Having outlined our application area puts us in the position to look for appropriate techniques.
We will do that in the following sections by giving overviews of the fields of computer vision
and of video compression, identifying the starting points for this work. The following chapters
will then thoroughly describe the realization steps and what results we got and can expect for the
future.

3.2 Computer vision techniques for tracking

Computer vision spans a number of areas including 3D-scene (re)construction, indexing of
video databases, object tracking and recognition, motion detection and estimation, and image syn-
thesis. A number of robust methods and algorithms have been developed to fulfill those tasks. The
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a) b)

FIG. 3.1: Two examples for a typical video communication scenario : a) from the popularMISSA-
MERICA sequence, b) from theTALKINGHEAD sequence

computer vision field that is of most interest for us is object tracking. Object tracking has a number
of applications, some of which are surveillance, robot navigation, and scene interpretation.

A tracking algorithm involves a trade-off between precision, speed, robustness, and the ex-
traction of image information such as orientation, size, shape, texture of an object. The reason is
that the more detailed the information which is desired from an image, the more complex are the
algorithms to obtain that information. For instance, detection and tracking of the approximative
position of an object can be done with low complexity algorithms such as correlation or color tra-
cking, followed by a filter stage, e.g., a Kalman or Condensation filter. Information about the object
surface, on the other hand, may involve 3D texture mapping or frequency or Eigenspace mapping,
which require more computational operations per pixel. Depending on the intended application
and its requirements, a selection of desired properties of the tracking algorithm may be determi-
ned, and the tracker may then be composed from techniques out of the computer vision tool-box.
We use the following classification, inspired by Isard and Blake [IB98], to get an overview of
what techniques exists. A very similar categorization of computer vision tracking techniques is
used in [Bre99].

Feature-based tracking focuses on object properties or features rather than an object’s type. It
includes simple, reliable, fast, and robust techniques such as color detection, correlation,
histogram matching, blob tracking, corner tracking, region matching, edge and contour tra-
cking, or image differencing. Their design is independent of the object being tracked. This
category roughly corresponds to what is otherwise calledFeature tracking[Bre99] orLow-
level tracking[IB98]. Combinations of Feature-based tracking techniques are often integra-
ted into a multi-modal tracking system to increase robustness.

Model-based tracking covers tracking algorithms wherea priori assumptions about the tracked
object are made and integrated as a model into the algorithm design. This category is
also calledhigh-level tracking. Examples are wavelet templates [KHS99], 2D, 21

2D, and
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3D models [HN98], view-based representations [HHD98], and appearance-based represen-

tations [BJ96]. Just as this work, the latter are inspired by the work of Turk and Pent-

land [TP91].

Multi-modal tracking systems are hybrid tracking systems which require sensor module output

fusion, possibly with a supervisor controlling the sensor data fusion. It is sometimes called

Multi-stage tracking[Bre99] and makes use of several tracking modules, possibly from

feature-based and model-based techniques at the same time. They often switch between

low-level and high-level modules in order to increase robustness. The fusion of the sensor

output is commonly done with estimation filters such as the Kalman or the Condensation

filter. Examples of such systems are the SOSICOM2 multi-modal tracking system reported

in [CBC97], ICONDENSATION [IB98], or W4S, the latter is a real-time system for detecting

and tracking people [HHD98].

Table 3.1 contains a checklist for the identification of tacking categories.

TAB. 3.1: Properties of tracking categories

Category uses a priori knowledge number of features tracked
tracking module output

fusion necessary

Feature-based no 1 no

Model-based yes � 1 no

Multi-modal optionally � 1 yes

Knowing about the advantages and disadvantages of a technique allows for a good judgment

about its possible application areas. This may be important when building or integrating tracking

systems. Tracking is, of course, possible with techniques other than computer vision. Tracking

by localization of a sound source [GOSC00] or by using laser range data [CWS98, Wal97] can

well support or even replace a computer vision algorithm. The following subsections review the

most widely used approaches. Details about their realization are either given in chapter 6, or in the

references mentioned for tracking based on computer vision methods.

We can anticipate here that the complexity of model-based tracking makes it inappropriate for

our purposes. Instead, we use a feature-based tracker using color. As mentioned in the conclusions

to our experimental results, it may be desirable to add modules such as background subtraction to

our face tracker in order to increase its precision to sub-pixel range. Of particular interest is the

exact outline of the tracked head to offset scale changes. Such an extension would make our face

tracker a multi-modal.

2Suivi d’Objets par le Son et l’Image pour la COmmunication Médiatisée (SOSICOM)[KP96]
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3.2.1 Feature-based tracking

This category contains simple, but often robust techniques and algorithms, some of which have
been used for a long time because of their low computing complexity. Many of the algorithms de-
tecting features are relatively insensitive to appearance variations by view or illumination changes.
Moreover, due to their low complexity, feature-based techniques allow for real-time implementa-
tions. Their major drawback, however, are their dependency of the actual image content, which
makes them fragile w.r.t. even partial occlusions. That is, without a higher-level decision module
such as a Kalman or Condensation filter, a tracking system will fail if the tracked feature cannot
be detected in the current image. The following overview of feature-based techniques shall give
the reader an impression what is available rather than being a comprehensive list.

Color is a commonly used feature used for tracking. For the purpose of face tracking, skin
color is a particularly interesting feature to track. Skin color is usually relatively unique within
most environment such as offices. We will introduce in chapter 6 a tracking system based on color
histograms employing an estimator inspired by robust statistics. We will show that this simple,
solely feature-based tracking system [SC00] is sufficiently fast, precise, and robust to enable OBC.
A weak point of color tracking is certainly its sensitivity to changing lighting conditions.

Correlation or region matching are basic techniques where two images are compared and
areas out of the images compared using some kind of distance metric. Its biggest advantage is its
simplicity and thus low complexity. It is, however, sensitive to noise and scale as well as variations
of shape.. Correlation or region matching should therefore only be used with caution [CBC97,
SCD98].

Optical Flow is a technique to detect motion fields within an image. The idea is to detect entire
regions of pixels which move from one image to the next in the sequence. Such regions may be
identified as objects moving within an image [TLS93]. Major problem of optical flow algorithms
is their sensitivity to changes of illumination. There has been some work on how to address this
problem. For instance, Black et al. [BFY98] give a framework to model object appearance changes
to offset illumination and iconic changes.

A tracking algorithm based on skin color detection, but using offline sampled pixel value dis-
tributions for skin colored pixels is calledblob tracking [JP99]. Using 3D Gaussian mixture mo-
dels, 2D blobs (elliptic areas) are generated. The involvedpdfs are estimated using theExpectation
Maximization (EM)algorithm [DLR77].

3.2.2 Model-based tracking

For some application it may be desirable to track of object properties which are not accessible
without prior knowledge about the object. Contours, shapes, and textures are examples of such
properties. Model-based techniques, as the name indicates, try to map image information onto
a prior created model, such as a wire-frame model of a head or a car. These are fairly complex
operations which may make use of one or more feature-based tracking algorithms. Its complexity
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makes model-based tracking relatively robust to noise and occlusions, but compromises seriously
its applicability in real-time situations. Moreover, in applications such as face tracking, signifi-
cant changes of object appearance (wear a scarf or a hat, long beard) can lead to a poor tracking
performance.

3D-Models represent an object in 3D geometrical data, for instance as a volumetric or wire-
frame model. Based ona priori assumptions about the object to be tracked, e.g., a head or a
hand, such a 3D geometrical model is created. During the tracking process, the image content
is segmented and mapped onto the 3D model. 3D models can handle partial occlusions and are
particularly popular in applications tracking cars and walking people. Fundamental problem of
tracking using 3D models is the computational complexity with prohibitively high cost even for
very simple car models [KDN93].

Eigentracking was introduced by Black and Jepson [BJ96]. It combines eigenspace tech-
niques, parameterized optical flow, and robust estimation techniques. Rather than try to represent
every possible view in the eigenspace, or learn surfaces in the eigenspace that interpolate between
views, they represent views from only a few orientations. Objects in other orientations are then
recognized by recovering a parameterized transformation (or warp) between the image and the
eigenspace. The eigenspace itself provides a representation (i.e., an image) of the object that can
be used for tracking. Tracking is performed by using a robust parameterized matching scheme,
where objects may undergo affine image distortions and changes of view.

Active contours such assnakesusea priori knowledge to interpret the output of low-level
image operations such as convolution [BI98]. It is an approach to track geometric structures such
as object outlines. Asnakeis a deformable curve in a feature map generated from, e.g., an image
with a edge detection filter. An equilibrium condition for this deformable curve makes it cling to
high responses of the feature map. However, more prior knowledge about the object being tracked
is needed to make such a system run successfully in real-time, which is equivalent to making this
approach model-based.

Wavelet templatescan be used to represent arbitrary objects. For instance, they have been
used to track faces [KHS99]. A face template is represented by a set of weighted wavelets. Tra-
cking is then performed by detecting a template in subsequent images, which for that are repre-
sented by a wavelet network.

3.2.3 Multi-modal tracking

Multi-modal tracking systems are identified by their need to fuse the output of several object
detecting sensors out of the tool-box of feature-based and/or model-based tracking algorithms.
Depending on the intended application, a selection of individual tracking algorithms are combined
in order to increase robustness or to track certain features. Additionally, this allows to trade-off
computing speed for precision or other object information such as the posture of a human body.
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The Multi-modal face tracker introduced in [CBC97] was an effort to build a multi-modal
face tracking system based on several complementary, feature-based modules. A correlation tra-
cker, eye-blink detector, and a color histogram tracker based on a connected components algorithm
were alternatively used and their outputs combined using a Kalman filter. While the architecture
proved to be adapted for robust tracking, the individual modules were too sensitive to changes in
the experimental setup.

Multi-modal tracking is well suited for surveillance tasks. An enhanced, multi-modal people
tracker based on background differencing, motion history detection, and color tracking is currently
build in our group. This system proves robust to even the most saccadic movements and runs
in real-time at video rate. It further allows the seamless integration of an event detector and a
recognition module. Figure 3.2 shows its current architecture as a nice example of a multi-modal
tracking system.

Video Source
Estimator

Recursive

Detector

Event

Background−Difference
Tracker

Motion−History
Tracker

Tracker Modules Integration and Analysis

eventslive video

Tracker
Color−Histogram

Recognizer

FIG. 3.2: Architecture of the robust multi-modal tracker, and examples of possible extensions
(parts in light blue are to be implemented yet).[diagram courtesy J. Piater]

W4S is a nice example of integrating feature-based and model-based techniques into a multi-
modal tracking system [HHD98]. It tracks people and monitors their activities in an outdoor en-
vironment.W4Suses a shape of stereo and shape analysis, creating models of peoples’ bodies in
order to be able to track them even in the case of occlusions. The models are simple ellipses for
head, hands, feet, and torso.

ICondensation combines high-level and low-level tracking techniques into a probabilistic
framework [IB98], using the statistical technique of importance sampling combined with the
CONDENSATION-Filter [IB96]. Importance sampling offers a mathematically principled way of
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directing search, combing prediction information based on the previous object position and mo-
tion with any additional knowledge which may be available from auxiliary sensors. The ICON-
DENSATION-tracker uses color segmentation to find skin-colored blobs in a sub-sampled image,
and feeds this information to a contour tracker specialized for hands (or any other object).

3.3 Overview of Video compression techniques

We can divide video compression methods into three categories : proprietary, standard, and un-
der development. The first hide their actual implementation, so we can give here only an overview
over the most important or widespread ones. The second and third are sketched below. This section
gives an outline of what is available and used today with references either to relevant literature, or
to the chapters and sections in this thesis where the topic is treated further.

3.3.1 Proprietary Video Compression Technology

Two of the more important proprietary video compression techniques are Cinepak from Com-
pression Technologies Inc. (CTI), former Radius Inc.. This technique is used in devices such as
Camcorders. Another proprietary video compression technique is RealVideo from Real Networks,
Inc. This is currently very widespread for use over the internet. T.V. stations, for instance, use Real-
Video to broadcast their emissions over the internet, since it is especially good for low-bandwidth
channels. Both of these companies have an interest in keeping their code secret. However, from the
artifacts of Cinepak and RealVideo we can conclude that they are based on the same DCT/DPCM
encoding scheme as the standards described below.

3.3.2 Video Compression Standards

History

The year 1990 was an important landmark for the video communication research community
and industry. It was the year, when the Telecommunications sector of the International Telecom-
munications Union issued the final draft version of its recommendation"Video Codec for Audio-
visual Services at p x 64 kbits"[ITU93], creating the first independentde factostandard for video
compression [Lio91]. Coincidentally, this was the same year as for the invention of the HTTP
protocol. Prior to this date, proprietary standards such as therun-length-encodingoption of the
Microsoft AVI file format were used, or the still picture compression standard, defined by theJoint
Photographic Expert Group (JPEG)of ITU and ISO was widely used for compression of video
stream data [ISO94]. We will come back to this standard and its usability for video compression
later when we briefly talk about JPEG compression.

The ITU-T recommendation H.261 targets the coding of low-motion video data over p x 64
kbits/s ISDN communication lines, summarizing the research efforts up to that date. TheMoving
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Pictures Expert Group (MPEG)of the ISO quickly adopted the techniques as described in H.261
and expanded them for full-motion video compression for up to 1.5 Mbits/s enabling features such
as reverse playback. Also in 1993, they issued the ISO standard 11172"Generic coding of moving
pictures and associated audio information"whose second part describes the video compression
algorithm [ISO93]. This standard was later adopted by the ITU-T to become recommendation
H.262. MPEG-1 was designed for efficient storage and retrieval of full-motion video. MPEG-2 was
designed in terms of extensible profiles, each supporting the feature of an important application,
i.e., digital video transmission over cable satellite, and other broadcast channels.

With the widespread use of ISDN lines and the arrival of the world wide web plus the develop-
ments for digital television and satellite techniques, the shortcomings of those standards became
evident. Incorporating some additional techniques, ISO and ITU-T addressed the need for more
refined video compression standards in 1996 with the issues of the ITU-T recommendation H.263,
Video coding for low bit rate communication[ITU96], and the ISO standard 13818,Generic co-
ding of moving pictures and associated audio information[ISO96a] for up to 10 Mbits/s.

All of these standards and recommendations, H.261, MPEG-1, H.263, MPEG-2, and JPEG
rely on classical statistical methods with the three-step encoding scheme [Gal91] : 1)energy com-
pactionby Discrete Cosine Transform (DCT), 2) entropy reductionby Differential Pulse Code
Modulation (DPCM), and 3)redundancy reductionby Run-length encoding (RLE), plus optional
pre-processing steps such as motion-detection. There have been numerous papers about how to
implement those standards in software and hardware, and how to improve their efficiency with
pre-processing [] and post-processing [OBK95]. Chapter 5 will cover those techniques in detail.

More recent work of the standardization organizations lead to the MPEG-4 and MPEG-7 tech-
nical standards, which will be introduced in the following subsections. The curious numbering
of those standards is of technical origin : A project MPEG-3 was dropped when it became clear
that MPEG-4 would fulfill its tasks both project were started about the same time. Looking for
a new ordinal to name future projects, 5 and 8 as the logical sequence were rejected and 7 was
arbitrarily chosen. Here is an excerpt from the official MPEG-7 FAQ to the MPEG numbering pro-
blem [MPE01] :"So after 1,2 and 4, there was much speculation about the next number. Should
it be 5 (the next) or 8 (creating an obvious binary pattern) ? MPEG, however, decided not to fol-
low either logical expansion of the sequence, but chose the number of 7 instead. So MPEG-5 and
MPEG-6 are, just like MPEG-3, not defined.". Remains the question why "1, 2, 4, 6" is less a
logical sequence than "1, 2, 4, 7" ? The latest coup of the MPEG committee is called MPEG-21,
and it addresses multimedia frameworks.

Technical standards, if widely accepted, ensure the interoperability of software and hardware
from different manufacturers. There are numerous examples of wasted effort and money on a big
scale in order to push a proprietary technique to a world standard : VHS (Sony) versus Betamax
and VCC (Philips) analog video recording,Digital Compact Cassette (DCC)(Philips) versus DAT
(Sony) and Minidisc (Sony), HDTV versus digital and analog television, various incompatible mo-
bile phone communication networks in the U.S. Technical standards make life easier and cheaper
for almost everybody. This is why committees for the DVD storage media has about 200, and for
the CORBA software specification about 800 member companies worldwide.
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From a research point of view, however, technical standards are – in the best case – a snap-
shot of thestate-of-the-artat a given time. As an example, requirements for the performance of
the employed algorithms are certainly related to the hardware equipment they were developed
on. Their practical application field is future hardware equipment, often – such as for video te-
lephones – with dedicated devices, e.g., DSP instead of FPGA. Motion detection and prediction
is a good example for a tentative anticipation of the power of future hardware generations. Early
hardware implementations simply ignored that feature because it would have made the encoding
performance unpredictable.

Today’s video compression standards, even those being currently developed, still use compres-
sion techniques from the early nineties. The apparent lack of interest of the research community
in fundamentally new approaches to video compression is difficult to explain. Maybe compu-
ter vision techniques beyond motion detection are considered too unreliable to be a serious pre-
processing step for video compression. Yet there are some attempts to tackle this problem, and
below is an overview. The fundamental problem is connected to the fact that the current paradigm
is based on (3D-)models for the image content, and indeed in that field there is a lot to be done
and powerful computers are needed for a smooth implementation.

Recent work

MPEG-4 The MPEG-4 standard [BCL99, BCL00, ISO96b] of the ISO was raised from commit-
tee draft to international standard in April 1999. It was designed to encode (and decode) multime-
dia content, not just video and audio data. It further permits protection of owner rights, and allows
for user interaction during the encoding and the decoding steps. The video codec uses the same
3-step algorithm as MPEG-1, H.263 etc., but it allows for the separate encoding of objects in an
image. This is more or less equivalent to the model-based approaches discussed below. However,
the extraction of that object information is left to the user.

MPEG-4 draws from VRML, and targets similar (or even the same) application areas. This is
not a lack of originality but an intentional feature. Standards do not seek to generate new tech-
niques, but use the supposedlybesttechniques and make them available to everybody.

MPEG-7 [NL99a, NL99b] is not (directly) a further development of MPEG-4, but targets dif-
ferent application areas. While MPEG-4 is designed for multimedia production, distribution, and
content access, MPEG-7 [ISO00b] targets thedescriptionof multimedia materials. It addresses
the interoperability and globalization of data resources and management. MPEG-7 standardizes
the structure and linking mechanisms for image (video, multimedia) content as well as the repre-
sentation of that content. It intends to make audio-visual material searchable like text, which will
be a great improvement for, e.g., internet search engines which today are still text-based only.

MPEG-7 will be a standardized description of various types ofinterfacesof multimedia infor-
mation. This description will be associated with the content itself, to allow fast and efficient sear-
ching for material that is of interest to the user. MPEG-7 is formally called"Multimedia Content



48 Chapitre 3 TECHNICAL AND SCIENTIFIC CONTEXT

Description Interface."The standard does not comprise the extraction of descriptions/features
nor does it specify the search engine or any other program that can make use of the description.
MPEG-7 is intended to reach the status of a Draft International Standard by July 2001, and of an
International Standard by September 2001.

3.3.3 Second Generation Video Coding

The major difference between first and second generation video coding is that second gene-
ration video coding uses information about the image content. This is the paradigm under which
research in video coding is done, this thesis included. MPEG-4 offers possibilities to encode a
variety of objects However, it says nothing explicit about the extraction of such objects [Sik97].
Creating models or trying to segment image content into objects as a pre-processing step, and
doing conventional waveform-based compression afterwards is the common approach. This se-
parates the extraction and the compression part. Since the compression algorithm still consist of
DCT, FFT, or Wavelet transform, DPCM or vector quantization, and finally a variation of VLC,
this approach has choked research in video compression and shifted the attention to extraction,
i.e., computer vision techniques. On of the major contributions of this thesis is that our coding ap-
proach implicitly includes the use of image content information into the encoding algorithm. We
renounce the standard dual approach and rather promote and integrated coding approach, doing
image content representation and compression at the same time.

Model-based approaches

Research in second generation video coding is basically about creating 3D models of image
content, notably of heads [Eis00]. This reduces the its applicability to scenes with objects of which
there is a model at hand. Of course, we are talking about advanced wire-frame models such as
in [Eis00, 3D-01], not simple contour models as in [HHD98]. Anyhow, since model extraction
is a complex process, the focus of model-based coding research is focussed on the head-and-
shoulders scenario. This is supposed to be the scenario for the most interesting application area,
video communication, as has been outlined in the introduction chapter.

It is interesting to note that the initialization process and the transmission of the model isnot
necessarily included in the compression results of model-based approaches [Eis00]. In any case,
the encoding procedure – after initialization and transmission of the model – consists of estimating
theFacial Animation Parameters (FAP)for the model, and optionally eliminate redundancy in the
output parameter stream. MPEG-4 defines a set of FAPs [ISO96b].

Another feature of MPEG-4 is that it uses a layered representation of video data. This corres-
ponds to considering a video frame as a superposition of several layers, which comes handy when
encoding text, graphics, and scene data at the same time. A particularly interesting technique in
that context is the use ofsprites. A sprite is defined as[...] a large static image composed from the
pixels in an object visible through the entire scene.[LCL�97]. This may be useful when building
up a background layer while a recording camera is moving. The question is if this is still efficient
when a changing camera zoom for instance has to be compensated for by scaling.
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3.4 Conclusion

We saw in this chapter why it is interesting to reconsider the problem of compressing video
data. The idea behind the approach to second generation video coding was discussed, and we laid
out why we did not choose an approach based on 3D models. Instead, we consider it more efficient
to take an appearance-based approach, concentrating on visible image information and not care
about not visible image content. The prerequisite of such an approach is a good normalization of
the video data to one principal object, and in this regard appearance-based coding resembles any
other model-based approach. Normalization, anyhow, requires the interference of computer vision
methods, notably tracking. In order to do this, we divided the huge number of computer vision
tracking algorithms into three categories, and selected a feature-based color tracker as our face
tracker.
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Chapitre 4

Data compression

Video compression is not a one step process. A selection of compression algorithms is used
such that their combination exploits the limitations of the human visual system. Although data
compression techniques can be very different from each other, we can divide them into groups of
fundamental approaches. The classification we use is depicted in figure 4.1, which may also serve
as a road map through this chapter. It allows us to compare our own approach to currently existing
methods, as well as to identify possibilities for improvement.
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FIG. 4.1: Classification of Data Compression Techniques

We will see in later chapters that both the choice of the compression algorithms based on

51
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their properties and the order in which they are used are important. This chapter gives a general
overview of data representations and coding. Both are discussed in a general manner to show how
they are related to this work. Illustrating their limitations leads in turn to the motivation for our
own approach.

The classification criteria used in figure 4.1 refer to concepts from information theory. Sec-
tion 4.1 reviews from information theory fundamental ideas :

Redundancy reduction , which is also calledentropy coding, is equivalent to searching an opti-
mum data representation without information loss. Some of the most important redundancy
reduction algorithms are discussed in section 4.2. They are important for this work for two
reasons : we use them to optionally compress the basis vectors of theOrthonormal Basis
Coding (OBC)algorithm, and they are used in video compression algorithms we use as
benchmarks such as MPEG. Redundancy reduction is alosslessand thereforereversible
operation.

Energy compaction is the redistribution of a signal/image energy by changing its representation
from one linear space to another. This may be done using some linear transform or series
expansion. It can be shown that for most images the major share of energy is concentrated
in very few data points of a transformed image (see figure 4.7, and also [Fur94]). This
allows for omitting many transform coefficients at coding time. The degradations in the
reconstructed image introduced this way are either not perceptible or acceptable by the
human visual system.

Section 4.3 gives an introduction to efficient signal representations. The discussion is on
a fundamental level, which permits illustrating the link between the OBC approach and
other approaches. Furthermore, techniques we use for OBC such as theKarhunen-Loève
Expansionand theGram-Schmidt orthonormalization procedureare introduced.

If a complete orthonormal basis were used to linearly transform an image, the operation
would bereversibleand no data loss would occur. This would hold even for discrete linear
transforms. In reality the number of basis dimensions is limited (usually to 8), and an error
is introduced each time an image is transformed. Note also that energy compaction does not
necessarily reduce the amount of data. This can be done by subsequent redundancy and/or
entropy reduction steps.

Entropy reduction reduces the amount of information of a data source. Compression by entropy
reduction takes information loss into account in order to increase compression. This makes
the encoding processirreversible, and the output of the decoder is just anapproximationof
the original input of the encoder. If it is possible to make sure that the information lost at
compression time is not needed or can be well estimated, very high compression rates can
be the result.

The most popular entropy reduction technique is quantization. The art of quantization is
to identify sampling clusters representing the original data in a way which for the human
eye is indistinguishable from the original. Section 4.4 covers some important quantization
techniques, which are relevant for this work either being used in benchmarking algorithms
such as MPEG, or as an inspiration for OBC coding.
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4.1 A Review of Information Theory

While many of his concepts were already "in the air" at that time, it is generally agreed that
Information Theorywas founded by C.E. Shannon in 1948 with the publication of his paper"A
mathematical theory of communication"[Sha48]. Structuring a general communication system
into the components as depicted in figure 4.2, he developed a theory for each of the components
shown. This thesis focuses on the first component, the information source, and – more specifically
– an information source of images. We briefly sketch in this section why it is possible to compress
data coming out of an information source and introduce the three classification criteria as shown
figure 4.1.

Information
Source

Transmitter Channel

Signal Received
Signal

Message

Noise
Source

Receiver Destination

Message

FIG. 4.2: Shannon’s schematic diagram of a general communication system

4.1.1 Entropy, Information

Information theory is primarily interested in channel capacity and efficient, error free transmis-
sion over noisy channels. Looking from a channel into an information source, we want to know if
and how we can measure then information coming out of the source. For this section, we will use
the word"message"to describe the data of an information source. Messages can be letters of an
alphabet, symbols, numbers, or some other sort of data units. In the general context of this work,
the messages in question will be sequences of pixel values. An information source is assumed to
have a finite set of such messages, thealphabetof the source.

We can actually express the information content of messages coming out of a source indepen-
dently of the character of the source (sequence of letters, signal (time) functions,etc.). Assuming a
source with a set ofn different messages and their probabilities,p1, p2, ...,pn, Shannon formulated
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in [Sha48] three properties for a measure of average information, which he denoted byH, should
have :

a. H should be continuous in the probabilities,pi , of the singlei messages.

b. If all the probabilitiespi are equal,pi �
1
n, thenH should be a monotonic increasing function

of n. In other words, with equally likely events there is more information when there are
more possible events.

c. If a message is composed of successive messages, then theH of the composed message is
equal to the weightedsumof the individual messages.

Theorem 2 in [Sha48] states that the only measure satisfying these three conditions is

H � �K
n

∑
i�1

pi log pi � (4.1)

whereK is a positive constant.H is called theentropy of the set of possibilitiesp1, p2, ..., pn,
wherepi is the probability of theith message from the source.

Note that the base of the logarithm in equation 4.1 can be chosen freely. If the base of the
logarithm function is 2, the resulting unit is calledbinary digits, or bits, a word which was first
suggested by J.W. Tukey1. If the base ise, which might be practical if mathematical operations
such as integration and differentiation are involved, the resulting units are callednatural units, or
shortnats. For a base of 10, the name of the units ishartleys, after R.V.L. Hartley, who first sug-
gested the logarithm function to be the"most natural choice"for measuring information [Har28].
Since loga x� loga b � logbx, any of those units can be scaled to another by a constant factor. We
will therefore omit the factorK when we talk about entropy.

If the entropy is the average information of all possible messages of a source, then we can
interpret

Ii �� log pi � (4.2)

as theinformation of the ith message. Thus, the probability of a message determines its informa-
tion content. The less likely a message, the moreinformationit has. Equation 4.2 is also intuitive :
It increases as the probability of the message decreases, and it approaches zero as the probabi-
lity of the message becomes equal to one. Both equations, 4.1 and 4.2, assume a source with no
statistical dependence between two messages.

Assuming statistical independence between two messages is in most cases too simple. Consi-
der for example written language. Redundancy in written language require some letters (or words)
to appear after another with a probability much higher than the individual, overall probability of
that particular letter (or word). The possibilities in English for a letter following the combination
lett are restricted, even more so in the context of a sentence. However, the point of this section
is to only introducethe concepts from information theory which allow us to characterize the tech-
niques in the following sections. We need that classification to compare different approaches in a
comprehensive way, not the least our own.

1This is the same J.W. Tukey who "invented" the Fast Fourier Transform (FFT) together with J.W. Cooley [CT65].
Both were colleagues of Shannon at Bell Labs.
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It should be noted that the formulas given here are only valid for a discrete source. Continuous
sources are not relevant for this work, because the relevant data are sampled pixel values, i.e. a set
of discrete data.

4.1.2 Relative Entropy, Maximum Compression, Redundancy

Shannon defines therelative entropy, which we denote asHrel, as the ratio of the entropy of
a source to the maximum value it could have. This is the case when all messages have the same
probability. With a source alphabet ofn messages, the maximum entropy is

Hmax � �
n

∑
i�1

pi log pi � �
n

∑
i�1

1
n

log
1
n

� logn� (4.3)

andHrel becomes

Hrel �
H

Hmax
�

�∑n
i�1 pi log pi

logn
� (4.4)

whereH is the entropy of the actual message or sequence of messages. Equations 4.3 and 4.4 again
assume statistical independence between two messages. This assumption, although unrealistic for
real applications, simplifies our considerations without losing generality.

The relative entropy,Hrel, is themaximum compressionpossible when we encode into the
same alphabet. It immediately follows that one minus the relative entropy is theredundancy of a
sequence of messages :

R � 1�Hrel � 1�

n

∑
i�1

pi log pi

logn
(4.5)

In real life, most data in its raw form are encoded with a code corresponding to its maximum
entropy. Some examples :

ASCII character set : The ASCII (= American Standard Code for Information Interchange) is
the most common format for text files in computers and on the Internet. The alphabet of the
ASCII code has 128 symbols. This gives a maximum entropy of

�log2 128� � 7 [bits].

Accordingly, in an ASCII file, each alphabetic, numeric, or special character is represented
with a 7-bit binary number.

EBCDIC character set : EBCDIC (= Extended Binary-Coded Decimal Interchange Code) is a
binary code for alphabetic and numeric characters that IBM developed for its OS/390 opera-
ting system of the S/390 servers. The alphabet of the EBCDIC code has 256 symbols. This
gives a maximum entropy of

�log2 256� � 8 [bits].

Therefore, each alphabetic or numeric character is represented in an EBCDIC file with an
8-bit binary number.
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Raw image pixel encodingdepends on the video acquisition device, the screen color depth, or
simply the resolution desired by the user. The most common resolution for grayscale or
color components is 256. The encoding is :

�log2 256� � 8 [bits].

Each grayscale pixel or color component value is encoded with a 8-bit binary number.

Codes like ASCII and EBCDIC codes are calledfixed length codes, since they assign every
character in a document the same codeword length, even though characters are most likely not to
have the same frequency of occurrence within a document. The same is true for pixel encoding.

The absolute optimal average codeword length is equal to the entropy, and the entropy is
dependent on the actual occurrence of the possible messages, i.e., the frequency of occurrence of
a certain letter in a text or a pixel in an image. On the other hand, it is not possible to encode a
source with a smaller average codeword length than the entropy without information loss ! If every
messagei with probability pi is assigned some codeword with lengthli , then the average codeword
length is

l �
n

∑
i�1

pi li � (4.6)

Assuming that the alphabet was encoded with maximum entropy,Hmax, and applying equation 4.5,
we get the redundancy

R � 1� H
l

� 1�

n

∑
i�1

pi log pi

n

∑
i�1

pili

(4.7)

The redundancy is in literature often expressed in the units of the code used, usually bits. This is
done by multiplying equation 4.7 withl :

Rbits � R� l � l �H

�
n

∑
i�1

pi li �
�
�

n

∑
i�1

pi log2 pi

�

�
n

∑
i�1

pi �li � log2 pi�� (4.8)

which is simply the difference between the actual average codeword length and the entropy.

We see that an optimal code with no redundant content therefore has an average codeword
length equal to the entropy. Yet another interesting fact can be derived from equation 4.8 : The
redundancy is equal to zero, if each single codeword length is

li �� log2 pi � log2
1
pi
� (4.9)

This is true if the probabilities are powers of the inverse of the base of the codeword. That is for
the binary case, all probabilitiespi have to be�1�2�n, wheren can be any positive integer.



Section 4.1 A REVIEW OF INFORMATION THEORY 57

4.1.3 Source energy

The source energy is the energy of the symbols of the messages coming out of a source. These
symbols are represented by a continuous or discrete signal such as pixel intensity (luminance)
values. Letx�t� be a stochastic, continuous signal coming out of a source, then

E �

� T

0
x2�t� dt (4.10)

is the signal energy between time 0 to timeT. The integral in equation 4.10 becomes a sum in the
case of a discrete source. We come back to signals and signal energy in section 4.3.

Instead of integrating over time, we might be interested of signal’s energy (distribution) in
space. In that case we integrate along the signal’s dimensions in space. If, for instance, we are
interested in the energy of a video image, we compute

Eimage�
W

∑
i�1

H

∑
j�1

x2�i� j�� (4.11)

whereW is the image width,H the image height, andx�i� j� the pixel value at position�i� j�.

4.1.4 Conclusion

Information theory gives us two measures to decide if data compression is possible and/or
efficient : entropy and redundancy. Shannon suggested that the obvious way to do compression is
to find a data representation which approaches the entropy of the data to be encoded, eliminating
redundancy. The entropy is based on the actual statistical occurrence of the messages from an
information source.

Reducingor eliminatingredundancy is a lossless, completely reversible encoding step. Any-
thing that reduces the data information rate below its entropy introduces loss of information and is
therefore irreversible. Such an encoding step, which may be justified by a substantial gain in com-
pression at the cost of reconstruction quality at an acceptable level, is calledentropy reduction.

In addition, we can change the representation of the source data to change the energy distri-
bution of the source data coefficients, a process which is calledenergy compaction. This does
not reduce the actual amount of data, but it can make entropy reduction much more efficient. Note
also that energy compaction may involve quantization thus introducing some data loss.

The following sections present algorithms for all three encoding methods.
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4.2 Redundancy Reduction

Equation 4.5 defined the redundancy of a source message representation or code. This section
discusses some of the most important algorithms of reducing or even eliminating redundancy of
an data stream coming out of an information source. Any compression algorithm is closely related
to its underlying source model, differing models making for different encoding algorithms. The
closer such a model is to the truth, the better the compression algorithm performs.

Four years after Shannon created information theory, D.A. Huffman published his landmark
paper about the construction of a code optimized with respect to redundancy [Huf52]. Huffman
developed his technique as part of a class assignment at MIT. The class was held by R. Fano and
was the first ever held in information theory [Say00]. Because of its importance and since it is still
in use, for instance in the ZIP compression algorithm discussed in the next chapter, section 4.2.1
will give an overview overHuffman’s compressionalgorithm.

Huffman’s code becomes inefficient when probabilities of source messages differ a lot and, in
particular, if one of the messages has a probability close to 1. In this case, grouping messages can
greatly enhance the efficiency. A Huffman code taking advantage of this is conceivable, but a code
for every possible combination of messages would have to be generated (complexityO�n2� with
n being the number of messages.). An algorithm using the grouping of messages without having
to generate a code for any possible grouping is calledarithmetic coding. The roots of arithmetic
coding go back to one of Huffman’s fellow students in Fano’s class, P. Elias. In section 4.2.2 we
use the algorithm as it is described in [WNC87].

Both Huffman and arithmetic coding assume statistical independence of the messages to be
encoded, an assumption which does not hold in many practical cases. An efficient solution to this
problem is to encode messages in words instead of letters, an approach calleddictionary coding.
Two important algorithms encoding messages in words were published by Jacob Ziv and Abraham
Lempel in 1977 [ZL77] and 1978 [ZL78].

Last, but not least, section 4.2.4 briefly presentsrun length coding, a widespread one-pass
coding technique used for FAX machines [ITU80], as well as in image [ISO94] and video co-
ding [ITU93, ITU96].

4.2.1 Huffman Coding

The Huffman encoding algorithm is based on the assumption that all messages of a source are
statistically independent. Two eventsA andB are statistically independent, if their joint probability
— i.e., the probability that they occur at different times — is equal to the product of their individual
probabilities.

P�A�B� � P�A� �P�B� (4.12)

Huffman’s algorithm uses two observations about optimum code [Say95] :



Section 4.2 REDUNDANCY REDUCTION 59

a. The higher the probability of a message, the shorter should be its code. This can be directly
derived from equation (4.9).

b. The two symbols with the smallest probabilities should have the same code length.

Starting with these properties for an optimal code, Huffman developed the following procedure.
(The decoding algorithm is not discussed here.)

Algorithm HUFFMAN(S �K)
Input: A set,S , of N messages
Output:Optimum binary code
1. Sort the probabilities ofN messages of the source in descending order :P�1� � P�2�� ����

P�N�

2. repeat
3. Build acoding treeby combining the two lowest probabilities
4. Combine the next two lowest probabilities
5. until no probability is left
6. The upper member of each pair is assigned a zero, the lower member a one — or vice versa
7. Trace the path from each probability to the connection point, and keep track of the ones and

zeros along each path
8. Write the one-zero sequence for each message from right to left

Figure 4.3 illustrates the algorithm. The minimum fixed length binary code for these seven
symbols would be�log27� � �2�807� � 3 bits. In this case Huffman’s code is efficient. The code
generated this way has some important properties making it interesting for use in codecs.

In fact, messages do not have to be encoded separately. They may be encoded in blocks of
equal length. The probabilities of all messages in a block are then multiplied to yield the joint
probability of the entire block. It can be shown that the more messages are encoded in one block,
the more the average codeword length is approaching the entropy of the source.

Prefix code

Another important property of Huffman code is that, since no shorter codeword can be a prefix
of a longer codeword, this sort of code is calledprefix code. This is assured by two restrictions for
the generated code :

a. No two messages will consist of identical arrangements of coding digits.

b. The message codes will be constructed in such a way that no additional indication is neces-
sary to specify where a message code begins and ends [...].

Prefix codes are thus always uniquely decodable. This is particularly advantageous in the case of
serial data transmission like in video conferencing and telephony. Other prefix codes are generated,
e.g., by the arithmetic coding algorithm (section 4.2.2).

Huffman coding requires that the probabilities ofall potential messages of a source have to be
known in advance.If they are known in advance, then the Huffman Algorithm is likely to generate
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FIG. 4.3: Example to illustrate the Huffman Encoding Algorithm

the optimal code for a certain base and block length. Huffman emphasizes in his paper that[...]

"optimum code" means "minimum-redundancy code."[Huf52].

In certain cases, the Huffman algorithm fails to produce efficient code. Section 4.2.2 gives an

example and discusses an alternative encoding procedure which is however based on the same

source model(s) as Huffman coding.

Adaptive Huffman Coding

If the probabilities of the messages of a source arenotknowna priori, they have to be collected

first. If, e.g., an image is to be encoded, the pixel data probabilities are computed first, and then

in a second pass the actual encoding is done. If, on the other hand, there is no time for a two pass

procedure, a certain modified one pass Huffman encoding algorithm is used. This sort of Huffman

encoding is called adaptive, because statistics are updated with every newly encoded message.

The branches of the coding tree are no longer assigned probabilities but weights, and when a new
message arrives that has not been encoded yet, a certain branch of the old tree called NYT (for

"Not Yet Transmitted") forks into two new branches : a new NYT, and one for the newly arrived

message. Then the whole tree is updated and rearranged, if necessary.
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This is a fairly complicated algorithm, whose implementation may require considerable com-
puting power. Its sole advantage is its one pass character, making it attractive for real-time ap-
plications provided that enough computational power is available. Simulations show that the two
pass Huffman algorithm and the adaptive Huffman algorithm yield about the same results. A more
thorough introduction to both of these algorithms can be found in [Say95].

Discussion

Let us consider the Huffman algorithms from the image processing point of view. There are
two statistical properties of images to be noted :

a. Any two images are unlikely to have the same entropy unless they have the same content.
Therefore, the optimal codes for two images will probably not be identical.

b. Image pixel values are highly correlated within the same image.

These two facts weaken the reasons for a direct employment of the Huffman algorithms for image
and video data compression, since the Huffman algorithms are based on the statistical indepen-
dence of the input data. However, even if a Huffman code is far from being optimal for a particular
image, it still providessomecompression. This might be crucial for a low-bit-rate application like
video telephony. A variation of the Huffman coding procedure is used for the JPEG compression
standard (section 5.2) and the ZIP encoding algorithm (section 5.1).

4.2.2 Arithmetic Coding

The main drawback of Huffman coding is that it assigns at least one bit of code to a symbol
of an alphabet. This can be much more than necessary especially if one symbol has a probability
close to one. We can easily illustrate this by calculating the information of a message of probability
0.9 using formula 4.2, which is log2 0�9� 0�152 bits. This is almost seven ( !) times less than the
supposedly optimum, minimum Huffman code. Imagine a fax machine encoding black and white
pixels for an almost empty sheet. Huffman code would be very inefficient in this case assigning
at least on bit to each pixel, which is why another compression algorithm (section 4.2.4) based on
another source model is used for this application [Nel92].

Arithmetic coding is a compression method based on the same source model but avoiding an
explicit code for a particular message. It rather generates a unique tag for a sequence of messages
from an information source. Only at the final encoding step a binary (prefix) code for that tag will
be generated. This is the major advantage of arithmetic coding over Huffman coding, because it
automatically takes care of heavily differing probabilities of messages.

It is true that the Huffman algorithm allows grouping of messages (which is not to be confused
with assuming statistical dependence between messages !). However, a Huffman encoder would
have to generate a code for each possible combination (permutation) of a group of messages. An
arithmetic coder is content with the actual occurred message sequence. The source model used
determines the entropy of the source and the limits of for compression. As for Huffman coding,
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arithmetic coding uses either a fixed model with a given set of probabilities, or an adaptive model.
The latter would assign messages of an alphabet only the probability they have had in a sequence
at a certain point in the sequence.

In arithmetic coding, a sequence of messages is represented by an interval of real numbers
between 0 and 1. As one message after the next is being encoded, the interval becomes smaller
and smaller according to the probability of the last message encoded. The probability model is,
just as in Huffman encoding, known to both encoder and decoder. A function mapping a source
alphabet to the interval�0�1� is thecdf, thecumulative distribution function (cdf).

For a random variable,X�ai� � i, representing the occurrence of a messageai out of a source
alphabetA � a1�a2� ����am, theprobability density function (pdf)is

P�X � i� � P�ai�� (4.13)

and the cdf is defined as

FX�i� �
i

∑
k�1

P�X � k�� (4.14)

The interval assigned to the messageai is then�FX�i�1��FX�i��.

A good way to illustrate how arithmetic coding works is by an example. Suppose we want to
encode the sequencebookEOF. Assuming statistical independence between the symbols2 gives us
the fixed model for the corresponding alphabet{b, k, o, EOF} shown in table 4.1 (We will see in a
second why we need theEOF.), which is known to both encoder and decoder.

TAB. 4.1: Fixed model probabilities for alphabet {b, k, o, EOF}

Message Probability Range

b 0.2 �0�0� 0�2�
k 0.2 �0�2� 0�4�
o 0.4 �0�4� 0�8�

EOF 0.2 �0�8� 1�0�

The column "Range" contains thecdf of the alphabet{b, k, o, EOF}. The information (see also
equation 4.2) of the sequencebookEOF is

� log�0�2 �0�4 �0�4 �0�2 �0�2� �� log0�00128 (4.15)

which using the base 2 corresponds to

�� log2 0�00128� � �9�6096� � 10 bits. (4.16)

2Even in this simple case this is actually not the case as in English not all possible letters can follow an initialb in a
word.
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Table 4.2 depicts the encoding process. We start with the first letter to be encoded, hereb, and
keep its range in the cdf of the source alphabet. This gives us the interval�0�0� 0�2�. We then scale
up the range and take the range corresponding to the second symbol to be encoded, theo. This gives
us the interval�0�0��0�2�0�0� �0�4� 0�0��0�2�0�0� �0�8� � �0�08� 0�16�. The third interval for
the secondo is then�0�08��0�16�0�08� �0�4� 0�08��0�16�0�08� �0�8� � �0�112� 0�144�. This
continues until we reach theEOF symbol terminating the encoding process which is illustrated in
figure 4.4.

TAB. 4.2: Arithmetic encoding process for the sequencebookEOF

Message Low value High value

0.0 1.0
b 0.0 0.2
o 0.08 0.16
o 0.112 0.144
k 0.1184 0.1248

EOF 0.12352 0.1248

Note that the size (upper bound - lower bound) of the last interval is the probability of the
entire sequence. From figure 4.4, we get as the size of the last interval

0�1248�0�12352� 0�00128�

which is identical to the argument of the logarithm in equation 4.16. Thus,any real number bet-
ween 0.12352 and 0.1248 will encode the sequencebookEOF, given the alphabet (and its proba-
bilities) in table 4.1. The "natural" binary code for the sequencebookEOF is the binary floating
point number of any real number chosen between the upper and lower bound.

Sinceany real number between 0.12352 and 0.1248 will encode the sequencebookEOF, we
need to introduce a symbol indicating that the sequence has an end. Otherwise, the decoder would
not be able distinguish betweenbook, bookk, bookkk, and so on. Another practical problem for
the implementation of arithmetic coding may be precision, especially for encoding long messages.
Special care has to be taken to avoid overflow and underflow.

The example above was very simple to illustrate the arithmetic encoding procedure. The fixed
length code for this four letter alphabet would be 2 bits, and the fixed model entropy of the source
for the example is 1.92 bits. So there is a priori not much room for compression. Arithmetic coding
produced a result of 9�6096�5 � 1�92 bits / symbol, which is exactly the entropy of the source.
We could improve compression by using another source model assuming statistical dependence
between the symbols, but that is not the point here. Arithmetic compression works very well with
longer sequences of messages where the messages have very different probabilities.
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FIG. 4.4: Representation of the arithmetic coding process with the interval scaled up at each stage

In a sense, arithmetic coding computes recursively the probability of a sequence of messages
(assuming statistical independence). The logarithm of the inverse of that probability gives the
(self-)information of the message sequence to be encoded.

4.2.3 Dictionary Coding Techniques

Huffman coding and arithmetic coding are both based on the statistical models for an infor-
mation source. This can be convenient as it allows using simple source models. (Remember:
the source entropy and therefore the maximum compression possible depend on the statistical
model for the source !) Possibilities for improvement for Huffman coding and arithmetic coding
include developing better models incorporating dependencies between messages and maybe buil-
ding multi-dimensional dependency tables for letters and words of a source.

A much simpler approach was taken in 1977 and 1978 by J. Ziv and A. Lempel. With their
two papers "A universal algorithm for sequential data compression" [ZL77] and "Compression
of individual sequences via variable-rate coding" [ZL78] they started what are called dictionary
based techniques. The corresponding algorithms are simply called LZ77 and LZ78 according to
their year of publication. (The transposition of the first initials of the authors in the names of the
algorithms happened accidentally.)
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Dictionary techniques use a table of the most frequently occurring patterns of messages from
a source (likewordsor even phrases in a language dictionary). Patterns are then represented by a
reference into the dictionary. It is OK to use astatic dictionary, i.e., to use the same dictionary
for any source to be encoded. This may be efficient if a source produces always the same kind of
messages. For a general purpose compression scheme, however, it is much more appropriate to
use anadaptive dictionary, i.e., to rebuild the compression dictionary for every new sequence
of messages to be encoded. LZ77 and LZ78 use both adaptive dictionaries. Both have been very
popular until today and are used or the ancestors of the algorithms used in many general pur-
pose compression applications such as Zip (section 5.1), compress, arc, and their implementations
gzip, LHarc, Pkzip, the V.42bis specification for transmission by modem, the image file formats
containing compression such as TIFF, PNG, GIF, etc.

Both algorithms, while based on the same basic idea of using dictionaries for compression,
use two entirely different approaches.

LZ77 Algorithm

LZ77 uses a sliding window with a search buffer and a look-ahead buffer. The search buffer
usually has a length of several kBytes, and the look-ahead buffer has a length of several tens up to
some hundreds of Bytes. Data are encoded in triplets of numbers<O,L,C>, indicating theoffset,
the length, and thecodewordfor the symbol in the buffer that follows the match.

LZ77 initializes filling up the search buffer with zeros. To illustrate the encoding procedure,
which is depicted in figure 4.5, let us assume that the data in the search buffer has already been
encoded. The algorithm now searches a symbol or a string of symbols in the look-ahead buffer that
has already been encoded. Starting with the first symbol in the look-ahead buffer, there is three
possibilities of what can occur :

There is no match for that symbol in the entire search buffer. This corresponds to item c) in
figure 4.5. Offset and the length coefficients are 0, and the code coefficient becomes the
codeword for that symbol. This could be some variable length code such as a Huffman code
(with pre-determined probabilities).

There is a match. This corresponds to items a) and b) in figure 4.5. Here the current symbol is
encoded until the matching strings end.

The matched string extends inside the look-ahead buffer.This case is illustrated at item d) in
figure 4.5. The string of symbols are simply encoded as if they were entirely in the search
buffer. In fact, in [ZL77] there is no distinction between the two buffers. The look-ahead
buffer is a part of the search buffer.

It can be shown that the performance of this simple algorithm approaches the efficiency of a
compression scheme that has full knowledge of the statistics of the source [ZL77].

A big drawback of the original LZ77 algorithm is that if there was no match or a single match,
a single symbol in the look-ahead buffer has to be encoded with a triplet. In real applications,
LZ77 is modified to cover that case, for instance by using a flag to add an indication if the code to
follow is for a single symbol or a string of symbols.
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This_is_the_search_buffer_and_this_the_look-ahead_buffer

Code triplet <8,1,C(t)>

Search buffer, 30 symbols (Bytes) Look-ahead buffer, 26 symbols (Bytes)

his_is_the_search_buffer_and_this_the_look-ahead_buffer_

Code triplet <0,4,C(h)>

he_search_buffer_and_this_the_look-ahead_buffer_buffer_b

Code triplet <0,0,C(l)>

nd_this_the_look-ahead_buffer_buffer_buffer_end_of_strin

Code triplet <24,14,C(b)>

a)

b)

c)

d)

.......

.......

FIG. 4.5: The LZ77 encoding procedure. a) Match of one symbol, b) match of a string of 4 sym-
bols, c) no match, and d) the matched string extents into the look-ahead buffer.

LZ78 Algorithm

The previously discussed LZ77 algorithm assumes that matching symbol strings occur close
together. Anything that lies outside the buffers is not considered to find matches. The worst case
is periodic data with a period greater than the two buffers. Increasing the size of both buffers
also increases the bits required to encode the code triplets. Plus it seriously affects computing
efficiency.

LZ78 overcomes these problems by building an explicit dictionary. The encoder input is en-
coded in doubles instead of triplets. The doubles have the form	i,C
, werei is the index of the
current symbol in the dictionary (with a 0 indicating that the current symbol was not found in
the dictionary), andC the code of the symbol to follow. The dictionary on the encoder side has
to be build in a manner, which allows the decoder to build the same dictionary from the code
transmitted. The codeC may be some variable length code such as an adaptive Huffman code.

Let us illustrate the LZ78 algorithm with an example. If we want to encode the following
sequence
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This�is�a�test

we get the initial dictionary in table 4.3 for the first five symbols.

TAB. 4.3: Initial dictionary of a LZ78 encoding procedure

Index Entry

1 T
2 h
3 i
4 s
5 �

After the first five symbols the encoder will encoder will encounter symbols that it already has

encoded. The build up of the dictionary during encoding is shown in table 4.4 : The sixth symbol

is an "i", a symbol which has already been encoded. The encoder therefore outputs the double

	3,C(s)
, where 3 is the index of the previously encoded "i", and C(s) the code of the symbol to

follow the matched symbol. The string "is" is added under index 6 to the dictionary. This continues

until the string has entirely been encoded. The final version of the LZ78 dictionary for the string

This�is�a�test is shown in table 4.4.

TAB. 4.4: Dictionary development of a LZ78 encoding procedure

Dictionary
Encoder Output Index Entry

	0,C(T)
 1 T
	0,C(h)
 2 h
	0,C(i)
 3 i
	0,C(s)
 4 s
	0,C(�)
 5 �
	3,C(s)
 6 is
	5,C(a)
 7 �a
	5,C(t)
 8 �t
	0,C(e)
 9 e
	4,C(t)
 10 st
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4.2.4 Run-Length Coding

Run-Length coding encodesrunsof messages (symbols) and the length of these runs instead
of the symbols themselves. In its simple form it deals with a source producing only two different
messages, e.g., white pixels and black pixels (as was the case with early fax machines). The un-
derlying source model is a two-state Markov model (see, e.g., [Pap91]) with statesSw andSb as
shown in figure 4.6.Sw represents the case where a white pixel has just been encoded, andSb the
corresponding case for a black pixel.

The Markov model takes care of the fact that the probabilities of a particular color staying the
same for two subsequent pixels,P�w�w� andP�b�b�, is considerably higher than the probabilities
for a color change,P�w�b� and P�b�w�. This allows for a much "tighter" code than if it were
assumed that the probability of a color change was equally high than the color staying the same
for subsequent pixels. The reason is that the entropy in the latter case is much lower.

The actual encoding is a very simple process. Assuming a sequence of 150 white, 40 black,
130 white, 55 black pixels, the code would simply be 150, 40, 130, 55 with an indication for the
color of the first string of pixels.

P(w/b)

SbSw

P(b/w)

P(w/w)
P(b/b)

FIG. 4.6: Two-state Markov model for black and white pixel encoding (source : [Say95, Say00])

A slightly more complex variation of this run length encoding algorithm is used in ITU-T
recommendations H.261 and H.263 : Here the zero runs of various lengths are encoded. The
coefficients which are non-zero are encoded by a Huffman like variable length code in table lookup
manner. The probabilities have been empirically determined beforehand.

4.2.5 Conclusion

We discussed the some of the most important lossless data compression techniques. Two ap-
proaches were used : The first is using a model for the information source, where the quality
of the model determines the compression performance. Huffman and arithmetic coding are two
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examples of how a representation for the source data can be found which approaches the en-
tropy of the source. The second approach is based on repeated patterns in the data coming out of
the source. Although the two most important protagonists of this approach seem to be simplead
hoc procedures, they have found widespread applications because their performance approaches
asymptotically that of compression algorithms based on statistical models for the information
source.
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4.3 Energy Compaction

Statistical relation of pixel values within an image almost automatically suggests the idea of
using decorrelation techniques. Decorrelating pixel values redistributes the video signal energy
such that a large amount of energy is concentrated in a small amount of transform coefficients.
This eliminates the repeated and therefore redundant encoding of image pixel intensity or energy.
The process of concentrating the signal energy of an image into a small number of transform
coefficients is calledenergy compaction.

Energy compaction opens up the possibility of selecting salient image information and possi-
bly omit some information. We can do that because of the limitations of human perception, or a
tolerance of the human visual system towards certain types of degradation. This section discusses
several signal representations commonly used to decorrelate image data. No extraction or segmen-
tation of image content is done. Note that changing the data representation does not necessarily
compress the amount of data, but rather rearranges image information for later compression steps
such as quantization and other entropy reduction techniques.

Section 4.3.1 briefly reviews some chapters from signal theory in order to show the rela-
tion between the techniques relevant for this work such as Gram-Schmidt orthonormalization,
Karhunen-Loève expansion, discrete cosine transform, etc. Sections 4.3.2 through 4.3.4 present
these techniques in detail.

4.3.1 Discrete Signal Representations

In order to treat signals such as pixel (color) intensities of an image mathematically, we need
to develop analytical representations of signals, numerical characterization of significant signal
properties, and the characterization of the signal transforming properties of various processing
systems. We will sketch here only the most important ideas of signal theory as far as we need
them to introduce our own ideas. The reader is referred to appropriate literature such as [Fra81]
for an in-depth treatment.

A signal is a quantity which carries information about a physical system. This quantity may be
a voltage level, a force, anything that is measurable. Of particular interest here are, of course, inten-
sity values of digitized images, graylevel and, in particular for this work, color intensities. Signals
and time functions can be thought of interchangeably. Methods for dealing with time functions are
usually also adaptable for use with functions of other variables. An image, for instance, could be
described by a function of spatial coordinates or, as does OBC, as multi-dimensional vectors.

Let us review some basics about signals. A signal,x, can be considered as an element of a set,
S, whose elements all have a common property,P. We writeS� �x;P, i.e., the set of allx such
thatP is true. Two common examples are :

Periodic signals. Let SR�T� be the set of signals which are periodic, with period equal toT, then

SR�T� � �x;x�t �T� � x�t���∞ � t � ∞ (4.17)
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Energy-limited signals. The signals in

SE�K� �

�
x;
� ∞

�∞
x2�t�dt � K

�
(4.18)

are said to be energy limited toK, whereK is a real, positive number. Note that the integral
in 4.18 is physically interpreted as the energy content of a signal (compare equation 4.10).
In image processing we deal with image pixel values, which are digitized and quantized
image intensities and therefore energy limited.

Signals are describe by their properties and how they one signal is different from another with
respect to a certain property. Thedistance, which is a positive real number, is used to describe the
difference between two signals. A set of signals with a suitably defined distance is called asignal
space. Distances with certain properties are calledmetric, and a set of signals together with an
appropriate metric is called aMetric space. The metric that is pre-dominantly used for this work
is the Euclidean metric. Adding an algebraic structure to a metric space creates alinear space.
Elements in a linear space are also calledvectors. Thenormof a vector, which is a mapping from
its linear space onto the real line, is the distance of a vector from its origin, in other words its
length. The square of the norm of a signal or vector is its energy. The set of all energy-bounded
signals is calledL2 space.

Changing the representation of a vector, e.g., by linear transformation, redistributes its energy.
We discuss in the following various representations for signals using geometrical concepts for our
signal representations and basis matrices to span the signal space of a certain representation.

Energy compaction may involve omitting some of the basis dimensions available in a signal
space. This represents a loss of information. To measure the quality of a linear transform as an
energy compaction step, two criteria are used :

a. theefficiencyof the signal representation, i.e., how the signal energy is distributed over the
basis dimensions, and

b. theupper limit for the errorwe make by choosing a certain representation and a maximum
number of basis dimensions.

Since this work deals with discrete vector elements, i.e., digitized pixel values, the following sec-
tions consider the discrete versions of the concepts discussed. The reader is invited to consult the
appropriate literature for the continuous-time versions.

Orthonormal Basis Spaces

It is convenient to use a linear space as signal space. SupposeM is an arbitraryn-dimensional
linear space spanned by the basis��ui ; i � 1�2� ����n, then any vector�x�M can be expressed by

�x �
n

∑
i�1

α i�ui � (4.19)
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Taking inner products3 on both sides yields

	�x��uj
 �
n

∑
i�1

	�ui ��uj
 α i j � 1�2� ����n� (4.20)

This is a set ofn simultaneous, linear, scalar equations which can be solved for then-tuple�α �

�α1�α2� ����αn providing the representation (in�n or �n) for �x relative to the basis��ui. In most
cases, we want the basis of our linear space to be anorthonormal set. A set��ui ; i � 1�2� ����n is
said to be an orthonormal set if its vectors aremutually orthogonaland haveunit norm:

	�ui ��uj
 � δi j � (4.21)

whereδi j is theKronecker deltadefined byδi j � 1 for i � j, andδi j � 0 for i �� j. With ��ui ; i �
1�2� ����n being orthonormal, we can write equation 4.19 :

�x �
n

∑
i�1

	�x��ui
�ui (4.22)

An orthonormal basis forM gives not only a one-to-one correspondence between vectors inM
and their representation in�n but an equality of inner products in both spaces. For

�x �
n

∑
i�1

α i�ui and �y �
n

∑
i�1

βi�ui (4.23)

we have

	�x��y
 � 	
n

∑
i�1

α i�ui �
n

∑
j�1

β j�uj


�
n

∑
i�1

n

∑
j�1

α iβ�

j 	�ui ��uj
 �
n

∑
i�1

α iβ�

i � 	�α��β

(4.24)

In order to compare the quality of various representations, we would like to estimate the error
of our chosen representation. Theprojection theorem(see page 73) gives us the means to select an
appropriate subspace of a linear space. Further below we present some frequently used orthonor-
mal subspaces important for this work.

Let us now consider the problem of associating anumerical representationwith an arbitrary
signal of finite energy, i.e., a time function�x� L2�T�, with L2�T� denoting theL2 space on the time
intervalT. This is equivalent to finding a suitable mapping fromL2�T� into �n wheren is usually
chosen on the basis of a compromise between accuracy and economy of representation. From the
relative dimensionality ofL2�T� and�n, it is clear that the mapping must exhibit a many-to-one
nature and some sort of approximation is implied since each signal inL2�T� cannot have a distinct
representation in�n. It is natural to think of this mapping in terms of an equivalence relation where
L2�T� is partitioned in such a way that that the equivalence sets have a one-to-one correspondence
in �n.

3��� �� denoting an inner product.
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Subspaces of L2�T�

A common approach to this problem is to select a particularn-dimensional subspace ofL2�T�.
Suppose��ϕi ; i � 1�2� ����n is a linearly independent set of functions inL2�T� ; i.e.,

n

∑
i�1

α iϕi�t� � 0 (almost everywhere) for t � T (4.25)

if, and only if, αi � 0 for eachi. Let Mn denote the linear subspace spanned by these functions.
If the signal to be represented,�x, happens to lie inMn, then it has a unique expression as a linear
combination of the��ϕi,

x�t� �
n

∑
i�1

α iϕi�t� �x�Mn t � T� (4.26)

and then-tuple�α � �α1�α2� ����αn provides the desired representation in�
n. SinceL2�T� is an in-

ner product space, the relationship between�x and�α can be established according to equation 4.20 :

	�x��ϕ j
 �
n

∑
i�1

α i	�ϕi ��ϕ j
 j � 1�2� ����n (4.27)

Introducing the reciprocal basis��θi ; i � 1�2� ����n of ��ϕi in Mn, i.e.,

	�θi ��ϕ j
 � δi j i� j � 1�2� ����n� (4.28)

α i in equation 4.27 can be expressed as

α i � 	�x��θi
; i � 1�2� ����n (4.29)

Projection Theorem

In order to estimate the error of a certain representation, in how we represent a signal which
is not contained inMn. SinceL2�T� is a metric space, we can associate a vector�̂x, which is the
closest vector to�x in Mn. Each vector inMn generates this way an equivalence set given by

Sx̂ � ��x� L2�T�; ���x��̂x�� � ���x��̃x�� for any �̃x�Mn� (4.30)

and every vector inŜx is to be represented by then-tuple�α � �α1�α2� ����αn for �̂x. It turns out that
this representation is also given by 4.29, even for an arbitrary�x� L2�T�. This is a result coming
from the projection theorem [Fra81].

Theorem 1 (Projection Theorem) For any�x� L2�T�, there is a uniquêx in Mn, given by

�̂x �
n

∑
i�1

	�x��θi
 ϕi (4.31)
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such that�x��̂x is orthogonal to every vector in Mn and furthermore���x��̂x��� ���x��̃x��, where�̃x is
any other vector in Mn.

Complete Orthonormal Sets

The projection theorem helps to find the best representation for an arbitrary signal relative to
a given finite-dimensional subspaceMn. We now consider the question of how to select a suitable
subspace. For a given subspace, it is clear that there is a large subset ofL2�T� which is not ade-
quately represented, e.g., points inL2�t� which are orthogonal toMn. The problem of finding an
optimal subspace is meaningful only relative to some (usually compact) suitably restricted subset
of L2�T�. It can be shown that theL2�T� space iscompleteandseparable. These properties ensure
that an approximation by means of orthogonal projection,

�x��xn �
n

∑
i�1

	�x��ϕi
�ϕi (4.32)

can be made arbitrarily close by choosingn sufficiently large for any�x� L2�T�. If no additional
non-zero orthogonal vectors can be added to an orthonormal set, then that orthonormal set is said to
becomplete. A complete orthonormal set forL2�T� is equivalent to a basis for a finite-dimensional
space.

Let us consider an example. The complex functionsϕi�t� � �ej πi
T t ; i � 0��1��2� ��� are an

orthogonal set in��T��T�. Using the continuous-time versions of equations 4.32 and 4.29 and
normalizing we get

x�t� � xn�t� �
1�
2T

n

∑
i��n

α ie
j πit

T (4.33)

and

α i �
1�
2T

� T

�T
x�t�e� j πit

T (4.34)

which are theFourier seriesexpansion for duration-limited functions in��T��T�.

Basis Kernels

Without going into much detail, we can generalize the concept of a basis for a finite-dimensional
space. Replacing the index variablei by some variables� S, whereSwill be a specified interval
on the real line. The basisϕi�t� becomesϕ�t�s�, and equation 4.26

x�t� �

�
S
u�s�ϕ�t�s�ds for t � T� (4.35)

whereu�s� corresponds toαi . Thebasis kernelϕ�t�s� becomes analogously to equation 4.29

u�s� �
�

T
x�t�θ�s� t�dt for s� S� (4.36)
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whereθ�s� t� is thereciprocal basis kernel. If a reciprocal basis exists, equations 4.26 and 4.36 are

called atransform pair, andS is calledtransform domain.

There are several linear transform coding techniques such as the Hadamar, Haar, Fourier, Co-

sine, or Wavelet transforms, of which the Fourier is probably the best known. They all differ from

each other by their bases.

Representation of Random Signal Processes

This section is a little detour to remind us that in physical systems such as digital video came-

ras, signal sources often produce any one of a large (possibly uncountable) set of time functions.

Assigning a probability rule for the occurrence of each element of the set makes possible to ana-

lyze the source signals. A signal of such a source, denoted byx, is called arandom process, or

stochastic process

Although the description of random processes is different from that of deterministic signals

like those considered previously, the signal space concepts such as distance, norms, inner pro-

ducts, and orthogonality can equally be used to characterize random processes. For this work we

make abundantly use of this fact when treating image pixel data, face position and size vectors,

camera control parameters, etc. For an introduction to random variables, expectations, variances,

moments, and filters, the reader is kindly referred to [Pap91] or [CB90].

A random process,x, is defined as a set ofjointly random variables, each indexed by a (time)

parametert,

x � �x�t�; t � T (4.37)

If T is a countable set, thenx is called adiscrete-time process. If T is an interval on the real

line, thenx is called acontinuous-time process. Using the expectations ofx�t� as deterministic

functions of time allows us to apply the algebraic and geometrical concepts developed above.

4.3.2 Gram-Schmidt Orthonormalization

The advantages of using orthonormal bases raise our interest in procedures for constructing

such a basis. TheGram-Schmidt orthonormalization procedureis such a procedure, which is com-

putationally advantageous because of its iterative nature. Given a set ofn linearly independent

vectors inM, ��vi ; i � 1�2� ����n, the orthonormal basis set��ui is generated by normalizing the
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��wi obtained by

�w1 � �v1

�w2 � �v2 � 	�v2��u1
�u1

�w3 � �v3 � 	�v3��u2
�u2 � 	�v3��u1
�u1

�

�

�

�wi � �vi �
i�1

∑
k�1

	�vi ��uk
�uk

�

�

�

(4.38)

where

�ui �
�wi

���wi�� ; i � 1�2� ����n (4.39)

It is important to notice that distinct orthonormal sets will be generated by re-orderings of the set
��vi in the Gram-Schmidt procedure.

4.3.3 Karhunen-Loève Expansion

While the Gram-Schmidt procedure generates a complete orthonormal set, it is of course in-
teresting to see if we can find theoptimal n-dimensional basis inL2�T� for representing particular
realizations of a random process. Optimization criterion is theL2�T� norm of the error averaged
over the ensemble of realizations, denoted byE , which is to be minimized. In chapter 7 we will
use the results of this section to design an efficient video encoding algorithm.

It can be shown thatE can be minimized using the projection theorem, when just the autocor-
relation function of the process to be presented is specified [Fra81]. In fact, equations 4.32 and 4.29
are the optimal representation ofx�t�, if ϕi�t� are the eigenfunctions of the autocorrelation function
Rx�t� of the random processx�t�. That is,

x�t���
n

∑
i�1

α i ψi�t�; �T � t � T (4.40)

is the optimal basis w.r.t.E , andψi�t� are the eigenfunctions of the autocorrelation functionRx�t�.

Equation 4.40 is called theKarhunen-Loève expansion4 of the random processx�t�. If x�t� is
a zero-mean process, then the coefficientsαi are also zero mean, and they are uncorrelated. Ifx�t�
is not a zero-mean process, thenEϕ is minimized by subtracting the meanµx from eachx�t�. This
is equivalent to using theautocovariancefunction Ax�t� instead of the autocorrelation function
Rx�t�. This result is actually independent from the orthonormal basis�ϕi chosen.

4The Karhunen-Loève Expansion is sometimes called "Karhunen-Loève transform" [Lim90]. Ittransformsa signal
into eigenspace.
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Discrete time version

The discrete-time version of the Karhunen-Loève expansion is the expansion of the random

vector,�x, into the eigenvectors of its autocovariance matrixAxx. This is the version we are using

when we are processing images of a video stream. For a proof why the discrete time version

of the Karhunen-Loève expansion is the optimal representation for a series of random vectors,

see [Fuk90].

Analogously to equation 4.40, theN-dimensional random vector�x can be represented as

�x��
M

∑
i�1

α i�ψi (4.41)

where��ψi are theM eigenvectors of the autocorrelation matrix or, if�x are not zero-mean, auto-

covariance matrix. IfX � ��x1��x2� �����xM is the set (or sequence) of allM random vectors�x, then

the first moment, expectation (or mean) vector,�µx, is

�µx � E��xi �
1
M

M

∑
i�1

�xi � (4.42)

and the autocovariance matrix for a set ofM random vectors,�xi , is

Axx �
1
M

X XT �
1
M

M

∑
i�1

��xi � �µx� ��xi � �µx�
T (4.43)

While Axx is a NxN matrix, with N being the number of dimensions of�x, it is clear that the

order ofAxx will not be greater thanM. What is more surprising (but nevertheless true) is that the

eigenvaluesof Axx and

A �

xx � XT X �
1
M

M

∑
i�1

��xi � �µx�
T ��xi � �µx� (4.44)

are the same, which is particularly convenient forN�M, which in general is the case for images

with about 100 kBytes pixel data and sequences of a few hundred video frames. The eigenvalue

problem

Axx�ψ � λ �ψ (4.45)

or
1
M

X XT �ψ � λ �ψ (4.46)

has the solutions the eigenvaluesλ and the eigenvectors�ψ. Multiplying both sides of equation 4.46

from the left withXT yields

1
M

XT X XT �ψ � XT λ �ψ � λ XT �ψ (4.47)
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Introducing�φ� XT �ψ, equation 4.46 becomes

1
M

XT X�φ � λ�φ� (4.48)

which is another eigenvalue problem with eigenvectors�φand eigenvaluesλ. SinceA�

xx � 1
M XT X,

we see thatAxx andA �

xx have the same eigenvalues. Multiplying both sides of equation 4.47 with
X, we get

X A �

xx
�φ �

1
M

X XT X�φ � λ X�φ � λ �ψ �
1
M

X XT�φ � Axx�φ� (4.49)

which yields
�ψ � X�φ� (4.50)

The space spanned by a set of eigenvectors is calledeigenspace. We compute the eigenspace
by solving equation 4.47 and applying equation 4.50. Mapping the vectorsX into the eigenspace
is done computing theM-tupleαi in equation 4.41 applying equation 4.29. Since�x is not a zero-
mean process, we need to subtract the mean from each�xi before taking the inner product with each
of the eigenvectors5. The transform coding pair into eigenspace and back using the KLE is given
in table 4.5.

TAB. 4.5: KLE transform coding pair

�x � �µx �
M

∑
i�1

α i �ψi

α i � 	�x� �µx��ψ�

i 
; i � 1�2� ����M

whereM are the number of basis dimensions

(4.51)

Principal Components Analysis (PCA)is the process of taking advantage of the optimal re-
presentation of data. "Components" means the eigenvalues of the autocovariance matrix of a set of
data. Analyzing the principal, i.e., the most important eigenvalues, usually starts with putting them
in descending order. The term "PCA" is often used to describe the mapping of a set of (random)
vectors into eigenspace. More information on PCA in its original meaning plus an extensive list
of literature can be found in [Gif90].

4.3.4 Discrete Cosine Transform

The disadvantage of the KLE is that for each set of vectors,X, the corresponding eigenspace
needs to be re-computed. This may even become a very inconvenient task since for 100+ images,

5See the comments under equation 4.40.
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generation of the autocovariance matrixA�

xx needs a non-negligible amount of time. Moreover, for
each new set of images, i.e., for each new sequence, the new basis computed from the autocova-
riance matrix needs to be re-transmitted. In chapter 7 we propose a new method addressing these
problems, but for the moment, let us take a look how they have been solved up to now.

If re-computing the transform basis becomes unpractical for complexity, the attention is tur-
ned to fixed bases which are computed once and which approximate well the KLE. TheDiscrete
Cosine Transform (DCT), which was introduced by Ahmed and Rao in 1974, has been shown to
approximate the KLE better than any other linear transform for a Markov data source [RY90]. Ap-
plied to images the Markov model exploits the statistical correlation of neighboring pixel values,
which is obviously high in images having a sensible content. The basis of the DCT are cosine
functions, and table 4.6 shows the discrete cosine transform pair for one dimensional vectors of
dimensionN.

TAB. 4.6: 1D Discrete Cosine Transform Pair

X�k� �

���
��

2�
N

N�1

∑
n�0

C�k� x�n� for 0� n� N

0 otherwise

x�n� �

���
��

2�
N

N�1

∑
k�0

C�k� X�k� for 0� k� N

0 otherwise

wheren is the spatial coordinate in the pixel domain, and
k is the coordinates in the transform domain, and

C�k� �

����
���

1�
2

for k� 0;

cos

	
π�2n�1�k

2N



otherwise

(4.52)

In order to further reduce computing requirements, images are sliced up in 8 x 8 pixelblocks
before being transformed. The pixel blocks are transformed using a two-dimensional version of
the DCT, shown in table 4.7. This results in less than 64 transform coefficients because of the
symmetrie of the DCT transform matrix. The indicesni of the spatial domain correspond to the
time variable for the continuous cosine transform in the time domain. This is not to be mixed up,
though, with the time dimension at inter-frame coding ! The indiceski can be considered as fre-
quency variables, since the transform domain of the Cosine Transform is similar to the frequency
domain of the Fourier Transform. The normalization coefficientsC�k1� andC�k2� are chosen to
make the transform basis orthonormal.

Since it never changes during encoding, the DCT basis can be hard-coded into a video codec,
making the DCT the most widely used transform in the field of image and video compression. Its
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TAB. 4.7: 2D Discrete Cosine Transform Pair

X�k1�k2� �

������
�����

2�
N1N2

N1�1

∑
n1�0

N2�1

∑
n2�0

C�k1�C�k2�x�n1�n2�

for 0� n1 � N1�1�0� n2 � N2�1

0� otherwise

a)

x�n1�n2� �

������
�����

2�
N1N2

N1�1

∑
k1�0

N2�1

∑
k2�0

C�k1�C�k2�X�k1�k2�

for 0� k1 � N1�1�0� k2 � N2�1

0� otherwise

b)

where n1 andn2 are the spatial coordinates in the pixel domain,

k1 andk2 are the coordinates in the transform domain,

C�k1� �

����
���

1�
2

for k1 � 0;

cos

	
π�2n1�1�k1

2N1



otherwise

C�k2� �

����
���

1�
2

for k2 � 0;

cos

	
π�2n2�1�k2

2N2



otherwise

(4.53)

excellent energy compaction properties can be illustrated by transforming random blocks out of
some images. Figure 4.7 shows some empirical data of randomly chosen and DCT transformed
image blocks [Fur94]. Many spatial frequencies in a DCT transformed block have zero or near-
zero values and do not need to be encoded.

4.3.5 Conclusion

We saw in this section that eigenfunctions, or eigenvectors, are the best possible representa-
tion for a random process, minimizing theL2�T� norm of the error averaged over the ensemble
of realizations. Moreover, the error introduced by reducing the number of eigenvectors used for
reconstruction is always known and therefore controllable. However, calculating the eigenvectors
for a signal source is computationally costly, and only possible, if the source signal has zero mean.
This is usually not the case ; particularly not for a sequence of images.

This restricts the use of eigenspace coding to cases where the mean of the process can well be
estimated, or where the entire set of input vectors is known in advance. The latter is the case when
working on pre-recorded sequences, and an eigenspace basis can be constructed using the KLE.
Even though the KLE is known to yield the optimal representation, its prohibitive complexity



Section 4.3 ENERGY COMPACTION 81

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 n
on

ze
ro

Zig-zag index
0 8 16 24 32 40 48 56

b

0.0

0.5

1.0

Vertical frequency

Horizontal frequency

0 1

2

3

4

5 6

7

a

9

10

11

12

13

14 15

16

17

18

19

21

25

24

23

2220 33 38

6362

61

60

59

58

8

52

5344

54

47

57

39

51 55

50

28

35

34

48 49

37

36

56

46

45

42

43

27

2926

30 41

4031

32

FIG. 4.7: Zig-zag Serialization of an 8 x 8 PixelBlock. [source [Fur94]]

paved the way for the DCT, which currently is the mostly used energy compaction technique in
image and video applications. In chapter 7 we will propose a new approach to handle all those
problems.
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4.4 Entropy Reduction

This section touches one of the most delicate questions in data compression : How can we
efficiently reduce the entropy of our data to be compressed while keeping a maximum of informa-
tion ? Section 4.2 about redundancy reduction discussed several of the most important techniques
of losslesscompression. Section 4.3 talked about efficient data representations, but changing the
data representation does not, or not necessarily, mean a loss of information. In this section, howe-
ver, we will present some methods ofirreversiblecompression techniques effective involving loss
of information.

The reason why imperfect reconstruction of data can be acceptable is closely related to the
intended application. A certain degree of distortion of an image, for instance, may be acceptable
to the human visual system. As an example may serve color sub-sampling of still-images.

The following two sub-sections discuss two different approaches to this problem of reducing
the entropy of a data source, both are important for this thesis, and in fact, section 7.3 will consider
this problem for the special case of video data. Another important topic when talking about entropy
reduction is the choice of distortion metrics. We will touch this in the sections below, but, because
of its importance for this work, we have dedicated section 7.4 to a thorough discussion, again with
the focus on video data.

The existence of lossy compression techniques stems from the limitations of lossless com-
pression with respect to efficiency. A model of an information source may identify only a limited
amount of redundancy, which might not be enough for certain applications (see examples 1 and 2
in chapter 2). It is the application in question which actually determines the choice of the com-
pression algorithm. In particular the application area targeted by this work is most likely not to be
satisfied with lossless compression. Bandwidth-limited transmission channels and limited hard-
ware storage space usually require compression rates of 1/100 to 1/1000, maybe higher. At the
same time, the limitations of the human visual system and high statistical correlation of video
image data allow for the application of quantization techniques as described below.

4.4.1 Scalar Quantization

If we want to represent an image or other data with a finite number of bits, then image inten-
sities (luminance), transform coefficients, or model parameters must be quantized. Quantization
involves assignment of the quantization (reconstruction) levels and decision boundaries. If we
want to represent a continuous scalar quantity representing a pixel intensity, transform coefficient,
or image model parameter,x, with a finite number of bits, only a finite number of reconstruction
or quantization levels can be used. Let us assume that a total ofL levels are used to representx.
The process of assigning a specificx to one ofL levels is called amplitude quantization, or simply
quantization. If each scalar is quantized independently, the procedure is calledscalar quantiza-
tion. If two or more scalars are quantized jointly, the procedure is calledvector quantization.
Vector quantization is discussed in subsection 4.4.2.
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Let x̂ denote the quantized value ofx. We can express ˆx as

x̂� Q�x� � ri � di�1 � x� di � (4.54)

whereQ represents the quantization operation,ri for 1� i � L denotesL reconstruction levels,
anddi for 0� i � L denotesL�1 decision boundaries or decision levels. Ifx falls betweendi�1

anddi in equation 4.54, it is mapped to the reconstruction levelri . Writing x̂ in equation 4.54 as

x̂� Q�x� � x�eQ� (4.55)

we can identifyeq as the quantization error given by

eQ � x̂�x� (4.56)

eQ is also called quantization noise. The quantitye2Q can be regarded as a special case of a distortion
measure, or distance metric,d�x� x̂�, which is a measure of distance or dissimilarity betweenx and
x̂. The reconstruction and decision levels are often determined by minimizing some error criterion
based ond�x� x̂� such as the average distortion,d, given by

d � E�d�x� x̂� �

� ∞

�∞
d�x� x̂� p�x�dx� (4.57)

The most straightforward method of quantization is uniform quantization, in which the recons-
truction and decision levels are uniformly spaced. Specifically, for a uniform quantizer,

di �di�1 � ∆� 1� i � L and (4.58)

ri �
di �di�1

2
� 1� i � L� (4.59)

where∆ is the step size equal to the spacing between two consecutive reconstruction levels or
two consecutive decision levels. It can be shown [Say00] that for the simplest case, i.e., a uniform
quantizer, a uniformly distributed source, and a fixed-length code ofn bits per codeword, the
Signal-to-Noise Ratio (SNR), which is the ratio of the signal variance to the distortion variance
becomes

SNR(dB) � 20log10�2
n� � 6�02n [dB]� (4.60)

This means that for each additional bit we spend on the quantizer, we gain 6.02 dB SNR. We come
back to the SNR in chapter 7 when we talk about reconstruction quality and distortion measures.
There we will give the definition of the SNR and discuss its relation to other distortion measures
as well as its limitations.

Differential Pulse Code Modulation

Differential Pulse Code Modulation (DPCM)is a quantization technique often used for speech
and video compression. Figure 4.8 shows the basic concept. Note that the parts with the colored
background, i.e., the predictor, lines are identical. The decoder is therefore part of the encoder,
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given that the same predictor is used. This property of a DPCM system enables output control at

encoding time, because the final signal output which enters the filter on the receiver side is exactly

identical with the input signal of the predictor in the encoder.

A quantizer basically performs a many-to-one mapping (see equation 4.54) of the input data

to a limited set of output values. Obviously this means some loss of information. In image coding,

especially the low energy (high frequency) coefficients are usually lost causing energy reduction

of the whole encoded image.

Sampler

Predictor

Quantizer Channel

Predictor

+

-

+

+

+

+
Filter

FIG. 4.8: Conceptual DPCM System

A DPCM system as shown in figure 4.8 works as follows : The difference between the actual

sampled signal (For image coding, "signal" can be replaced by "image.") and its predicted value

is quantized and transmitted. Taking the difference removes a lot of redundant information in the

data. In order to predict the next signal, the just quantized difference is added to the last predicted

value. This sum, which is also the output on the receiver side, is the next input for the predictor.

The predictor now estimates the next signal, based on its current input value and perhaps some

former input values. Usually the predicted value is computed by just weighting the input value(s)

with some weighting coefficient(s).

The word "differential" in the name DPCM refers to the fact that not the direct input signal but

the difference of the current input signal and its predicted value is encoded. The advantage of this

approach is the much smaller variance of this difference compared to the variance of the original

input signal. This has two additional benefits :

a. The quantizer resolution can be made much smaller enabling much smaller bit-rates, and/or

b. the quantizer step-size may be reduced, which in turn reduces the signal-to-noise ratio (see

section 7.4).
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4.4.2 Vector Quantization

An alternate approach to coding source information is to divide scalars into blocks, view each
block as a unit, and then jointly quantize the scalars in the unit. This is calledVector Quantization
(VQ)or block quantization, and some of its approaches are equivalent or similar toclusteringalgo-
rithms from the area of pattern recognition [TG74]. Figure 4.9 shows a two-dimensional example
to illustrate the idea of vector quantization. Note that in vector quantization we are usually dealing
with very high-dimensional data vectors.

f1

f2

FIG. 4.9: Example of vector quantization. The number of scalars in the vector is 2, and the number
of reconstruction levels is 9. (source : [Lim90])

Let�x � �x1�x2� ����xN�
T denote anN-dimensional vector that consists ofN real-valued, conti-

nuous amplitude scalarsxi . Vector quantization maps�x to anotherN-dimensional vector�r �

�r1� r2� ���� rN�
T . Unlike�x, whose elements have continuous amplitudes, the vector�r is chosen from

L possible reconstruction or quantization levels. Let�̂x denote�x that has been quantized. Analo-
gously to equation 4.54, we can express�̂x as

�̂x�VQ��x� ��ri � �x� Ci � (4.61)

whereVQrepresents the vector quantization operation,�ri f or1� i �L denotes theL reconstruction
levels, andCi is called theith cell.

In order to do vector quantization, the reconstruction levels,�ri , and their corresponding cells,
Ci, need to be determined. A list of reconstruction levels is calledreconstruction codebookor
simply codebook. If there areL reconstruction levels in the list, the list is said to be anL-level
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codebook. The codebook is needed at the transmitter to quantize a source vector to one ofL
reconstruction levels and at the receiver side to determine the reconstruction level from the recei-
ved codeword. The same codebook should, of course, be known to both transmitter and receiver
through prior agreement.

Unlike the scalar quantization case, in vector quantization the reconstruction levels are vectors,
and the cell boundaries are no longer points. The optimal determination of�ri andCi depends on
the error criterion used. One of the most important error criteria is theMean Squared Error (MSE)
(see section 7.4.1), which can be expressed as average distortion

d � E�d��x��̂x��� with d��x��̂x� � 	�̂x��x��̂x��x
 � ��̂x��x�T��̂x��x��

One of the most important vector quantization algorithms is the so called K-Means algorithm.
Because of its importance in clustering and vector quantization, the K-Means algorithm was im-
plemented as a reference. The K-Means algorithm is thoroughly discussed in section 7.3.5.

4.5 Conclusion

This chapter discussed the theoretical basis of the compression techniques for this work. We
saw why it is possible to compress data, and introduced classification criteria to divide compression
algorithms into three groups : redundancy reduction, energy compaction, and entropy reduction.
The details of each criterion were elaborated, and a selection of relevant techniques explained in
detail. Particular care was taken for the development of the ideas behind energy compaction, since
in this area OBC differs substantially from conventional approaches.



Chapitre 5

Image and Video Coding
Techniques

This chapter covers some of the most common compression standards. They employ the tech-
niques developed in the previous chapter. The focus is on three algorithms, a) a lossless Huffman-
/LZ77-based algorithm calledZIP, b) theJPEGalgorithm specifically designed for still image
coding, and c) the general DCT/DPCM based video compression scheme as used inITU-T H.261,
ITU-T H.263, ISO MPEG-1, andISO MPEG-2. All three are relevant for this thesis either because
they are used to improve the results of our own approach, or they serve as benchmarks in terms
of reconstruction quality, speed, and efficiency. An image or video codec is usually the first and
the last part in a coding chain, serving directly as source coder, as shown in figure 5.1, which
is a derivation of Shannon’s schematic diagram of a general communication system depicted in
figure 4.2.

Image or
Video

Decoder

Image or
Video

Encoder

Channel
Decoder

Receiver

Reconstructed
image

Transmitter

Image
source

Channel
Encoder

Channel

FIG. 5.1: Typical environment for image coding.
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In the context of this work we are less interested in the channel coding, transmission protocols,
or file formats. We rather consider the source coding part, i.e., the image or video coder. An image
or video codec itself consists of the three basic elements shown in figure 5.2. Even the latest
algorithms such as JPEG2000 use these three elements, maybe not in the same order.

Transformation Quantization
Codeword

assignment
Image
source

Strin g
of bi ts

FIG. 5.2: Three major components in image coding.

The first element of figure 5.2, representing an energy compaction step, is transforming images
to the most suitable domain for quantization and codeword assignment. This element determines
what specifically is coded. The second element in the image coder is performing entropy reduction
by quantization. To represent an image with a finite number of bits, image intensities, transform
coefficients, or model parameters must be quantized. The third element in the image coder is the
assignment of codewords, the strings of bits that represent the quantization levels, reducing any
remaining redundancy if possible. Each of these three elements attempts to exploit the redundancy
present in the image source and the limitations of the display and the human visual system. We
will find this 3-step scheme throughout this chapter with exception of section 5.1, since lossless
compression is restricted to reducing redundancy.

Section 5.1 covers one of the most important lossless compression algorithms, used for a vast
variety of applications in archiving, storage, transmission, and not in the least for image and video
compression. We use it to compress the basis images or vectors in OBC. For the same purpose, we
experimented with the lossy JPEG compression algorithm, which is discussed in section 5.2. Fi-
nally, because of its widespread use and its efficiency, the DCT/DPCM based compression scheme,
employed in MPEG-1, MPEG-2, H.261, as well as in H.263, is introduced in section 5.3. This will
eventually be the benchmark for our own approach.

5.1 ZIP

The ZIP algorithm is a lossless, all-purpose data compression technique based on the DE-
FLATE compression algorithm by Gailly and Adler [GA96]. DEFLATE uses a combination of Huff-
man [Huf52] (section 4.2.1) and LZ77 [ZL77] (section 4.2.3) encoding algorithms. GZip[Deu96]
is a GNU1 implementation of the ZIP algorithm. Another implementation of the DEFLATE al-
gorithm is the ZLIB library, a public domain C library2. For this work we used both, the GZip

1GNU (http://www.gnu.org) is an organization creating freeware programs for Unix. Its name is a recursive
acronym :GNU’s not Unix

2source :http://www.info-zip.org/pub/infozip/zlib/
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utility program (as a reference), and the ZLIB library for lossless compression of the basis at or-
thonormal basis coding. This sub-section sketches the basics of ZIP compression, referencing the
techniques introduced in the previous chapter, but referring the reader to the referenced technical
documentation, often freely available over the Internet.

5.1.1 Data structure

A file compressed by the GZip utility program consists of a series of so calledmembers,
which are compressed data sets. A compressed data set in turn consists of a series of blocks,
corresponding to successive blocks of input data. The block sizes are arbitrary, except that non-
compressible blocks are limited to 65,535 Bytes. Each block is compressed using a combination
of the LZ77 algorithm [ZL77] and Huffman coding [Huf52]. The Huffman trees for each block are
independent of those for previous or subsequent blocks ; the LZ77 algorithm may use a reference
to a duplicated string occurring in a previous block, up to a input of 32 kBytes earlier.

A block consists of two parts : a pair of Huffman code trees that describe the representation of
the compressed data part, and the compressed data part itself. The Huffman trees are compressed
themselves using Huffman encoding. The compressed data consists of a series of elements of two
types :

literal Bytes , which are Bytes of strings that have not been detected as duplicated within the
previous 32K input Bytes, and

pointers to duplicated strings , where a pointer is represented as a pair< length, backward dis-

tance >.

The data format used for the DEFLATE algorithm limits distances to 32 kBytes and lengths to 258
Bytes, but does not limit the size of a block, except for incompressible blocks, which are limited
as noted above. Each type of value in the compressed data , i.e., literals, distances, and lengths,
is represented using a Huffman code, using one code tree for literals and lengths and a separate
code tree for distances. The code trees for each block appear in a compact form just before the
compressed data for that block.

5.1.2 Compression scheme

Literals or match lengths are compressed with one Huffman tree, and match distances are
compressed with another tree. The trees are stored in compact form at the beginning of each
block. The blocks can have any size, except that the compressed data for one block must fit in the
available memory. A block is terminated when the DEFLATE algorithm determines that it would
be useful to start another block with new trees. Duplicated strings are found using a hash table.
All input strings of length 3 are inserted into the hash table. A hash index is computed for the next
3 Bytes. If the hash chain for an index is not empty, all strings in the chain are compared with the
current input string, and the longest match is selected. The hash chains are searched starting with
the most recent strings to favor small distances and thus take advantage of the Huffman encoding.
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The hash chains are simply linked. There are no deletions from the hash chains, the algorithm
simply discards matches that are too old.

To avoid worst-case situations, very long hash chains are arbitrarily truncated at a certain
length, determined by a runtime option. The DEFLATE algorithm does not always find the longest
possible match but generally finds a match which islong enough. Moreover, the DEFLATE algo-
rithm defers the selection of matches with a lazy evaluation mechanism. After a match of a certain
lengthN has been found, DEFLATE searches for a longer match at the next input Byte. If a longer
match is found, the previous match is truncated to a length of one, thus producing a single literal
byte, and the process of lazy evaluation restarts. Otherwise, the original match is kept, and the next
match search is attemptedN steps later.

The lazy match evaluation is subject to a runtime parameter. If the current match is long
enough, DEFLATE reduces the search for a longer match, thus speeding up the whole process.
If compression ratio is more important than speed, DEFLATE attempts a complete second search
even if the first match is already long enough. The lazy match evaluation is not performed for the
fastest compression modes. For fast modes, new strings are inserted in the hash table only when
no match was found, or when the match is not too long. This degrades the compression ratio but
saves time since there are both fewer insertions and fewer searches.

The corresponding decompression algorithm, INFLATE, basically deals with the problem of
efficiently constructing hash-tables for table-lookup. Sets of hash-tables are preferred over one
single table for memory reasons.

5.2 JPEG

This section gives a brief overview of ISO/IEC standard 10918, "Digital compression and co-
ding of continuous-tone still images." The standard is commonly known asJPEGcompression
standard after its creator, theJoint Photographic Experts Group, where "joint" refers to a colla-
boration between ISO and ITU-T (former CCITT). We will use JPEG compression as an option
to enable lossy basis compression for the OBC encoding method. Experiments show that using
the ZIP lossless compression algorithm only yields a compression rate between 2/3 to 1/4, depen-
ding on the input data. OBC is conceptually designed for sequences of 100+ images. For short
sequences, the size basis vectors prevent the algorithm to achieve satisfactory compression results.
The ratio of the basis size to the input data size is simply too big. Therefore, JPEG is an interesting
alternative to ZIP compression, if we want to increase compression for short sequences.

The JPEG compression standard was officially published in 1990 [ISO94, Wal91], but RFC
versions were already used and implemented earlier, displaying the big demand for a still image
compression standard. Proprietary still image compression standards were available at that time,
but the success of the ITU-T recommendation for FAX encoding [ITU80] encouraged ISO and
ITU-T to put together a tool-box of state-of-the-art techniques for lossy still image compression.
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Although [Wal91] claims that there is a lossless compression mode, this is effectively not
the case. To remedy this, ISO published a lossless version of JPEG, called JPEG-LS [ISO00a].
Other than that, JPEG is inherentlylossy. It is designed to exploit known limitations of the human
eye, notably the fact that small color changes are perceived less accurately than small changes in
brightness. The degree of lossiness can be varied by adjusting compression parameters. This means
that a user can trade off file size against output image quality. Another important aspect of JPEG
is that decoders can trade off decoding speed against image quality, by using fast but inaccurate
approximations to the required calculations. Encoders can also trade accuracy for speed, but there’s
usually less reason to make such a sacrifice when, e.g., writing to a file.

As stated above, JPEG is only for still images. Nonetheless, before the introduction of a generic
video coding scheme such as H.261 or MPEG-1, some people used something they calledMotion
JPEGor M-JPEGfor video compression.There is no such standard.All they did was apply JPEG
to individual frames of a video sequence, and call the result M-JPEG.

5.2.1 Compression scheme

For grayscale images, an image is compressed in blocks of 8 x 8 pixels. Color image compres-
sion can be regarded as compression of multiple grayscale images, which are either compressed
entirely one at a time or alternately interleaving 8 x 8 sample blocks from each in turn. Figure 5.3
illustrates this compression scheme on block level. The figure shows the special case of single-
component (grayscale) image compression. The underlying compression scheme for JPEG is the
following 3-step compression scheme :

Energy Compaction by (Fast)DCT (section 4.3.4). The first compression step is to transform the
8 x 8 pixel blocks using equation 4.53 a), withN1 �N2 � 8 The inverse transform as used in
figure 5.3 b) uses equation 4.53 b). A fast implementation using table look-up may be used
in order to avoid extensive multiplication.

Entropy Reduction by scalar quantization (section 4.4.1). After dividing the image into 8 x 8
pixel blocks and transforming them, the 8 x 8transform coefficients are quantized. This is,
of course, the sole source of loss in the JPEG encoding procedure. For efficiency reasons the
first transform coefficient (= the average of all pixels in the block) is quantized separately.

Redundancy Reduction by Huffman (section 4.2.1) or Arithmetic coding (section 4.2.2). The
final compression step is the reduction of any redundancy left in the output of the quantizer.
The 8 x 8blocks of transform coefficients are scanned in a zig-zag sequence as shown in
figure 4.7. The resulting bit-stream is losslessly compressed using either a Huffman encoder
(section 4.2.1) or an Arithmetic encoder (section 4.2.2). In either case, no coding tables are
given by the standard, and so the data must be scanned twice : first to gather the statistics of
the data and build the tables, and second to actually compress the data.

JPEG compression is controlled via a quality parameter, which can take a value between 1
and 100. This quality parameter controls a trade-off between compression and quality. Note that
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FIG. 5.3: JPEG encoding scheme : a) Encoding, and b) Decoding

even a quality parameter of 100 implies lossy compression as has been explained in section 5.2.

Figure 5.4 illustrates the trade-off between compression and quality for JPEG compression of two

example images. ZIP compression for both images gave a compression of 17% for the image from

the TALKING HEAD sequence, and 24% for the image SERAPHINA.

5.2.2 JPEG2000

JPEG2000 is more than an overhaul of JPEG. It will be an entirely new image compres-

sion standard, using new algorithms and technologies developed during the last decade. Many

of them address the short-comings of the DCT/DPCM scheme, trying to improve compression

performance especially for high compression ratios. This is somewhat similar to what this thesis

does with respect to conventional video compression techniques. A source of extensive informa-

tion about the latest developments in JPEG technology can be found athttp://www.jpeg.org/

JPEG2000.htm.
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Compression scheme

The JPEG2000 encoding scheme will still use entropy reduction, energy compaction, and re-
dundancy reduction, but use different algorithms to perform these tasks. Giving more than an
overview over the JPEG2000 would go beyond the scope of this thesis, so we refer the reader
to http://www.jpeg.org/JPEG2000.htm for more detailed information. JPEG2000 uses the fol-
lowing compression scheme :

Energy Compaction (optional) Components of the image are passed through an level shifting
operation and a decorrelation transform suitable for RGB images. The latter is done either
in a simple reversible version, or in a more accurate irreversible transform for lossy com-
pression.

Energy Compaction by Wavelet transform using Mallat decomposition.

Entropy Reduction For lossy encoding a Daubechies 9/7 wavelet transform is used, or a simple
symmetric 5/3 filter for lossless compression.

Redundancy Reduction The output of the transform stage is then organized into blocks using the
EBCOT techniques, creating a bit-stream that consists of a number of independent layers.
These may be given different priorities during transmission over a network to achieve diffe-
ring image build-up features, or truncated during lossy compression. The output coefficients
are quantized, where this process can be controlled to provide a given compression rate.
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Redundancy Reduction An arithmetic coder entropy codes the final bit-stream.

Decoding is simply a reversal of these stages. Comparing to JPEG, this introduces an increase
in complexity of about an order of magnitude.

Additional Features

JPEG2000 goes beyond employing new techniques for compression to replace the DCT/DPCM
scheme. The standard will include a significant number of additional features, such as

� imaging transmission from lossy to lossless,

� the ability to define Regions of Interest which can be coded at higher resolution, or even
losslessly to preserve certain image features (this can be important in medical imaging),

� "resync"markers to be effective (with a recovery mechanism) on communication channels
with high error rates (e.g., in applications such as the new mobile telephony channels),

� "fair" quality image reproduction at rates down to 0.1 bits / pixel and below,

� the ability to customize encoders and decoders to suit low memory or fixed size applications,

� random code-stream access and processing,

� high quality color image processing, with wider bit depths and larger image sizes,

� use of alpha channels and other features to meet graphic arts and internet needs, and

� features to provide for image security and content meta-data inclusion.

JPEG2000 vs. JPEG

The advantage of JPEG2000 over JPEG with respect to compression performance is mainly in
the additional features and at high compression ratios. The author of [Cla00] claims that for low
and medium compression ratios, the performance of JPEG2000 isnot superior to (the old) JPEG.
At least, the performances are not distinguishable for the human eye.

5.3 MPEG-1, MPEG-2, H.261, H.263

MPEG-x [ISO93, ISO96a, Gal91] and H.26x [ITU93, ITU96, Lio91] compression algorithms
are application driven. That is, the intended application(s) determine(s) their features and the requi-
rements they have to full fill. Other than that, they are all based on the same 3-step DPCM/DCT/RLE
compression scheme

a. Entropy reduction by DPCM (section 4.4.1),

b. Energy compaction by (Fast)DCT (section 4.3.4), and

c. Redundancy reduction by run-length encoding (section 4.2.4).
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FIG. 5.5: MPEG block encoding scheme

As with JPEG compression, images are encoded in a hierarchical block structure with blocks of
8 x 8 pixels as basic element. Figure 5.5 illustrates the DPCM/DCT/RLE compression scheme on
block level.

This compression scheme is powerful and flexible making high compression rates possible.
It resembles the JPEG compression scheme. The difference, however, lies in the exploitation of
temporal redundancies. Lacking a generic video compression standard, JPEG was used in the
pre-MPEG-x and pre-H.26x era for video compression. The fundamental flaw was just that the
JPEG algorithm’s incapacity to use prediction to remove temporal redundancies. As a result, video
compression using JPEG exhibits a limited compression ratio. The reason for the existence of
several similar compression methods such as MPEG-x and H.26x are their targeted application
areas. These translate directly into lists of requirements the algorithms must fulfill. A look at the
requirements make clearer the differences in the algorithm design.

5.3.1 Requirements for MPEG-x coding

MPEG-x is designed for encoding of full-motion video sequences with a good trade-off bet-
ween image quality, and only to a lesser degree video communication. Targeted transmission rates
are� 1.5 Mbits/sec for MPEG-1 and� 10 Mbits / s for MPEG-2. An MPEG-x codec can the-
refore be regarded as a digital VCR. As such it requires random access to single images, fast
forward/reverse searches, and reverse playback features. MPEG-x uses bidirectional prediction to
meet these requirements.

Robustness to errors in case of data loss or errors on the communication channel and an accep-
table coding/decoding delay are also desirable. Additionally, MPEG-x should provide multimedia
functionality such as editability for multimedia editing ; in other words, the encoded sequence
should provide certain access points. On the economics side, the possibility of cost tradeoffs for
hardware should allowing for large scale production.
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5.3.2 Requirements for H.26x coding

The ITU-T H.261 recommendation for video compression has the full title "Video codec for
Audiovisual services at p x 64kbits/sec". Targeted application areas are video telephony and video
conferencing rather than full-motion video encoding. Low, scalable bit-rates atp x 64 kbits/sec
reveal ISDN lines to be the intended communication channel. As a rule of thumb, forp = 1 and/or
2, only a face-to-face scenario is to be transmitted with acceptable quality, and only forp� 6,
more complex scenes are supposed to be handled.

Using ISDN lines as communication channel requires an acceptable coding/decoding delay
and encoding in real-time. This requirement is softened by the fact that the communication sce-
nario does not change within a communication session. As with MPEG-x, the consideration of a
hardware implementation should enable a large scale production for codecs.

H.261 was the first non-proprietary video compression standard available. It can therefore
be considered a first sketch of what a generic video compression algorithm can do. H.263 is an
adaptation of H.261 to a changing technical environment. Some new features were adopted to
exploit further improved hardware capabilities and to improve reconstruction quality at very low
bit-rates.

5.3.3 Encoding procedure

In order to exploit temporal redundancy, both MPEG-x and H.26x use predictors. Since it is
intended for reverse playback and search, MPEG-x uses bidirectional prediction. Moreover, in
order to increase efficiency, it even employs interpolation. Figure 5.6 illustrates how this is done.
Three types of frames have been defined : INTRA-frames (called I in figure 5.6), predicted frames
(P), and interpolated frames (called B for bidirectional prediction). The number ofP andB frames
between twoI frames can be defined by the user, but it affects directly the compression ratio
(higher for more P and B frames) and the reconstruction quality (lower for more P and B frames).

H.26x requires no bidirectional prediction. The encoded video stream is supposed to be wat-
ched and therefore decoded in forward playback mode. Prediction for H.261 is therefore always
forward prediction. As in any DPCM system, the decoder is part of the encoder in form of a
predictor. Figure 5.7 shows the basic codec used by both MPEG-x and H.26x.

DPCM as a quantization method always introduces an error. For MPEG-x and its requirements,
this error has to be tightly controlled in order to guarantee a certain quality of service (QOS). H.26x
systems are more flexible since QOS requirements are not as restrictive as for MPEG-x. H.26x’s
prediction mode is called INTER mode, and a simple linear predictor is used. H.26x does notforce
an INTRA every some images as does MPEG-x, butsuggestsan INTRA frame encoding every
132 ( !) frames. Of course, this makes for very high compression rates (but low image quality) as
is necessary for low-bandwidth applications. Figure 5.7 shows the switches between INTER and
INTRA mode.
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In INTRA mode, the entire input image is transformed by a two-dimensional (Fast)DCT in
8 x 8 pixel blocks. According to a user defined reconstruction quality level (this might also be

imposed by the transmission channel bandwidth, i.e., the bit-rate at the output of the codec), a

quantizer is quantizing the transform coefficients. The quantizer output is then further compressed
by a lossless run-length encoding scheme in table look-up manner. The INTRA mode works the

same way for H.26x and MPEG-x codecs.

In H.26x’s INTER mode, the difference between the last reconstructed image (remember : the

decoder is part of the encoder) and the new input image is transformed and quantized. For MPEG-
x, the difference between the predicted and/or interpolated image, and the new input image is

encoded. Interpolation avoids the reconstruction of every encoded image.

5.4 Conclusion

This chapter discussed three important compression methods, widely used for a variety of ap-
plications. The ZIP algorithm, based on a combination of Huffman and LZ77 encoding, is lossless.

It preserves all the input data and has therefore the entropy of the source as a limit for its compres-

sion efficiency. Depending on how many passed through the data are admitted by the user, ZIP
approaches more or less close this limit.
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The irreversible, lossy compression technique called JPEG has been designed for the com-
pression of visual data, exploiting the limitations of the human visual system, which accepts a
coarser resolution of the chrominance (color) more easily than a coarse luminance resolution. It
is based on the on the statistical relation between adjacent pixel values, and can yield very good
compression introducing image degradations almost imperceptible for the human eye.

We also outlined the features of the new compression standard (to come), JPEG2000, incorpo-
rating new technologies and responding to the demands of a changing technological environment.
Two things are remarkable with JPEG2000 : a) It is still based on the basic building blocks : energy
compaction - entropy reduction - redundancy reduction. b) It outperforms "classical" JPEG only a
very high compression rates at the price of a higher complexity on the encoderandon the decoder
side. That is, "classical" JPEG is still the compression method to beat at still image compression
when looking for a trade-off between compression ratio and reconstruction quality at medium and
low compression rates. The major gain of JPEG2000 will therefore rather be the added feature
listed in section 5.2.2.

Finally, we discussed the baseline compression method of MPEG-1, MPEG-2, H.261, H.263,
and supposedly (considering the artifacts) RealVideo and Cinepak. What is true for JPEG and its
successor, JPEG2000, is equally true for MPEG : New developments such as MPEG-4 and MPEG-
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7 add rather new features around an "old" technique than doing something really new. The effect
will be the same as for JPEG : Added functionality at the price of higher complexity. Remains
the bottom line that DPCM/DCT based compression is still the method to beat. This is what we
try to show that OBC, the new video compression scheme we propose, is capable in the following
chapters.
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Chapitre 6

Normalization by Tracking

One of the problems addressed in this dissertation is the contribution that stabilizing the posi-
tion and orientation of a face can make to video compression for communication. Tracking reduces
the required bandwidth while providing the speaker with the freedom to move about while com-
municating. To be useful for video compression, a tracker must be precise, robust, and fast so that
orthonormal basis coding can be efficient. These requirements are met by feature-based tracking
techniques, since no detailed object information such as shape, texture, or 3D form is needed.

In communication by video telephone or video electronic mail, the desired images are gene-
rally restricted to a view of the head and shoulders of a speaker. Relevant variations are movements
of the mouth, eyes, and head. Precise reconstruction of the background is unimportant or may even
be undesirable. Such image sequences have properties which make possible high compression ra-
tios. Movements of the face and eyes tend to be repetitive making it possible for a compression
algorithm to exploit the limited range of movements and their repetitive nature.

Tracking by color matching is a widely applied technique today, and it is implemented in
software and hardware. For instance, the EV-ID 30 and EV-ID 31 cameras from Sony Co. use
such an algorithm, hard-coded into a DSP, for their built-in automatic tracking system. This tracker
can be controlled by a remote control or a serial line (RS 232) connection using a set of binary
commands.

The techniques described in this chapter are based on earlier work in which a histogram of
normalized skin color was initialized by blink detection and then used to determine the possibility
that a pixel represents skin [CBC97]. While this system provided robust tracking of a moving face
under changing illumination, the color skin detection technique relied on detecting connected com-
ponents of thresholded color regions. Grouping thresholded pixels led to an unacceptable amount
of jitter in the tracked images. In this chapter we describe a technique which replaces thresholding
and connected components with the first and second moments of the 2D probability distribution
of skin colored pixels. This approach rejects outlying pixels using a technique commonly used for
robust statistics. In section 6.3.7 we compare the performance of both algorithms.

Section 6.1 introduces briefly the concepts of skin color detection by application of color
histograms. Using that technique, we apply in section 6.2 a robust tracking algorithm based on
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Bayes’ rule to compute the probability that a pixel has skin color. In the subsequent steps, position
and size of the tracked skin colored object are determined by the first and second moments of the
skin colored region using a robust algorithm. This algorithm is a general technique which can also
be applied to other tracking algorithms.

6.1 Color detection

Color is a perceptual phenomenon related to human response to the visible spectrum of elec-
tromagnetic waves between 400 (blue) and 700 (red) nanometers. The sensation of a color arises
from the sensitivities of three types of neurochemical sensors in the retina to the visible spectrum.
Each sensor responds to a range of wavelengths. A digital camera tries to model those sensors
of the human visual system. The wavelengths form a natural basis or coordinate system from
which the color measurement process can be described. Weighted combinations of stimuli at three
principal wavelengths are sufficient to define almost all the colors we perceive.

Color, as we perceive it, is a function of several parameters which depend on a surface. Let
S�λ� be the reflectance function modeling the reflectance on the surface of an object. LetE�λ� be
the incident lightspectrum, andhR�λ�, hG�λ�, andhB�λ� be the sensitivities of the sensors for red,
green, and blue light. The responses of an image capture system to a light signalE�λ� reflected at
the surfaceS�λ� become

R �
�

S�λ�E�λ�hR�λ�dλ� (6.1)

G �
�

S�λ�E�λ�hG�λ�dλ� and (6.2)

B �
�

S�λ�E�λ�hB�λ�dλ� (6.3)

The sensor output is the integral of three different wavelength-dependent components : the source
E, the surface reflectanceS, and the sensor sensitivitieshR, hG, andhB. R, G, and B become after
sampling (quantizing) red, green, and blue pixel values. Color spaces are a way of organizing the
colors perceived by human beings, and R, G, and B form such a color space.

Luminance is the luminous intensity of a surface in a given direction per unit of projected
area [MW00]. The luminance of a pixel value is often defined as the sum of its three color com-
ponents,R� G�B. Since we want to track an object under differing lighting conditions, we
want to detect color independently of its luminance. For this we map the three sensor responses
to a chromaticity space containing only the color information of the signal.Chromaticity is the
quality of color characterized by its dominant or complementary wavelength and purity taken to-
gether[MW00]. Chromaticity explicitly ignores intensity or brightness ; it is a plane in the three-
dimensional color space. Figure 6.1 illustrates the transition from the three dimensional RGB color
space to the rg chromaticity diagram.
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FIG. 6.1: RGB Color cube and its mapping to the rg chromaticity space.Rmax, Gmax, andBmax are
28�1� 255each in a 24 bit pixel resolution.

FIG. 6.2: C.I.E. Chromaticity diagram
(source : CIE) The outline of the colored
area represents the hue, while the dis-
tance of a point to the white point repre-
sents the saturation of that point.

A common chromaticity space is calledrg chro-

maticity spaceand is defined by

r �
R

R�G�B
(6.4)

g �
G

R�G�B
(6.5)

Equations 6.4 and 6.5 are sufficient to express any

color since the normed blue component

b �
B

R�G�B
� 1� r�g

Any perceived color from the three-dimensional co-

lor space spanned byR, G, andB can thus be dis-

played in a two-dimensional diagram. The most com-

mon chromaticity diagram is that of theC.I.E., the

International Commission on Illumination (Commis-

sion International d’Eclairage), shown in figure 6.2.

The choice of�λR�λG�λB�� �410�530�650�nmmaxi-

mizes the realizable colors, but some color still can-

not be realized since they would require negative va-

lues for somer, g, andb.
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6.1.1 Color Histograms

In an image sampled from a digital camera, all
values R, G, and B and therefore r and g are discrete values. This means that r and g can be used
as color axes to create 2D color histograms from images. Given a discrete color space defined
by some color axes, the color histogram is obtained by counting the number of times each color
occurs in an image array. Histograms are invariant to translation and rotation about an axis per-
pendicular to the image plane, and change only slowly under change of angle of view, change in
scale and occlusion. Because histograms change slowly with view, a three-dimensional object can
be adequately represented by a small number of histograms, corresponding to a set of canonical
views. Swain and Ballard have shown how a histogram of color vectors can be back-projected
to detect the pixels which belong to an object [SB91]. Schiele and Waibel showed that for face
detection, color RGB triples can be divided by the luminance to remove the effects of relative illu-
mination direction [SW95]. Other than in tracking, there are other techniques in computer vision
using histograms, e.g., for video or image indexing. A description of these goes beyond the scope
of this thesis.

6.1.2 Skin color

Detecting pixels with the color of skin provides a reliable method for detecting and tracking
faces. The statistics of the color of skin can be recovered from a sample of a known face region and
then used in successive images to detect skin colored regions. A good model for reflection on a skin
surface is thedichromatic reflection model[SAG00, KSK90]. It models the surface reflectance,
S�λ�, from the equations 6.1, 6.2, and 6.3, as the weighted sum of the interface reflectanceSi�λ�
and the body reflectanceSb�λ�.

S�λ� � mi�Θ�Si�λ��mb�Θ�Sb�λ� (6.6)

The spectral powerdistributionof the reflected light is thesameas that of the incident light.

The interface reflection of human skin takes place at theepidermis, the thin surface layer of
skin. The epidermis isthe outer nonsensitive and nonvascular layer of the skin of a vertebrate that
overlies the dermis[MW00]. The epidermis reflects 5% of the incident light independently of its
wavelength and the melanin content of the epidermis, which is different for humans with different
genetic background. The rest of the incident light is absorbed in the epidermis and dermis layers
of the skin. The dermis isthe sensitive vascular inner mesodermic layer of the skin[MW00].
Figure 6.3 illustrates the light reflectance/absorption process of human skin. Unfortunately, skin
color can not be described by one single reflectance curve, since skin color is composed of many
colors around a mean, depending on the blood content in the dermis or the melanin concentration
(i.e., the number of dark pigments) in the epidermis [SAG00]. We can, however, create a histogram
of a representative color sample and take it as a feature we search in an entire image using the
histogram of the entire image.
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Epidermis: Pigments (melanin)
surface

L(λ) = E(λ) S(λ)

i

E(λ)cos(i)

Dichromatic Reflection Model: S(λ) = mi(Θ) Si(λ) + mb(Θ) Sb(λ) 
(Neutral Interface Reflection)

Dermis: Blood content Human skin

S(λ)

Si(λ)

Sb(λ)

FIG. 6.3: Skin surface reflectance.

6.2 Probability of Skin

The intensity-normalized pixels from a region of an image known to contain skin can be used
to define a two dimensional histogram,hskin�r�g�, of skin color. The effects of digitizing noise
can be minimized by smoothing this histogram with a small Gaussian filter. A second histogram,
htotal�r�g�, can be made from all of the pixels of the same image. This second histogram should
also be smoothed by the same filter. These two histograms make it possible to apply Bayes’ rule
to each pixel of an image to obtain the probability that a given pixel is skin.

6.2.1 Review Bayes’ Rule

Given a sample spaceS, and two eventsA andB in that sample space, then the conditional
probability ofA givenB is

P�A�B� � P�A�B�
P�B�

(6.7)

Re-expressing 6.7 gives a useful form for calculating intersection probabilities,

P�A�B� � P�A�B�P�B�� (6.8)

and, exploiting the symmetry of 6.7,

P�A�B� � P�B�A� � P�B�A�P�A�� (6.9)
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We now can equate the right-hand sides of 6.8 and 6.9 to obtain after rearrangement

P�A�B� � P�B�A�P�A�
P�B�

(6.10)

Here is the definition of Bayes’ Rule, which has a more general form than 6.10 [CB90].

Definition 1 (Bayes’ Rule) Let A1�A2� ��� be a partition of the sample space, and let B be any set.

Then, for each i� 1�2� ���

P�Ai�B� � P�B�Ai�P�Ai�

∑∞
j�1P�B�Aj�P�Aj�

(6.11)

6.2.2 Conditional Probability of Skin

We now go about finding a probability function to create a probability map for skin colored

pixels in an image. We start by hand-selecting an area of skin colored pixels. Lethskin�r�g� be the

histogram of intensity normalized colors from a region of an image known to represent skin, and

Nskin �∑
r�g

hskin�r�g� (6.12)

the number of pixels in that image having skin color. We can then approximate the probability of

a color vector,�r�g�, given skin by

p�r�g�skin�� 1
Nskin

hskin�r�g� (6.13)

Let furtherhtotal�r�g� be the histogram of intensity normalized colors from the entire image, and

Ntotal�∑
r�g

htotal�r�g� (6.14)

the total number of pixels in that image. The probability of observing a certain color vector is

given by :

p�r�g� � 1
Ntotal

htotal�r�g� (6.15)

The overall probability of obtaining a skin pixel in an image is approximated by the fraction of

observed pixels known to be skin, provided all skin pixels are labeled.

p�skin�� Nskin

Ntotal
(6.16)

Equation 6.16 is valid only ifNskin is the real number of all skin colored pixels in the image. We

make sure that this is the case by bootstrap re-sampling of all skin colored pixels in the image

and recomputehskin at initialization time of the algorithm. The application of 6.10 using 6.13

through 6.15 in order to calculate the conditional probabilityp�skin�r�g� is straightforward. The
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probability of skin given a color vector�r�g� is

p�skin�r�g� �
p�r�g�skin� � p�skin�

p�r�g�

�

1
Nskin

hskin�r�g� � Nskin
Ntotal

1
Ntotal

htotal�r�g�

�
hskin�r�g�
htotal�r�g�

(6.17)

The ratio of these two histograms gives a table which directly converts an intensity-normali-
zed pixel�r�g� into the probability that the pixel is skin,p�skin�r�g�, by table lookup. A default
value of 0 is placed in this table for all pixels�r�g� for which htotal�r�g� is zero. Strictly speaking,
equation 6.17 is only valid for the image from which the skin sample was obtained. In practice, we
have found that the technique will work well for subsequent images provided that the color of the
scene illumination does not change. This table is trivial to build and may be renewed whenever an
independent source has detected the face in the image.

A number of authors such as [JP99] have indicated a preference for using Gaussian mixture
models in place of the two histograms. Our experience is that such a model provides a very slight
improvement in the probability image, at a very great cost in computation whenever the histogram
must be renewed, making frequent update of the histogram ratio impractical. For a real-time sys-
tem, the robustness obtained by frequently renewing the histogram ratio table greatly exceeds the
slight improvement observed with a static mixture of Gaussian models.

6.3 CENTEROFGRAVITY algorithm

Having computed a probability for every pixel to be skin colored, we will now identify the
principal object having skin color, i.e., the object – usually the face – we want to track. For the
time being, we ignore the possibility of other skin colored objects in the image. We will handle
that case in the next section. In order to detect a skin color region we must group skin pixels
into a region. This region is described by the center and the (co-)variances of a two-dimensional
probability distribution for skin colored pixels. This probability distribution will have an elliptic
shape, which adapts nicely to the shape of a face. LetPskin�i� j� represent the probability map of
skin for each color pixel�r�i� j��g�i� j�� at position�i� j�.

Pskin�i� j� � p�skin�r�i� j��g�i� j��� (6.18)

wherep�skin�r�i� j��g�i� j�� � p�skin�r�g� from equation 6.17. The center of gravity or first mo-
ment of the probability map gives the position

�µ�

�
µi

µj

�
� (6.19)
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and the covariance matrix,C, containing the second moments the spatial extent of the skin colored

region.

C �

�
σ2

i σi j

σi j σ2
j

�
(6.20)

The elements of�µ andC are

µi �
1
S∑

i� j

Pskin�i� j� � i�

µj �
1
S∑

i� j

Pskin�i� j� � j�

σ2
i �

1
S∑

i� j

Pskin�i� j� � �i�µi�
2�

σ2
j �

1
S∑

i� j

Pskin�i� j� � � j�µj�
2� and

σi j � σ ji �
1
S∑

i� j

Pskin�i� j� � �i�µi�� j�µj��

whereS�∑
i� j

Pskin�i� j�. Figure 6.4 illustrates the probability map generated.

Center of Gravity

µx

µy
σyy

σxx

Input Image
Connected

Components

bounding boxa) b) c)

FIG. 6.4:Probability map of c)CENTEROFGRAVITY (COG) and b)CONNECTEDCOMPONENTS

(CCO) algorithm, a) showing the input image. Graylevels indicate probabilities, where white
stands for probability = 1, and black for probability = 0. Also shown is the region of interest
for the COG algorithm. Using a region of interest significantly speeds up computing.
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6.3.1 Robust estimation and tracking

Unfortunately, skin color pixels in any other part of the image will contribute to these two
moments. This effect can be minimized byweightingthe probability image with a Gaussian func-
tion placed at the location where the face is expected. The initial estimate of the covariance of
this Gaussian should be the size of the expected face. Once initialized, the covariance is estimated
recursively from the previous image.

For each new image at timet, a two dimensional Gaussian estimate of the previous distribution
of skin colored pixels is generated using the mean and covariance from the previous image at time
t�∆T,

p�i� j;�µt�∆T �Ct�∆T� � g�i� j;�µt�∆T �Ct�∆T� �

1�
2πdet�Ct�∆T�

1
2

e
�

1
2

�
�
�
� i

j

�
��

�
� µi�t�∆T

µj �t�∆T

�
�
�
�

T

C�1

�
�
�
� i

j

�
��

�
� µi�t�∆T

µj �t�∆T

�
�
�
�

(6.21)

This two-dimensional Gaussian estimate is multiplied with the new probability distribution as
shown in equation 6.22 to give new estimates for the mean and covariance.

µi�t �
1
S∑

i� j
Pskin�i� j� � i �g�i� j��µt�∆T �Ct�∆T�

µj �t �
1
S∑

i� j

Pskin�i� j� � j �g�i� j��µt�∆T �Ct�∆T�

σ2
i�t �

1
S∑

i� j

Pskin�i� j� � �i�µi�t�
2 �g�i� j��µt�∆T �Ct�∆T� (6.22)

σ2
j �t �

1
S∑

i� j
Pskin�i� j� � � j�µj �t�

2 �g�i� j��µt�∆T �Ct�∆T�

σi j �t� � σ ji �t� �
1
S∑

i� j

Pskin�i� j� � �i�µi�t�� j�µj �t� �g�i� j��µt�∆T �Ct�∆T��

whereS� ∑i� j Pskin�i� j� � g�i� j��µt�∆T �Ct�∆T�. The effect of multiplying new images with the
Gaussian function is that other objects of the same color in the image (hands, arms, or another
face) do not disturb the estimated position of the region being tracked.

6.3.2 Behavior Discussion

The use of a Gaussian weighting function for new input data actually can lead to a problem,
if the object being tracked moves above a certain speed. Let us therefore consider the dynamic
behavior of the robust color tracker. Since the two-dimensional case is largely more complex,
we present here the one-dimensional case which actually suffices to justify our compensation
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measures. Let

g�i�µ�t��σ�t�� � 1�
2πσ�t�

e
�

1
2

	
i�µ�t�

σ�t�


2

(6.23)

an approximation of theprobability density function (pdf)of the new input data (image), and

g�i�µt�∆T �σt�∆T� �
1�

2πσ2
e
�

1
2

	
i�µt�∆T

σt�∆T


2

(6.24)

be the pdf of the weighting function. Both distribution functions are functions of the same variable
i, but with different mean and variance. The resulting, i.e., effectively detected distribution is then
product of both functions :

g�i�µ�t��σ�t�� �g�i�µt�∆T �σt�∆T� �

1�
2πσ�t�

exp


�1

2

	
i�µ�t�

σ�t�


2
�
� 1�

2πσt�∆T
exp


�1

2

	
x�µt�∆T

σt�∆T


2
�
�

A�
2πσnew�t

exp�1
2

	
i�µnew�t

σnew�t


2

� (6.25)

where

A �
σ�t� σt�∆T�

2π�σ2�t��σ2
t�∆T�

exp


�1

2
�µ�t��µt�∆T�

2

�σ2�t��σ2
t�∆T�

�
(6.26)

µnew�t �
µ�t�σ2

t�∆T �µt�∆Tσ2�t�

�σ2�t��σ2
t�∆T�

(6.27)

σ2
new�t �

σ2
t�∆Tσ2�t�

σ2�t��σ2
t�∆T

(6.28)

Equation 6.25 is a function with theshapeof a Gaussian function which integrates from�∞ to
�∞ to A. However, it isnot a pdf, since it does not integrate from�∞ to ∞ to 1. The presence
of the factorA poses some interesting problems onto the behavior of the color tracker, which are
being discussed in the following.

6.3.3 Compensation for weighting

Let us first consider the case where the tracked object stays in the same position for subsequent
images, i.e.,µ�t� � µt�∆T . Let us further assume that the tracked object does also not change its
size, which is equivalent to assumingσ�t� � σt�∆T � σ0.

σ2
new�t �

σ2
t�∆Tσ2�t�

σ2�t��σ2
t�∆T

�
σ2

0σ2
0

2σ2
0

�
σ2

0

2
(6.29)

That is, if we assume the distribution function of the tracked object – even if it does not move –
to be the same for a couple of subsequent images, the combined pdf of weighting and distribu-
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tion function will shrink with each cycle, if no measure of compensation is taken. Equation 6.29

suggests a compensation factor of 2σ2
new�t � σ2

0.

6.3.4 Motion compensation

If the tracked object moves, then the center of the combined pdf will lie between the center of

the weighting function and the center of the pdf of the new input data. Equation 6.27 shows that

the relationσ�t��σt�∆T determines if the new center is closer to the center of the weighting pdf

or to the center of the new input pdf. Forσ�t� � σt�∆T � σ0 (a likely case for a sufficiently high

frequency), the combined center will lie in the middle of both distribution functions.

Depending on the speed of the tracked object, equations 6.26 and 6.27 can cause the combined

pdf to vanish, thus breaking the tracker. Let

vi�t �
∆µi�t

∆T
�

µi�t �µi�t�∆T

∆T
(6.30)

vj �t �
∆µj �t

∆T
�

µj �t �µj �t�∆T

∆T
(6.31)

be the detected object’s speed at timet in horizontal (i) and vertical (j) direction, where∆T is

the time elapsed since the last frame was processed. Experiments with compensation measures

suggest a Kalman filter like update function

Cnew�t � Ct �∆T2 �
�

v2
i�t 0
0 v2

j �t

�
� Ct � �

�
∆µ2

i�t 0
0 ∆µ2

j �t

�
(6.32)

Equation 6.32 compensates uncertainty due to accelerations and object movements. Combining

the results of equations 6.29 and 6.32 we get as the covariance matrix of the Gaussian weighting

function for new incoming data :

C�

new�t � 2

�
σ2

i�t �∆µ2
i�t σi j �t

σi j �t σ2
j �t �∆µ2

j �t

�
(6.33)

6.3.5 Compute orientation by PCA

It may be desirable to know the orientation of the ellipse that the color tracking algorithm has

given in the form of the covariance matrixC. This might be helpful in order not only to center

the tracked object, but also re-orient it so that it has always the same upright position relative to

the image borders. By assuming a 2D Gaussian distribution as the underlying distribution function

for the tracked object (or better : its color), we assume the object to have an elliptic shape. The

corresponds nicely to the shape of a face. The eigenvectors of the covariance matrix represent the

axes of this ellipse.
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6.3.6 Noise

Calculating the first and second moments instead of the connected components of a threshol-
ded probability map for skin color of an image levels out random noise in the image. Random
noise may be sampling/digitizing noise, or quantizing noise (histogram). Noise is the main reason
for jitter.

6.3.7 Performance

In order to do a comprehensive assessment of the performance of the skin color tracker des-
cribed above, we use the color tracker introduced in [CBC97] as a benchmark. This tracker, called
CCOfor CONNECTEDCOMPONENTSalgorithm hereafter, is based on thresholding and a connec-
ted components algorithm in order to identify a large skin colored region within an image which
is interpreted as a face. A face is represented as an image position, vertical and horizontal extent,
and a confidence factor corresponding to the relative distance of thedetectedface and theexpected
face. The difference in execution times are due to a different complexity of the employed algo-
rithms as shown in table 6.1. Although both algorithms have a complexity ofO�n�, the algorithms
used by the CCO algorithm are computationally less costly.

TAB. 6.1: Complexity of the algorithms employed by the robust estimator (COG) and the tracker
using the connected components algorithm (CCO).n is the number of images the tracker is applied
to. A 1 indicates that this task has only to be performed once, usually at initialization time.

Algorithm

Tasks
Connected

Components
Robust Estimator

Generate 2D histogram of skin color 1 1
Generate 2D histogram of entire image – 1
Generate probability map (includes computing
the first and second moments)

– n

Find connected components n –

The robust tracking algorithm, calledCOGhereafter, carries a slightly higher computational
cost than a connected components of a thresholded image. This is illustrated with the computing
times shown in Figure 6.5. This figure shows the execution time for QCIF [ITU93] sized images on
a PC under Linux equipped with a 333 MHz Intel processor. Average execution times are around
13.8 milliseconds per image for the connected components and 17.6 milliseconds for the robust
algorithm.

Jitter is the number of pixels that the estimated position moves when the target is stationary.
Jitter is the result of interference with illumination, electrical noise, shot noise, and digitizer noise.
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FIG. 6.5: Computing time per image for the robust estimator (COG), and the connected compo-
nents based algorithm (CCO).

Algorithms which employ a threshold are especially sensitive to such noise. Table 6.2 illustrates
the reduction in jitter for the robust tracker when compared to connected components. The num-
bers shown are the accumulated error over the entire sequence.

TAB. 6.2: Jitter energy measured for a stationary object recorded in a sequence of 105 images ;
results are given for the robust estimator (COG), and by connected components with (CCO w/ KF)
and without (CCO w/o KF) a Kalman Filter.

COG CCO w/o KF CCO w/ KF

Jitter Energy 29 308 151

Figure 6.6 compares the precision of tracking an object moving in the horizontal direction.
All three trackers were applied to the same image sequence. The output of the color tracker using
the connected components algorithm is shown with and without Kalman filter. The Kalman filter
eliminates position jitter but reduces precision of global position estimation.

It should be noted that the CENTEROFGRAVITY algorithm loses its advantages over a thre-
sholding algorithm such as the connected components algorithm, if the tracked object’s surface
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FIG. 6.6: Comparing tracking precision of a moving object. The dips in the blue and red curve are
failures of the CCO tracker. The COG tracker is hence more precise and more robust.

has uniform color. This is the case for matte colored objects. For surfaces with varying color such
as skin (see section 6.1.2) or with a varying color reflectance, the COG performs considerably
better.

6.4 Conclusion

This chapter showed how skin color can be detected to build an efficient and precise face
tracker. Color histograms are used to calculate the probability that a pixel has skin color. Instead
of thresholding probabilities, we use the CENTEROFGRAVITY algorithm to compute the first and
second moments which give position and size of the tracked object. Weighting new input images
with a Gaussian estimate based on the previous image makes the tracker robust. The output of the
CENTEROFGRAVITY algorithm is used to steer a camera to keep a tracked object in the center of
the image. Cutting out a region of interest further eliminates possible jitter due to a lag in reaction
time between computer and camera.

The CENTEROFGRAVITY algorithm is an elegant way to avoid thresholding situations. It may
be applied to other techniques such as image differencing and background subtraction. The CEN-
TEROFGRAVITY algorithm for skin color tracking has been successfully re-implemented several
times.
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We will see in the next chapter how tracking reduces bandwidth by reducing the number of
required basis dimensions for eigenspace based coding.
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Chapitre 7

Orthonormal Basis Coding

Orthonormal Basis Coding (OBC)has been designed as an alternative approach to creating
models of image content and projecting the image content onto the model(s) [HL96]. The idea
is to store or transmit only a set of parameters, but matching image content onto a model is very
computing power consuming. Moreover, model-based1 approaches have the disadvantage that en-
coding (and decoding) becomes dependent on models of image content like heads or hands. Fi-
gure 7.1 illustrates the difference between a) conventional video coding methods such as described
in chapter 5, and b) the OBC approach.
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FIG. 7.1: Block diagrams of the a) conventional and b) the OBC approach

We propose an alternative to a model-based approach to eliminate redundant image informa-
tion by interpreting images, i.e., samples of appearance, as (high-)dimensional vectors and creating

1"Models" in this context are geometrical models, not appearance models.
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an orthonormal basis space from a sequence of such vectors. This corresponds to a decomposition
of a sequence of vectors into basis vectors which are orthonormal to each other. This is the funda-
mental idea ofall transform-based video coding algorithms. Like any other linear transformation,
the idea is to decorrelate video (image) data allowing for a controlled entropy reduction and an
efficient redundancy removal in order to yield high compression ratios.

What characterizes our approach is that feature extraction is an integral part of the encoding
process instead of just being a pre-processing step. We use the termOrthonormal Basis Coding
(OBC)as a name for our approach to video compression, including not only the transform coding
process, but also the entropy reduction and the final redundancy reduction steps.

Section 7.1 gives an overview of the OBC concept as an encoding procedure, using the results
of the previous chapters and sections. Section 7.2 elaborates on the difference in the treatment
of video data between the conventional approach and the OBC approach, motivating this work.
Section 7.3 takes a closer look to the problem of the estimation of the mean of our input data. This
is always a critical step when computing an orthonormal basis. Section 7.4 is a contribution to the
discussion of evaluation metrics for video compression.

7.1 The Concept

The OBC compression scheme operates as follows :

a. Normalize the input stream to stabilize the main face position in the center of the image, and
choose a limited set of images from the sequence to form the basis. For this sample selec-
tion process, we use in virtually all cases the simple but efficient EQUIDISTANT selection
algorithm. Note that we could improve our compression performance using K-MEANS or
MAX MIN-DISTANCE clustering at the cost of increasing the required computing time. All
these algorithms and their performance are discussed in section 7.3.

b. Compute orthonormal basis space or sub-space either by Karhunen-Loève expansion (KLE),
or by the incremental Gram-Schmidt procedure, and project each image in the sequence into
this basis space, resulting in a small set of coefficients,

c. ZIP loss-less compression or JPEG lossy compression of the basis and, if sensible, the para-
meter vectors. The basis vectors are converted from a 4 Byte float representation into 1 Byte
per value, and the resulting image compressed. The question if it makes sense to compress
the parameter vectors depends on the quantity of data they represent. In general there is no
substantial gain and therefore no reason to do so.

The projection of an image into the basis space will produce a number of coefficients equal to the
number of images used to create the basis space.

A stabilized video sequence is cropped in order to provide a sequence of images with the face
normalized and centered in each image. Selected frames from the sequence are used to create
a basis space into which new images can be mapped. Each mapped image is represented as a
vector of coefficients. The number of coefficients is equal to the number of images in the original
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basis space. By only storing and transmitting the vectors, extremely high compression rates can
be achieved, especially for long sequences.

The principal encoding parameters for OBC are the choice of the selection algorithm, the basis
size, the choice of the basis compression algorithm, and – in case of JPEG basis compression – the
JPEG quality parameters. Once the basis images are selected as cluster centers, all images from
the sequence are assigned to a cluster. For all selection algorithms the cluster center is recomputed
as the mean of all samples in the cluster. In case of the K-MEANS algorithm, this might happen
several times. The average image in each cluster is then used to compute the basis by Karhunen-
Loève expansion. Images close to the cluster centers have therefore a low reconstruction error.

We identify three distinct cases for video compression. Two criteria are used to describe them.

Universe is the set of possible data to be represented by the code. Anopen universemeans that
at the time the encoding starts, we do not know all the data that has to be encoded. That is,
the data is either still being generated, or the data access is restricted for one or the other
reason.Closed universedescribes the complementary case where all the (video) data, i.e.,
the entire sequence that is to be encoded, is known and accessible at encoding time.

Online/Offline : This criterion describes the manner in which the data is to be encoded.Online
coding is characterized by a sequential data feed-in into the codec. The data is touched
only once by the codec and immediately encoded. The codec has a FIFO character, and
any algorithms employed must be one-pass. Moreover, the entire data processing should
possibly be computed in real-time.Offline codingan evaluation of the input data in several
steps, e.g., wecan use iterative sample selection algorithms to identify the input vectors
to create the orthonormal basis space. Additionally, computing time restrictions are more
relaxed (within a certain limit), and compression ratio or reconstruction quality becomes
more important than computing speed.

7.1.1 Closed universe, offline coding

The case of closed universe, offline coding is perhaps the "simplest" of all possible cases :
Given a recorded sequence of images, the codec has unlimited access to the data and can take
its time to assemble an efficient code. True eigenspace coding of the entire sequence is (still)
not recommendable for computing time reasons. However, the number of basis dimensions can be
chosen comfortably large in order to guarantee a good reconstruction quality. The offline character
allows to use any of the selection algorithms presented in section 7.3, whichever gives the best
results.

Application examples for a closed universe, offline codec are

Video (e-)mail : A sequence is recorded to be transmitted like an email. Such a system is antici-
pated in Barry Levinson’s interpretation of Michael Crichton’s bestsellerDisclosure(1994).

Video/Movie compression : Video file formats such as QuickTime from Apple Co. offer the pos-
sibility to include different compression modules such as JPEG or MPEG. An OBC module
for QuickTime is conceivable and immediately implementable using the provideduser de-
finedchunks.
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Web head : Interactive video might be a tool for enhanced user convenience which companies
selling over the Web or T.V. could use. An example is a talking head on web pages to guide
a user through the product selection process.

7.1.2 Open universe, offline coding

Encoding an unlimited set of images with a constraint basis makesa priori sense only if either
the variance of the input data is limited, or if the basis size is sufficiently large to ensure decent
reconstruction quality. Restraining the variance of the encoded data, however, may become a fea-
ture in the context ofprivacy protection[CCBS97]. Note thatoffline refers to the basis building
rather than the encoding/decoding process.

As an example, imagine a basis obtained from a talking head sequence of a person. If that
person wants to communicate, he opens a communication session, uses the OBC codec to encode
his session, but transmitting the pre-recorded sequence of him as a basis. Given that the content of
the sequences are close enough, the transmitted encoding parameters can reconstruct a communi-
cation scene on the other end using the pre-recorded basis. This allows the communicating person
to hide things like background, other people present in the room, personal features such as haircut,
beard, maybe facial expressions. A reasonable complete basis of anybody could even be used. Fun
examples could be using a certain actor or pop star as basis. Assuring reconstruction quality is a
particularly difficult problem here.

7.1.3 Open universe, online coding

This is finally the communication scenario live and online. It requires incremental, one-pass
algorithms to build the basis. Computing speed is important to ensure acceptable delays, compres-
sion ratio and reconstruction quality are a parameter determined by the specs of the communication
channel. The number of basis dimensions have to be chosen as a function of those parameters. The
online character requires one-pass selection algorithms. Video telephone and video conference are
common examples for this scenario.

7.2 The Video Compression Problem revisited

Before we try to find an answer to "How to compress ?" we have to take a look at "What to
compress ?". The current section gives the reader a description of the data we are working with.
We will show that the way we look at our data has an impact on how we tackle the compression
problem.

Digital images are commonly considered two-dimensional signals, usually quantized to 255
levels of red, green, and blue. The situations that are of interest for us are that the images have a
certain content. If that content is a mapping of a 3D-scene to a two-dimensional canvas, then the
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picture elements (short : pixels) usually have a very high statistical correlation. For instance, if a

pixel represents a part of a sky in the image and has a bluish color, then the probability for the

neighboring pixels to have the same or a very similar color is very high (see, e.g., figure 7.2). Cur-

rent video encoding algorithms based on linear transforms, as well as feature extraction modules

like edge detection filters exploit this statistical correlation.

i

j

image size : 352 x 288 pixels

x(i,j) = {R(i,j), G(i,j), B(i,j)}

0 ≤ R,G,B ≤ 28 - 1

FIG. 7.2: Example of an 24 bits/pixel color image with 3 x 8 bits / pixel color encoding.

Considering images not singularly, but as a part of a sequence of images, adds a third di-

mension to the space from which we extract our information (horizontal, vertical, temporal). But

adding a time axis also adds more statistical correlation, this time between consecutive images.

Figure 7.3 shows an example of a video sequence. We note that pixels representing the back-

ground do not change from one image to the next, unless the camera zoom or pan/tilt position

changes. This is the conventional way to look at image sequences, which is closely related to how

the processing for compression is supposed to be done. A second possibility to look at images in

an image sequence is to consider them as vectors in a high-dimensional linear space. The actual

number of dimensions is equivalent to the number of pixels in the image. A certain image with a

certain content is then simply apoint in that space

We saw in section 4.3 that the optimal representation for random vectors is the eigenspace

spanned by the eigenvectors of their covariance matrix. A certain image is now simply a point in

eigenspace.

Figures 7.4 and 7.5 show that images with related content have a dense representation in

eigenspace, and even more so if the input sequence has been normalized. This is the starting point

for our approach.Instead of exploiting statistical correlation between image pixels, we exploit the

closeness of images in eigenspace to create an efficient representation and to compress the image

data.
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FIG. 7.3: Video sequence of a talking head communication scenario

7.2.1 Appearance Space Analysis of the Video Compression Problem

Considering images as high-dimensional vectors instead of a three-dimensional data space, we
reduce the dimensions of our data space to two. At first glance this has no particular advantage,
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but it allows us to consider the encoding problem as a vector quantization or clustering problem.
Another possibility is to consider it as a data analysis problem that we can tackle with, for instance,
principal components analysis. Both approaches have advantages and disadvantages, but we will
show in the following that, by combining the two, we can avoid some of those disadvantages and
develop efficient video encoding algorithms.

Before discussing vector quantization and principal components analysis, let us develop the
idea and consequences of regarding images as vectors. Much has been said about exploiting sta-
tistical correlation of image data for video compression. The consensus is that for even higher
compression ratios, we need to gain information about the image content, extract that informa-
tion, and encode how it is being changed rather than repeatedly encoding the information and its
changes.

A common example is the simple video communication scenario. We see a talking head with
a uniform or at least unimportant background, performing limited movements like talking, head
shaking, nodding, etc. (see figure 7.3). The beginning of the 90’s saw a great amount of research
effort go into building models of heads, extracting information about a talking head out of an
images stream, mapping this information onto the model. All that with the idea in mind that even-
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tually all that had to be transmitted was a string of parameters about position, size and shape of
the talking head. A summary of this approach is given in [HL96].

At the same time, parts of the computer vision community investigated on using computer
vision methods for face and gesture recognition. Since 1997, the IEEE International Conference
on Automatic Face and Gesture Recognition is being held annually, clearly displaying the impor-
tance (and the progress) in this research areas. Turk proposed eigenfaces [TP91] (i.e., eigenspace
representations of images (=vectors) of faces) for face and gesture recognition in 1991. What is
important from this work for this thesis is that the eigenspace can be used to represent or encode
the essential features of an object like a face in an image.

Since it only can access information about the surface of objects orthe object shown in an
image, i.e. as those objectsappear, we refer to an eigenspace description of an object as itsap-
pearance space. See page II for definitions of appearance. This idea, however, is only applicable
if the entire sequence of images to be encoded in advance. Possible applications may be efficient
encoding of movies or recorded video messages to be transmitted. We call the latter video electro-
nic mail or, short, V-Mail. Principal components analysis can then yield an efficient representation
of an image sequence in a fraction of its basis dimensions.

7.2.2 Reducing the Dimensionality of the Appearance Manifold

Consider a head and shoulders sequence like the one in figure 7.3. In order to demonstrate the
impact of normalizing of the sequence to the talking head, let us first cut out a region of interest
in the center of the image. Taking ten out of the 103 images of the sequence and computing the
eigenvalues of those ten images and ordering them according to their size, we get the eigenvalue
distribution in figure 7.6 for the uncentered sequence (upper curve). Graph 7.6 b) uses a linear
scale instead of a logarithmic in 7.6 a). Repeating the same exercise for fifteen instead of ten
images yields the curves for the uncentered sequence in figure 7.7 a) and b). The input images
used to compute the eigenvalues are shown in figures 7.9. The corresponding eigenvectors as well
as the average image are depicted in figure 7.9.

However, if we use the tracker described in the previous chapter to cut out a region of interest
around the face, we get the sequence in figure 7.10. We then compute the eigenvalues, shown in
figure 7.7 a) and b), centered sequence, and the eigenvectors, shown in figure 7.11.

Comparing the curves for the centered and uncentered sequences in figures 7.6 a) and b), and in
figures 7.7 a) and b) respectively, we see that the centered sequence generates smaller eigenvalues.
The error made by choosing a representation with less than the total number of eigenvalues equals
the integral (sum) over the remaining eigenvalues. One of the convenient side-effects of using an
eigenspace representation instead of a fixed basis such as a series of cosine functions is that we
know exactly the error we make by omitting some basis dimensions in our representation. This
result is also valid if we build an orthonormal basis representation of the input data other than the
eigenspace, for instance, by using the Gram-Schmidt procedure.
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a) b)

FIG. 7.6: Eigenvalues for a 10 image basis in descending order for an uncentered and a centered
sequence, a) logarithmic scale, b) linear scale.

a) b)

FIG. 7.7: Eigenvalues for a 15 image basis in descending order for an uncentered and a centered
sequence, a) logarithmic scale, b) linear scale.

The denser representation of our input sequence in eigenspace, illustrated already in figures 7.4

and 7.5 directly translates into two optional benefits : Either the possibility of choosing a more

compact representation by omitting some of the basis dimensions while making the same error

than for an uncentered image. Or an improved reconstruction quality, i.e., a reduced error with the
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Img. 2 Img. 9 Img. 16 Img. 23 Img. 30 Img. 37 Img. 44 Img. 51 Img. 58 Img. 65 Img. 72 Img. 79 Img. 86 Img. 93 Img. 100

FIG. 7.8: 15 images cut out of a sequence of a typical one-to-one video communication scene of
103 images, image format : 54 x 84 pixels ; sequence not centered by the face

Img. 2 Img. 9 Img. 16 Img. 23 Img. 30 Img. 37 Img. 44 Img. 51 Img. 58 Img. 65 Img. 72 Img. 79 Img. 86 Img. 93 Avg. Img.

FIG. 7.9: Basis images created out of the images in figure 7.8.

Img. 2 Img. 9 Img. 16 Img. 23 Img. 30 Img. 37 Img. 44 Img. 51 Img. 58 Img. 65 Img. 72 Img. 79 Img. 86 Img. 93 Img. 100

FIG. 7.10:15 images out of a sequence of a typical one-to-one video communication scene of 103
images, image format : 54 x 84 pixels . Sequence centered with the tracking algorithm from the
last chapter.

Img. 2 Img. 9 Img. 16 Img. 23 Img. 30 Img. 37 Img. 44 Img. 51 Img. 58 Img. 65 Img. 72 Img. 79 Img. 86 Img. 93 Avg. Img.

FIG. 7.11:Basis images created out of the images in figure 7.10.
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same number of basis dimensions.

7.3 The sample selection problem

Using eigenspace techniques such as in orthonormal basis coding, we are in front of a dilemma,
which can be formulated in the following two problems :

a. calculating the eigenspace representation of an entire sequence of, say, 100 or more images
becomes computationally extremely costly. The most computing power consuming part is
the generation of the (auto-)covariance matrix. Even for an offline process such as the com-
pression of a movie video or a pre-recorded video (e-)mail, computing time would quickly
become unacceptable for users.

b. In order to compute a real eigenspace representation, all the data has to be known in ad-
vance ; i.e., sequential online processing (streaming) would be implicitely impossible.

Although this makes a true eigenspace representation unpractical, we propose a compromise,
which is based on the observation that a principal components analysis (PCA) is looking for the
mosttypicaldata content. This data content is the eigenvector of the largest eigenvalue. Just as with
a common Fourier transform, eigenvectors are of varying importance for reconstruction, compa-
rable to lower and higher frequencies of the FT. Taking advantage of this we can approximate a
data analysis such as PCA in a computationally much less costly way. The idea is to divide the set
of input data (video stream) into clusters of similar samples (images). This is equivalent to a vector
quantization. Of course, it is not by chance that the same algorithms (e.g., K-Means) are used in
clustering for pattern recognition as well as in vector quantization for, e.g., sound compression.

We claim that with this combined approach, clustering and eigenspace coding, we can do better
for a normalized video stream than with pre-selected bases such as a series of cosine functions
(DCT), even though we might fall short of the performance of a true eigenspace representation.
This section presents and analyzes several selection algorithms and study their properties and
performance for our purposes.

The sample selection problem is thus basically a quantization or clustering problem such as
discussed in section 4.4. When we talk aboutsamples, we are thinking in the context of this work
of images understood as vectors (see 7.2). The abbreviationOP indicates the one-pass version
of the considered algorithm. One-pass algorithms are potentially appropriate for online coding
(streaming).

7.3.1 EquiDistant Algorithm

This is a straightforward selection algorithm. All it does is calculate the temporal distance
between two images on the time axis for a certain number, i.e., the desired number of basis di-
mensions, of images. There is no selection criteria other than the desired maximum number of
images and its equal distribution over the time axis. As simple as it may seem, this algorithm is
surprisingly efficient. In this simple form it is fast and has only one pass.
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Algorithm EQUIDISTANTOP(S �K)
Input: A set,S , of N samplesxn ; a number,K, indicating the amount of desired clusters.
Output:A set,SK , of K samples with cluster centerszk.
1. Compute the (temporal) distance∆ �

�
n
K

�
2. for k� 1 to K
3. do zk � x∆�k
4. return SK

The performance of the EQUIDISTANT Algorithm w.r.t. reconstruction quality (not computing
time !) can significantly be improved if we take the selected samples as cluster centers, assign all
samples to a cluster, and calculate new cluster centers using the Euclidean distance metric. The
complexity of the one-pass EQUIDISTANT algorithm (EQUIDISTANTOP) is O�K�, and of the
enhanced EQUIDISTANT algorithm (EQUIDISTANT) is O�n�.

Algorithm EQUIDISTANT(S �K)
Input: A set,S , of N samplesxn ; a number,K, indicating the amount of desired clusters.
Output:A set,SK , of K samples with cluster centerszk.
1. SK � EQUIDISTANTOP(S �K)
2. Assign each sample to a cluster, such that the Euclidean distancedE � ��xn�zk��2 is minimi-

zed for all 1� n� N and 1� k� K. (� It is clear that� xn�zk �� min for n� k, so we can
actually skip that multiplication.�)

3. for k� 1 to K
4. Compute new cluster centers :

z�k �
1
Nk

∑
x�Sk

x

5. (� whereNk is the number of samples,x, in thekth cluster�)

7.3.2 Threshold Algorithm

The threshold method assumes that similar frames are likely to be located sequentially in the
video sequence. This is not necessarily the case when each image contains only a face talking. The
threshold method has a complexity ofO�n� and works as follows.

The Euclidean distance is computed between image one and subsequent images until it drops
below a certain threshold. At that point in the sequence, the current image becomes a new cluster
center. For subsequent images only the distance to the new cluster center is computed until the
threshold is crossed again.

Algorithm THRESHOLDOP(S �T )
Input: A set,S , of N samplesxn ; a threshold,T , indicating the maximum allowed (Euclidean)

distance of samples in a cluster.
Output:A set,SK , of K clusters of samples with cluster centerszk.
(� K is not known in advance.�)
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1. Setk� 1, z1 � x1

2. for i � 2 to N
3. do if T � ��xn�zk��2
4. then Sk � xn

5. else k�� 1
6. zk � xn

7. return SK

Usually, we want to fix the desired basis size,B, in advance. That is, it is possible that our
chosen threshold,T, is so low that THRESHOLDOP(xn�T) produces more clusters than the desi-
red number of basis images,B. This is where the sorting step at the end of THRESHOLD(xn�T)
becomes important. Averaging the samples in a cluster to calculate the new cluster center,zk, and
choosing the firstB out ofK clusters makes sure that a maximum number of samples contribute to
the basis.

Algorithm THRESHOLD(S �T )
Input: A set,S , of N samplesxn ; a threshold,T , indicating the maximum allowed (Euclidean)

distance of samples in a cluster.
Output:A set,SK , of K clusters of samples with cluster centerszk.
(� K is not known in advance.�)
1. SK � THRESHOLDOP(S �T )
2. for k� 1 to K
3. Compute new cluster centers :

z�k �
1
Nk

∑
x�Sk

x

4. (� whereNk is the number of samples,x, in thekth cluster�)
5. Sort clusters,SK by the number of samples they contain
6. return SK

In a real application, it is further possible thatB � K, i.e., T was chosen too high. For that
case, we can re-run THRESHOLD(xn�T), THRESHOLDOP(xn�T), or with a lowerT ; in an offline
application this is not too inconvenient. In an online application this could compromise the recons-
truction quality since it reduces the order of the encoding basis.

7.3.3 MostRepresentative Algorithm

An algorithm, called MOSTREPRESENTATIVEALGORITHM, first reported in [VSC99, CS99],
attempts to find similar images anywhere in the sequence to be encoded.

In order to do this, we take the first image of the sequence as the first cluster center. Then
compare it to all the other images in the sequence, and assign any image to that cluster of which
the (Euclidean) distance to the cluster center falls below a chosen threshold,T . Any other images
are put into a to do set of unassigned images,SU .



130 Chapitre 7 ORTHONORMAL BASIS CODING

We then take the next image out of the to do set,SU , and save it as our next cluster center. We
then assign all images close enough to that cluster center into that new cluster.

This procedure continues until there are no images left inSU , and all similar images are grou-
ped in sets.

We then have the choice of either take an arbitrary image out of each cluster to form the basis,
or compute the real new cluster center, i.e., the mean of all samples in the cluster. According to
our experience the latter gives the better results in image quality, taking only a negligible extra
computing time into account.

Algorithm MOSTREPRESENTATIVE(S �T )
Input: A set,SN, of N samples,xn ; a threshold,T , indicating the maximum allowed (Euclidean)

distance of samples in a cluster.
Output:A set,SK , of K clusters of samples with cluster centerszk.
(� K is not known in advance.�)
1. Put all samplesxn of SN into a setSU of un-assigned samples
2. Setk� 0
3. repeat
4. Take a sample,xu, out ofSU

5. Increasek by 1, and
6. Setzk � xu

7. repeat
8. Take another sample,xu, out ofSU

9. if ��xu�zk��2 � T
10. then Sk � xi

11. else Putxu back intoSU

12. until zk has been compared to all remaining samples inSU

13. until there are no images left inSU

14. for k� 1 to K
15. Compute new cluster centers :

z�k �
1
Nk

∑
x�Sk

x

16. (� whereNk is the number of samples,x, in thekth cluster�)
17. Sort clusters,SK by the number of samples they contain
18. return SK

The most-representative sample selection method has a best case complexity ofO�n� and a
worst case ofO�n2� although neither are very likely.

In real situations, the resulting amount of clusters is rarely equal to the number of desired basis
dimensions. If we got more clusters than desired basis dimensions,B, we just take theB largest
sets of clusters. This is where the sorting step in line 17 comes in. IfB�K, it makes sense to re-run
MOSTREPRESENTATIVE(S �T ), with a lower threshold, e.g., MOSTREPRESENTATIVE(S �0�9T ),
until B� K.
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7.3.4 MaxminDistance Algorithm

The MAXMIN DISTANCE Algorithm [TG74] is a simple heuristic procedure, based on the Eu-
clidean distance concept, to divide a set ofN samples into reasonable clusters. The only input
parameter is a relative threshold,Trel,

The algorithm selects some of the input samples as cluster centers. As an option, we can
calculate the mean of all samples within a cluster and take this as the cluster center.

Algorithm MAXMIN DISTANCE(S �Trel )
Input: A set,S , of N samplesxn ; a (relative) threshold,Trel, indicating the minimum allowed (Eu-

clidean) distance of two cluster centers, relative to the largest distance between two clusters
Output:A set,SK , of K clusters with cluster centerszk.
(� K is not knowna priori. �)
1. Determine a first (arbitrary) cluster centerz1 ; e.g.,z1 � x1

2. SetK to 1
3. repeat
4. for n� 2 to N
5. for k� 1 to K
6. Compute (Euclidean) distances :d�n�k� � d�xn�zk�

7. Determinedmin
n�k � mink�d�n�k��

8. Determinedmaxmin
n�k � maxn�dmin

n�k �

9. if dmaxmin
n�k � Trel �dmaxmin

n�k�old

10. then IncreaseK by 1
11. zK � xn�max

12. until dmaxmin
n�k � Trel �dmaxmin

n�k�old

13. for k� 1 to K
14. Compute new cluster centers :

z�k �
1
Nk

∑
x�Sk

x

15. (� whereNk is the number of samples,x, in thekth cluster�)
16. Sort clusters,SK by the number of samples they contain
17. return SK

The MAXMIN DISTANCE(S �Trel ) proved to be efficient especially for a large number of cluster
centers (see figure 7.14).

7.3.5 K-Means Algorithm

The K-MEANS algorithm [TG74, Lim90] is one of the classical clustering algorithms. It is
still of interest today, not the least because of its application in vector quantization (for sound
compression, for instance [Say00]). The K-means algorithm was described by Forgy [For82]. The
algorithm is also called LBG-algorithm, since Linde, Buzo, and Gray [LBG80] have shown that
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the algorithm can be used with many different distance measures and have popularized its use to
applications of vector quantization to speech and image coding.

Although the choice of the initialK cluster centers is free, it is a good idea to use the EQUI-
DISTANTOP algorithm. This ensures that the (initial) cluster centers are well distributed over the
time axis. This may be important to catch some movements otherwise not covered by using the
first K samples as initial cluster centers.

K-M EANS is an iterative algorithm, i.e., in its classical form it is not appropriate for online co-
ding. Since the number of samples is known in advance and thus limited, K-MEANS is guaranteed
to converge within a few iterating steps. In our experiments, about four or five iterating steps were
necessary for about 100 samples, independently of the desired number of basis images (B� K).

Algorithm K-M EANS(xn�K)
Input: A set ofn samplesxn ; a number,K, indicating the amount of desired clusters.
Output:A set,SK , of K clusters with cluster centerszk.
1. i � 1, andSK�i�� EQUIDISTANTOP(xn�K)
(� This is the only step differing from "classical" K-Means�)
2. while zk�i �1� �� zk�i� � k

(� wherei indicates theith iteration step�)
3. Distribute the samples among theK cluster domains, usingx� SK if ��x� zk�� � ��x�

zj �� � k� j � 1�2� ����K� j �� k
4. for k� 1 to K
5. Compute new cluster centers :

zk�i �1� �
1

NSK
∑

x�Sk

x

K-M EANS yields a setSK of K clusters, where the performance index

Jk � ∑
x�SK

��x�zk�i���2� k� 1�2� ����K (7.1)

is minimized.

7.3.6 Comparison of algorithms

All algorithms could be made sensitive to movements of the eyes and mouth by multiplying
these regions by an extra weighting factor during the comparison of images with the to-do set.
Thus variations in eye and mouth configurations receive a better representation in the selected
sample set. If we consider the results of table 7.1 and figures 7.12, 7.13, and 7.14, we see that the
EQUIDISTANT algorithm should in most cases do.
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TAB. 7.1: Properties of comparative clustering algorithms ; for the algorithms with complexity
O�n��C�O�n2�, the complexity is in most cases closer toO�n� than toO�n2�.

Algorithm One-pass Complexity Iterative

EQUIDISTANTOP
�

O�n� �
EQUIDISTANT

�
O�n� �

THRESHOLDOP
�

O�n� �
THRESHOLD

�
O�n� �

MOSTREPRESENTATIVE � O�n��C�O�n2� �
MAXMIN -DISTANCE � O�n��C�O�n2� �
K-M EANS � O�n��C�O�n2�

�
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141.3

43.9

29.0
24.2

42.0

76.5

59.5

29.3

44.3

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

EquiDistant Threshold MostRepresentative Maxmin-Distance K-Means

Algorithm

C
om

pu
tin

g 
tim

e 
[s

ec
]

basis size = 15

basis size = 25

FIG. 7.12: TALKINGHEAD sequence : Computing time in sec of the different clustering algorithms
for various basis sizes.
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FIG. 7.13:TALKINGHEAD sequence : MSE for 25 basis images, quality parameter 100, and different
clustering algorithms. TheK-M EANS (average MSE = 43.74) algorithm starts out with the same
frames (equally distributed over the time axis) than theEQUIDISTANT (average MSE = 44.73)
algorithm, iterating to a stable distribution of frames to the clusters. We see that the resulting MSE
for the reconstructed frames are very close. See table 7.2 for the average MSE and PSNR of all
five algorithms.

TAB. 7.2: Average MSE and PSNR [in dB] of the curves in figure 7.13.

Algorithm MSE PSNR

EQUIDISTANT 44.73 31.27
THRESHOLD 41.62 31.23
MOSTREPRESENTATIVE 41.83 31.24
MAXMIN -DISTANCE 48.06 31.87
K-M EANS 43.74 31.37
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FIG. 7.14:Average PSNR for theTALKINGHEAD sequence
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7.4 Performance Evaluation

After having determined the ingredients of OBC, we want to know how good its works. This
section is about evaluation criteria for the encoding process which can directly be applied as design
criteria for the video codec ; they also are the criteria used in the following chapter to compare
OBC to conventional video compression methods. We identify the following evaluation metrics :

Compression ratio : The compression ratio as an evaluation criterion is closely related to the
reconstruction quality. A trade-off between the two determines if an algorithm is appropriate
for an application or not.

Reconstruction quality : While the two criteria above produce objective numbers easy to ve-
rify, measuring reconstruction quality is a more difficult task. In the following section we
introduce commonly used reconstruction quality measures. Note that the most important
criterion for measuring reconstruction quality is human perception. Finding error metrics
modeling human visual perception would be a thesis topic by itself. We can only point out
here the importance of such a work and explain why the error metrics introduced hereafter
fail to fulfill this task in a satisfactory way.

Computing speed : The algorithms discussed above are of varying complexity. Eigenspace tech-
niques have been increasingly used the last couple of years, particularly in computer vision
for localization, recognition, indexing, etc. This is made possible by increasingly powerful
computers. Computing speed is also an important criterion whether an algorithm is appro-
priate for online, i.e., real-time coding.

Reconstruction quality w.r.t. compression ratio isthe crucial performance metric for every
image and video codec. The problem we are concerned with here is that coding artifacts of OBC
are substantially different from those of conventional, block based coding schemes. Using another
orthonormal basis is thereby less important than encoding images as a whole instead of in 8 x 8
pixel blocks. The problem is such that, as we shall see below, commonly used quality metrics fail.

7.4.1 Reconstruction quality measures

We call the error measures for reconstruction discussed in this sectionobjective, because they
measure the error of a reconstructed (decoded) signal, i.e., the signal estimate, to the original input
signal, regardless of perception issues. We will define here four quality measures being used for
measuring image reconstruction quality.

Definition 2 (Mean Squared Error) TheMean Squared Error (MSE)of an estimatêx of a signal
x is the function of x defined by

MSE�x� � E�x̂�x�2 � σ2
x̂ ��Ex̂�x�2� (7.2)

where�Ex̂�x�2 is thebiasof the estimator̂x, and

σ2
x̂ � E�x̂�Ex̂�2 � Ex̂2� �Ex̂�2� (7.3)
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its variance. If Êx� x, that is, if the expected value (mean) of the signal is equal to the signal itself,
then the MSE(x) is unbiased and equal to the variance ofx̂. This is a reasonable assumption which
should be met in most cases that concern us. Otherwise we would have to review the estimation
process.

For the vector case, i.e., an estimate�̂x of a signal�x, both with N dimensions, and using inner
product notation,

MSE��x� �
1
N

��̂x��x � �̂x��x� �
1
N
���̂x��x��2 (7.4)

for and unbiased̂�x, which is generally the case in our context. The MSE is also called the average
distortion. In the context of coding and reconstruction of images,�x is the original input image, and
�̂x the reconstructed image.

Definition 3 (Root Mean Squared Error) TheRoot Mean Squared Error (RMS)is the positive
square root of the Mean Squared Error (MSE). It is thus

RMS�x� �
�

MSE�x� (7.5)

and accordingly

RMS��x� �
�

MSE��x� �

�
��̂x��x��̂x��x� � ���̂x��x�� (7.6)

for vectors. For the case of images, the RMS can be interpreted as the average error perpixel.

Mean Squared Error and Root Mean Squared Error give the error as an absolute value, i.e., the
squared difference (or its root) of a signal and its estimation. This is aquantitativemeasure saying
nothing (or not much, unless the signal’s unit range is known) about thequalityof a reconstruction.
Therefore, two error measures have been defined relating the error to thepropertiesof the original
signal. It is convenient to use the logarithm of the resulting error value.

Definition 4 (Signal-to-Noise Ratio) TheSignal-to-Noise Ratio (SNR)of an estimatê�x for a si-
gnal�x is defined as

SNR��x� � 10� log10

�
σ2

x

MSE��x�

�
� 20� log10

�
σx

RMS��x�

�
(7.7)

whereσ2
x is the variance of the signal�x :

σ2
�x � E��x�E�x�2 � E�x2� �E�x�2� (7.8)

The unit of the SNR isdecibels [dB].

The SNR relates the reconstruction error to variance of the (local) signal amplitude, which is
particularly important in sound coding. In image coding, using the variance of the signal amplitude
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does not say much. The signal amplitude corresponds here to a gray-scale or color, and all possible
colors are generally equally desirable. A common quantity to relate the reconstruction error to is
theamplitude rangeof the signal, which for image processing translates to the maximum (peak)
signal value. The corresponding metric for measuring the image reconstruction quality is called
the

Definition 5 (Peak Signal-to-Noise Ratio)The Peak Signal-to-Noise Ratio (PSNR)of an esti-
mate�̂x for a signal�x is defined as

PSNR��x� � 10� log10

�
�maxN��x��2

MSE��x�

�
�dB� � 20� log10

�
maxN��x�
RMS��x�

�
�dB�� (7.9)

wheremaxN��x� is the maximum (peak) over all N values of�x. Again, the unit is decibels [dB]. A
bigger PSNR represents a better reconstruction.

All those error measures are defined mathematically as the deviation of an estimate to the
original signal.There is no physical interpretation to them.This becomes particularly problematic
when we talk about human perception. A human supposed to judge the quality of an image will
look for information, i.e., objects. Random noise has no information as we saw in section 4.1.
Image content means information, means coherently colored areas with more or less sharp edges.
A human will then try to identify the objects he sees. He will do this trying to map the edges
and areas he sees to concepts of objects he has in his memory. Moreover, the human supposed to
judge image quality does generally not know the original image. He is thus unlikely to use it as a
reference.

This is only vague discussion about perception and image quality. What becomes immediately
clear, though, is that none of the error measures above reflects in the least human perception. The
only image degradationreally measured by those measures is random noise. Let us consider a
simple example to show how deceptive a PSNR can be.

Example 3 Given a QCIF gray-scale image with 176 x 144 pixels and a maximum pixel value of
255. It is easy to show that a) 2601 pixels with a deviation of 5 produce the same MSE (= 2.57)
and thus PSNR (= 44.04 dB) than b) 1 ( !) single pixel with a deviation of 255 (for instance by an
overflow).

Case b) would mean a black instead of a white pixel or vice versa. This can be considered
as a minor artifact, which may barely be perceptible (depending on its position), and which can
be smoothed out by filtering. In Case a), however, 10.3% of the image are degraded, which can
considerably compromise image quality and can certainly not as easily been smoothed out by
filtering as case b).

What shouldbe the starting point for developing image quality measures, though, is human
perception. This is a vast research area and differences from one person to the next may be consi-
derable, depending on cultural background, age, personal experience, and so on. As has been said
above, this goes beyond the scope of this work, which nevertheless hopes to stimulate efforts in
that direction.
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7.5 Conclusion

This chapter finally introduced the prerequisites and techniques employed for OBC. The three-
step encoding scheme is based on the classification introduced in chapter 4. OBC is applicable in
any head-and-shoulders scenario. With some further research, it may even be interesting to be
used beyond that. OBC is, as model-based content extraction methods, based on the paradigm that
second generation video coding involves image content extraction. MPEG-4 and MPEG-7 point
in that direction, however they offer the means ofhow to compressextracted information rather
thanhow to extractthat information. OBC goes a different way by exploiting only theappearance
of an object in a scene to be encoded.

OBC is designed as an approximation of a true PCA, using vector quantization or clustering
as a means to increase coding efficiency. The major difference to classical DCT/DPCM or wavelet
based approaches and OBC, however, is the way the data, i.e., the video stream, is being looked
at. Instead of considering an image as a matrix, OBC treats images as vectors. That opens up new
possibilities for energy compaction and entropy reduction, notably the use of vector quantization
or clustering techniques for sample selection. We saw that a relatively simple sample selection
(clustering) algorithm is sufficient for a pre-selection of the basis input images.

Since data is being treated fundamentally differently in OBC than in conventional approaches,
the resulting artifacts are of a different nature. This puts the focus on reconstruction quality mea-
sures. We discussed today’s most important ones and noted that they have the fundamental draw-
back that they arenot derived from models of human perception. This is not a new insight. In fact,
it is a well known problem. It becomes particularly inconvenient, though, when we try to compare
the results of fundamentally different compression algorithms such as OBC and MPEG, as we do
in the following chapter.
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Chapitre 8

Experiments and Results

This chapter presents the performance of the OBC codec in various configurations. The results
are compared with those of a DCT/DPCM type MPEG codec. We concentrate on compression per-
formance and reconstruction quality, although computing speed is considered, too. The following
video sequences are used for evaluation :

TAB. 8.1: Video sequences used for performance evaluation

Sequence Frequency # of Frames Width x Height Duration 1st Image

BILLS2 6 Hz 348 80 x 96 58 sec.

CARPHONE 30 Hz 382 176 x 144 12.73 sec.

CLAIRE 30 Hz 494 176 x 144 16.47 sec.

GRANDMA 30 Hz 870 176 x 144 29 sec.

JEANBAPTISTE 10 Hz 159 130 x 96 15.9 sec.

MOM 30 Hz 150 176 x 144 5 sec.

TALKINGHEAD 8.5 Hz 103 176 x 144 12.12 sec.

All of these sequences show a head-and-shoulders scene, which is the scenario OBC was
designed for.BILLS2 was one of the first sequences for which results of OBC coding were reported.
The face tracker use to record this sequence used connected components and Kalman filtering and
exhibits here still some instability.JEANBAPTISTE andTALKINGHEAD are two more examples of
the head-and-shoulders scenario and were originally recorded as test sequences for the face tracker.
SequencesCARPHONE, CLAIRE, GRANDMA, andMOM are frequently used by the video processing

141
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community. They can be found at [Vid01b].

Section 8.1 presentsmpeg_encode, the program we use as a benchmark, and the parameters it
takes. The actual encoding procedure and the resulting performance are discussed in section 8.2.
Finally, section 8.3 gives a critical evaluation of the results obtained, discussing shortcomings
of the OBC codec as it works today, and giving pointers on further research to overcome these
shortcomings. Throughout this chapter, curves in different shades of red indicate results of MPEG
encoding, and OBC results are in different shades of blue.

8.1 The Benchmark : mpeg_encode

There are some freeware programs doing DCT/DPCM based coding. A popular one which has
been around for a while ismpeg_encode, a MPEG-1 encoding program from theBerkeley Multi-
media Research Center[Ber97], which is approved by the MPEG group. It is freeware, and comes
along with some other programs to replay or analyze a MPEG-encoded stream. All those tools have
no audio facility, but that was no problem since we focus on the video encoding performance. Em-
ploying all of its features including motion detection and compensation,mpeg_encodeis a fully
functional MPEG-encoding software. It is therefore a valid reference for any video codec.

There may be the question of why not use another software for benchmarking OBC. Any
encoding program based on DCT/DPCM, for H.26x as well as MPEG-x encoding, uses basically
the same encoding scheme. That is, they are trading off quality for compression in the same way,
even if they differ in detail. MPEG uses forward and backward prediction and imposes the frequent
use of INTRA frame encoding, whereas H.26x has no such constraints, but both allow the use of
motion compensation algorithms. The result is that H.26x can yield higher compression rates... at
the cost of reconstruction quality. An MPEG encoder is configurable to output compression rates
comparable to H.26x, but only to lower the quality to the same level. Thus, it does not matter
which DCT/DPCM encoding software we use. Finally, MPEG is more popular than H.26x, there
is more software handling MPEG streams.

Encoding withmpeg_encodeis implicitely offline, since backward prediction is being used to
enable reverse playback. The programmpeg_encodeuses the DCT/DPCM based encoding scheme
discussed in chapter 5. Frames are treated asINTRA frames, hereafter shortI-frames, predicted
frames,P-frames, and interpolated frames,B-frames. Frames are encoded not exactly sequentially,
but I-frames are encoded first, then P-frames are predicted, and finally B-frames interpolated. This
has no impact on the compression performance.

The configuration ofmpeg_encodeis done with command line options and a parameter file
containing the input parameters for the encoding process. The following is a list of input parame-
ters for thempeg_encodeprogram :

Q-Scale : There are three different quantizer scales,IQ-SCALE, PQ-SCALE, andBQ-SCALE, for
INTRA frames, predicted frames and interpolated frames. These have a direct impact on the
compression ratio and the reconstruction quality. The coarser the quantizer scale, the higher
the compression ratio, but the worse the reconstruction quality.
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GOP : The Group of Pictures parameter, indicated byGOP_SIZE, indicates an independently de-
codable sequence of frames. This is important for devices or programs using forward and
reverse playback and search.GOP_SIZE actually denotes theminimumnumber of frames in
a Group of Pictures. This parameter has no impact neither on quality nor on compression.

IPB Pattern : indicates the desired sequence of I-, P-, and B-frames. One possible example for
the parameterPATTERN is IBBBPBBBI, although this sequence can be arbitrarily chosen. Is
has to start with an I-frame. This parameter has a direct impact on quality and compres-
sion (and computing speed), since B-frames compress best, and compression of P-frames is
between I-frames and P-frames. Higher compression, of course, means lower quality.

Slice : SLICES_PER_FRAME divides a frame in independently decodable units. A slice represents a
transmission unit, i.e., more slices are recommended for noisier channels. For our purposes
where the channel is a file on harddisk,SLICES_PER_FRAME is set to one.

Motion vector search : P- and B-frames are searched for motion vectors. For P-frames, there
are four algorithms which can be selected, and the parameterPSEARCH_ALG can the cor-
responding valuesLOGARITHMIC, SUBSAMPLE, TWOLEVEL, or EXHAUSTIVE. The parame-
ter LOGARITHMIC for B-frames can beEXHAUSTIVE, CROSS2, SIMPLE. Please see [Ber97]
and [GR94] for more details. All these parameters determining the desired motion vector
search algorithm have little impact on the reconstruction quality, but can improve compres-
sion at the cost of computing time.

Search Window : This is a square area where motion vectors are searched for. The parameter
PIXEL can have the valuesFULL or HALF, depending on if half-pixel vectors are supposed to
be allowed or not. The second parameterRANGE indicates simply the size of the search win-
dow in pixels. The type and size of the search window influence quality and compression.

There are some other options, but they have no impact on the compression results. They include
things like computing the reconstruction error an saving it into a statistics file. Table 8.2 contains
typical values used for encoding withmpeg_encode. In order to vary the output compression
and image quality, only the quantization parameters were modified in general, if not otherwise
indicated.

8.2 Encoding procedure and performance

The sequences from table 8.1 were compressed and reconstructed with varying parameters.
The encoding scheme follows the three step process from page 118. For the first encoding step,
the input sequences from table 8.1 were fed into the face tracker, and an area of about 80 x 80
pixels was cut out around the detected face. This corresponds roughly to the resolution of a LCD
color mobile phone display.

For the results below, the input images for OBC and MPEG are the same, i.e., MPEG is using
the same normalized video sequences than OBC. This may cause the question if normalizing,
which is prerequisite for efficient OBC coding, affects also the performance of an MPEG codec.
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TAB. 8.2: Typical encoding parameters for thempeg_encodeprogram

Encoding parameter Typical values

IQ-SCALE 3
PQ-SCALE 6
BQ-SCALE 8
GOP_SIZE 10
PSEARCH_ALG TWOLEVEL
BSEARCH_ALG CROSS2
PATTERN IBBBPBBBI
SLICES_PER_FRAME 1
PIXEL HALF
RANGE 12
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FIG. 8.1: MPEG encoding, sequence centered versus uncentered ;TALKINGHEAD sequence : dif-
ferences due to more static background in the uncentered case, allowing the motion detection
algorithm to be effective ;CARPHONE sequence : curves are arbitrary, since in both cases the
background changes
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However, figure 8.1 shows that, as we would expect, normalizing has no impact on compression
performance.

Unless otherwise stated,mpeg_encodeuses the coding parameters from section 8.1. These
parameters are sometimes varied as stated. The MPEG reconstruction errors were due to the typical
blocking artifacts of DCT/DPCM codecs. These artifacts are caused by quantizing and consist
usually in blurring within encoding blocks (8 x 8 pixels), and abrupt transition of pixel values
(colors).

The OBC codec output consists basically of two parts : the basis and the encoding parameters
for each image. The basis can be further compressed using ZIP or JPEG ; the encoding parameters
of a single frame are one floating point number for each basis dimension. For example, each frame
for a 15-basis-frame reconstruction adds 60 Bytes to the OBC codec output. For open universe,
offline coding, this means that each additional frame needs only 60 Bytes to be reconstructed,
regardless of its size. A serialization of the codec output using multiple resolutions of the basis is
thinkable. Lack of time prevented experiments in that direction.

The typical reconstruction error of OBC is blurred reconstructed images. A reconstructed se-
quence with high error rate appears as if someone played with the focus of a camera lens. De-
pending on the denseness of the clusters, a gesture such as turning the head may appear like an
animated transition between two images as is done in images synthesis. Also, some image fea-
tures such as mouth opening or an eye blink may disappear if they are levelled out by averaging
the samples in a cluster. All of these errors can be significantly reduced by precisely normalizing
the input video stream and by choosing the basis size big enough to capture all essential motion in
the image.

Let us point out that our results arenot restricted to the face area, and thateverythingneeded
to decode a sequence – including the basis [ !] – is included in the output stream.
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8.2.1 Sequence B ILL S2

The BILLS2 video clip is a sequence which was recorded online. It shows a typical head and
shoulders scene with 80 x 96 pixels containing 348 frames and lasting 58 seconds (6 fps). We
reported previously in a first publication [VSC99] that very high compression rates are possible at
a reconstruction quality comparable to MPEG (at comparable compression). In fact, theBILLS2

sequence is not the best example, even if OBC comes close to MPEG performance. The reason is
that the face is poorly centered compared to the other sequences used. The tracking was performed
then by the "old" CCO/Kalman filter face tracker.

Figure 8.2 shows the average PSNR for the entire sequence versus the overall compression
rate. The three OBC curves correspond to different encoding parameters, notably the basis size,
i.e., the number of dimensions used for the basis. We see that for low compression rates (40-) OBC
stays between 2 and 3 dB under the performance of MPEG. This is a deviation of about 10%. It
is only for very high compression rates (100+) that OBC comes within 1 dB PSNR to MPEG.
Table 8.3 show some of the measured values of figure 8.2 in numbers.
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FIG. 8.2: BILLS2 sequence : Avg. PSNR in [dB] vs. Compression Rate in n : 1 for MPEG and
OBC encoding in various configurations.nb indicates the number of basis images used.

Figure 8.3 finally illustrates the artifacts of MPEG and OBC coding by displaying the frames
that have been reconstructed with the highest and lowest PSNR, plus their originals. We can easily
identify the blocking artifacts of DCT/DPCM-based MPEG compression. The OBC reconstruction
error consists of a more or less pronounced fuzziness of the decoded frame.

Figures 8.4 and 8.5 compare OBC and MPEG compression for an increasing number of frames
to be encoded. The basis size is adapted for different numbers of frames. As we would expect, the
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TAB. 8.3: SequenceBILLS2, face region 80 x 80 pixels : Some encoding parameters and results
from figure 8.2 in numbers

OBC coding
Basis size Basis quality Compression Rate [n : 1] Avg. PSNR [dB]

40 55 108.90 27.27
40 70 96.00 27.80
40 80 84.32 28.19
40 90 65.61 28.67
40 100 28.02 29.37

MPEG coding
P : B : I quantizer scales Compression Rate [n : 1] Avg. PSNR [dB]

24 : 22 : 19 113.81 28.45
18 : 16 : 13 90.49 29.72
16 : 14 : 11 81.19 30.28
12 : 10 : 7 59.54 31.71
8 : 6 : 3 34.32 33.86

OBC compression rate is increasing with the number of frames encoded. However, the reconstruc-
tion quality stays virtually always under that of MPEG compression.

The reason for OBC falling behind MPEG in terms of reconstruction quality for theBILLS2

sequence lies in the poor normalization of the input data. This increases significantly the variance
of the input vectors (images) and reduces thus the efficiency of eigenspace-based encoding. Ho-
wever, the performance of OBC compression versus reconstruction quality is non-linear as can
be seen in figure 8.2. The trade-off between compression and quality for MPEG is a relatively
linear curve, even the motion estimation. With variation of basis size and basis compression, OBC
has two powerful tools to further push-up compression if desired. An encouraging fact is that for
very high compression rates, OBC reconstruction quality approaches that of MPEG. This is not
(necessarily) the case for model-based coding [Eis00].
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26.45 dB

FIG. 8.3: Example frames from sequenceBILLS2 showing the coding artifacts, illustrated by the
best (maximum PSNR) and worst (minimum PSNR) reconstruction : MPEG encoding with P : B :
I quantizer scales of 24 : 22 : 19 (avg. PSNR 28.45 ; CR 113.81 : 1), and for OBC with 40 basis
images and quality parameter 55 (avg. PSNR 27.27 ; CR 108.90 : 1).
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FIG. 8.4: BILLS2 sequence : Average PSNR in dB versus number of frames for MPEG and OBC
encoding.
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FIG. 8.5: BILLS2 sequence : Compression Rate in n : 1 versus number of frames for MPEG and
OBC encoding.
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8.2.2 Sequence C ARPHONE

OBC shows a similar behavior with theCARPHONE sequence as with theBILLS2. The sequence
CARPHONE is also one of the standard sequences used by the video compression community. The
video clip in QCIF color format shows a young man in a car talking to a camera. It contains 382
frames and lasting about 12.7 seconds (30 fps). The speaker is significantly changing his facial
expression and speaks very expressively as if he wanted to convince the person he is speaking to
of something. Efficient tracking is difficult, perhaps impossible, since the speaker is changing the
distance of his head to the camera several times. Moreover, the background changes significantly
while the car is driving. A pre-recorded sequence such asCARPHONE offers no possibility to make
up for such changes by zooming1. So, likeBILLS2, the 80 x 80 pixels area cut out around the head
of the talking person has significant variance, seriously compromising OBC performance.
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FIG. 8.6: CARPHONE sequence : Avg. PSNR in [dB] vs. Compression Rate inn : 1 for MPEG and
OBC encoding in various configurations.nb indicates the number of basis images used.

Figure 8.6 shows the average PSNR to compression rate graph for theCARPHONE sequence,
whereas figure 8.7 illustrates the artifacts of MPEG and OBC coding by displaying the frames
that have been reconstructed with the highest and lowest PSNR, plus their originals. We can easily
identify the blocking artifacts of DCT/DPCM-based MPEG compression. Again, the OBC re-
construction error causes some fuzziness in the decoded frame. Some of the encoding parameters
varied in figure 8.6 are listed in table 8.4.

1Scaling would be a not very attractive alternative
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TAB. 8.4: SequenceCARPHONE, face region 80 x 80 pixels : Some encoding parameters and
results from figure 8.6 in numbers

OBC coding
Basis size Basis quality Compression Rate [n : 1] Avg. PSNR [dB]

40 55 102.90 26.92
40 60 99.49 27.03
40 80 80.81 27.59
40 90 63.87 27.88
40 95 49.70 28.08
40 100 28.99 28.26

MPEG coding
P : B : I quantizer scales Compression Rate [n : 1] Avg. PSNR [dB]

24 : 22 : 19 113.75 27.58
21 : 19 : 16 100.63 28.07
18 : 16 : 13 86.29 28.69
14 : 12 : 9 64.90 29.89
12 : 10 : 7 53.12 30.54
8 : 6 : 3 29.07 32.51

Figures 8.9 and 8.8 show the compression rate and the PSNR reconstruction quality in [dB]
versus the number of frames. The underlying experiment is coding the first 100, 200, 300, and
all 382 frames. Basis sizes are adapted in order to keep the compression rate at about the same
value. We see that if we keep reconstruction quality of OBC at about 3.5 dB under MPEG2, we can
get a 15% higher compression rate. The properties ofCARPHONE mentioned in the above, which
actually make it a full-motion video, prevent OBC from further approaching MPEG compression.
What we should keep from the results withCARPHONE is that a) even under unfavorable condi-
tions, OBC is doing a decent job, and b) OBCis dependent on input normalization. Again, we
notice that OBC reconstruction quality approaches that of MPEG for very high compression rates.

2OBC can in this case not do better for 100 basis images or less.
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21.23 dB
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25.47 dB

FIG. 8.7: Example frames from sequenceCARPHONE showing the coding artifacts, illustrated by
the best (maximum PSNR) and worst (minimum PSNR) reconstruction : MPEG encoding with P :
B : I quantizer scales of 24 : 22 : 19 (avg. PSNR 27.58 ; CR 113.75 : 1), and for OBC with 40 basis
images and quality parameter 55 (avg. PSNR 26.92 ; CR 102.90 : 1).
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FIG. 8.8: CARPHONE sequence : Average PSNR in dB versus number of frames for MPEG and
OBC encoding.
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FIG. 8.9: CARPHONE sequence : Compression Rate in n : 1 versus number of frames for MPEG
and OBC encoding.
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8.2.3 Sequence C LAIRE

The sequenceCLAIRE is again one of the standard sequences used by the video compression
community. The video clip in QCIF color format shows a lady speaking, apparently a news reader,
containing 494 frames and lasting about 16.5 seconds (30 fps). The speaker is making mostly
nodding movements with her head, and her facial expression ranges from serious to smiling. Her
head stays relatively calm so generating a sequence of 80 x 80 pixels with her tracked face is
easy. This sequence is nicely normalized to the head of the talking person, which enables OBC to
perform better in terms of compression as well as reconstruction quality.

Figure 8.10 shows the average PSNR to compression rate graph for theCLAIRE sequence. The
average PSNR to compression rate graph displays how OBC is performing w.r.t. MPEG. Both the
MPEG as well as the OBC encoding parameters were varied in order to show how their perfor-
mance changes when encoding the entire sequence. For MPEG encoding, the parameters varied
were essentially the quantizer scales. We observe that curves are partially crossing. In general,
we can almost always get a significantly better performance with OBC than with MPEG, given
that we adapt the basis size. Some of the encoding parameters varied in figure 8.10 are listed in
table 8.5.
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FIG. 8.10: CLAIRE sequence : Avg. PSNR in [dB] vs. Compression Rate in n : 1 for MPEG and
OBC encoding in various configurations.nb indicates the number of basis images used.

Figure 8.11 illustrates the artifacts of MPEG and OBC coding by displaying the frames that
have been reconstructed with the highest and lowest PSNR, plus their originals. We can easily
identify the blocking artifacts of DCT/DPCM-based MPEG compression. The OBC reconstruction
error consists of a more or less pronounced fuzziness of the decoded frame.
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TAB. 8.5: SequenceCLAIRE, face region 80 x 80 pixels : Some encoding parameters and results
from figure 8.10 in numbers

OBC coding
Basis size Basis quality Compression Rate [n : 1] Avg. PSNR [dB]

60 75 75.84 30.39
60 80 70.83 30.77
60 85 64.72 31.24
60 90 56.28 31.93
60 95 43.64 32.87
60 100 24.98 33.72

MPEG coding
P : B : I quantizer scales Compression Rate [n : 1] Avg. PSNR [dB]

14 : 12 : 9 78.55 29.87
12 : 10 : 7 65.94 30.63
10 : 8 : 5 52.70 31.57
8 : 6 : 3 37.88 32.66

OBC is performing better onCLAIRE than MPEG, which is due to an efficient normalization
of the input image stream by tracking. Up to very high compression ratios, OBC has a margin
of 1+ dB. Varying the basis size and compression, we can efficiently increase compression while
maintaining a decent image quality.

Figures 8.12 and 8.13 show the compression rate and the average PSNR reconstruction quality
in [dB] versus an increasing number of frames. The underlying experiment is coding the first 100,
200, 300, 400, and all 494 frames. Basis sizes are adapted in order to keep the compression rate at
about the same value. We see that for comparable reconstruction quality, OBC yields a compres-
sion rate topping that of MPEG by about 6.6, which in this case corresponds to an improvement
of 17.5 %. Figure 8.11 then illustrates the artifacts of MPEG and OBC.
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28.1783 dB

FIG. 8.11:Example frames from sequenceCLAIRE showing the coding artifacts, illustrated by the
best (maximum PSNR) and worst (minimum PSNR) reconstruction : MPEG encoding with P :
B : I quantizer scales of 14 : 12 : 9 (avg. PSNR 29.87 ; CR 78.55 : 1), and for OBC with 60 basis
images and quality parameter 75 (avg. PSNR 30.39 ; CR 75.84 : 1).
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FIG. 8.12: CLAIRE sequence : Average PSNR in dB versus number of frames for MPEG and OBC
encoding.

25

30

35

40

45

50

100 150 200 250 300 350 400 450 500

Number of frames

C
om

pr
es

si
on

 R
at

e 
[n

 : 
1]

MPEG

OBC

FIG. 8.13: CLAIRE sequence : Compression Rate in n : 1 versus number of frames for MPEG and
OBC encoding.
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8.2.4 Sequence G RANDMA

The GRANDMA sequence is another standard test sequence [Vid01a, Vid01b] showing an old
lady sitting in an armchair, speaking. It contains 870 frames and lasts about 29 seconds (30 fps).
The length of the sequence is of particular interest since assuming a frame rate of 6 fps, for instance
for a mobile communication scenario, 870 frames represent about 21

2 minutes. The head of the
speaker is moving only little over the sequence. The is realistic as a person communicating over
a small (mobile) video telephone is supposed to hold his head relatively still in order to watch his
own (local) screen. Since the head of the speaker in theGRANDMA sequence stays calm, generating
a sequence of 80 x 80 pixels with her face tracked is easy.

The sequence normalized to the head of the talking person enables OBC to perform better than
MPEG in terms of compression as well as reconstruction quality. Figure 8.14 compares MPEG
and OBC drawing the average PSNR versus the compression rate for various encoding parameters
such as varying quantizing scale for MPEG or number of basis images for OBC, some of which
are listed in table 8.6 together with their corresponding results . Figure 8.15 shows the artifacts of
OBC and MPEG for the case of high compression (making the artifacts more visible).
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FIG. 8.14: GRANDMA sequence : Avg. PSNR in [dB] vs. Compression Rate in n : 1 forMPEG and
OBC encoding in various configurations.nb indicates the number of basis images used.

Figures 8.17 and 8.16 show the compression rate and the PSNR reconstruction quality in [dB]
versus the number of frames. The underlying experiment is coding the first 100, 200, 400, and
all 870 frames. Of course, basis sizes are adapted in order to keep the compression rate at about
the same value. We see that at 870 frames for comparable reconstruction quality, OBC yields
a compression rate topping that of MPEG by about 28.8, which in this case corresponds to an
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TAB. 8.6: SequenceGRANDMA, face region 80 x 80 pixels : Some encoding parameters and results
from figure 8.14 in numbers

OBC coding
Basis size Basis quality Compression Rate [n : 1] Avg. PSNR [dB]

50 80 108.80 31.75
50 85 99.37 32.20
50 90 86.88 32.75
50 95 68.97 33.46
50 100 42.28 34.29

MPEG coding
P : B : I quantizer scales Compression Rate [n : 1] Avg. PSNR [dB]

18 : 16 : 13 111.13 28.99
16 : 14 : 11 98.77 29.52
14 : 12 : 9 84.88 30.16
12 : 10 : 7 68.58 30.94
8 : 6 : 3 35.67 33.51

improvement of 81 %. The lesson from the experiments with theGRANDMA sequence is that with
a well-normalized sequence, OBC gains even more advantage over MPEG as the sequence gets
longer.
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FIG. 8.15:Example frames from sequenceGRANDMA showing the coding artifacts, illustrated by
the best (maximum PSNR) and worst (minimum PSNR) reconstruction : MPEG encoding with P :
B : I quantizer scales of 18 : 16 : 13 (avg. PSNR 28.99 ; CR 111.13 : 1), and for OBC with 50 basis
images and quality parameter 80 (avg. PSNR 31.75 ; CR 108.80 : 1).
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FIG. 8.16: GRANDMA sequence : Average PSNR in dB versus number of frames for MPEG and
OBC encoding.
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FIG. 8.17: GRANDMA sequence : Compression Rate in n : 1 versus number of frames for MPEG
and OBC encoding.
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8.2.5 Sequence J EANBAPTISTE

JEANBAPTISTE is a sequence recorded in our laboratory. It shows a head-and-shoulders scene
with the head making some movements while the shoulders stay relatively calm. It is therefore
easy to track, and the resulting 80 x 80 pixel video sequence is very well centered. The normalized
sequence is an excellent input for the OBC codec, and indeed, the OBC codec easily outperforms
MPEG in terms of compression as well as reconstruction quality. This actually shows how crucial
good tracking is for OBC.

Figure 8.18 shows that for low as well as high compression rate, OBC yields a substantially
better quality. Table 8.7 shows some of the values of figure 8.18 in numbers, whereas figure 8.19
illustrates the artifacts of OBC and MPEG.
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FIG. 8.18:JEANBAPTISTE sequence : Avg. PSNR in [dB] vs. Compression Rate in n : 1 for MPEG
and OBC encoding in various configurations.nb indicates the number of basis images used.

Figure 8.20 contains the PSNR for each frame in the sequence for OBC and MPEG encoding at
comparable compression rates. We note that the curve for OBC has a greater variance than the one
for MPEG. In general, a high PSNR for OBC represents an image that is close to its cluster center.
Deep dips in the OBC curve occur when a frame is far from all the cluster centers. This usually
corresponds to features that have not been captured by the sample selection process. Choosing a
bigger basis size often remedies those effects up to a certain point.
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TAB. 8.7: SequenceJEANBAPTISTE, face region 80 x 80 pixels : Some encoding parameters and
results from figure 8.18 in numbers

OBC coding
Basis size Basis quality Compression Rate [n : 1] Avg. PSNR [dB]

25 80 71.34 33.74
25 93 46.58 36.29
25 95 39.99 36.97
25 100 21.14 38.68

MPEG coding
P : B : I quantizer scales Compression Rate [n : 1] Avg. PSNR [dB]

12 : 10 : 7 69.33 31.91
10 : 8 : 5 55.67 33.08
8 : 6 : 3 39.88 34.51
5 : 4 : 1 20.59 35.21

Original
Frame 50

Original
Frame 89

Original
Frame 104

Original
Frame 105

Max. PSNR MPEG
32.96 dB

Max. PSNR OBC
34.62 dB

Min. PSNR OBC
29.71 dB

Min. PSNR MPEG
29.62 dB

FIG. 8.19:Example frames from sequenceJEANBAPTISTE showing the coding artifacts, illustrated
by the best (maximum PSNR) and worst (minimum PSNR) reconstruction : MPEG encoding with
P : B : I quantizer scales of 12 : 10 : 7 (avg. PSNR 31.91 ; CR 69.33 : 1), and for OBC with 25
basis images and quality parameter 80 (avg. PSNR 33.74 ; CR 71.34 : 1).
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FIG. 8.20:PSNR versus number of frame for sequenceJEANBAPTISTE for MPEG encoding with
P : B : I quantizer scales of 12 : 10 : 7 (Compression Rate 69.33 : 1 ; avg. PSNR = 31.91) and OBC
encoding with 25 basis images and quality parameter 80 (Compression Rate 71.34 : 1 ; avg. PSNR
= 33.74).
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8.2.6 Sequence M OM

The sequenceMOM is again one of the standard sequences used by the video compression. The
video clip in QCIF color format shows a lady speaking, probably a news reader, containing 494
frames and lasting about 16.5 seconds (30 fps). The speaker is making mostly nodding movements
with her head, and her facial expression ranges from serious to smiling. The background colors
are relatively close to face color, which is why the tracker was not as precise as with, e.g. , the
JEANBAPTISTE sequence.

Figure 8.21 shows the interesting fact that OBC starts to outperform MPEG at high compres-
sion rates. As we saw from theBILLS2 sequence on, OBC has a better average PSNR / Compres-
sion rate ratio at higher compression rates. This may come handy for certain applications such as
mobile video telephony.
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FIG. 8.21:MOM sequence : Avg. PSNR in [dB] vs. Compression Rate inn : 1 for MPEG and OBC
encoding in various configurations.nb indicates the number of basis images used.

We see in figure 8.22 that both techniques have their best performance (OBC for 15 basis
images and quality 80 ; MPEG for P: B : I quantizer values of 16 : 14 : 11) at frame 59. Their
worst reconstruction quality falls almost on the same frame, too. In case of OBC compression the
reason is that this image is an outlier with respect to the cluster centers computed in the sample
selection process. The reason for a bad MPEG performance may be that the forward-backward-
prediction captures a movement of the head only poorly. A frame by frame display of the PSNR
is corresponding to figure 8.22 is shown in figure 8.23.
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TAB. 8.8:SequenceMOM, face region 80 x 80 pixels : Some encoding parameters and results from
figure 8.21 in numbers

OBC coding
Basis size Basis quality Compression Rate [n : 1] Avg. PSNR [dB]

15 80 91.25 28.77
15 85 81.77 29.10
15 90 69.38 29.41
15 95 52.48 30.04
15 100 29.88 30.64

MPEG coding
P : B : I quantizer scales Compression Rate [n : 1] Avg. PSNR [dB]

16 : 14 : 11 86.88 28.54
14 : 12 : 9 74.22 29.17
12 : 10 : 7 59.86 29.96
10 : 8 : 5 46.06 31.07
8 : 6 : 3 31.61 32.32
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FIG. 8.22: Example frames from sequenceMOM showing the coding artifacts, illustrated by the
best (maximum PSNR) and worst (minimum PSNR) reconstruction : MPEG encoding with P : B :
I quantizer scales of 16 : 14 : 11 (avg. PSNR 28.54 ; CR 86.88 : 1), and for OBC with 15 basis
images and quality parameter 80 (avg. PSNR 28.77 ; CR 91.25 : 1).
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FIG. 8.23: PSNR versus number of frame for sequenceMOM for MPEG encoding (Compression
Rate 86.88 : 1 ; avg. PSNR = 28.54) and OBC encoding (Compression Rate 91.25 : 1 ; avg. PSNR
= 28.77).
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8.2.7 Sequence T ALKING HEAD

The TALKINGHEAD sequence was, just like theBILLS2 and theJEANBAPTISTE sequences, re-
corded in our laboratory. It shows a person doing some relatively big movements with his head.
The movements are perpendicular to the camera, so the head virtually always has the same size. As
with theCARPHONE sequence, tracking creates a changing background. Again we notice that OBC
performs the better, the higher the compression rates, although it has the handicap of a changing
background. The results of OBC are comparable with those of MPEG for the entire sequence, as
can be seen in figure 8.26.
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FIG. 8.24: TALKINGHEAD sequence : Avg. PSNR in [dB] vs. Compression Rate in n : 1 for MPEG
and OBC encoding in various configurations.nb indicates the number of basis images used.

Figure 8.26 shows the PSNR for each frame for high compression. We note that the lowest
PSNR for OBC (frame # 1, see also figure 8.25) is extremely low. The reason is that the face tracker
was run on a pre-recorded sequence where the start and end position of the face are not exactly the
same. The face tracker sees thus an extremely saccadic movement of the head, compromising its
precision. In live situations this would be an unlikely event. The face tracker could be adapted by
keeping the values of the covariance matrix artificially big, which would give up some precision.
However, we preferred to accept the low PSNR of at the turnover of theTALKINGHEAD sequence
as an exception.
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TAB. 8.9: SequenceTALKINGHEAD, face region 80 x 80 pixels : Some encoding parameters and
results from figure 8.24 in numbers

OBC coding
Basis size Basis quality Compression Rate [n : 1] Avg. PSNR [dB]

15 40 104 26.59
15 60 89.91 27.20
15 70 81.13 27.57
15 80 69.77 27.92
15 90 52.85 28.48

MPEG coding
P : B : I quantizer scales Compression Rate [n : 1] Avg. PSNR [dB]

21 : 19 : 16 104.88 27.27
18 : 16 : 13 90.05 27.92
16 : 14 : 11 79.68 28.49
14 : 12 : 9 68.06 29.29
12 : 10 : 7 56.02 30.07
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FIG. 8.25:Example frames from sequenceTALKINGHEAD showing the coding artifacts, illustrated
by the best (maximum PSNR) and worst (minimum PSNR) reconstruction : MPEG encoding with
P : B : I quantizer scales of 18 : 16 : 13 (Compression Rate 90.05 : 1 ; avg. PSNR = 27.92) and
OBC encoding with 15 basis images and quality parameter 60 (Compression Rate 89.91 : 1 ; avg.
PSNR = 27.20).
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FIG. 8.26: PSNR versus number of frame for sequenceTALKINGHEAD for MPEG encoding with
P : B : I quantizer scales of 18 : 16 : 13 (Compression Rate 90.05 : 1 ; avg. PSNR = 27.92) and
OBC encoding with 15 basis images and quality parameter 60 (Compression Rate 89.91 : 1 ; avg.
PSNR = 27.20).
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8.2.8 Computing Speed

Computing performance is important when we talk about video compression which is sup-
posed to be in real-time. For MPEG as well as for OBC it is possible to trade off quality for
computing time. Variations of computing time for MPEG are related to the motion vector search
algorithm, and the number of I, B, and P frames [Ber97]. Table 8.10 shows that changing the mo-
tion vector search algorithm for P-frames has no impact on quality or compression. For all other
measurements in this section, we used the TWOLEVEL algorithm. For OBC, the parameters affec-
ting computing time are the size of the images to be processed, the number of basis images, and
the number of images in the sequence to be encoded. All following calculations were performed
on a personal computer equipped with a 600 Mhz Pentium III processor, 512 kByte cache, and 1
GByte RAM.

TAB. 8.10: SequenceGRANDMA : Computing time for MPEG motion vector search for P-frames
with different search algorithms ; values are averaged over measurements for 100, 200, 400, 600,
and 870 encoded frames.

Algorithm Comput. time [msec/frame] Compr. Rate [n : 1] Avg. PSNR [dB]

EXHAUSTIVE 199 11.8 33.5
SUBSAMPLE 163 11.8 33.5
TWOLEVEL 61 11.8 33.5
LOGARITHMIC 17 11.8 33.5

The numbers shown in the figures below for OBC are for limited use, since, as has been said
above, the code for OBC has not been optimized yet. Measurements for MPEG are shown for
the Berkeley MPEG encoder. There are probably faster MPEG software codecs out there, but even
though we did not do a comparative study of MPEG codecs in terms of speed, we would not expect
them at this point to be more than 10 times faster thanmpeg_encode. So the reader can well get
an impression of the computing time range current MPEG software codes are in. In any case,
since they follow the MPEG standard, any MPEG encoder must produce the same compression
results for equal parameter configuration. Pre-processing steps for MPEG-4 or MPEG-7 such as
image content extraction and modeling are of course not considered. Note that since OBC is an
appearance-based technique, this pre-processing is already implicitly included.

Figure 8.27 compares OBC and MPEG computing time per frame for theTALKINGHEAD se-
quence for various image sizes. OBC as it is implemented today loads the entire sequence into
memory before processing it. Unfortunately, this limits the possible image size being processed,
since each pixel is converted into a 32 bit floating point number. We see that MPEG is about ten
times faster than OBC.

Figure 8.28 illustrates the dependence of OBC on the number of basis images. At the beginning
for 5 basis images the sample selection process is dominated by computing the new cluster centers,
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FIG. 8.27:SequenceTALKINGHEAD : Computing speed per frame in [sec/frame] vs. images size

i.e., the average of all samples in each cluster. From 15, 20 basis images on, its the assigning of
the samples to the clusters, which is using most of the computing time. For selection algorithms
other than the EQUIDISTANT algorithm, finding the cluster centers may dominate the computing
time consumption.

Figure 8.29 and 8.30 shows the dependence of the computing time as a function of the number
of images to be encoded. We see that the actual encoding step, i.e., the mapping of the images into
the created orthonormal basis space, is the most consuming computing step. This is mostly due to
the increasing basis size.

8.3 Critical discussion of experimental results

This chapter presented first results on OBC coding. In order to give reproducible results, OBC
was used on pre-recorded sequences. We saw that OBC performed differently on different input
sequences meaning that OBC coding is sensitive to its input data. This is an expected result, since
the entire encoding procedure is relying on normalization of the input stream. OBC is implicitly
collecting information about the image content, and it must perform worse than an algorithm not
dependent on input data, if this image content is not well accessible. This is the case when the
principal object in the scene to be encoded is not well normalized.

This puts the focus on the face tracker. As of today the face tracker is a one-module color
tracker. The results of the encoding of the BILL S2, CARPHONE, and TALKING HEAD sequences
show that imprecise tracking severely compromises compression results. These are the sequences
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FIG. 8.28: SequenceTALKINGHEAD : Computing time per frame in [sec / frame] vs. basis size in
number of basis images.
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FIG. 8.29: SequenceGRANDMA : Computing time in [sec] vs. number of frames to be encoded
The basis size is adapted to yield an approximatively constant reconstruction quality.

where the head moves considerably over the image. It is up to further investigation to find out if

OBC needs sub-pixel precision or scaling. Adding more modules such as a background subtractor
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to be encoded

or a motion detector to the face tracker should further contribute to precision and stability. Espe-
cially the tracked object’s extent should carefully be reconsidered, as the results of the CARPHONE

sequence suggest.

Another big drawback of the results above are the reconstruction quality metrics used. Degra-
dations in reconstructed images are of different nature for MPEG and OBC, which actually makes
them incomparable. We saw in section 7.4 that none of the currently used image quality measures
reflects human perception. A series of experiments with humans using psychological methods
to capture their impressions of image quality should be the way to go. This research should be
conducted with the goal of finding a mathematical description of human perception in mind.

A considerable disadvantage of OBC compared to MPEG is currently its computing requi-
rements. This is basically due to an implementation which was designed for flexibility and ex-
tensibility rather than efficiency. Here are some measures to compensate for complexity of the
algorithm :

a. Using a pixel step parameter in order to adapt the internal resolution of the codec.

b. Avoid byte to float to int conversions etc.

c. Masking the input sequence with the tracker output

d. Avoid using temporary files

e. Usinginline functions and look-up tables.

Similar improvements applied to the face tracker’s code yielded a reduction of computing time by
a factor of 5 (compare the results in [SC00] and in figure 6.5).
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8.4 Conclusion

This chapter compared OBC to MPEG for a number of video sequences. These sequences
contain head and shoulder scenes, which is the scenario for which OBC was designed. The com-
parison criteria werecompression rate, reconstruction quality, andcomputing speed. The results
showed that OBC is a valid alternative to DCT/DPCM type compression such as MPEG. In terms
of compression rate and reconstruction quality, OBC performs on a level at least comparable
to MPEG. If the prerequisites of OBC-coding such as normalizing and a one-principal-object-
scenario like head-and-shoulders scenario are fulfilled, then OBC can show significantly better
reconstruction quality at the same compression rate, or vice versa, than MPEG coding.

The computational cost of OBC, however, is currently higher, which is due to a code not yet
optimized for computing efficiency. We proposed a number of improvement measures to reduce
this problem. An improvement factor of 10, based on the experience with the optimization of
the face tracker code, should be realistic, which would make OBC very competitive compared to
MPEG.

A second field of improvement is the enhancement of OBC with features and functionality.
Some new features of OBC are currently being tested or designed but are to be considered too
immature to be presented here. These contain

Online OBC : An incremental version using the Gram-Schmidt procedure produced comparable
results to those reported above in an online version of OBC. Major problem here is the basis
updating algorithm.

Offline, open universe coding :Privacy protection or the wish to use an animated talking head
on web pages or for user help suggest the offline creation of a basis. Studies about the
required completeness of that basis need to be conducted. Short sequences mdae from such
a basis could be mapped onto phonemes, contributing to new human-computer interfaces.

Quality of feature reconstruction : Make OBC sensitive to movements of the eyes and mouth
by multiplying these regions by an extra weighting factor during the comparison of images
with the cluster centers. The information for this could come from the face tracker. Preser-
vation of edges may be another quality criteria for the OBC codec producing fuzziness as
principal artifact.

Add modules to face tracker : In order to improve tracking precision, adding further modules
such as background subtraction and motion estimation to the face tracker could improve
precision. Sub-pixel precision may be necessary.

Lossless compression of encoding parameters :From a certain basis size on it is worthwhile
considering a lossless compression of the encoding parameters, e.g., by ZIP compression.
This is valid only for closed universe coding.

Precision of encoding parameters :32 bits for each encoding parameter may not be necessary.
Experiments to find the minimum required precision for the encoding parameters should be
conducted.

Reconstruction quality measuresmodeling the human visual system could give new insight into
the entire coding process.
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Chapitre 9

Conclusions

This thesis presents a new approach to the encoding of video data for communication. The
approach is based on theappearance1 of one principal object in a stream of video data. In this
context, this object is a talking head in a head-and-shoulders scenario. Appearance based methods
require normalization by tracking, which in turn uses techniques from computer vision. We used
computer vision techniques to create a fast and robust face tracking system based on the detection
of skin colored pixels in an image. This tracker is part of a video codec based onOrthonormal
Basis Coding (OBC).

Two conditions have to be fulfilled so that OBC can be efficient :

a. (Face) tracking must be precise : The tracked object should always have the same position
and size within the image.

b. The recorded sequence is repetitive in its content ; this is not aconditio sine qua non, but it
increases greatly the efficiency of OBC

We could show in this work that if tracking is sufficiently precise, OBC outperforms by far
conventional encoding schemes such as MPEG in terms of reconstruction quality at comparable
compression rates. OBC performs particularly well at high to very high compression rates. This
is due to the fact that OBC does not slice up the images into little blocks, but treats them as a
whole vector. This resembles intentionally vector quantization or, if we speak in terms of pattern
recognition, clustering. We even make explicit use of algorithms from those fields.

For some years now research in video compression was busy producing incremental improve-
ments rather than re-thinking video compression as a whole. Standardization work in this area, no-
tably on MPEG-4 and MPEG-7, build multimedia codecs around MPEG-1 or MPEG-2 compres-
sion since there is simply nothing out there to replace the DCT/DPCM/VLC based compression
scheme. The work has been passed to the computer vision community, who is trying to extract and
model image information, which is supposed to be parameterized and used for interactive video.
Using Wavelets in stead of DCT may produce better results every now and then, but its nothing
more than replacing one fixed-data-model based transform coding algorithm by another, where the
complexity on the coding side is even further increased.

1see page 27
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We claim that in order to re-think the entire problem, we need to go one abstract level higher.

This is why we restarted the design process from the fundamental concepts of information theory.

We think that we could show with this work that it is still worthwhile doing so. Appearance-

based video compressioncan do both, efficiently compression video dataand collect and use

image information. The drawback of being restricted to a certain scenario is relative since image

content extractionalwaysneeds assumption about the image content. Moreover, there is plenty of

applications which follow exactly this scenario, from (mobile) video telephony to animated talking

heads for human-computer interaction.

9.1 Contributions

This thesis has two main contributions to the area of video compression :

� The use of tracking methods from computer vision to enable appearance-based coding ac-

tually makes sense. We could show that if a sequence is well normalized to an object, its

eigenspace representation is denser than that of a random sequence.

� Vector quantization (or clustering) can be used as an approximation to principal components

analysis.

Principal components analysis (PCA) is a technique used (or from) multivariate data analysis [Gif90]

and is the interpretation of the eigenspace representation of vector data. It tells us how represen-

tative the firstn eigenvectors are of the data represented. A handy property of PCA is the exact

knowledge of any error made. The eigenspace is usually computed by the Karhunen-Loève ex-

pansion. It is the densest possible representation of vector data and thus implicitly appropriate for

compression. Calculating an eigenspace representation is usually too complex for being used on

a n x 100 image vector set, but it becomes feasible if a representative set of 1 to 75 vectors are

selected. This selection is done for this work by clustering.

At every step of OBC, there is still room for improvement. Current and future research tries to

better OBC by trying out different algorithms for basis image selection. This is important consi-

dering the computing times of OBC compression (see chapter 8). Other improvements include

code optimization and adding features and functionality such as online coding, offline, but open

universe coding, design appropriate image reconstruction quality measures, lossless compression

and reduced precision of encoding parameters (see section 8.4).

Almost as a side-product, an efficient tracking algorithm based on the detection of skin color

has been developed. This algorithm uses the first and second moments of the probability distri-

bution of skin colored pixels in an image and subsequent weighting of new input data with the

distribution of the previous image. This approach is inspired by robust statistics and can actually

applied to any pixel-based tracking algorithm. It has successfully applied to background subtrac-

tion and motion history tracking.
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9.2 Critical evaluation of the approach

It is clear that a doctoral dissertation cannot be more than a feasibility study for a new ap-
proach. There currently are still some question marks behind some points, the biggest one perhaps
of which is complexity and computing power consumption. There is a reason why the – theore-
tically optimal – Karhunen-Loève expansion has not been used for energy compaction in video
compression, and this reason is its complexity and the need to update the basis with new incoming
data. The KLE has therefore been replaced by fixed-basis transform coding algorithms relying on
a pre-determined data model. The most widely used transform, the Discrete Cosine Transform,
is based on a Markov model of the image data and is a good approximation of the KLE for data
following that model. This was the state of the art when the currently used video compression
algorithms were designed, i.e., in the 1980s and early 1990s. Today’s computer generation allows
us to use more complex but more powerful algorithms.

The efficiency of OBC is dependent on its input data. We have shown with this work that OBC
can be very efficient with an input video stream normalized in position and size to one object.
Fortunately, this can be applied to a head-and-shoulders scenario, which is the basic scenario for
any point-to-point human to human communication. Video E-Mail, (Mobile) Video Telephone,
an interactive graphical user interface for instance a talking head on a web page are only a few
application examples which are to play an increasingly important role in future communication
technology.

For everything else than very long, repetitive sequences, the basis size will be much more im-
portant in data size than the reconstruction parameters. Fifteen basis vectors, for instance, produce
currently only 60 Bytes per frame, so we would need 320 frames, that the parameter data amounts
to one single 80 x 80 pixel RGB image. In order to reduce the amount of basis data, we can chose
either a lossless or a lossy compression algorithm. Since the basis vectors are images – even as
eigenvectors2 –, we can compress them with algorithms used for image compression. As we saw
in section 8.2, ZIP compression has a much lower compression rate than JPEG. The fact that JPEG
compression of the basis data does not compromise the results of image reconstruction allows for
its use, which greatly enhances the efficiency of OBC.

The biggest drawback of OBC so far is its computing speed3. OBC exhibits a considerable
lag tompeg_encode, where we have to consider thatmpeg_encode is not the fastest MPEG en-
coding program available. On the other hand, the source code of OBC has not been optimized
for computing speed yet. Images are converted back and forth fromunsigned char pointers to
float vectors, and temporary files are used during the encoding process. This is due to the fact
that flexibility for development and easy integration of new modules was given priority when the
used libraries were selected or written. These and many other things can be improved to efficiently
reduce computing time while, of course, maintaining the same results in terms of image quality
and compression. A hardware (DSP) version of the encoder should definitely push the OBC codec
to real-time performance.

2That is, they have the properties of images in terms of statistical correlation of pixels
3It is, however, fast compared to model-based methods [EWG00].
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Here are some more advantages of OBC :

� Compression rate is easy controllable through variation of basis size.

� Implicit motion detection through face tracking.

� Based on an eigenspace-like representation of the input video stream, OBC offers possibi-
lities for a seamless integration of applications such as recognition, animated talking head,
or privacy protection.

9.3 Perspective for further research

Although OBC as it is presented in this dissertation is an already well-working video com-
pression algorithm, many solutions for further improvement are to be tested until we can give an
answer about its potential. The most critical improvements to be made are those to improve speed
considerably. Once this problem is solved in a satisfactory way, applications can be designed and
tested. Here are some ideas about how to further explore and exploit the concepts presented in this
thesis :

Create offline, closed universe applications :Develop a video electronic mail system, as a stand
alone version and as plug-in for common communication front-ends such as the Netscapec�

Navigator.

Build an online video telephony system :This requires an incremental version of OBC. Also,
the face tracker must probably be more precise than in its current version to avoid a re-
construction quality loss such as observed with the CARPHONE sequence. The face tracker
would enhance the usability of the video communication system by allowing the user to
freely move in front of the camera while communicating.

Develop reconstruction quality measuresbased on the human visual system in collaboration
with psychologists. Design a test series to quantify human visual perception in order to
eventually create a mathematical description of human image quality rating.

Offline, open universe applications :These require experiments about the completeness of a ba-
sis space. Sufficiently complete appearance space representation may be used to efficiently
protect privacy. A talking head for human-computer interaction on web pages or with user
help functions would be another application. For the latter, the synchronization of phonemes
and very short video sequences has to be explored. This may be considerably easier than
doing the same with a 3D model.
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14(5) :82–101, September 1997.

[SW95] B. Schiele and A. Waibel. Gaze tracking based on face color. InProc. of the Int. Work-
shop on Automatic Face and Gesture Recognition, pages 344–349, Zurich, Switzerland,
June 1995.

[TG74] J.T. Tou and R.C. Gonzalez.Pattern Recognition Principles. Addison-Wesley Publi-
shing Company, Inc., Reading, MA, 1974.

[TLS93] W.B. Thompson, P. Lechleider, and E.R. Stuck. Detecting Moving Objects Using
the Rigidity Constraint. IEEE Trans. on Pattern Analysis and Machine Intelligence,
15 :162–167, February 1993.

[TP91] M. Turk and A. Pentland. Eigenfaces for recognition.Journal of Cognitive Neuros-
cience, 3(1) :71–86, March 1991.

[UMT01] UMTS forum. http://www.umts-forum.org, 2001.

[Vid01a] Video sequence links source page. http://www.av.it.pt/collaborators/

personal/navarro/links.html, February 2001.

[Vid01b] Video sequences source page.ftp://dspftp.ece.ubc.ca/pub/tmn/qcif_source,
February 2001. sequences in QCIF format.

[VSC99] W.E. Vieux, K. Schwerdt, and J.L. Crowley. Face-tracking and coding for video com-
pression. In ICVS’99 Conf. Proc. [ICV99], pages 151–161.

[Wal91] G.K. Wallace. The JPEG Still Picture Compression Standard.Communications of the
ACM, 34(4) :30–44, April 1991.

[Wal97] F. Wallner. Estimation de position d’un robot mobile par utilisation des composantes
principales des données d’un capteur télémétrique laser. PhD thesis, Institut National
Polytechnique de Grenoble, October 1997.

[WAP00] WAP Forum home page.http://www.wapforum.org, May 2000.

[WNC87] I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30(6) :520–540, June 1987.



Section 9.3 PERSPECTIVE FOR FURTHER RESEARCH 189

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.IEEE
Trans. on Information Theory, 23(3) :337–343, May 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. on Information Theory, 24(5) :530–536, September 1978.



Index

Algorithm
CenterOfGravity, 103

Algorithms
CenterOfGravity, 19, 31
EquiDistant, 124
EquiDistantOP, 124
Huffman, 55
K-Means, 127–128
MaxminDistance, 127
MostRepresentative, 126
Threshold, 125
ThresholdOP, 124

Arithmetic coding, 57
ASCII code, 51

Basis Kernels, 70–71
Bayes’ Rule

definition, 102
Binary digits, 50
bits, 50

cdf, 58
Chromaticity, 98
Cinepak, 17, 28
Codage de Bases Orthonormales (CBO), 17
Codebook (design), 81
Coding

offline, 115–116
online, 116

Color, 98
Color histograms, 100
detection, 97

Skin color, 100
space, 98

Common Intermediate Format (CIF), 15, 27
Compression, 47

maximum, 51
Computer vision, 35–40
cumulative density function, voir cdf

Dictionary
adaptive, 61
static, 60

Dictionary Coding Techniques, 60
Differential Pulse Code Modulation (DPCM),

42, 79–81
Discrete Cosine Transform (DCT), 42, 74–

75

EBCDIC code, 51
eigenspace, 74
Energy

compaction, 48, 66–76
source energy, 52

Entropy, 49, 50
coding, 48
maximum, 51
reduction, 48, 78–82
relative, 51

Facial Animation Parameters (FAP), 44
Fourier Series, 70

Global System for Mobile Communications
(GSM), 13, 25

190



INDEX 191

Gram-Schmidt procedure, 48, 71–72, 114
GZip, voir ZIP

H.261, 90–93
H.263, 90–93
hartleys, 50
head-and-shoulders scenario, 17, 29
Huffman coding, 54

adaptive, 56
HyperText Transport Protocol (HTTP), 13,

25

Information, 49, 50
Information Theory, 49–53
Integrated Services Digital Network, 33
Integrated Services Digital Network (ISDN),

41
International Organization for Standardization

(ISO), 17, 28
International Telecommunications Union (ITU),

13, 41
ITU-T, 17, 28, 41

ISDN, 33

Joint Pictures Expert Group (JPEG), 41, 86–
90, 114

JPEG2000, 88

Karhunen-Loève Expansion (KLE), 72–74
Karhunen-Loève Transform, voir Karhunen-

Loève Expansion (KLE)
Karhunen-Loéve Expansion, 48, 114
Kronecker delta, 68

Luminance, 98
LZ77 Algorithm, 61
LZ78 Algorithm, 62

Mean Squared Error (MSE), 82, 132
Metric, 67
Motion compensation, 107
Motion JPEG, 87
Moving Pictures Expert Group (MPEG), 41
MPEG-1, 17, 28, 90–93
MPEG-2, 17, 28, 90–93

mpeg_encode, 18, 30, 138

National Television Standards Committee (NTSC),
15, 27

nats, 50
Natural units, 50

Orthonormal Basis Coding, 48
Orthonormal Basis Coding (OBC), 17, 29,

113–114

Peak Signal-to-Noise Ratio (PSNR), 18, 30,
134

Phase shift on Alternate Lines (PAL), 15, 27
Prefix code, 55
Principal Components Analysis (PCA), 74
Privacy protection, 116
probability density function (pdf), 58, 106
Projection theorem, 68–70

Random process, 71
RealVideo, 17, 28
Redundancy, 51

definition, 51
reduction, 48, 54–65

Robust statistics, 97
Root Mean Squared Error (RMS), 133
Run-Length coding, 64
Run-length encoding (RLE), 42

Scalar Quantization, 78
Second Generation Video Coding, 43–44

Model-based approaches, 44
Second generation video coding, 34
Sequence

BillS2, 142–143
Carphone, 146–147
Claire, 150–151
Grandma, 154–155
JeanBaptiste, 158
Mom, 161
TalkingHead, 165

Signal Representations
discrete, 66–71

Signal-to-Noise Ratio, 79



192 INDEX

Signal-to-Noise Ratio (SNR), 133
SNR, 79
Spaces

L2 space, 67
linear space, 67
metric space, 67
Orthonormal Basis, 67–68
signal space, 67

Sprite, 44
Stochastic process, voir Random process
Système sÉquentiel Couleur À Mémoire (SE-

CAM), 15, 27

Tracking, 97
Blobs, 38
Feature-based, 36–38
Model-based, 38–39
Multi-modal, 39–40
Optical flow, 38

Universal Mobile Telecommunications Sys-
tem (UMTS), 13, 25

Universe
closed, 115–116
open, 116

Vector Quantization, 78, 81–82
Codebook (design), 81

video codec, 19, 31
video compression, 18, 29, 41–44

Cinepak, 41
H.261, 42, 90–93
H.263, 42, 90–93
MPEG-1, 17, 28, 42, 90–93
MPEG-2, 17, 28, 42, 90–93
MPEG-21, 42
MPEG-4, 42, 43
MPEG-7, 42, 43
proprietary techniques, 41
RealVideo, 41
Standards, 41

video conference, 18, 29
Video E-Mail, 18, 29
video telephony, 18, 29

Wireless Application Protocol (WAP), 13, 25

ZIP, 84–86, 114
ZLib, voir ZIP





Résumé
Cette thèse présente une nouvelle technique pour la compression de données vidéo numériques,

appelée leCodage de Bases Orthonormales (CBO). Des algorithmes de vision par ordinateur, de
compression de données, et d’identification de configuration sont combinés pour donner une mé-
thode de codage en trois étapes. CBO recueille des informations sur le contenu d’une image sans
utiliser de modèles. Au lieu de cela, il est basé sur l’apparence d’objets. Les techniques basées
sur l’apparence utilisent des représentations orthonormales de l’espace de base des objets, habi-
tuellement dans l’espace propre, et exploitent les propriétés géométriques de ces représentations
d’objet. Dans une séquence d’images d’un objet, chaque image est un point dans l’espace engen-
dré par la base orthonormale utilisée. Une concentration sur un objet représente une normalisation
des données visuelles d’entrée d’un objet principal. Étant donné les domaines d’application pour
la compression vidéo, le visage d’un locuteur comme objet principal est un choix normal. Nous
démontrons que CBO est une alternative valide aux techniques de compression vidéo convention-
nelles. En fonction de la précision de la normalisation sur l’objet principal, le CBO montre une
performance bien supérieure a celle des techniques conventionnelles.

Mots–clés
Compression vidéo, vision par ordinateur, apparence, Codage de Bases Orthonormales

TITRE

COMPRESSION VIDÉO FONDÉE SUR L’APPARENCE

Abstract
This thesis describes a new technique for the compression of digital video data, calledOrtho-
normal Basis Coding (OBC). Algorithms from computer vision, data compression, and pattern
recognition are combined to form its three-step encoding scheme. OBC gathers information about
image content without using models. Instead, it is based on appearance. Appearance-based tech-
niques use orthonormal basis space representations of objects, usually in eigenspace, and exploit
geometrical properties of these object representations. From a sequence of images of an object,
each image contributes a point in the orthonormal basis space used. Focusing on one object from a
sequence means that we need to normalize our video input data to one principal object. Given the
application areas for video compression, a talking head as principal object is a natural choice. We
show that OBC is a valid alternative to conventional video compression techniques. If the input vi-
deo stream is well normalized to the principal object, OBC outperforms conventional compression
techniques.

Key words
Video compression, computer vision, appearance, Orthonormal Basis Coding


